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Preface

Tremendous advances in intelligent techniques and wide applications of vision
systems have resulted in an exponential increase in research in the field of image
interpretation, also called as semantic analysis of images.

Semantic gap is a challenging area for research. The semantic gap is a difference
between low-level features extracted from the image and the high-level semantic
meanings that people can recognize on the image. The scene understanding is the
highest level of image processing. The result strongly depends on the lower-level
vision techniques, such as features selection, segmentation, objects recognition, and
so on. The chapters in the book deal with different stages of image processing
influenced on bridging the semantic gap.

Chapter 1 introduces the semantic gap in image and video analysis. Chapter 2
reports and compares a selected set of feature extractors. These extractors are
chosen due to their use in a wide number of smart machine vision systems. Chapter
3 is on promising conformity of segmentation results with semantic image inter-
pretation. Relations between semantics-based image annotation and SIMSER fea-
tures are investigated. Chapter 4 is also on segmentation. It describes the active
partitions technique which is a generalization of known active contour approach.
Chapter 5 reports 3D object recognition techniques and object model. Chapter 6
demonstrates that structured video annotations can be efficiently queried manually
or programmatically and can be used in scene interpretation, video understanding,
and content-based video retrieval. Chapter 7 presents an overview of deep learning
in semantic gap at different levels of image processing.

The book is directed to the researchers, practitioners, students, and professors in
the field of semantic image processing, multimedia processing, and deep learning
applied to semantic gap. The book was meant to indicate the direction of research
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for all who seek an answer to the question: how to overcome the semantic gap in
images and video analysis.

We wish to express our gratitude to the authors and reviewers for their contri-
butions. The assistance offered by the Springer-Verlag is acknowledged.

Wrocław, Poland Halina Kwaśnicka
Canberra, Australia Lakhmi C. Jain
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Chapter 1
Semantic Gap in Image and Video Analysis:
An Introduction

Halina Kwaśnicka and Lakhmi C. Jain

Abstract The chapter presents a brief introduction to the problem with the
semantic gap in content-based image retrieval systems. It presents the complex pro-
cess of image processing, leading from raw images, through subsequent stages to
the semantic interpretation of the image. Next, the content of all chapters included
in this book is shortly presented.

1.1 Introduction

Theproblemof the semantic gap is crucial and is seen inmany tasks of image analysis,
as Content-Based Image Retrieval (CBIR) or Automatic Image Annotation (AIA).
The semantic gap is a lack of correspondence between the low-level information
extracted from an image and the interpretation that the image has for a user. How to
transform the features computed from raw image data to the high-level representation
of semantics carried out by that image is still the open problem. This problem exists
despite the observed intensive researchwith theuseof different approaches to solving,
or at least narrowing, the semantic gap in image analysis, especially in image retrieval.
This gap is perceived as a barrier to image understanding. Some researchers claim that
the understanding of how humans perceive images should be helpful [1, 2]. A typical
CBIRmethod is a query-by-example system. In real life application finding an image
as an appropriate users query is hard [3]. Easier and more intuitive is to describe the
intended image by some keywords. Combining different media, like images, text,
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2 H. Kwaśnicka and L. C. Jain

video, sound, into one application is a subject of Multimedia Information Retrieval.
It is also the widely developed field of research.

The output of CBIR systems is a ranked list of images; the images are ordered
according to their similarity to the users query image.However, similarity ismeasured
using low-level features extracted from images; this causes that returned images often
do not meet users expectations, similarity based on low-level features do not cor-
respond the human perception of similarity. Research on how human perception is
working is intensively developed, one can expect that their results will be useful
in bridging the semantic gap [4–9]. Authors of [9] try to model of human cortical
function aiming simulation of the time-course of cortical processes of understanding
meaningful, concrete words. The different parts of the cortex are responsible for
general and selective, or category-specic, semantic processing. In [5] authors studied
the humans and automatic perception of orientation of color photographic images.
They concluded that the interaction with the human observers allows defining sky
and people as the most important cues used by humans at various image resolutions.
These and other results in the field of understanding human perception can be a hint
for the creators of computer systems understanding images. Some researchers focus
on developing a computer system that mimics the perceptual ability of people [10].
Such systems try to consider knowledge about the structure and the surrounding
environment of a scene.

An analysis of the perception of images byman suggests that computer vision sys-
tems should also take into account some knowledge. The computer systems require
acquired knowledge at different levels. To explain it let us see on vision systems
from three perspectives: knowledge, algorithmic and implementation perspectives.
From the implementation perspective, the used programming languages and com-
puter hardware can be considered; this is not interesting for us here. The algorithmic
perspective is essential—we have to decide theway of representing the relevant infor-
mation, also the most suitable algorithms for use. The most interesting perspective
is the knowledge perspective. Here, the questions could concern the knowledge that
enters a process, the knowledge obtained in the process, constraints determining the
process, and others.

An image (a scene) corresponds to basic properties of real-world. The next pro-
cessing step uses physics, photometry, and so on. Further processing requires models
of objects to be recognized, models of situations and common sense knowledge (see
Fig. 1.1).

Information derived from primitive features, extracted from images, is the low-
level knowledge. The semantic relationships and patterns, gathered by knowledge
discovering methods, are the second level of knowledge [10]. Gathering such knowl-
edge requires considering the correlation between the low-level information with the
interpretation of concepts related to domain knowledge. Machine learning has to rec-
ognize complex structural relations between visual data and the semantic interpreted
by human observing the considered scene.

In real-life use of CBIR systems, often a user can have a problem with finding
a query image that matches the user’s intent [11]. Finding the perfect image from a
collection could be an example of such situation. It would then be much easier to
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Fig. 1.1 From raw image to image understanding—a schema of processing

describe the desired image using text. The authors of [12], distinguish four scenarios
depending on available information for creating CBIR: caption; annotation, tag, key-
word; fullMPEG-7 annotation. The potential scenarios are: only images; imageswith
captions; images with captions and annotations, tags, keyword; and images with all
mentioned descriptions. The authors propose different corresponding tasks for these
scenarios such as rule induction for semantic class refinement, useKnowledge-Based
System to infer object association or structural projection MPEG-7 representation
and index building.

Multimodal CBIRs, i.e., taking into consideration visual, textual and audio fea-
tures are growing in popularity. How to exploit the visual content of images in the
CBIR systems is strongly developed, but there are other subjects worth the attention
of researchers. Li et al. present a survey of researches on three problems connected
with the semantic gap bridging: image tag assignment, refinement, and tag-based
image retrieval [13]. The tag relevance to the visual content of an image hardly
influences the quality of CBIR.

As it was mentioned earlier, the subject of semantic gap in the field of content-
based image retrieval is intensively studied. The very interesting survey is presented
in [14]. Authors comprehensively present achievements in particular steps of the
CBIR systems, starting from the framework of CBIR, by image preprocessing, fea-
ture extraction, learning system, benchmark datasets, similarity matching, relevance
feedback, up to the evaluation of performance and visualization. The authors also
indicate some key issues that influence the CBIR. They pointed out as still open
problems: representation of images with a focus on local descriptors; automatic
image annotation; image indexing to reduce dimensionality; deep learning approach;
description of ideal image datasets; re-ranking approaches as post-processing; visu-
alization aspects.

An interesting approach is presented in [15]. The authors extend the latent seman-
tic word and object models, to the latent semantic word, object and part models. The
premise of this approach was the fact that not only similarity of semantic of words
and semantic of images is important to the CBIR task. Also complex semantic rela-
tions within each modality, e.g., there are similar relations in the text to the relation
between objects: object A is a part of object B and object B is an instance of object
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C. They developed models able to learn these types of semantic relations across and
within modalities simultaneously, using ImageNet and WordNet sources.

Variety of approaches have been developed to improve the CBIR systems that
would be able to return the most relevant images with maximum user satisfaction
[16–19]. Also, numerous papers containing a survey of the CBIR systems have been
published, i.e., [13, 14, 20, 21]. In this book, some chapters present interesting
approaches at the different level of CBIR systems and one chapter dedicated to
applications of deep learning to bridge semantic gap. We have noticed a lack of
survey dedicated to this new learning paradigm applied to image understanding, and
the last chapter fills this gap.

1.2 Chapters Included in the Book

Chapter 2 presents a comparative study of the most used and popular low-level local
feature extractors in a smart image and video analysis. An overview of different
extractors is the first part of the chapter. The authors highlighted the main theoretical
differences among the different extractors. A comprehensive study has been per-
formed with use the Freiburg-Berkeley Motion Segmentation (FBMS-59) dataset.
The robustness and behavior of compared extractors are discussed. The observations
about the matching process are also outlined.

Chapter 3 is dedicated to image segmentation. The author claims that reliable
segmentation algorithms, extracting as accurately as possible, regions with a cer-
tain level of semantic uniformity significantly improve the automatic annotation
of an image. The developed segmentation technique is based on scale-insensitive
maximally stable extremal regions (SIMSER) features a generalization of the pop-
ular MSER features, which is rather useless in semantic image segmentation. The
chapter describes the experimental study of relations between semantics based image
annotation and SIMSER features, focusing on color images.

Chapter 4 shows a generalization of known active contour technique, namely
active partitions. The proposed approach can be applied to more sophisticated image
content representations than raw pixel data. The reduction of search space enables
to use evolutionary computations, less sensitive or invariant to the choice of initial
solutions. The author demonstrates the flexibility of the proposed approach; it can
be applied to both global and local image analysis.

Chapter 5 deals with 3D object recognition in RGB-D images, in indoor
autonomous robotics. The proposed framework integrates solutions for: generic
object representation; trainable transformations between abstraction levels; reason-
ing under uncertain and partial data; optimized model-to-data matching; efficient
search strategies. As such, the framework is an application-independent generic
model based. It was verified in robot vision scenarios. The approach allows to iden-
tify what kind of knowledge is needed and to utilize existing meta-level knowledge
to learn concept types instead of memorizing individual instances. An interesting
feature of the proposed framework is decomposition of an object into simpler ele-

http://dx.doi.org/10.1007/978-3-319-73891-8_2
http://dx.doi.org/10.1007/978-3-319-73891-8_3
http://dx.doi.org/10.1007/978-3-319-73891-8_4
http://dx.doi.org/10.1007/978-3-319-73891-8_5
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ments, named parts. The authors confirmed experimentally that the approach might
easily be adapted to multiple scenarios.

Chapter 6 concerns efficient automated mechanisms for processing video con-
tents. The vast gap between what humans can comprehend based on cognition,
knowledge, and experience, and what computer systems can obtain from signal pro-
cessing, causes the subject very difficult. On the other hand, the increasing popularity
and ubiquity of videos need efficient automated mechanisms for processing video
contents. The spatiotemporal annotation of complex video scenes, in the form inter-
pretable for machines, can be obtained by fusion of structured descriptions with
textual and audio descriptors. This annotation can be used in scene interpretation,
video understanding, and content-based video retrieval.

Chapter 7 focuses on how deep learning can be used in bridging the semantic
gap in the content-based image retrieval. The chapter briefly presents the traditional
approaches and introduces into deep learning, methods and deep models useful in
CBIR. The authors distinguished three basic structure levels for scene interpretation
using deep learning; they are feature level, common sense knowledge level, and
inference level. The chapter presents the applications of deep learning at the particular
levels of CBIR. Finally, the application deep models in bridging the semantic gap
are summed in a table, and the growing popularity of DL in image analysis is shown.

1.3 Conclusion

The chapter provides some problems connected with a gap between automatic image
interpretation and how human perceive the semantic content of an image. Steps of
image processing from raw image to semantic image interpretation are presented.
Each step influences the result of CBIR systems. From the semantic gap bridging
point of view, the most interesting seems to be a knowledge level of image analysis.
However, it strongly depends on the lower levels. A raw image reflects basic real-
world properties. Features extracted from a raw image strongly influence the further
process, and by this, the final results. Deepmodels are becoming increasingly popular
and are rapidly developed. They deal with complicated tasks such as choosing the
suitable set of features. Instead, they learn the feature. Deep models release a human
from the need to define features and algorithms of image processing; they are worth
developing.
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Chapter 2
Low-Level Feature Detectors and Descriptors
for Smart Image and Video Analysis:
A Comparative Study

D. Avola, L. Cinque, G. L. Foresti, N. Martinel, D. Pannone
and C. Piciarelli

Abstract Local feature detectors and descriptors (hereinafter extractors) play a key
role in the modern computer vision. Their scope is to extract, from any image, a set of
discriminative patterns (hereinafter keypoints) present on some parts of background
and/or foreground elements of the image itself. A prerequisite of a wide range of
practical applications (e.g., vehicle tracking, person re-identification) is the design
and development of algorithms able to detect, recognize and track the same keypoints
within a video sequence. Smart cameras can acquire images and videos of an inter-
esting scenario according to different intrinsic (e.g., focus, iris) and extrinsic (e.g.,
pan, tilt, zoom) parameters. These parameters can make the recognition of a same
keypoint between consecutive images a hard task when some critical factors such
as scale, rotation and translation are present. The aim of this chapter is to provide a
comparative study of the most used and popular low-level local feature extractors:
SIFT, SURF, ORB, PHOG, WGCH, Haralick and A-KAZE. At first, the chapter
starts by providing an overview of the different extractors referenced in a concrete
case study to show their potentiality and usage. Afterwards, a comparison of the
extractors is performed by considering the Freiburg-Berkeley Motion Segmentation
(FBMS-59) dataset, a well-known video data collection widely used by the computer
vision community. Starting from a default setting of the local feature extractors, the
aim of the comparison is to discuss their behavior and robustness in terms of invari-
ance with respect to the most important critical factors. The chapter also reports
comparative considerations about one of the basic steps based on the feature extrac-
tors: the matching process. Finally, the chapter points out key considerations about
the use of the discussed extractors in real application domains.
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2.1 Introduction

Nowadays, the computer vision is used in an increasing number of applications to
support human activities in everyday life. A common aspect of these applications,
that distinguishes them from simple monitoring systems in which human operators
supervise video streams, is that they must have a certain degree of autonomy in
understanding and interpreting the actions and events that occur within the video
sequences. Currently, a wide range of smart applications are commonly used in
different critical fields, including video surveillance [1–4], person re-identification
[5–9], event detection [10–13] and others. The main step to implement any smart
machine vision system, for any purpose, is to extract from the frames that compose
a video stream a set of salient features (i.e., the above mentioned keypoints) through
which to provide a significant abstraction of the background and foreground elements
represented within the video. This abstraction, observed over time and processed by
means of intelligent algorithms, is aimed to provide a semantic interpretation of
what is happening in the video stream. In modern smart systems, this interpretation
should always be done in real-time to ensure short response times for critical events,
such as violence action detection, dangerous person identification, anomalous event
recognition, and so on. To provide an overview of the main steps required during the
design and running of a smartmachine vision system, inFig. 2.1 a generic architecture
is reported.

As shown, such a system can be considered as consisting of four basic stages
[14–16]. In the first, usually with the support of a dataset, a set of feature extractors
are chosen and/or ad-hoc developed according to both the specific task and the image
domain. Often, this stage can be redesigned several times to be reasonably certain
that the identified extractors are sufficiently discriminative and robust. Subsequently,
a classifier based on machine learning [17, 18] or deep learning [19, 20] techniques
is used to define the different classes of actions or events that can be recognized
by the system. When a system must recognize many complex classes, supervised
techniques are preferred. By them, the classifier is first trained through a certain set
of video sequences (learning phase) and then, by using another set of similar video

Fig. 2.1 General purpose pipeline of a smart machine vision system
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sequences (evaluation phase), the recognition rate of the system is estimated. In other
cases, instead, when a systemmust recognize few simple classes, unsupervised tech-
niques can be also considered. By them, the classifier is immediately designed and
parameterized to recognize a restricted set of events or actions. Usually, unsuper-
vised techniques are used when the distinction of the few classes is truly apparent
and very few feature extractors can be used to support the classification process. In
these cases, only a dataset is needed and a wide number of video sequences (eval-
uation phase) is required to measure the classifier performance. Regardless of the
specific used technique, if a classifier does not reach the estimated success rate, the
whole process can be questioned, including the feature extractors. Once obtained a
satisfactory classifier, the third stage treats the use of the system in an interesting
scenario, and the last stage regards the automatic feedback to the users. Anyway, the
pipeline has highlighted how the feature detectors and descriptors are at the base of
each smart machine vision system.

Due to their importance, this chapter reports and compares a selected set of the
most common and effective feature extractors currently well-known in literature. In
particular, the chapter is focused on the following seven algorithms: SIFT [21], SURF
[22], ORB [23], PHOG [24], WGCH [25], Haralick [26] and A-KAZE [27]. These
extractors are chosen due to their use in a wide number of smart machine vision
systems [28–31]. The comparison of the different extractors is performed by using
the FBMS-59 [32], a popular public datasetwidely used to train and evaluate different
types of smart systems. During both the overview of the extractors (referenced by
linked case studies) and the comparison among them, different key observations
related to the critical aspects of the video sequence processing (i.e., intrinsic and
extrinsic parameters) are reported and discussed.

The chapter is structured as follows. Section2.2 presents a brief description of
each low-level feature extractor. Moreover, some case studies are introduced and
observations related to their behavior are also reported. Section2.3 presents a com-
parison of the treated extractors. In particular, on the basis of both selected sample
images and a default parametrization of each extractor, the main characteristics and
limits of each extractor are discussed. In addition, since the matching process can be
considered a basic step of each video processing based system, considerations about
this topic are also highlighted. Finally, Sect. 2.4 concludes the chapter.

2.2 Low-Level Feature Detectors and Descriptors

This section is divided into two main sub-sections. The first provides a concise
overview of SIFT, SURF, ORB, and A-KAZE. For each extractor, a reference work
of the current state-of-the-art is reported and discussed. We have decided to treat
separately these four extractors because they have often a key role in a wide range of
smart machine vision systems. The rest of the extractors, i.e., PHOG, WGCH, and
Haralick, are reported in the second sub-section. Unlike the first group of feature
extractors, the latter are introduced and explained by means of a single reference
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work. This is due to the fact that these extractors often collaborate among them (or
with other extractors) to support a specific smart machine vision system.

2.2.1 SIFT, SURF, ORB, and A-KAZE Extractors

These four extractors can be considered among the most powerful algorithms to
identify robust keypoints in any kind of image. In each of them, the detection and
description sub-algorithms are implemented separately to allow a more versatile
use of the extractor. In fact, the separation allows to customize and/or improve, for
a specific method, each main component of the extractor. In addition, the detector
and/or the descriptor of an extractor can be used in combination with the components
of another extractor to form hybrid approaches.

2.2.1.1 SIFT Algorithm

The Scale-Invariant Feature Transform (SIFT) algorithm [21] is designed to be robust
to the most common critical factors in image and video analysis, including scale,
rotation, and translation. In the practice, this extractor shows remarkable results also
in presence of noise and illumination changes [33, 34]. The architecture of the SIFT
algorithm is divided in the following four main stages, ranging from the detection of
each point of interest up to their description [21]:

• Scale-Space Extrema Detection: By using a Difference-of-Gaussian (DoG) func-
tion, potential keypoints over all scales and image locations are searched;

• Keypoint Localization: By utilizing a reference model, each detected location is
analyzed. A measure of stability to evaluate the candidate keypoint is used;

• Orientation Assignment: By making use of local image gradient directions, dif-
ferent orientations to each selected keypoint location are assigned;

• Keypoint Descriptor: By measuring local gradients at the selected scale around
each keypoint, a significant pattern to characterize that specific area is computed.

More specifically, the Scale-Space Extrema Detection stage is used to identify
the local extrema of an image by a linked multi-scale representation. This latter
is computed by the convolution of the image, that is derived by a set of Gaussian
Kernel with increasing variance (also named scale parameter). The subsampling
and blurring of an image, to perform gradually the research of keypoints within the
different version of it, is a robust and effective technique. In particular, given an image
I (x, y) and a Gaussian filterG(x, y, σ ), the scale-space, L(x, y, σ ), associated with
the image can be represented as follows:

L(x, y, σ ) = G(x, y, σ ) ∗ I (x, y) (2.1)
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(a) (b)

Fig. 2.2 SIFT algorithm: a detection of the local maximum and local minimum, b image gradients
(left) and keypoint descriptor (right)

where, (x, y) is the generic point of the image, σ is the variance, ∗ is the convolution
operator in x and y, and the Gaussian filter is expressed by the well-known equation:

G(x, y, σ ) = 1

2πσ 2
e
− (x2+y2)

2σ
2 (2.2)

The construction of the scale-space is achieved by filtering iteratively the image
at regular intervals, thus obtaining a set of processed images (named octaves). To
detect the points of interest in the scale-space, the DoG function is computed. This
latter is derived by calculating the difference of two nearby scales separated by a
constant multiplicative factor k. Formally, it can be expressed as follows:

D(x, y, σ ) = (
G(x, y, kσ) − G(x, y, σ )

) ∗ I (x, y) = L(x, y, kσ) − L(x, y, σ )

(2.3)
The Keypoint Localization stage consists in determining the local extrema of the

D(x, y, σ ) function, which represent the points of interest that must be identified.
To determine them, each point is compared with its eight-neighbors in the current
image and with its nine-neighbors in both upper and lower scale images (Fig. 2.2a).
To be a local minimum (or a local maximum) a point must be the smaller (or the
larger) in all the comparisons with respect to the other analyzed points.

Once computed the coordinates and scale of each point of interest, the Orientation
Assignment stage consists in calculating the direction of each of them to ensure a high
level of robustness with respect to the rotations. The scale associated with each point
is used to choose the image with the closest scale. Subsequently, for each element of
the chosen scale-space, L(x, y), the module m(x, y) and the orientation φ(x, y) of
the local gradient can be quantified by applying the difference between pixels. The
two functions can be formalized as follows:

m(x, y) =
√

(L(x + 1, y) − L(x − 1, y))2 + (L(x, y + 1) − L(x, y − 1))2

(2.4)

ϕ(x, y) = tan−1 L(x, y + 1) − L(x, y − 1)

L(x + 1, y) − L(x − 1, y)
(2.5)
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At last, a histogram of the orientations is derived (with 36 bins that cover all the
possible 360◦). The peaks in the histogram correspond to the dominant orientations
of the local gradients. In the final step of this stage, both the highest peak and all the
peaks near to it (i.e., according to a fixed threshold) are identified, thus providing a
single point of interest with a fixed direction.

Up to this stage, the SIFT algorithm has computed, for each keypoint, the spa-
tial coordinates, the scale changes, and the orientation. In the last stage, Keypoint
Descriptor, the algorithm assigns to each keypoint a descriptor that considers the dif-
ferent rotations of the image. To generate such a descriptor, a fixed area around each
keypoint within the different scales of the image is selected. To ensure the invariance
with respect to the rotations, the coordinates of each descriptor and the linked local
gradient directions are rotated to cover all the possible rotation angles. Subsequently,
the orientations of the samples that surround each keypoint are grouped into several
sub-regions (typically, a grid of 4×4 sectors) and for each of them a histogram is
computed (typically, with 8 bins). Each bin of the histogram corresponds to a dif-
ferent direction and covers 45◦ (Fig. 2.2b). Due to both the subdivision of the image
in several zones and the linked computation of the histograms, the SIFT descriptor
has a high dimensionality. This aspect can be considered a drawback of the SIFT
algorithm especially for running online applications [22].

An interesting case study that uses SIFT features regards the development of
the Facial Expression Recognition (FER) systems. These systems are designed to
recognize, for different purposes, the main facial expressions of the human face. In
Fig. 2.3 some facial expressions and the linked SIFT features are presented.

Usually, these features are adopted as first step to fix some strategic points on the
human face. Subsequently, these points supported by other techniques are utilized
to classify the facial expressions. A recent and interesting work that makes use of
the SIFT features to implement a very robust FER system is reported in [35]. In

Fig. 2.3 SIFT features: the first five images (first row) show some well-known facial expressions:
neutral, smiling, altered, doubtful, surprised. The other images (second row) show the extraction of
the SIFT features on them
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this paper, the authors propose a novel Deep Neural Network (DNN)-driven feature
learning method and adopt it to implement a multi-view FER system. A fascinating
aspect of this work is that the authors have been inspired by modern literature in
neural cognition systems for the recognition of facial emotions. These studies state
that the brain perception of facial expressions can be divided into several major
periods happening in different brain areas [36]. The first period is about the low
level salient image feature extraction occurring in the occipitotemporal cortex. The
other periods are about the high level emotional semantic feature learning as well
as the emotion perception happening in other brain areas (e.g., frontoparietal cortex,
orbitofrontal cortex, amygdala). To emulate the first period, the authors detect those
salient facial landmarks covering themain expression units of faces and subsequently
extract low level SIFT descriptors from those salient facial landmarks as robust local
appearancemodels to input the sequent network units. The other periods are emulated
by introducing the projection and convolutional layers into the DNN. These layers
are used to learn discriminative facial features across different facial landmark points
and to extract high level features instead of 2D filters as in conventional Convolution
Neural Networks (CNNs), respectively, thus obtaining results able to outperform the
current state-of-the-art in this application field.

2.2.1.2 SURF Algorithm

As reported in the previous sub-section, the high dimensionality of the SIFT descrip-
tor could be considered a critical aspect especially in those applications that require
a substantial real-time processing [22]. Actually, the same research group that devel-
oped the SIFT algorithm tried to improve it by providing a best-bin-first alternative
[21] to speed up the matching step, but they obtained results with a lower accu-
racy. All these reasons promoted the development of the Speeded Up Robust Feature
(SURF) [22] algorithm. This algorithm has a quality comparable with that of SIFT
as regards the management of the critical aspects (i.e., scale, rotation, translation,
noise, and illumination changes), but it requires of a lower computational cost. As
for the SIFT algorithm, also the architecture of SURF can be considered divided
in four stages, ranging from the image reconstruction up to the description of each
keypoint. In each stage, the SURF algorithm introduces an alternative approach with
respect to the SIFT algorithm aimed to speed-up the processing [22]:

• ImageReconstruction:Unlike SIFT, the SURFalgorithmutilizes, during thewhole
image processing, the integral images to reduce the computation time;

• Keypoint Localization: By adopting a Hessian matrix, the detection of the key-
points is obtained with a high accuracy and with a very low computation time;

• Orientation Assignment: By making use of a Haar-wavelet, this stage identifies a
reproducible orientation for each keypoint within the image;

• Keypoint Descriptor: By constructing a square region centered around each key-
point and by using the previously orientations, a set of descriptors is obtained.
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One of the main differences between SIFT and SURF is that this last uses integral
images [37] in the whole image processing. Briefly, an integral image can be seen as
a simplified version of an original image that allows for the fast implementation of
box type convolution filters. Formally, it can be expressed as follows:

I�(x, y) =
∑i≤x

i=0

∑i≤y

j=0
I (x, y) (2.6)

where, I∑(x, y) is the integral image and I (x, y) is the original image. The images
obtained during the Image Reconstruction stage are used during the whole image
processing to support all the other steps of the SURF algorithm.

In the Keypoint Localization, the algorithm utilizes a Hessian matrix, which is
approximated by means of the use of the integral images, thus allowing high perfor-
mance without losing in accuracy. The detector, so modified, assumes the name of
Fast-Hessian. The SURF algorithm uses a Gaussian filter that allows spatial analysis
and scale factors wider than SIFT algorithm. Formally, given a point p = (x, y) in an
image I (x, y), the Hessian matrix, H(p, σ ), to the scale σ can be defined as follows:

H(p, σ ) =
[
Lxx (p, σ ) Lxy(p, σ )

Lxy(p, σ ) Lyy(p, σ )

]
(2.7)

where, Lxx (p, σ ), Lyy(p, σ ), and Lxy(p, σ ), are the convolutions of the Gaussian
second order derivatives according to the ∂xx , ∂yy , and ∂xy , respectively.

In Orientation Assignment stage, for each keypoint a centered circular neigh-
borhood with a fixed radius is calculated (at any scale). Then, within each area a
Haar-wavelet in x and y direction is computed. The dominant direction is estimated
by quantifying the sum of all the Haar-wavelet responses by means of a sliding win-
dow with a fixed size (usually π/3, as shown in Fig. 2.4a). The vector with the major
module, among all those calculated, represents the main orientation of the keypoint.

(a) (b)

Fig. 2.4 SURF algorithm: a orientation calculation, within the sliding window (in azure) the
responses of the Haar-wavelets are added up, b keypoint descriptor
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(a) (b)

Fig. 2.5 SURF algorithm: aRunning example of amosaic composed by 2 frames. The first 2 frames
(first column) are the original ones acquired by the UAV, the other 2 frames (second column) are
the same frames in which the SURF features are extracted, the comprehensive view (third column)
is the mosaic obtained by the stitching (based on the features), b example of mosaic composed by
9 frames

Once identified the orientation of each keypoint, the linked descriptor is imple-
mented in the Keypoint Descriptor stage. In particular, the region is divided into a
fixed number of sub-regions (usually, a grid of 4 × 4 sectors, as shown in Fig. 2.4b).
For each of them, the Haar-wavelet response in dx and dy direction is computed. In
order to increase the robustness with respect to the geometrical deformations, the
responses of the wavelets are weighed with a Gaussian function centered in the point
of interest. Finally, the different responses are summed among them (i.e.,

∑
dx and∑

dy, see Fig. 2.4b), thus forming a first set of values linked to the descriptor. To
keep also information about the polarity of the intensity changes, the absolute values
of the obtained sums are also calculated (i.e.,

∑ |dx | and ∑ |dy|, see Fig. 2.4b).
A particular case study that uses SURF features regards the development of

Unmanned Aerial Vehicle (UAV) based systems. These systems are designed to
accomplish a very wide range of tasks, including object recognition, vehicle track-
ing, land monitoring, and others. A key requirement of many of these tasks is the
mosaic construction of a specific area of interest. A mosaic is a comprehensive view
of a target area obtained by stitching the frames acquired by a UAV that flies over it.
In Fig. 2.5 two examples (with 2 frames and 9 frames, respectively) are provided.

In this context, an interesting work is reported in [38], where the authors propose
an efficient system for mosaicking wide areas by using SURF features. The authors
address the problem of video surveillance in wide outdoor environments in which
common technologies (e.g., fixed PTZ cameras) are not suitable or sufficient.

2.2.1.3 ORB Algorithm

As previously reported, an extractor is composed of two main components: detector
and descriptor. The Oriented FAST and Rotated BRIEF (ORB) [23] algorithm is
based on the combination of two well-known methods. The first, FAST, is used
as detector, while the second, BRIEF, is used as descriptor. The ORB algorithm is
designed to be an efficient alternative to SIFT and SURF.
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(a) (b)

Fig. 2.6 ORB algorithm: a FAST detector, b orientation of the keypoint

The FAST method analyzes the brightness of the image around to each potential
keypoint. In particular, if a surrounding circular area centered in a point has an arc of
contiguous pixels with a suitable length (usually, 3/4 of the perimeter of the circle)
and a substantial illumination change, then that point is considered a point of interest.
An intuitive example is shown in Fig. 2.6a. In a first step, the FAST method uses an
expedient to speed-up the processing. It consists in analyzing only 4 points on the
circle with an offset of 90◦. If at least three of these points do not have a correlated
brightness with respect to a fixed threshold, then the potential point is discarded
immediately. The BRIEF method is based on the idea that image patches can be
effectively classified on the basis of a relatively small number of pairwise intensity
comparisons. Since, the original FAST method does not provide the orientation
component, a variation of the FAST method (named oFAST) is computed. For each
keypoint oFAST computes the vector, i.e., the orientation, from the center O up to
the centroid C within the patch that contains the corner (see Fig. 2.6b).

An interesting case study that uses ORB features regards the development of the
Situation AWareness (SAW) systems. These systems are designed to interpret the
events that occur within a video stream. Since, usually, these systems are adopted
to support surveillance tasks, the role of the real-time performance is evident. In
[39], the authors propose a method to detect moving objects in moving background.
As well-known, this is a very complex task in computer vision because both the
movements of the camera must be continuously estimated to model and update the
background and the foreground objects must be continuously separated from the
background in order to track them. Despite this, the authors provide a robust and
real-time system that takes full advantage from the main intrinsic features of ORB.

2.2.1.4 A-KAZE Algorithm

The Accelerated-KAZE (A-KAZE) algorithm [27] is one of the most recent feature
extractors. It is having a remarkable consideration by the computer vision community
due to its successful use in a growing number of smart systems. It is an evolution of the
KAZE [40] algorithm. As shown in the previous sub-sections, almost all the feature
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(a) (b)

Fig. 2.7 A-KAZE algorithm: a DFRobotShop Rover V2, b an example of test in uncontrolled
environment to search damages in a pipe by using A-KAZE features

extractors adopt the Gaussian kernel to produce the scale-space representation of an
original image I (x, y). This approach, on one side, supports the noise reduction and
emphasizes the prominent structures of the image, on the other hand, it presents some
important drawbacks. In fact, Gaussian blurring does not respect the boundaries of
objects and smoothest to the same degree both details and noise at all scale levels.
All these factors produce a significant reduction of the localization accuracy [40].
To overcome all these issues, the KAZE algorithm adopts a nonlinear scale-space
by using Additive Operator Splitting (AOS) techniques and variable conductance
diffusion. The main contribution of the algorithm presented in [27] to that shown in
[40] is the introduction of the Fast Explicit Diffusion (FED) to dramatically speed-
up feature detection in nonlinear scale spaces. At the current state-of-the-art, and
considering the remarkable results shown by the authors, the A-KAZE algorithm
can be considered one of the best feature extractors. In Fig. 2.7, a recent example of
the use of the A-KAZE features is reported.

One of the most fascinating fields of all time is robotics. The authors of the work
proposed in [41] propose a multipurpose autonomous robot for target recognition
in unknown environments. Inside the robot are implemented both a simultaneous
localization and mapping (SLAM) algorithm and an object identification algorithm
fully based on the A-KAZE features. In this specific context, the ability of the A-
KAZE algorithm to speed-up the feature extraction and matching processes has
played a key role due to the necessity to perform the research task in real-time.

2.2.2 PHOG, WGCH, and Haralick Extractors

These three extractors can be considered a suitable choice to observe different ways,
with respect to the previous ones, to extract features from an image. Actually, the
three algorithms treated in this sub-section cannot be considered “pure” extractors
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since they implement only the description stage. The detection stage is created ad-
hoc according to the specific case study. Anyway, a common practice is the use of
detectors coming from other approaches to support the reported three descriptors.

2.2.2.1 Running Example Focused on Person Re-Identification

In the last years, one of the most promising research field in computer vision is
represented by target re-identification in distributed wide camera networks [42].
The problem of re-identifying targets moving across cameras with non-overlapping
fields of view (FoVs) is challenging due to the open issues of multi-camera video
analysis, such as changes of scale, illumination, viewing angle and pose. The task
is even harder when dealing with people due to the non-rigid shape of the human
body. To address these issues and build a discriminating signature, four local and
global features are extracted and accumulated over multiple frames. As shown in
Fig. 2.8, different features are usually extracted: (i) PyramidHistogramofOrientation
Gradients (PHOG) [24]; (ii) SIFT [21] (Sect. 2.2.1.1); (iii) SIFT based weighted
Gaussian color histogram (WGCH) [25]; (iv) Haralick texture features [26].

Each of these features has been properly selected to capture different information
about the given image. PHOG features capture the shape and the spatial layout of the
person silhouette. SIFT and WGCH features capture the appearance of the person
at specific local regions of interest. Finally, Haralick features capture information
about textures. The process of extracting such features is described in detail in the
following. The SIFT features have been already described previously (Sect. 2.2.1.1)

(a)

(b) (c)

Fig. 2.8 Computed features. a SIFT-based Weighted Gaussian Color Histograms (observe that,
SIFT is used only as detector of keypoints, which are described by WGCH), b PHOG features, c
Haralick features for the two detected body parts
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no further information is given. They are introduced in this case study to supply a
detector stage to the WGCH features (i.e., description stage).

PHOG Algorithm

The PHOG feature [24] captures the local shape and the spatial layout of shape in a
given image [43]. To this end the spatial pyramid framework is exploited [44]. In the
latter, the given image is divided into a sequence of spatial grid cells by repeatedly
doubling the number of divisions in each axis direction. That is, the number of points
in a grid cell at one level is the sumof the points contained in the four cells it is divided
into at the next level of the pyramid. The number of grid cells at each level of the
pyramid gives the number of HOGs that must be computed at that level. The PHOG
feature vector is computed as a concatenation of all the HOG vectors computed at
all the grid cells locations at each level of the spatial pyramid representation, where
each bin in the local HOG feature represents the number of edge gradients that have
orientations within a certain oriented (i.e., angular) range.

The contribution of each gradient to the histogram is weighted by the magnitude
of the gradient itself and, similarly to SIFT feature computation, a soft assignment is
used to affect neighboring bins. More formally, let K be the number of orientations
bins used to compute a single HOG feature vector, and l = 0, 1, . . . , L be the level of
the spatial pyramid representation such that the number of grid cells at level l of the
spatial pyramid is 2l along each dimension, e.g., at level 0, the concatenated HOG
feature vector is of size K . Let HOGl

K be the concatenation of the HOG feature
vectors computed for all the 4l grid cells. Then the PHOG feature vector for the
entire image is a column vector of length m = K

∑L
l 4l computed as:

phog = [HOG0
K , HOG1

K , HOG2
K , . . . , HOGl

K , . . . , HOGL
K ] (2.8)

The PHOG feature vector is finally normalized to sum-up to unity. Figure2.9
illustrates this principle showing the PHOG features computed for different number
of levels L . In the implementation provided in this running example, before extracting
the PHOG features from the whole silhouette, F̂(L) is histogram equalized and
projected into the HSV color space to achieve illumination invariance. As shown in
Fig. 2.9, to retain some information about colors, the gradients for each of the hue,
saturation and value axes are computed separately only at image locations where an
edge is detected by the Canny edge detection algorithm. The PHOG feature matrix
PHOG ∈ Rmx3, computed for the given image I is defined as:

PHOG(L) = [phogh, phogs, phogv] (2.9)

where, phogh , phogs , and phogv are the phog feature vectors computed for the hue,
saturation and value color components respectively.

SIFT and WGCH Algorithm

The SIFT features are jointly used with the WGCH features to capture the local
chromatic appearance of given person image. Given the silhouette of the whole body
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Fig. 2.9 Effects of the number of levels (L) used to compute the PHOG feature. PHOG features
extracted from the hue, saturation and value color components using different spatial pyramid levels
are shown. For each of the four blocks, the top row shows the grid cells (in green) at which the
HOG features are extracted. Bottom rows show the final PHOG features computed concatenating
the HOG features extracted at each level of the pyramid

F̂(L), the SIFT features are computed. Then, for each of the detected SIFT features
a circular image patch centered at the SIFT keypoint is extracted. The three-color
axes that compose it are separately taken to compute three different histograms
weighted by a Gaussian distribution. Due to the robust identification of localized
SIFT keypoints, and to the fact that the farthest part of the patch is given a lower
weight, the WGCH captures the local chromatic appearance reducing the occlusion
and viewpoint changes issues. Let define a single SIFT feature as:

si f t = [si f tkp, si f thist , si f tF ] (2.10)

where si f tkp = [x, y]T gives the x and y coordinates of the detected keypoint,
si f thist ∈ R128 is the standard SIFT feature descriptor and si f tF ∈ {T, L} denotes
the body part region from which the feature is extracted. All the detected SIFT
features are then concatenated to form a larger feature vector:

SI FT (L) = [si f t (1), si f t (2), . . . , si f t (S)] (2.11)

where si f t (k) is the k-th SIFT feature extracted from the silhouette F̂(L). Given a
SIFT feature keypoint si f tkp, the process of computing the related WGCH feature
is shown in Fig. 2.10.

A circular patch R of radius r centered at si f tkp is extracted and projected into
the HSV color space to better cope with illumination changes and color variations.
To compute the WGCH feature vector, here denoted as wgch, each element of the
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Fig. 2.10 WGCH. The process of computing theWGCH related to a specific SIFT keypoint si f tkp
is shown. A circular patch of radius r centered at si f tkp is extracted and projected to the HSV
color space. First column shows the hue, saturation and value intensities of the given patch. Second
column shows theGaussianweights used toweight theHSV sift patches values. Third column shows
the three WGCHs computed for the hue, saturation and value axes using different bin quantizations

patch R at coordinates (i, j) is weighted by the probability density value at (i, j)
of a Gaussian probability density function with mean μ = [r/2, r/2] and diagonal
covariance � ∈ R2x2. This can be written as follows. Let [b, t) be a single bin range
of the WGCH and Ri, j be the pixel value at coordinates (i, j) of the patch R, then,
if b ≤ Ri, j < t :

wgch(b, t) = wgch(b, t) + N (μ,
∑

)i, j (2.12)

where N (μ, σ )i, j is the value at location (i, j) of a Gaussian probability density
function. The computedWGCH is then normalized to sum up to 1. Since theWGCH
is computed for the hue, saturation and value patches, we end up with three WGCHs
denoted as wcghh ∈ Rbh ,wcghs ∈ Rbs , and Wcghv ∈ Rbv where bn , bs , and bv are
the number of bins used for quantization of the hue, saturation and value components
respectively. A single WGCH feature is denoted as:

wcgh = [wcghh,wcghs,wcghv] (2.13)

As WGCH features are extracted from the previously computed SIFT features.
Finally, the WGCH feature matrix can be defined as follows:

WCGH(L) = [wcgh(1),wcgh(2) . . .wcgh(S)] (2.14)

where wcgh(k) is the WGCH associated to the k-th SIFT feature si f t (k).

Haralick Algorithm

TheHaralick feature captures information about the patterns that emerge in the image
texture. In particular, Haralick feature captures information about the image textures
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Fig. 2.11 GLCM. Given a gray scale input image I and a adjacency mask (bottom left) the gray
level co-occurrence matrix (rightmost) is formed by counting the number of adjacent pixels that
have gray intensity level equals to (a, b). Here an example of computing a GLCM using offset
�x = 1 and �y = 0 and ng = 4 gray levels is shown. Green boxes show pixels with intensity
values (a = 1, b = 1) that are adjacent according to the offset. Red boxes highlight pixels with
intensity values (a = 3, b = 4) for the same offset

such as the homogeneity, the gray level linear dependencies, the contrast, the number
and the nature of edges, and the complexity of the image itself. These features are
calculated in the spatial domain, and they rely on the assumption that the texture
information in an image is contained in the spatial relationship among the image
gray levels. To extract theHaralick texture features, a gray level co-occurrencematrix
(GLCM) is used. Such a matrix defined over an image describes the distribution of
co-occurring gray level pixel values at a given offset. The gray-level co-occurrence
matrix is a function of the angular relationship between the neighboring pixels in the
image as well as a function of the distance between them.

As shown in Fig. 2.11, given an image L of size MxN , with a, b = 1, 2, . . . , ng
gray levels, the gray level co-occurrence matrix GLCM ∈ Rngxng defined over L
is parameterized by the adjacency matrix (offsets �x and �y). Given such offset
values, the GLCM is computed as:

GLCM�x,�y
a,b =

∑N

n=1

∑M

m=1

{
1, i f Lm,n == a ∧ Lm+�x,n+�x==b

0, otherwise

}
(2.15)

where Lm,n is the gray level pixel intensity of image L at coordinates (m, n). Har-
alick features rely on the assumption that image texture information is contained in
the GLCM, so Haralick features are extracted from the computed GLCM. However,
the parameters �x and �y lead to different GLCM and different values for the pixel
intensity pairs (a.b) and (b, a). This would make the GLCM, hence the Haralick
features, sensitive to rotation. To deal with this issue, the following suggestions can
be considered [45]:

i. use the following offset �x and �y values: �x = 1, �y = 0 (0◦);�x = 1, �y =
1 (45◦); �x = 0, �y = 1 (90◦); �x = -1, �y = 1 (135◦);
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ii. the GLCMmatrix entries as symmetric so that both (a.b) and (b, a) pairings are
computed by counting the number of times the value a is adjacent to the value
b;

iii. advantage of pooling and average the resulting GLCM over multiple images.

If so, some invariance to rotations is achieved. To use Haralick features to compute a
discriminative signature for re-identification, the assumption that most of the people
wear different clothes for the bottom and for the lower body parts is considered. In
light of this, two Haralick texture feature vectors are extracted: one for the torso and
one for the legs silhouettes, respectively. Let GLCMT (L) and GLCML(L) be the
GLCM matrices computed for the torso and legs regions of a given person’s images
L . Then, following the details in [45], those are used to extract the two 14 dimensional
feature vectors H ARTT (L) ∈ R14 and H ARTL(L) ∈ R14, where H ARTT (L) is the
Haralick feature vector computed for the torso region and H ARTL(L) is theHaralick
feature vector computed for the legs region.

2.3 Low-Level Feature Comparison and Discussion

This section is divided into twomain sub-sections. The first analyzes the behavior and
robustness of SIFT, SURF, ORB, A-KAZE, PHOG, WGCH, and Haralick in terms
of invariance with respect to the most well-known critical aspects, including scale,
rotation, and translation. By using each operator, the second sub-section, provides
a concise overview about the matching process between two images that have an
overlapped area. All the images used to produce the comparative observations come
from the FBMS-59 dataset [46]. This last is a well-known video data collection
widely used by the computer vision community. The FBMS-59 dataset consists of
59 challenging video sequences, for a total of 720 annotated frames. To support
machine learning and deep learning techniques, the dataset is divided into a training
set and a test set. The first sub-section presents three reference examples. In each of
which an original image and the linked features extracted by the discussed extractors
are reported. The examples have been chosen to cover a wide range of situations
that can occur during the implementation of different types of smart systems. In the
second sub-section, for each discussed feature extractor, key observations about the
matching process are provided.

2.3.1 Behavior and Robustness

In Fig. 2.12, the application of the descripted feature extractors on a first reference
image coming from the FBMS-59 dataset is reported.

The first chosen reference case regards an image of a car crossing a road. This
is a good testing scene due to several factors, such as the sun reflection on the car,
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.12 Application to the a first reference image of b SIFT, c SURF, d ORB, e A-KAZE, f
PHOG, g WGCH and h Haralick feature extractors

the multitude of details given by a parked car, and the trees on the background.
As it is possible to observe, SIFT (Fig. 2.12b) and SURF (Fig. 2.12c) acts quite
similar in finding keypoints. Keypoints are found within the same image areas, but
due to their different implementation SURF extracts a greater number of keypoints.
Moving towards binary descriptors, we have that alsoORB (Fig. 2.12d) andA-KAZE
(Fig. 2.12e) find keypoints in the same areas of image, and as for SIFT and SURF,
their different implementation allows A-KAZE to extract more robust keypoints due
to the M-LDB descriptor. A common property among these extractors is that on
uniform surfaces, few or none keypoints are found. In this example, SURF is the
extractor that finds most keypoint on the asphalt, while with ORB and A-KAZE no
keypoints are found. By analyzing histograms approaches, PHOG (Fig. 2.12f) and
WGCH (Fig. 2.12g) acts differently one from the other. This is since in PHOG the
histograms are computed within cells equally spaced among the image, while the
WGCH computes the histogram around a SIFT keypoint. Finally, texture approaches
are analyzed. In our case, all the 14 Haralick (Fig. 2.12h) features are applied. In
this reference case, the variance, the sum variance and the entropy are the most
representative features, due to the non-uniformity of the image.

In Fig. 2.13, the application of the descripted feature extractors on a second ref-
erence image coming from the FBMS-59 dataset is reported.

The second example case chosen regards the image of a horse in a field. Differ-
ently from the first example, here we have a clear separation between foreground
and background. In detail, since the background is a meadow it presents a more
homogeneous distribution of the color, that could be challenging for binary features
extractors. Concerning SIFT (Fig. 2.13b) and SURF (Fig. 2.13c), as the first example
their keypoints distribution is similar within the image and, also in this example,
SURF extracts more keypoints. Also for ORB (Fig. 2.13d) and A-KAZE (Fig. 2.13e)
there is a similar keypoints distribution within the image, but A-KAZE seems per-
forming better since it is able to extract some keypoints from the horse. Differently
from the first example, where only SIFT and SURF extracted some keypoints from
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.13 Application to the a second reference image of b SIFT, c SURF, d ORB, e A-KAZE, f
PHOG, g WGCH and h Haralick feature extractors

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.14 Application to the a third example image of b SIFT, c SURF, d ORB, e A-KAZE, f
PHOG, g WGCH and h Haralick feature extractors

the asphalt, here also ORB and A-KAZE could detect some keypoints. This is due
to the blades of grass, which cast their shadow on the ground. Regarding PHOG
(Fig. 2.13f) and WGCH (Fig. 2.13g), the first seems to perform better. This may be
to the fact that the canny operator used by PHOG helps in extracting the shape of
the horse. Finally, also in this example, all the 14 Haralick features are used. Due to
the high homogeneity of the background, the entropy value for Haralick feature is
less than the first example while other features have, within a small range, the same
value obtained in the first example.

In Fig. 2.14, the application of the descripted feature extractors on a third reference
image coming from the FBMS-59 dataset is reported.

The third and last example case regard an image portraying two talking women.
This image has been chosen has third example due to the high number of details
(i.e., colors and shaper) it provides. As recognized in the previous two examples,
SIFT (Fig. 2.14b) and SURF (Fig. 2.14c) extract features in a similar distribution.
In this last case, SURF keypoints have a more homogeneous distribution within the
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 2.15 Matching between the image of the third reference example with the image shown in a
by using b SIFT, c SURF, d ORB, e A-KAZE, f PHOG, g WGCH and h Haralick keypoints

image, while SURF extract keypoints from well-defined areas, such as the collar
of the brown jacket. Concerning ORB (Fig. 2.14d) and A-KAZE (Fig. 2.14e), the
same keypoints are extracted. In detail, the only keypoints that are extracted with
A-KAZE but not with ORB are the ones at the left of the head of the woman wearing
the brown jacket. Differently from SIFT and SURF, ORB and A-KAZE have not
extracted any keypoint from the red jacket worn by the woman on the right. Some
relevant details, as the white dots on the shirt of the woman on the right, are detected
by all the extractors. Concerning PHOG (Fig. 2.3f), there is a high concentration
of the values on the lower bins as for the previous example. WGCH (Fig. 2.3g),
instead, has increased its performance due to the high distribution of keypoints on
relevant details of the image (e.g., on the women). Again, all the 14 Haralick features
are computed also for the third example. As it is possible to observe, the obtained
histogram (Fig. 2.3h) is similar to the one of the first example. This is due to the fact
that in both examples the used images contains a high number of details, differently
from the second example in which there is a uniform background.

2.3.2 Matching Process

In this sub-section, the matching process between two frames by using the described
feature extractors is shown. An overview is provided in Fig. 2.15.

In order to analyze only the true matching keypoints between the two images, a
ratio test has been performed as suggested in [21]. Since removing false matches is
a hard task, there still are some false matches in the proposed images. To test the
robustness to rotation and translationof the discussed feature extractors, theFig. 2.15a
has been chosen due to the head rotation of the woman at the left side. Due to the
repeatability of the keypoints, we have that all the keypoints residing on the head
of the woman that are in common between Figs. 2.14a and 2.15a are both translated
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and rotated. As it is possible to see, SIFT (Fig. 2.15b) and SURF (Fig. 2.15c) are the
extraction with the highest number of matches. Unfortunately, with a high number
of matches the probability of having a mismatch increases. In the proposed images,
the mismatches are the ones in which the connecting line between keypoints ranging
from top to bottom. Concerning ORB (Fig. 2.15d) and A-KAZE (Fig. 2.15e) there
are less matches and, consequently, less mismatches. Differently from SIFT, SURF,
ORB and A-KAZE, which features matching can be performed with algorithms such
as brute-force and k-nearest-neighborhood, PHOG (Fig. 2.15f), WGCH (Fig. 2.15g)
and Haralick (Fig. 2.15h) keypoints can be matched by using shape-matching and
histograms comparison algorithms.

2.4 Conclusions

In this chapter, a comparative study of the most used and popular low-level local
feature extractors (SIFT, SURF, ORB, PHOG, WGCH, Haralick and A-KAZE) is
provided. In the first Section, a reference architecture for the smart systems and an
overview of the related main components are presented. In the second Section, an
overview of each feature extractor and a linked case study is reported. The Section has
been focused on highlighting the main theoretical differences among the different
extractors. In the third Section, key observations about the matching process are
delineated. All the reference examples in this last section have been performed by
using set of images coming from the public FBMS-59 dataset.
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Chapter 3
Scale-Insensitive MSER Features:
A Promising Tool for Meaningful
Segmentation of Images

Andrzej Śluzek

Abstract Automatic annotation of image contents can be performed more effi-
ciently if it is supported by reliable segmentation algorithms which can extract,
as accurately as possible, areas with a certain level of semantic uniformity on top
of the default pictorial uniformity of regions extracted by the segmentation meth-
ods. Obviously, the results should be insensitive to noise, textures, and other effects
typically distorting such uniformities. This chapter discusses a segmentation tech-
nique based on SIMSER (scale-insensitive maximally stable extremal regions) fea-
tures, which are a generalization of popular MSER features. Promising conformity
(at least in selected applications) of such segmentation results with semantic image
interpretation is shown.Additionally, the approach has a relatively low computational
complexity (O(logn × n) or O(logn × n × log(log(n))), where n is the image reso-
lution) which makes it prospectively instrumental in real-time applications and/or in
low-cost mobile devices. First, the chapter presents fundamentals of SIMSER detec-
tor (and the original MSER detector) in gray-level images. Then, relations between
semantics-based image annotation and SIMSER features are investigated and illus-
trated by extensive experiments (including color images, which are the main area of
interest).

3.1 Introduction

Image annotation is one of the ultimate tools in large-scale visual information
retrieval, e.g. [1, 2]. In general, annotation assigns a number of linguistic captions
(tags, labels) to either the whole image or to its selected fragments. The latter cate-
gory of annotation is considered more informative because geometric distributions
of various tags can provide richer descriptions of the image contents (including
understanding of activities taking place within the image). Nevertheless, to automat-
ically perform this type of annotation, the images should be segmented into regions
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32 A. Śluzek

which can meaningfully contribute to the annotation decisions. In other words, the
regions extracted by the segmentation algorithm should have a decent chance of
being semantically distinctive as well.

For popular objects (e.g. human faces and other visual categories often used in
various benchmark datasets) numerous dedicated detectors have been developed, so
that the corresponding tags can be straightforwardly assigned to the images or to
regions segmented by those detectors. Such dedicated detectors are often based on
machine learning methods (e.g. [3, 4]).

For unspecified image contents, however,more universal segmentation algorithms
should be applied to identify regions which can be prospectively used as (or signifi-
cantly contribute to) semantically distinctive units.

The range of available segmentation algorithms is very wide (e.g. [5, 6]) with
diversified mathematical fundamentals, varying expectations (e.g. full-image seg-
mentation versus background-foreground segmentation where only the foreground
regions should be identified) and highly diversified computational complexity (e.g.
image thresholding versus active contours or graph-cut methods). Unfortunately,
none of the segmentation techniques delivers results which can consistently satisfy
requirements of the semantic-based segmentation. In particular, there are no general
relations between sophistication/complexity of the segmentation algorithms and the
quality (in terms of semantic accuracy) of results.

Figure3.1 shows a simple example where straightforward thresholding provides
results accurately representing the image semantics, while a more sophisticated seg-
mentation algorithm generates rather meaningless regions which require a lot of
post-processing before the image can be correctly annotated. Opposite scenarios,
where advanced segmentation algorithms produce results better aligned with the
semantic-based segmentation are more typical, of course.

Altogether, a number of rather obvious (but often intrinsically contradictive)
requirements and recommendations can be listed if we aim to effectively exploit
segmentation results in image annotation:

(a) (b) (c)

Fig. 3.1 An exemplary image (a) in which a simple binary thresholding provides semantically
correct segmentation results (b), while the watershed segmentation algorithm [8] generates rather
meaningless regions (c). From [7]
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• Segmentation algorithms should be universally applicable to regions of diversified
sizes and shapes.

• Segmentation results should be invariant to photometric (e.g. contrast/illumination
variations, additive noise, blur, shadows, etc.) andgeometric (e.g. scale, perspective
projections, occlusions, etc.) distortions.

• Texturization should not affect the segmentation results.
• A clear distinction between foreground and background image components should
be provided, if required.

• Segmentation algorithms should be able to exploit both intensity and color data
(and additional image dimensions, e.g.depth, if available).

• Low computational complexity of the algorithms, possibly supporting hardware
implementation (e.g. specialized systems-on-chip).

The most straightforward contradictions exist within the first three points. For exam-
ple, textured (but otherwise uniform) regions can be confused with collections
of evenly distributed small objects, shadows can visually split otherwise uniform
regions, etc. More thorough discussions on relations between image segmentation
and image semantics can be found in several sources, e.g. in [9].

In this paper, we propose a promising segmentation approach which has its roots
in local feature detection. Specifically, the prospective usefulness ofmaximally stable
extremal regions (MSER features) and their derivatives in semantic-based segmen-
tation is evaluated.

MSERs were originally proposed for stereo-matching (see [10]) but later found
theirmain applications in content-based visual information retrieval and object track-
ing (e.g. [11–13]). We argue that although MSERs in their original form are rather
poorly suitable for semantic-based segmentation, their generalization, i.e. scale-
insensitive maximally stable extremal regions (SIMSER features) are a promising
tool. Using popular datasets as a benchmark, we show that SIMSER regions are
more likely to be semantically distinctive, and they better satisfy the requirements
listed above.

As a brief introduction to the fundamentals of this chapter, Sect. 3.2 gives an
overview of MSER and SIMSER features, their properties and characteristics. The
main analysis and the illustrative experimental examples of SIMSER-based image
segmentation are contained in Sect. 3.3, while Sect. 3.4 summarizes the presented
results and provides conclusions. Selected computational and algorithmic details are
included in the appendix.

3.2 Summary of MSER and SIMSER Features

3.2.1 MSER Features

MSERregions are oneof themost popular local features, and are applied in diversified
areas of machine vision, mainly in retrieval, detection and tracking tasks. They have
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(a) (b) (c)

Fig. 3.2 An exemplary image (a), and its dark (b) and bright (c) MSER features. From [7]

been introduced by Matas et al. in [10] but the improved (in terms of computational
complexity) variant proposed by Nistér and Stewénius in [14] became more popular.

Informally,maximally stable extremal regions are patcheswithin binarized images
which are least affected (in terms of their shapes) by gradually changing binarization
thresholds.

When a gray-level image is binarized with gradually incrementing threshold val-
ues, a family of binary images is formed with correspondingly shrinking white (i.e.
above-the-threshold) regions and expanding black (i.e. below-the-threshold) regions.
Those regions which are least sensitive to the threshold changes define MSER fea-
tures. From the practical perspective, MSERs are image fragments which are promi-
nently brighter or darker then their neighborhoods. Figure3.2 shows an exemplary
image and its both bright and darkMSERs. It can be noticed that the shapes ofMSER
blobs quite accurately correspond to what a human sense of vision would perceive
as the most distinctive fragments of the original image.

Formally,MSER features are defined by the localminima of growth-rate functions
q(t) specified over binary regions created in the process of image thresholding. Given
a range of thresholds t ∈ T and a binary region Q(t) (i.e. a region in the image
thresholded at a certain value t) the growth-rate function qQ(t) is defined by the
derivative of the region’s area over the threshold level, additionally normalized by
the region’s area:

qQ(t) =
d
dt ‖Q(t)‖
‖Q(t)‖ , (3.1)

In the actual implementations, the growth-rate functions from Eq.3.1 defined over
continuous threshold values are replaced by one of their discrete approximations:

qQ(tj) =
∥
∥Q(tj) − Q(tj−1)

∥
∥

∥
∥Q(tj)

∥
∥

or qQ(tj) =
∥
∥Q(tj+1) − Q(tj−1)

∥
∥

∥
∥Q(tj)

∥
∥

, (3.2)

where the distance between neighboring thresholds tj − tj−1 defines the threshold
increment Δt. For images with 256 levels of intensity, typical values of Δt are
within the range 〈3; 5〉, and such values are used within this paper.
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Fig. 3.3 System-on-chip
detector of MSER features
designed according to the
architecture reported in [15,
16]

When the threshold level is incremented, the white regions can shrink or disap-
pear, while black regions either expand or merge, so that the families of nested binary
regions are always formed. Because of nesting, computational complexity of MSER
detection is very low. In the original algorithm proposed in [10] the complexity was
O(n × log(log(n))) (where n is the image resolution) while the algorithm modified
in [14] has the linear complexity O(n). Additionally, the regular structure of calcu-
lations enables inexpensive hardware (system-on-chip) implementations of MSER
detectors with very high throughput (the number of processed images per second) as
proposed in [15, 16] (see Fig. 3.3).

MSER features are robust under a wide range of photometric distortions (the-
oretically, they are invariant to any linear mapping of image intensities) and geo-
metric transformations. In practice, however, they are sensitive to high frequency
noise, excessive resolution variations and image texturization. Nevertheless, they
are a popular tool, including reported applications in image segmentation (more in
Sect. 3.2.3).

In most applications, MSER blobs are approximated by the best-fit ellipses (to
calculate keypoint descriptors over such ellipses, e.g. [17]) but this aspect is not
further discussed in the paper.

3.2.2 SIMSER Features

Themajor disadvantages ofMSER features are actually related to image rescaling. In
particular, blur (which is one of themajor effects distorting shapes of extractedMSER
blobs) is equivalent to image down-scaling, while noise effects and texture details
(which can also affect MSER detection) vary irregularly under image rescaling.

A number of papers have been addressing this issue (e.g. [18–20]) using dif-
ferent approaches, but a recently proposed (see [21]) concept of SIMSER features
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(scale-insensitivemaximally stable extremal regions) seems to be the closest follower
of the original principles of MSER detection.

In SIMSER detection, instead of detecting regions insensitive only to threshold
variations, the algorithm identifies regionswhich aremaximally stable both under the
threshold changes and the scale variations (i.e. image blur). It was shown in [21] that
such a modification only mildly increases computational complexity of the detection
algorithm, while performances are significantly improved and the intuitive notion of
prominent image fragments is better satisfied by SIMSER blobs than by MSERs.

Formally, SIMSER features are defined by the joint local minima of two growth-
rate functions. Given an image presented over a range of scales s ∈ S and binarized
using a range of thresholds t ∈ T (i.e. a family of binary images with diversified
binarization threshold and varying levels of smoothness) a region Q(s, t) from any
of these binary images can be selected. Then, two growth-rate functions qtQ(s, t)
and qsQ(s, t) are defined by the partial derivatives of the region’s area over t and s
dimensions, correspondingly:

qtQ(s, t) =
∂
∂t ‖Q(s, t)‖
‖Q(s, t)‖

qsQ(s, t) =
∂
∂s ‖Q(s, t)‖
‖Q(s, t)‖ (3.3)

A region Q(s, t) is consider a SIMSER feature if both qsQ(s, t) and qsQ(s, t) have
the local minima there.

The schemes for computing qtQ(s, t) and qsQ(s, t) growth-rate functions in the
discretized Threshold × Scale space are basically similar to Eq.3.2, i.e.

qtQ(tj, sk) =
∥
∥Q(tj, sk) − Q(tj−1, sk)

∥
∥

∥
∥Q(tj, sk)

∥
∥

or

qtQ(tj, s) =
∥
∥Q(tj+1, sk) − Q(tj−1, sk)

∥
∥

∥
∥Q(tj, sk)

∥
∥

, (3.4)

qsQ(tj, sk) =
∥
∥Q(tj, sk) − Q(tj, sk−1)

∥
∥

∥
∥Q(tj, sk)

∥
∥

or

qsQ(tj, sk) =
∥
∥Q(tj, sk+1) − Q(tj, sk−1)

∥
∥

∥
∥Q(tj, sk)

∥
∥

. (3.5)

Computational complexity of SIMSER detection is directly derived from the com-
plexity of MSER detection, which is O(n) in the more efficient variant of the algo-
rithm. SinceMSERdetection is applied in a range of scales, the numerical complexity
is multiplicatively increased by the number of scales.
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In practise, the number of scales is proportional to the image resolution. At each
subsequent scale, the image is smoothed (e.g. by aGaussian filterwithσ = √

2which
is visually equivalent to halving the image resolution) until the effective resolution
falls below the assumed threshold. In [21], the proposed number of scales is

1 + ⌊

log2(n/64)
⌋

, (3.6)

where n is the image resolution. For example, for images of VGA resolution 640 ×
480 the recommended number of scales is 13.

Therefore, the recommended number of scales can is proportional to log(n) so
that the theoretical complexity of the detector would be changed to O(n × log(n)).
However, this estimate of complexity does not take into account the detection of local
minima of qsQ(s, t) growth-rate functions (this problem does not exist in MSER
detection). Unfortunately, unlike binary regions which are always nested over the
changing threshold level, the binary regions over the changing scales do not nest
(see the Appendix) so that the minima of qsQ(s, t) cannot be found straightforwardly.
Nevertheless, the computational complexity ofqsQ(s, t)minimadetection is also only
qsQ(s, t).

Pseudo-code and more detailed description of SIMSER detection algorithm are
included in the Appendix (following specification available in [22]). Therefore, hard-
ware architecture for SIMSER detection can be relatively easily developed from the
existing architectures of MSER detector.

Similarly to MSERs, SIMSER blobs can be approximated by the best-fit ellipses.
As reported in [21], SIMSER features inherit many properties of MSERs (includ-

ing invariance characteristics, the average mnumbers of features in typical images,
etc.). However, they have been found superior in many practical aspects. First,
SIMSER features are usually better concentrated in the areas of visual prominence.
Secondly, they seem to have higher repeatability under image distortions. Finally,
they can better identify areas of highly diversified appearances (e.g. textured areas) as
long as some visual uniformity exists within such areas. This last property, in partic-
ular, makes SIMSERs an attractive tool for image segmentation, as further discussed
in the subsequent parts of this chapter.

3.2.3 Segmentation Using MSER Blobs

BothMSER and SIMSER blobs are actually image regions with some level of visual
uniformity, which naturally links them with image segmentation. Therefore, some
works report applications ofMSER features in segmentation problems. For example,
a partially supervised video segmentation is used in [23]. The user indicates in the
first frame the approximate location of interest, and the algorithm identifies MSER
regions around that location both in the first frame and in the subsequent ones.

In [24], MSER blobs are clustered using a weighted graph ofMSER nodes, with a
matrix of similarity defined by color or intensity closeness between pixels of adjacent
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blobs. Then, graph partitioning is used to divide the image into the required number
of segments.

The method proposed in [25] makes use of a multi-scale structure of image color
regions, where core regions (MSER blobs) gradually absorb the most similar non-
core areas until the whole image is segmented. In [26], MSER-like structures are
applied as a supplementary tool.

Altogether, it can be concluded from the published reports that MSER detection
provides a kind of useful image segmentation, but the semantic significance of those
segmentation results is often very limited, and complex post-processing steps are
needed to obtain more meaningful image partitioning from MSER blobs.

Examples in Fig. 3.4 clearly illustrate limitations of MSER-based segmentation.
Note that black areas (i.e. not included into MSER blobs) are considered non-
segmentable background.

In the first case (the image is from a dataset of manually semantically segmented
images, [27]) the results superficially look acceptable, but it can be noticed that some
of semantically uniform areas actually consist of large numbers of MSER blobs.
Altogether, especially because dark and bright MSER blobs overlap (which happens
pretty frequently, and may slightly distort the visual perception of segmentation
results) the overall impression is that generally no semantic interpretation can be
assigned to individual blobs. It can be also noticed that sometimes MSER blobs
of the same category (i.e. either dark or bright) are nested, but this effect is more
plausible and does not create any semantic confusion.

In case of the second image (from a popular dataset1) the segmentation results
obviously have no semantic meaning.

In the next Sect. 3.3, we show that much more satisfactory results can be obtained
using SIMSER blobs as the basic segmentation units.

3.3 SIMSER-Based Image Segmentation

The hypothesis to be investigated in this section is whether the direct (i.e. with-
out any further post-processing and/or blob mergers) outputs of SIMSER detec-
tion can provide semantically meaningful image segmentation. The underlying
assumption is, therefore, that the image areas outside SIMSER blobs are consid-
ered non-segmentable background, i.e. the whole procedure falls into the category
of foreground-background segmentation.

As an introduction, the SIMSER-based equivalents of Fig. 3.4 results are shown
in Fig. 3.5. In the first case, almost all SIMSER blobs (especially if the nested blobs
are taken as a single unit) can be tagged as ‘corals’, ‘coral reef’ or ‘deep water’. Even
the difficult second image has now two regions which can be labeled as ‘vegetation’
and ‘darker part of the wall’.

1http://www.robots.ox.ac.uk/~vgg/research/affine/.

http://www.robots.ox.ac.uk/{~}vgg/research/affine/
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Fig. 3.4 Two exemplary images and their MSER-based segmentation

Fig. 3.5 SIMSER-based segmentation of images from Fig. 3.4
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Although SIMSER features have been introduced and preliminarily evaluated
in [21], the analysis presented there was focusing on visual information retrieval
tasks so that further analysis is needed to better understand performances of SIMSER
features in segmentation problems. The following sub-sections present some of our
findings.

3.3.1 Image Smoothing in SIMSER Detection

The standard scheme of image smoothing in the discrete space of scales is to use
Gaussian filters with σ = √

2 (which is equivalent to halving the image resolution,
e.g. [28]). In such scenarios (and with the number of scales defined by Eq.3.6) the
numbers of SIMSER features detected in typical images were reported almost the
same as the numbers of MSERs.

We re-examined this estimate on much larger collections of images (including
datasets exploited in this paper) and have found that the numbers of SIMSERs are
actually significantly lower than the numbers of MSERs in the images. The aver-
age number of SIMSERs is typically only 50% of the number of MSERs in the
same image. To some extent, these differences can be attributed to a slightly dif-
ferent numerical scheme used for MSER and SIMSER detection in this paper (see
Eqs. 3.2, 3.4 and 3.5) but, nevertheless, the numbers of SIMSERs are still too high,
if we expect that most of them carry some semantics.

Therefore, without changing the number of scales, we have applied image over-
smoothing in the scale space, i.e. Gaussian filters with larger values σ are used
at transitions between neighboring scales. With the increased σ , the numbers of
detected SIMSERs are gradually decreasing (we do not have a convincing theoretical
explanation of this phenomenon yet). Based on extensive tests,we eventually selected
σ = 3, for which the average number of SIMSER blobs is only 9.3% is MSER
blobs (the results presented in Fig. 3.5 are obtained using this value of σ ). The
corresponding statistics are provided in Table3.1.

To further illustrate the effects of over-smoothing, three examples are given in
Fig. 3.6. Many SIMSERs detected with the smaller σ do not carry any clearly identi-
fiable semantics (although some of them provide semantics not available at the larger
σ , e.g. the bird eye in the bottom row).

Table 3.1 Average numbers
of feature blobs in images
(based on over 1000 outdoor
images)

Feature Average number

MSER 757.2

SIMSER (σ = √
2) 281.2

SIMSER (σ = 3) 70.4
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Fig. 3.6 Examples of SIMSER-based segmentation using σ = √
2 (left) and σ = 3 (right)

3.3.2 SIMSER Detection in Color Images

Currently, almost all multimedia collections and databases (e.g. internet resources)
contain mostly color images (with rather few exceptions reserved for historical
records and images acquired using non-standard capturing devices) or even images
of higher dimensionality (e.g. RGB-D images). In such images, segmentation tech-
niques can exploit both unique characteristics of individual channels and combined
properties of the channels. The same applies to SIMSER-based segmentation.

Even though all images of our experiments are RGB, the results presented in the
previous examples are basedonly ongray-level images, i.e. on combinedproperties of
three channels. Nevertheless, SIMSER detection and SIMSER-based segmentation
can be easily performed in each individual channel so that certain semantics hidden
in individual colors can be better represented by the segmented blobs.

To illustrate potential benefits of individual channels in SIMSER-based segmen-
tation, a number of examples are shown in Fig. 3.11 (at the end of paper). In some
cases, individual channels provide very similar results to gray-level images, some-
times fewer SIMSER blobs are extracted from individual channels, but there are also
cases where certain semantically distinctive blobs are extracted from a particular
channel only.

Three interesting cases can be pointed out. In Fig. 3.11g, a semantically unique
region (which can be spotted in the original image and tagged as lighter part of the
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wall) is extracted as a SIMSER blob in the red channel only. A stained (wet?) top part
of the wall is found only in the blue channel (Fig. 3.11m). Also, the red channel is the
only one in which the whole water area is identified as non-segmentable background
(Fig. 3.11h).

Such results should not be surprising, because many segmentation techniques
exploit multi-spectral properties of processed images. Nevertheless, it is comforting
to acknowledge that an extremely simple algorithm based on rather different prin-
ciples (MSER/SIMSER detectors have their roots in images matching and retrieval)
can provide results with similar characteristics.

3.4 Concluding Remarks

The chapter overviews a low-complexity image segmentation methodology which
has a potential of narrowing the gap between pictorial-only segmentation and seg-
mentation with some semantics embedded.

The method is developed from region-based local features used for image match-
ing and retrieval. Starting from MSER features (which have been found rather
useless in semantic image segmentation, unless supported by complicated post-
processing operations) we eventually focus on scale-insensitive maximally stable
extremal regions (SIMSER features).

In previous works, SIMSER features have been reported superior to MSERs in
image matching and retrieval tasks, [21]. In this chapter, we argue that SIMSERs
can also much better than MSERs contribute to semantics-oriented segmentation
and, therefore, to automatic image annotation. In particular, regions extracted by
the SIMSER detector can correspond to both large objects with complicated tex-
tures (as long as these objects are visually uniform in some sense) and very small
objects visually protruding from the background. This is possible because SIMSER
blobs are insensitive both to image thresholding and image rescaling. Thus, large
textured objects can be identified at larger scales (at which the texturization details
are smoothed) while small objects (even individual components of the textures, if
prominent enough) would be detected at finer scales.

The proposed method belongs to the foregroud-background segmentation tech-
niques, where SIMSER blobs are considered foreground objects with some seman-
tics associated. Usually, the numbers of semantically distinctive components within
a single image are rather limited. Therefore, the number of SIMSER features should
not be excessively large (i.e. they should be much smaller than, for example, typical
numbers of MSER features in the same images). This is achieved, without changing
the computational structure of SIMSER detector, by using over-smoothing, i.e. by
widening the Gaussian filter used for smoothing the images when the image scales
are gradually changed. This results in a ten-fold reduction in typical numbers of
extracted blobs so that most of them can have a meaningful semantic interpretation.
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In case of color images, the method can be applied both to individual channels
and to gray-level copies so that the chances of revealing semantics hidden behind
more complicated visual appearances are enhanced.

Computational costs of the method are very low and its algorithmic structure is
very regular.Actually, theSIMSERdetection algorithmcanbe rather easily converted
into SoC (system-on-chip) implementation bymodifying the existing chip forMSER
detection.

In general, performances of the SIMSER-based segmentation in the context of
semantic accuracy and correctness can be evaluated primarily qualitatively.Neverthe-
less, certain quantitative results are available as well. In [29], the preliminary version
of the method was evaluated on a dataset of semantically segmented images [27],
using the following measure of dissimilarity between overlapping regions:

dis(A,B) = 0.5

(‖A − A ∩ B‖
‖A‖ + ‖B − A ∩ B‖

‖B‖
)

, (3.7)

where A and B are the compared region (note that 0 value indicates identical regions
while 1 means disjoined regions).

Themanually outlined semantic regionswere compared, usingEq.3.7, toSIMSER
blobs maximally overlapping with those region. Over the whole dataset, the average
values of so defined dissimilarity between the ground-truth semantic regions and
their best SIMSER approximations is 0.295. To provide the intuitive meaning of this
number, Fig. 3.7 gives examples of overlapping rectangles with such dissimilarity
values.

These results are not conclusive yet, neither they indicate perfect correspondences
between semantic-based segmentation results and SIMSER detection, but they pre-
liminarily suggest that semantically uniform visual regions can often be quite accu-
rately approximated by SIMSER blobs.

The continuation of the presented works will focus mainly on further experi-
mental verification of the SIMSER-based segmentation performances in diversified
scenarios (including real-time applications, for which the method seems particularly
suitable because of its extremely low computational complexity) and on diversified
classes of images. Development of hardware solutions for SIMSER detection is also
considered, subject to availability of adequate resources.

Fig. 3.7 Examples of
overlapping rectangles with
the dissimilarity value 0.295
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Appendix

TheAppendix contains details of computational steps in SIMSERdetection, focusing
on the prospective hardware or hardware-supported implementations. However, such
details cannot be fully explained without an insight into the detection of MSER
features. Thus, the included information (a summary of the results presented in [22])
covers most important facts on architectures used in MSER and SIMSER detection,
as well as architectures specifically proposed for SIMSER detection only.

Detection of local minima in the threshold space

At each threshold level, the binary image ofM × N size is represented by three data
structures:

• Seed matrix of regions SM (of the same size as the image) with the initial con-
tent SMi,j = M × (i − 1) + j, i.e. each pixel is a seed for itself. After processing,
SMi,j = K , where K indicates the initial pixel (seed) of the region to which (i, j)
pixel belongs.

• Region Size matrix RS (of the same size) specifying the size of region to which
each (i, j) pixel belongs. Initially, RSi,j = 1, i.e. each pixel is a separate region of
unit size.

• Map-of-regions array, which for each image region lists its seed, the binary color
and the size.

A small binary image and the final contents of its SM and RS matrices are shown in
Fig. 3.8, while itsMap-of-regions is given in Table3.2.

Given such representations for the sequence of binary regions over three neigh-
boring threshold levels (note that such regions are always nested) the local minima of
qQ (see Eq.3.2) and qtQ (see Eq.3.4) growth-rate functions can be straightforwardly
identified. In other words, MSER regions can be detected or SIMSER candidates
(i.e. the regions which satisfy the local minimum criterion in the threshold space)
can be pre-selected.

Fig. 3.8 A small binary
region and its final SM and
RS matrices
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Table 3.2 Map-of-regions for Fig. 3.8 image

Region 1 Region 2 Region 3

Seed 1 2 10

Size 6 13 6

Color Dark Bright Dark

Fig. 3.9 An example of not
nested (overlapping) black
and white regions over two
neighboring scales
(smoothing removes sharp
extremes, both dark and
bright)

Detection of local minima in the scale space

To identify SIMSER blobs, the regions pre-selected as the local minima in the thresh-
old space should also be confirmed as the local minima in the scale space, i.e. the
minima the second growth-rate function qsQ (see Eq.3.5). To verify this, two oper-
ations are needed:

• The original input image should be repetitively processed by a smoothing filter.
This is just a convolution with the filter kernel, i.e. the operation which can be
straightforwardly into hardware. Its computational complexity is O(n).

• The correspondences between binary regions in the neighboring scales should be
established and, based on that, the values of qsQ growth-rate evaluated. This is not
a straightforward operation because binary regions over a sequence of scales often
do not nest (a simple example is shown in Fig. 3.9).

To solve this problem, the following pseudocode is proposed (its less effective
variant which, nevertheless, clearly indicates O(n) complexity of the algorithm was
given in [21]):

Evaluation of qsQ growth- rate function

Input Im1(M,N), Im2(M,N)
% two binary-images matrices at two neighbouring scales (M*N size)
Input RS1(M,N), RS2(M,N)
% two region-size matrices (M*N size)
Input MoR1(K1), MoR2(K2)
% two maps-of-region
Storage MX(K1,K2)<- zeros
% size of region intersections matrix
Storage next(K1)<- zeros
% reion correspondences
Storage gs(K1)<- zeros
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% growth-rate values

for i = 1:M
for j = 1:N
if Im1(i,j)==Im2(i,j)
MX(RS1(i,j),RS2(i,j))++

endif
endfor

endfor
for k = 1:K1 min = LARGE VALUE; indx = 0;
for l = 1:K2
temp = MoR1(k).size + MoR2(l).size 2*MX(k,l)
if temp < min && MX(k,l) > 0
min = temp; indx = l;

endif
endfor
gs(k) = min/MoR1(k).size; next(k) = indx;

endfor

The scheme takes two binary images (at the same threshold but at the neighboring
scales) their RS and SR matrices, and their maps-of-regions (see above). For each
binary region at the current scale, the identifier of the next-scale region is found, and
the value of the growth-rate function qsQ is evaluated. Therefore, the changes of qsQ
can be tracked over the scales, and the local minima can be easily found.

In this way, all operations needed to identify SIMSER features are completed.
As an example, a pair of binary images from two neighboring scales is shown

in Fig. 3.10, and the corresponding results of the above operations are included in
Table3.3. In this example, Region 4 has the best chance to be a local minimum (with
the smallest value of qsQ). To confirm that, however, similarly computed values of
qsQ for Region C (which is the correspondence of Region 4 in the next scale) and for
the corresponding region in the previous scale, should be larger (Fig. 3.11).

Altogether, it can be concluded that SIMSER detection architecture is a relatively
simple extpansion of the MSER detection architecture, so that hardware implemen-
tation of SIMSER detector is a feasible task.

Fig. 3.10 Computing qsQ
growth-rate function in the
scale space. The left image is
in the current scale, while the
right one in the next scale
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

(m) (n) (o)

Fig. 3.11 Original images (a,b,c) and the SIMSER-based segmentation results obtained from:
grey-level copies (d,e,f), red (g,h,i), green (j,k,l) and blue (m,n,o) channels
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Chapter 4
Active Partitions in Localization
of Semantically Important Image
Structures

Arkadiusz Tomczyk

Abstract In this chapter active partitions, a generalization of active contours concept
to other than pixel-based image representations, is presented. Active contours are
methods where optimal, with respect to a given objective function, contours are
sought in the images. Their main advantage is fact that they are able to use any
additional expert knowledge while analyzing the images. It is of special importance
if in the image itself there is no sufficient visual information allowing for proper
interpretation of its content. That knowledge can be incorporated into the search
process by proper selection of contour model, soft constraints in energy function or
hard constraints in an optimization procedure. All those advantages are preserved in
active partitions where image content is described not with pixels but with other set
of semantically more informative elements. Consequently, in active partitions not an
optimal contour is sought but optimal partition of given element set is looked for.
The change of image content description is advantageous as well. It reduces the size
of search space and allows humans to express their knowledge in more intuitive way.

4.1 Introduction

There are many different image segmentation techniques that can be directly or
indirectly applied to the tasks of object localization within an image. The main lim-
itation of the classic methods, such as thresholding or region growing, is that they
consider only what is available in the image itself, failing to utilize external knowl-
edge about the structure of interest. Such knowledge is crucial in those tasks where
the image itself contains insufficient information for proper semantic interpretation
of its content. A typical example here is radiological image interpretation, which
requires adequate anatomical knowledge, without which it would be impossible to
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distinguish between organs that have a similar representation of tissues in an image
modality under consideration.

A possible solution to that problem is provided by the active contour techniques.
This group of methods operate under the assumption that the space of contours,
unambiguously identifying objects in the image, is defined. The main objective is to
find an optimal contour within that space by proper selection of the objective function
(energy) and the optimization algorithm (evolution). The active contour model owes
its name to the fact that optimization is usually an iterative procedure, which results
in a change of the contours shape after each iteration.

The external knowledge can be incorporated into the active contour procedure in
several ways:

• Proper selection of the contour model can eliminate semantically incorrect solu-
tions.

• Proper constraints imposed on the optimization process can prevent obtaining
unacceptable solutions.

• Proper components of the energy function can penalize solutions that do not reflect
our expectations.

Active partitions can be considered as a generalization of active contours. During
the localization process the contours divide the set of image pixels into two subsets
representing the object and the background. Such a partition can be defined, however,
for any set of elements describing the image content, e.g. superpixels, line segments,
ellipses, etc. The change of image description can significantly reduce the space of
analyzed primitives without losing important semantic information, which can be
still encoded in the attributes assigned to those primitives. The chief advantages of
this approach are as follows:

• The reduced image representation enables the construction of solutions that resem-
ble more closely a conscious image analysis process specific to human beings.

• Incorporation of external knowledge seems to be more natural.
• Reduced search space allows the use of more computationally demanding opti-
mization algorithms.

• More sophisticated optimization algorithms provide the ability to avoid problems
with proper selection of initial solutions.

In this chapter, the concept of active partitions is presented and illustrated. Issues
regarding medical image analysis fall outside the scope of this study. For simplicity
reasons, the author focuses exclusively on the problem of warning road sign local-
ization. The chapter is organized as follows. In Sect. 4.2 a short overview of the
active contour techniques is provided, together with the methods of external knowl-
edge incorporation. Section4.3 introduces the basic concepts of active partitions.
Section4.4 presents a simplified example of active partition application. The chapter
concludes with a short summary in Sect. 4.5.
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4.2 Background

As already mentioned, the process of object localization in active contours is formu-
lated as an optimization problem, where the objective function (energy) expresses
the expectations about the structure of interest. Thus, the energy, if properly defined,
should assign to the contour its optimal value (usually minimal) only when the con-
tour represents the object of interest. It is obvious that this evaluation should consist
of at least two types of components:

• external components taking into account the position of the contour in the image
(they can evaluate whether the contour lies on the visible boundaries or circum-
scribes the region with desired characteristics, etc.)

• internal components taking into account the characteristics of the contour itself
(they can evaluate local contour smoothness, global contour shape, etc.).

In the literature, there are many variants of active contours, each adopting a different
contour model, which in turn determines the formulation of energy function com-
ponents and imposes specific contour evolution strategies. In this section, a short
review of active contour techniques is presented, which is followed by a discussion
of the methods for encoding knowledge about the expected contour characteristic.

4.2.1 Active Contours

The term active contour was first proposed in [1] by Kass, Witkin and Terzopoulos,
who described the snakes model, in which the contour was represented by a para-
metric curve in the image plane. Since contour parametrization is a function, the
energy is a functional, and to analytically find an optimal contour, the calculus of
variations needs to be used. The application of Euler-Lagrange equations leads in
this case to the system of partial derivative equations. Its numerical solution, which
requires contour discretization (the contour is transformed into a polygon), results in
an iterative process of optimal solution finding. Since the position of contour points
is modified at each iteration, the whole process can be interpreted as the movement
of the contour under the influence of some internal and external forces. This provides
the ability to avoid an explicit definition of the energy function and replace it by a
direct definition of the forces modifying the contour according to user expectations.

Another popular variant of active contours is thegeometric active contours
approach. It was proposed simultaneously by Malladi, Sethian and Vemuri in [2]
and by Casseles, Catte and Dibos in [3]. In those methods, the internal parametriza-
tion of the curves is not considered since it does not influence the contours shape.
Consequently, only forces normal to the contour are taken into account. At first, the
energy function was not expressed explicitly. It was added in geodesic active con-
tours by Casseles, Kimmel and Sapiro in [4] and by Yezzi, Kichenassamy, Kumar,
Olver and Tannenbaum in [5]. Thus, contour evolution is usually defined directly
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by the forces. Using a level-set approach ([6]), where the contour is defined by sec-
tions of 3D surface, it is possible to obtain contours of different topology (describing
separate regions or those with holes).

Another interesting solution is offered by active shape models, first described by
Cootes and Taylor in [7]. Here, the contour is represented by a set of characteristic
points, which need not compose a polygon. The possible relative positions of those
points are statistically trained before evolution (the so calledpoint distributionmodel)
on the basis of images that have previously been manually marked. The evolution
itself comprises two operations, performed at every iteration. First, locally optimal
positions of the characteristic points are sought. This operation usually takes into
account the expected image profile around this point. Next, the final position of
the points is estimated, allowing only three geometrical modifications of the whole
shape (translation, rotation and scale) and some local shape modifications that do
not violate point distribution model constraints.

A completely different assumption was made by Grzeszczuk and Levin in [8].
Their method, Brownian strings, represents the contour in a linguistic way using a
chain of directions describing how to move along the contour (the contour lies in the
cracks between pixels). Another non-standard element introduced by this method
is the optimization technique that it employs to detect the optimal contour. In this
case, the simulated annealing algorithm is used to avoid problems with precise local-
ization of the initial contour. Its application requires, however, a suitable choice of
local contour modifications performed at every iteration. Due to the specificity of
the contour model, those modifications are quite complex. The same optimization
technique, but another contour model, was applied by Tomczyk and Szczepaniak in
the potential active contours, proposed in [9]. In this method, the contour is defined
by a set of potential field sources. There are two types of those sources and the con-
tour lies where the summary potentials of both types are equal. The evolution of the
contour requires potential source modifications which in this case involve changes
in their location as well as in the parameters that control the generated potential
field characteristic. The optimization technique applied in both those methods pro-
vides significant flexibility in defining energy functions, since there are no special
requirements as to their form (they need not be differentiable).

In literature, many other variants of active contours can be found. A comparative
study can be found in [10, 11]. The choice of specific variant depends on considered
application. If the topology of the sought region may change, geometric active con-
tours should be used. There are modifications of snakes that allow to change region
topology but their implementation is less elegant. Snakes are good option if contour
can be initialized relatively close to the optimum of the energy functions. Other-
wise, methods allowing to explore the whole search space, like Brownian strings
or potential active contours, should be considered. The former gives full flexibility
of shape description, whereas the latter will be useful if smooth, rounded shapes
are to be found. If the sought shapes do not differ too much (mainly in their posi-
tion, orientation or scale), then properly trained active shape models will be the best
choice.



4 Active Partitions in Localization of Semantically Important Image Structures 55

For reasons of space, this section focuses further only on those active contour
variants that use specific external knowledge regarding the objects of interest to
enhance detection. These approaches are described in more detail below.

4.2.2 Knowledge

The ability to incorporate the external knowledge into the process of object localiza-
tion is a fundamental advantage of active contour techniques. There are three possible
elements where the expectations about the structure of interest can be expressed:

• Contour model—Knowledge encoded in the contour model makes it possible to
reduce the search space if specific properties of the object are known, for example
in potential active contourswhere the space of describable contours contains only
smooth and rounded shapes. Additionally, the achievable degree of roundness can
be controlled by a number of potential sources. This can be observed also in the
models that use Fourier descriptors presented in [12, 13] and splines discussed in
[14, 15]. Smoothness, however, is not the only requirement that can be encoded
in the model. In active rays ([16]) it assumed that not all the concave shapes need
to be described. In this case, a distance to a fixed point in the image plain enables
the description of all the desired shapes.

• Evolution strategy—If the energy function is explicitly given and some general
purpose optimization technique is used, then knowledge can be used to add hard
constraints forbidding certain contour modifications. Typical examples include the
point distribution model used in active shape models and some specific solution
generators used in methods that apply the simulated annealing algorithm. If the
energy need not be specified explicitly and the evolution strategy is designed
directly, then knowledge is encoded during the design process. A good example
are forces and force fields defined in snakes or geometric active contours. In [1],
for instance, volcano and spring forces were described, whereas in [17] a template
force was added to keep a desired shape of the contour.

• Energy function—The expectations about the contour are typically expressed as
soft constraints. They can be encoded in both internal and external components,
andmay have either local or global character. A standard internal local expectation
is contour smoothness. In snakes it is expressed by the characteristic of curve
parametrization derivatives. Another approach imposes the reduction of contour
length. External local expectations focus mainly on the image characteristics on
both sides of the contour. Global expectations concern usually the contours shape
and the characteristics of the region inside and outside of the contour. The latter
can be found in active regions ([18]) and active appearance models ([19]).

A separate problem is the acquisition and representation of the required knowl-
edge. It is not a trivial task but its detailed discussion falls outside of the scope
of this chapter. Let us only mention that many approaches use a kind of training
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procedures where the selection of optimal active contour parameters relies on man-
ual pre-localization of objects. Such procedures can be found in active shape models
or active appearance models, in Brownian strings or in potential active contours.

4.3 Active Partitions

Although the concept of contour is intuitively clear, and has been the subject of
many practical implementations within the framework of the active contour model,
there is no single, universally applicable formal definition of this term. An attempt
to formally describe the concept of contour was made, among others, in [20]. The
basic feature of the contour is its ability to unambiguously indicate which part of
the image reflects the object described by the contour and which part constitutes the
background. In other words, the contour possesses the ability of dividing the image
pixel set into two partitions.

In practical applications, however, operating on contours in a pixel space is prob-
lematic. The main issue is the cardinality of the pixel set, since the number of pixel
subsets (possible partitions) grows exponentially with the increasing size of the
image. Active contours try to tackle this problem in different ways, as described
in the previous section. A proper definition of the contour model and evolution con-
straints can reduce the space of available partitions. Moreover, appropriate contour
initialization, such that makes it relatively close to the optimal solution, can allow
one to use simpler optimization techniques, guaranteeing that the desired structure is
detected. Another issue connectedwith pixel representations is the difficulty of defin-
ing contour energy, as it often requires defining energy components at a pixel level as
well. This is something of a pitfall, which also manifests itself further while defining
evolution strategies, when potential and force fields are required, for example, in
snakes and geometric active contours. In such a situation, the process of higher-level
(global) knowledge incorporation in the localization procedure becomes significantly
more difficult.

Because of those reasons, active partitions, a generalization of active contours,
was proposed in [21–23]. In that approach, the image is not represented by a set of
simple pixels but by a reduced set of more complex, spatially localized elements
E = {e1, . . . , eN }. Naturally, the term contour, understood as a line that separates the
object elements from the background elements, is hardly applicable in this context.
That is why in active partitions instead of the optimal contour, the optimal partition
P = {EO ,EB} is sought directly where EO ⊆ E and EB ⊆ E represent object and
background elements, respectively, under the assumption that EO ∪ EB = E and
EO ∩ EB = ∅.
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4.3.1 Representation

Although active partitions do not assume anything about the nature of the elements
E, to make the method more natural, it is good to refer to observations of the human
visual system ([24]). From that perspective, it seems to be obvious that humans do
not analyze images directly at a pixel level, focusing rather on local similarities
(homogenous regions) and discontinuities (region borders). To reflect this observa-
tion, superpixels and line segments were proposed to represent image content in [21,
22], respectively. Examples of such representations of the images considered in this
chapter are presented in Fig. 4.1.

In [21], to generate a superpixel representation, the simple linear iterative clus-
tering SLIC algorithm was used ([25]). It is an adaptation of the k-means clustering
algorithm with a properly defined pixel metric. This representation was used to find
regions representing the interior of the left and right heart ventricle in CT images. To
avoid problems with insufficient image information (heart muscle grows into heart
chambers) the requirement for the partition of a minimum border size was added.
This approach was adapted from snakes method. The simulated annealing method
was used as an optimization algorithm, with a solution generator ensuring that only
connected partitions were generated. In [22], the content of mammograms and road
scenes was described using a modified line segment detector LSD algorithm ([26]).
The line segments reflected the areas of the image where a significant difference of
pixel intensity on both sides of those segments was observed. This representation
was used to localize circular and triangular regions, some of which might indicate
possible circumscribed lesions or warning signs, respectively. In this case, a heuristic
search was proposed to reduce the space of the analyzed subsets of segments. The
energy function was employed to evaluate the matching degree between a current
solution and a given template.

An alternative region-based representation was presented in [23]. In that work, the
MRknee imageswere representedby ellipses describing the regions of a similar color.
Ellipses were generated using the cross-entropy clustering CEC algorithm ([27]).
This helped to reduce the number of considered elements required for the correct
localization of elongated structures forming the fragments of articulate cartilage.
The optimal subset of ellipses was sought systematically, taking into account that a
uniform color and constant, relatively small structure thickness was expected.

In all the above examples, the number of elements describing an image content is
significantly smaller than the total number of pixels in that image. This may provoke
concern that a change of the image representation may lead to a crucial informa-
tion loss. To prevent this, all the considered elements have some additional attributes
assigned. In the case of pixels, these attributes are their coordinates and color compo-
nents. For more complex elements, the amount of information that can be assigned to
them is naturally bigger. For superpixels, this can be their center, bounding box, aver-
age color, shape descriptor, etc. In the case of ellipses, one can additionally consider
their orientation and flattening degree. Finally, for line segments, their orientation
and length as well as the characteristics of the regions on both sides of those segments
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.1 Representation of image content: a, d, g sample images, b, e, h superpixels generated
with SLIC algorithm, c, f, i line segments generated using LSD algorithm

can be taken into account. Another important fact is that some useful information can
be also encoded in the relations between elements, for example, in the neighborhood
relation. It is typical for pixels but can be also introduced for other elements. Other
relations can also be defined if they are more convenient than storing the attributes
of specific elements. To sum up, although the number of the elements is reduced,
the information about the image content can be preserved in additional attributes of
those elements and relations between them.
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4.3.2 Partition

Although in active partitions the contours cannot be defined in the same way as
they are in pixel representations, some partition model must be assumed to provide
a feasible partition description. The most general model is one that offers a full
flexibility of partition description. In that model all subsets EO and EB are allowed.
Since the number of elements describing the image content is reduced, such an
approach is acceptable in certain applications if additional constraints are imposed
on the energy function and the evolution strategy. Such amodel was presented in [21–
23] and is used during the global analysis described further in Sect. 4.4.1. Sometimes,
however, such a flexibility may be a source of problems if there is no convenient way
to express expectations about the partition structure (e.g. shape) in a form of soft and
hard constraints. This is illustrated in Sect. 4.4.2.

4.3.3 Evolution

Most of the typical active contour approaches use a local search algorithm as an
evolution strategy. Thus, it is crucial to initialize the contour close to the desired object
boundary. This constitutes one of the key problems of active contour applications.
The exceptions are Brownian strings and potential active contours, which apply the
simulated annealing algorithm as an optimization technique. And, even though other
search techniques could also be used, the same approach is proposed also for active
partitions, due to its simplicity and theoretical convergence with the global optimum
[28–30].

In that approach, at every iteration a new solution is proposed using a solution gen-
erator G. The solution generator should generate a random solution which is close to
the current one and it should enable the exploration of the whole search space during
the optimization process (there should always be a possibility to generate a solution
sequence transforming one solution to the other). If the generated solution is better, it
is accepted as a current one. If it is worse, it is accepted with a probability depending
on the difference in objective function values and on an artificial parameter, called
temperature. The temperature decreases during the whole process, thus reducing
also the probability of accepting worse solutions (at the beginning the temperature
is selected, such that the probability of accepting worse solutions is equal to 0.8). In
theory, if the whole process is sufficiently slow (infinite) this procedure guarantees
that local optima are avoided. Naturally, practical applications must have a finite
number of iterations, but even then the obtained results are usually satisfactory.

The choice of generator G depends on the selected partition model. In a general
case, the simplest G f generator can be considered, where the generation of a new
partition involves the movement of a single element from EO to EB , or in an opposite
direction. As shown further, such a generator, flexible as it is, does not take into
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account the spatial relationships between elements. Those relationships would allow
the addition of topological constraints, which in turn would result in more natural
partitions.

In the experiments presented in this chapter, two additional modifications were
introduced to the standard simulated annealing algorithm. Firstly, the temperature
was not decreased at every iteration but every few iterations (after a number of
iterations L). The 100 temperature changes were allowed during the optimization
process, since then the probability of accepting worse solution was almost equal to
0 (the exponential cooling scheme was considered with the 0.95 factor). Secondly,
before every change of temperature the best solution found so far was set as the
current one. Of course, since simulated annealing is a non-deterministic algorithm,
there is a need to ensure that the results obtained are acceptable and repeatable. It
can be done by proper choice of L which should be selected for a given application
in its training phase.

Finally, let us explain the process of partition initialization. Here, also different
strategies can be used. For example, it may be assumed that at the beginning EO =
E and EB = ∅. In the experiments presented below, other approaches were used,
depending on the assumed partition model and solution generatorG (initial solutions
should not violate generator constraints).

4.4 Example

The present paper examines the active partition approach to object localization,
focusing specifically on the problem of warning road sign detection. The problem
in question is split into two phases—global and local. The global phase aims at
localizing the areas of yellow color. In the local phase, those areas are analyzed in
detail to find warning signs. Such an approach should correspond to fast inspection
of the viewed scene to find the regions of interest and to the careful analysis of those
regions. To some extent it should also imitate a conscious human-specific process of
warning sign localization. In both phases, the same superpixel image representation
is used. This choice was based on the assumption that human attention focuses on
compact, homogenous regions rather than on single pixels. In the rest of this chapter,
all the operations connected with colors are performed using the CIELab color space.
In particular, it is used in the SLIC algorithm to generate superpixels and whenever
the similarity of colors is discussed.

4.4.1 Global Analysis

The goal of this phase is to localize compact, yellow regions of interest. In real scenes,
of course, there can be more than one such region and, naturally, not all of them need
to represent warning signs. A superpixel representation should provide the ability to
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Fig. 4.2 Sample input of
global analysis: a the image
with a generated superpixel
representation, b distribution
of νyellow (the brighter color,
the more yellow color is
present in the superpixel and
its neighborhood)

(a)

(b)

avoid problems with local color discontinuities (e.g. due to noise) at the pixel level.
A sample image is presented in Fig. 4.2a to illustrate the concepts discussed in this
section.

4.4.1.1 Energy

Since yellow regions are to be found, the energy evaluating the partitions should
ensure that all the superpixels in EO are to some extent yellow. This requirement is,
however, not sufficient. The regions of interest may be composed of many connected
superpixels and the above-mentioned requirement will be satisfied for every subset
of those regions. Consequently, a natural expectation is that superpixels in EB are
not yellow. This can be expressed in the following energy function:
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Ec
color (P) = wO

∑

e∈EO

I (µcolor (e) < t) + wB

∑

e∈EB

I (µcolor (e) ≥ t) (4.1)

Theµcolor represents the percentage of pixels of a given color within a superpixel and
t = 0.4 is an arbitrarily selected threshold. The function I returns 1 if the given con-
dition is true, otherwise it returns 0. This objective is composed of two components.
The first should ensure that, for the optimal partition, EO contains only superpixels
with a significant number of pixels of a given color. The second should minimize the
number of such superpixels in EB . Weights wO and wB provide the ability to control
the influence of the components. If not specified otherwise, it is assumed that both
of them are equal to 1.

The partition P minimizing the above, crisp energy function naturally represents
the regions of interest. However, from an optimization perspective, this objective
function has one drawback. If subset EO is far from the optimal one (the distance
in an image plane is considered) all the local modifications of the same size result
in the same change of the energy function value. It means that there is no guidance
available for the search algorithm on where the optimum is located. Thus, the simu-
lated annealing requires more iterations to find a proper solution (the L value must
be increased). To overcome this inconvenience, the fuzzy variant of the energy can
be defined. First, the color influence for each superpixel is calculated:

θcolor (e) =
∑

e′∈E

µcolor (e′)
1 + wρ(e, e′)

(4.2)

Its value depends on the distance ρ between superpixel centers. Parameter w, which
provides the ability to control the strength of the influence, should depend on the
image size (in this work w = 1). Next, the obtained values are scaled to fit into the
[0, 1] interval:

νcolor (e) = θcolor (e)

maxe′∈E θcolor (e′)
(4.3)

An example of νyellow distribution among superpixels is depicted in Fig. 4.2b. Finally,
the fuzzy energy value is computed using the following formula:

E f
color (P) = wO

∑

e∈EO

(1 − νcolor (e)) + wB

∑

e∈EB

νcolor (e) (4.4)

4.4.1.2 Generator

As already mentioned, the general generator G f produces solutions that are close
in a subsets space. The generated modifications, however, do not necessarily reflect
local, spatial deformations of EO in an image plane. To have this property, the solution
generator should take into account the spatial relationships (neighborhood relations)
between superpixels. Such a spatial relationship can be easily computed. Two super-
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pixels can be considered neighbors if they are adjacent, i.e. if they have at least one
pair of adjacent pixels. The neighborhood relationship provides the ability to define
some additional topological concepts. For example, borders b (EO) and b (EB) can be
defined as subsets of EO and EB where elements have at least one neighbor from EB

and EO , respectively. Thanks to this, two additional generators, taking into account
the spatial distribution of superpixels, can be defined:

• Gs—generator which either removes one element on the border b (EO) or adds
one element on the border b (EB) (of course b (EB) is adjacent to b (EO)),

• Gc—generator which behaves in the same way as Gs except that it prevents new
solutions from having holes or being composed of two disconnected parts (pre-
serves connectivity).

The second generator can be useful if only connected subsets EO are to be extracted.
Because the initial partition must not violate generator constraints, in all the

experiments presented in this section a random element is selected fromE to initialize
the partition. Next, all the elements that are spatially close to this element in the given
range are added to constitute EO . Again, the neighborhood relation is used to decide
which superpixels are close to each other. The random choice of the initial element
should demonstrate that the proposed methodology helps to avoid problems with
careful partition initialization.

4.4.1.3 Repeatability

The simulated annealing is a non-deterministic optimization algorithm. Conse-
quently, there is a concern that this algorithm does not guarantee repeatable solutions.
The concern is the more reasonable that in the presented variant of active partitions
no special limitations have been imposed on the location of initial solutions.

Thus, in order to prove that the approach presented provides stable results, another
experiment was conducted, aimed at selecting a proper value of L. In this experiment,
for selected values of L, the partition evolution was repeated 50 times for random
initial partitions. The obtained results were summarized in several ways. The dis-
tribution of final energy values is presented in Fig. 4.3a. Figure4.3b presents the
percentage of superpixels in E that always belong to either EO or EB . The graphical
representation of repeatability is depicted in Fig. 4.3c–f. The white color indicates
the pixels that are always partitioned in the same way, whereas black suggests a
lower repeatability of superpixel assignment. The more intense the black, the lower
the repeatability. If the evolution is repeatable, the whole image should be white.
It can be observed that (L ≥ 50) several stable local optima are always found. To
achieve perfect repeatability (global optimum) the optimization has to last longer
(L = 5000). Of course, those values are applicable only to the class of images under
examination and the considered energy and solution generator.

Repeatability is a key issue connected with the evolutions ability to explore the
whole search space, in particular if random initial solutions are allowed and local
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(a)

L
1 2 5 10 20 50 100 200 500 1000 2000 5000

71.4% 96.8% 97.9% 98.1% 98.8% 99.3% 99.3% 99.3% 99.4% 99.5% 100% 100%

(b)

(c) (d)

(e) (f)

Fig. 4.3 Evolution repeatability (50 executions with random initial solutions): a distribution of
energy E f

yellow value for optimal solutions for different number of iterations L, b percentage of
superpixels that were always assigned either to EO or to EB , c, d, e, f visualization of the assignment
changes
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(a) L=1 (b) L=100

(c) L=1000 (d) L=5000

Fig. 4.4 Image exploration while partition evolution with Gc generator (the darker the color the
more frequently a given superpixel was assigned to EO )

partitionmodifications are performed by the solution generator. In Fig. 4.4 this explo-
ration ability was presented for different L values. The more black color, the more
often a given superpixel was assigned to EO in a single run of the simulated anneal-
ing algorithm. This experiment also proves that for L = 5000, in the presented task,
it should be possible to find a global optimum (all the superpixels were assigned to
EO at least once).

4.4.1.4 Multiple Objects

The goal of the global analysis is to quickly find an approximate position of all yel-
low and connected regions. For that purpose E f

yellow and Gc are used. Unfortunately,
active partitions, just like active contours, are naturally designed to find only single
objects (usually only one optimum of the energy function is sought). Here, a simple
modification was introduced to enable a multiple object localization. When the opti-
mum is found, the energy function is modified by setting µyellow values equal to 0
for all those elements that belong to EO . This process is repeated until no significant
optimum is found. Because it does not matter in what order those optima are detected
there is no need to explore the whole search space. Thus, it is assumed that L = 200.
Thanks to this and the initial reduction of image size it was possible to speed up
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(a) (b)

(c) (d)

(e) (f)

Fig. 4.5 The process of detection of multiple regions of interest: a, c, e changes in νyelllow distri-
bution, b, d, f extracted region

the whole process. The sample results of the multiple object localization process are
shown in Fig. 4.5.
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4.4.2 Local Analysis

The goal of the local analysis is to find warning signs in the previously localized
regions of interest. The diversity of the images leads one to assume that there are
more than one yellow regions in the analyzed image. Moreover, it may happen that
those regions are adjacent, as the sign and information plate in Fig. 4.1d. In such a
situation, the application of the active partition technique with E f

yellow and Gc cannot
give satisfactory results. To overcome this problem, additional knowledge is required.

4.4.2.1 Model

Acloser analysis of the results presented in Fig. 4.6 reveals that the previous approach
does not take into account shape expectations. Those expectations can be added in
many different ways. A typical approachwould involve defining an additional energy
component evaluating the similarity of the partition to the triangle. Although it is
not impossible, such soft constraints are usually problematic, especially if they are
supposed to be scale and rotation invariant. That is why, in the presented work,
knowledge was added by changing the partition model to allow only triangles to be
generated. In this model, the partition is described by three superpixels selected from
E. Their centers (it is assumed that they are always organized in an anti-clockwise
order) constitute a triangle. Superpixel is an element of EO if at least one of its pixels
lies inside this triangle. The rest of superpixels forms EB .

4.4.2.2 Generator

A modified partition model requires specialized solution generators. They should
modify the partition by moving triangle vertices. Two such generators are described
below:

(a) (b) (c)

Fig. 4.6 Optimal partitions for standard partition model, E f
yellow energy and Gc generator
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• Gv—the generator which selects a random vertex and replaces it by one of its
neighbors (the above-described neighborhood relationship is used); it forbids any
modification that would change the anti-clockwise order of vertices,

• Ge—the generator which behaves in the same way as Gv but also prevents any
modifications that would lead to a non-equilateral triangle (for every triangle side
it checks if the corresponding height has an expected length).

The changes in the model (search space) and in the solution generators (hard con-
straints) entail that a feasible initial solution for the simulated annealing algorithm
is necessary. To achieve this goal, in all the experiments the equilateral triangle of
a maximum size with one horizontal side is generated (although it is not random, it
still does not depend on the image content). The results obtained for those generators
and E f

yellow are presented in Fig. 4.8.

4.4.2.3 Energy

The above results are still not satisfactory if there are two adjacent yellow regions.
This can be overcome by considering another objective function. So far, E f

yellow has
not taken into account the spatial distribution of colors in EO and EB . It is known,
however, that warning signs have a red border enclosing its inner, yellow area. This
observation can be expressed in the following way:

Eb(P) = wO

∑

e∈b(EO )

(νred(e) − νyellow(e)) + wB

∑

e∈b(EB )

(νyellow(e) − νred(e)) (4.5)

On the EO border this energy function expects yellow superpixels, not the red ones,
whereas on the EB border the expectation is exactly the opposite. Weights wO and
wB (here equal to 1) enable the control of a trade-off between those two expectations.
Sample distributions of νyellow and νred for image presented in Fig. 4.1d are depicted
in Fig. 4.7. In Fig. 4.8c the result of triangle evolution for Eb with Ge is presented.

Fig. 4.7 Sample yellow and
red color distribution

(a) νyellow (b) νred
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(a)E f
yellow, G

v (b)E f
yellow, G

e (c) Eb, Ge

(d)E f
yellow, G

v (e) E f
yellow, G

e (f) Eb, Ge

Fig. 4.8 Results of evolution for triangular partition model with different energy functions and
solution generators

4.4.2.4 Missing Objects

Not all of the regions of interest must contain warning signs. The proposed active par-
tition approachwill of coursework for such images and, what ismore, it will generate
some optimal results. Samples are shown in Fig. 4.8. Those results are reasonable
as the algorithm tries to find the best position of the triangles. To automatically dis-
tinguish such cases, without the need of visual inspection of the results, the values
of energy functions for optimal partitions can be analyzed. If something is wrong,
these values are significantly higher than those obtained for correct structures.

4.5 Summary

The approach proposed in this chapter is a generalization of the active contour tech-
nique which can be applied to more sophisticated image content representations
than raw pixel data. Its main advantage is the reduction of the search space, which
enables the application of evolution strategies that are less sensitive or invariant to
the choice of initial solutions (Sect. 4.4.1.3). This also means less strict assumptions
about feasible objective functions. Consequently, a more natural way of express-
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ing the expectations about the structures of interest is provided (Sects. 4.4.1.1 and
4.4.2.3).

As in the case of active contours, the knowledge required for proper analysis of
the image content in active partitions can be incorporated into the search process
in three ways. A proper partition model may limit the set of acceptable partitions
(Sect. 4.4.2.1). The same goal may be achieved by using additional evolution con-
straints (region connectivity and equilateral triangles in Sects. 4.4.1.2 and 4.4.2.2,
respectively). Finally, information about the expected characteristics of the parti-
tions may be incorporated into the energy function.

Another remarkable aspect of the presented approach is its flexibility. As demon-
strated by the two-stage process of warning sign detection, it can be applied to both
global and local image analysis. Moreover, in the global phase, multiple objects can
be localized (Sect. 4.4.1.4) by adaptive modification of the energy function.

The proposed methodology endeavours to imitate, at least to some extent, the
conscious human-specific process of image analysis. Various approaches have been
put forward to model the activity of the human vision system. In the literature, there
are many methods that have achieved outstanding results in the field of image con-
tent understanding—convolutional neural networks ([31]) being a perfect example.
Those models, however, are hardly interpretable and usually require huge data sets
from which the expert knowledge could be automatically extracted in a training
phase. Those data sets are not always easily available, especially in medical appli-
cations. That is why it may be more convenient to encode expert experience directly
using the approach presented in this chapter.

As a main challenge for future work with active partitions, the choice of the
best image representation should be mentioned. And this is not only the problem of
optimal parameter selection (i.e. parameters of SLIC, LSD or CEC algorithms). As
it was presented in this chapter, different approaches may be considered. Superpixels
and ellipses focus on local region homogeneity, whereas line segments indicate some
homogeneity discontinuities. These are not, however, the only possibilities, and, since
all of thempossess different properties, a good idea could be the fusion of those image
content descriptions. Yet, the drawback of those representations is a fact that they are
chosen arbitrarily for different classes of images. Perhaps a better approach would
be an automatic design of such descriptors for a given object localization problem.
All those aspects are under further investigation.
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Chapter 5
Model-Based 3D Object Recognition
in RGB-D Images

Maciej Stefańczyk and Włodzimierz Kasprzak

Abstract A computational framework for 3D object recognition in RGB-D images
is presented. The focus is on computer vision applications in indoor autonomous
robotics, where objects need to be recognized either for the purpose of being grasped
and manipulated by the robot, or where the entire scene must be recognized to
allow high-level cognitive tasks to be performed. The framework integrates solu-
tions for generic (i.e. type-based) object representation (e.g. semantic networks),
trainable transformations between abstraction levels (e.g. by neural networks), rea-
soning under uncertain and partial data (e.g. Dynamic Bayesian Networks, Fuzzy
Logic), optimized model-to-data matching (e.g. constraint optimization problems)
and efficient search strategies (switching between data- and model-driven inference
steps). The computational implementation of the objectmodel and the object recogni-
tion strategy is presented in more details. Testing scenarios deal with the recognition
of cups and bottles or household furniture. Conducted experiments and the chosen
applications confirmed, that this approach is valid and may easily be adapted to
multiple scenarios.

5.1 Introduction

With the newly available sensors that generate RGB-D images (3D point clouds
and corresponding color images) of already reasonable quality, 3D image analysis
methods are intensively being developed [1, 2]. A low-level processing of such data
is usually a model-independent one and it leads to the creation of 3D maps of the
environment (typically voxel- or surfel maps) [3–5]. In turn, the Ontology level of an
agent system considered in AI operates on high-level symbolic entities like complex
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objects and actions. There is a need for a methodology and implementation for mid-
level symbolic processing of 3D images that reliably closes the gap between these
two representations.

The knowledge-based paradigm has been intensively studied for in the past, but
preferably for 2-D image analysis (e.g. [6–8]) and has not yet been really considered
for processing of RGB-D data.

Recently developedDeep Neural Networks (DNN) and deep learning techniques,
are mostly successful for appearance-based object classification. They approximate
functions, which apparently transform sensor data into numeric features either into
segments or directly into object instances or classes [9, 10]. This is of importance
when complex algorithmsor functions need to be defined and implemented.Although
the DNNs were applied to find bottom-up image transformations, the research on
modelling of context information and top-down constraints in DNNs has also begun
[11, 12]. Especially when 3D objects need to be recognized in amulti-object environ-
ment, it is crucial to explore physical and contextual object relations, like occlusion
relations and the probability of common appearance in given environment. Graph-
ical and stochastic models have proved suitable to handle such cases [13, 14]. It
is still an open question whether neural networks techniques can deal with sym-
bolic object-level and ontology-level concepts in order to mimic logical reasoning
processes. Here, the knowledge-based approach leads straightforward to adequate
solutions [15].

In particular, our focus is on basic scenarios for 3D object recognition that are
explored in service and social robotics [16, 17]: human pose recognition, obstacle
recognition/avoidance and grasping/manipulating of objects (Fig. 5.1).

Fig. 5.1 Basic scenarios for 3Dobject recognition in service and social robotics: human recognition,
obstacle avoidance and object grasping
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So far, 3D object recognition in RGB-D images follows a data-driven strategy
and mainly identifies a particular known object. Some software packages, prefer-
ably available in the ROS (Robot Operating System) programming environment,
are listed next. MOPED [18], a real-time Object Recognition and Pose Estimation
system, recognizes objects by comparing point-based features (e.g. SIFT, SURF)
and their geometric relationships with rigid 3D object models (defined by point
clouds). LINEMOD [19] (“multi-modal templates for texture-less object detection”)
is detecting texture-less 3D objects located in a strongly textured background. Tex-
tured Object Detector—is based on the standard “bag of features” technique [20].
During training, in images containing different views of the object, image features
are extracted and their descriptors are obtained. For each of those features, the 3D
position is also stored. Transparent Object Detector [21] is a pipeline that can detect
and estimate poses of transparent objects, given a point cloud model of an object.
The ODUFinder system [22] can detect and recognize textured objects in typical
kitchen scenes. The models for perceiving the objects to be detected and recognized
can be acquired autonomously using the robot’s camera as well as by loading large
object catalogs into the system. Richtsfeld et al. [2] developed an effective object
model learning approach based on surface grouping in RGB-D data. But still, object
instances are modelled and not their generic types.

Avariety ofmodel-based techniques have been developed in order to recognize 3D
objects from images—hierarchical models [23], among them deformable part-based
models [24] and probabilistic graphical models [14] appear to be most successful.
In our paper, a model-based approach is proposed that is related to the principles of
above techniques.

First, we focus on the 3D object representation and modelling issue. A discussion
of knowledge hierarchy levels in object recognition systems is provided in Sect. 5.2,
while Sect. 5.3 deals with 3D modelling in RGB-D data. In Sect. 5.4, our framework
for 3D object recognition is introduced. The system’s concept and itsmain element—
the knowledge representation techniques and inference rules—are presented here.
System implementation is summarized in Sect. 5.5. Thework is illustrated in Sect. 5.6
by an application of robot vision in a household environment.

5.2 Knowledge Representation Hierarchy

In this section, a review of some approaches to general 3D object representation in
images is presented and our solution, suitable for RGB-D images, is given. General
levels of information representation (also called categories of representation entities)
for 3D object recognition in images are discussed.
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5.2.1 Related Work

Early image analysis systems mainly used linear features and wire-frame models, so
categorization was made accordingly. Marr [25] distinguished four main conceptual
levels of information representation. The first one is the image—represented as
an array of point intensities. Second is a primal sketch, which contains some
basic structures extracted from the image, like edge segments, discontinuities of
intensity, gradient zero crossings, etc. Based on these features a 2 1

2 sketch is created,
describing the visible surfaces in terms of contours, orientation and roughly estimated
depth (all expressed in the viewer coordinate system). The last level is the 3D model,
describing the shapes and their spatial organization in an object-centered coordinate
system. An object is composed of both volumetric and surface primitives and is
arranged hierarchically.

Lowe [26] proposed a slightly different categorization in his system,where instead
of the 2 1

2 sketch 2D perceptual groupings are used. This requires a clustering
of image features, obtained in the previous step, into some consistent groups. This
extension made the description more general, as virtually any feature can be used
and not only linear segments like before. Lowe also added an explicit verification
step, connecting 3D models with low-level image features. This in turn put some
restrictions on the features and model used—there must be defined a method for
object back-projection onto the picture. The hypothesis-generation and -verification
cycle as a basic 3D scene recognition strategy was modelled formally by Kasprzak
[13] as a bi-directional syntactic-semantic derivation using an attributed structure
grammar.

Data representation categories correspond to different processes transforming data
from one form to another. Forsyth [27] distinguished early vision, consisting not
only of basic operations like image preprocessing or edge detection, but also texture
description and depth reconstruction from stereopsis or structure from motion. His
mid-level vision is responsible for clustering and segmentation, fitting objects to
segments and tracking them. High-level vision is meant to be the place, where
data is collected frommultiple measurements. Hypotheses are generated and verified
here. Object detection and recognition at this level is done using complex classifiers.
Relationships between detected objects can also be described.

Gonzalez [28] made explicit definition of the processes by defining their
interfaces—data types that are used on the input and output of a proces. For low-
level processes a picture is used as both the input and output. Processes are
elementary picture operations, like image filtering.Mid-level operations on pic-
tures are responsible for their segmentation into consistent groups, their description
reducing representation dimensionality and also the classification (or recognition)
of those segment groups into individual objects. The output of this process, usually
taking the form of classified objects characterized further by vectors of numbers
(attributes), is supplied to the high-level vision—a symbolic processing level that
is responsible for image understanding and performs cognitive reasoning.
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5.2.2 Proposed RGB-D Data Hierarchy

In case of depth data, sometimes additional processing steps are required, which
are somewhere in between preprocessing and feature extraction. Examples of these
operations are:

• normal vector calculation or curvature estimation for a surface patch,
• conversion from a depth map to full XY Z coordinates of a point cloud,
• transformation between different coordinate systems.

As a result, it seems reasonable to put an additional data extension layer
between the signal- and feature extraction layers. Wrapping up, data representation
in our 3D object recognition system is composed as a hierarchy of 6 layers, given
below.

Hardware layer. It contains actual devices for data acquisition (cameras, sensors).
Signal layer. It is responsible for image pre-processing and data preparation for

feature extraction (e.g. computing edge images or labeling consistent regions).
These operations need no any external information and can be run using only one
(current) picture.

Extension layer. It contains processes for computation of new data representation
(from those returned by the sensor) or transformation of those using some external
information (like sensor position or context images). These are operations like
background subtraction, normal vector calculation, depth extraction from stereo
images, coordinates transformation etc. Processes from extension and signal layer
can be interleaved.

Feature extraction layer. It extracts condensed, numerical information from pic-
tures, such as feature points, edges or blob segments. The produced information
may vary from simple parameters, like line end points or segment mask, through
some statistical information, like mean color or surface convexity [29], to higher-
level interpretation, like parameters of inscribed surfaces [30].

Object recognition layer. It gathers segments and features computed by the lower
layer and composes them to form an object of interest, based on some kind of
providedmodel (at this stage the recognition is limited to single, isolated, objects).
Object recognition processes can influence the way lower level processes work
(e.g. changing parameter settings of feature extraction functions in order to return
more or less crisp data).

Cognitive layer. Here a higher-level (symbolic) reasoning about the scene occurs
(e.g. physical and contextual relations between objects are explored). This layer
is also responsible for accumulating information in time (e.g. to allow lateral
processing that improves the estimation of object parameters from multiple mea-
surements).

Particular implementations of the processes located in low- and mid-level layers
depend on the chosen form (modality) of the object model. Such different modalities
(e.g. 2D edge model, 3D surface model) require different operations on previous
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layers. On the other hand, an object recognition system should be generic and should
allow usage of generic model description, making it possible to recognize different
instances of the same kind of objects (like different sizes of jars or widths of doors).

5.3 3D Object Modelling

In this section, possible 3D object modelingmodalities are discussed. The focus is on
computer vision applications in indoor autonomous robotics, where objects need to
be recognized either for the purpose of being grasped and manipulated by the robot,
or where the entire scene must be recognized to allow high-level cognitive tasks to
be performed.

Both steps require different modalities of 3D object models: geometric modelling
(of physical shapes) or conceptual modelling (aggregations of parts).

5.3.1 Geometric Primitives

Grasp planners [31] work using geometric models of actual instance of the object,
and this must be in a form compatible with physical engines used in a machine pro-
cess, like triangular meshes or, even better, a composition of basic shapes. Methods
for representation of geometric primitives can be generally divided into two main
groups—discrete and continuous.

Discrete description keeps information about some finite number of elements or
features, sampled from the original solid/object.

• When points are sampled from the surface of the object a pointcloud is produced.
The data structure of a point consists of its spatial coordinates (usually given in the
Cartesian coordinate system), but it also can include other information, like the
surface color or normal vector of a surface patch around this point. Points can be
further expanded to surface elements (called surfels) [5], which are small surface
patches approximated by discs.

• When information about volume of the object is crucial, another representation
can be used, utilizing some volumetric shapes instead of points. Those elements,
called voxels, are usually modeled with cubes, formed in either regular grid (with
every element having the same size) or hierarchic structure (like octree), allowing
for better approximation of complicated shapes with smaller number of elements.

Main advantage of discrete representations is the ease of model creation—in vast
majority of cases depth sensors return information in form easily convertible to
pointclouds.Hence,models can be built from fewobject views only [32]. The discrete
model accuracy is proportional to the density of the pointcloud or a voxel grid,
which is proportional to model size (verbosity). It must be noticed, that after the



5 Model-Based 3D Object Recognition in RGB-D Images 79

image sampling step some information about the scene is lost (the surface between
sampled points).

In contrary, continuous models represent the scene information by parametric
functions of continuous spatial variables, allowing recovery of any point on the
object’s surface. One example of such model, described in [33], is a functional

model, where a shape is given by an equation specifying a continuous set of points.

• Parametric equations, in form of F : Tm ⇒ Xn explicitly define the object’s
points in a n-dimensional space based onm free parameters. For three-dimensional
objects n = 3, while for m = 1 curves are defined and for m = 2—surfaces. This
representation form allows to model a broad range of shapes, from simple volumes
to superquadrics. The ability to directly enumerate surface points makes it easy
to convert such a model to a pointcloud with theoretically unlimited precision
(density).

• In contrast, if the function is given in implicit form, F(Xn) ⇒ Z , it can be treated
as a characteristic function for the described shape. Surface of the object is made
of all points satisfying F(Xn) = 0, which is sometimes hard to calculate. On the
other hand, this representation makes it very easy to check, whether point lays
inside the given volume by checking the condition: F(Xn) < 0. Hence, it can
easily be converted to a voxel grid. It also allows for a simple collision detection.
Calculating objects intersection is also much easier using few implicit functions
and checking them one by one.

The acquisition of functional models is computationally more expensive than of
discrete models, as it requires some sort of surface fitting procedure, along with
constrained set of shapes [34].

Another kind of continuous models are combinatorial models, locating itself
between simple and complex object representations.

• Models can be created by combining a finite set of functional submodels using set
operations. Using implicit functions in a way mentioned earlier, a membership

object definition can be created—for example, in terms of an intersection or sum
of few functions. This way more complicated shapes can be created from simpler
ones, without the need to use complex equations.

• Topological representation is another kind from this family. Topological struc-
ture holds the spatial relations between subelements, like two faces touching each
other or two points being connected with a line. Although the elements may be of
any type (e.g. parametric surfaces with values from some bounded set), the most
common type of this representation is a mesh, being closely related to discrete
representations. Points are connected with edges, from which planar polygons
(triangles are most common) are composed. Polygons are grouped into surfaces,
and those into a final shape.
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5.3.2 Complex Objects

Contrary to an object grasping and manipulation application, vision systems
employed for cognitive tasks require models to be composed of parts that corre-
spond (directly or via its parts) to segments that are possible to be detected in images
(e.g. feature points or textures from color images, surface patches from range data).
The hierarchic nature of the model is an added value, making it possible to build
complex objects out of simpler ones.

• Constructive solid geometry (CSG) is a way to describe objects using
logical operations on primitives (like sum, difference, common part) and some
geometrical modifiers (expansion, morphing). Representation of the primitives
must be appropriate for this task, and functional models suits here the best.

• Another method is just a simple hierarchical model, where primitives are con-
nected with each other using joints, and the transformation between them are done
using homogeneous matrices. That kind of representation makes it possible to
create objects with internal degrees of freedom (like cabinet with doors), as homo-
geneous transformations between parts can be parameterized. Similar strategy can
be used to describe whole scene as one tree with multiple smaller object trees
connected [35].

Another important factor, when talking about complex objects, is the ability to
define different levels of detail.When observing an object from far distance only
the biggest parts are visible, and those can be also simplified, as finer details may
disappear. The parts of the model can be differentiated—for coarse model only some
global percepts can be used for description (like histograms of colors or silhouettes),
whilst closer view can incorporate local texture descriptors and good quality depth
data. When the distinction is made for only two levels—coarse and fine—the first
one can be used for fast generation of object hypotheses, while the second level is
used for hypothesis verification.

5.4 System Framework

5.4.1 Solution Principles

Object recognition is considered to be an intermediate image analysis level, located
between the low-level image segmentation processes and the ontology level of a
scene understanding process.

Bothmain computational paradigms, the knowledge-basedone (e.g.model-based)
and the neural network one (e.g. appearance-based), try to overcome the limitations
of available 3D computer vision systems by concentrating on three basic design
principles:
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1. hierarchical framework-like architecturewith increasingly abstract representation
levels;

2. iterative control of object recognition by integrating bottom-up, top-down and
lateral processing;

3. adaptability of the general framework to particular application domain by learning
the object model and recognition strategy.

Following about design principles, in this section a 3D object recognition frame-
work is developed, which integrates several methodologies, like proposed by us
earlier [23, 36]: a generic (i.e. type-based) object representation (using semantic
networks), trainable transformations between abstraction levels (performed by neu-
ral networks and deep learning techniques), techniques for reasoning under uncertain
and partial data (e.g. Bayesian networks and Dynamic Bayesian Networks, Fuzzy
Logic), an optimized model-to-data matching (e.g. constraint satisfaction and opti-
mization problems) and efficient search strategies (controlling alternative realizations
of data-driven hypothesis generation andmodel-driven hypothesis verification steps).

5.4.2 Knowledge-Based Framework

Knowledge-based systems are decomposed into two main parts: the knowledge base
and the control [15]. Our particular system structure is depicted in (Fig. 5.2).

Theknowledgebase contains three elements: theMODEL, theDATA and inference
RULES. In this approach, the model has a hybrid form, built around the structure
and inference mechanism of a semantic network. Besides the declarative model and

Fig. 5.2 Our knowledge-based framework
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data structure expressed by the concepts and their interconnections in the semantic
network, other techniques are here integrated: a dedicated constraints satisfaction
problem for model-to-data matching, a Bayesian network for quality judgement of
an instance or constrained concept and a neural networks (eventually deep learning
neural networks for attribute computation.

The inference rules take the form of: “IF (condition) THEN add instance or con-
strained concept to DATA”.

The DATA holds current symbolic descriptions of the signal (image) in form of
instances and constrained concepts, generated initially by low-level image analysis
(basically—image segmentation) and later as a result of the model-based inference
process.

The CONTROL part performs a search in the space of competitive hypotheses,
guided by their judgement values. In every step an available subset of data has to be
matched with somemodel concept in order to satisfy the condition of some inference
rules. Hence a lot of alternative decisions have to be controlled.

The model-to-data matching is seen as a specific constraint satisfaction problem
or constraint optimization problem, but for many concepts it needs to be satisfied
only partially (assuming a partial match).

The judgement of concept instance is estimated by a stochastic inference in a
Bayesian net that is linked to given concept.

A general-purpose control strategy is defined by a space search algorithm.

5.4.3 Semantic Net

Common to semantic networks is the explicit structuring of domain knowledge along
two hierarchies: the decomposition (vertical) hierarchy and the specialization (hori-
zontal) hierarchy of concepts.

Starting from the pixel level the vertical hierarchy expresses increasingly abstract
representation levels (“part” or “concrete” links). Simple elements are combined into
more complex one, being parts of objects and scenes. Specialization links (“spec”)
represent inheritance relations between elements at the same abstraction level.

Every node (called “concept”) represents some object category and it contains a
parameter vector (called “attributes”), where every parameter is evaluated by some
term, and every concept defines a set of constraints, evaluated by predicates, among
its parts and related concepts.

A procedural part is added to the semantic network that implements the seman-
tics of terms and predicates. It consists of functions for attributes and relations for
predicates. In fact, a semantic network is an object-oriented form of a specific predi-
cate logic. If we allow concept attributes to hold default values then such a semantic
network represents a non-monotonic logic.

The part- and spec-links have an appropriate representation in logic. The relation,
“{set of parts} −part− > concept C”, is equivalent to a formula built around the
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implication symbol, in straight direction, (Cpart1 ∧ Cpart2 ∧ ... ∧ CpartN ⇒ C), and
in the reverse direction, (∀I∈1,...,N (C ⇒ Cpart I )).

Similarly, the dependence, “base concept−spec− > inherited concept”, is equiv-
alent to a formula: Cinheri ted ⇒ Cbase

5.4.4 Bayesian Net

A Bayesian net (BN) is a simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint distributions: (1) a set of
nodes, one per stochastic variable; (2) a directed, acyclic graph (link means “direct
influence”)—incoming links of given node represent a conditional distribution for
this node given its parents, P(Xi |Parents(Xi )). In the simplest discrete case, con-
ditional distribution is represented as a conditional probability table (CPT), giving
the distribution over Xi for each combination of parent values.

An illustration of a Bayesian net is shown in (Fig. 5.3)—it represents variables
related to a Rubik_cube concept. An intermediate level in the model represents
visible faces. The lowest-level concepts represent 9 color squares, that define the
texture of a face. There are also evidence nodes that represent constraints between
faces (fA, fB) and constraints between squares (A, B, D).

The score of a partial solution (assignment in terms of CSP), in which some
variables Xi have already been assigned to image segments lk but not all of them, is
obtained due to stochastic inference in Bayesian net. For example the computation
of posterior probability of a “cube” instance (that is a cause in terms of BN) given
its parts (that are evidences in BN). For example, if segments are assigned to X0 and
X1 then one need to compute the probability: P(cube|X0 = l1, X1 = l2).

Fig. 5.3 A Bayesian net
structure for concept:
“Rubik_cube”
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This leads to a summation of pdf over all domain values for remaining (non-
evidence) variables, X2, ..., Xl . Thus, scores of partial matches or a complete match,
between image segments and model entities, are naturally obtained by the same
evaluation method.

5.4.5 The Basic Control

The object recognition process is performed for given set of object concepts, called
the GOALS G. This set can contain “concepts”, “constrained concepts” or even
“instances”. Let M denotes concepts stored in the model base, while D is the current
data set. In every single step, the basic control algorithm activates one of the five
available inference rules, RULE_1, ... , RULE_5, for selected model concepts and
data instances.

1. IF G �= ∅ THEN perform a top-down goal concepts expansion (propagation of
constraints), using inference RULE 4; ELSE perform a bottom-up hypothesis
generation for concepts in M , based on important image segments in D, using
RULE 5.

2. A bottom-up generation of “partial instances”, that match the existing “con-
strained concepts” for obligatory parts of some modality of the selected model
concept with the data instances (using RULE 1): Ip(k) ← {(parti ∈ Mk; Ii ∈
D)|i ∈ oblig(Mk)}; where attributes of every instance Ip(i) are a = (Sk, Rk, tk)
(shape, rotation, translation);

3. Hypothesis verification: FOR every hypothesis Ip(k) DO

• constrain its remaining (non-obligatory) parts (“top-down” RULE 2) and
match these partswithDATA: Ie(k) ← {(part j ∈ Mk; I j ∈ D)| j ∈ optional
(Mk)}

• Verify the hypothesis I (k) ← (Ip(i)
⋃

Ie(k))—create a “full instance” and
re-compute its attributes a′ (a “bottom-up” RULE 3).

4. Return the lattice of verified hypotheses, i.e. a graph where nodes represent
hypotheses and arc—relations of mutual exclusion.

It depends on a particular search strategy (and current data and hypotheses) which
step is selected and performed next.

5.5 System Implementation

The particular data types and predicates will be discussed that are implementations
of nodes of the abstract semantic net (concepts) and the constraints between parts of
a concept.



5 Model-Based 3D Object Recognition in RGB-D Images 85

Two basic building blocks of the knowledge base, the MODEL and the DATA,
are connected with two views of a 3D object. First is the “idealized” view, i.e.
the object’s type. The other one is the instance hypothesis, i.e. a set of parts (e.g.
segments) recognized as an object of interest.

5.5.1 Model Structure

The model M is the “idealized” view of the object, describing its generic properties
and allowing to recognize multiple realisations (instances) of this type of objects,
like chairs of different sizes or different bottles, as long as they share some com-
mon features. A single object’s model is the implementation of a dedicated concept
from a semantic network. A model is built from parts P , constituting observable
objects itself, constraints C , defining relations between those parts, attributes
A, allowing a differentiation between instances and score—a judgment of instance
quality. Thus, a model is a tuple consisting of following entities:

M = {
P = {p1 . . . pn},C = {c1 . . . cm}, A = {a1 . . . ak}, score = {s1 . . . sl}

}

(5.1)
Parts have a pre-defined unique role in the model (like left leg or mug handle),

while the constraints are expressed by relations between parts of a concept and are
evaluated on attributes of these parts. Alternative “specialized” versions of a concept
or alternative subsets of the parts of a concept (called as modalities), are illustrated
by OR links on the diagram on Fig. 5.4.

The basic structure of a single model is represented by a graph on Fig. 5.5. Fol-
lowing sections describe every element of this diagram in details.

As a simple example, illustrating presented concepts, the mug object is used.
Putting termmug into the image search engine yields a list different pictures (Fig. 5.6),
but all of the presented objects possess some common elements. Every mug has a
more or less toroidal handle and a main cylindrical part for liquid. They differ in size
and color, but can be described using one generic model.

5.5.1.1 Parts

Part is some observable element of the object. It can be sometimes identified as a
physical element, like the leg of a chair or a door knob, but in other cases it can be
a more abstract thing, like the edge of a box or even a single point (or feature point)
extracted from an object surface.

For each part pi there must be assigned a class (class(pi )), i.e. another model
representing this entities type. This defines, what kind of part it is, and whether it
can be for example matched to a cylinder in applications, where one can observe 3D
geometrical shapes, or matched with a line when edge-based processing is used, etc.
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Fig. 5.4 Alternative 3D object models (specialized concepts of the “Object” concept) and typical
structure of a single model

Fig. 5.5 The TBox class structure—abstract concept implementation

There can be, of course, many parts of the same class, like there are for example four
legs in a chair.

To differentiate between parts of the model, each has to have defined a unique
role, which will be used as an identifier in further processing steps. The role of the
part can be either a more abstract one, like a left-edge when describing geometrical
shapes, or it can mimic part affordances, like a handle for the toroidal part and body
for the cylindrical part of the mug model.

5.5.1.2 Attributes

Attributes describe properties of a model. In the model, an attribute is defined by
its data type and the range of its allowed values. Only instances of such model with
attribute values lying in given range can be considered as its proper instances. The
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Fig. 5.6 Sample mugs retrieved by web image search

attribute calculation function itself can return any value from the domain D of the
attribute’s type:

Attribute(M) ∈ D (5.2)

The same attribute type can be used for multiple parts, but for each of them
different range of possible values can be set. For example, color of the main part
of the mug (modeled as a hue component) can be set to red, while the handle can
be white. Another group of attributes are of geometrical nature. Typical mugs have
radius in the range from 3 to 6cm.

5.5.1.3 Constraints

In contrast to attributes, constraints are defined on some subset (at least with two
elements) of parts, and they represent some relation between them. There could be
logical constraints (like checking, if some parts have the same size), spatial ones
(like checking, if two lines are parallel) or others.

Fuzzy set functions for constraint evaluation return values from the [0 . . . 1] range
(instead of the Boolean values {True, False}), where 1 means full constraint sat-
isfaction and 0 total inconsistency of given set of parts with examined relation. It
enables to treat the result of constraint satisfaction check as an intermediate score in
further processing steps, giving finally an overall score of the model’s instance.

Predicate(p1, . . . , pk) ∈ [0 . . . 1] (5.3)
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For the simple mug model one can require that its handle intersects with the main
part. The intersects constraint can be defined as a function returning 1 if the handle’s
(toroid) center lies on the surface of the main cylinder and gradually dropping to 0
when the toroid’s center is farther than its radius from the main part. This function
may be based on the distance between center of the toroid (with radius r ) and the
axis of the cylinder (with radius R). It looks like the one presented on Fig. 5.7. The
final model structure for the mug is presented on Fig. 5.8.

5.5.2 Object Instances

Amodel of some object is a generic representation of its structure. When an observa-
tion is made, multiple segments can be extracted from it, and those can be classified
as instances of some basic concepts (model entities), called as the primitives of sym-
bolic representation. During the object recognition process, some of these primitives
can be assigned to model parts (if their attributes are in desired ranges), and after
satisfying the constraints of given model, they eventually lead to the creation of this
model’s instance (e.g. an object hypothesis).

Fig. 5.7 Sample calculation functions for the intersects constraint

Fig. 5.8 A TBox representation of the “mug” model
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5.5.2.1 Model-to-Data Matching

Each assignment of existing instances to model parts, made in a way that for each
part of the model exactly one instance of proper class is selected, is called hypothesis
H(M). It can be defined as:

H(M) : ∀i ∈ {1..n}∃ j ∈ {1..k} : pi ← inst j ∧ class(pi ) = class(inst j ) (5.4)

where n is the number of parts in themodel and k is the number of already recognized
instances (instk , e.g. segments). Overall hypothesis score is calculated by taking the
product of all constraints for given assignment.

score
(
H(M)

) =
∏

m

eval(cm, H) (5.5)

The most naive way of generating hypotheses is to perform an exhaustive search
in the entire space of possibilities, i.e. generating all variations of existing instances
that match the model structure. This way, the number of generated hypotheses, that
must be further checked for their scores, may be big or even huge:

|O| =
∏

d∈D
|d| (5.6)

where O is a set of object hypotheses and D = {di } is a domain for particular
part (i.e. set of all instances of the same class as given part). For each hypothesis its
score is evaluated and the best ones are returned.

5.5.2.2 Matching by CSP/COP

To avoid full expanding of hypothesis before its verification (which is computation-
ally very expensive), the matching problem can be treated as a constraint optimiza-
tion problem (COP). Basic backtracking algorithm is used to build hypothesis step by
step. After assigning a new variable (in our case assigning existing part-type instance
from DATA to a yet unassigned model part) the hypothesis score is calculated and,
if the score is lower than some existing threshold, current branch is pruned and the
algorithm goes backward to search for other, better possibilities.

Classic CSP works until it finds the first solution satisfying all the constraints.
As the score in our system can be anywhere between 0 and 1, we can compare two
hypotheses and select the better one. CSP implementation is thusmodified as follows.
We keep track of N best hypotheses found so far (this list is empty when the search
algorithm starts). At each step, the hypothesis score is calculated and, if it is lower
than theworst from the list, this search tree branch is pruned. If a complete hypothesis
is generated and its score is high enough, it is placed on the list. This way we achieve
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the same effect as in exhaustive search, but with much better performance—a lot of
hypotheses are rejected at early stage.

For efficiency reasons, this basic strategy is additionally supported by three tech-
niques: selecting the most constrained variable first, selecting the highest-scoring
value first, and making a forward check of the constraints.

5.6 Testing Scenarios

As an simple illustration, generic mug model will be used (similar to presented in
previous sections), with two distinct modalities of incoming data: RGB image and
RGB-D image. In first scenario, edge-based analysis [37] is applied, with two basic
concepts—Cylinder and Arc, corresponding to two mug parts—body and handle.
Second scenario uses depth data [38], and two basic surface concepts—Cylinder
and Thorus.

5.6.1 Data Acquisition

As an input data, Complex scene 3 from WUT Visual Perception Dataset [39] was
used, which contains a recorded trajectory (77 points) “around the table”. The set was
acquired using Microsoft Kinect sensor, and it contains, for every recorded position,
a pair of images, aligned with each other: RGB image (Fig. 5.9a) and depth map
(Fig. 5.9b). The selected scene contains three cylindrical objects—two mugs and
one coffee jar, as well as some other kitchen utensils.

Thedatawas acquiredwith hand-held sensor, thus there is noground-truth position
data and the trajectory was recovered using visual odometry solution [5].

(a) (b)

Fig. 5.9 Test scene: a RGB image, b depth map
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(a) (b)

Fig. 5.10 Results of data extension: a calculated normal map; b mask of interesting scene part

5.6.2 Data Preprocessing and Extension

During preprocessing and extension phase, there are two steps worth mentioning.
One is the calculation of surface normals. For every valid point in depth map, if it
contains sufficiently big surrounding, it is used to calculate a vector perpendicular to
the surface in given point (Fig. 5.10a). Another operation is mask generation. Based
on information from control subsystem, search space can be restricted to a smaller
area—in this case only objects on the brown table are interesting for us (Fig. 5.10b)

5.6.3 Segmentation

Edge-based analysis uses a two-step segmentation process [37]. At first, only lin-
ear segments are detected (arcs and lines), and then those are connected into more
complex structures (cylinders in described scenario). To create those complex struc-
tures, the same hypothesis generation step is used, with a model describing cylinder
appearance. Final segmentation result looks like shown on Fig. 5.11a.

Surface segmentation uses RanSaC to inscribe cylindrical and thoroidal surfaces
into acquired 3D image (using points position in space as well as their normal vec-
tors). Sample segmentation result for one view is shown on Fig. 5.11b.

5.6.4 Hypothesis Generation

Based on detected segments, initial mug hypotheses are generated for the example
model containing two parts (body and handle) and one constraint between them
(near). In edge based scenario, four hypotheses were generated (Fig. 5.12a). One
proper hypothesis for themug on the right-hand side, two competing correct hypothe-
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(a) (b)

Fig. 5.11 Basic instances detected in segmentation step: a edges—cylinders (red) and arcs (black),
b surfaces—cylinders (red) and thoroids (blue)

(a) (b)

Fig. 5.12 Initial hypotheses: a edge-based, b surface-based

ses for the left-hand side mug (two different arcs for the handle) and one false
hypothesis for the same mug (with plate taken as an handle part).

In second scenario, where surface-based analysis is used, only two hypotheses
are generated, one for each mug on the scene. It is worth mentioning, that in both
cases coffee-jar was not taken into account as candidate object because of lack of
nearby handle-like segment.

5.6.5 Hypothesis Update and Verification

Initial hypotheses are tracked in consecutive images. When a new measurement
comes in, apart from detecting new hypotheses, existing ones are matched against
detected segments and their scores are recalculated. In edge-based scenario, this
tracking step allows to detect false mug-plate hypothesis, as in subsequent views the
underlying parts (cylinder and arc) move away from each other (Fig. 5.13a).
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(a) (b)

Fig. 5.13 Tracked hypotheses, green—good, red—bad: a edge-based, b surface-based

Second scenariowas initializedwith two proper hypotheses, so nothing is dropped
in subsequent views. More measurements, however, are used to make better estima-
tion of object parameters, for example position in space or size (using Kalman filter).

Detected (and updated) objects are returned to control subsystem for each incom-
ing measurement.

5.6.6 Method Vulnerabilities

The proposed object recognition method is generic as it explores a generic object
model. Its efficiency depends highly on the quality of particular domain model given
as its input. It should be noted, that for poorly created models the recognition results
may be disappointing, or the processing time can be very long. If the model is created
with very high level of details and precision, e.g. every model element has highly
limited range of accepted attribute values, even small sensor inaccuracies can lead to
a rejection of all available image segments, resulting in a failure of object detection.
On the other hand, when the model is defined with small number of constraints
and very relaxed attribute restrictions, almost every image segment must be checked
when building object hypotheses. This requires to expand many, if not all, possible
assignments, which in turn leads to long processing times. Thus, it is important to
select proper subsets of object features, small enough to keep a generic model, yet
specific enough to be discriminative. Our current focus is on automated methods of
creating such optimal models.
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5.7 Conclusions

An application-independent generic model-based framework for object recognition
in RGB-D images has been presented and verified on robot vision scenarios. It has
clear advantages over existing, mostly data-driven and appearance-based approaches
to object instance re-detection. First, it allows to identify what kind of knowledge
is needed and to utilize existing meta-level knowledge (e.g. types of predicates and
attributes commonly used for object description) to perform machine learning of
model concepts (to learn concept types instead of memorizing individual instances).
Secondly, common parts of object recognition systems can be pre-implemented,
which increases the efficiency of system design and its implementation in different
applications.

Another important advantage of proposed system is its human-oriented approach
to object modelling. The decomposition of an object into simpler elements, named
parts, makes it easier to further analyze the model. Using fuzzy constraint functions
enables the user to focus on overall model creation, instead of performing a hand-
made tuning of parameters.

Conducted experiments (described in Sect. 5.6) and the chosen applications (pre-
sented on Fig. 5.1) confirmed, that this approach is valid andmay easily be adapted to
multiple scenarios. In the article, we selected one example application of the system,
simple enough to be easy to follow by the reader, yet covering two most popular
data modalities—color images and depth measurements. Developed algorithms are
independent on the data source, so exactly the same methods and algorithms can be
used regardless of selected sensor. In fact, different data sources were tested (single
cameras, stereo pairs, structured light), mounted in different spots (stand alone over
the workbench, mounted on robots head or at the end of the arm, near the gripper).
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38. Wilkowski, A., Stefańczyk, M.: Detection and recognition of compound 3Dmodels by hypoth-
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Chapter 6
Ontology-Based Structured Video
Annotation for Content-Based Video
Retrieval via Spatiotemporal Reasoning

Leslie F. Sikos

The constantly increasing popularity and ubiquity of videos urges efficient auto-
mated mechanisms for processing video contents, which is a big challenge due to the
huge gap between what software agents can obtain from signal processing and what
humans can comprehend based on cognition, knowledge, and experience. Automat-
ically extracted low-level video features typically do not correspond to concepts,
persons, and events depicted in videos. To narrow the Semantic Gap, the depicted
concepts and their spatial relations can be described in a machine-interpretable form
using formal definitions from structured data resources. Rule-based mechanisms are
efficient in describing the temporal information of actions and video events. The
fusion of these structured descriptions with textual and audio descriptors is suitable
for the machine-interpretable spatiotemporal annotation of complex video scenes.
The resulting structured video annotations can be efficiently queried manually or
programmatically, and can be used in scene interpretation, video understanding, and
content-based video retrieval.

6.1 The Limitations of Video Metadata and Feature
Descriptors

Common technical metadata implemented in video files, such as duration, frame
width and height, and frame rate, and rights metadata, such as licensing, do not
convey information about the visual content and the meaning of video scenes. In fact,
even descriptive metadata, which is the closest metadata type to content description,
provide information such as title, keywords, and genre only, which is rather limited
in describing audiovisual contents.
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Low-level features, such as loudness and motion trajectory, which are automati-
cally extracted fromaudio and video signals, provide information thatmight be useful
for video classification, object matching with a reference object (even if the object
has been rotated and/or scaled) and object tracking. However, they are not suitable
for efficient scene interpretation and video understanding, because they, similar to
video metadata, do not correspond directly to the depicted concepts and events.

6.1.1 Core Video Metadata Standards

In parallel with the tremendously increasing number of online videos, many techni-
cal specifications and standards have been introduced to store technical details, and
describe the features of, video resources. Beyond the proprietary tags embedded in
multimedia files, multimedia metadata specifications have been standardized over
the years for generic multimedia metadata, and the spatial, temporal, and spatiotem-
poral annotation of videos. MPEG-7 (ISO/IEC 15938)1 provides XML metadata to
be attached to the timecode of MPEG-1, MPEG-2, and MPEG-4 contents, such as
synchronized lyrics tomusic videos.MPEG-21 (ISO/IEC21000)2 providesmachine-
readable licensing information for MPEG contents in XML. TV-Anytime (ETSI TS
102 822)3 was designed for the controlled delivery of personalized multimedia con-
tent to consumer platforms.

The properties of some standard general-purpose metadata specifications can also
be used for videos. A prime example isDublin Core (ISO 15836-2009).4 It provides,
among others, descriptive metadata, such as the title and language of videos files and
physical resources (DVDs and Blu-ray discs), technical metadata, such as format,
and rights metadata (licensing).

Althoughuseful, none of thesemetadata standards can formally describe the actual
visual content of videos and the meaning of video scenes.

6.1.2 Feature Extraction for Concept Mapping

Low-level descriptors describe automatically extractable low-level image, audio,
and video features, which correspond to local and global characteristics of audio
and video signals, such as frequency, amplitude modulation, and motion vectors.
Based on these low-level features, feature aggregates and statistics can be computed,
including various histograms,which can be used in scale-invariant object recognition,
object tracking, and action recognition. Such descriptors, many of which are defined

1https://www.iso.org/standard/34230.html.
2https://www.iso.org/standard/35367.html.
3http://www.etsi.org/technologies-clusters/technologies/broadcast/tv-anytime.
4https://www.iso.org/standard/52142.html.
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in the aforementioned MPEG-7 standard, are suitable for the numeric representation
of audio waveforms and video signals.

Common visual descriptors capture perceptual features, such as color, texture,
and shape, which can be useful for frame-level video annotation, and motion, which
corresponds to camera movements and moving objects. Examples include the dom-
inant color descriptor, which describes dominant colors, the homogeneous texture
descriptor, which characterizes regional textures, the region-based shape descriptor,
which represents pixel regions that constitute a shape, the camera motion descriptor,
which describes global motion parameters with professional video camera move-
ment terms, and the motion trajectory descriptor, which captures the displacement
of objects over time using spatiotemporal localization with positions relative to a ref-
erence point that are described as a list of vectors. The audio channel of video files
can be described with temporal, spectral, cepstral, and perceptual audio descriptors,
such as the zero crossing rate descriptor, which is suitable for determining whether
the audio content is speech or music, the spectral moments descriptor, which is use-
ful for determining sound brightness and music genre, and categorizing music by
mood, the mel-frequency cepstral coefficient descriptors, which are used for speech
and speaker recognition and music modeling, and the perceptual spread descriptor,
which represents the timbral width of sounds.

Local spatiotemporal feature descriptors, aggregates, and statistics capture aspects
of both appearance andmotion, and are used in video action recognition. SIFT (Scale-
invariant feature transform), as its name suggests, is a scale-invariant feature descrip-
tor [1], which is suitable for object recognition, robotic navigation, 3D modeling,
gesture recognition, and video tracking. The cuboid descriptor is a spatiotemporal
interest point detector,whichfinds local regions of interest in space and time (cuboids)
to be used for behavior recognition [2]. The histogram of oriented gradients (HOG)
describes the number of occurrences of gradient orientation in localized portions
of images and video frames [3], and is one of the most powerful feature statistics.
HOG-based appearance descriptors combined with various motion descriptors based
on the histogram of optical flow (HOF) are suitable for human detection in videos [4].
Motion boundary histograms (MBH) represent local orientations of motion edges
by emulating static image HOG descriptors. The speeded up robust features (SURF)
feature descriptor is based on the sum of the Haar wavelet response around the point
of interest [5]. SURF is suitable for locating and recognizing objects and people,
reconstructing 3D scenes, extracting points of interest, and object tracking.

Note that video analysis performed in the pixel domain is computationally expen-
sive, and video analysis in the compressed domain,which is computationally cheaper,
is not always an option. Also, the video container, format, and codec determines the
implementation of feature extraction algorithms, such as the frame-level analysis of
a Motion JPEG in an AVI container is different from that of an H.265/HEVC in a
Matroska container. Owing to the compression algorithm used in MPEG videos, not
all frames can be used directly for concept mapping, as many of the frames inMPEG
files and video streams rely on previous frames.
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6.1.3 Machine Learning in Video Content Analysis

The low-level video features can be automatically extracted using well-established
algorithms, such as Gabor filter banks (extract homogeneous texture descriptors) [6]
and fast color quantization (extracts dominant colors) [7]. Video content analysis
employs advanced algorithms, such as the Viola-Jones and Lienhart-Maydt object
detection algorithms [8, 9], and the SIFT [10], SURF [11], and ORB [12] keypoint
detection algorithms. The corresponding low-level descriptors and frame regions
can be used as positive and negative examples in machine learning, such as with
support vector machines (SVM) and Bayesian networks, for keyframe analysis, face
recognition, and similar tasks. However, low-level feature descriptors alone are not
sufficient for video scene understanding, as will be demonstrated in the next section.

6.1.4 The Semantic Gap

What makes video understanding particularly challenging is the Semantic Gap, i.e.,
the huge discrepancy between what computers can interpret using automatically
extracted low-level features andwhat humans understand based on cognition, knowl-
edge, and experience [13]. For example, training from a few hundred or few thou-
sand clips provides a very limited recognition capability, which cannot compete
with years or decades of life experience and learning typical to humans. Training
provides information for particular viewing angles only for the represented 3D space,
although scale-/rotation-invariant features in 2D space can be used for object track-
ing in videos. For video processing algorithms, occlusion poses a real challenge,
while recognizing partially covered objects is often very easy for humans. There
are very few methods for complex video event detection, while humans understand
even nonlinear narratives, such as extensive flashbacks and flash-forwards. On top of
these, if the noise-signal ratio falls below a threshold, algorithms perform poorly. For
these reasons, video understanding is often infeasible even without time constraints,
let alone in near-real time or real time.

Automatically extractable low-level features and their statistics convey no infor-
mation about the actual visual content, while humans can understand visual contents
even without colors. In fact, most low-level feature descriptors are inadequate for
representingmultimedia semantics (the meaning of multimedia contents). For exam-
ple, detecting red as a dominant color of a video frame (or one of its regions) does
not provide information about the meaning of the visual content, which might be
anything that contains red, and it cannot be inferred that a sunset is depicted [14].
Similarly, motion vectors are crucial in the motion estimation employed by video
compression algorithms, but they do not correspond to the meaning of video scenes,
because they only tell that someone or something is moving in a particular direction,
which can be virtually anything.
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Mid-level feature descriptors represent perceptual intuitions and higher-level
semantics derived from signal-level saliency. Examples include concept hierarchy,
visual patterns, segmented image patches, tracked objects, bags of features, spatial
pyramids, andnamed entities extracted fromsubtitles. They are suitable for construct-
ing expressive semantic features for visual content understanding and classification.

In contrast to low-level descriptors, high-level descriptors are suitable for mul-
timedia concept mapping; however, they heavily rely on human knowledge, expe-
rience, and judgment. As such, the most sophisticated high-level descriptors are
typically produced manually, which is a process that is not always feasible, and
might be biased by the opinion or belief of, and influenced by the background of,
the persons who perform the annotation. Some of the overly generic or inappropriate
tags might be eliminated via the increasingly popular collaborative semantic video
annotation, enabling multiple users to annotate video resources and improve existing
annotations [15].

To narrow the SemanticGap, feature extraction and analysis can be complemented
by formally described background knowledge. This enables video interpretation by
generating potential explanations and choosing themost likely one based on themax-
ima of preference scores. The roughmodeling of background knowledge can capture
the multiplicity of possible interpretations of a scene, using common sense knowl-
edge and/or terminological knowledge that formally define the typical appearance
of depicted objects.

6.2 Semantic Enrichment of Audiovisual Contents

There are various approaches to narrow, if not bridge, the Semantic Gap in videos.
Video semantics, in the form of formal descriptions of video contents, utilize formal
concept and property definitions from ontologies. The semantic enrichment of videos
enables task automation via high-level scene interpretation and intelligent tasks, such
as video event detection [16], moving object detection and tracking [17], intelligent
video surveillance [18], and real-time activity monitoring [19]. Various knowledge
representation techniques can be used for the spatiotemporal annotation of videos, so
that still and moving regions of interests can be identified and uniquely referenced,
as you will see in the following sections.

6.2.1 Video Semantics

Keywords, tags, labels, categories, genre, rating, and age rating, are frequently used
on video sharing portals, which can be useful for video classification, but not neces-
sarily for video understanding. A textual description, such as the plot, helps humans
understand the story the video tells, but it is less useful for software agents, although
they might retrieve some keywords from it via natural language processing. Recent
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efforts from the signal processing and natural language processing communities
attempted to employ deep learning to automatically generate a complete natural sen-
tence for describing video contents, called video captioning [20], although the output
is often limited, prone to errors, and overly generic.

The meaning of video contents can be described with rich video semantics only,
for example context, possible interpretations, the depicted era, the filming location,
whether the video is a depiction, what mood it sets, what are the associated emotions,
what symbols it features, and the ultimate message of the video.

3D semantics represented in 2D videos provide hidden meaning [21], such as
depth, perspective, camera angle, andmaterial characteristics (e.g., reflectivity, shini-
ness). The fusion of 3D and video properties provides a higher level of semantic
enrichment than those approaches that rely on video properties alone [22].

Frame-level video semantics include depicted concepts, whose formal defini-
tions and properties can be retrieved from ontologies that “specify content-specific
agreements for sharing and reuse of formally represented human knowledge among
computer software” [23]. It is important to differentiate objects and humans, because
when humans are detected, the gendermight be determined, the faces recognized, and
human behavior predicted.However, frame-based representations of video scenes are
quite limited, because they miss out audio features and video events that happen over
time.

Audio semantics include the recognition of the voice of a particular person, the
recognition of particular sounds (e.g., gunshot) [24], and events, mood, emotions,
and concepts associated with music [25]. Motion semantics of video scenes include
moving objects, their speed (and whether it is constant, accelerating or decelerating),
direction, and motion trajectory of objects and/or persons in a scene, the interaction
of objects when a moving object hits another one (whether the moving object goes
through or breaks the stationary one, or stops). These semantics, together with rules
associated with the depicted scene, can form video events.

When utilizing background knowledge from ontologies, the formal description
of these video semantics is suitable for content-based video retrieval, scene inter-
pretation, and video understanding [26]. Some examples for background knowledge
include concept hierarchy, relationship between concepts, and rules that define a
knowledge domain (field of interest or area of concern):

• The hierarchy of depicted concepts defined with logical formalisms enables spe-
cialization or generalization via subclass-superclass relationships, such as marsu-
pial is a subclass of the animal class. If koala is defined as a marsupial, and a koala
is detected in a video, not only can be stated that a koala is depicted, but also that a
marsupial is depicted and that an animal is depicted, which would not be possible
at all with pure machine learning techniques (without knowledge representation).

• Objects depicted in videos usually do not appear in isolation as they are often
correlated to each other. A corpora of concepts frequently depicted together can
be used to set likelihood values for the correctness of concept mapping, hence
the co-occurrence (semantic relatedness) of objects in temporal annotations adds
an additional layer of semantics to videos [27]. For example, a kangaroo is very
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likely to be depicted with an acacia tree of the Australian Outback, but more than
unlikely with a giant sequoia, which is native to the US.

• Links to related resources enables knowledge discovery, advanced information
retrieval, displaying useful information in hypervideo applications during video
playback, and providing relevant videos that, based on a user’s interests, are poten-
tially interesting to the user.

• Rules are suitable for annotating complex video events and provide very rich
semantics about the knowledge domain related to the video content. For example,
by formally defining the competition rules of soccer, the number of players, the
layout of the pitch, and match events, it is possible to automatically generate
subtitles for soccer videos [28].

In scene interpretation, asserted knowledge provided by ontologies can be comple-
mented by a priori knowledge obtained via rule-based reasoning [29].

6.2.2 Spatiotemporal Video Annotation Using Formal
Knowledge Representation

Textual descriptions of multimedia resources constitute unstructured data, which is
human-readable only [30]. For example, if a sentence in a natural language makes a
statement about the running time of a movie as plain text, software agents can only
process the string as meaningless consecutive characters. If the same information is
written as semistructured data, such as inXML, it becomesmachine-readable, so that
computers can extract different entities and properties from the text (e.g., the running
time can be declared and retrieved as a positive integer). However, the meaning of the
number is still not defined. By leveraging organized, structured data, the previous
code can be made machine-interpretable. Structured knowledge representations are
usually expressed in, or based on, the Resource Description Framework (RDF),5

which can describe machine-readable statements in the form of subject-predicate-
object (resource-property-value) triples, called RDF triples, e.g., scene-depicts-car
(see Definition 6.1).

Definition 6.1 (RDF Triple). Assume there are pairwise disjoint infinite sets of

1) International Resource Identifiers (I), i.e., sets of strings of Unicode characters
of the form scheme:[//[user:password@]host[:port]][/]path
[?query][#fragment] used to identify a resource,

2) RDF literals (L), which are either a) self-denoting plain literals LP in the
form "<string>" (@<lang>)?, where <string> is a string and
<lang> is an optional language tag, or b) typed literals LT of the form
"<string>"ˆˆ<datatype>, where <datatype> is an IRI denoting a
datatype according to a schema (e.g., XML Schema), and <string> is an
element of the lexical space corresponding to the datatype, and

5https://www.w3.org/TR/rdf11-concepts/.

https://www.w3.org/TR/rdf11-concepts/
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3) Blank nodes (B), i.e., unique but anonymous resources that are neither IRIs nor
RDF literals.

A triple (s, o, p) ∈ (I ∪ B) × I × (I ∪ L ∪ B) is called an RDF triple (or RDF
statement), where s is the subject, p is the predicate, and o is the object.

The corresponding classes, properties, and relationships are typically defined in
controlled vocabularies (see Definition 6.2) or ontologies written in the first or sec-
ond version of the Web Ontology Language (OWL or OWL 2), which are formally
grounded in description logics (DL).6

Definition 6.2 (ControlledVocabulary). A controlled vocabulary is a triple V = (NC ,
NR, NI ) of countably infinite sets of IRI symbols denoting atomic concepts (concept
names or classes) (NC), atomic roles (role names, properties, or predicates) (NR),
and individual names (objects) (NI ), respectively, where NC , NR, and NI are pairwise
disjoint sets.

For example, a wildlife vocabulary may have classes such as Mammal and Bird
that form set NC , properties such as scientificName and isEndangered as
well as relations such as closeRelativeOf and preysOn that form set NR, and
individuals such as PLATYPUS and EMU that form set NI .7

These formal knowledge representation languages support different sets of math-
ematical constructors to achieve a favorable trade-off between expressivity and com-
putational complexity (which depends on the intended application). For example,
theALC description logic supports atomic negation, concept intersection, universal
restrictions, limited existential quantification, and complex class expressions using
a combination of operators, such as subclass relationships, equivalence, conjunc-
tion, disjunction, negation, property restrictions, tautology, and contradiction. ALC
extendedwith transitive roles is calledS. If all the previous constructors are extended
withH (role hierarchy),O (enumerated concept individuals),I (inverse roles), andN
(unqualified cardinality restrictions), the description logic is called SHOIN , which
roughly corresponds to OWLDL. AddingR (complex role inclusion, reflexivity and
irreflexivity, and role disjointness) to the above and replacing N with Q (qualified
cardinality restrictions) yields to SROIQ, which is the description logic behind
OWL 2 DL (see Definition 6.3). Those description logics that support datatypes,
datatype properties, and data values also feature a trailing (D) superscript in their
names.

6OWL classes and properties correspond to description logic concepts and roles. Individuals are
called the same way in both the OWL and the description logic terminology.
7The description logic concepts and roles do not follow the general capitalization rules of English
grammar; instead, they purposefully capitalize each word to make them easier to read. In concrete
examples for concept names, the first letter of the identifier and the first letter of each subsequent
concatenated word are capitalized (PascalCase), for role names, the first letter of the identifier is
lowercase and the first letter of each subsequent concatenated word is capitalized (camelCase), and
individual names are written in ALL CAPS.
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Definition 6.3 (SROIQ Ontology).8 A SROIQ ontology is a set of role expres-
sions R over a signature defined as R :: = U |NR|N−

R , where U represents the
universal role, NR is a set of roles, and N−

R is a set of negated role assertions.
The concept expressions of a SROIQ ontology are defined as the set C :: =
NC |(C �D)|(C �D)|¬C|�|⊥|∃R.C|∀R.C| � nR.C| � nR.C|∃R.Self |{NI }, where n
is a non-negative integer, C and D represent concepts, and R represents roles. Based
on these sets, SROIQ axioms can be defined as general concept inclusions (GCIs)
of the form C 
 D and C ≡ D for concepts C and D (terminological knowledge,
TBox), individual assertions of the form C(NI ), R(NI1 , NI2 ), NI1 ≈ NI2 , or NI1 
≈
NI2 (assertional knowledge, ABox), and role assertions of the form R 
 S,R ≡
S,R1 ◦ . . . ◦ Rn 
 S,Asymmetric(R),Reflexive(R), Irreflexive(R),Disjoint(R, S)9

for roles R,Ri, and S (role box, RBox) [31].

For example, a car ontology may contain, among others, concepts such as Vehi-
cle, Car, LuxuryCar, and Fuel, individuals such as Chrysler300C, LanciaThema,
Petrol, Diesel, and Biodiesel, and roles such as rebadgeOf, basedOn, poweredBy, and
hasEngine. These can be defined as GCIs such as Car
Vehicle and Car≡Automo-
bile, individual assertions such as Car(CHRYSLER300C), Car(LANCIATHEMA),
Fuel(PETROL), Fuel(DIESEL), Fuel(BIODIESEL), type(CHRYSLER300C,
LuxuryCar),10 rebadgeOf(LANCIATHEMA, CHRYSLER300C), poweredBy
(CHRYSLER300C, PETROL � DIESEL), GASOLINE ≈ PETROL, and DIESEL

≈ BIODIESEL, and role assertions such as rebadgeOf 
 basedOn and poweredBy
≡ usesFuel.

The meaning of description logic concepts and roles is defined by their model-
theoretic semantics, which are based on interpretations. In SROIQ, interpretation
I consists of a set�I (the domain of I) and an interpretation function.I , whichmaps
each atomic concept A to a set AI ⊆ �I , each atomic role R to a binary relation
RI ⊆ �I × �I , and each individual name a to an element aI ∈ �I .

The formal definition of concepts and roles used in description logic formalisms
are defined in controlled vocabularies and ontologies, which will be described in the
following sections.

6.2.3 Vocabularies and Ontologies

Vocabularies, taxonomies, thesauri, and simple ontologies are usually defined inRDF
Schema (RDFS),11 an extension of RDF specially designed for defining taxonomical

8The formal definition of an ontology depends on its logical underpinning, but the most expressive
OWL 2 ontologies defined here are supersets of all the ontologies that utilize less expressive for-
malisms. Most OWL 2 ontologies do not exploit all the available mathematical constructors of the
underlying logical underpinning.
9Often abbreviated with the first three letters as Asy(R), Ref(R), Irr(R), and Dis(R, S).
10The type (isA) relationship is typically reused from the RDF vocabulary (rdf:type).
11https://www.w3.org/TR/rdf-schema/.

https://www.w3.org/TR/rdf-schema/
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structures and concept relationships, while complex ontologies are defined in the
fully-featured ontology language OWL.

Thedeclarationof a video clip depicting aperson in amachine-readable format, for
example, requires the formal definition of video clips and their features to be retrieved
from a vocabulary or ontology, such as the Clip vocabulary from Schema.org,12

which is suitable for declaring the director, file format, language, encoding, and
other properties of video clips (schema:Clip). The definition of the “depicts”
relationship can be found in the Video Ontology (VidOnt)13 (video:depicts), a
state-of-the-art core reference ontology for video, which integrates viewpoints of de
facto standard and standard video-related upper ontologies and domain ontologies
with important concepts and roles, constituting themost expressive video ontology to
date. The definition of “Person” can be used from schema:Person, which defines
typical properties of a person, including, but not limited to, name, gender, birthdate,
and nationality.14

The vocabularies of core audio and video metadata standards have originally been
created inXMLorXMLSchema (XSD),15,16,17 whichmade themmachine-readable,
but not machine-interpretable. Semantic Web standards, such as RDF, RDFS, and
OWL, can overcome this limitation [32], which resulted in several attempts for the
RDFS or OWL mapping of ID3,18 Dublin Core,19 TV-Anytime,20 MPEG-7,21 or a
combination of these [33]. Hunter’s MPEG-7 ontology was the first of its kind; it
modeled the core parts of MPEG-7 in OWL Full, complemented by DAML+OIL
constructs [34]. Inspired by this mapping, Tsinaraki et al. created another MPEG-7
ontology, but with full coverage of the MPEG-7 Multimedia Description Scheme
(MDS) [35]. Rhizomik (MPEG-7Ontos),22 the first complete MPEG-7 ontology, was
generated using a transparent mapping from XML to RDF combined with map-
ping XSD to OWL [36]. The Visual Descriptor Ontology (VDO) was an OWL DL
ontology, which covered the visual components of MPEG-7 [37]. The Multimedia
Structure Ontology (MSO) defined basic multimedia concepts from the MPEG-7
MDS [38]. Oberle et al. created an ontological framework to formally model the
MPEG-7 descriptors and export them to OWL [39]. TheMultimedia Content Ontol-
ogy (MCO) and the Multimedia Descriptors Ontology (MDO) cover the MPEG-7

12http://schema.org/Clip.
13http://videoontology.org.
14It is a common practice to abbreviate terms using the namespace mechanism, which uses a prefix
instead of full (and often symbolic) URIs. For example, schema: abbreviates http://schema.org/,
therefore schema:Clip stands for http://schema.org/Clip.
15http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-7_schema_files/.
16http://purl.org/NET/mco-core, http://purl.org/NET/mco-ipre.
17http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=39864.
18http://www.semanticdesktop.org/ontologies/2007/05/10/nid3/.
19http://dublincore.org/2012/06/14/dcterms.rdf.
20http://rhizomik.net/ontologies/2005/03/TVAnytimeContent.owl.
21http://mpeg7.org.
22http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl.

http://schema.org/Clip
http://videoontology.org
http://schema.org/
http://schema.org/Clip
http://standards.iso.org/ittf/PubliclyAvailableStandards/MPEG-7_schema_files/
http://purl.org/NET/mco-core
http://purl.org/NET/mco-ipre
http://webapp.etsi.org/workprogram/Report_WorkItem.asp?WKI_ID=39864
http://www.semanticdesktop.org/ontologies/2007/05/10/nid3/
http://dublincore.org/2012/06/14/dcterms.rdf
http://rhizomik.net/ontologies/2005/03/TVAnytimeContent.owl
http://mpeg7.org
http://rhizomik.net/ontologies/2005/03/Mpeg7-2001.owl
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MDS structural descriptors, and the visual and audio parts ofMPEG-7 [40]. TheCore
Ontology forMultimedia (COMM) mapped selected parts of theMPEG-7 vocabulary
to OWL [41]. The X3D-aligned 3D Modeling Ontology23 can be used for describ-
ing characters and objects of computer animations, including computer generated
imagery (CGI) and computer-aided design (CAD), as well as virtual, augmented,
and mixed reality videos [42].

Wordnet24 and OpenCyc25 are two well-established upper ontologies that can
be used for describing a variety of concepts, including those depicted in videos.
Alternatively, ontologies specially designed for this purpose, such as the Large-
Scale Concept Ontology for Multimedia (LSCOM) [43] or the ontology of Zha et al.
[44] can also be used.

The spatiotemporal annotation of video events may employ spatial ontologies,
such as RCC-8 calculus-based ontologies [45], temporal ontologies, such as the
SWRL Temporal Ontology,26 and fuzzy ontologies, such as the Video Semantic Con-
tent Model (VISCOM) [46], which are formally grounded in not only general, but
also in spatial, temporal, and fuzzy description logics [47].27

Schema.org provides de facto standard definitions for a variety of knowledge
domains, which also includes coverage for concepts and properties that
frequently appear in multimedia contents. For example, audio resources can
be described with schema:bitrate, schema:encodingFormat, and
schema:duration. Similarly, videos can be described using schema:video
and schema:VideoObject. Seasons, film series, episodes of series, and movies
can be annotated with schema:CreativeWorkSeason, schema:Movie
Series, schema:Episode, and schema:Movie. Genres can be defined using
schema:genre.

In addition, several OWL ontologies have been created for de facto standards and
many without standards alignment [48]. W3C’s Ontology for Media Resources28

provides a core vocabulary with standards alignment to be used in online media
resource descriptions. TheMultimedia Metadata Ontology (M3O)29 was designed to
integrate the core aspects ofmultimediametadata [49]. TheLinkedMovieDatabase30

was designed for describing common concepts and properties of Hollywood movies,
such as actor, director, etc. The STIMONT ontology can describe emotions associated
with video scenes [50].

The terms of these ontologies, when serialized in RDFa, HTML5 Microdata, or
JSON-LD, can be indexed by all major search engines, including Google, Yahoo!,
and Bing [51].

23http://3dontology.org.
24http://wordnet-rdf.princeton.edu/ontology.
25https://sourceforge.net/projects/texai/files/open-cyc-rdf/1.1/.
26http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl.
27Not all of these formalisms can be implemented in OWL 2, leading to proprietary extensions.
28http://www.w3.org/TR/mediaont-10/.
29http://m3o.semantic-multimedia.org/ontology/2009/09/16/annotation.owl.
30http://www.linkedmdb.org.

http://3dontology.org
http://wordnet-rdf.princeton.edu/ontology
https://sourceforge.net/projects/texai/files/open-cyc-rdf/1.1/
http://swrl.stanford.edu/ontologies/built-ins/3.3/temporal.owl
http://www.w3.org/TR/mediaont-10/
http://m3o.semantic-multimedia.org/ontology/2009/09/16/annotation.owl
http://www.linkedmdb.org
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6.2.4 Semantic Enrichment of Videos with Linked Data

Records of isolated video databases, particularly when locked down and using pro-
prietary data formats, are inefficient in data access, sharing, and reuse.

To enable semantic queries across diverse resources, structured data is often pub-
lished according to best practices (Linked Data) [52]. The four principles of Linked
Data are the following31:

1. Uniform Resource Identifiers (URIs), i.e., strings of ASCII characters of
the form scheme:[//[user:password@]host[:port]][/]path
[?query][#fragment], should be used to represent real-world concepts
and entities.

2. The URIs of RDF resources should be HTTP URIs, so that the resource names
can be found on the Internet.

3. The resource URIs should provide useful information using Semantic Web stan-
dards, such as RDF.

4. Links to other URIs should be included, enabling users and software agents
discover related information.

Creating links between the structured datasets of the SemanticWeb is called interlink-
ing, which makes isolated datasets part of the LOD Cloud,32 in which all resources
are linked to one another. These links enable semantic agents to navigate between
data sources (traverse RDF graphs) and discover related resources. The most com-
mon predicates used for interlinking are owl:sameAs and rdfs:seeAlso, but
any predicate can be used. In contrast to hyperlinks between web pages, LOD links
utilize typed RDF links between resources.

Linked Data with an explicitly stated open license is called Linked Open Data
(LOD). A meaningful collection of RDF triples that complies with Linked Data
principles and is published with an open license is called an LOD dataset. The LOD-
based semantic enrichment of videos is employed by video repositories, hypervideo
applications, and video streaming portals, such as YouTube [53].

6.2.5 Spatiotemporal Annotation in Action

To demonstrate spatiotemporal annotation in action, consider the argument scene
from the movie “The Sound of Music” with Maria and Captain von Trapp, portrayed
by Julie Andrews and Christopher Plummer (20th Century Fox, 1965). The aim
is to identify the video scene with temporal data, annotate the region of interest
depicting Maria as a still region and the region of interest depicting the captain as
a moving region with spatiotemporal segmentation, and describe the movie scene,
the two movie characters, and the actors who played in the corresponding roles. By

31https://www.w3.org/DesignIssues/LinkedData.html.
32http://lod-cloud.net.

https://www.w3.org/DesignIssues/LinkedData.html
http://lod-cloud.net
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Fig. 6.1 Spatial annotation of regions of interest with the top left corner coordinates, width, and
height of the minimum bounding boxes. Movie scene by 20th Century Fox

using Media Fragment URI 1.0 identifiers,33 the spatiotemporal segmentation can
be done as follows. The positions of the selected shots are specified in Normal Play
Time format according to RFC 2326.34 Themovie characters are represented by their
minimum bounding boxes, as shown in Fig. 6.1.

Using a description logic formalism, this video scene can be represented as shown
in Listing 6.1.

Listing 6.1 Spatiotemporal description of a video scene with DL formalism
Movie(THESOUNDOFMUSIC)
filmAdaptationOf(THESOUNDOFMUSIC,
THESTORYOFTHETRAPPFAMILYSINGERS)
Scene 
 VideoSegment
Scene(ARGUMENTSCENE)
sceneFrom(ARGUMENTSCENE, THESOUNDOFMUSIC)
hasStartTime(ARGUMENTSCENE, 01:12:48)
duration(ARGUMENTSCENE, 00:01:54)
hasFinishTime(ARGUMENTSCENE, 01:14:42)
depicts(ARGUMENTSCENE, Argument)
MovieCharacter(MARIA)
portrayedBy(MARIA, JULIEANDREWS)
MovieCharacter(CAPTAINVONTRAPP)
portrayedBy(CAPTAINVONTRAPP, CHRISTOPHERPLUMMER)
partOf(ARGUMENTROI1, ARGUMENTSCENE)
partOf(ARGUMENTROI2, ARGUMENTSCENE)
StillRegion(ARGUMENTROI1)

33https://www.w3.org/TR/media-frags/.
34https://www.ietf.org/rfc/rfc2326.txt.

https://www.w3.org/TR/media-frags/
https://www.ietf.org/rfc/rfc2326.txt
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MovingRegion(ARGUMENTROI2)
depicts(ARGUMENTROI1, MARIA)
depicts(ARGUMENTROI2, CAPTAINVONTRAPP)

This formal description can be written in any RDF serialization, such as
RDF/XML, Turtle, Notation3 (N3), N-Triples, N-Quads, and any compatible
lightweight annotation, such as RDFa, HTML5 Microdata, and JSON-LD. Listing
6.2 shows the Turtle serialization of the above example.

Listing 6.2 Spatiotemporal description of a video scene in Turtle

@prefix dbpedia: <http://dbpedia.org/resource/> .

@prefix mpeg-7: <http://purl.org/ontology/mpeg7/> .

@prefix temporal: <http://swrl.stanford.edu/ontologies/built-

ins/3.3/temporal.owl> .

@prefix schema: <http://schema.org/> .

@prefix video: <http://purl.org/ontology/video/> .

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .

dbpedia:The_Sound_of_Music_(film) a video:movie ;

video:filmAdaptationOf

dbpedia:The_Story_of_the_Trapp_Family_Singers .

<http://example.com/soundofmusic.mp4> a mpeg-7:Video ,

schema:Movie .

<http://example.com/soundofmusic.mp4#t=1:12:48,1:14:42> a

video:Scene ; video:temporalSegmentOf

<http://example.com/soundofmusic.mp4> ;

video:sceneFrom dbpedia:The_Sound_of_Music_(film) ;

temporal:hasStartTime "01:12:48"ˆˆxsd:time ;

temporal:duration "PT01M54S"ˆˆxsd:duration ;

temporal:hasFinishTime "01:14:42"ˆˆxsd:time ;

video:depicts dbpedia:argument .

dbpedia:Maria_von_Trapp a vidont:MovieCharacter ;

video:portrayedBy dbpedia:Julie_Andrews .

dbpedia:Georg_von_Trapp a vidont:MovieCharacter ;

video:portrayedBy dbpedia:Christopher_Plummer .

<http://example.com/soundofmusic.mp4#t=1:12:49,1:12:53&xywh=

1074,293,302,584> a mpeg-7:MovingRegion ;

video:spatioTemporalSegmentOf

<http://example.com/soundofmusic.mp4> ;

video:depicts dbpedia:Georg_von_Trapp .

<http://example.com/soundofmusic.mp4#t=1:12:49,1:12:53&xywh=

164,51,454,827> a mpeg-7:StillRegion ;

video:spatioTemporalSegmentOf

<http://example.com/soundofmusic.mp4> ;

video:depicts dbpedia:Maria_von_Trapp .
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The formal definition of the terms used in the video scene description above
are retrieved from MPEG-7, VidOnt, the SWRL Temporal Ontology, DBpedia, and
Schema.org, by declaring their namespaces (see the lines starting with @prefix)
and using the corresponding prefixes in the RDF triples. In Turtle, a is a shorthand
notation for the rdf:type predicate, which expresses an “is a” relationship. The
above example uses another shorthand notation as well, namely that a series of RDF
triples sharing the same subject can be abbreviated by stating the subject once, and
then each predicate-object pair separated using a semicolon. Temporal segments
are identified for the soundofmusic.mp4 video file by stating the starting and
ending time separated by a comma, preceded by#t=, which is, like anyURI inTurtle,
delimited by < and>. The spatiotemporal segment for the region of interest extends
this by the top left coordinates and dimensions of the minimum bounding box of the
region separated by commas and preceded by &xywh= in the URI (a spatial segment
of the temporal segment). Some of these annotations can be generated using semantic
video annotation tools, although the RDF output varies greatly due to proprietary
ontology implementations [54].

In contrast to the tree structure of XML documents, RDF-based knowledge rep-
resentations can be visualized as graphs. RDF graphs are directed, labeled graphs in
which the nodes are the resources and values, and the arrows assign the predicates
(see Fig. 6.2).

Because the RDF graphs that share the same resource identifiers naturally merge
together, interlinking LOD concepts and individuals (e.g., dbpedia:argument,
dbpedia:Maria_von_Trapp) makes the above graph part of the LOD Cloud.
By traversing the interconnected graphs of the LOD Cloud, or by directly querying
them, it is possible to find useful, relevant machine-interpretable information related
to the depicted concepts, such as the memoir the story of the film is based on, further
adaptations of the book, filming locations, the birthday of the staff members, and so
on. Upon these, new information can also be inferred, such as the age of the actors
and actresses at the time of filming can be calculated.

6.3 Ontology-Based Video Scene Interpretation

A common approach to ontology-based video understanding is the automated shot
annotation with semantic labels using pretrained classifiers. However, frame-level
objectmapping alone is often insufficient to understand the visual content. To address
this limitation, events can be used to provide additional information to interpret
a scene. Such information includes object positions, object transitions over time,
and the relationship between objects and high-level concepts. Formalizing com-
plex events by combining primitive events is most efficient in well-defined domains
with constrained actions and environment (e.g., soccer videos). While this chapter
focuses on knowledge-based techniques, there are other high-level video recogni-
tion approaches in unconstrained videos, such as the ones that utilize bag of features,
kernel classifiers, and multimodal fusion [55].
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PT01M54S

01:14:42

dbpedia:argument

01:12:48

video:depicts

temporal:hasFinishTime

temporal:duration

temporal:hasStartTime

dbpedia:Christopher_Plummer

video:portrayedBy

video:MovieCharacter

video:Scene

rdf:type

video:sceneFrom

rdf:type

dbpedia:The_Story_of_the_Trapp_Family_Singers

video:temporalSegmentOf

mpeg-7:MovingRegion

rdf:type video:depicts

video:spatioTemporalSegmentOf

http://example.com/soundofmusic.mp4#t=1:12:48,1:14:42

video:spatioTemporalSegmentOf

dbpedia:Georg_von_Trapp

video:sceneFrom

http://example.com/soundofmusic.mp4#t=1:12:49,1:12:53&xywh=1074,293,302,584

schema:Movie

rdf:type

dbpedia:Julie_Andrews

video:portrayedBy

video:MovieCharacter

rdf:type

mpeg-7:StillRegion

rdf:type video:depicts

dbpedia:Maria_von_Trapp

video:sceneFrom

http://example.com/soundofmusic.mp4#t=1:12:49,1:12:53&xywh=164,51,454,827

mpeg-7:Video

rdf:type

http://example.com/soundofmusic.mp4

video:filmAdaptationOf

dbpedia:The_Sound_of_Music_(film)

Fig. 6.2 Graph visualization of the RDF triples of Listing 6.2
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Many knowledge-based high-level scene interpretation tasks are performed by
deductive reasoning over the video contents, during which new statements are
inferred based on explicit ontology statements, to recognize situations and temporal
events based on human knowledge formally described as ontology concepts, roles,
individuals, and rules. By representing fuzzy relationships between the context and
depicted concepts of video contents, abductive reasoning can also be performed [56].

6.3.1 Video Event Recognition via Reasoning Over Temporal
DL Axioms

Video event recognition often requires higher expressivity than what is available in
general description logic formalisms, such as the one demonstrated in the previous
section. Complex video events can be formally described and automatically rec-
ognized via reasoning by using temporal description logics, such as TL-F , which
can be briefly defined as follows. TL-F is composed of the temporal language T L,
which expresses interval temporal networks, and a non-temporal feature description
logic F . The TL part of TL-F can contain non-temporal concepts (E), conjunction
(C�D), qualifiers (C@X ),35 substitutive qualifiers (C[Y ]@X ), temporal constraints
((X (R)Y ), (X (R)�), and (�(R)Y )), existential quantifiers (�(X̄ )T̄C .C),36 disjunction
(R, S), temporal variables (x, y, z, . . .), and Allen’s relations: b (before), m (meets),
d (during), o (overlaps), s (starts), f (finishes), = (equal), a (after), mi (met by), di
(contains), oi (overlapped by), si (started by), and fi (finished by) [57]. TheF part of
TL − F can contain atomic concepts (A), tautology (�), conjunctions (E � F),
agreements (p ↓ q), selections (p : E), atomic features (f ), atomic parametric fea-
tures (�g),37 and paths (p ◦ q).

Using TL-F formalisms, a goal in soccer videos, for example, can be described
by the following sequence: goalpost–cheers–closeup–audience–slow motion replay
[58] (see Listing 6.3).

Listing 6.3 Formal description of a video event using the temporal description logic
TL-F

GOAL = �(dgoal, dwhistle, dcheers, dcaption, dgoalpost, dcloseup, daudience, dreplay)
(dgoal f dgoalpost)(dwhistle d dgoalpost)(dgoalpost o dcheers)(dcaption e dcloseup)(dcheers e dcloseup)
(Dgoalpost m dcloseup)(dcloseup m daudience)(daudience m dMSR).(GOAL@ dgoal ∩WHIS-
TLE @ dwhistle ∩ CHEERS @ dcheers ∩ CAPTION @ dcaption ∩ GOALPOST @
dGOALPOST ∩ CLOSEUP @ dCLOSEUP ∩ AUDIENCE @ dAUDIENCE ∩ REPLAY
@ dreplay)

35C@X enables the evaluation of concept C at an interval X different from the current one by
temporally qualifying it at X .
36The temporal existential quantifier � introduces interval variables related to each other and to
variable � (now, a special temporal variable which serves as a reference) according to a set of
temporal constraints.
37� distinguishes parametric and non-parametric features and is not an operator.
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where� is the temporal existential quantifier for introducing the temporal intervals,@
is a bindable variable, and dgoal , dwhistle, dcheers, dcaption, dgoalpost , dcloseup, daudience, and
dreplay represent the temporal intervals of the corresponding objects and sequences.
After detecting the objects and sequences in a soccer video, they can be described
in the form �x( ).C@x, where C is the individual of the object or sequence, x is the
temporal interval of C, and ( ) denotes those individuals that do not have temporal
relationships. Assume a set of sequence individuals {S0, S1,…, Sn−1, Sn} from the
detection results of a soccer video, in which each element Si can be represented
in the form Si = ♦xi( ).Si@xi. The definition of {S0, S1,…, Sn−1, Sn} includes a
latent temporal constraint, ximxi+1, i = 0, 1,…, n–1, which denotes two consecutive
sequences in {S0, S1,…, Sn−1, Sn} that are consecutive in the temporal axis of the
video. Further assume a set of object individuals {O0, O1,…, Om−1, Om} from the
detection results of a soccer video, in which each element Oi can be represented in
the form Oi = ♦yi( ).Oi@yi. Based on the above representation, reasoning can be
performed over soccer videos to recognize goals as follows. Firstly, those subsets
of {S0, S1,…, Sn−1, Sn} are selected that are composed of the consecutive indi-
viduals GOALPOST » CLOSEUP » AUDIENCE » REPLAY. These subsets are all
goal candidates calculated asECk = {GOALPOSTk , CLOSEUPk+1, AUDIENCEk+2,
REPLAYk+3}, where k is the index of the current view of the current candidate event
in {S0, S1,…, Sn−1, Sn}. Secondly, all the goal objectsOgoal ,Owhistle,Ocheers,Ocaption

have to be found in {O0,O1,…,Om−1,Om} for each candidate eventECk , which have
a corresponding temporal interval (ygoal , ywhistle, ycheers, ycaption), and satisfy the cor-
responding temporal constraints, i.e., ygoal f GOALPOSTk , ywhistle dGOALPOSTk ,
GOALPOSTk oycheers, ycaption eCLOSEUPk+1, ycheers eCLOSEUPk+1. If all of these
objects exist, ECk can be considered a goal.

6.3.2 Video Event Recognition Using SWRL Rules

Description logic-based semantic video annotations can be complemented by rule-
based representations, such as SWRL rules, to recognize video events and improve
the integrity and correctness of the interpretation. In newsvideos, for example, SWRL
rules enable the formal definition of the appearance of anchorpersons (see Listing
6.4).

Listing 6.4 Formal definition of a video event with SWRL rules [59]

Person(?p1) ˆ hasValidPeriod(?p1, ?Vtip1) ˆ

hasValidPeriod(?p1, ?Vtip2) ˆ hasValidPeriod(?p1, ?Vtip3) ˆ

differentFrom(?Vtip1, ?Vtip2) ˆ differentFrom(?Vtip2, ?Vtip3)

ˆ differentFrom(?Vtip1, ?Vtip3) ˆ

temporal:hasFinishTime(?Vtip1, ?FTp1) ˆ

temporal:hasStartTime(?Vtip2, ?STp2) ˆ

temporal:hasFinishTime(?Vtip2, ?FTp2) ˆ



6 Ontology-Based Structured Video Annotation … 115

temporal:hasStartTime(?Vtip3, ?STp3) ˆ

temporal:duration(?dp1dp2,?FTp1, ?STp2, temporal:Seconds) ˆ

temporal:duration(?dp2dp3,?FTp2,?STp3, temporal:Seconds) ˆ

swrlb:greaterThan(?dp1dp2, 120) ˆ swrlb:greaterThan(?dp2dp3,

120) ˆ StudioSetting(?s1) ˆ hasValidPeriod(?s1, ?Vtis1) ˆ

hasValidPeriod(?s1, ?Vtis2) ˆ hasValidPeriod(?s1, ?Vtis3) ˆ

differentFrom(?Vtis1, ?Vtis2) ˆ differentFrom(?Vtis2, ?Vtis3)

ˆ differentFrom(?Vtis1, ?Vtis3) ˆ temporal:equals(?Vtis1,

?Vtip1,

temporal:Seconds) ˆ temporal:equals(?Vtis2, ?Vtip2,

temporal:Seconds) ˆ temporal:equals(?Vtis3, ?Vtip3,

temporal:Seconds) -> ? Anchor(?p1)

In this case, if person p1 appears in three different time intervals of a news
broadcast (Vtip1, Vtip2, Vtip3), the occurrences have a temporal distance
greater than the defined threshold of 120 seconds, and the occurrence of the
StudioSetting instance coincideswith theprevious intervals (Vtis1, Vtis2,
Vtis3), person p1 is considered an anchorperson.

The semantically enriched representation can be used by automated mechanisms
to recognize the same type of video scenes in different video resources. Moreover,
reasoners can use suchmachine-interpretable descriptions to automatically infer new
statements, thereby achieving knowledge discovery.

Note, however, that the chosen formalism heavily affects computational com-
plexity, and similar to many temporal description logics, SWRL rules might break
decidability. Hence, such formalisms should be used for video annotations onlywhen
the expressivity of general description logics is insufficient.

6.3.3 Handling the Uncertainty of Concept Depiction
with Fuzzy Axioms

Fuzzy description logics provide inference support for vague information, which can
be utilized in video frame interpretation tasks, such as object recognition [60]. For
example, suppose the background knowledge of TBox and RBox axioms of Listing
6.5 to be used for reasoning-based video frame interpretation.

Listing 6.5 Formally described background knowledge
T ≡ {〈 Crown 
 color(green) � texture(patchy)〉 , 〈Trunk 
 color(brown) �

texture(rough)〉 , 〈Tree ≡ ∃hasPart.(Trunk �∃isBelow.Crown)〉}
R ≡ {Trans(hasPart)}

Assume a frame depicting a group of trees segmented, and a set of values produced
for each region based on their color and texture. In fuzzy description logics, these
values can be described with fuzzy ABox assertions as shown in Listing 6.6.
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Listing 6.6 Fuzzy Abox axioms
A≡ {〈color(o1, green)� 0.85〉, 〈texture(o1, patchy)� 0.7〉, 〈color(o2, brown)�

1.0〉, 〈texture(o2, rough) � 0.9〉, 〈isAbove(o1, o2) � 0.9〉, 〈hasPart(o3, o2) � 0.8〉}
A fuzzy interpretation I is a model with reference to the TBox if it holds the

statements described in Listing 6.7.

Listing 6.7 Fuzzy interpretation
CrownI(oI1 ) = t(colorI(oI1 , green

I), textureI(oI1 , patchy
I)) = t(0.85, 0.7)

TrunkI(oI2 ) = t(colorI(oI2 , brown
I), textureI(oI2 , rough

I)) = t(1.0, 0.9)
TreeI(oI3 ) = sup

b
{t(hasPartI(oI3 , b), (Trunk �∃isBelow.Crown)I(b))}

= sup
b
{t(hasPartI(oI3 , b), t(Trunk

I(b), sup
c
{t(isBelowI(b, c), CrownI(c))}))}

� t(hasPartI(oI3 , o
I
2 ), t(TrunkI(oI2 ),t((isAbove−)I(oI2 , o

I
1 ), CrownI(oI1 )))) �

t(0.8, t(t(1.0, 0.9), t(0.9, t(0.85, 0.7))))
where t represents the fuzzy intersection performed by a function of the form t :
[0, 1] × [0, 1] → [0, 1], called the t-norm operation, which must be commuta-
tive, i.e., t(a, b) = t(b, a), monotonically increasing, i.e., for a � c and b � d ,
t(a, b) � t(c, d), and associative, i.e., t(a, t(b, c)) = t(t(a, b), c), with 1 being an
identity element, i.e., t(a,1) = a. Depending on the t-norm used, different values
can be inferred for oI3 being a tree. For example, in case of the Łukasiewicz t-
norm, i.e.,�Luk(a, b) = max{0,a+b–1}, TreeI(oI3 ) � 0.15, the product t-norm, i.e.,
�prod(a, b) = a · b, gives TreeI(oI3 ) � 0.385, while the minimum t-norm (Gödel
t-norm), i.e., �min(a, b) = min{a, b}, yields to TreeI(oI3 ) � 0.7.

6.4 Utilizing Video Semantics: From Intelligent Video
Indexing to Hypervideo Applications

Structured video annotation enables efficient data sharing and reuse, and task automa-
tion. The machine-interpretable description of events and spatiotemporal annotation
of video scenes can be used to retrieve video scenes that are related to, or visually
similar to, a reference scene. Rich semantics can also be displayed by web search
engines and hypervideo applications, and used for additional services, such as auto-
mated video summaries, automated video classification, and video accessibility via
providing video descriptions to screen readers.

6.4.1 Content-Based Video Indexing and Retrieval

Concept relationships are valuable knowledge resources that can enhance the effec-
tiveness of video retrieval even for ambiguous queries [61]. RDF-based data is
machine-interpretable by design and inherently unambiguous. This is exploited in
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video indexing and retrieval by digital libraries, multimedia repositories (such as
when searching for a particular procedure formedical training), knowledge discovery
via inferring new statements automatically, and search engines, such as Google—
think of the Knowledge Carousel and Knowledge Panels on Google’s search engine
result pages (SERPs), which retrieve information from, among others, structured
data from website markup and LOD datasets.

Once identified, concepts can be interlinkedwith related data acrossLODdatasets,
which can then be used for combined faceted and explorative video search [62]. In
contrast to website contents retrieved through keyphrase-based web search, RDF-
based knowledge representations can be queried and manipulated manually or pro-
grammatically through the very powerful SPARQL query language [63]. SPARQL
queries may include multiple questions in a single query to answer complex ques-
tions that cannot be formulated as keywords (which are used in traditional keyphrase-
based web search). Furthermore, they can be executed not only on a single dataset,
but also across multiple datasets using federated queries. For example, assume a task
to retrieve three westerns starring Clint Eastwood that are shorter than 2.5 h, and
order them alphabetically by title (see Listing 6.5).

Listing 6.8 Advanced querying with SPARQL

PREFIX dc: <http://purl.org/dc/terms/> .

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .

PREFIX video: <http://purl.org/ontology/video/> .

PREFIX schema: <http://schema.org/> .

PREFIX xsd: <http://www.w3.org/2001/XMLSchema#> .

SELECT DISTINCT ?movie_title ?starring ?genre

FROM <http://example.com/sparql>

WHERE {

?video a schema:Movie ; dc:title ?movie_title ;

video:starring ?starring ; schema:genre ?genre ;

video:runningTime ?runningTime .

FILTER (?starring = "Clint Eastwood"ˆˆxsd:string) .

FILTER (?genre = "western"ˆˆxsd:string) .

FILTER (?runningTime < "150"ˆˆxsd:decimal) .

}

ORDER BY ?movie_title LIMIT 3

6.4.2 Video Semantics in Hypervideo Applications

Reasoning over structured video data can be used for, among other things, auto-
matically generating annotations for constrained videos [64], providing context-
awareness for augmented reality videos [65], semantically enriching interactive video
playback [66], achieving collaborative annotation [67], and considering user pref-
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erences in video recommendation engines for video sharing portals, video libraries,
and e-commerce.

6.5 Summary

Researched by both the signal processing and the knowledge engineering commu-
nities, the Semantic Gap in videos poses a real challenge. The formal representation
of concepts depicted in videos and the rule-based description of video events are the
knowledge engineering approaches that have already been successfully implemented
for high-level concept mapping in constrained videos, such as medical videos, news
videos, and sport videos. The description logic-based formal grounding of ontolo-
gies used for video representation ensures well-understood computational properties
and decidability. Since the general-purpose description logics used in other fields
lack the expressivity needed for representing complex video events, spatiotemporal
annotations often employ spatial, temporal, and fuzzy description logics and rule-
basedmechanisms aswell. The captured video semantics can be improved further via
information fusion by taking into account low-level audio descriptors, and if avail-
able, metadata and subtitles. The high-level video semantics expressed using the
above formalisms can be utilized in a range of intelligent applications from content-
based video retrieval to hypervideo players. Knowledge discovery can be achieved
via reasoning, for example previously unknown precursors of diseases might be
automatically discovered via the co-occurrence of particular symptoms in medical
videos.

The main challenges of using high-level descriptors in video scene understanding
include the limitations of concept coverage of knowledge representations, the inher-
ently ambiguous interpretations, and the reliable automation of structured video
annotation.
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Chapter 7
Deep Learning—A New Era in Bridging
the Semantic Gap

Urszula Markowska-Kaczmar and Halina Kwaśnicka

Abstract The chapter deals with the semantic gap, the well-known phenomenon in
the area of vision systems. Despite the significant efforts of researchers, the problem
of how to overcome the semantic gap remains a challenge. One of the most popu-
lar research areas, where this problem is present and causes difficulty in obtaining
good results, is the task of image retrieval. This chapter focuses on this problem. As
deep learning models gain more and more popularity among researchers and more
and more spectacular results are obtained, the deep learning models in solving the
semantic gap in the Content Based Image Retrieval (CBIR) is the central issue of
this chapter. The chapter briefly presents the traditional approaches to CBIR, next
introduces shortly into methods and models of deep learning, and shows the applica-
tion of deep learning at the particular levels of CBIR—features level, common sense
knowledge level, and inference about a scene level.

7.1 Introduction

Image processing is an important and current research area from the scientific and
practical point of view. Different image processing techniques are used in such areas
as medicine, astronomy, archeology, electronic games, video communications, and
others. Extraction of useful information from the processed image is an essential task
in image processing, some of such methods try to mimic human visual processes.
By object recognition, we can obtain information about the names of all or some
of objects in the image. However, how to possess the semantic knowledge from
images is still the unsolved scientific problem. Apparently similar images can hide a
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semantically different content and vice versa what causes strong difficulties in image
analysis. People can interpret images according to the context by inference and use
some prior knowledge. This problem is seen in the image retrieval area, where the
similarity of images plays an important if not a crucial role. The term similarity is
imprecise, in fact, it is very subjective. The same image can be interpreted differently
by different people depending on their socio-cultural background, usage purpose, and
contextual background.

Content Based Image Retrieval (CBIR) is a technique of searching images accord-
ing to a user’s interest on the basis of visual features extracted from the image, usually
large scale image databases are searched. The image retrieving is a challenge when
we expect the results according to human perspective and expectations. The differ-
ence between the low-level representation of the image and its high-level human
perception is known as a semantic gap. Even the semantic gap has been extensively
discussed in the literature [42, 43, 189, 201] it remains an open problem. Datta et
al. [33] minded the role of the higher-level perception, (they denote it as aesthetics).
It concerns a kind of emotions a picture arouses in people and adds a new dimension
to image understanding, benefiting CBIR. Smeulders et al. [189] define the semantic
gap within CBIR as “the lack of coincidence between the information that one can
extract from the visual data acquired from an image and the interpretation that the
same data have for a user in a given situation.” It manifests as the difference between
user intent and the content of returned images. The user intent can be defined as a
query by example, in this case, the problem lies in image descriptors matching, or
a query can be expressed in formal/natural language—it refers to the captions or
labels analysis. Usually, a user seeks for semantic similarity, while in many cases the
CBIR system considers similarity only by visual analysis. The content of an image
is identified on the low-level pixel data. A linguistic description of an image, even
it is not always precise, is more contextual than raw visual data. Therefore the most
immediate means to embed semantic characteristics of an image is to entail an image
with annotation by keywords or captions. It is an old concept that can reduce content-
based access to information retrieval [174]. Nonetheless, research suggests it could
be beneficial to use features from both sources: visual and linguistic (a multi-modal
search). In practice, labeling images is expensive and context-sensitive.

Deep Learning (DL) is a new area of the Machine Learning domain. It was
developed from 80-ties of 20 century [87, 117] but its popularity started in 2006
when Hinton et al. [83] showed how multilayered feedforward neural network could
be pre-trained efficiently, layer by layer, treating each layer in turn as an unsupervised
restricted Boltzmann machine. Then fine-tuning the whole multilayered structure
uses supervised backpropagation [84]. Now the list of DL applications is impressive,
starting with computer vision and pattern recognition [23, 51, 63, 99, 105, 152,
168], through computer games, robots and self-driving cars [18, 115, 144, 198],
voice recognition and generation [7, 86], music composition [32, 96], transferring
style from famous paintings [25, 55], and ending with automatic translation [56,
221]—only to give some examples.

Taking into account that CBIR is open research problem in terms of semantic gap
bridging, we focus on this task. From the other hand, Deep Learning (DL) is a new
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approach in Machine Learning. In recent years DL has been applied to hundreds
of problems, including computer vision and natural language processing, in both
academia and the industry. The main goal of this chapter is to present short survey
of using DL in bridging the semantic gap in CBIR area.

The rest of the chapter is organized as follows. In the next section, we shortly
present the development of CBIR approaches. Section three introduces the Deep
Learning paradigm and main deep architectures used in the CBIR problem. In this
section, we also briefly mention how DL is used for two important from the CBIR
point of view tasks, namely—visual attention modeling, and embedding semantic
features (word encoding and language model building). The last is essential when
someone wants to join visual and text information into CBIR systems. Section four
presents the usefulness ofDLon three levels of basic structure for scene interpretation
with a DL system, i.e.: (i) low-level, called feature level, its aim is a description of
the image with a set of (the best) features; (ii) the second level, in which the common
sense knowledge is built by learning temporal and spatial knowledge from aligned
visual and textual data; (iii) the third level, it contains an inference about the scene
based on the second level. The last section concludes the chapter.

7.2 Content Based Image Retrieval

First systems for image retrieval used text describing an image content, and they
exploited text retrieval techniques. These search engines used the text manually asso-
ciated with an image or automatically extracted from tags or captions ofWeb images.
Annotation process is time-consuming and labor-intensive. Another disadvantage of
this approach stems from ambiguous or even irrelevant words assigned to the image
and difficulties in using another language description because the query has to meet
the language of surrounding text. The surrounding text only partially describes the
semantic content of images, and sometimes the results are poor [93]. The reason
lies in polysemy—a phenomenon when one word can have different meaning [176].
Another reason is human’s perception subjectivity. In response to the described prob-
lems, Content Based Image Retrieval (CBIR) systems have arrived, where the query
is given by using an image or sketch. Initially, the CBIR term [40] has been used to
describe the process of retrieving desired images from an image collection based on
features automatically extracted from the images. In early CBIR systems the visual
features played essential role [210], they included colors, shapes, and textures. The
first global features used in CBIR systems have required relatively low computational
cost, however they were not invariant to image transformations. The further research
were focused on the design of invariant and discriminative features—local features.
The advantage of local features are their robust to occlusions, cropping and geometric
transformations [202]. The popular detectors are corner detectors:Harris, Shi-Tomasi
and FAST [73, 175, 186], and blob detectors: SIFT [6, 127] and SURF [14]. A com-
parative survey of local descriptors has been presented in [142]. Features are used to
build Bag ofWords (BoW)model borrowed from the text analysis [3]. The similarity
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between BoW vectors can be computed by the standard similarity distances, such as
the Euclidian or Manhattan measures.

Eakins [41] distinguishes between various levels of image retrieval. For this sur-
vey, the semantic level that requires the identification of images on the basis of desired
types of object, scene, event, or abstract ideas, is themost important. Image semantics
recognition is a challenge, because it is not only hidden inside the image but depends
on a priori knowledge and the user objectives. Progress in CBIR is closely interre-
lated with the development of new methods for image matching, image recognition,
image segmentation, image annotation and object detection [40]. In the context of the
semantic gap, the crucial problems are: understanding of users’ intention, developing
the appropriate description of image content, automatic extraction of features that
in the best way represent image content, and images matching that reflects human
similarity judgments. In image matching different similarity can be used, their com-
parative studies are in [147]. Summing up, the early years of CBIR development
we can say that research was focused mainly on object level retrieval, not on the
semantic level of an image.

The semantic gap problem was noticed, and it received a considerable attention
of researchers in the last decade. Developed systems use not only visual information
extracted from an image but also other features, e.g., text. A fusion of the two basic
imagemodalities—text (usually represented by keywords or captions) and visual fea-
tures is very promising to bridge the semantic gap [75]. Feature representation with
embedded semantics, i.e., including textual features, is learned using probabilistic
Latent Semantic Analysis (pLSA)model [89] and Latent Dirichlet Allocation (LDA)
model [17]. Bothmodels have been adopted to CBIR problem [119]. Piras et al. [165]
underline that the subjectivity of image semantics adaptation needs a fusion of dif-
ferent image representations. They give a comprehensive survey of existing fusion
methods. They distinguish two groups: early and late fusion. Early fusion refers
to the combination of the features into a single representation before the computa-
tion of similarity between images. This approach includes concatenation of various
descriptors or different feature spaces. Late fusion is compound either of the outputs
produced by different retrieval systems or of the similarity rankings, the outputs and
the rankings referring to different feature representations [45].

It is worth mentioning the idea of saliency and attention. Saliency [163] tries to
mimic how a human eye identifies important objects on the scene and is based on
a simple fundamental element—a contrast between an object and its neighbor. The
saliency model guides vision to potentially meaningful parts of a scene. Most of
the saliency detection methods use only the low-level image features, e.g., contrast,
edge, intensity. So, it is difficult to capture the task-specific semantic information.
Predicting saliency points can be applied to object detection [20, 26], unsupervised
object discovery and classification [236]. Attention is defined as the selection the
most relevant regions of a scene. These regions contain essential visual concepts.
Based on sparse representation, Bruce et al. [21] proposed the Attention by Infor-
mation Maximization (AIM) model which adopts the self-information of Indepen-
dent Component Analysis (ICA) coefficients as the measure for signal saliency. In
the paper [22], Bruce et al. discussed some challenges faced in models of visual
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saliency. Based on information theory and sparse coding, Hou et al. [92] proposed
the Dynamic Visual Attention (DVA) model which defines spatiotemporal saliency
as incremental coding length. Garcia-Diaz et al. [53] proposed the AdaptiveWhiten-
ing Saliency (AWS) model which relies on a contextually adapted representation
produced through adaptive whitening of color and scale features. An extensive com-
parative study of visual saliency models, belonging to the majority class of models,
is presented in [19].

Another trend inCBIR in the last years explores test-bedontologies combinedwith
content based techniques and annotation to narrow the semantic gap [71]. Hare et al.
distinguish two possible approaches in attacking the semantic gap: from bellow—
analysing the gap from descriptors to labels (by auto-annotation and/or semantic
spaces) and from above—analysing the gap from labels to semantics (looking at the
use of ontologies). To bridge the gap from below, Hare et al. [72] propose a new
technique for auto-annotation.

One can find many papers reviewing the semantic gap problem. A comprehensive
survey presented in [125] identifies various directions to narrow down the semantic
gap (using an ontology, machine learning, generating the semantic template, fusing
text and visual content of images). Image semantics is widely concerned in another
review paper [199]. The authors distinguish various methods used for the semantic
analysis of images. They deeply discuss: directmethods using a plain representation
of data and plain statistical methods; linguisticmethods using an intermediate visual
vocabulary between raw numerical data and high-level semantics; compositional
methods where parts of the image are identified in the segmentation process before
the whole image or its parts are annotated; structural methods where a geometry of
image parts is used; hierarchical compositional methods that construct a hierarchy
of parts; communicating methods when information is shared between categories;
hierarchical methods that search for hierarchical relationships between categories;
multi-label methods assigning several global labels simultaneously to an image.

Alzu’bi et al. in [3] noticed the role of deep learning in CBIR and bridging
the semantic gap. They focus on the role of the convolutional network in visual
feature extraction and shortly describe image captioning method from [105]. Zhou
et al. [235] extend an overview of this subject in many aspects, for instance, by
describing a generation of patch-level feature representation based on convolutional
kernel networks [159] and deep network for hashing images into short binary codes
with optimization based on triplet ranking loss [114].

7.3 Deep Learning

In recent years Deep Learning (DL) is growing in the number of new concepts and
the number of successful challenging applications. We do not cite here the precise
definition of Deep Learning. Goodfellow et al. explain this term in a descriptive
way [65]. They underline that solving the tasks that are easy for people to perform
but hard for people to describe them formally is a challenge to Artificial Intelligence.
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As the examples of such problem, we can mention understanding spoken words or
recognition of faces on images. People solve such kind of problems more intuitively.
Approaches in which solutions of such problems are searched by learning from expe-
rience, by defining a concept through its relation to simpler concepts, is called deep
learning. A graph that shows how the concepts are built on top of each other is deep, it
contains many layers, therefore this approach is called as deep learning. Deep learn-
ing avoids the need for people to specify all the knowledge that the computer can
need to solve such a problem. In the mid-1980s, Hinton and others propagated neural
networks with ‘deep’ models, consisting of many layers, but training them required
heavy human involvement, e.g., labeling enormous data sets, and there was not avail-
able required computational power for such complicated tasks as speech or image
recognition. In 2006, Hinton and researchers developed another way of training deep
models, by teaching four individual layers of neurons. In such a deep network, higher
levels capture more abstract concepts. The big advantage of DLs is that they can dis-
cover features that in the best way represent the problem. Shallow neural networks
start with handcrafted features of the image, but deep learning starts with the raw
pixels and learns features automatically during the training process, from primitive
features to more abstract in successive layers. The DL can be defined as a part of
Machine Learning consisting of algorithms used to model high-level abstractions in
data using architectures composed of multiple nonlinear transformations.

The deep models, consisting of a number of layers, need a lot of data and com-
putation power and time to train. They owe its quick development to the growth of
unannotated data amount and acceleration of computation by using GPUs. Also, new
techniques that allow to train networksmore effectively have been proposed: themini
batch training (the batch algorithm keeps the systemweights constant while comput-
ing the error associated with each sample in the input) [15, 85, 98], new optimization
algorithms based on back-propagated gradient and gradient-based optimization [16,
39, 108, 195, 230, 231], dropout [192], regularization [65].

Shallow networks typically used sigmoid transfer functions or hyperbolic tangent.
While applying to deep networks, these transfer functions cause vanishing gradient
during training. New transfer functions, like ReLU or Leaky ReLU and others [76,
131] reduce vanishing gradient, cause sparsity and make training faster.

While deep learning is computationally demanded and needs lot of training time,
it is valuable that some of the trained deep models are archived with all parameters.
They are ready to adapt and train for other related tasks which have too few training
examples to learn a full deep representation. In the fine-tuning step, some weights
are frozen, they are good starting points to further adjust weights. This phenomenon
is called transfer learning. It is very popular in an image recognition problem [2, 55,
91, 225]. It is really valuable in medical image recognition [138, 173], where the
data sets are usually small.

One way to improve efficiency training is to use a big dataset. When the dataset
is small, the solution lies in data augmentation [6]. This technique is widely applied
in deep learning research.
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7.3.1 Deep Learning Architecture

The following subsections briefly introduce into deep models that could be crucial
in reference to bridging the semantic gap in the image retrieval.

7.3.1.1 Autoencoder and Stacked Autoencoders

Autoencoder is a general idea of the network with one hidden layer that is trained
in the reconstruction mode. This means that the network is trained in unsupervised
way using standard gradient optimization method trying to reconstruct its input on
the output neurons. During the training process, the activations of hidden neurons
search for a latent representation of the problem, i.e., they automatically find features
(code-word). This effect is very beneficial in relation to the handcrafted feature
development and can be used to reduce the dimensionality of input data [82]. The
simplest form is based on the MultiLayer Perceptron (MLP) network [74]. Each
neuron sums weighted input signals (weights are the parameters searched during
training) and transform it by an activation function. The vanishing gradient problem
arrives, when sigmoid activation function is applied. Therefore, with growing interest
in deep learning, novel activation functions have beenproposed: [1, 29, 59, 101, 130].
Autoencoder consists of two parts. The first one is an encoder and the second one a
decoder.

Usually, the MLP uses a loss function which is used to measure the inconsistency
between predicted value W ′′H and actual input X . The most popular is an error
between the input vector X and the output vector W ′′H .

L = ||W ′′H − X ||22 (7.1)

where W ′′ is a weights matrix in the decoding part, H is the activations vector of a
hidden layer and X is an input vector. Minimising the squared error is equivalent to
predicting the (conditional) mean of the output.

There are many different autoencoders. Sparse autoencoders are a type of autoen-
coder enforced to learn a code dictionary (feature representation) that minimizes
reconstruction error while restricting the number of code-words required for recon-
struction.

Sparsity may be achieved by additional terms λ||H ||1 in the loss function during
training [150] (by comparing the probability distributionof the hiddenunit activations
with some low desired value).

Denoising autoencoders [205] take a partially corrupted input while training to
recover the original undistorted input.

Stacking autoencoders (deep autoencoders) use greedy layer-wise training as pre-
training. Each layer in the network learns an encoding of the layer below. Then the
network is fine-tuned. In this way, a network can learn hierarchical features in an
unsupervised manner (Vincent et al. [206]). Next, it is finetuned by training in the
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supervised way. To use the network as a classifier, decoding part is ignored and the
layer of softmax neurons is added. The features from encoder can also be useful for
clustering.

The very interesting structure is Variational Autoencoder (VAE) [107, 172]. It
recovers the data distribution and learns latent features. After training it can be used
as a generative model.

7.3.1.2 Probabilistic Graphical Models

The fundamental block in the probabilistic graphical model is Restricted Boltzmann
Machine (RBM). The RBM consists of two-layers, one visible and one hidden layer.
The visible layer takes an input, and after one cycle the output arrives at the visible
layer. In some way, the architecture is similar to the feed-forward neural network
with logistic activation function, although, training is different. Typically, training
uses contrastive divergence (CD) [82, 85] with persistent Markov chains.

A Deep Belief Network (DBN) is formed by training RBMs one at a time and
then stacking them on top of each other. Each hidden layer creates feature detectors.
In such stack, features learned by one RBM are used as the input for training the
next RBF. The idea is similar to deep autoencoder, but the interpretation is different.
Once the RBM is stacked, it changes the prior distribution over the hidden values of
the lower RBM in the stack. DBNs can be used to initialize a deep neural network
that is easily fine-tuned by backpropagation. Applications of DBNs include natural
language processing [181], speech recognition [146] and classification problems.

7.3.1.3 Convolutional Networks

Convolutional Network (CNN) is a feed-forward network that can extract topolog-
ical features directly from pixels of an image. Similarly to almost all other neural
networks, they are trainedwith a version of the back-propagation algorithm. The net-

Fig. 7.1 Convolutional Neural Network (CNN)
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Fig. 7.2 Features of the first convolutional layer in CNN trained on ImageNet dataset [113]. Used
with kind permission of Alex Krizhevsky

Fig. 7.3 Features in the subsequent layers of convolutional network [229]. Used with permission
provided by Springer

work consists of various convolutional layers, pooling layers, and fully connected
layers (Fig. 7.1). Convolutional layers are composed of feature maps. Each neuron in
a feature map looks for the same feature but at different positions of the input image.
All neurons in one feature map share the same weights. Each map is subsampled
typically with mean or max pooling in pooling layers. Pooling provides a form of
translation invariance. The intuition behind this layer is that once we know that a
specific feature is in the original input volume, its exact location is not as important
as its relative location to other features. The architecture of CNNs exploits spatially
local connectivity between neurons of adjacent layers: each neuron is connected to
only a small region of the input volume. In the case of classification, the last layer
operates as the softmax layer.

CNNs trained on natural images learn on its first layer features similar to Gabor
filters and color blobs (Fig. 7.2).

Features produced by first-layer are general, not specific to the particular dataset, it
means that they can be applied tomany datasets and tasks.Many pre-trained networks
are archived. It is very popular to use them initializing a network by transferring
features from almost any number of layers. Yosinski et al. showed that this approach
could produce a boost to the network generalization [225]. Examples of pre-trained
off-the-shelf convolutional networks are VGG-16, ResNet-50, AlexNet, Inception-
ResNet-v1, GoogLeNet, LeNet. The networks were trained on more than a million
images. Such trained model has learned rich feature representations for a wide range
of images [187]. In the subsequent layers learned features aremore andmore complex
(abstract). They create feature hierarchy (Fig. 7.3).
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Because of their architecture, CNNs are well suited to image processing. They
preserve spatial neighborhood in pixel processing.With the yearsCNNs have become
deeper and deeper and bring in new concepts improving CNN’s performance. The
first CNN—LeNet composed only of a couple of layers, was developed to handwrit-
ten and machine-printed character recognition [118]. AlexNet [113]—the ILSVRC
2012 winner, is similar to LeNet but implements Dropout, ReLU activation func-
tion, and Max pooling. VGG [187] is a sequence of deeper networks trained pro-
gressively. GoogleNet [196] introduces inceptions modules and batch normaliza-
tion [197]. ResNet [77] is a Deep Residual Learning, includes up to 152 layers a
depth. It is about eight times deeper than VGG but still has lower complexity.

A typical application of CNN is classification [113, 227]. Another example of
application is object detection in an image by so-called Region based Convolutional
Networks (R-CNN) [57, 58, 171]. The network is able to draw bounding boxes over
all of the objects on the input image. The process consists of two general components:
the region proposal step and the classification step.

The next area of application is semantic image segmentation that needs to label
each pixel with the class of its enclosing object or region. To solve this problem the
FullyConvolutional (F-CNN)networkwas proposed [126]. The paper [154] proposes
semantic segmentation algorithmby learning a deconvolution network. The approach
from [11] consists of an encoder network, a corresponding decoder network followed
by a pixel-wise classification layer. The architecture of the encoder network is similar
to the 13 convolutional layers in the VGG16 network [187]. The decoder network
maps the low-resolution encoder feature maps into full input resolution feature maps
for pixel-wise classification.

Gong et al. [66] proposed a scheme, called multi-scale orderless pooling (MOP-
CNN), for improving the invariance of CNN activations keeping the same their
discriminative power. In 2015 Jaderberg et al. [100] presented the simple idea of
Spatial Transformer Network. The network makes affine transformations to the input
image to make the model more invariant to translation, scale, and rotation.

7.3.1.4 Recurrent Neural Networks

Unlike in feedforward neural networks, connections in Recurrent Neural Networks
(RNN) [80] create directed cycles. In deep recurrent networks, very important role
plays Long-Short Term Memory network (LSTM) [87]. The intuition behind this
model is that humans do not throw everything away from the mind and start thinking
from scratch every second, human thoughts have persistence. The recurrent neu-
ral networks contain loops that allow information to persist. LSTMs are a kind of
recurrent neural networks, capable of learning long-term dependencies. They are
suitable for large variety of problems, what allows their widely using. The architec-
ture of LSTMs contains gates what prevents vanishing gradient problem. In standard
recurrent networks, the repeating modules have a simple structure, e.g., single tanh
layer. LSTMs have similar, chain-like structure but the repeating module has four
interacting layers. The LSTM model introduces a new structure called a memory



7 Deep Learning—A New Era in Bridging the Semantic Gap 133

cell. A memory cell is composed of four main elements: an input gate, a neuron
with a self-recurrent connection (a connection to itself), a forget gate and an output
gate [67]. This structure enables to make decisions about what to store, and when
to allow reads, writes, and erasures, by opening or closing gates. These gates are
implemented with element-wise multiplication by sigmoids. They are differentiable,
and therefore suitable for training by backpropagation. The deep LSTM network
emerges by unfolding the network in time. Training is performed with Backpropa-
gation Through Time (BPTT) [148].

Gated Recurrent Unit (GRU) is related to LSTM as both are utilizing different
way of gating information to prevent vanishing gradient problem [28]. The GRU
unit controls the flow of information like the LSTM unit, but without having to use
a memory unit. It just exposes the full hidden content without any control. GRUs
are relatively new. They are computationally more efficient (less complex structure)
and have fewer parameters than LSTM. They are increasingly used. Because of deep
recurrent neural networks ability to process pattern sequences, they are widely used
in natural language processing [188, 194], speech recognition [68, 177].

7.3.2 Visual Attention Models Based on Deep Learning

Visual attention plays a role in the early stages of human vision; it provides a rich
source of information useful in efficient conscious recognition. A model of attention
can bring potential benefits in such applications as visual inspection inmanufacturing
processes, medical diagnosis, image and video analysis for different target tasks.
Computer models of visual attention try to imitate the behavior of the human visual
system. The main task of such model is to identify image regions that attract human
attention. Attention in Neural Networks has a long history, particularly in application
to image recognition [34, 116]. Saliencymodels predict the probability distribution of
the location of the eye fixations over the image creating saliencymap [95]. Section7.2
shortly describes earlier methods to create saliency map. In this section, we shortly
refer to those based on deep learning models. These models predict human eye
fixations with strong semantic content. The examples of early approaches using DL
are presented in [185, 204]. The common characteristic of the late methods is using
Convolutional Neural Network (CNN) and end-to-end training. They differ in how
they are using the pre-trained models of CNNs or use raw CNNmodels without pre-
trained detectors [184], in the way of information concatenation, considering local
or global features or the goal of the model use. In this group we can list the following
studies: [36, 95, 217].

The soft attention model is a deterministic mechanism, fully differentiable, it can
be plugged into some existing system, and propagates gradients through attentions
mechanism at the same time they are propagated through the rest of the network. It
takes as input all the hidden states and assigns relative importance of location i . In
opposite, the hard attention model is a stochastic process. It samples a hidden state
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with the probabilities, the gradient being propagated is estimated by Monte Carlo
sampling. This approach uses a probability of a given location i to choose the right
place to focus on.

The example of hard attention is the model implemented by Google [145]. It
consists of several parts, but the fundamental role plays LSTM network. Its current
internal (hidden) state ht contains information about previous state ht−1. Based on the
glimpse feature vector gt produced by the glimpse network, and the previous state,
the LSTM calculates the current state as ht = fh(ht−1, gt ; θh) (θh are the parameters
of the network). The location network and the action network use the internal state ht
to produce the next location lt and the action la . The Gaussian distribution is used to
generate next location. Because of this stochastic element, it is not possible to apply
gradient learning rule, and the reinforcement learning is proposed. The extended
version of this model, where the Context network is introduced, is presented in [9].
The soft attention is deterministic, so it is possible to learn the model end-to-end
using standard backpropagation. Its popular application is image caption generation.
As it is shown in Fig. 7.4, this model uses CNN to extract features of an image. Next,
they are given as the input to the recurrent neural network.

Xu et al. [222] usedLSTM that generates a caption for the image using an attention
mechanism. It selectively focusses on parts of the image by weighting a subset of
the features extracted by the convolutional neural network. Other advanced models
of visual attention are described in many papers, e.g., [95, 157, 223, 233].

7.3.3 Embedding Semantic Features

A limited amount of labeled images collected in databases causes limitation of mod-
ern visual systems. Manually labeling images is the time-consuming and boring
task, especially as the number of object categories grows. One possible remedy to
this problem can be leveraging data from other sources. Such sources can be text
data. Multi-modal models that combine robust visual features extracted from image
data, and the linguistic features, extracted from linguistic data, produce better results

Fig. 7.4 The soft attention model [222]. Used with kind permission Kelvin Xu
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comparing to uni-modal models. Recently deep visual-semantic embedding models
are proposed and widely studied. They use labeled images, and the semantic infor-
mation gleaned from the unannotated text for training to identify visual objects on
images.As the linguistic features, extracted from text data, are used in image semantic
features representations, in this section, we present the embedding semantic features
models briefly.

To automatically process language it is necessary to solve two problems: how to
encodeword and how to build a languagemodel. Languagemodels try to compute the
probability of a word wt given its n − 1 previous words, i.e., p(wt |wt−1, ...,wt−n+1).
In the classical approach, we can calculate the probabilities of each word given its n
previous words by applying the Markov chain rule. For a long time, the representa-
tion of word was the most simple: 1-of-n vector. It represents every word as a vector
with all 0 s and one 1 at the index of given the word. Assuming that our vocabulary
has only four words (n = 4): cat, dog, frog and tiger, the vector encoding the word
dog is [0 1 0 0]. With such encoding, it is only possible to test equality between word
vectors. That is why currently a distributed representation of aword is used. It ensures
that semantic relationship between words is preserved in word vectors and imple-
ments dimensionality reduction. The new methods build a low-dimensional vector
representation from the corpus of text, which preserves the contextual similarity of
words.

Though the new methods of words encoding are not based on deep learning
(they use shallow neural networks), they play the essential role in natural language
processing delivering a neweffective representation of text. In [140] two architectures
for learningword embedding are presented.Themethods are implemented in the form
of feed-forward neural network that takes words from a vocabulary V as an input
and embeds them as vectors of weights W1V xN into a lower dimensional space N .
The network is then fine-tuned by backpropagation.W1V xN are word embedding that
has compact structure and preserves semantic relationships between words (singular
versus plural relation, gender, jobs). CBOW method takes as an input the context
words of a given word wt . Each word as an input is represented by a vector encoded
by 1-of-|V | rule (|V | is the number of words in the vocabulary). The network output
predicts the word wt . The output layer is a softmax layer, so the word wt is achieved
as the one that satisfies argmaxi p(wi |wi+1, ...,wi−n+1) of the network responses.
A hypothetical word vector being embedding for the word dog obtained from the
hidden layer weights could be [0.99 0.56 0.69 0.22 0.32 0.71 0.11]. The number of
elements in this vector is equal to the number of hidden neurons in the network. Each
element of this vector represents a latent feature. In comparison to the thousands of
words in the corpus, the network creates a compact representation with the number
of elements in the embedding vector much smaller than the size of the corpus.

The Skip-gram model uses the word wt to predict the surrounding words. The
model calculates the probability of the surrounding words wt+ j given wt . This net-
work uses hierarchical softmax—a binary tree to represent all words in the vocab-
ulary. The words are placed in the leaves. From the root to each leaf there exists a
unique path. This path is used for estimation of the probability of the word repre-
sented by the leaf. In [143] Mikolov et al. introduced a further improvement to the
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Skip-Gram with Negative Sampling. The paper [60] explains how the skip-gram
model with negative sampling works in detail. The negative-sampling is more effi-
cient than Skip-gram model. It optimizes a different objective, related to the joint
distribution of word and context. The words and contexts representations are learned
jointly. The above describedmethods are offered as a tool that is known asWord2Vec.
Another example is GloVe [161]. The paper [81] shows how to use the definitions
found in everyday dictionaries to bridge the gap between lexical and phrasal seman-
tics. The task of the neural language embeddingmodels is mapping dictionary defini-
tions (phrases) to (lexical) representations of the words defined by those definitions.

Another branch of research connected with word embedding is focused on recur-
rent neural networks [141]. Embedding the whole text into a sequence of vectors is
a much more powerful way to make the word representations context-specific. Bidi-
rectional RNNs are used for encoding the vectors into a sentence matrix. The rows
of the matrix can be perceived as token vectors. They are sensitive to the sentential
context of the token. In most cases, LSTM and GRU architectures are applied for this
reason. The essential element used here is an attentionmechanism. The new variation
is presented by Parikh et al. in [158]. They introduced an attention mechanism that
takes two sentence matrices and outputs a single vector. Yang et al. [223] insert an
attention mechanism which takes a single matrix and gives a single vector as output.
Instead of a context vector derived from some aspect of the input, they computed
summary regarding a context vector learned as a parameter of the model.

Zhang et al. [231] show how to apply temporal convolutional networks to text
understanding from character-level inputs all the way up to abstract text concepts.
They show that temporal CNNs can achieve astonishing performance.

The work [224] compares CNN and RNN techniques and concludes that CNN is
supposed to be good at extracting position invariant features and RNN at modeling
units in sequence. The paper [188] introduces temporal hierarchies to the Neural
Language Model (NLM) with the help of a Deep Gated Recurrent Neural Network
with adaptive timescales to help represent multiple compositions of language.

7.4 Deep Learning in Bridging the Semantic Gap

Section7.2 gave an insight how researchers tried to narrow the semantic gap in image
retrieval before DL. In this section, we show what new possibilities arose with the
existence of DL.

Considering the scale of image analysis, we distinguished three levels of bridging
the semantic gap problem using DL: features, knowledge, and inference. They are
ordered with growing complexity of image analysis needed. This corresponds to the
results they offer.

The lowest level refers to features—an image representation that in the best way
reflects the content of a given image. DL offers much in this area because it enables
automatic acquisition of features during training.
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The next level is building common sense knowledge by learning temporal and
spatial knowledge from visual data aligned with textual data. It is a way for better
understanding image content. Knowledge acquisition and then its integration in the
form suitable for reasoning is another vital aspect in bridging the semantic gap where
DL can be helpful.

The highest level is making an inference about a scene, event or objects in an
image based on the second level. It is the most demanding process to bridge the
semantic gap, and now it can also be supported by DL to some extent.

The feature level can be enriched in visual emotion analysis. It provides valuable
semantic meanings about image content, which can hardly be represented by low-
level visual features. You et al. [226] describe an attempt to collect a large dataset
prepared to analyze and predict people’s emotional reaction towards images. Affec-
tive analysis of images can be based on the texts surrounding images. Liu et al. [124]
propose textual features to efficiently capture emotional semantics from the short text
associatedwith images based onword similarity. Their approach combines visual and
textual features and provides promising results for the visual affective classification
task.

To establish the similarity/dissimilarity between images, we measure the feature
distance, or another similarity function is calculated. DL makes an offer of efficient
solutions in matching images without the necessity of using rigid measures. The
following subsections present the role of DL in the mentioned above levels.

7.4.1 Feature Level

In classical approaches, features are manually encoded vectors of attributes, describ-
ing shared characteristics among image categories. In the process of deep model
training, the features can be assigned automatically. Visual data is one of the most
abundant sources of information, but unfortunately, in most of the cases, it is not
adequately exploited due to the difficulty in analyzing this kind of data.

Visual feature extraction, described in Sect. 7.4.1.1 is the primary step in all image
retrieval methods. Lately, deep models are used to generate images on the basis of
the text. One can imagine that visual features extracted from models trained with
these images express in a more powerful way the semantics included in the text.
Section7.4.1.2 presents this problem. Inmany cases, visual features are not sufficient
to relevant image retrieval due to the difficulty in analyzing this kind of data. The
solution lies in considering complementary information from other data modalities.
Section7.4.1.3 shows how to combine visual and textual features.

7.4.1.1 Visual Feature Extraction

All approaches described in this subsection use deepmodels to produce visual feature
vector. As an input, they get raw images. The first attempts in the application of deep
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neural networks to extract visual features use autoencoders. In [112] authors obtained
compact visual representation of visual features by learning Deep Belief Networks
(DBNs) [85], consisting of stacked Restricted Boltzmann Machines (RBMs). They
trained the network on 1.6 millions 32 × 32 color normalized images. In the first
RBM, most of the hidden units learned to be high-frequency monotone Gabor-like
filters, and most of the remaining units became lower frequency filters responding
to color edges. The codes obtained by looking at the entire image are suitable for
capturing global image structure, but they are not invariant to the image transforma-
tions. Therefore authors trained the network treating an image as a bag of patches.
256-bit code extracted from the fourth layer of the network gave qualitatively and
quantitatively better results in comparison to other methods.

A convolutional neural network (CNN) has a leading position on feature extrac-
tion and representation for CBIRs. The paper [38] analyzes feature representation
acquired from fully connected layers of CNN. Authors conduct experiments on
both ImageNet-2012 and an industrial dataset provided by Sogou platform using
AlexNet [113]. The results demonstrate that the features extracted from the first and
the second fully connected layers of AlexNet perform the best on the datasets from
unseen categories. Authors noticed that the performance for features obtained by
CNN on in-class data and out-of-class data is not consistent. The higher layer level,
the higher the difference.

In the research described in [123] authors contemplate the semantic gap between
low-level features and high-level semantic features of the convolutional network.
They consider that the high-level features extracted from higher levels of a deep
model are more abstract. It means they better express semantic concepts. In their
experimental study, they used features of the sixth fully connected layer—F6 from
the adapted convolutional network—LeNet-L and eighth fully connected layer—
F8 from AlexNet. In the experiments they show that combined features from both
layers outperform the results obtained on the basis of features from F6 and F8, and
the results with F8 were better than F6.

Summing up, research in this area apart from DBN network concentrates mainly
on using various architectures of convolutional networks, studying an influence of
network depth and the choice of the fully connected layer to extract features on
the efficiency of image recognition. In this place, it is worth noticing the first work
focusing on visualizing features in the subsequent layers of CNN [229]. Human
design of visual feature is now the past. The main advantage of using DL to this task
is automatization of the visual feature extraction process.

7.4.1.2 Visual Descriptors Acquired from Images Generated
on the Basis of Text Descriptions

This subsection presents a potential solution to the problem of bridging a semantic
gap that was not applied to image retrieval so far. The possibility of plausible images
generation based on detailed text descriptions is a relatively new achievement in
DL history. Translating caption describing a hypothetical image using Generative
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Adversarial Network (GAN) [64] gives a variety of images corresponding to the
description. GAN is implemented as two neural networks contesting with each other
in a zero-sum game framework. The newly generated images well illustrate semantic
concepts included in the text description. They can also recover some features. In this
context paper [182] is worth citing here where GAN was able to improve features in
astronautical images of galaxies beyond the deconvolution.

Training DL model using this variety of generated images and then extracting
features should give features that represent semantic image content in an adequate
way for retrieval purpose. The approach based on this concept would get as an input
text description, then it will generate images corresponding to it and next using
these images the process will end with feature extraction as described in Sect. 7.4.1.1
or in 7.4.1.3. This most certainly means that deep model trained on the generated
images corresponding to the text descriptionswould createmore adequate descriptors
reflecting the semantic content of the image so that it can be perceived as the future
direction of research in this area.

At the current stage, research in DL is focused on the methods of generating
images from a text description. Usually, as a language model, a standard bidirec-
tional LSTM network is used, and the image model is a variational recurrent autoen-
coder with visual attention. Visual attention allows determining which image part
should be generated in response to the current text part in the caption. The model
proposed in [137] iteratively draws patches on canvas while attending to the relevant
words in the description. The model extends the Deep Recurrent Attention Writer
(DRAW) [70]. The images generated by the model are refined in a post-processing
step by a deterministic Laplacian pyramid adversarial network, first presented in [35].
At each level of the pyramid, a separate generative convolutional network model is
trained using GAN. All stages were conditioned on the same skip-thought vector.
This idea was proposed to reconstruct the surrounding sentences of an encoded pas-
sage. Sentences that share semantic and syntactic properties are mapped to similar
vector representations [110]. The authors of [35] claim that samples drawn from their
model are of significantly higher quality than alternative approaches.

To sum up, research in this area focuses on the methods of synthesizing new,
photorealistic images from a text. GAN is of a great potential, and many researchers
are exploring the ideas behind it. As an example the work of Zhang et al. [234]
can be mentioned, where the first GAN draws the object following primary colors
and shape constraints from given text descriptions, and GAN on the higher level
corrects the defects of the first GAN and adds more photo-realistic details. Another
example is presented in [170]. It proposes a new model of GAN named GAWNN
from Generative Adversarial What-Where Network that synthesizes images given
instructions describing what content to draw in which location.

We can predict that in the future the leading role will play development of GAN
architectures. Another research is the development of attention methods that make
more natural to combine the recurrent network responsible for text processing with
the network generating an image.
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7.4.1.3 Combined Visual and Text Features

Finding images accompanied by unstructured related text description is common.
This multimodal data originated from the same source tend to be correlated therefore
multimodal semantic analysis helps overcome the visual semantic gap.

This approach simultaneously incorporates descriptions from an image and a text
and finds common space for them. Finding it relies on projecting image features
and text features referring to the image into a common space. It is sometimes called
multi-modal embedding.

The research on multi-modal embedding based on deep learning is widely pre-
sented in the literature [10, 109, 128, 191, 203].

In [10] authors combine visual features from a convolutional network with infor-
mation obtained from a multi-layer perceptron (MLP) and produce a set of linear
output nodes. Wikipedia articles about a particular object are passed through MLP
that produces some semantic features based on the text. This deep neural network
model maps raw text and image pixels to a joint embedding space. It was used as
Zero-Shot Learning model that learns to predict unseen image classes from encyclo-
pedia articles.

Kiros et al. in [109] introduced two methods based on the log-bilinear model (it
uses a feed-forward neural network with a single linear hidden layer) which operates
on word representation vectors. The authors show how to learn word representations
and image features together with jointly training language models and a convolu-
tional network that processes an image. An image-text multimodal neural language
model can be used to retrieve images given complex sentence queries, retrieve phrase
descriptions given image queries, as well as generate text conditioned on images.
The method outperformed a strong bag-of-words baseline for description and image
retrieval.

In [191] the authors propose a Deep Boltzmann Machine (DBM) for learning a
generativemodel ofmultimodal data. Themodel consists of image-specific two-layer
DBM tomodel the distribution over real-valued image features and text-specific two-
layer DBM tomodel its distribution over the word count vectors which are combined
to model the joint distribution over image and text inputs. Authors show that the
model can be used to create fused representations by combining features across
modalities. By sampling from the conditional distributions over each data modality,
it is possible to create these representations even when some data modalities are
missing. The probability of generating sentences given the corresponding image can
serve as the affinity metric for retrieval. They demonstrated that their multi-modal
model helps classification and retrieval even when only unimodal data is available
at test time.

An interesting approach is described in [128], where Ma et al. have proposed a
multi-modal convolutional neural networks (m-CNNs) for matching image and sen-
tence. The m-CNNs rely on two convolutional networks (image CNN and matching
CNN) and multilayer perceptron (MLP) that takes the joint representation as input
and produces the final matching score between image and sentence. The image CNN
is used to generate the image representation for matching the fragments consisted of
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words of the sentence to compose different semantic fragments of the sentence. The
matching CNN takes the encoded image representation and word representations as
input and produces the joint representation.

Wang et al. [213] propose another method preserving structure, for learning joint
embeddings of images and text. They use a simple model composing of two-branch
neural network with multiple layers. Each branch consisted of fully connected layers
with ReLU between them, followed by L2 normalization at the end. As the authors
claim, the retrieval results on Flickr30K and MSCOCO datasets exceeded state of
the art.

Mao et al. in [136] describe several CNN-RNN based multimodal models to
learn useful word embeddings. In the experiments, they show that visual informa-
tion significantly helps the training of word embeddings. In another work [135],
authors experimentally confirmed that the model benefits from incorporating the
visual information into the word embedding, and a weight sharing strategy is crucial
for learning such multi-modal embeddings.

Paper [47] presents a new deep visual-semantic embedding model trained to iden-
tify visual objects using both labeled image data as well as semantic information
aggregated from an unannotated text. They used a simple neural language model for
learning semantically-meaningful, dense vector representations of words and CNN
for visual object recognition. The last output layer is softmax. Authors construct
a deep visual-semantic model by taking the lower layers of the pre-trained visual
object recognition network and re-training them to predict the vector representation
of the image label text as learned by the language model. The experiments show
that this model can make correct predictions across thousands of previously unseen
classes by leveraging semantic knowledge elicited only from unannotated text.

Collell et al. [31] present a method capable of generating multi-modal representa-
tions in a fast and straightforward way by using pre-trained unimodal text and visual
representations as a starting point. GloVe [161] was used for word embeddings and
two differentCNNnetworks for visual embeddings.Authors found that neither vision
nor language is superior to the other, but they instead dominate in various attribute
types. Vision proves better at capturing form and surface, color and motion attributes
while language proves better at encyclopedic and function attributes.

An obvious conclusion from all papers discussed in this subsection is that joint
information (text and visual) is beneficial for image recognition and deepmodels and
provides greater representational power than methods based on linear projections.
In this context, it is worth adding the result from the research in [30] showing that
visual and textual representations encode different semantic aspects of concepts. The
authors claim that neither vision nor language is superior to the other in grasping
every aspect of meaning. They dominate in different attribute types.

Summing up, the first deep models used in multi-modal embedding were: deep
Boltzmann machines [191] and RBMs [151]. In the last years popular models are
based on CNN [128] to process visual data and MLP or LSTMs [203] to embed text
features.
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In this subsection, we have assumed that text describing an image is available as
a text associated with an image. In Sect. 7.4.2.1 we show how such annotating text
can be automatically generated using deep learning approach.

7.4.1.4 Modelling Similarity Function

In image retrieval, the problem of similarity between images plays a significant role.
To model similarity function, the paper [214] proposes Siamese network, which
consists of two weight-sharing networks running on two input images in parallel. It
is trainedonpairs of images labeled as similar or dissimilar. This approach canbeused
with a contrastive loss to minimize the distance between related images (maximize
the distance between dissimilar images) in the feature space. The siamese network
approach has been extended to triplet networks, where an image is given into the
network together with one similar and one dissimilar image during each training
step [62, 88].

A similar approach that uses the siamese network for similarity evaluation presents
the paper [167].Authors use predefined features fromConvolutionalNeuralNetwork.
The proposed architecture learns a new distance feedback.

7.4.2 Knowledge Level

In this section, we focus on knowledge that can be acquired from an image. Knowl-
edge is an understanding of an image expressed by text descriptions. It is obtained
automatically through a learning process. Another aspect of knowledge is its formal
representation that can be used to reasoning about new concepts or a relation between
objects in an image.

7.4.2.1 Semantic Image Interpretation and Annotation

The semantic image interpretation is a hard problem for computers because of
many reasons: the sensory gap that results from a projection of reality to 2D rep-
resentation, semantic gap and scaling gap that is understood as a balance between
expressivity/complexity and scaling of models [189, 190]. Semantic image inter-
pretation/annotation relies on the automatic generation of text/labels describing an
image. As an input, the method takes a raw image. On this basis it produces labels
or text descriptions in the form of captions.

Annotation of an image is more easy with image segmentation. There are many
approaches based on deep models [126]. The readers interested in this topic are
directed to a comprehensive survey that can be found in [54].

The model shown in [104] takes a dataset of images and their sentence descrip-
tions and learns to associate their fragments. In images, fragments correspond to
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object detections and scene context. In sentences, fragments consist of relations. The
task was to retrieve relevant images given a sentence query, and conversely, relevant
sentences given an image query. The model breaks down both images and sentences
into fragments and reasons about their alignment. To detect objects as image frag-
ments, a special CNN is applied, and sentence fragments are identified by sentence
dependency tree relations.

Another interesting approach is described in [24]. Authors use deep recurrent
neural network to automatically generate captions for images. The proposed RNN
model is bi-directional. Thismeans that the network can generate image features from
sentences and sentences from image features. This is very helpful in the content based
image retrieval, because a query can be expressed in dual form: as a description or
as an image. In the case of an image description generation, the LSTM network
generates a probability of the word wt at time t as the next word in the sequence
of previously generated wordsWt = w1,w2, ...wt−1 and visual features V . The built
model enables to compute the likelihood of the visual features V given a set of words
Wt for generating visual features or for performing image search.

Paper [134] also describes multi-modal recurrent neural network generating
description of the image but it interacts with convolutional network that extracts
visual features from an image.

Authors of [27, 237] describe a novel image annotation frameworkwhich explores
a unified two-stage learning scheme by learning to fine-tune the parameters of deep
neural network with respect to each individual modality, and by learning how to find
the optimal combination of diverse modalities simultaneously. Another example of
image captioning is described in [208]. It presents the system that can automatically
view an image and generate a description in English. The system is based on a
convolutional neural network that encodes an image, followed by a recurrent neural
network that generates a corresponding sentence.

In [46] authors detect words by applying a CNN to image regions and integrat-
ing the information with Multiple Instance Learning. Paper [37] describes recurrent
convolutional architectures which is end-to-end trainable and suitable for large-scale
visual understanding tasks which can be applied for activity recognition, image cap-
tioning, and video description. Relatively new approach in automatic image caption-
ing is using visual attention [222, 228].

Summing up, popular deep models applied in image description are CNN to
process image and RNN to process text or image. Visual attention models are more
and more applied. The automatically extracted text describing an image can be used
to build multi-modal image embeddings, as it was mentioned in Sect. 7.4.1.3 or it can
be further processed to extract new knowledge about an image by utilising natural
language processing methods.

7.4.2.2 Formal Knowledge

The formal knowledge representation facilitates knowledge reusing and sharing in a
machine-processable way. Wang et al. in [38] present a survey of existing ontology-
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based approaches and other formal representation based data mining algorithms. In
another paper [212], Wang illustrates how learning models with deeper architec-
tures are capable of constructing better data representations for machine learning
tasks and information retrieval. In this paper, the author defines the term semantic
deep learning, as a combination of deep learning techniques and formal knowledge
representation. The paper focuses on ontologies because they are the most popular
formalism to specify domain semantics. Using it, we can also reduce the semantic
gap by annotating the data with rich semantics. There are also examples of other
knowledge representation usage, as Formal Logic Description (FCA) [8] to image
interpretation.

In [213] authors build an ontology based on deep learning model. It formally
encodes the concepts and relations in the domain of the data label. Their deep ontol-
ogy model is based on the RBM network. The primary network learns the first
concept. Then, the architecture is extended with subconcepts. The model is trained
in the unsupervised and next in a supervised way. Another example of automatic
building an ontology is described in [164]. In this paper, authors trained recurrent
neural network architectures to extract OWL formulae from a text. Nguyen et al.
in [152] explain how knowledge base can be integrated with the representation learn-
ing using a deep network Deep Semantic Structured Model (DSSM), either through
an enhanced knowledge-based representation of the document and the query or as a
translation representation bridging the semantic gap between the document and the
query vocabulary.

It is evident that formal knowledge can reduce the semantic gap. Its effective
application includes: building a dedicated visual concept ontology as an intermedi-
ate level between image features and application domain concepts: [12, 132, 139,
166, 200] and using concrete domains to link high level concepts to their specific
representations into the image domain [97], where each application domain con-
cept is linked to its representation in the image domain. Deep ontology models that
can learn relationships between concepts using data can be widely used in semantic
data annotation [44, 49, 156], semantic aware preprocessing [162] and producing
semantic rich data mining results [220].

The benefit that can be delivered by using formal knowledge representation is
integration capability with another source of information and possibility to produce
a high-level specific knowledge. It also enables inferring about an image.

7.4.3 Inference Level

Inference about an image is themost demandingprocess for computers. It uses knowl-
edge and its formalization. It allows to reason new knowledge and build amazing
automatic systems answering questions about an image. For answering questions, the
system must perform automatic reasoning because this knowledge is not explicitly
given in the image text description. Deep models are also helpful in this task.
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Lippi in [121] addresses challenges that relate to deep learning application in sym-
bolic reasoning. This work emphases the lack of explanation of shallow and deep
neural networks. Researchers realize that a combination of neural networks and sym-
bolic reasoning could be beneficial. Garcez et al. [52] discuss present achievements
and critical challenges for neural-symbolic integration.

In the current stage of DL, rather than logic-based formal reasoning researchers
explore to perform relational reasoning about images using deep models.
Santaro et al. [179] explore the ability for deep neural networks to perform compli-
cated relational reasoning with unstructured data. They describe how to use Relation
Networks (RNs) as a simple plug-and-play module to solve problems that focus on
relational reasoning.

Hohenecker et al. [90] propose a new model for statistical relational learning that
is built upon deep recursive neural networks, and give experimental evidence that it
can easily compete with, or even outperform, existing logic-based reasoners on the
task of ontology reasoning.

Malinowski et al. [133] propose the system Ask Your Neurons, answering the
questions about an image. The system consists of CNNprocessing images and LSTM
operating on questions and producing answers. It also uses visual attention. A multi-
modal fusion module combines visual and text vector spaces into another vector
based on which the answer is decoded. Authors perform an analysis of the large-
scale dataset showing competitive performance.

Jonson et al. [103] propose a model for visual reasoning. It consists of a program
generator that constructs an explicit representation of the reasoning process to be
performed, and an execution engine that executes the resulting program to produce
an answer. Few other examples of systems answering the questions about images
are [4, 129, 155]. A novel visual attention model [180] is worth noticing.

To achieve a success, models need to understand the interactions and relation-
ships between objects in an image. Computers need to identify the objects in an
image and the relationships between them. There is a big need for new generation of
benchmarking datasets [111] including the images densely annotated with numerous
region descriptions, objects, attributes, and relationships (Fig. 7.5).

A scene graph represents all the objects and relations in a scene. The scene graph
representation has been shown to improve semantic image retrieval [102, 183]. The
Genome dataset [111] contains more than 108K images and can be used to develop
deepmodels that enable automatic reasoning about the scene in the image. It is crucial
in applications, such as image search, question answering, and robotic interactions.
Other benchmarking datasets for useful cognitive scene understanding and reasoning
tasks are MS-COCO [120] and VQA [5]. These datasets can help train models that
can learn from contextual information from multiple images.
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7.5 Conclusions

Deep Learning has enabled a huge jump solving many problems, including Content
Based Image Retrieval. Many ideas in CBIR were initiated before DL arose. It
has revolutionized the automatic visual features extraction, creating visual features
based on the text describing an image,multi-modal features embedding andmodeling
similarity function between images. Figure7.6 contains a table that summarizes how
DL bridges the semantic gap in image retrieval. Of course, we have to mention that
this table does not contain all research on this subject, only some exemplary literature
is written in the References column.

Results of DL in automatic image annotation and captioning are very impressive.
Supporting knowledge representation by DL is also worth emphasizing. Research
is developed for relational reasoning about images that enables building systems
answering questions referring to the visual content of an image.

Up to now, none other approach has given so good integration of vision and text
that naturally expresses semantics of an image.

Some issues described here influence the bridging the semantic gap indirectly.
As an example, one can indicate a new word embedding technique that enables high
progress in natural language processing and visual attention models, which is very
important in image captioning and natural language processing.

The DL results heavily depend on large amounts of labeled data. That is why
there is a need for new datasets that could enable the learning process. Another
desirable solution is a development of novel deep unsupervised learning methods.
Generating labeled corpora is very complex, time-consuming and costly operation,
whereas unsupervised data are everywhere.

Contextual adaptation allows avoiding the necessity of huge dataset. It implies
adapting behavior depending on context. Bartunov et al. in [13] described a new
class of deep generative model called generative matching network (GMNs) which

Fig. 7.5 Representation of an image in Genome dataset [111]
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is inspired by the recently proposed matching networks for one-shot learning in
discriminative tasks.

Encoding human intention or emotions triggered by images is a big challenge.
There are some initial attempts [106] using DL models to recognize them. Recogni-
tion of emotion triggered by an image also will contribute to bridging the semantic
gap in image retrieval.

Modern deep learning methods have made tremendous progress solving many
problems referring to the semantic gap, but it is unlikely they will solve all of them.
Although there is some initial research in this area [94], the explanation of how DL
models perform reasoning is still a challenge.

Expectations that deep networks will adequately address the task of symbolic
reasoning with deep learning is also still an issue. The solution may lie in a new
class of neural network architectures, such as Neural Turing Machines [69], Mem-
ory Networks [219], Neural Reasoner [160] that combine inference with long-term
memories. A new idea—the Neural Theorem Prover (NTP) follows neural-symbolic
approaches to automated knowledge base inference, but they are differentiable con-
cerning representations of symbols in a knowledge base and can thus learn represen-
tations of predicates, constants, as well as rules of predefined structure.

The popularity of deep learning paradigm and the use of DL in image analysis
is growing intensively. The number of publications listed in a reputable scientific
research database—Web of Science, is the evidence of it. In recent years there has
been a great increase in a number of scientific publications in the field of deep learning
in connection with image analysis, image retrieval and semantic image analysis.
Figure7.7 presents the graph of a number of publications (in particular topics) in

Fig. 7.7 Numbers of publications returned by theWeb of Science database as answers to the queries
containing following topics: DL+I—deep learning image; DL+IA—deep learning image analysis;
DL+IR—deep learning image retrieval; DL+IS—deep learning image semantic
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last ten years. Considering the Web of Science base and the period of last five years,
the number of publication on Deep Learning topic increased from 1076 in 2013 to
4588 in 2017. At the same time, the number of publications on topic Deep Learning
in conjunction with Image Analysis increased from 47 to 318; Image Retrieving—
from 17 to 106; Image semantic—from 5 to 130. These data demonstrate the growing
interest in the research area covered by the present chapter.
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