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Abstract. This paper presents a project, which aims to develop a low-cost Brain-
Computer Interface (BCI), whose characteristics may allow educational institu-
tions to improve the learning and evaluation methodologies applicable to a
specific student. By collecting reliable electroencephalogram (EEG) data, the
system will realize a cognitive state monitoring of the learner and will evaluate
its brain activity to adapt the content and visualization of the learning material.
Two main objectives have been established in order to determine the success of
the investigation: Assess the use of contemporaneous low-cost EEG devices and
applications as a proper method to obtain reliable results of the students’ cognitive
state. Develop signal-processing algorithms that allow identifying the cognitive
state of the students as well as their working memory load (WML).
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1 Introduction

By realizing the Computerized Brain Interfaces for Adaptive Learning and Assessment
project, the final intention of the authors is to make progress in the process of continuous
improvement of the quality of education, which identifies the public universities of
Spain, based on the premises of collaboration between teachers and students. Therefore,
two fields are considered and related as it illustrates the Fig. 1.

1. Adaptive learning and assessment, which is the focus of the research project, is based
on the search of methods to adjust the level of demand (WML, fatigue, stress...) to
which the student is subjected to the difficulty of tasks, tests or lessons taught. An
illustrative scheme is presented in the Fig. 2.

2. The electroencephalogram is a noninvasive method to measure the brain wave
pattern for the identification of electrical activities in the brain. The distribution of
the Alpha, Beta and Gamma brain waves will provide abundant information on the
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student’s brain state while exposed to differentiated learning strategies. This way,
researchers can determine how brain patterns reflect the student’s level of learning
and when the brain patterns confirm that the student has mastered the skills to be

acquired.
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Fig.1. Schematic workflow of a BCI application - an online adaptive learning environment based
on EEG data
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Fig. 2. Illustrative scheme of an adaptive learning method and its relation with EEG

2 Context and Purpose

Context. Until now, learning environments primarily attend to a student’s performance
and behavior. These systems [1, 2] aim to diagnose the development of the amount of
knowledge acquired by a student based on response to questions, selection of links or
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errors during problem solving. However, online predictions of workload, fatigue and
attention states may be used to tailor the learning material presented to the subject [3,
4] in a specific and personalized way, helping to maintain the burden of work coped by
each student within an optimal range for learning.

The current neurological theory and the more recent cognitive studies of learning
allow to set a relation between the brain activity (the brain waves and the areas of the
brain where they occur), the difficulty of the learning tasks and the level of performance
attained in the activities. The method proposed in this project is based on the monitoring
of the brain patterns of the students, through EEG, when they perform tasks of different
complexity, to reflect the level of learning and mastery of the skills to be acquired.

Two critical factors have propelled the realization of this project. The first is the
current situation of the technological market, more specifically in relation to leisure and
video games, which offers the possibility of acquiring simple non-intrusive low-cost
EEG measurement devices. The second, the previous execution of projects within the
ETSIAE related to the development of cognitive workload models in environments
similar to those experienced by an air traffic controller [5], as well as the use of elec-
troencephalography in practical applications such as drone control [6].

Purpose. The main objective is to analyze the feasibility of applying low-cost electro-
encephalogram (EEG) based computer interfaces to adaptive learning and assessment
strategies and systems. In conclusion, to evaluate the feasibility of using brain waves to
improve adaptive learning tools. Besides, the project has two sub-objectives:

1. Evaluate the usability of low-cost EEG devices for the measurement of brain waves
for educational and research purposes.

2. Develop neurological signal-processing algorithms that allow the assessment of the
student’s cognitive state in the face of learning tasks of different complexity.

3 Methodology and Results

Methodology. A thorough analysis of previous studies has allowed the identification
of two promising research lines to incorporate EEG technology in adaptive learning,
with the project activities focusing so far on the first. One is the determination of working
memory load (amount of mental resources used to execute a specific task), the other the
determination of the emotional state and its influence on learning [7-9].

The workload during learning is the result of an interaction between the complexity
of the contents to learn, the instructional design and the previous knowledge of an
apprentice [10]. So far, methods for detecting workload are based primarily on subjective
workload ratings [11], or on dual-task procedures [12]. Nonetheless, EEG measures can
be used to estimate the amount of workload of each student during a learning session,
based on the following hypothesis. Increased workload leads to increased activity in
the theta frequency band (synchronization) in the electrodes of the frontal zone [13,
14] and to a decrease in activity of the alpha frequency band (desynchronization) on
the parietal and occipital area [13, 15].
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To verify the feasibility of measuring mental workload with low-cost EEG devices,
a set of experiments have been carried out using accessible technologies and a learning
environment based on on-line games [16] of incremental difficulty that do not require
previous knowledge by the student. These mini-games test a set of basic cognitive abil-
ities. For example, the game Shape Tracking, tests the ability to follow an element on
the screen, with each level increasing in difficulty. For the study, level 1 was labeled as
low workload, and the maximum level that each subject has reached was high workload.

Measurements were taken with the device Emotiv Insight [17], a wireless 5-channel
EEG handset that records brain waves and translates them into meaningful data. It uses
a patented polymer dry sensor that is safe to use and offers great electrical conductivity.
Signal processing was performed with the SW EEGLAB [18], an interactive Matlab
toolbox for processing EEG, MEG and other continuous event-related electrophysio-
logical data. Figure 3 shows the measurement device and a snapshot of the experiments
performed. Five subjects and three difficulty levels were tested. Figure 4 illustrates the
results obtained when calculating the PSD (Power Spectral Density) in 6 and o bands.

5
5
L3

®
@
@
=

3
o

o

Log Power Spectral Density 10°log, ,(sV2/Hz)

3

| 1 | |
55 3 65 7 75 8
Frequency (Hz)

&
IS
-
)

Fig. 4. Example of processed results (PSD of subject 1 in 6 band for low workload. Test 1)

Results. Analyzing the behavior of the PSD theta frontal for the different tests and
subjects, it is proved that PSD increases in high workload conditions, compared to data
extracted for low workload. In addition, the PSD theta frontal variation in subjects is
smaller as the session time increases. These data corroborate the hypothesis assumed.
The experiments realized satisfy the initial objectives of the project, since they have
allowed the familiarization with the EEG measurement device, proving its value for the
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intended purpose; and have allowed to identify a methodology and indicators that allow
to estimate the workload associated with learning tasks. It is therefore confirmed that
this research line has the potential to be further developed in upcoming studies.
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