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Abstract. Traffic complexity is one of the factors affecting driver workload. In
order to study the relationship between traffic complexity levels and workload, a
designed experiment is required, especially to vary traffic flow parameters system‐
atically in a simulated environment. This paper describes the experimental design
of a simulator study for developing a computational model to estimate the
behavior of driver workload based on traffic complexity. Driving simulators allow
creating and testing different traffic scenarios and manipulating independent vari‐
ables to improve the quality of data, as compared to real world experiments.
Physiological responses such as heart rate, skin conductance, and pupil size have
been found to be related to workload. By adapting a data-driven method, we
integrated electrocardiography sensors, electro-dermal activity sensors, and eye-
tracker to acquire driver physiological signals and gaze information. Preliminary
results show a positive correlation between traffic complexity levels and corre‐
sponding physiological responses, performance, and subjective measures.
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1 Introduction

Driver workload can be identified as the impact on the driver resulting from his or her
engagement with the driving tasks, and it is a subjective parameter. Demand, on the
other hand, is an objective parameter that depends on the specific driving task. Therefore,
driver’s mental workload is a consequence of the characteristic demands of driving task
[1]. Fatigue and drowsiness are indicators of low mental workload, while stress indicates
high workload. Both high and low workload has found to be related to accidents. Driver
mental workload is influenced mainly by the highly dynamic characteristics of driver,
vehicle systems, and the environment.

Data collection in real world experiments (naturalistic driving), also known as
passive data collection, may lead to many problems when creating a computational
model [2]. Due to the simultaneous changes of multiple factors, the observed changes
in a dependent variable may not be caused by it, but still correlated with independent
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variables. This will result in interactions that are difficult to classify into individual
effects. Also, in situations where observations are dependent, the model may consider
them to be independent. On the other hand, designed experiments can overcome these
problems. The experimental environment and independent variables are actively manip‐
ulated to improve the quality of information and to eliminate redundant data, in a
designed experiment. In addition, data collection is usually done with great care and
attention to acquire sufficient information to accurately estimate model parameters.

2 Background

2.1 Workload Measures

In order to quantify driver workload levels, three different metrics can be used [3]. They
are physiology, performance, and subjective measures. Commonly used physiological
measures include heart rate variability, skin conductance level, and pupil diameter.
Performance measures are steering entropy, lane position, pedal operation. Subjective
measures include questionnaires and rating scales.

2.2 Traffic Complexity

Driver workload is sensitive to traffic complexity [4–6]. A field study involving driving
routes having only two traffic levels: high, and less demanding, was reported in [4]. In
[5], authors reported that subjective driver workload rating has a linear upward trend
with increasing traffic flow in a simulator-based study. In [7] traffic situation data from
onboard geographical database were used in estimating current driver workload in a
field study.

2.3 Machine Learning Approaches

Computational models can be built to classify cognitive load within and across individ‐
uals. Machine learning techniques have been applied to vehicle dynamics (performance)
and driver physiological data to recognize elevated cognitive workload periods for eval‐
uating in-vehicle user interfaces [8, 9]. Support vector machines (SVMs) have been used
to detect cognitive distraction in real-time using gaze movement and vehicle perform‐
ance data [10]. In a simulator-based study, SVM was successfully used to recognize
driver cognitive distraction based on vehicle dynamics and eye movement data [11].
Predicting future values of driver mental workload is the key objective of our study.
Therefore, we need to study time series data in order to predict the future behavior based
on knowledge of the past. Nonparametric, nonlinear machine learning models use past
data to learn stochastic dependency between past and the future of an observable vari‐
able. Artificial neural networks (ANNs) can outperform classical statistical methods,
and can be successfully used for modeling and forecasting nonlinear time series [12].
As other machine learning frameworks, using probabilistic methods such as hidden
Markov models (HMMs) and dynamic Bayesian networks (DBNs) is also possible.
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3 Experimental Design

3.1 Driving Scenarios

We designed two experimental scenarios: turning right at an intersection, and merging
onto highway. In the turning scenario (Fig. 1), in order to vary the traffic complexity in
each scenario, we defined two variables: oncoming traffic volume, which is the no. of
vehicles crossing the intersection in a unit time, and the pedestrian and cyclist density.
The experiment consists of the traffic situations shown in Table 1. We use a pseudo-
random order in presenting the nine traffic situations for each participant. In the merging
scenario, the independent variables are; traffic density (vehicles/km) in the main lane,
which is the no. of vehicles included in a road segment of unit length at a given time,
and the mean speed (km/h), which is the average speed of all vehicles in the main lane
segment at a given time.

Fig. 1. Traffic complexity levels implemented in simulator

Table 1. Experimental conditions: turning

Pedestrian density (ped./hour)
0 240 360

Traffic flow (vehicles/hour) 0 A B C
360 D E F
720 G H I

3.2 Procedure

The proposed procedure for experiments is as follows. First, brief the participants
regarding above steps and ask them to practice the turning and merging maneuvers in
the simulator without other traffic or pedestrians. Then attach the sensors and ask them
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to drive along a straight road with minimal traffic and ensure good signals acquisition
from the sensors. This is also to obtain baseline values of their physiological signals,
and driving characteristics. After that, for the experiment, drive along an urban route
consisting of the above traffic situations. Soon after making each maneuver (turning
right, merging), participants input their perceived mental workload rating (1 to 5) using
a touchscreen interface (Fig. 2).

Fig. 2. Experimental setup

4 Preliminary Results

A preliminary experiment which includes only turning maneuvers was conducted to
confirm the acquisition of proposed physiological and performance data, and to check
for drawbacks in methodology and experimental design. In this section, we present the
initial results obtained from one participant. One male of age 21 years with 3 years of
driving experience participated in the experiment. He had corrected to normal vision
and previous experience in a driving simulator. For the clarity of understanding traffic
complexity levels, we classify the nine traffic conditions in to three levels (level 1: A,
D, G pedestrian density = 0; level 2: B, E, H ped. density = 240; level 3: C, F, I ped.
density = 360, see Table 1). Data recorded at higher sampling rates were resampled at
50 Hz. Figure 3 shows the subjective score of perceived mental workload at each traffic
situation. It can be seen that with the increase of traffic complexity, perceived mental
workload increases correspondingly. Figure 4 shows the skin conductance level and a
positive relation with subjective mental workload can be observed, especially in higher
traffic complexity levels. The heart rate variability data and pupil diameter data,
however, did not show clear positive trends with subjective workload score. We assume
that is due to measurement errors and noise. As a performance measure, we calculated
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the standard deviation of steering angle (Fig. 5). It showed positive correlation with
increasing traffic complexity as well as subjective workload except in one situation (I).

Fig. 3. Subjective mental workload score

Fig. 4. Skin conductance (μS)

Fig. 5. SD of steering angle (degrees)
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5 Conclusion

In this paper, we presented the experimental design of a driving simulator-based study
with systematically varying traffic complexity levels. We conducted driving experi‐
ments to validate our experimental design. Driver physiological and performance data
showed correlation with traffic levels and subjective workload scores. Future works
include conducting experiments with different drivers to acquire a sufficiently large
dataset to develop a time-series prediction model using machine-learning methods.
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