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Abstract The link between information theory and fuzzy logic has been proven in
several previous papers. From this starting point, we propose here a review about the
concept of divergence measures, which was proposed as a tool for comparing two
fuzzy sets. The initial definition comes from the ideas behind the classical concept
of divergence between two probability distributions. Following a path similar to
the one considered to obtain fuzziness measures from uncertainty measures, we are
able to define fuzzy divergences. Apart from that, some possible generalizations are
considered.

1 Introduction

Dealing with lack of information is a usual problem in many areas. This lack of
information can be given in two different ways: uncertainty or imprecision. In the
first case, we deal with experiments where we can have more than one possible
outcome, each possible outcome can be specified in advance, but the outcome of the
experiment depends on chance. For instance, in a coin toss, we know the two possible
outcomes, head or tail, but we do not know the final result. In the second case, we
have no uncertainty about the result of the experiment but imprecision. Thus, for
instance, if we consider again the experiment of the coin toss, the coin could be
already thrown but maybe it is too old and we are not sure that the face it shows is
clearly a head.
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Information theory studies the quantification and communication of the informa-
tion and, in particular, it measures the amount of uncertainty involved in the value
of a random experiment. It was originally proposed by Shannon [31] in 1948 as a
tool in signal processing. Thus, this theory combines a lot of different fields such as
mathematics, statistics, computer science, physics and electrical engineering. From
the beginning, this theory was revealed as an interesting tool in many other areas and
therefore a lot of researchers started to work on it (Rényi [30], Oniçescu [27], Sharma
and Mittal [32], Havrda and Charvát [11], etc.). Later, an important step was given
by Kampé de Fèriet and Forte [12] with an axiomatic definition of the information
with or without a probability measure. From the theoretical aspects of this theory,
Kullback [17] found a lot of interesting applications in statistical inference. From this
initial application a lot of papers have been developed in this area. In particular, some
very important achievements have been obtained by Pardo (see, among others, [28,
29]). An important review about all these theories can be found in Gil [7], since he
was one of the most important researchers in this area in Spain. Divergence measures
between probability distributions were an important topic on this monograph and it
is the starting point of this chapter, as we will see later.

On the other hand, Zadeh [34] introduced in 1965 the concept of fuzzy set, as
a way to model vague or poorly defined properties for situations in which it is not
possible to fully discriminate between having and not having the said properties.
From that, a whole mathematical and applied theory to deal with imprecision was
developed. It is known as Fuzzy Logic Theory. Two interesting monographs about
this theory were written by Dubois and Prade [6] and Klir and Folger [13].

As we can see from the title of this last book, the concepts fuzzy sets, uncer-
tainty and information are mixed. This is not by chance, since these topics are very
related, as we can see in [8–10]. In particular, we have studied [24] the relationship
between uncertainty measures defined in Information Theory [12] and the fuzziness
measures introduced by De Luca and Termini [5] and later analyzed in a deeper way
by Knopfmacher [14]. The link between measures of uncertainty and imprecision in
fuzzy environments will lie in what we will refer as divergence measure, because of
the analogy with the classical meaning of the term used in comparing two probability
distributions (see, for instance, [29]). The main purpose of this chapter is to use these
measures to compare two fuzzy sets.

As introductory notions, we present two axiomatic definitions to measure the
entropy–uncertainty measures and fuzziness measures in Sect. 2. A study on the
relationship between them, in the most general context, is given there. The definition
of divergence measure between fuzzy sets is given in Sect. 3 following the ideas con-
sidered previously. Themost important results are contained in that section where we
also comment some extensions. Finally, we conclude the work with some comments
in Sect. 4.
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2 Preliminary

Necessary concepts to understand the remaining parts of this work are given in this
section. In particular, we will focus on the definitions and notations for uncertainty
measures and fuzziness measures.

2.1 Uncertainty Measures

The first probabilistic uncertainty measure (also called entropy) was given by Shan-
non [31] in the context of Communication Theory. That initial definition considered
that the uncertainty for a random experiment can be measured by means of the
quantity

H(P) = −
n∑

i=1

pi log2(pi )

where values pi represent the probabilities of the possible results of the experiment.
From that initial definition, a lot of generalizations have been proposed in the

literature.
Thus, Menéndez et al. [19] proved that all these measures of entropy are part of

a wider family, which are named h-φ-entropies.
This family is slightly more general than Ben Bassat’s family of f -entropies that

were defined as those functions that can be expressed like

H(P) =
n∑

i=1

f (pi )

where f is a concave function.
Later, the quasi-φ-entropies were introduced and characterized in the case of

discrete distributions [3]. Thus, it is a family more general than Ben Bassat’s one but
different from the family of h-φ-entropies. More precisely, they are defined by

H(P) =
n∑

i=1

φ(pi )

where φ is a function such that φ(λx + (1 − λ)y) ≥ λφ(x) + (1 − λ)φ(y),∀x, y ∈
[0, 1], x + y ≤ 1.

An important property of uncertainty measures is the Principle of Transfer or
Pigou–Dalton’s condition. An uncertainty measure H fulfils this property if given
two probability distributions P and P

′
with parameters (p1, p2, . . . , pn) and

(p′
1, p

′
2, . . . , p

′
n) respectively, then H(P) ≤ H(P ′), where, pk = p′

k, ∀k /∈ {i, j}
and p′

i = pi + δ, p′
j = p j − δ for some δ ≤ (pi − p j )/2.
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It is a very logical property, since it means that the more similar the probabilities
of two outcomes of an experiment are, the higher the uncertainty is.

2.2 Fuzziness Measures

After having commented some results about uncertainty measures or probabilistic
entropies, we now introduce fuzzy sets and the measures of their fuzziness, i.e., the
non-probabilistic entropies.

They arewell-knownand canbe found in awide range of sources (see, for instance,
the classical books [6, 13]).

The universal set is denoted by X . A fuzzy subset of X is a mapping from X into
the unit interval [0, 1].

In this framework, we use the following notations:

• P(X) is the set of all subsets of X ,
• F (X) is the set of all fuzzy subsets of X ,
• A ∈ P(X) will denote any crisp set,
• Ã ∈ F (X) will denote any fuzzy set.

We identify a fuzzy set and its membership function. Thus we have that X (x) = 1
for all x ∈ X and for the empty set we have ∅(x) = 0 for all x ∈ X .

Two further important concepts are the containment relation and the complement
set. We consider the standard Zadeh’s negation for the complement (see [34]).

Definition 2.1 Let Ã, B̃ ∈ F (X). The complement of Ã is the fuzzy set Ãc(x) =
1 − Ã(x), x ∈ X . Ã is contained in B̃, denoted by Ã ⊆ B̃ if Ã(x) ≤ B̃(x) for all
x ∈ X .

Apart from the previous relation of containment, we consider the concepts of
intersection and union of fuzzy sets. The initial definitions were also given in [34]
by means of the minimum and the maximum operators.

However, they are not the only way to generalize the classical set operations, since
there exists a broader class of functions to represent them. In fact, for the intersection,
this class is referred as t-norm and for the union as t-conorm.

A triangular norm (t-norm) is a function T : [0, 1] × [0, 1] → [0, 1] satisfying
the following properties:

(T1) T (a, b) = T (b, a), for all a, b ∈ [0, 1],
(T2) T (T (a, b), c) = T (a, T (b, c)), for all a, b, c ∈ [0, 1],
(T3) b ≤ c ⇒ T (a, b) ≤ T (a, c), for all a, b, c ∈ [0, 1],
(T4) T (a, 1) = a, for all a ∈ [0, 1].

Some important examples of t-norms are:

• Minimum: TM(a, b) = min(a, b), for all a, b ∈ [0, 1],
• Product: TP(a, b) = a · b, for all a, b ∈ [0, 1],
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• Łukasiewicz t-norm: TL(a, b) = max(a + b − 1, 0), for all a, b ∈ [0, 1],
• Drastic t-norm:

TD(a, b) =
{
min(a, b), if max(a, b) = 1
0, otherwise

.

For these basic t-norms, it holds that TD ≤ TL ≤ TP ≤ TM . In fact, for any t-norm
T , it is true that TD ≤ T ≤ TM . By changing the neutral element from 1 to 0, we
obtain the triangular conorms (t-conorm).

A t-norm T and a t-conorm S are dual iff for each a, b ∈ [0, 1] it holds that
T (a, b) = 1 − S(1 − a, 1 − b).

The dual conorms of the t-norms presented earlier are the following:

• Maximum: SM(a, b) = max(a, b), for all a, b ∈ [0, 1],
• Probabilistic sum: SP(a, b) = a + b − a · b, for all a, b ∈ [0, 1],
• Łukasiewicz t-conorm: SL(a, b) = min(a + b, 1), for all a, b ∈ [0, 1],
• Drastic t-conorm:

SD(a, b) =
{
max(a, b), if min(a, b) = 0
1, otherwise

.

Using t-norms and t-conorms, we can define the intersection and union of two
fuzzy sets as follows.

Definition 2.2 Let Ã, B̃ ∈ F (X). Given a t-norm T and a t-conorm S,

• Ã ∩ B̃(x) = T ( Ã(x), B̃(x)),∀x ∈ X ;
• Ã ∪ B̃(x) = S( Ã(x), B(x)),∀x ∈ X .

Thus, we can denote by (X, T, S) the triple formed by the universewith the t-norm
and the t-conorm defining the intersection and the union, respectively.

The entropy for a fuzzy set is quantified by means of the non-probabilistic
entropies or fuzzinessmeasures (see, for instance, [33]), which are defined as follows.

Definition 2.3 A fuzziness measure is a real function f defined onF (X), fulfilling
the following requirements:

(a) f ( Ã) = 0 ⇐⇒ Ã is a crisp set.
(b) If Ã, B̃ ∈ F (X) and Ã is “sharper” than B̃, then f ( Ã) ≤ f (B̃).
(c) f ( Ã) takes maximum value if and only if Ã is “maximally fuzzy”.

This last definition is based on the concepts “sharper than” and “maximally fuzzy”,
although the second one follows from the former. Thus, the most usual criteria to
define the relation “to be sharper than” are the following:

• Ã is sharper than B̃ iff either Ã(x) ≤ B̃(x) ≤ 1/2 or Ã(x) ≥ B̃(x) ≥ 1/2
for any x in X (see [13]) or

• Ã is sharper than B̃ iff | Ã(x) − 1/2| ≤ |B̃(x) − 1/2| for any x in X (see [6]).
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It is clear that the first one is a particular case of the second one and therefore we
are going to consider the most general definition.

Knopfmacher introduced in 1975 a very important family of fuzziness measures,
the Knopfmacher class [14], which is given by the functions f such that

f ( Ã) = F

(
∑

x∈X
cx · gx( Ã(x))

)

for any Ã in F (X) where cx ∈ R
+; gx is a real-valued function such that gx(0) =

gx(1) = 0, gx(t) = gx(1 − t),∀t ∈ [0, 1] and gx is strictly increasing on [0, 1/2];
F is a positive strictly increasing function with F(0) = 0.

Later, we consider a particular class of Knopfmacher fuzziness measure (see [20,
22]) when F is the identity, gx is the same for all x ∈ X (we denoted gx by u f or
simply u) and u is concave. Any function in this family was named local fuzziness
measure.

2.3 From Uncertainty to Fuzziness

Proposition 2.1 ([24]) Let (X,A , μ) be ameasurable space and let H be an uncer-
tainty measure fulfilling the Pigou-Dalton’s condition and such that H(P) = 0 ⇐⇒
P is degenerate. The map f defined as follows:

f : A ∗ −→ R
+

Ã −→
∫

X
H( Ã(x), Ãc(x))dμ(x)

is a fuzziness measure and it belongs to the Knopfmacher’s class.

If we work on some particular spaces, we are also able to establish a one-to-one
correspondence between fuzziness measures and uncertainty measures.

Thus, if we consider the subset of uncertainty measures given by

H2 = {H |H is a quasi-φ -entropy withφ continue,φ(x) = φ(1 − x),

∀x ∈ [0, 1
2 ] and φ(x) = 0 ⇔ x = 0}

we have the injective property, as we can see in the following proposition.

Proposition 2.2 ([24]) If F1 is a map from H2 inF such that

F1(H)( Ã) =
∫

X
H( Ã(x), Ãc(x))dμ(x),
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whereF denotes the Knopfmacher’s class of fuzziness measures, then we have that
F1 is injective.

If we restrict our study to the family of φ-entropies given by Hφ = {H ∈
H2|φ is concave} and the family of fuzzinessmeasures given byF1 = { f ∈ F with
g continue} we have the bijection.
Theorem 2.1 ([24]) There exists a one-to-one correspondence between the family
of uncertainty measures Hφ and the family of fuzziness measures F1.

3 Divergence Measures

From the previous section, we could notice that the imprecision about the member-
ship of any element x ∈ X in a fuzzy set Ã could be represented by a probability
distribution { Ã(x), Ãc(x)}. Then, we looked at the classical divergence measures
between probability distributions (see, for instance, [7, 29]) to try to compare two
fuzzy sets.

Thus, from this starting point, we proposed a new way to compare two fuzzy
sets [20], the divergence, with the following properties:

• It becomes zero when the two sets coincide.
• It is a nonnegative and symmetric function.
• It decreases when the two sets become “more similar” in some sense.

While it is easy to formulate the first and the second conditions analytically, the
third one depends on the formalization of the concept “more similar”. We base our
approach on the fact that if we add a set C̃ to both fuzzy sets Ã, B̃, we obtain two
subsets which are closer to each other; the same with the intersection.

Definition 3.1 Let (X, T, S) be a triple with X a universe and T and S any t-norm
and t-conorm, respectively. A map D : F (X) × F (X) → R is a divergence mea-
sure with respect to (X, T, S) iff for all Ã, B̃ ∈ F (X), D satisfies the following
conditions:

(a) D( Ã, Ã) = 0;
(b) D( Ã, B̃) = D(B̃, Ã);
(c) max{D( Ã ∪ C̃, B̃ ∪ C̃), D( Ã ∩ C̃, B̃ ∩ C̃)} ≤ D( Ã, B̃), for all C̃ ∈ F (X),

where the union and intersection are defined by means of S and T , respectively.

It is clear that a divergence measure is associated to a triple (X, T, S) and a map
D can be a divergence measure with respect to a t-norm and it cannot be a divergence
measure with respect to a different t-norm.

However, when there is not ambiguity, we will call just divergence measure with-
out specifying the used t-norm and t-conorm.

After different studies of this concept [2, 20, 22–24], we presented the most
general study in [15], where we can also find the following examples.
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Example 3.1 ([15]) The map

D( Ã, B̃) =
{
0, if Ã = B̃
1, if Ã �= B̃

.

is a divergence for any triple (X, T, S).
On the other hand, if we consider the map

D( Ã, B̃) =
∑

x∈X
αx · | Ã(x) − B̃(x)|

where αx ≥ 0 for any x ∈ X ,
∑

x∈X αx = 1 and X is a finite space, D is a divergence
for the minimum t-norm, the product t-norm or the Łukasiewicz t-norm, but it is not
for the drastic t-norm.

A divergence measure can be seen as a particular case of dissimilarity when the
minimum t-norm is considered, which is the most usual way to compare two fuzzy
sets [18].

Moreover, it avoids some counterintuitive examples for dissimilarities, while both
divergence and dissimilarity measures can be seen as a particular case of the general
measures of comparison given byBouchon–Meunier et al. [1] in 1996. An interesting
study about different ways to compare fuzzy sets can be found in [4].

From this starting point, we have been able to generalize this concept to define
the divergence measure for comparing two intuitionistic fuzzy sets [25].

The particular case of local divergences for intuitionistic fuzzy sets was stud-
ied in [26]. There, we presented interesting applications of this concept in Pattern
Recognition and Decision Theory.

A similar generalization has been done for hesitant fuzzy sets in [16].
Moreover, we have been able to use the divergences to measure the fuzziness of

a fuzzy set by comparing it with the closest crisp set and conversely, we have used
fuzziness measures to define a divergence measure [21].

All these definitions and results can be considered as a heritage of the classical
divergence measures, and more precisely, of the knowledge about them conveyed by
Prof. Gil to the authors of this work.

4 Conclusion

In this paper we have studied some relationships among different ways to compare
two elements, under uncertainty and imprecision.

Thus, we have used the classical divergence measures between two probability
distributions to obtain a new way to compare two fuzzy sets. This is a particularly
interesting case of dissimilarity in some cases and it has very interesting and specific
properties.
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The link between randomness and fuzziness is proven one more time, as we did
previously for probabilistic and non-probabilistic entropies.
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