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Abstract We establish an equivalent representation of coherent choice functions
in terms of a family of rejection sets, and investigate how each of the coherence
axioms translates into this framework. In addition, we show that this family allows
to simplify the verification of coherence in a number of particular cases.

1 Introduction

Coherent choice functions constitute an uncertainty model that is more general than
sets of desirable gambles, while still preserving some of their nice properties, such
as being able to deal effectively with sets of probability zero when conditioning.
One of their drawbacks is the technical difficulty of verifying the coherence axioms.
In this paper, we try to remedy this situation somewhat by providing an equivalent
representation of choice functions in terms of those option sets that allow a subject to
reject the zero gamble, which may be interpreted as those option sets that he should
consider preferable to the status quo. As we shall see, this representation, in addition
to capturing more intuitively the ideas underlying coherence, also helps to simplify
the verification of coherence in a number of particular cases.

This paper is organized as follows: in Sect. 2, we recall the basic aspects of coher-
ent choice functions that we shall need in the rest of the paper. Our representation
in terms of rejection sets is established in Sect. 3, where we also discuss two addi-
tional properties that seem of interest for choice functions. In Sect. 4, we look in
more detail at a number of particular cases: choice functions on binary spaces
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(that is, when the experiment on which the outcomes of the options depend on can
only take two values) and those defined by means of coherent sets of desirable gam-
bles. The paper concludes with some additional remarks in Sect. 5.

2 Coherent Choice Functions

Let Ω be a possibility space. A gamble on Ω is a bounded map f : Ω → R. We
denote by L the set of all gambles on Ω . Gambles will also be called options. For
any two gambles f and g, we denote f ≤ g if f (ω) ≤ g(ω) for every ω in Ω , and
we collect all the gambles f for which f ≤ 0 in L≤0. We let f < g if f ≤ g and
f �= g, and collect all the gambles f for which f < 0 in L<0, and the gambles f
for which f > 0 inL>0.

Choice functions are defined on finite collections of gambles. We collect all those
collections in the set Q.

Definition 2.1 A choice function C on a possibility space Ω is a map

C : Q → Q ∪ {∅} : A �→ C(A) such thatC(A) ⊆ A.

We collect all the choice functions on Ω in C (Ω), often denoted as C when the
possibility space is clear from the context.

The idea underlying this simple definition is that a choice function C selects the
set C(A) of ‘best’ options in the option set A. Our definition resembles the one
commonly used in the literature [1, 6, 8], except perhaps for an also not entirely
unusual restriction to finite option sets [2, 5, 7].

Equivalently to a choice function C , we may consider its associated rejection
function R, defined by R(A) := A \ C(A) for all A in Q. It returns the options
R(A) that are rejected -not selected- by C .

We focus here on a special class of choice functions, which we call coherent.

Definition 2.2 We call a choice function C on Ω coherent if for all A, A1 and A2

inQ, all f and g inL , and all λ in R>0
1:

C1. C (A) �= ∅;
C2. if f < g then {g} = C ({ f, g});
C3. a. if C (A2) ⊆ A2 \ A1 and A1 ⊆ A2 ⊆ A then C (A) ⊆ A \ A1;

b. if C (A2) ⊆ A1 and A ⊆ A2 \ A1 then C (A2 \ A) ⊆ A1;
C4. a. if A1 ⊆ C (A2) then λA1 ⊆ C (λA2);

b. if A1 ⊆ C (A2) then A1 + { f } ⊆ C (A2 + { f }).
These axioms are a subset of the ones introduced in [6], duly translated from horse

lotteries to gambles. We have omitted two of the coherence axioms from [6]: one is

1By R>0 we mean all the (strictly) positive real numbers.
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the Archimedean axiom, because it is not fully compatible with the idea of deriving
choice functions from coherent sets of desirable gambles [9], which is one of the
goals in our approach. The other one, whichwe shall consider later on, is the so-called
convexity axiom. Although this axiom leads to a number of useful properties, and
in particular to a connection with lexicographic probability systems [10], we have
refrained from including it in the list of coherence axioms because it is not satisfied
by some interesting choice functions.

Equivalent formulations of these axioms, better suited for our subsequent proofs,
are the following:

(C3a) ⇔ (∀A, A′ ∈ Q,∀ f ∈ A
) (

f ∈ R (A) , A ⊆ A′) ⇒ f ∈ R
(
A′),

(C3b) ⇔ (∀A ∈ Q,∀ f ∈ A) {0, f } ⊆ R(A) ⇒ 0 ∈ R(A \ { f }),
(C3a) ⇔ (∀A ∈ Q,∀λ > 0) R(λA) = λR(A),

(C3b) ⇔ (∀A ∈ Q,∀ f ∈ L ) R(A + f ) = R(A) + f.

3 A Representation in Terms of Rejection Sets

Next we give an equivalent representation of choice functions in terms of rejection
sets. For any f ∈ L and any natural number i , we define

K
i
f := {A : f ∈ R(A), |A| = i} and K f := ∪i∈NKi

f . (1)

We are going to characterize coherent choice functions in terms of these rejection
sets. Our first result shows that we can restrict our attention to the case f = 0:

Proposition 3.1 Let C be a choice function and consider the family of option sets
{K f : f ∈ Ω} it induces by means of Eq. (1). Then

C satisfies Axiom C4b ⇔ (∀f ∈ L ) K0 + f = Kf .

Proof For necessity, consider an option set A that includes 0. Then the option set
A + f includes f , and since by C4b it holds that R(A + f ) = R(A) + f , we con-
clude that A ∈ K0 if and only if A + f ∈ K f .

Conversely, for sufficiency, consider an option set A and a gamble f . Take
any g ∈ R(A), then A ∈ Kg , whence by assumption A − g ∈ K0 and as a con-
sequence A − g + ( f + g) = A + f ∈ K f +g . Then indeed g + f ∈ R(A + f ),
whence Axiom C4b holds. �

Taking this result into account, in what follows we shall restrict our attention to
rejection sets K for which K0 + f = K f for every f in L . We can then simplify
the notation above to

K i := K
i
0 = {A : 0 ∈ R(A), |A| = i} and K := K0 = {A : 0 ∈ R(A)}, (2)
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respectively, and denote Q0 the family of option sets that include the zero gamble.
Our next result provides a characterisation of the different coherent axioms in terms
of these sets:

Proposition 3.2 Let C be a choice function satisfying Axiom C4b, and consider the
sets K i , K defined in Eq. (2).

(a) C satisfies Axiom C1 if and only if (∀A ∈ Q0) (∃ f ∈ A) A − f /∈ K.
(b) C satisfies Axiom C2 if and only if (∀ f ∈ L>0) { f, 0} ⊆ K 2.
(c) C satisfies AxiomC3a if and only if

(∀A ∈ K ,∀A′ ∈ Q0
) (

A ⊆ A′ ⇒ A′ ∈ K
)
.

(d) C satisfies Axiom C3b if and only if (∀A∈K ,∀ f ∈ A)

(A − f ∈ K ⇒ A\{ f }∈K ).
(e) C satisfies Axiom C4a if and only if (∀A ∈ Q0,∀λ > 0) (A ∈ K ⇔ λA ∈ K ).

Proof (a) Taking AxiomC4b into account, AxiomC1 holds if and only ifC(A) �= ∅
for every A ∈ Q0. This in turn is equivalent to (∃ f ∈ A) f ∈ C(A), which
by C4b is equivalent to 0 ∈ C(A − f ) or, in other words, to A − f /∈ K .

(b) Under Axiom C4b, Axiom C2 is equivalent to (∀ f ∈ L>0) { f } = C({0, f }), or,
in other words, to (∀ f ∈ L>0) { f, 0} ⊆ K 2.

(c) For necessity, consider any A in K and any A′ inQ0 such that A′ ⊇ A. Because
A ∈ K , 0 ∈ R (A), whence, by Axiom C3a, 0 ∈ R

(
A′). Then indeed A′ ∈ K .

Conversely, for sufficiency, consider any A and A′ inQ0 such that A ⊆ A′, and
any f in R(A). Then by Axiom C4b, 0 ∈ R (A − f ), so A − f ∈ K , whence
also A′ − f ∈ K , because A′ − f ⊇ A − f . Then 0 ∈ R

(
A′ − f

)
, and apply-

ing again C4b, indeed f ∈ R(A′).
(d) For necessity, consider any A in K and f in A such that A − f ∈ K . Then

0 ∈ R(A − f ), whence f ∈ R(A), by Axiom C4b. Applying Axiom C3b, we
deduce that 0 ∈ R(A \ { f }), whence indeed A \ { f } ∈ K .
Conversely, for sufficiency, consider any A inQ and f in A such that {0, f } ⊆
R(A). Then A ∈ K and by Axiom C4b, f ∈ R(A) implies that 0 ∈ R (A − f ),
so A − f ∈ K . Then A \ { f } ∈ K , or, in other words, indeed 0 ∈ R(A \ { f }).

(e) It suffices to note that underAxiomC4b,AxiomC4a is equivalent to 0 ∈ C(A) ⇔
0 ∈ C(λA) for every λ > 0 and every A ∈ Q0. �

An immediate consequence is:

Corollary 3.1 A choice function C is coherent if and only if it satisfies Axiom C4b
and the rejection set K it induces by Eq. (2) is increasing, scale invariant, includes
{ f, 0} for every f ∈ L>0 and it satisfies the following two properties:

• (∀A ∈ Q0) (∃ f ∈ A) A − f /∈ K.
• (∀A ∈ K ,∀ f ∈ A) (A − f ∈ K ⇒ A \ { f } ∈ K ).

Next we consider a couple of additional consistency axioms that were deemed
interesting by [10]. The first one is the convexity axiom, which is given by:

C5 if A ⊆ A1 ⊆ CH (A) then C (A) ⊆ C (A1), for all A and A1 inQ,
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where C(A) := {∑n
i=1 αi fi : n ∈ N, fi ∈ A, αi ≥ 0,

∑n
i=1 αi = 1

}
is the convex

hull of A.
In terms of rejection sets, it is characterized by the following proposition:

Proposition 3.3 Let C be a choice function satisfying Axiom C4b. Then C satisfies
Axiom C5 if and only if (∀A1 ∈ K ,∀A ∈ Q0) (A ⊆ A1 ⊆ CH(A) ⇒ A ∈ K ).

Proof For necessity, application of Axiom C5 tells us that, whenever A ⊆ A1 ⊆
CH (A) hold, 0 ∈ R(A1) implies that 0 ∈ R(A), or, in other words, A1 ∈ K implies
that A ∈ K .

Conversely, for sufficiency, consider two option sets A and A1 such that A ⊆
A1 ⊆ CH (A), and let us show thatC(A) ⊆ C(A1). Assume ex absurdo that there is
some f ∈ A such that f ∈ R(A1) and f ∈ C(A). Then since A − f ⊆ A1 − f ⊆
CH(A − f ), we can apply axiom C4b and assume that, without loss of generality,
f = 0. But then we obtain that A1 ∈ K while A /∈ K , a contradiction. �

Aweaker property that is also useful is the so-called separate homogeneity, which
means that for all n in N, all f1, f2, …, fn inL and all μ1, μ2, …μn in R>0:

0 ∈ C ({0, f1, f2, . . . , fn}) ⇔ 0 ∈ C ({0, μ1 f1, μ2 f2, . . . , μn fn}) . (3)

This property follows from axioms C3a, C4a, C5 [10, Proposition 1]. Moreover,
and unlike C5 that is linked to lexicographic choice functions, separate homogeneity
is compatible with maximality as a decision rule, and therefore better suited for
connecting choice functions with desirability. Furthermore, separate homogeneity is
strictly weaker: there are classes of interesting coherent choice functions that satisfy
Eq. (3) but not Axiom C5. In terms of the rejection sets, it is trivial to prove that it
can be expressed in the following manner:

Proposition 3.4 LetC bea choice function satisfyingAxiomC4b. It satisfies separate
homogeneity if and only if for all n in N, all f1, f2, …, fn inL and all μ1, μ2, …μn

in R>0, {0, f1, f2, . . . , fn} ∈ K ⇔ {0, μ1 f1, μ2 f2, . . . , μn fn} ∈ K.

4 Particular Cases

In this section, we consider a number of particular cases of choice functions for
which the representation in terms of rejection sets simplifies somewhat.

4.1 Coherent Choice Functions Defined via Maximality

We begin by considering choice functions defined viaWalley’s notion of maximality
[9]. A set of gambles D is called coherent when it is a convex cone that includes all
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non-negative gambles and does not include the zero gamble. We refer to [3, 4, 11]
for a study of the notion of desirability and its variants. In particular, any coherent
set of desirable gambles can be used to define a coherent choice function, by means
of the formula

CD(A) := { f ∈ A : (∀g ∈ A) g − f /∈ D} . (4)

Unlike general choice functions, the ones defined in themanner above are uniquely
determined by binary comparisons. Thus, it is not surprising that for them the repre-
sentation in terms of rejection sets takes a simpler form:

Proposition 4.1 Let D be a coherent set of gambles and let CD be the coherent
choice function it induces by Eq. (4). Then K = {

A ∈ Q0 : (∃A1 ∈ K 2
)
A1 ⊆ A}

and K 2 = {{0, f } : f ∈ D}.
Proof Consider an option set A in K . By Eq. (4), 0 ∈ RD(A) if and only if A ∩
D �= ∅. If |A| = 2, then A = {0, f } for some f in D , and as a consequence K 2 ⊇
{{0, f } : f ∈ D}. Conversely, consider any A′ ∈ K 2. Then A′ = {0, g} for some g in
L . But since 0 ∈ RD

(
A′), we have g ∈ D , so K 2 ⊆ {{0, f } : f ∈ D}, proving that

indeed K 2 = {{0, f } : f ∈ D}. If, on the other hand, |A| ≥ 3, then A ⊇ {0, f } for
some f inD . But then 0 ∈ RD ({0, f }), so A ⊇ A′ for some A′ ∈ K 2, and therefore
indeed K = {

A ∈ Q0 : (∃A1 ∈ K 2
)
A1 ⊆ A

}
. �

4.2 Coherent Choice Functions on Binary Spaces

Next, we consider coherent choice functions defined on binary spaces. It turns out
that, under separate homogeneity, they are determined by rejection sets of cardinality
two or three:

Proposition 4.2 Let C be a coherent choice function on Ω = {a, b}. If C satisfies
Eq. (3), then

K = {
A ∈ Q0 : (∃A1 ∈ K 2 ∪ K 3

)
A1 ⊆ A

}
.

Proof Let us prove that for every A in K there exists a A1 in K 2 ∪ K 3 for which
A1 ⊆ A.

Consider thus A in K . By Axiom C2, we find that A ∩ L<0 ⊆ R
(
A ∩ L≤0

)
, so

Axiom C3a implies that then A ∩ L<0 ⊆ R (A). Since A ∈ K and therefore also
0 ∈ R (A), by Axiom C3b we find that then 0 ∈ (

A ∩ L c
<0

)
, so we can assume

without loss of generality that A ∩ L<0 = ∅. There are two possibilities.
If A ∩ L>0 �= ∅, then for any f in A ∩ L>0 it follows from Axiom C2 that

0 ∈ R({0, f }), whence the set {0, f } ⊆ A belongs to K 2. So we find indeed that
A1 := {0, f } in K 2 for which A1 ⊆ A.

If A ∩ L>0 = ∅, then we can denote A = { f1, . . . , fn, g1, . . . , gm} for some
n ≥ 0 and m ≥ 0 but max {m, n} ≥ 1, where fi belongs to the second quadrant
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(i.e., fi (a) < 0 < fi (b)) for every i in {1, . . . , n} and g j belongs to the fourth
quadrant (i.e., g j (a) > 0 > g j (b)) for every j in {1, . . . ,m}. Let λi := −1

fi (a)
and

μ j := 1
g j (a)

for every i in {1, . . . , n} and j in {1, . . . ,m}. Then, applying Eq. (3),

0 ∈ R({0, λ1 f1, . . . , λn fn, μ1g1, . . . , μmgm}).

Infer that λi fi (a) = −1 for every i ∈{1, . . . , n}. Letting i∗ :=argmax {λi fi (b) :
i ∈ {1, . . . , n}}, we infer that

λk fk(b) < λi∗ fi∗(b) ⇒ λk fk ∈ R({λk fk, λi∗ fi∗ }) ⇒ λk fk ∈ R(A),

where last implication follows from Axiom C3a. Similarly, μ j g j (a) = 1 for every
j ∈ {1, . . . ,m}, and letting j∗ := argmax

{
μ j g j (b) : j ∈ {1, . . . ,m}}, we infer that

μ j g j (b) < μ j∗g j∗(b) ⇒ μ j g j ∈ R(
{
μ j g j , μ j∗g j∗

}
) ⇒ μ j g j ∈ R(A),

where again last implication follows from Axiom C3a. If we now apply C3b,
we deduce that 0 ∈ R

({
0, λi∗ fi∗ , μ j∗g j∗

})
, whence 0 ∈ R

({
0, fi∗ , g j∗

})
, applying

Eq. (3). Thus, there is a subset of A with cardinality three that also belongs to K . �

A key property in the proof of Proposition4.2 is that separate homogeneity,
together with Axiom C2, allows to assume without loss of generality that an option
set A that includes the zero gamble has at most one gamble f in the second quad-
rant (for which f (a) < 0 < f (b)) and one g in the fourth quadrant (for which
g(a) > 0 > g(b)). Let us show that this does not necessarily happenwithout separate
homogeneity:

Example 4.1 Consider Ω = {a, b} and let D be the coherent set of gambles
D := { f ∈ L : f (a) < 0 < f (b) and f (a) + f (b) > 0} ∪ L>0. Let C be the
choice function determined by the rejection function

0 ∈ R(A) ⇔ A ∩ D �= ∅ or (∃λ1 > λ2 > 0) {(−λ1, λ1), (−λ2, λ2)} ⊆ A (5)

for all A in Q0. We extend the domain of R to Q by letting f ∈ R(A) ⇔ 0 ∈
R(A − f ) for all A inQ and f in A. Remark already that (−λ, λ) lies on the border
of D for every λ > 0: indeed, for every g in D we have that (−λ, λ) + g ∈ D .

Let us show that C is a coherent choice function. Taking into account the last part
of the definition, we see that C4b holds, and we can restrict our attention to option
sets inQ0. We show that C satisfies Axioms C2, C3a, C3b, C4a, and C1, in this order.

For Axiom C2, consider any f inL>0. Then f ∈ D , so indeed 0 ∈ R ({0, f }).
For Axiom C3a, consider any A and A′ in Q0 such that A ⊆ A′, and any f

in R (A). Using Axiom C4b, then 0 ∈ R (A − f ), whence (A − f ) ∩ D �= ∅ or
{(−λ1, λ1), (−λ2, λ2)} ⊆ A − f for some λ1 > λ2 > 0. But A′ − f ⊇ A − f , so
also

(
A′ − f

) ∩ D �= ∅ or {(−λ1, λ1), (−λ2, λ2)} ⊆ A′ − f , and therefore
0 ∈ R

(
A′ − f

)
, whence, again by Axiom C4b, indeed 0 ∈ R

(
A′).
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For Axiom C3b, consider any A inQ0 and any f in A such that {0, f } ⊆ R (A).
We need to prove that then 0 ∈ R (A \ { f }). Since f ∈ R (A), then

(i) D ∩ (A − f ) �= ∅, or (ii) {(−λ1, λ1), (−λ2, λ2)}⊆ A − f for some λ1>λ2>0.

Furthermore, since 0∈ R (A), then D ∩ A �= ∅, or {(−λ1, λ1), (−λ2, λ2)}⊆ A for
some λ1 > λ2 > 0. If f /∈ D ∩ A and f /∈ {(−λ1, λ1), (−λ2, λ2)}, then also
D ∩ A \ { f } �= ∅or {(−λ1, λ1), (−λ2, λ2)} ⊆ A \ { f },whence0 ∈ R (A \ { f }). So
assume that (a) f ∈ D or (b) f = (−λ, λ) for some λ > 0.

If (a) f ∈ D , then (i) or (ii) must be the case. If (i) occurs, then there is some gam-
ble g in (D + f ) ∩ A, whence g − f ∈ D for some g in A. But since f ∈ D , also
g = f + g − f ∈ D , and therefore 0 ∈ R ({0, g}),whencebyAxiomC3a indeed0 ∈
R (A \ { f }). If (ii) occurs, then there are λ1 > λ2 > 0 such that f + (−λ1, λ1), f +
(−λ2, λ2) ∈ A, whence, since f ∈ D , by construction also f + (−λ1, λ1) ∈ D .
Therefore 0 ∈ R ({0, f + (−λ1, λ1)}), whence byAxiomC3a, also 0 ∈ R (A \ { f }).

If (b) f = (−λ, λ) for some λ > 0, then, similarly, (i) or (ii) must be the case.
If (i) occurs, then there is some g in A such that g − f ∈ D . Therefore by con-
struction also g = f + g − f ∈ D , whence 0 ∈ R ({0, g}), and then by Axiom C3a,
also 0 ∈ R (A \ { f }). If (ii) occurs, then there is some λ1 > 0 and λ2 > 0 for which
{ f + (−λ1, λ1), f + (−λ2, λ2)} = {(−λ − λ1, λ + λ1), f + (−λ − λ2, λ + λ2)} ⊆
A. Letting λ′

1 := λ + λ1 and λ′
2 := λ + λ2, we find that

{
(−λ′

1, λ
′
1), f + (−λ′

2, λ
′
2)

}

⊆ A \ { f }, whence 0 ∈ R (A \ { f }).
Axiom C4a follows from Eq. (5), taking into account that D is a cone.
Finally, for AxiomC1, assume ex absurdo thatC (A) = ∅ for some A inQ0. Then

A = R (A) whence, by Axiom C3b, 0 ∈ R ({0}). But 0 /∈ D and (−λ, λ) /∈ {0} for
every λ > 0, so 0 /∈ R ({0}), a contradiction.

On the other hand, it follows by Eq. (5) that, given the option set A = {0, (−1, 1),
(−2, 2)}, we obtainC(A) = {(−1, 1), (−2, 2)}. However, the same equation implies
that 0 ∈ C({0, (−1, 1)}). This shows that C does not satisfy separate homogeneity,
and also that we cannot reduce the intersection with the second quadrant to only one
gamble.

On the other hand, Proposition4.2 also depends crucially on the assumption that
|Ω| = 2, as our next example shows:

Example 4.2 Consider a ternary spaceΩ , some n inN, and let fk be the gamble given
by fk := (−1, k

n ,− k2

n2 ), for all k in {1, . . . , n}. Let us show that for each k we can
find a probability measure whose expectation operator Pk (called linear prevision in
Walley’s terminology) satisfies Pk( fk) > 0 > Pk( f j ) for every j ∈ {1, . . . , n} \ {k}.

To find such expectation operators, let P be the expectation operator associated
with the mass function (0, 2k

n+2k ,
n

n+2k ). Then P( fk − f j ) = k− j
n(n+2k) (2k − (k + j)),

whence P( fk − f j ) > 0 if k �= j . Moreover, P( fk) = k2

n(n+2k) > 0.
If we now consider any λ ∈ (0, 1) and define Pk as the expectation opera-

tor associated with the mass function (λ, (1 − λ) 2k
n+2k , (1 − λ) n

n+2k ), we obtain
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P( fk − f j ) = (1 − λ)P( fk − f j ) > 0 whenever k �= j . Moreover,

Pk( fk) = −λ + (1 − λ)P( fk) > 0 ⇔ λ <
P( fk)

1 + P( fk)
,

and similarly

Pk( f j ) = −λ + (1 − λ)P( f j ) < 0 ⇔ λ >
P( f j )

1 + P( f j )
.

Since, for every j ∈ {1, . . . , n} \ {k}, P( f j )
1+P( f j )

<
P( fk )

1+P( fk )
because P( f j ) < P( fk), we

let

λ ∈
(

max
j∈{1,...,n}\{k}

P( f j )

1 + P( f j )
,

P( fk)

1 + P( fk)

)
,

and for this λ we obtain Pk( fk) > 0 > Pk( f j ) for every j �= k.
Now, letDk be the coherent set of gambles given byDk := { f ∈ L : Pk( f ) > 0},

and let CDk be the coherent choice function it induces by Eq. (4). Then the choice
function C given by C(A) := ⋃n

k=1 CDk (A) is also coherent [9, Proposition 3],
and it can be checked to satisfy separate homogeneity because all CDk do. If we
now consider the option set A = {0, f1, . . . , fn}, we get that CDk (A) = { fk} for
every k, since Pk( fk) > 0 > Pk( f j ) implies that fk, fk − f j ∈ Dk for every j . As a
consequence, we obtainC(A) = { f1, . . . , fn}, whence A ∈ K . However, for every k
it holds that CDk (A \ { fk}) = {0}, using again that Pk( f j ) < 0 for every j �= k, and
therefore C(A \ { fk}) = A \ { fk}. Thus, A has no proper subset that also belongs to
the rejection class K .

5 Conclusions

It is a consequence of coherence that a choice function is uniquely determined by
those option sets that allow us to reject the zero gamble, i.e., those that are considered
preferable to the status quo. In this paper, we have investigated the structure of these
sets and shown that the coherence axioms can be expressed more intuitively in terms
of these sets. In addition, we have shown that all the necessary information is given
by option sets of cardinality two when the choice function is defined via maximality,
and with cardinality two or three in most (but not all) cases of interest when the
possibility space is binary. Moreover, we have shown that this last result does not
extend to larger possibility spaces; thus, determining an analogous representation for
arbitrary spaces would be the main open problem for the future.

On Pedro Gil
I was lucky to meet Pedro Gil in many different roles: first as a teacher, then as

head of department, later as a supervisor, and finally, and all throughout, as a friend.
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He helped me in my first research work, on robust statistics for my final project
during my BsC; and we taught together in a course onMathematics for everyday life
until a few weeks prior to his death.

He was brilliant as a professor, generous as a researcher, and charismatic as a
leader. Few bring together unanimity in the manner he did; and still, or perhaps
because of it, he was always unassuming: he would treat you in the same manner
irrespective of your position, and would make you feel that, whatever your problems,
someone cared and would try to help. Because above all his many qualities, he had
one that few possess: he was a good man.

He has not left a void because he is still very much present.

Enrique Miranda, April 2017
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