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Abstract A new time-consistent risk averse measure is considered, so-called
Expected Conditional Stochastic Dominance (ECSD), for multistage stochastic
mixed 0–1 optimization, where first- and second-order stochastic dominance risk
averse functionals are taken into account. As a result of the ECSD modeling, its
problem solving is much more difficult than the Risk Neutral counterpart, so, it is
unrealistic to solve the problem up to optimality by plain use of MIP solvers. Instead
of it, decomposition algorithms of some type should be used. Computational results
are reported for instances of a well-known real-life problem, where a decomposition
matheuristic algorithm is tested in its efficiency and computing effort, having the
plain use of a MIP solver as a benchmark for computational purposes.

1 Introduction

Stochastic optimization is currently one of the most robust tools for decision making.
It is broadly used in real-world applications in awide range of problems fromdifferent
areas in energy, finance, production, distribution, supply chain management, etc.
The continuous optimization problems under uncertainty have been studied in [4]
for risk neutral (RN) problems, and [16] for risk averse measures, among others.
A survey on exact and inexact decomposition algorithms is performed in [9]. It
is well known that an optimization (say, minimization) mixed 0–1 problem under
uncertainty with a finite number of possible supporting scenarios has a mixed 0–1
Deterministic Equivalent Model (DEM). Traditionally, special attention has been
given to optimizing the DEM by minimizing the objective function expected value
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in the scenarios, subject to the satisfaction of all the problem constraints in the defined
scenarios, i.e., the so-called risk neutral (RN) approach. Currently, we are able to
solve huge DEMs by using different types of decomposition approaches, e.g., see in
[1] our last improvement of the Branch-and-Fix Coordination (BFC) methodology.
However, the optimization of the RN model has the inconvenience of providing a
solution that ignores the potential variability of the objective function value (say,
cost) in the scenarios and, so, it does not avoid the potential high negative impact of
the proposed solution in the low-probability high-cost scenarios to occur.

However, there are some risk averse approaches that, additionally, deal with risk
management, see a good survey in [2], among others. As we know, the first risk
averse measure, so-called Chance Constraint (CC) functional, was introduced in the
seminal work [5], where the problem’s feasible set is restricted to satisfying an upper
bound on the probability (in our case, the expected fraction of scenarios) of having
shortfall on satisfying each of themodeler-driven constraints. It is also so-called first-
order stochastic dominance (FSD) that for a two-stage setting was introduced in [12],
where a Lagrangean-based decomposition algorithm was used for problem solving.
Another of the first risk averse measures, so-called Integrated Chance Constraint
(ICC) functional, was introduced in [14] and expanded in [15]. The ICC type 1 is also
so-called second-order stochastic dominance (SSD) that for a two-stage setting was
introduced in [11], where a Lagrangean-based decomposition algorithmwas used for
problem solving. The multistage risk averse time-inconsistent measure based on the
SSD functional was introduced in [6] for a set of profiles related to given thresholds
on a multifunction setting (including the objective function). As an extension of the
two-stage SD mixed-integer linear recourse, FSD and SSD measures were jointly
used in amultistagemixed 0–1 setting, so-called Time Stochastic Dominance (TSD),
see our works [7, 9], where the decomposition algorithms use scenario clustering in
the BFC scheme in the first work and a Lagrangean-based scheme in the other one.

The risk averse functional subject of this work, so-called Expected Conditional
Stochastic Dominance (ECSD), is a time-consistent risk averse functional, since it
bounds the scenario probability of having shortfall on satisfyingdifferent rhs for given
constraints, and it also bounds the expected shortfall, both for the scenario groups
with a one-to-one correspondence with nodes in the scenario tree related to a chosen
set of stages in the time horizon. Roughly, a risk averse measure is time-consistent
if the solution at any node in the scenario tree does not depend on the scenarios that
cannot occur at that node. Obviously, RN is a time-consistent measure. Some other
time-consistentmeasures,mainly the ExpectedConditionalValue-at-Risk, have been
studied in [3, 13], among others.

The rest of the paper is organized as follows. For completeness and notation
presentation, Sect. 2 deals with the main concepts of risk neutral-based mathematical
optimization under uncertainty. Section3 deals with the risk averse measure ECSD.
Section4 reports some results of our computational experiment. Section5 concludes.
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2 Risk Neutral Measure in Multistage Mixed 0–1
Stochastic Problems

The DEM, compact representation, of the multistage mixed 0–1 model for minimiz-
ing the objective function expected value in the scenarios (i.e., a RN approach) can
be expressed

zRN = min
∑

g∈G
wg(agxg + bg yg)

s.t.
∑

q∈Ag

(Ag
q xq + Bg

q yq) = hg ∀g ∈ G

xg ∈ {0, 1}nx(g), yg ∈ R
ny(g) ∀g ∈ G ,

(1)

where G is the set of nodes in the scenario tree, wg is the weight computed for
node g ∈ G , such that wg = ∑

ω∈Ωg
wω, where wω is the modeler-driven probability

of scenario ω, for ω ∈ Ω , where Ω is the finite set of scenarios considered in the
supporting tree; xg and yg are the nx(g) and ny(g)-dimensioned vectors of the 0–1
variables and the continuous variables, resp., for node g ∈ G ;ag andbg are the vectors
of the objective function coefficients for xg and yg , resp.; Ag is the set included by
the same node g and its ancestors in the scenario tree with nonzero coefficients in the
constraints of node g ∈ G ; Ag

q and Bg
q are the constraint matrices; and hg is the rhs

for node g ∈ G . All vectors and matrices are with the adequate dimensions. Notice
that the non-anticipativity constraints (NAC) are implicitly satisfied.

Additionally, let the following notation to be used throughout this work.T is the
set of stages {1, 2, . . . , T } in the time horizon with T = |T |; Gt ⊆ G is the set of
nodes in stage t ∈ T , where |G1| = 1. Let Ωg ⊂ Ω be the set of scenarios in group
g, where it has a one-to-one correspondence with node g in the scenario tree, for
g ∈ G ; for easing notation, letω ≡ g for g ∈ GT and, then,ω ∈ Ωg , where |Ωg| = 1;
t (g) is the stage to which node g belongs to, such that g ∈ Gt (g); ˜Ag is the set of
ancestor nodes in the scenario tree to node g (including itself), for g ∈ G (such that
Ag ⊆ ˜Ag); and S̃g is the set included by the same node g and its successors in the
scenario tree, for g ∈ G \ GT .

3 ECSD Risk Averse Measure in Multistage Mixed 0–1
Stochastic Problems

The RN model (1) aims to minimize the objective function expected value alone
subject to the constraint system in the model. As stated above the main criticism
that can be made to this very popular strategy is that it ignores the variability of
the objective function value in the scenarios and, in particular, the “right” tail of the
non-wanted scenarios. TheExpectedConditional StochasticDominance (ECSD) risk
averse measure also minimizes the objective function expected value but, besides the
set of RN constraints, a set of profiles is considered for a set of functions (including
the objective one) in a given scenario subset. Each profile is included by a threshold
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on the function value for any scenario that belong to a given group (to be defined
below) up to the end of the time horizon, a bound target on the fraction of those
scenarios having excess on reaching it (the so-called first-order ECSD), a bound
target on the expected excess (the so-called second-order ECSD) and a bound target
on the excess for any of those scenarios. Observe that the type of risk reduction
functional that is considered in this work also allows other functions besides the
objective one, such as environmental functions in industrial strategic investment,
mitigation effects of natural disasters, and preservation of cultural, monumental and
strategic assets, among others; all of them can be accommodated in the framework
presented below.

So, let the additional notation,F is the set of indexes of the risk reduction oriented
functions to consider, such that a f

g and b f
g are the vectors of the coefficients of

the variables in xg and yg for g ∈ G in the function indexed with f , for f ∈ F .
Let us consider that f = 1 is the index for the objective function and, so, a1g ≡ ag
and b1g ≡ bg . Let also T̃ f ⊆ T \ {T } be the modeler-driven stage set for function
f ∈ F , such that the risk reduction measure ECSD is performed for each group
of scenarios Ωg , for g ∈ Gt , t ∈ T̃ f . Let also P f

g denote the set of indexes of the
related profiles for the function indexed with f ∈ F and the scenarios in set Ωg , for
g ∈ Gt , t ∈ T̃ f , such that the profile indexed with p, for p ∈ P f

g , is included by
the 4-tuple (φ p, ẽ p, ep, ν p), where,

φ p, threshold for the value of function f up to the last stage T in the time horizon
in scenario ω, for ω ∈ Ωg .

ẽ p, bound target on the excess of any of those scenarios on reaching the threshold.
ep, bound target on the expected excess.
ν p, bound target on the expected fraction of those scenarios with excess.

Let the following additional variables for scenario ω and profile p, for ω ∈
Ωg, p ∈ P f

g , g ∈ Gt , t ∈ T̃ f , f ∈ F :

epω , continuous variable that takes the excess of the value of function f on reaching
threshold φ p, for scenario ω.

ν
p
ω , 0–1 variable that takes the value 1 if the value of function f has an excess on

reaching threshold φ p and otherwise, 0, for scenario ω.

The ECSD model can be expressed

zECSD = min
∑

g∈G
wg(a1g xg + b1g yg)

+
∑

f ∈F

∑

t∈T̃ f

∑

g∈Gt

∑

p∈P f
g

(
Mεẽ p

εẽ p + Mεep
εep + Mεν p

εν p
)

s.t.
∑

q∈ ˜Ag

(Agq xq + Bg
q yq ) = hg ∀g ∈ G

xg ∈ {0, 1}nx(g), yg ∈ R
ny(g) ∀g ∈ G

∑

g∈ ˜Aω

(a f
q xq + b f

q yq ) − epω ≤ φ p ∀ω ∈ Ωg , p ∈ P
f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F

0 ≤ epω ≤ ẽ pν
p
ω + εẽ p ,
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ν
p
ω ∈ {0, 1}, εẽ p ∈ R

+ ∀ω ∈ Ωg, p ∈ P f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F

∑

ω∈Ωg

wωe
p
ω ≤ ep + εep , εep ∈ R

+ ∀p ∈ P f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F

∑

ω∈Ωg

wων p
ω ≤ ν p + εν p , εν p ∈ R

+ ∀p ∈ P f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F ,

(2)

where the last terms in the objective function prevent the potential infeasibility of
the risk averse constraint system, such that the big M-parameters are the related
penalization and the ε-variables are the slack ones to avoid the infeasibility.

The concept of expected conditional risk avere measure (ECRM) is introduced
in [13], and its time-consistency is defined and proved. We show elsewhere [10] that
ECSD is a member of the family of ECRMs and, therefore, it is time consistent. Let
us assume that the decisions in a given problem have been made up to node g, for
g ∈ ∪{t∈T :t<T }Gt , according to the solution obtained in the original model (2) solved
at stage t = 1. Now, let the submodel solved at node g, such that it is supported by the
subtree rooted with node g whose successor nodes are in set S̃g . Then, the rationale
behind a time-consistent risk averse measure is that the solution value to be obtained
in the submodel solved at stage t (g) for node g should have the same value as in the
original model solved at stage t = 1.

4 Some Computational Experience

Let the tactical supply chain planning (TSCP) problem presented in our work [10]
to be the pilot case where to consider the performance of the RN and ECSD risk
measures. Its deterministic version is based on a real-life case in the assembly sector.
TSCP has a broad applicability, specifically, in sectors such as car, computer and
domestic appliances manufacturing, among others. It is the case in which a com-
pany with multiple raw material suppliers, plants, products, tiers of production in
the bill of material (BoM) and markets needs to satisfy a product demand vector
over a given time horizon. The goal is to determine a raw material supplying plan
and a master production, inventory and distribution planning that best makes use
of the available resources and their capacity extension acquisitions in the whole
supply chain for each period of a given time horizon. The resources’ best use con-
sists of minimizing the raw material supplying commitment cost, the production
and inventory costs in the plants, and the product backlog and demand lost penal-
ization along the time horizon. The raw material supplying commitment cost is
frequently modeled by a piecewise linear, concave and nondecreasing function of
the total volume to commit for the whole time horizon. Typical types of constraints
(some of them related to either-or decisions) are as follows: Balance equations of
end-products and components, conditional lower and upper bounds for raw material
supplying and product release, resource consumption bounds and capacity extension
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Table 1 STSCP Models’ dimensions
ID Scenario tree RN model ECSD model

Structure T t∗ |Gt∗ | |G | |Ω| nc n01 m nc n01 m

L1 2424 8 5 16 255 128 57064 18126 90364 57064 18126 90424

L2 2425 9 5 16 511 256 113768 36302 180604 113768 36302 180664

L3 2424 8 5 16 255 128 72424 18131 99324 72424 18131 99384

L4 2425 9 5 16 511 256 144488 36307 198524 144488 36307 198584

acquisitions, and balance equations of lost demand and backlogging, among others.
There are different types of resources at different levels for groups of consecutive
periods (so-called stages) along the time horizon. The cost of the resources’ capacity
extension acquisition is expressed as a piecewise discrete and nondecreasing func-
tion. Another important feature of the problem is that the burden of raw material
stocking is frequently transferred to the suppliers.

The experiment was conducted on a PC with a 2.5GHz dual-core Intel Core i5
processor, 8Gb of RAM and the operating system was OS X 10.9, where the MIP
solver to use is CPLEX v12.5 and its optimality tolerance is set up to 0.001. The
decomposition algorithm to use is our matheuristic SDP-ECSD [10].

The problem’s dimensions of the testbed under consideration are up to 9 stages,
20 end-products, 30 market centers each, 20 subassemblies, 40 rawmaterials, and 25
types of resources. Table1 presents the structure of the scenario tree for each instance
as well as the dimensions of the two stochastic formulations. The set of stages T
has been split in two parts for problem solving. The first column of the table is the
identifier of the instance, and the second one gives the predefined structure AB1

1 AB2
2

of the scenario tree, where Ai denotes the number of children that each node has in
each stage in part i , and Bi is the number of its stages, for i = 1, 2. The period subset
T̃ is singleton and t∗ ∈ T̃ , where t∗ is the period defining the groups of scenarios
for cost risk reduction in the ECSD measure. The headings of the columns for the
dimensions of the models are as follows: nc, number of continuous variables; n01,
number of 0–1 variables; and m, number of constraints.

The results of solving RN model (1) are shown in Table2. The first column refers
again to the identifier of the instance. The following three columns reports theCPLEX

Table 2 RN model (1) solved with CPLEX and the SDP-ECSD matheuristic

ID CPLEX SDP-ECSD

zCPX tCPX OG% zRN tRN GG%

L1 358305 7200 0.62 362350 1409 1.13

L2 212922 7200 1.14 215236 3884 1.09

L3 218343 7200 0.72 221997 5032 1.67

L4 398303 7200 0.28 403833 8055 1.39
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Table 3 ECSD model (2)
solved with the SDP-ECSD
matheuristic

ID zECSD tECSD devECSD%

L1 375127 21065 3.53

L2 215544 25032 0.14

L3 253152 22103 14.03

L4 431792 19403 6.92

results, where zCPX is the RN cost value, tC PX is the elapsed time (in seconds) to
obtain it, and OG% is its optimality gap (in %). The optimization of the instances
reaches the allowed time (2h) without proving the 0.1%-optimality of the solution.
Another block of columns in Table2 reports the SDP-ECSD results. The headings
are as follows: zRN and tRN , RN solution value and related elapsed time (in seconds);
and GG%, goodness gap, i.e., the deviation of the solution value obtained by the
matheuristic from the value obtained by CPLEX, expressed as GG% = (zRN −
zCPX )/zCPX%. We can observe that, generally, the elapsed time that is required by
SDP-ECSD is very small. On the other hand, the goodness gap of its RN value versus
the one provided by CPLEX is very small as well; notice that it goes form 1.09 to
1.39%.

The violations of the epRN and ν
p
RN ECSD bounds for p = 1, 2 by the RN solution

are up to 165 and 700%, respectively. The details are not shown but they are available
from the authors under request, see also [10].

The results of solving ECSD model (2) by matheuristic SDP-ECSD are shown
in Table3. Some headings are as follows: zECSD and tECSD , ESCD incumbent value
and related elapsed time (in seconds); and devECSD%, deviation of the ESCD cost
from the RN one (see Table2), expressed as devECSD% = (zECSD − zRN )/zRN%.

Notice that the elapsed time required by the matheuristic for solving the ECSD
model (2) is much greater than the time required for solving the RN model (1).
It confirms the common knowledge, namely, the stochastic dominance strategy are
computationally much harder than the RN one (requiring an elapsed time that is one
order of magnitude higher than the time required for obtaining the RN solution).
It is due to the cross scenario constraints for satisfying the risk reduction measure.
Notice that, probably, CPLEX could not even solve the ECSD model, since it could
not do it for the RN one. On the other hand, the deviation of the ECSD cost (due
to the satisfaction of the cost risk reduction constraint system) could even reach the
increment of the 14.04% of the RN cost (where, as notice above, the violations of
the two types of risk reduction bounds are up to 165 and 700%).

5 Conclusions

Frequently there are problems with high variability in the functions to consider
(beside the one to minimize). So, a risk reduction functional is required for avoid-
ing low-probability high-negative function values incurred by the solutions obtained
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from the minimization of the objective function expected (cost) value. In this work
we have considered the time-consistent multi-function first- and second-order sto-
chastic dominance functional ECSD for risk management to control. It allows to
personalize the type of risk reduction profiles for groups of scenarios. That high
risk management could increase the cost function value while satisfying the risk
reduction constraint system. Any way, a specialization of decomposition algorithms
is required for problem solving in a affordable computing effort. We have used our
SDP-ECSD decomposition algorithm for problem solving in a pilot case from the
tactical supply chain field; the solution’s quality is good enough and the computing
effort is very affordable.
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