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Pedro Gil in the homage paid to him by the University of Oviedo on the occasion
of his retirement (November 2010)



To Pilar,
Pedro Gil’s beloved wife and inspiration

A Pilar,
querida compañera de vida e inspiración de
Pedro



Foreword

Good teacher, good scholar, and all round good person, Pedro Gil is, in all facets of
his life, a role model to uphold and follow. Therefore, it is an honour for me to write
the foreword to this magnificent work that I can only describe as essential given the
quality of person to whom it pays tribute. It is also right and necessary for me to
write it, and it is so for a number of reasons. Significantly, because I have the good
fortune to be the rector of the University of Oviedo I am thus able to endorse it in
the name of an institution in which Pedro worked for 34 prolific years. Moreover, it
is emotional for me because I am also that student who was lucky enough to have
him as a teacher at a crucial time in his career, when I had everything still to decide
and, thanks to teachers like him, ended up taking the right decisions.

I could personally bear testimony to Pedro’s extraordinary worth shortly after
starting my university studies. During the 1976–1977 academic year, I was a
second-year student at the University of Oviedo earning a bachelor’s degree in
Chemistry. I had at the time the feeling, that I was steadily becoming certain about,
that my vocation was in the discipline of physical chemistry, a field closely related
to Mathematics, the area of knowledge to which Pedro dedicated his academic
career. He was at the time a young assistant professor who had just arrived from the
Complutense University of Madrid, along with his wife and daughter. I am certain
that it was not by chance that he joined this institution but rather thanks to some
formula, one of those so extraordinary that seem to be random but that in fact can be
resolved with dedication and talent. This institution will never show enough grat-
itude for having had Pedro as one of its most outstanding members.

My year, the one that greeted him, had a particularly large number of students,
given that it coexisted with the last units of the previous chemistry syllabus in the
Faculty of Sciences. Fearful as we were of that second year, reputedly the most
demanding of the degree, we met a teacher much younger than any other we had
had until then. He managed from the first day an unusual complicity with us and he
was, even though always serious, friendly, and approachable, and all the while
capable of rendering intelligible a subject as dense and obscure as Mathematics. To
say that among his students he was known as Father Pedro or Saint Pedro gives a
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good idea of the appreciation that the students had of him and the great love and
respect with which he is remembered.

Pedro Gil was that teacher who, scrupulously respectful, waited in the hall to
start the class, leaving us five or ten minutes for delegated faculty members to report
on the corresponding actions. Years later, sharing different forums on university
management, he would also be one of the most conciliatory and reasonable inter-
locutors I have ever met.

Good friend, resolute scholar, loyal to the institution, and also to his mentors and
role models whom he always acknowledged paying them a just tribute, Pedro was a
man of wholesome character who made a significant contribution to the progress of
this university that misses him so much. He is in Pilar, his life partner; in his
children Eva, Juan, and Eduardo, and in his brothers and sisters. Her sister, María
Ángeles, who is committed to keeping the memory of Pedro alive and vindicating
the intelligent scholar who, with the mind of a statistician, anticipated many years
ago the growing interest in the development of methods for the mathematical
treatment of uncertainty. That is why his inaugural lecture of the 1996–1997 aca-
demic year at the University of Oviedo bore the title that has now also been adopted
for this book in his memory, in my opinion, with great success.

This work, which includes contributions from many of Pedro’s fellow mathe-
maticians, disciples, and friends, is a good test of how uncertainty can come from
different sources and how it can be modelled and studied with different tools and
from different mathematical fields. But above all else is the realization that, as he
asked in that magnificent speech, those of us who follow him should do so by
learning from the past while looking to the future, firmly supported by the great
legacy that he left us and that he was so humble about. And for this, as he asked, we
must play with intelligence the part that corresponds to the university and that is
none other than to prepare the men and women who must bear to society the fruit it
needs for its development. Fruit that measure as certainties; seeds that Pedro sowed
with humility and greatness.

Buen docente, buen investigador y hombre bueno, Pedro Gil es, en todas las facetas de su
vida, un modelo a reivindicar y seguir. Por eso es un honor para mí realizar la
introducción a esta magnífica obra que me atrevo a calificar de imprescindible, al tenor de
la persona a quien rinde tributo y porque es justa y es necesaria. Lo es por muchos
motivos. El primero, porque tengo la fortuna de firmarlo como rector de la Universidad de
Oviedo, institución en la que Pedro trabajó durante treinta y cuatro fructíferos años. Pero
lo hago además emocionado como estudiante que disfrutó la suerte de recibir su magis-
terio en un momento crucial de mi carrera, cuando todo estaba por decidir y que, gracias a
encontrar docentes como él, terminó por decidirse de la mejor manera.
Personalmente, pude comprobar la extraordinaria valía de Pedro al poco de comenzar mis
estudios universitarios. En el curso académico 1976–1977, yo era un estudiante de
segundo curso de la Licenciatura de Química de la Universidad de Oviedo y mi intuición
iba asentándose como la certeza de que mi vocación me encaminaba hacia la Química
Física, un campo con muchas conexiones con las Matemáticas a las que Pedro dedicó su
gran conocimiento. Él por entonces era un joven profesor agregado que acababa de llegar
de la Universidad Complutense de Madrid, junto con su mujer y su hija mayor, gracias a
que alguna fórmula, de esas tan milagrosas que parecen azar pero que sólo se resuelven
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con dedicación y talento, le puso en el camino de esta institución, que nunca mostrará el
suficiente agradecimiento por haber contado con Pedro como uno de sus miembros más
destacados.

La promoción a la que pertenezco y que le recibió a su llegada, era especialmente
numerosa ya que coincidía un cambio de plan de estudios que hizo que conviviésemos con
las últimas unidades del anterior Plan de Química en la Facultad de Ciencias. Temerosos
como estábamos de que llegase el segundo curso, con fama de ser el más exigente de la
licenciatura, nos encontramos con un profesor mucho más joven que los que habíamos
tenido hasta entonces, el cual estableció desde el primer día una complicidad insólita con
nosotros y que, desde la seriedad, era afable, cercano y conseguía que una asignatura en
principio densa y oscura como son las Matemáticas resultase comprensible. Decir que
para muchos de sus alumnos y alumnas era el Padre Pedro o San Pedro da buena idea de
la percepción que el estudiantado tenía de él y el gran cariño y respeto con los que se le
recuerda.

Pedro Gil fue el profesor que, escrupulosamente respetuoso, esperaba en el pasillo a
comenzar la clase dejándonos cinco o diez minutos para que las personas delegadas de
facultad informasen de las acciones reivindicativas que correspondiesen. Años más tarde,
compartiendo foros diversos sobre gestión universitaria, sería también uno de los inter-
locutores más conciliadores y razonables que jamás he conocido. Buen amigo, investi-
gador resuelto, leal a la institución y a sus referentes a quienes siempre reconocía
rindiéndoles un justo tributo, fue Pedro un hombre de personalidad completa que hizo
mucho por el progreso de esta Universidad que tanto le echa en falta. Está en Pilar, su
compañera de vida; en sus hijos Eva, Juan y Eduardo, y en sus hermanos. Su hermana,
María Ángeles, quien constantemente se encarga de mantener vivo el recuerdo de Pedro y
de reivindicar la memoria del sabio inteligente que, con la visión propia del estadístico,
anticipó hace muchos años el interés creciente que tendría el desarrollo de métodos para el
tratamiento matemático de la incertidumbre. Por eso su conferencia para la inauguración
del curso 1996-1997 en la Universidad de Oviedo llevó el título que ahora se ha adoptado
también para este libro en su memoria, en mi opinión, con gran acierto.

Esta obra, que incluye contribuciones de muchos matemáticos compañeros, discípulos
y amigos de Pedro, es una buena prueba de cómo la incertidumbre puede provenir de
distintas fuentes y cómo puede modelarse y estudiarse con diferentes herramientas y desde
diferentes campos matemáticos. Pero sobre todo es la constatación de que, como él pidió
en aquel magnífico discurso, quienes le seguimos lo hacemos mirando al pasado a la vez
que dirigimos nuestras expectativas hacia el horizonte futuro, apoyados firmemente en el
gran legado que nos dejó y que él siempre valoró con modestia. Y para ello, como pedía,
debemos jugar con inteligencia la baza que le corresponde a la universidad y que no es
otra que preparar a los hombres y mujeres que deben rendir a la sociedad los frutos que
necesita para su desarrollo. Frutos que medren como certezas; semillas que Pedro sembró
con humildad y grandeza.

Oviedo, Spain
November 2017

Santiago García Granda
The Rector of the University of Oviedo
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Preface

Sucede que recuerdo
tu boina gris,

tu voz que ahora descansa
junto a los barcos,
tu forma de calmar

las tempestades,
la calidez de tu mano,
tu oído siempre atento.
Y ahora hay una puerta

cerrada
por la que no cabe mi voz.

Y demasiadas preguntas
huérfanas de toda lógica.

Me faltan los números
y tú te difuminas.

Sucede que no llegas.

Eva Gil Sanmamed, November 2017

This scientific book is in response to a need we felt to pay tribute to our beloved
biological and scientific father Pedro Gil. And for this endeavour we wished this
tribute to be paid along with many of the colleagues and friends Pedro met in his
career.

In the first part of the preface we are not attempting to highlight his professional
achievements, which will be described to a certain detail at the end of the book, but
to offer a rather personal view of Pedro.

When each of us met Pedro for the very first time, we did not realize about him
being a reputed academician. It might be precisely the first remarkable fact that can
be noticed about Pedro: his reputation came without being noticed. Just as if he had
no interest to underline it, he treated his circle as equals, never imposing but
suggesting his opinions when he was asked.

As an outstanding mathematician, reason was above feelings. Beside his hidden
smile, his bright eyes granted the serenity, the kind and sincere manners that are
essential to find a solution. But prestige did came by; and, as a matter of fact, it
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usually comes for those who are able to connect their way of being, their dreams
and defeats, their personal brilliance to their working fields. And let us state that,
from what the authors know about Pedro’s personal life, we can assure Pedro was a
genius.

Pedro put his family and friends before the rest of their “lives”. He was a smart
person, smart in many ways, smart enough to always give a thought on what he was
told before showing an answer, before making a judgment.

The second remarkable virtue of Pedro’s nature might be his willpower. Indeed,
it made him overtake several obstacles on his personal life. Always helped by his
personal circle, from which his beloved wife Pilar played a preeminent role, he
managed not only to recover but to teach us a colossal truth: it can be done.

Last, but not least, we cannot forget about what brought us here, the most
remarkable fact about his life and scientific work: his love for teaching. You may
have noticed that a verb seems to connect all previous paragraphs: teaching. Ahead
of a researcher, and he was a remarkable one, Pedro Gil was a teacher, a professor, a
maestro who enjoyed teaching above all, helping to develop the future’s minds.

Let us emphasize that it is not only about students where his legacy ended, but
we would like to include some of our feelings:

“My vision on my father is obviously biased. I have spent my whole life as a
learner, from the best teacher in life I could have ever found. I cannot attach a paper
to this book as a tribute, there are quite some other “children” that will do so as you
can notice from the book’s size and the expected crowded auditorium when it is
presented. My homage, dad, will be trying to bring to my life your genius about all
you taught me.”

“Pedro was my supervisor, my boss, and my guidance in many respects, both
personal and professional. When Pedro arrived to Asturias, as a twenty
eight-year-old “senior” professor to head the Department of Mathematics of the
Faculty of Sciences of the University of Oviedo, I joined the germ of his profes-
sional team. Since then, he has guided all my professional steps, trying to instil in
me (actually in all his disciples) what he considered to be the best way to proceed:
to love teaching and to take care of all students, and not only about the most
brilliant ones; to love researching, since it is crucial for a university career, and to
encourage and support all the young members of the Department in their careers.

And I have witnessed the first row of how he built with much effort and personal
commitment the current team of the Department of Statistics, OR and Math
Teaching at the University of Oviedo. In addition to the already pointed out Pedro’s
skills, as leader of that team one should highlight his generosity in giving sound
advices and encouraging us to become leaders of research groups, his strong
support to all the initiatives we undertake, and him having shared all the
achievements from his own efforts with us.”

To shortly summarize Pedro’s scientific path, one can look at his scientific
genealogy skeleton from above, which has been built on the basis of the infor-
mation gathered in the Mathematics Genealogy Project (http://www.genealogy.ams.
org/).
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We consider there is no need for comments to be added about his magnificent
“scientific pedigree”.

On the other hand, also on the basis of the information from this genealogy
project, updated as of late November 2017, Pedro Gil had 20 Ph.D. students and 81
Ph.D. linear descendants. More than half descendants are working at the University
of Oviedo.

It should be remarked that when Pedro arrived to Oviedo, he started with a quite
small team where members have neither research nor teaching expertise.
Consequently, he should not simply lead that team, but guide it in both aspects. And
this complex task required him to invest an immense capacity and a very hard work.
And he did and, in spite of his youth, he succeeded in this endeavour, to get such a
big scientific offspring.

Pedro Gil’s genealogy skeleton from above (design Eva Gil)
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As a natural consequence from all this, Pedro has unequivocally had a strong
influence on many people. This influence has especially affected colleagues and
students either in choosing the B.Sc. in Math, or in following an academical career,
or in leading groups, and so on. In fact, one of Pedro’s most recognized virtues is
the one associated with his counselling, irrespectively of the framework, the
problem, and the person who is asking for the advice. Pedro was always ready to
provide with “his wise advices”, and his colleagues have had the opportunity to
enjoy his presence even after retiring. He enjoyed visiting them at the Department,
and also joining them for activities such as Department lunches or dinners,
attending all the Conferences of the Spanish Society of Statistics and OR he had
presided (always accompanied by his wife Pilar, who has been considered to a great
extent as a “member and supporter” of the Department), and even sharing teaching
with one of his scientific children in a course on Mathematics for everyday life, a
course he delivered for elder people of the University of Oviedo just a few weeks
prior to his death.

Even regarding his closest biological relatives, Pedro’s influence was clear: at
the “horizontal” level, one brother and one sister have got their B.Sc. in
Mathematics after Pedro getting his own, and the same happened with two of
Pedro’s brothers in law; at the “vertical” level, his two sons are mathematicians; and
at the “oblique” level, a niece and a nephew are mathematicians too. Most of them
were also specialized in Statistics + Operations Research. Pedro’s enthusiasm and
eagerness for his work were certainly contagious, and most of us could not draw
away from them.

Since Pedro left us, we are happy and proud to confirm a deterministic fact that
he fortunately knew: he has been (actually, he is) a very beloved person. And we all
are permanently missing him. To illustrate this assertion along with his scientific
influence we can consider a small sample of sentences from the contributions in this
book, although readers are invited to have a look at the whole “population”:

“…Pedro was always a reference both in a human perspective as well as in the scientific
field. His capacity for team building taking into account every one beside him and his
generosity makes him a good example of what a scientist should be…”,

“…Fleing from imposition and taxation, Pedro has taught his many disciples the need to
devote a significant part of their working time to conduct forefront research. This vision
and policy, which can seem to be obvious nowadays, was especially laudable at the time he
created the embryo of his current university department”,

“…he was always very approachable and helpful towards his friends and colleagues, as
well as being well grounded in everyday reality. It was enough to simply call him any time
you needed his valuable help. Pedro, what do you say if we…? Pedro, what do you think
about…?… he always got a kind look, close attention,… and a quick, sensitive answer, full
of wisdom and affection…”,

“… you passed away when your presence was more necessary than ever…”,

“…in your absence we will find ourselves often wondering what quiet advice would you
give us at some given situation, just as if we were sitting in front of you under the lost look
of the punch-drunk boxer of the picture hanging on the wall of your office…”.
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This book is a collection of contributions authored by colleagues, students/
descendants, and friends of Pedro who have either developed methods to solve
mathematical problems involving uncertainty or have applied such methods to
real-life cases. Since the modelling and the management of uncertainty are more
and more challenging and appealing topics, and Mathematics offer suitable tools in
this respect, nowadays there is an increasing interest on studies like those gathered
in the book.

As Pedro highlighted in the inaugural lecture of the academic year 1996–1997 in
the University of Oviedo (Part I of this book), there are three well-known branches
of the “Mathematics of the Uncertain”, namely

• the Mathematics of Chance (Probability and Statistics),
• the Mathematics of Communication (Information Theory), and
• the Mathematics of Imprecision (Fuzzy Sets Theory and others).

These three branches often intertwine, since different sources of uncertainty can
coexist, and they are not exhaustive. That is, they do not constitute a classical
partition of the Mathematics of the Uncertain.

For these reasons, papers in the book have been classified into four classes, one
per well-known branches (Parts II–IV in the book), and an additional one (Part V
in the book) including papers in other mathematical fields which are concerned, to a
greater or lesser extent, with uncertainty. Furthermore, the assessment of papers to
Parts II–V, and especially to Parts II–IV, has often been “infected” with uncer-
tainty, because some of the papers could be probably included in two different ones.

The book ends (Part VI) with some biographical sketches of Pedro Gil in
connection with his professional career, both at the Complutense University of
Madrid and the University of Oviedo, and one of his most outstanding contribu-
tions: his crucial and essential role in launching the Bachelor of Mathematics in the
University of Oviedo.

To end this edited multiauthors book, we should deeply thank to all those
contributing it. We know well how much affection for Pedro is involved in all the
papers in it, as well as in all the members of his Department. We must express our
most special gratitude to Asun Lubiano and Antonia Salas, two of Pedro’s linear
scientific descendants, for their extraordinarily meticulous proofreading of the
whole book: one more proof of their enormous affection for Pedro.

Oviedo, Spain Eduardo Gil
Oviedo, Spain Eva Gil
Oxford, UK Juan Gil
Oviedo, Spain María Ángeles Gil
November 2017
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Part I
Pedro Gil’s Vision on the Mathematics

of the Uncertain



The Mathematics of the Uncertain

Pedro Gil

Mathematics is the language in which God has written the
universe

(Galileo Galilei)

Abstract This paper corresponds to the English translation of a shorthened version
of the Inaugural Lecture of the academical year 1996–1997 in the University of
Oviedo, and published as Pedro Gil Álvarez (1996) Las matemáticas de lo incierto.
Rev Astur Econ 7:203–219. It explains to a certain extent Pedro Gil’s view on the
mathematical tools and approaches to model, handle and deal with uncertainty.

When I received the gratifying invitation to give this inaugural lecture, I recalled that
many years ago (in 1913, to be precise), and in this same University, it had been the
father, or godfather, of Spanish and Latin American mathematicians of the twentieth
century, Julio Rey Pastor, who had found himself in such an endeavour. So off I
hurried to our beloved library and there I found the speech written by the master.

I must admit that my first temptation after reading his speech was to discreetly
withdraw from the mission, arguing some personal problem, so as to avoid compar-
isons, even if I myself were to be the most critical with myself.

My next idea was to read the actual speech written by D. Julio; after all, it essen-
tially covers the history of Spanish Mathematics of the sixteenth century, and his
previous and subsequent comments on our beloved University are, unfortunately,
quite current.

I finally decided to look to the future, and not dwell on the past, opening myself
up to the judgement of the public, whom I suppose somewhat terrified at the prospect
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4 P. Gil

of being subjected to a tediously boring lecture of what has been called the ‘queen of
sciences’, although I very much doubt that such laudatory term would be accepted
by many students or even by some professors of our Institution.

Due to their historical development,Mathematics is indeed themost accomplished
building of science; but it is also true that many believe it is too complex for ordinary
mortals to navigate through, that only a selected few can achieve it. The origin of
such ideas rests both with the magical nature that has always been associated with
numbers and geometric figures, and with the large number of students failing to pass
the subject (a failure not necessarily always attributable to students) during their
educational years.

Thus I started looking for a topic to present before you today, “But (again, quoting
Rey Pastor) to present a topic within this discipline, with all its apparatus and, for the
uninitiated, almost eerie symbolic notations, and to take advantage of your helpless
position, when the law compels you to hear me, presenting one of my insignificant
mathematical works, would have been an unheard-of case of cruelty, that will surely
reach the limits of your tolerance.”

However, my limited knowledge preventsme from attempting to present any other
subject than the one that has been the center of my scientific life; I lack the versatility
to face other possibilities, as many of my colleagues, who I envy, are able to do.

I have therefore decided to talk about several mathematical topics; I will however
try to explain them, as much as possible, using concepts rather than formulas.

It is my desire to try, as much as possible, to avoid the use of cryptic language,
which we are so used to hear from the so-called ‘specialists’ (see, for instance,
the explanations given by some economists, doctors, etc. in the media), so that the
objectives of Mathematics - in general - and Statistics and other sciences assimilated
- in particular - are not only a sect’s belief system, but may also be understood, to a
greater or lesser extent, by those who, in line with this lecture, we could refer to as
the ‘average citizens’.

The general topic chosen is the mathematical study of uncertainty. Uncertainty is
inherent in nature; these days nobody questions that the movement of particles, the
distribution of genes and chromosomes, and the behavior of the individuals them-
selves need theories based on the study of uncertainty rather than on deterministic
laws.

What criteria do you follow to make decisions in situations of uncertainty? How
to generalize particular data to discover new phenomena or create new theories?
What is, as Professor Rao points out, the process involved in these tasks: an art, a
technology or a science?

There were no attempts to answer these questions until the beginning of this
century, by trying to quantify uncertainty. In the last fifty years, even though it
cannot be said that the success achieved is complete, it is certainly true that the
results obtained have produced a revolution in all spheres of knowledge, our habits
of thought have changed and this has made possible remarkable discoveries that our
prejudices about determinism had previously prevented.

Now, with the new century at hand, we want to give a simple, but not easy, vision
of these issues that have surreptitiously sneaked into our daily lives.
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The aim is thus clear; when the lecture finishes, it will be your turn to judge
whether or not it has been achieved.

I have called the lecture “The Mathematics of the Uncertain” and I have broken
it into three small paragraphs and an epilogue. Let us begin.

1 The Mathematics of Chance: Probability Calculus and
Statistics

Chance is perhaps the pseudonym of God when he does not want to sign

(Théophile Gautier)

What began in the seventeenth century as an amusement for idle people fond of
gambling - recall the Chevalier de Méré who fostered the acclaimed correspondence
between Pascal and Fermat - or as a curiosity for politicians with an interest in
arithmetics, take the Graunt’s or Halley’s tables as an example, has now become the
most powerful weapon of human sciences and nature.

For some unscrupulous individuals it has even become a double-edged sword
that has very often made possible the ‘pseudo-demonstrations’ deceit that is used to
convince us simultaneously of the veracity of both an statement and its opposite, to
the point of putting, for example, our hearts in our mouths with the serious threat
of contracting very serious illnesses by the consumption of humble carrots (on the
other hand critical in order to get a wonderful eagle eyesight).

1.1 The Use of Statistics...

But, curiosities aside, let us focus on how statistical science works.
I will not attempt to provide a rigorous definition; there is no shortage of witty

ones from which to choose from, such as the well-known one that defines Statistics
as “the science that teaches us that if John has eaten a full chicken and Peter has
not eaten anything, they have eaten half a chicken each,” or the one that jokes about
“the ideal state of our body temperature is your head in the oven and your feet in
the freezer”, both of them agreeing in their criticism towards the abuse of the mean
value. And there are many more serious ones among which it would be very difficult
to choose.

I will neverthelessmention the definition given by one of the greatmathematicians
of our century, Profesor Fréchet, who defines Statistics as “a science that deals with
solving problems that, with mathematical rigor, have no solution”. In my opinion,
in this sentence, the greatness and limitations of this our science are simultaneously
explained: its greatness as it acts as a support for other sciences to which other
branches of Mathematics cannot help; and the limitations that are inherent to all
statistical results, found in the very nature of statistical science, when considered as
the study of situations in which there is random intervention.
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But, while giving a definition of Statistics is not an easy task, it is however easy
to point out its three essential areas, which we will now pass in brief review:

Descriptive Statistics that deals with the presentation of available information in
an orderly manner; this area of Statistics was already in existence when the word
statistic still referred only to theworks of ‘state’, relative to censuses, births or deaths.

Probability Calculus, which is the mathematical model (and, as such, utopian) to
represent the aforementioned data; it constitutes the most refined area in terms of
rigor, and has allowed Statistics to be considered as a part of Mathematics for some
sixty years (much more recent than the, until recently, called ‘Modern Mathemat-
ics!’). At that time, in Spain, Statistics was only part of the Faculty of Law’s syllabus,
perhaps the only one that does not include them nowadays.

And finally, Inference that is nourished by the two previous areas and that is,
strictly speaking, the one deserving the name of proper statistical science. Its purpose
is to find out, sometimes almost guess, something (be it much or little) about those
laws of chance that influence a phenomenon and either are only partly known or
totally unknown.

All its conclusions are subject to limitations of a probabilistic nature: nothing is
affirmed or deniedwith total certainty, only known to occur with a certain probability.
In other words, we can assure, with some certainty, that things are going to happen as
predicted, but there is always the risk (sometimes very high, if the right precautions
are not taken) for the opposite to happen or, at least, for it not to happen exactly as
predicted.

As indicated, the main purpose of Statistics is to conduct surveys, typically on a
characteristic of interest in the population under study.

If there was the possibility of observing such a characteristic in all ‘individuals’
(note that the notation used indicates the origins of Statistics as a state science), the
investigation would be meaningless, as it would obtain indisputable results; this is
the case of censuses or a count of the votes cast.

If, on the other hand, as is so often the case, studying the whole population is
not possible due to its economic or time cost, or because it is a destructive process,
etc., the researcher must be satisfied with the study of a ‘sample’, which is a part of
the population and, through it, infer the population values. For example, it would do
no good to crash all the vehicles produced to find out their resistance to frontal and
lateral impacts; there would be no cars left to sell.

In principle, it is reasonable to think that the larger the sample size (i.e. the number
of individuals that compose it), the more accurate the survey will be; and this can
be proven even if, at times, an excessive increase in the sample size does not lead
to a substantial increase in the certainty obtained, but only to the corresponding
expenditure, as in some of our most well-known and prestigious official pollsters.
The optimal sample size in some sense must, therefore, be sought.

It is imperative for the researcher to keep the mathematical rigor of the theoretical
results that he obtains and, if in some step approximations were made, these must be
explicitly added to the list of limitations of the conclusion.

Finally, professional ethics should be observed when presenting the conclusions,
clearly pointing out, as has already been mentioned, that none of them constitutes
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in itself an absolute truth but rather that it has - at best - a high probability of being
true.

It would be childish trying to give an example of each of the sciences that have
benefited from the development of statistical methods; I explicitly decline to do so
in favor of the time available to criticize its incorrect uses.

1.2 ...and the Abuse of Statistics

And that’s all the guidelines for the correct use of Statistics that I am going to
give today; unfortunately the ‘abuses’ committed in his name are often of great
consequence for the recipients of information, that is, ourselves. Who has not heard
or read the sentence “there are lies, damned lies, and statistics”? Why are there
books with titles like ‘Lying with statistics’? Why is the same data used by someone
to convince us of something and then by someone else to justify the contrary?

The answer to these questions can often be found in the lack of statistical culture
of those who receive the information; I am a zealous supporter of making such a
culture compulsory in our educational system because, in the words of my teacher
and mentor, Professor Sixto Ríos, “these days the basic statistical concepts must be
an indispensable part of the educated man’s mental equipment”, this way the chances
of deception would be lower.

Sometimes, frequently, the cause is the lack of expertise and know-how of those
responsible for the development of statistical studies; not in vain is Statistics one of
the specialties with the highest levels of professional encroachment.

Finally, it is no secret that in this slippery slope of approximations and lack of
absolute certainties, it is indeed easy tomanipulate (even legitimately, without deceit)
the results. A forefather of these manipulations was Mendel himself, as it has been
proven that, quite possibly, he falsified the results obtained in his experiments with
peas, to give greater strength to his famous laws.

Let us look at other examples:
If we were to assert that “after traveling 100km at 75 km/h, and then another

100km at 125km/h, the average speed was 100km/h.” anyone here today would be,
if he or she does not stop to think about it twice, willing to admit it as true; a simple
calculation shows, however, that in such a case the average speed does not reach
94km/h. What happened? Quite simply that we have been misled by the use of an
average.

Bernard Shaw himself used to say rather ironically that “the carrying of umbrellas
enlarges the chest, prolongs life, and confers comparative immunity from disease;
for the Statistics show that the classes which use these articles are bigger, healthier,
and live longer than the class which never dreams of possessing such things”. It does
not take much statistical knowledge to understand that the cause of this difference
was not the umbrella (a luxury article at the time) but the quality of life of those who
had it.
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Similar affirmations to Shaw’s mockery are common currency nowadays; the
briefest glance at the press will show us the ‘statistical demonstrations’ of how
harmful the consumption of this or that food is to our health (or how marvelous
another of a similar composition is), or of how unhealthy wine is to the heart (or how
excellent it is to drink it at meals to raise the spirits), or even of how bad the smoke
of our cigarette is to the one that passes by our side (or the beneficial influence of
cigarettes to fight dementia); and so we could carry on almost indefinitely.

What secret lies in these contradictions? Can we blame the media (so in fashion
these days) for distorting and politicising the actual conclusions? The answer to that
is, of course, no. The fallacy in the ‘demonstration’ lies, as has already been pointed
out, in two essential factors: the informant may conceal the limitations of the results
(the original informant, not the journalist) and, even if this did not happen, we would
need a broader statistical culture to be able to properly evaluate the information
received.

1.3 Polls and More

And the opinion polls? The one resounding failure of Statistics that impacts our
daily life is the damn polls. Some of you may think that I am slyly swinging the lead,
tiptoeing around a subject that raises controversy each time an election is called
(something that, on the other hand, is far too frequent since we learned how to do
it and our elders could remember how it was done). The answer is no; it is not my
intention to do so, and, therefore, I will try to shed some light on some aspects of the
polls that are not always well understood, although, even if I am still trying to avoid
them, I will have to make use of some formulas to explain these aspects.

Why pollsters’ results do not match each other? What criteria do the poll design-
ers use to decide the sample size? How should the results obtained be objectively
interpreted?

We will try to deal only with the essential elements assuming, in any case, that
the right sampling procedures have been followed.

The essential aim is to find the percentage of a certain population that is inclined
towards one of the options available to it; we will refer to this percentage as p. This
value p is the population parameter that is unknown (in fact it will not be known
until an exhaustive poll is carried out, that is, until the day following the elections in
the case of a poll about voting for different parties) and that needs to be estimated
through the sample; the value of the percentage corresponding to the responses of
the surveyed individuals is chosen for this purpose; we will denote this percentage
as the value p∗.

It is possible (with the mathematical resources available in Probability Calculus)
to give an interval in which the unknown percentage p is found a percentage of
times as high as you may want. Now everything seems under control, except for one
small detail: what error are we willing to accept? Or, to put it in another way: what
amplitude do we want the interval to have?
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But there is still another factor under our control, the size of the sample - which
must be decided before proceeding to the survey -; this size depends on the error
that is considered to be acceptable. In general, such an error is half the length of the
constructed interval (a small percentage), that is, the distance from p∗ (which is the
interval midpoint) to each of the extremes of the interval; if we represent it by E , in
most common conditions, the required sample size equals

N = 10000

E2
.

It can be proven that, for values E = 2%, E = 1%, and E = 0.5%, the ‘magic’
numbers of the sample sizes in the polls and ‘macro polls’ appear: 2,500, 10,000 and
40,000 respectively. Thus, for instance, an estimated value p∗ = 30% allows us to
say that the population value p is within the intervals (28, 32), (29, 31) or (29.5, 30.5)
(or, in its more common notation 30± 2%, 30± 1%, 30± 0.5%)with a ‘certainty’ of
95.5%, which means (warning!) that if we were able to build many of these intervals
with many different samples of the same size, the true value of p would be found in
95.5% of them.

And, as in any statistical procedure, recall the limitations of what has been
achieved; whatever the margin of error E we are willing to admit, 4.5% of the
intervals we could construct would not contain the true value of p. Is this 4.5% small
enough or is it too large? The answer is specific to each person that commissions
a study, it depends on the risks that he or she is willing to take. I personally would
not risk commissioning a study that one in twenty times (approximately) would fail
(what if mine is the one that fails?). Note that in case of failure, not only the value
of p estimated by p∗ is incorrect but also any value within the interval.

Of course, in no event does it follow from the former exposition that the results of
the polls may be extrapolated to the composition of the parliament, partly because
of the margins of error (of the 2,500 surveys required for a 2% error, to our beloved
Asturias, considered as the standard region,will correspond50, a value that, assuming
that all the sampling and other processes are correct, corresponds to an error of almost
15%), and in part to our electoral law: in this sense only a count similar to that made
with the first ballot papers at selected polling stations in each constituency (which is
indeed the first sampling of the real population, that of the votes cast) is valid.

In addition, in each poll, there is a non-negligible percentage of ‘don’t know/no
opinion’ answers,whose classification is not easy because it relies onmany individual
factors (not just on loyalty of vote). And, even though there are indirect estimation
techniques, they do not seem to be to the liking of our pollsters.

The aforementioned ‘abuses’ are also applicable to television and radio audience
surveys, thanks to which we have the programs we have; the limitations are identical
(or even worse, for until very recently only 2,000 households were sampled, and
these were not even chosen at random because they had given their consent to have
the gadget connected). Thankfully, and this is applicable to polls, the sampling pro-
cedures help improve the results (albeit sometimes unintentionally) by companies
engaged in this type of research. No offense meant, but I would like to point out that
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those responsible for the research are not statisticians, but professionals from other
fields such as Sociology, Political Science, Economics, etc.

Let’s leave the polls aside to point out some other fallacies that wewould typically
find in Statistics: the constant generation of random results leads to the appearance
of any possible outcome; thus, the initial surprise at a combination like 1-2-3-4-5-6
appearing in a lottery draw should not lead us to believe that such a sequence is less
likely to occur than any other.

It is a situation similar to that of the monkey that hitting keys at random on a
typewriter will almost surely type the complete works of Shakespeare in a very long
but finite amount of time (it is estimated that the probability of reproducing Hamlet
with its 27,000 letters and spaces is approximately one divided by an amount that
has 41,600 zeros, which gives an idea of the magnitude of the time that we would
need to be waiting to obtain the desired result).

We can also point out, within a different kind of fallacies, the well-known one of
the player who considers that his probability of success increases with the number of
previous failures; regarding this one Polya mentions the anecdote of the doctor who
gives encouragement to his patient as follows: “You have a very serious disease; of
ten people who have got this disease only one survives. But you are lucky. You will
survive because you have come to me. I have already had nine patients who all died
of it”.

As a counterpart to the above, one more example: for a long time the so-called
theory of accumulation was common belief, according to it, short runs of events
occur unexpectedly frequently; as our proverbs say, “troubles seldom come singly”
or the more graphical “it never rains, it pours”.

And so on and so forth ad infinitum. The origin of these fallacies may be found
in the continued (and mistaken) belief that phenomena are always deterministic,
an opinion held by a scientist as remarkable as Einstein himself. In any case, the
brilliant physicist acceptedBose’s theory of the randombehavior of particles, perhaps
convinced by the so-called law of large numbers that introduces order into disorder.

2 The Mathematics of Communication: Information
Theory

They saw what seemed to be tongues of fire

that separated and came to rest on each of them.

All of them were filled with the Holy Spirit

and began to speak in other languages as the Spirit enabled them.

(The Acts of the Apostles, 2:1–4)

Information is power. It is said that it will be the great power of the next century
and, judging by the current situation, such statement will surely become a fact.
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But, can you measure the amount of information? Can you give value to the
information contained in a story in the news, or to that in a photo, or to the information
that is transmitted over the telephone line or the internet? Is it true that, as the proverb
tells us, a picture is worth a thousand words?

The answer was given simultaneously by two of the great scientists of our century:
Norbert Wiener and Claude Shannon. It is not the first time that something similar
occurs in the history of Mathematics (I recall from my childhood readings the race
between Newton and Leibnitz to be the first to patent differential calculus), but there
are small nuances that differentiate the position of both researchers: Wiener deals
with the information he receives once the experience is over; that is, he measures that
information a posteriori; Shannon, on the other hand, observes the a priori situation
and measures the information he hopes to obtain from it; that is the reason why the
entropy of the latter is the mean value of the information of the former.

There are many other information concepts that were developed earlier than these
ones, and others that have been developed since the 1950s. And all have things in
common. Chance? Or is it something else? As Philip Jourdain would say, it can refer
to the same Mathematical Concept (with capital letters) that is expressed through
different mathematical developments (with lower case).

WhenHartley in 1928 suggests the logarithmof the number of results as ameasure
of uncertainty in the face of an experience, he is not aware of the fact that he is
assuming that the results are equiprobable, and in order to avoid conflicts with the
situations inwhich such equiprobability is not true, argues that probabilities have a lot
to dowith psychological motivations (perhaps hewas already thinking of a subjective
probability!) and that the problem must therefore be studied by psychologists and
not by mathematicians or engineers.

He is wrong to adopt this strategy and avoid the problem.
But he succeeds in finding the way forward: information can be defined as the

measure of the decrease of uncertainty, and therefore we can start by analysing the
latter.

And it is thus that from Hartley’s idea, the Information Theory was developed by
Shannon, who defines the entropy for any probabilistic system as a measure of the
associated uncertainty (this way linking uncertainty with probability), inspired by
the quantity of the same name defined in Thermodynamics by Boltzmann. It is the
well-known formula:

H = −
∑

i

pi log pi .

Shannon also defines the information between two systems as the average decrease
of uncertainty that occurs in one of them by the knowledge of the other’s result.
From these initial concepts on to information channels, their capacity, the sources
of information, the study of noise, etc., it is a dizzying research involving many
scientists.

All this starts from a simple schema that it is well-known today to all the commu-
nication sciences: the system of source, encoder, transmitter, receiver, decoder, and
destination. All this on the idea of the element of surprise: the less probable an event
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is, the more information it provides when it takes place (the notorious ‘man bites
dog’ of journalism). And, in addition, in order to transmit messages whose content is
considered only in terms of their syntactic value, i.e. as meaningless signifiers. And
all this working wonderfully and allowing the phone company Bell (the company
that employed Shannon) to achieve its goal: to offer its customers a greater relia-
bility in the transmission of the conversations, ensuring that noises cause minimal
interference.

All sorted then? No, it had only just begun; at least the next two problems were
still unsolved.

2.1 Coding and Cryptology

How could we reproduce in the destination the original messages when, as it travels
through the channel, a distortion occurs? How could we share storage and transmis-
sion resources while respecting the privacy of information?

It is true that it would always be possible to set a system of repetition of messages
between sender and receiver and run it as many times as necessary until the absence
of error could be guaranteed; or the message could be encoded in such a particular
way that not even the source knew its content (as in certain exams that all of us
teachers have had sometimes the pleasure to mark). But it is no less true that we
could neither afford the phone bills nor the effort of decoding of doing such a thing.

It was Shannon himself who first proved the existence of a coding–decoding
system that ensures that the probability of error is as small as one wants, but it is a
demonstration of the kind to which mathematicians are so fond of as, in Bertrand
Russell’s words, it is part of “the subject in which we never knowwhat we are talking
about, nor whether what we are saying is true”.

It has not been possible to build a real system validating Shannon’s theorem but,
in the effort, a powerful theory of codification, of fundamentally algebraic nature,
has been developed and it has provided satisfactory solutions to the initial prob-
lem; all the digital systems to record, preserve and transmit the information we
use today (computers, compact discs, latest generation mobile phones, etc.) are a
good example of the power of the tool obtained. And all this using only the digits
0 and 1!

Regarding the second, and very current, question, the answer is positive: the
importance of data protection is ever growing to prevent anyone from using the data
fraudulently or more simply, for purposes other than those intended. These days it is
ever more important that data are protected from hackers that can bring us to a small
but respectable ruin (with the passwords of our bank accounts) or make us descend
into a global tension of unpredictable consequences (by compromising the defense
systems of the great powers).

And thus a new science called cryptology, with a branch of encryption (cryptog-
raphy) and a branch of decryption (cryptanalysis) emerges as a natural extension
of the theory of codification, and its origins are as old as mankind: let us recall the
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writing about the strip rolled to the cane or the ‘scytale’ of the Lacedaemonians or
even Caesar’s cipher by shifting by a constant magnitude the letters of the alphabet.

2.2 Chicken and Egg: Information or Probability?

Let’s move on to the next point: is there information without probability? Which
of the two is the primary concept? How to take into account the semantic value of
the information transmitted? The axiomatic Information Theory, created by Profes-
sors Kampé de Fériet and Forte around 30 years ago, provides an answer to these
questions.

In the practical situations in which the theory developed by Wiener and Shan-
non has been successfully applied, the probabilities used originate from frequencies
corresponding to the repetition of an experience a large enough number of times.

It is certainly valid to use the expressions of uncertainty and information for a
priori probabilities, but such probability values cannot be determined if it is not in
function of all the information available on how a result is produced; for example, if
it is known that the center of gravity is not the same as the geometric center of the
die, then the same probability should not be assigned to the six faces.

It is however often the case that situations in which there is undoubtedly informa-
tion do not allow for the consideration of probability; a classic example of this type
is the figure of Cardinal Roncalli, whose election as Pope John XXIII by means of
a single conclave would prevent any frequentist consideration. In addition, in a poll
prior to such election, the opinion of a taxi driver, for example, should not be given
the same value as that of a high-ranking Vatican official, and, yet, before the election
there was ‘uncertainty’ and, once the result was known, ‘information’.

Another example: when trying to approximate the value of pi, the successive
bounding intervals that may be obtained (3.1 < π < 3.2, 3.14 < π < 3.15, etc.)
increase the information received, which could bemeasured, aside from some scaling
factor, by the time required to achieve the desired precision. This perfectly valid
measure also differs from the framework of Shannon’s theory and it makes no sense
to speak of the probability that the π number is between certain values.

And yet another situation in which the ‘subjectivity’ of the value of information
is made clear. Take the example of a lottery that involves the random selection of
numbers from 1 to 999999 where the winning number is, by way of illustration, the
number 123456. According to the probabilistic model, the information received is
the logarithm of the number of possible outcomes. However, when reading the result,
three different readers may receive very different information: reader A, who does
not play in that draw, receives null information; reader B who owns a non winning
number receives information that may be calculated, for example, by means of the
expense incurred in purchasing it; finally a third readerC , who has awinning number,
receives a very large amount of information; the probability of 123456 winning is,
evidently, the same in all cases.
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As pointed out above, the entropy and, consequently, the amount of information
associated, do not take into account the semantic value of the results, but only their
syntactic value, regardless of the ‘importance’ of the message to be transmitted;
this has led certain authors to consider measures in which, even though it is taken
into consideration, probability alone is not considered enough. The messages to be
transmitted may have the same value for operators or for encoding and decoding
machines, but not for the human sender and receiver that, ultimately, are affected by
those messages.

In any case, there is communication between sender and receiver, embodied in
an explicit or implicit proposition (in its classical logic sense). We will assign to this
proposition a measure of the amount of information it transmits.

With the sets of objects and properties we can construct the family P of the
elementary propositions formed by the initials, their respective negations and all
the compound propositions that can be obtained from the elementary ones via the
classical operations of the distributive logic, constructing a network of propositions
F , which, together withP , provides the appropriate system to define an information
measure.

In its set theory formulation, the axiomatic Information Theory starts from a
measurable space such as that which allows for the construction of probability; but
there are certain aspects of interest that require us to find some way to examine this
initial system.

The last element, which is crucial to construct the axiomatic Information
Theory, is the concept of independence, whose analysis we will carry out by means
of propositions:

Two propositions, P and Q, are logically independent when each one does not
imply or exclude the other. But this condition may not suffice; for instance, the
proposition ‘X is a smoker’ does not imply or exclude the proposition ‘X has lung
cancer’ and vice versa: however, who wouldn’t balk at considering both propositions
as independent? If nothing else, the first allows for making predictions about the
second and therefore provides information about it. Thus, as far as information is
concerned, we must distinguish two levels of independence:

(a) The logical or syntactic level, which is evidenced by the condition of indepen-
dence shown, based on the usual logical operations.

(b) A second level, semantic, more demanding than the previous one, which judges
the independence of propositions by their meaning and that goes beyond the
scope of the information system we deal with.

These three elements form a measurable information system. Its study opens new
horizons for the study of models, more general than probabilistic ones, in which
either there is no probability or at least not only probability. Perhaps, as it has been
pointed out by some scholars of the subject, this is the connecting science able to
provide a backbone to the currently widely dispersed scientific activities of our time.
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3 The Mathematics of Imprecision: Fuzzy Sets

Both precision and certainty are false ideals.

They are impossible to attain, and therefore [...]

one should never try to be more precise

than the problem situation demands...

(Karl Popper)

The development of Mathematics applied to human problems reached a new
milestone thirty years ago when Professor Zadeh published the work Fuzzy Sets. It
is been thirty years and, as Dubois and Prade point out, “Professor Zadeh’s appeal
to look for non-conventional techniques has been misunderstood and interpreted as
an example of permissive thinking that tries to escape the rigor of Mathematics”; as
an actual fact, there are many scientists that do not want to believe in the advantages
of the model in order to adapt to the study of the phenomena that surround us, why?

First, because it is a most daring act to confront the all-too-powerful ‘modern
Mathematics’. The basis of set theory is that each element either belongs or does not
belong to any given set. Likewise, the classical logic guarantees that a proposition is
true or false. Yes or no, there is no maybe, as the saying goes.

As another example, in Mathematics a function is either continuous or discontin-
uous; it can not be continuous to a certain degree. Similarly, a matrix is symmetric or
not; it can not be somewhat symmetrical, more or less symmetrical, or symmetrical
to some degree. Similarly, a paper published in a mathematical journal is expected
to contain accurate definitions, axioms, and theorems. An article would typically
not be considered acceptable for publication if its conclusions were established like
affirmations that were not unequivocally certain.

In clear contrast to the idealized world of pure Mathematics, our perception of
the real world is full of concepts that have no sharply defined boundaries, such as
tall, fat, many, most, slowly, old, familiar, relevant, much older than, kind, etc.

And this is precisely the crux of thematter in thewords of ProfessorZadeh himself:
“The key elements in human thinking are not numbers, but labels of fuzzy sets, that
is, classes of objects in which the transition from membership to nonmembership is
gradual rather than abrupt (...). It is clear that ‘the class of all real numbers much
greater than one,’ or ‘the class of beautiful women’ (surprising example in a man
as gallant as Professor Zadeh for whom all women are beautiful), or ‘the class of
tall men’ do not constitute sets in the usual mathematical sense of the term (...)
although they play an important role in human thought, particularly in the fields of
form recognition, communication of information and abstraction”.

Once the problem was stated, what was the solution? It is often the case that
the great scientific advances are of a near-impossible comprehension for a layman
in the matter (and even for many not proficient enough). But, surprisingly, not in
this case; using again Professor Zadeh’s own words: “A fuzzy set in a referential is
characterized by a membership function which associates with each element a real
number between zero and one, its membership degree. Thus, the closer the value of
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the function at a specific point is to one, the higher the degree of membership of the
element to the set will be. When the set in question is a classical set its membership
function can take only two values, one or zero, depending on whether the element
considered belongs to the set or not”.

So easy? Well, yes, the problem was solved: there are men that are clearly tall
(degree of belonging one or next to one), others not so much (degree of membership
intermediate, between zero and one) and others that are clearly not tall (degree of
membership zero or close to zero).

In addition, the advantage of the formulation in terms of sets over a logical formu-
lation, is in the immense field provided to the new theory by the already-established
Mathematics. As an example, in the area of the Fuzzy Set Theory it is natural to refer
to the existence of fuzzy numbers (so useful to give inaccurate assessments; in exam
marks, for instance, what is the boundary between A and B grades?); or to fuzzy
functions (very useful to issue certain orders, such as ‘the heating system should be
set high if the day is cold’, or would it be better to say that if the outside thermometer
shows 2 degrees above zero, the thermostat should be set at 73 degrees, if it shows 3
it should be set at 71, etc., also specifying that the temperatures are in celsius?), etc.

Some highly regarded researchers have made fierce criticisms of fuzzy sets. Con-
sider for instance the comments made by Professor Kalman, pioneer of Systems
Theory, in 1972: “No doubt Professor Zadeh’s enthusiasm for fuzziness has been
reinforced by the prevailing climate in the U.S., one of unprecedented permissive-
ness. Fuzzification, is a kind of scientific permissiveness; it tends to result in socially
appealing slogans unaccompanied by the discipline of hard scientificwork andpatient
observation. Let me say quite categorically that there is no such thing as a fuzzy sci-
entific concept, in my opinion”.

On the other hand, on top of the criticism of mathematicians that we could refer
to as ‘pure’, is the attack of statisticians, particularly Bayesians, who have tried to
consider the new working tool in situations of uncertainty as a particular case of
their own methods. It seemed as if they had armed themselves to the teeth to defend
their stronghold, that of decisions in an uncertain environment, within which they
considered themselves the legitimate and unique residents, showing most of the time
a great ignorance of the model. There are many who have tried to explain the degrees
of propriety, properly normalized, as probabilities, ignoring that in many situations
of a fuzzy nature it makes no sense to talk about probability: there is no probability
involved in JohnDoebeing high, or today being a goodday; that is, there are situations
that depend on the vagueness of the concepts used (high, good) and not on chance.

As for the ‘confrontation’ with statistical methods, I shall tell you a little story
that happened to me not many years ago. I had been invited to form part of a doctoral
thesis committee in which a model of medical diagnosis supported by probabilistic
calculations was presented. During the defense, fuzzy models were rejected with a
number of somewhat unconvincing arguments. Imagine my surprise when I realized
that the input variables presented took ‘values’ that met the fuzzy criteria such as
‘much’, ‘little’, ‘fever’, ‘high cholesterol’, etc.!

The confrontation is meaningless and, as the title of the lecture given by Zadeh
last year in this University smartly pointed out, “the theory of probability and fuzzy
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logic are complementary, rather than competitive”. Moreover, as it has already been
pointed out with regard to other mathematical aspects, the concept of probability and
the usual statistical techniques may also be blurred.

Today, as if it were a mythological episode, creatures have almost devoured their
master: it is not difficult to find those who ask for ‘Fuzzy sets’ in the same language
as they use for the ‘Pythagorean theorem’, the ‘Hilbert spaces’ or the ‘Gaussian
distribution’.

3.1 Fuzzy Technology and...

These days applications of fuzzy logic are too current to ignore; a new technology,
mainly developed in Japan, is born. Fuzzy drivers are simple and robust; but, perhaps
more importantly, fuzzy control allows for the execution of tasks, such as parking
a car, which do not lend themselves to resolution by conventional methods: the
focus drivers of Sanyo or Panasonic camcorders, the Nissan ABS brake controller,
the Mitsubishi air conditioner, the Sony writing and the Hitachi speech recognition
systems, the subway control system in the town of Sendai, microwave controllers,
dryers, lifts, and a long etcetera that provides better and cheaper features to the users,
ultimately collaborating to achieve a better quality of life and greater freedom of the
human being. Fuzzy is well seen by users, is a guarantee of good operation; fuzzy
is, in marketing terms, a ‘selling point’.

Nonetheless, too many scientists remain unconvinced that fuzzy logic has some-
thing important to offer. The aforementioned regard for what is quantitative and
precise, and the disdain for the qualitative and imprecise, is too deep-rooted in soci-
ety to let it go without resistance.

Let us briefly discuss some recent details about fuzziness: Zadeh uses the term
granulation to refer to the process of forming fuzzy classes of objects, which are
grouped by similarity. When the number of different classes to be handled is too
high, such classes should be grouped together to form granules. This is what we do
to determine, for example, the colors: the range of greens is so wide that the green
color becomes a cluster, of course not at all sharp, of the different wavelengths that
correspond to different shades of green.

The need for granulation is thus due to the limited ability of people to store details.
From this point of view, fuzziness and granulation are consequences of complexity,
and play a key role in the tolerance of imprecision to achieve efficiency, robustness
and low cost in the final product.

One important implication of this observation, as Zadeh pointed out in his investi-
ture as doctor honoris causa by our University, is that with the rapid growth in com-
plexity of the information processing tasks that the computers are asked to perform,
we are reaching a point at which computers will have to be designed to be able to
process fuzzy information.

In fact, it is the ability tomanipulate fuzzy concepts that distinguishes human intel-
ligence from the intelligence of current generation computers. Without that ability,
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we can not build machines able to pick up non-stereotypical stories, translate well
from one natural language to another, or do many other jobs that humans can do
with ease because of their ability to granulate and manipulate the remaining fuzzy
concepts.

All this is leading to a situation that scandalizes the more orthodox scientists: we
are providing means to obtain results that can be denominated ‘computation with
words’. This will sometimes be used as a substitute to the usual computation using
numbers, not in vain the variables that fuzzy logic deals with are called linguistic
variables, and not in vain this system is the one used by humanity from immemorial
time to calculate and reason when the information available is not accurate enough
to justify the use of numbers. This takes advantage of the tolerance of imprecision to
achieve efficiency and better relationship with reality. And, furthermore, provides a
basis for the development of programming languages that could approach the natural
languages in appearance and in capacity for expression.

Neil Postman says in Technopolis that moreMathematics, more science andmore
computers will not solve the problem of hunger, loneliness, etc. and that the com-
puterized society is dangerously moving towards a global and authoritarian society.

I do not share this pessimism: I think perhaps in a few years the computation with
words will become a methodology in its own right, whose final model is the human
mind. Maybe this will get the machines to become a little more ‘human’.

4 Epilogue

I started this lesson by referring to Professor Rey Pastor and his inaugural lecture
of the 1913–1914 academic year and, despite the years that have gone by, it has
not been possible for organizations of all kinds to take advantage of professionals
of the areas of Statistics, Operations Research and Applied Mathematics in general,
which,with the rigor characterizing the so-called exact sciences,would give guidance
to management for the appropriate decision making in the presence of uncertainty,
polishing the information so that it is presented adequately to the eye of themanagers.

Other countries and also, within Spain itself, other more dynamic regions have
already understood this, and today authentic armies of mathematicians crowd some
departments of the world’s largest banks or powerful multinational corporations.

What is going to happen in Asturias? Going back again to the words of Professor
Julio Rey we could say that “in Mathematics it is not Asturias (Professor Rey said
Spain) a modern nation; but it is neither a decadent nation nor an inept nation.
It is simply a backward nation, which has not yet been incorporated into modern
civilization, but that has retained enough energy and enthusiasm to bridge the gap
caused by years of isolation and disorientation”.

Today, fortunately, from the recreated Faculty of Sciences,we have been providing
the Asturian society for the last two years with classes of mathematicians, with a
preparation we are proud of (in which the practical aspect of theories is considered
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fundamental without neglecting the formal one) and capable of providing the society
with the resources it needs for its development.

They are ready. It is now the society that should give them the opportunity to
deliver: in teaching, in private organizations, in public administrations... The Uni-
versity has played its part: the preparation. It has been a good and intelligent move.
Asturian society has to play theirs, employment in even a more smart way, so that
the future of Mathematics in Asturias is not uncertain.
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The Mathematics of Chance: Probability,

Statistics and Applications



Using Mathematica to Calculate Shortest
Confidence Intervals

Ramón Ardanuy

Abstract We discuss how to use Mathematica software to determine shortest con-
fidence intervals for bell-shaped continuous probability distributions. This is done
both for situations corresponding to classical statistics (variances and standard devi-
ations of a normal distribution) as well as Bayesian statistics (posterior distributions
corresponding to betas, gammas and inverse-gammas).

1 Preliminaries

In the evaluation of confidence intervals of a given parameter θ drawn from a sample
X = (X1, . . . Xn) with size n, a standard procedure in classical statistics is using
a certain random variable T = T (X, θ), the pivot function, whose distribution is
known, see Bartoszynski and Niewiadomska-Bugaj [1] and Rohatgi [7]; by contrast,
Bayesian statistics works with the posterior distribution of θ , ξη(θ |x), see De Groot
[3]. In both cases, if γ denotes the confidence degree and h(t) the density of the
distribution, the problem is obtaining an interval (a, b) such that

∫ b

a
h(t)dt = γ.

To this end we fix two values α1, α2 ≥ 0 satisfying α1 + α2 = 1 − γ and

∫ a

−∞
h(t)dt = α1,

∫ ∞

b
h(t)dt = α2.

Namely, the limits of the confidence interval a and b are taken to be the quantiles α1

and 1 − α2 of the probability distribution (see Fig. 1); these values a and b are those
that are then used to derive the confidence interval for the parameter θ .
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Fig. 1 Calculation of values
a and b

For convenient use of statistical tables, in practice it is convenient to take
α1 = α2 = (1 − γ )/2. When the density h is symmetric and bell-shaped the cor-
responding confidence interval is of minimum length, however, when these assump-
tions are waived the problem arises as to how to choose a, b to insure that the relevant
confidence interval has expected minimum length, see Guenter [4], Kendall and Stu-
art [6], Wilks [9, 10], Zacks [12], etc. The associated numerical problem is tedious
but in some cases it can be solved using Mathematica software.

2 Confidence Interval for the Variance and Standard
Deviation of a Normal

Let X = (X1, . . . Xn) be a sample with size n drawn from a normal population

Xi
iid= N (μ, σ 2)with samplemean X̄ . Depending onwhether the “theoreticalmean”

μ is or not known the following estimators for the variance are used

σ̂ 2 = 1

n

n∑
i=1

(Xi − μ)2 or σ̂ 2 = 1

n − 1

n∑
i=1

(Xi − X)2. (1)

In both cases they define an unbiased estimator with g = n or g = n − 1 degrees
of freedom. To evaluate the confidence interval for σ 2, and also for σ , one uses the
pivot function

T = gσ̂ 2

σ 2
∼ χ2

g (2)

which has a chi-squared distribution with g degrees of freedom. Requiring that the
unknowns a, b satisfyP

(
a < χ2

g < b
) = γ , confidence intervals for the variance and

standard deviation follow from

γ = P

(
a <

gσ̂ 2

σ 2
< b

)
= P

(gσ̂ 2

b
< σ 2 <

gσ̂ 2

a

)
= P

(√
gσ̂ 2

b
< σ <

√
gσ̂ 2

a

)
.

As commented, in practice one takes α1 = α2 = (1 − γ )/2 that give the standard
quantiles

a0 = χ2
g;(1−γ )/2 , b0 = χ2

g;(1+γ )/2. (3)
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However to obtain shortest confidence intervals we minimize the lengths

L = gσ̂ 2

(
1

a
− 1

b

)
or L =

√
gσ̂ 2

(
1√
a

− 1√
b

)
, (4)

subject to

P

(
a < χ2

g < b
)

= γ. (5)

Denoting as Hg(t) and hg(t) the corresponding cdf and pdf of the χ2
g then (4) and

(5) are equivalent to

minimize:
1

a
− 1

b
or

1√
a

− 1√
b

subject to: Hg(b) − Hg(a) = γ.

To this end we resort to Lagrange multipliers method. In the case of the variance we
differentiate the function

ϕ(a, b, λ) = 1

a
− 1

b
− λ

(
Hg(b) − Hg(a) − γ

)

and obtain

0 = ∂ϕ(a, b, λ)

∂a
= − 1

a2
+ λhg(a) =⇒ a2hg(a) = 1

λ

0 = ∂ϕ(a, b, λ)

∂b
= 1

b2
− λhg(b) =⇒ b2hg(b) = 1

λ

0 = ∂ϕ(a, b, λ)

∂λ
= − (

Hg(b) − Hg(a) − γ
)

which in turn reduces to a system for two unknowns a, b

Hg(b) − Hg(a) = γ a2hg(a) = b2hg(b). (6)

Tables with the results for the unknowns a, b can be found in Tate and Klett [8], and
also in Bartoszynski and Niewiadomska-Bugaj [1].

The connection between the length of the shortest interval associated with the
pivot function (2) that follows solving (6) and that obtained from (3) is

r =
(
1

a
− 1

b

) / (
1

a0
− 1

b0

)
.
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For the standard deviation we must consider the function

ϕ(a, b, λ) = 1√
a

− 1√
b

− λ
(
Hg(b) − Hg(a) − γ

)
.

By differentiation we obtain a system for two unknowns a, b

Hg(b) − Hg(a) = γ a3/2hg(a) = b3/2hg(b). (7)

Crisman [2] give tables with the values of a and b. In this case the length of the
shortest interval that follows solving (7) and that obtained from (3) are related as

r =
(

1√
a

− 1√
b

) / (
1√
a0

− 1√
b0

)
.

Systems (6) and (7) are conveniently solved using Mathematica software (see Wol-
fram [11] for the corresponding programming language), in which the data to be
introduced are the confidence level gamma and the degrees of freedom g, that in the
example solved are gamma=0.95, g=10.

(* FOR THE C.I. OF THE VARIANCE AND STANDARD DEVIATION *)

Clear[gamma, g, distribution, a0, b0, t, h, H, w, a, b, r];

(* DATA *)

gamma = 0.95; (* CONFIDENCE COEFFICIENT *)

g = 10; (* DEGREES OF FREEDOM *)

(* COMPUTATIONS *)

Print["Data: Conf. coeff. gamma = ", gamma, " d.f. g = ", g];

distribution := ChiSquareDistribution[g];

a0 = Quantile[distribution, (1 - gamma)/2];

b0 = Quantile[distribution, (1 + gamma)/2];

Print["Usual solution: a0 = ", a0, " b0 = ", b0];

h[t_] := PDF[distribution, t];

H[t_] := CDF[distribution, t];

(* RESULTS FOR THE VARIANCE *)

w = FindRoot[{H[b] - H[a] == gamma,

aˆ2*h[a] == bˆ2*h[b]}, {{a, a0}, {b, b0}}];

{a, b} = {a, b} /. w;

r = (1/a - 1/b)/(1/a0 - 1/b0);

Print["Shortest solution for sigmaˆ2: a = ", a, " b = ", b,

" r = ", r];

(* RESULTS FOR THE STANDARD DEVIATION *)

w = FindRoot[{H[b] - H[a] == gamma,

aˆ(3/2)*h[a] == bˆ(3/2)*h[b]}, {{a, a0}, {b, b0}}];

{a, b} = {a, b} /. w;

r = (1/Sqrt[a] - 1/Sqrt[b])/(1/Sqrt[a0] - 1/Sqrt[b0]);
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Print["Shortest solution for sigma: a = ", a, " b = ", b,

" r = ", r];

Data: Conf. coeff. gamma = 0.95 d.f. g = 10
Usual solution: a0 = 3.24697 b0 = 20.4832
Shortest solution for sigmaˆ2: a = 3.88553 b = 27.2662 r = 0.851563
Shortest solution for sigma: a = 3.77287 b = 24.2303 r = 0.933155

Thus for the variance we obtain r = 0.851563 which means that the length of
the shortest interval associated with the pivot function (2) is 85.16% compared to
the one usually used. Corresponding to the standard deviation one obtains a ratio of
93.32%.

3 Confidence Interval for Ratios of Variances and Standard
Deviations of Independent Normal Distributions

In classical statistics one currently uses the pivot function

T = σ̂ 2
1 /σ̂ 2

2

σ 2
1 /σ 2

2

≡ Fg1,g2 . (8)

Here σ̂ 2
1 , σ̂ 2

2 are independent estimators of the group variances similar to those given
by (1) depending on whether or not the corresponding means are known. Hence T is
a ratio of two independent appropriately scaled chi-square variables with parameters
g1, g2 and so it has a Fisher–Snedecor distribution Fg1,g2 .

Confidence intervals for the variance ratio σ 2
1 /σ 2

2 and standard deviation ratio
σ1/σ2 are then

γ = P

(
a <

σ̂ 2
1 /σ̂ 2

2

σ 2
1 /σ 2

2

< b

)
= P

(
σ̂ 2
1 /σ̂ 2

2

b
<

σ 2
1

σ 2
2

<
σ̂ 2
1 /σ̂ 2

2

a

)

= P

(
σ̂1/σ̂2√

b
<

σ1

σ2
<

σ̂1/σ̂2√
a

)
.

In practice in the construction of the confidence interval it is useful to choose
parameters as α1 = α2 = (1 − γ )/2 so as to guarantee equality of probabilities at
the end-points. To this end we must choose the quantiles

a0 = Fg1,g2;(1−γ )/2 b0 = Fg1,g2;(1+γ )/2. (9)
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Here we are interested in minimizing the respective lengths

L = σ̂ 2
1

σ̂ 2
2

(
1

a
− 1

b

)
or L = σ̂1

σ̂2

(
1√
a

− 1√
b

)
, (10)

under the condition
P

(
a < Fg1,g2 < b

)
= γ. (11)

Denoting as Hg1,g2 and hg1,g2 the cumulative distribution and density functions of
Fg1,g2 Eqs. (10) and (11) read

minimize:
1

a
− 1

b
or

1√
a

− 1√
b

subject to: Hg1,g2(b) − Hg1,g2(a) = γ.

To this end we use Lagrange multipliers method, and obtain, in the case of the
ratio of variances the equations for the unknowns a, b

Hg1,g2(b) − Hg1,g2(a) = γ, b2hg1,g2(b) = a2hg1,g2(a). (12)

John [5] gives tables to solve this problem.
The lengths of the shortest intervals associated to the pivot function (8) obtained

via (12) and standard obtained from (9) are related as

r =
(
1

a
− 1

b

) / (
1

a0
− 1

b0

)
.

In the case of the ratio of standard deviations we obtain the system of equations

Hg1,g2(b) − Hg1,g2(a) = γ, a3/2hg1,g2(a) = b3/2hg1,g2(b). (13)

The connection between the shortest intervals associated to the pivot function (8)
obtained via (13) and (9) is

r =
(

1√
a

− 1√
b

) / (
1√
a0

− 1√
b0

)
.

Systems (12) and (13) can be solved numerically using the Mathematica code given
below.The relevant parameters are the confidence level gammaalongwith the degrees
of freedom g1, g2. In the example we take gamma equal to 0.90, g1 = 5 and g2 = 10.
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(* FOR THE C.I. OF THE RATIOS OF VARIANCES AND

STD. DEVIATIONS *)

Clear[gamma,g1,g2,distribution,a0,b0,t,h,H,w,a,b,r];

(* DATA *)

gamma = 0.90; (* CONFIDENCE COEFFICIENT *)

g1 = 5; (* df OF NUMERATOR *)

g2 = 10; (* df OF DENOMINATOR *)

(* COMPUTATIONS *)

Print["Data: Conf. coeff. gamma = ", gamma,

"d.f. Num. g1 = ", g1," d.f. Den. g2 = ", g2];

distribution := FRatioDistribution[g1, g2];

a0 = Quantile[distribution, (1 - gamma)/2];

b0 = Quantile[distribution, (1 + gamma)/2];

Print["Usual solution: a0 = ", a0,

" b0 = ", b0];

h[t_] := PDF[distribution, t];

H[t_] := CDF[distribution, t];

(* RESULTS FOR THE RATIO OF VARIANCES *)

w = FindRoot[{H[b] - H[a] == gamma,

aˆ2*h[a] == bˆ2*h[b]}, {{a, a0}, {b, b0}}];

{a, b} = {a, b} /. w;

r = (1/a - 1/b)/(1/a0 - 1/b0);

Print["Shortest solution for sigma1ˆ2/sigma2ˆ2:

a = ", a, " b = ", b, " r = ", r];

(* RESULTS FOR THE RATIO OF STANDARDS DEVIATIONS *)

w = FindRoot[{H[b] - H[a] == gamma,

aˆ(3/2)*h[a] == bˆ(3/2)*h[b]}, {{a, a0}, {b, b0}}];

{a, b} = {a, b} /. w;

r = (1/Sqrt[a] - 1/Sqrt[b])/(1/Sqrt[a0] - 1/Sqrt[b0]);

Print["Shortest solution for sigma1/sigma2:

a = ", a, " b = ", b, " r = ", r];

Data: Conf. coeff. gamma = 0.9 d.f. Num. g1 = 5 d.f. Den. g2 = 10
Usual solution: a0 = 0.21119 b0 = 3.32583
Shortest solution for sigma1ˆ2/sigma2ˆ2: a = 0.300861 b = 9.55443

r = 0.725947
Shortest solution for sigma1/sigma2: a = 0.284173 b = 5.43858

r = 0.889052

Note that for the variances ratio one obtains r = 0.725947; this means that the
length of the shortest interval associated to the pivot function (8) is 72.59 % times
to that usually used; by contrast it is 88.91% times for the standard deviation ratio.
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4 Bayesian Confidence Intervals

Using a Bayesian statistics confidence intervals are evaluated via the posterior dis-
tribution of parameter θ . One needs to determine end-points a < b such that

P

(
a < θ < b

∣∣∣X = x
)

= γ (14)

To this end we fix two values α1, α2 ≥ 0 and α1 + α2 = 1 − γ. and define a and b
satisfying

P

(
θ ≤ a

∣∣∣X = x
)

= α1,P
(
θ ≥ b

∣∣∣X = x
)

= α2.

Under the additional assumption that ξη(θ |x) has a density h(θ) then a is the
quantile α1 while b is the quantile 1 − α2 of the posterior probability distribution
(see Fig. 1). The confidence interval follows from these values. In applications it
is convenient to take α1 = α2 = (1 − γ )/2 since then statistical tables provide the
values of a, b for given confidence levels. When the density h is symmetric and
bell-shaped the corresponding confidence interval is of minimum length. If this is
not the case one needs to decide how to choose a, b to guarantee that the relevant
confidence interval has expected minimum length subject to condition (14), namely

minimize L = b − a

subject to H(b) − H(a) = γ.

Lagrange multiplier method yields then system

H(b) − H(a) = γ, h(b) = h(a). (15)

The connection between the shortest length associated to (15) and standard interval
a0 < θ < b0 corresponding to equal probabilities α1 = α2 = (1 − γ )/2 is

r = b − a

b0 − a0
.

For a beta distribution β(u, v), which usually appears when estimating a proportion
θ , and whose density functions is:

h(θ) = 1

B(u, v)
θu−1(1 − θ)v−1 ∝ θu−1(1 − θ)v−1, 0 < θ < 1

conditionsu > 1, v > 1guarantee a bell-shapeddistribution.To implement the previ-
ous ideas we have used the Mathematica code given below, corresponding to gamma
equal to 0.95 and distribution BetaDistribution[3, 8].
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(* BAYESIAN CONFIDENCE INTERVAL *)

Clear[gamma, a, a0, b, b0, distribution, h, H, theta, w, r];

(* DATA *)

gamma = 0.95; (* CONFIDENCE COEFFICIENT *)

distribution := BetaDistribution[3, 8];

(* COMPUTATIONS *)

a0 = Quantile[distribution, (1 - gamma)/2];

b0 = Quantile[distribution, (1 + gamma)/2];

h[theta_] := PDF[distribution, theta];

H[theta_] := CDF[distribution, theta];

w = FindRoot[{H[b] - H[a] == gamma, h[a] == h[b]},

{{a, a0}, {b, b0}}];

{a, b} = {a, b} /. w;

r = (b - a)/(b0 - a0);

(* RESULTS *)

Print["Data: Conf. coeff. gamma = ", gamma,

"Distribution = ", distribution];

Print["Usual C.I.: a0 = ", a0, " b0 = ", b0];

Print["Shortest C.I.: a = ", a, " b = ", b];

Print["Ratio of C.I.’s lengths: r = ", r];

Data: Conf. coeff. gamma = 0.95 Distribution = BetaDistribution[3,8]
Usual C.I.: a0 = 0.0667395 b0 = 0.556095
Shortest C.I.: a = 0.0464466 b = 0.522428
Ratio of C.I.’s lengths: r = 0.97267

The length ratio that follows is r = 0.97267 which means that the length of the
shortest interval is 97.27% times the one usually used.

To estimate the mean of a Poisson variable, the Gamma distribution Γ (p, α), p,
α > 0 with density

h(θ) = 1

α pΓ (p)
e−θ/αθ p−1 ∝ e−θ/α θ p−1 θ > 0

plays an important role. To guarantee a bell-shaped form it is convenient to choose
the parameter p > 1. In this case we use the previous code with given data for the
confidence level gamma, posterior distribution, specific values for p, α > 0 and the
sentence distribution:=GammaDistribution [p, α]. In the concrete case gamma equal
to 0.90, p = 3, α = 8 the following results are obtained:

Data: Conf. coeff. gamma = 0.9 Distribution = GammaDistribution[3,8]
Usual C.I.: a0 = 6.54153 b0 = 50.3663
Shortest C.I.: a = 3.53062 b = 43.8334
Ratio of C.I.’s lengths: r = 0.919634
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For this example the length ratio is r = 0.919634 which means that the length of
the shortest interval is 91.96% times the one usually used.

Corresponding to the problem of estimating themean of an exponential variable or
the variance of a normal the inverse-Gamma distribution IΓ (p, α), p, α > 0 usually
comes about. The relevant pdf has the form

h(θ) = α p

Γ (p)
e−α/θ θ−1−p ∝ e−α/θ θ−1−p θ > 0.

In this case we use again the previous code with the corresponding degree of
confidence level gamma, posterior distribution, specific values for p, α > 0 and
the sentence distribution:= InverseGammaDistribution [p, α]. In the concrete case
gamma equal to 0.95, p = 4, α = 10 the following results are obtained:

Data: Conf. coeff. gamma = 0.95

Distribution = InverseGammaDistribution[4,10]

Usual C.I.: a0 = 1.14061 b0 = 9.17545

Shortest C.I.: a = 0.802739 b = 7.39994

Ratio of C.I.’s lengths: r = 0.821075

For this example the length ratio is r = 0.821075 which means that the length of
the shortest interval is 82.11% times the one usually used.

Finally, the same or similar type ofMathematica program can be used to determine
shortest confidence intervals for other continuous bell-shaped posterior distributions.
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An Optimal Transportation Approach
for Assessing Almost Stochastic Order

Eustasio del Barrio, Juan A. Cuesta-Albertos and Carlos Matrán

Abstract When stochastic dominance does not hold, we can improve agreement to
stochastic order by suitably trimming both distributions. In this work we consider
the L2–Wasserstein distance,W2, to stochastic order of these trimmed versions. Our
characterization for that distance naturally leads to consider aW2-based index of dis-
agreement with stochastic order, εW2(F,G). We provide asymptotic results allowing
to test H0 : εW2(F,G) ≥ ε0 versus Ha : εW2(F,G) < ε0, that, under rejection,would
give statistical guarantee of almost stochastic dominance. We include a simulation
study showing a good performance of the index under the normal model.

1 Introduction

Let P, Q be probability distributions on the real linewith distribution functions (d.f.’s
in the sequel) F,G, respectively. Stochastic dominance of Q over P , denoted P ≤st

Q, is defined in terms of the d.f.’s by F(x) ≥ G(x) for every x ∈ R (throughout we
will also use the alternative notation F ≤st G). The meaning of this relation is that
random outcomes produced by the second law tend to be larger than those produced
by the first one.We gain a better understanding of this stochastic order by considering
a quantile representation. For a d.f. F , the quantile function associated to F , that we
will denote by F−1, is defined by

F−1(t) = inf{x : t ≤ F(x)}, t ∈ (0, 1).
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The following well-known statements (see e.g. [14]) are equivalent to F ≤st G:

(a) There exist random variables X,Y defined on some probability space (�, σ, μ),
with respective laws P and Q (L (X) = P,L (Y ) = Q), satisfying μ(X ≤
Y ) = 1.

(b) F−1(t) ≤ G−1(t) for every t ∈ (0, 1).

Quantile functions (also called ‘monotone rearrangements’ in other contexts) are
characterized by F−1(t) ≤ x if and only if t ≤ F(x). Therefore it is straightforward
that, when considered as random variables defined on the unit interval with the
Lebesgue measure, they satisfy L (F−1) = P,L (G−1) = Q. This representation
quickly shows that (a) and (b) are equivalent and, more importantly in the present
setting, allows us to relate characteristics and measure agreement or disagreements
with the stochastic order.

From the previous considerations it becomes clear that guaranteeing stochastic
dominance, F ≤st G, should be the goal when comparing, for instance, treatments.
However, the rejection of F �st G, on the basis of two data samples is an ill posed
statistical problem: As showed in [7] and noted in [12, 15], or [4], the ‘non-data test’,
namely the test which rejects with probability α, regardless the data, is uniformly
most powerful for testing the nonparametric hypotheses H0 : F �st G versus Ha :
F ≤st G. This fact motivates recent research looking for suitable indices measuring
approximate versions of stochastic dominance. Here, suitability of an index must
be understood in terms of computability and interpretability, but also in terms of
statistical performance. Usually, as already suggested in a general context in [13],
such measures of nearness involve the use of some kind of distance to the null.
This will also be the approach here, with the choice of the L2-Wasserstein distance
between probabilities. For P, Q in the setF2(R

d) of Borel probabilities on R
d with

finite second order moments, this distance is defined as

W2(P, Q) :=min

√∫
‖x − y‖2dν(x, y), ν ∈ F2(R

d×R
d)with marginals P, Q.

In the univariate case,W2 equals the L2-distance between quantile functions, namely,

W2(P, Q) =
√(∫ 1

0
|F−1(t) − G−1(t)|2dt

)
. (1)

Statistical applications based on optimal transportation, and particularly on the L2

version of the Wasserstein distance, are receiving considerable attention in recent
times (see e.g. [8–10, 17] or [5]). We should also mention our papers [1, 2], dealing
with similarity of distributions (as a relaxation of homogeneity) through this distance,
and also [4] (and [3]) which introduced an index of disagreement from stochastic
dominance based on the idea of similarity. The key to this index is the existence, for
a given (small enough) π, of mixture decompositions
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F = (1 − π)F̃ + πHF

G = (1 − π)G̃ + πHG,
for some d.f.’sF̃, HF , G̃, HG with F̃ ≤st G̃. (2)

If model (2) holds then stochastic order holds after removing contaminating π -
fractions from each population. The minimum π compatible with (2), denoted by
π(F,G), can be taken as a measure of deviation from stochastic order, see [4] for
details. The analysis in [4] is based on the connection between contamination models
and trimmed probabilities. We recall that an α-trimming of a probability, P , is any
other probability, say P̃ , such that

P̃(A) =
∫
A
τdP for every event A

for some function τ taking values in
[
0, 1

1−α

]
. Like the trimmingmethods, commonly

used inRobust Statistics, consistingof removingdisturbingobservations, the function
τ allows to discard or downplay the influence of some regions on the sample space.
On the real line, writing Rα(F) for the set of trimmings of F , it turns out (see [4])
that

F = (1 − α)F̃ + αHF for some d.f.’s F̃, HF if and only if F̃ ∈ Rα(F). (3)

The contaminated stochastic order model (2) can also be recast in terms of trim-
mings. If we denote

Fst := {(H1, H2) ∈ F2 × F2 : H1 ≤st H2},

then, for F,G ∈ F2, (2) holds if and only if

(Rπ (F) × Rπ (G)) ∩ Fst �= ∅ (4)

or, equivalently (this follows from compactness ofRπ (F) × Rπ (G) with respect to
d2; we omit details), if and only if

d2(Rπ (F) × Rπ (G),Fst ) = 0, (5)

where d2 denotes the metric on the set F2 × F2 given by

d2((F1, F2), (G1,G2)) =
√
W 2

2 (F1,G1) + W 2
2 (F2,G2)

and, for A, B ⊂ F2 × F2, d2(A, B) = infa∈A,b∈B d2(a, b).
For fixed π , d2(Rπ (F) × Rπ (G),Fst ) can be used as a measure of deviation

from the contaminated stochastic order model (2). In this work we obtain a simple
explicit characterization of this measure (see Theorem2.1 below) that can be used
for statistical purposes. Later, we use this characterization to introduce a new index,
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εW2 , see (9), to evaluate disagreement with respect to the (non-contaminated) sto-
chastic order. We also provide asymptotic theory (Theorem2.2) about the behavior
of this index, that allows addressing the goal of statistical assessment of εW2 -almost
stochastic dominance. This index has some similarity with that proposed in [15] for
which, in contrast, asymptotics are not yet available.

The remaining sections of this work are organized as follows. Section2 presents
the announced results, introduces the new index εW2 and discusses its application in
the statistical assessment of almost stochastic order. This includes an illustration of
the meaning of the index in the case of normal distributions and a small simulation
study. Finally, the more technical proof of Theorem2.2 is given in an appendix.

2 Main Results

A fact that eases the use of trimming in the stochastic dominance setting is that the
set Rα(F) has a minimum and a maximum for the stochastic order. Both can be
easily characterized as follows (see Proposition 2.3 in [4]).

Proposition 2.1 Consider a d.f. F and π ∈ [0, 1). Define the d.f.’s

Fπ (x) = max
(

1
1−π

(F(x) − π), 0
)

and Fπ (x) = min
(

1
1−π

F(x), 1
)
.

Then Fπ , Fπ ∈ Rπ (F) and any other F̃ ∈ Rπ (F) satisfies Fπ ≤st F̃ ≤st Fπ .

Keeping the notation and recalling the characterization of the stochastic order in
terms of quantile functions, a simple computation shows the relations

(Fπ )−1(t) = F−1((1 − π)t), (Fπ )−1(t) = F−1(π + (1 − π)t), (6)

so we can restate this proposition in the following new way.

Proposition 2.2 If F̃ ∈ Rπ (F), then its quantile function satisfies

F−1((1 − π)t) ≤ F̃−1(t) ≤ F−1(π + (1 − π)t), 0 < t < 1. (7)

Weuse (7) to proveour next result, the announced characterization ford2(Rπ (F)×
Rπ (G),Fst ), a quantity that measures deviation from the contaminated stochastic
order model (2). We keep the notation in (6) and define

(Lπ )−1(t) =
{

(Fπ )−1(t) if(Fπ )−1(t) ≤ (Gπ )−1(t)
1
2 ((Fπ )−1(t) + (Gπ )−1(t)) if(Fπ )−1(t) > (Gπ )−1(t)

(Uπ )−1(t) =
{

(Gπ )−1(t) if(Fπ )−1(t) ≤ (Gπ )−1(t)
1
2 ((Fπ )−1(t) + (Gπ )−1(t)) if(Fπ )−1(t) > (Gπ )−1(t).
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Theorem 2.1 With the above notation, if F,G ∈ F2, then L−1
π , U−1

π are the quantile
functions of a pair (Lπ ,Uπ ) ∈ Fst . Furthermore, if x+ := max(x, 0),

d2(Rπ (F) × Rπ (G),Fst ) = d2((Fπ ,Gπ ), (Lπ ,Uπ ))

=
√
1

2

∫ 1

0
(F−1((1 − π)t) − G−1(π + (1 − π)t))2+dt .

Proof To see that (Lπ )−1 is a quantile function we note that

(Lπ )−1(t) = min
(
(Fπ )−1(t), 1

2

(
(Fπ )−1(t) + (Gπ )−1(t)

))
.

This shows that (Lπ )−1 is nondecreasing and left continuous, hence a quantile
function. That Lπ ∈ F2 follows from the elementary bounds

− (∣∣(Fπ )−1(t)
∣∣ + ∣∣(Gπ )−1(t)

∣∣) ≤ (Lπ )−1(t) ≤ (Fπ )−1(t).

A similar argument works forUπ . Obviously Lπ ≤st Uπ and, therefore, (Lπ ,Uπ ) ∈
Fst . Now, for any (U1,U2) ∈ Rπ (F) × Rπ (G) and (V1, V2) ∈ Fst we have
U−1

1 (t) ≥ (Fπ )−1(t),U−1
2 (t) ≤ (Gπ )−1(t),V−1

1 (t) ≤ V−1
2 (t).Wedefine Aπ := {t ∈

(0, 1) : (Fπ )−1(t) > (Gπ )−1(t)}. Then

d2((U1,U2), (V1, V2)) =
∫ 1

0
((U−1

1 (t) − V−1
1 (t))2 + (U−1

2 (t) − V−1
2 (t))2)dt

≥
∫
Aπ

((U−1
1 (t) − V−1

1 (t))2 + (U−1
2 (t) − V−1

2 (t))2)dt

≥
∫
Aπ

(((Fπ )−1(t) − (Lπ )−1(t))2 + ((Gπ )−1(t) − (Uπ )−1(t))2)dt

=
∫ 1

0
(((Fπ )−1(t) − (Lπ )−1(t))2 + ((Gπ )−1(t) − (Uπ )−1(t))2)dt

= d2((Fπ ,Gπ ), (Lπ ,Uπ )),

where the second inequality is just the trivial fact that if f > g, then the minimum
value mina,b,c,d(a − b)2 + (c − d)2, for a ≥ f, c ≤ g, b ≤ d is just attained at a =
f , c = g, b = d = f +g

2 . To complete the proof we note that

d2((Fπ ,Gπ ), (Lπ ,Uπ )) = 1

2

∫
Aπ

((Fπ )−1(t) − (Gπ )−1(t))2dt

= 1

2

∫ 1

0
(F−1((1 − π)t) − G−1(π + (1 − π)t))2+dt. �
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Particularizing for π = 0, we have the following corollary of Theorem2.1:

Corollary 2.1 Under the assumptions in Theorem2.1, the quantile functions L−1
0 =

inf{F−1, (F−1 + G−1)/2} and U−1
0 = sup{G−1, (F−1 + G−1)/2} verify:

d2((F,G),Fst ) = d2((F,G), (L0,U0)) =
√
1

2

∫ 1

0
(F−1(t) − G−1(t))2+dt . (8)

Also note that, avoiding the factor 1/2, the square of the distance in (8) is just
the part of W 2

2 (F,G) due to the violation of stochastic dominance. Therefore, for
distinct d.f.’s F,G the quotient

εW2(F,G) :=
∫
(F−1(t) − G−1(t))2+dt

W 2
2 (F,G)

(9)

can be considered a normalized index of such violation. It satisfies 0 ≤ εW2(F,G) ≤
1, with the extreme values 0 and 1 corresponding, respectively, to perfect stochastic
dominance of G over F and vice-versa. When εW2(F,G) < ε we would say that F
is almost stochastically dominated, at level ε, by G (w.r.t. εW2 ). We notice that [15],
following a very different motivation, introduced a related index consisting in the
quotient

∫
(G(x) − F(x))+dx/

∫ |G(x) − F(x)|dx .
The next result gives the mathematical background to carry statistical analyses

based on the index εW2(F,G). Its proof is given in the appendix.

Theorem 2.2 Let F,G be distinct d.f.’s inF2 and assume n,m → ∞ with n
n+m →

λ ∈ (0, 1). If Fn and Gm are the sample d.f.’s based on independent samples of
F and G with sizes n and m respectively, then εW2(Fn,Gm) → εW2(F,G) a.s. If,
additionally, F and G have bounded convex supports, then√

mn

m + n

(
εW2(Fn,Gm) − εW2(F,G)

) →w N (0, σ 2
λ (F,G)), (10)

where, if u±(x) = ∫ x
0 2(s − G−1(F(s)))±ds, and X,Y are r.v.’s such thatL (X) =

F and L (Y ) = G, then

σ 2
λ (F,G) = 1

W2
8(F,G)

[(1 − λ)Var(u_(X)) + λVar(u+(Y ))].

A critical analysis of the problem of assessing improvement in a treatment com-
parison from the perspective of stochastic dominance appears in [6]. It is argued there
that under, say, normality assumptions, improvement with the new treatment is often
assessed using a one sided test for the mean, while the really interesting test would
be that of F �st G versus F ≤st G. Since, as argued in the Introduction, this is not a
feasible statistical task, [6] emphasizes on the alternative, feasible goal, of testing that
slightly relaxed versions of stochastic dominance hold. In the present setting, such
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Fig. 1 Contour-plot of εW2 (N (0, 1), N (μ, σ 2)) as in (9) for different values of μ (X-axis) and σ

(Y-axis)

a strategy leads to testing, at a given confidence level, H0 : εW2(F,G) ≥ ε0 versus
Ha : εW2(F,G) < ε0, where ε0 is a small enough prefixed amount of disagreement
with the stochastic order.

Following the scheme in [4, 6], from the asymptotic normality obtained in
Theorem2.2 we propose to reject H0 if

√
nm
n+m (εW2(Fn,Gm) − ε0) < σ̂n,mΦ−1(α), (11)

where σ̂n,m is an estimator of σλ(F,G) (for example a bootstrap estimator). This
rejection rule provides a consistent test of asymptotic level α. Also,

Û := εW2(Fn,Gm) −
√

n+m
nm σ̂n,mΦ−1(α) (12)

provides an upper confidence bound for εW2(F,G) with asymptotic level 1 − α.
Let us take now a closer look at the εW2 index for distributions in a location-

scale family. For simplicity, we focus on normal laws. It is an elementary fact that
εW2 is invariant to changes in location and scale and we can, consequently, restrict
ourselves to the analysis of the values of εW2(N (0, 1), N (μ, σ 2)), μ ∈ R, σ > 0.
Moreover, it is easy to see that εW2 is constant when (μ, σ ) moves along directed
rays from (0, 1). This fact is showed in Fig. 1. We see that μ > 0 corresponds to
εW2(N (0, 1), N (μ, σ 2)) < 1

2 , with εW2(N (0, 1), N (μ, 1)) = 0, but the index can be
made arbitrarily close to 1

2 by taking σ large enough.
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Table 1 Rejection rates for εW2 (N (0, 1), N (μ, σ 2)) ≥ ε0 at levelα = .05along1,000 simulations.
Upper (resp. lower) rows show results for nonparametric (resp. parametric) comparisons. For each
σ , μ is chosen to make εW2 (N (0, 1), N (μ, σ 2)) = 0.01, 0.05 and 0.10 (first, second and third
columns, resp.)

ε0 Sample
size

σ = 1.1 μ σ = 1.5 μ σ = 2 μ

0.139 0.091 0.068 0.697 0.455 0.341 1.395 0.909 0.683

0.01 100 0.000 0.000 0.000 0.053 0.007 0.000 0.180 0.009 0.004

0.000 0.000 0.000 0.062 0.006 0.000 0.112 0.003 0.000

1000 0.004 0.000 0.000 0.086 0.000 0.000 0.116 0.000 0.000

0.036 0.002 0.000 0.086 0.000 0.000 0.086 0.000 0.000

5000 0.014 0.000 0.000 0.084 0.000 0.000 0.077 0.000 0.000

0.078 0.003 0.000 0.086 0.000 0.000 0.060 0.000 0.000

0.05 100 0.013 0.004 0.004 0.321 0.060 0.019 0.677 0.138 0.028

0.017 0.007 0.004 0.382 0.064 0.027 0.690 0.086 0.017

1000 0.101 0.017 0.004 0.929 0.088 0.003 0.999 0.101 0.000

0.219 0.041 0.015 0.982 0.087 0.002 1.000 0.085 0.000

5000 0.488 0.056 0.009 1.000 0.067 0.000 1.000 0.070 0.000

0.704 0.099 0.009 1.000 0.069 0.000 1.000 0.057 0.000

0.10 100 0.034 0.017 0.006 0.608 0.210 0.092 0.930 0.402 0.148

0.040 0.022 0.009 0.658 0.205 0.073 0.941 0.364 0.109

1000 0.267 0.082 0.020 1.000 0.545 0.076 1.000 0.861 0.096

0.431 0.132 0.047 1.000 0.642 0.076 1.000 0.928 0.084

5000 0.867 0.246 0.058 1.000 0.970 0.056 1.000 1.000 0.078

0.960 0.356 0.087 1.000 0.994 0.058 1.000 1.000 0.069

Finally, we present in Table1some simulations showing the performance of the
proposed nonparametric procedure. We see the observed rejection rates for the test
(11), when F = N (0, 1) and G = N (μ, σ 2) for several choices of μ, σ . We show
also the rejection rates based on a natural competitor, the parametric maximum
likelihood estimator ε̂W2 := εW2

(
FN (X̄n ,S2X ), FN (Ȳm ,S2Y )

)
. This estimator is, of course,

highly nonrobust and useless in practice without the a priori knowledge that F and
G are normal, but we use it here as a benchmark. We see a reasonable amount of
agreement of the rejection frequencies to the nominal level of the test, even if it is
slightly liberal for σ close to one and small ε0, but the nonparametric procedure does
not perform worse than the parametric benchmark. We also see that it is possible
to get statistical evidence that almost stochastic order does hold. For instance, for
μ = .697, σ = 1.5 (true εW2 = 0.01) sizes n = m = 1000 suffice to conclude that
εW2 < 0.05 with probability close to 0.93.
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3 Appendix

We prove here central limit theorems for the index εW2 in (9). We will assume that
U1, . . . ,Un, V1, . . . , Vm are i.i.d. r.v.’s, uniformly distributed on (0, 1). We consider
independent samples i.i.d. X1, . . . , Xn and Y1, . . . ,Ym such that L (Xi ) = F and
L (Y j ) = G. We note that, without loss of generality, we can assume that the Xi and
Y j are generated from theUi and the Vj through Xi = F−1(Ui ), Y j = G−1(Vj ). We
write Fn , Gm , Hn,1 and Hm,2 for the empirical d.f.’s on the Xi , the Y j ,Ui and the Vj ,
respectively. Note that, in particular, F−1

n (t) = F−1(H−1
n,1 (t)),G

−1
m (t) = G−1(Hm,2).

Finally, αn,1 and αm,2 will denote the empirical processes associated to the Ui and
the Y j , namely, αn,1(t) = √

n(Hn,1(t) − t), 0 ≤ t ≤ 1, and similarly for αm,2 and we
will write αn,1(h) instead of

∫ 1
0 h(t)dαn,1(t).

We introduce the statistics Sn = ∫ 1
0 (F−1

n − G−1)2, S±
n = ∫ 1

0 (F−1
n − G−1)2±, and

write S, S+, S− for the corresponding population counterparts. Note that, to ensure
that S is finite, it is enough that F,G ∈ F2. However, to simplify the arguments our
proof will require bounded supports. We set

Tn = √
n(Sn − S), T+

n = √
n(S+

n − S+), T−
n = √

n(S−
n − S−),

c(x) = 2x , c+(x) = 2x+, c−(x) = 2x− and define

v(t) = ∫ F−1(t)
0 c(s − G−1(F(s)))ds (13)

and similarly v+ and v− replacing c with c+ and c−, respectively. Observe that
v = v+ − v−. With this notation we have the following result.

Theorem 3.1 If F and G have bounded support and G−1 is continuous on (0, 1)
then

Tn = αn,1(v) + oP(1), T+
n = αn,1(v+) + oP(1), T−

n = αn,1(v−) + oP(1).

Proof We assume that |F−1(t)| ≤ M , |G−1(t)| ≤ M for all t ∈ (0, 1) and some
M > 0. The continuity and boundedness assumption on G−1 allows us to assume
that G−1 is a continuous function on [0,1], hence, uniformly continuous and its
modulus of continuity,

ω(δ) = sup|t1−t2|≤δ |G−1(t1) − G−1(t2)|,

satisfiesω(δ) → 0 as δ → 0. It is convenient at this point to note that Tn is a function
of theUi and also of F andwe stress this fact writing Tn(F) instead of Tn in this proof,
and the same for T+

n and T−
n . Similarly, we set T̃n(F) = αn,1(v), T̃+

n (F) = αn,1(v+),
T̃−
n (F) = αn,1(v−). We claim now that

E |Tn(F) − T̃n(F)|2 ≤ 16M2E
(
‖αn,1‖2ω2

( ‖αn,1‖√
n

))
, (14)
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where ‖αn,1‖ = sup0≤t≤1 |αn,1(t)|. To check this, let us assume first that F is finitely
supported, say on −M ≤ x1 < . . . < xk ≤ M with F(x j ) = s j , j = 1, . . . , k. This
means that F−1(t) = xi if si−1 < t ≤ si (we set s0 = 0 for convenience) and we have

∫ 1

0
(F−1 − G−1)2 = ∑k

i=1

∫ si
si−1

(xi − G−1(t))2dt = ∫ 1
0 (xk − G−1(t))2dt

− ∑k−1
i=1

∫ si
0

[
(xi+1 − G−1(t))2 − (xi − G−1(t))2

]
dt

= ∫ 1
0 (xk − G−1(t))2dt − ∑k−1

i=1

∫ si
0

[ ∫ xi+1

xi
c(s − G−1(t))ds

]
dt.

A similar expression holds for
∫ 1
0 (F−1

n − G−1)2 replacing si with Hn,1(si ) and we
see that

Tn(F) = −√
n

∑k−1
i=1

∫ Hn,1(si )
si

( ∫ xi+1

xi
c(s − G−1(t))ds

)
dt.

We can argue analogously to check that

T̃n(F) = −∑k−1
i=1 αn,1(si )

( ∫ xi+1

xi
c(s − G−1(si ))ds

)
= −√

n
∑k−1

i=1

∫ Hn,1(si )
si

( ∫ xi+1

xi
c(s − G−1(si ))ds

)
dt.

Hence, we see that

|Tn(F) − T̃n(F)| ≤ 2
∑k−1

i=1 |αn,1(si )|(xi+1 − xi )ω
( ‖αn,1‖√

n

)
≤ 2‖αn‖(xk − x1)ω

( ‖αn,1‖√
n

)
≤ 4M‖αn‖ω

( ‖αn,1‖√
n

)

and (14) follows. For general F take finitely supported Fm such that F̂m →w

F , F̂m supported in [−M, M]. Then, for fixed n, E |Tn(F̂m) − Tn(F)|2 → 0 and
E |T̃n(F̂m) − T̃n(F)|2 → 0 as m → ∞. As a consequence, we conclude that (14)
holds also in this case.

Now, by the Dvoretzky–Kiefer–Wolfowitz inequality (see [16]) we have
P(‖αn,1‖ > t) ≤ 2e−2t2 , t > 0. This entails that ‖αn,1‖2 is uniformly integrable

and also that ω
(
‖αn,1‖n−1/2

)
vanishes in probability. Since, on the other hand,

ω2
(
‖αn,1‖n−1/2

)
‖αn,1‖2 ≤ M2‖αn,1‖2 we conclude that

E
(
‖αn,1‖2ω2

( ‖αn,1‖√
n

))
→ 0 (15)

as n → ∞ and this proves the first claim in the Theorem. For the others, we can
argue as above to see that (14) also holds if we replace Tn(F) and T̃n(F) with the
corresponding pairs T+

n (F) and T̃+
n (F) or T−

n (F) and T̃−
n (F). This completes the

proof. �
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From Theorem3.1 we obtain the following CLT.

Corollary 3.1 If F and G have bounded support and G−1 is continuous, then

√
n(εW2(Fn,G) − εW2(F,G)) →w N (0, σ 2)

with σ 2 = Var(v_(U ))

W2
8(F,G)

, v_ as in (13) and U a uniform r.v. on (0, 1).

Proof Observe that
√
n(εW2(Fn,G) − εW2(F,G)) = √

n(
S+
n
Sn

− S+
S ) = 1

SSn
(T+

n − Tn). From Theorem3.1, (T+
n − Tn) = αn,1(v+ − v) + oP(1) = −αn,1(v−) +

oP(1), while Sn → S a.s. �

Remark 3.1 For the two-sample analogue of Corollary3.1 it is important to observe
that the conclusion of Theorem3.1 holds if we replace Tn by T̂n,m := √

n(
∫ 1
0 (F−1

n −
G−1

m )2 − ∫ 1
0 (F−1 − G−1

m )2) andm → ∞. In fact, in the finitely supported case, keep-
ing the notation in the proof of Theorem3.1, we have

T̂n,m = −√
n

∑k−1
i=1

∫ Hn,1(si )
si

( ∫ xi+1

xi
c(s − G−1

m (t))ds
)
dt,

from which we see that

|T̂n,m − Tn| ≤ 2
√
n

∑k−1
i=1

∣∣∣ ∫ Hn,1(si )
si

( ∫ xi+1

xi
|G−1

m (t) − G−1(t)|ds
)
dt

∣∣∣
≤ 4M‖αn,1‖ sup0≤t≤1 ‖G−1(H−1

m,2(t)) − G−1(t)‖ → 0

in probability, since G−1 is continuous and

sup
t∈(0,1)

|H−1
m,2(t) − t | = sup

x∈(0,1)
|Hm,2(x) − x | → 0

in probability. Similar statements are true for T+
n and T−

n . �

Proof (Proof of Theorem2.2.) Convergence in the L2−Wasserstein distance sense is
characterized throughweak convergence plus convergence of second ordermoments.
Therefore the a.s. consistency εW2(Fn,Gm) →a.s. εW2(F,G) essentially follows
from the strong law of large numbers (see [11] for details and more general results).
For the asymptotic law, we write

(
εW2(Fn,Gm) − εW2(F,G)

)
= (εW2(Fn,Gm) − εW2(F,Gm)) + (εW2(F,Gm) − εW2(F,G)).

By Theorem3.1 and Remark3.1 arguing as in the proof of Corollary3.1 we

see that
√
n(εW2(Fn,Gm) − εW2(F,Gm)) →w N

(
0, Var(v−(U ))

W 8
2 (F,G)

)
. A minor modifi-
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cation of the proof of Corollary3.1 yields that
√
m(εW2(F,Gm) − εW2(F,G)) →w

N
(
0, Var(v+(U ′))

W 8
2 (F,G)

)
with v+ as in (13) and U ′ a U(0,1) law, and also that

√
n(εW2(Fn,

Gm) − εW2(F,Gm)) and
√
m(εW2(F,Gm) − εW2(F,G)) are asymptotically inde-

pendent. The result follows. �

Acknowledgements The authors want to acknowledge the support by the Spanish Ministerio de
Economía y Competitividad y fondos FEDER, Grants MTM2014-56235-C2-1-P and MTM2014-
56235-C2-2.

References

1. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C (2011) Uniqueness and
approximate computation of optimal incomplete transportation plans. Ann Inst Henri Poincaré
- Probab et Stat 47:358–375

2. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C (2012) Similarity of samples
and trimming. Bernoulli 18:606–634

3. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C (2014). A contamination
model for approximate stochastic order: extended version. arXiv.org/abs/1412.1920

4. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C (2016) A contamination
model for the stochastic order. Test 25:751–774

5. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA, Matrán C (2017). Wide Con-
sensus aggregation in the Wasserstein Space. Application to location-scatter families.
arXiv.org/abs/1511.05350

6. Álvarez-Esteban PC, del Barrio E, Cuesta-Albertos JA,Matrán C (2017)Models for the assess-
ment of treatment improvement: the ideal and the feasible. arXiv.org/abs/1612.01291

7. Berger RL (1988) A nonparametric, intersection-union test for stochastic order. In: Gupta SS,
Berger JO (eds) Statistical decision theory and related topics IV, vol 2. Springer, New York

8. Boissard E, Le Gouic T, Loubes JM (2015) Distribution’s template estimate with wasserstein
metrics. Bernoulli 21:740–759

9. Carlier G, ChernozhukovV,GalichonA (2016) Vector quantile regression: an optimal transport
approach. Ann Stat 44:1165–1192

10. ChernozhukovV,GalichonA,HallinM,HenryM(2014)Monge–Kantorovich depth, quantiles,
ranks, and signs. Ann Stat 45(1):223–256

11. Cuesta JA, Matrán C (1992) A review on strong convergence of weighted sums of random
elements based on wasserstein metrics. J Stat Plan Inference 30:359–370

12. Davidson R, Duclos JY (2007) Testing for restricted stochastic dominance. Working paper,
department of economics, McGill University

13. Hodges JL, Lehmann EL (1954) Testing the approximate validity of statistical hypotheses. J
R Stat Soc Ser B 16:261–268

14. Lehmann EL (1955) Ordered families of distributions. Ann Math Stat 26:399–419
15. Leshno M, Levy H (2002) Preferred by all and preferred by most decision makers: almost

stochastic dominance. Manag Sci 48:1074–1085
16. Massart P (1990) The tight constant in theDvoretsky–Kiefer–Wolfovitz inequality. Ann Probab

18:1269–1283
17. Rippl T, Munk A, Sturm A (2016) Limit laws of the empirical wasserstein distance: gaussian

distributions. J Multivar Anal 151:90–109

http://arxiv.org/abs/org/abs/1412.1920
http://arxiv.org/abs/org/abs/1511.05350
http://arxiv.org/abs/org/abs/1612.01291


An Alternative to the Variation Coefficient

Carlo Bertoluzza, Rosa Casals, Gloria Naval and Antonia Salas

Abstract The aim of this paper is to introduce an invariant by translation coefficient
different from the variation one (widely used in literature but not fulfilling that
property) that allows us to study whether the mean is a good representation of the
distribution or not. The value of this newcoefficient for a normally distributed random
variable is obtained in order to establish a criterion, similar to the one used in the
symmetry or kurtosis coefficients, to decide the grade of representation of the mean.

1 Introduction

Why Defining an Alternative Coefficient?

Variation coefficient is widely used in literature (see for instance [2–4]) in order to
obtain a grade of representation of the mean for different distributions, since it is a
relative dispersionmeasure providing the number of times that the standard deviation
is contained in the mean of the corresponding distribution. However, this coefficient
is not invariant by translations which, in our opinion, it is a quite significant issue.
That is why we consider necessary to define a coefficient that evaluates the spread
or distance of the values of the distribution with respect to a central one (allowing us
to measure the grade of representation of this central value as a numerical summary
of that distribution) that is invariant by changes in the origin of the distribution.
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Table 1 Data in Example1.1

X 1.7 1.85 1.72 1.65 1.73 1.58 1.65 1.69 1.6 1.67

Y 170 185 172 165 173 158 165 169 160 167

Z 70 85 72 65 73 58 65 69 60 67

In order to show what we mean, let us introduce a numerical example.

Example 1.1 Let us consider the height of a group of 10 individuals given in three
differentways: X (height inmeters);Y = 100X (height in centimeters); Z = Y−100
(centimeters above onemeter). The observed values, expressed in the three alternative
ways, are shown in Table1.

Being the same data should provide us with exactly the same goodness of repre-
sentation of the mean as a numerical summary of this distribution, regardless of the
units (X vs Y ) or the referential origin (X vs Z) considered to describe them. The
variation coefficient for variable X is

x = 1.684 S2x = 0.005164 ⇒ VC(X) =
√
0.005164

1.684
= 0.042672789

and for variable Y is

y = 168.4 S2y = 51.64 ⇒ VC(Y ) =
√
51.64

168.4
= 0.042672789

which means that a scale change does not affect it. However

z = 68.4 S2z = 51.64 ⇒ VC(Z) =
√
51.64

68.4
= 0.105059908

so translations do affect the value of this coefficient. This representation of the mean
of Z can be understood as a worse one than that of X since the variation coefficient is
greater for Z than for X. This coefficient can undergo dramatic changes for different
expressions of the same set of values. Let us consider a new variable T = Y − 170
that provides the centimeters above/below 170. Despite the sign, the value of the
variation coefficient is much greater for T than for Y

t = −1.6 S2t = 51.64 ⇒ VC(T ) =
√
51.64

−1.6
= −4.49131106.

This means, with the interpretation broadly given to this coefficient in literature, that
the grade of representation of−1.6 as a numerical summary of the average difference
between the height (in centimeters) of those individuals and 170 is significantly
smaller than that of 168.4cm as the average height of the same group of individuals.
The same holds with 68.4cm exceeding the meter as a representation of these data
(T versus Z). This makes no sense for us, since the information given by these
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distributions is intrinsically the same, although the values differ from one variable
to another.

Example 1.2 Let us consider a normally distributed random variable X ∼ N (μ, σ ).
Assume that we are working with a given value of the variance (say 1 for sake
of simplicity). The bell-shape density function that characterizes the distribution is
exactly the same, independently of the location of the mean. Hence, a constant value
for a coefficient giving the goodness of representation of themeanwas to be expected.
However, as VC(X) = SD(X)

E(X)
, that is, VC(X) = σ

μ
, this coefficient increases as the

mean decreases. That is the same as saying about the mean that the closer to zero,
the less representative of the distribution.

2 Definition of a New Coefficient

Is it possible to express how spread out the values of a distribution are with respect to
a central value, and, consequently, how good this central value is as a representation
of the distribution, in such a way that translation changes do not affect that goodness
of representation (as it happens with the variation coefficient)?

We may agree that moving the values to another location keeping static the ‘dis-
tances’ between them and their relative positions between each other should not
affect the representation of the mean as a numerical summary of the data, since
the dispersion of the data is exactly the same in both locations, being the value of
the referential point (mean) the only noticeable modification. ‘Moving the values to
another location’ has modified the mean, while ‘keeping static their relative posi-
tions between each other’ does not change the variance of the distribution. So, as the
variance averages the squared distances of the data with respect to their mean, why
not introducing some invariant by translations measure in the denominator of the
‘variation coefficient’ so that the value it takes is exactly the same wherever the data
are located? Doing so, the corresponding value of the ratio will show how good the
mean is to summarize the values of a distribution just paying attention to the relative
positions within the data but not to the actual location with respect to a given origin.

Definition 2.1 For any variable X, the representation coefficient of X is the ratio
between its standard deviation and its range, that is

RC(X) = D(X)

R(X)
= D(X)

max(X) − min(X)
.

This coefficient is well defined for any nondegenerate variable X and takes nonneg-
ative values smaller than 1. It is quite easy to see that the closer to one, the less
representative the mean.
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A More General Representation Coefficient

Nevertheless, outliers can strongly affect the value of this coefficient, so it may be
better to exclude that part of the distribution on calculating a grade of the represen-
tation of the mean. We intend to present a coefficient which is not so sensitive to the
presence of extreme values of the distribution. There are different ways of detecting
outliers but, regardless of the method, any value that is really far from the rest of the
observations is said to be an outlier. For instance, μ ± 2.7σ are the outliers cutoffs
given in [1] when working on a normal distribution.

For any r ∈ (0, 1) let P100r (X) denote the 100r -th percentile of X , that is, r =
P(X ≤ P100r (X)).

Definition 2.2 The 100r% trimmed representation coefficient of X is defined as

RC100r (X) = D(X)

P100(1− r
2 )(X) − P100r

2
(X)

∀r ∈ [0, 1],

where P0(X) = min(X) and P100(X) = max(X) (so this coefficient is a generaliza-
tion of the latter one).

Remark 2.1 This coefficient is generally well defined. Once again there are some
exceptions, since the denominator is zero for any value of r when X is degenerate.
It is also zero for not so large values of r when X does not take too many different
values (then its ‘extreme’ percentiles coincide, that is, it is ‘almost sure’ degenerate;
median and mode will coincide in that case and the mean is rarely going to be chosen
as a representation of such a variable).

Remark 2.2 In general, any of these trimmed representation coefficients compare
the value of a dispersion measure with respect to the mean with a dispersion measure
which does not refer to any particular central value and that does not take into account
outliers (to the extent the experimenter wants to). Then, it can be used to measure
how good the mean is as a numerical summary of the distribution.

Remark 2.3 Although it can be defined for any value of r ∈ [0, 1], it is not sensitive to
eliminate too many ‘outliers’; so, it makes not much sense to calculate it for r > 0.5.
For instance, the 100r% trimmed representation coefficient equals the 100(1−r )%
one in absolute value.

Property 1 (Invariance by translations). The trimmed representation coefficient is
invariant by translations, that is, RC100r (X + k) = RC100r (X) for all r ∈ [0, 1],
k ∈ R.

Proof Trivial since D(X + k) = D(X) ∀k and P(X + k ≤ y) = P(X ≤ y −
k) ∀y ⇒ P100r (X + k) = k + P100r (X). Hence P100(1− r

2 )(X + k) − P100r
2

(X + k) =
P100(1− r

2 )(X) − P100r
2

(X). �
Property 2 (Absolute invariance by scale). The trimmed representation coeffi-
cient is invariant by change of scale in absolute value, that is, |RC100r (kX)| =
|RC100r (X)| ∀r ∈ [0, 1] and ∀k ∈ R.
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Proof Trivial since D(kX) = |k| D(X) ∀ k. On the other hand, P(kX ≤ y) =
P(X ≤ y

k ) ∀y ∀k > 0 ⇒ P100r (kX) = kP100r (X) and P(kX ≤ y) = P(X ≥
y
k )∀y ∀k < 0 ⇒ P100r (kX) = kP100(1−r)(X).Hence |P100(1− r

2 )(kX)−P100r
2

(kX)| =
|k| |P100(1− r

2 )(X) − P100r
2

(X)|. �

Example 2.1 (Example1.1 continued) For the data of the height used above, one can
obtain

RC10(X) =
√
0.005164

1.85 − 1.58
= 0.266151766, RC10(Y ) =

√
51.64

185 − 158
= 0.266151766,

RC10(Z) =
√
51.64

85 − 58
= 0.266151766, RC10(T ) =

√
51.64

15 − (−12)
= 0.266151766.

Analogously, RC50(X) =
√
0.005164

1.72−1.65 = RC50(Y ) = RC50(Z) = RC50(T ). Invari-
ance holds for any r .

3 The Trimmed Representation Coefficient for a Normally
Distributed Random Variable

Invariance of the Trimmed Coefficient with Respect to the Parameters

Let X ∼ N (0, 1) and let P100r (X) be the 100r -th percentile of X . Then for Y ∼

N (μ, σ )

r = P(Y ≤ P100r (Y )) = P

(
Y − μ

σ
≤ P100r (Y ) − μ

σ

)

⇒ P100r (Y ) = μ + σ P100r (X)

which means that the 100r% trimmed representation coefficient for a normal distri-
bution does not depend on its parameters.

RC100r (N (μ, σ )) = σ

(μ + σ P100(1− r
2 )(X)) − (μ + σ P100r

2
(X))

= 1

P100(1− r
2 )(X) − P100r

2
(X)

= RC100r (N (0, 1)).

Value of the Trimmed Representation Coefficient for Some Usual 100r%

Let us use programm R for obtaining the corresponding percentiles of the normal
distribution. As we have just proved, we can reduce our calculations to the standard
normal.
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Table 2 Values of the trimmed representation coefficient for the standard normal distribution

100r% 1% 2% 2.5% 5% 10% 20% 50%

RC100r 0.142857 0.214929 0.2230746 0.2551067 0.3039783 0.3901519 0.7413008

The 5th and 95th percentiles of N (0, 1) are

> qnorm(c(.95,.05), mean=0, sd=1, lower.tail=TRUE)

[1] 1.644854 -1.644854

so the 10% trimmed representation coefficient of N (0, 1) takes value

> 1.644854+1.644854

[1] 3.289708

> 1/3.289708

[1] 0.3039783

Proceeding in an analogous way for other percentages, we can obtain the values
shown in Table2.

As it can be seen, this coefficient takes quite similar values for r ∈ [0.02, 0.05]
which are the most usual percentages for outliers cutoffs in literature.

4 Interpretation of the Trimmed Representation Coefficient

The value of this coefficient for the normal distribution can be used as a reference
to determine whether the mean is good enough or not as a representation of the
distribution, analogously as, for example, the kurtosis coefficient γ2(Y ) = μ4(Y )

[D(Y )]4 −3
greater than 0 means that the distribution is sharper than the bell-shaped one, with
μ4(Y ) being the 4th central moment of Y .

Property 3 The closer to zero the (trimmed) representation coefficient of X, the
better its mean as a representation of the distribution of X.

Definition 4.1 The mean of a variable X is said to be more representative than the
mean of the normal distribution for a 100r% if RC100r (X) ≤ RC100r (N (0, 1)).

As we have just obtained, the trimmed representation coefficient of a normal
distribution increases as the order (r ) increases. So, the fewer values included in the
interval of reference of the denominator, the larger the coefficient.

Whenever RC100r (X) > 0.7413008 it can be said that the mean of X is not
representative for the distribution since the central 50% of the observations of a dis-
tribution is theminimal set of values to be considered on studying their representation
by means of a central value.



An Alternative to the Variation Coefficient 51

Example 4.1 (Example1.1 continued) As we have just obtained, RC10(X) =
0.266151766 < 0.3039783 = RC10(N (0, 1)), so, the mean of these data is a better
representation of the distribution than that of the Gauss one. On the other side, if
one pay attention just to the data included in the box of a box-whiskers diagram, one
can conclude that those data are more disperse than those from a normal distribution
since RC50(X) = 1.026585384 > 0.7413008 = RC50(N (0, 1)).

5 Trimmed Representation Coefficient for Other
Theoretical Distributions

Exponential Distribution

Let us consider f (x) = λe−λx x > 0 the density function of an exponential random
variable X .

Property 4 The trimmed representation coefficient of an exponentially distributed
random variable does not depend on the value of its parameter.

Proof On calculating percentiles for an exponentially distributed random variable
X of parameter λ, one obtain

r = P(X < P100r ) =
∫ P100r

0
λe−λxdx = 1 − e−λP100r ⇒ P100r = − ln(1 − r)

λ
.

Hence

RC100r (Exp(λ)) =
1
λ

1
λ
ln(1 − r

2 ) − 1
λ
ln( r2 )

= 1

ln(1 − r
2 ) − ln( r2 )

. �

As we have proved that the value of the parameter is not essential for calculating
the trimmed representation coefficient, for the sake of simplicity we will use R and
calculate the coefficient for an exponentially distributed randomvariable of rate equal
to one.

> qexp(c(.95,.05,.75,.25), rate=1, lower.tail=TRUE)

[1] 2.99573227 0.05129329 1.38629436 0.28768207

> 1/(2.99573227-0.05129329)

[1] 0.3396233

> 1/(1.38629436-0.28768207)

[1] 0.9102392

> qexp(c(0.9,0.1,0.975,0.025), rate=1, lower.tail=TRUE)

[1] 2.30258509 0.10536052 3.68887945 0.02531781

> 2.30258509-0.10536052

[1] 2.197225

> 1/2.197225



52 C. Bertoluzza et al.

[1] 0.4551195

> 3.68887945-0.02531781

[1] 3.663562

> 1/3.663562

[1] 0.2729584

> qexp(c(0.99,0.01,0.995,0.005), rate=1, lower.tail=TRUE)

[1] 4.605170186 0.010050336 5.298317367 0.005012542

> 4.605170186-0.010050336

[1] 4.59512

> 1/4.59512

[1] 0.2176222

> 5.298317367-0.005012542

[1] 5.293305

> 1/5.293305

[1] 0.1889179

The values of the trimmed representation coefficient for an exponential distrib-
ution are shown in Table3. So, we can conclude that the mean of an exponential
distribution is slightly less representative of its distribution than that of the normal
one.

Uniform Distribution

Let us consider X ∼ U (a, b), that is f (x) = 1
b−a if a < x < b.

Property 5 The trimmed representation coefficient of a uniformly distributed ran-
dom variable does not depend on the value of its parameters.

Proof On calculating percentiles for a uniformly distributed random variable X on
the interval (a, b), one obtain

r = P(X < P100r ) =
∫ P100r

a

1

b − a
dx = P100r − a

b − a
⇒ P100r = a + r(b − a).

Hence,

RC100r (U (a, b)) =
√

(b−a)2

12

a + (1 − r
2 )(b − a) − a − r

2 (b − a)
= 1

(1 − r)
√
12

. �

Table 3 Values of the trimmed representation coefficient for the exponential distributionwithmean
one

100r% 1% 2% 5% 10% 20% 50%

RC100r 0.1889179 0.2176222 0.2729584 0.3396233 0.4551195 0.9102392
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Table 4 Values of the trimmed representation coefficient for the (continuous) uniform distribution

100r% 1% 2% 5% 10% 20% 50%

RC100r 0.29159105 0.29456646 0.30386856 0.32075015 0.36084392 0.57735027

Table 5 Values of the trimmed representation coefficient for some discrete distributions

100r% 1% 2% 5% 10% 20%

RC100r (P(1)) 0.25 0.25 1
3

1
3 0.5

RC100r (B(10, 0.5)) 0.19764235 0.19764235 0.26352314 0.395284471 0.79056942

Aswehave just obtained that the trimmed representation coefficient of a uniformly
distributed random variable depends on the order, we can obtain for any interval
(a, b), the values given in Table4.

So, whenever at most 10% of the extreme observations of a distribution are
excluded, the mean is said to be a better representation of the data of a normal
distribution than of a uniform one.

Some Well-known Discrete Distributions

Finally, let us use program R in order to obtain some percentiles from a Poisson of
mean 1 and also from a Binomial with 10 trials and p = 0.5. The obtained values
are shown below, and summarized in Table5.

> qpois(c(0.25,.75), lambda=1, lower.tail=TRUE)

[1] 0 2

> qpois(c(0.1,.9), lambda=1, lower.tail=TRUE)

[1] 0 2

> qpois(c(0.05,.95), lambda=1, lower.tail=TRUE)

[1] 0 3

> qpois(c(0.025,.975), lambda=1, lower.tail=TRUE)

[1] 0 3

> qpois(c(0.01,.99), lambda=1, lower.tail=TRUE)

[1] 0 4

> qpois(c(0.005,.995), lambda=1, lower.tail=TRUE)

[1] 0 4

> qbinom(c(.005,.995), size=10, prob=0.5, lower.tail=TRUE)

[1] 1 9

> qbinom(c(.01,.99), size=10, prob=0.5, lower.tail=TRUE)

[1] 1 9

> qbinom(c(.025,.975), size=10, prob=0.5, lower.tail=TRUE)

[1] 2 8

> qbinom(c(.05,.95), size=10, prob=0.5, lower.tail=TRUE)

[1] 2 8

> qbinom(c(.1,.9), size=10, prob=0.5, lower.tail=TRUE)
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[1] 3 7

> qbinom(c(.25,.75), size=10, prob=0.5, lower.tail=TRUE)

[1] 4 6

All these values are larger than the corresponding ones for the normal distribution,
so these variables are worse represented by their means than the normal one.
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Nonparametric Mean Estimation for
Big-But-Biased Data

Ricardo Cao and Laura Borrajo

Abstract Crawford (The hidden biases in big data, Harvard Business Review,
Cambridge, 2013, [2]) has recently warned about the risks of the sentence with
enough data, the numbers speak for themselves. Some of the problems coming from
ignoring sampling bias in big data statistical analysis have been recently reported
by Cao (Inferencia estadística con datos de gran volumen, La Gaceta de la RSME
18:393–417, 2015, [1]). The problem of nonparametric statistical inference in big
data under the presence of sampling bias is considered in this work. The mean esti-
mation problem is studied in this setup, in a nonparametric framework, when the
biasing weight function is known (unrealistic) as well as for unknown weight func-
tions (realistic). Two different scenarios are considered to remedy the problem of
ignoring the weight function: (i) having a small sized simple random sample of the
real population and (i i) having observed a sample from a doubly biased distribution.
In both cases the problem is related to nonparametric density estimation. A simulated
dataset is used to illustrate the performance of the nonparametric methods proposed
in this work.

1 Introduction

With the peak of the Big Data and related to the false assumption that with enough
data, the numbers speak for themselves, appears what Crawford [2] calls data fun-
damentalism, the notion that massive data sets always reflect objective and absolute

R. Cao (B) · L. Borrajo
Research Group MODES, Department of Mathematics, CITIC,
A Coruña, Spain
e-mail: ricardo.cao@udc.es

L. Borrajo
e-mail: laura.borrajo@udc.es

R. Cao
ITMATI, Universidade da Coruña, Campus de Elviña,
15071 A Coruña, Spain

© Springer International Publishing AG 2018
E. Gil et al. (eds.), The Mathematics of the Uncertain, Studies in Systems,
Decision and Control 142, https://doi.org/10.1007/978-3-319-73848-2_5

55



56 R. Cao and L. Borrajo

truth. However, like any other human creation, data and data sets are not totally
objective. Occasionally, a large sample is not completely representative of the pop-
ulation, but it is biased: Big-but-biased Data (BBBD = B3D). Hidden biases often
come from the data collection procedure. Sampling methods in which the data or
individuals in the sample are self-select, often incur in sampling bias.

A good example cited by Crawford [2] is the data collected in the city of Boston
through the StreetBump smartphone app, created with the objective of solving the
problemwith potholes in this city, where 20,000 of them are patched every year. This
app passively detects bumps by recording the accelerometers of the phone and GPS
data while driving, instantly reporting them to the traffic department of the city. Thus,
the city could plan their repair and the management of resources in the most efficient
possible way. However, one of the problems observed was that some segments of the
population, such as people in lower income groups, have a low rate of smartphone
use, a rate that is even lower in the older residents, where smartphone penetration
is as low as 16%. Therefore, these data provide a big but very biased sample of the
population of potholes in the city, with the consequent impact on the underestimation
of the number of potholes in certain neighborhoods and the deficient management
of resources.

Another example cited by Crawford [2] is the database of more than 20 million
tweets generated by Hurricane Sandy between October 27 and November 1, 2012. A
combined analysis of Twitter and Foursquare data produced some expected findings,
such as an increase in grocery shopping the night before the storm, and other more
surprising, such as an increase in nightlife the day after the hurricane. However,
these data don’t represent an unbiased sample of the population. It is well known
that the greatest number of tweets about Sandy came from Manhattan, due to the
high level of smartphone owners and Twitter use in New York. Only a few messages
were originated in the most affected areas by the catastrophe, not only because of
the lower penetration of the smartphone market in those areas, but also because of
the fact that power outages caused many problems with internet access and many
devices run out of battery in the hours after the storm.

In other examples, such as those cited in Hargittai [3], survey data show that
people do not select into the use of sites randomly; instead, use is biased in certain
ways yielding samples that limit the generalizability of findings.

In Sect. 2 the proposed bias context in thiswork is presented. In Sect. 3 the problem
of nonparametric mean estimation is considered, when the weight function is known
(unrealistic) and unknown (realistic). Two different scenarios are considered to solve
the unknown weight function problem: (i) to have a simple random sample of a
small size of the real population and (ii) to observe a sample from a twice biased
distribution. In both cases,mean estimators that avoid the sampling bias are proposed.
These estimators are related to nonparametric density estimation. Section4 illustrates
the behavior of the proposed estimators with simulated data.
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2 The Samples and Their Sizes

In this context, let us consider a population with cumulative distribution function F
(density f ) and consider a simple random sample

X = (X1, . . . , Xn)

of size n from this population. Assume for a while that we are not able to observe
this sample but we observe, instead, another sample,

Y = (Y1, . . . ,YN )

of a much larger sample size (N >> n) from a biased distribution G (density g). We
assume that, for some weight function w(x) ≥ 0,

g(x) = w(x) f (x) .

3 Mean Estimation in B3D

To deal with the bias problem in Big Data, we decided to start with a simple problem:
the estimation of the mean μ = ∫

xdF(x) in a nonparametric context. If the sample
X is observed, then it would be enough to use its sample mean, X , which is an
unbiased estimator of μ. Therefore, the mean squared error of this estimator is its
variance Var(X) = σ 2

n . In that case, the Central Limit Theorem allows us to make
inference about μ.

However, in the proposed B3D context, when we are unable to observe X, the
question may arise whether it is feasible to estimate the mean. Indeed, assuming that
the underlying distribution, F , is continuous, with density f , the mean of the big and
biased sample, Y , is not a consistent estimator of μ = ∫

x f (x) dx , but of

μg =
∫

xg (x) dx =
∫

xw (x) f (x) dx .

On the other hand, since w(x) = g(x)
f (x) , it is easy to check that the mean of the ratio

Y
w(Y )

is equal to the population mean:

E

(
Y

w (Y )

)

=
∫

y

w (y)
g (y) dy =

∫
y

g(y)/ f (y)
g (y) dy

=
∫

y f (y) dy = μ.
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Therefore, if we know the weight function w (unrealistic case), we can use the
previous expectation to motivate an estimator for μ:

μ̂BBBS,w = 1

N

N∑

i=1

Yi
w (Yi )

. (1)

This estimator is the sample mean of the population Z = Y/w(Y ), so under suit-
able conditions we immediately obtain its bias, variance and asymptotic distribution:

E
(
μ̂BBBS,w

) = μ,

Var
(
μ̂BBBS,w

) = σ 2
Z

N
,

√
N

(
μ̂BBBS,w − μ

)

σZ
→ N (0, 1),

where σ 2
Z = ∫

y2 f (y)2g(y)−1dy − μ2 = ∫
x2 f (x)w(x)−1dx − μ2.

However, the most realistic situation is that the weight function w is unknown.
Having this in mind, we propose another estimator that can be used when w is
unknown.

Taking into account that the expectation of the inverse of the weight function w
is 1,

E

(
1

w (Y )

)

=
∫

1

w (y)
g (y) dy =

∫
f (y) dy = 1,

we can motivate another estimator simply considering

E

(
Y

w (Y )

)

E

(
1

w (Y )

) = μ.

Ifwe know theweight functionw, we can use the previous expectations tomotivate
an estimator for the mean. This is just replacing the theoretical expectations by the
empirical means:

μ̂BBBS1,w =

1

N

N∑

i=1

Yi
w (Yi )

1

N

N∑

i=1

1

w (Yi )

. (2)
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If the weight function w is unknown, we must estimate it. As the biased sample is
not enough to do it, we propose different scenarios with some additional information:

1. To have a simple random sample of small size, n, (X1, . . . , Xn), of the true
population

2. To replicate the mechanism by which the biased sample was obtained to have a
sample (Z1, . . . , Zn) from a twice biased distribution M (density m)

3. To enrich the biased sample with information of the frequencies (νi , for
i = 1, . . . , N ) of each datum of the observed sample Y

Scenarios 1 and 2 are considered in this work.
Lloyd and Jones [4] analyzed the nonparametric kernel density estimator for

biased data with unknown weight function, but in a different context: close to Sce-
nario 2, using two biased samples and being w(x) the probability of acceptance.

Scenario 1. Let us consider a population with cumulative distribution function F
(density f ). Let us assume that we observe the Big Data sample,

Y = (Y1, . . . ,YN ) ,

of size N from the biased distribution G (density g), but we also observe a simple
random sample,

X = (X1, . . . , Xn) ,

of a much smaller sample size (n << N ) of that population. We assume that

g(x) = w(x) f (x)

for some weight function w, such that w(x) ≥ 0, ∀x .
The Parzen–Rosenblatt kernel density estimator (KDE) can be used to estimate

f (x) and g(x):

f̂h (x) = 1

n

n∑

i=1

Kh (x − Xi ) ,

ĝb (x) = 1

N

N∑

i=1

Kb (x − Yi ) ,

where Kh(u) = 1
h K

(
u
h

)
, being K a kernel function and h and b two bandwidths. The

weight function w can be easily estimated as the ratio of both estimated densities:

ŵh,b(x) = ĝb(x)

f̂h(x)
.

Similar to the known w case, replacing respectively in (1) and (2) the weight
function by its estimated version, ŵh,b, we propose these two new estimators for the
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mean in Scenario 1, that depend on the bandwidths h and b:

μ̂BBBS,ŵh,b = 1

N

N∑

i=1

Yi
ŵh,b (Yi )

= 1

N

N∑

i=1

Yi f̂h (Yi )

ĝb (Yi )
,

μ̂BBBS1,ŵh,b =

1

N

N∑

i=1

Yi
ŵh,b (Yi )

1

N

N∑

i=1

1

ŵh,b (Yi )

=

1

N

N∑

i=1

Yi
f̂h (Yi )

ĝb (Yi )

1

N

N∑

i=1

f̂h (Yi )

ĝb (Yi )

. (3)

Scenario 2. Let us consider a population with cumulative distribution function F
(density f ). Assume for a while that we are not able to observe a simple random
sample of the population, but we observe, instead, another sample

Y = (Y1, . . . ,YN )

of size N from a biased distribution G (density g). We also observe a sample

Z = (Z1, . . . , Zn)

of size n << N from a twice biased distribution M (density m).
Table1 describes the process to follow in this scenario, where it should be noted

that the function w0 must be the same in both cases.
We assume that density g corresponds to density f weighted by a given weight

functionw and densitym corresponds to the product of density g by aweight function
w2:

g(x) = f (x)w(x)

m(x) = g(x)w2(x),

being w(x),w2(x) ≥ 0, ∀x .

Table 1 Process to obtain the twice biased sample in scenario 2

Step Population
density

Biasing
weight

Biased density Normalized biasing weight

1 f (x) w0(x) g(x) ∝ w0(x) f (x) w(x) = w0(x)∫
w0(y) f (y)dy

2 g(x) w0(x) m(x) ∝ w0(x)g(x) w2(x) = w0(x)∫
w0(y)g(y)dy
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The relation between both weight functions is given by w2(x) = ρw(x), where

ρ =
∫

f (y)w0(y)dy∫
g(y)w0(y)dy

.

Concerning mean estimation in this situation, since w2(x) = m(x)
g(x) and

m(x)
g(x) = ρ

g(x)
f (x) , it is easy to check that the expectation of

Y
w2(Y )

is the mean divided by
the constant ρ:

E

(
Y

w2 (Y )

)

=
∫

y

w2 (y)
g (y) dy =

∫
y

m(y)/g(y)
g (y) dy

=
∫

y

ρg(y)/ f (y)
g (y) dy = 1

ρ

∫
y f (y) dy = 1

ρ
μ,

and the expectation of the inverse of the weight function w2 is the inverse of that
constant ρ:

E

(
1

w2 (Y )

)

=
∫

1

w2 (y)
g (y) dy = 1

ρ

∫
f (y) dy = 1

ρ
.

Consequently, the ratio of these expectations is exactly the mean

E

(
Y

w2 (Y )

)

E

(
1

w2 (Y )

) = μ.

Therefore, if we know the weight function w2, we can use the previous expecta-
tions to motivate an estimator for the mean

μ̂BBBS2,w2 =

1

N

N∑

i=1

Yi
w2 (Yi )

1

N

N∑

i=1

1

w2 (Yi )

. (4)

Following the same procedure as for Scenario 1, we use the Parzen–Rosenblatt
KDE to estimate g(x) and m(x):
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ĝh (x) = 1

N

N∑

i=1

Kh (x − Yi ) ,

m̂b (x) = 1

n

n∑

i=1

Kb (x − Zi ) ,

easily estimating the weight function w2 as the ratio of the estimated densities

ŵ2h,b(x) = m̂b(x)

ĝh(x)
.

Plugging in (4) the estimated version of the weight function w2, ŵ2h,b, a new
estimator for the mean in Scenario 2 is defined, depending on both bandwidths h
and b:

μ̂BBBS2,ŵ2h,b =

1

N

N∑

i=1

Yi
ŵ2h,b (Yi )

1

N

N∑

i=1

1

ŵ2h,b (Yi )

=

1

N

N∑

i=1

Yi
ĝh (Yi )

m̂b (Yi )

1

N

N∑

i=1

ĝh (Yi )

m̂b (Yi )

. (5)

4 Case Study with Simulated Data

This section shows the behavior of the proposed estimators with simulated data.

Scenario 1. Let us consider a population with uniform distribution and density

f (x) =
{

1
2 if x ∈ [0, 2]
0 if x /∈ [0, 2]

and the following class of weight functions

w (x) =

⎧
⎪⎨

⎪⎩

εk if x ∈ [0, ε)
xk if x ∈ [ε, 2]
0 if x /∈ [0, 2]

leading to the following expression for the biased density

g (x) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

k + 1

kεk+1 + 2k+1
εk if x ∈ [0, ε)

k + 1

kεk+1 + 2k+1
xk if x ∈ [ε, 2]

0 if x /∈ [0, 2]

.
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Fig. 1 Densities f (solid
line) and g (dashed line)
involved in the case study
with simulated data in
Scenario 1 considering k = 1
and ε = 1.5 for the biasing
function, w (dotted line)
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Table 2 Mean estimation with μ̂BBBS1,ŵh,b in Scenario 1 for different values of h and b (X =
0.9921699, Y = 1.032857, μ̂BBBS1,w = 0.999512, μ = 1)

h \ b 0.005 0.05 0.1 0.5 1

0.005 0.9925275 0.9871555 0.9843994 1.000753 1.014442

0.05 0.9970936 0.9938152 0.9916681 1.006271 1.018525

0.1 1.0000137 0.9981007 0.9970839 1.010459 1.021351

0.5 0.9994619 0.9995382 0.9999970 1.011548 1.019937

1 0.9988319 0.9990898 0.9998400 1.013350 1.022221

In addition to the simple random sample of the population, we also observe a Big
Data sample from the biased distribution G (see Fig. 1).

Table2 shows the results obtained in the mean estimation with μ̂BBBS1,ŵh,b , being
n = 103 and N = 106 the sizes of the samples involved. For certain combinations
of bandwidths b and h (numbers in bold), the proposed estimator (3) improves the
estimation performed using the simple random sample and the Big Data sample. In
this case, it is observed that the estimation given by both samples is significantly
close to the real value, which is logical since the Big Data sample is only slightly
biased, as can be seen in Fig. 1.

Scenario 2. Let us consider again the proposed model in Scenario 1. Let us suppose
that it is not possible to observe a simple random sample of the population, but we
observe a large sample from the biased distributionG (density g) and another sample
of smaller sample size from the twice biased distribution M , with density
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Fig. 2 Densities f (solid
line), g (dashed line) and m
(dashed-dotted line) involved
in the case study with
simulated data in Scenario 2
considering k = 1 and
ε = 0.2 for the biasing
function, w (dotted line)
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Table 3 Mean estimation with μ̂BBBS2,ŵ2h,b in Scenario 2 for different values of h and b (Y =
1.320286, Z = 1.489173, μ̂BBBS2,w = 0.9987603, μ = 1)

h \ b 0.005 0.05 0.1 0.5 1

0.005 0.2832286 1.0600380 1.0861935 1.358966 1.463947

0.05 0.2872110 1.0532916 1.0787246 1.345344 1.450534

0.1 0.2897269 1.0437671 1.0682164 1.329955 1.436189

0.5 0.2856396 0.9007445 0.9206018 1.205823 1.343689

1 0.2807338 0.7556730 0.7716217 1.100725 1.283538

m (x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2k + 1

2kε2k+1 + 22k+1
ε2k if x ∈ [0, ε)

2k + 1

2kε2k+1 + 22k+1
x2k if x ∈ [ε, 2]

0 if x /∈ [0, 2]

Figure2 shows the situation analyzed in Scenario 2 for the particular choice of
k = 1 and ε = 0.2. Table3 illustrates the behavior of the estimator (5), considering
n = 103 and N = 106, the sizes of the samples involved. In this case, the estimation
given by the Big Data sample is not as close to the real value as in the previous
scenario, since the bias is greater (see Fig. 2). Again, the proposed estimator improves
the estimation performed by both samples for some particular combinations of the
chosen bandwidths b and h (numbers in bold).
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Band Depths Based on Multiple Time
Instances

Ignacio Cascos and Ilya Molchanov

Abstract Bands of vector-valued functions f : T �→ R
d are defined by consider-

ing convex hulls generated by their values concatenated at m different values of the
argument. The obtained m-bands are families of functions, ranging from the con-
ventional band in case the time points are individually considered (for m = 1) to the
convex hull in the functional space if the number m of simultaneously considered
time points becomes large enough to fill the whole time domain. These bands give
rise to a depth concept that is new both for real-valued and vector-valued functions.

1 Introduction

The statistical concept of depth is well known for random vectors in the Euclidean
space. It describes the relative position of x from R

d with respect to a probability
distribution on R

d or with respect to a sample x1, . . . , xn ∈ R
d from it. Given a

centrally symmetric distribution (for an appropriate notion of symmetry), the point
of central symmetry is the deepest point (center of the distribution), while the depth
of outward points is low. The concept of depth has been used in the context of
trimming multivariate data, to derive depth-based estimators (e.g. depth-weighted
L-estimators or ranks based on the center-outward ordering induced by the depth),
to assess robustness of statistical procedures, and for classification purposes, to name
a few areas, see [2, 9, 17] for extensive surveys and further references.

Often, the relative position of a point x with respect to a sample is defined with
respect to the convex hull of the sample or a part of the sample. For instance, the
classical concept of the simplicial depth appears as the fraction of (d + 1)-tuples
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of sampled points whose convex hull contains x , see [10]. Its population version is
given by the probability that x is contained in the convex hull of (d + 1) i.i.d. copies
of the random vector.

In high-dimensional spaces the curse of dimensionality comes into play and the
convex hull of a finite set of sampled points forms a rather “thin” set and so it is
very unlikely to expect that many points belong to it. Even the convex hull of the
whole sample becomes rather small if the space dimension d is much larger than
the sample size n. The situation is even worse for infinite-dimensional spaces that
are typical in functional data analysis. In view of this, a direct generalisation of the
simplicial depth and convex hull depth concepts leads to the situation where most
points in the space have depth zero, see also [8], who discuss problems inherent with
the half-space depth in infinite-dimensional spaces, most importantly zero depth and
the lack of consistency, see also [15].

One possible way to overcome such difficulties is to consider the depth for the
collection of function values at any given time argument value t and then integrate
(maybe weightedly) over the argument space. This idea goes back to [6] and has
been further studied in [4, 14].

Another approach is based on considering the position of a function relative to
the band generated by functions from the sample. The band generated by real-valued
functions is defined as the interval-valued function determined by the pointwise
minimum and maximum of the functions from the sample. The corresponding band
depth has been studied in [11, 12]. In the multivariate case the band becomes a set-
valued function that at each point equals the convex hull of the values of functions
from the sample, see [13]. Another multivariate generalisation of the band depth
in [7] is based on taking convex combinations of band depths associated to each
component. Yet another multivariate functional depth concept was studied in [4] by
integrating the half-space depth over the time domain, see also [3]. It is argued in
[7] that the multivariate setting makes it possible to incorporate other functional data
parameters, such as derivatives, into the sample. It is also possible to combine a
function with its smoothed version, possibly with different bandwidths.

In this paper we suggest a new concept of multivariate functional depth based on
taking convex hulls of the functions’ values at m ≥ 1 time points combined to build
a new higher-dimensional vector. In a sense, this concept pulls together values of
the function at different points and so naturally incorporates the time dependency
effects, and so better reflects the shape of curves. Two examples at which these
m-band depths are used are presented.

The constructions described in Sect. 3 remind very much the conventional sim-
plicial band depth, where the main point is to check if a point belongs to the convex
hull of a subsample. The underlying convex hull in the functional space is replaced
by the band, as in [11]. It is shown that the introduced band depth satisfies the main
properties described in [4, 13]. The theoretical computation of the m-band depth is
usually unfeasible, since it requires computing the probabilities that a point belongs
to a convex hull of random points. Still, its empirical variant is consistent and rather
easy to compute.
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2 Regions Formed by Samples in Functional Spaces

m-Bands

Let E be a linear space of functions f : T �→ R
d whose argument t belongs to a

rather general topological space T . For example, Emay be the family of continuous
functions on an interval T or a collection of d-vectors if T is a finite set.

Consider functions f1, . . . , f j ∈ E. The convex hull conv( f1, . . . , f j ) of these
functions is the family of functions f ∈ E that can be represented as

f (t) =
j∑

i=1

λi fi (t) , t ∈ T ,

for some non-negative constants λ1, . . . , λ j that sum up to one.
If the coefficients λ1, . . . , λ j are allowed to be arbitrary functions of t , we arrive

at the family of functions f ∈ E such that, for all t ∈ T , the value f (t) belongs to the
convex hull of f1(t), . . . , f j (t). Following [11, 13] for univariate (resp. multivariate)
functions, the set of such functions is called the band generated by f1, . . . , f j and
is denoted by band( f1, . . . , f j ). It is obvious that

conv( f1, . . . , f j ) ⊂ band( f1, . . . , f j ).

If d = 1 (as in [11]), then band( f1, . . . , f j ) consists of all functions f such that

min
i=1,..., j

fi (t) ≤ f (t) ≤ max
i=1,..., j

fi (t) , t ∈ T . (1)

In order to obtain a set of functions with interior points, one should avoid the case
when the convex hull of f1(t), . . . , f j (t) is of a lower dimension than d at some t .
In particular, for this j should be greater than d.

We define nested families of functions that lie between the band and the convex
hull generated by the sample.

Definition 2.1 Them-band, bandm( f1, . . . , f j ), generated by f1, . . . , f j ∈ E is the
family of functions f ∈ E such that, for all t1, . . . , tm ∈ T , the vector ( f (t1), . . . ,
f (tm)) belongs to the convex hull of {( fi (t1), . . . , fi (tm)), i = 1, . . . , j}, i.e.

( f (t1), . . . , f (tm)) =
j∑

i=1

λi ( fi (t1), . . . , fi (tm)) (2)

for non-negative real numbers λ1, . . . , λ j that sum up to one and may depend on
(t1, . . . , tm).

Example 2.1 (Special cases) If T = {t} is a singleton, the functions become vectors
in Rd and the m-band is their convex hull for all m ≥ 1.
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If T is a finite set of cardinality k and d = 1, then the functions f1, . . . , f j of t ∈ T
can be viewed as vectors xi = (xi1, . . . , xik) ∈ R

k , i = 1, . . . , j . The 1-band is the
smallest hyperrectangle that contains x1, . . . , x j , which is given by ×[al , bl ] for
al = min(xil , i = 1, . . . , j) and bl = max(xil , i = 1, . . . , j) for l = 1, . . . , k. The
2-band is obtained as the largest set such that its projections on each 2-dimensional
coordinate plane equals the projection of the convex hull of x1, . . . , xk . The k-band
coincides with the convex hull of x1, . . . , x j .

If m = 1 and d = 1, then we recover the band introduced in [11] and given by
(1), so that band( f1, . . . , f j ) = band1( f1, . . . , f j ).

If f ∈ bandm( f1, . . . , f j ), then each convex combination of the values for
f1, . . . , f j and f can be written as a convex combination of the values of f1, . . . , f j
and so

bandm( f1, . . . , f j ) = bandm( f1, . . . , f j , f ) .

The m-band is additive with respect to the Minkowski (elementwise) addition. In
particular,

bandm(g + f1, . . . , g + f j ) = g + bandm( f1, . . . , f j ) (3)

for all g ∈ E. The m-band is equivariant with respect to linear transformations, that
is,

bandm(A f1, . . . , A f j ) = {A f : f ∈ bandm( f1, . . . , f j )} (4)

for all A : T �→ R
d×d with A(t) nonsingular for all t ∈ T . If all functions generating

an m-band are affected by the same phase variation, the phase of the m-band is
affected as shown below,

bandm( f1 ◦ h, . . . , f j ◦ h) = { f ◦ h : f ∈ bandm( f1, . . . , f j )} (5)

for any bijection h : T �→ T . If d = 1 and E consists of continuously differen-
tiable functions on T = R, then f ∈ bandm( f1, . . . , f j ) yields that f ′ belongs to
bandm−1( f ′

1, . . . , f ′
j ). This can be extended for higher derivatives.

It is obvious that bandm( f1, . . . , f j ) is a convex subset of E; since the points
t1, . . . , tm in Definition2.1 are not necessarily distinct, it decreases if m grows. The
following result shows that the m-band turns into the convex hull for large m.

Proposition 2.1 Assume that all functions fromE are jointly separable, that is there
exists a countable set Q ⊂ T such that, for all f ∈ E and t ∈ T , f (t) is the limit of
f (tn) for tn ∈ Q and tn → t . Then, for each f1, . . . , f j ∈ E,

bandm( f1, . . . , f j ) ↓ conv( f1, . . . , f j ) as m → ∞.

Proof Consider an increasing family Tn of finite subsets of T such that Tn ↑ Q
and a certain function f ∈ E. If mn is the cardinality of Tn , and f belongs to the
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mn-band of f1, . . . , f j , then the values ( f (t), t ∈ Tn) equal a convex combination
of ( fi (t), t ∈ Tn), i = 1, . . . , j , with coefficients λni . By passing to a subsequence,
assume that λni → λi as n → ∞ for all i = 1, . . . , j . Using the nesting property of
Tn , we obtain that

f (t) =
∑

λi fi (t) , t ∈ Tn .

Now it suffices to let n → ∞ and appeal to the separability of f . �

Moreover, under a rather weak assumption, them-band coincides with the convex
hull for sufficiently large m. A set of points in the d-dimensional Euclidean space is
said to be in general position if no (d − 1)-dimensional hyperplane contains more
than d points. In particular, if the set contains at most d + 1 points, they will be
in general position if and only if they are all extreme points of their convex hull,
equivalently, any point from their convex hull is obtained as their unique convex
combination.

Proposition 2.2 If j ≤ d(m − 1) + 1 and there exists t1, . . . , tm−1 ∈ T such that
the vectors ( fi (t1), . . . , fi (tm−1)) ∈ R

d(m−1), i = 1, . . . , j , are in general position,
then

bandm( f1, . . . , f j ) = conv( f1, . . . , f j ) .

Proof Let f ∈ bandm( f1, . . . , f j ). In view of (2), ( f (t1), . . . , f (tm−1)) equals a
convex combination of ( fi (t1), . . . , fi (tm−1)), i = 1, . . . , j , which is unique by the
general position condition. By considering an arbitrary tm ∈ T , we see that f (tm)

is obtained by the same convex combination, so that f is a convex combination of
functions f1, . . . , f j . �

In particular, if d = 1, then the 2-band of two functions coincides with their
convex hull. It suffices to note that if f1 and f2 are not equal, then f1(t1) and f2(t1)
are different for some t1 and so are in general position. The same holds for any
dimension d ≥ 2.

Example 2.2 (Linear and affine functions) Let f1, . . . , f j be constant functions.
Then their 1-band is the collection of functions lying between the maximum and
minimum values of f1, . . . , f j . The 2-band consists of constant functions only and
coincides with the convex hull.

Together with (3), this implies that the 2-band generated by functions fi (t) =
a(t) + bi , i = 1, . . . , j , is the set of functions a(t) + b for b from the convex hull
of b1, . . . , b j .

If fi (t) = ai t + bi , i = 1, . . . , j , are affine functions of t ∈ R, then their 3-band
consists of affine functions only and also equals the convex hull. Indeed,

( f (t1), f (t2), f (t3)) =
∑

λi (ai (t1, t2, t3) + bi (1, 1, 1))
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yields that

f (t3) − f (t1)

f (t2) − f (t1)
= t3 − t1

t2 − t1
.

Therefore each f from band3( f1, . . . , f j ) is an affine function.

Example 2.3 (Monotone functions) Let d = 1 and let f1, . . . , f j be non-decreasing
(respectively non-increasing) functions. Then their 2-band is a collection of non-
decreasing (resp. non-increasing) functions.

If all functions f1, . . . , f j are convex (resp. concave), then their 3-band is a
collection of convex (resp. concave) functions.

Remark 2.1 The definition of the m-band can be easily extended for subsets F of
a general topological linear space E. Consider a certain family of continuous linear
functionals ut , t ∈ T . An element x ∈ E is said to belong to the m-band of F if,
for each t1, . . . , tm ∈ T , the vector (ut1(x), . . . , utm (x)) belongs to the convex hull
of {(ut1(y), . . . , utm (y)) : y ∈ F}. Then Definition2.1 corresponds to the case of E
being a functional space and ut ( f ) = f (t) for t ∈ T .

While the conventional closed convex hull arises as the intersection of all closed
half-spaces that contain a given set, its m-band variant arises from the intersection
of half-spaces determined by the chosen functionals ut for t ∈ T .

Space Reduction and Time Share

The m-band reduces to a 1-band by defining functions on the product space Tm .

Proposition 2.3 For each j , the m-band bandm( f1, . . . , f j ) coincides with band
( f (m)

1 , . . . , f (m)
j ), where f (m)

i : Tm �→ (Rd)m is defined as

f (m)(t1, . . . , tm) = ( f (t1), . . . , f (tm)) .

Proof It suffices to note that f (m)(t1, . . . , tm) belongs to the convex hull of
f (m)
i (t1, . . . , tm), i = 1, . . . , j , if and only if ( f (t1), . . . , f (tm)) belongs to the con-

vex hull of ( fi (t1), . . . , fi (tm)), i = 1, . . . , j . �

In the framework of Proposition2.3, it is possible to introduce further bands (called
space-reduced) by restricting the functions f (m)

i to a subset S of Tm . For instance,
the 1-band generated by functions f (2)

1 , . . . , f (2)
j for the arguments (t1, t2) ∈ R

2 such
that |t1 − t2| = h describes the joint behaviour of the values of functions separated by
the lag h. Ifm = 1, then the space reduction is equivalent to restricting the parameter
space, which can be useful, e.g. for discretisation purposes.

It is possible to quantify the closedness of f to the band by determining the
proportion of the m-tuple of time values from Tm when the values of f belong to
the band. Define the m-band time-share as
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TSm( f ; f1, . . . , f j )

= {(t1, . . . , tm) ∈ Tm : f (m)(t1, . . . , tm) ∈ conv({ f (m)
i (t1, . . . , tm)} ji=1) .

If the functions take values in R, then TS1( f ; f1, . . . , f j ) turns into the modified
band depth defined in [11, Sect. 5]. If f belongs to the m-band of f1, . . . , f j , then
TSm( f ; f1, . . . , f j ) = Tm , while if f belongs to the 1-band of f1, . . . , f j , then
{(t, . . . , t) : t ∈ T } ⊂ TSm( f ; f1, . . . , f j ). It is also straightforward to incorporate
the space reduction by replacing Tm with a subset S.

3 Simplicial-Type Band Depths

Band Depth

In the following, we consider the event that a function f belongs to a band generated
by i.i.d. random functions ξ1, . . . , ξ j with the common distribution P . The m-band
depth of the function f with respect to P is defined by

bd( j)
m ( f ; P) = P{ f ∈ bandm(ξ1, . . . , ξ j )}
= P{( f (t1), . . . , f (tm)) ∈ conv({(ξi (t1), . . . , ξi (tm))} ji=1)∀t1, . . . , tm ∈ T } .

(6)

If m increases, then the m-band narrows, and so the m-band depth decreases.
We recall that when d = 1 the 1-band coincides with the band introduced in [11].

Nevertheless the band depth defined in [11] is the sum of bd( j)
m ( f ; P)with j ranging

from 2 to a fixed value J . The same construction can be applied to our m-bands.
The m-band depth of f is influenced by the choice of j , and it increases with j .

Unlike the finite-dimensional setting, where j is typically chosen as the dimension of
the space plus one [10], there is no canonical choice of j for the functional spaces. In
order to ensure that them-band generated by ξ1, . . . , ξ j differs from the convex hull,
it is essential to choose j sufficiently large, and in any case at least d(m − 1) + 2,
see Proposition2.2. Furthermore, we must impose stronger conditions on j to avoid
the zero-depth problem.

Proposition 3.1 If j ≤ dm and the joint distribution of the marginals of P at some
fixed m time points is absolutely continuous, then bd( j)

m (·; P) = 0.

Proof If j ≤ dm and {(ξi (t1), . . . , ξi (tm))} ji=1 are independent and absolutely con-
tinuous in R

dm , the probability that any fixed x ∈ R
dm lies in their convex hull is

zero. �

A theoretical calculation of the m-band depth given by (6) is not feasible in most
cases. In applications, it can be replaced by its empirical variant defined in exactly
the same way as in [11] for the 1-band case. Let f1, . . . , fn be a sample from P . Fix
any j ∈ {dm + 1, . . . , n} and define
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bd( j)
m ( f ; f1, . . . , fn) =

(
n

j

)−1 ∑

1≤i1<···<i j≤n

1 f ∈bandm ( fi1 ,..., fi j )
,

so that bd( j)
m ( f ; f1, . . . , fn) is the proportion of j-tuples from f1, . . . , fn such that

f lies in the m-band generated by the j-tuple. The choice of j affects the results. It
is computationally advantageous to keep j small, while it is also possible to sum up
the depths over a range of the values for j , as in [11].

Time-Share Depth

Assume now that T is equipped with a probability measure μ, for example, the
normalised Lebesgue measure in case T is a bounded subset of the Euclidean space
or the normalised counting measure if T is discrete. Extendμ to the product measure
μ(m) on Tm . Define the time-share depth by

td( j)
m ( f ; P) = Eμ(m)(TSm( f ; ξ1, . . . , ξ j )) .

If T is a subset of the Euclidean space, Fubini’s Theorem yields that the time-share
depth is the average of the probability that ( f (t1), . . . , f (tm)) lies in the convex hull
of j points in R

dm ,

td( j)
m ( f ; P) =

∫
P{( f (t1), . . . , f (tm)) ∈ conv({(ξi (t1), . . . , ξi (tm))} ji=1)}

dμ(m)(t1, . . . , tm) . (7)

For any j ∈ {dm + 1, . . . , n}, the empirical time-share depth is given by

td( j)
m ( f ; f1, . . . , fn) =

(
n

j

)−1 ∑

1≤i1<···<i j≤n

μ(m)(TSm( f ; fi1 , . . . , fi j )) .

Example 3.1 (Univariate case) Assume that T is a singleton. Then necessarilym =
1, the function f is represented by a point x in R

d , and the band depth of x for
j = d + 1 coincides with the simplicial depth, see [10].

Example 3.2 Let ξ(t) = a(t) + X , t ∈ T , where X is a random variable. Then
band(ξ1, . . . , ξ j ) for i.i.d. ξi (t) = a(t) + Xi , i = 1, . . . , j , is the set of functions
bounded above by a(t) + max Xi and below by a(t) + min Xi . Then

bd( j)
1 (a; P) = 1 − P{X > 0} j − P{X < 0} j .

By Example2.2, band2(ξ1, . . . , ξ j ) consists of functions a(t) + b for the constant
b ∈ [min Xi ,max Xi ]. Only such functions may have a positive 2-band depth.

Example 3.3 Let now ξ(t) = a(t) + X , where a : T → R
d and X is an absolutely

continuous random vector inRd which is angularly symmetric about the origin. Then
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bd( j)
1 (a; P) = 1 − 21− j

d−1∑

i=0

(
j − 1

i

)
(8)

being the probability that the origin belongs to the convex hull of X1, . . . , X j , see
[16].

Properties of the Band Depths

Theorem 3.1 For any j ≥ dm + 1 we have:

1. affine invariance. bd( j)
m (A f + g; PA,g) = bd( j)

m ( f ; P)and td( j)
m (A f + g; PA,g) =

td( j)
m ( f ; P) for all g ∈ E and A : T �→ R

d×d with A(t) nonsingular for t ∈ T ,
where PA,g(F) = P(A−1(F − g)) for any measurable subset F of E.

2. phase invariance. bd( j)
m ( f ◦ h; Ph) = bd( j)

m ( f ; P) for any one-to-one transfor-
mation h : T �→ T , where Ph(F) = P(F ◦ h−1) for any measurable subset F of
E when h−1 is the inverse mapping of h.

3. vanishing at infinity. bd( j)
m ( f ; P) → 0 if the supremum of ‖ f ‖ over T converges

to infinity, and td( j)
m ( f ; P) → 0 if the infimum of ‖ f ‖ over T converges to infinity.

The affine invariance of both depths follows from the affine invariance of the
m-bands, see (3), (4), while the phase-invariance of the band depth follows from (5).

In practice, the functions are going to be evaluated over a finite set of time points,
thus T = {t1, . . . , tk} and probability P is a distribution on (Rd)k . Furthermore, the
sample of functions f1, . . . , fn to be used to determine an empirical m-band depth
should have size at least n ≥ j ≥ dm + 1.

Theorem 3.2 If P is absolutely continuous, for any n ≥ j ≥ dm + 1 we have:

4. maximality at the center. If P is angularly symmetric about the point ( f (t1), . . . ,
f (tk)), function f will be the deepest with regard to the time-share depth, and td( j)

m

( f ; P) = 1 − 21− j
∑dm−1

i=0

( j−1
i

)
.

5. consistency. Band depth sup f ∈E |bd( j)
m ( f ; f1, . . . , fn) − bd( j)

m ( f ; P)| → 0 a.s.
and time-share depth sup f ∈E |td( j)

m ( f ; f1, . . . , fn) − td( j)
m ( f ; P)| → 0 a.s.

The properties of the time-share depth rely on Formula (7) that makes possible
to write it as an average of the probability that a point lies in the convex hull of
independent copies of a random vector. The maximality at center follows from the
main result in [16] which determines the probability inside the integral in (7), see (8),
while the consistency can be proved in a similar way to [13, Theorem3] extending the
uniform consistency of the empirical simplicial depth [5, Theorem1] to the one of the
probability that a point lies in the convex hull of a fixed number of independent copies
of a random vector. Such an extension, which relies on probabilities of intersections
of open half-spaces, can be adapted to prove the consistency of the empiricalm-band
depth.
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Fig. 1 17 curves evaluated at {1, 2, . . . , 9}. The eight deepest curves are thicker than the others and
each of them is assigned a letter from a to h. Five deepest curves for bd(4)

1 (in order): d,c,f,g,a,

for td(4)
1 : d,c,g,a,f, for bd(4)

2 : g,b,f,e,a, and for td(4)
2 : g,f,c,d,h

4 Data Examples

Simulated Data

Figure1 shows 17 curves which are evaluated at T = {1, 2, . . . , 9}. Among the 17
curves, there is a clear shape outlier (marked as d) that lies deep within the bunch
of curves. Such an outlier will not be detected by the outliergram from [1] due to
its high depth value with regard to both of the 1-band depth and half-region depth
(see [12]). Nevertheless, its anomalous shape is detected by any m-band depth with
m ≥ 2.

It is remarkable that curve d, which is the deepest curve with respect to the usual
band depth and modified band depth (bd(4)

1 and td(4)
1 ) is among the less deep curves

for the 2-band depth (bd(4)
2 ) and is only the fourth deepest curve for its time-share

depth (td(4)
2 ). The reason for this last fact is that if we restrict to either of the sets of

time points {1, 3, 5, 7, 9} or {2, 4, 6, 8}, curve d is not a shape outlier with respect
to them.

Real Data

The nominal Gross Domestic Product per capita of the 28 countries of the European
Union (2004–2013) was obtained from the EUROSTAT web-site and is represented
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Fig. 2 Evolution of the nominal GDP per capita between 2004 and 2013 at the EU countries. Five
deepest curves for bd(5)

1 (in order): Cyprus, Spain, Italy, Greece, and Slovenia, for bd(5)
2 : Spain,

Slovenia, France, Croatia, and Finland, and for bd(5)
2 space-reduced with S = {(t1, t2) : |t1 − t2| =

1}: Croatia, Slovenia, Spain, Finland, and France

in Fig. 2. The missing observation that corresponds to Greece, 2013 was replaced by
the value obtained from the FOCUSECONOMICS web-site.

The deepest curve with regard to the band depth (bd(5)
1 ) is the one of Cyprus.

Interestingly, Cyprus suffered the 2012–13 Cypriot financial crisis at the end of the
considered period and its GDP per capita experienced a decay in 2013 in comparison
with its 2012 figure much greater than the one of any other of the EU countries.
Also the Greek curve is among the five deepest ones for bd(5)

1 despite being the only
country with a constant decrement in the second half of the considered time period.
If we consider 2-bands, that take into account the shape of the curves, these two
curves are not any more considered representative of the evolution of the GDP per
capita in the EU.
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On the Combination of Depth-Based Ranks

Ignacio Cascos and Ignacio Montes

Abstract The depth of a multivariate observation assesses its degree of centrality
with respect to a probability distribution, and thus it can be interpreted as a measure-
ment of the fit of the observation wrt the distribution. If such depth is transformed
into a (depth-based) rank, then we obtain a kind of p-value of a goodness-of-fit test
run on a single observation. For a sample of observations, the goal is to combine
their ranks in order to decide whether they were taken from some prescribed distri-
bution. From the meta-analysis literature, it is well known that there does not exist a
combination procedure for such p-values (or ranks) that outperforms the remaining
ones in all possible scenarios. Here we explore several combination procedures of
the depth-based ranks and analyse their behaviour in the detection of some given
shifts from a prescribed distribution.

1 Introduction

In multivariate Statistics, a depth function assesses the degree of centrality of an
observation with respect to a probability distribution or a data cloud, see [2, 8, 12,
18, 19]. Based on the ordering provided by such a depth function, it is possible to
build a rank for multivariate observations defined as the proportion of observations
that are at most as central as the given one. A central observation has thus a rank
close to 1, while the rank of a peripheral observation is close to 0.

Based on such depth-based ranks, Liu [9] proposed three control charts for multi-
variate observations. Specifically, she proposed an individuals chart that monitors the
rank of each individual observation, a chart for rational samples of a given size, and
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a chart with memory that combines all observations until the current one. These two
last charts combine the information of the individual observations by averaging their
respective (depth-based) ranks. The idea is simple, since peripheral observations have
small ranks, an alarm must be risen at the individuals chart whenever a very small
rank is detected. When several observations are considered, the alarm is risen when
their average rank is small. We will show here that other combination procedures
different from averaging ranks provide better results at some given scenarios.

In the Statistical Process Control literature, there is a considerably large number of
proposals of nonparametric univariate control charts that monitor on-going processes
either in location, scale, or in location and scale, see [5, 13]. Notice that the (usual)
rank of a univariate observation, defined as the cdf evaluated at it, locates the obser-
vation throughout the range of the random variable, while the depth-based ranks that
we consider here only establish how central an observation is wrt a distribution. In
this sense, if each point of a control chart is to be interpreted as the statistic of a
goodness-of-fit test with H0 establishing that the distribution of the process has not
departed from some prescribed one, and H1 that some shift has altered the location
parameter (and the scale parameter might have also increased), then the test built out
of a (classical) univariate rank is two-sided, while the one built out of a depth-based
rank is one-sided. The fact that the test is one-sided, means that the control chart has
only one Control Limit, and it is also relevant that the departure of an observation
from the center cannot be compensated by some other observation, simply because
when we use a depth function, we miss the information of the direction of the depar-
ture. A possible alternative to the use of a depth-based rank that would exploit the
information of the direction of the departure is to estimate a parameter over each
sample and then evaluate the depth over such estimates of the parameter either with
a parameter depth notion as in [4] or with a classical depth evaluated over artificial
samples of parameters as in [11].

Consider now a depth-based rank evaluated over a single observation. When the
process distribution has not departed from the original one, and under fairly weak
assumptions, the distribution of such rank is uniform in the unit interval and an alarm
is to be risen if it is very small, so essentially the rank can be considered as the p-value
of a goodness-of-fit test. If we have a rational sample of a given size, the combination
of ranks is equivalent to the combination of p-values, so we face a meta-analysis
problem, see [1, 14], with p-values coming from one-sided tests.

In Sect. 2 we introduce several classical notions of depth, together with the depth-
based rank and some classical control charts built from it. In Sect. 3 some alternative
combination methods of ranks are presented, and the performance of the control
charts built from them is presented in Sect. 4. Finally, an application of the proposed
procedure is discussed in Sect. 5.
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2 Depths, Depth-Based Ranks, and Control Charts

The standard charts for monitoring a production process are the individuals X -chart
(for individual observations), the X -chart (for rational samples of a given fixed size),
and the CUSUM-chart (for samples of an increasing size, and thus with memory).
These charts are very simple and efficient in the univariate framework under some
mild conditions. However, their multivariate generalizations are quite sensitive to
departures from the distributional assumptions.

In order to avoid these problems, Liu [9] proposed alternative charts based on data
depth. Given a distribution P in the k-dimensional Euclidean space, the simplicial
depth of y ∈ R

k with respect to P is defined in Liu [8] as

SDP(y) = Pr{y ∈ co{Y1, . . . ,Yk+1}},

where Y1, . . . ,Yk+1 are k + 1 independent random variables with distribution P and
co stands for the convex hull. The empirical simplicial depth built out of a sample
Y1, . . . ,Ym is defined as the U -statistic

SDm(y) =
(

m

k + 1

)−1 ∑
1≤i1<...<ik+1≤m

I (y ∈ co{Yi1 , . . . ,Yik+1}).

Other alternative notions of data depth are Tukey’s half-space depth (see [16, 18])

HDP(y) = inf{P(H) | H closed half-space with y ∈ H},

and Koshevoy and Mosler’s [7] zonoid depth

ZDP(y) = sup
{
α ∈ (0, 1] | y =

∫
xg(x) dP(x),

with g : Rk �→ [0, α−1] measurable,
∫

g(x) dP(x) = 1
}

.

The empirical half-space and zonoid depths are obtained after substituting P by an
empirical distribution Pm and denoted by HDm(y) and ZDm(y).

Based on any of the previously introduced depth notions, denoted by DP , we can
define the rank of an observation with respect to P as

rP(y) = Pr{DP(Y ) ≤ DP(y) | Y ∼ P}.

When the available information about P appears in terms of a sample Y1, . . . ,Ym ,
the empirical rank is given by

rm(y) = #{Y j | Dm(Y j ) ≤ Dm(y), j = 1, . . . ,m}/m ,
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where # stands for the cardinality of a set. Both rP and rm measure how central
is a point y with respect to a distribution (either a population P or an empirical
distribution Pm), in the sense that the smaller the rank of y is, the more peripheral y
is with regard to the distribution.

For any of the previous depth notions, if X ∼ P absolutely continuous, then rP(X)

follows a uniform distribution in the unit interval, see Liu and Singh [10]. Further,
since the empirical depths are uniformly consistent estimators of the population
depths, then each empirical rank rm(X) weakly converges to a uniform distribution
in the unit interval. The uniform consistency of the three empirical depths introduced
above for absolutely continuous distributions can be found at [8] (simplicial depth),
[6] (half-space depth), and [3] (zonoid depth).

Given a sample of observations X1, . . . , Xn , which we will denote by X (n), Liu
and Singh [10] define a quality index to quantify the quality of X (n) as a random
sample from P ,

QP(X (n)) = 1

n

n∑
i=1

rP(Xi ) , (1)

as usual, the quality with respect to the empirical probability Pm is obtained after
substituting the rank with respect to P by the empirical rank and will be denoted
Qm(X (n)). We turn now our attention to the specific control charts proposed by
Liu [9].

Q-Chart

The Q-chart is a non-parametric and multivariate generalization of Shewart’s
X -chart. Rational subgroups of size n are subsequently considered, X (n)

1 , X (n)
2 , . . .

and their quality indices QP(X (n)
1 ), QP(X (n)

2 ), . . . are plotted in a time chart. The
unique (lower) Control Limit is set at the α-quantile of a sum of n independent
uniform random variables in order to obtain a control chart with false alarm rate
(significance level at the goodness-of-fit test) α.

S-Chart

The S-chart is a non-parametric and multivariate counterpart of the CUSUM-chart.
Given the new observations X1, . . . , Xn , it monitors the cumulative sum of their
ranks, that is, for j = 1, . . . , n

Sj =
j∑

i=1

(
rP(Xi ) − 1

2

)
= j

(
QP(X ( j)) − 1

2

)
.

The process is considered to be out-of-control when the cumulative sum represented
by Sj is too small. Under the assumption that j is large enough in order to apply the
CLT, the Control Limit is given by−(zα

√
j/12). If instead of P , the historical infor-

mation about the process appears as a sample of sizem, the Control Limit is corrected
due to the variability of such sample to adopt the expression−(zα

√
( j + j2/m)/12).
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A modification of the S-chart appears in the form of the S∗-chart, which monitors
the statistic S∗

j = Sj/
√

j/12. The Control Limit for the S∗
j -chart is constant at −zα .

In Fig. 3 left, Q-, S- and S∗-charts are represented.

3 The Proposal

The combination of several ranks is the same problem as the combination of several
p-values in a meta-analysis procedure. In Eq. (1) those ranks were averaged in order
for an alarm to be risen whenever such average was too small. One reasonable
property that any method of combination must satisfy is admissibility (following the
jargon proposed at [1]). This property says that if an alarm is risen at a sample of
ranks r1, . . . , rn , it would also be risen at any other sample r∗

1 , . . . , r
∗
n with r∗

i ≤ ri
for each i .

We take advantage of the uniformity of the ranks and apply the inverse transform
for some distributionmodels forwhich the distribution of the sumof independent ran-
dom variables is well-established. That is, each individual rank is to be transformed
and then, the random variables obtained will be added. The distribution models we
consider in our weighting scheme are right-skewed and supported on the positive
half-line in order to be sensitive to peripheral observations when they are applied to
the counter-rank (1 − r).

Since we apply an increasing transformation to each counter-rank (resp. rank),
alarms are risen for large (resp. small) aggregated results. If F denotes the cdf of a
continuous distribution, we can aggregate the transformations of the rank in terms
of the quantile function F−1:

QF
P(X (n)) =

n∑
i=1

F−1(1 − rP(Xi )), (2)

and rise an alarm for large values of the Q statistic. Alternatively, it is possible to
use the counter-ranks, whose Q index will be denoted by Q−, and rise an alarm for
small values of the statistic.

When F stands for an Exp(1) distribution or a Beta(0.5, 1) distribution, we obtain
Q indices whose distribution is known when X ∼ P ,

QExp
P (X (n)) = −

n∑
i=1

log(rP(Xi )) ∼ Gamma(n, 1) , (3)

QBeta
P (X (n)) =

n∑
i=1

(1 − rP(Xi ))
2 . (4)
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Expression (3) can be alternatively obtained after taking the logarithm of the product
of the ranks and corresponds to Fisher’s (meta-analysis) method, which usually
appears multiplied times 2 in order for its distribution to be χ2

2n . The distribution of
(3) is the one of the sum of squares of uniform random variables in the unit interval,
and a tractable explicit expression for it, when n is not too large, is given at [17]. For
large values of n, we can apply the CLT.

Other possible choices for F in (2) are the uniform distribution in the unit interval
and the chi-squared distribution χ2

1 . In the first case, the index Q amounts to the sum
of the counter-ranks and we obtain n − nQP(X (n)), which is a decreasing transfor-
mation of (1) since the control limit here is an upper one, while in the second the Q
index would follow a χ2

n distribution.

Remark 3.1 The aggregation method used at (2) is the addition, which is related
with the product in (3), but it is also possible to consider the maximum, minimum,
or any given intermediate observation.

Q-Chart

The Q-chart is based on subgroups of size n denoted X (n)
1 , X (n)

2 , . . . For transforma-
tions based on the quantile function, the aggregations QF

P(X (n)
1 ), QF

P(X (n)
2 ), . . . are

plotted in a time chart, together with a unique upper Control Limit, which can be
exactly computed. In case the counter-ranks are used, the unique Control Limit is a
lower one.

S-Chart

Given the observations X1, X2, . . . consider the cumulative sum of the transformed
ranks and subtract the mean of distribution F from it, μ(F), as many times as
observations are available

SF
j = QF

P(X ( j)) − jμ(F), for j = 1, 2, . . .

where again X ( j) denotes the first j observations. If each Xi follows distribution P ,
then each SF

j is a random variable centred at 0, whose distribution can be approx-
imated to a normal by the CLT, and thus the upper Control Limit is established at
zασ (F)

√
j .

4 Comparison Results

As stated before, there is no weighting of the ranks that outperforms the remaining
ones in the detection of all possible shifts in a distribution. It is actually the distribution
of the rank of the observation of a shifted process (known to be uniform in case there
is no shift) what determines which is the best weighting for the detection of each
individual shift. In Fig. 1 below we have represented the density mass function of
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Fig. 1 Density mass functions of the (depth-based) ranks of a standard Gaussian and a Cauchy
distribution after a shift in the location parameter
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Fig. 2 Operating Characteristic curves of several Q and Q− charts at the detection of shifts in
location for samples of size n = 5 and false alarm rate α = 0.05

the (depth-based) rank of a standard Gaussian (left) and a Cauchy distribution (right)
unshifted and after several possible shifts in the location parameter.

If the location parameter of a Gaussian distribution is shifted, the distribution of
the rank is close to the one of a Beta(1, a) distribution with a > 1, as conjectured in
[15, Sect. 5.2], but if the reference distribution has heavy tails, the situation is quite
different, as can be observed in Fig. 1 right.

In order to compare the transformation of the ranks introduced in the previous
section, at Fig. 2wehave represented theOperatingCharacteristic curves obtained for
the detection of shifts in location, on samples of size n = 5, with α = 0.05, and two
different distribution models of the process. The lines correspond to the probability
of not detecting a shift, which is always 0.95 if there is no shift in location (at x = 0)
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and should be as low as possible for any real shift. On the left (bivariate Gaussian
distribution), the best transformation is the logarithmic one, then the square, and
finally the pure averaging of the ranks. On the right we considered the Laplace
(double exponential) distribution since it has heavier tails. Here it turns out that if the
shift in location is small, the use of the counter-ranks in order to produce index Q−
together with the logarithmic or square transformation is a good option. For large
shifts, the square transformation seems to be the best option, while overall the pure
average of the ranks is the best option.

Proposed Procedure

For some reference distribution or historical dataset, fix a sample size, a false alarm
rate, and a target shift. The target shift is the minimal shift in whatever parameters
of the reference distribution that should be detected. With these reference values, we
can apply the shift to the historical dataset and resample from it. Finally, we select
the transformation that detects such a shift with the largest probability.

5 Application

The data used in this section is borrowed from [9], where 580 observations were
simulated from a bivariate standard normal distribution. The first 500 observations
were used as the historical dataset and all depths were computed with respect to
them. For the second group of 80 observations, the first 40 of themwere kept without
modifications and the last 40 were first multiplied by a scale factor of 2 and then
vector (2, 2) was added to them, so they suffered a shift in location and scale. The
second group of 80 observations was split in 20 samples of size n = 4 in order to
obtain a Q-chart. The first 10 samples were taken before the shift, while the last 10
were obtained after the shift.

The first row of Fig. 3 contains Q-charts, while the second and third contain S-
and S∗-charts. On the left column the pure average of the ranks was considered (as
in [9]), while the logarithmic and square transforms were applied on the middle and
right columns.

In the first row of Fig. 3 and for α = 0.025, the three Q-charts have the same
behaviour (fail to detect the shift at sample number 18). If we take α = 0.1 instead,
the last two charts detect that shift, but the three of them classify as suspicious sample
number 7. As for the S-charts, the chart on the left does not detect the shift until the
49th observation (the shift already occurred at the 41st), while the other two charts
already detect it at the 47th.

As observed in Fig. 2 left, the logarithmic and square transformation detect shifts
in a bivariate Gaussian distribution better than the pure average.
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Fig. 3 Q- and S-charts as described by Liu [9] and other two combination schemes
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A Bayesian Network Model for the
Probabilistic Safety Assessment of Roads

Enrique Castillo, Zacarías Grande and Elena Mora

Abstract A Bayesian network model for probabilistic safety analysis of roads and
highways is introduced. After indicating how the list of variables and the conditional
probability tables of the Bayesian network model are built, based on a video of the
road, a short discussion about howmaximum likelihood and Bayesian networkmeth-
ods can be applied to estimate the model parameters using standard methods. Next, a
partitioning technique is suggested to convert the non-linear problem of computing
marginal and conditional probabilities after evidence into a problem whose com-
plexity becomes linear in the number of variables. Finally an example of application
is used to illustrate the proposed methodology and some conclusions are drawn.

1 Introduction

This is our contribution to honor and remember Prof. Pedro Gil to whom this volume
is dedicated (for some works related to this paper see [10, 11, 16, 17]). We decided
to write a paper on applications of Probability and Statistics to demonstrate how
these areas of knowledge can help Society in solving important problems as Pedro
dedicated his life to help many students and colleagues.

Probabilistic safety analysis (PSA) is awell known and the best technique to assess
the safety level of a system, used for nuclear power plants and extended recently to
the case of railway lines (see for example, [3–5] or [12]). In this work we deal with
the case of roads, where a huge number of accidents occur. This is one of the actual
main concerns of our society. In our analysis, we restrict to Bayesian networks (BN),
due to its incredible power to reproduce multidimensional random variables (see
[2]). Though superior to other existing methods, such as fault or event trees, only
very recently BNs have been applied to the analysis of traffic infrastructures.

Until very recently, most of the proposed BN models have been used: (a) to pre-
dict how frequent different traffic incident types occur, such as [1, 9, 14, 19, 21]
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(b) to classify traffic incidents according to their injury severity, such as [8], (c) to
analyze and prevent traffic incidents, such as [15], (d) to perform a transportation
safety assessment, such as [20], or (e) to perform a safety analysis of expressways,
such as [18]. Most existing publications work with global safety assessments but
do not provide means to identify the risks associated with different locations of
the road segments. In addition, these methods use data to learn not only the qual-
itative structure (structural learning), using the K2 or related algorithms, such as
[8, 15] or, but to quantify the conditional probability tables (parametric learning)
using Bayesian parameter estimation methods, the EM (expectation maximization)-
algorithm or other statistical methods, such as [1] or [14]. Contrary, [20] used a group
of experts for designing the BN. The data used were global data, that is, mainly valid
only to estimate global safety indices.

In this workwe deal with the probabilistic safety assessment of road and highways
and propose a Bayesian network model, which is described below.

2 Building the Bayesian Network

To build a Bayesian network we need to define its variables first and later its two
components: (a) the acyclic graph, that is, the qualitative structure of the model and
(b) the conditional probability tables, that is, the quantitative information.

To identify the main variables, see [13], we record a video of the road and identify
all possible items causing incidents (traffic light signals, stop signals, intersections,
curves, roundabouts, tunnels, acceleration and deceleration lines, etc.). Next, we
identify the list of variables used in our mode, which are shown in Table1 together
with its definitions and their possible values.

Next, we obtain the acyclic graph by identifying direct dependencies between
variables. To clarify ideas, in Fig. 1 the part of the acyclic graph corresponding to the
items of a fraction of a road and highways, the corresponding kilometer points (KP)
and cumulated probabilities of incidents are shown.

Finally, the conditional probability tables are defined using closed formulas, as
illustrated in Fig. 2, where the particular case of the probability of an incident due to
an error at a traffic signal is used to illustrate how closed form formulas are obtained.

Once the Bayesian network model has been built, the marginal probabilities of
the incident type nodes can be calculated and the ENSI1 values for each location
calculated.

Figure3 shows themain elements and the scanner plot associated with one section
of the CA-132, showing the cumulated curve of ENSI values. With the help of these
scanner plots the riskiest locations and sections can be easily located.

1ENSI refers to the expected number of equivalent severe incidents, where 6.4 medium incidents
and 230 light incidents are considered equivalent as one severe incident. The relative mean costs of
these incidents have been used to determine these factors.
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Table 1 Notation: list of variables with their possible definitions and values

Variable Definition Values

D: Driver’s attention This variable represents the
driver’s attention

Distracted, Attentive,
Alert

T: Driver fatigue Measures driver fatigue A positive value that
increases with driving
time

Sd: Driver decision on
speed

Represents the action of the driver
in cases where he must adjust the
speed

Correct, Error I, Error II

Dri: Driver Type This variable reflects the quality of
the driver

Professional,
Experienced, Standard,
Bad

It: Traffic intensity This variable measures traffic
intensity

Light, Medium or Dense

Vis: Visibility This variable measures the
visibility existing at the point
considered

Good, Average and Poor

Vt: Type of vehicle Refers to the type of vehicle Heavy Vehicle,
Automobile and Moto

S: Speed Is the circulation speed at the point
considered

Set of positive values

V: Vehicle failure Consider the possibility of a
vehicle failure

No fault, Minor fault,
Medium fault or Serious
fault

E: Failure in the
environment

It represents the possibility of
unwanted events, such as
obstructions of the road by stones,
trees or other materials, animals as
well as defects of the road,
clearings, embankments, etc.

No fault, Minor fault,
Medium fault or Serious
fault

P: Pavement condition Represents the state of the
pavement

Good condition, Mild
failure, Medium failure
or Serious fault

Co: Collision Represents the possibilities of
collision with other vehicles that
circulate on the road in the same or
opposite direction

No Collision, Mild
Collision, Medium
Collision, or Severe
Collision

W: Weather Represents the type of climate Fair, Rain/Snow, Wind,
Fog, Snow/Ice

SS: Signal status Represents the status of the signal Green, Yellow, Red

AS: Decision of the
driver at a traffic light

Represent the decision of the driver
at a traffic light

Correct, Error I, Error II

DS: Decision of the
driver in a signal

Represents the decision of the
driver in a signal, such as Stop,
yields or speed limit signals

Correct, Error

TF: Technical failure It represents the possible failure of
a vehicle, signal, etc.

Yes, No

(continued)
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Table 1 (continued)

Variable Definition Values

CF: Crossover
Frequency

Represents the frequency of
crossing between two elements of
brakes such as vehicles and trains
or pedestrians and vehicles at a
specific point on the road, such as
pedestrian crossings or level
crossings

Yes, No

I: Incident Represents possible incidents that
may occur at a particular location
on the road or in a no-signal range

Incident, Mild Incident,
Medium Incident, and
Serious Incident

Fig. 1 Part of the acyclic graph corresponding to the indicated items, kilometer points (KP) and
cumulated probabilities of incidents

3 Learning the Bayesian Network Model

In this sectionwe address the problemof parametric learning of theBayesian network
(see [7] for more details).

Let {X1, X2, . . . , Xs} be the set of variables (nodes) of the Bayesian network,
which are denoted by capital letters. Consider a sample of m vehicles circulating by
the road and let {x1i , x2i , . . . , xsi }; i = 1, 2, . . . ,m be the sample values, where we
have used lower case letters to refer to the particular values of the corresponding
variables in the sample.
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Fig. 2 Illustration of the closed formula for the light signal failure conditional probability table

Let θ k
Xk ;Pk = P(Xk |Pk) be the conditional probabilities of the node Xk given

their parentsPk , which are considered the parameters of the Bayesian network to be
estimated. For the parameters to be a valid conditional probability they must satisfy
the constraints:

θ k
tk ;Pk = 1 −

tk−1∑

a=1

θ k
a;Pk ; ∀Pk, (1)

where tk is the number of possible values of node Xk .
The log-likelihood of the sample becomes:

log L(x; θ) =
∑

Pk

s∑

k=1

tk∑

xk=1

(
m∑

i=1

nkxki ;Pk
i

)
log θ k

xk ;Pk

=
s∑

k=1

∑

Pk

(
tk∑

xk=1

(
m∑

i=1

nkxki ;Pk
i

)
log θ k

xk ;Pk

)
,

(2)

where xki andPk
i are the values of the node Xk and its parents in sample data i , and

nk
xki ;Pk

i
is the number of observed vehicles in the sample such that Xk = xk and the

parent values of Xk in the sample arePk .
Equation (2) reveals that themaximization of the log-likelihood function is equiva-

lent to the maximization of the summands corresponding to the different conditional
probabilities of the nodes one by one and separately. More precisely, we need to
maximize



94 E. Castillo et al.

Fig. 3 Scanner of one section of the CA-132, showing the cumulated curve of ENSI values. Note
how the riskiest points are emphasized
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(
m∑

i=1

nkxki ;Pk
i

)
log θ k

xk ;Pk ; ∀Pk, ∀k = 1, 2, . . . , n, (3)

which implies a very important reduction in complexity and CPU time.
In addition, given that the parameters must satisfy the constraints in (1), the

maximization of the expressions in (3) leads to

θ̂ k
xk ;Pk =

m∑
i=1

nk
xki ;Pk

i

tk∑
xk=1

m∑
i=1

nk
xki ;Pk

i

; ∀Pk, ∀k = 1, 2, . . . , n; xk = 1, 2, . . . , tk − 1, (4)

which are the well known classical estimates, that is, the sample proportions.
If we consider Bayesian estimates associated with the Dirichlet conjugate distri-

butions, we get

θ̂kxk ;Pk =

m∑
i=1

nk
xki ;Pk−i

+ nk0
xk ;Pk

tk∑
xk=1

m∑
i=1

nk
xki ;Pk

i
+ N0

; ∀Pk, ∀k = 1, 2, . . . , s; xk = 1, 2, . . . , tk − 1,

(5)

where nk0xk ;Pk are the prior parameters and N0 =
tk∑

xk=1
nk0xk ;Pk .

If there are no observable parents, Formula (5) must be replaced by the following
formula

θ̂ k
xk ;Pk ,P̂k =

m∑
i=1

nk
xki ;Pk

i
P(P̄k) + nk0xk ;Pk

∑

P̄k

tk∑
xk=1

m∑
i=1

nkxki ;Pk P(P̄k
i ) + N0

;

∀Pk, ∀k = 1, 2, . . . , s; xk = 1, 2, . . . , tk − 1 (6)

where nowPk and P̄k refer to the subsets of parents which are observed and unob-
served, respectively, and P(P̄k) is the joint probability of the unobserved parents
of node Xk , which can be easily obtained from the Xk-parents clique.

It is clear from expression (6) that the effect of the prior information nk0xk ;Pk and

N0 on the parameter estimates θ̂ k
xk ;Pk ,P̂k

of the observable nodes becomes negligible
when the sample size is large. However, this can take place only for very large sample
sizes if the true values of the parameter is very small.
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4 Network Partition

Since Bayesian networks associated with real cases imply a very high number of
variables (many thousands), it is necessary to reduce the complexity of the calcula-
tions; otherwise, the memory and the CPU requirements will exhaust the computer
capacity. To solve this problem the Bayesian network is partitioned into a series of,
as small as possible, subnetworks, such that the results of the computations is not
modified (see [6]).

Figure4 shows an example, in which the acyclic graph of the Bayesian network
of a segment of a road is given (upper plot). It has been partitioned into three sub-
Bayesian networks, denoted A, B and C , that can be identified by their different
background colors.

The partitions are selected based on the conditional independence property shown
in Fig. 4, where it can be seen that the nodes in set C are independent of the nodes of
set A given the nodes in B, because any path from set A to set C passes by set B in
the moral graph of the set A ∪ B ∪ C and its ancestors (see [2]). This means that the
variables in B contain all the information the variables in A have on the variables in
C . Consequently, variables in A are not needed to get information on the variables
in C given the variables in B.

The selected partition is not arbitrary at all. The key property for a partition to
be valid is to contain a set of separators (subsets of nodes) such that the conditional

Fig. 4 Illustration of how a Bayesian network can be partitioned into a sequence of Bayesian
subnetworks to obtain the marginal probabilities (forward process)
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Fig. 5 On the left is the graphical representation of the accident prediction for the CA-132 road
provided by the Bayesian network model, which shows the frequencies of light incidents (medium
gray), severe (light gray) and severe (dark gray) by means of circles with a diameter proportional
to the square root of the frequency of the incidents at the given points. Also shown on the right side
is the observed accident rate so that its similarity can be observed

probability of the posterior nodes becomes independent on the previous nodes given
the separator subset. Consequently, the separator subset and the partitions have been
selected to satisfy this condition.

This partition procedure leads to a computation time linear in the length of the
road or highway. Consequently, the CPU times are reduced substantially. This means
that some small cases requiring some hours of CPU, could be calculated in a few
minutes. This time reduction is even more impressive for larger networks.
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5 Example of Application

In this example we consider the case of the autonomic road CA-132 between Viveda
and Suances, in Cantabria (Spain), with a length of 5.95km, which is shown in
Fig. 5, where on its left side is the graphical representation of the accident prediction
provided by our Bayesian network model, which shows the frequencies of light
incidents (medium gray), severe (light gray) and severe (dark gray) by means of
circleswith a diameter proportional to the square root of the frequency of the incidents
at the given points. Also shown on the right side is the observed accident rate so that
similarities between predicted and observed scenarios can be observed.

Figure6 illustrates the riskiest location in this road, which correspond to an inter-
section indicated by the blue circle in the upper right picture, directly obtained from
Google maps. The problem is due to the lack of visibility produced by a house and
a wall and the presence of a close bus stop in the upper curve, which impedes car
and bus drivers to see the slow vehicles incorporating and leaving the CA-132 road
at this intersection.

The left picture shows that this location is at the beginning of the road (PK 0.380)
and the lowest right plot warns us about a high frequency of possible incidents,
pointing to the intersection location by means of a sudden jump in the cumulated
incident frequency (ENSI) curve.

Fig. 6 CA-132 Location of largest risk in the Cantabrian CA-132 autonomic road
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Table 2 Disaggregated ENSI: variable value combinations that contribute more to the total
ENSI individual value of node I322-380Int (T P1)

n Weather Vehicle type Driver’s
attention

Speed
(km/h)

ENSI %

1 Bad Car Alert 24 5.32e-10 16.38

2 Very bad Car Alert 24 3.93e-10 12.11

3 Humid Car Alert 24 3.46e-10 10.67

4 Very bad Car Alert 15 2.27e-10 7.01

5 Good Bus Alert 24 2.24e-10 6.90

6 Humid Bus Alert 24 1.84e-10 5.66

7 Good Car Alert 48 1.7e-10 5.23

8 Humid Car Alert 39 1.44e-10 4.43

9 Humid Car Alert 48 1.29e-10 3.98

10 Good Car Alert 39 1.11e-10 3.42

Table2 provides the most frequent combinations of variable values leading to
incidents at this intersection and shows the disaggregated ENSI values associated
with incidents at this location.

It is interesting to see that most incidents at this intersection take place with cars,
attentive drivers, not good weather and low speeds. This means that slow vehicles
combined with weather inclementness are the main cause of incidents. Buses appear
to be in the list of causes of these incidents, but on a secondary place.

Note also that when these incidents occur with good weather the speeds are higher
than when the weather is bad.

Based on Table2, safety can be improved by as cheap solution, such as reducing
the speed limit in the area or by means of a more expensive solution, as constructing
a small roundabout. Running again the computer program will indicate the ENSI
value reductions and whether or not the tested solutions are satisfactory enough to
solve the problem.

6 Conclusions

Based on the previous study, we can conclude that Bayesian network models allow
to:

1. Perform a road scanner.
2. Identify the most dangerous points of a road.
3. Determine the most frequent circumstances that produce the incidents.
4. Define the causes of occurrences or hypothetical incidents.
5. Help in making corrective decisions.
6. Optimize resources for improving safety and maintenance.
7. Predict accident concentration zones, before they occur.
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The Spiking Problem in the Context
of the Isotonic Regression

Ana Colubi, J. Santos Domínguez-Menchero and Gil González-Rodríguez

Abstract The usual estimators of the regression under isotonicity are known to
present the so-called spiking problem, that is, they are very sensitive at the tails.
Three design-based strategies in order to alleviate this effect are discussed. The
proposed strategies will provide uniform consistency on the (closed and bounded)
working interval. Firstly, the usual isotonic regression with a suitable number of
observations at the edges of the interval is considered. Secondly, a reallocation of
part of the edge observations at some artificial adjacent points is suggested. Finally,
a strategy based on constraining the isotonic regression to take values within some
horizontal bands is investigated. Simulation studies illustrate the performance of the
proposed estimators in practice.

1 Introduction

The estimation of the regression function when it is assumed to be isotonic has been
considered for long (e.g., [3, 15]). The best-known estimator for this problem is the
so-called isotonic regression, that is, the isotonic function that better fits the data
with respect to a weighted empirical L2 distance.

This estimator is known to be uniformly consistent in a closed and compact
interval strictly contained in the design interval, under general conditions and fixed
design (see [4, 13]). However, it is very sensitive at the tails, i.e., it presents a spiking
problem. To guarantee uniform consistency can be specially valuable in situations
like those in [5, 6, 16, 19]. This problem, and some ways to solve it, has been
deeply studied in [7] and the results are summarized and discussed here. Namely,
three specific alternatives are considered, and the results of a comparative simulation
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study are shown. Firstly, we suggest to suitable choose the number of observations
at the first and last design point. A second approach is developed by reallocating
part of the observations considered at the first and last design point at some artificial
adjacent points. Finally, a third method constrains the isotonic regression to take
values within some horizontal band. All the three methods show a good performance
and improve the one of the methods in [1, 17, 19].

The rest of the paper is organized as follows. The notation and the three suggested
strategies to estimate the regression under isotonicity are presented in Sect. 2. Then,
the simulation results are provided in Sect. 3. Finally, Sect. 4 concludes the paper
with a brief discussion and a sincere acknowledgment.

2 The New Procedures

Let Y (x) = m(x) + ε(x) be a regression model with x ∈ A = [a, b] ⊆ R, where the
errors ε(x) have 0 mean and the regression function m is continuous and isotonic.

We assume a fixed design {x1,n, . . . , xn,n} ⊂ A with xi,n < x j,n (1 ≤ i < j ≤ n,
n ∈ N) and rn(i) independent observations Y 1(xi,n), . . . , Y rn(i)(xi,n) on each design
point xi,n (1 ≤ i ≤ n, n ∈ N). Thus, {Y j (xi,n)} is a triangular array of row-wise
independent random variables.

Let T I
n be the set of real isotonic functions defined on {x1,n, . . . , xn,n}. For any

non-negative weighting function w : A → R
+ the argmin of

n∑

i=1

rn(i)∑

j=1

w(xi,n)(Y
j (xi,n) − f (xi,n))

2

on T I
n is the well-known isotonic regression estimator m̂ I . The isotonic regression

estimator can be computed by means of the algorithm PAVA (see [2]). An imple-
mentation in R can be found in [9]. This estimator has been widely analyzed in
the literature, and it has been used as well as a base for hypothesis testing (see, for
instance, [4–6, 8, 11, 12, 14, 16, 18, 19]).

The estimator as above-defined is just determined on the fixed design points.
However, it can be defined on the whole A by means of any isotonic extension. We
will denote by m̂∗

I any isotonic extension of m̂ I on A verifying that m̂∗
I (x) = m̂ I (x1,n)

if x ≤ x1,n and m̂∗
I (x) = m̂ I (xn,n) if x ≥ xn,n .

Let F : [0,∞) → [0, 1] be the function given by F(y) = supx∈A P(|ε(x)| >

y), for all y ∈ [0,∞), and assume that lim
y→∞ F(y) = 0 and

∫ ∞
0 y|dF(y)| < ∞. In

addition, let assume that the fixed design setting verifies that for all x ∈ (a, b],
min{{x1,n, . . . , xn,n} ∩ (x, b]} tends to x as n → ∞ and, analogously, for all x ∈
[a, b), max{{x1,n, . . . , xn,n} ∩ [a, x)} tends to x as n → ∞. Moreover, assume that
lim supn→∞ Nn(A)/Nn(J ) < ∞ for all J ⊆ A with
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Fig. 1 Simulated example with n = 40 and r40(i) = 1 for all i ∈ {1, . . . , 40}

Nn(J ) =
∑

{i :xi,n∈J }
rn(i).

Under such conditions, [13] proved the uniform consistency of m̂∗
I (with constant

weighting function) on any closed and bounded subset B � A.
To illustrate the spiking problem, in Fig. 1we have chosen A = [−1, 1],w(x) = 1,

m(x) = x5, ε(x) distributed as a U (−1, 1) for all x ∈ A and equally spaced design
points. We see that if rn(i) = 1 for all i ∈ {1, . . . , n}, then the estimates are not suit-
able at the tails. However, with the same total sample sizes, the behaviour improves
if more observations per design point at the edges are considered (see Fig. 2). This
idea suggested the strategies in [7].

Three different approaches are proposed in order to estimate the regression func-
tion under isotonicity uniformly consistently in the working interval A. More general
weighting functions can be considered in such a way that w is bounded and bounded
away from 0.

The first approach, P1, is to consider a fixed design so that the number of obser-
vations at the ending design points verify:

lim sup
n→∞

Nn(A)/min(rn(1), rn(n)) < ∞.

The second procedure, P2, is based on a reallocation of the observations at the
ending points by considering some artificial adjacent design points. For each n ∈ N,
let kan , k

b
n ∈ N and consider kan independent observations Z1

a, . . . Z
kan
a distributed as
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Fig. 2 Simulated example with n = 32, r32(1) = 5, r32(32) = 5 and r32(i) = 1 for all i ∈
{2, . . . , 31}

Y (a) and kbn independent observations Z
1
b, . . . Z

kbn
b distributed as Y (b). Let m̂2 be the

isotonic regression based on the design points

Bn = ∪kan
j=1{a − j/kan } ∪ {x1,n, . . . , xn,n} ∪ ∪kbn

j=1{b + j/kbn},

associating the observation Z j
a with the point a − j/kan for each j = 1, . . . , kan , the

observation Z j
b with the point b + j/kan for each j = 1, . . . , kbn , and the rest of the

observations with the original points. Thus, m̂2 is the argmin of

n∑

i=1

rn(i)∑

j=1

w(xi,n)
(
Y j (xi,n) − f (xi,n)

)2

+
kan∑

j=1

w(a)
(
Z j
a − f (a − j/kan )

)2 +
kbn∑

j=1

w(b)
(
Z j
b − f (b + j/kbn)

)2

on the set of isotonic functions defined on Bn . Since the estimator m̂2 is just an
isotonic regression, it can also be computed by means of PAVA. In this setting, we
assume that

lim sup
n→∞

max(kan , k
b
n)

Nn(A)
< ∞; lim sup

n→∞
Nn(A)

min(kan , k
b
n)

< ∞.
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Lastly, we introduce the design P3 with the idea of reducing the number of
observations at the ending design points with respect to the previous designs. In this
sense, an optimal condition could be to simply assume that

lim
n→∞min(rn(1), rn(n)) = ∞.

For any i ∈ {1, . . . , n} let

Y (xi,n) = 1

rn(i)

rn(i)∑

j=1

Y j (xi,n),

Y = 1∑n
i=1 rn(i)

n∑

i=1

rn(i)∑

j=1

Y j (xi,n),

and let m̂3 be the isotonic regression estimator restricted to take values in

[min(Y (x1,n),Y ),max(Y ,Y (xn,n))].

That is, m̂3 is the argmin of

n∑

i=1

rn(i)∑

j=1

w(xi,n)
(
Y j (xi,n) − f (xi,n)

)2

on the set of isotonic functions defined on T I
n and taking values restricted to

[min(Y (x1,n),Y ),max(Y ,Y (xn,n))]. It can be easily computed by using the results
in [10].

3 Simulations

Some simulations are shown in order to illustrate the performance of the three pro-
posed procedures (P1, P2, P3), leading to estimators of the regression function that
are uniformly consistent on the whole working interval A. Empirical comparisons to
the classical estimator, using a single observation per design point (P0), as well as
to the median isotonic regression (L1) of [17], the M-estimator (M) of [1] and the
penalized estimator (W ) of [19], are also summarized.

In all cases A has been chosen as [−1, 1], w(x) = 1 for all x ∈ A and the regres-
sion function is defined as m(x) = x p for values of p in {0, 1, 5} in order to cover
different situations with different increasing rate. The errors are i.i.d. following dif-
ferent distributions, namely N (0, 1), U (0, 1), and Student’s t with 3 degrees of
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freedom, respectively denoted by D1, D2 and D3. D3 is used in [1] to illustrate the
robustness of the M-estimator.

The same overall sample size N is considered for all the procedures, and the
design points are chosen as xi,n = 2(i − 1)/(n − 1) − 1 for any i ∈ {1, . . . , n} and
any n ∈ N.

For the procedures P0, L1 and W , we have selected n = N and rn(i) = 1 for
all i ∈ {1, . . . , N }, whereas for P1 and P3, rn(1) = rn(n) = �N/10 + 1 with n =
N − 2�N/10 and rn(i) = 1 for all i ∈ {2, . . . , n − 1}. Finally, for P2, kan = kbn =
�N/10 with n = N − 2(�N/10) and rn(i) = 1 for all i ∈ {1, . . . , n}. With this
setup, the same number of observations at the boundary of A is selected for P1, P2
and P3. Finally, we select w(x) = 1 for all x ∈ A.

As the errors are i.i.d., the estimator W is implemented by replacing Y 1(x1,N )

and Y 1(xN ,N ) by Y 1(x1,N ) + r
√
N and Y 1(xN ,N ) − r

√
N respectively, by taking

r = 0.15 σ̂n , where σ̂n is the standard deviation of the residuals Y 1(xi,N ) − m̂(xi,N ),
i ∈ {1, . . . , N }.

The estimation of the regression function has been extended to the whole interval
A by linear interpolation between design points (remaining constant in the tails) in
all cases. As the aim is to illustrate the uniform consistency (and the behaviour at
the tails of A), we will focus on the supremum norm error (SNE) for comparative
purposes. Specifically, if m∗ stands for any of the isotonic estimators, the SNE is
approximated as follows

SN E(m∗) = sup
i=1,...,G

|m∗(zi ) − m(zi )|,

being zi = (i − 1)/(G − 1) andG = 1000. The distribution of SNE is approximated
by Monte Carlo based on 10000 random samples (except for the procedure M , for
which only 200 iterations have been used due to its high computational cost) by using
N = 20, 100 and the different error distributions above-mentioned. It should be noted
that the procedure for calculating M is very slow due to the max − min formulae
and this fact has limited the number of simulations. Tables1 and 2 summarize the
simulation results.

According to the results, P0, M and L1 clearly have the worst performance. In
almost all cases, P1, P2 and P3 are the best ones, as expected. When the regression
is constant, P2 and P3 stand out. This also happens when p = 1.5 for the Student’s
t distributions. W is close to P1 in some cases.

4 Discussion and Acknowledgement

The spiking problem is present not only in classical isotonic regression procedures,
but also in L1-based methods, and M-estimators explicitly developed for robustness.
The strategies presented in this paper are convenient to alleviate it.
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Table 1 Expected value of SNE. N = 20

p = 0 p = 1 p = 5

D1 D2 D3 D1 D2 D3 D1 D2 D3

M 0.888 0.538 1.344 M 1.088 0.683 1.432 M 1.079 0.687 1.429

P0 0.894 0.519 1.363 P0 1.040 0.648 1.561 P0 1.077 0.684 1.592

L1 0.925 0.563 1.302 L1 1.074 0.700 1.477 L1 1.098 0.711 1.518

W 0.602 0.335 0.974 W 0.876 0.568 1.309 W 0.925 0.636 1.344

P1 0.557 0.321 0.882 P1 0.829 0.561 1.192 P1 0.841 0.579 1.211

P2 0.468 0.274 0.730 P2 0.799 0.555 1.102 P2 0.830 0.598 1.124

P3 0.456 0.265 0.701 P3 0.827 0.562 1.126 P3 0.831 0.575 1.128

Table 2 Expected value of SNE. N = 100

p = 0 p = 1 p = 5

D1 D2 D3 D1 D2 D3 D1 D2 D3

M 0.926 0.505 1.134 M 0.997 0.586 1.319 M 1.026 0.632 1.398

P0 0.889 0.518 1.389 P0 0.946 0.574 1.493 P0 0.993 0.610 1.506

L1 0.922 0.564 1.324 L1 0.982 0.631 1.409 L1 1.023 0.661 1.418

W 0.367 0.202 0.663 W 0.567 0.375 0.936 W 0.662 0.467 0.971

P1 0.309 0.180 0.506 P1 0.531 0.375 0.765 P1 0.600 0.442 0.819

P2 0.234 0.136 0.381 P2 0.515 0.371 0.713 P2 0.592 0.443 0.775

P3 0.230 0.133 0.372 P3 0.523 0.371 0.744 P3 0.580 0.433 0.776

A suitable increase of the number of observations at the edges can result in uniform
consistency on the whole (bounded) interval. This simple procedure improves the
method in [19] based on penalized loglikelihood functions, at least for a moderate
number of observations.

A reallocation of the observations at the ending points by considering artificial
design points improves both methods. In general, the best results are obtained by
increasing the number of observations at the edges and by constraining the estimator
to take values in a horizontal band. Moreover, the empirical results suggest that the
uniform consistency could be established under milder conditions on the number of
observations at the edges.

The three authors wish to dedicate this work to Pedro Gil, who provided them
with knowledge, values, friendship and the best environment to develop their joint
research at the University of Oviedo. Pedro, our sincere acknowledgement.
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Estimation of the Inter-occurrence Time
Between Events from Incomplete Data.
Analysis of Periods of Unemployment in
Spain

José Antonio Cristóbal, José Tomás Alcalá and Pilar Olave

Abstract This work analyzes the stochastic variable representing the waiting times
between two consecutive events of a stationary renewal process, such as periods of
unemployment of different individuals in a specific population. This data has been
obtained through cross-sectional sampling: a specific point in time t is chosen, and a
random sample of the individuals who are unemployed at the time t is extracted. For
each individual we are interested in the unemployment period including t . However,
in practice these values are not observable, and the only fact we can ascertain is the
time from the inclusion of the individual in the previous unemployment period to the
sampling time t . Our data also includes the corresponding values of a certain set of
covariates (for example, the time spent on employment training courses or the age
of the individual). Using non parametric techniques, an estimation of the conditional
mean has been obtained, given the sex and age groups of the individuals. This is a
more natural approach than other methods based on the estimation of the hazard rate,
thus avoiding pre-established forms for the inclusion of covariates.

1 Introduction. Objectives and Methodology

The main objective of this work is to analyze, by way of nonparametric statistical
techniques, the random variable representing the duration of unemployment of an
individual in the population described below. However, the methodology is directly
applicable to other situations where the variable of interest is the time between two
consecutive events of a point process that satisfies certain rather general properties
(stationary renewal processes). Specifically, the analyzed population consists of peo-
ple residing in their main households in Spain who have been the subject of a labor
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force survey known as EPA (Encuesta de Población Activa in Spanish, see [10]) con-
ducted by the INE (the Spanish National Statistics Institute). The data corresponding
to the first quarter of 2014, published in anonymized files, forms the database used for
this study. We have taken measurements relating to people aged between 16 and 70
years old who have had some previous work experience but were unemployed at the
time of sampling. They fulfill the condition that they have been actively searching for
a job in the previous 4weeks and are available for a new job in the subsequent 15 days.
The number of months from the termination of their last employment until the time
of sampling has been measured, that is, the time of recurrence for these individuals.
First, it is worth noting that there is substantial scientific literature concerning such an
important issue for our society as the number of individuals who are unemployed at
a given time or their ratios to the total population, representing a significant effort to
try to understand the evolution of unemployment and its determinants. Nevertheless,
in this paper we focus on an analysis of the variable representing the duration of the
unemployment of individuals of this population, and on their behavior in relation to
different values of certain socio-economic variables. Some works dealing with the
study of the length of time in unemployment in Spain in relation to the probability
of leaving that state are, among others, [12], who start from a set of data obtained
under length biased sampling.

It is important to note that in this study the information is taken under a cross-
sectional sample. There is a 100% censorship rate, and we can only observe for any
individual the unemployment duration at the time of sampling, not the total duration.
But despite this drawback, we have the advantage of a much lower cost in data
collection and, more importantly, we can make inferences from more recent times
and obtain a valuable snapshot of the variable of interest (duration of unemployment)
at a time very close to the current situation.

There are several papers in the literature that approach this problem of deal-
ing with the analysis of a duration from recurrence times, although most of them
use parametric techniques (see, for example [1] and references therein). In [15], an
overview of some parametric and semi-parametric approaches in the literature to
model the survival function under a cross-sectional sample is presented, but it does
not address the non-parametric approach. There are other works analyzing such du-
rations nonparametrically, but they include a longitudinal sampling over a certain
period, for example [16] who use an estimation of the hazard ratio proposed in [3]
to obtain nonparametric estimators of conditional quantile functions for the duration
of unemployment in Germany at the end of the last century.

However, we have preferred to obtain a nonparametric estimation of the condi-
tional distribution function rather than only doing so with the survival function. In
[6] the regression function of the duration variable against a covariate was estimated,
but imposing on the latter a mixed character with nontrivial discrete and continuous
components to convert the problem into an equivalent two-sample problem.

Another aspect to consider in retrospective studies when data such as unemploy-
ment durations are analyzed is the presence of the rounding effect or heaping effect.
In such a case, the distribution of the frequencies presents some well-defined peaks
(sometimes called “pipes” or “telescopes”) at some specific points corresponding to
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multiples of a certain value. Before using the raw data, this effect needs to be cor-
rected redistributing these frequencies with some methodology, assigning the excess
of frequencies at particular points to the values that they have originated.

The paper is organized as follows. Section2 introduces a technique to correct
the heaping effect in the anonymized files from the EPA, corresponding to first
quarter of 2014. Section3 describes a methodology for estimating the mean of the
(unobservable) distribution of the total unemployment duration of the population.
This applies to distributions conditioned by different age groups and the results are
compared for both sexes. Based on this estimation of the conditional mean, we obtain
in Sect. 4 a nonparametric estimator for all conditional density functions. From these
density estimators we calculate some quantiles for different sex and age groups, and
we compare some central and other extreme quantiles.

2 Redistribution of the Observations. Correction of the
Heaping Effect

As stated in the previous section, when data are collected from a retrospective survey,
people answering questions about the occurrence time of a certain event are often
affected by a well-known type of memory error described in the literature as the
heaping or rounding effect. In [14], frequently cited as seminal, the authors study the
consequences of this heaping effect on the estimation of the parameters of a certain
model for the duration of unemployment, specifically addressing the case of young
people in Italy. A Similar approach was made in the analysis of unemployment data
from the German Socio-Economic Panel in [11]. Since then a number of works have
attempted to jointly estimate the parameters of a temporal model and the parameters
involved in the definition of the heaping effect (see, e.g. [2] and references cited
therein, among others), though most involve longitudinal sampling. Finally, we note
that the heaping effect is a special case of “coarsening” or “lack of precision” in
the data (see [8] for a general theory of coarsening and [9] for some applications
in the context of studies of time-to-events). In the present case, in the EPA the
individuals are asked how many months have passed since they left their last job.
When this number of months is high, the response tends to accumulate in multiples
of 12 resulting in a higher value than the real one, erroneously assigning frequencies
to these points (we will call these singular points) when in fact they correspond to
values of other points in their neighborhood. Thus, the observed T variable (in this
case expressed in months) takes values at points 1, 2, . . . , N and is originated by
another latent variable T L , where both are related by the following scheme:

• If T = 12k, for some natural number k, then:

⎧
⎪⎨

⎪⎩

T L = 12k, with probability αk

T L = 12k + i, with probability (1 − αk)/11,

(i = ±1,±2,±3,±4,±5,+6)

(1)
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• In other cases, T L = T

Therefore, if we write p j = Pr(T = j) and pL
j = Pr(T L = j), we have that

pL
12k = αk p12k and pL

12k+i = p12k+i + 1−αk
11 p12k .

Now, if we set the value of pL
12k by linear interpolation between the two adjacent

values pL
12k = (pL

12k−1 + pL
12k+1)/2, finally it is obtained that:

αk = p12k + 11(p12k−1 + p12k+1)/2

12p12k
. (2)

This expression (2) allows us to estimate the parameters αk introduced to model
the heaping effect, starting from a condition of smoothness for the probabilities
of the latent variable in the neighborhood of the singular points. If we denote the
observed frequencies of the T variable in the i-month by fi , the natural estimator
of αk is obtained by changing in (2) each pi by the corresponding fi value and then
α̂k = f12k+11( f12k−1+ f12k+1)/2

12 f12k
. Bearing in mind expression (2), the frequencies of the

latent variable would be estimated by the amounts given by

q12k = f12k + 11( f12k−1 + f12k+1)/2

12
,

q12k+i = f12k+i + f12k − ( f12k−1 + f12k+1)/2

12
. (3)

In our problem, starting from anonymized data files of the EPA for the first quarter
of 2014 (and after a weighting built from the elevation factors of the survey), we
have split the data by sex, as well as by the 9 age groups as follows: 16–24, 25–
29, 30–34, 35–39, 40–44, 45–49, 50–54, 55–59, 60–70years. In each of the 18
conditional distributions we have corrected the heaping effect using the expression
(3) to redistribute the conditional monthly frequencies of each group. Some cases of
raw and corrected frequencies are represented in Fig. 1.

Fig. 1 Observed (left) and corrected (right) frequency groups forWomen 30–35 years. A smoothed
density estimator is added in both cases
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3 Conditional Mean Estimation for Each Sex over the
Different Age Ranges

In each of the subpopulations introduced in Sect. 2, let the random variable X be the
unemployment time of an individual, which is not directly observable with our cross-
sectional sampling (because no follow-up of the individual is performed). Thus, at
a fixed time t0, a random sample of individuals who are unemployed at this time
(actively searching for a job and available to start a new job, as described in the
Introduction) is drawn up, and the survey collects the elapsed time Y for each indi-
vidual from when he or she became unemployed for the last time until the sampling
instant t0. If we call Xw the random variable measuring the time from the last starting
point of a period of unemployment until the end of that unemployment period, then
Xw is a length biased version of the X variable (see [5]), because the longer the time
an individual is unemployed, the greater the probability that the individual is in the
sample.

Note that the variable Xw itself is not observable with our sampling.What actually
happens is that Y = U · Xw, where U is a uniform variable in the unit interval,
independent of Xw. Thus, the observed variable Y is obtained by the multiplicative
censorship which occurs in 100% of cases (see Fig. 2). This is equivalent to saying
that t0 is chosen uniformly over the length interval Xw. Since Xw is length biased
with respect to the X variable, its density function verifies:

f w
X (x) = x fX (x)

E(X)
(4)

where fX is the density of the X variable, and the expectation E(X) is assumed
finite. From expression (4) it is straightforward that:

fY (y) =
∫ ∞
y fX (x)dx

E(X)
= 1 − FX (y)

E(X)
(5)

Fig. 2 Sampling scheme. The intervals correspond to periods of unemployment of the individuals
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which is the known expression relating the density of the recurrence times Y with the
distribution function of the original X variable. In [6], the authors studied the situation
with a covariate Z , having both a discrete and an absolutely continuous part, using
this mixed nature for a non-parametric estimation of the regression function with
respect to such covariate. In the present context we provide below another method
for obtaining a non-parametric estimator of the mean in each subpopulation defined
above. If FY (y) represents the distribution function of the observed Y variable, let us
denote by Q(p) = F−1

Y (p), (0 < p < 1) the corresponding quantile function, and
let L(p) = Q(p)

p be an auxiliary function.
Note that, because of the positivity of the recurrence times (Y > 0), and assuming

they have a continuous distribution function FY , it follows that FY (0) = 0, and thus
Q(0) = 0. Moreover, if the Q function has a right derivative Q′

0 = Q′(0+) at the
origin, then it is fulfilled that:

L0 = lim
p→0+

Q(p)

p
= Q′

0 = 1

F ′
Y (0+)

= 1

fY (0+)
= μ (6)

bearing in mind the definition of Q and expression (5). Therefore, a way to estimate
μ = E(X) is to estimate L0, the right-sided limit at the origin of the auxiliary function
L .

Note that every nth−derivative of the L function is related to the derivative of order
n + 1 of the Q function (assuming its existence). For example, it is easy to see that
L ′
0 = (μ2/2) fX (0+), whereby this derivative is always non-negative and therefore

L is not decreasing at the origin. In addition, in order to cancel the derivative at
the origin of the L function, it is necessary that the density function of X at the
origin should also vanish (we assume that μ > 0, avoiding the degenerate case in
the distribution of X ).

A very important case of the distribution of X leading to a derivative L ′
0 > 0 is

the exponential distribution with density function fX (x) = a exp(−ax), where it is
easy to see that the Y variable has the same exponential density function and L(p) =
−ln(1 − p)/ap, with a right-derivative at the origin L ′

0 = 1/2a. As an example of
a notable case in which L ′

0 vanishes we can mention a gamma distribution (with a
shape parameter p = 2) where the X variable has a density fX (x) = a2x exp(−ax),
in which case the Y variable becomes a mixture with equal weights of an exponential
distribution and a gamma distribution with a shape parameter p = 2. Now the L
function does not have a simple expression involving elemental functions, but its
derivative L ′

0 = 0, because fX (0+) = 0. Figure3 shows graphs of the L function in
the two above-mentioned cases with the scale parameter a = 1. Note that, despite
the different forms of the distribution functions in both cases, the auxiliary function
L has a very similar aspect.

Thus, considering expression (6) and the subsequent comments, our proposal is
to estimate μ in each conditional distribution as the value at the origin of a function
belonging to a certain Θ parametric model explained below, that minimizes the
weighted distance to a set of values Y(r;n)/(r/n), (r0 ≤ r ≤ r1).
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Fig. 3 Graphs of the auxiliary function L(p) for a variable X having an exponential distribution
with a = 1 (left) and a gamma distribution with a = 1, p = 2 (right)

Note that these ratios represent the analogous estimator of Q(p)/p, the ratio be-
tween the empirical quantiles (order statistics Y(r;n)) and their order. For problems
dealing with the estimation of the quantile function from its empirical analogues,
there is an extensive literature in which a cut of the first order statistics is recom-
mended to estimate the quantile function at an initial end point (out of the sample),
a recommendation we have followed. Some years ago, in [4] a simulation study to
analyze the optimum trim level is carried out. In our case, however, we found by
some simulations that the L function is less sensitive (under certain conditions) to
this trim level, so in our analysis we have not made a study of the optimization of
the cut. Thus, given the parametric space:

Θ = {L(p) = −μ
ln(1 − pk)

pk
, μ > 0, k = 1, 2)} (7)

(note that in this parametric model we allow that the derivative at the origin of L
is positive or zero, depending on whether the parameter k is 1 or 2, and always
L(0) = μ), we calculate the L∗ function, the solution of the following weighted
least squares problem:

min
L∈Θ

r1∑

r=r0

[

L(r/n) − Y(r;n)

(r/n)

]2

ωr (8)

where ωr is a weighting variable introduced to correct the heteroscedasticity, and
defined as the inverse of the bootstrap variance of the sample quantile Y(r;n) (see, for
example, [7]), and the endpoints r0 and r1 are assumed to be dependent on n in order
that the consistency is achieved. Finally, the estimate of μ is given by μ̂ = L∗(0).

We have carried out this process with the above-mentioned 18 subpopulations
and replaced the values r0 = 0.10, r1 = 0.70 in the above expression. The results are
shown in Fig. 4. The graph on the left represents the estimated male unemployment
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Fig. 4 Graphics of the estimated mean for durations of unemployment in different age groups for
men (left) and women (right)

mean for different age groups and the graph on the right represents the estimated
female unemployment mean.

4 Non-parametric Estimation of Conditional Distributions
and Quantile Comparison

In this section, we first estimate the density function of the recurrence time Y in each
subpopulation defined in Sect. 2. Note that, according to (5), such density should be
non-increasing throughout its domain. It is known, (see [13]), that the nonparametric
maximum likelihood estimator (NPMLE) for such a density function based on a
sample yi (i = 1, . . . , n) of that variable can be obtained by applying to these data
the “pool adjacent violator algorithm” (PAVA), and is given by the step left continuous
function:

f̂ (y) = min
0≤r≤k−1

max
k≤s≤n

s − r

n(ys − yr )
, y(k−1) < y ≤ yk

f̂ (y) = 0, for y > yn. (9)

In [17], the authors proved that although f̂ (y) is a consistent estimator of f (y) for
all 0 < y < ∞ at which f is continuous, however f̂ (0+) = f̂ (y1) is not a consistent
estimator for f (0+). As in our case f (0+) takes the important value 1/μ, we can
use instead the estimator proposed in [17], based on the maximization of a penalized
log-likelihood function:
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Fig. 5 Graphics of the estimators for the 0.25 and 0.75 quantiles (in solid lines) and the 0.40 and
0.60 quantiles (in dashed line) of the unemployment duration for different age groups formen (right)
and women (left)

lα( f ) =
n∑

i=1

ln f (yi ) − nα f (0+) (10)

where f ranks among all continuous non-increasing densities and α > 0 is a penalty
parameter, which acts as a smoothing parameter. In fact, in [17], it is proved that this
penalized estimator f̃ is consistent (also at the origin), and is the NPMLE applied to
a linearly deformed set of data α + γ yi , (i = 1, . . . , n).

Given that f̃ (0+) = 1/μ, if we substitute here μ by the estimated value μ̂ =
L∗(0), we obtain an equation, which allows us to calculate estimators of the two
parametersα and γ . Then, using PAVAon the values of the linearly deformed sample,
we build the estimator f̃ .

Replacing now the empirical distribution of the sample yi (i = 1, . . . , n)with that
given at the beginning this section for each of the conditional distributions defined
in Sect. 2, we have built an estimator of the density function of the recurrence time
in each of these conditional distributions. Then, using expression (5) repeatedly, we
obtain estimators of the different quantiles of the unobservable X , in each of the
subpopulations.

Specifically, Fig. 5 shows the 0.25 and 0.75 quantiles (solid lines) and the 0.40
and 0.60 quantiles (dashed lines) for both the male and the female population in the
corresponding age groups. We preferred to replace the graph of the median by the
joint plots of the 0.4 and 0.6 quantiles, because the median may have some sudden
changes that they can hinder the perception of the trend of this measure over the
various age groups (note that the distributions of the unemployment duration in each
subpopulation have been estimated through discrete distributions, being therefore
step functions).

Note that, in the case of the male population, the 0.40 and 0.60 quantiles are
not very far apart (except for the older age groups), meaning that the median will
not suffer abrupt changes because of the discontinuity of the estimations. However,
in the case of the female population, the distance between these two quantiles is
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large (at least for the intermediate age groups), which indicates that the 20% of the
central probability is spread over a very wide range, so there are areas with very little
probability in this segment. A slight displacement of these areas towards one side can
cause a sudden change in the median value. This is the reason why we preferred to
give information on the results of the estimation by the two 0.40 and 0.60 quantiles
rather than the median.

In the case of the female population there is a substantial gap between the two
estimated quantiles for individuals aged between 30 and 45 years which means that
there are areas of low density at this period of women’s working lives. This situation
implies a bimodal shape in the underlying density estimation, which can be explained
as a mixture of densities of two populations with clearly differentiated modes: the
density with the lower modal value explains the favorable effect on employment for
this age group while the other with the higher value corresponds to the group of
women who have had major problems in finding employment because of the birth
of their children and the early years childcare. Among men, the two estimates of the
above quantiles for these age groups are much closer, thus the densities do not have
a bimodal shape with clearly differentiated modes.
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Modelling Dynamic Hotel Pricing
with Isotonic Functions

J. Santos Domínguez-Menchero and Emilio Torres-Manzanera

Abstract Hotel room rates and available rooms via online channels vary from day
to day. From the customer’s point of view, when should a tourist book a room?
In order to detect the optimal time to purchase a hotel room, modelling dynamic
hotel pricing behaviour patternsmust be considered.Nonparametric techniques using
isotonic functions are shown to be useful to estimate a reliable model that analyses
the evolution of room rates. Online hotel prices were observed for eight months,
collecting more than 133,000 valid records. The results of this study show that a
generally recommended strategy is to make the booking at least 15days prior to the
arrival date. Other booking strategy patterns are also detailed.

1 Introduction

From a consumer point of view, dynamic pricing provides an opportunity to purchase
products at different prices at different times. With electronic commerce business
can be conducted anywhere, at any time, especially in the field of tourism. In such
conditions, the decision of the customer to purchase airline seats or hotel rooms
on the internet depends on several factors such as information quality, time, past
experiences and frequency. But the most important factor influencing hotel selection
is price; [5] pointed out that willingness of customers to book depends on the price
presentation on the internet.

In this context, customers choose a destination and then select accommodation
based on price and available rooms, using the most convenient distribution channel.
Internet channels allow cost reduction in the final price, detailed information for con-
sumers and the ability to instantly acquire the product. Specialised worldwide online
hotel reservation agencies like Booking.com cover most of the top level category
hotels and tourists use them surpassing other purchasing channels including travel
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agencies and telephone contacts. In particular, 46.2% of Spanish tourists and 49.0%
of foreigners use these types of commercial distribution when travelling to Spain [3,
4].

Internet channels overload with information to both consumers and managers.
Room rates and availability vary from day to day. What sets markets with dynamic
pricing apart from others is that discounts can be offered at any time without notice,
whereas in the clothing sector, for example, there are pre-determined dates for sales
and consumers know that they can find lower prices on products at those times. Luck
or chance is therefore a determining factor in finding lower prices in online markets
for products with dynamic pricing. Thus, it is pertinent to conduct studies such
as the introduced in this paper which try to reduce uncertainty and detect dynamic
pricing behaviour patterns of products such as hotel rooms. This information enables
consumers to optimise the waiting time before making a purchase (optimal patience)
to obtain the best price, while reducing uncertainty and chance.

More specifically, the objective of this paper is to detect the optimal time to
purchase a hotel room once a destination is chosen. From the customer’s point of
view, does time play a significant role in price and availability when booking a hotel
room? When should the tourist book the room: the day before, one month before, or
is there no pattern in the dynamic pricing? To answer these research questions, this
paper presents a study carried out in Bilbao, one of the leading cities in Spain, during
a nine-month period. It is a city with good tourism infrastructure for both holiday
and business tourism. Bilbao can therefore be considered a prototype of the current
state of tourism management.

The core results present an isotonic nonparametric model that analyses the evolu-
tion of room rates in the most important Internet Distribution System (IDS) channel
over the course of eight months. The analysis shows that a recommended strategy in
general is to wait to book a hotel room until 15days prior to arrival. The study also
collects information on what occurs during that 15-day period, thus providing useful
information for consumers who wish to delay booking.

The remainder of this research note is organized as follows: Sect. 2 details data
sources and the mathematical model, and Sect. 3 shows the main results.

2 Data Sources and Methodology

For the purpose of estimating the optimal time of purchase, mid- to high-end hotels
in Bilbao, Spain, where observed for eight months between July 2011 and March
2012. For each of the 212days in this period, the booking price for a double room
was collected 28, 27, …, 0days in advance via IDS channels. The IDS channels
observed were Booking.com and Activehotels.es, using the method proposed by [2].
Due to a failure in the crawling system, for two weeks in August some of the data
was missing. Ultimately, the database contained a total of 133,368 valid records.

The average price considering different lags in the booking day was estimated. In
particular, if t0 represents the target day, ranged from July 2001 to March 2012, and
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l = −28,−27, . . . , 0, then plt0 is taken to be the geometric mean of the prices of a
double room for the day t0 when it was booked with |l| advanced booking days.

For each day t0, we define the price variation rate as

�t0,l = 100

(
p0t0
plt0

− 1

)
, l = −28,−27, . . . , 0. (1)

This rate represents the price variation (in percent) that we would have if we wait
until the target day instead of purchasing |l| days in advance.

The effect of time lag for each day is given by

�
t0,l+1
t0,l

= 100

(
pl+1
t0

plt0
− 1

)
, l = −28,−27, . . . ,−1. (2)

This rate measures the variation between two consecutive booking days in
advance, on a percent scale. The analysis of the evolution of both types of rate
as a function of the number of advance booking days will show any pattern changes
in the booking price. Therefore, we can obtain the optimal time of the purchase
scenario.

Figure1 shows the price variation rate for mid- to high-end hotels in the city of
Bilbao. Our interest is to obtain a model that explains the price variation rate in terms
of the booking day in advance,

�t0,l = g(l) + εt0,l , (3)

with εt0,l the error of the model.

Fig. 1 Price variation rate in terms of the number of booking days in advance. Raw data and linear
regression model (different scales)
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In a simple linear model, the explanatory function g can be estimated by the linear
regression of the observed �t0,l . This model yields the following formula

ĝlinear (l) = −0.64l + 6.16. (4)

The linear regression model assumes a constant increase of the variation rate for
each day, which is obviously not a natural assumption. In particular, the estimation of
the variation rate would strictly increase indefinitely when |l| increases. Later wewill
give more reasons that disappointing the use of the linear model. Nevertheless, the
model can be taken in advance in order to show a non increasing trend between the
lag and the price variation rate. Using this information, data can be modelled using
isotonic regression techniques. Some problems in the field of tourism management
have been solved using these techniques [7–9]. One of the main advantages in this
context is that they split the time intervals where the price remains constant. This
information is relevant to making an optimum purchasing decision.

Thus, we can assume that the explanatory function g in Eq. (3) is non-increasing.
Let nl be the number of observations of �t0,l at lag l for all target day, t0, and Il the
mean of the observations. Then, the antitonic estimator of g is:

ĝanti tonic(l) = − max
i≤l

min
j≥l

−
∑ j

k=i nk Ik∑ j
k=i nk

. (5)

This expression is known as the max-min formula and the function is defined as
lineal between adjacent points. Some algorithms have been undertaken to process
with additional restrictions in the field of tourism [1]. In this research the R statistics
language [6] was used.

In practical applications, it is desirable to have an explicit equation which is as
simple as possible. Since the isotonic regression is piecewise linear, its aspect can
be simplified by eliminating small variations or constance intervals. In this case,
we have considered a line between the points with l = −15,−1. Therefore, the
simplified two-piece isotonic model is:

ĝ(l) =
{

−1.24l + 1.12 if l ≤ −15

19.70 if l ≥ −15
. (6)

3 Research Findings and Conclusion

The analysis shows, in the first place, that up to 15days prior to arrival the price tends
to remain stable, as depicted in Fig. 2. This can also be seen in Table1, which shows
the price variation rates. This table also shows the rates per day. If the geometric
mean with 1 ≤ |l| ≤ 15 is calculated, then it is observed that for each day after the
first 15days the price goes up 1.21%. If the customer’s strategy is to wait to as long as
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Fig. 2 Original isotonic model (left) and simplified two-piece isotonic model (right)

Table 1 Price variation rates in function of the lag (%)

Lag Rate variation

|l| Target day Per day

1 2.36 2.36

2 3.60 1.21

3 4.83 1.20

4 6.07 1.18

5 7.31 1.17

6 8.55 1.15

7 9.80 1.14

8 11.03 1.13

9 13.51 1.21

10 14.74 1.10

11 15.98 1.09

12 16.07 1.08

13 17.22 1.07

14 18.46 1.06

15 19.70 1.05

≥ 16 19.70 0.00

possible to book without loosing money, the best strategy would be to book exactly
15days in advance.

The results clearly reject other models such as the linear model, which, although
simpler, are not capable of extracting the information obtained with the isotonic
model presented here. More specifically, as mentioned earlier, a linear regression
assumes a constant decrease in price as consumers move away from the target day,
which is absurd. Even the linear regression is used to decide about a short period of
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time it is useless. Suppose it is 30days prior to arrival. The linear regression for the
Bilbao statistics would mean a 0.75% price increase for every day consumers delay
the booking, which is at considerable variance with the actual trend obtained from
the isotonic model. Most notably, up to 15days prior to arrival it predicts an 8.27%
increase as compared to the 0.0% in our model. Linear regression would call for a
sooner-the-better strategy, which, as described earlier, is not the most advantageous.
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On Multistage Stochastic Mixed 0–1
Optimization with Time-Consistent
Stochastic Dominance Risk Averse
Management

Laureano F. Escudero and Juan F. Monge

Abstract A new time-consistent risk averse measure is considered, so-called
Expected Conditional Stochastic Dominance (ECSD), for multistage stochastic
mixed 0–1 optimization, where first- and second-order stochastic dominance risk
averse functionals are taken into account. As a result of the ECSD modeling, its
problem solving is much more difficult than the Risk Neutral counterpart, so, it is
unrealistic to solve the problem up to optimality by plain use of MIP solvers. Instead
of it, decomposition algorithms of some type should be used. Computational results
are reported for instances of a well-known real-life problem, where a decomposition
matheuristic algorithm is tested in its efficiency and computing effort, having the
plain use of a MIP solver as a benchmark for computational purposes.

1 Introduction

Stochastic optimization is currently one of the most robust tools for decision making.
It is broadly used in real-world applications in awide range of problems fromdifferent
areas in energy, finance, production, distribution, supply chain management, etc.
The continuous optimization problems under uncertainty have been studied in [4]
for risk neutral (RN) problems, and [16] for risk averse measures, among others.
A survey on exact and inexact decomposition algorithms is performed in [9]. It
is well known that an optimization (say, minimization) mixed 0–1 problem under
uncertainty with a finite number of possible supporting scenarios has a mixed 0–1
Deterministic Equivalent Model (DEM). Traditionally, special attention has been
given to optimizing the DEM by minimizing the objective function expected value
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in the scenarios, subject to the satisfaction of all the problem constraints in the defined
scenarios, i.e., the so-called risk neutral (RN) approach. Currently, we are able to
solve huge DEMs by using different types of decomposition approaches, e.g., see in
[1] our last improvement of the Branch-and-Fix Coordination (BFC) methodology.
However, the optimization of the RN model has the inconvenience of providing a
solution that ignores the potential variability of the objective function value (say,
cost) in the scenarios and, so, it does not avoid the potential high negative impact of
the proposed solution in the low-probability high-cost scenarios to occur.

However, there are some risk averse approaches that, additionally, deal with risk
management, see a good survey in [2], among others. As we know, the first risk
averse measure, so-called Chance Constraint (CC) functional, was introduced in the
seminal work [5], where the problem’s feasible set is restricted to satisfying an upper
bound on the probability (in our case, the expected fraction of scenarios) of having
shortfall on satisfying each of themodeler-driven constraints. It is also so-called first-
order stochastic dominance (FSD) that for a two-stage setting was introduced in [12],
where a Lagrangean-based decomposition algorithm was used for problem solving.
Another of the first risk averse measures, so-called Integrated Chance Constraint
(ICC) functional, was introduced in [14] and expanded in [15]. The ICC type 1 is also
so-called second-order stochastic dominance (SSD) that for a two-stage setting was
introduced in [11], where a Lagrangean-based decomposition algorithmwas used for
problem solving. The multistage risk averse time-inconsistent measure based on the
SSD functional was introduced in [6] for a set of profiles related to given thresholds
on a multifunction setting (including the objective function). As an extension of the
two-stage SD mixed-integer linear recourse, FSD and SSD measures were jointly
used in amultistagemixed 0–1 setting, so-called Time Stochastic Dominance (TSD),
see our works [7, 9], where the decomposition algorithms use scenario clustering in
the BFC scheme in the first work and a Lagrangean-based scheme in the other one.

The risk averse functional subject of this work, so-called Expected Conditional
Stochastic Dominance (ECSD), is a time-consistent risk averse functional, since it
bounds the scenario probability of having shortfall on satisfyingdifferent rhs for given
constraints, and it also bounds the expected shortfall, both for the scenario groups
with a one-to-one correspondence with nodes in the scenario tree related to a chosen
set of stages in the time horizon. Roughly, a risk averse measure is time-consistent
if the solution at any node in the scenario tree does not depend on the scenarios that
cannot occur at that node. Obviously, RN is a time-consistent measure. Some other
time-consistentmeasures,mainly the ExpectedConditionalValue-at-Risk, have been
studied in [3, 13], among others.

The rest of the paper is organized as follows. For completeness and notation
presentation, Sect. 2 deals with the main concepts of risk neutral-based mathematical
optimization under uncertainty. Section3 deals with the risk averse measure ECSD.
Section4 reports some results of our computational experiment. Section5 concludes.
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2 Risk Neutral Measure in Multistage Mixed 0–1
Stochastic Problems

The DEM, compact representation, of the multistage mixed 0–1 model for minimiz-
ing the objective function expected value in the scenarios (i.e., a RN approach) can
be expressed

zRN = min
∑

g∈G
wg(agxg + bg yg)

s.t.
∑

q∈Ag

(Ag
q xq + Bg

q yq) = hg ∀g ∈ G

xg ∈ {0, 1}nx(g), yg ∈ R
ny(g) ∀g ∈ G ,

(1)

where G is the set of nodes in the scenario tree, wg is the weight computed for
node g ∈ G , such that wg = ∑

ω∈Ωg
wω, where wω is the modeler-driven probability

of scenario ω, for ω ∈ Ω , where Ω is the finite set of scenarios considered in the
supporting tree; xg and yg are the nx(g) and ny(g)-dimensioned vectors of the 0–1
variables and the continuous variables, resp., for node g ∈ G ;ag andbg are the vectors
of the objective function coefficients for xg and yg , resp.; Ag is the set included by
the same node g and its ancestors in the scenario tree with nonzero coefficients in the
constraints of node g ∈ G ; Ag

q and Bg
q are the constraint matrices; and hg is the rhs

for node g ∈ G . All vectors and matrices are with the adequate dimensions. Notice
that the non-anticipativity constraints (NAC) are implicitly satisfied.

Additionally, let the following notation to be used throughout this work.T is the
set of stages {1, 2, . . . , T } in the time horizon with T = |T |; Gt ⊆ G is the set of
nodes in stage t ∈ T , where |G1| = 1. Let Ωg ⊂ Ω be the set of scenarios in group
g, where it has a one-to-one correspondence with node g in the scenario tree, for
g ∈ G ; for easing notation, letω ≡ g for g ∈ GT and, then,ω ∈ Ωg , where |Ωg| = 1;
t (g) is the stage to which node g belongs to, such that g ∈ Gt (g); ˜Ag is the set of
ancestor nodes in the scenario tree to node g (including itself), for g ∈ G (such that
Ag ⊆ ˜Ag); and S̃g is the set included by the same node g and its successors in the
scenario tree, for g ∈ G \ GT .

3 ECSD Risk Averse Measure in Multistage Mixed 0–1
Stochastic Problems

The RN model (1) aims to minimize the objective function expected value alone
subject to the constraint system in the model. As stated above the main criticism
that can be made to this very popular strategy is that it ignores the variability of
the objective function value in the scenarios and, in particular, the “right” tail of the
non-wanted scenarios. TheExpectedConditional StochasticDominance (ECSD) risk
averse measure also minimizes the objective function expected value but, besides the
set of RN constraints, a set of profiles is considered for a set of functions (including
the objective one) in a given scenario subset. Each profile is included by a threshold
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on the function value for any scenario that belong to a given group (to be defined
below) up to the end of the time horizon, a bound target on the fraction of those
scenarios having excess on reaching it (the so-called first-order ECSD), a bound
target on the expected excess (the so-called second-order ECSD) and a bound target
on the excess for any of those scenarios. Observe that the type of risk reduction
functional that is considered in this work also allows other functions besides the
objective one, such as environmental functions in industrial strategic investment,
mitigation effects of natural disasters, and preservation of cultural, monumental and
strategic assets, among others; all of them can be accommodated in the framework
presented below.

So, let the additional notation,F is the set of indexes of the risk reduction oriented
functions to consider, such that a f

g and b f
g are the vectors of the coefficients of

the variables in xg and yg for g ∈ G in the function indexed with f , for f ∈ F .
Let us consider that f = 1 is the index for the objective function and, so, a1g ≡ ag
and b1g ≡ bg . Let also T̃ f ⊆ T \ {T } be the modeler-driven stage set for function
f ∈ F , such that the risk reduction measure ECSD is performed for each group
of scenarios Ωg , for g ∈ Gt , t ∈ T̃ f . Let also P f

g denote the set of indexes of the
related profiles for the function indexed with f ∈ F and the scenarios in set Ωg , for
g ∈ Gt , t ∈ T̃ f , such that the profile indexed with p, for p ∈ P f

g , is included by
the 4-tuple (φ p, ẽ p, ep, ν p), where,

φ p, threshold for the value of function f up to the last stage T in the time horizon
in scenario ω, for ω ∈ Ωg .

ẽ p, bound target on the excess of any of those scenarios on reaching the threshold.
ep, bound target on the expected excess.
ν p, bound target on the expected fraction of those scenarios with excess.

Let the following additional variables for scenario ω and profile p, for ω ∈
Ωg, p ∈ P f

g , g ∈ Gt , t ∈ T̃ f , f ∈ F :

epω , continuous variable that takes the excess of the value of function f on reaching
threshold φ p, for scenario ω.

ν
p
ω , 0–1 variable that takes the value 1 if the value of function f has an excess on

reaching threshold φ p and otherwise, 0, for scenario ω.

The ECSD model can be expressed

zECSD = min
∑

g∈G
wg(a1g xg + b1g yg)

+
∑

f ∈F

∑

t∈T̃ f

∑

g∈Gt

∑

p∈P f
g

(
Mεẽ p

εẽ p + Mεep
εep + Mεν p

εν p
)

s.t.
∑

q∈ ˜Ag

(Agq xq + Bg
q yq ) = hg ∀g ∈ G

xg ∈ {0, 1}nx(g), yg ∈ R
ny(g) ∀g ∈ G

∑

g∈ ˜Aω

(a f
q xq + b f

q yq ) − epω ≤ φ p ∀ω ∈ Ωg , p ∈ P
f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F

0 ≤ epω ≤ ẽ pν
p
ω + εẽ p ,
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ν
p
ω ∈ {0, 1}, εẽ p ∈ R

+ ∀ω ∈ Ωg, p ∈ P f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F

∑

ω∈Ωg

wωe
p
ω ≤ ep + εep , εep ∈ R

+ ∀p ∈ P f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F

∑

ω∈Ωg

wων p
ω ≤ ν p + εν p , εν p ∈ R

+ ∀p ∈ P f
g , g ∈ Gt , t ∈ T̃ f , f ∈ F ,

(2)

where the last terms in the objective function prevent the potential infeasibility of
the risk averse constraint system, such that the big M-parameters are the related
penalization and the ε-variables are the slack ones to avoid the infeasibility.

The concept of expected conditional risk avere measure (ECRM) is introduced
in [13], and its time-consistency is defined and proved. We show elsewhere [10] that
ECSD is a member of the family of ECRMs and, therefore, it is time consistent. Let
us assume that the decisions in a given problem have been made up to node g, for
g ∈ ∪{t∈T :t<T }Gt , according to the solution obtained in the original model (2) solved
at stage t = 1. Now, let the submodel solved at node g, such that it is supported by the
subtree rooted with node g whose successor nodes are in set S̃g . Then, the rationale
behind a time-consistent risk averse measure is that the solution value to be obtained
in the submodel solved at stage t (g) for node g should have the same value as in the
original model solved at stage t = 1.

4 Some Computational Experience

Let the tactical supply chain planning (TSCP) problem presented in our work [10]
to be the pilot case where to consider the performance of the RN and ECSD risk
measures. Its deterministic version is based on a real-life case in the assembly sector.
TSCP has a broad applicability, specifically, in sectors such as car, computer and
domestic appliances manufacturing, among others. It is the case in which a com-
pany with multiple raw material suppliers, plants, products, tiers of production in
the bill of material (BoM) and markets needs to satisfy a product demand vector
over a given time horizon. The goal is to determine a raw material supplying plan
and a master production, inventory and distribution planning that best makes use
of the available resources and their capacity extension acquisitions in the whole
supply chain for each period of a given time horizon. The resources’ best use con-
sists of minimizing the raw material supplying commitment cost, the production
and inventory costs in the plants, and the product backlog and demand lost penal-
ization along the time horizon. The raw material supplying commitment cost is
frequently modeled by a piecewise linear, concave and nondecreasing function of
the total volume to commit for the whole time horizon. Typical types of constraints
(some of them related to either-or decisions) are as follows: Balance equations of
end-products and components, conditional lower and upper bounds for raw material
supplying and product release, resource consumption bounds and capacity extension
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Table 1 STSCP Models’ dimensions
ID Scenario tree RN model ECSD model

Structure T t∗ |Gt∗ | |G | |Ω| nc n01 m nc n01 m

L1 2424 8 5 16 255 128 57064 18126 90364 57064 18126 90424

L2 2425 9 5 16 511 256 113768 36302 180604 113768 36302 180664

L3 2424 8 5 16 255 128 72424 18131 99324 72424 18131 99384

L4 2425 9 5 16 511 256 144488 36307 198524 144488 36307 198584

acquisitions, and balance equations of lost demand and backlogging, among others.
There are different types of resources at different levels for groups of consecutive
periods (so-called stages) along the time horizon. The cost of the resources’ capacity
extension acquisition is expressed as a piecewise discrete and nondecreasing func-
tion. Another important feature of the problem is that the burden of raw material
stocking is frequently transferred to the suppliers.

The experiment was conducted on a PC with a 2.5GHz dual-core Intel Core i5
processor, 8Gb of RAM and the operating system was OS X 10.9, where the MIP
solver to use is CPLEX v12.5 and its optimality tolerance is set up to 0.001. The
decomposition algorithm to use is our matheuristic SDP-ECSD [10].

The problem’s dimensions of the testbed under consideration are up to 9 stages,
20 end-products, 30 market centers each, 20 subassemblies, 40 rawmaterials, and 25
types of resources. Table1 presents the structure of the scenario tree for each instance
as well as the dimensions of the two stochastic formulations. The set of stages T
has been split in two parts for problem solving. The first column of the table is the
identifier of the instance, and the second one gives the predefined structure AB1

1 AB2
2

of the scenario tree, where Ai denotes the number of children that each node has in
each stage in part i , and Bi is the number of its stages, for i = 1, 2. The period subset
T̃ is singleton and t∗ ∈ T̃ , where t∗ is the period defining the groups of scenarios
for cost risk reduction in the ECSD measure. The headings of the columns for the
dimensions of the models are as follows: nc, number of continuous variables; n01,
number of 0–1 variables; and m, number of constraints.

The results of solving RN model (1) are shown in Table2. The first column refers
again to the identifier of the instance. The following three columns reports theCPLEX

Table 2 RN model (1) solved with CPLEX and the SDP-ECSD matheuristic

ID CPLEX SDP-ECSD

zCPX tCPX OG% zRN tRN GG%

L1 358305 7200 0.62 362350 1409 1.13

L2 212922 7200 1.14 215236 3884 1.09

L3 218343 7200 0.72 221997 5032 1.67

L4 398303 7200 0.28 403833 8055 1.39
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Table 3 ECSD model (2)
solved with the SDP-ECSD
matheuristic

ID zECSD tECSD devECSD%

L1 375127 21065 3.53

L2 215544 25032 0.14

L3 253152 22103 14.03

L4 431792 19403 6.92

results, where zCPX is the RN cost value, tC PX is the elapsed time (in seconds) to
obtain it, and OG% is its optimality gap (in %). The optimization of the instances
reaches the allowed time (2h) without proving the 0.1%-optimality of the solution.
Another block of columns in Table2 reports the SDP-ECSD results. The headings
are as follows: zRN and tRN , RN solution value and related elapsed time (in seconds);
and GG%, goodness gap, i.e., the deviation of the solution value obtained by the
matheuristic from the value obtained by CPLEX, expressed as GG% = (zRN −
zCPX )/zCPX%. We can observe that, generally, the elapsed time that is required by
SDP-ECSD is very small. On the other hand, the goodness gap of its RN value versus
the one provided by CPLEX is very small as well; notice that it goes form 1.09 to
1.39%.

The violations of the epRN and ν
p
RN ECSD bounds for p = 1, 2 by the RN solution

are up to 165 and 700%, respectively. The details are not shown but they are available
from the authors under request, see also [10].

The results of solving ECSD model (2) by matheuristic SDP-ECSD are shown
in Table3. Some headings are as follows: zECSD and tECSD , ESCD incumbent value
and related elapsed time (in seconds); and devECSD%, deviation of the ESCD cost
from the RN one (see Table2), expressed as devECSD% = (zECSD − zRN )/zRN%.

Notice that the elapsed time required by the matheuristic for solving the ECSD
model (2) is much greater than the time required for solving the RN model (1).
It confirms the common knowledge, namely, the stochastic dominance strategy are
computationally much harder than the RN one (requiring an elapsed time that is one
order of magnitude higher than the time required for obtaining the RN solution).
It is due to the cross scenario constraints for satisfying the risk reduction measure.
Notice that, probably, CPLEX could not even solve the ECSD model, since it could
not do it for the RN one. On the other hand, the deviation of the ECSD cost (due
to the satisfaction of the cost risk reduction constraint system) could even reach the
increment of the 14.04% of the RN cost (where, as notice above, the violations of
the two types of risk reduction bounds are up to 165 and 700%).

5 Conclusions

Frequently there are problems with high variability in the functions to consider
(beside the one to minimize). So, a risk reduction functional is required for avoid-
ing low-probability high-negative function values incurred by the solutions obtained
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from the minimization of the objective function expected (cost) value. In this work
we have considered the time-consistent multi-function first- and second-order sto-
chastic dominance functional ECSD for risk management to control. It allows to
personalize the type of risk reduction profiles for groups of scenarios. That high
risk management could increase the cost function value while satisfying the risk
reduction constraint system. Any way, a specialization of decomposition algorithms
is required for problem solving in a affordable computing effort. We have used our
SDP-ECSD decomposition algorithm for problem solving in a pilot case from the
tactical supply chain field; the solution’s quality is good enough and the computing
effort is very affordable.
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Bivariate Copula Additive Models
for Location, Scale and Shape
with Applications in Biomedicine
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Luis Coladas-Uría, Carmen Cadarso-Suárez, Oscar Lado-Baleato
and Francisco Gude

Abstract In many biomedical applications it is worthwhile to model not only the
effect that covariates have on the mean but also on other parameters of the response
distribution such as variance. Moreover, it is sometimes necessary to study the asso-
ciation between two or more variables and how such associations may depend on
certain factors or covariates. Different models of flexible regression have recently
been proposed in statistical literature but in this work we will focus on the study of
Copula Additive Models for Location, Scale and Shape since this novel approach
permits to model the dependence of two variables through copula functions and
where covariates are also modelled in a flexible manner. Lastly, the benefits of using
these models with real biomedical data will be illustrated.

1 Introduction

Regression models are used to represent the dependence of a response variable of
interest as a function of a set of predictor variables (known as covariates). Specifically,
in classical regressionmodels, it is common to study themeanof the response variable
as a function of the values of the explanatory variables. However, focusing solely on
the estimation ofmeans can lead to errors whenmodelling data pertaining to complex
structures. Thus, in some applications is it important not only to explain the effect
of covariates as a function of the mean of the response, but also know the complete
distribution of the response. It is also sometimes necessary to model multivariate
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responses as well as to determine the relationship between them. In most published
regression studies for multivariate responses, a specific distribution is assumed for
the response variable for no apparent reason and there are few contributions using
non-parametric predictors. In recent years, different regression methodologies for
bivariate responses based on copula functions have been developed in statistical
literature. Amajor advantage of the copula approach is that themarginal distributions
may also come from different non-standard families (see, Marra and Radice [7]).
However, most of the existing multivariate distributions are simple extensions of the
univariate distributions andoften have the restrictive properties that all of themarginal
distributions are of the same type (e.g., by construction, all marginal distributions of
a normal multivariate are normal).

Dependence modelling using copula functions has become very popular in recent
years as a multivariate modelling tool in many fields where multivariate dependence
is of interest and standard multivariate normality is in question. This methodology
has now proven to be particularly useful in the field of medicine. In this manuscript
we propose the use of bivariate copula regressionmodels to simultaneously study two
measures of quality of life obtained through the SF-36 questionnaire (Alonso et al.
[2]) in order to determine the covariables that influence them and their interactions.
More specifically, we will focus on the use of Bivariate Copula Additive Models for
Location, Scale and Shape (CGAMLSS models; Marra and Radice [7]). This novel
approach extends the use of GAMLSS (Rigby and Stasinopoulos [10]) to situations
in which each parameter of a multivariate response is modelled simultaneously on
some conditional covariates using different copula functions. Furthermore, this type
of regression model enables the modelling of all distributional parameters using
additive predictors that allow for several types of covariate effects (such as non-
linear effects of continuous covariates, random effects or interactions).

Alternative approaches to Marra and Radice [7] have been formulated in the sta-
tistical literature in both the frequentist and the bayesian frameworks. However, to
the best of our knowledge, they only cover parts of the flexibility of those mentioned
above either because they only allow for the consideration of non-linear or normal
marginal effects (e.g. Sabeti et al. [11]) or because they fail to consider additive pre-
dictors (e.g. Acar et al. [1]). In the frequentist domain, attention must also be drawn
to Vector Generalized Additive Models (VGAM, Yee andWild [20]). VGAMs allow
one to model each parameter of a bivariate non-standard response as a function of
flexible covariate effects. However, the main drawback is that smoothing parameters
for non linear effects are not selected automatically and copula model specifications
are limited. To the best of our knowledge, the only competitor in the frequentist
domain to the methodology introduced byMarra and Radice [7] is a technique intro-
duced by Vatter and Chavez-Demoulin [14]. The main difference is that the method
employed by these authors is based on a two-stage technique where the parameters of
the marginal distributions and the copula function are estimated separately, whereas
the CGAMLSS method is based on the simultaneous estimation of all the model’s
parameters. Marra and Radice [7] show that CGAMLSS outperforms the two stage
approach (via simulation studies).
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In the Bayesian framework, Klein and Kneib [6] recently introduced structured
additive conditional copula regressionmodels. However, in this studywe propose the
use of CGAMLSS since it provides greater flexibility and allows for a great variety
of copula functions as well as different non-standard marginal distributions for the
responses.

The rest of the chapter is organized as follows: Sect. 2 provides an introduction
to Bivariate Copula Additive Models for Location, Scale and Shape, including some
details of on the estimation and model selection. In Sect. 3 we will show a practical
application to real biomedical data. Lastly, Sect. 5 provides a summary and some
comments regarding on directions of future research.

2 Bivariate Copula Additive Models for Location, Scale
and Shape

Given the nature of the data we present in Sect. 3, in this paper we will study copula-
based models for a pair of continuous random variables, Y1 and Y2. We denote the
generic covariate vector by zi . The joint cumulative distribution function (cdf) of Y1
and Y2 can be expressed in terms of the marginal cdfs of Y1 and Y2 and a copula
function C that binds them together (Marra and Radice [7]):

F(y1, y2|ϑ) = C(F1(y1|μ1, σ1, ν1), F2(y2|μ2, σ2, ν2); θ)

where ϑ = (μ1, σ1, ν1, μ2, σ2, ν2, θ)T , F1(y1|μ1, σ1, ν1) and F2(y2|μ2, σ2, ν2) are
themarginal cdfs ofY1 andY2 taking values in (0, 1),μm, σm, νm , form = 1, 2 are the
marginal distribution parameters. In this case, we have considered three parameter
distributions:μm, σm, νm representing the location, the scale and shape, respectively.
However, the computational framework can be extended to parametric distributions
with more than three parameters. C(·, ·) is a uniquely defined two-place copula
function which does not depend on the marginals, and θ is an association copula
parameter measuring the dependence between the two random variables (Sklar [12]).
Some of the classic copulae are shown in Fig. 1.

TheGaussian and Frank copulas permit modelling of positive and negative depen-
dence. Gaussian and Frank show weaker tail dependences and Frank exhibits a
slightly stronger dependence in the middle of the distribution. Clayton is asym-
metric with a strong lower tail dependence but a weaker upper tail dependence. Just
the opposite is true for the Gumbel and Joe copulas. There are also rotated versions
of the Clayton, Gumbel and Joe Copulae.

2.1 Model Formulation

We assume a fully parametric specification for the distribution of the bivariate
response vector where potentially all parameters of the bivariate response distrib-
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AMH Copula, θ = 1
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Fig. 1 Contour plots of some classic copula functions with standard normal margins for simulated
data. The copula parameter is denoted by θ

ution can be related to regression predictors formed from covariates collected in the
vector zi (as binary, categorical, continuous or spatial variables) via additive pre-
dictors η and known monotonic link functions which ensure that the restrictions on
the parameter spaces are maintained (see Marra and Radice [7] for available link
functions).

ηi = β0 +
K∑

k=1

fk(zki), i = 1, . . . , n, (1)

where β0 is an overall intercept, and the function fk represents the different covariate
effects. K functions f are chosen according to the type of covariate considered (zki).
For instance, to model the possible non-linear effects of the continuous covariates,
different spline definitions with penalizations are available such as penalized low-
ranking thin plate splines (Wood [17]), or roP-splines as proposed by Eilers and
Marx [4] and other possible smoothers. From a statistical point of view, an important
feature of this type of model is the possibility of modelling the effects not only of
the continuous covariates but also spatial and random effects in a flexible, unified
manner as well as allowing for complex interactions between different types of
variables, e.g., factor-curve or surface interactions. It also allows for the modelling
of spatio-temporal trends.
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2.2 Estimation of the Model

The maximum likelihood function of a bivariate copula regression model is given by
(Marra and Radice [7]):

l(δ) =
n∑

i=1

log {C(F1i (y1i |μ1i , σ1i , ν1i ), F2(y2i |μ2i , σ2i , ν2i ); θi )}

+ n
n∑

i=1

2∑

m=1

log { fm(ymi | μmi , σmi , νmi ))}
(2)

where δ = (βT
μ1,β

T
μ2,β

T
σ1,β

T
σ2,β

T
ν1,β

T
ν2,β

T
θ ), C(·, ·, θ) is the density function of a

copula function and fm(ym |μm, σm, νm) the density of the marginals.
Inference in CGAMLSS models is based on penalised maximum likelihood esti-

mation, achieved via a Trust Region algorithm (Conn et al. [3]) with integrated
automatic multiple smoothing parameter selection (Marra and Radice [7]).

Due to the flexible structure of the predictors, the use of a classical (non-penalized)
optimization algorithm would excessively smooth the effects and therefore would
not reflect the true trends found in the data. Instead of maximizing the function of
log-likelihood l(δ) the penalized log-likelihood function is maximised l p(δ) such
that:

l p(δ) = l(δ) − 1

2
δT Sδ (3)

where S=diag(Dμ1λ
T
μ1

, Dμ2λ
T
μ2

, Dσ1λ
T
σ1

, Dσ2λ
T
σ2

, Dν1λ
T
ν1

, Dν2λ
T
ν2

, Dθλ
T
θ ), with

each λ defined as (λ1, . . . , λK )T , it is the parameter that controls the degree of
smoothing of non-linear effects.

To maximize expression (3) with an automatic selection of the smoothing para-
meter, λ, Marra and Radice [7] propose the estimation of the parametric vector δ by
means of a Trust Region algorithm. In each iteration of this algorithm, a quadratic
approximation of the target function in a radius defined around the previous point is
minimized and the smoothing parameter λ is automatically selected. The algorithm
consists of the following steps:

1. For a fixed λ:
min p ˘l p def= −{l p(δ[a]) + pT g[a]

p + 1
2 p

T H [a]
p p} so that ‖ p‖ ≤ Δ[a],

where [a] is the iteration index, g[a]
p and H [a]

p are respectively the gradient vector
and Hessian matrix of the log-likelihood function, penalized by the smoothing
matrix S, ‖ · ‖ is the Euclidean distanceΔ[a] the radius taken by the Trust Region
algorithm in each iteration.

2. Having estimated δ[a] = argmin
p

˘l p(δ[a+1]) + δ[a], λ is selected by solving an

expression equivalent to the Un-Biased Risk Estimator (Wood [18]).
3. Having estimated λ[a], step 1 is repeated until the change in the estimate of vector

δ does not improve the log-likelihood function given by |l(δ[a+1])−l(δ[a])|
0.1+|l(δ[a+1])| < 1e−07.



140 J. Espasandín-Domínguez et al.

3 Application to Biomedical Data

In this work, bivariate copula additive regression models will be applied to a biomed-
ical database derived froma cross-sectional study performed in themunicipality ofA-
Estrada in Galicia. An outline of the study (AEGIS, A-Estrada Glycation and Inflam-
mationStudy) is available atwww.clinicaltrials.gov, codeNo.NCT01796184. Itwas
aimed to investigate glycation and inflammation processes and their association with
lifestyles and common diseases. In this manuscript, we will focus on health-related
quality of life (HRQOL) as measured with the Short-Form 36 (SF-36) questionnaire
(Ware and Sherbourne [16], Alonso et al. [2]).

The survey addresses limitations in physical functions and role activities due to
health problems, bodily pain, general health perceptions, vitality (energy and fatigue),
limitations in role activity, mental health and social limitations.

In this study we will jointly focus on vitality and physical function. Vitality is
defined by the score obtained in 4 items with 6 possible answers per item, low
scores being associated with a continuous feeling of fatigue, anguish and depression
while the high scores denote feelings of happiness, serenity and calm. This scale
has been validated as a measure of the fatigue associated with different diseases
(Neuberger [9]). The physical function is defined by responses to 10 items with 3
options per item, a low score being indicative of a limitation in carrying out daily
tasks, including getting dressed and bathing, while high scores correspond to patients
with no physical limitations in their daily life and who are able to engage in vigorous
physical activity (Ware et al. [15]).

The relationship between physical function and vitality has been previously stud-
ied (Wu et al. [19], Sturgeon et al. [13]), focusing on the study of fatigue in different
diseases. These authors found positive relationship between both scales in patients
with liver cirrhosis and chronic pain, respectively. In this study we are interested in
investigating the relationship between physical function and vitality after controlling
by age, sex and obesity (BMI, Body Mass Index), and in addition, the effect of these
covariates on the relationship.

The data used come from the AEGIS project. At the beginning of the study, the
municipality had an adult population of 18474 individuals, 3500 of whom were
selected by random sampling stratified by age. After applying the exclusion criteria
(death, change of address and impossibility of informed consent), a total of 1,516
people participated between 2012 and 2015 and were given the Spanish version of
the SF-36 questionnaire (Alonso et al. [2]). The following variables were considered
to be covariates in order to determine which factors influence vitality and physical
condition and the relationship between them: gender, age (in years) and body mass
index (BMI). Vitality and physical function were considered the bivariate response:
(V t, P f ).
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3.1 Model Building

The aim of this section is to construct a bivariate model to study the relationship
between vitality and physical activity. Proper response distribution selection, a suit-
able copula function and relevant covariates in the additive predictors are difficul-
ties that researchers need to solve when formulating these types of models. Many
model selection approaches have been proposed in statistical literature. According
to Marra and Radice [7], the Akaike and Bayesian Information Criterion (AIC/BIC)
and normalized quantile residuals were used to choose a suitable copula function
and response distributions in CGAMLSS models. In addition to the statistical cri-
teria mentioned above, it is essential to have expert knowledge from physicians or
previous biomedical studies.

As mentioned above, this type of model can handle a variety of complex distribu-
tions of the response variable. We first need to select the distribution of the marginal
variablesV t and Pt . Following theAICandnormalized quantile residuals,we choose
the normal and Gumbel distributions for vitality and physical function respectively.
Concerning the choice of copula, we started off with the normal and then, based
on the (negative or positive) sign of the dependence, we only used copula functions
consistent with the sign. In this case, using a Gaussian copula, the overall Kendall’s τ̂

and θ̂ obtained was positive and significant (θ̂ ∈ (0.39, 0.54) and τ̂ ∈ (0.26, 0.36)).
This result suggests the use of another copula function to study positive dependen-
cies such as Frank, AMH, FGM, Clayton, Joe, Gumbel and survival copulas which
are copulas rotated by 180◦. In this study the AIC showed that the Gumbel copula
provided the best and most parsimonious fit (see Table1).

Residuals can also be used to check the performance of a particular model (Klein
andKneib [6]). If the estimatedmodel is close to the truemodel, the quantile residuals
approximately follow a typical standard distribution, even if the model distribution
itself is not standard. In practical terms, residuals can be assessed graphically as

Table 1 Comparison of AIC and BIC values under different copula assumptions

Copula Function AIC BIC

Gumbel 6445.62 6702.88

Gaussian 6458.86 6678.75

AMH 6478.33 6688.49

Frank 6487.06 6731.59

Survival gumbel 6491.46 6714.87

Clayton 6516.61 6736.25

Joe 6531.74 6801.11

Survival joe 6551.73 6788.67

FGM 6571.68 6785.52

Survival clayton 6880.60 7102.29
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Fig. 2 Histograms and normal Quantile-quantile plots of normalized quantile residuals for vitality
(top) and physical condition (bottom) for the selectedmodel: the closer the residuals to the bisecting
line, the better the fit to the data

quantile-quantile-plots. Figure2 shows quantile-quantile plots for the selectedmodel
using a gumbel copula.

Thus, the CGAMLSS described in Sect. 2 was used with a Gumbel copula and
a standard distribution response for vitality and a Gumbel distribution for physical
condition with two covariate-dependent parameters (corresponding to the mean and
the scale parameter σ 2) using. This model is expressed as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

η
μ1
i = β

μ1
0i + genderβμ1

i + gender ∗ f μ1
i (age) + f μ1

i (BMI )

η
σ 2
1

i = β
σ 2
1

0i + genderβμ1
i + f

σ 2
1

i (age),

η
μ2
i = β

μ2
0i + genderβμ2

i + f μ2
i (age) + f μ2

i (BMI ),

η
σ2
i = β

σ2
0i + genderβσ2

i + f σ2
i (age),

ηθ
i = βθ

0i + f θ
i (age).

(4)

Eliminating the parameter index for the sake of simplicity, the predictors (ηi )
are an additive composition of an intercept β0 representing the overall level of the
predictor, linear effects gender , and functions fi (z) reflecting the non-linear effects
of continuous covariates z (age, BMI). The first and third equations of the above
Formula (4) refer to the μ1 and μ2 parameter of vitality and physical condition. The
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second and fourth equations refer to the σ 2
1 and σ 2

2 parameters and the last one to the
parameter association, θ .

In (4), f smooth functions of age and BMI are estimated using penalized low rank
thin plate splines (Wood [17]) with default second order penalties (the option set by
default in the GJRM R Package). By way of comparison, other smoothers were used
to estimate the non-linear effect of continuous covariates but the results obtained
were the same.

Statistical analyseswereperformedusingGJRMRPackage (Marra andRadice [7]).
All results are summarised in Figs. 3, 4, 5 and 6.

Vitality diminishes in women throughout their lifetime while in men it diminishes
up to age 60 and then increases coincidingwith retirement age. This late rise in vitality
may be due to the substitution of work with leisure activity (Mein et al. [8]). The
highest levels of vitality for this population are found in BMI mean values ranging
from25–30kg/m2 with lower values at the extremes (see Fig. 3). In the other hand, the
physical function remains stable until age 40 and thereafter decreases progressively
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with age. BMI remains stable up to values of 30kg/m2 (threshold value defining
obesity) and then decreases progressively (see Fig. 4).

The variability of both variables, vitality and physical function, increases with
age. Regarding Fig. 5, it is worth noting that the decrease in the mean of the two
components as age increases may be rather abrupt depending on the individual. As
shown in the Fig. 6, the ratio between physical function and vitality increases linearly
up to age 60 and then levels off. The increasing association between the two variables
with age could mean that the loss impairment of physical functions is not associated
with the same degree of loss of vitality in young people and the elderly.
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4 Discussion

In this study we have shown the usefulness of bivariate copula additive models
(CGAMLSS) using real biomedical data. CGAMLSS allows for the easy inclusion
of potentially any parametric continuous marginal distribution and copula function.
This approach allowed us to take covariate effects into account, including the smooth
estimation of continuous variables, random effects, possible spatial trends or categor-
ical variables, among others. In particular, the CGAMLSS used in this study proved
to be very useful in the joint modelling of vitality and physical condition. The use of
this approach revealed hitherto unreported effects regarding the mean and variance
and the relationship between these two variables. In this work we have simultane-
ously studied two response variables but it would be interesting to extend this joint
analysis consideringmore than two responses. For example, simultaneously studying
not only quality of life and physical condition but also other variables such as men-
tal state which is likewise reflected in the SF-36 questionnaire. In this connection,
trivariate probit models are also available in the GJRM package (Filippou et al. [5])
although approximations have not yet been developed for continuous responses.

Another benefit of this type of model is that it allows for a broad family of
response variables. In this study we have focused on two continuous response
variables. However, this package also fits bivariate regression models with binary
responses (where link functions are not restricted to only probit) or bivariate mod-
els with binary/discrete/continuous margins in the presence of associated responses/
endogeneity. This could become very useful in the field of medicine. In fact, the
authors of this manuscript are currently investigating the concordance of the differ-
ent diagnostic criteria of diabetes. Two of these criteria, established by the American
Diabetes Association (2014), are fasting glucose levels (�126mg/dL) and glycosy-
lated haemoglobin (A1C � 6.5). On this basis we are working on the development
of a bivariate binary model that allows us to investigate whether there is concordance
between these two diagnostic criteria and determine if these threshold levels are the
most appropriate. There are also other types of diagnostic criteria defined by the
ADA such as the measure of plasma glucose at 2 h (≥200mg/dL) in an oral glucose
tolerance test. From a statistical point of view, we will work on the development of
regression models for trivariate copulas with a view to simultaneously studying the
effectiveness of these three criteria commonly used in clinical practice.
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Domain Mean Estimators Assisted by Nested
Error Regression Models

María Dolores Esteban, Domingo Morales and María del Mar Rueda

Abstract This paper introduces estimators of domain means assisted by nested
error regression models. The new estimators are modifications of empirical best
linear unbiased predictors that takes into account the sampling weights. They are
obtained by summing up the model-based predicted values adjusted by a weighted
sum residuals. The paper studies the sampling-design properties of the introduced
estimators by means of simulation experiments. The simulation results show that
the new estimators present a good balance between sampling bias and mean squared
error.

1 Introduction

Estimation of domain (subpopulation) indicators is an important objective in most
surveys, especially in large surveys conducted by national statistical agencies. These
agencies employ design-based estimation procedures whenever possible, that is,
whenever the domain sample sizes are large enough for having precise estimates. If
domain sample sizes are small (small areas), then insufficient precision is more likely
to happen. The small area estimation (SAE) theory deals with this kind of estimation
settings. See the book of Rao and Molina [8] for an introduction to SAE.

The design-based inference approach constructs estimators with good sampling
distribution properties. In particular, domain direct estimators are calculated by using
only the available domain data. Because of the lack of precision, these estimators
might not be appropriate for estimating parameters of small areas. This is why sur-
vey practitioners often apply model-based or model-assisted small area estimators.
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The unit-level model-based approach (prediction theory) relies on superpopulation
models, which assume that the target variable census vector is a realization of a ran-
dom vector with a distribution function that incorporates the auxiliary information.
Cassel et al. [2] and Valliant et al. [12] described the survey sampling prediction
theory and showed that it gives a general framework for statistical inference on the
characteristics of finite populations. Well-known estimators of population totals or
means encountered in the classical theory, as expansion, ratio, regression, and other
estimators, can be obtained as predictors under some special model in the general
prediction theory.

The unit-level model-based approach is commonly used in SAE. The basic SAE
unit-level model is the nested error regression (NER)model. Battese et al. [1] applied
this model to the prediction of United States county crop areas using survey and
satellite data. Since then, the empirical best linear unbiased predictors (EBLUP) of
domains means based on the NERmodel are being widely applied. The model-based
estimators, when the assumedmodel is correct, tend to be better than other estimators.
However, when the assumed model is incorrect, the model-based estimators are
biased and they can do worse than even the naïve estimators.

Särndal et al. [11] presented the model-assisted approach to inference in finite
populations, where the superpopulation model is not the basis of the inferences. The
model-assisted methodology considers the properties under the design-based dis-
tribution, but employs the model to motivate the choice of estimators. Under this
approach, the generalized regression (GREG) estimators play a fundamental role.
GREG estimation was introduced for domain estimation in Särndal [9], Hidiroglou
and Särndal [5], and Särndal andHidiroglou [10] andwere developed further (includ-
ing computational tools) in Estevao et al. [3]. More recently, Lehtonen and Veija-
nen [6, 7] discussed GREG estimators of means and proportions and presented
empirical studies based on simulation experiments. This paper uses this approach
for introducing estimators of small area means. The new estimators are obtained by
summing up model-based predicted values and adjusting by design-based weighted
sum of residuals. Thus, the model and the sampling design are used in the definition
of the estimators.

The article is arranged as follows. Section2 discusses some aspects of model-
based domain estimation. It describes the EBLUP of a mean under a NER super-
population model. Section3 introduces the new model-assisted counterparts of the
considered EBLUP and EBP estimators. Section4 reports a Monte Carlo simulation
experiment. Section5 gives some conclusions.

2 Model-Based Estimation

Let U be a population of size N partitioned into D domains or areas U1, . . . ,UD

of sizes N1, . . . , ND . The model-based approach relies on superpopulation models,
which assume that the census vector
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y = col
1≤d≤D

( yd), yd = col
1≤ j≤ND

(yd j ),

is a realization of a random vector following a superpopulation model that incorpo-
rates the auxiliary information xd j = (xd j1, . . . , xd jp), j ∈ Ud , d = 1, . . . , D.

By using the column and mean operator, we define

X = col
1≤d≤D

(Xd), Xd = col
1≤ j≤Nd

(xd j ), Xd = 1

Nd

Nd∑

j=1

xd j , β = col
1≤k≤p

(βk).

The NER superpopulation model is

yd j = xd jβ + ud + ed j , d = 1, . . . , D, j = 1, . . . , Nd , (1)

where the random effects {ud} and the errors {ed j } are mutually independent with
ud ∼ N (0,σ2

u) and ed j ∼ N (0,σ2
e ). Let us define ed = col

1≤ j≤ND

(ed j ). Then, the

model (1) can be written as

yd = Xdβ + ud + ed , d = 1, . . . , D.

The vectors yd are independent with yd ∼ N (μd , V d), μd = Xdβ and V d =
σ2
u1Nd1

′
Nd

+ σ2
e I Nd , where 1K = col

1≤ j≤K
(1) and I K = diag

1≤ j≤K
(1) are the 1-column vec-

tor and the identity matrix of sizes K and K × K respectively.
In practice, inference is based on a subset (sample) s = ∪D

d=1sd of the finite popu-
lation U . Let yds be the sub-vector of yd corresponding to sample elements and ydr
the sub-vector of yd corresponding to the out-of-sample elements. Without lack of
generality, we canwrite yd = ( y′

ds, y
′
dr )

′. Define also Xds andV ds as the correspond-
ing decompositions of Xd and V d . The sample vector yds follows the corresponding
submodel of (1), i.e.

yd j = xd jβ + ud + ed j , d = 1, . . . , D, j = 1, . . . , nd , (2)

where we change N and Nd by the sample counterparts n and nd respectively. When
σ2
e > 0 and σ2

u > 0 are known, the best linear unbiased estimator (BLUE) of β and
the best linear unbiased predictor (BLUP) of ud , d = 1, . . . , D, are

β̃=
( D∑

d=1

X ′
dsV

−1
ds Xds

)−1 D∑

d=1

X ′
dsV

−1
ds yds, ũd =σ2

u1
′
ndV

−1
ds

(
yds − Xdsβ̃

)
. (3)

Replacingσ2
e andσ2

u by estimators σ̂2
e and σ̂2

u in (3), the empirical BLUE (EBLUE)
of β and the EBLUP of ud , d = 1, . . . , D, are
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β̂=
( D∑

d=1

X ′
ds V̂

−1
ds Xds

)−1 D∑

d=1

X ′
ds V̂

−1
ds yds, ûd = σ̂2

u1
′
nd V̂

−1
ds

(
yds − Xdsβ̂

)
, (4)

where V̂ d = σ̂2
u1nd1

′
nd + σ̂2

e Ind . The distribution of ydr , given the sample data ys , is

ydr | ys ∼ ydr | yds ∼ N (μdr |s, V dr |s), (5)

where

μdr |s = Xdrβ + σ2
u1Nd−nd1

′
ndV

−1
ds ( yds − Xdsβ),

V dr |s = σ2
u(1 − γd)1Nd−nd1

′
Nd−nd + σ2

e I Nd−nd , γd = ndσ2
u

ndσ2
u + σ2

e

.

Under the conditioned distribution (5), the predicted values are

ŷebds = yds, ŷebdr = μ̂dr |s = Xdr β̂ + σ̂2
u1Nd−nd1

′
nd V̂

−1
ds ( yds − Xdsβ̂),

or equivalently ŷebd j = yd j if j ∈ sd and ŷebd j = xd j β̂ + ûd if j ∈ rd = Ud − sd . The

EBLUP of Y d is

Ŷ
eb

d = 1

Nd

Nd∑

j=1

ŷeb2d j = 1

Nd

∑

j∈sd
yd j + 1

Nd

∑

j∈rd
{xd j β̂ + ûd}

= (1 − fd)
[
Xd β̂ + ûd

] + fd
[
Ŷ d + (Xd − X̂d)β̂

]
,

where Ŷ d = 1
nd

∑
j∈sd yd j , X̂d = 1

nd

∑
j∈sd xd j , fd = nd

Nd
.

3 Model-Assisted Estimation

The design-based approach relies on the sampling distribution. Let s ⊂ U be a ran-
dom sample of fixed size n drawn according to a specified sampling design π(s)
and let s1, . . . , sD be the corresponding domain subsamples of sizes n1, . . . , nD .
The first-order inclusion probability is the probability of obtaining the unit j of
domain d, while sampling from the population according to the sampling design. It
is πd j = ∑

j∈sd π(s).
Hájek [4] proposed the ratio estimators of means

Ŷ
dir

d = 1

N̂ dir
d

∑

j∈sd
π−1
d j yd j , X̂

dir

d = 1

N̂ dir
d

∑

j∈sd
π−1
d j xd j , N̂ dir

d =
∑

j∈sd
π−1
d j ,
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which are direct estimators as they are calculated by employing only the correspond-
ing domain data.

We follow Cassel et al. [2] and introduce a design-unbiased estimator of the
domain mean Y d assisted by model (1). The estimator is obtained by summing up
the predicted values xd j β̂ + ûd and adjusting by residuals, i.e.

Ŷ
ma

d = 1

Nd

{ ∑

j∈Ud

(xd j β̂ + ûd) +
∑

j∈sd
π−1
d j (yd j − xd j β̂ − ûd)

}

= Xd β̂ + ûd + N̂ dir
d

Nd

(
Ŷ
dir

d − X̂
dir

d β̂ − ûd
)
.

4 Simulations

This section presents a design-based simulation experiment, where stratified random
samples are drawn from a fixed artificial population. The target parameter is the
domain mean. The simulation is designed to compare the model-assisted estimator

Ŷ
ma

d with its model-based counterpart Ŷ
eb

d .
The artificial population is constructed with size N = 43900 and it is divided in

5 strata of sizes N1 = 8820, N2 = 9120, N3 = 9100, N4 = 8760 and N5 = 8100
respectively. Each strata is partitioned in domains. The numbers of domains within
each strata are D1 = 18, D2 = 16, D3 = 14, D4 = 12 and D5 = 10, with D = D1 +
· · · + D5 = 70. Auxiliary variables are generated from normal distributions x0 ∼
N (10, 1) and x1 ∼ N (μt , 1), with means μt = 8, 9, 10, 11, 12 in strata t = 1, . . . , 5
respectively.

The y-variables, y0, y1 and y01, are drawn from the linear mixed models

Mk : yk,d j = β0 + β1xk,d j + ud + ed j , k = 0, 1, d = 1, . . . , D, j = 1, . . . , Nd ,

M01 : y01,d j = β0 + β1x0,d j + β2x1,d j + ud + ed j , d = 1, . . . , D, j = 1, . . . , Nd ,

where β0 = 0, β1 = 2, β2 = 2, the random effects are i.i.d. ud ∼ N (0,σ2
u)with σ2

u =
1, the random errors are i.i.d. ed j ∼ N (0,σ2

e ) with σ2
e = 1, and they are all indepen-

dent. For each variable y ∈ {y0, y1, y01}, the target parameters are the domain means
Y d = 1

Nd

∑Nd
j=1 yd j , d = 1, . . . , D, and their global means, Y = 1

N

∑D
d=1

∑Nd
j=1 yd j ,

are Y = 19.932, Y = 19.851 and Y = 39.804 respectively.
The simulation is carried out under a stratified sampling design with optimal

Neyman allocation (S). The global sample size is n = 3050. As D = 70, there will
be around n/D = 43.57 sampled units per domain in average. For each strata t ,
t = 1, 2, 3, 4, 5, the sampling weights depend on the stratum variance of the target
variable. Table1 presents the sampling weights. As the sampling weights depend on
the target variable y, the S design is informative.
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Table 1 Sampling weights by strata

Variable 1 2 3 4 5

y0 14.459 13.653 14.399 14.723 14.862

y1 14.180 13.797 14.399 14.624 15.112

y01 14.365 13.924 14.422 14.797 14.516

Table 2 ABIAS (left) andMSE (right)

M(y, x) DIR EB MA DIR EB MA

M(y0, x0) 0.0086 0.0187 0.0041 0.1160 0.0227 0.0231

M(y1, x1) 0.0088 0.0193 0.0040 0.1168 0.0226 0.0231

M(y01, x0) 0.0113 0.0372 0.0087 0.2134 0.1167 0.1181

M(y01, x1) 0.0113 0.0785 0.0094 0.2134 0.1041 0.1161

M(y1, x0) 0.0088 0.0368 0.0090 0.1168 0.1152 0.1167

M(y0, x1) 0.0086 0.0833 0.0089 0.1160 0.1044 0.1151

The simulation calculates empirical biases and MSEs of small area estimators of
means. This simulation shows that model-based and model-assisted estimators are
more robust from model misspecification when the sampling design is less informa-
tive. We calculate the Hájek (DIR) and the EB and MA estimators of domain means
based or assisted by the NER model M(y, x) with y and x as target and auxiliary
variables respectively.

Table2 presents the empirical average absolute biases, ABIAS, and the empirical
average mean squared errors MSE. The table is divided in three parts. The first part
concerns the results for the correct models M(y0 | x0) and M(y1 | x1). The second
and the third part give the simulation results of the incomplete models M(y01| x0)
and M(y01| x1) and the incorrect models M(y1 | x0) and M(y0 | x1) respectively.

When the correct or incomplete models are employed for constructing the EB
and MA estimators, the EB estimator has the greatest biases and the lowest MSEs.
The MA estimator has the lowest biases and similar MSEs to the EB estimator. The
direct estimator has the greatest MSEs. See Figs. 1 and 2.

When the incorrect models are employed for constructing the EB and MA esti-
mators the EB estimator has the greatest biases. The MA and direct estimators have
similar biases. ConcerningMSE, all the estimators behaves similarly. See also Fig. 3.

Figures1, 2 and 3 present the boxplots of BIASd and MSEd , d = 1, . . . , D, for
the target parameters Y 0,d and Y 01,d , when the EB and MA estimators rely on the
correct model M(y0 | x0), the incomplete model M(y01 | x0) and the incorrect model
M(y0 | x1) respectively.
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Fig. 1 Boxplots of BIASd (left) andMSEd (right), d = 1, . . . , D, for M(y0 | x0)

DIR EB MA

−0
.0
5

0.
00

0.
05

0.
10

BIAS − M(y01 | x0) − S sampling

DIR EB MA

0.
10

0.
15

0.
20

0.
25

0.
30

0.
35

MSE − M(y01 | x0) − S sampling

Fig. 2 Boxplots of BIASd (left) andMSEd (right), d = 1, . . . , D, for M(y01 | x0)
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5 Conclusions

This paper introduces model-assisted estimators of domain means. The new estima-
tors are assisted by the NER models and they are unbiased under the design-based
distribution. The simulation experiment shows that they are more robust against
deviations from model specifications than the EBLUPs.

The Hájek (DIR) estimator uses only the considered domain information. It is
basically an unbiased estimator with respect to the sampling design distribution but
with a big variance in small area problems. The EBLUP does not contains calibrated
sampling weights and therefore it could has some high design-based bias because of
non response. This is a drawback in real data applications. The MA estimators try
to collect the good properties of DIR and EBLUP estimators. They are constructed
from the NER model and therefore they introduce the auxiliary information in the
estimation process. They can employ the calibrated weights in a design-based bias
correction term. The correction term gives protection against the non response bias,
so that the new estimator hast a good balance between sampling bias and MSE.
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Robust Approaches for Fuzzy Clusterwise
Regression Based on Trimming
and Constraints

Luis Angel García-Escudero, Alfonso Gordaliza,
Francesca Greselin and Agustín Mayo-Iscar

Abstract Three different approaches for robust fuzzy clusterwise regression are
reviewed. They are all based on the simultaneous application of trimming and con-
straints. The first one follows from the jointmodeling of the response and explanatory
variables through a normal component fitted in each cluster. The second one assumes
normally distributed error terms conditional on the explanatory variables while the
third approach is an extension of the Cluster Weighted Model. A fixed proportion
of “most outlying” observations are trimmed. The use of appropriate constraints
turns these problem into mathematically well-defined ones and, additionally, serves
to avoid the detection of non-interesting or “spurious” linear clusters. The third pro-
posal is specially appealing because it is able to protect us against outliers in the
explanatory variables which may act as “bad leverage” points. Feasible and practical
algorithms are outlined. Their performances, in terms of robustness, are illustrated
in some simple simulated examples.

1 Introduction

The detection of clusters around linear subspaces, instead of just around points or
centroids, is often needed in Cluster Analysis. This problem is meaningful, not only
because clusters are frequently arranged this way, but also because sometimes it is
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interesting to discover different relations between a response variable and some other
explanatory variables within each cluster. These problems are commonly known as
clusterwise linear regression or switching regression models. Some others seminal
references are [4, 19, 21, 26]. All those “hard” or 0–1 clustering procedures partition
the data into G completely disjoint clusters. Alternatively, fuzzy clustering methods
provide nonnegative membership values of observations to clusters and overlapping
clusters are so generated [2, 17, 25]. This fuzzy approach can be certainly useful in
clusterwise regression applications. There already exist many proposals addressing
fuzzy clustering around linear subspaces. For instance, [17] provides an adaptation
of the fuzzy c-means in [2] by minimizing a weighted sum of distances of each
observation from the estimated regression line and where these weights depend on
the fuzzy membership values. See also [18, 29] and references therein.

Robustness is also a desirable property for (fuzzy) clustering techniques due to
the well-know harmful effect that (even a small fraction) outlying observations may
have in them. Several methods have been recently proposed to improve clustering
techniques robustness performance. For instances, many proposals can be found in
[6, 10, 22] (hard) and in [1, 3] (fuzzy).

In this work, we are going to review three recent approaches for robust fuzzy
clusterwise regression derived from considering a maximum likelihood approach
with trimming and constraints. These methods can be seen as extensions of that
introduced in [7]. Trimming is probably the simpler way to achieve robustness,
being also very easy to understand. Particularly, we consider an impartial trimming
approach, where the adjective “impartial” means that the data set itself tell us which
are the observations that should be trimmed, as in [9].When an observationwith index
i is detected as an outlier, we set membership values uig = 0 for every g = 1, . . . ,G.
This is in contrast with [29] which sets uig = 1/G for outlying observations. A fuzzy
Classification Maximum Likelihood approach is applied in the three considered
approaches. The maximization of fuzzified likelihoods is not a new idea in fuzzy
clustering [15, 24, 27, 28]. It is important to fix some type of constraint on the
scatter parameters, because, otherwise, that maximization is a mathematically ill-
defined problem. Therefore, appropriate constraints on the scatter parameters must
be added. These constraints are also useful to avoid the detection of non-interesting
(“spurious”) local maxima.

In the three reviewed methods, the third one is particularly appealing because it
simultaneously protects us against “vertical outliers” and even “bad leverage” points.
This approach, recently introduced in [13], is a trimmed and fuzzified version of the
Cluster Weighted Model (CWM) in [14].

2 Three Different Approaches

Let ˜X = (X′,Y )′ be a random vector in IRd × IR, where the first d components X
are the values taken by the explanatory variables or covariates, and Y is the value
taken by a response variable. Let us assume that {x̃i }ni=1 = {(x′

i , yi )
′}ni=1 is a random

sample of size n, drawn from ˜X. We use the notation φd(·;m,S) for the density of
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the d-variate Gaussian distribution with mean vectorm and covariance matrix S and
{λl(S)}dl=1 are the set of eigenvalues of the d × d matrix S.

2.1 FTCLUST-Based Approach

The simplest approach follows from the application of the FTCLUST methodology
introduced in [7] in dimension d + 1. We propose maximizing

n∑

i=1

G∑

g=1

umig log
(
πgφd+1(x̃i ; μ̃g, ˜�g)

)
, (1)

where the membership values uig ∈ [0, 1] are required to satisfy

G∑

g=1

uig = 1 if i ∈ I and
G∑

g=1

uig = 0 if i /∈ I , (2)

for a subset I ⊂ {1, 2, . . . , n}with #I = [n(1 − α)]. The parameter α ∈ [0, 1) is
the fixed trimming level and m ≥ 1 is the fuzzifier parameter. Note that the observa-
tions with indexes outside I do not contribute to the summation in (1). The target
function in (1) is unbounded as we can easily see just by taking |˜�g| → 0. Thus, as
done in [7], we introduce an additional constraint when maximizing (1) that forces
the set of the eigenvalues of the scatter matrices to satisfy

λl1(
˜�g1) ≤ cλl2(

˜�g2) for 1 ≤ l1 �= l2 ≤ d + 1 and 1 ≤ g1 �= g2 ≤ G. (3)

This type of constraints are an extension of those in [9, 20]. The use of constraints
on the scatter parameters goes back to Hathaway’s seminal work [16].

Let μ̃g and ˜�g be the vectors and matrices obtained from the previous constrained
optimization problem with

μ̃g =
(

μ
g
1

μ
g
2

)
and ˜�g =

(
�

g
11 �

g
12

�
g
21 �g

)
. (4)

From these (optimal) vectors and matrices, we obtain G linear structures as

y = μ
g
2 + �

g
21(�

g
11)

−1(x − μ
g
1) for g = 1, . . . ,G. (5)

The constant 1 ≤ c < ∞ guarantees that the constrained maximization of (1) is a
mathematically well-defined problem and serves to avoid the detection of “spurious”
local maximizers. Some weights πg are also included in (8). They are useful when
the number of clusters is misspecified, because they can be set close to 0 whenever
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G is larger than needed [7, 9]. More details on the weights will be given later. We
are thus considering a fuzzy classification EM-type approach as in [28].

The problem with that approach is that linear clusters are generally, by definition,
elongated clusters. Therefore, eigenvalues close to 0 on the ˜�g matrices often appear
inmost of clusterwise regression problems. This fact implies that large c values for the
eigenvalues ratio constraint are required. Unfortunately, those large c values do not
protect us correctly against “spurious” local maximizers. Moreover, the FTCLUST’s
good robustness properties are lost with such large c values.

2.2 Robust Fuzzy Clusterwise Regression

Adifferent approach,which directly takes into account the underlying linear relations
within each group is reviewed in this section. In clusterwise regression, it is frequently
assumed that the conditional relation between Y given X = x in the gth group can
be written as Y = b′

gx + b0g + εg with εg ∼ N1(0, σ 2
g ). In that case, a robust fuzzy

clusterwise regression approach can be derived through the maximization of

n∑

i=1

G∑

g=1

umig log
(
πgφ1(yi ;b′

gxi + b0g, σ
2
g )

)
, (6)

where the uig membership values and the πg weights satisfy the same requirements
as in Sect. 2.1; vector bg and the constant b0g are, respectively, the regression slope
and the intercept for the gth cluster. Again, constraints on the residual variances can
be set as

σ 2
g1 ≤ cεσ

2
g2 for every 1 ≤ g1 �= g2 ≤ G, (7)

for a fixed 1 ≤ cε < ∞ constant. These constraints again convert the maximization
of (6) into amathematically well-defined problem (see what happens when σ 2

g → 0).
This approach has been introduced in [11].

We have applied this methodology, for a simulated data set, with α = 0 and
cε = 10 in Fig. 1a and with α = 0.05 and cε = 10 in Fig. 1b. The simulated data set
includes a small 5% fraction of background scattered noise. As seen in Fig. 1a, the
detected linear structures when α = 0 are not the correct ones andmanymisclassified
observations are found.

This approach provides improved robustness performance by applying trimming
that certainly protect us against “vertical outliers” (outliers only in y). However, as
will be seen in Sect. 2.3, it does not provide great protection against “leverage points”
(outliers in x). It is well known that leverage points can be extremely harmful in
Regression Analysis. Additional protection, in that case, can be obtained by applying
a “second trimming” stage as described in [10], which can be straightforwardly
adapted to the fuzzy clustering framework.
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(a)

(c)

(b)

Fig. 1 a Fuzzy clusterwise regression with α = 0. b Fuzzy clusterwise regression with α = 0.05. c
Fuzzy robust CWMwith α = 0.05. Fuzzy membership values are represented by using a mixture of
red and green colors (grayscale converted). Trimmed observations are represented by empty black
circles

2.3 Robust Fuzzy Cluster-Weighted Model (CWM)

Finally, a third approach is obtained throughout the “fuzzification” and “robustifica-
tion” of the Cluster Weighted Model (CWM in the sequel) introduced in [14]. This
approach has been recently proposed in [13] as a fuzzification of the “hard” robust
CWMin [12].We just focus on the the linear CWMwithGaussian componentswhere
the conditional relationship between Y givenX = x in the gth group is expressed by
Y = b′

gx + b0g + εg with εg ∼ N1(0, σ 2
g ) but we also assume that X ∼ Nd(μg,�g).

Under these assumptions, we now consider the maximization of
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n∑

i=1

G∑

g=1

umig log
(
πgφ1(y;b′

gxi + b0g, σ
2
g )φd(xi ;μg,�g)

)
, (8)

with the same notation as in the statements of the two previous problems. We have
that (8) is unbounded, and consequently, we introduce two further constraints as done
in [12]. The first one has to do with the eigenvalues of the �g matrices throughout

λl1(�g1) ≤ cXλl2(�g2) for every 1 ≤ l1 �= l2 ≤ d and 1 ≤ g1 �= g2 ≤ G. (9)

A second constraint is added on the regression error terms as

σ 2
g1 ≤ cεσ

2
g2 for every 1 ≤ g1 �= g2 ≤ G. (10)

Notice that the two (not necessarily equal) constants 1 ≤ cX < ∞ and 1 ≤ cε < ∞
serve to avoid “spurious” solutions whenever they assume moderate values. More-
over, a very flexible methodology is obtained because of the asymmetric treatment
given to the marginal and conditional distributions.

Figure1c shows the results of applying the fuzzy robust CWMwith α = 0.05 and
cX = cε = 10 for the same simulated data set as above. Themethodology in Sect. 2.2
was perfectly able to recover the two underlying linear structures (recall Fig. 1b).
However, the cluster assignments are not so satisfactory because some observations
which clearly belong to the cluster in the left have higher membership values to
the cluster in the right. This issue is due to the fact that they are very close to the
regression line fitted by using mainly the observations in the cluster in the right
when this line is being elongated. On the other hand, the fuzzy robust CWM take
advantage of the information conveyed in the marginal distribution of X and so it is
able to obtain more sensible membership values.

A second interesting feature of this fuzzy robustCWMis that it addresses the previ-
ously commented problems with “bad leverage” points in a very natural way because
these observations take anomalous values on the explanatory variables. Therefore,
their contribution to (8) is not very large and they are trimmed. For instance, we
see in Fig. 2a how a 5% fraction of concentrated observations (y � 4) are acting as
bad leverage points when using the fuzzy clusterwise regression even though we
had chosen a trimming level α = 0.05 (equal to true contamination level) for it. The
robust fuzzy CWM, with the same trimming level, successfully trim bad leverage
observations.

3 Algorithms and Tuning Parameters

In this section,webrieflyoutline the proposed algorithms to implement the previously
reviewed approaches. Note that the target function in all of them can be written as
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(a) (b)

Fig. 2 a Robust fuzzy clusterwise regression with α = 0.05 and cε = 10 for a data set with a 5%
fraction of concentrated noise (y � 4). b Robust fuzzy CWMwith α = 0.05 and cX = cε = 10 for
the same data set

n∑

i=1

G∑

g=1

umig log(πgϕ(x̃i ; θg)), (11)

where the function ϕ(·) and the set of parameters θg depend on the specific method.

1. Initialization: Initial random values are assigned to parameters θg and πg . This
is achieved by drawing small random subsamples from the original data set, and
using them to estimate initial parameters values.

2. Iterative steps: Repeat the following steps until convergence or reaching a maxi-
mum number of iterations:

2.1. Membership values: If maxg=1,...,G πgϕ(x̃i ; θ) ≥ 1, then

uig = I
{
πgϕ(x̃i ; θg) = max

q=1,...,k
πqϕ(x̃i ; θq)

}
, (12)

where I {·} is the 0–1 indicator function. If maxg=1,...,G πgϕ(x̃i ; θg) < 1, we
set

uig =
( G∑

q=1

(
log(πgϕ(x̃i ; θg))

log(πqϕ(x̃i ; θq))

) 1
m−1

)−1

. (13)

2.2. Trimmed observations: Compute

ri =
G∑

g=1

umig log(pgϕg(xi , yi ; θ)) (14)
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and sort them as r(1) ≤ r(2) ≤ . . . ≤ r(n). Set membership values uig = 0,
g = 1, . . . ,G, for all the indexes i such that ri < r([nα]).

2.3. Update parameters: Use previous uig to update weights as

πg =
n∑

i=1

umig

/ n∑

i=1

G∑

g=1

umig, (15)

and μg (analogously, μ̃g) as

μg =
∑n

i=1 u
m
igxi∑n

i=1 u
m
ig

. (16)

Update intercepts and slope vectors by computing

bg =
(∑n

i=1 u
m
igxix

′
i∑n

i=1 u
m
ig

−
∑n

i=1 u
m
igxi∑n

i=1 u
m
ig

·
∑n

i=1 u
m
igx

′
i∑n

i=1 u
m
ig

)−1

·
(∑n

i=1 u
m
ig yixi∑n

i=1 u
m
ig

−
∑n

i=1 u
m
ig yi∑n

i=1 u
m
ig

·
∑n

i=1 u
m
igxi∑n

i=1 u
m
ig

)
,

and

b0g =
∑n

i=1 u
m
ig yi∑n

i=1 u
m
ig

− b′
g

∑n
i=1 u

m
igxi∑n

i=1 u
m
ig

. (17)

All previous formulae are typical in fuzzy clustering. The most difficult part
is how to update the constrained scatter parameters. To update σ 2

g and 
2
g ,

we start from the weighted sample covariance matrices

Tg =
∑n

i=1 u
m
ig(xi − μg)(xi − μg)

′
∑n

i=1 u
m
ig

, (18)

and the weighted residual variances

d2
g =

∑n
i=1 u

m
ig(yi − b0g − x′

ibg)
2

∑n
i=1 u

m
ig

. (19)

Then, to update �g (analogously, ˜�g), the singular-value decomposition
Tg = U ′

g EgUg is considered, with Ug being an orthogonal matrix and
Eg = diag(eg1, eg2, . . . , egd) a diagonal matrix. As done in [7, 8], these
eigenvalues must be optimally truncated. The optimal truncation value is
obtained by minimizing a real valued function. Analogously, in case that
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the d2
j error residual variances do not satisfy the required constraint, the d2

j
must be optimally truncated too [11].

3. Return the set of parameters θg yielding the highest value of (11) obtained after
all the random initializations and iterative steps.

Note that trimming is done through “concentration steps” [23] and imposing
the required constraint on the scatter parameters is an important ingredient of this
algorithm.

As can be seen, several parameters have to be chosen when applying the proposed
methods in real data problems. We observed that the estimated parameters θg do
not necessarily depend on all the tuning parameters, in a critical way. For instance,
usually a trimming level slightly greater than the one needed to remove contamina-
tion is not problematic. However, monitoring the sizes of the sorted ri values in (14)
is useful to set sensible α values. Regarding the constraints on the scatter parame-
ters, our suggestion is not choosing excessively high values for both cX and cε (at
least in the approaches described in Sects. 2.2 and 2.3). The choice of the fuzzifier
parameter m depends on the desired degree of fuzziness in the clustering solution.
Unfortunately, as happens with other likelihood-based fuzzy clustering approaches,
the effect of m is affected by the scale of the measured variables (see [7, 11]). The
joint monitoring of the proportions of “hard assignments” and “relative entropies”
(
∑G

g=1

∑n
i=1 uig log uig/[n(1 − α)] log(G)) provide useful heuristical tools aimed at

addressing this issue.
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Robust Morphometric Analysis Based
on Landmarks

Alfonso García-Pérez

Abstract Procrustes Analysis is a Morphometric method based on Configurations
of Landmarks that estimates the superimposition parameters by least-squares; for
this reason, the procedure is very sensitive to outliers. There are classical results,
based on the normality of the observations, to test whether there are significant
differences between individuals. In this paper we determine a Von Mises plus Sad-
dlepoint approximation for the tail probability (p-value) of this test for the Procrustes
Statistic, when the observations come from a model close to the normal.

1 Introduction

This paper is about a robust classification problem of n individuals based on their
shapes, i.e., using their geometric information. The usual (classical or robust) meth-
ods based on Multivariate Analysis can not extract all the geometric information
from the individuals. For this reason, in recent years, morphometrics methods based
on Configurations of landmarks have been developed. A landmark is a peculiar point
whose position is common in all the individuals to classify. For instance, when we
classify skulls, the landmarks could be the center of the supraorbital arch, the chin,
etc.; or, if we classify projectile points found in an archaeological site, the landmarks
could be the ends of the points.

In all the cases, the mathematical (geometric) information that we obtain from
the individuals is the k coordinates of their p landmarks, li = (ci1, . . . , cik), i =
1, . . . , p.

Thematrix of landmarks coordinates is called aConfiguration. For each individual
with p landmarks of dimension k (where k is equal to 2 or 3) we have a collection
of landmark coordinates expressed in p × k matrix as
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M =
⎛
⎝
c11 · · · c1k
· · · · · · · · ·
cp1 · · · cpk

⎞
⎠

There are many morphometric methods; see for instance [1] or [3]. In this paper
we consider Superimposition Methods; namely, Procrustes Analysis, obtaining the
Procrustes coordinates and adapting theConfigurations to a common (local) reference
system, matching them at the common center. For these reasons, a Local Coordinate
Reference System is needed and a Geographical Information System very useful.

A common graphical representation of a Configuration is a scatter plot of its
landmarks coordinates. Joining the resulting points with segments we obtaining a
polygon where the landmarks coordinates define the vertices of the polygon.

Because we use the shape of the individuals in their classification and shape
is a property of an object that is invariant under scaling, rotation and translation
(otherwise, for instance, an object and itself with double size could be classified
into two different groups), in order to classify them with a Procrustes Analysis, we
have first to remove the effect of Size (scale), Location (translation) and Orientation
(rotation) to standardize them and match them in a common center in order to make
them comparable.

This means that we have to estimate by least-squares the superimposition para-
meters α, β and Γ (scale, translation and rotation) in order to minimize the full
Procrustes distance dF between Configurations M1 and M2, i.e.,

min dF (M1, M2) = min ||M2 − αM1Γ − 1pβ
′||

= √
trace[(M2 − αM1 Γ − 1pβ ′)′(M2 − αM1 Γ − 1pβ ′)]

where α is a scalar representing the Size, β is a vector of k values corresponding to
a Location parameter formed by the centroid coordinates, 1p is a column vector of
dimension p × 1 and Γ a k × k square rotation matrix.

The idea that we pursue with this transformation is to match both Configurations,
i.e., a superimposition of M1 onto M2.

It is possible to use a Classical Morphometric Analysis from a descriptive point
of view. This is briefly exposed, together with its robustification by replacing the
classical estimators with robust ones, in [6].

2 Classical Morphometric Analysis from an Inferential
Point of View

Instead of considering a descriptive morphometric analysis it is more interesting to
test if there are significant differences between two Configurations. From a classical
point of view, we have the following result in [8, 11]: If X1 and X2 are two scaled
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and centered Configurations of dimension p × k, the Residual Distance between
Configurations X1 and X2 is defined as

||X2 − X1||2 = trace
[
(X2 − X1)

′(X2 − X1)
]
.

As saw before, the k × k square rotation matrix Γ is determined such that the
Procrustes distance between these two Configurations X1 and X2 (i.e., between land-
marks) is minimal

min
Γ

||X2 − X1Γ ||2 = min
Γ

trace
[
(X2 − X1 Γ )′(X2 − X1 Γ )

]
.

Thisminimumobtained aftermatching (i.e., after translation, rotation and scaling)
is called the Procrustes statistic:

G(X1, X2) = min
Γ

||X2 − X1Γ ||2.

Under the null hypothesis H0 that there is no systematic differences between
Configurations X1 and X2, i.e., they belong to the same group, or more precisely,
that if η is a constant, they are of the form

X2 = X1 + η e

where the p × k landmarks coordinates of Configuration e are univariate i.i.d.
N (0, 1), then

G(X1, X2) ≈ η2 χ2
g

i.e., Gs(X1, X2) = G(X1, X2)/η
2 ≈ χ2

g , where g = kp − k(k + 1)/2 − 1 . Hence,
we can compute tail probabilities (p-values) for testing H0. It must be p > (k +
1)/2 + 1/k and obviously an integer.

3 Robust Morphometric Analysis from an Inferential Point
of View

The standard normality of the landmarks coordinates is a very hard assumption. For
this reason we shall use robust methods for testing H0 assuming that the p × k land-
marks coordinates of e follow, not a standard normal distribution but a contaminated
normal model:

X2 − X1

η
� (1 − ε)N (0, 1) + εN (0, ν).
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In this section we are going to compute the tail probabilities (p-values), assuming
this contaminated model, using a VOM+SAD approximation.

We use this scale contaminated normal mixture model because the Configurations
are matched at the common centroid that is the new origin and equal to 0, being the
contamination in the scale the natural source of contamination in the observations.

3.1 Von Mises Approximations for the p-Value
of the Procrustes Statistic

In order to test the null hypothesis H0 that there is no systematic differences between
the standardized Configurations X1 and X2, using the Procrustes statisticGs(X1, X2)

that follows a χ2
g distribution under a normal model, we have the following result.

Proposition 3.1 Let Gs(X1, X2) be the Procrustes statistic, that follows a χ2
g dis-

tribution when the underlying model is a normal distribution, Φμ,σ . If the previous
null hypothesis H0 holds, the von Mises (VOM) approximation for the functional tail
probability (if F is close to the normal Φμ,σ ) is

PF {Gs(X1, X2) > t} � g
∫ ∞

−∞
P{χ2

g−1 > t − (
x−μ

σ
)2} dF(x) − (g − 1)P{χ2

g > t}.

Proof The von Mises (VOM) approximation for the functional tail probability is (if
F is close to the normal Φμ,σ )

pF
g = PF {Gs(X1, X2) > t} � pΦ

g +
∫

TAIF(x; t;χ2
g , Φμ,σ ) dF(x) (1)

where TAIF is the Tail Area Influence Function defined in [4].
Replacing the normal model by the contaminated normal model Φε = (1 −

ε)Φμ,σ + ε δx and computing the derivative at ε = 0 we obtain that

TAIF(x; t;χ2
g , Φμ,σ ) = ∂

∂ε
PΦε {Gs(X1, X2) > t}

∣∣∣∣
ε=0

= gP{χ2
g−1 > t − (x − μ)2/σ 2} − gP{χ2

g > t}

integrating now, we obtain the result. �

Considering a scale contaminated normal (SCN) model

(1 − ε)N (0, 1) + εN (0, ν)
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Table 1 Exact and
approximate p-values with
g = 3

t “Exact” Approximate

6 0′149 0′148
8 0′077 0′076
10 0′042 0′042
12 0′024 0′025
14 0′016 0′016
16 0′011 0′011
18 0′007 0′008

the VOM approximation is

pF
g � (1 − g ε)P{χ2

g > t} + g ε

∫ ∞

−∞
P{χ2

g−1 > t − x2} dΦ0,ν(x).

In Table1 appear, [10], the Exact values (obtained through a simulation of 100.000
samples) and the VOM approximations when ε = 0′05, ν = 2 and g = 3.

To obtain the previous numerical resultswe had to dealwith numerical integration.
Sometimes, we would like to have analytic expressions of pF

g to value the effect of
contamination ε, etc. For this reason, and for controlling the relative error of the
approximation, in the next section we shall compute the Saddlepoint approximation
for the p-value of the Procrustes Statistic.

3.2 Saddlepoint Approximations for the p-Value
of the Procrustes Statistic

Using Lugannani and Rice formula, [9], for the samplemean of g independent square
normal variables, we obtain the VOM+SAD approximation given in the next result.

Proposition 3.2 LetGs(X1, X2)be theProcrustes statistic, that follows aχ2
g distrib-

ution when the underlying model is a normal distribution,Φμ,σ . If the null hypothesis
H0 holds, the saddlepoint approximation of the von Mises expansion, VOM+SAD
approximation, for the functional tail probability (if F is close to the normal Φμ,σ )
is

PF {Gs(X1, X2) > t} � P
{
χ2
g > t

} − B + B
∫ ∞

−∞

√
g√
t
e

(t−g)(x−μ)2

2tσ2 dF(x) (2)

where B = g
√
g√

π (t−g)
e−(t−g−g·log(t/g))/2.
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Proof If Gs(X1, X2) follows a χ2
g distribution, and Y1, . . . ,Yg are g independent

gamma distributions γ (1/2, 1/2)with moment generating function M and cumulant
generating function K = logM , it is, following [2, 5, 9] or [7],

PΦ

{
Gs(X1, X2)

g
> t

}
= P

{
1

g

g∑
i=1

Yi > t

}

= 1 − Φs(w) + φs(w)

{
1

r
− 1

w
+ O(g−3/2)

}
(3)

whereΦs and φs are the cumulative distribution and density functions of the standard
normal distribution.

If K is the cumulant generating function, that is the functional of Φμ,σ ,

K (θ) = log
∫ ∞

−∞
eθ (u−μ)2/σ 2

dΦμ,σ (u)

and z0 is the (functional) saddlepoint, i.e., it is the solution of the equation K ′(z0) = t ,
the functionals that appear in (3) are

w = sign(z0)
√
2 g · (z0 t − K (z0)) = √

g sign(z0)
√
2 (z0 t − K (z0)) := √

g w1

r = z0
√
g · K ′′(z0) = √

g z0
√
K ′′(z0) := √

g r1.

As we saw before, the VOM approximation for the tail probability depends on the
TAIF. To obtain the TAIF of Gs(X1, X2)/g at Φμ,σ we have to replace the model
Φμ,σ by the contaminated model Φε = (1 − ε)Φμ,σ + ε δx in all the functionals in
the right side of (3) that depend on Φμ,σ , and then to obtain the derivative at ε = 0;
this process is represented with a dot over the functional. Since φ′

s(w) = −φs(w)w
and φs(w) ≤ 1 , we obtain that

TAIF

(
x; t; Gs(X1, X2)

g
, Φμ,σ

)
= ∂

∂ε
PΦε

{
Gs(X1, X2)

g
> t

}∣∣∣∣
ε=0

= −φs(w)
•
w +φ′

s(w)
•
w

{
1

r
− 1

w
+ O(g−3/2)

}
+ φs(w)

{
−

•
r

r2
+

•
w

w2 + O(g−3/2)

}

= φs(w)

[
−w

•
w

r
−

•
r

r2
+

•
w

w2

]
+ O(g−1)
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= φs(w)

[
−

√
g w1

√
g

•
w1√

g r1
−

√
g

•
r1

g r21
+

√
g

•
w1

g w2
1

]
+ O(g−1)

= φs(w)

r1

[
−√

g · w1
•
w1

]
+ O(g−1/2)

because the functionals w1,
•
w1, r1 and

•
r1 do not depend on g. Since

•
w1= sign(z0)

2(
•
z0 t− •

K (z0))

2
√
2(z0 t − K (z0))

=
•
z0 t− •

K (z0))

w1

it will be

TAIF

(
x; t; Gs(X1, X2)

g
, Φμ,σ

)
= φs(w)

r1

√
g

[ •
K (z0)− •

z0 t
]

+ O(g−1/2). (4)

Hence, we have to compute the influence functions
•
K (z0) and

•
z0. To do this,

because

K ′(θ) =

∫ ∞

−∞
eθ (u−μ)2/σ 2

(
u − μ

σ

)2

dΦμ,σ (u)

∫ ∞

−∞
eθ (u−μ)2/σ 2

dΦμ,σ (u)

from the saddlepoint equation, K ′(z0) = t , we obtain

∫ ∞

−∞
ez0 (u−μ)2/σ 2

[(
u − μ

σ

)2

− t

]
dΦμ,σ (u) = 0.

Replacing again themodel by the contaminatedmodelΦε = (1 − ε)Φμ,σ + ε δx
before obtaining the derivative at ε = 0, and making the change of variable (u −
μ)/σ = y, we obtain

•
z0

[∫ ∞

−∞
ez0 y

2
y4 dΦs(y) − t

∫ ∞

−∞
ez0 y

2
y2 dΦs(y)

]
+ ez0 (x−μ)2/σ 2

[(
x − μ

σ

)2

− t

]
= 0

i.e.,
•
z0= 1

2
t−5/2 e

(t−1)(x−μ)2

2tσ2

[
t −

(
x − μ

σ

)2
]

.
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In a similar way, we obtain that

•
K (z0) = 3

2
t−1/2 ez0 (x−μ)2/σ 2 − 1

2
t−3/2 ez0 (x−μ)2/σ 2

(
x − μ

σ

)2

− 1.

Also it is

r1 = z0
√
K ′′(z0) = t − 1√

2
and φs(w) = 1√

2π
e−g·(t−1−log t)/2.

Therefore, from (4), it will be

TAIF

(
x; t; Gs(X1, X2)

g
, Φμ,σ

)
= A

(
1√
t
e

(t−1)(x−μ)2

2tσ2 − 1

)
+ O(g−1/2)

where

A =
√
g√

π (t − 1)
e−g·(t−1−log t)/2.

From (1), we obtain now the VOM+SAD approximation for the p-value of the test
statistic Gs(X1, X2)/g,

PF

{
Gs(X1, X2)

g
> t

}
� P

{
χ2
g > g t

} − A + A
∫ ∞

−∞
1√
t
e

(t−1)(x−μ)2

2tσ2 dF(x)

and from this, we obtain the approximation (2) for the test statistic Gs(X1, X2). �

If F is the location contaminated normal mixture (LCN),

F = (1 − ε) N (0, 1) + ε N (θ, 1)

the VOM+SAD approximation is

PF {Gs(X1, X2) > t} � P
{
χ2
g > t

} + ε B
[
e−(1−t/g)θ2/2 − 1

]
.

In Table2 appear the Exact values (obtained through simulation of 100.000 sam-
ples), the VOM and the VOM+SAD approximations when ε = 0′01, θ = 1 and
g = 5.

Corollary 3.1 To test the null hypothesis H0 that there is no systematic differences
between the standardized Configurations X1 and X2 with p landmarks of dimension
k (i.e., X1 and X2 belong to the same classification group) using the Procrustes
statistic Gs(X1, X2) and assuming that the error difference between Configurations
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Table 2 Exact and
approximate p-values with
g = 5

t “Exact” VOM appr. VOM+SAD
appr.

9 0′1125 0′1129 0′1136
11 0′0538 0′0539 0′0545
13 0′0251 0′0249 0′0253
15 0′0114 0′0112 0′0115
17 0′0050 0′0049 0′0051
19 0′0022 0′0022 0′0023

X2 − X1

η

follows a scale contamination normal model (1 − ε)N (0, 1) + εN (0, ν) , the
VOM+SAD approximation for the tail probability (p-value) is

P{Gs(X1, X2) > t} ≈ P{χ2
g > t} + ε

g3/2√
π(t − g)

[ √
g√

t − ν2(t − g)
− 1

]

· exp
{
−1

2

(
t − g − g · log t

g

)}
(5)

where g = kp − k(k + 1)/2 − 1. It must be p > (k + 1)/2 + 1/k and obviously an
integer.

Then, if k = 2, it is g = 2p − 4 and p > 2. And if k = 3, it is g = 3p − 7 and
p ≥ 3.

There are some applications of this approximation in [6]. There we test if there
are significance differences between dots of Notch tips and bay leaves, of Solutrense
period, that were found in caves of Asturias (Spain). We do this analysis using a
photo of the “Museo Arqueológico de Asturias” (Oviedo), including this photo in
QGIS as a raster layer.

4 Conclusions

Classical Morphometric Analysis based on Landmarks is not robust because it is
based on sample means and least-squares estimation using a Normal distribution as
model.

In this paper we consider a Contaminated Normal Model to make robust infer-
ences. Namely, for this mixture model we obtain an von Mises approximation of the
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p-value of a test for the null hypothesis of no significance differences between two
individuals based on their shapes.

We also obtain a very accurate saddlepoint approximation of this von Mises
approximation.
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Smoothing-Based Tests with Directional
Random Variables

Eduardo García-Portugués, Rosa M. Crujeiras
and Wenceslao González-Manteiga

Abstract Testing procedures for assessing specific parametric model forms, or for
checking the plausibility of simplifying assumptions, play a central role in the math-
ematical treatment of the uncertain. No certain answers are obtained by testing
methods, but at least the uncertainty of these answers is properly quantified. This is
the case for tests designed on the two most general data generating mechanisms in
practice: distribution/density and regression models. Testing proposals are usually
formulated on the Euclidean space, but important challenges arise in non-Euclidean
settings, such as when directional variables (i.e., random vectors on the hypersphere)
are involved. This work reviews some of the smoothing-based testing procedures for
density and regression models that comprise directional variables. The asymptotic
distributions of the revised proposals are presented, jointly with some numerical
illustrations justifying the need of employing resampling mechanisms for effective
test calibration.
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1 On Goodness-of-Fit Tests and Smoothing

In the early years of the 20th century, K. Pearson and colleagues initiate the devel-
opment of testing methods for assessing the goodness-of-fit of a certain parametric
model. Pearson [19] presents his celebrated χ2 test as a criterion to check if a given
system of deviations from a theoretical distribution could be supposed to come from
random sampling, but it is not until a couple of years later when Elderton [5] coins the
term goodness-of-fit of theory to observation. Also at the beginning of last century,
Pearson [20] introduces the first ideas for goodness-of-fit tests in regression models.
With no theoretical support from probability theory (which was developed almost at
the same time, and therefore, its impact on statistics was noticed some years later),
these works set the basis for the construction of testing procedures with the aim of
assessing a certain parametric null hypothesis for density/distribution (see [2, 4], as
two influential papers) and regression models (see [13] for a complete review on
goodness-of-fit tests in this setting).

This work focus on a certain class of tests that makes use of nonparametric
(smooth) estimators of the target function, that is, the density or the regression func-
tions. First, consider the problem of testing a certain parametric density model

H0 : f ∈ FΘ versus H1 : f /∈ FΘ, (1)

withFΘ = { fθ : θ ∈ Θ} a parametric density family. From a smoothing-based per-
spective, a pilot estimator f̂ constructed from X1, . . . , Xn , a sample from the random
variable (rv) X , will be confronted with a parametric estimator by the use of a certain
discrepancymeasure. Bickel andRosenblatt [2] consider the classical Kernel Density
Estimator (KDE) f̂g(x) = 1

ng

∑n
i=1 K

( x−Xi
g

)
, with kernel K and bandwidth g, to be

compared with a parametric estimator f
θ̂
under the null through an L2-distance. In

general, test statistics for (1) can be built as Tn = d( f̂ , f
θ̂
), being d a discrepancy

measure between both estimators.
The ideas of goodness-of-fit tests for density curves have been naturally extended

in the nineties of the last century to regression models. Consider, as a reference, a
regression model Y = m(X) + ε, where the goal is to test

H0 : m ∈ MΘ versus H1 : m /∈ MΘ (2)

in an omnibusway from a sample {(Xi ,Yi )}ni=1 of (X,Y ). Herem(x) = E [Y |X = x]
is the regression function of Y over X , and ε is a random error such thatE [ε|X ] = 0.
A pilot estimator m̂(x) = ∑n

i=1 Wn,i (x)Yi can be constructed using nonparametric
weights, such as the Nadaraya-Watsonweights given byWn,i (x) = K

( x−Xi
g

)/ ∑n
j=1

K
( x−X j

g

)
. Other possible weights, such as the ones from local linear estimation,

k-nearest neighbours, or splines, can be also considered. Using this kind of pilot esti-
mators, tests statistics can be built (similarly to the density case) as Tn = d

(
m̂,m

θ̂

)
.
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In the presence of directional randomvariables, and considering the previous smooth-
ing ideas, similar tests can be developed.

2 Goodness-of-Fit Tests with Directional Data

The statistical analysis of directional data, this is, elements in the
q-sphere Ωq = {x ∈ R

q+1 : x′x = 1}, is notably different from the analysis of lin-
ear (Euclidean) data. In particular, no canonical ordering exists in Ωq , which makes
rank-based inference ill-defined. We refer to the book of Mardia and Jupp [18] for
a comprehensive treatment of statistical inference with directional data, and for a
collection of applications. Some smooth estimators for density and regression in this
context are briefly revised below. These estimators are used as pilots for the testing
proposals introduced in the subsequent sections.

2.1 Smooth Estimation of Density and Regression

Let X1, . . . ,Xn denote a sample from the directional rv X with density f . Hall
et al. [14] and Bai et al. [1]1 introduce a KDE for directional data, which is defined
as follows:

f̂h(x) = 1

n

n∑

i=1

Lh(x,Xi ), Lh(x,Xi ) = ch,q(L)

n
L

(
1 − x′Xi

h2

)

, (3)

with L : R+
0 → R

+
0 being the kernel, h > 0 the bandwidth parameter, and

ch,q(L)−1 = λh,q(L)hq , λh,q(L) = ωq−1

∫ 2h−2

0
L(r)r

q
2 −1(2 − rh2)

q
2 −1 dr,

with limh→0 λh,q(L) = λq(L) = 2
q
2 −1ωq−1

∫ ∞
0 L(r)r

q
2 −1 dr . ωq denotes both the

area of Ωq , ωq = 2π
q+1
2 /


( q+1
2

)
, and the Lebesgue measure in Ωq . For the con-

sistency of (3), it is required that h = hn → 0 when n → ∞ at a rate slower than
nhq → ∞.

A directional rv usually appears related to another linear or directional rv, being
cylindrical and toroidal data the most common situations in practice. In these scenar-
ios, the modelling approach can be focused on the estimation of the joint density or
the regression function. From the first perspective, in order to estimate the density of
a directional-linear rv (X,Y ) in Ωq × R, García-Portugués et al. [9] propose a KDE

1Hall et al. [14]’s (1.3) is equivalent to Bai et al. [1]’s (1.3), but the latter employs a notation with a
more direct connection with the usual KDE.
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adapted to this setting:

f̂h,g(x, y) = 1

n

n∑

i=1

LKh,g ((x, y)(Xi ,Yi )) , (4)

where LKh,g ((x, y), (Xi ,Yi )) = Lh (x,Xi ) × 1
g K

(
y−Yi
g

)
is a directional-linear

product kernel, and h, g are two bandwidth sequences such that, for the consistency
of (4), h, g → 0 and nhqg → ∞.

In a toroidal scenario, a directional–directional KDE for the density of a rv
(X1,X2) in Ωq1 × Ωq2 can be derived adapting (4):

f̂h1,h2(x1, x2) = 1

n

n∑

i=1

LLh1,h2 ((x1, x2), (X1i ,X2i )) , (5)

with LLh1,h2 ((x1, x2), (X1i ,X2i )) = Lh1 (x1,X1i ) × Lh1 (x2,X2i ), with h1, h2 → 0
and nhq11 h

q2
2 → ∞ required for consistency.

Considering now a regression setting with scalar response and directional covari-
ate, let {(Xi ,Yi )}ni=1 be a sample from the regression model Y = m(X) + ε, where
m(x) = E [Y |X = x] : Ωq → R is the regression function of Y over X, and ε is a
random error such that E [ε|X] = 0. A nonparametric estimator for m, following
the local linear ideas (see [6]), can be constructed as follows. Consider a Taylor
expansion in a vicinity of Xi :

m(Xi ) ≈ m(x) + ∇m(x)′(Iq+1 − xx′)(Xi − x) = β0 + β ′
1B

′
x(Xi − x), (6)

where B′
xBx = Iq , BxB′

x = Iq+1 − xx′, and Iq is the identity matrix of dimension q.
From the extension of m to x ∈ R

q+1\{0} by m(x/ ||x||), since ∇m(x)′x = 0, the
central expression in (6) follows. This motivates the weighted least squares problem

min
(β0,β1)∈Rq+1

n∑

i=1

(
Yi − β0 − δp,1β

′
1B

′
x(Xi − x)

)2
Lh(x,Xi ), (7)

where δr,s is Kronecker delta, used to control both the local constant (p = 0) and
local linear (p = 1) fits. The estimate β̂0 solving (7) provides a local linear estimator
for m:

m̂h,p(x) =
n∑

i=1

W p
n,i (x)Yi , W p

n,i (x) = e′
1

(
Xx,p

′WxXx,p
)−1

Xx,p
′Wxei , (8)

where Y = (Y1 . . . ,Yn)′, Wx = diag (Lh(x,X1), . . . , Lh(x,Xn)), ei is the i-th unit
canonical vector, and Xx,1 is the n × (q + 1) matrix with the i-th row given by
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(1, (Xi − x)′Bx) (if p = 0, Xx,0 = (1, . . . , 1)′). For the consistency of (8), h → 0
and nhq → ∞ are required.

2.2 Density-Based Tests

Testing (1) allows to check whether there are significant evidences against assuming
the density has a given parametric nature, fθ0 , with parameter θ0 either specified
(simple hypothesis) or unspecified (composite hypothesis). In the spirit of Fan [7]’s
test, Boente et al. [3] propose the next test statistic for addressing (1):

Tn,1 =
∫

Ωq

(
f̂h(x) − Lh fθ̂ (x)

)2
ωq(dx),

where Lh fθ0(x) = ∫
Ωq

Lh(x, y) fθ0(y) ωq(dy) = E fθ0

[
f̂h(x)

]
is the expectation of

(3) under fθ0 . This term is included in order to match the asymptotic biases of the
nonparametric and parametric estimators.

The asymptotic distribution of Tn,1 is settled on Zhao and Wu [22]’s central limit
theorem for the integrated squared error of (3), In = ∫

Ωq
( f̂ (x) − f (x))2 ωq(dx).

The result is given under three different rates for h → 0. The relevant one for Tn,1 is
nhq+4 → 0, when the integrated variance dominates the integrated bias (not domi-
nant under H0), and is given next:

nh
q
2 (In − E[In]) d−→ N

(
0, 2ν2

d R( f )
)
,

with R( f ) = ∫
Ωq

f (x)2 ωq(dx) (the functional R(·) denotes the integration of the
squared argument on its domain of definition) and

ν2
d = γqλq(L)−4

∫ ∞

0
r

q
2 −1

{∫ ∞

0
ρ

q
2 −1L(ρ)ϕq(r, ρ) dρ

}2

dr,

ϕq(r, ρ) =
⎧
⎨

⎩

L
(
r + ρ − 2(rρ)

1
2
) + L

(
r + ρ + 2(rρ)

1
2
)
, q = 1,

∫ 1
−1

(
1 − θ2

) q−3
2 L

(
r + ρ − 2θ(rρ)

1
2
)
dθ, q ≥ 2,

γq =
⎧
⎨

⎩

2− 1
2 , q = 1,

ωq−1ω
2
q−22

3q
2 −3, q ≥ 2.

Under certain regularity conditions on fθ0 and L (A1–A3 in [3]), if θ̂ − θ0 =
OP

(
n− 1

2
)
under H0, then
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nh
q
2

(

Tn,1 − λq(L2)λq(L)−2

nhq

)
d−→ N

(
0, 2ν2

d R( fθ0)
)
.

Hence, asymptotically, the test rejects H0 at level α whenever Tn,1 > tα;n,q,θ0 =
(nhq)−1λq(L2)λq(L)−2 + h

q
2 νd

√
2R( fθ0)zα . Under local Pitman alternatives of the

kind H1P : f = fθ0 + (nh
q
2 )

1
2 Δ (Δ = 0 gives H0), where Δ : Ωq → R is such that

∫
Ωq

Δ(x) ωq(dx) = 0, and if θ̂ − θ0 = OP

(
n− 1

2
)
under H1P , the test rejects if Tn,1 >

tα;n,q,θ0 − R(Δ). Hence, the larger the L2-norm of Δ, the larger the power.
If f is a directional-linear density, testing (1) can be done using

Tn,2 =
∫

Ωq×R

(
f̂h,g(x, y) − LKh,g fθ̂ (x, y)

)2
dy ωq(dx),

where LKh,g fθ0(x, y) = ∫
Ωq×R

LKh,g ((x, y), (z, t)) fθ0(z, t) dt ωq(dz) is the exp-

ected value of f̂h,g(x, y) under H0. Under regularity assumptions for the den-
sity and kernels (A1, A2 and A5 in [11]), and θ̂ − θ0 = OP

(
n− 1

2
)
under H1P :

f = fθ0 + (nh
q
2 )

1
2 Δ (Δ : Ωq × R → R is such that

∫
Ωq×R

Δ(x, y) dy ωq(dx) = 0),
the limit law of Tn,2 under H1P is

n(hqg)
1
2

(

Tn,2 − λq(L2)λq(L)−2R(K )

nhqg

)
d−→ N

(
R(Δ), 2ν2

dν
2
l R( fθ0)

)
, (9)

where ν2
l = ∫

R

{∫
R
K (u)K (u + v) du

}2
dv. ν2

d and ν2
l are the variance components

associated to the smoothing and, for theGaussian and vonMises kernels, their expres-
sions are remarkably simple: ν2

l = (8π)− 1
2 and ν2

d = (8π)−
q
2 .

Estimator (4) allows also to check the independence between the rv’s X and Y in
an omnibus way, for arbitrary dimensions. This degree of generality contrasts with
the available tests for assessing the independence between directional and linear
variables, mostly focused on the circular case and on the examination of association
coefficients (e.g. [8, 16, 17]). Independence can be tested à la Rosenblatt [21] by
considering the problem

H0 : fX,Y = fX fY versus H1 : fX,Y �= fX fY , (10)

where fX,Y is the joint directional-linear density, and fX and fY are the marginals.
To that aim, [10] propose the statistic

Tn,3 =
∫

Ωq×R

(
f̂h,g(x, y) − f̂h(x) f̂g(y)

)2
dy ωq(dx).

Under the same conditions on the density and kernels required for (9), and with the
additional bandwidths’ bond hqg−1 → c, 0 < c < ∞, the asymptotic distribution
of Tn,2 under independence is
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n(hqg)
1
2
(
Tn,3 − An

) d−→ N
(
0, 2ν2

dν
2
l R( fX)R( fY )

)
, (11)

where An = λq (L2)λq (L)−2R(K )

nhq g − λq (L2)λq (L)−2R( fY )

nhq − R(K )R( fX)

ng . Note that (11) is sim-
ilar to (9), plus two extra bias terms given by the marginal KDEs.

Tn,2 and Tn,3 can be modified to work with a directional-directional rv by using
the KDE in (5). The statistics for (1) and (10) are now:

Tn,4 =
∫

Ωq1×Ωq2

(
f̂h1,h2(x1, x2) − LKh1,h2 fθ̂ (x1, x2)

)2
ωq2(dx2) ωq1(dx1),

Tn,5 =
∫

Ωq1×Ωq2

(
f̂h1,h2(x1, x2) − f̂h1(x1) f̂h2(x2)

)2
ωq2(dx2) ωq1(dx1),

respectively. Under the directional-directional analogues of the assumptions required
for (9) and (11), the asymptotic rejection rule of Tn,4 is Tn,4 > (nhq11 h

q2
2 )−1

λq1(L
2)λq2(L

2)(λq1(L)λq2(L)−2 + (hq11 h
q2
2 )

1
2 νd1νd2

√
2R( fθ0)zα and, under in-

dependence, n(hq11 h
q2
2 )

1
2
(
Tn,5 − Bn

) d−→ N
(
0, 2ν2

d1
ν2
d2
R( fX1) R( fX2)

)
, with

Bn = λq1 (L
2)λq1 (L)−2λq2 (L

2)λq2 (L)−2

nh
q1
1 h

q2
2

− λq1 (L
2)λq1 (L)−2R( fX2 )

nh
q1
1

− λq2 (L
2)λq2 (L)−2R( fX1 )

nh
q2
2

.

2.3 Regression-Based Tests

The testing of (2) (i.e., the assessment of whether m has a parametric structure mθ0 ,
with θ0 either specified or unspecified) is rooted on the nonparametric estimator for
m introduced in (8). In a similar way toHärdle andMammen [15] in the linear setting,
problem (2) may be approached with the test statistic

Tn,6 =
∫

Ωq

(
m̂h,p(x) − Lh,pm θ̂

(x)
)2

f̂h(x)w(x) ωq(dx),

where Lh,pmθ0(x) = ∑n
i=1 W

p
n,i (x)mθ0(Xi ) is the smoothing of mθ0 , included to

reduce the asymptotic bias (see [15]), and w : Ωq → R
+
0 is an optional weight func-

tion. The inclusion of f̂h has the benefits of avoiding the presence of the density of
X in the asymptotic bias and variance, and of mitigating the effects of the squared
difference in sparse areas of X.

Under H0, θ̂ − θ0 = OP

(
n− 1

2
)
, and certain regularity conditions (A1–A3 and A5

in [12]), the limit distribution of Tn,6 is

nh
q
2

(

Tn,6 − λq(L2)λq(L)−2

nhq

∫

Ωq

σ 2
θ0

(x)w(x) ωq(dx)

)
d−→ N

(
0, 2ν2

d R
(
σ 2

θ0
w

))
,

where σ 2
θ0

(x) = E
[
(Y − mθ0(X))2|X = x

]
, this is, Var [Y |X = x] under H0.
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3 Convergence Towards the Asymptotic Distribution

Unfortunately, the asymptotic distributions of the test statistics Tn,k , k = 1, . . . , 6
are almost useless in practise. In addition to the unknown quantities present in the
asymptotic distributions, the convergences toward the limits are slow and depend on
the bandwidth sequences. This forces the consideration of resampling mechanisms
for calibrating the distributions of the statistics under the null: parametric bootstraps
in Tn,1, Tn,2, and Tn,4 [3, 11]; a wild bootstrap for Tn,6 [12]; and a permutation
approach for Tn,3 and Tn,5 [10]. The purpose of this section is to illustrate, as an
example, the convergence to the asymptotic distribution of the statistics Tn,3 and Tn,6

via insightful numerical experiments.
First, for Tn,3 we considered a circular-linear framework (q = 1), with a von

Mises density with mean μ = (0, 1) and concentration κ = 1 for the circular vari-
able, and a N (0, 1) for the linear density. We also took von Mises and normal
kernels. These choices gave R( fX) = (2π)−1I0(2)I0(1)−2 (I0 stands for the
modified Bessel function of first kind and order 0), R( fY ) = (

2π
1
2
)−1

, ν2
d = ν2

l =
(8π)− 1

2 , and R(K ) = λ1(L2)λ1(L)−2 = (
2π

1
2
)−1

. We simulated M = 500 sam-
ples of size n = 5k × 10l , k = 0, 1, l = 1, . . . , 6 under independence, obtaining
{
n
( hngn
2ν2

dν
2
l R( fX)R( fY )

) 1
2
(
T j
n,3 − An

)}M
j=1.We took hn = gn = 2n− 1

3 as a compromise be-
tween fast convergence and avoiding numerical instabilities. Figure1 shows several
density estimates for the sample of standardized statistics, jointly with the p-values
of the Kolmogorov–Smirnov (K–S) test for N (0, 1), and of the Shapiro–Wilk
(S–W) test for normality. Both tests are significant up to a very large sample size
(close to n = 5 × 105 data), which is apparent from the visual disagreement between
the finite sample and asymptotic distributions for n = 103.

Second, forTn,6, the regressionmodelY = 1 + ε is considered,with ε ∼N
(
0, 1

4

)
,

and X uniformly distributed on the circle. The composite hypothesis is H0 : m ≡ c,
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Fig. 1 Asymptotic and empirical distributions for the standardized statistic Tn,3, for sample sizes
n = 103 (left) and n = 5 × 105 (right)
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Fig. 2 QQ-plot comparing the sample quantiles of
{
nh

1
2
( 128

π

) 1
4
(
T j
n −

√
π

4 nh
)}M

j=1 with the ones

of the asymptotic distribution, for n = 103 (left) and n = 5 × 105 (right)

for c ∈ R unknown. H0 is checked using the local constant estimator with von
Mises kernel and w ≡ 1. Figure2 shows the QQ-plots computed from the sam-

ple
{
nh

1
2
(
128
π

) 1
4
(
T j
n −

√
π

4 nh
)}M

j=1, for the bandwidth sequences hn = n−r

2 , r = 1
3 ,

1
5 ,

which were chosen in order to illustrate their impact in the convergence to the asymp-
totic distribution. Specifically, it can be seen that the effect of undersmoothing boosts
the convergence since the bias ismitigated.Again, up to large sample sizes, the degree
of disagreement between the finite sample and the asymptotic distributions is quite
evident.
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Asymptotic Behavior of Fractional Blending
Systems

F. Javier Girón and M. Lina Martínez

Abstract After a brief description of the dynamic systems of ageing wines and
spirits known as “fractional blending systems” or “criaderas and solera” systems, a
general mathematical model is presented to determine, on the one hand, the distri-
bution of the age of liquids of all the scales of the system and, on the other hand,
the mean or average age of the liquids as the system is run. A theorem on the exis-
tence of an asymptotic equilibrium distribution of the “fractional blending systems”
is given. This result refers to the existence of a unique asymptotic distribution of the
ages which turns out to be a generalization of the Pascal distribution. This, in turn,
implies the existence and uniqueness of an equilibrium mean or average of the ages.

1 Introduction

It is a common perception of winemakers that brandies and/or wines aged using
static versus dynamic (sometimes called fractional blending) ageing systems differ
in many aspects. The most common of these perceptions is the fact that brandies and
wines aged using a fractional blending system are more homogeneous than those
obtained using a statical ageing system. This is due, in part, to the mixing of liquids
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of different ages which occurs in fractional blending systems, and constitute the final
product that goes to the market, i.e. the one obtained from the solera.

In Sect. 2, we briefly describe the main features and ways of operation of the
dynamical systems. A general mathematical model for describing the behavior of the
criaderas and solera dynamic systems, sometimes called fractional blending systems,
is presented in Sect. 3. The same model applies to sherry wines and brandies, and it
allows for the computation of the distribution of the age of the wines and/or brandies
at any period of the system for all criaderas and the solera —which constitute the
setup of the dynamical system—, and, as a byproduct, the computation of the mean
or average age. This section includes a general theorem that proves the asymptotic
behavior of the dynamical systems. In a previous paper (see Girón [1]), a simpler
model for the computation of the average age, which included the demonstration of
the existence of a limiting average age for all elements of the system, was given.

2 Description of the Dynamical Systems of Ageing

The general process of maturing wines and spirits, known as “static” or by “vintages
or añadas”, is described as follows: an oak cask is replenished with the liquid that
remains without manipulation during the established period of maturation. In some
occasions, before the end of the maturation period, the liquid may be transferred to
another cask.

On the other hand, the process known as “dynamic”, or “by criaderas and solera
system”, is a “successive fractional blending system”. Fractional blending system
means a mixing process consisting of partial withdrawal with the corresponding
replenishment. This process is genuinely Spanish and is unique (see Martínez De
la Ossa et al. [3], and Quirós and Carrascal [4]) and has been practiced for over
200years (Quirós and Carrascal [4]).

It consists of a stock of casks, divided into “escalas”, each of them formed by
an approximate number of butts. The first of these “escalas” is the “solera”, which
contains the oldest wine or brandy, being the next older “escala” the first “criadera”
and so on (second “criadera”, third “criadera”, etc.) A proportion of the “solera”
is drawn off (operation called “saca”) for bottling and selling in the market and
the “solera” is replenished (“rocío”) with the same quantity of liquid from the first
“criadera”. The latter is replenished with the second “criadera” and so on up to the
last “criadera”, which is filled with just new liquid. This system gives uniformity to
the product (see Fig. 1).

The number of “escalas” or steps usually is 3–4 for manzanillas de Sanlucar, 5–6
or even 9 for fino wines, and up to 16–20 for brandies. The “saca” of the “solera” is
normally done 3–4 times per year; it may be done less frequently but it is uncommon
to do it more frequently.
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Fig. 1 Scheme of a
dynamical system of
criaderas y solera
illustrating the operations of
withdrawing off (sacas) and
filling up (rocíos), which are
known under the name of
running up the scales (correr
las escalas)

3 A General Mathematical Model to Determine the Age
Distribution in a System of Criaderas and Soleras

3.1 Introducing the Mathematical Model

In this section, a mathematical model for describing the behavior of the dynamic
systems based on criaderas and soleras is presented, which shows the evolution of
the distribution of the age of the wines and/or brandies. The main advantage of this
model is that it provides a rigorous proof of the fact that dynamical systems become
stationary, i.e. the distribution of the age of the criaderas and solera achieve a limit
distribution which does not depend on the initial distribution of ages of the liquids
in the system. As a byproduct, the average or mean age of the final product obtained
from the soleras -which is a mixture of several ages, due to the dynamic nature of
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these systems-, also reaches a limit. This last fact was well known to the winemakers
from empirical experience, but no rigorous proof of it has been given yet.

3.2 Setting up and Development of the Model

The dynamical systems depends -and, consequently, differ- on the following basic
parameters:

1. The frequency of drawing off: whether it is annual, every six months, quarterly,
etc., denoted by t , which, depending on the frequency of the drawing off, usually
takes the values t = 1, 1/2, 1/3, 1/4, and 1/6. Its inverse na = 1/t denotes the
annual number of drawing offs.

2. The proportion of liquid withdrawn each time, denoted by p and measured in a
(0,1) scale. The remaining proportion in the barrel is denoted as q = 1 − p.

3. The number of scales used -barrels or “escalas”, called “criaderas”, and the last
one “solera”-, is denoted by k.

4. The number of periods the system is run, denoted by n.
5. The vector F(0) = (F (0)

0 , F (0)
1 , . . . , F (0)

k )′, which denotes the distribution of the
age of the content of each barrel at the start -initial conditions of the system-,
where F (0)

0 denotes the “sobretablas distribution” of the liquid to fill up the first
barrel, i.e. the last criadera (see Fig. 1); F (0)

1 the corresponding distribution of the
filling up of the second barrel, and so on up to the “solera barrel”. This operation,
as explained before, is known as the rocío. In the case of brandies, the rocío filling
is a zero age liquid at the first stage.

After the end of the first period t , the distribution of the age of the barrels in
the system F(1) = (F (1)

0 , F (1)
1 , . . . , F (1)

k ) is the following mixture of distributions, as
exemplified by Fig. 1.

To this mixture we have to add t years. As we are working with distribution func-
tions, the addition of a constant t has to be entered in the formulas as the convolution
of the mixture with a distribution degenerated at t .

This is accomplished through the convolution -represented by the operator ∗- of
the distribution with a Dirac delta, δt , concentrated at t .

F (1)
0 = F (0)

0 = F (0)
0

F (1)
1 = q(F (0)

1 ∗ δt ) + p(F (0)
0 ∗ δt ) = (q F (0)

1 + pF (0)
0 ) ∗ δt

F (1)
2 = q(F (0)

2 ∗ δt ) + p(F (0)
1 ∗ δt ) = (q F (0)

2 + pF (0)
1 ) ∗ δt (3.1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F (1)
k = q(F (0)

k ∗ δt ) + p(F (0)
k−1 ∗ δt ) = (q F (0)

k + pF (0)
k−1) ∗ δt .

⇓ ⇓
saca rocío
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The first equation of Formulae (3.1) means that the age of the rocío liquid has
always the same distribution: typically, but not necessarily, a Dirac delta at 0, i.e. 0
age liquid or, equivalently, F (0)

0 = F (1)
0 = · · · = F (n)

0 = δ0.
In general, after n periods, the age of the liquid in each barrel, is obtained through

the recurrence formulas

F (n)
0 = F (n−1)

0

F (n)
1 = (q F (n−1)

1 + pF (n−1)
0 ) ∗ δt

F (n)
2 = (q F (n−1)

2 + pF (n−1)
1 ) ∗ δt (3.2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

F (n)
k = (q F (n−1)

k + pF (n−1)
k−1 ) ∗ δt .

As the distributions involved are discrete ones, the computation of the distribution
of F (n)

j for any j = 1, . . . , k, and n = 1, 2, . . . is a very complex one due to the
presence of a convolution at every period.

One way to solve these recurrence equations is through the use of characteristic
functions. The characteristic function of amixture of distributions is the samemixture
of the corresponding characteristic functions of the terms in the mixture, and the
characteristic function of a convolution of independent random variables, as is our
case, is the product of the corresponding characteristic functions. Further, the use of
characteristic function greatly simplifies the analysis of the limiting behavior of the
recurrence Eq. (3.2) when n tends to infinity.

Therefore, if we denote by ϕ
(n)
j (s) the characteristic function of F (n)

j , Eq. (3.2)
can be written as

ϕ
(n)
0 (s) = ϕ

(n−1)
0 (s)

ϕ
(n)
1 (s) = eits (qϕ

(n−1)
1 (s) + pϕ

(n−1)
0 (s))

ϕ
(n)
2 (s) = eits (qϕ

(n−1)
2 (s) + pϕ

(n−1)
1 (s)) (3.3)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ϕ
(n)
k (s) = eits (qϕ

(n−1)
k (s) + pϕ

(n−1)
k−1 (s)).

Defining, for all n, the vector of characteristic functions

ϕ(n)(s) = (ϕ
(n)
0 (s), ϕ(n)

1 (s), . . . , ϕ(n)
k (s))′, (3.4)

Equation (3.3) can be written in matrix form as:
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ϕ(n)(s) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 0
p eits q eits 0 . . . 0 0 0
0 p eits q eits . . . 0 0 0

.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . q eits 0 0
0 0 0 . . . p eits q eits 0
0 0 0 . . . 0 p eits q eits

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϕ(n−1)(s). (3.5)

Denoting by Q(t, p, s) the square (k + 1) × (k + 1) matrix in Eq. (3.5), these
equations adopt the simple form

ϕ(n)(s) = Q(t, p, s)ϕ(n−1)(s). (3.6)

In terms of the initial conditions ϕ(0)(s), this last equation can be written as

ϕ(n)(s) = Q(t, p, s)n ϕ(0)(s), (3.7)

where Q(t, p, s)n denotes the n-th power of matrix Q(t, p, s).
This last formula allows for easy computations of the characteristic functions of

the distributions of all criaderas and solera of the system for any period n, where
ϕ(0)(s) is the vector of characteristic functions of the initial conditions F(0). From
these characteristic functions it can be easily derived the distributions of the age of
the criaderas and soleras at any period.

3.3 Asymptotic Behavior: The Equilibrium Distribution

Note that, from Eq. (3.7), the limiting behavior of the system only depends on the
limit of the matrix power Qn when n increases to infinity, and the initial conditions,
as the next lemma shows.

Lemma 3.1 The limit of Q(t, p, s)n as n goes to infinity is the following (k + 1) ×
(k + 1) matrix whose columns, except the first one, are zero vectors.

lim
n→∞Q(t, p, s)n =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0
p eits

1 − q eits
0 0 . . . 0

( p eits

1 − q eits

)2
0 0 . . . 0

..............................( p eits

1 − q eits

)k
0 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.8)

The following theorem follows straightforward from Lemma 3.1.
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Theorem 3.1 The limit of the vector of characteristic functions ϕ(n)(s), when n
tends to infinity, is

ϕ(∞)(s) = lim
n→∞ ϕ(n)(s) = lim

n→∞Q(t, p, s)n ϕ(0)(s)

= ϕ
(0)
0 (s)

(
1,

p eits

1 − q eits
,
( p eits

1 − q eits

)2
, . . . ,

( p eits

1 − q eits

)k
)′

. (3.9)

Further, the vector of characteristic functions ϕ(∞)(s), is the unique solution of the
equation

ψ = Q(t, p, s)ψ .

This asymptotic result deserves several comments.
From Eq. (3.9), the limiting distribution of the age of barrel j , or equivalently of

the criadera k − j , for j = 1, 2, . . . , k, has the following characteristic function:

ϕ
(∞)
j (s) = ϕ

(0)
0 (s) ·

( p eits

1 − q eits

) j
.

For t = 1, the second factor of the last equation corresponds to the characteristic
function of a Pascal distribution (see Johnson et al. [2]) with parameters j and p,
Pas( j, p), for any j = 1, 2, . . . , k. If t �= 1, the characteristic function corresponds
to the distribution of t times a Pascal distribution, which we denote as a generalized
Pascal distribution of parameters t , j and p, denoted by Pas(t, j, p).

A Pascal distribution of parameters j (a positive integer) and p ∈ (0, 1) (a prob-
ability), is a discrete distribution -related to waiting times in independent Bernoulli
trials with the same probability p-, which takes values x = j, j + 1, j + 2, . . . with
probability mass

Pr(x | j, p) =
(

x − 1

j − 1

)
p j qx− j ,

and 0 for values x = 1, . . . , j − 1.
If we denote by A( j, p) a random variable with a Pascal distribution of parameters

j and p, then the distribution of the random variable A(t, j, p) = t A( j, p) is said
to follow a generalized Pascal distribution of parameters t , j and p, Pas(t, j, p). Its
probability mass for values of z = j t, ( j + 1)t ( j + 2)t, . . . , is given by

Pr(A(t, j, p) = z) =
( z

t − 1

j − 1

)
p j q

z
t − j ,

and 0 otherwise.
If the distribution of the age of the sobretablas liquid is F (0)

0 , then the asymptotic
distribution of the age F (∞)

j at stages j = 1, . . . , k are the convolution of F (0)
0 with

a generalized Pascal distribution Pas(t, j, p).
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Corollary 3.1 follows immediately from Theorem3.1 and by the Lévy-Cramér
theorem.

Corollary 3.1 For all j = 1, . . . , k, the sequence of distribution functions F (n)
j con-

verges in distribution to the equilibrium distribution F (∞)
j = F (0)

0 ∗ Pas(t, j, p).

Another important consequence of Theorem 3.1 refers to the increasing of “the
age” of wines or spirits, from the last criadera to the solera. It is taken as a matter of
fact among wine makers; on the other hand, it is obviously intuitive that the oldest
wines are in the solera of the dynamical systems. But “the age” of any scale is not a
single number but it is a distribution function.

There is a natural partial ordering of one-dimensional distribution functions called
stochastic dominance of first order (see Shaked and Shanthikumar [5]) which is
defined as follows:

Let F and G be two distribution functions.We say that F stochastically dominates
G, and will be denoted by G �sd F or equivalently F �sd G, if F(x) ≤ G(x) for all
x ∈ R.

Next theorem proves that the distribution of age of the solera stochastically dom-
inates that of the first criadera and, in turn, this one dominates that of the second, and
so on; further, this fact holds true whatever the initial distribution of the “sobretablas”
F (0)
0 is.

Theorem 3.2 For any distribution of the age of the “sobretablas”, F (0)
0 , the follow-

ing stochastic dominance orders holds

F (∞)
1 �sd F (∞)

2 �sd . . . F (∞)
j �sd . . . �sd F (∞)

k .

Proof First, we use the fact that Pascal distributions are stochastically ordered
according to the integer parameter j for all t and p fixed, as follows:

Pas(t, 1, p)�sd Pas(t, 2, p)�sd . . . �sd Pas(t, j, p)�sd . . . �sd Pas(t, k, p).

Second, we note that stochastic ordering is preserved when convolved with any
arbitrary distribution. If we take this distribution to be F (0)

0 , we obtain:

F (0)
0 ∗ Pas(t, 1, p)�sd . . . �sd F (0)

0 ∗ Pas(t, j, p)�sd . . . �sd F (0)
0 ∗ Pas(t, k, p).

and the theorem follows suit as F (∞)
j = F (0)

0 ∗ Pas(t, j, p), for j = 1, 2, . . . , k. �

3.4 On the Average Age of the Dynamical Systems

The computation of themean or average age of dynamical systems, and its asymptotic
behavior, is of vital importance to winemakers. Some results can be derived from
Theorem 3.1 and Corollary 3.1.
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In fact, the convergence in distribution of the sequence of distribution of age in
all scales {F (n)

j }n to the equilibrium distribution F (∞)
j , for all j = 1, . . . , k, implies

the convergence of the sequence of means. Thus, if we denote by E0 the mean of
the sobretablas distribution, and we take into account that the mean of a generalized
Pascal distribution is j t/p, then the limit of the mean age of the k − j-th “criadera”
is E0 + j t/p.

If we take expectations in Eq. (3.2), we can state, without proof, a more precise
result that further establishes the existence of an equilibrium vector for the mean age.

Ifwedenote by E (n)
j themeanof thedistribution F (n)

j , andbyE(n) = (E0, E (n)
1 , . . . ,

E (n)
j , . . . , E (n)

k ) at period n, the vector of the mean ages of the sobretablas, the cri-
aderas, and the solera, we have:

Theorem 3.3 The limit of the vector of the mean ages of the dynamical system, E(n),
when the number of periods n tends to infinity, is

E(∞) = lim
n→∞E(n) = (E0, E0 + t/p, . . . , E0 + j t/p, . . . , E0 + k t/p)′.

Further, the limit vector, E(∞), is the unique equilibrium (or invariant) vector of the
mean ages, that is, if E(0) = E(∞), then

E(0) = E(1) = · · · = E(n) = · · · = E(∞).

In particular, if E0 = 0 -the most frequent value for ageing brandies and some wines-,
the limit age of the “solera” is:

equilibrium or limit age of the solera = k t

p
.

This last formula tells that, in order to increase the mean age of the solera liquids,
the frequency of drawing offs (sacas) t should be taken as large as possible: however,
in practice t should be less or equal than one year. On the other hand, k should be as
large as possible, but logistic and economic reasons prevent k from being too large,
except for wines and brandies of certified quality, as for instance VOS and VORS
sherrys.

Diminishing p produces very old liquids but it drastically reduces the convergence
rate to reach the equilibrium age. Therefore, a compromise among the parameters t ,
k and p should be taken when setting up a new dynamical system.

4 Discussion

A rigorous proof of the existence of an asymptotic equilibrium of the “criaderas y
solera” dynamical systems is presented in the paper. The asymptotic results refer
both to the distribution of the ages of liquids in the system for all scales -including
the solera- as well as to the mean or average age of the liquids in the system.
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Further, explicit results for the asymptotic or equilibrium distributions and means
of the liquids are given (see Theorems 3.1 and 3.3 and Corollary 3.1).

These theoretical results can prove useful in practice to devise and optimize
dynamical systems that approach the equilibrium in a fewer number of periods.
Another possible application would be the setting up of complex hierarchical dynam-
ical systems substituting the sobretablas distribution for that of the solera of another
dynamical system.
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Multiple Hypothesis Tests: A Bayesian
Approach

Miguel A. Gómez-Villegas and Beatriz González-Pérez

Abstract Multiple hypothesis tests is a topic which has recently shown a major
expansion, mainly due to the expansion of the methodology developed in connection
with genomics. These new methods allow scientists to handle simultaneously thou-
sands of null hypotheses. The frequentist approach to this problem consists of using
different error measures in testing so that to ensure the Type I error remains below a
desired level. This paper introduces a parametric Bayesian analysis to determine the
hypotheses to be considered as being significant (i.e., useful) for a posterior deeper
analysis. The results are to be comparedwith the frequentist methodology of the false
discovery rate (FDR). Differences between both approaches are shown by means of
simulation examples.

1 Introduction

This article is my memory to Pedro Gil Álvarez who was my professor circa 1970
at the Faculty of CC. Mathematics at the Complutense University.

I always thought Pedro was a very intelligent person. When I was in my 4th and
5th year of College hewas in charge of the labs of themost diverse subjects in the field
of statistics. Later, I realized that Teaching Assistants were scarce in the department.
As a consequence, the professors who were at the beginning of their careers had to
perform a remarkable effort to deal with students who were just at the initial level of
statistics. This reinforced my feeling that he was very smart.

In the field of simultaneous inference, multiple hypothesis testing deals with the
testing of more than one hypothesis at time. A single hypothesis test can be described
as follows
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H = 0 : θ ∈ Θ0 versus H = 1 : θ ∈ Θ1 (1)

with Θ0 ∩ Θ1 = ∅. A statistic, T (X), is observed and a value T (x) = t is obtained.
From the frequentist point of view, the null hypothesis will be rejected if the

observed value, t , is over a certain threshold. This threshold, which is arbitrary,
settles a certain rejection region, Γ , in such a way that if t ∈ Γ then H = 0 is
rejected while if t /∈ Γ , then H = 0 is accepted. The rejection region defines the
Type I error, that is to reject the null hypothesis when it is true, θ ∈ Θ0 but t ∈ Γ .

When testing a single hypothesis as (1), an acceptable maximum Type I error
probability is specified and the conclusions are obtained based on a statistic which
meets this specification. Then, the maximum Type I error probability is fixed at a
certain level, which is known as significance level, α

sup
θ∈Θ0

Pr(T ∈ Γα|θ) = Pr(T ∈ Γα|H = 0) = α (2)

and a frequentist measure of the evidence against the null hypothesis is the p–value,
defined as theminimum false positive rate at which an observed statistic can be called
significant,

p − value(t) = sup
θ |H=0

Pr(T ∈ Γt |H = 0) (3)

where Γt is the critical region for T = t . Alternatively, the probability that, the
statistic is as or more extreme than the observed one, t , under the null hypothesis,

p − value(t) = Pr(|T (X)| ≥ |t ||H = 0)

can be used as test statistics (see Lehmann and Romano [8, p. 63]).
But when many hypothesis are tested, to fix an individual Type I error probability

for each onemay have consequences if the set of hypothesis are evaluated as a whole.
A review about multiple hypothesis testing can be seen in Shaffer [10].

The question is, basically, whether the probability of a false positive increaseswith
the number of tests. For example, if the significance level is fixed at 0.05 for each test
and a set of 100 tests are evaluated, the expected number of false positives is 5. Then,
5 hypothesis will be rejected simply by chance. The level 0.05 has been widely used
in the literature since Fisher proposed it, and its intense use has produced basically
correct scientific inferences. Otherwise it would not have remained as a reference
level so long. But the 0.05 level was applied to a single hypothesis, not to a great
number of simultaneous hypothesis; this is the reason for introducing measures of
evidence that take into account all the hypothesis which are tested simultaneously.

Multiple hypothesis testing has been widely used in the past in different fields as
Shaffer [10] pointed out. Recently, the field of genomics, and in particular the DNA
microarray experiments where thousands of hypothesis can be tested simultaneously,
have influenced the revitalization of the procedures of the multiple hypothesis tests,
see Dudoit et al. [4] In this context, consider m hypothesis tests
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Table 1 Multiple hypothesis Number accepted Number rejected

H = 0 U V m0

H = 1 T S m1

W R m

Hi = 0 versus Hi = 1, i = 1, . . . ,m (4)

and we want to test the m null hypothesis simultaneously. Benjamini and Hochberg
[2] propose Table1 to summarize the problem.

In Sect. 2 we have summarized some of the frequentist procedures to test m null
hypothesis simultaneously, as in (4). In Sect. 3 we have proposed two Bayesian
approaches for testing (4) andwe compare, for simulated data, the results obtained for
these Bayesian methods with the frequentist results. Section3 includes a hierarchical
model. Finally, Sect. 4 contains some conclusions and comments.

2 Frequentist Procedures

2.1 Type I Error Rates

Shaffer [10] picked out the generalizations of the Type I error described above to the
multiple testing problems: the family wise error rate, FWER, the per–comparison
error rate PCER, the per-family error rate, PFER, and the false discovery rate, FDR.
This last one was introduced by Benjamini and Hochberg [2].

In any case, the procedure to carry out a multiple hypothesis test consists of
controlling a particular Type I error rate at a certain level α and producing a list of R
rejected hypothesis. If the level α is fixed to control the Type I error rate only when
all the null hypothesis are true,m0 = m, one speaks of weak control, whereas strong
control referrers to the control of the Type I error rate under any posible combination
of the true and false null hypothesis. See Shaffer [10] and Dudoit et al. [4] for more
details about this setting.

2.2 p-Values

As defined above, the p-value pi (ti ) for a single hypothesis Hi can be viewed as the
level of the test at which the hypothesis Hi would be rejected, given the value of a
statistic Ti = ti . The smaller the p-value, pi (ti ), the stronger the evidence against
the null Hi . With a fixed significance level, α, rejecting Hi when pi ≤ α assumes
that the Type I error rate is controlled at level α.
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The concept of the p-value can be extended to the multiple testing problem under
the concept of the adjusted p-value, see Dudoit et al. [4]. Given a test procedure, for
example a FDR procedure (see Benjamini and Hochberg [2]) defined as in (6), the
adjusted p-value for a single hypothesis Hi is defined as

p̃i = inf{α ∈ [0, 1] : Hi is rejected at nominal FDR = α} (5)

in words, the nominal level of the entire test procedure at which the hypothesis Hi

would be rejected, given the values of all the test statistics.
Westfall and Young [13] estimated the adjusted p-values by resampling methods.

A recent discussion about p-values can be seen in Wasserstein and Lazar [12].

2.3 The False Discovery Rate

Benjamini and Hochberg [2] introduced this concept, less conservative than the oth-
ers, to control the expected proportion of Type I errors among the rejected hypothesis.
So, the FDR is defined as, from Table1,

FDR = E

[

V

R

]

Pr(R > 0). (6)

If R = 0, then FDR = 0. Benjamini and Hochberg [2] derived a procedure for
strong control of the FDR for independent test statistics. This procedure for control
of the FDR at level α can be resumed as follows:

• The observed p-values are computed and ordered: p(1) ≤ p(2) ≤ · · · ≤ p(m).
• Compute RBH = max{i : p(i) ≤ α(i/m)}.
• Reject null hypothesis corresponding to p(1), . . . , p(RBH ). If RBH does not exist,
no hypothesis is rejected.

Benjamini and Yekutieli [3] showed that the procedure above controls the FDR at
level α, under certain conditions of dependency.

The adjusted p-values corresponding to this control are

p̃(i) = min
j = i,...,m

{

min

(

m

j
p( j), 1

)}

. (7)

In a microarray setting, Dudoit et al. [4] proposed the FDR controlling procedures as
alternatives to other approaches. They argue that in this context one may be willing
to bear a few false positives as long as their number is small in comparison to the
number of rejected hypothesis.
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3 A Bayesian Approach

Consider the problem of multiple hypothesis testing given in (4). As in Table1, we
denote by m1 the unknown number of hypotheses where Hi = 1, i = 1, . . . ,m. In
this section we propose two different Bayesian methods for testing (4).

Bayesian inference onmultiple hypothesis has been widely studied.We are study-
ing it in the same way as the approach proposed by Waller and Duncan [11], Hobert
[7], Barbieri and Berger [1] and Scott and Berger [9].

Our objective is to give a Bayesian estimator form1, for instance, the mean or the
mode of the posterior density ofm1. We denote θi by the prior probability of the null
Hi = 0, θi = P(Hi = 0), and consequently 1− θi = P(Hi = 1), i = 1, . . . ,m, and
supposing that the m hypothesis are independent, then Hi |θi ∼ Bernoulli(1 − θi )

andm1 = ∑m
i=1 Hi . An initial Bayesian approach is to assume that all θi are equal to

θ . Then,m1|θ ∼ Binomial(m, 1− θ) and we can estimatem1 with m̂1 = m(1− θ̂ ),
where θ̂ is an estimator of θ (a location parameter of the posterior density of θ ).

For each hypothesis Hi , a vector Ti = (Xi1, . . . , Xin) is observed. Suppose that
for all i , under Hi = 0 the density is f (t |0), while under Hi = 1 the density is f (t |1).
Thus, the observations Ti (assume i.i.d. random variables) come from a mixture of
both densities:

f (ti |θ) = f (ti |Hi = 0)Pr(Hi = 0|θ) + f (ti |Hi = 1)Pr(Hi = 1|θ) (8)

= θ f (ti |0) + (1 − θ) f (ti |1)

and the likelihood can be written as

f (t1, t2, . . . , tm |θ) =
m

∏

i=1

f (ti |θ) =
m

∏

i=1

[θ f (ti |0) + (1 − θ) f (ti |1)] , (9)

where ti = (xi1, . . . , xin).
The prior distribution for the parameter θ can be thought of as a beta distribution,

Beta(a, b), because of its versatility to model a density over the interval [0, 1]. Then,

π(θ |a, b) = Γ (a + b)

Γ (a)Γ (b)
θa−1(1 − θ)b−1, 0 ≤ θ ≤ 1 (10)

and the posterior density of θ , given t1, . . . , tm , a, b, is given by

π(θ |t1, . . . , tm, a, b) = π(θ |a, b)
∏m

i=1 [θ f (ti |0) + (1 − θ) f (ti |1)]
∫ 1

0
π(θ |a, b)

m
∏

i=1

[θ f (ti |0) + (1 − θ) f (ti |1)] dθ

(11)

where, in the first step, a and b are known and previously fixed.
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Then, we compute and order the posterior probabilities

P(Hi = 0|Ti = ti ) = f (ti |0)θ
f (ti |0)θ + f (ti |1)(1 − θ)

, i = 1, . . . ,m. (12)

These probabilities will be estimated using ̂θ , the estimated value of θ obtained
through (11), then

̂P(Hi = 0|Ti = ti ) = f (ti |0)̂θ
f (ti |0)̂θ + f (ti |1)(1 − ̂θ)

, i = 1, . . . ,m. (13)

Really, the Bayesian method involves computing P(Hi = 0|T1 = t1, . . . , Tm = tm),
but the approximation proposed by (12) and (13) simplifies the simulation’s task a
lot.

Finally, we will usêθ and the estimated posterior probabilities in multiple hypoth-
esis testing using the two following methods:

Method 1: We estimate the percentage of hypothesis where Hi = 0 by using the
mean̂θ of the posterior density (11) as an estimator of θ . In this case, m̂1 = m(1−
̂θ). Then, the m̂1 hypotheses with the lowest estimated posterior probabilities, see
(13), will be rejected (will be declared interesting).

Method 2: We use the following Bayesian decision procedure

• Given̂θ , the observed posterior probabilities are computed from (13) and ordered.
• Computêi = max{i : ̂P

(

H(i) = 0|T(i) = t(i)
) ≤ 0.5}. Thresholds other than 0.5

can be used.
• Reject the null hypothesis corresponding to t(1), . . . , t(̂i). If̂i does not exist, no
hypothesis is rejected.

Then, the hypotheses with the estimated posterior probabilities lower than 0.5 will
be rejected.

From the Bayesian point of view, Method 2 is formally more correct than
Method 1. But, experimentally, when simulations with m1 known are run, Method 1
adjusts the results better when the hypothesis are close and the sample size, n, is
small which is usually the case in these kinds of problems. Whereas if the hypothesis
are not close both methods provide similar results.

The next example, used by the authors previously cited, shows how the method-
ology is applied to an example with a normal model.

Example 3.1 If under Hi = 0 the model is N (0, 1) and under Hi = 1 is N (1, 1),
and n observations are taken for all i = 1, . . . ,m, then

f (ti |θ) = θ

n
∏

j=1

f (xi j |0) + (1 − θ)

n
∏

j=1

f (xi j |1)

= (2π)−n/2e−(1/2)
∑n

j=1 x
2
i j (θ + (1 − θ)en(x̄i−1/2)).



Multiple Hypothesis Tests: A Bayesian Approach 201

Then the joint distribution of the nm observations is

f (t1, . . . , tm |θ) =
m

∏

i=1

f (ti |θ) (14)

= (2π)−nm/2e−(1/2)
∑m

i=1

∑n
j=1 x

2
i j

m
∏

i=1

(θ + (1 − θ)en(x̄i−1/2)).

And the posterior density of θ given t1, . . . , tm , a, b, is

π(θ |t1, . . . , tm, a, b) ∝ π(θ |a, b) f (t1, . . . , tm |θ)

∝ θa−1(1 − θ)b−1
m

∏

i=1

(

θ + (1 − θ)en(x̄i−1/2)
)

.

whereas the posterior probability of the null is estimated by

P̂(Hi = 0|Ti = ti ) =
(

1 + 1 − ̂θ

̂θ
en(x̄i−1/2)

)−1

(15)

for i = 1, . . . ,m hypothesis, witĥθ = E[θ |t1, . . . , tm, a, b].
We use Montecarlo integration to estimate ̂θ . For this, we simulate a random

sample θ1, . . . , θk from the prior distribution Beta(a, b). Then, we estimate ̂θ as:

̂θ = E[θ |t1, . . . , tm, a, b] =
∫ 1
0 θ f (t1, . . . , tm |θ)π(θ |a, b)dθ
∫ 1
0 f (t1, . . . , tm |θ)π(θ |a, b)dθ

≈
∑k

l=1 θl f (t1, . . . , tm |θl)
∑k

l=1 f (t1, . . . , tm |θl)
.

Usually, in a multiple hypothesis setting, the point is to identify a small proportion
of interesting cases that will be investigated in detail. Then, the number of accepted
hypothesis would be greater than 90% (see Efron [5]). Because of this, it seems
appropriate to consider a Beta(a, 1) density as the prior distribution for θ , since
this prior gives a high probability to small intervals of θ close to 1. Moreover, this
prior includes a wide list of densities, the noninformative Beta(1, 1) density among
others even though we propose a ≥ 9 to be coherent with the initial assumption that
no more than 10% of null hypothesis would be declared interesting.

In this case, the posterior density is given by

π(θ |t1, . . . , tm, a) ∝ θa−1
m

∏

i=1

(

θ + (1 − θ)en(x̄i−1/2)
)

. (16)
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Table 2 Results with Method 1 with a prior density θ ∼ Beta(a, 1) (for different values of a) and
for simulated data from (14) with θ = 0.9, different values of m and n = 5 observations per (each
m) hypothesis

m = 500 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.8901 0.8929 0.8942 0.8996 0.9091

m̂1(m1 = 45) 55 54 53 50 45

prob1 0.6067 0.6126 0.6080 0.6097 0.6080

% Type I error 5.055 4.835 4.615 4.396 3.516

% Type II error 28.9 28.9 28.9 33.3 35.6

m = 1000 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.8769 0.8786 0.8798 0.8826 0.8884

m̂1(m1 = 107) 123 121 120 117 112

prob1 0.6635 0.6663 0.6632 0.6387 0.6273

% Type I error 4.927 4.703 4.591 4.367 3.807

% Type II error 26.168 26.168 26.168 27.103 27.103

m = 5000 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.8984 0.8985 0.8983 0.8991 0.8999

m̂1(m1 = 517) 508 508 508 504 500

prob1 0.6648 0.6649 0.6646 0.6637 0.6591

% Type I error 3.747 3.747 3.747 3.681 3.636

% Type II error 34.236 34.236 34.236 34.429 34.816

m = 10000 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.9057 0.9057 0.9053 0.9057 0.9062

m̂1(m1 = 944) 943 943 947 943 938

prob1 0.6721 0.6722 0.6735 0.6721 0.6715

% Type I error 3.379 3.379 3.412 3.379 3.335

% Type II error 32.521 32.521 32.415 32.521 32.627

A simulation from a mixture of a N (0, 1) (90%) and a N (1, 1) (10%) is carried out
for m = 500, 1000, 5000 and 10000 hypothesis, with n = 5 observations of each
hypothesis. A Beta(a, 1) prior density for θ is taken where a = 1, 7, 11, 25, 50.

First, we use Method 1 and calculatêθ , m̂1 = m(1−̂θ), – the number of rejected
hypothesis with method 1−,

prob1 = ̂P
(

H(m̂1) = 0|T(m̂1) = t(m̂1)

)

– the highest posterior probability rejecting null hypothesis with Method 1−, and
the percentage of Type I and Type II errors. The results are shown in Table2.
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Table 3 Results with Method 2 with a prior density θ ∼ Beta(a, 1) (for different values of a) for
the same data sets of Table2

m = 500 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.8901 0.8929 0.8942 0.8996 0.9091

̂i (m1 = 45) 36 36 35 34 33

% Type I error 2.418 2.418 2.198 1.978 1.758

% Type II error 44.4 44.4 44.4 44.4 44.4

m = 1000 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.8769 0.8786 0.8798 0.8826 0.8884

̂i (m1 = 107) 96 95 95 94 90

% Type I error 2.352 2.352 2.352 2.352 2.239

% Type II error 29.906 30.841 30.841 31.776 34.579

m = 5000 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.8984 0.8985 0.8983 0.8991 0.8999

̂i (m1 = 517) 348 348 349 347 345

% Type I error 1.851 1.851 1.851 1.851 1.807

% Type II error 48.743 48.743 48.549 48.936 48.936

m = 10000 a = 1 a = 7 a = 11 a = 25 a = 50

̂θ 0.9057 0.9057 0.9053 0.9057 0.9062

̂i (m1 = 944) 654 654 656 654 652

% Type I error 1.557 1.557 1.568 1.557 1.546

% Type II error 45.657 45.657 45.551 45.657 45.763

Then, with the same data sets and̂θ fromMethod 1 used to compute the posterior
probabilities (13), we useMethod 2 and calculate î , the number of hypothesis rejected
withMethod 2, and the percentage of Type I and Type II errors. The results are shown
in Table3.

Observe that these two testing Bayesian procedures are robust with respect to the
value of a, in the sense that a does not strongly influence the results. This new issue
is good because the known Bayesian methods for testing (4) depends strongly on the
parameters.

In order to compare the two proposed Bayesian methods with the FDR procedure
of Benjamini and Hochberg [2], Table4 shows, for the same data sets and a = 11
(an intermediate value of a), the number of null hypothesis rejected (RBH , m̂1, î ,
respectively), and the percentage of Type I and Type II errors.

Note that, with our Bayesian methods, simulations show that the number of
rejected null hypotheses is more adjusted to the true than the frequentist method
of Benjamini and Hochberg [2] is. For comparisons, see Table4. In this sense the
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Table 4 Results with the procedure of Benjamini and Hochberg [2] and Method 1 and Method 2
with a = 11, for the same data sets of Tables2 and 3

α = 0.05 α = 0.05 α = 0.05 a = 11 a = 11 a = 11

BH Meth. BH Meth. BH Meth. Meth. 1 Meth. 1 Meth. 1

m m1 RBH % Type I % Type II m̂1 % Type I % Type II

500 45 9 0 80 53 4.62 28.90

1000 107 36 0.22 68.22 120 4.59 26.17

5000 517 106 0.11 80.46 508 3.75 34.24

10000 944 187 0.03 80.51 947 3.41 32.42

α = 0.1 α = 0.1 α = 0.1 a = 11 a = 11 a = 11

BH Meth. BH Meth. BH Meth. Meth. 2 Meth. 2 Meth. 2

m m1 RBH % Type I % Type II î % Type I % Type II

500 45 18 0.44 64.40 35 2.20 44.40

1000 107 59 0.56 49.53 95 2.35 30.84

5000 517 161 0.29 71.37 349 1.85 48.55

10000 944 307 0.23 69.70 656 1.57 45.55

procedure of Benjamini and Hochberg [2] is more conservative than each of the
Bayesian methods.

One of the problems in multiple hypothesis testing with frequentist procedures is
the fact that only a small number of interesting hypothesis are detected. In fact, if we
want that the frequentist method achieves similar results to Method 2, simulations
show that a value of α > 0.2 is needed, but this value is not admissible.

Moreover, with our procedures the percentages of Type I errors are admissible –
it does not exceed 5%−, and Method 2 is more conservative than Method 1, and the
percentages of Type II errors are less than the same percentages with the frequentist
procedure.

4 A Simple Hierarchical Model

Really, the parameters of the prior distribution are usually unknown and then a simple
hierarchical model must be used. If we want to take a non informative prior about
(a, b), Gelman et al. [6] suggests, in a different context, the use of

π(a, b) ∝ (a + b)−5/2. (17)

In Sect. 2 we justified the choice of a Beta(a, 1) prior to model our initial opinion
about θ . Then, we propose to use π(a) ∝ (a + 1)−5/2. Furthermore, if we suppose
(see Sect. 2) that under Hi = 0 the model is N (0, 1) and under Hi = 1 is N (1, 1),
then the posterior density for (θ, a) when nm observations are taken is
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π(θ, a|t1, . . . , tm) ∝ π(θ |a)π(a) f (t1, . . . , tm |θ)

∝ θa−1(a + 1)−5/2
m

∏

i=1

(

θ + (1 − θ)en(x̄i−1/2)
)

.

We use Montecarlo integration to estimate ̂θ . Then, we simulate a random sample
a1, . . . , ah from π(a) ∝ (a + 1)−5/2 and for each al , a sample θ l

1, . . . , θ
l
k from the

prior distribution π(θ |al) ∝ θal−1, for l = 1, . . . , h, is obtained. Finally, we estimate
̂θ as:

̂θ = E[π(θ |t1, . . . , tm, a, b)] =
∫ ∞
0

∫ 1
0 θ f (t1, . . . , tm |θ)π(θ |a)π(a)dθda

∫ ∞
0

∫ 1
0 f (t1, . . . , tm |θ)π(θ |a)π(a)dθda

≈
∑h

l=1

∑k
i=1 θ l

i f (t1, . . . , tm |θ l
i )

∑k
l=1

∑k
i=1 f (t1, . . . , tm |θ l

i )
.

The same data set as in Example 3.1 is used, where a simulation from a mixture of a
N (0, 1) (90%) and a N (1, 1) (10%) was carried out for m = 500, 1000, 5000 and
10000 hypothesis, with n = 5 observations of each hypothesis.

First, we use Method 1 to calculate ̂θ , m̂1, the highest posterior probability of
rejecting the null hypothesis and the percentage of Type I and Type II errors. The
results are shown in Table5.

Finally, we use Method 2 with the same data set, and takinĝθ from Method 1, to
calculate the number of hypothesis rejected and the percentage of Type I and Type
II errors. The results are shown in Table6.

Table 5 Results using Method 1 for the hierarchical case

m = 500 m = 1000 m = 5000 m = 10000

̂θ (θ = 0.9) 0.8910 0.8781 0.8982 0.9055

m̂1 55 122 509 945

prob1 0.6089 0.6659 0.6655 0.6721

% Type I error 5.01 4.82 3.77 3.40

% Type II error 28.89 26.17 34.24 32.52

Table 6 Results using Method 2 for the hierarchical case

m = 500 m = 1000 m = 5000 m = 10000

̂θ (θ = 0.9) 0.8910 0.8781 0.8982 0.9055

m̂1 36 95 351 655

% Type I error 2.42 2.35 1.87 1.56

% Type II error 44.44 30.84 48.36 45.55
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In Sect. 3 it was shown that the results are not significantly affected by changes
in the parameter a of the beta prior distribution for θ . This is the reason that, for the
hierarchical case, we obtain similar results to those obtained in the previous section,
because in this case the different possible values of a are replaced by the mean of its
prior distribution.

5 Conclusions

The proposed methodology in this paper involves to provide a Bayesian estimator
for θ (the percentage of true null hypothesis in (4)), for instance, the mean or the
mode of the posterior density of θ . Posterior probabilities of Hi = 0, i = 1, . . . ,m,
are calculated and estimated by using a prior density Beta(a, 1) for θ . Based on this
estimator of θ , we propose two different Bayesian approaches to test (4).

Simulations show that these two Bayesian procedures are robust with respect to
the value of a, in the sense that the parameter a does not strongly influence the results.
This new issue is good because the known Bayesian methods for testing (4) depends
strongly on the parameters.

It is well known that detecting a small number of interesting hypothesis is one of
the problems inmultiple hypothesis testingwith frequentist approaches. In this sense,
another important conclusion is that our Bayesian methods are less conservative than
the procedure of Benjamini and Hochberg [2], because it allows us to reject a higher
number of null hypothesis to test (4). In fact, with each of our Bayesian methods,
methods 1 and 2, computations show that the number of rejected null hypotheses is
more adjusted to the true than the frequentist is.

Moreover, the analyzed examples show that with our procedures the percentages
of Type I errors are admissible (they do not exceed 5%), Method 2 being more
conservative than Method 1, and the percentages of Type II errors are less than the
same percentages with the frequentist procedure.
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δ-Records Observations in Models
with Random Trend

Raúl Gouet, Miguel Lafuente, F. Javier López and Gerardo Sanz

Abstract In this paper we prove a Law of Large Numbers for the number of
δ-records in a sequence of random variables with an underlying trend. Our results
generalizes results appeared in the literature for the i.i.d. case and for records in
models with random trend. Two examples to illustrate the application of our results
are included.

1 Introduction

Greek and Roman believed that memory resided in the human heart. As a conse-
quence, the action of keeping in mind extraordinary events of all kind, derived in
the coining of the word recordari, directly composed by re- meaning restore, and
-cor from cordis meaning heart in English. Thus, it is in an unsurprising way that
the modern term record is very present in quotidian life as well as in a wide range of
specialized domains like meteorology, economics, finance, seismology and sports,
and as a direct consequence of this, in mathematical research.
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Mathematically, we consider and observation to be a record if it is the greatest
observed until it took place. Around this definition, Record Theory and Extreme
Value Theory have been quite well studied for decades, specially in the framework of
the analysis of independent, identically distributed (i.i.d.) observations. Interesting
introductory books about this topic are [1, 2, 20]. Nevertheless, these disciplines
had to evolve in many different aspects in an attempt to cover other phenomena.
In particular, we are going to consider two generalizations of very distinct nature
regarding the study of usual records over i.i.d. observations.

The first one concerns the mathematical definition of record. In the last years,
some record-related concepts have appeared in the literature, such as near-records
(see [3, 17, 22]), geometric records (see [9, 14]) or records with confirmation [21].
One of these concepts, with interesting applications in statistical inference, is the
notion of δ-records [12], which will be the object of study of the present paper.

Definition 1.1 Let {Xn}n∈N be a sequence of random variables and δ ∈ R, we say
that the j th entry is a δ-record if

X j > max{X1, . . . , X j−1} + δ. (1)

By convention, the first observation X1 is considered to be a δ-record for every δ.

As we may notice in the above definition, choosing δ = 0 takes us to the usual
record concept. It is straightforward to remark that δ > 0 will result in a fewer
number of δ-records than usual records while δ < 0 leads us to the opposite feature.

In the latter years, δ-records have been studied revealing themselves as useful tools
in awide variety of settingswithout greatly increasing themethodological difficulties
compared to the record scenario. Along this line, the structure of the process [15],
distribution [18, 19], asymptotic properties [13] and elements of inference [11, 13]
have been explored under i.i.d. assumptions.

On the other hand, it is common to see in some practical situations a number of
records much higher than expected by the i.i.d. theory. Approximately, we should
expect a number of themagnitude of log(n) being n the number of observation aswas
first remarked by Rényi [23] in 1962. In order to try to cover this kind of phenomena,
or simply, in cases where we theoretically conjecture the existence of an increasing
trend underlying the observations, the Linear Drift Model (LDM), appears as an
effective tool of introducing time dependence among observations. From the point
of view of extremes, the LDM was introduced by Ballerini and Resnick [4] in 1985
showing a Law of Large Numbers and a Central Limit Theorem for the record rate as
long as distributions are light-tailed. The LDMassumes that the observations {Yn}n∈N
can be written in the following form

Yn = Xn + cn, (2)

being c > 0 the slope of the trend, and Xn i.i.d. random variables. In this con-
text, we may highlight the contributions of De Haan and Verkade [7] exploring



δ-Records Observations in Models with Random Trend 211

the behaviour under heavy-tailed distributions, and Borovkov studying inter-record
times, Markovianity and characterizations [6]. Regarding the applications, one may
read the introduction of [10] and the references therein for applications in different
fields of physics, as well as [25, 26] to see how the study of records in the LDM can
be helpful in the problem of the global warming climate.

Further generalisations of theLDMcan be found in [5],where the i.i.d. assumption
is relaxed to strict stationarity, and [16] where the proposed random trend model can
be expressed as

Yn = Xn + Tn, (3)

where (Xn)n∈N is a stationary ergodic sequence of randomvariables and Tn represents
an stochastic drift process with ergodic stationary increments.

It is easy to check that the expression in (3) represents a flexible model that
comprises the LDM, its correspondent generalisation in [5] and other models like
some drifted random walks.

In this work we will provide a Law of Large Numbers for the δ-record rate in the
model with random trend in the case δ ≤ 0. Our result represents an extension of the
analogous results in [13], devoted to the i.i.d. case, and in [16], where the asymptotic
record rate for a model with random trend is proved. Moreover, for the particular
case δ = 0, our proof is much simpler than the one given in [16].

2 Notation

We will denote by ∨ and ∧ the maximum and minimum operator respectively over
a set.

From now on, we will work under the assumptions of the following extension of
the LDM introduced in (3). We consider a sequence of observations

Yn = Xn + Tn, (4)

where Tn := ∑n
k=1 τk, n ≥ 1 is the stochastic trend process and (Xn, τn+1) is a

bivariate, strictly stationary and ergodic sequence and 0 < c := E[τ1] < ∞ appears
as the mean increment or slope of the trend. Also, we will assume E[X+

1 ] < ∞
where we have x+ := x ∨ 0.

While the decomposition Yn = X
′
n +nc with X

′
n := Xn +Tn −nc could be done,

it does not eliminate the random trend including it into the residuals of LDM because
X

′
n is not stationary in general. Finally, we remark that (Xn) and (τn) are allowed to

be dependent as long as they have a finite expectation.
As any stationary single-ended sequence can be extended to a double-ended one,

for theoretical purposes we can consider the indices as defined in Z yielding the
model in (4) to

Yn = Xn + Tn, (5)
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where Tn := ∑n
k=1 τk, for n ≥ 1 and, Tn := τ1 − ∑0

k=n τk, given n ≤ 0.
According to Definition1.1, the condition of Yn being a δ-record in the sequence

{Ys, . . . ,Yn} for a previously chosen δ ∈ R can be written as

Yn >

n−1∨

k=s

Yk + δ. (6)

So, we will write Mn for the maximum up to the nth observation starting at an
observation indexed by 1, in contraposition with the starred M∗

n where the maximum
is taken up to the nth observation in the double-ended sequence:

Mn :=
n∨

i=1

Yi , M∗
n :=

∨

i≤n

Yi , (7)

where we will see later that M∗
n < ∞ for all n ∈ Z.

In the same way, given n ∈ N, the random variables 1n,δ , will represent the
occurrence of a δ-record over the single-ended sequence

1n,δ =
{
1 if Yn > Mn−1 + δ,

0 otherwise.
(8)

while, for n ∈ Z, 1∗
n,δ will be the analogous over the double-ended one

1∗
n,δ =

{
1 if Yn > M∗

n−1 + δ,

0 otherwise.
(9)

Also, for simplicity, 1n and 1∗
n will be written to denote the corresponding record

indicators, i.e., in the case δ = 0. The fact that E[1n,δ] = P[Yn is a δ-record] is
forthright.

The sum of these indicators will be the total number of δ-records at time n, Nn,δ

and N ∗
n,δ , both quantities starting at point 1 just changing the definition of δ-records

Nn,δ =
n∑

j=1

1n,δ Nn,δ =
n∑

j=1

1∗
n,δ. (10)

3 A Law of Large Numbers for δ-records with Random
Trend

In order to prove the Law of Large Numbers, we will require the following theorems
which we state for completeness.
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Lemma 3.1 (Birkhoff’s Ergodic Theorem) Let X = (X1, X2, . . . ) be a stationary
(strict sense) ergodic random sequence with E[| X1 |] < ∞. Then,

lim
1

n

n∑

k=1

Xk(ω) = E(X1) a.s. and in L1. (11)

Proof See [24, p. 385, Theorem3]. �

Lemma 3.2 (Dubins–Freedman strong law) Let (Un)n≥1 be a sequence of nonnega-
tive and bounded random variables, adapted to the increasing family of σ -algebras
(Gn)n≥0. Then

{
∑

n≥1

Un = ∞
}

=
{

∑

n≥1

E[Un | Gn−1] = ∞
}

a.s. (12)

and ∑n
k=1Uk

∑n
k=1 E[Uk | Gk−1] → 1 on

{
∑

n≥1

E[Un | Gn−1] = ∞
}

a.s. (13)

Proof See [8]. �

Finally, we are able to prove the next Law of Large Numbers for the number of
δ-records, or equivalently, for the asymptotic δ-record rate, the proof is organized in
six short steps.

Theorem 3.1 Nn,δ/n → E[1∗
1,δ] = P

[
X1 >

∨
k≥1{X1−k − ∑1

j=2−k τ j } + δ
]

> 0
a.s. and in L1 as n → ∞ if δ ≤ 0.

Proof 1. Mn → ∞ and Nn,δ → ∞ a.s. Since Mn is an increasing sequence by
construction, it either converges to a finite limit or diverges to ∞ a.s. Also, we
have ∀a ∈ R

P[Mn > a] ≥ P[Xn > a − Tn] ≥ P[Xn > a − nc/2, Tn ≥ nc/2] → 1, (14)

in view of P[Xn > a−nc/2] = P[X0 > a−nc/2] → 1 and P[Tn ≥ nc/2] →
1, by Birkhoff’s theorem. Thus, Mn → ∞, and then Nn → ∞.
Since 1n ≤ 1n,δ ∀n ∈ N and δ ≤ 0, the result is straightforward.

2. P[∨k≥1{Xn−k − ∑n
j=n+1−k τ j } ∈ R] = 1 and M∗

n < ∞ a.s. for all n ∈ Z.
Stationarity will guarantee the result if we prove that

P

⎡

⎣X−k >

0∑

j=−k+1

τ j , i.o.

⎤

⎦ = 0. (15)
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We know by Birkhoff’s Theorem that P[∑0
j=−k+1 τ j ≤ kc/2, i.o.] = 0, thus

P

[

X−k >

0∑

j=−k+1

τ j i.o.

]

≤ P

[

X−k > kc/2 i.o.

]

= P

[

X0 > kc/2 i.o.

]

for k ≥ 1. (16)

Also, since E[X+
0 ] < ∞ we know

∑∞
k=1 P[X0 > kc/2] < ∞ and the result

holds by the Borel–Cantelli lemma.
3. ∃ 0 < N < ∞ a.s. such that M∗

n = Mn and 1n,δ = 1∗
n,δ a.s. ∀n > N . As a

consequence of the previous result, we have

P

⎡

⎣
∨

k≥1

⎧
⎨

⎩
Xn−k −

n∑

j=n+1−k

τ j

⎫
⎬

⎭
∈ R

⎤

⎦ = 1 ∀n ∈ Z, (17)

which together with Mn → ∞ imply that ∃ 0 < N < ∞ a.s. such that 1∗
N ,0 = 1

almost surely. On the other hand, given n ∈ N we have 1n,0 ≥ 1∗
n,0 by construc-

tion, and thus 1N ,0 = 1 a.s. Now, we trivially have M∗
n = Mn and 1n,δ = 1∗

n,δ a.s.∀n > N .
4. E[1∗

1,δ] > 0 if δ ≤ 0.
Knowing that E[1∗

1,δ] ≥ E[1∗
1] by definition, it suffices to check E[1∗

1] > 0. Let

us assume E[1∗
1] = P[X1 >

∨
k≥1{X1−k − ∑1

j=2−k τ j }] = 0, then

P

⎡

⎣X1 >
∨

k≥1

⎧
⎨

⎩
X1−k −

1∑

j=2−k

τ j

⎫
⎬

⎭
| F0

⎤

⎦ = 0 a.s. (18)

and so stationarity would imply

P

⎡

⎣Xn >
∨

k≥1

⎧
⎨

⎩
Xn−k −

n∑

j=n+1−k

τ j

⎫
⎬

⎭
| Fn−1

⎤

⎦ = 0 a.s. ∀ n ∈ N. (19)

Since
∨

k≥1{Xn−k −∑n
j=n+1−k τ j } and ∨n−1

k=1{Xn−k −∑n
j=n+1−k τ j } couples by

the previous reasoning, then

∞∑

n=1

P

⎡

⎣Xn >
∨

k≥1

⎧
⎨

⎩
Xn−k −

n∑

j=n+1−k

τ j

⎫
⎬

⎭
| Fn−1

⎤

⎦ < ∞ (20)

and the Dubins–Freedman strong law imply
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∞∑

n=1

P

⎡

⎣Xn >
∨

k≥1

⎧
⎨

⎩
Xn−k −

n∑

j=n+1−k

τ j

⎫
⎬

⎭

⎤

⎦ =
∞∑

n=1

1n < ∞, (21)

resulting in a contradiction.
5. N ∗

n,δ/n → E[1∗
1,δ] > 0 a.s. as n → ∞.

Choosing N such that the coupling of the part three has taken place, we have

∞∑

k=N+1

1n,δ =
∞∑

k=N+1

1∗
n,δ a.s. (22)

Since we have that 1∗
n,δ is a strictly stationary and ergodic sequence by construc-

tion, we get by means of the Birkhoff’s Theorem the desired result.

1

n

n∑

k=1

1∗
n,δ → E[1∗

1,δ] a.s. (23)

6. Nn,δ/n → E[1∗
1,δ] > 0 a.s. as n → ∞.

Since we know that E[1∗
1,δ] > 0 then

∑n
k=1 1

∗
k,δ → ∞ a.s. as n → ∞. Because

of the couple we have at same time
∑∞

k=1 1n,δ = ∞ a.s. by (22). Now, for any
{an}n∈N real sequence such that {an} → ∞ we have

∣
∣
∣
∣
Nn,δ − N ∗

n,δ

an

∣
∣
∣
∣ ≤

∣
∣
∣
∣
N

an

∣
∣
∣
∣ → 0 a.s. (24)

since N does not depend on n. Finally, we can conclude from
∣
∣
∣
Nn,δ−N ∗

n,δ

n

∣
∣
∣ →

0 a.s. and
N ∗
n,δ

n → E[1∗
1,δ] a.s. that Nn,δ

n → E[1∗
1,δ] a.s.

Finally, convergence in L1 is forthright by the dominated convergence
theorem. �

In order to facilitate the comparison of our result with the case of the usual (upper)
records, we show here some examples that were analysed in [16].

Example 3.1 (LDM with Gumbel residuals)
Let (Xn)n≥1 be i.i.d. random variables with standard Gumbel distribution, i.e.,

FXn = exp (−e−x ) for x ∈ R and τn = c, n ∈ N entailing Tn = cn as in the LDM.
From Theorem3.1 we know

lim
n→∞

Nn,δ

n
= E[1∗

1]. (25)
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On the other hand we have

E[1∗
1,δ] = P

[

X1 >
∨

k≥1

{X1−k − ck} + δ

]

=
∫ ∞

−∞

∞∏

j=1

F(x + cj − δ)F(dx), (26)

together with the fact

F(x + cj − δ) = exp(− exp(−x − cj + δ)) = F(x)exp(−cj+δ). (27)

Since −c < 0, we arrive to

E[1∗
1,δ] =

∫ ∞

−∞

∞∏

j=1

F(x + cj − δ)F(dx)

=
∫ ∞

−∞
F(x)exp(δ)

∑∞
j=1 exp(−cj)F(dx) =

∫ ∞

−∞
F(x)e

δe−c/(1−e−c)F(dx)

=
[

ue
δe−c/(1−e−c)

eδe−c/(1 − e−c) + 1

]u=1

u=0

= 1 − e−c

eδe−c + 1 − e−c
. (28)

Note that imposing δ = 0 we are able to recover the asymptotic record rate

E[1∗
1] = 1 − e−c, (29)

that coincides with the results in [4, 16].

Example 3.2 (Drifted random walk)
Consider now a random walk, Sn = ∑n

i=1 τn , where (τn, n ≥ 1) is a stationary
ergodic sequence with E[τ1] > 0. We want to get the asymptotic δ-record rate of
that random walk. For this we need to fit this situation to our general framework in
(4), for which we take Xn = 0 ∀n ∈ N and Tn ≡ Sn .

Now

E[1∗
1,δ] = P

⎡

⎣X1 >
∨

k≥1

⎧
⎨

⎩
X1−k −

1∑

j=2−k

τ j

⎫
⎬

⎭
+ δ

⎤

⎦ = P

⎡

⎣0 >
∨

k≥1

⎧
⎨

⎩
−

1∑

j=2−k

τ j

⎫
⎬

⎭
+ δ

⎤

⎦

= P

⎡

⎣
∧

k≥1

⎧
⎨

⎩

1∑

j=2−k

τ j

⎫
⎬

⎭
> δ

⎤

⎦ . (30)

Again, this result generalizes the analogous in [16] for δ = 0.
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Recent Developments and Advances in Joint
Modelling of Longitudinal and Survival Data

Ipek Guler, Christel Faes, Francisco Gude and Carmen Cadarso-Suárez

Abstract In many biomedical studies, patient are followed-up repeatedly during
the research study and different types of outcomes are collected such as longitudinal
biomarkers and a time-to-event information. Commonly, it is of interest to study the
association between the longitudinal biomarkers and the time-to-event. This chapter
gives an overview of joint models for a single longitudinal and survival data with its
extensions to multivariate longitudinal and time-to-event models.

1 Introduction

There exist various methods to study the association between a longitudinal outcome
and the time-to-event process in the literature. Focusing on a case which has a single
longitudinal biomarker and a survival data, the earliest methods are the extended
Cox model (Anderson and Gill [1]) and a two-stage approach method (Self and
Pawitan [21]). Although these methodes have advantages in terms of fast comput-
ing, they also have several limitations. The extended Cox model assumes that the
covariates are external and not related to the failure mechanism (Kalbfleisch and
Prentice [14]); also, this model does not take into account the measurement error of
the longitudinal process. In the two-stage approach no survival information is used
for the longitudinal process such that informative drop-out is not accounted for. If the
main interest is on the association between the longitudinal and survival data, joint
models are required to feature this correlation (Tsiatis and Davidian [23], Wulfsohn
and Tsiatis [24]).
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Previous research on joint modelling is concentrated on the association of a single
longitudinal outcome and survival process. There are awide number of clinical appli-
cations and developed statistical software (Crowther et al. [6], Guo and Carlin [10],
Philipson et al. [16], Rizopoulos [19], Zhang et al. [26]).

Recently, there are already several extensions in joint modeling approaches such
as the use of flexible longitudinal profiles using multiplicative random effects (Ding
and Wang [8]), alternatives to the common parametric assumptions for the random
effects distribution (Brown et al. [3]), and handling multiple failure times (Elashoff
et al. [9]). Nice overviews of this field are given by Tsiatis and Davidian [23], and Yu
et al. [25]. The more recent work is done for multiple longitudinal biomarkers with
time-to-event data which are focusedmainly on the bayesian framework (Rizopoulos
and Ghosh [20], Tang et al. [22], among others).

In this chapter we will give an overview of joint models for longitudinal and
survival data within the context of shared random effects framework and recent
extensions with a real data illustration on Orthotopic Liver Trasplantation.

2 Joint Modelling of Longitudinal and Survival Data

Joint models have gained increasing attention over the last two decades, especially
in biomedical investigations (Wulfsohn and Tsiatis [24], Henderson et al. [12],
Rizopoulos [18]).

The joint models are based on a joint likelihood calculation of longitudinal and
time-to-event data within different frameworks to calculate the conditional distribu-
tions. For instance, the shared random effects framework is based on the simultane-
ous estimation of both longitudinal and time-to-event through an incorporation of
shared random effects which underlines the conditional distributions (Wulfsohn and
Tsiatis [24]).

There are different factorizations of this joint distribution which generate various
modeling strategies. For a general idea, let the Y be the longitudinal process, T the
survival processes, and U a latent random effect. Then, JMLS can be grouped into
the following modeling classes:

Selection Models: In these models a latent random effect,U , underlines only the lon-
gitudinal process Y , and the calculation of joint likelihood consists of a factorization
into the conditional distribution of the longitudinal process given the random effect
on the one hand and the conditional distribution of the survival process given the
longitudinal outcome on the other hand. In this type of model the focus is only on
the time-to-event process, thus can be used for survival analysis with endogenous
variables

f (Y, T,U ) = f (U ) f (Y | U ) f (T | Y ).
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Pattern-MixtureModels: Thesemodels are similar to the selectionmodels, but factor-
ization is reversed. In this setting, the factorization of the joint likelihood is conducted
into the conditional distribution of the longitudinal outcome given survival process
on the one hand, and conditional distribution of the survival outcome given the ran-
dom effect on the other hand. This type of models can be used for the longitudinal
studies with a drop-out process generated by non-ignorable mechanism

f (Y, T,U ) = f (U ) f (T | U ) f (Y | T ).

Shared Random Effect Models: In these models the latent random effect underlines
both longitudinal and survival process

f (Y, T,U ) = f (U ) f (Y | U ) f (T | U ).

In JLMS, standard methods make use of two submodels, in order to specify the
full joint likelihood. The longitudinal process is modeled by a linear mixed model
as follows

Yti j = β0 + β1ti j +U0i +U1i ti j + εi j (1)

where Yi j is response variable measured on subject i = 1, ..., n at time point ti j ,
with j = 1, ...,mi . The β0, β1 represent the coefficients of the fixed effects, (i.e. the
intercept and the time effect respectively), andU0i ,U1i are the random intercept and
random slope effects respectively. Here we assume

(
U0i

U1i

)
∼ N

((
0
0

)
,Σ

)

with

Σ =
(

σ 2
u0 σu0σu1ρ12

σu0σu1ρ12 σ 2
u1

)
.

In the Σ expression, σ 2
u0 and σ 2

u1 are the variances of the random effects and ρ12

represents the correlation between them.
The survival process is usually modeled by using the following Cox proportional

hazard model (Cox [5])

λ(t) = λ0(t) exp(βX + αωi (t)), (2)

where λ0(t) is the unspecified baseline risk function, X is a matrix of fixed effects
including the baseline covariates (such as age, gender, etc.),ωi (t) is a function reflect-
ing the association structure between the longitudinal and survival data including the
same random effects U and α is the coefficient of this association. Rizopoulos [18],
use the true value of the longitudinal biomarker at time t as the association function,
ωi (t), in the survival model. In this case, the association structure is defined via:
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ωi (t) = β0 + β1ti j +U0i +U1i ti j .

The survival sub-model becomes,

λ(t) = λ0(t) exp(βX + α(β0 + β1ti j +U0i +U1i ti j ))

in which α represent the association between the longitudinal biomarker and the risk
for death at time t taking into account the true value of the longitudinal biomarker
both with fixed and random effects predictions.

3 Illustrative Example

3.1 Liver Transplantation Data

This dataset includes information from a follow-up study of 642 patients undergoing
liver transplantation at a single, tertiary care transplant hospital from July 1994 to
July 2011. Patients were followed up until 12 July 2012. Patient survival was defined
as the period of time between transplantation and end of follow-up or death. Median
follow-up was 5.6 years (range: [0.1, 17.5]). The sample had a survival rate of 85%
at one year and 65% at ten years. Pre-transplant variables were recorded, including
age, gender, body mass index (BMI), indication for OLT, Model for End-stage Liver
Disease (MELD) score, haemoglobin, haematocrit, platelet count, prothrombin time,
serum total bilirubin levels, serum creatinine levels, fasting blood glucose and prior
diagnosis of diabetes.

The study sought to investigate the ability of postoperative glucose profiles to
predict mortality in patients who underwent OLT, differentiating between those with
and those without pre-existing diabetes mellitus. OLT is the established treatment for
end-stage liver disease and acute fulminant hepatic failure. Advances in bothmedical
management and surgical techniques have led to an increase in the number of long-
term survivors. However, alterations in glucose metabolism are common among
patients undergoing surgery, and are associated with increased risk of mortality and
morbidity. These abnormalities, particularly hyperglycaemia, are also common in
critically ill patients, even those without a diagnosis of diabetes. Thus, insulin is
administered via continuous perfusion to maintain glycaemia figures between 120
and180 mg/dL, The postoperative glucose profiles for individuals with and without
previous diabetes, can be seen in Fig. 1.
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Fig. 1 Subject specific
trajectories (grey) and overall
curves (black) of Glucose
levels for the diabetic and
non-diabetic patients

3.2 Application Study

In this section we illustrate three different longitudinal sub-model and the final sur-
vivalmodel after a variable selection usingAkaike InformationCriterian (Akaike [2])
using the illustrative example Liver Transplantation Data.

The three longitudinal sub-model consist of three different posibilities introduc-
ing only the random intercept, random intercept and slope and in case of necessary
a spline smoothing model. The glucose measurements are transformed using a log-
arithmic transformation as a response variable in the longitudinal model. As we
observe in Fig. 1, the overall trajectories of Glucose measurements follow non-linear
trends over time for diabetic and non-diabetic patients. Thus, we use the splinemodel
for our application study.

(a) Intercept Model

log(Glucose)i,diab = β0 + β1timei + β2vhci + β3meldi +U0i + ε(ti j ),

log(Glucose)i,nodiab = β0 + β1timei + β2agei + β3carci + β4meldi
+ β5bmii + β6T Hi +U0i + ε(ti j ),

where t ime is the time that repeated measurements are taken and U0i is the
random intercept effect for each patient.

(b) Slope Model

log(Glucose)i,diab = β0 + β1timei + β2vhci + β3meldi +U0i+
+U1i ti j + εi (ti j ),

log(Glucose)i,nodiab = β0 + β1timei + β2agei + β3carci + β4meldi
+ β5bmii + β6T Hi +U0i +U1i ti j + εi (ti j ),
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in this model we additionally have U1i (ti j ) which represents the random slope
effect of the different Glucose trajectories of each patient.

(c) Spline Model

log(Glucose)i,diab = (β0 + bi0) + (β1 + bi1)Bn(t, d1) + (β2 + b12)Bn(t, d2)

+ (β3 + bi3)Bn(t, d3) + β4vhci + β5meldi + εi (t),

log(Glucose)i,nodiab = (β0 + bi0) + (β1 + bi1)Bn(t, d1) + (β2 + b12)Bn(t, d2)

+ (β3 + bi3)Bn(t, d3) + β4agei + β5carci
+ β6meldi + β7bmii + β8T Hi + εi (t),

where {Bn(t, dk); k = 1, 2, 3} denotes a B-spline basis matrix for a natural cubic
spline (de Boor [7]).

To study the survival process, significant covariates were selected by using a
backward stepwise procedure. Thefinal separatemodels for diabetic andnon-diabetic
patients are the following:

hi,diab(t) = h0(t) exp(λ1vhci + λ2meldi + α log(Glucose)i (t)),

hi,nodiab(t) = h0(t) exp(λ1agei + λ2carci + λ3meldi
+ λ4bmii + λ5T Hi + α log(Glucose)i (t)),

where h0(t) is the baseline risk function, t is the time-to-event and log(Glucose) is
the true (unobserved) value of the longitudinal outcome.

3.3 Results

The results indicate that final models for diabetic and non-diabetic patients take a
relative risk model withWeibull baseline risk function and with a spline longitudinal
sub-model. In Table1 we synthesized all the information of both joint models. We
observed that non-diabetic patients with higher Glucose level have a worse survival
through the coefficients of association 0.0032 (95% CI: 0.002–0.004). However, for
diabetic patients the association between the Glucose levels and survival process is
not statistically significant, 0.0002 (95% CI: −0.0033–0.0004).

Among non-diabetic patients who underwent liver transplantation, glucose levels
rose until reaching a peak on h24–36 and then declined to their former levels over
the course of the following days (all within the context of insulin being adminis-
tered via continuous perfusion). This behaviour could reflect glycaemic response to
stress (“stress hyperglycaemia”, see Fig. 1), typically attributed to insulin resistance
caused by endogenous and exogenous catecholamines and glucocorticoids. Blood
glucose profiles were observed to be statistically associated with long-termmortality
among patients without diabetes (p < 0.01). Due to having non-linear trends for lon-
gitudinal biomarker, the interpretation of the coefficient of association (α) becomes
compromised. Thus, the overall glucose profiles are shown in Fig. 1.
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Table 1 Fitted values of the final model for the joint model approaches for diabetic (on the left)
and non-diabetic (on the right) patients

Joint Models (JM) - Diabetic patients

Coef Std. error

Longitudinal process Intercept (β0) 5.3261 0.0591

β1 −0.4126 0.0487

β2 −0.1523 0.0760

β3 −0.2286 0.0376

β4 −0.0696 0.0508

β5 −0.0006 0.0039

Survival process Glucose 0.0002 0.0020

vhc 0.8412 0.3349

Meld 0.0464 0.0300

Loglikelihood −869.1573

Joint Models (JM) - Non-diabetic patients

Coef Std. error

Longitudinal process Intercept (β0) 4.4489 0.0602

β1 −0.1849 0.0183

β2 0.6881 0.0332

β3 −0.3461 0.0136

β4 0.0032 0.0007

β5 −0.0130 0.0195

β6 0.0026 0.0012

β7 0.0030 0.0021

β8 0.0053 0.0009

Survival process Glucose 0.0032 0.0010

Age 0.0293 0.0079

carc 0.6604 0.1899

Meld 0.0755 0.0116

bmi −0.0517 0.0224

TH 0.0216 0.0073

Loglikelihood −2659.553

4 Extensions on Joint Modelling Framework

This section presents some recent extensions to standart joint modelling framework.
We focus on the developments which are gained remarkable attention recently by
the statisticians and clinicians.
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4.1 Dynamic Predictions

In biomedical follow-up studies the objective is often to identify prognostic factors
that can be used to guide clinical management of patients. Beside the estimation of
the risk for death, the predictions for individual patients is also important for the
this type of studies. Due to current trends in medical practice towards to person-
alized medicine joint modeling approaches present new features such as dynamic
predictions (Rizopoulos and Ghosh [20]). In this concept of modeling, the survival
predictions has a dynamic nature, that is the predictions at time t are dynamically
changed by a new longitudinal measure taken at time t .

In particular, for a specific patient and at a specific time point during follow-up, all
available information is used (including both baseline information and accumulated
biomarker levels) to produce predictions of survival probabilities. This information
gives a better understanding of the disease dynamics and provides optimal decision
at that specific time point t .

Dynamic predictions also allow to update the prediction when we have new infor-
mation recorded for the patient. Thus, the conditional probability is of primary inter-
est, described as,

πi (u/t) = P(T ∗
i ≥ u/T ∗

i > t,Yi (t), ωi , Dn),

where u is the followed-up time (u > t), Dn denotes the sample on which joint
model was fitted and ωi is the baseline covariates. Rizopoulos and Ghosh [20] uses
a Bayesian formulation of the problem and Monte Carlo estimates of πi (u/t).

Figure2 shows the dynamic predictions of our application study presented in
Sect. 3, for particular cases: a diabetic patient (subject 51) and a non-diabetic patient
(subject 40), with their longitudinal observations to observe the effect of the longi-
tudinal outcome to the survival probability of these patients.

4.2 Advances in Multivariate Longitudinal and Survival

Many biomedical study collects several longitudinal biomarkers and time-to-event
data during the follow-up time and the interest is to study the relationship between
the longitudinal biomarkers with their effect on time-to-event. Recently there exist
several extensions to study such association in the literature. A recent overview is
made by Hickey et al. [11]. Those extensions are mainly focused on the Bayesian
estimation techniques (Ibrahim et al. [13], Rizopoulos and Ghosh [20], Brown et
al. [3], Chi and Ibrahim [4], Proust-Lima et al. [17], Liu and Li [15], Tang et al. [22]).
On a frequentist approach setting, the likelihood calculation of joint models are
getting compromised.

The joint models for multivariate longitudinal and survival data consist of two
sub-models: (i) Multivariate longitudinal sub-model (ii) Survival sub-model. In the
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Fig. 2 Dynamic predictions
for the final model for a
diabetic patient (subject 51)
and a non-diabetic patient
(subject 40)

following the sub-models and computational issues on the likelihood calculation of
joint models for multivariate longitudinal and survival data are presented.

4.2.1 Multivariate Longitudinal Sub-model

The longitudinal sub-model can be fitted using linear mixed model as presented
in Sect. 3.2 for each longitudinal biomarker k. Thus the multivariate longitudinal
sub-model is presented as follows,

Yik(ti j ) = βk Xik(ti j ) + uik Zik(ti j ) + εi jk (3)
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where Xik, uik and εi jk are recorded for each patient at time t for each longitudi-
nal biomarker k. Using a multivariate normal distribution assumption for the error
terms and random effects uik , we can assume different correlation structures. The
correlation matrix of the random effects uik captures the correlation between the lon-
gitudinal biomarkers. This correlation matrix, in a shared random effects framework,
gets dimensionally higher when the number of random effects is large.

4.2.2 Time-to-Event Sub-model

Time-to-event sub-model is usually fitted by a Cox proportional hazard model as the
following,

λi (t) = λ0(t) exp(βXi + αkωik(t)) (4)

where λ0(t) is the unspecified baseline risk function, X is a matrix of fixed effects
including the baseline covariates (such as age, gender, etc.), ωik(t) is a function
reflecting the association structure between the longitudinal biomarker k and survival
data including the same random effectsU and αk is the coefficient of this association.
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Long-Term Survival After Abdominal Aortic
Aneurysm Repair

José Manuel Llaneza, Norberto Corral, Sara Busto, Amer Zanabili
and Manuel Alonso

Abstract In this paper, the 10-year survival rate for elective abdominal aortic
aneurysm repair in the Hospital Universitario Central de Asturias is statistically
analyzed. It is a retrospective, observational and descriptive study of demographic
and clinical variables on patients undergoing either open or endovascular abdominal
aortic aneurysm repair with respect to the variable exitus. The study comprises 256
patients who were treated for abdominal aortic aneurysm repair along the period fro
January 2003 to December 2006. Groups of patients did not show a homogeneous
behaviour, since diabetes, old age, cardiac and renal pathologies had a negative effect
on their control and monitoring. The average 10-year survival rate amounts 37.9%,
cancer being the major cause of mortality (lung cancer being the most frequent one)
and cardiovascular diseases were the second major cause of patients death.

1 Introduction

Abdominal aortic aneurysm (AAA) is a vascular disease with a prevalence greater
than 4% on the population over 65years old. This prevalence compels healthcare
systems to spend numerous resources to the early diagnosis, the monitoring and the
surgical repair of the AAA when required. This is especially critical since AAAs
tend naturally to grow, what puts pressure on nearby structures and may eventually
rupture with catastrophic consequences. Nowadays, it is well-known that preventing
aneurysm rupture by repairing it leads to excellent postoperative survival rates. This
type of surgery is prophylactically recommended, so to avoid the aneurysm sac
rupture, what would substantially increase the perioperative mortality.
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Along the last years the anaesthesia and resuscitation techniques have improved.
As a consequence, the elective surgery outcomes, both those associated with open
AAA repair (OAR) and those associated with endovascular one (EVAR), have also
improved. Nevertheless, there are different concomitant risk factors in connection
with AAA development so that, in several cases in which the AAA is treated, the
survival cannot be reliably predicted.

In the literature on the topic, one can find many monitoring studies allowing us to
identify short-term mortality factors for these patients, but long-term ones are very
scarce. This paper aims to examine the 10-year survival rate of patients who have
been treated with elective AAA in the Hospital Universitario Central de Asturias
(HUCA), as well as to statistically analyze both the OAR and the EVAR results.

2 Materials and Methods

This was a retrospective, observational and descriptive study of the patients who
underwent elective surgical repair ofAAA inHUCA from January 2003 toDecember
2006.

As the election criterion in HUCA, patients undergoing AAA repair had a max-
imum diameter of AAA over 5.5cm, an enlargement over 5mm along the last six
months or an enlargement over 1cm along the last year. These patients were treated
either with OAR or with EVAR, depending on the anatomical characteristics of the
AAA, the age or the risk factors for surgery. The study in this paper does not include
patients who had an emergency surgery.

The monitoring of these patients was addressed through outpatients periodical
appointments of the HUCA Vascular Unit. For OAR patients, the first appoint-
ment was scheduled six months after surgery, and later by annual check ups, which
included clinical examination and a doppler study and medical image test (usually
eco-doppler) every five years thereafter, or whenever it is required due to suspecting
the patient having complications. EVAR patients underwent a computerized axial
tomography (CAT) with contrast (angio-CT) during the first postoperative month,
and sixmonths later. In case theEVARpatientwas free fromendoleak, themonitoring
is annual and consisted of an eco-doppler in our vascular lab and a simple abdom-
inal X-ray. In case the EVAR patient showed either (type I and III) high-pressure
endoleak or type II endoleak with aneurysm sac enlargement, angio-CTwith contrast
was considered to treat him/her. Once the problem was solved, monitoring consisted
of ecographic controls.

Demographic and clinical analyzed variables were vascular risk factors, lung,
cardiac and renal associated pathologies as well as risk scales collected in a registry
database of all the AAA in the HUCA. To fill in the information about variables
exitus (death) and exitus date, the information was drawn from the clinical history
of HUCA, the digitalized clinical histories of the public hospitals in the Principality
of Asturias, and the mortality records in the Principality.
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Causes of exitus were classified into 4 groups, namely, AAA-related death, car-
diovascular disease (ICD-10), cancer, and other diseases.

The statistical analysis was carried out by the Department of Statistics, OR and
TM in the Faculty of Sciences of the University of Oviedo by using (open access)
R packages. Comparisons for qualitative variables were based on chi-square tests.
Comparisons for quantitative variables were based either on Student t tests or on
Kruskall–Wallis non parametric test. Survival analyses were based on the Kaplan–
Meier test. Finally, the inferential analysis about the influence of someof the variables
on the mortality considered Cox regression model.

3 Results

From January 2003 toDecember 2006, 258 patients underwent electiveAAA surgery
in HUCA, either by OAR or EVAR. Along these four years the surgical trend experi-
enced a drastic change (see Fig. 1). More concretely, whereas in the first year 57 out
of 74 patients underwent OAR and 17 underwent EVAR, in the fourth year 17 out
of 56 patients underwent OAR and 39 underwent EVAR. This change can be easily
seen in the graphical display in Fig. 1. Actually, this trend to consider EVAR more
frequently than OAR has been consolidated in the Vascular Surgery Unit of HUCA
along the years (currently, around 4 out of 5 elective AAA patients undergo EVAR).

Fig. 1 Evolution of the numbers of elective patients undergoing OAR and EVAR in the period
2003–2006 in HUCA
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Table 1 Univariate descriptive and inferential comparative analyses between OAR and EVAR
groups for different demographic and clinical variables

Variable OAR (134) EVAR (122) p-value

Age 69.25± 7.68 75.75± 7.08 0.000

Octogenerians 7 (5.2%) 42 (33.9%) 0.000

Smoking 125 (93%) 104 (83.9%) 0.017

Dyslipidemia 71 (53%) 45 (36.3%) 0.007

Cardiopathy 52 (38.8%) 68 (54.8%) 0.010

ASA scale 2.54 2.73 0.046

TIA 74.01 69.63 0.020

Glasgow score 74.23± 10.96 82.56± 9.98 0.000

If we constrain to the four-year period 2003–2006, 134 of the 258 treated patients
(i.e., 51.94%) underwent OAR and 124 (i.e., 48.06%) underwent EVAR. In the
second group 2 patients were discarded from the study: one of them was lost to
clinical follow-up, and for the other one the endovascular stenting failed so that we
cannot consider him as a suitable surgery candidate because of having comorbidity.
Concerning the 30-day and in-hospital mortality there were 6 in the OAR group
(4.5%) and 5 in the EVAR one (4.1%).

In conducting the univariate analysis the results were gathered in Table1. One
can easily observe that OAR and EVAR lead to significantly different results (i.e.,
p-values are lower than 0.05) in connection with age, percentage of octogenarian
patients, major associated risk factors, cardiopathies, and surgical risk scales (where
ASA score corresponds to the American Society of Anaesthesiologists scale, TIA
is the acronym for Transient Ischemic Attack, and Glasgow score means the well-
known Glasgow aneurysm score).

Due to the significant different behaviour of the two groups, separate (instead of
comparative) analyses were performed for OAR and EVAR groups in order to exam-
ine the long-term evolution of patients and the predictive mortality factors. It would
be further emphasized that there were not significant differences associated either
with the aneurysm size itself or with the sex of the patient (in fact, the sample only
includes 8 women, so one cannot reliably draw statistical conclusions concerning
sex).

By means of a multivariate logistic regression, for which only the small p-values
(lower than 0.05) have been gathered in Table2, one can conclude that

• for OAR patients, the age, the Diabetes Mellitus, the chronic kidney failure, the
level of creatinine in the peripheral blood, the heart failure, the atrial fibrillation, the
ischemic cardiopathy, and the ASA and Glasgow scores, showed to be predictive
factors for mortality;

• for EVAR patients, only the atrial fibrillation, the heart failure and the level of
creatinine in the peripheral blood showed to be predictive factors for mortality.
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Table 2 Predictive factors of mortality for OAR and EVAR groups

OAR (134) EVAR (122)

Predictive factor p-value Predictive factor p-value

Age < 0.001 Atrial fibrillation < 0.001

ASA score 0.025 Heart failure 0.030

Diabetes mellitus 0.023 Creatinine 0.030

Ischemic cardiopathy 0.016

Atrial fibrillation 0.004

Heart failure 0.015

Kidney disease < 0.001

Creatinine 0.008

Glasgow score < 0.001

Fig. 2 Long-term (10-year) survival evolution for OAR and EVAR patients in HUCA

On the other hand, the mortality has been directly analyzed. Early mortality
was slightly greater for OAR than for EVAR. In OAR group there were 6 exitus,
what means 4.69% of perioperative mortality, since death occur within 30days after
surgery. In EVAR group there were 5 exitus, what means 4.10% of perioperative
mortality. However, the situation is reversed afterwards, and this seems to be due to
the high mean age and presence of risk factors of patients undergoing EVAR. In fact,
many of these patients were included in the EVAR group, because of them being
quite old and not fulfilling criteria for OAR, which involved a high surgical risk.

The long-term mortality can be examined on the basis of Fig. 2.
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Fig. 3 Long-term (10-year) distribution of themortality risks in the subsample of non-perioperative
exitus for OAR and EVAR in HUCA

It can be seen how curves for survival OAR and EVAR (expressed in proportions)
distance themselves over the considered 10years after surgery. In this way, along the
36months after surgery the distance was up to 5%, whereas this distance amounted
around 20% at the end of the 10years after surgery.

If mortality is analyzed for each of the 4 groups associated with the main causes
of exitus, conclusions differ from the AAA-related death and other diseases to cancer
and cardiovascular diseases.

In connection with the AAA-related death:

• there were no exitus from the OAR group after 10years, since AAA was rightly
excluded and there were no infectious complications;

• there were 4 exitus from the EVAR group after 10years, what corresponds to 4.9%
of the global exitus in EVAR group (over the 81 non-perioperative exitus); three
of the deaths were associated with the rupture of the aneurysmal sac (one of them
due to a type II endoleak which did not respond to the treatment of either selective
embolizations of the sac, and two of them due to type I endoleaks), and the other
one was associated with an endoprosthetic infection.

Regarding the other diseases group, Fig. 3 shows that mortality is more frequent
for EVAR than for OAR group. It seems reasonable since EVAR group included a
higher comorbidity and more octogenarian patients at the moment of the prosthesis
placement.

Nevertheless, the general mortality risk causes are similar for OAR and EVAR
patients, tumor pathology and especially lung cancer prevailing over cardiovascular
diseases with close proportions in both groups. This trend was preserved along the
follow-up as one can see in the 5-year information gathered in Table3.
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Table 3 5-year and 10-year percentages of mortality causes (over non-perioperative exitus)

OAR EVAR

5-year percentage
(%)

10-year
percentage (%)

5-year percentage
(%)

10-year
percentage (%)

Cancer 40.8 34.8 30 29.7

Cardiovascular
disease

33.3 27.3 25 21

Other 25.9 37.9 45 44.4

AAA-related 0 0 0 4.9

4 Discussion

The early survival of the elective AAA repaired patients has dramatically improved
along the last 50years. The emergence and rapid therapeutic implementation of
EVAR has been crucial for such an improvement. This technique allowed vascular
specialists to incorporate a relevant cohort of old patients with high comorbidity
to undergo AAA repair, in such a way that when studies with age adjustments are
performed the improved life expectancy is not lost. These convenient expectations
can be found, for instance, in [12] where 70% 5-year survival of the elective OAR is
shown to be very similar to our own experience showing 74.6% 5-year survival.

However, in spite of the technical improvements, mortality in AAA patients is
still high, and in some cases it doubles that of the general population. The main cause
for this is a generalized arteriosclerosis with a high rate for stroke, heart attack, and
major lower limb amputations due to ischaemia, as reported by classical studies like
the one in [3].

The influence of the arteriosclerosis risk factors is not revealed only in the long-
term mortality, but it is well-known that the 30-day mortality is not negligible when
we refer to AAA surgery in hospitals conducting a small tomoderate number of these
surgeries. In all these cases the cardiopathy-based mortality is highly present, as it
can be seen in [4, 11, 13] where 57.9% of perioperative mortality after AAA repair is
associated with cardiac pathology. Data in this paper are quite similar to those in the
last citations, with an important presence of vascular pathology in patients dying, just
the second cause for mortality after cancer pathologies. Anyway, ischemic pathology
was only influential in the OAR group, whereas arrhythmia by atrial fibrillation and
heart failure were always clearly influential in mortality for both groups.

The aneurysm size was considered in the literature to be related to mortality
in both the pre-surgery and the perioperative period and to the long-term survival
(see, for instance, [2, 14]). One of the long-term mortality theories is the potential
direct relationship between the aneurysm size and the arteriosclerosis intensity. Nev-
ertheless, this theory has never been confirmed. Furthermore, one should be aware
that aneurysm diameter also depends on other factors like age, gender, smoking,
high blood pressure and high cholesterol level, among others. All this makes that
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the aneurysm size takes often a rather misleading value, so that it has never been
independently analyzed as a risk factor (see [1, 11]).

In connection with sex, survival studies indicate in general that women have
a higher life expectancy than men. However, in case of an underlying aneurysm
pathology, mortality of AAA repaired women is equal or greater than mortality of
AAA repaired men (see [6, 7, 10]). This leads to conclude that the advantage in the
general population is reduced so that there is no substantial influence of gender. Our
results agree with such an idea of the sex not influencing mortality by AAA repair,
although since the number of women in our study is quite small, conclusions are not
actually reliable.

Patients suffering chronic obstructive pulmonary disease (COPD) have shown
worse survival (see [7, 10, 15]), especially when they are associated with domiciliary
oxygen. In our study COPD was not identified as a risk factor for the long-term
mortality, but statistical conclusions are limited in this respect since only a few of
our cases were associated with such a permanent oxygen need.

The study in [10] also considers the chronic kidney failure as a factor of bad prog-
nosis. Thismeta-analysis examines 16 studies, and authors pointed out the limitations
caused because of these studies considering different meanings and interpretations of
the variable kidney failure. In the study in this paper, kidney failure has only behaved
as a risk factor in the OAR group, albeit the level of creatinine in blood has behaved
as a mortality risk factor in OAR and EVAR groups.

Other major risk factors, as high blood pressure and Diabetes Mellitus have been
also analyzed. The first one was not influential in our study, although in [10] it has
been highlighted as a risk factor but by considering different diagnoses criteria and
treatments; when the left ventricular hypertrophy is added, heterogeneity disappears
and the negative influence of the high blood pressure is clear (see [5, 8]). The variable
Diabetes Mellitus is not unequivocally defined, in connection with both its diagnosis
and its treatment and potential complications, although it seems evident that the long-
term mortality tends to increase (see [10]). In case of HUCA, the Diabetes Mellitus
has only behaved as a risk factor in the OUR group.

The study in this paper does not consider either socio-economic or ethnic variables
which could affect survival in a negative way (see [9]), since our populations seems
to be rather homogeneous in these respects.

5 Conclusions

The global survival of our data was 37.9%, the percentages of survival being notice-
ably greater for the OAR, although EVAR patients were definitely older and having a
more important associated comorbidity. The major cause of exitus was cancer, espe-
cially lung one, for both groups of surgery. The second cause was cardiovascular
diseases, and they materialize in a rather constant way during the follow-up.

Limitations of our study are evident since it concerns a few patients and a short
monitoring. Furthermore, the change prompted by the Unit therapeutic choice was
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clear. Anyway, to continue this type of analyses will be decisive in supporting and
suggesting future surgical corrections and the choice of the treatment.
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Dedication

I was fortunate to meet Pedro at the middle 80s of last century. My need of help in
order to do my PhD dissertation, as it happens to most of the doctors on dealing with
the design of a study and the statistical analysis of the data, as well as the departure
of my friend María Ángeles to her American adventure, made me to end up, quite
defenseless, at the Department of Statistics in the University of Oviedo, where I met
wonderful people and will never be grateful enough to Norberto, Teresa and Teófilo
for their warm support.

Despite Pedro’s kind nature, the first reach out was difficult and things did not go
well. At that time, he would be just fed up with people coming with a pile of data
and the unique purpose of seeing what could be drawn from them, but without actual
interest on a scientific collaboration. Nevertheless, my intention was to plan a well-
designed work before beginning with the clinical examinations but I couldn’t calmly
explain him my goals. At that initial period he did not look upon me favorably, and I
used to literally keep clear of him, even keeping me hidden, sometimes, in an office
so we could not meet each other. Several months later, the relationship dramatically
changed, and from that moment I met one of the most positively influential persons
in my life. I had the opportunity of talking with him in the faculty, during the years of
preparation of my dissertation, in those long and friendly late-evening get-togethers,
whenwehadfinished ourwork andmet, generally atNorberto’s office, before coming
back home. Pedro used to recap the day, concerning about everyone’s issues, my
dissertation included although it was far from the daily duties of the Department,
turning later to speak about any other subject, none of us paying attention to the hour
until we were there. I learned a lot from those conversations, not of Mathematics,
but about coping with problems and living life.

Once I defended my dissertation, although I was in contact with the group of
Statistics, I did not see Pedro so often. Unfortunately, his health issues appeared some
years later. During his disease, he had a desirable composure at each conversation
that we had during his visits to external consultations at the old Hospital. Tobacco
could not be part of his life anymore due to his throat and circulatory issues. Knowing
Pedro, it seemed quite impossible to give him up from cigarettes. So I cruelly let him
know the truth while he stared at me as if he were saying “Ask me for anything, but
do not bother me with tobacco”. Surprisingly he quitted smoking almost at the first
attempt. When the first examinations had concluded, I remind telling him, with my
usual tact, that he was much older internally than what was written on his identity
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card. Then his mathematical mind appeared and we tried to calculate the age of his
arteries in comparison with the age at his official documents. We were always joking
around that difference and trying to adjust it with every new examination.

Another issue was to achieve that Pedro could walk with ease by Oviedo’s hills.
The peripheral circulatory disease causes the so-called sporadic failure that obliges
those suffering it to stop every so often. Being able of walking farther depends on
the training. As he always said, with snide humor, worse than bearing with his pains
on walking was putting up with his colleagues’ comments who pulled his legs when
he stopped and encouraged him to go on. His willpower prevailed here, too, and he
finally achieved to do an almost normal life. Apart from what is strictly professional,
we hardly needed anything to bring up-to-date; a glance and a couple of sentences
were enough most of the times due to our mutual understanding.

Along the years I treated Pedro, he never boasted about honors or merits. I knew
about them through his mates at the department and, above all, at that surprise jubilee
meeting where all his achievements were revised. There I confirmed his humility and
how much everybody cared about him.

Shortly after his heart warn for the first time. He had just arrived from Paris and
one could realize how happy he was with his children’s welfare. He was aware of his
condition, never having long face, but always looking forward.We argued a lot about
how his badly damaged heart was going to be fixed, but none of us were in the loop
on that subject. After several days of arguments, sitting at the hospital bed, he told
me that he had realized that none of us was a cardiology expert so we should better
let the doctors at the haemodynamics service work. During his stay at the hospital we
spoke at length about many subjects apart from his disease. I slipped away to Pedro’s
roomwhenever I could, even at strange hours due to a long-lasting surgery. For me, it
was meeting a friend from outside the hospital in order to keep ourselves up to date.
We spoke openly about everything. Once again, it was a continuous lesson, because
time and experience had made a good work in his mind. He was not only great at
Mathematics but also knew why it was worth living; at least it seems to me that he
did. He had a wonderful point of view; in the majority of the matters, his reasoning
was so quiet, clear and organized that everything looked easier.

I will always remember your love for the well-donework and your smile on seeing
me, even in those periods when things were not going well.

Thanks a lot, Buddy!

Tuve la suerte de conocer a Pedro en mitad de los 80 del siglo pasado. La necesidad de
ayuda para hacer la tesis doctoral, como nos ocurre a la mayoría de los médicos cuando se
aborda el diseño de un estudio y el tratamiento estadístico de los datos, unida a la marcha de
mi amiga María Ángeles a su aventura americana, hizo que aterrizase, un poco desvalido,
en el Departamento de Estadística de la Universidad de Oviedo, donde conocí a gente
maravillosa y nunca agradeceré lo suficiente a Norberto, Teresa y Teófilo el apoyo que me
brindaron.

A pesar del carácter amable de Pedro’ la primera toma de contacto fue difícil y la cosa no
pintó bien. Por aquella época ya debía de estar un poco harto de que apareciese por allí
gente con un montón de datos para ver qué se podía sacar de ellos, pero sin estar realmente
interesados en una colaboración científica. Mi intención, sin embargo, era plantear un
trabajo bien diseñado y luego comenzar con las exploraciones clínicas. No pude llegar
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a explicarle con tranquilidad mis objetivos, así que en esa primera época no me miraba
con ‘buenos ojos’ y yo procuraba evitarlo, literalmente, e incluso alguna vez me tuvieron
‘escondido’ en un despacho para no encontrarnos. Pasados los primeros meses, la relación
cambió radicalmente, y a partir de ahí conocí al que creo fue una de las personas que influyó
de forma más positiva en mi vida. Tuve la oportunidad de conversar con él en la facultad,
durante los años que duró la preparación de la tesis, en aquellas largas y amigables tertulias
a última hora de la tarde, cuando el trabajo finalizaba y nos reuníamos, generalmente en el
despacho de Norberto, antes de irnos a casa. Pedro hacía un repaso de cómo había ido el
día, interesándose por las cosas de cada uno, incluso de mi tesis, que tan lejos quedaba del
quehacer diario del Departamento y posteriormente hablábamos de cualquiera tema, sin
importarnos la hora a ninguno de los que allí estábamos. De esas conversaciones aprendí
muchas cosas, no de matemáticas, sino de cómo encarar los problemas y a caminar por la
vida.

Una vez leída la tesis, aunque seguí en relación con la gente de Estadística, no veía a
Pedro con tanta frecuencia. Pasado el tiempo, por desgracia, aparecieron sus problemas
de salud. Durante su enfermedad tuvo una entereza envidiable en las conversaciones que
manteníamos en sus visitas a la consulta externa del viejo Hospital. Sus problemas de gar-
ganta y circulatorios hacían que el tabaco no pudiese estar presente de ninguna de las
maneras en su vida. Conociendo a Pedro parecía una tarea imposible conseguir separarlo
de los cigarrillos, así que le informé crudamente de la realidad mientras me miraba como
diciendo “pídeme cualquier otra cosa, pero deja de fastidiarme con el tabaco”. Increíble-
mente consiguió dejar de fumar prácticamente a la primera. Una vez hechas las primeras
exploraciones, recuerdo que le comenté, con mi delicadeza habitual, que por dentro era
mucho más viejo que lo que decía su carnet de identidad. Entonces comenzó a aflorar su
mente matemática e intentábamos calcular la edad de sus arterias en comparación con
la edad que figuraba en el DNI. Siempre bromeábamos con esa diferencia e intentábamos
ajustarla con las exploraciones que se iba haciendo.

La segunda parte del problema era conseguir que Pedro pudiese caminar con soltura por
las cuestas de Oviedo. La enfermedad circulatoria periférica provoca lo que se llama clau-
dicación intermitente y obliga, a quien la padece, a tener que pararse cada cierta distancia.
Conseguir caminar más metros depende del entrenamiento que se haga. Como siempre
me comentaba, de forma socarrona, los dolores de caminar no eran lo peor; lo malo era
aguantar los comentarios de los compañeros de la facultad que le tomaban el pelo por las
veces que tenía que pararse y le animaban a continuar; también aquí se impuso su fuerza
de voluntad y terminó consiguiendo hacer una vida prácticamente normal. Aparte de lo
puramente profesional, poco necesitábamos para ponernos al día, ya que la relación de
complicidad fluía claramente entre nosotros, un par de miradas y cuatro frases bastaban
para entendernos en la mayoría de las cosas.

En todos los años que traté con Pedro, nunca alardeó de honores ni méritos. Si los conocí
fue a través de sus compañeros de departamento y, sobre todo, en aquella reunión sorpresa
por su jubilación donde se repasaron sus logros; en ella pude confirmar su humildad y sobre
todo comprobar lo que la gente le quería.

Desde esa reunión pasó poco tiempo hasta que su corazón dio el primer aviso. Venía de París
y se le notaba muy feliz con lo bien que les iba a sus hijos. El fue consciente de su situación,
siempre sin una mala cara y con ganas de mirar hacia delante. Discutíamos mucho de cómo
le iban a arreglar su maltrecho corazón, aunque los dos estábamos bastante pez en esas
cosas. Tras varios días de conversaciones sentados en la cama del hospital, me comentó que
se había dado cuenta de que realmente ninguno de los dos teníamos ni idea de cardiología y
era mejor dejar trabajar a los médicos de la unidad de hemodinámica. Durante su ingreso
charlamos largamente de temas al margen de su enfermedad y siempre que tenía un hueco
me escapaba hasta la habitación de Pedro para visitarle, a veces en horas un poco raras
porque había tocado quirófano largo, pero para mí era como reunirme con un amigo fuera
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del hospital para comentar cómo nos había ido el día. Hablamos abiertamente de todo y
nuevamente fue una enseñanza continua, pues el paso del tiempo y la experiencia hicieron
un buen trabajo en su cabeza, que no sólo sabía mucho de Matemáticas sino que tenía una
idea muy clara de por qué merece la pena vivir, o al menos eso me parecía a mí. Tenía
una perspectiva maravillosa de las cosas y en la mayoría de los temas que tratábamos su
razonamiento era tranquilo, claro y organizado haciendo que todo pareciese siempre más
sencillo.

Te recordaré siempre por tu aprecio al trabajo bien hecho y la sonrisa que me dedicabas al
verme, incluso en los momentos en que las cosas no iban bien.

¡Muchas gracias, Amigo!

José Manuel Llaneza, November 2017
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Some Comments on Stochastic Orders
and Posets

María Concepción López-Díaz and Miguel López-Díaz

Abstract In this paper, we review some relations between partially ordered sets
and stochastic orders. We focus our attention on analyzing if the property of being
order-isomorphic is transferred from partially ordered sets to the stochastic orders
generated by such partially ordered sets.

1 Introduction

The aim of this manuscript is to summarize some relations between partially ordered
sets and stochastic orders defined by means of such ordered sets.

The theory of ordered sets plays an important role in manymathematical fields, as
algebra, analysis, graph theory, combinatorics (see for instance [1, 10, 23, 28], etc.).
It is applied in different areas as computer science, coding theory, cryptography, (see
for instance [6, 12, 22], etc.), as well as being by itself a remarkable area of interest
for researchers.

Consider (X ,�X ) a poset (partially ordered set), that is, X is a set and �X

is a binary relation defined on X which satisfies the reflexivity, transitivity and
antisymmetric properties. Some of the most useful concepts related to ordered sets
are the following.

A subsetU ⊂ X is said to be an upper set if given x1, x2 ∈ X with x1 ∈ U and
x1�X x2, then x2 ∈ U .

An upper quadrant set is a subset of X of the form Q�X
x = {z ∈ X | x�X z},

with x ∈ X . We will denote by Q�X the class of upper quadrant sets determined
by the partial order �X on X . Note that any upper quadrant set is an upper set.
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Let x1, x2 ∈ X . We will say that x2 covers x1 if x1�X x2, x1 �= x2 and there is
not x3 ∈ X , x1 �= x3 �= x2, with x1�X x3�X x2.

In the case where X is a finite set, the Hasse diagram of the poset (X ,�X ) is
a directed graph with vertices set X and an edge from x to y if y covers x .

To construct a Hasse diagram we will draw the points ofX in the plane such that
if x1�X x2, the point for x2 has a larger y-(vertical) coordinate than the point for x1.

Hasse diagrams are very useful representations of ordered sets which describe the
order relations between elements in a graphical way.

Mappings from an ordered set to another ordered set which preserve the order
relations, play a remarkable role in order theory. These mappings are said to be
order-preserving mappings.

Let (X ,�X ) and (Y ,�Y ) be posets. A mapping φ : X → Y is said to be
order-preserving if for any x1, x2 ∈ X with x1�X x2, we have that φ(x1)�Y φ(x2).
In particular, if (X ,�X ) is a poset, a mapping f : X → R is said to be
�X -preserving if for any x1, x2 ∈ X with x1�X x2, we have that f (x1) ≤ f (x2).
Note that the class of mappings which are �X -preserving is the class of order-
preserving mappings when we consider the posets (X ,�X ) and (R,≤), ≤ being
the usual order on the real line.

A very interesting class of order-preserving mappings is the class of bijective
order-preservingmaps. Let (X ,�X ) and (Y ,�Y ) be posets.Amappingφ : X →
Y is said to be an order-isomorphism if:

(i) φ is order-preserving,
(ii) there exists φ−1 : Y → X inverse of φ,
(iii) φ−1 is order-preserving.

Clearly a mapping φ : X → Y is an order-isomorphism if and only if

(i) φ is bijective,
(ii) for all x1, x2 ∈ X , it holds that x1�X x2 if and only if φ(x1)�Y φ(x2).

Two posets (X ,�X ) and (Y ,�Y ) are said to be order-isomorphic if there exists
an order-isomorphism φ : X → Y .

Note that two order-isomorphic sets are indistinguishable for the ordered sets
theory, because they have the same order structure.

The reader is referred, for instance, to [14, 26, 27] for an introduction to the theory
of ordered sets.

In probabilistic and statistic frameworks, one of the main aims is to compare
random magnitudes in accordance with an appropriate criterion. Ordered sets of
probabilities have a great importance in this context. The study of such ordered
sets involves the analysis of theoretical and applied problems. Pre-orders on sets of
probabilities are called stochastic orders (see for instance [3, 25, 29]). Stochastic
orders have been successfully applied in areas like medicine, ecology, veterinary
science, biology, economics, quality control theory, shape analysis, communications
and others (see for instance [2, 5, 7–9, 16, 18–21, 25, 30], etc.).
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A stochastic order is said to be integral if there exists a class of real measurable
mappings satisfying that P ˜� Q when

∫

X
f d P ≤

∫

X
f dQ

for all f in such a class, such that the above integrals exist, P and Q being probabil-
ities. That class of mappings is said to be a generator of the order. We should note
that there could be different generators of the same stochastic order (the reader is
referred to [24] and Chap.2 of [25] for integral stochastic orderings).

It is possible to define a stochastic order on the class of probabilities associated
with a set endowed with a partial order by means of the class of preserving mappings
as follows (see, for instance, [15, 25]).

Let (X ,�X ) be a poset. Consider a σ -algebra A on X . Let FX stand for
the class of real measurable �X -preserving mappings. Let PX denote the set
of probabilities associated with the measurable space (X ,A ). Define a pre-order
(�X g) in that class by: let P1, P2 ∈ PX , then

P1�X g P2 when
∫

X
f d P1 ≤

∫

X
f d P2

for all f ∈ FX for which both integrals exist.
Conditions for an integral stochastic order to be generated by a poset are studied

in [17].
In some frameworks is quite useful to pay attention to the property of being

order-isomorphic for stochastic orders generated by partially ordered sets, when
such partially ordered sets are order-isomorphic.

2 On Order-Isomorphisms of Stochastic Orders Generated
by Posets

In this section we consider the question proposed in Sect. 1 on the property of being
order-isomorphic for posets and stochastic orders generated by such posets.

If two posets are order-isomorphic, then the stochastic orders generated by those
posets are also order-isomorphic. It is interesting to remark that the converse is not
true in general. We describe particular conditions under which the converse holds.
These results are mainly included in [19].

Let us consider (X ,�X ) a poset.Wewill denote byBX theσ -algebra generated
by the class of upper quadrant sets, that is, BX = σ(Q�X ).

The usual Borel σ -algebra on R will be denoted by B.
The symbolFX will represent the set of mappings f : X → Rwhich are mea-

surable with respect toBX and B, and �X -preserving.
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On the other hand,PX will stand for the set of probability measures on the mea-
surable space (X ,BX ). Moreover,PX

0 will denote the subset ofPX composed
by degenerated probabilities, that is,

PX
0 = {Px ∈ PX | x ∈ X , Px (B) = 1 if x ∈ B, Px (B) = 0 otherwise, B ∈ BX }.

The classFX of all measurable�X -preserving mappings generates a stochastic
order on PX , denoted by �X g , as follows: if P1, P2 ∈ PX , then

P1�X g P2 when
∫

X
fdP1 ≤

∫

X
fdP2

for all f ∈ FX for which both integrals exist.
Note that (PX ,�X g) is a poset. Reflexivity and transitivity are obvious. Now

if P1�X g P2 and P2�X g P1, since IU ∈ FX , IU being the indicator function of U ,
then P1(U ) = P2(U ) for allU ∈ A �, whereA � is the class of all finite intersections
of upper quadrant sets. Since σ(A �) = σ(Q�) andA � is aπ -system, then P1 = P2
(see, for instance, [4, p. 42]), that is, �X g satisfies the antisymmetric property.

The following result can be found in [13]. We should note that the finiteness of
X is essential in that result.

Let (X ,�X ) be a poset with X finite. Let P1, P2 ∈ PX , then P1�X g P2 if
and only if P1(U ) ≤ P2(U ) for any U upper set.

If X is not finite, an upper set does not necessarily belong to BX , and so the
above result does not hold.

Now, let us consider order-isomorphisms. Let (X ,�X ) and (Y ,�Y ) be posets
and let φ : X → Y be an order-isomorphism. It is not hard to prove that φ is
measurable with respect to the σ -algebras BX and BY .

In relation to the property of being order-isomorphic, the following result is
obtained in [19].

Let (X ,�X ) and (Y ,�Y ) be order-isomorphic posets. Then the posets
(PX ,�X g) and (PY ,�Y g) are order-isomorphic.

We should remark that an order-isomorphism ∇ between (PX ,�X g) and
(PY ,�Y g) could be defined by means of an order-isomorphism φ between
(X ,�X ) and (Y ,�Y ). This fact is quite useful in many applications.

Example 2.1 (from [19])Consider the posets (X ,�X ) and (Y ,�Y )whose Hasse
diagrams (taken from [27]) are given in Fig. 1.

Let φ : X → Y be the mapping such that φ(x1) = y1, φ(x2) = y2, φ(x3) =
y4, φ(x4) = y3, φ(x5) = y5, φ(x6) = y7, φ(x7) = y8, φ(x8) = y6, φ(x9) = y10,
φ(x10) = y9 and φ(x11) = y11. Then, φ is an order-isomorphism and the posets
(X ,�X ) and (Y ,�Y ) are order-isomorphic. As a consequence, we conclude that
the posets (PX ,�X g) and (PY ,�Y g) are order-isomorphic.

The converse of the result above is not true in general, as the following example
shows (see [19]).
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x3x2x1

x10

x8

x4

x11

x5 x6 x7

x9 y10 y11y9

y1

y5 y7y6 y8

y4y3y2

Fig. 1 Hasse diagrams in Example 2.1

x1 x3x2 y1 y2

Fig. 2 Hasse diagrams in Example 2.2

Example 2.2 Consider the sets X = {x1, x2, x3} and Y = {y1, y2}, and the posets
(X ,�X ) and (Y ,�Y ) with the Hasse diagrams given in Fig. 2. That posets are
not order-isomorphic since |X | �= |Y |.

Note that X and Y are finite. Then, by means of the result in [13] given above,
if P1, P2 ∈ PX with P1 �= P2, we have that neither P1�X g P2 nor P2�X g P1 are
satisfied, and the same happens with the probabilities of PY . As a consequence,
if we define a bijection between PX and PY , it will be an order-isomorphism. It
is not hard to prove that there exists a bijection between both sets (see for instance
[11]), and so (PX ,�X g) and (PY ,�Y g) are order-isomorphic.

Now, the question is tofind conditions underwhich anorder-isomorphismbetween
(PX ,�X g) and (PY ,�Y g) implies the existence of an order-isomorphism
between (X ,�X ) and (Y ,�Y ). Some of such conditions were proved in [19].

The following result holds.
Let (X ,�X ) and (Y ,�Y ) be posets, consider the posets (PX ,�X g) and

(PY ,�Y g). Let∇ : PX → PY be an order-isomorphism such that ∇(PX
0) =

PY
0, then (X ,�X ) and (Y ,�Y ) are order-isomorphic.

Another condition is provided by the following concept in [19], which in con-
junction with an order-isomorphism between (PX ,�X g) and (PY ,�Y g), lead to
an order-isomorphism between (X ,�X ) and (Y ,�Y ). Let (X ,�X ) be a poset
and I ⊂ X . A mapping Υ : I → X is said to conserve �X in each point sep-
arately, when given x1, x2 ∈ I , if one of the following relations holds: x1�X x2,
Υ (x1)�X x2, x1�X Υ (x2), then the three relations are satisfied simultaneously.

Given (X ,�X ) a poset and S a subset ofX , wewill denote by S the complement
of S inX , that is, S = X \ S.

The following result gives a new condition involving mappings which conserve
orders in each point separately (see [19]).

Let (X ,�X ) and (Y ,�Y ) be posets, let us consider the posets (PX ,�X g)

and (PY ,�Y g). Let ∇ : PX → PY be an order-isomorphism. Let us define

the sets L = ∇−1(PY
0) ∩ PX

0 and M = ∇(PX
0) ∩ PY

0. If L and M are
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nonempty sets and if there exists an order-isomorphism Ω : L → M such that
Ω−1 ◦ ∇ : ∇−1(M) → PX and∇−1 ◦ Ω : L → PX conserve�X g in each point
separately, then the posets (X ,�X ) and (Y ,�Y ) are order-isomorphic.

The proof can be found in [19], together with an interesting application to the
analysis of chemical components of seaweeds.
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Optimal Experimental Design for Model
Selection: A Partial Review

Jesús López–Fidalgo and Chiara Tommasi

Abstract Model selection is a core topic in modern Statistics. This is a review of
what has been researched on optimal experimental design for model selection. The
aim is to find good designs for increasing the test power for discriminating between
rival models. This topic has a special impact nowadays in the area of experimental
design.

1 Introduction

Model selection is nowadays one of the hot topics in Statistics and finding opti-
mal experimental designs for that purpose will save time, money and risk to the
researchers. A joint solution to the problem of identifying the maximum information
both for discriminating between rival models and for fitting the best of them is very
much desirable. Obtaining a good model is crucial for prediction in a world of pres-
ence of massive data. Optimal Experimental Design (OED) theory and practice has
a lot to say about that. The reason for that belief is that OED is very much concerned
with the information behind the data. Traditionally this has been used for designing
informative experiments in order to save data. This is still very important if we think,
e.g. in experimentation with animals or humans. In the contemporary scenario with
great quantities of observations, frequently with low quality data, we need tools to
clean the data and discriminate which is the best model to extract the information
from it.

OED searches both for better estimates and predictions as well as for optimiz-
ing the cost of experimenting. The research on OED has experienced a noteworthy
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increase in the last few years. Main beneficiaries of the theory of optimal design are
the areas of engineering, well-being in society and very much in health with clinical
trials and Phase I/II experimentation.

We dare to say there are two important research directions in OED at this moment.
On the one hand the most traditional interest in outlining correctly complex, but real,
situations. On the other hand there is special interest nowadays in developing efficient
algorithms for finding optimal designs,which is a non-standard task in this areawhere
the aim is a probability measure in a non-Euclidean space. Both directions must go
together, complementing each other, in the research.

Whenever a variable is under the control of the experimenter OED has a lot to
say. The main idea is to search for the most informative experimental conditions
with the optimal number of replicates at each of these experimental conditions. The
sample size has to be fixed in advance and this is usually a difficult task to be solved,
frequently needing number theory. A wonderful idea was introduced by Kiefer [21]
extending the concept of experimental design to any probability measure on a com-
pact design space. Then the so called General Equivalence Theorem (GET) [22, 40]
provided a fantastic tool for checking whether a particular design is optimal or not.
Additionally this gives thewayof computing either closed–formedoptimal designs or
developing numerical algorithms for their computation. What one considers optimal
here depends very much on the aim, say either estimating the parameters, predicting
results or discriminating between models; as well as on the model itself.

Most of the optimality criteria focus on the inverse of the Fisher Information
Matrix (FIM). For linear models this is proportional to the covariance matrix of the
estimates of the parameters. The usual inferences and predictions are based on this
matrix, so some appropriate function of it has to be optimized. For a linear model this
matrix depends only on the design and thus the optimization challenge is just to look
for the best design according to the corresponding criterion. If the model is nonlinear
the inverse of the FIM is asymptotically proportional to the covariance matrix, but
the FIM now depends on the unknown, and no yet, estimated parameters at the time
of planning the experimentation. There are different ways to approach this issue,

(i) Locally optimal designs [15], assuming some nominal values of the parameters
where the inverse of the FIM is locally approximated to the covariance function.

(ii) Adaptive sequential designs, where the next design point takes into account the
observed data from previous experiments. In this case the design is a stochastic
process. This approach is rather popular, especially in medicine and pharmaco-
logical studies with clinical trials.

(iii) Bayesian optimal designs [36], assuming a prior distribution on the parameters
and a joint utility function including both objectives at the same time, estimating
the parameters of the model and finding the optimal design for that.

Another important difficulty in OED arises for correlated observations, e.g. over
time or space. The world of industry is a champion on the used of experimental
designs. Computational aspects of OED have always been an important issue. Note
the contribution of Fisher [20], which gives to the experimental design theory the
current statistical approach.
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Although the OED appears in 1918 with an extensive article by Kristine Smith
[32], it will not be developed at some extent until the 50s. The volume by Cox in 1958
[16] contains a short and descriptive introduction to the basic ideas of the theory.
Pioneering monographs were written by Fedorov [19] and Silvey [31]. A number of
monographs have arrived later and can not be mentioned here for space reasons.

The most significant advances in theory and practice of Optimal Design of Exper-
iments can be followed through the volumes of conference proceedings mODa
(Model-Oriented Data Analysis and Design) apart from other relevant collections
coming from workshops and conferences. The family of algorithms traditionally
used in the calculation of optimal designs are not, in a general sense, the best pos-
sible. Although there is an important effort in this aspect it remains as an important
challenge for the theory.

2 Different Approaches to the Problem

One of the main criticisms to OED is that a design has to be found for a particular
model and themodel has to be guessedwithout having the data yet.Honestly speaking
we should say there are not solutions to this issue, which in fact is still present even
with the data at hand. George Box used to say that “Models, of course, are never true,
but fortunately it is only necessary that they be useful”, e.g. [13]. On the other hand
it is quite common that many models come from the experience, retrospective data
or intuitions of the practitioner. Sometimes they are analytically derived, e.g. as a
solution of differential equations, as happens with the majority of pharmacokinetics
models [25, 29, 30]. But, this issue is more severe in Experimental Design. In a
variety of situations before having the data two or more models may be potential
candidates. Once the data are collected a model has to be chosen after a model
selection procedure, then in a second step it has to be fitted. Thus, the optimal design
in this case faces two different objectives. On the one hand, it has to be good for
discriminating between models. This means to organize the experiment in such a
way some distances between the fitted models from the data are as large as possible
in order to make clear the differences between them [7, 11, 12, 14, 23, 36, 37].
Appropriate distances need to be chosen according to the existing statistical tests for
discriminating [17]. On the other hand the design has to be good for inferences with
the chosen model, either for estimating the parameters, estimating some functions
of them or making predictions. Even for linear model this is not trivial at all.

There are different approaches to this issue with some controversial and therefore
some unclear features of them. Optimal designs from different reasonable perspec-
tives may be rather different even for simple models. There is the need of inves-
tigating this issue providing clear directions to model selection. One of the first
attempts to tackle the discimination paradigm from an OED point of view consisted
in embedding two (or more) rival models in a more general model and designing to
estimate the additional parameters [5, 10]. This is the so called Ds-optimal design,
which makes much sense from an intuitive point of view. But it is not clear that this
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criterion increases the power of the usual discrimination tests. As a matter of fact
[24] have proved that T- and Ds-optimality coincide only in the case that the optimal
values of the parameters in the T-criterion are the nominal values for the Ds-criterion,
which is something very artificial and may be far from reality. Otherwise, the designs
could be rather different. There is nothing definitively proved about its relationship
with the test power of the likelihood ratio test or any other discrimination test. In
[28] three different approaches were considered for discriminating between models:
(i) augmenting a given design in an optimal way, (i i) evaluating a mixture of the
various criteria, and (i i i) optimizing an objective subject to achieving a prescribed
efficiency level for the others.

Another intuitive idea is maximizing the distance between two models assuming
one of them is considered as the “true” model, which is the model in the alternative
hypothesis (T–optimality) [11, 12, 23]. It happens that this focuses on maximizing
the non–centrality parameter of the likelihood ratio test statistic, which is a function
of the test power. The traditional F discrimination test is a particular case for nested
linear models. This criterion was extended to generalized linear models (GLM) [27]
as well as heteroscedasticity and multiple response [38]. As a definitive extension
of T–optimality [23] gave a criterion based on the Kullback-Leibler distance, KL-
optimality, which accounts for the likelihood ratio test power, which is also related
to the AIC. In particular, assuming just two rival models with pdf’s

fi (y, x, θi ), i = 1, 2,

and assuming ft is the “true” model for either t = 1 or t = 2, the Kullback–Leibler
distance between them is

I [ ft (y, x, θt ), fi (y, x, θi )] =
∫

ft (y, x, θt ) log

[
ft (y, x, θt )

fi (y, x, θi )

]
dy,

where i �= t , y is the vector of responses, θi and θt are the parameters in the two
models and x is the vector of experimental conditions at which the response y is
observed.

Then, KL–optimality is defined by the following objective function,

Ii,t (ξ) = min
θi∈Ωi

∫
X

I [ ft (y, x, θt ), fi (y, x, θi )] ξ(dx).

The relationship with the celebrated AIC criterion is illustrated as follows. Let
Li (θi ) and Lt (θt ) be the log-likelihoods of eachmodel. It is assumed that θ∗

t is known.
Then

min
θi

I[ ft (y, x, θ∗
t ), fi (y, x, θi )] = Et [Lt (θ

∗
t )] − max

θi
Et [Li (θi )],

where Et stands for the expectation according to distribution given by ft . The
expected Akaike criterion for model i is
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Et [AICi ] = 2{mi − Et [Li (θ̂i )]},

where mi is the number of parameters of model i and θ̂i is the Maximum Likelihood
Estimator (MLE) of θi , θ̂i = argmaxθi Li (θi ).

Thus, if the minimum can be exchanged with the expectation then KL-optimality
also minimizes the AIC of model i .

Another way to see this relationship is using the so called relative AIC of model
i with respect to model t ,

exp

[
AICt − AICi

2

]
= exp

[
log

Li (θ̂i )

Lt (θ
∗
t )

− mi

]
,

where the log-likelihood ratio appears in the right hand side.
López Fidalgo et al. [23] have proved also that T-optimality and all the mentioned

existing extensions are particular cases of KL-optimality. This means the discrimina-
tion can be considered among non-Normalmodels or even for correlated observations
[2, 9]. The criterion has been generalized in different ways for more than two rival
models, essentially assuming convex combinations of the efficiencies for several
models [34]. Following this idea [37] considered a max–min criterion and provided
a couple of suggesting examples with different probability distributions or different
mean in GLMs. Compound criteria with D-optimality have been used to search for
good designs also for fitting the model [35]. The sequential [26], Bayesian [36] and
Copula [1] perspectives have also been taken into account. The computational issue
still needs a lot of work [18].

Summarizing all this, Model Selection is a major topic in contemporary Statistics
and the OED perspective can provide a significant improvement to this problem.
Finding a joint solution to the problem of identifying the maximum of information,
both for discriminating between rival models and for fitting the best them, is still a
challenging topic.

3 Hot Areas for Further Research

In what follows some ideas for potential further work are presented.

3.1 Robustness of KL-Optimal Designs from Different Points
of View

Itwould be interesting to checkwhich features in the rivalmodels seemmore sensitive
for a successful discrimination using theKL-criterion. In particular, itwould be useful
to check how this criterion compared to others is able to detect differences between
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rival models in the probability distribution, the mean function, the variance structure
or the dimension of the model, e.g. more variables in the mean function. Analytic
results would be very much welcomed, but simulations studies will be there in any
case. For generalized linear models the link function must be added to this list.
Atkinson [6] worked out all the details for making inference on an extended model
that includes several submodels as GLMs.

3.2 Other Divergence Measures

Once a deep knowledge of what the Kullback-Leibler divergence does, better solu-
tionsmay be looked for. López Fidalgo et al. [23] proved that KL-optimality accounts
for maximizing the power of the likelihood ratio test, but there are other statistical
tests frequently used in practice [17, 33, 39]. The test power in these cases is likely
to be connected with other divergence measures [8]. In particular, there is the need to
check for the meaning of the Ds–optimality of the differing parameters from nested
models. At first sight it seems that for nested models Ds– and KL-optimality should
be the same. This is true just in the very particular case of linear models on the
parameters when the nested model differs from the root model in just one parame-
ter. In this case the KL-optimal design is the D1-optimal design for estimating that
parameter. For other models the optimal designs may be very different with very low
relative efficiencies with respect to each other [24]. For other discrimination tests
appropriate criteria must be found, taking into account other information divergence
measures, such as those derived from the Rényi entropy of f-divergences.

3.3 Bayesian Paradigm

As mentioned above most of the optimality criteria focus on the inverse of the infor-
mation matrix. If the model is nonlinear the FIM depends on the parameters of
the model. KL-optimality, and so T-optimality, does not focus on this matrix, but
directly on the probability measure (the design). Nevertheless, even for linear mod-
els nominal values of the parameters of the “true” model are needed. One way for
approaching this issue is the use of the Bayesian paradigm assuming a prior distrib-
ution on the parameters and a joint utility function including both objectives at the
same time, estimating the parameters of the model and finding the optimal design for
that. This theory has been considered in the literature as an important and necessary
approach. The Kullback-Leibler divergence jointly with the Shannon information is
used, in a different way than for discrimination, to develop a Bayesian D-optimality
criterion. Tommasi and López–Fidalgo [36] introduced the Bayesian approach for
discriminating between two rival models. Following-up this idea a systematization of
the Bayesian theory for discriminating between models jointly with fitting purposes
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would be welcomed. Additionally, this will avoid the annoying assumption of the
“true model”.

Utility functions focused on discriminationmust be considered. This is verymuch
related again to looking for different divergence measures. Some but not all of the
classic optimality criteria have a utility based Bayesian version. Mixing utility func-
tions may help to describe several simultaneous goals. Additionally, [37] considered
a max-min criterion for more than two rival models and gave a relationship with
a Bayesian criterion assuming a prior distribution of the weights of each model.
This particular point may be explored using mathematical programming techniques
applied here. This would be very useful for computational purposes. Max–min crite-
ria are not easy to deal with because of the lack of differentiability. The GET is still
applicable but an annoying auxiliary probability measure has to be found.

Summarizing these ideas, the Bayesian paradigm applied here bringsmainly three
results: (i) a convincing way of dealing with the unknown parameters, (i i) better
justified criteria not supported on the artificial assumption of a “true” model and (i i i)
efficient computational techniques for more than two rival models.

3.4 Correlated Observations

The Big Data world is a scenario of correlations, which needs to be considered
from different perspectives. In contrast with other criteria for discrimination, KL-
optimality is still valid in this situation. Campos-Barreiro and López–Fidalgo [9]
proved that a standard generalization of T-optimality to correlated observations can
be done just when the covariance matrix of the observations is assumed completely
known. Designs for models with a partially unknown covariance structure have been
widely studied (see, e.g., [4]). Most of this work has been done for D-optimality.
The approximation of the covariance matrix by the inverse of the FIM holds in this
situationunder someassumptions. If these conditions are not satisfiedwehaveusually
performed simulations with the designs obtained in the last steps of the algorithm
in order to check the monotonicity between the determinants of the FIM and the
covariance matrix. KL-optimality is not based on the FIM. Therefore, there is no
problem with the mentioned approximation.

A lot of work can be done on the area of optimal designs for discrimination in
presence of correlated observations. In particular, the usual time seriesmodels require
a discrimination process to select the best model, e.g. the best values of p, d and q in
an ARIMA(p, d, q) model. This is an area where things are not so simple from an
experimental design point of view. Amo-Salas et al. [3] considered a rather simple
time series model where the implicit covariance structure is worked out from the
model. This can be done analytically in very simple models, but it needs some new
results to be able to find a proper criterion both for discriminating and for estimating
the models.

Amo-Salas et al. [4] provided theoretical results for a function to be definite
positive. These results are then used to generate potential covariance structures from
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Bernstein polynomials. These results provide a powerful tool for spatio-temporal
modeling, which is not trivial since the covariance structure needs to be such that the
generated covariance matrix is nondefinite negative. Another interesting point would
be a deep study of the covariance structure behind the usual time series models in
order to look for appropriate optimal designs.

4 Computing Optimal Designs

While iterative procedures are very much needed for OED in general, they are spe-
cially needed for finding optimal information for discriminating betweenmodels. For
KL-optimality some classical algorithms have been adapted, but much more work
has to be done here. López–Fidalgo et al. [23] provided a general algorithm based
on the directional derivative,

(i) For a given design ξs let

θi,s = arg min
θi∈Ωi

∫
I ( ft , fi , x, θi )ξs(dx)

xs = argmax
x∈χ

I ( ft , fi , x, θi,s).

(i i) For a chosen αs with 0 ≤ αs ≤ 1 let

ξs+1 = (1 − αs)ξs + αsξxs ,

where ξxs is a design with measure concentrated at the single point xs .
Typical conditions for the sequences {αs} are

lim
s→∞ αs = 0,

∞∑
s=0

αs = ∞,

∞∑
s=0

α2
s < ∞.

This algorithm becomes slow after a while and needs to be combined with a finer
algorithm in the last part of the procedure. Tommasi et al. [37] provided another
algorithm, this time for a max-min criterion considering more than two rival models.
Convenient algorithms need to be adapted to this criterion and then their performance
need to be evaluated.

Other algorithms to be adapted include exact methods such as multiplicative,
interior point method, active set method, sequential quadratic programming, Nelder
Mead and metaheuristic algorithms such as particle swarm optimization, simulated
annealing, genetic algorithm, and hybridizations of these methods.

A friendly software is critical for the actual application of these ideas. Nowadays
there arewebapplication frameworks formost of the commercial andnon commercial
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Mathematical an Statistical software offering a product available for anyone without
having that particular software in his or her computer.

5 Discussion

Although OED for discrimination between models is quite popular at this moment
there is not a definitive systematization of the features and objectives in this field
converging to the joint concern of discriminating and fitting the model. As described
above, there are some controversial and unsolved issues around all that has been done
so far.Model Selection is essentially demanded for the current need of a scientific and
correct massive data treatment. KL-optimality is currently the most general justified
criterion. Nevertheless, other criteria have to be developed according to some other
statistical tests not based on the likelihood ratio test [17]. This includes a deep study
of Ds-optimality as well as trying additional divergence measures by justifying and
comparing them.

Checking the robustness of KL-optimality for different aspects is an important
task in order to have a clear idea of their strengths and limitations. A helpful Bayesian
approach can be made mainly in two ways. On the one hand for dealing with the
unknown parameters at the time of planning an experiment. On the other hand for
the case of more than two models, which introduces a rather more complex approach
with a multicriteria perspective. The later is very much related to massive data con-
sideration. Then in a parallel way there is the case of correlated data in the so called
Spatio–Temporal Statistics, which nowadays is present everywhere with great quan-
tities of possible data collection. Implementing algorithms and software for obtaining
optimal designs is very much desirable in the whole area of OED.

Model selection and so designing experiments for that purpose is very much
demanded today in our world of data analytics in the gates of the so called Industry
4.0.
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A Statistical Analysis of the Treatment
of Type 2 Diabetes in the Presence of Chronic
Kidney Disease in Patients Hospitalized
for Heart Failure

Juan Ignacio López-Gil and María Asunción Lubiano

Abstract Many patients suffering chronic kidney disease are associated with a type
2 diabetes mellitus. Different therapies for the treatment of type 2 diabetes have been
considered. This paper aims to check whether these therapies can be affected by the
presence of the kidney disease. The study was conducted on a sample of patients who
were hospitalized for heart failure in CAULE (Complejo Asistencial Universitario
de León).

1 Introduction

There is an extensive recent literature involving jointly the type 2 diabetes mellitus
(T2DM), the chronic kidney disease (CKD) and the heart failure (HF) as well as their
medical/pharmacological treatment (see, for instance, [1–5, 7–9, 12, 13]).

The study in this paper is constrained to a sample from a subpopulation of type 2
DM patients. This subpopulation refers to the type 2 DM patients who were hospi-
talized for heart failure. The sample corresponded to that of 248 patients who were
admitted in CAULE along a certain recent period.

The statistical analysis has aimed to get conclusions on the dependence of the
treatment received by type 2 DM patients who were hospitalized for heart failure
(e.g., diet, insulin,metformin, sulfonylureas, etc. or the combination of some of them)
and the presence/absence of CKD. Data management and statistical analysis were
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Table 1 Numbers of hospitalized for heart failure patients in CAULE receiving single or combined
treatments for type 2 DM, and classified in accordance with the presence/absence of CKD and with
the degree of CKD according to the classification with KDIGO 2012 [10] based on GFR categories
(n-G2 = normal-Stage/Degree 2, Gi = Stage/Degree i)

Treatment CKD CKD degrees

YES NO n-G2 G3 G4 G5

Diet 9 26 26 6 3 0

Glibenclamide 1 0 0 1 0 0

Glicazide 0 2 2 0 0 0

Glimepiride 2 4 4 1 0 1

Insulin 44 32 32 31 13 0

Insulin + glicazide 0 1 1 0 0 0

Insulin + linagliptin 3 2 2 2 1 0

Insulin + metformin 5 6 6 3 2 0

Insulin + metformin + lixisenatide 0 1 1 0 0 0

Insulin + metformin + repaglinide 0 1 1 0 0 0

Insulin + repaglinide 1 0 0 1 0 0

Insulin + saxagliptin 0 1 1 0 0 0

Insulin + sitagliptin 1 1 1 1 0 0

Insulin + sitagliptin + metformin 3 1 1 2 1 0

Insulin + vildagliptin 3 0 0 2 0 1

Insulin + vildagliptin + metformin 0 3 3 0 0 0

Linagliptin 6 2 2 5 1 0

Linagliptin + metformin 1 0 0 0 1 0

Linagliptin + metformin + repaglinide 1 0 0 1 0 0

Linagliptin + repaglinide 1 0 0 1 0 0

Liraglutide + metformin 0 1 1 0 0 0

Metformin 4 34 34 2 2 0

Metformin + glicazide 1 0 0 1 0 0

Metformin + glimepiride 0 1 1 0 0 0

Repaglinide 3 0 0 0 2 1

Repaglinide + linagliptin + metformin 1 0 0 0 1 0

Sitagliptin 3 1 1 2 1 0

Sitagliptin + glimepiride 1 0 0 1 0 0

Sitagliptin + metformin 1 8 8 0 1 0

Sitagliptin+metformin+ glibenclamide 0 1 1 0 0 0

Sitagliptin + metformin + glicazide 0 1 1 0 0 0

Sitagliptin + repaglinide 1 0 0 0 1 0

Vildagliptin 4 2 2 3 1 0

Vildagliptin + glicazide 0 1 1 0 0 0

Vildagliptin + glimepiride 0 1 1 0 0 0

Vildagliptin + metformin 4 10 10 3 1 0
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carried out using SPSS software (IBM SPSS Statistics version 24). The analysis has
been mainly based on testing from contingency tables built from data in Table1.

Of 248 type 2 DM hospitalized for heart failure patients, 104 suffered CKD,
whereas 144 did not.

2 Analyzing the Dependence of Receiving Each Type 2 DM
Treatment and the Presence of CKD

This section aims to discuss whether there is a statistical dependence between receiv-
ing each of the single type 2 DM treatment and the presence of CKD. The discussion
for each single treatment has been carried out on the basis of a 2× 2 contingency
table independence test. More concretely, whenever the Pearson chi-square test is
reliable because of the cells counts being large enough it has been applied; on the
contrary, we have considered the exact Fisher procedure.

As an example of such contingency tables analysis, assume the selected treatment
is metformin. Then, the associated contigency table is the one given in Table2.

The value of the Pearson chi-square statistic is equal to 19.176, whence the
p-value is 0.000012 and hence there is a significant dependence between the met-
formin treatment and the presence of CKD.

Separate conclusions for each of the treatments can be found gathered in Table3.
The obtained p-values for testing independence in the considered 2× 2 con-

tingency tables have been quite conclusive. In this way, for each of the involved
treatments these p-values have been either much greater than 0.1 or much lower than
0.01 (but for the diet which is slightly lower than 0.05). Consequently, we can con-
clude that the diet treatment of type 2DMhospitalized for heart failure patients seems
to be significantly dependent on the presence of CKD, linagliptin and repaglinide
treatments are quite significantly dependent and insulin and metformin treatments
are very significantly dependent.

In cases the presence of CKD influences the diabetic treatment, we can consider
a deeper analysis which is to be presented in the following section.

Table 2 2× 2 contingency table of type 2 DM hospitalized for heart failure patients in CAULE
where the two involved variables are receiving or not metformin treatment and suffering or not
CKD

Suffering from CKD Not suffering from CKD

With metformin treatment 21 68

Without metformin treatment 83 76
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Table 3 Summaryof statistical conclusions from2× 2 contingency table of type 2DMhospitalized
for heart failure patients in CAULE where the two involved variables are receiving or not the given
treatment and suffering or not CKD

Treatment Suffering from CKD Not suffering from CKD Differences

Diet 9 26 significant (p < 0.05)

Glibenclamide 1 1 Not significant (p = 1)

Glicazide 1 5 Not significant
(p >> 0.1)

Glimepiride 3 6 Not significant
(p >> 0.1)

Insulin 60 49 significant (p << 0.01)

Linagliptin 13 4 Significant (p < 0.01)

Liraglutide 0 1 Not significant (p = 1)

Lixisenatide 0 1 Not significant (p = 1)

Metformin 21 68 Significant
(p << 0.01)

Repaglinide 8 1 Significant (p < 0.01)

Saxagliptin 0 1 Not significant (p = 1)

Sitagliptin 10 13 Not significant
(p >> 0.1)

Vildagliptin 11 17 Not significant
(p >> 0.1)

3 Analyzing the Dependence of Receiving Each Type 2 DM
Treatment and the Degree of CKD

For each of the five treatments forwhich differences have been shown to be significant
one can develop independence contingency table tests concerning the degrees of
CKD [10].

However, because of the required expected (theoretical) frequencies conditions
for applying contingency tests, instead of having 2× 4 tables, we have reduced them
by removing either G5 or both n-G2 and G5. The conclusions have been gathered in
next subsections.

3.1 Diet Treatment Dependence on the CKD Degree

In case of diet (for which the influence of the CKD was slightly significant), the
Pearson chi-square test p-value equals 0.131 (Table4).



Analyzing the Influence of CKD in Treating Type 2 DM Heart Failure Patients 269

Table 4 2× 3 contingency table of type 2 DM hospitalized for heart failure patients in CAULE
where the two involved variables are following or not a diet and degrees of CKD

Treatment CKD degrees

n-G2 G3 G4

Diet 26 6 3

Not diet 118 63 29

Table 5 2× 3 contingency table of type 2 DM hospitalized for heart failure patients in CAULE
where the two involved variables are following or not insulin treatment and degrees of CKD

Treatment CKD degrees

n-G2 G3 G4

Insulin 49 42 17

Not insulin 95 27 15

Close p-values are obtained for the likelihood ratio and the linear-by-linear asso-
ciation tests. Consequently, there are not statistical evidences for the CKD degree
influencing to prescribe or not diet.

3.2 Insulin Treatment Dependence on the CKD Degree

In case of insulin (for which the influence of the CKD was strongly significant), the
Pearson chi-square test p-value equals 0.001 (Table5).

Close p-values are obtained for the likelihood ratio and the linear-by-linear asso-
ciation tests. Consequently, as for the presence of CKD, the CKDdegree significantly
affects the use of insulin therapy.

3.3 Linagliptin Treatment Dependence on the CKD Degree

In case of linagliptin (for which the influence of the CKD was quite significant), the
exact Fisher test p-value equals 1, but one should take into account that only degrees
G3 and G4 could be considered for the expected frequencies being right (Table6).

Close asymptotic p-values are obtained for the Pearson chi-square, the chi-square
withYates correction for continuity, the likelihood ratio, and the linear-by-linear asso-
ciation tests. Consequently, although the influence of the CKD was quite significant
on prescribing the linagliptin treatment, there is no statistical evidence for the CKD
degree influencing it.
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Table 6 2× 2 contingency table of type 2 DM hospitalized for heart failure patients in CAULE
where the two involved variables are following or not linagliptin treatment and degrees of CKD

Treatment CKD degrees

G3 G4

Linagliptin 9 4

Not linagliptin 60 28

Table 7 2× 3 contingency table of type 2 DM hospitalized for heart failure patients in CAULE
where the two involved variables are following or not metformin treatment and degrees of CKD

Treatment CKD degrees

n-G2 G3 G4

Metformin 68 12 9

Not metformin 76 57 23

3.4 Metformin Dependence on the CKD Degree

In case of metformin (for which the influence of the CKD was strongly significant),
the Pearson chi-square test p-value is lower than 0.0001 (Table7).

Close p-values are obtained for the likelihood ratio and the linear-by-linear asso-
ciation tests. Consequently, as for the presence of CKD, the CKDdegree significantly
affects the use of metformin therapy.

3.5 Repaglinide Treatment Dependence on the CKD Degree

Finally, in case of repaglinide (for which the influence of the CKD was quite signifi-
cant), the exact Fisher test p-value equals 0.204, and only degrees G3 and G4 could
be considered for the expected frequencies accomplishing the required conditions
(Table8).

Close asymptotic p-values are obtained for the Pearson chi-square, the chi-square
with Yates correction for continuity, the likelihood ratio, and the linear-by-linear

Table 8 2× 2 contingency table of type 2 DM hospitalized for heart failure patients in CAULE
where the two involved variables are following or not repaglinide treatment and degrees of CKD

Treatment CKD degrees

G3 G4

Repaglinide 3 4

Not repaglinide 66 28
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association tests. Consequently, although the influence of the CKD was quite signif-
icant on prescribing the ripaglidine treatment, there is no statistical evidence for the
CKD degree influencing it.

4 Concluding Remarks

From the performed contingency tables-based statistical analysis it is quite clear that
CKD presence and degrees significantly influence the farmacological treatment of
type 2 DM hospitalized for heart failure in case of insulin and metmorfin. For the
rest of treatments, differences have not been shown to be significant.

By looking at data in Table1, it is clear that the most usual farmacological treat-
ment forCDKpatients is insulin,whereasmetformin is themost commonly employed
for non-CKD. Consequently, taking into account the current Clinical Practice Guide-
lines (see, e.g., [6, 11]), the adequate treatment of type 2 DM in patients with
CKD requires a thorough knowledge of their pharmacokinecits by all profession-
als involved in the treatments and, first of all, a good coordination between primary
care physicians and specialists to provide a multifaceted care program to reduce
progression of disease.
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A Diagnostic Test Approach for Multitesting
Problems

Pablo Martínez-Camblor, Sonia Pérez-Fernández and Norberto Corral

Abstract In the last decades, multiple-testing problems have received much atten-
tion. Many different methods have been proposed in order to deal with this relevant
issue. Most of them are focused on controlling some weak version of the Type I
error such as the False Discovery Rate. Type II error is frequently forgotten. In this
work, themultitesting problem is treated from a diagnostic test approach in which the
p-values play the role of the studied predictive marker. In this context, the receiver
operating characteristic, ROC, curve is estimated. Several Monte Carlo simulations
help for a better understanding of the problem. Finally, a real dataset studying the
relationship between atosomal CpG sites and characteristic of hepatocellular carci-
noma is considered.

1 Introduction

Modern science frequently produces data on thousands of different features. Proba-
bly, the -omics technologies (genomics, transcriptomics, proteomics, etc.) stand for
the most relevant examples although other fields like astrophysics, brain imaging
or spatial epidemiology have also increased substantially the size of the collected
data. Conventionally, statistical analyses of those data often include a huge number
of hypotheses to be tested at the same time. In this context, standard statistical con-
cepts, like the p-value, lose their original probabilistic interpretation. Notice that,
for any fixed nominal level, the probability of spurious effects, or false positives,
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Table 1 Number of mistakes committed when N null hypotheses are simultaneously tested

Reject Not Reject Total

Null true r − R U N0

Alternative true R u − U N − N0 (= N1)

Total r N − r (= u) N

greatly increases when a massive number of null hypotheses are simultaneously
tested. Classical multiple comparison procedures focus on controlling the probabil-
ity of committing any Type I error, i.e., to control the family wise error rate (FWER).
Unfortunately, this objective is too ambitious in this context and more liberal criteria
must be used (see Farcomeni [8] for a recent and extensive review ofmodernmultiple
hypothesis testing methods).

In the multiple testing context, conventionally N (null) hypotheses are contrasted
simultaneously from adequate tests. The classical Table1 depicts schematically the
possible practical situations. Of course, in practice, only the total number of hypothe-
ses, N , and the total number of rejections, r , are really known.

Notice that controlling the FWER is equivalent to control the probability
P{r − R > 0}. Seeger [16] introduced and laterBenjamini andHochberg [1] revised
and popularized the false discovery rate (FDR), defined as the expected proportion
of spurious effects, i.e., FDR= E[(r − R)/(r ∨ 1)] (a ∨ b = b if a ≤ b). The FDR
is a frequentist well established definition for the multiple hypothesis testing error
and, undoubtedly, the most used procedure.

Several generalizations for the FWER and the FDR criteria and different pro-
cedures to implement them have been proposed (see, for instance, Sarkar [15] and
references therein). Most recent works deal with the problem of controlling the tail
probability of false positives. Genovese andWasserman [11] proposed to control the
tail probability of the false discovery proportion (FDP) by the so labeled FDX (false
discovery exceedance), i.e., for a fixed α, to control P{1 − R/r > α}. In addition,
we highlight the sequential goodness of fit (SGoF) strategy, proposed by Carvajal-
Rodríguez et al. [2] and deeply explored by de Uña-Álvarez [5]. The SGoF method
rejects an amount of null hypotheses equal to the difference between the observed
and the expected amounts of p-values below a given threshold under the assumption
that all nulls are true (we denote by H0 = ∩N

i=1 H0,i , in bold, this hypothesis). The
outcome of most of those methods is a cutoff point; p-values below this threshold
are declared significant while p-values above it are declared non-significant.

Considering each test as a sampling unit and its p-value as a marker of the null
hypothesis credibility, themultiple hypothesis testing problem has a clear connection
to the classification theory (this point of view was briefly explored by Storey [18]).
In this paper, assuming that p-values follow a mixture distribution (see Sect. 2),
multitesting problem is dealt with from a diagnostic test approach; in particular,
the well-known receiver-operating characteristic (ROC) curve is derived. This curve
does not provide a cut-off point but graphical information about the real diagnostic
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capacity of the studied marker, in this case, the p-value. One of the main goals of
this work is pointing out the limitation of the process. Notice that, depending on the
power of the study, the p-value is not always a good diagnostic marker. And even
when it is a good diagnostic marker, the classification could be difficult depending
on the prevalence of untrue nulls. In Sect. 3, some particularities of the ROC curve
when it is applied on multitesting problems are considered. Section4 is devoted to
the ROC curve estimation. The performance of the proposed method is empirically
studied via Monte Carlo simulations. In Sect. 5, a real data problem is analyzed.
Finally, in Sect. 6, we present our main conclusions.

2 The Mixture Model

When it is assumed that there exist N independent hypotheses (H0,i , 1 ≤ i ≤ N )
which are going to be tested from adequate tests and that F0 and F1 are the cumulative
distribution functions (CDFs) for the p-values when the null is true and untrue,
respectively, then the CDF of the p-values will be the mixture distribution

GN (t) = π0 · F0(t) + (1 − π0) · F1(t),

where π0 (= N0/N ) is the true null proportion. In this case, for each t ∈ [0, 1], the
functionGN (t) represents the probability that the p-value associatedwith a randomly
selected hypothesis will be less or equal to t . However, it should be noted that this
model assumes that all true nulls follow the same distribution (F0), which can be
plausible, but also that all untrue nulls follow the same distribution (F1), which is
a quite more unrealistic proviso. Without this assumption, the probability that a
p-value from an untrue hypothesis will be less or equal to t depends on the particular
hypothesis from which this p-value has been drawn. Although depending on the
particular experiment studied a random effects or hierarchical model can be more
appropriate (see Efron et al. [6]), we adopt the most common situation in which the
set of hypotheses to be tested are previously fixed, therefore F1 = N−1

1 · ∑
i∈J1

F1,i ,
where J1 ⊆ {1, . . . , N } stands for the set of indices in which the null is untrue. For
each t ∈ [0, 1], GN (t) stands for the average probability that the p-value associated
with a randomly selected hypothesis will be less or equal to t . This interpretation is
still valid in the presence of dependency structures.

Notice that, on the usual assumption that, under the null, the CDF of each individ-
ual p-value is t · I[0,1](t) (IA stands for the standard indicator function on the set A),
i.e., each individual p-value follows a uniform distribution within [0, 1], it is derived

GN (t) = π0 · t · I[0,1](t) + (1 − π0) · F1(t). (1)

Remark 2.1 Although it is reasonable to assume that, under the null, each single
p-value is uniformly distributed on [0, 1], and this proviso is true when the null
is simple and the distribution of the test statistic is continuous and known, the true
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p-value distribution is only stochastically dominated by the uniform if its distribution
is discrete or the p-value is estimated by a resampling method (see, for instance,
Farcomeni [8]).

From the mixture model, the traditional BH procedure for controlling the FDR at
level α proposed by Benjamini and Hochberg [1] can be seen as a plug-in method
for estimating the threshold (Genovese and Wasserman [10]),

TBH(α) = sup{t ∈ [0, 1] : GN (t) ≥ t/α}, (2)

and, assuming independence among tests, the SGoF method (taking γ = α) tries to
estimate the threshold (de Uña-Álvarez [5]) as

TSGoF(α) = G
−1
N

(
GN (α) − α − zα · √

α · (1 − α)/N + N−1
)

, (3)

where G−1
N (t) = inf{s : GN (s) ≥ t} and zα = Φ−1(1 − α) (Φ stands for the stan-

dard normal CDF).

3 Receiver Operating Characteristic Curve
in the Multitesting Problem

The ROC curve is a popular graphical method frequently used in order to study the
diagnostic capacity of continuous markers. It represents in a plot the true-positive
rate (TPR) against the false-positive one (FPR) of all thresholds of the marker. Both
practical and theoretical aspects of the ROC curve have been extensively studied
in the specialized literature (see Zhou et al. [19] for a recent review). Assuming
that smaller values of the marker indicate larger confidence that a given subject is
positive, let χ and ξ be two continuous random variables representing the marker
values for the negative and positive subjects, respectively. Therefore, for a fixed point
t ∈ [0, 1], the ROC curve is defined as follows,

R(t) = Fξ (Fχ (t)) = P{ξ ≤ Fχ (t)} = P{F−1
χ (ξ) ≤ t} = FF−1

χ (ξ)(t), (4)

where Fχ and Fξ denote the CDFs for the variables χ and ξ , respectively. In the
current context, p-values play the role of marker values and the true and false nulls
are the negative and positive subjects, respectively. Assuming the mixture model (1),
the problem is simplified; in this case, the ROC curve stands for the CDF for the
untrue nulls, i.e.,R(t) = F1(t) (t ∈ [0, 1]). Notice that the sensitivity (TPR) must be
interpreted as the average probability that an untrue null hypothesis will be correctly
classified as untrue, i.e., the average probability of rejecting an untrue null hypothesis
(power). Figure1 depicts the real ROC curve for F1(t) = ta · I[0,1](t) with a such
that the average sensitivity is 0.8 when the specificity (1-FPR) is 0.95. In order to
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Fig. 1 ROC curve under the
mixture model for
F1(t) = ta · I[0,1](t) with
a = log(0.8)/ log(0.05).
Remember that, in this
context, R(t) = F1(t).
Notice that the x-axis is not
in linear scale
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give more relevance to high specificities, the scale of the x-axis has been modified.
Remember that ROC curve is equal to F1 and the main diagonal (dotted gray line,
since the scale of x-axis is modified) is equal to F0.

Due to the fact that the ROC curve does not depend on the prevalence of the
studied characteristic, 1 − π0, this graphical method provides valuable information
about the real capacity of the marker (p-value) to identify the subjects (tests) as
positives (rejecting) or negatives (no rejecting). Conventionally, the aforementioned
thresholds strongly depend on this prevalence; particularly, for the above situation,
TBH(0.1) is 0.0202, 0.0160 and 0.0076 for π0 = 0.75, 0.80 and 0.90, respectively;
with these cut-off points, the obtained powers would be 0.749, 0.736 and 0.697.

The SGoF method also depends on the number of tests, N ; when N = 10, 000,
TSGoF(0.1) takes the values 0.0086, 0.0074 and 0.0043 for π0 = 0.75, 0.80 and 0.90,
leading to powers of 0.703, 0.696 and 0.668. The Youden index, Y , is achieved at
point 0.06 (Youden index is often used in diagnostic tests in order to obtain an optimal
threshold; it is defined as Y = maxt∈R{TPR(t) − FPR(t)}); at this point, the obtained
FPR is obviously 0.060 and the average power 0.811 (= TPR); i.e., by using this
cut-off point, in average 6% of the true nulls would be declared false and around
19% of the untrue nulls would not be rejected.

Remark 3.1 As it is well-known, the area under the ROC curve (AUC) is one of the
most commonly used global index of diagnostic accuracy (Faraggi and Reiser [7]).
It ranges between 1/2, when the marker does not contribute to a correct classifica-
tion, and 1, if the marker can classify perfectly all subjects. The AUC has a direct
probabilistic interpretation: in particular, it is the probability that the value of the
marker in a randomly chosen negative subject will be higher than the value of the
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marker in a randomly chosen positive subject. In the current context it can be read
as the average of the power when the Type I error varies between 0 and 1. However,
large Type I errors are not interesting in practice; hence, limiting the range of the
Type I error and considering the partial area under the curve, pAUC (Ma et al. [13]),
seems to be a more adequate measure. In this case, the AUC is 0.931 and the pAUC
between 0 and 0.05 is 0.0372 (0.745 in a 0 − 1 scale).

4 Receiver Operating Characteristic Curve Estimation

In practice, we observe N p-values, {p1, . . . , pN }, corresponding to N nulls to
be tested {H0,1, . . . , H0,N }. Assuming independence between the p-values, the
Liapunov’s Central Limit Theorem (see, for instance, Ibarrola et al. [12]) implies
the following result:

Theorem 4.1 Let {p1, · · · , pN } be an independent random sample where for each
i ∈ 1, . . . , N, pi was drawn from F∗,i . For each t ∈ [0, 1], let be GN (t) = (1/N ) ·
∑N

i=1 F∗,i (t) and ĜN (t) = (1/N ) · ∑N
i=1 I(−∞,t](pi ), then

N · ĜN (t) − GN (t)
√∑N

i=1 F∗,i (t) · (1 − F∗,i (t))

L−→N N (0, 1). (5)

This Central Limit Theorem for non identically distributed variables implies that,
if N is sufficiently large, the empirical CDF estimator provides a good approximation
of the real distribution function. In Genovese and Wasserman [10] this convergence
is deeply considered from a stochastic process approach.

On the other hand, the π0 estimation has been previously considered in the spe-
cialized literature. For instance, Dalmasso et al. [4] took advantage of the logarithmic
function properties and defined the family of estimators

π̂0,k = (1/N )
∑N

i=1[− log(1 − pi )]k
k! , with k ∈ N. (6)

Onceπ0 is estimated, from themixturemodel and result (5), the estimationof theROC
curve is direct. However, assuming that for any fixed nominal level the probability of
rejecting an untrue null hypothesis is higher than the probability of rejecting a true
null hypothesis, and taking into account that R is a non-decreasing function, then

R̂(t) = max

{

sup
s∈[0,t]

{F̂1(s)}, t · I[0,1](t)
}

, (7)

where F̂1(s) = min{(ĜN (s) − π̂0,2 · s · I[0,1](s)) · (1 − π̂0,2)
−1, 1}, is a more appro-

priate estimator for the ROC curve. Of course, the estimator is still valid by using
other π0 approximations.
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4.1 Simulation Study

The behavior of the proposed estimator is empirically studied via Monte Carlo sim-
ulations. Two different strategies were considered: in the first one, the p-values were
directly drawn fromdifferent theoreticalmixturemodels; in the secondone, thewhole
problem is simulated, i.e., one sample is drawn and the corresponding p-values are
computed from an adequate test where the null hypothesis is μ = 0.

In the first scenario we run independent random samples of size N from the dis-
tribution GN (t) = π0 · t · I[0,1](t) + (1 − π0) · F1(t) where F1 = (1/N1)

∑N1
i=1 t

ai ·
I[0,1](t) with ai = L + (i/N1) ·U and two parameters (L and U ) selected in order
to obtain different power averages; particularly, at level 0.05, power averages (β̄0.05)
of 0.6 and 0.8 were studied.

In the second considered scenario the whole problem is simulated. We consider
situations where the nulls to be tested are H0,i : μi = 0, where μi stands for the
expected value of the i th population (1 ≤ i ≤ N ). Under the null, we drawn inde-
pendent samples (with size n = 25) from a standard normal distribution while, under
the alternative, the samples were drawn from aN (μ∗, 1) distribution where μ∗ was
taken such that the power average was the desired one (β̄0.05 = 0.6 and 0.8 were con-
sidered). Then, the p-values were computed by using the Student t-test (parametric).

Figure2, left, depicts the approximate shape of the involved curves in the first
scenario; notice that the real one depends on the number of untrue nulls (N1). At
right, the shape of the respective ROC curves in the second scenario is displayed.

Table2 shows the observed results for both scenarios on 1,000 Monte Carlo iter-
ations. Particularly, we report mean ± standard deviation for the absolute difference
between the real and the estimated proportion of true nulls (π0), as well as the
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Table 2 Mean± standard deviation for the absolute difference between π0 and π̂0,2; the integrated
absolute difference between the ROC curve estimation and its target; the errors E[T̂BH(0.05)]
and E[T̂SGoG(0.05)] obtained from 1, 000 and 10, 000 Monte Carlo iterations for both described
scenarios

N π0 β̄0.05 |π̂0,2 − π0|
∫ |R̂ −R| E[T̂BH(0.05)] E[T̂SGoF(0.05)]

Scenario I

1,000 0.95 0.60 0.056 ± 0.04 0.178 ± 0.09 0.190 ± 0.14 1.871 ± 2.21

0.80 0.054 ± 0.04 0.182 ± 0.14 0.103 ± 0.07 4.287 ± 7.61

1,000 0.85 0.60 0.059 ± 0.05 0.109 ± 0.07 0.093 ± 0.07 0.350 ± 0.26

0.80 0.052 ± 0.04 0.074 ± 0.06 0.052 ± 0.04 0.546 ± 0.44

10,000 0.95 0.60 0.019 ± 0.01 0.109 ± 0.06 0.056 ± 0.04 0.257 ± 0.19

0.80 0.018 ± 0.01 0.075 ± 0.06 0.032 ± 0.02 0.381 ± 0.29

10,000 0.85 0.60 0.032 ± 0.02 0.088 ± 0.04 0.031 ± 0.02 0.091 ± 0.07

0.80 0.020 ± 0.02 0.045 ± 0.02 0.016 ± 0.01 0.130 ± 0.10

Scenario II

1,000 0.95 0.60 0.054 ± 0.04 0.168 ± 0.11 2.404 ± 2.50 0.520 ± 0.40

0.80 0.056 ± 0.04 0.189 ± 0.15 0.446 ± 0.33 0.450 ± 0.35

1,000 0.85 0.60 0.055 ± 0.04 0.082 ± 0.06 0.455 ± 0.33 0.158 ± 0.12

0.80 0.055 ± 0.04 0.069 ± 0.07 0.137 ± 0.11 0.164 ± 0.12

10,000 0.95 0.60 0.018 ± 0.01 0.080 ± 0.05 0.865 ± 0.70 0.114 ± 0.08

0.80 0.017 ± 0.01 0.063 ± 0.06 0.150 ± 0.11 0.112 ± 0.08

10,000 0.85 0.60 0.020 ± 0.02 0.044 ± 0.02 0.159 ± 0.12 0.044 ± 0.03

0.80 0.015 ± 0.01 0.027 ± 0.02 0.043 ± 0.03 0.047 ± 0.03

integrated absolute error committed by the ROC curve estimator proposed in (7). In
addition, information about the errors committed (measured by E[T̂ ] = |T̂ − T |/T )
for TBH(0.05) and TSGoF(0.05) are also reported. For N = 1, 000, the observed results
are disappointing; both the mean and the standard deviation of the ROC curve esti-
mates are really large. However they decrease for N = 10, 000. It is worth to notice
that the observed results in the second scenario are a bit better than the previous ones
but, in any case, really similar to them.

5 A Real-World Example: The Shen Data

The Shen data contains information of 62 Taiwanese cases of hepatocellular carci-
noma (HCC) on which tumor and adjacent non-tumor tissues were analyzed using
Illumina methylation arrays (Illumina, Inc., San Diego, CA) that screen 26,538
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Table 3 Values of π̂0,k for
different k-values

π̂0,1 π̂0,2 π̂0,3 π̂0,4

t-test 0.404 0.384 0.450 0.590

Wilcoxon
test

0.424 0.427 0.541 0.791

autosomal CpG sites. The reader is referred to Shen et al. [17] for a complete infor-
mation about the original study.

The data are publicly available at the Gene Expression Omnibus (GEO) page,
with access number GSE37988 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
acc=GSE37988).

Probes corresponding to the X andY chromosomeswere removed from the dataset
in order to eliminate the X -inactivation effects. We considered the raw data (without
any previous quality control).

Due to the fact that each CpG is measured on the same subjects, the parametric
Student t-test or the non-parametric Wilcoxon test for paired samples can be used in
order to check the null of equality between, let us abuse, distributions in tumor and
non-tumor tissues.

The total number of CpG sites with a p-value less than 0.05 (usual nominal level)
was 12,394 (46.7%) using the t-test, and 12,592 (47.4%) using the Wilcoxon test.

Figure3 shows the p-value histograms andGN function estimates for the Student
(black) and the Wilcoxon (gray) test.

Table3 shows estimations of π0 using different k-values of the estimator defined
in (6). Results are influenced by the p-values close to 1, specially for largest k.

The BH method, T̂BH (0.05), declares significant the 10,451 smallest p-values
(cut-off point of 0.019690) for the t-test and the 10,585 smallest ones when the
Wilcoxon test is used (cut-off point of 0.019943).

At these points, the estimated average sensibilities (using π̂0,2) were 0.627 and
0.681, for the t and the Wilcoxon test, respectively.

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37988
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE37988
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Figure4 depicts the estimated ROC curves for the Student (left) and theWilcoxon
(right) test for the different π0 estimates considered.

Obviously, the results depend on the π̂0,k value; however, it should be recalled
that the x-axis scale was altered and the real difference is not as large as it seems.

6 Discussion

Currently, a number of researchers, mainly bioinformaticians, must often deal with
multitesting problems. As a consequence, the development of adequate statistical
tools in order to handle and control the involved Type I and Type II errors is a
really hot topic in the specialized literature. Although some authors as Genovese and
Wasserman [9] or Storey [18] have already considered the false non-discovery rate,
most of the works are focused on trying to control, in some way, the false positive
rate. However, the first quantity is crucial in order to know what the real capacity of
detecting true effects is. Notice that, even when we know the exact number of false
nulls, the p-value could not be an appropriate measure for separating those from the
true nulls.

Actually, this work does not propose real practical solutions but it pays attention
to an usually forgotten aspect of the multitesting problem. It intends to ponder the
technical limitations which this complex issue provokes. Remember that, in most
cases, we only have one sample of p-values drawn from an N -dimensional vec-
tor. By assuming independence among tests, one can perform some kind of correct
inference; furthermore, the independence assumption is reasonable in a number of
practical situations (see Clarke and Hall [3]), but it may be a source of serious mis-
takes and misleading conclusions. In the presence of arbitrary correlation structures,
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the limitations are clear. The main problem lies in the variability of the observed
proportion of rejections under the null; while in the independent case, in the usual
practical problems, this number is really close to the fixed nominal level, under
dependent structures it can vary a lot (see Martínez-Camblor [14]) and both the π0

and the R(·) estimates are strongly dependent on that observed value.
The simulation studies show the limitation capacity to performa correct estimation

of the ROC curve in the multitesting context. In addition, the presence of p-values
close to the extremes (zero and one) provokes precision problems in the obtained
estimates; unfortunately, when the number of tests is large (most frequent case), this
problem is not unusual. The accuracy problem, frequently ignored, gains relevance
when the selected cut-off point strongly depends on the fifth or sixth decimal position.

In this report, we explore the interpretation of the sensibility and specificity in
the multitesting problem by assuming the mixture model and, in this context, a ROC
curve estimator is proposed. The explored methods allow us to give an estimation
of the sensitivity average for each particular problem. Even taking into account the
limitations of the procedures, in each particular problem, this quantity can help to
have a better understanding of what the actual capacity of p-values to distinguish
false from true null hypotheses is.
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The Length-Time Bias in Tourism Surveys

José Manuel Menéndez-Estébanez and José Manuel González-Sariego

Abstract The length-time bias arising in many tourist surveys, is often not taken
into account in stating the most common estimates. In this paper, by means of the
application to tourism research on the Principality of Asturias, one can see that a
model, suggested to provide us with better estimates of means and proportions under
longitudinal bias conditions, shows very important differences with respect to the
methods based on the usual estimators of these parameters.

1 Introduction

Nowadays, in any area in the world having a certain tourist impact there are public
and private centers trying to get appropriate tools for statistical synthesis so that they
can provide these centers with the widest possible information in order to establish
policies and programs in connection with tourism.

This information is often exclusively given by national statistical services. Con-
sequently, the available information from them is very general, and there is usually
a need of information regarding small areas.

In the case of Spain, all the autonomous communities have either public or private
bureaus, complementing the official statistics regularly provided by the Government
of the nation. This complementary endeavor is carried out by handling statistical
indicators of a more regional character. Particularly, in the Principality of Asturias,
the Asturias Tourist Information System (SITA)1 has a permanent and systematic
mechanism for collecting, managing, organizing and disseminating information on
the supply, the demand or the macroeconomic magnitudes of the Asturian tourism,
among others.

1http://www.sita.org.
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This more detailed knowledge of a particular tourist area can be achieved in many
different ways. But in case one wishes to know to a deeper extent the behavior of
the visitors of the internal (i.e., domestic and inbound) tourism, individual surveys
should be conducted.

For this reason, in almost all the autonomous communities tourists are frequently
contacted to conduct surveys. In general, surveys are rather different because of either
the orientation of the questionnaire or the considered sampling method. Unfortu-
nately, many of the surveys are very similar because of the lack of procedures to
minimize estimating errors. In this respect, it is very common that data are not
weighted, that errors different from those involved in the sampling are not analyzed,
bias associated with length-time is not taken into account, and so on.

These deficiencies are crucial in estimating a series of parameters that are funda-
mental in the tourism setting. These parameters are “the occupancy rate”, “the total
number of nights spent”, “the average length of stay”, “the proportion of visitors
using private tourist accommodation”, “the proportion of same-day visitors”, “the
average daily spending of visitors”, etc.

In the following sections the problems associated with length-time bias are to be
seen and a basic application of the statistical model used in Asturias to alleviate such
a bias is shown.

2 Length-Time Bias

The length-time bias, also referred to as longitudinal bias, could be described as a
distortion of the results due to the fact that the probabilities of population units to
belong to the sample are not necessarily equal. This is due to differences in the time
these units remain in the statistical framework.

There are just a few studies on this topic, and they are usually related toMedicine.
For instance, Pelikan and Moskowitz [1] argue that, by taking specimens on specific
dates to detect breast cancers, the results are skewed because of the greater proba-
bility in locating long-term cases in contrast to situations associated with a greater
severity and a lower time of development. This bias induces a more benign interpre-
tation of the cancer problem than the real one, if no statistical correction factors are
introduced. Yoshimoto and Tanaka [6] consider similar assertions, although referring
to the detection of intracranial diseases.

In the tourism context the problem is analogous to these one can find in the
literature. Samples of tourists are usually chosen on specific days, which makes it
more likely to interview tourists who have been in the region formany days than those
who will stay for only one day. In fact, for many of the last tourists the probability
of belonging to the sample will equal zero (it is enough that they stay in the area in
days different from those considered for interviewing).

A consequence from such a situation is that tourists spending more days of stay in
the region are over-represented in the sample. This affects all the estimates that have
been mentioned in the previous section. For instance, the number of nights spent in
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Fig. 1 Daily number of
visitors to a region

the region or the average length of stay will be higher than they actually are. On the
contrary, the proportion of same-day visitors who visited the area in the considered
period will be lower than the actual one. In Example2.1, with a very elementary
structure and under very ideal conditions, these dysfunctions can be clearly seen.

Example 2.1 (Estimation of the average length of stay and the proportion of same-
day visitors)

A region receives two visitors every day. One of them stays only 1 day (same-day
visitor) and the other stays 2 days, with 1 night being spent in the only hotel in
the region. In other words, every day the region has three tourists, 2 of them being
accommodated in the hotel and spending a total of 2 days of stay, and 1 same-day
visitor who will only spend that given day in the region. And this scheme happens
for any day of observation (Fig. 1).

Suppose now that we record these data for k days chosen at random in such a way
that consecutive days are not chosen, in order to prevent a visitor from appearing
repeated in the sample.

What value would be assessed to the average visitor’s stay? At the first glance,
the answer could be 5/3, since 2 people spent 2 days and 1 person spents only 1.
However, this is not the right answer, since the average length of stay intended as the
ratio between the total number of stays (3k) and the number of visitors (2k) equals
3/2.

And even more: what is the proportion of same-day visitors who visit the region
during these k days? If every day in the sampling we count 2 people staying in the
hotel and 1 same-day visitor, our immediate response will be 1/3. However, during
this period, the region has been visited by as many same-day visitors as people have
been hosted in the hotel, so the correct answer would be 1/2.

From Example2.1, it can be deduced that estimates of the average length of
stay and the proportions as the indicated one, should not be based on their natural
(analogue) estimators, “sample mean” and “sample proportion”, but it is necessary
to support them on other statistical models that help in correcting biases.
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3 Statistical Model and Formulation

Torres et al. [3] have developed a model allowing to compute means and proportions
and incorporating the effect associated with the length-time bias. As particular cases
of the model, the two following corollaries can be obtained.

Corollary 3.1 The average length stay of the interviewees along some days is given
by

as = 1
d∑

k=0

fk
k + 1

, (1)

where as = “average length of stay” (in number of days of the stay), k = “number of
nigths spent”, d =“maximumnumber of nights spent”, and fk =“relative frequency
of the number of nigths spent”.

Corollary 3.2 For any categorical variable, the proportion of interviewees between
two categories A and B can be expressed as follows:

IA
IB

= asA · nA

asB · nB
, (2)

where IA = “number of interviewees in category A”, IB = “number of interviewees
in category B”, asA = “average length of stay in Category A”, asB = “average
length of stay in Category B”, nA = “number of visitors in Category A”, and nB =
“number of visitors in Category B”.

From Eq. (2) it is immediately possible to deduce the proportion of visitors from
category A with respect to the total of visitors of both categories (see Eq. (3)).

pA = nA

nA + nB
= asB · IA

asB · IA + asA · IB . (3)

The above results are only valid under the hypotheses that the number of tourists
entering the region every day is constant, and the distribution of the number of nights
spent is constant over the days.

These hypotheses may seem to be very restrictive. However, we should not forget
that these are the ones that are usually assumed for this type of samplings when
homogeneous periods are analyzed with respect to the tourist behavior in a region.

Thus, for instance, when we determine the average length of stay for the summer
seasonwewill calculate it from the average lengths of each of themonths. Otherwise,
it would be necessary to distinguish within each month the peculiarities of each week
and even those of each day (if it is Monday, if it is holiday, if it is first day of the
month, and so on). But, in practice the latter is impossible to be considered, then a
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similar behavior is usually assumed for every day of the month, for the number of
new visitors and for the distribution of the number of nights spent.

One can easily check that by applying Eq. (1) to Example2.1 we get the actual
output for the average stay length. Indeed, since one third of the visitors do not spend
a night and the others spent one, we have that

f0 = 1/3, f1 = 2/3, k = 0, 1

and, hence,

as = 1
1/3

1
+ 2/3

2

= 1.5, (4)

whence the average stay length equals 1.5 days.
If Eq. (3) is applied to Example2.1 we can verify that the actual result for the

proportion of same-day visitors (Category A) can also be obtained, since

IA = 1, IB = 2, asA = 1, asB = 2,

whence

pA = 2 · 1
2 · 1+ 1 · 2 = 0.5, (5)

so the proportion of same-day visitors is 0.5, that is, there are as many same-day
visitors as non-same-day visitors.

4 Application to the Principality of Asturias

Along the year and by means of individual interviews, SITA collects diverse infor-
mation on the visitors of the Principality of Asturias.

It is a very complex process, since one has to take into account all types of visitors
(tourists and same-day visitors), all types of accommodation establishments (hotel,
rural tourism, camping and private tourist accommodation) of any area of Asturias
(western, center and east) and in any period of the year. The detailed sampling
methodology, which has been proposed after several years of trials and being yearly
updated to improve its statistical reliability, can be found in Valdés et al. [5] and
Torres et al. [4].

In the survey of tourist demand corresponding to 2016, 4,700 interviews were
conducted, them being proportionally distributed along the 12 months of the year
(according to the Asturias Tourist Information System [2]). In the technical datasheet
(see Table1) some relevant features from this study have been descriptively
summarized.
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Table 1 Technical datasheet summarizing the survey conducted on visitors to the Principality of
Asturias in 2016 (Source: SITA)

FEATURES SURVEY

UNIVERSE over 18 years tourists in Asturias

GEOGRAPHICAL SCOPE Principality of Asturias

structured individual questionnaire
INFORMATION GATHERING PROCESS questionaire’s languages:

Spanish, English, French, German

POPULATION SIZE technically infinity

SAMPLE SIZE 4700 (1368 in accommodation establishments)

CONFIDENCE LEVEL 95% (Z = 1.96, p= q= 0.5)

1) in accommodation establishments:
quota sampling, with quotas depending on
the period/season, accommodation type,
day of the week, geographical area,...

SAMPLING PROCEDURE 2) otherwise: after stratification by
either period/season, or accommodation type,
or day of the week,... the interviewer chooses

at random a sample of visitors
from especially attractive venues

FIELD SURVEY DATE January to December 2016

STATISTICAL ERRORS TABLE NNN(∗) NNN SAMPLING ERROR

COLLECTIVE ACCOMMODATION 2,257,173 2,558 ±1.94%

Collective Accommodation Splits

Western 251,140 299 ±5.66%
AREA Central 1,321,130 1,523 ±2.51%

Eastern 684,903 736 ±3.61%

1st Quarter 435,376 513 ±4.32%
PERIOD 2nd Quarter 1,197,460 1,278 ±2.74%

3rd Quarter 624,337 767 ±3.54%

TRAVEL Holidays 1,644,894 2,093 ±2.14%
REASONS Work 491,052 286 ±5.79%

PRIVATE TOURIST ACCOMMODATION 2,794,675 731 ±3.62%

SAME-DAY VISITORS 2,138,782 1,411 ±2.61%

(∗) estimated

August has been the month with more conducted interviews, since it is the month
having a greater tourist demand in Asturias. More concretely, 946 interviews have
been conducted. In the two following subsections Corollaries 1 and 2 are applied on
the data collected by SITA in the Principality of Asturias along August 2016.
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Table 2 Distribution of
nigths spent in hotels
(Source: SITA)

# Nights Percentage

1 6.31

2 15.09

3 13.91

4 17.23

5 10.79

6 10.00

7 13.85

8 2.70

9 2.53

10 3.00

11 0.26

12 1.82

14 0.57

15 1.37

21 0.57

Total 100.00

4.1 Determining the Average Stay Length

The primary information to determine the average stay length corresponds to the
distribution of the number of nights visitors have spent. Data for tourists who are
hosted in hotels have been collected in Table2.

The sample mean of nigths spent in hotels, without considering the length-time
bias, equals 4.98 nights, that is, the average length of stay of visitors in the hotel
sector is 5.98 days.

If this computation is made in accordance with Eq. (1), so that the length-time
bias is taken into account, the average stay length equals 4.72 days.

The same computations can be performed for tourists hosted in either collective
or private tourist establishments. In the first case the average stay is equal to 9.19
days if the longitudinal bias is not considered, and to 8.76 days otherwise. In the
second case, these means equal 13.06 days and 12.43 days, respectively.

4.2 Computing the Proportion of Visitors Hosted in Private
Tourist Establishments

A very relevant information in analyzing the tourism is the one associated with data
about the number of people who use private tourist accommodation. For this purpose,
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it is necessary to estimate the percentage of tourists spending nights in Asturias in
this type of establishment.

The primary information available is the number of interviews conducted in each
accommodation modality (Table3).

If the sample proportion is used to estimate the proportion of tourists visiting
Asturias and spending nights in private tourist establishments, the estimate is 0.2721.

In case the length-time bias is taken into account, by using Eq. (3) the estimate is
given by

8.76× 203

8.76× 203+ 12.43× 543
= 0.2085.

5 Implications from the Length-Time Bias

Involving the longitudinal bias in the usual estimates concerning the tourism frame-
work entails outstanding effects in computing the macroeconomic touristic figures.

Regarding the accommodation establishments in the Principality of Asturias,
tourism revenues for August 2016 can be determined by multiplying the average
stay length by factors in Table4.

Outputs depending on whether or not the longitudinal bias is taken into account,
are shown in Table5. On the basis of these outputs one can conclude that involving
length-time bias in estimating revenues leads to an overestimation of income equal
to 30.05 million Euros. And this only refers to August. For the purpose of developing
the Tourism Satellite Account, the annual revenues should be considered.

Table 3 Number of interviews according to the type of accommodation (Source: SITA)

Accommodation type # Conducted interviews Percentage

Collective 543 72.79

Private 203 27.21

Total 746 100.00

Table 4 Average daily expenditure and number of tourists in hotels in August 2016 (Source: SITA)

Average daily expenditure (in Euros) 92.61

# Tourists 257,502

Table 5 Tourism revenue in hotels in August 2016 (Source: compiled by authors)

Involving longitudinal bias Revenues (Million of Euros)

NO 142.61

YES 112.56
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Table 6 Number of tourists hosted in private accommodation in August 2016 (Source: compiled
by authors)

Involving longitudinal bias # Tourists with private accommodation

NO 102,728

YES 72,392

On the other hand, according to the National Institute of Statistics (INE),2 there
have been a total of 274,810 tourists who have been hosted in collective establish-
ments during August 2016. The computation of the number of tourists who spent
the night in private tourist accommodation is based on the percentage of visitors
hosted in such establishments, as shown in Sect. 4.2. Depending onwhether or not the
longitudinal bias is considered, the estimates amount 72,392 or 102,728, respectively
(see Table6).

As an immediate implication from the results in the last table, if length-time bias
is not taken into account, there is an overestimation of 30,336 tourists in August
2016. As for other parameters, this leads to a very optimistic estimation of annual
revenues in the region (in the detailed case the ones coming from the tourism sector
of private tourist accommodation).

6 Conclusions

Involving the length-time bias in the estimates of parameters associated with tourist
surveys leads to significant discrepancies w.r.t. using classical estimation methods.
The estimation on the basis of the samplemeanmakes sense when the simple random
sampling is considered. Nevertheless this is not the usual way to proceed, since the
selection of a visitor is usually assumed to directly depend on his/her days of touristic
stay.

The suggested corrections in themodel applied in this paper canbevery convenient
in elaborating the main macroeconomic tourism figures. This is due to the fact that
many key variables such as the number of tourists, the average duration of their stays,
the average expenditure, the percentages of tourism types, and so on, are importantly
affected.

The literature on case studies involving the length-time bias is rather limited. In
the field of tourism, this concept seems to be quite unknown. It would be therefore
essential to disseminate it among agencies working with tourist surveys, as well as
to open discussions on other models of estimation, such as the one applied in this
work, to enhance the quality of tourism statistical surveys and their results.

2http://www.ine.es.

http://www.ine.es
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Detecting Change-Points in the Time Series
of Surfaces Occupied by Pre-defined NDVI
Categories in Continental Spain
from 1981 to 2015

Ana F. Militino, M. Dolores Ugarte and Unai Pérez-Goya

Abstract The free access to satellite images since more than 40 years ago has pro-
voked a rapid increase of multitemporal derived information of remote sensing data
that should be summarized and analyzed for future inferences. In particular, the study
of trends and trend changes is of crucial interest in many studies of phenology, cli-
matology, agriculture, hydrology, geology or many other environmental disciplines.
Overall, the normalized difference vegetation index (NDVI), as a satellite derived
variable, plays a crucial role because of its usefulness for vegetation and landscape
characterization, land use and land cover mapping, environmental monitoring, cli-
mate change or crop prediction models. Since the eighties, it can be retrieved all over
the world from different satellites. In this work we propose to analyze its temporal
evolution, looking for breakpoints or change-points in trends of the surfaces occupied
by four NDVI classifications made in Spain from 1981 to 2015. The results show a
decrease of bare soils and semi-bare soils starting in the middle nineties or before,
and a slight increase of middle-vegetation and high-vegetation soils starting in 1990
and 2000 respectively.

1 Introduction

Since Compton Tucker [32] showed in 1979 that the Normalized Difference Veg-
etation Index (NDVI), generated from NOAA Advanced Very High Resolution
Radiometer (AVHRR) could be used to map land cover and monitor vegetation
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changes and desertification at continental and global scales, numerous research
projects and studies have been carried out. Many of them through the analysis of
NDVI3g time series. This is the third generation of images from the AVHRR sen-
sors, retrieved from the framework of theGlobal InventoryMonitoring andModeling
System (GIMMS).

GIMMSNDVI3g data have been widely used during the last decades for studying
large scale changing trends along years, mainly over continental or semi-continental
regions. Its actual resolution of 8Km at the Equator or 1/12 degrees is an attractive
feature for monitoring changes of vegetation at any scale.

These images are not raw images, but bi-weekly composite images by means of
theMaximumValue Compositing (MVC) procedure [12]. This technique suppresses
clouds, atmospheric and radiometric effects and reduces the directional reflectance
and off-nadir viewing effects. The result is a smaller number of output images with
regard to the original ones, but with better quality and where the spatial and temporal
stochastic dependence is still present.

The Normalized Difference Vegetation Index (NDVI) reflects vegetation growth
and it is closely related to the amount of photosynthetically absorbed active radiation
as indicated in [33]. It is calculated using the radiometric information obtained for
the red (R) and near-infrared (NIR) wavelengths of the electromagnetic spectrum as
NDV I = ((N I R) − R)/((N I R) + R). See [27] formore details. Although numer-
ical limits of NDVI can vary for the vegetation classification, it is widely accepted
that negative NDVI values correspond to water or snow, NDVI values close to zero
correspond to bare soils, sparse vegetation is approximately between 0.2–0.5, mid-
dle vegetation has thresholds between 0.5 and 0.7 and dense vegetation such as that
found in forests or crops at their peak growth stage presents NDVI values between
0.7 and 1.0.

Mann–Kendall non-paramteric test is one of the most broadly used methods for
parametric changes in time series ofNDVI pixels. See [14, 21], or [30] as examples of
the use of this test. When plotting significant changes, a patchy map can be obtained
because every pixel is analysed separately. Figure1 shows in gray-coloured pixels
the Mann–Kendall statistic corresponding to significant changes in trend when this
test is applied to the continental Spain from July 1981 to December 2015.

Mann–Kendall test only assumes a time dependence within the same pixel across
years, but it does not encompass the spatial dependence among neighbour pixels.
Therefore, close locations can present different trend changes, something question-
able in real situations. Some improvements of this test have been also provided [23].
For example, [24] introduces the contextual Mann–Kendall approach that removes
serial correlation through a prewhitening process. To detect spatio-temporal change-
points in the NDVI trend is not a trivial task because of the different scales and
dependencies between space and time, therefore we propose to aggregate pixels
between pre-defined thresholds of NDVI values for estimating the occupied land
cover area. Specifically, a total of 4 categories are obtained.For everyone of these
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Fig. 1 Mann–Kendall test
applied to NDVI3g data.
Coloured pixels correspond
to significant changes in
trends obtained from July
1981 to December 2015
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categories we have a time series of areas where different change-point methods will
be applied to detect breakdown points in means and variances.

The work is divided in four sections. Section2 explains the source of remote
sensing data and the way of downloading. In Sect. 3 the different methods used to
detect trend changes are briefly explained. Section4 describes the results. The paper
finishes with some conclusions.

2 Data

Remote sensing data were captured from the GIMMS NDVI3g images during the
period July 1981–December 2015.

More details of GIMMS NDVI3g can be found in [25]. It has been largely used
along recent years, for example in [1, 20] or [37]. The data have flags accounting for
additional pixel-by-pixel information about its quality. These flags can vary between
1 and 7, where 1 or 2 indicates good quality, numbers between 3 and 6 indicate
different kinds of processing, and 7 indicates missing data. GIMMS NDVI3g data
are bi-weekly composite NDVI data set and it has shown to be more accurate than
the GIMMSNDVI predecessors for monitoring vegetation activity and phenological
change [36]. GIMMSNDVI3g data can be downloaded from http://ecocast.arc.nasa.
gov/data/pub/gimms/3g.v1/. For this study, we have downloaded 828 bi-weekly
images, but to preserve space Figs. 2 and 3 provide the monthly averages of NDVI3g
in continental Spain for the first and second semesters respectively from 2011 to
2015.

These images have been cropped, projected and plotted in the free statistical
software R [26]. In particular, library gimms [9] has been used for downloading the

http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
http://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/
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Fig. 2 GIMMS NDVI3g monthly averaged data corresponding to the six first months from 2011
to 2015
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Fig. 3 GIMMS NDVI3g monthly averaged data corresponding to the six last months from 2011
to 2015
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images and importing in R, yet it can also be done with raster library [11]. In
green colors NDVI3g values closer to 1 are depicted and in brown colors the values
closer to 0. In these maps, the pattern of high vegetation in the North and the Central
West part of the country is predominant while middle vegetation is concentrated
mainly in the watercourse of two important rivers: Guadiana and Guadalquivir and
some mountain ranges. In the second semester low vegetation is predominant in the
central part of Spain. This seasonalitymust be removed before applying change-point
detection techniques.

3 Change-Point Methods

Change-points methods refer to the inference of a change in distribution for a set
of observations. An excellent reference for these procedure is given in [7]. They
arose in the 1950’s from the process of quality control, and yet there were developed
for independent and identically distributed random variables [8], the expansion to
the time-ordered observations [2] was immediate. However, the application of these
methods to remote sensing data is still very rare. In this work we compare four
specific R packages for solving the change-point detection problem in time series of
land cover areas in Spain from 1981 to 2015.

Change-Point Package: Segmented Neighborhood, Binary Segmentation
and PELT

The changepoint package [19] contains three methods for multiple change-point
detection in addition to a variety of test statistics. The change can be either in mean
and/or variance settingswith a similar argument structure. The implementedmethods
are: Segmented neighborhood, binary segmentation and PELT. See [17] for details.
Binary segmentation [10, 28, 29] first applies a single change-point test statistic to
the entire data. If a change-point is identified, the data is split into two at the change-
point location. The single change-point procedure is repeated on the two new data
sets, before and after the change. If change-points are identified in either of the
new data sets, they are split further. This process continues until no change-points
are found in any parts of the data. The splitting is based on likelihood ratio-tests
similar to those used in cluster analysis. The segment neighborhood algorithm was
proposed by [4, 5]. The algorithm minimizes a penalized expression of cost using
a dynamic programming technique to obtain the optimal segmentation for m + 1
change-points reusing the information that was calculated for m change-points. The
PELT algorithm [18] is similar to the segment neighborhood algorithm in that it
provides an exact segmentation. It is computationally more efficient, due to its useof
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dynamic programming and pruning. The test statistics are likelihood ratio tests that
can be applied to different families of distributions [7].

ecp Package: Divisive and Agglomerative Algorithms

The ecp package [13] contains two algorithms: divisive and agglomerative. These
algorithms come from hierarchical cluster analysis and detect changes within the
marginal distributions. They do not make any assumption regarding the nature of the
change in distribution or any distribution assumptions beyond the existence of the
αth absolute moment, for some α ∈ (0, 2). The agglomerative algorithm estimates
change point locations through an optimal segmentation. Both approaches are able
to detect any type of distributional change within the data. The divisive method
provides consistent estimates of both the number and location of change points, under
standard regularity assumptions. These methods also deal with the nonparametric
multiple change point analysis of multivariate data. Regardless of the dimension, the
nonparametric estimation can be done for both the number of change points and the
positions at which they occur. These procedures have been widely used in financial
modeling [31], and bioinformatics [22] to identify genes that are associated with
specific cancers and other diseases or to detect credit card fraud [6].

bfast Package: Breaks For Additive Seasonal and Trend

The more specificR programm to manage with change-point detection in time series
of satellite images is BFAST [34, 35]. BFAST is the acronymof “Breaks ForAdditive
Seasonal and Trend” that integrates the decomposition of time series into trend,
seasonal, and remainder components with methods for detecting change within time
series. It iteratively estimates the time and number of changes characterizing the
change by its magnitude and direction and using harmonic seasonal model requiring
few observations.

strucchange Package: Generalized Fluctuation and F Tests

The strucchange package [40] contains Generalized fluctuation and F test for
structural change in linear regression models. Here, the null hypothesis of “no struc-
tural change” is tested against the alternative that the coefficient vector varies over
time for certain patterns of deviation from the null hypothesis. Significance can be
also assessed through various tests. See [38, 39] for details.

4 Results

For everyone of the 828 images, NDVI3g values are assigned to 4 categories: bare
soils (ndvi1) for values between 0 and 0.2, sparse vegetation (ndvi2) for values greater
than 0.2 and less or equal than 0.5, middle vegetation (ndvi3) for values greater than
0.5 and less or equal than 0.7 and dense vegetation (ndvi4) for values greater than 0.7.
Table1 shows the average occupied area (in %) for the four NDVI3g classifications
estimated in the continental Spain and in 15 regions. The classified areas have been
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Table 1 Average percentage of the area occupied by the 4 pre-definedNDVI3g categories estimated
in Spain and in 15 regions from 1981 to 2015

num ndvi1 ndvi2 ndvi3 ndvi4

Andalucía (An) 1 4.87 76.27 18.04 0.82

Aragón (Ar) 2 3.70 78.78 17.20 0.32

Cantabria (Ca) 3 0.19 7.90 47.68 44.23

Castilla-La Mancha (Cm) 4 5.66 81.62 12.59 0.13

Castilla y León (Cl) 5 1.60 64.57 32.00 1.83

Cataluña (Ct) 6 1.41 48.80 44.13 5.65

Comunidad de Madrid (Ma) 7 2.78 75.95 21.21 0.06

Comunidad Foral de Navarra (Na) 8 1.32 49.53 32.57 16.58

Comunidad Valenciana (Va) 9 1.76 83.04 15.20 0.00

Extremadura (Ex) 10 1.16 61.99 35.02 1.82

Galicia (Ga) 11 0.01 3.37 55.06 41.57

La Rioja (Ri) 12 0.28 62.04 33.18 4.49

País Vasco (Pv) 13 0.05 13.95 46.11 39.89

Principado de Asturias (As) 14 0.29 5.76 44.52 49.42

Región de Murcia (Mu) 15 9.67 90.15 0.18 0.00

Spain 16 3.01 64.34 26.29 6.36

calculated summing the number of pixels in these categories and multiplying by
65.95 km2, the mean surface by pixel. In the whole territory the average percentage
of bare soils is estimated in 3%, the average percentage of sparse vegetation is 64%,
the average percentage of middle vegetation is 26% and 6% is the average percentage
of dense vegetation. The 100% corresponds to the 504.537 km2 of continental Spain.

Table2 gives the two last figures of the change-point years detected by the four
methods in Spain and by regions. Columns cp1, cp2, cp3 and cp4 show the year
of the first detected change-point by changepoint package in ndvi1, ndvi2,
ndvi3 and ndvi4 categories respectively. Columnsstr1,str2,str3 and str4
show the year of the first detected change-point by strucchange method in the
same four categories. Similarly, columns bf1, bf2, bf3 and bf4 for bfast pack-
age. Columns prun1, prun2, prun3 and prun4 do the same with ecp package
and finally,prun shows the year of the detected change-point in the overall NDVI3g.
Empty places correspond to an absence of change-point.

In Spain, cp and str methods exactly coincide detecting the year of change-
point in ndvi1 (year 1996) and ndvi3 (year 2000) categories. They do not coincide
in ndvi2 (years 1993 and 1986) and they roughly coincide in ndvi4 (year 1989–
1990), the upper category. Likely, both methods are the best candidates to explain
the performance of the Spanish land cover change between July 1981 and December
2015. Figures4 and 5 plot the detected change-points over the seasonally adjusted
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Table 2 Years of change-points detected in the overall NDVI3g, and in the four pre-defined cat-
egories with changepoint (cp), structchange (str), bfast(bf) and ecp(prun) methods
calculated in continental Spain and in 15 regions
regions ndvi1 ndvi2 ndvi3 ndvi4 ndvi

cp1 str1 bf1 prun1 cp2 str2 bf2 prun2 cp3 str3 bf3 prun3 cp4 str4 bf4 prun4 prun

(An) 1 96 96 91 86 12 10 92 13 0 0 91 13 4 1 13 86

(Ar) 2 97 86 91 86 7 7 2 13 96 96 5 10 6 10 2 13 86

(Ca) 3 87 87 13 88 88 99 86 90 90 13 90 90 98 86 13

(Cm) 4 96 96 86 10 10 13 0 96 85 4 3 13 86

(Cl) 5 94 96 86 93 86 86 93 86 13 96 97 13 86

(Ct) 6 89 88 93 86 89 89 98 86 89 89 92 86 88 88 98 12 13

(Ma) 7 97 96 86 86 86 13 86 86 92 13 87 13 86

(Na) 8 89 96 96 90 91 89 99 13 86 87 13 91 94 13 90

(Va) 9 0 0 91 1 7 7 91 12 6 6 91 12 91 13 1

Ex 10 95 95 13 86 86 4 13 86 96 13 96 1 12 13

Ga 11 99 86 13 89 89 94 86 90 90 99 85 90 90 99 13 13

Ri 12 97 87 13 89 88 13 88 88 13 97 97 13 13
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Fig. 4 Change-points in seasonally adjusted trends of GIMMS NDVI3g data obtained with
changepoint and strcchange packages in the 4 pre-defined categories from 1981 to 2015

trends in the four pre-defined categories in Spain from 1981 to 2015 with the 4
methods. The proximity between changepoint and strucchange methods is
clear in all categories except in ndvi2 where changepointmethod is more exigent
and conservative for detecting change-points. Both methods show a decreasing trend
in the lowest categories (ndvi1, ndvi2), but an increased trend in the upper categories
(ndvi3 and ndvi4). Package bfast does not detect any change-point neither in ndvi1
nor in ndvi2 but it detects changes in ndvi3 and ndvi4. The prun method estimates



Detecting Change-Points in NDVI Surfaces in Spain 303

bfast ndvi= 1

Time

Vt
bfast ndvi= 2

Time

Vt
bfast ndvi= 3

Time

Vt

Time of BP(s) 249

Magnitude of most sign change

bfast ndvi= 4

Time

Vt
Time of BP(s) 436

Magnitude of most sign change

ecp ndvi= 1

Index

vt

ecp ndvi= 2

Index

vt

ecp ndvi= 3

Index

vt

1985 1995 2005 2015

0
20

40
60

80
10

0

0
20

40
60

80
10

0

1985 1995 2005 2015

25
0

30
0

35
0

40
0

45
0

25
0

30
0

35
0

40
0

45
0

1985 1995 2005 2015

0
50

10
0

15
0

20
0

0
50

10
0

15
0

20
0

1985 1995 2005 2015

0
20

40
60

0
20

40
60

0 200 400 600 800 0 200 400 600 800

0 200 400 600 800 0 200 400 600 800

ecp ndvi= 4

Index

vt

Fig. 5 Change-points in seasonally adjusted trends of GIMMSNDVI3g data obtained with bfast
and ecp packages in the 4 pre-defined categories from 1981 to 2015
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Fig. 6 Yearly averages of areas corresponding to the 4 pre-defined categories (ndvi1, ndvi2, ndvi3
and ndvi4) in Spain from 1981 to 2015

change-points in the beginning or in the last years, so it seems to be very sensible
to small changes. Unfortunately, in the majority of regions, the year of the detected
change-point do not coincide neither in methods nor in the categories, although the
bigger the regions, the better the approximation.
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Figure6 shows the evolution of the yearly average area in hectares, corresponding
to the 4 categories in Spain from the same studied period. Clearly, a decreasing trend
in bare and semi-arid soil is observed, corresponding to ndvi1 and ndvi2 categories,
an important increase of middle vegetated soil corresponding to ndvi3 category, and
a small increase of trend in ndvi4, the dense vegetation category.

5 Conclusions

Nowadays, satellite remote sensing is a common instrument for detecting changes
in land cover surfaces over time. GIMMS NDVI3g provides a world wide long time
series very useful for analysing temporal trends, however and yet the quality of the
series have been improvedwith regard to the old NDVI series, it is known that there is
no concordancewith otherNDVI images coming fromalternative sources, asMODIS
TERRA or MODIS AQUA. See [3, 16] where a detailed comparison has been made
in Central Europe from 2000 to 2013. Moreover, as long as we down-scaling the
spatial resolution, more inaccurate estimations we obtain. From this perspective, we
can say that the change-points trends found in Spanish regions are only approximate
for small regions such as Navarra, Asturias, Murcia, País Vasco o Aragón. The main
advantage of using GIMMS NDVI3g is that is the longest NDVI series of images
with 34years, already pre-processed, easily accessible, and from all over the world.
As long as we can retrieve longest series of high spatial resolution satellite images,
these results could change.

The variety of methods found in the literature for detecting change-points in
ordered observations is large, and they do not necessarily provide the same points.
At this regard, we consider thatmatching results at different categories tip the balance
in the changepoint and strucchange favor. Unfortunately, this methodology
cannot determine the locations where these changes have been produced, because
we loose the spatial location as long as we aggregate different pixels between the
same thresholds. For this aim we need not only to develop a specific spatio-temporal
methodology but also a larger spatial resolution of time series of images. For example,
Sentinel 2A can provide the required spatial resolution, however, the history of these
images is still too short for being reliable in the time series analysis.

There is an inherent difficulty in checking the performance of this result, because
there are not previous studies similar to this one. Perhaps, this step can only be
done looking for vegetation changes previously documented. The most relevant is
[15] where the authors investigate the NDVI changes in trends happened in Iberian
peninsula between 1981 and 2001, using GIMMSNDVI3g data with a pixel by pixel
approach. The interpretation of global trends in the peninsula is limited, although
the results show a slight desertification in Iberian Mountains, but is dated more than
15 years ago.

Based on the results given in changepoint and strucchange methods we
can finally conclude that the detected change-points in Spain show a decrease of bare
soils and semi-bare soils starting in the middle nineties or a bit before, and a slight
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increase of middle-vegetation and high-vegetation soils starting in 1990 and 2000
respectively. Further research is needs to confirm the results found in this pilot study.

Final Note

This work is a tribute from the Department of Statistics and Operations Research
of the Public University of Navarre to our dear colleague Pedro Gil Álvarez, for his
remarkable contribution to the area of Statistics and Probability, his generosity with
his mates and his unforgettable and keen sense of humor.

Acknowledgements This research was supported by the Spanish Ministry of Economy, Industry,
and Competitiveness (project MTM2017-82553-R) jointly financed with the European Regional
Development Fund (FEDER), the Government of Navarre (PI015-2016 and PI043-2017 projects)
and the Fundación CAN-Obra Social Caixa 2016.

References

1. Ahmed M, Else B, Eklundh L, Ard J, Seaquist J (2017) Dynamic response of ndvi to soil
moisture variations during different hydrological regimes in the sahel region. Int J Remote
Sens 38(19):5408–5429

2. Antoch J, Hušková M, Prášková Z (1997) Effect of dependence on statistics for determination
of change. J Stat Plan Inference 60(2):291–310

3. Atzberger C, Klisch A, Mattiuzzi M, Vuolo F (2013) Phenological metrics derived over the
european continent from ndvi3g data and modis time series. Remote Sens 6(1):257–284

4. Auger IE, Lawrence CE (1989) Algorithms for the optimal identification of segment neighbor-
hoods. Bull Math Biol 51(1):39–54

5. Bai J, Perron P (2003) Critical values for multiple structural change tests. Econ J 6(1):72–78
6. Bolton RJ, Hand DJ (2002) Statistical fraud detection: a review. Stat Sci 17(3):235–249
7. Chen J, Gupta AK (2011) Parametric statistical change point analysis: with applications to

genetics, medicine, and finance. Springer, Heidelberg
8. Csörgö M, Horváth L (1997) Limit theorems in change-point analysis, vol 18. Wiley, New

York
9. Detsch F (2016) Gimms: download and process GIMMS NDVI3g data. https://CRAN.R-

project.org/package=gimms
10. Edwards AW, Cavalli-Sforza LL (1965) A method for cluster analysis. Biometrics 21(2):362–

375
11. Hijmans RJ (2015) Raster: geographic data analysis and modeling. https://CRAN.R-project.

org/package=raster
12. Holben BN (1986) Characteristics of maximum-value composite images from temporal avhrr

data. Int J Remote Sens 7(11):1417–1434
13. James NA, Matteson DS (2014) ecp: an R package for nonparametric multiple change point

analysis of multivariate data. J Stat Softw 62(7):1–25
14. de Jong R, de Bruin S, de Wit A, Schaepman ME, Dent DL (2011) Analysis of monotonic

greening and browning trends from global ndvi time-series. Remote Sens Environ 115(2):692–
702

15. Julien Y, Sobrino JA, Mattar C, Ruescas AB, Jiménez-Muñoz JC, Sòria G, Hidalgo V, Atitar
M, Franch B, Cuenca J (2011) Temporal analysis of normalized difference vegetation index
(ndvi) and land surface temperature (lst) parameters to detect changes in the iberian land cover
between 1981 and 2001. Int J Remote Sens 32(7):2057–2068

https://CRAN.R-project.org/package=gimms
https://CRAN.R-project.org/package=gimms
https://CRAN.R-project.org/package=raster
https://CRAN.R-project.org/package=raster


306 A. F. Militino et al.
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Choice Functions and Rejection Sets

Enrique Miranda, Arthur Van Camp and Gert de Cooman

Abstract We establish an equivalent representation of coherent choice functions
in terms of a family of rejection sets, and investigate how each of the coherence
axioms translates into this framework. In addition, we show that this family allows
to simplify the verification of coherence in a number of particular cases.

1 Introduction

Coherent choice functions constitute an uncertainty model that is more general than
sets of desirable gambles, while still preserving some of their nice properties, such
as being able to deal effectively with sets of probability zero when conditioning.
One of their drawbacks is the technical difficulty of verifying the coherence axioms.
In this paper, we try to remedy this situation somewhat by providing an equivalent
representation of choice functions in terms of those option sets that allow a subject to
reject the zero gamble, which may be interpreted as those option sets that he should
consider preferable to the status quo. As we shall see, this representation, in addition
to capturing more intuitively the ideas underlying coherence, also helps to simplify
the verification of coherence in a number of particular cases.

This paper is organized as follows: in Sect. 2, we recall the basic aspects of coher-
ent choice functions that we shall need in the rest of the paper. Our representation
in terms of rejection sets is established in Sect. 3, where we also discuss two addi-
tional properties that seem of interest for choice functions. In Sect. 4, we look in
more detail at a number of particular cases: choice functions on binary spaces
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(that is, when the experiment on which the outcomes of the options depend on can
only take two values) and those defined by means of coherent sets of desirable gam-
bles. The paper concludes with some additional remarks in Sect. 5.

2 Coherent Choice Functions

Let Ω be a possibility space. A gamble on Ω is a bounded map f : Ω → R. We
denote by L the set of all gambles on Ω . Gambles will also be called options. For
any two gambles f and g, we denote f ≤ g if f (ω) ≤ g(ω) for every ω in Ω , and
we collect all the gambles f for which f ≤ 0 in L≤0. We let f < g if f ≤ g and
f �= g, and collect all the gambles f for which f < 0 in L<0, and the gambles f
for which f > 0 inL>0.

Choice functions are defined on finite collections of gambles. We collect all those
collections in the set Q.

Definition 2.1 A choice function C on a possibility space Ω is a map

C : Q → Q ∪ {∅} : A �→ C(A) such thatC(A) ⊆ A.

We collect all the choice functions on Ω in C (Ω), often denoted as C when the
possibility space is clear from the context.

The idea underlying this simple definition is that a choice function C selects the
set C(A) of ‘best’ options in the option set A. Our definition resembles the one
commonly used in the literature [1, 6, 8], except perhaps for an also not entirely
unusual restriction to finite option sets [2, 5, 7].

Equivalently to a choice function C , we may consider its associated rejection
function R, defined by R(A) := A \ C(A) for all A in Q. It returns the options
R(A) that are rejected -not selected- by C .

We focus here on a special class of choice functions, which we call coherent.

Definition 2.2 We call a choice function C on Ω coherent if for all A, A1 and A2

inQ, all f and g inL , and all λ in R>0
1:

C1. C (A) �= ∅;
C2. if f < g then {g} = C ({ f, g});
C3. a. if C (A2) ⊆ A2 \ A1 and A1 ⊆ A2 ⊆ A then C (A) ⊆ A \ A1;

b. if C (A2) ⊆ A1 and A ⊆ A2 \ A1 then C (A2 \ A) ⊆ A1;
C4. a. if A1 ⊆ C (A2) then λA1 ⊆ C (λA2);

b. if A1 ⊆ C (A2) then A1 + { f } ⊆ C (A2 + { f }).
These axioms are a subset of the ones introduced in [6], duly translated from horse

lotteries to gambles. We have omitted two of the coherence axioms from [6]: one is

1By R>0 we mean all the (strictly) positive real numbers.
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the Archimedean axiom, because it is not fully compatible with the idea of deriving
choice functions from coherent sets of desirable gambles [9], which is one of the
goals in our approach. The other one, whichwe shall consider later on, is the so-called
convexity axiom. Although this axiom leads to a number of useful properties, and
in particular to a connection with lexicographic probability systems [10], we have
refrained from including it in the list of coherence axioms because it is not satisfied
by some interesting choice functions.

Equivalent formulations of these axioms, better suited for our subsequent proofs,
are the following:

(C3a) ⇔ (∀A, A′ ∈ Q,∀ f ∈ A
) (

f ∈ R (A) , A ⊆ A′) ⇒ f ∈ R
(
A′),

(C3b) ⇔ (∀A ∈ Q,∀ f ∈ A) {0, f } ⊆ R(A) ⇒ 0 ∈ R(A \ { f }),
(C3a) ⇔ (∀A ∈ Q,∀λ > 0) R(λA) = λR(A),

(C3b) ⇔ (∀A ∈ Q,∀ f ∈ L ) R(A + f ) = R(A) + f.

3 A Representation in Terms of Rejection Sets

Next we give an equivalent representation of choice functions in terms of rejection
sets. For any f ∈ L and any natural number i , we define

K
i
f := {A : f ∈ R(A), |A| = i} and K f := ∪i∈NKi

f . (1)

We are going to characterize coherent choice functions in terms of these rejection
sets. Our first result shows that we can restrict our attention to the case f = 0:

Proposition 3.1 Let C be a choice function and consider the family of option sets
{K f : f ∈ Ω} it induces by means of Eq. (1). Then

C satisfies Axiom C4b ⇔ (∀f ∈ L ) K0 + f = Kf .

Proof For necessity, consider an option set A that includes 0. Then the option set
A + f includes f , and since by C4b it holds that R(A + f ) = R(A) + f , we con-
clude that A ∈ K0 if and only if A + f ∈ K f .

Conversely, for sufficiency, consider an option set A and a gamble f . Take
any g ∈ R(A), then A ∈ Kg , whence by assumption A − g ∈ K0 and as a con-
sequence A − g + ( f + g) = A + f ∈ K f +g . Then indeed g + f ∈ R(A + f ),
whence Axiom C4b holds. �

Taking this result into account, in what follows we shall restrict our attention to
rejection sets K for which K0 + f = K f for every f in L . We can then simplify
the notation above to

K i := K
i
0 = {A : 0 ∈ R(A), |A| = i} and K := K0 = {A : 0 ∈ R(A)}, (2)
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respectively, and denote Q0 the family of option sets that include the zero gamble.
Our next result provides a characterisation of the different coherent axioms in terms
of these sets:

Proposition 3.2 Let C be a choice function satisfying Axiom C4b, and consider the
sets K i , K defined in Eq. (2).

(a) C satisfies Axiom C1 if and only if (∀A ∈ Q0) (∃ f ∈ A) A − f /∈ K.
(b) C satisfies Axiom C2 if and only if (∀ f ∈ L>0) { f, 0} ⊆ K 2.
(c) C satisfies AxiomC3a if and only if

(∀A ∈ K ,∀A′ ∈ Q0
) (

A ⊆ A′ ⇒ A′ ∈ K
)
.

(d) C satisfies Axiom C3b if and only if (∀A∈K ,∀ f ∈ A)

(A − f ∈ K ⇒ A\{ f }∈K ).
(e) C satisfies Axiom C4a if and only if (∀A ∈ Q0,∀λ > 0) (A ∈ K ⇔ λA ∈ K ).

Proof (a) Taking AxiomC4b into account, AxiomC1 holds if and only ifC(A) �= ∅
for every A ∈ Q0. This in turn is equivalent to (∃ f ∈ A) f ∈ C(A), which
by C4b is equivalent to 0 ∈ C(A − f ) or, in other words, to A − f /∈ K .

(b) Under Axiom C4b, Axiom C2 is equivalent to (∀ f ∈ L>0) { f } = C({0, f }), or,
in other words, to (∀ f ∈ L>0) { f, 0} ⊆ K 2.

(c) For necessity, consider any A in K and any A′ inQ0 such that A′ ⊇ A. Because
A ∈ K , 0 ∈ R (A), whence, by Axiom C3a, 0 ∈ R

(
A′). Then indeed A′ ∈ K .

Conversely, for sufficiency, consider any A and A′ inQ0 such that A ⊆ A′, and
any f in R(A). Then by Axiom C4b, 0 ∈ R (A − f ), so A − f ∈ K , whence
also A′ − f ∈ K , because A′ − f ⊇ A − f . Then 0 ∈ R

(
A′ − f

)
, and apply-

ing again C4b, indeed f ∈ R(A′).
(d) For necessity, consider any A in K and f in A such that A − f ∈ K . Then

0 ∈ R(A − f ), whence f ∈ R(A), by Axiom C4b. Applying Axiom C3b, we
deduce that 0 ∈ R(A \ { f }), whence indeed A \ { f } ∈ K .
Conversely, for sufficiency, consider any A inQ and f in A such that {0, f } ⊆
R(A). Then A ∈ K and by Axiom C4b, f ∈ R(A) implies that 0 ∈ R (A − f ),
so A − f ∈ K . Then A \ { f } ∈ K , or, in other words, indeed 0 ∈ R(A \ { f }).

(e) It suffices to note that underAxiomC4b,AxiomC4a is equivalent to 0 ∈ C(A) ⇔
0 ∈ C(λA) for every λ > 0 and every A ∈ Q0. �

An immediate consequence is:

Corollary 3.1 A choice function C is coherent if and only if it satisfies Axiom C4b
and the rejection set K it induces by Eq. (2) is increasing, scale invariant, includes
{ f, 0} for every f ∈ L>0 and it satisfies the following two properties:

• (∀A ∈ Q0) (∃ f ∈ A) A − f /∈ K.
• (∀A ∈ K ,∀ f ∈ A) (A − f ∈ K ⇒ A \ { f } ∈ K ).

Next we consider a couple of additional consistency axioms that were deemed
interesting by [10]. The first one is the convexity axiom, which is given by:

C5 if A ⊆ A1 ⊆ CH (A) then C (A) ⊆ C (A1), for all A and A1 inQ,
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where C(A) := {∑n
i=1 αi fi : n ∈ N, fi ∈ A, αi ≥ 0,

∑n
i=1 αi = 1

}
is the convex

hull of A.
In terms of rejection sets, it is characterized by the following proposition:

Proposition 3.3 Let C be a choice function satisfying Axiom C4b. Then C satisfies
Axiom C5 if and only if (∀A1 ∈ K ,∀A ∈ Q0) (A ⊆ A1 ⊆ CH(A) ⇒ A ∈ K ).

Proof For necessity, application of Axiom C5 tells us that, whenever A ⊆ A1 ⊆
CH (A) hold, 0 ∈ R(A1) implies that 0 ∈ R(A), or, in other words, A1 ∈ K implies
that A ∈ K .

Conversely, for sufficiency, consider two option sets A and A1 such that A ⊆
A1 ⊆ CH (A), and let us show thatC(A) ⊆ C(A1). Assume ex absurdo that there is
some f ∈ A such that f ∈ R(A1) and f ∈ C(A). Then since A − f ⊆ A1 − f ⊆
CH(A − f ), we can apply axiom C4b and assume that, without loss of generality,
f = 0. But then we obtain that A1 ∈ K while A /∈ K , a contradiction. �

Aweaker property that is also useful is the so-called separate homogeneity, which
means that for all n in N, all f1, f2, …, fn inL and all μ1, μ2, …μn in R>0:

0 ∈ C ({0, f1, f2, . . . , fn}) ⇔ 0 ∈ C ({0, μ1 f1, μ2 f2, . . . , μn fn}) . (3)

This property follows from axioms C3a, C4a, C5 [10, Proposition 1]. Moreover,
and unlike C5 that is linked to lexicographic choice functions, separate homogeneity
is compatible with maximality as a decision rule, and therefore better suited for
connecting choice functions with desirability. Furthermore, separate homogeneity is
strictly weaker: there are classes of interesting coherent choice functions that satisfy
Eq. (3) but not Axiom C5. In terms of the rejection sets, it is trivial to prove that it
can be expressed in the following manner:

Proposition 3.4 LetC bea choice function satisfyingAxiomC4b. It satisfies separate
homogeneity if and only if for all n in N, all f1, f2, …, fn inL and all μ1, μ2, …μn

in R>0, {0, f1, f2, . . . , fn} ∈ K ⇔ {0, μ1 f1, μ2 f2, . . . , μn fn} ∈ K.

4 Particular Cases

In this section, we consider a number of particular cases of choice functions for
which the representation in terms of rejection sets simplifies somewhat.

4.1 Coherent Choice Functions Defined via Maximality

We begin by considering choice functions defined viaWalley’s notion of maximality
[9]. A set of gambles D is called coherent when it is a convex cone that includes all
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non-negative gambles and does not include the zero gamble. We refer to [3, 4, 11]
for a study of the notion of desirability and its variants. In particular, any coherent
set of desirable gambles can be used to define a coherent choice function, by means
of the formula

CD(A) := { f ∈ A : (∀g ∈ A) g − f /∈ D} . (4)

Unlike general choice functions, the ones defined in themanner above are uniquely
determined by binary comparisons. Thus, it is not surprising that for them the repre-
sentation in terms of rejection sets takes a simpler form:

Proposition 4.1 Let D be a coherent set of gambles and let CD be the coherent
choice function it induces by Eq. (4). Then K = {

A ∈ Q0 : (∃A1 ∈ K 2
)
A1 ⊆ A}

and K 2 = {{0, f } : f ∈ D}.
Proof Consider an option set A in K . By Eq. (4), 0 ∈ RD(A) if and only if A ∩
D �= ∅. If |A| = 2, then A = {0, f } for some f in D , and as a consequence K 2 ⊇
{{0, f } : f ∈ D}. Conversely, consider any A′ ∈ K 2. Then A′ = {0, g} for some g in
L . But since 0 ∈ RD

(
A′), we have g ∈ D , so K 2 ⊆ {{0, f } : f ∈ D}, proving that

indeed K 2 = {{0, f } : f ∈ D}. If, on the other hand, |A| ≥ 3, then A ⊇ {0, f } for
some f inD . But then 0 ∈ RD ({0, f }), so A ⊇ A′ for some A′ ∈ K 2, and therefore
indeed K = {

A ∈ Q0 : (∃A1 ∈ K 2
)
A1 ⊆ A

}
. �

4.2 Coherent Choice Functions on Binary Spaces

Next, we consider coherent choice functions defined on binary spaces. It turns out
that, under separate homogeneity, they are determined by rejection sets of cardinality
two or three:

Proposition 4.2 Let C be a coherent choice function on Ω = {a, b}. If C satisfies
Eq. (3), then

K = {
A ∈ Q0 : (∃A1 ∈ K 2 ∪ K 3

)
A1 ⊆ A

}
.

Proof Let us prove that for every A in K there exists a A1 in K 2 ∪ K 3 for which
A1 ⊆ A.

Consider thus A in K . By Axiom C2, we find that A ∩ L<0 ⊆ R
(
A ∩ L≤0

)
, so

Axiom C3a implies that then A ∩ L<0 ⊆ R (A). Since A ∈ K and therefore also
0 ∈ R (A), by Axiom C3b we find that then 0 ∈ (

A ∩ L c
<0

)
, so we can assume

without loss of generality that A ∩ L<0 = ∅. There are two possibilities.
If A ∩ L>0 �= ∅, then for any f in A ∩ L>0 it follows from Axiom C2 that

0 ∈ R({0, f }), whence the set {0, f } ⊆ A belongs to K 2. So we find indeed that
A1 := {0, f } in K 2 for which A1 ⊆ A.

If A ∩ L>0 = ∅, then we can denote A = { f1, . . . , fn, g1, . . . , gm} for some
n ≥ 0 and m ≥ 0 but max {m, n} ≥ 1, where fi belongs to the second quadrant
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(i.e., fi (a) < 0 < fi (b)) for every i in {1, . . . , n} and g j belongs to the fourth
quadrant (i.e., g j (a) > 0 > g j (b)) for every j in {1, . . . ,m}. Let λi := −1

fi (a)
and

μ j := 1
g j (a)

for every i in {1, . . . , n} and j in {1, . . . ,m}. Then, applying Eq. (3),

0 ∈ R({0, λ1 f1, . . . , λn fn, μ1g1, . . . , μmgm}).

Infer that λi fi (a) = −1 for every i ∈{1, . . . , n}. Letting i∗ :=argmax {λi fi (b) :
i ∈ {1, . . . , n}}, we infer that

λk fk(b) < λi∗ fi∗(b) ⇒ λk fk ∈ R({λk fk, λi∗ fi∗ }) ⇒ λk fk ∈ R(A),

where last implication follows from Axiom C3a. Similarly, μ j g j (a) = 1 for every
j ∈ {1, . . . ,m}, and letting j∗ := argmax

{
μ j g j (b) : j ∈ {1, . . . ,m}}, we infer that

μ j g j (b) < μ j∗g j∗(b) ⇒ μ j g j ∈ R(
{
μ j g j , μ j∗g j∗

}
) ⇒ μ j g j ∈ R(A),

where again last implication follows from Axiom C3a. If we now apply C3b,
we deduce that 0 ∈ R

({
0, λi∗ fi∗ , μ j∗g j∗

})
, whence 0 ∈ R

({
0, fi∗ , g j∗

})
, applying

Eq. (3). Thus, there is a subset of A with cardinality three that also belongs to K . �

A key property in the proof of Proposition4.2 is that separate homogeneity,
together with Axiom C2, allows to assume without loss of generality that an option
set A that includes the zero gamble has at most one gamble f in the second quad-
rant (for which f (a) < 0 < f (b)) and one g in the fourth quadrant (for which
g(a) > 0 > g(b)). Let us show that this does not necessarily happenwithout separate
homogeneity:

Example 4.1 Consider Ω = {a, b} and let D be the coherent set of gambles
D := { f ∈ L : f (a) < 0 < f (b) and f (a) + f (b) > 0} ∪ L>0. Let C be the
choice function determined by the rejection function

0 ∈ R(A) ⇔ A ∩ D �= ∅ or (∃λ1 > λ2 > 0) {(−λ1, λ1), (−λ2, λ2)} ⊆ A (5)

for all A in Q0. We extend the domain of R to Q by letting f ∈ R(A) ⇔ 0 ∈
R(A − f ) for all A inQ and f in A. Remark already that (−λ, λ) lies on the border
of D for every λ > 0: indeed, for every g in D we have that (−λ, λ) + g ∈ D .

Let us show that C is a coherent choice function. Taking into account the last part
of the definition, we see that C4b holds, and we can restrict our attention to option
sets inQ0. We show that C satisfies Axioms C2, C3a, C3b, C4a, and C1, in this order.

For Axiom C2, consider any f inL>0. Then f ∈ D , so indeed 0 ∈ R ({0, f }).
For Axiom C3a, consider any A and A′ in Q0 such that A ⊆ A′, and any f

in R (A). Using Axiom C4b, then 0 ∈ R (A − f ), whence (A − f ) ∩ D �= ∅ or
{(−λ1, λ1), (−λ2, λ2)} ⊆ A − f for some λ1 > λ2 > 0. But A′ − f ⊇ A − f , so
also

(
A′ − f

) ∩ D �= ∅ or {(−λ1, λ1), (−λ2, λ2)} ⊆ A′ − f , and therefore
0 ∈ R

(
A′ − f

)
, whence, again by Axiom C4b, indeed 0 ∈ R

(
A′).
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For Axiom C3b, consider any A inQ0 and any f in A such that {0, f } ⊆ R (A).
We need to prove that then 0 ∈ R (A \ { f }). Since f ∈ R (A), then

(i) D ∩ (A − f ) �= ∅, or (ii) {(−λ1, λ1), (−λ2, λ2)}⊆ A − f for some λ1>λ2>0.

Furthermore, since 0∈ R (A), then D ∩ A �= ∅, or {(−λ1, λ1), (−λ2, λ2)}⊆ A for
some λ1 > λ2 > 0. If f /∈ D ∩ A and f /∈ {(−λ1, λ1), (−λ2, λ2)}, then also
D ∩ A \ { f } �= ∅or {(−λ1, λ1), (−λ2, λ2)} ⊆ A \ { f },whence0 ∈ R (A \ { f }). So
assume that (a) f ∈ D or (b) f = (−λ, λ) for some λ > 0.

If (a) f ∈ D , then (i) or (ii) must be the case. If (i) occurs, then there is some gam-
ble g in (D + f ) ∩ A, whence g − f ∈ D for some g in A. But since f ∈ D , also
g = f + g − f ∈ D , and therefore 0 ∈ R ({0, g}),whencebyAxiomC3a indeed0 ∈
R (A \ { f }). If (ii) occurs, then there are λ1 > λ2 > 0 such that f + (−λ1, λ1), f +
(−λ2, λ2) ∈ A, whence, since f ∈ D , by construction also f + (−λ1, λ1) ∈ D .
Therefore 0 ∈ R ({0, f + (−λ1, λ1)}), whence byAxiomC3a, also 0 ∈ R (A \ { f }).

If (b) f = (−λ, λ) for some λ > 0, then, similarly, (i) or (ii) must be the case.
If (i) occurs, then there is some g in A such that g − f ∈ D . Therefore by con-
struction also g = f + g − f ∈ D , whence 0 ∈ R ({0, g}), and then by Axiom C3a,
also 0 ∈ R (A \ { f }). If (ii) occurs, then there is some λ1 > 0 and λ2 > 0 for which
{ f + (−λ1, λ1), f + (−λ2, λ2)} = {(−λ − λ1, λ + λ1), f + (−λ − λ2, λ + λ2)} ⊆
A. Letting λ′

1 := λ + λ1 and λ′
2 := λ + λ2, we find that

{
(−λ′

1, λ
′
1), f + (−λ′

2, λ
′
2)

}

⊆ A \ { f }, whence 0 ∈ R (A \ { f }).
Axiom C4a follows from Eq. (5), taking into account that D is a cone.
Finally, for AxiomC1, assume ex absurdo thatC (A) = ∅ for some A inQ0. Then

A = R (A) whence, by Axiom C3b, 0 ∈ R ({0}). But 0 /∈ D and (−λ, λ) /∈ {0} for
every λ > 0, so 0 /∈ R ({0}), a contradiction.

On the other hand, it follows by Eq. (5) that, given the option set A = {0, (−1, 1),
(−2, 2)}, we obtainC(A) = {(−1, 1), (−2, 2)}. However, the same equation implies
that 0 ∈ C({0, (−1, 1)}). This shows that C does not satisfy separate homogeneity,
and also that we cannot reduce the intersection with the second quadrant to only one
gamble.

On the other hand, Proposition4.2 also depends crucially on the assumption that
|Ω| = 2, as our next example shows:

Example 4.2 Consider a ternary spaceΩ , some n inN, and let fk be the gamble given
by fk := (−1, k

n ,− k2

n2 ), for all k in {1, . . . , n}. Let us show that for each k we can
find a probability measure whose expectation operator Pk (called linear prevision in
Walley’s terminology) satisfies Pk( fk) > 0 > Pk( f j ) for every j ∈ {1, . . . , n} \ {k}.

To find such expectation operators, let P be the expectation operator associated
with the mass function (0, 2k

n+2k ,
n

n+2k ). Then P( fk − f j ) = k− j
n(n+2k) (2k − (k + j)),

whence P( fk − f j ) > 0 if k �= j . Moreover, P( fk) = k2

n(n+2k) > 0.
If we now consider any λ ∈ (0, 1) and define Pk as the expectation opera-

tor associated with the mass function (λ, (1 − λ) 2k
n+2k , (1 − λ) n

n+2k ), we obtain



Choice Functions and Rejection Sets 317

P( fk − f j ) = (1 − λ)P( fk − f j ) > 0 whenever k �= j . Moreover,

Pk( fk) = −λ + (1 − λ)P( fk) > 0 ⇔ λ <
P( fk)

1 + P( fk)
,

and similarly

Pk( f j ) = −λ + (1 − λ)P( f j ) < 0 ⇔ λ >
P( f j )

1 + P( f j )
.

Since, for every j ∈ {1, . . . , n} \ {k}, P( f j )
1+P( f j )

<
P( fk )

1+P( fk )
because P( f j ) < P( fk), we

let

λ ∈
(

max
j∈{1,...,n}\{k}

P( f j )

1 + P( f j )
,

P( fk)

1 + P( fk)

)
,

and for this λ we obtain Pk( fk) > 0 > Pk( f j ) for every j �= k.
Now, letDk be the coherent set of gambles given byDk := { f ∈ L : Pk( f ) > 0},

and let CDk be the coherent choice function it induces by Eq. (4). Then the choice
function C given by C(A) := ⋃n

k=1 CDk (A) is also coherent [9, Proposition 3],
and it can be checked to satisfy separate homogeneity because all CDk do. If we
now consider the option set A = {0, f1, . . . , fn}, we get that CDk (A) = { fk} for
every k, since Pk( fk) > 0 > Pk( f j ) implies that fk, fk − f j ∈ Dk for every j . As a
consequence, we obtainC(A) = { f1, . . . , fn}, whence A ∈ K . However, for every k
it holds that CDk (A \ { fk}) = {0}, using again that Pk( f j ) < 0 for every j �= k, and
therefore C(A \ { fk}) = A \ { fk}. Thus, A has no proper subset that also belongs to
the rejection class K .

5 Conclusions

It is a consequence of coherence that a choice function is uniquely determined by
those option sets that allow us to reject the zero gamble, i.e., those that are considered
preferable to the status quo. In this paper, we have investigated the structure of these
sets and shown that the coherence axioms can be expressed more intuitively in terms
of these sets. In addition, we have shown that all the necessary information is given
by option sets of cardinality two when the choice function is defined via maximality,
and with cardinality two or three in most (but not all) cases of interest when the
possibility space is binary. Moreover, we have shown that this last result does not
extend to larger possibility spaces; thus, determining an analogous representation for
arbitrary spaces would be the main open problem for the future.

On Pedro Gil
I was lucky to meet Pedro Gil in many different roles: first as a teacher, then as

head of department, later as a supervisor, and finally, and all throughout, as a friend.
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He helped me in my first research work, on robust statistics for my final project
during my BsC; and we taught together in a course onMathematics for everyday life
until a few weeks prior to his death.

He was brilliant as a professor, generous as a researcher, and charismatic as a
leader. Few bring together unanimity in the manner he did; and still, or perhaps
because of it, he was always unassuming: he would treat you in the same manner
irrespective of your position, and would make you feel that, whatever your problems,
someone cared and would try to help. Because above all his many qualities, he had
one that few possess: he was a good man.

He has not left a void because he is still very much present.

Enrique Miranda, April 2017
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Mathematical Modeling in Biological
Populations with Reproduction in a
Non-predictable Environment

Manuel Molina, Manuel Mota and Alfonso Ramos

Abstract In order tomathematicallymodel the demographic dynamics of biological
populations with sexual reproduction, we consider the more realistic situation where
the reproductive process occurs in a non-predictable environment. We also assume
that both biological processes,mating and reproduction, are influenced by the number
of couples in the population. In this framework, a class of discrete-time two-sex
branching models has been introduced in (A class of two-sex branching processes
with reproduction phase in a random environment. Stochastics 88:147–161) [10].
In this work, we continue the research about such a class of stochastic models,
investigating the time to extinction and some applications.

1 Introduction

Branchingmodels have been especially developed to describe biological phenomena,
playing a major role in studies on population dynamics, see e.g., [7] or [8]. We
focus here the interest on the development of branching models to describe the
dynamics of biological populations with sexual reproduction. This research line was
initiated in [3] where the bisexual Galton-Watson model was introduced. In this
model, the population of the species under consideration consists of two disjoint
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types of individuals: females and males, and two biological processes are carried
out: mating and reproduction. First, in the mating process the couples female-male
are formed. Then, in the reproduction process, such couples produce new female and
male descendants.

In [3], considering two specific mating strategies, conditions for the extinction of
populations with dynamics mathematically described through the bisexual Galton-
Watson model were established. By using more general mating strategies, several
contributions about the probabilistic evolution of such populations have been derived,
see e.g., [1, 2, 4], or [6]. From theseworks, the interest in this issue increased and new
classes of two-sex (bisexual) branching models have been introduced and studied,
see for details [11] and the references cited therein.

Significant efforts have been made to develop two-sex branching models based on
the assumption that the couples which take part in the reproduction process (progen-
itor couples) behave over time identically with respect to the reproduction, see e.g.,
[9, 13], or [12]. In such models, the number of progenitor couples is determined
in a predictable environment. However, in many biological species, due to several
random factors, e.g., weather conditions, food supply, fertility parameters, predators
or human activities, the reproduction occurs in a non-predictable environment. Sto-
chastic models to describe the dynamics of such species have not been sufficiently
developed.

In order to contribute some solution to this issue, a new class of two-sex branching
models has been introduced in [10]. In each generation, the number of progenitor
couples is randomly determined. Moreover, the couples reproduce according to a
probability law which changes over time depending on the number of progenitor
couples in the population.

The motivation behind the present work is to continue the research about such a
class of models. In Sect. 2, the probability model is formally described and intuitively
interpreted. Section3 is devoted to presenting the main results. Assuming that the
extinction of the population occurs, the probability distribution about the time to
extinction is investigated. The class of models studied is then applied to describe the
phenomena concerning to populate or re-populate habitats with biological species.
The concluding remarks and some open questions for research are included in Sect. 4.

2 Two-Sex Model

Let us consider biological populations with the following basic characteristics: mat-
ing and reproduction can be affected by the current number of couples in the pop-
ulation; in each generation, the number of progenitor couples and the probability
law governing the reproductive process are randomly determined; each progenitor
couple, independently of the others, produces new female and male descendants and
then disappear. In [10], the demographic dynamics of such populations has been
mathematically described through the stochastic sequence {(Fn, Mn)}∞n=1, Fn and
Mn denoting, respectively, the number of females and males at time (generation) n,
defined as follows:



Mathematical Modeling in Biological Populations 321

(Fn+1, Mn+1) :=
φn,Zn∑

i=1

( f
(φn,Zn )

n,i ,m
(φn,Zn )

n,i ), Zn+1 := LZn (Fn+1, Mn+1), (1)

where n ∈ N (non-negative integers) and the empty sum is assumed to be (0, 0).
The variable Zn+1 represents the number of couples formed in the population at
time n + 1. Initially, we assume a positive number k0 of couples. Given that Zn = k,
{φn,k}∞k=0 is a sequence of random variables taking values in N. For each k, the
variables φn,k, n ∈ N, are assumed to be independent and identically distributed. The
role of φn,k is to determine the number of progenitor couples in the nth generation.
Note that immigration/emigration of couples in the population is allowed. When
φn,k > k then φn,k − k immigrant couples come to the population and they take part
in the reproduction process. When φn,k < k then k − φn,k couples emigrate from the
population. It is assumed that P(φn,0 = 0) = 1 and, for k ∈ N+ (positive integers),
P(φn,k = 0) < 1.

If φn,k = j then, irrespectively of n, ( f ( j)
n,i ,m( j)

n,i ), i = 1, . . . , j , are assumed to

be independent and identically distributed random vectors, ( f ( j)
n,i ,m( j)

n,i ) representing
the numbers of females and males descending from the i th progenitor couple in
the nth generation. Its probability law, denoted by {p( j)

f,m, f,m ∈ N}, is referred to
as the offspring probability distribution when j progenitor couples take part in the
reproductive process:

p( j)
f,m := P( f ( j)

n,1 = f,m( j)
n,1 = m), f,m ∈ N.

Clearly, p(0)
0,0 := P( f (0)

0,1 = 0,m(0)
0,1 = 0) = 1.

{Lk}∞k=0 is a sequence of functions defined onN
2 and taking values inN. They are

referred to as mating functions. The role of Lk is to determine the number of couples
formed in the mating process. It is assumed to be non-decreasing in each argument
and such that:

Lk(0,m) = Lk( f, 0) = 0, f,m ∈ N.

Lk( f1 + f2,m1 + m2) ≥ Lk( f1,m1) + Lk( f2,m2), fi ,mi ∈ N, i = 1, 2.

Last assumption (superadditivity) expresses the fact that f1 + f2 females and
m1 + m2 males coexisting together will form a number of couples that is at least
as great as the total number of couples formed by f1 females and m1 males and f2
females and m2 males, living separately.

Note that {(Fn, Mn)}∞n=1, defined in (1), is a discrete-time two-sex model rep-
resenting the demographic dynamics of females and males in the population in an
environment which changes, stochastically in time, influenced by the number of cou-
ples in each generation. In fact, if at time n, k couples have been formed then, the
offspring probability distribution and the mating function governing the reproduc-
tion and mating processes are {p(φn,k )

f,m , f,m ∈ N} and Lk , respectively. This class of
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models includes, as particular cases, the two-sex branching models investigated in
[3, 12, 13, 15]. In addition to its theoretical interest, it can be used to describe the
evolution of biological species characterized by a single reproductive episode before
death (semelparous species), see for details [5].

3 Results

This section is devoted to stating some results about the extinction/survival of bio-
logical populations with dynamics mathematically described through the class of
two-sex models (1). It is organized in three subsections. First, the necessary pre-
liminary definitions and results are given. Then, assuming that the extinction of the
population occurs, the probability distribution about the time to extinction is investi-
gated. Finally, an application to the phenomena concerning to populate or re-populate
habitats with biological species is presented.

3.1 Preliminary Results

From (1), if for some n ∈ N, φn,Zn = 0 then (Fn+m, Mn+m) = (0, 0) and Zn+m = 0,
m ∈ N+, which means the extinction of the population. Also, if for some n ∈ N+,
Zn = 0 then, using that P(φn,0 = 0) = 1, the extinction occurs. By simplicity, we
will consider that the population is extinct when, in some generation, no couples are
formed in the mating process.

Definition 3.1 Let

Qk0 := P( lim
n↗∞ Zn = 0|Z0 = k0), k0 ∈ N+

be the probability that the extinction occurs in a population starting with k0 couples.

The results stated in this subsection have been proved in [10].

Proposition 3.1 Assume that, for each k ∈ N+, one of the following conditions is
satisfied:

1. P(φ1,k = 0) > 0.
2. For some j ∈ N+, max{P( f ( j)

0,1 = 0), P(m( j)
0,1 = 0)}P(φ1,k = j) > 0.

Then:
P( lim

n↗∞ Zn = ∞|Z0 = k0) = 1 − Qk0 , k0 ∈ N+. (2)

We henceforth assume (2) holds. In order to obtain sufficient conditions for the
extinction/survival of the population, the following working assumptions about the
sequences {Lk}∞k=0, {φ1,k}∞k=0 and {( f ( j)

0,1 ,m( j)
0,1)}∞j=1 are required:
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(a1) Lk( f,m) ≤ Lk+1( f,m), k, f,m ∈ N.
(a2) φ1,k1 + φ1,k2 is stochastically smaller1 than φ1,k1+k2 , k1, k2 ∈ N.
(a3) f ( j)

0,1 (resp. m( j)
0,1) is stochastically smaller than f ( j+1)

0,1 (resp. m( j+1)
0,1 ), j ∈ N+.

Assumption (a1) represents the usual behaviour in many biological species in
which the mating is promoted as the number of couples in the population grows.
Requirement (a2) means that φ1,k1 + φ1,k2 is more likely to take smaller values than
φ1,k1+k2 . Assumption (a3) expresses the fact that when the number of reproductive
couples in the population grows then the numbers of female and male descendants
take large values with higher probabilities.

Definition 3.2 Let
Rk := k−1E[Zn+1|Zn = k], k ∈ N+

be the mean growth rates per couple. From (1), it is deduced that:

Rk = k−1
∞∑

j=0

E

[
Lk(

j∑

i=1

f ( j)
1,i ,

j∑

i=1

m( j)
1,i )

]
P(φ1,k = j).

Proposition 3.2 Under assumptions (a1), (a2) and (a3):

(a) R := lim
k↗∞ Rk exists and R = sup

k≥1
Rk.

(b) If R ≤ 1 then Qk0 = 1, k0 ∈ N+.
(c) If R > 1 and sup

k≥1
k−1Var [Zn+1|Zn = k] < ∞ then there exists k∗ ∈ N+ such

that Qk0 < 1, k0 ≥ k∗.

3.2 Time to Extinction

Definition 3.3 Given Z0 = k0 ∈ N+, define

Tk0 := sup{k ≥ 0 : Zk > 0}, k0 ∈ N+.

This variable represents the number of generations elapsed before the posible extinc-
tion of the population occurs starting from k0 couples.

Clearly, P(Tk0 < ∞) = Qk0 . For i ∈ N, let

ϕi (s) :=
∞∑

k=0

sk P(Zi = k), 0 ≤ s ≤ 1.

1Given the variables X and Y , we say that X is stochastically smaller than Y if, for each real number
t , P(X ≤ t) ≥ P(Y ≤ t).
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Note that ϕ0(s) = sk0 , 0 ≤ s ≤ 1. By simplicity, we will denote:

ϕ∗
i (0) := ϕi+1(0) − ϕi (0), i ∈ N.

Assuming that Tk0 < ∞, next result provides the probability distribution of Tk0 and
its main moments.

Proposition 3.3 (a) P(Tk0 = i |Tk0 < ∞) = Q−1
k0

ϕ∗
i (0), i ∈ N.

(b) E[Tk0 |Tk0 < ∞] =
∞∑
i=1

(1 − Q−1
k0

ϕi (0)).

(c) Var [Tk0 |Tk0 < ∞] = Q−1
k0

[
∞∑
i=1

i2ϕ∗
i (0) − Q−1

k0
(

∞∑
i=1

(Qk0 − ϕi (0))2].

Proof Using that P(Tk0 < ∞) = Qk0 we deduce:

(a)
P(Tk0 = 0|Tk0 < ∞) = Q−1

k0
P(Z1 = 0) = Q−1

k0
ϕ∗
0 (0).

For i ∈ N+,

P(Tk0 = i |Tk0 < ∞) = Q−1
k0

P(Tk0 = i)

= Q−1
k0

(P(Tk0 ≤ i) − P(Tk0 ≤ i − 1))

= Q−1
k0

(P(Zi+1 = 0) − P(Zi = 0))

= Q−1
k0

ϕ∗
i (0).

(b)

E[Tk0 |Tk0 < ∞] =
∞∑

i=0

P(Tk0 > i |Tk0 < ∞)

=
∞∑

i=0

(1 − Q−1
k0

P(Tk0 ≤ i))

=
∞∑

i=1

(1 − Q−1
k0

ϕi (0)).

(c)

E[T 2
k0 |Tk0 < ∞] = Q−1

k0

∞∑

i=1

i2ϕ∗
i (0).

The result is deduced using that:

Var [Tk0 |Tk0 < ∞] = E[T 2
k0 |Tk0 < ∞] − (E[Tk0 |Tk0 < ∞])2. �
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3.3 Application

A problem of great ecological importance is to populate or re-populate habitats
with biological species. Suppose that we are interested in such a problem for a
biological species which has the basic characteristics indicated in Sect. 2. Thus, in a
first approach, the two-sex branching model defined in (1) can be applied to describe
the probabilistic evolution of the species in the corresponding habitat.

Wewill assume that conditions required inProposition3.2 hold.Also, according to
this result, in order to have a positive probability for the survival of the species,wewill
assume that the population dynamics of the species in the habitat can be appropriately
described through amodel (1)where R > 1and supk≥1 k

−1Var [Zn+1|Zn = k] < ∞.
Initially, k0 couples of the species are introduced in the habitat. If, after some

generations, the species is extinct then k0 new couples are again introduced, and so
on, until the implementation of the species in the habitat is obtained.

For each l ∈ N+, let us denote by {(Fn,l, Mn,l)}∞n=1 the model, defined in (1),
describing the probabilistic evolution concerning the lth attempt of re-population. Let
{Zn,l}∞n=0, with Z0,l = k0, be the sequence related to {(Fn,l, Mn,l)}∞n=1 representing
the number of couples formed in the habitat in the successive generations.

Thus, we are modeling the problem to populate or re-populate the habitat with the
biological species through a sequence of independent processes {{(Fn,l, Mn,l)}∞n=1,

l ∈ N+}, each of them, with the same underlying probability model as given in (1).
Consequently, all the models have the same sequences of mating functions {Lk}∞k=0

and offspring probability distributions {p( j)
f,m, f,m ∈ N}∞j=0 governing, respectively,

the mating and reproduction processes.
We derive, independently of l, that:

P( lim
n↗∞ Zn,l = 0|Z0,l = k0) = Qk0 .

Let
Tk0,l := sup{k ≥ 0 : Zk,l > 0}, l ∈ N+.

{Tk0,l}∞l=1 is a sequence of independent and identically distributed random variables.
Its common probability law is given in Proposition 3.3. By simplicity,

Pk0,i := P(Tk0,1 = i |Tk0,1 < ∞), i ∈ N.

Let us denote by Nk0 the variable representing the number of attempts before the
implementation of the species in the habitat is obtained. Notice that Nk0 is distributed
according to the geometric probability law:

P(Nk0 = i) = Qi
k0(1 − Qk0), i ∈ N. (3)
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We deduce that:

E[Nk0 ] = Qk0(1 − Qk0)
−1, Var [Nk0 ] = Qk0(1 − Qk0)

−2. (4)

Definition 3.4 Let

T ∗
k0 :=

Nk0∑

l=1

Tk0,l (5)

be the total number of generations elapsedbefore the implementation of the biological
species in the habitat occurs.

Proposition 3.4 (a) P(T ∗
k0

= i) = Q∗−1

k0
(δi,0 +

∞∑
j=1

Q j
k0
P (∗ j)
k0,i

), i ∈ N.

(b) E[T ∗
k0

] = Q∗
k0

∞∑
i=1

(Qk0 − ϕi (0)).

(c) Var [T ∗
k0

] = Q∗
k0

[(1 + Q∗
k0

)
∞∑
i=1

i2ϕ∗
i (0) − Q−1

k0
(

∞∑
i=1

(QK0 − ϕi (0)))2].

Q∗
k0 := (1 − Qk0)

−1, δi,0 := 1 if i = 0 or 0 if i �= 0,

P (∗ j)
k0,i

:=
∑

i1+...+i j=i

Pk0,i1 ...Pk0,i j .

Proof (a) Taking into account (3) and (5),

P(T ∗
k0 = i) =

∞∑

j=0

P(T ∗
k0 = i |Nk0 = j)P(Nk0 = j)

= Q∗−1

k0 (δi,0 +
∞∑

j=1

Q j
k0
P(

j∑

l=1

Tk0,l = i))

= Q∗−1

k0 (δi,0 +
∞∑

j=1

Q j
k0
P (∗ j)
k0,i

), i ∈ N.

(b) From (4), (5), and Proposition 3.3,

E[T ∗
k0 ] = E[Nk0 ]E[Tk0,1|Tk0,1 < ∞] = Q∗

k0

∞∑

i=1

(Qk0 − ϕi (0)).
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(c) It is derived using again (4) and (5), Proposition 3.3, and the fact that:

Var [T ∗
k0 ] = E[Nk0 ]Var [Tk0,1|Tk0,1 < ∞] + Var [Nk0 ]E[T 2

k0,1|Tk0,1 < ∞]. �

4 Conclusion

In this work, we have focused the attention on the stochastic modeling of biological
populations with reproductive process in a non-predictable environment. We have
continued the research about the class of discrete-time two-sex branching models
introduced in [10].

By assuming the extinction of the population, we have investigated the proba-
bilistic behaviour of the variable representing the number of generations elapsed
before the extinction occurs (Proposition 3.3). We have also considered the ecologi-
cal problem concerning to populate or re-repopulate habitats with biological species
which reproduce sexually. By considering, as mathematical approach, such a class of
two-sex models we have investigated the probabilistic evolution of the species in the
habitat. In particular, we have determined the probability distribution of the variable
representing the total number of generations elapsed until the implementation of the
species in the habitat occurs and its main moments (Proposition 3.4).

Some open questions for research about the class of two-sex models defined in (1)
are, for example: to investigate, assuming the non-extinction of the population, its
limiting evolution; to study the probabilistic behaviour of the population considering
that P(φ1,0 = 0) < 1; and to develop its inferential theory.

For instance, it is important to determine appropriate estimators for the extinction
probability and for the main reproductive parameters (offspring mean vectors and
covariance matrices) involved in the probability model, namely:

(μ
( j)
1 , μ

( j)
2 );

(
σ

( j)
i j

)

i, j=1,2
, j ∈ N

where,
μ

( j)
1 := E[ f ( j)

0,1 ], μ
( j)
2 := E[m( j)

0,1],

σ
( j)
11 := Var [ f ( j)

0,1 ], σ
( j)
12 = σ

( j)
21 := Cov[ f ( j)

0,1 ,m( j)
0,1], σ

( j)
22 := Var [m( j)

0,1].

In [14], under the more general non-parametric statistical setting, some inferential
questions have been investigated. In particular, we have proposed Bayes estimators
for such reproductive parameters. An application to Pacific salmon populations has
been also presented.
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1 Introduction

Non-sampling errors are of great significance in the implementation and analysis of
surveys; one example of such errors is the effect of non-response by interviewees.
In recent years, many authors have noted a tendency among interviewees not to
respond to survey questionnaires. In the interests of economy of bibliographical
references, citing [5] should be sufficient. Indeed, the problem of total nonresponse
is present even when the interviewee is required to respond to the survey. There are
several different classifications of non-response, for example the distinction made
in [6] between “total non-response”, when there is no response to any part of the
survey questionnaire, and “item non-response”, where individual questions are not
answered, and finally “partial non-response”, where a response is not given to parts
or sections of the questionnaire. The effect of non-response in surveys has an impact
on the probability on which inferences are based, giving rise to biased estimates
and increased variance: this has been noted by several authors, e.g. [3]. Because of
this, studies have been carried out into diverse methods intended to correct for the
effects of non-response, includingweighting, imputation and statisticalmodelling, as
described in [7]. These methods are usually applied after the completion of fieldwork
and do not generally involve any significant extra costs in running the survey.

2 Field Substitution

Substitution or field substitution is a method used to correct for total non-response.
Although there has been criticism of themethod, it is used bymany organisations that
specialise in running surveys, particularly when a sample frame of reliable, accurate
information is available. Field substitution consists in replacing interviewees who
do not respond to the survey with other elements of the population, subpopulation,
domain or set (we will generally refer to populations) with very similar character-
istics to those of the non-responding individuals. The new element is often referred
to as the substitute. There are several forms of field substitution, which have been
described by various authors: Chapman [2] proposes two separate ways of carrying
out random substitution. In the first, the substitute is specially designed to be as simi-
lar as possible to the interviewee generating the non-response in terms of the variables
considered or set in the sample frame; the second is referred to as random substitution
because substitutes are selected randomly from among the non-responding intervie-
wees population or subpopulation. Vehovar [11] describes these methods in detail,
drawing a distinction between two general situations, according to whether proba-
bility sampling is used. Where it is, he proposes two situations, according to whether
or not the interviewer can influence the selection of substitutes. Vehovar maintains
the general method proposed by Chapman. Lynn [8] extends Vehovars [11] proposal,
classifying substitution under a structure composed of three dimensions: firstly, who
decides whether to make a substitution (the survey manager or the interviewer); sec-
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ondly, who selects the substitute (again, whether this is the survey manager or the
interviewer); and thirdly, how the substitute is selected, with three possible options
(simple random selection, stratified random selection and non-random selection).
Within this structure, then, there would logically appear to be twelve possibilities
for substitution design; from a practical standpoint, these are reduced to eight, as
assuming that the interviewer was making the decision, substitutes would not be
selected randomly. Smith [10] proposes considering five elements to describe the
main features of substitution methods: the possibility of implementing substitution
in some phase of multiphase sampling; whether substitution is permissive or con-
trolled; whether the substitution procedure is randomised; whether substitutes are
similar in terms of variables included in the sample frame; and for household sur-
veys, whether the substitute is selected from within the same household.

3 Sequential Field Substitution

The proposed method for the substitution of elements of the population shall be the
sequential and random selection of substitutes. The approach will be one of sim-
ple random sampling without replacement, which does not in principle imply any
restriction, as this is the generally applied sampling method for the final selection of
survey respondents. Selection of population elements will therefore be consecutive
and random. Where “total non-response is absent”, the decision will be made to
include the element in the sample, and if “total non-response is present”, they will
be excluded from the sample. When this is the case, they will be substituted by con-
tinuing with random selection until a substitute is found. This procedure is followed
until the desired survey sample size is reached. This results in a process whereby the
first order inclusion probability is updated as they are included in the sample (or not).
This update process follows the method proposed in [1], a special case of a random
sampling method, the splitting method introduced in [4]. Let us assume a population
U (whose elements we shall assume, on account of the above, to have shared features,
as per the sample frame) with N members, from which where substitutions are not
necessary, we need a sample m made up of n elements, or where substitutions are
made, we need a sample ms , also made up of n elements who do not present total
non-response, guaranteeing the initially planned sample size of n. The assumption
is made that the elements of the population are accessible and identifiable, in order
to be able to apply sequential selection. We therefore define indicator variables,

Ik =
{

1 if the kth element is included in the sample
0 if the kth element is not included in the sample

k = 1, 2, . . . , N

where the index k marks the order in which population elements are accessed, and the
probability of being selected is updated in accordance with the number of elements
included (or not included) in the sample. As we are applying simple random sam-
pling without replacement, every element of the population initially has probability
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π
(0)
j = n

N j = 1, 2, . . . , N of being included in the sample in the initial phase, identi-
fied as the 0 − phase (selection). This probability will be updated in the sequential
process theferore in the i th phase, their probability of being selected is determined
by

π
(i)
j = P

[
I j = 1

] =
n −

i∑
k=1

Ik

N − i
para j ≥ i + 1, i + 2, . . . , N , i = 1, 2, . . . , N − 1

with the following relationship between the consecutive phases:

π∗
j = P

[
I j = 1

] = π
(i)
j = π

(i−1)
j −

(
Ii − π

(i−1)
j

) 1

N − i
for j ≥ i + 1, i + 2, . . . , N , i = 1, 2, . . . , N − 1

as π
(i−1)
j is constant for any j ≥ i, i + 1, . . . , N , the result is π

(i−1)
j = π

(i−1)
i , and

π∗
j = P

[
I j = 1

] = π
(i)
j = π

(i−1)
j −

(
Ii − π

(i−1)
i

) 1

N − i
for j ≥ i + 1, i + 2, . . . , N , i = 1, 2, . . . , N − 1

therefore

π∗
j = P

[
I j = 1

] = π
(i)
j = π

(0)
j −

i∑
k=1

(
Ik − π

(k−1)
k

) 1

N − k

for j ≥ i + 1, i + 2, . . . , N , i = 1, 2, . . . , N − 1

and for the first element observed after the i − th phase, which will be the extraction
element i + 1,

π∗
i+1 = P

[
Ii+1 = 1

] = π
(i)
i+1 = π

(0)
i+1 −

i∑
k=1

(
Ik − π

(k−1)
k

) 1

N − k

for i = 1, 2, . . . , N − 1.

The random variables of the previous expression

εk = Ik − π
(k−1)
k para k = 1, 2, . . . , i

comply with E [εk] = 0, var (εk) = var (Ik) = P [Ik = 1] (1 − P [Ik = 1]) and
they are pairwise uncorrelated. This makes it possible to calculate the second order
inclusion probabilities of selection
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Ii+1 − π
(0)
i+1 = Ii+1 − π

(i)
i+1 −

i∑
k=1

(
Ik − π

(k−1)
k

) 1

N − k
= εi+1 −

i∑
k=1

εk
1

N − k

resulting in

π∗
i+1,i+1+l = P

[
Ii+1 = 1, Ii+1+l = 1

] = E
[
Ii+1 Ii+1+l

]

= n2

N 2
+

i∑
k=1

P [Ik = 1] (1 − P [Ik = 1])

(
1

N − k

)2

− 1

N − (i − 1)
P

[
Ii+1 = 1

] (
1 − P

[
Ii+1 = 1

])
for l > 0, i = 1, 2, . . . , N − 1.

This makes it possible to calculate variance for the chosen estimators for the
population. Therefore, if Y = {y1, y2, . . . , yN } is the parameter associated to the
population U , and if the parametric function for the population total is taken to be

T =
N∑
i=1

yi , the estimator of the total, based on sample ms, will be the estimator of

the ratio for the mean of the subpopulation of elements ofU , that do not present total
non-response, with correction for the initial population size. This is as follows

T̂ms = N

∑
i∈ms

yi
π∗
i∑

i∈ms

1
π∗
i

(1)

with
∑
i∈ms

1
π∗
i
being the estimator of the size of the subpopulation of members of U

who do not present total non-response. The estimator of the approximate variance
of this estimator is determined by

V̂
(
T̂ms

) = N 2

⎛
⎝∑

i∈ms

1

π∗
i

⎞
⎠

−1 ∑
i, j∈ms

π∗
i j − π∗

i π∗
j

π∗
i j

(
yi − yms

π∗
i

)(
y j − yms

π∗
j

)

with yms
= ∑

i∈ms

yi (see [9, p. 182]).

4 An Empirical Study

The proposed estimator has been empirically assessed through simulations of the
non-response process, using three other estimators, described below. In this way,
diverse samples are considered for population U and parameter Y , as described
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below. Therefore, there are also different expressions for estimators of the total and
their respective estimators of variance. For a samplem ⊆ U of size n, with no element
presenting non-response, the estimator of the total T is:

T̂m =
∑
i∈m

yi

π
(0)
i

(2)

and the estimator of variance is determined by

V̂
(
T̂m

) = N − n

n

1

n − 1

∑
i∈m

(
yi − ym

)2

with ym = 1
n

∑
i∈m

yi .

Considered below is the sample without correction for total non-response, mean-
ing a sample mr ⊂ m ⊆ U with mr being of size nr < n, with the estimators

T̂mr =
∑
i∈mr

yi
πir

with πir = nr
N

(3)

and the estimator of variance is determined by

V̂
(
T̂mr

) = N − nr
nr

1

nr − 1

∑
i∈mr

(
yi − ymr

)2

and the other estimator being the result of considering the sequential method but for
a reduced sample,

T̂mr = N

∑
i∈mr

yi
π∗
i∑

i∈mr

1
π∗
i

(4)

where
∑
i∈mr

1
π∗
i
will be the estimator of the subpopulation of elements ofU that do no

present total non-response.
The estimator of approximate variance is determined by

V̂
(
T̂mr

) = N 2

(∑
i∈mr

1

π∗
i

)−1 ∑
i, j∈mr

π∗
i j − π∗

i π∗
j

π∗
i j

(
yi − ymr

π∗
i

) (
y j − ymr

π∗
j

)

with ymr
= ∑

i∈mr

yi .

In order to empirically compare the performance of the four estimators of the
total, 1,000 samples were generated, each with 400 elements. Random perturbation
was applied to each sample generated, or in other words for each complete sample
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Table 1 Simulations from N(2,1)

PNR (1) (2) (3) (4)

0.025 113.81 100.01 127.43 143.28

0.050 169.79 157.99 179.07 349.73

0.100 143.55 129.40 174.04 177.26

Table 2 Simulations from Bernoulli

PNR PBern (1) (2) (3) (4)

0.025 0.3 110.41 141.67 143.73 134.22

0.025 0.5 96.32 128.33 164.62 153.04

0.050 0.3 135.44 126.67 149.26 259.63

0.050 0.5 118.99 120.00 183.86 127.93

0.100 0.3 169.00 136.67 160.17 189.71

0.100 0.5 113.85 100.00 117.43 130.28

Table 3 Simulations from exponential

PNR (1) (2) (3) (4)

0.025 283.81 185.04 275.52 343.28

0.050 179.89 169.03 179.29 199.73

0.100 1043.55 947.68 1050.70 1123.24

m, assuming a determinate value for the probability of non-response, PNR , thereby
obtaining an incomplete samplemr . Based onmr , the completed samplems , with 400
elements, was built by calculating all four estimators based on the samples obtained
in this way. The population is made up of 50,000 members, with the measurement
variable distributed according to the law N(2,1). Table1 shows the average distance
between each estimator and the population total for three values of probability of
non-response and for all four estimators. It can be observed that the proposed esti-
mator (1) generally offers values that are closer to the total than estimators (3) and
(4), only being surpassed by the estimator that corresponds to completely observed
samples (2).

A similar study was carried out on a Bernoulli population, with two possible
values (0.3 and 0.5) for parameter p of the law. Once more, the same three values
as in Table1 were considered for the probability of non-response. The results of this
are shown in Table2. Of the six configurations, four show the better performance of
method (1) compared to estimators (3) and (4), with method (3) surpassing estimator
(1) in two cases. Table2 confirms that estimator (4) performs the worst.

Finally, Table3 shows the results of an analogous study with an exponential law
with rate = 1/2.
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While estimator (3) surpasses (1) in the first row, the conclusion generally supports
that of the preceding tables. For this reason, it can be concluded that the proposed
estimator (1) is a potential alternative to estimator (3), with behaviour that is generally
not inferior that of the latter technique. Estimator (4) is clearly inferior to the other
estimators.
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Angela L. Riffo-Campos, Francisco Montes and Guillermo Ayala

Abstract This paper is concerned with gene set differential expression analysis.
We compare the transcriptomic behaviour of each gene set between different exper-
imental conditions.The gene set is previously defined. It has been used a gene set
collection downloaded from Gene Ontology.A randomization test is proposed and
compared with other previous procedures using a RNA-seq experiment of colorectal
cancer (CRC).

1 Introduction

The research in molecular biology and related areas, especially in Biomedicine, have
been changed abruptly in the last two decades. This was due to the incorporation of
new technologies, in particular to the next generation sequencing (NGS) and bioin-
formatics tools, giving way to the “omics” data era (see Berger et al. [4]). The omics
data, are those obtained from all genetic material of an organism (Genomics), from
all RNA present in a cell type (Transcriptomics), from the total number of proteins
in a cell type (Proteomics), among others [30]. Thus, in a short time, a lot of bio-
logical information was generated. The data is stored in specialized centres, as the
National Center for Biotechnology Information (NCBI), the European Molecular
Biology Laboratory (EMBL) or the DNA Data Bank of Japan (DDBJ). The infor-
mation is available for the scientific community for testing new approaches and new
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bioinformatics tools. In addition, big consortia have been formed to collect, analyze
and share the biological data. Some examples are:

• The haplotype map of the human genome (HapMap: http://hapmap.ncbi.nlm.nih.
gov/), to create a catalog of common genetic variants that occur in human beings
[26].

• The Encyclopedia of DNA Elements (ENCODE: http://genome.ucsc.edu/
ENCODE/) project, whose objective was the identification of all functional ele-
ments in the human genome sequence [25].

• The 1000 genomes project (http://www.1000genomes.org/), which aims at obtain-
ing a deep characterization of human genetic variations that have a frequency of
at least 1% in the population studies [24].

• The Cancer Genome Atlas (TCGA: http://cancergenome.nih.gov/), which is a
comprehensive and coordinate effort to accelerate the understanding of the mole-
cular basis of cancer, making available a large amount of patient data, including
omics data [28].

Nevertheless, outside the large international consortia, a big number of individuals
(samples) to analyze is uncommon. This is due to first, to increase the number of
individuals per experiment, entails an exponential expenditure of time, space and
resources in obtaining the samples for analysis. Then, because the sequencing tech-
nologies, although increasingly accessible, are expensive. In addition, in the case
of humans and experimentation models in mammals, it is added that the use of the
biological material and animals in investigation is highly legislated, whichmakes dif-
ficult the obtaining of a great number of samples. As a result, and to exemplify, of the
1,252,392 dataset found in the Gene Expression Omnibus (GEO) repository, when
searching for “human”, only 16,881 have a sample size greater than 20 per experiment
(https://www.ncbi.nlm.nih.gov/gds/?term=human, 06/2017). Thus, more than 98%
of the dataset have 20 or less samples and usually it is about comparisons between 2
or 3 conditions.

Wewill focus on the transcriptomics data.When themolecular bases for the causes
and development of a disease are studied, they are trying to identify genes whose
function has been altered with respect to a healthy individual, studying between
others, the transcriptome in both conditions. This data can be obtained mainly by
two types of technology: the microarray technologies, that was developed in the
1990s and the massively parallel sequencing of RNA (RNAseq) in form of cDNA,
developed in 2006 [16]. Although, there are also complementary platforms to the
study of the transcriptome as the Tiling Arrays, GRO-seq and others. In addition,
third-generation sequencing platforms are already a fact, but these data are currently
scarce. The datasets generated frommicroarray technologies are usually stored in the
GEO repository (https://www.ncbi.nlm.nih.gov/geo/). While, the sequencing data
are usually stored in the Sequence Read Archive (SRA, https://www.ncbi.nlm.nih.
gov/sra/), EuropeanNucleotideArchive (ENA,http://www.ebi.ac.uk/ena) and also in
GEO.Themicroarray technology allows a quantitativemeasurement of the difference
of expression of knowngenes,when twoormore conditions are compared, generating
continuous data as result of this comparison [8]. With the RNAseq is possible to

http://hapmap.ncbi.nlm.nih.gov/
http://hapmap.ncbi.nlm.nih.gov/
http://genome.ucsc.edu/ENCODE/
http://genome.ucsc.edu/ENCODE/
http://www.1000genomes.org/
http://cancergenome.nih.gov/
https://www.ncbi.nlm.nih.gov/gds/?term=human
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/sra/
https://www.ncbi.nlm.nih.gov/sra/
http://www.ebi.ac.uk/ena
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compare transcript levels in different conditions and also to know the sequence of
the transcribed (cDNA), the data generated by sequencing are counts [32]. This was
an important step in the large-scale study of alternative splicing, which allowed the
discovering of new isoforms and their quantification.

The alternative splicing is the biological process by which the same gene can give
rise to many transcripts with different biological functions [17, 31]. So, a gene can be
considered as a small group of isoforms. In many cases, change in the expression of
one isoform can be the cause of an alteration in cellular functioning and this change
may not be evident when studying differences in the transcriptome at the gene level
[35]. Therefore, the study of the transcriptome at the isoform level has become more
important in the last years.

The processing of raw data from a RNA-seq starts aligning the reads (after quality
control), usually short cDNA sequences, with the reference genome or transcriptome
and then the number of read that belongs to a gene or isoform is counted, using some
bioinformatics tools like Bowtie [13], Tophat–Cufflinks [29] or STAR [7]. After that,
it is analyzed if the differences in the number of reads are statistically significant
(differential expression) by region (gene/isoforms) between two or more conditions,
using R packages like edgeR [20], DEGseq [33] or CummeRbund [29], for more
details see Conesa et al. [6]. To finally perform a functional analysis of groups of
differentially expressed genes. This is usually done through gene set enrichment
analysis, by gene ontology (GO) or KEGG Orthology (KO) categories. This allows
to focus the study to those genes that participate in biological mechanisms associated
to a pathology, discarding those genes differentially expressed by reasons external
to it.

2 The Problem and a (too) Simple Approach

For a given gene i and sample j , the random variable Xi j is the random expression
of the gene i in the sample j . This random expression could be observed from an
array or a RNA-seq experiment. The random expression matrix is

X = [Xi j ]i=1,...,N ; j=1,...,n,

where N is the total number of genes and n is the number of samples. As usual the
observed expression matrix would be

x = [xi j ]i=1,...,N ; j=1,...,n.

Wewill have some covariable associated to the samples. The vector y = (y1, . . . , yn)′
can be numeric (observation times of the samples or an experimental factor indicating
a treatment).

A gene set will be a subset of G = {1, . . . , N }. Note that the rows u1, . . . , uN are
not a random sample because the expressions corresponding to different genes are
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not independent. However, the columns v1, . . . , vn is a random sample. The number
of rows (features) N is much greater than n, N � n. In fact, N is several thousands
and n no more than one or two hundreds.

Let us consider the two conditions setupwith sample sizes n1 and n2. In this paper,
we assume that n1 and n2 are very small. These conditions corresponds to different
phenotypes or different experimental conditions.

The basic problem is to quantify the association between the gene expression
and the phenotype. For a given gene, let Uj with j = 1, . . . , n1 the i.i.d. random
expressions under the first condition. The corresponding random sample under the
second conditionwill beU ′

j with j = 1, . . . , n2.We test the null hypothesis H0 : µ =
µ′ versus H1 : µ �= µ′ whereµ andµ′ are themeans of anyUj andU ′

j respectively. It
is usual to test the null hypothesis of a commonmean (assuming a common variance)
by means the t-test. For so small sample sizes the estimation of the common variance
is not efficient and perhaps is not a good choice. The observed p-value is not reliable.
It is a common practice to use a randomization test. Now we work given the data
i.e. given the observed u j and u′

j . The first group is chosen randomly from the
total number of samples, n = n1 + n2 and the second condition corresponds to non-
chosen samples. The number of possible assignments is

( n
n1

)
. The different values

(possibly not all different) will be t1, . . . , tB . We assume that t1 corresponds to the
real conditions. In the randomization distribution each value has the same probability.
This is called the permutation distribution. Usually, we will sample B times from
the randomization distribution. This distribution is used to test if there is association
between gene expression and phenotype. If a one-tail test is used then the p-value is
given by

p = |{i : i ≥ 2, |ti | > |t1|}|
B − 1

,

where | · | is the cardinality of the set. This p-value measures how extreme is t1
with respect to the other values in the permutation distribution. The p-value or the t-
statistic quantifies the marginal phenotype-expression association for the i th gene. If
we consider a gene set S = {i1, . . . , i|S|} then t(S) = (ti1 , . . . , t|S|) are the observed
statistics used to measure the expression-phenotype association within S. The bth
random selection of n1 samples will produce a new t-vector and a subvector tb(S).
In short, t1(S) will correspond with the original y and tb(S) (with b = 2, . . . , Bth
selection). For each b = 1, . . . , B we calculate

t(b) = 1

B − 1

B∑

j �=i; j=1

t j . (1)

We evaluate the distances between tb and t(b) for all b = 1, . . . , B

db = d(tb, t(b)). (2)
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If there is no expression-phenotype association then all possible orderings of
(d1, . . . , dB) have the same probability. We can use the randomization p-value

p = |{i : i ≥ 2, di > d1}|
B − 1

.

In particular, theManhattan and Euclidean distances will be used in the experimental
results.

3 Experimental Results

We have downloaded the bioproject PRJNA218851, from SRA (SRX347940-SRX-
347887) repository. This data consists of a gene expression profiling study by
RNA-seq in 18 Korean patients with colorectal cancer (CRC). From each patient,
the samples were normal colon (>5cm from the tumor border), primary CRC that
were histologically identified as adenocarcinoma, and liver metastasis (54 samples
in total). A detailed description of the cohort can be found in [12].

The RNA-seq workflow consists of the following steps:

• Download of the raw data from SRA using SRA Toolkit [27].
• The quality control of the reads performed using FastQC [1].
• The preprocessing using FASTX-toolkit [10].
• The reads were aligned with the human genome (hg19) and counted using
STAR [7].

3.1 A Preliminary Marginal Analysis

We have compared the normal colon with primary CRC and the normal colon with
liver metastasis. A marginal differential expression analysis has been performed
using the method edgeR with a common dispersion parameter [18–20]. The raw
and adjusted (using the Benjamini–Hochberg correction [3]) p-values are really
small i.e. a high number of genes seems to be differentially expressed genes and a
low of false discovery rate has been chosen, FDR = 10−30. The significant gene
set contains a total of 129 differentially expressed genes when comparing normal
colon with primary CRC (first significant gene set) and 603 genes when comparing
normal colon with liver metastasis (second significant gene set). These results are
consistent with the progressive deregulation of gene expression profiles in the cancer
progression [21]. The most significant genes in the first significant gene set (from
lower to higher raw p value) were
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• The C-C motif chemokine ligand 25 (CCL25) gene (adjusted p-value 2.03E −
70) that is related to cancer in 47 papers and the CCL25 protein regulate CRC
progression and invasion.

• The COL10A1 gene (adjusted p-value 2.48E − 70) encodes the alpha chain of
typeXcollagen that is related to cancer in 27 papers andwas proposed as biomarker
for early detection of colon cancer [5, 22].

• The NKX2-1 gene (adjusted p-value 1.23E − 69) encodes a transcription factor
that is related to cancer in 140 papers and is involved in p53 pathway, promoting
the invasiveness in colon cancer cells [11].

• Thehuman regenerating gene1B (REG1B)(adjusted p-value 2.93E − 66) is found
associated to cancer in 7 papers and was proposal as a novel candidate therapeutic
target for CRC [15].

• The long non-coding RNA AFAP1-AS1 (adjusted p-value 4.18E − 65) is asso-
ciated to cancer in 26 papers and in CRC was related with poor prognosis and
promotes tumorigenesis [14, 34], and facilitates tumor growth andpromotesmetas-
tasis [9].

Other genes in the list that are located next to the genes beforementioned, as REG1A,
FEZF1-AS1,MMP7,KRT17,COL11A1,CLDN18,COMP,MMP3,MMP1, INHBA
and others, also have been related with CRC. However, genes like NPSR1 and
LINC02418 have not been previously reported as differentially expressed in CRC.

In the result obtained in the second significant gene set, the top five genes in the list
were: FGG (3.84E − 123), FGB (5.81E − 122), haptoglobin (6.34E − 122), ITIH1
(1.24E − 121), ALB (1.04E − 121) all related to cancer. The FGG, haptoglobin and
ALB genes also were related to metastatic colorectal cancer [2, 23]. Thus, in general,
our results are consistent with literature.

3.2 Three Different Gene Set Analysis

We have chosen as gene set collection the “biological process” ontology from Gene
Ontology working only with sets with five or more genes. Three different gene set
analysis have been used.

• An over-representation analysis using two different significant gene sets corre-
sponding to the comparisons between control with cancer (first significant gene
set) and control with metastasis (second significant gene set).

• A gene set test where the association phenotype-expression is quantified using
the raw p-value of the edgeR method. We aggregate within each gene set using
the mean. The self-contained null hypothesis is tested using the randomization
distribution of the mean p-value. The p-value corresponds to the randomization
distribution of the aggregated value.



Working with (too) Few Samples 343

• Our approach proposed in the previous section using the Manhattan and Euclid-
ean distances. The statistic corresponds to the raw p-values of the edgeR method.
The results commented later use the Manhattan distance.

From now on we will use a false discovery rate equal to 0.001.
The first method, the over-representation analysis, for the first significant gene

set, finds only one GO category, the collagen catabolic process (GO:0030574), that
contains the PEPD, ADAM15, COL13A1, FURIN and many others (see Colorectal
Cancer Atlas and the Human Protein Atlas databases).

The second method, the GSA analysis, for the control-cancer comparison obtains
2003 GO categories. Our analysis, third method, for the control-cancer comparison
result in 3527 GO significant categories.

For both GSA and our method, some of the first significant GO categories were
the same:

• The ribosomal large subunit export from nucleus (GO:0000055), include the
XPO1, RRS1 and NMD3 genes that are involved in CRC (see Colorectal Can-
cer Atlas and the Human Protein Atlas databases).

• The G2/M transition of mitotic cell cycle (GO:0000086) that includes the ENSA,
LIN54, PPP2R1A and MAPRE1 genes involved in CRC.

• The activation of MAPKK activity (GO:0000186), include the CSF2RA, SPTB
and TAOK3 genes involved in CRC.

• The mRNA splicing, via spliceosome (GO:0000398), include the HNRNPA1,
BUD31, POLR2F, NUDT21, CD2BP2, METTL3 and others genes involved in
CRC,

and others GO categories.
When we compare control versus metastasis a total of 69 significant GO cate-

gories has been obtained by over-representation. The second method has found 2805
significant gene sets and 4065 has been found by our method.

Finally, we have compared the adjusted p-value obtained using the three different
procedures. In particular, we have added a modified version of our method using the
Euclidean distance i.e. we have the three procedures just used plus the third one with
the Euclidean distance. Figure1a displays the cumulative distribution functions for
the four procedures when we compare control versus cancer. The different metrics
for our procedure produces very similar results. Our method provides clearly lesser
p-values with respect the first and second method. The worst procedure is the first
one. A similar comment applies to Fig. 1b. If we compare both plots it is clear that the
p-values are clearly smaller for control-cancer comparison with respect to control-
metastasis comparison. Let us remember that metastasis is later evolution of the
disease.
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Fig. 1 a Cumulative distribution functions for p-values obtained comparing control versus cancer.
The label Over corresponds to the first method, GSA to the second method, Manh to the third
method with the Manhattan distance and Eucl to the third method with the Euclidean distance. b
Cumulative distribution functions for p-values obtained comparing control versus metastasis. See
text for details
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Estimation of the Owen Value Based
on Sampling

Alejandro Saavedra-Nieves, Ignacio García-Jurado and M. Gloria
Fiestras-Janeiro

Abstract In this paper we introduce a procedure based on sampling to estimate the
Owen value of a cooperative game. It is an adaptation of an analogous procedure
for the estimation of the Shapley value, and it is specially useful when dealing with
games having large sets of players. We provide some results in order to choose a
sample size guaranteeing a bound for the absolute error with a given probability, and
illustrate our procedure with an example taken from the game theoretical literature.

1 Introduction

Game theory is the mathematical theory of interactive decision problems. When the
agents involved in one of such problems canmake commitments, they usually commit
to cooperate, i.e. to behave in a way that results in a social optimum. These problems
are treated by cooperative game theory. According to [4], “cooperative game theory
deals with coalitions and allocations, and considers groups of players willing to
allocate the joint benefits derived from their cooperation”. Cooperative game theory
has become a usefulmathematical tool in theoretical economics, political science and
in other disciplines. Reference [3] is a survey with some applications of cooperative
game theory.

An important solution concept in cooperative game theory is the Owen value,
introduced in [7]. The Owen value proposes for every cooperative game an allocation
of the joint benefits generated by the players when there exists an a priori structure
that conditions their cooperative possibilities. It is a variation of the Shapley value
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(see [8]) that has many applications in political science, logistics and cost allocation
(see, for instance, [2]).

The main drawback concerning the Shapley value and the Owen value is compu-
tational, since their complexities increase exponentially with the number of players.
There are many papers dealing with this issue from several perspectives. Recently,
a polynomial calculation procedure of the Shapley value based on sampling was
introduced in [1]. In this paper, we adapt it for the estimation of the Owen value, and
provide both theoretical and experimental results for our procedure.

2 The Owen Value

In this section we give a brief introduction to cooperative games and the Owen value.
A transferable utility cooperative game (or, simply, a TU-game) is a pair (N , v),

where N is the finite set of players and v : 2N −→ R is a map satisfying v(∅) = 0.
We denote by GN the class of TU-games with set of players N . A coalition is

a subset of players T ⊆ N with t members. The coalition N is named the grand
coalition. For each coalition T ⊆ N , v(T ) indicates the benefits that T generates
when its members cooperate.1

The definition and analysis of rules for allocating the benefits generated by the
cooperation of the players in the grand coalition is a central topic of cooperative game
theory. Possibly, the most important of such rules is the Shapley value introduced in
[8]. The Shapley value is defined, for every i ∈ N and every (N , v) ∈ GN , as

Shi (N , v) =
∑

T⊆N\{i}

t ! (n − t − 1)!
n! (v(T ∪ {i}) − v(T )).

An alternative formulation of the Shapley value can be given in terms of permu-
tations. We denote by Π(N ) the set of permutations of the players in N . For each
σ ∈ Π(N ), the set of predecessors of agent i ∈ N according to σ is denoted by Pσ

i
and defined as

Pσ
i = { j ∈ N : σ( j) < σ(i)}.

The Shapley value can be written as

Shi (N , v) = 1

|Π(N )|
∑

σ∈Π(N )

(v(Pσ
i ∪ {i}) − v(Pσ

i ))

for every i ∈ N and every (N , v) ∈ GN .

1Alternatively, a TU-game can map each coalition to the cost that its members support when
cooperating. In this case, the game is said to be a cost game and is denoted by (N , c).
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Now we introduce the model of TU-games with a priori unions and the Owen
value.

Definition 2.1 ATU-game with a priori unions is a triplet (N , v, P)where (N , v) ∈
GN and P = {P1, . . . , Pm} is a partition of N . P is interpreted as a coalition structure
that restricts the cooperation among the players in N .

We denote by UN the class of TU-games with a priori unions and set of players
N . The Owen value is the extension of the Shapley value for TU-games with a priori
unions. Take (N , v, P) ∈ UN and i ∈ N . Denote by Pi the union to which i belongs.
The Owen value Oi (N , v, P) is defined as

∑

Q⊆P\{Pi }

∑

T⊆Pi \{i}

t !(pi − t − 1)!q!(m − q − 1)!
pi !m!

(
v( ∪

Pa∈QP
a ∪ T ∪ {i}) − v( ∪

Pa∈QP
a ∪ T )

)
.

The Owen value can also be formulated in terms of permutations. A permutation
σ ∈ Π(N ) is said to be compatible with a coalition structure P if the elements of
each class of P are not separated by σ . Formally, if ΠP(N ) denotes the set of all
permutations of N that are compatible with P , then σ ∈ ΠP(N ) if and only if for all
i, j, k ∈ N it holds that

Pi = Pj and σ(i) < σ(k) < σ( j) ⇒ Pk = Pi = Pj .

Now, the Owen value of (N , v, P) can be rewritten, for every i ∈ N , as

Oi (N , v, P) = 1

|ΠP(N )|
∑

σ∈ΠP (N )

(v(Pσ
i ∪ {i}) − v(Pσ

i )). (1)

Notice that when P = {N } or P = {{i}, i ∈ N }, ΠP(N ) is equal to Π(N ) and
the Shapley value and Owen value coincide. Hence, the Owen value is an extension
of the Shapley value. Since its introduction in [7], it has generated a large literature
and has become an important rule for cooperative games.

3 A Sampling Procedure to Estimate the Owen Value

The computation of the Owen value for a particular TU-game with a priori unions
can be a hard task from the computational point of view, because its complexity
increases exponentially with the number of players. In this section, we describe and
analyze a procedure to estimate the Owen value based on sampling. It is an extension
of an analogous procedure to estimate the Shapley value introduced in [1].

We want to estimate the Owen value of a TU-game with a priori unions
(N , v, P) ∈ UN , with P = {P1, . . . , Pm}. The sampling procedure we propose is
described below:
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• The population of the sampling procedure is the set of all permutations of N
compatible with P , i.e. ΠP(N ).

• The vector of parameters to be estimated is O = (Oi )i∈N , where Oi denotes
Oi (N , v, P) for all i ∈ N .

• The characteristics to be studied in each sampling unitσ ∈ ΠP(N ) are themarginal
contributions of the players according to σ , i.e. the vector (x(σ )i )i∈N , where
x(σ )i = v(Pσ

i ∪ {i}) − v(Pσ
i ) for all i ∈ N .

• The sampling procedure takes each permutation σ ∈ ΠP(N ) with the same prob-
ability. To that aim, it chooses at random a permutation of the elements of each
Pk (k ∈ {1, . . . ,m}) and then it chooses at random a permutation of the elements
of {1, . . . ,m}. Combining this collection of m + 1 permutations, σ ∈ ΠP(N ) is
obtained.

• The estimation of O is the mean of the marginal contributions vectors over the
sample S, i.e. Ô = (Ôi )i∈N , where Ôi = 1

s

∑
σ∈S x(σ )i for each i ∈ N (s denoting

the sample size).

Let us study now some properties of our sampling procedure from a statistical
perspective. Fix i ∈ N . Clearly each estimator Ôi is unbiased since

E(Ôi ) = E

(
1

s

∑

σ∈S
x(σ )i

)
= E(x(σ )i ) = Oi .

Besides,

Var(Ôi ) = Var

(
1

s

∑

σ∈S
x(σ )i

)
= Var(x(σ )i )

s
.

Hence, taking into account that

MSE(Ôi ) = E(Ôi − Oi )
2 = (E(Ôi ) − Oi )

2 + Var(Ôi ),

it is clear that MSE(Ôi ) converges to zero when s tends to infinity.
Nowwe state and prove some results that can be helpfulwhen choosing the sample

size. This collection of results is a generalization of an analogous collection for the
estimator of the Shapley value provided in [6].

Proposition 3.1 Take ε > 0, α ∈ (0, 1). Then,

s ≥ Var(x(σ )i )

αε2
⇒ P(|Ôi − Oi | ≥ ε) ≤ α.

Proof Clearly,

P(|Ôi − Oi | ≥ ε) = P(|Ôi − E(Ôi )| ≥ ε) = P

(
|Ôi − E(Ôi )| ≥ ε

√
Var(Ôi )√
Var(Ôi )

)
.

Applying Chebyshev’s inequality, it holds that
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P

(
|Ôi − E(Ôi )| ≥ ε

√
Var(Ôi )

√
Var(Ôi )

)
≤ Var(Ôi )

ε2
= Var(x(σ )i )

sε2
≤ α. �

Proposition 3.2 Take ε > 0, α ∈ (0, 1) and denote

ri = max
σ,σ ′∈ΠP (N )

(x(σ )i − x(σ ′)i ).

Then,

s ≥ ln(2/α)r2i
2ε2

⇒ P(|Ôi − Oi | ≥ ε) ≤ α.

Proof Clearly,

P(|Ôi − Oi | ≥ ε) = P(|Ôi − E(Ôi )| ≥ ε) = P(|
∑

σ∈S
x(σ )i − E(

∑

σ∈S
x(σ )i )| ≥ εs).

Applying Hoeffding’s inequality,2 it holds that

P(|
∑

σ∈S
x(σ )i − E(

∑

σ∈S
x(σ )i )| ≥ εs) ≤ 2 exp(

−2ε2s

r2i
) ≤ α. �

Propositions 3.1 and 3.2 can be used to choose the sample size when estimating
the Owen value of a game with a priori unions. Proposition 3.2 refers to the range of
the collection of marginal contributions, about which one usually have information.
For instance, if (N , v) is a convex or a concave game3 then it is clear that

ri = |v(N ) − v(N \ {i}) − v({i})|.

Proposition 3.1 refers to the variance of the collection of marginal contributions,
which is usually unknown. However, using the bound of the variance provided by
the Popoviciu’s inequality,4 the following corollary follows immediately.

2Hoeffding’s inequality: Let
∑r

j=1 X j be the sum of r independent random variables such that a j ≤
X j ≤ b j for all j ∈ {1, . . . , r}. Then P(| ∑r

j=1 X j − E(
∑r

j=1 X j )| ≥ t) ≤ 2 exp( −2t2∑r
j=1(b j−a j )

2 ).

3(N , v) is a convex game when for every i ∈ N and every K , T ⊆ N \ {i} with K ⊂ T , it holds
that v(K ∪ {i}) − v(K ) ≤ v(T ∪ {i}) − v(T ). (N , v) is a concave game when (N ,−v) is convex.
4Popoviciu’s inequality on variances: Let M and m be an upper and a lower bound on the values
of a bounded random variable X with variance Var(X). Then, Var(X) ≤ 1

4 (M − m)2.
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Corollary 3.1 Take ε > 0, α ∈ (0, 1). Then,

s ≥ r2i
4αε2

⇒ P(|Ôi − Oi | ≥ ε) ≤ α.

We can summarize the results and comments above in the following corollary.

Corollary 3.2 (a) Take ε > 0, α ∈ (0, 1). Then,

s ≥ min

{
1

4αε2
,
ln(2/α)

2ε2

}
r2i ⇒ P(|Ôi − Oi | ≥ ε) ≤ α.

(b) Take ε > 0, α ∈ (0, 1) and assume that (N , v) is a convex or a concave game.
Then,

s ≥ min

{
1

4αε2
,
ln(2/α)

2ε2

}(
v(N ) − v(N \ {i}) − v({i}))2

implies that P(|Ôi − Oi | ≥ ε) ≤ α.

Notice that, typically, we deal with small values of α. In [6, p. 46] it is proved that
if α ≤ 0.23 then

min

{
1

4αε2
,
ln(2/α)

2ε2

}
= ln(2/α)

2ε2
.

4 An Example

In this section we illustrate the performance of our sampling procedure in an example
taken from the game theoretical literature. The game in the example hasmany players
so that its Owen value cannot be calculated using the general formula in (1); however,
it can be calculated using a special formula. We compare the Owen value calculated
with the Owen value estimated using the sampling procedure.

Our example is a cost game with a priori unions (N , c, P) studied in [9]. It is a
special type of cost game, a so-called airport game, that can be used to define the fee
for the planes operating in an airport. We now briefly explain what is an airport game
(more details can be found in [5] or [4]). Suppose thatT is the set of types of planes
operating in an airport in a particular period. Denote by Nτ the set of movements
that are made by planes of type τ ∈ T and by N the set of all movements, i.e.
N = ∪τ∈T Nτ . Let cτ be the cost of a runway that is suitable for planes of type τ in
the considered period. Without loss of generality, we assume that

c1 ≤ c2 ≤ . . . ≤ c|T |.

Now, for every T ⊆ N , c(T ) is defined as the cost of a runway that can be used by
all the movements in T , i.e.
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c(T ) := max{cτ : T ∩ Nτ �= ∅}.

Defining a fee for each movement can be seen as dividing c(N ) among the move-
ments. For doing this, [9] proposes to take into account that the planes are operated
by airlines and, then, to model this cost allocation problem as a cost game with a
priori unions (N , c, P), where P is the partition induced in N by the airlines to which
the planes belong. Moreover, [9] proposes to use the Owen value to solve this cost
allocation problem and provides a formula for the Owen value in this special case
that makes it computable for real airport games (that typically involve large numbers
of players).

Table1 depicts the elements characterizing the cost game with a priori unions
describing the movements in the first three months of 1993 at Lavacolla, the air-
port of Santiago de Compostela, Spain. It shows the partition of the movements
in airlines, the numbers of movements, the types of planes with runway costs, and
includes the calculated Owen value using the formula provided in [9]. Observe that
the corresponding cost game with a priori unions has 1258 players and, hence, the
Owen value of this game is a vector in R

1258; however, the allocations proposed by
the Owen value for all movements of the same type of plane belonging to the same
airline are identical and then the Owen value of this game can be described giving
its 25 possibly different components (one for each type in each airline).

Let us estimate the Owen value using our sampling procedure. What is a bearable
error in this example?Notice that the runway costs are given in thousands of pesetas5;
we consider that a bound for the absolute error of 6 thousands pesetas (about 36
euros) can be tolerated. It is a well-known fact that airport games are concave and
thus, according to Corollary 3.2, the minimum sample sizes to guarantee that the
absolute error is smaller than or equal to 6 with probability at least 1 − α can be
calculated; they are those in Table2. The required sample sizes only depend on the
types of planes, because ri only depends on the type of i .

We takeα = 0.1 and estimate theOwen value using a sample of size 1.1 · 108. The
estimated Owen value is a vector inR1258. Figure1 depicts the absolute errors for all
players and Table3 shows a summary of those errors (the maximum and minimum
error for each type of player) as well as the theoretical maximum errors with α ≤ 0.1
according to Corollary 3.2.

In view of Fig. 1 and Table3, we conclude that our estimation is satisfactory in this
example. Comparing the theoretical and observed absolute errors in Table3 we can
also conjecture that the absolute errors when using our procedure are significantly
smaller than the absolute errors guaranteed by Corollary 3.2.

In fact we have performed a small simulation study to check this conjecture. We
have fixed one player of Type 7, in particular Player 1258 that corresponds to one
operation of a plane DC-10 of Viasa. We have estimated 1000 times the Owen value
using our procedure with sample size 105. Table4 displays the theoretical maximum

5The peseta was the official currency in Spain in 1993. One peseta is about 0.006 euros.
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Table 1 Airlines using Lavacolla in the first three months of 1993 and the owen value

Airline Movements Types Costs Owen value

Air Europa 36 B-757(3) 32496 8.110

172 B-737(5) 39494 11.183

Aviaco 12 DC-9(4) 34265 151.093

Britannia 6 B-737(5) 39494 369.224

British Airways 2 B-757(3) 32496 843.378

Condor
Flugdienst

2 B-757(3) 32496 843.378

Caledonian
Airways

2 B-757(3) 32496 843.378

Eurobelgian
Airlines

2 B-737(5) 39494 1107.673

Futura 32 B-737(5) 39494 69.230

Gestair Executive
Set

2 CESSNA(1) 8120 176.522

Iberia 452 DC-9(4) 34265 2.037

438 B-727(6) 44850 9.070

Air Charter 2 B-737(5) 39494 1107.673

Corse Air 4 B-737(5) 39494 553.836

Air UK Leisure 2 B-737(5) 39494 1107.673

Ibertrans 2 CESSNA(1) 8120 176.522

LTE 36 B-757(3) 32496 46.854

Mac Aviation 6 LEARJET-25(2) 15134 120.367

Monarch Airlines
Ltd

2 B-737(5) 39494 1107.673

Sobelair 6 B-737(5) 39494 369.224

Trabajos Aéreos 2 CESSNA(1) 8120 176.522

Tea Basel LTD 2 B-737(5) 39494 1107.673

Oleohidráulica
Balear SA

4 CESSNA(1) 8120 88.261

Viasa 30 DC-10(7) 50000 334.778

Spanair 2 B-737(5) 39494 1107.673

absolute error for three values of α (according to Corollary 3.2), as well as the
minimum, maximum and mean observed absolute errors in these 1000 estimations.
Clearly, the observed errors are much smaller than the theoretical errors, that may
let us think that the bound given by Corollary 3.2 is rather conservative.
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Table 2 Sampling sizes for ε = 6 in our example

α = 0.1 α = 0.05 α = 0.01

Type 1 2.74336 · 106 3.37811 · 106 4.85196 · 106
Type 2 9.52967 · 106 1.17346 · 107 1.68544 · 107
Type 3 4.39370 · 107 5.41031 · 107 7.77079 · 107
Type 4 4.88508 · 107 6.01539 · 107 8.63987 · 107
Type 5 6.48982 · 107 7.99143 · 107 1.14780 · 108
Type 6 8.36942 · 107 1.03059 · 108 1.48023 · 108
Type 7 1.04018 · 108 1.28086 · 108 1.83969 · 108
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Fig. 1 Absolute error for each player in the airport problem with s = 1.1 · 108

Table 3 Observed and theoretical errors for the different types of planes with s = 1.1 · 108
Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

Theoretical 0.94754 1.76601 3.79202 3.99844 4.60862 5.23363 5.83459

Maximum 0.19236 0.22385 0.70153 0.33207 1.00818 0.14056 0.42972

Minimum 0.01010 0.07045 0.00048 0.000098 0.00031 0.00017 0.01038

Table 4 Observed and theoretical errors with 1000 estimations

α = 0.1 α = 0.05 α = 0.01

Theoretical error 193.51 214.73 257.35

Minimum Maximum Mean

Absolute error 0.004 28.71 6.53

5 Concluding Remarks

In this paper we have provided a procedure based on sampling to estimate the Owen
value of a cooperative game that is specially useful when dealing with games hav-
ing large sets of players. We have theoretical results that show that the procedure
is accurate and that allow us to choose the sample size guaranteeing the a pri-
ori established requirements on the errors. We have illustrated the behavior of the
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Table 5 Sampling sizes for games with ri = 1 for all i ∈ N

α ε = 0.1 ε = 0.05 ε = 0.01 ε = 0.005 ε = 0.001 ε = 0.0005

0.15 130 519 12952 51806 1295134 5180534

0.1 150 600 14979 59915 1497866 5991465

0.05 185 738 18445 73778 1844440 7377759

0.01 265 1060 26492 105967 2649159 10596635

procedure in a real example taken from the game theoretical literature. The example
we consider requires the use of large samples, but this is not always the case. For
instance, Table5 displays the minimum sample sizes to guarantee that the absolute
error when estimating the Owen value with our procedure is smaller than or equal
to ε with probability at least 1 − α for any game (N , v) with ri = 1 for all i ∈ N ;
notice that this condition is satisfied, for example, by simple games that form a class
of games for which the Owen value is specially relevant.
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The β-Gradient for Testing Probability
Profiles

Miquel Salicrú, Juan José Barreiro and María Isabel González-Framil

Abstract With multinomial response (h,φ)-diversity has been widely used as an
alternative to variance when characterizing the dispersion. In this context the β-
gradient has been related to both the Pseudo-F and to the variation rate. In this work,
asymptotic distribution of the β-gradient has been obtained and, as a result, the
following inferential applications have been considered: contrast between probability
profiles (hypothesis test) and reliability of the β-gradient estimation (confidence
intervals). In order to illustrate the applicability of this result, the variation rate has
been used to follow the time course of Barret’s esophagus.

1 Introduction

Using the variance as a dispersion measure and decomposing it into a sample
of observations, Fisher [5] introduced the analysis of variance to determine the
significance of factors potentially affecting the variable response. Considering the
introduced approach for a reduced number of fixed factors, a variety of models have
been described in the literature. Thesemodels adaptwell to the specific characteristics
of many experimental situations. The generalization of the response (distribution),
the factors (typology and structure), the relationship between observations (inde-
pendence or correlation) and the broad computational implementation (parametric
and non-parametric) have made the design of experiments a usual tool for multiple
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fields of knowledge (engineering, biotechnology, agronomy, biology, medicine,
psychology,...). In this context, Rao [17–19] raises the idea of considering other
dispersal measures as an alternative to the variance. In particular, he explores the use
and decomposition of the diversity/entropy and, with the aim of characterizing the
assemblage of populations (ecology of populations), he focuses in both Gini’s and
quadratic entropy. The interest of these approximations is due to: (a) the differential
characterisation of variability in different fields of knowledge; (b) the reestablish-
ment of the variance as ameasure of dispersionwhen considering normal distribution
responses; and (c) the special adaptation of these measures to categorical responses
with multinomial distribution (probability profiles).

Being their first uses in thermodynamics and telecommunications (Clausius [2],
Shannon [22]), diversitymeasures have been used inmultiple domains to characterise
concepts and functionalities (Patil and Taillie [15]). Among other applications, diver-
sity has been associated with the following: social structure of populations (Eagle et
al. [4]); industrial clusters and risk (Attaran [1]); homogeneity in the uses of the terri-
tory and the structures of the facades (Li andGuo [12], Klir [10]); level of complexity
of a language or dialect (Juola [9]); channel capacity when usingMIMOantenna con-
figurations (Jensen and Morris [7]); human variation (Lewontin [11], Molnar [14]);
level of complexity of viral quasispecies (Gregori et al. [6]); and clinical imaging
diagnosis (Zhang et al. [23]). Exponential growth of the diversity/entropy measures
described in the literature led to the introduction of (h,φ)-diversity functional (Salicrú
et al. [21], Pardo et al. [16]):

Hφ

h (P) = h

(
s∑

i=1

φ (pi )

)
(1)

beingh andφ functions twice differentiablewith continuity and P = (p1, p2, . . . , ps)
a probability vector (p1 + p2 + · · · + ps = 1, pi ≥ 0). By specifying functions h
and φ, functional integrates most of the measures described in the literature. For
example: for h(x) = x and φ(x) = −x · ln x Shannon entropy is obtained; for
h(x) = (1 − α)−1 · (x − 1) and φ(x) = xα Havrda–Charvát family is obtained; and
for h(x) = (1 − α)−1 · ln x and φ(x) = xα Renyi family is obtained. With indepen-
dent samples of size n, the estimation of diversity can be expressed as follows:

Hφ

h

(
P̂
)

= h

(
s∑

i=1

φ
(
p̂i
))

(2)

being P̂ = ( p̂1, p̂2, . . . , p̂s) the vector of estimated frequencies.
The broad use of these measures is not independent on the conceptual and

methodological progress achieved in telecommunications, information theory, par-
ticle physics, economy, biomedicine and ecology. For the last of these areas, the
decomposition of diversity for a one factor designmade possible to explain the assem-
blage of populations in space and led to the introduction of new concepts (Jost [8]):
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α-diversity (local diversity); β-diversity (gradient or variation rate); and γ -diversity
(regional diversity). Formally, for r populationsπ1, π2, . . . , πr , withweight or proba-
bility a priori λ1, λ2, . . . , λr (λ1 + λ2 + · · · + λr = 1) and a probability distribution
characterized by the vectors P1, P2, . . . , Pr , the diversity decomposes as follows
(Rao [17, 18]):

Hφ

h (P0) =
r∑

i=1

λi H
φ

h (Pi ) +
[
Hφ

h (P0) −
r∑

i=1

λi H
φ

h (Pi )

]

being Hφ

h (P0) = Hγ (P1, P2, . . . , Pr ) the total diversity,
∑r

i=1 λi H
φ

h (Pi ) =
Hα (P1, P2, . . . , Pr ) the intrinsic diversity of populations (residual effect),
Hφ

h (P0) −∑r
i=1 λi H

φ

h (Pi ) = J (P1, P2, . . . , Pr ) the diversity between populations
(Jensen divergence), and P0 = λ1P1 + λ2P2 + · · · + λr Pr the mixture of the popu-
lations. Conceptually, the total diversity and the intrinsic diversity of the populations
are related to the γ -diversity and α-diversity described in ecology. With samples
of sizes n1, n2, . . . , nr , the statistical equivalent to the F of Fisher–Snedecor (r -
population test) and the β-gradient or variation rate between probability profiles
(pseudo β-diversity in ecology) are written in the following form:

F∗
exp =

Hφ

h

(
P̂0
)

−∑r
i=1 λi H

φ

h

(
P̂i
)

∑r
i=1 λi H

φ

h

(
P̂i
) =

Hφ

h

(
P̂0
)

∑r
i=1 λi H

φ

h

(
P̂i
) − 1

and

Ĥβ = Hβ

(
P̂1, P̂2, . . . , P̂r

)
=

Hφ

h

(
P̂0
)

∑r
i=1 λi H

φ

h

(
P̂i
) = Ĥγ

Ĥα

. (3)

This paper focuses its attention on assessing the variation rate in space or in time using
(h,φ)-diversity. In Sect. 2, the asymptotic distribution of the estimated β-diversity has
been obtained and consequently, the statistics and the decision criteria, which allow
inferential application, have been determined. In Sect. 3, clinical monitoring of Bar-
ret’s esophagus has been used to illustrate the obtained results. Finally, conclusions
and future work are presented in Sect. 4.

2 Inference with the β-Gradient

The interest in the inference has been focused on both the realization of hypothesis
tests (adherence to fixed value and comparison of β-gradients) and the construction
of confidence intervals (precision in the estimation). For this reason, the distribution
of Ĥβ statistic has also been obtained.
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2.1 Asymptotic Distribution

Taylor’s first-order expansion of function Ĥβ at point (P1, P2, . . . , Pr ) provides the
approximation:

Ĥβ = Hβ +
r∑

i=1

s∑
j=1

ti j · ( p̂i j − pi j
)+ R2,1

being

ti j = 1

Hα

h′
(

s∑
k=1

φ (p0k)

)
φ′ (p0 j) · λi − Hγ

H 2
α

h′
(

s∑
k=1

φ (pik)

)
φ′ (pi j) · λi

Pi = (pi1, pi2, . . . , pis), P0 = (p01, p02, . . . , p0s), p0k = λ1 p1k + λ2 p2k + · · · +
λr prk and R2,1 Lagrange’s remainder of order 2 (i = 1, . . . , r; k = 1, . . . , s).

Additionally, from considering the asymptotic distribution of the estimate of the
vector of parameters,

(
P̂1 − P1, P̂2 − P2, . . . , P̂r − Pr

)
L−→ N

(
0,
∑

P

)
we obtain:

Ĥβ − Hβ
L−→ N

(
0, σβ

)
being σ 2

β = T t
∑

P T , T t = (t11, . . . , t1s, . . . , tr1, . . . , trs) the partial derivative vec-
tor,
∑

P the block matrix in which the positions of the diagonal are occupied by
matrices

∑
Pi

/ni and the rest by matrices 0 and
∑

Pi
=(δhk pih − pih pik)hk the

variance-covariance matrix corresponding to the probability vector Pi (δhk corre-
sponds to the Kronecker delta). Consequently, the following result is demonstrated:

Theorem 2.1 With independent samples of size n1, n2, . . . , nr ,

Ĥβ − Hβ
L−→ N

(
0, σβ

)
being

σ̂ 2
β =

[
Hγ

H 2
α

]2 r∑
i=1

λ2
i

ni
σ 2
i + 1

H 2
α

r∑
i=1

λ2
i

ni
σ 2
0 − 2

Hγ

H 3
α

r∑
i=1

λ2
i

ni
σ0i (4)

σ̂ 2
i =

⎡
⎣h′

⎛
⎝ s∑

j=1

φ
(
p̂i j
)⎞⎠
⎤
⎦

2⎧⎨
⎩

s∑
j=1

p̂i j
[
φ′ ( p̂i j)]2 −

⎡
⎣ s∑

j=1

p̂i j ·φ′ ( p̂i j)
⎤
⎦

2⎫⎬
⎭
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σ̂ 2
0 =

⎡
⎣h′

⎛
⎝ s∑

j=1

φ
(
p̂0 j
)⎞⎠
⎤
⎦

2⎧⎨
⎩

s∑
j=1

p̂i j
[
φ′ ( p̂0 j)]2 −

⎡
⎣ s∑

j=1

p̂i j ·φ′ ( p̂0 j)
⎤
⎦

2⎫⎬
⎭

with

σ̂0i = h′
⎛
⎝ s∑

j=1

φ
(
p̂i j
)⎞⎠ · h′

⎛
⎝ s∑

j=1

φ
(
p̂0 j
)⎞⎠

⎧⎨
⎩

s∑
j=1

p̂i j
[
φ′ ( p̂i j)] [φ′ ( p̂0 j)]−

⎡
⎣ s∑

j=1

p̂i j ·φ′ ( p̂i j)
⎤
⎦
⎡
⎣ s∑

j=1

p̂i j · φ′ ( p̂0 j)
⎤
⎦
⎫⎬
⎭

Remark 2.1 The asymptotic approximation of the quadratic form to a non-central
chi-square distribution explains the convergence of R2,1 to 0 (Dik and Gunst [3]). On
the other hand, when weights of the populations have not been established a priori,
they can be estimated as: λ̂i = ni/(n1 + · · · + nr ).

2.2 Inferential Applications

Analogous considerations to the described by Pardo et al. [16] lead to resolve the
hypothesis test and to obtain the precision of the estimation:

a. One-sample hypothesis test

H0 : Hβ = Hβ (0)

For this experimental situation the statistic to be used is:

Zexp = Ĥβ − Hβ (0)

σ̂β

≈ N (0, 1) (5)

being σ̂β the β-variance estimator. The p-value is obtained in the standardmanner:
p = 2P

[
ZN (0,1) >

∣∣Zexp

∣∣] when H1 : Hβ �= Hβ (0); p = P
[
ZN (0,1) > Zexp

]
when H1 : Hβ > Hβ (0); and p = 1 − P

[
ZN (0,1) > Zexp

]
when H1 : Hβ <

Hβ (0). The asymptotic power of the test is obtained by taking into account the
distribution of the statistic described in Theorem 2.1.

b. Two-sample hypothesis test

H0 : Hβ (1) = Hβ (2)



362 M. Salicrú et al.

For this experimental situation the statistic to be used is:

Zexp = Ĥβ (1) − Ĥβ (2)√
σ̂ 2

β (1) + σ̂ 2
β (2)

≈ N (0, 1). (6)

The p-value and the asymptotic power of the test are obtained using the same
method described above.

c. Confidence intervals. The confidence limits are, for β-gradient:

Ĥβ ± z1−α/2 · σβ (7)

and for the difference of β-gradients Hβ (1) − Hβ (2),

Ĥβ(1) − Ĥβ(2) ± z1−α/2

√
σ̂ 2

β (1) + σ̂ 2
β (2). (8)

3 Example: Clinical Follow-Up Over Time

Barret’s esophagus is a premalignant disorder in which the normal stratified squa-
mous epithelium of the distal esophagus is replaced by intestinal metaplasia. Recent
research has related genomic instability and clonal evolution to the progression of
esophageal adenocarcinoma.More precisely, to clonal abundance, entropy and diver-
sity. Introducing parallel schemes to the ones described for population dynamics
(ecology and evolution), the number of loci showing differences has been used to
characterize abundance, its relative distribution has been used to obtain the entropy
(Shannon, Gini–Simpson, Hill numbers, ...) and, the genetic diverge and the loss of
specific genes (p16, p53,...) have been used to characterise diversity
(Maley et al. [13], Reid et al. [20]).

Seeking dysplastic changes, the diagnosis/follow-up is routinely carried out by
endoscopies (image) and biopsies (molecular data). Image processing generally uses
filters in space and frequency domains, first-order and second-order moments, and
Fourier and Wavelet transform. On the other hand, data collected from biopsies
allow the evaluation of the variation and the contrasting of the clonal diversity over
time: a) the biopsy analysis provides the number of clones n and the clonal profile
P̂ = ( p̂1, p̂2, . . . , p̂s); b) the β-gradient characterizes the variation over time and the
confidence interval provides reliability to the estimate; and c) the hypothesis test H0 :
Hβ = 1 + δ vs H1 : Hβ > 1 + δ (δ ≈ clinical relevance) allows determining the
clinical significance.
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In this context, the information provided by three follow-up biopsies from the
same patient served to illustrate the results obtained in this study. More precisely,
using the clonal profiles of Barrett’s segment obtained by flow cytometry:

Control 1 (t0). n1 = 3255, P1 = (0.800, 0.100, 0.100, 0.000, 0.000, 0.000)
Control 2 (t1). n2 = 3425, P2 = (0.750, 0.100, 0.100, 0.050, 0.000, 0.000)
Control 3 (t2). n3 = 3120, P3 = (0.625, 0.125, 0.100, 0.075, 0.050, 0.025)

H0 : Hβ = 1.05 vs H1 : Hβ > 1.05 (δ = 0.05) have been compared. The results
after applying Shannon’s entropy (h(x) = x , φ(x) = −x · ln x) are presented below:

Ĥβ = 1.0554, σ̂β = 0.0023, Zexp = 2.35 and p−value = 0.0094.

Having demonstrated the significance of the clonal diversity variation, the confi-
dence interval corresponding to the β-gradient establishes the precision in the esti-
mate:

1.0554 ± 0.0044 (α = 0.05).

The uncertainty associated with this estimate has been related to the randomness
derived from the sample extraction process and the variation in sample medical
analysis.

In environmentswhere errors are so costly, decisions are basedonobservable facts,
on the comparison and compatibility of information from different sources, and on
the medical treatment choice that involves maximum benefit assuming minimum
risk. For this reason, when considered in isolation, the information provided by the
β-gradient has a limited value in itself. Its interest becomes clear when included in
a wider framework.

4 Conclusions and Future Orientation

The asymptotic distribution of the β-gradient allows to obtain the reliability of the
estimation and to verify the significance of differences in space and time. From
the experimental perspective, this approximation provides an alternative to solve the
design of one factorwithmultinomial response. The present and future challenges are
oriented in several directions: (a) to favor clinical diagnosis, to identify complemen-
tary indicators, to obtain inferential results and to treat the information in relational
models; (b) to ensure application robustness, to improve the estimation reliability
when sample sizes are small; (c) to obtain cause-effect relationships, to extend the
described approach to more factors and structures; and (d) to favor the application
by implementing a software solution. To improve the reliability of the estimation we
are testing the combination of analytical and computational techniques (bootstrap-t
approaches with asymptotic variance in order to reduce computational cost).Without
replicating experimental conditions we are testing the use of the asymptotic variance
of (h,φ)-diversity as a substitute for the residual variance, and combined with the
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usual sums of squares, deducing the statistics that allow the extension to more factors
and structures.
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Mixtures of Gaussians as a Proxy in Hybrid
Bayesian Networks

Antonio Salmerón and Fernando Reche

Abstract In this paper we explore the use of mixtures of Gaussians as a proxy for
mixtures of truncated basis functions in hybrid Bayesian networks. The idea is to use
mixtures of Gaussians during the learning process, andmove tomixtures of truncated
basis functions for carrying out probabilistic inference. This would bridge the gap
between efficient inference and learning in hybrid Bayesian networks, specially in
scenarios where data comes in streams and models need to be continuously updated.

1 Introduction

Back in the 90s, Prof. Pedro Gil visited Almería and gave an excellent talk where
he discussed the mathematics of uncertainty. It was an extremely interesting and
motivating talk, in which he spoke about his goal of seeking what is in common
between the different theories of uncertainty. Inspired by his thoughts, in our research
groupwekept onworking deeper onprobabilistic graphicalmodels (PGMs) andmore
precisely on Bayesian networks (BNs) [7]. In spite of the adoption of probability
theory as the tool for handling uncertainty, PGMs are general models in the sense
that they focus on the underlying structure of the problem under study.

However, PGMs had some limitations that prevented them from being used in
common real-world scenarios. More precisely, their use was problematic when the
scenario involved discrete and continuous variables simultaneously, where the con-
ditional Gaussian model [5] was the most developed solution, but their drawback
was the limitation on the compatible graph structures, as discrete variables are not
allowed to have continuous parents. Trying to overcome that limitation, and also with
the aim of sidestepping the Gaussian assumption, we developed the mixture of trun-
cated exponentials (MTE) model [6]. With a similar aim, mixtures of polynomials
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(MOPs) were developed later [9]. Both models can be regarded as particular cases
of the more general mixtures of truncated basis functions (MoTBFs) [2].

MoTBFs offer a very efficient framework for inference in BNs with discrete and
continuous variables [4], but still they have their own limitations. Namely, estimating
MoTBFs from data is troublesome due to the fact that they do not belong to the expo-
nential family. In current Big Data scenarios and more specifically when modeling
streaming data, models inside the exponential family are quite convenient, as they
provide sufficient statistics of dimension 1. It means that there is no need to store the
full sample at any time, as knowing the value of each sufficient statistic is enough.
When it comes to analyzing streaming data, it means that the estimation process can
be carried out just taking into account the current value of the sufficient statistic and
the newly arrived data item.

Mixtures of Gaussians (MoGs) do not belong to the exponential family, but they
can be easily extended by including a hidden multinomial variable representing the
components of the mixture. The extended model belongs to the exponential family.
However, from the point of view of estimation, the advantages fade away due to the
fact that there is no data for the hidden variable and therefore iterative algorithms
like the EM algorithm [1] are required. There are, however, efficient estimation
alternatives for MoGs able to deal with streaming data [8].

Our purpose in this paper is to explore the possibility of usingMoGs as a proxy for
MoTBFs. If that is possible, thenwewould benefit from the advantages of each one of
them for estimation (learning) and inference respectively. The idea is to learn anMoG
that could be quickly translated into anMoTBF that would be used for inference. For
this to be successful, the translation procedure from MoGs to MoTBFs should be
fast enough as to be negligible in terms of complexity with respect to the inference
process.

2 Mixtures of Truncated Basis Functions

The MoTBF model is a generalization of MTEs and MOPs. The MTE model [6] is
defined by the concept of MTE potential. Let X be a mixed n-dimensional random
vector and letY = (Y1, . . . ,Yd)T and Z = (Z1, . . . , Zc)

T be the discrete and contin-
uous parts of X, respectively, with c + d = n. We say that a function f : �X �→ R

+
0

is an MTE potential if for each fixed value y ∈ �Y of the discrete variables Y, the
potential over the continuous variables Z is defined as:

f (z) = a0 +
m∑

i=1

ai exp
{
bTi z

}
, (1)

for all z ∈ �Z, where ai ∈ R and bi ∈ R
c, i = 1, . . . ,m. We also say that f is an

MTE potential if there is a partition I1, . . . ,Ik of �Z into hypercubes and in each
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one of them, f is defined as in Eq. (1). An MTE potential is an MTE density if it
integrates to 1.

MOPs were introduced in [9] as an alternative to the MTEs. The univariate MOP
potential for a continuous variable Z is

f (z) = a0 +
m∑

i=1

ai z
i ,

while for a multivariate continuous vector Z = (Z1, . . . , Zc)
T the potential takes the

form

f (z) =
c∏

j=1

{
a( j)
0 +

m∑

i=1

a( j)
i zi

}
.

The MoTBF framework is based on the abstract notion of real-valued basis func-
tions ψ(·), which includes both polynomial and exponential functions as special
cases. Let X be a continuous variable with domain �X ⊆ R and let ψi : R → R, for
i = 0, . . . , k, define a collection of real basis functions. We say that a function
gk : �X �→ R

+
0 is an MoTBF potential of order k wrt. � = {ψ0, ψ1, . . . , ψk} if gk

can be written as [4]

gk(x) =
k∑

i=0

θi ψi (x) , (2)

where ai are real numbers. The potential is a density if
∫
�X

gk(x) dx = 1. Note that
as opposed to the MTE and MOP definitions [6, 9], a marginal MoTBF potential
does not employ interval refinement to improve its expressive power.

Example 1 By letting the basis functions correspond to polynomial functions,
ψi (x) = xi for i = 0, 1, . . ., the MoTBF model reduces to a MOP model for
univariate distributions. Similarly, if we define the basis functions as ψi (x) =
{1, exp(−x), exp(x), exp(−2x), exp(2x), . . .}, theMoTBFmodel corresponds to an
MTE model with the exception that the parameters in the exponential functions are
fixed. Notice, however, that in both situations the model does not rely on a partition-
ing of the interval over which the distribution is defined (as opposed to the standard
definitions of MOPs and MTEs).

2.1 Estimating Univariate MoTBFs from Data

Webrieflydescribe the estimationprocedure presented in [3]. It relies on the empirical
cumulative distribution function (CDF) as a representation of the data, defined for a
sample D = {x1, . . . , xN } as
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GN (x) = 1

N

N∑

�=1

1{x� ≤ x}, x ∈ R, (3)

where 1{·} is the indicator function.
The method in [3] fits a potential, whose derivative is an MoTBF, to the empirical

CDF using least squares. As an example, if we use polynomials as basis functions,
� = {1, x, x2, x3, . . .}, the parameters of the CDF, denoted as c0, . . . , ck , can be
obtained solving the optimization problem

minimize
c0,...,ck

N∑

�=1

(
GN (x�) −

k∑

i=0

ci x
i
�

)2

subject to
k∑

i=1

i ci x
i−1 ≥ 0 ∀x ∈ �, (4)

k∑

i=0

ci α
i = 0 and

k∑

i=0

ci β
i = 1,

where the constraints ensure that the obtained parameters conform a valid CDF,
and α and β are, respectively, the minimum and maximum of the data sample. More
precisely, the first constraint guarantees that the corresponding density is nonnegative
and the last two restrictions ensure that it integrates to 1, which is equivalent to say
that the CDF is equal to 0 at the minimum of the variable and equal to 1 at the
maximum. Note that the estimated function is not actually a density, but a CDF
instead. An MoTBF density can be obtained just by derivation from the CDF.

3 MoTBF Approximation of MoGs

A translation procedure for efficiently finding an MoTBF approximation to any den-
sity function is described in [2]. It involves solving a convex optimization problem
that minimizes an upper bound of the Kullback–Leibler divergence between the tar-
get density and the MoTBF approximation. As our goal is to embed the translation
between MoGs and MoTBFs into a BN probabilistic inference process, we need a
faster alternative. We will focus, from now on, on MOPs. A simple and fast alter-
native translation procedure is to use moment matching. More precisely, the MOP
approximation would be obtained by solving a system of linear equations involving
as many non-central moments as parameters the MOP approximation contains.

It is well known that the non-central moment of order k of an MoG is obtained as
the weighted average of the non-central moments of each Gaussian component. In
the case of MOPs, it is given by the following result.

Lemma 1 Let f (x) = ∑m
i=0 ai x

i , α < x < β be a MOP density with parameters
a0, . . . , am. The non-central moment of order k of f is
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Fig. 1 A Gaussian mixture
(solid line) and an MOP
approximation (dashed line)
obtained by moment
matching

E[Xk] =
m∑

i=0

ai
i + k + 1

(β i+k+1 − αi+k+1). (5)

Proof

E[Xk] =
∫ β

α

xk f (x)dx =
∫ β

α

m∑

i=0

ai x
i+k

=
m∑

i=0

ai
i + k + 1

xi+k+1

]β

α

=
m∑

i=0

ai
i + k + 1

(β i+k+1 − αi+k+1). �

The problem of the moment-matching approach is that it does not guarantee that
the resulting MOP is a density. In fact, there is not even guarantee that it is non
negative. To no surprise, the obtained approximations are poor, as can be observed
in Fig. 1.

Our proposal is to define a translation procedure based on the estimation method
described in Sect. 2.1. The idea is to draw a small sample from theMoG that we want
to approximate and apply the estimation method to the obtained sample, yielding
a MOP density. If the sample is sufficiently small, the optimization step can be
efficiently solved, as it is basically least squares on a set of sample points.

4 Evaluation

We have evaluated our proposed translation method on a series of examples imple-
mented in R using the MoTBFs package.1 The evaluation consisted on generating a
sample of size 100 for 6 different MoG densities and then estimate a MOP density

1https://CRAN.R-project.org/package=MoTBFs.

https://CRAN.R-project.org/package=MoTBFs
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Table 1 Parameters of the
MoGs depicted in Fig. 2

MoG wT μT σT

(a) (0.5, 0.25, 0.25) (0, 3, 7) (1, 1, 1)

(b) (0.47, 0.06, 0.47) (0, 3, 6) (1, 5, 1)

(c) (1/3, 1/3, 1/3) (0, 3, 6) (1, 1, 1)

(d) (1/3, 1/3, 1/3) (0, 2, 4) (1, 1, 1)

(e) (0.85, 0.15) (0, 7) (1, 1)

(f) (0.4, 0.2, 0.2, 0.2) (0, 3, 6, 9) (1, 1, 1, 1)

(a) (b)

(c) (d)

(e) (f)

Fig. 2 Different Gaussian mixtures (solid line) and their MOP approximations (dashed line)
obtained using the proposed translation procedure

with 8 parameters (i.e., degree 7) using the procedure in Sect. 2.1. TheMoG densities
used are described in Table1, where wT is the vector of component weights, and μT

and σ T are the vector containing the means and standard deviations of each Gaussian
component.

The sample MoG densities have been chosen so that they cover a wide variety of
density shapes, including close to uniform (Fig. 2d), skewed (Fig. 2a, e and f) and
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Table 2 Log-likelihood of
the models depicted in Fig. 2

MoG MOP

(a) −2.283841 −2.326817

(b) −2.268437 −2.192675

(c) −2.233056 −2.188837

(d) −1.996243 −1.98867

(e) −1.808173 −1.832089

(f) −2.501593 −2.541394

multi-modality (Fig. 2a, c). The plots in Fig. 2 show how theMoTBF approximations
are able to capture the shape of the MoG density reasonably well in all the cases.

We also carried out a comparison in terms of log-likelihood. We measured the
average log-likelihood (i.e. the log-likelihood divided by the sample size) of the
samples used to estimate the MOP densities, using the MOP and MoG models. The
results are shown in Table2. The results are similar and Wilcoxon’s rank test does
not find significant differences between both (p-value = 0.9372).

5 Conclusions

We have shown that MOPs can effectively approximate MoGs in a fast and accurate
way. The translation is carried out by estimating aMOP density form a small artificial
sample drawn from the MoG density. This paves the way to the use of MOPs (or
MoTBFs in general) when learning from data streams. The solution is to use MoGs
as a proxy, so that in fact what is learnt from the stream is a MoG density (which
can be done with no need to store the full sample) and afterwards transform it into
a MOP. Once the translations are completed, probabilistic inference can be carried
out directly on MOPs.
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Sublinear Expectations: On Large Sample
Behaviours, Monte Carlo Method,
and Coherent Upper Previsions

Pedro Terán

Abstract Shige Peng’s sublinear expectations generalize ordinary linear expecta-
tion operators. It is shown that the behaviour of sample averages of Peng i.i.d. vari-
ables may be very different from the probabilistic intuition. In particular, Peng’s
generalization of the Monte Carlo method is shown to be wrong. It is also observed
that sublinear expectations coincide with Peter Walley’s coherent upper previsions
on a linear space.

1 A Tale of (Improbably) Three Pedros

It is my great pleasure to contribute to this volume honouring professor Pedro Gil.
I met Pedro after participating in the local phase of the Mathematical Olympiad
(which he organized) and he played a heavy role in my decision to become a Math
student, a possibility I had not considered before. Some years later, I got a fellowship
associated to his research project, which made it possible for me to get a doctoral
degree and thus eventually led me to my current job. On that count alone, he has
been one of the few most influential people in my life.

When I started as a fellow, the Department of Statistics at Oviedo had just spinned
off from the Department of Mathematics. Both entities would continue to share
equipment (like the copier machine) for some time but action was taken almost
immediately to divide the post-graduates’ room. So I found myself arriving there
and being assigned no space until the works were done.

About one month later, I went to Pedro’s office to inform him (in his capacity as
head of the department) that I finally had a desk. ‘But I have nothing to put on it
anyway’, I added nonchalantly. To my surprise, he smiled, emptied his pencil holder,
and handed it to me. He went on to explain that it had been given to him decades
earlier by Pedro Abellanas after a remarkably parallel conversation, and had been
with him for all of his career. That token of appreciation I have cherished ever since.
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This contribution is connected to Pedro’swork on imprecise probability, a topic on
which he was the advisor of Inés Couso and Enrique Miranda. It makes some obser-
vations about Shige Peng’s theory of sublinear expectations. One is that a sublinear
expectation is in fact the same thing as a coherent upper prevision on a linear space
of gambles, in Walley’s terminology. Another is that, although Peng’s approach and
particularly Peng’s restrictive definition of independence allow one to obtain analogs
of classical limit theorems, unfamiliar behaviours are possible too.

Finally, Peng’s Monte Carlo method for computing sublinear expectations is
wrong. That is a (rare, one should hope) instance of a counterexample to a result pre-
sented at a plenary lecture of the International Congress ofMathematicians, therefore
something I’m happy to present in return for a pencil holder.

2 Introduction and Preliminaries

Shige Peng devised a purely analytical approach to stochastic analysis. While that
provides a path to learning stochastic calculus without any knowledge of probability
theory, we are interested here in a different side effect. Peng’s technical machinery,
which in essence is based on viscosity solutions of nonlinear partial differential
equations, allows one to extend the reach of probability theory in such a way that the
usual expectation is replaced by more general functionals which are sublinear.

Extended results include fundamental limit theorems like the law of large numbers
[6] (to be discussed below), the central limit theorem, and the large deviation princi-
ple. Peng also constructed a non-additive generalization of the Brownianmotionwith
its associated stochastic calculus. For an introduction to Peng’s approach, the reader
is referred to the lecture notes [6], survey [4], and 2010 ICM plenary lecture [5].

A sublinear expectation space is a triple (Ω,H ,E) where Ω is a set, H is a
linear space of real functions on Ω (including the constants and closed under taking
the absolute value), and E : H → R is a mapping such that

(SE.i) E[X ] ≤ E[Y ] if X ≤ Y ,
(SE.ii) E[c] = c for all constant c,
(SE.iii) E[X + Y ] ≤ E[X ] + E[Y ],
(SE.iv) E[cX ] = c · E[X ] for c ≥ 0.

Elements of H will be called random variables. A subset A ⊂ Ω whose indicator
function IA is in H will be called an event (although, events are conspicuously
absent from Peng’s approach). Its complement will be denoted Ac.

It turns out, as a consequence of the Hahn–Banach theorem, that every sublinear
expectation admits the representation

E[X ] = sup
E∈E

E[X ]
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for some family of linear functionals E (whose restrictions to events are thus finitely
additive probabilities).

Set
Cl.Lip(R

n) = {ϕ : Rn → R | ∃C,m ≥ 0 | ∀x, y ∈ R
n,

|ϕ(x) − ϕ(y)| ≤ C(1 + |x |m + |y|m)|x − y|}.

In order to consider independence or identical distribution in Peng’s sense, one must
also assume that X ∈ H implies ϕ(X) ∈ H for each ϕ ∈ Cl.Lip(R). A random
variable X will be called Peng independent of a random variable Y if

E[ϕ(X,Y )] = E[E[ϕ(x,Y )]x=X ] for all ϕ ∈ Cl.Lip(R
2),

whereE[ϕ(x,Y )]x=X denotes themappingω ∈ Ω 	→ E[ϕ(X (ω), Y )]. Observe that,
under this definition, ‘X independent of Y ’ does not imply ‘Y independent of X ’
and, in fact, these are seldom equivalent [2].

Random variables X,Y will be called Peng identically distributed if

E[ϕ(X)] = E[ϕ(Y )] for all ϕ ∈ Cl.Lip(R).

They will be called Peng i.i.d. if they are Peng identically distributed and X is Peng
independent of Y .

A random vector is an element (X1, . . . , Xn) of H n such that ϕ(X1, . . . , Xn) ∈
H for each ϕ ∈ Cl.Lip(R

n). A random variable Y will be called Peng independent
of a random vector (X1, . . . , Xn) if

E[ϕ(X1, . . . , Xn,Y )] = E[E[ϕ(x1, . . . , xn,Y )]x1=X1,...,xn=Xn ]

for every ϕ ∈ Cl.Lip(R
n+1). A sequence {Xn}n will be called Peng independent and

identically distributed (Peng i.i.d.) if Xn is identically distributed as Xm for all n,m,
and Xn+1 is Peng independent of (X1, . . . , Xn) for all n ∈ N.

Dual to a sublinear expectationE is the superlinear functional E given by E [X ] =
−E[−X ]. Unlike in ordinary probability theory, in general E 
= E. If E is linear and
E[Xn] → 0 whenever Xn is a decreasing sequence converging to 0, then E is the
expectationwith respect to some probabilitymeasure. In that case one can check that,
taking H to be a linear space of measurable functions, the notions above coincide
with the usual ones.

Peng’s PDE background and methods explain the idiosincratic choice of disre-
garding events and defining the distribution of a random variable only in terms of
expectations of the locally Lipschitz functions in Cl.Lip(R). To handle events, it is
convenient to measure them with

ν(A) = E [IA], ν(A) = E[IA] = 1 − ν(Ac).
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The notation ν, ν reflects the fact that, from a probabilistic point of view, it seems
to be more intuitive to use ν since ν(A) = ν(B) = 1 can happen for disjoint A, B;
hence, a set of ν-measure 1 is not necessarily ‘big’ in the sense of probability theory.
But a set of ν-measure 1 is ‘big’ because, dually, ν is the infimum of a family of
finitely additive probabilities.

We will say that a sequence of random variables {Xn}n converges to a random
variable X almost surely if ν(Xn → X) = 1, in probability if ν(|Xn − X | < ε) → 1
for each ε > 0, and in law if E[ϕ(Xn)] → E[ϕ(X)] for each ϕ ∈ Cl.Lip(R).

Of these types of convergence, only convergence in law was considered by Peng.
To ensure {Xn → X} and {|Xn − X | < ε} are events, Peng’s assumptions onH are
not enough. That will not be a problem in this paper.

3 Counterexample to Monte Carlo Method, and Some
Unexpected Behaviours

For a given sequence {Xn}n of random variables, we write

Sn = n−1
n∑

i=1

Xi .

Peng proved the following law of large numbers for sublinear expectations.

Proposition 3.1 [6, Theorem II.3.1] Let (Ω,H ,E) be a sublinear expectation
space. Let {Xn}n be a sequence Peng i.i.d. as a random variable X. Then,

E[ϕ(Sn)] → sup
x∈[E [X ],E[X ]]

ϕ(x)

for each ϕ ∈ Cl.Lip(R).

It is interesting to note that,whenE is the ordinary expectation against a probability
measure, Peng’s law is equivalent to a weak law of large numbers.

Corollary 3.1 (Weak law of large numbers) Let X be an integrable random variable
on a probability space (Ω,A , P). Let {Xn}n be a sequence i.i.d. as X. Then

Sn → E(X)

in probability.

Proof It suffices to prove it in the case when X is bounded, since standard truncation
techniques yield then themore general result (see e.g. the proof of [7, Theorem7.12]).
Thuswe assumewithout loss of generality that X takes on values in a compact interval
[a, b].
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Let f be an arbitrary real continuous bounded function, and fix ε > 0. By
the Weierstrass approximation theorem, there exists a polynomial ϕ such that
supx∈[a,b] | f (x) − ϕ(x)| < ε. With the triangle inequality,

|E[ f (Sn)] − f (E[X ])| ≤ |E[ f (Sn)] − E[ϕ(Sn)]|

+|E[ϕ(Sn)] − ϕ(E[X ])| + |ϕ(E[X ]) − f (E[X ])|.

The first and third terms are bounded above by ε.
We claim now ϕ ∈ Cl.Lip(R). Since Cl.Lip(R) is a linear space, it is enough to

show that the mappings x 	→ xi (i ≥ 1) are in Cl.Lip(R). But

|xi − yi | = |
i−1∑

j=0

x j yi−1− j | · |x − y| ≤ (

i−1∑

j=0

|x | j |y|i−1− j )|x − y|

≤ i max{|x |, |y|}i−1|x − y| ≤ C(1 + |x |m + |y|m)|x − y|

for the choices C = i,m = i − 1.
Having established that claim, and observing that the Xn are Peng i.i.d., Proposi-

tion 3.1 gives
E[ϕ(Sn)] → sup

x∈[E [X ],E[X ]]
ϕ(x) = ϕ(E[X ]),

proving that the second term above goes to 0. In summary,

lim sup
n

|E[ f (Sn)] − f (E[X ])| ≤ 2ε,

whence the arbitrariness of ε implies E[ f (Sn)] → f (E[X ]). By the Portmanteau
Lemma [1, Theorem 2.1], the arbitrariness of f yields Sn → E[X ] in distribution,
which is equivalent to convergence in probability since the limit is a constant. �

Based on this result, he proposed in [4, Sect. 5.2] and [5] a Monte Carlo method
relying on the following formula to obtain an almost sure sample approximation to
the expectation:

E[ϕ(X)] = lim sup
n

n−1
n∑

i=1

ϕ(Xi ), (1)

for any ϕ ∈ Cl.Lip(R) and Peng i.i.d. Xn . If one can generate a simulated sequence of
Xn , that provides a way of computing the expectation of X (and, more generally, of
nice functions of X ) which would be quite more comfortable than the representation
as a supremum of linear functionals.
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We present now a sequence that satisfies Peng’s law of large numbers and fails (1),
showing that the latter does not follow from the former and thus cannot be used to
compute the expectation.

Theorem 3.1 There exist a sublinear expectation space (Ω,H ,E) and a sequence
{Xn}n ⊂ H such that

(a) The Xn are Peng i.i.d. as some X ∈ H .
(b) E [X ] = 0,E[X ] = 1.
(c) For every continuous ϕ : R → R,

E[ϕ(Sn)] → max
x∈[E [X ],E[X ]]

ϕ(x).

(d) Sn → E [X ] almost surely.
(e) ν(E [X ] ≤ Sn ≤ E[X ]) = 1.
(f) ν(Sn < E[X ]) = 0.

Proof Set Ω = N ∪ {0}, take H to be the set of all bounded (necessarily Borel
measurable) functions on Ω , and define E[X ] = supω∈Ω X (ω) for all X ∈ H . It is
readily checked that E is a sublinear expectation.

Let Xn(ω) be the nth bit in the binary representation of ω, i.e.

ω =
∞∑

n=1

2n−1Xn(ω)

with Xn(ω) ∈ {0, 1}.
Proof of part (a) In this space, Peng identical distribution of two random variables
X,Y amounts to the identity

sup
ω∈Ω

ϕ(X (ω)) = sup
ω∈Ω

ϕ(Y (ω)) ∀ϕ ∈ Cl.Lip(R).

Therefore, any two variables with the same range X (Ω) = Y (Ω) are Peng identi-
cally distributed. Since the range of each Xn is {0, 1}, they are all Peng identically
distributed.

To establish Peng independence, we need to show

sup
ω∈Ω

ϕ(X1(ω), . . . , Xn+1(ω)) = sup
ω∈Ω

[ sup
ω′∈Ω

ϕ(x1, . . . , xn, Xn+1(ω))]xi=Xi (ω′)

= sup
ω,ω′∈Ω

ϕ(X1(ω), . . . , Xn(ω), Xn+1(ω
′)).

The ‘≤’ part is clear. Moreover, from the definition of the Xn , the set {(X1(ω), . . . ,

Xn+1(ω))}ω∈Ω exhausts {0, 1}n+1. Hence
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sup
ω∈Ω

ϕ(X1(ω), . . . , Xn+1(ω)) = sup
(x1,...,xn+1)∈{0,1}n+1

ϕ(x1, . . . , xn+1)

≥ sup
ω,ω′∈Ω

ϕ(X1(ω), . . . , Xn(ω), Xn+1(ω
′))

as well.

Proof of part (b) Setting X = X1, we have

E[X ] = sup
ω∈Ω

X (ω) = 1

and
E [X ] = −E[−X ] = inf

ω∈Ω
X (ω) = 0.

Proof of part (c)As ω ranges over Ω , the (X1(ω), . . . , Xn(ω)) exhaust {0, 1}n . Thus
the range of Sn is {0, 1/n, . . . , (n − 1)/n, 1}. From the continuity of ϕ and part (b),

E[ϕ(Sn)] = sup
ω∈Ω

ϕ(Sn(ω)) = sup
0≤k≤n

ϕ(k/n) → max
x∈[0,1] ϕ(x) = max

x∈[E [X ],E[X ]]
ϕ(x).

Proof of part (d) In view of part (b), we have to show Sn(ω) → 0 for each ω ∈ Ω .
But that is clear, since the binary representation of each ω ∈ Ω has finitely many
non-zero terms.

Proof of part (e) Since Xn can only take on 0 and 1 as values, 0 ≤ Sn ≤ 1 and then,
from part (b),

ν(E [X ] ≤ Sn ≤ E[X ]) = ν(0 ≤ Sn ≤ 1) = ν(Ω) = E[1] = 1.

Proof of part (f) Since the first n bits of the binary representation of 2n − 1 are 1,

ν(Sn < 1) = E [I{Sn<1}] = inf
ω∈Ω

I{Sn<1}(ω) ≤ I{Sn<1}(2n − 1) = 0

because Sn(2n − 1) = n/n = 1. �

Peng’s formula (1) predicts

lim sup
n

Sn = sup
x∈[E [X ],E[X ]]

x = E[X ] = 1

almost surely, but Theorem 3.1 (d) shows on the contrary that

Sn(ω) → E [X ] = 0 ∀ω ∈ Ω.
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Thus Peng’s formula is wrong. It might have been the case that it actually followed
from his law of large numbers and the latter were wrong, but Theorem 3.1 (c) implies
that {Xn}n fulfils Peng’s law of large numbers. Therefore the problem is that (1) does
not follow from the law of large numbers.

Parts (e) and (f) suggest that the behaviour of Sn in this sublinear expectation
space is quite different from the usual probability intuition. That is confirmed by the
following proposition.

Proposition 3.2 The sequence in Theorem 3.1 has the following properties:

(a) n−1 ∑n
i=1 ai Xi → 0almost surely for any sequencean ≥ 0, in particular Sn → 0

almost surely.
(b) Sn does not converge in probability.
(c) Sn → Y in law,with thedistributionof Y beinggivenbyEY [ϕ] = maxx∈[0,1] ϕ(x).

Proof of part (a) For each ω ∈ Ω , it holds that Xn(ω) = 0 for n > log2 ω + 1. Thus,
since Xn takes on values 0 and 1,

0 ≤ n−1
n∑

i=1

an Xn(ω) ≤ n−1
∑

i≤log2 ω+1

ai → 0.

Proof of part (b) Fix ε ∈ (0, 1/4). Reasoning by contradiction, assume Sn → Y in
probability for some random variable Y . Accordingly, ν(|Sn − Y | < ε) → 1. For
each event A one has

ν(A) = E [IA] = inf
ω∈Ω

IA(ω);

the right-hand side is 0 unless A contains all ω ∈ Ω . Therefore, for all sufficiently
large n,

{|Sn − Y | < ε} = Ω

and then
{|Sn − S2n| < 2ε} = Ω.

Whatever n may be, since the first n bits of the binary representation of 2n − 1 are
ones and the next n bits are zeros, we have

Sn(2
n − 1) = n

n
= 1, S2n(2

n − 1) = n

2n
= 1/2.

But ε < 1/4, whence |Sn(2n − 1) − S2n(2n − 1)| > 2ε, a contradiction.

Proof of part (c) It follows from Theorem 3.1 (c) or Peng’s law. �
Thus the behaviours of Sn with respect to the three types of convergence are all

different, in particular



Sublinear Expectations 383

(1) Almost sure convergence does not imply convergence in probability.
(2) The limit of the sequence of laws exists but is not the law of the almost sure

limit.
(3) Almost sure convergence does not imply convergence in law.

It must be emphasized that a.s. convergence is not a weak notion in this context. In
fact, it implies uniform a.s. convergence over a family of finitely additive probabilities
(and, under appropriate conditions, see e.g. [3], σ -additive probabilities).

To make things even more interesting, for this sublinear expectation convergence
in probability actually implies almost sure convergence; that is an instance of a more
general phenomenon (see e.g. [8, Proposition 5.1]).

4 Sublinear Expectations and Coherent Upper Previsions

The purpose of this section is to observe that Peng’s sublinear expectations are the
same thing as the coherent upper previsions in e.g. Walley’s book [10]. While Peng
cites Walley, he seems to have been unaware of the equivalence.

A coherent upper prevision is a functional E on a linear space H of functions
(called gambles) on a set Ω , such that, for any n ≥ 0, m ≥ 1, and X0, X1, . . . , Xn ∈
H ,

inf
ω∈Ω

[ n∑

k=1

(Xk(ω) − E[Xk]) − m(X0(ω) − E[X0])
] ≤ 0.

Proposition 4.1 Let E be a functional on a linear space H of bounded functions
(closed under taking the absolute value) on a setΩ . ThenE is a sublinear expectation
if and only if E is a coherent upper prevision.

Proof Walley [10, Sect. 2.6] showed that E is a coherent upper prevision if and only
if the following three properties are met for any X,Y ∈ H :

(CUP.i) E[X ] ≤ supω∈Ω X (ω),
(CUP.ii) E[X + Y ] ≤ E[X ] + E[Y ],
(CUP.iii) E[cX ] = c · E[X ] for c ≥ 0.

Properties (CUP.ii) and (CUP.iii) are the same as properties (SE.iii) and (SE.iv) of a
sublinear expectation. Thus the proof splits into two parts.

1.A sublinear expectation satisfies (CUP.i).

Let X ∈ H . Then, by (SE.i) and (SE.ii),

E[X ] ≤ E[sup
ω∈Ω

X (ω)] = sup
ω∈Ω

X (ω).
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2.A coherent upper prevision satisfies (SE.i) and (SE.ii).

(SE.i): If X ≤ Y , then, using (CUP.ii) and (CUP.i),

E[X ] = E[Y + (X − Y )] ≤ E[Y ] + E[X − Y ] ≤ E[Y ] + sup
ω∈Ω

(X (ω) − Y (ω)) ≤ E[Y ].

(SE.ii): From (CUP.iii) and (CUP.ii),

0 = E[0] = E[c − c] ≤ E[c] + E[−c].

By (CUP.i), E[c] ≤ c and E[−c] ≤ −c. Combining the three inequalities,

c ≤ −E[−c] ≤ E[c] ≤ c,

which proves E[c] = c. �

5 Concluding Remarks

The sequence {Xn}n in Theorem 3.1 is interesting when contemplated from the
probabilistic perspective. Each Xn should have, intuitively, a BernoulliB(1/2) dis-
tribution. The product space {0, 1}N admits then a unique probability measure (the
product measure P) such that all those distributions are independent. But the subset
of {0, 1}N which corresponds to Ω , namely the 0–1 sequences with finitely many
ones, is P-null, whence a probability for Ω cannot be retrieved from P.

Proposition 5.3 in [8] presents an example of behaviours similar to Proposition 3.2,
but the independence in the sense of Peng is not satisfied there (only a rather weaker
form of independence holds), and a different definition of convergence in law is used
as well. Theorem 3.1 (a) is similar to Proposition 6.1 (a) in [9], but both the notions
of independence and identical distribution used are different.
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A Non-iterative Estimator for Interval
Sampling and Doubly Truncated Data

Jacobo de Uña-Álvarez

Abstract Interval sampling is often used in Survival Analysis and reliability studies.
With interval sampling, the sampling information is restricted to the lifetimes of the
individuals or unitswho fail between two specific dates d0 and d1. Thus, this sampling
procedure results in randomly doubly truncated data, where the (possibly negative)
left-truncation variable is the time from onset to d0, and the right-truncation variable
is the left-truncation variable plus the interval width d1 − d0. In this setting, the
nonparametric maximum likelihood estimator (NPMLE) of the lifetime distribution
is the Efron–Petrosian estimator, a non-explicit estimator whichmust be computed in
an iterative way. In this paper we introduce a non-iterative, nonparametric estimator
of the lifetime distribution and we investigate its performance relative to that of
the NPMLE. Simulation studies and illustrative examples are provided. The main
conclusion of this piece of work is that the non-iterative estimator, being much
simpler, performs satisfactorily. Application of the proposed estimator for general
forms of random double truncation is discussed.

1 Introduction

In Survival Analysis, reliability studies and other fields, interval sampling is often
employed. With ‘pure’ interval sampling, the sampling information is restricted to
the lifetimes of the individuals (or units) who die (or fail) between two specific dates
d0 and d1. Thus, this sampling procedure results in randomly doubly truncated data,
where the (possibly negative) left-truncation variable is the time from onset to d0,
and the right-truncation variable is the left-truncation variable plus the interval width
τ = d1 − d0. See for example Austin et al. [1] and Zhu and Wang [12]. This sort
of data appear also when d1 is a subject-specific event time of secondary interest,
d0 = d1 − τ , and the sample is restricted to lifetimes between d0 and d1 (Mandel
et al. [5]). More generally, random double truncation refers to a setting in which
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the lifetime of ultimate interest X is observed only when U ≤ X ≤ V , where U
and V are two other random variables (the left and right truncation times). When
U (respectively V ) degenerates at −∞ (respectively +∞), the double truncation
scenario reduces to a one-sided truncation setting (Woodroofe [11]).

Estimation of the distribution function (df) F of a doubly truncated variable X
has received some attention in the last decades. The nonparametric maximum likeli-
hood estimator (NPMLE) of F was introduced by Efron and Petrosian [3] under the
assumption of independence between X and (U, V ). The NPMLE is a non-explicit
estimator which must be computed in an iterative way. Efron and Petrosian [3] intro-
duced two different algorithms to compute the estimator. A third iterative algorithm
which simultaneously computes the NPMLE of F and that of the bivariate distribu-
tion of (U, V ) was proposed by Shen [9]. These three algorithms were reviewed by
Moreira et al. [7], who implemented them in the R package DTDA. One drawback
of Efron–Petrosian NPMLE is precisely the nonavailability of a closed-form expres-
sion; this leads to computational issues in particular settings, where the algorithms
may not converge. Another drawback is the lack of solid asymptotic theory for the
NPMLE; even when some asymptotic results have been derived (Shen [9, 10]), their
formal proofs are incomplete or they contain important gaps (Mandel et al. [5]).
So an interesting question is that of the construction of alternative nonparametric
estimators for the target F. This is the main goal of this paper.

The rest of the paper is organized as follows. In Sect. 2 a new, non-iterative non-
parametric estimator of the lifetime df is introduced and discussed for several forms
of double truncation. In Sect. 3 the performance of the proposed method relative
to the Efron–Petrosian NPMLE is investigated through simulations. The simulated
scenarios include ‘pure’ interval sampling, ‘mixed’ interval sampling (under which
some extra restriction on the dates of onset is present), as well as the setting in which
U and V are not necessarily linked through equation V = U + τ . Section4 pro-
vides two different real data illustrative examples. Finally, a discussion is reported
in Sect. 5.

2 A Non-iterative Estimator

Let (Ui,Xi, Vi), 1 ≤ i ≤ n, be the available observations, that is, a random sample
with the conditional distribution of (U,X, V ) given U ≤ X ≤ V . For interval sam-
pling, one has indeedV = U + τ where τ = d1 − d0 is the intervalwidth.Weassume
that (U, V ) and X are independent. Put F(x) = P(X ≤ x) for the lifetime cumula-
tive df, which we assume to be continuous, and let [aX , bX ] be the support of X. In
this setting, the identifiable distribution is that of X conditionally on aU ≤ X ≤ bV ,
where aU and bV stand respectively for the lower limit of the support of U and the
upper limit of the support of V (Woodroofe [11]). Therefore, for identifiability of F,
we assume aU ≤ aX and bX ≤ bV .

Since closed-form estimators exist for one-sided truncation (Lynden-Bell estima-
tor, see Woodroofe [11]), our idea to introduce a non-iterative estimator for F in our
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doubly truncated setting is to remove one of the truncation times. To this end, let
S(v) denote the subsample satisfying Xi ≤ v ≤ Vi, and let F̂(v)(x) denote the Lynden-
Bell estimator computed from S(v). This means that the Xi’s in S(v) are considered
as left-truncated by their respective Ui’s. Because of condition Xi ≤ v ≤ Vi in S(v),
and due to the independence between (U, V ) and X, the estimator F̂(v)(x) converges
to F(v)(x) = P(X ≤ x|v − τ ≤ X ≤ v), where condition v − τ ≤ X comes from the
fact that the lower limit of the support of U given V ≥ v is precisely v − τ . Now,
interestingly, for x ∈ [v − τ, v]

F(v)(x) = F(x) − F−(v − τ)

F(v) − F−(v − τ)

where F−(x) = P(X < x). Alternatively,

F(v) = F(x) − F−(v − τ)

F(v)(x)
+ F−(v − τ). (1)

Then, there is some hope that the value of F(v) can be recovered from the value
of F(x) for smaller lifetimes x < v, and from the Lynden-Bell estimator F̂(v)(x), by
using (1). This is indeed the case, as we will show.

Let x(1) < . . . < x(n) denote the ordered Xi’s, and take x = x(i−1) and v = x(i) in
(1). We assume that x(i) − τ ≤ x(i−1), so (1) holds; note that this can be ensured by
increasing the sample size n. Provided that F̂(x(i))(x(i−1)) > 0, Eq. (1) suggests

F̂(x(i)) = F̂(x(i−1)) − F̂−(x(i) − τ)

F̂(x(i))(x(i−1))
+ F̂−(x(i) − τ). (2)

Equation (2) can be used to define a non-iterative estimator F̂, which is constructed
from left (x(1)) to right (x(n)). Explicitly, the goal is to compute F1, . . . ,Fn where
Fi = F(x(i)), 1 ≤ i ≤ n. Introduce for i = 2, . . . , n

Pi = F−(x(i) − τ) =
i−1∑

j=1

(Fj − Fj−1)Iji, Iji = I(x(j) < x(i) − τ), (3)

where F0 = 0. Note that Pi in (3) just depends on F1, . . . ,Fi−1. We now introduce
formally the non-iterative estimator. Put Li = F̂(x(i))(x(i−1)).

Definition 2.1 [The non-iterative estimator] The non-iterative estimator F̂ is a dis-
crete distribution with support {x(1), . . . , x(n)} and respective cumulative masses
F1, . . . ,Fn defined as follows:

(a) F1 = 1;
(b) for i = 2, . . . , n, Fi = (Fi−1 − Pi)/Li + Pi;
(c) normalize so Fn = 1, that is, redefine Fi as Fi/max(F1, . . . ,Fn).
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It is important to note that Definition2.1 introduces indeed a non-decreasing
sequence of cumulative masses F1 ≤ · · · ≤ Fn. To see this, write

F2 − F1 = (F1 − P2)/L2 + P2 − F1 = (1/L2 − 1)(F1 − (F1 − F0)I12) ≥ 0,

where the inequality follows from L2 ≤ 1. Now, assume that Fj − Fj−1 ≥ 0 holds
for 1 ≤ j ≤ i − 1. Then,

Fi − Fi−1 = (1/Li − 1)(Fi−1 −
i−1∑

j=1

(Fj − Fj−1)Iji)

≥ (1/Li − 1)(Fi−1 −
i−1∑

j=1

(Fj − Fj−1)) = 0,

where the inequality follows from the induction hypothesis and Li ≤ 1. Therefore,
Fi ≥ Fi−1 holds for 1 ≤ i ≤ n.

According to (3), many of the Pi’s can be zero, Pi = 0 for 2 ≤ i ≤ i0 say, where
i0/n can be close to 1 in practice. Note that Pi = 0 occurs at least while x(i) ≤ τ . For
such i’s, the non-interactive estimator satisfiesFi = Fi−1/Li. It can be easily seen that
this simple formula defines a consistent estimator of F when a(v)

U ≤ a(v)
X for all v in

the support of X, where a(v)
ξ is the lower bound of the support of ξ given X ≤ v ≤ V .

Note that this condition is violated when e.g. V = U + τ and P(X < v − τ) > 0 for
some v, which will be typically the case with interval sampling.

In Definition2.1 we have assumed Li > 0, 1 ≤ i ≤ n. Recall that Li stands for the
Lynden-Bell estimator F̂(x(i))(x(i−1)). Explicitly (see Woodroofe [11]),

Li = F̂(x(i))(x(i−1)) = 1 −
i−1∏

j=1

{
1 − I(x(i) ≤ v[j])∑i

k=j I(u[k] ≤ x(j), x(i) ≤ v[k])

}
,

where (u[j], v[j]) denotes the (U, V )-value attached to x(j). From this expression it
becomes clear than Li = 0 may happen; in such a case, a proper modification of the
Lynden-Bell estimator should be used to avoid zero denominators in Definition2.1.
In the simulation study below we use 1/n as a lower bound for Li when needed.

One critical issue is that of the efficiency of the non-iterative estimator relative to
the Efron–Petrosian NPMLE. In a sense, the proposed approach proceeds to estimate
the target F(x) at point x = x(i) by focusing on the information contained in the
specific interval [x(i) − τ, x(i)). Since this interval changes with x(i), one may expect
that most of the sampling information is used in this way. Simulation results in the
next Section support this guess, providing a relative efficiency above 93% for all the
considered scenarios.

The non-interative estimator in Definition2.1 was constructed by removing the
right-truncation time in a sequential manner. In principle, there is no reason to think
that the analogous estimator which proceeds by removing the left-truncation variable
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rather than the right-truncation time performs worse. This alternative estimator starts
by considering a subsample of type S̃(u) = {i : Ui ≤ u ≤ Xi}, and then makes use of
the Lynden-Bell correction for right-truncation. The resulting estimator equals that
in Definition2.1 when the double truncation event U ≤ X ≤ V is represented in the
reverse way −V ≤ −X ≤ −U and (−V,−U ) and −X play the role of (U, V ) and
X respectively. For this reason, no more details on the alternative estimator will be
given here; however, both the direct and the reverse estimators are considered in our
simulation study below.

3 Simulation Study

In this section we investigate through simulations the finite sample performance
of the non-iterative estimator introduced in Sect. 2, relative to the Efron–Petrosian
NPMLE. The simulated model is as follows. The lifetime variable X is uniformly
distributed on the unit interval, X ∼ U (0, 1). The left-truncation variable is U ∼
U (−0.25, 0.5), and the right-truncation time is V = U + τ with τ = 0.75. This
model represents a ‘mixed’ interval sampling situation in which only items with
failures between two calendar dates d0 and d1 (with interval width 0.75), whereas
allowed dates of onset belong to the interval d0− 0.5 and d0 + 0.25. For this model we
have aU = −0.25 ≤ 0 = aX and bX = 1 ≤ 1.25 = bV . Therefore, the identifiability
conditions for the recovery of F are fulfilled. The simulated scenario introduces
an observational bias on the lifetime, in the sense that intermediate values of X
are observed with probability relatively larger. Therefore, a naive application of the
ordinary empirical distribution of the sample would overestimate the data frequency
around 0.5, reporting a non-uniform cumulative distribution.

We have computed the bias, the standard deviation and the mean squared error
(MSE) of several possible estimators along 1, 000 Monte Carlo trials of size n = 50,
100, 250 and 500. Specifically, the list of estimators is the following:

(I) the Efron–Petrosian NPMLE, F̂EP(x);
(II) the direct estimator in Definition2.1, F̂(x);
(III) the reverse estimator as defined in Sect. 2, F̂R(x);
(IV ) a weighted estimator which combines the direct and the reverse estimators,

F̂w(x) = wF̂(x) + (1 − w)F̂R(x), 0 < w < 1.

Note that the estimator (I) is iterative, while the estimators (II), (III) and (IV )

are non-iterative. The iterative estimator (I) was computed by using the algorithm
proposed by Shen [9], which is implemented by the function shen of theR package
DTDA (Moreira et al. [7]). The accuracy of each estimator was measured at the three
quartiles of F, these are x0.25 = 0.25, x0.5 = 0.5 and x0.75 = 0.75. For the weighted
estimator (IV ), we provide the results corresponding to the ‘fair’ choice w = 0.5 as
well as those of the optimal estimator which attains the minimumMSE (although in
this case the optimal weight may vary depending on the quartile).
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Fig. 1 Direct estimator
(solid line), Efron–Petrosian
NPMLE (dashed), and
reverse estimator (dotted
line) for a simulated trial
with n = 100. ‘Mixed’
interval sampling scenario.
Straight line corresponds to
the true cumulative
distribution
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The results for the four different sample sizes n are reported separately, see
Tables1, 2, 3 and 4. Just for illustration purposes, in Fig. 1 the estimators (I), (II)
and (III) are depicted for a particular trial of sample size n = 100; the three of
them are estimating the uniform distribution quite accurately. The results in Tables1,
2, 3 and 4 indicate that all the methods perform consistently, with a MSE which
decreases with an increasing sample size. On the other hand, the bias is negligible
compared to the standard deviation, so the MSE roughly equals the variance of the
estimator. The direct and reverse non-iterative estimators are competitive with the
NPMLE, although their MSE is somehow larger. The weighted non-iterative estima-
tor with optimal weight is of course the best competitor, with an efficiency relative
to the NPMLE ranging between 0.945 and 1.006 depending on the specific quartile
and sample size. Interestingly, the optimal weight w∗ which minimizes the MSE
was always around 1/2; more specifically, it ranged between 0.384 and 0.657. This
explains why the estimator based on the ‘fair’ weight w = 0.5 performed relatively
well, with relative efficiencies always above 0.93. Whatever the case, we have seen
in the simulations that any mixture of the direct and reverse non-iterative estima-
tors always improved both F̂(x) and F̂R(x) in the sense of the MSE. This is further
discussed below.

The following alternative scenarios were simulated too, alwayswithX ∼ U (0, 1),
for sample sizes n = 250 and n = 500:

(i) X ∼ U (0, 1), U ∼ U (−0.25, 0.5), V ∼ U (0.5, 1.25). Therefore, the
marginal distributions ofU and V were as above, but these two variableswere gen-
erated independently. In this particular setting of independent truncation variables,
the non-iterative estimator reduces to the closed-form estimator with cumulative
probabilities Fn = 1, Fi = Fi+1Li, i = n − 1, . . . 1;
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Table 1 Bias, standard deviation (SD) and mean squared error (MSE) of the several estimators
along 1,000 Monte Carlo trials under ‘mixed’ interval sampling, case n = 50. Fixed weight is
w = 1/2. Optimal weights w∗ in the simulations were 0.384 (x0.25), 0.495 (x0.5) and 0.657 (x0.75)

Bias SD MSE Bias SD MSE Bias SD MSE

x0.25 x0.5 x0.75

F̂(x) 0.02692 0.09454 0.00966 0.01532 0.09989 0.01021 0.01881 0.08640 0.00782

F̂R(x) −0.01682 0.08928 0.00825 −0.01409 0.10005 0.01021 −0.02568 0.09574 0.00983

F̂w(x) 0.00505 0.08641 0.00749 0.00062 0.09406 0.00885 −0.00344 0.08518 0.00727

F̂w∗ (x) −0.00003 0.08607 0.00741 0.00047 0.09406 0.00885 0.00353 0.08422 0.00711

F̂EP(x) 0.00317 0.08468 0.00718 0.00081 0.09433 0.00890 −0.00105 0.08346 0.00697

Table 2 Bias, standard deviation (SD) and mean squared error (MSE) of the several estimators
along 1,000 Monte Carlo trials under ‘mixed’ interval sampling, case n = 100. Fixed weight is
w = 1/2. Optimal weights w∗ in the simulations were 0.384 (x0.25), 0.525 (x0.5) and 0.566 (x0.75)

Bias SD MSE Bias SD MSE Bias SD MSE

x0.25 x0.5 x0.75

F̂(x) 0.01319 0.06365 0.00423 0.00703 0.06706 0.00455 0.01081 0.05987 0.00370

F̂R(x) −0.00939 0.05975 0.00366 −0.00731 0.06779 0.00465 −0.01121 0.06232 0.00401

F̂w(x) 0.00190 0.05775 0.00334 −0.00014 0.06345 0.00403 −0.00020 0.05716 0.00327

F̂w∗ (x) −0.00072 0.05749 0.00331 0.00022 0.06344 0.00403 0.00125 0.05706 0.00326

F̂EP(x) 0.000374 0.05590 0.00312 −0.00034 0.06308 0.00398 0.00076 0.05584 0.00312

Table 3 Bias, standard deviation (SD) and mean squared error (MSE) of the several estimators
along 1,000 Monte Carlo trials under ‘mixed’ interval sampling, case n = 250. Fixed weight is
w = 1/2. Optimal weights w∗ in the simulations were 0.394 (x0.25), 0.465 (x0.5) and 0.576 (x0.75)

Bias SD MSE Bias SD MSE Bias SD MSE

x0.25 x0.5 x0.75

F̂(x) 0.00477 0.04220 0.00180 0.00103 0.04476 0.00200 0.00196 0.04018 0.00162

F̂R(x) −0.00474 0.03994 0.00162 −0.00479 0.04389 0.00195 −0.00714 0.04124 0.00175

F̂w(x) 0.00001 0.03861 0.00149 −0.00188 0.04181 0.00175 −0.00259 0.03817 0.00146

F̂w∗ (x) −0.00099 0.03847 0.00148 −0.00209 0.04179 0.00175 −0.00190 0.03815 0.00146

F̂EP(x) −0.00078 0.03746 0.00140 −0.00215 0.04141 0.00172 −0.00219 0.03725 0.00139

(ii) X ∼ U (0, 1), U ∼ U (−0.25, 1), V = U + 0.25. This is the situation with
‘pure’ interval sampling: aU = −τ is minus the interval width (τ = 0.25), and
bU = 1 is the upper limit of the support of X. In this case there is no observational
bias because U is uniformly distributed;

(iii) Same as scenario (ii) but with U = (1 + τ)
√
U (0, 1) − τ , which is non-

uniform and results in an observational bias on X of G(x) ≡ P(U ≤ x ≤ V ) =
τ(τ + 2x)/(1 − τ)2.

Scenarios (i)–(iii) reported little novelty relative to results in Tables1, 2, 3 and 4.
With independent truncation times (scenario (i)), the efficiency of the (optimal) non-
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Table 4 Bias, standard deviation (SD) and mean squared error (MSE) of the several estimators
along 1,000 Monte Carlo trials under ‘mixed’ interval sampling, case n = 500. Fixed weight is
w = 1/2. Optimal weights w∗ in the simulations were 0.394 (x0.25), 0.475 (x0.5) and 0.596 (x0.75)

Bias SD MSE Bias SD MSE Bias SD MSE

x0.25 x0.5 x0.75

F̂(x) 0.00452 0.02935 0.00088 0.00238 0.03112 0.00097 0.00177 0.02801 0.00079

F̂R(x) −0.00085 0.02820 0.00080 −0.00096 0.03082 0.00095 −0.00332 0.02930 0.00087

F̂w(x) 0.00183 0.02704 0.00073 0.00071 0.02928 0.00086 −0.00077 0.02693 0.00073

F̂w∗ (x) 0.00127 0.02699 0.00073 0.00063 0.02928 0.00086 −0.00028 0.02686 0.00072

F̂EP(x) 0.00139 0.02625 0.00069 0.00051 0.02921 0.00085 −0.00036 0.02614 0.00068
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Fig. 2 MSE of the weighted non-iterative estimator F̂w(x) at the three quartiles of F: x = x0.25,
x = x0.5 and x = x0.75 (from left to right). The dashed horizontal line corresponds to the MSE of
the NPMLE. ‘Mixed’ interval sampling scenario, n = 250

iterative estimator relative to the NPMLE was always above 0.98. In this case, the
best weighted estimator gave a small weight w∗ 
 0.2 to the direct estimator when
estimating F at the first quartile, this weight being large at the third quartile (w∗ 

0.7). This seems to be somehow the case in Tables1, 2, 3 and 4 too, reflecting the fact
that the reverse estimator performs better at x0.25, while the direct estimator reports a
smaller MSE at x0.75. In the model with ‘pure’ interval sampling (scenarios (ii) and
(iii)), the efficiency of the proposed estimator relative to the NPMLE was always
above 0.93. For these scenarios (ii) and (iii) the weight leading to the minimumMSE
ranged between 0.394 and 0.556. It is interesting to note that, for the ‘pure’ interval
sampling scenarios and n = 250, min1≤i≤n Li = 0 happened for a small number of
trials (2.1% at maximum), so the non-iterative estimator could not be computed. To
avoid this issue we just redefined Li as max(Li, 1/n); the simulation results we refer
to are based on such a correction.

In Fig. 2 we depict the MSE for the weighted, non-iterative estimator depending
on the choice of the weight w, for the ‘mixed’ interval sampling scenario and n =
250; the dashed horizontal line corresponds to the MSE of the NPMLE. The results
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corresponding to the other scenarios (i)–(iii) are provided in Figs. 3, 4 and 5. Other
sample sizes n provided similar plots. From Figs. 2, 3, 4 and 5 we can see that the
results of the direct and reverse estimators are improved by weighting them, and that
most of the times the choice w = 0.5 is roughly optimal, as discussed above.

4 Real Data Illustration

In this sectionwe provide two illustrative real data analyses. Both of them correspond
to the situation of ‘pure’ interval sampling. The results provided by the non-iterative
estimator are compared to the standard Efron–Petrosian NPMLE. Since for both
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datasets ties among the Xi’s occur, lifetimes were slightly modified by adding a
(small) uniform random number so the strict inequalities x(1) < · · · < x(n) hold.

4.1 Childhood Cancer Data

This dataset refers to n = 406 children diagnosed from cancer in North Portugal. The
data correspond to all the cases diagnosed between January 1, 1999, and December
31, 2003, so interval sampling was employed indeed, with an interval width of 5
years. The variable X of interest is age (in years) at diagnosis from childhood cancer
which, by definition, is supported on the [0, 15] interval. The right-truncation time V
represents the age of the individual by December 31, 2003, while U = V − 5 is the
left-truncation time. The observed support of U is roughly (−4.5, 14.5) (in years).
See Moreira and de Uña-Álvarez [6] for further details.

In this case τ = 5 (years) andmax2≤i≤n(x(i) − x(i−1)) = 0.343, so condition x(i) −
τ ≤ x(i−1), 2 ≤ i ≤ n, holds. Condition Li > 0 is satisfied too; indeed, min2≤i≤n Li =
0.5, and 398 of the Li’s are larger than 0.9. On the other hand, Pi = 0 for i ≤ 192,
Pi being strictly positive for larger i’s.

The several estimators for the cumulative df of X are depicted in Fig. 6. They all
suggest a non-uniform, slightly concave df. For completeness, the naive estimator
based on the ordinary empirical df of the Xi’s is also displayed, being close to the
estimators which correct for truncation. The reason for this is that, in this particular
application, the double truncation does not introduce any observational bias on X,
because the truncation times are uniformly distributed and their supports are large
enough (Moreira and de Uña-Álvarez [6]). To emphasize this, in Fig. 7 the NPMLE
of the biasing function G(x) = P(U ≤ x ≤ V ) is provided; the function in this plot
is roughly constant, indicating that all the Xi’s are sampled with the same probability.
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Fig. 6 Direct estimator
(solid line), Efron–Petrosian
NPMLE (dashed), and
reverse estimator (dotted
line) for the childhood
cancer data (n = 406). The
naive estimator provided by
the ordinary empirical df is
displayed too (dotted-dashed
line)
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Fig. 7 Biasing function for
the childhood cancer data
(n = 406)
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4.2 AIDS Blood Transfusion Data

Kalbfleisch and Lawless [4] reported 494 cases of transfusion-related AIDS, cor-
responding to cases diagnosed prior to July 1, 1986. Here, the lifetime X is the
induction or incubation time (in months), which is the time elapsed from HIV infec-
tion to AIDS. Importantly, since HIV was unknown before 1982, cases developing
AIDS prior to this date were not reported. Let V denote the time from HIV infection
to July 1, 1986 (in months), and introduce U = V − 54; then, due to the interval
sampling, only triplets (U,X, V ) satisfying U ≤ X ≤ V were observed (Bilker and
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Fig. 8 Direct estimator
(solid line), Efron–Petrosian
NPMLE (dashed), and
reverse estimator (dotted
line) for the AIDS blood
transfusion data (n = 298).
The naive estimator provided
by the ordinary empirical df
is displayed too
(dotted-dashed line)
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Fig. 9 Biasing function for
the AIDS blood transfusion
data (n = 298)
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Wang [2]). We restrict our analysis to the n = 298 cases with consistent data, for
which the infection could be attributed to a single transfusion or short series of trans-
fusions. This dataset was recently used to illustrate regression issues under double
truncation too (Moreira et al. [8]). The observed values of X ranged from 0.5 to 89
(months), while U ranged from −48.5 to 45.5. This implies that the distribution of
X is identifiable at least on the interval [0, 99.5].

For this example we have τ = 54 (months) and max2≤i≤n(x(i) − x(i−1)) = 6, so
again we have x(i) − τ ≤ x(i−1), 2 ≤ i ≤ n. Condition Li > 0 is also fulfilled, with
min2≤i≤n Li = 0.5, and with 291 of the Li-values larger than 0.9. On the other hand,
the 256 first Pi’s were zero.
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In Fig. 8 we depict the direct and reverse non-iterative estimators together with the
Efron–Petrosian NPMLE, the three of them showing a good agreement. Unlike in the
previous example, the ordinary empirical df grossly overestimates the distribution
of the incubation time, due to the oversampling of relatively small values of X. The
estimated observational bias can be seen in Fig. 9. The curve in Fig. 9 is roughly
decreasing, which indicates that the right-truncation issue dominates in this case.

5 Discussion

In this paper a non-iterative estimator of a cumulative df from doubly truncated data
has been introduced. The estimator is simpler than the Efron–Petrosian NPMLE,
which has no explicit form and must be computed iteratively. We have seen through
simulations that the newestimator is competitive,with a relative efficiency above 0.93
in all the simulated settings. An interesting issue is that of the selection in practice
of the optimal mixture between the direct and the reverse non-iterative procedures.
This point deserves more investigation. In any case, the ‘fair’ mixture based on the
weight w = 1/2 exhibited a good performance.

The non-iterative estimator has been introduced in the setting of interval sam-
pling. However, we have discussed other settings with random double truncation
too. Specifically, we have seen that the non-iterative estimator reduces to a simple
closed-form estimator whenU and V fulfill certain support conditions relative to X.
The performance of such a simple estimator has been explored through simulations
too.

No formal proof of consistency has been given for the non-iterative estimator.
This is currently under investigation. On its turn, although some asymptotic theory
for the (iterative) NPMLE has been developed (Shen [9, 10]), the corresponding
formal proofs contain some important gaps which still need to be properly attacked
(Mandel et al. [5]). Therefore, the estimator proposed and investigated in this paper
could be an important first step towards a more tractable theoretical framework with
doubly truncated data.

Acknowledgements Work supported by the Grant MTM2014-55966-P of the Spanish Ministerio
de Economía y Competitividad.
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The Mathematics of the Uncertain: Factors
Related to Survival of Spanish Firms Along
Recent Crisis

Antonio Vaamonde-Liste, Manuel Meijide-Vecino,
Patricio Sánchez-Bello and Pilar Muñoz-Dueñas

Abstract Several mathematical techniques have been considered in the literature
to deal with the uncertainty associated with the life of firms. In this paper, factors
associated with the survival of Spanish companies have been examined by means of
statistical approaches, on the basis of a large sample of 5000 Spanish companies.

1 Introduction

Firms are living beings: they are born, grow, and inevitably they die. The longest-
running company in the world seems to be the japanese Hoshi Ryokan Hotel chain
(founded in 578); in Spain the oldest company is probably Codorniu wine makers,
active since 1551. Differentmathematical and statistical models have been developed
to address the uncertainty associated with the life span, and these models can be
applied to the life of companies too.

There are many factors that affect the survival of companies, structural and tran-
sient factors, technical andhuman, avoidable or predictable factors andother unavoid-
able, internal to the company and external factors. Although a firm’s main objective
is usually to achieve economic gain, often mere survival becomes the primary goal
during difficult times.

Economic crises reveal the structural weaknesses of companies -many of them
planned only for happy times- and those that survive often consider a benefit, even
necessary for the good order of things, the forced disappearance of uncomfortable
competitors.

In this paper we study some factors associated with the survival of Spanish com-
panies using statistical techniques such as the Kaplan–Meier method for the con-
struction of life tables and survival curves, and the Harrington–Fleming test [7] to
evaluate the significance of the factors.
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A sample of 5000 companies selected at random from all Spanish companies is
used, with data obtained from the Ardan database, managed by the Vigo Free Trade
ZoneConsortium, in relation to the annual accounts deposited by the companies in the
corresponding Mercantile Registry to 2014. More than 200 variables are available:
balance sheets, profit and loss accounts, different ratios, year of incorporation, sector
of activity, and other characteristics of companies.

2 Survival of Firms

Enterprise survival studies were initiated by Marshall [9], who uses the forest simile
in which young trees are growing and displacing old trees. Schumpeter [11] relates
the survival of firms with innovation, which generates competitive capacity, and did
study the effect of firms size.

The first theoretical approach to business survival is due to Gibrat [5] (Gibrat’s
Law or Proportional Growth Act), who describes how companies are distributed by
size in a sector, and states that the growth of the company is independent of its size.
The models of Jovanovic [8], or Ericson and Pakes [4], among others, introduce
the notions of selection and learning, creating a theory of business selection with
incomplete information.

The main variable of our study is the age of the company, expressed in years.
The age distribution of the Spanish companies obtained with the data of the sample
is represented in the histogram in Fig. 1; most companies are close to 20 years old,
although a few are more than a century old. At the time of the beginning of the crisis
(2008), it is possible to distinguish a notch in the graph, around 5–6 years old, with

Fig. 1 Age of Spanish firms
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Table 1 Descriptive statistics on the age of Spanish firms

Min 1st Quartile Median Mean 3rd Quartile Maximum

0.00 13.00 21.00 21.41 28.00 113.00

Table 2 Life table for Spanish firms

Time n.risk n.event Survival Std.err. Lower 95% CI Upper 95% CI

0 4113 7 0.998 0.000643 0.997 1.000

10 3459 114 0.969 0.002799 0.963 0.974

20 2262 67 0.946 0.003927 0.938 0.953

30 839 29 0.927 0.005225 0.917 0.937

40 269 10 0.904 0.009143 0.886 0.922

50 104 4 0.883 0.013806 0.856 0.910

60 46 4 0.833 0.027554 0.781 0.889

70 29 0 0.833 0.027554 0.781 0.889

80 20 1 0.802 0.040264 0.727 0.885

Fig. 2 Survival curve for
Spanish firms

very low frequencies, a period in which many companies disappeared and very few
were created.

Some descriptive statistics allow a first approximation (see Table1).
Half of the companies are under 21 years old, a quarter less than 13 years, and

another quarter more than 28 years.
We built the life table using Kaplan–Meier method, determining the probability

of survival for each value of age, with a confidence interval 95% (see Table2).
The survival curve graphically represents the survival rate (see Fig. 2).
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3 Factors Affecting the Survival of Firms

The factors affecting the survival of firms are to be analyzed in this section.

3.1 Size

Size is a factor traditionally associated with survival (Dunne et al. [3], Mata and
Portugal [10]). Larger companies have more advantages, compete better, and over-
come difficulties more easily. Following European Union criteria, we consider
“micro” enterprises those whose annual income do not reach 2million euros, “small”
up to 10, “medium” up to 50, and “large” those that exceed this figure.More than half
Spanish companies are microenterprises, and almost 30% are small (see Table3).

The survival curves for the different factor levels are displayed in Fig. 3.
The Harrington–Fleming test is performed, and outputs are gathered in Table4.
The p-value is practically equal to zero, indicating that size is significantly related

to survival. The graph shows as micro firms, whose curve is consistently below the

Table 3 Size of Spanish
firms

Size n %

micro 2610 52.96

small 1434 29.10

medium 625 12.68

large 259 5.26

Fig. 3 Survival rate of
Spanish firms by size
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Table 4 Harrington–Fleming test details by size

Size N Observed Expected (O − E)2/E (O − E)2/V

large 172 3 5.54 1.17 1.29

medium 545 11 17.11 2.18 2.93

micro 1024 42 18.07 31.67 44.36

small 1055 15 30.27 7.70 13.58

χ2
3 = 44.5, p = 0.00000000117

Table 5 Harrington–Fleming test details by profitability

Profitability N Observed Expected (O − E)2/E (O − E)2/V

low 2055 107 122 1.76 3.65

high 2057 129 114 1.88 3.65

χ2
1 = 3.7, p = 0.0561

others, have a clearly smaller survival rate than the remaining, and there are only
small differences between the other groups.

3.2 Economic Profitability

We will consider two groups of companies: with profitability below the median, and
above the median. We perform the Harrington-Fleming test (see Table5).

The p-value is over the usual 0.05 significance level, which does suggest that
profitability, at least in the crisis period considered, is not a survival factor. Let’s see
the graph displayed in Fig. 4.

We observe how survival curves, surprisingly, intersect. Although for companies
over 40 years old high profitability can ensure a significantly higher survival rate, this
does not happen for the early ages, less than 30 years: apparently young companies
with lower profitability survive better,which seems contradictory.However, it iswell-
known that in times of crisis, many companies are forced to reduce their margins
by temporarily assuming low or even negative returns, in order to compete and
maintain their activity during difficult times, which may explain the observed effect.
Companies that are able to lower prices and take on less profit survive better.

3.3 Solvency

Solvency indicates the ability of companies to respond to payments due, is indispens-
able for daily dealings with suppliers and for dealing with credit institutions, and in
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Fig. 4 Survival rate of
Spanish firms by profitability

Table 6 Harrington–Fleming test details by solvency

Solvency N Observed Expected (O − E)2/E (O − E)2/V

low 2079 160 106 26.9 49.7

high 2030 76 130 22.1 49.7

χ2
1 = 49.7, p = 0.0000000000018

most sectors of activity is a necessary condition for the operation of the company.
Their relationship with survival is clear: solvent companies survive, and those that
are not, may disappear (see Görg and Spaliara [6]).

We will consider again, for simplicity, two groups of companies: with solvency
below and above the median. We perform the Harrington–Fleming test (see Table6).

The p-value is practically equal to 0, which confirms a significant relationship.
Let us see the survival curves displayed in Fig. 5.

The survival rate for less solvent enterprises is consistently below that of the
solvent companies.

3.4 Debt

The most indebted companies run the risk of not being able to cope with the repay-
ment of the loans received, and disappear (Bridges and Guariglia [2]). The levels of
indebtedness are different in the different industries, and a deep study must take into
account these aspects. In this subsection we consider debt rates globally, in relation
to the average rate.
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Fig. 5 Survival rate of
Spanish firms by solvency

Table 7 Harrington–Fleming test details by debt

Debt N Observed Expected (O − E)2/E (O − E)2/V

low 2296 105 136.7 7.34 17.5

high 1817 131 99.3 10.11 17.5

χ2
1 = 17.5, p = 0.0000283

Fig. 6 Survival rate of
Spanish firms by debt
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To do this we rebuild two groups of companies, according to whether their debt
ratio is lower or higher than the median. We perform the Harrington–Fleming test
(see Table7).

The p-value is practically equal to 0, which indicates that the effect of this factor
on survival is significant. The survival curves are displayed in Fig. 6.

The most heavily indebted companies have survival rates that are clearly lower
than the less indebted ones.

4 Conclusions

It is possible to introduce rationality criteria in the uncertainty associated with the
disappearance of companies, especially accentuated in times of crisis.

The Kaplan–Meier method allows estimating the survival curve of a population
of firms, and helps to analyze the factors that can determine the probability of dis-
appearance of a company.

In the case of Spanish companies, in the years immediately after the beginning of
the recent crisis, it is observed that size is a determining factor, with smaller compa-
nies (micro-enterprises) having the lowest survival rates. Other factors also appear
to be significantly related to corporate mortality: economic profitability, although
it appears to affect young firms differently to those having a consolidated position,
solvency, or indebtedness.

On some of these factors it is possible to act, so that companies improve their
survival options: it is necessary to increase the size of the company to strengthen
the competitive position, pay special attention to the solvency ratio, and reasonably
limit the indebtedness.
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A Functional Stochastic Model for
the Evolution of Spanish Stock Market

Mariano J. Valderrama, Manuel Escabias, Federico Galán
and Antonio Gil

Abstract The study of the evolution of financial series has always been a complex
problembecause of the nature of stockmarket series that usually are close to a random
walk. The most usual approach has been to apply ARCH and GARCH models, as
well as methods that attempt to capture stochastic volatility. In this paper we present
an alternative way of approximating this problem, that consists of modeling these
series by functional principal components analysis of the financial process up to a
certain time frame. The study focused on the Spanish index IBEX35 over a broad
period (2007–2013) and, based on continuous market trading, the sample paths were
considered integrable square curves. The objective of the work is the estimation of
explanatory models for the different bonds as well as the correlation between them.

1 Introduction

Functional data analysis (FDA) is a statistical methodology related to multivariate
analysis and stochastic processes whose pioneer works are the ones by Deville [5],
Saporta [14] and Besse and Ramsay [4], although its main development and interest
for scientific comunity araised since J.O. Ramsay and B. Silverman published in
1997 the book Functional Data Analysis [12] as well as since the shared S-Plus,
R and Matlab libraries are available for researchers around the world allowing the
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application of FDA methods and obtaining results in a simple way. The aforemen-
tioned libraries have been improved along the years, and some new ones have arisen
to deal with FDA with different objectives, for example fdakma for K-mean align-
ment in FDA, fdaMixed in a mixed model framework, fdatest for interval testing,
fda.usc that has utilities for statistical computing in FDA, FDboost for boosting
functional regression models or fdcov for analysis of covariance operators, among
others in R (see https://CRAN.R-project.org). Recently a web application has been
launched that allows the use of some of the methods of analysis of functional data
without deep knowledgement of the FDA theory to use it (http://www.statfda.com/).

The aim of FDA is to apply statistical methods when data are curves, that is
mathematical functions, by using the full information of the complete curve instead
of a set of discrete observations of that curve. For example Aguilera et al. [3] used
FDA methods to model the occurrence of Lupus flares from curves of stress and
Escabias et al. [8] to model allergic variables from weather curves.

Economic and financial series have been also modeled by FDA methods. So,
Aguilera et al. [1] applied functional principal component analysis for stochastic
modelling of stock-prices evolution by means of functional principal component
analysis, and also Ingrassia and Costanzo [10] to classify financial time series.
Moreover Aguilera et al. [2] forecasted binary longitudinal data by a functional PC-
ARIMA model.

The objective of this paper is to illustrate the use of functional principal component
analysis to model stock market series.

2 Some Theory on Functional Data Analysis

Values of a functional variable depend on a continuous magnitude such as time,
so that a functional data set is a collection of curves {x1(t), . . . , xn(t)} , with t ∈
T . Each curve can be observed at different time points of its argument t as xi =(
xi (t0) , . . . , xi

(
tmi

))′
for the set of times t0, . . . , tmi , i = 1, . . . , n and these are not

necessarily the same for each curve.
Different approaches have been taken to the study of functional data, including

the nonparametric methods proposed by Ferraty and Vieu [9] and Müller [11], and
the basis expansion methods used by Ramsay and Silverman [13] that we follow
in the present application to reconstruct the functional form of curves in order to
evaluate them at any time point t . This method assumes that the curves belong to a
finite dimensional space generated a basis of functions

{
φ1 (t) , . . . , φp (t)

}
and so

they can be expressed as

xi (t) =
p∑

j=1

ai jφ j (t) , i = 1, . . . , n. (1)

https://CRAN.R-project.org
http://www.statfda.com/
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The functional form of the curves is determined when the basis coefficients ai =(
ai1, . . . , aip

)′
are known. These can be obtained from the discrete observations

either by least squares or by interpolation (see, for example, Escabias et al. [6, 7]). In
our application the least squares method is considered for functional representation.

Let x1 (t) , x2 (t) , . . . , xn (t) be a set of curves all of them observed at the same
time points t1, t2, . . . , tm .Then the available information in this situation is thematrix
X = (

xi
(
t j

))
. The basis coefficients of all curves are obtained by least squares

approximation as AT = (
ΦTΦ

)−1
ΦT XT whereΦ = (

φk
(
t j

))
is the matrix of basic

functions evaluated at sampling points.
From a set of curves x1 (t) , x2 (t) , . . . , xn (t) the mean curve is defined as

x (t) = 1

n

n∑

i=1

xi (t)

and the covariance surface as

C (s, t) = 1

n − 1

n∑

i=1

(xi (s) − x (s)) (xi (t) − x (t)) .

Functional principal components are defined as the uncorrelated random variables
obtained as linear combination of the sample curves

ξi =
∫

T
(xi (t) − x (t)) f (t) dt, i = 1, . . . , n

that maximize the variance of ξ1, . . . , ξn . By imposing this condition, functional
principal components are the solutions of a Fredholm second order integral equation

∫

T
C (s, t) f (s) ds = λ f (t)

where λ denotes the variance of a functional principal component.
When curves are expressed in terms of basic functions as (1) previous equation

has p solutions for λ that verify: λ1 ≥ λ2 ≥ · · · ≥ λp. Each λ j generates a linear
space of eigenfunctions with dimension equal to its multiplicity, so that when all
them are simple the associated eigenspace have only one function f j (t) and define
the funcional principal component curves:

ξi j =
∫

T
(xi (t) − x (t)) f j (t) dt, j = 1, . . . , p, i = 1, . . . , n.

In matrix form, functional principal components are usually considered in a n × p
matrix Γ. Moreover, each functional principal component cummulates a proportion
of the total variability given by
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λ j∑p
j=1 λ j

.

The total variability that cummulates the functional principal components is equal
to the total variability of curves.

When curves are expressed in terms of basic functions as (1), eigenfunctions are
also represented in terms of the same basic functions

f j (t) =
p∑

k=1

Fjkφk (t) , j = 1, . . . , p.

The original curves can be approximated by using a reduced set of functional
principal components

xi (t) =
q<p∑

j=1

ξi j f j (t) , i = 1, . . . , n,

and then we have an approximation of the original curves in terms of basis fuctions,
that is, by knowing their basis coefficients

xi (t) =
q<p∑

j=1

ξi j

p∑

k=1

Fjkφk (t) , i = 1, . . . , n.

3 Modeling Stock Market Data by FDA

The available data are the daily stock values of 33 companies belonging to Spanish
stock market index IBEX35, including the own main index. The companies consid-
ered were the following ones:

Abengoa BBVA Indra
Abertis Bolsa y Mercados Mapfre
Acciona Enagas Metrovacesa
Acerinox ENDESA NHHoteles
ACS FCC OHL
Antena 3 Ferrovial PRISA
Banco Popular Gamesa Red Eléctrica Española
Banco Sabadell Gas Natural Repsol
Banco Santander Grifolsa Sacyr Vallehermoso
Banesto Iberdrola Técnicas Reunidas
Bankinter Inditex Telefónica
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Acciona Acerinox B.Popular Banesto

Bankinter BBVA Ferrovial Gamesa

Mapfre REE Tec. Reunidas Ibex35

Fig. 1 Daily stock values and 10-days rates of return of some companies of IBEX35
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For each company we had available 1440 daily returns since 2007 to 2013 whose
observed series can be seen in Fig. 1.

The problem of modelling stock values by functional data analysis is the depen-
dency structure that exists between nearby observations. For this reason, instead of
them we have used the 10-days rates of return given for each series by r(d) =
(C(d + 10) − C(d))/C(d) where C(d) is the correponding stock price at time
d = 1, 2, . . . In addition, functional data analysis methods use curve samples as
data independent, so that we have cut each series into curves of length 20: xi j =
xi (t j ) = R(20x(i − 1) + j); i = 1, 2, . . . , j = 1, 2, . . . , 20. Some of these curves
can be also seen in Fig. 1, where discrete observations were turned to curves by basis
expansion in terms of cubic B-spline basis by least squares approximation.

After the approximation by basis expansion a functional principal component
analysis was performed independently for each curve. Cumulated explained vari-
ances are summarized in Table1.

The linear correlation between IBEX functional principal components and func-
tional principal components of the companies involved suggested the next linear
models

ξ̂i1(IBEX) = β̂11̂ξi1(X1) + β̂12ξ̂i1(X2) + β̂13ξ̂i1(X3) + β̂14ξ̂i1(X4),

ξ̂i2(IBEX) = β̂21̂ξi2(X5) + β̂22ξ̂i2(X6),

ξ̂i3(IBEX) = β̂31̂ξi3(X7),

ξ̂i4(IBEX) = β̂41̂ξi4(X8) + β̂42ξ̂i4(X9),

ξ̂i5(IBEX) = β̂51̂ξi5(X10) + β̂52ξ̂i5(X11).

Taking into account that we can approximate each curve from a reduced set of
functional principal components, we can formulate a prediction function of the IBEX
curves from the predicted principal components obtained by the main companies

xi (t) = x(t) +
5∑

j=1

ξ̂i j (IBEX) f j (t)

where ξ̂i j (I BEX) are the predictions of the IBEX principal components obtained
from the ones of the main companies, and f j (t) the eigenfunctions of the IBEX
curves.

The prediction of the several fits are summarized in Table2 and the prediction
accuracy for some of the curves can be seen in Fig. 2.
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Table 1 Cumulated explained variance of the functional principal components

Empresa Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Abeng. 52.42 77.25 90.20 94.18 96.29 97.87 99.15 99.73 99.88 100.00

Aber. 54.05 78.67 90.80 94.77 96.65 98.14 99.10 99.62 99.85 100.00

Acc. 59.28 76.91 91.46 94.70 96.76 98.12 99.15 99.71 99.87 100.00

Acer. 50.48 78.08 91.26 94.53 96.45 98.07 99.11 99.68 99.88 100.00

ACS 53.01 77.74 89.30 93.54 96.37 97.78 98.84 99.67 99.87 100.00

Ant3 51.02 80.75 91.25 94.97 96.97 98.27 99.27 99.79 99.92 100.00

B.Pop 52.54 79.06 91.13 94.93 97.14 98.43 99.21 99.70 99.87 100.00

B.Sab. 49.40 80.72 92.44 96.15 97.63 98.70 99.27 99.78 99.93 100.00

B.San. 38.73 73.62 88.81 93.39 96.06 97.57 98.88 99.67 99.88 100.00

Ban. 47.47 80.14 90.32 94.19 96.59 98.13 99.22 99.75 99.90 100.00

Bank. 52.84 79.05 89.48 93.86 95.84 97.63 98.84 99.71 99.88 100.00

BBVA 42.90 72.30 88.57 93.62 96.02 97.51 98.88 99.67 99.87 100.00

BolMer 49.86 75.99 90.03 93.75 95.69 97.41 98.78 99.65 99.83 100.00

Enagas 52.91 75.43 89.41 93.49 95.82 97.81 99.05 99.64 99.84 100.00

END. 50.33 80.91 91.30 94.84 97.05 98.45 99.14 99.75 99.92 100.00

FCC 53.43 74.05 87.81 93.02 96.16 97.88 99.00 99.71 99.89 100.00

Ferr. 52.00 76.98 90.40 94.07 96.24 98.00 99.02 99.67 99.84 100.00

GAM. 47.35 76.04 90.26 94.18 96.72 98.09 99.14 99.73 99.88 100.00

G.Nat. 54.45 74.99 89.02 93.78 95.85 97.77 98.98 99.65 99.87 100.00

Grif. 52.97 77.91 90.82 94.90 96.72 98.30 99.29 99.71 99.88 100.00

Iber. 51.13 73.05 88.49 92.28 95.35 97.18 98.70 99.52 99.83 100.00

Indit 50.66 72.82 89.41 94.48 96.56 97.85 98.97 99.58 99.82 100.00

Indra 43.14 76.18 89.34 92.44 95.35 97.38 98.81 99.68 99.84 100.00

Mapfre 52.42 76.59 88.33 92.97 95.40 97.12 98.66 99.50 99.82 100.00

Metr. 46.18 83.36 93.75 97.60 98.43 99.04 99.50 99.85 99.94 100.00

NH 54.70 80.66 91.27 94.92 97.08 98.31 99.33 99.75 99.90 100.00

OHL 54.53 81.91 91.48 94.77 96.88 98.28 99.23 99.82 99.93 100.00

PRISA 42.64 78.04 91.89 95.22 96.92 98.16 99.21 99.75 99.91 100.00

REE 49.28 74.54 88.76 93.59 95.81 97.96 98.97 99.56 99.80 100.00

Repsol 47.05 71.46 89.37 93.02 95.77 97.32 98.72 99.64 99.87 100.00

Sacyr 53.79 76.56 91.99 95.05 96.80 97.94 99.00 99.77 99.90 100.00

Tec.Reu. 53.78 78.14 90.66 94.06 96.00 97.69 99.11 99.69 99.87 100.00

Telef. 57.21 80.01 90.14 93.17 95.79 97.41 98.72 99.61 99.86 100.00

Ibex 48.07 71.92 88.17 92.53 95.51 97.12 98.60 99.60 99.86 100.00
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Table 2 Prediction analysis of the five main functional components of IBEX 35

β̂i j Std. Error t p-value

ξ̂i1(IBEX)

ξ̂i1(X1 = REE) 0.26 0.08 3.35 0.00

ξ̂i1(X2 = Mapfre) 0.29 0.04 6.77 0.00

ξ̂i1(X3 = Acerinox) 0.15 0.05 2.77 0.01

ξ̂i1(X4 = Acciona) 0.12 0.04 2.92 0.00

ξ̂i2(IBEX)

ξ̂i2(X5 = Ferrovial) −0.25 0.06 −3.88 0.00

ξ̂i2(X6 = Tec.Reu) 0.31 0.07 4.52 0.00

ξ̂i3(IBEX)

ξ̂i3(X7 = BBVA) 0.60 0.02 25.98 0.00

ξ̂i4(IBEX)

ξ̂i4(X8 = Banesto) 0.30 0.07 4.25 0.00

ξ̂i4(X9 = Bankinter) 0.29 0.05 5.25 0.00

ξ̂i5(IBEX)

ξ̂i5(X10 = B.Popular) 0.37 0.05 6.98 0.00

ξ̂i5(X11 = GAMESA) 0.16 0.05 3.38 0.00

Acciona Acerinox B.Popular Banesto

Bankinter BBVA Ferrovial Gamesa

Mapfre REE Tec.Reunidas Ibex35

Fig. 2 Original 10-days rate of return (solid line) overlayed with the estimated one (dashed line)
for some companies of IBEX35
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Limit Behavior of Polya Urn Schemes

Ricardo Vélez and Tomás Prieto-Rumeau

In memory of our colleague and friend Pedro Gil

Abstract The long term behavior of the composition of Polya’s urn schemes is
analyzed by means of simple martingale arguments. The results hold even under the
assumption that random numbers of balls are added to the urn depending only on the
color of the ball obtained in the successive extractions.

1 Polya’s Urn Schemes

Urn schemes, devised by George Polya, are a useful tool to think about probability
beyond the scope of independence, too predominant in introductory courses. They
help to illustrate many essential concepts such as exchangeability, martingales, sto-
chastic convergences and limit laws.

An urn scheme considers an urn with balls of two different colors: Amber and
Blue. Successive extractions are performed at random and the obtained ball is
returned to the urn together with a certain number of additional balls of each color.
Initially there is a total of t balls in the urn, α of which are amber and β = t − α are
blue. The urn scheme is characterized by the parameters:

[ a′ , a
︸ ︷︷ ︸

amber

; b , b′
︸ ︷︷ ︸

blue

]
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where a′ and a stand for the number of amber and blue balls respectively added
when an amber ball is obtained, while b amber and b′ blue balls are adjoined if a blue
ball is extracted. Negative values for some of these parameters are usually admitted
and to add −x balls means to remove x balls of the urn. However, in this case it
may happen that the balls of some color are exhausted and the extractions cannot be
pursued according to the rules of the model.

The most practical assumption is that the total number of added balls is fixed, say
c > 0; so that a′ = c − a and b′ = c − b. In this case the total number of balls in
the urn is not random, but independent of the successive colors previously obtained.
Unless otherwise stated, this will be the considered model:

[c − a, a; b, c − b], c > 0.

We will denote

• Yk the color of the ball obtained in the trial k ≥ 1: Yk = 1 if it is amber, Yk = 0 if
it is blue.

• Xn = ∑n
k=1 Yk , the total number of amber balls obtained in the first n extractions.

One can allow the possibility that a and b could have random values. To this end,
assume that {ak}k≥1 and {bk}k≥1 are two sequences of independent identically dis-
tributed random variables with integer values, independent also of {Yk}k≥1. Then if
Yk = 1, ak blue balls and c − ak amber balls are added to the urn, while if Yk = 0 the
blue ball is returned to the urn together with bk amber balls and c − bk blue balls.
Specificallyak andbk would have afinite range of values (for instance 0 ≤ ak, bk ≤ c)
and ā and b̄ will denote the means of ak and bk respectively.

The Refs. [2–4] collect the known results about this subject. Reference [6] also
contains a review of the main papers in the area.

The aim of this paper is to show that the long term frequencies of each color will
always be stabilized around some value, fixed or random, and therefore it can never
oscillate indefinitely. This conclusion is established in Sect. 3. As an introduction,
Sect. 2 presents some well known results to be used later.

2 The Polya–Eggenberger Model

Themost complete analysis of an urn scheme corresponds to the Polya–Eggenberger
model for which a = b = 0. Explicitly, when a ball of any color is obtained, it returns
to the urn only with c new balls of the same color. In these conditions, for any
(i1, i2, . . . , in) ∈ {0, 1}n , it will be

P{Y1 = i1, . . . ,Yn = in}
= α (α + c) · · · (α + (r − 1)c) β(β + c) · · · (β + (s − 1)c)

t (t + c) · · · (t + (n − 1)c)
(1)
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where r = ∑n
j=1 i j is the number of ones and s = n − r the number of zeros in

(i1, . . . , in). In fact, the successive factors in the denominator give the number of
balls in the urn when the successive extractions are done. If i j is the first index with
value 1, at the time of extraction j , there areα amber balls in the urn; nextα + c amber
balls are in the urn when the second amber ball is obtained; and so on. Similarly,
β, β + c, β + 2c, . . . are the number of blue balls in the urn when the successive
blue balls are obtained. An obvious modification is needed for i1 = · · · = in , since
no α (or β) factors appear if all them are zeros (or ones). Upon dividing by cn the
numerator and denominator, we get

P{Y1 = i1, . . . ,Yn = in}
= Γ (α/c + r)

Γ (α/c)

Γ (β/c + s)

Γ (β/c)

Γ (t/c)

Γ (t/c + n)
= β(α/c + r, β/c + s)

β(α/c, β/c)
. (2)

As these probabilities dependon (i1, i2, . . . , in)only throughn and r (and s = n − r ),
any permutation of (iπ(1), . . . , iπ(n)) has the same probability or, equivalently,

P{Yπ(1) = i1, . . . ,Yπ(n) = in} = P{Y1 = i1, . . . ,Yn = in}

so that {Yk}k≥1 is an exchangeable sequence of random variables. We can then use
the well known result:

Theorem 2.1 (de Finetti) Let {Yk}k≥1 be an exchangeable sequence of random vari-
ables with values in {0, 1}. There exists a random variable U, with distribution θ

on (0, 1), such that, conditionally on U, {Yk}k≥1 are independent random variables
with distribution: P{Yk = 1|U } = U.

Therefore, if i1 + · · · + in = r , it is

P{Y1 = i1, . . . ,Yn = in} =
∫ 1

0
ur (1 − u)n−r θ(du) (3)

and moreover 1
n

∑n
k=1 Yk −→ U a.s.

The last sentence states that the ratio Xn/n of amber balls obtained in the first n
attempts converges, with probability 1, to a random valueU that may have a different
value each time the experience is performed. But long-term oscillations will never
be observed in the average Xn/n nor on the proportion of amber balls in the urn:

pn = α + cXn

t + cn
∼ Xn

n
.

A simple MatLab program allows to draw the graphic of Fig. 1, whose curves
(n, pn) correspond to 10 realizations of 2000 extractions from an urn, with initially
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Fig. 1 Proportion (in 10
realizations of 2000
extractions) of amber balls
when a = b = 0

3 amber balls and 2 blue balls, to which 5 balls of the obtained color are added. This
is the same kind of phenomenon observed when extracting balls from an urn with
fixed composition, except for the key distinctness that the limit is not a preestablished
value, but a different value of U in each replay.

Concerning the distribution θ with which the value of U is chosen, according to
(3) it must be

∫ 1

0
ur (1 − u)n−rθ(du) = β(α/c + r, β/c + s)

β(α/c, β/c)
. (4)

But, when θ is the beta distribution with parameters α/c and β/c, the left member
equals

∫ 1

0
uα/c+r−1(1 − u)β/c+n−r−1 du

β(α/c, β/c)
= β(α/c + r, β/c + n − r)

β(α/c, β/c)

and the equality (3) holds. Obviously, there is no other distribution with the same
property, since (4) determines, for r = n, all themoments of θ . Shortly, if the urn com-
position is chosen with distribution beta (α/c, β/c), by replacing only the extracted
ball, the sequence {Yk}will have the same distribution than in the Polya–Eggenberger
model.

These results are quoted without proof in [2] and were implicit in the original
paper of Eggenberger and Polya. They can also be found in [5, Examples VII, 4(a)
and 9(a)].
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3 A Martingale Analysis

We now return to the general setting of the first section, with c balls added after each
extraction k, of which ak are blue if the extracted ball is amber and bk are amber
if the extracted ball is blue. We will analyze some kind of almost sure asymptotic
behavior of the urn composition, based only on the means ā and b̄.

Let Fn = σ({Yk, ak, bk}1≤k≤n) be the σ -field of events depending on the results
of the first n moves in a stochastic Polya urn scheme. The fraction of amber balls in
the urn after the first n moves:

pn = α + ∑n
k=1 Yk(c − ak) + ∑n

k=1(1 − Yk)bk
t + cn

(5)

isFn-measurable. Further

E[pn+1|Fn, an+1, bn+1] = pn(t + cn) + pn(c − an+1) + (1 − pn)bn+1

t + c(n + 1)

and

E[pn+1|Fn] = pn + (1 − pn)b̄ − pnā

t + c(n + 1)
. (6)

More precisely, pn gives the probability of obtaining an amber ball until the stopping
time τ = inf{n ≥ 1|pn /∈ [0, 1]}. When τ < ∞ and pτ > 1, the experiment should
end due to the lack of blue balls; similarly, for τ < ∞ and pτ < 0, extractions are
stopped due to the lack of amber balls. Obviously if 0 ≤ ak, bk ≤ c, the numbers of
balls of both colors are increasing and τ = ∞.

Proposition 3.1 Assume that ā ≤ 0 < b̄.

(i) As long as pn ∈ [0, 1], {pn} is a submartingale.
(ii) With probability 1, τ < ∞ or pn → p∞ ∈ [0, 1] (that can be a random vari-

able).

Moreover pn
L1−→ p∞ conditional on {τ = ∞}.

(iii) If ā = 0, it is p∞ = 1. For ā < 0, P{τ < ∞} = 1.

Proof (i) E[pn+1|Fn] ≥ pn if and only if pn(ā + b̄) ≤ b̄. And, indeed, pn(ā + b̄) ≤
pnb̄ ≤ b̄.

(ii) Conditional on {τ = ∞}, pn is a bounded submartingale, convergent to a
random variable p∞ almost surely and in L1.

(iii) When ā = 0, p̄n = E[pn|τ = ∞] will increase to p̄∞ = E[p∞|τ = ∞].
Assuming that some trajectory in {τ = ∞} satisfies 1 − p̄∞ > ε for some ε > 0,
it would verify

p̄n+1 > p̄n + b̄ ε

t + c(n + 1)
.
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This gives a contradiction, because the last terms form a divergent series.
For ā < 0, if b̄/(ā + b̄) = δ > 1, assume that P{τ = ∞} > 0 and then p̄n ≤ 1

for all the trajectories in {τ = ∞} and all n. But

p̄n+1 ≥ p̄n + (ā + b̄)
δ − 1

t + c(n + 1)

will give p̄∞ = ∞. A similar argument holds if b̄/(ā + b̄) = δ < 0 and it is even
simpler for ā + b̄ = 0. �

Shortly, for ā < 0 < b̄ some color exhausts in a finite time, while for ā = 0 the
urn is asymptotically depleted of blue balls, if any color is not exhausted in a finite
time. In this last case, pn → 1 and therefore:

Corollary 3.1 When ā = 0 < b̄, in {τ = ∞} it is Xn/n −→ 1 almost surely.

Proof Let us consider Zk = Yk − pk−1, forwhich E[Zk |Fk−1] = 0.Moreover, since
E[Yk |Fk−1] = pk−1, it is

E[Z2
k ] = E[Yk] − 2E[Yk pk−1] + E[p2k−1] = E[pk−1] − E[p2k−1] ≤ 1

4

and therefore
∑∞

k=1 k
−2E[Z2

k ] < ∞. Thus, the strong law of large numbers for mar-
tingales given in [5, VII, Theorem 3] asserts that, almost surely,

1

n

n
∑

k=1

Zk = Xn

n
− 1

n

n
∑

k=1

pk −→ 0 or
Xn

n
−→ 1

since pn → 1 in {τ = ∞}. �

A simpler argument may be based on the redraft of (5):

( t

n
+ c

)

pn = α

n
+ c

Xn

n
− Xn

n

1

Xn

n
∑

k=1

Ykak + 1

n

n
∑

k=1

bk − Xn

n

1

Xn

n
∑

k=1

Ykbk . (7)

The Borel–Cantelli Lemma in [1, Theorem 5.3.2] gives {Xn → ∞} = {∑∞
n=1 pn =

∞}, so that Xn → ∞ almost surely in {τ = ∞}. Thus (1/Xn)
∑n

k=1 Ykak → ā = 0
and (1/Xn)

∑n
k=1 Ykbk → b̄whatever values the sequence {Yk}k≥1 may have. There-

fore it follows c = b̄ + (c − b̄) limn Xn/n and limn Xn/n = 1, under the unavoidable
requirement b̄ 	= c.

Of course, for b̄ ≤ 0 < ā, the possible outcomes are reversed. While {pn} is a
supermartingale, the proportion of blue balls is a submartingale. Then, τ < ∞ for
b̄ < 0 and, if b̄ = 0, either τ < ∞ or pn → 0.

We now turn to the case where ā, b̄ 	= 0 have the same sign or, equivalently,
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p� = b̄

ā + b̄
∈ (0, 1).

Proposition 3.2 Assume that ā, b̄ > 0.

(i) As long as pn ∈ [0, p�], {pn} is a submartingale while, when pn ∈ [p�, 1], {pn}
is a supermartingale.

(ii) With probability 1, τ < ∞ or pn → p�.

Proof (i) If pn ∈ [0, p�] the second term in the right hand side of (6) is nonnegative;
thus {pn} is a submartingale. On the contrary, for pn ∈ [p�, 1], the indicated term is
nonpositive and {pn} is a supermartingale.

(ii) Within the event {τ = ∞} let p̄ = lim supn pn and p = lim infn pn and let
us consider C = {τ = ∞, p < p̄}. The event C ∩ {p > p�} has probability zero,
because those trajectories are, from some n onwards, trajectories of a submartingale
with two different cluster points. For the same reason, the probability of C ∩ { p̄ <

p�} is also zero. Hence, C ∩ {p < p� < p̄} differs from C in a set of probability
zero.

Now, let Cδ = C ∩ {p < p� < p� + δ < p̄}. The trajectories in Cδ must perform
an infinite number of upcrossings of the interval (p�, p� + δ) through positive steps
of size

pn+1 − pn =

⎧

⎪
⎨

⎪
⎩

c − an+1 − cpn
t + c(n + 1)

if Yn+1 = 1

bn+1 − cpn
t + c(n + 1)

if Yn+1 = 0

that is less than any ε > 0 for n large enough. Therefore the probability of Cδ is
bounded by [(p� + δ) ∨ (1 − p�)]δ/ε and, this being true for any ε > 0, it should be
P(Cδ) = 0. A similar reasoning shows that C ′

δ = C ∩ {p < p� − δ < p� < p̄} has
also probability zero and consequently {τ < ∞} ∪ {p = p� = p̄} has probability
one. �

Repeating the proof of Corollary3.1, the convergence Xn/n → p� follows from
pn → p�.

In [4, Corollary 3.2] the assertion pn
P→ p� is attributed to Bagchi–Pal in 1985,

when ak = a and bk = b are non random values, under the additional condition
a + b ≥ c/2.Later [4, Theorem6.2] reproduces a similar result fromSmythe in 1996,
which again only asserts the convergence in probability for nonrandom parameters.
For the Friedman model in 1949, in which a = b > 0 is a fixed non random integer,
the almost sure convergence pn → 1/2 was established by Freedman in 1965.A
different proof, due to Ornstein, can be found in [1, Example 5.4.5].

For ā, b̄ < 0 a result similar to Proposition 3.2 holds:

Proposition 3.3 Assume that ā, b̄ < 0.

(i) As long as pn ∈ [0, p�], {pn} is a supermartingale while, when pn ∈ [p�, 1],
{pn} is a submartingale.
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(ii) With probability 1, τ < ∞ or pn → p�.

Assertion (i) is obvious and the reasoning of (ii) in Proposition3.2 needs no change
to hold in this case. However the path of {pn} is now much more unstable since, as
opposed to the previous case, there is here a trend upwards above p� and downwards
below p�. Hence the probability of {τ < ∞} is greater for−ā,−b̄ than for ā, b̄ > 0.

Finally, we may consider the state of affairs for ā = b̄ = 0. Under such circum-
stances (6) shows that {pn} is a bounded martingale while pn ∈ [0, 1]. Therefore
pn → p∞ in {τ = ∞}. But so, nothing can be said about p∞. Fortunately, one can
show

Lemma 3.1 Assume that ā = b̄ = 0.
As long as pn ∈ [0, 1], (1) holds. Consequently, {Yk}k≥1 is an exchangeable

sequence of random variables conditional on {τ = ∞}.
Proof If pn ∈ [0, 1], it is

P{Yn+1 = 1|Fn} = pn = α + ∑n
k=1 Yk(c − ak) + ∑n

k=1(1 − Yk)bk
t + cn

thus, since ā = b̄ = 0, we have

P{Yn+1 = 1|Y1, . . . ,Yn} = α + c
∑n

k=1 Yk
t + cn

= α + cr

t + cn

in {Xn = r}, while in {Xn = n − s},

P{Yn+1 = 0|Y1, . . . ,Yn} = β + c
∑n

k=1(1 − Yk)

t + cn
= β + sc

t + cn
.

Hence, (1) holds and {Yk} is exchangeable when {τ = ∞}. �

According to the previous result and using again de Finetti’s theorem:

Proposition 3.4 Assume that ā = b̄ = 0.
Conditional on {τ = ∞}, the limit p∞ = limn pn exists almost surely and has the

same beta(α/c, β/c) distribution than in the Polya–Eggenberger model.

4 Final Comments

Our main conclusion is that a Polya urn scheme [c − a, a; b, c − b], even with ran-
dom values of a and b, can never have long term oscillations. It either fails for lack of
some kind of balls or, on the contrary, the proportion of amber balls converges to the
fixed value p� = b̄/(ā + b̄) or, if ā = b̄ = 0, to a random value p∞ with distribution
beta (α/c, β/c). The scarce role of c is quite unexpected.
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Table 1 Observed values of τ in 100 simulations of the specified scheme

τ >5000 4 5 6 7 8 9 10 12 14 15 16 19 20 21 22 23

% 42 4 5 1 4 4 3 1 3 2 3 1 2 2 1 1 3

τ 25 26 27 29 36 37 44 57 85 87 90 99 101 186 492 826

% 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

It is usual in the literature about Polya’s urn schemes to consider only tenable
models thatwithstand the test of time…andwe can perpetuate the drawing according
to the given scheme on every possible stochastic path [4, Sect. 3.1]. In our terms that
means P{τ = ∞} = 1. In the indicated reference, conditions for tenability about
non random values of a′, a, b, b′, α, β are exposed. But such approach does not
fit in the case of random parameters (unless the analysis is restricted to the case
0 ≤ ak, bk ≤ c).

It would be desirable to complete the results here exposed with a research about
the value of P{τ = ∞} as a function of the parametersα, β and c and the distributions
of ak, bk . Although this issue seems unsuccessful from a theoretical point of vue,
it may be analyzed by means of simulations for any fixed conditions. For instance,
for the zero mean distributions ak = [−5,−2, 2, 5], bk = [−4, 0, 4], each one with
equal probabilities, α = β = 10 and c = 3, every replay of 5000 steps of the scheme
gives place to a curve as in Fig. 1, although now it can overflow from [0, 1] at a time
τ . In 100 replays of this scheme the observed values of τ were those gathered in
Table1.

This is a strong clue that P{τ = ∞}  0.42. Of course this probability is very
sensitive to changes in α, β and c.
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A Simple Step-Stress Model for Coherent
Systems and Associated Inference Based
on System Signatures

Xiaojun Zhu, Debanjan Mitra and Narayanaswamy Balakrishnan

Abstract Coherent systems are important structures in reliability. In this paper,
we discuss the maximum likelihood estimates (MLEs) of model parameters of
an n-component system with known signature having an exponential component
lifetime distribution based on a simple step-stress model. We also develop
confidence intervals (CIs) for the model parameters. A detailed Monte Carlo
simulation study is carried out to examine the performance of the point and interval
estimates. Finally, a data analysis is performed for illustrating all the inferential
methods developed here.

1 Introduction

1.1 Step-Stress Experiment

The products that are tested in industrial experiments are often extremely reliable
these days, and so possess large mean times to failure under normal operating condi-
tions. Hence, very few failures (or no failures at all) are observed under conventional
life-testing experiments with Type-I or Type-II censoring. This makes it very difficult
to obtain adequate information about the lifetime distribution and its parameters.

To overcome this problem, reliability engineers traditionally resort to acceler-
ated testing wherein the test units are subjected to higher stress levels than used
level. The accelerated stress test may be performed using constant stress or linearly
increasing stress levels. Such an accelerated testing helps to reduce the time to failure
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and makes the data collection easier and also the test to be completed rapidly. The
data collected from such an experiment may then be extrapolated for estimating the
underlying distribution of failure times under normal used conditions. This process,
therefore, requires a model relating the level of stress to the failure distribution, such
as increasing the effects of temperature, voltage, load, vibration, etc., on the life-
times of units under test. Interested readers may refer to Nelson [14, 15] for detailed
overviews on this model.

The step-stress experiment is a special case of accelerated testingwhich allows for
different test conditions at various intermediate stages of the life-testing experiment.
Suppose n identical units are placed on a life-test at an initial stress level of x0. At pre-
fixed times τ1, τ2, . . . , τm, the stress levels are changed to x1, x2, . . . , xm, respectively.
A simple step-stressmodel has only two stress levels, namely, x0 and x1. Considerable
research has been carried out on several inferential aspects associatedwith thismodel.
For example, Miller and Nelson [12] and Bai et al. [2] discussed the determination
of optimal time τ at which to change the stress level from x0 to x1.

1.2 Coherent Systems and Signatures

A reliability system usually has many components, with the failure of the system
depending on the failure of one or more of its components. A reliability system is
said to be a coherent system if

• it is monotone in its components (i.e., replacing a failed component by a working
one cannot make the system worse);

• every component is relevant (i.e., every component influences either the function-
ing or the failure of the system).

Suppose a coherent system has n components whose lifetimesX1, . . . ,Xn are i.i.d.
continuous random variables with distribution function F(·). Let the order statistics
arising from these n variables be denoted by X1:n < X2:n < . . . < Xn:n. Then, the
system lifetime T will coincide with an order statisticXi:n, for some i ∈ {1, 2, . . . , n}.
This leads to the concept of system signature.

Let Pi, i = 1, 2, . . . , n, be such that Pi = P(T = Xi:n). Then, the system signa-
ture is simply the vector P, where P = (P1,P2, . . . ,Pn). Clearly, Pi ≥ 0 for all i,
and they do not depend on the component lifetime distribution, and are such that
n∑

i=1
Pi = 1. The system signature P is a pure distribution-free measure of a system’s

design. The signature vector helps us to compare the performance characteristics of
different systems in a complete nonparametric way without reference to the lifetime
distribution of the components. Interested readers may refer to Balakrishnan et al.
[5].

Xiong [18] and Balakrishnan et al. [4] have discussed inference for a simple
step-stress model with Type-II censored data based on the exponential lifetime dis-
tribution. On the other hand, Balakrishnan et al. [6] studied linear inference for a
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coherent system with known signature based on Type-II censored data. Motivated
by their research, we consider here a simple step-stress life-test on coherent systems
and then develop point and interval estimation methods for the model parameters
based on Type-II censored system lifetimes under exponential component lifetime
distribution and known signature.

1.3 Motivation

Let us consider 30 individual component-failures obtained from a simple step-stress
life-test with the change of stress done at time τ . Instead, if some systems had
been formed with these components (say, 10 series or parallel or series-parallel 3-
component systems) and that only such systems themselves can be tested under the
step-stress life-test. Then, we will be interested in estimating the model parameters
from such a system lifetime data obtained from a step-stress experiment and then use
them in turn to estimate some reliability characteristics of systems and components.
We may also be interested in evaluating the relative efficiency of basing the test on
systems instead of on components directly. Here, we address these issues when the
lifetime distribution of components is exponential and the signature of the system
under consideration is known.

The rest of this paper is organized as follows. In Sect. 2, we briefly describe the
basic model for a step-stress test and an n-component system. In Sect. 3, we discuss
the MLEs and explain the process of setting initial values required for the iterative
process by the method of Best Linear Unbiased Estimators (BLUEs). In Sect. 4, we
develop interval estimationmethods based on asymptotic properties ofMLEs as well
as by the use of bootstrap approach. A Monte Carlo simulation study is then carried
out in Sect. 5 to evaluate the performance of the proposed methods of inference. The
relative efficiency of basing the step-stress test on systems instead of on components
directly is also evaluated here for different systems and different levels of censoring.
An example is analyzed in Sect. 6 to illustrate all the inferential methods developed
here. Finally, some concluding comments are made in Sect. 7.

2 Simple Step-Stress Model for Coherent Systems

Consider a coherent system with n components, and let X1, . . . ,Xn denote the life-
times of its components. We assume that X1, . . . ,Xn are independent and identically
distributed (i.i.d.) with probability density function (PDF) fX(·) and cumulative dis-
tribution function (CDF) FX(·). Further, let us suppose that the component lifetimes
are exponentially distributed with means θ1 and θ2 at stress levels x0 and x1, respec-
tively. At a pre-fixed time τ , the stress level is increased from x0 to x1. Then, the
cumulative exposure model relates the life distribution of the units at one stress level
to the life distribution of the units at the next stress level. The model is based on
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the assumption that the residual life of the experimental units depends only on the
cumulative exposure the units have experienced, with no memory of how this expo-
sure was accumulated. Thus, under the cumulative exposure model, the CDF of each
component is given by (see Xiong [18] and Balakrishnan et al. [4]) as

FX(t) =
{
F1(t), 0 < t < τ,

F2

(
θ2
θ1

τ + t − τ
)

, τ ≤ t < ∞,
(1)

whereF1(t) = 1 − e− t
θ1 andF2(t) = 1 − e− t

θ2 , respectively. The corresponding PDF
is given by

fX(t) =
{

1
θ1
e− t

θ1 , 0 < t < τ,

1
θ2
e− t−τ

θ2
− τ

θ1 , τ ≤ t < ∞.
(2)

It is well known that the distribution of the system lifetime, say T , can be repre-
sented as a mixture of distributions of order statistics arising from the lifetimes of
components in the system. Suppose the reliability system that is being tested has a
known structure for which the system signature is P. Then, the PDF and the survival
function (SF) of the system lifetime T are given by Samaniego [16, 17] and Kochar
et al. [10] as

fT (t) =
n∑

i=1

Pifi:n(t), (3)

ST (t) =
n∑

i=1

PiSi:n(t), (4)

where fi:n and Si:n are the PDF and SF of the ith order statistic Xi:n given by (see
Balakrishnan and Cohen [3] and Arnold et al. [1])

fi:n(t) =
(
n

i

)

ifX(t) [FX(t)]i−1 [SX(t)]n−i , (5)

Si:n(t) =
i−1∑

j=0

(
n

j

)

[FX(t)]j [SX(t)]n−j , (6)

where fX(·) and FX(·) = 1 − SX(·) are the PDF and CDF of the component lifetime,
respectively. This representation of the distribution of T , through the distributions
of order statistics arising from the lifetimes of components and system signature, is
referred to as Samaniego’s representation.

Another representation of the distribution of T by Navarro et al. [13] is
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fT (t) =
n∑

i=1

aif1:i(t) =
n∑

i=1

aiifX(t)[SX(t)]i−1, (7)

ST (t) =
n∑

i=1

ai[S1:i(t)] =
n∑

i=1

ai[SX(t)]i, (8)

where f1:i(·) and S1:i(·) are the PDF and SF of the series system lifetimes

X1:i = min (X1, . . . ,Xi) , i = 1, 2, . . . , n.

Here, a = (a1, . . . , an) is called the minimal signature, with ai’s not all being non-
negative and not depending on the component lifetime distribution are such that
n∑

i=1
ai = 1. Note that this representation can be obtained from (3) and (4) by using

binomial expansion on the term [FX(·)]l.
Let m such n-component coherent systems be placed on a simple step-stress

experiment with two stress levels. Suppose a Type-II right censored system life data
are observed from this step-stress experiment of the form

T1:m < T2:m < · · · < Tr:m.

If r = m, then a complete sample would be observed from the step-stress test. As
mentioned before, let τ be the pre-fixed time at which the stress level changes from
x0 to x1, and further let n1 be the number of failures that occur before τ at the first
stress level and n2 be the number of failures that occur after τ at the second stress
level, with n1 + n2 = r. Note that if n1 = r, the test gets terminated before reaching
the second stress level; otherwise, the experiment continues under the first stress
level till time τ , then the stress level is increased to the second stress level, and the
experiment continues till r failures are observed.

Proposition 2.1 Suppose the component lifetime distribution belongs to the scale
family. Then, if a simple step-stress life-test is conducted on a coherent system with
a lifetime T, it is equivalent to conducting a simple step-stress test on each of its
components with lifetimes X ′

i s, under the cumulative exposure model.

Proof From (1), we readily find

FT (t) =

⎧
⎪⎨

⎪⎩

FT ,1(t), 0 < t < τ,

FT ,2

(
θ2

θ1
τ + t − τ

)

, τ ≤ t < ∞,
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=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

PiFi:n(t), 0 < t < τ,

n∑

i=1

PiFi:n
(

θ2

θ1
τ + t − τ

)

, τ ≤ t < ∞,

=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n∑

i=1

Pi

n∑

j=1

(
n

j

)[
FX (t)

]j[
1 − FX (t)

]n−j
, 0 < t < τ,

n∑

i=1

Pi

n∑

j=1

(
n

j

)[
FX

( θ2

θ1
τ + t − τ

)]j[
1 − FX

( θ2

θ1
τ + t − τ

)]n−j
, τ ≤ t < ∞.

From here, the required result follows. �

Proposition 2.2 Under a simple step-stress life-testing experiment on a coherent
system with lifetime T and exponential component lifetime distribution, the SF of T
is a non-decreasing function of θ2.

Proof Evidently,

∂ST (t; θ1, θ2)

∂θ2
=
{
0, 0 < t < τ,
t−τ
θ2

fT (t, θ1, θ2) > 0, τ ≤ t < ∞,

which shows the required result. �

Now, based on the observed system failure times t1:m < t2:m < . . . < tr:m under a
simple step-stress life-test, we have the likelihood function as (see Balakrishnan and
Cohen [3])

L(θ1, θ2) = C
r∏

k=1

fT (tk:m)[ST (tr:m)]m−r, (9)

where C = m!
r!(m−r)! .

It is clear from (9) that the likelihood function is different for the following three
cases:
Case I. n1 = r,
Case II. n1 = 0,
Case III. 1 ≤ n1 ≤ r − 1.

Now, let us discuss these three cases separately.
Case I: n1 = r
In this case, all the r failures are observed at the first stress level. The likelihood
function in (9) in this case becomes

L(θ1, θ2)
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∝
r∏

k=1

{
n∑

i=1

Pi

(
n

i

)

i
1

θ1
e− tk:m

θ1

[
1 − e− tk:m

θ1

]i−1 [
e− tk:m

θ1

]n−i
}

×
⎧
⎨

⎩

n∑

i=1

Pi

i−1∑

j=0

(
n

j

)[
1 − e− tr:m

θ1

]j [
e− tr:m

θ1

]n−j

⎫
⎬

⎭

m−r

= 1

θ r
1

r∏

k=1

{
n∑

i=1

Pi

(
n

i

)

i
i−1∑

l=0

(−1)l
(
i − 1

l

)

e− tk:m
θ1

(n−i+l+1)

}

×
⎧
⎨

⎩

n∑

i=1

Pi

i−1∑

j=0

(
n

j

) j∑

l=0

(−1)l
(
j

l

)

e− tr:m
θ1

(n−j+l)

⎫
⎬

⎭

m−r

. (10)

Case II: n1 = 0
In this case, all the r failures are observed at the second stress level, and the corre-
sponding likelihood function is given by

L(θ1, θ2)

∝
r∏

k=1

⎧
⎪⎨

⎪⎩

n∑

i=1

Pi

(
n

i

)
i

θ2
e
−

θ2
θ1

τ+tk:m−τ

θ2

⎡

⎣1 − e
−

θ2
θ1

τ+tk:m−τ

θ2

⎤

⎦

i−1 ⎡

⎣e
−

θ2
θ1

τ+tk:m−τ

θ2

⎤

⎦

n−i
⎫
⎪⎬

⎪⎭

×
⎧
⎨

⎩

n∑

i=1

Pi

i−1∑

j=0

(
n

j

)[

1 − e−
θ2
θ1

τ+tr:m−τ

θ2

]j [

e−
θ2
θ1

τ+tr:m−τ

θ2

]n−j
⎫
⎬

⎭

m−r

= 1

θ r
2

r∏

k=1

{
n∑

i=1

Pi

(
n

i

)

i
i−1∑

l=0

(−1)l
(
i − 1

l

)

e
− 1

θ2

(
θ2
θ1

τ+tk:m−τ
)
(n−i+l+1)

}

×
⎧
⎨

⎩

n∑

i=1

Pi

i−1∑

j=0

(
n

j

) j∑

l=0

(−1)l
(
j

l

)

e
− 1

θ2

(
θ2
θ1

τ+tr:m−τ
)
(n−j+l)

⎫
⎬

⎭

m−r

. (11)

Case III: 1 ≤ n1 ≤ r − 1
In this case, there are n1 failures in the first stress level and n2 failures in the second
stress level and the corresponding likelihood function is given by

L(θ1, θ2)
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∝
n1∏

k=1

{
n∑

i=1

Pi

(
n

i

)

i
1

θ1
e− tk:m

θ1

[
1 − e− tk:m

θ1

]i−1 [
e− tk:m

θ1

]n−i
}

×
r∏

k=n1+1

⎧
⎪⎨

⎪⎩

n∑

i=1

Pi

(
n

i

)
i

θ2
e
−

θ2
θ1

τ+tk:m−τ

θ2

⎡

⎣1 − e
−

θ2
θ1

τ+tk:m−τ

θ2

⎤

⎦

i−1 ⎡

⎣e
−

θ2
θ1

τ+tk:m−τ

θ2

⎤

⎦

n−i
⎫
⎪⎬

⎪⎭

×
⎧
⎨

⎩

n∑

i=1

Pi

i−1∑

j=0

(
n

j

)[

1 − e−
θ2
θ1

τ+tr:m−τ

θ2

]j [

e−
θ2
θ1

τ+tr:m−τ

θ2

]n−j
⎫
⎬

⎭

m−r

= 1

θ
n1
1

n1∏

k=1

{
n∑

i=1

Pi

(
n

i

)

i
i−1∑

l=0

(−1)l
(
i − 1

l

)

e− tk:m
θ1

(n−i+l+1)

}

× 1

θ
n2
2

r∏

k=n1+1

{
n∑

i=1

Pi

(
n

i

)

i
i−1∑

l=0

(−1)l
(
i − 1

l

)

e
− 1

θ2

(
θ2
θ1

τ+tk:m−τ
)
(n−i+l+1)

}

×
⎧
⎨

⎩

n∑

i=1

Pi

i−1∑

j=0

(
n

j

) j∑

l=0

(−1)l
(
j

l

)

e
− 1

θ2

(
θ2
θ1

τ+tr:m−τ
)
(n−i+l)

⎫
⎬

⎭

m−r

. (12)

Alternatively, the likelihood function can be also expressed in a much simpler
form using the minimal signature representations in (7) and (8) as follows:

L(θ1, θ2)

∝

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
1
θ r1

r∏

k=1

[
n∑

i=1
aiie

− itk:m
θ1

]}[
n∑

i=1
aie

− itr:m
θ1

]m−r

, n1 = r,
{

1
θ r2

r∏

k=1

[
n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)]} [

n∑

i=1
aie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
)]m−r

, n1 = 0,

{
1

θ
n1
1

n1∏

k=1

[
n∑

i=1
aiie

− itk:m
θ1

]}{

1
θ
n2
2

r∏

k=n1+1

[
n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)]}

×
[

n∑

i=1
aie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
)]m−r

, 1 ≤ n1 ≤ r − 1.

(13)

In the following section, we will discuss the maximum likelihood estimation of
the parameters θ1 and θ2, and we shall use the simpler form of the likelihood function
in (13) for this purpose.
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3 Maximum Likelihood Estimation

We readily see that in Case I, the MLE of θ2 does not exist. For this reason, we
will work under the condition 0 ≤ n1 ≤ r − 1 in what follows. The log-likelihood
function, without the constant, is obtained from (13) as

ln L(θ1, θ2) = −n1 ln θ1 +
n1∑

k=1

ln

(
n∑

i=1

aiie
− itk:m

θ1

)

−n2 ln θ2 +
r∑

k=n1+1

ln

(
n∑

i=1

aiie
− i

θ2

(
θ2
θ1

τ+tk:m−τ
)
)

+(m − r) ln

(
n∑

i=1

aie
− i

θ2

(
θ2
θ1

τ+tr:m−τ
)
)

. (14)

Note that this equation includes Case II, i.e., n1 = 0, as well. Upon taking derivatives
with respect to θ1 and θ2, we obtain from (14) the following likelihood equations:

∂ ln L
∂θ1

= − n1
θ1

+ 1
θ2
1

n1∑

k=1

tk:m
n∑

i=1
aii2e

− itk:m
θ1

n∑

i=1
aiie

− itk:m
θ1

+ τ

θ2
1

r∑

k=n1+1

n∑

i=1
aii2e

− i
θ2

(
θ2
θ1

τ+tk:m−τ

)

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tk:m−τ

) + (m−r)τ
θ2
1

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tr:m−τ

)

n∑

i=1
aie

− i
θ2

(
θ2
θ1

τ+tr:m−τ

) , (15)

∂ ln L

∂θ2
= −n2

θ2
+ 1

θ2
2

r∑

k=n1+1

(tk:m − τ)
n∑

i=1
aii2e

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)

+ (m − r)(tr:m − τ)

θ2
2

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
)

n∑

i=1
aie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
) . (16)

Equating the non-linear likelihood mathematical expressions in Eqs. (15) and (16)
to zero, we get the equations
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h1(θ1, θ2) = n1θ1−
n1∑

k=1

tk:m
n∑

i=1
aii2e

− itk:m
θ1

n∑

i=1
aiie

− itk:m
θ1

− τ

r∑

k=n1+1

n∑

i=1
aii2e

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)

−(m − r)τ

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
)

n∑

i=1
aie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
) = 0, (17)

h2(θ1, θ2) = n2θ2 −
r∑

k=n1+1

(tk:m − τ)
n∑

i=1
aii2e

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tk:m−τ
)

−(m − r)(tr:m − τ)

n∑

i=1
aiie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
)

n∑

i=1
aie

− i
θ2

(
θ2
θ1

τ+tr:m−τ
) = 0. (18)

As these two equations do not have closed-form solutions, we may use the Newton-
Raphson algorithm to find the solution as

(
θ

(i+1)
1

θ
(i+1)
2

)

=
(

θ
(i)
1

θ
(i)
2

)

−
(

∂h1(θ1,θ2)
∂θ1

, ∂h1(θ1,θ2)
∂θ2

∂h2(θ1,θ2)
∂θ1

, ∂h2(θ1,θ2)
∂θ2

)−1

(θ1,θ2)=(θ
(i)
1 ,θ

(i)
2 )

(
h1(θ

(i)
1 , θ

(i)
2 )

h2(θ
(i)
1 , θ

(i)
2 )

)

. (19)

Alternatively, due to the form of Eqs. (17) and (18), we may find the MLEs as
solutions of fixed-point equations.

3.1 Providing Initial Value

In this subsection, we discuss the issue of providing an initial value by using the
BLUEs under the condition 1 ≤ n1 ≤ r − 1, i.e., Case III. Let

T∗
j:m =

{
Tj:m
θ1

if Tj:m < τ,
Tj:m−τ

θ2
+ τ

θ1
if Tj:m ≥ τ.

(20)

Let us further denote T∗
1 = (T∗

1:m, · · · ,T∗
n1:m)′ and T∗

2 = (T∗
n1+1:m, · · · ,T∗

r:m)′. We
then treat T∗

1 as an ordinary Type-II censored sample by neglecting the fact that
T∗ < τ/θ1, anddo similarly forT∗

2. Letμ1 = (μ1:m, . . . , μn1:m)′,μ2 = (μn1+1:m, . . . ,

μr:m)′, Σ1 = ((σi,j:m)) for i, j = 1, . . . , n1, Σ2 = ((σi,j:m)) for i, j = n1 + 1, . . . , r,
where μj:m = E(T∗

j:m) and σi,j:m = cov(T∗
i:m,T∗

j:m). Then, according to Balakrishnan
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et al. [6], we have

μ1:m = m
∑

j1,...,jn≥0
j1+···+jn=m−1

(
m − 1

j1, . . . , jn

)

aj11 . . . ajnn

n∑

i=1

aii

(j1 + 2j2 + · · · + njn + i)2
, (21)

μ
(2)
1:m = m

∑

j1,...,jn≥0
j1+···+jn=m−1

(
m − 1

j1, . . . , jn

)

aj11 . . . ajnn

n∑

i=1

2aii

(j1 + 2j2 + · · · + njn + i)3
, (22)

μs,s+1:m = m!
(s − 1)!(m − s − 1)!

s−1∑

l=0

(−1)l
(
s − 1

l

) ∑

k1,...,kn≥0
k1+···+kn=l

(
l

k1, . . . , kn

)

, (23)

where μ
(2)
j:m = E

[
(T∗

j:m)2
]
and μi,j:m = E(T∗

i:mT
∗
j:m). Upon using these results, along

with the well-known triangle and rectangle rules for moments of order statistics (see
Arnold et al. [1])

sμ(l)
s+1:m + (m − s)μ(l)

s:m = mμ
(l)
s:m−1, s = 1, 2, . . . ,m − 1, l = 1, 2, (24)

(i − 1)μi,j:m + (j − i)μi−1,j:m + (m − j + 1)μi−1,j−1:m = mμi−1,j−1:m−1,

2 ≤ i < j ≤ m, (25)

we can find all the elements of μ1, μ2, Σ1 and Σ2. At the first stress level, we then
have the BLUE of θ1 as

θ̃1 =
(

μ′
1Σ

−1
1

μ′
1Σ

−1
1 μ1

)

T1, (26)

where T1 = (T1:m, . . . ,Tn1:m). At the second stress level, we replace θ1 by θ̃1, and let
T̃∗
2 = (Tn1+1:m − τ, . . . ,Tr:m − τ), and μ∗

2 = μ2 − (τ/θ̃1, . . . τ/θ̃1)
′. Then, we have

the BLUE of θ2 as

θ̃2 =
(

μ∗
2
′Σ2

−1

μ∗
2
′Σ2

−1μ∗
2

)

T̃∗
2. (27)

The values of θ̃1 and θ̃2 so obtained may be used as initial values in the Newton-
Raphson iterative process in Eq. (19).

To provide the initial values in the case when n1= 0, quite naturally, one can take
θ̃1 = τ , and then use the above procedure to obtain the BLUE of θ2, θ̃2.
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4 Interval Estimation of Parameters

In this section, we describe the construction of CIs for the model parameters by para-
metric bootstrap approach as well as by an asymptotic approach using the observed
Fisher information matrix.

4.1 Bootstrap Approach

From the given system lifetime data from the simple step-stress experiment, we
compute the MLE (θ̂1, θ̂2). Then, with (θ̂1, θ̂2) as the values of (θ1, θ2), we generate
an n-component system lifetime data of size m and find the corresponding MLEs
(θ̂1(1), θ̂2(1)), . . . , (θ̂1(B), θ̂2(B)) from B bootstrap samples.

Then, from this set of B estimates, we can estimate the means and variances of
the estimates θ̂1 and θ̂2 as

̂E(θ̂j) = θ̂j and ̂Var(θ̂j) = 1

B − 1

B∑

i=1

(θ̂j(i) − θ̂j)
2, for j = 1, 2, (28)

where θ̂j = 1
B

∑B
i=1 θ̂j(i). We can also obtain the 100(1 − α)% bootstrap CIs for the

parameters as

(
θ̂j( αB

2 ), θ̂j((1− α
2 )B)

)
, for j = 1, 2, (29)

where θ̂j(l) denotes the lth smallest value of θ̂j obtained from the B bootstrap simula-
tions; see Lehmann [11] for more details.

4.2 Asymptotic Approach Using Observed Fisher
Information Matrix

Under usual regularity conditions, it can be shown that the MLEs are consistent and
are asymptotically normally distributed. With (θ1, θ2) as the parameter vector and
(θ̂1, θ̂2) as the MLEs, as m → ∞, we have

√
m

(
θ̂1 − θ1

θ̂2 − θ2

)
D−→ N2

(
0, I−1

2

)
, (30)
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where
D−→ denotes convergence in distribution and N2

(
0, I−1

2

)
denotes the bivariate

normal distribution with mean vector 0 and covariance matrix I−1
2 , with I2 being

estimated by the observed Fisher information matrix

Iobs(θ1, θ2) =
(− ∂2 ln L

∂θ2
1

− ∂2 ln L
∂θ1∂θ2

− ∂2 ln L
∂θ1∂θ2

− ∂2 ln L
∂θ2

2

)

θ1=θ̂1,θ2=θ̂2

. (31)

5 Simulation Study

We carried out a detailed Monte Carlo simulation study for several 3 component
systems, with m = 40 and 100 with 20% censoring (i.e., r = 0.8m), and by taking
θ1 = 1, without loss of any generality. The values of θ2 were chosen as 0.50 and
0.25, and τ chosen so that F(τ ) = 0.15 and 0.30, respectively. We then compare
the inference obtained from system lifetime data with that obtained from compo-
nent lifetime data for the same value of τ . For example, when F(τ ) = 0.15 for a
parallel system, for the same τ , we found F(τ ) = 0.53 for component lifetimes. We
computed the means and mean squared errors (MSEs) of θ̂1 and θ̂2 based on both
system and component lifetime data obtained from the step-stress experiment. We
also computed the coverage probabilities of 95% equi-tailed CIs obtained from the
asymptotic approach using the observed Fisher information matrix as well as from
the bootstrap approach. To evaluate the relative efficiency of basing the step-stress
life-test on systems instead of on components directly, we also calculated the trace
and determinant of the observed Fisher information matrix, as well as the total time
on test transform (TTT) under both schemes of data observation. All these results
are presented in Table1. We observe that for system data, in all cases considered,
θ̂1 is positively biased, while θ̂2 is negatively biased for most cases. Based on the
trace and determinant of the observed Fisher information matrix, we also find that
the parallel system always has the highest efficiency while the series system always
has the lowest efficiency. So, as one would then expect, the parallel system always
has the smallest MSEs for both θ̂1 and θ̂2, and a series system has the largest MSEs.
Furthermore, we find that the standard errors (SEs) obtained by bootstrap are always
greater than those obtained by the use of the observed Fisher information matrix,
which may explain why the CI obtained by bootstrap has a larger coverage prob-
ability. It is also of interest to note that the test of parallel systems result in more
information than the test of components even though the latter has a larger TTT.
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6 Illustrative Example

For illustrative purpose, let us consider the Type-II censored system lifetime data in
hours (with m = 40 and r = 30) obtained from a simple step-stress life-test on 3-
component coherent systemwith signature vector P = (0, 2/3, 1/3)with the change
of stress done at time τ = 7 hours, presented in Table2.

In this case, we have n1= 9 and n2 = r − n1= 30−9 = 21. From Eqs. (26) and (27),
we determine the initial estimates of θ1 and θ2 in this case to be θ̃1 = 14.9468 and θ̃2 =
5.2392. With these initial values, we solved iteratively Eq. (19) and determined the
MLEs as well as their SEs, and the 95% CIs based on the asymptotic approach using
observed Fisher information matrix and the bootstrap approach. These results are
presented in Table3.We notice here again that the bootstrap SEs are larger than those
obtained from the observed Fisher information matrix and also the bootstrap CIs are
wider than those determined from the asymptotic approach. This is in conformance
with the findings from the simulation results.

Furthermore, upon using the MLEs of θ1 and θ2 presented in Table3, we also
estimated the 50th (namely, the median), 90 and 95th percentiles of system lifetimes
at the first stress level, the second stress level and in the considered step-stress test.
Note that these results can be readily obtained by the results corresponding to the
choices of τ = ∞, τ = 0 and τ = 7, respectively.

These estimates, along with their SEs and 95% CIs based on the parametric
bootstrap approach, are all presented in Table4. From these results, upon comparing

Table 2 Censored failure-time data of 3-component systems with signature vector P =
(0, 2/3, 1/3)

Stress
level

Failure times

First 2.0262 2.6885 2.9351 3.2039 4.0190 4.8049 5.6151 6.6172

6.8337

Second 7.0446 7.3139 7.6264 7.6341 7.7320 7.9985 8.1117 8.1963

8.2014 8.4150 8.4330 9.2122 10.1894 10.7557 10.9652 11.1651

11.2694 11.2728 11.5362 11.5508 12.4190

Table 3 MLEs of the parameters based on censored failure-time data in Table2, their SEs and 95%
CIs based on the asymptotic approach using observed Fisher information matrix and the bootstrap
approach

Observed fisher information matrix Bootstrap

Parameter MLEs SE Asymptotic CI SE Bootstrap CI

θ1 14.9910 3.0845 (8.9455, 21.0367) 3.9656 (10.4988,
25.5718)

θ2 5.1463 1.0718 (3.0455, 7.2472) 1.0837 (3.2666,
7.4942)
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Table 4 Estimates of the percentiles of system lifetimes at the first stress level, second stress level
and in the considered step-stress test, using the MLEs presented in Table3, their SEs and 95% CIs
based on the parametric bootstrap approach

τ Parameter MLE SE Bootstrap CI

+∞ q0.50 13.6229 3.6037 (9.5406, 23.2380)

q0.90 35.7241 9.4501 (25.0188, 60.9381)

q0.95 45.5769 12.0565 (31.9190, 77.7450)

0 q0.50 4.6767 0.9848 (2.9685, 6.8103)

q0.90 12.2638 2.5825 (7.7845, 17.8589)

q0.95 15.6462 3.2947 (9.9315, 22.7845)

7 q0.50 9.2736 0.6560 (8.0857, 10.6684)

q0.90 16.8607 2.0675 (13.1921, 21.3499)

q0.95 20.2432 2.7629 (15.3467, 26.2386)

the respective CIs, we can readily observe that the system lifetime at the first stress
level is significantly better than at the second stress level (at all three percentile
levels). Similarly, the lifetime of the system at the first stress level is significantly
better than the system in the considered step-stress test at 90 and 95th percentiles,
but not at the median level.

7 Concluding Remarks

In this paper, we have discussed inferential issues based on a Type-II censored system
lifetime data on a coherent system with known signature having an exponential
component lifetime distribution under a simple step-stress life-test experiment. It
will naturally be of interest to extend the results developed here for other step-stress
experiments such as those under time constraint (see Balakrishnan et al. [7]) and
those with random stress change times (see Xiong and Milliken [19]). Moreover,
the problem of determining an optimal τ in this setting will also be of great interest
(see Gouno et al. [8]). Finally, it will be of practical interest to generalize the present
work to the case when the component lifetime distribution is Weibull along the lines
of Kateri and Balakrishnan [9]. Work on these problems is currently under progress
and we hope to report these findings in a future paper.
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Asymptotic Developments
for the φ-Inequality Indices

María Carmen Alonso and Ignacio Martínez

Abstract This paper presents asymptotically optimal estimates of a family of
divergence-inspired inequality indices in simple and stratified samplings.

1 Introduction

Inequality of a positive random variable refers to the extent to which the variable
is distributed in an uneven manner among a population. In fact, the most popular
inequality measures are scale invariant, and they can be viewed as a kind of indices
of the relative variability/dispersion of the variable.

Inequality is especially applied in Economics, and it often concerns the difference
found in various measures of income or wealth among individuals in a group, among
groups in a population, or amongbig populations, like countries. Economic inequality
is crucial for purposes of equity, equality of opportunity, and so on.

In addition to thewell-knownTheil index [13], several indices havebeen suggested
in the literature aiming to well-quantifying such a feature of the distribution of
a variable in an easy-to-use and well-argued way. In this respect, the additively
decomposable indices (see, for instance, Bourguignon [4], Cowell [5] and Shorrocks
[11]) have been shown to be interesting alternatives to Theil’s index.

At the end of the eighties, and partially followingAczél and Kannapan [1], several
authors (see, for instance, Gil et al. [8], Taneja et al. [12]) have commented the fact
that some interesting inequality indices can be based/inspired on statistical directed
divergence measures between two probability distributions. Their key idea is to
replace one of the distributions in the divergence by the weighted and normalized
variable values. This idea has been reconsidered in some recent studies (see, for
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instance, [9, 10]), Csizár’s divergence [2, 6, 7] being one of the most commonly
used divergence measures.

In this paper we are going to examine the asymptotic behaviour under rather
general conditions of the φ-inequality index (or Csizár’s divergence-based inequality
measure), which includes the additively decomposable inequality indices [4, 5, 8,
11] as special cases and it is defined as follows:

Definition 1.1 Let φ : (0,∞) → [0,∞) be a mapping such that it is stritcly convex
(or upper concave) and satisfying the following conditions/conventions:

φ(1) = 0, 0 = lim
u↓0 φ(u), 0 · φ(u/0) = u

and, the dual function φ∗(u) = u · φ(1/u), satisfying that

0 · φ(u/0) = u · φ∗(0), 0 · φ∗(u/0) = u · φ(0).

Let X be a positive random variable associated with a probability space (Ω,A,Pθ ),
Pθ also denoting the probabilitymeasure inducedbyX and θ being a real- or vectorial-
valued parameter, θ ∈ Θ .

The (population) φ-inequality index associated with X is given, if it exists, by the
Lebesgue-Stieltjes integral

Iφ(X ; θ) =
∫
X (Ω)

φ

(
x

Eθ (X )

)
dPθ (x),

whenever the expected value Eθ (X ) = ∫
X (Ω)

x dPθ (x) < ∞.

If the family of probability measures {Pθ , θ ∈ Θ} is dominated by a σ -finite
measure η over the Borel σ -field on X (Ω), and fθ denotes the density function
associated with Pθ w.r.t. η, the φ-inequality index associated with X is given by

Iφ(X ; θ) =
∫
X (Ω)

φ

(
x

Eθ (X )

)
fθ (x) dη(x).

2 Asymptotic Behaviour of the φ-Inequality Index in a
Random Sampling from a Population. Application to the
Simple Random Sampling from Finite Populations

Assume that θ = (θ1, . . . , θr). If θ is unknown and it is estimated under certain reg-
ularity conditions by means of the maximum likelihood estimator based on a simple
random sample from variable X , then we are now going to study the asymptotic
behaviour of the statistic corresponding to the φ-inequality index making use of
these estimates.
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The following theorem establishes the regularity conditions and main general
result in this framework.

Theorem 2.1 Let (X1, . . . ,Xn) be a simple random sample from a random variable
X associated with the probability space (Ω,A,Pθ ), with the parameter θ ∈ Θ being
unknown, {Pθ , θ ∈ Θ} being dominated by a σ -finite measure η and fθ denoting the
associated density function.

Assume the following regularity conditions on Pθ and φ are fulfilled:

(R1) The true value of θ , θ0, belongs to the interior of Θ , which is supposed to be
an r-dimensional rectangle in Rr .

(R2) The set X = {x ∈ R : fθ (x) > 0} does not depend on θ .
(R3) For each x ∈ X and θ ∈ Θ there exist the partial derivatives of orders 1, 2

and 3w.r.t. θi (i = 1 . . . , r) of log fθ , and there also exist real-valued functions
gi, h ij and Hijk defined on X, with gi and hij integrable on X w.r.t. η and Hijk

integrable onX w.r.t. Pθ and maybe depending on θ in a neighborhood of θ0,
such that in such a neighborhood

∣∣∣∣∂ log fθ (x)∂θi

∣∣∣∣ ≤ gi(x),

∣∣∣∣∂
2 log fθ (x)

∂θi ∂θj

∣∣∣∣ ≤ hij(x),

∣∣∣∣∂
3 log fθ (x)

∂θi ∂θj ∂θk

∣∣∣∣ ≤ Hijk(x)

for i, j, k ∈ {1, . . . , r}.
(R4) For each x ∈ X and θ ∈ Θ there exist the partial derivatives of orders 1,

2 and 3 w.r.t. θi (i = 1 . . . , r) of φ(x/Eθ (X )) · fθ , and there also exist real-
valued functions gφ

i , hφ

ij and H
φ

ijk defined on X, with gφ

i and hφ

ij integrable on

X w.r.t. η and Hφ

ijk integrable on X w.r.t. Pθ and maybe depending on θ in a
neighborhood of θ0, such that in such a neighborhood

∣∣∣∣∂φ(x/Eθ (X )) · fθ
∂θi

∣∣∣∣ ≤ gφ

i (x),

∣∣∣∣∂
2φ(x/Eθ (X )) · fθ

∂θi ∂θj

∣∣∣∣ ≤ hφ

ij(x),

∣∣∣∣∂
3φ(x/Eθ (X )) · fθ

∂θi ∂θj ∂θk

∣∣∣∣ ≤ Hφ

ijk(x)

for i, j, k ∈ {1, . . . , r}.
(R5) The Fisher information matrix in θ ,

IFX (θ) =
[∫

X

∂ log fθ (x)

∂θi
· ∂ log fθ (x)

∂θj
· fθ (x) dη(x)

]
ij

,

is definite and the associated quadratic form is positive definite for each
θ ∈ Θ .
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Then, if
{̂
θn = (θ̂n1, . . . , θ̂nr)

}
n∈N is a sequence of estimators of θ from (X1, . . . ,

Xn) which are solutions of the likelihood equations system

⎧⎪⎪⎨
⎪⎪⎩

∑n
l=1

∂fθ (Xl)

∂θ1
= 0

...∑n
l=1

∂fθ (Xl)

∂θr
= 0

which is a strongly consistent sequence of estimators, asymptotically normal and effi-
cient (more concretely, θ̂n is asymptotically distributed as an r-dimensional normal
N (θ0, [IFX (θ0)]−1/n) as n → ∞), we have that

(i)
{
Iφ(X ; θ̂n)

}
n∈N is a sequence of estimators of Iφ(X ; θ0) from (X1, . . . , Xn)

which is strongly consistent whatever θ0 may be.
(ii) The sequence of random variables

{√
n
[
Iφ(X ; θ̂n) − Iφ(X ; θ0)

]}
n∈N con-

verges in law as n → ∞ to the one-dimensional normal distribution

N
(
0,∇ Iφ(X ; θ0) [IFX (θ0)]−1

(∇ Iφ(X ; θ0)
)t)

whenever ∇ Iφ(X ; θ0) [IFX (θ0)]−1
(∇ Iφ(X ; θ0)

)t
> 0, where ∇ denotes the

gradient vector.

(iii) If ∇ Iφ(X ; θ0) [IFX (θ0)]−1 ∇ (
Iφ(X ; θ0)

)t = 0 and some of the second partial
derivatives of Iφ(X ; θ) do not vanish, then the sequence of random variables{
2n
[
Iφ(X ; θ̂n) − Iφ(X ; θ0)

]}
n∈N converges in law as n → ∞ to a linear com-

bination of at most r independent chi-square variables with 1 degree of freedom.
Furthermore, the asymptotic distributionwill be a chi-square onewith q degrees
of freedom if, and only if,

H (Iφ(X ; θ0)) [IFX (θ0)]−1 H (Iφ(X ; θ0)) = H (Iφ(X ; θ0)),

where H is the Hessian matrix and q is the range of H (Iφ(X ; θ0)).

On the basis of Theorem2.1 and well-known large sample results, one can con-
clude that

Corollary 2.1 Under the situation and assumptions in Theorem 2.1, we have that
the sequence of random variables

⎧⎨
⎩

√
n
[
Iφ(X ; θ̂n) − Iφ(X ; θ0)

]
√

∇ Iφ(X ; θ̂n) [IFX (̂θn)]−1
(∇ Iφ(X ; θ̂n)

)t
⎫⎬
⎭

n∈N

converges in law as n → ∞ to the one-dimensional standard normal distribu-
tion, whenever that ∇ Iφ(X ; θ0) [IFX (θ0)]−1

(∇ Iφ(X ; θ0)
)t

> 0 and ∇ Iφ(X ; θ̂n)

[IFX (̂θn)]−1
(∇ Iφ(X ; θ̂n)

)t
> 0.
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The preceding conclusions can be easily particularized to the simple random
sampling from finite populations. If we consider a population with M individuals
and X is a random variable taking on R different positive values x1, . . . , xR, and
pt = P(X = xt), t = 1, . . . ,R, then the population φ-inequality index is given by

Iφ(X ; p) =
R∑
t=1

φ

(
xt

E(X ; p)
)

· pt,

with pR = 1 − (p1 + . . . + pR−1) and E(X ; p) = ∑R
t=1 xtpt .

Assume that a sample of size n is chosen at random and with (or even without, in
caseM is large enough) replacement from the population and fnt is the sample relative
frequency of xt , then the preceding results can be particularized by considering
θ = p = (p1, . . . , pR−1) and θ̂n = f n = (fn1, . . . , fn(R−1)). In this way, in the simple
random sampling from the final population, one can ensure that

Theorem 2.2 In simple random sampling, if φ has finite derivatives of order 3, we
have that

(i)
{
Iφ(X ; f n)

}
n∈N is a sequence of estimators of Iφ(X ; p0) which is strongly con-

sistent whatever the true value p0 = (p10, . . . , p(R−1)0) of p ∈ (0, 1)R−1 may
be.

(ii) The sequence of randomvariables
{√

n
[
Iφ(X ; f n) − Iφ(X ; p0)

]}
n∈N converges

in law as n → ∞ to the one-dimensional normal distribution
N (0, σ 2(p0)), where

σ 2(p0) =
R∑
t=1

pt0

[
φ

(
xt

E(X ; p0)
)

− xt

R∑
u=1

pu0
xu(

E(X ; p0)
)2 · φ′

(
xu

E(X ; p0)
)]2

−
{

R∑
t=1

pt0

[
φ

(
xt

E(X ; p0)
)

− xt

R∑
u=1

pu0
xu(

E(X ; p0)
)2 · φ′

(
xu

E(X ; p0)
)]}2

whenever σ 2(p0) > 0.

(iii) If σ 2(p0) = 0 and for some i, j ∈ {1, . . . ,R − 1}

Hij = xi − xR
E(X ; p0)

{
φ′
(

xR
E(X ; p0)

)
· xR
E(X ; p0)

− φ′
(

xj
E(X ; p0)

)
· xj
E(X ; p0)

+ xj − xR
E(X ; p0)

R∑
t=1

pt0 φ′′
(

xt
E(X ; p0)

)
· x2t(

E(X ; p0)
)2
}

+ xj − xR
E(X ; p0)

{
φ′
(

xR
E(X ; p0)

)
· xR
E(X ; p0)

− 2φ

(
xR

E(X ; p0)
)

−φ′
(

xi
E(X ; p0)

)
· xi
E(X ; p0)

+ 2φ

(
xi

E(X ; p0)
)}

> 0,
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then the sequence of random variables
{
2n
[
Iφ(X ; θ̂n) − Iφ(X ; θ0)

]}
n∈N con-

verges in law as n → ∞ to a linear combination of at most R − 1 independent
chi-square variables with 1 degree of freedom.

Consequently,

Corollary 2.2 Under the situation and assumptions in Theorem2.2, we have that
the sequence of random variables

{√
n
[
Iφ(X ; f n) − Iφ(X ; p0)

]
√

σ 2(f n)

}

n∈N

converges in law as n → ∞ to the one-dimensional standard normal distribution,
whenever σ 2(f n) > 0 and σ 2(p0) > 0.

3 Asymptotic Behaviour of the φ-Inequality Index in a
Random Sampling from Several Populations. Application
to the Stratified Random Sampling from Finite
Populations

Assume that the random variable X is now considered over S different populations,
Ωs, so thatPθ s is the induced probabilitymeasure forX in the sth population. Let θ s =
(θ s

1, . . . , θ
s
rs), and assume that {Pθ s , θ s ∈ Θ s} is dominated by a σ -finite measure ηs

and fθ s denoting the associated density function. If probabilities of considering each
of the populations are known to be W1, . . . ,WS , the situation can be viewed as that
of analyzing X over a randomized population in which X is distributed as Pθ s with
probability Ws with s ∈ {1, . . . , S}. In accordance with this view, it seems natural to
quantify the φ-inequality index associated with X in such a randomized population
by means of the value, if it exists, given by

Iφ(X ; θ1, . . . , θS) =
S∑

s=1

Ws

∫
X (Ωs)

φ

(
x

Eθ1,...,θS (X )

)
dPθ s(x),

whenever the expected value exists

Eθ1,...,θS (X ) =
S∑

s=1

Ws E(X ; θ s) =
S∑

s=1

Ws

∫
X (Ωs)

x dPθ s(x) < ∞.

The following theorem establishes the main general result in this new framework.

Theorem 3.1 Let (X11, . . . ,X1n1), . . . , (XS1, . . . ,XSnS ) be S independent simple
random samples from random variable X associated with the probability space
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(Ω1,A1,Pθ1), . . ., (ΩS ,AS ,PθS ), respectively, with the parameters θ s ∈ Θ s being
unknown, {Pθ s , θ s ∈ Θ s} being dominated by a σ -finite measure ηs and fθ s denoting
the associated density function for each s ∈ {1, . . . , S}.

Let ws = ns/n (with n = n1 + . . . + nS). Assume that over each of the S popula-
tions and probability spaces the regularity conditions in Theorem2.1 are fulfilled.

Then, if for each s the sequence
{̂
θ
s
ns = (θ̂ s

ns1, . . . , θ̂
s
nsrs)

}
ns∈N is a sequence of

estimators of θ s from (Xs1, . . . ,Xsns) which are solutions of the likelihood equations
system ⎧⎪⎪⎨

⎪⎪⎩

∑ns
l=1

∂fθs (Xsl)

∂θ s
1

= 0
...∑ns

l=1
∂fθs (Xsl)

∂θ s
rs

= 0

which is a strongly consistent sequence of estimators, asymptotically normal and
efficient (more concretely, θ̂ns is asymptotically distributed as an rs-dimensional
normal N (θ s

0, [IFX (θ s
0)]−1/ns) as ns → ∞), θ s

0 being the true value of θ s, we have
that

(i)
{
Iφ(X ; θ̂

1
n1 , . . . , θ̂

S
nS )
}
n∈N is a sequence of estimators ofIφ(X ; θ1

0, . . . , θ
S
0) from

(X11, . . . ,X1n1 , . . . ,XS1, . . . ,XSnS ) which is strongly consistent whatever the
true value (θ1

0, . . . , θ
S
0) of (θ

1, . . . , θS) may be.

(ii) The sequence of random variables
{√

n
[
Iφ(X ; θ̂

1
n1 , . . . , θ̂

S
nS ) − Iφ(X ; θ1

0, . . . ,

θS
0)
]}

n∈N converges in law as n1 → ∞, . . . , nS → ∞ to the one-dimensional
normal distribution

N
(
0,∇ Iφ(X ; θ1

0, . . . , θ
S
0) [IFX (θ1

0, . . . , θ
S
0)]−1(∇ Iφ(X ; θ1

0, . . . , θ
S
0)
)t)

whenever∇ Iφ(X ; θ1
0, . . . , θ

S
0) [IFX (θ1

0, . . . , θ
S
0)]−1

(∇ Iφ(X ; θ1
0, . . . , θ

S
0)
)t

> 0,
with

∇ Iφ(X ; θ1
0, . . . , θ

S
0) = (∇ Iφ(X ; θ1

0), . . . ,∇ Iφ(X ; θS
0)
)
,

∇ Iφ(X ; θ s0)=
(

∂ Iφ(X ; θ1, . . . , θS )

∂θ s1
, . . . ,

∂ Iφ(X ; θ1, . . . , θS )

∂θ srs

)∣∣∣∣∣
(θ1,...,θS )=(θ10,...,θ

S
0 )

,

[IFX (θ1
0, . . . , θ

S
0)]−1 =

⎛
⎜⎜⎝

[IFX (θ1
0)]−1

w1
. . . 0

...
. . .

...

0 . . .
[IFX (θS

0 )]−1

wS

⎞
⎟⎟⎠ .

(iii) If ∇ Iφ(X ; θ1
0, . . . , θ

S
0) [IFX (θ1

0, . . . , θ
S
0)]−1

(∇ Iφ(X ; θ1
0, . . . , θ

S
0)
)t = 0 and

some of the second partial derivatives of Iφ(X ; θ1, . . . , θS) do not vanish, then

the sequence of random variables
{
2n
[
Iφ(X ; θ̂

1
n1 , . . . , θ̂

S
nS ) − Iφ(X ; θ1

0, . . . ,

θS
0)
]}

n∈N converges in law as n1 → ∞, . . . , nS → ∞ to a linear combination
of at most n1 + . . . + nS independent chi-square variables with 1 degree of free-
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dom. Furthermore, the asymptotic distribution will be a chi-square one with q
degrees of freedom if, and only if,

H (Iφ(X ; θ1
0, . . . , θ

S
0)) [IFX (θ1

0, . . . , θ
S
0)]−1 H (Iφ(X ; θ1

0, . . . , θ
S
0))

= H (Iφ(X ; θ1
0, . . . , θ

S
0)),

where H is the Hessian matrix and q is the range of H (Iφ(X ; θ1
0, . . . , θ

S
0)).

On the basis of Theorem3.1 and well-known large sample results, one can con-
clude that

Corollary 3.1 Under the situation and assumptions in Theorem3.1, we have that
the sequence of random variables

⎧⎨
⎩

√
n
[
Iφ(X ; θ̂

1
n1 , . . . , θ̂

S
nS ) − Iφ(X ; θ10, . . . , θ

S
0 )
]

√
∇ Iφ(X ; θ̂

1
n1 , . . . , θ̂

S
nS ) [IFX (̂θ

1
n1 , . . . , θ̂

S
nS )]−1

(∇ Iφ(X ; θ̂
1
n1 , . . . , θ̂

S
nS )
)t
⎫⎬
⎭

n∈N

converges in law as n1 → ∞, . . . , nS → ∞ to the one-dimensional standard normal
distribution, whenever

∇ Iφ(X ; θ̂
1
n1 , . . . , θ̂

S
nS ) [IFX (̂θ

1
n1 , . . . , θ̂

S
nS )]−1

(∇ Iφ(X ; θ̂
1
n1 , . . . , θ̂

S
nS )
)t

> 0

and

∇ Iφ(X ; θ1
0, . . . , θ

S
0) [IFX (θ1

0, . . . , θ
S
0)]−1(∇ Iφ(X ; θ1

0, . . . , θ
S
0)
)t

> 0.

The preceding conclusions can be easily particularized to the stratified random
sampling from finite populations. Consider a population with M individuals which
can be partitioned into S strata in accordancewithwhich the positive random variable
X shows a rather homogeneous behaviour. Assume X takes on R different positive
values x1, . . . , xR, pst denotes the probability that X takes the value xt in the sth
stratum, t = 1, . . . ,R, ps = (ps1, . . . , p

s
R−1), and Ms = number of individuals in the

sth stratum of the population, s = 1, . . . , S. If Ws = Ms/M , then the population
φ-inequality index is given by

Iφ(X ; p1, . . . , pS) =
R∑
t=1

S∑
s=1

Ws φ

(
xt

E(X ; p1, . . . , pS)
)

· pst ,

with psR = 1 − (ps1 + . . . + psR−1) and E(X ; p1, . . . , pS) = ∑R
t=1

∑S
s=1 xtWspst .

Assume that a sample of size n is chosen at random and according to a strat-
ified random sampling with allocation n1, . . . , nS with (or even without, in case
Ms is large enough) replacement from each stratum and independently among
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strata. Let f snt be the relative frequency of xt in the sample from the sth stratum,
then the results in Theorem3.1 can be particularized by considering θ s = ps and
θ̂n = f sn = (f sn1, . . . , f

s
n(R−1)). Denote ws = ns/n for s ∈ {1, . . . , S}. In this way, in

the stratified random sampling from the final population, one can ensure that

Theorem 3.2 In the stratified random sampling, if φ has finite derivatives of order
3, we have that

(i)
{
Iφ(X ; f 1n, . . . , f Sn)

}
n∈N is a sequence of estimators of Iφ(X ; p10, . . . , pS0)which

is strongly consistent whatever the true value ps0 = (ps10, . . . , p
s
(R−1)0) of p

1, . . . ,

pS ∈ (0, 1)R−1 may be.
(ii) The sequence of random variables

{√
n
[
Iφ(X ; f 1n, . . . , f Sn) − Iφ(X ; p10, . . . , pS0)

]}
n∈N

converges in law as n1 → ∞, . . . , nS → ∞ to the one-dimensional normal
distribution N (0, σ 2(p10, . . . , p

S
0)), where

σ 2(p10, . . . , p
S
0) =

S∑
s=1

Ws

ws

{
R∑
t=1

pst0

[
φ

(
xt

E(X ; p10, . . . , pS0)
)

−xt

S∑
s◦=1

Ws◦

R∑
u=1

xu(
E(X ; p10, . . . , pS0)

)2 · φ′
(

xu
E(X ; p10, . . . , pS0)

)]2

−
{

R∑
t=1

pst0

[
φ

(
xt

E(X ; p10, . . . , pS0)
)

−xt

S∑
s◦=1

Ws◦

R∑
u=1

ps
◦
u0

xu(
E(X ; p0)

)2 · φ′
(

xu
E(X ; p10, . . . , pS0)

)]}2
⎫⎬
⎭

whenever σ 2(p10, . . . , p
S
0) > 0.

(iii) If σ 2(p10, . . . , p
S
0) > 0 and for some i, j ∈ {1, . . . ,R − 1}

Hss◦
ij = WsWs◦(xi − xR)

E(X ; p10, . . . , pS0)
{
φ′
(

xR
E(X ; p10, . . . , pS0)

)
· xR
E(X ; p10, . . . , pS0)

−φ′
(

xj
E(X ; p10, . . . , pS0)

)
· xj
E(X ; p10, . . . , pS0)

+ xj − xR
E(X ; p10, . . . , pS0 )

S∑
s◦◦=1

Ws◦◦
R∑
t=1

ps
◦◦
t0 φ′′

(
xt

E(X ; p10, . . . , pS0 )

)
· x2t(
E(X ; p10, . . . , pS0 )

)2
}
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+ WSWs◦ (xj − xR)

E(X ; p10, . . . , pS0 )

{
φ′
(

xR
E(X ; p10, . . . , pS0 )

)
· xR
E(X ; p10, . . . , pS0 )

−2φ

(
xR

E(X ; p10, . . . , pS0))
)

−φ′
(

xi
E(X ; p10, . . . , pS0 )

)
· xi
E(X ; p10, . . . , pS0 ))

+ 2φ

(
xi

E(X ; p10, . . . , pS0 )

)}
> 0,

then the sequence of random variables

{
2n
[
Iφ(X ; f 1n, . . . , f Sn) − Iφ(X ; p10, . . . , pS0)

]}
n∈N

converges in law as n1 → ∞, . . . , nS → ∞ to a linear combination of at most
S(R − 1) independent chi-square variables with 1 degree of freedom.

Consequently,

Corollary 3.2 Under the situation and assumptions in Theorem3.2, we have that
the sequence of random variables

{√
n
[
Iφ(X ; f 1n, . . . , f Sn) − Iφ(X ; p10, . . . , pS0)

]
√

σ 2(f n)

}

n∈N

converges in law as n1 → ∞, . . . , nS → ∞ to the one-dimensional standard normal
distribution, whenever σ 2(f 1n, . . . , f

S
n) > 0 and σ 2(p10, . . . , p

S
0) > 0.

4 Concluding Remarks

Results in this paper could be applied in future research for inferential developments.
In Alonso et al. [3] indices in this paper were extended to deal with fuzzy-valued

random elements. Some of their properties were examined, but asymptotic properties
remain as an open problem to be discussed.
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A Logistic Regression Analysis Approach
for Sample Survey Data Based on
Phi-Divergence Measures

Elena Castilla, Nirian Martín and Leandro Pardo

Abstract A new family of minimum distance estimators for binary logistic regres-
sion models based on φ-divergence measures is introduced. The so called “pseudo
minimum phi-divergence estimator”(PMφE) family is presented as an extension of
“minimum phi-divergence estimator” (MφE) for general sample survey designs and
contains, as a particular case, the pseudo maximum likelihood estimator (PMLE)
considered in Roberts et al. (Biometrika 74:1–12, [8]). Through a simulation study
it is shown that some PMφEs have a better behaviour, in terms of efficiency, than the
PMLE.

1 Introduction

Suppose that the population of interest is partitioned into I cells or domains according
to the levels of one or more factors. Let Ni (i = 1, ..., I ) denote the i th domain size,
N =∑I

i=1Ni the population domain total and Ni1, the population counts, out of
Ni , where the binary response (0 for failure and 1 for success) variable is equal
to 1. Since Ni1 and Ni are fixed but unknown values (i = 1, ..., I ), N̂i denotes the
survey estimator of the i th domain size Ni and N̂i1 the corresponding estimate of the
successful events Ni1. The ratio estimator p̂i = N̂i1/N̂i , i = 1, ..., I , is often used
to estimate the population proportion of successful events, πi = Ni1

Ni
, i = 1, ..., I.

Standard sampling theory provides an estimator of the covariance matrix of the
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p̂ = ( p̂1, ..., p̂I )
T . Another choice is using the logistic regression

π
(
xT
i β
) = exp{xT

i β}
1 + exp{xT

i β} =
exp

{

β0 +
k∑

s=1
β j xi j

}

1 + exp

{

β0 +
k∑

s=1
β j xi j

} , i = 1, ..., I, (1)

to modelize the population proportion of successful events,

πi = π
(
xT
i β
) = Ni1

Ni
,

which is assumed to depend on constants xi j , j = 1, ..., k (k < I ) derived from the
factor levels, summarized in a (k + 1)-vector of known constants xi = (1, xi1, ...,
xik)

T , and also on a (k + 1)-vector of parameters β = (β0, β1, ..., βk)
T .

Under independent binomial sampling in each domain, it is well-known that the
maximum likelihood estimator (MLE) of β, β̂, is obtained through iterative calcu-
lations from the following likelihood equations

XT diag(n)π (β) = XT diag(n)̂q, (2)

where X= (x1, ..., x I )
T is a full rank matrix, π (β) = (π (xT

1 β
)
, . . . , π

(
xT
I β
))T

,
q̂ = (q̂1, ..., q̂I )

T with q̂i = ni1/ni , ni being the sample size from the i th domain,
n =∑I

i=1ni the i th sample domain total and ni1 the sample total of successful events
the i th domain. If we consider the probability vectors

p̂∗ =
(n1
n
q̂1,

n1
n

(1 − q̂1) , ...,
nI

n
q̂I ,

nI

n
(1 − q̂I )

)T

=
(
n11
n

,
n1 − n11

n
, ...,

nI1

n
,
nI − nI1

n

)T

=
(n11

n
,
n12
n

, ...,
nI1

n
,
nI2

n

)T
, (ni2 = ni − ni1),

and

p∗(β)= ( n1n π
(
xT
1 β
)
, n1

n

(
1 − π

(
xT
1 β
))

, . . . , nI
n π
(
xT
I β
)
, nI

n

(
1 − π

(
xT
I β
)))T

the MLE of β, β̂, can be equivalently defined by

β̂ = arg min
β∈Rk+1

dKullback
(
p̂∗, p∗ (β)

)
,

where dKullback ( p̂∗, p∗ (β)) is the Kullback-Leibler divergence between the prob-
ability vectors p̂∗ and p∗ (β) defined by
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dKullback
(
p̂∗, p∗ (β)

)=
I∑

i=1

[
ni1
n

log
ni1

niπ
(
xT
i β
) + ni2

n
log

ni2
ni
(
1 − π

(
xT
i β
))

]

.

In Pardo et al. [5] the minimum phi-divergence estimator (MφE) was introduced, as
a natural extension of the MLE, as

β̂φ = arg min
β∈Rk+1

dφ

(
p̂∗, p∗ (β)

)
, (3)

where dφ ( p̂∗, p∗ (β)) is the phi-divergence measure between the probability vectors
p̂∗ and p∗ (β) given by

dφ

(
p̂∗, p∗ (β)

)=
I∑

i=1

ni
n

[

π (xi , β) φ

(
ni1

niπ
(
xTi β

)

)

(1 − π (xi ,β)) φ

(
ni2

ni
(
1−π

(
xTi β

))

)]

,

with φ ∈ Φ∗. By Φ∗ we are denoting the class of all convex functions, φ (x), x > 0,
such that at x = 1, φ (1) = φ′ (1) = 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) =
p limu→∞ φ(u)

u . For every φ ∈ Φ∗, differentiable at x = 1, the function

Ψ (x) = φ (x) − φ′ (1) (x − 1)

also belongs to Φ∗. Therefore, we have dψ ( p̂∗, p∗ (β)) = dφ ( p̂∗, p∗ (β)) and ψ

has the additional property that ψ ′(1) = 0. Since the two divergence measures are
equivalent, we can consider the set Φ∗ to be equivalent to the set

Φ = Φ∗ ∩ {φ : φ′(1) = 0
}
.

For more details see Cressie and Pardo [3] and Pardo [6]. In what follows, we give
our theoretical results for φ ∈ Φ, but often apply them to choices of functions inΦ∗.

An application of theMφE in logistic regression can be seen in Pardo et al. [7]. For
general sample survey designs we do not have maximum likelihood estimators due
to difficulties in obtaining appropriate likelihood functions. Hence, it is a common
practice to use a pseudo maximum likelihood estimator (PMLE) of β, β̂ P , obtained
from (2) by replacing ni/n, i = 1, ..., I , by the estimated domain relative size wi =
N̂i/N̂ , i = 1, ..., I, and the sample proportions q̂i = ni1/ni , i = 1, ..., I, by the ratio
estimate p̂i = N̂i1/N̂i , i = 1, ..., I,

XT diag(w)π (β) = XT diag(w) p̂, (4)

where w = (w1, ...,wI )
T .

In this paper we extend the concept of MφE by considering the “pseudo mini-
mum phi-divergence estimator” (PMφE) as a natural extension of the PMLE and we
solve some statistical problem for the model considered in (1). In Sect. 2 we shall
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introduce the PMφE for general sample designs and we study its asymptotic behav-
ior. A numerical example is presented in Sect. 3 and, finally, in Sect. 4 a simulation
study is carried out.

2 Pseudo Minimum Phi-Divergence Estimator for General
Sample Designs

For general sample designs, we should consider the kernel of the weighted loglike-
lihood

�w (β) = n
I∑

i=1

wi
[
p̂i logπ

(
xT
i β
)+ (1 − p̂i ) log(1 − π

(
xT
i β
)
)
]
,

which is derived from the kernel of the likelihood for I independent binomial random
variables

� (β) =
I∑

i=1

ni
[
q̂i logπ

(
xT
i β
)+ (1 − q̂i ) log(1 − π

(
xT
i β
)
)
]

= n
I∑

i=1

ni
n

[
q̂i logπ

(
xT
i β
)+ (1 − q̂i ) log(1 − π

(
xT
i β
)
)
]
,

replacing ni
n by wi = N̂i/N̂ , and q̂i = ni1/ni by p̂i = N̂i1/N̂i , i = 1, ..., I . If we

consider the two probability vectors

p̂w = (w1 p̂1,w1 (1 − p̂1) , ...,wI p̂I ,wI (1 − p̂I ))
T

and

pw(β)= (w1π
(
xT
1 β
)
,w1

(
1 − π

(
xT
1 β
))

, ...,wIπ
(
xT
I β
)
,wI

(
1 − π

(
xT
I β
)))

T,

we get
�w (β) = −ndKullback

(
p̂w, pw (β)

)+ k,

where k is a constant not depending on β. Therefore the PMLE of β, β̂ P , presented
in (4) can be defined as

β̂ P = arg max
β∈Rk+1

�w (β) = arg min
β∈Rk+1

dKullback
(
p̂w, pw (β)

)
.

Based on the previous interpretation of the PMLE, in the following definition we
shall present the PMφE.
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Definition 2.1 The PMφE in a general sample design for the parameter β in the
model considered in (1) is defined as

β̂φ,P = arg min
β∈Rk+1

dφ

(
p̂w, pw (β)

)
,

where

dφ

(
p̂w, pw (β)

) =
I∑

i=1

wi

[
π (xi ,β) φ

(
p̂i

π(xT
i β)

)
(1 − π (xi ,β)) φ

(
1− p̂i

1−π(xT
i β)

)]

is the phi-divergence measure between the probability vectors p̂w and pw (β).

The following result establishes the asymptotic distribution of the PMφE of β,
β̂φ,P .

Theorem 2.1 Let us assume that β0 is the true value of β and

w
p−→

n→∞ W , W = (W1, ...,WI )
T , Wi = Ni

N
,

p̂
p−→

n→∞ π
(
β0

)
,

√
n( p̂ − π

(
β0

)
)

L−→
n→∞ N (0, V ) .

Then, we have √
n(β̂φ,P − β0)

L−→
n→∞ N

(
0k+1, V

(
β0

))
,

where

V
(
β0

) = (XTΔX)−1XT diag (W) Vdiag (W) X(XTΔX)−1, (5)

Δ = diag{Wiπ
(
xT
i β0

) (
1 − π

(
xT
i β0

))}i=1,...,I .

Proof Based on Theorem 1 in Pardo et al. [5], we have

β̂φ,P = β0+(XTΔX)−1XT diag
{
cTi
}I
i=1 diag

−1/2
(
pw
(
β0

)) (
p̂w − pw

(
β0

))

+ o
(∥
∥
∥diag

{
cTi
}I
i=1 diag

−1/2
(
pw
(
β0

)) (
p̂w − pw

(
β0

))∥∥
∥ 1k+1

)
,

with

ci = (wiπ
(
xT
i β0

) (
1 − π

(
xT
i β0

)))1/2
((

1 − π
(
xT
i β0

))1/2

−π
(
xT
i β0

)1/2

)

, i = 1, .., I.

Since

diag
{
cTi
}I
i=1 diag

−1/2 ( pw
(
β0

)) (
p̂w − pw

(
β0

)) = diag (w)
(
p̂ − π

(
β0

))
,
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w
p−→

n→∞ W and p̂
p−→

n→∞ π
(
β0

)
, it holds

√
n(β̂φ,P − β0) = (XTΔX)−1XT diag (W)

√
n
(
p̂ − π

(
β0

))+ op(1k+1).

From the Sluysky’s theorem and taking into account
√
n( p̂ − π

(
β0

)
)

L−→
n→∞ N

(0k+1, V ), it follows the desired result. �

Remark 2.1 Under independent binomial sampling in each domain, it is well-known
that V = diag{π (xT

i β0

) (
1 − π

(
xT
i β0

))}i=1,...,Idiag−1 (W) and hence V
(
β0

) =
(XTΔX)−1, which matches Theorem 2 in Pardo et al. [5].

Remark 2.2 The asymptotic results obtained in the current paper differ fromCastilla
et al. [2] in the elements tending to infinite, here the total individuals in the whole
sample, n, while in the cited paper is the total number of clusters what tends to
infinite.

3 A Numerical Example

In order to obtain the PMφEs, from a practical point of view, we can give an explicit
expression for φ. In this paper we shall focus on the Cressie-Read subfamily

φλ(x) =
{

1
λ(1+λ)

[
xλ+1 − x − λ(x − 1)

]
, λ ∈ R − {−1, 0}

limυ→λ
1

υ(1+υ)

[
xυ+1 − x − υ(x − 1)

]
, λ ∈ {−1, 0} .

We can observe that for λ = 0, we have

φλ=0(x) = lim
υ→0

1

υ(1 + υ)

[
xυ+1 − x − υ(x − 1)

] = x log x − x + 1,

and the associated phi-divergence, coincides with the Kullback divergence, therefore
the PMφEs based on φλ(x) contains as special case the PMLE.

We shall consider the example presented in Molina and Skinner [4]. A random
subsample of 50 clusters (primary sampling units) containing 1299 households was
selected from the 1975 U.K. Family Expenditure Survey. These households are
divided into 12 groups of sizes n1, ..., n12 by age of head of household (4 levels)
and number of persons in the household (3 levels). The binary response is 1 if the
household owns the dwelling it occupies and 0 otherwise. The number of households
ri for which the binary response is 1, together with ni are shown in Table1 of the
cited paper.
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Table 1 PMCREs for the clustered family expenditure survey data model

λ β̂0,λ,P β̂1(2),λ,P β̂1(3),λ,P β̂1(4),λ,P β̂2(2),λ,P β̂2(3),λ,P

0 −0.1585 0.4403 −0.1412 −0.4179 0.5042 0.4703

2/3 −0.1564 0.4291 −0.1436 −0.4174 0.4985 0.4735

1 −0.1574 0.4251 −0.1438 −0.4158 0.4971 0.476

2 −0.1663 0.4192 −0.1408 −0.4075 0.4974 0.4856

We denote byβ1(r) the parameter associated to the level r of the factor “age of head
of housholds”, r = 2, 3 and 4 since β1(1) = 0 and by β2(s) the parameter associated
to the level s of the factor “number of persons in the housholds”, s = 2, 3, since we
assume β2(1) = 0. The parameter vector with unknown values will be denote by

β = (β0, β1(2), β1(3), β1(4), β2(2), β2(3))
T .

The design matrix that we are going to consider for the example under consideration
is given by

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1 1 1 1
0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1
0 1 0 0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

T

= (x1, ..., x12)T

and the logistic regression model under consideration is given by

π
(
xT
i β
) = exp

{
xT
i β
}

1 + exp
{
xT
i β
} , i = 1, ..., 12,

equivalent to

π
(
xT
i β
) = exp{β0 + β1(r) + β2(s)}

1 + exp{β0 + β1(r) + β2(s)} ,

if the i th probability is associated with the r th level of the first variable (r = 1, ..., 4)
and the sth level of the second variable (s = 1, ..., 3). In the following table we
present the pseudo minimum Cressie-Read divergence estimators (PMCREs) of β,
βλ,P , for λ ∈ {0, 2/3, 1, 2}.
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4 Simulation Study

The following simulation studyhas beendesignedby following the previous example.
Since in the logistic regression model there are two factors, the first one with 4
categories and the second one with 3 categories, in total I = 12 domains are taken
into account. Let

p (β) = ( N1
N π

(
xT
1 β
)
, N1

N

(
1 − π

(
xT
1 β
))

, ..., NI
N π

(
xT
I β
)
, NI

N

(
1 − π

(
xT
I β
)))T

be the theoretical probability vector in the logistic regressionwith complex sampling.
The values of the components of p (β) in which the simulation is based are given in
Table2. In total n = 1299 individuals are taken from the primary units of the sample,
J = 50 clusters, of sizem( j) = 26, j = 1, ..., 49,m(50) = 25 (

∑50
j=1 m( j) = n). Since

the clusters are mutually independent and there is (possibly) correlation inside each
cluster, we consider three possible distributions for

(n11( j), n1( j) − n11( j), n21( j), n2( j) − n21( j), . . . , n12,1( j), n12( j) − n12,1( j))
T

Table 2 Theoretical values of p(β) in the simulation study

i 1 2 3 4 5 6 7 8 9 10 11 I =
12

Ni
N

10
1299

63
1299

110
1299

14
1299

35
1299

281
1299

40
1299

110
1299

185
1299

204
1299

196
1299

51
1299

π
(
xTi β

) 2
10

38
63

65
110

6
14

29
35

188
281

17
40

56
110

105
185

78
204

93
196

21
51

Ni
N π

(
xTi β

) 2
1299

38
1299

65
1299

6
1299

29
1299

188
1299

17
1299

56
1299

105
1299

78
1299

93
1299

21
1299

Table 3 Scheme of a correlated sample generation through clusters

i j 1 2 · · · j · · · J = 50 sample

1
k = 1

k = 2

n11(1)
n12(1)

n11(2)
n12(2)

· · · · · · n11(50)
n12(50)

n11
n12

2
k = 1

k = 2

n21(1)
n22(1)

n21(2)
n22(2)

· · · · · · n21(50)
n22(50)

n21
n22

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

i
k = 1

k = 2

ni1(1)
ni2(1)

ni1(2)
ni2(2)

ni1( j)
ni2( j)

ni1(50)
ni2(50)

ni1
ni2

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

I = 12
k = 1

k = 2

n12,1(1)
n12,2(1)

n12,1(2)
n12,2(2)

· · · · · · n12,1(50)
n12,2(50)

n12,1
n12,2

m(1) m(2) · · · m( j) · · · m(50) n
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Fig. 1 RMSEs for PMCREs
of β with
Dirichlet-multinomial
(above), Random-clumped
(middle) and m-inflated
(below) distributions

corresponding to the j th cluster (column, in Table3), j = 1, ..., J = 50:

• Dirichlet-multinomial with parameters (m( j); ρ, p (β)), with ρ ∈ { 1
10 (i − 1)}10i=1;

• Random-clumped with parameters (m( j); ρ, p (β)), with ρ ∈ { 1
10 (i − 1)}10i=1;

• m( j)-inflated with parameters (m( j); ρ, p (β)), with ρ ∈ { 1
10 (i − 1)}10i=1.

For details about these distributions see Alonso et al. [1]. The values of interest
for the sample are

ni1 =
50∑

j=1

n11( j), i = 1, ..., I and ni =
50∑

j=1

(n11( j) + n12( j)), i = 1, ..., I.
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Notice that the assumptions of Theorem2.1 are held. In addition:

• If ρ = 0 (multinomial distributionwithin each cluster), then V is a diagonal matrix
since the elements of p̂ are uncorrelated. In this case, we obtain MLEs and MφEs.

• If ρ > 0, then V is not a diagonal matrix since the elements of p̂ are correlated.
In this case, we obtain PMLEs and PMφEs.

In these scenarios, the root of the mean square error (RMSE) for the PMCREs of
β are studied, considering different values of the tuning parameter λ ∈ {0, 2/3, 1, 2}.
Note that when λ = 0, the corresponding PMCRE of β is equal to the PMLE.

Results of the simulation study with 2,000 samples are shown in Fig. 1. As
expected from a theoretical point of view, the RMSE increases as ρ increases.
With independence to the distribution considered, estimators corresponding to
λ ∈ {2/3, 1, 2} present a better performance than the PMLE (λ = 0). This differ-
ence becomes more considerable for large values of ρ.

5 Concluding Remarks

In this paper we have considered the problem of estimating the parameters of the
logistic regression model for sample survey data, introducing the family of the
PMφEs that contains as a particular case the PMLE. A simulation study is car-
ried out in order to see that there are PMφEs that have a better behaviour than the
PMLE in relation to the mean square error.
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Some Multivariate Measures Based on
Distances and Their Entropy Versions

Carles M. Cuadras and Sonia Salvo-Garrido

Abstract We study some properties of the geometric variability of a set in rela-
tion with a distance. We show that the Shannon entropy is the lower bound for the
geometric variability. We prove that this quantity can be partitioned in presence of
mixtures and give a version in terms of entropy. The association between two data
sets is studied by means of distances for general data. A multivariate version of
the intraclass correlation is given and related to the correlation ratio. We obtain an
entropy version of the correlation ratio.

1 Introduction

The distances in statistics are currently used in multidimensional scaling, canonical
variate analysis, principal components analysis, biplot, cluster analysis, correspon-
dence analysis, multiple factor analysis, etc. Statistical distances are also useful in
regression, discriminant analysis and multivariate analysis of variance, see [1, 2, 7].
Moreover, we can construct probability densities with distances.

Section2 recalls classical metric scaling and the geometric variability (GV) of
a finite set with respect to a given distance. When we consider a population with a
probability density, it is shown that GV is bounded by the Shannon entropy. Section3
shows how to split the GV into several parts when the observations come from
k ≥ 2 populations. An entropy version is also given. Section4 provides amultivariate
measure of association between two data sets, defined using distances. Section5
proposes a generalization of the intraclass correlation and the correlation ratio. In
both Sects. 4 and 5, we provide suitable versions in terms of entropy.
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2 Geometric Variability Measuring Uncertainty

Let Ω = {ω1, . . . , ωn} a set with n objects or individuals. Supose that, following a
suitable procedure, we can define, a dissimilarity or distance measure,

δ : Ω × Ω → R+ ∪ {0},

providing, for each pair ωi , ω j . the real quantity δi j = δ(ωi , ω j ) such that

δi j = δ j i ≥ δi i = 0, i, j ∈ {1, . . . , n}.

We obtain a n × n distance matrix Δ = (δi j ).

Let us supose thatΔ is aEuclidean distancematrix, i.e., we canfind a configuration
of points x1, . . . , xn ∈ R

p,with coordinates xi = (xi1, . . . , xip)′, i = 1, . . . , n, such
that

δ2i j = (xi − x j )
′(xi − x j ), i, j = 1, . . . , n.

Thus the coordinates of the objects belonging toΩ provide a n × pmatrix X = [xi j ],
say, such that the Euclidean distance between each pair of rows i, j equals δi j .

In order to check that Δ is Euclidean, let In be the identity matrix, 1n the vector
of ones andHc= In − n−11n1′

n the centring matrix. Let A = − 1
2Δ

(2),G = HcAHc,

where Δ(2) = (δ2i j ). The matrix Δ is Euclidean if and only if the inner product
matrix G is positive semidefinite. Then we can perform the spectral decomposition
G = UΛ2U, with Λ diagonal, and obtain the matrix X = UΛ, which provide the
coordinates. If the eigenvalues ofG are in descending order,X contains the so-called
principal coordinates of Ω with respect to δ.

The geometric variability (GV) of the distance δ is the average

Vδ = 1
2n2

n∑

i, j=1

δ2i j . (1)

It can be proved that Vδ is related to the inner product matrix G by

Vδ = tr(G)/n. (2)

The GV Vδ is a measure of dispersion which can be interpreted as a measure of
uncertainty. To see this, let X be a random vector with density f (x), with respect to
a suitable measure, and support S ⊂ R

p. Let δ (x, y) be a distance function between
two observations of X. If the expectation exists, the GV of X with respect to δ is
defined by

Vδ (X) = 1
2 EX,X ′

[
δ2

(
X,X′)] ,

where X′ is iid as X. Note that Vδ in (1) is a U -statistic for estimating Vδ (X) . A
variant of Vδ (X) is called diversity coefficient in [12].
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Let us suppose that there exists a representation ψ : S → L of S in a Euclidean
(or separable Hilbert) space L with inner product 〈·, ·〉 and related norm || · ||, such
that δ2(x, y) = ||ψ(x)−ψ(y)||2. Then it can be proved that

Vδ (X) = E ||ψ(X)||2 − ||E [ψ(X)] ||2, (3)

which is formally similar to the variance, see [8].
Related toVδ (X) is the proximity function froman observation x to the population

represented by X. It is defined by

φ2
δ(x) = EX

[
δ2(x,X)

] − Vδ (X) .

This proximity function and the GV performs well under affine transformations. If δ

changes to δ̂,where δ̃2(x.y) = aδ2(x.y′) + b, if x 
= y, then Ṽδ(X) = aVδ(X) + b/2
and φ2

δ̃
(x) = aφ2

δ(x) + b/2. Thus we can consider suitable choices of a, b (if it is
necessary) for generating the probability density

fδ̂(x) = exp
[−φ2

δ̂
(x)

]
. (4)

For example, if X has mean μ, variance σ 2, support R and δ2(x, y) = (x − y)2,
x, y ∈ R, then Vδ (X) = σ 2, φ2

δ(x) = (x − μ)2 and

fδ̂(x) = exp
[−a(x − μ)2 − b/2

]
,

is the density of the normal N (μ, σ 2)distribution fora = 1/(2σ 2),b = 2 ln(σ
√
2π).

Therefore, we can consider a density fδ generated by δ from (4). Let us compare
fδ to the true density f of X. Using the Kullback-Leibler divergence, we have

I ( f || fδ) = EX {ln[ f (X)/ fδ(X)]}
= −H( f ) + EX

[
φ2

δ (X)
]

= Vδ (X) − H( f ) ≥ 0,

where H( f ) = EX [− ln f (X)] is the Shannon entropy. Hence, if δ is a distance
normalized to generate a density fδ , then Vδ (X) ≥ H( f ), and the Shannon entropy
is the lower bound for the GV.

For example, if X has density f with support R, then H( f ) ≤ ln(σ
√
2πe), with

equality if X is N (μ, σ 2). Thus, for any standardized distance δ generating fδ, with
GV Vδ (X) , we have

H( f ) ≤ min{Vδ (X) , ln(σ
√
2πe)}.

There is equalityVδ (X) = ln(σ
√
2πe) if the (squared) distance is (x − y)2/(2σ 2) +

2 ln(σ
√
2π), as this distance generates the N (μ, σ 2) distribution.
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Table 1 Distance-based generation of the normal, exponential and logistic distributions. In two
cases the geometric variability GV attains the entropy, showing that the distance is suitable

Distribution and
support

Squared distance Proximity
function

Generated
density

Inequality
Vδ ≥ H( f )

Any f , R π(x − y)2 π(x − μ)2 N (μ, 1/2π) πσ 2 ≥ H( f )

N (μ, σ 2),R π(x − y)2 π(x − μ)2 N (μ, 1/2π) πσ 2 ≥ ln (σ
√
2πe)

N (μ, σ 2),R 1
2σ 2 (x − y)2

+2 ln (σ
√
2π)

1
2σ 2 (x − μ)2

+ ln (σ
√
2π)

N (μ, σ 2) Vδ =
ln (σ

√
2πe)= H( f )

αe−αx , R+ x + y x e−x α−1 ≥ 1 − ln α

Log(s), R π(x − y)2 πx2 N (0, 1/2π) π3s2/3 ≥ 2 + ln s

Log(s), R |x − y|/s +
2(1 + lns)

x/s + ln s+
2 ln(1 + e−x/s)

Log(s) Vδ = 2 + ln s =
H( f )

N (μ,Σ), Rp π ‖x − y‖2 π ‖x − μ‖2 N (μ, 1
2π Ip) π tr(Σ) ≥

1
2 ln

[
(2πe)p |Σ |]

Clearly, Vδ (X) = H( f ) if f = fδ (a.e.). This always occurs if we take the
symmetric function s(x, y) = − ln f (x) − ln f (y) as “dissimilarity”. Indeed, we
can get f = fδ with other distances, such as |x − y| and √|x − y|. See Table1,
where Log(s) stands for the logistic density e−x/s/(1 + e−x/s)2.

To simplify the construction of fδ , we can understand the entropy as the average of
the number of bits, i.e., H2( f ) = EX [− log2 f (X)], which is proportional to H( f ).
The basis is 2 rather than e. Thus, after considering a distance δ and computing the
proximity function, we can take a suitable basis c providing a density and modify the
entropy. This avoid the affine transformation of δ2 and proves the following result,
where Hc( f ) = H( f )/ ln c.

Proposition 2.1 LetX be a random vector with density f and support S. Let Vδ(X)

and φ2
δ (x) be the geometric variability and the proximity function related to a dis-

tance δ. Suppose that c is a positive constant such that fδ(x) = c−φ2
δ(x), x ∈ S, is a

probability density. If Hc( f ) = EX [− logc f (X)] is finite, then

Vδ(X) ≥ Hc( f ),

with equality if fδ = f (a.e.).

However, in general, a proper distance providing the true density may not exist,
see [4, 8].

3 Partitioning the Uncertainty with Mixtures

Let us consider n = n1 + · · · + nk univariate observations of a variable. TheANOVA
identity is T = B + W, where T is the total sum of squares. Clearly,



Some Multivariate Measures Based on Distances and Their Entropy Versions 479

1

n
T = 1

n
B +

k∑

i=1

(ni
n

) 1

ni
Wi , (5)

where Wi = ∑ni
h=1(xih − xi ·)2, which satisfies ni−1Wi = (2n2i )

−1 ∑ni
h,h′=1(xih −

xih′)2 and similarly for n−1T . This is a particular case of (6).
Suppose that X is the result of observing Xi with probability wi , i = 1, . . . , k. In

other words, we consider the mixture f = w1 f1+ · · · +wk fk concerning k densities
with the same support S. Assuming that the above representation ψ : S → L exists,
the GV with respect to a distance δ is given by

Vδ (X) = V (μ1, . . . , μk) +
k∑

i=1

wiVi , (6)

where

V (μ1, . . . , μg) = 1
2

k∑

i, j=1

wiδ
2(μi , μ j )wj =

k∑

i=1

wiδ
2(μi , μ),

with μi = E [ψ(Xi )] , δ2(μi , μ j ) = ||μi − μ j ||2, μ = w1μ1+ · · · +wkμk, and
Vi = 1

2 EXi ,X ′
i

[
δ2

(
Xi ,X′

i

)]
,whereXi ,X′

i are i.i.d. with density fi (x) .We can inter-
pret Vδ (X) as the total GV, which splits into two parts: between and within groups.
This apportionment also appears in Sect. 5, see (10) and [5].

To prove (6), let us consider the above representation ψ : S → L and take μ =
E[ψ(X)], μi = E[ψ(Xi )]. Then

1
2 EX,X ′

[
δ2

(
X,X′)] = E

[‖ψ(X)‖2] − ||E [ψ(X)] ||2
= ∑k

i=1 wi E
[‖ψ(Xi ) − μ‖2]

= ∑k
i=1 wi E

[‖ψ(Xi ) − μ + μi − μi‖2
]

= ∑k
i=1 wi E

[‖ψ(Xi ) − μi‖2
] + ∑k

i=1 wi ‖μ − μi‖2 .

Another approach for apportioning the geometric variability was considered in
[12].

Next, we obtain a version of (6) in terms of entropy. As− ln x is a convex function,
from the Jensen inequality,

EXi [− ln f (X)] ≥ EXi [− ln fi (Xi )].
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Therefore
H( f ) = ∑k

i=1 wi EXi [− ln f (X)]
≥ ∑k

i=1 wi EXi [− ln f (Xi )]
= ∑k

i=1 wi H( fi ),

and the difference between H( f ) and
∑k

i=1 wi H( fi ) is positive. In terms of
Kullback-Leibler divergence, this difference is

∑k
i=1 wi I ( fi || f ). We have the fol-

lowing proposition, where we may understand H( f ) as the “total” entropy, and
similarly the other two quantities as “between” and “within” entropies, generalizing
(5) and (6).

Proposition 3.1 If f = w1 f1+ · · · +wk fk is themixture of k densities, the following
decomposition of the entropy holds:

H( f ) =
k∑

i=1

wi I ( fi || f ) +
k∑

i=1

wi H( fi ). (7)

4 Multivariate Measure of Association

Consider two data sets observed on the same Ω = {ω1, . . . , ωn}. For the first set
suppose that, by means of a distance function δx , we obtain a n × n distance matrix
Δx . Then we findAx = − 1

2Δ
(2)
x ,Gx= HcAxHc withGx semidefinite positive. Thus

Gx = UΛ2
xU

′ and we get X = UΛx . the n × p matrix X containing the principal
coordinates of Ω with respect to δx . For the second data set, suppose that, by means
of a distance function δy, we similarly obtain a n × n distance matrix Δy and find
Ay,Gy, where Gy is also semidefinite positive. Thus Gy = VΛ2

yV
′ and we get

Y = VΛy , the n × q matrixY containing the principal coordinates ofΩ with respect
to δy .

Weaim to define a coefficient of association between both data sets in terms ofGV.
Let us define the joint distance between two individuals ωi , ω j by taking principal
coordinates xi , y j , (see [6]):

δ2xy(i, j) = δ2x (i, j) + δ2y(i, j) − (xi − x j )Λ
−1
x X′YΛ−1

y (yi − y j )
′.

The related inner product matrix is

Gxy = Gx + Gy − 1
2 (G

1/2
x G1/2

y + G1/2
y G1/2

x ).

From tr(Gxy) ≤ tr(Gx )+ tr(Gy)wehaveVδxy ≤ Vδx + Vδy ,with equality ifX
′Y = 0,

i.e., the columns ofX are orthogonal to the columns ofY.Also δxy = δx = δy if both
distances are equal, so Vδxy = Vδx = Vδy . Thus a measure of association is
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AV = 2
Vδx + Vδy − Vδxy

Vδx + Vδy

,

which satisfies 0 ≤ AV ≤ 1. If we standardize the distances to Vδx = Vδy = 1, this
measure reduces to AV = 2 − Vδxy . In the univariate case p = q = 1 we have AV =
r, where r is the correlation coefficient.

Now suppose that f (x), g(y) are the probability densities of two observations
x, y of the random vectors X,Y, respectively. Let h(x, y) be the joint density, i.e.,
the density of an observation of (X,Y). It is well-known that H(h) ≤ H( f ) +
H(g). If there is stochastic independenceh(x, y) = f (x)g(y), then H(h) = H( f ) +
H(g) and if f = g then H(h) = H( f ) = H(g). This suggests a general measure
of dependence similar to AV .

Proposition 4.1 Suppose 0 ≤ min{H( f ), H(g), H(h)} < ∞. A measure of asso-
ciation AE in terms of entropy, which satisfies 0 ≤ AE ≤ 1, is given by

AE = 2
H( f ) + H(g) − H(h)

H( f ) + H(g)
,

See [3], for other distance-based measures of multivariate association.

5 Multivariate Intraclass Correlation

Consider the random effects model

yi j = μ + Ai + ei j , i = 1, . . . , k, j = 1, . . . , ni ,

where Ai is a r.v. such that E(Ai ) = 0, var(Ai ) = σ 2
A, i = 1, . . . , k, E(ei j ) = 0,

var(ei j ) = σ 2. Assuming complete independence, the intraclass correlation coeffi-
cient ρI is defined as the ordinary correlation between two observations yi j , yi j ′
belonging to the same class or group. It is readily proved that

ρI = σ 2
A

σ 2
A + σ 2

.

Let B andW the sums of squares between andwithin groups, with k − 1 and n − k
degrees of freedom, respectively. Themean squares are given by B = B/(k − 1) and
W = W/(n − k), where n = n1 + · · · + nk . Following [9], ρI can be estimated by

ρ̂I = B − W

B + (n0 − 1)W
, (8)
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where n0 =
(
n − ∑k

i=1 n
2
i /n

)
/(k − 1). Note that n0 = n1 = · · · = nk in the bal-

anced case.
It is worth relating ρ̂I to the correlation ratio η̂2. Since B/W = η̂2/(1 − η̂2), a

little algebra shows that

ρ̂I = (n − 1)̂η 2 − (k − 1)

(n − kn0 + no − 1)̂η 2 + (n0 − 1)(k − 1)
. (9)

Working with p variables the MANOVA identity is T = B + W. If X is the full
n × p datamatrix obtained via principal coordinate analysiswith respect to a distance
δ, then T = X′X and the inner product matrix isG = XX′. As tr(XX′) = tr(X′X), a
multivariate version of (5) holds.

Similarly, we can find the principal coordinates Xi in the group i . We haveWi =
X′

iXi and, since tr(X′
iXi ) =tr(XiX′

i ), from (2), we have

Vδ(within i) = 1
2n2i

ni∑

h,h′=1

δ2h,h′(i) = 1
ni
tr(Wi ), (10)

where δh,h′(i) stands for the distance between two observations h, h′ within the same
group i. A similar expression holds for Vδ(total) concerning the n observations. If
we combine (2) and (5), we get the sample version of (6):

Vδ(total) = Vδ(between) +
k∑

i=1

(ni
n

)
Vδ(within i),

where Vδ(total) and Vδ(within i) can be obtained directly from the given distances,
whereas Vδ(between) can be found by subtraction.

A multivariate generalization of the above intraclass correlation (9) is

Φ̂I = tr(B)/(k − 1) − tr(W)/(n − k)

tr(B)/(k − 1) + (n0 − 1)tr(W)/(n − k)
.

For general data described by distances between pairs of observations, the relation
between tr(B), tr(W) and the geometric variability, suggests the general intraclass
correlation given by

Φ̂I = Vδ(between)/(k − 1) − ∑k
i=1 Vδ(within i)/(n − k)

Vδ(between)/(k − 1) + (n0 − 1)
∑k

i=1 Vδ(within i)/(n − k)
,

where n0 =
(
n − ∑k

i=1 n
2
i /n

)
/(k − 1).

Since Φ̂I depends on the average sample size n0, it could not be possible to get
the entropy version of this coefficient. However, ρ̂I is related to the correlation
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ratio η̂ 2 = B/(B + W ), see (9), and for this coefficient an entropy version can be
obtained.

First, a multivariate generalization using distances is given by η̂2 = Vδ(between)/
Vδ(total). The entropy version, taking into account the mixture f = w1 f1+ · · · +
wk fk, see (7), is next proposed. This measure satisfies 0 ≤ η2

E ≤ 1. Clearly, η2
E = 0

if wi = 1 for some i and η2
E = 1 if H( fi ) = 0 for all i.

Proposition 5.1 The correlation ratio expressed in terms of entropy is given by

η2
E =

∑k
i=1 wi I ( fi || f )

H( f )
.

6 Conclusions

There are many distances available in multivariate analysis. Often, the choice is
heuristic and ignores the underlying probability distribution. Flury [10] claims that
the correct approach in classification should be performed using probabilitymixtures,
rather than clustering algorithms. Indeed, if the distance generates a probability
density close to the true density, the choice is good.Anopenquestion is to testwhether
the difference between the true density and the generated density, is significant, see
[11].

The decomposition of the variability in the presence of several groups, can be
clarified and generalized with distances and entropies. Also, some useful measures
of association, intraclass correlation and correlation ratio, can be expressed bymeans
of distances and entropies.

Although we suppose continuous distributions, most results obtained here can be
adapted to the discrete case. For example, suppose a multivariate Bernoulli distrib-
ution concerning k events E1, , . . . , Ek, with probabilities p1, . . . , pk . If we choose
the distance δ(Ei , E j ) = 2 if i 
= j, then the geometric variability is the Gini-
Simpson entropy (G-S) 1 − ∑k

i=1 p
2
i . We can obtain discrete versions of the above

results, for example, an inequality concerning G-S and Shannon entropies, and the
apportionment of G-S in the presence of several groups.
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Cryptographic Uncertainness: Some
Experiments on Finite Semifield Based
Substitution Boxes

Ignacio F. Rúa and Elías F. Combarro

Abstract Substitution boxes (S-boxes) are an important part of the design of block
ciphers. They provide nonlinearity and so the security of the cipher depends strongly
on them. Some block ciphers use S-boxes given by lookup tables (e.g., DES) where
as others use S-boxes obtained from finite field operations (e.g., AES). As a general-
ization of the latter, finite semifields (i.e., finite nonassociative division rings) have
been suggested as algebraic structures from which S-boxes with good cryptographic
properties might be obtained. In this paper we present the results of experiments on
the construction of S-boxes from finite semifields of orders 256 and 64, using the
left and right inverses of these rings.

1 Introduction

[...] a new science, called Criptology, arises. It has a field devoted to encryption (Cryptog-
raphy) an another one to decryption (Cryptanalysis). Its origins are as old as humanity:
remember the writing on a strip of parchment wrapped around a staff or Lacedaemonian
‘scytale’; or the Caesar cipher consisting on a constant shifting of the letters of the alphabet.

These words are part of the opening lecture of the academic year 1996–1997
delivered byPedroGil atUniversity ofOviedo [7] (andmostly translated toEnglish in
Part I of this book). The lecture,whichwas titled “TheMathematics of theUncertain”,
had a first part devoted to randomness, Probability and Statistics. The second part
dealt with Information Theory and the Mathematics of communication (it even had
a third and final part dedicated to fuzzy sets). It is difficult to understand modern
Cryptographywithout a probabilistic point of view [8]. The first author to systematize
this approach was Claude Shannon, the father of Information Theory. Appart from
introducing the concepts of entropy and information in the context of communication

I. F. Rúa (B)
Departamento de Matemáticas, Universidad de Oviedo, Oviedo, Spain
e-mail: rua@uniovi.es

E. F. Combarro
Departamento de Informática, Universidad de Oviedo, Oviedo, Spain
e-mail: efernandezca@uniovi.es

© Springer International Publishing AG 2018
E. Gil et al. (eds.), The Mathematics of the Uncertain, Studies in Systems,
Decision and Control 142, https://doi.org/10.1007/978-3-319-73848-2_45

485



486 I. F. Rúa and E. F. Combarro

in noiseless and noisy channels [20] (just as mentioned in Pedro Gil’s lecture1),
he considered a probabilistic model of perfect secrecy [21]. Following this idea,
semantic security (which is, from a certain point of view, the theoretical notion of a
secure cryptographic system) is founded on a probabilistic setting [9].

Block ciphers (which transform a block of bits of fixed size into another block of
the same size with the help of a bit-key of also fixed, perhaps different, size) are a
symmetric (i.e., private) key cryptographic primitive used inmany other designs (e.g.,
cryptosystems, message authentication codes, hash functions,...) [14]. Substitution
boxes (called S-boxes) are an important part of the design of block ciphers. They
provide nonlinearity to the transformation and so the security of the cipher depends
strongly on them. Some block ciphers use S-boxes given by lookup tables (e.g.,
DES) where as others use S-boxes obtained from finite field operations (e.g., AES)
[22]. As a generalization of the latter, finite semifields (i.e., finite nonassociative
division rings) have been suggested as algebraic structures from which S-boxes with
good cryptographic properties might be obtained [5]. This is not the first time that
nonassociative structures have been considered in a cryptographic setting (just recall,
for instance, [6, 10, 13, 16]).

In this paper, following the path of [5], we present the results of experiments on
the construction of S-boxes from finite semifields of order 256, using the left and
right inverses of these rings.We process all finite semifields of such an order and rank
4 (and not only the 28 representatives up to isotopy considered in [5, Section5.3]),
and also all finite semifields of dimension 6 over F2 (as this is the biggest dimension
for which all finite semifields of characteristic 2 have been classified). The paper is
organized as follows: in Sect. 2 basic notions of block ciphers (including properties of
S-boxes) are reminded. Section3 is devoted to finite semifields and their properties.
Finally, in the last section we collect the results obtained from our computational
experiments.

2 Block Ciphers and Substitution Boxes

A block cipher is a deterministic cipher E : {0, 1}b × {0, 1}k → {0, 1}b which trans-
forms a block M of b bits of fixed size into another block C of the same size with the
help of a key K of also fixed, perhaps different, size k [14]. Well-known examples
of block ciphers include the previous and the current NIST standards for encryption
data: DES and AES [22]. For instance, in DES b = 64, k = 56, whereas in AES
b = 256, k ∈ {128, 196, 256}. These ciphers are of utmost importance because, as
pointed out in [2],

1Incidentally, let us mention that we had the privilege of learning the basic aspects of Probability,
Statistics and Information Theory from Pedro himself, in two courses delivered at University of
Oviedo some twenty years ago.
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Block ciphers are the “work horse” of practical cryptography: not only they can be used to
build a stream cipher, but they can be used to build ciphers with stronger security properties
[...], as well as many other cryptographic primitives.

A common design of block ciphers is that of iterated ciphers, where a round func-
tion is used repeatedly r times to process the block of bits M using a set of round
keys obtained from the master key K with the help of an auxiliary key schedule algo-
rithm (e.g., in DES r = 14, in AES r ∈ {10, 12, 14}). In these ciphers, the ultimate
transformation of the block M depends on the round function F . Traditionally, the
function F can be of Feistel type (such as in DES) or a Substitution-Permutation
Network (such as in AES) [22]. In either case, both use substitution boxes in the
design of F .

A substitutionbox (calledS-box) is afixedboolean function S : {0, 1}n → {0, 1}m ,
where the parameters n,m depend on the actual cipher considered (for instance, in
DES n = 6,m = 4, in AES n = m = 8). S-boxes are a core part of the design of
block ciphers as they provide nonlinearity to the transformation. The security of the
cipher (e.g., robustness against differential or linear attacks) depends strongly on
them. Some block ciphers use S-boxes given by lookup tables (e.g., DES) where
as others use S-boxes obtained from finite field operations [22]. For instance, AES
S-boxes identify the set {0, 1}8 with the Galois field F28 of 256 elements (multiplica-
tion is taken modulo the polynomial x8 + x4 + x3 + x + 1) and before applying an
F2−affine transformation, the input element is changed into its multiplicative inverse
in F28 (the zero element is replicated).

Different properties of an S-box can be introduced in order to determine its cryp-
tographic utility, and somultiple criteria can be found in the literature (e.g., [15, 19]).
In this paper we study properties #1, #3 and #4 in [5] for S-boxes of sizes 256 and
64. Namely, we identify the sets {0, 1}8 and {0, 1}6 with F8

2 and F
6
2, and consider

1. Bijectivity: n = m = 8 (alt. n = m = 6), and the S-box must be bijective.
2. Non-linearity: the linear invariant λS is defined as

λS = max{ | − 2n−1 + #{x ∈ F
n
2 : (a|x) = (b|S(x))}| : a, b ∈ F

n
2, b �= 0}

where (a|x) denotes the usual inner product in Fn
2, n = 8 (alt. n = 6).

3. The differential invariant δS is equal to

δS = max{ #{x ∈ F
n
2 : S(x) ⊕ S(a ⊕ x) = b} : a, b ∈ F

n
2, a �= 0}

where a ⊕ x denotes bitwise addition mod 2, and n = 8 (alt. n = 6).

With respect to these properties AES S-boxes are optimal in the sense that they are
bijective, have minimal non-linearity λAES = 16, and minimal differential invariant
δAES = 4 among non-APN functions [5]. Also, λF64 = 8 and δF64 = 4.
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3 Finite Semifields

In this section we collect definitions and facts on finite semifields [4, 11]. A finite
nonassociative ring D is called finite semifield, if the set of nonzero elements D∗
is closed under the product, and it has an identity element. In such a case D∗ is a
multiplicative loop. That is, there exists an element e ∈ D∗ (the identity of D) such
that ex = xe = x , for all x ∈ D and, for all a, b ∈ D∗, the equation ax = b (resp.
xa = b) has a unique solution. Let us emphasize that these left and right inverses
might be different elements of the finite semifield. This is an important fact apparently
obviated in [5, 6].

Finite semifields are nonassociative finite division rings and, apart from finite
fields, proper finite semifields exist. The characteristic of a finite semifield D is
a prime number p, and D is a finite-dimensional algebra over Fq (q = pc) of
dimension d, for some c, d ∈ N, so that the order of D is |D| = qd . Moreover,
Fq can be chosen to be contained in the associative-commutative center Z(D) of D.
In this paper we will be interested in finite semifields of order 256, i.e., of dimension
8 over its center Z(D) = F2 or of rank 4 (i.e., of dimension 4 over F4 ⊆ Z(D)). The
finite field F256 is included in the latter case. Also, we will be interested in semifields
of order 64, i.e., 8-dimensional over F2. E.g., the Galois field F28 .

Isomorphism of finite semifields is defined as usual for algebras, and the classifi-
cation of finite semifields up to isomorphism can be naturally considered. Because
of the connections to finite geometries [1], the following notion must be considered.
An isotopy between two finite semifields D1 and D2 is a triple (F,G, H) of bijective
Fq−linear maps D1 → D2 such that H(ab) = F(a)G(b), for all a, b ∈ D1.Clearly,
any isomorphism between two semifields is an isotopy, but the converse is not neces-
sarily true. From any finite semifield D, a projective planeP(D) can be constructed
[11]. Theorem 6 in [1] shows that isotopy of finite semifields is the algebraic trans-
lation of the isomorphism between the corresponding projective planes.

By [11, Theorem 5.2.1], up to six projective planes can be constructed from a
given finite semifield D using the transformations of the group S3. Actually, S3 acts
on the set of semifield planes of a given order producing, for each semifield D, its
Knuth orbit [11]. So, the classification of finite semifields can be reduced to the
classification of the corresponding Knuth orbits.

In the particular case of semifields of order 256 and rank 4, i.e., with center
containingF4, a computer-assisted classificationwas presented in [3]. A total amount
of 28 Knuth classes were obtained. The actual number of semifields is much bigger.
Namely, the number of isotopy classes is 51 and the number of nonisomorphic finite
semifields containing F4 is 75939 (these numbers were obtained with the techniques
describe in [3]). Unfortunately, a complete classification of finite semifields of order
256 has not been achieved (not even of order 128 [18]). Moreover, it is even unknown
how many of them might there exist (the number must be clearly much bigger than
those 75939 containing F4 in the center).
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The biggest dimension for which all finite semifields of characteristic 2 have been
classified is 6 [17]. There are 80 Knuth orbits of such an order containing 322 isotopy
classes for a total amount of 376971 semifields.

4 Some Experiments on Finite Semifield Based S-boxes

Inspired by the S-boxes of AES, Dumas and Orfila propose in [5] the construction of
S-boxes from the multiplicative structure of finite semifields. Namely, they suggest
“using the inverse function” [5, Section 5.3]. As was noticed in the previous section,
a distinction between left and right inverse is needed when dealing with (noncom-
mutative) finite semifields. So, given a finite semifield D of order 256 (alt. 64) and
identity e, we have considered the two following S-boxes:

Sr : D → D
a �= 0 → b s.t. ab = e
0 → 0

Sl : D → D
a �= 0 → b s.t. ba = e
0 → 0

It is clear that, when D is commutative (in particular, if S is the Galois field F28 or
F26 ), both S-boxes coincide. It is also evident that, because D is a finite semifield,
the bijectivity property holds in both cases. In order to compute the linear λSr , λSl
and differential δSr , δSl invariants we identify the elements of D with those of the
set F8

2 (alt. F6
2). This can be straightforwardly done as the representation of finite

semifields introduced in [3] is exactly that one. Moreover, in Table2 of such a paper
it is contained a complete description of all finite semifields of order 256 and rank
4, i.e., and center containing the finite field F4 [3, Section4.2], up to Knuth orbit.
These are the semifields also considered in [5, Section5.3], where it is claimed that

We thus have also tried to construct S-boxes based on all these 28 semifields up to isotopy,
by using the inverse function.

It appears that the authors have only consider the 28 representatives in their con-
struction and at most one of the two possible “inverse function”. As it was said in the
previous section, up to isomorphism, the actual number of finite semifields or order
256 with center containing F4 is much bigger. So, we have used the computational
machinery described in [3, Section3] to generate all those finite semifields. For each
one of them, we have explicitly constructed the aforementioned S-boxes Sr and Sl .
Since we are interested in S-boxes with “good” cryptographic properties, we have
taken as a reference the invariants for the AES S-box (λAES = 16, δAES = 4). Let us
remark the following fact.

Proposition 4.1 λSl = λSr , for any finite semifield D of order 2n.

Proof For all x, y ∈ D, we have that y = Sl(x) iff x = Sr (y). Therefore, for all
nonzero a, b ∈ F

n
2:
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#{x ∈ F
n
2 : (a|x) = (b|Sl(x))} = #{y ∈ F

n
2 : (b|y) = (a|Sr (y))}.

On the other hand, since (0|x) = 0, for all x ∈ F
n
2, and because the maps Sl and Sr

are bijections, we have:

#{x ∈ F
n
2 : 0 = (c|Sl(x))} = #{y ∈ F

n
2 : 0 = (c|Sr (y))}

for all 0 �= c ∈ F
n
2. Hence,

λSl = max{ | − 2n−1 + #{x ∈ F
n
2 : (a|x) = (b|Sl(x))}| : a, b ∈ F

n
2, b �= 0}

= max{ | − 2n−1 + #{y ∈ F
n
2 : (b|y) = (a|Sr (x))}| : a, b ∈ F

n
2, a �= 0} = λSr . �

Our computations show that none of the generated S-boxes had a pair of invari-
ants matching those of the finite field F28 . So, no S-box with “good” cryptographic
properties was obtained from the constructions Sr or Sl on semifields of order 256
containing F4 in the center. Let us mention, for the record, that the linear and dif-
ferential parameters might be different for isotopic non-isomorphic finite semifields.
This means that these parameters are not isotopy invariants, such as the center or
nuclei sizes [12]. So, for instance, a full computation of the linear and differential
parameters for finite semifields isotopic to Semifield #II of [3, Table1], shows that
we can find parameters (λSr , δSr ) = (38, 12), (38, 14), (36, 10), (34, 10), . . . .

The construction of S-boxes Sr and Sl was also applied to all finite semifields of
order 64.Remember that the parameters of thefinite field of such anorder areλF64 = 8
and δF64 = 4. The computational results show that there are some proper semifields
with δSl = 4.Namely, semifields falling inKnuth orbits #IV,V,VIII,X.Among these,
only 6 proper semifields in Knuth orbit #V share the pair (λSr , δSr ) = (8, 4) with the
finite field F64. We have plotted in the following graph (Fig. 1) all pairs (λSr , δSr ) and
(λSl , δSl ) found in our study.

We finish this short note by showing one of the S-boxes with the same parameters
of the finite field S-box SF64 , but constructed from left inverses in a finite semifield
of order 64.

Table 1 An S-Box with
minimal linear and
differential parameters
(constructed from a proper
semifield of order 64)

Sl 0 1 2 3 4 5 6 7

0 00 40 73 24 30 45 62 27

1 41 70 55 47 05 03 46 32

2 15 37 31 11 17 66 74 06

3 72 34 57 02 10 35 14 64

4 44 77 43 67 71 36 53 25

5 20 21 13 56 33 54 01 61

6 60 50 26 12 75 16 76 65

7 23 52 51 22 42 63 07 04



Some Experiments on Finite Semifield Based Substitution Boxes 491

Fig. 1 Parameters for
semifields S-boxes Sr and Sl
of order 64
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Conclusion

We have explicitly constructed S-boxes from proper finite semifields of orders 256
and 64, and computed their linear and differential parameters. The results in the
case of 256 elements are not satisfactory, since none of these S-boxes have the same
minimal invariants as those of the AES S-box. This is not surprising since only rank 4
semifields of such an order were analyzed, as this was the only subclass of semifields
of order 256 for which a complete classification has been achieved so far. On the
other hand, the case of order 64 semifields (for which a full classification is known)
is more promising. Some S-boxes have been constructed with the same parameters
of those obtained from the Galois field F64.
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The Roll of Dices in Cryptology

María Isabel González Vasco, Santos González, Consuelo Martínez
and Adriana Suárez Corona

Abstract Probability plays a fundamental role in complexity theory, which in turn
is one of the pillars of modern cryptology. However, security practitioners are
not always familiar with probability theory, and thus fail to foresee the impact of
(seemingly small) deviations from the theoretical description of a scheme at the
implementation level. On the other hand, many cryptographic scenarios involve
mutually distrusting parties, which need however to cooperate towards a joint goal.
In order to attain assurance of the good behavior of one party, interactive validation
methods (also known as interactive proof systems) are employed. Randomness is at
the core of suchmethods,whichmost oftenwill only provide relative assurance, in the
sense that they will establish correctness in a probabilistic way. In this paper we will
briefly discuss the role of probability theory within modern cryptology, reviewing
probabilistic proof systems as a powerful tool towards efficient protocol design, and
provable security, as an invaluable framework for deriving formal security proofs.

1 Introduction

As neatly put down in words by O. Goldreich [8], “both in mathematics and in
real life, proofs are meaningful only with respect to commonly agreed principles of
reasoning”.
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In other words, verification methods actually determine whether a certain thread
of reasoning is actually a proof. While in logic such verification methods or proof
systems are explicited by (static) axioms and rules of inference, inmodern complexity
theory verification methods are often interactive and have a computational nature.
Cryptographic evidences are frequently constructed under this premises; its final
goal is to establish the validity of a claim in a probabilistic way (i.e., not in absolute
terms) and do not build on immovable principles, but rather ground on interactive,
dynamic processes. Probabilistic proof systems are not theoretical formalisms, but
rather cryptographic constructions in themselves, through which, for instance, users
engaging in a protocol can verify that others have faithfully followed the prescribed
steps in the protocol specification.

On the other hand, security proofs in cryptography usually try to link the robust-
ness of a cryptographic construction to well-studied mathematical problems that are
considered hard, such as factoring large numbers or computing discrete logarithms
in finite fields or elliptic curves. Such reductions are in most cases probabilistic: it
is evidenced that if an adversary can violate a certain security property with non-
negligible probability (above his presumed trivial success rate), then one could use
that adversary as an oracle to solve the problem that is believed to be hard. Thus,
cryptographic proofs only provide security attestation which is valid as long as the
computational assumption holds. For instance, if quantum computers were indeed
realized various cryptographic schemes relying on the RSA, discrete logarithm and
related assumptions would be broken see [18]. Nevertheless, even when proofs are
not universal statements, they provide strong arguments in favor of the security of
the corresponding protocols if the model is reasonable and appropriate.1

Ultimately we want to show how probability and algebra collaborate, contrarily
to what one could initially think, to improve methods and results in cryptography,
where both disciplines play an essential role. This is not the only case. Just tomention
another important example let’s say a fewwords about expanders in graph theory and
refer readers to [13] for details. The existence of expanders was proved using proba-
bilistic methods, what was not enough for applications, where explicit constructions
of such graphs were needed. The first explicit construction was made by Margulis,
using methods of group representations.

In this paper we will concentrate in cryptography. In the next section we will
introduce probabilistic proof systems and try to give a glimpse of their fascinating
role inmodern cryptography, while the last section is devoted to the provable security
paradigm for deriving cryptographic proofs.

2 Probabilistic Proof Systems

Cryptographic constructions should protect honest users from misbehaving partic-
ipants that maliciously deviate from the prescribed protocol specifications. Prob-

1The provable security paradigm has been questioned by different authors, see [15].
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abilistic proof systems allow users to produce evidence of their correct behavior,
disclosing (most surprisingly!) often nothing else than the correctness of the under-
lying computation. We give a simplified introduction to this topic in this section; as
our exposition will be rather informal, we refer the interested reader to [7, 8] for
precise definitions and proofs.

2.1 Interactive Proof Systems

Two actorswill be engaged in an interactive proof system; a prover (which is assumed
to be computationally unbounded) and a verifier, bounded computationally in some
sense.

Definition 2.1 An interactive proof system (IPS) for a set S is a two-party procedure,
involving a verifier V and a prover P which interact under the following conditions:

• V executes a probabilistic polynomial time strategy,
• P executes an unbounded strategy,
• Completeness: for every s ∈ S, the verifier V always accepts after interacting
with the prover P on common input s,

• Soundness: for every x /∈ S, and every strategy of the prover P , the verifier V
will reject with probability P ≥ 1

2 after interacting with the prover P on common
input x .

Example 2.1 In Fig. 1 we can see a simple construction for an IPS for quadratic
residuosity [1].2 Recall that given n ∈ Z, x ∈ Z

∗
n is a quadratic residue modulo n if

there is some y ∈ Z such that x = y2 (mod n). No efficient algorithm is known for
deciding whether an integer x is actually a quadratic residue modulo n or not, unless
the factorization of n in prime factors is known (see, for instance, the discussion in
Chap.2 of [14]).

It is easy to see that the above proof is complete, as indeed whenever x is really a
quadratic residue, the verifier will accept with probability one. Soundness is some-
what less trivial to argue, for we need to justify that for every possible strategy
of the prover, if x is not a quadratic residue modulo n, the verifier will reject the
proof with probability at least 1

2 . Let y be the value chosen by the prover in step
1 of the interaction. Let us first assume x is not a quadratic residue, then P must
decide whether to follow step 1 from the interaction faithfully or not. Assume he
does, and b = 1 (this happens with probability 1

2 , as the verifier is honest in its own
interest). At this, the verifier will only accept if z2 = xy, which is impossible since
(zu−1)2 = z2u−2 = z2y−1 = x , given that x is not a quadratic residue. Thus, the ver-
ifier rejects with probability at least 1

2 . However, if in step 1 of the interaction y is

2We follow standard notation and denote by Z∗
n the group of units in {1, . . . , n − 1}, where product

is defined modulo n. Also, as standard, throughout the paper, by “u.a.r.” we mean uniformly at
random.
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Fig. 1 An IPS for quadratic residuosity

not a quadratic residue (that is, P deviates from the protocol specification here) and
b = 0, the verifier will never accept (for the prover cannot provide z with z2 = y).
As a result, in either case the probability of rejection is at least 1

2 .

2.2 Zero Knowledge

The notion of zero knowledge must be understood information-theoretically; infor-
mally, a cryptographic protocol will have this property if no participant or observer
may gain any information from its execution besides the prescribed output.

Goldwasser,Micali andRackof gave in [10] a formal definition ofZero Knowledge
IPS: it essentially states that whatever a verifier V can derive from the input x ∈ S,

its prior knowledge and the interaction with P , could as well have been computed
without any interaction with P . Thus, for proving that an IPS protocol is zero-
knowledge, we had to argue that the View of V on x , defined as the concatenation
of all messages sent from P to V as well as all random bits used by V during the
execution of the protocol on x can actually be simulated without P . For the concrete
example of Fig. 1, this boils down to proving that given x , we can construct elements
following the same distribution as those output by the actual prover. This is indeed
the case: in the first step, the simulator chooses u and further selects a bit b1 (both
u.a.r.). Now, if b1 = 0, he sets y = u2, while if b1 = 1 he sets y = x−1u2. Assume
further that the bit chosen by the verifier is b = b1 (otherwise, simulation is aborted),
in this case, the simulator sets z = u. It is easy to see that the simulated interaction
follows the same distribution than the real interaction, for in any case the elements
y and z output by the simulator/prover will be distributed u.a.r. in Z

∗
n .
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Fig. 2 A IPS for Graph Non-Isomorphism

2.3 The Complexity Class IP

If the error probability in the soundness condition of an interactive proof system is
nonzero, it is typically called a probabilistic proof system.3 There is a fundamental
reason for this, as proven in Proposition 9.2. of [8]: whenever the soundness error is
zero, the considered set S is in the complexity classNP; namely, any object can be
proven to belong to S by providing an evidence that can be checked in (deterministic)
polynomial time.

If we denote by IP the class of sets having interactive proof systems, it is
widely believed that NP is a proper subset of IP. A nice illustrative example of
the intuition behind that separation is the set S of non-isomorphic graphs, which can
be proven to belong toIP, while no deterministic (non-interactive) proof is known
for that set (i.e., S is not known to be inNP). Thus, randomness is essential in the
above definition; there stems the power of probabilistic proof systems.

Example 2.2 In Fig. 2 we depict an IPS for Graph Non-Isomorphism [11]. Namely,
a prover P wants to convince a verifier V that two graphs are not isomorphic. At this,
given a graph G, by a random graph isomorphic to G we mean the graph defined
by selecting uniformly at random a permutation σ on the set of vertices of G and
applying it (in the natural way) to the set of edges of G.

It is easy to see that the IPS in Fig. 2 is correct and sound4; yet, it is not zero-
knowledge; a cheating verifier may gain information from the interaction (this is the
case if, for instance, he has not constructed the Hi himself from the first step, and
thus ignores the bits αi ).

3Actually, the terms interactive and probabilistic are often used as synonyms in this setting.
4For soundness: if G0 and G1 were isomorphic, we take that αi will equal 1 with probability 1

2 ; as
a result, the probability that the verifier does not reject in this case is at most 1

2m .
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3 Provable Security

One of the most challenging problems in cryptography is the design of constructions
that can be proven secure in a rigorous way and not only based on heuristics or on
their resistance to some attacks. This last approach has often had unfortunate con-
sequences: many proposed protocols that were designed preventing specific attacks,
could however be cracked via unforeseen cryptanalytic techniques. Provable security,
introduced by Goldwasser and Micali [9], tries to specify the security requirements
of cryptographic constructions through a meaningful formal model capturing what
“security” actually means in each concrete application scenario. Thus, a formal secu-
rity model should specify two points in a well-motivated way:

• Adversarial goal: captures what it means to be “secure” or alternatively, when a
system is considered broken.

• Adversarial model: captures how an adversary can interact with the users of the
system, i.e., which capabilities the adversary has (computational power and avail-
able information).

Regarding adversarial capabilities, a system is computationally secure if only
adversarieswith bounded computational resources are considered.On the other hand,
a system is unconditionally secure or information-theoretically secure if it is secure
against adversaries with unbounded computational power [23]. While the security
proofs of the first kind of systems are based on complexity theory, assuming the
hardness of some computational problems, proofs of unconditional security are based
on information theory.

3.1 Information Theoretic Security

Information theory goes back to Claude Shannon [17] in the late 1940s. It is one of
the foundational theories behind modern computer science and has applications in
many areas, including cryptography (see [16, 24]). In this section we will give an
overview of the concepts of information theory needed to understand its relationship
to cryptography. We follow mainly [20, 22], and heartily refer the interested reader
to the inspiring note (in Spanish) [6].

Our driving example will be private key encryption. We formalize a private key
encryption scheme as a tuple of algorithms (KeyGen,Enc,Dec), as follows:

• KeyGen: the key generation algorithm produces a key k, given a security para-
meter.

• Enc: the encryption algorithm, on input a plaintext m and a key k, outputs a
ciphertext c.

• Dec: the decryption algorithm, given a ciphertext c and a key k, recovers a plaintext
m.
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In this setting, we also need to specify the sets of possible plaintexts P , keys
K and ciphertexts C . These sets can be thought of as discrete random variables,
and we will consistently thus denote by Pr(P = m),Pr(K = k) and Pr(C = c) the
probability of P, K and C taking values m, k and c, respectively. Intuitively, for an
encryption scheme to be considered secure we would like that a ciphertext c does
not reveal any information about the corresponding plaintext m.

Definition 3.1 (Perfect secrecy [17]) An encryption scheme has perfect secrecy if

Pr(P = m | C = c) = Pr(P = m)

for all plaintext m ∈ P and all ciphertexts c ∈ C .5

This definition implies that if an encryption scheme is perfectly secure, then
|K | ≥ |C | ≥ |P|.
Theorem 3.1 (Shannon [17]) Let � = (KeyGen,Enc,Dec) be an encryption
scheme with |K | = |C | = |P|. Then, it provides perfect secrecy if and only if:

• every key is used with the same probability, i.e., KeyGen simulates the uniform
distribution in K ,

• for each plaintext m ∈ P and each ciphertext c ∈ C there is a unique key k ∈ K
such that Enck(m) = c.

Definition 3.1 about perfect secrecy can be rewritten in terms of entropy and
information: entropy is a mathematical measure of information or uncertainty about
a random variable X . Similarly,mutual informationmeasures howmuch information
a random variable provides about another one, i.e. how much the knowledge of one
of these variables reduces uncertainty about the other one.6 An encryption scheme
has perfect secrecy if the mutual information between P and C is zero. This also
implies that the entropy of C must be no smaller than that of P .

3.2 Computational Security

Security definitions are normally defined through a “security game” between two
players: a challenger and an adversary. Both players are probabilistic processeswhich
communicate with each other. Thus, the game can be modeled as a probability space.
The challenger generates the parameters needed in the system and may answer to
queries the adversary makes to different oracles, modeling the attacker’s capabilities.
At the end of the game, it is determined whether the adversary wins, provided some
particular event Succ occurs, which means the adversary breaks the scheme. The

5Here Pr(P = m | C = c) denotes conditional probability, i.e., the probability of P = m once we
know the ciphertext is c.
6A formal discussion on entropy and information can be found in [12].
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proof must assess that the probability of an adversary winning the security game
is sufficiently small (i.e. negligible in the security parameter considered), or more
generally, that this probability differs only negligibly from a given value (that reflects
his chances of trivially breaking the scheme).

We will see an example of a security model for signature schemes see [5]. First,
we present the formal definition and an example of a signature scheme.

Definition 3.2 (Signature Scheme) A digital signature scheme is a triple of algo-
rithms (KeyGen,Sign,Verify) as follows:

• KeyGen: the key generation algorithm produces a pair of keys (sk, vk), where sk
is a private signing key and vk is the verification key, which is public.

• Sign: the signing algorithm, on input a plaintext m and a signing key sk, outputs
a signature σ .

• Verify: the verification algorithm, given a signature σ , a verification key vk and
a plaintext m, outputs either a 1, if the signature is valid, or a 0 otherwise.

Example 3.1 An example of digital signature algorithm is the RSA Full Domain
Hash signature scheme [3], that is shown in Fig. 3.

Themost standard security definition for signature schemes is existential unforge-
ability under adaptive chosen message attack (EUF-CMA), that is definedbelow.This
notion captures the intuition that the adversary should not create on its own new valid
signatures, even having access to a signing oracle that may sign arbitrary messages.

Definition 3.3 (UF-CMA security) A signature scheme is existentially unforgeable
against chosen message attacks (UF-CMA) if for any probabilistic polynomial time
adversary A the advantage

Fig. 3 RSA-FDH digital signature scheme
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Fig. 4 UF-CMA security of a digital signature

AdvUF−C M A
A (k) := Pr[SuccUF−C M A

A ]

is a negligible function in the security parameter.7 Here SuccUF−C M A
A denotes the

event that A wins the game presented in Fig. 4.

Game-Hopping Proofs

A common approach in security proofs is the game-hopping or sequence of games
technique discussed by Shoup [19] and Dent [4]. This way it is often easier to bound
the probability of an adversarial win, especially when several unrelated assumptions
are to be taken or different cryptographic primitives are involved in a cryptographic
construction.

Following the game-hopping approach, a sequence of games is considered, where
the first game is the original attack game and the adversary’s success probability can
be easily bounded for the last game. Let A be the adversary. For each game, the
attack environment is slightly altered in such a way that we can bound the difference
in A ’s success probability. Finally, keeping track of all the probability changes and
the bound found for the last game, we can determine an upper bound for the success
probability in the original game.We can distinguish the following types of transitions
between games:

• Transitions based on indistinguishability: At this, the input the adversary
receives is changed. Instead of receiving an element from distribution P1, he
receives an element from P2. If the adversary is able to distinguish between two
adjacent games, that gives a method for distinguishing distributions P1 and P2,
assumed to be computationally indistinguishable.

• Transitions based on failure events: Here, games Gi and Gi+1 are constructed
in such a way that they proceed identically unless some “failure event” F occurs.
Denote bySucc j the event capturing an adversarial win in game G j . If both games
are defined over the same probability space then this is equivalent to saying that
events Succi ∧ ¬F and Succi+1 ∧ ¬F are the same. Applying the Difference

7Informally, a negligible function has domain in N, range in R
+ and goes to zero faster than the

inverse of any polynomial.



502 M. I. González Vasco et al.

Lemma [19], to prove that |Pr (Succi ) − Pr (Succi+1)| is negligible, it is enough
to show that Pr (F) is negligible.

• Transitions based on large failure events: In this kind of transition, games Gi

and Gi+1 proceed identically unless some failure event F occurs. However, the
difference with the above transition is that now the probability of this failure event
is large, although not overwhelming (Pr(¬F) is not negligible). We assume the
environment can detect when F occurs and events Succi and F are independent.
The environment behaves exactly the same in the two adjacent games, unless event
F occurs. In this case, the environment halts the simulation, and the adversary is
considered not to havewon the game.Otherwise, the adversary is considered towin
in Gi+1 if and only if it would win in Gi . Therefore, Pr(Succi+1) = Pr(Succi ∧
¬F) = Pr(Succi ) · Pr(¬F).
Thus, Pr(Succi ) is non-negligible if and only if Pr(Succi+1) is non-negligible.

• Bridging steps: This kind of transition introduces a “bridging step”, i.e. the inputs
to the attacker are the same, but have been computed in different ways, which
should however be completely equivalent. Therefore Pr (Succi ) = Pr (Succi+1).
This kind of transition is often done to prepare for one of the transitions discussed
above, making the proof easier to follow.

Example 3.2 (Security of RSA-FDH signature scheme) We will show now an exam-
ple of game-hopping proof to prove the security of the digital signature presented in
Fig. 3. Its security relies on the following computational problem:

Definition 3.4 (RSA problem) Let n = pq be the product of two distinct primes of
length � and let e be an integer relatively prime to (p − 1)(q − 1). Given n, e and y
chosen u.a.r from Z

∗
n , compute x such that xe = y (mod n).

If A is a probabilistic polynomial time adversary, we denote A ’s probability of
success in solving this problem as SuccRS A

A .

Theorem 3.2 RSA-FDH signature scheme is EUF-CMA secure.

Proof The proof is conducted through a sequence of games [21].We denote by Pr[Si ]
the advantage (see Definition 3.3) of the adversary when confronted with Game i.
Moreover, we prove the security in the random oracle model [2], i.e. we consider the
outputs of hash functions are truly random. The challenger will keep a list to answer
A ′s queries to H .

Game 0. All the oracles are simulated as in the real protocol; thus, Pr[S0] is exactly
AdvEUF-CMA

A , as in Definition 3.3.

Game 1. In this game, we guess the index I of which query to H will be the first one
for m∗. Let GuessCorrect be the event we guess this index correctly. This game is
identical to Game 0, except that the execution is aborted if the eventGuessCorrect
does not occur. Let qs be the number of queries to the Sign oracle and qh the number
of queries to the random oracle H , respectively. The probability of GuessCorrect
is upper bounded by 1

qs+qh
. Thus,
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Pr[S1] ≥ Pr[S0] · 1

qs + qh
.

Game 2. This game is identical toGame 1, except that the simulation of the H oracle
is changed. Now, the RSA problem challenge y is returned in the I th query to H .
Since y was chosen u.a.r, the distributions are identical. Thus, Pr[S2] = Pr [S1].
Game 3. This game behaves as the previous one, except that now, for every query x
to H , an element s is chosen u.a.r. from Z

∗
n . Then, z = se (mod n) is computed. The

oracle will return z and an entry (x, s, z) is added to the H list. The signing oracle is
changed accordingly. When asked to sign x , it looks for an entry (x, s, z) in the H
list and returns s. Notice that signatures are valid and the distributions are identical.
Therefore, Pr[S3] = Pr [S2].

Now, if the adversary returns a valid forgery (m∗, σ ∗), then, m∗ was the I th query
to the H list. Therefore, H(m∗) = y and σ ∗ is a solution to the RSA problem for
(n, e, y). Thus, the challenger in Game 3 acts as an algorithm B which solves the
RSA problem with the help of A . Therefore, Pr[S3] = SuccRSAB .

Combining all the probabilities, we get

SuccEUF−CMA
A ≤ (qs + qh + 1)SuccRSAB . �
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Tools for Detecting Leverage and Influential
Observations in Generalized Linear Models

María Carmen Pardo

Abstract There has been extensive development of diagnostic measures for Gener-
alized Linear Models fitted by the maximum likelihood method. However, there is
evidence that the maximum likelihood estimator is extremely sensitive to outlying,
leverage and influential observations. We propose a diagnostic measure based on
minimum distance estimates to assess the effect that the estimation method has on
parameter estimates. Furthermore, a new single case deletion diagnostic to detect
leverage observations is developed. Finally, the paper concludes with an analysis of
real data.

1 Introduction

Generalized linear models (GLM) have been introduced by Nelder and Wedder-
burn [6] as a unifying family of models for nonstandard cross-sectional regression
analysis with non-normal responses. We focus on multinomial response models that
model relationships between amultinomial response variable and a set of explanatory
variables.

The usual method of fitting GLM, maximum likelihood, is extremely sensitive
to outlying responses and to extreme and influential points. There is evidence that
minimum distance estimates have favorable asymptotic and small sample proper-
ties in some settings. Minimum distance estimator was presented for the first time
by Wolfowitz [17] and it provides a convenient method of consistently estimating
unknown parameters. An extensive bibliography for minimum distance estimators is
in Parr [15]. Pardo et al. [14] and Pardo JA and Pardo MC [11] defined the minimum
φ-divergence estimation as a generalization of the maximum likelihood estimation
for logistic regression and binary GLM, respectively. This estimation procedure was
generalized for multinomial GLM by Pardo MC [9].

Much of the work with minimum distance estimation has focussed on hypothesis
testing, but only a limited amount ofwork has been performed, in the area of influence
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diagnostic for this method estimation. Bedrick and Tsai [1] proposed several diag-
nostic tools for detecting outlying and leverage points based on the minimum power
divergence estimation for binomial response models. These points can be or can not
be influential points. That is to say, if removing it or adding it wouldmarkedly change
the regression outputs this point is called influential. This ideawas exploited by Pardo
MC [8] and Pardo MC and Pardo JA [13] who show that based-maximum likelihood
diagnostics for multivariate extensions of generalized linear models extend naturally
to the family of the minimum φ-divergence estimators. Pardo MC [8] proposed a
generalized hat matrix to determine how much leverage each data value can have
on each fitted value to a GLM for ordinal data and a new family of residuals for
detecting outliers. Pardo MC and Pardo JA [13] proposed a mean slippage model for
detecting outliers.

In Sect. 2, we introduce the model, the minimum φ-divergence estimation method
and the notation of the paper. Diagnostic Tools for detecting influential and leverage
points for GLM fitted by minimum distance are presented in Sect. 3. The first one is
a generalization of one existing for maximum likelihood fit and the second one is a
new one based on φ-divergences. For illustration, the procedure is applied to a data
set in Sect. 4.

2 Background and Notation for GLM

Let Y be the response variable with J possible values (labeled 1, . . . , J ), which
is observed together with m explanatory variables xT = (x1, . . . , xm) ∈ R

m . Given
x, Y is a multinomially distributed with probability vector πT = (π1, . . . , πJ ) and
πr = P(Y = r | xT ), r = 1, . . . , J.

Suppose that the xT
i takes N different values,

xT
i = (xi1, . . . , xim) , i = 1, . . . , N .

Themultinomial GLMassumes thatμi = E
[
Y | xT

i

]
is related to the linear predictor

ηi = ZT
i β

by
μi = h

(
ηi

) = h(ZT
i β), i = 1, . . . , N , (1)

where h is a vectorial response function, Zi is a p × (J − 1)-design matrix obtained
from xi and β is a p-dimensional vector of unknown parameters.

Let n (xi ) be the number of observations consideredwhen the explanatory variable
xT takes the value xT

i , in such a way that if xT is fixed at xT
i we have a multinomial

distribution with parameters
(
n (xi ) ;π1(ZT

i β), . . . , πJ−1(ZT
i β)

)
.
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Different models are obtained when we specify the response function and the
design matrix such as cumulative models, sequential models among others (see [4]).

Suppose we observe the sample Y 1 = y1, . . . ,Y N = yN jointly with the explana-
tory variables x1, . . . , xN , Pardo MC [9] proposed to estimate the vector β of
unknown parameters using the minimum φ-divergence estimator which is obtained
minimizing the φ-divergence measure between

p̂ =
( y11

n
, . . . ,

yJ1
n

,
y12
n

, . . . ,
yJ2
n

, . . . ,
y1N
n

, . . . ,
yJ N
n

)T
,

with yJi = n (xi ) − ∑J−1
s=1 ysi , i = 1, . . . , N , n = n (x1) + · · · + n (xN ) and

p (β) =
(
n (x1)
n

π̃
(
ZT
1 β

)T
, . . . ,

n (xN )

n
π̃

(
ZT
Nβ

)T
)T

being π̃(ZT
i β)T = (

π1(ZT
i β), . . . , πJ (ZT

i β)
)
. Therefore, the minimum φ-

divergence estimator is defined as

β̂φ = argmin
β∈Θ

Dφ ( p̂, p (β)) (2)

with

Dφ ( p̂, p (β)) =
J∑

l=1

N∑

i=1
πl(ZT

i β)
n (xi )
n

φ

(
yli/n

πl
(
ZT
i β

)
n (xi ) /n

)

, (3)

where φ ∈ Φ and Φ is the class of all convex functions φ (x) , x > 0, such that at
x = 1, φ (1) = φ′ (1) = 0, φ′′ (1) > 0, and at x = 0, 0φ (0/0) = 0 and 0φ (p/0) =
p limu→∞ φ (u) /u. Formore details about φ-divergences see Vajda [16] and Pardo L
[7]. As a particular case, this family contains the maximum likelihood estimator
(MLE).

An important family of φ-divergences in statistical problems is the power-
divergence family,

φ(a) (x) = (a (a + 1))−1
(
xa+1 − x

) ; a �= 0, a �= −1,
φ(0) (x) = lima→0 φ(a) (x) = x log x − x + 1,
φ(−1) (x) = lima→−1 φ(a) (x) = − log x + x − 1,

(4)

which was introduced and studied by Cressie and Read [3]. Under mild regularity
conditions this estimator is BAN.
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3 Model Diagnostics

After selecting a preliminary model for a data set, it is of interest for an analyst to
be able to find influential cases and, based on them, make decisions concerning their
usefulness in a problem at hand. Observations that are badly predicted (or allocated)
are termed outlies. Pardo MC [8] defined a family of residuals based on the φ-
divergence measures to identify outlying points in multinomial GLM. As particular
case, this family contains the Pearson and the Deviance residuals. Pardo JA and
Pardo MC [13] proposed an outlier detection diagnostic using the influence of single
cases on a family of φ-divergence test statistics which contains as particular case the
likelihood ratio test. Although, an outlies may be an influential observation, i.e., its
omission from the data set results in substantial changes to certain aspects of the fit
of the model. However, an influential observation need not necessarily be an outlies.
For example, when the observation distorts the form of the fitted model to such an
extend that the observation itself has a small residual. Therefore, the presence of an
influential observation can not necessarily be detected from a direct examination of
the residuals, and so additional diagnostic techniques are required.

To analyze the influence of the observation xi in the estimation of β, we propose
the family of influence measures

C (i)
φ2

= 1

p

(
β̂φ2

− β̂
(i)
φ2

)T
Cov

(
β̂φ2

)−1
(
β̂φ2

− β̂
(i)
φ2

)

with
Cov

(
β̂φ2

) ≈ (
ZṼ

(
β0) ZT

)−1

where β0 is the true value of the parameter β,

Ṽ (β) = Diag
(
Ṽ 1 (β) , . . . , Ṽ N (β)

)

with Ṽ i (β) = nV n,i (β) being

V n,i (β) = n (xi )
n

∂π
(
ηi

)

∂ηi
�−1

i (β)
∂π

(
ηi

)

∂ηT
i

(5)

and �−1
i (β) = (vsr (β))s,r=1,...,J−1 with

vsr (β) =

⎧
⎪⎪⎨

⎪⎪⎩

1

πr
(
ZT
i β

) + 1

πJ
(
ZT
i β

) r = s

1

πJ
(
ZT
i β

) r �= s
.
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The value of C (i)
φ2

indicates the i th observation influence. For φ2(x) = x log x − x +
1, we get the Cook’s distance (Cook [2]) which is commonly used for the detection of
influential observations in regression analysis. It is an overall measure of the change
in the parameter estimates when one or more observations are deleted from the data
set.

Pardo MC [8] defined a generalized form of the hat matrix based on minimum
φ-divergence estimation as

H
(
β̂φ

)= V n
(
β̂φ

)1/2
ZT I F,n

(
β̂φ

)−1
ZV n

(
β̂φ

)1/2
. (6)

The square matrix H and M = I − H are projection block matrices, where the
blocks H i j

(
β̂φ

)
and M i j

(
β̂φ

)
(i, j = 1, . . . , N ) , are (J − 1)-dimensional, respec-

tively.
Observations with relatively large values of ĥφ2

i i , which are the diagonal elements
of the hat matrix defined in (6), are distant from the others on the basis of the values of
their explanatory variables; they may be influential but will not necessarily be. These
observations are called leverage points and they are characterized by the fact that it
greatly increases the variability of the estimates when omitted from the sample.

In the sequel, we propose a new indicator that measure the increase of variability
when the explanatory variable xi is omitted from the sample. This idea was exploited
by Martin and Pardo L [5] in loglinear models and Pardo MC and Alonso [10] for
generalized estimating equations methodology.

As
β̂φ2

� N
(
β0,

(
ZV λ

(
β0) ZT

)−1
)

,

where V λ (β) = limn→∞ Vn (β), and

β̂
(i)
φ2

� N

(
β0,

(
Z(i)V

(i)
λ

(
β0) ZT

(i)

)−1
)

,

(see Remark 1 in Pardo JA and PardoMC [12]), where thematrices Z(i) and V
(i)
λ

(
β0)

are the matrices Z and V λ, respectively, in which the observation xi has been elim-

inated. Then to measure the variability of the estimates β̂φ2
and β̂

(i)
φ2

is equivalent to
measure the distance between fβ̂φ2

(x) and f
β̂

(i)
φ2

(x) which are the asymptotic densi-

ties for β̂φ2
and β̂

(i)
φ2
, respectively. Therefore, we choose the φ-divergence measure

to propose a new measure for detecting leverage points given as

Dφ

(
β̂φ2

, β̂
(i)
φ2

)
=

∫

Rp

f
β̂

(i)
φ2

(x) φ

⎛

⎝
fβ̂φ2

(x)

f
β̂

(i)
φ2

(x)

⎞

⎠ dx .

In the particular case that we consider the power-divergence family introduced by
Cressie and Read [3], i.e., the φ-divergence given in (4). We have, after several
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algebraic operations, that

∫

Rp

fβ̂φ2
(x)a+1

f
β̂

(i)
φ2

(x)a
dx = Det(I +aH i i(β0))

−1/2

Det(M i i(β0))
a/2

if a �= 0 and a �= −1. Then, we obtain the following expression for the new measure
to detect leverage points

I (i)
a

(
β̂φ2

) = 1

a (a + 1)

[
Det

(
I + aH i i

(
β̂φ2

))−1/2

Det
(
I − H i i

(
β̂φ2

))a/2 − 1

]

a �= 0, a �= −1,

I (i)
0

(
β̂φ2

) = −1

2

{
Trace

(
H i i

(
β̂φ2

)) + log
(
Det

(
I − H i i

(
β̂φ2

)))}
,

I (i)
−1

(
β̂φ2

) = 1

2

{

Trace

(
(
ZṼ

(
β̂φ2

)
ZT

) (
Z(i)Ṽ

(i) (
β̂φ2

)
Z
T

(i)

)−1

− I

)

+ log
(
Det

(
M i i

(
β̂φ2

)))}
.

Remark 3.1 An alternative way to calculate the above measures is calculating
λ1, . . . , λJ−1, the eigenvalues of the matrix H i i

(
β̂φ2

)
, since

Det
(
I + aH i i

(
β̂φ2

))−1/2

Det
(
I − H i i

(
β̂φ2

))a/2 =
J−1∏

j=1

(
1 + aλ j

(
1 − λ j

)−a

)−1/2

.

4 Numerical Example

As an illustration of the new tools for diagnostic presented in previous section we
consider data on the perspectives of students, psychology students at the University
of Regensburg were asked if they expected to find adequate employment after getting
their degree. The response categories were ordered with respect to their expectation.
The responses were ‘don’t expect adequate employment’ (category 1), ‘not sure’
(category 2), and ‘immediately after the degree’ (category 3). The data are given in
Fahrmeir and Tutz [4]. Table1 shows the data for different ages of the students.

To fit the cumulative logit model

Pr (Y ≤ r/Age) = (1 + exp (− (αr + βlog (Age))))−1 , r = 1, 2,
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Table 1 Grouped data for job expectations of psychology students in Regensburg

No Obs Age Y n (xi )

1 2 3

1 19 1 2 0 3

2 20 5 18 2 25

3 21 6 19 2 27

4 22 1 6 3 10

5 23 2 7 3 12

6 24 1 7 5 13

7 25 0 0 3 3

8 26 0 1 0 1

9 27 0 2 1 3

10 29 1 0 0 1

11 30 0 0 2 2

12 31 0 1 0 1

13 34 0 1 0 1

Table 2 Minimum φ(a2) divergence estimators

a2 α1 α2 β

0 14.9884 18.1497 −5.4027

2/3 8.4044 11.2404 −3.2143

1 5.8553 8.526 −2.3661

Fig. 1 Index plot of
I (i)
a

(
β̂1

)
as a function of a.

Shown are a = −1/2 solid
line, a = 0 dash line a = 2/3
dot line, a = 1 dash dot line

we use the minimum φ-divergence estimations with φ = φ(a2) given φ(a2) in (4),
β̂a2 ≡ β̂φ(a2)

, for a2 = 0 (MLE), 2/3 (Cressie-Read estimator) and 1 (minimum chi-
square estimator) which are shown in Table2.

For displaying diagnostic tools, index plots are generally suggested. Figure1
shows the measure I (i)

a

(
β̂1

)
. Index plots of I (i)

a

(
β̂a2

)
for a2 = 0 and 2/3 are skipped

by brevity since they are similar to Fig. 1.
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Fig. 2 Index plot of C (i)
φ(a2)

as a function of a2. Shown
are a2 = 0 solid line,
a2 = 2/3 dash line a2 = 1
dot line

Fig. 3 χ2 (2)-probability

plot of
(
r
φ(a2)

i,S

)T (
r
φ(a2)

i,S

)
.

Shown are a2 = 0 dot,
a2 = 2/3 circle a2 = 1 cross

All measures identify Observations 2 and 3 as those having the highest leverage
values. The three figures are very similar which means that to detect leverage points
with these measures it does not matter which estimation method you use. However,
there is difference among the measures obtained for different values of a. The lever-
age of observation 2 is higher when a decreases. Therefore, as Fahrmeir and Tutz [4]
pointed out that are not leverage points since the values are primarily caused by the
relatively local sample sizes, the best measure is I (i)

1

(
β̂a2

)
, that is to say, to consider

the Pearson divergence between fβ̂a2 (x) and f
β̂
a2(i) (x).

Next, we look for influential points drawing the index plot of the generalized Cook
distance. Figure2 shows thatObservations 3, 7, 10, and 13 are themost influential.We
find that Observation 10 is less influential for the estimation method corresponding
to a = 0 (MLE).

The reason can be found in Fig. 3 where a χ2-probability plot based on the stan-
dardized φ(a)-divergence residuals, r

φ(a)

i,S , which were defined in [8], is shown. There-
fore, Observation 10 is an outlies when we estimate by MLE (a = 0) so it does not
influence in the estimation. However, Observation 10 is not an outlies when we fit
the model using the minimum φ(a2)-divergence estimations with a2 = 2/3 and 1 so
it pintpoins as influential point.

Acknowledgements This work was partially supported by Grant MTM2013-40778-R. To the
memory of Dr. Pedro Gil, an excellent statistician and great person.
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On Economic Applications of Information
Theory

Rigoberto Pérez, Ana Jesús López, Covadonga Caso,
Mercedes Alvargonzález and María Jesús Río

Abstract In many of his writings, lectures and talks Pedro Gil emphasized the wide
variety of economic applications of Information Theory. In this paper, as a tribute
to him, we aim to provide some insight into this topic, mainly referred to income
inequality, industrial concentration and economic forecasting.

1 Introduction

Theil’s seminal book [42] set the foundations for research in the applications of
Information Theory to economic topics such as income inequality, industrial con-
centration or aggregation in input-output analysis. Since then, information measures
have provided an extremely useful toolbox for an increasing number of applications
both in Economics and Econometrics.

Within this context, PedroGil’s contributions include not only a brilliant academic
background and a pioneering textbook [14] but also an outstanding leadership and a
contagious enthusiasm. This paper is a tribute to him and provides an overview of
some works conducted by a group of Pedro’s disciples.

In the first sectionwe shall start by setting out the information-theoretic framework
for the applied analyses developed in the following sections.
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2 Information Measures of Order β

Taking thewell-knownentropymeasure proposedbyShannon [39] and theKullback–
Leibler divergence as starting point, a wide variety of generalized families of entropy
and divergence measures have been proposed, in particular the β-order measures
introduced by Havrda and Charvát [20].

Let X be a discrete random variable taking values {x1, . . . , xk} and P = {p1, . . . ,
pk} and Q = {q1, . . . , qk} two probability distributions associated with X
(pi , qi ≥ 0, i = 1, . . . , k; ∑

i pi = ∑
i qi = 1).

Definition 2.1 The β-order entropy measure Hβ(P) associated with the probability
distribution P is defined as:

Hβ(P) = 1

1 − 21−β

[

1 −
k∑

i=1

pβ

i

]

; β > 0, β �= 1. (1)

When β → 1 in (1), we get Shannon’s entropy: HS(P) = −∑k
i=1 pi log(pi ).

Hβ(P) is a symmetric, continuous and concave function of its arguments pi
that achieves its maximum for the uniform distribution. It also satisfies a branching
property, which is especially interesting in economic applications:

Hβ(P) = Hβ(p1 + p2, p3, . . . , pk) + (p1 + p2)
βHβ

(
p1

p1 + p2
,

p2
p1 + p2

)

. (2)

Definition 2.2 The β-order divergence measure Dβ(Q : P) between the distribu-
tions Q and P is defined as:

Dβ(Q : P) = 1

1 − 21−β

[
k∑

i=1

qi

(
pi
qi

)1−β

− 1

]

; β > 0, β �= 1. (3)

Dβ(Q : P) is a directed divergence measure and it is neither symmetric nor does
it satisfy the triangular property. Hence, it is interpreted as a pseudo-distance that
measures the gain of information resulting in the additional knowledge in Q rela-
tive to P . When β → 1 in (3), we get the Kullback–Leibler divergence measure:

DKL(Q : P) = ∑k
i=1 qi log

(
qi
pi

)
.

Entropy measures depend only on the probabilities of the possible values of X . In
order to incorporate the nature of the values of a variable inmeasuring its uncertainty,
we may consider a system of utilities U = {u1, . . . , uk} that quantify the quality of
the values of X .

Definition 2.3 The β-measure of uncertainty involving utilities (unquietness) asso-
ciated with X is given by:
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HU ∗β(P;U ) =

⎧
⎪⎨

⎪⎩

1
1−21−β

[
∑k

i=1 pi
(

ui
E(u)

)1−β − 1

]

β > 0, β �= 1

−∑k
i=1 pi log

(
ui

E(u)

)
β = 1

(4)

HU ∗β belongs to the family of inset entropies characterized byAczél andKannappan
[5] and can also be regarded as a directed divergence measure of order β as defined
in (3). This measure was characterized by Gil et al. [17] in terms of a set of five
axioms: symmetry, continuity, recursivity, relation with entropy and a normalization
condition.

As population measures are usually unknown, an inferential approach to the mea-
surement of uncertainty was proposed. In this context, our research focused on the
family of quadratic measures (β = 2) in (1) and (4) which fulfill the essential prop-
erties of Shannon-type measures and have a more suitable behaviour in estimation
problems. Pérez [32, 33] and Caso and Gil [9] derived unbiased estimators and the
corresponding mean square errors for the quadratic entropy for different sampling
schemes (simple and stratified random sampling, with and without replacement).
Similar studies were performed for estimating income inequality (Pérez et al. [36]
and Caso and Gil [10]) or analyzing the asymptotic behaviour of the β−measure of
unquietness (Gil et al. [16, 17]).

3 Economic Inequality

Although themost traditionalmeasure of income inequality is theGini index [18], this
indicator cannot be broken down in the usual sense, and therefore it is not possible
to obtain the inequality of a population divided into subgroups from inequalities
computed at the subgroup level. Theil [42] was the first author who proposed the
use of information measures for the study of inequality, finding some conceptual
and operational advantages, mainly related to the ramification property. Some other
authors such asBourguignon [8], Cowell [12] andShorrocks [40] proposed axiomatic
characterizations for the decomposable inequality measures.

According to Cowell [12] given a distribution of incomes {x1, . . . , xk} and prob-
abilities {p1, . . . , pk} a family of measures that satisfy the principles of mean inde-
pendence, population independence, symmetry, the Pigou-Dalton transfer principle
and decomposability are given by the expression:

GE(β) = 1

β(1 − β)

[
k∑

i=1

pi

(
xi

E(X)

)β

− 1

]

; β �= 0, β �= 1.

For each β this measure of inequality is, except for a constant, a measure of
uncertainty involving utilities (4). The parameter represents the weight given to the
distances between incomes of different parts of the distribution. When β takes low
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values the measure is more sensitive to what occurs at the bottom of the distribution,
whereas for high values of the parameter β the measures would be more sensitive to
what occurs at the top.

3.1 Collective and Double-Quadratic Inequality

Since inequality measures aim to summarize the distributive imbalances in a given
population it seems advisable to derive their expressions from an individual point of
view, as suggested by Yitzhaki [43] and Chakravarty and Chakraborty [11] among
others.

Adopting the mean value as a reference, López [22] proposes an individual indi-
cator of inequality given by the expression: di = E(X)

xi
− 1 whose expected value

leads to a collective inequality measure D(X) = ∑k
i=1 di pi which coincides, except

for a constant, with the case β = −1 of the previously defined family of additively
decomposable inequality measures (Pérez [33]).

Furthermore, this collective inequality appears to be connected with a poverty
measure PD derived by López [22] from relative poverty gaps gr . More specifically,
PD can be expressed in two different ways:

PD = HE(gr ) and PD(X, z) = H

(
Dp + I

1 − I

)

where z denotes the poverty line, H the head-count ratio, I the income gap ratio and
Dp the collective inequality among the poor. Thus, PD includes the “three I” referring
to the incidence, intensity and inequality dimensions of poverty, as suggested by
Sen [38].

On the other hand, Alvargonzález [1] derived a quadratic individual expression

d2
i =

(
E(X)

xi
− 1

)2
, which guarantees positive results, emphasizing the perceptions

of the less-favoured people. The synthesis of the individual quadratic inequalities
leads to the double quadratic measure of inequality:

D+(X) =
k∑

i=1

d2
i pi =

k∑

i=1

(
E(X)

xi
− 1

)2

pi .

Although this indicator does not belong to the family of decomposable inequality
measures, it can be obtained from the cases β = −1 and β = −2.

The previously described collective and double quadratic inequality measures
satisfy the set of commonly required properties.

Properties: Continuity, Principle of population or independence of population’s
size, Symmetry or impartiality, Extensibility, Maximality, Non negativity,
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Normalization, Invariability due to changes of scale, Variation with changes of
origin, Decomposability or Ramification, Pigou-Dalton’s condition.1

Regarding the decomposability, given a population X of size N , with μ = E(X),
divided into r subgroups with size N j andmean incomesμ j , the collective inequality
satisfies:

D = D∗ +
r∑

j=1

α j D j with D∗ =
r∑

j=1

(
μ

μ j
− 1

)
N j

N
; α j = μN j

μ j N
∀ j = 1, . . . , r,

while for the double quadratic inequality the additive decomposability is replaced
by a wider ramification, as shown in Alvargonzález [1].

Empirical applications of these measures can be found in López [22], Pérez and
López [34, 35], Alvargonzález [1] and Alvargonzález et al. [3, 4], among others.

3.2 Inequality and Economic Growth

According to the inverted-Uhypothesis proposedbyKuznets [21] inequality increases
in the first levels of growth and then decreases after a certain point of return. Kuznets’
initial work, referring to the Lorenz curve, was extended by several authors, such
as Anand and Kanbur [6]. Considering six inequality measures, these authors derive
their relationship with the development level and the conditions for the fulfillment
of Kuznets’ hypotheses.

Following a similar procedure, Alvargonzález et al. [2] derived the functional
expressions for collective and double-quadratic inequality and the necessary condi-
tions for the existence of a turning point. In both cases the relationship between the
level of inequality and economic growth is given by polynomic functions and the
decomposability property allows the analysis of Kuznets conditions (initial growth
and existence of turning point), expressing inequality as the sum of intersectoral and
intrasectoral components.

Furthermore, the polynomic function related to the double-quadratic index pro-
vides a particularly flexible expression, allowing the possibility of existence of more
than one point of return and suggesting a better capability of adaptation to different
empirical realities.

1In the case of the double quadratic inequality the Pigou-Dalton’s condition or progressive transfers
principle holds under certain (non-restrictive) asssumptions.
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Inequality-Growth relationship
Collective inequality D = Aμ2 + Bμ + C , with C = −1

A =
(

1
μ1−μ2

) (
D1+1
μ1

− D2+1
μ2

)
; B =

(
1

μ1−μ2

) (
μ1(D2+1)

μ2
− μ2(D1+1)

μ1

)

Double-quadratic inequality D = Aμ3 + Bμ2 + Cμ + E , with E = 1

A =
(

1
μ1−μ2

) (
1
μ2
1

− 1
μ2
2

+ 1
μ2
1
D+
1 − 1

μ2
2
D+
2 + 2

μ2
1
D1 − 2

μ2
2
D2

)

B =
(

1
μ1−μ2

)(

− 2
μ1

− μ2

μ2
1

+ μ1

μ2
2

+ 2
μ2

− μ2

μ2
1
D+
1 + μ1

μ2
2
D+
2

−2μ2

μ2
1
D1 + 2μ1

μ2
2
D2 − 2

μ1
D1 + 2

μ2
D2

)

C =
(

2
μ1−μ2

) (
μ2
μ1

− μ1
μ2

+ μ2
μ1

D1 − μ1
μ2

D2

)

Empirical Evidence: Alvargonzález [1]: Cross-section estimation from World
Bank; Alvargonzález [1], Alvargonzález et al. [2, 4] and López et al. [26]: Panel
estimation from PWT and Deininger-Squire database; López and Cowell [23]:
Panel estimation from WIID

4 Industrial Concentration

Since the nineteen thirties, industrial concentration has been considered both as a
determinant of market structure and as an indicator of the level of competition, allow-
ing us to estimate themarket power.Within the suitable framework of the information
measures Theil [42] proposes a concentration index derived from Shannon’s mea-
sure and Río and Pérez [37] define the quadratic index, that coincides, except for a
constant, with the case β = 2 in (1): I 2(X) = 1 − ∑k

i=1 p
2
i , where pi represent the

market shares of a sector with k firms. This index measures the level of competition
between the firms of a given sector and, in the opposite sense, the sector’s level of
concentration.

Some authors such as Hannah and Kay [19] examine the properties that an indus-
trial concentration measure should satisfy, proposing axiomatic characterizations.
An in-depth study of Theil’s index can be found in Curry and George [13] while Río
and Pérez [37] exhaustively analyze the quadratic index, showing its good behaviour
with regard to the characterizations.

As industrial concentration can be examined at different aggregation levels,
the decomposability property plays a significant role, allowing the analysis of
both global and sectoral concentration and the measurement of the influence of
each industrial sector. More specifically, according to the branching property (2)
the quadratic concentration for an industry with r sectors can be computed as:
I 2(X) = I 2r + ∑r

i=1 αi I 2(Xi ), where we denote by I 2r the intersectoral concentra-
tion while I 2(Xi ) represents the individual concentration of sector i and αi is the
relative weight. It is important to bear in mind that, since only the entropy-based
indicators satisfy the decomposability requirement, both Theil’s and the quadratic
concentration measures are the most adequate options.

From an empirical point of view, in order to compute the industrial concentration
level we need to access information referred to the firm market shares and this task
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can be particularly difficult for certain sectors and small size firms. In this situation
we can take profit from the suitable inferential behaviour of the quadratic index as
shown in Pérez [33], Caso and Gil [9] and Río and Pérez [37] among others.

5 Economic Forecasting

The increasing amount of prospective sources and methods provides a wide variety
of forecasts referring to the main economic variables, such as GDP, employment
and consumer prices. In this context, Information Theory can be of great help when
analyzing the combination and evaluation of forecasts, and also the definition of
future scenarios.

5.1 Forecast Combination

Since the pioneering work by Bates and Granger [7] many authors have shown that
combined forecasts perform quite well since they take advantage of the vast amount
of existing information, reducing the level of risk.

Forecast combination techniques involvedifferent levels of complexity andmainly
focus on the estimation of the weights assigned to each individual forecast, which
-among other procedures- can be performed through regression techniques, based
on the relative past performance of individual forecasts.

More specifically, if we consider the alternative h-step forecasts for an economic
variable (yt+h) available at time t , the theory suggests the convenience of combining
the individual results

(
ŷ1t+h,t , ŷ

2
t+h,t . . . , ŷ Ft+h,t

)
to obtain an aggregated prediction

ŷct+h,t through a vector of weights W = (α1, α2, . . . , αF )′ that calibrates different
degrees of experts’ ability.

The efficient calculation of weights requires a number of observations larger than
the number of individual forecasts. Nevertheless, sometimes it is not possible to have
sufficient information to measure individual forecasting ability, either because the
situation to predict is newor because newmembers are incorporated onto the forecast-
ing panel. Under the described circumstances the Maximum Entropy Econometric
approach provides a basis for transforming the sample information into a probability
distribution that reflects our uncertainty about the individual outcomes. Moreno and
López [29] apply this methodology to Shannon’s entropy and the quadratic entropy
by Pérez [33], leading to the expressions:

HS(P,W ) = −P ′ log P − W ′ logW for Shannon’s entropy
H 2(P,W ) = 2(1 − P ′P) − P ′ + 2(1 − W ′W ) for quadratic entropy

whose maximization provides the optimal probability vectors P̂ and Ŵ .
Some empirical applications conducted on forecasts of Spanish GDP growth

(Moreno et al. [31], Moreno and López [29]) and inflation (Moreno and López [30])
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confirm that the estimated weights do not show significant differences for Shan-
non and quadratic uncertainty, allowing the selection of a group of forecasters with
relatively high and stable weights.

5.2 Forecast Evaluation

The increasing forecasting availability and the controversial debate about the advan-
tages of alternative forecasting procedures suggest the need for further research on
evaluation metrics. Although forecasting procedures are usually compared by means
of an error measure, the information-basedU index was proposed by Theil [41] com-
paring the actual and forecasted values of a variable Y for a given period through the
following expression:

U =
√
√
√
√

∑
t

(
ĝt − gt

)2

∑
t g

2
t

; ĝt = ŷt − yt−1

yt−1
, gt = yt − yt−1

yt−1
.

As forecasts become more accurate, Theil’sU index decreases, achieving null value
when actual and forecasted rates of growth are coincident. Furthermore, an additive
disaggregation of U 2 in three terms allows us to compute the relative weights of the
bias, variance and covariance factors.

The uncertainty measures involving utilities (4) provide a suitable framework for
the evaluation of forecasts. Thus, given a variable Y with actual values y1, . . . , yT ,
and a set of forecasts ŷ1, . . . , ŷT the quadratic unquietness of Y , HU ∗2(Y ) and
the quadratic unquietness of Y conditioned to its forecasts HU ∗2(Y/[Ŷ ]), can be
respectively computed as:

HU∗2(Y ) = 2

T

∑

i

(
E(Y )

yi
− 1

)

, HU∗2 (
Y/[Ŷ ]

)
=

∑

j

p[ŷ j ]
E(Y )

E[ŷ j ](Y )
HU∗2 (

Y/[ŷ j ]
)

where E(Y ) denotes the expected value of the variable and E[ŷ j ](Y ) = ∑

t
Yt pY/[ŷ j ]

is the expected value of Y conditioned to the forecasting interval [ŷ j ]. Within this
framework, since the quadratic unquietness conditioned to forecasts is expected to
be lower than the initial one, the difference between both results can be interpreted
as the information provided by forecasts. However, with the aim of including the
existing relationship between actual and forecasted values, we also take into account
the linear correlation coefficient rY,Ŷ , and thus in López and Pérez [24] we define the
quadratic information accuracy measure (QIAM) as:

QI AM
(
Y, [Ŷ ]

)
= HU ∗2(Y ) − HU ∗2

(
Y/[Ŷ ]

) (
1 − rY,Ŷ

)
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whose result increases both with the reduction of unquietness related to the forecasts
and with the correlation between actual and forecasted values.

Despite their similarities, Theil’sU Index and QIAM differ in their interpretation,
as more accurate forecasts lead to lower values of U while QIAM increases. Never-
theless, this is not a serious drawback since the comparison of different forecasting
techniques is usually based on rankings.

In López and Pérez [24, 25] and López et al. [27] we provide empirical evidence
based on the M3-Competition by Makridakis and Hibon [28] that includes 3003
time series and 24 forecasting techniques. The results show outstanding similarities
between the rankings provided by Theil’s U and QIAM, suggesting the influence
of their informational content. As expected, the accuracy of the different methods
depends upon the length of the forecasting horizon, thus agreeing with Makridakis
and Hibon’s findings from five error based accuracy measures.

However, while these authors conclude that statistically sophisticated procedures
do not lead to more accurate forecasts and that combined forecasts outperform indi-
vidual methods, our results differ, especially when dealing with financial time series.
According to both Theil’s U and QIAM the most sophisticated methods head the
accuracy rankings and the combined forecast does not beat the individual methods
being combined.

5.3 Forecasting Scenarios

Scenario-based forecasting allows for a wide range of possible forecasts to be gen-
erated. Although the most common practice considers best, middle and worst case
scenarios, the range of possibilities can be extended including a wide variety of more
and less plausible alternatives.

Assigning probabilities to the considered scenarios allows themeasurement of the
corresponding levels of uncertainty, which can be revised once we access to updated
information. Thus, denoting by P and Q the sets of initial and final probabilities,
Theil [42] proposes the use of a Shannon-based measure, given by the expression
I (Q : P) = ∑k

i=1 qi log
qi
pi
obtained by comparing the expected initial and final lev-

els of uncertainty, with weights given by the final probabilities.
A similar approach can be applied to the quadratic uncertainty proposed by

Pérez [33]. For each scenario the initial and final uncertainty levels are respec-
tively given by 2(1 − pi ) and 2(1 − qi ), and the quadratic information provided
by the new set of probabilities is obtained through the expression QI (Q : P) =
2

∑k
i=1 qi (qi − pi ), which, unlike Theil’s index, can be computed even for scenarios

with null probability.
It can be easily proved that the quadratic information is zero if initial and final

probabilities are coincident, although the opposite implication does not hold.
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6 Concluding Remarks

The economic applications summarized in the previous sections illustrate our work
influenced by Pedro Gil, and could be extended to a wider scope, including fields
such as input-output and network analysis or the quantification of the digital divide.

Wefinish this paper by thanking Pedro for his inspiringwork and joining hiswords
“I would like to express my conviction (although I am aware that now I am influenced
by both my heart and my head) that Information Theory will go on succeeding in
scientific and technological applications” [15].
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Concept Uncertainty in Adversarial
Statistical Decision Theory

David Ríos Insua, Jorge González-Ortega, David Banks
and Jesús Ríos

Abstract We focus on concept uncertainty which adds a new layer to the tradi-
tional risk analysis distinction between aleatory and epistemic uncertainties, when
adversaries are present. The idea is illustrated with a problem in adversarial point
estimation framed as a specific case of adversarial statistical decision theory.

1 Introduction

Our focus in this paper will be on problems in which two or more agents confront (as
in non-cooperative game theory) and the consequences that they receive are random
(as in risk analysis) and depend on the actions of all participants (as in game theory
at large).

In his lecture giving title to this volume, Pedro Gil [8] dealt with several issues
related to the mathematics of uncertainty. At that time, it was typical to address just
two types of uncertain phenomena, see e.g. [14, 22] or [16], which could be described
as follows in the class of problems we consider:

• Aleatory uncertainty. It refers to the randomness of the outcomes the agents
receive, thus conditional on their choices.

• Epistemic uncertainty. It refers to the strategic choices of intelligent adversaries,
as driven by unknown preferences, beliefs and capabilities.

Since that time, a number of issues have arisen prominently in several application
areas. To wit: (i) high-profile terrorist attacks are demanding significant investments
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in protective responses and there is concern that not all of them are sufficiently
effective; (i i) key business sectors have become more mathematically sophisticated
and use this expertise to shape strategies in competitive decisions in marketing,
auctions and others; and (i i i) the on-going arms race in cyber-security implies that
financial penalties for myopic protection are random and may be remarkably high.

These have entailed the need to consider a third type of uncertainty which will be
the target of this paper:

• Concept uncertainty. It refers to beliefs about how opponents frame the problem
in relation to questions like what kind of strategic analysis do they use, whether
they are rational or how deeply do they think. Often, the solution used will deter-
mine the epistemic uncertainties that are relevant and, consequently, the aleatory
uncertainties.

Most authors in this context would focus on game theoretical methods based on
variants of Nash equilibria, see e.g. [7]. However, this is not satisfactory in most of
the above applications since beliefs and preferences of adversaries will not be read-
ily available, frequently violating game theoretic common knowledge assumptions,
see [9]. Thus, key assumptions of the customarily proposed solution approaches
would not actually hold.

In contrast, we shall turn toAdversarial RiskAnalysis (ARA), described in [1, 18],
an emergent paradigm for the type of problemswe consider. ARAprovides one-sided
prescriptive support to a decision maker, maximizing her subjective expected utility,
treating the adversaries’ decisions as random variables. To do so, ARA supports
modelling the adversaries’ decision-making problems and, under assumptions about
their rationality such as them being expected utility maximizers, tries to assess their
probabilities and utilities. Then, ARA can predict their optimal actions. However, the
uncertainty about the adversaries’ probabilities and utilities is propagated into their
decisions, leading to probability distributions over them. Often, such assessments
lead to a hierarchy of nested decision problems, as described in [17], close to the
concept of level-k thinking, see [19].

The main goals of ARA are to weaken the Nash equilibria common knowledge
assumptions and provide more flexible models for opponent behaviour. ARA is
explicitly Bayesian in that subjective distributions are employed to express the uncer-
tainties of the analyst. In a comparison of methods for adversarial risk management,
[12] preferred ARAprecisely because it handles and apportions these separate uncer-
tainties more explicitly. In this respect, ARAmay be seen as a Fermitisation strategy,
see [20], since it simplifies the assessment of complex uncertainties by considering
decompositions of complex problems into simpler ones in which the assessment is
easier.

We shall first stress this idea of concept uncertainty with a qualitative security
example in Sect. 2. Section3 then shows its relevance in what we call Adversarial
Statistical Decision Theory (ASDT), which extends the standard Statistical Decision
Theory (SDT) framework with the presence of several decision makers, focusing on
point estimation. We end up with some discussion in Sect. 4.
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2 A Security Example

We shall dwell on the idea of concept uncertainty through a qualitative example
in relation with security. Remember that we refer to situations in which several
opponents make decisions. Consider a security case with a Defender (she) and an
Attacker (he) whomake simultaneous decisions.Wewill be supporting theDefender.
To fix ideas, in a context of counterterrorism, suppose the Attacker may choose to
bomb a train, while the Defender could have policemen searching for it.

Typically, after the opponents both choose their actions, the outcomes and payoffs
for each of them are random variables. In our example, there is a chance that the
policemen will thwart the attack and a chance that the bomb will explode, killing a
random number of people and causing a random amount of economic and political
damage. This randomness is aleatory uncertainty and is conditional on the choices
of the opponents: it does not depend upon any strategic calculation on their parts,
referring to the non-strategic randomness of an outcome. TheDefender should assess
her beliefs about the outcome probabilities, conditional on the actions chosen by both
agents. This can be addressed through traditional probabilistic risk analysis, see [2].
The Defender’s beliefs should be informed by expert judgement and previous history
and extracted through appropriate elicitation methods [4, 13], taking into account
factors such as experts being overconfident and that previous history may be only
partially relevant.

Epistemic uncertainty describes the Defender’s distribution over the choice the
Attacker will make, which usually integrates his preferences, beliefs and capabili-
ties. For the bomb-on-a-train example, the Defender does not know which train the
Attacker will target. His choice would depend upon factors like which train is his
most valuable target (a preference), the train he thinks that has the bigger chance
of being attacked (a belief) and whether or not he has a bomb (a capability). The
Defender does not know these and, thus, has epistemic uncertainty. She expresses it
as a distribution over all possible trains. This uncertainty is handled differently for
each solution concept that the Defender thinks the Attacker might use. For example,
with a Nash equilibrium concept, the Defender believes that the Attacker thinks they
both know the relevant utilities and beliefs; hence, the relevant epistemic uncertainty
refers to the Defender’s distribution over the payoff bi-matrices that the Attacker may
be using. In the case of Bayes-Nash equilibrium concept, there is additional uncer-
tainty related to games of incomplete information [10]. Besides the distribution over
the entailed payoff bi-matrices, the Defender must also express her epistemic uncer-
tainty about the common knowledge distributions which the Attacker is assuming
that they share, their common distributions on types. In principle, full description of
the epistemic uncertainties is complex, even with simple solution concepts. Often,
there are pragmatic approximations that may be used.

Finally, as mentioned, concept uncertainty would arise from ignorance of how
one’s opponent will frame the analysis. In classical game theory terms, the Defender
does not know which solution concept the Attacker will use to make his decision.
Concept uncertainty embraces a wide range of strategies and is an essential compo-
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nent in the ARA formulation: the Defender must model how the Attacker will make
his decision, but there are many possible solution concepts that he might use. Some
of them are:

• Non-strategic play. The Defender believes that the Attacker will select an action
without consideration of her choice. This includes the case in which the Attacker
selects actions with probabilities proportional to the perceived utility of success,
[15]. It also allows for non-sentient opponents, such as a hurricane.

• Nash or Bayes-Nash equilibrium methods. The Defender concludes that the
Attacker is assuming they both have a great deal of common knowledge.

• Level-k thinking. The Defender considers that the Attacker thinks k plies deep in
an “I think that she thinks that I think...” kind of reasoning. Level-0 corresponds
to non-strategic play.

• Mirroring equilibrium analysis. The Defender supposes that the Attacker is mod-
elling her decision making in the same way that she is modelling his, and both use
subjective distributions on all unknown quantities.

As a Bayesian approach, ARA enables great flexibility in tailoring the analysis to
the context and in accounting for the different kinds of uncertainty that arise. Usually,
the Defender does not know which solution concept the Attacker has chosen. But
based on previous experience with the Attacker, and input from informants or other
sources, she can place a subjective probability distribution over his possible solu-
tion concepts. She could then make the decision that maximizes her expected utility
against that weightedmixture of strategies. Realistically, a full Bayesian analysis that
puts positive probability on a large number of different solution concepts becomes
computationally burdensome. However, in principle, the approach is simple. Each
solution concept will lead (after handling the relevant epistemic and aleatory uncer-
tainties) to a distribution over the Attacker’s actions. Then, the Defender weights
each distribution with her personal probability that the Attacker is using such solu-
tion concept. This generates a weighted distribution on the Attacker’s action space
which reflects all of the Defender’s knowledge about the problem and all of her
uncertainty. The approach is related to Bayesian model averaging, in which uncer-
tainty about the model is expressed by a probability distribution over the possible
models and inference is based upon a weighted average of the posterior distributions
from each model, see [3, 11].

3 The Case of Adversarial Point Estimation

We study now the relevance of concept uncertainty showcasing it in the standard
problem of point estimation, described in the inaugural lecture by [8]. We modify it
by considering the presence of an adversary willing to deceive the relevant decision
maker.
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3.1 Point Estimation as a SDT Problem

We recall first the standard SDT framework for point estimation. As illustrated in the
Influence Diagram (ID) in Fig. 1, we consider a decision maker D (she) who needs
to make a decision d ∈ Θ based on an observation x which depends on a state θ

taking values in the same set Θ . She obtains a loss lD(d, θ) ∈ �, which depends on
the decision she makes and the state actually occurring.

To solve her decision making problem, she could describe her prior beliefs over
state θ through the prior pD(θ) and the dependence of data x on the state θ through
the likelihood pD(x | θ). Given such elements, she would seek the decision d∗(x)
that minimizes her posterior expected loss, which is

d∗(x) = argmin
d

∫
lD(d, θ) pD(θ | x) dθ. (1)

As an example, under the quadratic loss function lD(d, θ) = (θ − d)2, we easily
obtain that d∗(x) = E [θ | x], see [6]. Note that, for optimization purposes, we may
ignore the denominator pD(x) in Bayes formula and solve

d∗(x) = argmin
d

∫
lD(d, θ) pD(x | θ) pD(θ) dθ, (2)

which is equivalent to (1). This transformation allows us to directly involve the prob-
abilities pD(θ) and pD(x | θ) and, in principle, avoid computing the more complex
posterior pD(θ | x).

We rehearse now the optimisation argument with the quadratic loss in the simpli-
fied version (2). The objective function to be minimised in this case is

∫
θ2 pD(x | θ) pD(θ) dθ + d2

∫
pD(x | θ) pD(θ) dθ − 2d

∫
θ pD(x | θ) pD(θ) dθ,

Fig. 1 Sketch of the general
SDT problem
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which is equivalent to minimising in d

d2 pD(x) − 2d
∫

θ pD(x | θ) pD(θ) dθ,

whose minimum is, as announced,

d∗(x) = 1

pD(x)

∫
θ pD(x | θ) pD(θ) dθ =

∫
θ pD(θ | x) dθ = E [θ | x] . (3)

3.2 Adversarial Point Estimation as an ASDT Problem

We extend now the SDT framework by considering a strategic adversary A (he)
who makes decisions in the previous context which affect the information and/or
consequences that our decision maker obtains. We may actually consider several
adversarial scenarios, reflected through the Bi-Agent Influence Diagrams (BAIDs)
in Fig. 2.

S 1. A somehow manages to transform state θ affecting the data process leading to
a modified one a(θ) = λ.We call this a structural attacker, shown in Fig. 2a.

S 2. A manages to modify the data x to be received by D, who actually observes
a(x) = y. We call this a data-fiddler attacker, depicted in Fig. 2b, which reflects
the typical case in adversarial machine learning, see e.g. [5] or [21].

S 3. A makes decisions a so that the losses for D and A, which we respectively
designate lD(d, a, θ) and lA(d, a, θ), depend upon both their decisions and the
relevant state. Other than that, A faces a problem structurally similar to that of D.
We call this the simultaneous ASDT problem, represented in Fig. 2c.

Note that the three formulations could appear combined in certain scenarios. For
example, in a cyber-security problem, A might add spam to modify its proportion
(θ ); alter some of the received messages (x); and, finally, in addition, undertake his
own business decisions (a), which compete with those of D.

To streamline the discussion, we shall consider just the case S 1 in which A is a
structural attacker capable of perturbing θ (Fig. 2a). Specifically, suppose that A just
uses deterministic transformations λ = a + θ , biasing the underlying state, with a
chosen by him.We shall also assume a quadratic loss function for D. Note first that a
decisionmaker who is not aware of the presence of the adversary would be proposing
as optimal the decision in expression (2), without noticing that pD(x | θ) should
be updated to pD(x | θ + a) as the data process is being perturbed and, therefore,
systematically erring her estimation in general.

Consider now an adversary aware point estimator D. She faces a problem similar
to that in Fig. 1, except for the additional uncertainty about a, as reflected in the ID in
Fig. 3a, which modifies the state. Since she does not know her adversary’s decision,
his corresponding node (the circled A) appears as random to her. Once D makes a
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Fig. 2 BAIDS for the
different scenarios in the
ASDT problem

Θ

Λ

X

lDlA DA

(a) Structural attacker

Θ

X

Y

lDlA DA

(b) Data-fiddler attacker

Θ

X

lDlA DA

(c) Simultaneous ASDT problem
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forecast pD(a) of the action a to be performed by A, the problem that she needs to
solve is formulated (equivalently) as

d∗(x) = argmin
d

∫∫∫
(θ − d)2 pD(x | λ) pD(λ | θ, a) pD(θ) pD(a) dλ dθ da. (4)

In the same manner as the non-adversarial version in Sect. 3.1, observe that this
leads to the equivalent problem of minimising in d

d2 pD(x) − 2d
∫∫∫

θ pD(x | λ) pD(λ | θ, a) pD(θ) pD(a) dλ dθ da,

whose solution is

d∗(x) = 1

pD(x)

∫∫∫
θ pD(x | λ) pD(λ | θ, a) pD(θ) pD(a) dλ dθ da. (5)

Expression (5) may then be simplified to obtain

d∗(x) = 1

pD(x)

∫∫
θ pD(x | λ) pD(λ | θ) pD(θ) dλ dθ

= 1

pD(x)

∫
θ pD(x | θ) pD(θ) dθ =

∫
θ pD(θ | x) dθ = E [θ | x] .

Apparently, we reach the same solution as in (3). However, these compressed
expressions do not explicitly show that the probability model pD(θ | x) is differ-
ent in both cases. Therefore, it is good to use decomposed expressions such as (4)
which involve probabilities that are easier to model and learn from, in line with
the Fermitisation point of view mentioned in Sect. 2. In our specific case, we have
pD(λ = θ + a | θ, a) = 1 (and 0 otherwise). Thus, expression (4) becomes

d∗(x) = argmin
d

∫∫
(θ − d)2 pD(x | λ = θ + a) pD(θ) pD(a) dθ da. (6)

Let us remark that a good assessment of pD(a) is therefore crucial, although it is
complex because of the strategic element involved. Tobetter assess it, Dmayconsider
A’s problem reflected in Fig. 3b. To him, her decision is a chance node.

At this point we need to face concept uncertainty.

3.3 Adressing Concept Uncertainty

We consider now, as an example, two different solution concepts for the adversary
and a way to aggregate them in terms of our uncertainty. A numerical example is
also provided.
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Fig. 3 BAID’s
decomposition for a
structural attacker in the
ASDT problem

Θ

Λ

X

lD DA

(a) D’s problem

Θ

Λ

X

lA DA

(b) A’s problem

3.3.1 A Bayesian Adversary

Suppose first that the adversary minimises expected loss. Then, A’s optimal decision
would be solved through

a∗
B = argmin

a

∫∫∫
lA(d, a, θ) pA(d | x) pA(x | λ = θ + a) pA(θ) dd dx dθ.

However, D does not know A’s probabilities and loss function. If she acknowl-
edges her uncertainty about them through random probabilities and losses F ∼(
L A(d, a, θ), PA(d | x), PA(x | λ = θ + a), PA(θ)

)
, she would solve

A∗
B = argmin

a

∫∫∫
L A(d, a, θ) PA(d | x) PA(x | λ = θ + a) PA(θ) dd dx dθ

to find the optimal random decision A∗
B , which is a random variable whose distrib-

ution is induced by the above random probabilities and loss function. Then, D has
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found the distribution that she would need to calculate her best decision d∗(x). That
distribution incorporates all of her uncertainty about A’s decision making context,
assuming that he is Bayesian. We shall define it through pB

D(a) = P(A∗
B = a), if we

deem it to be discrete, and, similarly, if it is continuous.
In general, to approximate pB

D(a), one will typically use simulation, drawing K
samples

(
Lk

A(d, a, θ), Pk
A(d | x), Pk

A(x | λ = θ + a), Pk
A(θ)

)
, k = 1, . . . , K from F ,

finding

A∗
B,k = argmin

a

∫∫∫
Lk

A(d, a, θ) Pk
A(d | x) Pk

A(x | λ = θ + a) Pk
A(θ) dd dx dθ

(7)
and approximating

p̂B
D(A = a) ≈ #{A∗

B,k = a}/K .

Within F , PA(d | x) is much harder to assess than the other three elements. It
entails strategic thinking, since D needs to understand A’s beliefs about what point
estimates she will make given that she observes x . This could be the beginning of
a hierarchy of decision making problems if D assumes that A considers her to be
adversary aware; see [17] for a description of the potentially infinite regress in a
simple class of problems.

3.3.2 A Minimax Adversary

Suppose now that rather than minimising posterior expected loss, D feels that A
behaves in a minimax manner. This means that he would try to minimise his possible
maximum loss through

a∗
M = argmin

a
max
d,θ

lA(d, a, θ).

However, as in Sect. 3.3.1, D does not know A’s loss function. If she assumes some
uncertainty about it through a random loss LA(d, a, θ), she would solve

A∗
M = argmin

a
max
d,θ

L A(d, a, θ),

to find the optimal random decision A∗
M . Again, the distribution of A

∗
M incorporates

all of her uncertainty about A’s decisionmaking context, assuming this time that he is
a minimax adversary. Thus, wemay define it as pM

D (a) = P(A∗
M = a) in the discrete

case, and, similarly, in the continuous one. To approximate pM
D (a)wewould typically

use simulation as in Sect. 3.3.1, drawing K samples from Lk
A(d, a, θ), k = 1, . . . , K ,

finding
A∗
M,k = argmin

a
max
d,θ

Lk
A(d, a, θ).

This would lead to
p̂M
D (A = a) ≈ #{A∗

M,k = a}/K .
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3.3.3 Aggregating Solution Concepts

The above adversary types could be extendedwith other solution concepts, but for the
purpose of this paper two of them are enough. Now, if D believes that A minimises
expected loss with weight πB and is minimax with weight πM , with πB + πM = 1
and πB, πM ≥ 0, then the required forecast pD(a) would be based on πB p̂B

D(a) +
πM p̂M

D (a) which would be plugged in D’s optimal decision making problem (6),
leading D to her optimal adversary aware point estimation.

3.3.4 A Numerical Example

Consider that D believes that:

• The state follows a normal prior θ ∼ N (μD, σD). In particular, we shall specify
that μD = 0 and σD = 1.

• The observations x = (x1, . . . , xn) will be i.i.d. around state θ as xi | θ ∼ N
(θ, ρD) for i = 1, . . . , n. Specifically, we shall set ρD = 1

2 .

When D is unaware of A’s presence, we may compute D’s optimal decision by
means of expression (2), given observations (x1, . . . , xn), minimising in d

∫
(θ − d)2 1

σD
√
2π

exp
(

−(θ−μD)2

2σ 2
D

) n∏
i=1

1
ρD

√
2π

exp
(

−(xi−θ)2

2ρ2
D

)
dθ

∝
∫

(θ − d)2
√

ρ2
D+n σ 2

D

ρD σD
√
2π

exp

⎛
⎝−(θ − μD ρ2

D+σ 2
D

∑n
i=1 xi

ρ2
D+n σ 2

D
)2

2 ρ2
D σ 2

D

ρ2
D+n σ 2

D

⎞
⎠ dθ,

which is equivalent to minimising in d

d2

∫ √
ρ2
D+n σ 2

D

ρD σD
√
2π

exp

⎛
⎝−(θ − μD ρ2

D+σ 2
D

∑n
i=1 xi

ρ2
D+n σ 2

D
)2

2 ρ2
D σ 2

D

ρ2
D+n σ 2

D

⎞
⎠ dθ

− 2d
∫

θ

√
ρ2
D+n σ 2

D

ρD σD
√
2π

exp

⎛
⎝−(θ − μD ρ2

D+σ 2
D

∑n
i=1 xi

ρ2
D+n σ 2

D
)2

2 ρ2
D σ 2

D

ρ2
D+n σ 2

D

⎞
⎠ dθ.

Both integrals include the density function of the normal distribution

Z ∼ N

(
μD ρ2

D+σ 2
D

∑n
i=1 xi

ρ2
D+n σ 2

D
,

ρD σD√
ρ2
D+n σ 2

D

)
,
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and we may simplify the problem to minimising in d

d2 − 2d E [Z ] = d2 − 2d μD ρ2
D+σ 2

D

∑n
i=1 xi

ρ2
D+n σ 2

D
,

whose optimal value is

d∗(x) = μD ρ2
D + σ 2

D

∑n
i=1 xi

ρ2
D + n σ 2

D

. (8)

In particular, with the above specific parameters:

d∗(x) = 4
∑n

i=1 xi
4n + 1

.

Suppose now that D is aware of A’s presence. Then, she needs to further model
her perspective of A’s probabilities and losses. Assume that D believes that:

• A thinks the state follows a normal distribution θ ∼ N (μA, σA). Moreover,μA ∼
U (−1, 1) and σA ∼ U ( 12 ,

3
2 ) reflect D’s uncertainty about the actual parameters

he uses.
• A’s action is restricted to a ∈ {0, 1}, related with doing nothing (a = 0, with the
state unperturbed as λ = θ ) or perturbing the state by adding 1 (a = 1, with the
state becoming λ = θ + 1).

• A takes the observations (x1, . . . , xn) to be i.i.d. and normal around the transformed
state λ as xi | λ ∼ N (λ, ρA) for i = 1, . . . , n where ρA ∼ U ( 14 ,

3
4 ) models D’s

uncertainty.
• A is a Bayesian adversary with probability πB = 2

3 and a minimax adversary with
probability πM = 1

3 .• A’s loss function incorporates a quadratic term and a penalty in relation with a, so
that LA(d, a, θ) = α |a| − β (θ − d)2. Note that A wins, on one hand, when D’s
estimate is further distant from θ , and, on the other hand, as his perturbation is
smaller. We model D’s uncertainty about the loss parameters with α ∼ U (1, 3

2 )

and β ∼ U (1, 3).
• A determines that D will make her decision (point estimate of θ ) uniformly around
x̄ = 1

n

∑n
i=1 xi with d | x ∼ U (x̄ − 1

2 , x̄ + 1
2 ).

Note first that when A is a minimax adversary as in Sect. 3.3.2, his maximum
loss corresponds with D correctly guessing state θ accentuated by his choice of a.
Therefore, he would be making a = 0 and, thus:

p̂M
D (0) = 1, p̂M

D (1) = 0.

This leads to the same decision (8) as in the non-adversarial problem, as can be easily
verified by replacing pD(a) with p̂M

D (a) in expression (6).
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We consider now that A is a Bayesian adversary as in Sect. 3.3.1. Using K = 104

iterations in the proposed simulation scheme (7), we obtain that:

p̂B
D(0) = 0.318, p̂B

D(1) = 0.682.

Thus being more likely that A will perform his perturbation. Then, making use
of expression (6), we may compute D’s optimal decision, given observations
(x1, . . . , xn), by minimising in d

p̂B
D(0)

∫
(θ − d)2 1

σD
√
2π

exp
(

−(θ−μD)2

2σ 2
D

) n∏
i=1

1
ρD

√
2π

exp
(

−(xi−θ)2

2ρ2
D

)
dθ

+ p̂B
D(1)

∫
(θ − d)2 1

σD
√
2π

exp
(

−(θ−μD)2

2σ 2
D

) n∏
i=1

1
ρD

√
2π

exp
(

−(xi−θ−1)2

2ρ2
D

)
dθ.

This may be simplified in the same manner as the non-adversarial version to obtain
the equivalent problem of minimising in d

p̂B
D(0) ξ(x, 0)

(
d2 − 2d μD ρ2

D+σ 2
D

∑n
i=1 xi

ρ2
D+n σ 2

D

)

+ p̂B
D(1) ξ(x, 1)

(
d2 − 2d μD ρ2

D+σ 2
D

∑n
i=1 (xi−1)

ρ2
D+n σ 2

D

)
,

where

ξ(x, a) = exp

⎛
⎝

(μD ρ2
D+σ 2

D

∑n
i=1 (xi−a))2

ρ2
D+n σ 2

D
− σ 2

D

∑n
i=1 (xi − a)2

2 ρ2
D σ 2

D

⎞
⎠ ,

and whose minimum is

d∗(x) = μD ρ2D

ρ2D + n σ 2
D

+ p̂BD(0) ξ(x, 0) σ 2
D

∑n
i=1 xi + p̂BD(1) ξ(x, 1) σ 2

D
∑n

i=1 (xi − 1)

( p̂BD(0) ξ(x, 0) + p̂BD(1) ξ(x, 1)) (ρ2D + n σ 2
D)

.

In particular, making use of the specific parameters:

d∗(x) = 4 (0.318 ξ(x, 0)
∑n

i=1 xi + 0.682 ξ(x, 1)
∑n

i=1 (xi − 1))

(0.318 ξ(x, 0) + 0.682 ξ(x, 1)) (4n + 1)

with

ξ(x, a) = exp

(
8 (

∑n
i=1 (xi − a))2

4n + 1
− 2

n∑
i=1

(xi − a)2

)
.

Aggregating the different solution concepts as in Sect. 3.3.3, we may determine
D’s optimal decision, given observations (x1, . . . , xn), by minimising in d
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Table 1 D’s decision for each solution concept

Solution concept Optimal solution

Non-adversarial
4

∑n
i=1 xi

4n + 1

ARA: Minimax adversary
4

∑n
i=1 xi

4n + 1

ARA: Bayesian adversary
4 (0.318 ξ(x, 0)

∑n
i=1 xi + 0.682 ξ(x, 1)

∑n
i=1 (xi − 1))

(0.318 ξ(x, 0) + 0.682 ξ(x, 1)) (4n + 1)

ARA: Uncertain concept
4 (0.545 ξ(x, 0)

∑n
i=1 xi + 0.455 ξ(x, 1)

∑n
i=1 (xi − 1))

(0.545 ξ(x, 0) + 0.455 ξ(x, 1)) (4n + 1)

(πB p̂B
D(0) + πM)

∫
(θ − d)2 1

σD
√
2π

exp
(

−(θ−μD)2

2σ 2
D

) n∏
i=1

1
ρD

√
2π

exp
(

−(xi−θ)2

2ρ2
D

)
dθ

+πB p̂B
D(1)

∫
(θ − d)2 1

σD
√
2π

exp
(

−(θ−μD)2

2σ 2
D

) n∏
i=1

1
ρD

√
2π

exp
(

−(xi−θ−1)2

2ρ2
D

)
dθ,

whose solution is:

d∗(x) = μD ρ2
D

ρ2
D + n σ 2

D

+ (πB p̂B
D(0) + πM) ξ(x, 0) σ 2

D

∑n
i=1 xi + πB p̂B

D(1) ξ(x, 1) σ 2
D

∑n
i=1 (xi − 1)

((πB p̂B
D(0) + πM) ξ(x, 0) + πB p̂B

D(1) ξ(x, 1)) (ρ2
D + n σ 2

D)
.

In particular, using the specific parameters:

d∗(x) = 4 (0.545 ξ(x, 0)
∑n

i=1 xi + 0.455 ξ(x, 1)
∑n

i=1 (xi − 1))

(0.545 ξ(x, 0) + 0.455 ξ(x, 1)) (4n + 1)
.

Table1 summarizes thedifferent optimal solutions obtainedwith all the considered
solution concepts.

As we mentioned in Sect. 3.2, the non-adversary aware situation would system-
atically err D’s estimation. The ARA estimator which takes into account concept
uncertainty would fully acknowledge all uncertainty present in the problem.

4 Discussion

We have illustrated the ideas of concept uncertainty in an ASDT problem under the
ARA framework, emphasising point estimation. The approach is general extending
beyond point estimation and may be applied to other standard statistical problems,
including interval estimation, hypothesis testing and forecasting.We have dwelt only
on one out of the three ASDT formulations outlined, that of structural attackers.
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Moreover, we have only considered two concepts concerning Bayesian and mini-
max adversaries. Additional classes of adversaries include non-strategic or prospect
maximising players, among others. Our model requires assessing the weights of
various concepts, which would be assessed based on expert judgement. Should the
situation be repeated over time, we could introduce a scheme for learning about the
relevance concepts based on a Bayesian updating scheme as described in [17].

Multiple attacker cases in the ASDT problem are also of interest. Under an ARA
perspective,wewould support D against all A agents. This poses further introspection
as we would need to differentiate attackers who behave individually from those who
partially or totally coordinate. Furthermore, it could also be the case that their attacks
influence somehow each other.
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On Some Properties of Beta-Generated
Distributions

Konstantinos Zografos

Abstract This note is concerned with a broad family of univariate distributions,
namely the class of the beta-generated distributions which is created on the basis
of the beta distribution by incorporating on this classic model a parent distribution
function F with respective density f . The class of beta-generated distributions have
received a great attention in the recent literature on distribution theory. The aim of this
note is to provide with some properties and characterizations of the beta-generated
distributions which are already known from the theory of order statistics.

1 Introduction

Beta-generated distributions have received a considerable attention during the last
fifteen years. This research activity has signalled in the paper by Eugene et al. [10],
to the best of our knowledge. This paper introduced the beta-normal distribution, a
model developed on the basis of the classic normal and beta distributions. Two years
later Jones [12] has introduced and studied the family of beta generated distributions
as a generalization of the distribution of order statistics. Based on Zografos and
Balakrishnan [19], Zografos [17, 18] and the references appeared therein, for a
continuous distribution function F with density f , the family of beta-generated
distributions, generated by the parent model F and the parameters α, β > 0, has its
pdf (cf. Jones [12]).

gF (x;α, β) = 1

B(α, β)
f (x) {F(x)}α−1 {1 − F(x)}β−1 , (1)
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for α > 0 and β > 0, where B(α, β) = ∫ 1
0 tα−1(1 − t)β−1dt is the complete beta

function. If the parameters α and β are positive integers, the beta-generated model
in (1) is the distribution of the i th order statistic in a random sample of size n from
distribution F , where i = α and n = α + β − 1.

The beta-normal distribution of Eugene et al. [10] is obtained from (1) if the par-
ent model F is that of the classic normal distribution. The family of distributions (1)
can be generated by means of a transformation of a random variable Y with beta dis-
tribution, Beta(α, β), α > 0 and β > 0. In particular, if Y ∼ Beta(α, β), then the
density of the random variable X = F−1(Y ) is given by (1). This representation of X
helps to generate random numbers from (1) while the case α = β = 1 corresponds to
the well-known quantile function representation X = F−1(U ), whereU ∼ U (0, 1),
which is used in order to generate data from a distribution F . There is a huge litera-
ture where the family of distributions (1) is studied and particular models, obtained
from (1) for special choices of the parent distribution F , are proposed as best alterna-
tives to the existing models for modelling real data. In this direction, it is mentioned
the paper by Nadarajah and Kotz [15], Akinsete et al. [1], Zografos and Balakrish-
nan [19], Barreto-Souza et al. [8], Paranaiba et al. [16], Zografos [18], Alexander
and Sarabia [2], Cordeiro and de Castro [9], Alexander et al. [3] while alternative
families of distributions have been introduced in Zografos and Balakrishnan [19],
Lee et al. [14] and Alzaatreh et al. [5], among many other.

This note is motivated by the papers of Asadi et al. [6] and Baratpour et al. [7]
and its main aim is to provide with some characterizations of the beta-generated
distributions, defined by (1), which are obeyed for the distribution of order statistics,
studied in the above mentioned two papers. More precisely, Sect. 2 follows the work
byBaratpour et al. [7] and it provides with characterizations of the parent model F , in
(1), by means of the Shannon entropy of this broad family of univariate distributions.
Section3 is devoted to the study of some informational properties of the family (1),
by following ideas in the paper by Asadi et al. [6]. Section4 provides with some
conclusions and this note is finished with an appendix which provides the proof of a
result.

2 Characterizations of Beta-Generated Distributions

The first result in this section characterizes equality of Shannon entropies of two beta-
generated distributions with different parent models, by the equality of the respective
parent models. This characterization of the family of beta-generated distributions is
provided by means of Shannon entropy of (1). Shannon entropy is an omnipresent
quantity in almost all fields of science and engineering and its explicit expression for
the beta-generated distributions has been derived in Zografos and Balakrishnan [19].
In view of Corollary 1 in Zografos and Balakrishnan [19], the Shannon entropy of
(1) is given by
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HSh(gF ) = ln B(α, β) − (α − 1)[Ψ (α) − Ψ (α + β)]
−(β − 1)[Ψ (β) − Ψ (α + β)]
−EY [ln f (F−1(Y ))],

(2)

where Y ∼ Beta(α, β). Next proposition generalizes Theorem 2.3 in the paper by
Baratpour et al. [7], for the distribution of order statistics.

Proposition 2.1 Let random variables X and Y with respective c.d.f. and p.d.f. F,
f and G, g, respectively. Denote by gF and gG the beta-generated distributions,
obtained from (1), in the case of parent models F and G, respectively. Then,

X
d= Y if and only if HSh(gF ) = HSh(gG), for α ≥ 1, β ≥ 1,

where the symbol
d= is used to denote that the distribution of the random variable on

the left coincides with the distribution of the random variable on the right.

Proof The proof follows the steps of the proof of Theorem 2.3 of Baratpour et al. [7]

and it is only sketched. If X
d= Y , then F = G, a.e., gF = gG , a.e. and hence the

respective Shannon entropies are coincide. Let now HSh(gF ) = HSh(gG). Based
on (2), it is immediate to see that EY [ln f (F−1(Y ))] = EY [ln g(G−1(Y ))], with
Y ∼ Beta(α, β). This is equivalent to

∫ 1

0
yα−1

{
(1 − y)β−1

[
ln f (F−1(y)) − ln g(G−1(y))

]}
dy = 0.

If it is then applied Exercise 4 in Aliprantis and Burkinshaw (see [4, p. 90]), for
n = α − 1, n ≥ 0, we obtain that

(1 − y)β−1
[
ln f (F−1(y)) − ln g(G−1(y))

] = 0, for y ∈ (0, 1),

or
ln f (F−1(y)) = ln g(G−1(y)), for y ∈ (0, 1).

The proof is now completed by following the last part in the proof of Theorem 2.3
of Barapour et al. [7]. �

This proposition motivates the following remarks.

Remark 2.1 (i) If α = m and β = n − m + 1, then Proposition 2.1 leads to
Theorem 2.3 of Barapour et al. [7]. If α = 1 or α = n, then previous proposition
leads to Corollaries 2.3 and 2.4 of Barapour et al. [7], respectively.
(i i) Let X and Y be two random variables and consider independent observations
X1, X2, . . . , Xn1 and Y1,Y2, . . . , Yn2 on them. Let f and g be the respective distribu-
tions of X and Y . Based on this formulation, let’s concentrate on the null hypothesis
of homogeneity of the observations on X and Y , that is,
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H0 : f coincides with g, or, in an equivalent form, H0 : X d= Y.

Taking into account Proposition 2.1, the null hypothesis is equivalent to

H0 : HSh(gF ) = HSh(gG).

A test statistic can be developed for this last hypothesis on the basis of estimators of
Shannon entropies HSh(gF ) and HSh(gG).

For the necessities of the rest of this sectionwe consider parent density and distrib-
ution functions fθ and Fθ ,depending on a real valued parameter θ . The corresponding
beta-generated distribution with parent model Fθ is then defined by

gα,β

Fθ
(x) = 1

B(α, β)
fθ (x) {Fθ (x)}α−1 {1 − Fθ (x)}β−1 , α > 0, β > 0.

The hazard rate function, associated to Fθ , is defined by

rθ (x) = fθ (x)

1 − Fθ (x)
, x > 0.

The next proposition is motivated by Theorem 2.1 of Barapour et al. [7] and it
characterizes the hazard rate function associated to the parent model Fθ (x). The
proof of this proposition is given in the Appendix.

Proposition 2.2 The hazard rate function depends only on the parameter
θ ∈ Θ ⊆ R, that is, rθ (x) = w(θ), for a positive real valued function w(θ), if and

only if,HSh( fθ ) − HSh

(
g1,βFθ

)
= ln β, for β ≥ 1.

The above proposition extends Theorem 2.1 of Barapour et al. [7]. This theorem
is obtained by an application of the above Proposition 2.2, for α = 1 and β = n.
Moreover, the condition that the hazard rate function depends only on the parameter
θ is just the condition that the parent model Fθ is that of the exponential distribution
with hazard rate function w(θ) (cf. Baratpour et al. [7, p. 50]).

A similar result to that of Proposition 2.2 can be proved on the basis of the reversed
hazard rate function, associated to the parent model Fθ , which is defined by

r̃θ (x) = fθ (x)

Fθ (x)
, x > 0.

Proposition 2.3 The reversed hazard rate function depends only on the parameter
θ ∈ Θ ⊆ R, that is, r̃θ (x) = v(θ), for a positive real valued function v(θ), if and

only if,HSh( fθ ) − HSh

(
gα,1
Fθ

)
= ln α, for α ≥ 1.

The proof of this last proposition is derived by a similar argument as that of the
proof of Proposition 2.2, given in the Appendix, and Lemma 1(a) in Zografos and
Balakrishnan [19]. Proposition 2.3 extends Theorem 2.2 of Barapour et al. [7].
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3 On Divergence Between Beta-Generated and Parent
Model

Motivated by Asadi et al. [6] and Zografos and Balakrishnan [19], the aim of this
section is to derive explicit expressions for a divergence or a distance type measure
between the parent model F and the beta-generated distribution gF , with parent
model F , given by (1). We will concentrate, in the sequel, to the Kullback–Leibler
divergence or its symmetric version, as it was defined by Kullback (see [13, p. 6])
and it is known as Jeffreys divergence. Jeffreys divergence between the parent model
F with density f and the beta-generated distribution gF with parent F, is defined by

J ( f, gF ) = DKL( f, gF ) + DKL(gF , f ), (3)

where DKL is the Kullback–Leibler divergence between the underlined densities and
it is defined by

DKL( f, gF ) = ∫
R
f (x) ln f (x)

gF (x;α,β)
dx, and

DKL(gF , f ) = ∫
R
gF (x;α, β) ln gF (x;α,β)

f (x) dx .
(4)

Jeffreys divergence J ( f, gF ), in (3), obeys non-negativity and it is symmetric in its
arguments, that is,

J ( f, gF ) ≥ 0 , with equality if and only if f = gF , and
J ( f, gF ) = J (gF , f ).

However, it doesn’t obey the triangular inequality and it isn’t therefore a distance
measure of the underlined densities.

In order to obtain J ( f, gF ) in an explicit form it is necessary to obtain DKL( f, gF )

and DKL(gF , f ), in an explicit form. To proceed in this direction, using (1) and after
simple algebraic manipulations

DKL( f, gF ) = ∫
R
f (x) ln f (x)

gF (x;α,β)
dx

= ln B(α, β) − ∫
R
f (x) ln

{[F(x)]α−1[1 − F(x)]β−1
}
dx .

Applying now the transformation u = F(x) to the last integral

DKL( f, gF ) = ln B(α, β) − (α − 1)
∫ 1

0
ln udu − (β − 1)

∫ 1

0
ln(1 − u)du,

which leads to

DKL( f, gF ) = ln B(α, β) + α + β − 2, α, β > 0. (5)
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In a similar manner and in view of (1) and (4)

DKL(gF , f ) = − ln B(α, β) + (α − 1)
∫
R
gF (x;α, β) ln F(x)dx

+(β − 1)
∫
R
gF (x;α, β) ln[1 − F(x)]dx .

Based on Lemma 1 of Zografos and Balakrishnan [19], it is immediately obtained

DKL(gF , f ) = − ln B(α, β) + (α − 1)[Ψ (α) − Ψ (α + β)]

+(β − 1)[Ψ (β) − Ψ (α + β)].
(6)

The explicit expressions of (5) and (6) along with that of Eq. (3) are summarized in
the next proposition.

Proposition 3.1 Kullback–Leibler and Jeffreys divergences between the parent
model f and the beta-generated distribution gF , in (1), are given by

DKL( f, gF ) = ln B(α, β) + α + β − 2,

DKL(gF , f ) = − ln B(α, β) + (α − 1)[Ψ (α) − Ψ (α + β)]

+(β − 1)[Ψ (β) − Ψ (α + β)],

J ( f, gF ) = (α − 1)[Ψ (α) − Ψ (α + β) + 1]

+(β − 1)[Ψ (β) − Ψ (α + β) + 1],

for α, β > 0.

This last proposition motivates some remarks and conclusions on the divergence
between the parent model f and the beta-generated distribution gF , of (1). It also
gathers some similar results for Kullback–Leibler divergence between the parent
model f and the distribution of order statistics of a random sample from f , as they
have been previously derived in the work by Asadi et al. [6].

Remark 3.1 Suppose that X1, . . . , Xn is a random sample from a population which
is described by a density f or a distribution function F . In this frame, the distribu-
tion f(i), of the i th order statistic, i = 1, . . . , n, is obtained from (1) for α = i and
β = n − i + 1.Basedon theprevious proposition the respective divergences between
f and f(i) are given by,

DKL( f, f(i)) = ln B(i, n − i + 1) + n − 1,

DKL( f(i), f ) = − ln B(i, n − i + 1) + (i − 1)[Ψ (i) − Ψ (n + 1)]

+(n − i)[Ψ (n − i + 1) − Ψ (n + 1)],
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J ( f, f(i)) = (i − 1)[Ψ (i) − Ψ (n + 1) + 1]

+(n − i)[Ψ (n − i + 1) − Ψ (n + 1) + 1].

The first two equations for DKL( f, f(i)) and DKL( f(i), f ) are already known from
Asadi et al. [6, p. 218].We observe that all the above divergences between f and gF or
between f and f(i) don’t depend on the parent model f . Hence, they can’t discrimi-
nate between different parent models. All the above three divergences between f and
f(i) are characterized by a monotonicity property. Based on Asadi et al. [6, p. 218],
“the information discrepancy (as it is expressed by DKL( f, f(i)) or DKL( f(i), f )
or J ( f, f(i))) between the distribution of order statistics and f decreases up to the
median and then increases. Thus, amongst the order statistics, the median has the
closest distribution to the data distribution.”.

4 Conclusions

Some well known properties and characterizations of the distribution of order statis-
tics are extended to the class of the beta-generated distributions and the repertory of
the properties and characterizations of this broad family of univariate distributions is
therefore enriched. An identification characterization has been proved in Proposition
2.1. According to this characterization two distributions coincide if and only if the
Shannon entropies of the respective beta-generated distributions are coincide. This
result can be exploited to develop tests of homogeneity which would be based on
the empirical versions of Shannon entropies of the respective beta-generated distri-
butions.

5 Appendix: Proof of Proposition 2.2

(=⇒) Suppose that rθ (x) = fθ (x)
1−Fθ (x)

= w(θ), θ ∈ Θ ⊆ R. Then,

HSh( fθ ) = − ∫
R
fθ (x) ln fθ (x)dx

= − ∫
R
fθ (x) ln [rθ (x) (1 − Fθ (x))] dx

= − lnw(θ) − ∫
R
fθ (x) ln (1 − Fθ (x)) dx,

or

HSh( fθ ) = − lnw(θ) −
∫

R

B(1, 1)g1,1Fθ
(x) ln (1 − Fθ (x)) dx .

Taking into account that B(1, 1) = 1 and using Lemma 1(b) of Zografos and
Balakrishnan [19], we get
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HSh( fθ ) = − lnw(θ) − [Ψ (1) − Ψ (2)] .

Based on

Ψ (x + 1) − Ψ (x) = 1

x
, (7)

(cf. Gradshteyn and Ryzhik [11, §. 365]), it is obtained that,

HSh( fθ ) = − lnw(θ) + 1. (8)

On the other hand,

HSh

(
g1,βFθ

)
= − ∫

R
g1,βFθ

(x) ln g1,βFθ
(x)dx

= − ∫
R
g1,βFθ

(x) ln
[

1
B(1,β)

fθ (x) (1 − Fθ (x))
β−1

]
dx

= − ∫
R
g1,βFθ

(x) ln
[

1
B(1,β)

rθ (x) (1 − Fθ (x))
β
]
dx

(9)

and taking into account that rθ (x) = w(θ) and B(1, β) = 1/β it is obtained that

HSh

(
g1,βFθ

)
= − ln β − lnw(θ) − β

∫

R

g1,βFθ
(x) ln (1 − Fθ (x)) dx .

Using again Lemma 1(b) of Zografos and Balakrishnan [19] and Eq. (7) above,

HSh

(
g1,βFθ

)
= − ln β − lnw(θ) − β [Ψ (β) − Ψ (β + 1)]

= − ln β − lnw(θ) + 1.
(10)

Equations (8) and (10) lead now to the desired result.
(⇐=) Suppose that HSh( fθ ) − HSh(g

1,β
Fθ

) = ln β, for β ≥ 1. Based on (9) and on
the identity B(1, β) = 1/β,

HSh

(
g1,βFθ

)
= − ln β − β

∫

R

g1,βFθ
(x) ln (1 − Fθ (x)) dx −

∫

R

g1,βFθ
(x) ln rθ (x)dx .

Using Lemma 1(b) of Zografos and Balakrishnan [19] and Eq. (7), we obtain
∫

R

g1,βFθ
(x) ln (1 − Fθ (x)) dx = Ψ (β) − Ψ (β + 1) = − 1

β
.

Then, the above formula for HSh

(
g1,βFθ

)
is simplified as follows,

HSh

(
g1,βFθ

)
= − ln β + 1 − ∫

R
g1,βFθ

(x) ln rθ (x)dx

= − ln β + 1 − ∫
R

1
B(1,β)

fθ (x) (1 − Fθ (x))
β−1 ln rθ (x)dx

= − ln β + 1 − β
∫
R
fθ (x) (1 − Fθ (x))

β−1 ln rθ (x)dx .
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Because, by hypothesis, HSh( fθ ) − HSh(g
1,β
Fθ

) = ln β, using the previous expres-

sion for HSh

(
g1,βFθ

)
, it is obtained

HSh( fθ ) − 1 + β

∫

R

fθ (x) (1 − Fθ (x))
β−1 ln rθ (x)dx = 0. (11)

Applying the transformation u = 1 − Fθ (x) to the last integral

∫

R

fθ (x) (1 − Fθ (x))
β−1 ln rθ (x)dx =

∫ 1

0
uβ−1 ln rθ

(
F−1

θ (1 − u)
)
du. (12)

Equations (11) and (12) lead to

HSh( fθ ) − 1 + β

∫ 1

0
uβ−1 ln rθ

(
F−1

θ (1 − u)
)
du = 0

and taking into account that HSh( fθ ) does not depend on x or u,

β

∫ 1

0
uβ−1

{
HSh( fθ ) − 1 + ln rθ

(
F−1

θ (1 − u)
)}

du = 0.

In view of Exercise 4 of Aliprantis and Burkinshaw (see [4, p. 90]) for n = β − 1,
n ≥ 0, it is obtained that

ln rθ
(
F−1

θ (1 − u)
) + HSh( fθ ) − 1 = 0, for β ≥ 1.

The result now follows by using a similar argument as that of the last two lines in
the proof of Theorem 2.1 of Barapour et al. [7]. �
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The Mathematics of Imprecision: Fuzzy
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Fuzzy Multi-criteria Support for Sustainable
and Social Responsible Investments:
The Case of Investors with Loss Aversion

Amelia Bilbao-Terol, Mariano Jiménez-López, Mar Arenas-Parra
and M. Victoria Rodríguez-Uría

Abstract The aim of this paper is to construct a support decision-making system
for portfolio selection combining financial and sustainable objectives. The model we
propose allows us to obtain a socially responsible portfolio which tracks the portfolio
that an investor could have chosen if she did not take into account social, ethical and
ecological (SEE) considerations in her investment decisions. For this purpose, we
propose a fuzzymulti-criteriamodel that runs on two levels of decision-making: in the
first stage, the preferred portfolio considering only financial objectives is obtained. In
the second stage, we will use the preferred portfolio as a reference point with respect
the financial behavior and then a socially responsible portfolio is obtained. In this
paper linguistic labels have been used to model the parameters of the value function
proposed by Kahneman and Tversky (Econometrica XVL(II):263–291, [10]). These
linguistic labels determine in a “soft” way the loss and risk aversion. The developed
methodology has been applied to eight Spanish companies, which have been selected
for their relevance in the Spanish stock market.

1 Introduction

The concept of Corporate Social Responsibility (CSR)may be defined as the commit-
ment by firms to contribute to sustainable economic development while improving
the quality of the life of the workforce as well as the local community and society
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at large. Socially Responsible Investing (SRI) is an investment way that integrates
environmental, social and corporate governance (ESG) considerations to generate
long-term competitive financial returns and positive societal impact. It is a process
of looking for companies with good CSR performance.

The aim of this paper is to design a model for selecting SR portfolios considering
financial and sustainability objectives. The measuring of the SR degree of individual
investments is complicated, given that a welfare function, which includes all social
aspects, is not available (Hallerbach et al. [8]). On the other hand, the UK Social
Investment Forum website (UKSIF) indicates that though the majority of people
agree with what are the ethical issues, each individual must decide if a specific
investment meets her criteria:“different people have different views as to what is
acceptable and how important a set issue is for them”. However, the UKSIF identi-
fies what characterizes good SRI: “What they have in common is that they clearly
state views on SEE issues. The key is to deliver and use information on the invest-
ments in such a way that those who invest may decide whether such investments
are suitable for their clients and their pension funds” (UK Social Investment Forum,
http://www.uksif.org/).

Our modelling is based on to find a SR portfolio that is as close as possible to a
conventional reference portfolio that the investor would have chosen if she had not
taken into account social issues in her investment decisions. For this purpose, we
propose a fuzzy multi-criteria model that runs on two levels of decision-making. So,
in the first stage, a conventional portfolio is obtained by the Kahneman–Tversky’s
prospect theory [10] with net profits as the financial objective. A key element of
prospect theory is an S-shaped value function that is concave (risk aversion) in the
domain of gains and convex (risk seeking) in the domain of losses, both measured
relative to a reference point. In the second stage, we are faced with a multi-objective
problem which is solved by using an extended Goal Programming methodology and
the financial characteristics of the reference portfolio as targets.

The financial information has been obtained from the financial agency Morn-
ingstar Ltd. and the one related to the CSR from the analysis of the companies
sustainability reports (Obama-Eyang [13], Bilbao-Terol et al. [3]). A sustainabil-
ity report is a report published by a company or organization about the economic,
environmental and social impacts caused by its business activities. In this paper, we
have been analysed the CSR companies following the Global Reporting Initiative
(GRI) guidelines that appear to be the most popular and comprehensive CSR report-
ing framework in use today (Brown et al. [4], GRI [6], Searcy and Elkhawas [16]).
The GRI guidelines aim is to create a common social and sustainability report-
ing for the companies similar to financial reporting, in order to increase corporate
transparency. It uses sustainability reporting in three Dimensions: Economic, Envi-
ronmental and Social Sustainability. These Dimensions are broken down in 3 (Eco-
nomic Performance, Market Presence and Indirect Economic Impacts), 8 (Materials,
Energy, Water, Biodiversity, Emissions, Effluents andWaste, Compliance, Transport
and Overall) and 4 (Labour Practices and Decent Work, Human Rights, Society and
Product Responsibility) Categories, respectively.
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In this paper, we have applied the Bilbao-Terol et al. [3] algorithm to construct the
SR objective. The authors present a system based on the GRI Categories to obtain a
normalised performance measure of each GRI Category that shows how far/close a
company is to a sustainable behaviour. To do this, they consider the aggregation of
the company performance on all aspects inside the Categories.

The paper is organised as follows. In Sect. 2, a sustainable portfolio selection
model based on Goal Programming (GP) and fuzzy technology is shown. Section3
presents an empirical application to the Spanish market. The paper ends with the
main conclusions.

2 A Model for Selecting Socially Responsible Portfolios

We propose a fuzzy multi-criteria model that runs on two levels of decision-making:
in the first stage, the reference portfolio considering only financial objectives is
obtained. In the second stage, we will use the reference portfolio as an ideal point
and a socially responsible portfolio is designed.

2.1 Obtaining the Reference Efficient Portfolio with Fuzzy
Prospect Theory

For the construction of the financial preferred portfolio, i.e., the reference portfolio,
the Prospect Theory has been used (net profits as the financial objective and error
function as the utility function). The net profits random variable is represented on the
real number line bymeans of the expected value at the end (EVE) and the Conditional
Value at Risk (CVaR) associated with net profits at a certain confidence level. The
minimization of theCVaR is carried out following themodel proposed byRockafellar
andUryasev [14].With regard to the constraints, the budget constraint and short sales
are not allowed.

In order to select the optimum portfolio under the EVE and the CVaR criteria we
generate an approximation of the financial efficient frontier CVaR-EVE by applying
the ε-constraint method, proposed by Haimes et al. [7].

On the efficient frontier (Fig. 1), we calculate the financial preferred portfolio
with maximum certainty-equivalent. In order to do this an error function is used
with an S-shaped according to that prescribed in Prospect Theory (Kahneman and
Tversky [10]). We have using the following utility functions:

u( f (x)) =
⎧
⎨

⎩

f (x)α if f (x) ≥ 0

−λ(− f (x))α if f (x) < 0
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Fig. 1 The financial efficient frontier

Fig. 2 Linguistic labels to model the parameter α

Fig. 3 Linguistic labels to model the parameter λ

with 0 < α ≤ 1 and λ ≥ 1 are the parameters of the utility functions that fit the
investor profile (risk aversion, α, and loss aversion, λ).

Determining these values is a difficult task. Linguistic labels of the type ‘lit-
tle/moderate/very’ averse to risk (see Fig. 2) and to losses (see Fig. 3), represented
by fuzzy numbers, has been used in order to model the investor’s profile.

From this information, we assign discrete values (within its support) to α and
λ. For each (α, λ) pair, we obtain the corresponding certainty-equivalent maximum
portfolio on the efficient frontier (see Fig. 4). The certainty-equivalent CE of the
portfolio is calculated by the following expression:
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Fig. 4 The center of gravity of the (CVaR-EVE) pair and the preferred portfolio

CE =

⎧
⎪⎪⎨

⎪⎪⎩

U
1/α

if U ≥ 0

−
(

−1

λ
U

)1/α

if U < 0

where U is the expected utility (the average of utilities).
With these portfolios the center of gravity of the CVaR-EVE pair is obtained (see

Fig. 4). The CVaR (EVE) of the center of gravity is obtained using as weights the
membership degree of each portfolio (the t-norm product of the membership degrees
of the parameters α and λ). The financial preferred portfolio will be the one closest
to the center of gravity (see Fig. 4). We denote by CVaR∗ and EVE∗, the CVaR and
the EVE of this portfolio, respectively.

2.2 Extended GP Model for SR-Portfolio Selection

In order to use a GP approach for a multi-objective problem it is necessary that the
DM establishes aspiration levels for each goal (Ignizio [9], Tamiz et al. [17]). For
the financial objectives, these levels are the corresponding values of the reference
portfolio: (CVaR∗, EVE∗). For the third goal, the socially responsible (SR) target,
the investor determines its aspiration level.
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By considering an investment universe of N companies, a portfolio is represented
by the N -dimensional vector x = (x1, . . . , xN ) where xi denotes the number of
shares invested in the company i . Once defined the goals and the constraints we
propose the following Extended GP model (Romero [15], Bilbao-Terol et al. [3]) in
order to obtain the SR portfolio tracking the reference one

min γ [ω1 p1 + ω2n2 + ω3n3] + (1 − γ )D

s.t.

ψ + (1 − a)−1
J∑

j=1

π j z j + n1 − p1 = CVaR∗, z j ≥
N∑

i=1

(−Pi j xi ) + C0 − ψ, z j ≥ 0

N∑

i=1

E[Pi ]xi + n2 − p2 = EVE∗,
N∑

i=1

SRi xi + n3 − p3 = SR∗,

where C0 is the initial available capital, E[Pi ] is the expected price of the share
of the generic i th company, Pi j denotes the share price of the i th company in the
scenario j , π j is the probability of the scenario j , z j are dummy variables to solve
the optimization problem and γ ∈ [0, 1] is the tradeoff between the weighted goal
programming model and minmax goal programming one.

3 Application to the Spanish Market

In order to apply the previously exposedmethodologywe have constructed a database
containing 4,667 observations corresponding to daily closing prices for eight large
Spanish companies included in the IBEX-35 (see Table1).

We have set an estimation interval equal to one week and the investment date is
27/02/2014, therefore, 662 weekly observations are available (i.e. T is equal to 662).
The investment horizon has been set at one month (4 weeks). We have worked with
non-overlapping weekly-compounded returns.

To get the conventional portfolio, which will serve as a reference portfolio, the
investor profile is setting by a pair of linguistic labels: medium for risk (support (α)
= [0.3, 0.75]) and lower for losses (support (λ) = [1, 1.5]). From this information,
we assign discrete values (within its support) to α and λ, obtaining the correspond-
ing certainty-equivalent maximum portfolios on the efficient frontier (Table2). The
financial preferred portfolio will be the portfolio 90 on the efficient frontier (see
Fig. 4).
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Table 1 SR-index of the companies (Source: Bilbao-Terol et al. [3])

Company Sector Subsector Market
capitalization (in
Meuros)(5/2015)

SR-Index

Acciona SA Basic materials,
industry and
construction

Construction 4,002.44 0.6290

BBVA SA Financials and real
estate

Banks and saving
banks

57,201.12 0.3526

Iberdrola SA Oil and energy Electricity and gas 38,624.77 0.6574

Inditex SA Consumer goods Textile, clothing and
footwear

89,930.99 0.1713

NH Hotels SA Consumer services Leisure, Tourism and
hospitality

1,831.921 0.3021

B. Santander SA Financials and real
estate

Banks and saving
banks

94,993.32 0.3944

Sacyr SA Basic materials,
Industry and
Construction

Construction 2,024.42 0.2860

Telefónica SA Technology and
Telecommunications

Telecommunications
and others

67,952.62 0.2027

Table 2 The certainty-equivalent maximum portfolios on the efficient frontier

Portfolio 53 66 67 69 81 83 90 98 99 100

CVaR 5.35 5.52 5.53 5.56 5.77 5.81 5.97 6.19 6.22 6.26

EVE 100.25 100.28 100.28 100.28 100.30 100.30 100.32 100.33 100.33 100.33

C. Gravity CVaR = 5.95 EVE = 100.31

3.1 The SR-Criterion for the Portfolio

There are different ways in the literature to obtain a measure of the Corporate Social
Responsible (CSR) performance of the companies (see, Bilbao-Terol et al. [1, 2],
Cabello et al. [5], Liern et al. [12], Lamata et al. [11]).

In general, an SR criterion for a portfolio x is defined as a weighted average of
the SR-indexes of the individual companies (see Table1) contained in this portfolio,
that is,

SR(x) =
N∑

i=1

SRi PiT xi ,

where SRi represents a measure of the i th company’s compliance.
In this paper, we have applied the Bilbao-Terol et al. [3] algorithm to construct

the SR objective. The authors obtain a normalized performance measure of the GRI
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Labor Practices and Decent Work Category that shows how far/close a company is
to a sustainable behaviour. To do this, they consider the aggregation of the company
performance on all aspects inside the Labor Practices and Decent Work Category.

3.2 Results

For the financial objectives, the aspiration levels are the corresponding values of the
portfolio 90: (CVaR90, EVE90) = (5.95, 100.32). Therefore, a very financial risky
profile is used. For the third goal, the socially responsible target, the midpoint of
the range of the sustainability criterion is chosen. Once defined the goals and the
constraints included in the set X we solve our model in order to obtain the SR
portfolio tracking the reference one.

Table 3 Optimal portfolio
(γ = 0.5)

COMPANY SR portfolio Reference portfolio

Acciona 43.037 7.34

Iberdrola 9.48 2.22

Inditex 47.49 90.44

CRITERION

CVaR 5.9683 5.97

EVE 100.2358 100.32

SR 41.4338 21.57

Fig. 5 Historical series of the portfolios
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Table3 and Fig. 5 show the SR and reference portfolios when parameter γ = 0.5.
As we can see, the two portfolios invest in the same companies but with different
amounts. The compositions displayed in Table3 show that the introduction of the
SR objective increases the investment in Acciona and Iberdrola that present the best
results for the SR-index. Financial satisfaction in the SR portfolio is lower than a
reference portfolio as a result of the lower SR score of the company with better
financial performance (Inditex). On the other hand, the Inditex investment in the
SR portfolio has been considerably reduced as a cause of that fact. The Acciona
investment in the SR portfolio has increased due to its good socially responsible
behaviour.

4 Conclusions

A new methodology is presented for those SR investors that prefer to make their
own decisions about the securities in which to invest. Our proposal allows to obtain
a portfolio that satisfies the financial and sustainability concerns of these investors.
The modeling by means of the theory of the fuzzy subsets allows a flexible treatment
of the parameters that define the financial utility (or value) of the investor with a
behavior that follows the Kahneman–Tversky Theory. With our methodology the
investor knows the possible financial sacrifice that involves his desire to invest in
companies concerned to social responsibility. Our design of investment portfolios
uses the Corporate Social Responsibility performance of the companies that have
been obtained analysing its sustainability reporting.
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Graphical Exploratory Analysis of Fuzzy
Data as a Teaching Tool

Inés Couso, Luis Junco, José Otero and Luciano Sánchez

Abstract Graphical exploratory analysis for fuzzy data allows us to represent sets
of individuals whose attributes are perceived with imprecision on a map so that
the degree of dissimilarity between two objects is somehow compatible with the
distances between their respective representations. This study will discuss the use
of this tool to jointly analyze the evolution of a group of students during a course,
and to select the most suitable personnel of a company to receive a training course,
according to a catalog of competencies and considering the reliability of information
sources.

1 Introduction

Graphical exploratory analysis consists of the projection of a set of individuals on a
plane, so that the similarities between pairs of individuals are compatible with the
distances between their corresponding representations [9]. There are different tech-
niques to perform this projection, depending on themodel used to link the similarities
between objects to the distances between their representations on the map. The most
frequent method is applied to objects described by a vector of numerical properties,
and uses the Euclidean distance both to calculate the distances between objects and
between their projections.

Different generalizations of graphical exploratory analysis to the case of imprecise
data have been considered in the literature. More concretely, the case where every
instance is characterized by means of a vector of fuzzy numbers has been considered
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by different authors [5–7, 13]. Just as in the exploratory analysis of crisp data each
individual is associated with a point on the map, the projection of a fuzzy vector is a
geometric figure that depends on the transformations between the spatial distances
and the distances on the map.

Exploratory data analysis techniques are part of the general knowledge and rou-
tinely used in a multitude of knowledge discovery problems. However, the use of
exploratory analysis of fuzzy data is not very widespread. In relation to informa-
tion mining in a teaching context, the algorithm defined in [11] has been applied
to the analysis of tests solved by groups of children with learning difficulties (early
diagnosis of dyslexia [12]) and to the analysis of questionnaires of follow-up by the
students of different undergraduate and master’s degrees. In both cases, in addition
to obtaining visual information about how many different types of students are in
each group, it is possible to measure the variations between the learning success of
the different subgroups, and the evolution of their relative returns over the course of
the course. This study reviews these applications and introduces a new one, selecting
the right people to attend in-company training courses, taking into account different
sources of information about each employee’s competencies (statement internal ex-
aminations, questionnaires, previous work, etc.) which are, in turn, affected by the
credibility of each source.

The rest of the paper is organized as follows: Sect. 2 describes the usefulness of
graphical data analysis techniques in a teaching context. Section3 discusses the need
for a representation based on fuzzy sets, and describes some technical aspects of
the algorithm. Section4 discusses several case studies. The paper ends with some
concluding remarks and future work.

2 Usefulness of Graphical Exploratory Analysis in
Teaching Problems

Whenorganizing training courses for employees of a company, it is important to study
what training skills need to be filled, so that you can choose the most appropriate
content for the courses. A similar study also serves to select the best attendees for a
course with a limited number of places, or to compare the results of the study before
and after the end of the course, in order to check whether this effort is paying off and
translates into an improvement of the global capacity of the company.

As mentioned in the Introduction, the different graphical exploratory analysis
algorithms (Sammon maps, PCA, Multidimensional Scaling (MDS), Self Organized
Maps (SOM), etc. [5]) are statistical techniques that project objects as points on a
plane, so that the proximity of the projections of two objects (instances) on the map
reflects the similarity between their respective properties (seen as functions of the
corresponding vectors of attributes). If each of these objects is associated with an
employee, and the properties of the employee are assumed to consist of numerical
measures of their proficiency level in a competency catalog, the graphic exploratory
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analysis is one of the most adequate techniques to evidence groups of employees
with different skills. By adding fictional individuals (hypothetical employees with
perfect knowledge of one technology and no other technologies), the positions of
actual employees over those of fictitious employeesmake it possible to detect training
gaps. Finally, comparing several maps of the same individuals on different dates, it
is possible to evaluate the impact of the courses received.

Notwithstanding, these techniques are not directly applicable to the case where
there is some uncertainty about the values of some of the attributes of an individual
(e.g. missing data) and also do not consider the reliability of the different sources of
information used to characterize individuals. For example, one of themost accessible
sources for checking the level of formation of a group is the follow-up questionnaire
[10]. Unlike the exam or interview, it is the student or employee who declares their
knowledge, so this informationmay be inaccurate: an individual can either declare an
“advanced” knowledge of English in the curriculum or having passed an examination
of that level; in the first case, the uncertainty about his/her language proficiency is
greater.

A simple way to quantify the uncertainty associated with a questionnaire is to
associate different questions with the same item (a value of a single attribute for
a single individual); the dispersion of the corresponding responses is an indication
of the reliability of the test. For example, if a student is approached about his or
her knowledge of probability theory, he/she may declare a “high” knowledge of the
concept of the “density function” and “null” knowledge about the notion of “Radon-
Nikodym derivative”, while another one can answer “medium” to both questions:
the dispersion of the answers associated with the same item is an indication of their
reliability. Clearly, if just a central locationmeasure is selected in order to summarize
all the responses associated with the same property, valuable information is lost.

Another frequent problem with the data collection phase is the problem with
missing data [8]. The most frequent solutions are either to remove the individual
from the sample or to follow some imputation technique. The latter is the preferred
solutionwhen the sample size is not sufficiently high, andgenerally consists in finding
the closest individuals to calculate their average values. Again, the variability of these
values is being ignored, which may mean that the distribution of the completed data
is probably far from reality, so the analysis would be distorted. Other imputation
methods do not affect the variance but only work well under some assumptions
about the coarsening process [2, 3].

3 Use of Fuzzy Sets in Competency Analysis

The use of fuzzy sets allows a homogenous representation of all previous types of
uncertainty in the data. Bymeans of the possibilistic interpretation of themembership
function of a fuzzy set [1, 4], each value of the attribute for a specific object can be
associated with a fuzzy number X̃ whose α-cuts are interpreted as nested confidence
intervals in the sense that:
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P([X̃ ]α � x) ≥ 1 − α, ∀α ∈ (0, 1).

Thus, for example, a missing value can be replaced by a fuzzy set that models the
distribution of the corresponding attribute in other similar objects (even though these
in turn are perceived imprecisely), and the statements of an “advanced” knowledge
of English or “average” knowledge of Probability Theory will be associated with two
fuzzy numbers, whose specificities will be linked to the reliabilities of information
sources. Therefore, in this study it will be considered that the knowledge about an
individual can be quantified by means of a vector of fuzzy numbers. This general-
ization has two fundamental consequences in order to perform a graphical analysis
of the population:

(a) The spatial coordinates of each individual are unknown, except for a nested
family of (multivariate) confidence intervals.

(b) The Euclidean distance between two individuals whose coordinates are uncer-
tain, is uncertain in turn.

From the first statement it can be concluded that the projections of each individual
on the map will not be points, but families of nested sets, whose form will depend on
the distortion of the spatial geometry, proper to each technique, in the flat projection.
From the second, it follows that it is not reasonable to use a distance between fuzzy
sets and calculate a numerical array of distances between individuals, nor between
their projections. In general, a distance like that will not induce a total order among
projections that is consistent with the ordering between the actual values of the
attributes, since such an order between the actual values is just partially known.

In previous works, different simplifications have been made to achieve an approx-
imate projection. For example, in the method described in [5, 6] multidimensional
scaling (MDS) is extended to allow distance matrices to contain ranks or fuzzy num-
bers. The standard version of MDS consists of finding the scatter plot that minimizes
a stress function, defined by the quadratic difference between the matrix of distances
between the data and the matrix of distances of the points included in the scatter
plot. In the generalized version, a fuzzy-valued stress function is defined, which
measures the fit between the set of distances compatible with the map figures and
the set of distances between the fuzzy descriptions of the individuals. In this method
it is assumed that the projections are circles on the map, which is not always correct,
since the attributes are not allowed to have different levels of uncertainty. Subsequent
extensions [13] removed this restriction, as explained below.

3.1 How to Determine the Shape of Projections

Let X̃i = (X̃i1 × . . . × X̃i f ) and X̃ j = (X̃ j1 × . . . × X̃ j f ) be two tuples of fuzzy
sets representing our incomplete knowledge about the f attributes of individuals
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Fig. 1 The α-cuts of the
projected data are polygons
defined by the distances Ri j
in the directions that
pairwise join the examples

xi
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ij
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number i and j . Let [X̃i ]α = [x−
i1, x

+
i1] × . . . × [x−

i f , x
+
i f ] and [X̃ j ]α = [x−

j1, x
+
j1] ×

. . . × [x−
j f , x

+
j f ] be in turn two cuts at the same level α of X̃i and X̃ j .

The set of possible values for the distances at a 1 − α-confidence level is:

Dα
i j =

{√∑ f
k=1(xik − x jk)2

∣∣∣xik ∈ [x−
ik, x

+
ik], x jk ∈ [x−

jk, x
+
jk], 1 ≤ k ≤ f

}
. (1)

Some authors have used a distance similar to this one before [6], and further
assumed that the shape of the projection of an imprecise case was a circle. We
have found that, in our problem, this last is a too restrictive hypothesis. Instead,
and according to [13], we propose to approximate the shape of the projections by a
polygon (see Fig. 1) whose radii R+

i j and R−
i j are not free variables, but depend on

the distances between the cases.
Let us now consider a multivariate tuple of imprecise data (X̃1, . . . , X̃ N ), where

xi is the mode of X̃i and let {(z11, . . . , z1r ), . . . , (zN1, . . . , zNr )} be the projection
on a map of dimension r of that N -dimensional vector.

We propose that the radii R+
i j and R−

i j depend on the distance between [X̃i ]α and
x j (see Fig. 2 for a graphical explanation) as follows:

R+
i j = di j

(
δ+
i j

δi j
− 1

)
R−
i j = di j

(
δi j

δ−
i j

− 1

)
(2)

where di j =
√∑r

k=1(zik − z jk)2, δi j = {d(xi , x j )}, δ+
i j = max{d(x, x j ) | x ∈

[X̃i ]α}, and δ−
i j = min{d(x, x j ) | x ∈ [X̃i ]α}.

3.2 Stress Function

According to the above, the available knowledge about the value of the effort function
associated with the projection of the data is given by the following fuzzy-valued
function, defined by its cuts:
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Fig. 2 The distance between
the respective projections of
[X̃i ]α and [X̃ j ]α is between
the values di j − R−

i j − R−
j i

and di j + R+
i j + R+

j i

xi

xj

dij

zi zj

δ+ij = maxD(xi, xj)

−
ij = minD(xi, xj)

R−
ij R−

ji R+
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δij = D(xi, xj)

Sα =
{ N∑

i=1

N∑
j=i+1

||d(t, u) − β|| |

t ∈ [X̃i ]α, u ∈ [X̃ j ]α,

β ∈ [di j − R−
i j − R−

j i , di j + R+
i j + R+

j i ]
}
.

(3)

As an alternative to minimizing the previous fuzzy-valued function, it is possible
to define a measure that quantifies how different the collection of spatial distances
and the collection of the distances between their projections are, in terms of their
corresponding rankings.

Let D(Xi , X j ) be the fuzzy set whose α-cuts are the sets of distances between
individuals, and let D′(Zi , Z j ) be the set of distances between their respective pro-
jections, Zi and Z j .

If the map correctly reflects the distances between individuals of the population,
it must be observed that the rank of the distance between the i-th and j-th objects are
the same as the rank of the distance between their projections, in the corresponding
matrix. Therefore, the number of pairs of objects for which it is not true that it defines
an alternative cost function.

In our case, the rank of a fuzzy-valued distance within its own matrix is not
completely defined, since there are non-comparable pairs of distances. However, for
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each level α a relation between the α-distances (which are intervals) can be defined;
given two interval-valued distances [d−, d+] and [e−, e+], they are not comparable
when

[d−, d+] ‖ [e−, e+] ⇐⇒ (d+ > e−) ∧ (e+ ≥ d−). (4)

Otherwise, we can say that one of them precedes the other (i.e., either [d−, d+] ≺
[e−, e+] or ([e−, e+] ≺ [d−, d+]). The rank of a distance will be defined, for the α

level, according to the following iterative procedure: We take all the distances and
we select those that are not preceded by any other in the collection. All of them are
assigned rank equal to 1. We remove those distances from the initial collection. We
take the remaining ones and iterate the process, by assigning a rank equal to 2 to
those that are not dominated by any other one. We continue with the process until
we get the empty set.

The purpose of the numerical algorithm (which will not be made explicit, due to
extension limitation) is to obtain a map for which the ranks of each of the terms of
the matrices of distances between individuals and between projections coincide for
every α level. The value of the stress function is the infimum of those α levels for
which both collections of ranks do coincide.

4 Numerical and Graphical Results

In this section we will illustrate, with the help of three real-world datasets, how to
identify groups of students and how to stack two maps from the same individuals at
different times, for showing the temporal evolution of the learning.

4.1 Variation of Individual Capacities in the Same Group
and Between Groups

In the left part of Fig. 3 a diagram for 30 students of subject “Statistics” in Ingeniería
Telemática at Oviedo University, taken at the beginning of the 2009–2010 course is
shown. This survey is related to students’ previous knowledge in other subjects.

In particular, this survey evaluates previous knowledge in Algebra (A), Logic
(B), Electronics (C), Numerical Analysis (D), Probability (E) and Physics (F). The
positions of the characteristic points have been marked with labels. Those points
are of the type “A” (all the questions about the subject “A” are correct, the others
are erroneous) “NO A” (all the questions except “A” ones are correct, the opposite
situation), etc.

In the right part of Fig. 3 we have plotted together the results of three different
groups, attending lectures by the same teacher. Each intensification has been coded
with a distinctive class. This teacher has evaluated, as before, the initial knowledge
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Fig. 3 Left part: Differences in knowledge of statistics for students in Ingeniería Telemática. Right
part: Differences in knowledge about computer science between the students of Ingeniería Técnica
Industrial specialized in chemistry, electricity and mechanics

of the students in subjects that are a prerequisite. From the graphic in that figure the
most relevant fact is that the students of the intensification coded as CLASS 1 (Inge-
niería Industrial) consider themselves better prepared than those coded as CLASS 2
(Ingeniería Técnica Industrial Eléctrica), with the CLASS 3 group in an intermediate
position, closer to CLASS 1 (Ingeniería Técnica Industrial Química).

All the students of all the groups have a neutral orientation to math subjects, and
some students in the CLASS 2 group think that their background is adequate only in
subjects C (Operating Systems) and D (Internet).

4.2 Evaluation of Learning Results

Ten pre-doctoral students in Computer Science, Physics and Mathematics attending
a research master were analyzed. The background of these students is heteroge-
neous. In the survey the students were asked about 36 subjects classified in “Control
Algorithms” (A), “Statistical Data Analysis” (B), “Numerical Algorithms” (C) and
“Linear Models” (D). On the left of Fig. 4 we can see that there is a large dispersion
between the initial knowledges. Since the subject had strong theoretic foundations,
students from technical degrees like Computer Science evaluated themselves with
the lowest scores (shapes in the right part of each figure).

The same survey, at the end of the course, shows that all the students moved to the
left, closer to characteristic point “EVERYTHING”. Additionally, the displacement
has been larger for the students in the group at the right. This displacement can be
seen clearly in the right part of the same figure, where the shapes obtained from the
final survey were replaced by arrows that begin in the initial position and end in the
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Fig. 4 Evolution of the learning of pre-doctoral students. Left part: Initial survey. Center: super-
position of initial and final maps. Right part: The displacement has been shown by arrows

final center. The length of the arrows is related with the progress of the student during
the course.

5 Conclusions

Wehave proposed the use of graphical exploratorymaps to analyze the characteristics
of groups of students, when those attributes are observed with some uncertainty
either due to inconsistencies in the collection of data or missing data. The map of
a group consists of several figures and a list of characteristic points. The proximity
of an individual to one of these points means that the balance of such an individual
with respect to different areas of knowledge resembles the value represented by
this indicator. This technique can be used to corroborate the improvement of the
abilities after receiving a training course: combining in the same graph the results
of two tests, separated in time, it is possible to determine the displacement of each
individual towards other characteristic points, and thus to detect the individuals who
have best taken advantage of the course.
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Some Results and Applications Using Fuzzy
Logic in Artificial Intelligence
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Algunas veces encuentras en la vida
una amistad especial:
ese alguien que al entrar en tu vida
la cambia por completo.

Mario Benedetti,“Algunas amistades”

Abstract In this chapter, several results and applications in Artificial Intelligence
based on Fuzzy Logic are presented. We aim to highlight some recent works that
are connected with the topic of this book, both in the theoretical and in the applied
fields.

1 Introduction

Pedro Gil was one of the frontrunners of Information Theory in Spain [13], many of
his works were devoted to this topic. Apart from his pioneering work in information
theory, in the 80s he established links with uncertainty and imprecision by exploring
research topics related to fuzzy sets and fuzzy logic. One of the first connections he
established focused on the need of aggregating information; t-norms and t-conorms
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become a useful tool for some situations related to fuzzymeasures and fuzzy integrals
(e.g. [12, 15, 17, 38]). These are the topicswe choose to cover in thismemorial article
dedicated to our beloved teacher, colleague, and friend. In particular, for two of the
authors, Irene Díaz and Luis J. Rodríguez-Muñiz, this is a very special work, since
they were both students in Pedro Gil’s course on Information Theory at the Faculty
of Sciences in the University of Oviedo. But the other two authors, Dan Ralescu and
Anca Ralescu, had also the opportunity to meet Pedro Gil in their first contacts with
the University of Oviedo, more than twenty years ago. We all cherished Pedro as a
friend, a colleague, and a master.

The structure of this chapter is divided into six sections. Section1 corresponds to
the introduction. Sections2–4 are mainly focused on theoretical results while Sect. 5
draws some applications. Finally, some concluding remarks are outlined.

2 Aggregation Operators

Aggregation operators are very useful tools in many fields when the need of combin-
ing different values or information inputs arises [2].Mainstream research approaches
are based on the study of theoretical properties of aggregation operators, as well as
the analysis of different values when the operator is depending on a parameter.

In [40] a new approach to the study of aggregations functions, based not only
on the theoretical properties, but on the statistical behavior of the outputs was initi-
ated. A procedure to carry out statistical comparisons between outputs of different
aggregation functions was adopted, which was used to compare several t-norms
(minimum, product, and Łukasiewicz), as well as some means (geometric, arith-
metic, and quadratic). Based on a large number of simulations, the conditions under
which outputs of aggregations are distinguishable (or not) were studied. Hence, the
focus for practitioners moves from the theoretical issues to the practical behavior of
results.

The procedure introduced in [40] was further pursued in [42], where comparisons
were made for parametric t-norms. The goal in this work was to provide simple rules
that can be used for selecting the parameter value. A strong graphic support was
introduced to help visualize the similarities and differences between t-norm outputs.
Also, the effects of the t-norm arity, the sample size, the input distribution were
analyzed. The main result of this work is the identification of different combinations
of conditions for which, from a practical point of view, the choice of the parameter
value is irrelevant.

In addition, in [39] properties related to Dujmovic’s Iterative OWA operator were
studied. Iterative OWA (ItOWA) operators as proposed by Dujmovic, is a two-stage
procedure for computing theweighting vector by a double nested iteration: (i)weights
at step h are computed as limit to infinity of a matrix power, (ii) the result is used to
start the computation at step h + 1, until theOWAoperator arity n is reached. Troiano
and Díaz [39] propose an analytical solution to this procedure. This theoretical result
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enables a faster computation of the weighting vector and characterization in terms
of weight values, attitudinal character and entropy.

Ralescu et al. in [31] study the concept of optimal aggregation as it plays an impor-
tant role towards developing a theory of aggregation of fuzzy concepts, based on
non-additive set-functions and nonlinear (Choquet or fuzzy) integrals. A framework
supporting such aggregations, that are useful to decisionmaking based on distributed
sources of evidence is developed. In [45] arithmetic operations for LR mixed fuzzy
random variables commonly used in practice for modeling fuzzy stochastic phenom-
ena are studied. The operations are proposed based on mean chance measure, which
as a natural extension of both the probability of a random event and the credibility of
a fuzzy event, measures the mean or expected (in the sense of probability) credibility
that the fuzzy random event occurs. Ralescu and Ralescu [29] studies the equivalence
between aggregation of fuzzy sets and integration with respect to non additive set
functions. The concept of co-monotonic maxitivity is a more desirable requirement
than co-monotonic additivity.

The aggregation of rankings is a recurrent task in several applications, especially in
the context of social choice theory. In this framework, in [22] we study some ranking
aggregation strategies to represent group’s opinion. In particular the strength with
which a ≥ b ≥ c is supported, should not be less than both the strength with which
a ≥ b and b ≥ c are supported. A first approach to this ranking rule considering
totally specified monotone reciprocal relations on a bipolar qualitative scale has
already been taken. In this paper, a more general setting is considered: each voter is
allowed to provide a partially specified reciprocal relation (thatmay not bemonotone)
on the unit interval. In this work we have also explored new ways of measuring the
cost of imposing monotonicity. In [22] a more general setting is considered: each
voter is allowed to provide a partially specified reciprocal relation (that may not be
monotone) on the unit interval. In [17] different representations of votes (the votrix
and the votex) are introduced. The former is a formalization of the well-known
reciprocal matrix of pairwise comparisons between candidates already introduced
by Condorcet. The latter is an extension of this reciprocal matrix considering hitherto
unexploited information. These two representations lead to two monotonicity-based
ranking rules.

In [21] we study an aspect of monotonicity that complements previous studies.
In particular, it is studied if there is a true ranking on the set of candidates and every
voter expresses a ranking on the set of candidates, then the number of times that each
ranking is expressed should decrease when we move away from this true ranking
in terms of pairwise discordances. In addition, we propose a probabilistic model
that allows to formulate the choice of the best ranking as a maximum likelihood
estimation problem.
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3 Extension of Fuzzy Sets

Some extensions of the standard fuzzy sets have been extensively studied during
the last 20 years. Interval, Atanassov’s intuitionistic or hesitant fuzzy sets are rep-
resentative examples of these extensions. In [18] an ordering framework required
to work with interval-valued hesitant fuzzy sets is presented. In fact, ordering sets
is a long-standing open problem due to its remarkable importance in many areas
such as decision making, image processing or human reliability. Methods for order-
ing finitely generated sets as a generalization of those methods previously defined
for ordering intervals were introduced in [18]. In addition, these orderings between
finitely generated sets are also improved to present ordering between finite interval-
valued hesitant fuzzy sets.

Finally, finite interval-valued hesitant fuzzy preference relations are introduced
and used to define a new order between finite interval-valued hesitant fuzzy sets.
Along the same lines, in [26] some concepts related to partitioning for interval-
valued fuzzy sets are studied. Partitioning is a long-standing open problem due to
its remarkable importance in many areas such as clustering. The definition of this
partitioning method involves a definition of an ordering relation for finite interval-
valued fuzzy sets membership degrees, i.e., finitely generated sets, as well as the
definitions of t-norm and t-conorm for these kinds of sets.

Still focusing on interval-valued fuzzy sets, in [25] a definition of entropy for
an interval-valued hesitant fuzzy environment is provided. As the properties of this
kind of sets are more complex, the entropy is built by three different functions,
where each one represents a different measure: fuzziness, lack of knowledge, and
hesitance. Using all, an entropy measure for interval-valued hesitant fuzzy sets is
obtained, quantifying various types of uncertainty.

Yang et al. [46] introduce the definition of type-2 uncertain variables within
the framework of uncertainty theory through introduction of generalized uncertain
measures and focuses on more complex twofold uncertainties. Some uncertainty
reduction methods associated with type-2 uncertain variables are also proposed for
convenience of applicability, including reduction of optimistic value, pessimistic
value and expected value. Moreover, four classes of type-2 uncertain variables are
reduced to type-1 uncertain variables with specific uncertainty distributions.

4 Classification

Going from aggregation operators to a broader knowledge domain, as Artificial
Intelligence is,we have also used fuzzy logic to extend crisp classification algorithms.
In particular, in [33] the fuzzy extension of a previous crisp measure is introduced.
The implementation of this measure into an algorithm proved to improve results
obtained with similar algorithms, as well as it introduced an efficient tool to deal
with imprecision in human judgments.
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Extracting rules from databases is one of the main tasks in Artificial Intelligence.
Different algorithms for learning rules both from crisp and fuzzy databases have
been proposed in the literature. This way, learning information from databases is
opposed to general policies about data protection. Thus, statistical disclosure control
is a paradigm consisting of finding the optimal balance between releasing statistical
data and protecting confidentiality of sensitive information.

Fuzzy logic is a useful tool in finding this balance, since fuzzy association rules
can provide interpretable rules while protecting sensitive records in the database. In
[41] this problem was investigated with the aim of establishing the existence of a
set of rules able to break protection, assessing the interpretability of the model and
identifying the ability of attributes for revealing sensitive information. The results
showed that fuzzy rules are, in general, simpler and easier to interpret than others.

Based on the results obtained in [41] a new approach for dealing with fuzzy sets
in data protection was developed in [11]. In particular, the notion of fuzzy cardinality
becomes a key idea in [41]: counting the number of elements in a given class is the
basis to determine if data of individuals within that class could be disclosed. The
type of fuzzy cardinality used in this work is the simplest σ -count, being an open
problem how to compute the cardinality with more interpretable definitions of fuzzy
counting as those in [27, 28].

Following this path, in [23, 24] fuzzy notions were introduced in well-known
measures in the privacy framework as k-anonymity, l-diversity and t-closeness. These
works propose the extension of these three measures when the data are protected
using fuzzy sets instead of intervals or representative elements. This methodology
was tested using different fuzzy partition methods, obtaining an improvement in
protecting data encoded using fuzzy sets. In addition, [10] provides a brief overview
of the emerging research in privacy issues in social networks.

With regard to classification, [32] proposes a classification algorithm which con-
siders explicitly geometric and statistical characteristics of the data and combines
them into a class representation. The obtained method shows that the proposed algo-
rithm is less sensitive to the training data set than other classifiers, which is an
important property for a classification algorithm.

5 Applications

This section describes some of our recent results concerning applications of fuzzy
logic to different knowledge domains, further from mathematics, statistics or the-
oretical artificial intelligence. The main novelty of these applications consists in
introducing fuzzy logic, in many cases for the first time, in areas usually considered
the domain of crisp techniques, demonstrating how fuzzy logic based procedures
perform better than their crisp counterparts.

One important application of fuzzy sets focused on Artificial Vision. It has been
initially developed for binary and gray scale images. Nevertheless, the color is
an important source of information. For this reason, during the last years these
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techniques have been developed for color images. However, nowadays, the rep-
resentation and the treatment of color images are still open problems [1].

Mathematical Morphology is the natural area for a rigorous formulation of many
problems in image analysis, aswell as a powerful non-linear techniquewhich includes
operators for the filtering, texture analysis, shape analysis, edge detection or segmen-
tation. In the eighties, Matheron [14] and Serra [37] proposed the latest mathematical
formulation ofmorphologywithin the algebraic frameworkof the lattices. Thismeans
that the definition ofmorphological operators needs a totally ordered complete lattice
structure. In that context, before defining the basic morphological operators (erosion
and dilation) it is necessary to define an order on the space used for processing the
images.

Fuzzy Mathematical Morphology [5, 44] is an extension of the Mathematical
Morphology’s binary operators to gray level images, by redefining the set operations
as fuzzy set operations. In [7–9] we define the operators of the Fuzzy Mathemat-
ical Morphology for color images through the use of a fuzzy order. Other impor-
tant works related to image processing are highlighted: in [16] information about
spatial organization in an image is considered to improve object recognition and
scene analysis tasks. Also, in [6] directional relative position relations are consid-
ered since they provide an important information about the spatial arrangement of
objects in the scene. Such concepts are rather ambiguous, they defy precise defini-
tions, but human beings have a rather intuitive and common way of understanding
and interpreting them. Therefore in this context, fuzzy methods are appropriate to
provide consistent definitions that integrate both quantitative and qualitative knowl-
edge, thus providing a computational representation and interpretation of imprecise
spatial relations, expressed in a linguistic way, and including quantitative knowledge.
Bloch and Ralescu [6] review and compares different fuzzy approaches according to
their properties and according to the types of questions they seek to answer.

Risk assessment in human reliability is another application area where fuzzy sets
can provide solutions. Risk is usually mathematically formalized as a matrix that
allows the classification of different kinds of errors according to their importance.
This classification can help in decision making about the most important or urgent
one. Usually the risk matrix takes into account only one criterion (most of the cases:
economic impact). However, decision making in a company often considers more
than one criterion. Therefore, it is interesting to consider at the same time more
than one different risk matrix, each one associated with different criteria for conse-
quences (for example, effects on people, environment, assets or reputation). In [19]
we have developed a method to combine this information in order to classify the
errors according to more than one criterion.

We have developed a general method to combine the information about different
alternatives given by several experts or taking into account several criteria and the
choice of the set of the best ones. This method can be applied in any environment
where there exists interaction among the different alternatives or some experts are
more reliable than others. This will be done by the definition of fuzzy preference
relations and the use of different aggregation functions, in particular the ordered
weighted averaging operator.
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Research in Recommendation Systems has been exponentially growing since the
development of the Internet, more precisely, with the development of e-commerce. A
Recommender System (RS) usually provides a rating or a preference for each user. To
provide this recommendation anRS requires information about the preferences of the
user in relation to the website (movies, books, songs, hotels, etc.). This information
can be acquired explicitly by asking the users to rate items or implicitly bymonitoring
users’ behavior (booked hotels or heard songs). RS can also use other kinds of
information as demographic features (e.g., age, gender) or social information.

The research related to RS has been focused on movies, music and books recom-
mendations, being music recommendation the most studied topic although, recently,
it has been applied in other e-commerce domains. In [43] we face the problem of
filtering from an e-shop catalog a set of products which might be interesting for the
customer on the basis of preferences expressed by a group of users within a mar-
ket segment. This problem is studied from a theoretical point of view by means of
Dempster-Shafer Theory of Evidence (D-S Theory). The purpose of this work is to
show how the D-S Theory can be used in the context of RSs. In this work we pro-
pose to move from items to features in order to (i) reduce problem dimensionality
and (i i) to infer user preferences even when they are not made explicit. Preferences
induced by each feature are considered as an independent source of information,
then combined by a rule. We also studied how to explore the subset inclusion lattice,
once Belief and Plausibility are mapped over it. In addition, we outline some efficient
algorithms to perform such an exploration.

Profile similarity is a key point in recommendation systems. In [34] it is stud-
ied how to assess the similarity between node profiles in a social network. Several
approaches exist to study profile similarity, including semantic approaches and nat-
ural language processing. However, in this work we combine these aspects into a uni-
fied measure of profile similarity. Traditionally, semantic similarity is assessed using
keywords, that is, formatted text information, with no natural language processing
component. In this study we propose an alternative approach, whereby the similarity
assessment based on keywords is applied to the output of natural language processing
of profiles. A unified similarity measure results from this approach.

Ralescu and Ralescu in [30] study the representation of an optimization with
inexact constraints, as a fuzzy integral with respect to a capacity (or to an outer
measure) rather than to a fuzzy measure. It is proved a mean-value theorem for the
fuzzy integral, which has the reduction of optimization with inexact constraints to
classical optimization as a consequence. Sufficient conditions for this reduction to
hold are also provided in this work.

Another recent field of application in which we have started to work is the use
of artificial intelligence techniques for detecting and predicting dropout in higher
education. This is a key problem for higher education institutions, and in the vast
educational literature about it only classical statistical methods were present. In [35]
we started a new line of research for considering other type of approaches, by applying
our previous work on extracting rules from databases.

Finally, we also wanted to underline other recent research line because it connects
two of Pedro’s main beloved occupations: fuzzy logic and teaching. We have started
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an analysis of curricular guidelines in primary and secondary education (mainly
focused on the Spanish framework) in order to determine how imprecision belongs
to the so called “hidden curriculum”. While uncertainty has been introduced in the
analysis of the curricular standards in secondary school from the 80s, and in primary
school from the beginning of 21st century, imprecision is used in many procedures:
approximate and mental calculus, classification of events as sure, likely or unlikely,
ranking events depending on their possibility, etc. We have started to study this type
of situations from the educational point of view both for primary [4] and secondary
school [36], and jointly [3] and, in a forthcoming work, we plan to develop experi-
mental studies at schools.

6 Concluding Remarks

Wehave collected different results recently achieved in our research lineswith the aim
of presenting connections of works developed by Pedro Gil in his multiple research
interests.We are sure that PedroGilwould like theseworks, and particularly hewould
appreciate applications in education, as the last one quoted, since he was always very
concerned with teaching and learning processes not only at university level but also
at previous educational stages. Most of all, our main goal was to pay a tribute to the
researcher, the professor and, especially, the person of Pedro Gil. Recalling the poet,
our beloved Pedro, we hope that in these pages we have attained singing the praises
of “la madurez insigne de tu conocimiento”.1
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On Extending Fuzzy Preorders to Sets
and Their Corresponding Strict Orders

Francesc Esteva and Lluís Godo

Abstract In this paper we first consider the problem of extending a fuzzy (weak)
preorder on a set W to a fuzzy relation (preorder) on subsets of W , and consider
different possibilities using different forms of quantification. For each of them we
propose possible definitions of corresponding indistinguishability and strict preorder
relations associated to the initial preorder, both on W and on its power setP(W ).We
compare them and we study conditions under which the strict relation is transitive.

1 Introduction

In the classical setting, from a preorder ≤ on a universe W we can define:

• an equivalence relation ≡, where x ≡ y if x ≤ y and y ≤ x,
• a strict order <, where x < y if x ≤ y and y � x.

Observe that, so defined, these relations satisfy the condition x ≤ y iff x ≡ y or x < y,
so roughly speaking we can say that ≤ is the union of ≡ and <.

An interesting topic is how we can obtain relations on the power setP(W ) from
a preorder on the universe W. With a logic-based approach (using quantifiers), there
are six ways of doing such an extension, see for example [10, 11].

Definition 1.1 Given a set W together with a preorder ≤, one can define the follow-
ing six relations on P(W ):

• A ≤∃∃ B iff there exist u ∈ A and v ∈ B such that u ≤ v,
• A ≤∃∀ B iff there exists u ∈ A, such that for all v ∈ B, u ≤ v,
• A ≤∀∃ B iff for all u ∈ A, there exists v ∈ B such that u ≤ v,
• A ≤∀∀ B iff for all u ∈ A and v ∈ B, then u ≤ v,
• A ≤∃∀2 B iff there exists v ∈ B such that, for all u ∈ A, u ≤ v,
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• A ≤∀∃2 B iff for all v ∈ B, there exists u ∈ A such that u ≤ v.

Notice that additional different preorders over subsets can be obtained as combi-
nation of the previously defined relations. As an example take a totally pre-ordered
set (W,≤) and suppose we want to extend the preorder in W to an ordering on the
set of intervals of W. Two very usual preorders on intervals are the following ones:

(i) [a, b] ≤1 [c, d] when a ≤ c and b ≤ d,
(ii) [a, b] ≤2 [c, d] when b ≤ c.

The relation≤1 coincideswith the intersectionof the relations≤∀∃ and≤∀∃2,while the
second, ≤2, directly coincides with the relation ≤∀∀. Observe that, strictly speaking,
≤∀∀ is not a preorder because it is only reflexive for singletons.

The above six relations can be compared with respect to set inclusion.

Proposition 1.1 [8, 11] The following inclusions hold:

≤∀∀ ⊆ ≤∀∃ ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∃∀ ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∀∃2 ⊆ ≤∃∃, ≤∀∀ ⊆ ≤∃∀2 ⊆ ≤∃∃

Moreover, the four intermediate relations are not comparable, except for the follow-
ing inclusions:

≤∃∀2 ⊆ ≤∀∃, ≤∃∀ ⊆ ≤∀∃2 .

In this paper we cope with the case where the initial preorder is fuzzy, as a follow-
up of our previous papers [8, 9]. After this brief introduction, in Sect. 2 we recall
different forms of extending a fuzzy preorder on a set W to fuzzy relations on the set
P(W) of subsets ofW, in a similar way to classical preorders. In Sect. 3 we consider
the problem of defining an indistinguishability relation and a strict fuzzy order in a
set from a given fuzzy preorder, while in Sect. 4 we deal with the problem of how to
lift the strict fuzzy order to subsets. In this sense we have used and recovered some
results in [1, 2] and in [4–7] and focus on the transitivity property of the strict fuzzy
orders in both settings. The paper ends with some conclusions and comments on
further research.

2 Extending a Fuzzy Preorder on a Set W to a Fuzzy
Relation on P(W)

Let � be a t-norm. In this section we study the extension of a fuzzy �-preorder on
a set W to a relation on P(W ). Remember that a fuzzy �-preorder is a relation
≤: W × W −→ [0, 1] satisfying reflexivity, i.e., [u ≤ u] = 1 for all u ∈ W, and �-
transitivity, i.e., for all u, v, w ∈ W, [u ≤ v] � [v ≤ w] ≤ [u ≤ w], where [u ≤ v]
denotes the value in [0, 1] of the fuzzy relation ≤ applied to the ordered pair of
elements u, v ∈ W. Moreover we will assume that W is a finite set, and we will
denote by δu the singleton {u}.
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Generalizing the classical case, in [8] we have introduced the following fuzzy
relations onP(W) (using inf and sup to interpret the universal and existential quan-
tifiers).

Definition 2.1 Given a fuzzy relation≤ onW, we can define the following six fuzzy
relations on P(W) by letting, for any A, B ∈ P(W):

• [A ≤∃∃ B] = supu∈A supv∈B [u ≤ v],
• [A ≤∃∀ B] = supu∈A infv∈B [u ≤ v],
• [A ≤∀∃ B] = infu∈A supv∈B [u ≤ v],
• [A ≤∀∀ B] = infu∈A infv∈B [u ≤ v],
• [A ≤∀∃2 B] = infv∈B supu∈A [u ≤ v],
• [A ≤∃∀2 B] = supv∈B infu∈A [u ≤ v].

In the same paper, we have proved similar comparisons to the classical case for
these six relations.

Proposition 2.1 For any sets A, B ∈ P(W), we have:

• [A ≤∀∀ B] ≤ [A ≤∀∃ B] ≤ [A ≤∃∃ B],
• [A ≤∀∀ B] ≤ [A ≤∀∃2 B] ≤ [A ≤∃∃ B],
• [A ≤∀∀ B] ≤ [A ≤∃∀ B] ≤ [A ≤∃∃ B], and
• [A ≤∀∀ B] ≤ [A ≤∃∀2 B] ≤ [A ≤∃∃ B].
Moreover the four intermediate relations are not comparable, except for the same
two cases of Proposition 1.1 changing inclusions by inequalities.

Moreover, in [8] we have also given characteristic properties for each one of
these relations. All of them are reflexive (at least for singletons) and transitive, i.e.,
they are very close to be fuzzy preorders. As a matter of example, we give next the
characterization results for the relation ∀∃. The other relations can be characterized
in a similar way.

Proposition 2.2 The relation ≤∀∃ satisfies the following properties, for all A, B, C ∈
P(W):

1. Inclusion: [A ≤∀∃ B] = 1, if A ⊆ B,
2. �-Transitivity: [A ≤∀∃ B] � [B ≤∀∃ C] ≤ [A ≤∀∃ C],
3. Left-OR: [(A ∪ B) ≤∀∃ C] = min([A ≤∀∃ C], [B ≤∀∃ C]),
4. Restricted Right-OR: [A ≤∀∃ (B ∪ C)]≥max([A ≤∀∃ B], [A ≤∀∃ C]). The in-

equality becomes an equality if A is a singleton.

Theorem 2.1 Let �AE be a relation between sets of P(W) satisfying Properties 1,
2, 3 and 4 of Proposition 2.2. Then there exists a fuzzy �-preorder ≤ on the set W
such that �AE coincides with ≤∀∃ as defined in Definition 2.1.
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3 About the Decomposition of a Fuzzy Preorder
and Its Associated Strict Fuzzy Order

In this section we recall from [8] a possible generalization of the decomposition of
a crisp preorder given in the introduction to the case that the preorder be fuzzy, and
we prove new results about the �-transitivity of the strict associated order.

In the fuzzy setting (see for example [1, 3, 4]), from a fuzzy �-preorder ≤:
W × W → [0, 1] we can define:

• themaximal indistinguishability relation≡ contained in the fuzzypreorder, defined
by [x ≡ y] = [x ≤ y] ∧ [y ≤ x];

• the minimal strict fuzzy �-order < that satisfies the following equation

[x ≤ y] = [x < y] ⊕ [x ≡ y] (1)

where ⊕ is a t-conorm (for example the maximum or the bounded sum).

So defined, the relation ≡ is reflexive, symmetric and �-transitive, and thus it is a
�-indistinguishability relation.

On the other hand, regarding (1), the minimal solution for b of the equation a ≤
b ⊕ c in [0, 1], is the so-called dual residuated implication, or implication associated
to the t-conorm ⊕, which is defined as,

a →⊕ c = inf{b | a ⊕ b ≥ c}.

Therefore, one can define the strict fuzzy order relation <⊕ associated to ≤ and to
the t-conorm ⊕ as the fuzzy relation defined as

[x <⊕ y] = [x ≡ y] →⊕ [x ≤ y] = [y ≤ x] →⊕ [x ≤ y].

The following are the particular expressions of [x <⊕ y] for the threemost prominent
examples of ⊕.

(i) An easy computation shows that the strict fuzzy order relation for ⊕ = max is
defined as

[x <max y] =
{ [x ≤ y], if [x ≤ y] > [y ≤ x],
0, otherwise.

(2)

(ii) For ⊕ being the bounded sum (i.e. Łukasiewicz t-conorm), the corresponding
strict fuzzy order is1:

[x <⊕ y] =
{ [x ≤ y] − [y ≤ x], if [x ≤ y] > [y ≤ x]
0, otherwise

}

=max([x ≤ y] − [y ≤ x], 0).

1This is the strict order companion defined and studied in [4].
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(iii) And for ⊕ being the probabilistic sum (i.e. the dual of product t-norm by the
negation N(x) = 1 − x), we have:

[x <⊕ y] =
{ [x≤y]−[y≤x]

1−[y≤x] , if [x ≤ y] > [y ≤ x],
0, otherwise.

It is well known (see, for example [5]) that the strict relation <⊕ obtained by the
dual residuated implication satisfies the following form ⊕-transitivity:

[x <⊕ y] ⊕ [y <⊕ z] ≥ [x <⊕ z].

But in general it is not �-transitive, even in cases where � is a continuous t-norm
and ⊕ = max, as the following examples show.

Example 3.1 Take a setA = {u, v, w} and let� be either the Łukassiewicz or product
t-norm. Let a, b, c, d ∈ (0, 1], with a > c, b > d and such that a � b = c � d > 0.
Suppose now ≤ is a fuzzy preorder on A defined by reflexivity plus [u ≤ v] = a >

b = [v ≤ u], [v ≤ w] = c > d = [w ≤ v] and [u ≤ w] = a � b = [w ≤ u]. This rela-
tion is transitive if a � a � c ≤ d and a � c � c ≤ b (for example if a = c = 0.9
and b = d = 0.8). Then it is obvious that the strict relation w.r.t. ⊕ = max is
defined as [u <max v] = a, [v <max w] = b and [u <max w] = 0 < a � b = [u <max

v] � [v <max w].
Example 3.2 Take a set A = {u, v, w} and let � be the t-norm which is the ordi-
nal sum of a copy of Łukasiewicz t-norm plus a copy of an arbitrary contin-
uous t-norm, with e being the idempotent element separating the two compo-
nents. Let a, b, c, d ∈ (e, 1], with a > c, b > d and such that a � b = c � d = e.
Suppose now ≤ is a fuzzy preorder on A defined by reflexivity plus the condi-
tions [u ≤ v] = a > c = [v ≤ u], [v ≤ w] = b > d = [w ≤ v] and [u ≤ w] = a �
b = e = c � d = [w ≤ u]. Then it is obvious that the strict relation w.r.t. ⊕ = max
is defined as [u <max v] = a, [v <max w] = b and [u <max w] = 0 < e = a � b =
[u <max v] � [v <max w].

Nevertheless, as we show in the next proposition, we have the following positive
results for the cases: (i) � = min and ⊕ = max and (ii) � and ⊕ being Łukasiewicz
t-normand t-conorm respectively. The case� = min and⊕ =Łukasiewicz t-conorm
is already proven in [4, Theorem 15].

Proposition 3.1 Let ≤ be a �-preorder on a universeW and let <⊕ be the associated
strict relation w.r.t. ⊕. Then

(i) <max is min-transitive.
(ii) If � and ⊕ are Łukasiewicz t-norm and t-conorm, then <⊕ is �-transitive.

Proof To show (i), i.e. to show that min([u <max v], [v <max w]) ≤ [u <max w]), it
is enough to check:
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(1) min([u <max v], [v <max w]) ≤ min([u ≤ v], [v ≤ w]) ≤ [u ≤ w],
(2) if [u <max v] = [u ≤ v] and [v <max w] = [v ≤ w] then [u <max w] = [u ≤

w].
On the one hand, (1) holds since we assume≤ is min-transitive. We will prove (2)

by contradiction. Suppose there exist elements u, v, w ∈ W such that [u <max v] >

0, [v <max w] > 0 and [u <max w] = 0 which is equivalent that [u ≤ v] = a > b =
[v ≤ u], [v ≤ w] = c > d = [w ≤ v] and [u ≤ w] = [w ≤ u] = f . Thus we have five
values a, b, c, d, f and we know that

a > b and c > d. (∗)

We can now reason by cases:

(1) Suppose a ≥ c and b ≥ d. Combining this assumption with (∗)we have that a ≥
c > d. By transitivity, f ≥ min(a, c) = c and f ≥ min(d, b) = d by hypothesis.
Moreover min([w ≤ u], [u ≤ v]) = min(f , a) ≤ d = [w ≤ v]. This implies that
a ≤ d, in contradiction with the fact that d < a.

(2) Suppose a ≥ c and b < d. Combining this assumption with (∗)we have that d <

c ≤ a. By transitivity, f ≥ min(a, c) = c and f ≥ min(d, b) = b by hypothesis.
Moreover min([w ≤ u], [u ≤ v]) = min(f , a) ≤ d = [w ≤ v]. This implies that
f ≤ d, and by hypothesis f ≤ d < c, in contradiction with f ≥ c previously
proved.

(3) Suppose a ≤ c and b ≥ d. Combining this assumption with (∗) we have that
b < a ≤ c. By transitivity, f ≥ min(a, c) = a and f ≥ min(d, b) = d by hypoth-
esis. Moreover min([v ≤ w], [w ≤ u]) = min(c, f ) ≤ b = [v ≤ u]. This implies
that f ≤ b and by hypothesis f ≤ b < a, in contradiction with f ≥ a previously
proved.

(4) Suppose a ≤ c and b ≤ d. Combining this assumption with (∗) we have that
b < a ≤ c. By transitivity, f ≥ min(a, c) = a and f ≥ min(d, b) = b by hypoth-
esis. Moreover min([v ≤ w], [w ≤ u]) = min(c, f ) ≤ b = [v ≤ u]. This implies
that f ≤ b, and by hypothesis f ≤ b < a, in contradiction with f ≥ a previously
proved.

Now we will prove (ii). For all u, v, w ∈ W , suppose that [u ≤ v] = a, [v ≤ w] = b,
[v ≤ u] = c, [w ≤ v] = d, [u ≤ w] = e, [w ≤ u] = f . We have to prove transitivity
of <⊕ in case that a > c, b > d and e > f . The other cases are obviously transitive.
Then the associated strict relation <⊕ contains only the pairs, [u <⊕ v] = a − c,
[v <⊕ w] = b − d, [u <⊕ w] = e − f . Then <⊕ is Łukasiewicz transitive if (a −
c) � (b − d) ≤ (e − f ). We have two cases:

• If a − c ≤ 1 − (b − d) then (a − c) � (b − d) = 0, and thus the inequality holds.
• Otherwise (a − c) � (b − d) = ((a − c) + (b − d)) − 1 = (a + b) − 1−(c + d).
Since ≤ is Łukasiewicz transitive, then a � b ≤ e and d � c ≤ f . Therefore
(a − c) � (b − d) ≤ e − (c + d) ≤ e − (c + d − 1) ≤ e − f . �

Related results about the transitivity of the strict relation associated to a fuzzy
preorder can be found in [1, 2, 4–7].
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4 Extending the Decomposition to Fuzzy Relations
on the Power Set of the Universe

In this section we are interested in how to define a strict fuzzy order relation on sets
of P(W) induced by a fuzzy preorder in W. Halpern notices in [10] that there are
two different methods to define (in the crisp case) a strict relation on P(W) from
a preorder on W. The extensions to the fuzzy case are straightforward and give us
the following definitions (where ≤◦ denotes one of the six relations ≤∃∃, ≤∃∀, ≤∃∀2,
≤∀∃, ≤∀∃2 or ≤∀∀):

• The standard method, that amounts to define

[A <st
◦ B] =

{
[A ≤st◦ B], if [A ≤◦ B] > [B ≤◦ A]
0, otherwise

.

This means in fact to define [A <st◦ B] as the value of the strict order associated to
the preorder ≤◦,

• The alternative method, that first considers the strict order < on W, and then
defines <alt◦ on P(W) according to Definition 2.1, but replacing ≤ by <.

In general, these two methods give rise to two different irreflexive and (restricted)
antisymmetric strict relations. Nevertheless the following inequality always holds:
[A <alt◦ B] ≤ [A ≤◦ B]. Therefore, by definition, if [A ≤◦ B] > [B ≤◦ A] (when
[A <st◦ B] �= 0), then [A <alt◦ B] ≤ [A ≤st◦ B] holds as well. But different possibili-
ties arise depending on the quantified extension of the original preorder on W as
studied below.

Proposition 4.1 Given a fuzzy preorder ≤ on a universe W , let ≤◦ be the induced
relation on P(W ) (where ◦ ∈ {∃∃, ∃∀,∀∃, ∃∀2,∀∃2,∀∀}). Then the strict relations
<st◦ and <alt◦ obtained by using standard and alternative method respectively are not
comparable in general, but the following relationships hold:

(i) Let ◦ = ∃∃. Then, for all A, B ∈ P(W ), [A <st
∃∃ B] ≤ [A <alt

∃∃ B]. In fact we
have: {

[A <alt
∃∃ B] = [A <st

∃∃ B], if [A <st
∃∃ B] �= 0

[A <alt
∃∃ B] ≥ [A <st

∃∃ B], otherwise
.

Moreover there are examples where [A <st
∃∃ B] = 0 and [A <alt

∃∃ B] > 0.
(ii) Let ◦ = ∀∀. Then, for all A, B ∈ P(W ), [A <st

∀∀ B] ≥ [A <alt
∀∀ B]. In fact we

have: {
[A <alt

∀∀ B] ≤ [A <st
∀∀ B], if [A <st

∀∀ B] �= 0

[A <alt
∀∀ B] = [A <st

∀∀ B] = 0, otherwise
.

Moreover there are examples where [A <alt
∀∀ B] < [A <st

∀∀ B].



592 F. Esteva and L. Godo

(iii) For all intermediate cases, i.e. when ◦ ∈ {∃∀,∀∃, ∃∀2,∀∃2l}, the values of
[A <alt◦ B] and [A <st◦ B] are incomparable in general.

Proof We prove (i) by cases, where for simplicity we will write ≤ instead of ≤∃∃:

• Suppose that [A <st B] = [A ≤ B] �= 0, equivalent to [A ≤ B] > [B ≤ A].
Therefore there exists u1 ∈ A, v1 ∈ B such that [u1 ≤ v1] = infu∈A,v∈B[u ≤ v] >

infv∈B,u∈A[v ≤ u], which implies that [u1 ≤ v1] > [v1 ≤ u1]. Therefore [u1 <

v1] = [u1 ≤ v1], and so an easy computation proves that [A <alt B] = [u1 < v1] =
[A ≤ B] = [A <st B].

• Suppose [A <st B] = 0 due to the fact that [A ≤ B] ≤ [B ≤ A]. In such a case it is
possible that [A <alt B] > 0, as the following example shows:
Take A = {u1, u2}, B = {v1, v2} and let ≤ be the relation that is reflexive and
contains the following pairs, [u1 ≤ v1] = a ≤ b = [v2 ≤ u2] with a �= 0. Then
[A ≤ B] = a ≤ b = [B ≤ A] and so [A <st B] = 0, but one can check that [A <alt

B] = a > 0.

We also prove item (ii) by cases, and as before, we will write ≤ instead of ≤∀∀
for simplicity:

• Suppose that [A <st B] = 0 due to the fact that [A ≤ B] ≤ [B ≤ A]. In such a case
there existsu1 ∈ A, v1 ∈ B such that [u1 ≤ v1] = infu∈A,v∈B[u ≤ v] ≤ infv∈B,u∈A[v ≤
u], which implies that [u1 ≤ v1] ≤ [v1 ≤ u1]. Therefore [u1 < v1] = 0 and thus
[A <alt B] = 0 = [A <st B].

• Suppose that [A <st B] = [A ≤ B]. In such a case the following example shows
that there exist cases where [A <alt B] < [A <st B]:
Take W = {w1, w2} with the preorder defined by reflexivity plus [w1 ≤ w2] =
1. Further, take A = {w1} and B = W. Then it is obvious that [A ≤ B] = 1 >

0 = [B ≤ A]. Therefore we have [A <st B] = 1, while [A <alt B] = infu∈A supv∈B
[u < v] = 0, since [u < u] = 0.

As for item (iii), and unlike the previous cases where we have shown that <st◦
and <alt◦ are comparable for ◦ ∈ {∃∃,∀∀}, we will show the incomparability of the
relations for the intermediate cases. Actually, we will prove it for the case ◦ = ∀∃,
but similar results can be obtained for the other intermediate cases. As above, in the
rest of the proof we will write ≤ instead of ≤∀∃ for simplicity.

(a) First we give an example where [A <alt B] < [A <st B]. Take A = {u1, u2},
B = {v1, v2} with the following fuzzy preorder: reflexivity ([x ≤ x] = 1) plus [u1 ≤
v1] = [v1 ≤ u1] = a and [u2 ≤ v2] = b, with a, b �= 0. The associated strict relation
on W is the one having only [u2 < v2] = b. Let A = {u1, u2} and let B = {u3, u4}.
Then it is clear that [A ≤ B] = a ∧ b > 0 = [B ≤ A] and thus, by definition, [A <st

B] = a ∧ b �= 0. Finally [A <alt B] = infu∈A supv∈B[u < v] = 0. Thus [A <alt B] <

[A <st B].
(b) Finally we give an example where [A <alt B] > [A <st B].

Take the same sets as in the previous example and the relation defined by reflexivity
plus [u1 ≤ v1] = [u2 ≤ v1] = [u1 ≤ u2] = a, [v1 ≤ u2] = [u2 ≤ v2] = b and [v2 ≤
v1] = c where 0 < a < b < c. Then it is easy to compute that [A ≤∀∃ B] = a < b =
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[B ≤∀∃ A] and thus [A <st
∀∃ B] = 0 while [A ≤alt

∀∃ B] = min([u1 < v1], [u2 < v1]) =
a. �

Notice that if the strict order on W is �-transitive, so are the strict relations
obtained by the alternative method (they are strict orders), but this is not clear for
strict relations obtained by the standard method. In fact we have the following open
problems:

• Let ≤ be a fuzzy preorder on W and let ≤◦ be one of the fuzzy preorders defined
onP(W) considered in the previous sections. Is the strict relation obtained by the
standard method �-transitive?

• It is obvious that the strict order < on W and the strict order on P(W) obtained
from the preorder by the standard method satisfies the following anti-symmetry
property: for all A, B ∈ P(W), min([A <◦ B], [B <◦ A]) = 0). It is clear that for
singletons the strict order obtained by the alternativemethod satisfies the same anti-
symmetry property but, is this true for the strict order obtained by the alternative
method in general?Otherwise,what type of anti-symmetry property does it satisfy?

Therefore, as far as we are interested in obtaining strict fuzzy orders (irreflex-
ive and �-transitive relations), it seems reasonable to consider the strict relations
obtained by the alternative method from a strict order over W and its characteristics
properties. Next theorem provides a characterization result for these strict orders.
Like for the relations associated to a fuzzy preorder, we give the characterization for
the case of ∀∃. The other cases can be characterized in a similar way.

Theorem 4.1 Let ≺AE be a relation on P(W) satisfying Properties 2, 3 and 4
of Proposition 2.2 plus irreflexivity ([A ≺AE A] = 0) and restricted antisymmetry
(min([A ≺AE B], [B ≺AE A]) = 0 for all singletons A, B ∈ P(W)). Then there exists
a strict fuzzy order < on the set W such that ≺AE coincides with the strict fuzzy order
associated to ≤∀∃ obtained by the alternative method.

5 Conclusions and Further Research

In this paper we have explored (crisply quantified) extensions of fuzzy preorders on
a universe W to relations on P(W ). Moreover, extending [8, 9], we have further
studied the decomposition of a fuzzy preorder in an indistinguishability relation and
a strict (order) relation as a generalization of the well known decomposition in the
crisp case.

As for future work, we are interested in applications to preference modelling and
reasoning, see [8] for some initial ideas in this direction. Moreover we plan the use
of fuzzy quantifications like “nearly all” or “someone”, etc. to obtain new extensions
of the initial preorder to relations on P(W ). This seems to be a challenging topic,
specially related to applications.
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Resolution of Fuzzy Relation Equations
When the Fuzzy Relation is Defined on Fuzzy
Subsets

Manuel José Fernández and Fermín Suárez

Abstract In this paper some results of the theory of fuzzy relation equations are
generalized, when fuzzy relations defined on fuzzy sets instead of crisp sets are
considered. We find the biggest (or the smallest) solution of a fuzzy relation equation
with different types of compositions.

1 Introduction

The theory of fuzzy relation equations was introduced in Sanchez [19], where the
biggest solution of the equation Q ◦ R = S (for the sup-min composition) is obtained
when either Q and S or R and S are assumed to be known, and the “biggest” is viewed
as the maximum (in the set-theoretic inclusion sense) of the set of solutions of the
equation.

This paper dealswith the study of fuzzy relation equations,when the fuzzy relation
is defined on fuzzy subsets instead of classical sets. The work is organized as fol-
lows: Basic definitions and notations are given in Sect. 2, where the properties which
are required along next sections are introduced. Section3 introduces the notions of
sup-T and inf-S compositions of two fuzzy relations defined on fuzzy sets as a gen-
eralization of the definitions given when the fuzzy relations are defined on crisp sets
(see [15]). In Sect. 4 the fuzzy equations of the form QT R = W , where QT R is the
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sup-T composition defined in Sect. 3, are proposed and solved. In Sect. 5 the fuzzy
equations of the form QϕR = W are proposed and solved.

2 Preliminaries

In this section we present the basic concepts upon which our work is based.

Definition 2.1 ([12, 21]) Let I = [0, 1] and let T : I × I → I . Consider the con-
ditions

(i) T (x, 1) = T (1, x) = x ,
(i ′) T (x, 0) = T (0, x) = x ,
(i i) If x1 ≤ x2 and y1 ≤ y2, then T (x1, y1) ≤ T (x2, y2),
(i i i) T (x, y) = T (y, x),
(iv) T [T (x, y), z] = T [x, T (y, z)].
If T fulfills properties i, i i, i i i and iv, then it is said to be a triangular norm (or
t-norm). If T fulfills properties i ′, i i, i i i and iv, then it is said to be a triangular
conorm (or t-conorm).

Henceforth, we will use T to denote a t-norm and S to denote a t-conorm. Given a
t-norm T , the function S(x, y) = 1 − T (1 − x, 1 − y) for all x, y ∈ I is a t-conorm
which is called the dual of T .

In the study of equations on fuzzy relations a crucial role is played by operator ϕ

associated with a t-norm, whose definition is given as follows:

Definition 2.2 ([16]) An operator ϕ : I × I → I is associated with a t-norm T if
for all a, b, c ∈ I

(i) ϕ(a,max{b, c}) = max{ϕ(a, b), ϕ(a, c)},
(ii) T (a, ϕ(a, b)) ≤ b,
(iii) ϕ(a, T (a, b)) ≥ b.

Theorem 2.1 ([8]) An operator ϕ is associated with a t-norm T if, and only if, T is
lower semicontinuous.

Theorem 2.2 ([2, 4, 13, 14]) Let T be a lower semicontinuous t-norm and ϕ the
operator associated with T . It is verified that

ϕ(a, b1) ≤ ϕ(a, b2) if b1 ≤ b2, ϕ(a1, b) ≥ ϕ(a2, b) if a1 ≤ a2,

ϕ(ϕ(a, b), b) ≥ a, ϕ(a, b) = sup{c ∈ I : T (a, c) ≤ b}.

Let us denote by F (X) the family of all the fuzzy subsets of X.
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Definition 2.3 ([3, 17]) The sup-T (resp. inf-S) composition of Q ∈ F (X × Y)
and R ∈ F (Y × Z), denoted by QT R (resp. QSR), is defined as a fuzzy relation on
X × Z whose membership function is given for all x ∈ X, z ∈ Z by

(QT R)(x, z) = sup
y∈Y

[T (Q(x, y), R(y, z))] (resp. (QSR)(x, z) = inf
y∈Y[S(Q(x, y), R(y, z))]).

Definition 2.4 ([14]) Let ϕ be the operator associated with a t-norm T . The inf-ϕ
composition of Q ∈ F (X × Y) and R ∈ F (Y × Z), denoted by QϕR, is defined as
a fuzzy relation on X × Z whose membership function is given for all x ∈ X, z ∈ Z

by
(QϕR)(x, z) = inf

y∈Y
[ϕ(Q(x .y), R(y, z))].

Let X be the reference set and A, B ∈ F (X). We will use the definition of carte-
sian product proposed by Zadeh [23], so that A × B is the fuzzy subset of X × X

given for all x, y ∈ X by (A × B)(x, y) = min{A(x), B(y)}.
Definition 2.5 ([1, 23]) Let R ⊂ A × B, that is, R(x, y) ≤ min{A(x), B(y)} for all
x, y ∈ X. Then, R is a fuzzy relation from A in B.

3 Composition of Fuzzy Relations

The max-min (sup-min) composition of two fuzzy relations is closely linked with
the extension principle [24] as stated by Sanchez [20] and Pedrycz [18]. In [6, 7] we
propose a generalization of this type of composition, using t-norms, as in Dubois
and Prade [5] to define fuzzy operations between fuzzy numbers.

Due to the associative property of the t-conorms in [9], it is defined for n ≥ 2

S{x1, . . . , xn} = S{S{x1, . . . , xn−1}, xn}.

As by the monotony property of t-conorms and by their definition on the interval
I is closed and limited, we can define [10] on a countable set

Si∈N{xi } = lim
n→∞ S{x1, . . . , xn}.

Let A, B and C be fuzzy subsets of X, T a t-norm and S a t-conorm which are
not necessarily duals. If the referential X is either finite or countable, we can define
the composition of fuzzy relations as follows:

Definition 3.1 Let Q ⊂ A × B and R ⊂ B × C . QST R is defined to be the fuzzy
subset whose membership function is given for all x, y ∈ X by

(QST R)(x, y) = Sz∈X[T (Q(x, z), R(z, y))].
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In the case of S = max and T = min, we are in the classical definition ofmax-min
composition of fuzzy relations.

Theorem 3.1 ([6]) For all t-norm T , QST R will be a fuzzy relation on fuzzy subsets,
for all pairs of fuzzy relations Q ⊂ A × B and R ⊂ B × C if, and only if, S = max.

We know, from the previous theorem, that given three fuzzy subsets A, B,C ∈
F (X) and two fuzzy relations Q ⊂ A × B and R ⊂ B × C , the fuzzy relation QT R
given for all x, y ∈ X by (QT R)(x, y) = supz∈X[T (Q(x, z), R(z, y))] where T is a
t-norm, satisfies that QT R ⊂ A × C .

When the fuzzy relations are defined on crisp sets, the sup-T composition is
associated with the inf-S composition (denoted by QSR, where S is the dual t-
conorm of T ) according to the relationship (QSR)c = Qc

T R
c.

In fact, this was one of the reasons for attempting the extension of the inf-S
definition to the case of fuzzy relations defined on fuzzy subsets.

Unfortunately, the extension cannot be made so straightforwardly because, in
general, the inf-S composition of two fuzzy relations defined on fuzzy sets is not a
fuzzy relation on fuzzy subsets, as we can see in the next counterexample (where ∗
denotes the min-max composition).

Let X = {x, y} and let A, B and C be defined as

A(x) = 0.3, A(y) = 0.5, B(x) = 0.1, B(y) = 0.7, C(x) = 0, C(y) = 0.1.

Then,

A × B =
(
0.1 0.3
0.1 0.5

)
, B × C =

(
0 0.1
0 0.1

)
= A × C.

Assuming that

Q =
(
0.1 0.1
0 0.5

)
, R =

(
0 0.1
0 0.1

)

we have that

Q ∗ R =
(
0.1 0.1
0 0.1

)
.

And we see that Q ⊂ A × B and R ⊂ B × C , whereas Q ∗ R �⊂ A × C .
Then, we need to modify the definition of inf-S composition in a manner such

that the composition continues to be a fuzzy relation on fuzzy subsets and coincides
with the classical definition when the subsets are crisp.

Definition 3.2 ([6]) Let A, B,C ∈ F (X). The inf-S composition of Q ⊂ A × B
and R ⊂ B × C is the fuzzy relation QSR ⊂ A × C given for all x, y ∈ X by the
membership function

(QSR)(x, y) = min

{
inf
z∈X

[S(Q(x, z), R(z, y))], (A × C)(x, y)

}
.
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The following theorem gives the main properties of the inf-S composition.

Theorem 3.2 ([6])

(i) QS(R ∩ W ) = (QSR) ∩ (QSW ) where Q ⊂ A × B and R,W ⊂ B × C.
(ii) If Q ⊂ R, then QSW ⊂ RSW where Q, R ⊂ A × B and W ⊂ B × C.
(iii) (QSR)−1 = R−1

SQ−1 where Q ⊂ A × B and R ⊂ B × C.
(iv) Q ∗ (R ∗ W ) = (Q ∗ R) ∗ W where Q, R,W ⊂ A × A.

4 Solving Equations on Fuzzy Relations on Fuzzy Subsets
(sup-T Composition)

LetXbe a set, A, B andC be three fuzzy subsets ofX, and let T be a lower semicontin-
uous t-norm. Consider the fuzzy relation equations QT R = W , where Q ⊂ A × B,
R ⊂ B × C and W ⊂ A × C , and point out the following typical problems:

(p1) Determine R when Q and W are given.
(p2) Determine Q when R and W are given.

Let ϕ be the operator associated with the t-norm T . To broaden these questions
we extend the definition of inf-ϕ composition [14], to fuzzy relations defined on
fuzzy subsets, in the following way:

Definition 4.1 ([6]) Let Q ⊂ A × B and R ⊂ B × C . The fuzzy relation QϕR ⊂
A × C is given for all x, y ∈ X by

(QϕR)(x, y) = min

{
inf
z∈X

[ϕ(Q(x, z), R(z, y))], (A × C)(x, y)

}
.

Note that we have modified the definition in [14] in order to get QϕR becoming
a fuzzy relation on the fuzzy set A × C .

The previous definition satisfies the following properties:

Theorem 4.1 (i) Let Q ⊂ A × B and R,W ⊂ B × C such that R ⊂ W. Then,
QϕR ⊂ QϕW.

(ii) Let Q, R ⊂ A × B such that Q ⊂ R and W ⊂ B × C. Then, QϕW ⊃ RϕW.

The proof is a straightforward verification.
In the next theorem we characterize the solutions of Problem p1. It is based on

Lemma 4.1 Let Q ⊂ A × B, R ⊂ B × C and W ⊂ A × C. Then,

(i) R ⊂ Q−1
ϕ(QT R).

(ii) W ⊃ QT (Q−1
ϕW ).
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Proof (i) For all x, y ∈ X

[Q−1
ϕ(QT R)](x, y) = min

{
inf
z∈X

[
ϕ
(
Q−1(x, z), (QT R)(z, y)

)]
, (B × C)(x, y)

}

= min

{
inf
z∈X

[
ϕ

(
Q(z, x), sup

t∈X
{T (Q(z, t), R(t, y))}

)]
, (B × C)(x, y)

}

= min

{
inf
z∈X

[
ϕ

(
Q(z, x),max

{
T (Q(z, x), R(x, y)),

sup
t �=x

{T (Q(z, t), R(t, y))}
})]

, (B × C)(x, y)

}

≥ min

{
inf
z∈X

[
ϕ
(
Q(z, x), T (Q(z, x), R(x, y))

)]
, (B × C)(x, y)

}

≥ min {R(x, y), (B × C)(x, y)} = R(x, y).

(i i) For all x, y ∈ X

[QT (Q−1
ϕW )](x, y) = sup

z∈X

[
T

(
Q(x, z), (Q−1

ϕW )(z, y)
)]

= sup
z∈X

[
T

(
Q(x, z),min

{
inf
t∈X

[ϕ(Q(t, z),W (t, y))], (B × C)(x, y)
})]

≤ sup
z∈X

[
T

(
Q(x, z), inf

t∈X
[ϕ(Q(t, z),W (t, y))]

)]

≤ sup
z∈X

[T (Q(x, z), ϕ(Q(x, z),W (x, y)))] ≤ W (x, y). �

Theorem 4.2 Let R = {R ⊂ B × C : QT R = W }. If R �= ∅, then the fuzzy rela-
tion Q−1

ϕW ⊂ B × C is the biggest element of R.

Proof Let R ∈ R. On the basis of Lemma 4.1i , R ⊂ Q−1
ϕW . Then, W = QT R ⊂

QT (Q−1
ϕW ) ⊂ W , from i i in Lemma 4.1. �

In an analogous way, by means of the following lemma we will prove results that
allow us to obtain the biggest solution of Problem p2.

Lemma 4.2 Let Q ⊂ A × B, R ⊂ B × C and W ⊂ A × C. Then,

(i) Q ⊂ (
Rϕ(QT R)−1

)−1
.

(ii) W ⊃ (RϕW−1)−1
T R.
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The proof is left to the interested reader.

Theorem 4.3 Let Ω = {Q ⊂ A × B : QT R = W }. If Ω �= ∅, then the fuzzy rela-
tion (RϕW−1)−1 ⊂ A × B is the biggest element of Ω .

Proof Let Q ∈ Ω . On the basis of Lemma 4.2i , Q ⊂ (RϕW−1)−1. Then, W =
QT R ⊂ (RϕW−1)−1

T R ⊂ W , from i i in Lemma 4.2. �

5 Solving Equations on Fuzzy Relations on Fuzzy Subsets
(inf-ϕ Composition)

LetX be a set, A, B andC be three fuzzy subsets ofX, and let ϕ be the operator asso-
ciated with a lower semicontinuous t-norm T . Consider the fuzzy relation equations
QϕR = W , where

W (x, y) = min

{
inf
z∈X

[ϕ(Q(x, z), R(z, y))], (A × C)(x, y)

}
,

Q ⊂ A × B, R ⊂ B × C andW ⊂ A × C , and point out the following typical prob-
lems:

(p′1) Determine R when Q and W are given.
(p′2) Determine Q when R and W are given.

Problems p′1 and p′2 are solved by using the following lemmas:

Lemma 5.1 Let Q ⊂ A × B, R ⊂ B × C and W ⊂ A × C. Then,

(i) R ⊃ Q−1
T (QϕR).

(ii) W ⊂ Qϕ(Q−1
TW ).

Proof (i) For all x, y ∈ X

[Q−1
T (QϕR)](x, y) = sup

z∈X

[
T

(
Q−1(x, z), (QϕR)(z, y)

)]

= sup
z∈X

[
T

(
Q(z, x),min

{
inf
t∈X

[ϕ(Q(z, t), R(t, y))], (A × C)(z, y)
})]

≤ sup
z∈X

[
T

(
Q(z, x), inf

t∈X
[ϕ(Q(z, t), R(t, y))]

)]

≤ sup
z∈X

[
T

(
Q(z, x), ϕ(Q(z, x), R(x, y))

)] ≤ R(x, y).

(i i) For all x, y ∈ X
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[Qϕ(Q−1
TW )](x, y) = min

{
inf
z∈X

[
ϕ
(
Q(x, z), (Q−1

TW )(z, y)
)]

, (A × C)(x, y)

}

= min

{
inf
z∈X

[
ϕ

(
Q(x, z), sup

t∈X
[T (Q(t, z),W (t, y))]

)]
, (A × C)(x, y)

}

= min

{
inf
z∈X

[
ϕ

(
Q(x, z),max

{
T (Q(x, z),W (x, y)),

sup
t �=x

{T (Q(t, z),W (t, y))}
})]

, (A × C)(x, y)

}

≥ min

{
inf
z∈X

[
ϕ
(
Q(x, z), T (Q(x, z),W (x, y))

)]
, (A × C)(x, y)

}

≥ min {W (x, y), (A × C)(x, y)} = W (x, y). �

Lemma 5.2 Let Q ⊂ A × B, R ⊂ B × C and W ⊂ A × C. Then,

(i) Q ⊂ (QϕR)ϕR−1.
(ii) W ⊂ (WϕR−1)ϕR.

The proof is left to the interested reader.
With these lemmas we prove the following theorems that give us the smaller

solution of the Problem p′1 and the biggest solution of the Problem p′2.

Theorem 5.1 Let Q ⊂ A × B, W ⊂ A × C andR = {R ⊂ B × C : QϕR = W }.
If R �= ∅, then the fuzzy relation Q−1

TW ⊂ B × C is the smallest element of R.

Proof Let R ∈ R. On the basis of Lemma 5.1i , R ⊃ Q−1
TW . Then, W = QϕR ⊃

Qϕ(Q−1
TW ) ⊃ W , from i i in Lemma 5.1. �

Theorem 5.2 Let R ⊂ B × C, W ⊂ A × C andΩ = {Q ⊂ A × B : QϕR = W }.
If Ω �= ∅, then the fuzzy relation WϕR−1 ⊂ A × B is the biggest element of Ω .

Proof Let Q ∈ Ω . On the basis of Lemma 5.2i , Q ⊂ WϕR−1. Then, W = QϕR ⊃
(WϕR−1)ϕR ⊃ W , from i i in Lemma 5.2. �

6 Concluding Remarks

The solution of fuzzy equations when the fuzzy relation is defined on fuzzy subsets
has been investigated. The procedures for solving different types of fuzzy relation
equations have been established. We trust that their diversity allows us to find a
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suitable model for several real-world problems. In this way, these results may be
applicable to fuzzy inference under compositional rules of inference. In this sense, if
two propositions, P and Q, whose predicates are defined on universes of discourse
A and B, are fuzzy sets, then an implication P → Q is defined, in general, as a fuzzy
relation on A × B (see [2, 11, 14]).
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Measuring Dispersion in the Context
of Ordered Qualitative Scales

José Luis García-Lapresta and Luis Borge

Abstract In this contribution, we introduce two families of dispersion measures in
the context of ordered qualitative scales. They are based on the notions of ordinal
proximity measure and the median.

1 Introduction

The concept of dispersion has been used in history since the first manifestations of
the use of Statistics. Harter [10] attributes its use to the second century BC in a
quote of Ptolemy, who mentions the estimation of the maximum variation of some
observations to the half of the range by the Greek astronomer Hipparchus.

But we must wait until the 18 and 19th centuries in which, with the growth of sta-
tisticalmethods and their relationshipswith probability theory, there is a great interest
in the study of dispersion. A large number of measures are presented, including their
statistical properties, such as the standard deviation, the mean deviation, the mean
absolute deviation, the interquartile range, and so on. Stigler [16] attributes this pro-
liferation of measures to the efforts made by astronomers and geodists for agreeing
on the observations obtained, because the measurement errors of their observations
produced different estimates (see David [4]).

In the beginning of the 20th century a greatmovement in statistics began. Thewhat
nowadays is known as Classical Statistics: hypothesis testing, estimation, experiment
design, and sample surveys, begins (see Lehman [12]). It can be attributed to Fisher
[5] as the starting point of the current Statistics. This statistical revolution represented
a great growth of this area due to the extension of the use of its methods to other
fields of research.
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These new statistical methods were based on parametric models and generally
assumed a normal distribution. When these methods are used in new problems in
which the distribution differs from normality or when applied to data that presented
asymmetries, the outliers appear and the optimal properties of the estimators are no
longer optimal. In the middle of the last century there was an important revival of
robust statistics. For Hubert [11],“robustness signifies insensitivity to small devia-
tions of the assumption”. There are different ways of measuring the robustness as
the breaking point, the influence curve or gross sensitivity error. The robustness
gradually grew to become one of the fields of Statistics.

This classical theory of statistical inference assumes that observations are nor-
mally distributed or come from a parametric distribution, and the most widely used
estimator for dispersion has been the standard deviation. This estimator, together
with the sample mean, has provided important results in this field, both from the
theoretical point of view and the data adjustments. However, when the data comes
from models that deviate from normality, small proportions of atypical data, called
outliers, appear. The statistics used no longer have optimal properties, they are no
longer efficient.

The most used statistic and with best robust properties as dispersion estimator is
the median of the absolute deviations from the median of the data, also known as
MAD. It gives us the best possible breaking point (twice the interquartile range), and
its influence function is bounded.

Rousseeuw and Croux [14] presented two alternative robust estimators to the
MAD. One of the reasons why they consider alternatives to MAD is because this
estimator has a symmetric point of view with respect to a central measure, in this
case the median, which does not appear to be an adequate estimator for asymmetric
distributions. The first one is Sn , and its construction consists in calculating for each
element the median of all absolute deviations to the rest of the sample values, and
to obtain the median of all the medians calculated in the last step. This estimator
presents the difficulty of obtaining the value of the median twice, and in addition to
having the inconvenience that the influence function has discontinuities.

The second estimator, Qn , is analogous to the scale estimator obtained by Bickel
and Lehman [3], where the approach to arrive at the estimator is to consider the
dispersion in the distribution of the variable. Qn is based only on the differences
between sample observations. If {x(1), . . . , x(n)} is the ordered sample, in a decreas-
ing fashion, then the statistic is defined from the set of the differences of the form
x(i) − x( j), j < i .

The main purpose of this contribution is to measure the dispersion associated with
the different results of a variable when they form a set of linguistic terms obtained
after examining different qualities of people, services, etc. Typical examples of lin-
guistic terms are: very bad, bad, regular, good, very good and excellent. We can order
the different levels, but we assume that the proximities among them are not neces-
sarily uniform. These proximities are expressed by a set of ordinal degrees that can
not be quantified through real numbers (in this framework, distances between lin-
guistic terms are not defined). Therefore, it is not possible to use classical dispersion
measures (see Franceschini et al. [6]).
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Our proposal formeasuring the dispersion in a list of linguistic terms of an ordered
qualitative scale is based on the notion of ordinal proximity measure, introduced by
García-Lapresta and Pérez-Román [7]. It is a mapping that assigns an ordinal degree
of proximity to each pair of linguistic terms of the scale. In this setting we introduce
two families of dispersionmeasures, one based on the notion of range, and the second
one related to the Gini index [9].

Given a vector of linguistic terms, range-based dispersion measures assign the
ordinal degree of proximity between theminimum and themaximum linguistic terms
of that vector as the dispersion degree of the vector. In turn, Gini-based dispersion
measures assign the pair of medians of the ordinal degrees of proximity among all
the pairs of linguistic terms of that vector as the dispersion degree of the vector. In
the last case, a linear order on the set of feasible medians is needed for comparing the
dispersion between pairs of vectors. Additionally, a tie-breaking process is provided
for rank order the dispersion of vectors of linguistic terms.

We have also established some properties of the proposed dispersion measures.
The rest of the contribution is organized as follows. Section2 is devoted to intro-

duce the notation and some basic notions that are necessary for defining the two fam-
ilies of dispersion measures we propose in the setting of ordered qualitative scales.
Section3 presents these two families of dispersionmeasures and includes some illus-
trative examples. Section4 contains some properties. Finally, Sect. 5 concludes with
some remarks.

2 Notation and Basic Notions

In this section we present the two notions from which we construct our proposal for
measuring the dispersion in the setting of ordered qualitative scales: ordinal proximity
measures and the median operator.

2.1 Ordinal Proximity Measures

Let L = {l1, . . . , lg} be an ordered qualitative scale, with g ≥ 3, arranged from the
lowest to the highest linguistic terms: l1 < l2 < · · · < lg .

We now recall the notion of ordinal proximity measure on L , introduced by
García-Lapresta and Pérez-Román [7]. We shall use a linear orderΔ = {δ1, . . . , δh},
with δ1 � · · · � δh , for representing different ordinal degrees of proximity among
the terms of L , being δ1 and δh the maximum and minimum degrees, respectively.

It is important emphasizing that the elements of Δ are not numbers, but abstract
elements of a linear order that represent different ordinal degrees of proximity among
the linguistic terms of an ordered qualitative scale.
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As usual in the setting of linear orders, δr � δs means δr � δs or δr = δs ; and
δr ≺ δs means δs � δr . Given a weak order � onL n , with � we denote the asym-
metric part of �, i.e., x � y ⇔ not y � x.

Definition 2.1 ([7]) An ordinal proximity measure onL with values inΔ is a map-
ping π : L 2 −→ Δ, where π(lr , ls) = πrs means the degree of proximity between
lr and ls , satisfying the following conditions:

(a) Exhaustiveness: For every δ ∈ Δ, there exist lr , ls ∈ L such that δ = πrs .
(b) Symmetry: πsr = πrs , for all r, s ∈ {1, . . . , g}.
(c) Maximum proximity: πrs = δ1 ⇔ r = s, for all r, s ∈ {1, . . . , g}.
(d) Monotonicity: πrs � πr t and πst � πr t , for all r, s, t ∈ {1, . . . , g} such that

r < s < t .

We note that the previous conditions are independent (see García-Lapresta and
Pérez-Román [7, Proposition 1]).

Every ordinal proximity measure π : L 2 −→ Δ can be represented by a g × g
symmetric matrix with coefficients in Δ,

⎛
⎜⎜⎜⎜⎝

π11 · · · π1s · · · π1g

· · · · · · · · · · · · · · ·
πr1 · · · πrs · · · πrg

· · · · · · · · · · · · · · ·
πg1 · · · πgs · · · πgg

⎞
⎟⎟⎟⎟⎠

,

where the elements in the main diagonal are πrr = δ1, for every r = 1, . . . , g. This
matrix is called the proximity matrix associated with π .

Taking into account the conditions appearing in Definition 2.1, it is only necessary
to show the proximity upper half matrix

⎛
⎜⎜⎜⎜⎝

δ1 π12 π13 · · · π1(g−1) π1g

δ1 π23 · · · π2(g−1) π2g

· · · · · · · · ·
δ1 π(g−1)g

δ1

⎞
⎟⎟⎟⎟⎠

.

As shown in García-Lapresta and Pérez-Román [7, Proposition 2], the minimum
proximity between linguistic terms is only reached when comparing the extreme
linguistic terms: πrs = δh ⇔ (r, s) ∈ {(1, g), (g, 1)}.

The cardinality of Δ is located between the cardinality of L and a polynomial
of degree 2 of that cardinality (see García-Lapresta and Pérez-Román [7, Proposi-
tion4]):

g ≤ h ≤ g · (g − 1)

2
+ 1.
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2.2 The Median Operator

Following García-Lapresta and Pérez-Román [8], we now introduce the median
operator in the setting of ordinal degrees of proximity.

Given a vector of ordinal degrees of proximity δ = (δ1, . . . , δp) ∈ Δp, we arrange
its components in a decreasing fashion, from the highest to the lowest degrees. If
p is odd, then the median of δ is unique, say δr ∈ Δ. However, if p is even, then
δ has two medians, say δs, δt ∈ Δ such that s ≤ t , i.e., δs � δt . In order to unify
the assignment of medians, we consider the pair of medians (δr , δr ) and (δs, δt )

whenever p is odd and even, respectively.
More formally, given the set of feasible medians Δ2 = {(δr , δs) ∈ Δ2 | r ≤ s},

the median operator is the mapping

M :
∞⋃
p=1

Δp −→ Δ2

that assigns the corresponding pair of medians to each vector of ordinal degrees of
proximity.

For ordering the pairs of medians of ordinal degrees of proximity, consider the
linear order �2 on Δ2 defined as

(δr , δs) �2 (δt , δu) ⇔

⎧⎪⎨
⎪⎩

r + s < t + u

or

r + s = t + u and s − r ≤ u − t,

(1)

for all (δr , δs), (δt , δu) ∈ Δ2.
It is easy to see that if r + s = t + u, then s − r ≤ u − t ⇔ r ≥ t ⇔ s ≤ u.

3 Dispersion Measures

In this section we introduce two families of dispersion measures in the setting of
ordered qualitative scales equippedwith ordinal proximitymeasures. The first family
generalizes the most basic dispersion measure, the range.

In what follows, vectors in L n are denoted x = (x1, . . . , xn).

3.1 Range-Based Dispersion Measures

Given n ≥ 2, let DR : L n −→ Δ be the mapping defined as
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DR(x) = π(min x,max x), (2)

for every x ∈ L n .
Based on the linear order� onΔ, we introduce the weak order�R onL n defined

as
x �R y ⇔ DR(x) � DR( y),

for all x, y ∈ L n , with the meaning of the dispersion in x is lower than or equal to
in y (with respect to DR).

Example 3.1 Consider the ordered qualitative scale L = {l1, l2, l3, l4} and the vec-
tors x = (l1, l2, l2, l3), y = (l3, l3, l4, l4) ∈ L 4. We want to compare the dispersion
in these vectors with respect to three different ordinal proximity measures.

(a) If L is equipped with the ordinal proximity measure

π : L 2 −→ Δ = {δ1, . . . , δ7}

with associated proximity matrix

⎛
⎜⎜⎝

δ1 δ2 δ4 δ7
δ1 δ3 δ6

δ1 δ5
δ1

⎞
⎟⎟⎠ ,

we have DR(x) = π13 = δ4 � δ5 = π34 = DR( y). Thus, x �R y.
(b) If L is equipped with the ordinal proximity measure

π : L 2 −→ Δ = {δ1, . . . , δ7}

with associated proximity matrix

⎛
⎜⎜⎝

δ1 δ4 δ6 δ7
δ1 δ3 δ5

δ1 δ2
δ1

⎞
⎟⎟⎠ ,

we have DR(x) = π13 = δ6 ≺ δ2 = π34 = DR( y). Thus, y �R x.
(c) If L is equipped with the ordinal proximity measure

π : L 2 −→ Δ = {δ1, . . . , δ4}

with associated proximity matrix
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⎛
⎜⎜⎝

δ1 δ2 δ3 δ4
δ1 δ2 δ3

δ1 δ2
δ1

⎞
⎟⎟⎠ ,

we have DR(x) = π13 = δ3 ≺ δ2 = π34 = DR( y). Thus, y �R x.

3.2 Gini-Based Dispersion Measures

We now introduce a new family of dispersion measures in the mentioned framework.
It is based on the Gini index [9] and it is closely related to the scale estimator
appearing in Shamos [15, p. 260] and Bickel and Lehmann [3, p. 38] in the setting
of real numbers (see Rousseeuw and Croux [14, p. 1277]).

Given n ≥ 2, let DG : L n −→ Δ2 be the mapping defined as

DG(x) = M(π(xi , x j )i< j ), (3)

for every x ∈ L n .
Based on the linear order �2 on Δ2 defined in (1), we introduce the weak order

�G on L n defined as
x �G y ⇔ DG(x) �2 DG( y),

for all x, y ∈ L n , with the meaning of the dispersion in x is lower than or equal to
in y (with respect to DG).

Since some vectors can share the same pair of medians, it is necessary to devise
a tie-breaking process for ordering the vectors. We propose to use a sequential pro-
cedure based on Balinski and Laraki [1] (see Balinski and Laraki [2] for practical
examples). It consists of withdrawing the pair of medians of the vectors that are in
a tie, and then selecting the new pairs of medians of the remaining ordinal degrees
of proximity for the corresponding vectors. The process continues until the ties are
broken. It is important to note that different vectors never are in a final tie.

Example 3.2 Consider Example 3.1 and the same three ordinal proximity measures.

(a) We have

DG(x) = M(π12, π12, π13, π22, π23, π23) = M(δ2, δ2, δ4, δ1, δ3, δ3) = (δ2, δ3)

and

DG( y) = M(π33, π34, π34, π34, π34, π44) = M(δ1, δ5, δ5, δ5, δ5, δ1) = (δ5, δ5).

Since (δ2, δ3) �2 (δ5, δ5), we have x �G y.
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(b) We have

DG(x) = M(π12, π12, π13, π22, π23, π23) = M(δ4, δ4, δ6, δ1, δ3, δ3) = (δ3, δ4)

and

DG( y) = M(π33, π34, π34, π34, π34, π44) = M(δ1, δ2, δ2, δ2, δ2, δ1) = (δ2, δ2).

Since (δ3, δ4) ≺2 (δ2, δ2), we have y �G x.
(c) We have

DG(x) = M(π12, π12, π13, π22, π23, π23) = M(δ2, δ2, δ3, δ1, δ2, δ2) = (δ2, δ2)

and

DG( y) = M(π33, π34, π34, π34, π34, π44) = M(δ1, δ2, δ2, δ2, δ2, δ1) = (δ2, δ2).

Consequently, in x and y the dispersion is the same. If we apply the tie-breaking
procedure, then we have DG(x) = M(δ1, δ2, δ2, δ3) = (δ2, δ2) and DG( y) =
M(δ1, δ1, δ2, δ2) = (δ1, δ2). Since (δ2, δ2) ≺2 (δ1, δ2), we finally have that the
dispersion in y is lower than in x.

4 Properties

Let L be an ordered qualitative scale equipped with an ordinal proximity measure
π : L 2 −→ Δ.We say that π is totally uniform if πr (r+t) = πs (s+t) for all r, s, t ∈
{1, . . . , g − 1} such that r + t ≤ g and s + t ≤ g.

Let N : L −→ L be the negation operator defined as N (lr ) = lg+1−r , for every
r ∈ {1, . . . , g}.

Given k ∈ {1 − g, . . . , g − 1}, let Tk : L −→ L be the translation operator
defined as Tk(lr ) = lr+k , for every r ∈ {1, . . . , g} such that r + k ≤ g.

In the following proposition we establish some properties of the mappings intro-
duced in (2) and (3). They are related to the ones considered in Martínez–Panero
et al. [13] in a quantitative context.

Proposition 4.1 Let DR : L n −→ Δ and DG : L n −→ Δ2 be the mappings

defined in (2) and (3), respectively, and their extensions D̃R :
∞⋃
n=2

L n −→ Δ and

D̃G :
∞⋃
n=2

L n −→ Δ2. The following properties hold:
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(a) Symmetry: DR(xσ(1), . . . , xσ(n)) = DR(x) and DG(xσ(1), . . . , xσ(n)) =
DG(x), for every permutation σ : {1, . . . , n} −→ {1, . . . , n} andevery x ∈L n.

(b) Invariance for replications: D̃R(

m︷ ︸︸ ︷
x, . . . , x) = DR(x) and D̃G(

m︷ ︸︸ ︷
x, . . . , x) =

DG(x), for every x ∈ L n and any number m ∈ N of replications of x.
(c) Minimum dispersion: DR(x) = δ1 ⇔ x1 = · · · = xn, for every x ∈ L n; and

DG(lr , . . . , lr ) = (δ1, δ1) , for every lr ∈ L .
(d) Anti-self-duality: ifπ is totally uniform, then DR(N (x1), . . . , N (xn)) = DR(x)

and DG(N (x1), . . . , N (xn)) = DG(x), for every x ∈ L n.
(e) Invariance for translations: if π is totally uniform, then DR(Tk(x1), . . . ,

Tk(xn)) = DR(x) and DG(Tk(x1), . . . , Tk(xn)) = DG(x), for every x ∈ L n

and every k ∈ {1, . . . , g − 1} such that (Tk(x1), . . . , Tk(xn)) ∈ L n.

5 Concluding Remarks

There exists in the literature a number of dispersion measures in the context of
real numbers. In this contribution, we have provided a proposal for measuring the
dispersion of data belonging to ordered qualitative scales, non-necessarily uniform.
We have considered ordinal proximity measures that assign different ordinal degrees
of proximity to the pairs of linguistic terms of an ordered qualitative scale. In this
framework, we have proposed and analyzed two families of dispersionmeasures, one
based on the range and another one based on the Gini index, where the Euclidean
distance between pairs of numbers has been changed to ordinal degrees of proximity
between linguistic terms, and the average to the median.

Acknowledgements This contribution is dedicated to the memory of our dear friend Pedro Gil.
We extend our homage to his great family. The first author gratefully acknowledges the funding
support of the SpanishMinisterio de Economía y Competitividad (Project ECO2016-77900-P) and
ERDF.

References

1. Balinski M, Laraki R (2007) A theory of measuring, electing and ranking. Proc Natl Acad Sci
USA 104:8720–8725

2. Balinski M, Laraki R (2013) How best to rank wines: Majority Judgment. In: Güvenen O,
Serbat H, Giraud-Héraud E, Pichery M (eds) Gvenen O. Wine economics. Quantitative studies
and empirical observations. Palgrave-MacMillan, London, pp 149–172

3. Bickel PJ, Lehmann EL (1979) Descriptive statistics for nonparametric models IV: Spread.
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The Kolmogorov–Smirnov Goodness-of-Fit
Test for Interval-Valued Data

Przemysław Grzegorzewski

Abstract The Kolmogorov–Smirnov goodness-of-fit test for equality of two distri-
butions is considered. Two generalizations of this test for interval-valued data are
proposed. Each version correspond to a different view on the interval outcomes of
the experiment – either the epistemic or the ontic one. Each view yield its own
approaches to data analysis and statistical inference.

1 Introduction

Both practitioners and data analysts sometimes do not realize that interval-valued
data may deliver two different types of information: the imprecise description of a
point-valued quantity or the precise description of a set-valued entity. Firstly, let us
realize that quite often the experimental results cannot be observed precisely. It may
also happen that the results are too uncertain to be recorded as real numbers. In such
situations one can utilize intervals containing the precise outcomes as the experi-
ment results. Moreover, sometimes even having precise data one may be interested
in hiding the exact value of some variables deliberately because of confidentiality
reasons (see [8]). All these cases illustrate the so-called epistemic view on intervals
considered as disjunctive sets representing incomplete information. More formally,
an epistemic set A contains an ill-known actual value of a point-valued quantity x ,
so we can write x ∈ A. Of course, it represents only the epistemic state of an agent
but it does not exist per se (see [2]).

However, we can also distinguish situations when the experiment outcomes are
just intervals describing a precise information. As a typical example wemay consider
a range of fluctuations of some physical measurements or time interval spanned
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by some activity. Here we meet another perception of intervals, i.e. the ontic view
on intervals. The ontic set (or conjunctive set) A is a precise representation of an
objective entity, which means that A is an actual value of a set-valued variable X , so
we can write X = A (see [2]).

Now suppose our data set consist of two samples. A typical problemwe face in the
two-sample problem is to conclude whether the distributions of these samples differ
significantly or not. In other words, we want to know if our samples come from the
same distribution or from two different distributions. To solve the problemone should
utilize an appropriate two-sample goodness of fit test. One of the most popular test
for comparing real-valued data is the famous Kolmogorov–Smirnov test. The main
goal of this paper is to generalize the Kolmogorov–Smirnov test for interval-valued
data keeping in mind the two possible views on such type of the data, as we have
discussed it above. We shown that each perspective requires its own approach to data
analysis that implies different restrictions and problems starting just from the way
of hypotheses stating, through the test construction, right up to the decision making
and its interpretation.

The paper is organized as follows: In Sect. 2 we recall the classical Kolmogorov–
Smirnov goodness-of-fit test. In Sect. 3 we introduce basic notations and concepts
related to interval-valued data.Next,we propose two generalizations of the goodness-
of-fit tests adequate to each type of interval data: for epistemic sets in Sect. 4 and for
ontic sets in Sect. 5. The suggested methods are illustrated by numerical examples.

2 The Kolmogorov–Smirnov Test

Suppose,we observe independently two random samples X1, . . . , Xn andY1, . . . , Ym

drawn from populations with unknown cumulative distributions function (c.d.f.) F
and G, respectively. We want to verify the null hypothesis that both samples come
from the same distribution, i.e.

H0 : F(t) = G(t) for all t ∈ R, (1)

against the alternative hypothesis that the population distributions differ, i.e. H1 :
F(t) �= G(t) for some t ∈ R.

Several goodness-of-fit tests can be used to solve this problem, including the
Wald–Wolfowitz runs test, the Brown-Mood median test and various tests based on
ranks, like the well-known Mann–Whitney–Wilcoxon tests (see [3]). But it seems
that that most popular and famous test dedicated to the considered problem is the
Kolmogorov–Smirnov test based on the empirical distribution function. Let us recall
that the empirical distribution function (e.d.f.) for a given sample X1, . . . , Xn is
defined by

̂Fn(t) = 1

n

n
∑

i=1

I(Xi � t), (2)
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where I denotes the indicator function. Thus ̂Fn(t) simply reflects the proportion of
sample values less than or equal to t .

Since F(t) is the probability of an observation less than or equal to t thus one may
expect ̂Fn(t) to estimate F(t). Indeed, for any fixed real value t , the e.d.f. ̂Fn(t) is a
consistent estimator of F(t), i.e. ̂Fn(t) converges to F(t) in probability. Moreover,
̂Fn converges to F with probability 1 by the following theorem (called sometimes
the Glivenko–Cantelli lemma).

Theorem 2.1 Let X1, . . . , Xn denote independent and identically distributed ran-
dom variables from the distribution F. Then

P

(

lim
n→∞ sup

t∈R
|̂Fn(t) − F(t)| = 0

)

= 1.

Therefore, the divergence between e.d.f. ̂Fn and c.d.f. F might be used for testing
whether a sample fits to some hypothetical distribution F . However, the similar
reasoning applied for two samples may lead to the conclusion that the discrepancy
between two e.d.f. ̂Fn and ̂Gm based on X1, . . . , Xn and Y1, . . . , Ym , respectively,
might be used for testing whether the true population distributions of these two
samples, although unknown, differ significantly, i.e. whether the null hypothesis (1)
holds.

Thus, it seems natural to consider the following test statistic

Dn,m = sup
t∈R

|̂Fn(t) − ̂Gm(t)|, (3)

where ̂Fn and ̂Gm are the e.d.f. based on the first and the second sample, respectively.
The usefulness of statistic (3) is motivated by fact that the null distribution of Dn,m

does not depend on the true sample distribution as long as it is continuous. Therefore,
we may utilize Dn,m effectively in our goodness-of-fit testing problem. Indeed, the
differences between ̂Fn(t) and ̂Gm(t) should be small for all t if the null hypothesis
(1) holds. Conversely, large differences between ̂Fn(t) and ̂Gm(t) would discredit
hypothesis H0. It means, that assuming some significance level α we reject H0

if Dn,m > Dn,m(α), where Dn,m(α) denotes the critical value such that P(Dn,m >

Dn,m(α)) = α. In practice, for small or moderate sample sizes n and m the critical
values Dn,m(α) can be found in statistical tables, while for large samples one may
obtain them using the following approximation of Dn,m distribution (see [10])

lim
n,m→∞P

(√

nm

n + m
Dn,m � d

)

= 1 − 2
∞

∑

i=1

(−1)i−1e−2i2d2
(4)

for every d � 0. Alternatively, a final decision whether reject or accept given null
hypothesis may be taken using the p-value given by

p = PH0(Dn,m � d), (5)
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where d stands for the actual value of the test statistic Dn,m . Then we reject H0 if
p is small enough, say p < α, where α is the assumed significance level (typically
α = 0.05) or do not reject H0 (accept H0) otherwise.

Some generalizations of the Kolmogorov–Smirnov test for fuzzy data were sug-
gested in [6, 7]. Further on we generalize the Kolmogorov–Smirnov test for the
interval-valued data. However, firstly let us introduce basic notation and operations
on such data.

3 Interval-Valued Data

Let Kc(R) = {[u, v] : u, v ∈ R, u � v} denote the family of all non-empty closed
and bounded intervals in the real line R. Each compact interval A ∈ Kc(R) can be
expressed by its endpoints, i.e. A = [a, a]. Alternatively, the notation A = [mid A ±
spr A], with spr A � 0, can be considered, where mid A = 1

2 (a + a) is the mid-point
(center) of the interval A and spr A = 1

2 (a − a) is the spread (radius) of A.
To handle intervals a natural arithmetic on Kc(R) is defined by means of the

Minkowski addition and the product by scalars, given by

A + B = {a + b : a ∈ A, b ∈ B}, λA = {λa : a ∈ A},

for any A, B ∈ Kc(R) and λ ∈ R. These two operations can be jointly expressed in
terms of the mid /spr representation of the intervals as

A + λB = [(mid A + λmid B) ± (spr A + |λ|spr B)],

while using the endpoints of the intervals we obtain A + B = [a + b, a + b], A −
B = [a − b, a − b] and λA = [min{λa, λa},max{λa, λa}].

It should be noted that the space (Kc(R),+, ·) is not linear but semi linear, due to
the lack of the opposite element with respect to the Minkowski addition: in general,
A + (−1)A �= {0}, unless A = {a} is a singleton.

Both for the epistemic and ontic approach we use the same notation and basic
operations on intervals. However, it does not mean that the type of interval data is
of no significance for the data analysis. Actually there are significant differences
in statistics of interval-valued data perceived from these two perspectives. In the
epistemic approach we deal with usual random variables which attribute to each
random event a real value. The only problem is that its perception is not known
precisely but exact to interval. On the other hand, the ontic view on intervals require
no longer usual real-valued random variables but random intervals. This is the reason
that we have to consider two generalizations of the Kolmogorov–Smirnov test for
interval-valued data – suitable for each vie on the data.
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4 The Kolmogorov–Smirnov Test for the Epistemic Data

Let us consider a sequence of interval observations [x1, x1], . . . , [xn, xn], which
are perceptions of the unknown true outcomes x1, . . . , xn of the experiment, where
xi ∈ [xi , xi ]. We also observe the second sample [y

1
, y1], . . . , [y

m
, ym], which are

perceptions of the unknown true outcomes y1, . . . , ym , where y j ∈ [y
j
, y j ]. We

assume that the samples and all observations are independent. As in the classical
case we assume that our samples come from the unknown continuous distributions
F andG, respectively, and our goal is to verify the null hypothesis H0 vs H1. Since the
Kolmogorov–Smirnov test is based on e.d.f. we have to generalize this concept for
interval-valued data. LetQn denote a family of all finite subsets of rational numbers
of the form { i

n : 0 � i � n}. The following definition was given in [5].

Definition 4.1 The interval-valued empirical distribution function based on a sam-
ple of interval-valued observations [x1, x1], . . . , [xn, xn] is a multifunction
̂Fn : R → Qn defined for each t as follows

̂Fn(t) =
{1

n

n
∑

i=1

I(xi � t) : xi ∈ [xi , xi ]
}

. (6)

The proof of the following lemma is immediate (see [5]).

Lemma 4.1 For each ̂F ∈ ̂Fn and for any t ∈ R

̂FU
n (t) � ̂F(t) � ̂F L

n (t), (7)

where

̂F L
n (t) = 1

n

n
∑

i=1

I(xi � t), ̂FU
n (t) = 1

n

n
∑

i=1

I(xi � t). (8)

By Lemma 4.1 the interval-valued empirical distribution function is a set of e.d.f.
bounded by ̂F L

n and ̂FU
n . Indices L and U applied in the aforementioned notation

correspond to the stochastic order between two borderline random variables.

Example 4.1 Consider the following interval-valued sample: [−2, 0.5], [1, 4], [2, 6],
[5, 7] and [8, 10]. The upper and lower bounds of the interval-valued e.d.f. for this
sample, i.e. ̂FU

n and ̂F L
n , are given in Fig. 1 (the dashed rectangles between ̂FU

n and
̂F L

n have no meaning here but they are drawn just to visualize better the distance
between these two bounds).

Obviously, [y
1
, y1], . . . , [y

m
, ym] generates its own interval-valued e.d.f. given

by

̂Gm(t) =
{ 1

m

m
∑

j=1

I(y j � t) : xi ∈ [y
j
, y j ]

}

. (9)
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Fig. 1 The bounds of the
interval-valued e.d.f., where
̂F L

n is depicted by a solid line
while ̂FU

n is marked by a
dashed one
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Here, of course, for each ̂G ∈ ̂Gm and for any t ∈ Rwe have ̂GU
m (t) � ̂G(t) � ̂GL

m(t),
where ̂GL

m(t) = 1
m

∑m
j=1 I(y

j
� t) and ̂GU

m (t) = 1
m

∑m
j=1 I(y j � t).

Now we can return to our testing problem. In the classical Kolmogorov–Smirnov
test we accept H0 if the distance between the e.d.f. obtained for each sample is
not too big and we reject H0 otherwise. However, for interval-valued observations
we have two multifunctions ̂Fn and ̂Gm which can be treated as two families of
empirical distribution functions that might be obtained for different possible choices
of xi ∈ [xi , xi ] and y j ∈ [y

j
, y j ], respectively. But since we know neither which

xi nor which y j are the true outcomes of the experiment, we have to consider all
possible choices of outcomes.

We can distinguish three general situations.

(a) It may happen that Dn,m(̂Fn, ̂Gm) is small for all outcomes of the experiment,
i.e.

Dn,m(̂Fn, ̂Gm) � Dn,m(α) ∀ ̂Fn ∈ ̂Fn and ∀ ̂Gm ∈ ̂Gm . (10)

If so, one may decide there are no reasons to reject H0 for any possible realiza-
tions of the experiment which suggests the acceptance of the null hypothesis.
Of course, checking (10) seems to be troublesome so it would be desirable to
substitute it by some more concise conditions. In particular, by (7) we find that
the most distant functions ̂Fn and ̂Gm such that ̂Fn ∈ ̂Fn and ̂Gm ∈ ̂Gm , are
either ̂F L

n and ̂GU
m or ̂FU

n and ̂GL
m . Therefore, one may easily conclude that (10)

is equivalent to the following condition

max
{

Dn,m(̂F L
n , ̂GU

m ), Dn,m(̂FU
n , ̂GL

m)
}

� Dn,m(α). (11)

(b) On the contrary, it may happen that Dn,m(̂Fn, ̂Gm) is significantly large for any
possible outcome of the experiment, i.e.

Dn,m(̂Fn, ̂Gm) > Dn,m(α) ∀ ̂Fn ∈ ̂Fn and ∀ ̂Gm ∈ ̂Gm . (12)

Since it suggests to reject the null hypothesis whatever is the true realization of
the experiment, it simply means that we should reject H0. Keeping in mind the
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aforementioned considerations one may notice that (12) is equivalent to

min
{

Dn,m(̂F L
n , ̂GU

m ), Dn,m(̂FU
n , ̂GL

m)
}

> Dn,m(α). (13)

(c) Finally, it may happen that Dn,m(̂Fn, ̂Gm) is neither to big nor to small in general,
but it is small for some ̂Fn ∈ ̂Fn and ̂Gm ∈ ̂Gm while it is big for other functions
in ̂Fn ∈ ̂Fn and ̂Gm ∈ ̂Gm . Hence, we cannot decide definitely whether to reject
or accept H0 since it depend on the actual outcomes which are not available. In
other words, if

min
{

Dn,m(̂F L
n , ̂GU

m ), Dn,m(̂FU
n , ̂GL

m)
}

� Dn,m(α) or (14)

max
{

Dn,m(̂F L
n , ̂GU

m ), Dn,m(̂FU
n , ̂GL

m)
}

> Dn,m(α) (15)

then we abstain from making the final decision. It might be annotated that we
suspend the decision and demand either more numerous or more accurate obser-
vations to make a well-based conclusion.

As in classical statistics, we may take the final decision using the p-value. How-
ever, in the case of epistemic interval-valued datawe have no longer a single real value
of the test statistic to calculate the p-value according to Eq. (5). Indeed, according
to the aforementioned discussion we have to distinguish different situations related
to possible outcomes of the experiment represented by interval data. Firstly, let us
introduce the following notation

dmin =min
{

Dn,m(̂F L
n , ̂GU

m ), Dn,m(̂FU
n , ̂GL

m)
}

(16)

=min
{

sup
t∈R

∣

∣

∣

1

n

n
∑

i=1

I(xi � t) − 1

m

m
∑

j=1

I(y j � t)
∣

∣

∣,

sup
t∈R

∣

∣

∣

1

n

n
∑

i=1

I(xi � t) − 1

m

m
∑

j=1

I(y
j
� t)

∣

∣

∣

}

,

dmax =max
{

Dn,m(̂F L
n , ̂GU

m ), Dn,m(̂FU
n , ̂GL

m)
}

(17)

=max
{

sup
t∈R

∣

∣

∣

1

n

n
∑

i=1

I(xi � t) − 1

m

m
∑

j=1

I(y j � t)
∣

∣

∣,

sup
t∈R

∣

∣

∣

1

n

n
∑

i=1

I(xi � t) − 1

m

m
∑

j=1

I(y
j
� t)

∣

∣

∣

}

.

Now, we can compute the following two probabilities

p = min{PH0(Dn,m � dmax)}, p = max{PH0(Dn,m � dmin)}, (18)
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where the distribution of a random variable Dn,m is given in (4).
Finally, keeping in mind Formulas (11)–(15) we obtain the following p-value

based decision criteria for the generalized Kolmogorov–Smirnov test:

• if p < α then reject H0,
• if α < p then accept H0,
• otherwise (i.e. if p � α � p) we abstain.

Although this type of the decision algorithm is well-grounded and may be recom-
mended to practitioners, if one requires just a binary decisions (to reject or accept
H0) we suggest an appropriate randomization [4] or a method applied for testing
hypotheses in fuzzy environment [6].

At afirst glance it seems that calculations required in (16)–(17) are time consuming
because we have to consider the distance between the e.d.f. and the hypothetical
c.d.f. for each point of the real line. Actually, it is quite simple since Dn,m assumes
its maximum in one of the e.d.f. jumps. Therefore, it is enough to compute the
differences between both e.d.f. in all points where they are not constant. Since we
have to consider two e.d.f. ̂F L

n and ̂FU
n with jumps in xi and xi , respectively, where

i = 1, . . . , n, and two e.d.f. ̂GL
m and ̂GU

m with jumps in y
j
and y j , respectively, where

j = 1, . . . , m, thus altogether we have to determine the distances in N = 2n + 2m
points only.

Example 4.2 Consider two independent interval-valued samples X1, . . . , X20 and
Y1, . . . , Y18 coming from the distributions F and G, respectively. All 38 observations
are given in Table1.

We verify a null hypothesis that these two samples come from the same distribu-
tion, i.e. H : F(t) = G(t) for all t ∈ R versus H1 : F(t) �= G(t) for some t ∈ R. The
interval-valued e.d.f. for samples X1, . . . , X20 and Y1, . . . , Y18 are given in Figs. 2
and 3, respectively.

After somecalculationsweobtain Dn,m(̂F L
n , ̂GU

m )= 0.4333and Dn,m(̂FU
n , ̂GL

m) =
0.4722,whichmeans thatdmin = 0.4333 anddmax = 0.4722.Thus, by (18),weobtain
p = 0.0194 and p = 0.0381. Therefore, since p < 0.05, we reject H0 at significance
level 0.05.

Table 1 Interval-valued observations considered in Example 4.2

X [32.13, 36.04], [28.81, 30.27], [24.52, 27.92], [29.57, 32.30], [31.89, 32.89]
[29.11, 29.93], [27.30, 29.43], [31.17, 34.65], [28.70, 30.62], [33.01, 35.08]
[29.23, 29.58], [32.42, 35.87], [26.65, 28.03], [29.39, 30.30], [28.73, 30.63]
[32.60, 34.85], [29.70, 31.46], [28.28, 31.41], [30.49, 32.50], [31.73, 32.22]

Y [29.51, 29.99], [29.54, 29.90], [30.25, 31.56], [32.75, 33.45], [28.75, 30.75]
[26.60, 27.92], [29.66, 31.30], [29.20, 30.91], [29.56, 30.72], [32.74, 33.46]
[32.83, 34.55], [29.03, 30.46], [30.50, 31.63], [28.16, 28.87], [29.17, 30.57]
[33.47, 34.62], [28.57, 29.94], [28.07, 29.23]
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Fig. 2 The bounds of the
interval-valued e.d.f. based
on X1, . . . , X20
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Fig. 3 The bounds of the
interval-valued e.d.f. based
on Y1, . . . , Y18
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5 The Kolmogorov–Smirnov for the Ontic Data

In the epistemic approach we deal with usual random variables which attribute a real
value to each random event. However, in the ontic approach we deal with random
intervals defined as follows.

Definition 5.1 Given a probability space (Ω,A , P), a mapping X : Ω → Kc(R)

is said to be a random interval (interval-valued random set) if it is Borel-measurable
with the Borel σ -field generated by the topology associated with by the Hausdorff
metric on Kc(R).

Equivalently, amapping X : Ω → Kc(R) is a random interval if mid X : Ω → R

and spr X : Ω → R+ ∪ {0} are random variables defined as the mid-point and the
spread of the interval X (ω), respectively, for each ω ∈ Ω . Consequently, to describe
the distribution of a random interval we need the distribution of its mid-point and
the distribution of its spread. Therefore, we will utilize these two distributions in
formulating hypotheses for random intervals.

Let us consider two independent samples of independent random intervals:
X1, . . . , Xn and Y1, . . . , Yn . Suppose, these samples come from populations char-
acterized by the distributions: Fmid X and Fspr X denoting the c.d.f. of mid X and
spr X , respectively, and by Gmid Y and GsprG , which are the c.d.f. of mid Y and spr Y ,
respectively. Now we have to formulate the null hypothesis being the counterpart of
(1) and stating that the distributions of random intervals coming from both samples
do not differ. It can be done as follows
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H0 : Fmid X = Gmid Y and Fspr X = Gspr Y . (19)

As the alternative hypothesis we consider H1 : ¬H0 that at least one of the equalities
in (19) fails.

If H0 holds then the e.d.f. ̂Fn,mid and ̂Fn,spr based on mid-points and spreads of
X ’s, where

̂Fn,mid (t) = 1

n

n
∑

i=1

I(mid Xi � t), ̂Fn,spr (t) = 1

n

n
∑

i=1

I(spr Xi � t),

should be “close” to the corresponding e.d.f. ̂Gm,mid and ̂Gm,spr based on mid-points
and spreads of Y ’s, given by

̂Gm,mid (t) = 1

m

n
∑

j=1

I(mid Y j � t), ̂Gm,spr (t) = 1

m

n
∑

j=1

I(spr Y j � t).

Let us define the following two test statistics:

T1 = Dn(̂Fn,mid , ̂Gm,mid ) = sup
t∈R

|̂Fn,mid (t) − ̂Gm,mid (t)|, (20)

T2 = Dn(̂Fn,spr , ̂Gm,spr ) = sup
t∈R

|̂Fn,spr (t) − ̂Gm,spr (t)|. (21)

This way our test for the random intervals consists of two usual Kolmogorov–
Smirnov tests. Suppose t1 and t2 denote a value of the test statistic T1 and T2,
respectively. However, two test statistics imply two p-values

p1 = PH0(T1 � t1), p2 = PH0(T2 � t2), (22)

related to T1 and T2, respectively. Hence the following question arises immediately:
How to combine p1 and p2 to find the overall p-value of the generalized Kolmogorov–
Smirnov test for random intervals?

The answer to this question in not straightforward. Several approaches for com-
bining p-values were suggested in the literature (see, e.g. [11]). Unfortunately, most
of them assume that the combined tests are independent which is usually not our case.
It seems that a natural and efficient way for combining p-values can be reached as the
effect of the following reasoning. Since p-value always belong to the unit interval,
let ξ : [0, 1]2 → [0, 1] denote a function combining two p-values obtained in our
testing problem. Then p = ξ(p1, p2) will denote the overall p-value. Assuming that
ξ(0, 0) = 0, ξ(1, 1) = 1 and that ξ(p1, p2) � ξ(p′

1, p′
2) for pi � p′

i (i = 1, 2), we
conclude that ξ is an aggregation function (see [1]). Ifwe additionally assume that ξ is
symmetric (i.e. ξ(p1, p2) = ξ(p2, p1)), associative and 1 is its neutral element 1 (i.e.
ξ(1, p) = p), it appears that ξ is a triangular norm (t-norm). Moreover, if we also
assume the idempotency (i.e. ξ(p, p) = p) then we obtain ξ(p1, p2) = min{p1, p2},
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since minimum is the unique idempotent t-norm (see [1]). Therefore, we suggest to
make a final decision on the rejection or acceptance of the null hypothesis (19) using
the overall p-value obtained by combining p-values p1 and p2 given by (22) as
follows

p = min{p1, p2}. (23)

It is worth noting that by combining p-value we obtain a single p-value, so our gen-
eralized Kolmogorov–Smirnov test for random intervals always leads to the binary
decision: reject/accept H0, as it is in the classical situation, contrary to what happens
in the epistemic approach.

Example 5.1 Let us consider once more observations given in Table1 and discussed
in Example 4.2. However, now we will consider our two interval-valued samples
X1, . . . , X20 and Y1, . . . , Y18 as realizations of random intervals characterized by the
distributions Fmid , Fspr and Gmid , Gspr , respectively.

We verify a null hypothesis that these two samples come from the same distribu-
tion, i.e. H0 : Fmid X = Gmid Y and Fspr X = Gspr Y versus H1 : ¬H0 that at least one
of these two equalities fails. E.d.f. ̂Fn,mid and ̂Gm,mid are given in Fig. 4, while e.d.f.
̂Fn,spr and ̂Gm,spr are given in Fig. 5.

By (20)–(21) we obtain T1 = 0.1778 and T2 = 0.5944 and the corresponding p-
values p1 = 0.9256 and p2 = 0.00096. Using (23) we obtain the overall p-value
p = min{0.9256, 0.00096} = 0.00096 indicating the rejection of H0, i.e. we con-
clude that our two samples do not come from the same distribution. However, if

Fig. 4 ̂Fn,mid and ̂Gm,mid
based on interval-valued data
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Fig. 5 ̂Fn,spr and ̂Gm,spr
based on interval-valued data
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we consider the same null hypothesis against the alternative that their distribution
differ in location, i.e. H ′

1 : Fmid X �= Gmid Y , we would obtain a quite high p-value
p = 0.9256 indicating no reason for the rejection.

6 Conclusions

Wehave proposed two generalizations of the Kolmogorov–Smirnov test designed for
two different views on interval-valued data. One should be aware of the distinction
between ontic and epistemic sets because otherwise there is a risk of misusing even
basic notions and tools. Both ontic and epistemic viewyield different approach to data
analysis. In particular, for epistemic interval-valued data we obtain a set of possible
test statistic values which generate a set of p-values. As a consequence the test may
lead either to decision on rejection or acceptance or to situation when no definite
decision can be made, especially if the intervals are too broad. This problem does
not concern the ontic interval-valued data modeled by random intervals. However,
in this case we have to aggregate two subtests which is always subjective.

Another important aspect of the suggested tests is their computational simplicity.
As it is known, epistemic data may cause computational problems if a sample is large
enough. For example, the sample variance computation for the epistemic intervals
is NP-hard (see [9]). However, fortunately, interval uncertainty in the considered
Kolmogorov–Smirnov test does not increase the computational complexity when
comparing it with real data analysis.
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Abstract Problems of decision and optimization are of an importance beyond all
doubt. However, the new life plans that the current Digital Society entails compel us
to clarify some aspects of the essential elements of a decision problem, and therefore
also of optimization. This paper presents a formulation of a decision problem that
takes into account these new parameters and, based on them, proposes new models
to optimize decision making.

1 Introduction

Decision Theory has traditionally been associated with the fields of Economics and
Statistics and Operational Research. In any of these, the main problem that has been
addressed, rather than being how to make a decision, has been to make the best
decision, so that implicitly, the main problem underlying a decision problem is an
optimization problem, i.e. to select the best alternative to a given situation.

Decisionmaking is in the essence of human persons, that is, with people.We spend
all day long doing nothing but make decisions, trying to make them the best possible,
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in any area of human activity. There is no professional field that escapes necessary and
continuous decision-making. Whether it be in the family, legal, medical, or artistic
contexts, we have to make decisions. But we also have to make the best decisions, so
we have to consider a double aspect: normative and descriptive, or put another way,
we have to consider how to decide, the normative approach of the decision process,
and what the decision to be taken is, i.e. the descriptive version of the process.

For a long time, progress in Decision Theory has run along parallel paths depend-
ing on whether the study was focused from one point of view (normative) or another
(descriptive), so it seemed that the “theorists” of Decision Theory worked with their
backs to the “practitioners” of the same and, as if they were different worlds, both
to the margin of what happened in the economic world. In fact, being identical basic
models, and therefore results, what was translated in each case as a solution of the
problem could have different versions, and therefore seem different solutions.

The successive social transformations of the last years, where we have passed
through the Information Society, the Knowledge Society, the current Digital Society
and the immediate Smart Society, has meant the omnipresence of computers, robots,
mobile phones and, ultimately, all types of intelligent devices in our daily life, and
with this has arisen the need to teach them to decide, and to do so optimally. Therefore,
knowing as specifically as possible all the elements that take part in a decision process
in detail is as important as having a guarantee that the results of the actions of a Smart
System will be as correct as possible.

In this context, Decision Theory and Optimization Methods emerge as essen-
tial elements that play a major role in this new Smart Society, in which Artificial
Intelligence will change our habits of life.

However, combining decision and optimization in the area of Artificial Intelli-
gence requires knowing as far as possible how to develop a decision-making process;
Herbert Simon identified this in three stages [9]:

• Intelligence stage, in which we try to determine how we can decide, that is, to
specify as much as possible what data are available, the type of information that
we have to manage, or the mechanisms of logical reasoning that can be used by
decision makers.

• Design stage, which deals with everything related to modeling the problem so as
to be able to clearly define the options, their consequences or the mechanisms of
comparison to be used. It is a markedly theoretical stage in which the knowledge
of other similar situations is fundamental in order to distinguish similarities and
differences.

• Choice stage, which includes the application of the necessary methods to optimize
our decision, but considering possible revisions of our choice in the light of what
the model proposes us as the first option. The choice, although guided by an
optimization process, can be subject to negotiations and modifications, which
may be suggested or imposed by external factors before finally being adopted.

As is evident, the overcoming of these three stages supposes carrying them out
sequentially and in a circularmanner since at the end of the third stage, it ismandatory
to again reconsider from the first stage of the model that we have to solve.
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Therefore, concepts such as decision maker, consequences, order, context of opti-
mization, etc. arise which, although known, in the new Smart Society may adopt
new versions, and therefore may lead to decision mechanisms that deserve to be
analyzed in the light of this new situation, so the mechanisms that people employ to
make decisions are exportable to Intelligent Systems with the utmost reliability, thus
ensuring safety, effectiveness and efficiency.

Thus, themain aim of this paper is to formalize a framework that serves to identify
the elements necessary to address a decision-making problem with the subsequent
optimization of the interests of the decision maker. To do this, the following section
establishes the components that describe a decision problem and introduces some
new concepts. The third section deals with how to represent these new concepts and,
finally, Sect. 4 deals with the optimization of the decisions to be made depending on
the type of information available.

2 Elements of a General Decision Problem

Classically the approach of a decision problem requires knowing the following essen-
tial elements [8]:

• One decision-maker, which can be an individual or a group,
• a set of actions on which the decision maker can choose,
• a set, called the Environment, which is constituted by the situations (states) that
the decision maker can encounter when choosing, and cannot control,

• a set of consequences, associated with each action and each state,
• a criterion that orders the consequences,
• the nature of the information available,
• the duration of the process, and
• the (social) framework in which the decision-making process takes place.

Thus, if we assume in all that follows: (a) an individual decision maker, that is,
we do not consider Group Decision Making (GDM) problems, (b) a single man-
agement criterion, thus avoiding the Multi-criteria Decision Making (MCDM) prob-
lems, and (c) the duration of the process is limited to one stage, so as not to enter into
problems typical from Control Theory, a decision problem is described by a sextet
(X, I, E, C,≤, K ) that includes the set X of possible actions for the decision maker;
the available information I ; the environment E ; the set C of the consequences of
actions; the criterion ≤ that orders the consequences; and the framework K , which
is the context in which the decision maker decides.

On two of these elements, the available information and the framework, we have
to specify certain aspects that will help us to better model the problem to be solved
in each case.

Starting with the information available, although it is traditionally supposed to
be of a probabilistic nature because it is uncertain in nature, so that uncertainty
about the information to which it is truly related is to “not knowing exactly what
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would happen if a particular course of action were to be adopted” [5]. But, of course,
this Incompleteness may have different characteristics from the probabilistic ones.
In this sense, the Smithson Taxonomy [10], according to which the situation of
Incompleteness can be due to the problem being established in one of the following
two situations, can be particularly useful and revealing:

• there is Uncertainty about the data, understood as the information being gradual
and therefore not complete,

• a true Absence of information is given (a case we shall not consider here).

In turn, we can consider three different types of Uncertainty, depending on whether
its nature is probabilistic, ambiguous or vague, that is to say, according to:

• chance intervention (probabilistic): the duration of the trip depends on the means
of transport that we take,

• there is a finite number of options for each value (ambiguity): the hotels are in the
metropolitan area, or

• data are given by value ranges (vagueness): We will travel by day, that is, between
7 a.m. and 5 p.m.

In this work, in all that follows, we will focus on decision problems for which
the available information is vague in nature, and therefore can be managed with
methodologies and techniques of FuzzySets andSystems [1, 12]. In that case, parallel
to when the information is random in nature, we can identify three Environments:

• Certainty Environment: It is characterized because the state of nature is known
to be given, but that state is defined by a fuzzy set or a linguistic variable. For
instance, the states of nature for the weather that there will be on one particular
day, can be: cool, pleasant or hot. In the certainty environment we can know that
it will be hot tomorrow, but that does not mean that we know exactly (i.e., with
certitude) what the temperature will be.

• Possibility Environment: It is given when a perfectly known distribution of possi-
bility (somewhat parallel to a probability distribution, but more associated with the
concept of feasibility than that of randomness and therefore without any axiomatic
verification) exists on the states of nature.

• Indeterminacy Environment: It arises when we completely ignore any information
about which of the states of nature is presented, that is, we know that there is a
distribution of possibility over the states of nature, but we do not know the rest of
the information.

Secondly, regarding the Frameworks, as we have mentioned above in defining
the Choice Stage described by Simon, the action that the decision maker ultimately
chooses as optimal can be conditioned by the Framework, F , in which the problem
is developed.

A Framework, regardless of the nature of the information available, is defined as
a set of rules, often established in the form of logical predicates, that establish the
qualitative characteristics that the decisions we choose for solving our problem must
have.
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The most known Frameworks are the classics of Ethics and Concurrence [8].
Concretely:

• Ethical Framework, which can appear in decision processes that are developed
in very specific and professional contexts, such as legal, military, medical or, in
general, any other where the final decision is subject to compliance with a certain
“code”. In this Framework, it is not only amatter ofmaking decisions that fit certain
moral behaviors, but rather that decisions are based on interests that conform to
ethical codes. This is the typical case when a particular course of action is decided
upon in a legal department because it is the best, but it must be abandoned for
reasons of professional ethics. The Ethical Framework is usually defined by a set
of “good practices” to which the decision makers must conform.

• Concurrence or Competitiveness Framework, suitable for decision processes in
which several decision makers compete to achieve a result that is the best possible
for each one at the cost of the damage that their decision may cause to others. This
occurs in situations mainly associated with games in which what a player wins
is what his opponent loses. It is important to note that the fact that there is more
than one decision maker does not mean that it is a GDM problem, since there is
no intention to reach a decision for the group, but each one acts on its own. Along
with these frames, it is also important to consider what we call.

• Neutral Framework, which is considered when the context of the problem is free of
peculiarities that can influence the decisions to bemade. In general, this framework,
in which the decision maker chooses his courses of action with rational criteria,
without external incidents and for variables that take positive real values, will be
the one that we assume for the purposes of theoretical study of solutions to the
problem.

In addition to these frames, there are others that have emergedwhich are associated
with the development of the Information Society and which deserve a mention.
Specifically, they are new frameworks that can condition our decisions the following
ones:

• Decision Making in the Presence of Adversaries Framework, which occurs when
the decisions wemake are known by our adversaries. Decision-making in the pres-
ence of adversaries poses the difficulties of a situation that sometimes requires
recourse to sub-optimal decisions merely in order to confuse adversaries. Such
situations arise clearly in military contexts, but also in areas such as perimeter
surveillance, computer game development, intelligent systems design for person-
nel training, cyber-crime, etc. In general terms, an adversary is an entity whose
benefits (in some sense) are inversely proportional to ours. This adversary is able
to alter our benefits by taking certain actions and in addition, he can observe our
actions/decisions thus having the opportunity to learn our pattern of behavior.
This learning will lead you to be more effective in your attempt to maximize your
profits and minimize ours. The Decision Making in the Presence of Adversaries
Framework is different from the Concurrence Framework, since in the first one
we do not know if there is or is not an adversary and, if it indeed exists, we do not
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know anything about it, whilst in the second it is known that there is an opponent
competing against us to diminish our profits.

• Crisis Framework, which occurs when there are exceptional circumstances (e.g.
catastrophes, accidents, ...) and in which you have to make the best possible deci-
sion among those available, which are usually not all those possible. Sometimes,
that best decision among the available ones may coincide with the solution of the
problem. However, in most cases this will not be the case, due to various factors
such as the lack of resources to explore the entire space of alternatives, the pos-
sible disappearance of alternatives, the sudden infeasibility of some others, etc.
In these cases, a good solution strategy, inspired by the design of precondition-
ing algorithms [2], can be to protocol the problem, so that when the emergency
arises it is possible to consult a protocol of action that minimizes the risks of a bad
performance as far as possible. This can thus increase the possibility of matching
the solution to the problem in cases of emergency and the optimal solution of the
problem without emergencies.

• Sustainability Framework, associated to what is understood by sustainable deci-
sions in a specific ecosystem. Parallel to what is defined as “sustainable develop-
ment” [7], in order for a decision to be sustainable, it must meet the expectations of
the moment when it is taken, that is to say, be optimal in a certain sense established
by the decision maker, and at the same time not compromise the choices that may
be made about the problem in the future. It therefore makes perfect sense that we
consider the frames to make decisions that, fitting the needs of the problem in
question, enable us to solve the same problem once again when it presents itself
again, without being conditioned by the previous decisions. This frame, although
generally associated with environmental issues, is not limited to that context. The
“occasional” acquisition of equipment without a minimal analysis of its sustain-
ability, even if it is the result of a perfectly developed decision-making process,
more often than one would desire, produces undesired results which, ultimately,
demonstrate that the decision-making has been performed poorly. On the other
hand, and although sustainable behavior is always ethically plausible, this frame
does not resemble the previous Ethical Framework, since the latter ismore oriented
to questions of conflicts of interest and moral issues.

• Dynamic Framework, where the conditions that have led to the best decision being
made at the moment it was made have changed, and therefore may cause that first
optimal decision to no longer be so. A simple example explains these situations in
which the best solution can change as the decision-making process develops. We
wish to buy a certain complement over the internet. We find a model that satisfies
us and that is our best option (it may even be a temporary special offer). We carry
out all the procedures requested and we pay the amount due. However, more often
than might be expected, we are informed shortly after from the e-supplier that the
requested add-on cannot be sent to us because the stock has “run out” (the result of
a massive avalanche of buyers who, independently but simultaneously, opted for
the complement in question). This frame is typical of Transportation,Management
or Investment Problems [11], and increasingly occurs in social networks.
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• Corporate Social Responsibility (CSR) Framework, understood as a way of direct-
ing companies based on themanagement of the impacts that their activity generates
on their customers, employees, shareholders, local communities, the environment
and on society in general [6]. In short, CSR is a concept through which the com-
pany voluntarily integrates social and environmental dimensions into its business
operations and its relations with stake-holders [4], which is a very current trend
and which can - and must - modify the courses of action of decision processes. The
frame that defines the CSR is not the same as the Ethical one, although on occa-
sions they may share some similarities, since the latter focuses more on the moral
consequences of the decisions. Decision making in a CSR framework, especially
in the case of public corporations, is conditioned by what is called “accountabil-
ity”, which in all cases can change the selection of the best action that would be
chosen if one did not contemplate this RSC Framework.

Obviously, each of these frames will depend on each specific situation and thus
it is not easy to specify much more regarding each. But in all cases, and whether
or not we have complete information, these frames shall be defined by rules, by
logical predicates, that describe each specific situation. The next section is dedicated
to describing these aspects in greater detail.

3 Particular Decision-Making Problems

Whenever we determine the characteristics of the elements involved in the defini-
tion of a decision problem, particularly the type of information available and the
framework in which it will be developed, an optimization problem arises.

If the available information is represented by I and the framework is K , that
optimization problem can be represented by a quartet (X I

K , E I
K , RI

K ,≤), where each
element has a clear meaning, and where the consequences are measured by means
of a function that gives the reward associated with each alternative, for each state of
nature that is considered

RI
K : X I

K × E I
K → C I

K ,

where C I
K is the set (numeric, linguistic, visual, etc.) in which the consequences of

our actions are valued: usually an interval of the real line.
Then the problem we have is to find an alternative x∗ ∈ X such that

RI
K (x∗, e) = maxI

K {RI
K (x, e) : x ∈ X I

K , e ∈ E I
K ; RI

K : X I
K × E I

K → C I
K }.

Particularly, if the available information is incomplete and fuzzy in nature, the set
of alternatives is fuzzy, as well as the results, which can be valued by fuzzy numbers,
and we have an Uncertainty Environment; in the sense defined above, the problem
that remains is to find the alternative x∗ such that,
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R f
K (x∗) = max f

K {R f
K (x) : x ∈ X f

K ; R f
K : X f

K × E f
K → C f

K }

as the true state of the nature is perfectly known.
Thus, a general fuzzy optimization problem is formulated, with clear meaning, in

the following terms

Maximize R(x) f

Subject to: gi (x) f ≤ f 0, i ∈ M = {1, . . . , m} (1)

x ∈ K

where the (super)symbol “ f ” refers to the fact that the objective function, the set of
constraints or the coefficients taking part in the problem, one by one, in part, or all at
the same time are fuzzy in nature, andwhere R(x) f and gi (x) f , i ∈ M = {1, . . . , m},
are functions that take values in the real line and in the set of fuzzy numbers, and K
is a set of rules that define the framework in which the problem must be developed.

However, as mentioned before, frames are defined by sets of rules, which are
usually expressed as logical predicates, which define the concrete context to which
each one refers.

Consider, for example, the case of a Sustainable Framework. Then we could find
rules of the following type,

• R1: IF (CO2 emitted/unit of fuel consumed ≥ x) AND (kg of waste generated/Mt
of finished product ≤ y) THEN (Subsidy ≥ z),

• R2: IF (vehicle is from 1990 or earlier) THEN (Hydrocarbon emission≤ 150 parts
per million) AND (Carbon Monoxide Emission ≤ 1.5%),

• R3: IF (vehicle is from 1991 or later) THEN (Hydrocarbon Emission ≤ 100 parts
per million) AND (Carbon Monoxide Emission ≤ 1.0%),

which, of course, we can express with a clear meaning as

• R1: IF X1 AND X2 THEN S,
• R2: IF Y1 THEN Z1 AND Z2,
• R3: IF NOT Y1 THEN Z3 AND Z4.

In short, the concrete framework that the decision process we were considering
would be developed in would be given by a knowledge base K that would gather all
the rules that defined it.

But these rules do not have to be strictly Boolean, but have much more meaning
if we admit them as fuzzy, since it is difficult to imagine that an important decision,
that a framework, favors or prevents an action because a certain marker fails to reach
a preset value by remaining above it by one thousandth. Therefore, in what follows
we will assume that the rules that define each of our frames are of a fuzzy type.

However, as stated above, our interest is in formulating decision problems as opti-
mization problems. In this latter context, the frames should be properly formulated
to them, that is, as compatible and coherent constraints and referring to the same
terms as the set of possible actions for the problem in question and, in any case,
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Fig. 1 Membership function
for x1 − x2 ≤ f b

fuzzy formulation. Therefore, and not for the sake of completeness, we shall now
describe how these rules can be formulated as linear constraints.

As is well known, the rule “IF X1 THEN X2” assumes that if X1 is 1, that is, if X1

is true, then X2 must also be equal to 1, that is to say, it must also be true. Likewise,
if X1 is 0, that is to say, it is false, then X2 can be 1 or 0, in other words, it can be
true or false. This can be expressed as a linear constraint without further writing that
rule as

X1 − X2 ≤ 0.

Now, generalizing a little further, if X1 and X2 are expressed as fuzzy predicates
(for example “the hydrocarbon emission is not significantly greater than 150 parts
per million” or “the vehicle is old”, etc.) a constraint like the previous one can be
smoothed to allow violations of the same, that is, the decision maker admits minor
breaches of the rule, up to a certain value of intolerance,with his degree of satisfaction
on said compliance being inversely proportional to the magnitude of the violation,
which is measured bymeans of amembership function as in Fig. 1 (where the symbol
≤ f represents that the accomplishment of the constraint is fuzzy).

As it is clear, if b + d ∈ [0, 1], is the value that is taken as the maximum limit to
allow violation of the rule (constraint), that rule is represented as

X1 − X2 ≤ f b

which, taking into account the Representation Theorem, if we consider its corre-
sponding α-cuts, α ∈ [0, 1], can also be represented as

X1 − X2 ≤ b + d(1 − α), for all α ∈ [0, 1].

Thus, the basic rule X1 − X2 ≤ 0, when it is formulated as a fuzzy rule, is expressed
as,

X1 − X2 ≤ f 0

and, therefore, as

X1 − X2 ≤ d(1 − α), for all α ∈ [0, 1]
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with b + d being the value from which the decision maker permits no further viola-
tions [3].

Now, from the two last inequations, which is the most elemental representation
of a rule as a linear constraint, we can consider its generalization. Thus,

(a) IF X1 AND X2 AND …AND Xn , THEN Z is formulated as

X1 + X2 + . . . + Xn − Z ≤ f n − 1

or, equivalently,

X1 + X2 + . . . + Xn − Z ≤ (n − 1) + d(1 − α), for all α ∈ [0, 1].

(b) IF X1 OR X2, THEN Z can be expressed by means of two constraints:

X1 − Z ≤ f 0 AND X2 − Z ≤ f 0

or, using its corresponding α-cuts, α ∈ [0, 1], as

X1 − Z ≤ d(1 − α) AND X2 − Z ≤ d(1 − α), for all α ∈ [0, 1].

(c) IF X1 THEN W OR Z , can be translated to

X1 − (W + Z) ≤ f 0

that is to say,

X1 − (W + Z) ≤ d(1 − α), for all α ∈ [0, 1].

(d) In general, a rule such as IF X1 AND X2 AND …AND Xn , THEN Y1 OR Y2

OR …OR Ym can be expressed by the constraint

X1 + X2 + . . . + Xn − (Y1 + Y2 + . . . + Ym) ≤ f n − 1.

Or, by means of its α-cuts, α ∈ [0, 1], as

X1 + X2 + . . . + Xn − (Y1 + Y2 + . . . + Ym) ≤ (n − 1) + d(1 − α), for all α ∈ [0, 1].

(e) The rule IF X1 THEN Y1 AND Y2 can be expressed by means of two constraints,
as X1 − Y1 ≤ f 0 AND X1 − Y2 ≤ f 0, which is equivalent to

2X1 − (Y1 + Y2) ≤ f 0
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and, therefore, to

2X1 − (Y1 + Y2) ≤ d(1 − α), for all α ∈ [0, 1].

(f) Thus, in general, a rule such as X1 AND X2 AND…AND Xn , THEN Y1 AND
Y2 AND …AND Ym becomes

m(X1 + X2 + . . . + Xn) − (Y1 + Y2 + . . . + Ym) ≤ f m(n − 1)

and therefore also becomes,

m(X1+X2+. . .+Xn)−(Y1+Y2+. . .+Ym) ≤ m(n−1)+d(1−α) for all α ∈ [0, 1].

(g) IF X1 OR X2 THEN Y1 can be expressed by means of two constraints, X1 −
Y1 ≤ f 0 AND X2 − Y1 ≤ f 0, that is to say, as

X1 + X2 − 2Y1 ≤ f 0

or, equivalently,

X1 + X2 − 2Y1 ≤ d(1 − α), for all α ∈ [0, 1].

(h) Thus, in general, a rule such as IF X1 OR X2 OR …OR Xn THEN Y1 can be
written as

X1 + X2 + . . . + Xn − nY1 ≤ f 0

which, by means of its α-cuts, α ∈ [0, 1], becomes

X1 + X2 + . . . + Xn − nY1 ≤ d(1 − α), for all α ∈ [0, 1].

Obviously, we could continue to put examples that illustrate the transformation of
rules into linear constraints, but in view of the objectives of this paper, the previous
cases given are sufficient.

Let us take the previous model (1) and suppose the simple case, which we develop
for the sake of illustration, in which (a) both R(x) f and gi (x) f , i ∈ M = {1, . . . , m}
are linear; (b) the coefficients of the objective function are given by fuzzy numbers;
and (c) neither the constraints, nor the coefficients that define them, are fuzzy. Then
(1) becomes

Maximize c f
1 x1 + c f

2 x2 + . . . + c f
n xn

Subject to: a1i x1 + a2i x2 + . . . ani xn ≤ f bi , i ∈ M = {1, . . . , m}
x ∈ K
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where the accomplishment of each fuzzy restriction is measured by a membership
function of the form

μi (ai x, bi ) =
⎧
⎨

⎩

1 if ai x ≤ bi

1 − (ai x − bi )/di if di ≤ ai x ≤ bi + di

0 if ai x > bi + di

.

Thus, if for example we assume that our Framework is what we previously called
Neutral, then K = {x ∈ R

n : x ≥ 0}, and the last problem is nothing but a classical
Linear Programming problem with fuzzy costs and fuzzy constraints.

But K could also be defined, for example because the evolution of a market were
conical, that is, because K were a cone x ∈ K ensures that λx ∈ K for all λ > 0,
and so on for any set of rules that would define each particular Framework that we
considered.

4 Conclusions

In this paper we have generalized the concept of Framework in the definition of a
decision problem, presenting and introducing some new types of frames. We have
also proposed that the nature of the information available on the problem in question
is also a basic element of the definition of the decision process that we are analyzing.
As a consequence of the frame in which the problem develops and the information
available, the choice of the best alternative has been shown as the solution of an opti-
mization problem that has been illustrated for the particular case of the information
being fuzzy in nature.
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The Additively Decomposable Fuzzy
Shannon Type Inequality Index for Positive
Random Fuzzy Numbers

Hortensia López-García and M. Amparo Gil-Martín

Abstract In comparing the extent of inequality for two social situations involving
human perceptions, it is often unclear how to accomplish such a comparison. It
has been highlighted in the literature that the concept of variable inequality is itself
imprecise. In case one deals with intrinsically imprecise-valued variables, this last
assertion is even more radical. This paper aims to define a fuzzy-valued inequality
index for fuzzy-valued random elements. Relevant properties of the index are also
given and a real-life example illustrates its potential applicability.

1 A Story Around the Research Topic

Before introducing the core of the paper, we would like to tell a story of howwe came
to the research in it. In 1975, on the occasion oh his Ph.D. Thesis [9] that combines
Information and Decision Theories, Pedro Gil started researching on the idea of
defining an entropy-like measure for the (to some extent paradoxically) so-called
“useful uncertainty”. Actually, this notion tried to jointly measure the uncertainty
associated with random experiments, commonly quantified in terms of Shannon’s
entropy, with the ‘uncertainty’ that can be due to the variability of the ‘utilities’ (or
simply values) associated with different experimental outcomes. As a first attempt,
a measure was suggested in [8], and properties of this measure were discussed.

In 1977, along the supervision of a Ph.D. Thesis, he suggested to think about mea-
suring separately the two above-mentioned uncertainties. This leads to the measure
introduced in [3] (see also [4]), that concerned a so-called measure of uncertainty
associated with the utilities.

In the eighties of the last century, Pedro Gil and collaborators considered, on one
hand, the application of this measure to quantify income inequality [7]. On the other
hand, they have tackled the problem of developing statistics and decision-making for
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fuzzy-valued experimental data. While this research was in progress, we both met in
the University of Valladolid along our BSc in Math. A few years later López-García
joined the University of Oviedo and Gil-Martín started working on an investment
company.

This book means a nice opportunity for both of us to meet again and pay-
ing a tribute to our beloved and admired scientific (López-García) and biological
(Gil-Martín) ancestor, Pedro Gil.

2 Introduction and Preliminaries

Imprecise data can be found in many real-life situations. Social Sciences often deal
with this kind of data (for instance, the customer valuation about a product, the quality
rating of a service, and so on), especially in dealing with human perceptions. Fuzzy
numbers are usually considered to be an appropriate model to express this type of
data (see [2, 10, 11, 13]).

In the literature on the inequality of real-valued random variables, it is pointed out
that the concept of inequality is ill-defined (see, for instance, [1, 12]). This assertion
becomes clearer when we deal with fuzzy-valued data.

In this paper the Shannon type inequality index in [4, 7], which is given by

ISh(X) = E

[
log

E(X)

X

]

for positive random variables X , is extended to treat fuzzy data, and properties are
analyzed, some of them like the additive decomposability not being fulfilled for
most of the already published indices [5]. Income indices (when they are invariant
by scale) measure the relative dispersion/variability of a positive random variable.

We first recall the preliminaries to formally present the extended index.

Definition 2.1 A (bounded) fuzzy number is a function Ũ : R → [0, 1] such that it is
upper semi-continuous, quasi-concave, normal and its support is a bounded interval,
that is, for any α ∈ [0, 1] the α-level set defined as

Ũα =
{ {x ∈ R : Ũ (x) ≥ α} if α ∈ (0, 1]
cl{x ∈ R : Ũ (x) > 0} if α = 0

with ‘cl’ denoting the closure of the set, is a nonempty compact interval. The space
of (bounded) fuzzy numbers will be denoted by F ∗

c (R). In case Ũ0 ⊂ (0,∞), Ũ
will be said to be a positive fuzzy number; the space of positive fuzzy numbers will
be denoted by F ∗

c (0,∞).

Definition 2.2 (Puri and Ralescu [13]) Let (Ω,A , P) be a probability space mod-
eling a random experiment. A mapping X : Ω → F ∗

c (R) is said to be an as-
sociated random fuzzy number (for short RFN) if and only if for all α ∈ [0, 1]
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the interval-valued mapping Xα , such that Xα(ω) = (
X (ω)

)
α
for all ω ∈ Ω , is

a compact random interval (i.e., a Borel-measurable mapping w.r.t. the topology
induced by Hausdorff metric in the space of the nonempty compact intervals). In
caseX (Ω) ⊂ F ∗

c (0,∞),X is said to be a positive random fuzzy number (PRFN).

Equivalently, X is an RFN if and only if for each α ∈ [0, 1] the real-valued
mappings infXα and supXα are real-valued random variables.

In summarizing the location of a random fuzzy number the best known summary
measure is the Aumann-type mean (Puri and Ralescu [13]), which is formalized as
follows:

Definition 2.3 Let X be a random fuzzy number associated with the probability
space (Ω,A , P). The Aumann-type mean of X is the fuzzy number Ẽ(X ) ∈
F ∗

c (R), if it exists, such that for each α ∈ [0, 1]
(
Ẽ(X )

)
α

= [
E(infXα), E(supXα)

]

with E denoting the expected value of a real-valued random variable.

Definition 2.4 Given Ũ , Ṽ ∈ F ∗
c (0,∞), the sum of Ũ and Ṽ is the fuzzy number

Ũ + Ṽ ∈ F ∗
c (0,∞) such that for each α ∈ [0, 1]

(Ũ + Ṽ )α = [
inf Ũα + inf Ṽα, sup Ũα + sup Ṽα

]
,

the product of Ũ by a positive scalar γ is the fuzzy number γ · Ũ ∈ F ∗
c (0,∞) such

that for each α ∈ [0, 1]

(γ · Ũ )α = [
γ · inf Ũα, γ · sup Ũα

]
,

and the quotient of Ũ and Ṽ is the fuzzy number Ũ � Ṽ ∈ F ∗
c (0,∞) such that for

each α ∈ [0, 1]
(Ũ � Ṽ )α =

[
inf Uα

sup Ṽα

,
sup Ũα

inf Ṽα

]
.

3 The Shannon Type Fuzzy-Valued Inequality Index
for PRFNs. Definition and Properties

Consider a random experiment formalized by the probability space (Ω,A , P) and
an associated PRFN X : Ω → F ∗

c (0,+∞) for which Ẽ(X ) exists.

Definition 3.1 The Shannon type fuzzy-valued inequality index associated withX
is the fuzzy number, if it exists, given by

ĨSh(X ) = Ẽ
[
log

(
Ẽ(X ) � X

)]
,
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that is, for each α ∈ [0, 1]
(
ĨSh(X )

)
α

= [
inf

(
ĨSh(X )

)
α
, sup

(
ĨSh(X )

)
α

]
,

where

inf
(
ĨSh(X )

)
α

= E

(
log

E(infXα)

supXα

)
,

sup
(
ĨSh(X )

)
α

= E

(
log

E(supXα)

infXα

)
.

The following properties, extending valuable ones from the real-valued case are
fulfilled by the Shannon type fuzzy-valued inequality index.

Theorem 3.1 (“Average” non negativity) Let X : Ω → F ∗
c (0,∞) be a PRFN.

Then, if ĨSh(X ) exists, for each α ∈ [0, 1] we have that

inf
(
ĨSh(X )

)
α

+ sup
(
ĨSh(X )

)
α

≥ 0.

Theorem 3.2 (Minimalities) Let X : Ω → F ∗
c (0,∞) be a PRFN for which

ĨSh(X ) exists. ĨSh(X ) is ‘additively equivalent’ to 1{0} (i.e., it is a fuzzy num-
ber which is symmetric w.r.t. 0) if, and only if, X is a degenerate RFN. Furthermore,
ĨSh(X ) = 1{0} if, and only if, X is an RFN which is degenerate at a positive real
value.

Theorem 3.3 (Mean independence)LetX : Ω → F ∗
c (0,∞) be a PRFN for which

ĨSh(X ) exists. Then, for all k ∈ (0,+∞) we have that

ĨSh(k · X ) = ĨSh(X ).

Theorem 3.4 (Population homogeneity) Let X : Ω → F ∗
c (0,∞) be a PRFN, and

consider a population/sample of n individuals for which X takes on the fuzzy data
x̃1, . . . , x̃n ∈ F ∗

c (0,+∞). Consider the population/sample of n × r individuals in
which each individual in the original population/sample is replicated r times, and
let X ∗r denote the PRFN corresponding to the r-replication of X (i.e., each of the
original fuzzy observations x̃i arises r times in the new population/sample). Then,

ĨSh(X
∗r ) = ĨSh(X ).

Along the next three properties an ordering should be considered onF ∗
c (0,∞) to

extend the principles of transfers. Since there is no total ordering onF ∗
c (0,∞)which

can be considered as universally accepted we will make use of a partial ordering,
like the strong dominance. In accordance with such a partial ordering, given two
positive fuzzy numbers Ũ , Ṽ ∈ F ∗

c (0,∞), Ũ is said to strongly dominate Ṽ if for
each α ∈ [0, 1] one has that inf Ũα ≥ inf Ṽα and sup Ũα ≥ sup Ṽα .
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Theorem 3.5 (Progressive principle of transfers under “strong dominance”) Let
X : Ω → F ∗

c (0,∞) be a PRFN, and consider a population/sample of n individuals
for which X takes on the fuzzy data x̃1, . . . , x̃n ∈ F ∗

c (0,+∞). Assume that there
exist h, l ∈ {1, 2, . . . , N }, such that x̃h strongly dominates x̃l . Let ε ∈ [0,+∞) such
that for all α ∈ [0, 1]

(inf x̃h)α ≥ (inf x̃h)α − ε ≥ (inf x̃l)α + ε ≥ (inf x̃l)α,

(sup x̃h)α ≥ (sup x̃h)α − ε ≥ (sup x̃l)α + ε ≥ (sup x̃l)α.

If Y is the PRFN defined from X so that for each α ∈ [0, 1]

inf(ỹh)α = inf (̃xh)α − ε , inf(ỹl)α = inf (̃xl)α + ε,

sup(ỹh)α = sup(̃xh)α − ε , sup(ỹl)α = sup(̃xl)α + ε,

and
ỹ j = x̃ j for all j ∈ {1, 2, . . . , N } \ {h, l},

then ĨSh(X ) strongly dominates ĨSh(Y ) (i.e., if data are ‘approached’ the inequality
decreases).

Theorem 3.6 (Regressive principle of transfers under “strong dominance”) LetX :
Ω → F ∗

c (0,∞) be a PRFN, and consider a population/sample of n individuals for
which X takes on the fuzzy data x̃1, . . . , x̃n ∈ F ∗

c (0,+∞). Assume that there exist
h, l ∈ {1, 2, . . . , N }, such that x̃h strongly dominates x̃l . Let ε ∈ [0,+∞) such that
(inf x̃l)0 − ε > 0.

If Y is the PRFN defined from X so that for each α ∈ [0, 1]

inf(ỹh)α = inf (̃xh)α + ε , inf(ỹl)α = inf (̃xl)α − ε,

sup(ỹh)α = sup(̃xh)α + ε , sup(ỹl)α = sup(̃xl)α − ε,

and
ỹ j = x̃ j for all j ∈ {1, 2, . . . , N } \ {h, l},

then ĨSh(Y ) strongly dominates ĨSh(X ) (i.e., if data are ‘moved away’ the inequality
increases).

Theorem 3.7 (Schur-convexity under “strong dominance”) Let X : Ω → F ∗
c

(0,∞) be a PRFN, and consider a population/sample of n individuals for which
X takes on the fuzzy data x̃1, . . . , x̃n ∈ F ∗

c (0,+∞).
Let (μ jl) be a doubly stochastic n × n matrix. If Y is the PRFN such that it takes

on data ỹ1, . . . , ỹn ∈ F ∗
c (0,+∞) such that
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⎛
⎜⎝

ỹ1
...

ỹn

⎞
⎟⎠ =

⎛
⎜⎝

μ11 · · · μ1n
...

. . .
...

μn1 · · · μnn

⎞
⎟⎠ 	

⎛
⎜⎝

x̃1
...

x̃n

⎞
⎟⎠ ,

then, ĨSh(X ) strongly dominates ĨSh(Y ) (i.e., if data are ‘approached’, now through
a double process of convex linear combination, the inequality decreases).

Theorem 3.8 (Anonimity) Let X : Ω → F ∗
c (0,∞) be a PRFN, and consider a

population/sample of n individuals for which X takes on the fuzzy data x̃1, . . . , x̃n ∈
F ∗

c (0,+∞). Let Xσ be a PRFN taking on the same population/sample data
x̃σ(1), . . . , x̃σ(n) ∈ F ∗

c

(
0,+∞), where σ is a permutation of {1, . . . , n}. Then,

ĨSh(Xσ ) = ĨSh(X )

(i.e., the inequality index does not depend on the order according with which indi-
viduals are chosen).

To verify whether the index is continuous, and since it is a fuzzy-valued measure,
a distance on the space of fuzzy numbers should be considered. For this purpose,
we are going to make use of the supremum metric, since it is an upper bound for all
the most usual metrics on F ∗

c (R). This metric corresponds in the one-dimensional
fuzzy-valued case to the one associating with Ũ , Ṽ ∈ F ∗

c (R) the value

d∞(Ũ , Ṽ ) = sup
α∈[0,1]

max{| inf Ũα − inf Ṽα|, | sup Ũα − sup Ṽα|}.

Theorem 3.9 (d∞-continuity)LetX : Ω → F ∗
c (0,∞) be a PRFN, and consider a

population/sample of n individuals for which X takes on the fuzzy data x̃1, . . . , x̃n ∈
F ∗

c (0,+∞). Let ε ∈ R such that x̃h + ε ∈ F ∗
c

(
0,+∞) for some h ∈ {1, 2, . . . , n},

and assume that X ′ is a PRFN defined on the same population/sample so that it
takes on fuzzy data x̃ ′

1, . . . , x̃ ′
n ∈ F ∗

c

(
0,+∞) with x̃ ′

h = x̃h + ε and x̃ ′
j = x̃ j for

all j ∈ {1, 2, . . . , N } \ {h}. Then,

lim
ε→0

d∞
(
ĨSh(X

′), ĨSh(X )
) = 0.

Finally, the following result states that Shannon type fuzzy-valued income index
satisfies a convenient property, in accordance with which it is additively decompos-
able but for an additive equivalence∼⊕ (i.e., but for a translation consisting of adding
a symmetric w.r.t. 0 fuzzy number). More concretely,

Theorem 3.10 (Additive decomposability) Let X : Ω → F ∗
c (0,∞) be a PRFN,

and consider a population/sample of n individuals for which X takes on the fuzzy
data x̃1, . . . , x̃n ∈ F ∗

c (0,+∞). Assume that the population/sample is classified ac-
cording to a partition P grouping individuals in the population/sample into M
groups of n1, . . . , nM individuals (with n = n1 + . . . + nM ). If for individuals in the
m-th group X takes on data x̃m1, . . . , x̃mnm ∈ F ∗

c (0,+∞), for m = 1, . . . , M, then
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ĨSh(X ) ∼⊕ Ĩ bg
Sh (X ;P) + Ẽ

(
Ĩ wg

Sh (X ;P)
)
,

where Ĩ bg
Sh (X ;P) can be viewed as a kind of between groups inequality (in fact, it

corresponds to the Shannon type fuzzy-valued inequality of a PRFN defined so that it
taken on values Ẽm(X ) = (1/ nm) · [̃xm1 + . . . + x̃mnm ] with probabilities nm/n for
m = 1, . . . , M, respectively), and Ẽ

(
Ĩ wg

Sh (X ;P)
)

is the Aumann type mean over
the m groups of the Shannon type inequality within each group, which is given by

Ẽ
(
Ĩ wg

Sh (X ;P)
) = n1

n
· ĨSh (̃x11, . . . , x̃1n1) + . . . + nM

n
· ĨSh (̃xM1, . . . , x̃MnM ).

The additive equivalence ∼⊕ reduces to equality of fuzzy numbers if, and only if, X
is a positive real-valued random variable. Furthermore,

ĨSh(X ) ∼⊕ Ĩ bg
Sh (X ;P)

if, and only if, in each of the M groups X is a degenerate PRFN.

4 Illustrative Example

The following real-life example illustrates the computation of the Shannon type
fuzzy-valued inequality index.

Example 4.1 Byusing an online (computerized) application, an experiment has been
conducted online inwhich people have been asked for “their perception of the relative
length of different line segmentswith respect to a pattern longer one”. This perception
can be formalized as a PRFN. People contacted for this purpose have participated by
providing with their perception of relative length for each of several line segments.

More concretely, on the center top of the screen the longest line segment has been
drawn in black. This segment is fixed for all the trials, so that there is always the
same reference for the maximum length. At each trial, a grey shorter line segment
is generated and placed below the longest one, parallel and without considering a
concrete location.

For each respondent, line segments are generated at random although, to avoid
that the variation in the perception of different respondents can mainly be due to the
variation in length of different generated segments, the (27 first) trials for each of the
respondents concern the same segments that usually appear in different positions.

Each of the perceptions have been expressed by using the (trapezoidally shaped)
fuzzy rating scale by Hesketh et al. [10] (see also [2, 11]), that is, a fuzzy number-
valued free assessment with reference interval [0, 100] (see Fig. 1 for a screenshot).

Several respondents have been contacted, all of them with a university scientific
background and only needing a minor training mostly consisiting of reading the
instructions added to the online appilication.
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Fig. 1 Screenshot of a fuzzy rating scale-based response from the online application

Fig. 2 Fuzzy responses to the question posed from women (on the left) and men (on the right)

The fuzzy responses have been displayed in Fig. 2 in which the 125men responses
and the 71 ones from women have been separately represented.

By examining the Shannon type inequality per sex, and taking into account that
ifX = Tra(aX , bX , cX , dX ), then for all α ∈ [0, 1]

inf
(
ĨSh(X )

)
α

= log
[
E(aX )+α(E(bX )−E(aX ))

]−E
[
log(dX +α(cX −dX ))

]
,

we obtain the fuzzy values in Fig. 3.
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Fig. 3 Shannon type
fuzzy-valued inequalities for
men responses (thick line)
and women responses
(dotted line)

The fuzzy-valued inequalities in this example cannot be immediately compared.
Actually, the inequality of responses for women is narrower (more precise to some
extent) than the one for men, but a ranking comparison of the relative variability of
responses through the Shannon type fuzzy-valued index is also imprecise.
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An Incipient Fuzzy Logic-Based Analysis
of the Medical Specialty Influence
on the Perception About Mental Patients

María Asunción Lubiano, Pilar González-Gil, Helena Sánchez-Pastor,
Carmen Pradas and Henar Arnillas

Abstract Analyses of the stigma associated with mental patients have been exhaus-
tively developed. Some of these analyses refer to the general population in different
countries, some others compare conclusions from these countries, and some oth-
ers discuss the attitutes of either current or future (psychiatric and non-psychiatric)
health professionals with respect to mental illness. Most of the studies are based
on well-known questionnaires (usually on their country-adapted versions), each of
them corresponding to a multi-item scale evaluated using either a 5-, 6- or 7-point
Likert scale and focussing on different attitudinal factors or constructs. This paper
introduces a quite preliminary study in this setting, aiming to examine the influence
of themedical specialty on the perception about mental patients and involving amore
expressive and flexible scale to rate attitudes: the fuzzy rating scale (allowing a free
fuzzy set-valued response assessment to items).

The representatives of the Three Wise Men from Agones brought illusion to my home every
Christmas. Over the years, oneself perceives and understands that the legacy of their Majesties
cannot be compared even with gold, incense or myrrh. The representative embodied the human-
ity and captaincy of genius, the contagiousness of dreams, and Gil’s excellence. Thank you tío
Pedro! (Pilar).
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1 Introduction and Background

The stigmatization associated with mental illness is a topic receiving an increas-
ing attention along the last decades. People with mental disorders are often facing
prejudices and discrimination, that could be removed to a great extent if nonexperts
become more sensitive and they get achieve a deeper knowledge and health care
about this illness.

To evaluate this stigma many studies have been developed. Some of them have
been focussed in rating attitudes towards mental illness at the social-level on general
populations/communities by simply analyzing the effect of sex, age, country, and
so on (see, for instance, [10, 20, 21, 28, 30, 38]). Other studies have concerned
attitudes of medical/health care students (‘tomorrow’s’ doctors) and non-psychiatric
physicians (see, for instance, [1–3, 8, 9, 12, 13, 15, 16, 21, 22, 24, 34–36, 41,
43, 47]) and some few are devoted to compare attitudes of psychiatrists, psychiatric
nurses and relatives of mental patients in contrast to the general population (see,
for instance, [40]). Also some others, like [39], deal with a comparative analysis of
beliefs and attitudes among different countries.

The most common instruments to evaluate stigmatization and discrimination of
mental illness in either general populations or health care professionals are ques-
tionnaires. The Opinions about Mental Illness Scale (OMI) has shown satisfactory
psychometric properties and a long history of usage in different populations. It was
originally developed by Cohen and Struening [6] (see, among others, [23, 32, 44]
for some comments about).

Most of items in this questionnaire are based on a 6-point Likert scale ranging
from strongly disagree to strongly agree. The items have been conceived to
evaluate five main dimensions, namely, interpersonal etiology (the belief that mental
illness is due to problematic interpersonal relations and experiences), authoritarian-
ism (the belief that obedience to authority is critical and mentally ill persons require
coercive handling), social restrictiveness (the idea that mental patients should be
restricted in some social domains such as voting, jobs, parenting, etc.), negativism
(that can be viewed as opposite to the so-called mental hygiene ideology, this one
supporting the idea that mental illness is an illness like any other, it should be treated
by specialists and most of mental patients are not dangerous), and prejudice (that
can be indented to be contrary to the so-called benevolence, the belief that they are
not different from others).

This scale (as well as others like the well-known Community Attitudes Toward
the Mentally Ill scale, CAMI, by Taylor and Dear [42], a briefer revised updated
version of OMI which additionally involves the community mental health ideology)
has been translated, adapted and validated in various languages (see, for instance,
[32, 33, 46, 48–50]). In particular, the translation, adaptation and validation of the
OMI scale to Spanish has been carried out by Yllá [48] and Ozámiz [33] by including
a few new items, and leading to the so-denoted OMI-R.

This paper aims to perform a comparison of attitudes towards mental illness of
three groups of nonpsychiatric physicians (more concretely, primary care doctors,
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neurologists and internists). Although a few attempts to such a comparative analysis
can be found in the literature (see [4, 16, 31, 37]), and the need for eliminating
the stigmatization and discrimination within the medical profession has been often
claimed (see [29]), the topic has not yet received a deep research attention.

The comparison is to be based on an innovative tool in this setting, namely, the
psychometric fuzzy rating scale (FRS) by Hesketh et al. [17–19]. This tool can be
immediately applied to deal with classical questionnaires like OMI (or OMI-R) and
it simply affects the way responses to items are given. Thus, instead of choosing a
point in a Likert scale, the fuzzy rating scale allows respondent to draw a fuzzy value
with a total freedom, whence the variability, diversity, subjectivity and the intrinsic
imprecision corresponding to attitudes can be much better captured and expressed.

FRS-based data can be statistically analyzed by using some already developed
methods (see [5, 7, 11, 26, 27]) and their implementation inR through the statistical
packages for fuzzy data SAFD [45] and FuzzyStatTra [25].

2 Methods

To develop the comparative analysis a 14-item excerpt from theOMI-R questionnaire
has been considered. The excerpt has been conducted on a sample of 22 physicians
from the Hospital Son Llàtzer in Palma de Mallorca. The composition of the sample
has been as follows: 7 primary care doctors, 4 neurologists and 11 internists. The
excerpt, the fuzzy scale and the method to get statistical conclusions are to be briefly
commented in this section.

2.1 Excerpt from the OMI-R Questionnaire

The (sub)questionnaire includes 14 items selected from the OMI-R. These 14 items
have been viewed as very informative for the considered target, and they are the
following:

I.1. Mental illness is an illness like any other
I.2. Most of the patients who are hospitalized either in the psychiatric units of

general hospitals or in mental hospitals are not dangerous
I.3. Mental illness is a way to react to social demands and pressures
I.4. People who are mentally ill let their emotions control them; normal people

think things out
I.5. People who are mentally ill are so worried by their own problems that do not

care about what others can think about them
I.6. A heart patient has just one thing wrong with him, while a mentally ill person

is completely different from other patients
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I.7. People with mental illness should never be treated in the same hospital as
people with physical illness

I.8. People who have been patients in a mental hospital will never be their own
selves again

I.9. Mental illness is usually caused by some disease of the nervous system
I.10. Regardless of how you look at it, patients with severe mental illness are no

longer really human
I.11. One of the main causes of mental illness is a lack of moral strength or will

power
I.12. Most of us feel a bit uncomfortable or restless in the presence of mentally ill

people
I.13. People who suicide are always mentally ill
I.14. What do you think about the convenience of the fact that along the last decades

psychiatric units are being opened in general hospitals?

Items I.3, I.4, I.5 and I.6 relate to interpersonal etiology, I.9 concerns authoritar-
ianism, I.2 affects social restrictiveness, I.8, I.10, I.13 and I.14 refer to negativism,
and I.12 regards prejudice.

2.2 The Fuzzy Rating Scale and the Adapted Form

Respondents to this type of OMI-based questionnaires are asked to rate their level of
agreement with each of the statements in the items. The level of agreement is usually
assessed by considering the 6-point Likert scale consisting of strongly disagree,
disagree, somewhat disagree, somewhat agree, agree and strongly agree.

Since the number of possible ‘values’ to choose among is small, variability, adjust-
ment, diversity, subjectivity of the natural level of agreement is lost. Moreover, the
choice of the ‘value’ that best represents respondent level of agreement is not easy.

To avoid such a restrictive scale, Hesketh et al. [17–19] have suggested to consider
a fuzzy rating scale (FRS) allowing respondents to draw the fuzzy number that best
represents their score. In case the rating concerns the level of agreement with a given
statement, the FRS-based level is to be stated as follows: firstly, a reference bounded
interval (for instance [0, 100]) is considered, with 0 = strongly disagree and
100 = strongly agree; the interval of real numbers which are considered to be
‘fully compatible’ with the level of agreement of the respondent is drawn with height
1 (this corresponds to the so-called core of the fuzzy number); the interval of real
numbers which are considered to be ‘compatible to some extent’ with the level of
agreement of the respondent is drawn with height 0 (this corresponds to the so-called
support of the fuzzy number); these two intervals are linked to get a trapezium (see
Fig. 1).

A FRS can cope to a full extent with the intrinsic imprecision associated with
the level of agreement with a statement, it means a double continuum (w.r.t. both
location and imprecision), its flexibility allows raters to properly capture individual
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Fig. 1 Example of a FRS-based level of agreement with the statement of a given item

differences, whence the intrinsic variability, diversity and subjectivity are not lost,
and it is much richer and more expressive than any one based on a (unavoidably
finite) natural language (or its numerical encoding).

2.3 The Statistical Methodology

FRS-based responses can be mathematically and computationally handled in a suit-
able way, since one can state arithmetic and distances preserving their meaning and
allowing us to extend/adapt/develop many concepts, results and procedures from the
real-valued data analysis (see, for instance, [5, 7, 11, 26, 27] for more details).

To analyze Likert-type data a posterior numerical encoding of Likert’s ‘values’
is usually considered. This makes all differences between consecutive ‘values’ to
coincide, which is often unappropriate, and the transition from a value to another
within the scale is rather abrupt. Moreover, only a few statistical techniques are
rigorously applicable (they being mainly based on the frequencies of different values
or their position in accordance with a certain ranking) and, as a consequence, relevant
statistical information is often lost.

In this paper, to compare the influence of the medical specialty on the attitude
towards mental illness an ANOVA test for fuzzy data introduced in [14] and imple-
mented in [45] is to be applied. It should be pointed out that the mean value of a
trapezoidal fuzzy dataset is a trapezoidal fuzzy number in which each of the four
characterizing vertices is given by the mean of the real-valued dataset corresponding
to these vertices.

3 Results and Discussion

Figure2 displays the FRS-based datasets and means for each of the considered 14
items.

On the basis of the outputs in Fig. 2, one can empirically conclude that non-
psychiatric physicians in the considered sample have shown a unequivocally high
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Fig. 2 Datasets (in gray) and fuzzy-valued sample means (in black) of the FRS-based responses
to the considered 14 items

average agreement with the assertion in Item I .14 and a rather low average agree-
ment with the assertion in Item I .7 (which seems quite coherent and indicate these
physicians are quite in favour of avoiding discriminate/separate mental patients by
hospitalizing them in non-general hospitals). The physicians have also shown on the
average a quite low level of agreement with the statements in Items I .10 and I .11.
Actually, the average behavior cane be associated with a rather high sensitivity w.r.t.
mental illness.

In connection with the analysis of the influence of the medical specialty on the
attitude towards the mental illness, Fig. 3 displays the three FRS-based means for
each of the considered 14 items.

At the first glance, we do not expect differences in attitude to be significant.
Actually, p-values of the ANOVA test for FRS-based data have been collected in
Table1.
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Fig. 3 Fuzzy-valued sample means for the three specialties of the FRS-based responses to the
considered 14 items

Table 1 ANOVA p-values for the influence of the medical specialty on the attitude towards mental
illness (with FRS-based responses)

Item I.1 I.2 I.3 I.4 I.5 I.6 I.7 I.8 I.9 I.10 I.11 I.12 I.13 I.14

p-value 0.331 0.501 0.590 0.427 0.656 0.162 0.052 0.324 0.596 0.299 0.106 0.490 0.044 0.261

For most of the items, but I.7 and I.13, these p-values are greater than 0.1, so
that we cannot consider the medical specialty as influential for these items.

However, ifwe look at p-values of theANOVA test for FRS-based data concerning
items I.7 and I.13, we get them to be either close to or lower than 0.05, whence we
can consider the medical specialty affects the responses to these items.

In fact, for both items the lowest average level of agreement is the one associated
with primary care doctors, whereas the highest (which is much greater than the other
two) is the one associated with internists.
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4 Conclusions

It should be pointed out that, because of the novelty of the considered scale, and the
need for a certain training before filling questionnaire forms, the sample has been
small, so conclusions are not as clear as one can expect for larger samples. In fact, the
claimed advantages of the use of a (continuous) FRS are not as visible when small
samples are considered.

In addition to having a larger sample, it would be also interesting to analyze the
influence of other factors, like medical expertise or age, sex, as well as comparing
psychiatricians’ opinions with non-psychiatric physicians’ ones.

Furthermore, since the same items can be responded simultaneously with both
scales, a Likert- and a FRS-type one, it would be valuable to compare statistical con-
clusions (e.g., p-values) for both scales. Thus, in accordance with previous analyses
with other problems, [11, 26, 27], conclusions sometimes differ.

Finally, it would be worthy to validate the 14-item subquestionnaire, as well as to
quantify its internal consistency for the FRS, and to compare it with the one for the
6-point Likert one.
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Some Results About the Vertices
of k-Additive Dominating Measures

Pedro Miranda and Michel Grabisch

Abstract In this chapter we deal with the problem of deriving the vertices of the
polyhedron of k-additive dominating measures. This set generalizes the polyhedron
of dominating probabilities and has many potential applications in many different
fields, as Decision Making or Game Theory. The results in this chapter are based on
a theorem that obtains a superset of the set of dominating k-additive measures; this
superset is built in a two-step process, and in each step a polyhedron of set functions
is obtained; the first one does not cope with all dominating measures and the second
includes any dominating measure but in general it also contains other functions. In
this chapter we show that each of these polyhedra has a more intuitive structure,
in the sense of their mathematical definition, than the polyhedron of dominating k-
additive measures and thus, it is possible to obtain their corresponding set of vertices.
From these sets it is possible to derive some results about the set of vertices of the
polyhedron of dominating k-additive measures.

Keywords Non-additive measures · Dominance · k-monotone core · Polyhedron

1 Introduction

Let X be a set of n players, and consider its power setP(X), i.e., the set of all subsets
of X , called coalitions. A TU-game on X is a set functionμ : P(X) → R satisfying
μ(∅) = 0; for each coalition of players A ⊆ X, the valueμ(A) represents the payoff
that A canguarantee for itself, nomatterwhat other players outside the coalitionmight
do; in this chapter we focus onmonotone games, i.e., games satisfyingμ(A) ≤ μ(B)

whenever A ⊆ B. A game is normalized if μ(X) = 1; monotone games are also
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known as fuzzy measures, non-additive measures or capacities. We will denote by
FM (X) the set of all normalized monotone games on X .

One of themost important problems inGameTheory is to derive fromμ a solution
for the game, i.e. assuming that all players agree to form the grand coalition X ,
we look for a sharing vector (x1, . . . , xn) such that x1 + · · · + xn = μ(X) = 1 (if
normalized), where xi represents the payoff player i receives, i = 1, . . . , n. Any
(x1, . . . , xn) is a possible solution of the game, and we aim for a solution being
rational and equitable in some sense. There are many solution concepts that have
been proposed in the literature (see, e.g., Driessen [4]); among them, one of the most
popular is the core of the game [19], which is defined as the set of additive games x
dominating μ, i.e. such that

x(A) :=
∑

i∈A

xi ≥ μ(A),∀A ⊆ X, x(X) = μ(X). (1)

However, the core of a game could be empty [1]; when the core is not empty, it
is a bounded polyhedron, and much research has been devoted to its study (see a
survey in [8]).

Then, it seems interesting to look for extensions of the core that could be applied
when it is empty. In this sense, a natural extension of probability is the concept
of k-additive measure [6, 7]. These measures are defined in terms of the Möbius
transform [17] (also called dividends [11] in Game Theory, or Möbius inverse); from
a mathematical point of view, given a fuzzy measure μ, its Möbius transform mμ is
defined by

mμ(A) :=
∑

B⊆A

(−1)|A\B|μ(B), ∀A ⊆ X. (2)

TheMöbius transform is an equivalent representation of the measure, in the sense
that given mμ it is possible to recover μ through

μ(A) =
∑

B⊆A

mμ(B). (3)

The Möbius transform can therefore be seen as a linear and invertible operator on
the set of set functions (hence its name), which we denote bym. With this notation,
we have m(μ) = mμ, m−1(mμ) = μ for every game μ.

Table 1 Lower and upper bounds for the Möbius transform of a normalized fuzzy measure

|A| 1 2 3 4 5 6 7 8 9 10 11 12

u.b. of m(A) 1 1 1 3 6 10 15 35 70 126 210 462

l.b. of m(A) 1(0) −1 −2 −3 −4 −10 −20 −35 −56 −126 −252 −462



Some Results About the Vertices of k-Additive Dominating Measures 665

Notice that mμ can attain negative values; upper and lower bounds of the Möbius
transformof a normalized fuzzymeasure have been obtained in [10] and are presented
in Table1.

Whenμ is normalized andmμ is nonnegative,we say thatμ is a belief function (see
Dempster [3] and Shafer [18]); belief functions play an important role in Evidence
Theory; we will denote byBEL (X) the set of all belief functions on X .

It can be easily seen that probability measures have their Möbius transform van-
ishing for any coalition except singletons. Based on this property, a fuzzy measure
μ is said to be k-additive if its Möbius transform mμ vanishes for any A ⊆ X such
that |A| > k and there exists at least one subset A with exactly k elements such that
mμ(A) 	= 0. Thus defined, k-additive measures generalize additive measures (that
are 1-additive fuzzy measures) and constitute a gradation between additive measures
(e.g., probabilitymeasures) and general fuzzymeasures.Wewill denote byFM k(X)

(resp. BEL k(X)), the set of normalized fuzzy measures (resp. belief functions) μ

whose corresponding Möbius transform mμ satisfies mμ(A) = 0 if |A| > k, i.e., the
set of normalized fuzzy measures on X being k ′-additive, with k ′ ≤ k.

Now, focusing on normalized fuzzy measures μ, when the core of μ is empty,
i.e., there is no probability measure dominating μ, it makes sense to look for
2-additive measures dominating the game; if there are no such 2-additive mea-
sures, then search for 3-additive measures and so on. This leads us to the concept of
k-additive monotone core [13] for monotone normalized games, that is defined as
the set of measures in FM k(X) dominating μ. The k-additive monotone core of μ

will be denoted by FM k
≥(μ) (or BEL k

≥(μ) if we restrict to belief functions); in
particular, the core of the game isFM 1

≥(μ). It can be proved that for any monotone
game μ, there exists a value of k such thatFM k

≥(μ) 	= ∅. As for the classical core,
when FM k

≥(μ) is nonempty, it is a polytope (bounded polyhedron); more results
about the FM k

≥(μ) can be found in [13].
AsFM k

≥(μ) is a polytope, it is determined by its vertices. Therefore, an interest-
ing problem for the k-additive monotone core of a monotone game is to characterize
the set of vertices of FM k

≥(μ). Some results for this polyhedron can be found in
[9, 14]. In this paper, we will tackle the problem following the line developed by
Chateauneuf and Jaffray [2] and that is related to the well-known Shapley–Ichiishi
theorem [12, 19].

2 FM k≥(µ) as a Flow Problem

Let us denote by P∗(X) the power set of X without the empty set; similarly, we
denote byPk∗ (X) the set of subsets of X with cardinality up to k without the empty
set. Chateauneuf and Jaffray have studied in [2] the problem of dominating a fuzzy
measure by probabilities. They obtain the following result:
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Theorem 2.1 Let μ be a normalized fuzzy measure on X, m its Möbius transform,
and suppose P ∈ FM 1

≥(μ). Then, P can be put under the following form:

P({i}) =
∑

B�i

λ(B, i)m(B), ∀i ∈ X, (4)

where function λ : P∗(X) × X → [0, 1] is a weight function satisfying:

∑

i∈B

λ(B, i) = 1, ∀B ⊆ X, (5)

λ(B, i) = 0 whenever i /∈ B. (6)

This result was also obtained by Dempster in [3] and also by Shapley in [19], but
both of them only for belief functions. Let us introduce

Λk⊆,+ :=
{
λ : P∗(X) × Pk∗ (X) → [0, 1] | ∀B ∈ P(X),

∑

A⊆B

λ(B, A) = 1,

λ(B, A) = 0 if A � B
}
,

MΛk⊆,+(μ) :=
⎧
⎨

⎩μλ | mλ(A) =
∑

B∈P(X)

λ(B, A)m(B), λ ∈ Λk
⊆,+

⎫
⎬

⎭ , (7)

for any fuzzy measure μ (not necessarily normalized) and where m := m(μ) and
mλ := m(μλ). Then, Theorem 2.1 establishes that FM 1

≥(μ) ⊆ MΛ1⊆,+(μ).
Similarly, let us consider

Λk
∩ := {

λ : P∗(X) × Pk
∗ (X) → R | ∀B ∈ P(X),

∑

A∩B 	=∅
λ(B, A) = 1,

λ(B, A) = 0 if A ∩ B = ∅} ,

MΛk∩(μ) :=
⎧
⎨

⎩μλ | mλ(A) =
∑

B∈P(X)

λ(B, A)m(B), λ ∈ Λk
∩

⎫
⎬

⎭ , (8)

Λk⊇,+ :=
{
λ : P∗(X) × Pk∗ (X) → [0, 1] | ∀B ∈ P(X),

∑

A⊇B

λ(B, A) = 1,

λ(B, A) = 0 if A � B
}
,



Some Results About the Vertices of k-Additive Dominating Measures 667

Table 2 Example of a dominating measure outside MΛk∩ (μ)

Subset {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
μ 0 0 0 1 0 0 1

mμ 0 0 0 1 0 0 0

μ∗ 1 0 1 1 1 1 1

mμ∗ 1 0 1 0 −1 0 0

MΛk⊇,+(μ) :=
⎧
⎨

⎩μλ | mλ(A) =
∑

B∈P(X)

λ(B, A)m(B), λ ∈ Λk
⊇,+

⎫
⎬

⎭ . (9)

When attempting to extend Theorem 2.1 for the general k-additive case, natural
extensions of the condition i ∈ B are A ⊆ B or more general A ∩ B 	= ∅; however,
even allowing λ to attain negative values and considering a non-empty intersection
condition, i.e., λ ∈ Λk∩, it does not suffice to obtain a similar result to Theorem 2.1,
as next example shows.

Example 2.1 Consider |X | = 3 and the capacities given in Table2.
Then, μ∗ ≥ μ but μ∗ /∈ MΛ2∩(μ) as the only subset in μ with non-null Möbius

value is {1, 2}, and {1, 2} ∩ {3} = ∅.

On the other hand,when dealingwith belief functions, the following can be shown:

Theorem 2.2 ([16]) Let μ,μ∗ : P(X) → R, where μ is a fuzzy measure, and
μ∗ ∈ BEL k

≥(μ). Then, necessarily μ∗ ∈ MΛk∩,+(μ).

Theproof of the result is based onGale’sTheorem for a transshipment network [5].
Moreover, if μ ∈ BEL (X), the following can be proved:

Theorem 2.3 ([16]) Let μ,μ∗ : P(X) → R, where μ ∈ BEL (X) and μ∗ ∈
BEL k

≥(μ). Then, there exists μ′ ∈ BEL k
≥(μ) such that μ′ ∈ MΛk⊆,+(μ) and

μ∗ ∈ MΛk⊇,+(μ′).

From this result, MΛk⊆,+(μ) ⊆ BEL k
≥(μ) ⊆

⋃

μ′∈M
Λk⊆,+

(μ)

MΛk⊇,+(μ′) for every

μ ∈ BEL (X).
These results cannot be extended to the general case because theMöbius transform

can attain negative values and this complicates the network so that Gale’s theorem
does not apply. Therefore, in [15], the so-called shifted Möbius transform is intro-
duced. Specifically, for any game μ with Möbius transform m, its shifted Möbius
transform is defined for any A ⊆ X by msh(A) = m(A) − l|A|, where li denotes the
lower bound for the Möbius transform of subsets of cardinality i , with i = 1, . . . , n.
Observe that this also defines a linear and invertible operator on the set of set func-
tions, which we denote bymsh . Introducing the set function l defined by l(A) = l|A|
for any A ∈ P∗(X) and l(∅) = 0, we may writemsh = m − l.
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Although it is possible to consider any μ ∈ FM (X) and μ∗ ∈ FM k
≥(μ), it is

convenient to suppose that μ ∈ FM k(X) for the sake of simplicity; note that this is
not any constraint, as FM k(X) ⊆ FM k ′

(X) if k < k ′ and there exists k ′ such that
μ ∈ FM k ′

(X). Let us define

Λ′k⊆,+ :=
{
λ : Pk∗ (X) × Pk∗ (X) → [0, 1] | ∀B ∈ Pk∗ (X),

∑

A⊆B

λ(B, A) = 1,

λ(B, A) = 0 if A � B
}
,

by analogy with Λk⊆,+; we define similarly Λ′k⊇,+ and Λ′k∩,+ and consider the
sets MΛ′k⊆,+(μsh), MΛ′k∩,+(μsh) and MΛ′k⊆,+(μsh), where μsh = m−1(msh(μ)),μ ∈
FM k(X). Observe that

μsh = m−1(m(μ) − l) = μ + m−1(−l).

Remarking thatm(μ) − l is nonnegative so thatm−1(m(μ) − l) is a belief function
(but not normalized!), it follows that μsh is a (nonnormalized) fuzzy measure. Now,
the following can be shown:

Theorem 2.4 ([15]) Let μ,μ∗ : P(X) → R, where μ ∈ FM k(X) and μ∗ ∈
FM k

≥(μ), for k = 1, . . . , n, and let us denote by msh, m∗
sh the corresponding shifted

Möbius transforms. Then, necessarily μ∗
sh ∈ MΛ′k∩,+(μsh).

Briefly speaking, the essence of the result is to take advantage of the fact that the
shifted Möbius transform is a nonnegative function and thus it is possible to apply
Gale’s theorem. Finally,

Theorem 2.5 ([15])Letμ,μ∗ : P(X) → R, whereμ ∈ FM k(X),μ∗ ∈ FM k
≥(μ)

and let us denote by msh, m∗
sh the corresponding shifted Möbius transforms. Then,

there exists μ′ ∈ MΛ
′k⊆,+

(μsh) such that μ∗
sh ∈ MΛ

′k⊇,+
(μ′).

3 On the Set of Vertices

Consider a normalized fuzzy measure μ ∈ FM k(X) whose corresponding Möbius
transform is m, and let us consider msh and μsh as defined before. In this section we
tackle the problem of obtaining the set of vertices ofMΛ′k⊆,+(μsh), taking advantage
of its mathematical form.

Consider a total order ≺ over Pk∗ (X), with B1 ≺ B2 ≺ · · · ≺ Br and r :=∑k
i=1

(n
i

)
. For each B j , the achievable family associated to B j by the order ≺ is

the collection of sets A ∈ Pk∗ (X) satisfying A ⊇ B j and ∀ B ⊆ A, B ∈ Pk∗ (X), it
holds that B ∈ {B1, . . . , B j }. We denote this collection by A CH j,⊆.

Note that A CH j,⊆ may be empty and that the collections A CH j,⊆ that are
nonempty determine a partition onPk∗ (X).Remark also that for anyμ∗ ∈ FM k(X),

and A ∈ A CH j,⊆, the value μ∗
sh(A) can be derived from m∗

sh(B1), . . . , m∗
sh(B j ).
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Now, for any μ ∈ FM k(X), we define m≺,sh : P(X) → R by

m≺,sh(B j ) :=
∑

A∈ACH j,⊆

msh(A),∀B j ∈ Pk
∗ (X), (10)

and 0 otherwise, where msh is the shifted Möbius transform of μ.

Proposition 3.1 For any μ ∈ FM k(X) and any order ≺, the set function m≺,sh

defined by Eq. (10) is such that μ≺,sh ∈ MΛ
′k⊆,+

(μsh).

Proof We just need to find a sharing function λ ∈ Λ
′k⊆,+ such that m≺,sh can be put

under the form
m≺,sh(B j ) =

∑

A|B j ⊆A

λ(A, B j )msh(A). (11)

And to show this, it suffices to consider

λ(A, B j ) =
{
1 if A ∈ A CH j,⊆
0 otherwise

. (12)

Then, the result holds. �
Let us now show a technical lemma that will be needed later.

Lemma 3.1 Let μ ∈ FM k(X) and ≺ be an order over Pk∗ (X) with
B1 ≺ B2 ≺ · · · ≺ Br . Then, using the previous notation, for any l = 1, . . . , r,

l∑

i=1

m≺,sh(Bi ) ≤
l∑

i=1

m ′(Bi ), ∀μ′ ∈ MΛ′k⊆,+(μsh), (13)

where m ′ = m(μ′).

Proof Suppose that the result does not hold. Then, ∃μ′ ∈ MΛ′k⊆,+(μsh) and
l ∈ {1, . . . , r} such that

l∑

i=1

m≺,sh(Bi ) >

l∑

i=1

m ′(Bi ). (14)

This implies that in the definition of m ′, a quantity from, say msh(A), such that

A ∈
l⋃

i=1

A CH i,⊆ has not been assigned to any Bi , i = 1, . . . , l, and this quantity

has been assigned to a Bp with p > l.
However, as μ′ ∈ MΛ′k⊆,+(μsh), this quantity must be assigned to a Bp such that

Bp ⊆ A and this contradicts A ∈
l⋃

i=1

A CH i,⊆. �
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For any μ ∈ FM k(X), consider the family

V⊆(μ) := {m≺,sh | ≺ total order over Pk
∗ (X)}. (15)

Proposition 3.2 Let μ ∈ FM k(X). For any m≺,sh ∈ V⊆(μ), μ≺,sh is a vertex of

MΛ′k⊆,+(μsh), i.e., m−1
(
V⊆(μ)

) ⊆ ext
(
MΛ′k⊆,+(μsh)

)
.

Proof Suppose there are μ1
sh, μ

2
sh ∈ MΛ

′k⊆,+
(μsh) such that m1

sh = m(μ1
sh) and

m2
sh = m(μ2

sh) satisfy

m≺,sh = αm1
sh + (1 − α)m2

sh, α ∈ (0, 1). (16)

By Lemma 3.1, considering order ≺,

l∑

i=1

m≺,sh(Bi ) ≤
l∑

i=1

m1
sh(Bi ),

l∑

i=1

m≺,sh(Bi ) ≤
l∑

i=1

m2
sh(Bi ), ∀ l = 1, . . . , r.

(17)
Then, all inequalities turn into equalities and m≺,sh = m1

sh = m2
sh . �

Proposition 3.3 Let μ ∈ FM k(X). If μ∗ is a vertex ofMΛ′k⊆,+(μsh), then there exists

an order ≺ such that m≺,sh = m(μ∗), i.e., ext
(
MΛ′k⊆,+(μsh)

)
⊆ m−1

(
V⊆(μ)

)
.

Proof It suffices to prove that the convex closure of V⊆(μ) is the set of the
shifted Möbius transforms of MΛ

′k⊆,+
(μsh). If this is not the case, then there exists

μ∗ ∈ MΛ′k⊆,+(μsh) such that its Möbius transform m∗ is outside the convex clo-

sure of V⊆(μ). Then, there exists v = (v1, . . . , vr ) with r = ∑k
i=1

(n
i

)
such that for

Pk∗ (X) = {B1, . . . , Br } we have
r∑

i=1

m≺,sh(Bi )vi <

r∑

i=1

m∗(Bi )vi , ∀m≺,sh ∈ V⊆(μ). (18)

Let us suppose without loss of generality that v1 ≤ v2 · · · ≤ vr . Remark that we can
also assume that vi ≥ 0,∀i because

∑

A∈Pk∗ (X)

m≺,sh(A) =
∑

A∈Pk∗ (X)

m∗(A) = 1 +
k∑

j=0

(
n

j

)
l j , ∀m≺,sh ∈ V⊆(μ). (19)

Let us denote c = 1 + ∑k
j=0

(n
j

)
l j . To prove that it is not possible to find a vector v

in these conditions, we will prove by induction on i ∈ {1, . . . , r} that for any λ ≥ 0,

m≺,sh(B1)v1 + · · · + m≺,sh(Bi )vi +
(

c − ∑i
j=1 m≺,sh(B j )

)
(vi + λ)

≥ m∗(B1)v1 + · · · + m∗(Bi )vi +
(

c − ∑i
j=1 m∗(B j )

)
(vi + λ), (20)
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where ≺ is the order that coincides with the order in the coordinates of v.
For i = 1, we have

m≺,sh(B1)v1+
(
c − m≺,sh(B1)

)
(v1+λ)≥m∗(B1)v1+

(
c − m∗(B1)

)
(v1+λ)

⇔ (
c − m≺,sh(B1)

)
λ ≥ (c − m∗(B1))λ ⇔ m≺,sh(B1) ≤ m∗(B1),

and this holds by Lemma 3.1.
Let i > 1 and suppose the result holds till i − 1. Then,

m≺,sh(B1)v1 + · · · + m≺,sh(Bi )vi +
⎛

⎝c −
i∑

j=1

m≺,sh(B j )

⎞

⎠ (vi + λ)

= m≺,sh(B1)v1 + · · · + m≺,sh(Bi−1)vi−1

+
⎛

⎝c −
i−1∑

j=1

m≺,sh(B j )

⎞

⎠ (vi−1 + vi − vi−1) +
⎛

⎝c −
i∑

j=1

m≺,sh(B j )

⎞

⎠ λ. (21)

Now, applying the induction hypothesis,

m≺,sh(B1)v1+· · ·+m≺,sh(Bi−1)vi−1+
⎛

⎝c−
i−1∑

j=1

m≺,sh(B j )

⎞

⎠(vi−1+vi −vi−1)

≥ m∗(B1)v1 + · · · + m∗(Bi−1)vi−1 +
⎛

⎝c −
i−1∑

j=1

m∗(B j )

⎞

⎠(vi−1 + vi − vi−1),

(22)
whence we obtain that (21) is greater or equal than

m∗(B1)v1 + · · · + m∗(Bi−1)vi−1+⎛

⎝c −
i−1∑

j=1

m∗(B j )

⎞

⎠ (vi−1 + vi − vi−1) +
⎛

⎝c −
i∑

j=1

m≺,sh(B j )

⎞

⎠ λ.

Then, it suffices to show that

⎛

⎝c −
i∑

j=1

m≺,sh(B j )

⎞

⎠ λ ≥
⎛

⎝c −
i∑

j=1

m∗(B j )

⎞

⎠ λ,

but this is true by Lemma 3.1 as λ ≥ 0. Then, the result holds. Now, taking the
assertion with i = r , the proposition is proved. �
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Remark that in these proofs we just need that the shifted Möbius transform is
nonnegative; thus, we can apply this result for the corresponding polytopeMΛk⊆,+(μ)

appearing in Theorem 2.3. Moreover, given μ′
sh, the same can be applied to obtain

the verticesMΛ
′k⊇,+

(μ′
sh) (andMΛk⊇,+(μ′)) just changing the definition of achievable

family: Given a total order ≺ over Pk∗ (X), so that B1 ≺ B2 ≺ · · · ≺ Br , we say
that A ∈ A CH j,⊇ if and only if A ⊆ B j and ∀B ⊇ A, B ∈ Pk∗ (X), it holds that
B ∈ {B1, . . . , B j }. Now, for any μ ∈ FM k(X), we define m≺,sh by

m≺,sh(B j ) :=
∑

A∈ACH j,⊇

msh(A),∀B j ∈ Pk
∗ (X) (23)

and V⊇(μ) := {m≺,sh | ≺ total order over Pk∗ (X)}. Then,
Theorem 3.1 For any μ ∈ FM k(X), ext

(
MΛ

′k⊇,+
(μsh)

)
= m−1

(
V⊇(μ)

)
.

Finally, let us study some relationships between the vertices of MΛ
′k⊆,+

(μsh) and

MΛ
′k⊇,+

(μ′
sh) with the vertices of FM

k
≥(μ). The following can be shown:

Lemma 3.2 Let us consider μ ∈ FM k(X) and μ′ such that μ′
sh ∈ MΛ

′k⊆,+
(μsh).

Then, μ′ ≥ μ.

Proof For any B ⊆ X, μ′(B) is given by

∑

D⊆B

m′(D) =
∑

D⊆B

m′
sh(D) +

|B|∑

i=1

(|B|
i

)
li =

∑

D⊆B

∑

A|D⊆A

λ′(A, D)msh(A) +
|B|∑

i=1

(|B|
i

)
li .

If A ⊆ B, we have that whenever D ⊆ A, then D ⊆ B, and hence, msh(A) is
multiplied by ∑

D|D⊆A

λ′(A, D) = 1. (24)

Consequently,

∑

D⊆B

m ′
sh(D) =

∑

A⊆B

msh(A) +
∑

A�B

∑

D⊆A∩B

λ′(A, D)msh(A). (25)

Finally, as msh(A) ≥ 0, ∀A ∈ Pk∗ (X), λ′(A, B) ≥ 0, ∀A, B ∈ Pk∗ (X),

μ′(B) ≥
∑

A⊆B

msh(A) +
|B|∑

i=1

(|B|
k

)
lk =

∑

A⊆B

m(A) = μ(B). (26)

This finishes the proof. �

Similarly, the following holds.
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Lemma 3.3 Let us consider μ ∈ FM k(X) and μ′ such that μ′
sh ∈ MΛ

′k⊇,+
(μsh).

Then, μ′ ≤ μ.

However, not all μ′ such that μ′
sh ∈ MΛ

′k⊆,+
(μsh) are monotone measures. Indeed,

the following can be shown:

Lemma 3.4 For |X | ≥ 2, there exists μ′
sh ∈ MΛ

′k⊇,+
(μsh) s. t. μ′ is not monotone

except for |X | = 2 and μ given by μ(1) = μ(2) = μ(1, 2) = 1.

Finally, let us show an application of the previous results, that allows us to derive
some of the vertices of FM k

≥(μ) from the vertices of MΛ
′k⊆,+

(μsh).

Proposition 3.4 Consider μ ∈ FM k(X) and μ′ ∈ FM k(X) such that m ′
sh ∈

V⊆(μ) and μ′′
� μ′ for any μ′′

sh ∈ MΛ
′k⊆,+

(μsh). Then, μ′ is a vertex of FM k
≥(μ).

Proof From Lemma 3.2, we know that μ′ ≥ μ and by hypothesis
μ′ ∈ FM k(X), whence μ′ ∈ FM k

≥(μ). If μ′ is not a vertex, then there exists
μ1, μ2 ∈ FM k

≥(μ) such that μ′ = λμ1 + (1 − λ)μ2.

As μ1 ∈ FM k
≥(μ), then μ1,sh ∈ MΛ

′k⊇,+
(μ′

1,sh) with μ′
1,sh ∈ MΛ

′k⊆,+
(μsh);

and μ2,sh ∈ MΛ
′k⊇,+

(μ′
2,sh) with μ′

2,sh ∈ MΛ
′k⊆,+

(μsh). By Lemma 3.3,

μ1,sh ≤ μ′
1,sh, μ2,sh ≤ μ′

2,sh , whence

λμ′
1,sh + (1 − λμ′

2,sh) ≥ λμ1,sh + (1 − λμ2,sh) = μ′
sh (27)

But λμ′
1,sh + (1 − λμ′

2,sh) ∈ MΛ
′k⊆,+

(μsh) because it is a polyhedron, a
contradiction. �
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Divergence Measures: From Uncertainty
to Imprecision

Susana Montes, Susana Díaz and Davide Martinetti

Abstract The link between information theory and fuzzy logic has been proven in
several previous papers. From this starting point, we propose here a review about the
concept of divergence measures, which was proposed as a tool for comparing two
fuzzy sets. The initial definition comes from the ideas behind the classical concept
of divergence between two probability distributions. Following a path similar to
the one considered to obtain fuzziness measures from uncertainty measures, we are
able to define fuzzy divergences. Apart from that, some possible generalizations are
considered.

1 Introduction

Dealing with lack of information is a usual problem in many areas. This lack of
information can be given in two different ways: uncertainty or imprecision. In the
first case, we deal with experiments where we can have more than one possible
outcome, each possible outcome can be specified in advance, but the outcome of the
experiment depends on chance. For instance, in a coin toss, we know the two possible
outcomes, head or tail, but we do not know the final result. In the second case, we
have no uncertainty about the result of the experiment but imprecision. Thus, for
instance, if we consider again the experiment of the coin toss, the coin could be
already thrown but maybe it is too old and we are not sure that the face it shows is
clearly a head.
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Information theory studies the quantification and communication of the informa-
tion and, in particular, it measures the amount of uncertainty involved in the value
of a random experiment. It was originally proposed by Shannon [31] in 1948 as a
tool in signal processing. Thus, this theory combines a lot of different fields such as
mathematics, statistics, computer science, physics and electrical engineering. From
the beginning, this theory was revealed as an interesting tool in many other areas and
therefore a lot of researchers started to work on it (Rényi [30], Oniçescu [27], Sharma
and Mittal [32], Havrda and Charvát [11], etc.). Later, an important step was given
by Kampé de Fèriet and Forte [12] with an axiomatic definition of the information
with or without a probability measure. From the theoretical aspects of this theory,
Kullback [17] found a lot of interesting applications in statistical inference. From this
initial application a lot of papers have been developed in this area. In particular, some
very important achievements have been obtained by Pardo (see, among others, [28,
29]). An important review about all these theories can be found in Gil [7], since he
was one of the most important researchers in this area in Spain. Divergence measures
between probability distributions were an important topic on this monograph and it
is the starting point of this chapter, as we will see later.

On the other hand, Zadeh [34] introduced in 1965 the concept of fuzzy set, as
a way to model vague or poorly defined properties for situations in which it is not
possible to fully discriminate between having and not having the said properties.
From that, a whole mathematical and applied theory to deal with imprecision was
developed. It is known as Fuzzy Logic Theory. Two interesting monographs about
this theory were written by Dubois and Prade [6] and Klir and Folger [13].

As we can see from the title of this last book, the concepts fuzzy sets, uncer-
tainty and information are mixed. This is not by chance, since these topics are very
related, as we can see in [8–10]. In particular, we have studied [24] the relationship
between uncertainty measures defined in Information Theory [12] and the fuzziness
measures introduced by De Luca and Termini [5] and later analyzed in a deeper way
by Knopfmacher [14]. The link between measures of uncertainty and imprecision in
fuzzy environments will lie in what we will refer as divergence measure, because of
the analogy with the classical meaning of the term used in comparing two probability
distributions (see, for instance, [29]). The main purpose of this chapter is to use these
measures to compare two fuzzy sets.

As introductory notions, we present two axiomatic definitions to measure the
entropy–uncertainty measures and fuzziness measures in Sect. 2. A study on the
relationship between them, in the most general context, is given there. The definition
of divergence measure between fuzzy sets is given in Sect. 3 following the ideas con-
sidered previously. Themost important results are contained in that section where we
also comment some extensions. Finally, we conclude the work with some comments
in Sect. 4.
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2 Preliminary

Necessary concepts to understand the remaining parts of this work are given in this
section. In particular, we will focus on the definitions and notations for uncertainty
measures and fuzziness measures.

2.1 Uncertainty Measures

The first probabilistic uncertainty measure (also called entropy) was given by Shan-
non [31] in the context of Communication Theory. That initial definition considered
that the uncertainty for a random experiment can be measured by means of the
quantity

H(P) = −
n∑

i=1

pi log2(pi )

where values pi represent the probabilities of the possible results of the experiment.
From that initial definition, a lot of generalizations have been proposed in the

literature.
Thus, Menéndez et al. [19] proved that all these measures of entropy are part of

a wider family, which are named h-φ-entropies.
This family is slightly more general than Ben Bassat’s family of f -entropies that

were defined as those functions that can be expressed like

H(P) =
n∑

i=1

f (pi )

where f is a concave function.
Later, the quasi-φ-entropies were introduced and characterized in the case of

discrete distributions [3]. Thus, it is a family more general than Ben Bassat’s one but
different from the family of h-φ-entropies. More precisely, they are defined by

H(P) =
n∑

i=1

φ(pi )

where φ is a function such that φ(λx + (1 − λ)y) ≥ λφ(x) + (1 − λ)φ(y),∀x, y ∈
[0, 1], x + y ≤ 1.

An important property of uncertainty measures is the Principle of Transfer or
Pigou–Dalton’s condition. An uncertainty measure H fulfils this property if given
two probability distributions P and P

′
with parameters (p1, p2, . . . , pn) and

(p′
1, p

′
2, . . . , p

′
n) respectively, then H(P) ≤ H(P ′), where, pk = p′

k, ∀k /∈ {i, j}
and p′

i = pi + δ, p′
j = p j − δ for some δ ≤ (pi − p j )/2.
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It is a very logical property, since it means that the more similar the probabilities
of two outcomes of an experiment are, the higher the uncertainty is.

2.2 Fuzziness Measures

After having commented some results about uncertainty measures or probabilistic
entropies, we now introduce fuzzy sets and the measures of their fuzziness, i.e., the
non-probabilistic entropies.

They arewell-knownand canbe found in awide range of sources (see, for instance,
the classical books [6, 13]).

The universal set is denoted by X . A fuzzy subset of X is a mapping from X into
the unit interval [0, 1].

In this framework, we use the following notations:

• P(X) is the set of all subsets of X ,
• F (X) is the set of all fuzzy subsets of X ,
• A ∈ P(X) will denote any crisp set,
• Ã ∈ F (X) will denote any fuzzy set.

We identify a fuzzy set and its membership function. Thus we have that X (x) = 1
for all x ∈ X and for the empty set we have ∅(x) = 0 for all x ∈ X .

Two further important concepts are the containment relation and the complement
set. We consider the standard Zadeh’s negation for the complement (see [34]).

Definition 2.1 Let Ã, B̃ ∈ F (X). The complement of Ã is the fuzzy set Ãc(x) =
1 − Ã(x), x ∈ X . Ã is contained in B̃, denoted by Ã ⊆ B̃ if Ã(x) ≤ B̃(x) for all
x ∈ X .

Apart from the previous relation of containment, we consider the concepts of
intersection and union of fuzzy sets. The initial definitions were also given in [34]
by means of the minimum and the maximum operators.

However, they are not the only way to generalize the classical set operations, since
there exists a broader class of functions to represent them. In fact, for the intersection,
this class is referred as t-norm and for the union as t-conorm.

A triangular norm (t-norm) is a function T : [0, 1] × [0, 1] → [0, 1] satisfying
the following properties:

(T1) T (a, b) = T (b, a), for all a, b ∈ [0, 1],
(T2) T (T (a, b), c) = T (a, T (b, c)), for all a, b, c ∈ [0, 1],
(T3) b ≤ c ⇒ T (a, b) ≤ T (a, c), for all a, b, c ∈ [0, 1],
(T4) T (a, 1) = a, for all a ∈ [0, 1].

Some important examples of t-norms are:

• Minimum: TM(a, b) = min(a, b), for all a, b ∈ [0, 1],
• Product: TP(a, b) = a · b, for all a, b ∈ [0, 1],
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• Łukasiewicz t-norm: TL(a, b) = max(a + b − 1, 0), for all a, b ∈ [0, 1],
• Drastic t-norm:

TD(a, b) =
{
min(a, b), if max(a, b) = 1
0, otherwise

.

For these basic t-norms, it holds that TD ≤ TL ≤ TP ≤ TM . In fact, for any t-norm
T , it is true that TD ≤ T ≤ TM . By changing the neutral element from 1 to 0, we
obtain the triangular conorms (t-conorm).

A t-norm T and a t-conorm S are dual iff for each a, b ∈ [0, 1] it holds that
T (a, b) = 1 − S(1 − a, 1 − b).

The dual conorms of the t-norms presented earlier are the following:

• Maximum: SM(a, b) = max(a, b), for all a, b ∈ [0, 1],
• Probabilistic sum: SP(a, b) = a + b − a · b, for all a, b ∈ [0, 1],
• Łukasiewicz t-conorm: SL(a, b) = min(a + b, 1), for all a, b ∈ [0, 1],
• Drastic t-conorm:

SD(a, b) =
{
max(a, b), if min(a, b) = 0
1, otherwise

.

Using t-norms and t-conorms, we can define the intersection and union of two
fuzzy sets as follows.

Definition 2.2 Let Ã, B̃ ∈ F (X). Given a t-norm T and a t-conorm S,

• Ã ∩ B̃(x) = T ( Ã(x), B̃(x)),∀x ∈ X ;
• Ã ∪ B̃(x) = S( Ã(x), B(x)),∀x ∈ X .

Thus, we can denote by (X, T, S) the triple formed by the universewith the t-norm
and the t-conorm defining the intersection and the union, respectively.

The entropy for a fuzzy set is quantified by means of the non-probabilistic
entropies or fuzzinessmeasures (see, for instance, [33]), which are defined as follows.

Definition 2.3 A fuzziness measure is a real function f defined onF (X), fulfilling
the following requirements:

(a) f ( Ã) = 0 ⇐⇒ Ã is a crisp set.
(b) If Ã, B̃ ∈ F (X) and Ã is “sharper” than B̃, then f ( Ã) ≤ f (B̃).
(c) f ( Ã) takes maximum value if and only if Ã is “maximally fuzzy”.

This last definition is based on the concepts “sharper than” and “maximally fuzzy”,
although the second one follows from the former. Thus, the most usual criteria to
define the relation “to be sharper than” are the following:

• Ã is sharper than B̃ iff either Ã(x) ≤ B̃(x) ≤ 1/2 or Ã(x) ≥ B̃(x) ≥ 1/2
for any x in X (see [13]) or

• Ã is sharper than B̃ iff | Ã(x) − 1/2| ≤ |B̃(x) − 1/2| for any x in X (see [6]).
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It is clear that the first one is a particular case of the second one and therefore we
are going to consider the most general definition.

Knopfmacher introduced in 1975 a very important family of fuzziness measures,
the Knopfmacher class [14], which is given by the functions f such that

f ( Ã) = F

(
∑

x∈X
cx · gx( Ã(x))

)

for any Ã in F (X) where cx ∈ R
+; gx is a real-valued function such that gx(0) =

gx(1) = 0, gx(t) = gx(1 − t),∀t ∈ [0, 1] and gx is strictly increasing on [0, 1/2];
F is a positive strictly increasing function with F(0) = 0.

Later, we consider a particular class of Knopfmacher fuzziness measure (see [20,
22]) when F is the identity, gx is the same for all x ∈ X (we denoted gx by u f or
simply u) and u is concave. Any function in this family was named local fuzziness
measure.

2.3 From Uncertainty to Fuzziness

Proposition 2.1 ([24]) Let (X,A , μ) be ameasurable space and let H be an uncer-
tainty measure fulfilling the Pigou-Dalton’s condition and such that H(P) = 0 ⇐⇒
P is degenerate. The map f defined as follows:

f : A ∗ −→ R
+

Ã −→
∫

X
H( Ã(x), Ãc(x))dμ(x)

is a fuzziness measure and it belongs to the Knopfmacher’s class.

If we work on some particular spaces, we are also able to establish a one-to-one
correspondence between fuzziness measures and uncertainty measures.

Thus, if we consider the subset of uncertainty measures given by

H2 = {H |H is a quasi-φ -entropy withφ continue,φ(x) = φ(1 − x),

∀x ∈ [0, 1
2 ] and φ(x) = 0 ⇔ x = 0}

we have the injective property, as we can see in the following proposition.

Proposition 2.2 ([24]) If F1 is a map from H2 inF such that

F1(H)( Ã) =
∫

X
H( Ã(x), Ãc(x))dμ(x),



Divergence Measures: From Uncertainty to Imprecision 681

whereF denotes the Knopfmacher’s class of fuzziness measures, then we have that
F1 is injective.

If we restrict our study to the family of φ-entropies given by Hφ = {H ∈
H2|φ is concave} and the family of fuzzinessmeasures given byF1 = { f ∈ F with
g continue} we have the bijection.
Theorem 2.1 ([24]) There exists a one-to-one correspondence between the family
of uncertainty measures Hφ and the family of fuzziness measures F1.

3 Divergence Measures

From the previous section, we could notice that the imprecision about the member-
ship of any element x ∈ X in a fuzzy set Ã could be represented by a probability
distribution { Ã(x), Ãc(x)}. Then, we looked at the classical divergence measures
between probability distributions (see, for instance, [7, 29]) to try to compare two
fuzzy sets.

Thus, from this starting point, we proposed a new way to compare two fuzzy
sets [20], the divergence, with the following properties:

• It becomes zero when the two sets coincide.
• It is a nonnegative and symmetric function.
• It decreases when the two sets become “more similar” in some sense.

While it is easy to formulate the first and the second conditions analytically, the
third one depends on the formalization of the concept “more similar”. We base our
approach on the fact that if we add a set C̃ to both fuzzy sets Ã, B̃, we obtain two
subsets which are closer to each other; the same with the intersection.

Definition 3.1 Let (X, T, S) be a triple with X a universe and T and S any t-norm
and t-conorm, respectively. A map D : F (X) × F (X) → R is a divergence mea-
sure with respect to (X, T, S) iff for all Ã, B̃ ∈ F (X), D satisfies the following
conditions:

(a) D( Ã, Ã) = 0;
(b) D( Ã, B̃) = D(B̃, Ã);
(c) max{D( Ã ∪ C̃, B̃ ∪ C̃), D( Ã ∩ C̃, B̃ ∩ C̃)} ≤ D( Ã, B̃), for all C̃ ∈ F (X),

where the union and intersection are defined by means of S and T , respectively.

It is clear that a divergence measure is associated to a triple (X, T, S) and a map
D can be a divergence measure with respect to a t-norm and it cannot be a divergence
measure with respect to a different t-norm.

However, when there is not ambiguity, we will call just divergence measure with-
out specifying the used t-norm and t-conorm.

After different studies of this concept [2, 20, 22–24], we presented the most
general study in [15], where we can also find the following examples.
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Example 3.1 ([15]) The map

D( Ã, B̃) =
{
0, if Ã = B̃
1, if Ã �= B̃

.

is a divergence for any triple (X, T, S).
On the other hand, if we consider the map

D( Ã, B̃) =
∑

x∈X
αx · | Ã(x) − B̃(x)|

where αx ≥ 0 for any x ∈ X ,
∑

x∈X αx = 1 and X is a finite space, D is a divergence
for the minimum t-norm, the product t-norm or the Łukasiewicz t-norm, but it is not
for the drastic t-norm.

A divergence measure can be seen as a particular case of dissimilarity when the
minimum t-norm is considered, which is the most usual way to compare two fuzzy
sets [18].

Moreover, it avoids some counterintuitive examples for dissimilarities, while both
divergence and dissimilarity measures can be seen as a particular case of the general
measures of comparison given byBouchon–Meunier et al. [1] in 1996. An interesting
study about different ways to compare fuzzy sets can be found in [4].

From this starting point, we have been able to generalize this concept to define
the divergence measure for comparing two intuitionistic fuzzy sets [25].

The particular case of local divergences for intuitionistic fuzzy sets was stud-
ied in [26]. There, we presented interesting applications of this concept in Pattern
Recognition and Decision Theory.

A similar generalization has been done for hesitant fuzzy sets in [16].
Moreover, we have been able to use the divergences to measure the fuzziness of

a fuzzy set by comparing it with the closest crisp set and conversely, we have used
fuzziness measures to define a divergence measure [21].

All these definitions and results can be considered as a heritage of the classical
divergence measures, and more precisely, of the knowledge about them conveyed by
Prof. Gil to the authors of this work.

4 Conclusion

In this paper we have studied some relationships among different ways to compare
two elements, under uncertainty and imprecision.

Thus, we have used the classical divergence measures between two probability
distributions to obtain a new way to compare two fuzzy sets. This is a particularly
interesting case of dissimilarity in some cases and it has very interesting and specific
properties.
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The link between randomness and fuzziness is proven one more time, as we did
previously for probabilistic and non-probabilistic entropies.
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Discounting Imprecise Probabilities

Serafín Moral

Abstract In this paper it is considered the problem of discounting a credal set of
probability distributions by a factor α representing a degree of unreliability of the
information source providing the imprecise probabilistic information. An axiomatic
approach is followed by giving a set of properties that this operator should satisfy. It
is shown that discounting can be defined taking a divergence measure between prob-
abilities as basis. Several examples are given starting from different divergence mea-
sures, as the Kullback-Leibler divergence or the total variance divergence. Finally,
a characterization of the associated discounting is given in terms of sets of almost
desirable gambles for two of these measures, providing a behavioral interpretation
on them. The usual discounting of belief functions based on a convex combination
with the ignorance is associated with the use of what it is called the minimum ratio
divergence.

1 Introduction

In belief functions the discounting of a belief function by an unreliability degree α

is a basic operator introduced by Shafer [11]. This operator consists in computing
the convex combination of the original belief (with weight 1 − α) and the vacuous
belief function (with weight α), obtaining in this way a belief function which is less
informative than the original one (with wider belief-plausibility intervals) and which
is equal to the vacuous belief when α = 1. This discounting can be immediately
extended to credal sets as the convex combination is also defined in this setting and
there is also a vacuous credal set. In fact, it has been proposed in [5, 9] as the basis
for discounting credal sets and in [6] it has been generalized to the case of contextual
discounting. But other rules have been also proposed as for example in [7] where a
convex combination with the uniform distribution is considered.
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In this paper it is considered the study of discounting operators for credal sets,
following a general framework in which general properties are assumed and then
different examples of methods satisfying these properties are given. The discounting
of a credal set is related with a divergence measure: given a divergence measure, then
the discounting of a credal set can be defined as the set of probabilities such that there
is a probability in the original credal set with a divergence less or equal than a given
threshold. We then give the properties associated to a divergence measure between
probabilities. These properties are not the ones associated to metric distances as in
[1] and are closely related to those of Csiszár f-divergence measures [4].

Credal sets have a behavioral interpretation in terms of gambles desirability
[2, 12]. The interpretation of a discounting rule in terms of desirability can be very
useful for determining which method should be applied in a particular situation, as
this determines how the agent behavior changes when discounting is applied. In this
paper we give two results associated to two important methods: the generalization
of the belief functions discounting and the one associated width the total variance
divergence [10].

The paper is organized as follows: Sect. 2 is devoted to the problem definition and
notation and gives the required basic properties for the discounting of a credal set;
Sect. 3 considers the properties of divergence measures between probabilities and
relates divergence and discounting; Sect. 4 studies specific procedures for discount-
ing credal sets giving a behavioral interpretation for two of them. Finally Sect. 5 is
devoted to conclusions and future work.

2 Problem Definition and Notation

Assume that we have a finite referentialU = {u1, . . . , un}. A probability distribution
on this set is a mapping p : U → [0, 1] satisfying ∑n

i=1 p(ui ) = 1. If a ⊆ U , its
probability is equal to p(a) = ∑

ui∈a p(ui ).
A credal setK is a convex and closed set of probability distributions. IfK �= ∅

it will be said to be coherent. The credal set of all the probability distributions on U
will be denoted by K0.

Wewill consider two rules to combine credal sets. The conjunctive combination of
two credal sets AND(K1,K2) is the intersection of them (K1 ∩ K2). Twocredal sets
are mutually inconsistent when AND(K1,K2) = ∅. The disjunctive combination
of two credal sets OR(K1,K2) is the convex hull of the union CH(K1 ∪ K2).

AgambleonU is amapping f : U → R. The expected value of f with respect to a
probability distribution pwill be denoted as p( f ). IfK is a credal set, then the lower
probability of a gamble will be denoted by p( f ) and it is defined as minp∈K p( f ).
The lower probability p( f ) can interpreted as the upper buying price for gamble f .
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Given a coherent credal setK , we can associated with it a coherent set of almost
desirable gambles DK :

DK = { f : p( f ) ≥ 0, ∀p ∈ K }.

A coherent set of almost desirable gambles D satisfies a set of properties [12]:

C1. If f < 0, then f /∈ D .
C2. If f ≥ 0, then f ∈ D .
C3. If f1, f2 ∈ D , then f1 + f2 ∈ D .
C4. If f ∈ D, α ≥ 0, then α f ∈ D .
C5. If f + ε ∈ D, ∀ε > 0, then f ∈ D .

Given a generic set of gambles D we can associated with it a credal set K :

KD = {p : p( f ) ≥ 0, ∀ f ∈ D}.

Ageneric set of gamblesD avoids sure losswhenKD is coherent. In that case, the
natural extension ofD is the set of gamblesD = DKD . It is immediate to prove that
D is the intersection of all the coherent set of gambles containing D , and therefore
satisfies properties C1–C5.

If A = {a1, . . . , am} is a partition of U and p is a probability distribution on U ,
then the marginalization of p to A , is the probability distribution on A given by
p↓A (ai ) = p(ai ) = ∑

u j∈ai p(u j ).

IfK is a credal set, then the marginalization ofK toA is the credal setK ↓A =
{p↓A : p ∈ K }.

If p is a probability on U and σ a permutation on U , then pσ is the probability
on U given by pσ (ui ) = p(uσ(i)). For a credal set,K σ = {pσ : p ∈ K }.

We will assume that the information about an unknown value ofU is represented
by means of a credal setK or by a single probability distribution p. Our problem is
the following: given a credal set K and a discounting value α ∈ [0, 1] to compute
the discounting D(K , α). The discounting is an extension of the set of probability
distributions by a degree α. The value 1 − α can be considered as the degree of
reliabilityof our information:wemakeour set of probability distributions less specific
if we are unsure about them to a degree α. More concrete meanings will be given to
this degree for specific discounting functions. IfK contains a single probability p,
then the discounting D({p}, α) will be denoted as D(p, α).

We shall assume the following basic properties for discounting:

D1. D(K , α) is a credal set containing K .
D2. If α1 ≤ α2, then D(K , α1) ⊆ D(K , α2).
D3. D(K , 0) = K .
D4. D(∅, α) = ∅, ∀α ∈ [0, 1].
D5. IfK is coherent, then D(K , 1) = K0.
D6. D(OR(K1,K2), α) = OR(D(K1, α), D(K2, α)).
D7. D(K , α)↓A = D(K ↓A , α), for any partition A of U .
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D8. If σ is a permutation on U , then D(K σ , α) = D(K , α)σ .
D9. If q ∈ D(p, α), and a ⊂ U , then qa = q Ia + pIac(q(ac)/p(ac)) ∈ D(p, α),

where ac is the complementary of a, and Ia is the indicator function of a.

Properties D1–D5 are intuitive. We have chosen a scale for discounting in [0, 1].
We could have chosenR∗

0 (the set of non-negative reals) or including an infinite value,
R

∗
0 ∪ {+∞}, butwe have preferred this option as some discountingmethodswill have

a very concrete meaning when α ∈ [0, 1] and for other discounting procedures we
can always change the scale R∗

0 ∪ {+∞} to [0, 1], with some increasing function as
g(x) = 1 − e−x .

PropertyD6 is based on the following idea: OR(K1,K2) is the credal set resulting
of a doubt betweenK1 andK2: anyof themcanbepossible. Ifwehave anunreliability
ofα on these credal sets, then this is an additional doubt about the credal sets.We have
to discount them by a degree α. We have a double source of imprecision (disjunction
and unreliability) and D6 says that the order in which the operators associated with
these sources are applied is irrelevant: it is the same to make the disjunction and then
to discount, than to discount and then apply the disjunction. This property implies the
monotonicity property, i.e. if K1 ⊆ K2, then we have that D(K1, α) ⊆ D(K2, α),
asK1 ⊆ K2 is equivalent to OR(K1,K2) = K2. However, D6 is stronger than the
monotonicity property.

We do not have a similar property for conjunction: let us observe that we can
have two mutually inconsistent credal sets which can be coherent after discounting,
so D(AND(K1,K2), α) can be the empty set, and AND(D(K1, α), D(K2, α))

can be coherent. In fact, one of the applications of the discounting operator will be
to define a method to combine mutually inconsistent credal sets, by carrying out a
previous discounting operator.

A consequence of PropertyD6 is that to define a discounting operator in credal sets
with a finite set of extreme points (K = {p1, . . . , pk}), we only have to define it in
probability distributions, aswehave thatD(K , α) = OR(D(p1, α), . . . , D(pk, α)).
For this reason, we shall concentrate in defining the discounting for single probability
distributions.

PropertyD7, says that discounting commuteswithmarginalization. Themarginal-
ization of a probability distribution does not assume a change of knowledge, but only
a focusing of this knowledge in some events (those represented by subsets ofA ) and
then if we are interested only in these events, the result is the same if we discount in
the more fine-grained setting, U , or in the more coarse-grained framework A .

Property D9, says that if we are discounting a single probability, then if
q ∈ D(p, α), and we transform q by making it more similar to p in the comple-
mentary of a, while keeping it equal to q in a, then the result should also be in
D(p, α).
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3 Discounting a Probability

As a consequence of Property D6, for finitely generated credal sets it is enough
to determine the discounting of all the extreme probabilities of K . So, in this
section we shall concentrate in defining the discounting for a single probability,
D(p, α). In general, this discounting will be a credal set and not a single probability.
We find a direct correspondence between discounting of probabilities and diver-
gence measures between probabilities [3, 10]. A divergence measure Di(p, q) is a
non-negative real number quantifying how different is q from p. We will consider
the following properties for a divergence measure,

I1. Di(p, q) = 0 if and only if p = q.
I2. Di(p, αq1 + (1 − α)q2) ≤ max{Di(p, q1), Di(p, q2)}.
I3. IfA = {a1, . . . , am} is a finite partition ofU , Di(p↓A , q↓A ) ≤ Di(p, q)with

equality if p and q are such that p(ui )
p↓A (a j )

= q(ui )
q↓A (a j )

, when ui ∈ a j .
I4. If σ is a permutation, then Di(p, q) = Di(pσ , qσ ).

Divergence measures have been studied in probability [4]. These properties are
inspired on the properties given in [10], however I2 is weaker than the convexity
property given in that reference. It is important to remark that divergences are not
necessarily symmetrical as here it is assumed the existence of a reference true distri-
bution, p, and an approximate one q. The use of metric distances, such as Euclidean
distance is not always a good idea, as shown in the following example.

Example 3.1 Assume U = {u1, u2, u3} and the probabilities p = (0.4, 0.3, 0.3),
q = (0.2, 0.4, 0.4). The Euclidean distance between them is

√
0.6. Consider now the

partition A = {a1, a2}, given by a1 = {u1}, a2 = {u2, u3}, i.e. u2 and u3 have been
joined in one value. The induced probabilities in A are p↓A = (0.4.0.6), q↓A =
(0.2.0.8). The Euclidean distance is now

√
0.8. We can notice that the distance

increases when the information have been marginalized: we have lost some infor-
mation in the marginalization process, but the distance has increased.

A general class of divergence measures are given by the Csiszár f-divergences
[4, 10] given by

Di f (p, q) =
∑

ui∈U
p(ui ) f

(
q(ui )

p(ui )

)

(1)

where f is a strictly convex function defined on the non-negative realswith f (1) = 0,
and 0/0 is assumed to be 0. Examples of f-divergences are:

• Kullback-Leibler divergence [8], when f (x) = − log(x). The final formula is

K L(p, q) = ∑
ui∈U p(ui ) log

(
p(ui )
q(ui )

)
.

• Likelihood disparity, when f (x) = x log(x). The formula is LD(p, q) = ∑
ui∈U

q(ui ) log
(
q(ui )
p(ui )

)
.
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• Total variance divergence, when f (x) = (1/2)|1 − x |. It is immediate to show
that, in this case we obtain T V (p, q) = (1/2)

∑
ui∈U |p(ui ) − q(ui )| = maxa⊆U

|p(a) − q(a)|.
• Hellinger divergence. When f (x) = (1/2)(1 − √

(x))2, we obtain the square of
the Hellinger distance H 2(p, q).

There are also divergence measures that are not f-divergences. Among then, we
shall consider what we call the min-ratio divergence:

MR(p, q) = 1 − min
ui∈U

q(ui )

p(ui )
. (2)

If Di(p, q) is a divergence measure and g is a strictly increasing function with
g(0) = 0, then g(Di(p, q)) is also a divergence measure. So, we can transform any
divergence so that its range of values is in [0, 1]. In that case, the divergence will be
said to be normalized. We shall assume that we have done this transformation and
that, for example, the normalized Kullback-Leibler divergence, nK L(p, q)will take
values in [0, 1], transforming the original Kullback-Leibler divergence taking values
on [0,+∞] by means of g(x) = 1 − e−x , i.e. nK L(p, q) = 1 − e−K L(p,q), where
g(+∞) = 1.

Now, we can define the discounting of a probability distribution by using a (nor-
malized) divergence measure. If Di is a normalized divergence measure, p is a
probability measure and α ∈ [0, 1], then the discounting of p is given by

D(p, α) = {q | Di(p, q) ≤ α}, (3)

where the overline stands for the topological closure.

Proposition 3.1 If D(p, α) is the discounting of a probability associated to a nor-
malized divergence measure Di, then

(a) D(p, α) is a credal set.
(b) If α1 ≤ α2, then D(p, α1) ⊆ D(p, α2).
(c) D(p, 0) = {p}.
(d) D(p, 1) = K0.
(e) D(p, α)↓A = D(p↓A , α), for any partition A of U.
(f) If σ is a permutation on U, then D(pσ , α) = D(p, α)σ .
(g) If q ∈ D(p, α), and a ⊂ U, then qa = q Ia + pIac(q(ac)/p(ac)) ∈ D(p, α).

Proof For the property in (a), D(p, α) is convex from I2. It is closed, as we are
taking closure (also the closure of a convex set is always convex).

Property in (b) is a consequence of Eq. (3): if α1 ≤ α2 and Di(p, q) ≤ α1, then
Di(p, q) ≤ α2.

Property in (c) is a consequence of I1.
Property in (d) is a consequence of the fact that the discounting is normalized and

Di(p, q) ≤ 1 is always satisfied.
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For the property (e), D(p, α)↓A ⊆ D(p↓A , α) because Di(p↓A , q↓A ) ≤
Di(p, q).

On the other hand, if q defined onA is such that Di(p↓A , q) ≤ α, let us consider
q ′ in U given by q ′(ui ) = q↓A (a j ).p(ui )/p↓A (a j ), when ui ∈ a j . By I3, we have
that Di(p, q ′) = Di(p↓A , q) ≤ α, and q ′ ∈ {r : Di(p, r) ≤ α} and q = q ′↓A ∈
{r : Di(p, r) ≤ α}↓A .

Then, we have that {r : Di(p↓A , r) ≤ α} ⊆ {r : Di(p, r) ≤ α}↓A , and the
inclusion is kept if we take the closure operator.

Property ( f ) is an immediate consequence of I4.
For property (g), consider the partition ofU given byA = {{ui } : ui ∈ a} ∪ {ac}.

In this case, Di(p, q) ≥ Di(p, q↓A ) = Di(p, qa). The last equality is a conse-
quence of the fact that q↓A = q↓A

a and that p(ui )
p(a j )

= qa(ui )
qa(a j )

for any ui ∈ a j . Then
Di(p, q) ≥ Di(p, qa) and the property is obtained. �

On the other hand, a divergence measure can be obtained from a discounting
function for probabilities.

Proposition 3.2 If D(p, α) is a discounting of probabilities satisfying the following
properties:

(a) D(p, α) is a credal set.
(b) If α1 ≤ α2, then D(p, α1) ⊆ D(p, α2).
(c) D(p, 0) = {p}.
(d) D(p, 1) = K0.
(e) D(p, α)↓A = D(p↓A , α), for any partition A of U.
(f) If σ is a permutation on U, then D(pσ , α) = D(p, α)σ .
(g) If q ∈ D(p, α), and a ⊂ U, then qa = q Ia + pIac(q(ac)/p(ac)) ∈ D(p, α).

Then, the function

Di(p, q) = inf{α ∈ [0, 1] : q ∈ D(p, α)} (4)

is a divergence measure.

Proof Property I1 is an immediate consequence of D(p, 0) = {p}.
For I2, consider α < Di(p, βq1 + (1 − β)q2), then (βq1 + (1 − β)q2) /∈

D(p, α). As D(p, α) is a convex set, then either q1 /∈ D(p, α) or q2 /∈ D(p, α).
Therefore, max{Di(p, q1), Di(p, q2)} ≥ α. And max{Di(p, q1), Di(p, q2)} ≥
Di(p, βq1 + (1 − β)q2).

For I3, consider a partition A , if q ∈ D(p, α), then q↓A ∈ D(p↓A , α) by
Assumption e) in this proposition, and Di(p↓A , q↓A ) ≤ Di(p, q).

Consider now, p and q in such a way that p(ui )
p↓A (a j )

= q(ui )
q↓A (a j )

, when ui ∈ a j .

If q↓A ∈ D(p↓A , α), then as D(p, α)↓A = D(p↓A , α), we have that there is a
probability q ′ ∈ D(p, α) such that q ′↓A = q↓A . Consider now a repeated transfor-
mation of q ′ by applying Assumption g) in this proposition for events a = acj where
a j ∈ A . Each probability that is obtained in this transformation is in D(p, α) and the
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final result is q ′′ = ∑
a j∈A

q(a j )

p(a j )
Ia j p. But this probability is equal to q, as if ui ∈ a j ,

we have that q(ui ) = p(ui )
q↓A (a j )

p↓A (a j )
= p(ui )

q(a j )

p(a j )
= q ′′(ui ). So q ∈ D(p, α), and

therefore Di(p, q) ≤ Di(p↓A , q↓A ) and the equality holds as we had already
proved the other inequality.

Finally, I4 is an immediate consequence of Assumption f ) in this proposition. �

4 Discounting Credal Sets

Consider that Di is a divergence measure, then the discounting of a credal set is
defined as

D(K , α) = {q : ∃p ∈ K with Di(p, q) ≤ α}. (5)

When, Di(p, q) is a continuous function, then {q : ∃p ∈ K with Di(p, q) ≤ α}
will be closed and then it is not necessary to take the closure. All the examples we
have given are continuous. So, it is not necessary to apply the topological closure in
these cases.

One important question when selecting a divergence measure to define a dis-
counting procedure, is what its meaning is. In this section, we give an answer for
the total variance divergence and the minimum-ratio divergence, by studying their
implications in the associated set of almost desirable gambles. We start with the total
variance divergence, T V (p, q). The discounting ofK by means of this divergence
will be denoted by DTV (K , α).

IfD is a coherent set of almost desirable gambles, then the discounting associated
to T V (p, q) is defined by

DTV (D, α) = { f + α(sup( f ) − inf( f )) : f ∈ DK },

where overline stands for the natural extension operator. Thismakes sense, as accord-
ing to the following theorem the credal set associated to DTV (D, α) is DTV (K , α).

Theorem 4.1 Consider a credal setK , then

DTV (K , α) = KDTV (DK ,α). (6)

Proof If q ∈ DTV (K , α), then there is p ∈ K with T V (p, q) ≤ α. This implies
that

∑
p(ui )>q(ui )

(p(ui ) − q(ui )) α′ ≤ α and
∑

p(ui )<q(ui )
(q(ui ) − p(ui )) α′ ≤ α.

If f ∈ DK , then p( f ) ≥ 0.
On the other hand,
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p( f ) − q( f ) =
∑

ui∈U
(p(ui ) − q(ui )) f (ui )

≤
∑

p(ui )>q(ui )

(p(ui ) − q(ui )) f (ui ) −
∑

p(ui )<q(ui )

(q(ui ) − p(ui )) f (ui )

≤ sup( f )
∑

p(ui )>q(ui )

(p(ui ) − q(ui )) − inf( f )
∑

p(ui )<q(ui )

(q(ui ) − p(ui ))

= sup( f )α′ − inf( f )α′ ≤ α(sup( f ) − inf( f )).
(7)

So,
q( f + α(sup( f ) − inf( f ))) = q( f ) + α(sup( f ) − inf( f ))

≥ p( f ) − α(sup( f ) − inf( f )) + α(sup( f ) − inf( f )) = p( f ) ≥ 0,

and q ∈ KDTV (DK ,α).
Assume now that p /∈ DTV (K , α). As T V (p, q) is symmetrical, we have that

DTV (p, α) ∩ K = ∅. As these sets are closed and convex, there is an hyperplane
strictly separating them, i.e. a gamble f , such that q( f ) < 0 for any q ∈ DTV (p, α)

and q( f ) > 0 for any q ∈ K .
As q( f ) > 0 for any q ∈ K , f ∈ DK .
LetM1 = {ui | f (ui ) = sup( f )} andM2 = {ui | f (ui ) = inf( f )} and q ′ the point

in DTV (K , α) where f is maximized. We have that q ′(M1) < 1.0, as sup( f ) > 0
and q ′( f ) < 0.

Also, if q ′(M2) = 0, we can modify f to f ′ which is equal to f in points not in
M2 and equal to infui∈U\M2 in M2. We have that f ′ ≥ f , and therefore f ′ ∈ DK .
On the other hand, the maximum of q( f ′) in q ∈ DTV (p, α) is the same than the
maximum of q( f ) in the same set: as given the nature of DTV (p, α) this maximum
is achieved at the same point q ′ and q ′(M2) = 0.

The fact that themaximumvalues of q( f ) and q( f ′) are obtained at the same point
q ′ ∈ DTV (p, α), is a consequence of the fact that the point in which the maximum
of q( f ) is achieved in DTV (p, α) can be computed by considering a permutation σ

in {1, . . . , n} such that f (uσ(1)) ≥ f (uσ(2)) ≥ · · · ≥ f (uσ(n)), considering the sets
ai = {uσ(1), . . . , uσ(i)} and considering q ′(ai ) = min{p(ai ) + α, 1.0}. These values
define an only probability measure q ′ at which q( f ) is maximized: it tries to assign
larger probabilities to the points in which f is larger. As we can associate the same
σ to f and f ′ the functional can be maximized at the same point q ′.

As q( f ) < 0 for any q ∈ DTV (p, α), we also have that q( f ′) < 0 for any q ∈
DTV (p, α) (the maximum negative value is the same in both cases).

We have proved that for any separating hyperplane f for which the probability
maximizing it q ′ ∈ DTV (p, α) is such that q ′(M2) = 0, there is another separat-
ing hyperplane, f ′ in which the set of points M2 is enlarged. As in a separating
hyperplane, we can not have M1 = M2 = U , we can conclude that there is a sepa-
rating hyperplane f of K and DTV (p, α), such that the probability maximizing it
in DTV (p, α) is such that q ′(M1) < 1.0, and q ′(M2) > 0.
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We have that q ′(M1) − p(M1) = α, as themaximumof probability of q( f )where
q ∈ DTV (p, α) is achieved in a point q ′ with q ′(M1) = 1.0 or q ′(M1) = p(M1) + α

(we have to move the maximum of probability to the point in which the function
is maximized) and q ′(M1) < 1.0. Also, we can conclude that p(M2) − q ′(M2) = α

and q ′(x) = p(x), ∀ui /∈ M1 ∪ M2.
Therefore

p( f ) = q( f ′) − α(sup( f ) − inf( f )) < 0, p( f + α(sup( f ) − inf( f ))) < 0.

As f ∈ DK , we have that f + α(sup( f ) − inf( f )) ∈ DTV (DK , α), and therefore
p /∈ KDTV (DK ,α). �

According to this result, the discounting of degree α taking as basis the total
variation divergence, implies that old desirable gambles f must be increased by a
value α(sup( f ) − inf( f )) in order to be desirable after discounting.

It is not simple to obtain an expression for discounting in terms of lower prob-
abilities associated to generic gambles (the difficulty comes from the presence of
the natural extension operator in the associated set of almost desirable gambles).
However for events, it is easy to obtain that if p is the lower probability associated
with K and p

α
is the lower probability associated with DTV (K , α), the for any

a ⊆ U , then p
α
(a) = max{0, p(a) − α}.

Now, we give a similar characterization for the discounting based on theminimum
ratio divergence. We call DMR(K , α) to the set {q | ∃p ∈ K with MR(p, q) ≤ α}
and now the equivalent discounting for coherent sets of almost desirable gambles is
DMR(D, α) = { f − α inf( f ) | f ∈ D}. We do not have to take the natural extension
as this set is always coherent ifD is coherent. The following theorem, shows that these
definitions are consistent in the sense that the credal set associated to the discounting
of a coherent set of desirable gambles is the discounting of the credal set. Before, we
give a characterization of the credal set DMR(K , α).

Proposition 4.1 IfK is a credal set, then

DMR(K , α) = {(1 − α)p1 + αp2 | p1 ∈ K , p2 ∈ K0}.

Proof It is easy to prove that p ∈ {(1 − α)p1 + αp2 | p1 ∈ K , p2 ∈ K0} if and
only if there is a probability p1 ∈ K with p ≥ (1 − α)p1 (as p2 is an arbi-
trary probability). And this is equivalent, to p

p1
≥ 1 − α, i.e. 1 − p

p1
≤ α, that is

MR(p1, p) ≤ α. �

Theorem 4.2 Consider a credal setK , then

DMR(K , α) = KDMR(DK ,α). (8)

Proof If α = 1, the result is trivial as both sets are K0. Assume now α < 1.
Assume p ∈ DMR(K , α). then p = (1 − α)p1 + αp2 where p1 ∈ K and p2 is

an arbitrary probability measure.
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If g ∈ DMR(DK , α), then g = f − α(inf( f )), where f ∈ DK .
As f ∈ DK and p1 ∈ K , we have that p1( f ) ≥ 0.
In these conditions,

p(g) = p( f ) − α(inf( f )) = (1 − α)p1( f ) + αp2( f ) − α(inf( f )).

As p2( f ) ≥ inf( f ), we have

p(g) ≥ (1 − α)p1( f ) + α inf( f ) − α(inf( f )) = (1 − α)p1( f ) ≥ 0.

As p(g) ≥ 0 for any g ∈ DT R(DK , α), we have that p ∈ KDT R(DK ,α).
Assume now p /∈ DT R(K , α). As DT R(K , α) is a closed and convex set, there

is an hyperplane strictly separating p and DT R(K , α). Assume that f is the gam-
ble associated with this hyperplane and that p( f ) < 0 and p′( f ) > 0 for any
p′ ∈ DT R(K , α).

This implies that,

(1 − α)p1( f ) + αp2( f ) > 0, ∀p1 ∈ K , p2 ∈ K0.

As K0 contains all the probability measures, consider that p2 is the probability that
assigns probability 1.0 to the point in which f takes its minimum. We obtain that

(1 − α)p1( f ) + α inf( f ) > 0, ∀p1 ∈ K ,

and as a consequence

p1((1 − α) f + α inf( f )) > 0, ∀p1 ∈ K .

The restriction associated to gamble (1 − α) f + α inf( f ) is strictly satisfied by any
p1 ∈ K , and then g = (1 − α) f + α inf( f ) ∈ D .

We have that inf(g) = (1 − α) inf( f ) + α inf( f ) = inf( f ). Therefore, g − α

inf(g) = (1 − α) f + α inf( f ) − α inf( f ) = (1 − α) f ∈ DT R(DK , α).
As p(g − α inf(g)) = (1 − α)p( f ) < 0 and g − α inf(g) ∈ DT R(DK , α), we

have that p /∈ KDT R(DK ,α).
We have proved that p /∈ DT R(K , α) implies that p /∈ KDT R(DK ,α), which com-

pletes the proof. �

GivenProposition 4.1, it is easy to prove that if p is the lower probability associated
withK and p

α
the lower probability associated with DMR(K , α), then we have that

p
α
( f ) = p( f ) − α(inf( f )), for any gamble f . In this case discounting by α implies

that the upper buying price for any gamble f should be decreased by α(inf( f )).
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5 Conclusions and Future Work

In this paper we have studied the problem of discounting imprecise probabilities.
We have given a set of properties that this operator should satisfy and we have given
several examples. We have shown that this problem has a strong connection with the
computation of divergence between probability measures. Finally, we have shown
that some of the discounting operators can have a behavioral interpretation.

In the future, we plan to provide interpretations in terms of desirability for other
discounting operators. In particular, we are specially interested in the one associated
with the use of Kullback-Leibler divergence, which is the most usual in probability
theory. We also want to apply discounting to the problem of combination of informa-
tion [9] when the information provided by different sources is mutually inconsistent.
In this case the reliability of the sources decreases and it is natural to discount them
till consistency is attained.
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On Some Concepts Related
to Star-Shaped Sets

Ana Belén Ramos-Guajardo, Gil González-Rodríguez, Ana Colubi,
Maria Brigida Ferraro and Ángela Blanco-Fernández

Abstract The convenient theoretical properties of the support function and the
Minkowski addition-based arithmetic have been shown to be useful when dealing
with compact and convex sets on R

p. However, both concepts present several draw-
backs in certain contexts. The use of the radial function instead of the support func-
tion is suggested as an alternative to characterize a wider class of sets—the so-called
star-shaped sets—which contains the class of compact and convex sets as a particular
case. The concept of random star-shaped set is considered, and some statistics for
this kind of variable are shown. Finally, some measures for comparing star-shaped
sets are introduced.

1 Introduction

Random sets, also called set-valued random variables and denoted by RSs for short,
have been used in different fields. For instance, they have been shown to be useful
in spatial data analysis [18], in Econometrics [3] and in Structural Engineering [25],
to name but a few. RSs can also be viewed as imprecise random variables, as Pedro
Gil and his colleagues have pointed out in [17]. Several results for RSs have been
accomplished, such as limit theorems [1, 19], confidence sets for the (Aumann)
expected value [4], hypothesis testing for the expected value or the (Fréchet) variance
[11–13, 15, 20, 21] and inference on regression models [2, 8, 10].
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In the one-dimensional case, the compact intervals A ofR can be characterized by
either the infima and suprema of A, (inf A, sup A) so that inf A < sup A, or by the
mid-point and radius of A, (mid A, spr A) ∈ R × R

+. The usual interval arithmetic
is based on the Minkowski addition [16] and the product by a scalar, and it preserves
the length of the resulting intervals. Many statistical results concerning interval data
are based on the Minkowski arithmetic (see, for instance, [2, 6, 8, 10, 15, 21]).

The statistical studies developed until now for the p-dimensional situation (with
p > 1) frequently take advantage of some convenient theoretical properties of the
support function, but they have several drawbacks in certain situations. To overcome
these drawbacks, an alternative to the support function for characterizing star-shaped
sets by means of the so-called radial/polar function has been investigated in [5, 14].

Basic concepts related to this new representation and some statistical results are
addressed. More concretely, the concept of random star-shaped set—i.e. a random
variable taking star-shaped sets as outcomes -, and those of expected value and
variance are considered. The corresponding sample moments are defined, and the
consistency with respect to their population counterparts is highlighted. In addition,
the concept of mean directional length is introduced and some comparative measures
of centered star-shaped sets are suggested.

The rest of the paper is organized as follows. Section2 is devoted to the introduc-
tion of some preliminaries regarding compact and convex sets and star-shaped sets.
The concept of random star-shaped sets and their moments are recalled in Sect. 3. A
basic example illustrating these sample moments is provided. The notions related to
the mean directional length are discussed in Sect. 4. Finally, some conclusions and
open problems are provided in Sect. 5.

2 Preliminaries

Let the space R
p be endowed with the Euclidean norm ‖ · ‖ and the correspond-

ing inner product 〈·, ·〉. Let S
p−1 = {u ∈ R

p : ‖u‖ = 1} be the hypersphere with
radius 1. The space of all non-empty compact and convex subsets of R

p is denoted
by Kc(R

p). If A ∈ Kc(R
p), then the support function of U is defined such that

sA(u) = sup
a∈A

〈u, a〉 for u ∈ S
p−1 [9, 19].

The location and the imprecision of a set A ∈ Kc(R
p) can be determined

in terms of the support function by the so-called mid-spread representation in
such a way that sA = mid A + spr A, where mid A(u) = (sA(u) − sA(−u))/2 and
spr A(u) = (sA(u) + sA(−u))/2 for all u ∈ S

p−1.
As shown in Fig. 1, the support function identifies the boundary of the correspond-

ing set, but the obtained result is not easy to relate with the original shape of the set.
Actually, it is very difficult to identify which is the original set associated with a
function verifying the properties of the support function (if any). This could be a
drawback in some applied problems in which it is necessary to clearly identify the
shape of the sets (as, for instance, in image processing).
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Fig. 1 Support function (distance from (0,0) to the contour of the gray line,marked in dashed-dotted
black) of a line and a square in R

2 (in black)

To overcome this disadvantage, other characterizations of sets can be taken into
account. For instance, a useful tool in this framework is the so-called radial func-
tion [24]. It is defined on the class of star-shaped sets of R

p, denoted by Ks(R
p),

which is an extension ofKc(R
p)—i.e.Kc(R

p) ⊂ Ks(R
p).

A star-shaped set A ∈ Ks(R
p) with respect to kA, where kA is a center of A, is a

nonempty compact subset of R
p such that for all a ∈ A, λkA + (1 − λ)a ∈ A for all

λ ∈ [0, 1]. The radial function of a star-shaped set A is defined as ρA : S
p−1 → R

+
so that ρA(u) = sup {λ ≥ 0 : kA + λu ∈ A}. In this context, kA can be viewed as a
location point of the star-shaped set A whereas ρA is related to the imprecision of the
set. The formal definition of kA and ρA to be used in statistical problems is not trivial.
This problem has been recently addressed in [14]. From now on, this representation
of sets will be called center-radial characterization.

In contrast to the support function, the radial function identifies the shape of the
sets in an intuitive way, as it is shown in Fig. 2, because it is simply based on the well-
known polar coordinates over the unit sphere. In the case of the line (left side image
in Fig. 2), the radial function is equal to 0 for all u ∈ S except for u1 = (1, 0) and
u2 = (−1, 0), with ρA(u1) = ρA(u2) = 1. Further advantages of the radial function
with respect to the support function are pointed out in [14].

The space Ks(R
p) can be embedded into a cone on the Hilbert space

Hr = R
p × L 2(Sp−1) through the center-radial characterization. For the theoretical

developments, from now on, star-shaped sets inK ∗
s (Rp) will be considered, where

K ∗
s (Rp) = {

A ∈ Ks(R
p)|ρA ∈ L 2(Sp−1)

}
. (1)

Regarding the arithmetic, we could consider the Minkowski addition between
two star-shaped sets A and B, A + B = {a + b | a ∈ A, b ∈ B}. However, it has been
shown that theMinkowski addition is not alwaysmeaningful (see [5, 18]), and it does
not agree with the natural arithmetic induced by the center-radial characterization
from theHilbert space. That is, A +r λB should be the element inK ∗

s (Rp) satisfying
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Fig. 2 Radial function of a line (black dots) and a square (which corresponds exactly to the square)
in R
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Fig. 3 Minkowski (left) and radial (right) sums (in black) of the gray quadrilaterals

that kA+rλB = kA + λkB and ρA+rλB = ρA + λρB , where + denotes the usual sum
of two points in R

p and the usual sum of two functions inL 2(Sp−1) and +r denotes
the sum inHr .

An example of the differences between the Minkowski sum and the center-radial
sum of two star-shaped sets in K ∗

s (Rp) is provided in Fig. 3. We observe that the
center-radial sum preserves, directionally, the lengths, whereas the Minkowski sum
dilates them.

Regarding the metric structure in K ∗
s (Rp), the center-radial characterization

induces a natural family of distances from the corresponding one in the associated
Hilbert space. Thus, for any two star-shaped sets A, B ∈ K ∗

s (Rp), the τ -metric is
defined as

dτ (A, B) =
√

τ‖kA − kB‖2 + (1 − τ)‖ρA − ρB‖2p, (2)

where τ ∈ (0, 1) determines the importance given to the location in contrast to the
imprecision, ‖ · ‖ denotes the usual norm in R

p and ‖ · ‖p is the usual L2-type norm
inL 2(Sp−1) [14].
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3 Random Star-Shaped Sets

Given a probability space (Ω,A , P), a mapping X : Ω → R
p × K ∗

s (Rp) is a ran-
dom star-shaped set if it is a Borel measurable mapping with respect to A and the
Borel σ -field generated by the topology induced by the metric dτ on R

p × K ∗
s (Rp).

Equivalently, X can be decomposed in terms of its center-radial characterization,
that is, X = (kX , ρX ), and X can be defined to be a random star-shaped set iff kX
and ρX are random elements in the real and functional framework respectively [14].

Now we are in a position to define some summarizing measures for random star-
shaped sets. On one hand, if E(‖kX‖) < ∞ and E(‖ρX‖p) < ∞, then the expected
value of X is defined as the element E(X) ∈ R

p × K ∗
s (Rp) so that kE(X) = E(kX )

and ρE(X) = E(ρX )—this last expectation being considered in terms of the Bochner
integral inL 2(Sp−1).

From an empirical point of view, given X a random star-shaped set and {Xi }ni=1
an i.i.d. sequence of random star-shaped sets drawn from X , the sample expectation
of X can be defined in terms of the arithmetic in R

p × K ∗
s (Rp) as follows:

X = 1

n

n∑

i=1

Xi . (3)

It is easy to show that (kX , ρX ) = (kX , ρX ).
If E(‖kX‖2) < ∞ and E(‖ρX‖2p) < ∞, then E(X) is the unique element inR

p ×
K ∗

s (Rp) satisfying that

E(d2
τ (X, E(X))) = min

(k, A) ∈ R
p × K ∗

s (Rp)
E(d2

τ (X, (k, A))). (4)

Thus, by following the Fréchet approach, the (scalar) variance of a random star-
shaped set X , denoted by σ 2

X , is defined as

σ 2
X = E(d2

τ (X, E(X))). (5)

The sample variance is also defined in terms of the distance dτ , or equivalently,
in terms of the corresponding variances in R

p and L 2(Sp−1), as follows:

σ̂ 2
X = 1

n

n∑

i=1

d2
τ (Xi , X) = τ σ̂ 2

kX + (1 − τ )̂σ 2
ρX

. (6)

The consistency of the estimators (3) and (5) for the mean and the variance of
random star-shaped sets, respectively, is provided in the following result. It is an
immediate consequence of the Strong Law for Large Numbers in Banach spaces.

Theorem 3.1 [14] Let X be a random star-shaped set and {Xi }ni=1 be an i.i.d.
sequence of random star-shaped sets drawn from X. Then,
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Fig. 4 Sample mean (in
black) of a sample of 10
(gray-coloured) rectangles

−2 −1 0 1 2

−2

−1

0

1

2

(a) If E(‖kX‖) < ∞ and E(‖ρX‖p) < ∞, then

kX
a.s.−P−→ E(kX ) and ρX

a.s.−P−→ E(ρX ). Therefore, X
a.s.−P−→ E(X).

(b) If E(‖kX‖2) < ∞ and E(‖ρX‖2p) < ∞, then

σ̂ 2
kX

a.s.−P−→ σ 2
kX

and σ̂ 2
ρX

a.s.−P−→ σ 2
ρX
. Therefore, σ̂ 2

X
a.s.−P−→ σ 2

X .

Example 3.1 Let X be a random rectangle-shaped set (a particular case of a random
star-shaped set) so that the upper right vertex is generated by following real normal
distributions of means 2 and 3, respectively, and variance equal to 1; the longest side
is distributed as an U (1, 3) and the shortest one as an U (3, 5). A sample {Xi }10i=1
of rectangle-shaped sets i.i.d. as X is generated. The rectangles are centered on
their center of gravity. The centered sample and the corresponding sample mean are
represented in Fig. 4.
It should be noticed that the samplemean is not a rectangle, as the corners are rounded
due to the directional averaging.

The sample variance is computed for τ = 1 (the sets are centered so that the
importance is given to the imprecision) providing σ̂ 2

X = σ̂ 2
ρX

= 0.1192.

4 Comparison of Centered Star-Shaped Sets

Let A, B ∈ K ∗
s (Rp) be two centered star-shaped sets (i.e., two star-shaped sets with

common center which, without lack of generality, can be assumed to be 0) and let
K̃ ∗

s (Rp) be the space of, either non-empty or empty, centered star-shaped sets of
R

p. In the same way that the so-called length of intervals and (fuzzy) sets has been
used previously to develop statistics to compare convex and compact sets (see [21,
22]), the analogous concept can be considered for star-shaped sets. Thus, the mean
directional length of A is defined in terms of the radial function by

S(A) = 2
∫

S
p−1

ρA(u) dλ
S
p−1(u), (7)
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where λ
S
p−1 denotes the normalized Lebesgue measure on the sphere. It should be

noted that S(A) is not the area of A, but an average of the magnitude of ρA over the
unit sphere. It generalizes, in this way, the length of the intervals directionally, as it
is always the case for the radial function.

Regarding the intersection, it is clear that A ∩ B ∈ K̃ ∗
s (Rp). Themeandirectional

length of A ∩ B can be expressed as follows:

S(A ∩ B) = 2
∫

S
p−1

min (ρA(u), ρB(u)) dλ
S
p−1(u). (8)

Based on the ideas in [23], thedegree of inclusion of A in B, denoted by I nc(A, B),
is a value in [0, 1]which can be defined by considering the quotient between themean
directional length of the intersection of A and B and the mean directional length of
the reference set A, i.e.

I nc(A, B) = S(A ∩ B)

S(A)
. (9)

If A is included in B, then it is clear that S(A ∩ B) = S(A) and I nc(A, B) = 1;
otherwise, S(A ∩ B) < S(A) and I nc(A, B) < 1.

It is also possible to define the degree of similarity of A and B, denoted by
Sim(A, B), by following the ideas in [7], as the quotient between the shape of
the intersection of A and B and the shape of the union of A and B, i.e.

Sim(A, B) = S(A ∩ B)

S(A ∪ B)
, (10)

where

S(A ∪ B) = 2
∫

S
p−1

max (ρA(u), ρB(u)) dλ
S
p−1(u).

In this case, if A is equal to B, then S(A ∩ B) = S(A ∪ B) and Sim(A, B) = 1;
otherwise, S(A ∩ B) < S(A ∪ B) and Sim(A, B) < 1. Moreover, Sim(A, B) <

I nc(A, B) in all the situations.
Two illustrative examples concerning rectangle-shaped sets are shown in Fig. 5.

On the left part of the graphic, two partially overlapping centered rectangles A (in
gray) and B (in black) are depicted. If we compute both the inclusion degree of
A in B and the similarity degree between A and B, we obtain that I nc(A, B) =
0.6822 whereas Sim(A, B) = 0.459. On the right part of the graphic, the rectangle
A (in gray) is completely contained in the rectangle B (in black). The computation
of both indexes in this case leads us to the following results: I nc(A, B) = 1 and
Sim(A, B) = 0.5509.

The measures presented in this section might be greatly useful in the context of
image processing. Therefore, it would be interesting to develop a deep statistical
analysis about these measures in the near future.
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Fig. 5 Comparison of two rectangle-shaped sets in two different situations

5 Conclusions

An alternative representation for the class of star-shaped sets, called center-radial
characterization, has been described. It has been shown to be useful for identifying
intuitively the original shape of the sets. On the basis of this representation, some
descriptive statistics for random star-shaped sets have been provided. Additionally,
comparison measures based on the concept of mean directional length have been
proposed. These measures are expected to be the starting point of an interesting
research line in the area of image analysis. Furthermore, all the concepts provided
in this work will be extended to the case of fuzzy subsets of R

p in a near future.

Acknowledgements The research in this paper has been partially supported byMTM2013-44212-
P, GRUPIN14-005 and the COST Action IC1408.

Dedication

To Pedro, our research father and grandfather, a good man who encouraged us to
follow this road. Thanks for giving us so much. Always in our hearts.



On Some Concepts Related to Star-Shaped Sets 707

References

1. Artstein Z, Vitale R (1975) A strong law of large numbers for random compact sets. Ann Probab
3:879–882

2. Blanco-Fernández A, Corral N, González-Rodríguez G (2011) Estimation of a flexible simple
linear model for interval data based on set arithmetic. Comput Stat Data Anal 55(9):2568–2578

3. Beresteanu A, Molchanov I, Molinari F (2011) Sharp identification regions in models with
convex moment predictions. Econometrica 79:1785–1821

4. Choirat C, Seri R (2013) Bootstrap confidence sets for the Aumann mean of a random closed
set. Comput Stat Data Anal 71:803–817

5. Colubi A, González-Rodríguez G (2017) On some functional characterizations of (Fuzzy)
set-valued random elements. In: Ferraro MB, Giordani P, Vantaggi B, Gagolewski M, Gil
MA, Grzegorzewski P, Hryniewicz O (eds) Soft methods for data science. series advances in
intelligent systems and computing, vol 456. Springer, Cham

6. Corral N, Gil MA, Gil P (2011) Interval and fuzzy-valued approaches to the statistical manage-
ment of imprecise data. In: Balakrishnan N, Gil MA, Pardo L (eds) Modern mathematical tools
and techniques in capturing complexity. Series Understanding Complex Systems. Springer,
Heidelberg

7. Dubois D, Prade H (1980) Fuzzy sets and systems: theory and applications. Academic Press,
New York

8. Ferraro MB, Coppi R, González-Rodríguez G, Colubi A (2010) A linear regression model for
imprecise response. Int J Approx Reas 51(7):759–770

9. Ghosh PK, Kumar KV (1998) Support function representation of convex bodies, its application
in geometric computing, and some related representations. CompVis ImageUnders 72(3):379–
403

10. Gil MA, González-Rodríguez G, Colubi A,MontenegroM (2007) Testing linear independence
in linear models with interval-valued data. Comp Statist Data Anal 51(6):3002–3015

11. Gil MA, Montenegro M, González-Rodríguez G, Colubi A, Casals MR (2006) Bootstrap
approach to the multi-sample test of means with imprecise data. Comp Statist Data Anal
51:148–162

12. González-Rodríguez G, Colubi A, Gil MA (2011) Fuzzy data treated as functional data: a
one-way ANOVA test approach. Comp Statist Data Anal 56:943–955

13. González-Rodríguez G, Montenegro M, Colubi A, Gil MA (2006) Bootstrap techniques and
fuzzy random variables: synergy in hypothesis testing with fuzzy data. Fuzzy Sets Syst
157:2608–2613

14. González-Rodríguez G, Ramos-Guajardo AB, Colubi A, Blanco-Fernández A (2017) A new
framework for the statistical analysis of set-valued randomelements. Int JApproxReas 92:279–
294

15. Körner R (2000) An asymptotic α-test for the expectation of random fuzzy variables. J Statist
Plan Infer 83:331–346

16. Minkowski H (1896) Geometrie der Zahlen. Teubner, Leipzig
17. Miranda E, Couso I, Gil P (2005) Random sets as imprecise random variables. J Math Annal

Appl 307(1):32–47
18. Molchanov I (2005) Theory of random sets. Springer, London
19. Puri ML, Ralescu DA (1985) Limit theorems for random compact sets in Banach space. Math

Proc Cambridge Philos 97:151–158
20. Ramos-Guajardo AB, Lubiano MA (2012) K -sample tests for equality of variances of random

fuzzy sets. Comp Statist Data Anal 56(4):956–966
21. Ramos-Guajardo AB, Colubi A, González-Rodríguez G (2014) Inclusion degree tests for the

Aumann expectation of a random interval. Inf Sci 288:412–422
22. Ramos-GuajardoAB,ColubiA,González-RodríguezG (2014) Inclusion andexclusionhypoth-

esis tests for the fuzzy mean. Fuzzy Sets Syst 243:70–83
23. Sanchez E (1979) Inverses of fuzzy relations. Application to possibility distributions and med-

ical diagnosis. Fuzzy Sets Syst 2:75–86



708 A. B. Ramos-Guajardo et al.

24. SchneiderR (1993)Convexbodies: theBrunn-MinkowskiTheory.CambridgeUniversityPress,
Cambridge

25. TononF,BernardiniA (1998)A randomset approach to the optimization of uncertain structures.
Comp Struct 68:583–600



A Case Study-Based Analysis of the Influence
of the Fuzzy Data Shape in Quantifying
Their Fréchet’s Variance

Sara de la Rosa de Sáa, Carlos Carleos, María Teresa López
and Manuel Montenegro

Abstract In previous studies it has been shown that assumming a trapezoidal shape
to model fuzzy number-valued data is not statistically restrictive in case we focus on
the (Aumann-type) means of these data. The assertion has been supported by both
case and simulation studies. This paper aims to analyze by means of a case study
whether the same assertion applies in dealing with the Fréchet-type variance. More
concretely, the p-values of tests have been compared for trapezoidal assessment
versus other frequently used ones, like some LR assessments. The analysis is illus-
trated and corroborated with a real-life example. This analysis indicates that the
shape of the fuzzy assessment scarcely affects statistical conclusions.

1 Introduction

Trapezoidal fuzzy numbers have been shown to be an easy-to-use/draw choice to
model data from intrinsically imprecise-valued magnitudes. This is issued to the
ease to handle for most of the computations, the ease to understand their meaning,
and the ease of their elicitation, especially when people assessing fuzzy numbers
have a low expertise/background about.

Thus, trapezoidal fuzzy numbers are characterized by simply giving their core
(interval of the real values which are considered to be ‘fully compatible’ with the
valuation to be elicited) and their support (interval of the real values which are
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considered to be ‘compatible to some extent’ with the valuation to be elicited). The
remaining values can be directly obtained by a kind of ‘linear interpolation’ of these
two intervals.

In Lubiano et al. [8] it has been empirically shown that, when fuzzy datasets are
summarized by their fuzzy-valued means, the considered data shape is mostly not
statistically relevant.

In this chapter we are going to check that the same conclusion can be drawn when
fuzzy datasets are summarized by their real-valued variances. For this purpose, the
real-life example analyzed in detail in Gil et al. [4] and Lubiano et al. [7, 8], and later
recalled in Sect. 3, is considered for the comparative discussion. Some two-and k-
samples hypothesis test about means p-values in Ramos-Guajardo and Lubiano [10]
have been computed by considering all data as either being trapezoidal (as assumed
in [4, 7, 8]) or belonging to any of the LR classes recalled in the next section.

2 Preliminaries

A (bounded) fuzzy number (also referred to by some authors as a fuzzy interval) is
an imprecise-valued amount that is formalized as a mapping ˜U : R → [0, 1] such
that for all α ∈ [0, 1], the α-level set, defined as

˜Uα =
{ {x ∈ R : ˜U (x) ≥ α} if α ∈ (0, 1]
cl{x ∈ R : ˜U (x) > 0} if α = 0

with ‘cl’ denoting the closure of the set, is a nonempty compact interval. ˜U (x) is
intuitively interpreted as the ‘degree of compatibility’ of the real number x with ˜U .

The space of (bounded) fuzzy numbers will be denoted by F ∗
c (R).

A well-known and frequently used family of fuzzy numbers is that of trapezoidal
fuzzy numbers. If a, b, c, d ∈ R with a ≤ b ≤ c ≤ d, the trapezoidal fuzzy number
Tra(a, b, c, d) is such that for each α ∈ [0, 1] the α-level set equals

(Tra(a, b, c, d))α = [a + α(b − a), d + α(c − d)].

A wider interesting family of fuzzy numbers, including the one of trapezoidal
fuzzy numbers, is that of the LR-fuzzy numbers (see Dubois and Prade [3]) with
L and R invertible functions. If a, b, c, d ∈ R with a ≤ b ≤ c ≤ d, the LR-fuzzy
number LR(a, b, c, d) is such that for each α ∈ [0, 1] the α-level set is such that

inf
(

LR(a, b, c, d)
)

α
=a + (b − a) L−1(α), sup

(

LR(a, b, c, d)
)

α
=d − (d − c) R−1(α).

Along this work we are going to consider quadratic functions (the so-called
�-curves) and functions with parametric monotonic Hermite-type interpolation,
either using (2,2)-rational splines (LU1A and LU1B) or mixed exponential splines
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(LU2A and LU2B) (see Fig. 1) (see, for more details about Stefanini et al. [11]). More
specifically, if ˜U ≡ LR(a, b, c, d), and LR ∈ {Tra,�, LU1A, LU1B, LU2A, LU2B},
then for each α ∈ [0, 1]

˜Uα = [a + lLR(α)(b − a), c + rLR(α)(d − c)] ,

where the functions involved in the left and right arms can be seen in detail in Table1.

Fig. 1 Six types of fuzzy numbers sharing core [20, 25] and support (10, 40) and differing in shape.
On the left, trapezoidal (top) and �-curve (bottom), along with four different LR-fuzzy numbers
on the middle and the right

Table 1 Expressions for functions lLR and rLR in the horizontal view of LR-fuzzy numbers with
LR ranging on {Tra,�, LU1A, LU1B , LU2A, LU2B}
LU lLU (α) rLU (α)

Tra α 1 − α

�

{ √
α/2 if α < 1/2

1 − √
(1 − α)/2 otherwise

{

1 − √
α/2 if α < 1/2√

(1 − α)/2 otherwise

LU1A
α2 + 5α(1 − α)

1 + 3.5α(1 − α)
(1 − α)(1 + 0.9α)

LU1B α 1 − α2 + 5α(1 − α)

1 + 3.2α(1 − α)

LU2A
α2(3 − 2α) − 0.5(1 − α)1.55 + 0.5 + 0.05α1.55

1.55
1 − α2(3 − 2α) − 5(1 − α)11 + 5 + 5α11

11

LU2B
α2(3 − 2α) − 0.5(1 − α)1.55 + 0.5 + 0.05α1.55

1.55
1 − α2(3 − 2α) − 5(1 − α)6.05 + 5 + 0.05α6.05

6.05
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Key tools for the statistical analysis of fuzzy data are the following:

• the arithmetic with fuzzy numbers;
• the metric between fuzzy numbers;
• the model for the random mechanism generating fuzzy data.

Regarding the arithmetic, we will make use of the one based on Zadeh’s extension
principle [13].

Given ˜U , ˜V ∈ F ∗
c (R), the sum of ˜U and ˜V is the fuzzy number ˜U + ˜V ∈ F ∗

c (R)

such that for each α ∈ [0, 1]

(˜U + ˜V )α = [

inf ˜Uα + inf ˜Vα, sup ˜Uα + sup ˜Vα

]

.

Given ˜U ∈ F ∗
c (R) and a scalar γ ∈ R, the product of ˜U by the scalar γ is the

fuzzy number γ · ˜U ∈ F ∗
c (R) such that for each α ∈ [0, 1]

(γ · ˜U )α =
{

[

γ · inf ˜Uα, γ · sup ˜Uα

]

if γ ≥ 0
[

γ · sup ˜Uα, γ · inf ˜Uα

]

otherwise.

It can be easily proved that for fixed invertible functions L and R, the family
of LR-fuzzy numbers is closed under the sum and the product by scalars. More
concretely,

LR(a, b, c, d) + LR(a′, b′, c′, d ′) = LR(a + a′, b + b′, c + c′, d + d ′),

γ · LR(a, b, c, d) =
{

LR(γ a, γ b, γ c, γ d) if γ ≥ 0
LR(γ d, γ c, γ b, γ a) otherwise.

These two operations do not endow F ∗
c (R) with a linear, but with a conical

structure, so special care should be taken in attempting to extend and deal with
difference between fuzzy numbers. Actually, some of the inconveniencies associated
with the nonlinearity have been substantially overcome in developing statistics with
fuzzy data by incorporating suitable distances between them. In this respect, the
metric given below has been introduced by Bertoluzza et al. [1], and it is a quite
convenient choice for many statistical developments.

Given ˜U , ˜V ∈ F ∗
c (R) and θ ∈ (0, 1], Bertoluzza et al.’s θ -distance between ˜U

and ˜V is the real number

Dθ (˜U , ˜V ) =
√

∫

[0,1]

([mid ˜Uα − mid ˜Vα]2 + θ [spr ˜Uα − spr ˜Vα]2) d α,

with mid = mid-point/center, spr = spread/radius.
The most common particular choices of the parameter θ are θ = 1 and 1/3, since

the first one corresponds to only taking into account and uniformly the squared
distances between the extremes of the level sets, and the second one corresponds
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to taking into account and uniformly the squared distances between all the convex
linear combinations of the extremes of the level sets.

Fuzzy number-valued data set in the case study to be considered, come from a
so-called fuzzy rating scale (FRS), as introduced by Hesketh et al. [5], that allows a
rater to draw the fuzzy number that best represents his/her score. The guideline for
the mechanism to draw such a fuzzy number is as follows:

Step 1. A reference bounded interval/segment is first considered. This is often
chosen to be [0, 10]or [0, 100], but the choice of the interval is not at all a constraint.
The end-points are often labeled in accordance with their meaning referring to the
degree of agreement, satisfaction, quality, and so on.

Step 2. The core, or 1-level set, associated with the response is determined. It
corresponds to the interval consisting of the real values within the reference one
which are considered to be as ‘fully compatible’ with the response.

Step 3. The support, or its closure or 0-level set, associated with the response
is determined. It corresponds to the interval consisting of the real values within
the referential that are considered to be as ‘compatible to some extent’ with the
response, and it should be always included in the reference interval.

Step 4. The two intervals are ‘interpolated’ to get a fuzzy number. For instance,
if a linear interpolation is considered a trapezoidal fuzzy number is obtained.

In developing statistics with fuzzy data coming from intrinsically imprecise-
valued attributes, random fuzzy numbers constitute a well-formalized model within
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the probabilistic setting for the random mechanisms generating such data. Random
fuzzy numbers, as defined by Puri and Ralescu [9] (in a more general context and
dimension), integrate randomness (associatedwith the data generation) and fuzziness
(associated with data nature).

Given a probability space (Ω,A , P), an associated random fuzzy number (for
short RFN) is a mappingX : Ω → F ∗

c (R) such that for all α∈[0, 1] the interval-
valued mapping Xα is a compact random interval (i.e., the real-valued mappings
infXα and supXα are real-valued random variables). Equivalently, a mapping
X : Ω → F ∗

c (R) is said to be an RFN if and only if it is a Borel-measurable
mapping w.r.t. the Borel σ -field generated on F ∗

c (R) by the topology induced by
Dϕ

θ ; this Borel-measurability ensures that one can properly refer to the distribution
induced by anRFN, the stochastic independence of RFNs, and so on,without needing
to state expressly these notions.

In summarizing the induced distribution of a random fuzzy number, two mea-
sures/parameters are the most commonly used, namely, the Aumann-type mean
(see Puri and Ralescu [9]) and the Fréchet-type variance (see, for instance,
Lubiano et al. [6]).

Given an RFN X associated with the probability space (Ω,A , P), the (popu-
lation) Aumann-type mean of X is the fuzzy number ˜E(X ) ∈ F ∗

c (R), if it exists,
such that for each α ∈ [0, 1]

(

˜E(X )
)

α
= [

E(infXα), E(supXα)
]

with E denoting the expected value of a real-valued random variable.
IfX is an LR-valued random fuzzy number for fixed invertible functions L and

R, then ˜E(X ) = LR
(

E(infX0), E(infX1), E(supX1), E(supX0)
)

.

The Aumann-type mean preserves the main valuable properties from the real-
valued case (i.e., additivity, equivariance under affine transformations, coherence
with the above-described fuzzy arithmetic, and support by SLLN’s).

In extending the variance of real-valued random variables to RFNs, Fréchet’s
approach has been considered, so that it can be interpreted as a measure of the ‘least
squares error/distance’ in approximating the values of the RFN by a (non-random)
fuzzy number.

The (population) Fréchet-type variance is the real number σ 2
X , if it exists, given

by

σ 2
X = E

(

[

Dθ

(

X , ˜E(X )
)]2

)

=
∫

[0,1]

[

Var(midXα) dα + θ · Var(sprXα)
]

dα.

The Fréchet variance of an RFN satisfies the usual properties for this concept (i.e.,
nonnegativity, and vanishment for degenerate RFNs, invariance under translation,
and additivity under independence of the involved RFNs).
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3 Case Study to Be Analyzed

The case study to be analyzed is related to the well-known questionnaire TIMSS-
PIRLS 2011 which is conducted on the population of Grade 4 students (i.e., nine to
ten years old) and concerns their opinion and feeling on aspects regarding reading,
math, and science. This questionnaire is rather standard and most of the involved
questions have to be answered according to a 4-point Likert scale, responses being
disagree a lot, disagree a little, agree a little, and agree a lot.

To get more expressive responses and informative conclusions, the original ques-
tionnaire form has been adapted to allow a double-type response: the original Likert
and a fuzzy rating scale-based one with reference interval [0, 10] (see Fig. 2 for one
of the items in the questionnaire).

The questionnaire involving these double response questions has been conducted
in 2014 on a sample of 69 fourth grade students from Colegio San Ignacio (Oviedo-
Asturias, Spain). These students have been distributed in accordance with (their
usual) three groups, so that the teachers have decided that the 24 students in one of
the three classrooms have to fill out the paper-and-pencil format and the 45 students
from the other two groups have to complete the computerized version. To ‘ease’ the
relationship between the two scales for these very young respondents, each numeri-
cally encoded Likert response has been superimposed upon the reference interval of
the fuzzy rating scale part, as we can see in Fig. 2.

The training of the students to let them know about the meaning and purpose of
the case study, as well as the aim of the double response, has been carried out in
up to 15min, and three researchers from our Department have been in charge of the
explanation and conduction of the survey. At this point, it should be remarked that
the students had no idea on the concept of real-valued functions and they have just
learned that of a trapezium. The students have not had understanding problems, they

Fig. 2 Example of the double response paper-and-pencil (on the left) and computerized (on the
right) form to an item in the case study
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have catched the philosophy behind and they have been able to provide us with quite
coherent responses in most of the cases. Actually, for all the questions, the number
of ‘no response”s has been very small and smaller for the fuzzy rating than for the
Likert scale. In summary, the training has been surprisingly much easier and more
effective than we had expected.

The complete questionnaire and dataset can be found in http://bellman.ciencias.
uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html.

4 Comparative Analysis

The analysis of the influence of fuzzy data shape on the dataset variance is to be
based on the test about the equality of variances with fuzzy data developed by
Ramos-Guajardo and Lubiano [10] (see also Blanco-Fernández et al. [2]), which
is a bootstrapped homoscedasticity test of k independent RFNs, which can be algo-
rithmically summarized.

The analysis is carried out aiming to test the influence of the shape of fuzzy data
on the Fréchet variance. By means of some of the data in the considered case study,
this section follows two different comparative approaches. More concretely, it is first
devoted to compare the p-values of two-sample and k-sample test about the equality
of variances for different choices of the shape.

Table2 gathers the p-values of the two-sample test about the equality of vari-
ances on the basis of the fuzzy rating scale responses to Item M.2 in the adapted
questionnaire (that is, “My math teacher is easy to understand”) when the two con-
sidered populations are ‘boys’ and ‘girls’ and the 4-tuples are associated not only
with trapezoidal fuzzy numbers (as it has actually been made) but also with other
LRs (those in Fig. 1 alongwith Tri(a, b, c, d) =Tra(a, (b + c)/2, (b + c)/2, d) and
TriS(a, b, c, d) = Tra(a, (a + d)/2, (a + d)/2, d)). The p-values have been com-
puted for θ = 1/3 and 1.

For the usually selected significance levels (those being lower than 0.25), there are
no significant differences between boys and girls in responding toM.2, irrespectively
of the considered shape of fuzzy data and even of the choice of θ .

Table3 gathers the p-values of the two-sample test about the equality of variances
on the basis of the fuzzy rating scale responses to Item M.2 in the case study when
the two considered populations are ‘paper-and-pencil’ and ‘computerized’ form and
the 4-tuples are associated with several LR-valued fuzzy numbers. The p-values
have been computed for θ = 1/3 and 1.

Table 2 p-Values for the equality of population Fréchet’s variances (θ = 1/3, θ = 1) of boys’ and
girls’ LRs responses to Item M.2 in the case study, depending on the considered shape

Tra � LU1A LU1B LU2A LU2B Tri TriS

θ = 1/3 0.416 0.478 0.539 0.466 0.473 0.456 0.466 0.397

θ = 1 0.414 0.443 0.512 0.452 0.467 0.456 0.450 0.376

http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html
http://bellman.ciencias.uniovi.es/SMIRE/FuzzyRatingScaleQuestionnaire-SanIgnacio.html
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Table 3 p-Values for the equality of population Fréchet’s variances (θ = 1/3, θ = 1) of ‘paper-
and-pencil’ and ‘computerized’ form’s LRs responses to Item M.2 in the case study, depending on
the considered shape

Tra � LU1A LU1B LU2A LU2B Tri TriS

θ = 1/3 0.215 0.220 0.239 0.217 0.233 0.198 0.234 0.190

θ = 1 0.149 0.166 0.186 0.165 0.161 0.165 0.184 0.161

Table 4 p-Values for the equality of population Fréchet’s variances (θ = 1/3, θ = 1) of the four
groups, G1 to G4, LRs responses to Item M.2 in the case study, depending on the considered shape

Tra � LU1A LU1B LU2A LU2B Tri TriS

θ = 1/3 0.270 0.255 0.255 0.282 0.263 0.275 0.247 0.218

θ = 1 0.258 0.260 0.274 0.239 0.247 0.268 0.251 0.241

Table 5 p-Values for the equality of population Fréchet’s variances (θ = 1/3) of trapezoidal vs
other LRs responses

Groups
\ LR

� LU1A LU1B LU2A LU2B Tri TriS

Boys 0.998 0.909 0.916 0.994 0.902 0.970 0.897

Girls 1.000 0.974 0.951 0.998 0.940 0.972 0.843

Paper-and-
pencil

0.997 0.998 0.964 0.997 0.938 0.994 0.890

Computerized
form

0.995 0.902 0.914 0.992 0.901 0.961 0.852

G1 0.991 0.866 0.923 0.980 0.904 0.832 0.820

G2 0.997 0.922 0.927 0.995 0.920 0.978 0.923

G3 1.000 0.979 0.949 0.998 0.949 0.986 0.927

G4 0.996 0.999 0.975 0.995 0.968 0.986 0.917

In this second situation, the effect of the choice of θ ∈ (0, 1] is not very relevant.
Statistical conclusions scarcely depend on the considered shape of fuzzy data.

Table4 gathers the p-values of the four-sample test about the equality of variances
on the basis of the fuzzy rating scale responses to ItemM.2 in the case studywhen the
four considered populations are four groups of students based on their ‘mark taken
in the last examination of math’ given by G1 = [0, 6], G2 = (6, 8], G3 = (8, 9]
and G4 = (9, 10], according to the usual range [0, 10]which is considered in Spain.
The p-values have been computed for θ = 1/3 and 1 and the 4-tuples are associated
with several LR-valued fuzzy numbers.

Once more, in this third situation statistical conclusions scarcely depend on the
considered shape of fuzzy data.

A second way to analyze the influence of the shape of fuzzy data by means of
the case study, is to compare by means of the two-sample test about the equality
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of variances trapezoidal data vs other LR data in the responses to Item M.2 for
different populations involved in the preceding tables in this section. Table5 collects
the corresponding p-values for θ = 1/3.

Consequently, there are no significant differences between population Fréchet’s
variances for almost all the significance levels one can consider and all the seven
developed comparisons.
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Dedication

Dear Pedro,
How difficult is to write a dedication to you!
How difficult assuming there is more than a year since you left us!
How difficult to find the right and accurate words to remember you!; to remember

howmuch you meant (and still mean) for all of us. Words that will be little compared
to what you deserve.

How difficult to write a dedication to a very honest man, a good man!
You have been a unique and unrepeatableman, withwhomwe feel deeply honored

to have shared part of our lives.
You have been a generousman, always supporting thosewho have sharedwith you

the love for Mathematics and, in particular, for Statistics and Operations Research.
Fleing from imposition and taxation, you have taught your many disciples the need
to devote a significant part of their working time to conduct forefront research. This
vision and policy, which can seem to be obvious nowadays, was especially laudable
at the time you created the embryo of our current university department.

Beyond your professional stature, your stature as a human being has been even
greater. You have been permanently available to all your colleagues and students,
willing to help and advice with a warm attitude. In each scenario, you have been
always there to provide them with your calm, thoughtful and insightful opinion.

Pedro, you have been a good man, even in the discrepancy. In a rather hierarchi-
cal world, where disagreement can often entail a certain degree of punishment or
discrimination of the weakest members, you have never made use of your heading
position in such an unfair way.

So, in remembering you, we necessarily have to say that you have been the good
friend, the magnificent researcher and teacher, and the wonderful colleague we all
would like to be. The type of person all of us are delighted and honored to have found
along our lives. We only regret that our joint life has not lasted longer.

Oviedo, August 2017
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A Note on Generalized Convexity for Fuzzy
Mappings Through a Linear Ordering

Antonio Rufián-Lizana, Yurilev Chalco-Cano, Gabriel Ruiz-Garzón
and M. Dolores Jiménez-Gamero

Abstract In De Campos Ibáñez and González-Muñoz (Fuzzy Sets Syst 29:145–
154, 1989, [6]), Goestschel and Voxman (Fuzzy Sets Syst 18:31–43, 1986, [7]) the
authors considered a linear ordering on the space of fuzzy intervals. For each fuzzy
mapping (fuzzy interval-valued mapping) F , based on the aforementioned linear
ordering, they introduced a real-valued function TF on the domain of the fuzzy
mapping F . Recently,Chalco-Cano et al. (FuzzySets Syst 231:70–83, 2013, [4]) have
studiedbreak the relationship between the generalized Hukuhara differentiability of
a fuzzybreak mapping F (G-differentiability, for short) and the differentiability of
TF , and some properties of local-global minima. This paper studies such properties
for fuzzy mappings, using new concepts which generalize the existing ones.

1 Notation and Basic Definitions

A fuzzy set on R
n is a mapping u : Rn → [0, 1]. For each fuzzy set u and for any

α ∈ (0, 1],wedenote [u]α = {x ∈ R
n|u(x) ≥ α} itsα-level set.By supp uwedenote

the support of u, i.e. {x ∈ R
n| u(x) > 0}. By [u]0 we denote the closure of supp u.

LetFC denote the family of all fuzzy intervals, that is,FC denotes the family of all
compact and convex fuzzy sets on R. Obviously, [u]α is a nonempty compact and
convex subset of R (denoted

[
uα, uα

]
) for any u ∈ FC and α ∈ [0, 1].
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For fuzzy intervals u, v ∈ FC , represented by
[
uα, uα

]
and

[
vα, vα

]
, respectively,

and for any real number λ, we define the addition u + v and scalar multiplication λu
as follows:

(u + v)(x) = sup
y+z=x

min{u(y), v(z)} , (λu)(x) =
{
u(λ−1x), if λ �= 0,

0, if λ = 0.

It is well known that

[u + v]α = [
(u + v)α, (u + v)α

] = [
uα + vα , uα + vα

]
,

[λu]α = [
(λu)α, (λu)α

] = [
min{λuα, λuα},max{λuα, λuα}] ,

for every α ∈ [0, 1].
We denote by FC

C the family of all level-continuous fuzzy intervals: u ∈ FC
C if

the application α �→ [u]α is continuous, i.e. given ε > 0 and α0 ∈ (0, 1) there exists
δ > 0 such that |α − α0| < δ implies H([u]α, [u]α0) < ε, where H stands for the
Hausdorff distance.

It is well known that (FC
C , H) is a separable and complete metric space (see [9]).

Moreover, FC
C is a closed subspace of FC .

Many authors have studied different methods for ranking fuzzy intervals. Most of
these authors suggestmapping each fuzzy interval into the real line to define a ranking
function. In [6] a ranking function called the average index (AI) was introduced. It is
based on a function that selects a point of each level set, serving as a representative
of the level set, and then integrates them weighted by some nonnegative function,
which represents the subjective importance of each level set for the decision-maker.

Definition 1.1 ([6]) Let λ ∈ [0, 1], D a distribution function with support contained
in [0,1] and u ∈ FC . The average index of u is defined as

Vλ,D(u) =
∫ {

λuα + (1 − λ)uα

}
dD(α) ∈ R.

Although the definition in [6] is a bit more general, in the sense that instead of
λuα(x) + (1 − λ)uα(x) they integrate a general function f : [0, 1] → R, in their
paper they propose to choose f as in the definition given above. The parameter
λ allows to vary the α-cut representative and, following [6], it may be interpreted
as an optimism-pessimism degree, which must be selected by the decision-maker,
depending on the context. The other choice is the distribution function D, which has
the following interpretation: a D assigning a high probability to high values of α

gives more weight to very precise points, where by precise points we mean points
with a high degree of belonging; by contrast, a D assigning a high probability to low
values of α gives more weight to rather imprecise points.
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From now on, we will assume that λ and D are arbitrary but fixed. Now, by means
of Vλ,D(·) an order relation on FC is built as follows:

Definition 1.2 Let u, v ∈ FC . Then, u precedes v (u � v) if Vλ,D(u) ≤ Vλ,D(v);
u strictly precedes v (u ≺ v) if Vλ,D(u) < Vλ,D(v); u is indifferent to v (u 
 v) if
Vλ,D(u) = Vλ,D(v).

Note that the order relation � is reflexive and transitive. Moreover, any two ele-
ments of FC are comparable under the ordering �. At this point it is interesting
to note that the ordering considered in [4, 7] is just a particular case of the one in
Definition 1.2 for λ = 0.5 and D the distribution function of a beta distribution with
parameters 2 and 1, where a beta distribution with parameters a and b, for some
a, b > 0, has probability density function

dβ(a,b)(x) = Γ (a + b)

Γ (a)Γ (b)
xa−1(1 − x)b−1, x ∈ [0, 1],

Γ (z) denoting the gamma function. This choice for F assigns more weight to very
precise points than to imprecise points because

∫

[0,ε]
dDβ(a,b) = ε2 < 1 − ε2 =

∫

[1−ε,1]
dDβ(a,b), ∀ε ∈ [0, 1/√2).

Example 1.1 Let us consider a trapezoidal fuzzy number u with membership func-
tion

u(x) =

⎧
⎪⎨

⎪⎩

(x − a)/(b − a) if a ≤ x < b,

1 if b ≤ x ≤ c,

(x − d)/(c − d) if c < x ≤ d.

Theα-level sets are [uα, uα] = [a + α(b − a), d + α(c − d)]. Suppose thatD(α) =
αθ , 0 < α < 1, for some θ > 0, which contains as a particular case the distribution
function considered in [4, 7, 11] for θ = 2. We have that

Vλ,D(u) =
∫

[λa + (1 − λ)d + α {λ(b − a) + (1 − λ)(c − d)}] θαθ−1dα

= λa + (1 − λ)d + θ

θ + 1
{λ(b − a) + (1 − λ)(c − d)} .

Therefore, Vλ,D(u) is just the representative of the αD-level for αD = θ/(θ + 1).
This is also true for any distribution function F , for αD = ∫

αdD(α) ∈ [0, 1].
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2 Differentiable Fuzzy Mappings

Henceforth, K denotes an open subset of Rn and T denotes an open interval in
R. A mapping F : K → FC is said to be a fuzzy mapping. For each α ∈ [0, 1],
associated with F , we define the family of interval-valued functions Fα : K → KC ,
where KC denotes the space of all compact intervals, given by Fα(x) = [F(x)]α .
For any α ∈ [0, 1], we denote

Fα(x) =
[
f

α
(x), f α(x)

]
.

Here, for each α ∈ [0, 1], the endpoint functions f
α
, f α : K → R are called upper

and lower functions of F , respectively.
Bede and Stefanani [1] introduced the following definition of derivative for fuzzy

mappings.

Definition 2.1 ([1]) Let F : T → FC be a fuzzy mapping, we say that F is general-
ized Hukuhara differentiable (gH -differentiable) at t0 ∈ T if there exists an element
F ′(t0) ∈ FC such that (using the usual Hausdorff metric):

lim
h→0

F(t0 + h) −gH F(t0)

h
= F ′(t0).

We say that F is gH -differentiable on T if F is gH -differentiable at each point
t0 ∈ T .

Next example shows that a fuzzy mapping F can be differentiable, but their upper
and lower functions are not.

Example 2.1 Let us consider the fuzzy mapping F : R → FC defined by F(t) =
C · t , whereC is a fuzzy interval definedvia itsα-levels by [C]α = [1 + α, 2(3 − α)].
Then

Fα(t) =
⎧
⎨

⎩

[(1 + α)t, 2(3 − α)t] if t ≥ 0

[2(3 − α)t, (1 + α)t] if t < 0
.

We can see that the endpoint functions f
α
and f α are not differentiable at t = 0.

However F is gH -differentiable on R and F
′
(t) = C .

We have the following result on the connection between the differentiability of F
and its endpoint functions f

α
and f α .

Theorem 2.1 ([5]) Let F : T → FC be a fuzzy mapping. F is gH-differentiable at
t0 ∈ T , if and only if, we have the following cases:

(a) f
α
and f α are differentiable at x0 and
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[F ′
(x0)]α =

[
min

{
( f

α
)

′
(x0), ( f α)

′
(x0)

}
,max

{
( f

α
)

′
(x0), ( f α)

′
(x0)

}]
;

(b) ( f
α
)′−(x0), ( f

α
)′+(x0), ( f α)′−(x0) and ( f α)′+(x0) exist and satisfy ( f

α
)′−(x0) =

( f α)′+(x0) and ( f
α
)′+(x0) = ( f α)′−(x0). Moreover

[F ′
(t0)]α =

[
min

{
( f

α
)

′
−(x0), ( f α)

′
−(x0)

}
,max

{
( f

α
)

′
−(x0), ( f α)

′
−(x0)

}]

=
[
min

{
( f

α
)

′
+(x0), ( f α)

′
+(x0)

}
,max

{
( f

α
)

′
+(x0), ( f α)

′
+(x0)

}]
.

The above theorem leads us to define a stronger concept of derivate based on the
differentiability of the endpoint functions.

Definition 2.2 Let F : T → FC be a fuzzy mapping. We say that F is level-wise
gH -differentiable if the extreme functions f

α
and f α are differentiable for all

α ∈ [0, 1].
Nextwe give an examplewhere F is gH -differentiable at t0, butλ f

α
+ (1 − λ) f α

is not a differentiable function at t0. This fact happens when F is gH -differentiable
at t0 and part (b) from Theorem 2.1 holds.

Example 2.2 Let us consider the fuzzy mapping F : R → FC in Example2.1

The endpoint functions f
α
and f α are not differentiable at t = 0. However F is

gH -differentiable on R and F
′
(t) = C . In this case, F is gH -differentiable and

part (b) from Theorem 2.1 holds. Notice that

λ f
α
(t) + (1 − λ) f α(t) =

⎧
⎨

⎩

{λ(1 + α) + (1 − λ)2(3 − α)}t if t ≥ 0

{λ2(3 − α) + (1 − λ)(1 + α)}t if t ≥ 0
.

It is clear that λ f
α
(t) + (1 − λ) f α(t) is not differentiable at t = 0 ∀λ �= 0.5.

Next we define the partial derivative for a fuzzy mapping F defined on K ⊂ R
n ,

i.e., F(x) = F(x1, . . . , xn) ∈ FC for each x = (x1, . . . , xn) ∈ K . With this aim,
given a fuzzy mapping F : K → FC , we denote the fuzzy interval F(x) by

F(x) =
[
f (x), f (x)

]
and, for each α ∈ [0, 1],

Fα(x) =
[
f

α
(x), f α(x)

]
=

[
f (α, x), f (α, x)

]
.

Definition 2.3 Let F be a fuzzymappingdefinedon K and let x0 = (x (0)
1 , . . . , x (0)

n )∈K
be fixed. Consider the fuzzy mapping hi (xi ) = F(x (0)

1 , . . . , x (0)
i−1, xi , x

(0)
i+1, . . . ,

x (0)
n ). If hi is gH -differentiable at x (0)

i , then we say that F has i th partial
gH -derivative at x0 (denoted by (∂F/∂xi )(x0)) and (∂F/∂xi )(x0) = (hi )′(x (0)

i ).
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Definition 2.4 Let F be a fuzzymappingdefinedon K and let x0 = (x (0)
1 , . . . , x (0)

n )∈K
be fixed. We say that F is gH -differentiable at x0 if all the partial gH -derivatives
(∂F/∂x1)(x0),…, (∂F/∂xn)(x0) exist in some neighborhood of x0 and they are con-
tinuous at x0.

Some authors considered the differentiability in the sense of Seikkala [10] which
has the same property of monotonicity of length of F as the H -differentiability.
Nevertheless, this concept of differentiability is very restrictive (for more details see
[2–4]).

3 Ranking Functions Associated with Fuzzy Mappings

Motivated by Goetschel and Voxman [7], we give the following definition of an
average index function associatedwith a fuzzymapping,which extendsDefinition 3.6
in [7].

Definition 3.1 Let λ ∈ [0, 1] and let D be a distribution function with support con-
tained in [0, 1] fixed. For each fuzzy mapping F : K → FC , we define the ranking
function T λ,D

F : K → R associated with F by

T λ,D
F (x) = Vλ,D(F(x)).

The next theorem shows the connection between the gH -differentiability of F
and the differentiability of the ranking function T λ,D

F .
With this aim, we introduce the following notation: given a fuzzy mapping

F : K → FC and λ ∈ [0, 1] we define the function f λ : [0, 1] × K → R by

f λ(α, x) = λ f (α, x) + (1 − λ) f (α, x).

Theorem 3.1 Let K ⊂ R
n be an open set. If F : K → FC

C is gH-differentiable
at x ∈ K, α �→ ∂

∂xi
f λ(α, x) exists, for almost all (D) α ∈ [0, 1], there exists

θi : [0, 1] → R such that
∣∣∣ ∂
∂xi

f λ(α, x)
∣∣∣ ≤ θi (α), for almost all (D) α ∈ [0, 1] and

∫
θi (α)dD(α) < ∞, i = 1, . . . , n, then T λ,D

F : K → R is differentiable at x and

∂

∂xi
T λ,D(x)
F =

∫
∂

∂xi
f λ(α, x)dD(α),

i = 1, . . . , n.
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Example 3.1 Let F : R2+ → FC
C be a fuzzy mapping defined by

F(x1, x2) =

⎧
⎪⎪⎨

⎪⎪⎩

2(x21+x22)−z

x21+x22
if x21 + x22 ≤ z ≤ 2

(
x21 + x22

)

1 if −2x1x2 ≤ z ≤ x21 + x22
0 if z /∈ [−2x1x2, 2

(
x21 + x22

)]

or equivalently

F(x1, x2) = (−2,−2, 0, 0)x1x2 + (0, 0, 2)x21 + (0, 0, 2)x22 .

Then, for each α ∈ [0, 1] we have that

Fα(x1, x2) = [−2x1x2, (2 − α)x21 + (2 − α)x22
]
.

Since, for each α ∈ [0, 1], the endpoint functions f
α
and f α are differentiable func-

tions then F is level-wise gH -differentiable. Moreover,

∂

∂x1

(
λ f

α
+ (1 − λ) f α

)
(x1, x2) = −2λx2 + 2(1 − λ)(2 − α)x1,

∂

∂x2

(
λ f

α
+ (1 − λ) f α

)
(x1, x2) = −2λx1 + 2(1 − λ)(2 − α)x2.

Note that 0 ≤ μD = ∫
αdD(α) ≤ ∫

dD(α) = 1 < ∞. Thus, from Theorem 3.1,
T λ,D
F is differentiable and

∂T λ,D
F

∂x1
(x1, x2) = −2λx2 + 2(1 − λ)(2 − μD)x1,

∂T λ,D
F

∂x1
(x1, x2) = −2λx1 + 2(1 − λ)(2 − μD)x2.

Theorem 3.2 Let F : K ⊂ R
n → FC be a fuzzy mapping defined by

F(x) = g(x) · C,

where g : K → R is a function and C = [c, c] is a fuzzy interval. Let μ1 =∫ {
λc(α) + (1 − λ)c(α)

}
dD(α) and μ2 = ∫ {

c(α) − c(α)
}
dD(α). We have the

following cases:

(a) If λ = 0.5, g is differentiable at x iff T λ,D
F is differentiable at x and

∂

∂xi
T λ,D
F (x) = ∂

∂xi
g(x)μ1.
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(b) If either λ �= 0.5 and g(x) �= 0 or λ �= 0.5, g(x) = 0 and μ2 = 0, g is differen-
tiable at x iff T λ,D

F is differentiable at x and

∂

∂xi
T λ,D
F (x) = ∂

∂xi
g(x){θ1 + I (g(x) < 0)(1 − 2λ)θ2}

where I (g(x) < 0) = 1 if g(x) < 0 and I (g(x) < 0) = 0 otherwise.

Proof Note that, for each α ∈ [0, 1] we have

λ f
α
(x) + (1 − λ) f α(x)

= λmin
{
g(x)c(α), c(α)g(x)

} + (1 − λ)max
{
g(x)c(α), c(α)g(x)

}

= g(x)

{
λc(α) + (1 − λ)c(α), if g(x) ≥ 0

λc(α) + (1 − λ)c(α), if g(x) < 0
.

Thus, T λ,D
F (x) = g(x) {θ1 + I (g(x) < 0)(1 − 2λ)θ2}. The result clearly follows

from this expression. ��

4 Generalized Convex Fuzzy Mappings and Fuzzy
Optimization

Following the concept of solutions of fuzzy optimization problems via ranking func-
tion (see [11]), we present the following definition of fuzzy optimization.

Definition 4.1 Let K ⊂ R
n , λ ∈ [0, 1] and let D be a distribution function with

support contained in [0, 1]. An element x∗ ∈ K is called minimum point of a fuzzy
mapping F if and only if T λ,D

F (x∗) ≤ T λ,D
F (x) for all x ∈ K .

In contrast to [11], which define a stationary point for F by means of the gradient
of F , next we give a stationary point concept for F through the ranking function
T λ,D
F (x).

Definition 4.2 Let K ⊂ R
n , λ ∈ [0, 1] and D be a distribution functionwith support

contained in [0, 1]. We say that x∗ ∈ K is a stationary point for a gH -differentiable
fuzzy mapping F : K → FC if and only if the gradient ∇T λ,D

F (x∗) = 0.

Concepts of convexity and generalized convexity for fuzzy mappings based on
ranking valued function were introduced in [11]. Those concepts are equivalent to
convexity of T 1/2,D

F with D = Dβ(2,1) (for more details see [4]). More precisely.

Theorem 4.1 ([4]) Let F : K → FC be a fuzzy mapping. Then, F is convex (prein-
vex, prequasiinvex) if and only if T 1/2,D

F is convex (preinvex, prequasiinvex, respec-
tively).
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Inspired by Theorem 4.1 we give the following definition.

Definition 4.3 Let K ⊂ R
n , λ ∈ [0, 1] and let D be a distribution function with

support contained in [0, 1]. Let F : K → FC be a fuzzy mapping and let λ ∈ [0, 1]
be fixed. If T λ,D

F is differentiable, then F is said to be invex if T λ,D
F is an invex

function, i.e. there exists a function η : K × K → K such that for x, y ∈ K

T λ,D
F (x) − T λ,D

F (y) ≥ ∇T λ,D
F (y)η(x, y).

The following result characterizes the invexity of a fuzzy mapping F by using the
stationary point concept in Definition 4.2.

Theorem 4.2 Let F : K → FC be a fuzzy mapping. Then, F is invex if and only if
every stationary point is a minimum point of F.

Proof Since T λ,D
F : K → R is a real-valued function and it is invex, then from The-

orem 2.1 in [8] we have the result. ��
Next we study the convexity properties of the ranking function T λ,D

F by means of
the convexity of the extreme functions of the fuzzy mapping F .

Theorem 4.3 Suppose that assumptions in Theorem 3.1 hold. If x∗ ∈ K is a sta-
tionary point for all α ∈ (0, 1), then x∗ is a stationary point for F.

Proof Suppose that x∗ ∈ K is a stationary point for x �→ f λ(α, x). Taking into
account Theorem 3.1 we have

∇T λ,D
F (x∗) = ∇

(∫
f λ(α, x∗)dD(α)

)
=

∫
∇ f λ(α, x∗)dD(α) = 0.

Therefore x∗ is a stationary point for F . ��
Theorem 4.4 Let F : K → FC be a fuzzy mapping such that x �→ f λ(α, x) is a
convex function for all α ∈ [0, 1]. Then T λ,D

F is a convex mapping.

Proof Since x �→ f λ(α, x) is a convex function for all α ∈ [0, 1], then, for all
γ ∈ [0, 1], we have

T λ,D
F (α, γ x + (1 − γ )y)

=
∫

f λ(α, γ x + (1 − γ )y)dD(α)

≤ γ

∫
f λ(α, x)dD(α) + (1 − γ )

∫
f λ(α, y)dD(α)

= γ T λ,D
F (x) + (1 − γ )T λ,D

F (y).

Therefore T λ,D
F is convex. ��
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As a consequence of Theorem 4.4 we have the following.

Corollary 4.1 Let F : K → FC be a fuzzymapping such that the endpoint functions
f (α, x) and f (α, x) are convex functions for all α ∈ [0, 1]. Then T λ,D

F is a convex
fuzzy mapping.

For the case of invexity we obtain the following.

Corollary 4.2 Let F : K → FC
C be a gH-differentiable fuzzy mapping such that:

(a) α �→ ∂
∂xi

f λ(α, x) is continuous for all x ∈ K and i = 1, . . . , n.

(b) There exists a vector function η such that x �→ f (α, x) and x �→ f (α, x) are
invex respect to same η for all α ∈ [0, 1].

Then, T λ,D
F is an invex fuzzy mapping respect to η.

5 Conclusions

This paper presents new and more general alternatives to study the optimization for
fuzzy mappings, using its ranking function. We achieve the characterization of the
optimum through the concept of stationary point.

This paper is full of theorems, definitions and corollaries, but it is also full of
affection and fondness for Pedro.
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Scale Equivariant Alternative for Fuzzy
M-Estimators of Location

Beatriz Sinova

Abstract The Aumann-type mean fulfills very convenient properties as a location
measure of a random fuzzy number, but its high sensitivity to outliers makes other
alternatives, such as fuzzy M-estimators of location, more suitable to describe con-
taminated data sets. Under some conditions, fuzzy M-estimators fulfill properties
such as the strong consistency and the translation equivariance. However, the scale
equivariance does not hold in general and the choice of the measurement units may
have too much influence on the results. A first solution to solve this was the selection
of the tuning parameters involved in the most used loss functions (Huber’s, Tukey’s
and Hampel’s) in terms of the distribution of distances of the observed data to the
considered initial location estimate. Now a second solution is proposed including a
robust estimate of the unknown dispersion in the definition of fuzzy M-estimators of
location. The empirical comparison of both proposals shows that the latter solution
may be more suitable for dealing with extreme data, and therefore it could better
identify which observations should be considered outliers indeed.

1 Introduction

Fuzzy numbers can model experiments characterized by an underlying imprecision,
such as ratings, opinions or perceptions (see e.g. De la Rosa de Sáa et al. [3]).
Due to their interest, statistical methodology is being adapted to analyze this kind
of data. With respect to central tendency measures, the best-known one is the
Aumann-type mean [8], which generalizes the notion of mean of a real-valued ran-
dom variable. Even when the Aumann-type mean fulfills very good statistical and
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probabilistic properties, outliers have toomuch impact on its estimate. For that reason,
M-estimators of location have been recently defined in the fuzzy number-valued case
by Sinova et al. [10] and their robustness has been shown. This is not the only robust
location measure for fuzzy numbers proposed in the literature (we could think, for
example, about some extensions of the concept of median like the ones introduced
in [9, 11]), but their performance seems to be the best in general. Although the
empirical study addressed in [10] concludes that there is no uniformly best location
estimator, it highlights the good behavior of fuzzy M-estimators of location.

Scale equivariance, on the contrary, does not hold for fuzzy M-estimators of
location unless the loss function involved in their definition is a power function.
This is an important drawback, since it means that measurement units could have
a lot of impact on the results. A first solution was provided in [10] and consists in
choosing the tuning parameters in the used loss functions (Huber’s and Hampel’s,
and it could be also applied to other functions such as Tukey’s) taking into account
the distribution of distances from the observed data to the initial estimate considered
for the computation of the corresponding M-estimator. Therefore, the loss function
is adapted to the magnitude of the data we are working with.

The aim of this paper is to present an alternative to solve the lack of scale equivari-
ance. In the classical settings, where the same problem has had to be dealt with, a
robust estimate of the dispersion is introduced in the definition of the M-estimator of
location to make it scale equivariant. Recently, a robust estimate of the dispersion of
a random fuzzy number, the median distance deviation about the median, has been
analyzed (see [4]). The idea is, in consequence, to use a similar median distance devi-
ation about the median to extend M-estimators of location with unknown dispersion
to the fuzzy number-valued settings.

The rest of the paper is structured as follows. The preliminaries on the space of
fuzzy numbers and fuzzy M-estimators of location are recalled in Sect. 2. Section3
presents the concept of fuzzyM-estimators of location with unknown dispersion and
the study of their scale equivariance, whereas their empirical comparison with the
previously defined fuzzy M-estimators of location is presented in Sect. 4. Finally,
some concluding remarks are provided in Sect. 5.

2 Preliminaries on the Space of Fuzzy Numbers and Fuzzy
M-Estimation of Location

In this section, the most important characteristics of the space of fuzzy numbers will
be recalled, as well as the adaptation of M-estimators of location to the fuzzy-valued
settings.

Fc(R) will denote the class of (bounded) fuzzy numbers, which are mappings
˜U : R → [0, 1] such that their α-levels
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˜Uα =
{ {x ∈ R : ˜U (x) ≥ α} if α ∈ (0, 1]
cl{x ∈ R : ˜U (x) > 0} if α = 0,

are nonempty compact intervals. It is possible to interpret ˜U (x) as the ‘degree of
compatibility’ of x with ˜U (or ‘degree of truth’ of the assertion “ x is ˜U”).

Fuzzy data are very useful to model those phenomena such as human perceptions
or valuations which present an underlying imprecision. Indeed, their α-levels incor-
porate a certain gradualness that does not appear when dealing with interval-valued
data.

Concerning the mathematical operations among these kinds of data, the sum and
the product are defined by means of Zadeh’s extension principle, which extends
level-wise the usual interval arithmetic.

Definition 2.1 Let ˜U , ˜V ∈ Fc(R). The sum of ˜U and ˜V is defined as the fuzzy
number ˜U + ˜V ∈ Fc(R) given for each α ∈ [0, 1] by

(˜U + ˜V )α = Minkowski sum of ˜Uα and ˜Vα = [

inf ˜Uα + inf ˜Vα, sup ˜Uα + sup ˜Vα

]

.

Let ˜U ∈ Fc(R) and γ ∈ R. The product of ˜U by the scalar γ is defined as the
fuzzy number γ · ˜U ∈ Fc(R) given for each α ∈ [0, 1] by

(γ · ˜U )α = γ · ˜Uα =
⎧

⎨

⎩

[

γ · inf ˜Uα, γ · sup ˜Uα

]

if γ ≥ 0,

[

γ · sup ˜Uα, γ · inf ˜Uα

]

otherwise.

Now the family of distances between fuzzy numbers introduced byMontenegro et
al. [7], which extends the one proposed by Bertoluzza et al. [1], will be recalled. Note
that its use is very convenient due to the lack of linearity in the space (Fc(R),+, ·)
as explained in e.g. [2].

Definition 2.2 Let θ ∈ (0,+∞) and let ϕ be an absolutely continuous probabil-
ity measure on ([0, 1],B[0,1]) with the mass function being positive on (0, 1).
The mid/spr-based L2 distance between any two fuzzy numbers ˜U , ˜V ∈ Fc(R)

is defined as

Dϕ
θ (˜U , ˜V ) =

[ ∫

[0,1]

{

(

mid ˜Uα − mid ˜Vα

)2 + θ
(

spr ˜Uα − spr ˜Vα

)2
}

dϕ(α)

]1/2

,

where mid ˜Uα = (inf ˜Uα + sup ˜Uα)/2 and spr ˜Uα = (sup ˜Uα − inf ˜Uα)/2.

The role of θ and ϕ is not stochastic, but to weigh the importance of the deviation
‘in shape’ in contrast to the deviation ‘in center’, and the relevance of the different
α-levels, respectively. It can be proven that the usual choice 1/3 makes all the points
in the intervals (once fixed any α) equally important.

M-estimators of location will be defined in terms of the mid/spr-based L2 distance
since the space (Fc(R), Dϕ

θ ) can be isometrically embedded into a convex cone of a
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certainHilbert space bymeans of the so-called support function (inPuri andRalescu’s
sense [8]).

The notion of random fuzzy number in Puri and Ralescu’s sense [8] mathemati-
cally formalizes the random mechanism generating fuzzy data.

Definition 2.3 Let (Ω,A , P) be a probability space modeling a random experi-
ment.AmappingX : Ω → Fc(R) is said to be a random fuzzynumber associated
with the random experiment if, and only if, for each α ∈ [0, 1] the interval-valued
mappingXα (whereXα(ω) = (

X (ω)
)

α
for allω ∈ Ω) is a randomcompact interval

or, equivalently, the real-valued functions infXα and supXα are random variables.

A random fuzzy number is Borel-measurable with respect to the Borel σ -field
associated with the Dϕ

θ distance, so the induced distribution can be trivially induced.
In order to summarize the central tendency of the distribution of a random fuzzy
number, one of the best-known measures is the Aumann-type mean, an extension of
the concept ofmean for real-valued random variables, which inherits very convenient
statistical and probabilistic properties, but also the high sensitivity to outliers. For this
reason, other location measures for fuzzy-valued data with a more robust behavior
have already been proposed in the literature. In particular, the concept of median has
been extended to the fuzzy number-valued settings as follows.

Definition 2.4 Let X be a random fuzzy number and (X1, . . . ,Xn) be a sim-
ple random sample from X . The (sample) 1-norm median is the fuzzy number
̂

˜Me(X1, . . . ,Xn), for short ̂

˜Me, such that for each α ∈ [0, 1] it coincides with

[Me{inf (X1)α, . . . , inf (Xn)α},Me{sup (X1)α, . . . , sup (Xn)α}],

with Me denoting the median of a real-valued random variable. In case any of the
medians is non-unique, the convention of considering the midpoint of the interval of
possible medians is used.

Among the robust location measures for fuzzy-valued data, the performance of
fuzzy M-estimators of location is certainly remarkable, achieving the best results in
many of the situations studied in [10].

Definition 2.5 Let (Ω,A , P) be a probability space and X : Ω → Fc(R) be an
associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple random
sample from X . Then, the (sample) fuzzy M-estimator of location is the fuzzy
number-valued statistic ̂g̃M(X1, . . . ,Xn), given by

̂g̃M(X1, . . . ,Xn) = arg min
˜U∈Fc(R)

1

n

n
∑

i=1

ρ(Dϕ
θ (Xi , ˜U )),

if it exists, where the loss function ρ : R
+ → R is assumed to be continuous and

non-decreasing and to vanish at 0.
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In [10, 12] it has been proven that, evenwhen theymay fulfill very good properties,
fuzzyM-estimators of location are not scale equivariant unless ρ is a power function,
which is not a possible choice if we are looking for robustness. In [10] the tuning
parameters involved in some well-known loss functions (Huber’s and Hampel’s) are
selecteddependingon thedistributionof distances from theobserveddata to the initial
estimate considered for the computation of theM-estimator to avoid the bad influence
of the measurement units. A second alternative is introduced in Sect. 3 of this paper
by extending the classical M-estimators of location with unknown dispersion, which
are based on a robust estimate of the dispersion. The median distance deviation about
the median of a random fuzzy number has been defined in [4] using the ρ1 distance,
which is an L1 metric based on the infimum/supremum characterization of fuzzy
numbers. However, a new alternative is now considered, by replacing the ρ1 distance
by the Dϕ

θ metric, since fuzzy M-estimators of location are defined in terms of the
latter (due to the isometrical embedding mentioned above).

Definition 2.6 Let X be a random fuzzy number and (X1, . . . ,Xn) be a simple
random sample fromX . The (sample)median Dϕ

θ −distance deviation about the
1-norm median (MDD) is the following real number

σ̂
ϕ
θ (X1, . . . ,Xn) = Me

{

Dϕ
θ (X1,

̂

˜Me), . . . , Dϕ
θ (Xn,

̂

˜Me)
}

,

applying the same convention as in Definition 2.4.

It can be proven that the median Dϕ
θ -distance deviation about the 1-norm median

satisfies the scale equivariance property.

Proposition 2.1 Let (Ω,A , P) be a probability space andX : Ω → Fc(R) be an
associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple random
sample from X . The median Dϕ

θ -distance deviation about the 1-norm median is
scale equivariant, that is, given any γ ∈ R,

σ̂
ϕ
θ (γ · X1, . . . , γ · Xn) = |γ | · σ̂

ϕ
θ (X1, . . . ,Xn).

Proof First, due to the properties of the 1-norm median (see [9]),

̂

˜Me(γ · X1, . . . , γ · Xn) = γ · ̂

˜Me(X1, . . . ,Xn).

Therefore, for all i ∈ {1, . . . , n},

Dϕ
θ (γ · Xi ,

̂

˜Me(γ · X1, . . . , γ · Xn)) = |γ | · Dϕ
θ (Xi ,

̂

˜Me(X1, . . . ,Xn))

since mid (γ · ˜U )α = γ · mid ˜Uα and spr (γ · ˜U )α = |γ | · spr ˜Uα for all ˜U ∈ Fc(R)

and all α ∈ [0, 1]. Finally,
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σ̂
ϕ
θ (γ · X1, . . . , γ · Xn)

= Me
{

Dϕ
θ (γ · X1,

̂

˜Me(γ ·(X1, . . . ,Xn))), . . . , D
ϕ
θ (γ · Xn,

̂

˜Me(γ ·(X1, . . . ,Xn)))
}

= Me
{

|γ | · Dϕ
θ (X1,

̂

˜Me(X1, . . . ,Xn)), . . . , |γ | · Dϕ
θ (Xn,

̂

˜Me(X1, . . . ,Xn))
}

= |γ | · σ̂
ϕ
θ (X1, . . . ,Xn). �

3 Location M-Estimators with Unknown Dispersion
for Random Fuzzy Numbers

Due to the lack of scale equivariance of fuzzy M-estimators of location, the classical
M-estimators of location with unknown dispersion will be now extended to the fuzzy
number-valued case. The alternative of simultaneously estimating both the location
and scale will be not considered in this paper, since this procedure is already not
satisfactory in the classical settings from the robustness point of view and also due
to the numerical inconvenience of solving the system of two non-linear equations.

Definition 3.1 Let (Ω,A , P) be a probability space and X : Ω → Fc(R) be an
associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple random
sample fromX . Then, the (sample) fuzzy MDD-basedM-estimator of location is

the fuzzy number-valued statistic ̂g̃M
MDD(X1, . . . ,Xn), given by

̂g̃M
MDD(X1, . . . ,Xn) = arg min

˜U∈Fc(R)

1

n

n
∑

i=1

ρ

(

Dϕ
θ (Xi , ˜U )

σ̂
ϕ
θ (X1, . . . ,Xn)

)

,

if it exists, where the loss function ρ : R
+ → R is assumed to be continuous and

non-decreasing and to vanish at 0.

It can be shown that the fuzzyMDD-basedM-estimator of location is indeed scale
equivariant as it happens in the real-valued settings.

Proposition 3.1 Let (Ω,A , P) be a probability space andX : Ω → Fc(R) be an
associated random fuzzy number. Moreover, let (X1, . . . ,Xn) be a simple random
sample fromX . The fuzzy MDD-basedM-estimator of location is scale equivariant,
that is, given any γ ∈ R,

̂g̃M
MDD(γ · X1, . . . , γ · Xn) = |γ | · ̂g̃M

MDD(X1, . . . ,Xn).
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4 Simulation Study

This section aims to empirically compare the two alternatives proposed to extend
M-estimators of location to the fuzzy-valued case and avoid any problem with the
measurement units. First, the tuning parameters involved in the most used loss func-
tions, such as Huber’s, Tukey’s or Hampel’s could be selected in terms of the distri-
bution of distances of the observed data to the considered initial location estimate as
in [10]. Secondly, fuzzyMDD-basedM-estimators of location are a scale equivariant
measure that has been introduced in Sect. 3.

Among the usual loss functions, we will consider the Hampel loss function since
its suitability was shown in [10] for many of the studied cases. The Hampel loss
function [5] corresponds to

ρa,b,c(x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x2/2 if 0 ≤ x < a,

a(x − a/2) if a ≤ x < b,

a(x − c)2

2(b − c)
+ a(b + c − a)

2
if b ≤ x < c,

a(b + c − a)

2
if c ≤ x,

where the nonnegative parameters a < b < c allow us to control the degree of sup-
pression of large errors. The smaller their values, the higher this degree. Note that
apart from not being convex, this function can cope with extreme outliers, since
observations far from the center (x ≥ c) all contribute equally to the loss.

Recall that the first alternative consists of fuzzyM-estimators of location carefully
choosing the values of the tuning parameters. Following Kim and Scott [6], we will
take a, b and c as the median, 75th and 85th percentiles of the distances between the
observations and an initial estimate, which throughout this paper will be the 1-norm
median.

100 trapezoidal fuzzy data are generated according to four real-valued ran-
dom variables: X = Tra(X1 − X2 − X3, X1 − X2, X1 + X2, X1 + X2 + X4), so
infX0 = X1 − X2 − X3, infX1 = X1 − X2, supX1 = X1 + X2 and supX0 =
X1 + X2 + X4.

A contamination proportion equal to cp ∈ {0, 0.1, 0.2, 0.4} is introduced in each
sample. Any kind of outlier is allowed in these simulation studies: all the random
variables detailed above (X1, X2, X3 and X4) can follow the corresponding distri-
butions for the contaminated observations or just some (at least one) of them. This
means that we deal with outliers in location, outliers in shape and/or outliers in
both location and shape. A second parameter, CD ∈ {0, 1, 5, 10, 100}, determines
the distance between the distribution of the regular and contaminated observations.

In CASE 1 the variables Xi are independent. In particular,

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ χ2
1 for the regular observations.
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• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ χ2
4 + CD for the contaminated observa-

tions.

In CASE 2 dependence between the variables Xi is introduced as follows:

• X1 ∼ N (0, 1) and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√

χ2
1 for the non-contaminated

subsample (with χ2
1 independent of X1),

• X1 ∼ N (0, 3) + CD and X2, X3, X4 ∼ 1/(X2
1 + 1)2 +

√

χ2
1 + CD for the con-

taminated subsample (with χ2
1 independent of X1).

Both the fuzzy M-estimate of location and the fuzzy MDD-based M-estimate of
location using the Hampel loss function are computed for each contaminated sample
using an algorithm as in [10]. Their population values are approximated by Monte
Carlo with 10,000 iterations and the performance of both proposals is compared in
terms of the corresponding mean square error also approximated by Monte Carlo
with 1000 iterations.

4.1 Results

Table1 contains the results of the comparative analysis. In order to understand these
results better, Fig. 4 shows some samples generated using the procedure explained

Table 1 Empirical comparison of the fuzzy M-estimate of location (Hampel) and the fuzzy MDD-
based M-estimate of location (MDD-H) using the Hampel loss function

cp CD Case 1 Case 2

Hampel MDD-H Hampel MDD-H

0 0 0.03157 0.02077 0.39544 0.11508

0.1 0 0.03242 0.02790 0.38452 0.11492

0.1 1 0.03272 0.03460 0.40867 0.13536

0.1 5 0.03079 0.04271 0.36526 0.18030

0.1 10 0.02903 0.02995 0.35188 0.14413

0.1 100 0.02977 0.02258 0.35691 0.11714

0.2 0 0.04257 0.05940 0.37045 0.11383

0.2 1 0.04595 0.08613 0.43351 0.15930

0.2 5 0.04685 0.16308 0.36094 0.33573

0.2 10 0.04444 0.08832 0.32239 0.23062

0.2 100 0.04649 0.02491 0.31370 0.11416

0.4 0 0.10742 0.20288 0.34975 0.11612

0.4 1 0.15262 0.37964 0.50878 0.23767

0.4 5 0.35651 1.82037 0.69800 1.55067

0.4 10 0.54289 3.21184 0.87081 2.37917

0.4 100 0.70982 0.03470 0.97474 0.11623
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Fig. 1 A sample of generated fuzzy numbers from CASE 1 (left column) and CASE 2 (right
column) is comparedwhen (cp,CD) is chosen to be (0.1, 5) –top–, (0.4, 5) –middle– and (0.4, 100)
–bottom–

in this section with some illustrative choices of the contamination parameters cp
and CD .

It can be concluded that

• there is no uniformly best estimator, since both the fuzzy M-estimator of location
and the fuzzy MDD-based M-estimator of location can provide us with the most
convenient estimate depending on the analyzed situation.
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• The distribution seems to have more influence than the amount of contamination
on the choice of the best estimator.

• The larger the difference between the outlier and the non-contaminated data, the
more the fuzzy MDD-based M-estimate of location seems to improve the results
of the fuzzy M-estimate of location, since even after scaling the observations, the
difference between the outlier and the rest of data is still clear and the Hampel loss
function can conveniently cope with it. This can be clearly noticed when cp = 0.4
and CD = 100 (graphics at the bottom in Fig. 4). Due to the chosen distributions,
the opposite is shownwhen cp = 0.4 andCD = 5 (graphics at themiddle in Fig. 4),
since outliers do not lie so far away from the non-contaminated part of the sample
in both CASE 1 and CASE 2 and adjusting the tuning parameters in the Hampel
loss function seems to be a better option than scaling all the observations (and
therefore shortening the distances between outliers and the rest of data evenmore).
However, when the contamination proportion cp decreases to 0.1 and CD remains
equal to 5 (graphics at the top in Fig. 4), it can be seen that CASES 1 and 2 are not
so similar as in the previous situations, and the larger distance between outliers
and non-contaminated data in CASE 2 than in CASE 1 makes the fuzzy MDD-
based M-estimator of location improve the behaviour of the fuzzy M-estimator of
location only in CASE 2.

5 Concluding Remarks

In this paper, M-estimators of location with unknown dispersion have been extended
to the fuzzy number-valued settings in order to provide a scale equivariant alternative
to fuzzy M-estimators of location. They have been defined in terms of the median
(Dϕ

θ )-distance deviation about the 1-norm median. The two alternatives have been
empirically compared and, even when there is no uniformly best estimator, it seems
that the fuzzy MDD-based M-estimator of location may provide us with the best
results when the distance between the outliers and the ‘standard’ data is large enough.
Therefore, it could better identify which observations should be considered outliers
indeed since it uses the information of the global dispersion. However, it would be
advisable to complete this simulation study in the future to deal with other kinds of
distributions and check whether these preliminary conclusions would remain.
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Measures and Vagueness

Alejandro Sobrino

Abstract In this paper we will discuss some aspects concerning the application of
the concept of measure to quantitative and qualitative or vague properties, highlight-
ing the limitations caused by the high order vagueness and pointing to tuning and
propagation as factors to take into account when the measure of a vague predicate is
involved.

1 Introduction

Many objects of our interest are so because, in some way, we can access their prop-
erties. The properties can be quantitative or qualitative and while the quantitative
aspects admit measurement, the qualitative ones are usually refractory to their indi-
viduation.

Physical concepts, such as mass, speed, energy or volume, are frequently sub-
stantiated in numbers or vectors, but others properties, as resilience or intelligence,
are more difficult to quantify. In spite of this, proposals have been made for their
quantification, including some type of numerical assignment.

Qualitative properties are described with words, avoiding the use of numbers.
The use of non-numerical language allows us refer to objects or situations in an
appropriate but not always accurate way. Note the contrast between saying that that a
metal barmeasures 2m orweighs 10kg and that an individual is very strong or speaks
such language fluently, denoting ‘very strong’ and ‘fluently’ vague qualifications. In
cases that do not admit asmuchprecision as their numbering presupposes, the adverbs
or adjectives are linguistic resources to quantify in what extent a property hold.

There are properties that admit a numerical specification but not a crisp verbal-
ization. They are both quantitative and qualitative, depending on we refer them. The
predicate ‘tall’ is one of them: Perhaps a meter accurately determines the height of
a person (1.76cm), but even so serious doubts emerge if we decide to name him as
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‘tall’. While measuring in cm is context-independent, the predicate ‘tall’ is context-
sensitive and goal-directed. So, a person measuring 1.76cm is tall to be a horse rider
but not to be a basketball player; but in the context of a basketball team, 1.76cm
perhaps is a normal height for a point guard player but not at all for a forward one.

When there is more than one criterion for evaluating the quantity of an object,
linguistic predicates come to our aid, making possible to mitigate the expression by
supposing that there may be some disagreement about the use of it.

Generality, imprecision, indeterminacy and vagueness are different linguistic cat-
egories. Generality arises from the non-specification of a fact or situation due to the
lack of data or motivated by a conversation does not demand more detail. For exam-
ple, when we say that ‘a lot of people came to the basketball game’ the sentence is
general because ‘a lot of’ perhaps could be replaced by a number, but that unspecific
quantity is considered sufficient to maintain the thread of the conversation.

Imprecision occurs when we do not have all the information at hand to determine
a situation but the date exist: it is inaccurate for me how long does it take for the
sunlight to impact my retina, (I think it spend around 7min), but a physicist could
determine the lapse accurately.

Indeterminacy arises when, even having all the information at hand, we are not
able to guess the future: a die is thrown and it is indeterminate whether the result
is and odd or an even number. While imprecision and generality have to do with
vagueness, indeterminacy is close to probability.

Finally, a term is vague if it has irreducible borderline cases so that we are not
able say if an object definitely lies within the positive or negative extension of the
predicate or in its indeterminate area. An example of vague predicate is ‘tall’, because
we have not a rule to mark if a person is tall or not.

2 Measure and Science

Usually, precise quantifiable predicates are associated to scientific activity, as the
Physics one. Physical quantities are susceptible to bemeasured and themeasurements
are carried out assigning numbers to these magnitudes [4]. Thus, we say that a person
weighs 70kg or that a bottle houses 50ml of liquid as they are possible values of the
length of a person or the capacity of a bottle. 70kg and 50ml are quantities. Once we
have quantities, it is possible to make operations or establish relationships between
them.

A typical operation is addition. Thus, if the volume of a 25ml bottle is increased
with 10ml more, it can accommodate up to 35ml. In this case it is said that the
measure of volumes is additive.

A quantity resulting from the repeated sums of the same number is denoted by its
ratio. Thus, if m is the measure of a magnitude M and the value of m(a) is 10,000
and that of m(b) is 1000 or the value of m(a) is 1000 when the value of m(b) is 100,
the ratio is 10:1.
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The relationships between physical quantities or between instances of them can
be metric and submetric. A metric relationship happens when the link is numerical
-the Greek beauty canon demands that the body must measure 7 times the measure
of the head- and it is sub-metric when the connection is made using comparative
terms -the human body measures more than head-.

So, if M is a magnitude andm its quantity,m(a) < m(b) denotes that the quantity
of a is less than the quantity of b. Then, objects representing quantities can be ordered
regarding its quantity.

Numbers are a key skill of human cognitive system.With greater or lesser sophis-
tication, all known people use numbering systems. So, while western culture has a
remarkable numerical calculus, the Brazilian tribe of Pirahas only use one, two and
many to quantify [2].

Numbering systems emerge at the early age of development -around 4 years-,
although experiments with evoked potentials pointed to that we already make com-
parisons the first months of our life. Several experiments show that the numerical
cognitive substrate is located, in both human and nonhuman primates, in the parietal
cortex of both hemispheres and, more specifically, in the interparietal sulcus [1].

3 Measures, Instruments and Its Varieties

Measurements are often performed using measuring instruments. Thus, the time
passed is measured checking the material changes of an object, as the position of
the Sun or the sand movement from one vessel to another. Using instruments we
determine possible mutually incompatible values for a quantity -for instance, dif-
ferent positions of the dishes on a scale or different levels of liquid in a container-.
If an order among measured entities is established, the measure is successful; i.e.,
regarding weight, if the plate a is a higher, lower or in a balance position with the
plate b.

Measuring instruments are harmless when applied to large objects (celestial
mechanics), but very influential if used to quantify small objects (quantum mechan-
ics). In quantum mechanics the instruments of observation irremediably modify the
observed things conditioning in an essential way our epistemic access to them.

Different physical magnitudes require different ways of approaching their mea-
surements. This becomes clear if instead of describing a measure we try to explain it.
In this case, magnitudes such as mass or length show different characteristics. While
the measure of mass can not contravene the physical laws of nature -laws of motion
and gravitation-, the determination of length is a result of convention. In sum, while
the mass must address the quantitative properties of the object, the instruments of
measurement and the laws of physics, the length only attend the first two. In the case
of the length, since there are no laws, a pattern is needed to measure and any object
is quantified in relation to it.

The measure determine the relation between the object and the pattern: if it is
greater or less, and in what proportion. Thus, the measure of length is based on
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conventions and observational dispositions that allow the comparison of an object
with another one.

These dispositions are:

1. If you match the beginning of two objects and the end of one coincides with the
end of the other, they have the same length.

2. An object must be larger than any of its own parts.

Both precepts enable to determine whether an object is more or less than another
and so, to compare them (for instance, more or less tall). But this outcome is based
on three fundamental assumptions:

1. That it is possible always to match, at the beginning or at the end, two objects.
2. That any part of an object is entirely contained in it.
3. That any object is divisible into any number of its own parts.

These three postulates are objectionable if the measure to be considered is one of
a vague predicate.

4 Measures and Vague Properties

Prima facie In cursive it seemed that crisp predicates are linked to scientific activity
and vague predicates to life tasks. This conviction held for a long time until the quan-
tum mechanics emerged, introducing indeterminacy into the root of the knowledge
and the explanation of the smallest or elementary physical entities.

But even in the realm of celestial mechanics, the use of vague predicates is more
frequent than might at first glance seem. An inspection of the short works included
in Hawcking’s Physics Colloquium shows that.

In Puente et al. [6] a semi-automatic process recovering causal sentences in texts
was approached and the result of applying it to the Hawking’s texts is shown below:

• If the field is nearly constant in a region, the gradient terms will be small,
and the energy momentum tensor, will be minus half V, times the metric.

• However, Lindeh pointed out that if the potential is not too steep, the expan-
sion of the universe will slow down the rate at which the field rolls down
the potential, to the minimum.

• The observations do not yet indicate that the universe is definitely open, or
that lambda is non zero, but it is beginning to look like one or the other, if
not both

• A very small perturbation if you are with one of the big banks.
• If the dilation had a low value, the effective coupling would be weak, and
string theory would be a good quantum theory.
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• If one can determine that there is enough matter in the universe, to focus
our past light cone, one can then apply the singularity theorems, to show
that time must have a beginning.

• It then follows that if there is enough matter to make the universe opaque,
there is also enough matter to focus our past light cone.

• If the sphere were very large, space would be nearly flat, and Euclidean
geometry would be a very good approximation over small distances.

As noted, mined sentences included a profuse vague lexicon, as approximate
quantifiers or linguistic hedges. That inquiry shows that even if vagueness is frequent
in ordinary language, it is not absolutely foreign in scientific language.

Science and measurement have historically gone hand in hand. As imprecision is
present in scientific discourse, a goal of scientists has been and still is to provide a
certain estimation of it.

Inductive logic, probability theory and statistics are mathematical tools for giving
an accurate estimate of imprecise sentences and arguments. But it is still a problem
in progress to offer measures for qualitative properties where language in general,
and vague language in particular, plays a relevant role.

Next, we will discuss the three assumptions made in the previous section:

• The postulate that it is possible to match two objects is related to the principle of
identity, which is problematic if we consider the magnitude itself instead of some
of its instantiations. It is possible to align a ruler and a table in order to determine
howmuch it measures, but it is doubtful how to compare the length of two news by
matching their beginning or their end. Where information begins or ends is often a
blurred task. And the same happens with some physical objects, like a mountain:
there is no doubt that Everest is part of the Himalayas, but it is doubtful where
this mountain begins; i.e., where is the definite line separating the Everest from
the Shisha Pangma.
The equality of two entities has traditionally been linked to the principle of the
identity of the indiscernible, which says that two objects that have the same prop-
erties are the same thing. But objects have essential or defining, and accidental, or
circumstantial properties.
This distinction call for a weakening of the principle: if two objects have the
same essential properties and differ in the accidental ones they will be much more
indistinguishable than if they share accidental but non-essential properties.

• The second postulate refers to the notion of subset. In a traditional sense, a set
B is a subset of a set A if any element of B is also an element of A. Thus, the
set {1, 2, 3} is contained in the set {1, 2, . . . , 10} and an object that measures 1, 2
or 3cm can be placed in correspondence with a rule that measures 10cm and so
calculate its length.
But there are sets contained in another sets in a way that is not precise, but rather
blurred. Some grammatical categories and some biological taxonomy are a exam-
ples of this, because they have border elements refractory to be clearly separated
and thus included in the taxon or its complement.
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Ross showed that among the grammatical categories of verb and name there is
a continuum: Verb > Present participle > Adjective > Preposition > Adjective
name>Name, so it is doubtful whether the word ‘amusing’ should be classified as
‘Adjective name’ or as ‘Name’ [7]. In Biology is usually also controversial where
to locate the missing links between primates and humans.

• Finally, to guarantee that any object is divisible into any number of its own parts
assumes that all objects are separable and such divisions are recognizable as such.
Elementary particles are an objection to this thesis, as they represent the smallest
elements of matter, lacking of any internal structure. But leaving aside this case
and focusing now on the complex particles, even by reducing their parts to precise
divisions in an imaginary rule, problems arise.
Observationally, we can measure an object aligning it with the beginning of a rule
and determining its measurement in terms of the coincidence of its end and one of
the separations of the rule. But each division of the rule occupies a space. Using
a more powerful observation instrument, this separation, which at first glance
seemed extremely fine, now appears grossly thick, so that it can be subdivided
into more units in a process that, theoretically, is recursively unlimited.
Observational predicates are at a good extent vague predicates and the moral
of the previous story is that it is not possible to measure them definitively. The
open texture affecting vagueness demands new ways of precisification [3]. But
precisification without limits leads to higher order vagueness. That one discloses
how unnatural it is to try to be absolutely precise dealing with imprecision.
Higher order vagueness uncovers the problems emergingwhen it is intended to give
a precise measure of an imprecise property. A property can be inaccurate because
there is still no instrument to determine it precisely or because it is convenient use
a vague term in order to maintain the dialogue.
Human being is social and communicates in turns of conversation with his peers.
In most human dialogues, the main goal is to support the flow communication,
not to mean precisely what is said. Far from being bad or pernicious, vagueness
lubricates our dialogues, facilitating interaction and community among humans,
making possible a polite coexistence and self-protection, inhibiting possible strong
refutations to what is said. Vague language, rather than quantifying something
precisely, is used to qualify approximately many of the actions and objects around
us.
Vagueness should be differentiated whether it happens in ordinary language or in
scientific language. In ordinary language any measure should show tolerance and,
for that purpose, the use of vague predicates is inevitable. The margin of tolerance
implies that the dialogue continues and is not interrupted by the use of too specific
vocabulary.
Scientific language, on the other hand, demands precision, convenient to guarantee
secure or at least reliable knowledge. In that case, there are two main challenges
regarding vagueness: tuning and propagation. Tuning of vague values must meet
the Popper’s requirement that it should not be more precise than what the situation
demands [5]; i.e., what the measuring instrument allows and what the problem-
solving requires. Propagation involves controlling the dissemination of vagueness
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in argumentation, so that it does not increase until being non-informative or unman-
ageable. Measuring imprecision requires managing imprecise measures but not to
the point of rendering them useless. As Popper said the important thing in that
scenario is clarity, not precision [7]. We should to be clear measuring the vague-
ness, but not at the cost of converting something inherently vague in precise. The
measure of vagueness requires being vague.

Dedication

Kindness seems to be a qualitative property that some people have. Pedro Gil pos-
sessed it in the highest degree. Kindness perhaps could not be measured, but expe-
rienced by who needed it. And there I met Pedro. I will always remember him. This
work is dedicated to his memory.

Santiago de Compostela, September 2017
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A Short Reflection on the Word
‘Probable’ in Language

Enric Trillas and Itziar García-Honrado

Abstract This short paper is devoted to reflect about the meaning of the predicate
‘probable’ when it is used in plain language. When a predicate is said in a universe
of discourse, an order is introduced. Then, we propose to capture this order through
a measure and we show that this measure do not always verify the additive law of
Kolmogorov’s axioms of probability.

1 Introduction

The important theoretical and practical successes of Kolmogorov’s Probability The-
ory [5] can easily conduct to believe that it constitutes a model for the use, in plain
language, of the word ‘probable’. Nevertheless, in plain language the statements ‘p
is probable’ does not only refer to precise statements p but often to imprecise ones
like, for instance, ‘It is probable that forest is a huge one’, in which p = ‘Huge
forest’ cannot be represented by a subset in a big enough universe of forests, as it
is with the typically probabilistic statement ‘It is probable to obtain an even number
of points in throwing a single die’, in which p = ‘Even number’ is perfectly rep-
resented by the subset P = {2, 4, 6} in the universe X = {1, 2, . . . , 6} of elemental
events representing the universe of discourse.

It should be recalled that only precise statements on X are allowed to be repre-
sented by subsets in X , as it is stated by the Specification Axiom of Set Theory [4],
but, as Sorites’s type arguments show [10], the imprecise ones cannot; nevertheless
they can be represented by membership functions of the fuzzy sets generated by the
linguistic label p (see [9]) in the corresponding universe of discourse. For instance,
this is the case with ‘It is probable that 3 is a small number in the interval [0, 10] of
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the real line’, where ‘small’ admits to be represented by the membership function
1 − x

10 , among others, in [0, 10].
This paper is but an unended reflection on the subject of measuring the meaning

of the word ‘probable’ in plain language, with the goal of not always confusing it
with a probability measure.

2 On Meaning

To understand a statement ‘p is probable’ it is necessary to capture the meanings of
the statement p, and that of the predicate ‘probable’, both in the context in which
such statement is uttered. Meaning is context-dependent and purpose-driven; not
only depends on the universe of discourse at which it refers to, but also on the
context surrounding the particular situation in which the statement is placed, and on
the purpose hold for its use. Since very often people learn meaning by polarity, that
is, by jointly using a word and one of its antonyms, for capturing the meaning of
‘probable’ it also could be suitable to jointly consider the meaning of ‘improbable’,
and not only the negation ‘not probable’.

2.1 Qualitative Meaning

Themeaning of a predicate P in a universe X is captured once known the relationship
‘x is less P than y’ (shortened, in X , by x ≤P y); such relationship, obviously
reflexive when it exists, reduces to ‘x is equally P than y’ (shortened, in X , by
x =P y) whenever its use is precise [8]. It is so because in the precise case, elements
in X just are P , or they are not P . For instance, in the universe of positive integers,
the numbers 5 and 2017 are equally odd and without the possibility of stating that
one of them is (strictly) less odd than the other. In principle, it can be said that the
precise use of words is definable through ‘if and only if’ conditions, but that it is not
for the imprecise uses; in this precise case,=P is an equivalence relation partitioning
X in two classes, the subset specified by P and its complement.

Notice that x ≤P y, just designates that x shows the property p named P less than
y shows it; hence, in plain language, such relation is often recognized empirically,
and P is said to be ‘meaningless’ when ≤P= ∅. The graph (X,≤P) is called the
qualitative meaning of P in X (see [1, 2]); if existing, its maximal elements are the
‘prototypes’ of P in X , and its minimal elements its ‘anti-prototypes’.

Notice that =P is nothing else than the intersection of the subsets ≤P and ≤−1
P

(translating the inverse relationship by ‘more P than’) in the Cartesian product X ×
X , and whose coincidence makes =P coincidental with ≤P .

For example, taking P = small in the universe of the real numbers in the interval
[0, 10], endowed with the usual linear order (≤) of the real line; it is x ≤small y ⇔
y ≤ x , that is, ≤small =≤−1. The graph ([0, 10], <small ), the qualitative meaning
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of ‘small’ in [0, 10] coincides with the reversed linearly ordered set ([0, 10], ≤−1);
hence, under ≤small there is only a maximal or maximum 0, and a unique minimal
or minimum 10. The relation =small is just the equality of number, since x =small

x ⇔ x ≤ y and y ≤ x , that is, x = y.

2.2 Meaning’s Measure

Once captured how P is primarily used in X by the graph (X , ≤P ) it is the right
moment to introduce the concept of a meaning’s measure, a mapping mP : X →
[0, 1], verifying the three basic axioms [1]:

(a) If x ≤P y, then m(x) ≤ m(y),
(b) If z is a maximal under ≤P , then mP(z) = 1,
(c) If z is a minimal under ≤P , then mP(z) = 0.

It should be noticed that, in general, these three axioms are not sufficient for
specifying a single measure. For instance, in the case of ‘small’ in [0, 10], the mea-
sures msmall are those functions from [0, 10] into [0, 1] that are decreasing, and
satisfy the two border conditions msmall(0) = 1, and msmall(10) = 0. That is, all
the decreasing functions joining the points (0, 1) and (10, 0), of which there is an
enormous amount. If it is known that the measure is linear, msmall(x) = ax + b,
then from the above axioms it follows a = − 1

10 and b = 1: there is only the lin-
ear measure msmall(x) = 1 − x

10 . Nevertheless, if it was known that the measure is
quadratic, ax2 + bx + c, the axioms facilitate the conditions 100a + 10b + c = 0,
and c = 1, or 100a + 10b + 1 = 0 that, with the derivative 2ax + b < 0 (because of
its decreasing character), show that there are many quadratic measures. One of them
is (1 − x

10 )
2 = x2

100 − 2x
10 + 1 that, decreasingly, joins the point (0, 1) with the point

(10, 0), and whose derivative 2x
100 − 2

10 = 2
10 (

x
10 − 1) is obviously negative for all

x ∈ [0, 1]. Another possibility for specifying a quadratic measure is by knowing that
it passes for some point; for instance, if this is the point (0.5, 0.7) the new condition
0.7 = 0.25a + 0.5b + 1 is obtained, and that, with the former one, allows finding a
and b.

Hence, some additional information, and/or some reasonable hypotheses (like
is the former linear character of msmall ), is necessary for specifying a meaning’s
measure, and, for what concerns words in plain language, such information should
be induced from the context surrounding the corresponding use’s words.

That is, meaning’smeasures should be designed accordinglywith their current lin-
guistic use, and no universal measure exists unless such use is precise, sincemeasures
do preserve the relation =P . In fact, if x =P y ⇔ x ≤P y & y ≤P x ⇒ mP(x) ≤
mP(y) & mP(y) ≤ mP(x) ⇔ mP(x) = mP(y). With it, and if the use of P is pre-
cise in X , with P the subset of X specified by P and consisting in its prototypes,
it follows mP(x) = 1 if x ∈ P , and mP(x) = 0 if x ∈ Pc the subset containing its
anti-prototypes. In conclusion, if P is precisely used in X , the characteristic function
of P is the unique measure for its meaning in X , but if P is imprecisely used then
the meaning’s measure is not unique [3, 8].
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A full, or qualitative-quantitative, meaning of P in X is thus given each time
by an specific quantity (X,≤P ,mP) [3, 8]; the meaning of imprecise words is not
a single and universal concept, and it is scientifically domesticated by means of
such quantities that, in addition, should be carefully designed. Notice that a wrong
design of the quantity can mean a bad specification of P and, hence, can conduct to
erroneous results by presumably referring to a different use from the current one.

Nowadays, only considering the meaning of a word P through a measure by
forgetting the relation ≤P , can conduct to badly appreciate its qualitative meaning.
In fact, given mP (now shortened by just m) a new relation defined by x ≤m y ⇔
m(x) ≤ m(y), appears in X , and, contrarily to≤P , is a linear or total relation that, in
addition, is a partial order. Notice that there can perfectly exist elements x and y for
which neither x ≤P y, nor y ≤P x hold, that is, x and y are not comparable under
≤P , something that cannot happen under ≤m since one of the real numbers m(x),
m(y) is necessarily the greatest of both. It is ≤P ⊆ ≤m , and if both relations were
coincidental the first should be linear, without not comparable elements, something
that in general does not happen. Once a measure is designed, confusing ≤P with
≤m implies the risk of considering a pretended qualitative meaning larger than the
original; it can be said that the act ofmeasuring can, if only themeasure is considered,
alter the qualitative meaning, and a measure m is said to ‘perfectly describe the use
of P’ [8] whenever ≤P coincides with ≤m , as it happens with ‘small’ in [0, 10].

2.3 Remarks

(a) Precise words, defined by ‘if and only if’ conditions, have a single measure
valued in {0, 1} but provided those conditions do not contain imprecise words.
For instance, the Hardy-Ramanujan’s concept of a ‘round number’ [6] is defined
by an if and only if condition that, affecting the number’s unique decomposition
in prime factors, includes the imprecisewords ‘considerable’ and ‘comparatively
small’; consequently, neither its use is precise in the set of positive integers, nor
it has a single measure.

(b) The antonyms Pa of P are represented by quantities (X,≤Pa ,mPa ) such that
≤Pa=≤−1

P , and mPa = mP ◦ sP , with sP a symmetry X → X that reverses
≤P (see [8, 9]). For instance, provided ‘small’ is represented in [0, 10] by
≤small=≤−1, and msmall(x) = 1 − x

10 , then ‘big’ can be represented by ≤big=
<−1

small=≤, and mbig(x) = msmall(10 − x) = x
10 .

3 On the Meaning of Probable

In what follows, some hints on the plain language’s use of the word ‘probable’,
affecting statements p uttered (or written, or gestured) on the elements of a universe
of discourse X , will be presented.
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3.1 First Approach to the Meaning of Probable

Since the corresponding elemental statements are of the form ‘p is probable’, the
corresponding universe for ‘probable’ is not X , but that S(X) of the statements on
X . Hence, to capture the meaning of ‘p is probable’ it will be presumed that a full
meaning of p in X is known by a quantity (X,≤p,mp), and then it will lack to
capture a meaning of ‘probable’ (S(X),≤prob,mprob) that, thanks to that of p, can
allow to reach the meaning of ‘p is probable’.

Questioning if the composition mprob(mP(x)) = (mprob ◦ mP)(x) can measure
the meaning of ‘p is probable’, forces to definemprob in the range of values ofmP in
[0, 1] instead of in S(X); something very odd. Indeed, when the use of p is precise
such range is {0, 1}, the unique subset of [0, 1] that is a Boolean algebra wheremprob

is only definable by mprob(0) = 0, and mprob(1) = 1, the only possible probability.
Hence, ‘p is probable’ will be just with meaning’s measure 0 or 1; for instance, ‘It is
probable to get five points’ cannot be 1

6 . It seems to be a wrong way for focusing the
problem since, actually, room for probabilities will never exist when p is precisely
used and mP necessarily takes the values 0 and 1.

3.2 Relation with Kolmogorov’s Probability

Let’s turn around the concept of Kolmogorov’s probability. It requires that, for count-
ingwith ameasure of probability, the ‘events’ dobelong to aBoolean algebra (namely,
a σ -algebra in the case of requiring the denumerable, or σ -additive law) [5]. Such
Boolean algebra, and thanks to the Marshall Stone’s characterization theorem [7], is
isomorphic to a Boolean algebra of subsets of some universe; let Ω = {A, B,C} be
such algebra. For simplicity, and since it will not be against our arguments, we will
just consider the so-called ‘finite probability’ case, that of probabilities with just the
finite additive law. A mapping prob : Ω → [0, 1] is a probability, if:
(a) prob(Ω) = 1, and,
(b) If A and B are inΩ , and their intersection A ∩ B is empty, then prob(A ∪ B) =

prob(A) + prob(B).

From it, and since ΩC = ∅, it follows 1 = prob(Ω) = prob(Ω ∪ ∅) =
prob(Ω) + prob(∅), and prob(∅) = 0; an analogous argument with A and AC ,
immediately conducts to the law prob(AC) = 1 − prob(A), for all A in Ω .

Notice that Ω is the maximum and ∅ is the minimum of the Boolean algebra
under its ‘natural’ lattice’s order A ⊆ B ⇔ A ∪ B = B. Hence, and for prob being
a measure in the graph (Ω,⊆), it only lacks to prove that it is non-decreasing: A ⊆
B ⇔ B = A ∪ (B ∩ AC), and since it is A ∩ (B ∩ AC) = ∅, it follows prob(B) =
prob(A) + prob(B ∩ AC) ≥ prob(A).

That is, thanks to the existence of the relative complement B − A = B ∩ AC ,
prob verifies the three laws of a measure in the graph (Ω,⊆), and it is a measure of
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the meaning of the word ‘probable’ provided it could be presumed ≤prob = ⊆; this
hypothesis, close to the former ≤small = ≤−1 in [0, 10], has with it the difference
that this last is accepted since there cannot be doubt whatsoever on the equivalence
x ≤small y ⇔ y ≤ x . But,whatwith the set’s inclusion (⊆), coming fromconsidering
that ‘less elements imply less probability’, by, perhaps, presuming that A ⊆ B ⇔
Card(A) ≤ Card(B), when it is only clear that the first formula implies the second,
and that it only can be accepted that if A ⊆ B, then A ≤prob B, but not reciprocally.

What has been just said implies that, if mprob was a measure for the graph
(Ω,≤prob) it is a measure for the graph (Ω,⊆) but not reciprocally, and that pro-
vided prob is a probability in the algebra Ω , it is not necessarily a measure in the
graph (Ω,≤prob). The identification of probabilities with meaning measures of the
word ‘probable’, when it is used in a Boolean algebra of events, is actually risky (see
Example 4.1 in Sect. 4.6).

In plain language, ‘probable’ is not only predicated of precise statements, but
also of imprecise ones that neither can be represented by subsets of the universe of
discourse, nor constitute a Boolean algebra ([8, 9]).

These facts introduce a serious difficulty for holding the hypothesis that the Kol-
mogorov’s probabilities can always measure the meaning of the word ‘probable’.
What should be known for this goal is a quantity (X,≤prob,mprob), and a sim-
ilar trouble to that in Sect. 3.2 is that the relation given by mprob : x ≤mprob y ⇔
mprob(x) ≤ mprob(y) is just the linear order of the interval [0, 1] that, only when
‘probable’ is precise can coincide with the set’s inclusion. It is necessary to know
the relation ≤prob, and distinguishing it from the larger order of the unit interval.
It does not seem that such relation can be a universal one, like ⊆ and ≤ are; it is
something that should be recognized from the contextual use of the word ‘probable’
in the universe of discourse X , something that can only be done at each particular
situation.

4 On the Relation Between Probabilities and Measures
Of ‘probable’

4.1 In Boolean Algebras

Provided it is known a full meaning (X,≤prob,mprob) of the word ‘probable’ in a
universe of discourse X , is it possible that mprob be a Kolmogorov’s probability?
Firstly, it is necessary that X is endowed with a Boolean algebra’s structure, and
second that mprob verifies the laws of a probability.

Concerning the first condition it should be remarked that plain language is, in
general, free from any known algebraic structure, and, in particular, from that of
Boolean algebra. For instance, to presume that conjunction is commutative is abusive
in language where time almost always intervenes, and to suppose that conjunction
and disjunction are associative in language, oftenmeans that commas can be avoided,
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something that does not always happen. A lattice structure can hold in plain language,
but not universally and only in somepart of it that can be formalized [8]; consequently,
the actually open problem is to search for the meaning of ‘probable’ in unstructured
parts of plain language.

4.2 The Case in Some Strongly Structured Parts of Language

If, for instance, a part of language can be structured as an Ortho-modular lattice
(like it seems to happen with the language of Quantum Physics [1]), there is a slight
modification of the theory of probability to be used for modelling ‘probable’, and
if it is a De Morgan algebra of fuzzy sets, there exists the Zadeh’s theory for the
probability of imprecise events [11]; both verify Kolmogorov’s axioms, even if in
the second case empty intersection (incompatibility), seems to be too restrictive and,
in both cases, incompatibility and contradiction are not equivalent like it happens
in Boolean algebras. A mathematical model of meaning should be applicable to all
parts of plain language; without meaning words cannot be understood. In any case,
for identifying a measure of ‘probable’ with a probability, the coincidence of the
qualitative meaning’s relation ≤prob and the corresponding partial order ⊆, or ≤,
of the algebraic structure, should be accepted; as it is, for instance, to assert that
a suitable probability of getting five points when throwing a die, is a meaning’s
measure of the statement ‘Getting five points is probable’. Such probability should
be chosen accordingly with the physical characteristics of the current die and surface
on which it will land.

4.3 Measuring the Meaning of ‘Probable’ Based
on Probabilities

Suppose (S(X),≤prob) is a Boolean algebra, and a quantity (S(X),≤prob,mprob)

modelling the meaning of ‘probable’ is known. Provided S(X)were finite, andmprob

a probability, the addition of its values for the atoms in S(X) should equal one. Hence,
not all meaning’s measure is a probability, unless the total sum of its atoms values is
one. Notwithstanding, it does not mean that each one of the measure’s values can be
obtained by means of a statistical procedure. For instance, provided S(X) contains
four atomic statements p1, . . . , p4, whose contextually obtained measure is:

m(p1) = 0.5,m(p2) = 0.7,m(p3) = 1,m(p4) = 0,

(that is not a probability, since the sum of its values is not one), it is easy to find many
quadruplets of probabilities prob1, . . . , prob4, each one giving the corresponding
value of m; that is, verifying m(pk) = probk(pk), for 1 ≤ k ≤ 4. For instance,
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• prob1, with respective values 0.5, 0.3, 0.2, 0 (all in [0, 1], and with total sum
one), gives m(p1) = prob1(p1) = 0.5;

• prob2, with respective values 0.2, 0.7, 0, 0.1, gives m(p2) = prob2(p2) = 0.7;
• prob3, with respective values 0, 0, 1, 0, gives m(p3) = prob3(p3) = 1;
• prob4, with respective values 0.5, 0.2, 0.3, 0, gives m(p4) = prob4(p4) = 0,

thus, m(pk) = probk(pk), for all k. The measure is not a probability, but each one
of its values comes from a probability. What seems possible is the design of four
random experiments (four random variables) able to obtain the four values of m. Of
course, it does not avoid the possibility that just one random variable can identify
the measure with a probability.

In general, for each statement p in S(X), and ameaning’s measurem of it, random
experiments on p can be designed in such a way that, from the corresponding random
variable, a probabilistic value of m(p) is obtained. Would this open problem be
solved, it will be known which measures can be either a probability, or be equivalent
to a family of probabilities.

To pose the problem in finer mathematical terms, for each p in S(X), and each
measure m of its meaning, it should be found:

(a) A σ -algebra Ω(p,m) in some universe associated to the context surrounding
the meaning of p,

(b) A representation p∗ of p in Ω(p,m), and,
(c) A probability probp,m on Ω(p,m), such that, m(p) = probp,m(p∗).

4.4 Some Differences of Dealing with a Measure of Probable
and a Probability

Provided S(X) is finite and consists in n statements p1, . . . , pn , the equality to one
of the sum of all the values m(p1), . . . ,m(pn), provided m is a probability, comes
from both the additive law of probability and that the maximum element of the
Boolean algebra is with probability 1, that it is a normalized measure. Since, under
the hypotheses that S(X) is aBoolean algebra, and that≤prob coincideswith its partial
order⊆, themaximum is the onlymaximal, and the normalized character ofmeasures
of meaning is obvious, the problem just lies in the additive law and, consequently,
in the possibility of decomposing elements in two ‘separate’ pieces. Although such
law can be easily accepted in cases with a precise use of the statements p, when this
use is imprecise it is not so clear [8]. For instance, if the statements were represented
by membership functions μ in [0, 1]X , then decompositions μ = μ1 + μ2, with
μ1 · μ2 = μ0 (the membership function of the empty set ∅), should be computed
(in a Standard Algebra of Fuzzy Sets [9]) through solving, for each x in X , the
functional equation corresponding to T (μ1(x), μ2(x)) = 0 (that is, T (a, b) = 0 ⇔
T is in the Łukasiewicz family) in the unknown t-norm T , with the conditioning
S(μ1(x), μ2(x)) = μ(x), for a suitable t-conorm S for each μ. Alternatively, and
instead of considering the incompatibility μ1 · μ2 = μ0, it can be considered the
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contradiction μ1 ≤ μ′
2 ⇔ μ1(x) ≤ N (μ2(x)), with the same restriction with a t-

conorm S for eachμ. In all cases, it requires designing a suitable algebra of fuzzy sets
in which decomposing themembership functions in either ‘disjoint’, or contradictory
pieces, can be done. The additive law depends, at least, on fixing such algebra.

4.5 Remark

Let’s recall that a t-norm T is in the Łukasiewicz family [9], that of t-norms with
zero divisors, if and only if it is T = W f , that is, T (a, b) = f −1(max(0, f (a) +
f (b) − 1)), with f : [0, 1] → [0, 1] a strictly non-decreasing function such that
f (0) = 0, and f (1) = 1. Then T (a, b) = 0 means max(0, f (a) + f (b) − 1) =
0 ⇔ f (a) ≤ 1 − f ((b) ⇔ a ≤ f −1(1 − f (b)) ⇔ a ≤ N f (b), with N f a strong
negation function. Hence, T = W f and N = N f , constitute the only t-norms and
strong negation functions under which incompatibility and contradiction are equiv-
alent, like they are in Boolean algebras. In general, with fuzzy sets such properties
are one independent from the other, as it is in language and when using impre-
cise words [8]. With other t-norms, these equivalence is not preserved; for instance,
with T = min, it is min(a, b) = 0 ⇔ a = 0 or b = 0, and the contradiction between
a and b clearly follows. But a ≤ Nid(b) = 1 − b ⇔ a + b ≤ 1, does not imply
min(a, b) = 0.

4.6 Examples

In this section we will show two examples related with the additive law for two
different measures of probable. The first one dealing with the qualitative meaning
represented by a Boolean algebra and the last one dealing with fuzzy sets.

Example 4.1 Let us consider the universe of discourse S(X) collecting the precise
sentences that show possible places where a family can spend the afternoon of the
following day. Three possibilities are considered as the atoms of S(X): The family
goes to the mountain (p1), the family goes to the beach (p2) or the family remains at
home (p3). Then, a Boolean algebra structure (see Fig. 1) that represents the family
possible decisions is considered, taking into account the unions and the null intersec-
tions of the atoms, and supposing that the qualitative meaning, ≤prob, is ⊆. In this
framework, different measures,mP , of the predicate P = probable could be defined
in S(X). It is enough to verify that each mP is a measure that is: (a) m(p0) = 0, (b)
mP(p7) = 1, and (c) if pi ≤ p j , then mP(pi ) ≤ mP(p j ), for all i, j = 0, 1, . . . , 7.

In the case of defining mP by mP(p0) = 0, mP(p1) = 0.2, mP(p2) = 0.3,
mP(p3) = 0.5,mP(p4) = 0.3,mP(p5) = 0.5,mP(p6) = 0.5, andmP(p7) = 1,mP

is a measure, but it is not a probability since additive law is not verified. It is enough
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Fig. 1 The representation of
(S(x),≤prob) as a Boolean
algebra

Fig. 2 The representation of
fuzzy sets translating the
meaning of the sentences in
S(X)

to take p1 and p2: it is p1 · p2 = p0 but mP(p1 + p2) = mP(p4) = 0.3 is not equal
to mP(p1) + mP(p2) = 0.2 + 0.3 = 0.5.

Example 4.2 Let us consider the set of sentences S(X) with three imprecise sen-
tences p1 = he is young, p2 = he is medium aged, p3 = he is old. Each sentence pi
can be represented in the universe of discourse X = [0, 100] by a fuzzy set μi for
all i = 1, 2, 3. They are shown in Fig. 2.

The predicate probable introduces an order in the universe of discourse of these
sentences, the measure of how probable each sentence is which is represented by a
fuzzy set μi , is computed through mP(μi ) = 1

100

∫ 100
0 μi (x)dx , for all i = 1, 2, 3.

In the example: mP(μ1) = 0.325, mP(μ2) = 0.25, and mP(μ3) = 0.425. It is
clear that mP is a measure since mP(μ0) = 0, mP(μ1) = 1, and it verifies the
monotonic condition for the order ≤prob (in this case, p2 ≤prob p1 ≤prob p3, then
mP(μ2) ≤ mP(μ1) ≤ mP(μ3)). In the same way as the previous example, this mea-
sure is not a probability since additive law does not hold. It is enough to take μ1

andμ2: it isW f (μ1, μ2) = 0 with f (x) = x2, butmP(W ∗
f (μ1, μ2)) = 0.5467 is not

equal to mP(μ1) + mP(μ2) = 0.325 + 0.25 = 0.575.
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5 Conclusion

This short paper cannot be conclusive; it just tries to present some reflections that,
eventually, can allow to mathematically modelling the use, in plain language, of the
word probable, whose meaning cannot be fully captured by the Kolmogorov’s theory
of probability.

Basic reasons for it are the (necessary)Boolean, orOrtho-modular, lattice’s ground
such theory requires, and that the relation of subsets inclusion (that orders Boolean
algebras) seems to be, in general, just a part of the qualitative meaning of the word
‘probable’. In addition, the basic additive law of probability requires that what is
submitted to compute its probability, should be decomposable in either disjoint, or
contradictory pieces, something not actually clear with the imprecise words that
permeate language, as it is shown by the algebras of the fuzzy sets’ [9] membership
functions with which imprecise words are represented.

Since the meaning of words in plain language is both context-dependent, and
purpose-driven, more knowledge on specific uses of the word ‘probable’ is still nec-
essary for obtaining quantities reflecting itsmeaning. Some instances of its use should
be previously studied before counting with actual possibilities for going ahead with
a theory on the meaning of the word ‘probable’ as a possible scientific domestication
of it; it is something similar to what happened with probabilities, whose complete
theory came from many practical experiences in, for instance, random games. Even-
tually, it could be done by also and jointly considering the uses of the antonym
word ‘improbable’ that, once known a quantity (X,<prob,mprob), will be given by
another quantity (X,≤−1

prob,mprob ◦ sprob), with ≤improb=≤−1
prob, and sprob a sym-

metry in X reversing ≤prob. Those instances should be studied by experimenting, in
plain language, with the goal of testing them with the presented model.

A possible alternative way for conducting such study could be done, perhaps,
by following the ‘Subjective Probability’ approach started by Bruno de Finetti [2].
Based on some ‘a priori’ knowledge of who tries to assign a probability, and on the
Bayes formula, it seems closer to how people reasons; consequently, it can be closer
to plain language than Kolmogorov’s axiomatic theories.
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Measuring Uncertainty in the Portfolio
Selection Problem

Enriqueta Vercher and José D. Bermúdez

Abstract In this paper, we propose a new index for ranking portfolios based on the
credibility expected return and loss on their investment. We assume that the return
on a given portfolio is modeled as a trapezoidal fuzzy variable, whose credibility dis-
tribution is built using the data set of its historical returns. The credibilistic loss on
the investment for a given portfolio is measured by means of a suitable loss function.
In order to take risk-adverse investor attitudes into account, we analyze the perfor-
mance of some credibility measures related to loss and risk on the investment for a
given portfolio and their relationship with similar possibility measures. A numerical
example is presented showing the performance of different fuzzy ranking indices for
real portfolios in the Spanish stock market.

1 Introduction

From the seminal work of Markowitz [20] many researchers have developed opti-
mization models and procedures based on random variables for selecting optimal
portfolios, taking into consideration the fact that the future return on assets can
be approximated by using random variables. The mean-variance (MV) portfolio
selection model is considered the beginning of modern portfolio theory, where it is
assumed that the expected means and covariance matrix of the return on assets suit-
ably represent the risk-return tradeoff. Concerning the uncertainty of returns, alter-
native portfolio selection models have been developed either by modifying the risk
measure or by adding statistical higher moments [15, 16]. An alternative approach to
this probabilistic framework, making it possible to incorporate incomplete informa-
tion about the returns on assets, knowledge of financial experts and vagueness leads
to many fuzzy portfolio selection models which have been developed mainly based
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on possibility measures [5, 13, 26, 27, 30]. Recently, Liu [18] has introduced the
credibility theory for fuzzy variables and defined their moments and values making it
possible to obtain new fuzzy portfolio selection models, where the returns on assets
are approximated bymeans of fuzzy variables [9, 11, 31]. For dealing simultaneously
with randomness and fuzziness, returns on assets in the portfolio selection problem
have also been modeled by using random fuzzy variables [10, 12].

On the other hand, linear and quadratic programming problems have been applied
for selecting optimal portfolios based on MV or mean-absolute deviation (MAD)
models; however, in order to manage more realistic constraints for the portfolio
selection problem several multi-objective evolutionary procedures have been explic-
itly introduced in a Soft Computing framework [1, 24, 34]. It is important to note that
the goals and constraints of all these portfolio selection models are defined by means
of expected values, either for probability or possibility and credibility distributions.

In our research, we propose dealingwith the historical returns on a given portfolio,
instead of considering the returns on the individual assets as a data set. This change
of paradigm allows us to measure the uncertainty of the risk and the benefit of a given
investment incorporating the contemporary relationship of the returns on the individ-
ual assets that make up a portfolio. In a first approach, we use the possibilitymoments
of trapezoidal and LR fuzzy numbers to approximate the expected return and fuzzy
downside risk of every portfolio, which are the goals of various multi-objective
optimization problems with cardinality constraints [3, 24, 28]. More recently, for
approximating the future return on a given portfolio we use fuzzy variables, because
of the credibility distributions which allow us to measure the uncertainty of the
return, the risk of the investment and the Value-at-Risk (which is a measure of the
worst expected loss over a given horizon) by means of credibility moments, fuzzy
quantities and crisp values [14, 29, 31] respectively.

The paper is planned as follows: Sect. 2 reviews some useful notation and results
of credibility measures. Section3 presents several relationships between possibilistic
and credibilistic moments, which are the goals of the fuzzy portfolio selection prob-
lem. A new ranking procedure for scoring portfolios is presented in Sect. 4. There
we also deal with measures of loss and risk for a portfolio whose returns have been
approximated using a trapezoidal credibility distribution. Finally, we illustrate the
performance of our proposal by comparing different fuzzy ranking indices for a given
set of portfolios from the Spanish stock market in Sect. 5.

2 Preliminaries

A fuzzy number Q is a convex normalized fuzzy set of the real line, whose mem-
bership function μQ is piecewise continuous. For y ∈ R, μQ(y) is the degree of
membership of y inQ; the closer the value of μQ(y) is to 1, the more it belongs toQ.

The possibility and necessity of every fuzzy event (for instance, {Q ≥ y} where
is y a real number) can be evaluated based on the possibility distribution associated
with the corresponding membership function [33]. In particular,
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Pos{Q ≥ y} = supt≥y μQ(t), and Nec{Q ≥ y} = 1 − supt<y μQ(t). (1)

Let us recall some definitions of fuzzy variables and credibility measures [18].
The credibility measure of a fuzzy event as an alternative form of measuring its
uncertainty was introduced by Liu and Liu [19]:

Cr{Q ≥ y} = 1

2
(Pos{Q ≥ y} + Nec{Q ≥ y}). (2)

Definition 2.1 Let ξ be a fuzzy variable described on the set of real numbers R by
its membership function, which is given by:

μξ(y) = min(1, 2 Cr{ξ = y}), for y ∈ R. (3)

Definition 2.2 The credibility distribution Φξ : R → [0, 1] of a fuzzy variable ξ is
defined as:

Φξ(y) = Cr{ξ ≤ y} = 1

2
(supt≤y μξ(t) + 1 − supt>y μξ(t)). (4)

Definition 2.3 The expected value of a fuzzy variable ξ is defined as:

E(ξ) =
∫ +∞

0
(1 − Φξ(y)) dy −

∫ 0

−∞
Φξ(y) dy (5)

provided that at least one of those integrals is finite.

In a similar way, for k = 2, 3, ..., the kth central moment of a fuzzy variable ξ is
defined as: E (k)(ξ) = E((ξ − E(ξ))k) [17].

Recently we have proposed credibility measures of return and risk for generating
efficient portfolios within a fuzzy mean-absolute deviation framework [29] for LR-
type fuzzy variables. Jalota et al. [14] have in turn also provided a complete review
of uncertain portfolio parameters for these families of fuzzy variables.

3 Fuzzy Expected Values for Portfolio Selection

In the portfolio selection problem it is assumed that competing investment portfolios
are ranked based on the expected return and risk of those portfolios. There is wide-
spread agreement on the formula for calculating the expected return on an investment;
however, many discrepancies arise with regard to the representation of the risk, also
taking into account the decision maker’s attitude. Throughout this paper we alter-
nately use possibility and credibility distributions in order to evaluate expected values
of fuzzy numbers and fuzzy variables respectively.
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Possibilistic approaches to portfolio selection use possibilistic moments based
on the α-level sets of a fuzzy number Q: Qα = {y : μQ(y) ≥ α} = [Qα−, Qα+], for
α ∈ [0, 1]. The crisp possibilistic mean value of Q has been introduced in [7], as
follows:

E(Q) = 1

2

∫ 1

0
[Qα

− + Qα
+]dα (6)

provided that at least one of those integrals is finite. Note that the integrals involved
in Eq. (6) are the lower and upper probability mean values of the fuzzy number Q,
and they also define the endpoints of the interval-valued mean of Q, allowing an
alternative approach for the portfolio selection based on interval optimization [32].
Additionally, the use of lower and upper probabilities of a random set for modeling
the information about the values of the probability distribution of a random variable
has been extensively analyzed in [21].

In a different context, Delgado et al. [6] introduce the value and ambiguity of
a fuzzy number, taking into account the influence of the α-cuts, using a reducing
function s(α). The ambiguity of Q, denoted by Ã(Q), is defined as:

Ã(Q) =
∫ 1

0
s(α)[Qα

+ − Qα
−]dα. (7)

Alternatively, Carlsson and Fullér [4] introduce the possibilistic mean value and
variance of Q, respectively, as:

m(Q) =
∫ 1

0
α[Qα

− + Qα
+]dα, and σ 2(Q) = 1

2

∫ 1

0
α[Qα

+ − Qα
−]2dα (8)

making it possible to represent the decisionmakers’ attitude in the face of uncertainty
given by a weighting function which affects the endpoints of the α-level sets. An
extensive analysis on possibilistic moments can be found in [25].

Recently it has been proved that credibility expected value and central moments
of any LR-type fuzzy variable coincide with the crisp possibilistic moments for the
LR-type fuzzy number with the same membership function, when the possibilistic
expected values are calculated applying Eq. (6) [29]. Therefore fuzzy MV portfo-
lio selection models using one of the two approaches (interval-valued possibility
expectations and credibility expected values) for measuring uncertainty of the future
return on a portfolio provide the same model, while the fuzzy quantity is represented
using membership functions of any fuzzy LR-type. Additionally, when symmetric
behaviour of the portfolio returns is not assumed, higher moments can be included
in the modeling of the optimization problem, by means of credibilistic skewness
considered as a goal or as a constraint [24, 28].

It is commonly assumed that investors are rationally risk-adverse and that the vari-
ance of the return on assets can suitably represent the risk of the investment, although
the variance is a measure of the variability (spread) around the mean, which does
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not take into account whether the returns were below or above the expected value.
Other measures of the risk have been suggested in the literature under a credibilistic
framework, for example: semi-variance of a fuzzy variable [17], fuzzy Value-at-Risk
(FVaR) [31] and below-mean absolute semi-deviation [29]. In particular, for a fuzzy
variable ξ with finite expected value E(ξ), its below-mean absolute semi-deviation
is defined by MASd(ξ) = E((ξ − E(ξ))−), where:

(ξ − E(ξ))− =
{
E(ξ) − ξ if ξ ≤ E(ξ)

0 if ξ > E(ξ)
. (9)

The main difference between the above downside risk measure and FVaR, under
a credibility distribution, is that the investor does not need to establish previous
credibility levels for a suitable loss function.

4 A New Fuzzy Ranking Index for Portfolio Selection

Some authors consider that the risk of the investment is better perceived by investors
by means of measures that represent losses [22, 23] than with risk measures. In
any case, from the investor’s point of view it is important to clarify the differences
between these alternative measures of the uncertainty of the future return in the
meaning and information they provide.

Let us consider a portfolio X , where X = (x1, ..., xN ) is the vector of sharing
proportions, and N is the number of assets. Let us suppose that the uncertainty of
the return on a given portfolio X is represented by means of a fuzzy variable ξX . In
order to select a suitable portfolio we propose a new credibility rank-index that uses
a credibilistic loss as an alternative measure of risk aversion.

Definition 4.1 Let X be a given portfolio, whose uncertain return is approximated
by a fuzzy variable ξX . Its credibility rank-index is:

CRI (ξX ) = E(ξX ) − γ L0(ξX ) (10)

where L0(ξX ) = Cr{ξX ≤ 0} measures the credibility of achieving a non-positive
return, and γ > 0 is a representative weight of the investor’s loss aversion.

Note that if the investor requires other levels of loss, an alternative credibilistic
loss function can be used: Lr (ξX ) = Cr{ξX ≤ r}, which measures the credibility of
achieving a return below a given value r .

Let us suppose that the uncertainty of the return on a given portfolio X is rep-
resented by means of a trapezoidal membership function μX , for which the rela-
tionships between credibility and possibility expected values are well established.
Then, comparing the above credibility rank-index with other fuzzy indices (previ-
ously introduced for solving the portfolio selection problem under a possibilistic



770 E. Vercher and J. D. Bermúdez

framework [2, 5]) allows us to analyze its explicit performance. The observed dif-
ferences between the indices should properly lie in the measures of risk and loss.

For a trapezoidal fuzzy variable ξX = (a, A, B, b), with support {y : μX (y) ≥
0} = [a, b], a < b and core [A, B] = {y : μX (y) = 1}, where μX (y) is a straight
line on [a, A] and [B, b], its credibility distribution is defined by:

ΦξX (x) = Cr{ξX ≤ x} =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if x ≤ a

1
2

[
1 −

(
A−x
A−a

)]
if a ≤ x ≤ A

1
2 if A ≤ x ≤ B

1
2

[
1 +

(
x−B
b−B

)]
if B ≤ x ≤ b

1 if x ≥ b

. (11)

It is easy to see that the expected value of ξX is:

E(ξX ) = A + B

4
+ a + b

4
. (12)

The expected below-mean absolute semi-deviation is given by [29]:

MASd(ξX ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2 (E(ξX ) − a) − 1

4 (A − a)

(
1 −

(
A−E(ξ)
A−a

)2
)

if a ≤ E(ξX ) ≤ A

1
8 ((B − A) + (b − a)) if A ≤ E(ξX ) ≤ B

1
2 (b − E(ξX )) − 1

4 (b − B)

(
1 −

(
E(ξ)−B
b−B

)2
)

if B ≤ E(ξX ) ≤ b

.

In order to select an optimal portfolio using a fuzzy ranking strategy, Carlsson et
al. [5] proposed rating the investment portfolios using the following utility function,
based on the possibilistic expected return and risk of the portfolio return PX :

U (PX ) = m(PX ) − 0.005 a σ 2(PX ) (13)

where a is the Arrow-Pratt index of the risk aversion (a ≈ 2.46). There, PX was built
as a convex linear combination of the returns on individual assets that make up the
portfolio X , whose possibility distributions are approximated bymeans of trapezoidal
fuzzy numbers. Finally, it provides the return on the portfolio, PX , which is also a
trapezoidal fuzzy number. Recently, Georgescu [8] has proposed other definitions of
possibilistic risk aversion, related to the Arrow-Pratt index a.

On the other hand, a linear alternative to the above quadratic utility function is
introduced in [2] for ranking portfolios, where the uncertainty of the return on every
portfolio X is approximated using a trapezoidal membership function for the fuzzy
number PX :
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RI (PX ) = E(PX ) − βw(PX ) (14)

where β > 0 is a given constant, and w(PX ) is a fuzzy downside risk [30], which
coincides with w(PX ) = 2 Ã(PX ).

Additionally, if the return on a given portfolio X is represented by a trapezoidal
fuzzy number PX = (a, A, B, b), it is easy to see that:

E(PX ) = A + B

4
+ a + b

4
, m(PX ) = A + B

3
+ a + b

6
(15)

and

σ 2(PX ) =
[
B − A

3
+ b − a

6

]
+ [(A − B) + (b − a)]2

72
. (16)

Note that for a trapezoidal fuzzy number PX , E(PX ) corresponds to the midpoint of
the 0.5-level set, whilem(PX ) is the middle point of its 2

3 -level set; and that for a con-
stant reducing function s(α) = 1

2 , the value of PX coincides with the crisp possibilis-
tic mean value E(PX ), the ambiguity being the semi-amplitude of the interval-valued
mean [2]:

Ã(PX ) = B − A

4
+ b − a

4
. (17)

5 Numerical Comparisons

In this section we report the results obtained on 1000 randomly generated portfolios,
X = (x1, x2, ..., xN ), whose returns have been evaluated using a historical data set
from the Spanish stock market in Madrid, between January 2013 and March 2016.
The number of positive proportions in each portfolio is set to k = 9, and for the
simulation on the 9-dimensional simplex we apply a routine introduced in [3].

We consider the weekly returns rti = p(t+1)i−pti
pti

on N=33 assets from the Spanish
IBEX35, where pti is the weekly closing price of asset i of week t , t = 1, ..., 165.
For every portfolio X , its historical returns are computed as:

rt (X) =
33∑
i=1

rti xi , (18)

and we assume a trapezoidal fuzzy representation μX of the uncertainty associated
with its future return. The sample percentiles qh of the set {rt (X)}165t=1 are used to
determine the core, [q48, q52], and the support of the trapezoidalmembership function
of PX and ξX , that is [a, b] = [q3, q97].
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Table 1 Correlation Coefficients between several fuzzy measures of risk and loss

Measures σ 2(PX ) w(PX ) MASd(ξX ) L0(ξX )

σ 2(PX ) 1 0.9926 0.9926 0.2863

w(PX ) 1 0.9999 0.2987

MASd(ξX ) 1 0.2933

To show the relationships between the fuzzy expected values used in the afore-
mentioned rank indices (Eqs. 10, 13 and 14), we have calculated the correlation
coefficient between those measures of uncertainty for the 1000 simulated portfolios.
First of all, it must be noted that there is a high correlation between the two fuzzy
measures of expected return: ρ(E(ξX ),m(PX )) = 0.9421.

Secondly, concerning the correlation between the fuzzy measures of risk of the
investment: variance of PX , fuzzy downside risk (w(PX )), and the expected below-
mean absolute semi-deviation (MASd(ξX )), they also achieve high correlation coef-
ficient values. The first three columns of Table1 show these correlation coefficients,
while the fourth presents the correlation between the credibilistic loss and the above
risk measures. Note the low correlation achieved for the loss function (L0(ξX )) with
respect to all risk measures.

From the above results it seems that the portfolios provided by the possibilistic
utility function (U (PX )) should be close to those determined by the fuzzy ranking
index (RI (PX )). However, they could lead to different sets of efficient portfolios.
Additionally, it must be noted that, by definition, U (PX ) provides the best portfolio
in some sense. On the other hand, the ranking index RI (PX ) has been introduced
for detecting non-dominated portfolios, using different values for β, which gives
the investor a set of good solutions for different risk-aversion levels. Both indices
have been compared with the simulated portfolios, and we see that the best portfolio
according to the utility function, X1, has also been detected as a non-dominated
portfolio using the other ranking indices, RI (PX ) and CRI (ξX ).

Figure1 shows the expected return, E(PX ), and downside risk, w(PX ), values
of the 1000 portfolios randomly generated. The non-dominated portfolios are also
shown; they are connected by the lines representing different β values, allowing
us to build the approximated Pareto frontier associated with these return and risk
measures.

In order to facilitate the comparison of the performance of the new credibilistic
index, Fig. 1 also shows the non-dominated portfolios provided by using Eq. (10).
Their polygonal is represented in the w(PX ) − E(PX ) coordinate axis, although the
dominance rules have been established using the measure of loss, L0(ξX ).

The comparison between these fuzzy ranking indices shows that different sets of
non-dominated portfolios have been obtained, given rise to different approximated
Pareto frontiers, although the non-dominated portfolios produced by both indices
present higher expected returns andhigher levels of risk-aversion simultaneously. The
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Fig. 1 Downside risk and
expected return of the 1000
simulated portfolios. The
biggest dot represents
portfolio X1. The gray
squares correspond to the
non-dominated portfolios
using RI (PX ), and the black
dots represent the
non-dominated ones
generated by the CRI (ξX )

index

difference between the two indices is probably due to the fact that each index utilizes
different measures of risk (w(PX )) and loss (L0(ξX )) respectively, and consequently
relies on a different set drawn from the sample of simulated portfolios.

6 Conclusions

We introduce a new credibility rank-index for ranking portfolios based on the
expected mean and a loss function for fuzzy variables. We analyze the relationship
between possibilistic rank-indices based onmeasures of risk and the new credibilistic
index for a set of simulated portfolios, whose returns are approximated by means of
trapezoidal membership functions.
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Abstract Certain operational quantities derived from the norm and from the injec-
tion modulus in the context of multivalued linear operators are considered in order
to obtain characterizations of lower semi-Fredholm multivalued linear operators.
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1 Introduction

Many authors have considered operational quantities in order to study bounded semi-
Fredholm operators on Banach spaces and other semigroups of operators on Banach
spaces (for operational quantities, [4, 11]; for semigroups [14, 16] developed at
the University of Oviedo, and [1]). The generalization of this study to the class of
unbounded operators in arbitrary normed spaces was initiated in R.W. Cross [7] and
continued by several authors (see [2, 3]).

On the other hand, we note that the linear relations (sometimes called multivalued
linear operators) were introduced in Functional Analysis by J. von Neumann [15],
motivated by the need to consider adjoints of non-densely defined operators used
in applications to the theory of generalized equations [6] and also by the need to
consider inverses of certain operators, as used, for example, in the study of some
Cauchy problems associated to parabolic type equations [10].

At present, the investigation of linear relations in normed spaces or Hilbert spaces
is of significance since it has applications in many problems in Physics and in other
areas of Applied Mathematics. We cite some of them.

(a) Applications of perturbation results for linear relations to the study of degenerate
elliptic-parabolic evolution equations [9].

(b) Applications of the fixed point theory of linear relations in Game Theory and
Mathematical Economics. Discontinuous differential equations occurring in
Biological Sciences (for instance, population in dynamics and epidemiology),
Optimal Control and Digital Imaging (a systematic collection of references can
be found in [13]).

(c) Applications of the semi-Fredholm theory of linear relations to the study ofmany
problems of Operator Theory as, for example, the theory of linear bundles and
also the theory of pseudoresolvents [5].

(d) Applications to the problem of the invariant subspace [12].

In regard of the subjects mentioned above, an attempt to generalize the existing
results for operators to the general situation of linear relations seems to be worthy
and necessary in view of scientific progress in this field.

The purpose of this note is to extend some of the main results of [3, 7] to the case
of multivalued linear operators in arbitrary normed spaces. In Sect. 2 we characterize
the lower semi-Fredholm linear relations in terms of operational quantities derived
from the norm.

Throughout this paper an operational quantity or simply a quantity will be a
function defined on the class of all multivalued linear operators in normed spaces,
taking values in the interval [0,∞]. Furthermore, X , Y and Z will denote infinite
dimensional normed spaces and T will always be a linear relation from X to Y . We
adhere to the notation and terminology of [8], so LR(X,Y ) denotes the class of all
linear relations from X to Y .
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2 A Characterization of F−-Relations

Let T ∈ LR(X,Y ) and let F be an arbitrary finite dimensional subspace of Y . Then

dim D(T ′)/(D(T ′) ∩ F⊥) = dim(D(T ′) + F⊥)/F⊥

≤ dim Y ′/F⊥ = dim F ′ < ∞

and hence dim D(T ′) ∩ F⊥ = ∞ as dim D(T ′) = ∞. In consequence, the set
D(T ′) ∩ SF⊥ is non-empty whenever dim D(T ′) = ∞, where SF⊥ := { y′ ∈ F⊥ :
‖y′‖ = 1 }. This property suggests the following notion.

Definition 2.1 For a given linear relation T ∈ LR(X,Y ) with dim D(T ′) = ∞ we
define

τ ′
0(T ) := sup{ j (T ′|F⊥) : F ∈ F (Y ) }

where F (Y ) denotes the class of all finite dimensional subspaces of Y .

In the sequel, E (X) denotes the class of all closed infinite codimensional subspaces
of X . We write JX for the injection of X into its completion and if M is a closed
subspace of X then QM denotes the quotient map from X onto X/M .

We shall use the following quantities:

Definition 2.2 [8, IV.1.5] Let T ∈ LR(X,Y ). We define

Γ ′
0(T ) = inf{‖QFT ‖ : F ∈ F (Y )},

Γ ′(T ) = inf{‖QM JY T ‖ : M ∈ E (˜Y )}.

Now we can state the following result:

Proposition 2.1 Let T ∈ LR(X,Y ) and let K ∈ F (Y ). Then

(i) Γ ′
0(QKT ) = inf{‖QK+FT ‖ : F ∈ F (Y )} = Γ ′

0(T ).
(ii) τ ′

0(QKT ) = sup{ j (T ′|(K+F)⊥) : F ∈ F (Y )} = τ ′
0(T ).

Proof (i) This statement is proved in [8, IV.5.3] and [8, IV.5.6].
(ii) Let K ∈ F (Y ). Then (QKT )′ = T ′ JK⊥ by [8, III.1.6] and dim(D(T ′) ∩

K⊥) = ∞, so that we deduce from the fact that if M ∈ E (X) then F (X/M) =
{QM(M + F) : F ∈ F (X)} that

τ ′
0(QKT ) = sup{ j (T ′ JK⊥|((K+F)/K )⊥) : F ∈ F (Y )}.

But we have that, up to isometry, ((K + F)/K )⊥ is just (K + F)⊥ considered as a
subspace of K⊥. Hence the first equality of (ii) is true. Consequently, τ ′

0(QKT ) =
τ ′
0(T ) since trivially K + F ∈ F (Y ) and (K + F)⊥ ⊂ F⊥ ∩ K⊥. Therefore (ii)
holds. �
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Proposition 2.2 Let T be closable. Then for f ∈ {Γ ′
0, Γ

′, τ ′
0} we have f (T ) =

f (T ).

Proof The result for the cases f ∈ {Γ ′
0, Γ

′} is proved in [8, IV.5.7]. For f =
τ ′
0, the desired equality follows from the definitions observing that T ′ = T

′
by

[8, III.1.3]. �

Definition 2.3 [8, V.1.1] We say that T ∈ LR(X,Y ) is lower semi-Fredholm,
denoted T ∈ F−(X,Y ), if its conjugate is upper semi-Fredholm, that is, there exists
a finite codimensional subspace M of Y ′ for which T ′|M is injective and open.

Proposition 2.3 [8, V.5.2 and V.5.5] We have

(i) T ∈ F−(X,Y ) if and only if dim Y/R(T ) < ∞ and γ (T ′) > 0.
(ii) T /∈ F−(X,Y ) if and only if there is no finite dimensional subspace F of Y for

which T ′|F⊥ is bounded below if and only if for each ε > 0 there exists a compact
operator K ∈ LR(X, ˜Y ) with norm not exceeding ε such that D(T ) ⊂ D(K )

and dim ˜Y/R(JY T + K ) = ∞.

Proposition 2.4 [8, V.5.14 and V.5.17] We have

(i) There is F ∈ F (Y ) such that QFT is precompact if and only if Γ ′
0(T ) = 0.

(ii) If dim T (0) < ∞, then T ∈ F−(X,Y ) if and only if Γ ′(T ) > 0.

The following result concerning the behaviour of the quantities Γ ′
0, Γ

′ and τ ′
0 with

respect to the product of the linear relations is fundamental to obtain the main result
of this section (Theorem2.1 below).

Proposition 2.5 Let T ∈ LR(X,Y ) be closed and let S ∈ LR(Y, Z) be continuous
such that R(T ) ⊂ D(S) and S(0) is finite dimensional. If f ∈ {Γ ′, Γ ′

0, τ
′
0}, then

f (ST ) ≥ f (S)τ ′
0(T ) (0 · ∞ excluded).

Proof We may clearly assume that f (ST ) < ∞ and that f (S) and τ ′
0(T ) are both

positive numbers.
We first note that

f (S) < ∞, dim D(S′) = ∞ and SK ∈ F (Z)whenever K ∈ F (Y ). (1)

Indeed, that f (S) < ∞ follows immediately from the definitions observing
that S and S′ are both continuous [8, III.1.9]. Moreover, by virtue of [8, III.2.3],
dim D(S′) = dim S(0)⊥ = dim(Z/S(0))′ = ∞.

Finally, the property SK ∈ F (Z) if F ∈ F (Y ) follows from [8, I.2.14] combined
with the fact that S(0) is finite dimensional.

Let us consider two cases for S:
Case 1: S is bounded.
We first see that

S′ is single valued and (ST )′ = T ′S′. (2)
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Indeed, since D(S) = Y we have that S′(0) = D(S)⊥ ([8, III.1.4]) = {0} so that
by virtue of [8, I.2.9], S′ is single valued. Furthermore the hypothesis D(S) = Y
implies that D(ST ) is just D(T ) and thus the assumption T = T combined with [3,
3.2] leads to (ST )′ = T ′S′, as desired.

Now, select K ∈ F (Y ) arbitrarily. Since D(S) = Y , by virtue of [8, III.1.13] and
[8, I.2.11] we get

S′(SK )⊥ = R(S′) ∩ (S−1SK )⊥

= R(S′) ∩ [{K ∩ D(S)} + N (S)]⊥ = R(S′) ∩ K⊥ ∩ N (S)⊥.

But, by [8, II.3.14], S is closed and so we deduce from [8, III.1.13] that N (S) =
R(S′)� and hence R(S′) ⊂ N (S)⊥. Consequently

S′(SK )⊥ = R(S′) ∩ K⊥. (3)

If f = τ ′
0: Let ε be arbitrarily chosen in the interval 0 < ε < τ ′

0(S). By
Proposition2.1(ii) we may choose F ∈ F (Z) such that

SK ⊂ F, 0 < τ ′
0(S) − ε = τ ′

0(QSK S) − ε < j (S′|F⊥). (4)

In consequence, as F⊥ ⊂ (SK )⊥, S′|F is injective by (4) and recalling that S′ is
single valued by (2), it follows from (1), (2), (3) and (4) that

τ ′
0(ST ) = sup{ j ((ST )′|A⊥) : A ∈ F (Z)}

= sup{ j (T ′S′|A⊥) : A ∈ F (Z)} ≥ j (T ′S′|F⊥)

= inf{‖T ′S′u′‖/‖u′‖ : 0 �= u′ ∈ (D(T ′S′) ∩ F⊥)}
= inf{(‖T ′(S′u′)‖/‖S′u′‖)(‖S′u′‖/‖u′‖) : 0 �= u′ ∈ (D(T ′S′) ∩ F⊥)}
≥ inf{‖T ′(S′u′)‖/‖S′u′‖ : 0 �= u′ ∈ (D(T ′S′) ∩ F⊥)}

· inf{‖S′u′‖/‖u′‖ : 0 �= u′ ∈ (D(S′) ∩ F⊥)}
≥ inf{‖T ′(S′u′)‖/‖S′u′‖ : 0 �= u′ ∈ (SK )⊥ \ N (S′)}(τ ′

0(S) − ε)

≥ inf{‖T ′w′‖/‖w′‖ : 0 �= w′ ∈ (K⊥ ∩ D(T ′)}(τ ′
0(S) − ε).

Taking the supremum over all K ∈ F (Y ) we get

τ ′
0(ST ) ≥ (τ ′

0(S) − ε)τ ′
0(T )

whence τ ′
0(ST ) ≥ τ ′

0(S)τ ′
0(T ).

If f = Γ ′
0: Let ε > 0. By Proposition2.1(i) we may choose F ∈ F (Z) such that

F ⊃ K , 0 < ‖QF ST ‖ < Γ ′
0(QSK ST ) + ε = Γ ′

0(ST ) + ε. (5)

Therefore QF ST is continuous and thus, by means of suitable applications of [8,
III.1.6] and [8, II.3.11],
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∞ > ‖QF ST ‖ = ‖(QF ST )′‖
= ‖(ST )′ JF⊥‖ = ‖(ST )′ JF⊥‖ ‖J−1

F⊥ ‖
≥ ‖(ST )′ JF⊥ J−1

F⊥ ‖ = ‖(ST )′|F⊥‖.

Therefore

‖QF ST ‖ ≥ ‖(ST )′|F⊥‖. (6)

Observe that ‖QF S‖ > 0 and that S′ is single valued by (2). Hence we deduce
that

‖QF S‖ = ‖S′ JF⊥‖ = ‖S′|F⊥‖. (7)

It now follows from (1), (2), (3), (5), (6) and (7) that

Γ ′
0(ST ) + ε ≥ ‖(ST )′|F⊥‖ = ‖T ′S′|F⊥‖

= sup{‖T ′(S′u′)‖/‖u′‖ : 0 �= u′ ∈ (D(T ′S′) ∩ F⊥)}
= sup{(‖T ′(S′u′)‖/‖S′u′‖)(‖S′u′‖/‖u′‖) : u′ ∈ F⊥ \ N (S′)} ·

· inf{‖T ′(S′u′)‖/‖S′u′‖ : u′ ∈ F⊥ \ N (S′)}
≥ ‖S′|F⊥‖ inf{‖T ′(S′u′)‖/‖S′u′‖ : u′ ∈ (SK )⊥ \ N (S′)}
= ‖QF S‖ inf{‖T ′v′‖/‖v′‖ : 0 �= v′ ∈ S′(SK )⊥ = K⊥ ∩ R(S′)}
≥ Γ ′

0(S) inf{‖T ′w′‖ : w′ ∈ K⊥ ∩ D(T ′), ‖w′‖ = 1}.

Taking the supremum over all K ∈ F (Y ) we obtain that

Γ ′
0(ST ) + ε ≥ Γ ′

0(S)τ ′
0(T )

whence Γ ′
0(ST ) ≥ Γ ′

0(S)τ ′
0(T ) as ε > 0 was arbitrary.

Case 2: S is continuous with R(T ) ⊂ D(S) and dim S(0) < ∞.
Denote T1 := T |D(ST ). Then we have that

ST1 = ST . (8)

Indeed, D(ST1) = D(ST ) since D(ST1) := {x ∈ D(T1) = D(ST ) : T x ∩
D(S) �= ∅}, D(ST ) = {x ∈ D(T ) : T x ∩ D(S) �= ∅} and D(S) = D(S).

Clearly ST ⊂ ST1 so that ST1(0) ⊃ ST (0). On the other hand, let z ∈ ST1(0), that
is, (0, z) ∈ G(ST1), so that (0, y) ∈ G(T1) and (y, z) ∈ G(S) for some y ∈ D(S) =
D(S) and since T (0) ⊂ R(T ) ⊂ D(S) by hypothesis and S is closable by virtue of
[8, III.5.1] we deduce that (0, y) ∈ G(T ) and (y, z) ∈ G(S) and hence z ∈ ST (0).
Now, these properties together with [8, I.2.10] lead to (8).

If f = τ ′
0: Since τ ′

0(T ) > 0 is T ∈ F−(X,Y ) by Proposition2.3(ii) and thus we
infer from Proposition2.3(i) that R(T ) is a closed finite codimensional subspace
of Y and since R(T ) is contained in D(S) by assumption we have that D(S) is also
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a closed finite codimensional subspace of Y . Let P denote the bounded projection
of Y onto D(S) considered as an element of LR(Y, D(S)). It then follows by the
Case 1 for f = τ ′

0 and Proposition2.2 that

τ ′
0(ST ) = τ ′

0(ST1) ≥ τ ′
0(SJD(S))τ

′
0(PT1) ≥ τ ′

0(S)τ ′
0(P)τ ′

0(T1) ≥ τ ′
0(S)τ ′

0(T )

as desired.
Note that trivially T1 ⊂ T so that T−1 ⊂ T−1

1 and hence we conclude from the
definition of the adjoint of a linear relation that T ′ ⊂ T ′

1 and consequently τ ′
0(T1) ≥

τ ′
0(T ). Moreover as N (P ′) = R(P)⊥ (see [8, III.1.4]) is τ ′

0(P) ≥ 1.
If f = Γ ′

0: Arguing as when f = τ ′
0, it follows from the Case 1 for f = Γ ′

0 that

Γ ′
0(ST ) ≥ Γ ′

0(S)τ ′
0(T )

as desired.
We finally consider the case f = Γ ′, which includes all remaining cases: Fix

M ∈ E (˜Z). Since the result has been proved for f = Γ ′
0, we have that

Γ ′
0(QM JZ ST ) ≥ Γ ′

0(QM JZ S)τ ′
0(T ).

Taking the infimum over M ∈ E (˜Z) and observing that

Γ ′(T ) = inf{Γ ′
0(QM JY T ) : M ∈ E (˜Y )}

(see [7, IV.5.5]) we conclude that Γ ′(ST ) ≥ Γ ′(S)τ ′
0(T ). �

We are now in a position to prove the main result of this paper.

Theorem 2.1 Let T ∈ LR(X,Y ) with dim D(T ′) = ∞. The following statements
are equivalent:

(i) T ∈ F−(X,Y ).
(ii) There exists a positive constant c such that for each normed space Z, each f ∈

{Γ ′, Γ ′
0} and each continuous linear relation S ∈ LR(Y, Z)with R(T ) ⊂ D(S)

and S(0) finite dimensional, we have f (ST ) ≥ c f (S).

Proof We first note that from the definition of lower semi-Fredholm linear relation
and the fact that T ′ = T

′
[8, III.1.3] we have that T is F− if and only if so is T .

Furthermore we note that T (0) ∈ E (Y ). Indeed, by means of [8, III.1.4], we have
that

D(T ′) ⊂ (D(T ′)�)⊥ = (T (0))⊥ = (Y/T (0))′

and hence T (0) is a closed infinite codimensional subspace of Y whenever
dim D(T ′) = ∞.

(i) ⇒ (i i) Assume that T ∈ F−(X,Y ). Then the closure of T is lower semi-
Fredholm and thus τ ′

0(T ) > 0 by Proposition2.3(ii).
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Let us consider two cases for τ ′
0(T ):

Case 1: τ ′
0(T ) < ∞. Let c := τ ′

0(T ). Then the validity of (ii) follows immediately
from the above Proposition2.5 by noting that R(T ) ⊂ R(T ).

Case 2: τ ′
0(T ) = ∞. Let c be any positive real number. Without loss of generality

wemay suppose that f (S) > 0.As S is continuous, f (S) < ∞. Now, since f (ST ) ≥
f (S)τ ′

0(T ) = ∞ by Proposition2.5, assertion (ii) holds for c.
(i i) ⇒ (i) Suppose that T /∈ F−(X,Y ). Then dim D(T ′) = ∞ and it follows

from Proposition2.3(ii) that there exists a compact operator K ∈ LR(X, ˜Y ) such

that R(JY T − K ) is a closed infinite codimensional subspace of ˜Y . Put M :=
R(JY T − K ).

Then it is clear that QM JY T = QMK where QMK is compact and single valued.
Hence we have the chain of implications QM JY T compact ⇒ Γ ′

0(QM JY T ) = 0
(Proposition2.4(i)) ⇒ Γ ′(QM JY T ) = 0. Therefore, there exists M ∈ E (˜Y ) such
that f (QM JY T ) = 0. On the other hand, since trivially QM JY is a lower semi-
Fredholmoperatorwehave that τ ′

0(QM JY ) > 0byProposition2.3(ii) and thusPropo-
sition2.4(ii) ensures that Γ ′(QM JY ) > 0 and hence Γ ′

0(QM JY ) > 0. Consequently
(ii) fails. �
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Some Examples of First Exit Times

Jesús Antonio Álvarez López and Alberto Candel

To Pedro Gil, in memoriam.

Abstract The purpose of this article is to compute the expected first exit times
of Brownian motion from a variety of domains in the Euclidean plane and in the
hyperbolic plane.

1 Introduction

The theory of Brownian motion on Riemannian manifolds allows probabilistic inter-
pretations of solutions to second order differential equations on them via the so called
Dynkin formula. One example of such equation and solution is the following: if D
is a regular domain on a Riemannian manifold M with attending Laplace operator
�, then the expected value of the “first exit time” from D for Brownian paths in the
Wiener space of M , if finite, is the minimal solution to the differential equation

� f ≡ −1

on D, with f > 0 on D and f ≡ 0 on ∂D. The number ρ(D) = 4
∫
D f is called the

torsional rigidity of D, a sort of isoperimetric constant whose study originated with
Saint-Venant memoir [3].

Ghys [5] gave a spectacular application of first exit times to the topology and
dynamics of foliated spaces. The examples and calculations presented here are the
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base of some exercises in [2, Exercises 2.7.14, C.9.4 and C.9.5], and were motivated
by a discussion on Ghys theorem.

2 Generalities on First Exit Times and on Harmonic
Functions

More details about first exit times and probabilistic solutions to differential equations
can be found in Dynkin [4]; the theory needed for what follows is detailed in [2,
Appendix C].

Consider a Riemannian manifold, M , with attending Laplacian �. These data
permit to construct Brownian motion on M , a continuous-time stochastic process
taking place in the space of continuous paths ω : [0,∞) → M that is regulated by a
set of probability measures {Px | x ∈ M} (with Px supported on paths {ω(0) = x})
which are constructed via the heat kernel density of the Laplacian �.

Solutions to a variety of differential equations on M admit probabilistic interpre-
tations via Brownian motion. One such example is the following. Let D ⊂ M be a
regular domain (a connected open set with piecewise smooth boundary), and con-
sider the first exit time TD from D, the function on paths given by TD(ω) = inf{t >

0 | ω(t) /∈ D} (with the standard convention that the infimum of the empty set is∞).
The expected first exit time with respect to the Brownian measures {Px } defines

a function E•[TD] : x �→ Ex [TD] = ∫
TD(ω) · Px (ω) which is 0 for all x /∈ D, and

which is either Ex [TD] < ∞ for all x ∈ D, or Ex [TD] ≡ ∞ for all x ∈ D.
If D is a relatively compact domain, then Ex [TD] < ∞ for all x ∈ D. In this case,

Dynkin’s formula shows that this function is a solution to the differential equation
problem (Saint-Venant problem)

⎧
⎨

⎩

� f ≡ −1 on D,

f > 0 on D, and
f ≡ 0 on ∂D.

(1)

Because of the maximum modulus principle for harmonic functions (to the effect
that a function that is harmonic on a relatively compact domain and continuous on its
closure must attain its extreme values on the boundary of the domain), the solution
to the differential equation (1) is unique: the difference of two solutions is harmonic
and equal to 0 on ∂D, so it must be 0 on all of D. Therefore, if D is relatively
compact, the expected first exit time from D is the unique solution to the differential
equation (1).

If D is not relatively compact, then E•[TD]may or may not be a finite function. At
any rate, there is an increasing sequence of relatively compact domains D1 ⊂ D2 ⊂
. . . ⊂ D that exhaust D. The first exit time functions, Tn , from Dn increase pointwise
to the first exit time function TD and thus the monotone convergence theorem implies
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that the sequence of expected first exit times E•[Tn] increases to the expected first
exit time E•[TD].

Furthermore, if Ex [TD] < ∞ for one x ∈ D, then E•[TD] < ∞ everywhere and
is a solution to Eq. (1). In fact, if the expected first exit time f = E•[TD] < ∞, then
f is the minimal solution to that equation on D. Indeed, from the above paragraph,
you infer that f = E•[TD] is given by

f = sup
B⊂D

fB

where {B ⊂ D} is the set of relatively compact regular domains contained in D,
and where fB = E•[TB] is the expected first exit time from B. If g is any positive
function on D such that �g = −1 and g ≡ 0 on ∂D, then g ≥ f because, if that
was not the case, then g < f on an open subset of D, and so it follows from the
definition f = supB fB that there exists a relatively compact domain B ⊂ D where
g < fB . Then fB − g is harmonic and > 0 on B but ≤ 0 on ∂B, in contradiction to
the maximum modulus principle.

Moving on to a brief review of harmonic functions, besides the alreadymentioned
maximum modulus principle, two other well-known facts will be repeatedly used
below.Both concern harmonic functions ondomains inR2 endowedwithRiemannian
metrics conformal to the standard metric, that is, of the form ϕ(dx ⊗ dx + dy ⊗
dy). The second fact is then that, since the Laplacian for this metric is �ϕu =
(1/ϕ)

(
uxx + uyy

)
, a function u is harmonic on a domain of this type if and only if

u is harmonic in the classical sense that uxx + uyy = 0 all throughout the domain.
Because of this, if φ is a holomorphic function with range in the domain of the
harmonic function u, then the composite u ◦ φ is harmonic in the domain of φ, as
is easily verified via the chain rule, utilizing the harmonicity of u and the Cauchy–
Riemann equations for φ.

The third fact about harmonic functions is deeper and concerns their integral
representations. To each function u ≥ 0 that is harmonic on the right half plane
{x > 0} there corresponds a measure μ on the line  = {(0, t) | −∞ < t < ∞} and
a constant C ≥ 0 so that

u(x, y) = Cx +
∫


x

x2 + (y − t)2
· μ(t),

for all (x, y) with x > 0.
In particular, if u ≥ 0 is harmonic and extends continuously by 0 to all but finitely

many points t1, t2, . . . , tn on the line x = 0, then the measure μ is supported on the
set {tk}, and u may be expressed as

u(x, y) = C∞x +
n∑

k=1

Ckx

x2 + (y − tk)2
, (2)

for some constants C∞,C1,C2, . . . ,Cn ≥ 0.
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3 Domains in the Euclidean Plane

In Cartesian coordinates (x, y) ∈ R
2, the Euclidean metric is dx ⊗ dx + dy ⊗ dy,

and the Laplacian is given by

�e f = fxx + fyy .

In polar coordinates (r, θ), the Laplacian is given by

�e f = frr + 1

r
fr + 1

r2
fθθ . (3)

3.1 Domain Bounded by an Ellipse

Let D be the domain enclosed by an ellipse in the Euclidean plane with axes of
lengths a, b > 0 and center (h, k). Up to isometry (a rotation), D consists of all

points (x, y) such that
(x − h)2

a2
+ (y − k)2

b2
< 1.

The expected first exit time from D is given by the function

f (x, y) = a2b2

2a2 + 2b2

(

1 − (x − h)2

a2
− (y − k)2

b2

)

. (4)

Indeed, f is positive on D, identically 0 on the ellipse ∂D, and satisfies the
differential equation � f = −1 on D. Therefore E(x,y)[TD] = f (x, y) because, D
being relatively compact, Eq. (1) has exactly one solution.

3.2 Domain Bounded by a Parabola

Up to isometry, a parabola has an equation of the form y2 = 4px (focus at (p, 0)
and focal distance p), and a convex domain bounded by a parabola is isometric to
the domain, D, consisting of all (x, y) ∈ R

2 such that 4px > y2.

The expected first exit time from D is

E(x,y)[TD] = 2px − y2

2
, (5)

for all (x, y) ∈ D.
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It is plain that f (x, y) = 2px − y2/2 is a solution to Eq. (1) on D, but to prove
that the expected first exit time E(x,y)[TD] = f (x, y) on D requires some extra work
because D is not relatively compact. Let Dn , n > [p], denote the domain enclosed
by the ellipse with foci at (p, 0) and (2n − p, 0) and eccentricity e = 1 − p/n. An
equation for this ellipse is

(x − n)2

n2
+ y2

2p(n − p)
= 1.

For n > [p], the domains Dn ⊂ Dn+1 ⊂ . . . ⊂ D increase to the domain D, and so
the first exit times functions Tn of Dn increase pointwise to the first exit time function
TD . By the dominated convergence theorem, E(x,y)[Tn] converges to E(x,y)[TD]. The
expected first exit time from Dn was shown to be (4)

E(x,y)[Tn] = n2 p(n − p)

2p(n − p) + n2

(

1 − (x − n)2

n2
− y2

2p(n − p)

)

= − p(n − p)

2p(n − p) + n2
x2 + 2np(n − p)

2p(n − p) + n2
x − n2

4p(n − p) + 2n2
y2.

It follows immediately that E(x,y)[Tn] → 2px − y2/2, as n → ∞, which is the
expression for the solution to Eq. (1) shown at (5), uniformly on compact subsets of
D.

Any solution to Eq. (1) is of the form E•[TD] + u, where u is harmonic and ≥ 0

on D and identically 0 on ∂D. The function φ : z �→ cosh
π

2

√
z

p
− 1 is a conformal

representation of D onto the right half plane �z > 0. If u is harmonic and ≥ 0 on D
and identically 0 on ∂D, then u ◦ φ−1 is harmonic and≥ 0 on�z > 0 and identically
0 on �z = 0, so, by (2), u ◦ φ−1(w) = C�w, for some C ≥ 0, or u(z) = C�φ(z)
after the switch w = φ(z).

That is, any solution to Eq. (1) on D is given by (using complex coordinates
z = x + yi):

z �→ 2p�(z) − z2
2

+ C�
(

cosh
π

2

√
z

p
− 1

)

, (6)

for some constant C ≥ 0.

3.3 Domain Between Two Concentric Circles

Let D be a domain bounded by two concentric circles of radii a < b. Rotations about
the common center of the circles are isometries that leave D invariant. Therefore the
expected first exit time, f = E•[TD], from D, in polar coordinates (r, θ) about its
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center is a function of r only, and so, in those coordinates, the equation �e f =
−1 becomes, by (3), f ′′(r) + (1/r) f ′(r) = −1 in (a, b). The general solution is
f (r) = −r2/4 + A log r + B, and the boundary conditions f (a) = f (b) = 0 make

A = b2 − a2

4(log b − log a)
and B = a2 log b − b2 log a

4(log b − log a)
.

3.4 Angular Domain

Let V ⊂ R
2 be an angular domain of angle α. In polar coordinates, V is, up to

isometry, the set of (r, θ) with r > 0 and θ ∈ (−α/2, α/2).

The expected first exit time from an angular domain V of angle α is infinite if
α ≥ π/2, and is finite if α < π/2 and given by

E(r,θ)[TV ] = r2

4

(
cos 2θ

cosα
− 1

)

.

Because an angular domain is not a relatively compact domain, there is no guar-
antee of existence or of uniqueness of solutions to Eq. (1). The expected first exit
time, f = E•[TV ], from V has two other properties that, if finite, will characterize
it uniquely among the solutions to that equation.

(a) The expected first exit time function is homogeneous of order 2. Indeed, for
λ > 0, the mapping (x, y) �→ (λx, λy) is a dilation of the Euclidean metric that
leaves V invariant. The Euclidean heat kernel density at λp = (λx, λy) at time t
deposited in λp′ = (λx ′, λy′) is the Euclidean heat kernel density at p = (x, y)
at time t/λ2 deposited in p′ = (x ′, y′):

1

4π t
e−|λp−λp′ |2/4t d(λx ′)d(λy′) = 1

4π(t/λ2)
e−|p−p′ |2/4(t/λ2)dx ′dy′.

The effect of such dilation is to rescale Brownian motion times by a factor of
λ2, and so the expected first exit time f must satisfy

f (λx, λy) = λ2 f (x, y);

in polar coordinates
f (λr, θ) = λ2 f (r, θ).

(b) In polar coordinates, the expected first exit time satisfies f (r, θ) = f (r,−θ)

because reflection about the axis of V is an isometry that leaves V invariant.
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Consequently, by (a), the expected first exit time f is completely determined by
the values f (1, θ), and thus it can be written as f (r, θ) = r2h(θ), where h is positive
and symmetric on (−α/2, α/2). Writing out the differential equation �e f = −1 for
f (r, θ) = r2h(θ) in polar coordinates (3) results in the followingdifferential equation
for h on (−α/2, α/2):

h′′(θ) + 4h(θ) = −1. (7)

The boundary condition f ≡ 0 on ∂C results in the boundary condition h(±α/2) =
0. Note also that h > 0 and that, by (b), h is symmetric about 0 ∈ [−α/2, α/2].

The general solution to Eq. (7) is of the form

h(θ) = A cos 2θ + B sin 2θ − 1/4.

The symmetry of h about 0 in [−α/2, α/2] implies that B = 0, and the initial con-
ditions impose that A = 1/(4 cosα). Therefore,

h(θ) = [cos 2θ − cosα]/4 cosα.

Because this holds for all θ between −α/2 and α/2, and h > 0, you must have
cosα > 0 and with the same sign as cos 2θ , and so α < π/2. Writing f (r, θ) =
r2h(θ) confirms the statement at the beginning of this section.

In rectangular coordinates, an angular domain of angleα < π/2 is isometric to the
domain, V , consisting of all (x, y) such that x > m|y|, where 0 < m = tan α/2 < 1.

The expected first exit time from V = {(x, y) | x > m|y|}, with 0 < m < 1,
is

E(x,y)[TV ] = 1

2 − 2m2

(
m2x2 − y2

)
. (8)

Any solution, g, to Eq. (1) on V is given by

g(x, y) = 1

2 − 2m2

(
m2x2 − y2

) + C(x2 + y2)π/α cos
π arctan(y/x)

α
,

for some constant C ≥ 0.

The second summand in the expression for g is justified in a manner similar to
that of the case of the parabola at the end of Sect. 3.2. In this case, you consider the
conformal representation, φ, of the angular domain V above onto the right half plane
given by φ(z) = zπ/α , and then you use (2) to show that any non-negative harmonic
function on V that is identically 0 on ∂V is of the form z �→ C�(zπ/α), which is as
stated above.
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3.5 Domain Bounded by a Hyperbola

3.5.1 Convex Domain

Let D be a convex domain in R
2 bounded by a hyperbola. Up to isometry, this

hyperbola is given by an equation of the form (x/a)2 − (y/b)2 = 1, with a, b > 0,
and D consists of all (x, y) such that (x/a)2 − (y/b)2 > 1 and x > 0.

If b ≥ a, then the expected first exit time from D is infinite.

Indeed, D contains the angular domain V bounded by the lines y = ±m(x − a)

with m = b/a and x > a, and so the expected first exit times E•[TD] ≥ E•[TV ]. If
b ≥ a, then V has angle 2 arctanm ≥ π/2, and so, as established in Sect. 3.4, the
expected first exit time from V is infinite.

If b < a, then the expected first exit time from D is given by the function

g(x, y) = 1

2 − 2m2

(
m2x2 − y2 − b2

)
,

for all (x, y) ∈ D.

It is plain that g is a solution to Eq. (1). If g is not the expected first exit time
from D, then it is not the minimal solution to (1), and so the expected first exit time
from D is of the form E•[TD] = g − u, where u is a positive, harmonic function on
D satisfying u ≡ 0 on ∂D.

Ifm = b/a < 1, the expected first exit time E•[TV ] is finite and given by (8) (after
a horizontal shift), and is a minorant for E•[TD] = g − u. Thus

1

2 − 2m2

(
m2(x − a)2 − y2)

) ≤ 1

2 − 2m2

(
m2x2 − y2 − b2

) − u(x, y),

or

u(x, y) <
b2

1 − m2

( x

a
− 1

)
, (9)

for all (x, y) in V .
You will now reach a contradiction as follows. The function φ given by (appro-

priate branches taken)

φ(z) = c cosh

(
2μ

π
arcosh z

)

= c

2

(
(z +

√
z2 − 1)2μ/π + (z +

√
z2 − 1)−2μ/π

)
,
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where μ = arctanm and c = √
a2 + b2 the linear eccentricity, is a conformal rep-

resentation of the right half plane {x = �z > 0} onto D which takes the bound-
ary {x = �z = 0} onto ∂D and the ray {x ≥ 0} onto the ray {x ≥ a}. (As an
aid in visualizing this mapping, you recall that cosh takes the horizontal line
through βi (0 < β < π/2) onto the right branch of the hyperbola of equation
x2/ cos2 β − y2/ sin2 β = 1, cf. [1, 3.4.2] or [6] for more background.)

Then, on the one hand, you deduce from Inequality (9) that

u(φ(x)) <
b2

1 − m2

(
φ(x)

a
− 1

)

,

because φ(z) is real for z real, and from this inequality that lim
x→∞

u(φ(x))

x
= 0,

because, for real x > 1, φ(x) = c

2

(
(x + √

x2 − 1)2μ/π + (x + √
x2 − 1)−2μ/π

)
,

hence φ(x) = O(x2μ/π ), and so lim
x→∞

φ(x)

x
= 0 because μ = arctanm < π/2.

On the other hand, the composite function u ◦ φ is positive and harmonic on�z >

0 and is identically 0 on the boundary �z = 0. Therefore, by (2), u ◦ φ(x, y) = Cx ,

for some constant C > 0, and so lim
x→∞

u(φ(x))

x
= C > 0.

3.5.2 Concave Domain

A (concave) domain bounded by the two branches of a hyperbola is isometric to the
domain D = {(x, y) ∈ R

2 | x2/a2 − y2/b2 > −1}, for some a, b > 0. Letm = b/a
and μ = arctanm. If m ≥ 1, then the expected first exit time from D is infinite
because D contains an angular domain of angle 2μ ≥ π/2.

If b < a, the expected first exit time from D is given by the function

g(x, y) = 1

2 − 2m2

(
m2x2 − y2 + b2

)
, (10)

for all (x, y) ∈ D.

Certainly, g is a solution to Eq. (1) on D, so g = E(x,y)[TD] + v, where v is ≥ 0
and harmonic on D and extends continuously to 0 on ∂D.

The domain D contains the angular domains V− = {x < 0 & b2x2 > a2y2}
and V+ = {x > 0 & b2x2 > a2y2}. These domains have angle 2μ < π/2, so their

expected first exit time is finite and given by f±(x, y) = a2b2

2a2 − 2b2
(
b2x2 − a2y2

)

(same expression, different domain). By comparison,
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a2b2

2a2 − 2b2
(
b2x2 − a2y2

) ≤ a2b2

2a2 − 2b2
(
b2x2 − a2y2 + 1

) − v(x, y),

i.e.,

v(x, y) ≤ a2b2

2a2 − 2b2
, (11)

for all (x, y) ∈ V− ∪ V+. In particular, v is bounded on the real axis {y = 0}.
The mapping ψ given by

ψ(z) = c

2

(

z2μ/π − 1

z2μ/π

)

= c sinh
(
log z2μ/π

)
,

where c = √
a2 + b2, is a conformal representation of the right half plane �z > 0

onto D that takes the positive imaginary axis z > 0 to the upper branch of the
hyperbola bounding D, takes the negative imaginary axis to the lower branch of that
hyperbola, and takes the positive real axis onto the real axis (cf. [1, 3.4.2] or [6]
for help on constructing this mapping). Therefore, the composite function v ◦ ψ is a
positive, harmonic function on�z > 0 and that extends continuously by 0 to z �= 0
on the right half plane. Therefore, by (2), v ◦ ψ is of the form

v ◦ ψ(z) = A�z + B�(1/z)

for some constants A, B ≥ 0. Because of (11), the composite v ◦ ψ must be bounded
on the positive real axis z = 0, and therefore both A = 0 and B = 0, that is, v ≡ 0,
which shows that the expected first exit time E•[TD] = g as was stated at (10).

4 Domains in the Hyperbolic Plane

The unit diskmodel for the hyperbolic plane is realized by the unit disk {x2+y2 < 1}
in R2, endowed with the metric 4(1 − x2 − y2)−2 (dx ⊗ dx + dy ⊗ dy).

In geodesic polar coordinates (r, θ) about a point, the hyperbolic metric is dr ⊗
dr + sinh2 rdθ ⊗ dθ , and the corresponding Laplacian is

�h f = frr + 2 cotanhr fr + fθθ . (12)

The right half plane model for the hyperbolic plane is realized on the domain
{x > 0} with the metric x−2(dx ⊗ dx + dy ⊗ dy), with Laplacian

�h f = x2( fxx + fyy). (13)

In Euclidean polar coordinates (r, θ), with r > 0 and −π/2 < θ < π/2, the Lapla-
cian is

�h f = (cos2 θ)
(
r2 frr + r fr + fθθ

)
. (14)
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4.1 Hyperbolic Disks

Let D be a disk of radius R in the hyperbolic plane. In geodesic coordinates
(r, θ) based at the center of D, the Laplacian is �h f = frr + 2 cotanhr fr + fθθ .

The expected first exit time from D is invariant by (hyperbolic) rotations about
the center of D, therefore f = f (r) is a function of the distance r only (the
hyperbolic distance to the center of the disk), and so the equation �h f = −1 on
D becomes, by (12), f ′′(r) + 2 cotanh(r) f ′(r) = −1 on (0, R), with the bound-
ary conditions that lim

r→0
f (r) exists and that f (R) = 0. The general solution is

f (r) = −(r/2) cotanh r + A cotanh r + B, and the boundary conditions imply that
A = 0 and that B = (R/2) cotanh R.

The expected first exit time from a hyperbolic disk of radius R is

f (r, θ) = − r

2
cotanh r + R

2
cotanh R. (15)

4.2 Horodisks

Ahorodisk is a domain in the hyperbolic plane that may be visualized as a hyperbolic
diskwith center at a point on the ideal boundary of the hyperbolic plane.Any horodisk
is isometric to the domain, D, in the right half plane model consisting of the points
(x, y) with x > R, for some constant R > 0.

The expected first exit time from the horodisk D = {x > R} is given by

E(x,y)[TD] = log
x

R
. (16)

The expected first exit time, f = E•[TD], from Dmust be invariant under vertical
translations because these are hyperbolic isometries that leave D invariant; that is,
f (x, y + t) = f (x, y) for all t , or f (x, y) = f (x) for all y. Given this, the equa-
tion �h f = −1, with f ≡ 0 on x = R, reduces to f ′′(x) = −x−2 on (R,∞), with

f (R) = 0, that is f (x, y) = log
x

R
, as advertised at (16).

4.3 Neighborhoods of Geodesics

A neighborhood, D, of a geodesic in the hyperbolic plane is determined, up to
isometry, by its radius: D = D(R). In the right half plane model and in Euclidean
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polar coordinates (r, θ) as in (14), the geodesic is θ = 0, and D(R) is the set of all

(r, θ) with r > 0 and −α < θ < α, where log
cosα

1 − sin α
= R.

Because the mapping (r, θ) �→ (λr, θ) is an isometry of the hyperbolic plane that
preserves D (it is a hyperbolic translation along the geodesic θ = 0), the expected
first exit time, f = E•[TD], must satisfy f (r, θ) = f (λr, θ) for all λ > 0. That is,
f (r, θ) = f (θ) is a function of θ only. So writing out the equation �h f = −1 in
coordinates (r, θ), results in, cf. (14), f ′′(θ) = −1/ cos2 θ . The general solution is
f (θ) = log cos θ + Aθ + B. The expected first exit time is invariant under reflection
about θ = 0, so the constant A = 0, and the boundary condition f (α) = 0 forces
B = − log cosα.

The expected first exit time from D = D(α) is given by

f (r, θ) = log
cos θ

cosα
.

Any solution to Eq. (1) on D is of the form

f (r, θ) +
(

Arπ/2θ + B

rπ/2θ

)

cos
πθ

2α
,

for some constants A, B ≥ 0.

Indeed, the composite of a non-negative harmonic function, u, on D that is 0 on
the boundary ∂D and the conformal representation of the right half plane {x > 0}
onto D given by φ : (r, θ) �→ (r2α/π , 2α/πθ) is a non-negative harmonic function,
u ◦ φ, on the right half plane that is identically 0 on the boundary θ = ±π/2, except
perhaps at the origin. By (2), such function is of the form (r, θ) �→ (Ar + B/r) cos θ ,
for some constants A, B ≥ 0.

4.4 Neighborhood of Ideal Point

You may adjust the calculation in the previous section to cover the case of a one-
sided neighborhood of a geodesic. In Euclidean polar coordinates as above, the
one-sided neighborhood of radius R is isometric to the domain D = D(R) of all
(r, θ) with r > 0 and 0 < θ < α(R), with α(R) as in the first paragraph of Sect. 4.3.
The expected first exit time from D(R) is

E(r,θ)[TD(R)] = log cos θ − θ

α
log cosα.
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A neighborhood of an ideal point is isometric to the domain D(R) when R =
∞, or α = π/2. Hence, the expected first exit time from such domain is infinite
because there is no positive solution to the differential equation f ′′(θ) = −1/ cos2 θ

on (0, π/2) with boundary conditions f (0) = f (π/2) = 0.
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Jordan Systems: A Search for the Exceptional

José A. Anquela and Teresa Cortés

Abstract From the problem posed in 1934 about the possibility of generalizing
the mathematical framework of Quantum Mechanics, we give an overview of the
algebraic theory of Jordan systems.

1 The Origin

In 1934, Jordan, von Neumann and Wigner introduced in [8] the notion of Jordan
algebra in an attempt to generalize the usual approach to Quantum Mechanics.

In Quantum Mechanics, observables are represented by self adjoint linear oper-
ators in a Hilbert space. To simplify, we can go to a finite dimensional setting so
that observables are given by symmetric matrices. Given two symmetric matrices
A, B ∈ Mn(R), the usual matrix product AB need not be a symmetric matrix. The
way to obtain again a symmetric matrix is given by the symmetrized product

A ◦ B = 1

2
(AB + BA).

The idea of [8] was finding the relevant properties of the symmetrized product to
define a new algebraic structure which would provide new examples, different from
that of symmetric matrices (or self adjoint liner operators), which could be used to
obtain a generalization or an alternative to Quantum Mechanics.

They decided that there were two relevant properties of the product ◦: one was
the obvious commutativity A ◦ B = B ◦ A, and the other one was the less obvious
identity (

(A ◦ A) ◦ B
)◦A = (A ◦ A) ◦ (A ◦ B),
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later named the Jordan identity.

Definition 1.1 A Jordan algebra over a field K of characteristic not two is a
K -algebra (J, ·) satisfying:

(J1) x · y = y · x , (J2) (x2 · y) · x = x2 · (y · x),
for any x, y ∈ J , where x2 stands for x · x .

In [8], the following classification was obtained:

Theorem 1.1 If J is a simple, finite dimensional, formally real Jordan R-algebra,
then J is isomorphic to one of the following:

(i) J (Q) = R + V the Jordan algebra of a quadratic form on a finite dimensional
real vector space V ,

(ii) Hn(R), Hn(C), or Hn(Q), for a positive integer n,
(iii) H3(O),

where C stands for the algebra of complex numbers, Q is the Hamilton’s quaternion
algebra, O is the Cayley octonion algebra, and Hn(D) = {A ∈ Mn(D) | Ā′ = A} is
the set of “hermitian”or symmetric elements inMn(D)with respect to the conjugate
transpose involution built out of the natural conjugation in D.

Definition 1.2 The symmetrization A(+) of an associative algebra A is an algebra
over the same linear structure equipped the symmetrized product ◦ defined by x ◦ y =
1
2 (xy + yx), where the product in A is denoted by juxtaposition, as in the example
of symmetric matrices above.

Looking at the list of algebras of Theorem 1.1, it turns out that, with the excep-
tion of (iii), all of them can be imbedded as subalgebras of A(+) for an associative
R-algebra A. In [1], Albert showed that an algebra of the form H3(O) cannot be
imbedded in the symmetrization of an associative algebra. Later on, algebras directly
related to H3(O) would be called Albert algebras.

Definition 1.3 A Jordan K -algebra J is said to be special if there exists an asso-
ciative K -algebra A such that J is a subalgebra of A(+). Otherwise J is called
exceptional.

Theorem 1.1 only shows an exceptional example of dimension 27, which offers
almost no option to built an infinite dimension exceptional Jordan algebra, which
would provide the desired generalization of Quantum Mechanics.

2 From Finite Linear to Infinite Quadratic

After 1934, very relevant algebraists joined the search for exceptional Jordan alge-
bras. The first step was allowing more general fields of characteristic not two, then
studying finiteness conditions less restrictive than finite-dimensionality. As a result
artinian linear Jordan algebras were studied, obtaining nice theorems like the fol-
lowing description (see the Second Structure Theorem, on [7, p. 179]):
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Theorem 2.1 If J is a unital nondegenerate Jordan algebra with minimum condi-
tions over a field K of characteristic not two, then J satisfies one of the following
assertions:

(i) J is a division algebra
(ii) J is isomorphic to J (Q) = F + V , the Jordan algebra of a quadratic form

on vector space V over an extension F of K ,
(iii) J is isomorphic to the Jordan subalgebra of hermitian elements H(A, ∗) of

A(+), where A is an associative artinian algebra with involution,
(iv) J is isomorphic to H3(O, γ ), the albert algebra of three by three hermitian

matrices over the octonions, on an extension of K .

The theorem and its proof were as beautiful as disappointing. Again the only
exceptional object was just a mere scalar extension of the Albert algebra of Theo-
rem 1.1.

Still there was the hope that minimum conditions were not far enough from finite-
dimensionality.Maybe studying purely infinite dimensional objects would bring new
exceptional examples to light.

The knowledge of purely infinite dimensional objects came from the work of
very brilliant Russian mathematicians in what was called “The Russian Revolution
in Jordan Algebras” (see [10]). In particular, a young mathematician called Efim
Zelmanov introduced in the late 1970s and early 1980s two new tools: absorbers
and hermitian polynomials. Both were used to link arbitrary linear Jordan algebras
to special Jordan algebras.

Hermitian polynomials are associative polynomials that produce Jordan products
out of associative symmetric products. This may not sound very impressive, but its
level of complexity is far beyond its degree which is, on the other hand, very big.

The use of these tools gives rise to a description of strongly prime quadratic Jordan
algebras over an arbitrary field of characteristic not two with no restriction on the
dimension, and no minimum condition at all (see [14]):

Theorem 2.2 Let J be a strongly prime Jordan algebra over a field K of charac-
teristic not two. Then either

(i) J is a special Jordan algebra of a quadratic form with central closure of the
form J (Q) as in Theorem 2.1 (ii), or

(ii) J is a special Jordan algebra containing an ideal of the from H(A, ∗), where A
is a prime associative algebra with involution and J is a subalgebra of H(Q(A), ∗),
where Q(A) is the Martindale algebra of quotients of A, or

(iii) J is anAlbert algebra in the sense that its central closure is the 27-dimensional
algebra of three by three symmetric matrices over the octonions.

Once more, no new exceptional objects appeared.
The only remaining possibility of generalization was allowing fields of charac-

teristic two or even arbitrary associative commutative rings of scalars.
In that sense, KevinMcCrimmon proposed the notion of quadratic Jordan algebra

in which dividing by two plays no role. The idea is focusing in U -operators rather
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than in the bilinear product. In that sense, a Jordan algebra J over an arbitrary ring
of scalars Φ, is a Φ-module equipped with two quadratic maps

( )2 : J −→ J and U : J −→ End(J )

satisfying certain identities.
Given an associative algebra A over Φ, one can consider the quadratic sym-

metrization of A, also written A(+), over the same linear structure of Awith quadratic
products given by x2 = xx and Ux y = xyx . It turns out that A(+) is an example of
quadratic Jordan algebra. Moreover, any linear Jordan algebra is a quadratic Jordan
algebra with usual squares, and U operators as defined in [7].

Zelmanov andMcCrimmon worked together to extend [14] to a general quadratic
setting, and succeeded in [12].

By that time, nobody expected new examples of exceptional algebras, and they
did not come out: every exceptional strongly prime quadratic Jordan algebra is a
form of an Albert algebra.

Afterwards, using suitable hermitian polynomials, a structure theoremof primitive
quadratic Jordan algebras was given in [4].

3 Pairs and Triple Systems

In the mean time, applications to Lie algebras, Differential Geometry, Riemannian
symmetric spaces, bounded symmetric domains, Functional Analysis, and Projective
Geometry came up. These applications gave rise to new Jordan objects.

Definition 3.1 (i) A Jordan pair consists of a pair of Φ-modules V = (V+, V−),
with products Qx y ∈ V ε, for any x ∈ V ε, y ∈ V−ε, ε = ±.

(ii) A Jordan triple system J is a Φ-module with products Px y ∈ J , for any
x, y ∈ J .
In both (i) and (ii) the products are quadratic in x and linear in y and satisfy certain
identities (see [9]).

A Jordan algebra gives rise to a Jordan triple system by simply forgetting the
squaring and letting P = U . By doubling any Jordan triple system T one obtains
the double Jordan pair V (T ) = (T, T )with products Qx y = Px y, for any x, y ∈ T .
From a Jordan pair V = (V+, V−) one can get a (polarized) Jordan triple system
T (V ) = V+ ⊕ V− bydefining Px+⊕x−(y+ ⊕ y−) = Qx+ y− ⊕ Qx− y+ (see [9, pages
1.13 and 1.14]).

An associative system (pair or triple system) R gives rise to a Jordan system
R(+) by symmetrization: over the same Φ-module or pair of Φ-modules, we define
Px y = xyx , for any x, y ∈ R, in the case of triple systems, and Qxσ y−σ = xσ y−σ xσ ,
σ = ±, in the pair case. This constructions lead us to suitable notions of speciality
and exceptionality for Jordan pairs and triple systems as in Definition 1.3.
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Not every Jordan triple systems comes from a Jordan algebra by forgetting the
squaring. However, there is an additional important connection between algebras and
pairs and triple systems through the following definitions based on the work of Kurt
Meyberg [13].

Definition 3.2 (i) Given a Jordan triple system J , the homotope J (a) of J at a ∈ J
is the Jordan algebra over the sameΦ-module as J with products x (2,a) = x2 = Pxa,
U (a)

x y = Ux y = Px Pa y, for any x, y ∈ J .
The subset Kera = Ker J a = {x ∈ J | Pax = Pa Pxa = 0} is an ideal of J (a) and

the quotient Ja = J (a)/Kera is called the local algebra of J at a. When J is nonde-
generate, Kera = {x ∈ J | Pax = 0}.

(ii) Given a Jordan pair V , the homotope V σ(a) of V at a ∈ V−σ (σ = ±) is the
Jordan algebra over the same Φ-module as V σ with products x (2,a) = x2 = Qxa,
U (a)

x y = Ux y = QxQa y, for any x, y ∈ J .
The subset Kera = KerV a = {x ∈ V σ | Qax = QaQxa = 0} is an ideal of V σ(a)

and the quotient V σ
a = V σ(a)/Kera is called the local algebra of V at a. When V is

nondegenerate, Kera = {x ∈ V−σ | Qax = 0}.
The above notion of homotope appears naturally when studying primitivity of

Jordan algebras (cf. [4]), and is extensively studied by D’Amour and McCrimmon
in [5]. The idea consists of relating regularity conditions in Jordan pairs and triple
systems to their analogues in Jordan algebras, and then using the structure theory of
Jordan algebras to obtain the corresponding descriptions of pairs and triple systems.
To do that a new tool was developed: homotope hermitian polynomials. These crea-
tures are associative algebra polynomials living in the free special Jordan algebra,
that when evaluated in the homotope of a Jordan pair o triple system, behave as her-
mitian polynomials, i.e., they produce Jordan products out of symmetric associative
ones. The proof of their existence, given in [2, 6], is rather involved (following the
constructive arguments of [2], their degree should be around 2 × 1010).

Among other results, we can look at the following similar descriptions of primitive
Jordan pairs (Corollary 2.7 of [3]) and primitive Jordan triples systems (Corollary
2.8 of [3]).

Theorem 3.1 A Jordan pair V is primitive if and only if one of the following holds:
(i) V is a simple Jordan pair equaling its socle,
(ii) V consists of hermitian elements: V has an ideal 0 �= H0(R, ∗), which is an

ample subpair of a ∗-primitive associative pair R with polarized involution ∗ and
V is a subpair of H(Q(R), ∗), where Q(R) is the Martindale pair of symmetric
quotients of R.

Theorem 3.2 A Jordan triple system T is primitive if and only if one of the following
holds:

(i) T is a simple Jordan triple system equaling its socle,
(ii) T consists of hermitian elements: T has an ideal 0 �= H0(R, ∗), which is an

ample subspace of a ∗-primitive associative triple system R with involution ∗ and
T is a subsystem of H(Q(R), ∗), where Q(R) is the Martindale triple system of
symmetric quotients of R.
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4 A Failure?

Regarding the search for exceptional Jordan algebras in the spirit of [8], taking into
account Theorem 2.2, one could think that the study of Jordan systems has been just
a very long waste of time. However, the structure theory of Jordan systems is far
from being a mathematical failure.

Indeed, the applications to different areas of Mathematics are numerous an rel-
evant. Apart from those mentioned at the beginning of Sect. 3, the structure theory
of strongly prime quadratic Jordan algebras [12] plays a fundamental role in group
theory: Zelmanov solved the Restricted Burnside Problem and got a Fields Medal in
1994.

On the other hand, the study of Jordan systems has produced the development of
beautiful tools and techniques, which have brought joy and fun to those who have
had the opportunity to work in this field

As it frequently happens in Mathematics, and, even in the usual life, reaching the
destination turns less important than enjoying the trip.

5 Disclaimer

This paper is far too simple and undetailed to be considered a survey on the Structure
Theory of Jordan systems. For that, the reader should have a look at [10] or to the
historical survey included in [11].

Those readers eager for details can get their curiosity satisfied with several nice
monographs which can be found in the mathematical literature. Among others, we
recommend [7, 9, 11].

Acknowledgements Partially supported by the SpanishMinisterio de Economía y Competitividad
and Fondos FEDER, MTM2014-52470-P and MTM2017-84194-P.
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The Cyclic Universe: From the Cyclical Night
to the Latest Cosmological Data

Francisco Argüeso, Luigi Toffolatti and Concha Masa

Sol chi non lascia ereditá d’affetti, poca gioia ha dell’urna
Ugo Foscolo “Dei Sepolcri, a Ippolito Pindemonte”, 1807

Abstract The idea of a cyclic universe has stimulated the imagination of philoso-
phers and scientists throughout history. The notion can be traced back to ancient
myths and religions and in the twentieth century it was put forward in a scientific
frame, especially as part of the relativistic models of the universe. Although it is no
longer fashionable and current cosmological data seems to rule it out, it has recently
been proposed in a new guise. The authors present a brief history of the concept of the
cyclic universe in these pages and pay special attention to the latest measurements
of the cosmic microwave background (CMB) that seem essential for discriminating
between a cyclic cosmos and inflationary universes.

1 Cyclic Universe in Myths, Religion and Philosophy

They knew it, the fervent pupils of Pythagoras:
That stars and men revolve in a cycle

This is the beginning of Jorge Luis Borges’ poem ‘The cyclical night’ [3], that
refers, beautifully and evocatively, to this old idea: the universe repeats itself, the
same events happen again and again in a framework of infinite time.
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This notion is fascinating and has often appeared in history from ancient myths
to the most recent theories of scientific cosmology. When did the idea of a cyclic
universe begin? Ironically, if the universe is really recurrent, the idea would not
have had a beginning. To be specific, one of the great advantages of these models
is that they avoid the problem of the origin, the problem of thinking how something
appeared from nothing or from some original state of the cosmos, such as quantum
vacuum in current physics.

But ironies apart, the idea of a cyclic universe dates back to ancient Hindu cos-
mologies. In Hinduism the universe goes through extremely long stages which are
repeated again and again, as in Brahma’s day, the ‘kalpa’ which lasts 4.32 billion
years and is the duration of a cycle of the universe [27]. Then, the universe is destroyed
by fire or water and Brahma rests for a night as long as Brahma’s day. These num-
bers correspond, in order of magnitude, with the 13.8 billion years of our universe,
according to the Big Bang theory.

The universe recreates itself continuously duringBrahma’s life, a life that lasts 100
ofBrahma’s years, each of themequivalent to 3.11 trillion of our years, a figurewhose
order of magnitude is the length of a cycle in the model developed by Steinhardt and
Turok [26], the most recent cyclical model in scientific cosmology, which we will
discuss at the end of this article.

According to Hindu religion, there have been many Brahmas and there will be
more in the future. In these stages, the universe creates itself, destroys itself and
is created again, though it is unclear whether the cycles are similar or there are
variations.

The reader, like ourselves, might be surprised by the coincidence, that we presume
is by chance, between the Hindu figures and those of modern Cosmology. At any
rate, it is amazing that ancient Hindus could express such large numbers and they had
the imagination to think about such extraordinary lengths of time. It reminds us, by
comparison, of the creation of the universe about five thousand years ago according
to Christian genealogies.

Among ancient mythologies, we also find worlds that are created and destroyed
in Aztec religion, where human sacrifices were held in order to placate the gods and
allow the world to continue.

The idea of cycles comes, in a natural way, from the succession of days and nights,
the phases of the moon, the seasons, etc. Some civilizations have extrapolated the
observations of continuous repetitions to the world as a whole.

We find our next cyclical model in Greek philosophy and although we expected
to cite Pythagoras, given the reference in Borges’ poem, after some investigation
we must mention Empedocles [14] as an advocate of a recurrent cosmos. It is true
that Pythagoras, at least in a reference found in “History of Western Philosophy”
by Bertrand Russell [25], argued that: “all that is born will be born again in the
revolutions of a given cycle, since nothing is completely new”; hence perhaps the
first line in the poem of Borges.

Empedocles, born around 490 BC in Acragas (Sicily), was the Greek philosopher
who came up with the theory that matter was formed from four elements: earth, air,
water andfire. These elementswere ruled by two forces: Love andStrife,whichmixed
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and separated them in a cyclic pattern. When Love ruled the elements combined and
they separated completely when Strife was the dominant force. In this way, creations
and destructions of the cosmos occurred. Cycles were symmetric, the events of a
phase repeated themselves in the next, according to an inverse temporal order.

The theory of the four elements was taken up and adapted by Aristotle who,
argued, however, that the universe was eternal, spatially finite and did not go through
phases of creation and destruction. In a certain way, the world of Aristotle is similar
to the static model developed by Einstein in 1917.

Stoic philosophers such as Zeno of Citium (4th century BC) or later Chrysippus
and Posidonius imagined a cosmos that oscillated slowly, going through phases of
condensation and rarefaction, a world that contracts and expands in an external vac-
uum, destroyed by fire and reborn again from its ashes (ekpyrosis). The similarities
with the cyclicalmodels that appear in the relativistic cosmologies of the 20th century
are evident.

Besides, these philosophers argued that the Earth could not be eternal, because in
that case mountains would have disappeared due to erosion phenomena. In this way,
they opposed the model of the eternal, unchanging cosmos advocated by Aristotle.

Cicero (1st century BC) describes the processes of destruction and creation of the
world in his treatise“On the Nature of the Gods” [5]: “I mean the final conflagration
of the whole universe;…; nothing, therefore, they say, is left except fire as the agency,
vivifying and divine, by which the universe should be renewed again, and the same
external order called into being”. This is not Cicero’s view but that of one of the
characters in the book, Quintus Lucilius Balbus, who defends the theories of the
Stoics.

The cyclic model seems to disappear from philosophy for centuries, since the
predominant Christian view is that of a universe created by God out of nothing.
So, a long time goes by until we find another cyclical universe and this appears
surprisingly in the work of a well-known writer: Edgar Allan Poe (1809–1849), who
was indeed very interested in cosmological matters. In his prose poem ‘Eureka’ [24],
Poe defends the idea of a universe that begins with the explosion of a uniform state
of matter in a sudden burst, this matter expands and then contracts due to attractive
forces that lead it to the original state to make it explode again.

Obviously, the poem is not a scientific work, but a solution of Olbers’paradox
(Why is the sky dark at night if there are an infinite number of stars?) can be found
in its pages. This solution is similar to the one accepted today: we receive the light
of a finite number of stars since there has not been enough time for the light of the
remotest stars to reach us. Although Poe is often cited as the first supporter of this
solution, he rejects it in his poem as very unlikely, defending a finite universe as a
more reasonable alternative [16].

Eureka is a work of art and as in philosophical or mythological models, we cannot
speak of science inasmuch as cyclical models are not contrasted specifically by
observations that would enable the scientific community to support them or reject
them.

Also in the 19th century the German philosopher Friedrich Nietzsche proposed
what he called ‘The Eternal Return’ [19], that is, a cyclical universe. Nietzsche’s
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vision is based on the idea that there is a finite number of possible combinations
of events and if time is infinite, those events will repeat themselves as is necessary,
giving rise to an eternal recurrence. Nietzsche called this idea the ‘heaviest burden’
because we would be forced to repeat our lives again and again. Whereas in other
cyclical models the repetition of the cycles is not exact, in Nietzsche’s view we are
doomed to live the same lives eternally. Similar ideas can be found in the works of
other 19th century thinkers and writers such as the French socialist Louis Auguste
Blanqui or the German poet Heinrich Heine.

Nietzsche’s idea leads us to Poincaré’s Recurrence Theorem. This theorem states
that a dynamic system, under certain mathematical conditions, for instance if it
moves in a finite phase space volume (positions and velocities), will end up in a
neighbourhood as close as we wish to the initial conditions. The time of recurrence,
that itwill take to return to the initial state,will be extremely long, but not infinite. This
theorem seems to be a precise, mathematical form of the Eternal Return. However,
we can avoid the conclusion if we have an infinite phase space -the possibilities of
events are infinitely many- or also if time is finite.

2 Cycles and Cosmology in the 20th Century

At the beginning of the 20th century Cosmology started to be scientific, especially
with the publication of Einstein’s General Theory of Relativity (1916) and the dis-
covery of the expansion of the universe by Hubble.

General Relativity is a theory of the gravitational field and enables us to treat
the universe as a whole from the physical and mathematical point of view, thus
already in 1917 Einstein was exploring the cosmological implications of his theory.
He searched for a static solution for his equations, a non-evolving universe; we must
remember that the Milky Way was considered to be the whole cosmos at that time
and the cosmological expansion had yet to be observed. But Einstein was forced to
introduce a new constant into his equations, the famous cosmological constant, as
the source of a repulsive force that prevents the otherwise inevitable collapse of a
stationary universe [8].

In 1922 the Russian physicist Alexander Friedmann solved Einstein’s equations
assuming the possibility of an evolving universe. In this way he discovered three
possible solutions: onewith negative curvature, another flat and the thirdwith positive
curvature. In the simplest cases (thosewithout a cosmological constant) the geometry
determines the evolution of the universe in a uniqueway: the universe expands forever
in the first two solutions, but in the third solution it expands to a maximum radius and
then contracts. This was the birth of the expanding universe model and also of a new
cyclical universe [10] as a fascinating possibility linked to a physical theory which
had been confirmed in 1919 by measuring the deflection of the light from several
stars by the Sun.
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In his article Friedmann presented as an illustration the example of a cyclicalworld
with a period of ten billion years. In addition, the models depend on the density of
the universe, if this is greater than a critical value we live in a cyclical cosmos.

At first Friedmann’s models were viewed by Einstein as wrong mathematically.
When he checked that the solutions were correct, he dismissed them as physically
unacceptable. The idea of an expanding universe was still shocking even for a physi-
cist with revolutionary ideas.

In 1927 the Belgian priest and physicist Georges Lemaître published a model
similar to that of Friedmann in a little known scientific journal [15]. Lemaître was
unaware of Friedmann’s paper and connected the expansion of the universe in his
model with the recent measurements, made in the 1920s, of redshifts in the spectra
of galaxies that indicated a recession velocity. Lemaître found a linear relationship
between this velocity and the distance to the galaxies.

We must remember that in 1925 the American astronomer Edwin Hubble had
found that nebulae are galaxies like the Milky Way, thus increasing the size of the
known universe. In 1929 Hubble proved that there was a linear relationship between
the recession velocity of galaxies and their distance, the proportionality constant
is called the Hubble constant. This drew increasing attention to Friedmann and
Lemaître’s models; unfortunately, Friedmann had died in 1925. Lemaître prefig-
ures the Big Bang theory with his hypothesis of a primordial atom: that the universe
had evolved from a very hot and dense phase.

These theories were still very speculative at that time. The discovery of the cos-
mic microwave background by Penzias and Wilson in 1964 [20] was the essential
breakthrough for the confirmation of the Big Bang theory: the universe had been
extremely dense and hot in the past and would have expanded from a state of high
density, emitting a radiation decoupled from matter that we receive now from every
direction. The cyclic universe, one of the possibilities in this theory, has a series of
problems that make it a marginal model [26]:

(1) The measurements of the Hubble constant in 1929 indicated that the age
of the universe was less than the age of the Earth. This was a problem for the
Big Bang theory which cosmologists tried to alleviate by using the cosmological
constant [7] as a free parameter. The cyclical closed models (without a cosmological
constant) produced the shortest times in each cycle and hence were the most rejected.
Even when Baade corrected the value of the Hubble constant in the 1950s and the
age of the universe became more compatible with the Big Bang theory, the closed
model still had problems. The discovery of the acceleration of the universe, based
on the brightness data of distant supernovae obtained in the 1990s, seemed to have
eliminated the cyclic models, since the accelerating expansion, probably produced
by a cosmological constant, would give rise to an endless expansion.

(2) Richard Tolman, a cosmologist at Caltech, studied the cyclic model in 1934
[28] and concluded that the entropy increase in each phase generates longer cycles
in the future and, therefore, shorter in the past, leading inevitably to a beginning of
the universe.
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(3) In the 1960s several Russian cosmologists (Belinskii, Khalatnikov, Lifshitz)
discovered that in a contraction phase any small anisotropy would be amplified,
bringing about chaotic behaviour.

(4) In the 1960s and 1970s Hawking and Penrose proved their singularity theo-
rems in General Relativity [13], making the idea of a beginning of time apparently
inevitable. If quantum effects, present at the incredibly high energies of the early
universe, are taken into account, this conclusion would not be sure.

3 Cyclic Universe and Current Cosmology

Nowadays, observational data seems to support a flat universe dominated by dark
energy -probably due to a cosmological constant- that contributes about 70% of the
energy content of the universe. Another 25% consists of dark matter -a weird form
of matter only detected by its gravitational effect- and the final 5% is made up of
ordinary atoms. Dark energy causes the acceleration of the universe, and prevents
its future contraction if it is the energy associated with a cosmological constant.
However, if dark energy is due to a field that changes with time (called sometimes
quintessence) the future of the universe would be unpredictable now, since we still
do not know the characteristics of that field.

The standard cosmological model also establishes an ultrafast expansion at the
firstmoments of the universe (about 10−35 s after the hypothetical t = 0!!), during the
stage called inflation [12]. The inflationary model, which began as a generic method
to explain the homogeneity and isotropy of our universe and the fact that in the first
moments it was flat with high precision, has had remarkable success: its prediction
of a flat universe has been confirmed as has its prediction of the generic distribution
of the matter-energy fluctuations that gave rise to the current structures: clusters and
galaxies.

The measurements of the differences of intensity in different directions
(anisotropies) of the cosmicmicrowave background (CMB) carried out by theCOBE,
WMAP and Planck satellites, fit the inflationarymodel well.Wemust remember that,
according to the inflationary theory, these anisotropies are due to quantum fluctu-
ations of a field, the inflation, which produced the exponential expansion of a tiny
patch of the universe from subatomic to macroscopic size. This patch finally gave
rise to our observable universe -a sphere with a diameter of nearly 100 billion light
years-. The CMB anisotropies we observe today are connected with the fluctuations
that generated the galaxies and clusters of galaxies.

However, the inflationary model is not free of serious problems: the physical
justification of the theory is not clear and fine tuning in the properties of the inflaton
is required in order to produce a universe such as ours.Many researchers have invoked
the anthropic principle and the multiverse: that there are many universes, maybe an
infinite number, with diverse properties andwe observe this because it has an inflation
field with the suitable properties to originate a universe with life.
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This explanation seems impossible to test [18]. Besides which, many different
potentials have been proposed for the inflaton field, making the whole inflationary
scenario difficult to falsify [11].

Due to his dissatisfaction with the inflationary model, Paul Steinhardt, one of the
creators of the theory of inflation, has, along with Neil Turok, another distinguished
theoretical physicist, developed the most recent model of a cyclic universe [26].

This model uses the so-called M theory, a generalization of string theory in which
the fundamental objects are branes. These branes are multidimensional objects mov-
ing in extra dimensions. In the cyclic model at hand, our world is a tetradimensional
brane (space-time) filled with matter, radiation and dark energy and there is another
brane, a sort of parallel world, which collides with our universe every trillion years.

These two branes recede from each other along another dimension and after
reaching a maximum distance, carried by a force similar to that of a spring, they
attract, approach each other and collide again. Each of these collisions is a big bang
in which new matter and radiation are created. Our world expands from the big
bang, continues its expansion due to dark energy and does not contract, since the
contraction occurs in another dimension. In this way, problems 1–4 that plagued
conventional cyclic models are avoided. Thus, there are an infinite number of cycles
with a big bang, a recession of the branes, an approach and a collision, and a new
big bang that starts the whole process again and again.

Although this model is supported by a minority of scientists, it is philosophi-
cally more comforting than the inflationary model, since the inflationary universe is
doomed to be dominated by dark energy in the long term, a cold and empty universe,
that will not be born again from its ashes like the new cyclic universe, which was
given the Greek name ekpyrotic (from the fire) by its creators.

Trying to be objective, we see the physics of both models as highly speculative,
because the energies involved are exceedingly high and will not be reached even in
the most powerful particle accelerators.

From the point of view of agreement with observational data, both models fit the
data of current Cosmology well, although the agreement with inflation was not built
a posteriori as was the case with the ekpyrotic model. The fact of the universe being
flat and the generic fluctuation spectrum were both observed after the theory was
developed.

Whichmodel, if any, is true? There is an observational test that can be decisive: the
detection of the B mode, the magnetic mode, in the CMB polarization. This mode,
associated with gravitational waves, appears in the inflationary models and not in the
ekpyrotic. If it is discovered it will represent a success for inflation, if not, the cyclic
model will gain influence.

There are diverse experiments under way that are trying to find the Bmode. One of
them, BICEP2, the second of a series, operated from Antarctica and was a collabora-
tion between several American and European universities and research institutions.
In March 2014, the BICEP2 principal investigators announced, with great fanfare,
the detection of the cosmological B mode with a level that, according to them, con-
firmed the inflationarymodel [1]. The tensormode contribution (gravitational waves)
with respect to the scalar fluctuations was given by the number r = 0.2. There was
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a detection of r > 0 with a 7 sigma level, 5.9 sigma after foreground subtraction
(suffice it to say that a 5 sigma level is considered enough to confirm a detection).

However, therewere two problematic issues: (1) although the simplest inflationary
models predict a value of r similar to the one obtained, it is also possible to obtain
it in different non-inflationary models [4] and especially, (2) the Planck satellite had
put an upper bound of r < 0.11 with 95% confidence [22].

From that moment on there have been many attempts to reconcile BICEP2
and Planck data by using more complicated inflationary models or with other
hypotheses.

In May 2014, only two months after the celebrated detection, and making things
even more complicated, two papers appeared, [9, 17], in which the method of elim-
ination of the Galactic dust contribution to the detected signal was questioned and it
was claimed that all or part of the signal detected was due to the dust in our Galaxy.

In the article published by the BICEP2 team in Physical Review Letters in June
2014 [2], it was recognized that a Galactic origin of the signal could not be ruled out.

This was confirmed by the Planck data that was released in September [21]:
the detection could be due completely to Galactic dust and more careful analyses,
conducted by the BICEP2 and Planck teams, were required to conclude whether at
least a part of the detection had a cosmological origin.

The story finished (for now) in February 2015, with the publication of a joint
analysis of the BICEP2 and Planck data by both teams [23]. The conclusion is this:
there was no cosmological detection and the bound obtained on the parameter r was
similar to that previously put by Planck, r < 0.12.

For the moment, the detection heralded as one of the most important discoveries
of 2014 has ended up as an example of an excessive haste to win a Nobel Prize.
Therefore, the battle between the inflationary and cyclic models continues.

At any rate, although future observations canmake a cyclic universe very unlikely,
we doubt that this kind of universe will disappear from cosmologists’ imaginations.
It will always be ready, to be reborn, phoenix-like from the ashes.

We finish with the last lines of Borges’ poem:

In my human flesh, eternity keeps recurring
And the memory, or plan, of an endless poem beginning:
“They knew it, the fervent pupils of Pythagoras . . .”

4 Addendum

This book is devoted tomathematical aspects of the uncertainty mainly in connection
with complex systems and the most complex one is, by far, the whole universe, albeit
limited to a spherical region of the same universe comprising all matter that can be
observed from Earth at the present time: i.e., from inside our currently “observable”
volume of the universe. The late PedroGil, a great companion and awise scholar, was
also interested in this topic -the complex and largely unknown large-scale structure
of the cosmos- and we discussed it with him sometimes, in the corridors and in the
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entrance hall of the Faculty of Sciences. He used to stop us, in his unfailingly friendly
manner -with a touching smile- and then with his sharp wit, he used to question what
we claimed about the standard Hot Big Bang model and other cosmological topics.
However, in spite of our somewhat different views on how to statistically describe
the observed large-scale structure of the universe, on one specific topic we agreed
with Pedro: the possibility of describing the whole ‘observable’ universe by some
-obviously partially (or mostly…) undiscovered- physical theory, based on a fully
statistical description, grounded in robust mathematical methods. Sometimes, we
also discussed with him the possible existence of other living beings on faraway
planets.1

At the most general level, he believed in an underlying common knowledge,
a common intellectual base connecting all scientific disciplines as well as all the
other branches of our globalized culture. Moreover, he also believed in a sort of
eternal reincarnation until a time in the distant future when everybody treats other
living beings correctly. This way of thinking, more characteristic of eastern cultures,
is directly linked to the cyclical universe and with the Hindu idea of kalpas, the
eternal cycles of creation and destruction. Most importantly, we consider this way
of thinking is a clear indication of Pedro Gil’s great humanity and modesty. What
is doubtlessly true is that you did not have to look for Pedro on other worlds or in
faraway galaxies because he was always very approachable and helpful towards his
friends and colleagues, as well as being well grounded in everyday reality. It was
enough to simply call him any time you needed his valuable help. Pedro, what do
you say if we…? Pedro, what do you think about…? And you always got a kind
look, close attention to your question and a quick, sensible answer, full of wisdom
and affection.

We were all colleagues in the Faculty of Sciences and we worked on the same
floor. Pedro was that kind of calm, quiet man loved by everybody but never criticized
by anybody. He was the wise patriarch par excellence, in the best sense. When fate
led me (Concha Masa) to the position of Dean of the Faculty, we started to have
a much closer relationship. Pedro immediately demonstrated his confidence in my
capabilities: this simple fact proved to be a fundamental support to my work, given
his acknowledged good sense and caution. I can still remember asking his advice
about my possible colleagues for the Faculty governing body. He promptly gave
an excellent suggestion, guiding me to the best possible choice. From that precise
moment I realized how lucky I had been to find such a great companion in the
deanship -given that Rosa proved to be an invaluable asset- and at the same time,

1The existence of other living beings should be currently acceptable by everybody by only con-
sidering the most recent data collected, e.g., by the NASA Kepler satellite and by the HARPS
spectrograph mounted on the 3.6m Telescope operating at La Silla, in the Atacama desert (Chile).
This data, together with very simple statistical considerations about the nature and distribution
of stars inside our galaxy, suggests that there are potentially millions -but, more probably, a few
billions- of planets with dimensions and equilibrium temperatures closely matching those of Earth,
in the Milky Way alone. Moreover, taking into account that the most recent estimates [6] of the
total number of galaxies currently in the observable universe gives the figure of (2.0± 0.6)× 1012

(!), it is, obviously, very difficult to think we are alone in the universe.
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such a fine advisor as Pedro, a man I could rely on whenever I needed him, then, and
for many years afterwards. A deep friendship was cemented that is still alive and that
will never disappear.

Acknowledgements We thank Liz and John Wyke for their careful revision of the first English
manuscript. They have helped a lot to improve this contribution.
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Phasors, Always in the Real World

Nilo Bobillo-Ares and M. Luisa Garzón

Abstract Complex phasors are reinterpreted as real operators in a real vector space
of functions. This structure is linked with dilative rotations of the Euclidean plane.
Finally we conclude with some methodological ideas related to the teaching of the
complex numbers.

1 Introduction

The phasor technique, introduced by Steinmetz [7] in 1893, is frequently used in
engineering (see [2, 3] and [8]), physics and applied mathematics [4], mainly to
facilitate the algebra of circular functions and also to obtain a particular solution of
linear differential equations whose excitation is a circular function.

The application of phasors in the standard method requires to alternate between
two vector spaces, a real space and a complex space. The use of complex numbers
seems inevitable if circular functions are expected to share certain property, similar
to that of the exponential functions:

f (t) f (s) = f (t + s); (1)

this property, to convert products into sums, is the leit motiv of this work; we call it
logarithmic property.1 Here we suggest a possible way out of this small inconvenient
by reinterpreting phasors as elements of a certain subspace of linear operators.

1The methods to replace the operation of multiplication by a sum, called prosthaphaeresis,
have a long history, even before the discovery of logarithms by Napier. See, for example, the
article by Clavius in [5, p. 459].
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The formal character of this paper requires a clearly specified starting point;
thus, we must devote enough space to motivate an analytical definition of circular
functions.2

The phasor space is constructed from the derivation operator, defined on the two-
dimensional space of the circular functions. The new technique is get to work in a
couple of typical examples.

The algebraic structure of phasors in the space of circular functions can be trans-
lated to the Euclidean vector plane; in this way the usual geometric interpretation of
circular functions and phasors is obtained.

From this simple algebraic game, somemethodological conclusions (perhaps also
some psychological ones!) about howwe understand the algebra of complex numbers
can be drawn.

2 The Beloved Logarithmic Property

Hyperbolic and circular functions have similar properties; so, for example, for the
sum of arguments we have the formulas:

cosh(t ± s) = cosh t cosh s ± sinh t sinh s, (2)

cos(t ± s) = cos t cos s ∓ sin t sin s, (3)

and similar ones, only with little differences, for sinh(t ± s) and sin(t ± s). These
formulas are quite complicated if we compare themwith the logarithmic property (1);
however, for the hyperbolic functions certain linear combinations can be obtained:

e±t = cosh t ± sinh t, (4)

which, as we know, have the desired logarithmic property (1). We wonder if there
will be a similar trick for circular functions; specifically, we would like to find a
function, let us call it cis(t), as a linear combination of the base circular functions

cis(t) = λ cos t + μ sin t, (5)

where λ and μ are certain numbers, which verify the logarithmic property:

cis(t + s) = cis(t)cis(s). (6)

A simple calculation, substituting (5) into (6), leads to the conditions:

λ = 1, μ2 = −1; (7)

2We have learned in the critical analysis by Spivak [6] that we need an analytical definition of
circular functions.
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the second one shows that the coefficients of the proposed problem can not be real
numbers. On the other hand, if we allow complex coefficients the solution of the
stated problem leads to the venerable Euler formulas:

cis(±t) = cos t ± i sin t =: e±i t . (8)

Thus, to enjoy the logarithmic property within the circular functions, we have to
replace the real vector space, whose elements are easily interpretable functions but
with complicated algebra, by a complex space with simple algebra but lacking any
direct interpretation. This is the price to pay when adopting phasors as a calculation
method. In order to illustrate this fact, let us add two circular functions using phasors,
following the traditional method:

A cos(t + α) + B cos(t + β) = � [
Aei(t+α) + Bei(t+β)

]

= � [
(Aeiα + Beiβ)eit

] = � [
Ceiγ eit

] = C cos(t + γ ), (9)

wherewehave set Aeiα + Beiβ = Ceiγ .Note the persistent “back and forth” between
the real and the complex spaces.

A reinterpretation of phasors will be proposed so that we keep the logarithmic
property without abandoning the real vector space.

3 Circular Functions

Circular functions arise in a geometric context: let E be the vector Euclidean plane
and (e1, e2) a direct orthonormal basis.

The square operator J rotates the vectors at a right angle in a positive sense; as
Je1 = e2 and Je2 = −e1, this operator is represented by the matrix

( j) =
(
0 −1
1 0

)
. (10)

The set S1 = {r ∈ E|r2 = 1} is called trigonometric circle. On S1 consider the dif-
ferentiable curve r(t) that verifies

r(t) · r(t) = 1, r(t) · r′(t) = 0, r′(t) · r′(t) = 1; (11)

here the second equation is obtained by derivation of the first one and the third selects
the parameter t as the arc length. Now, from these three relations, adding the initial
condition, we obtain the linear problem:

r′(t) = ±Jr(t), r(0) = e1. (12)
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If we assume to move along the curve S1 in the positive sense, we have to choose
the sign “+”. Now we substitute r(t) = x(t)e1 + y(t)e2 into Eq.12 and we get the
system:

x ′(t) = −y(t), y′(t) = x(t), x(0) = 1, y(0) = 0; (13)

by means of its solution we define cos(t) := x(t) and sin(t) := y(t). From this
definition the formulas for the sum of arguments (3), their periodic character, parity
and, even, the definition of the real number π can be derived [6].

Now, in terms of the functions cos and sin, we define the space E of circular
functions as the solution set of the differential equation:

f ′′ + f = 0; (14)

any of these functions can be expressed in the form, see [6]:

f (t) = R cos(t + α) = λ cos t + μ sin t, R, α, λ, μ ∈ R. (15)

4 Phasors

We define the derivative operator j : E → E , as j f = f ′. The Eq.14 can be written
in the form j2 f = − f which leads us to the fundamental relation:

j2 = −1, (16)

where 1 : E → E is the identity operator and j2 := j ◦ j . Despite d/dt is not invert-
ible in other spaces, j is indeed invertible, j−1 = − j . The set3

C = {λ1 + μj |λ,μ ∈ R} (17)

is isomorphic to the setC of complex numbers; here j plays the role of the imaginary
unit i . The elements of C are the (new!) phasors.

Let us consider now a circular function R cos(t + α), we have:

R cos(t + α) = R(cosα cos t − sin α sin t) = R(cosα1 + sin α j) cos t, (18)

since − sin = j cos. It is convenient to use the notation:

e jα := cosα1 + sin α j. (19)

3As customary, the linear combination of two linear operators u, v : E → E is defined as (λu +
μv) f := λ(u f ) + μ(v f ), with λ,μ ∈ R.
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Taking into account the sum of arguments relations of the circular functions, it is
straightforward to demonstrate the following useful formulas:

e jαe jβ = e j (α+β) and from here e− jα = (e jα)−1. (20)

Thus, we have the relations

R cos(t + α) = Re jα cos t, R sin(t + α) = Re jα sin t. (21)

4.1 Phasors for Circular Functions of Frequency ω

These results can be easily generalized to the set Eω of circular functions of frequency
ω, the solution set of the differential equation f ′′ + ω2 f = 0; in this space we define
the operator j : Eω → Eω as4

j f (t) := 1

ω
f ′(t). (22)

We have the relations:

j cosωt = − sinωt, j sinωt = cosωt. (23)

From here it follows, for circular functions of frequency ω, equations which are
analogous to (21):

R cos(ωt + α) = Re jα cosωt, R sin(ωt + α) = Re jα sinωt. (24)

5 Main Examples

To see phasors “in action”, let’s detail a couple of examples. First, we aim to calculate
the sum of two circular functions:

R1 cos(ωt + α1) + R2 sin(ωt + α2) = R1e
jα1 cosωt + R2e

jα2 sinωt

= R1e
jα1 cosωt − R2e

jα2 j cosωt = (R1e
jα1 − R2e

jα2 j) cosωt

= Re jα cosωt = R cos(ωt + α),

4There is certain abuse of notation here; we would distinguish the operator j : E → E from the
operator j : Eω → Eω . This complication, that for each frequency we need a different operator j ,
makes the phasor technique useless when dealing with circular functions of several frequencies.
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where we have set Re jα = R1e jα1 − R2e jα2 j , which is a simple calculation with
complex numbers (although, actually, we are dealing with linear operators!); you
should compare this process with (9).

As a second example, let us consider the equation ofmotion of a damped oscillator
with a forcing term f ∈ Eω:

a
d2x

dt2
+ b

dx

dt
+ cx = f, a, b, c ∈ R; (25)

as usual we have to obtain a particular solution x ∈ Eω. Writing the differential
equation derivatives in terms of the ω j operator:

a(ω j)2x + bω j x + cx = (
(c − aω2)1 + bω j

)
x = f ; (26)

and setting (c − aω2)1 + bω j = Re jα , we can easily solve for x multiplying by the
inverse operator:

x(t) = 1

R
e− jα f (t). (27)

Now, suppose that f (t) = A0 cos(ωt + β0), then we have the (unique) particular
solution in Eω:

x(t) = 1

R
e− jαA0 cos(ωt + β0) = A0

R
cos(ωt + β0 − α). (28)

6 Back to Geometry

Let’s go back to the Euclidean plane E. The operators identity I and square J verify
the relation J2 = −I; consequently, the set

C = {λI + μJ|λ,μ ∈ R} (29)

is isomorphic to the set C of the complex numbers. It is easy to be convinced that
elements ofC of the form cosαI + sin αJ =: eαJ constitute the rotation groupO(2).
The set C also includes the homothecies, since any element can be expressed as

λI + μJ = R(cosαI + sin αJ) = ReαJ. (30)

We have, therefore, three canonically isomorphic sets:

Cω � C � C, (31)

respectively, phasors, homothetic rotations and abstract complex numbers.
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It is an easy task to establish an isomorphismΦ : Eω → E that, in addition, would
be compatible with the operators isomorphism (31); to this end, we choose a circular
function, i.e. cosωt , and we can affirm that

Φ(cosωt) = e1, Φ( j cosωt) = Je1 = e2. (32)

This isomorphism allows the geometric interpretation, bymeans of vector operations,
of any calculation with circular functions of same frequency ω (see for example the
classic text for electronic engineers [1]). It should be noted that the isomorphismΦ is
not canonical since it depends on the discretionary choice of cosωt as the antecedent
of the vector e1.

7 Why Complex Numbers Seem Alien?

Complex numbers appeared in the attempt to solve certain algebraic equations in
terms of the square root of −1, named the imaginary unit, as it did not match any
previously known number. The daring of certain mathematicians like Cardano, who
continued dealing with this new-born monster, gave rise to the creation and develop-
ment of the complex numbers algebra.Complex numberswere born in the “backyard”
of the real numbers and remained questionable until Gauss constructed an abstract
theory in which the formal manipulation of these numbers was clearly specified.

As shocking as it can be, these two introductorymethods for the complex numbers
are still in use, confronting the student either to consider these numbers as monstrous
objectswithin the real numbers, or as completely abstract objects,with perfectly ruled
use, but no connexion to any real known object. Trying to avoid this problem and
expecting to make complex numbers “more real”, the geometric interpretation of
these numbers is emphasized in such a manner that it could become even suspicious.
Considering that the origin of the complex numbers has nothing to do with geometry,
the above mentioned interpretation acquires a metaphorical nature, leaving always
doubts about its “real character”.

One of the clues to explain the complex numbers weirdness is that, in general,
no particular realization is elaborated from the first principles. To illustrate this
fact, let us imagine that our first approach to vectors would be the statement of
the vector space structure, without any previous knowledge of vectors in physics
or geometry. Needless to say that under this scenario such structure would appear
awfully artificial or even gratuitous. That is the same situation when the complex
numbers are introduced as Gauss pairs.

Phasors and homothetic rotations are specificmodels of the complex structure and
can be of enormous help to acquire familiarity with such structure; as an example let
us consider the enigmatic relation i2 = −1 in C:
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• On the plane we have J2 = −I and it means that two right angle rotations are a flat
angle rotation;

• In the set Eω of the circular functions of frequency ω, the relation j2 = −1means
that cos(ωt + α + π

2 + π
2 ) = − cos(ωt + α).

Nothing mysterious!
The meaning of an abstract mathematical theory is revealed when a specific real-

ization is known; to understand its abstract nature requires the knowledge of two or
more realizations, without them, possibly, we will understand nothing.

References

1. Angot A (1961) Compléments deMathématiques à l’usage des Ingénieurs de l’Électrotechnique
et des Télécomunications (Sect. 1.2). Éditions de la Revue d’Optique, Paris

2. Expósito A, Bachiller-Soler A, Rosendo-Macías JA (2006) Application of generalized pha-
sors to eigenvector and natural response computation of LTI circuits. IEEE Trans Circuit Syst
53(7):1533–1543

3. Forrest E (1985) A structured approach to phasors. Int J Math Educ Sci Technol 16(1):11–14
4. Pontryagin LS (1962) Ordinary differential equations (Sect. 2.7). Pergamon Press, London
5. Smith DE (1959) A source book in mathematics. Dover Publications, New York
6. Spivak M (1994) Calculus (Chap. 15). Publish or Perish, Houston
7. Steinmetz CP (1893) Complex quantities and their use in Electrical Engineering. In: Proceedings

of International Electrical Congress of the American Institute of Electrical Engineers, NewYork
8. Wolf DA (2010) Complex numbers and phasors without vectors or

√−1. IEEEAntennas Propag
Mag 52(1):218–220
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Constants for Uncertain Linear Inequality
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M. Josefa Cánovas, René Henrion, Marco A. López and Juan Parra

Dedicated to the memory of Pedro Gil

Abstract The present paper deals with uncertain linear inequality systems viewed
as nonempty closed coefficient sets in the (n + 1)-dimensional Euclidean space. The
perturbation size of these uncertainty sets is measured by the (extended) Hausdorff
distance.We focus on calmness constants—and their associated neighborhoods—for
the feasible set mapping at a given point of its graph. To this aim, the paper introduces
an appropriate indexation function which allows us to provide our aimed calmness
constants through their counterparts in the setting of linear inequality systems with
a fixed index set, where a wide background exists in the literature.
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1 Introduction

We consider the uncertain linear inequality system

{
a′x ≤ b,

(
a

b

)
∈ U

}
, (1)

where x ∈ R
n is the vector of variables and the uncertainty set U is assumed to

be a nonempty closed subset of Rn+1. All elements in R
n are regarded as column-

vectors and y′ denotes the transpose of y ∈ R
n. Accordingly, elements in R

n+1 will
be written in the form

(u
v

)
, where u ∈ R

n and v ∈ R. Observe that (1) is in general a
linear semi-infinite inequality system (i.e., with finitely many decision variables but
possibly infinitely many constraints). Linear semi-infinite inequality systems have
been extensively studied in [11].

The uncertainty setU is considered as the parameter to be perturbed. So, formally,
we are considering the parameter space CL

(
R

n+1
)
of all nonempty closed subsets

in R
n+1. From the topological side, the space of variables Rn is endowed with an

arbitrary norm ‖·‖ , and the parameter space is equipped with the (extended) Haus-
dorff distance, dH , specified in Sect. 2.1 (see e.g. [1] for a comprehensive analysis
of the Hausdorff metric).

Associated with the parametrized system (1), roughly speaking referred to as
system U, we consider the feasible set mapping, F : CL (

R
n+1

)
⇒ R

n, given by

F (U ) :=
{
x ∈ R

n | a′x ≤ b for all

(
a

b

)
∈ U

}
.

Observe that the closedness assumption on U is not restrictive since the feasible set
mapping has the same values if general sets are replaced with their closures, and the
same happens with the definition of excess—see (3)—and hence with dH .

Our main goal consists of providing calmness constants (cf. Sect. 2.2) forF at a
nominal (fixed) element of its graph (U0, x0) . We can find in the literature different
contributions to the calmness of the feasible set mapping in the context of linear
systems with a fixed index set T , say F T : (

R
n+1

)T ⇒ R
n, which is given by

F T (σ ) := {
x ∈ R

n | a′
tx ≤ bt, t ∈ T

}
, (2)

where

σ (t) =
(
at
bt

)
∈ R

n+1, t ∈ T .

In this framework, the parameter space
(
R

n+1
)T

is assumed to be endowed with the
uniform converge topology; see Sect. 2.1 for details.

With the aim of taking advantage of the vaste literature about calmness for map-
pings in the formatF T to derive calmness constants forF ,we introduce in Sect. 3.1
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a specific indexation function,I : CL (
R

n+1
) → (

R
n+1

)Rn+1

,which assigns to each

setU ∈ CL
(
R

n+1
)
a certain functionIU ∈ (

R
n+1

)Rn+1

with rgeIU = U,where rge
stands for range (image). In this way, if U is the set of coefficient vectors of system
(1), σ = IU (whose index set is the whole Rn+1) can be interpreted as ensentially
the same system but with the addition of repeated constraints.

The definition of our indexation function I is inspired, but sensibly different
(see Sect. 3 for details), by the one introduced in [6] with the aim of analyzing the
stability of the optimal value function of linear optimization problems with uncertain
constraints. In the present paper the properties ofI will enable us to derive calmness
constants (and associated neighborhoods) for F from those for FR

n+1
. In a second

step we wonder whether Rn+1 may be replaced with a smaller index set T ⊂ R
n+1.

Paper [4] provides the calmness modulus ofF T in the particular case when T is
finite (see [2] for an extension to the nonlinear case), whereas [5] proves that this
calmnessmodulus is in fact a calmness constant for a certain neighborhood (specified
therein) when we restrict oursleves to right-hand-side perturbations. In Sect. 5 of the
present paper we show how to extend this result to perturbations of all coefficients.
Coming back to our framework of uncertain linear systems, the reader is addressed to
[7, 8] for the study of robust local and global error bounds, respectively. Recall that,
the local error boundproperty is closely related to calmness of feasible solutionswhen
only right-hand-side perturbations are allowed. See also [10] for the development of
dualy theory in robust linear optimization with infinitely many uncertain constraints.

Now we summarize the main original contributions of the paper. Section3 moti-
vates (see Example 3.1) and introduces the announced indexation functionI which
allows us to derive calmness constants for F at (U0, x0) ∈ gphF (the graph of F )
via calmness constants for FR

n+1
at (σ0, x0) , with σ0 := IU0 . After that, Sect. 4

solves the question of whether or not Rn+1 may be replaced with a smaller subset
T . Specifically, for U0 ⊂ T ⊂ R

n+1, we prove that the calmness of F T is equiva-
lent to the calmness ofFR

n+1
, with the same calmness constants and closely related

neighborhoods. We also analyze the particular case when U0 is the convex hull of
some subset inRn+1. Finally, Sect. 5 allows to derive from [5] operative point-based
expressions (in terms of the nominal data) for a tight calmness constant forF and a
neighborhood where it works.

2 Preliminaries

Given X ⊂ R
k, k ∈ N, we denote by convX and coneX the convex hull and the

conical convex hull of X, respectively. It is assumed that coneX always contains the
zero-vector 0k , in particular cone(∅) = {0k}. IfX is a subset of any topological space,
intX, clX and bdX stand, respectively, for the interior, the closure and the boundary
of X.



834 M. J. Cánovas et al.

2.1 Hausdorff and Chebyshev Distances

The space CL
(
R

n+1
)
will be endowed with the (extended) Hausdorff distance dH :

CL
(
R

n+1
) × CL

(
R

n+1
) → [0,+∞] given by

dH (U1,U2) := max{e (U1,U2) , e (U2,U1)},

where e
(
Ui,Uj

)
, i, j = 1, 2, represents the excess of Ui over Uj. Recall that (see

[1, Lemma 1.5.1] for the last equality)

e
(
Ui,Uj

) := inf
{
ε > 0 | Ui ⊂ Uj + εB

}
(3)

= sup
{
d

(
x,Uj

) | x ∈ Ui
}

= sup
{
d

(
x,Uj

) − d (x,Ui) | x ∈ R
n+1

}
.

Here B represents the unit open ball in Rn+1 endowed with the norm

∥∥∥∥
(
u

v

)∥∥∥∥ = max {‖u‖∗ , |v|} ,

(
u

v

)
∈ R

n+1, (4)

where ‖·‖∗ represents the dual norm in Rn given by ‖u‖∗ = sup‖x‖≤1 u
′x.

For any set T , the space of functions
(
R

n+1
)T

is endowed with the uniform
convergence topology, through the (extended) Chebyshev (supremum) distance
d∞ : (

R
n+1

)T × (
R

n+1
)T → [0,+∞], given by

d∞ (σ1, σ2) := sup
t∈T

‖σ1 (t) − σ2 (t)‖ .

From now on, BH (U ; ε) and B∞ (σ ; ε) represent the open balls of radius ε >

0 centered at U ∈ CL
(
R

n+1
)
and σ ∈ (

R
n+1

)T
, respectively, with respect to the

Hausdorff and Chebyshev distances (for the sake of simplicity, B∞ (σ ; ε) represents
a ball in all spaces

(
R

n+1
)T

, for any T , which will be distinghished by the context).

2.2 Calmness of Multifunctions

Consider a generic multifunction between metric spaces Y and X (with distances
denoted indistinctly by d), M : Y ⇒ X. The multifunction M is said to be calm at
(y, x) ∈ gphM if there exist a constant κ ≥ 0 and neighborhoods W of x and V of
y such that

d (x,M (y)) ≤ κd (y, y) , whenever x ∈ M (y) ∩ W and y ∈ V . (5)
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Sometimes we will be interested in finding some specific neighborhoods and calm-
ness constants; in order to make explicit reference to these elements, we say thatM
is calm at (y, x)with constant κ on V × W when (5) holds.

The calmness property is known to be equivalent to themetric subregularity of the
inverse multifunction M−1 : X ⇒ Y , given by M−1 (x) := {y ∈ Y | x ∈ M (y)} ;
the metric subregularity of M−1 at (x, y) ∈ gphM−1 is stated in terms of the exis-
tence of a (possibly smaller) neighborhoodW of x, as well as a constant κ ≥ 0, such
that

d (x,M (y)) ≤ κd
(
y,M−1 (x)

)
, for all x ∈ W. (6)

In other words, (6) can be read as: M is calm at (y, x) with constant κ on Y × W .
The reader is addressed to the monographs [9, 12–14] for a comprehensive analysis
of these notions among others variational concepts.

The infimum of all possible constants κ in (5) (for some associated W and V ) is
equal to the infimum of constants κ in (6) and is called the calmness modulus ofM
at (y, x) , denoted as clmM (y, x) , defined as ∞ ifM is not calm at (y, x) .

3 Calmness via an Indexation Strategy

In this section we discuss three indexation strategies. The first one, the projection
strategy J , at a first glance seems to be the most natural, but it turns out not to be
adequate as far as

d∞
(
JU ,JU0

)  dH (U,U0) (7)

may occur in any neighborhood of a given U0 ∈ CL
(
R

n+1
) ; where the notation 

means lim supU→U0

(
d∞

(
JU ,JU0

)
/dH (U,U0)

) = ∞; see Example 3.1 below.
The second strategy, traced out from [6], acts on pairs of closed subsets, say
(U1,U2) �→ JU1;U2 , and satisfies

d∞
(
JU1;U2 ,JU2;U1

) = dH (U1,U2) . (8)

The main drawback of this strategy is that, for a givenU0 ∈ CL
(
R

n+1
)
, the indexa-

tion of the nominal systemU0 depends on the systemU we are comparing with. The
third strategy, giving rise to the aimed indexation mappingI , gathers the good fea-
tures of the other two, as far as it provides an indexation of any systemU exclusively
in terms of U and the nominal system U0 and satisfies

d∞
(
IU ,IU0

) = dH (U,U0) (9)

(see Theorem 3.1), which turns out to be enough for the study of the calmness ofF
at (U0, x0) for any given x0 ∈ F (U0) .
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Hereafter in the paperweconsider a givennominal set (or system)U0 ∈ CL
(
R

n+1
)

and an arbitrarily chosen selection, P, of the metric projection multifunction, � :
R

n+1 × CL
(
R

n+1
)

⇒ R
n+1, which is given by

�(t,U ) := {z ∈ U | ‖t − z‖ = d (t,U )} , (t,U ) ∈ R
n+1 × CL

(
R

n+1
)
.

Observe that �(t,U ) is always non-empty by the closedness of U. For simplicity
we will write PU (t) instead of P (t,U ) .

3.1 The Projection Strategy

We defineJ : CL (
R

n+1
)→(

R
n+1

)Rn+1

asJU := PU for allU ∈CL
(
R

n+1
)
. Now

we are going to show an example where (7) happens even for compact convex sets.

Example 3.1 ConsiderR2 endowed with the Euclidean norm and letR3 be equipped
with the norm (4).

U0 := {(x1, x2, 0)′ ∈ R
3 | 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ x2/31 }

andpick any ε > 0. Ifwemove from
(
ε, ε2/3, 0

)′
orthogonally to the surface x2 = x2/31

until we meet the plane x1 = 0, then we reach uε := (
0, ε2/3 + 3

2ε
4/3, 0

)′
. If our

orthogonal movement starts at
(
8
27ε,

4
9ε

2/3, 0
)′

and ends at the plane x1 = −ε1/3,

then we reach zε := (−ε1/3, 13
9 ε2/3 + 8

27ε
4/3, 0

)′
. For each ε > 0 let

Uε = conv (U0 ∪ {uε}) .

In this case, for 0 < ε ≤ (24/65)3/2 in order to guarantee 13
9 ε2/3 + 8

27ε
4/3 ≥ ε2/3 +

3
2ε

4/3, we have

PU0 (zε) =
(

8

27
ε,

4

9
ε2/3, 0

)′
and PUε

(zε) = uε.

Accordingly, as ε ↓ 0 we have

d∞
(
JUε

,JU0

) ≥ ∥∥PUε
(zε) − PU0 (zε)

∥∥ ≈ 5

9
ε2/3,

dH (Uε,U0) =
∥∥∥∥
(
0, ε2/3 + 3

2
ε4/3, 0

)′
− (

ε, ε2/3, 0
)′
∥∥∥∥ ≈ ε,

d (zε,U0) ≈ ε1/3,
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where ≈ means (as usual) that the quotient between left-hand and right-hand sides
tends to 1 as ε ↓ 0. This clearly entails d∞

(
JUε

,JU0

)  dH (Uε,U0) , even if
R

n+1 is replaced with any neighborhood of U0 (i.e., a set of the form U0 + δB, for
any δ > 0).

3.2 The Pairwise Strategy

The following indexation strategy is inspired in [6, Theorem 4.2]. For eachU1,U2 ∈
CL

(
R

n+1
)
let us define JU1;U2 ∈ (

R
n+1

)Rn+1

given by

JU1;U2 (t) :=
{
PU1 (t) if t ∈ U1 ∪U2,(0n

1

)
if t /∈ U1 ∪U2.

Observe that
(0n
1

)
is associated with the trivial inequality 0′

nx ≤ 1.
The proof of (8) for this pairwise indexation mapping is essentially given in

[6, Theorem 4.2], although in that theorem the uncertainty is confined to the left-
hand-side coefficients. Example 3.1 shows that points t /∈ U1 ∪U2 may ‘spoil’
d∞

(
JU1 ,JU2

)
in relation to the projection strategy. As said at the beginning of

this section, the main drawback of the current pairwise strategy is that the indexa-
tion of the nominal system U0 depends on the system U we are comparing with. In
other words, when U varies around a fixed U0, the indexations of U0 vary with U,

so that we cannot apply the literature background to a fixed σ0 ∈ (
R

n+1
)T

. Recall-
ing the indexation mapping J providing the projection strategy in Sect. 3.1, we
immediately observe thatJU coincides with our current JU ;Rn+1 .

3.3 The U0-Based Strategy

Now we are going to define the indexation function I announced at the beginning
of this section. Recall that we are considering a given nominal setU0 ∈ CL

(
R

n+1
)
,

although, for the sake of simplicity, the notation does not reflect the dependence on

U0. We define I : CL (
R

n+1
) → (

R
n+1

)Rn+1

as follows: For each U ∈ CL
(
R

n+1
)
,

let σ := IU ∈ (
R

n+1
)Rn+1

be given by

σ (t) :=
{
t, if t ∈ U,

(PU ◦ PU0)(t), if t /∈ U.
(10)

In this way, one easily checks that rgeIU = U, for all U ∈ CL
(
R

n+1
)
, Obviously,

IU0 = PU0 . Next we establish (9).
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Theorem 3.1 LetI : CL (
R

n+1
) → (

R
n+1

)Rn+1

be the indexation function defined
in (10) and let σ0 := IU0 . Then,

d∞ (σ, σ0) = dH (U,U0) , whenever σ = IU , U ∈ CL
(
R

n+1
)
. (11)

Proof Consider anyU ∈ CL
(
R

n+1
)
. In order to establish the inequality ‘≤’ in (11),

take any t ∈ R
n+1 and distinguish two cases: If t ∈ U, then

‖σ (t) − σ0 (t)‖ = ∥∥t − PU0 (t)
∥∥ = d (t,U0) ≤ e (U,U0) ,

where we have taken (3) into account. Otherwise, if t /∈ U, then

‖σ (t) − σ0 (t)‖ = ∥∥(PU ◦ PU0)(t) − PU0 (t)
∥∥

= d
(
PU0 (t) ,U

) ≤ e (U0,U ) .

So,‖σ (t) − σ0 (t)‖ ≤ dH (U,U0) , for all t ∈ R
n+1, and thend∞ (σ, σ0) ≤ dH (U,U0) .

Let us see the opposite inequality. We have that

e (U,U0) = sup
t∈U

d (t,U0) = sup
t∈U

d
(
t,PU0 (t)

)
= sup

t∈U
d (σ (t) , σ0 (t)) ≤ d∞ (σ, σ0) .

e (U0,U ) = sup
t∈U0

d (t,U ) = sup
t∈U0

d (t,PU (t))

= sup
t∈U0

d
(
PU0 (t) ,PU

(
PU0 (t)

))
= sup

t∈U0

d (σ0 (t) , σ (t)) ≤ d∞ (σ, σ0) .

Consequently, d∞ (σ, σ0) ≥ dH (U,U0) . �

Finally, the following result formalizes the fact that the calmness of FR
n+1

turns
out to be equivalent to the calmness ofF ,with the same constants and closely related
neighborhoods.

Theorem 3.2 Let x0 ∈ F (U0) , W ⊂ R
n be a neighborhood of x0, and σ0 = IU0 .

Then FR
n+1

is calm at (σ0, x0) with constant κ ≥ 0 on B∞ (σ0; ε) × W if and only
ifF is calm at (U0, x0) with the same constant κ on BH (U0; ε) × W.

Proof First assume that FR
n+1

is calm at (σ0, x0) with constant κ on B∞ (σ0; ε) ×
W. From Theorem 3.1 we get I −1 (B∞ (σ0; ε)) = BH (U0; ε) . Take any (U, x) ∈
BH (U0; ε) × W, such that x ∈ F (U ) and let σ = IU ∈ B∞ (σ0; ε) .

Then, applying Theorem 3.1 we have

d (x,F (U0)) = d
(
x,FR

n+1
(σ0)

)
≤ κd∞ (σ, σ0) = κdH (U,U0) .
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On the other hand, assume thatF is calm at (U0, x0)with constant κ onBH (U0; ε) ×
W. Picking any σ ∈ B∞ (σ0; ε) and defining U := clσ

(
R

n+1
)
, i.e., U =cl {σ (t),

t ∈ R
n+1

}
, it is clear from the definitions that d∞ (σ, σ0)≥dH (U,U0) . More in

detail, for each t ∈ R
n+1 we have ‖σ (t) − σ0 (t)‖ ≥ d (σ (t) ,U0) and, accordingly,

d∞ (σ, σ0) = sup
t∈Rn+1

‖σ (t) − σ0 (t)‖ ≥ sup
t∈Rn+1

d (σ (t) ,U0) = e (U,U0) .

In a completely analogous way se obtain d∞ (σ, σ0) ≥ e (U0,U ) . Consequently
dH (U,U0) ≤ ε and

d
(
x,FR

n+1
(σ0)

)
= d (x,F (U0)) ≤ κdH (U,U0) ≤ κd∞ (σ, σ0) .

�

4 Calmness and Minimal Indexations

This section tackles the question of replacing Rn+1 with a smaller index set. In fact,
keeping the notation of the previous sections, if we consider U0 ∈ CL

(
R

n+1
)
, and

the corresponding indexed system σ0 = IU0 ∈ (
R

n+1
)Rn+1

, we wonder if U0 itself
could play the role of the index set, yielding to a certain minimal indexation (where
repetitions of constraints are eliminated).

Let us consider U0 ⊂ T ⊂ R
n+1, and the corresponding feasible set mapping,

F T : (
R

n+1
)T ⇒ R

n defined in (2). From now on σ0|T : T → R
n+1 represents the

usual rectriction of function σ0 to the domain T . Obviously

σ0|U0
(t) = σ0|T (t) = σ0 (t) = PU0 (t) = t, for all t ∈ U0.

Accordingly, rge σ0|U0
= rge σ0|T = rgeσ0 = U0, which entails

FU0
(
σ0|U0

) = F T (σ0|T ) = FR
n+1

(σ0) = F (U0) .

Roughly speaking, σ0|U0
, σ0|T and σ0 correspond to three systems with different

index sets but having the same coefficient vector set,U0. So, σ0|T and σ0 are formed
by the same inequalities as σ0|U0

but with different amount of repetitions. In order to
identify the repetitions of constraints in σ0, we define the following sets of indices:

Rt0 := {
t ∈ R

n+1 | σ0 (t) = t0
}
, t0 ∈ U0;

so, t ∈ Rt0 is indexing an inequality which is a repetition of the one associated with
t0 ∈ U0. Clearly

{
Rt0

}
t0∈U0

constitutes a partition of Rn+1.



840 M. J. Cánovas et al.

Theorem 4.1 Let U0,T ∈ CL
(
R

n+1
)
with U0 ⊂ T . Let x0 ∈ F (U0) and W ⊂ R

n

be a neighborhood of x0. Let σ0 = IU0 . Then, the following conditions are equiva-
lent:

(i) FR
n+1

is calm at (σ0, x0) with constant κ on B∞ (σ0; ε) × W ;
(ii) F T is calm at (σ0|T , x0) with constant κ on B∞ (σ0|T ; ε) × W ;
(iii) FU0 is calm at

(
σ0|U0

, x0
)
with constant κ on B∞

(
σ0|U0

; ε
) × W.

Moreover, in the case when U0 = conv (T0) with T0 ∈ CL
(
R

n+1
)
, the following

condition is also equivalent to the previous ones:
(iv) F T0 is calm at

(
σ0|T0 , x0

)
with constant κ on B∞

(
σ0|T0 ; ε

) × W.

Proof (i) ⇒ (ii) . Consider any (σ, x) ∈ gphF T ∩ (B∞ (σ0|T ; ε) × W ) and let us

see that d
(
x,F T (σ0|T )

) ≤ κd∞ (σ, σ0|T ) . Define σ̃ ∈ (
R

n+1
)Rn+1

as an extension
of σ in the following natural way:

σ̃ (t) := σ (t0) , whenever t ∈ Rt0\T , t0 ∈ U0.

Note that, σ̃ (t) is well defined since for each t ∈ R
n+1 there exists a unique t0 ∈ U0

such that t ∈ Rt0 (because of the definition of Rt0 ).
In this way, one easily checks that F T (σ ) = FR

n+1
(̃σ ) and d∞ (̃σ , σ0) =

d∞ (σ, σ0|T ) < ε. In fact, for each t0 ∈ U0 and each t̃ ∈ Rt0\T we have

∥∥σ̃
(̃
t
) − σ0

(̃
t
)∥∥ = ‖σ (t0) − σ0 (t0)‖ ≤ sup

t∈U0

‖σ (t) − σ0 (t)‖
≤ sup

t∈T
‖σ (t) − σ0 (t)‖ = d∞ (σ, σ0|T ) .

Accordingly, d∞ (̃σ , σ0) = d∞ (σ, σ0|T ) . Then, applying (i) we have our aimed
inequality

d
(
x,F T (σ0|T )

) = d
(
x,FR

n+1
(σ0)

)
≤ κd∞ (̃σ , σ0) = kd∞ (σ, σ0|T ) .

(ii) ⇒ (iii). It is completely analogous to (i) ⇒ (ii) .

(iii) ⇒ (i) .Assume (iii) , take any (σ, x) ∈ gphFR
n+1 ∩ (B∞ (σ0; ε) × W ) , and

let us show that
d

(
x,FR

n+1
(σ0)

)
≤ κd∞ (σ, σ0) .

Since σ |U0
may be seen as a subsystem of system σ, we immediately have that

FR
n+1

(σ ) ⊂ FU0
(
σ |U0

)
and d∞

(
σ |U0

, σ0|U0

) ≤ d∞ (σ, σ0) < ε.

So, we have
(
σ |U0

, x
) ∈ gphFU0 ∩ (

B∞
(
σ0|U0

; ε
) × W

)
and

d
(
x,FR

n+1
(σ0)

)
= d

(
x,FU0

(
σ0|U0

)) ≤ kd∞
(
σ |U0

, σ0|U0

) ≤ kd∞ (σ, σ0) .
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From now on we assume that U0 = conv (T0) for some T0 ∈ CL
(
R

n+1
)
. In this

case, we are going to establish (iii) ⇔ (iv) .

(iii) ⇒ (iv) . Assume that FU0 is calm at
(
σ0|U0

, x0
)
with constant κ on

B∞
(
σ0|U0

; ε
) × W.

Take any (σ, x) ∈ gphF T0 ∩ (
B∞

(
σ0|T0 ; ε

) × W
)
and let us see that

d
(
x,F T0

(
σ0|T0

)) ≤ κd∞
(
σ, σ0|T0

)
.

To do that, we are going to define an appropiate extension of σ ∈ (
R

n+1
)T0

,

say σ̃ , to the domain U0. Let R
(T0)+ denote the set of functions from T0 to R+

which are zero except at finitely many elements of T0. For each t ∈ T0 we define
λt = (

λt
t0

)
t0∈T0 by λt

t0 = 1 if t0 = t and λt
t0 = 0 otherwise. For each t ∈ U0\T0, recall-

ing U0 = conv (T0) , choose arbitrarily λt ∈ R
(T0)+ satisfying t = ∑

t0∈T0 λt
t0 t0, and∑

t0∈T0 λt
t0 = 1. Then define

σ̃ (t) :=
∑
t0∈T0

λt
t0σ (t0) , for all t ∈ U0.

In this way, any inequality in σ̃ is a consequence of σ, and σ is a subsystem of σ̃ .

Therefore, FU0 (̃σ ) = F T0 (σ ) . Moreover

d∞
(
σ̃ , σ0|U0

) = sup
t∈U0

∥∥σ̃ (t) − σ0|U0
(t)

∥∥ = sup
t∈U0

∥∥∥∥∥
∑
t0∈T0

λt
t0σ (t0) − t

∥∥∥∥∥
= sup

t∈U0

∥∥∥∥∥
∑
t0∈T0

λt
t0(σ (t0) − t0)

∥∥∥∥∥
= sup

t∈U0

∥∥∥∥∥
∑
t0∈T0

λt
t0(σ (t0) − σ0|T0 (t0))

∥∥∥∥∥ = d∞
(
σ, σ0|T0

)
.

The last equality comes from the triangular inequality together with the definiton
of λt for t ∈ T0. Consequently, (̃σ , x) ∈ gphFU0 ∩ (

B∞
(
σ0|U0

; ε
) × W

)
and, then,

d
(
x,F T0

(
σ0|T0

)) = d
(
x,FU0

(
σ0|U0

)) ≤ kd∞
(
σ̃ , σ0|U0

) = kd∞
(
σ, σ0|T0

)
.

Finally, the proof of (iv) ⇒ (iii) follows exactly the same argument as (iii) ⇒ (i)
just by replacing R

n+1 and U0 with U0 and T0, respectively. �
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5 Calmness Constants for Polyhedral Uncertainty Sets

Throughout this section we assume that U0 := conv (T0) , where ∅ �= T0 ⊂ R
n+1 is

a finite set, say

T0 :=
{(

ai
bi

)
: i = 1, ...,m

}
,

withm standing for the cardinality of T0 (i.e., there are no repetitions). Obviously, as
an index set T0 can be identified with {1, ...,m} . Let us denote by F T0

a : Rm ⇒ R
n

the feasible set mapping associated with the system

{
a′
ix ≤ bi, i = 1, ...,m

}
,

with b = (bi)i=1,...,m being the parameter to be perturbed around b. Theorem 4 in
[4] provides a point-based formula (depending exclusively on the nominal data)

for clmF T0
a

(
b, x0

)
, with

(
b, x0

)
∈ gphF T0

a . Further, [5, Theorem 3] provides a

point-based neighborhood Ub (x0) such that clmF T0
a

(
b, x0

)
is indeed a calmness

constant for F T0
a at

(
b, x0

)
on R

m ×Ub (x0) ; see also the comment just after (6).

Denoting σ = (ai
bi

)
i=1,...,m

∈ (
R

n+1
)m ≡ (

R
n+1

)T0
, Theorem 5.1 below provides a

way to construct, from [5, Theorem 3], a calmness constant for F T0 at (σ , x0) on a
certain neighborhood of (σ , x0) , which is also provided by Theorem 5.1.

Theorem 5.1 Assume that κ ≥ 0 is a calmness constant for F T0
a at

(
b, x0

)
∈

gphF T0
a on R

T0 × W, where W is a neighborhood of x0. Then, for any given ε > 0
and σ being defined as above, κ (‖x0‖ + 1 + ε) is a calmness constant for F T0 at
(σ , x0) on

(
R

n+1
)T0 × (W ∩ B (x0, ε)) .

Proof Lemma 10 in [3] establishes, for our norm choice (4),

d
(
σ ,

(
F T0

)−1
(x)

)
=

max i∈{1,...,m}
[
a′
tx − bi

]
+

‖x‖ + 1
for all x ∈ R

n,

where [α]+ := max {α, 0} stands for the positive part of α ∈ R. Also observe that

max i∈{1,...,m}
[
a′
tx − bi

]
+
may be written as d∞

(
b,

(
F T0

a

)−1
(x)

)
.

Accordingly, for all x ∈ W ∩ B (x0, ε) we have
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d
(
x,F T0(σ )

) = d
(
x,F T0

a (b)
)

≤ κd∞
(
b,

(
F T0

a

)−1
(x)

)

= (‖x‖ + 1) κ

max i∈{1,...,m}
[
a′
tx − bi

]
+

‖x‖ + 1

≤ κ (‖x0‖ + 1 + ε) d∞
(
σ ,

(
F T0

)−1
(x)

)
. �

Remark 5.1 (i) A straightforward combination of Theorems 3.2, 4.1 and 5.1 pro-
vides a calmness constant and an asociated neighborhood for F at (U0, x0) . For
comparative purposes see also [4, Theorem 5] in relation to clmF T0 (σ , x0) .

(ii) The previous theorem may be applied in the context when T0 is our nominal
(finite) system and the uncertainty on these coefficient vectors leads to a robust
counterpart where each coefficient

(ai
bi

)
, i = 1, ...,m, may move in a closed box

centered at such a point. In this way, in the robust counterpart of T0 we may replace
the union of such boxes with its convex hull, which is a polyhedral set. Also observe
that the perturbed uncertainty sets need not to be polyhedral.
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The LFM Data Qualification in Convex
Multiobjective Semi-infinite Programming

Miguel Ángel Goberna, Margarita M. L. Rodríguez
and Virginia N. Vera de Serio

Abstract Given a semi-infinite multiobjective convex problem we introduce a data
qualification that enables to characterize optimality in terms of Lagrange multipli-
ers. We show that this condition characterizes the weak efficient solutions through
the weak Karush-Kuhn-Tucker (KKT) condition, and identifies the proper efficient
solutions through the strong KKT condition. We also address the question in relation
to a gap function.

1 Introduction

We consider convex multiobjective semi-infinite programming (MOSIP) problems
in R

n of the type:

(P)minimize f (x) = (
f1 (x) , ..., f p (x)

)
subject to gt (x) ≤ 0, t ∈ T,

where the set of indices T is possibly infinite, the criteria (or objective) functions
fi : R

n → R, i = 1, ..., p, are finite-valued and convex, and the constraint functions
gt : R

n → R∪ {+∞} , t ∈ T, are extended real-valued, lower semi-continuous,
proper and convex. The space R

n is the decision space, while R
p is the objective

(or criterion) space. We only consider feasible problems (P) , and S will denote its
non-empty feasible set; clearly S is a closed convex set.

This type of problems arise in a natural way in decision making situations under
uncertainty. For instance, the classical portfolio problem can be seen as a particular
instance of (P) where p = 2, the vector x denotes a portfolio composed by n dif-
ferent assets, f1 (x) and f2 (x) represent the expected return of x (a linear function)
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and its variance (a quadratic convex function), respectively, while the constraint
functions g j , j ∈ J, are usually affine. These problems cannot be replaced by a
unique scalarization due to the uncertain risk-aversion of the decision makers (typi-
cally, a group of managers of an investment fund). In practice, some of the involved
functions, f1, f2, g j , are uncertain. Adopting the robust approach, one assumes that
fi : R

n ×Ui → R and g j : R
n × Vj → R are given functions, whereUi , i = 1, 2,

and Vj , j ∈ J, are the (possibly infinite or singleton) uncertainty sets. The pes-
simistic (or worst-case) counterpart of the portfolio problem is then formulated as
the MOSIP problem

(P) minimize
(
supu1∈U1

f1 (x, u1) , supu2∈U2
f2 (x, u2)

)

subject to g j
(
x, v j

) ≤ 0, v j ∈ Vj , j ∈ J,

where the objective functions are real-valued and convex whenever fi (x, ·) is con-
tinuous on Ui for all x and Ui is a compact topological space, i = 1, 2, while the
linear constraints are now indexed by the infinite set

⋃

j∈J
Vj .

Weconsider different types of optimal solutions for (P) : efficient (or Pareto) solu-
tions, weak efficient solutions, and proper efficient solutions. For the corresponding
definitions, we need to fix the following notation: given y, z ∈ R

p, we write y � z
when yi ≤ zi for all i = 1, ..., p, y ≤ z when y � z and y �= z, and y < z when
yi < zi for all i = 1, ..., p.

Consider a point x̂ ∈ S. Then x̂ is an efficient (weak efficient) solution for (P) if
there is no x ∈ S such that f (x) ≤ f (̂x) ( f (x) < f (̂x)). Furthermore, following
Geoffrion’s definition, x̂ is a proper efficient solution if there exists M > 0 such that
for any i ∈ {1, ..., p} and any x ∈ S with fi (x) < fi (̂x), there is some j ∈ {1, ..., p}
such that f j (x) > f j (̂x) and

fi (̂x) − fi (x)

f j (x) − f j (̂x)
< M.

By the convexity assumptions on (P), all concepts of proper efficient solution spread
in the literature are equivalent to this one (see e.g. [2]). Clearly any proper efficient
solution is an efficient (or Pareto) solution, and every efficient solution is weak
efficient.

As in scalar optimization, the characterization of the optimal solutions of (P) in
terms of Lagrange multipliers requires the fulfillment of some conditions by the data
(the functions fi and gt ) which are generically called data qualifications (DQs in
short) or, more specifically, constraint qualifications (CQs) when they only involve
the constraint functions. Recent reviews can be found in [9] (on CQs in scalar convex
optimization), [3] (on CQs in continuous convex MOSIP, meaning that the index set
T is a compact topological space and the function (x, t) �→ gt (x) is continuous) and
[4] (on DQs in general convex MOSIP).

This note is focused on a new data qualification called Local Farkas Minkowski
(LFMDQ) which is weaker than the CQ with the same name introduced in [3], and
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extends, to convex MOSIP, the homonymous CQ introduced by the third author
[7] for scalar linear semi-infinite programs (actually, the weakest CQ allowing to
characterize optimality in terms of Lagrange multipliers). Indeed, we show that
the LFMDQ allows to characterize the weak efficient solutions through the (weak)
Karush-Kuhn-Tucker (KKT) condition, and to identify proper efficient solutions
through the strong KKT condition. (See the next section for the definitions.)

This paper is organized as follows. Section2 presents the necessary notation and
preliminaries, including the Locally Farkas Minkowski Constraint Qualification.
Section3 introduces the Locally Farkas Minkowski Data Qualification. Section4
provides a characterization of the weak-efficient solutions through the (weak) KKT
condition. The connection with a gap function is also discussed. Finally, Sect. 5 ana-
lyzes relationships between proper efficient solutions and the strong KKT condition
in a similar fashion.

2 The Local Farkas Minkowski Constraint Qualification
and Other Preliminaries

Throughout the paper we use the following notation. The zero vector inR
n is denoted

by 0n . We denote �n+ = {
x ∈ R

n+ : ∑n
i=1 xi = 1

}
and �n++ = {

x ∈ �n+ : x > 0n
}
.

The subgradient (convex subdifferential) of any convex function h at some point x
of its domain is written as ∂h (x). Given X ⊂ R

n, we denote by conv X, cone X :=
R+ conv (X ∪ {0n}) , and cl X the convex hull of X, the convex conical hull of X,

and the closure of X, respectively. If X is non empty, then its negative polar cone
(strictly negative polar cone) is X0 := {

y ∈ R
n : y′x ≤ 0 for all x ∈ X

}
(X− :={

y ∈ R
n : y′x < 0 for all x ∈ X

}
, respectively), where y′x stands for the Euclidean

product 〈y, x〉 . For x̂ ∈ cl X , the cone of feasible directions of X at x̂ is

D (X; x̂) := {
d ∈ R

n : ∃θ > 0 such that x̂ + εd ∈ X for all ε ∈ (0, θ)
}
,

and the contingent cone (or Bouligand tangent cone) at x̂, T (X; x̂), is the cone
formed by all v ∈ R

n such that there exist sequences
{
vk

}
k∈N ⊂ R

n and
{
t k

}
k∈N ⊂

R+ with vk → v, t k → 0, and x̂ + t kvk ∈ X for all k ∈ N. If X is a convex set, then
it is easy to see that

T (X; x̂) = cl D (X; x̂) .

In relation with the constraints of (P) , another important cone will be used.
Suppose that x̂ ∈ S and let

T (̂x) := {t ∈ T : gt (̂x) = 0}

be the set of active indices at x̂ . The active cone at x̂ is the convex conical hull of
the set of subgradients at x̂ of the active constraints at x̂ :



848 M. Á. Goberna et al.

G (̂x) := cone

⎛

⎝
⋃

t∈T (̂x)

∂gt (̂x)

⎞

⎠ .

It is well known that
G (̂x) ⊂ D0(S; x̂),

which gives the inclusion

cl D (S; x̂) = D00(S; x̂) ⊂ G0 (̂x) . (1)

From the objectives of (P), we will make use of the convex hull of the set of
subgradients at x̂ of the objective functions:

F (̂x) := conv

(
p⋃

i=1

∂ fi (̂x)

)

.

We also associate with (P) the so-called gap function:

ϑ : ⋃
x∈Rn

({x} × ∏p
i=1 ∂ fi (x)

) × �
p
+ → R = [−∞,+∞]

ϑ (x, ξ, λ) := supy∈S
∑p

i=1 λiξ
′
i (x − y) ,

where ξ = (
ξ1, ..., ξp

)
. This gap function is quite useful in solving the problem (P)

because it is well known (see e.g. [2, Propositions 3.9 and 3.10, and Theorem 3.15])
that a weak (or proper) efficient solution can be found by solving a weighted sum
scalarization of (P),

minimize
p∑

i=1

λi fi (x) , subject to gt (x) ≤ 0, t ∈ T,

for some adequate λ = (
λ1, ..., λp

) ≥ 0p (or λ > 0p).
The aim of this paper is to give conditions for the optimality of a given x̂ ∈ S

in terms of the existence of multipliers satisfying any of the following conditions
related to F (̂x) , G (̂x) and ϑ (̂x, ·, ·) :
• The weak Karush-Kuhn-Tucker (KKT) condition holds at x̂ ∈ S if

0n ∈ F (̂x) + G (̂x) , (2)

i.e., there exist αi ≥ 0, i = 1, ..., p,
∑p

i=1 αi = 1, and βt ≥ 0, with βt > 0 for
finitely many indexes in T (̂x), such that

0n ∈
p∑

i=1

αi∂ fi (̂x) +
∑

t∈T (̂x)

βt∂gt (̂x) . (3)
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• The strongKKT condition holds at x̂ when all the coefficients αi in (3) are positive.
• ϑ (̂x, ·, ·) attains zero value on �

p
+ (�p

++) if there exist ξ ∈ ∏p
i=1 ∂ fi (̂x) and

λ ∈ �
p
+ (λ ∈ �

p
++, respectively) such that ϑ (̂x, ξ, λ) = 0.

Optimality theorems are given in [3] (where (P) is assumed to be continuous)
and [4] for different types of solutions and under different constraint qualifications.
We now recall some of them.

The Abadie constraint qualification at x̂ , ACQ, requires the validity of the reverse
inclusion in (1), i.e., G0 (̂x) ⊂ cl D (S; x̂) . Indeed ACQ is equivalent to the equality

G0 (̂x) = cl D (S; x̂) . (4)

In our convex setting, the Guignard constraint qualification at x̂ , GCQ, defined
by the equation clG (̂x) = D0(S; x̂), is nothing else than ACQ written by taking
polars in both sides of (4). The Zangwill constraint qualification, ZCQ, holds when
clG− (̂x) ⊂ D(S; x̂),which impliesACQ.Also related toACQ, in [3] it is introduced
the so called Local Farkas Minkowski constraint qualification at x̂ , LFMCQ, defined
by the equation

G (̂x) = D0(S; x̂),

which subsumes the LFMCQ for linear SIP [7] and the Basic constraint qualification
for ordinary convex optimization [5]. In the case that G (̂x) is closed, ACQ and
LFMCQ are equivalent; otherwise LFMCQ ⇒ ACQ.

3 The Local Farkas Minkowski Data Qualification

Recall that LFMCQ at x̂ ∈ S requires the equality G (̂x) = D0(S; x̂). Since it is
always true thatG (̂x) ⊂ clG (̂x) ⊂ D0(S; x̂),weonly need to consider the condition

D0(S; x̂) ⊂ G (̂x) . (5)

Here we introduce a weaker condition which will allow us to characterize the weak
efficient solutions of (P) .

Definition 3.1 The Local Farkas-Minkowski data qualification (LFMDQ) holds at
x̂ ∈ S when

[−F (̂x)] ∩ D0(S; x̂) ⊂ G (̂x) . (6)

This LFMDQ property is clearly weaker than LFMCQ. To the best of our knowl-
edge, the closest data qualification is the so-called weak Abadie data qualification,
WADQ, consisting in F− (̂x) ∩ G0 (̂x) ⊂ cl D(S; x̂). Once again, the implication
ACQ=⇒WADQ is trivially true; the problem in [4, Example 3], where
G (̂x) is not closed, satisfies ACQ but not LFMDQ, so that ACQ�LFMDQ and
WADQ�LFMDQ.
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The following example shows a problem with an efficient solution such that
LFMDQ holds at this solution, while LFMCQ and ACQ fail.

Example 3.1 Consider the linear MOSIP problem in R
2 given by

(P) minimize f (x1, x2) = (x2, x1 + x2)
s.t. −x1 − t2x2 + 2t ≤ 0, t ≥ 0,

−x1 + 1 + t ≤ 0, t < 0.

The feasible set of (P) is

S = {
(x1, x2) ∈ R

2 : x1 ≥ 1, x1x2 ≥ 1
}
, (7)

and the image of S by f, is

f (S) = {
(z1, z2) ∈ R

2 : z1 > 0, z2 ≥ 1 + z1, z2 ≥ z1 + 1/z1
}
.

It is easy to see that any point (x1, 1/x1) with x1 ≥ 1 is an efficient solution for (P).
In particular we will consider x̂ = (1, 1) and x̃ = (2, 1/2). We have

G (̂x) = cone {(−1,−1)} , F (̂x) = conv {(0, 1) , (1, 1)} ,

cl D(S; x̂) = cone {(0, 1) , (1,−1)} and D0(S; x̂) = cone {(−1, 0) , (−1,−1)} .

Thus [−F (̂x)] ∩ D0(S; x̂) = {(−1,−1)} ⊂ G (̂x) ,butG0 (̂x) �= cl D(S; x̂).Hence
(P) satisfies the LFMDQ condition at x̂ , but it does not satisfy ACQ at x̂ , nei-
ther LFMCQ. Observe that G (̂x) is closed, so ACQ and LFMCQ are equivalent.
For x̃ , we have G (̃x) = cone {(−1,−4)} = D0(S; x̃) and G (̃x) is closed, so
LFMCQ, ACQ and LFMDQ hold at x̃ .

In the scalar linear case, i.e., when the objective and the constraint functions of
(P) have the form f (x) = c′x and gt (x) = a′

t x − bt , with c, at ∈ R
n and bt ∈ R,

respectively, in the same fashion as in [6] it is easy to prove that LFMDQ at x̂ ∈ S
can be expressed in terms of the data as follows:

c′ x̂ = d and c′x ≥ d for all x ∈ S ⇒ − (c, d) ∈ cone {(at , bt ) : t ∈ T } .

4 Optimality Conditions for Weak Efficiency

We now characterize the weak efficient solution to (P) under the LFMDQ property
by means of the weak KKT condition and the gap function. To this aim we need a
simple property of the directional derivatives of the objective functions at a weak
efficient solution. We include the proof for completeness purposes.
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Lemma 4.1 If x̂ is a weak efficient solution to (P) , then for all d ∈ cl D (S; x̂) it
holds that

max
i∈{1,...,p} f

′
i (̂x; d) ≥ 0.

Proof If there is some d ∈ D (S; x̂) such that maxi∈{1,...,p} f ′
i (̂x; d) < 0, then for all

i = 1, ..., p, and all ε > 0 sufficiently small, we have

fi (̂x + εd) − fi (̂x)

ε
< 0

contradicting the fact that x̂ is a weak efficient solution to (P) because x̂ + εd ∈ S
for some small ε > 0. So maxi∈{1,...,p} f ′

i (̂x; d) ≥ 0 for all d ∈ D (S; x̂) . Now the
proof concludes by observing that each f ′

i (̂x; ·) is a continuous finite convex function
since fi is a finite convex function (see [5, Remark VI.1.1.3]). �

Theorem 4.1 Assume that (P) satisfies the LFMDQ condition at x̂ ∈ S. Then, x̂ is
a weak efficient solution for (P) if and only if the weak KKT condition holds at x̂ .

Proof The converse is known and does not require LFMDQ (see, e.g.,
[3, Theorem 27(i)]). So it is enough to assume that x̂ is a weak efficient solution
to (P) , and show that (2) holds.

Claim: [−F (̂x)] ∩ D0(S; x̂) �= ∅. Indeed, if [−F (̂x)] ∩ D0(S; x̂) = ∅, by
observing that F (̂x) is a compact convex subset of R

n and D0(S; x̂) is a closed
convex cone in R

n , a separation argument yields some w ∈ R
n such that

w′z > 0 for all z ∈ −F (̂x) andw′z ≤ 0 for all z ∈ D0(S; x̂).

Thus, w ∈ D00(S; x̂) = cl D (S; x̂)while w′y < 0 for all y ∈ F (̂x) . Then, from [8,
Theorem 23.4] and the assumptions on each fi , i = 1, ..., p,

f ′
i (̂x;w) = max

{
w′yi : yi ∈ ∂ fi (̂x)

}
< 0

contradicting Lemma 4.1. Hence, [−F (̂x)] ∩ D0(S; x̂) �= ∅.

Therefore, by taking any z ∈ [−F (̂x)] ∩ D0(S; x̂) ⊂ G (̂x) ,weobtain that the prob-
lem (P) satisfies the weak KKT condition at x̂ :

0n = (−z) + z ∈ F (̂x) + G (̂x) .

�
For the point x̂ in Example 3.1, we have

02 = (1, 1) + (−1,−1) ∈ F (̂x) + G (̂x) ,

satisfying the weak KKT condition.
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Theorem 4.2 Assume that (P) satisfies LFMDQat x̂ ∈ S. Then, x̂ is a weak efficient
solution to (P) if and only if ϑ (̂x, ·, ·) attains zero value on �

p
+.

Proof The “if” part does not require LFMDQ. Suppose ϑ (̂x, ξ, λ) = 0 for some
ξ ∈ ∏p

i=1 ∂ fi (̂x) and λ ∈ �
p
+. Since 0 = ϑ (̂x, ξ, λ) = supx∈S

∑p
i=1 λiξ

′
i (̂x − x) ,

we get that
∑p

i=1 λiξ
′
i (x − x̂) ≥ 0 for all x ∈ S. Then x̂ is an optimal solution of the

weighted sum scalarization of (P) ,

minimize
p∑

i=1

λi fi (x) , subject to gt (x) ≤ 0, t ∈ T,

because

p∑

i=1

λi fi (x) ≥
p∑

i=1

λi fi (̂x) +
p∑

i=1

λiξ
′
i (x − x̂) ≥

p∑

i=1

λi fi (̂x) ,

for any x ∈ S. From [2, Proposition 3.9] we obtain that x̂ is a weak efficient solution
to (P) .

Next, the proof follows the lines in [4, Theorem 4]. In order to show the necessity
of ϑ (̂x, ξ, λ) = 0 for some ξ ∈ ∏p

i=1 ∂ fi (̂x) and λ ∈ �
p
+ when x̂ is a weak efficient

solution to (P) , we need to appeal to Theorem 4.1 above to get some multipliers
λi ≥ 0, i = 1, ..., p,

∑p
i=1 λi = 1, and βt ≥ 0, with βt > 0 only for finitely many

indexes in a finite set T ′ ⊂ T (̂x), such that

0n ∈
p∑

i=1

λi∂ fi (̂x) +
∑

t∈T ′
βt∂gt (̂x) .

Then, there exist ξi ∈ ∂ fi (̂x) , i = 1, ..., p, and ut ∈ ∂gt (̂x) , t ∈ T ′, with

0n =
p∑

i=1

λiξi +
∑

t∈T ′
βt ut . (8)

Now, take any y ∈ S and observe that the convexity of the function gt gives, for all
t ∈ T ′ ⊂ T (̂x) ,

gt (y) ≥ gt (̂x) + u′
t (y − x̂) = u′

t (y − x̂) .

Recalling that gt (y) ≤ 0 for all t ∈ T, we obtain

u′
t (y − x̂) ≤ 0

for t ∈ T ′. Taking into account (8) and multiplying by (y − x̂) we get
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−
p∑

i=1

λiξ
′
i (y − x̂) =

∑

t∈T ′
βt u

′
t (y − x̂) ≤ 0. (9)

Then,

ϑ (̂x, ξ, λ) = sup
y∈S

p∑

i=1

λiξ
′
i (̂x − y) = 0

by virtue of (9) and the fact that x̂ ∈ S.

�
Theorem 4.1 extends, to convex MOSIP, the KKT characterization of optimal

solutions in linear SIP in [6, Theorem 3.6] as well as the weak KKT characterization
ofweak efficient solutions to (P) in [4, Corollary 1] (under LFMCQ) and [1, Theorem
6] (under ZQC together the closedness of G (̂x) , with the same proof). Similarly,
Theorem 4.2 generalizes [4, Theorem 4 under LFMCQ].

5 Optimality Conditions for Proper Efficiency

In [3, Theorem 27] it is shown that the strong KKT condition at any feasible point
x̂ is a sufficient condition for assuring that x̂ is a proper efficient solution in any
convex MOSIP. Moreover it is also shown that, under LFMCQ, the strong KKT is
a necessary condition for x̂ being a proper efficient solution for (P) . Here we will
prove a similar result on proper efficiency under the weaker LFMDC condition.

Theorem 5.1 Assume that (P) satisfies the LFMDQ condition at x̂ ∈ S. Then, x̂ is
a proper efficient solution to (P) if and only if the strong KKT condition holds at x̂ .

Proof The “if” part is known (see, e.g., [3, Theorem 27(i)]) and does not require
LFMDQ. So, we only need to show the necessary condition. Assume that x̂ is a
proper efficient solution to (P). According to [2, Theorem 3.15] x̂ is an optimal
solution to a weighted sum scalarization of (P) ,

minimize
p∑

i=1

λi fi (x) , subject togt (x) ≤ 0, t ∈ T,

for some adequate λ ∈ �
p
++. From [8, Theorem 27.4], there exists a vector u ∈

∂
(∑p

i=1 λi fi (̂x)
)
such that −u ∈ D0(S; x̂) (the normal cone to S at x̂). Moreover,

[8, Theorem 23.8] gives ∂
(∑p

i=1 λi fi (̂x)
) = ∑p

i=1 λi∂ fi (̂x) , which is a subset of
F (̂x) . Therefore, taking into account the LFMDQ condition at x̂ , we obtain

−u ∈ [−F (̂x)] ∩ D0(S; x̂) ⊂ G (̂x) ,

thus
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0n = u + (−u) ∈ F (̂x) + G (̂x) ,

which shows that the strong KKT condition holds by the positivity of λ.

�
According to Theorem 5.1, we can conclude that the efficient solution x̂ = (1, 1)

to problem (P) in Example 3.1 is not proper efficient because it does not satisfy the
strong KKT condition. However, for the point x̃ = (2, 1/2), we have

02 = 1
4 (1, 1) + 3

4 (0, 1) + 1
4 (−1,−4) ∈ F (̃x) + G (̃x) ,

so the strong KKT condition holds at x̃ . Thus x̃ is a proper efficient solution to (P).

Theorem 5.2 Assume that (P) satisfies the LFMDQ condition at x̂ ∈ S. Then, x̂ is
a proper efficient solution to (P) if and only if ϑ (̂x, ·, ·) attains zero value on �

p
++.

Proof It is the same as the proof of Theorem 4.2, by appealing to [2, Theorem 3.15]
and to Theorem 5.1.

�
Finally, let us observe that the proofs in this work rely on the possibility of identi-

fying weak and proper efficient solution via scalarization. Obtaining similar results
for other types of solutions is a challenging problem requiring the use of a totally
different methodology.
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Complexity and Dynamical Uncertainty

Santiago Ibáñez, Antonio Pumariño and José Ángel Rodríguez

Abstract Uncertainty is usually linked to non-deterministic evolutions. Neverthe-
less, along the second half of the past century deterministic phenomena with unpre-
dictable behaviour were discover and the notion of strange attractor emerged as the
new paradigm to describe chaotic behaviours. The goal of this paper is to review all
this story and to provide a perspective of the state of the art regarding this subject.

1 Introduction

This paper is dedicated to the memory of Professor Pedro Gil. In 1996 he gave
the inaugural lecture to open the academic year at the University of Oviedo. It was
entitled “Las matemáticas de lo incierto” [17] and his first reflection, “uncertainty is
inherent in nature”, serves as a starting point for the topics that we develop below.

Uncertainty is understood as the impossibility to predict the evolution of a
process. Therefore, uncertainty has to be apparent in any mathematical model cho-
sen for the study of this process. Initially, models are stated by taking deterministic
variables over spaces M (often differentiable manifolds), endowed with good prop-
erties. Then, on M , the laws governing the evolution of the process are introduced
in terms of well-defined maps or operators f : M → M . In this way, differential
equations, evolutionary partial differential equations or delayed functional equations
arise, to cite relevant examples which can be included in the more general context of
dynamical systems. When variables can be established only in terms of probabilities
or when the evolution laws cannot be stated in precise terms, appealing to random
phenomena, deterministic models give rise to stochastic processes. In this way, we
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give up on predicting with certainty the dynamics of the process and in fact, we
accept the uncertainty of the process.

Thus, a big gap appears between dynamical (deterministic) systems and stochastic
processes. Dynamical uncertainty seems to be, exclusively, a consequence of chance
and, if chance is not present in a given process, dynamics should be simple and
predictable. However, this is not the case. Our goal is to explain very briefly how to
cover the gap.Wewill understand how simple and fully deterministic models present
dynamical uncertainty, giving rise to complex structures. These structures are the so
called strange attractors, which since the second half of the last century are the new
paradigm to describe the notions of chaos and turbulence (see [34] and references
therein).

Roughly speaking, strange attractors are invariant sets with fractal structure (frac-
tional dimension) and with inner dynamics which is exponentially sensitive to
changes of the initial conditions. These dynamics imply uncertainty. This uncer-
tainty, together with the fractal structure, justifies the complexity mentioned above.
Once we have proved the abundance of dynamical systems exhibiting strange attrac-
tors, we will conclude, according to Pedro Gil, that complexity and uncertainty are
inherent in nature.

For the sake of simplicity, we will define in Sect. 2 the notion of strange attractor
for the iteration of a diffeomorphism (or a map in general) defined on a differen-
tiable manifold M . The close relationship between the flow of a vector field and
the iteration of a diffeomorphism through the concept of Poincaré maps, allow us
to easily extend the notion of strange attractor to vector fields. Strange attractors,
like any other dynamical property, reach their true physical meaning if they persist
for small perturbations of the system (structural stability) or they occur for generic
families over a set of parameters with positive Lebesgue measure (observability with
positive probability). By finding this persistence throughout this second section, we
will conclude the abundance of strange attractors and, as a conclusion, the abundance
of dynamical uncertainty.

In Sect. 3 we will consider vector fields to understand how simple geometric
configurations lead to the existence of persistent strange attractors. Since these con-
figurations will be present in generic unfoldings of low codimension singularities and
since singularities are the simplest elements which can be determined in the study
of vector fields, this third section provides a criterion of existence of strange attrac-
tors. This criterion is easy to apply and makes unnecessary many of the numerical
simulations suggesting the existence of possible strange attractors.

All the above mentioned strange attractors are one-dimensional. However, the
progress in establishing a hierarchy in dynamical complexity involves studying the
existence of strange attractors of increasing dimension. The proof of the existence of
two-dimensional strange attractors for diffeomorphisms or vector fields is nowadays
a very interesting challenge. Section4 includes results pointing in that direction.With
the samemotivation as Sect. 3, we conclude Sect. 4 proposing the search of a criterion
for the existence of two-dimensional strange attractors in generic unfoldings of low
codimension singularities.
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2 Strange Attractors

We will consider throughout this section a map or a diffeomorphism f : M → M
defined on a differentiable manifold M . A set A ⊂ M is said to be invariant by f if
f (A) ⊆ A. The inner dynamics within an invariant set A will be observable if it has
a stable set

Ws(A) = {z ∈ M : d( f n(z), A) → 0 as n → ∞}

with non-empty interior or, at least, with positive Lebesgue measure. The invariant
set A will be minimal if it is transitive, that is, if it contains a dense orbit.

Definition 2.1 An attractor for a transformation f defined on a manifold M is a
compact, f -invariant and transitive set A ⊂ M whose stable setWs(A) has nonempty
interior. An attractor is said to be strange if it contains a dense orbit { f n(x) : n ≥ 0}
displaying exponential growth of the derivative, that is, if there exists a constant
c > 0 such that, for every n ≥ 0,

‖Df n(x)‖ ≥ ecn .

In particular, the above definition implies that strange attractors display, in a dense
orbit, at least one positive Lyapunov exponent.

Attracting fixed points or attracting periodic orbits provide the simplest examples
of attractors. Attracting tori with a dense orbit also provide examples of recurrent
attractors on which there is no expansivity. The inner dynamics of a strange attractor
is quite different. On a strange attractor, the exponential growth of the derivative of f
along a dense orbit implies an exponential growth of the deviations between any pair
of different orbits, this fact not depending on the distance between the respective
initial conditions. This is the reason why f is said to have high sensitivity to the
initial conditions and the evolution of the dynamics inside the attractor becomes
unpredictable. This uncertainty also extends to every point in the stable manifold of
the attractor.

From a physical point of view, a certain degree of persistence is as relevant as
the unpredictability of the dynamics resulting from the aforementioned sensitivity to
initial conditions. So, if a family fμ of diffeomorphisms exhibits a strange attractor
when μ = μ0, the dynamics of the attractor should be only considered if, for every
δ > 0, strange attractors still exist for values of the parameter in a positive Lebesgue
measure set E ⊂ B(μ0, δ). In this case, the attractor is said to be persistent for the
family fμ, and it is said to be fully persistent if E = B(μ0, δ) for some δ > 0.

The possible existence of persistent strange attractors for parameter families of
diffeomorphism takes an exceptional interest. A first strange attractor, the solenoid,
was built by Smale, see [36], inspired by its well-known horseshoemap. For thismap,
Smale found a compact setΛwhich is invariant, transitive and hyperbolic, but whose
stable set Ws(Λ) has empty interior. However, the solenoid is a hyperbolic attractor
whose stable set has non-empty interior. Every hyperbolic attractor is fully persis-
tent and even structurally stable: arbitrarily small perturbations of f have attractors
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which are topologically equivalent. Unfortunately, there are no natural mechanisms
providing abundance of hyperbolic strange attractors.

The first strange attractors appearing in the literature can be detected numerically
in very simple scenarios: the Lorenz attractor [23], for a family of three-dimensional
quadratic fields, and the Hénon attractor [18], for the family of diffeomorphisms

Ha,b(x, y) = (1 − ax2 + y, bx). (1)

From numerical analysis, Lorenz attractor seems to be strange, fully persistent, but
not structurally stable. On the other hand, the attractors of (1) seem to be strange,
persistent, but not fully persistent. Therefore, none of these attractors seem to be
hyperbolic. But, does there exist non hyperbolic strange attractors?

At early 1990s, in a historical and very involved paper [9], M. Benedicks and
L. Carleson proved that the Hénon family Ha,b given in (1) has strange attractors for
parameter values close to a = 2 and b = 0. In fact, these attractors coincide with the
closure of the unstable manifold of a saddle point of the map. This one-dimensional
manifold folds time after time arbitrarily close (if b is small enough) to the line y = 0.
When b = 0 this line is invariant by Ha,0 and the dynamics of the limit family Ha,0

on this invariant set coincides with the dynamics of the one-dimensional quadratic
family fa : [−1, 1] → [−1, 1], a ∈ [1, 2], defined by

fa(x) = 1 − ax2. (2)

In [8] it was proved that fa displays persistent strange attractors for parameter values
close enough to a = 2: There exists a positive Lebesgue measure set of parameters
E such that for every a ∈ E the map fa exhibits an invariant set where the orbit of
the critical value is not only dense but also displays a positive Lyapunov exponent.
The proof given in [9] is a laborious extension of the previous results given in [8] in
order to get, in a positive Lebesgue measure set of parameters (a, b) close to (2, 0), a
dense orbit in the aforementioned unstable manifold displaying a positive Lyapunov
exponent.

The idea of taking advantage of the dynamics of limit families was used in [24]
to prove the persistence of strange attractors (like the ones obtained for the Hénon
family) when a generic two-dimensional homoclinic tangency is unfolded. To be
precise, we must recall that the main result in [24] is strongly based on the existence
of limit families of return maps associated to the unfolding of homoclinic tangencies.
Under an appropriate change of coordinates, these return maps are defined in a
neighbourhood of the homoclinic points and they are very similar to the ones defined
in (1) and hence, the proof developed in [9] can be adapted. In short, since unfoldings
of homoclinic tangencies are present in generic families of difeomorphisms, the
abundance of Hénon-like strange attractors follows.

In order to prove the persistence of strange attractors in families Xμ of three-
dimensional vector fields one might consider the Poincaré map fμ associate to a
saddle type periodic orbit Γμ of Xμ. Then, for μ = μ0 one may assume also that
fμ0 has a generic homoclinic tangency which is generically unfolded by fμ. In this
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way, the previous results can be applied to conclude the existence of Hénon-like
strange attractors. However, there exists a simpler and more natural route to reach
strange attractors in families of vector fields inR3. Doing so, we may even prove the
coexistence of any arbitrarily large number of strange attractors (see [25, 26]). These
are the strange attractors emerging in a neighbourhood of a Shilnikov homoclinic
orbit.

Let 0 ∈ R
3 be an equilibrium point of the vector field Xμ0 whose eigenvalues

are λ > 0 and −ρ ± iω with λ > ρ > 0. Let us suppose that the unstable man-
ifold Wu(0) and the stable manifold Ws(0) of the equilibrium point intersect in
a homoclinic orbit Γ . This orbit is named Shilnikov homoclinic orbit and in every
neighbourhood ofΓ there exist a countable set of periodic orbits [35]. In fact, Tresser
[38] proved that in every neighbourhood of such a homoclinic orbit, an infinity of
linked horseshoes can be defined in such a way that the dynamics is conjugated to a
subshift of finite type on an infinite number of symbols. When μ ∈ R

s with s ≥ 2,
the Shilnikov homoclinic orbit for μ = μ0 remains, generically, for values of μ on
a manifold H ⊂ R

s of codimension one. Just off this manifold H the homoclinic
orbit disappears and an infinite number of horseshoes given in [38] are destroyed.
Then, homoclinic tangencies take place and, as a consequence of [24], Hénon like
strange attractors arise.

Let us now suppose that μ varies on the manifold H and assume that λ = ρ. In
this non generic context there exists a one-parameter family Xa of piecewise regular
vector fields such that for every neighbourhood V of the homoclinic orbitΓ , for each
k ∈ N and for every value of the parameter a in a set of positive Lebesgue measure
depending on k, at least k strange attractors coexist in V (see Theorem A in [25]). In
order to prove this result, it is necessary to choose a suitable section Π0 transversal
to the flow of Xa in V and to define the corresponding transformation T : Π0 → Π0

associated to the flow. After splittingΠ0 into a countable union of rectangles Rm and
carrying out adequate changes of variable, we get the following sequence of families
of diffeomorphisms

Tλ,a,b(x, y) = ( fλ,a(x) + 1

λ
log(1 + √

by),
√
b(1 + √

by)eλx sin x)

defined on certain rectangles Um ⊂ Rm , with b = e−2πλm and m ∈ N. For a large
enough m, each Tλ,a,b is a small perturbation of the limit family Ψλ,a(x, y) =
( fλ,a(x), 0) where

fλ,a(x) = λ−1 log a + x + λ−1 log cos x . (3)

In spite of fλ,a is not the quadratic family (2), the proof of the existence of strange
attractors for the diffeomorphisms Tλ,a,b can be developed by means of a cautious
adaptation of the ideas and the arguments in [9, 24]. Then, these attractors correspond
to suspended strange attractors for the family of vector fields Xa .

We conclude this section by stressing that, indeed, strange attractors are abundant
for diffeomorphisms and vector fields as well.
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3 Germs of Strange Attractors

Let X be a set of dynamical systems endowed with a topology and an equivalence
relation (usually the topological equivalence). A system is said to be structurally
stable if it belongs to the interior of its equivalence class. The setB of non-structurally
stable systems is called bifurcation set.

The most ambitious goal in studyingX is to know the structure ofB. However,
even when X is the set of regular vector fields in a so low dimension as n = 3, the
structure of B can become very intricate and only a few of its elements, namely
vector fields having non-hyperbolic singularities, can be easily found. If no specific
restriction is imposed to X , vector fields with a homoclinic orbit are also elements
of B which often explain transitions between different and sometimes intrigued
dynamics as, for example, persistence of strange attractors, as seen in the previous
section. Unfortunately, the existence of a homoclinic orbit for a given vector field
(or even for a given family of vector fields) is not easy to prove. So, the setB1 ⊂ B
of vector fields with non-hyperbolic singularities seems to be the only part of B
which can be analytically determined. In order to obtain more information about the
structure and the layout ofB, we can look atB1 as a set of rivers and landmarks in the
middle of the jungle. Then we wonder if each equivalence class C , corresponding to
a relevant dynamics, is adjacent toB1 and, in such a case, which are those elements
of B1 that are adjacent to a given class.

As we have just said in the previous section, the simplest homoclinic orbits that
yield infinitely many transitions and complicated dynamics (existence of persistent
strange attractors) are the Shilnikov homoclinic orbits. Therefore, we aim now to
find the most general elements of B1 which are adjacent to the set of vector fields
having such orbits; that is, to seek for the lowest codimension singularity fromwhich
these vector fields can be unfolded generically.

Consider a C∞ vector field X defined in a neighbourhood of 0 ∈ R
3 such that X

vanishes at 0 and the linear part of X is linearly conjugate to

y
∂

∂x
+ z

∂

∂y
.

As proved in [13], X can be written in the following normal form

y
∂

∂x
+ z

∂

∂y
+ (

ax2 + bxy + cxz + dy2 + O(‖(x, y, z)‖3)) ∂

∂z
. (4)

The condition a 
= 0 defines a stratum of codimension three in the space of germs of
C∞ vector fields in R

3 having a singularity at the origen, where, as proved in [13],
there is a unique topological type. Then, it makes sense to refer to (4) as the nilpo-
tent singularity of codimension three or the nilpotent singularity for short. The
condition a = 0 characterizes a stratum of codimension four with, as proved in [13],
five different topological types.
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Let η ∈ R
s , where s is the codimension of X in (4). A family Xη of vector fields

is said to be an unfolding of X if for some value η = η0 it holds that X = Xη0 .
Without loss of generalidad we suppose η0 = 0. Again from [13] we know that any
generic 3-parameter unfolding of the nilpotent singularity of codimension three can
be written in the following normal form:

y
∂

∂x
+ z

∂

∂y
+ (λ + μx + νz + x2 + bxy + cxz + dy2 + eyz + α(x, y, z, η))

∂

∂z

where
α(x, y, z, η) = O(‖(x, y, z, λ, μ, ν)‖3) = O(‖(y, z)‖)

and λ, μ and ν represent the exact coefficients in the Taylor expansion with respect
to (x, y, z), more precisely

α(0, η) = ∂α

∂y
(0, η) = ∂α

∂z
(0, η) = 0.

By means of the rescaling

λ = u6 λ̂ , μ = u2μ̂ , ν = uν̂

x = u3 x̂ , y = u4 ŷ , z = u5 ẑ

where λ̂2 + μ̂2 + ν̂2 = 1 and (̂x, ŷ, ẑ) belong to an arbitrarily big ball A ⊂ R
3 cen-

tred at 0 ∈ R
3, the previous family reduces to

ŷ
∂

∂ x̂
+ ẑ

∂

∂ ŷ
+ (̂λ + μ̂x̂ + ν̂̂z + x̂2 + O(u))

∂

∂ ẑ
. (5)

This family has been studied in [13–15]. By using the so-called family blowing-up
technique, it was proven that all dynamics in the unfolding of the nilpotent singularity
are detectable in (5). Let Yη̂ be the family given by (5) when u = 0. Since all the
structurally stable behaviours of Yη̂ are persistent for u small enough, it is clear
that Yη̂ plays an essential role in the study of the unfolding. Extending the advances
achieved in the cited references [13–15], and after a lengthy and careful study of
the limit family Yη̂, it was proven in [21] (see also [5]) that Shilnikov homoclinic
orbits appear in any generic unfolding of the three dimensional nilpotent singularity
of codimension three. Earlier, in [20], it had been proven that Shilnikov homoclinic
orbits appear in any generic unfolding of any three dimensional nilpotent singularity
of codimension four.

With the goal of determining the singularity of lowest codimension which gener-
ically unfolds Shilnikov homoclinic orbits, the paper [16] dealt with Hopf-Zero
singularities of codimension two. We say that a singularity is of Hopf-Zero type
if the linear part has spectrum {0,±ω i}. Sufficient conditions for the existence of
Shilnikov homoclinic orbits were obtained. Later, in [2–4], such sufficient condi-
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tions were translated to expressions which depend on the full jet of the singularity.
Nowadays, it can be said that any generic unfolding of the Hopf-Zero singularity
unfolds Shilnikov homoclinic orbits. Nevertheless, generic conditions to be checked
are algebraic only in the case of the nilpotent singularity.

These singularities of low codimension that generically unfold persistent strange
attractors are understood as germs of these attractors or seeds of chaos. These germs
are never present in families of vector fields of dimension n < 3. However, vector
fields of low dimension can be coupled to generate dynamics in greater dimension
(coupling cells to generate tissues, for example). This is a natural route towards
dynamic complexity in which the analysis of the singularities of greater and greater
codimension can be as useful as it is essential. It was proven in [10] that the coupling
by a simple linear diffusion of a two-dimensionalmodel of a simple chemical reaction
(the brusselator) leads to chaotic dynamics (see also [11]). The proof is essentially
reduced to verifying that the coupling defines in dimension four a family which
is a generic unfolding of the nilpotent singularity. Alternative organizing centers
(Hopf-pitchfork bifurcations) of chaotic dynamics in coupled systems are discussed
in [12].

The role of singularities as germs of complexity still needs to be extensively
exploited in applications. Neuronal models are the next challenge. Reference [7]
shows an outline of the extremely rich catalogue of homoclinic phenomena arising
in the 3-dimensional neuronal model of Hindmarsh-Rose and it is a first step to tackle
coupled neurons where singularities are expected to emerge as organizing centers of
a great variety of complex dynamics.

4 Two Dimensional Strange Attractors: An Open question

The strange attractors mentioned in Sect. 2 are one-dimensional. Actually, they coin-
cide with the closure of a one-dimensional unstable manifold folding over and over
again to define a fractal set of dimension d, with 1 < d < 2. The inner dynamics of
the attractor expands in the direction of the tangent space of themanifold. It has, there-
fore, a unique positive Lyapunov exponent. In order to get a strange attractor with
two positive Lyapunov exponents one has to consider homoclinic tangencies where
the involved unstable manifold is two dimensional. With this premise in mind, we
consider in [31] a generic two-parameter family fa,b : M → M of three-dimensional
diffeomorphisms unfolding a generalized homoclinic tangency, as it was defined in
[37]. Then, the unstable manifold involved in the homoclinic tangency has dimen-
sion two and the limit family is conjugate to the family of quadratic endomorphisms
defined on R

2 by
Ta,b(x, y) = (a + y2, x + by). (6)

Nowadays, in the two dimensional setting, it is usual to define two-dimensional
strange attractors as those ones for which the sum of the two Lyapunov exponents
is positive. Hence, if one tries to show the existence of two-dimensional strange
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attractors when a three-dimensional homoclinic tangency is unfolded, the first step
should be to prove, as in the one-dimensional setting, the existence of such attractors
for the limit family Ta,b. Only after this, it makes sense to lift the dynamics to the
closure of the unstable manifold, which is the candidate to be the two-dimensional
strange attractor arising in the unfolding of the tangency.

The dynamical behavior of the family Ta,b is rather complicated as was numeri-
cally pointed out in [28] and, in particular, the attractors exhibited by Ta,b for a large
set of parameters seem to be two-dimensional strange attractors. Moreover, in [27],
a curve of parameters

γ =
{
(a(s), b(s)) = −1

4
s3(s3 − 2s2 + 2s − 2,−s2 + s) : s ∈ R

}
(7)

has been constructed in such a way that the respective transformation Ta(s),b(s) has
an invariant region in R2 homeomorphic to a triangle. This curve contains the point
(−4,−2) (by taking s = 2) and the map T−4,−2 is conjugate to the non-invertible
piecewise affine map

Λ(x, y) =
{

(x + y, x − y) i f (x, y) ∈ T0

(2 − x + y, 2 − x − y) i f (x, y) ∈ T1
(8)

defined on the triangle T = T0 ∪ T1, where

T0 = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ x} ,

T1 = {(x, y) : 1 ≤ x ≤ 2, 0 ≤ y ≤ 2 − x} .

As a first approach to the study of the dynamics of Ta(s),b(s) for s close to 2, a
family of piecewise linear maps was introduced in [32]. These maps are defined on
the triangle T by means of

Λt (x, y) =
{

(t (x + y), t (x − y)) i f (x, y) ∈ T0

(t (2 − x + y), t (2 − x − y)) i f (x, y) ∈ T1
. (9)

These maps can be seen as the composition of linear maps defined by the matrices

At =
(
t t
t −t

)

with the fold of the whole plane along the line
{
(x, y) ∈ R

2 : x = 1
}
defined by

S(x, y) =
{

(x, y) i f x < 1
(2 − x, y) i f x ≥ 1

.

Notice that Λ in (8) coincides with Λt for t = 1.
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The triangle T is invariant for the map Λt whenever 0 ≤ t ≤ 1. If t > 1√
2
, then

the eigenvalues of the matrix At have modulus bigger than one. In this case, the
map Λt is called, according to [29], an Expanding Baker Map (EBM for short). The
study of the dynamics of the family Λt is mainly justified when one compares its
attractors (numerically obtained in [31]) with the attractors (numerically obtained in
[28]) for the family Ta(s),b(s) with (a(s), b(s)) ∈ γ . Both families of maps display
convex strange attractors, connected (but non simply-connected) strange attractors
and non-connected strange attractors (these last ones formed by numerous connected
pieces).

A rigorous analytical proof of the existence of a strange attractor Rt ⊂ T of
the map Λt for every t ∈ (t0, 1], with t0 = 1√

2
(1 + √

2)
1
4 , was given in [33], see

Theorem 1.1. Moreover, it was proven that the map Λt is strongly topologically
mixing inRt , the periodic orbits are dense inRt , andRt supports a unique absolutely
continuous invariant and ergodic measure μt . The continuity of the map

t ∈ (t0, 1] → dμt

dm
∈ L1(T )

was proved in [1], where dμt/dm stands for the density function associated to the
absolutely continuous measure μt .

The appearance of attractors with several pieces motivates in [29], see Sect. 2, the
definition of renormalizable EBM. Then, from a renormalization process, the Main
Theorem in [29] proves the existence of three values of the parameter t , 1√

2
< t3 <

t2 < t1 = 1
5√4
, for which:

(a) Λt is a n times renormalizable EBM for every t ∈ ( 1√
2
, tn), n = 1, 2, 3.

(b) For every n = 1, 2, 3 there exists an interval of parameters In ⊂ ( 1√
2
, tn) such

that Λt displays, at least, 2n−1 different strange attractors.

OnceΛt is renormalized, the newmap is no longer an EBMwith a single fold, but
an EBMwith two folds, each one of them determined by the same parameter. So, the
set F of these EBM’s with two folds can be identified with a subsetP ⊂ R

2 of pairs
of parameters (a, b). Therefore, in order to perform successive renormalizations, it is
necessary to extend the process of renormalization to the set F. Fortunately, there is
a regionP3 ⊂ P such that, for every (a, b) ∈ P3, the corresponding Ψa,b ∈ F can
be renormalized on two disjoint restrictive domains Δa,b and Πa,b at the same time.
In this way, we can define two different renormalization operators HΔ and HΠ from
P3 toP and prove Theorem A in [30]. This result state that for every (a, b) ∈ P3

the map Ψa,b is simultaneously renormalizable in F. More precisely, it holds that:
(i) The restriction of Ψ 4

a,b to Δa,b is conjugate by means of an affine change in
coordinates to ΨHΔ(a,b) restricted to ΨHΔ(a,b)(T ).

(ii) The restriction of Ψ 4
a,b to Πa,b is conjugate by means of an affine change in

coordinates to ΨHΠ (a,b).
This renormalization was an useful tool to prove, also in [30], the coexistence

of arbitrarily large number of strange attractors of Λt (see Theorem B). Namely, it
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was proven that for each natural number n there exists an interval In such that Λt

displays, at least, 2n different strange attractors whenever t ∈ In . Notice that both,
these attractors and those ones found in [29, 33], are fully persistent.

The study of the attractors of the families of EBM’s Λt and Ψa,b is a first step
to obtain information about the possible global structures of the attractors of the
quadratic family Ta,b given in (6). However, one has to expect further complications
to prove the existence of strange attractors in this nonlinear case because the maps
Ta,b are not expansive near the fold line y = 0. As a first consequence, as happens in
the one-dimensional case, the strange attractors, if they exist, will not be completely
persistent. Then, as was also done in the one-dimensional case, see [22], one may
first have to investigate the existence of absolutely continuous invariant measures.

We would like to conclude this section by taking up again the ideas of the pre-
vious ones to propose the search for germs of strange attractors of dimension two.
Once it has become clear that these attractors can only appear in the dynamics of
diffeomorphisms in dimension n ≥ 3, we have to consider families of vector fields in
R

4 with some kind of homoclinic cycle involving an unstable manifold of dimension
two. One of these cycles could be a bifocal homoclinic orbit of an equilibrium point
with eigenvalues −ρ ± iω1 and λ ± iω2 where ρ and λ are positive.

In [5] it was proven that bifocal homoclinic orbits are present in generic unfold-
ings of the nilpotent singularity of codimension four in R

4. In [6] it was proven
that suspended robust heterodimensional cycles and suspended robust homoclinic
tangencies can be found arbitrarily close to any non-degenerate bifocal homoclinic
orbit of a Hamiltonian vector field. Since these vector fields are found in the limit
family of any generic unfolding of the nilpotent singularity of codimension four in
R

4, it was conjectured that suspended robust cycles can be generically unfolded from
such singularity. Perhaps with some extra effort it can be shown in the future that
the generalized homoclinic tangency, as was defined in [37], is also found in generic
unfolding of the nilpotent singularity of codimension four. Then the last and most
ambitious task is to prove that in any generic unfolding of this homoclinic tangency
there exist persistent strange attractors. Right here the results obtained for the limit
family Ta,b given in (6) will be of great help. With this regard, the discussion about
the existence of three dimensional horseshoes around a bifocal homoclinic orbit
included in [19] should be also helpful.

Acknowledgements Authors have been supported by the Spanish Research project MTM2014-
56953-P.
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Finite Orthogonal Laurent Polynomials

Francisco Marcellán and Anbhu Swaminathan

Abstract In this work, orthogonal Laurent polynomials on the real line associated
with a finite family of classical orthogonal polynomials (the so called Romanovski–
Hermite polynomial sequence) are discussed. Their explicit representation, a second
order linear differential equation they satisfy as well as their orthogonality relations
are obtained. The connection with a strong Stieltjes moment problem is discussed.
The strong Gaussian quadrature formulae are also given. For such a family of orthog-
onal Laurent polynomials, a comparison with the classical Gaussian quadrature for-
mulae is illustrated with some examples.

1 Introduction

The analysis of the “Strong Stieltjes moment problem” started in 1980 in the seminal
paper by Jones et al. [12], where orthogonal Laurent polynomial sequences [11]
were used as a main tool. For further development and basic results on orthogonal
Laurent polynomial sequences, see [2, 3, 8–10] and references therein. The strong
moment problem related to the theory of orthogonal Laurent polynomial sequences is
similar to the “classicalmoment problem” related to the theory of standard orthogonal
polynomials. Note that many results of classical orthogonal polynomials can be
extended to orthogonal Laurent polynomial sequences. Nevertheless, some results
that are true for orthogonal Laurent polynomial sequences do not hold for standard
orthogonal polynomials [2].
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In [6, 7] Hagler and others have shown the connection between orthogonal poly-
nomials and orthogonal Laurent polynomials by computing orthogonal Laurent
polynomial sequence on the real line R from the well known classical orthogo-
nal polynomials (COPS, in short) associated with the Normal, Gamma and Beta
distributions, i.e. Hermite, Laguerre and Jacobi, polynomials.

Notice that the above three COPS constitute an infinite sequence of classical
orthogonal polynomials, since the recent contributions of Masjed-Jamei [15] show
three other classes of orthogonal polynomials, due to Romanovski [19], which are
finite in the sense that their parameters yield a finite family of polynomials satisfying
orthogonality conditions. These finite polynomials were initially analyzed by Routh
[20] and by Romanovski [19] and deeply studied by Masjed–Jamei in [15]. For
details on these polynomials see [15–18] and references therein. For a more updated
information, we recommend to read Chap.4 of the monograph [13].

Due to the restriction on the finiteness of these families of orthogonal polynomials
and the fact that they can be reduced to Jacobi polynomials [17], these polynomials
are not studied in detail as the other three well-known COPS. However it is under-
stood (see [17]) that these finite orthogonal polynomials are analyzed deeply in the
framework of spectral analysis of second order differential operators. In this work,
we focus our attention on the orthogonal Laurent polynomials associated with the
Romanovski–Hermite finite classical orthogonal polynomials.

We further remark that another type of transformation was considered in [1] to
obtain Laurent orthogonal polynomials which are much useful while considering the
corresponding Szegő polynomials and related results. In this work we consider the
transformation given in [6] which is very useful for obtaining Gaussian quadrature
rules.

Definition 1.1 [2] A Laurent polynomial (L-polynomial, in short) is a function
R(x) = �n

j=mr j x
j where x is a real variable and m, n ∈ Z with m ≤ n, r j ∈ R.

We will denote Rm,n = span{x j }nj=m . Two important classes of L-polynomials are

R2n = {R ∈ R−n,n : the coefficient of xn is non zero}
R2n+1 = {R ∈ R−n−1,n : the coefficient of x−n−1is non zero}

for all n ∈ Z
+
0 .

We will denote by � the linear space of Laurent polynomials with real coefficients.

Definition 1.2 [2] An L-polynomial R is said to be of L-degree m if R ∈ Rm . The
coefficients of xn and x−n−1 are called the L-leading coefficients and coefficient of
x−n and xn are called the L-trailing coefficients forR2n andR2n+1, respectively. An
L-polynomial is said to be regular if the respective trailing coefficients are non zero
and monic if the respective leading coefficients are one.

LetM be a linear functional defined on �. The corresponding moments are given
by μn = M(xn), n ∈ Z. In the sequel we will callM a moment functional. For each
moment functional, we can define a bilinear form as 〈P, Q〉M = M(P(x)Q(x)).
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Definition 1.3 [2] A sequence of polynomials {Rn}∞n=0 is said to be an orthogonal
Laurent polynomial sequence with respect to amoment functionalM if the following
three properties hold for every m, n ∈ Z

+
0

• Rn ∈ �, Rn has L-degree n,
• 〈Rn, Rm〉M = 0 if m �= n,
• 〈Rn, Rn〉M = ‖Rn‖2M > 0.

The orthogonality of an orthogonal Laurent polynomial sequence can be character-
ized as

〈R2m(x), xk〉M = 0 for k = −m,−m + 1, · · · ,m − 1,

〈R2m+1(x), x
k〉M = 0 for k = −m,−m + 1, · · · ,m,

‖R2m‖2
M

= 〈R2m(x), xm〉M = H (−2m)
2m+1

H (−2m)
2m

> 0,

‖R2m+1‖2M = 〈R2m+1(x), x
−m−1〉M = H (−2m−2)

2m+2

H (−2m)
2m+1

> 0.

Here H (n)
k = det[μk+ j+l ]n−1

j,l=0 denotes the Hankel determinant associated with the
moment sequence {μn}∞n=−∞. By a “Strong Moment Problem” we mean the fol-
lowing: Given a bilateral sequence of moments {μn}∞n=−∞ of real numbers to find a
distribution function ψ such that

μn =
∫ b

a
tndψ(t), n ∈ Z, −∞ ≤ a < b ≤ ∞. (1)

Notice that for the classical moment problem, given a sequence of real numbers
{μn}∞n=0 one deals with the existence of a distribution function ψ such that (1) holds
only for non negative integers.

In the sequel, we use the notation ψ as the moment distribution function for the
monic orthogonal polynomials (MOPS) {P̂n(x)}∞n=0 with spectrumσ(ψ) and ψ̃ as the
strong moment distribution function for the monic orthogonal Laurent polynomials
{P̃n(x)}∞n=0 with spectrum σ(ψ̃).

The structure of this contribution is as follows. In Sect. 2, the corresponding
orthogonal Laurent polynomial sequence for the Romanovski–Hermite polynomials
is obtained. We focus our attention on the second order linear differential equation
they satisfy as well as their orthogonality properties. Gaussian quadrature rules with
respect to the strong weight function are given in Sect. 3. Some numerical tests are
presented.
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2 Finite Laurent Orthogonal Polynomials

In this section, we consider the Romanovski–Hermite polynomials introduced in [15,
16] as well as we use the transformation formulae given in [6]. Our aim is to obtain
analytic properties of corresponding family of finite orthogonal Laurent polynomials.
Furthermore, for these polynomials J (p,q)

n (x; a, b, c, d), we will deal with the monic
polynomials, which will be denoted by Ĵ (p,q)

n (x; a, b, c, d), as well as the corre-
sponding monic Laurent polynomials which will be denoted by J̃ (p,q)

n (x; a, b, c, d).

2.1 Generalized Romanovski–Hermite Type Polynomials

These polynomials are closely related to Jacobi polynomials and hence they are a par-
ticular case of Romanovski pseudo-Jacobi polynomials. This family was introduced
in [16] and extensively studied in [17]. It is said to be a generalized Romanovski–
Hermite class because it reduces to the Romanovski class given in [15] for the choice

of parameters Ĵ
(p− 1

2 ,0)
n (x; 1, 0, 0, 1), which is related to Hermite polynomials.

The Generalized Romanovski–Hermite moment distribution function ψ
(p)
I

(see [16]) is given by

dψ
(p,q)

J

dx
= ((ax + b)2 + (cx + d)2)−p exp

(
q arctan

ax + b

cx + d

)
, x ∈ R. (2)

Applying the transformation υ(x) = 1
λ

(
x − γ

x

)
[6, Theorem 2.3.1] to themoment

distribution function (2) we get a strongmoment distribution function for each choice
of λ > 0 and γ > 0. The spectrum σ(ψ̃) is

σ(ψ̃) = v−1
+ (σ (ψ)) ∪ v−1

− (σ (ψ)) = R\{0}.

To find the generalized Romanovski–Hermite strong moment distribution function
ψ̃

(p,q)

J , we use the fact that dψ̃

dx = w(υ(x)) with w(x) = dψ

dx , so that

dψ̃
(p,q)

J

dx
=

[(
a(x2 − γ )

λx
+ b

)2

+
(
c(x2 − γ )

λx
+ d

)2
]−p

× exp

(
q arctan

a(x2 − γ ) + bλx

c(x2 − γ ) + dλx

)
, x ∈ R\{0},

is a strong moment distribution function for each choice of the parameters λ and γ .
From the expression of J (p,q)

n (x; a, b, c, d) given in [16, p. 139, (6)], for Ĵ (p,q)
n (x;

a, b, c, d)with parameters p > N + 1
2 andad − bc �= 0,where N = max{m, n},we

get
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Ĵ (p,q)
n (x; a, b, c, d)

= (−1)n(a2 + c2)n(n + 1 − 2p)n

n∑
k=0

(
n

k

) (
a2 + c2

(ab + cd) + i(ad − bc)

)k

×2F1

(
k − n, p − n − iq/2; 2p − 2n; 2(ad−bc)

(ab+cd)+i(ad−bc)

)
xk, (3)

where i = √−1 and 2F1(−,−;−) is the Gaussian hypergeometric function.
The explicit representation for J̃ (p,q)

n (x; a, b, c, d) can be obtained by using the
fact that P̃2n(x) = λn Pn(υ(x)) and P̃2n+1(x) = ( λ

γ
)n 1

x Pn(υ(x)) together with (3).
Indeed,

J̃ (p,q)

2n (x; a, b, c, d)

= (−1)n(a2 + c2)n(n + 1 − 2p)n

n∑
k=0

(
n

k

) (
a2 + c2

(ab + cd) + i(ad − bc)

)k

×2F1

(
k − n, p − n − iq/2; 2p − 2n; 2(ad−bc)

(ab+cd)+i(ad−bc)

)
λn−k × (x − γ

x )k,

and

J̃ (p,q)

2n+1 (x; a, b, c, d)

= (−1)n

γ n x (a2 + c2)n(n + 1 − 2p)n

n∑
k=0

(
n

k

) (
a2 + c2

(ab + cd) + i(ad − bc)

)k

×2F1

(
k − n, p − n − iq/2; 2p − 2n; 2(ad−bc)

(ab+cd)+i(ad−bc)

)
λn−k(x − γ

x )k,

for n = 0, 1, 2, 3, · · · .

In a self-adjoint form, the second order linear differential equation for Ĵ (p,q)
n

(x; a, b, c, d) is

d

dx

[(
(ax + b)2 + (cx + d)2

)−p+1
exp

(
q arctan ax+b

cx+d

)
y′
n(x)

]

−n(n + 1 − 2p)(a2 + c2)
(
(ax + b)2

+(cx + d)2
)−p

exp
(
q arctan ax+b

cx+d

)
yn(x) = 0,

which is the analog of the self-adjoint form for J (p,q)
n (x; a, b, c, d) [16, p. 140,

(12)]. Applying [6, Theorem 3.8.1] with the above self-adjoint form, we get that the
function Y = J̃ (p,q)

n (x; a, b, c, d) satisfies the following differential equation
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[((
a
λ

(
x − γ

x

)
+ b

)2

+
(
c
λ

(
x − γ

x

)
+ d

)2
)−p+1

Y ′(x) exp
(
q arctan a(x2−γ )+bλx

c(x2−γ )+dλx

)]′

−n(n+ 1− 2p)(a2 + c2)

((
a
λ

(
x − γ

x

)
+ b

)2

+
(
c
λ

(
x − γ

x

)
+ d

)2
)−p

Y (x) exp
(
q arctan a(x2−γ )+bλx

c(x2−γ )+dλx

)
= 0.

The corresponding orthogonality relation for Ĵ (p,q)
n (x; a, b, c, d) becomes (see

[16, p. 142, (23)])

〈 Ĵ (p,q)
n (x; a, b, c, d), Ĵ (p,q)

m (x; a, b, c, d)〉
ψ

(p,q)

J

=
∫ ∞

−∞
Ĵ (p,q)
n (x; a, b, c, d) Ĵ (p,q)

m (x; a, b, c, d)((ax + b)2 + (cx + d)2)−p

× exp
(
q arctan ax+b

cx+d

)
dx = 22n+1−2p(ad − bc)2n−2p+1 exp(−q arctan(c/a))

(2p − 2n − 1)(a2 + c2)−p+1

× n!	(2p − n)

	(p − n + iq/2)	(p − n − iq/2)
×

(
(ab+cd)+i(ad−bc)

(a2+c2)

)2n
δmn. (4)

Applying [6, Theorem 2.2.8] to (4), the orthogonality relation for J̃ (p,q)
n

(x; a, b, c, d) is

〈 J̃ (p,q)
n (x; a, b, c, d), J̃ (p,q)

m (x; a, b, c, d)〉
ψ̃

(p,q)

J
= Knδmn,

where

Kn =
{

λ2n+1 Kn if n is even,
( λ

γ
)2n+1Kn if n is odd,

with

Kn = 22n+1−2p(ad − bc)2n−2p+1 exp(−q arctan(c/a))

(2p − 2n − 1)(a2 + c2)−p+1

× n!	(2p − n)

	(p − n + iq/2)	(p − n − iq/2)

(
(ab + cd) + i(ad − bc)

(a2 + c2)

)2n

δnm .
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3 Strong Gaussian Quadrature Rules

In a general form, a weighted quadrature formula is given by

∫ b

a
f (x)w(x)dx =

n∑
j=1

A j f (x j ) +
m∑

k=1

νk f (zk) + Rn,m( f ), (5)

wherew(x) is positive function on [a, b], {A j }nj=1, {νk}mk=1 are unknown coefficients,{x j }nj=1 are unknown nodes, and {zk}mk=1 are pre-determined nodes. This quadrature
rule (5) is known in the literature as Gauss–Kronrod formula.

The error function Rn,m( f ) for (5) is given by

Rn,m( f ) = f (2n+m)(ξ)

(2n + m)!
∫ b

a
w(x)

m∏
k=1

(x − zk)
n∏

i=1

(x − xi )
2dx,

where f (m) denotes the mth derivative of f and a < ξ < b.
In general, the above quadrature rule has 2n + m − 1 as highest degree of pre-

cision and it reduces to the Gaussian quadrature formula for m = 0 if and only if
{x j }nj=1 are the zeros of the polynomials of degree n orthogonal with respect to the
weight function w(x) (see [14]).

Moreover, to obtain the coefficients {A j }nj=1, it is necessary to solve the following
linear system

n∑
j=1

A j x
k
j =

∫ b

a
xkw(x)dx, k = 0, 1, 2, · · · , 2n − 1.

Instead of this approach, one can use this very well known expression (see [4])

1

A j
=

n−1∑
l=0

P∗2
l (x j ), j = 1, 2, · · · , n,

where P∗
l (x) denotes the orthonormal polynomial of degree l with respect to w, i.e.,

P∗
l (x) = Pl(x)

〈Pl(x), Pl(x)〉 1
2

.

We refer to [5] for exhibiting the relation between the quadrature nodes and
quadrature weights for the orthogonal polynomial sequence and orthogonal Laurent
polynomial sequence, respectively. We state two important theorems that will be
used in the sequel.

Theorem 3.1 [5] (Zeros) Let n be a positive integer number and assume {xn,k}nk=1
are the zeros of Pn(x) in increasing order, i.e. xn,1 < xn,2 < xn,3 < · · · < xn,n . Then
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the zeros of P̃2n(x) and P̃2n+1(x) are x∗
n, j = v−1∗ (xn, j ), for ∗ = +,− and have the

ordering x−
n,1 < x−

n,2 < · · · < x−
n,n < 0 < x+

n,1 < x+
n,2 < · · · < x+

n,n .

Theorem 3.2 [5] (Weights) Let {xn, j }nj=1 and {x∗
n, j }nj=1 be the quadrature nodes

given in Theorem3.1, and let {An,k}nk=1 and {A∗
n,k}nk=1, denote the correspond-

ing Gauss quadrature weights, respectively. Then An,k = v′(x∗
n,k)A

∗
n,k, k = 1, 2,

3, · · · , n.

3.1 L-Quadrature Formulae for Generalized
Romanovski–Hermite Polynomials Ĵ ( p,q)

n (x; a, b, c, d)

Consider the two term quadrature formula for Ĵ (p,q)
n (x; a, b, c, d) with parameters

p = 4, q = 1, a = d = 1, b = c = 0. given in [16] as
∫ ∞

−∞
exp (arctan x)

(1 + x2)4
f (x)dx

∼= 0.6220884910 f (−0.2109772229) + 0.4316063958 f (0.7109772229),

where the nodes are the zeros of J (4,1)
2 (x; 1, 0, 0, 1) and the weights are given by

1

A j
=

1∑
k=0

(
J ∗(4,1)
k (x; 1, 0, 0, 1)

)2
(x j ). The respective L-quadrature formulae for

λ = γ = 1 is ∫ ∞

−∞
exp (arctan x)

(1 + x2)4
f (x)dx

∼= 0.3436748193 f (−1.1110371419) + 0.1435191249 f (−0.7058182022)

+0.2784136716 f (0.9000599190) + 0.2880872708 f (1.4167954251),

where the nodes and the weights are calculated by using Theorems3.1 and 3.2,
respectively (Table1).

Table 1 Two point Gaussian quadrature approximation with respect to generalized strong
Romanovski–Hermite distribution for p = 4, q = 1, a = d = 1, b = c = 0

f (x)
∫
σ(ψ̃)

f (x)dψ̃(x) L-quadrature Rel. error

1
1+ex 0.4910992188 0.4913335249 0.0004771052

1√
1+2x2

0.5884790363 0.58674796350 0.0029416049

cos x 0.48410953800 0.47897149960 0.0106133798
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Table 2 Three point Gaussian quadrature approximation with respect to generalized strong
Romanovski–Hermite distribution for p = 4, q = 1, a = d = 1, b = c = 0

f (x)
∫
σ(ψ̃)

f (x)dψ̃(x) L-quadrature Rel.error

1
1+ex 0.4910992188 0.4910014528 0.0001990759

1√
1+2x2

0.5884790363 0.5915109163 0.0051520611

cos x 0.48410953800 0.4845999436 0.0010130055

The three term quadrature formula for Ĵ (p,q)
n (x; a, b, c, d) with parameters p =

4, q = 1, a = d = 1, b = c = 0 is given by
∫ ∞

−∞
exp (arctan x)

(1 + x2)4
f (x)dx

∼= 0.25322550273 f (−0.5229034027) + 0.7679319861 f (0.3293582536)

+0.0325373985 f (1.693545149),

where the nodes are the zeros of J (4,1)
3 (x; 1, 0, 0, 1) and the weights are given

by
1

A j
=

1∑
k=0

(
J ∗(4,1)
k (x; 1, 0, 0, 1)

)2
(x j ). The respective L-quadrature formula for

λ = γ = 1 is ∫ ∞

−∞
exp (arctan x)

(1 + x2)4
f (x)dx

∼= 0.158639342846 f (−1.2950652616) + 0.3215751447 f (−0.8487897749)

+0.0057555832 f (−0.4635799707) + 0.0945861597 f (0.7721618589)

+0.4463568385 f (1.1781480285) + 0.0267818152 f (2.1571251197),

where the nodes and the weights are calculated by using Theorems3.1 and 3.2,
respectively (Table2).
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From Semi-infinite Programming
to Efficiency Analysis: Forty Years
of Research Experiences

Jesús T. Pastor

Abstract Life is mostly surrounded by uncertainties. Mathematics, as part of life,
deals also with them. As an applied mathematician I have decided to relate my
own research experiences, a relevant part of my life, so that people from younger
generations can appreciate how research topics may appear just by chance. The
second message I would like to transmit is that if someone really likes doing research
he has to fully commit to it. The reason for it is easy: it delivers plenty of moments
of happiness and intellectual satisfaction.

In Memoriam

I have written this paper in honour of Prof. Pedro Gil, a well-known Spanish mathematician
who passed away in 2016 leaving behind his wife Pilar and three children, Eva, Juan and
Eduardo. He was a good man, but also a very good teacher and a clever university professor.
He was the founder of the Statistics, Operations Research and Didacticism group at the Uni-
versity of Oviedo. He achieved his academic background at the Universidad Complutense,
being one of the distinguished scholars of Prof. Sixto Ríos. He was just two years older
than I was and we met regularly, for a long period of time every one and a half years, at the
national meetings organised by our scientific society (SEIO). I was the seventh president of
SEIO, and he was the ninth. Although he was basically a statistician and I have basically
been an operations researcher, we have had the opportunity to share and contrast our points
of view in relation to our society and our common profession. He inspired confidence and
was always ready to help his students and colleagues. His legacy will always be part of us.

1 Introduction

This paper is intended to be an informational paper, based onmy research and related
vital experiences over the last forty years.

I finished my five year Mathematics degree at the University of Valencia in June
1972. The first phase ofmyuniversity teaching career lasted for only three years, from

J. T. Pastor (B)
Universidad Miguel Hernández, UMH Elche (Alicante), Spain
e-mail: jtpastor@umh.es
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E. Gil et al. (eds.), The Mathematics of the Uncertain, Studies in Systems,
Decision and Control 142, https://doi.org/10.1007/978-3-319-73848-2_80
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October 1972 to September 1975. One of my colleagues wasMiguel A. Goberna.We
decided to apply for a Professorship in secondary education in 1974. At that time,
the Spanish Education System was still centralised, and we had to compete with
people coming from all over Spain. Since both of us succeeded, we left our teaching
position at Valencia University and moved to a different state secondary school. In
1975 we met Marco A. López, only one year older than us, who became professor at
the University of Valencia quite early in his career. In 1975, the three of us decided to
share a seminar on a new topic for all of us, Semi-infinite Programming. Marco was
our leader andwewere able to present our PhD dissertation in 1979. Since wewanted
to move again to the University and were not admitted to Marco’s department, we
decided to apply for a more stable position at a Spanish University. We succeeded
in 1983 and in 1984 we moved to the University of Alicante as associate professors.
Marco also moved with us but as a professor. There, we continued to research Semi-
infinite Programming, publishing papers from 1984 to 1987, year in whichwe started
doing some consulting work for several saving banks. One of the topics we used for
locating branches was Location Theory and as I found it so appealing, I decided to
move from Semi-infinite Programming to Location.

I started doing some work on my own and soon two younger colleagues in my
department wanted to start working with me in Location Analysis. I ended up being
theDirector of their PhDdissertations. I started publishing papers onLocationTheory
in 1990 and ended in 2000.

Meanwhile, in 1991, I was invited to deliver a couple of talks in the Summer
Seminars organised by the Spanish Open University (UNED) at its centre in Denia, a
small coastal Mediterranean town located 100Km north of Alicante. Marco, Miguel
and I were invited almost every summer to participate in this enjoyable seminar.
The year before, I had already given two talks on Location Analysis, and I had got
some additional material for delivering a third talk in 1991. Therefore, at Easter,
I went to our science library and started reading recent articles appearing in top
Operations Research journals. After a couple of hours I found an interesting paper
comparing pharmaceutical companies and evaluating their efficiency using a method
called DEA (Data Envelopment Analysis). I found it highly appealing and decided
to give my second talk on DEA. Curiously enough, the same year I was going to
attend, as usual, the EURO meeting, to be held in Aachen, Germany; when I got the
programme, some months later, I realised that a stream of six sessions were devoted
to DEA. I was sure that it was the first appearance of this topic in a EURO meeting.
During the EURO meeting in Aachen, I had the opportunity to talk to distinguished
researchers in the area of Efficiency and Productivity Analysis, and I realised that
there was a real disembarkation of U.S. researchers in Europe. I became more and
more interested in DEA, ending up devoting my research efforts to it. I published
my first paper in 1995 and have not stopped since then. Looking back, I am happy to
have moved to this applied area with a strong economic flavour that has produced,
since its start in 1978, over 7.000 papers.Moreover, I have had diverse and interesting
research activities and opportunities all over the world, as I will explain later on.

The paper is organised as follows. Sections2, 3 and 4 are devoted to my three
research areas, in chronological order. Section5 concludes.
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2 Semi-infinite Programming

Asmentioned before, we started the second phase of our University career at the Uni-
versity of Alicante, where, as said before, Miguel A. and I arrived in 1984. It took
some time until Miguel and I became full-time professors at the University of Ali-
cante, in 1990. At that moment, Marco, Miguel and I were the only professors in our
department. Since we started working together in 1975, we devoted the first 12 years
of our joint research to investigating several topics in Semi-infinite Programming.
We presented our first international communication at the meeting organised by the
Mathematical Programming Society in Budapest, during the summer of 1975. At
that meeting there were 4 official languages: English, French, German and Russian.
I prepared the presentation inGerman since, at that time, I wasmore fluent in German
than in English as I had been educated at the German School in Valencia. When we
arrived at the meeting we were told that our presentation would be the very last day,
with a predictably small audience. Since we had not been informed in advance, they
offered to move us to a slot on the first day with the compulsory condition that we
had to deliver our talk in English. We decided to do it, and as a result only had a
few hours sleep the night before our presentation, as we had to rewrite all our slides.
There, we understood directly that the scientific language was English, even behind
the “iron curtain”. Besides that incident, we had a nice stay and enjoyed the charming
restaurants in Buda, where we had very pleasant dinners thanks to the presence of
some local violinists and several Hungarian dancers.

I published my first Semi-infinite paper in [Applied Mathematics and Optimiza-
tion 7:295–308] together with my two colleagues in 1980, and the last one, alone, in
1987 in [Trabajos de Investigación Operativa 2:69–80]. The last mentioned journal,
devoted to Operations Research and owned by SEIO, was transferred to Springer,
changed its name to TOP, and, after several years, met the standards to be considered
as a JCR journal. Previously, the same process was applied to TEST, the other journal
of SEIO devoted to Statistics, and as president of our society, I was witness to it.
TEST was the first one to appear in the JCR list.

I am indebted to Prof. Marco A. López for encouraging me when I started doing
research, for being the director of my PhD dissertation, and for helping me in my
academic evolution and promotion. We have experimented together unforgettable
moments travelling around the globe to attend scientific meetings, as well as visiting
Madrid on a regular basis when I was a member of the Executive Committee of the
SEIO, and he was the editor of one of our journals (TOP). We enjoyed the night
life of Madrid, including visits to the best restaurants and to cinemas and theatres.
We ended up being clients of “Casa Botín”, close to the Plaza Mayor, the oldest
restaurant in the world founded in 1725, according to the Guinness World Records.
Its owner was a good friend of Marco’s father in law.
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3 Location Analysis

Myfirst location paper was published, jointly withMarco andMiguel, in 1990, in the
series [Research Papers in Banking and Finance of the Institute of European Finance
inBangor,Wales 90/15:1–53]. It was devoted to the performance and location of bank
branches. Two younger members of my department, Marc Almiñana and Fernando
Borrás, started cooperating with me on Location Analysis. Marc and I published our
first research paper in 1993, in [Brazilian Journal of Operations Research 3(1):25–
39], revising the problem of maximal coverage. One year later, in 1994, I designed
a bi-criterion programme for locating bank branches, and published it in [JORS
45(12):1351–1362]. The same year, Marc Almiñana got his PhD which dealt with
the total covering problem, obtaining the highest qualification, and we published
another paper in [Top 2(2):315–328]. Two years later I published two papers, co-
authored by Marc and Fernando, in “Studies in Locational Analysis”, studying the
pq-median problem in the first one and the centralised probabilistic location set
covering problem in the second. In 1997, I published two papers with Marc, one in
[Top 5(2):213–219], the other one in [EJOR100:586–593]. In 2000, FernandoBorras
brilliantly presented his PhD on a completely new family of models for locating
emergency services, which had the singularity of being probabilistic. Finally, we
published my last location paper two years later in [Annals of Operations Research
111:51–74]. The twelve years of research devoted to locational analysis had been
very fruitful and interesting, not only for solving real problems and promoting two
PhD students, but also for having the opportunity to visit new places around the
world. These places included Edmonton, the capital city of the Canadian province of
Alberta, where the first part of the congress was held at the University. The second
part was held in Jasper where all the participants joined a tour visiting its National
Park and one of its glaciers. The fact that we used multiple criteria optimisation in
our research gave me the opportunity to get in touch with Ralph E. Steuer, the author
of the, at that time, most famous book on this topic. I met him at the University of
Georgia, in 1994, and we had time to talk about our research interests. He invited
me for lunch and we enjoyed eating chicken wings, one of his preferred meals.

4 Efficiency and Productivity Analysis

In Sect. 1, I have already explained how I got in touch with DEA. It was clearly by
chance. Nonetheless, I started my studies in this area in 1991 and am still active
in 2017. Such a long period – 27 years – can easily be assumed and explained if
different positive factors have appeared at the right moment, contributing to deepen
and broaden my interest in this research subject.

Let me start with the 1991 EURO meeting in Aachen. I attended all the sessions
and was impressed with the scope of Efficiency and Productivity Analysis. In fact, it
started in the late seventies and I was being introduced to all the staff generated after
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thirteen years of research. There were – and still are – mainly two streams: the non-
parametric approach, based on programmingmodels, where the best practice frontier
is identified by running the model as many times as the number of units being rated;
and the parametric approach, also called SFA (stochastic frontier analysis), which
needs to assume beforehand the shape of the frontier and adjust the corresponding
econometric model to the data. The first approach does not account for random or
statistical noise, while the second does. I have mainly done my research using non-
parametric techniques within a typical DEA framework, and have only signed a few
papers where statistical tools are used or developed.

Going back to the Aachen meeting, I was able to identify two outstanding
researchers. The first one was Prof. William Cooper from the University of Texas
in Austin, one of the founders of linear, goal and fractional programming, in tan-
dem with Prof. Abraham Charnes, and the other was Prof. Knox Lovell from the
University of Georgia in Athens, one of the founders of SFA. I proposed that each
of them do future research with me, and both gave me the same answer: “when,
in your opinion, you have got some worthy idea, please write it down and send it
to me”. It was the first time I had met Prof. Lovell, and the second time I had met
Prof. Cooper. In fact, Charnes and Cooper had organised an international workshop
on Semi-infinite Programming at their University in summer 1981, where I went
together with Marco, Miguel and some other colleagues from Valencia University.
In 1993, I sent to each of them my first proposal. With Bill, I decided to work on
the definition of efficiency measures for the additive model; with Knox, I wanted to
revise the three basic DEA models and study their ability for dealing with negative
data. Both problems were unsolved at that time. We kept in touch by email. With
the support of my department I proposed Prof. Cooper as PhD Honoris Causa at
the University of Alicante, and he was invested in 1995. Prof. Bill Cooper was a
charming and very positive person. He was close to his retirement age and had had
an exciting scientific life. He was very proud, as Dean at Carnegie-Mellon Univer-
sity, of the negotiations with the “black panthers”, a violent civil rights movement
which defended the black community and lasted from 1966 to 1982. He always wore
a ring which was a gift by the black panthers after reaching a satisfactory agreement
with them. In 1993, I managed to convince Prof. Knox Lovell to present a paper
which was published in 1994 in [Top 2(2):175–248], with its associated comments.
The same happened with Prof. Bill Cooper. His paper and corresponding comments
was published in the same Top issue [Top 2(2):249–314]. At Easter 1994, I vis-
ited Prof. Knox Lovell at the University of Georgia. As a visiting researcher I was
given an office and we started working together. I had already solved the “trans-
lation invariant” property and the corresponding paper was already sent out to a
journal. Therefore, Knox and I started working on a basic economic property known
as “units invariant”. The result was a short paper, published in 1995 in [Operations
Research Letters 18(3):147–151]. My former paper was published one year later in
[Annals of Operations Research 66:93–102]. Furthermore, we worked on a second
paper devoted to measuring the Macroeconomic Performance of OECD countries.



884 J. T. Pastor

It was a pioneer paper because we considered not only economic variables, but also
undesirable environmental variables. The paper was published in 1995 in [EJOR
87(3):507–518] and was co-authored by Judy Turner. I enjoyed my stay very much,
including the access to the library facilities and to the papers gathered and neatly
ordered by Prof. Lovell, as well as the possibility of using the golf course owned by
the University. Knox and I frequently went to a sports bar in Athens to watch the
NBA final games or the NASCAR races.

We met again some years later, in 1998, and spent a couple of weeks together at
the University of Lovaine le Neuve, Belgium, where the prestigious Belgian Profes-
sor Henry Tulkens used to organise European efficiency meetings. Prof. Tulkens is
known for having created a non-convex technique for measuring efficiency, known
as FDH. During our stay, besides drinking all kinds of Belgian beer, we wrote two
papers. The first one studied, for the first time, radial DEA models without inputs or
outputs, and was published in [EJOR 118(1):46–51] in 1999. The second one dealt
with the evaluation of the financial performance of bank branches and compared
DEA and FDH. It was co-authored by Tulkens and was published much later in
2006, in [Annals of Operations Research 145(1):321–337]. In 1994, I was invited by
Dr. Teodoro Ravelo, from the University of La Laguna, to give a talk on DEA and to
help them evaluate the managerial efficiency of the Canary Islands municipalities.
We published a first working paper in 1995, and I continued visiting them for the
next two years. The result was a paper which was published in 1997 in the Spanish
Journal [Gestión y Análisis de Políticas Públicas 10:87–98].

I kept meeting Bill Cooper at the Efficiency International Meetings and in 1997
we finished our first paper defining, for the first time, an efficiency measure – called
RAM – associated to the additive model. It was a long paper, co-authored by one
of Cooper’s collaborators, and published two years later in [JPA 11:5–42]. Based on
this, we delivered a second paper evaluating the water supply services in the Kanto
region of Japan. This paper was co-authored by two Japanese people, Dr. Aida and
Prof. Sueyoshi. It was published in 1998 in [OMEGA 26(2):207–232] and received
an award from an English evaluation agency as “the best applied paper of the year
devoted to the Asian-Pacific countries”.

In 1997 I moved from the University of Alicante to the newly created “Univer-
sity Miguel Hernández”, with four campuses, the central one situated in Elche, the
second biggest town and the biggest industrial centre of the Alicante province. I was
elected as Vice-Rector for Research and, in parallel, started working with two young
colleagues from my new department who wanted to obtain their PhD degree. I wrote
several papers with José Luis Ruiz and with Inmaculada Sirvent. They delivered their
respective PhD dissertations in 2000 and in 2001. In 1999, we published two DEA
papers in the same journal. The first one, [EJOR 115(3):187–198], presented a new
efficiencymeasure defined through a linear fractional programme, the ERGmeasure,
which was expressed by K. Tone as a “slacks-based measure”, SBM, and published
two years later in the same journal. We had met Prof. Tone one year before at an
international meeting in Lausanne and discovered that we were pursuing the same
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efficiency measure. I was rather disappointed when I saw that his 2001 paper did
not include any reference to our 1999 paper. The second paper, published in [EJOR
115(3):132–144], tackled the problem of detecting influential observations in DEA
and was based on a new statistical test which we developed in a third paper dealing
with the deletion of non-relevant inputs or outputs. The third paper was published
three years later in [Operations Research 50(4):728–735], after suffering a long and
strange refereeing process. A fourth paper, where F. Borras appeared as the fourth
author, presented a Montecarlo evaluation of the process of deleting variables within
a DEA model, and was published in 2005 in [Information Technology and Decision
Making 4(3):325–343].

I was able to organise a Banking Efficiency meeting in the year 2000 in Alicante,
with the help of Ana Lozano, at that time associate professor at the University of
Málaga, and IfthekarHasan, professor at the Rensselaer Polytechnic Institute in Troy,
New York. Prof. Gary Becker, awarded the Nobel Prize in Economics in 1992, “for
having extended the domain of microeconomic analysis to a wide range of human
behaviours and interaction, including nonmarket behaviour”, was incorporated onto
our list of participants. It was an interesting meeting, sponsored by the CAM savings
bank, and gathered around 20 significant scientists. This was the beginning of a
fruitful collaboration with Ana and, from time to time, with Ifthekar, who is always
ready to join us when we visit New York City. My first paper in banking was a
joint piece of work with Ana and José Manuel Pastor, an economic researcher from
IVIE and Valencia University, and it took some time before we published it. It was
eventually published in 2002 in [JPA 18:59–77] and it analysed and compared the
European Banking systems by taking into account not only the typical banking
variables but also the macroeconomic, regulatory and accessibility conditions of
each country. A second paper was published by Ana, Ifthekar and I in 2001 on
the subject [European Finance Review 5(1/2):141–165], studying the functioning of
banks across borders. In 2006, Ana and I published two more papers on banking, in
[JPA 25:67–78] and in [The Manchester School 74(4):469–482]. Our last published
paper came out in 2010 in [OMEGA 38(5):275–282], and for the last two years we
have been working together with Juan Aparicio and Miguel Angel Durán on a new
paper that evaluates banking risks using segmentation analysis. I have often visited
Ana at the University of Málaga, giving seminars, working together and enjoying
the Andalusian way of life.

After my 6 years as Vice-Rector, I was able to visit Knox again in Athens in 2004.
We started working on productivity, trying to define a new Malmquist Index with
better properties. Previously, in 1998, we had published a paper in [JPA 10(1):7–20]
with Emily Grifell, where the additive model was considered. Very recently, in 2016,
FernandoVidal, JuanAparicio and I published an improved related paper formulating
any weighted additive model as a distance function in [EJOR 254:338–346]. As a
result of my visit to Knox, we were able to define a new circular Malmquist Index,
baptised the GlobalMalmquist Index, and published it in 2005 in [Economics Letters
88(2):266–271]. We then published a related paper in 2011, in [Socio-Economic
Planning Sciences 45:10—15] co-authored by Prof. M. Asmild which introduced
the Biennial Malmquist Index that has the nice property of avoiding infeasibilities.
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The same year Knox and I went together to Toronto, where the North American
Productivity Workshop took place. After the workshop, I stayed in Toronto by way
of invitation of Prof. Joseph Paradi. It was an interesting stay because I gave some
seminars to the PhD students, I had plenty of time for doing research and I participated
in an applied project, required by theToronto police,with Joe andMetteAsmild. Both
Joe, a former Hungarian immigrant, and Mette, a young Danish lady hired by Joe,
were the organisers of the aforementioned Workshop. It was fun to work on the last
mentioned applied project and we were able to increase significantly the efficiency
of the police stations just by reallocating their personnel. The methodology and
results were published in 2012 in [OR Spectrum 34(4):921–941]. We wrote another
paper which studied the BCC models with centralised resource allocation, which
was published in 2009 in [OMEGA 37:40–49]. I was very pleased that Joe was also
an avid golfer like me. We were able to play together several times and from that
moment on, we organise a round of golf each timewe attend an internationalmeeting.
Prof. Robin Sickles from Rice University and Prof. Hal Fried from Union College
are usually our partners.

In 2008, after having served for 3 years as General Director for Research and
Technological Transference in the Regional Government of the Valencia Region, I
was able to visit Queensland University in Brisbane, Australia. I stayed there with
my former PhD student and member of my department, Juan Aparicio, for one and
a half months. Knox Lovell had already retired, was working at the University as
an honorary professor, had married a charming Australian lady, July, and had his
own jazz music programme on a local radio station. We worked with Knox and, in
2012, we published a paper in [JPA 38:109–120] that provided a novel formulation
of all the DEA models based on Debreu’s loss function. Juan and I developed the
“multiplicative directional distance functions” that was first published in 2010 in
[Indian Economic Review 45:193–231], and then in 2015, as a chapter of a Springer
book edited by S. Ray, S. Kumbhakar and P.Dua entitled “Benchmarking for Per-
formance Evaluation: A Production Frontier Approach”. We had an interesting stay
in Brisbane, drinking beer almost every day and doing some sightseeing. We visited
the Golden Coast and Moreton Island, the second biggest sand island in the world.
We stayed there for a weekend and had the opportunity to feed the dolphins inside
the water, do water sports and drive round the island on a 4 × 4 quad.

The same year, 2008, Mette Asmild had moved to Warwick University which is
situated in TheMidlands in England, and I visited her during the summer.Weworked
together and published a new paper defining new slack free efficiency measures –
MEA and RDM – in 2010 in [OMEGA 38(6):475–483].

Years 2009 and 2010were extremely productive years, having published 9 papers.
Even more so were 2011 and 2012, with 15 published papers. In 2011 I was elected
as Rector of my university, and in 2015 I was re-elected for a second – and final –
period of four years. Fortunately, I have had many collaborators during the past 6
years, which explains why we have been able to publish 48 papers or book chapters.
Despite the duties of my new position, I still attend science meetings for two main
reasons: to communicate my latest findings and to keep up to date.
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5 Conclusions

In this paper, I have tried to transmit the idea that if you like doing research, you
can enjoy life. You need, as usual, a bit of luck to work with colleagues who are
reliable and bright enough. I have met some very nice people from all around the
world and I have always tried to collaborate with people who belong to this group. I
have also taken the opportunity to meet people who have different skills, and I have
learnt a lot from engineers and economists. I have benefited from being an academic,
a profession which I am still in love with. I also have the feeling that I became a
world citizen, without renouncing my strong Spanish roots. Taking a nap whenever
possible is definitely part of my life, as well as sitting outdoors talking to my friends
and sharing a drink and, of course, doing research! I hope that anyone reading this
paper is able to conclude, like I do, that if you love your subject, you can work hard
and enjoy your work, which is one of the basic requirements for enjoying life.
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Abstract We present a Galerkin method based on the combination of a mixed finite
element method and a spectral boundary element method to solve an exterior second
order elliptic boundary value problem.we prove that the scheme is stablewith respect
to the discretization parameters and derive optimal a priori error estimates.

1 Introduction

Our aim is to solve a second order elliptic partial differential equation posed in an
unbounded planar domain. We assume that we need to approximate simultaneously
two unknowns: the scalar potential and the vector field representing the flux variable.
The combination of themixed finite element method (mixed-FEM) and the boundary
element method (BEM) introduced in [8] is well suited for such a purpose. Neverthe-
less, the nearly singular boundary integrals appearing in FEM/BEM formulations are
difficult to approximate via simple quadratures, especially for high order methods.
In the two-dimensional case, a remedy to this drawback has been addressed in [6] by
reformulating the classical Johnson-Nédélec [4] and Costabel [3] FEM/BEM meth-
ods in terms of a smooth coupling boundary. This permits one to change all terms
on this interface to periodic functions by means of a parameterization and employ
trigonometric polynomials to approximate the periodic representation of the bound-
ary unknown. It is shown that the resulting scheme, combining the (standard) finite
element method and a spectral method, is unconditionally stable and convergent. It
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turns out that this numerical method is amenable to the application of elementary
quadrature formulas for the approximation of the weakly singular boundary inte-
grals. Moreover, as the approximation is spectral on the boundary, only few BEM
degrees of freedom are needed in order to attain the order of convergence imposed by
the FEM method, which reduces the complexity of the linear systems of equations
arising from the discrete formulation, as shown in [6]. We also refer to [7] where a
similar strategy is used to deal with an acoustic scattering problem.

Our purpose here is to show that the mixed-FEM/BEM formulation presented
in [8] with a parameterized coupling interface benefits from the same advantages
obtained in [6] for the standard FEM/BEM formulations. Indeed, we prove that the
scheme resulting from the combination of amixed-FEM and a spectral BEM is stable
with respect to the finite element mesh size h and the spectral parameter n. Moreover,
we deduce optimal asymptotic error estimates.

The paper is organized as follows. We introduce the model problem in Sect. 2
and reformulate it in terms of a problem posed on a bounded domain with nonlo-
cal boundary conditions imposed on a smooth artificial boundary Γ . In Sect. 3, we
derive the mixed-FEM/BEM variational formulation and prove its well-posedness.
Finally, in Sect. 4, we present our finite element discretization method and give its
convergence analysis.

Notations. We end this section by recalling some standard notations related with
Sobolev spaces. Given a Lipschitz domain Ω ⊂ R

2, we let Hm(Ω), m ≥ 1, be the
usual Sobolev space with norm ‖·‖m,Ω . Themixed formulation of themodel problem
relays on the space

H(div,Ω) :=
{
q ∈ [L2(Ω)]2; div q ∈ L2(Ω)

}
,

which is endowed with the usual Hilbertian norm

‖q‖2H(div,Ω) := ‖q‖20,Ω + ‖div q‖20,Ω .

Finally, for the boundary unknown, we need to introduce periodic Sobolev spaces.
Let C∞ be the space of 2π–periodic infinitely often differentiable real valued func-
tions of a single variable. Given g ∈ C∞, we define its Fourier coefficients

ĝ(k) := 1

2π

∫ 2π

0
g(s)e−kısds.

Then, for r ∈ R, we define the Sobolev space Hr to be the completion of C∞ with
the norm

‖g‖r :=
(∑

k∈Z
(1 + |k|2)r |̂g(k)|2

)1/2

.
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Throughout this paperC (with or without subscript) will denote a generic positive
constant that is independent of the discretization parameters. We use boldface small
letters to denote vector-valued functions.

2 The Model Problem

We consider the following first order system of partial differential equations posed
in the exterior of a Lipschitz bounded domain Ω0:

p = a(x)∇u in Ωc
0 := R

2 \ Ω0

div p + f = 0 in Ωc
0

u = 0 on Γ0 = ∂Ω0,

(1)

and subject to the asymptotic behaviour

u(x) = O( 1
|x | ) as |x | → ∞. (2)

Here, f is a given function with a bounded support and the coefficient a(x) satisfies:

0 < C1 ≤ a(x) ≤ C2 ∀x ∈ Ωc
0 and a(x) ≡ 1 if dist(x, Γ0) ≥ C3

for some positive constants C1, C2 and C3.
We introduce an artificial boundary Γ that contains in its interior the support of f

and the set
{
x ∈ Ωc

0; dist(x, Γ0) ≤ C3
}
and consider the annular domain Ω delim-

ited by Γ0 and Γ . We denote by n the outward unit normal vector to Γ . Hereafter, we
assume that the closed curve Γ is given by a 2π−periodic parametric representation
x : R → R

2 of class C∞ such that

|x′(s)| > 0, ∀s ∈ R, and x(t) = x(s), 0 < |t − s| < 2π.

We can define by means of x(·) the parameterized trace on Γ as the extension of

γ : C∞(Ω) → L2(0, 2π)

u �→ γ u(·) := u|Γ (x(·))

to H 1(Ω). The resulting linear application γ : H 1(Ω) → H 1/2 is bounded and onto;
cf. Theorem 8.15 of [5]. Likewise, the parameterized normal trace on Γ is obtained
by extending

γn : (
C∞(Ω)

)2 → L2(0, 2π)

q �→ γnq(·) := q(x(·)) · n(x(·))
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toH(div,Ω). The extendedmapping (which is also denoted γn) is linear and bounded
from H(div,Ω) onto H−1/2.

A finite element formulation of Problem (1) requires the approximation of the
asymptotic condition (2) by an homogeneous Dirichlet boundary condition satisfied
by u on the artificial boundary Γ . In such a case, Γ should be located sufficiently
far from Γ0, which may originate a huge computational domain Ω . A more accurate
and computationally efficient strategy consists in choosing Γ as described above
(located as close as possible to Γ0) and providing the problem in Ω with non-local
boundary conditions on this artificial interface. These non-local boundary conditions
consist in the following (parameterized) integral equations relating the Cauchy data
λ := γnp and ψ := γ u on Γ (see, e.g., [3]):

ψ = (
1
2 I + K

)
ψ − V λ (3)

λ = −W ψ + (
1
2 I − K t

)
λ. (4)

Here, V and K are the parameterized versions of the boundary integral operators
representing the single and double layer potentials,

V g(·) :=
∫ 2π

0
V (·, t)g(t) dt, K g(·) :=

∫ 2π

0
K (·, t)g(t) dt,

whose kernels are given by V (s, t) := − 1
2π log |x(s) − x(t)| and

K (s, t) := 1

2π

(x(s) − x(t)) · n(x(t))

|x(s) − x(t)|2 |x′(t)|.

The operator K t is the adjoint ofK and the hypersingular operator W is related to
V through the identity

W = − d
dtV

d
dt .

The mixed-FEM/BEM formulation is obtained by combining the restriction of
Problem (1) toΩ with (3)–(4) after merging the variables γnp and λ and introducing
ψ as a further variable representing the (parameterized) restriction of the potential u
to Γ . In this way, we obtain the following set of equations:

p = a(x)∇u in Ω (5)

div p + f = 0 in Ω (6)

u = 0 in Γ0 (7)

γ u = (
1
2 I + K

)
ψ − V γnp on Γ (8)

γnp = −Wψ + (
1
2 I − K t

)
γnp on Γ (9)

We end this section by recalling some well–known properties of the integral
operators V and K .
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Lemma 2.1 The operators K : H θ → H θ and V : H θ → H θ+1 are bounded for
all θ ∈ R. Moreover there exists α > 0 such that

〈μ,V μ〉 ≥ α‖μ‖2−1/2, ∀μ ∈ H−1/2
0 ,

where H−1/2
0 := {μ ∈ H−1/2; 〈μ, 1〉 = 0}.

Proof See for instance [5]. �

3 The Mixed-FEM/BEM Variational Formulation

It is straightforward to deduce from (5)–(9) the following variational formulation of
our problem (see [8] for the details):

Find (p, ψ) ∈ H(div,Ω) × H 1/2
0 and u ∈ L2(Ω);

A
(
(p, ψ), (q, ϕ)

) + B
(
(q, ϕ), u

) = 0, ∀(q, ϕ) ∈ H(div,Ω) × H 1/2
0

B
(
(p, ψ), v

) = −
∫

Ω

f v dx, ∀v ∈ L2(Ω), (10)

where the bounded bilinear forms A(·, ·) and B(·, ·) are defined by

A((p, ψ), (q, ϕ)) :=
∫

Ω

a−1p · q dx + 〈V γnp, γnq〉 + 〈V d
dt ψ, d

dt ϕ〉
+〈( 12 I + K )ϕ, γnp〉 − 〈( 12 I + K )ψ, γnq〉

and B((q, ϕ), v) :=
∫

Ω

div q v dx .

Theorem 3.1 Problem (10) is uniquely solvable.

Proof We first notice the kernel of the bilinear form B(·, ·) is given by

ker(B) :=
{
(q, ϕ) ∈ H(div,Ω) × H 1/2

0 ; div q = 0inΩ
}

.

By definition, it holds

A
(
(q, ϕ), (q, ϕ)

) =
∫

Ω

a−1|q|2 dx + 〈V γnq, γnq〉 + 〈V d
dt ψ, d

dt ϕ〉.

Using Lemma 2.1 and the fact that d
dt : H 1/2

0 → H−1/2
0 is an isomorphismwe deduce

the existence of a constant C0 > 0 such that
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A
(
(q, ϕ), (q, ϕ)

) ≥ C0
(‖q‖20,Ω + ‖ϕ‖21/2

) ∀(q, ϕ) ∈ H(div,Ω) × H 1/2
0 , (11)

which proves that A(·, ·) is H(div,Ω) × H 1/2
0 -elliptic on ker(B).

On the other hand, the following inf-sup condition is proved in [8]: there exists a
constant β > 0 such that

sup
(q,ϕ)∈H(div,Ω)×H 1/2

0

B
(
(q, ϕ), v

)

‖(q, ϕ)‖H(div,Ω)×H 1/2
0

≥ β‖v‖0,Ω ∀v ∈ L2(Ω). (12)

We deduce from (11), (12) and the Babuška-Brezzi theory (cf. [1]) that the saddle
point Problem (10) is well-posed and the result follows. �

4 The Galerkin Method and Its Convergence Analysis

Let N be a given integer.We consider the equidistant subdivision {ti := iπ/N ; i =
0, . . . , 2N − 1} of the interval [0, 2π ] with 2N grid points. We denote by Ωh the
polygonal domain whose vertices lying on Γ are {x(ti ) : i = 0, . . . , 2N − 1}. Let
T 0

h be a regular triangulation of Ωh by triangles T of diameter hT not greater than
max |x′(s)|h with h := π/N and whose vertices on Γ are given by {x(ti ) : i =
0, . . . , 2N − 1}. We obtain from T 0

h a triangulation Th of Ω by replacing each
triangle of T 0

h with one side along the exterior part of ∂Ωh by the corresponding
curved triangle.

Let T be a curved triangle of Th . We denote its vertices by aT
1 , a

T
2 , and aT

3 ,
numbered in such a way that aT

2 and aT
3 are endpoints of the curved side of T . Let

T̂ be the reference triangle with vertices â1 := (0, 0), â2 := (1, 0), and â3 := (0, 1).
Consider the affine map GT defined by GT (âi ) = aT

i for i ∈ 1, 2, 3. For h ∈ (0, h0),
with h0 small enough, there exists a C∞(T̂ ) bijective mapping FT : T̂ → R

2 given
by FT := GT + ΘT such that each side of T̂ is mapped onto the corresponding side
of T , i.e.,Θ(0, t) = ΘT (t, 0) = (0, 0) and FT (t, 1 − t) = ϕ(t) for all t ∈ [0, 1], (cf.
[9]). We notice that if T is a straight (interior) triangle, then ΘT ≡ 0 and thus FT

is the usual affine map from the reference triangle. We denote by BT := DFT the
differential of the mapping FT .

In the sequel, Pm(T̂ ) stands for the space of piecewise polynomial functions of
degree at most m ≥ 0 on the reference triangle T̂ . For any k ≥ 1 and T ∈ Th , we
consider

W(T ) :=
{
q : T → R

2; q ◦ FT = 1

det(BT )
BT q̂, q̂ ∈ Pk(T̂ )2

}
,

and
U (T ) :=

{
v : T → R; v ◦ FT = v̂, v̂ ∈ Pk−1(T̂ )

}
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and introduce the global finite element spaces

Wh := {q ∈ H(div,Ω); q|T ∈ W (T ); ∀T ∈ Th}

Uh := {
q ∈ L2(Ω); v|T ∈ U (T ); ∀T ∈ Th

}
.

Let us now recall some well-known properties of the Brezzi-Douglas-Marini
(BDM) mixed finite element. The global BDM-interpolation operator Πh :
H(div,Ω) ∩ (Hs(Ω))2 → Wh , s > 1/2, satisfies the following classical error esti-
mate, see [1, Proposition 2.5.4],

‖q − Πhq‖0,Ω ≤ Chmin(s,k+1)‖q‖s,Ω, ∀q ∈ Hs(Ω)2, with s > 1/2. (13)

Moreover, thanks to the commutativity property, if div q ∈ Hs(Ω), then

‖div (q − Πhq)‖0,Ω = ‖div q − Uhdiv q)‖0,Ω ≤ Chmin(s,k)‖divq‖s,Ω, (14)

where Uh is the L2(Ω)-orthogonal projection onto Uh .
Finally, let n be a given integer such that n ≤ N . We consider the 2n–dimensional

space

Tn :=
⎧⎨
⎩

n∑
j=1

a j cos j t +
n−1∑
j=1

b j sin j t; a j , b j ∈ R

⎫⎬
⎭ .

The following approximation property holds true, (cf. [2]):

inf
μ∈Tn

‖λ − μ‖s ≤ 2t−sns−t‖λ‖t ∀λ ∈ Ht
0 ∀t ≥ s. (15)

We are now in a position to introduce the conforming Galerkin finite element
approximation of Problem (10):

find (ph, ψn) ∈ Wh × Tn and uh ∈ Uh;
A
(
(ph, ψh), (q, ϕ)

) + B
(
(q, ϕ), uh

) = 0, ∀(q, ϕ) ∈ Wh × Tn

B
(
(ph, ψh), v

) = −
∫

Ω

f v dx, ∀v ∈ Uh .

(16)

Theorem 4.1 Problem (16)has a unique solution and there exists a constantC1 > 0,
independent of h and n such that

‖p − ph‖H(div,Ω) + ‖ψ − ψn‖1/2 + ‖u − uh‖0,Ω ≤ C1(
inf
q∈Wh

‖p − q‖H(div,Ω) + inf
ϕ∈Tn

‖ψ − ϕ‖1/2 + inf
v∈Uh

‖u − v‖0,Ω
)

.
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Moreover, if the regularity assumptions p ∈ Hk(Ω)2, div p ∈ Hk(Ω), u ∈ Hk(Ω)

andψ ∈ Hσ+1/2 are satisfied for some k ≥ 1 and σ > 0, then there exists a constant
C2 > 0 independent of h and n such that

‖p − ph‖H(div,Ω) + ‖ψ − ψn‖1/2 + ‖u − uh‖0,Ω ≤ C2(
hk(‖p‖k,Ω + ‖div p‖k,Ω + ‖u‖k,Ω) + n−σ ‖ψ‖1/2+σ

)
. (17)

Proof We notice that the discrete kernel

kerh(B) = {(q, ϕ) ∈ Wh × Tn; B((q, ϕ), v) = 0 ∀v ∈ Uh}

of the bilinear form B(·, ·) is a subspace of its continuous counterpart ker(B). Hence,
the ellipticity of A(·, ·) on kerh(B) is directly inherited from (11). Moreover, the
discrete analogue of the inf-sup condition (12) can be proved as in [8]. It follows again
from the Babuška-Brezzi theory [1] that the discrete problem (16) is well-posed and
we also have the Céa estimate (17). Moreover, using the interpolation error estimates
(13), (14) and (15) we deduce the asymptotic behaviour of the numerical scheme
when h goes to 0 and n tends to infinity, provided the analytical solution is smooth
enough. �
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Pedro Gil, Colleague and Friend:
Experiences Shared in the Department
of Statistics and Operations Research
at the Complutense University of Madrid

Rafael Infante Macías

Abstract Pedro Gil was an undergrad student inMath and a colleague ofmine in the
Department of Probability and Statistics of the Complutense University of Madrid.
This paper aims to describe what my memory remembers about those nice shared
years.

Pedro arrived inMadrid to complete the course of studies for aDegree inMathematics
in the same year, 1965, in which my close friend Paco Cano and I joined, what was
then, the Department of Probability Calculus and Mathematical Statistics, chaired
by Professor Sixto Ríos García. Remember that before Faculties were organised in
Departments, Facultiesweremade up ofBranches and the Sections, Biology, Physics,
Geology, Mathematics and Chemical Sciences, which formed part of the Faculty of
Sciences, had not yet been converted into Faculties.

The permanent members of Professorial Staff were the Professor and the Care-
taker, since Associate Professors and Assistants had a limited term within the Uni-
versity, therefore if they believed their promotion was long coming, in the best case
scenario, a few years, they could choose to sit for an official examination to become
a member of what was then the Body of Heads of Department, which explains the
high level of this Faculty, by way of example, our colleagues, Ildefonso Yáñez and
Miguel Martín, who obtained the Professorship of Mathematics in the ‘Padre Luis
Coloma’ Secondary Institute in Jerez de la Frontera, although they requested unpaid
leave in order to continue in the University.

When we completed our course of studies in June 1965, Paco Cano and I talked
to Prof. Sixto to express our interest in him directing our Doctoral Dissertation. He
asked us about our ambitions and told us to come back in September. We returned
and he said he was going to propose our appointment as Supernumerary Assistant,
i.e. unpaid, to the University Rector.

R. Infante Macías (B)
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Prof. Sixto, our Mentor and I am talking in present tense because, as we have
commented on numerous occasions, Paco Cano, Ramiro Melendreras, Pedro and
I, our Mentor-Disciple relationship, will never be broken, he taught us, not just
scientifically, but more importantly, he taught us with compassion, a quality only
attributable to genuine Mentor. With him we learnt the importance of exact data and
precision; from him we learnt to have a critical and open attitude; to think without
being subject to preconceived models, which are sometimes more limitative than
explanatory. He taught us how to love a job well done and above all, he instilled in
us a love for the University that he made the core and centre of his life.

The Associate Professor of the Branch was the beloved and admired Ildefonso
Yáñez de Diego. He taught us, in addition to probability, that there is nothing more
precious in this world than friendship. From him we learnt about the value of soli-
darity; he would tell us that we should give to others without expecting anything in
return; we undoubtedly owe any qualities we may have to his fine example. The
Assistants were Antonio López Damas and José Pérez Vilaplana, who replaced
Miguel Martín Díaz, since he was in Paris that year doing his Doctoral Dissertation.
The following year, López Damas enrolled in the School of Armament Engineering
and Construction, a centre belonging to the Ministerial Department in charge of the
Army and Pérez Vilaplana left the position of assistant professor a short time later.
Therefore as two vacancies became available, Prof. Sixto proposed our candidature
to the Rector of the University as Associate Professors, nowwith a salary. And during
that year, 1966–67, we met Pedro; he was the student and we, as Assistants, taught
the practical Calculus of Probability and Mathematical Statistics classes and soon
we noticed how Pedro stood out from the rest of his classmates. I believe one of
the best ways of identifying intelligence, speed of reflexes and rigour in a student is
through problem solving and Pedro had all these attributes.

During those years, the classes for the Statistics speciality courses in the Bache-
lor’s degree inMathematics were taught in the building called Caserón SanBernardo,
the Statistics School’s main building where the classes for the Diploma in Statistics
were given. It had two branches: Economics and Mathematics, the former directed
by Prof. Arniz and the latter by Prof. Sixto. The subjects specific to the Faculty were
taught together with those of the Diploma Course, therefore we hardly ever went
to the Faculty, except for Prof. Sixto, who had an office in the Faculty, ours were
in the Statistics and Operations Research Institute of the Spanish National Research
Council (CSIC), the Director of which was also Prof. Sixto.

On 31 March 1966, Decree 1199/1966 on the Classification of Departments in
Faculties of Sciences was published in the Official State Gazette and it included
the creation of the Department of Mathematical Statistics integrating within this the
Branch of Calculus of Probability andMathematical Statistics. Once the Department
had been created andwas up and running, it had to be equippedwith the infrastructure,
both in terms of material resources and space, a task entrusted by Prof. Sixto to Cano
and myself. Works were carried out in the Faculty building and the Department was
granted half of the fourth floor left wing, distributed into three offices, a classroom, a
seminary and a library and a place for the Department secretary’s office was created
in the entrance hall to Prof. Sixto’s office. When Paco Cano moved to the University
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of Zaragoza and I went to the University of Granada, RamiroMelendreras and Pedro
were given this administrative management task and I believe it was an excellent
source of learning for Pedro for carrying out the wonderful work he did in the
University of Oviedo. Prof. Sixto decided to separate the classes for the Degree
subjects from those of the Diploma program, so the former were taught in the Faculty
and the latter in San Bernardo. Once the works were completed and we had a place
in which to prepare our classes in the mornings, we spent the mornings in the Faculty
and the afternoons in the Council, as Prof. Sixto had managed to get both Paco Cano
and myself a position as Research Assistants in the Council.

Another positive effect for the Branch, now converted into a Department, was
the increase in the number of teaching staff; positions were given to Teachers in
Charge of the Course, Associates and Assistants. The position of Teacher in Charge
of the Course was created in the Statistics School, which enabled new Teachers to
join, including my dear friend, Ramiro Melendreras, who passed away in his prime,
taking with him a part of me, Pilar Ibarrola, Vicente Quesada, Francisco Javier Girón
and Pedro. Miguel Martín returned from Paris and his arrival had a decisive impact
on Pedro, since Miguel introduced him to the study of Mathematical Theory of
Information, which led to his Doctoral Dissertation, which he defended in 1974, on
“Measures of uncertainty and information in statistical decision problems”, published
in 1981 by the ICE editorial, based on notes drawn up by Pedro and directed by Prof.
Sixto Ríos. This book is an essential reference for students studying Mathematics
and Computer Science.

As the number of Teachers was much higher than the number of offices, with the
exception of Prof. Sixto’s office, they were shared, but not only did we share offices,
also tables and sometimes even chairs. The tables in the other office and those of
the seminary were shared by Miguel Martín, Paco Cano, Ramiro, Girón and Pedro.
Sharing such a small space had a very positive effect, as a great comradeship was
formed and a profound friendship. I remember when Paco and I sat for the official
exams forAssistantship inOviedo andGranada, how the rest of our colleagues helped
us to draw up the Report and prepare the fifteen subjects proposed by the tribunal for
the fifth exam. Specifically, Pedro prepared the subject “Relationship between the
Bayesian Statistics, and Information Theory” for me, a subject I still hold dear.

We were not only colleagues, we were great friends, we shared our joys and
the reprimands aimed at some of us by Prof. Sixto. I look back with nostalgia at
that golden age of our academic lives in the Department, since we used to help one
another; there was no selfishness or personal aspirations and, above all, we felt care
and respect for our Mentor, Prof. Sixto.

I remember Paco, Ramiro, Pedro and I going for breakfast in the Faculty bar
located on the ground floor outside the building. Sometimes there was a moment of
tension when one of us, normally Paco or myself, would get a telling off from Prof.
Sixto and if he was unable to find us, Ramiro would get the telling off, so, to relieve
this tension, Miguel would suggest going to the bar and we would relax with a glass
of wine and a piece of tortilla.

In October 1971, I moved to the University of Granada as an Assistant Professor
of Operations Research, but I continue to go to the Department in Madrid, where I
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was provided with bibliography and to the Council to check the Journals, therefore I
remained in contactwithmy colleagues. Twoyears laterRamiro joined theUniversity
of Santiago de Compostela and as the Professorship vacancy had to be filled in the
University of Granada as I had moved to Seville, Ramiro moved to this University to
then join theMurcia University a short time later. Pedro joined the Oviedo University
in 1976.

Although Pedro was in Oviedo and I in Granada first and then Seville, there was
someone that acted as a linkage between us and that personwas RamiroMelendreras,
who went out of his way to get us together in Madrid, which was quite easy back
then because there were plenty of entrance examinations held during those years
and we would either coincide on the Boards or, if this were not the case, we would
make sure we met up in Madrid and I can remember us eating in Bar Manolo on
Calle Princesa, where we discussed how the examinations being held were going
and we did so because we shared our concerns and we wanted the best for the
development of Statistics and Operations Research. We also met in the Statistics
and Operations Research Conferences organised by the SEIO (Spanish Society of
Statistics and Operations Research). In fact, Pedro replaced me in 2001 as Chairman
of the Spanish Society of Statistics and Operations Research, therefore we held
meetings at the beginning, him as Chairman elect and I as acting Chairman and then
he, as acting Chairman and I as the outgoing Chairman.

An example of the sensitivity shared by Pedro and I, was the profound affection
we both had for Prof. Sixto and the high esteem we had for his scientific work, to the
point that in 2000 he proposed for him to be invested as Doctor Honoris Causa by
the University of Oviedo and I proposed it in 2001 by the University of Seville. In
both cases, Prof. Sixto was truly happy to be accompanied by his disciples in these
solemn acts. I believe that when friendships are formed early on in life, they remain
over time, which is what happened to us.

And to conclude these brief notes reflecting a very important period in our lives,
I would like to remember that group of colleagues and friends that formed part of
our Department of the Complutense University during the early years and who sadly
are no longer with us. Prof. Sixto Ríos, Ildefonso Yáñez, Miguel Martín, Francisco
Cano, Ramiro Melendreras and Pedro Gil, all of you are still present in my thoughts
and I await the day in which we will be together again, because, in the words of
Miguel Hernández in his “Elegía a Ramón Sijé”

A las aladas almas de las rosas
del almendro de nata te requiero

que tenemos que hablar de muchas cosas
compañero del alma, compañero



Pedro Gil at the Complutense University

Julián de la Horra

Abstract The stay of Pedro Gil in the Department of Statistics and O. R. at the
Complutense University of Madrid was not very long, because he left that Depart-
ment for moving to the University of Oviedo in 1976. But the mark of Pedro at the
Complutense University was very important. I want to present here my personal view
of this mark.

Pedro Gil did not stay for long in the Department of Statistics and O.R. at the Com-
plutense University of Madrid. He left that Department for moving to the University
of Oviedo in 1976. However, Pedro left a very deep mark on the Complutense Uni-
versity. At least, he left a very deep mark in me. I always say that Pedro is the ‘guilty’
of my professional dedication to the University.

But let me get back to the beginning: Pedro was my teacher on the subject ‘Infor-
mation Theory’ in the fourth year of Mathematics. But the true influence of Pedro on
my life was in the last year of my graduate studies, when I went to his office looking
for his advice on career options and he suggested me the possibility of writing a
PhD thesis and working at the University. At first, I completely discarded the idea,
because that idea had never entered into my plans. But ... the seed was planted and
it was some months later that I decided to try. And I enjoyed the experience ... very
much.

And here I am, 42 years later, and I have to say that I do not regret at all this
choice. In short, thanks to that conversation with Pedro, I found this wonderful
profession. Well, before continuing, let me clarify the meaning of ‘wonderful pro-
fession’, because not everything is a rose garden:
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• Research work is hard, really hard at times (results are difficult to obtain and
certain referees’ reports ...), but when, finally, you see your research accepted and
published in a good journal ... you forget the problems.

• And the teaching work is also hard, really hard at times (very large classes, a lot of
exams to read, ...), but when, years later, a student thanks you for your teachings,
for your help ... you also forget the problems.

Of course, the mark of Pedro in the Complutense University is much deeper. I
would especially like tomention his first doctoral student, PilarGarcía-Carrasco,who
left us prematurely in 1987. Pilar began her research on some topics of Information
Theory (with Pedro as supervisor), and the result of that research was her PhD thesis,
“Criterios para la comparación de experimentos” [1], in July 1977.

Pilar became, in only a fewyears, one of the best Spanish researchers in Statistics. I
was pleased to share with Pilar, office, research and, above all, friendship. The result
of this research collaboration is one of my most satisfying papers, “Maximizing
uncertainty functions under constraints on quantiles” posthumously published in
Statistics & Decisions in 1988 [2]. The main theorem of this article is as follows:

“Let u be any permutation invariant, uncertainty function. The maximum of u
(subject to constraints on several quantiles) is reached at a point which does not
depend on u.”

Moreover, the theorem gives an explicit expression for this point. This is the only
article jointly published with Pilar, because there was no time for more. If life had
been more generous with her, probably it would not have been the only one.

In short, I am very grateful to Pedro formany things but, especially, for two things:

• Pedro encouraged me to choose an exciting career that I have enjoyed for years
and years.

• Pedro and this career give me the opportunity to know and to research with Pilar,
one of the best friends I have had throughout my life.

Thanks for all, Pedro, and forever!
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Pedro Gil: Teacher, Researcher, Mentor,
Leader and Colleague at the University
of Oviedo

Norberto Corral and Manuel Montenegro

Abstract Professor Pedro Gil launched the Department of Statistics, OR and Math
Teaching in the University of Oviedo. He prompted the research Statistics and OR
in Asturias and he did a lot for Mathematics in the region. This paper aims to show
Gil’s influence on all of us throughout the thirty-four years he was in the University
of Oviedo, and how indebted we feel with him.

As it has been alreadymentioned by InfanteMacías, PedroGil joined theDepartment
of Statistics and OR in 1969 as a research and teaching assistant. Partially thanks
to a fellowship from Fundación Juan March, he completed his Ph.D. Dissertation in
1974, under the supervision of Professor Sixto Ríos, at the Complutense University
of Madrid (see [1] for a published version of this Ph.D. thesis). Professor Ríos was
a doctoral student of Professor Julio Rey Pastor (see Part I of this book), and he is
considered to be the main driver and promoter of Statistics and OR in Spain.

After getting the Ph.D. Degree in Mathematics, Pedro Gil continued working
on researching and teaching with the ultimate goal of applying at any appropriate
moment for a tenure-track position at the university. This opportunity arose pos-
sibly earlier than expected, and it concerned a position in between Associate and
Full Professorship (coined as Profesor Agregado, a position that was extinguished
many years ago). To directly apply to this high level permanent position was not cer-
tainly the typical and easiest path into an academic career in the field. Nevertheless,
when Pedro was twenty-eight years old he became Profesor Agregado in Operations
Research of the University of Oviedo.

In 1976, a twenty-eight years old Pedro Gil (see Fig. 1) moved along with his
young family (at that moment composed of his wife, Pilar, his eldest daughter, Eva,
and himself) fromMadrid to Oviedo. This was the embryo of a family who has been
the main engine of his life, and that was completing with two other children, Juan
and Eduardo and, much later, with their grandchildren.

N. Corral · M. Montenegro (B)
Departamento de Estadística, I.O. y D.M., Universidad de Oviedo, Oviedo, Spain
e-mail: mmontenegro@uniovi.es

N. Corral
e-mail: norbert@uniovi.es

© Springer International Publishing AG 2018
E. Gil et al. (eds.), The Mathematics of the Uncertain, Studies in Systems,
Decision and Control 142, https://doi.org/10.1007/978-3-319-73848-2_84

905



906 N. Corral and M. Montenegro

Fig. 1 Pedro Gil at the time
of his arrival to Oviedo

Moving from Madrid meant, on one hand, abandoning the ‘scientific nest’ that
had been created around Professor Ríos by many endearing colleagues and friends.
Anyway, he had always kept in touch with them, and the periodic conferences of the
Spanish Society of Statistics and OR (SEIO) were the perfect excuse not to lose that
strong relationship.

On the other hand, moving from Madrid entailed too many responsibilities for a
young professional. In the University of Oviedo he was affiliated to the Faculty of
Sciences, where the presence of mathematicians had been very scarce and was very
longed for. So, he was quite enthusiastically welcome. But, from the very beginning,
hewas aware about himhaving to assume a leadership position in all possible respects
related to the Department of Mathematics of the Faculty of Sciences, namely:

• heading the Department, what means being involved in the management of many
bureaucracies and commitments;

• recruiting people (a complex task in a university not having the B.Sc. Degree in
Mathematics at that moment, see the paper by Dugnol and Valdés, just after this
one in the book);

• guiding the teaching of the recruited people, since the first ones were young math-
ematicians (most of them with only a B.Sc. degree);

• supervising the research of the recruited people.

And Pedro wanted this to be made in the most rigorous possible way. And, in
spite of his (starting) youth, he got it. And he became an excellent teacher, a good
and generous researcher and mentor, a sympathetic boss, and deeply beloved by all
of his colleagues. Let us now briefly detail each of these facets.
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1 Pedro as Teacher

When Pedro arrived to Oviedo he had the expertise of having delivered courses on
many different Statistics and OR disciplines. Actually, this expertise was crucial in
both, guiding and helping the young collaborators he was recruiting in their teaching
endeavors, and coordinating the launching and design of the B.Sc. in Mathematics
for the University of Oviedo (as it will be later explained in more depth by Dugnol
and Valdés).

In 1976, theMathematicsDepartment Pedro headed had to be in charge ofGeneral
Mathematics (mainly involving Calculus and Algebra) and Statistics for Biology,
Chemistry, Geology and also Statistics/OR for Economics. And he taught some of
the courses, especially those concerning Statistics, being the first mathematician
teaching some of them in Oviedo.

Although the students might initially be suspicious of the increase in rigor and
proficiency level that surely occurred at that time, they soon realized that such an
increase was accompanied by clear explanations, well-argued motivations and a
strong empathy to students. Even those being highly averse toMathematics admitted
Pedro’s teaching excellence.

Of course, this opinion was increasing in the nineties of the last century, as the
B.Sc. in Math was launched in the University of Oviedo, and Pedro was teaching
again to Math students (those for whom the aversion to Mathematics is assumed to
be discarded). He had a strong background and knowledge, and he was especially
skilled at transmitting them. In fact, most of students confess that because of the
clarity of his explanations, they believed that the courses were simpler than they
were.

Furthermore, Pedro was always ready to listen to the students, advice them, solve
their doubts, answer their questions, and so on. Most of these questions were math-
ematical, but they also concerned their future working lives, and even some rather
personal matters.

At the end of the first quarter, just before Christmas, students of the B.Sc. inMath-
ematics organized a special event in which they (often with some professors) sang,
made gymkanas and other competitions, parodies, etc. And a permanent participant
in all of these events was Pedro. With his accordion, he played a well-known Basque
song ‘El Alcalde de Arrigorriaga’, after writing the lyrics on the blackboard and
indicating students the movements of going up and down alternately in the chorus
(“Pantaleón, Pantaleón, …”). If possible, this made him even closer to the students.

Pedro’s warm attitude supported the frequent (informal albeit affectionate) nick-
names students used in referring to him: Father Pedro or even Saint Pedro (as the
Chancellor has already recalled in the foreword for this book).
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2 Pedro as Researcher and Mentor

From the very beginning of his scientific career, Pedro was firmly convinced of the
importance of research in academic life. And he tried to convey to his Ph.D. students
and people at his Department this conviction. He also tried to show the benefits of
the synergies between research and teaching.

He was the main example for us in this respect. Actually, he got the maximum
possible number of six-year period research activity evaluation in Spain, the so-called
‘sexenios de investigación’. And his expertise made much easier our first approach
to research.

Research was probably the most visible and best test of Pedro’s generosity. He
tried to ensure the highest levels of rigour and quality in all research undertaken
under his supervision, as well as to create a dynamic and ethic atmosphere around.
Since he does not believe in hierarchical structures, he encouraged us to become
gradually independent in research tasks (either in writing papers, or in applying
for granted research projects, etc.). This based on gradual independence, evolution
and generational change policy has certainly led to an enrichment of the research
activities and directions in the Department.

Despite his many duties in heading first Mathematics Department of the former
Faculty of Sciences and later the Statistics, OR and Teaching Mathematics Depart-
ment of the University of Oviedo, Pedro was permanently involved in research tasks.
He supervised 20 Ph.D. Thesis. His first supervision started at the Complutense Uni-
versity ofMadrid, thePh.D.Student beingM.PilarGarcía-Carrasco.TheDissertation
was completed in 1978 and dealt with the comparison of statistical experiments (see
comments made about by de la Horra in the preceding paper in this book).

Pedro supervised other 19 Ph.D. theses in the University of Oviedo. He fervently
defended that the Ph.D. Thesis should be a high level research work. But it should
not be our highest level research. We should scientifically grow and do better jobs
every time. As mentor, Pedro guaranteed support, guidance, encouragement and
understanding at every stage.

3 Pedro as Leader and Colleague

Since Pedro arrived at Oviedo, he had to act as a leader and manager. Everyone
noticed his high ability to hold management positions, and he realized that for a
newly created Department at the University, it was advisable the head was involved
inmanymanagement aspects.Moreover, hewas also aware on his skills and fondness
for the scientific research. So, with much effort and personal work he had to combine
both leaderships. Before being thirty years old he was holding, among others, the
Directions of the Mathematics Department at the Faculty of Sciences, the Academic
Secretary for such a Faculty, and the supervision of four doctoral theses. We must
admit that we have not yet been able to discover how he could do so in the right way
in which he did it.
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Some years later he was holding several other positions, supervising many other
doctoral theses and research works, and heading the first research projects conducted
in the Department. But, in view of the principles, this is not surprising at all. Among
the positions he held, to be three-years President of the Spanish Society of Statistics
andOR, SEIO,was quite grateful. Pedro and his wifewere unconditional participants
in all SEIO’s Conferences.

After some educational changes in Spain, that are detailed in the next paper by
Dugnol and Valdés in this book, in 1997 a new department was created in the Uni-
versity of Oviedo: the Department of Statistics, Operations Research and Teaching
Mathematics. Since its creation, Pedro was the head (and indisputable soul) of this
Department. And, much to his regret, he did not get anyone to relieve him until his
retirement in 2010. We all felt safe and sound under his warm protection.

Pedro was also our colleague and friend, and we all knew he was there for any
problem we could have. Nevertheless, we were not able to look at him exactly as one
of us. In spite of some of us being only a few years younger than him, he had been
taking care of us since the beginning, he was our boss, our supervisor, our scientific
ancestor, and our personal support along the years in the University of Oviedo. So,
for sure he was not one of us. He meant the creator, promoter, germ and heart of the
project that began in 1976.

In this respect, the homage held in theParaninfo of theUniversity ofOviedo to trib-
ute him on the occasion of his retirement in 2010 (see https://youtu.be/APP4j5azLwo
for thewhole ceremony, in Spanish), was a parade of affection, admiration and recog-
nition. Even an ad hoc choir, called ‘Pantaleón’, was set up for the special occasion,
the eighth singers being either alumni, or scientific descendants, or colleagues or
relatives, and the songs sung were some of his favorites in different times of his life.

4 Pedro and the Mathematics in the University of Oviedo
and in the Principality of Asturias

As we have already mentioned, Pedro arrived to Asturias in 1976, when he was
twenty-eight years old. His tenure track position as ‘Profesor Agregado’ of the Uni-
versity ofOviedowas a necessary stage to get the Full Professorship. At thatmoment,
after one to four years Agregados become Full Professors through an exposure of
merits.

Maybe because of not having yet Mathematics B.Sc. studies, the University of
Oviedo delayed sightly more than four years in convening the position of Full Pro-
fessor in Statistics. Meanwhile, the University of Santiago de Compostela offered
the same position, and Pedro could apply to it under quite favorable conditions. It
would be a nice opportunity in many professional and personal respects, namely:
the University of Santiago had studies in Mathematics, with a long reputed tradi-
tion; he knew several members in Statistics and OR of this university, thanks to his
beloved friend Professor Ramiro Melendreras; his wife was born in La Puebla del
Caramiñal (around 50km far from Santiago), and joining Santiago University would
mean approaching their family.

https://youtu.be/APP4j5azLwo
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Table 1 Distribution of Pedro’s ‘scientific linear descent’ in the Department of Statistics, OR and
Math Teaching at the University of Oviedo

Line of ‘scientific
descent’

Pedro’s child Pedro’s grandchild Pedro’s
great-grandchild

Absolute freq. 11 12 1

In this contingency, themembers of hisDepartment inOviedo feared that their very
young academic lives would undergo a major change by losing Pedro’s leadership
and protection. As a result of Pedro and his wife’s generosity along with their love
to Asturias, they decided not to move. We never thanked them as they deserved.

And his influence in the University of Oviedo and the advancement of Mathemat-
ics in the Principality of Asturias is beyond question.

As a proof of this assertion we can mention two outstanding achievements related
to the University of Oviedo:

• At present, in the Department of Statistics, OR and Teaching Mathematics at the
University of Oviedo there are 24 Pedro’s ‘scientific linear descendants’, the dis-
tribution of this descendants being summarized in Table1. Furthermore, 6 Ph.D.
students of Pedro hold tenured positions in other departments of the University of
Oviedo.

• As it will be commented to a certain extent in the next paper by Dugnol and
Valdés, Pedro’s expertise, knowledge and his permanent relationship with experts
from other universities, were definitely crucial in the launching of the B.Sc. in
Mathematics in the University of Oviedo, as well as in the technical and academi-
cal elaboration andmanagement of the starting B.Sc. Programmes, in which one of
the two considered specialties (which were oriented to the Principality of Asturias
main demands) was Statistics (and OR). Probably, this was an idea hovering his
mind since he arrived in Asturias. And Professor Benjamín Dugnol motivated him
to do it by arguing that this will make possible having Ph.D. in Mathematical
Sciences by the University of Oviedo (something that prevented the laws in force
at that time). And Professor Javier Valdés collaborated with him in this complex
but exciting mission that, fortunately, succeeded.

Pedro did much for Math in Asturias, but not only for those at the university
level. He always fostered cooperation between university education and previous
education in Mathematics. As a proof of Pedro’s influence on the Mathematics in
the Principality of Asturias in connection with such a cooperation, let us refer just a
few additional achievements:

• Since he arrived to Oviedo and for many years he coordinatedMathematics studies
and examinations leading to university access. He visited many high schools, and
called for many meetings with Math teachers, in order to explain what should be
considered for students to know and handle as well as the basis for access exams.
Readers should realize that Internet was not yet in our lives at thatmoment, so there
is no chance for disseminating this key information but visits and meetings. Pedro
believed in the need tomake students and teachersmore familiar with this informa-
tion, and he added this new ‘backpack’ to the ones he already carried behind him.
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• Also from the very beginning of his stay in Asturias till his retirement, Pedro was
in charge of coordinating and organizing the AsturianMathematical Olympiad for
students of the one-two years before accessing the university. This was a national
(as a second intermediate step between regional and international) competition
seeking to improve Math education and creating greater interest in Mathematics
careers among students. One more backpack on Pedro’s shoulders.

• And, much more recently, and once he is retired, he has always participated in the
scientific committees to select Asturian representatives for the Spanish Contest
‘Incubator for Surveys and Experiments’ sponsored by SEIO. A way to enhance
the relevance of Statistics and OR in high school students, and making them more
familiar with their techniques and tools by applying them to analyze data from
different real-life problems.

When Pedro passed away in March 16, 2016, a headline of the newspaper ‘La
Nueva España’ said that “Statistics become orphaned in Asturias”. Well, we feel in
this way to a great extent but, at the same time, he left us many scientific and personal
reserves that will always remain with us.

Thank you, Pedro, for your care, your affection, your support, your modesty…in
summary for you having been as you were (Fig. 2).

Fig. 2 PedroGil in front of the SeminarioPedroGil (Pedro’s office that became, after his retirement,
the currentMeetingRoomof theStatistics,ORandTeachingMathematicsDepartment in theFaculty
of Sciences)
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BSc Mathematics at the University of Oviedo.
On the Launching and Two First Bachellor’s
Programmes in Mathematics

Benjamín Dugnol and Javier Valdés

Abstract This paper aims to highlight the crucial role played by Professor Pedro
Gil in launching, planning and designing undergraduate studies in Mathematics for
the University of Oviedo (Spain).

1 Background

Up until the entry into force of the Organic Act on University Reform (LRU) in 1983,
virtually each faculty/school within theUniversity of Oviedo had its ownDepartment
ofMathematics, which was in charge of teaching all Mathematics subjects within the
centre. Specifically, first in the Faculty of Sciences, where it was located, and later in
the Biology building, therewas aDepartment ofMathematics, led by Professor Pedro
Gil Álvarez since 1976, who taught the subjects of Mathematics and Statistics in the
sciences degrees (Geology, Biology and Chemistry) and Statistics in the Economics
degree.

On September 1, 1983, the LRU was published in the Official Bulletin. It stip-
ulated that: “the departments are the essential units responsible for organizing and
developing research and also for teaching their respective areas of knowledge in one
or more faculties and technical schools and, where appropriate, those other centres
thatmay have been created under the provisions of this law”. Later, in the same article
it states that: “The departments will be constituted by areas of scientific, technical or
artistic knowledge, and will bring together all teachers and researchers specialized
in those areas.”

This law meant a drastic change to the organization of the university: from a
structure based around centres to one based around departments. In order to form a
department it was necessary to have a minimum number of Lecturers and Professors
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and the only way to fulfill this requirement was to create a Department of Mathemat-
ics, grouping all the professors of the University of Oviedo who taught Mathematics
and Computer Science in any centre. Thus a new department was established in
October 1986 covering the following fields of knowledge: Computer Science and
Artificial Intelligence, Teaching Mathematics, Statistics and Operations Research,
Computer Languages and Systems, Applied Mathematics and Quantitative Methods
for Economics.

At the beginning, there were only four Full Professors in the newly big created
department (PedroGil in theFaculty of Sciences,CarlosConde andBenjamínDugnol
in the Mining Engineering School, and Emilio Costa in the Faculty of Economics).
This department had its headquarters in the Mining Engineering School and its only
Director, while this structurewasmaintained, was BenjamínDugnol, PedroGil being
its Vice-head.

Years later, as new Professor and Lecturer positions were allocated to the depart-
ment, independent departments were created on ‘Quantitative Economics’, ‘Com-
puter Science’ and ‘Statistics and OR and Teaching Mathematics’. For the last one,
Pedro Gil became the Director.

At the time, Ph.D. students (who joined the Departments for either teaching or
research assistance purposes) could attend doctoral courses and present their theses
in Sciences (Math) leading to get their Ph.D. degrees in Mathematical Sciences
by the University of Oviedo. There is no doubt that this was an unusual situation,
namely that a university that did not offer a Mathematics degree could issue the
Ph.D. in Mathematics. This was possible because there was no rule that prevented
it…until the Official Bulletin published in 1985 a Royal Decree in accordance with
which: “Universities may not offer the Ph.D. title corresponding to the official titles
of Bachelor, Engineer or Architect whose studies can not be taken in the same
university. However, they may enter into agreements with others which do so in
accordance with the procedure laid down in this article”. The publication of this
Royal Decree marked the starting point of what later led to the implementation of
the Mathematics’ Bachelor Degree at the University of Oviedo.

A Committee was promptly created, composed by Professors José Ángel Huido-
bro (the first affected by the new regulations), Secundino López, Pedro Gil and Javier
Valdés, in charge of establishing negotiations with the University of Cantabria. The
first mission for this committee was mainly to solve the situation for several teaching
assistants or predoctoral researchers who were at that time either developing their
doctoral thesis or about to finish it. Since the University of Oviedo could not issue
the Ph.D. title in Mathematics because of the new regulations, there was a need to
overcome such an inconvenience. These negotiations concluded with a collabora-
tion agreement that went beyond what was initially planned. In this respect, those
who had already started their Ph.D. thesis and were now allowed to arrange both the
bureaucracies and dissertation at the University of Oviedo, could arrange them in the
University ofCantabria (so they get the Ph.D.Degree byCantabriaUniversity). Addi-
tionally, as a consequence from the collaboration agreement, in the academic year
1987–1988, the first course of the Mathematics degree with the syllabus of the Uni-
versity of Cantabria was offered (for all purposes students were part of the University
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of Cantabria); in the 1987/1989 biennium, a third-cycle programme in Mathematics
was offered by the University of Oviedo in collaboration with the Department of
Mathematics, Statistics and Computing of the University of Cantabria.

At the beginning of the 1989–1990 academic year, the headquarters of the Depart-
ment of Mathematics, along with the teachers in this Department from the fields of
Statistics and OR, Computing Languages and Systems, and Applied Mathematics,
moved to the Faculty of Sciences building. In this academic year, and in the new
departmental headquarters, the first two years of the syllabus of the University of
Cantabria were offered, alongside the third-cycle of the Mathematics programmes,
in collaboration with the University of Cantabria, corresponding to the biennia of
1988/1990 and 1989/1991.

At this point, the next logical step was the introduction of a Bachelor in Math-
ematics degree at the University of Oviedo (see the related words by Pedro Gil in
the Addendum to this paper). This would require new teaching staff in the areas of
knowledge that did not exist at the University of Oviedo, namely, Algebra andMath-
ematical Analysis. In 1989 the Department of Mathematics was the most numerous
of the University of Oviedo. It was composed by 137 Professors. These were the
means of teaching that were available at that moment to face the task of developing
the new syllabus.

2 1990 Bachelor’s Programme in Mathematics
of the University of Oviedo

From the very first moment the syllabus considered was well differentiated from
the traditional Mathematics degree that was offered in almost all the Spanish Uni-
versities and, in particular from the ones closest to Asturias (Cantabria, Valladolid
and Santiago de Compostela). The objective was to elaborate a syllabus with the
specialties of “Applied Mathematics and Computing” and “Statistics” (actually, the
last one involving Statistics, OR and Computing). Years later, in 1996, Alfredo Pérez
Rubalcaba in a lecture at the Auditorium of the University of Oviedo, on the occasion
of the delivery of Diplomas to the newly graduates, said that as Secretary of State
for Education of the Ministry of Education and Science, he very much welcome the
proposal of the University of Oviedo to implement a syllabus with these two new
specialities. We guess that this was one of the reasons supporting and facilitating the
implementation of Mathematics studies at the University of Oviedo.

In the 1989–1990 academic year, the department’s management launched two
working groups to develop a syllabus for the new Mathematics Degree, one coor-
dinated by Pedro Gil for the Statistics and OR field (taking advantage of Pedro’s
previous teaching expertise in the BSc in Mathematics at the Complutense Univer-
sity of Madrid), and the other by Javier Valdés for the Applied Mathematics field.
In these groups several professors of the department participated, among which it
is worth mentioning for its special support and enthusiasm to Teófilo Brezmes, in
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the Statistics/OR side, and Omar Menéndez in the Applied Mathematics side. It also
relied on the advice of professors from other Universities.

Let us recall some arguments that were used in the proposal:
“The need for mathematics teachers in Asturias is a burden that the region has

suffered for many years. One just needs to see the problematic situations produced
when covering for other teachers within the area, in the levels of Vocational Training,
Baccalaureate or the University itself for the current academic year, in order to be
convinced that the situation has not improved. To a large extent, this endemic disease
has been fostered by the absence of these studies at the University of Oviedo.”

“On the other hand, companies based in our region, the Principality of Asturias,
and the public sector itself, need more and more experts in Mathematics, in any of
the two specialties, which, at a higher level, could be trained in our classrooms. To
fulfil this task, we can already count with a department able to teach the majority
of the subjects, although it would be necessary to incorporate some new teachers,
if possible with the title of Doctor, for certain subjects, as it will be necessary to
progressively find substitutes for some professors in its current teaching, that is, in
general mathematics subjects.”

“The proposed syllabus includes two specialties: ‘AppliedMathematics andCom-
puting’ and ‘Statistics’, bothwith a commonfirst three-year cycle, and their respective
compulsory and optional subjects from the fourth year onwards.”

Recognitions of equivalences were also proposed to allow for the incorporation
of students who had taken first or second year courses, following the syllabus of the
University of Cantabria.

For the 1990–1991 academic year, the Ministry of Education and Science cre-
ated the Faculty of Chemistry and Mathematics and authorized the Chemistry and
Mathematics Degrees.

3 1991 Bachelor’s Programme in Mathematics of the
University of Oviedo

The 1990–1991 academic year had just barely begun when theMinistry of Education
and Science published a newRoyal Decree establishing the official University degree
of Mathematics and the general guidelines of the syllabus leading to obtain such a
degree.

The publication of this Royal Decree implied a change in the organization and
structure of the syllabus: “The syllabus approved by the Universities should be artic-
ulated as first and second cycle education, with a total duration between four and
five years, and a duration per cycle of at least two years.”

A period of debate opened up throughout the Spanish Universities on the duration
of these cycles: first cycle of three years and second of two, or two and three, or two
and two. Although the aforementioned Royal Decree established a maximum period
of three years to adapt to the new regulations, the University of Oviedo was in a great
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hurry to adapt its degrees to the new regulations and decided that all degrees last four
years.

In these circumstances, the department of Mathematics commissioned the same
persons who had drawn up the current plan, due to their ‘recent experience’, the
definition of a new syllabus in line with the new regulations. A new syllabus was
then proposed with the same specialties, with a common first cycle of two years, and
a second cycle, also of two years, in which there would be a number of mathematics
core subjects (mandatory) and subjects relating to each speciality (some mandatory
and some optional).

This plan was approved by the University of Oviedo in 1991.
It should be noted that the contents of the 1991 plan are practically the same as

the ones in 1990, but concentrated in four years instead of five. Both plans coexisted
during four years, until the year 1994–1995, in which the first and only promotion
of the 1990 plan and the first of that of 1991 plan graduated. The 1991 syllabus
continued until the coming into force of the new Mathematics degree in the 2009–
2010 academic year.

Addendum: Pedro Gil’s Own Related Words on the
Occassion of the Official Ceremony Held for His Retirement
in November 2010

I wanted to thank my friend the Chancellor, Professor Vicente Gotor. Over the last
many years, we have both been doing a job, a job with a purpose. We have been
doing it without fanfare, but with results. And yes, looking back, you realize that you
have achieved things. But I wanted to thank him today because, in my opinion, he
was a key enabler behind the creation of the area of Mathematics.

Vicentewas, at that time, area director (a kind ofVice-Chancellor assistant) within
the Vice-chancellorship led by Professor Marita Aragón, the Chancellor of the Uni-
versity being Professor Juan S. López Arranz. Then, one fine day he called me and
asked “would you prepare a syllabus for the diploma in Statistics?”, and this is how
it all started. Neither shy nor lazy, I sent him, as soon as I could, a complete syllabus
for the diploma of Statistics, that never came to see the light.

Well, that degenerated somewhat because, Benjamín Dugnol was more ambitious
than me and said, “and why not a Bachelor’s degree in Mathematics?” So I made
a plan for a Bachelor’s degree in Mathematics based on what I know, which is the
specialty of Statistics. And then, with help from Javier Valdés, who is also here today,
we did, both of us, sitting at a table, hand in hand, a syllabus that was then published
in the Official Bulletin. Any flaws it may have are exclusively our own, any strengths,
too.
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