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Abstract. Collaborative filtering (CF) is a highly applicable technol-
ogy for predicting a user’s rating to a certain item. Recently, some works
have gradually switched from modeling users’ rating behaviors alone to
modeling both users’ behaviors and preference context beneath rating
behaviors such as the set of other items rated by user u. In this paper,
we go one step beyond and propose a novel perspective, i.e., k-granularity
preference context, which is able to absorb existing preference context
as special cases. Based on this new perspective, we further develop a
novel and a generic recommendation method called k-CoFi that mod-
els k-granularity preference context in collaborative filtering in a prin-
cipled way. Empirically, we study the effectiveness of factorization with
coarse granularity, fine granularity and smooth granularity, and their
complementarity, by applying k-CoFi to three real-world datasets. We
also obtain some interesting and promising results and useful guidance
for practitioners from the experiments.
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1 Introduction

Collaborative filtering (CF) or (user, item) rating prediction is one of the most
well-known and well-studied technology in recommender systems largely because
of its high applicability to different applications and domains. Users’ preference
modeling is one of the most fundamental issues in developing advanced CF
methods such as factorization machine [4] and deep learning [1].

Recently, some works have switched to modeling both users’ preferences and
their preference context contained in the rating data, instead of modeling users’
preferences alone. For example, in SVD++ [2], in order to predict the rating of
a (user, item) pair (u, i), besides the latent representation of user u and item i,
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the latent representation of other items rated by user u are also included as
the preference context. The justification is that two users with similar sets of
rated items are likely to have similar preference patterns. As another instance,
in MF-MPC (matrix factorization with multiclass preference context) [3], the
preference context of rated items in SVD++ [2] is further refined according
to the rating values of the user to other items, which is able to capture more
accurate preference context.

However, these works are studied independently and separately, and have
not been studied in a generic and unified framework. For this reason, their rela-
tionship and potential of combination also have not been fully exploited. In this
paper, we propose a novel perspective, i.e., k-granularity preference context,
which provides a unified view and absorbs different preference context in exist-
ing works as special cases. Based on this new perspective, we develop a novel
algorithm that models k-granularity preference context in collaborative filtering
(k-CoFi). Furthermore, we study the complementarity of different k-granularity
preference context in factorization-based algorithms.

In order to study the effectiveness and complementarity of different
k-granularity preference context. We conduct extensive empirical studies on
three real-world datasets with several state-of-the-art methods. The results
clearly show the effectiveness of fine granularity and smooth granularity, and
their complementarity in rating prediction.

We summarize our main contributions as follows: (i) we propose a novel
perspective for modeling users’ preference context, i.e., k-granularity preference
context; (ii) we develop a novel and generic recommendation algorithm that
models k-granularity preference context in collaborative filtering, i.e., k-CoFi;
and (iii) we study the effectiveness and complementarity of different preference
context and have some interesting observations.

Fig. 1. Illustration of different granularity of 5-star numerical ratings in collaborative
filtering.

2 k-Granularity Preference Context

In this section, we describe a novel perspective, i.e., k-granularity preference
context, for modeling users’ preference context in collaborative filtering. Firstly,
we formally define k-granularity preference context in collaborative filtering with
categorical rating values. Secondly, we review two state-of-the-art collaborative
filtering methods, i.e., SVD++ [2] and MF-MPC [3], from the perspective of
virtual user profiles based on 5-granularity preference context and 1-granularity
preference context, respectively.
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We list some commonly used notations in Table 1.

Table 1. Some notations and explanations.

n user number

m item number

u ∈ {1, 2, ..., n} user ID

i ∈ {1, 2, ..., m} item ID

V = {v} a set of rating values

rui ∈ V rating assigned by user u to item i

R = {(u, i, rui)} training data of rating records

Iu a set of items w.r.t. u

Iv
u a set of items w.r.t. u and v

K = {k} a set of k-granularity

Sk = {g} a set of rating groups w.r.t. k

Ikg
u a set of items w.r.t. u, k and g

d size of latent vector

μ ∈ R global average rating value

bu ∈ R user bias of user u

bi ∈ R item bias of item i

Uu· ∈ R
1×d latent vector of user u

Vi· ∈ R
1×d latent vector of item i

W kg
i′· ∈ R

1×d latent vector of item i′ w.r.t. k and g

r̂ui predicted rating of user u to item i

T iteration number in the algorithm

α weight on regularization terms

λ weight for combining two k-CoFi

2.1 Definition of Preference Context

In collaborative filtering, we usually have a set of multiclass rating values such as
{1, 2, 3, 4, 5} in MovieLens 100K and MovieLens 1M. In order to model a rating
of a user u to an item i, we can represent it as follows,

P (rui|(u, i, C)), (1)

where C denotes the preference context from the rating data itself rather than
some auxiliary temporal or spatial context. In particular, the context can be
(i) C = ∅ in PMF [6]; (ii) C = Iu\{i} denoting the rated items (excluding item
i itself) by user u in SVD++ [2]; and (iii) C = Iv

u\{i}, v ∈ V denoting the rated
items with different rating values v ∈ V (excluding item i itself) by user u in
MF-MPC [3].
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We may view the preference context from a new perspective, i.e., from coarse
granularity to fine granularity. For example, (i) C = ∅ represents none context,
i.e., 0-granularity; (ii) C = Iu\{i} represents 5-granularity meaning without dis-
tinguishing the rating values; and (iii) C = Iv

u\{i}, v ∈ V represents 1-granularity
meaning treating each rating value separately. We illustrate this new perspective
in Fig. 1.

Following this line of discussion, we propose a novel and generic preference
context, i.e., k-granularity preference context, in which k consecutive rating val-
ues are treated as one group of ratings without differences. For example, the set
of rating groups in 5-granularity and 1-granularity are S5 = {{1, 2, 3, 4, 5}} and
S1 = {{1}, {2}, {3}, {4}, {5}}, respectively.

We can see that S5 and S1 are two extreme cases, one for coarse granularity
and the other for fine granularity. Naturally, we may consider the preference
context between these two cases, e.g., 2-granularity preference context with S2 =
{{1, 2}, {2, 3}, {3, 4}, {4, 5}}. We can take the 2-granularity preference context
as a smooth preference context, where we do not distinguish two consecutive
rating values. This makes sense because sometimes the difference between two
consecutive rating values may not be so significant for a user, especially when a
user u is affected by his or her own mood in different situations.

In the following two subsections, we will show how the k-granularity prefer-
ence context is modeled for rating prediction in two representative works, i.e.,
SVD++ [2] and MF-MPC [3]. In particular, we will represent the modeling
technique by a virtual user profile in each case.

2.2 Virtual User Profile in SVD++

In order to capture the preference context of rated items by the current end user
u, a virtual user profile is introduced in SVD++ [2],

ŨSVD++
u· =

1
√|Iu\{i}|

∑

i′∈Iu\{i}
Wi′·

=
∑

g∈S5

1
√

|I5g
u \{i}|

∑

i′∈I5g
u \{i}

W 5g
i′·

=
∑

k∈{5}

∑

g∈Sk

1
√

|Ikg
u \{i}|

∑

i′∈Ikg
u \{i}

W kg
i′· (2)

It is clear that the virtual user profile ŨSVD++
u· in Eq. (2) is based on the

5-granularity preference context.

2.3 Virtual User Profile in MF-MPC

Similarly, in order to model the fine-granularity preference context of rated items
with different values v ∈ V, a sophisticated virtual user profile of user u is used
in MF-MPC [3],



410 Y. Huang et al.

ŨMF-MPC
u· =

∑

v∈V

1
√|Iv

u\{i}|
∑

i′∈Iv
u\{i}

W v
i′·

=
∑

g∈S1

1
√

|I1g
u \{i}|

∑

i′∈I1g
u \{i}

W 1g
i′·

=
∑

k∈{1}

∑

g∈Sk

1
√

|Ikg
u \{i}|

∑

i′∈Ikg
u \{i}

W kg
i′· (3)

We can see that the virtual user profile ŨMF-MPC
u· precisely captures the infor-

mation encoded in the 1-granularity preference context.

3 k-CoFi

3.1 Problem Definition

In collaborative filtering, the main task is to learn users’ preferences from (user,
item, rating) triples in the training data, and then predict the rating of each
(user, item) pair in the test data.

3.2 Preference Context in k-CoFi

With the k-granularity preference context, we have the generic latent represen-
tation of a virtual user profile as follows,

Ũk-gran
u· =

∑

k∈K

∑

g∈Sk

1
√

|Ikg
u \{i}|

∑

i′∈Ikg
u \{i}

W kg
i′· , (4)

where K denotes a set of k-granularity and Sk is a set of rating groups w.r.t. k.
We can see that Ũk-gran

u· in Eq. (4) reduces to ŨSVD++
u· in Eq. (2) when K = {5},

and reduces to ŨMF-MPC
u· in Eq. (3) when K = {1}, which shows that our proposed

virtual user profile is a very generic one.

3.3 Prediction Rule

With the virtual user profile, we may define the predicted rating of user u to
item i in a similar way to that of SVD++ [2] and MF-MPC [3],

r̂ui = (Uu· + Ũk-gran
u· )V T

i· + bi + bu + μ, (5)

where Uu· + Ũk-gran
u· ∈ R

1×d denotes the overall profile of user u, Vi· ∈ R
1×d is

the item-specific latent feature vector, and bi ∈ R, bu ∈ R, μ ∈ R are item bias,
user bias and global average rating, respectively.
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3.4 Objective Function

We embed the prediction rule in a commonly used objective function with square
loss for rating prediction,

min
Θ

n∑

u=1

m∑

i=1

yui[
1
2
(rui − r̂ui)2 + Reg(u, i)], (6)

where Reg(u, i) = α
2 ||Uu·||2 + α

2 ||Vi·||2 + α
2 ||bu||2 + α

2 ||bi||2+
∑

k∈K
∑

g∈Sk∑
i′∈Ikg

u \{i}
α
2 ||W kg

i′· ||2 is the regularization term used to avoid overfitting. And

Θ = {Uu·, Vi·, bu, bi,W
kg
i′· }, u = 1, 2 . . . , n, i = 1, 2, . . . ,m, i′ ∈ Ikg

u \{i}, k ∈ K,
g ∈ Sk are model parameters to be learned.

3.5 Gradients

Denoting fui = 1
2 (rui − r̂ui)2 + Reg(u, i) as the tentative objective function for

the rating triple (u, i, rui), we have the gradients of the model parameters,

∇Uu· = −euiVi· + αUu·, (7)
∇Vi· = −eui(Uu· + Ũk-gran

u· ) + αVi·, (8)
∇bi = −eui + αbi, (9)
∇bu = −eui + αbu, (10)
∇μ = −eui, (11)

∇W kg
i′· = − euiVi·√

|Ikg
u \{i}|

+ αW kg
i′· , (12)

where i′ ∈ Ikg
u \{i}, k ∈ K, g ∈ Sk, and eui = rui − r̂ui. Notice that the gradients

are the same with that of MF-MPC [3] except the virtual user profile Ũk-gran
u· in

Eq. (8), and W kg
i′· in Eq. (12) with different granularity k and rating group g.

3.6 Update Rule

Finally, we have the update rules,

θ = θ − γ∇θ (13)

where γ is the learning rate, and θ can be Uu·, Vi·, bu, bi, μ and W kg
i′ , i′ ∈

Ikg
u \{i}, k ∈ K, g ∈ Sk.

3.7 Algorithm

We formally depict the learning procedure in an algorithm shown in Fig. 2, which
mainly contains two loops. In the outer loop, we go through the whole set of
training rating records T times, and gradually decrease the learning rate via
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γ = γ × 0.9 when we have learned more about the model parameters. In each of
the |R| iterations in the inner loop, we randomly take a rating record (u, i, rui)
from R for calculating the corresponding gradients and updating the model
parameters.

The learning procedure in Fig. 2 is adopted in typical SGD-based imple-
mentations of matrix factorization. The increased time complexity during the
learning procedure, in comparison with that of PMF [6], is mainly from the
k-granularity preference context, because we have to take the rated items as
preference context into account. However, during the test period of rating pre-
diction, the time complexity is similar to that of PMF [6] since we can calculate
the virtual user profile of each user in advance.

Fig. 2. The algorithm of k-CoFi.

4 Experimental Results

4.1 Datasets and Evaluation Metrics

In our empirical studies, we use three real-world datasets, i.e., MovieLens 100K
(ML100K), MovieLens 1M (ML1M) and MovieLens 10M (ML10M), which have
been used in a closely related work MF-MPC [3]. In particular, ML100K and
ML1M contain about 100, 000 records and 1, 000, 000 records respectively with
rating values of V = {1, 2, 3, 4, 5}, and ML10M contains about 10, 000, 000
records with rating values of V = {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}. Similar
to the definition of different k-granularity of ML100K and ML1M in Sect. 2,
we have 5-granularity, 1-granularity and 2-granularity of ML10M as follows:
S1 = { {0.5}, {1}, {1.5}, {2}, {2.5}, {3}, {3.5}, {4}, {4.5}, {5} }, S2 = { {0.5,
1, 1.5, 2}, {1.5, 2, 2.5, 3}, {2.5, 3, 3.5, 4}, {3.5, 4, 4.5, 5} }, and S5 = { {0.5, 1,
1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5} }. Notice that there are n = 943 users and m = 1, 682
items in ML100K, n = 6, 040 users and m = 3, 952 items in ML1M, and n =
71,567 users and m = 10, 681 items in ML10M.

For each dataset, we randomly take 80% rating records as training data and
the remaining 20% rating records as test data. We repeat this procedure for five
times and have five copies of training data and test data for each dataset.
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As for performance evaluation, we adopt two commonly used evaluation met-
rics, i.e., mean absolute error (MAE) and root mean square error (RMSE).

4.2 Baselines and Parameter Settings

In our empirical studies, our main purpose is to study the effectiveness of different
k-granularity preference context and their complementarity. For this reason, we
include the following methods in our experiments:

– K = ∅ denoting matrix factorization without preference context, i.e., PMF [6];
– K = {5} denoting matrix factorization with 5-granularity coarse preference

context, i.e., SVD++ [2];
– K = {1} denoting matrix factorization with 1-granularity fine preference con-

text, i.e., MF-MPC [3]; and
– K = {2} denoting matrix factorization with 2-granularity smooth preference

context.

In our preliminary empirical studies, we find that factorization with K = {1}
and K = {2} perform the best and are much better than that with K = {5}.
Thus, we further study their complementarity via two approaches: (i) K = {1, 2},
and (ii) combine the predicted ratings of K = {1} and K = {2} via a weighted
combination, i.e., λr̂

{1}
ui + (1 − λ)r̂{2}

ui .
For parameter configuration in k-CoFi, we follow MF-MPC [3]. Specifically,

we fix the number of latent dimensions d = 20, iteration number T = 50, and
search the best tradeoff parameter α ∈ {0.001, 0.01, 0.1}.

4.3 Results

We report the main results in Table 2, from which we can have the following
observations:

– Matrix factorization with preference context of K = {5}, K = {1}, K = {2}
performs better than that without preference context, i.e., K = ∅, which
clearly shows the effectiveness of modeling the preference context in rating
prediction;

– Matrix factorization with preference context of K = {1}, K = {2} is much
better than that with K = {5}, which shows the effectiveness of fine and
smooth preference context in comparison with the coarse one;

– The performance of matrix factorization with preference context of K = {2} is
close to the very strong baseline with K = {1} (i.e., MF-MPC [3]) across three
datasets, which shows the effectiveness of the smooth preference context;

– As for the combination of K = {1} and K = {2}, we find that the performance
can be further improved in most cases, which showcases the complementarity
of the two best performing methods associated with the fine granularity and
smooth granularity preference context.
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Table 2. Recommendation performance of k-CoFi with different values of k. The
significantly best results are marked in bold (p < 0.01). The values of the tradeoff
parameter α or the combination weight λ are also included for reproducibility.

Data Method α, λ MAE RMSE

ML100K k ∈ K = ∅, i.e., PMF α = 0.1 0.7475±0.0031 0.9447±0.0031

k ∈ K = {5}, i.e., SVD++ α = 0.001 0.7268±0.0032 0.9253±0.0034

k ∈ K = {1}, i.e., MF-MPC α = 0.001 0.7087±0.0030 0.9086±0.0031

k ∈ K = {2} α = 0.001 0.7090±0.0031 0.9073±0.0029

k ∈ K = {1, 2} α = 0.01 0.7084±0.0037 0.9072±0.0033

k ∈ K = {1}, k ∈ K = {2} λ = 0.5 0.7068±0.0029 0.9051±0.0027

ML1M k ∈ K = ∅, i.e., PMF α = 0.001 0.6960±0.0013 0.8840±0.0017

k ∈ K = {5}, i.e., SVD++ α = 0.001 0.6656±0.0016 0.8514±0.0019

k ∈ K = {1}, i.e., MF-MPC α = 0.01 0.6599±0.0014 0.8441±0.0019

k ∈ K = {2} α = 0.001 0.6586±0.0009 0.8466±0.0015

k ∈ K = {1, 2} α = 0.01 0.6578±0.0014 0.8426±0.0019

k ∈ K = {1}, k ∈ K = {2} λ = 0.5 0.6557±0.0011 0.8404±0.0016

ML10M k ∈ K = ∅, i.e., PMF α = 0.01 0.6069±0.0005 0.7913±0.0007

k ∈ K = {5}, i.e., SVD++ α = 0.01 0.6030±0.0004 0.7869±0.0006

k ∈ K = {1}, i.e., MF-MPC α = 0.01 0.5945±0.0003 0.7779±0.0004

k ∈ K = {2} α = 0.01 0.5964±0.0006 0.7800±0.0007

k ∈ K = {1, 2} α = 0.01 0.5948±0.0004 0.7783±0.0006

k ∈ K = {1}, k ∈ K = {2} λ = 0.5 0.5944±0.0004 0.7776±0.0005

In order to further study the complementarity of matrix factorization with
K = {1} and K = {2}, we change the value of the combination weight λ ∈
{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. Notice that the hybrid method reduces to
MF-MPC [3] when λ = 1 and to that with K = {2} when λ = 0. We report the
results of RMSE in Fig. 3. Notice that the results of MAE are similar, which are
thus not included in the paper. We can see: (i) the hybrid method performs the
best with λ around 0.5, which shows the complementarity of the two factorization

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.9

0.905

0.91

0.915

λ

R
M
S
E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.835

0.84

0.845

0.85

λ

R
M
S
E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.776

0.778

0.78

λ

R
M
S
E

Fig. 3. Recommendation performance of combining 1-granularity and 2-granularity
preference context with different values of λ ∈ {0.1, 0.2, . . . , 0.9}.
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methods with different k-granularity again; and (ii) the trend also suggests an
appropriate choice of the value of λ in practice when deploying the proposed
method k-CoFi, i.e., practitioners may safely choose to configure it as λ = 0.5
or so.

5 Related Work

Collaborative filtering or preference prediction in a (user, item) numerical rating
matrix has been studied for more than two decades. In this long journey, some
seminal algorithms have been developed such as neighborhood-based methods [5]
in 1990s, factorization-based methods [6] in 2000s, and deep learning based meth-
ods [1] very recently.

In neighborhood-based methods, we usually calculate the (user, user) or
(item, item) similarity and construct the neighborhood for each user or item
firstly, and then predict the rating for each (user, item) pair by aggregating the
preferences of the users or items in the corresponding neighborhood. For either
user-oriented methods or item-oriented methods, the similarity measurement
and the size of neighborhood are probably two most important factors, which
are usually dependent on the data properties such as the number of users, the
number of items, and the density of the (user, item) rating matrix.

In factorization-based methods, we turn to predict the missing ratings in
a (user, item) rating matrix via reconstructing some decomposed or factorized
latent matrices. Our k-CoFi also belongs to this family but with a very general
prediction rule based on the k-granularity preference context.

In deep learning-based methods, more than one copies of the factored latent
matrices are learned in multiple layers of projection or embedding. In particular,
some non-linear activation functions and several layers of projection make it very
powerful in recommender systems beyond computer vision, speech recognition
and other areas.

In this paper, we study k-granularity preference context, which is vertical
to the above three categories of representative methods. In particular, our k-
granularity may also be applied to improve neighborhood-based methods and
deep learning based methods via estimating the similarity more accurately when
constructing a better neighborhood or learning better latent representations in
a neural network.

6 Conclusions and Future Work

In this paper, we study a classical rating prediction problem in collaborative
filtering from a novel perspective. Specifically, we propose a new k-granularity
preference context, which absorbs existing fine and coarse preference context
as special cases. We further develop a novel and generic recommendation algo-
rithm, i.e., k-CoFi, with the proposed k-granularity preference context. Finally,
we conduct extensive empirical studies, and verify the effectiveness of different
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k-granularity and their complementarity, and have some interesting and useful
observations.

For future works, we are interested in generalizing the k-granularity pref-
erence context with structure information to other recommendation paradigms
such as neighborhood- and deep learning based collaborative filtering.

Acknowledgements. We thank the support of National Natural Science Foundation
of China No. 61502307, No. 61672358 and U1636202, and Natural Science Foundation
of Guangdong Province No. 2014A030310268 and No. 2016A030313038.

References

1. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative
filtering. In: Proceedings of the 26th International Conference on World Wide Web,
WWW 2017, pp. 173–182 (2017)

2. Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative fil-
tering model. In: Proceedings of the 14th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, KDD 2008, pp. 426–434 (2008)

3. Pan, W., Ming, Z.: Collaborative recommendation with multiclass preference con-
text. IEEE Intell. Syst. 32(2), 45–51 (2017)

4. Rendle, S.: Factorization machines with libfm. ACM Trans. Intell. Syst. Technol.
3(3), 57:1–57:22 (2012)

5. Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: Grouplens: an open
architecture for collaborative filtering of netnews. In: Proceedings of the 1994 ACM
Conference on Computer Supported Cooperative Work, CSCW 1994, pp. 175–186
(1994)

6. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Annual Confer-
ence on Neural Information Processing Systems, NIPS 2008, pp. 1257–1264 (2008)


	k-CoFi: Modeling k-Granularity Preference Context in Collaborative Filtering
	1 Introduction
	2 k-Granularity Preference Context
	2.1 Definition of Preference Context
	2.2 Virtual User Profile in SVD++
	2.3 Virtual User Profile in MF-MPC

	3 k-CoFi
	3.1 Problem Definition
	3.2 Preference Context in k-CoFi
	3.3 Prediction Rule
	3.4 Objective Function
	3.5 Gradients
	3.6 Update Rule
	3.7 Algorithm

	4 Experimental Results
	4.1 Datasets and Evaluation Metrics
	4.2 Baselines and Parameter Settings
	4.3 Results

	5 Related Work
	6 Conclusions and Future Work
	References


