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Abstract. Manifold learning and feature selection have been widely studied in
face recognition in the past two decades. This paper focuses on making use of
the manifold structure of datasets for feature extraction and selection. We pro-
pose a novel method called Joint Sparse Locality Preserving Projections
(JSLPP). In order to preserve the manifold structure of datasets, we first propose
a manifold-based regression model by using a nearest-neighbor graph, then the
L2;1-norm regularization term is imposed on the model to perform feature
selection. At last, an efficient iterative algorithm is designed to solve the sparse
regression model. The convergence analysis and computational complexity
analysis of the algorithm are presented. Experimental results on two face
datasets indicate that JSLPP outperforms six classical and state-of-the-art
dimensionality reduction algorithms.
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1 Introduction

Dimensionality reduction is one of the most important topics in pattern recognition,
machine learning and data mining [1–5]. Due to the curse of dimensionality, it’s
time-consuming to calculate the Euclidean distance between samples. In order to
eliminate the redundant features and preserve meaningful features, many dimension-
ality reduction methods were proposed. Among them, feature extraction and feature
selection are the two most important techniques. The purpose of feature extraction
methods is to transform the original high-dimensional data into low-dimensional fea-
tures by using a linear transformation matrix [1]. Therefore, feature extraction is also
known as subspace learning. The classical subspace learning methods including
Multiple Dimensional Scaling (MDS) [2], Principle Component Analysis (PCA) [3]
and Linear Discriminant Analysis (LDA) [4].

MDS, PCA and LDA only consider the global information and fail to discover the
underlying manifold structure of the datasets. Compared with the global Euclidean
structure of the datasets, the intrinsic manifold structure embedded in the original
high-dimensional space is more effective for pattern recognition [8].

Different from the KPCA and KLDA, many nonlinear manifold learning methods
such as Isomap [5], Locally Linear Embedding (LLE) [6, 7], and Laplacian Eigenmap
[8] can preserve the manifold structure in low-dimensional subspace with lower
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computational cost. However, these non-linear manifold learning methods lack of
robustness and they fail to evaluate the map on testing data. Therefore, these nonlinear
manifold learning techniques might not be suitable for some pattern recognition tasks
including face recognition. To overcome the drawbacks, Locality Preserving Projec-
tions (LPP) [9, 10] and Neighborhood Preserving Embedding (NPE) [11] were
proposed. LPP and NPE are the linear extensions of the traditional manifold learning
methods and they were widely used in many applications because of their effectiveness
and efficiency.

The above methods only focus on feature extraction and thus they all lack of the
ability of feature selection. It’s known that feature selection is also an important way to
improve the performance on pattern recognition. An effective approach to obtain
feature selection is to impose a regularization term on the model. For example, Bradley
and Mangasarian proposed L1-SVM for binary classification task [12]. Wang et al.
proposed A Hybrid Huberized SVM (HHSVM) [13] combining both L1-norm and L2-
norm regularization term for sparse feature selection. Unlike the L1-norm regulariza-
tion, L2;1-norm regularization can generate jointly sparse projection matrix which has
better explanation for the selected features. In order to perform subspace learning and
feature selection simultaneously, Gu et al. proposed feature selection and subspace
learning (FSSL) by imposing the L2;1-norm on the graph embedding framework [14].

Motivated by previous researches [9, 14], in this paper, we propose a novel method
called Joint Sparse Locality Preserving Projections. We construct a graph based
regression model and then impose L2;1-norm regularization term for feature selection.
The main contributions of this paper are as follows:

(1) We propose a novel method called Joint Sparse Locality Preserve Projections
(JSLPP) which combines manifold learning and feature selection techniques. We
construct a regression model and impose L2;1-norm regularization term on the
modified regression model for feature selection. In the meantime, we design an
iterative algorithm to solve the problem and obtain the optimal solution.

(2) We present a comprehensive theoretical analysis for the iterative algorithm,
including the convergence analysis and computational complexity analysis.

(3) Experiments show that JSLPP performs better than the existing subspace learning
and feature selection methods.

The rest of this paper is organized as follows. We propose the model and its
theoretical analysis in Sect. 2. Experimental results are shown in Sect. 3, and the
conclusion is given in Sect. 4.

2 Joint Sparse Locality Preserving Projections

In this section, we first give the motivation of this paper and then propose the model. At
last, an iterative algorithm is designed to solve the optimization problem.
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2.1 The Motivations

As mentioned in the introduction section, the L2;1-norm based on jointly sparse feature
selection can greatly improve the recognition performance. Moreover, a sparse
projection can also give clearer explanation for the selected features [14]. On the other
hands, the manifold learning methods can preserve the local structure of the datasets
which are more useful than the global structure for feature extraction in some classi-
fication tasks [9]. Therefore, it is desirable to combine the advantages of sparse feature
extraction and manifold learning for improving the recognition performance. Thus, we
propose a novel manifold learning model called Joint sparse locality preserving pro-
jections (JSLPP) for feature extraction and selection by imposing L2;1-norm regular-
ization term on the projection matrix to guarantee the joint sparsity.

2.2 Objective Function and Its Solution

In order to integrate manifold learning and sparse regression together to improve the
recognition performance, we present the objective function of JSLPP as follows:

min
A;B

Xn

i¼1

Xn

j¼1

xi � ABTxj
�� ��2

2Wij þ k Bk k2;1 s:t: ATA ¼ I ð1Þ

where x is a d-dimensional column vector, n is the training number of the samples,
A 2 Rd�k is a basic matrix and B 2 Rd�k(k << d) is a projection matrix, W 2 Rd�k is a
weight graph and k is a regularization parameter. From (1), we have

X
ij

xi � ABTxj
�� ��2

2Wij þ k Bk k2;1
¼

X
ij
trðxTi xi � 2xTi AB

Txj þðABTxjÞTABTxjÞWij þ k trðBTKBÞ
¼ trð

X
ij
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X
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X
ij
ðABTxjÞTABTxjWijÞþ k trðBTKBÞ

¼ trðXDXT � 2AXWXTBT þBXDXTBTÞþ k trðBTKBÞ

where D is a diagonal matrix, that is Dii ¼
P

j Wji. K is a diagonal matrix with the i-th

diagonal element defined as Kii ¼ 1
2 Bik k

2

, where Bi is the i-th row of B. Finally, we

obtain the optimization problem as follows:

min
A;B

trðXDXT � 2AXWXTBT þBXDXTBTÞþ k trðBTKBÞ s:t ATA ¼ I ð2Þ

To obtain the optimal solutions of the two variables in (2), we design an alternately
iterative algorithm. Suppose A is fixed, we have:

lðA;BÞ ¼ trðXDXT � 2AXWXTBT þBXDXTBTÞþ k trðBTKBÞ ð3Þ
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By taking the derivation of lðA;BÞ w.r.t B to be equal to zero, we have:

B ¼ ðXDXT þ kKÞ�1XWXTA ð4Þ

For given B, discarding the constant in (2), we can obtain the following opti-
mization problem

min
A

trð�2BTXWXTAÞ s:t: ATA ¼ I : ð5Þ

Then, (5) is equal to the following maximization problem

max
A

trðATXWXTBÞ s:t: ATA ¼ I : ð6Þ

Let SVD of XWXTB ¼ UDVT and from Theorem 4 in [17], we have

A ¼ UVT : ð7Þ

By alternatively updating A and B with (4) and (7) respectively, we eventually
obtain the optimal projection matrix B and the basic matrix A.

2.3 The Convergence

In order to prove the convergence of the proposed algorithm, we need the following
Lemmas.

Lemma 1. [15] For any two nonzero-constants a and b, we have the following
inequality:

ffiffiffi
a

p � a

2
ffiffiffi
b

p �
ffiffiffi
b

p
� b

2
ffiffiffi
b

p ð8Þ

Lemma 2. [15] For any nonzero vectors p; pt 2 Rc, the following inequality holds:

pk k2�
pk k22

2 ptk k2
� ptk k2�

ptk k22
2 ptk k2

ð9Þ

With Lemmas 1 and 2, we have the following theorem.

Theorem 1. The iteration approach presented in Sect. 2.2 will monotonically decrease
the objective function value in each iteration and converge to the local optimum.

Proof: For ease of representation, we denote the objective function (1) as
JðB;A;W;D;KÞ ¼ JðB;A;KÞ. Suppose in the ðt � 1Þ-th iteration, we have Bt�1, At�1

and Kt�1. From (4), we can find that
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JðBðtÞ;Aðt�1Þ;Kðt�1ÞÞ � JðBðt�1Þ;Aðt�1Þ;Kðt�1ÞÞ ð10Þ

For At, as its optimal value comes from the SVD decomposition value of XWXTB
which further decreases the objective function, we have

JðBðtÞ;AðtÞ;Kðt�1ÞÞ � JðBðt�1Þ;Aðt�1Þ;Kðt�1ÞÞ ð11Þ

Once the optimal BðtÞ and AðtÞ are obtained, we have
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Then, we have
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Then combining (12) and (13) and Lemma 2, we further obtain

trð�2AðtÞXWXTBT
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ðtÞÞ þ k Bi
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���
���
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That is

JðBðtÞ;AðtÞ;KðtÞÞ � JðBðt�1Þ;Aðt�1Þ;Kðt�1ÞÞ ð14Þ

Therefore, the algorithm will converge to the local optimum.
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2.4 Computational Complexity Analysis

The algorithm first obtain the weight matrix W, then get the optimal projection matrix
B and the basic matrix A as well as the diagonal matrix K. The main computational
cost of the iterative algorithm is to compute the projection matrix B, the basic matrix A
and the diagonal matrix K. Computing the projection matrix B needs Oðd3Þ, the basic
matrix A needs Oðd3Þ and the diagonal matrix K needs Oðd2Þ. If the algorithm needs T
iteration steps, then the total computational complexity is Oðn2 þ Tnd3 þ Tnd3 þ Td2Þ.

2.5 JSLPP Algorithm

The code of JSLPP algorithm is as follows:

3 Experiments

In this section, a set of experiments are presented to evaluate the proposed JSLPP
algorithm for feature extraction and selection. We compared it with PCA, LPP, L1-
norm regularized sparse subspace learning methods SPCA, the most related L2;1-norm
based Feature Selection and Subspace learning (FSSL), RFS [15] and L2;1-norm reg-
ularized discriminative feature selection for unsupervised learning UDFS, SAIR [16].
Six methods mentioned above were compared with the JSLPP in the same experi-
mental condition. The datesets are all divided into training sets and test sets. The
number of training samples are set as 4, 6, and the rest data are used as testing sets,
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respectively. In all experiments, we first performed feature extraction and selection,
then used the nearest neighborhood classifier to perform classification.

3.1 Experiments on the AR Face Database

There are over 4000 color face images of 126 people in AR face database, we selected
120 images of 120 people (65 men and 55 women) from this dataset. All images are the
frontal views of faces with different facial expressions, lighting conditions, and
occlusions, and they are normalized to 50 � 40 pixels.

In the experiment, the number of class is 120 and each class has 20 samples.
l(l ¼ 4; 6) images of each class were randomly selected and used for training and the
remaining images were used for test. The optimal value of parameter cwas selected form
the set f10�1; 10�2; 10�3; 100; 101; 102; 103g, Table 1 lists the average performance of
different methods on the AR face database based on 10 times running, and the average
recognition rates versus the dimensions of the projection are shown in the Fig. 1.

Table 1. The performance (recognition rate, standard deviation and dimension) of different
methods on the AR face database

Training samples PCA LPP SPCA FSSL UDFS SAIR JSLPP

4 76.20 79.81 76.20 89.84 85.44 83.55 77.76
±4.58 ±8.86 ±4.58 ±9.45 ±8.44 ±8.20 ±8.20
110 95 110 110 105 100 75

6 79.96 85.57 79.96 95.39 89.73 91.05 87.87
4.86 ±7.31 ±4.85 ±7.38 ±5.75 ±6.17 ±10.38

110 105 110 115 100 100 60
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Fig. 1. The recognition rates (%) versus the dimensions of different methods on the AR face
database.
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3.2 Experiments on the ORL Face Database

The ORL face database have 40 people, and each person have 10 images. The images
were taken at different times, varying lighting, facial expression (open or closed eyes,
smiling or not smiling) and facial details (glasses or no glasses). In Table 2, we lists the
average performance of different methods on the ORL face database, and the average
recognition rates versus the dimensions of the projection are shown in Fig. 2.

4 Conclusion

In this paper, a novel method called Joint Sparse Locality Preserving Projection
(JSLPP) is proposed for sparse subspace learning by considering manifold learning and
feature selection techniques. The L2;1-norm is introduced in the JSLPP model, an
iterative algorithm is designed to solve the optimization problem. We prove the con-
vergence of the proposed algorithm, and the computational complexity is also pre-
sented. Experiments on two well-known face datasets show that JSLPP performs better
than the traditional feature extraction and linear manifold learning methods.

Table 2. The performance (recognition rate, standard deviation and dimension) of different
methods on the ORL face database

Training samples PCA LPP SPCA FSSL L21R21 UDFS SAIR JSLPP

4 93.58 78.21 93.54 93.42 89.67 93.54 95.08 94.54
±1.95 ±2.96 ±1.93 ±1.70 ±2.09 ±2.10 ±2.44 ±1.72
135 85 130 35 40 150 40 120

6 95.94 88.75 96.00 96.25 92.63 95.81 97.06 97.94
±1.59 ±2.76 ±1.66 ±1.85 ±2.93 ±1.59 ±1.35 ±1.41
105 65 100 35 40 150 40 40

Dimension
5*5 10*5 15*5 20*5 25*5 30*5

R
ec

og
ni

tio
n 

ra
te

 (%
)

50

55

60

65

70

75

80

85

90

95

100

PCA

LPP

SPCA

FSSL

L21R21

SAIR

UDFS

JSLPP

Fig. 2. The recognition rates (%) versus the dimensions of different methods on the ORL face
databases.
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