
Application-Level Optimization of On-Node
Communication in OpenSHMEM

Md. Wasi-ur- Rahman1(B), David Ozog2(B), and James Dinan2(B)

1 Intel Corporation, Austin, USA
md.rahman@intel.com

2 Intel Corporation, Boston, USA
{david.m.ozog,james.dinan}@intel.com

Abstract. The OpenSHMEM community is actively exploring thread-
ing support extensions to the OpenSHMEM communication interfaces.
Among the motivations for these extensions are the optimization of on-
node data sharing and reduction of memory pressure, both of which are
problems that hybrid programming has successfully addressed in other
programming models. We observe that OpenSHMEM already supports
inter-process shared memory for processes within the same node. In this
work, we assess the viability of this existing API to address the on-
node optimization problem, which is of growing importance. We identify
multiple on-node optimizations that are already possible with the exist-
ing interface, propose a layered library that extends the functionality
of these interfaces, and measure performance improvement when using
these techniques.

1 Introduction

High Performance Computing (HPC) system nodes continue to trend toward
increasingly powerful and increasingly parallel processors, including many-core
processors and accelerators. As a result, HPC application developers are look-
ing beyond conventional parallel programming systems toward hybrid approaches
that combine a communication library, such as MPI or OpenSHMEM, with an on-
node programming model, such as OpenMP�. The resulting combination enables
the application developer to tune for system-level effects, while also efficiently uti-
lizing the capabilities and resources provided by the node-level architecture.

A primary feature that drives the success of Partitioned Global Address
Space (PGAS) programming models is their ability to remotely access the mem-
ory of other processing elements (PEs) without explicit participation from the
target PE. While PGAS programming models, such as OpenSHMEM, conve-
niently provide such one-sided remote access to the memory of any processing
element (PE), communication with PEs that share local memory may suffer
from unnecessary performance overheads. At its core, OpenSHMEM is a data
copying library; thus, even when PEs are in the same node, communication via
OpenSHMEM can result in the creation of multiple copies of the same data
within a shared memory domain. Additional overheads may also arise from var-
ious sources: a complex software stack that is capable of supporting general
c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 99–113, 2018.
https://doi.org/10.1007/978-3-319-73814-7_7

100 M. Rahman et al.

remote memory access (RMA), the sheer memory replication cost of single pro-
cess multiple data (SPMD) programming, and the synchronization mechanisms
associated with large-scale programming models. As a result, the OpenSHMEM
community is actively investigating library extensions to better support node-
level optimization, including methods for integrating threading awareness within
the library [3,8].

While hybrid programming is of interest to many programmers, maintain-
ers of existing applications may prefer a more evolutionary approach to tuning
on-node data sharing. We observe that OpenSHMEM provides a seldom-used
function that allows the programmer to query a direct pointer to the remotely
accessible memory of another PE within the same shared memory domain. While
this functionality is supported by a number of OpenSHMEM implementations, it
is challenging to use in its current form because the current OpenSHMEM inter-
faces don’t expose the locality information needed by programmers to effectively
utilize this capability.

In this work, we investigate the challenges and opportunities of the OpenSH-
MEM pointer query API. We develop a portable library, called shnode, that
fills the gaps in the current interface and improves the usability of this interface.
We believe the results of this work will highlight an evolutionary path for node-
level tuning of applications. In addition, we hope that it will provide valuable
insights to ongoing efforts to extend OpenSHMEM with new features such as
hybrid programming and on-node based teams support. We evaluate the perfor-
mance impact of our approach using several benchmarks, including a large-scale
parallel sorting benchmark and observe that this approach to optimization of
on-node communication can yield significant performance improvements.

The rest of the paper is organized as follows. Section 2 presents background
on OpenSHMEM and the pointer query API. We highlight some of the key chal-
lenges for this work in Sect. 3. Design and implementation details of the shnode
library are presented in Sect. 4. We present the details of our experimental eval-
uation in Sect. 5. Section 6 highlights some of the existing works in the literature
and we conclude in Sect. 8.

2 Background

This work investigates shared memory optimizations in the context of OpenSH-
MEM [15], an HPC communication library that provides a partitioned global
address space (PGAS) data model through one-sided read, write, and atomic
update routines. In this section, we describe the typical execution models for
OpenSHMEM programs and outline various techniques for exploiting on-node
memory locality.

One very common use case for OpenSHMEM programs running on HPC clus-
ters is to allocate one or more processing elements (PE) per compute node. Each
compute node typically consists of multiple processing units and/or individual
cores, so it may be advantageous to assign multiple PEs to each compute node
to exploit the available parallelism. In the OpenSHMEM programming model,

Optimization of On-Node Communication in OpenSHMEM 101

each of these PEs designates a memory region for storing symmetric heap and
local variable data.

While the designated memory regions of each PE are remotely accessible by
any other PE in the application, there is also the possibility that data may reside
locally with respect to other on-node PEs. However, there is no guarantee that
this data locality is exploited by the OpenSHMEM implementation. Even if an
implementation does optimize for on-node PE locality, it still may be difficult for
an application developer to optimize outside of the OpenSHMEM API. Multi-
threading within a PE’s address space can accomplish on-node parallelism with
good data locality, but it is typically not straightforward to accomplish this
across the address space of multiple PE’s, despite the fact that their memory
regions may reside on the same node.

The OpenSHMEM API includes a routine that enables on-node addressing,
which may be useful for optimizing applications for memory locality. This rou-
tine, called shmem ptr, returns the specified pointer to a symmetric buffer on
the specific PE. Its function signature is:

void *shmem_ptr(const void *dest, int pe);

where dest is the local pointer to the symmetric data buffer, and pe is the PE id
of the desired process. This routine returns a pointer to the “remote” symmetric
data object in the local PE’s address space. If a program has dest value for all
symmetric regions of interest, and knowledge of which PEs are node-local, then
shared memory optimizations are possible at the application level. Despite the
availability of this function in the API, it is the opinion of these authors that
it is underutilized across the OpenSHMEM programs. In Sect. 3 we argue why
this underutilization may exist, and Sect. 4 presents how this routine is used
in constructing a more user-friendly and general interface for achieving shared
memory optimization in OpenSHMEM programs.

3 Challenges and Opportunities

The shmem ptr routine enables shared memory accesses and optimizations in
OpenSHMEM programs. However, there are challenges to using this routine in
practice. For example, if an application wants to know which PEs are locally res-
ident, then shmem ptr gives only very limited information. This routine returns
a null pointer whenever the input PE value is off-node. This requires looping over
all PEs and storing the non-null IDs into a local structure. One goal of this paper
is to abstract this procedure into a simpler interface that creates teams of pro-
cesses that group together node-local PE subsets. Such an interface would enable
applications to do memory operations within their local teams, which eliminates
the overhead of the software stack involved in remote communication.

In addition to the locality knowledge that node-local teams provide, there
are other requirements for useful shared memory programming. For instance,
consider an algorithm that involves local computation/communication, followed
by a collective operation. Instead of having all PEs participate in the collective,

102 M. Rahman et al.

the application may only require one PE per team to participate. We call this
PE a leader in our design. Leader election algorithms constitute a well-known
topic in distributed systems [2], in part because of their dependence on network
topologies and system hierarchy/architecture. Leader election implementations
are particularly important in OpenSHMEM, especially for checkpointing appli-
cations [1,9]. A goal of our API is to abstract leader selection and to enable
customizable multiple-leader assignment on a per-node basis.

Perhaps the primary challenge with shared-memory programming lies in
developing algorithms that effectively exploit data locality. Often re-development
is necessary because existing legacy applications rely on algorithms that do not
adequately account for locality. Performance improvement for this software is
difficult without thoroughly considering data-layout, communication and syn-
chronization strategies, and load balancing. Communication avoiding algorithms
show great promise [7], and need to be incorporated to best exploit locality at
the node-level. In the following section, we introduce the shnode API based on
the shmem ptr routine to bridge these gaps, enabling application developers to
design algorithms that better exploit data locality.

4 Design and Implementation of shnode

In this section, we present the design and implementation of our proposed layered
library for on-node data sharing, called shnode. The purpose of this library is to
provide several APIs to application developers with which the application can
benefit through avoidance of on-node communication.

As discussed in Sect. 2, we utilize the built-in routine, shmem ptr, to design
shnode. Since shmem ptr returns the specific memory address for a symmetric
data object on an on-node remote PE, it can provide the opportunity for the
application developers to store these pointers for direct load and store operations
as opposed to invoking remote memory access (e.g. shmem put). To facilitate
this, we propose the APIs listed in Listing 1.1.

To utilize the shnode library, application developers should follow the usual
semantics of initialization and termination of shnode functionalities through the
OpenSHMEM-like APIs, shnode init and shnode finalize. In the future,
these functionalities can be incorporated and invoked from the OpenSHMEM
initialization and finalize routines based on the input to an environment flag
set by the user. After the initialization, the user needs to create the per-node
team. Based on the remote data pointers returned by the shmem ptr routine,
shnode creates team of PEs on each node. These data references will be stored
so that subsequent remote memory operations can be substituted with direct
load and stores to the memory location residing in the on-node PE’s symmetric
heap. The API shnode create team is responsible for creating the team on
each node consisting of all those PEs for which a non-NULL value is obtained
through shmem ptr. Figure 1(a) presents the team formation for a two node
cluster running with 8 PEs per node. To add more data objects, a user can
simply use shmem add data for the subsequent shared memory objects. We

Optimization of On-Node Communication in OpenSHMEM 103

Listing 1.1. Proposed fundamental APIs for shnode.

/* initialization */
int shnode_init();

/* team creation based on a symmetric data object */
int shnode_create_team(void *data);

/* addition of other symmetric data objects */
int shnode_add_data(void *data);

/* check to see whether the remote pe is a team member */
int shnode_is_team_member(int rem_pe);

/* retrieval of the memory address of an on-node PE */
void *shnode_get_member_remote_addr(int rem_pe, void *data);

/* check to see whether self is the leader of the team */
int shnode_am_team_leader();

/* destroy */ int shnode_finalize();

assign the lowest rank PE as the team leader for each node. The purpose of the
leader is further explained in Sect. 4.2.

To store the team information on each PE, we design a simple data structure
mapping each PE to a list of the data object references returned by shmem ptr.
Figure 1(b) illustrates this for the team presented in Fig. 1(a). To track a specific
data object, we maintain another list that maps the corresponding data object
to the location it is stored in the PE-mapped data structure. This is helpful for
fast retrieval of the requested reference when multiple data objects are stored in
the data structure. The shnode create team operation is invoked only once
at the beginning of the application execution; thus, does not incur significant
overheads to the execution time of the application.

After successful team creation, the user can utilize the shnode get
member remote addr to retrieve the data reference stored in the shnode team
table. Using the remote location address, the user can perform direct load and
store, replacing remote memory operations.

4.1 Better Overlapping Between Communication And Computation

Since shnode provides the memory addresses for symmetric data objects on on-
node PEs, it provides the opportunity to the application developer to replace the
remote memory operations with the direct memory operations, such as memcpy.
Although this eliminates overhead caused by the remote operations, it still has
the drawbacks of invoking memory transfers. One of the alternatives for the
application developers is to perform swapping of the pointers instead of copying
the content. In this way, users can eliminate any software overhead caused by
large memory to memory data transfers. However, in many applications, this
approach might require a significant effort to re-write the application to maintain
correctness.

104 M. Rahman et al.

(a) Team formation in
shnode

(b) Data structure to store team information on
PE 0 (left) and PE 12 (right)

Fig. 1. Design and implementation details of shnode

The other alternative is to customize the remote memory calls in such a
way so that the intra-node data transfers are invoked separately from the inter-
node ones; thereby optimizing the overlap between communication and computa-
tion. Scheduling the intra-node memory operations at the end will ensure better
overlap between computation and long-delayed inter-node memory operations.
Application developers can utilize the team information from shnode to refine
the communication operations in this way.

4.2 Designing shnode Collective Helper Routines

With the assignment of a team leader PE per node, we can also optimize the
collective communication by designing helper routines for each collective opera-
tions. Figure 2 presents one such use case. Our current implementations of these
routines assume a power-of-two number of process elements per node and the
process launcher launches each of the PEs sequentially from the first node to the
last node in the cluster.

As shown in Fig. 2, we can re-design the collective operations considering the
hierarchy of nodes achieved from the shnode library. Each collective operation
can divide its tasks in three sub-tasks. As an example, we explain here a division
of tasks for a reduction operation. In the first sub-task, all the PEs communicate
with the on-node leader so that the leaders in each node gets the reduced values
from all the PEs on that node. In the second sub-task, a reduce operation is
strided over only the leaders across the nodes. This significantly reduces the
communication overheads. The stride is calculated from the process per node
which is assumed to be a power-of-two value. Finally, all the leaders pass the
globally reduced value to the on-node PEs to complete the operation.

Optimization of On-Node Communication in OpenSHMEM 105

Fig. 2. Multiple leader based collective communication design for shnode

For large collective operations with a higher number of PEs per node, a
single leader per node might not yield the maximum benefits possible. In such
cases, we create sub-teams within teams and assign the lowest rank of each sub-
team as the leader for that team. This reduces the overhead for each leader and
thus a balance between the number of teams and the number of PEs per teams
is achieved. As an example, Fig. 2 presents two teams per node with different
leaders instead of the default one leader. We present evaluations for different
numbers of leaders in Sect. 5.3.

5 Performance Evaluation

In this section, we present our evaluation of different benchmarks and applica-
tions utilizing the shnode library and compare them with the default approach.
We present our evaluations in three different categories: (1) Evaluating shnode
with a micro-benchmark, (2) Performance improvement in collectives, (3) Eval-
uation of applications.

5.1 Experimental Setup

For our evaluation, we have used the NERSC Cori supercomputer, which is the
6th fastest supercomputer on the TOP500 [18] list, published in June, 2017. It is
a Cray� XC40 system with 2,388 Intel R© Xeon R© E5-2698 v3 (Haswell) processor
nodes at 2.3 GHz and 9,688 Intel R© Xeon PhiTM 7250 (Knights Landing, KNL)
processor nodes with 68 cores per node at 1.4 GHz. Each of the KNL nodes have
96 GB of DDR4 memory. All the compute nodes run a light-weight kernel based
on the SuSE� Linux� Enterprise Server distribution.

Throughout our experiments, we have used the KNL nodes in Cori. We have
implemented shnode on top of Cray� SHMEM v7.5.5 and used the same for
our evaluations and comparisons.

106 M. Rahman et al.

 1

 10

 100

 1000

 10000

 100000

 2 4 8 16 32 64 128

A
ve

ra
ge

 T
im

e
(u

s)

Number of PEs

init
create-team

finalize

(a) Profiling basic APIs in shnode

 0.125

 0.25

 0.5

 1

 2

 2 4 8 16 32 64 128

A
ve

ra
ge

 T
im

e
(u

s)

Number of PEs

shmem-ptr
get-remote-addr

(b) Comparing with shmem ptr

Fig. 3. Profiling analysis for shnode APIs

5.2 Evaluating Shnode with Micro-benchmark

In this section, we evaluate shnode with two different micro-benchmarks. First,
we write a micro-benchmark to do a profiling analysis for four of the fun-
damental APIs that we have proposed in Sect. 4 - shnode init, shnode
create team, shnode get member remote addr, and shnode finalize.
Out of these four APIs, application developers might need to use shnode get
member remote addr multiple times throughout the application execution,
whereas, the remaining APIs would only be invoked once during the runtime of
the application.

We conduct the profiling analysis in two KNL nodes with a varying num-
ber of PEs per node (from 1 to 64). We measure the average execution time
for each of these APIs across all PEs. As shown in the Fig. 3(a), with 128
PEs, the initialization, team creation, and finalize routines take only about
0.1 s which does not incur significant overheads. In Fig. 3(b), we compare the
shnode get member remote addr with the default shmem ptr routine. We
can see that with our implementation, we can reduce the query operation cost
by 50% on average across different number of PEs. Also, this routine scales well
because of the design choices for the data structures in shnode.

We also evaluate the basic put and get performance using micro-benchmark
and present these results in Figs. 4 and 5. We modify the OSU micro-
benchmarks [17] for shmem put and shmem get to incorporate the shnode
APIs and compare the modified put and get performances with the default ones.
We conduct these experiments on a single node with two PEs.

As shown in Fig. 4(a), shnode can perform 3–4.6x faster compared to
shmem put for small message sizes (up to 2K). For larger message sizes, the
benefit reduces to 1.5–2.35x. Similar benefits are observed for shnode based get
compared to shmem get, as shown in Fig. 5. We also measure the message rate
for put and present these results in Fig. 4(b). Here, an average benefit of 1.35x is
observed for shnode put compared to the shmem put. Since the shnode imple-
mentation of put and get performs a direct memory copy to/from the remote

Optimization of On-Node Communication in OpenSHMEM 107

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (B)

shmem-put
shnode-put

(a) Put Latency

 1

 10

 100

 1000

 10000

 100000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

K
m

es
sa

ge
s/

se
c

Message Size (B)

shmem-put
shnode-put

(b) Put Message Rate

Fig. 4. Performance comparison between SHMEM and shnode put operations

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (B)

shmem-get
shnode-get

Fig. 5. Performance comparison between SHMEM and shnode get operations

address, this approach obtains significant performance benefits compared to the
default ones.

5.3 Performance Improvement in Collective Routines

In this section, we present the performance comparisons between default collec-
tive routines and the shnode based helper routines. We implement our shnode
based helper collective routines for reduction and collect and present the results
here. We also evaluate the impact of multiple leaders per node on each of these
collectives.

Figure 6 presents the corresponding experiments on the reduction, specifi-
cally a sum-based reduction for integer data types (int sum to all). First, we
analyze the impact of multiple leaders per node on this reduction and present
this result in Fig. 6(a). We conduct this experiment on four KNL nodes where

108 M. Rahman et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(s

)

PE/leader

SHMEM+shnode
SHMEM

(a) Impact of multiple leaders
per node on reductions

0.0
1.0

2.0
3.0

4.0
5.0
6.0

7.0
8.0

9.0
10.0

128 256 512 1,024 2,048 4,096 8,192

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
)

Number of PEs

SHMEM
SHMEM+shnode

(b) Optimization using shnode based
helper routine for reduction

Fig. 6. Performance improvement potentials for reductions with shnode

we vary the number of PEs per leader from 1 to 64. We allocate a 10 MB buffer
to use as the data source for the reduction. Experimental results presented in
this section are averaged over 10 iterations.

As shown in Fig. 6(a), we achieve the most optimal performance for
int sum to all with 8 PEs per leader. Thus, with 64 PEs running on each
node, we observe the most optimal result with 8 leaders per node, where each of
them are responsible for communicating with the 7 other PEs. We also observe
that the default SHMEM implementation for reduction could not take advan-
tage of such hierarchical work distribution provided by shnode. With this opti-
mum value for the number of leaders, we conduct another experiment where
we increase the total number of PEs from 128 (2 nodes) to 8 K (128 nodes).
From the evaluation results presented in Fig. 6(b), we see that with the shnode
implementation on top of SHMEM, we can achieve up to 4.87x benefit compared
to the default SHMEM approach for int sum to all.

We implement the same for fcollect collective routine and present the
results in Fig. 7. We use a similar setup to the reduction experiment.

Unlike int sum to all, we can see in Fig. 7(a) that for fcollect, the
optimum performance is achieved with 2 PEs per leader (32 leaders per node
for 64 PEs in a node). We also see that the default SHMEM implementation for
fcollect performs better compared to the shnode implementation with more
PEs per leader. We conduct this experiment on two KNL nodes with 128 total
PEs. We also conduct a strong scale experiment for fcollect similar to the
int sum to all. For 128 nodes running 8 K PEs, we observe that the shnode
implementation out-performs the default SHMEM implementation by 2x.

5.4 Evaluation of Applications

In this section, we evaluate an application, Integer Sort [11] (ISx) to high-
light the performance improvements achievable using shnode. ISx represents
a class of the bucket sort algorithms which perform an all-to-all communication

Optimization of On-Node Communication in OpenSHMEM 109

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(s

)

PE/leader

SHMEM+shnode
SHMEM

(a) Impact of multiple leaders
per node on fcollect

0.0
1.0

2.0
3.0

4.0
5.0
6.0

7.0
8.0

9.0
10.0

128 256 512 1,024 2,048 4,096 8,192

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
)

Number of PEs

SHMEM
SHMEM+shnode

(b) Optimization using shnode based
helper routine for fcollect

Fig. 7. Performance improvement potentials for fcollect with shnode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

8 16 32 64 128 256

A
ve

ra
ge

 a
ll−

to
−

al
l t

im
e

(s
ec

)

Number of PEs

SHMEM
SHMEM+shnode
SHMEM+shnode−CUST

(a) Strong scaling

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

8 16 32 64 128 256

A
ve

ra
ge

 a
ll−

to
−

al
l t

im
e

(s
ec

)

Number of PEs

SHMEM
SHMEM+shnode
SHMEM+shnode−CUST

(b) Weak scaling

Fig. 8. Performance improvement for ISx with SHNODE library and customized com-
munication scheduling

pattern. In this evaluation, we present two different implementations of ISx uti-
lizing shnode, one with no additional changes in the communication pattern
(presented as SHMEM+shnode) and the other with customized communication
scheduling, where the node-local transfers are separated out and invoked only
at the end of the execution (presented as SHMEM+shnode-CUST). We conduct
both strong and weak scale experiments for ISx on 4 nodes with varying number
of PEs. Figure 8 presents these results.

For strong scale experiment, we use the number of items to sort equal to
1.5 billion and vary the number of PEs from 8 to 256. As shown in Fig. 8(a),
with the customized communication pattern, we can achieve 2x benefits com-
pared to the default implementation over SHMEM with 256 PEs. Since ISx
overlaps communication with computations, the shnode implementation with-
out the customized communication pattern does not observe much benefit
(around 5%) compared to the default implementation. For weak scaling exper-
iments as presented in Fig. 8(b), we observe a performance benefits of 1.5x for
256 PEs. In this experiment, we fix the number of items per PE to 32 M.

110 M. Rahman et al.

Similar to the strong scale experiments, the shnode implementation with-
out customization in communication pattern achieves only 5% benefit over the
default implementation.

6 Related Work

Namashivayam et al. [14] explore how shmem ptr can be used on the Intel R©
Xeon PhiTM processor to better exploit shared memory and enable vectorization
opportunities. This work focuses on single-node performance in the native mode
of the Xeon Phi, in which applications run directly on the many-core device.
The authors report substantial performance improvements in the latency and
bandwidth of one-sided operations, across several reduction algorithms, and in
the NAS Integer Sort (IS) and Scalar Penta-diagonal (SP) solver parallel bench-
marks. Our paper extends this work by defining a coherent interface that enables
applications to exploit shared memory outside of the OpenSHMEM API.

The shnode interface for gathering on-node groups of PEs is similar to the
idea of OpenSHMEM teams and spaces, which was introduced by Welch et al. [19]
and also proposed in [13]. The APIs for discovering local PEs [4] and building a
team in Cray-SHMEM [5] also provide methods to find out local PEs in a pre-
defined team. The shnode interface provides an easy way to store the pointers
that can be used later to access the symmetric data objects. Another challenge
in the design of shnode is that leaders must be described using the current
OpenSHMEM collectives active set notation, which places significant (e.g. power
of two stride) restrictions on which PEs can participate in a given collective.
The choice of multiple leaders presented in this paper provides more flexibility
to utilize shnode team interfaces with additional performance benefits.

There is also analogous work within the Message Passing Interface (MPI)
that reflects our interface for shared memory-oriented programming. Hoefler
et al. [12] first introduced the (perhaps initially surprising) notion of doing hybrid
parallel programming of MPI with itself via the MPI+MPI paradigm. This work
extends the MPI one-sided interface to include shared memory windows and
associated communicators to enable interprocess communication via MPI. Our
work in OpenSHMEM similarly enables on-node interprocess communication via
the shnode interface, with a relatively simple API built from the shmem ptr
routine. Other work in the PGAS community further builds off the capabilities
of shared memory in MPI-3 [10,21].

7 Future Work

Our measurements from Sect. 5 show very promising performance improvements
when using the shnode API, yet there remain considerable possibilities for
future work. For instance, the shnode concept could (and should) be imple-
mented within the OpenSHMEM software layer for all viable routines, such as
collectives and the RMA functions. We present our shnode implementations

Optimization of On-Node Communication in OpenSHMEM 111

outside the OpenSHMEM layer as a proof-of-concept for what should be imple-
mented within an OpenSHMEM library. We have so far only implemented a
handle of routines from the OpenSHMEM specification (namely, fcollect,
int sum to all, broadcast, and put/get), but many other routines are
also compatible.

We believe that shnode will primarily benefit application developers who
require processing data across PEs that are grouped into shared-memory teams.
Our results from Fig. 8 show a notable performance improvement for a real-world
application, ISx. Other applications may also greatly benefit from shnode, but
may require restructuring to achieve communication avoidance at the compute
node-level. For instance, we observe that the OpenSHMEM stencil algorithm
from the Parallel Research Kernels suite [20] may need to be restructured to
reduce synchrony between global iterations. This may be possible, for example,
by over-decomposing the grid domain to avoid starvation due to synchronous
iterations.

Due to shnode’s performance improvement of reductions (shown in Fig. 6),
we believe MapReduce calculations [6] will also greatly benefit because of
their heavy use of reduction collectives and the inter-process communication
involved in intermediate shuffling operations. For instance, the MapReduce-MPI
library [16] centers around several calls to an integer sum reduction, which is
the same procedure measured in Fig. 6 above. Future work will quantify the
performance gain from reducing and shuffling in shared memory using shnode.

8 Conclusion

This paper has introduced an interface for OpenSHMEM that alleviates the
challenges involved with programming in shared-memory. Our implementation,
shnode, supports the formation of node-local teams within which applica-
tions can easily do shared memory operations. We present an API for creat-
ing these teams, as well as for nominating a leader process or multiple leader
processes. Overall, shnode shows very good performance improvement across
RMA microbenchmarks, OpenSHMEM collectives, and the ISx application. Our
performance results show that the number of leaders has a substantial impact
on performance, depending on the communication algorithm being deployed.
Future work for this research will involve shifting shnode capabilities to within
the OpenSHMEM software layer, implementing the other variants of collectives
and RMA operations, and exploring how to restructure existing applications to
better exploit shared memory.

�Other names and brands may be claimed as the property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Software
and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://www.intel.com/
performance.

http://www.intel.com/performance
http://www.intel.com/performance

112 M. Rahman et al.

References

1. Arya, K., Garg, R., Polyakov, A.Y., Cooperman, G.: Design and implementation
for checkpointing of distributed resources using process-level virtualization. In:
2016 IEEE International Conference on Cluster Computing (CLUSTER), pp. 402–
412, September 2016

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, vol. 19. Wiley, New York (2004)

3. ten Bruggencate, M., Roweth, D., Oyanagi, S.: Thread-safe SHMEM extensions.
In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol.
8356, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05215-1 13

4. Cray: shmem local ptr. http://docs.cray.com/man/xe libsmam/72/cat3/shmem
local ptr.3.html

5. Cray: shmem team translate pe. http://docs.cray.com/man/xe libsmam/72/cat3/
shmem team translate pe.3.html

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Demmel, J.: Communication-avoiding algorithms for linear algebra and beyond.
In: IPDPS, p. 585 (2013)

8. Dinan, J., Flajslik, M.: Contexts: a mechanism for high throughput communi-
cation in OpenSHMEM. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, pp. 10:1–10:9. ACM,
New York (2014). http://doi.acm.org/10.1145/2676870.2676872

9. Garg, R., Vienne, J., Cooperman, G.: System-level transparent checkpointing for
OpenSHMEM. In: Gorentla Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.)
OpenSHMEM 2016. LNCS, vol. 10007, pp. 52–65. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50995-2 4

10. Hammond, J.R., Ghosh, S., Chapman, B.M.: Implementing OpenSHMEM using
MPI-3 one-sided communication. In: Poole, S., Hernandez, O., Shamis, P. (eds.)
OpenSHMEM 2014. LNCS, vol. 8356, pp. 44–58. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05215-1 4

11. Hanebutte, U., Hemstad, J.: ISx: a scalable integer sort for co-design in the exas-
cale era. In: 9th International Conference on Partitioned Global Address Space
Programming Models, pp. 102–104, September 2015

12. Hoefler, T., Dinan, J., Buntinas, D., Balaji, P., Barrett, B., Brightwell, R., Gropp,
W., Kale, V., Thakur, R.: MPI + MPI: a new hybrid approach to parallel pro-
gramming with MPI plus shared memory. Computing 95(12), 1121–1136 (2013).
http://dx.doi.org/10.1007/s00607-013-0324-2

13. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM extensions towards
a future for hybrid programming and heterogeneous computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26428-8 4

14. Namashivayam, N., Ghosh, S., Khaldi, D., Eachempati, D., Chapman, B.: Native
mode-based optimizations of remote memory accesses in OpenSHMEM for Intel
Xeon Phi. In: Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, pp. 12:1–12:11, PGAS 2014. ACM,
New York (2014). http://doi.acm.org/10.1145/2676870.2676881

https://doi.org/10.1007/978-3-319-05215-1_13
https://doi.org/10.1007/978-3-319-05215-1_13
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_local_ptr.3.html
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_local_ptr.3.html
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_team_translate_pe.3.html
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_team_translate_pe.3.html
http://doi.acm.org/10.1145/2676870.2676872
https://doi.org/10.1007/978-3-319-50995-2_4
https://doi.org/10.1007/978-3-319-50995-2_4
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1007/978-3-319-05215-1_4
http://dx.doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4
http://doi.acm.org/10.1145/2676870.2676881

Optimization of On-Node Communication in OpenSHMEM 113

15. OpenSHMEM Application Programming Interface, Version 1.3, February 2016.
http://www.openshmem.org

16. Plimpton, S.J., Devine, K.D.: MapReduce in MPI for large-scale graph algorithms.
Parallel Comput. 37(9), 610–632 (2011). http://dx.doi.org/10.1016/j.parco.2011.
02.004

17. The Ohio State University: OSU Microbenchmarks. http://mvapich.cse.ohio-state.
edu/benchmarks/

18. Top500 Supercomputing System. http://www.top500.org
19. Welch, A., Pophale, S., Shamis, P., Hernandez, O., Poole, S., Chapman, B.: Extend-

ing the OpenSHMEM memory model to support user-defined spaces. In: Proceed-
ings of the 8th International Conference on Partitioned Global Address Space Pro-
gramming Models, PGAS 2014, pp. 11:1–11:10. ACM, New York (2014). http://
doi.acm.org/10.1145/2676870.2676884

20. Van der Wijngaart, R.F., Kayi, A., Hammond, J.R., Jost, G., St. John, T.,
Sridharan, S., Mattson, T.G., Abercrombie, J., Nelson, J.: Comparing runtime sys-
tems with exascale ambitions using the parallel research Kernels. In: Kunkel, J.M.,
Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp.
321–339. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41321-1 17

21. Zhou, H., Idrees, K., Gracia, J.: Leveraging MPI-3 shared-memory extensions for
efficient PGAS runtime systems. In: Träff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 373–384. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48096-0 29

http://www.openshmem.org
http://dx.doi.org/10.1016/j.parco.2011.02.004
http://dx.doi.org/10.1016/j.parco.2011.02.004
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.top500.org
http://doi.acm.org/10.1145/2676870.2676884
http://doi.acm.org/10.1145/2676870.2676884
https://doi.org/10.1007/978-3-319-41321-1_17
https://doi.org/10.1007/978-3-662-48096-0_29
https://doi.org/10.1007/978-3-662-48096-0_29

	Application-Level Optimization of On-Node Communication in OpenSHMEM
	1 Introduction
	2 Background
	3 Challenges and Opportunities
	4 Design and Implementation of shnode
	4.1 Better Overlapping Between Communication And Computation
	4.2 Designing shnode Collective Helper Routines

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Evaluating Shnode with Micro-benchmark
	5.3 Performance Improvement in Collective Routines
	5.4 Evaluation of Applications

	6 Related Work
	7 Future Work
	8 Conclusion
	References

