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Abstract. HPC system and processor architectures are trending toward
increasing numbers of cores and tall, narrow memory hierarchies. As a
result, programmers have embraced hybrid parallel programming as a
means of tuning for such architectures. While popular HPC communica-
tion middlewares, such as MPI, allow the use of threads, most fall short
of fully-integrating threads with the communication model. The Open-
SHMEM contexts proposal promises thread isolation and direct mapping
of threads to network resources; however, fully realizing these potentials
will be dependent upon support for efficient threaded communication
through the underlying layers of the networking stack. In this paper, we
explore the mapping of OpenSHMEM contexts to the new OpenFab-
rics Interfaces (OFI) libfabric communication layer and use the libfabric
GNI provider to access the Aries interconnect. We describe the design of
our multithreaded OpenSHMEM middleware and evaluate both the pro-
grammability and performance impacts of contexts on single- and multi-
threaded OpenSHMEM programs. Results indicate that the mapping of
contexts to the Aries interconnect through libfabric incurs low overhead
and that contexts can provide significant performance improvements to
multithreaded OpenSHMEM programs.

1 Introduction

Over the past decade, the degree of parallelism within high performance com-
puting (HPC) system nodes has increased dramatically through the introduction
of accelerators, such as general purpose graphics processing units (GPGPUs),
and many-core processors, such as the Intel R© Xeon PhiTM processor. Such nodes
are often able to achieve peak performance and resource efficiency only when
programmed using a node-level programming model, such as OpenACC [12] and
OpenMP [15]. At the same time, HPC networking interfaces have also been pro-
visioned to handle communication operations for these large numbers of cores.
These drastic shifts in node-level architecture have left conventional, networking-
centric HPC programming models, such as OpenSHMEM [16] and MPI [10],
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scrambling to provide APIs that are thread-safe, use resources efficiently, and
are scalable enough to support hundreds of threads per process.

A first step, taken by MPI 2.0 in 2003 and soon to be adopted by OpenSH-
MEM, is to make existing HPC communication libraries thread safe. While this
addresses the first-order need for threads to perform communication, this app-
roach presents significant challenges, as interference between threads within the
middleware and within the semantics of the communication model can lead to
significant overheads. For example, in OpenSHMEM’s unordered communication
model, the fence and quiet operations are used to ensure ordering and remote
completion for operations issued by an OpenSHMEM processing element (PE).
When PEs are multithreaded, a fence or quiet performed by any thread will affect
operations performed by all threads. Thus, a deeper level of threading integra-
tion with the communication middleware is needed to provide thread isolation,
enable overlap across threads, and achieve more intelligent resource mapping.

In this work, we focus on the OpenSHMEM communication middleware and
the proposed contexts extension for threading integration [3]. In this paper, we
present an implementation of the proposed OpenSHMEM contexts extension
using the OpenFabrics Interfaces libfabric [14] communication layer and use
this as a vehicle to evaluate the above requirements. We utilize the libfabric
generic networking interface (GNI) provider to interface with the high perfor-
mance Aries1 interconnect. We evaluate our implementation’s performance using
several representative benchmarks and discuss our experiences developing appli-
cations with this new interface, commenting on its programmability and usability
characteristics.

2 Background

The SHMEM programming model was first created by Cray Research for the
Cray (See footnote 1) T3D machine and has subsequently been supported by
a number of vendors across many platforms. The OpenSHMEM specification
was created in an effort to improve the consistency of the library across imple-
mentations and, more importantly, to provide a forum for the user and vendor
communities to discuss and adopt extensions to the SHMEM API.

The OpenSHMEM library provides a single program, multiple data (SPMD)
execution model in which N instances of the program are executed in parallel.

1 Other names and brands may be claimed as the property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other coun-
tries. Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://
www.intel.com/performance.

http://www.intel.com/performance
http://www.intel.com/performance
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Listing 1.1. Proposed OpenSHMEM Contexts API, including examples of contexts
version of point-to-point routines and interprocess synchronization routines.

int shmem_ctx_create(long options, shmem_ctx_t *ctx);
int shmem_ctx_destroy(shmem_ctx_t ctx);
void shmem_ctx_putmem(shmem_ctx_t ctx, void *dest, const void *source,

size_t nelems, int pe);
void shmem_ctx_quiet(shmem_ctx_t ctx);
void shmem_sync_all(void);
void shmem_sync(int PE_start, int logPE_stride, int PE_size, long *pSync);

Each instance is referred to as a processing element (PE) and is identified by
its integer ID in the range from 0 to N − 1. PEs exchange information through
one-sided get (read) and put (write) operations that access remotely accessi-
ble symmetric objects. Symmetric objects are objects that are present at all
PEs and they are referenced using the local address to the given object. By
default, all objects within the data segment of the application are exposed as
symmetric; additional symmetric objects are allocated through OpenSHMEM
API routines. OpenSHMEM’s communication model is unordered by default.
Point-to-point ordering is established through fence operations, remote comple-
tion is established through quiet operations, and global ordering is established
through barrier operations.

Recently, thread safety extensions have been proposed for OpenSHMEM [17].
These extensions provide a shmem init thread routine that can be used to
initialize the library with thread safety enabled. Several thread safety levels are
provided, with the most notable being SHMEM THREAD SINGLE, which disables
thread safety, and SHMEM THREAD MULTIPLE, which enables full thread safety.
The thread safety extension further defines the behavior of the existing API when
used by multiple threads within a PE. In this model, all threads are logically part
of the same PE and synchronization actions, such as fence, quiet, and barrier, are
performed at the level of the PE. Thus, when any thread performs one of these
operations, communication operations performed by all threads are affected.

2.1 OpenSHMEM Contexts

Contexts have been proposed as a means of isolating communication streams,
isolating threads from each other, and improving the mapping of threads to
underlying network resources [3]. The proposed API extension is summarized in
Listing 1.1. Contexts introduce a shmem ctx t object that is passed to com-
munication and synchronization operations. Thus, operations performed on a
given context can be treated separately from those performed on a different
context, enabling isolation and overlap across contexts. In effect, each context
represents a separate ordering and completion environment, enabling the mid-
dleware to efficiently map the communication of different contexts to different
communication resources (e.g. transmit engines, command interfaces, or rails).
While a single PE can utilize multiple contexts, the PE still represents a single
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destination (i.e. PE ID) for SHMEM communication operations. Thus, contexts
extend the existing 1 : N communication model, where each PE can generate
one stream of accesses to N targets in the OpenSHMEM global address space,
to an M : N model, where each PE can generate M independent streams of
accesses to N targets.

Contexts versions of the shmem putmem and shmem quiet routines are
shown to illustrate the extension to the point-to-point API. The full proposal
adds contexts version of all point-to-point operations, including put, get, quiet,
fence, and atomic memory operations (AMOs).

2.2 Libfabric

Libfabric (OFI) is a vendor-neutral, open interface for high-performance net-
working applications requiring low latency and high message throughput. The
interface was designed by the OpenFabrics Alliance (OFA) Interfaces Working
Group (OFWIG), with one of the primary goals of this working group being to
define a fabric interface that has a tight semantic map to various applications
that use it, including PGAS programming models.

The initial libfabric API and internal design of libfabric has been previously
described [7]. Libfabric was designed to provide a vendor-neutral client API that
is mapped to a set of providers that implement the communication interfaces for
a particular fabric hardware. In this paper, we take advantage of key libfabric
API features, such as the fine grain transmission context support, to enhance
performance and scalability. The latest version of the API and documentation
are available online [13]. Libfabrics is freely available on Github [14] and is also
distributed via the OpenFabrics Enterprise Distribution (OFED).

Fig. 1. Relationship of libfabric fi domain, fi endpoint, and fi stx context
objects to GNI provider internal gnix nic objects and underlying Aries hardware.
Solid blue lines indicate libfabric objects which are instantiated from a fi domain,
while dashed blue lines indicate objects which are associated via an fi bind operation.
Black lines indicate associations between libfabric upper level objects and lower-level
GNI-provider internal objects and network hardware. (Color figure online)
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2.3 Aries and the GNI Libfabric Provider

The Aries interconnect and the GNI libfabric provider have attributes that lend
themselves to the investigation of performance gains possible using OpenSH-
MEM contexts. The Aries interface supports a large number of fast memory
access (FMA) descriptors that can be used to enable independent issue of RDMA
requests from multiple threads using the same Aries interface. One of the design
goals of the GNI provider is to ensure that threads within a multi-threaded
process can access the FMA descriptor resources with as little contention as
possible [2]. In addition, the Aries interconnect has additional attributes that
make it well suited to investigating extensions to the OpenSHMEM API includ-
ing its ability to offload RDMA transactions and support for an extensive set of
32- and 64-bit atomic memory operations.

For this work, the GNI provider was enhanced to support the libfabric shared
transmission (TX) context (fi stx context) construct. The shared context
enables multiple endpoints to share an FMA descriptor if transmission resources
become scarce. Figure 1 depicts the relationship between libfabric endpoints,
shared TX contexts, and the underlying Aries network hardware.

3 Implementation of Contexts over Libfabric

In our previous work, we described an implementation of OpenSHMEM using the
OpenFabrics Interfaces libfabric communication layer [19]. This implementation
is available as part of the open source Sandia OpenSHMEM (SOS) library [18]
and is referred to as the OFI transport layer. The current OFI transport layer
was designed to support the single-threaded OpenSHMEM 1.3 programming
model; in this work, we extend this layer to support both the proposed thread
safety and contexts extensions.

3.1 Middleware Extensions to Support Contexts

The design of the OFI transport layer with threading and contexts support is
shown in Fig. 2. The fabric domain represents a handle to the fabric and is the
first object created. The OFI transport layer queries libfabric for a domain that
can support the required features, including support for the one-sided FI RMA
and FI ATOMICS capabilities. Thread safety for libfabric routines is provided
by enabling the FI THREAD SAFE attribute on the fabric domain. Libfabric
provides several threading modes; FI THREAD SAFE was selected because it
provides the greatest opportunity for communication parallelism. This mode
requests the provider to ensure thread safety, providing the greatest opportunity
for fine-grain synchronization at the lower levels of the networking stack. Any
other libfabric threading mode would have required SOS to protect calls to
the libfabric API with additional locks. Thread safety for internal state in the
SOS middleware was implemented using POSIX (See footnote 1) mutexes and
separate mutexes are used for each context. Synchronization overheads can be
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Fig. 2. Architecture of the multithreaded OFI transport layer with contexts support.

further reduced by replacing mutexes with atomic operations, and we plan to
investigate this as part of future performance tuning.

From the domain, fabric endpoints (EPs) are created. Endpoints can be used
for sending and receiving messages, and the corresponding completion events
can be captured as full events in a completion queue (CQ) or as lightweight
counting events in an event counter (CNTR). The heap and data segments are
registered on the domain and are exposed for remote access through the CQ EP
endpoint. The fabric addresses of the RMA target endpoints are queried and
exchanged using the process manager in order to populate the libfabric address
vector (AV) to provide efficient and scalable translation between OpenSHMEM
PE IDs and fabric addresses. Finally, shareable transmit contexts (STX) are
created and bound to the endpoints, enabling them to be used for transmitting
messages. The STX is “shareable” in the sense that it can be bound to more
than one endpoint.

OFI defines its threading model on a domain basis, which forces all EPs on a
domain to conform to the same threading model. This model can be restrictive
in cases where multiple EPs are bound to an STX, but the application can
guarantee that the EPs are not shared by multiple threads (e.g., by setting the
SHMEM CTX PRIVATE flag on the corresponding contexts). From this work we
have identified this as a potential performance optimization and are investigating
the addition of a synchronization hint on the STX to improve the OFI threading
model.

We introduce context domains as a means for managing the mapping between
OpenSHMEM contexts and fabric resources. Context domains contain the set of
resources needed to support a context; minimally, a context domain contains an
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STX, but it could also be extended to include resources such as bounce buffer
pools, CQs, etc. The maximum number of context domains that can be created
is bounded by the tx ctx cnt attribute on the fabric domain. The maximum
number of contexts per context domain is bounded by the max ep stx ctx
limit. In our current implementation, context domains are created as-needed
and the mapping to contexts is controlled manually. In future work, we plan
to more deeply explore methods for automatic and efficient mapping of context
domains to contexts.

In Fig. 2, we show three context domains each mapped to one context. The
rightmost context represents the default (i.e., SHMEM CTX DEFAULT) context.
Optimizations, such as splitting get/put counting events and bounce buffering
are optional features that can be enabled on a context. For the backwards com-
patibility, these optimizations are all made available on the default context.
For all other contexts, these optimizations are disabled by default to improve
resource utilization. Thus, most contexts are implemented as an EP/CNTR pair
that is bound to the STX of the corresponding context domain.

4 Results

In this section, we present quantitative performance evaluation of the OpenSH-
MEM Contexts implementation described in Sect. 3 and qualitative programma-
bility evaluation of the proposed Contexts API.

4.1 Evaluation Platform

All experiments presented were collected on the NERSC Edison machine. Edison
is a Cray (See footnote 1) XC30 with 2×12-core Intel R© Xeon R© Processors E5-
2695 v2 and 64 GB DDR3 in each node. Edison nodes are connected by the Aries
interconnect. All experiments are run on the libfabric-based implementation of
Contexts in Sandia OpenSHMEM, as described in Sect. 3. All baseline MPI
experiments are run using Cray MPICH 7.4.4. Unless otherwise noted, all tests
with hybrid parallelism are run with one PE per socket and 12 threads per PE.
All tests with flat parallelism are run with one PE per core.

4.2 Micro-benchmarks

As part of this work, we extended Sandia OpenSHMEM’s suite of performance
micro-benchmarks to include multi-threaded, contexts-based implementations of
all existing micro-benchmarks. For simplicity and platform agnosticism, these
multi-threaded benchmarks were written using POSIX (See footnote 1) threads
(referred to as pthreads). The benchmarks implemented measure uni-directional
and bi-directional bandwidth/message rate for blocking and non-blocking puts
and gets. They also measure latencies for blocking and non-blocking puts and gets.
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Figure 3 shows the uni-directional put and get rates achieved by contexts-
less and contexts-based microbenchmarks using 1 or 12 pthreads. Contexts-less
multi-threaded tests rely on libfabric for thread safety. Tests were run using two
PEs on two neighboring Edison nodes, with each PE pinned to 12 cores. The
rates for non-blocking puts at transfer sizes where an Aries FMA descriptor is
utilized show similar improvements to those reported when the libfabric API is
used directly [2]. The results obtained for blocking puts are similar owing to a
buffering mechanism used by SOS for puts up to 512 bytes. Transfer sizes of
8 KB and higher show little improvement over the single threaded case as these
are off-loaded to the Aries RDMA block transfer engine (BTE), which introduces
a serialization point.

(a) Blocking Get (b) Blocking Put

(c) Non-Blocking Get (d) Non-Blocking Put

Fig. 3. Uni-directional get and put rate micro-benchmark results, comparing single-
threaded performance with and without contexts with multithreaded performance with
contexts. X-axes show message sizes in bytes and Y-axes show achieved message rate
in messages per second.

The situation is more complicated for get operations as the target buffer
of each get operation must be registered with the Aries device. For very small
transfers of 1 to 3 bytes, the GNI libfabric provider uses a mechanism that
bypasses its internal memory registration cache and the associated lock. Thus the
speedup using contexts for these small transfers is similar to that achieved for put
operations. For four byte and larger transfers, the memory registration lock must
be taken as the libfabric consumer does not supply a local memory descriptor as
part of the call to the libfabric fi read function. To conserve Aries I/O MMU
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resource usage, the GNI provider’s memory registration cache is associated with a
libfabric domain object, rather than the underlying gnix nic objects depicted
in Fig. 1. The need to acquire this lock significantly limits speedup when using
multiple contexts. Note for the single threaded case, performance is significantly
better for non-blocking gets owing to the ability to take advantage of pipelining
requests to the Aries FMA descriptor.

Figure 4 shows the latencies observed for blocking gets and puts, with and
without contexts. In general we observe that using contexts with one thread
shows the same latency as not using contexts at all, which is desirable. The put
latency remains roughly constant as function of thread count, up to the largest
transfer size where bandwidth limitations of the Aries FMA mechanism result
in an increase in latency when using 12 threads and contexts. When using 12
threads and no contexts, contention for locks protecting shared endpoints and
counter resources leads to large increases in latency.

(a) Blocking Get (b) Blocking Put

Fig. 4. Latency micro-benchmark results, comparing single-threaded performance with
and without contexts with multithreaded performance with contexts. X-axes show
message size in bytes and Y-axes show latency in microseconds.

These micro-benchmark results illustrate the performance benefits of con-
texts that previous work [3] has also shown: contexts significantly improve
network utilization at small and medium transfer sizes, particularly for put
operations. Get transfer rates could be improved either by enhancements to
the GNI libfabric provider or by modifying Sandia OpenSHMEM to use pre-
registered temporary buffers as the destination for small gets to avoid registra-
tion overheads.

4.3 Graph500

Graph500 is an end-to-end benchmark intended to stress the ability of computing
systems to support irregular accesses. In this work, we focus specifically on the
breadth-first search kernel of the Graph500 benchmark, which traverses a large
and randomly generated directed graph. We evaluate two implementations of
the BFS kernel using OpenSHMEM Contexts:
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1. Put-Based: The Put-Based Graph500 implementation partitions vertices of
the graph evenly across PEs. A logically global vertex array is partitioned
across PEs in their symmetric heaps, where each slot in this global array is
an integer that indicates whether the corresponding vertex has been traversed.
At each wavefront of the BFS, vertices in the next wavefront are signaled by
performing individual puts to the PE that owns those vertices.

2. Atomics-Based: The Atomics-Based G500 implementation is similar to Put-
Based. However, the global vertex array is instead a bit vector. Signals are sent
using atomic bitwise OR operations, rather than puts. This has the benefit of
reducing total number of bytes sent, but has the downside of requiring atomic
operations.

Figure 5 compares the Put-Based and Atomics-Based G500 implementations
against existing OpenSHMEM baselines [6] and reference MPI implementations,
performing weak scaling experiments from 8 to 64 Edison nodes. The refer-
ence MPI Simple implementation fails to scale to 16 nodes. This is expected, as
it is intended to be an example of a readable, easy-to-understand Graph500
implementation, but not a well-performing one. The MPI Replicated imple-
mentation, on the other hand, is a hybrid OpenMP+MPI implementation that
performs better than all other implementations out to 64 nodes. However, we
note that the MPI Replicated implementation is not considered readable; that
is, the code structure does not algorithmically reflect the breadth-first search
(BFS) operation it implements. Additionally, the scalability of MPI Replicated
to larger datasets is questionable. First, it contains a single MPI Allreduce
as its only form of computation, hence there is no opportunity for asynchrony
or computation-communication overlap. Second, MPI Replicated stores a data
structure in each rank whose size scales linearly with the number of vertices in
the graph. Larger graphs would hence trigger out-of-memory errors. It is also
important to note that as the MPI implementations are run using Cray MPICH
7.4.4, this is not entirely an apples-to-apples comparison.

As described in previous work [6], the OpenSHMEM Checksummed imple-
mentation is message-based and to some extent inspired by the MPI Simple
implementation. While it outperforms both the Put-Based and Atomics-Based

Fig. 5. Graph500 BFS kernel execution time
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implementations, it suffers from similar maintainability, readability, and pro-
grammability issues as the MPI Replicated implementation.

On the other hand, the code structure of Put-Based and Atomics-Based
implementations is much more faithful to the algorithmic structure of BFS. As
a result, the RDMAs performed are more fine grain because they model com-
munication along individual edges in the graph. This is exactly the type of
communication pattern that generally leads to drastic underutilization of net-
works. Without OpenSHMEM Contexts, these algorithmically-elegant but gen-
erally inefficient communication patterns would not be feasible.

To demonstrate this, we ran two additional experiments. First, we com-
pare running the Atomics-Based implementation with one PE per socket and
12 threads per PE vs. 2 PEs per socket and 6 threads per PE, to see how a
reduction in intra-PE parallelism affects performance. We found that using 1
PE per socket ran ∼1.5–2× faster as a result of having more state stored in each
PE, reducing redundant cross-PE atomics. Hence, hybrid parallelism enables
higher performing Graph500 implementations through the elimination of redun-
dant communication.

Second, we ran the multi-threaded Atomics-Based implementation while rely-
ing on runtime-managed thread safety. We keep 1 PE per socket and 12 threads
per PE, and compare between giving each thread its own private context vs.
simply configuring the runtime as SHMEM THREAD MULTIPLE. In these tests,
we observed that relying on runtime-managed thread-safety led to a slowdown
of up to 4×, relative to using contexts.

Therefore, we desire hybrid parallelism in Graph500 and similar benchmarks
that exhibit large amounts of small or medium sized communication. However,
without contexts, contention between multiple threads within the OpenSHMEM
runtime prevents this performance improvement from being realized.

4.4 HPC Challenge Random Access Benchmark

The HPC challenge random access benchmark [9], referred to as the Giga-
Updates Per Second (GUPS) benchmark, stresses the ability of a system to
perform random memory accesses by performing atomic bitwise XOR updates
on a distributed hash table. OpenSHMEM implementations of GUPS that are
compliant with the latest ratified specification (OpenSHMEM v1.3) use a get-
modify-put pattern to imprecisely emulate bitwise atomic XORs.

In this work, we contribute an OpenSHMEM GUPS implementation based on
the APIs in the recently ratified bitwise atomics proposal and show how hybrid
programming with OpenSHMEM Contexts improves its performance. We com-
pare two implementations of GUPS: one which is compliant with OpenSHMEM
v1.3 and uses a GET, a local bitwise XOR, and a PUT to emulate bitwise atom-
ics, and another which uses the recently ratified bitwise atomics APIs to natively
perform the atomic operation.
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For both versions of GUPS, we perform three experiments:

1. Flat OpenSHMEM: We run one OpenSHMEM PE per core.
2. Hybrid OpenSHMEM w/Pthreads: We run one OpenSHMEM PE per socket,

and run one pthread per core. Each pthread issues atomic updates, gets,
or puts (depending on the implementation of GUPS being executed). The
OpenSHMEM runtime is configured in thread-safe mode.

3. Hybrid OpenSHMEM w/Pthreads and Contexts: Same as the above, but each
pthread has a private context to which it issues OpenSHMEM operations.

Our GUPS experiments are run with a total main table size of ∼500 M words
on 16 nodes.

Table 1 demonstrates that the newly ratified bitwise atomics produce a dras-
tic jump in performance, yielding a 2.80× performance improvement when run-
ning Flat OpenSHMEM compared to the Gets/Puts-based implementation (rows
1 and 4). When using pthreads without contexts we see the performance cost
of purely runtime-managed thread safety with a 14× slowdown when moving
from Flat OpenSHMEM with Bitwise Atomics to Hybrid OpenSHMEM with
Bitwise Atomics. This slowdown can be attributed primarily to the serialization
of accesses to the Aries network AMO hardware when only a single libfabric
endpoint is used. However, using contexts allows us to regain that performance
plus an additional 1.27× improvement over flat parallelism with bitwise atomics,
resulting in a speedup of 3.55× over the baseline.

Table 1. GUPS execution time and speedup relative to the shmem long g/p-based
implementation.

API used Pthreads used? Contexts used? Time (s) Speedup

Gets/Puts No No 60.31 1.00×
Gets/Puts Yes No 1042.66 0.06×
Gets/Puts Yes Yes 330.08 0.18×
Bitwise atomics No No 21.58 2.80×
Bitwise atomics Yes No 306.23 0.20×
Bitwise atomics Yes Yes 16.97 3.55×

4.5 Mandelbrot

Mandelbrot is a multithreaded benchmark that computes the complex-plane
points that are members of the Mandelbrot set. The Mandelbrot implementation
used in this paper allows the user to either disable the use of contexts, use
contexts for multi-threading, or use contexts in a pipeline. It is also possible to
select between blocking and non-blocking OpenSHMEM APIs. We will explore
all of these parameters and their effect on performance.

Table 2 shows the performance of Mandelbrot at various runtime configura-
tions, varying whether blocking or non-blocking APIs are used and how contexts
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are used in the application. In particular, we note that going from no contexts to
using contexts for multi-threading generally yields a ∼2× performance improve-
ment, with pipelining yielding another incremental improvement in performance.

Table 2. Mandelbrot Performance

Blocking APIs? Contexts? Execution time (sec) Speedup

Yes No 1, 285.27 1.00×
Yes For multithreading 612.13 2.10×
Yes Pipelined 592.56 2.17×
No No 1, 487.10 0.86×
No For multithreading 635.34 2.02×
No Pipelined 608.20 2.11×

4.6 Pipeline Example

We take this benchmark from the OpenSHMEM Contexts proposal itself. This
benchmarks demonstrates the use of contexts in a single-threaded C program
that performs a summation reduction where the data contained in input arrays
on all PEs is reduced into the output arrays on all PEs. The buffers are divided
into segments and processing of the segments is pipelined. Contexts are used to
overlap an all-to-all exchange of data for segment p with the local reduction of
segment p − 1.

For these experiments, we perform a reduction on a 16 M element array with
staging segments of 4 K elements, using 4 Edison nodes. When running the single-
threaded pipeline example without contexts we observed a mean execution time
of 7.80 s, versus 6.94 s with contexts (a 12.4% improvement).

4.7 Application Development Discussion

It is important to consider the programmability and usability of any new API
being considered for inclusion in the OpenSHMEM specification. While achieving
high network utilization is important, the fact is that without usable abstractions
it would not be possible to develope large scientific and analytics applications
using OpenSHMEM. In our experiences developing these benchmarks on Open-
SHMEM we noted several items of interest.

First, contexts enable programmers to write multi-threaded applications with
less boilerplate and fine-tuning by making higher network utilization possible at
smaller packet sizes. This ability to send data at the natural algorithmic gran-
ularity rather than having to manually aggregate and chunk at the application
level leads to significant improvement in the clarity of application code.

Second, because contexts facilitate the use of OpenSHMEM in multi-threaded
applications, an ancillary benefit is that more state is stored in each PE (assum-
ing some global domain is decomposed across PEs). This low latency, zero copy
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access to a larger segment of the data domain often leads to improved perfor-
mance, even relative to OpenSHMEM implementations that support fast on-
node data movement.

Third, in our experience working with these benchmarks we did not find
that creating and managing contexts added any significant developer burden.
Admittedly, these are not large applications and so our experiences may not
apply to development of million-line projects. However, we did not find passing
an extra object to communicating routines to be overly burdensome. Addition-
ally, the improvement in composability and network resource partitioning would
particularly benefit large applications and libraries.

5 Related Work

The contexts extension to OpenSHMEM was initially proposed in [3], along
with an implementation of the API using Sandia OpenSHMEM [18] for the
Portals 4 networking layer. They reported performance improvement for two
single-threaded OpenSHMEM applications using contexts to avoid unnecessary
completion of pending operations and to pipeline OpenSHMEM data trans-
fers. Namashivayam et al. have also presented an implementation of the context
extensions for the Aries network using Cray DMAPP as the underlying network
API [11].

An alternative approach to OpenSHMEM threading support was proposed
by ten Bruggencate et al. [1]. This approach registers thread with the OpenSH-
MEM runtime in order provide thread isolation and enhance throughput (see [3]
for a detailed comparison of contexts and thread registration). Weeks et al. [21]
presented results for a set of multi-threaded OpenSHMEM kernels and mini-
apps (SHMEM-MT) using these Cray thread safety extensions. Jost et al. [8]
have presented a more general discussion of multi-threaded OpenSHMEM appli-
cations, including benefits to applications when using a hybrid program model
and enhancements to OpenSHMEM to better support such hybrid applications.

Related work in the Message Passing Interface (MPI) community includes
the MPI endpoints extension [4,20]. MPI endpoints are conceptually similar to
OpenSHMEM contexts in that they allow an MPI implementation to more read-
ily associate individual threads within an MPI process with network resources.
Unlike OpenSHMEM contexts however, endpoints are individually addressable
so as to allow for sending a message to a particular thread in a target MPI
process. There have also been investigations of the performance of MPI-3 RMA
operations using multi-threaded MPI applications and micro-benchmarks [5].

6 Conclusion

Contexts extend OpenSHMEM with a programmable abstraction for low-
latency, high-throughput access to modern HPC networks. Such programming
model primitives are critical as the trend toward multi- and many-core platforms
drives applications to utilize hybrid parallelism. This work described a new and
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portable implementation targeting the OFI libfabric networking layer. Perfor-
mance results demonstrated that this API extension maps well to libfabric and
can provide significant communication efficiency improvements both for single-
and multi-threaded OpenSHMEM applications.
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