
Manjunath Gorentla Venkata
Neena Imam · Swaroop Pophale (Eds.)

 123

LN
CS

 1
06

79

4th Workshop, OpenSHMEM 2017
Annapolis, MD, USA, August 7–9, 2017
Revised Selected Papers

OpenSHMEM and
Related Technologies
Big Compute
and Big Data Convergence

Lecture Notes in Computer Science 10679

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7408

Manjunath Gorentla Venkata • Neena Imam
Swaroop Pophale (Eds.)

OpenSHMEM and
Related Technologies

Big Compute
and Big Data Convergence

4th Workshop, OpenSHMEM 2017
Annapolis, MD, USA, August 7–9, 2017
Revised Selected Papers

123

Editors
Manjunath Gorentla Venkata
Oak Ridge National Laboratory
Oak Ridge, TN
USA

Neena Imam
Oak Ridge National Laboratory
Oak Ridge, TN
USA

Swaroop Pophale
Oak Ridge National Laboratory
Oak Ridge, TN
USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-73813-0 ISBN 978-3-319-73814-7 (eBook)
https://doi.org/10.1007/978-3-319-73814-7

Library of Congress Control Number: 2017963768

LNCS Sublibrary: SL2 – Programming and Software Engineering

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-5282-1682
http://orcid.org/0000-0001-8860-4738
http://orcid.org/0000-0001-8544-6367

Preface

OpenSHMEM is a Partitioned Global Address Space (PGAS) library specification. The
main abstractions of the programming model are execution contexts called processing
elements (PEs) and symmetric memory objects. The programming model also provides
explicit mechanisms to access and transfer data between the symmetric memory objects
of different PEs. The key factors that make OpenSHMEM an excellent choice for
parallel, communicating HPC applications is its simple application programming
interface (API), support for remote direct memory access (RDMA), and constant
innovation in the library API to keep abreast with the current scientific and hardware
changes. Over the past few years there is a growing momentum behind the develop-
ment and usage of the OpenSHMEM programming model.

The OpenSHMEM Workshop is the premier venue for presenting new and inno-
vative PGAS research in the context of OpenSHMEM. OpenSHMEM 2017, held in
Annapolis, Maryland, was the fourth event in the OpenSHMEM and Related Tech-
nologies workshop series. The workshop was organized by Oak Ridge National
Laboratory and sponsored by ORNL, DoD, Cray, Nvidia, Mellanox, ARM, and HPE.
The workshop was attended by participants from across academia, industry, and private
and federal research organizations.

This year, the workshop focused on “OpenSHMEM and the Big Compute and Big
Data Convergence.” The workshop included two days of technical presentations fol-
lowed by one day dedicated to the OpenSHMEM Specification discussions and
development. The technical segment commenced with a keynote from Dr. William
Carlson. Apart from being a member of the research staff at the IDA Center for
Computing Sciences since 1990, he also leads the UPC language effort. The title of his
talk was “Shared Memory HPC Programming: Past, Present, and Future?”.

The paper session discussed a variety of concepts, including extending the
OpenSHMEM API for future architectures, new applications using OpenSHMEM,
evaluation and implementation of OpenSHMEM for new architectures, novel use of
OpenSHMEM for the heterogeneous environments, and new development in the tools
eco-system for OpenSHMEM. All papers submitted to the workshop were
peer-reviewed by the Program Committee (PC) which included members from uni-
versities, industry, and research labs. Despite the short turnaround, each paper was
reviewed by at least three reviewers. In all, 11 full papers were selected to be presented
at the workshop.

This proceedings volume is a collection of papers presented at the workshop. The
technical papers provided a variety of ideas for extending the OpenSHMEM specifi-
cation and making it efficient for current and next-generation systems. This includes
new research for communication contexts in OpenSHMEM, different optimizations for
OpenSHMEM on shared memory machines, exploring the implementation of Open-
SHMEM and its memory model on Intel’s KNL architecture, and implementing new
applications and benchmarks with OpenSHMEM.

The third day of the workshop was focused on developing the OpenSHMEM
specification. This year, 2017, like the year before, has been a very exciting year for the
OpenSHMEM committee. Thanks to the active participation at the workshop, the
committee is in the process of ratifying OpenSHMEM Specification 1.4. The Open-
SHMEM meeting at the workshop is an annual face-to-face OpenSHMEM committee
meeting making it an important and impactful venue.

The general and technical program Chairs would like to thank everyone who con-
tributed to the organization of the workshop. Particularly, we would to thank all
authors, PC members, reviewers, session chairs, participants, and sponsors. We are
grateful for the excellent support we received from our ORNL administrative staff and
Daniel Pack, who helped maintain and update our workshop website.

December 2017 Neena Imam
Manjunath Gorentla Venkata

Swaroop Pophale

VI Preface

Organization

General Co-chairs

Neena Imam Oak Ridge National Laboratory, USA
Manjunath Gorentla

Venkata
Oak Ridge National Laboratory, USA

Nick Park Department of Defense, USA

Technical Program Co-chairs

Manjunath Gorentla
Venkata

Oak Ridge National Laboratory, USA

Swaroop Pophale Oak Ridge National Laboratory, USA

Technical Program Committee

Ferrol Aderholdt Oak Ridge National Laboratory, USA
Matthew Baker Oak Ridge National Laboratory, USA
Pavan Balaji Argonne National Laboratory, USA
Swen Boehm Oak Ridge National Laboratory, USA
Bob Cernohous Cray Inc., USA
Zheng Cui VMWare, USA
Tony Curtis Stony Brook University, USA
James Dinan Intel Corporation, USA
Jeff Hammond Intel Labs, USA
Bryant Lam Department of Defense, USA
Arthur Maccabe Oak Ridge National Laboratory, USA
Dhabaleswar (DK) Panda Ohio State University, USA
Nick Park Department of Defense, USA
Stephen Poole OSSS, USA
Sreeram Potluri NVIDIA, USA
Michael Raymond SGI, USA
Gilad Shainer Mellanox Technologies, USA
Pavel Shamis ARM, USA
Sameer Shende University of Oregon, USA
Min Si Argonne National Laboratory, USA
Weikuan Yu Florida State University, USA

Sponsors

Diamond Sponsors

Silver Sponsors

Bronze Sponsors

VIII Organization

Contents

OpenSHMEM Extensions

Symmetric Memory Partitions in OpenSHMEM: A Case Study
with Intel KNL . 3

Naveen Namashivayam, Bob Cernohous, Krishna Kandalla, Dan Pou,
Joseph Robichaux, James Dinan, and Mark Pagel

Implementation and Evaluation of OpenSHMEM Contexts
Using OFI Libfabric . 19

Max Grossman, Joseph Doyle, James Dinan, Howard Pritchard,
Kayla Seager, and Vivek Sarkar

Merged Requests for Better Performance and Productivity
in Multithreaded OpenSHMEM . 35

Swen Boehm, Swaroop Pophale, Matthew B. Baker,
and Manjunath Gorentla Venkata

Evaluating Contexts in OpenSHMEM-X Reference Implementation. 50
Aurelien Bouteiller, Swaroop Pophale, Swen Boehm,
Matthew B. Baker, and Manjunath Gorentla Venkata

OpenSHMEM Applications

Parallelizing Single Source Shortest Path with OpenSHMEM 65
Ferrol Aderholdt, Jeffrey A. Graves,
and Manjunath Gorentla Venkata

Efficient Breadth First Search on Multi-GPU Systems Using
GPU-Centric OpenSHMEM . 82

Sreeram Potluri, Anshuman Goswami, Manjunath Gorentla Venkata,
and Neena Imam

Evaluation, Implementation and Novel use of OpenSHMEM

Application-Level Optimization of On-Node Communication
in OpenSHMEM. 99

Md. Wasi-ur- Rahman, David Ozog, and James Dinan

Portable SHMEMCache: A High-Performance Key-Value Store
on OpenSHMEM and MPI. 114

Huansong Fu, Manjunath Gorentla Venkata, Neena Imam,
and Weikuan Yu

Balancing Performance and Portability with Containers in HPC:
An OpenSHMEM Example . 130

Thomas Naughton, Lawrence Sorrillo, Adam Simpson,
and Neena Imam

Exploiting and Evaluating OpenSHMEM on KNL Architecture 143
Jahanzeb Maqbool Hashmi, Mingzhe Li, Hari Subramoni,
and Dhabaleswar K. Panda

OpenSHMEM Tools

Performance Analysis of OpenSHMEM Applications
with TAU Commander . 161

John C. Linford, Samuel Khuvis, Sameer Shende, Allen Malony,
Neena Imam, and Manjunath Gorentla Venkata

Author Index . 181

X Contents

OpenSHMEM Extensions

Symmetric Memory Partitions in OpenSHMEM:
A Case Study with Intel KNL

Naveen Namashivayam1(B), Bob Cernohous1, Krishna Kandalla1, Dan Pou1,
Joseph Robichaux2, James Dinan2, and Mark Pagel1

1 Cray Inc., Seattle, USA
nravi@cray.com

2 Intel Corp., Mountain View, USA

Abstract. To extract best performance from emerging tiered memory
systems, it is essential for applications to use the different kinds of mem-
ory available on the system. OpenSHMEM memory model consists of
data objects that are private to each Processing Element (PE) and data
objects that are remotely accessible by all PEs. The remotely accessible
data objects are called Symmetric Data Objects and are allocated on a
memory region called as Symmetric Heap. Symmetric Heap is created
during program execution on a memory region determined by the Open-
SHMEM implementation. This paper proposes a new feature called Sym-
metric Memory Partitions to enable users to determine the size along
with other memory traits for creating the symmetric heap. Moreover,
this paper uses Intel KNL processors as an example use case for emerg-
ing tiered memory systems. This paper also describes the implementation
of symmetric memory partitions in Cray SHMEM and use ParRes Open-
SHMEM microbenchmark kernels to show the benefits of selecting the
memory region for the symmetric heap.

1 Introduction

Emerging systems support multiple kinds of memory with different performance
and capacity characteristics. Systems with multiple kinds of memory are seen
in recent architectures such as AMD Fiji, NVIDIA Pascal, and Intel Knights
Landing. The latest Many Integrated Core (MIC) processor, the Intel Xeon Phi,
code-named Knights Landing (KNL) [9], combines the traditional off-package
DDR memory with the increased high bandwidth on-package memory called
as the Multi-Channel DRAM [10] (MCDRAM). To identify and manage differ-
ent kinds of memory, vendors provide their own programming approaches using
external libraries like CUDA [14] and Memkind [6]. Applications can also use low
level programming approaches. Irrespective of the selection, these approaches
limit application portability. To address this problem, programming libraries
such as OpenSHMEM [7] must provide a more consistent and portable interface
for accessing different kinds of memory on tiered memory systems.

c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 3–18, 2018.
https://doi.org/10.1007/978-3-319-73814-7_1

4 N. Namashivayam et al.

In this paper, we define a set of OpenSHMEM runtime changes and routines
to support different kinds of memory for the symmetric heap. During program
execution, the current OpenSHMEM memory model creates the symmetric heap
with specific memory characteristics that are determined by the implementation.
The runtime changes described in this paper would allow users to determine a
region on which the symmetric heap can be created. We call this user-determined
region as Symmetric Memory Partition. To define their characteristics, each
memory partition features a list of traits, with memory kind being one of those
featured traits.

The major contributions of this work are:

– proposing a set of new runtime changes and routines in OpenSHMEM to
support different kinds of memory on tiered memory systems;

– implementation of the proposed changes in Cray SHMEM [12] for Intel KNL
processors as an example use-case for memory partitions on emerging systems;

– performance regression analysis on creating multiple symmetric partitions;
and

– performance analysis of the proposed changes using Parallel Research Kernels
(ParRes) [8].

This paper is organized as follows. Section 2 provides a brief overview for
Cray SHMEM and Sect. 3 describes Intel KNL architecture with its different
modes of memory configuration. Section 4 illustrates the current OpenSHMEM
memory model and necessitates the need for changes in the existing memory
model. In Sect. 5 we propose the new symmetric memory partition feature and
in Sect. 6 we follow up with the implementation of the proposed features in Cray
SHMEM. Section 7 provides details of the performance regression analysis and in
Sect. 8 we use ParRes OpenSHMEM kernels to present the performance benefits
on determining the kind of memory for creating the symmetric heap. We discuss
related work in Sect. 9 and conclude in Sect. 10.

2 Background

This section provides a brief introduction to Cray SHMEM.

2.1 Cray SHMEM

OpenSHMEM is a Partitioned Global Address Space [5] (PGAS) library interface
specification. With a chief aim of performance and portability, OpenSHMEM
provides an Application Programming Interface (API) for SHMEM libraries to
support one-sided point-to-point data communication.

Cray SHMEM [12] is a vendor-based closed source OpenSHMEM implemen-
tation from Cray Inc. It is available as part of Cray Message Passing Toolkit [1]
(MPT) software stack. It is OpenSHMEM specification version-1.3 [3] compliant
and implemented over DMAPP [16]. DMAPP is an optimized communication
library to support logically shared, distributed memory programming model on

Symmetric Memory Partitions in OpenSHMEM 5

Cray architectures. Apart from the OpenSHMEM standard specific features, it
provides support for the following features:

– thread-safety in Cray SHMEM;
– put with signal communication;
– PE subsets called as Teams; and
– Team-based collective communication routines.

3 Intel KNL Architecture

Intel’s popular Many Integrated Core (MIC) architectures are marked under the
name Xeon Phi and the second generation processors are code named Knights
Landing (KNL). In this paper, Intel KNL processors are used as an example
for emerging architectures with tiered memory systems. This section provides a
brief introduction to KNL processor architecture.

Intel KNL offers at least 68 compute cores per chip with four threads per core.
The 68 compute cores are organized in 34 tiles with each tile having 2 compute
cores. These 34 tiles are placed in a 2D mesh and connected through an on-
chip interconnect. In addition to traditional DDR1, KNL offers an on-package
high bandwidth memory technology called Multi-Channel DRAM (MCDRAM).
It offers high bandwidth up to 4X more than DDR, but with limited capacity
(up to 16 GB) when compared to DDR (up to 384 GB).

Fig. 1. Intel KNL memory configuration modes

3.1 Memory Modes

As shown in Fig. 1, MCDRAM can be configured in the following modes.

– Cache mode - in Cache mode MCDRAM acts as a last-level cache and it is
completely used to cache the DDR data.

1 Intel KNL supports double data rate fourth-generation (DDR4) synchronous
dynamic random-access memory.

6 N. Namashivayam et al.

– Flat mode - in Flat mode the complete MCDRAM is available as an address-
able memory and share the physical address space with DDR. With respect
to Non Uniform Memory Access (NUMA), it is exposed as a separate NUMA
node without cores.

– Hybrid mode - as the name suggests, in Hybrid mode a portion of MCDRAM
is configured as addressable memory and the rest as cache.

3.2 NUMA Cluster Modes

As specified previously, the 68 compute cores are arranged in a 2D mesh and
connected using on-chip interconnect. With NUMA some memory on the node
has different latency or bandwidth to the core. There are two important types
of NUMA modes: Quadrant and Sub-NUMA Clustering (SNC).

In quadrant mode the chip is divided into four different quadrants, but it
is exposed as a single NUMA domain. In SNC mode each quadrant is available
as a separate NUMA domain. Based on the number of quadrants it is further
divided into SNC2 and SNC4 modes.

4 OpenSHMEM Memory Model

Fig. 2. OpenSHMEM memory model

As shown in Fig. 2, an OpenSHMEM program consists of two types of data
objects: private and remotely accessible data objects. The private data objects
are local to a particular PE and are accessible by only that PE. It follows the
same memory model of the base programming language2 (C or C++). The
remotely accessible data objects are called Symmetric Data Objects and are

2 With the proposed deprecation of Fortran support in OpenSHMEM, in this paper
there is no reference to Fortran routines.

Symmetric Memory Partitions in OpenSHMEM 7

accessible by all PEs. Each symmetric data object has a corresponding object
on all PEs with same name, size and data type. The following variables are
considered Symmetric Data Objects:

– global or static variable on C/C++ and not defined in a DSO; and
– data allocated by shmem malloc OpenSHMEM routines

The data allocated by shmem malloc collective OpenSHMEM routines are
placed on a special memory region called Symmetric Heap. There is one sym-
metric heap on every PE, created during the program execution on a memory
region determined by the OpenSHMEM implementation. Users control only the
size of the symmetric heap using SMA SYMMETRIC SIZE environment variable.

4.1 Need for Changes in OpenSHMEM Memory Model

As mentioned in Sect. 3.1, MCDRAM in Intel KNL can be configured either as
cache or as addressable memory. While configuring as cache is a convenient way
to port existing applications on to KNL based systems, it is more suitable only
for applications that are optimized for cache utilizations and with small memory

Fig. 3. OpenSHMEM memory model with symmetric memory partitions

8 N. Namashivayam et al.

SMA_SYMMETRIC_PARTITION <ID >=SIZE=<size >[: PGSIZE=<pgsize >]

[:KIND=<kind >: POLICY=<policy >]

Fig. 4. Environment variable to define the partition characteristics

footprint. As cache utilization depends specifically on the application, it is not
for OpenSHMEM to handle anything for cache mode.

The flat mode configuration is suitable for memory bandwidth bound applica-
tions. Taking advantage of the high bandwidth offered by MCDRAM by making
it available as a distinct NUMA node and re-designing an application can signif-
icantly improve the performance. Based on the MCDRAM utilization, memory
bandwidth bound applications are of two types:

– the entire application memory fits in the MCDRAM; and
– applications capable of identifying specific bandwidth bound buffers and data

access patterns, with the bandwidth critical part allocated on MCDRAM

The current OpenSHMEM memory model does not handle both the above men-
tioned application categories for the flat mode.

5 Symmetric Memory Partitions in OpenSHMEM

As mentioned in Sect. 4, the OpenSHMEM memory model allows creation of one
symmetric heap per PE during program execution on a memory region deter-
mined by the implementation. The user controls only the size of the symmetric
heap. This paper proposes a new feature called Symmetric Memory Partitions to
define the runtime changes and routines to support different kinds of memory for
the symmetric heap. Figure 3 shows the modified OpenSHMEM memory model
and the proposed changes are as follows:

– symmetric heap is created on a single memory region determined by the
implementation or on multiple memory regions determined by the users. The
user-determined memory regions are called Symmetric Memory Partitions;

– only a single symmetric heap is created at each partition;
– multiple symmetric heaps are created by defining multiple separate symmetric

memory partitions;
– to define the characteristics of each partition each symmetric memory parti-

tion have their own memory traits;
– each symmetric memory partition is identified using its Partition ID label;
– apart from the name, data type, and size attributes, symmetric data objects

stored on symmetric heap segments have Partition ID as an extra attribute.

Symmetric Memory Partitions in OpenSHMEM 9

void *shmem_kind_malloc(size_t size , int partition_id);

void *shmem_kind_align(size_t alignment , size_t size ,

int partition_id);

Fig. 5. New routines for symmetric heap management

5.1 Memory Partition Traits

The characteristics of each symmetric memory partition is uniform across all PEs
and is defined using the environment variable SMA SYMMETRIC PARTITION. One,
two, or more partitions can be defined using this environment variable. Figure 4
shows the representation of the environment variable with all its optional and
required traits.

The characteristics of the partitions are established using the following fea-
tures and traits.

ID. ID represents Partition ID. It is a required feature. It is a label to iden-
tify a partition and is represented as an integer. SHMEM MAX PARTITIONS and
SHMEM MAX PARTITION ID are the library constants to define the maximum num-
ber of partitions and the usable range of the ID values respectively.

SIZE. SIZE is the only required trait. It represents the number of bytes used
for allocating the symmetric heap. The total size of the symmetric heap per PE
is the sum of SIZE traits in all the defined partitions.

PGSIZE. PGSIZE is an optional trait to represent the number of bytes used to
specify the size of the page used by the partition.

KIND. KIND is another optional trait. It is identified with a string constant.
It is used to specify the kind of memory used by the partition. On systems
supporting multiple different kinds of memory, each memory that is identified
and documented by the implementation can be used as input.

POLICY. POLICY is an optional trait and is identified using string constants
to represent the memory allocation policy for the other optional traits. It deter-
mines the strictness level to be honored by the implementation while creating
the symmetric heap in the defined partition.

5.2 Memory Partition Routines

shmem malloc, shmem free, shmem realloc, and shmem align are the existing
symmetric heap management routines. Apart from these existing routines, to

10 N. Namashivayam et al.

support symmetric heap partitions, we propose the following two new routines:
shmem kind malloc and shmem kind align (Fig. 5).

The functional semantics and the requirements of shmem kind malloc and
shmem kind align are very similar to shmem malloc and shmem align. The only
difference is that the new routines allows users to determine the symmetric heap
using the partition id argument. shmem realloc and shmem align routines
should reallocate within the same partition and release resources respectively.
This proposal does not include routines for reallocating data across partitions.

5.3 Meaning of Partition with ID:1

Symmetric memory partition with ID:1 is considered as the default partition and
it has a special meaning. Using the existing SMA SYMMETRIC SIZE environment
variable is still legal. But using SMA SYMMETRIC SIZE is mutually exclusive with
the environment variable SMA SYMMETRIC PARTITION1. Hence, to provide back-
ward compatibility in existing legacy applications, the symmetric heap created
from the default partition is used for shmem malloc and shmem align routines.

6 Symmetric Memory Partitions in Cray SHMEM

The symmetric memory partition features introduced in Sect. 5 are available
as SHMEMX prefixed features in Cray SHMEM. Table 1 provides information on
the library constants used in Cray SHMEM to determine the range of usable
partition ID values and the maximum number of partitions per job.

Table 1. Memory partition specific library constants in Cray SHMEM

Library Constants Values

SHMEMX MAX PARTITION ID 127
SHMEMX MAX PARTITIONS 7

User-defined SIZE and PGSIZE traits are any appropriate symmetric heap
size and available page size in the system represented as bytes. Table 2 refers the
values for KIND and POLICY traits.

On Intel KNL systems, NORMALMEM refers to DDR and FASTMEM refers to
MCDRAM. If the requested kind if unavailable, based on the allocation pol-
icy Cray SHMEM either aborts or looks for other alternate kind. INTERLEAVED
is used to shift allocation across different NUMA domains. As mentioned in
Sect. 3.2, number of NUMA domains depends on the cluster configuration modes.
On quadrant mode, since MCDRAM is available as a single NUMA domain,
INTERLEAVED will allocate on a single NUMA domain. On SNC2 and SNC4
modes, allocation interleaves across 2 and 4 NUMA domains respectively.

Symmetric Memory Partitions in OpenSHMEM 11

Table 2. Available partition traits in Cray SHMEM

Traits Values Explanation

KIND NORMALMEM Primary memory kind for the node
FASTMEM Faster memory in addition to NORMALMEM

SYSDEFAULT System defined memory
POLICY MANDATORY Abort if requested memory kind not available

PREFERRED Use other memory kinds if requested kind fails
INTERLEAVED Page allocation interleaved across NUMA domains
SYSDEFAULT System defined policy

All the available kinds of memory are identified and the environment vari-
ables are queried during shmem init operation. On NUMA policy aware kernels,
numactl controls the NUMA policy for processes. Memory kind identification in
Cray SHMEM is performed using numactl. There are no implementation defined
default values. SYSDEFAULT refers to the system defined memory use based on
numactl system calls.

7 Performance Regression Analysis

As there are no restrictions on the number of allowed partitions per memory
kind, it is legal to create SHMEM MAX PARTITIONS on a single kind of memory.
This section details the performance regression analysis on the following two
scenarios using Cray SHMEM version 7.6.0:

– Using symmetric heap created on default partition instead of the existing
SMA SYMMETRIC SIZE environment variable; and

– Creating SHMEM MAX PARTITIONS number of partitions.

For these tests we created multiple partitions on NORMALMEM (DDR) mem-
ory kind.

7.1 Using Default Partition Instead Of SMA SYMMETRIC SIZE

As mentioned in Sect. 5.3 the default partition has a special functionality. To pro-
vide backward compatibility in existing legacy applications, the symmetric heap
created from the default partition is used for shmem malloc and shmem align
routines. Hence, in this section we analyzed the performance regression specifi-
cally on using the default partition.

Figures 6 and 7 shows the performance of OSU put microbenchmark on using
the source and destination buffers with symmetric heaps created from the fol-
lowing three options on Intel Broadwell and Intel KNL processor based Cray XC
systems respectively:

12 N. Namashivayam et al.

 0.1

 1

 10

20 22 24 26 28 210 212

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

Block size in Bytes

Growable Symmetric Heap

SMA-SYMMETRIC-SIZE

SMA-SYMMETRIC-PARTITION1

SMA-SYMMETRIC-PARTITION2

Fig. 6. Performance of OSU put microbenchmark on Cray XC system with intel broad-
well processors using source and destination buffers allocated on symmetric heaps cre-
ated from different options

– Symmetric heap created with the size determined from SMA SYMMETRIC SIZE
environment variable;

– Symmetric heaps on partitions defined using SMA SYMMETRIC PARTITION envi-
ronment variable; and

– By default in Cray SHMEM, if both SMA SYMMETRIC SIZE and a default par-
tition is not defined, the symmetric heap grows dynamically as needed to a
maximum of 2 GB per PE. We call this Cray specific feature as Growable
Symmetric Heap.

We used 2 PEs with 1 PE per node for this test. From Figs. 6 and 7, we see
that the performance of shmem putmem operation on symmetric heaps created
using the environment variables is almost identical to the growable symmetric
heap in both Intel Broadwell and KNL processor based systems. But, the perfor-
mance on using symmetric heaps from partitions (SMA SYMMETRIC PARTITION2)
other than the default partition (SMA SYMMETRIC PARTITION1) is 5% less on Intel
Broadwell based systems and 7% less on Intel KNL based systems. This per-
formance difference can be attributed to the missing optimizations specific in
controlling the maximum number of memory registrations. These optimizations
can be added and the performance improved on all partitions in future Cray
SHMEM versions.

Symmetric Memory Partitions in OpenSHMEM 13

 1

 10

20 22 24 26 28 210 212

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

Block size in Bytes

Growable Symmetric Heap

SMA-SYMMETRIC-SIZE

SMA-SYMMETRIC-PARTITION1

SMA-SYMMETRIC-PARTITION2

Fig. 7. Performance of OSU put microbenchmark on Cray XC system with intel KNL
processors using source and destination buffers allocated on symmetric heaps created
from different options

7.2 Creating SHMEM MAX PARTITIONS partitions

Creating multiple symmetric memory partitions results in multiple symmet-
ric heaps on each PE. Identifying the correct symmetric segment is essential
before performing an underlying communication operation. Algorithm1 shows
the introduction of lookup logic trying to match the correct symmetric heap
segment on the shmem putmem operation. Similar, lookups are introduced on all
OpenSHMEM RMA and AMO operations. USER SEGMENT refers to the symmet-
ric heaps created on user-defined memory partitions.

We measured the performance regression behind this additional lookup oper-
ation using a modified OSU microbenchmark [4] on a Cray XC system with
Intel KNL processors. We used 2 PEs with 1 PE per node for this test. The
normal OSU microbenchmark selects the buffer from either DATA SEGMENT or
SHEAP SEGMENT per job. We modified the benchmark by creating unique desti-
nation buffer for N partitions and randomly selected the destination buffer from
different partitions for every iteration. We timed the average performance of all
the iterations.

Figure 8 shows the performance difference between using 1 and 6 partitions
on very small data sizes. The average performance variations is around 2% to
3%. This can be attributed as noise. If we increase the number of partitions
to 127, we could see variations as high as 6%. But, we expect users to create

14 N. Namashivayam et al.

 0.9

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

La
te

nc
y

in
 m

ic
ro

se
co

nd
s

Block size in Bytes

1-PARTITION

6-PARTITION

Fig. 8. Performance difference on using destination buffers from 1 partition against 6
partitions in the modified OSU Put microbenchmark on Intel KNL based Cray XC
system using 2 PEs with 1 PE per node

only one partition per memory kind. Moreover, as mentioned in Table 1 the
SHMEMX MAX PARTITIONS library constant in Cray SHMEM is 7.

We observe similar performance variations for small data sizes on other RMA
and AMO operations. For larger message sizes, the segment lookup does not
contribute for any performance variations.

8 Performance Analysis

In Sect. 7, we analyzed the performance impact of creating multiple partitions.
This section provides details on the performance impact of creating partitions
on different kinds of memory. On a Cray XC system, we used a maximum of
64 KNL nodes with 32 PEs per node for this test using Cray SHMEM version
7.6.0. All the KNL nodes are configured with quad-flat mode.

We used ParRes 2D-Stencil SHMEM kernel and analyzed the performance
of defining partitions on different kinds of memory and different page sizes. The
symmetric heap in the 2D-Stencil kernel can fit inside a single kind of memory.
Hence, we just used the default partition with the following configurations:

– NORMALMEM(DDR) with page size 4K;
– NORMALMEM(DDR) with page size 64M;

Symmetric Memory Partitions in OpenSHMEM 15

ALGORITHM 1. Lookup logic with N symmetric memory partitions per PE

procedure shmem putmem(void *dest, const void *src, size t nblks, int pe id);
dmapp seg desc t *target seg = NULL;
dmapp type t type = DMAPP BYTE;
if (dest.segment ≡ DATA SEGMENT) then
target seg = DATA SEGMENT;
// verify if dest buffer is a static or global variable

else if (dest.segment ≡ SHEAP SEGMENT) then
target seg = SHEAP SEGMENT;
// verify if dest buffer is in default symmetric heap

else
segment identified = false;
for (int i = 1; i ≤ N; i++) do

if (dest.segment ≡ USER SEGMENT i) then
target seg = USER SEGMENT i);
segment identified = true;

if (segment identified ≡ false) then
abort();

// search through all partitions to match the symmetric heap

dmapp put(dest, target seg, pe id, src, nelems, type);
return;

end procedure

– FASTMEM(MCDRAM) with page size 4K; and
– FASTMEM(MCDRAM) with page size 64M

From Fig. 9, we see that using MCDRAM provides around 23% better perfor-
mance compared against using DDR. But, for this particular benchmark there
is no performance impact on using different page sizes.

9 Related Work

The need for utilizing different kinds of memory in upcoming system archi-
tectures is not specific to OpenSHMEM. OpenMP [15] Affinity subcommittee
proposes changes for memory management [2] support for future architectures.
Similarly Cray MPICH, an optimized MPI implementation for Cray systems
have improvised the functionality of MPI Alloc mem routine for allocating the
requested memory size on user-determined memory kind. Kandalla et al. [11] pro-
vides detailed explanation on the performance benefits of using different memory
kinds with MPI Alloc mem on real world applications WOMBAT and SNAP.

Similarly, the concept of creating multiple symmetric heaps in OpenSHMEM
is not unique to the proposal introduced in this paper. Welch et al. [17] pro-
poses Teams and Memory Spaces in OpenSHMEM. OpenSHMEM Teams are PE

16 N. Namashivayam et al.

 100000

 1e+06

 1e+07

25
6

51
2

10
24

20
48

M
F

LO
P

S
/s

NUmber of PEs

kind=DDR pgsize=4K

kind=DDR pgsize=64M

kind=MCDRAM pgsize=4K

kind=MCDRAM pgsize=64M

Fig. 9. Performance difference on using different kinds of memory and different
hugepages on ParRes 2D-Stencil SHMEM kernels

subsets and Memory Spaces are team-specific symmetric heaps. Cray SHMEM
already supports OpenSHMEM Teams [13] as SHMEMX prefixed features. With
the introduction of symmetric memory partitions, it is logical to understand the
possibilities of combining memory partitions as part of OpenSHMEM Teams
and introduce multiple symmetric heaps on each partition in the form of Mem-
ory Spaces.

10 Conclusion

In this paper, we described our study on the need for changes in the existing
OpenSHMEM memory model to enable users in utilizing the different avail-
able kinds of memory on emerging tiered memory architectures. We motivated
this change by illustrating the missing features in OpenSHMEM for supporting
Intel KNL processors with different memory configurations. Using a new feature
in OpenSHMEM called Symmetric Memory Partitions, we then proposed the
runtime changes with its associated new routines for supporting different kinds
of memory. We implemented symmetric memory partitions on Cray SHMEM as
SHMEMX prefixed features without breaking backward compatibility and creating
performance regression. We validated our implementation with ParRes kernels
on Intel KNL processors, for which we received a close to 23% improvements on
using MCDRAM compared to using DDR for the symmetric heap.

Symmetric Memory Partitions in OpenSHMEM 17

The basic traits proposed in this paper for symmetric memory partitions are
based on our best estimate for supporting emerging tiered memory systems. In
future work, we will build on the proposed feature to support systems with het-
erogeneous memory and include other additional types of memory like persistent
memory and constant memory. Moreover, our early analysis are performed on
kernels with the entire memory fitting into one single kind. In future, we will also
test our implementation on bandwidth bound applications with requirement for
more than one kind of memory.

Acknowledgment. The authors wish to dedicate this paper to deceased Cray Inc.,
employee - David Charles Knaak for his contributions in the design of symmetric mem-
ory partitions to Cray SHMEM. Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the authors and do not necessarily reflect
the views of associated organizations.

References

1. Cray - Message Passing Toolkit. http://goo.gl/Cts1uh
2. OpenMP TR5 - Memory Management Support. https://goo.gl/74yS2C
3. OpenSHMEM specification version-1.3. http://goo.gl/YK2JKD
4. OSU Micro-benchmarks. http://goo.gl/LgMc8e
5. Almasi, G.: In: Padua, D.A. (ed.) Encyclopedia of Parallel Computing (2011)
6. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:

Memkind: An Extensible Heap Memory Manager for Heterogeneous Memory Plat-
forms and Mixed Memory Policies, March 2015

7. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010 (2010)

8. Van der Wijngaart, R.F., Mattson, T.G.: The parallel research kernels. In: 2014
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6,
September 2014

9. Intel Knights Landing. https://goo.gl/QdAG68
10. Intel Xeon Phi Processor “Knights Landing” Architectural Overview. https://goo.

gl/7UfuW2
11. Kandalla, K., Mendygral, P., Radcliffe, N., Cernohous, B., Namashivayam, N.,

McMahon, K., Sadlo, C., Pagel, M.: Current state of the cray MPT software stacks
on the cray XC series supercomputers. In: Cray User Group (CUG) meeting 2017
(2017)

12. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM extensions towards
a future for hybrid programming and heterogeneous computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26428-8 4

13. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM Extensions Towards a
Future for Hybrid Programming and Heterogeneous Computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Cham (2015b). https://doi.org/10.1007/978-3-319-
26428-8 4

http://goo.gl/Cts1uh
https://goo.gl/74yS2C
http://goo.gl/YK2JKD
http://goo.gl/LgMc8e
https://goo.gl/QdAG68
https://goo.gl/7UfuW2
https://goo.gl/7UfuW2
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4

18 N. Namashivayam et al.

14. NVIDIA Corporation: NVIDIA CUDA C programming guide. Version 3.2 (2010)
15. OpenMP Architecture Review Board: OpenMP application program interface ver-

sion 4.5, November 2015. http://goo.gl/MLcVTD
16. ten Bruggencate, M., Roweth, D.: DMAPP: An API for One-Sided Programming

Model on Baker Systems. Technical report, Cray Users Group (CUG), August 2010
17. Welch, A., Pophale, S., Shamis, P., Hernandez, O., Poole, S., Chapman, B.: Extend-

ing the OpenSHMEM memory model to support user-defined spaces. In: Proceed-
ings of the 8th International Conference on Partitioned Global Address Space
Programming Models, PGAS 2014 (2014)

http://goo.gl/MLcVTD

Implementation and Evaluation
of OpenSHMEM Contexts Using OFI Libfabric

Max Grossman1(B), Joseph Doyle2, James Dinan3, Howard Pritchard4,
Kayla Seager3, and Vivek Sarkar1

1 Rice University, Houston, USA
jmg3@rice.edu

2 Carnegie Mellon University, Pittsburgh, USA
3 Intel Corporation, Santa Clara, USA

4 Los Alamos National Laboratory, Los Alamos, USA

Abstract. HPC system and processor architectures are trending toward
increasing numbers of cores and tall, narrow memory hierarchies. As a
result, programmers have embraced hybrid parallel programming as a
means of tuning for such architectures. While popular HPC communica-
tion middlewares, such as MPI, allow the use of threads, most fall short
of fully-integrating threads with the communication model. The Open-
SHMEM contexts proposal promises thread isolation and direct mapping
of threads to network resources; however, fully realizing these potentials
will be dependent upon support for efficient threaded communication
through the underlying layers of the networking stack. In this paper, we
explore the mapping of OpenSHMEM contexts to the new OpenFab-
rics Interfaces (OFI) libfabric communication layer and use the libfabric
GNI provider to access the Aries interconnect. We describe the design of
our multithreaded OpenSHMEM middleware and evaluate both the pro-
grammability and performance impacts of contexts on single- and multi-
threaded OpenSHMEM programs. Results indicate that the mapping of
contexts to the Aries interconnect through libfabric incurs low overhead
and that contexts can provide significant performance improvements to
multithreaded OpenSHMEM programs.

1 Introduction

Over the past decade, the degree of parallelism within high performance com-
puting (HPC) system nodes has increased dramatically through the introduction
of accelerators, such as general purpose graphics processing units (GPGPUs),
and many-core processors, such as the Intel R© Xeon PhiTM processor. Such nodes
are often able to achieve peak performance and resource efficiency only when
programmed using a node-level programming model, such as OpenACC [12] and
OpenMP [15]. At the same time, HPC networking interfaces have also been pro-
visioned to handle communication operations for these large numbers of cores.
These drastic shifts in node-level architecture have left conventional, networking-
centric HPC programming models, such as OpenSHMEM [16] and MPI [10],
c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 19–34, 2018.
https://doi.org/10.1007/978-3-319-73814-7_2

20 M. Grossman et al.

scrambling to provide APIs that are thread-safe, use resources efficiently, and
are scalable enough to support hundreds of threads per process.

A first step, taken by MPI 2.0 in 2003 and soon to be adopted by OpenSH-
MEM, is to make existing HPC communication libraries thread safe. While this
addresses the first-order need for threads to perform communication, this app-
roach presents significant challenges, as interference between threads within the
middleware and within the semantics of the communication model can lead to
significant overheads. For example, in OpenSHMEM’s unordered communication
model, the fence and quiet operations are used to ensure ordering and remote
completion for operations issued by an OpenSHMEM processing element (PE).
When PEs are multithreaded, a fence or quiet performed by any thread will affect
operations performed by all threads. Thus, a deeper level of threading integra-
tion with the communication middleware is needed to provide thread isolation,
enable overlap across threads, and achieve more intelligent resource mapping.

In this work, we focus on the OpenSHMEM communication middleware and
the proposed contexts extension for threading integration [3]. In this paper, we
present an implementation of the proposed OpenSHMEM contexts extension
using the OpenFabrics Interfaces libfabric [14] communication layer and use
this as a vehicle to evaluate the above requirements. We utilize the libfabric
generic networking interface (GNI) provider to interface with the high perfor-
mance Aries1 interconnect. We evaluate our implementation’s performance using
several representative benchmarks and discuss our experiences developing appli-
cations with this new interface, commenting on its programmability and usability
characteristics.

2 Background

The SHMEM programming model was first created by Cray Research for the
Cray (See footnote 1) T3D machine and has subsequently been supported by
a number of vendors across many platforms. The OpenSHMEM specification
was created in an effort to improve the consistency of the library across imple-
mentations and, more importantly, to provide a forum for the user and vendor
communities to discuss and adopt extensions to the SHMEM API.

The OpenSHMEM library provides a single program, multiple data (SPMD)
execution model in which N instances of the program are executed in parallel.

1 Other names and brands may be claimed as the property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other coun-
tries. Software and workloads used in performance tests may have been optimized for
performance only on Intel microprocessors. Performance tests, such as SYSmark and
MobileMark, are measured using specific computer systems, components, software,
operations and functions. Any change to any of those factors may cause the results
to vary. You should consult other information and performance tests to assist you
in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://
www.intel.com/performance.

http://www.intel.com/performance
http://www.intel.com/performance

OpenSHMEM Contexts Using OFI Libfabric 21

Listing 1.1. Proposed OpenSHMEM Contexts API, including examples of contexts
version of point-to-point routines and interprocess synchronization routines.

int shmem_ctx_create(long options, shmem_ctx_t *ctx);
int shmem_ctx_destroy(shmem_ctx_t ctx);
void shmem_ctx_putmem(shmem_ctx_t ctx, void *dest, const void *source,

size_t nelems, int pe);
void shmem_ctx_quiet(shmem_ctx_t ctx);
void shmem_sync_all(void);
void shmem_sync(int PE_start, int logPE_stride, int PE_size, long *pSync);

Each instance is referred to as a processing element (PE) and is identified by
its integer ID in the range from 0 to N − 1. PEs exchange information through
one-sided get (read) and put (write) operations that access remotely accessi-
ble symmetric objects. Symmetric objects are objects that are present at all
PEs and they are referenced using the local address to the given object. By
default, all objects within the data segment of the application are exposed as
symmetric; additional symmetric objects are allocated through OpenSHMEM
API routines. OpenSHMEM’s communication model is unordered by default.
Point-to-point ordering is established through fence operations, remote comple-
tion is established through quiet operations, and global ordering is established
through barrier operations.

Recently, thread safety extensions have been proposed for OpenSHMEM [17].
These extensions provide a shmem init thread routine that can be used to
initialize the library with thread safety enabled. Several thread safety levels are
provided, with the most notable being SHMEM THREAD SINGLE, which disables
thread safety, and SHMEM THREAD MULTIPLE, which enables full thread safety.
The thread safety extension further defines the behavior of the existing API when
used by multiple threads within a PE. In this model, all threads are logically part
of the same PE and synchronization actions, such as fence, quiet, and barrier, are
performed at the level of the PE. Thus, when any thread performs one of these
operations, communication operations performed by all threads are affected.

2.1 OpenSHMEM Contexts

Contexts have been proposed as a means of isolating communication streams,
isolating threads from each other, and improving the mapping of threads to
underlying network resources [3]. The proposed API extension is summarized in
Listing 1.1. Contexts introduce a shmem ctx t object that is passed to com-
munication and synchronization operations. Thus, operations performed on a
given context can be treated separately from those performed on a different
context, enabling isolation and overlap across contexts. In effect, each context
represents a separate ordering and completion environment, enabling the mid-
dleware to efficiently map the communication of different contexts to different
communication resources (e.g. transmit engines, command interfaces, or rails).
While a single PE can utilize multiple contexts, the PE still represents a single

22 M. Grossman et al.

destination (i.e. PE ID) for SHMEM communication operations. Thus, contexts
extend the existing 1 : N communication model, where each PE can generate
one stream of accesses to N targets in the OpenSHMEM global address space,
to an M : N model, where each PE can generate M independent streams of
accesses to N targets.

Contexts versions of the shmem putmem and shmem quiet routines are
shown to illustrate the extension to the point-to-point API. The full proposal
adds contexts version of all point-to-point operations, including put, get, quiet,
fence, and atomic memory operations (AMOs).

2.2 Libfabric

Libfabric (OFI) is a vendor-neutral, open interface for high-performance net-
working applications requiring low latency and high message throughput. The
interface was designed by the OpenFabrics Alliance (OFA) Interfaces Working
Group (OFWIG), with one of the primary goals of this working group being to
define a fabric interface that has a tight semantic map to various applications
that use it, including PGAS programming models.

The initial libfabric API and internal design of libfabric has been previously
described [7]. Libfabric was designed to provide a vendor-neutral client API that
is mapped to a set of providers that implement the communication interfaces for
a particular fabric hardware. In this paper, we take advantage of key libfabric
API features, such as the fine grain transmission context support, to enhance
performance and scalability. The latest version of the API and documentation
are available online [13]. Libfabrics is freely available on Github [14] and is also
distributed via the OpenFabrics Enterprise Distribution (OFED).

Fig. 1. Relationship of libfabric fi domain, fi endpoint, and fi stx context
objects to GNI provider internal gnix nic objects and underlying Aries hardware.
Solid blue lines indicate libfabric objects which are instantiated from a fi domain,
while dashed blue lines indicate objects which are associated via an fi bind operation.
Black lines indicate associations between libfabric upper level objects and lower-level
GNI-provider internal objects and network hardware. (Color figure online)

OpenSHMEM Contexts Using OFI Libfabric 23

2.3 Aries and the GNI Libfabric Provider

The Aries interconnect and the GNI libfabric provider have attributes that lend
themselves to the investigation of performance gains possible using OpenSH-
MEM contexts. The Aries interface supports a large number of fast memory
access (FMA) descriptors that can be used to enable independent issue of RDMA
requests from multiple threads using the same Aries interface. One of the design
goals of the GNI provider is to ensure that threads within a multi-threaded
process can access the FMA descriptor resources with as little contention as
possible [2]. In addition, the Aries interconnect has additional attributes that
make it well suited to investigating extensions to the OpenSHMEM API includ-
ing its ability to offload RDMA transactions and support for an extensive set of
32- and 64-bit atomic memory operations.

For this work, the GNI provider was enhanced to support the libfabric shared
transmission (TX) context (fi stx context) construct. The shared context
enables multiple endpoints to share an FMA descriptor if transmission resources
become scarce. Figure 1 depicts the relationship between libfabric endpoints,
shared TX contexts, and the underlying Aries network hardware.

3 Implementation of Contexts over Libfabric

In our previous work, we described an implementation of OpenSHMEM using the
OpenFabrics Interfaces libfabric communication layer [19]. This implementation
is available as part of the open source Sandia OpenSHMEM (SOS) library [18]
and is referred to as the OFI transport layer. The current OFI transport layer
was designed to support the single-threaded OpenSHMEM 1.3 programming
model; in this work, we extend this layer to support both the proposed thread
safety and contexts extensions.

3.1 Middleware Extensions to Support Contexts

The design of the OFI transport layer with threading and contexts support is
shown in Fig. 2. The fabric domain represents a handle to the fabric and is the
first object created. The OFI transport layer queries libfabric for a domain that
can support the required features, including support for the one-sided FI RMA
and FI ATOMICS capabilities. Thread safety for libfabric routines is provided
by enabling the FI THREAD SAFE attribute on the fabric domain. Libfabric
provides several threading modes; FI THREAD SAFE was selected because it
provides the greatest opportunity for communication parallelism. This mode
requests the provider to ensure thread safety, providing the greatest opportunity
for fine-grain synchronization at the lower levels of the networking stack. Any
other libfabric threading mode would have required SOS to protect calls to
the libfabric API with additional locks. Thread safety for internal state in the
SOS middleware was implemented using POSIX (See footnote 1) mutexes and
separate mutexes are used for each context. Synchronization overheads can be

24 M. Grossman et al.

Fig. 2. Architecture of the multithreaded OFI transport layer with contexts support.

further reduced by replacing mutexes with atomic operations, and we plan to
investigate this as part of future performance tuning.

From the domain, fabric endpoints (EPs) are created. Endpoints can be used
for sending and receiving messages, and the corresponding completion events
can be captured as full events in a completion queue (CQ) or as lightweight
counting events in an event counter (CNTR). The heap and data segments are
registered on the domain and are exposed for remote access through the CQ EP
endpoint. The fabric addresses of the RMA target endpoints are queried and
exchanged using the process manager in order to populate the libfabric address
vector (AV) to provide efficient and scalable translation between OpenSHMEM
PE IDs and fabric addresses. Finally, shareable transmit contexts (STX) are
created and bound to the endpoints, enabling them to be used for transmitting
messages. The STX is “shareable” in the sense that it can be bound to more
than one endpoint.

OFI defines its threading model on a domain basis, which forces all EPs on a
domain to conform to the same threading model. This model can be restrictive
in cases where multiple EPs are bound to an STX, but the application can
guarantee that the EPs are not shared by multiple threads (e.g., by setting the
SHMEM CTX PRIVATE flag on the corresponding contexts). From this work we
have identified this as a potential performance optimization and are investigating
the addition of a synchronization hint on the STX to improve the OFI threading
model.

We introduce context domains as a means for managing the mapping between
OpenSHMEM contexts and fabric resources. Context domains contain the set of
resources needed to support a context; minimally, a context domain contains an

OpenSHMEM Contexts Using OFI Libfabric 25

STX, but it could also be extended to include resources such as bounce buffer
pools, CQs, etc. The maximum number of context domains that can be created
is bounded by the tx ctx cnt attribute on the fabric domain. The maximum
number of contexts per context domain is bounded by the max ep stx ctx
limit. In our current implementation, context domains are created as-needed
and the mapping to contexts is controlled manually. In future work, we plan
to more deeply explore methods for automatic and efficient mapping of context
domains to contexts.

In Fig. 2, we show three context domains each mapped to one context. The
rightmost context represents the default (i.e., SHMEM CTX DEFAULT) context.
Optimizations, such as splitting get/put counting events and bounce buffering
are optional features that can be enabled on a context. For the backwards com-
patibility, these optimizations are all made available on the default context.
For all other contexts, these optimizations are disabled by default to improve
resource utilization. Thus, most contexts are implemented as an EP/CNTR pair
that is bound to the STX of the corresponding context domain.

4 Results

In this section, we present quantitative performance evaluation of the OpenSH-
MEM Contexts implementation described in Sect. 3 and qualitative programma-
bility evaluation of the proposed Contexts API.

4.1 Evaluation Platform

All experiments presented were collected on the NERSC Edison machine. Edison
is a Cray (See footnote 1) XC30 with 2×12-core Intel R© Xeon R© Processors E5-
2695 v2 and 64 GB DDR3 in each node. Edison nodes are connected by the Aries
interconnect. All experiments are run on the libfabric-based implementation of
Contexts in Sandia OpenSHMEM, as described in Sect. 3. All baseline MPI
experiments are run using Cray MPICH 7.4.4. Unless otherwise noted, all tests
with hybrid parallelism are run with one PE per socket and 12 threads per PE.
All tests with flat parallelism are run with one PE per core.

4.2 Micro-benchmarks

As part of this work, we extended Sandia OpenSHMEM’s suite of performance
micro-benchmarks to include multi-threaded, contexts-based implementations of
all existing micro-benchmarks. For simplicity and platform agnosticism, these
multi-threaded benchmarks were written using POSIX (See footnote 1) threads
(referred to as pthreads). The benchmarks implemented measure uni-directional
and bi-directional bandwidth/message rate for blocking and non-blocking puts
and gets. They also measure latencies for blocking and non-blocking puts and gets.

26 M. Grossman et al.

Figure 3 shows the uni-directional put and get rates achieved by contexts-
less and contexts-based microbenchmarks using 1 or 12 pthreads. Contexts-less
multi-threaded tests rely on libfabric for thread safety. Tests were run using two
PEs on two neighboring Edison nodes, with each PE pinned to 12 cores. The
rates for non-blocking puts at transfer sizes where an Aries FMA descriptor is
utilized show similar improvements to those reported when the libfabric API is
used directly [2]. The results obtained for blocking puts are similar owing to a
buffering mechanism used by SOS for puts up to 512 bytes. Transfer sizes of
8 KB and higher show little improvement over the single threaded case as these
are off-loaded to the Aries RDMA block transfer engine (BTE), which introduces
a serialization point.

(a) Blocking Get (b) Blocking Put

(c) Non-Blocking Get (d) Non-Blocking Put

Fig. 3. Uni-directional get and put rate micro-benchmark results, comparing single-
threaded performance with and without contexts with multithreaded performance with
contexts. X-axes show message sizes in bytes and Y-axes show achieved message rate
in messages per second.

The situation is more complicated for get operations as the target buffer
of each get operation must be registered with the Aries device. For very small
transfers of 1 to 3 bytes, the GNI libfabric provider uses a mechanism that
bypasses its internal memory registration cache and the associated lock. Thus the
speedup using contexts for these small transfers is similar to that achieved for put
operations. For four byte and larger transfers, the memory registration lock must
be taken as the libfabric consumer does not supply a local memory descriptor as
part of the call to the libfabric fi read function. To conserve Aries I/O MMU

OpenSHMEM Contexts Using OFI Libfabric 27

resource usage, the GNI provider’s memory registration cache is associated with a
libfabric domain object, rather than the underlying gnix nic objects depicted
in Fig. 1. The need to acquire this lock significantly limits speedup when using
multiple contexts. Note for the single threaded case, performance is significantly
better for non-blocking gets owing to the ability to take advantage of pipelining
requests to the Aries FMA descriptor.

Figure 4 shows the latencies observed for blocking gets and puts, with and
without contexts. In general we observe that using contexts with one thread
shows the same latency as not using contexts at all, which is desirable. The put
latency remains roughly constant as function of thread count, up to the largest
transfer size where bandwidth limitations of the Aries FMA mechanism result
in an increase in latency when using 12 threads and contexts. When using 12
threads and no contexts, contention for locks protecting shared endpoints and
counter resources leads to large increases in latency.

(a) Blocking Get (b) Blocking Put

Fig. 4. Latency micro-benchmark results, comparing single-threaded performance with
and without contexts with multithreaded performance with contexts. X-axes show
message size in bytes and Y-axes show latency in microseconds.

These micro-benchmark results illustrate the performance benefits of con-
texts that previous work [3] has also shown: contexts significantly improve
network utilization at small and medium transfer sizes, particularly for put
operations. Get transfer rates could be improved either by enhancements to
the GNI libfabric provider or by modifying Sandia OpenSHMEM to use pre-
registered temporary buffers as the destination for small gets to avoid registra-
tion overheads.

4.3 Graph500

Graph500 is an end-to-end benchmark intended to stress the ability of computing
systems to support irregular accesses. In this work, we focus specifically on the
breadth-first search kernel of the Graph500 benchmark, which traverses a large
and randomly generated directed graph. We evaluate two implementations of
the BFS kernel using OpenSHMEM Contexts:

28 M. Grossman et al.

1. Put-Based: The Put-Based Graph500 implementation partitions vertices of
the graph evenly across PEs. A logically global vertex array is partitioned
across PEs in their symmetric heaps, where each slot in this global array is
an integer that indicates whether the corresponding vertex has been traversed.
At each wavefront of the BFS, vertices in the next wavefront are signaled by
performing individual puts to the PE that owns those vertices.

2. Atomics-Based: The Atomics-Based G500 implementation is similar to Put-
Based. However, the global vertex array is instead a bit vector. Signals are sent
using atomic bitwise OR operations, rather than puts. This has the benefit of
reducing total number of bytes sent, but has the downside of requiring atomic
operations.

Figure 5 compares the Put-Based and Atomics-Based G500 implementations
against existing OpenSHMEM baselines [6] and reference MPI implementations,
performing weak scaling experiments from 8 to 64 Edison nodes. The refer-
ence MPI Simple implementation fails to scale to 16 nodes. This is expected, as
it is intended to be an example of a readable, easy-to-understand Graph500
implementation, but not a well-performing one. The MPI Replicated imple-
mentation, on the other hand, is a hybrid OpenMP+MPI implementation that
performs better than all other implementations out to 64 nodes. However, we
note that the MPI Replicated implementation is not considered readable; that
is, the code structure does not algorithmically reflect the breadth-first search
(BFS) operation it implements. Additionally, the scalability of MPI Replicated
to larger datasets is questionable. First, it contains a single MPI Allreduce
as its only form of computation, hence there is no opportunity for asynchrony
or computation-communication overlap. Second, MPI Replicated stores a data
structure in each rank whose size scales linearly with the number of vertices in
the graph. Larger graphs would hence trigger out-of-memory errors. It is also
important to note that as the MPI implementations are run using Cray MPICH
7.4.4, this is not entirely an apples-to-apples comparison.

As described in previous work [6], the OpenSHMEM Checksummed imple-
mentation is message-based and to some extent inspired by the MPI Simple
implementation. While it outperforms both the Put-Based and Atomics-Based

Fig. 5. Graph500 BFS kernel execution time

OpenSHMEM Contexts Using OFI Libfabric 29

implementations, it suffers from similar maintainability, readability, and pro-
grammability issues as the MPI Replicated implementation.

On the other hand, the code structure of Put-Based and Atomics-Based
implementations is much more faithful to the algorithmic structure of BFS. As
a result, the RDMAs performed are more fine grain because they model com-
munication along individual edges in the graph. This is exactly the type of
communication pattern that generally leads to drastic underutilization of net-
works. Without OpenSHMEM Contexts, these algorithmically-elegant but gen-
erally inefficient communication patterns would not be feasible.

To demonstrate this, we ran two additional experiments. First, we com-
pare running the Atomics-Based implementation with one PE per socket and
12 threads per PE vs. 2 PEs per socket and 6 threads per PE, to see how a
reduction in intra-PE parallelism affects performance. We found that using 1
PE per socket ran ∼1.5–2× faster as a result of having more state stored in each
PE, reducing redundant cross-PE atomics. Hence, hybrid parallelism enables
higher performing Graph500 implementations through the elimination of redun-
dant communication.

Second, we ran the multi-threaded Atomics-Based implementation while rely-
ing on runtime-managed thread safety. We keep 1 PE per socket and 12 threads
per PE, and compare between giving each thread its own private context vs.
simply configuring the runtime as SHMEM THREAD MULTIPLE. In these tests,
we observed that relying on runtime-managed thread-safety led to a slowdown
of up to 4×, relative to using contexts.

Therefore, we desire hybrid parallelism in Graph500 and similar benchmarks
that exhibit large amounts of small or medium sized communication. However,
without contexts, contention between multiple threads within the OpenSHMEM
runtime prevents this performance improvement from being realized.

4.4 HPC Challenge Random Access Benchmark

The HPC challenge random access benchmark [9], referred to as the Giga-
Updates Per Second (GUPS) benchmark, stresses the ability of a system to
perform random memory accesses by performing atomic bitwise XOR updates
on a distributed hash table. OpenSHMEM implementations of GUPS that are
compliant with the latest ratified specification (OpenSHMEM v1.3) use a get-
modify-put pattern to imprecisely emulate bitwise atomic XORs.

In this work, we contribute an OpenSHMEM GUPS implementation based on
the APIs in the recently ratified bitwise atomics proposal and show how hybrid
programming with OpenSHMEM Contexts improves its performance. We com-
pare two implementations of GUPS: one which is compliant with OpenSHMEM
v1.3 and uses a GET, a local bitwise XOR, and a PUT to emulate bitwise atom-
ics, and another which uses the recently ratified bitwise atomics APIs to natively
perform the atomic operation.

30 M. Grossman et al.

For both versions of GUPS, we perform three experiments:

1. Flat OpenSHMEM: We run one OpenSHMEM PE per core.
2. Hybrid OpenSHMEM w/Pthreads: We run one OpenSHMEM PE per socket,

and run one pthread per core. Each pthread issues atomic updates, gets,
or puts (depending on the implementation of GUPS being executed). The
OpenSHMEM runtime is configured in thread-safe mode.

3. Hybrid OpenSHMEM w/Pthreads and Contexts: Same as the above, but each
pthread has a private context to which it issues OpenSHMEM operations.

Our GUPS experiments are run with a total main table size of ∼500 M words
on 16 nodes.

Table 1 demonstrates that the newly ratified bitwise atomics produce a dras-
tic jump in performance, yielding a 2.80× performance improvement when run-
ning Flat OpenSHMEM compared to the Gets/Puts-based implementation (rows
1 and 4). When using pthreads without contexts we see the performance cost
of purely runtime-managed thread safety with a 14× slowdown when moving
from Flat OpenSHMEM with Bitwise Atomics to Hybrid OpenSHMEM with
Bitwise Atomics. This slowdown can be attributed primarily to the serialization
of accesses to the Aries network AMO hardware when only a single libfabric
endpoint is used. However, using contexts allows us to regain that performance
plus an additional 1.27× improvement over flat parallelism with bitwise atomics,
resulting in a speedup of 3.55× over the baseline.

Table 1. GUPS execution time and speedup relative to the shmem long g/p-based
implementation.

API used Pthreads used? Contexts used? Time (s) Speedup

Gets/Puts No No 60.31 1.00×
Gets/Puts Yes No 1042.66 0.06×
Gets/Puts Yes Yes 330.08 0.18×
Bitwise atomics No No 21.58 2.80×
Bitwise atomics Yes No 306.23 0.20×
Bitwise atomics Yes Yes 16.97 3.55×

4.5 Mandelbrot

Mandelbrot is a multithreaded benchmark that computes the complex-plane
points that are members of the Mandelbrot set. The Mandelbrot implementation
used in this paper allows the user to either disable the use of contexts, use
contexts for multi-threading, or use contexts in a pipeline. It is also possible to
select between blocking and non-blocking OpenSHMEM APIs. We will explore
all of these parameters and their effect on performance.

Table 2 shows the performance of Mandelbrot at various runtime configura-
tions, varying whether blocking or non-blocking APIs are used and how contexts

OpenSHMEM Contexts Using OFI Libfabric 31

are used in the application. In particular, we note that going from no contexts to
using contexts for multi-threading generally yields a ∼2× performance improve-
ment, with pipelining yielding another incremental improvement in performance.

Table 2. Mandelbrot Performance

Blocking APIs? Contexts? Execution time (sec) Speedup

Yes No 1, 285.27 1.00×
Yes For multithreading 612.13 2.10×
Yes Pipelined 592.56 2.17×
No No 1, 487.10 0.86×
No For multithreading 635.34 2.02×
No Pipelined 608.20 2.11×

4.6 Pipeline Example

We take this benchmark from the OpenSHMEM Contexts proposal itself. This
benchmarks demonstrates the use of contexts in a single-threaded C program
that performs a summation reduction where the data contained in input arrays
on all PEs is reduced into the output arrays on all PEs. The buffers are divided
into segments and processing of the segments is pipelined. Contexts are used to
overlap an all-to-all exchange of data for segment p with the local reduction of
segment p − 1.

For these experiments, we perform a reduction on a 16 M element array with
staging segments of 4 K elements, using 4 Edison nodes. When running the single-
threaded pipeline example without contexts we observed a mean execution time
of 7.80 s, versus 6.94 s with contexts (a 12.4% improvement).

4.7 Application Development Discussion

It is important to consider the programmability and usability of any new API
being considered for inclusion in the OpenSHMEM specification. While achieving
high network utilization is important, the fact is that without usable abstractions
it would not be possible to develope large scientific and analytics applications
using OpenSHMEM. In our experiences developing these benchmarks on Open-
SHMEM we noted several items of interest.

First, contexts enable programmers to write multi-threaded applications with
less boilerplate and fine-tuning by making higher network utilization possible at
smaller packet sizes. This ability to send data at the natural algorithmic gran-
ularity rather than having to manually aggregate and chunk at the application
level leads to significant improvement in the clarity of application code.

Second, because contexts facilitate the use of OpenSHMEM in multi-threaded
applications, an ancillary benefit is that more state is stored in each PE (assum-
ing some global domain is decomposed across PEs). This low latency, zero copy

32 M. Grossman et al.

access to a larger segment of the data domain often leads to improved perfor-
mance, even relative to OpenSHMEM implementations that support fast on-
node data movement.

Third, in our experience working with these benchmarks we did not find
that creating and managing contexts added any significant developer burden.
Admittedly, these are not large applications and so our experiences may not
apply to development of million-line projects. However, we did not find passing
an extra object to communicating routines to be overly burdensome. Addition-
ally, the improvement in composability and network resource partitioning would
particularly benefit large applications and libraries.

5 Related Work

The contexts extension to OpenSHMEM was initially proposed in [3], along
with an implementation of the API using Sandia OpenSHMEM [18] for the
Portals 4 networking layer. They reported performance improvement for two
single-threaded OpenSHMEM applications using contexts to avoid unnecessary
completion of pending operations and to pipeline OpenSHMEM data trans-
fers. Namashivayam et al. have also presented an implementation of the context
extensions for the Aries network using Cray DMAPP as the underlying network
API [11].

An alternative approach to OpenSHMEM threading support was proposed
by ten Bruggencate et al. [1]. This approach registers thread with the OpenSH-
MEM runtime in order provide thread isolation and enhance throughput (see [3]
for a detailed comparison of contexts and thread registration). Weeks et al. [21]
presented results for a set of multi-threaded OpenSHMEM kernels and mini-
apps (SHMEM-MT) using these Cray thread safety extensions. Jost et al. [8]
have presented a more general discussion of multi-threaded OpenSHMEM appli-
cations, including benefits to applications when using a hybrid program model
and enhancements to OpenSHMEM to better support such hybrid applications.

Related work in the Message Passing Interface (MPI) community includes
the MPI endpoints extension [4,20]. MPI endpoints are conceptually similar to
OpenSHMEM contexts in that they allow an MPI implementation to more read-
ily associate individual threads within an MPI process with network resources.
Unlike OpenSHMEM contexts however, endpoints are individually addressable
so as to allow for sending a message to a particular thread in a target MPI
process. There have also been investigations of the performance of MPI-3 RMA
operations using multi-threaded MPI applications and micro-benchmarks [5].

6 Conclusion

Contexts extend OpenSHMEM with a programmable abstraction for low-
latency, high-throughput access to modern HPC networks. Such programming
model primitives are critical as the trend toward multi- and many-core platforms
drives applications to utilize hybrid parallelism. This work described a new and

OpenSHMEM Contexts Using OFI Libfabric 33

portable implementation targeting the OFI libfabric networking layer. Perfor-
mance results demonstrated that this API extension maps well to libfabric and
can provide significant communication efficiency improvements both for single-
and multi-threaded OpenSHMEM applications.

Acknowledgments. This research was funded in part by the United States Depart-
ment of Defense, and was supported by resources at Los Alamos National Laboratory.
This publication has been approved for public, unlimited distribution by Los Alamos
National Laboratory, with document number LA-UR-17-26416.

References

1. ten Bruggencate, M., Roweth, D., Oyanagi, S.: Thread-safe SHMEM extensions.
In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol.
8356, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05215-1 13

2. Choi, S.E., Pritchard, H., Shimek, J., Swaro, J., Tiffany, Z., Turrubiates, B.: An
implementation of OFI libfabric in support of multithreaded PGAS solutions. In:
Proceedings of the 9th International Conference on Parititioned Global Address
Space Programming Models, September 2015

3. Dinan, J., Flajslik, M.: Contexts: a mechanism for high throughput communi-
cation in OpenSHMEM. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, pp. 10:1–10:9. ACM, New
York (2014). http://doi.acm.org/10.1145/2676870.2676872

4. Dinan, J., Grant, R.E., Balaji, P., Goodell, D., Miller, D., Snir, M., Thakur, R.:
Enabling communication concurrency through flexible MPI endpoints. Int. J. High
Perform. Comput. Appl. 28(4), 390–405 (2014)

5. Dosanjh, M.G.F., Groves, T., Grant, R.E., Brightwell, R., Bridges, P.G.: RMA-MT:
a benchmark suite for assessing MPI multi-threaded RMA performance. In: 2016
16th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 550–559, May 2016

6. Grossman, M., Pritchard Jr., H.P., Budimlic, Z., Sarkar, V.: Graph 500 on Open-
SHMEM: using a practical survey of past work to motivate novel algorithmic devel-
opments. Technical report, Los Alamos National Laboratory (LANL) (2016)

7. Grun, P., Hefty, S., Sur, S., Goodell, D., Russell, R., Pritchard, H., Squyres, J.: A
brief introduction to the openfabrics interfaces-a new network API for maximiz-
ing high performance application efficiency. In: Proceedings of the 23rd Annual
Symposium on High-Performance Interconnects, August 2015

8. Jost, G., Hanebutte, U.R., Dinan, J.: Multi-threaded OpenSHMEM: a bad idea?
In: Proceedings of the 8th International Conference on Partitioned Global Address
Space Programming Models, PGAS 2014, pp. 21:1–21:4. ACM, New York (2014).
http://doi.acm.org/10.1145/2676870.2676890

9. Luszczek, P., Dongarra, J.J., Koester, D., Rabenseifner, R., Lucas, B., Kepner, J.,
Mccalpin, J., Bailey, D., Takahashi, D.: Introduction to the HPC challenge bench-
mark suite. Technical report LBNL-57493, Lawrence Berkeley National Laboratory,
March 2005

10. MPI Forum: MPI: A message-passing interface standard version 3.1. Technical
report, University of Tennessee, Knoxville, June 2015

https://doi.org/10.1007/978-3-319-05215-1_13
https://doi.org/10.1007/978-3-319-05215-1_13
http://doi.acm.org/10.1145/2676870.2676872
http://doi.acm.org/10.1145/2676870.2676890

34 M. Grossman et al.

11. Namashivayam, N., Knaak, D., Cernohous, B., Radcliffe, N., Pagel, M.: An evalu-
ation of thread-safe and contexts-domains features in cray SHMEM. In: Gorentla
Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS,
vol. 10007, pp. 163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2 11

12. OpenACC Standards Committee: OpenACC: Directives for Accelerators (2011).
http://www.openacc.org/About OpenACC

13. OpenFabrics Interfaces Working Group: Libfabric Programmer’s Manual. https://
ofiwg.github.io/libfabric

14. OpenFabrics Interfaces Working Group: OFIWG libfabric repository. https://
github.com/ofiwg/libfabric

15. OpenMP Application Program Interface, Version 3.0, May 2008. http://www.
openmp.org/mp-documents/spec30.pdf

16. OpenSHMEM application programming interface, version 1.3, February 2016.
http://www.openshmem.org

17. OpenSHMEM Redmine Issue #218 - Thread Safety Proposal. http://www.
openshmem.org/redmine/issues/218

18. Sandia OpenSHMEM. https://github.com/Sandia-OpenSHMEM/SOS
19. Seager, K., Choi, S.-E., Dinan, J., Pritchard, H., Sur, S.: Design and implementa-

tion of OpenSHMEM using OFI on the aries interconnect. In: Gorentla Venkata,
M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS, vol.
10007, pp. 97–113. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50995-2 7

20. Sridharan, S., Dinan, J., Kalamkar, D.D.: Enabling efficient multithreaded MPI
communication through a library-based implementation of MPI endpoints. In:
Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2014, pp. 487–498. IEEE Press (2014)

21. Weeks, H., Dosanjh, M.G.F., Bridges, P.G., Grant, R.E.: SHMEM-MT: a bench-
mark suite for assessing multi-threaded SHMEM performance. In: Gorentla
Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS,
vol. 10007, pp. 227–231. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2 16

https://doi.org/10.1007/978-3-319-50995-2_11
https://doi.org/10.1007/978-3-319-50995-2_11
http://www.openacc.org/About_OpenACC
https://ofiwg.github.io/libfabric
https://ofiwg.github.io/libfabric
https://github.com/ofiwg/libfabric
https://github.com/ofiwg/libfabric
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openmp.org/mp-documents/spec30.pdf
http://www.openshmem.org
http://www.openshmem.org/redmine/issues/218
http://www.openshmem.org/redmine/issues/218
https://github.com/Sandia-OpenSHMEM/SOS
https://doi.org/10.1007/978-3-319-50995-2_7
https://doi.org/10.1007/978-3-319-50995-2_7
https://doi.org/10.1007/978-3-319-50995-2_16
https://doi.org/10.1007/978-3-319-50995-2_16

Merged Requests for Better Performance
and Productivity in Multithreaded

OpenSHMEM

Swen Boehm(B), Swaroop Pophale, Matthew B. Baker,
and Manjunath Gorentla Venkata

Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN, USA
boehms@ornl.gov

Abstract. A merged request is a handle representing a group of Remote
Memory Access (RMA), Atomic or Collective operations. The merged
request can be created either by combining multiple outstanding merged
request handles or using the same merged request handle for additional
operations. We show that introducing such simple yet powerful semantics
in OpenSHMEM provides many productivity and performance advan-
tages. In this paper, we first introduce the interfaces and semantics for
creating and using merged request handles. Then, we demonstrate with
a merge request that we can achieve better performance characteris-
tics in multithreaded OpenSHMEM application. Particularly, we show
one can achieve higher message rate, a higher bandwidth for smaller
message, and better computation-communication overlap. Further, we
use merged request to realize multithreaded collectives, where multiple
threads co-operate to complete the collective operation. Our experimen-
tal results show that in a multithreaded OpenSHMEM program, the
merged request based RMA operations achieve over 100 Million Mes-
sages Per Second (MMPS). It achieves over 10 MMPS compared to 4.5
MMPS with default RMA operations in a single threaded environment.
Also, we achieve higher bandwidth for smaller message sizes, close to
100% overlap, and reduce the latency by 60%.

Keywords: PGAS · Shared memory · Interoperability

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Govern-
ment retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 35–49, 2018.
https://doi.org/10.1007/978-3-319-73814-7_3

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

36 S. Boehm et al.

1 Introduction

With the evolution of hardware technology and the trend towards fewer but
more capable nodes with thousands of cores and hundreds of hardware threads
per core, applications need to be multithreaded to take advantage of the capabil-
ities. The OpenSHMEM specification committee is discussing various abstrac-
tions, which enables performance for OpenSHMEM program on many threaded
architectures. The thread safety proposal, which defines the safe invocation of
OpenSHMEM interfaces from multiple threads is the first step towards that goal
and is close to be ratified.

The thread safety proposal defines the interaction between threads and
OpenSHMEM interfaces. To provide the necessary semantics for thread
safety, four thread levels are being proposed: SHMEM THREAD SINGLE, SHMEM
THREAD FUNNELED, SHMEM THREAD SERIALIZED, and SHMEM THREAD MULTIPLE.
SHMEM THREAD SINGLE allows for one thread per process and does not define
thread safety on the OpenSHMEM API. The next level SHMEM THREAD FUNNELED
permits processes to have multiple threads but only one of the threads can make
OpenSHMEM calls. Since all calls are expected to be funneled through a single
thread it is the programmer’s responsibility to make certain that all the Open-
SHMEM calls by a process are executed by the same thread. The next level
of thread support is SHMEM THREAD SERIALIZED, which allows processes to have
multiple threads that issue OpenSHMEM calls, but only one OpenSHMEM call
per process can be active at any given time. Since simultaneous calls from two
threads belonging to the same process are not allowed, it limits concurrency avail-
able through the multithreading approach. Finally, the SHMEM THREAD MULTIPLE
level allows processes to have multiple threads and any thread may issue an
OpenSHMEM call at any time, subject to a few restrictions.

Though these semantics enable OpenSHMEM programs to use multiple
threads and thread packages, it does not necessarily translate into performance
advantages and does not provide enough abstractions to take advantage of the
capabilities in the network. Particularly, the modern High-Performance Comput-
ing (HPC) networks provide high message rate and bandwidth with low latency,
often exposing multiple resources to the software stack. To utilize these resources
and parallelism in an optimal way, we need to give the application programmer
a way to provide hints to the communication library, or to provide a way to
expose the available resources in a portable way to the programmer.

To address these bottlenecks, we propose to use merged requests introduced
in [3]. The merged request handle can represent a group of RMA or Atomic oper-
ations. Each of these handles can be progressed and completed independently.
The operations are non-blocking and can be progressed asynchronously; the oper-
ations are posted using a post operation and completed with a wait operation.
The wait operation completes all operations represented by the merge request
handle.

This approach adds minimal complexity to the Application Programming
Interface (API) and the implementation, while providing various advantages
for OpenSHMEM applications. Grouping related RMA operations into a single

Merged Requests for Better Performance and Productivity 37

request offers the ability to isolate different sets of operations, which can be
progressed and completed independently. The requests can be used to assign
independent communication resources to the operations for the merged request,
and thus take advantage of multiple network resources available in modern HPC
networks. Further, this provides the flexibility to achieve a varying granularity of
synchronization. The OpenSHMEM programs can achieve fine-grained comple-
tion and ordering and do not have to rely on the coarse-grained synchronization
provided by quiet, fence, and barrier operations where fine-grained synchroniza-
tion are required. The merge request abstraction also gives the programmer the
flexibility to implement user defined collectives. For example, OpenSHMEM is
still limited to an active set and log of 2 based stride. By using merged requests,
a programmer may achieve a collective communication pattern that may have
an irregular active set. This is different from defining a collective with a loop
as the OpenSHMEM program can achieve communication and computational
overlap, in addition to the simplicity of completing the related operations of the
collective with a single handle.

Our contributions in this paper:

– Define the interfaces and semantics of RMA and Atomic operations with
merge request handle

– Demonstrate that RMA and Atomic operations using merge requests can
achieve higher message rate

– Demonstrate that the merged request abstraction can be used to realize cus-
tom collectives

– Demonstrate that merged requests can be used to achieve performance and
productivity in multithreaded OpenSHMEM

– An in-depth analysis of the implementation of merged requests on a portable
and scalable low level communications library UCX

In Sect. 2, we introduce the non-blocking API with merged handles. In Sect. 3,
we discuss our implementation and the different considerations that had to be
made to make the implementation thread safe. In Sect. 4, we discuss results of the
different micro benchmarks. Related work in this context is covered in Sect. 5.
The highlights of our analysis and our next steps are discussed in Sect. 6.

2 API for RMA and Atomic Operations with Merged
Requests

The proposal for merged requests adds new API functions for explicit non-
blocking RMA to OpenSHMEM. They follow the OpenSHMEM naming con-
vention for RMA operations and add a nbe postfix. These functions return a
handle to request objects. In the case of a merged request, multiple RMA oper-
ations can share the same request. Additionally, operations to test and wait for
completion of the request are added to the OpenSHMEM API.

38 S. Boehm et al.

The new functions for the non-blocking interfaces are explained below.

shmem_NAME_put_nbe (TYPE *target , const TYPE *source ,

size_t nelems , int pe ,

shmem_request_h *request);

shmem_put_SIZE_nbe (TYPE *target , const TYPE *source ,

size_t nelems , int pe ,

shmem_request_h *request);

Just like the regular blocking and implicit non-blocking functions, the put
operations for the explicit non-blocking operations share the same interface, with
the exception that they take a pointer to a request handle as the last parameter.

shmem_NAME_get_nbe (TYPE *target , const TYPE *source ,

size_t nelems , int pe ,

shmem_request_h *request);

shmem_get_SIZE_nbe (TYPE *target , const TYPE *source ,

size_t nelems , int pe ,

shmem_request_h *request);

The get functions follow the same pattern as the put functions.
Additionally we introduce explicit non-blocking functions for the following

atomic operations:

shmem_NAME_swap_nbe (TYPE *target , TYPE value , int pe,

shmemx_request_h *request)

shmem_NAME_cswap_nbe (TYPE *target , TYPE cond , Type value ,

int pe, shmemx_request_h *request)

shmem_NAME_fadd_nbe (TYPE *target , TYPE value , int pe,

shmemx_request_h *request)

The following two functions are to manage outstanding requests:

shmem_request_test (shmem_request_h *request , int *flags);

The request handle is passed in as the first parameter, The second param-
eter is an integer pointer and is set according to the status to the outstanding
operation. It is set to 0 is the operation is still in progress, and to 1 if the oper-
ation is finished. In the case that the operation is completed, the handle is freed
internally and the handle is set to NULL.

shmem_request_wait (shmem_request_h *request);

The wait function takes a pointer to the request handle as its argument and
blocks the execution of the calling context until the operation is completed. In
the case of a multi threaded Processing Element (PE), only the calling thread is

Merged Requests for Better Performance and Productivity 39

blocked. Before the function returns, the request object is freed and the handle
is set to NULL, ready to be used again.

shmem_request_alloc (shmem_request_params_t params ,

shmem_request_h *request);

This function can be used to explicitly allocate a request object. The flags
argument that can be used to pass hints to the runtime. After the successful
allocation, the pointer is not NULL.

shmem_request_free (shmem_request_h *request);

A request can be freed using this function.

shmem_merge_request (size_t count ,

shmem_request_h **requests ,

shmem_request_h *request);

This function can be used to merge multiple requests into a single request.
The input parameters are the number of requests in the input array, a pointer
to the input array and a pointer to the merged request.

3 Implementation

To evaluate the Merge request extensions, we extended OpenSHMEM-X to sup-
port RMA and Atomic operations with merge requests.

OpenSHMEM-X supports the functionality specified by the OpenSHMEM
specification, as well as several extensions. The extensions include support for
thread safety, merge requests, contexts, nonblocking RMA operations and several
collectives. It is derived from the open source reference implementation [1]. The
components in OpenSHMEM-X are shown in the Fig. 1.

OpenSHMEM-X can use Unified Communication X (UCX) [2], Universal
Common Communication Substrate (UCCS), or GASNet as a communication
abstraction. For this work, we leverage UCX and extend it as required. UCX
provides different sets of APIs. UC-Protocols (UCP) is the high level API and
is used by OpenSHMEM-X . Additionally, UCX provides the UC-Transports
(UCT) API, which abstracts the differences of various hardware architectures.
Finally, the service API UC-Services (UCS), provides functionality to write a
portable networking framework.

3.1 Network and Resource Abstraction in UCX

UCX provides two different levels of network abstractions to the applications.
The lower level abstraction, UCT, abstracts a single network device, memory,
and provides basic data transfer primitives. The higher level abstraction, UCP,
combines multiple UCT abstractions, defines the higher level message transfer
protocols, and also provides wire-up and connection management. The details
of the these layers can be found in our previous paper [2,3].

40 S. Boehm et al.

COMMS

GASNet

OpenSHMEM API

Atomics RMA Collectives Utils
Symmetric
Memory

Core Components

Fig. 1. Various components in the OpenSHMEM reference implementation

UCP Contexts: The UCP context defines a memory domain and memory
allocation methods for use with the network interface. A UCT memory domain
represents the memory mapped to a single device. It represents and co-ordinates
the memory allocation, registration, and cleanup of the memory required for
the communication buffers. The UCP context combines multiple UCT memory
domains as required for the programming model. Typically, a single UCP context
is used by a programming model instance. For example, if application is using
both Message Passing Interface (MPI) and OpenSHMEM in the program, there
is one UCP context for Message Passing Interface (MPI) and other for OpenSH-
MEM. This allows each programming model to manage it’s own memory without
interfering with the other.

UCP Worker: The UCP and UCT Worker abstracts the network resources,
which include network endpoints and the interface the endpoint attaches to.
The UCT Worker represents a particular network interface and its attached end
points. The UCP Worker represents a collection of interfaces. It abstracts the
selection of the most efficient interface for the new endpoint and starts the wire-
up of the endpoint. Each UCP Worker can be independently progressed and the
operations on the Worker can be completed independently. If the communication
operations from an application thread are mapped onto a Worker, there is no
need for inter-thread synchronization for completing the communication oper-
ations of the thread. To communicate between the Workers, the UCP Worker
creates the UCP endpoint using UCT endpoints attached to UCT interfaces.
The UCT endpoints represent the connection endpoints of a single device, and
UCP endpoints represents the endpoints of multi device instances used by the
programming models.

Merged Requests for Better Performance and Productivity 41

3.2 Mapping Merged Requests to Resources

As described above, the merged request represents a group of either RMA
or Atomic operations. In OpenSHMEM-X , we provide independent network
resources to the merged requests as available by mapping each merged request
to a separate UCP worker. To reduce the overhead, the UCP Workers are cre-
ated during initialization and maintained in a pool. Workers are mapped to the
merged request, when a merged request is created, and are removed from the
pool. When the merged request is completed by calling shmem request wait(),
the Worker is returned back to the pool. When the network resources (Workers)
on the pool are exhausted, the runtime will start sharing Workers.

3.3 Threads and Merged Requests

By using merged requests higher communication performance can be achieved
in a multithreaded OpenSHMEM program. In our experiments, we map the
communication operations on a thread to a single merged request. Mapping
merged request to independent network resource in OpenSHMEM-X , translates
into a higher message rate and bandwidth (as shown in the results). Further, the
communication operations on the thread can be completed without the need for
inter-thread synchronization.

The mapping between the operations from a thread to a merged request
and a UCP worker is managed through Thread Local Storage (TLS). TLS is not
dependent on library and thus can be used regardless of the programming model
chosen by the application developer. A reference to the Worker associated with
a thread is stored in a thread local variable. This can be one Worker shared by
all threads, a dedicated Worker per thread, or threads can be grouped together
and the thread group shares a Worker. The number of Workers can be controlled
through environment variables. The decision to use TLS adds additional over-
head. The overhead introduced by the additional indirection was measured and
is shown in Fig. 2.

 0.98

 0.985

 0.99

 0.995

 1

 1.005

 1.01

 1.015

 1.02

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

13
10

72

26
21

44

52
42

88

10
48

57
6

La
te

nc
y

no
rm

al
iz

ed
 to

 re
fe

re
nc

e
im

pl
em

en
ta

tio
n

Message size in bytes

OpenSHMEM with TLS

Fig. 2. Shows the difference in the put latency between the vanilla and the TLS imple-
mentation

42 S. Boehm et al.

The data in the graph is normalized to the latency of the reference imple-
mentation. There is a small overhead of less then 2% associated with using TLS,
when the message size is below 8 kB. After this threshold, our experiments show
a reduced latency compared to the standard implementation (without TLS).
For larger messages, the indirection does not play a critical role with respect to
adding latency and we can observe benefits from storing resources local to the
thread.

4 Experimentation and Results

The section evaluates the merged request abstraction and presents the results.
First, we evaluate the message rate, and bandwidth achieved by RMA opera-
tions with merged request. We compare the message rate achieved with multiple
threads and compare it with the messaged rate achieved by multiple PEs. Then,
we evaluate the implementation with Giga Updates Per Second (GUPS) bench-
mark to understand the performance impact on the application benchmark.

Testbed: The experiments were conducted on Turning, a 16-node institu-
tional cluster at Oak Ridge National Laboratory (ORNL). Each node has two
Intel R©Xeon R©E5-2660 processors with 10 physical cores and hyper threading
and 12 GB RAM. The nodes are connected by a InfiniBand network with Mel-
lanox ConnectX-4 EDR IB. For these experiments, the communication does not
cross the switch.

Benchmarks: To measure the latency, bandwidth, and message rate, we used
the extended versions of Ohio State University (OSU) OpenSHMEM Bench-
marks. The extensions include converting the benchmarks to use merged request
API, make OpenSHMEM calls from multiple threads, and use OpenMP threads.

To measure the overlap between communication and the computation, we
modified the MPI benchmark developed to measure the overlap achieved by
nonblocking MPI operations [7]. This benchmark was modified to use OpenSH-
MEM and the merged request API.

4.1 Achieving Higher Message Rate with Merged Request RMA
Operations and Multiple Threads

To establish the overhead of merged request operations, we compare the message
rate of merged request based RMA operations with the default RMA operations
using modified OSU benchmarks. Figure 3 shows the message rate achieved with
single-thread OpenSHMEM PE with merged request and Non-Blocking Implicit
(NBI) put semantics. We observe that the merged request does have a perfor-
mance advantage over RMA operations without explicit request per operation.
This is due to the relaxed semantics of the wait operation, that can return as
soon as the outstanding operation completes.

In the experiment shown in the Fig. 4, we configure the OpenSHMEM pro-
gram with multiple OpenMP threads. The OpenSHMEM program was initialized

Merged Requests for Better Performance and Productivity 43

 0

 1×106

 2×106

 3×106

 4×106

 5×106

 6×106

 7×106

 8×106

 1 2 4 8 16 32 64 12
8

 25
6

 51
2

 10
24

 20
48

 40
96

 81
92

 16
38

4

 32
76

8

 65
53

6

 13
10

72

 26
21

44

 52
42

88

10
48

57
6

M
es

sa
ge

 ra
te

 (M
es

sa
ge

s
pe

r s
ec

on
d)

Message size in bytes

Non-blocking explicit with Merged Request Non-blocking implicit

Fig. 3. Average message rate for a single thread.

 0

 1×107

 2×107

 3×107

 4×107

 5×107

 6×107

 7×107

 8×107

 9×107

 1×108

 1.1×108

 1 2 4 8 16 20 32 40

Ag
gr

eg
at

ed
 M

es
sa

ge
 ra

te
 (M

es
sa

ge
s

pe
r s

ec
on

d)

Number of threads

Aggregate Message Rate

Fig. 4. Aggregated message rate for a multi threaded PE with increasing no. of threads

with SHMEM THREAD MULTIPLE. The RMA operations on each thread was
mapped to a merged request, and merged request was completed with a wait
operation. To measure the message rate, we modified the OSU put benchmark
for this setup.

Figure 4 shows the aggregated message rate of a PE increasing with the
number of threads. For 40 threads, we can observe in the figure, the merged
request achieves over 100 MMPS. Also, we observed in the experiments the
higher message rate could be achieved with the availability of more threads.
Unfortunately, the maximum number of threads on this system was 40 threads
per node.

44 S. Boehm et al.

4.2 Achieving Higher Message Rates for Atomic Operations
with Non-blocking Operations and Merged Request

Merged requests where implemented for some Atomic operations. In this exper-
iment the performance of non-blocking semantics for shmem long fadd nbe is
evaluated with a modified OSU message rate benchmark using fadd. The exper-
iment was run on two nodes with one PE each. The non-blocking functions
achieve an almost 4 times higher message rate.

4.3 Achieving Higher Bandwidth for Smaller Messages
with Merged Request Based RMA Operations
and Multiple Threads

In this experiment, we are measuring the aggregated bandwidth achieved with
multiple threads and merged request based RMA operations. Also, for the exper-
iments a modified version of the OSU OpenSHMEM benchmarks, that was
extended to support multi-threading with OpenMP, was used. The experiments
where conducted on two nodes with one PE placed on each node.

Figure 5 shows the aggregated bandwidth as a function of the message size.
The message size is plotted on the x-axis, and the bandwidth is plotted on the
y-axis. All experiments but the single threaded experiment saturate the network
with a sufficiently large message size. The plot for one and two threads shows
a dip in the bandwidth when the message size exceeds 8 kB. This is due to a
protocol switch in the networking layer. If more than 2 threads are used, the
impact of the protocol switch is mitigated by the additional threads. From the
figure, we can observe that the merged request based RMA operations help to
achieve higher bandwidth for multithreaded OpenSHMEM .

 0

 1×1010

 2×1010

 3×1010

 4×1010

 5×1010

 6×1010

 7×1010

 8×1010

 9×1010

 1×1011

 1 2 4 8 16 32 64 12
8

 25
6

 51
2

 10
24

 20
48

 40
96

 81
92

 16
38

4

 32
76

8

 65
53

6

 13
10

72

 26
21

44

 52
42

88

10
48

57
6

20
97

15
2

Ba
nd

w
id

th
 in

 B
yt

es
/s

ec
on

d

Message size in bytes

1 thread 2 threads 4 threads 8 threads 16 threads 20 threads

Fig. 5. Bandwidth for a single thread as a function of the message size (in bytes)

Merged Requests for Better Performance and Productivity 45

4.4 Communication/Computational Overlap

In the experiment, we measure the overlap achieved by the merged request
based RMA operations using a modified version of the COMB benchmark [7].
The modifications include support for OpenSHMEM and merged request based
RMA operations. The benchmark supports two modes, Post-Work-Wait and
Post-Work-Poll modes of operation. The Post-Work-Wait is used to measure the
largest uninterrupted computation-communication overlap duration, and we use
this mode for the experiments in the paper.

The benchmark has three steps:

– Compute the communication time for a given message size.
– Estimate the work loop which is equivalent to the communication time. The

work loop in our experiments is a busy loop.
– Post the communication operation. Upon return from the communication

operation, the computation/work loop is started. After completion of com-
putation/work loop, the wait is called for the completion of communication
operation.

The overlap is measured by comparing the time to complete step 3 and step 2,
while repeating the step (3) by incrementing the work done until the work in
step 3 is equal to work in step 2.

Figure 6 shows the overlap achieved for small (64 Bytes) and large message
(6 MB) as the work is increased. We can observe that as we increase the work,
the merged request based RMA operations achieve close 100% overlap. For large
message, the experiment measured 99.89% with a computation to communica-
tion ratio of 1.01. For smaller message sizes, the overlap is still close to 90%.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.2 0.4 0.6 0.8 1 1.2 1.4
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

O
ve

rla
p

in
 p

er
ce

nt

Ratio of computation to communication

64 B 16 MB

Fig. 6. Overlap between communication and computation using non-blocking put oper-
ations.

46 S. Boehm et al.

 10

 100

 1000

 10000

 4 8 16 32 64 12
8

 25
6

 51
2

 10
24

 20
48

 40
96

 81
92

 16
38

4

 32
76

8

 65
53

6

 13
10

72

 26
21

44

 52
42

88

10
48

57
6

 0

 20

 40

 60

 80

 100
La

te
nc

y
in

 u
se

c

La
te

nc
y

re
du

ct
io

n
in

 %

Message size in bytes

1 thread
2 threads

4 threads
8 threads

latency reduction

Fig. 7. Latency for put based broadcast using 32 PEs

4.5 Custom Collectives

This section measures the latency of multithreaded collective. In this collective,
multiple threads participate in the same collective. The latency for the multi-
threaded Broadcast is shown in Fig. 7. Here, each thread participating in the
Broadcast sends a part of the buffer. Besides the latency advantages, these cus-
tom collectives are expected to be useful for many-threaded systems such as
Graphical Processing Unit (GPU) based extreme-scale systems [10].

Figure 7 shows the latency of Broadcast as we increase the message size. We
can observe that as number of threads participating in the Broadcast increase,
the latency decreases. For medium and larger size messages the improvement is
significant.

4.6 GUPS

The GUPS benchmark measures the performance of the RMA operations by
determining the number of memory locations that can be randomly updated. In
the context of OpenSHMEM, this is done on the symmetric heap and is using a
read-modify-write operation.

The results can be seen in Fig. 8. The x-axis in the graph is showing the
number of threads per PE, and the y-axis is showing the number of Giga updates.
The benchmark is run with one PE per node with a symmetric heap size of half
of a nodes system memory.

Adding threads to the benchmarks enables an increase in the number of
updates possible. The GUPS are increasing for all benchmark runs with increas-
ing numbers of threads.

Merged Requests for Better Performance and Productivity 47

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 1 2 4 8 16

Ag
gr

eg
at

e
G

U
PS

Number of threads

2 Nodes 4 Nodes 8 Nodes 16 Nodes

Fig. 8. Results for GUPS benchmark using OpenMP and OpenSHMEM with merged
requests

5 Related Work

Other Partioned Global Address Space (PGAS) low level libraries like GAS-
Net [4] and ARMCI [9] provide similar ways to aggregate non-blocking commu-
nication as we do with merged requests. Making it available at the OpenSHMEM
level gives more control to the application programmer to exploit concurrency at
a much finer level. The Message Passing Interface (MPI) 1.0 [6] utilizes communi-
cators which are a logical stream for two-sided communication. For interoperabil-
ity amongst programming models that use threads MPI community has explored
endpoints [5,11] for MPICH that relax the one-to-one relationship between pro-
cesses and threads by generating additional MPI ranks that can be assigned to
threads used in the execution of such models. The MPI endpoints are similar to
the merged request to the extent that it can be used to identify set of resources
that will support independent execution of communication operations. The MPI
2.0 [8] one-sided mechanisms achieve the same using windows. All ranks in the
group have to call MPI Win allocate that returns a window object that can be
used by all processes in the communicator to perform RMA operations. One
significant difference from the approach proposed for OpenSHMEM is that the
endpoints and windows created in MPI are a collective call, which is not the case
for merged requests.

6 Conclusion

In this paper, we demonstrated how merged request abstraction can be used
to achieve productivity and performance for multithreaded OpenSHMEM pro-
grams. The abstractions were implemented in high-performing experimental

48 S. Boehm et al.

OpenSHMEM-X . The results show that implementation can be realized without
incurring overhead (Fig. 4).

The simple yet powerful semantics help achieve higher performance in the
case of multithreaded OpenSHMEM , which we can observe in the various results
shown in the evaluation section. Particularly, we can observe in the results shown
in Fig. 4, we achieve over 100 MMPS. Also, it helps improve the bandwidth uti-
lization for small messages as seen in the Fig. 5. The results of the GUPS bench-
mark are another indicator, that multithreaded OpenSHMEM applications with
merged request operations can greatly improve the performance of applications
(see Fig. 8). Finally, we measured the overlap of computation and communica-
tion, and see that especially for large messages the computation-communication
overlap is close to 100%. Another benefit is the ability to utilize threads in
custom collectives. We demonstrate its use with the implementation of multi-
threaded Broadcast. As shown in Fig. 7 utilizing threads for collective operations
can notably decrease the latency of the operation.

Acknowledgment. This work is supported by the United States Department of
Defense and used resources of the Extreme Scale Systems Center located at the Oak
Ridge National Laboratory.

References

1. OpenSHMEM reference implementation. https://github.com/openshmem-org/
openshmem. Accessed 26 June 2017

2. Baker, M., Aderholdt, F., Venkata, M.G., Shamis, P.: OpenSHMEM-UCX: eval-
uation of UCX for implementing OpenSHMEM programming model. In: Venkata
et al. [12], pp. 114–130. https://doi.org/10.1007/978-3-319-50995-2 8

3. Boehm, S., Pophale, S., Venkata, M.G.: Evaluating OpenSHMEM explicit remote
memory access operations and merged requests. In: Venkata et al. [12], pp. 18–34.
https://doi.org/10.1007/978-3-319-50995-2 2

4. Bonachea, D.: Gasnet specification, v1.1. Technical report, Berkeley, CA, USA
(2002)

5. Dinan, J., Balaji, P., Goodell, D., Miller, D., Snir, M., Thakur, R.: Enabling
MPI interoperability through flexible communication endpoints. In: EuroMPI 2013,
Madrid, Spain (2013)

6. Forum, M.P.: MPI: A message-passing interface standard. Technical report,
Knoxville, TN, USA (1994)

7. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: COMB: a portable bench-
mark suite for assessing MPI overlap. In: 2002 IEEE International Conference on
Cluster Computing (CLUSTER 2002), Chicago, IL, USA, 23–26 September 2002,
pp. 472–475. IEEE Computer Society (2002). https://doi.org/10.1109/CLUSTR.
2002.1137785

8. Li, G., Palmer, R., DeLisi, M., Gopalakrishnan, G., Kirby, R.M.: Formal specifica-
tion of MPI 2.0: case study in specifying a practical concurrent programming API.
Sci. Comput. Program. 76(2), 65–81 (2011). https://doi.org/10.1016/j.scico.2010.
03.007

https://github.com/openshmem-org/openshmem
https://github.com/openshmem-org/openshmem
https://doi.org/10.1007/978-3-319-50995-2_8
https://doi.org/10.1007/978-3-319-50995-2_2
https://doi.org/10.1109/CLUSTR.2002.1137785
https://doi.org/10.1109/CLUSTR.2002.1137785
https://doi.org/10.1016/j.scico.2010.03.007
https://doi.org/10.1016/j.scico.2010.03.007

Merged Requests for Better Performance and Productivity 49

9. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for
distributed array libraries and compiler run-time systems. In: Rolim, J., et al. (eds.)
IPPS 1999. LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999). https://
doi.org/10.1007/BFb0097937

10. Potluri, S., et al.: Exploring OpenSHMEM model to program GPU-based extreme-
scale systems. In: Venkata, M.G., Shamis, P., Imam, N., Lopez, M.G. (eds.) Open-
SHMEM 2014. LNCS, vol. 9397, pp. 18–35. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26428-8 2

11. Sridharan, S., Dinan, J., Kalamkar, D.D.: Enabling efficient multithreaded MPI
communication through a library-based implementation of MPI endpoints. In:
SC 2014: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 487–498 (2014)

12. Venkata, M.G., Imam, N., Pophale, S., Mintz, T.M. (eds.): OpenSHMEM 2016.
LNCS, vol. 10007. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
50995-2

https://doi.org/10.1007/BFb0097937
https://doi.org/10.1007/BFb0097937
https://doi.org/10.1007/978-3-319-26428-8_2
https://doi.org/10.1007/978-3-319-26428-8_2
https://doi.org/10.1007/978-3-319-50995-2
https://doi.org/10.1007/978-3-319-50995-2

Evaluating Contexts in OpenSHMEM-X
Reference Implementation

Aurelien Bouteiller2, Swaroop Pophale1(B), Swen Boehm1,
Matthew B. Baker1, and Manjunath Gorentla Venkata1

1 Oak Ridge National Laboratory, Computer Science and Mathematics Division,
Oak Ridge, USA

pophaless@ornl.gov
2 Innovative Computing Laboratory, The University of Tennessee, Knoxville, USA

Abstract. Many-core processors are now ubiquitous in supercomput-
ing. This evolution pushes toward the adoption of mixed models in
which cores are exploited with threading models (and related program-
ming abstractions, such as OpenMP), while communication between
distributed memory domains employ a communication Application Pro-
gramming Interface (API). OpenSHMEM is a partitioned global address
space communication specification that exposes one-sided and synchro-
nization operations. As the threaded semantics of OpenSHMEM are
being fleshed out by its standardization committee, it is important to
assess the soundness of the proposed concepts. This paper implements
and evaluate the “context” extension in relation to threaded operations.
We discuss the implementation challenges of the context and the asso-
ciated API in OpenSHMEM-X . We then evaluate its performance in
threaded situations on the Infiniband network using micro-benchmarks
and the Random Access benchmark and see that adding communication
contexts significantly improves message rate achievable by the executing
multi-threaded PEs.

Keywords: PGAS · Shared memory · Interoperability

A. Bouteiller and S. Pophale—Contributed equally.
This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-
AC05-00OR22725 with the U.S. Department of Energy. The United States Govern-
ment retains and the publisher, by accepting the article for publication, acknowledges
that the United States Government retains a non-exclusive, paid-up, irrevocable,
worldwide license to publish or reproduce the published form of this manuscript, or
allow others to do so, for United States Government purposes. The Department of
Energy will provide public access to these results of federally sponsored research in
accordance with the DOE Public Access Plan (http://energy.gov/downloads/doe-
public-access-plan).

c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 50–62, 2018.
https://doi.org/10.1007/978-3-319-73814-7_4

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

Evaluating Contexts in OpenSHMEM-X Reference Implementation 51

1 Introduction

OpenSHMEM [5] library specification aims at providing a standard API for
SHMEM libraries to aid portability across different vendor implementations on
different architectures. With behavior and semantics defined for the library API,
OpenSHMEM programs are expected to provide consistent behavior across mul-
tiple platforms. Many high-performance implementations from vendors such as
HPE, Cray, and Intel along with open source implementations by University of
Houston (reference implementation over GASNet) and ORNL (reference imple-
mentation over UCX, OpenSHMEM-X) exist.

As we march towards the exascale era, the new trend in hardware is to
have more capable nodes with multiple levels of concurrency and parallelism. To
utilize these complex systems OpenSHMEM programming model has to evolve
to include support for heterogeneous architectures and hybrid programming.
The first step towards it is to have thread safety as part of the OpenSHMEM
specification that will allow threads representing a PE to make OpenSHMEM
calls.

Fig. 1. Multi-threaded OpenSHMEM memory model

Figure 1 shows the logical evolution of the OpenSHMEM memory model,
where each PE may spawn a number of threads. Since the OpenSHMEM pro-
gramming model does not recognize individual threads as separate entities, any
OpenSHMEM operation initiated by a thread is considered an action of the PE
as a whole. Like the single-threaded PE, threads of a multi-threaded PE may
access the local memory of the PE and the symmetric memory of its PE and
that of any other PE participating in the OpenSHMEM application but cannot
access the local memory of any other PE. The threading model itself is outside
the scope of this work.

The most recent version, 1.3 of the OpenSHMEM specification, does not
define a thread safe API, but the community is having a productive discus-
sion about the appropriate interfaces and semantics that can effectively support
concurrently communicating threads. Multiple designs have been proposed in

52 A. Bouteiller et al.

recent years, and in this paper we evaluate the Contexts proposal by providing
an implementation over IB using the UCX communication library. The paper
also explores the possibility of a multi-threaded PE where individual threads can,
within the bounds of the OpenSHMEM semantics, add another level of concur-
rency to the application thus increasing overlap not only between operations of
the different PEs but also that of the same PE.

In Sect. 2, we give the background on thread safety in OpenSHMEM and
details about the Context proposal as presented to the OpenSHMEM community.
In Sect. 3, we discuss our implementation and the different considerations made
to make the implementation thread safe. In Sect. 4, we discuss the different
benchmarks used to evaluate the implementation and discuss our results. Related
work in this context is covered in Sect. 5. The highlights of our analysis and our
next steps are discussed in Sect. 6.

2 Background

Accompanying the evolution toward many-core architectures, hybrid program-
ming models are becoming increasingly popular and multiple threads play an
ever increasing role in improving the utilization and programmability of modern
High-Performance Computing (HPC) systems.

The OpenSHMEM does not currently have a threading model, thus hybrid
programming (e.g. using OpenMP or OpenACC in OpenSHMEM programs)
is not directly supported. Nonetheless, successful use of OpenACC has been
demonstrated [2], with the limitation that OpenACC calls are restrained to iso-
lated segments in the OpenSHMEM program between shmem barrier all calls.
In contrast to this work, we propose to study the support of threaded Process-
ing Elements (PEs) where individual threads may participate in OpenSHMEM
calls on behalf of a PE. Through the context proposal, hardware resources are
exposed to these threads, which in turn provide concurrency and the ability to
synchronize on a per thread basis.

2.1 Thread Safe API

An earlier proposal from Cray [4] introduced OpenSHMEM extensions for thread
safety which include different levels of threading support similar to those used in
MPI. This proposal has not been incorporated by the OpenSHMEM specification
community as of version 1.3, but the OpenSHMEM standardization committee
is working on integrating these concepts in the standard.

These thread support levels are hierarchical. In lower support levels, the pro-
grammer is responsible for restraining access to authorized threads, or serializing
access to the OpenSHMEM library, according to the supported semantics in that
level. Higher levels expand on the capabilities of the lower levels by relaxing the
allowed concurrency between OpenSHMEM calls. In the highest thread sup-
port level, multithreaded programs may issue concurrent calls to the otherwise
unchanged OpenSHMEM routines.

Evaluating Contexts in OpenSHMEM-X Reference Implementation 53

The first level of thread support is SHMEM THREAD SINGLE and it allows for one
thread per process. The next level SHMEM THREAD FUNNELED , permits processes
to have multiple threads but only one of the threads can make OpenSHMEM
calls, and it is the programmer’s responsibility to enforce that all OpenSHMEM
calls in a process are executed by that thread. The next level of thread support
is SHMEM THREAD SERIALIZED, which permits multiple threads to issue OpenSH-
MEM calls in a PE, but only one OpenSHMEM call per process can be active at
any given time. Since simultaneous calls from two threads belonging to the same
process are not allowed, it limits concurrency available through the multithread-
ing approach. Finally, in the SHMEM THREAD MULTIPLE level, processes may have
multiple threads and any thread may issue a OpenSHMEM call at any time, sub-
ject to a few restrictions. In this latest mode, the OpenSHMEM Specification
would enable hybrid programming with OpenSHMEM, but it would still over-
look other performance important factors such as network resource management.
Modern HPC networks have sophisticated network adapters, often exposing mul-
tiple resources to the software stack. To utilize these resources in a optimal way,
the application programmer needs to be able to provide a “hint” to the com-
munication library about the intended, and potentially exclusive, usage of the
OpenSHMEM interfaces, and the OpenSHMEM interface needs to be expanded
to expose the available resources in a portable way to the programmer.

2.2 Communication Contexts

The context proposal, first fleshed out by Dinan et al. [7], seeks to alleviate
the aforementioned issue with resource allocation, mapping, and sharing. The
context proposal which expands on top of the thread safe API discussed in
Sect. 2.1, introduces a set of new API functions to map contexts onto resources,
and to issue Remote Memory Access (RMA) operations and synchronizations
on a specific context.

Additional RMA operations from the context proposal take the context as
an explicit parameter. They follow OpenSHMEMs API for the function names
and add a ctx qualifier to the function name (e.g., shmem ctx putmem corre-
sponds to shmem putmem). Finally, there are supplementary API functions for
memory ordering using contexts (shmem ctx fence and shmem ctx quiet). The
full semantics of the proposal are outside the scope of the paper; the interested
reader will find details on the proposed API in [7].

Contexts are created using the shmem ctx create function. The user may
indicate at creation time if the context is intended for shared, or exclusive use.
When the context is shared, multiple threads may issue operations concurrently
on the context. In addition to context synchronization targeting explicitly the
context, non-context synchronizations (e.g., shmem quiet, which does not have a
context argument) will synchronize the default context (i.e., the implicit context
in which operations without a context argument operate). When the context is
exclusive, only the calling thread may issue operations on the context, and only
synchronization operations that explicitly target the context affect the ordering,
visibility and completion of posted communication on the context.

54 A. Bouteiller et al.

Thanks to these additional API calls, the context proposal enables several
advantageous usage patterns. Regardless of the number of threads in an appli-
cation, contexts provide the opportunity to finely control and pipeline overlap
of multiple communication. Contexts can in effect be used to provide a fine
control on completion ordering while maintaining the performance benefit of
implicit operations (i.e., sparring the overhead associated with request-based
approaches).

Additionally, RMA operations in one thread can be issued on a separate con-
text, and thereby isolated from RMA operations issued by a different thread on
another context. As we will further discuss in the rest of this paper, supporting
thread safe access to shared network queues and resources can have a significant
impact on communication performance, most notably on latency and injection
rate as locks, atomic operations and memory barriers must be added to the crit-
ical path to ensure consistency across multiple threads. If a context is exclusive,
although the application may issue operations from multiple threads, there is
no need to lock or ensure memory consistency between these threads, therefore
opening an alley for lock-free multithreaded operations.

Last, given the information about the number and nature (private or shared)
of the contexts requested by the application threads, and the number of underly-
ing hardware communication channels, the OpenSHMEM implementation has an
opportunity for optimizing the mapping between contexts and resources to again
minimize the need for serialization and locking. If sufficient hardware resources
are available, locking can be eliminated completely.

3 Implementation

Early evaluation versions of the context proposal have been implemented tar-
geting specific hardware such as Portals, and Cray DMAPP [14]. In this work,
we implement the concepts in a generic fashion in the OpenSHMEM reference
implementation, with the intent of stressing the portability implications of the
proposal when facing a generic interface to access network resources.

To test the proposed extensions to OpenSHMEM, we implemented the con-
text proposal in the OpenSHMEM reference implementation. The reference
implementation can use different conduits to map OpenSHMEM calls onto
network operations. The University of Houston (UH) reference implementa-
tion employs GASNet [3], but the OpenSHMEM reference implementation has
recently been adapted to use UCX as the networking conduit [1].

UCX is a community effort to implement a portable and scalable high perfor-
mance network API framework. UCX supports different HPC networking archi-
tectures and supports RMA operations, active messages, as well as tag match-
ing. UCX provides different sets of APIs. UCP is the high level API, and is used
by our SHMEM implementation. Additionally, UCX provides the UCT API,
which abstracts, at a low level, the differences of various hardware architectures.
Finally, the service API, UCS, provides functionality to write a portable net-
working framework. One of the strong design points in UCX is its emphasis in

Evaluating Contexts in OpenSHMEM-X Reference Implementation 55

providing a close to the metal, yet portable access to network technology. In addi-
tion, a significant effort has been made to make UCX API thread-scalable [11].

The UCP layer provides communication resources called UCP workers. A
worker object has methods for synchronizing and ordering (similar to those pro-
vided by shmem quiet and shmem fence), as well as methods for waiting on
events or memory locations (similar to shmem wait int). Multiple workers can
be created in a process, thereby providing separated access to low level commu-
nication resources. Communication operations are posted in an UCP endpoint;
An endpoint is a local queue for posting operations into a peer to peer channel
between a local and a remote worker. Workers at a target can be individually
addressed by creating different endpoints.

3.1 Per-Context Endpoints

The major difference between the context-extended OpenSHMEM and the reg-
ular UCX OpenSHMEM is the way UCP endpoints are managed. In the regular
OpenSHMEM, one UCP endpoint is created between two PEs. That endpoint
is used to issue all communication and synchronization targeting that PE. With
this design, when multiple thread issue OpenSHMEM calls simultaneously, all
operations are serialized in that unique UCP endpoint; and the cost of thread
consistency (i.e., atomic operations and memory barriers) must be paid on per-
formance critical operations (like shmem int put). In addition, a single UCP
progress entity (a UCP Worker) is created. All threads requiring progress, order-
ing, and synchronization then issue a call to the same Worker object, which again
needs to ensure internal thread safety, and enforces ordering between events that
are not in a deterministic order. For example, a fence issued by one thread may
enforce the order between messages issued in another thread, but without further
user-level thread synchronization, that order is nondeterministic, and enforcing
it is spurious overhead.

In contrast, the context extended implementation creates a supplementary
worker for each calling thread. Every time a thread creates a context, a thread-
specific UCP worker is instantiated on which context synchronization opera-
tions are posted. In addition, supplementary thread-specific endpoints are cre-
ated to issue communication operations. All context communication calls (e.g.,
shmem ctx int put) are then simply remapped to the corresponding UCX call on
the context-specific UCP endpoint. Similarly, synchronization calls are remapped
to the context-specific UCP worker.

The context object contains a reference to the associated worker and array
of context-specific endpoints. Because the context is then passed as an explicit
parameter to all communication and synchronization functions, retrieving the
thread-appropriate worker and endpoints can be implemented without relying
on perhaps expensive thread-local storage (TLS).

56 A. Bouteiller et al.

3.2 Thread/Context Mapping

As of this writing the OpenSHMEM Threads sub-committee is still fleshing out
the context proposal and parts of the interface are still under development. One
such aspect of the proposal that remains a work in progress is the mapping
interface to attach contexts to threads.

The context proposal itself does not necessarily binds contexts and threads. A
single thread may create and use multiple contexts, or a context can be created
shareable, in which case it may be used by multiple threads concurrently, or
transitioned from thread to thread for serial accesses. However, one of the most
promising aspect in terms of performance optimization is for thread-exclusive
contexts, that is, contexts created for the exclusive use of the thread calling the
context creation function.

Our implementation of the proposal uses OpenMP runtime functions to
gather information of the number of threads the application is using. Shared
contexts are mapped onto the default UCX level network resource, i.e., the
thread-safe worker that handles operations posted on the default context, or
using the non-context interfaces. For thread-exclusive contexts, UCX level net-
work resources are allocated on a per thread basis. If the current thread has no
resources assigned to it, when that thread first creates a context, a new UCX
worker is created, and the reference to the worker is stored in both the new
context, and in a global table indexed per thread. Note however that during
communication operations, the appropriate worker resource is obtained from
the context itself, unlike in Cray’s thread hot implementation, thereby sparing
the potentially costly identification of the calling thread and the global lookup
in the shared table.

With this policy, if a thread creates multiple contexts, they will share the
same resource object. This mapping policy may result in under-utilizing avail-
able hardware network resources, if the number of available network hardware
queues is larger than the number of threads in the application. It also results in
over-synchronizing operations issued on multiple context from the same thread,
thereby limiting pipelining opportunities. An alternate strategy would be to
allocate a new UCX worker for every created context, resulting in a workers
potentially outnumbering the available network hardware queues. In this case,
without additional information on the intended usage pattern for the context,
determining which context should share a worker, so that the total number of
created workers is commensurate with the available hardware resources becomes
a difficult problem. A particularly stringent problem arises when one threads cre-
ates many contexts, thereby exhausting exclusive resources and leaving all other
threads to suffer from the performance penalty of using shared resources. A com-
panion proposal to the context interface adds the concept of domains. Domains
represent a way for application codes to express preferences for the bundling of
contexts on the same physical network resources, when sharing becomes nec-
essary. In the current work, contexts are implicitly bundled by calling threads,
as identified by calling OpenMP routines. Using the explicit domain interface
would remove the runtime dependency to OpenMP and support arbitrary thread

Evaluating Contexts in OpenSHMEM-X Reference Implementation 57

libraries (including full-user threads that would not register in system calls).
The domain proposal is currently evaluating exposing to the end-user the num-
ber of available hardware queues, or on the opposite, obtain from the user the
desired number of logical queues and their sharing dependencies, which would
then inform the communication driver mapping (such a feature is available in
UCX).

4 Experimentation and Results

The experiments were conducted on a 16 node cluster at Oak Ridge National
Laboratory (ORNL). Each node has two Intel R©Xeon R©E5-2660 processors with
10 physical cores and hyper threading, a Mellanox ConnectX-4 VPI adapter card,
EDR IB (100 Gb/s) and 12 GB RAM.

To evaluate the implementation of Contexts in OSH-X we use three bench-
marks. These benchmarks create a communication context per thread and all
RMA and atomic operations use an additional parameter to identify the context
used as discussed in Sect. 2.2. This isolates the different threads form each other
and enables efficient resource sharing between threads. These benchmarks are:

1. Message Rate benchmark
We modified the Ohio State University (OSU) [13] OpenSHMEM message
rate benchmark to use communication contexts and OpenMP. Adding support
for OpenMP enabled the benchmark to run in a threaded environment. The
benchmark measures the message rate using put operations with an increasing
number of PEs per compute node.

2. Bandwidth benchmark
This benchmark has been derived by adding per thread bandwidth measure-
ment to OSU [13] OpenSHMEM bandwidth benchmark. We measure the
aggregate bandwidth across all threads of a PE, as well as the average band-
width for individual threads across runs. The benchmark is run with two PEs
on two nodes and records bandwidth of put operations with an increasing
number of OpenMP threads per PE.

3. Random Access benchmark
This benchmarks gives the Giga Updates per second (GUPs) [8] for a given
number of PEs. The problem size (number of updates) is directly propor-
tional to the number of PEs. The OpenSHMEM random access benchmark
is modified such that all updates are made to remote PEs. We run different
problem sizes with increasing number of OpenMP threads per PE with one
PE per node.

4.1 Message Rates

We measure the message rate using shmem put operations. Figure 2 shows the
message rate with an increasing number of threads for PEs using communication
contexts for a one byte transfer size. The overall message rate increases but the

58 A. Bouteiller et al.

Fig. 2. Aggregate and median message rate with increasing threads per PE

aggregated message rate does not level off with the maximum number of threads,
showing potential for an increasing number of threads to achieve higher message
rate. Figure 3 shows the message rate change with increasing message size for
different threads per PE.

Fig. 3. Aggregate message rate (messages per second) with increasing message size for
increasing threads per PE

Evaluating Contexts in OpenSHMEM-X Reference Implementation 59

4.2 Bandwidth

In Fig. 4, we show the median bandwidth achieved across the thread team and the
aggregate bandwidth for increasing number of threads per PE for large messages
(1 MB). From the graph it is evident that it is not difficult to saturate the
network using large message sizes with fewer threads per PE. Figure 5 shows the
bandwidth utilization as a function of transfer size. The graph shows that the

Fig. 4. Bandwidth for the context implementation for a transfer size of 1 MB with
increasing number of threads per PE

Fig. 5. Bandwidth of different threads per PE as a function of the message size

60 A. Bouteiller et al.

benefits of having a multiple threads with independent contexts dwindle as the
transfer size increases. At this point the network becomes the bottleneck.

4.3 Random Access

The OpenSHMEM Random Access benchmark allocates a large remotely acces-
sible table data structure on each PE and updates are made to random locations
at each iteration. We test this benchmark by allocating one PE per node and
then increasing the number of OpenMP threads per PE. Figure 6 shows that,
higher thread counts achieve higher GUPs for the same number of PEs (hence
the same problem size).

Fig. 6. GUPs measurement for different PE and threads/PE combination

5 Related Work

The OpenSHMEM communication context proposal was introduced by [7] with
a prototype implementation on Portals 4 network programming interface. The
proposal was later developed to include Domains; which are a group of contexts
that have the same properties. Another evaluation for Cray was explored in
[9] where they implemented the context and domain concepts over the Cray
DMAPP (Distributed Shared Memory Application) library.

The MPI community has explored endpoints [6,12] for MPICH for hybrid
programming support. The difference in the two proposals is that they generated
additional MPI ranks that could be assigned to threads used in the execution
of such models. The MPI endpoints are similar to context as they also iden-
tify independent set of resources that will support concurrent communication
operations. Other Partitioned Global Address Space (PGAS) low level libraries
like GASNet [3] and ARMCI [10] provide ways to aggregate non-blocking com-
munication. These aggregations can then, by the library, provide independent
resources without user intervention.

Evaluating Contexts in OpenSHMEM-X Reference Implementation 61

6 Conclusions and Future Work

We have implemented the context proposal with a hardware neutral interposition
layer (UCX) in the reference OpenSHMEM implementation. This implementa-
tion creates separate resource pools on a per-thread basis, thereby eliminating
the cost of serializing accesses from multiple threads to a single shared resource.
Our experimental evaluation demonstrates that the design can scale with the
number of threads concurrently issuing communication. Notably, the random
access benchmark performs significantly faster with more threads per PE.

In future works, given the significant advantage shown in the micro-
benchmarks and Random Access benchmark, we expect the performance gain to
permeate to the applications; we would therefore like to extend the evaluation
to more application benchmarks. As we stated in the implementation section,
the mapping of contexts to hardware resources remains an open problem at this
point. Given our experience with UCX, we would like to experiment with the
concept of domains to drive the context mapping onto hardware resources in an
efficient and portable way.

Acknowledgment. This work is supported by the United States Department of
Defense and used resources of the Extreme Scale Systems Center located at the Oak
Ridge National Laboratory.

References

1. Baker, M., Aderholdt, F., Venkata, M.G., Shamis, P.: OpenSHMEM-UCX: evalu-
ation of UCX for implementing OpenSHMEM programming model. In: Gorentla
Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS,
vol. 10007, pp. 114–130. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2 8

2. Baker, M., Pophale, S., Vasnier, J.-C., Jin, H., Hernandez, O.: Hybrid programming
using OpenSHMEM and OpenACC. In: Poole, S., Hernandez, O., Shamis, P. (eds.)
OpenSHMEM 2014. LNCS, vol. 8356, pp. 74–89. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05215-1 6

3. Bonachea, D.: Gasnet specification, v1.1. Technical report, Berkeley, CA, USA
(2002)

4. ten Bruggencate, M., Roweth, D., Oyanagi, S.: Thread-safe SHMEM extensions.
In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol.
8356, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05215-1 13

5. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010, pp. 2:1–2:3. ACM, New York (2010). http://doi.acm.org/10.1145/
2020373.2020375

6. Dinan, J., Balaji, P., Goodell, D., Miller, D., Snir, M., Thakur, R.: Enabling
MPI interoperability through flexible communication endpoints. In: EuroMPI 2013,
Madrid, Spain (2013)

https://doi.org/10.1007/978-3-319-50995-2_8
https://doi.org/10.1007/978-3-319-50995-2_8
https://doi.org/10.1007/978-3-319-05215-1_6
https://doi.org/10.1007/978-3-319-05215-1_6
https://doi.org/10.1007/978-3-319-05215-1_13
https://doi.org/10.1007/978-3-319-05215-1_13
http://doi.acm.org/10.1145/2020373.2020375
http://doi.acm.org/10.1145/2020373.2020375

62 A. Bouteiller et al.

7. Dinan, J., Flajslik, M.: Contexts: a mechanism for high throughput communica-
tion in OpenSHMEM. In: Proceedings of the 8th International Conference on Par-
titioned Global Address Space Programming Models, PGAS 2014, pp. 10:1–10:9.
ACM, New York (2014). http://doi.acm.org/10.1145/2676870.2676872

8. Lawry, W., Wilson, C., Maccabe, A.B., Brightwell, R.: COMB: a portable bench-
mark suite for assessing MPI overlap. In: 2002 IEEE International Conference on
Cluster Computing (CLUSTER 2002), 23–26 September 2002, Chicago, IL, USA,
pp. 472–475 (2002). https://doi.org/10.1109/CLUSTR.2002.1137785

9. Namashivayam, N., Knaak, D., Cernohous, B., Radcliffe, N., Pagel, M.: An evalu-
ation of thread-safe and contexts-domains features in cray SHMEM. In: Gorentla
Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS,
vol. 10007, pp. 163–180. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2 11

10. Nieplocha, J., Carpenter, B.: ARMCI: a portable remote memory copy library for
distributed array libraries and compiler run-time systems. In: Rolim, J., et al. (eds.)
IPPS 1999. LNCS, vol. 1586, pp. 533–546. Springer, Heidelberg (1999). https://
doi.org/10.1007/BFb0097937

11. Shamis, P., Venkata, M.G., Lopez, M.G., Baker, M.B., Hernandez, O., Itigin, Y.,
Dubman, M., Shainer, G., Graham, R.L., Liss, L., Shahar, Y., Potluri, S., Rossetti,
D., Becker, D., Poole, D., Lamb, C., Kumar, S., Stunkel, C., Bosilca, G., Bouteiller,
A.: UCX: an open source framework for HPC network APIs and beyond. In: 2015
IEEE 23rd Annual Symposium on High-Performance Interconnects, pp. 40–43,
August 2015

12. Sridharan, S., Dinan, J., Kalamkar, D.D.: Enabling efficient multithreaded MPI
communication through a library-based implementation of MPI endpoints. In:
SC14: International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 487–498 (2014)

13. The Ohio State University: OSU micro-benchmarks (2016). http://mvapich.cse.
ohio-state.edu/benchmarks/

14. Gorentla Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.): OpenSHMEM
2016. LNCS, vol. 10007. Springer, Cham (2016). https://doi.org/10.1007/978-3-
319-50995-2

http://doi.acm.org/10.1145/2676870.2676872
https://doi.org/10.1109/CLUSTR.2002.1137785
https://doi.org/10.1007/978-3-319-50995-2_11
https://doi.org/10.1007/978-3-319-50995-2_11
https://doi.org/10.1007/BFb0097937
https://doi.org/10.1007/BFb0097937
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
https://doi.org/10.1007/978-3-319-50995-2
https://doi.org/10.1007/978-3-319-50995-2

OpenSHMEM Applications

Parallelizing Single Source Shortest Path
with OpenSHMEM

Ferrol Aderholdt1(B), Jeffrey A. Graves2, and Manjunath Gorentla Venkata1

1 Computer Science and Mathematics Division,
Oak Ridge National Laboratory (ORNL), Oak Ridge, USA

aderholdtwf1@ornl.gov
2 Tennessee Tech University (TTU), Cookeville, USA

Abstract. Single Source Shortest Path (SSSP) is one of the widely
occurring graph problems where the paths are discovered from an origin
vertex to all other vertices in the graph. In this paper, we discuss our expe-
rience parallelizing SSSP using OpenSHMEM. We start with the serial
Dijkstra and Bellman-Ford algorithms, parallelize these algorithms, and
adapt them to the Partitioned Global Address Space (PGAS) program-
ming model. We implement the parallel algorithms using OpenSHMEM
and introduce a series of optimizations to achieve higher scaling and per-
formance characteristics. The implementation is evaluated on Titan with
various graphs including synthetic Recursive Matrix (R-MAT) and small-
world network graphs as well as real-world graphs from Facebook, Twit-
ter, LiveJournal, and the road maps of California and Texas.

1 Introduction

The SSSP problem is a well-studied graph theory problem that is widely used
in many applications across various domains, and has been applied successfully
by many in industry, including Facebook, Google, and others. With its impor-
tance and the value of delivering efficient high performance SSSP results over
billions of documents and locations, fully adapting the algorithms to High Per-
formance Computing (HPC) systems with a performant communication library
is imperative.

Recently, HPC system architectures have been evolving towards both HPC-
centric (i.e., BigCompute) and data-centric (i.e., BigData) workloads. This evo-
lution is directly realized through the use of multiple highly threaded Central
Processing Units (CPUs), multiple compute accelerators, high performing net-
works, and large amounts of hierarchical and heterogeneous memories. By mak-
ing use of system architectures with this composition, HPC systems will be
able to provide fast and accurate results to many data-analytic applications at
increasing scales.

This work focuses on the adaptation of popular SSSP algorithms to the
PGAS programming model with OpenSHMEM. OpenSHMEM is a PGAS pro-
gramming library interface suitable for implementing graph-based algorithms.
c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 65–81, 2018.
https://doi.org/10.1007/978-3-319-73814-7_5

66 F. Aderholdt et al.

This is because of its lightweight semantics and simple interfaces to the under-
lying communication library, which leads to fast communication and Atomic
Memory Operations (AMO). These properties are necessary for deploying a
high performance implementation of graph-based algorithms due to the irregular
structure and poor locality of graphs [1].

The algorithms to be adapted in this work include both the label-setting
approach employed by Dijkstra’s algorithm [2] and the label-correcting approach
used in Bellman-Ford [3,4]. Label-setting algorithms, such as Dijkstra’s algo-
rithm, will calculate a correct minimum distance value and set this to a partic-
ular vertex before moving to the next vertex. That is to say, once a path from
the source vertex to a particular vertex has been found, it is guaranteed to be
the shortest path, and so, these algorithms can be thought of as only visiting a
vertex once. With respect to label-correcting algorithms, such as Bellman-Ford,
vertices may be visited iteratively while continually updating distance values
until convergence has been reached. These algorithms give us two primary and
differing methodologies to explore. While parallelizing these algorithms for Open-
SHMEM, we have identified and demonstrated multiple optimizations that can
be made to these algorithms to further their scalability.

This paper is organized as follows: Sect. 2 presents related work. The neces-
sary background to this work is presented in Sect. 3, which includes a discussion
on the serial version of Dijkstra’s algorithm and the Bellman-Ford algorithm.
We discuss our parallelization of these algorithms in Sects. 4 and 5, respectively,
and follow this discussion with an experimental evaluation in Sect. 6. Finally, we
offer our conclusions in Sect. 7.

2 Related Work

There has been a considerable amount of work on the parallelization of both
Dijkstra’s algorithm and the Bellman-Ford algorithm for solving the SSSP prob-
lem. The majority of this work is (i) Message Passing Interface (MPI)-based or
(ii) Graphics Processing Unit (GPU)-based.

With respect to (i), there are multiple works focusing on either Dijkstra’s or
Bellman-Ford’s SSSP algorithm in MPI. Edmonds et al. [5] adapted multiple ver-
sions of Dijkstra’s algorithm including the modifications by Crauser et al. [6] and
Eager Dijkstra [7] into the Parallel Boost Graph Library (Parallel BGL). In [8],
the authors developed a MapReduce library using a thin-MPI layer and adapted
the Bellman-Ford algorithm for their library. Cahkaravarthy et al. [9] derived a
hybrid algorithm for SSSP that is a combination of Bellman-Ford and the Delta-
Stepping SSSP algorithm [10], where the algorithm initially uses Bellman-Ford
for several iterations before switching to a Delta-Stepping approach. This app-
roach was used in order to lower the required amount of relaxations per iteration,
which increased performance. In [11], the authors developed an algorithm called
Dijkstra Strip-Mined Relaxation (DSMR), which partitions graphs based on a set
of vertices and their remote adjacent vertices called halo vertices. The subgraph
partitions are then taken through three stages of updates: (1) local vertices, (2)
halo vertices, and (3) any local vertices that were updated by halos vertices.

Parallelizing Single Source Shortest Path with OpenSHMEM 67

For (ii), there are several works focused on adapting the SSSP algorithms
to the GPU. Mart́ın et al. [12] took an initial look at parallelizing Dijkstra’s
for CUDA while taking into account the synchronization requirement between
CUDA threads. Davidson et al. [13] developed three general optimizations for
SSSP algorithms, but show the effectiveness of these optimizations with Dijk-
stra’s and Bellman-Ford. The optimizations include Workfront Sweep to deter-
mine the next vertices to execute in an iteration, Near-Far piles in order to
separate near vertices from far vertices, and the bucketing of both near and far
vertices. H-BF [14] is a hybridization of Bellman-Ford that makes use of frontier
propagation as well as edge classification to increase the algorithm’s efficiency
on GPUs.

Our work is different from those listed here as we do not limit the effec-
tiveness of our implementations to smaller scales (i.e., GPU-based solutions)
and, because we make use of OpenSHMEM, our algorithms are capable of tak-
ing advantage of the high performance implementations of OpenSHMEM and
its one-sided communication, allowing us to create both optimized synchronous
and asynchronous implementations.

3 Background

In this section, we review the serial versions of both Dijkstra’s algorithm and
Bellman-Ford.

3.1 Dijkstra’s Algorithm

Dijkstra’s algorithm is one of the best-known solutions to the SSSP problem
for undirected and directed graphs with non-negative weights. It is a greedy
algorithm that identifies the nth vertex nearest to the source on the nth iteration,
with ties broken arbitrarily; when a path to a vertex is identified, it is guaranteed
to be the shortest path. It is for this reason that Dijkstra’s algorithm is often
referred to as a label-setting algorithm.

The algorithm begins by marking the source with a distance of zero and an
initial distance of infinity to all other vertices. On each iteration, the algorithm
identifies the vertex with the smallest marked distance that has not been previ-
ously visited and, after marking it as visited, sets it as the current vertex. Then,
all of the neighbors of the current vertex are considered and a temporary distance
is calculated; the temporary distance is taken to be the distance marked on the
current vertex plus the weight of the edge to the neighbor under consideration.
If the temporary distance is less than that of the currently marked distance, the
marked distance is updated to the temporary distance. The algorithm proceeds
until all vertices have been visited, or all unvisited vertices have a marked dis-
tance of infinity. If an efficient heap data structure is used to identify the next
current vertex on each iteration of the algorithm, Dijkstra’s algorithm can be one
of the most efficient algorithms for solving the SSSP problem. The pseudocode
for this algorithm is shown in Algorithm1.

68 F. Aderholdt et al.

Require: G, a weighted graph
Require: src, a source vertex
1: function Dijkstra(G, src)
2: for v in V (G) do
3: distance[v] ← ∞
4: path[v] ← null
5: Queue.push(v, dst)
6: end for
7: Queue.decrease(src, 0)
8: while Queue is not empty do
9: v ← Queue.pop()

10: for u in Γ(v) do
11: Relax(v, u, edge(v, u))
12: end for
13: end while
14: return distance, path
15: end function

1: function Relax(v, u, e)
2: tmp ← distance[v] + weight(e)
3: if distance[u] > tmp then
4: distance[u] ← tmp
5: path[u] ← v
6: Queue.decrease(u, distance[u])
7: end if
8: end function

Algorithm 1. Serial Dijkstra’s Algorithm

3.2 Bellman-Ford

The Bellman-Ford algorithm discovers the shortest path between a source and
destination vertex on a weighted graph, which may contain positive and negative
edges. The algorithm uses two data structures, which are: (i) a tentative distance
array, distance, and (ii) a predecessor array, path. The tentative distance array
contains the current distance value for a particular vertex. The predecessor array
contains the vertex label of the vertex to be visited prior to this vertex. The
algorithm operates by iterating over each vertex and its edges, relaxing the edges
to adjacent vertices, which may update the distance and predecessor values. This
update occurs if the distance of the vertex and the weight of the edge is less than
the distance of the adjacent vertex. This algorithm can be seen in Algorithm2.

Require: G, a weighted graph
Require: src, a source vertex
1: function BellmanFord(G, src)
2: for v in V (G) do
3: distance[v] ← ∞
4: path[v] ← null
5: end for
6: distance[src] ← 0
7: for k = 1 to |V | − 1 do
8: for v in V (G) do
9: for u in Γ(v) do

10: Relax(v, u, edge(v, u))
11: end for
12: end for
13: end for
14: return distance, path
15: end function

1: function Relax(v, u, e)
2: tmp ← distance[v] + weight(e)
3: if distance[u] > tmp then
4: distance[u] ← tmp
5: path[u] ← v
6: end if
7: end function

Algorithm 2. Serial Bellman-Ford

Parallelizing Single Source Shortest Path with OpenSHMEM 69

4 Parallelization of Dijkstra’s

Each iteration of the main loop of Dijkstra’s algorithm, which identifies the next
closest vertex to the source, must be done in serial. Thus, only the portion of
the algorithm responsible for updating the marked distances on the neighbors
of the current vertex can be parallelized. When mapping Dijkstra’s algorithm
to OpenSHMEM, we have chosen to store only a portion of the priority queue
on the symmetric heap, rather than storing the graph on the symmetric heap.
This enables the number of reads/writes to symmetric memory to be determined
ahead of time, as will be shown shortly. While not all communication networks
are the same, communication is generally an expensive operation, and know-
ing the amount of communication ahead of time can be useful for predicting
performance.

In order to partition the work for Dijkstra’s algorithm, each Processing Ele-
ment (PE) will be assigned a contiguous partition of vertices from the graph.
Each PE will store, in local memory, only those edges in the graph that have
end points within its assigned partition of the vertices. In addition, each PE
will maintain a local priority queue containing only those vertices in its assigned
partition. On each iteration of the main loop of Dijkstra’s algorithm, every PE
will write its locally assigned vertex of minimum marked distance to the sym-
metric heap on some master process (e.g., PE 0). The master process will then
determine and broadcast the vertex with the absolute minimum marked distance
to every PE. At this point, every PE will know the current vertex and the PE
responsible for the current vertex can remove it from its local priority queue.
Then, every PE can continue to execute Dijkstra’s algorithm as normal with
respect to its locally assigned partition of vertices. These modifications can be
seen in Algorithm 3.

It is easy to place an upper bound on the number of times that the PEs
must communicate in our OpenSHMEM version of Dijkstra’s algorithm. It is

Require: G, a weighted graph
Require: src, a source vertex
1: function ParallelDijkstra(G, src, vstart,

vend)
2: for vstart ≤ v ≤ vend in V (G) do
3: distance[v] ← ∞
4: path[v] ← null
5: Queue.push(v, dst)
6: end for
7: Queue.decrease(src, 0)
8: while Queue is not empty do
9: v ← FindMin(rank)

10: for u in Γ(v) do
11: Relax(v, u, edge(v, u))
12: end for
13: end while
14: return distance, path
15: end function

1: function Relax(v, u, e)
2: tmp ← distance[v] + weight(e)
3: if distance[u] > tmp then
4: distance[u] ← tmp
5: path[u] ← v
6: Queue.decrease(u, distance[u])
7: end if
8: end function

1: function FindMin(rank)
2: p, v ← Queue.peek()
3: put(shared[rank], (p, v), Master)
4: if rank = MASTER then
5: p, v ←min(shared)
6: end if
7: bcast(p, v)
8: if v = Queue.peek() then
9: Queue.pop()

10: end if
11: return v
12: end function

Algorithm 3. Parallel Dijkstra’s Algorithm

70 F. Aderholdt et al.

clear that the maximum number of times that each PE must write its locally
marked vertex of minimum distance to the master process (as well the number
of times that the master process must broadcast the globally marked vertex
of minimum distance) is equal to the number of times that the main loop of
Dijkstra’s algorithm is executed. In the case that all vertices are reachable from
the source vertex, this is precisely equal to the number of vertices in the graph.

4.1 Communication Optimization

A non-trivial amount of communication is required in order to determine the
globally marked vertex of minimum distance. We have found that the most
efficient way of accomplishing this is to have every PE inform a master PE of
their locally marked vertex of minimum distance through the use of symmetric
memory using a non-blocking Put . The master PE then determines the globally
marked vertex of minimum distance, which is then broadcasted to all other PE.
It is possible that, on some PEs, the locally marked vertex of minimum distance
will not change during an iteration of Dijkstra’s algorithm. And so, a PE need
only update the master when the root of the priority queue changes in some
way, hence reducing total communication and related resource contention. From
this point forward, the naive approach shall be referred to as the broadcast (or
BCAST) version, and the attempt to minimize communication will be referred
to as the broadcast with update (or BCAST w/ Update) version.

5 Parallelization of Bellman-Ford

In this section, we will discuss the parallelization of the Bellman-Ford algorithm,
the optimizations that may be made, and the realization of the algorithm with
optimizations in OpenSHMEM.

5.1 Parallel Bellman-Ford Algorithm

Parallelizing the Bellman-Ford algorithm in Algorithm 2 is simplistic due to the
iterative updates of the distance and predecessor values for the graph’s vertices.
Because the algorithm allows for iterative update operations on these values, each
PE can simply iterate over its local set of vertices. Thus, for the parallelization
of the algorithm, we need to focus on two components: (i) the partitioning of
the graph dataset to determine the local set of vertices and (ii) ensuring the
correctness of remote operations. For (i), because the workload is not known
prior to execution, a simple approach to partitioning is to uniformly partition
vertices between PEs. With respect to (ii), ensuring the correctness of local and
remote update operations can be accomplished with OpenSHMEM’s AMOs (i.e.,
compare-and-swap). This algorithm can be seen in Algorithm4.

Parallelizing Single Source Shortest Path with OpenSHMEM 71

Require: G: a weighted partitioned graph
Require: src: a source Vertex
1: function parallelBellmanFord(G, src)
2: for v ∈ local V (G) do
3: distance[v] = ∞
4: path[v] = null
5: end for
6: if src is local then
7: distance[src] = 0
8: end if
9: for k = 1 to |V | − 1 do

10: for v in local V (G) do
11: for u in Γ(v) do
12: Relax(v, u, edge(v, u))
13: end for
14: end for
15: Barrier
16: end for
17: return distance, path
18: end function

1: function Relax(v, u, e)
2: du ← get(distance[u])
3: tmp ← distance[v] + weight(e)
4: if du > tmp then
5: atomic cswap(distance[u], tmp)
6: atomic cswap(path[u], v)
7: end if
8: end function

Algorithm 4. Parallel Bellman-Ford

5.2 Optimizations

In order to further improve the efficiency and scalability of Algorithm4, we
consider three areas of optimizations: the algorithm, the implementation, and
the load balancing between PEs.

5.2.1 Algorithmic Optimizations
Common algorithmic optimizations include: (i) the removal of self-loops from
the graph, (ii) the determination of required work for the next iteration, and
(iii) the ability to determine convergence [13,14].

For (i), self-loop removal reduces unnecessary work performed within the
shortest path calculation. This is possible because a self-loop will never result
in a shorter path. Pruning this edge will reduce the amount of relaxations and
decrease the required memory for the algorithm.

With respect to (ii), during an iteration, a PE is required to call the relax
function on all adjacent vertices to update their distance and predecessor values
if appropriate. However, after the first few iterations, the amount of relaxation
calls resulting in updates decreases, which results in wasted work. Instead, the
use of a distributed queue or array to maintain a list of “active” vertices can
reduce the number of relaxations.

Building on (ii), (iii) allows PEs to determine if they have converged and
finish execution. This is accomplished through collective communication, such
as an all-reduce operation, at the end of an iteration. The use of an all-reduce
also has the benefit of synchronizing the PEs, which allows it to replace the
barrier on line 15 of Algorithm 4.

5.2.2 Implementation Optimizations
Based on Algorithm 4, the algorithm uses two atomic operations to set the
distance and predecessor values. Because the relax function could be called

72 F. Aderholdt et al.

multiple times to update the same vertex, the use of multiple atomic opera-
tions can become expensive with large datasets.

To improve the efficiency of the relax operation, the distance and predecessor
arrays can be merged into a single array with each index corresponding to both
values. This can be implemented with the value of an index being partitioned
such that the predecessor values occupy the upper bits and the distance values
occupy the lower bits. Because the distance value cannot be greater than the
maximum weight of an edge in the graph, this will not greatly restrict the size
of supported graphs.

5.2.3 Load Balancing Optimizations
Without prior knowledge of the possible workload, it is likely that many PEs
will remain idle during the execution of the algorithm assuming a uniformly
distributed graph partitioning. With a synchronous all-reduce operation used
at the end of an iteration as suggested in Sect. 5.2.1, the amount of time a PE
spends idle waiting on the completion of the all-reduce could be large depending
on workload imbalance and the scale of the graph. However, if the PEs were
allowed to operate as work is presented to them (i.e., asynchronous operation),
then PEs will be able to work immediately rather than waiting for the next
iteration. The difficulty with this approach stems in the agreement protocol on
when convergence is achieved.

To determine convergence, a simple first approach is to inform all other PEs
of convergence. More clearly, when a PE is idle, it informs all other PE it is idle
by setting a convergence flag on a shared array. Then the PE will loop over all
other PEs values in the shared array to determine if convergence has occurred.
If convergence has occurred, the PE will proceed to perform the loop again in
order to ensure completion.

5.3 Realizing Parallel Bellman-Ford with OpenSHMEM

To implement the Bellman-Ford algorithm described in Sect. 5.1 with the opti-
mizations discussed in Sect. 5.2, we will discuss the data structures used for the
implementation as well as the graph partitioning and realization of the algorithm.

With respect to the data structures to implement the algorithm, we made
use of four distributed arrays that were allocated on the symmetric heap. The
first two arrays were the tentative distance and predecessor arrays, which were
explained earlier in Sect. 3.2. The last two distributed arrays were related to the
determination of an active PE and active vertices discussed in Sect. 5.2.1.

To perform the graph partitioning, the graph is read in from a file and par-
titioned uniformly among PEs. During this process, each PE adds the vertices
within its partition and their edges. Additionally, the implementation tracks
the in and out edges of a vertex to determine if the vertex is a purely local
vertex (i.e., all in and out edges are local to the PE), which does not require
compare-and-swap operations on the distance or predecessor arrays in order to
maintain correctness. During the relax function, operations on purely local ver-
tices do not make use OpenSHMEM’s communication library and are direct

Parallelizing Single Source Shortest Path with OpenSHMEM 73

assignments. However, if a vertex has a remote edge, then atomic operations are
used to guarantee correctness.

6 Experimental Evaluation

This section provides a detailed evaluation of the algorithms discussed in Sects. 4
and 5. In order to evaluate the efficiency of our algorithms, we compare them
against the well-known and peer-reviewed Parallel BGL [5]. The default version
of Dijkstra’s algorithm in Parallel BGL is based on Crauser et al.’s work [6].
In the case of the Bellman-Ford algorithm, we compare against Parallel BGL’s
implementation of Delta-Stepping with delta set to the maximum weight; this
reverts the Delta-Stepping algorithm to Bellman-Ford [10].

For the remainder of this section, we will discuss the datasets and testbed
used to evaluate our algorithms and present our evaluation using synthetic R-
MAT and small-world network graphs along with real-world graphs from Face-
book, Twitter, and LiveJournal as well as road maps of California and Texas
from the SNAP dataset [15].

6.1 Datasets and Testbed

In order to demonstrate the performance and scalability of the algorithms on dif-
ferent types of workloads, several types of graphs were selected for evaluation. To
evaluate the weak scaling properties of the algorithms, R-MAT and small-world
networks are used. In addition to R-MAT and small-world networks, several
real-world datasets (e.g., Facebook, Twitter, LiveJournal, and road maps) were
taken to explore the strong scaling properties of the algorithms.

The R-MAT graph generator uses recursive matrix partitioning in an attempt
to generate real-world graphs. It is capable of generating both directed and undi-
rected graphs, with weights if desired. Graphs with various real-world properties
can be can be generated including scale-free graphs (i.e., a graph in which the
degree distribution follows a power law), graphs containing communities and
sub-communities, and graphs with small diameters [16].

A small-world network is a graph in which the neighbors of a vertex have a
high probability of being connected by an edge, but the majority of vertices in the
graph are not neighbors of each other. The (global) clustering coefficient tends
to be high, implying the graph contains many cliques/near-cliques. In addition,
the diameter of the graph tends to be small; small-world networks are so named
as they exhibit the small-world phenomenon (i.e., six degrees of separation) [17].

We have selected several real-world graphs to further evaluate the strong scal-
ing capabilities of our algorithm implementations. Graphs of Facebook, Twitter,
and LiveJournal were selected as they represent well-known social media plat-
forms. Graphs of the road networks of California and Texas were selected because
they display characteristics contrary to what is common in many social networks;
social network graphs tend to have small diameters and larger clustering coef-
ficients, while road networks tend to have large diameters and small clustering
coefficients. The details of the real-world graphs can be found in Table 1.

74 F. Aderholdt et al.

Table 1. Real-world graph details

Facebook Twitter LiveJournal Road-CA Road-TX

Vertices 4,039 81,306 4,847,571 1,971,281 1,393,383

Edges 176,468 2,420,766 68,993,773 5,516,784 3,805,842

Clustering coef. 0.6055 0.5653 0.2742 0.0464 0.0470

Diameter 8 7 16 849 1054

The testbed for this evaluation was the Titan system located at the Oak
Ridge Leadership Computing Facility (OLCF). Titan is composed of 18,688 com-
pute nodes containing a single 2.2 GHz AMD Opteron processor and 32 GB of
memory. Each compute node uses the Gemini interconnect for communication.

6.2 Evaluation with R-MAT Graphs

The R-MAT graphs used in our experiments were generated with parameters
a = 0.45, b = 0.22, c = 0.22, d = 0.11. These parameters resulted in an average
vertex degree of 16 for the graphs generated. We made use of the same scaling
parameters for graph generation as the Graph500 benchmark [18]. More clearly,
the number of vertices in the graph is 2n where n is the scale (i.e., a scale of 20
will result in 220 vertices). Strong scaling evaluations were made using R-MAT
graphs with a scale of 20, while the weak scaling evaluations were made using a
range from 16 to 24. Thus, with strong scaling, the algorithm is using a graph
dataset with roughly 1 million vertices and 16 million edges. The weak scaling,
at its largest (i.e., a scale of 24), is a dataset with over 16 million vertices and
over 268 million edges.

The results of strong and weak scaling for parallel versions of Dijkstra’s algo-
rithm are shown in Fig. 1. In the case of strong scaling, it can be seen that adding
more PEs tends to increase the runtime for each of the algorithms. While this
may initially seem counterintuitive, it is due to the fact that there is relatively

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Strong Scaling - R-MAT (Scale=20)

BCAST
BCAST w/ Update

Parallel BGL

(a)

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Weak Scaling - R-MAT

BCAST
BCAST w/ Update

Parallel BGL

(b)

Fig. 1. Scaling for parallel Dijkstra on R–MAT graphs

Parallelizing Single Source Shortest Path with OpenSHMEM 75

little work to be carried out in the main loop of Dijkstra’s algorithm. Since the
degree distribution of the R-MAT graphs follow a power law, the majority of
vertices have very few edges. And so, regardless of the partitioning strategy,
there is not a lot of work that can be distributed to a large number of PEs.
The majority of the PEs sit idle on most iterations of Dijkstra’s main loop, and
synchronization overhead between loop iterations causes the runtime to increase
as PEs are added.

This situation is only exacerbated if the problem size per PE is held constant
and additional PEs are used. As expected, this is due to the additional com-
munication overhead required as the number of PEs increase. From the runtime
results, there appears to be a significant benefit to only updating the master
PE’s view of the local priority queues when the data is changed. This benefit
ranges from roughly 3% to 45% reduction in execution time for the strong scal-
ing experiment when compared to blindly updating the priority queue on every
iteration. Additionally, for weak scaling this benefit ranges from roughly 1% to
33%. This becomes more apparent for larger numbers of PEs as there is more
opportunity to eliminate unnecessary communication.

The results show that Parallel BGL’s implementation of Dijkstra’s algorithm
performs better than our distributed shared memory implementations, specifi-
cally when the number of PEs are between 16 and 1024 for strong scaling and 16
and 4096 for weak scaling. However, if the runtime trends continue, Parallel BGL
will end up performing worse. The reason for this is most likely an unbalanced
workload seen in the R-MAT graphs. As previously mentioned, we distributed
the edges of the graph based on the target vertex of the edges. And so, it is
possible that some PE can be assigned a larger collection of edges than others,
resulting in a load imbalance. Again, this partitioning strategy was chosen in
an attempt to reduce the number of reads and writes to symmetric memory.
Parallel BGL uses a different partitioning strategy, and attempts to distribute
the adjacency list representation of the graph evenly across PEs. This results in
a more balanced workload at the expense of more communication between PEs.

With respect to the evaluation of Bellman-Ford with R-MAT graphs, we will
evaluate three implementations of the algorithms presented in Sect. 5. These
implementations build on each other and begin with (i) bellman-ford composed
of optimizations from prior work, (ii) with the compare-and-swap reduction opti-
mization, and (iii) the asynchronous execution. The result of the strong and weak
scaling evaluation can be seen in Fig. 2.

With respect to the strong scaling characteristics for the Bellman-Ford mod-
ifications, the performance of both the single cswap modification and the asyn-
chronous modification out perform Parallel BGL’s Delta-Stepping algorithm as
more PEs are used to solve the problem. The primary reason for this is the reduced
need for synchronization between PEs. For Parallel BGL, the implementation of
the algorithm that is used requires multiple barriers and all-reduce operations in
order to perform label correction, while the synchronous bellman-ford with a sin-
gle cswap requires only atomics and a single all-reduce. This causes Parallel BGL
to decrease in performance dramatically when using more than 128 PEs.

76 F. Aderholdt et al.

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Strong Scaling - R-MAT (Scale=20)

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(a)

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Weak Scaling - R-MAT

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(b)

Fig. 2. Scaling for Bellman-Ford on R-MAT graphs

For the weak scaling characteristics, the amount of communication required
between PEs in all evaluated versions cause the algorithm execution time to
increase. This is especially true for Parallel BGL after 128 PEs. Prior to this
point, Parallel BGL and the synchronous single cswap are similar with respect
to performance.

Overall, the asynchronous version proves to perform the best of the various
approaches. This is due to the non-uniform layout of edges within the graph as
it follows the power law. This results in a graph with few vertices with many
edges and many vertices with few edges. This causes an unbalanced workload
for the PEs in the job. Because the asynchronous version can perform work
whenever it is possible, it is able to immediately work when work is available.
When compared to Parallel BGL, this results in performance improvement of
between 7% up to 98% in the case of strong scaling and between 24% and 90%
in the case of weak scaling.

6.3 Evaluation with Small-World Networks

We use the Watts-Strogatz model for generating small-world networks with a
rewiring probability of p = 0, which results in a regular graph [17]. We chose
to use small-world networks in addition to R-MAT graphs because small-world
networks have a fixed number of edges per vertex, resulting in uniform workloads.
For our experiments, we employ a scale similar to that of the R-MAT graphs,
and every vertex has 1024 neighbors. Again, we evaluate the strong and weak
scaling characteristics for our algorithms. For strong scaling, we created a small-
world network with a scale of 15. This resulted in a graph with 32 thousand
vertices, each having 1024 edges (i.e., over 33 million edges in total). The weak
scaling were made using a range from 11 to 19. And so, the largest graph used
for weak scaling contained half a million vertices with half a billion edges.

The scaling results for parallel Dijkstra’s algorithm can be seen in Fig. 3. As
with the R-MAT graphs, the addition of PEs causes an increase in runtime. Also,
the BCAST w/ Update continues to perform better than the regular BCAST
algorithm. Unlike the runtime results for the R-MAT graphs, the runtime for

Parallelizing Single Source Shortest Path with OpenSHMEM 77

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Strong Scaling - Small-World Networks (Scale=15)

BCAST
BCAST w/ Update

Parallel BGL

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Weak Scaling - Small-World Networks

BCAST
BCAST w/ Update

Parallel BGL

(b)

Fig. 3. Scaling for parallel Dijkstra on small-world networks

Parallel BGL’s Dijkstra’s algorithm is worse than our OpenSHMEM implemen-
tations. This is probably due to a more balanced workload seen in the small-world
networks, allowing for more active PEs on each iteration of Dijkstra’s algorithm.

The results of the Bellman-Ford experiments can be seen in Fig. 4. With
respect to strong scaling, the synchronous approaches appear to perform more
consistently over all, but do not scale well. This is due to the amount of relax
operations per vertex. Regardless of needing to perform an update during the
relaxation operation, every edge from a vertex must be checked if it is active,
which requires a considerable amount of communication. This limits the scaling
capabilities. However, at each amount of PEs, the Parallel BGL implementa-
tion performed worse than any of the OpenSHMEM versions. Similar results to
the strong scaling experiment can be see with the weak scaling experiment. For
this experiment, what can be seen, with respect to the synchronous approaches,
is that the amount of communication and work stays constant as we increase
the data size. This keeps the performance relatively stable. However, the asyn-
chronous approach suffers from continually checking to determine if all of the
PEs have converged or not.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Strong Scaling - Small-World Networks (Scale=15)

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(a)

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Weak Scaling - Small-World Networks

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(b)

Fig. 4. Scaling for Bellman-Ford on small-world networks

78 F. Aderholdt et al.

Overall, in both scaling experiments, the asynchronous version suffered com-
pared to the results seen in Sect. 6.2. This is due to the balanced workload across
all PEs. In this situation, the synchronous approach has an equal workload and
can quickly perform reduction operations. Thus, it is the preferred method in
balanced workloads.

6.4 Evaluation with Real-World Graphs

In this section, we will present the evaluation of our algorithms with respect
to real-world graphs from Facebook, Twitter, LiveJournal, and road maps for
California and Texas. We will first evaluate our modified Dijkstra’s algorithm
and then Bellman-Ford.

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Dijkstra - Facebook

BCAST
BCAST w/ Update

Parallel BGL

(a) Facebook

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Dijkstra - Twitter

BCAST
BCAST w/ Update

Parallel BGL

(b) Twitter

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Dijkstra - Live Journal

BCAST
BCAST w/ Update

Parallel BGL

(c) LiveJournal

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Dijkstra - Road-CA

BCAST
BCAST w/ Update

Parallel BGL

(d) Road-CA

 0.01

 0.1

 1

 10

 100

 1000

 10000

 100000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Dijkstra - Road-TX

BCAST
BCAST w/ Update

Parallel BGL

(e) Road-TX

Fig. 5. Strong scaling for parallel Dijkstra on real-world graphs

Parallelizing Single Source Shortest Path with OpenSHMEM 79

The strong scaling runtime results for parallel Dijkstra’s algorithm can be
seen in Fig. 5. As before, the addition of PEs increases the runtime for every
algorithm on each of the datasets. The only exception to this is Parallel BGL on
the LiveJournal graphs, in which there is a very small initial reduction in runtime
for 32 and 64 PEs. Our OpenSHMEM based approaches outperform Parallel
BGL’s Dijkstra’s algorithm on all real-world datasets except LiveJournal. Of
the real-world graphs selected, the LiveJournal graph is the most similar to the
R-MAT graphs, with the performance similar to that as seen in Sect. 6.2.

With respect to our modified version of Bellman-Ford, the results of the eval-
uation using real-world graphs can be seen in Fig. 6. The results for the Facebook,

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Bellman-Ford - Facebook

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(a) Facebook

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Bellman-Ford - Twitter

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(b) Twitter

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Bellman-Ford - LiveJournal

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(c) LiveJournal

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Bellman-Ford - Road-CA

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(d) Road-CA

 0.01

 0.1

 1

 10

 100

 1000

 10000

 16 32 64 128 256 512 1024 2048 4096

T
im

e
(S

ec
on

ds
)

Processing Elements

Bellman-Ford - Road-TX

Synchronous
Synchronous + One CSWAP

Asynchronous + One CSWAP
Parallel BGL

(e) Road-TX

Fig. 6. Strong scaling for Bellman-Ford on real-world graphs

80 F. Aderholdt et al.

Twitter, and LiveJournal graphs follow the results seen in Sect. 6.2, where the
workload is unbalanced due to the number of edges each individual vertex has.
This causes the asynchronous approach to perform best for each graph with less
than 512 PEs. With 512 and more PEs, the performance of the asynchronous
approach begins to suffer due to continually checking for convergence.

Like the social media graphs were similar to the R-MAT results, so are the
road maps similar to the small-world network results. In these graphs, 98% of
the vertices contain between one and four edges, which results in a very balanced
workload. From there, it can be seen that the single cswap optimized approach
is the best performing with a 92% performance advantage over the asynchronous
approach with 4096 PEs for the Texas road map.

7 Conclusions

In this paper, we have explored and discussed our adaptation of popular SSSP
algorithms to the OpenSHMEM programming model. We have adapted Dijk-
stra’s algorithm to OpenSHMEM using an update-centric broadcast method and
presented this in Sect. 4. Additionally, we have adapted Bellmen-Ford to Open-
SHMEM presenting a synchronous approach requiring only a single compare-
and-swap during the relaxation of an edge as well as an asynchronous approach
for unbalanced workloads in Sect. 5. We then evaluated all of our adaptations
with R-MAT, small-world networks, and real-world graphs in Sect. 6. We found
through our evaluation that Dijkstra’s algorithm when adapted is difficult to
scale with balanced or unbalanced workloads. Additionally, we have seen results
that suggest a synchronous Bellman-Ford adaptation is more performant for
balanced workloads while an asynchronous approach is better for unbalanced
workloads.

Acknowledgements. This research was sponsored by the Laboratory Directed
Research and Development Program of Oak Ridge National Laboratory, managed by
UT-Battelle, LLC, for the U.S. Department of Energy. Additionally, this research used
resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of
Energy under Contract No. DE-AC05-00OR22725.

References

1. Lumsdaine, A., Gregor, D., Hendrickson, B., Berry, J.: Challenges in parallel graph
processing. Parallel Process. Lett. 17, 5–20 (2007)

2. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numer. Math.
1, 269–271 (1959)

3. Bellman, R.: On a routing problem. Q. Appl. Math. 16, 87–90 (1958)
4. Ford, L.A.: Network flow theory. Technical report P-923, The Rand Corporation

(1956)

Parallelizing Single Source Shortest Path with OpenSHMEM 81

5. Edmonds, N., Breuer, A., Gregor, D.P., Lumsdaine, A.: Single-source shortest
paths with the parallel boost graph library. In: The Shortest Path Problem, Pro-
ceedings of a DIMACS Workshop, Piscataway, New Jersey, USA, 13–14 November
2006, pp. 219–248 (2006)

6. Crauser, A., Mehlhorn, K., Meyer, U., Sanders, P.: A parallelization of Dijkstra’s
shortest path algorithm. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998.
LNCS, vol. 1450, pp. 722–731. Springer, Heidelberg (1998). https://doi.org/10.
1007/BFb0055823

7. Crauser, A., Mehlhorn, K., Meyer, U., Sanders, P.: Parallelizing Dijkstra’s shortest
path algorithm. Technical report, MPI-Informatik (1998)

8. Plimpton, S.J., Devine, K.D.: Mapreduce in MPI for large-scale graph algorithms.
Parallel Comput. 37, 610–632 (2011)

9. Chakaravarthy, V.T., Checconi, F., Murali, P., Petrini, F., Sabharwal, Y.: Scalable
single source shortest path algorithms for massively parallel systems. IEEE Trans.
Parallel Distrib. Syst. 28, 2031–2045 (2017)

10. Meyer, U., Sanders, P.: Delta-stepping: a parallelizable shortest path algorithm. J.
Algorithms 49, 114–152 (2003)

11. Maleki, S., Nguyen, D., Lenharth, A., Garzarán, M., Padua, D., Pingali, K.: DSMR:
a shared and distributed memory algorithm for single-source shortest path prob-
lem. SIGPLAN Not. 51, 39:1–39:2 (2016)

12. Mart́ın, P.J., Torres, R., Gavilanes, A.: CUDA solutions for the SSSP problem.
In: Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot,
P.M.A. (eds.) ICCS 2009. LNCS, vol. 5544, pp. 904–913. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01970-8 91

13. Davidson, A., Baxter, S., Garland, M., Owens, J.D.: Work-efficient parallel GPU
methods for single-source shortest paths. In: 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, pp. 349–359 (2014)

14. Busato, F., Bombieri, N.: An efficient implementation of the Bellman-Ford algo-
rithm for Kepler GPU architectures. IEEE Trans. Parallel Distrib. Syst. 27, 2222–
2233 (2016)

15. Leskovec, J., Krevl, A.: SNAP datasets: Stanford large network dataset collection
(2014). http://snap.stanford.edu/data

16. Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: a recursive model for graph
mining, pp. 442–446 (2004)

17. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature
393, 440–442 (1998)

18. Bader, D.A., Berry, J., Kahan, S., Murphy, R., Riedy, E.J., Willcock, J.: Graph
500 Benchmark Specification 1.2 (2017)

https://doi.org/10.1007/BFb0055823
https://doi.org/10.1007/BFb0055823
https://doi.org/10.1007/978-3-642-01970-8_91
http://snap.stanford.edu/data

Efficient Breadth First Search on Multi-GPU
Systems Using GPU-Centric OpenSHMEM

Sreeram Potluri1(B), Anshuman Goswami1, Manjunath Gorentla Venkata2,
and Neena Imam2

1 NVIDIA Corporation, Santa Clara, USA
spotluri@nvidia.com

2 Computer Science and Mathematics Division,

Oak Ridge National Laboratory, Oak Ridge, USA

Abstract. NVSHMEM is an implementation of OpenSHMEM for
NVIDIA GPUs which allows communication to be issued from inside
CUDA kernels. In this work, we present an implementation of Breadth
First Search for multi-GPU systems using NVSHMEM. We analyze
the benefits and bottlenecks of moving fine-grained communication into
CUDA kernels. Using our implementation of BFS, we achieve up to 75%
improvement in performance compared to a CUDA-aware MPI-based
implementation, in the best case.

1 Introduction

Graphs have been shown to naturally model data sources, relationship between
the data sources, and interactions between them. This has led to graphs being
used to model data produced by a variety of daily-life activities like social net-
work posts and financial transactions. In addition, more voluminous data sources
like sensors that observe neutron scattering or other scientific instruments that
collect weather samples, are also starting to use graphs to model the captured
data. As the set of applications that use graphs to model data grows, the size
of graphs to be processed can vary from millions of vertices to tens of billions of
vertices. Processing graphs with billions of vertices requires systems with large
memory capacity, massive processing power and a high-performance network.

Some of the growing computation and memory needs of graph applications
are addressed by using HPC systems. This trend will accelerate as we move
towards exascale given that the architectures of these systems with petabytes
of memory, processing accelerators, and high-performing networks are better
equipped to efficiently run data-intensive applications. This can be seen with
progressive improvement in the Graph500 results [1]. As the HPC systems with
computing accelerators, particularly with GPUs, are becoming highly common,
many graph algorithms have been successfully adapted for HPC systems with
GPUs [2,3].

Though modern GPU-based HPC systems have been successfully used for
graph applications, using traditional programming models such as MPI for graph
c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 82–96, 2018.
https://doi.org/10.1007/978-3-319-73814-7_6

Efficient Breadth First Search on Multi-GPU Systems 83

applications can result in performance drawbacks. For example, [3] adapted the
Breadth First Search (BFS) algorithm and parallelized it for GPU-based systems.
They achieved a significant improvement by reducing the number of communica-
tion episodes between GPUs and the amount of data exchanged. However, with
this programming paradigm, the graph is processed by the GPU, and data and
result exchanges are handled by the CPU, resulting in serialization when there is
a need for data exchange between GPUs solving different parts of the graph. This
has shown to impact both performance and scalability of applications [4].

In this paper, we address the serialization and performance challenges by
using NVSHMEM, an OpenSHMEM based GAS programming paradigm for
GPU-based HPC systems. Particularly, we evaluate the effectiveness of using
GPU-initiated communication for BFS.

2 Background

2.1 Current Programming Model Approach for GPU-Based
Systems

Most HPC applications ported to clusters accelerated with NVIDIA GPUs cur-
rently use an MPI+CUDA hybrid programming model. The application is split
into phases of communication and computation with CPU orchestrating their
execution. Computation is typically offloaded onto the GPUs while MPI com-
munication is managed from the CPU.

The existing model requires frequent synchronization between GPU and
CPU. The CPU has to be running at full-speed to ensure fast synchroniza-
tion and hence will stay in a high power state even though it does little useful
work. The synchronization between compute and communication phases typi-
cally require the GPU to be drained before starting the next phase which reduces
the utilization of the GPU and also kills any opportunity of data locality and
reuse. Computation and communication phases can be overlapped using CUDA
streams but this often leads to greater code complexity. Further, the benefits of
such overlap diminishes as applications are strong scaled where the overhead of
synchronization and kernel launches can dominate the application runtime [4].

2.2 OpenSHMEM

OpenSHMEM is a PGAS (Partitioned Global Address Space) library interface
specification. It includes routines, environment variables, and constants to imple-
ment a PGAS programming model as a library.

OpenSHMEM presents a PGAS view of execution contexts and memory
model. The execution contexts in OpenSHMEM is an OS process identified by
integer called Processing Element (PE). An OpenSHMEM program has private
address space and shared address space. A PE allocates and stores its private
data and control structures in the private address space. The shared address
space in OpenSHMEM is presented as symmetric objects, which are accessible

84 S. Potluri et al.

by all PEs in an OpenSHMEM program. The symmetric objects are allocated
using a collective allocation operation in OpenSHMEM .

OpenSHMEM provides routines for communication and synchronization with
other PEs. The communication in OpenSHMEM is primarily one-sided. It pro-
vides many variants of Put, Get and Atomic operations to access and modify
symmetric data objects that are located on remote PEs. It provides Quiet and
Fence which complete communication and orders communication, respectively.
It provides interfaces for collective communication and synchronization.

3 GPU-Initiated Communication Using NVSHMEM

NVSHMEM presents a programming approach using GPU-initiated communica-
tion which is motivated by the throughput oriented architecture of the GPU. The
GPUs are designed to support tens of thousands of threads to achieve maximum
parallel throughput. These threads are extremely light weight and thousands of
threads are queued up for work (in groups called warps). If one warp must wait
on a memory access, another warp can start executing in its place. As a separate
set of registers is allocated for all active threads, there is no need for swap-
ping of registers or state. As a consequence, this execution model has inherent
latency hiding capabilities with minimal scheduling overheads. With the increas-
ing amount of parallelism, GPU architectures can have enough state to hide
latencies not only to local GPU device memory but also to remote GPU mem-
ory over a network. GPU-initiated communication can be used to take advantage
of this inherent capability of the GPU hardware while relying on the CUDA pro-
gramming paradigm that has been used for scaling within a GPU. Further, this
improves programmability as developers will not have to rely on a hybrid model
to orchestrate and overlap between different phases of the application.

The communication initiated and synced from within CUDA kernels will
not only reduce the reliance on the CPU, additionally it also avoids existing
synchronization overheads that limit the strong scaling. Also, to enhance the
efficiency within a warp and reduce the pressure on the memory sub-system, the
loads and stores can be coalesced by the hardware when alignment and access
pattern requirements are met.

Using PGAS programming model such as OpenSHMEM , suits GPU-initiated
communication better. The one-sided communication model of OpenSHMEM
requires only the caller (origin) of the interface to be active, which matches
the massive parallelism and dynamic scheduling model on the GPU. Further, a
combination of global address space approach and semantics of OpenSHMEM
communication interfaces such as Put and Get is a close match to load and stores
on shared-memory space of GPU.

4 Baseline Multi-GPU BFS Code Using MPI

We use an MPI-based multi-GPU implementation of BFS from the work done
by Bisson et al. [3] as the baseline in this paper. Their work loosely follows the

Efficient Breadth First Search on Multi-GPU Systems 85

RC

P0,0

PR-1,0

P1,0

P0,1

PR-1,1

P1,1

P0,C-1

PR-1,C-1

P1,C-1

P0,0

PR-1,0

P1,0

P0,1

PR-1,1

P1,1

P0,C-1

PR-1,C-1

P1,C-1

P0,0

PR-1,0

P1,0

P0,1

PR-1,1

P1,1

P0,C-1

PR-1,C-1

P1,C-1

N/C

0

R-1

2

R

2R-1

R+1

R(C-1)

RC-1

R(C-1)+1

0 1 C-1

0R + i
1R + i

jR + i

(C-1)R + i

Par on at Process Pi,j

Fig. 1. Adjacency matrix decomposition among processors

Graph500 benchmark specifications. It generates in advance a list of edges with
an R-MAT generator and measures the performances over 64 BFS operations
started from random vertices. They do not strictly adhere to the Graph500 as
they use 32bit vertices instead of the required minimum of 48bits. We make our
changes based on this MPI version of BFS and compare the performance.

Graph Partitioning: The adjacency matrix that represents the graph is
mapped onto a logical processor grid arranged as R rows and C columns. Par-
titioning is as shown in Fig. 1. The processor grid is mapped once horizontally
and C times vertically, dividing the matrix in C blocks along the row and RC
blocks along the column. This kind of partitioning has two key characteristics:

1. the edge lists of vertices handled by each processor are partitioned among
processors in the same grid column.

2. the destination vertex on each edge is in the same grid row as the vertex
owning that edge.

Such a partitioning helps limit communication within columns and rows, as
explained later in this section. The adjacency matrices are stored in Compressed
Sparse Column (CSC) format that allows processors to scan adjacency lists by
accessing blocks of consecutive memory locations.

Parallel Implementation Using MPI: Graph traversal in the baseline ver-
sion is implemented in a level-synchronous fashion. A high-level summary of the

86 S. Potluri et al.

algorithm is shown in Fig. 2. The list of vertices whose edges have to be tra-
versed at a given level is called the frontier vertex list. Traversal starts with a
frontier vertex list containing only a root vertex and this list is present at the
processor owning the root. Frontier vertex lists are exchanged (allgather) among
the processors in each column. In the first step, this just means that the pro-
cessor owning the root vertex broadcasts it to other processors in its column.
The processors in the column collectively parse the adjacency lists for the set
of vertices in the frontier list. This means, each processor parses part of the
adjacency matrix that is local to itself. This is called the expand phase. Each
processor gathers any un-visited vertices it discovers in this process. The prede-
cessor (vertex from which the un-visited vertex has been discovered) information
is also stored at the process that discovers a vertex. Each processor then sends
lists of newly discovered vertices to the corresponding owner processors (should
be in the same grid row because of 2d partitioning). This results in an all-to-
all exchange along the row. Each processor parses the vertices it has received.
For each un-visited vertex, it sets the level and it sets predecessor to the id of
the processor that sent it. This information could be used to query predecessor
information stored at the discovering processor as a post-processing step. This
is called the update step. At end of this step, each process has a list of its own
vertices that were discovered in the current step, will all redundancies removed.
This list is then exchanged with the processes in the same grid column (allgather
as mentioned earlier). Each step ends with a convergence check which calculates
the sum of the lengths of frontier lists (Allreduce) at all the processors. The
traversal goes to the next level if the aggregate length is non-zero.

That vertex lists exchanged between the processors are moved from GPU
memory to CPU memory. The inter-processor exchange is then implemented
using non-blocking MPI sends/recvs. The order in which MPI sends/recvs are
issued is twiddled in-order to avoid congestion as is done in common implemen-
tation of MPI collectives. There are two variations in how the vertex information
is exchanged. It can be exchanged as a bitmap (one bit per vertex, covering all
N/RC vertices) where the bits corresponding to newly discovered vertices is set.
It can also be exchanged as list of vertices (integer array). The base version used
in this paper applies an optimization to use one of the two formats for different
levels in a single traversal. It uses the general characteristic of RMAT graphs
to statically decide which format is used in which level. The bitmap is used to
exchange when large number of vertices are expected to discovered (levels 4 and
5). A vertex list is used when the number of vertices is expected to be smaller
(all levels other than 4 and 5).

In Sect. 6.1, we optimize the base version using MVAPICH2, a CUDA-aware
MPI library, which internally uses GPUDirect and hence uses direct PCIe/
NVLink paths between the GPUs for data movement. This provides a fair com-
parison between the MPI and NVSHMEM version, both using direct GPU-GPU
paths over PCIe or NVLink.

Efficient Breadth First Search on Multi-GPU Systems 87

while (frontier not empty) {

Vertical exchange: allgather frontier list along grid columns

Expand: local expansion

Horizontal Exchange: exchange newly discovered vertices along grid rows

Append: build new frontier vertex list

Convergence check: allreduce frontier list size among all processors

}

Fig. 2. High-level summary of the base BFS version

5 DGX-1 GPU-Node Architecture

For one-sided communication in PGAS programming models like OpenSHMEM
to be performant, it is helpful to have low cost fine-grained accesses across the
shared global address space. When GPUs are connected through PCIe, there
is significant degradation in the overall throughput that can be achieved when
accessing peer GPU memory. To solve this performance bottleneck, NVIDIA
recently announced the DGX-1 system shown in Fig. 3. It consists of eight Tesla
P100 GPUs connected by NVLink , a high-speed interconnect enabling 5 to 12
times faster data sharing between the GPUs compared to PCIe. The DGX-1
system is also equipped with four EDR Mellanox ConnectX-4 InfiniBand NICs
each configured with four ports and dual-socket 20-core Intel Xeon E5-2698 v4
(Broadwell) CPUs. Multiple DGX-1 systems can be connected to build a high-
speed GPU cluster that can effectively balance the intra-node and the inter-node
bandwidth between the GPUs.

The Tesla P100 GPUs has four NVLink connection points where each link
offers a peak bandwidth of 20 GB/s. The DGX-1 network topology is a hybrid

Fig. 3. System architecture of a DGX-1

88 S. Potluri et al.

cube-mesh where two groups of four GPUs are all-to-all connected and GPUs
between the two groups are at most two NVLink hops away. The combined
physical memory capacity on the GPUs in a DGX-1 system is 128 GB. To
gauge how this measures up to real-world graph datasets, nearly the entire data
from a month from the Google GDELT project’s 2015 dataset consisting of
over 1.5 billion location references can be processed in memory in a DGX-1
without sending any data over the network. As a result, the DGX-1 system
makes for a very interesting platform to investigate communication libraries
such as OpenSHMEM used in data-intensive graph algorithms like BFS.

6 Design

Here, we present an optimized base version of BFS discussed in Sect. 4, in order
to provide a fair comparison between MPI and GPU-initiated SHMEM versions
of the application. We then present two variations of the BFS implementation
using SHMEM: one that uses peer-to-peer writes which works over PCIe or
NVLink and another that uses peer-to-peer atomics that can work only over
NVLink. All three versions are based on the base version described in Sect. 4.
They only differ in the way communication is implemented. We compare the
performance of these versions in Sect. 7.

6.1 CUDA-Aware MPI Based Version

The base version of the BFS code uses CUDA memory copy API to move frontier
list data from the GPU to the CPU before using MPI to exchange data among the
processors. Frontier list is copied to the GPU after it is received on the host. This
would mean that NVLink is not used for data movement between the GPUs on
a DGX-1. We modified the base version to use CUDA-aware MPI (MVAPICH2
MPI library) to directly move data from GPU memory buffers. MVAPICH2
internally uses CUDA Inter-Process Communication (IPC) mechanism to move
data between GPUs. CUDA IPC enables use of GPUDirect between different
OS processes. It takes advantage of peer-to-peer path between two GPUs that
are connected via PCIe or NVLink. This allows us to do a fairer comparison
between the MPI-based version and our SHMEM-based versions. The updated
MPI-based version is referred to as cuMPI in later sections. We use MPI non-
blocking send/recv API like in the base version described in Sect. 4. MVAPICH2
uses cudaMemcpyAsync calls to implement these transfers.

6.2 NVSHMEM-Based Version over PCIe-Connected GPUs

NVSHMEM uses CUDA IPC to enable direct access to remote GPU memory
from inside a CUDA kernel via standard SHMEM API. It requires that the
GPUs are directly connected via PCIe or NVLink. When GPUs are connected
over PCIe, CUDA atomics cannot be used on peer-GPU memory. So, we limit

Efficient Breadth First Search on Multi-GPU Systems 89

ourselves to shmem put operations (which translate to P2P writes) for this ver-
sion for PCIe-connected GPUs. Each processor (PE in the context of SHMEM)
maintains a remotely accessible integer map of the vertices it owns. This is
allocated using shmem malloc and hence is accessible via SHMEM API. In the
expand phase, when a PE discovers an un-visited vertex, it updates the frontier
map at the owner PE directly with a shmem int p. It writes its own PE id (incre-
mented by 1 to differentiate from default value 0). This allows for better overlap
between traversal and remote updates compared to the MPI version which waits
for the traversal in the current level to complete before exchanging the list of
discovered vertices. However, this results in random accesses over the network
unlike MPI where data is coalesced before it is exchanged. Further, having an
integer map makes the vertex map to be processed in the update phase larger
by a factor of 32 when compared to the bitmap used in the MPI version. This
can also be a limiter in performance for this version. Predecessor information is
stored locally like in the case of base-version. There can be conflicts where two
PEs discover the same vertex and update the frontier map at the same time.
We rely on the system characteristic that a 32-bit write over PCIe completes
as one transaction and so the write of one of the PEs persists. During update
phase, the owner PE parses its remotely accessible vertex integer map, updates
its local frontier array, saves the predecessor information and resets the vertex
integer map. We have implemented this to compare the performance of PCIe
w.r.t. NVLink, with atomics being possible on NVLink. So, we have not imple-
mented the vertical exchange in this version. Therefore, we limit our runs to 1-D
process decomposition in this case. We call this version SHMEM-Put in later
sections.

6.3 Using SHMEM over NVLink-Connected GPUs

With NVLink, it is possible to issue CUDA-atomics on peer GPU memory.
We have revised our design to take advantage of this feature. Figure 4 shows
a high-level summary of this version. The remotely accessible vertex map is
a bitmap, with each bit representing a vertex. Newly discovered vertices are
directly marked on the vertex bitmap using shmem atomic or. The atomic OR
API is not available in OpenSHMEM 1.3 specification but has been proposed and
accepted into the next revision of the specification. The predecessor information
is stored at the discovering processor, like in the MPI version. In order to pass on
the predecessor information, each PE maintains a vertex bitmap corresponding
to every other PE in the grid row. At the beginning of the update phase, the
bitmaps are reduced into a final bitmap which is used to update the local frontier
arrays. The processor that had sent a vertex is identified based on the vertex
bitmap had been updated. The exchange along the column is fused into the
update phase by each PE writing its vertex bitmap to all other PEs in the
column, as soon as it reduces each element in the bitmap array. This variant can
be run using a 1-D or 2-D processor grid. We refer to this variant as SHMEM-
Atomics in later sections.

90 S. Potluri et al.

while (frontier not empty) {

Expand (fused local expansion and exchange among row processors)

Barrier

Append (fused local update and exchange among column processors)

Convergence check (Allreduce on frontier length)

}

Fig. 4. High-level summary of the P2P version

7 Results

We have run all our experiments on two types of systems. One of them is a dual-
socket Intel Haswell server with 4 K40 GPUs all connected on the same CPU
socket. CUDA P2P/IPC can be used among these GPUs, over PCIe. This node
has CentOS 7.3.1611 OS and CUDA 8.0. We refer to this system as “K40+PCIe”
in this section. The other node is a DGX-1 whose architecture is described in
detail in Sect. 5. DGX-1 has Ubuntu 14.04 and CUDA 8.0. When NVLink and
PCIe are both available between two GPUs, NVLink is used for all data move-
ment between the GPUs. This is achieved transparently by CUDA IPC (using
GPUDirect). Hence, NVLink is used for all communication in our BFS runs
on DGX-1 when CUDA-aware MPI is used. We refer to the DGX-1 system as
“P100+NVLink” in rest of the section. We use MVAPICH2 2.2 MPI library for
both the baseline and cuda-aware MPI runs. NVSHMEM is an implementation
of a subset of OpenSHMEM on top of CUDA IPC which allows direct access
between GPUs connected via PCIe or NVLink. SHMEM communication oper-
ations translate to direct LD/ST/ATOMICS underneath. The graphs are gen-
erated with an R-MAT generator and the performance is averaged over 64 BFS
operations started from random vertices. This is as specified in the Graph500
specification.

Figure 5 shows a comparison between the baseline and CUDA-aware ver-
sions on 4 K40 GPUs connected with PCIe (K40+NVLink) and 4 P100 GPUs
connected with NVLink (P100+NVLink). The performance numbers are shown
in GTEPS (Giga-Traversed Edges Per Second). We see that CUDA-aware MPI
library which takes advantage of direct P2P path between GPUs shows improve-
ment for larger graph sizes where bandwidth becomes important. We see higher
improvement on DGX-1 with NVLink compared to the node with PCIe between
GPUs.

Figure 6 analyzes these gains by using a split up of the runtime for two scales
on DGX-1. For a smaller graph, CUDA-aware MPI removes CUDA memory
copies from the application. This shows as a reduction in time spent in CUDA.
However, the time in MPI library increases due to the overhead of CUDA mem-
ory copies inside the library. For larger sizes, application level copies to and
from CPU memory suffer from contention on the PCIe bus to host memory.
CUDA-aware MPI uses the direct P2P channel between GPUs, bypassing these

Efficient Breadth First Search on Multi-GPU Systems 91

(a) K40+PCIe (b) P100+NVLink

Fig. 5. Comparison between baseline and CUDA-aware MPI

Fig. 6. Time spent in CUDA and MPI for baseline and CUDA-aware MPI versions

bottlenecks. We compare our shmem version against this CUDA-aware MPI
version.

Figure 7(a) and (b) compares the CUDA-aware MPI version with the SHMEM
version that uses Puts. We see that this version yields significantly lower perfor-
mance compared to the CUDA-aware MPI version among GPUs connected with
PCIe. The SHMEM version directly updates the remote frontier vertex map using
writes. This yields a random access pattern over PCIe. We attribute this slow-
down to the serialization and poor performance of random accesses over PCIe.
On DGX-1, where GPUs are connected with NVLink, we see that SHMEM-Put
version achieves better performance than CUDA-aware MPI version, for smaller
graph sizes. NVLink has a higher bandwidth and a relaxed ordering for packets.
Hence, it yields higher throughput for random accesses. The benefit in BFS comes
from fusing communication into the compute kernel. This allows for overlap and
reduced latencies by avoiding explicit copies. However, as we go to larger sizes,
we are dominated by the overhead of processing the integer map of vertices used
in SHMEM-Put variant. The MPI version maintains a bitmap for the same, as
explained in Sect. 6.2. Also, the SHMEM-Put version uses a 1D (1× 4) decompo-
sition because of the limitation in the implementation. We have used 2D decom-
position for MPI as that yields the best performance for it.

92 S. Potluri et al.

(a) K40+PCIe (b) P100+NVLink

Fig. 7. Comparison between CUDA-aware MPI and SHMEM Put versions

(a) Performance (b) Analysis (Scale:20)

Fig. 8. Comparison between CUDA-aware MPI version and SHMEM-Atomic version,
on 4 P100+NVLink

SHMEM-Atomics uses a bitmap instead of integer list to represent the
remotely accessible vertex map. This reduces the size of the structure processed
to what is used in the baseline version. Both versions use 2D process grids
(2× 2). Figure 8(a) shows that this achieves a performance gain for a broader
set of problem sizes. Figure 8(b) shows the overlap the fused kernel in SHMEM-
Atomics achieves for graph scale 20. We see that perfect overlap is achieved with
a 1D process grid where there is only horizontal exchange which is fused with the
main traversal kernel. With 2D decomposition, the overlap is less than perfect as
the communication in the second dimension cannot be hidden completely. The
benefits of overlap also diminish for larger graph sizes where the compute time
dominates the overall time, as shown in Fig. 6. The 2D process grid was used for
results in Fig. 8(a) as it yields better traversal rate for both versions, compared
to 1D decomposition. Figure 9(a) and (b) show the performance comparison on 8
nodes in 2× 4 and 4× 2 process grids, respectively. We see that the improvement
with NVSHMEM is greater as we scale from 4 to 8 GPUs due to the reduced
overheads (and increased overlap) from fused kernels in the SHMEM version.

Efficient Breadth First Search on Multi-GPU Systems 93

(a) 2x4 Process Grid (b) 4x2 Process Grid

Fig. 9. Comparison between CUDA-aware MPI version and SHMEM-Atomic version,
on 8 P100+NVLink

The benefits for smaller graph sizes is higher for the same reason. We limit the
smallest graph scale to 21 as performance for smaller graphs does not scale from
4 to 8 GPU. The improvements due to NVSHMEM with a 4× 2 grid is lower
compared to 2× 4 grid as a larger amount of communication happens along the
column and there is little compute in the append phase and hence limited scope
for overlap.

8 Related Work

There have been a fair number of contributions from vendors and researchers
that are geared towards enabling efficient communication from GPUs. NVIDIA’s
GPUDirect technologies [5,6] have helped reduce communication overheads by
removing the need to copy data to CPU memory before it can be moved to
other GPUs, within and across nodes. However, the CPU is still involved in
initiating communication and synchronizing between computation and commu-
nication in the application. This demands a powerful CPU for best performance
and incurs overheads that limit strong scaling. GPUDirect Async [7] addresses
this by allowing GPU to trigger and synchronize network operations in order
with compute kernels that are queued by the CPU. This will allow CPU to be
put in low power states as computation and communication is progressed by the
GPU. However, communication operations are scheduled only at kernel bound-
aries. Computation and communication phases have to be defined and queued
from the CPU. This will result in multiple kernels and bulk synchronization
phases whose overheads can dominate as applications are scaled strongly. In this
paper, we consider communication from inside CUDA kernels as an alternative
approach to CUDA-aware MPI and show how it can enable better performance.
It also improves programmability by being inline with the CUDA programming
model and taking advantage of the native GPU execution model.

94 S. Potluri et al.

Several solutions have been proposed to enable efficient use of GPUs with pro-
gramming models such as MPI and PGAS. Wang et al. and Potluri et al. [8,9] has
proposed CUDA-aware MPI with MVAPICH2 [10] which allows use of standard
MPI interfaces for moving data from GPU or host memories. They take advan-
tage of unified virtual addressing (UVA) feature from NVIDIA. Ashwin et al.
proposed use of datatype attributes to identify GPU memory in communication
using standard MPI interfaces [11]. Potluri et al. proposed CUDA-aware app-
roach for OpenSHMEM [12]. The aforementioned works address CPU-initiated
communication involving GPU device memory. Cunningham et al. have pro-
posed the use of X10 to program GPUs and CPUs across clusters as part of
their APGAS programming model [13]. Miyoshi et al. have contributed work
that allows embedding MPI calls within GPU kernels in their FLAT GPU frame-
work [14]. In our approach, we allow the GPU user to rely on the familiar CUDA
programming model while using OpenSHMEM to express inter-GPU data move-
ment inline with the CUDA model.

The work of Ueno et al. [15] was among the earliest distributed GPU imple-
mentations of BFS at scale attaining over 300 Billions of traversed edges per
second (GTEPS) on the TSUBAME [16] supercomputer consisting of 4K GPUs
spread across more than 1300 nodes. Our works is based on a more recent dis-
tributed BFS implementation proposed by Bisson et al. [17] that has also been
shown to scale to all 4K GPUs on the TSUBAME supercomputer. Single node,
multi-GPU BFS is available in the Gunrock graph analytics library [18] which
has been characterized on dense nodes using latest GPU architectural advances
(using Tesla P100 GPUs). Performance results are comparable to what much
larger number of GPUs on clusters with lower GPU density per node could
achieve and this is due to the significantly faster intra-node bandwidth on dense
nodes. The single-node, multi-GPU version of Gunrock relies on CUDA IPC to
allow one GPU to directly access the memory of a peer GPU. In this paper,
we focus on comparing the performance of using MPI and GPU-side SHMEM
for communication in a particular implementation of BFS. We have not focused
on optimizing other aspects of the BFS implementation. Hence, we do not com-
pare against other BFS implementations like Gunrock which lack an MPI-based
implementations.

9 Conclusion

Clusters with dense GPU nodes are becoming increasingly popular due to better
strong scaling characteristics and superior energy efficiency. The memory aper-
ture over which one-sided communication is possible on such platforms, keeps
growing. As a result, the SHMEM programming model offers an interesting alter-
native to MPI as the communication library of choice on such platforms. NVSH-
MEM is NVIDIA’s implementation of SHMEM which enables communication
calls to be initiated by GPU threads. This is particularly useful in strong scal-
ing scenarios when the overhead of frequently synchronizing between the CPU
and the GPU starts to affect overall performance. Moreover, the possibility to
overlap communication with compute goes wasted.

Efficient Breadth First Search on Multi-GPU Systems 95

All of these factors contribute to the performance benefits observed in a
NVSHMEM-based implementation of BFS compared to the MPI variant, for
which, all communication-related control goes through the CPU although the
data transfers occur directly between GPUs. As the size of the dataset per GPU
decreases (the case with strong scaling), the NVSHMEM version achieves a peak
speedup of 75% by eliminating the overheads of synchronizing with the CPU.

Acknowledgments. This research is supported in part by Oak Ridge National Lab,
subcontract #4000145249. We would like to thank M. Bisson et al., authors of the
multi-GPU implementation of BFS we have used as the baseline in this paper [17].
They have shared their code and have supported this work.

References

1. http://graph500.org: Graph 500 benchmark specification 1.2 (2017). http://www.
graph500.org/

2. Merrill, D., Garland, M., Grimshaw, A.: Scalable GPU graph traversal. SIGPLAN
Not. 47, 117–128 (2012)

3. Bisson, M., Bernaschi, M., Mastrostefano, E.: Parallel distributed breadth first
search on the Kepler architecture. CoRR abs/1408.1605 (2014)

4. Potluri, S., Rossetti, D., Becker, D., Poole, D., Gorentla Venkata, M., Hernandez,
O., Shamis, P., Lopez, M.G., Baker, M., Poole, W.: Exploring openSHMEM model
to program GPU-based extreme-scale systems. In: Gorentla Venkata, M., Shamis,
P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS, vol. 9397, pp. 18–35.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26428-8 2

5. NVIDIA: GPUDirect (2015). https://developer.nvidia.com/gpudirect
6. NVIDIA: GPUDirect RDMA (2015). http://docs.nvidia.com/cuda/gpudirect-

rdma
7. Rossetti, D.: GPUDirect: integrating the GPU with a network interface. In: GPU

Technology Conference (2015)
8. Wang, H., Potluri, S., Luo, M., Singh, A.K., Sur, S., Panda, D.K.: MVAPICH2-

GPU: optimized GPU to GPU communication for infiniband clusters. Comput.
Sci. 26, 257–266 (2011)

9. Potluri, S., Hamidouche, K., Venkatesh, A., Bureddy, D., Panda, D.K.: Efficient
inter-node MPI communication using GPUDirect RDMA for infiniband clusters
with NVIDIA GPUs. In: Proceedings of the 2013 42nd International Conference on
Parallel Processing, ICPP 2013, Washington, DC, USA, pp. 80–89. IEEE Computer
Society (2013)

10. MVAPICH: MPI over infiniband, 10GigE/iWARP and RoCE (2015). http://
mvapich.cse.ohio-state.edu

11. Aji, A.M., Dinan, J., Buntinas, D., Balaji, P., Feng, W.C., Bisset, K.R., Thakur, R.:
MPI-ACC: an integrated and extensible approach to data movement in accelerator-
based systems. In: 14th IEEE International Conference on High Performance Com-
puting and Communications, Liverpool, UK (2012)

12. Potluri, S., Bureddy, D., Wang, H., Subramoni, H., Panda, D.K.: Extending open-
SHMEM for GPU computing. In: Proceedings of the 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, IPDPS 2013, Washington, DC,
USA, pp. 1001–1012. IEEE Computer Society (2013)

http://www.graph500.org/
http://www.graph500.org/
https://doi.org/10.1007/978-3-319-26428-8_2
https://developer.nvidia.com/gpudirect
http://docs.nvidia.com/cuda/gpudirect-rdma
http://docs.nvidia.com/cuda/gpudirect-rdma
http://mvapich.cse.ohio-state.edu
http://mvapich.cse.ohio-state.edu

96 S. Potluri et al.

13. Cunningham, D., Bordawekar, R., Saraswat, V.: GPU programming in a high level
language: compiling X10 to CUDA. In: Proceedings of the 2011 ACM SIGPLAN
X10 Workshop, X10 2011, pp. 8:1–8:10. ACM, New York (2011)

14. Miyoshi, T., Irie, H., Shima, K., Honda, H., Kondo, M., Yoshinaga, T.: Flat: a
GPU programming framework to provide embedded MPI. In: Proceedings of the
5th Annual Workshop on General Purpose Processing with Graphics Processing
Units, GPGPU-5, pp. 20–29. ACM, New York (2012)

15. Ueno, K., Suzumura, T.: Parallel distributed breadth first search on GPU. In:
20th Annual International Conference on High Performance Computing, HiPC
2013, Bengaluru (Bangalore), Karnataka, India, 18–21 December 2013, pp. 314–
323 (2013)

16. Matsuoka, S.: Making TSUBAME2.0, the world’s greenest production supercom-
puter, even greener: challenges to the architects. In: Proceedings of the 2011 Inter-
national Symposium on Low Power Electronics and Design, Fukuoka, Japan, 1–3
August 2011, pp. 367–368 (2011)

17. Bisson, M., Bernaschi, M., Mastrostefano, E.: Parallel distributed breadth first
search on the Kepler architecture. IEEE Trans. Parallel Distrib. Syst. 27, 2091–
2102 (2016)

18. Pan, Y., Wang, Y., Wu, Y., Yang, C., Owens, J.D.: Multi-GPU graph analytics.
CoRR abs/1504.04804 (2015)

Evaluation, Implementation and Novel
use of OpenSHMEM

Application-Level Optimization of On-Node
Communication in OpenSHMEM

Md. Wasi-ur- Rahman1(B), David Ozog2(B), and James Dinan2(B)

1 Intel Corporation, Austin, USA
md.rahman@intel.com

2 Intel Corporation, Boston, USA
{david.m.ozog,james.dinan}@intel.com

Abstract. The OpenSHMEM community is actively exploring thread-
ing support extensions to the OpenSHMEM communication interfaces.
Among the motivations for these extensions are the optimization of on-
node data sharing and reduction of memory pressure, both of which are
problems that hybrid programming has successfully addressed in other
programming models. We observe that OpenSHMEM already supports
inter-process shared memory for processes within the same node. In this
work, we assess the viability of this existing API to address the on-
node optimization problem, which is of growing importance. We identify
multiple on-node optimizations that are already possible with the exist-
ing interface, propose a layered library that extends the functionality
of these interfaces, and measure performance improvement when using
these techniques.

1 Introduction

High Performance Computing (HPC) system nodes continue to trend toward
increasingly powerful and increasingly parallel processors, including many-core
processors and accelerators. As a result, HPC application developers are look-
ing beyond conventional parallel programming systems toward hybrid approaches
that combine a communication library, such as MPI or OpenSHMEM, with an on-
node programming model, such as OpenMP�. The resulting combination enables
the application developer to tune for system-level effects, while also efficiently uti-
lizing the capabilities and resources provided by the node-level architecture.

A primary feature that drives the success of Partitioned Global Address
Space (PGAS) programming models is their ability to remotely access the mem-
ory of other processing elements (PEs) without explicit participation from the
target PE. While PGAS programming models, such as OpenSHMEM, conve-
niently provide such one-sided remote access to the memory of any processing
element (PE), communication with PEs that share local memory may suffer
from unnecessary performance overheads. At its core, OpenSHMEM is a data
copying library; thus, even when PEs are in the same node, communication via
OpenSHMEM can result in the creation of multiple copies of the same data
within a shared memory domain. Additional overheads may also arise from var-
ious sources: a complex software stack that is capable of supporting general
c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 99–113, 2018.
https://doi.org/10.1007/978-3-319-73814-7_7

100 M. Rahman et al.

remote memory access (RMA), the sheer memory replication cost of single pro-
cess multiple data (SPMD) programming, and the synchronization mechanisms
associated with large-scale programming models. As a result, the OpenSHMEM
community is actively investigating library extensions to better support node-
level optimization, including methods for integrating threading awareness within
the library [3,8].

While hybrid programming is of interest to many programmers, maintain-
ers of existing applications may prefer a more evolutionary approach to tuning
on-node data sharing. We observe that OpenSHMEM provides a seldom-used
function that allows the programmer to query a direct pointer to the remotely
accessible memory of another PE within the same shared memory domain. While
this functionality is supported by a number of OpenSHMEM implementations, it
is challenging to use in its current form because the current OpenSHMEM inter-
faces don’t expose the locality information needed by programmers to effectively
utilize this capability.

In this work, we investigate the challenges and opportunities of the OpenSH-
MEM pointer query API. We develop a portable library, called shnode, that
fills the gaps in the current interface and improves the usability of this interface.
We believe the results of this work will highlight an evolutionary path for node-
level tuning of applications. In addition, we hope that it will provide valuable
insights to ongoing efforts to extend OpenSHMEM with new features such as
hybrid programming and on-node based teams support. We evaluate the perfor-
mance impact of our approach using several benchmarks, including a large-scale
parallel sorting benchmark and observe that this approach to optimization of
on-node communication can yield significant performance improvements.

The rest of the paper is organized as follows. Section 2 presents background
on OpenSHMEM and the pointer query API. We highlight some of the key chal-
lenges for this work in Sect. 3. Design and implementation details of the shnode
library are presented in Sect. 4. We present the details of our experimental eval-
uation in Sect. 5. Section 6 highlights some of the existing works in the literature
and we conclude in Sect. 8.

2 Background

This work investigates shared memory optimizations in the context of OpenSH-
MEM [15], an HPC communication library that provides a partitioned global
address space (PGAS) data model through one-sided read, write, and atomic
update routines. In this section, we describe the typical execution models for
OpenSHMEM programs and outline various techniques for exploiting on-node
memory locality.

One very common use case for OpenSHMEM programs running on HPC clus-
ters is to allocate one or more processing elements (PE) per compute node. Each
compute node typically consists of multiple processing units and/or individual
cores, so it may be advantageous to assign multiple PEs to each compute node
to exploit the available parallelism. In the OpenSHMEM programming model,

Optimization of On-Node Communication in OpenSHMEM 101

each of these PEs designates a memory region for storing symmetric heap and
local variable data.

While the designated memory regions of each PE are remotely accessible by
any other PE in the application, there is also the possibility that data may reside
locally with respect to other on-node PEs. However, there is no guarantee that
this data locality is exploited by the OpenSHMEM implementation. Even if an
implementation does optimize for on-node PE locality, it still may be difficult for
an application developer to optimize outside of the OpenSHMEM API. Multi-
threading within a PE’s address space can accomplish on-node parallelism with
good data locality, but it is typically not straightforward to accomplish this
across the address space of multiple PE’s, despite the fact that their memory
regions may reside on the same node.

The OpenSHMEM API includes a routine that enables on-node addressing,
which may be useful for optimizing applications for memory locality. This rou-
tine, called shmem ptr, returns the specified pointer to a symmetric buffer on
the specific PE. Its function signature is:

void *shmem_ptr(const void *dest, int pe);

where dest is the local pointer to the symmetric data buffer, and pe is the PE id
of the desired process. This routine returns a pointer to the “remote” symmetric
data object in the local PE’s address space. If a program has dest value for all
symmetric regions of interest, and knowledge of which PEs are node-local, then
shared memory optimizations are possible at the application level. Despite the
availability of this function in the API, it is the opinion of these authors that
it is underutilized across the OpenSHMEM programs. In Sect. 3 we argue why
this underutilization may exist, and Sect. 4 presents how this routine is used
in constructing a more user-friendly and general interface for achieving shared
memory optimization in OpenSHMEM programs.

3 Challenges and Opportunities

The shmem ptr routine enables shared memory accesses and optimizations in
OpenSHMEM programs. However, there are challenges to using this routine in
practice. For example, if an application wants to know which PEs are locally res-
ident, then shmem ptr gives only very limited information. This routine returns
a null pointer whenever the input PE value is off-node. This requires looping over
all PEs and storing the non-null IDs into a local structure. One goal of this paper
is to abstract this procedure into a simpler interface that creates teams of pro-
cesses that group together node-local PE subsets. Such an interface would enable
applications to do memory operations within their local teams, which eliminates
the overhead of the software stack involved in remote communication.

In addition to the locality knowledge that node-local teams provide, there
are other requirements for useful shared memory programming. For instance,
consider an algorithm that involves local computation/communication, followed
by a collective operation. Instead of having all PEs participate in the collective,

102 M. Rahman et al.

the application may only require one PE per team to participate. We call this
PE a leader in our design. Leader election algorithms constitute a well-known
topic in distributed systems [2], in part because of their dependence on network
topologies and system hierarchy/architecture. Leader election implementations
are particularly important in OpenSHMEM, especially for checkpointing appli-
cations [1,9]. A goal of our API is to abstract leader selection and to enable
customizable multiple-leader assignment on a per-node basis.

Perhaps the primary challenge with shared-memory programming lies in
developing algorithms that effectively exploit data locality. Often re-development
is necessary because existing legacy applications rely on algorithms that do not
adequately account for locality. Performance improvement for this software is
difficult without thoroughly considering data-layout, communication and syn-
chronization strategies, and load balancing. Communication avoiding algorithms
show great promise [7], and need to be incorporated to best exploit locality at
the node-level. In the following section, we introduce the shnode API based on
the shmem ptr routine to bridge these gaps, enabling application developers to
design algorithms that better exploit data locality.

4 Design and Implementation of shnode

In this section, we present the design and implementation of our proposed layered
library for on-node data sharing, called shnode. The purpose of this library is to
provide several APIs to application developers with which the application can
benefit through avoidance of on-node communication.

As discussed in Sect. 2, we utilize the built-in routine, shmem ptr, to design
shnode. Since shmem ptr returns the specific memory address for a symmetric
data object on an on-node remote PE, it can provide the opportunity for the
application developers to store these pointers for direct load and store operations
as opposed to invoking remote memory access (e.g. shmem put). To facilitate
this, we propose the APIs listed in Listing 1.1.

To utilize the shnode library, application developers should follow the usual
semantics of initialization and termination of shnode functionalities through the
OpenSHMEM-like APIs, shnode init and shnode finalize. In the future,
these functionalities can be incorporated and invoked from the OpenSHMEM
initialization and finalize routines based on the input to an environment flag
set by the user. After the initialization, the user needs to create the per-node
team. Based on the remote data pointers returned by the shmem ptr routine,
shnode creates team of PEs on each node. These data references will be stored
so that subsequent remote memory operations can be substituted with direct
load and stores to the memory location residing in the on-node PE’s symmetric
heap. The API shnode create team is responsible for creating the team on
each node consisting of all those PEs for which a non-NULL value is obtained
through shmem ptr. Figure 1(a) presents the team formation for a two node
cluster running with 8 PEs per node. To add more data objects, a user can
simply use shmem add data for the subsequent shared memory objects. We

Optimization of On-Node Communication in OpenSHMEM 103

Listing 1.1. Proposed fundamental APIs for shnode.

/* initialization */
int shnode_init();

/* team creation based on a symmetric data object */
int shnode_create_team(void *data);

/* addition of other symmetric data objects */
int shnode_add_data(void *data);

/* check to see whether the remote pe is a team member */
int shnode_is_team_member(int rem_pe);

/* retrieval of the memory address of an on-node PE */
void *shnode_get_member_remote_addr(int rem_pe, void *data);

/* check to see whether self is the leader of the team */
int shnode_am_team_leader();

/* destroy */ int shnode_finalize();

assign the lowest rank PE as the team leader for each node. The purpose of the
leader is further explained in Sect. 4.2.

To store the team information on each PE, we design a simple data structure
mapping each PE to a list of the data object references returned by shmem ptr.
Figure 1(b) illustrates this for the team presented in Fig. 1(a). To track a specific
data object, we maintain another list that maps the corresponding data object
to the location it is stored in the PE-mapped data structure. This is helpful for
fast retrieval of the requested reference when multiple data objects are stored in
the data structure. The shnode create team operation is invoked only once
at the beginning of the application execution; thus, does not incur significant
overheads to the execution time of the application.

After successful team creation, the user can utilize the shnode get
member remote addr to retrieve the data reference stored in the shnode team
table. Using the remote location address, the user can perform direct load and
store, replacing remote memory operations.

4.1 Better Overlapping Between Communication And Computation

Since shnode provides the memory addresses for symmetric data objects on on-
node PEs, it provides the opportunity to the application developer to replace the
remote memory operations with the direct memory operations, such as memcpy.
Although this eliminates overhead caused by the remote operations, it still has
the drawbacks of invoking memory transfers. One of the alternatives for the
application developers is to perform swapping of the pointers instead of copying
the content. In this way, users can eliminate any software overhead caused by
large memory to memory data transfers. However, in many applications, this
approach might require a significant effort to re-write the application to maintain
correctness.

104 M. Rahman et al.

(a) Team formation in
shnode

(b) Data structure to store team information on
PE 0 (left) and PE 12 (right)

Fig. 1. Design and implementation details of shnode

The other alternative is to customize the remote memory calls in such a
way so that the intra-node data transfers are invoked separately from the inter-
node ones; thereby optimizing the overlap between communication and computa-
tion. Scheduling the intra-node memory operations at the end will ensure better
overlap between computation and long-delayed inter-node memory operations.
Application developers can utilize the team information from shnode to refine
the communication operations in this way.

4.2 Designing shnode Collective Helper Routines

With the assignment of a team leader PE per node, we can also optimize the
collective communication by designing helper routines for each collective opera-
tions. Figure 2 presents one such use case. Our current implementations of these
routines assume a power-of-two number of process elements per node and the
process launcher launches each of the PEs sequentially from the first node to the
last node in the cluster.

As shown in Fig. 2, we can re-design the collective operations considering the
hierarchy of nodes achieved from the shnode library. Each collective operation
can divide its tasks in three sub-tasks. As an example, we explain here a division
of tasks for a reduction operation. In the first sub-task, all the PEs communicate
with the on-node leader so that the leaders in each node gets the reduced values
from all the PEs on that node. In the second sub-task, a reduce operation is
strided over only the leaders across the nodes. This significantly reduces the
communication overheads. The stride is calculated from the process per node
which is assumed to be a power-of-two value. Finally, all the leaders pass the
globally reduced value to the on-node PEs to complete the operation.

Optimization of On-Node Communication in OpenSHMEM 105

Fig. 2. Multiple leader based collective communication design for shnode

For large collective operations with a higher number of PEs per node, a
single leader per node might not yield the maximum benefits possible. In such
cases, we create sub-teams within teams and assign the lowest rank of each sub-
team as the leader for that team. This reduces the overhead for each leader and
thus a balance between the number of teams and the number of PEs per teams
is achieved. As an example, Fig. 2 presents two teams per node with different
leaders instead of the default one leader. We present evaluations for different
numbers of leaders in Sect. 5.3.

5 Performance Evaluation

In this section, we present our evaluation of different benchmarks and applica-
tions utilizing the shnode library and compare them with the default approach.
We present our evaluations in three different categories: (1) Evaluating shnode
with a micro-benchmark, (2) Performance improvement in collectives, (3) Eval-
uation of applications.

5.1 Experimental Setup

For our evaluation, we have used the NERSC Cori supercomputer, which is the
6th fastest supercomputer on the TOP500 [18] list, published in June, 2017. It is
a Cray� XC40 system with 2,388 Intel R© Xeon R© E5-2698 v3 (Haswell) processor
nodes at 2.3 GHz and 9,688 Intel R© Xeon PhiTM 7250 (Knights Landing, KNL)
processor nodes with 68 cores per node at 1.4 GHz. Each of the KNL nodes have
96 GB of DDR4 memory. All the compute nodes run a light-weight kernel based
on the SuSE� Linux� Enterprise Server distribution.

Throughout our experiments, we have used the KNL nodes in Cori. We have
implemented shnode on top of Cray� SHMEM v7.5.5 and used the same for
our evaluations and comparisons.

106 M. Rahman et al.

 1

 10

 100

 1000

 10000

 100000

 2 4 8 16 32 64 128

A
ve

ra
ge

 T
im

e
(u

s)

Number of PEs

init
create-team

finalize

(a) Profiling basic APIs in shnode

 0.125

 0.25

 0.5

 1

 2

 2 4 8 16 32 64 128

A
ve

ra
ge

 T
im

e
(u

s)

Number of PEs

shmem-ptr
get-remote-addr

(b) Comparing with shmem ptr

Fig. 3. Profiling analysis for shnode APIs

5.2 Evaluating Shnode with Micro-benchmark

In this section, we evaluate shnode with two different micro-benchmarks. First,
we write a micro-benchmark to do a profiling analysis for four of the fun-
damental APIs that we have proposed in Sect. 4 - shnode init, shnode
create team, shnode get member remote addr, and shnode finalize.
Out of these four APIs, application developers might need to use shnode get
member remote addr multiple times throughout the application execution,
whereas, the remaining APIs would only be invoked once during the runtime of
the application.

We conduct the profiling analysis in two KNL nodes with a varying num-
ber of PEs per node (from 1 to 64). We measure the average execution time
for each of these APIs across all PEs. As shown in the Fig. 3(a), with 128
PEs, the initialization, team creation, and finalize routines take only about
0.1 s which does not incur significant overheads. In Fig. 3(b), we compare the
shnode get member remote addr with the default shmem ptr routine. We
can see that with our implementation, we can reduce the query operation cost
by 50% on average across different number of PEs. Also, this routine scales well
because of the design choices for the data structures in shnode.

We also evaluate the basic put and get performance using micro-benchmark
and present these results in Figs. 4 and 5. We modify the OSU micro-
benchmarks [17] for shmem put and shmem get to incorporate the shnode
APIs and compare the modified put and get performances with the default ones.
We conduct these experiments on a single node with two PEs.

As shown in Fig. 4(a), shnode can perform 3–4.6x faster compared to
shmem put for small message sizes (up to 2K). For larger message sizes, the
benefit reduces to 1.5–2.35x. Similar benefits are observed for shnode based get
compared to shmem get, as shown in Fig. 5. We also measure the message rate
for put and present these results in Fig. 4(b). Here, an average benefit of 1.35x is
observed for shnode put compared to the shmem put. Since the shnode imple-
mentation of put and get performs a direct memory copy to/from the remote

Optimization of On-Node Communication in OpenSHMEM 107

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (B)

shmem-put
shnode-put

(a) Put Latency

 1

 10

 100

 1000

 10000

 100000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

K
m

es
sa

ge
s/

se
c

Message Size (B)

shmem-put
shnode-put

(b) Put Message Rate

Fig. 4. Performance comparison between SHMEM and shnode put operations

 0.01

 0.1

 1

 10

 100

 1000

 1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size (B)

shmem-get
shnode-get

Fig. 5. Performance comparison between SHMEM and shnode get operations

address, this approach obtains significant performance benefits compared to the
default ones.

5.3 Performance Improvement in Collective Routines

In this section, we present the performance comparisons between default collec-
tive routines and the shnode based helper routines. We implement our shnode
based helper collective routines for reduction and collect and present the results
here. We also evaluate the impact of multiple leaders per node on each of these
collectives.

Figure 6 presents the corresponding experiments on the reduction, specifi-
cally a sum-based reduction for integer data types (int sum to all). First, we
analyze the impact of multiple leaders per node on this reduction and present
this result in Fig. 6(a). We conduct this experiment on four KNL nodes where

108 M. Rahman et al.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(s

)

PE/leader

SHMEM+shnode
SHMEM

(a) Impact of multiple leaders
per node on reductions

0.0
1.0

2.0
3.0

4.0
5.0
6.0

7.0
8.0

9.0
10.0

128 256 512 1,024 2,048 4,096 8,192

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
)

Number of PEs

SHMEM
SHMEM+shnode

(b) Optimization using shnode based
helper routine for reduction

Fig. 6. Performance improvement potentials for reductions with shnode

we vary the number of PEs per leader from 1 to 64. We allocate a 10 MB buffer
to use as the data source for the reduction. Experimental results presented in
this section are averaged over 10 iterations.

As shown in Fig. 6(a), we achieve the most optimal performance for
int sum to all with 8 PEs per leader. Thus, with 64 PEs running on each
node, we observe the most optimal result with 8 leaders per node, where each of
them are responsible for communicating with the 7 other PEs. We also observe
that the default SHMEM implementation for reduction could not take advan-
tage of such hierarchical work distribution provided by shnode. With this opti-
mum value for the number of leaders, we conduct another experiment where
we increase the total number of PEs from 128 (2 nodes) to 8 K (128 nodes).
From the evaluation results presented in Fig. 6(b), we see that with the shnode
implementation on top of SHMEM, we can achieve up to 4.87x benefit compared
to the default SHMEM approach for int sum to all.

We implement the same for fcollect collective routine and present the
results in Fig. 7. We use a similar setup to the reduction experiment.

Unlike int sum to all, we can see in Fig. 7(a) that for fcollect, the
optimum performance is achieved with 2 PEs per leader (32 leaders per node
for 64 PEs in a node). We also see that the default SHMEM implementation for
fcollect performs better compared to the shnode implementation with more
PEs per leader. We conduct this experiment on two KNL nodes with 128 total
PEs. We also conduct a strong scale experiment for fcollect similar to the
int sum to all. For 128 nodes running 8 K PEs, we observe that the shnode
implementation out-performs the default SHMEM implementation by 2x.

5.4 Evaluation of Applications

In this section, we evaluate an application, Integer Sort [11] (ISx) to high-
light the performance improvements achievable using shnode. ISx represents
a class of the bucket sort algorithms which perform an all-to-all communication

Optimization of On-Node Communication in OpenSHMEM 109

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 1 2 4 8 16 32 64

A
ve

ra
ge

 T
im

e
(s

)

PE/leader

SHMEM+shnode
SHMEM

(a) Impact of multiple leaders
per node on fcollect

0.0
1.0

2.0
3.0

4.0
5.0
6.0

7.0
8.0

9.0
10.0

128 256 512 1,024 2,048 4,096 8,192

A
ve

ra
ge

 e
xe

cu
tio

n
tim

e
(s

ec
)

Number of PEs

SHMEM
SHMEM+shnode

(b) Optimization using shnode based
helper routine for fcollect

Fig. 7. Performance improvement potentials for fcollect with shnode

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

8 16 32 64 128 256

A
ve

ra
ge

 a
ll−

to
−

al
l t

im
e

(s
ec

)

Number of PEs

SHMEM
SHMEM+shnode
SHMEM+shnode−CUST

(a) Strong scaling

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

8 16 32 64 128 256

A
ve

ra
ge

 a
ll−

to
−

al
l t

im
e

(s
ec

)

Number of PEs

SHMEM
SHMEM+shnode
SHMEM+shnode−CUST

(b) Weak scaling

Fig. 8. Performance improvement for ISx with SHNODE library and customized com-
munication scheduling

pattern. In this evaluation, we present two different implementations of ISx uti-
lizing shnode, one with no additional changes in the communication pattern
(presented as SHMEM+shnode) and the other with customized communication
scheduling, where the node-local transfers are separated out and invoked only
at the end of the execution (presented as SHMEM+shnode-CUST). We conduct
both strong and weak scale experiments for ISx on 4 nodes with varying number
of PEs. Figure 8 presents these results.

For strong scale experiment, we use the number of items to sort equal to
1.5 billion and vary the number of PEs from 8 to 256. As shown in Fig. 8(a),
with the customized communication pattern, we can achieve 2x benefits com-
pared to the default implementation over SHMEM with 256 PEs. Since ISx
overlaps communication with computations, the shnode implementation with-
out the customized communication pattern does not observe much benefit
(around 5%) compared to the default implementation. For weak scaling exper-
iments as presented in Fig. 8(b), we observe a performance benefits of 1.5x for
256 PEs. In this experiment, we fix the number of items per PE to 32 M.

110 M. Rahman et al.

Similar to the strong scale experiments, the shnode implementation with-
out customization in communication pattern achieves only 5% benefit over the
default implementation.

6 Related Work

Namashivayam et al. [14] explore how shmem ptr can be used on the Intel R©
Xeon PhiTM processor to better exploit shared memory and enable vectorization
opportunities. This work focuses on single-node performance in the native mode
of the Xeon Phi, in which applications run directly on the many-core device.
The authors report substantial performance improvements in the latency and
bandwidth of one-sided operations, across several reduction algorithms, and in
the NAS Integer Sort (IS) and Scalar Penta-diagonal (SP) solver parallel bench-
marks. Our paper extends this work by defining a coherent interface that enables
applications to exploit shared memory outside of the OpenSHMEM API.

The shnode interface for gathering on-node groups of PEs is similar to the
idea of OpenSHMEM teams and spaces, which was introduced by Welch et al. [19]
and also proposed in [13]. The APIs for discovering local PEs [4] and building a
team in Cray-SHMEM [5] also provide methods to find out local PEs in a pre-
defined team. The shnode interface provides an easy way to store the pointers
that can be used later to access the symmetric data objects. Another challenge
in the design of shnode is that leaders must be described using the current
OpenSHMEM collectives active set notation, which places significant (e.g. power
of two stride) restrictions on which PEs can participate in a given collective.
The choice of multiple leaders presented in this paper provides more flexibility
to utilize shnode team interfaces with additional performance benefits.

There is also analogous work within the Message Passing Interface (MPI)
that reflects our interface for shared memory-oriented programming. Hoefler
et al. [12] first introduced the (perhaps initially surprising) notion of doing hybrid
parallel programming of MPI with itself via the MPI+MPI paradigm. This work
extends the MPI one-sided interface to include shared memory windows and
associated communicators to enable interprocess communication via MPI. Our
work in OpenSHMEM similarly enables on-node interprocess communication via
the shnode interface, with a relatively simple API built from the shmem ptr
routine. Other work in the PGAS community further builds off the capabilities
of shared memory in MPI-3 [10,21].

7 Future Work

Our measurements from Sect. 5 show very promising performance improvements
when using the shnode API, yet there remain considerable possibilities for
future work. For instance, the shnode concept could (and should) be imple-
mented within the OpenSHMEM software layer for all viable routines, such as
collectives and the RMA functions. We present our shnode implementations

Optimization of On-Node Communication in OpenSHMEM 111

outside the OpenSHMEM layer as a proof-of-concept for what should be imple-
mented within an OpenSHMEM library. We have so far only implemented a
handle of routines from the OpenSHMEM specification (namely, fcollect,
int sum to all, broadcast, and put/get), but many other routines are
also compatible.

We believe that shnode will primarily benefit application developers who
require processing data across PEs that are grouped into shared-memory teams.
Our results from Fig. 8 show a notable performance improvement for a real-world
application, ISx. Other applications may also greatly benefit from shnode, but
may require restructuring to achieve communication avoidance at the compute
node-level. For instance, we observe that the OpenSHMEM stencil algorithm
from the Parallel Research Kernels suite [20] may need to be restructured to
reduce synchrony between global iterations. This may be possible, for example,
by over-decomposing the grid domain to avoid starvation due to synchronous
iterations.

Due to shnode’s performance improvement of reductions (shown in Fig. 6),
we believe MapReduce calculations [6] will also greatly benefit because of
their heavy use of reduction collectives and the inter-process communication
involved in intermediate shuffling operations. For instance, the MapReduce-MPI
library [16] centers around several calls to an integer sum reduction, which is
the same procedure measured in Fig. 6 above. Future work will quantify the
performance gain from reducing and shuffling in shared memory using shnode.

8 Conclusion

This paper has introduced an interface for OpenSHMEM that alleviates the
challenges involved with programming in shared-memory. Our implementation,
shnode, supports the formation of node-local teams within which applica-
tions can easily do shared memory operations. We present an API for creat-
ing these teams, as well as for nominating a leader process or multiple leader
processes. Overall, shnode shows very good performance improvement across
RMA microbenchmarks, OpenSHMEM collectives, and the ISx application. Our
performance results show that the number of leaders has a substantial impact
on performance, depending on the communication algorithm being deployed.
Future work for this research will involve shifting shnode capabilities to within
the OpenSHMEM software layer, implementing the other variants of collectives
and RMA operations, and exploring how to restructure existing applications to
better exploit shared memory.

�Other names and brands may be claimed as the property of others.
Intel and Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. Software
and workloads used in performance tests may have been optimized for performance only on Intel
microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific
computer systems, components, software, operations and functions. Any change to any of those
factors may cause the results to vary. You should consult other information and performance tests
to assist you in fully evaluating your contemplated purchases, including the performance of that
product when combined with other products. For more information go to http://www.intel.com/
performance.

http://www.intel.com/performance
http://www.intel.com/performance

112 M. Rahman et al.

References

1. Arya, K., Garg, R., Polyakov, A.Y., Cooperman, G.: Design and implementation
for checkpointing of distributed resources using process-level virtualization. In:
2016 IEEE International Conference on Cluster Computing (CLUSTER), pp. 402–
412, September 2016

2. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics, vol. 19. Wiley, New York (2004)

3. ten Bruggencate, M., Roweth, D., Oyanagi, S.: Thread-safe SHMEM extensions.
In: Poole, S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol.
8356, pp. 178–185. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05215-1 13

4. Cray: shmem local ptr. http://docs.cray.com/man/xe libsmam/72/cat3/shmem
local ptr.3.html

5. Cray: shmem team translate pe. http://docs.cray.com/man/xe libsmam/72/cat3/
shmem team translate pe.3.html

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Demmel, J.: Communication-avoiding algorithms for linear algebra and beyond.
In: IPDPS, p. 585 (2013)

8. Dinan, J., Flajslik, M.: Contexts: a mechanism for high throughput communi-
cation in OpenSHMEM. In: Proceedings of the 8th International Conference on
Partitioned Global Address Space Programming Models, pp. 10:1–10:9. ACM,
New York (2014). http://doi.acm.org/10.1145/2676870.2676872

9. Garg, R., Vienne, J., Cooperman, G.: System-level transparent checkpointing for
OpenSHMEM. In: Gorentla Venkata, M., Imam, N., Pophale, S., Mintz, T.M. (eds.)
OpenSHMEM 2016. LNCS, vol. 10007, pp. 52–65. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-50995-2 4

10. Hammond, J.R., Ghosh, S., Chapman, B.M.: Implementing OpenSHMEM using
MPI-3 one-sided communication. In: Poole, S., Hernandez, O., Shamis, P. (eds.)
OpenSHMEM 2014. LNCS, vol. 8356, pp. 44–58. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05215-1 4

11. Hanebutte, U., Hemstad, J.: ISx: a scalable integer sort for co-design in the exas-
cale era. In: 9th International Conference on Partitioned Global Address Space
Programming Models, pp. 102–104, September 2015

12. Hoefler, T., Dinan, J., Buntinas, D., Balaji, P., Barrett, B., Brightwell, R., Gropp,
W., Kale, V., Thakur, R.: MPI + MPI: a new hybrid approach to parallel pro-
gramming with MPI plus shared memory. Computing 95(12), 1121–1136 (2013).
http://dx.doi.org/10.1007/s00607-013-0324-2

13. Knaak, D., Namashivayam, N.: Proposing OpenSHMEM extensions towards
a future for hybrid programming and heterogeneous computing. In: Gorentla
Venkata, M., Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS,
vol. 9397, pp. 53–68. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26428-8 4

14. Namashivayam, N., Ghosh, S., Khaldi, D., Eachempati, D., Chapman, B.: Native
mode-based optimizations of remote memory accesses in OpenSHMEM for Intel
Xeon Phi. In: Proceedings of the 8th International Conference on Partitioned
Global Address Space Programming Models, pp. 12:1–12:11, PGAS 2014. ACM,
New York (2014). http://doi.acm.org/10.1145/2676870.2676881

https://doi.org/10.1007/978-3-319-05215-1_13
https://doi.org/10.1007/978-3-319-05215-1_13
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_local_ptr.3.html
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_local_ptr.3.html
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_team_translate_pe.3.html
http://docs.cray.com/man/xe_libsmam/72/cat3/shmem_team_translate_pe.3.html
http://doi.acm.org/10.1145/2676870.2676872
https://doi.org/10.1007/978-3-319-50995-2_4
https://doi.org/10.1007/978-3-319-50995-2_4
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1007/978-3-319-05215-1_4
http://dx.doi.org/10.1007/s00607-013-0324-2
https://doi.org/10.1007/978-3-319-26428-8_4
https://doi.org/10.1007/978-3-319-26428-8_4
http://doi.acm.org/10.1145/2676870.2676881

Optimization of On-Node Communication in OpenSHMEM 113

15. OpenSHMEM Application Programming Interface, Version 1.3, February 2016.
http://www.openshmem.org

16. Plimpton, S.J., Devine, K.D.: MapReduce in MPI for large-scale graph algorithms.
Parallel Comput. 37(9), 610–632 (2011). http://dx.doi.org/10.1016/j.parco.2011.
02.004

17. The Ohio State University: OSU Microbenchmarks. http://mvapich.cse.ohio-state.
edu/benchmarks/

18. Top500 Supercomputing System. http://www.top500.org
19. Welch, A., Pophale, S., Shamis, P., Hernandez, O., Poole, S., Chapman, B.: Extend-

ing the OpenSHMEM memory model to support user-defined spaces. In: Proceed-
ings of the 8th International Conference on Partitioned Global Address Space Pro-
gramming Models, PGAS 2014, pp. 11:1–11:10. ACM, New York (2014). http://
doi.acm.org/10.1145/2676870.2676884

20. Van der Wijngaart, R.F., Kayi, A., Hammond, J.R., Jost, G., St. John, T.,
Sridharan, S., Mattson, T.G., Abercrombie, J., Nelson, J.: Comparing runtime sys-
tems with exascale ambitions using the parallel research Kernels. In: Kunkel, J.M.,
Balaji, P., Dongarra, J. (eds.) ISC High Performance 2016. LNCS, vol. 9697, pp.
321–339. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41321-1 17

21. Zhou, H., Idrees, K., Gracia, J.: Leveraging MPI-3 shared-memory extensions for
efficient PGAS runtime systems. In: Träff, J.L., Hunold, S., Versaci, F. (eds.)
Euro-Par 2015. LNCS, vol. 9233, pp. 373–384. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48096-0 29

http://www.openshmem.org
http://dx.doi.org/10.1016/j.parco.2011.02.004
http://dx.doi.org/10.1016/j.parco.2011.02.004
http://mvapich.cse.ohio-state.edu/benchmarks/
http://mvapich.cse.ohio-state.edu/benchmarks/
http://www.top500.org
http://doi.acm.org/10.1145/2676870.2676884
http://doi.acm.org/10.1145/2676870.2676884
https://doi.org/10.1007/978-3-319-41321-1_17
https://doi.org/10.1007/978-3-662-48096-0_29
https://doi.org/10.1007/978-3-662-48096-0_29

Portable SHMEMCache: A High-Performance
Key-Value Store on OpenSHMEM and MPI

Huansong Fu1(B), Manjunath Gorentla Venkata2, Neena Imam2,
and Weikuan Yu1

1 Florida State University, Tallahassee, USA
{fu,yuw}@cs.fsu.edu

2 Oak Ridge National Laboratory, Oak Ridge, USA
{manjugv,imamn}@ornl.gov

Abstract. The integration of Big Data frameworks and HPC capabili-
ties has drawn enormous interests in recent years. SHMEMCache is a dis-
tributed key-value store built on the OpenSHMEM global address space. It
has solved several practical issues in leveraging OpenSHMEM’s one-sided
operations for a distributed key-value store and providing efficient key-
value operations on both commodity machines and supercomputers. How-
ever, being based solely on OpenSHMEM, SHMEMCache cannot lever-
age one-sided operations from a variety of software packages. This results
in several limitations for SHMEMCache. First, we cannot make SHMEM-
Cache available to a wider range of platforms. Second, an opportunity for
potential performance improvement is missed. Third, there is a lack of deep
understanding about how different one-sided operations can fit in with
SHMEMCache and other distributed key-values in general. For example,
the one-sided operations in OpenSHMEM and MPI have many differences
in their interfaces, memory semantics and synchronization methods, all of
which can have distinct implications and also increase the complexity in
supporting both OpenSHMEM and MPI for SHMEMCache. Therefore,
we have taken on an effort on leveraging different one-sided operations for
SHMEMCache and proposed a design of portable SHMEMCache. Based
on this new framework,wehave supportedbothOpenSHMEMandMPI for
SHMEMCache. We have also conducted an extensive set of experiments to
compare the performance of the two versions on both commodity machines
and the Titan supercomputer.

1 Introduction

As the capacity of Big Data continues to grow, the attentions from both academia
and industry for Big Data also keep expanding. For example, in recent years,
distributed key-value (KV) store such as Memcached [1] and Redis [4] have been
widely used by social networking websites such as Facebook [28] and Twitter [6]
as a caching layer on top of their massive databases. This has fostered a large
volume of studies about how to boost the performance of a distributed KV
store [13,23,26,32,35]. A common topic of these studies is to use advanced HPC
capabilities such as Remote Direct Memory Access (RDMA) to accelerate the
c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 114–129, 2018.
https://doi.org/10.1007/978-3-319-73814-7_8

Portable SHMEMCache: A High-Performance Key-Value Store 115

communication in the distributed KV stores. As a result, they can deliver much
lower latency and higher throughput compared to original Memcached and Redis
where TCP/IP is used.

SHMEMCache [16] is a recent effort on building the KV store on top of the
symmetric memory of OpenSHMEM. By doing so, it can leverage the Open-
SHMEM one-sided operations such as SHMEM PUT and SHMEM GET for the KV
operations such as SET and GET. Using OpenSHMEM’s one-sided operation will
naturally take advantage of RDMA when present. Different from previous related
works, SHMEMCache provides novel solutions for data consistency issue, carries
out cache management in a coarse-grained and lightweight manner, and scales
well to more than one thousand machines. It has been shown that SHMEMCache
can deliver very low latency and high throughput KV operations at scale while
still ensuring data consistency.

An important factor of SHMEMCache’s performant KV operations can be
attributed to the performance advantage of OpenSHMEM’s one-sided opera-
tions. The one-sided communication paradigm, in general, has been popularly
supported and implemented by many parallel programming systems such as
OpenSHMEM [8], MPI [17] and many others [10,27,29]. However, based solely
on OpenSHMEM, SHMEMCache cannot leverage one-sided operations from a
variety of one-sided communication libraries. There are several limitations as a
result. First, we cannot make SHMEMCache available to a wider range of plat-
forms that OpenSHMEM is not supported or supported well. Second, we miss
the opportunity for potential performance improvement as using different one-
sided operations can directly affect the performance of KV operations. Third
and more importantly, since the one-sided communication libraries are very dif-
ferent in many aspects, they will have distinct suitability for SHMEMCache.
The understanding on how they fit in with SHMEMCache can provide a valu-
able insight on how they fit in with the distributed key-value stores and even
other types of systems that leverage one-sided operations, such as the distributed
transaction systems [9,14]. Take the one-sided operations in OpenSHMEM and
MPI for example, they are different in terms of function interfaces, memory
semantics and synchronization methods, all of which can have various impli-
cations for SHMEMCache. However, such diversity also results in challenges in
realizing SHMEMCache with a wide range of one-sided communication libraries.
Simply re-implementing SHMEMCache with different one-sided communication
libraries entails a lot of additional efforts.

In this paper, we take on an effort on designing portable SHMEMCache for
different one-sided communication libraries. Specifically, we propose a set of com-
munication interfaces for SHMEMCache that brings convenience to the adoption
of new one-sided communication libraries. In addition, to illustrate how we imple-
ment the interfaces with different one-sided operations, we carry out a detailed
analysis that compares the specifications of OpenSHMEM and MPI’s one-sided
communication. Furthermore, we evaluate and compare SHMEMCache’s perfor-
mance of the two versions, i.e. OpenSHMEM and MPI on both in-house com-
modity machines and the Titan supercomputer.

116 H. Fu et al.

The paper is organized as follows. We give a background introduction of
this paper in Sect. 2, including SHMEMCache’s structure and MPI’s one-sided
communication. Then, in Sect. 3, we introduce a new software architecture of
SHMEMCache, a set of interfaces for portable SHMEMCache and an analysis
of OpenSHMEM and MPI’s one-sided communications. And we discuss some
implementation issues in Sect. 4. Finally, we present our experimental results in
Sect. 5.

2 Background

2.1 An Overview of SHMEMCache

As shown in Fig. 1, SHMEMCache leverages the performant one-sided operations
of OpenSHMEM to speed up its KV operations. Two main KV operations are
supported, namely SET, i.e. inserting a new KV pair or updating an existing
KV pair, and GET, i.e. retrieving the value associated with a given key. The
server uses symmetric memory of OpenSHMEM to store both hash table and
KV pairs so that they are visible to clients. Therefore, SHMEMCache is able
to support Direct KV operations, where the client can directly access the
KV pairs which are located remotely on the server’s machine. Besides, it also
supports Active KV operations, where the client can send messages to the
server and let the server complete the KV operation. The messages are directly
written to the server’s memory using one-sided operations. Similarly, the server
can send messages to the client, which serves a purpose such as responding a
KV operation or synchronizing cache management information.

2.2 One-Sided Communication in MPI

MPI is the de facto message passing standard nowadays. It strives to provide a
rich range of communication abilities such as point-to-point communication and

Fig. 1. SHMEMCache structure.

Portable SHMEMCache: A High-Performance Key-Value Store 117

collective communication. As the paradigm of one-sided communication draws
much attentions, the MPI standard had started to support it since MPI-2.0.
Three types of one-sided operations are supported, i.e. Put (write to remote
memory), Get (read from remote memory) and Accumulate (a group of accu-
mulate functions, e.g. SUM).

Later, the MPI standards have further improved its support for one-sided
operations. For example, more one-sided Accumulate operations are added such
as Compare-And-Swap (CAS) and Fetch-And-Op. More importantly, MPI stan-
dard has updated its memory semantics and added the RMA unified memory
model, where the change made to remote memory can be visible without explicit
participation of the remote side, alongside with the existing RMA separate mem-
ory model, where the remote side needs to call some RMA synchronization func-
tions in order to reflect the updates to its private memory. Although requiring
hardware support for memory coherence, the RMA unified model can greatly
improve application’s performance in many scenarios where the remote side does
not need to participate in synchronization. In those scenarios, the model can save
a lot of synchronization calls, which are often time consuming. The representa-
tive MPI implementations such as MVAPICH [2] and Open MPI [3] have been
following up the advancing of MPI standards. For the time being, both MVA-
PICH and Open MPI have been fully conformant with the most recent MPI
standard (MPI-3.1).

3 Design of Portable SHMEMCache

In this section, we describe our efforts in designing portable SHMEMCache.
Firstly, we give an overview to the overall communication architecture of
portable SHMEMCache. Then, we introduce the new communication interfaces
for portable SHMEMCache. Finally, using OpenSHMEM and MPI as an exam-
ple, we illustrate how we realize the communication interfaces with regards to
the differences in memory semantics and synchronization methods of different
one-sided communication libraries.

3.1 Communication Architecture

Figure 2 shows the overall architecture of the communication components of
portable SHMEMCache. As mentioned, the client’s functions include hash table
lookup, direct KV operations and active KV operations. They use the underly-
ing communication interfaces to accomplish their corresponding communication
jobs. Among them, both the hash lookup and direct KV operations use the direct
interfaces which allow the client to directly write or read remote memory of the
server. In addition, the active KV operations will use messaging interfaces to
send or receive messages. Both types of interfaces will leverage the one-sided
operations provided by the underlying one-sided communication libraries. On
the server side, it only has the messaging interfaces. They are used for respond-
ing to the client when the response is requested for an active KV operation, and

118 H. Fu et al.

Fig. 2. The communication architecture of portable SHMEMCache.

also for sending cache management and hash table management messages, such
as an expiration bar for evicted KV pairs [16]. The one-sided communication
libraries will utilize the underlying high-speed interconnect to transfer the data.

3.2 Communication Interfaces

The major difference between the new architecture of portable SHMEMCache
and the previous SHMEMCache is the addition of direct and messaging com-
munication interfaces. The realization of SHMEMCache’s one-sided communi-
cation channel and the implementation of its other components are therefore
disentangled from each other, providing convenience in leveraging new one-sided
communication libraries.

As shown in Fig. 3, the direct communication interfaces include shmemcache
put and shmemcache get, which are akin to the put and get operations in com-
mon one-sided communication libraries, such as SHMEM PUT and SHMEM GET in
OpenSHMEM. They have similar input parameters such as the address of local
buffer to copy from or copy to. But the direct interfaces in portable SHMEM-
Cache abstract the information of remote memory using an ID (dst mem) and off-
set (offset). The ID indicates which region of exposed remote memory that the
client wants to access. The offset indicates the position in the memory region to
access. We find that such abstraction is well suited for most one-sided communi-
cation libraries we have studied. The direct interfaces do not include synchroniza-
tion calls since they can be called inside shmemcache put or shmemcache get.

Additionally, the messaging interfaces include shmemcache send,
shmemcache recv and shmemcache send buffered. They are constructed
around the Message structure. No dst mem is needed here since the target
memory region is certain, which is an exposed memory buffer on the receiv-
ing process dedicated for a specific sending process. The client can choose to use
shmemcache send to directly send the message, which is written to the remote
memory and return immediately. The client can also choose to buffer the mes-
sages for the same server and use shmemcache send buffered to send those

Portable SHMEMCache: A High-Performance Key-Value Store 119

Direct interfaces:

int shmemcache_put(void * src_buf, size_t length, ProcessID dst_proc,
MemoryID dst_mem, size_t offset);

int shmemcache_get(void * dst_buf, size_t length, ProcessID dst_proc,
MemoryID dst_mem, size_t offset);

Messaging interfaces:

int shmemcache_send(Message * msg, ProcessID dst_proc);
int shmemcache_send_buffered(Message ** msgs, ProcessID dst_proc);
Message * shmemcache_recv(ProcessID dst_proc);

Fig. 3. Communication interfaces of portable SHMEMCache.

buffered messages at once. This option is often used when the client does not
request the response from the server before its next KV operation. A window size
(e.g. 8) is predetermined as a parameter to indicate how many buffered messages
to send at once. Note that, for direct interfaces we do not enable the buffering
because unlike messaging, the client needs to indicate further actions according
to the return value of the direct interfaces. For example, when a SET does not
succeed because it fails to lock the target memory (see Sect. 2), it is up to the
client to choose to either wait longer or abort the operation.

3.3 Comparison of Memory Semantics and Synchronization
of One-Sided Operations

There can be many differences in the memory semantics and synchronization
methods between different one-sided communication libraries. Here we only dis-
cuss OpenSHMEM and MPI regarding their suitability for SHMEMCache, but
similar principles can be followed when trying to use other one-sided commu-
nication libraries. Essentially being a PGAS model, OpenSHMEM allows a PE
to use non-blocking one-sided operation to directly access the data objects in
remote symmetric memory without any specific synchronization call from the
corresponding target PE. Such semantics suits SHMEMCache well as it allevi-
ate the burden of the server, which often becomes a bottleneck serving millions
of requests per second. There are, however, some synchronization routines for
the target PE to block until observing the updates to its data objects, such as
SHMEM WAIT. But the source PE does not need to wait until the synchronization
is done by the target PE in order to complete its one-sided operation. The target
PE can poll its symmetric memory in a lightweight manner without blocking to
receive the data. For SHMEMCache’s messaging interfaces, such method will
be used. The source PE has additional synchronization routines to ensure the
delivery and ordering of data, e.g. SHMEM QUIET for assuring delivery of all out-
standing one-sided operations and SHMEM FENCE for assuring the ordering of the
delivery.

120 H. Fu et al.

As for MPI, as previously mentioned, there are two memory models for MPI
one-sided operations which are RMA separate and RMA unified models. In the
RMA separate model, a remote update can be visible in the target private mem-
ory only after an ensuring call from the target process. In the RMA unified
model, such update can be visible without the additional calls from the target
process. We can see that the RMA separate model is not desired by SHMEM-
Cache and the RMA unified model better resembles OpenSHMEM’s memory
semantics. Therefore, system support for the RMA unified model is needed.

Moreover, MPI also has more synchronization methods for its one-sided oper-
ations. There are two categories of synchronization methods. One is called active
target communication and another is called passive target communication. In the
active target communication, both source and target process explicitly form a
synchronization epoch, during which the one-sided operations can be conducted
and completed. In comparison, in the passive target communication, only the
source process needs to form the epoch but the target process does needs that.
Three synchronization methods in MPI are available, i.e. fence, post-and-wait and
lock-unlock, each of which works for one of the two categories. Both the fence
and post-and-wait methods work for the active target communication and the
lock-unlock works for the passive target communication. SHMEMCache needs
the passive target communication because both direct and messaging commu-
nication interfaces preclude the help from the target process. Therefore, the
lock-unlock method should be the choice for SHMEMCache.

Note that, it is not impossible to use RMA separate model or active target
communication for SHMEMCache. For example, we can use a concept of “uni-
versal epoch” in SHMEMCache. That is, every PE repeatedly and collectively
starts and closes an epoch. Only in the epoch, each PE can conduct one-sided
operations. However, there is a big difficulty in deciding the duration of the
epoch in that approach. If the duration is too short, there will be too much syn-
chronization overheads, especially for the PEs that do not have any operation
to carry out in that epoch, so the universal synchronization will significantly
delay their following operations. It the duration is too long, since the data deliv-
ery cannot be guaranteed until the epoch finishes, the completion of many KV
operations will be prolonged, hence the increased KV operation latency, which
is very undesirable for SHMEMCache. However, this approach could be much
more desirable by some bulk synchronous scenarios such as running a graph pro-
cessing application on in-memory KV store, which could be one of the future
endeavors.

4 Implementation

We have implemented the new communication interfaces using both OpenSH-
MEM and MPI’s one-sided operations with about 110 lines of code. All code is
written in C. In this section, we report some implementation issues.

Portable SHMEMCache: A High-Performance Key-Value Store 121

4.1 Difference Between OpenSHMEM and MPI Implementations

Unlike OpenSHMEM, to expose the memory, there is an additional step to asso-
ciate it with an MPI window to make it remotely accessible. The association is
built as follows to better fit in with the communication interfaces: the hash table
is associated with one window, the KV store is associated with one window, each
group of the message chunks that receive messages from one PE gets associated
with one window.

In addition, the one-sided operations in MPI needs different input parameters
as those in OpenSHMEM. MPI one-sided operations need the displacement from
start position of the window of the address it wants to access, while OpenSH-
MEM only needs the address. Therefore, for OpenSHMEM, we need to calculate
the address and use it for OpenSHMEM one-sided operations. While for MPI,
the offset is directly used for its one-sided operations. In addition, despite being
universal applicable for different one-sided operations, the use of offset instead
of address requires the pointer directory to change accordingly.

4.2 Alternative MPI Implementation Options

MPI has lighter-weight synchronization calls for its one-sided operations, such
as lock-all and unlock-all. They are lighter-weight in the sense that they need
fewer synchronization calls when a process needs to communicate with a group
of processes. However, we do not have such scenarios in SHMEMCache to exploit
this benefit. For direct KV operations and non-buffered active KV operations, a
client only writes to or read from one server at a certain time. Even for buffered
active KV operations, the messages are buffered and sent to only one target
process. Our test result backs this assessment, showing that replacing lock and
unlock with lock-all and unlock-all operations in SHMEMCache does not give
us any performance improvement.

In addition, one may consider using the non-blocking MPI Isend/Irecv rou-
tines to implement the messaging interfaces. However, they do not fit in with
SHMEMCache as well because we will need exact matching of Isend and Irecv
calls, which is not feasible in SHMEMCache’s scenarios.

For MPI, the globally visible memory is allocated by MPI Alloc mem.
Although in our experiments, there is no performance difference resulted from
using MPI Alloc mem or common memory allocation function in C such as
malloc, it is still preferred to use MPI Alloc mem for potential improvement
on a system that can provide optimization.

5 Evaluation

Our experiments are conducted on two systems. The first one is an in-house
cluster of 21 server nodes called Innovation. Each machine is equipped with
10 dual-socket Intel Xeon(R) cores and 64 GB memory. All nodes are con-
nected through an FDR Infiniband interconnect with the ConnectX-3 NIC.

122 H. Fu et al.

The second is the Titan supercomputer at Oak Ridge National Laboratory [5].
Titan is a hybrid-architecture Cray XK7 system, which consists of 18,688 nodes
and each node is equipped with a 16-core AMD Opteron CPU and 32 GB of
DDR3 memory. We use Open MPI version 2.1.0 for both OpenSHMEM and
MPI implementations. Unless otherwise specified, on each machine we run only
one client or server, without collocating them.

We use the YCSB benchmark suite [11] to generate our workload. It is a
tool that can generate workloads based on real-world statistics. Our workload
contains 1 million KV operations that operate on 1 million records, each of
which has a 16 Byte key and 128 Byte value. The distribution of KV pairs
follows the Zipfian distribution. The proportion of SET and GET in the workload
varies depending on the experiment types: for KV operation latency test, only
one of SET/GET is included and for throughput test, the workload consists of 95%
GET and 5% SET. To avoid the impact of initialization and data ingress, we load
all the KV pairs in memory before starting the time measuring.

5.1 Operation Latency

Active Operation. Figure 4 shows the average operation latency when using
the active KV operation. In this experiment, the client does not buffer the mes-
sages and also requires a response from the server before proceeding to next KV
operation. We can see that on both Innovation and Titan, the OpenSHMEM ver-
sion consistently outperforms the MPI version for different value sizes. The main
reason behind this is the difference in synchronization overheads. The MPI’s

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(a) SET latency (Inv).

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(b) GET latency (Inv).

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(c) SET latency (Titan).

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(d) GET latency (Titan).

Fig. 4. Active operation latency.

Portable SHMEMCache: A High-Performance Key-Value Store 123

lock and unlock steps for each sending message cost much more than OpenSH-
MEM’s only one synchronization call, i.e. shmem quiet. Moreover, as the value
size increases, there will be more messages to send, hence the increasing number
of synchronization calls. Therefore, the OpenSHMEM version continues to show
performance advantage for larger value sizes.

Direct Operation. Figure 5 shows the average operation latency when using
the direct KV operation. We can see that the OpenSHMEM version still has
generally more competitive performance than the MPI version. However, the
advantage of OpenSHMEM version over MPI version is less pronounced than
that in Fig. 4, especially for large value size. This is because the number of
synchronization calls does not increase as much as the value size when conducting
direct KV operations. Only one synchronization call is needed for every direct KV
operation. For some larger value sizes, performance of the MPI version becomes
comparable or even better than the OpenSHMEM version. In addition, SET on
Titan has higher latency than that on Innovation, which is mainly because on
Innovation we opt to use the RDMA compare-and-swap for more competitive
performance on the Linux cluster of Innovation.

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(a) SET latency (Inv).

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(b) GET latency (Inv).

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(c) SET latency (Titan).

 1

 10

 100

 1000

 1 16 256 4K 64K 512K

T
im

e
(µ

s)

Value Size (Bytes)

OpenSHMEM
MPI

(d) GET latency (Titan).

Fig. 5. Direct operation latency.

Effect of Messaging Window Size. To further investigate the impact of
synchronization overheads that affect the performance of MPI version, we vary
the messaging window size, which is the number of buffered messages to send in

124 H. Fu et al.

the active KV operation latency experiment. Figure 6 shows the average oper-
ation latency with difference messaging window sizes. It can be seen that both
the OpenSHMEM and MPI versions have better performance if window size
is more than one. Among the two, the MPI version has a larger improvement
when window size continues to increase, because that helps saturate its rela-
tively large synchronization overheads. But both will cease to deliver noticeable
improvement when the window size reaches certain number.

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32

T
im

e
(µ

s)

Window Size

OpenSHMEM
MPI

(a) SET latency (Inv).

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32

T
im

e
(µ

s)

Window Size

OpenSHMEM
MPI

(b) GET latency (Inv).

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32

T
im

e
(µ

s)

Window Size

OpenSHMEM
MPI

(c) SET latency (Titan).

 0

 2

 4

 6

 8

 10

 12

 14

 1 2 4 8 16 32

T
im

e
(µ

s)

Window Size

OpenSHMEM
MPI

(d) GET latency (Titan).

Fig. 6. Varying the size of messaging window.

5.2 Throughput

Hash Table Lookup. The lookup throughput measures how much hash table
lookups the client can complete within a certain time period. Figure 7 shows
the throughput of hash table lookup with varying number of clients. We show
two different hash table entry sizes for comparison, namely the two numbers of
sub-entries (1 and 8). The number indicates how many KV pairs are stored in
one entry of SHMEMCache’s set-associative hash table (see Sect. 2). We scale
the experiment to up to 16 machines on Innovation and 1024 machines on Titan.
From the results we can see that, the performance of the two versions are com-
parable on both Innovation and Titan. However, the OpenSHMEM version still
outperforms the MPI version slightly and consistently. The results also demon-
strate that both the OpenSHMEM and MPI versions have achieved good scala-
bility with 1024 clients from different machines accessing the hash table of only
one same server.

Portable SHMEMCache: A High-Performance Key-Value Store 125

 10

 100

 1000

 10000

 1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(a) 1 sub-entry (Inv).

 10

 100

 1000

 10000

 1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(b) 8 sub-entries (Inv).

 100

 1000

 10000

 100000

 1x106

 1 4 16 64 256 1024

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(c) 1 sub-entry (Titan).

 100

 1000

 10000

 100000

 1x106

 1 4 16 64 256 1024

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(d) 8 sub-entries (Titan).

Fig. 7. Lookup throughput with varying number of clients.

 10

 100

 1000

 10000

 1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(a) 32 Byte (Inv).

 10

 100

 1000

 10000

 1 2 4 8 16

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(b) 4 KB (Inv).

 100

 1000

 10000

 100000

 1x106

 1 4 16 64 256 1024

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(c) 32 Byte (Titan).

 100

 1000

 10000

 100000

 1x106

 1 4 16 64 256 1024

T
h

ro
u

g
h

p
u

t
(K

o
p

s/
S

)

Num of Clients

OpenSHMEM
MPI

(d) 4 KB (Titan).

Fig. 8. KV operation throughput with varying number of clients.

KV Operations. We also evaluate the throughput for KV operations with the
mixed workload introduced before. Figure 8 shows results with varying number
of clients. We depict the results for two value sizes, a smaller one (32 Byte) and a

126 H. Fu et al.

larger one (4 KB). Similar to the lookup throughput results, the OpenSHMEM
version slightly outperforms the MPI version in all cases. Both of the two versions
can scale well on both Innovation cluster and Titan supercomputer.

6 Related Works

One-sided communication has been actively studied for more than a decade. The
related research efforts include specification, implementation and evaluation of
one-sided communication [12,18,19,21,24,30,31], and also use cases of the one-
sided communication [9,14–16,20,23,25,26,34]. Our work is an intersection of
both directions, comparing different one-sided communications for the use case
of distributed key-value store.

To name a few, the implementation and evaluation of one-sided operations in
MPI-2 and MPI-3 are discussed in [12,21]. In addition, an extensive evaluation
study of MPI one-sided operations is presented in [18]. The OpenSHMEM one-
sided communication has been introduced more recently. Some have attempted
to implement OpenSHMEM one-sided communication by using conduit such
as MPI-3 [19] and UCCS [31]. OpenSHMEM’s one-sided operations have been
studied in [24,30].

On the other hand, one-sided operations have been used to implement
communication channel in many parallel and distributed systems such as
MPI [25,33], big data frameworks [20,34], and distributed transaction sys-
tems [9,14]. As distributed in-memory KV store focuses on providing low-latency
and high-throughput remote operations, we have also seen a large body of works
on leveraging one-sided operations for it. For example, Appavoo et al. [7] and
Jose et al. [22,23] both extend Memcached and provide support for RDMA.
Pilaf [26], FaRM [13] and HydraDB [35] all optimize GET with one-sided RDMA
reads that can greatly boost its performance.

7 Conclusion

In this paper, we have proposed a design of portable SHMEMCache, which
is a high-performance distributed key-value store that can leverage a variety
of one-sided communication libraries. We have supported both OpenSHMEM
and MPI for SHMEMCache and provided an analysis regarding their one-sided
communication in detail. Our experimental results have shown that both versions
of SHMEMCache can achieve good performance on two different testbeds, with
OpenSHMEM being notably better in operation latency because of its lower
synchronization overheads. Both can achieve good scalability towards more than
1000 machines on the Titan supercomputer. In future, we will support more
one-sided communication libraries and compare their performance. We will also
explore more use cases for the one-sided communication such as graph processing
applications.

Portable SHMEMCache: A High-Performance Key-Value Store 127

Acknowledgment. This work was supported in part by a contract from Oak
Ridge National Laboratory and the National Science Foundation awards 1561041 and
1564647.

This research used resources of the Oak Ridge Leadership Computing Facility,
which is a DOE Office of Science User Facility supported under Contract DE-AC05-
00OR22725.

References

1. Memcached. https://memcached.org/downloads
2. MVAPICH. http://mvapich.cse.ohio-state.edu/
3. OpenMPI. https://www.open-mpi.org/
4. Redis. http://redis.io/
5. Titan Supercomputer. https://www.olcf.ornl.gov/titan/
6. Aniszczyk, C.: Caching with twemcache (2012)
7. Appavoo, J., Waterland, A., Da Silva, D., Uhlig, V., Rosenburg, B.,

Van Hensbergen, E., Stoess, J., Wisniewski, R., Steinberg, U.: Providing a cloud
network infrastructure on a supercomputer. In: Proceedings of the 19th ACM Inter-
national Symposium on High Performance Distributed Computing, pp. 385–394.
ACM (2010)

8. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
p. 2. ACM (2010)

9. Chen, Y., Wei, X., Shi, J., Chen, R., Chen, H.: Fast and general distributed trans-
actions using RDMA and HTM. In: Proceedings of the Eleventh European Con-
ference on Computer Systems, p. 26. ACM (2016)

10. UPC Consortium: UPC language specifications v1. 2. Lawrence Berkeley National
Laboratory (2005)

11. Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking
cloud serving systems with YCSB. In: Proceedings of the 1st ACM Symposium on
Cloud Computing, pp. 143–154. ACM (2010)

12. Dinan, J., Balaji, P., Buntinas, D., Goodell, D., Gropp, W., Thakur, R.: An imple-
mentation and evaluation of the MPI 3.0 one-sided communication interface. Con-
curr. Comput. Pract. Exp. 28, 4385–4404 (2016)

13. Dragojević, A., Narayanan, D., Castro, M., Hodson, O.: Farm: fast remote memory.
In: 11th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 14), pp. 401–414 (2014)

14. Dragojević, A., Narayanan, D., Nightingale, E.B., Renzelmann, M., Shamis, A.,
Badam, A., Castro, M.: No compromises: distributed transactions with consistency,
availability, and performance. In: Proceedings of the 25th Symposium on Operating
Systems Principles, pp. 54–70. ACM (2015)

15. Fu, H., SinghaRoy, K., Venkata, M.G., Zhu, Y., Yu, W.: SHMemCache: enabling
memcached on the OpenSHMEM global address model. In: Gorentla Venkata, M.,
Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS, vol. 10007,
pp. 131–145. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50995-2 9

16. Fu, H., Venkata, M.G., Choudhury, A.R., Imam, N., Yu, W.: High-performance key-
value store on OpenSHMEM. In: Proceedings of the 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, pp. 559–568. IEEE Press
(2017)

https://memcached.org/downloads
http://mvapich.cse.ohio-state.edu/
https://www.open-mpi.org/
http://redis.io/
https://www.olcf.ornl.gov/titan/
https://doi.org/10.1007/978-3-319-50995-2_9

128 H. Fu et al.

17. Geist, A., Gropp, W., Huss-Lederman, S., Lumsdaine, A., Lusk, E., Saphir, W.,
Skjellum, T., Snir, M.: MPI-2: extending the message-passing interface. In: Bougé,
L., Fraigniaud, P., Mignotte, A., Robert, Y. (eds.) Euro-Par 1996. LNCS, vol. 1123,
pp. 128–135. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61626-
8 16

18. Gropp, W., Thakur, R.: An evaluation of implementation options for MPI one-
sided communication. In: Di Martino, B., Kranzlmüller, D., Dongarra, J. (eds.)
EuroPVM/MPI 2005. LNCS, vol. 3666, pp. 415–424. Springer, Heidelberg (2005).
https://doi.org/10.1007/11557265 53

19. Hammond, J.R., Ghosh, S., Chapman, B.M.: Implementing OpenSHMEM using
MPI-3 one-sided communication. In: Poole, S., Hernandez, O., Shamis, P. (eds.)
OpenSHMEM 2014. LNCS, vol. 8356, pp. 44–58. Springer, Cham (2014). https://
doi.org/10.1007/978-3-319-05215-1 4

20. Huang, J., Ouyang, X., Jose, J., Wasi-ur Rahman, M., Wang, H., Luo, M.,
Subramoni, H., Murthy, C., Panda, D.K.: High-performance design of HBase with
RDMA over infiniband. In: 2012 IEEE 26th International Parallel & Distributed
Processing Symposium (IPDPS), pp. 774–785. IEEE (2012)

21. Jiang, W., Liu, J., Jin, H.-W., Panda, D.K., Gropp, W., Thakur, R.: High per-
formance MPI-2 one-sided communication over infiniband. In: IEEE International
Symposium on Cluster Computing and the Grid, CCGrid 2004, pp. 531–538. IEEE
(2004)

22. Jose, J., Subramoni, H., Kandalla, K., Wasi-ur Rahman, M., Wang, H., Narravula,
S., Panda, D.K.: Scalable memcached design for infiniband clusters using hybrid
transports. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGrid), pp. 236–243. IEEE (2012)

23. Jose, J., Subramoni, H., Luo, M., Zhang, M., Huang, J., Wasi-ur Rahman, M.,
Islam, N.S., Ouyang, X., Wang, H., Sur, S., et al.: Memcached design on high
performance RDMA capable interconnects. In: 2011 International Conference on
Parallel Processing (ICPP), pp. 743–752. IEEE (2011)

24. Jose, J., Zhang, J., Venkatesh, A., Potluri, S., Panda, D.K.: A comprehensive
performance evaluation of OpenSHMEM libraries on InfiniBand clusters. In: Poole,
S., Hernandez, O., Shamis, P. (eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp. 14–
28. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05215-1 2

25. Liu, J., Wu, J., Panda, D.K.: High performance RDMA-based MPI implementation
over infiniband. Int. J. Parallel Prog. 32(3), 167–198 (2004)

26. Mitchell, C., Geng, Y., Li, J.: Using one-sided RDMA reads to build a fast, CPU-
efficient key-value store. In: USENIX Annual Technical Conference, pp. 103–114
(2013)

27. Nieplocha, J., Palmer, B., Tipparaju, V., Krishnan, M., Trease, H., Aprà, E.:
Advances, applications and performance of the global arrays shared memory pro-
gramming toolkit. Int. J. High Perform. Comput. Appl. 20(2), 203–231 (2006)

28. Nishtala, R., Fugal, H., Grimm, S., Kwiatkowski, M., Lee, H., Li, H.C., McElroy,
R., Paleczny, M., Peek, D., Saab, P., et al.: Scaling memcache at facebook. In:
Presented as Part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 13), pp. 385–398 (2013)

29. Numrich, R.W., Reid, J.: Co-array Fortran for parallel programming. ACM SIG-
PLAN Fortran Forum 17, 1–31 (1998). ACM

30. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn, J.:
OpenSHMEM performance and potential: a NPB experimental study. In: The 6th
Conference on Partitioned Global Address Space Programming Models (PGAS12).
Citeseer (2012)

https://doi.org/10.1007/3-540-61626-8_16
https://doi.org/10.1007/3-540-61626-8_16
https://doi.org/10.1007/11557265_53
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1007/978-3-319-05215-1_4
https://doi.org/10.1007/978-3-319-05215-1_2

Portable SHMEMCache: A High-Performance Key-Value Store 129

31. Shamis, P., Venkata, M.G., Poole, S., Welch, A., Curtis, T.: Designing a high per-
formance OpenSHMEM implementation using universal common communication
substrate as a communication middleware. In: Poole, S., Hernandez, O., Shamis,
P. (eds.) OpenSHMEM 2014. LNCS, vol. 8356, pp. 1–13. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05215-1 1

32. Shankar, D., Lu, X., Islam, N., Wasi-Ur-Rahman, M., Panda, D.K.: High-
performance hybrid key-value store on modern clusters with RDMA interconnects
and SSDs: non-blocking extensions, designs, and benefits. In: 2016 IEEE Interna-
tional Parallel and Distributed Processing Symposium, pp. 393–402. IEEE (2016)

33. Shipman, G.M., Woodall, T.S., Graham, R.L., Maccabe, A.B., Bridges, P.G.:
Infiniband scalability in Open MPI. In: Proceedings 20th IEEE International Par-
allel & Distributed Processing Symposium, p. 10-pp. IEEE (2006)

34. Wang, Y., Que, X., Yu, W., Goldenberg, D., Sehgal, D.: Hadoop acceleration
through network levitated merge. In: Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, p. 57.
ACM (2011)

35. Wang, Y., Zhang, L., Tan, J., Li, M., Gao, Y., Guerin, X., Meng, X., Meng, S.:
HydraDB: a resilient RDMA-driven key-value middleware for in-memory cluster
computing. In: SC 2015, p. 22. ACM (2015)

https://doi.org/10.1007/978-3-319-05215-1_1

Balancing Performance and Portability
with Containers in HPC:

An OpenSHMEM Example

Thomas Naughton1(B), Lawrence Sorrillo2, Adam Simpson2, and Neena Imam3

1 Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, TN 37831, USA

naughtont@ornl.gov
2 Center for Computational Sciences, Oak Ridge National Laboratory,

Oak Ridge, TN 37831, USA
3 Computing and Computational Sciences Directorate,

Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA

Abstract. There is a growing interest in using Linux containers to
streamline software development and application deployment. A con-
tainer enables the user to bundle the salient elements of the software
stack from an application’s perspective. In this paper, we discuss initial
experiences in using the Open MPI implementation of OpenSHMEM
with containers on HPC resources. We provide a brief overview of two
container runtimes, Docker & Singularity, highlighting elements that are
of interest for HPC users. The Docker platform offers a rich set of ser-
vices that are widely used in enterprise environments, whereas Singu-
larity is an emerging container runtime that is specifically written for
use on HPC systems. We describe our procedure for container assembly
and deployment that strives to maintain the portability of the container-
based application. We show performance results for the Graph500 bench-
mark running along the typical continuum of development testbed up to
full production supercomputer (ORNL’s Titan). The results show con-
sistent performance between the native and Singularity (container) tests.
The results also showed an unexplained drop in performance when using
the Cray Gemini network with Open MPI’s OpenSHMEM, which was
unrelated to the container usage.

This work was sponsored by the U.S. Department of Energy’s Office of Advanced
Scientific Computing Research. This manuscript has been authored by UT-Battelle,
LLC under Contract No. DE-AC05-00OR22725 with the U.S. Department of Energy.
The United States Government retains and the publisher, by accepting the article
for publication, acknowledges that the United States Government retains a non-
exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to do so, for United States Government
purposes. The Department of Energy will provide public access to these results of
federally sponsored research in accordance with the DOE Public Access Plan (http://
energy.gov/downloads/doe-public-access-plan). This research used resources of the
Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User
Facility supported under Contract DE-AC05-00OR22725.

c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 130–142, 2018.
https://doi.org/10.1007/978-3-319-73814-7_9

http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan

Balancing Performance and Portability with Containers in HPC 131

1 Introduction

There is much interest in the emerging use of Linux containers to streamline
software development and application deployment. This is primarily due to the
rich set of tools that have appeared for web and commodity based workloads.
These new capabilities offer users the ability to quickly customize their execution
environment and offer improved user productivity by providing “portable” appli-
cations. These container-based approaches also offer potential benefits for repro-
ducibility of computational experiments by capturing the salient elements of the
software stack from an application’s perspective. However, there are some chal-
lenges when trying to employ containers in high performance computing (HPC).
For example, integration of new tools/methods into existing HPC services and
security policies. Additionally, there may be performance issues if the underlying
resources are not properly leveraged, e.g., using tuned communication libraries
and HPC network drivers.

In general, the container runtime environments that exist today are primarily
focused on enterprise systems like Docker. This leads to assumptions and prior-
ities that are not fully aligned with an HPC context. A very basic difference is
that HPC systems generally use batch allocations where a single user is given
exclusive access to a set of nodes that are attached to a high speed intercon-
nect. There is little need to add additional network isolation layers that reduce
direct access to the high speed interconnect. Other examples of inconsistencies
due to choices associated with an enterprise setting include assumptions about
user access controls and local storage and filesystems.

In this paper, we discuss our initial experience in using the Open MPI [3]
implementation of OpenSHMEM with containers on HPC resources. We describe
the procedure for container assembly and deployment that attempts to maintain
the portability of the container-based application. This methodology is evaluated
from the perspectives of portability and performance. We show performance
results for the Graph500 benchmark running along the typical continuum of
development testbed up to full production supercomputer (ORNL’s Titan).

2 Background

A container is a method for encapsulating an execution environment. Linux
containers leverage two operating system (OS) isolation mechanisms: resource
namespaces and control groups (cgroups). These mechanisms extend the classic
UNIX fork/exec model to allow for further refinements to the sharing (or restrict-
ing) of resources viewable by processes. A container runtime is the software tool
that coordinates the use of these low-level mechanisms to provide simplified
access for managing the setup and execution of containers. The container run-
time drives the initialization of a container and offers convenient interfaces to
attach and interact with “container-ized” applications. A container image is the
software bundle that contains the application and its dependent files and data.

132 T. Naughton et al.

There are several emerging tools for running containers and managing the work-
flow of image creation and sharing. Docker is a popular enterprise solution and
Singularity is an emerging solution specifically targeting HPC environments.

2.1 Docker

The Docker [2] tool is actually comprised of several separate pieces. The Docker
Engine includes the user interface, storage drivers, network overlays and con-
tainer runtime. The Docker Registry is an image server, which can be used to
provide both public and private shares with a central community registry hosted
at Docker Hub (https://hub.docker.com). There is also an orchestration interface
and specification called Docker Compose. These tools all use a similar specifica-
tion format so there is consistency between the tools/layers. Docker also includes
support for linking the control daemons on different hosts into a grouping called
a Swarm. In Docker Swarm mode, a user can perform distributed computing
with containers spanning multiple hosts. An overlay network is typically used to
provide seamless interaction between container-ized processes running on differ-
ent physical hosts.

2.2 Singularity

Singularity [5] is a container runtime created for use in HPC environments. The
focus is on providing a user with “compute mobility”, while following expected
practices for HPC sites. The runtime follows common practices for user permis-
sion management, whereby a user has the same access in the container envi-
ronment as they do outside the container. This limits some actions that the
user can perform on the HPC resource directly, which mainly involves opera-
tions associated with image management. Singularity supports building images
via a definition file or by importing Docker images. A new Singularity Hub
is coming online for sharing images and managing image creation. Singularity
does not setup any network isolation, nor does it provide any distributed control
capability. Instead, Singularity expects the user to use the existing HPC network
directly and leverage available parallel resource management/launch capabilities
that are standard in managed HPC environments.

3 Approach

A major motivation for using containers is to streamline the deployment of appli-
cations by providing a consistent execution environment that is carried to each
machine. This environment is defined in the container image and allows a user to
install software and configure their application as they choose. However, there are
some aspects that require special attention, namely those pieces that interface
with the system. For example, there must be proper compatibility between the
C runtime library (libc) that exports the interface to the kernel via system calls.

https://hub.docker.com

Balancing Performance and Portability with Containers in HPC 133

Similarly, the interface to network devices and graphics processing units (GPUs)
also require special attention to ensure correct and efficient access.

There are different methods for coping with these host specific elements. In
general, they involve either exporting elements to dynamically access the proper
software interfaces (libraries) or embedding all possible interfaces (libraries) into
the image. However, the latter is not always an option as some software is not
freely redistributable (e.g., network drivers) and it may simply be outside the
user’s purview.

The following describes our considerations and methodology for creating a
container image to deploy the OpenSHMEM enhanced version of the Graph500
benchmark. We used a typical development life-cycle as the basis for our app-
roach: (1) develop on a small testbed (Docker & Singularity); and, (2) run on a
production machine (Singularity).

3.1 Container Deployment

As mentioned above, there are two general approaches for dealing with host spe-
cific elements: (a) customize the image with the requisite software, or (b) dynam-
ically load the requisite software. The customized option can potentially break
the portability of the container image, and potentially adds to the complexity
of the image creation process. The dynamic load option avoids problems with
portability, but may not be fully realizable. To better understand this process,
we deployed a version of the Graph500 benchmark that uses OpenSHMEM [1].
We attempted to keep the image as generic as possible and customize only when
necessary.

OpenSHMEM. There are several emerging implementations of OpenSHMEM,
but very few are pre-packaged with standard Linux distributions. When prepar-
ing our OpenSHMEM based benchmark, we identified that Open MPI includes
an implementation of OpenSHMEM. The Open MPI shipped with Ubuntu 17.04
enables OSHMEM support by default, which meant we could install the distribu-
tion version of Open MPI (openmpi) in the image to have a working OSHMEM.

“Split Level” Launch. A key element of the Singularity approach to containers
is that you avoid recreating pieces that are already available in HPC for launching
parallel applications. This includes the system process management interface. For
example, HPC systems have remote process launching services on all compute
nodes and the parallel runtime environments are setup to use these services for
remote process startup. The notion of a “split level” launch is where the host’s
process management interfaces are used to startup the container-ized application
on the parallel platform, i.e., the parallel application is split between host and
container during launch. In the case of Open MPI, the runtime layer is enhanced
to understand how to properly launch a process using Singularity. The runtime is
on the host. The application is in the container. The host runtime starts up the
containers-ized parallel application. The communication libraries from the host

134 T. Naughton et al.

can also be injected into the container for use at execution time. The injection is
accomplished by sharing the host communication libraries with the container and
pre-pending this path to the LD LIBRARY PATH used in the container. Note, this
assumes that the libraries maintain proper Application Binary Interface (ABI)
compatibility if the host/container versioning is not exactly identical.

3.2 Container Image Setup

We created a Docker image for Graph500-oshmem, which was useful for initial
testing on the development machine. The Docker image was then used to create
a Singularity image for Graph500-oshmem. We tested using a direct import of
the Docker image with Singularity and using a Singularity bootstrap definition
file (much like a Dockerfile). There was no significant difference when working
on the development system, but on production machines the Singularity import
method might be more useful as it can be used without root permissions (nor a
local Docker installation).

A few image customizations were required in order to run the container on
the production machine. We had to add a few directories for bind mounts (Fig. 1)
that are setup at runtime for use on the Titan machine, e.g., ALPS scheduler
information, Lustre, parallel filesystem mounts. A few changes were made to the
environment for the container by editing the /environment file in the Singularity
container1 (Fig. 2). We also had to add the Munge authentication library, which
had not been installed in the image, and was needed at execution time on the
production system (Fig. 3).

Fig. 1. Directories to create in image to support required bind mounts for use on Titan.

1 In Singularity-2.3, we should be able to make the environment changes dynamically
without having to directly edit the “/environment” file by using SINGULARITYENV

prefixes.

Balancing Performance and Portability with Containers in HPC 135

Fig. 2. Additions for the “/environment” file in the Singularity image, appended to
the end of file.

Fig. 3. Additional packages to add to the container image for use on production
machine (Titan).

4 Evaluation

The motivation for containers is to have a portable “bundle” (image) to allow
an application to be self-sufficient. The intent of our experiment is to have a
consistent image that can be transferred between the testbed and production
environments, while achieving the potential performance for each machine. We
ran the Graph500-oshmem [1] and OSU [6] benchmarks to identify any perfor-
mance differences when running with and without a container.

4.1 Testing Environment

The UB4 development cluster is a small four node testbed of Dell C6220
machines connected via a dedicated 10GigE interconnect. The machines have
dual Intel(R) Xeon(R) 2.0 GHz CPU with 8 cores per processor (16 cores per
node) and 64 GB of physical memory. The nodes have a Mellanox MT26428
ConnectX interface that is configured to run in 10GigE mode using the mlx4 en
device driver. The nodes are running Ubuntu 16.04.1 at the host level with a
Linux 4.4.0-75-generic kernel. The nodes are installed with Docker v1.13 and
Singularity v2.2.1.

The Titan supercomputer is housed at the Oak Ridge Leadership Computing
Facility (OLCF) [7]. Titan is a 200 cabinet Cray XK7 comprised of 18,688 nodes

136 T. Naughton et al.

with an AMD Opteron 6274 (Interlagos) CPU and a NVidia Kepler K20X GPU,
for a total theoretical peak performance of 27 PFlops. The CPUs have 16 cores
and 32 GB of memory per node, plus 6 GB of memory for each GPU. The nodes
are connected via a 3D Torus Cray Gemini network. The system runs the Cray
Linux Environment (CLE), which is currently CLE 5.2.82. During our tests, the
nodes were installed with Singularity v2.2.1.

4.2 OpenSHMEM/Graph500

We used the Graph500 benchmark that had been enhanced to use OpenSH-
MEM [1]. The benchmark takes two input parameters, Scale and EdgeFactor,
which determine the size of the graph used for the problem. Based on these two
parameters, the benchmark generates a list of edges and constructs a graph,
which is subsequently used in a breadth first search (BFS) from 64 randomly
selected points [4]. The BFS searches are timed with the mean time for each
search reported in the closing benchmark statistics. The benchmark also reports
the time to construct the graph and generate the edge list.

All tests used the default edge factor, edges = 16. The graph scale was
varied to identify a reasonable running time to help expedite testing. Also, we
disabled validation (SKIP VALIDATION = 1) to reduce the running time for the
Graph500 benchmark.

We used the Open MPI implementation of OpenSHMEM, specifically
Open MPI v2.0.2. The OpenSHMEM framework was configured to use the
spml/yoda component. The tests were run in a native mode (no container) to
establish a baseline for comparison when running the tests from a Singularity
container. The GNU toolchain was used for all tests, with GCC 5.4.0 on the
UB4 development cluster, and GCC 5.3.0 on Titan.

Fig. 4. Graph500 at scale = 20 (edges = 16) with TCP, running on 2 nodes of UB4
cluster.

Balancing Performance and Portability with Containers in HPC 137

Fig. 5. Graph500 BFS comparison with and without a Singularity container using the
uGNI BTL from Open MPI OpenSHMEM. Figure 5(a) is at scale = 16 using 2 hosts.
Figure 5(b) is at scale = 20 using 16 and 64 hosts as indicated in the x-axis.

Fig. 6. Graph construction time in seconds for Graph500 at scale = 20 (edges = 16),
with and without the uGNI BTL driver, running on 64 nodes of Titan.

138 T. Naughton et al.

Fig. 7. Graph generation time in seconds for Graph500 at scale = 20 (edges = 16),
with and without the uGNI BTL driver, running on 64 nodes of Titan.

Fig. 8. Graph500 BFS at scale = 20 (edges = 16) using the native Open MPI Open-
SHMEM with uGNI BTL and native Cray-shmem, running on 64 nodes of Titan.

Fig. 9. Mean time in seconds for breadth first search of Graph500 at scale = 20 (edges =
16), with and without the uGNI BTL driver, running on 64 nodes of Titan.

Figure 4 shows the times for the BFS using two nodes in the UB4 cluster
with scale = 20 and edges = 16. There is a slight decrease in performance for
the container case, but overall the results are very similar. The 4 processes case
(2 per node) shows some variability.

Balancing Performance and Portability with Containers in HPC 139

Fig. 10. Latency in microseconds (µsec) for OSU shmem putmem() (heap) test running
on 2 nodes of Titan for CraySHMEM, Open MPI OpenSHMEM with, and without,
the uGNI BTL.

In the next set of tests we check to see if any additional overheads are encoun-
tered when using Singularity on the production system (Titan), which uses a host
provided installation of Open MPI to obtain optimized transport drivers for the
Cray Gemini interconnect. The tests show native (no-container) and Singular-
ity with host drivers passed via LD LIBRARY PATH (injected into container via
host bind mount). In later tests we also include the “NoHost” container case,
which eliminates use of the host’s communication libraries and instead uses the
communication libraries contained within the Singularity image.

Figure 5 shows the mean time for the Graph500 BFS running natively (no
container) and within a Singularity container on Titan. The tests were run using
different problems scales (scale = 16 and scale = 20) and numbers of hosts (2,
16, and 64 hosts). All of the runs showed roughly the same performance with
and without the container.

In Figs. 6 and 7, we show the time for graph construction and generation
using all three scenarios (Native, Singularity, and Singularity-NoHost) with and

140 T. Naughton et al.

without the Open MPI Cray Gemini uGNI byte transfer layer (BTL). The results
shown are for the scale = 20 and edges = 16 case run on 64 nodes of Titan. The
container did not have a significant impact on the performance for construc-
tion or generation. There is a slight difference in Fig. 6(a) for the “Singularity
NoHost” (not using host communication drivers).

Figure 8 shows the comparison of the Open MPI OpenSHMEM (titan-native)
with the uGNI BTL versus Cray-shmem (crayshmem-native), both running
natively (no containers) on Titan. The Open MPI OpenSHMEM case (titan-
native) shows much worse performance than the Cray-shmem case.

In Fig. 9 we show the additional case where we run Singularity without the
host drivers (“NoHost”). In Fig. 9(a), we see that the time for BFS is effectively
the same when running with or without the container and using the uGNI BTL.
However, the “NoHost” case performs much better, which is unexpected as this
will be using the TCP BTL instead of the Cray uGNI BTL. Since we get this
performance in the native case, it is clearly not related to the container runtime
(Singularity). In Fig. 9(b), we verified this by rerunning the tests with the uGNI
BTL disabled and found that we got roughly the same performance across all
three test configurations when using the TCP BTL.

4.3 OpenSHMEM/OSU

We attempted to take a closer look a the network overheads for the uGNI BTL
with Open MPI’s OpenSHMEM by running some communication microbench-
marks. We used the OSU Micro Benchmarks v5.3.2, which include OpenSH-
MEM specific tests for point-to-point and collective operations. Since these are
at the OpenSHMEM level, this uses the same communication libraries as the
Graph500 test but is focused strictly on the network elements. However, there
were some errors in the Open MPI v2.0.2 implementation of OpenSHMEM that
caused tests to fail when using uGNI. These were experienced in the native
(non-container) case.

In Fig. 10, we show the results of the OSU put (heap) benchmark, which
tests shmem putmem() for varying message sizes. Figure 10(a) shows that the
native Cray SHMEM performs slightly better for smaller messages than the
Open MPI OpenSHMEM with uGNI, and both do significantly better than the
TCP (“No uGNI”) case. Figure 10(b) shows the scale-up for the three configu-
rations, with Cray SHMEM scaling much better than the Open MPI OpenSH-
MEM. As expected, the Singularity cases follow the same curve as the native
TCP (“No uGNI”) case. The Singularity test with uGNI are not included because
the tests failed to complete with this configuration of Open MPI’s OpenSHMEM.

4.4 Observations

It was very convenient to have the Open MPI v2.0.2 release with OpenSHMEM
support directly from the Ubuntu 17.04 Linux distribution. The general TCP
BTL was stable for testing and showed decent performance in our Graph500
tests at scale = 20 on 64 nodes. However, the uGNI BTL was not stable with the

Balancing Performance and Portability with Containers in HPC 141

OpenSHMEM interface, i.e., via spml/yoda component. The Graph500 results
for Native and Singularity had the same performance for both uGNI and TCP
BTLs. Unexpectedly, the non-uGNI case (Singularity-NoHost) had better perfor-
mance in our tests due to bad performance/problems with the Open MPI-2.0.2
OSHMEM with uGNI. The only OSU OpenSHMEM tests that ran successfully
were the ‘put’ based tests. The native Open MPI OSHMEM had higher latency
than native CraySHMEM.

Regarding Singularity, on the production machine we were unable to make
edits to the container image directly. This was somewhat inconvenient as we
iterated through changes to the image and had to push a full image for each edit.
For example, a single change to the /environment file required a full upload of
the entire image. This is likely to be resolved in the next release of Singularity
(v2.3), which allows write operations without needing privileged (sudo) access for
some operations, e.g., “copy”. Also, we could push changes to the environment
via SINGULARITYENV xxx. We do have to customize the image with directories
for bind mounts, since we do not have an overlay filesystem (e.g., OverlayFS) on
the system. The performance was consistent between native and Singularity.

We are not able to use CraySHMEM for the container case, which is because
we cannot create an image on the system, and partly because that defeats the
purpose of a “portable container” (CraySHMEM is only for Cray). This limits
the comparison tests we could perform with containers.

On Titan, we discovered that the current setup does not allow access to the
project directories. We were not able to pass these as user-defined bind mounts
because that feature is disabled2. The fix would be to add a site configuration to
the Singularity installation that would allow the project directories to be bind
mounted in like the other host level directories, e.g., /lustre/atlas.

5 Conclusion

We used the Graph500 benchmark to investigate the performance of an OpenSH-
MEM application with Singularity-based containers in a production environment
(Titan). We described our experience and setup methodology for taking contain-
ers from a development machine up to a production system. We identified a basic
set of image edits for use on Titan. We also identified unexpected slowness in
Open MPI’s OpenSHMEM with uGNI BTL, but consistent performance was
obtained between the native and Singularity case.

While the work is still ongoing, a few things stood out in our initial experi-
ences with OpenSHMEM and containers on Titan. Singularity itself did not
introduce any significant overheads for our tests. An OpenSHMEM that is
directly included in Linux distributions is convenient, and simplifies the pro-
cedures for users packaging their applications. However, in the absence of this, a
set of publicly available container images that users can customize may also be
useful. CraySHMEM is not really interesting for “compute mobility” as it cannot
2 The older Linux kernel (3.0.x) used in CLE does not support PR SET NO NEW PRIVS,

which is used to avoid possible privilege escalation.

142 T. Naughton et al.

be deployed outside of Cray and eliminates the primary motivation (portability)
for containers; but may be useful for reproducibility across Cray instances/sites.

The HPC site will need to provide a few setup pieces for end-users to ensure
they tailor their containers to include necessary elements for running on HPC
machines. This mainly involves directories for bind mounts to map host paths
into the container, e.g., parallel file systems shares. Additionally, creating images
on service/login nodes is not currently viable since it requires the user to have
write access to their image, but as of Singularity-2.2.1 that feature requires esca-
lated privileges. The fact that users are expected to build their images in their
local environment and ship the results to the HPC system potentially restricts
their access to site features like advanced compilers and other commercial soft-
ware. It would be useful to provide users some ability to build containers on
service nodes that have access to the commercial tools.

5.1 Future Work

While testing the Open MPI implementation of OpenSHMEM we became aware
that the Unified Communication X (UCX) implementation (spml/ucx) may be
a better option than the configuration we tested3. It would be good to rerun
these tests with a more recent version of Open MPI using UCX to see if we
encountered the same stability problems on Titan. We would also like to look
more closely at the precise cause of the discrepancy in performance between the
uGNI and TCP cases on Titan with the Graph500-oshmem benchmark. This
would also be helpful to see if containers add any additional challenges when
using HPC profiling tools.

References

1. D’Azevedo, E.F., Imam, N.: Graph 500 in OpenSHMEM. In: Gorentla Venkata, M.,
Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS, vol. 9397, pp.
154–163. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26428-8 10

2. Docker: An open platform for distributed applications for developers and sysadmins.
https://www.docker.com

3. Gabriel, E., et al.: Open MPI: goals, concept, and design of a next genera-
tion MPI implementation. In: Kranzlmüller, D., Kacsuk, P., Dongarra, J. (eds.)
EuroPVM/MPI 2004. LNCS, vol. 3241, pp. 97–104. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-30218-6 19

4. Graph500 Benchmark Specification. http://graph500.org/?page id=12
5. Kurtzer, G.M., Sochat, V., Bauer, M.W.: Singularity: scientific containers for mobil-

ity of compute. PLoS ONE 12(5), e0177459 (2017). https://doi.org/10.1371/journal.
pone.0177459

6. OSU Micro-Benchmarks. http://mvapich.cse.ohio-state.edu/benchmarks
7. Titan Cray XK7. https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7

3 Our tests were configured to use the spml/yoda component for Open MPI-2.0.2’s
OpenSHMEM framework and not the spml/ucx component.

https://doi.org/10.1007/978-3-319-26428-8_10
https://www.docker.com
https://doi.org/10.1007/978-3-540-30218-6_19
http://graph500.org/?page_id=12
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1371/journal.pone.0177459
http://mvapich.cse.ohio-state.edu/benchmarks
https://www.olcf.ornl.gov/computing-resources/titan-cray-xk7

Exploiting and Evaluating OpenSHMEM
on KNL Architecture

Jahanzeb Maqbool Hashmi(B), Mingzhe Li, Hari Subramoni,
and Dhabaleswar K. Panda

Department of Computer Science and Engineering,
The Ohio State University, Columbus, USA

{hashmi.29,li.2192,subramoni.1,panda.2}@osu.edu

Abstract. Manycore processors such as Intel Xeon Phi (KNL) with
on-package Multi-Channel DRAM (MCDRAM) are making a paradigm
shift in the High Performance Computing (HPC) industry. PGAS pro-
gramming models such as OpenSHMEM due to its lightweight synchro-
nization primitives and shared memory abstractions are considered a
good fit for irregular communication patterns. While regular program-
ming models such as MPI/OpenMP have started utilizing systems with
KNL processors, it is still not clear whether PGAS models can eas-
ily adopt and fully utilize such systems. In this paper, we conduct a
comprehensive performance evaluation of the OpenSHMEM runtime on
many-/multi-core processors. We also explore the performance benefits
offered by the highly multithreaded KNL along with the AVX-512 exten-
sions and MCDRAM for OpenSHMEM programming model. We eval-
uate Intra- and Inter-node performance of OpenSHMEM primitives on
different application kernels. Our evaluation of application kernels such
as NAS Parallel Benchmark and 3D-Stencil kernels show that OpenSH-
MEM with MVPAICH2-X runtime is able to take advantage of AVX-512
extensions and MCDRAM to exploit the architectural features provided
by KNL processors.

Keywords: PGAS model · OpenSHMEM · MVAPICH2-X · KNL
MCDRAM

1 Introduction

Emerging Manycore processors such as second generation Intel Xeon Phi namely
Knights Landing (KNL) provide a high degree of parallelism. In order to increase
the compute capabilities of the scientific applications, High Performance Com-
puting (HPC) clusters are employing manycores due to their concurrency bene-
fits. This trend is evident from the Top500 list where one of the largest multi-
petaflop supercomputers in the US is employing KNL manycores [2].

This research is supported in part by National Science Foundation grants #CNS-
1419123, #CNS-1513120, #ACI-1450440 and #CCF-1565414.

c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 143–158, 2018.
https://doi.org/10.1007/978-3-319-73814-7_10

144 J. M. Hashmi et al.

Intel Xeon Phi (KNL) processor comes equipped with up to 68 cores that can
be configured in different modes depending on the usage scenario. Further, Each
core of the mesh employs 4-way hardware multi-threading totaling up to 272
hardware threads. In addition to the highly multi-threaded cores and multi-level
parallelism, KNL also comes equipped with 512-bit vector registers. With the
AXV-512 extension, a single KNL node can achieve 3TFlops of double-precision
and 6TFlops of single-precision performance. Furthermore, KNL also offers a
new memory sub-system by integrating an on-package Multi-Channel DRAM
(MCDRAM) that provides up to 5X improved memory bandwidth compared to
normal off-package DDR4 memory. The on-package MCDRAM can be configured
in three different modes: Flat mode, Cache mode, and Hybrid mode.

On the other hand, PGAS programming models such as OpenSHMEM due
to their lightweight synchronization and one-sided semantics provide a good
alternative to Message Passing models for irregular data-driven applications.
Past studies show that irregular applications have demonstrated improved pro-
grammability and performance when using PGAS programming models [5,11].
The adoption of manycore processors, particularly KNL by modern high-
performance computing systems lead us to a broad question: Can PGAS mod-
els, specifically OpenSHMEM, benefit from the architectural features of KNL
processors?

1.1 Motivation

Optimizing HPC runtimes and applications on such manycore systems with high
bandwidth memories is full of challenges and attracts lots of research interests.
Past studies [10] have analyzed the challenges and effects of running regular
programming models such as MPI/OpenMP over emerging heterogeneous sys-
tems. However, PGAS programming models, such as OpenSHMEM, have not
been studied well enough on KNL platform. This paper mainly explores the
performance characteristics of OpenSHMEM on KNL architecture. It presents a
detailed evaluation using micro-benchmarks and application kernels and exploits
architectural features such as AVX-512 extensions and MCDRAM.

1.2 Contributions

In this paper, we provide a comprehensive evaluation study of OpenSHMEM
runtime on KNL, involving intra- and inter-node performance analysis. We
also investigate the potential benefits of AVX-512 and MCDRAM usage for
micro-benchmark as well as applications. We use MVAPICH2-X based high-
performance implementation of OpenSHMEM. Specifically, we use the Unified
Communication Runtime (UCR) of MVAPICH2-X. The findings of this paper
provide a baseline for the future studies of PGAS programming models on KNL-
like manycore architectures.

Exploiting and Evaluating OpenSHMEM on KNL Architecture 145

The main contributions of this paper are summarized as below:

– Discuss different architectural modes of Intel KNL processor.
– Evaluate OpenSHMEM point-to-point, collectives, and atomic operations on

KNL processor in comparison to Intel Broadwell based systems.
– Evaluate scientific application kernels using MVAPICH2-X communication

runtime for intra-node and inter-node configurations.
– Investigate the potential benefits of KNL’s architectural features such as AVX-

512 extensions and MCDRAM for the OpenSHMEM application kernels.
– Discuss different design approaches to fully exploit the concurrency benefits

of KNL with AVX-512 vectorization and MCDRAM usage.

The rest of the paper is organized as follows: Relevant background information is
provided in Sect. 2. Evaluation methodology are discussed in Sect. 3. The compre-
hensive evaluation results are discussed in Sect. 4. Section 5 discusses the overall
insights. Section 6 surveys the literature work. Section 7 contains the conclusion
and future work.

2 Background

In this section, we provide details of the relevant background required for
this paper.

2.1 Intel Knights Landing - Architectural Overview

Intel Knights Landing (KNL) is a self-booting processor which packs up to six
Teraflops of compute throughput. KNL comes equipped with 68–72 cores located
on 34–36 active tiles. Each tile has a single 1-megabyte L2 cache that is shared
between the two cores and further each core comprises of four threads. Two
major architectural features provided by KNL are highly multi-threaded cores
and on-package MCDRAM. An overview of these features is given below.

Mesh Interconnect: A 2D-mesh interconnect is used for on-die communication
by the cores, memory and I/O controllers, and other agents. This 2D-mesh can
be configured in following ways:

1. All to All : In this mode, memory addresses are uniformly distributed across
all tag directories on the chip. It is not recommended to use this mode for
performance purposes as its main use is for debugging and troubleshooting.

2. Quadrant/Hemisphere : In this mode, the tiles are divided into four groups
called quadrants, which are spatially local to four groups of memory con-
trollers. The division into quadrants is hidden from the operating system and
the memory appears as a contiguous block from user’s perspective.

3. SNC2/SNC4 : In sub-NUMA cluster modes SNC-2 and SNC-4 the chip
is also partitioned into two hemispheres or four quadrants. However, unlike
Quadrant/Hemisphere mode, SNC mode exposes these quadrants to OS as
separate NUMA nodes.

In this paper, we only focus on Quadrant mode for our evaluations.

146 J. M. Hashmi et al.

Fig. 1. MCDRAM configuration modes on KNL

High Bandwidth Memory (MCDRAM): KNL comprises of six DDR4
channels and eight MCDRAM (multi-channel DRAM) channels. The MCDRAM
memory can yield an aggregate bandwidth of 450 GB/s in contrast with DDR4
memory which can yield 90 GB/s. MCDRAM on a single KNL can be configured
in three different ways, as shown in Fig. 1.

(1) Flat Mode — provides full control over the MCDRAM allocations and it
is mainly used for performance oriented runs. In this mode, both the DDR4 and
MCDRAM are exposed as two distinct NUMA nodes. The application can have
access to 96 GB of DDR memory along with 16 GB of MCDRAM. The default
allocation happens on DDR, however, one can directly use MCDRAM through
the use Linux NUMA library or through the memkind [4] library.

(2) Cache Mode — where the fast MCDRAM is configured as an L3 cache.
The operating system transparently uses the MCDRAM to move data from main
memory. The application can only access 96 GB of DDR for direct allocations
while MCDRAM allocation happens transparently.

(3) Hybrid Mode — In this mode, the part of MCDRAM acts as the L3 cache
while remaining MCDRAM is exposed as the second NUMA alongside DDR.
This is not as widely used as other modes.

2.2 MVAPICH2-X OpenSHMEM Runtime

MVAPICH2-X (MV2-X), provides a unified high-performance communication
runtime — UCR, that supports both MPI and PGAS programming models on
InfiniBand clusters. It enables developers to port parts of large MPI applica-
tions that are suited for the PGAS programming model. This minimizes the
development overheads that have been a substantial deterrent in porting MPI
applications to PGAS models. MV2-X provides support for the reference imple-
mentation of OpenSHMEM. Currently, it is based on the University of Houston
OpenSHMEM version 1.2.

Exploiting and Evaluating OpenSHMEM on KNL Architecture 147

3 Evaluation Methodology

We first start with different OpenSHMEM primitives (data-movement, Atomics,
Collectives) using OpenSHMEM micro-benchmarks from OSU Micro-benchmark
Suite (OMB) version 5.3.2. The evaluations performed in this paper, use KNL
nodes configured in Flat-Quadrant mode. We use several application kernels to
compare the performance of KNL and Broadwell nodes.

For application evaluations, we use three configurations of KNL. First, we
do a default run without any of the KNL specific optimization. Second, we
compile the applications with AVX-512 vectorization support. Third, we allow
the memory allocations to be performed on MCDRAM. We perform a core-
by-core comparison of KNL and Broadwell nodes for varying number of pro-
cesses. However, for the sake of a fair comparison, we also provide a node-by-
node comparison with both systems running at full-subscription. Since KNL has
4-way hardware multithreaded cores, we ensure that we bind different PEs to
different cores so that they do not share the same core (running on different
hardware threads of the same core). We also disable the Hyper-threading on
Broadwell nodes.

4 Performance Evaluation

This section describes the experimental setup used to conduct our performance
evaluation. An in-depth analysis of the results is also provided. All results
reported here are averages of multiple (10) runs to discard the effect of system
noise. For micro-benchmark evaluations, the communication buffers are allocated
on DDR memory while the application kernels evaluation shows the performance
trends on DDR as well as MCDRAM.

4.1 Experimental Setup

For the evaluation, we use second generation Intel Xeon Phi nodes. Each node
comprises a 68-core KNL processor with 16 GB of MCDRAM memory and 96
gigabytes of DDR4 memory. Further, Each node is equipped with MT4115 EDR
ConnectX HCAs with PCI-Ex Gen3 interfaces. In our experiments, we configure
the KNL nodes in Flat-Quadrant mode. The operating system used is CentOS
Linux release 7.2.1511 (Core) with kernel version 3.10.0-327.36.2.el7.x86 64. We
use MVAPICH2-X version 2.2 combined with the unified runtime support. We
used GCC v5.4.0 for all the compilation and KNL specific optimization. Specif-
ically, we use -O3 -mavx512f to generate AVX-512 vectorized code for applica-
tion kernels.

For the sake of providing a baseline comparison, we also use an Intel Broad-
well based cluster for all the experiments. Each node of this cluster consists of a
Xeon E5 2680 v4 processor with 128 GB of RAM. The nodes are connected with
EDR ConnectX HCA model MT5115 with PCI-Ex Gen3 interfaces. The oper-
ating system used is CentOS Linux release 7.2.1511 (Core) with kernel version
3.10.0-327.10.1.el7.x86 64. The detailed specifications are shown in Table 1.

148 J. M. Hashmi et al.

Table 1. Hardware specification of the clusters used

Specifications Broadwell Xeon Phi (KNL)

Processor family Intel Broadwell Knights Landing

Processor model E5 2680 v4 KNL 7250

Clock speed 2.4 GHz 1.4 GHz

No. of sockets 2 1

Cores per socket 14 68

Threads per core 1 4

Mesh config NUMA Flat-Quadrant

RAM (DDR) 128 GB 96 GB

MCDRAM - 16 GB

Interconnect IB-EDR(100 G) IB-EDR(100G)

4.2 Data Movement Operations

In this section, we evaluate the performance of OpenSHMEM point-to-point
data movement (shmem put and shmem get) operations. We use OSU OpenSH-
MEM micro-benchmarks [1] for these evaluations. The osu oshm put benchmark
measures the latency of shmem putmem operation for varying message sizes. In
this microbenchmark, PE-0 issues a shmem put operation and writes the data
at PE-1, followed by a call to shmem quiet. On the other hand, PE-1 goes into
shmem barrier. This operations is repeated for multiple iterations. Similarly, in
osu oshm get benchmark PE-0 performs a shmem getmem operation to read data
from PE-1.

Fig. 2. Intra-node evaluation of OpenSHMEM put and get operations

The performance evaluation of shmem put and shmem get are reported in
Fig. 2. We compare the latency achieved on KNL with our baseline Broadwell
system. For shmem put operation, at 1-byte message, the reported latency on
KNL is 1.34 us as compared to 0.18 us on Broadwell. A similar trend is observed

Exploiting and Evaluating OpenSHMEM on KNL Architecture 149

on large message ranges where KNL latency is about 3X worse than that of
Broadwell. However, for shmem get operation, the 1-byte latency at KNL is 0.17
us and 0.03 us on Broadwell. For intra-node transfers, MVAPICH2-X based
OpenSHMEM implements symmetric heap as the shared-memory. The small
message transfers use shared-memory schemes while medium to large messages
use Linux’s Cross Memory Attach (CMA) based zero-copy transfers for perfor-
mance reasons. Due to the lower clock speed and smaller cache of KNL, the
performance of memcpy operation suffers significantly resulting in the lower raw
performance relative to the Broadwell cores.

4.3 Atomic Operations

In order to evaluate the performance of OpenSHMEM atomic operations, we
again use OSU microbenchmark (OMB). The relevant benchmark in OMB
is osu oshm atomic which measures the performance of OpenSHMEM atomic
operations for different data types. In this benchmark, the first PE issues several
atomic operations one after the other to its peer PE. The average latency of each
atomic operation is reported. The benchmark reports the performance of up to
14 operations, however, for the sake of brevity, in this paper, we only report
three operations with 32-bit and 64-bit types.

Fig. 3. OpenSHMEM atomics performance on KNL and broadwell cluster on 128
processes

Figure 3 shows the performance of fetching and non-fetching atomics on KNL
and Broadwell system using 128 processes. We observe that the overall latency
of these operations on KNL remains about 3X higher than that of Broadwell.
Similar to the point-to-point performance, the lower clock speed and a smaller
cache of KNL affect the performance.

4.4 Collectives Operations

In this section, we evaluate different OpenSHMEM collectives such as
shmem broadcast and shmem reduce on KNL and Broadwell cluster. Similar

150 J. M. Hashmi et al.

to the prior evaluation, we also use OSU OpenSHMEM collective benchmarks.
These benchmarks measure the average latency of the collective operation for
different message sizes and process counts. Multiple iterations of the benchmark
are executed and in the end, the average latency across all the iterations is
reported. In our evaluation of collective operations, we vary the process count
from 2 to 128. For the sake of brevity, we show three different graphs indicating
small, medium, and large messages for each collective benchmark.

Fig. 4. OpenSHMEM broadcast performance at varying scale

Figures 4(a), (b), and (c) show the performance of shmem broadcast oper-
ation on small (2 KB), medium (32 KB), and large (1M) messages respectively.
We see that the performance of shmem broadcast on Broadwell is higher than
KNL for all message ranges and process counts. Since the collective operations
are implemented over point-to-point operations, the impact of point-to-point
performance is reflected in collective operation performance.

Fig. 5. OpenSHMEM reduce performance at varying scale

Similarly, the performance of shmem reduce is shown in Figs. 5(a), (b),
and (c). We observe the similar trend as of shmem broadcast that the raw
latency of reduce on KNL is also about 3X higher than that of Broadwell due
to the slower point-to-point performance.

4.5 NAS Parallel Benchmark

The NAS Parallel Benchmarks (NPB) are a set of programs that are designed
to be typical of several HPC applications. In our evaluation, we use Class ‘B’
problem size. We run MG, EP, BT, and SP in the experiments.

Exploiting and Evaluating OpenSHMEM on KNL Architecture 151

Fig. 6. OpenSHMEM NAS parallel benchmark performance

Figure 6 shows the execution time of four kernels of NAS Parallel Bench-
mark. In the experiments, the Broadwell and KNL nodes are fully occupied
with OpenSHMEM PEs. For MG results with 16 PEs on KNL, we see that the
KNL with AVX-512 enabled is able to reduce the total execution time by more
than 2X. The performance benefits come from vectorization. However, as the
number of PEs keep increasing, the benefits of AVX-512 tend to decrease. The
reason is that the ratio of communication and computation is increasing with
more number of PEs. When MG is running with MCDRAM, the total execution
time could be reduced by up to 18% compared to running with DDR. Although
both AVX-512 and MCDRAM are able to reduce the total execution time of
MG on KNL, Broadwell still performs better than KNL. With 128 PEs, KNL
only delivers 20% performance as of Broadwell. For the EP benchmark, we see
that KNL with AVX-512 enabled achieves similar performance with KNL default
scheme. The reason is that the computation kernel in EP could not directly ben-
efit from the vectorization. EP running with 128 PEs on KNL delivers around
20% performance as of 128 PEs on Broadwell. For the BT benchmark with 16
PEs, the total execution time for KNL-Default, KNL-AVX-512, KNL-AVX-512-
MCDRAM, and Broadwell is 61.2, 42.3, 42.2, and 34.8 s, respectively. KNL with
MCDRAM and AVX-512 extension enabled could deliver 90% performance as
of Broadwell. Since BT benchmark is not memory bound, so MCDRAM does
not bring performance benefits. For the SP benchmark with 16 PEs, we see that
KNL-Default, KNL-AVX-512, KNL-AVX-512-MCDRAM can deliver 63%, 75%,

152 J. M. Hashmi et al.

78% performance as of Broadwell, respectively. From the NAS numbers, we can
clearly see that both AVX-512 and MCDRAM could benefit the compute phases
of the OpenSHMEM applications kernels.

4.6 Application Kernels

This section discusses the performance of different application kernels from
OpenSHMEM test suite. We use five applications kernels namely, 2D-Heat, Heat
Image, Matrix Multiply, DAXPY, and ISx. The details of each kernel along with
the performance results are discussed in following sections.

2D-Heat: The 2D-Heat kernel is a type of stencil computation that simulates
the heat distribution in a 2D domain. It consists of a grid with boundary points
and inner points. Boundary points have an initial temperature and the temper-
ature of the inner points need to be updated over iterations. The heat equation
can be solved iteratively by various numerical methods such as Jacobi, Gauss-
seidel and Successive Over-relaxation (SOR). In each iteration, the boundary
rows are communicated between adjacent PEs and at the end of each iteration,
a reduction is performed to check the convergence. Figure 7(a) shows the per-
formance of 2D-Heat kernel on Broadwell and KNL for multiple processes using
2 K × 2 K size grid. As discussed in Sect. 3, we report evaluation results for differ-
ent KNL optimizations and compare the results against baseline Broadwell. As
we can see that the default KNL performs around 3X worse than the AVX-512
optimized execution. However, we do not see much benefit when MCDRAM is
used. The reason is that MCDRAM does not help in reducing the latency under
less system load. The benchmark spends most of the time in computation and
communication makes up only a small portion of the overall execution.

Fig. 7. OpenSHMEM heat diffusion kernels performance

Exploiting and Evaluating OpenSHMEM on KNL Architecture 153

Heat Image: This application kernel also solves the heat conduction task based
on row-based distribution of the matrix. The application distributes the matrix
in rows among PEs and then exchanges the result of the computation. The major
communication operation is the data transfer across the matrix rows/ columns
(using shmem put) and the synchronization operations (using shmem
barrier all.) Finally, after doing all the transfers, the output is written to a
file in an image format. The matrix size is specified as input. In our experiments,
we used an input matrix of size 2K × 2K bytes.

The performance results of the Heat Image kernel is presented in Fig. 7(b).
In these experiments, we kept the input size constant (2K × 2 K) and varied the
system scale from 16 processes to 128 processes. We plot the execution time (in
seconds) on the Y-axis and the system-scale is plotted on X-axis. In this result,
we see that allocating the matrix on MCDRAM achieves up to 2X increased
performance as compared to unoptimized executions. Although the vectorization
shows up to 20% improvement for 16 processes, this improvement diminished on
a larger scale. However, the MCDRAM benefits are more pronounced on larger
scale. This behavior shows that in a more bandwidth bound application scenario
where memory accesses happen too frequently, MCDRAM can accelerate the
overall execution.

Matrix Multiplication: This is a simple matrix multiplication kernel imple-
mented in OpenSHMEM. Two matrices with double precision floating point ele-
ments are multiplied and the result is stored in a third matrix. The performance
results are presented in Fig. 8(a). The execution time (in seconds) is plotted
in the Y-axis and the system size is plotted against X-axis. The performance
trend shows that AVX-512 optimized run achieves 2.5X improvement in total
execution time since most of the application time is spent in computation. For
MCDRAM, we observe a rather interesting trend. From 16 to 64 processes, we
see no difference in performance when using MCDRAM over DDR. However, on
128 processes, a 25% degradation is observed. As we’ve discussed earlier that the
benefits of MCDRAM are pronounced when there is more system load (high con-
currency). However, in applications where minimal communication is involved
(embarrassingly parallel), MCDRAM performance is even worse than DDR. This
has also been reported by Intel [9].

DAXPY: This kernel is a simple DAXPY like kernel with computation and
communication. It simulates a typical application that uses a one-dimensional
array for local computation and does a reduction collective operation of the
result. The data transfer is done using shmem put operation, synchronization
using shmem barrier all, and reduction using shmem reduce operations. The
execution time reported by the benchmark involves the OpenSHMEM initializa-
tion time also. The performance results are presented in Fig. 8(b). The execution
time (in seconds) is plotted in the Y-axis and the system size is presented in the
X-axis. In this benchmark, the problem size increases with the increase in the
system size. We see that the AVX-512 vectorization reduces the execution time

154 J. M. Hashmi et al.

Fig. 8. OpenSHMEM matrix multiplication and DAXPY performance

of the benchmark by half on KNL, however, MCDRAM does not show any
significant improvement over vectorized run. Nevertheless, the performance of
Broadwell still remains significantly higher than the optimized KNL run (Fig. 9).

Scalable Integer Sort (ISx) Kernel: This kernel is an improved version of
original NAS Integer Sort kernel and is scalable to a large number of nodes.
We use its OpenSHMEM implementation obtained from https://github.com/
ParRes/ISx.git. IS belongs to the bucket sort algorithms that perform all-to-all
communications. It has support for both strong and weak scaling, however, we
only use strong scaling in this experiments. Figure 10 shows the performance
of OpenSHMEM ISx kernel on Broadwell and KNL with various optimizations.
Similar to prior results, we observe up to 3X improvement in overall performance
when using AVX-512 vectorization. In all the executions, Broadwell remains 2X
better than optimized KNL while MCDRAM does not show much improvement
over DDR.

Fig. 9. OpenSHMEM scalable integer sort kernel performance

https://github.com/ParRes/ISx.git
https://github.com/ParRes/ISx.git

Exploiting and Evaluating OpenSHMEM on KNL Architecture 155

4.7 Summary of Node-Level Comparison Using Application Kernels

We discussed the core-by-core comparison using application kernels in Sect. 4.6.
Here, we provide a node-level comparison of a single KNL node with a Broadwell
node. We use KNL optimized (AVX-512 with MCDRAM) version of the applica-
tion kernels for comparison. Figure 10 presents a summary of the aforementioned
application kernels using node-by-node comparison on KNL and Broadwell sys-
tems. Both the systems utilize all the available cores while threading is disabled.
We observe that while Broadwell shows better performance on 2D-Heat, Matrix
Multiplication, and DAXPY kernels, KNL shows up to 30% increased perfor-
mance for Heat Image kernel. On ISx kernel with strong scaling, KNL remains
on par with Broadwell.

Fig. 10. Node-by-Node comparison of KNL and Broadwell.

5 Discussion of Performance Results

We summarize the comparison between Broadwell and KNL performance in
Fig. 11. On KNL architecture, when the AVX-512 extension is enabled, the exe-
cution time of applications could be reduced significantly. While the performance
of micro-benchmarks and application kernels on Broadwell remains higher than
KNL for core-by-core comparison, KNL shows some improvement over Broad-
well for node-by-node comparison. The lower clock speed and a smaller cache of
KNL have significant impact on the performance of memcpy operation that leads
to about 3X degradation on KNL when compared to Broadwell on a core-by-core
comparison. We also observed that MCDRAM did not help much in most of the
application kernels. The reason is that the application kernels are mostly latency
bound while MCDRAM has shown to have additional latency overheads when
there is not enough concurrency available.

156 J. M. Hashmi et al.

6 Related Work

Several studies have explored and taken advantage of the scalability and pro-
grammability that OpenSHMEM offers. Lin et al. [8] proposed a group of alter-
native hybrid MPI+OpenSHMEM designs to improve the performance of the
classification and regression algorithm k-NN on the large-scale environment with
InfiniBand.

Zhao and Marsman presented the HBM performance analysis on the VASP
code, a widely used materials science code, using Intel’s development tools,
Memkind and AutoHBW, and a dual-socket Ivy Bridge processor node on Edi-
son, as a proxy to the MCDRAM on KNL [12]. Doerfler et al. determined the
Roofline for the Intel KNL processor, determining the sustained peak memory
bandwidth and floating-point performance for all levels of the memory hierar-
chy, in all the different KNL cluster modes. They also determine the arithmetic
intensity and the performance for a set of application kernels being targeted for
the KNL based supercomputer Cori [6].

Kandalla et al. [7] proposed new solutions in Cray MPI to improve multi-
threaded communication performance of hybrid parallel applications. Further,
they discussed new API extensions in Cray SHMEM to support MCDRAM based
memory allocations.

In [3], the authors presented early case-studies of NERSC workloads on KNL
and Xeon based architecture. They compared the performance of 20 application
kernels by applying architectural optimizations of KNL and comparing it with
the Haswell based systems. Their intra-node evaluation shows that the Haswell
system has overall lower execution time but KNL scales well for all the clustering
modes and exploits MCDRAM benefits. As discussed in Sect. 4, we have also
witnessed similar trends while evaluating OpenSHMEM application kernels.

Fig. 11. Evaluation results

Exploiting and Evaluating OpenSHMEM on KNL Architecture 157

7 Conclusion and Future Work

In this paper, we provided a comprehensive performance evaluation of OpenSH-
MEM over the KNL architecture. We presented a detailed comparison of the per-
formance of different OpenSHMEM primitives (data-movement, Atomics, Col-
lectives) on CPU and KNL architectures. We also provided a detailed analysis of
core-by-core and node-by-node comparison of the performance trends observed
in five applications with AVX-512 extension and MCDRAM. The study indicates
that AVX-512 extension and MCDRAM can benefit OpenSHMEM applications
on the KNL architecture. In the future, we plan to co-design applications on
KNL systems and demonstrate the impact of KNL on the execution time of
applications.

References

1. OSU Micro-Benchmarks (2015)
2. TACC Stampede KNL Cluster (2017). https://portal.tacc.utexas.edu/user-guides/

stampede
3. Barnes, T., Cook, B., Deslippe, J., Doerfler, D., Friesen, B., He, Y., Kurth, T.,

Koskela, T., Lobet, M., Malas, T., et al.: Evaluating and optimizing the NERSC
workload on knights landing. In: International Workshop on Performance Mod-
eling, Benchmarking and Simulation of High Performance Computer Systems
(PMBS), pp. 43–53. IEEE (2016)

4. Cantalupo, C., Venkatesan, V., Hammond, J., Czurlyo, K., Hammond, S.D.:
Memkind: An Extensible Heap Memory Manager for Heterogeneous Memory Plat-
forms and Mixed Memory Policies. Technical report, Sandia National Laboratories
(SNL-NM), Albuquerque, NM (United States) (2015)

5. Cong, G., Almasi, G., Saraswat, V.: Fast PGAS implementation of distributed
graph algorithms. In: Proceedings of the 2010 ACM/IEEE International Confer-
ence for High Performance Computing, Networking, Storage and Analysis, SC 2010,
pp. 1–11. IEEE Computer Society, Washington, DC (2010)

6. Doerfler, D., Deslippe, J., Williams, S., Oliker, L., Cook, B., Kurth, T., Lobet, M.,
Malas, T., Vay, J.-L., Vincenti, H.: Applying the roofline performance model to the
intel xeon phi knights landing processor. In: Intel Xeon Phi User’s Group (IXPUG
2016) (2016)

7. Kandalla, K., Mendygral, P., Radcliffe, N., Cernohous, B., Knaak, D., McMahon,
K., Pagel, M.: Optimizing Cray MPI and SHMEM Software Stacks for Cray-XC
Supercomputers based on Intel KNL Processors (2016)

8. Lin, J., Hamidouche, K., Zhang, J., Lu, X., Vishnu, A., Panda, D.: Accelerating
k -NN algorithm with hybrid MPI and OpenSHMEM. In: Gorentla Venkata, M.,
Shamis, P., Imam, N., Lopez, M.G. (eds.) OpenSHMEM 2014. LNCS, vol. 9397, pp.
164–177. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26428-8 11

9. Memory Latency on the Intel Xeon Phi x200 Knights Landing proces-
sor. https://sites.utexas.edu/jdm4372/2016/12/06/memory-latency-on-the-intel-
xeon-phi-x200-knights-landing-processor/

10. Potluri, S., Venkatesh, A., Bureddy, D., Kandalla, K., Panda, D.K.: Efficient intra-
node communication on intel-MIC clusters. In: 13th IEEE International Sympo-
sium on Cluster Computing and the Grid (CCGrid 2013) (2013)

https://portal.tacc.utexas.edu/user-guides/stampede
https://portal.tacc.utexas.edu/user-guides/stampede
https://doi.org/10.1007/978-3-319-26428-8_11
https://sites.utexas.edu/jdm4372/2016/12/06/memory-latency-on-the-intel-xeon-phi-x200-knights-landing-processor/
https://sites.utexas.edu/jdm4372/2016/12/06/memory-latency-on-the-intel-xeon-phi-x200-knights-landing-processor/

158 J. M. Hashmi et al.

11. Zhang, J., Behzad, B., Snir, M.: Optimizing the Barnes-Hut algorithm in UPC.
In: Proceedings of 2011 International Conference for High Performance Comput-
ing, Networking, Storage and Analysis, SC 2011, pp. 75:1–75:11. ACM, New York
(2011)

12. Zhao, Z., Marsman, M.: Estimating the performance impact of the MCDRAM
on KNL using dual-socket Ivy bridge nodes on Cray XC30. In: Cray User Group
Meeting (CUG 2016) (2016)

OpenSHMEM Tools

Performance Analysis of OpenSHMEM
Applications with TAU Commander

John C. Linford1(B), Samuel Khuvis1, Sameer Shende1, Allen Malony1,
Neena Imam2, and Manjunath Gorentla Venkata2

1 ParaTools, Inc., 2836 Kincaid St., Eugene, OR 97405, USA
{jlinford,skhuvis,sameer,malony}@paratools.com
2 Oak Ridge National Laboratory, 1 Bethel Valley Rd,

Oak Ridge, TN 37831, USA
{imamn,manjugv}@ornl.gov
http://www.paratools.com/

http://ut-battelle.org/

Abstract. The TAU Performance SystemR© (TAU) is a powerful and
highly versatile profiling and tracing tool ecosystem for performance engi-
neering of parallel programs. Developed over the last twenty years, TAU
has evolved with each new generation of HPC systems and scales efficiently
to hundreds of thousands of cores. TAU’s organic growth has resulted in
a loosely coupled software toolbox such that novice users first encounter-
ing TAU’s complexity and vast array of features are often intimidated and
easily frustrated. To lower the barrier to entry for novice TAU users, Para-
Tools and the US Department of Energy have developed “TAU Comman-
der,” a performance engineering workflow manager that facilitates a sys-
tematic approach to performance engineering, guides users through com-
mon profiling and tracing workflows, and offers constructive feedback in
case of error. This work compares TAU and TAU Commander workflows
for common performance engineering tasks in OpenSHMEM applications
and demonstrates workflows targeting two different SHMEM implemen-
tations, Intel Xeon “Haswell” and “Knights Landing” processors, direct
and indirect measurement methods, callsite, profiles, and traces.

Keywords: TAU Commander · TAU Performance System
Performance engineering · Profiling · Tracing · Callsite

1 Introduction

The TAU Performance System R© (TAU) is a powerful and highly versatile pro-
filing and tracing tool ecosystem for performance analysis of parallel programs
developed in part by Department of Energy (DOE) and National Science Foun-
dation (NSF) research funding granted to the University of Oregon [12,13,18].
Developed over the last twenty years, TAU has evolved with each new generation
of HPC systems and presently scales efficiently to hundreds of thousands of cores
on the largest machines in the world. TAU can be applied in a portable way to

c© Springer International Publishing AG 2018
M. Gorentla Venkata et al. (Eds.): OpenSHMEM 2017, LNCS 10679, pp. 161–179, 2018.
https://doi.org/10.1007/978-3-319-73814-7_11

162 J. C. Linford et al.

codes written in Fortran, C, C++, Java, and Python, which utilize MPI mes-
sage communication and/or multi-threading (e.g., pthread, OpenMP) for exe-
cution across different parallel machines. TAU also supports partitioned global
address space (PGAS) languages and libraries like Universal Parallel C (UPC),
vendor SHMEM implementations, and implementations of the OpenSHMEM
standard [4]. TAU has helped several DOE Innovative and Novel Computational
Impact on Theory and Experiment (INCITE) [1] projects scale up successfully
on systems at Oak Ridge Leadership Computing Facility (OLCF), the National
Energy Research Scientific Computing Center (NERSC), and the Argonne Lead-
ership Computing Facility (ALCF). For example, TAU helped reduce the runtime
of the IRMHD INCITE code from 528 h to 70 h on BlueGene/P and BlueGene/Q
systems [5,15].

TAU’s organic growth over many years has resulted in a loosely coupled
software toolbox. While many experts use TAU on a daily basis, novice users first
encountering TAU’s complexity and vast array of features can be intimidated or
easily frustrated. TAU offers an abundance of choice with no obvious defaults
and little or no feedback in case of user or system error. The user interface to
TAU is now at a point where it is neither consistent nor unified, forcing users
to learn several different workflows and understand a variety of command line
options and environment variables to be effective.

To simplify TAU usage and facilitate more effective production of application
performance data, ParaTools has developed a “production-grade” performance
engineering solution called TAU Commander [14]. This new tool lowers the bar-
rier to entry for novice TAU users by presenting a simple, intuitive, and system-
atic user interface that guides users through performance engineering workflows
and offers constructive feedback in case of error. TAU Commander has measur-
ably improved productivity and software performance in government and indus-
try HPC applications. For example, TAU Commander enabled a 30% runtime
reduction in extreme-scale computational fluid dynamics (CFD) simulation with
NASA’s FUN3D [11].

TAU Commander’s design arises from years of TAU user feedback and a study
of 124 TAU workflows that identified a common workflow, shown in Fig. 1. It
targets specific “pain points” that are a source of discouragement for novice TAU
users. The most frequently reported pain point is the requirement to reconfigure
TAU or select a different TAU configuration when the desired metrics are not
measured. The red path in Fig. 1 illustrates why this complaint is so pronounced:
it is possible for the user to reach the second-from-last step in the workflow before
they become aware of the incorrect TAU configuration and are sent back to the
beginning of the workflow. The earliest they could have been informed of the
misconfiguration is during their application compilation, several steps into the
workflow. TAU Commander resolves this pain point by allowing the user to
concisely state their end goal at the beginning of the workflow so that errors
are rapidly detected and resolved. It also unifies the user interface so that all
configuration options are specified in the same way, are checked for correctness,
and can be enumerated, listed, and searched. The user interface, online help,

Performance Analysis of OpenSHMEM Applications with TAU Commander 163

Fig. 1. The TAU performance analysis workflow providing instrumentation at compile
time and run time. The red path shows the most commonly reported “pain point” in
the workflow. TAU Commander simplifies the workflow as described in Sect. 2. (Color
figure online)

164 J. C. Linford et al.

and configuration option lists are all created dynamically from a common model
so they are always up to date and consistent. TAU Commander also includes
a declarative compatibility engine that can detect invalid configurations and
provide online help, suggestions, and feedback when a user or system error is
detected. In many cases, this avoids troubleshooting entirely by preventing the
user from creating invalid conditions in their workflow long before any code is
compiled or launched.

TAU Commander and it’s design are introduced in Sect. 2. Workflows for
common performance engineering tasks are demonstrated with a well-known
OpenSHMEM mini-application in Sect. 3. Related work is covered in Sect. 4,
and conclusions and future work are discussed in Sect. 5.

2 TAU Commander

2.1 Workflow and Functionality Overview

TAU Commander is a workflow manager for software performance engineering.
It relies on the TAU Performance System to instrument, measure, and analyze
application codes, but could theoretically be used with any performance analysis
tool. Within TAU Commander, workflows are described in terms of configuration
objects. There are three fundamental configuration object types:

Target. The hardware and software environment in which performance engi-
neering tasks will be performed. This includes the operating system distribu-
tion (e.g. Linux, Darwin, etc.) CPU architecture (x86 64, ppc64, etc.) com-
piler installation paths, compiler family (e.g. Intel, Cray, PGI, etc.), installa-
tion paths for communication libraries like MPI and OpenSHMEM, and the
TAU and PDT installation paths. Target objects can be created automatically
by inspecting the host environment, or manually to target cross-compilation
or perform portability studies.

Application. The features and requirements of the application including shared-
anddistributed-memory parallelization schemes (e.g.MPI, SHMEM,OpenMP,
etc.), static or dynamic binary linkage, and a description of code regions (e.g.
functions, loops, or code blocks) requiring special instrumentation.

Measurement. A type of performance data and the method(s) by which the
data will be obtained. Source- and compiler-based instrumentation, event-
based sampling, memory measurement, I/O measurement, or other mea-
surement methods are described in this object. Note that measurements
objects may also specify features which should not be instrumented, e.g. the
TAU Commander user may wish to profile only the MPI part of a hybrid
MPI+OpenMP parallel application and ignore time spent in OpenMP direc-
tives to minimize instrumentation overhead.

Users define workflows by composing sets of targets, applications, and mea-
surements. We call this approach the TAM Model. Selecting one target, applica-
tion, and measurement each concisely and completely defines the task at hand

Performance Analysis of OpenSHMEM Applications with TAU Commander 165

so that the workflow manager can determine the necessary actions to achieve the
desired result. This also enables detection of user or system error by monitoring
for actions or program outputs that conflict with the specified end goal. For
example, the task of application performance analysis is described in the TAM
model by one target, one application, and many measurements. By holding the
target and application constant while varying the measurement configuration,
we explore the different performance characteristics of the application when exe-
cuting in a well-defined hardware/software environment. This is demonstrated
in Sect. 3. Similarly, system benchmarking is defined as one target, many appli-
cations, one measurement. Holding the target and measurement constant while
varying the application explores how well a particular hardware/software combi-
nation executes different workloads. Environment tuning and hardware evalua-
tion or purchasing tasks are described as many targets, one application, and one
measurement. By holding the application and measurement constant while vary-
ing the target, we discover which hardware/software combination achieves the
optimal performance characteristics for a specific application. Although TAU
Commander is the first tool to implement this model, TAM is a generic and
portable approach to describing and organizing performance engineering work-
flows and could theoretically be used by any tool to elucidate the nature of
software performance problems.

A combination of exactly one target, application, and measurement forms
an experiment. The experiment configuration object completely describes the all
hardware and software factors that produced a set of performance data, hence
experiments enable provenance.1 Each time the selected application is executed,
a new trial of that experiment is recorded. TAU Commander maintains the
resulting performance data, a record of the user’s runtime environment (e.g.
PATH), and timestamps marking the start and end of the trial. Users may
perform many trials to minimize variance in the dataset or, by changing runtime
parameters, explore scalability. TAU Commander maintains all configuration
objects and performance datasets in a project, which is simply a container for
grouping objects and data that relate to a common objective. A project may
contain any number of target, application, or measurement objects.

The TAM model dramatically simplifies the TAU workflow by providing con-
text to a user’s actions and enabling users to clearly and concisely define their
goals and working environment at the start of the workflow. The TAU Comman-
der workflow is shown in Fig. 2. The information provided in the selected exper-
iment enables TAU Commander to automatically configure and install TAU as
needed, dramatically shortening the setup step. Under TAU Commander, soft-
ware troubleshooting is only required in the case of a software bug and is no
longer a regular part of the workflow. Simply launching the application under
TAU Commander constitutes the entire measurement step since the tool is able
to automatically determine the necessary environment variables and command
line options to produce a desired dataset.

1 Note that not producing any data is a valid experimental result, i.e. this particular
experiment raises a fault in the application and the end goal is to use post-mortem
debugging to determine the cause of the fault [19].

166 J. C. Linford et al.

Fig. 2. The TAU Commander workflow.

2.2 Command Line Interface for Configuration, Compilation,
Measurement, and Analysis

1 $ oshcc *.c -o a.out
2 $ oshrun -np 4 ./a.out

Listing 1.1. Compile and run a simple
SHMEM code.

1 $ tau oshcc *.c -o a.out
2 $ tau oshrun -np 4 ./a.out
3 $ tau show

Listing 1.2. Generate performance
data for a simple SHMEM code.

The TAU Commander user interface is a single command called tau that may
be prepended to any command line. The tau command is used to create, modify,
query, and delete configuration objects and performance data alike. It is also used
to perform any task required by the performance analysis workflow including
configuring and installing the TAU Performance System and all its dependen-
cies (e.g. PDT), instrumenting application source code, preloading library wrap-
pers, launching instrumented applications, and visualizing performance data. Its
usage is similar to the popular git command, which provides subcommands for
various tasks and provides online help through the --help command line option.
Listing 1.1 shows how a simple SHMEM application might be compiled and exe-
cuted on four processing elements (PEs). Listing 1.2 shows how performance
data for that application may be generated with TAU Commander. The tau

Performance Analysis of OpenSHMEM Applications with TAU Commander 167

command parses its command line options to detect if it is being used during
a compilation, application launch, or data analysis task. The target, applica-
tion, and measurement configuration objects selected by the user – the current
experiment – determine the actions the tau command will take according to the
situation. If an appropriate TAU configuration (sometimes called a TAU Make-
file) does not already exist, TAU Commander will automatically acquire TAU
and all its dependencies via network download or file copy, configure all software
packages appropriately, and install the packages in a filesystem location that
permits future TAU Commander users to reuse the TAU configuration. These
configuration and installation tasks are performed by the command shown on
Line 1 of Listing 1.2. When the application is launched under TAU Comman-
der (Line 2 of Listing 1.2), the tool will automatically determine the required
values of all TAU-specific environment variables and command line options to
tau exec (if any). The generated performance data will be collected automat-
ically and stored in a local performance database. The tau show command on
Line 3 of Listing 1.2 displays the most recently generated profile or trace data in
the most appropriate performance analysis tool (ParaProf, Jumpshot, or Vam-
pir). In all cases, the tau command receives input from the command line only;
environment variables or configuration files are not used by TAU Commander.
The command also makes extensive use of default values and strives to provide
sensible defaults based on the current system configuration.

2.3 Implementation Challenges

The challenges in implementing TAU Commander lie primarily in developing
an intuitive user interface and an extensible model for generating and selecting
TAU configurations. We addressed the user interface challenge by following the
command/subcommand design popular with tools like “git”. This user interface
organization is both intuitive and easily extended by creating new subcommands
or adding command line options to existing commands. Each TAU configura-
tion generates a TAU Makefile, header and module files, dynamic and static
libraries, and files containing compiler and linker command line options. TAU’s
configure script creates a new configuration. Many of this script’s options are
deprecated, activate experimental code, depend or conflict with other options,
or are not well documented. Manually specifying every valid combination of
options is impossible. Also, some configurations are mutually exclusive within
the same TAU installation, e.g. configurations targeting different versions of
the same compiler. Furthermore, new features are constantly added to TAU so
TAU Commander must be able to recalculate all valid configurations when new
configuration options are implemented. We addressed these problems by creat-
ing a declarative compatibility engine in TAU Commander that uses a system of
requirements specified on certain target, application, or measurement properties.
The details of this system are beyond the scope of the paper, but can be found
in the TAU Commander developer documentation [10].

168 J. C. Linford et al.

3 OpenSHMEM Usage and Examples

TAU Commander supports all SHMEM implementations that are supported
by the TAU Performance System R©, including OpenSHMEM reference imple-
mentations [4], Sandia OpenSHMEM (SOS) [17], and Cray SHMEM. Here we
demonstrate TAU Commander usage with SOS 1.3.3 and Cray SHMEM 7.4.4
on the Cori supercomputer at NERSC, using either Intel Xeon “Haswell” or
Intel Xeon Phi “Knight’s Landing” (KNL) compute nodes. Cori is a heteroge-
neous Cray XC40 comprised of 2,388 Haswell compute nodes and 9,688 KNL
compute nodes. Each Haswell node has two 16-core Intel Xeon E5-2698 proces-
sors at 2.3 GHz and 128 GB DDR4 memory. Each KNL node has one 68-core
Intel Xeon Phi 7250 processor at 1.4 GHz, 16 GB MCDRAM, and 96 GB DDR4
memory.

Our example application is ISx [7], an open source, parallel, integer sort mini-
application implementing in-memory bucket sort written in C. It supports both
strong and weak scaling studies, making it a useful tool for testing and comparing
the performance of OpenSHMEM implementations. No pre-installation or prepa-
ration of TAU was performed so that TAU Commander’s ability to “bootstrap”
a fully functional TAU installation in a unique supercomputing environment is
demonstrated. The only action taken to set up TAU Commander was to add
the directory containing the tau command to our PATH environment variable.
We configured SOS 1.3.3 to use libfabric’s GNI provider library and Intel 17.0.2
compilers.

3.1 Event-Based Sampling with Callsites

The first step in using TAU Commander is to create a new project. The
initialize subcommand creates a skeleton project containing target, applica-
tion, and measurement configuration objects initialized from defaults discovered
by probing the host system. Figure 3 shows the result of executing this com-
mand on Cori. The --shmem command line option indicates that our applica-
tion uses SHMEM. Since Cori is a Cray system, TAU Commander will assume
Cray SHMEM by default and probe the cray-shmem module to discover the
location of the SHMEM installation. Because each TAU configuration is closely
tied to a particular combination of compilers and MPI or SHMEM libraries,
TAU Commander probes the current environment to discover C, C++, and For-
tran compilers for serial, MPI, and SHMEM codes. A hash uniquely identifying
that particular combination of compilers and libraries is used as a tag on the new
software installation so that changes in compiler or library versions will trigger
a rebuild of TAU and possibly its dependencies.

Callsite profiling allows a user to observe how much time is being spent in
OpenSHMEM calls and where the call was invoked in the source code. TAU uti-
lizes debugging information to resolve callsite addresses to source code file names
and line numbers. TAU Commander will automatically add the appropriate com-
mand line options (e.g. -g) to ensure that debugging symbols are available. We
updated TAU’s measurement layer to support OpenSHMEM callsites in both

Performance Analysis of OpenSHMEM Applications with TAU Commander 169

Fig. 3. Creating a new project for performance analysis of a SHMEM application via
TAU Commander’s initialize subcommand.

profiles and traces. The primary challenge was to insert the appropriate calls to
libunwind and related libraries such that TAU’s own callstack did not interfere
with callsite resolution. We determined a callstack offset that achieved this for
profiles and traces and modified TAU’s trace generation library to generate the
required callsite data. Once callsites were supported in TAU, we added a new
attribute to TAU Commander’s measurement model describing the TAU envi-
ronment variables that must be set to activate callsite profiling and the required
dependencies. Callsite profiling may be activated in TAU Commander by passing
the --callsite flag when creating or editing a measurement.

Fig. 4. ISx compilation with TAU Commander.

To instrument ISx, the makefile must be modified to prepend the tau com-
mand to the compiler command. This is easily accomplished by changing Line 1
of the makefile from “CC = cc” to simply “CC = tau cc”. Figure 4 shows a

170 J. C. Linford et al.

sample of the output from ISx compilation with TAU Commander. First, the
Cray SHMEM compiler wrapper and the compiler it wraps are checked against
versions of the compilers used to build TAU. This avoids the linker errors or
runtime segmentation faults that can be caused by compiling TAU and the
instrumented application with different compilers. Next, appropriate values for
the TAU MAKEFILE and TAU OPTIONS environment variables are selected
automatically. The cc compiler command is replaced with TAU’s tau cc.sh
compiler wrapper script, and compilation proceeds. Because the sampling mea-
surement is currently selected no source- or compiler-based instrumentation is
performed and the compilation result is a statically linked executable including
TAU’s event-based sampling code.

Fig. 5. Gathering event-based sampling performance data from ISx.

To gather performance data from ISx with TAU Commander, simply prepend
the tau command to the usual command line. This forms a new trial of the
selected experiment. Figure 5 shows the result of executing ISx on 64 PEs on
two Haswell compute nodes of Cori. Fifteen TAU environment variables are
configured automatically before ISx is executed. The measurement configura-
tion specifies that event callsites should be recorded, so the TAU CALLSITE
environment variable has been set to “1”. When ISx completes, the resulting
performance data (906 KB) are stored in the project database. The tau show
command will display the data directly from the database, or the data can be
exported in a portable file format via the tau trial export command to be
viewed on another system. In that case, the path to the exported file is passed to
tau show on the command line. TAU Commander will configure and install TAU
on that system as well and finally display the exported data. Figure 6 shows ISx
performance data gathered via event-based sampling. Calls to the OpenSHMEM
API are visible and Line 497 of isx.c is highlighted as a performance hotspot.
Callsite information is also visible for OpenSHMEM.

Performance Analysis of OpenSHMEM Applications with TAU Commander 171

Fig. 6. ISx profile with callsite information gathered via event-based sampling.

3.2 Source-Based Instrumentation

Event-based sampling can highlight performance hot spots at the source line
level, but it is inherently inaccurate since it is an indirect measurement method.
Direct measurement via source- or compiler-based instrumentation usually pro-
duces cleaner, more accurate profiles at the cost of increased runtime overhead.
Source-based instrumentation is enabled in TAU Commander by selecting a mea-
surement configuration that specifies automatic or manual source-based instru-
mentation. This is done via the select subcommand as shown in Fig. 7. The
arguments to select are configuration objects that are to be composed into a
new experiment, or an existing experiment object. In Fig. 7, we have specified the
“profile” measurement object. The ISx project contains only one target and one
application, so the desired target and application can be implied. Upon forming
the new experiment, TAU Commander checks for TAU configurations that can
generate the specified performance data for the particular target and application.
In this case, a new TAU configuration supporting source-based instrumentation
is required so TAU is reconfigured and recompiled. Finally, the user is advised
that the application must be recompiled.

With the new experiment selected, ISx may be profiled and the resulting
data visualized using exactly the same workflow as described in Sect. 3.1. In
summary, ISx is recompiled via make optimized as shown in Fig. 4 and executed
with the tau command as shown in Fig. 5. Changing the selected experiment has
changed the context in which these actions are performed, resulting in different
performance data. Figure 8 shows the exclusive time profile of ISx code regions
measured via source-based instrumentation.

The data shown in Figs. 6 and 8 are taken from profiles of ISx. Source-based
instrumentation may also be used to generate traces. Profiles do not contain tem-
poral data but rather aggregate performance events to form summary statistics.

172 J. C. Linford et al.

Fig. 7. Selecting the “profile” measurement configuration to form a new experiment.

Fig. 8. ISx profile gathered via source-based instrumentation.

Traces however, preserve the timestamp of each performance event so that the
order of events may be observed. The storage requirement of traces is typically
many orders of magnitude larger than that of profiles. To generate traces of
ISx with TAU Commander we select the “trace” measurement configuration as
shown in Fig. 9. In this case, a TAU configuration supporting source-based instru-
mentation already exists from when the “profile” measurement was selected so
TAU is not recompiled. TAU Commander has also detected that switching from
profiles to traces does not require the application to be recompiled so no mes-
sage advising recompilation is printed. ISx may now be executed via the tau
command and traces are generated instead of profiles (Fig. 10).

Performance Analysis of OpenSHMEM Applications with TAU Commander 173

Fig. 9. Selecting the “trace” measurement configuration to form a new experiment.

Fig. 10. ISx trace gathered via source-based instrumentation.

3.3 ISx with Sandia OpenSHMEM

To compare SHMEM implementations in TAU Commander we create target
configurations for each SHMEM installation. The target create subcommand
creates a new target. Figure 11 shows how this command is used to create a new
target configuration called “cori.SOS” that uses SOS compilers instead of the
default Cray SHMEM compilers. The select subcommand may then be used
to select the new target configuration as shown in Fig. 12. TAU Commander will
detect the change in compilers and reconfigure TAU as needed. It will also notify
the user that their application must be recompiled to reflect the change in Open-
SHMEM implementation. Compilation and execution then proceed similarly to
Figs. 4 and 5.

Creating new measurement configurations enables new views of the appli-
cation’s performance. For example, an application’s communication matrix can
reveal communication patterns and highlight load imbalance or congestion. The
measurement create subcommand can be used, or existing measurements may
be copied and modified via the measurement copy subcommand. Figure 13
shows how we create a new measurement configuration called “comm” that is
a copy of the “profile” configuration, but with an additional --comm-matrix
flag. This flag indicates that point-to-point communication should be tracked

174 J. C. Linford et al.

Fig. 11. Creating a new target called “cori.SOS” to profile Sandia OpenSHMEM.

Fig. 12. Selecting the “cori.SOS” target, “ISx” application, and “profile” measurement
to form a new “cori.SOS-ISx-profile” experiment.

at runtime so the communication matrix may be recorded. Copying configura-
tion objects in this way is purely a convenience feature; configuration objects
may always be created from scratch. The select subcommand is used to select
the new “comm” configuration, and ISx is executed as before to generate the
communication matrix shown in Fig. 14.

3.4 Intel Xeon Phi “Knights Landing”

TAU Commander can be used with SHMEM applications executing on the Intel
Xeon Phi “Knight’s Landing” (KNL). To explore ISx performance on Cori’s
KNL nodes, we create and select a new target configuration that specifies the
host architecture as KNL as shown in Fig. 15. TAU Commander will detect the

Performance Analysis of OpenSHMEM Applications with TAU Commander 175

Fig. 13. Using the tau measurement copy command to create a new measurement
called “comm” that is a modified copy of the “profile” measurement.

Fig. 14. Communication matrix of ISx executing on Cori with Sandia OpenSHMEM.

change in host architecture and recompile TAU and dependencies as needed. All
performance analysis tasks demonstrated in Sect. 3 may be performed on KNL
exactly as they are on Haswell. For example, Fig. 16 shows the mean exclusive
time profile of ISx while executing on 136 KNL cores as measured by source-
based instrumentation. With a KNL target configuration selected, TAU Com-
mander manages all KNL-specific details so that the workflow is identical to the
workflows we have demonstrated on Haswell CPUs.

Supporting KNL-based Cray systems in TAU Commander required a new
platform architecture configuration so that additional, KNL-specific flags are
passed when configuring TAU. In most cases, configuring TAU for KNL requires
only one new configuration flag: -useropt=-DTAU MAX THREADS=512. However,
on Cray systems additional flags like -arch=craycnl must be passed, even
though KNL is an x86 64 architecture and most KNL systems are configured
with -arch=x86 64. We implemented new platform architecture in TAU Com-
mander that specifically indicates KNL-based Cray systems such that all the
required flags are selected automatically.

176 J. C. Linford et al.

Fig. 15. Creating and selecting a target configuration for Cori’s KNL compute nodes.

Fig. 16. Mean exclusive time profile of ISx while executing om 136 KNL cores of Cori
as measured by source-based instrumentation.

4 Related Work

OpenSHMEM [4,8] has emerged as an effort to join the disparate SHMEM
implementations into a common, portable and high performance standard. Bader
and Cong have demonstrated fast data structures for distributed shared mem-
ory [2]. Pophale et al. defined the performance bounds of OpenSHMEM [16].

Performance Analysis of OpenSHMEM Applications with TAU Commander 177

Fig. 17. ISx project showing all configuration objects and dataset sizes.

Both profiling and tracing are relevant to better understanding the performance
characteristics of an application. While profiling shows summary statistics, trac-
ing can reveal the temporal variation in application performance. Among tools
that use the direct measurement approach, the VampirTrace [9] package provides
a wrapper interposition library that can capture the traces of I/O operations.
Scalasca [6] is a portable and scalable profiling and tracing system that can auto-
mate the detection of performance bottlenecks in message passing and shared
memory programs. TAU, VampirTrace, and Scalasca use the PAPI [3] library to
access hardware performance counters.

178 J. C. Linford et al.

5 Conclusions and Future Work

TAU Commander’s ability to simplify performance analysis of OpenSHMEM
applications was demonstrated. Compared to the TAU Performance System R©,
TAU Commander reduces the number of user actions required to generate
performance data and simplifies the workflow overall. Workflows targeting two
different SHMEM implementations, Intel Haswell and Knights Landing proces-
sors, direct and indirect measurement methods, profiles, and traces were demon-
strated. Figure 17 shows the final project configuration including datasets from
six experiments ranging in size from 1.1 MiB to 590.7 MiB. In all cases, the
TAU Commander successfully configured and installed TAU and its dependen-
cies to produce the desired performance data. TAU Commander successfully
detected changes in compiler or OpenSHMEM library version and reconfigured
TAU appropriately. Only the tau command was used; no knowledge of of tau-
specific environment variables, makefiles, or configuration files is was required.

Future work will implement native support for OTF2 trace format in the
TAU Performance System R© and TAU Commander to better support cutting
edge analysis tools like Vampir. We will also continue to improve support
for TAU’s corner cases in TAU Commander, e.g. applications that mix MPI,
SHMEM, and CUDA.

Acknowledgments. This work is supported by the United States Department of
Energy under DOE SBIR grant DE-SC0009593. This research used resources of the
Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory,
which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725.

References

1. U.S. Department of Energy INCITE leadership computing, December 2015. http://
www.doeleadershipcomputing.org/

2. Bader, D.A., Cong, G.: Fast shared-memory algorithms for computing the mini-
mum spanning forest of sparse graphs. J. Par. Distrib. Comp. 66(11), 1366–1378
(2006). http://dx.doi.org/10.1016/j.jpdc.2006.06.001

3. Browne, S., Dongarra, J., Garner, N., Ho, G., Mucci, P.: A portable programming
interface for performance evaluation on modern processors. Int. J. High Perform.
Comput. Appl. 3(14), 189–204 (2000)

4. Chapman, B., Curtis, T., Pophale, S., Poole, S., Kuehn, J., Koelbel, C., Smith, L.:
Introducing OpenSHMEM: SHMEM for the PGAS community. In: Proceedings of
the Fourth Conference on Partitioned Global Address Space Programming Model,
PGAS 2010, pp. 2:1–2:3. ACM, New York (2010). http://doi.acm.org/10.1145/
2020373.2020375

5. Francis, I., Drugan, C.: Groundbreaking astrophysics accelerated. HPC Source,
February 2013

6. Geimer, M., Wolf, F., Wylie, B.J.N., Mohr, B.: Scalable parallel trace-based per-
formance analysis. In: Mohr, B., Träff, J.L., Worringen, J., Dongarra, J. (eds.)
EuroPVM/MPI 2006. LNCS, vol. 4192, pp. 303–312. Springer, Heidelberg (2006).
https://doi.org/10.1007/11846802 43

http://www.doeleadershipcomputing.org/
http://www.doeleadershipcomputing.org/
http://dx.doi.org/10.1016/j.jpdc.2006.06.001
http://doi.acm.org/10.1145/2020373.2020375
http://doi.acm.org/10.1145/2020373.2020375
https://doi.org/10.1007/11846802_43

Performance Analysis of OpenSHMEM Applications with TAU Commander 179

7. Hemstad, J., Hanebutte, U.R.: ISx: An integer sort mini-application for the exas-
cale era (2015). Partitioned Global Address Space SC’15 Booth

8. Jose, J., Kandalla, K., Luo, M., Panda, D.: Supporting hybrid MPI and OpenSH-
MEM over infiniband: design and performance evaluation. In: The 41st Interna-
tional Conference on Parallel Processing (ICPP), pp. 219–228 (2012)

9. Knupfer, A., Brunst, H., Nagel, W.: High performance event trace visualization.
In: Proceedings of Parallel and Distributed Processing (PDP). IEEE (2005)

10. Linford, J.C.: TAU commander developer documentation, June 2017. http://
paratoolsinc.github.io/taucmdr/

11. Linford, J.C., Vadlamani, S., Shende, S., Malony, A.D., Jones, W., Anderson,
W.K., Nielsen, E.: Performance engineering FUN3D at scale with TAU Comman-
der. In: Proceedings of the ACM/IEEE The International Conference for High
Performance Computing, Networking, Storage and Analysis (SC 2016), November
2016. To Appear

12. Malony, A., Biersdorff, S., Shende, S., Jagode, H., Tomov, S., Juckeland, G.,
Dietrich, R., Poole, D., Lamb, C.: Parallel performance measurement of hetero-
geneous parallel systems with GPUs. In: 2011 International Conference on Parallel
Processing (ICPP), pp. 176–185, September 2011

13. Malony, A.D., Mellor-Crummey, J., Shende, S.S.: Measurement and analysis of
parallel program performance using TAU and HPCToolkit. In: Performance Tuning
of Scientific Applications. CRC Press, New York, November 2010

14. ParaTools, Inc.: TAU Commander: An intuitive interface for the TAU Performance
Analysis System (2014). https://www.sbir.gov/sbirsearch/detail/687037

15. Perez, J., Shende, S.: Furthering the understanding of coronal heating and solar
wind origin. Technical report, Argonne National Labs, January 2013

16. Pophale, S., Nanjegowda, R., Curtis, T., Chapman, B., Jin, H., Poole, S., Kuehn,
J.: OpenSHMEM performance and potential: a NPB experimental study. In: The
6th Conference on Partitioned Global Address Space Programming Models (PGAS
2012) (2012)

17. Seager, K., Choi, S.-E., Dinan, J., Pritchard, H., Sur, S.: Design and implemen-
tation of OpenSHMEM using OFI on the aries interconnect. In: Venkata, M.G.,
Imam, N., Pophale, S., Mintz, T.M. (eds.) OpenSHMEM 2016. LNCS, vol. 10007,
pp. 97–113. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50995-2 7

18. Shende, S., Malony, A.: The TAU Parallel Performance System. Int. J. High Per-
form. Comput. Appl. 20(2), 287–311 (2006)

19. Shende, S., Malony, A., Linford, J., Wissink, A., Adamec, S.: Isolating runtime
faults with callstack debugging using TAU. In: Proceedings of the HPEC 2012
Conference (2012)

http://paratoolsinc.github.io/taucmdr/
http://paratoolsinc.github.io/taucmdr/
https://www.sbir.gov/sbirsearch/detail/687037
https://doi.org/10.1007/978-3-319-50995-2_7

Author Index

Aderholdt, Ferrol 65

Baker, Matthew B. 35, 50
Boehm, Swen 35, 50
Bouteiller, Aurelien 50

Cernohous, Bob 3

Dinan, James 3, 19, 99
Doyle, Joseph 19

Fu, Huansong 114

Goswami, Anshuman 82
Graves, Jeffrey A. 65
Grossman, Max 19

Hashmi, Jahanzeb Maqbool 143

Imam, Neena 82, 114, 130, 161

Kandalla, Krishna 3
Khuvis, Samuel 161

Li, Mingzhe 143
Linford, John C. 161

Malony, Allen 161

Namashivayam, Naveen 3
Naughton, Thomas 130

Ozog, David 99

Pagel, Mark 3
Panda, Dhabaleswar K. 143
Pophale, Swaroop 35, 50
Potluri, Sreeram 82
Pou, Dan 3
Pritchard, Howard 19

Robichaux, Joseph 3

Sarkar, Vivek 19
Seager, Kayla 19
Shende, Sameer 161
Simpson, Adam 130
Sorrillo, Lawrence 130
Subramoni, Hari 143

Venkata, Manjunath Gorentla 35, 50, 65
82, 114, 161

Wasi-ur- Rahman, Md. 99

Yu, Weikuan 114

	Preface
	Organization
	Contents
	OpenSHMEM Extensions
	Symmetric Memory Partitions in OpenSHMEM: A Case Study with Intel KNL
	1 Introduction
	2 Background
	2.1 Cray SHMEM

	3 Intel KNL Architecture
	3.1 Memory Modes
	3.2 NUMA Cluster Modes

	4 OpenSHMEM Memory Model
	4.1 Need for Changes in OpenSHMEM Memory Model

	5 Symmetric Memory Partitions in OpenSHMEM
	5.1 Memory Partition Traits
	5.2 Memory Partition Routines
	5.3 Meaning of Partition with ID:1

	6 Symmetric Memory Partitions in Cray SHMEM
	7 Performance Regression Analysis
	7.1 Using Default Partition Instead Of SMA_SYMMETRIC_SIZE
	7.2 Creating SHMEM_MAX_PARTITIONS partitions

	8 Performance Analysis
	9 Related Work
	10 Conclusion
	References

	Implementation and Evaluation of OpenSHMEM Contexts Using OFI Libfabric
	1 Introduction
	2 Background
	2.1 OpenSHMEM Contexts
	2.2 Libfabric
	2.3 Aries and the GNI Libfabric Provider

	3 Implementation of Contexts over Libfabric
	3.1 Middleware Extensions to Support Contexts

	4 Results
	4.1 Evaluation Platform
	4.2 Micro-benchmarks
	4.3 Graph500
	4.4 HPC Challenge Random Access Benchmark
	4.5 Mandelbrot
	4.6 Pipeline Example
	4.7 Application Development Discussion

	5 Related Work
	6 Conclusion
	References

	Merged Requests for Better Performance and Productivity in Multithreaded OpenSHMEM
	1 Introduction
	2 API for RMA and Atomic Operations with Merged Requests
	3 Implementation
	3.1 Network and Resource Abstraction in UCX
	3.2 Mapping Merged Requests to Resources
	3.3 Threads and Merged Requests

	4 Experimentation and Results
	4.1 Achieving Higher Message Rate with Merged Request RMA Operations and Multiple Threads
	4.2 Achieving Higher Message Rates for Atomic Operations with Non-blocking Operations and Merged Request
	4.3 Achieving Higher Bandwidth for Smaller Messages with Merged Request Based RMA Operations and Multiple Threads
	4.4 Communication/Computational Overlap
	4.5 Custom Collectives
	4.6 GUPS

	5 Related Work
	6 Conclusion
	References

	Evaluating Contexts in OpenSHMEM-X Reference Implementation
	1 Introduction
	2 Background
	2.1 Thread Safe API
	2.2 Communication Contexts

	3 Implementation
	3.1 Per-Context Endpoints
	3.2 Thread/Context Mapping

	4 Experimentation and Results
	4.1 Message Rates
	4.2 Bandwidth
	4.3 Random Access

	5 Related Work
	6 Conclusions and Future Work
	References

	OpenSHMEM Applications
	Parallelizing Single Source Shortest Path with OpenSHMEM
	1 Introduction
	2 Related Work
	3 Background
	3.1 Dijkstra's Algorithm
	3.2 Bellman-Ford

	4 Parallelization of Dijkstra's
	4.1 Communication Optimization

	5 Parallelization of Bellman-Ford
	5.1 Parallel Bellman-Ford Algorithm
	5.2 Optimizations
	5.3 Realizing Parallel Bellman-Ford with OpenSHMEM

	6 Experimental Evaluation
	6.1 Datasets and Testbed
	6.2 Evaluation with R-MAT Graphs
	6.3 Evaluation with Small-World Networks
	6.4 Evaluation with Real-World Graphs

	7 Conclusions
	References

	Efficient Breadth First Search on Multi-GPU Systems Using GPU-Centric OpenSHMEM
	1 Introduction
	2 Background
	2.1 Current Programming Model Approach for GPU-Based Systems
	2.2 OpenSHMEM

	3 GPU-Initiated Communication Using NVSHMEM
	4 Baseline Multi-GPU BFS Code Using MPI
	5 DGX-1 GPU-Node Architecture
	6 Design
	6.1 CUDA-Aware MPI Based Version
	6.2 NVSHMEM-Based Version over PCIe-Connected GPUs
	6.3 Using SHMEM over NVLink-Connected GPUs

	7 Results
	8 Related Work
	9 Conclusion
	References

	Evaluation, Implementation and Novel use of OpenSHMEM
	Application-Level Optimization of On-Node Communication in OpenSHMEM
	1 Introduction
	2 Background
	3 Challenges and Opportunities
	4 Design and Implementation of shnode
	4.1 Better Overlapping Between Communication And Computation
	4.2 Designing shnode Collective Helper Routines

	5 Performance Evaluation
	5.1 Experimental Setup
	5.2 Evaluating Shnode with Micro-benchmark
	5.3 Performance Improvement in Collective Routines
	5.4 Evaluation of Applications

	6 Related Work
	7 Future Work
	8 Conclusion
	References

	Portable SHMEMCache: A High-Performance Key-Value Store on OpenSHMEM and MPI
	1 Introduction
	2 Background
	2.1 An Overview of SHMEMCache
	2.2 One-Sided Communication in MPI

	3 Design of Portable SHMEMCache
	3.1 Communication Architecture
	3.2 Communication Interfaces
	3.3 Comparison of Memory Semantics and Synchronization of One-Sided Operations

	4 Implementation
	4.1 Difference Between OpenSHMEM and MPI Implementations
	4.2 Alternative MPI Implementation Options

	5 Evaluation
	5.1 Operation Latency
	5.2 Throughput

	6 Related Works
	7 Conclusion
	References

	Balancing Performance and Portability with Containers in HPC: An OpenSHMEM Example
	1 Introduction
	2 Background
	2.1 Docker
	2.2 Singularity

	3 Approach
	3.1 Container Deployment
	3.2 Container Image Setup

	4 Evaluation
	4.1 Testing Environment
	4.2 OpenSHMEM/Graph500
	4.3 OpenSHMEM/OSU
	4.4 Observations

	5 Conclusion
	5.1 Future Work

	References

	Exploiting and Evaluating OpenSHMEM on KNL Architecture
	1 Introduction
	1.1 Motivation
	1.2 Contributions

	2 Background
	2.1 Intel Knights Landing - Architectural Overview
	2.2 MVAPICH2-X OpenSHMEM Runtime

	3 Evaluation Methodology
	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Data Movement Operations
	4.3 Atomic Operations
	4.4 Collectives Operations
	4.5 NAS Parallel Benchmark
	4.6 Application Kernels
	4.7 Summary of Node-Level Comparison Using Application Kernels

	5 Discussion of Performance Results
	6 Related Work
	7 Conclusion and Future Work
	References

	OpenSHMEM Tools
	Performance Analysis of OpenSHMEM Applications with TAU Commander
	1 Introduction
	2 TAU Commander
	2.1 Workflow and Functionality Overview
	2.2 Command Line Interface for Configuration, Compilation, Measurement, and Analysis
	2.3 Implementation Challenges

	3 OpenSHMEM Usage and Examples
	3.1 Event-Based Sampling with Callsites
	3.2 Source-Based Instrumentation
	3.3 ISx with Sandia OpenSHMEM
	3.4 Intel Xeon Phi ``Knights Landing''

	4 Related Work
	5 Conclusions and Future Work
	References

	Author Index

