
Chapter 9
(e,2e) Impact Ionization Processes
for Surface Science

Rakesh Choubisa, Didier Sébilleau, Junqing Xu and Calogero R. Natoli

Abstract We present a scattering theoretic approach to the calculation of the cross-
section of (e,2e) impact spectroscopy where all the electrons involved are treated
within the real space multiple scattering framework. This approach is particularly
suited to the reflection geometry at low kinetic energies, with the ejection of a core-
level electron. In this case, we expect (e,2e) spectroscopy can be turned into an
extremely sensitive surface structure probe.

9.1 Introduction

(e,2e) has a long history, especially in atomic and molecular physics. Originally
derived for the (p, 2p) spectroscopy in nuclear physics [1], where p represents a
proton, it was proposed in 1966 by Smirnov and coworkers [2] for the investigation
of atomic wave functions [3], upon the replacement of the protons by electrons. Since
then, it has enjoyed a widespread popularity and is often termed electron momentum
spectroscopy [4]. Indeed, in the high energy regime (primary energy ∼10–50keV),
we can represent the electron by a plane wave. If in addition, the momentum transfer
is large (K = kin − ksc ≈ kex), the collision between the impinging electron and
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the target electron can be described as a single binary collision (i.e. many-body
interactions are approximated by consecutive two-body interactions) and therefore,
the impact approximation is valid [5]. This approximation assumes that the incoming
electron interacts only with the ejected electron and neither affects the target nor
is affected by it (the spectator electrons are frozen). Within this so-called Plane
Wave Impulse Approximation (PWIA), the momentum opposite to the recoil ion
momentum vector is interpreted as the bound electron momentum. In this case, the
cross-section is proportional to the spectral momentum density �(q, ε) = |φ(q, ε)|2
where q is the momentum of the bound electron and ε its binding energy. φ(q, ε)
is the Fourier transform of the wave function φ(r, ε) before the collision. �(q, ε) is
the probability of finding a bound electron of momentum q and energy ε. Hence the
name of wave function mapping spectroscopy [6, 7] often given to (e,2e).

Although proposed since the very beginning of (e,2e), the application of the
technique to solids [2] has long been hampered by the low count rate. It is only rather
recently that technical developments in the devising of new analyzers, such as the
time-of-flight technique [8], have made it possible to use it as a probe of condensed
matter.

(e,2e) in reflection mode was proposed back in 1978 in order to study surfaces by
D’Andrea andDel Sole in a theoretical paper [9]. The first experiment was performed
in 1992 byKirschner and coworkers [10] onW(110). But it is not before 1995 that the
feasibility of this binding-energy spectroscopy with quasimomentum discrimination
was firmly established [11]. However, in this case, as we need to be sensitive to the
surface, the experiments have to be performed for primary beams of low energy and
grazing incidence in order to minimize the inelastic mean free path and the escape
depth of the outgoing electrons. In the case of surfaces, the use of (e,2e) can give
us important information on many different processes. For instance, in their seminal
paper, D’Andrea and Del Sole [9] demonstrated that the computed (e,2e) spectra
were very sensitive to the surface reconstruction. It is with this type of applications
in mind that we develop here a real space multiple scattering framework to model
(e,2e) experiments. Previous approaches were more interested in the excitation of
valence states; we focus here on core states.

9.2 Reduction of the Cross-Section

The cross section of (e,2e) can be written as

d3σ

dE1dΩkscdΩkex
= 1

8
(2π)4

(
2m

�2

)3 ksckex
kin

∑
av

∣∣〈ΦN+1
ksckex

|TI |ΦN+1
kin

〉∣∣2 . (9.1)

Here, we have noted kin, ksc and kex respectively the direction of the incoming,
scattered and excited (ejected) electron. By convention, the scattered electron is the
faster of the two outgoing electrons and the ejected (or excited) electron is the slower.
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The sum over the states noted av is a sum over degenerate final states and an average
over degenerate initial states.

Here, |ΦN+1
kin

〉 and |ΦN+1
ksckex

〉 are eigenstates of the asymptotic Hamiltonian, i.e. of
the Hamiltonian H0 without interaction. (N + 1) is the total number of electrons,
the target being assumed to contain N electrons. We can express the initial state as

|ΦN+1
kin

〉 = |ϕN−1
g 〉 |φ0〉 ⊗ |φkin〉 , (9.2)

where |φ0〉 is the initial wave state of the electron that will be excited, |φkin〉 is the
wave state of the incoming electron and |ϕN−1

g 〉 is the ground state of the remaining
(N − 1) system. Here, ⊗ represents the product in the two-electron space.

Likewise, we write the final state as

|ΦN+1
ksckex

〉 = |ϕN−1
ion 〉 |φksckex〉 , (9.3)

where |ϕN−1
ion 〉 is the residual ion state and |φksckex〉 is the outgoing two-electron state.

With these notations, the cross-section becomes

d3σ

dE1dΩkscdΩkex
= 1

8
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kin

×∑
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∣∣〈ϕN−1
ion | 〈φksckex | TI |ϕN−1

g 〉 |φ0〉 ⊗ |φkin〉
∣∣2 .

(9.4)

At this stage, we make a first approximation called the frozen core approximation
or the sudden approximation. This approximation assumes that the ejected electron
leaves the atom in a time much less that the time it takes for the remaining electrons
of the ion to readjust. In other words, these atoms can be considered as spectators of
the interaction process. This approximation implies

d3σ

dE1dΩkscdΩkex
= 1
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0

∣∣2 ∣∣T f i

∣∣2 , (9.5)

where we have noted
T f i = 〈φksckex | TI |φ0〉 ⊗ |φkin〉 . (9.6)

We are then left with a three-body problem plus the overlap term
∣∣SN−1

0

∣∣2 =∣∣〈ϕN−1
ion |ϕN−1

g 〉∣∣2 which is independent of the interaction process. 〈ϕN−1
ion |ϕN−1

g 〉 is
usually called the structure factorwhile 〈φksckex | TI |φ0〉 ⊗ |φkin〉 is called the collision
factor. The separation of the totalmatrix element into these two contributions is called
the factorization approximation. For the rest of the discussion, we will consider the
structure factor as constant and take it out of the sum. In this approximation, TI is a
two-body transition operator.
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9.3 The Two-Electron Differential Cross-Section

We recall that a N -body T -matrix element can be written as [12]

⎧⎨
⎩
T f i = 〈Φ f |V f |Ψ +

i 〉 = 〈Φ f |V f Ω
(+)
i |Φi 〉 post form

= 〈Ψ −
f |Vi |Φi 〉 = 〈Φ f | Ω

(−) †
f Vi |Φi 〉 prior form ,

(9.7)

where |Ψ ±〉 is an eigenket of H , the full Hamiltonian, |Φ f 〉 an eigenstate of Hf =
H − V f and |Φi 〉 an eigenstate of Hi = H − Vi . Vi and V f are the interaction
potentials respectively in the initial channel and the final channel. Ω(±) are Møller
wave operators.

Each continuum electron interacts with the cluster potential through

Vxx S =
Nat∑
n=1

Vxx n , (9.8)

where Nat is the number of atoms in the cluster. Here, xx stands for in, sc or ex, and
S for the sample. Within this 3-body approach (incoming electron, bound/ejected
electron, cluster), we can define the interactions in the initial and final channel as

⎧⎨
⎩
Vi = Vin S + Vin co + Vco S

V f = Vsc S + Vex S + Vsc ex .

(9.9)

We note that we can suppress the interaction potential Vco S between the core
state and the sample in the expression of Vi . Indeed, if the calculation of the sample
potential VS and of thewave functionφco(r) have been done properly, this has already
been accounted for.

Let us consider now the prior form of (9.7). As the interaction between the incom-
ing electron and the system Vin S cannot excite the bound electron,we can reduce Vi to
Vin co in (9.7) so thatwe have now |Φi 〉 eigenstate of Hi = H − Vin co = H0 + Vin S.
To keep the standard distorted wave notation, we will write it as |χ±

i 〉 ⊗ |φco〉. There-
fore, (9.7) becomes

T f i = 〈Φ f | Ω
(−) †
f Vin co|χ+

i 〉 ⊗ |φco〉 , (9.10)

where according to (9.9), |Φ f 〉 is an eigenstate of H0. |χ+
i 〉 is the result of the

interaction of the incoming electron with the sample through the potential Vin S. It is
therefore amultiple scattering statewhichwewill rewrite |χ±

in〉 tomake the difference
with the multiple scattering states in the final channel.

As thematrix elements of T involvemultiple scattering states |χ±〉, let us introduce
the multiple scattering Møller wave operators ω(±)

xx associated to the Hamiltonian
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Hxx = H0 + Vxx S by

ω(±)
xx |Φ〉 = (ω(±)

xx ⊗ I ) |kxx〉 ⊗ |φ〉 . (9.11)

We can now rewrite our result (9.10) in terms of the initial state and final state
plane waves solutions of H0 as

T f i = 〈ksc| ⊗ 〈kex| Ω
(−) †
f Vin co (ω(+)

in ⊗ I ) |kin〉 ⊗ |φco〉 . (9.12)

This expression is an exact result within our 3-body impact approximation.
An important issue in (e,2e) spectroscopy is to find a proper description of the

so-called post-collision interaction (PCI), i.e. the interaction between the two out-
going electrons. In our formulation, this effect is embedded within the final channel
Møller wave operator Ω

(−) †
f . We know how to compute the individual wave opera-

tors ω(±)
xx , all multiple scattering codes can do it, but Ω(±)

f is a complicated operator
taking into account all the interactions in the final state at the same time. However,
we can use the simple first order approximation derived by Briggs [12]

Ω(±) ≈
N∏

n=1

ω(±)
n . (9.13)

We will call this result Briggs’ first order approximation (Br1 in the equations).
We find then

Ω
(−) †
f

∣∣∣
Br1

= (ω(−) †
sc S ⊗ I )(I ⊗ ω(−) †

ex S ) ω(−) †
sc ex = (ω(−) †

sc S ⊗ ω(−) †
ex S ) ω(−) †

sc ex , (9.14)

where the order of the wave operators is indifferent. ω(−) †
sc ex is the PCI wave opera-

tor which describes the (screened Coulomb) interaction between the two outgoing
electrons.

Therefore, we can rewrite now the transition matrix element as

T f i

∣∣
Br1 = 〈ksc| ⊗ 〈kex| ω(−) †

sc ex︸ ︷︷ ︸
PCI scattering state

(ω(−) †
sc S ⊗ ω(−) †

ex S ) Vin co (ω(+)
in ⊗ I ) |kin〉 ⊗ |φco〉 .

(9.15)
The neglect of PCI amounts to the replacement of theMøller wave operator ω(−) †

sc ex
by the identity I⊗ in the two-electron space.

In order to simplify the notation, let us write as usual

ω(±)
xx |kxx〉 = |χ±

kxx
〉 , (9.16)

and the Coulomb interaction in the initial channel as VC as there is no ambiguity (the
one in the final channel is contained into the PCI wave operator). Note that VC is
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a short-hand notation for the antisymmetrized operator (A†
⊗VCA⊗), where A is the

antisymmetrizer.
We can now rewrite (9.15) as

T f i

∣∣
Br1 = 〈χ−

ksc
| ⊗ 〈χ−

kex
| ω(−) †

sc ex VC |χ+
kin

〉 ⊗ |φco〉 , (9.17)

where the |χ±〉 are the multiple scattering states computed by the multiple scattering
codes.

We can now inject this result into the cross-section

d3σ

dE1dΩkscdΩkex

∣∣∣∣
Br1

= 2π4

(
2m

�2

)3 ksckex
kin

∣∣SN−1
0

∣∣2 ∑
av

∣∣T f i

∣∣2 , (9.18)

to obtain a workable formula within the first Briggs approximation.
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