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This book is dedicated to Calogero R. Natoli,
more widely known as Rino Natoli, on the
occasion of his 75th birthday. A conference in
his honour was organized in Rennes (France)
on July the 1st–2nd 2016, as a recognition of
his outstanding lifetime achievements in the
multiple scattering modeling of
spectroscopies and his tutoring work in the
training of two generations of multiple
scattering physicists. Part 2 of this book
gathers the contributions to this conference
directly related to multiple scattering.



Foreword

It is indeed a pleasure and an honor to write the foreword to this book on multiple
scattering theory, both for its deep and useful content, but also to honor Rino
Natoli, an outstanding scientist who has contributed so much to this field over a
long and continuing career.

As an experimentalist involved in various aspects of photoelectron spectroscopy
who has made use of multiple scattering methods through my entire career, I cannot
underestimate the importance of the theoretical developments, methods, and com-
puter codes discussed in this volume. For me personally, this spans from the
simulation and interpretation of photoelectron diffraction and holography data for
bulk- and surface-atomic structure studies, using methods developed in collabora-
tion with John Rehr, a close collaborator of Rino Natoli over many years, to the
much more complicated challenge of simulating and interpreting angle-resolved
photoemission results aimed at the most detailed determinations of electronic
structure, in collaboration with Hubert Ebert, Jürgen Braun, and Ján Minár, who are
authors in this volume. Being able to accurately describe the final states and
intensities of electrons photoemitted from either core or valence states of atoms,
molecules, solids, surfaces, or interfaces is absolutely crucial to all applications of
photoelectron spectroscopy, including more recently greatly expanded studies of
both spin and time resolution. Recent developments in synchrotron radiation and
free-electron laser light sources, as well as high-harmonic generation sources, and
time-of-flight spectrometers and spin detectors have opened up enormously exciting
new areas for photoelectron spectroscopy in which we are really dealing with “big
data”, and it is essential that we have “big theory” to describe all this. This volume
addresses that, and the fact that, the word “photoelectron” appears over 170 times in
it and the word “photoemission” over 150 times attests to the many past, present,
and future contributions of multiple scattering in the interpretation of such data.

But beyond this area of spectroscopy also come structure studies with
low-energy electron diffraction (for which many early developments were made)
and the X-ray absorption and X-ray emission spectroscopies, including X-ray
absorption extended fine structure (EXAFS, XAFS mentioned over 80 times),
X-ray magnetic circular dichroism (XMCD-over 70 times) and linear dichroism,
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and resonant inelastic X-ray scattering, forefront synchrotron radiation and
free-electron laser techniques whose understanding also critically depends on
multiple scattering and is discussed elsewhere in this book. From a fundamental
point of view, the multiple scattering methods discussed here are also very closely
related to, and based in many ways upon, the Korringa–Kohn–Rostoker method
(KKR mentioned over 180 times) that is frequently used in calculating electronic
structure.

The book is also enhanced by articles by experimentalists describing their uses
of these techniques and illustrating directly the importance of accurate theory for
the interpretation of data.

So this volume, with its intent to put in one place an introduction to the various
multiple scattering methods and available programs for using them in various
spectroscopies, is most timely and useful, and I am grateful to Didier Sébilleau,
Keisuke Hatada, and Hubert Ebert for editing it, and to all of the authors for their
authoritative and useful chapters. This book will be a highly useful reference to a
very broad scientific community.

Davis, USA
March 2017

Charles S. Fadley
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Preface

The purpose of this book is to provide the users of multiple scattering (MS) codes
modeling spectroscopies with all the necessary background in order to understand
the theoretical framework behind these codes. It is intended for researchers, as well
as students who want to run a multiple scattering code and want to go further than
just button pressing. It is designed as more or less self-contained as no preliminary
knowledge of scattering theory is requested.

This book is composed of two parts which reflect the two events it grew out of.
Part I provides basic knowledge of MS theory and of its use in the description of
standard spectroscopies used in materials and surface science, either at advanced
facilities (synchrotron radiation centers and free-electron lasers essentially) or in
academic/industrial research laboratories. It contains the lectures that were given at
the EUSpec training school organized in Rennes (France) from the June 27 to 30,
2016. These lectures contained all the background requested to understand the
physics behind the codes FPMS, GNXAS, MCMS, Msspec, and MXAN, on which the
attendees had hands-on during the Rennes school, and the code SPR-KKR which was
studied at the EUSpec Plzeň (Czech Republic) Training School in February 2015.
Part II deals with more focused aspects of the use of MS to model spectroscopies. It
is based on some of the talks that were given at the joint MSNano-EUSpec con-
ference that followed the Rennes Training school. It addresses specific issues
related to MS and is intended for readers who want to go further in the under-
standing of MS theory for spectroscopies.

We hope this book will be helpful to the spectroscopy community to better
understand the dark side of the MS computer codes.

Finally, we want to thank all the students/researchers who attended the school
and the conference, and hope these two events will have given them a better grasp
on the codes they use or want to use.

Rennes, France Didier Sébilleau
Rennes, France Keisuke Hatada
Munich, Germany Hubert Ebert
March 2017
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Acronyms

Spectroscopies

AED Auger electron diffraction: spectroscopy based on electron diffraction
where the Auger electrons are monitored

APECS Auger photoelectron coincidence spectroscopy: spectroscopy based on
photoemission where the photoelectron and the Auger electron ejected
via the corresponding deexcitation channel are measured in
coincidence

ARBIS Angular-resolved Brehmsstrahlung isochromat spectroscopy (BIS):
spectroscopy often improperly termed inverse photoemission. It is the
angle-resolved form of BIS where a beam of electrons is focused onto
a sample. Within the sample, the electrons can decelerate emitting a
photon. Photons of fixed energy are then detected

ARPES Angle-resolved photoemission spectroscopy: spectroscopy where an
incident photon excites an electron on a given atom. The ejected
electron is measured by an angle-resolving detector

BEEM Ballistic electron emission microscopy: microscopy derived from STM
where only electrons that travel ballistically (i.e., those elastically
scattered) are considered

EELS Electron energy loss spectroscopy: spectroscopy where the electrons of
an incident beam directed at the sample are used to excite electrons on
specific atoms. The scattered electrons, which have lost energy in the
process, are then probed

EXAFS Extended x-ray absorption fine structure: spectroscopy using the
higher energy part of the x-ray absorption spectrum (usually �50 eV
above the absorbing edge)

HAXPES Hard x-ray photoelectron spectroscopy: photoemission using hard
x-rays with energies of several keVs

xxiii



LEED Low-energy electron diffraction: a technique for the determination
of the surface structure of single-crystalline materials by bombardment
with a collimated beam of low-energy electrons (20–200 eV) and
observation of diffracted electrons as spots on a fluorescent screen

NMR Nuclear magnetic resonance: spectroscopy based on the absorption and
reemission of an electromagnetic wave by nuclei in a magnetic field

PED Photoelectron diffraction: spectroscopy based on photoemission where
a feature of the photoemission spectrum (core level peak, Auger peak,
valence peak, plasmon peak, etc.) is monitored as a function of either
the energy or the emission angles

REXS Resonant elastic x-ray scattering: x-ray scattering spectroscopy where
the incident photon excites an electron to a virtual state and is
reemitted at the same energy in the deexcitation process

RXS Resonant x-ray scattering: generic term covering both resonant elastic
and inelastic x-ray scattering

SPLEED Spin-polarized version of LEED
STM Scanning tunneling microscopy: used to image surfaces at the atomic

level. It is based on the quantum tunneling from the tip to the substrate
UPS Ultraviolet photoemission spectroscopy: photoemission using incom-

ing photons in the range of a few tens of eV
XANES X-ray absorption near-edge structure: spectroscopy using the lower

energy part of the x-ray absorption spectrum, including the rising edge
XAS X-ray absorption spectroscopy: generic term covering both the

XANES and the EXAFS regimes
XLD X-ray linear dichroism: spectroscopy making use of the difference in

the absorption of x-rays between two different beams with orthogonal
polarization

XMCD X-ray magnetic circular dichroism: spectroscopy making use of the
difference in the absorption of x-rays between two (right and left)
circularly polarized beams, when the sample is in a magnetic field

XPS X-ray photoemission spectroscopy: photoemission using incoming
photons in the range of keVs

XRD X-ray diffraction: a photon-in, photon-out spectroscopy with conser-
vation of the photon energy away from an absorbing edge of the
sample

Methods

CPA Coherent potential approximation: method for finding the Green’s
function of an effective medium, when the potential varies randomly
from site to site in the sample. It is used to describe disordered
materials

xxiv Acronyms



DFT Density functional theory: computational quantum mechanical
method, whereby the ground-state properties of a many-body system
are assumed to be functionals of only the electron density

DMFT Dynamical mean field theory: method used to describe the electronic
structure of strongly correlated systems

EMB Embedded cluster method: a method to describe extended defects in
an otherwise perfect solid

GGA Generalized gradient approximation: improvement of the LDA
where the exchange and correlation functional depends both on the
electron density and its gradient

GW Approximation of the many-body problem where the self-energy is
calculated at the lowest diagrammatic order in terms of the
single-particle Green’s function G and the screened Coulomb
interaction W

IPA Independent particle approximation: approximation where electron–
electron interactions are neglected or treated in an average way

KKR Korringa–Kohn–Rostoker method: the original multiple scattering
method developed by these authors

LDA Local density approximation: approximation of the DFT, where the
exchange and correlation functional depends solely upon the value
of the electron density at each point in space

LFM Ligand field multiplet: many-electron computational method for the
electronic structure and spectra of atoms or ions in a field created by
the surrounding (ligand) atoms

LMTO Linear muffin-tin orbital method: ab initio electronic structure
method using muffin-tin orbitals as the basis set

LSDA Local spin density approximation: approximation where the
exchange and correlation functional depends only on the local
electron spin density (see LDA)

MCMS-GF Multichannel multiple scattering theory: computational method
taking into account electron correlations by combining the MS-GF
and close-coupling formalism

MCMS Multichannel multiple scattering: multiple scattering theory taking
into account correlation effects

MD Molecular dynamics: an N-body computer simulation method to
mimic the movements of interacting atoms and molecules

MS-GF Multiple scattering theory: computational method for solving the
Dyson equation

MST Multiple scattering theory: computational method for solving the
Schrödinger equation, covering both bound and continuum extended
states

PAW Projector-augmented wave: electronic structure method, generaliza-
tion of the pseudopotential method, transforming the rapidly
oscillating valence wave functions into smooth wave functions and
providing a way to calculate all-electron properties from them

Acronyms xxv



PCI Post-collision interaction: interaction between two or more outgoing
electrons after the excitation process has taken place

PWIA Plane wave impulse approximation: approximation identifying
all-electron beams within the sample as plane waves and assuming
that the target does not intervene in the electron–electron interaction

RPA Random-phase approximation: it is one of the oldest
non-perturbative methods for computing the ground-state correlation
energy of many-electron systems and screening of the long-range
Coulomb interaction

SKKR Screened version of the Korringa-Kohn-Rostoker method for a faster
computational algorithm for layered systems

Codes

CONTINUUM A multiple scattering code, based on the Muffin-Tin approximation,
to model x-ray absorption and resonant elastic x-ray scattering

ES2MS Interface package for passing self-consistent charge densities and
potentials from electronic structure codes to multiple scattering codes

FDMNES Finite difference method near-edge spectroscopy: finite difference and
multiple scattering program to model XAS, RXS and other
spectroscopies

FEFF Automated program for ab initio multiple scattering calculations of
XAS, EELS and non-resonant inelastic x-ray scattering

FPMS Full potential multiple scattering: a full potential code to model x-ray
absorption and other spectroscopies

GAUSSIAN Computational chemistry code using Gaussian orbitals as the basis set
GNXAS Extended suite of programs for advanced x-ray absorption data

analysis: EXAFS modeling and analysis program
GPAW DFT code based on the projector-augmented wave method and the

atomic simulation environment
KKRnano Nanostructures focused KKR electronic structure code
MCMS Multichannel multiple scattering: a computer program to compute

XANES spectra for correlated systems
MC-MSGF-SP A multichannel version of the MSGF-SP package to compute

XANES taking into account electron correlations
MSGF-SP Multiple scattering: a computer package to model XANES, REXS,

RXS, and other spectroscopies
MsSpec Multiple scattering spectroscopies: a computer package modeling

several spectroscopies
MXAN Minuit XANES: code calculating XANES spectra and fitting them to

the experiment using the Minuit minimization algorithm

xxvi Acronyms



SKKR Screened KKR: Fully relativistic KKR code including the screening
method for the computation of the electronic structure, magnetic and
electronic transport properties of layered and low-dimensional
materials

SPEA-MEM Scattering pattern extraction algorithm using maximum entropy
method: computer program allowing to reconstruct the atomic image
from a photoelectron hologram

SPR-KKR Spin-polarized relativistic KKR: a computer code to compute the
electronic structure of materials and the cross section of several
spectroscopies

SPR-TB-KKR Tight-binding version of the SPR-KKR code
VASP Vienna ab initio simulation package: electronic structure package

based on pseudopotentials

A list of computer packages allowing to model spectroscopies is available at
http://www.euspec.eu/code-database at the EUSpec website.
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Part I
Basic knowledge

This part corresponds to the lectures given during the first day of the EUSpecTraining
School on multiple scattering codes organized at University of Rennes 1 from June
27 to 30, 2016. The three following days were devoted to hands-on training on
five codes: mxan, gnxas, msspec, fpms, and mcms. These lectures have been
written to be self-contained, and therefore no prior knowledge of scattering theory is
required to read them. For the sake of conveniency, two of the original lectures have
been merged into a single chapter.
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Chapter 1
Introduction to (Multiple) Scattering Theory

Didier Sébilleau

Abstract In this introductory chapter, we develop the scattering theory necessary
to understand the theoretical models underlying the multiple scattering codes. First,
the elementary theory is presented and it is then formalized to introduce the different
operators whose matrix elements are computed in the codes. Then, we extend the
theory to the case of a collection of potentials, i.e. multiple scattering. Finally we
outline the way cross-sections can be derived from themultiple scattering framework
and give some practical examples.

1.1 Introduction

In this chapter, we develop all the theoretical tools necessary to understand the
scattering framework involved in multiple scattering codes. This framework will
be defined for local, short-ranged potentials, or more specifically for potentials
satisfying the so-called Ikebe conditions [1] which ensure both that the potential
decreases sufficiently fast so that beyond a certain distance it can be considered
as zero, and that it is not too strongly singular at the origin (in other words that
the spectrum of the Hamiltonian H of the problem has a lower bound) [2]. Note
that the first condition excludes Coulomb potentials. In practice, this will not be a
problem as in materials, the Coulomb potentials are sufficiently screened so that they
can be safely considered as short-ranged. In addition, we will suppose the potential
considered to be Hermitian so that the eigenvalues of H are real.

Furthermore,wewill only consider elastic scattering so that scatteringbypotential
V does not change the energy of the electron. Finally, we will restrict ourselves in
this chapter to spherically symmetric potentials.

D. Sébilleau (B)
Institut de Physique de Rennes (IPR), Univ Rennes, CNRS, UMR 6251,
F-35000 Rennes, France
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1.2 Elementary Scattering Theory

1.2.1 The Asymptotical Behaviour of the Wave Function

We consider a potential V satisfying the conditions listed in Sect. 1.1. We choose
the center of this potential as the origin of space. Being short-ranged and spherically
symmetric, we denote a its range so that V (r) = 0 if r ≥ a. The interaction of an
incoming electron with V can be described by the reduced Schrödinger equation (i.e.
where we have multiplied the equation by 2m/�

2. Alternatively, we can use Rydberg
atomic units for which �

2 = 2m = 1)

[
� + k2 − V (r)

]
ψk(r) = 0 , (1.1)

which we want to solve.
As soon as the particle has interacted with the potential and is outside the potential

range a, it is again a free particle. Therefore, it is possible to deduce its asymptotical
form which is given by [3]

ψk(r) −→
r→+∞α

[
eik·r + fk(θ)

eikr

r

]
, (1.2)

where θ is the scattering angle, as explicited in Fig. 1.1.
The amplitude modulating the outgoing spherical wave is called the scattering

amplitude or the scattering factor. For a non-spherical potential, it will depend also
on the azimuthal angle ϕ, in addition to θ and k. This expression is very general and
does not depend on the structure of the potential, only the expression of the scattering
amplitude is potential-dependent.

Here, we have supposed an incoming plane wave. In practice, we never really
have a single particle but rather a beam of incoming particles. In this context, the
asymptotic equation becomes clear: far away from the potential, the effect of this
potential is to suppress some particles from the incoming beam and to redistribute
them as spherical waves [4].

1.2.2 The Radial Equation for the Spherically Symmetric
Problem

As the potential is spherically symmetric, we can decompose the differential operator
� into spherical coordinates

� = 1

r2

[
∂

∂r

(
r2

∂

∂r

)
+ 1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+ 1

sin2 θ

∂2

∂ϕ2

]
, (1.3)
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eik·r V (r)

fk(θ

θ

)
eikr

kr

z
a

Fig. 1.1 Geometry of the scattering of an electron by a potential V (r) of range a

which we rewrite as

� = ∇2 = ∇2
r + 1

r2
∇2

θ,ϕ . (1.4)

But the angular momentum operator � = r × p is such that it satisfies

∇2
θ,ϕ = − 1

�2
�2 . (1.5)

Therefore, the eigenfunctions of ∇2
θ,ϕ are the complex spherical harmonics

Y m
� (θ,ϕ) [5]. More precisely, we have

∇2
θ,ϕ Y m

� (θ,ϕ) = −�(� + 1) Y m
� (θ,ϕ) . (1.6)

From now on, in order to simplify the notation, we introduce the short-hand
notations L ≡ (�, m) and r̂ = (θ,ϕ) so that we rewrite the spherical harmonics as
YL(r̂).

Making use of the eigenvalues of ∇2
θ,ϕ in (1.1) and simplifying by YL(r̂), we are

left with the sole radial equation to solve
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(
∇2

r − �(� + 1)

r2
+ k2 − V (r)

)
R�(r) = 0 . (1.7)

This equation can be viewed as a one-dimensional Schrödinger equation with the
constraint that r ≥ 0, and whose potential is V (r) + �(� + 1)/r2. The last term is
called the centrifugal barrier.

Let us consider first the free electron case. The radial equation (1.7) reduces to
the spherical Bessel equation [6] which has two linearly independent solutions to be

chosen among
(

j�(kr), n�(kr), h(1)
� (kr), h(2)

� (kr)
)
. j�(kr) is regular at origin, which

means that it does not diverge there. By contrast, n�(kr) is irregular at the origin.
However, for a free particle, the wave function must be finite everywhere so that only
the general solution C� j�(kr) is physically meaningful.

Then, we consider the case of the electron after its scattering by V and out-
side of the range of the potential. We have still a zero potential, but now the
general solution of the radial equation for r > a must be of the form R�(r) =
C (1)

� j�(kr) + C (2)
� h(1)

� (kr), or expressed as the linear combination of any other cou-
ple of independent spherical Bessel functions. Then, it can be demonstrated that
asymptotically, we must have [7]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

without V : lim
r→+∞ R�(r) = C�

sin

(
kr − �

π

2

)

kr

with V : lim
r→+∞ R�(r) = C (1)

�

cos δ�

sin

(
kr − �

π

2
+ δ�

)

kr
.

(1.8)

δ� is called the phase shift of order � of potential V . The behaviour of these two
radial wave functions is represented in Fig. 1.2.

So, δ� represents the shift in the asymptotical radial wave due to the presence of
the potential when the incoming wave is of angular momentum �.

Solving now the radial Schrödinger equation for r > a for the different choices
of the linearly independent spherical Bessel wave functions gives

R�(r) = A�

[
j�(kr) + i sin δ� e

iδ� h(1)
� (kr)

]
(1.9a)

= A�

2

[
h(2)

� (kr) + e2iδ� h(1)
� (kr)

]
(1.9b)

= C (1)
� [ j�(kr) − tan δ� n�(kr)] . (1.9c)
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j

0

�(kr)

R�(r)

|δ�|
k

r

Fig. 1.2 Comparison of the asymptotical form radial wave function with or without the presence
of potential V

1.2.3 Partial Wave Expansions

Expansions of physical quantities in terms of L are called partial wave expansions.
The quantities i� j�(kr)YL(r̂) will arise frequently within our theoretical framework:
they are called free spherical waves as they are the partial wave solutions of the free
electron Hamiltonian H0. Therefore, when dealing with H0, we will be able to use
two kind of basis functions which satisfy the corresponding Schrödinger equation,
the plane waves {|k〉} and the spherical waves {|kL〉}. They are related through the
partial wave expansion known as Bauer’s formula [8]

eik·r = 4π
∑

L

i� j�(kr) YL(r̂) Y ∗
L (k̂) , (1.10)

and the reverse formula

i� j�(kr) YL(r̂) = 1

4π

∫
eik·rYL(k̂) dk̂ . (1.11)

These equations allow us to make the difference between the two bases {|k〉} and
{|kL〉} solution of the free electron Schrödinger equation:

• |k〉 represents a free particle of well defined energy k2 and momentum �k. How-
ever, it does not have a precise angular momentum
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• |kL〉 represents the same particle with the same energy but with a well defined
angular momentum. But its momentum is not known as the corresponding wave
function is an integral over all possible directions of the momentum

The scattering amplitude can also be expressed as a partial wave expansion

fk(θ
k̂
r̂ ) = 4π

k

∑

L

sin δ� e
iδ� YL(r̂) Y ∗

L (k̂) . (1.12)

The quantity sin δ� eiδ� is often denoted t� for reasons that will be explicited in
Sect. 1.3.3.1.

All these expansions involve a summation over � thatmust be truncated at a certain
point �max for practical reasons. As simple way to estimate this truncation value can
be obtained by looking at the radial Schrödinger equation (1.7). Indeed, we see that
for the particle to be scattered by the potential V , itmust first overcome the centrifugal
barrier �(� + 1)/r2. Therefore, its kinetic energy k2 must satisfy k2 > �(� + 1)/r2.
This implies directly that partial waves with � so that k2 < �(� + 1)/a2 will not
contribute to the scattering process. This gives for �max the estimation

ka ≈ √
�max (�max + 1) . (1.13)

1.2.4 The Scattering Amplitude

The scattering amplitude fk(θ) is an important asymptotic quantity that gives us a
good insight into the scattering process. As explicited in (1.2) and Fig. 1.1, it is the
amplitude in the direction θ of the spherical wave resulting from the scattering of
an initial plane wave. Although in practice at atomic level, the initial waves are not
plane waves, it does still provides us with a useful information on the outcome of
the scattering process. It is easily calculated by means of equation (1.12).

Figure1.3 gives polar plots of | fk(θ)| for Ni and O at kinetic energies ranging
from 60–1000eV [9]. Without doing any further calculations, it already tells us that
while at lower energies, the scattering is important in several directions, at higher
kinetic energies, it will be strongly dominated by the forward direction. This means
than in practice, for energies above 500eV, we expect the electrons to be scattered
essentially along the rows of atoms.

1.2.5 Calculation of the Phase Shifts

We see from (1.9) and (1.12) that the only unknown in order to solve the scattering
problem are the phase shifts δ�. Equation (1.9) gives us the solution of the scattering
problem in terms of the δ� in the asymptotic zone. Let us callR�(r) the radial solution
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Fig. 1.3 Examples of modulus of the scattering factor | fk(θ)| for Ni (left) and O (right) at several
kinetic energies [9]

of the Schrödinger equation inside the potential sphere, while the solution outside is
given by (1.9). The phase shifts can be obtained by matchingR�(r) and R�(r) at the
surface of the potential sphere of radius a. This is sketched in Fig. 1.4.

If we introduce the Wronskian W of two functions f and g by

W [ f, g] = f
dg

dr
− g

d f

dr
, (1.14)

we find the coefficients of (1.9) given by

t� = i
W [ j�,R�]

W [h(1)
� ,R�]

∣
∣∣∣∣
r=a

(1.15a)

eiδ� = − W [h(2)
� ,R�]

W [h(1)
� ,R�]

∣
∣∣∣∣
r=a

(1.15b)
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Fig. 1.4 Physical
interpretation of the
matching of the wave
functions at the surface of
the potential

transmitted

reflected

incoming

j�(kr)

R�(r)h
(1)
� (kr)

V (r)

tan δ� = W [ j�,R�]
W [n�,R�]

∣∣∣∣
r=a

. (1.15c)

Alternatively, t� can also be obtained from [10]

t� = −k
∫ a

0
j�(kr)V (r)R�(r) r2dr . (1.16)

1.3 Formal Scattering Theory

We start by recasting the Schrödinger equation in the form

(
k2 − H

)
ψk(r) = 0 . (1.17)

This allows us to introduce the Green’s operator in the complex plane by

G(z) = (z − H)−1 . (1.18)

Instead of findingways to solve the Schrödinger equation (1.17), scattering theory
deals with the solution of Green’s operator. In the mathematical physics literature,
this operator is referred to as the resolvent. In the case of spectroscopies, where we
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are essentially interested into the continuum states, we call it the propagator for
reasons that will become clear later.

From (1.18), by making it act on eigenfunctions of H , we can deduce directly
two important properties of G(z):

• G(z) and H have the same eigenfunctions
• the eigenvalues of H are the poles of G(z).

This demonstrates formally that H and G contain the same information and that
therefore solving G(z) will give us the solutions of the Schrödinger equation (1.17).
It however leads to a problem as this alsomeans that G(z) is not defined for the eigen-
values of H , which are the quantities we are ultimately interested in. To overcome
the division by zero induced by this definition, we redefine the Green’s operator by

G±(z) = lim
ε→0+

(z − H ± iε)−1 , (1.19)

so that we approach the eigenvalues of H either from above (+ solution) or from
below (− solution).

This definition is explicited in Fig. 1.5.
We represent schematically the fact that H and G contain the same information

by

discrete poles branch cut

z plane

k2 + iε

k2 − iε

Fig. 1.5 Poles of the resolvent G(z) and definition of G±(k2)
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H
definition of G←−−−−−−−−→ G

1.3.1 The Free Electron Propagator

We consider first the Green’s operator G±
0 (k2) in the absence of a potential, i.e. for

free electrons. It can be shown that the matrix elements of this operator in the space
coordinates, also called the Green’s function, are given by [11]

〈r ′|G±
0 (k2)|r〉 = G±

0 (r ′, r; k2) = − 1

4π

e±ik|r−r ′|

|r − r ′| . (1.20)

We see that this equation represents the amplitude at r ′ of a spherical wave issued
from r . Therefore, G+

0 (k2) represents the propagation of an outgoing wave and
G−

0 (k2) that of an incoming wave. Hence the name free electron propagator usually
given to the Green’s function and by extension to the operator G0.

This Green’s function can be expanded into spherical waves (the partial waves
we have defined in Sect. 1.2) as [12]

G+
0 (r ′, r; k2) = −ik

∑

L

j�(kr<)h(1)
� (kr>)YL(r̂ ′

)Y ∗
L (r̂) . (1.21)

Here, r< and r> represent respectively the smaller and the larger of r and r ′. L
is a short-hand notation for the angular momentum indices (�, m).

Because we are dealing with short-ranged potentials, H0 is valid outside the range
of the potential. Therefore, the solutions |ϕk〉 of H0 are called asymptotical states as
they represent the state of the system when we are far way from the interaction zone.

1.3.2 The Full Propagator

In the presence of an external potential V , the full propagator G can be rewritten as

G(z) = (z − H)−1 = (z − H0 − V )−1 = (G−1
0 (z) − V )−1 , (1.22)

where for the sake of simplicity, we have dropped the ± . Some simple manipulations
of the previous equations give
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G(z) = G0(z) + G0(z)V G(z) (1.23a)

= G0(z) + G(z)V G0(z) . (1.23b)

This equation that relates the full propagator G(z) to the free electron propagator
G0(z) and to the potential V is called Dyson equation.

A related equation, the Lippmann–Schwinger equation, relates the eigenfunctions
of H and H0. Indeed, noticing thatG0V |ψk〉 is a particular solutionof H , anddenoting
|ϕk〉 the general solution of H0 at energy k2, we can use the well-known theorem on
differential equations [13] to write

|ψk〉︸︷︷︸
general solution of H

= |ϕk〉︸︷︷︸
general solution of H0

+ G0V |ψk〉︸ ︷︷ ︸
particular solution of H

. (1.24)

G0V is called the kernel of the Lippmann–Schwinger equation.
For both equations (Dyson and Lippmann–Schwinger), we note that we have the

unknown quantity (G(z) and |ψk〉 respectively) on both sides. This gives us two
straightforward ways to solve these equations. In the case of the Dyson equation,
this gives

1. Expand:

G(z) = G0(z) + G0(z)V G0(z) + G0(z)V G0(z)V G0(z) + · · · (1.25)

which is a Born-type expansion
2. Factorize:

G(z) = [I − G0(z)V ]−1 G0(z) = G0(z) [I − V G0(z)]
−1 , (1.26)

where I represents the identity.

In the first case, we have a perturbative expansion for which convergence has to be
properly considered. In the second case, we need to invert a matrix which, depending
of its size, can be time-consuming.

An important point to note is that the bound states |φb〉 of H and the continuum
scattering states |ψk〉 formabasis of theHilbert spaceH associated to theHamiltonian
H . Applying their closure relation to definition (1.22) of the full propagator gives
the so-called Lehmann spectral representation [14]

G(z) =
∑

b

|φb〉〈φb|
z − k2

b

+
∫ |ψk〉〈ψk |

z − k2
dk2 . (1.27)

Using the well-known formula [15]

lim
ε→0+

1

x − x0 ± iε
= P

(
1

x − x0

)
∓ iπδ(x − x0) , (1.28)
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where P stands for Cauchy principal part which can be defined as [15]

P
(

1

x − x0

)
= 1

2
lim

ε→0+

[
1

x − x0 + iε
+ 1

x − x0 − iε

]
, (1.29)

we obtain the relation between the density of states n(k2) and the Green’s operator

n(k2) = ∓ 1

π
Tr

(� [
G±(k2)

])
. (1.30)

Here, Tr represents the trace and � the imaginary part.
This expression gives a straightforward way to compute the density of states.

1.3.3 The Transition Operator

In many instances, scattering theory relies on a third approach to solve the Dyson
and the Lippmann–Schwinger equations. Indeed, we can introduce a new, unknown
operator T , called the transition operator, by

V G(z) = T (z)G0(z) (1.31a)

G(z)V = G0(z)T (z) . (1.31b)

At this stage, it is just a mathematical trick to remove the unknown quantity G(z)
on the right-hand side and replace it by the equally unknown quantity T (z)we intend
to compute. From the definition (1.31), it can be demonstrated that we have

T (z) = V + V G(z)V . (1.32)

This representation is important because it shows us that T (z) and G(z) have a
similar structure and that T (z) contains all the information encoded into G(z).

In terms of the transition operator, our two fundamental equations now write

• Dyson equation:

G±(k2) = G±
0 (k2) + G±

0 (k2)T ±(k2)G±
0 (k2) (1.33)

• Lippmann–Schwinger equation:

|ψ±
k 〉 = |ϕk〉 + G±

0 (k2)T ±(k2)|ϕk〉 (1.34)

The |ψ±
k 〉 are the scattering states solution of H . Their eigenvalues belong to the

continuum (branch cut in Fig. 1.5). Note that these scattering states are orthonormal
[16]
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〈ψ+
k |ψ+

k ′ 〉 = 〈ϕk |ϕk ′ 〉 , (1.35)

and likewise for the incoming states |ψ−
k 〉.

In our approach to scattering theory, we will replace the evaluation of G(z) by
that of T (z) so that we can now sketch this approach as

H
definition of G←−−−−−−−−→ G

Dyson equation←−−−−−−−−−→ T

In the scattering process, the transition probability Wi→ f for the system to evolve
from the asymptotical state |ϕi 〉 to the asymptotical state |ϕ f 〉 under the effect of
potential V is given by [17]

Wi→ f = 2π

�

∣∣〈ϕ f |T +|ϕi 〉
∣∣2 δ(E f − Ei ) . (1.36)

This explains why T is called the transition operator.
We note also that the Hermitian conjugates are given by

G†(z) = G(z∗) (1.37)

T †(z) = T (z∗) , (1.38)

so that, for instance,

[
G−

0 (k2)
]† = G+

0 (k2) if k2 is real. (1.39)

The difference between T + and T − is called the generalized optical theorem. It
writes as [18]

T + − T − = T + [
G+

0 − G−
0

]
T − (1.40a)

= V
[
G+ − G−]

V . (1.40b)

It is an important theorem that ensures the conservation of the number of particles.
Moreover, it is the theoremwhich allows to relate photoemission to x-ray absorption.

1.3.3.1 Matrix Elements in Standard Bases

Computing the matrix elements of the transition operator T will allow us to make
the connection with the partial wave theory we have developed in Sect. 1.2. Let us
consider the orthonormalized plane wave and spherical wave bases [19]
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〈r|k〉 = 1

(2π)
3
2

eik·r (1.41)

〈r|kL〉 = k

√
2

π
i� j�(kr)YL(r̂) . (1.42)

In these bases, the matrix elements of T can be shown to be

〈K ′|T +(k2)|K 〉 = − 1

2π2
fk(θ

K̂
′

K̂
) δ(k − K )δ(K − K ′) (1.43)

〈k2L2|T +(k2)|k1L1〉 = −2k

π
sin δ�1e

iδ�1 δL1L2 δ(k1 − k2) δ(k1 − k) . (1.44)

We recognize in the first equation the scattering amplitude defined in Sect. 1.2. The
second equation involves the quantity t� = sin δ�1e

iδ�1 defined in the same section.

1.3.4 The Møller Wave Operator

We can factorize (1.33) and (1.34) to make an operator
[
I + G±

0 (k2)T ±(k2)
]
appear.

This is the so-called Møller wave operator Ω(±)(k2). It can be written under the
different forms

Ω(±)(k2) = [
I + G±

0 (k2)T ±(k2)
] = [

I + G±(k2)V
] = [

I − G±
0 (k2)V

]−1
.

(1.45)

We can now recast our different equations in terms of Ω(±)(k2). This gives

• Dyson equation:

G±(k2) = Ω(±)(k2) G±
0 (k2) = G±

0 (k2)
[
Ω(∓)(k2)

]†
(1.46)

• Lippmann–Schwinger equation:

|ψ±
k 〉 = Ω(±)(k2)|ϕk〉 (1.47)

• Definition of T :

T ±(k2) = V Ω(±)(k2) = [
Ω(∓)(k2)

]†
V (1.48)

This representation allows us to make a few important remarks:

• Ω(±) maps the free electron propagator G±
0 onto the full electron propagator G±

• Ω(±) maps the asymptotical states |ϕk〉 onto the scattering states
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• T ±|ϕk〉 = V |ψ±
k 〉 so that T acts on the asymptotical states. Moreover, its action

on these states gives the same result as the action of V on the scattering states.

We note that the Møller wave operators satisfy

Ω(±) † Ω(±) = I . (1.49)

However, they are generally not invertible as we have [20]

Ω(±) Ω(±) † = I − Λ . (1.50)

Here Λ =
∑

b

|φb〉 〈φb| is called the unitary deficiency. It is the projector on the

subspace generated by the bound states {|φb〉}.

1.3.5 Use of Outgoing and Ingoing States

We have seen in Sect. 1.3.1 that the + and − solutions were corresponding respec-
tively to outgoing and incoming waves. We address now the important question of
which solution to use in practical cases. TheMøller wave operatorΩ(±)(k2) gives us
a useful tool to answer this question, as it allows us to construct the solution from the
known asymptotical state. Therefore, depending which asymptotical state is known
to us (the one in the past or the one in the future, considered with respect to the time
of the interaction), we will use one solution or the other [21]. This is explicited in
Fig. 1.6. Here, we have taken the time at which the interaction takes place as the
origin of time.

From this interpretation, we see that if we know the state |ϕin
k 〉 of the electron in

the past (for instance because we use an electron gun to send a beam of particles
onto the sample), we will be able to construct |ψ+

k 〉 states. By contrast, if we know
the state |ϕout

k 〉 of the electron in the future (because we measure it with a detector,
as in the case of photoemission for instance), we will only be able to construct the
|ψ−

k 〉 solution. This solution is often termed as the time-reversed LEED solution as
it is the Hermitian conjugate of the LEED (Low-Energy Electron Diffraction) state
constructed from the knowledge of the asymptotical state of the electron emitted by
the electron gun.

Note that some theoretical frameworks, especially in nuclear physics, use the
scattering operator S rather than the transition operator T . This scattering operator
is defined by [21]

|ϕout
k 〉 = S |ϕin

k 〉 . (1.51)
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Hamiltonian

    spectrum of 
the Hamiltonian

eigenstate

bound states

time

k2

|ϕout
k 〉|ϕin

k 〉 |ψ+
k 〉 |ψ−

k 〉

Fig. 1.6 Physical interpretation of outgoing and ingoing states for the scattering by a short-ranged
potential V

Note also that the matrix elements of S in the spherical wave basis (1.42) SL L ′ is
given by S� δL L ′ , with S� = exp[2iδ�]. This is the same coefficient as the one arising
in (1.9)b.

1.3.6 Two-Potential Formula

Before generalizing this scattering theoretic approach to the case of a superposition
of N potentials, let us look first at what happens when we have just two potentials.
For this, we partition the Hamiltonian H as

H = H0 + V1 + V2 = H1 + V2 , (1.52)
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where we suppose that we know how to compute the eigensolutions |χ±
k 〉 of H1 =

H0 + V1. In order to simplify the notation, we index by i and f respectively the
initial and final states.

Then, it can be demonstrated that [22]

〈ϕ f |T +|ϕi 〉 = 〈ϕ f |T +
1 |ϕi 〉 + 〈χ−

f |V2|ψ+
i 〉 (1.53a)

= 〈χ−
f |V1|ϕi 〉 + 〈χ−

f |V2|ψ+
i 〉 (1.53b)

= 〈ϕ f |T +
1 |ϕi 〉 + 〈ψ−

f |V2|χ+
i 〉 (1.53c)

= 〈ϕ f |V1|χ+
i 〉 + 〈ψ−

f |V2|χ+
i 〉 , (1.53d)

or equivalently, in terms of operators

T + = T +
1 + ω(−) †

1 V2 Ω(+) = T +
1 + Ω(−) †V2 ω(+)

1 , (1.54)

where we have noted ω(±)
1 the Møller wave operator for V1 alone and Ω(±) the one

for V = V1 + V2.
This formula is of particular interest when the two potentials are of a very different

nature, one of them leading to elastic scattering and the other to inelastic scattering.
This is the case for instance when V1 represents the potential of a cluster of atoms
and V2 a Coulomb interaction leading to the ejection of an electron on a given atom.
In this case, the transition from |ϕi 〉 to |ϕ f 〉 cannot arise under V1 alone as V1 cannot
account for the ejection of the second electron. Consequently, the transition matrix
element 〈ϕ f |T +

1 |ϕi 〉must be zero and we are left with only the second term in (1.53)
and (1.54).

Most of the time, however, the calculation of |ψ+
i 〉 and |ψ−

f 〉 remains beyond
our possibilities. In this case, we can write these states in terms of the Lippmann–
Schwinger equation

|ψ±〉 = |χ±〉 + G±
1 V2|ψ±〉 , (1.55)

where G±
1 is the propagator in the presence on potential V1 alone, and perform a

Born expansion of (1.55) to obtain

|ψ±〉 = |χ±〉 + G±
1 V2|χ±〉 + · · · , (1.56)

If we retain only the first term in (1.56), we have the so-called distorted wave Born
approximationwhich is generally used to compute cross-sections in the two-potential
case. In terms of the transition operator, this gives [38]

T + = T +
1 + ω(−) †

1 V2 ω(+)
1 , (1.57)

The term distorded wave comes from the fact that |χ±〉 corresponds to the asymp-
totic wave |ϕ〉 distorded by potential V1.
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1.4 Multiple Scattering Theory

So far, we have considered the scattering of an electron by a single potential. The
center of this potential was assumed to be at the origin of space. If we want to
generalize the previous approach to the case of a collection of N potentials distributed
all over the space, clearly their respective positions have to be taken into account into
the theoretical model. One way to do this is to make use of the translation operator.

1.4.1 The Translation Operator

We introduce the translation operator T (a) corresponding to a translation by a vector
a by its action on the space states |r〉:

T (a)|r〉 = |r + a〉 (1.58a)

〈r|T (a) = 〈r − a| . (1.58b)

Its action on plane wave states |K 〉 is given by

T (a)|K 〉 = e−iK ·a |K 〉 (1.59a)

〈K |T (a) = e−iK ·a 〈K | . (1.59b)

We can now take into account the position of each individual potential Vi located
at Ri from the origin by writing [19]

V =
∑

i

V̄i , (1.60)

with

V̄i = T (Ri )ViT (−Ri ) . (1.61)

Equation (1.61) is the operator’s equivalent of the so-called addition theorems for
wave functions [23]. Its geometry is given in Fig. 1.7. Its interpretation is simple.
When making V̄i act on a state, first we translate the potential to the origin of space
with T (−Ri ) so that we can apply the scattering theory developed in Sect. 1.3. Then,
Vi which is the potential referred to the origin can act on the state. Finally, we move
back the potential to its original position with T (Ri ). Therefore, V̄i is the potential
at site i centered at Ri .
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Vj

Vi

0

Atom j

Atom i

r′

r

Ri

Rj

r′
i

rj

Fig. 1.7 Geometry of potentials Vi and Vj with respect to the origin

V (r)

r

Fig. 1.8 Representations of the muffin-tin potential

1.4.2 The Muffin-Tin Approximation

In Sects. 1.2 and 1.3, we have supposed the potential to be spherically symmetric.
Now we make a further approximation, we take the potential of the system as a
muffin-tin potential: in addition of being spherically symmetric at atomic sites, the
potential is constant in the interstitial region. This is sketched in Fig. 1.8.
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Fig. 1.9 Comparison
between the full potential
(top view) and the muffin-tin
approximation to the
potential (bottom view) of
SrTiO3 [24]

Figure1.9 gives a comparison between the full potential, as calculated with an
ab initio code and the muffin-tin potential in the case of SrTiO3 [24]. We see from
this comparison that it is in the interstitial region that the approximation is the worst.
Therefore, the muffin-tin approximation will essentially be valid for close packed
systems, or for high kinetic energies (where the electron is not sensitive to the fine
details of the potential as it is essentially scattered by the core).

1.4.3 The Transition Operator of the System

We turn now to the calculation of the transition operator T of the system, associated
to potential V . We denote T̄i the individual transition of operator corresponding to
the scattering by potential V̄i alone. Following (1.32), they can be expressed as

T̄i = V̄i + V̄i Ḡi V̄i . (1.62)

Here again we drop the ± in order to simplify the notation. Ḡi is the propagator
in the presence of V̄i only and is given by the i th individual Dyson equation
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Ḡi = G0 + G0T̄i G0 . (1.63)

Contrarily to the potentials, the individual T̄i do not add to form the system
transition operator T . Indeed, from the Dyson equation in the form (1.32), we can
write

T =
∑

i

T̄i , (1.64)

with

T̄i = V̄i + V̄i GV , (1.65)

which differs from (1.62) by the quantities G and V which take into account the
effect of all the atoms.

In order to obtain an additive formulation, wemust therefore correct the individual
T̄i by the so-called distortion operator W̄i [25] which takes care of the corrections
due to the presence of the rest of the atoms occuring in G and V and write

T =
∑

i

T̄i W̄i . (1.66)

Because W̄i takes into account the distortion to T̄i due to all the atoms of the
system, we can expand it in terms of a sum over all the atoms j . Combining the two
sums, we have the formulation

T =
∑

i, j

τ̄ j i . (1.67)

It is then straightforward to show from (1.32) that the quantity τ̄ j i must be
expressed as

τ̄ j i = V̄ jδi j + V̄ j GV̄i , (1.68)

which satisfies

τ̄ j i ± = [
τ̄ i j ∓]†

, (1.69)

as the potentials are Hermitian.
It is related to the origin-centered τ j i through

τ̄ j i = T (R j )τ
j iT (−Ri ) . (1.70)

This expression is very rewarding as it gives us a direct physical interpretation for
this operator τ̄ j i . Indeed, when acting on an electron state, we see that we have first
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scattering by atom i , then propagation throughout the whole system (G) and finally
scattering by atom j . In other words, τ̄ j i describes all the possible ways the electron
can travel to go from i to j . For this reason, it is called the scattering path operator.
It was first introduced in nuclear physics (without being given a name) by Faddeev
[26], and later rediscovered and named in condensed matter physics by Györffy [27].
We can now recast our whole formalism into the scattering path operator approach.

Note that the additive operator T̄ j defined in (1.65) can be expressed as

T̄ j =
∑

i

τ̄ j i . (1.71)

This operator allows us to derive the optical theorem satisfied by the scattering
path operator

τ̄ j i + − τ̄ i j + † = − iπ

k
T̄±

j T̄
± †
i , (1.72)

which, for i = j simplifies to

� [
τ̄ i i (+)

] = − π

2k
T̄±

i T̄
± †
i . (1.73)

This result makes the connection between x-ray absorption and angular-resolved
photoemission. Indeed, upon excitation of a core state |φc〉 on an atom labelled 0 by
an incoming photon, multiplying (1.73) by the photon-electron excitation operator
O on the right and by its Hermitian conjugate on the left, we obtain

〈φc|O†� [
τ̄ 00 (+)

]
O|φc〉 = − k

2π

∫ ∣∣∣〈k|T̄− †
0 O|φc〉

∣∣∣
2

d k̂ . (1.74)

The left-hand side corresponds to the x-ray absorption spectroscopy (XAS)

cross-section while in the right-hand side,
∣∣
∣〈k|T̄− †

0 O|φc〉
∣∣
∣
2
is proportional to the

angular-resolved photoemission differential cross-section (also called photoelectron
diffraction when modulations of a given feature in the photoemission spectrum are
studied as a function of energy or of the exit angle). Therefore, the optical theorem
tells us that the XAS cross-section is nothing else than the integral of the photo-
electron diffraction (PED) differential cross-section over all the directions of the
outgoing photoelectron. T̄−

0 |k〉 is the so-called time-reversed LEED state commonly
used to describe the final state in the photoemission process. Expression (1.74) can
be verified numerically. This is shown in Fig. 1.10 for a 23-atom MgO(001) cluster.

Note also that the full Green’s function G(r ′, r; k2) can be expanded into partial
waves, like the free electron Green’s function. This expansion is [19]
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Fig. 1.10 Comparison of the XAS cross-section and the cross-section of PED integrated over 2030
directions for an 23-atom MgO(001) cluster. Black line: PED series expansion up to order 5, red
line: PED matrix inversion and dashed blue line: XAS matrix inversion. The energies are expressed
in eV (Reproduced from the msspec user’s guide [28])

G(r ′, r; k2) = π

2

∑

Li ,L j

[
R̃ j −

L j
(r j )

]∗
τ

j i
L j Li

R̃i +
Li

(r j )

+k
∑

Li

[
R̃i −

Li
(r i<)

]∗
J̃ i

Li
(r i>) δi j .

(1.75)

Here, R̃i+
Li

(r i ) is the regular solution of the Schrödinger equation inside the

range of potential Vi that matches t−1
�i

i�i

[
j�i (kri ) + it�i h(1)

�i
(kri )

]
YLi (r̂ i ) outside

the range. J̃ i
Li

(r i ) is the corresponding irregular solution inside Vi . It matches
i�i j�i (kri )YLi (r̂ i ). The geometry corresponding to this equation is given in Fig. 1.7.
Expansion (1.75) gives an alternative way to derive Lehmann spectral representation
(1.27) to compute the Green’s function of the system.

We can now summarize the multiple scattering framework that will allow us to
solve the Schrödinger equation of the problem by

H
definition of G←−−−−−−−−→ G

Dyson equation←−−−−−−−−−→ T
definition of τ ji

←−−−−−−−−−→ τ̄ ji
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1.4.4 Normalization Issues

Expression (1.75) differs from the result derived originally in the seminal paper
by Faulkner and Stocks [29]. This is due to the fact that they chose a different
normalization for the spherical wave basis functions — see (1.42). In their approach
(F S), as in many other papers in the literature, they use the definition

t F S
� = −1

k
sin δ� e

iδ� , (1.76)

with their wave functions related to ours by

R̃F S
L (r) = −k R̃L(r) (1.77)

J̃ F S
L (r) = J̃L(r) (1.78)

If we make the substitution and take into account the fact that our scattering path
operator matrix elements τ

j i
L j Li

scale like −2k/π times our t� and theirs like −1/k
times t�, we recover exactly their expression

G(r ′, r; k2) =
∑

Li ,L j

[
R̃ j F S −

L j
(r j )

]∗
τ

j i F S
L j Li

R̃i F S +
Li

(r j )

−
∑

Li

[
R̃i F S −

Li
(r i<)

]∗
J̃ i F S

Li
(r i>) δi j .

(1.79)

Note also that in certain articles, the so-called normalization to one state per
Rydberg is used. It corresponds to radial wave functions of the form [30]

R�(r) =
√

k

π
t−1
�

[
j�(kr) + it�h(1)

� (kr)
]

(1.80)

More information on normalization issues in scattering theory can be found in
[31].

1.4.5 Computing the Scattering Path Operator

Equation (1.68), although interesting from the a didactical point of view, is not very
convenient for computations. Most multiple scattering codes rely on the knowledge
of matrix elements of the individual Ti , which are one of the building blocks of
this approach. Therefore, for practical calculations, we will use the more convenient
equation of motion of the scattering path operator given by [19, 26]
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τ̄ j i = T̄ jδi j +
∑

k 
= j

T̄ j G0τ̄
ki (1.81a)

= T̄ jδi j +
∑

k 
=i

τ̄ jk G0T̄i . (1.81b)

This equation of motion is particularly interesting as it provides us directly with
two practical schemes to compute the scattering path operator from the individual
Ti :

1. Factorization:
We can consider the individual Ti as matrix elements of a T matrix and likewise
for the propagators, when expressed in the angular momentum representation.
The equation of motion can then be seen as a matrix equation which can be
factorized as

τ = (T−1 − G0)
−1 = T(I − G0T)−1 = (I − TG0)

−1T . (1.82)

It is always exact from the scattering point of view. However, as it involves to
fill up a matrix and invert it, its use is limited by the size of the matrix. Indeed,
for a Nm × Nm matrix, the storage will scale like N 2

m and the computing time,
if the matrix is not sparse which is generally the case, like N 3

m . Here, Nm =
N (�max + 1)2, where N is the number of atoms in the cluster.

2. Iteration:
Upon the replacement of τ̄ ki by its own equation of motion in (1.81), we obtain

τ̄ j i = T̄ jδi j + T̄ j G0T̄i +
∑

k 
=i, j

T̄ j G0T̄k G0T̄i + · · · (1.83)

This is the so-called (Watson) multiple scattering series expansion [32]. It is a
perturbative expansion and therefore its validity is subject to convergence issues
[33, 34]. More specifically, it converges only if the spectral radius ρ(G0T) of the
kernel matrix G0T in (1.82), defined by

ρ(G0T) = max
i

|λi | , (1.84)

where λi is the i th eigenvalue of the kernel matrix, is strictly lower than 1.
In practice, it should be restricted to higher energies (typically larger than ≈
100eV) [34]. In addition, it has to be truncated at a given scattering order.

The solution to (1.82) and (1.83) only coincide if (1.83) is convergent.
A third approach, called correlation expansion [35] or n-body expansion [36], is

discussed in Chap. 8.
The multiple scattering series expansion of the scattering path operator involves

the summation over pathway terms of the form · · · T̄ j G0T̄k G0T̄i · · · , or equivalently

http://dx.doi.org/10.1007/978-3-319-73811-6_8
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· · ·
�

�

�

�

T (R j )TjT (−R j )
�

�

�

�
G0

�

�

�

�
T (Rk)TkT (−Rk)

�

�

�

�
G0

�

�

�

�
T (Ri )TiT (−Ri ) · · ·

We can group them differently as

�

�

�

�

· · ·T (R j )
�

�

�

�

Tj

�

�

�

�

T (−R j )G0T (Rk)

︸ ︷︷ ︸
G jk
0

�

�

�

�
Tk

�

�

�

�
T (−Rk)G0T (Ri )

︸ ︷︷ ︸
Gki
0

�

�

�

�
Ti

�

�

�

�
T (−Ri ) · · · .

The underbraced quantities are thematrix elements of the free electron propagator
between two atoms. In electronic structure models, they are usually called KKR
structure constants as they depend only on the positions of the atoms. They are the
matrix elements of the matrix G0 introduced in (1.82).

Expressed into the spherical wave basis defined by (1.42), and assuming that all
operators are computed at the same reduced energy k2, the only two ingredients of
our multiple scattering framework are given by [19]

〈L j |T +|Li 〉 = −2k

π
sin δ�i e

iδ�i δL j Li (1.85)

〈L j |T (−R j i )G
+
0 |Li 〉 = −2iπ2

k

∑

L

i�h(1)
� (k R ji ) YL(R̂ j i ) G(L j L|Li ) , (1.86)

where R j i = R j − Ri and the Gaunt coefficient G(L j L|Li ) is defined by [37]

G(L j L|Li ) =
∫

YL j (r̂)YL(r̂)Y ∗
Li

(r̂) d r̂ . (1.87)

Note that here, in order to simplify the notations, we have replaced |kL〉 by |L〉,
assuming that all states and operators correspond to the same wave number k.

Another important quantity in themultiple scattering description of spectroscopies
is the multiple scattering amplitude. It arises each time we need the amplitude of
an electron incoming on an atom, or when we want to calculate the amplitude of an
electron originating from a given atom when it reaches the detector. It is a matrix
element of the distorted transition operator T̄i , which represents the scattering of the
electron by atom i in the presence of all the other atoms. Using (1.59)a, (1.71) and
the fact that 〈k|L〉 = 1/k YL(k̂), we have

〈L̄ i |T̄±
i |k〉 = 1

k
Bi (±)

Li
(k) , (1.88)

with the multiple scattering amplitudes Bi ±
Li

(k) given by

Bi (±)
Li

(k) =
∑

j,L j

τ
i j ±
Li L j

Y ∗
L j

(k̂) eik·Ri . (1.89)

|L̄ i 〉 = T (Ri )|Li 〉 is the spherical wave state with respect to atom i .
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1.5 Expression of the Cross-Sections

1.5.1 General Expression

Let us write now VI the interaction potential underlying the physical process, so
that we keep V for the potential of the sample. VI can be for example the photon-
electron interaction or a Coulomb interaction. Under this interaction, the system
described by H = H0 + VI = HS + HP + VI , where HP is the Hamiltonian of the
particle and HS that of the sample in the absence of any interaction. We denote E the
eigenvalues of H0, which are a sum of the eigenvalues of HP and that of HS and |�〉
the corresponding eigenstates (product of one eigenstate of HP by one eigenstate of
HS .

Using the expression of the transition probability (1.36), and generalizing for the
case of possible multiple outgoing electrons (see Chap.9 for such an example), we
can derive the differential cross-section as [17, 39]

dnσ

dE1 dΩ1 · · ·︸ ︷︷ ︸
n terms

= 1

I0

2π

�

∣∣T f i

∣∣2 �
(
E f

)
, (1.90)

where I0 is the flux of the incoming beam and �
(
E f

)
is the density of states of

the detected particle(s) at energy E f . Ωm is the solid angle into which particle m is
detected (see Fig. 1.11). The T operator matrix element is given by

T f i = 〈� f |TI |�i 〉 , (1.91)

where TI is the transition operator corresponding to potential VI . As discussed in
Sect. 1.3.3, the transition operator for our system can be written as

TI = VI + VI G(Ei )VI , (1.92)

where G(Ei ) is the full propagator. As we do not know it, we can use the Dyson
expansion (1.25) to approximate it

TI = VI + VI G0(Ei )VI + · · · (1.93)

If we keep only the first term VI , we obtain the so-called Fermi’s golden rule No
2 [40]. This is the approximation usually made to compute the photoemission cross-
section. For spectroscopies such as Resonant Elastic X-ray Spectroscopy (REXS),
or spectroscopies involving two outgoing electrons detected in coincidence, such as
Auger PhotoElectron Coincidence Spectroscopy (APECS) or (e, 2e) spectroscopy
(see Chap.9), we need to go to second order which is Fermi’s golden rule No 1 [41].

The flux and the density of states for photons and electrons are given in Table1.1
[17].

http://dx.doi.org/10.1007/978-3-319-73811-6_9
http://dx.doi.org/10.1007/978-3-319-73811-6_9
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incoming beam

detector

dS =R2dΩ

dΩ=sin θ dθ dϕ

R

dS

dΩ

Fig. 1.11 Geometry for the expression of the cross-section in the case of a single outgoing electron

Table 1.1 Values of the flux and density of states for photons and electrons [17]

Particle Flux Density of states

Photons
c

Va

V
(2π)3

(�ωq)2

(�c)3

Electrons
1

V
�

m
ki

V
(2π)3

m

�2
k f

aV is the box normalization volume, normally taken as (2π)3

1.5.2 Cross-Section for Some Spectroscopies

We will not make any demonstration here, but just give the resulting expression. We
refer to the literature for the exact derivation of these cross-sections.

1.5.2.1 Photoelectron Diffraction (PED)

This is an angular-resolved photoemission experiment where a core level peak is
generally monitored as a function of the escape direction. In this case, the cross-
section writes, within the dipole approximation for the photon-electron interaction,
as [19]
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R

h̄ωq

|φc〉

τ̄ j0+

PED

atom j

atom 0

Fig. 1.12 Pictorial representation of the photoelectron diffraction process

dσ

dk̂
= 4π2αk

mωq

�

∑

0

∑

mc

∣∣∣∣
∣∣
〈k|

∑

j

τ̄ j0 ˜̄Ω(−)†
0 (êq · r)0T (R0)|φc〉

∣∣∣∣
∣∣

2

. (1.94)

α is the fine structure constant, êq the polarization of the incoming photon beam
of energy �ωq , and the sums are over all the absorbing atoms 0 and the azimuthal
quantumnumbermc of the core state |φc〉. Here,wehave replaced the T̄− †

0 in (1.74) by

its equivalent form as a sum over the scattering path operators. ˜̄Ω(−)†
0 is the so-called

renormalized Møller wave operator [19] that takes cares of the matching between
the excitation part and the multiple scattering part. (êq · r)0 is the dipole operator
with respect to atom 0 (see (1.61) for its expression in terms of the standard dipole
operator and translation operators). A pictorial representation of the photoelectron
diffraction process with the different operators involved in the description of this
process is shown in Fig. 1.12.

Aworkable expression is obtained by inserting the closure relation of the spherical
wave basis whenever necessary. We find [19]
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RscRin

τ̄ ji+
atom j

atom i

LEED

Fig. 1.13 Pictorial representation of the LEED process

dσ

dk̂
= 8π2α

mωq

�k

∑

0

∑

mc

∣∣
∣∣∣∣

∑

L0

M00
L0Lc

∑

j,L J

τ̄
j0+

L j L0
YL j (k̂) e−ik·R j

∣∣
∣∣∣∣

2

, (1.95)

where M00
L0Lc

is the matrix element describing the excitation of the photoelectron.

1.5.2.2 Low-Energy Electron Diffraction (LEED)

The LEED cross-section is probably the simplest possible cross-section. A sketch of
the experiment together with the operators involved is given Fig. 1.13. This cross-
section is simply

dσ

dk̂sc

= 4π4

∣∣∣∣
∣∣
〈ksc|

∑

i, j

τ̄ j i+|kin〉
∣∣∣∣
∣∣

2

. (1.96)
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In a spherical wave representation, it gives [17]

dσ

dk̂sc

= 4π4

k4

∣∣
∣∣∣∣

∑

i,Li

∑

j,L j

e−iksc·R j YL j (k̂sc) τ̄
j i+

L j Li
eikin·Ri Y ∗

Li
(k̂in)

∣∣
∣∣∣∣

2

. (1.97)
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Chapter 2
Generating Phase-Shifts and Radial Integrals
for Multiple Scattering Codes

Calogero R. Natoli and Didier Sébilleau

Abstract A brief derivation of the cross section in the independent particle approxi-
mation for some of the spectroscopies treated in themsspec program package is pre-
sented .We solve the related Schrödinger equation with a complex energy-dependent
effective potential in the framework of multiple scattering theory to write the cross-
section for photoemission and photoabsorption in a physically transparent way that
provides insight in their interpretation and analysis. Relativistic corrections are also
implemented. In order to be able to apply this theory to a wide variety of systems we
use a kind of all-purpose optical potential, depending only on the local density of the
system under investigation, and discuss its merits and drawbacks. AGreen’s function
approach is shown to be necessary to write the photoabsorption cross section in the
case of complex potential.

2.1 Introduction

The purpose of this chapter is to provide an introductory description of the steps
necessary to interpret and analyze the most common x-ray spectroscopies, notably
core-level photoemission, photoabsorption and photon scattering. Actually the same
scattering solution of the Schrödinger equation (SE) can also be used for other
spectroscopies, like LEED (Low Energy Electron Diffraction) and EELS (Electron
Energy Loss Spectroscopy), where the incoming probe is a beam of electrons, so
that their interpretation bears a close resemblance to the photon spectroscopies and
can be described in the same terms. The unifying framework is provided by multiple
scattering theory (MST) which we use to solve the Lippmann-Schwinger equation
(LSE) associated to the SE. This derivation generalizes that given by one of us (DS)
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in Chap.1 in terms of scattering path and projection operators, in that the local scat-
tering potentials are not spherically symmetric.We use this solution towrite down the
photoemission and photoabsorption cross sections, illustrating their physical mean-
ing in the framework of MST. Having in mind that the potential in the effective SE
can be complex we reformulate the photoabsorption cross section in terms of the
Green’s function (GF) of the system. For real potential we recover the expression for
the cross section written in terms of the scattering wave function, solution of the SE,
while for complex potential this is no longer valid and we need to use the expres-
sion involving the imaginary part of the GF. In this reformulation we take advantage
of the fact that MST provides an explicit expression for the GF that is expedient
to the analysis of the photoabsorption spectroscopy. As a particular application we
illustrate how in the case of complex potential the concept of mean free path arises
in the general term of the MS series. We show how to construct, in the muffin-tin
(MT) approximation, an all-purpose effective potential, sum of a Coulomb part and
a (complex) local density exchange-correlation part easily applicable to a wide vari-
ety of systems. Finally we describe how to introduce relativistic corrections in the
solution of the radial SE inside the MT atomic spheres to generate corresponding
atomic t-matrices and atomic cross sections, which are themain ingredients, together
with the KKR structure factors, of any MST. They serve as an input to various MS
programs like msspec, mxan, gnxas.

2.2 Derivation of the Cross-Section for Various
Spectroscopies

For the benefit of the reader, we derive here the expression of the cross-section
for various spectroscopies dealt with in the program package msspec [1], restricting
ourselves to those processes where the impinging and/or the detected particles are
either electrons or photons. This derivation partly overlaps and partly complements
the one given by one of us (DS) in Chap. 1. For more details the reader is referred to
[2].

The total Hamiltonian of the particle impinging on the matter system is given by

H = HP + HM + VI = H0 + VI , (2.1)

where HP describes the kinetic energy of the projectile, HM the matter system and
VI their interaction. In terms of the eigenstates |Φ〉 of the free Hamiltonian H0,
scattering theory [3] tells us that the transition probability per unit time between an
initial state Φi with energy Ei and a final state Φ f with energy E f is given by

Wi→ f = 2π

�

∣
∣〈Φ f |TI (E f )|Φi 〉

∣
∣
2
�(E f ) , (2.2)

http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1
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where Ei = E f for a real interaction, �(E f ) is the density of the final states (in
general determined by the detected particle) and TI (E) is the transition operator
associated with the interaction potential VI .

The equation defining TI is

TI (E) = VI + VI G(E) VI , (2.3)

where G(E) is the Green’s function of the total Hamiltonian H , given by [3]

G+(E) = lim
ε→0+

1

E − H + iε
. (2.4)

Even though (2.3) is difficult to solve, its advantage lies in the fact that, when the
interaction potential VI is small (in a sense that can be rigorously defined), one can
expand TI in series of the perturbation VI , so that to the lowest order

T (1)
I (E) ≈ VI , (2.5)

whereas to the second order

T (2)
I (E) ≈ VI + VI G0(E) VI , (2.6)

where G0(E) is obtained from (2.4) by replacing H with H0.
The cross section is obtained by dividing the transition probability per unit time

by the incoming flux of the incident particle

Io = v

V
, (2.7)

where v is the velocity of the projectile and V the quantization volume.

2.2.1 Cross Section for Incoming Photons

In this case the interaction potential VI is given by

VI =
∑

i

(
e

m
A(r i ) · pi + e2

2m
A2(r i )

)

, (2.8)

where, in second quantization,

A(r) =
∑

q,êq

√

�

2ε0ωqV

[

aq,êqe
i q·r êq + a†q,êq

e−i q·r ê∗
q

]

, (2.9)
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is the vector potential of the incoming radiation and p is the momentum of the
electron in the matter system, with customary meaning of the other symbols [2]. In
the following we shall omit the sum over all the electrons, since we shall work in
the independent particle approximation. How to reduce the many-body problem to
an effective one-particle problem is outside the scope of this article and the reader is
referred to [2].

2.2.1.1 Photoabsorption and Photoemission Cross Section

In the process of photoemission the incoming photon is absorbed and an electron of
the matter system is ejected into the continuum and detected along a certain direction
k̂. By integrating over all the emission angles one counts the number of electron
holes created, obtaining the photoabsorption cross section. We shall henceforth limit
ourselves to photoemission from atomic core states.

In both cases, since the incoming photon is absorbed, we need TI only to first
order in VI and consider only the destruction part of the photon operator in (2.9), so
that

T ph
I = e

m

∑

q,êq

√

�

2ε0ωqV
(êq · p) aq,êq e

i q·r . (2.10)

The cross-section dσ/dk̂ for emission of an electron along the direction k̂ is given
by

dσ

dk̂
Io = dWi→ f

dk̂
, (2.11)

where Io = c/V is the incident photon flux and dWi→ f /dk̂ is the transition proba-
bility per unit time and solid angle given by (2.2), in which �(E f ) is now the density
of free final states for an electron ejected along k̂ at the energy E f . This latter is
given by the Einstein relation E f = �ωq − Ic, where Ic is the core ionization poten-
tial. Moreover, |Φi 〉 is the system initial state, the tensor product of a photon state
a†q,êq

|0〉 times a matter electronic ground state |φe
g〉, whereas |Φ f 〉 is the product of

the photon vacuum state |0〉 times an electronic final state |ψ−
k̂
〉, the time-reversed

solution of the Schrödinger equation with scattering boundary conditions at infinity
[2, 4] and plane-wave normalization.

Inserting (2.10) into (2.2) we find

dσ

dk̂
= 4π2α

�

m2 ωq
�(E f )

∣
∣
∣〈ψ−

k̂
|êq · p ei q·r |φi 〉

∣
∣
∣

2
, (2.12)

where α = e2/(4πε0�c) is the fine structure constant, a dimensionless coefficient
whose numerical value is ≈1/137.
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When in the integration volume of the core state one has qr � 1, we can neglect
the spatial dispersion of the exponential factor in this expression and use the well
known relation

〈φ f |êq · p|φi 〉 = im ωq 〈φ f |êq · r|φi 〉 , (2.13)

since E f − Ei = �ωq . This is the so called length form of the transition matrix
element [5], valid when |φi, f 〉 are eigenstates of the same Hamiltonian. Therefore
(2.12) can be written as

dσ

dk̂
= 4π2α �ωq �(E f )

∣
∣
∣〈ψ−

k̂
|êq · r|φi 〉

∣
∣
∣

2
. (2.14)

The density of free photoelectron final states per unit energy and solid angle is
easily found to be (see Table1.1 of Chap.1)

�(E f ) = V

(2π)3

d3k

dE f dk̂
= V

(2π�)3
� k m . (2.15)

It is customary to incorporate this factor into the normalization of the photoelectron
wavefunction passing from a plane wave normalization |ψ−

k̂
〉 to a normalization to

one state per unit energy interval |φ−
k̂
〉. Using atomic units for lengths and Rydberg

units of energy (2m/�
2 → 1) we have

|φ−
k̂
〉 = 1

4π

√

k

π
|ψ−

k̂
〉 . (2.16)

The absorption cross section is found by integrating (2.14) over all emission angles
at the same final photoelectron energy

σabs(ω) =
∫

dσ

dk̂
dk̂ = 4π2α �ωq

∫

dk̂
∣
∣
∣〈φ−

k̂
|êq · r|φi 〉

∣
∣
∣

2
. (2.17)

2.2.1.2 Photon Scattering Cross Section

Photon scattering is a second order process in which a photon is absorbed and another
emitted. Typical processes are Thomson and resonant scattering. The transition oper-
ator should be of second order in the vector potential (2.9), so that from (2.6) we
have

T (2)
I =

( e

m

)2 [m

2
A · A + A · p G0(E f ) A · p

]

+ O

(
e3

m3

)

, (2.18)

dropping the first order term e/m A · p. The first term A · A gives rise to Thomson
scattering (a) whereby the matrix element is

http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1
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〈Φ f |T (2)
I (a)|Φi 〉 = e2

2m

�

2ε0V

1√
ωq f

ωqi

〈Φ f |(ê∗
q f

· êqi
)ei(qi−q f )·r

×
[

aqi êqi
a†q f êq f

+ a†q f êq f
aqi êqi

]

|Φi 〉 .

The second term gives rise to resonant (b) and non resonant scattering (c), according
to whether the incoming photon is absorbed before the scattered photon is emitted
or vice-versa. The relative matrix elements are

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈Φ f |T (2)
I (b)|Φi 〉 = N

En>EF∑

n

〈φ f |ê∗
q f

· p e−iq f ·r |φn〉〈φn|êqi
· p eiqi ·r |φi 〉

Ei − En + �ωqi
+ iε

〈Φ f |T (2)
I (c)|Φi 〉 = N

En>EF∑

n

〈φ f |êqi
· p eiqi ·r |φn〉〈φn|ê∗

q f
· p e−iq f ·r |φi 〉

Ei − En − �ωq f
+ iε

N =
( e

m

)2 �

2ε0V

1√
ωq f

ωqi

.

The corresponding scattering cross section is found by dividing thesematrix elements
by the incoming photon flux c/V andmultiplying by the photon final density of states

�ph(�ωq f
) = V

(2π)3

(�ωq f
)2

�3c3
.

We find, putting Q = q f − qi ,

dσ

dΩ
= r20

ωq f

ωqi

∣
∣
∣
∣

ê∗
q f

· êqi
〈φ f | e−iQ·r |φi 〉

1

m

En>EF∑

n

[ 〈φ f |ê∗
q f

· p e−iq f ·r |φn〉〈φn|êqi
· p eiqi ·r |φi 〉

Ei − En + �ωqi
+ iε

+
〈φ f |êqi

· p eiqi ·r |φn〉〈φn|ê∗
q f

· p e−iq f ·r |φi 〉
Ei − En − �ωq f

+ iε

]∣
∣
∣
∣
∣

2

,

where r0 = e2/(4πε0mc2) is the classical electron radius.
In passing from the many-body matter states to the one-particle we have taken

into account the Pauli principle, whereby transitions to already occupied states are
forbidden (En > EF , where EF is the Fermi energy). An elegant way for performing
the sum over the intermediate states in terms of the Green’s function of the system
is given in [6].
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2.2.2 Cross Section for Incoming Electrons

When the incoming probe is a beam of electrons we have different kinds of spec-
troscopies. In LEED (Low Energy Electron Diffraction), the scattering is elastic (no
energy-loss for the scattered electrons), whereas in EELS the detected electrons have
a different energy from the incoming beam. We refer the reader to Chap.1 for LEED
and Chap.24 for the derivation of the corresponding cross sections and discussions.
Here we briefly sketch the derivation of the cross section for EELS in a way which is
complementary to that used in Chap.24 and is suitable for our purposes to illustrate
the calculations of transition matrix elements.

The expression for the cross section is given by ([2], p. 214, (114))

dσ

dk̂ f

= 4π
k f

ki

∑

n

∣
∣
∣〈Φnψ

−
f |Vc|Φ0ψ

+
i 〉d ± 〈ψ−

f Φn|Vc|Φ0ψ
+
i 〉e
∣
∣
∣

2
, (2.19)

where the plus (minus) sign applies if the two electrons are in a triplet (singlet) state.
Here Vc = ∑

i j 2/|ri − r j | is the Coulomb interaction, Φ0 and Φn are the ground
state and the excited state of the system, whereas ψ+

i is the scattering wave function
of the incident electron, and ψ−

f is the time reversal scattering wave function of
the final (outgoing) scattered electron. If Φ0 and Φn are Slater Determinants (SD),
then we can take Φ0 = φc (the initial core hole state) and Φn = φε, where ε is the
energy of the secondary excited electron given by Eexc = Einc − Esct − Ic, Ic being
the ionization energy of the core state. In this case we have (in Ryd units)

〈φεψ
−
f |Vc|Φ0ψ

+
i 〉d =

∫

drdr ′φε(r)[ψ−
f (r ′)]∗ 2

|r − r ′|φc(r)ψ+
i (r ′)

〈ψ−
f φε|Vc|Φ0ψ

+
i 〉e =

∫

drdr ′φε(r ′)[ψ−
f (r)]∗ 2

|r − r ′|φc(r)ψ+
i (r ′) , (2.20)

for the direct and exchange matrix elements.
When the secondary (excited) electron is not observed (the usual case), one has

to sum over all the emission directions of the intermediate state φε so that, making
use of the spectral representation of the Green’s function for this electron, the EELS
cross section can be written as

dσ

dk̂ f

= −4
k f

ki

∫

dr1dr2

∫

dr ′
1dr ′

2[ψ+
i (r ′

2)]∗V ′(|r ′
1 − r ′

2|)ψ−
f (r ′

2) ×

{φc(r ′
1)
[G(r ′

1, r1; Eexc)]φc(r1)} ×
ψ+
i (r2)V ′(|r1 − r2|)[ψ−

f (r2)]∗ , (2.21)

where V ′(|r1 − r2|) ≡ (I − P12) Vc ≡ (I − P12) 2/(|r1 − r2|) and P12 is the
permutation of the elements 1 and 2. Similarly for the primed variables. In keeping

http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_24
http://dx.doi.org/10.1007/978-3-319-73811-6_24
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with the definitions in (2.20), the permutation operator acts only on the indices of
the same type (primed or unprimed) of the GF and the final state ψ−

f . We show in
Sect. 2.4.4 that in (2.21) one can apply the operator 
 in front of the integral.

2.3 Multiple Scattering Theory

The method for solving the Schrödinger equation both for bound and continuum
states, necessary to calculate the various spectroscopic response functions, is based
on multiple scattering theory (MST). In its essence MST is a technique for solving
a linear partial differential equation over a region of space with certain boundary
conditions. It is implemented by dividing the space into non-overlapping domains
Ω j (cells), solving the differential equation separately in each of the cells and then
assembling together the partial solutions into a global solution that is continuous and
smooth across the whole region and satisfies the given boundary conditions.

After the reduction of themany-body problem to an effective one particle problem,
the calculation of the photoemission (photoabsorption) cross section requires the
solution of the effective SE

[∇2 + E − Veff(r; E)
]

ψk(r) = 0 , (2.22)

with incoming wave boundary conditions [4] (see also Sect. 1.3.5 of Chap.1)

ψ−
k (r) � eik·r + f ∗(r̂;−k)

e−ikr

r
. (2.23)

Here and in the following we shall use atomic units for lengths and Rydberg units for
energies. The normalization to one state per Rydberg can be restored at the end by
using the relation (2.16). The effective potentialVeff (r; E) (henceforthwritten simply
V (r; E)) might be complex and energy dependent. For convenience we shall work
with outgoing waves and then apply the time reversal to calculate the photoemission
cross section. Neglecting spin, this amount to take the complex conjugate of the wave
function.

For the solution of (2.22) it is expedient to introduce the free GF G+
0 (r − r ′)

obeying the equation

[∇2 + E
]

G+
0 (r − r ′) = δ(r − r ′) , (2.24)

so that (2.22) together with the complex conjugate of the boundary condition (2.23)
is equivalent to the Lippmann-Schwinger equation

ψk(r) = eik·r +
∫

G+
0 (r − r ′) V (r ′; E)ψk(r ′) d3r ′ . (2.25)

http://dx.doi.org/10.1007/978-3-319-73811-6_1
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Before proceeding with the solution of (2.25) we need to define the scattering
matrix of the potential V (r) in response to an incident spherical wave JL(r; k) =
j�(kr)YL(r̂), where j�(kr) is the spherical Bessel function and for short we put
L ≡ �,m. In the following we shall use real spherical harmonics YL(r̂).

To this purpose we remember the expansions already introduced in Chap.1

eik·r = 4π
∑

L

i�YL(k̂)JL(r; k) =
∑

L

AL(k̂)JL(r; k)

G+
0 (r − r ′; E) =

∑

L

JL(r; k)H̃+
L (r ′; k) (r < r ′)

=
∑

L

JL(r ′; k)H̃+
L (r; k) (r > r ′) , (2.26)

where H̃+
L (r ′; k) = −i h+

� (kr)YL(r̂), h+
� (kr) being the Hankel function of the first

kind (outgoing wave behavior at great distances), following the definition of [3]
(Chap.2, (2.20) and footnote). It can also be referred as h(1)

� (kr).
Introducing the partial wave components of ψk(r) through the relation

ψk(r) ≡ ψ(r; k) =
∑

L

AL(k̂)ψL(r; k) , (2.27)

we find from (2.25)

ψL(r; k) = JL(r; k) +
∫

G+
0 (r − r ′) V (r ′; E)ψL(r ′; k) d3r ′ . (2.28)

Using the third of (2.26), the asymptotic behavior ofψL(r;k) at great distances from
the scattering center is found to be

ψL(r; k) = JL(r; k) +
∑

L ′
H̃+

L ′(r; k)
∫

JL ′(r ′; k) V (r ′)ψL(r ′; k) d3r ′

= JL(r; k) +
∑

L ′
H̃+

L ′(r; k) TL ′L , (2.29)

putting

TL ′L =
∫

JL ′(r ′; k) V (r ′)ψL(r ′; k) d3r ′ . (2.30)

This quantity defines the amplitude of the wave function scattered into a spherical
wave of angular momentum L ′ in response to an exciting partial wave of angular
momentum L . This is the generalization of (1.16) in Chap.1 to the non-MT case and
coincides with it for radial potentials (V (r) ≡ V (r)) except for a factor i (imaginary
unit).

http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1
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In order to solve (2.25) with the method of multiple scattering, we introduce a par-
tition of the potential that follows that of the space, so that V (r; E) = ∑

j v j (r; E),
where v j (r; E) coincides with V (r; E) within the cell Ω j and is zero outside. We
then introduce local scattering solutions

ψL(r j ; k) = JL(r j ; k) +
∫

Ω j

G+
0 (r j − r ′

j ; k) v j (r ′
j )ψL(r ′

j ; k) d3r ′
j . (2.31)

These solutions are local in the sense that they are defined only inside the bounding
sphere of cell Ω j , which is centered at R j so that r j = r − R j .

Then the global solution of (2.25) can be expressed locally as

ψ(r j ; k) =
∑

L

C j
L(k)ψL(r j ; k) . (2.32)

We now write (2.25) referred to a generic cell Ωi . We find

ψ(r i ; k) = eik·r i eik·Ri

+
∫

Ωi

G+
0 (r i − r ′

i ; k) vi (r ′
i )ψ(r ′

i ; k) d3r ′
i

+
∑

j 
=i

∫

Ω j

G+
0 (r j − r ′

j ; k) v j (r ′
j )ψ(r ′

j ; k) d3r ′
j .

Inserting here the relation (2.32) and remembering (2.31) we obtain an equation
determining the unknown coefficients C j

L

∑

L

Ci
L(k) JL(r i ; k) = eik·r i eik·Ri +

∑

j 
=i

∫

Ω j

G+
0 (r i − r ′

j ; k) v j (r ′
j )

×
∑

L

C j
L(k)ψL(r ′

j ; k) d3r ′
j . (2.33)

We can simplify this relation by introducing the two center expansion of the free GF
G+

0 (r − r ′; k) whereby

G+
0 (r − r ′; k) =

∑

LL ′
JL(r i ; k)Gi j

LL ′ JL(r j ; k) ( j 
= i) , (2.34)

where Gi j
LL ′ are the KKR structure factors given by

Gi j
LL ′ = 4π

∑

L ′′
G(L , L ′; L ′′) il−l ′+l ′′ H̃+

L ′′(Ri j ; k) , (2.35)
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in terms of the Gaunt coefficients G(L , L ′; L ′′) = ∫

YL(Ω)YL ′(Ω)YL ′′(Ω)dΩ . The
relation (2.34) is absolutely convergent only if Ri j ≡ |Ri − R j | > ri + r j , a condi-
tion that might not be always satisfied for two contiguous cells Ωi and Ω j , when ri
and r j are within the bounding spheres of the respective cells. We observe however
that the relation (2.33) is valid whatever r i in cell Ωi and therefore also for r i → 0.
In this limit, exploiting the fact that the coefficients C j

L do not depend on r j , we can
safely use (2.34) and obtain for them the following simple equation

Ci
L(k) = I iL(k) +

∑

j 
=i

∑

L ′L ′′
Gi j

LL ′ T
j
L ′L ′′ C

j
L ′′(k) , (2.36)

where we have defined the cell T -matrix T j
L ′L = ∫

JL ′(r ′; k) v j (r ′)ψL(r ′; k) d3r ′

according to (2.30) and I iL(k) = 4π i�YL(k̂)eik·Ri . Accordingly the cell partition
should only satisfy the weaker condition that Ri j should be greater than the radius
of the bounding sphere of the cell Ωi (or Ω j ).

Summarizing, we have transformed the Lippmann–Schwinger equation into an
algebraic equation for the coefficients C j

L(k) where the only ingredients are the
structure factors Gi j

LL ′ and the cell T -matrices T j
L ′L , obtained in terms of the local

solutions (2.31). This is the famous separation of structure and dynamics peculiar to
MST. We refer the reader to [7] for the numerical generation of these solutions and
the calculation of T j

L ′L in the general case of non spherically symmetric potentials.

2.3.1 Expression of Cross Sections in MST

We are now in a position to express the cross sections (2.14) and (2.17) in terms of
the solution (2.32) given by MST.

To this purpose we introduce new expansion coefficients B j
L(k) defined by

B j
L(k) =

∑

L ′
T j
LL ′C

j
L ′(k) , (2.37)

and new local basis functions given by

ΦL(r j ; k) =
∑

L ′
[T j ]−1

L ′L ψL ′(r j ; k) , (2.38)

so that
ψ+

k (r j ) =
∑

L

B j
L(k)ΦL(r j ; k) . (2.39)

On the basis of (2.36) the new coefficients satisfy
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∑

L ′
(Ti )−1

LL ′ Bi
L ′(k) −

∑

j,L ′
(1 − δi j )G

i j
LL ′ B

j
L ′(k) = I iL(k) , (2.40)

from which we derive the solution

Bi
L(k) =

∑

j L ′
τ
i j
LL ′ I

j
L ′(k) =

√

k

π

∑

j L ′
τ
i j
LL ′ i�

′
YL ′(k̂) eik·R j , (2.41)

in terms of the inverse of the MS matrix (T−1 − G0)

τ = (T−1 − G0)
−1 , (2.42)

known as scattering path operator. Notice that we have restored the normalization to
one state per Rydberg by multiplying I iL(k) by the factor in (2.16).

The advantage of introducing the coefficients Bi
L(k) lies in the fact that they are

scattering amplitudes that in case of real potentials satisfy the relation

∫

dk̂ Bi
L(k)

[

B j
L ′(k)

]∗ = − 1

π


[

τ
i j
LL ′

]

, (2.43)

which is a kind of generalized optical theorem. This relation is very important, since
it establishes the connection between the angle-integrated photoemission and the
photoabsorption cross section [7].

Using (2.39), due to the localization of the inital core state at site c, we can write
the photoemission cross section (2.14) as

dσ

dk̂
= 4π2 α �ωq

∑

mcσc

∣
∣
∣
∣
∣

∑

L

MLcσc L [Bc
L(k)]∗

∣
∣
∣
∣
∣

2

, (2.44)

where

MLcσc L (E) =
∫

Ωc

drc φc
Lcσc

(rc) (êq · rc)ΦL(rc; k) , (2.45)

In the presence of spin-orbit coupling in the initial core state one should change the
notation mcσc to j zc for a given split edge jc. Henceforth we shall neglect altogether
the sum over spin, which will make a factor of two in front of the cross section in
non magnetic systems.

In MST the quantity τ
i j
LL ′ is a scattering amplitude for propagation of the excited

photoelectron from site i to site j , starting with angular momentum L around site
i and arriving with L ′ around site j . On the basis of the solution (2.41) for the
amplitude Bc

L(k) the expression (2.44) substantiates our intuitive representation of
the photoemission process as one in which the photoelectron is created at site c
with a probability amplitude given by (2.45), propagates from this site to any site
j to escape toward the detector with an angular distribution YL ′(k̂) determined by



2 Generating Phase-Shifts and Radial Integrals … 47

its angular momentum L ′ around site j [2]. Since this site can coincide with the
photoabsorber site c, both closed and open scattering paths contribute to the cross
section.

For the total absorption cross section we get

σtot(ωq) =
∫

dk̂
dσ

dk̂
= 8π2 α �ωq

∑

mc

∫

dk̂

∣
∣
∣
∣
∣

∑

L

MLcL(E) Bc
L(k)

∣
∣
∣
∣
∣

2

= −8π α �ωq

∑

LL′
mc

MLcL(E)
 [τ cc
LL ′
]

MLcL ′(E) , (2.46)

the second step being valid only in the case of real potentials due to the relation
(2.43). This relation indicates that now only closed paths contribute to the process,
the photoabsorber acting simultaneously as the source and the detector of the excited
photoelectron. In this way the energy modulations observed in the cross section
originate from the interference between the outgoing and the incoming photoelectron
wave at the photoabsorbing site.

2.3.2 The Green’s Function Approach to Photoabsorption:
Real Potential

The Green’s function of the effective SE (2.22) is defined as

[∇2 + E − Veff(r; E)
]

G+(r − r ′; E) = δ(r − r ′) . (2.47)

It is an analytic function of E in the complex plane if one assumes the analyticity of
the energy dependence of the effective potential in the whole plane.

A solution of (2.47) analytical in the upper energy plane is given by the so-called
spectral representation in terms of all the eigenstates ψn(r; E) of the Schrödinger
operator (SO) at energy En:

G+(r, r ′; E) = lim
ε→0+

∑

n

ψn(r; E)ψn(r ′; E)

E − En + i ε
. (2.48)

Here the index n runs over all eigenstates, discrete and continuum, of the SO. We
shall omit henceforth the additional dependence of the state ψ on the energy E via
that of Veff(r; E), since it will not affect the following manipulations on the GF.

From (2.48) it follows that


 [G(r, r ′; E)
] = − 1

π

∑

n

ψn(r)ψn(r ′) δ(E − En) . (2.49)
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Remembering that

σabs(ωq) = 4π2 α �ωq

∑

f

∣
∣〈Φ f |êq · r|Φi 〉

∣
∣
2

δ(Ei − E f + �ωq)

we find that σabs(ωq) can also be expressed as

σtot(ωq) = −8πα�ωq

∑

mc



∫∫

Ωc

〈φc
Lc

(r)|êq · r|G(r, r ′; E)|êq · r ′|φc
Lc

(r ′)〉drdr ′ ,

(2.50)
dropping again the sum over σc.

One of the advantages of MST is that one can write an explicit form of the full
GF in terms of the scattering path operator as

G(r i , r ′
j ; E) =

∑

LL ′
Φ i

L(r i ; k)τ i j
LL ′Φ

j
L(r j ; k) − δi j

∑

L

Φ i
L(r<; k)Λi

L(r ′
>; k) ,

(2.51)
where Φ

j
L(r j ; k) is the same local function as defined in (2.38) and Λi

L(r>; k) is
the irregular solution of the SE inside cell Ωi matching smoothly to JL(r i ; k) on the
bounding sphere of the cell [7]. Notice that the singular part of the GF is real if the
potential is real, so that its imaginary part is zero. In this case, by inserting this form
of the GF into (2.50) one recovers (2.46).

2.3.3 The Green’s Function Approach to Photoabsorption:
Complex Potential

A realistic treatment of photoemission process cannot leave out of consideration the
fact that the emitted photoelectron can loose its energy either by plasmon creation
and/or inelastic scattering with other electrons in its propagation throughout the
system (extrinsic processes) or via shake-up, shake-off excitations into the system
itself (intrinsic processes).

In order to treat this problem, one can start from a many-channel formulation of
the many-body process and then eliminate all the channels except the one of interest,
usually the completely relaxed channel where the photoelectron has its maximum
energy given by the Einstein relation [2]. This reduction process leads to an effec-
tive complex optical potential Veff(r; E) that describes the effect of the eliminated
channels. Except in particular cases, their effect results in a smoothing of the spec-
tral features of the main channel. A concomitant effect of the complex potential
is to give a finite mean free path to the excited photoelectron given approximately
by λ = k/
 [Veff ]. In this way photoemission and photoabsorption become local
structural techniques.
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With a complex potential one can still use (2.44) to calculate the photoemission
spectrum. However the integrated spectrum is no longer equal to the photoabsorption
spectrum because this latter is an all inclusive measurement that counts all processes,
elastic and inelastic, whereas in photoemission one measures a particular channel
selected by the final kinetic energy of the detected photoelectron. In other words, the
first line of (2.46) is no longer valid and is not equal to the second line.

However the second line can still be used to calculate the photoabsorption cross
section in case of complex potential, if one remembers that in scattering theory with
complex potential the optical theorem relates the imaginary part of the forward scat-
tering amplitude to the sum of the elastic plus inelastic total cross sections (Chap.7
of [3]).

Reference [2] shows how to express the cross section in terms of the one-particle
GF with complex potential. The result is that we can still use (2.50) multiplied by a
modulation function |S0(ω)|2 that takes into account the overlap factor between the
initial and final many-body states and describes the effect of the creation of the core
hole on the spectrum. It is usually approximated by a numerical constant of the order
0.8–0.9.

It is expedient in this case to use an alternative form of the GF (2.51) obtained by
using the relation

ψL(r j ; k) = JL(r j ; k) +
∑

L ′
H̃+

L ′(r j ; k) T j
L ′L ,

valid at the bounding sphere of cell Ω j (use (2.29)).
By integrating backward the SE toward the center we find, remembering (2.38),

∑

L ′
ΦL ′(r j ; k) T j

L ′L = ΛL(r j ; k) +
∑

L ′
Ψ̃ +

L ′ (r j ; k) T j
L ′L , (2.52)

where Ψ̃ +
L ′ (r j ; k) is the irregular solution of the SE matching smoothly to H̃+

L ′(r j ; k)
at the boundary of the cell.

Inserting this relation into (2.51) we find

G(r i , r ′
j ; E) =

∑

LL ′
Φ i

L(r i ; k)[τ i j
LL ′ − δi j T

i
LL ′ ]Φ j

L ′(r j ; k)

+ δi j
∑

LL ′
Φ i

L(r<; k)T i
LL ′Ψ̃

i
L ′(r ′

>; k) . (2.53)

This form of the GF makes explicit the separation between the spectral contribution
given by the environment (first term) and the photoabsorber (second term).

In fact, insertion into (2.50) gives

σabs(ωq) = σenv(ωq) + σat(ωq) (2.54)
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where
σat(ωq) = −8π α �ωq

∑

LL ′


[

M̃Lc;LL ′ T c
LL ′

]

, (2.55)

defining the new atomic absorption matrix element as

M̃Lc;LL ′ =
∫∫

Ωc

dr dr ′〈φc
Lc

(r)|êq · r|Φ i
L(r<; k)Ψ̃ i

L ′(r ′
>; k)|êq · r ′|φc

Lc
(r ′)〉 ,

(2.56)
and

σenv(ωq) = −8π α �ωq

∑

mcLL ′

 [MLcL(E)(τ cc

LL ′ − T c
LL ′) MLcL ′(E)

]

= −8π α �ωq

∑

mcLL ′


[

MLcL(E)

∞
∑

n=2

[(TG0)
n T]ccLL ′ MLcL ′(E)

]

. (2.57)

The second line of this equation follows from the expansion of the scattering path
operator in series of the matrix TG0

τ
i j
LL ′ =

[(

T−1 − G0
)−1
]i j

LL ′
=
[ ∞
∑

n=0

(TG0)
n T

]i j

LL ′
=
[ ∞
∑

n=0

T (G0T)n

]i j

LL ′
,

(2.58)
which is absolutely convergent if the spectral radius (maximum eigenvalue of TG0)
ρ(TG0) < 1, otherwise it is only conditionally (or asymptotically) convergent [2, 8].
The expansion in (2.57) starts from n = 2 since [G0]ccLL ′ = 0. Due to the meaning of
T (site scattering amplitude) and G0 (free intersite spherical wave propagator) the
matrix power [(TG0)

n]ccLL ′ defines closed multiple scattering paths beginning and
ending at the photoabsorber. Therefore, with due precautions, one can almost always
analyze the energy modulations in terms of MS paths.

Finally we want to point out that in the case of complex potential the atomic cross
section does not factor out from the environment cross section, so that the theoretical
signal to be compared with experimental energy modulations is

χ(ωq) = σenv(ωq)

σat(ωq)
. (2.59)

2.3.3.1 General Term of MST with Complex Potential: The Mean
Free Path

It is instructive to see how the concept of mean free path arises in the general
term of the multiple scattering series. We discuss this point assuming for simplic-
ity the muffin-tin (MT) approximation for the cell potential. In this case we have
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[T]LL ′ = t� = ei δ� sin δ�/k where δ = δ1 + i δ2 is the (complex) phase shift of the
atomic potential (we shall omit henceforth the index � since not necessary to the
following argument).

The general term of MS series is given by

[(TG)n]ccLL ′ =
∑

i j...k

∑

L1L2...Ln

tc� G
ci
LL1

t i�1 G
i j
L1L2

t j�2 ....G
kc
Ln L ′ . (2.60)

Since the propagator Gi j
LL ′ is proportional to k we shall work with the dimensionless

quantity kt . We find

kt = eiδ sin δ = e−2δ2 eiδ1 sin δ1 + i

2
[1 − e−2 δ2 ] , (2.61)

so that, assuming δ2 � 1 (which is usually the case),


 [kt] = |kt |2 + i

4
[1 − e−4 δ2 ] ≈ |kt |2 + i δ2 . (2.62)

As anticipated, according to electron-atom scattering theory with complex potential
[3], 
[t] represents the total cross section (elastic plus inelastic), while |t |2 gives the
elastic cross section (no energy loss for the impinging electron).

It is therefore clear that taking the imaginary part of (2.60) will describe all
processes (elastic and inelastic) undergone by the photoelecton in the particular path,
whereas the coherent elastic process will be obtained by taking for all kt factors the
first term e−2δ2 eiδ1 sin δ1 of (2.61). This is the same factor as for real potential, except
for the presence of the damping factor e−2δ2 .

In order to evaluate this factor for the generalMS term, we illustrate the derivation
for three sites c, i, j , since the extension of the argument to the most general case
will then be straightforward.

Remembering the approximate expression for the propagator [9]1

Gi j
LL ′ ≈ −i k YL(R̂i j ) YL ′(R̂i j )

ei kRi j

k Ri j
, (2.63)

where k = √
E − VI ≡ k1 + i k2, VI being the interstitial potential, and omitting

the factor −i irrelevant to the argument, for three sites the damping is given by the
exponential factor with exponent

− 2δc2 − k2Rci − 2δi2 − k2Ri j − 2δ j
2 − k2R jc . (2.64)

1This approximation can be easily derived from the definition (2.35) by putting
i�

′′
H̃+
L ′′ (Ri j ; k) ≈ −ikei kRi j /(k Ri j ) YL ′′ (R̂i j ) and closing the sum over L ′′ by using the relation

∑

L ′′ G(L , L ′; L ′′) YL ′′ (R̂) = YL (R̂) YL ′ (R̂).
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In the WKB approximation of the phase shift we find

δ j =
∫ R j

0
[E − v j (r)]1/2dr − kR j , (2.65)

where R j is the MT radius of the potential at site j .
Therefore, putting Rpath = Roi + Ri j + R jo, the damping factor is given by

e−κ2Rpath , (2.66)

where

κ2 = 1

Rpath


[∫

path
[E − v(r)]1/2dr

]

. (2.67)

The mean free path is accordingly

λ = 1

2κ2
, (2.68)

consistent with the fact that e−κ2Rpath is an attenuation factor for an amplitude of
propagation.

A further simplification comes from observing that [E − v1(r)] � v2(r).
Therefore

[E − v(r)]1/2 ≈ [E − v1(r)]1/2 + i

2

v2(r)

[E − v1(r)]1/2 ,

so that

κ2 = 1

2Rpath

∫

path

v2(r)

[E − v1(r)]1/2 dr ≤ 1

2k1Rpath

∫

path
v2(r)dr , (2.69)

implying that, in atomic units,

λ = k1
v2

, (2.70)

where v2 = ∫

path v2(r)dr/Rpath is the average of the complex part of the potential
over the path. The core hole half width Γh/2 can also be considered a complex
potential that should be added to v2 in (2.70) to obtain the total mean free path.

Due to the presence of the damping of the photoelectronic wave, in absorption
spectra only atoms within a sphere centered on the emitter with radius equal to
the mean free path contribute to the structural signal, since only closed paths are
possible. In contrast, in photoelectron diffraction spectroscopy this radius equals
twice the mean free path, since the cross-section is proportional to the square of a
scattering amplitude with interference between different contributions (direct atomic
versus propagation processes), as clear from (2.44).
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2.4 An All-Purpose Optical Potential

Constructing an effective ad hoc potential for any system to investigate would be
time-consuming and not very practical. In order to cope in a simplewaywith thewide
variety of systems encountered in practical applications onemakes the ansatz that the
optical potential is a functional of the density �(r) of the system under consideration.
This assumption is akin to the local density approximation made in Density Func-
tional Theory (DFT) for the exchange-correlation potential (the Coulomb part of the
potential is already a functional of the density). There is a difference, however, since
in our case the potential regards an excited state and not the ground state. Experience
has shown that the Hedin-Lundqvist exchange-correlation potential [10] for excited
states constitutes a good candidate for this kind of universal optical potential.

Moreover, partitioning the space in non overlapping space-filling domains in an
automatic way is not straightforward for arbitrary atomic locations. This difficulty
motivates the introduction of themuffin-tin (MT) approximation, whereby one draws
a sphere around each atomic position, inside which the potential vi (ri ) is spherically
averaged, whereas it is approximated by a constant suitably chosen in the interstitial
region between the spheres. Empty spheres to minimize the interstitial volume can
also be drawn.

Obviously these approximations have a price. They are reasonably good for pho-
toelectron energies E greater than≈50 eV, less good at lower energies.

2.4.1 The Construction of the Muffin-Tin Potential

Given a cluster of atoms, the Coulomb potential (in Rydberg units of energy) is given
by

Vc(r) = −
∑

j

2Z j

|r − R j |
︸ ︷︷ ︸

nuclear part

+ 2
∫

dr ′ �tot(r ′)
|r − r ′|

︸ ︷︷ ︸

electron part

, (2.71)

where R j and Z j denote the position and the charge of the j th atomic nucleus and
�tot(r) is the total electronic charge density of the system.

We construct the total density by superimposing spherically symmetric self-
consistent atomic charge densities that are generated by currently available atomic
programs [11]. The resulting cluster density is not self-consistent, but it is a good
approximation to it. In order to make this superposition we have to expand a spher-
ically symmetric function referred to one center j around another center i and take
only the L = 0 component. This method was proposed by Löwdin [12] and later
utilized by Mattheiss [13]. If �(r j ) is the radial charge density around center j , nor-
malized such that

∫∞
0 �(r j ) r2j dr j = Z j , then the component �L=0(r) of the charge

density at distance r from the center i is given by
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�L=0(r) = 1

2R r

∫ R+r

|R−r |
� j (r j )r jdr j , (2.72)

where R is the distance between the two centers. Therefore, the total overlapped,
spherically averaged, charge density around center i , due to all its neighbors, is given
by

�itot(r) = �i (r) +
∑

j

1

2Ri j r

∫ Ri j+r

|Ri j−r |
� j (r j )r jdr j , (2.73)

where Ri j is the distance between the two centers i and j and �i (r) is the charge
density of the atom at site i , which would be zero if one were dealing with an empty
sphere.

Similarly, due to the linearity of the Poisson equation in the charge density, the
total Coulomb potential around center i, generated by the charge density (2.72) is
given by

V i
tot(r) = V i (r) +

∑

j

1

2Ri j r

∫ Ri j+r

|Ri j−r |
Vj (r j )r jdr j , (2.74)

where Vj (r) is the atomic potential generated by the charge density � j (r j ) of the
atom at site j :

Vj (r) = 2

r

∫ r

0
r2j �(r j )dr j + 2

∫ ∞

r
�(r j )r jdr j . (2.75)

In the same spirit we can calculate the constant interstitial potential V c by taking the
average of the total Coulomb potential in the interstitial region ΔΩ . To this purpose
we define a center of the cluster as the center of all the atomic charges, draw a sphere
of radius Ro of minimum volume encircling the cluster and then expanding the total
potential around this center. Then we easily find

V c = 1

ΔΩ

∫

ΔΩ

Vtot(r)dr = 1

ΔΩ

⎡

⎣

∫ Ro

0
V o
c (r)r2dr −

∑

j

∫ R j

0
V j
c (r j )r

2
j dr j

⎤

⎦ ,

(2.76)

where R j is the radius of the MT sphere at site j . Similarly, the interstitial charge
density �int, necessary to find the interstitial exchange-correlation part, is given by

�int = 1

ΔΩ

∫

ΔΩ

�(r)dr = 1

ΔΩ

⎡

⎣

∫ Ro

0
�otot(r)r

2dr −
∑

j

∫ R j

0
� j (r j )r

2
j dr j

⎤

⎦ ,

(2.77)

In order to determine theMT radii we can follow one of the two prescriptions present
in the literature: one given by Norman [14] and the other by Wille et al. [15].
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In the Norman prescription, a Norman radius of each site i is determined such
that

∫ RNorm
i

0
�i (ri )r

2
i dri = Zi . (2.78)

Then, given two nearest-neighbor sites i and j , the touching sphere MT radius is
given by

Ri = Ri j
RNorm
i

RNorm
i + RNorm

j

, (2.79)

and similarly for R j , which implies that Ri/R j = RNorm
i /RNorm

j . Empirically this
prescription works for systems with covalent bonds. An overlap of about 10–15% of
these radii is also allowed.

On the other hand, in the Wille et al. prescription the choice of the MT radii
is made in such a way that the potential discontinuity at the boundary of the MT
spheres are minimized. This prescription seems to work with ionic compounds.
In any case discontinuities are always present in the MT partition of space causing
unphysical photoelectron scattering, although this effect can beminimized byvarying
the interstitial potential and overlap factors. However this situation is unsatisfactory
and has been solved by Full Potential MST [7].

2.4.2 The Construction of the Exchange-Correlation
Potential

In a many-body approach, the elimination of all the channels different from the one
carrying the structural information would lead to a very complicated and unpractical
optical potential [2], since it shoud describe all processes, intrinsic and extrinsic. The
intrinsic processes are those inelastic events ensuing the sudden creation of the core-
hole, while the extrinsic processes are inelastic events excited by the photoelectron
in its propagation through the system. These latter can be described in terms of the
self-energy of the photoelectron, for which there is a whole panoply of methods
of calculations. In the framework of many-body theory, the GW approximation to
the calculation of the self-energy is the method of choice. However, even with this
restriction, a calculation adapted to each particular system is not practically viable.

In the spirit of the local density approximation one makes the assumption that
for any system the photoelectron self-energy is given by that of the homogeneous
interacting electron gas calculated at the local density of the system under study.
Therefore we can define a kind of universal exchange-correlation potential as

Σ(r; E) ≈ Σh[p(r), E − Vc(r); �(r)] , (2.80)
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where, as anticipated,Σh[p,ω; �] is the self-energyof an electron in anhomogeneous
interacting electron gas with momentum p(r), energy ω = E − Vc(r) and density
� = �(r), the local density of the actual physical system. Since E − Vc(r) ≈ p2(r),
neglecting the small exchange and correlation correction, we can define an exchange-
correlation potential for the photoelectron in our system as

Vexc(r; E) � Σh[p(r), p2(r); �(r)] , (2.81)

where the local momentum p(r) is defined as

p2(r) + Σh[p(r), p2(r); �(r)] = k2 + k2F (r) + Σh[kF , k2F ; �(r)] . (2.82)

Here k2 = E is the photoelectron kinetic energy measured from the Fermi level in
the system and k2F (r) = [3π2�(r)]2/3 is the local Fermi energy. Usually the small
difference between the two self-energies is ignored and one takes p2(r) ≈ k2 +
k2F (r).

Introducing the Wigner parameter rs = [3/(4π�)]1/3, which measures the aver-
age inter electronic distance in an electron gas at density �, and the constant
β = [4/9π]1/3 ≈ 0.52, we have

kF = (3π2�)1/3 = 1

βrs
. (2.83)

Then, according to [16], the GW expression for the electron self-energy in the inter-
acting electron gas is given by

Σh(p,ω) = i

(2π)4

∫

eiω
′δ V ( p′)

ε( p′,ω′)
G0( p + p′,ω + ω′)d p′dω′ , (2.84)

corresponding to the self-energy of a test electron interacting with the charge fluc-
tuations of the medium. Here

G0( p,ω) = 1

ω − p2 + i sign(ω − εF )
, (2.85)

is the momentum space propagator of the test electron and

1

ε( p,ω)
= 1 + ω2

p

ω2 − ω2
1(p)

, (2.86)

is the frequency and momentum dependent dielectric function of the electron gas in
the plasmon-pole approximation [16] that screens the bare Coulomb interaction . In
this last equation

ω2
1(p) = ω2

p + ε2F

[
4p2

3k2F
+ p4

k4F

]

, (2.87)
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is the momentum dispersion of the plasmon pole, given at zero momentum by

ωp = 4εF

[
βrs
3π

]1/2

= 41.7

[rs(au)]3/2 eV . (2.88)

We now have all the ingredients to calculate the self-energy (2.84) and we refer
the reader to the Appendix B of [10] for an explicit calculation. Even though this
potential was initially devised by Hedin and Lundqvist to describe exchange and
correlation corrections to the Hartree potential due to the valence charge, we follow
Lee and Beni [17] to extend the validily of (2.84) to the atomic region.

By way of illustration Fig. 2.1 presents the energy dependence of the real and
imaginary part of the self-energy (2.84) at rs = 2.88 au, corresponding to a density
of � = 0.01 au−3. At this value the plasmon energy is ωp = 9.64 eV and the local
Fermi energy is k2F = 6.04 eV. We assume that the Fermi level in the system is
at −9.5 eV, from which the kinetic energy of the photoelectron E and the plasmon
energy are counted.We see that the imaginary part ofΣh(p, p2) begins to be different
from zero for values E slightly greater then ωp [10]. At the same energy value the
real part has a dip that comes from the screened exchange part of the potential
[10]. The sudden onset of the photoelectron damping and the dip in the exchange
part are rather unphysical, since the plasmon pole approximation of the dielectric
function neglects the contribution of particle-hole excitations. A way to improve on
this situation is indicated in [18]where a schemeon amany-pole approximation of the
dielectric function, via the loss function, is implemented. This approach eliminates
the unphysical behavior of Σh(p, p2).

Figure2.1 also indicates the constant value of the Slater exchange 3αkF/π =
−6.23 eV, at a typical value of α = 0.72. We see that the exchange-correlation part
ofΣh(p, p2) decreaseswith energy as the inverse of

√
E [10], in keepingwith the fact

that the Pauli principle is less and less effective the higher the photoelectron kinetic
energy, due to the descreasing overlap of its wave function with the occupied states
of the system. This behaviour is born out by the observation of the EXAFS maxima,
whose position is not reproduced by a constant exchange but is well predicted by the
HL energy-dependent exchange [19].

For comparison, in Fig. 2.2 we also giveΣh(p, p2) at rs = 1.34 au, corresponding
to a density of � = 0.1 au−3. The Fermi level lies again at −9.5 eV. We see that the
plasmon energy is now much higher (ωp = 30.49 eV) whereas the Slater exchange
3αkF/π = −13.42 eV is much lower.

2.4.3 Generating Phase Shifts and Atomic Cross Sections

Based on Sect. 2.4, the effective potential is given by Veff(r; E) = Vc(r) +
Vexc(r; E). After reduction to the MT form, in each atomic (or empty) sphere we
have to solve for each partial wave � a radial SE of the type
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Fig. 2.1 Behavior of the real and imaginary part of the HL exchange-correlation potential at
rs = 2.88 au:Re(vhl)= real part, Im(vhl), imaginary part, (both calculated according to the formulas
of Appendix B of [10]), Re(vhl)int , real part (calculated according the interpolation scheme of [19]),
vexs = 3αkF/π, constant Slater exchange with α = 0.72

[
d2

dr2
+ 2

r

d

dr
+ E − �(� + 1)

r2
− V (r; E)

]

R�(r) = 0 , (2.89)

where, for brevity, we have indicated by V (r; E) the spherically averaged Veff(r; E)

inside the sphere under consideration.
In reality this is a non relativistic potential. Relativistic corrections can be intro-

duced by the method followed in [20], whereby one starts from the radial Dirac
equation with potential V (r; E) by eliminating the lower component of the wave
function g�(r) in favor of the upper component f�(r). Defining

B(r; E) = {1 + α2[E − V (r; E)]}−1 , (2.90)

where again α is the fine structure constant, and putting

f�(r) = u�(r)

r
= 1

r

q�(r)

B1/2(r; E)
, (2.91)

one finds that q�(r) obeys a pseudo-SE of the type
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Fig. 2.2 Behavior of the real and imaginary part of the HL exchange-correlation potential at
rs = 1.34 au: same legend as for Fig. 2.1

d2

dr2
q�(r) = G(r; E) q�(r) , (2.92)

where

G(r) = V (r; E) + �(� + 1)

r2
− E − α2

4
[E − V (r; E)]

+ α2

8
B(r; E)

{

1

r

d2

dr2
[r V (r; E)] + 3α2

8
B(r; E)

[
d

dr
V (r; E)

]2
}

+ α2

4
B(r; E)

1

r

d

dr
[V (r; E)] 2� · s . (2.93)

Throughout E is the photoelectron energy without its rest mass. The last term is the
spin orbit interaction such that

1 + 2� · s = � + 1 for j = � + 1

2

= −� for j = � − 1

2
, (2.94)
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where j = � + s. Equation (2.92) can be solved numerically by theNumerovmethod
with the starting behavior at the origin, given by the indicial equation,

lim
r→0

q�(r) ∼ r1/2+[κ2−(Zα)2]1/2 , (2.95)

where −κ is the eigenvalue of 1 + 2� · s (see (2.94)) and Z is the atomic number of
the atom inside the sphere (equal to zero if empty).

Specializing (2.29) to the spherical case, we must match smoothly the solution
of the (pseudo-)SE R�(r)( f�(r)) to t� j�(kr) − ikh+

� (kr) at the MT radius Rs of the
sphere so that

t� = i

k

[R�(r) j ′�(kr) − R′
�(r) j�(kr)]

[R�(r) (h+)′�(kr) − R′
�(r) h

+
� (kr)]

∣
∣
∣
∣
r=Rs

, (2.96)

where the prime indicates derivative with respect to r . Similarly for f�(r) if the
relativistic solution is used. If the spin-orbit interaction is considered, the index � in
this equation should be replaced by j�.

Moreover, by inward integration of the radial equations (2.89) and (2.92), we can
also generate the irregular solutions R̃�(r) that matches smoothly to −ih+

� (kr) at the
MT radius. Then the atomic cross section (2.55), using t� and (2.56), turns out to be
proportional to

∑

L

t�

{
∫ Rs

0
dr ′ φc(r ′)T (r ′)R̃L(r ′)

∫ r ′

0
dr RL(r)T (r)φc(r)+

∫ Rs

0
dr ′ φc(r ′)T (r ′)RL(r ′)

∫ Rs

r ′
dr φc(r)T (r)R̃L(r)

}

, (2.97)

whereT (r) = êq · r is the dipole transition operator,φc(r) = Rc
�(r) YLc(r̂), RL(r) =

R�(r) YL(r̂) and R̃L(r) = R̃�(r) YL(r̂), with obvious modifications if one uses the
relativistic wave functions.

2.4.4 Calculating EELS Matrix Elements

In calculating EELS matrix elements, we follow two different strategies according
to whether we calculate Coulomb matrix elements as in (2.20) corresponding to an
experiment of the type (e → 2e), where both electrons in the final state are analyzed,
or we are interested in an all-inclusive experiment (e → e), in which case we have
to calculate an expression like the one in (2.21).

In the first case, in order to calculate the integrals in (2.20) we need to use an
expansion formula for the Coulomb interaction. Without loss of generality we intro-
duce a damped Coulomb interaction so that
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2 exp (−κ|r − r ′|)
|r − r ′| = −8πκ

∑

L

IL(r<)KL(r>)(−1)� , (2.98)

which reduces to the usual Coulomb interaction for κ → 0. Here

IL(r) = i�(κr)YL(r̂); KL(r) = k�(κr)YL(r̂) , (2.99)

where i�(κr) and k�(κr) are modified spherical Bessel and Hankel functions (the
analytical continuation of the usual functions j�(kr) and h�(kr) with k = iκ). This
relation is the analytical continuation to complex k of the same expression given in
(2.26). The damping constant κ describes the screening of the Coulomb interaction
of the incoming electron by the other electrons in the system. In a metal the electron
screening gives rise to a Coulomb interaction of the Yukawa type, like in (2.98), with
κ = (12/π)1/3 (rs)−1/2au−1 in the Thomas-Fermi approximation. For semiconduc-
tors one can define a sort of Thomas-Fermi spatial dielectric screening ε̄(r) that gives
rise to a screened Coulomb interaction of the type Vc = −2/(r ε̄(r)) (see [21] and
references therein) and approximate ε̄(r) as a constant. In both cases one can use the
expansion (2.99).

The analytical continuation of the usual spherical wave propagator with positive
k given by (2.35) leads to the following two site expansion

exp (−κ|r − r ′|)
|r − r ′| = −κ

∑

L

IL(r i )G
i j
LL ′ IL ′(r ′

j ) , (2.100)

where the factor of 4π(−1)� is incorporated in the definition of Gi j
LL ′ . Therefore an

integral of the type
∫

drdr ′ �(r)�′(r ′)
|r − r ′| , (2.101)

where the functions �(r) and �′(r ′) are represented locally, as in multiple scattering
theory, can be written as

∫

drdr ′ �(r)�′(r ′)
|r − r ′| =

∑

i 
= j

∑

LL ′

∫

Ωi

dr i �(r i )IL(r i )G
i j
LL ′

∫

Ω j

dr j �
′(r j )IL(r j )

+
∑

i

∑

L

∫ Rs
i

0
dr i�(r i )

{

KL(r i )
∫ ri

0
dr ′

i �
′(r ′

i )IL(r ′
i )

+ IL(r i )
∫ Rs

i

ri

dr ′
i �

′(r ′
i )KL(r ′

i )

}

, (2.102)

where Ωi, j denote the various cells (MT spheres) in which the space has been parti-
tioned.
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Now from (2.20) we see that for the direct integral �(r) should be identified with
φε(r)φc(r) and �(r ′)withψ+

i (r ′)ψ−
f (r ′), while for the exchange integral �(r) should

be identified withψ−
f (r)φc(r) and �(r ′)with φε(r ′)ψ+

i (r ′). FromMSTwe know that
at site i

ψ+
i (r i ) =

∑

L

Bi
L(ki )R�(ri )YL(r̂ i )

ψ−
f (r i ) =

∑

L

[

Bi
L(k f )

]∗
R�(ri )YL(r̂ i ) , (2.103)

so that at site i we can write in general

�(r i ) =
∑

ΛΛ′

∑

Λ′′
�ΛΛ′(ri )G(Λ,Λ′,Λ′′)YΛ′′(r̂ i ) (2.104)

where G(L , L ′, L ′′) is the usual Gaunt coefficient. Inserting this expression and the
corresponding one for �(r ′) into (2.102), one can perform the angular integrals with
the aid of the Gaunt coefficients and be left only with the radial integrals, which are
calculated in the subroutine radialx_eels of the program phagen_scf.f. Notice also
that whenever φc(r) appears, the integral should be limited only to the cell (sphere)
of the photoabsorber.

The calculation of (2.21) proceeds along the following lines. Applying the per-
mutation operator we get four terms, a direct term, two mixed terms and a full
exchange term, according to whether no permutation, only one or both are applied
to the respective variables.

We consider first the direct term (no permutation) in (2.21). In order to make the
expression of the cross section in (2.21) resemble the usual one for electric absorption
we define the effective transition operator

Td(r1) ≡
∫

dr2ψ
+
i (r2)Vc(|r1 − r2|)[ψ−

f (r2)]∗ , (2.105)

so that the EELS cross section can be written as the imaginary part of

∫∫

dr1dr ′
1 φc(r ′

1)[Td(r ′
1)]∗G(r ′

1, r1; Eexc)Td(r1)φc(r1) . (2.106)

We now specialize the expression of the Green’s function (2.53) to the MT case
(as in (2.97)), whereby

G(r i , r ′
j ; Eexc) =

∑

LL ′
RL(r i )[τ i j

LL ′ − t i�δLL ′δi j ]RL ′(r ′
j )(1 − δi j )

+ δi j
∑

L

RL(r<
i ) t� RL(r>

i ) . (2.107)
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We see that the regular part leads to radial matrix elements of the type already
introduced in (2.102), whereas the irregular part gives rise to an expression of the
type

∑

L

∫∫

drdr ′ φc(r ′)[Td(r ′)]∗ [RL(r)RL(r ′)Θ(r ′ − r)

+ RL(r ′)RL(r)Θ(r − r ′)
]

Td(r)φc(r) , (2.108)

which lead to the same integral of (2.97), where now the transition operator Td(r)
is given by (2.105). Remembering the expansion (2.98) and putting for short �(r) =
ψ+
i (r)[ψ−

f (r)]∗ we can write this transition operator as

Td(r) = −8πκ
∑

L

(−1)�
{

IL(r)
∫ Rb

r
dr ′ KL(r ′)�(r ′)

+ KL(r)
∫ r

0
dr ′ IL(r ′)�(r ′)

}

. (2.109)

Considering the full exchange term, i.e. permuting both primed and unprimed
variables, we get

dσe

dk̂ f

= −4
k f

ki


{∫

dr1dr2

∫

dr ′
1dr ′

2

[

ψ+
i (r ′

2)
]∗

Vc(|r ′
1 − r ′

2|)ψ−
f (r ′

1)

φc(r ′
1)G(r ′

2, r2; Eexc)φc(r1)

ψ+
i (r2)Vc(|r1 − r2|)

[

ψ−
f (r1)

]∗ }
. (2.110)

Introducing the exchange transition operator

Te(r2) ≡
∫

dr1φc(r1)Vc(|r1 − r2|)
[

ψ−
f (r1)

]∗
, (2.111)

we can write (2.110) as

−

{∫∫

dr1dr ′
1

[

ψ+
i (r ′

1)
]∗ [

Te(r ′
1)
]∗
G(r ′

1, r1; Eexc)Te(r1)ψ
+
i (r1)

}

. (2.112)

Similarly, when operating only on the primed variables, we get the mixed term

∫∫

dr1dr ′
1

[

ψ+
i (r ′

1)
]∗ [

Te(r ′
1)
]∗
G(r ′

1, r1; Eexc)Td(r1)φc(r1) , (2.113)

whereas, by operating only on the unprimed variables, we get the other mixed term
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∫∫

dr1dr ′
1 φc(r ′

1)
[

Td(r ′
1)
]∗
G(r ′

1, r1; Eexc)Te(r1)ψ
+
i (r1) . (2.114)

In the expression of the total cross section, the direct and full exchange term come
with a positive sign, whereas the mixed terms come with a negative sign. These latter
should be considered together before taking the imaginary part. For what concerns
the singular part of the GF, these last three expressions can be easily calculated on
the basis of (2.97) and (2.109), mutatis mutandis. The regular part does not pose
particular problems.

All EELS integrals in the program for the regular and irregular part of the Green’s
function are calculated following the formulas presented in this section.

It remains to show that in (2.21) one can apply the operator 
 in front of the
integral. To this purpose we note that the scattering part of the GF in (2.107) is
invariant under interchange of r and r ′, provided real spherical harmonics are used,
since in this case the scattering path operator τ and the site t-matrix are symmetric
in the site and angular momentum indices. This is also true for the singular part, as
apparent from the expression in square brakets in (2.108). Moreover we note that all
the various terms in the EELS cross section can be written as

{∫∫

dr1dr ′
1

[

A(r ′
1)
]∗ 
 [G(r ′

1,r1; Eexc)
]

A(r1)
}

, (2.115)

provided the two mixed exchange terms are lamped together.
By interchanging the integration coordinates in the integrand and taking into

account the invariance property of the GF under this operation, we find that this
expression is equal to its complex conjugate

{∫∫

dr1dr ′
1 A(r ′

1)

[

G(r ′
1, r1; Eexc)

]

[A(r1)]∗
}

. (2.116)

We can therefore move the 
 sign in front of the integral.
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Chapter 3
Real Space Full Potential Multiple
Scattering Theory

Keisuke Hatada and Calogero R. Natoli

Abstract We show how to implement a Full Potential Multiple Scattering (fpms)
code based on a real-space FPMS theory valid for both continuum and bound states,
under conditions for space partitioning that are less restrictive than those applied
so far. This theory is free from the need to expand cell shape functions in spher-
ical harmonics or to use rectangular matrices. Tests of the program show that it
is able to reproduce with very good accuracy known solutions of the Schrödinger
equation. Applications to the spectroscopy of low dimensional systems, such as one-
dimensional (1D) chain like systems, 2D layered systems and 3D diamond structure
systems, where the Muffin-Tin approximation is known to give very poor results,
show a remarkable improvement toward the agreementwith experiments. The default
mode of the code uses superimposed atomic charge densities, which works satisfac-
torily in most of the applications, but with help of the es2ms interface, incorporated
in the program, one can also use self-consistent charge densities derived from the
vasp program. The program is also incorporated in the photoelectron diffraction
code msspec and parallelized for energy point.

3.1 Introduction

Multiple Scattering (MS) theory is and has been one of the techniques of election
for solving the Schrödinger Equation (SE) due to its suggestive description of the
electronic structure of solids and spectroscopic response functions, which appeals
to our physical intuition. For its implementation, one partitions the space into non-
overlapping domains (cells), solves the differential equation separately in each of

K. Hatada (B)
Department Chemie, Ludwig-Maximilians-Universität München,
Butenandtstr. 5-13, 81377 Munich, Bavaria, Germany
e-mail: keisuke.hatada@cup.uni-muenchen.de

C. R. Natoli
LNF-INFN, Via E. Fermi 40, 00044 Frascati, Italy
e-mail: calogero.natoli@lnf.infn.it

© Springer International Publishing AG 2018
D. Sébilleau et al. (eds.), Multiple Scattering Theory for Spectroscopies,
Springer Proceedings in Physics 204,
https://doi.org/10.1007/978-3-319-73811-6_3

67



68 K. Hatada and C. R. Natoli

the cells and then assembles together the partial solutions into a global solution that
is continuous and smooth across the whole space and satisfies the given boundary
conditions. The theory was proposed originally by Korringa and by Kohn and Ros-
toker (KKR) as a viable method for calculating the electronic structure of solids [1,
2] and was later extended to the calculation of bound states of polyatomic molecules
by Slater and Johnson [3] and continuum states by Dill and Dehmer [4].

A characteristic feature of the method is the complete separation between the
dynamical aspect of the systemunder consideration, represented by the cell scattering
power, from the structural aspect of the problem, that reflects the geometrical position
of the atoms in space. Another advantage of the theory is that one canwrite an explicit
form of the Green’s function (GF) (the solution of the SE with a delta-like source
term) which is essential for the description of many properties of the systems under
investigation.

For ease of computation, traditionally the KKR method has been implemented
within the so-called muffin-tin (MT) approximation, in which the potential is spher-
ically averaged inside non overlapping spheres (usually containing a physical atom)
and takes a constant value in the interstitial region. However it is known that this
approximation is only good for closed-packed and works poorly for covalently
bonded and low dimensional systems, like surfaces, sparse (and/or) layered systems
and diamond like structures [5–8]. Moreover, the introduction of empty spheres to
reduce the interstitial volume does not mitigate the problem [9]. Although in some
cases this introduction improves the calculations for X-ray Absorption Fine Struc-
ture (XAFS) and density of states (DOS) in bulk systems, where an angle-integrated
feature is probed, it still generates spurious peaks in angle resolved low-energy photo-
electron diffraction spectra, due to the unphysical diffraction caused by the potential
discontinuities between the physical and artificial scatterers.

Due to poor performance of theMT approximation, both for bound and continuum
states, investigations to overcome this approach started quite early. In their pioneering
work [10] Williams and van Morgan reformulated the MS theory for arbitrary local
potentials by partitioning the space with space filling truncated cells and applied
with success the method to a model of crystalline silicon for which exact numerical
solutions were available. The introduction of empty cells (EC) was found necessary
for the diamond type lattice of silicon in order to represent adequately the potential in
regions of substantial anisotropy and to satisfy some geometrical constraint imposed
by the re-expansion of the free GF around two sites.

They showed that the practical implementation of the method did not imply large
increases in computation with respect to the MT approach. The only point of differ-
ence was the calculation of the single site scattering power (TLL ′ matrix, no more
diagonal in the angular momentum indexes), for which they developed the vari-
able phase method to solve the SE for the truncated cell potential. However the
implications of the truncation of the angular momentum expansion necessary in the
numerical implementation of the method, posing convergence problems, were not
analyzed and remained unanswered.

Many features of the full potentialMS (FPMS) theory have limited its applications.
The need to expand the truncated potential (or, equivalently, the cell shape function)
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in spherical harmonics (SH) (giving rise to thewell knownGibbs phenomenon, like in
Fourier expansion), the need to converge internal sums arising from the re-expansion
of the free GF around two sites, entailing the use of rectangular matrices, the geo-
metrical restrictions on the space partitioning cells induced by this re-expansion, the
solution of a fairly complicated system of coupled differential equations to determine
the local (cell) solutions, based on the phase function method, the question of the
angular momentum convergence of the whole theory have all contributed to the slow
progress of the theory. In the few cases in which the FPMS theory has been applied,
the general attitude has been the empirical approach used in [10, 11]. The reader is
referred to the book of Gonis and Butler [12] (and references therein) for a discussion
on these points.

In [7] we have presented a derivation of a real-space FPMS theory, valid both
for continuum and bound states, that is free from the drawbacks described above
(in particular the need to expand cell shape functions in SH and the introduction
of rectangular matrices) under conditions for space partitioning that are less restric-
tive than those previously applied. This approach eliminates the inconveniences of
multiple scattering theory formulated in the muffin-tin approximation (MTA), while
preserving its ease and simplicity of application. We have implemented the FPMS
code based on this theory.

3.2 Multiple Scattering Theory

As anticipated in the introduction, MS theory is a method for solving the SE with an
effective (optionally complex for scattering states) potential V (r)

[∇2 + E − V (r)
]
ψk(r) = 0 , (3.1)

with incomingwave boundary conditions [13] in the case of photoemission (emission
of an electron of wave-vector k into a continuum state) or photoabsorption (obtained
by integrating over all photoemission angles). When dealing with bound states one
instead imposes the usual boundary condition that limr→∞ ψ(r) = 0, dropping the
unnecessary index k. We use throughout Rydberg units for energies and atomic units
for lengths.

Through the introduction of the free GF G+
0 (r − r ′) obeying the equation

[∇2 + E
]
G+

0 (r − r ′) = δ(r − r ′) , (3.2)

one can transform the differential equation with boundary conditions into an integral
problem known as the Lippmann–Schwinger equation (LSE)

ψk(r) = eik·r +
∫

G+
0 (r − r ′) V (r ′)ψk(r ′) d3r ′ , (3.3)
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Fig. 3.1 Partition of space in non overlapping cells compared with a MT partition

where the inhomogeneous term eik·r is set to zero when dealing with bound states,
in which case k = i

√|E | in the analytical continuation of G+
0 .

In Chap.2 of this book a method of solution of this equation in the framework of
MS theory has been given. We present here an alternative method that will allow us
to highlight some additional features of MS equations.

In order to solve (3.3), one introduces a partition of the space into non overlapping
domainsΩ j , called cells, and at the same time defines a partition of the potential that
follows that of the space, so that V (r) = ∑

j v j (r), where v j (r) coincides with V (r)
within the cell Ω j and is zero outside. We make the assumption that the potential is
short-ranged, in the sense that it behaves as 1/r2+ε with positive ε at great distances.
We also assume that a finite neighborhood around the origin of each cell lies in the
domain of the cell. Figure3.1 illustrates the partition of space in the case of a five
atoms in tetrahedral coordination compared with a MT partition. The cells are BCC
Voronoi polyhedra. Empty cells (EC) are introduced in order to cover the regions of
space in which the potential is not negligible.

We start from the following identity involving surface integrals

N∑

j=1

∫

Sj

[
G+

0 (r − r ′)∇ψk(r ′) − ψk(r ′)∇G+
0 (r − r ′)

] · n j dσ
′
j

=
∫

So

[
G+

0 (r − r ′)∇ψk(r ′) − ψk(r ′)∇G+
0 (r − r ′)

] · no dσ
′
o , (3.4)

valid for all r lying in the neighborhood of the origin of each cell. HereΩo = ∑
j Ω j ,

with surface So. We choose the number of cells N in such a way as to cover the region
of space beyond which the potential reaches its asymptotic behavior.

To proceed further, we remember the following expansion of the GF

http://dx.doi.org/10.1007/978-3-319-73811-6_2
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G+
0 (r − r ′; E) =

∑

L

JL(r; k)H̃+
L (r ′; k) (r < r ′)

=
∑

L

JL(r ′; k)H̃+
L (r; k) (r > r ′) , (3.5)

where J+
L (r ′; k) = j�(kr) YL(r̂), H̃

+
L (r ′; k) = −i h+

� (kr)YL(r̂), j�(kr) and h+
� (kr)

being respectively the Bessel and Hankel function of the first kind (outgoing wave
behavior at great distances), following the definition of [14] (Chap.2, (2.20) and
footnote).

We now introduce the functionsΦL(r)which are local solutions of the SE behav-
ing as JL in the limit r → 0. They form a complete set of basis functions such that
the global scattering wave function can be expanded inside the cell region as [15]

ψk(r) =
∑

L

AL(k)ΦL(r) =
∑

LL ′
AL(k)RL ′L(r)YL ′(r̂) . (3.6)

Using the expansions (3.5) referred to the origin of cell i located at Ri , so that
G+

0 (r i − r ′
i ) = ∑

L JL(r i<)H̃+
L (r i>), taking r i = r − Ri near the origin, we readily

arrive at the MST compatibility equations for the amplitudes Ai
L(k) in cell i :

∑

j L ′
Hi j

LL ′ A
j
L ′(k) = YL(k̂)eik·Ri (k/π)1/2 = I iL(k) , (3.7)

where

Hi j
LL ′ =

∫

Sj

[ H̃+
L (r i )∇ΦL ′(r j ) − ΦL ′(r j )∇H̃+

L (r i ) ] · n j dσ j . (3.8)

The term I iL(k) = i�YL(k) eik·Rio

√
k
π
comes from the surface integral over So in the

rhs of (3.4), taking into account the asymptotic form of ψk(r ′) in this region when
normalized to one state per Rydberg (we refer for details to the Appendix A of [16]).

The usual derivation of the MS equations now proceeds by re-expanding H̃+
L (r i )

around cell j in order to calculate the surface integrals over the various surfaces Sj ,
when j �= i , using the relation

H̃+
L (r i ) =

∑

L ′
Gi j

LL ′ JL ′(r j ) (Ri j > r j ) , (3.9)

where Gi j
LL ′ are the usual free electron propagator in the site and angular momentum

basis (KKR real space structure factors) and Ri j = |Ri − R j |. Unfortunately this re-
expansion introduces a further expansion parameter L ′ into the theory (with related
convergence problems) that is actually unnecessary, as we are going to show.

http://dx.doi.org/10.1007/978-3-319-73811-6_2
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In fact, provided Ri j > r j , one can show that the re-expansion (3.9) is absolutely
and uniformly convergent in the angular domain [7]. In order to take advantage of this
property, we impose the restriction that the partition of the space in cells satisfies the
requirement that the shortest inter-cell vector Ri j joining the origins of the nearest-
neighbor cells i and j , is larger than any intracell vector ri or r j , when r is inside
cell i or j . If necessary, empty cells can be introduced to satisfy this requirement.

We observe now that the integrals over the surfaces of the various cells j can be
calculated over the surfaces of the corresponding bounding spheres (with radius R j

b )
by application of the Green’s theorem, since the potential is taken to be zero outside
the domain of the cell. Due to the uniform convergence of the re-expansion (3.9) we
obtain the following relations by integrating term by term

∫

Sj

YL ′(r̂ j ) H̃
+
L (r i ) dσ j = (R j

b )
2 Gi j

LL ′ j�′(kR j
b )

∫

Sj

YL ′(r̂ j )∇ j H̃
+
L (r i ) · n j dσ j = (R j

b )
2 Gi j

LL ′
d

dR j
b

[
j�′(kR j

b )
]

, (3.10)

which are exact for all L , L ′, as confirmed also by numerical tests. By inserting in
(3.7) the expression for the basis functions expanded in spherical harmonicsΦL (r) =∑

L ′ RL ′L(r)YL ′(r̂), we finally obtain

∑

L ′
Ei
LL ′ Ai

L ′(k) −
j �=i∑

j,L ′,L ′′
Gi j

LL ′′ S
j
L ′′L ′ A

j
L ′(k) = I iL(k) , (3.11)

where, defining W [ f, g] = f g′ − g f ′,

ELL ′ = R2
b W [−ikh+

� , RLL ′ ]; SLL ′ = R2
b W [ j�, RLL ′ ] , (3.12)

which reduce to diagonal matrices for MT potentials, since in this case RLL ′(r) =
R�(r)δLL ′ . Equation (3.11) looks formally similar to the usual MSE. However we
notice that the sum over L ′′ runs over the angular momentum components of the basis
functions and is not affected by convergence constraints related to the re-expansion
(3.9). Therefore the only angular momentum indexes appearing in (3.11) are those
of the radial functions RLL ′ in the expansion (3.6).

We nownote that the truncation value for both indexes is the same and corresponds
to the classical relation �max = kR j

b , where R j
b is the radius of the bounding sphere

of the cell at site j . This is true for the index L , which is a reminder that the basis
function ΦL behaves like j�(kr)YL near the origin. Due to the properties of the
spherical Bessel functions, when � � kR j

b , ΦL becomes very small inside the cell,
decreasing like [(2� + 1)!!]−1. Therefore its weight in the expansion (3.6) will be
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negligible. The other index L ′, aswill be clear from the following (3.17),measures the
response of the potential inside the cell to an incident wave JL of angular momentum
L into an outgoing wave of angular momentum L ′. Due to the same argument as
above, familiar to scattering theory, the scattering matrix T j

L ′L will decrease like
[(2� + 1)!!(2�′ + 1)!!]−1 (see Appendix B of [7] for �, �′ � kR j

b ). As a consequence
E j and S j can be considered to be square matrices.

To proceed further, we introduce new expansion coefficients defined by

Ci
L(k) =

∑

L ′
Ei
LL ′ Ai

L ′(k) , (3.13)

implying that we use new basis functions given by

ΨL(r i ) =
∑

L ′
[E]−1

L ′L ΦL ′(r i ) , (3.14)

so that ∑

L

Ci
L(k) ΨL(r i ) =

∑

L

AL(k)ΦL(r i ) . (3.15)

Then (3.11) can be rewritten as

Ci
L(k) = I iL(k) +

∑

j �=i

∑

L ′L ′′
Gi j

LL ′ T
j
L ′L ′′ C

j
L ′′(k) , (3.16)

putting
T j
LL ′ =

∑

L ′′
S j
LL ′′ [E j ]−1

L ′′L ′ . (3.17)

The comparisonof (3.16)with (2.36) ofChap.2 shows thatΨL(r i ) is a local scattering
function, so that the cell T -matrix is given by the relation (3.17) in terms of the local
solutions

ΦL(r) =
∑

L ′
RL ′L(r)YL ′(r̂) . (3.18)

A more direct way to derive (3.17) is to remember the definition of the cell T -
matrix T j

L ′L as the scattering amplitude into an outgoing spherical wave of angular
momentum L ′ in response to an exciting spherical wave of angular momentum L .
This can be expressed in terms of the local scattering wave function ΨL(r j ) obeying
the LSE (3.3) for one cell j . Omitting for simplicity the index j in r j , we have

ΨL(r) = JL(r; k) +
∫

G+
0 (r − r ′) v j (r ′) ΨL(r ′) d3r ′ , (3.19)

http://dx.doi.org/10.1007/978-3-319-73811-6_2
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where JL(r; k) is the spherical wave component of angular momentum L of the
incident plane wave eik·r = 4π

∑
L i

�YL(k̂)JL(r; k). Then using (3.5) in the limit
r → ∞, we obtain the relation

ΨL(r) = JL(r; k) +
∑

L ′
H̃+

L ′(r; k) T j
L ′L , (3.20)

putting T j
L ′L = ∫

JL ′(r ′; k) v j (r ′) ΨL(r ′; k) d3r ′. From this expression, using (3.14)
and transforming the volume integral into a surface integral by application of Green’s
theorem, we derive (3.17).

Summarizing, in order to generate a solution of the LSE, we need to calculate the
local solutions ΦL(r) and solve (3.16) for the coefficients Ci

L .

3.2.1 The Local Solutions

One of the key ingredients of our approach to FPMS [7] is the new scheme to generate
local basis functions for the truncated potential. Starting from the SE written in
polar coordinates, after elimination of the radial first derivative, the local solution
PL(r) = r ΦL(r) satisfies the equation

[
d2

dr2
+ E − V (r, r̂)

]
PL(r, r̂) = 1

r2
L̃2PL(r, r̂) , (3.21)

where L̃2 is the angular momentum operator, whose action on PL(r, r̂) can be cal-
culated in terms of the expansion ΦL(r) = ∑

L ′ RL ′L(r)YL ′(r̂) as:

L̃2PL(r, r̂)=
∑

L ′
�′(�′ + 1)r RL ′L(r)YL ′(r̂) , (3.22)

and we have called V (r, r̂) the truncated cell potential, which coincides with the true
potential inside the cell and is zero outside. We remind that the index L of PL(r) is
reminiscent of its behaviour at the origin: limr→0PL(r) ∼ JL(r). Its expansion in SH
does not pose convergence problems, since it is continuous with its first derivative;
however we do not expand the potential, but we use an extension of the Numerov’s
method to solve it. In fact (3.21) in the variable r looks like a second order radial
equation with an inhomogeneous term. Accordingly, putting f Li, j = PL(ri , r̂ j ) and
dropping for simplicity the index L , the associated three point recursion relation in
Numerov approach is

Ai+1, j fi+1, j − Bi, j fi, j + Ai−1, j fi−1, j = gi, j − h6

240
f vi
i, j , (3.23)
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where,

Ai, j = 1 − h2

12
vi, j

Bi, j = 2 + 5h2

6
vi, j = 12 − 10Ai, j

vi, j = V (ri , r̂ j ) − E

gi, j = h2

12
[qi+1, j + 10qi, j + qi−1, j ]

qi, j = 1

r2i

∑

L ′
�′(�′ + 1)ri RL ′L(ri )YL ′(r̂ j ) . (3.24)

Here i is the index of the radial mesh points and j the index of the angular points
on a Lebedev surface grid [17]. Accordingly, ri RL ′L(ri ) = ∑

j w j PL(ri , r̂ j )YL ′(r̂ j ),
where w j is the weight function for angular integration associated with the chosen
grid. The number of surface points NLeb is given by NLeb ≈ (2�max + 1)2/3 as a
function of the maximum angular momentum used [18], taking into account that one
has to integrate the product of two spherical harmonics.

As it is, we cannot use (3.23) to find fi+1, j by iteration, from the knowledge of
fi, j and fi−1, j at all the angular points, since the inhomogeneous term qi+1, j is not
expressible in terms of fi+1, j due to the last line of (3.24), calculated at the radial
mesh point i + 1.

In order to eliminate this point from the expression of gi, j , we observe that

gi, j = h2

12

[
qi+1, j + 10qi + qi−1, j

]

= h2

12

[
qi+1, j − 2qi + qi−1, j

h2
h2 + 12qi, j

]
. (3.25)

The second order central difference is given by [19]

qi+1 − 2qi + qi−1 = h2q ′′
i + h4

12
qiv
i + h6

360
qvi
i + h8

20160
qvi i i
i + · · · (3.26)

so that

gi, j ∼ h2

12

[(
q ′′
i, j + h2

12
qiv
i, j

)
h2 + 12qi, j

]
, (3.27)

omitting errors of order h6 and higher.
Now for the second derivative q ′′

i, j we use the backward formula [19]

q ′′
i, j = qi, j − 2qi−1, j + qi−2, j

h2
+ hq ′′′

i, j − 7h2

12
qiv
i, j , (3.28)
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to avoid the contribution of the point i + 1. Inserting (3.28) into (3.27)

gi, j ∼ h2

12

[
13qi, j − 2qi−1, j + qi−2, j

] + h5

12
q ′′′
i, j − h6

24
qiv
i, j , (3.29)

which is the formula we wanted to arrive at. Therefore our modified Numerov pro-
cedure becomes:

Ai+1, j fi+1, j − Bi, j fi, j + Ai−1 fi−1, j = gi, j + h5

12
q ′′′
i, j , (3.30)

where,

Ai, j = 1 − h2

12
vi, j

Bi, j = 2 + 5h2

6
vi, j = 12 − 10Ai, j

gi, j = h2

12

[
13qi, j − 2qi−1, j + qi−2, j

]
, (3.31)

which now needs three backward points to start.
The appearance of the third r derivative of q ′′′

i in (3.30), which is strictly infinite
at the step point, does not cause practical problems. Although not necessary, one can
always assume a smoothing of the potential at the cell boundary à la Becke [20],
reducing at the same time the mesh h, so that the error at that particular step point is
negligible.

In this way, at the cost of a larger error O(h5) compared to the original Numerov
formula and the introduction of a further backward point (three points i , i − 1 and
i − 2 are now involved in (3.31)), the three-dimensional discretized equation can be
solved along the radial direction for all angles in an onion-like way, provided the
expansion (3.22) is performed at each new radial mesh point to calculate qi, j . We
use a log-linear mesh ρ = α r + β ln r , to reduce numerical errors around the origin
and the bounding sphere [21]. In reality, in the program we divide the radial mesh
into two regions, the first one ranging from the origin to the radius of the sphere
inscribed in the cell (usually the MT radius), the second one from this radius to the
bounding radius of the cell. The above method is used only in this second region,
which crosses the discontinuities of the truncated potential, whereas in the first region
one can safely expand the potential in spherical harmonics, due to the continuity of
its first derivatives and the fact that only few multipoles are appreciable. Here we
can project (3.21) onto YL(r̂) obtaining

∑

L ′′

[(
− d2

dr2
+ �(� + 1)

r2
− E

)
δLL ′′ + VLL ′′(r)

]
XL ′′L ′(r) , (3.32)



3 Real Space Full Potential Multiple Scattering Theory 77

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

r 
R

e 
( 

Φ
 (

 r
 )

 )
 (

 in
 a

. u
. )

r ( in a. u. )

θ = 134.74 deg, ϕ = −7.65 deg

Exact
Calc.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

r 
R

e 
( 

Φ
 (

 r
 )

 )
 (

 in
 a

. u
. )

r ( in a. u. )

θ = 171.78 deg, ϕ = −45 deg

Exact
Calc.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

r 
R

e 
( 

Φ
 (

 r
 )

 )
 (

 in
 a

. u
. )

r ( in a. u. )

θ = 135 deg, ϕ = 90 deg

Exact
Calc.

−1.2

−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0  0.5  1  1.5  2  2.5  3  3.5  4  4.5

r 
R

e 
( 

Φ
 (

 r
 )

 )
 (

 in
 a

. u
. )

r ( in a. u. )

θ = 108.86 deg, ϕ = −6.99 deg

Exact
Calc.

Fig. 3.2 Comparison between the real part of the analytical solution of the truncated potential well
described in the text with the one generated by the 3D Numerov method at four different polar
angles

where XL L ′(r) = r RL L ′(r). This equation is then solved by the matrix Numerov
method with a Gaussian elimination procedure. We refer for details to [7]. This
method of generating PL(r) is simple, fast, efficient, valid for any shape of the cell
and reduces to the minimum the number of SH in the expansion of the scattering
wavefunction. The cell T -matrix is then calculated according to (3.17).

We have checked that themethodworks by comparingwith known solutions of the
SE [7]. As a further example, Fig. 3.2 shows the comparison between the analytical
and the numerical solution for certain directions in the special case of the truncated
potential V (x, y, z) = a θ(|x | − Rc) + b θ(|y| − Rc) + c θ(|z| − Rc), where θ is the
step function, Rc = 3.78au= 2.0Åand a = −0.05, b = −0.1, c = −0.15 Ryd, for
an energy E = 0.3 Ryd (for the solution see [22]). For this comparison we used an
�max = 7 and a number of surface points on the Lebedev grid equal to 266. For other
comparisons we refer the reader to [7].

Summarizing, contrary to past approaches, we have avoided the double series
expansion of the free GF around two centers, so that the angular momentum indexes
LL ′ are the sameas those of theT -matrixT j

LL ′ andoriginate from the function RL ′L(r)
in (3.6). As a consequence, the MS matrix (I − G0T) can be considered as square
and we show in the following section that in the � → ∞ its inverse exists, providing
a firm ground for the use of FPMS theory as a viable method for electronic structure
calculations and spectroscopic response functions, with the ease and versatility of
the correspondingMT theory. The truncation parameter in the SH expansion is given
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by the classical relation �max = kRb, where k is the electron wavevector and Rb is
the radius of the bounding sphere of the scattering cell.

We refer to [7] for details on how to use an outer sphere region in order to avoid
introducing too many empty cells to cover the region of space where the asymptotic
behavior of the scattering wave function is not yet reached or to use a constant
potential (instead of zero) outside the cell in order to accelerate the L-convergence.
The final result obviously does not depend on this constant.

3.2.2 The L-Convergence of Full Potential Multiple
Scattering Theory

The inversion of theMSmatrix in (3.16) is usually done by series expansion,whereby

(I − G0T)−1 =
∑

n

(G0T)n . (3.33)

Due to the meaning of the matrix
[
Gi j

LL ′

]
, describing a free particle propagation of

spherical waves from site i to site j , and of T i
LL ′δi j , giving the scattering amplitude

of the potential at site i , a photoemission process is usually seen as a propagation of
the excited photoelectron from site to site, intercalated by scattering events due the
atomic potentials. Hence the name of the theory.

However, while this series is absolutely convergent for nonoverlapping MT
spheres, provided the spectral radius of thematrixG0T (i.e. themodulus of its highest
eigenvalue) is less than one [23], it is known to diverge for the case of space-filling
cells due to the asymptotic relation (see Appendix B of [7])

|G��T��| ≈ Rb

(
2Rb

Ri j

)2�+1

, (3.34)

since in this case 2Rb > Ri j , at least for nearest neighbors.
Due to this asymptotic behavior there is a widespread belief that in the case of

space-filling cells the limiting procedure of inverting exactly an � truncated MS
matrix does not converge for � → ∞. We want to show here that this is not the case,
provided a slight modification of the free propagator G0 is adopted.

To this purpose, let us start by solving the LSE (3.3) using the theory of integral
equations, before applying the method of MST. We cannot apply Fredholm theory
[24] to the solution of (3.3) as it stands, since the kernel for this integral equation

K(r ′, r) = − 1

4π

eik·|r ′−r|

|r ′ − r| V (r) , (3.35)
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is such that

Tr(K†K) =
∫∫

drdr ′ K∗(r ′, r)K(r ′, r)

=
(

1

4π

)2 ∫∫
drdr ′ V 2(r)

|r ′ − r|2 , (3.36)

and obviously diverges.
However, following the expedient of Sect. 10.3, p. 280 of [25], we can multiply

the LSE (3.3) by |V (r ′)|1/2, writing at the same time V (r) = |V (r)|v(r), where
v(r) is a sign factor, equal to +1 where the potential is positive and to −1 where it
is negative. Then the modified equation reads

ψs(r ′; k) ≡ |V (r ′)|1/2 ψ(r ′; k)
= |V (r ′)|1/2 eik·r ′

+ |V (r ′)|1/2
∫

G+
0 (r ′ − r; k) |V (r)|1/2 v(r)ψs(r; k) d3r . (3.37)

whose kernel is

Ks(r ′, r) = − 1

4π
|V (r ′)|1/2 e

ik·|r ′−r|

|r ′ − r| |V (r)|1/2 v(r) , (3.38)

Consequently

Tr(K†
sKs) =

∫∫
drdr ′ K∗

s (r
′, r)Ks(r ′, r)

=
(

1

4π

)2 ∫∫
drdr ′ V (r) |V (r ′)|

|r ′ − r|2

≤
(

1

4π

)2 ∫∫
drdr ′ |V (r)| |V (r ′)|

|r ′ − r|2 , (3.39)

is finite for a large class of potentials (including the molecular ones). The kernel Ks

is therefore of the Hilbert–Schmidt type and Fredholm theory for L2-kernels can
be applied. We can then obtain the solution of (3.3) simply by dividing ψs(r ′; k)
by |V (r ′)|1/2, except at points for which |V (r ′)|1/2 = 0, where it can be defined by
continuity.

Now, the application ofMST to the LSE of (3.19) for the scatteringwave functions
ΨL(r) transforms this equation into the infinite set of algebraic equations (3.16) for
the coefficients CL(k), which in matrix form can be written as

(I − K)C = A . (3.40)

putting K = G0T and calling A the vector I iL(k).
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The matrixK here is not an operator of the Hilbert–Schmidt type, since Tr (K†K)

diverges, due to (3.34) and in keeping with (3.36). However, following the procedure
used above in passing from (3.3) to (3.37), we multiply both sides of (3.40) by T1/2

obtaining the new equation
(I − Ks)C′ = A′ , (3.41)

where C′ = T1/2C, A′ = T1/2A and

Ks = T1/2G0T1/2 . (3.42)

In order to calculate the square root of the matrix T, we first find a similarity
transformation S such that � = STS−1 is diagonal. Then we put T1/2 = S−1�1/2S
so that T1/2T1/2 = S−1�S = T. These operations with the infinite matrix T can be
safely performed since Tr (T†T) < ∞, as can be seen from the asymptotic behavior
of its matrix element in Appendix B, (B10) of [7]. Consequently the limiting proce-
dure of truncating the matrices, performing the various operations and then taking
the limit to infinite dimensions, is well defined.

By virtue of (3.39), one can show that the kernel Ks is such that Tr (K†
sKs) is

finite, provided a slight modification of the free propagator G0 is used (we refer to
Appendix G of [7] for details). Following this modification, in order to calculate the
matrix elements of Ks , one should use the displaced cell approach [26], according
to which

[Ks]i jLL ′ =
∑

Λ

{
∑

ΛΛ′

(
T i
LΛ

)1/2
JΛΛ(b)GΛΛ′(Ri j + b)

(
T i

Λ′L ′
)1/2

}

, (3.43)

provided that the vector b is such that |Ri j + b| > Ri
b + R j

b and the sums inside the
curly brackets is performed first. Here JΛΛ′(b) is the usual translation operator in
MST [26]. For b = 0 this equation reduces to the customary one, since JΛΛ′(0) =
δΛΛ′ . As is well known (see [24]), Tr (K†

sKs) < ∞ is the condition for the existence
of the determinant |I − Ks | necessary to define its inverse, since by Hadamard’s
inequality, for any finite Lmax, one has

|I − Ks |2 ≤ Π
Lmax
L

(

1 +
Lmax∑

L ′
| [Ks]LL ′ |2

)

, (3.44)

and in the limit �max → ∞ the infinite product will converge if
∑

LL ′ | [Ks]LL ′ |2 ≡
Tr (K†

sKs) ≤ N < ∞ [27].
This means that the sequency of inverse matrices obtained by inverting the finite

matrices I − Ks truncated at a certain �max converges absolutely in the limit �max →
∞. Once C′ is obtained, the original problem is solved by putting C = T−1/2C′.
Moreover the scattering path operator τ = (I − G0T)−1 is given by
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τ = T1/2 (I − Ks)
−1 T1/2 . (3.45)

It is worth noting here that the customary way of inverting the matrix I − Ks by
series expansion, using the formal relation

(I − Ks)
−1 =

∑

n

(Ks)
n . (3.46)

is not always viable. In fact, even if the kernel Ks is of the Hilbert- -Schmidt type
but Tr (K†

sKs) ≥ 1, the series in (3.46) diverges, whereas the process of truncating
and taking the inverse always converges. On the contrary, the series

∑
n K

n is always
divergent, since Tr (K†K) is infinite.

In practical numerical applications one does not have to worry about modifying
the structure constants as indicated by (3.43) since, for the cell geometries ordinarily
encountered in the applications (see the restrictions described in Sect. 3.2 soon after
(3.9)), �-convergence in the �-truncation procedure of theMSmatrix shows up much
earlier than what predicted by the onset of divergence in (3.34), written with the
unmodified structure constantsGi j

LL ′ . An example of this behaviorwas found in [5] for
theGeCl4 molecule. Similar resultswere found for other compounds. This behavior is
probably indicative of the fact that the sequence of the inverse (I − G0T)−1, truncated
as a function of �max, is asymptotic in character, as is the expansion (3.33). All this
justifies the empirical attitude of many authors of MST to truncate the MSmatrix (or
the MS series) to a certain �max and then check if the results change by increasing
this value by one or two.

3.2.3 Construction of the Green’s Function in MST

One of the major advantages of MST is the possibility to write the Green’s function
of the system, solution of the SE with a source term

(∇2 + E − V (r) )G(r, r ′; E) = δ(r − r ′) . (3.47)

in an explicit form. This is important both for writing down spectroscopic response
functions (see [16]) and for the calculation of ground state properties through contour
integration in the complex energy plane (see e.g. [11] and references therein).

In the derivation of the explicit expression for the GF, we shall follow the method
used in [28] for the MT case, generalizing it to the full potential case.

First of all, we need an expression for the GF in the case of an isolated cell. If we
write

G+(r − r ′) =
∑

LL ′
YL(r̂)gLL ′(r, r ′)YL ′(r̂ ′

) , (3.48)
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the radial part gLL ′(r, r ′) of the GF is solution of the equation

∑

L ′′
DL ′L ′′(r) gL ′′L(r, r

′) = 1

r2
δ(r − r ′)δLL ′ , (3.49)

where the operator DL ′L ′′(r) is given by

DL ′L ′′(r) =
[(

D(r) + E − �(� + 1)

r2

)
δL ′L ′′ − VL ′L ′′(r)

]

D(r) = 1

r2
d

dr
r2

d

dr
. (3.50)

By projecting the single site regular solution (3.18) of the SE onto the SH YL(r̂) we
easily see that ∑

L ′′
DL ′L ′′(r) RL ′′L(r) = 0 . (3.51)

We also introduce the irregular solution H̃L ′L(r) that matches smoothly to h̃L(r)δLL ′

at the bounding sphere of the cell, so that

∑

L ′′
DL ′L ′′(r) H̃L ′′L(r) = 0 . (3.52)

From (3.51) and (3.52) we easily derive that

d

dr

∑

L ′′

(
r2W [H̃L ′′L , RL ′′L ′ ]

)
= 0 . (3.53)

In analogy with the general method of second order equations with a δ-function
source term, we try

gL ′L(r, r
′) =

∑

ΛΛ′
RΛΛ′(r<)cΛ′L H̃ΛL ′(r>) , (3.54)

where r< (r>) is the lesser (greater) of r, r ′, and determine the coefficients cΛΛ′ from
the condition that the jump of the first derivatives in r and r ′ of gL ′L(r, r ′) when
r = r ′ be 1/r2δLL ′ . In other words we require that

[
d

dr
gL ′L(r, r

′) − d

dr ′ gL ′L(r, r
′)
]∣
∣∣∣
r=r ′

=
∑

ΛΛ′
cΛ′LW [H̃Λ′L ′ , RΛΛ′ ]|r=r ′ = 1

r2
δLL ′ .

(3.55)
Due to (3.53) we can calculate this expression at the bounding sphere of the cell with
radius Rb, so that
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∑

Λ

R2
b W [h̃L ′, RL ′Λ]cΛL = δLL ′ . (3.56)

Therefore cLL ′ = [E]−1
LL ′ due to (3.12). Hence from (3.48), in view of (3.14), we find

G+(r − r ′) =
∑

L

ΨL(r<) H̃L(r>) . (3.57)

putting H̃L(r) = ∑
L ′ H̃L ′L(r) YL ′(r̂). This expression gives the GF for a single cell.

In order to find the GF for a cluster, we assume that

G+(r i + Ri , r j + R j ) =
∑

LL ′
ΨL(r i )G

i j
LL ′ΨL ′(r j ) + δi j

∑

L

ΨL(r<)H̃L(r>) ,

(3.58)
and try to determine the matrix elements Gi j

LL ′ starting from the identity

N∑

j=1

∫

Sj

[
G+

0 (r − r1)∇r1G
+(r1 − r ′) − ∇r1G

+
0 (r − r1)G+(r1 − r ′)

] · n j dσ j

=
∫

So

[
G+

0 (r − r1)∇r1G
+(r1 − r ′) − ∇r1G

+
0 (r − r1)G+(r1 − r ′)

] · no dσo ,

(3.59)

where the surface integration is over the variable r1. This identity can also be obtained
on the basis of (3.2) and (3.47) for the free and cluster GF. It is similar to (3.4) when
one replaces the wave function ψk(r) with the cluster GF (3.47). For simplicity, we
neglect again the contribution of the outer surface So, imagining to cover the space
where the potential is substantially different from zero by N cells.

We have two cases:

(a) r and r ′ inside cell i
(b) r inside cell i and r ′ inside cell k (i �= k)

In case (a) we take r and r ′ very near the origin of cell i . Then, using (3.5) and (3.58),
we find

∑

LL ′

∑

L ′′
JL(r i ) ΨL ′(r ′

i ) ×
{ ∑

j �=i

∫

Sj

[ H̃+
L (r i )∇ΨL ′′(r j ) − ΨL ′′(r j )∇ H̃+

L (r i ) ] · n j dσ j ]G jn
L ′′L ′ +

∫

Si

[ H̃+
L (r i )∇ΨL ′′(r i ) − ΨL ′′(r i )∇ H̃+

L (r i ) ] · n j dσ j ]Gnn
L ′′L ′

}
= 0 .

(3.60)
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We now observe that in this equation we can move the integral from the surface
Sj to the corresponding bounding sphere with radius R j by Green’s theorem so that
ΨL(r j ) is given by (3.20). Then, using (3.9) to re-expand H̃+

L (r i ) around another
center j , remembering that

∫

Sj

[ H̃+
L ′(r j )∇JL(r j ) − JL(r j )∇ H̃+

L ′(r j ) ] · n j dσ j = −δLL ′ , (3.61)

and putting to zero the expression inside curly brackets, we obtain the condition

∑

j

∑

ΛΛ′
Gi j

LΛ T j
ΛΛ′ G

j i
Λ′L ′ − Gi i

LL ′ = 0 . (3.62)

Notice that the KKR structure factors Gi j
LL ′ are not to be confused with the full GF

factors Gi j
LL ′ .

In case (b) we take r and r ′ very near the origin of cells i and k respectively, so
that we have

∑

LL ′

∑

L ′′
JL(r i ) ΨL ′(r ′

k) ×
{ ∑

j �=i

∫

Sj

[ H̃+
L (r i )∇ΨL ′′(r j ) − ΨL ′′(r j )∇ H̃+

L (r i ) ] · n j dσ j ]G jk
L ′′L ′ +

∫

Si

[ H̃+
L (r i )∇ΨL ′′(r i ) − ΨL ′′(r i )∇H̃+

L (r i ) ] · ni dσi ]Gik
L ′′L ′ +

∫

Sk

[ H̃+
L (r i )∇H̃L ′′(rk) − H̃L ′′(rk)∇ H̃+

L (r i ) ] · nk dσk]
}

= 0 . (3.63)

Using the same procedure as above we find the condition

∑

j

∑

ΛΛ′
Gi j

LΛ T j
ΛΛ′ G

jk
Λ′L ′ − Gik

LL ′ + Gik
LL ′ = 0 . (3.64)

Putting together (3.62) and (3.64) we find that the matrix Gik
LL ′ satisfies the Dyson

equation
Gik
LL ′ = Gik

LL ′ (1 − δik) +
∑

j

∑

ΛΛ′
Gi j

LΛ T j
ΛΛ′ G

jk
Λ′L ′ . (3.65)

This equation constitutes the extension of the customary relation for the MT case to
the full potential (FP) case.
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3.2.4 Spectroscopic Response Functions

In Chap.2 it has been shown that the photon absorption cross-section from a core
state (ignoring for simplicity spin-orbit coupling) can be written in terms of the GF
(3.58), even in case of complex absorptive potential, as

σtot(ωq) = −4πα �ωq

∑

mcσc

�
∫
〈φc

Lc
(ro)|eq · r|G(r, r ′; E)|eq · r ′|φc

Lc
(ro)〉 drdr ′,

(3.66)
where �ωq is the impinging photon energy, o is the site of the photoabsorber and
α ≈ 1/137 is the fine structure constant. From the expression (3.58) we obtain two
terms: the singular part provides the atomic absorption, whereas the regular part
gives the contribution of the environment of the absorber. This is very handy in case
of structural analysis.

The photoemission cross-section is better written in terms of new amplitudes

B j
L(k) =

∑

L ′
T j
LL ′C

j
L ′(k) , (3.67)

which imply another set of local basis functions

ψ(r j ) =
∑

L

B j
L(k)ΨL(r j ) . (3.68)

It is easily seen that, on the basis of (3.16), the new amplitudes satisfy the equation

∑

j L ′

[
T−1 − G0

]i j
LL ′ B

j
L ′(k) = I iL(k) , (3.69)

whereby, writing τ̃ = T (I − G0T)−1, we find the solution

Bo
L(k) =

∑

j L ′
τ̃
oj
LL ′ i�

′
YL ′(k̂)eik·R jo(k/π)1/2 . (3.70)

Then the photoemission cross-section is given by

dσ

dk̂
= 4π2 α �ωq

∑

mcσc

∣
∣∣∣∣

∑

L

MLcL [Bo
L(k)]∗

∣
∣∣∣∣

2

, (3.71)

where MLcL is the dipole matrix element between the initial core state and the local
basis function (3.68).

These are the formulas for photoemission and photoabsorption in the case of FP.
For their physical interpretation and other spectroscopies we refer to Chap. 2 of this
book.

http://dx.doi.org/10.1007/978-3-319-73811-6_2
http://dx.doi.org/10.1007/978-3-319-73811-6_2
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3.3 The Program

3.3.1 Features and Capabilities

The fpms code [30] focuses on the calculations of XANES spectra, but can also
calculate projected DOS and Resonant X-ray elastic Scattering [31]. It incorporates
a part of es2ms code [32], which is an interface to use charge densities and potentials
generated by electronic structure codes, notably lmto [9] and vasp [33]. fpms is
incorporated into the mxan code [34] (the so-called fp- mxan code), to perform
structural fitting of XANES spectra without the need of the MT approximation [35].
fpms has an option to print out T -matrices to feed the input of the msspec code
[36], so that one can perform full potential calculations for photoelectron diffraction.
Point group symmetries can be specified so as to reduce the computational cost
considerably. Truncation of cells may be checkedwith an interactive animation based
on OpenGL library [37].

3.3.2 Requirements

The code is platform independent, it may run on Linux, Windows and Mac OS X.
The prepared executable is provided only for the serial mode, and it is stand alone,
no additional programs or libraries are required. Instead, the parallel version must
be compiled by users on their own platform. For the compilation, one needs Fortran
2003 compilers, OpenGL, MPI [38] and LAPACK [39] and BLAS [40].
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Fig. 3.3 L2,3-edges unpolarized absorption cross-section for α-quartz, showing the comparison
between the MT and FP calculations against the experimental data [6]
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Fig. 3.4 Comparison [8] between calculated polarizedC K -edgeXANESof graphenewith a cluster
of radius 30 Å and the experimental data from [29]. α is the angle between electric field and the xy
plane. Since α = 74◦, σ ≈ 0.924σz + 0.076σx . Dashed vertical lines show the experimental peak
positions. SCF-FP, non-SCF-FP andSCF-MT. (non-)SCF represents the results of calculations using
(non-)self-consistent potential in the Full Potential (FP) and Muffin-Tin (MT) version of multiple
scattering theory

3.4 MT Versus FP Calculations

For electronic and structural studies of materials, it is important to go beyond theMT
approximation, especially for systems with open structures like layers or diamond
structure.

Figure3.3 shows the comparison between the MT and FP calculations against
the experimental data, obtained by an electron energy loss (EELS) technique [6].
It is known that EELS spectra, in the limit of small momentum transfer and high
energy of the incoming beam, can be described as an absorption spectrum in the
dipole approximation with polarization given by the momentum transfer vector. We
see that MT calculation gives a very poor result.

In Fig. 3.4 [8], the experimental absorption spectrum [29] for graphene is shown
along with the present calculations done for different potential approximations. The
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Fig. 3.5 Ti K -edge absorption in TiO2 (Anatase phase)

SCF potential has been transferred fromvasp code. The size of radius of the cluster is
30 Å, indeed rather large, due to the need to describe the focusing effect of the chain
like structure of Carbon atoms. As in similar cases, the graphene layer is covered by
layers of EC from both sides. It is obvious that the FP calculations (non-SCF-FP or
SCF- FP) agree much better with experiment than the MT calculation (SCF-MT).
The differences between non- SCF-FP and SCF-FP spectra are small, indicating that
self-consistency affects XANES much less than FP corrections.

As a last example we show in Fig. 3.5 the absoprtion spectrum of TiO2 in the
Anatase phase, calculated in the MT and FP mode for a cluster of 487 atoms, in
comparison with the experimental spectrum taken from [41]. Here too, we note the
dramatic improvement brought in by the FP approach.

Finally, it instructive to show that in the case of close-packed structures the MT
approximation gives comparable results with FP programs. Figure3.6 shows the
result of a calculation of the local density of states for a cluster of 459 Cupper atoms
with a radius of 11 Å calculated in the MT approximation, compared with the same
quantity calculatedwith fpms,vasp and fp- asa programs.As anticipated, the curves
are very similar.
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Fig. 3.6 Cupper local density of states

3.5 Future Perspectives

3.5.1 Optimization

In the last version of fpms, we introduced a new way of partitioning the MS matrix
for inversion. On an Intel XEON E5-2650 V2 2.6G 8C CPU the computation time
per energy point for a Cu cluster of 233 atoms with �max = 6 was 203s without
partitioning, reducing to 13.5 with partition, with a gain of a factor of 15. We expect
an even larger gain for larger clusters.

3.5.2 Other Spectroscopies

Now UPS (Ultraviolet Photoemission Spectroscopy) code is under development
using FPMS. Implementations for STM (Scanning Tunneling Microscope) and
BEEM (Ballistic Emission Electron Microscope) are in progress as well.
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Chapter 4
KKR Green’s Function Method in Reciprocal
and Real Space

Ján Minár, Ondřej Šipr, Jürgen Braun and Hubert Ebert

Abstract The Korringa–Kohn–Rostoker (KKR) method is a very flexible band
structure technique which is based on the multiple scattering formalism. In con-
trast to many other band structure methods, which are based on a representation of
the electronic structure in terms of Blochwave functions, theKKRmethod represents
the properties of solids in terms of Green’s functions. In this chapter we demonstrate
the flexibility of the KKR method as a tool to describe spectroscopic aspects such as
x-ray absorption spectra theory and one-step model of photoemission.

4.1 Introduction to the KKR Green’s Function Method

4.1.1 General Features

Multiple scattering formalism, as it is in detail formally discussed in the first chapter
of this book, is also the basis of the Korringa–Kohn–Rostoker Green’s function
(KKR) band structure method. Over the years many developments of this method
have been performed and are recently reviewed in detail by Ebert et al. [1]. Many
methods for solving the Schrödinger equation expand thewave functions in a suitable
basis set and use theRayleigh–Ritz variational principle. Examples are the pseudopo-
tential methods which use the most simple and convenient set, i.e. plane waves, and
the modern linear band-structure methods [2] which use numerical basis functions
constructed from solutions of the Schrödinger equation for the potential inside an
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atomic cell centered at a lattice site. A disadvantage of variational methods is that
for very accurate results the number of basis functions rapidly increases unless they
are really well chosen for the physical system under consideration.

An alternative to variational methods is the KKR method, which uses multiple
scattering theory to provide an exact solution of the Schrödinger equation. This is
particularly appropriate when considering unoccupied states which can have arbi-
trarily large energies and which are very important for the spectroscopy applications
discussed in this chapter. Unlike most band structure methods, that provide the elec-
tronic wave functions and energy eigenvalues for a crystal, the KKR method is
aiming at a calculation of the single-particle Green’s function. In fact, knowledge
of the Green’s function is sufficient to calculate in a very elegant and efficient way
all relevant electronic properties of a crystal such as charge and spin densities and
to determine various spectroscopic properties. The application of multiple scattering
theory for the electronic structure problem in solids was first suggested by Korringa
[3] and, independently a bit later, by Kohn and Rostoker [4]. The starting point of this
original version of the KKRmethod, is the Lippmann–Schwinger equation for Bloch
states that involve the free-electron Green’s function, i.e. the Schrödinger equation
is formulated as an integral equation. For the ansatz of the Bloch wave function a
minimal basis set is used that is constructed from energy and angular momentum
dependent partial waves leading to an eigenvalue problem with a correspondingly
low dimensionality. Since its introduction the KKR method has been continuously
further developed leading to a wide regime of applications. Apparently, it was first
realized by Beeby that the KKR or multiple scattering formalism gives direct access
to the electronic Green’s function for a considered system [6]. The corresponding
formal developments led finally to the KKR-Green’s function (KKR-GF) method.
The last decades brought further developments for theKKR-GF theory, among others
by Faulkner [5, 7], Faulkner and Stocks [8], Györffy and Stocks [9] for the non–
relativistic case, and by Onodera and Okazaki [10], Strange et al. [11], Weinberger
[12], Strange [13] and Ebert [14] for the relativistic case. Among the outstanding
features of the KKR-GF method one has to emphasize that the Green’s function is
transparently related to single-site scattering and to structural quantities, and that
there are no preconditions with regard to the arrangement of the atoms, as e.g. spa-
tial periodicity. One can therefore separate the electronic structure calculations into
two parts. The first one supplies the solution corresponding to single-site scattering,
while the second one is dependent solely on the geometry of the system consid-
ered. Moreover, the Green’s function of any perturbed system can be connected to
the Green’s function of a corresponding reference system without perturbation by
means of the Dyson equation. These properties of the KKR-GFmethod virtually pre-
destinate it for the treatment of defect systems such as e.g. vacancies and impurities
[15], but also surfaces and interfaces [16]. A further important field of application is
disordered alloys, for which the KKR-GF Green’s function method in conjunction
with the coherent potential approximation (CPA) [17] constitutes the best available
single-site method of calculating their electronic structure [18].

In the following sections we pick up two areas of applications of the KKR-GF
method in spectroscopy. In particular, we will focus on x-ray absorption as well as
on angular resolved photoemission.
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4.1.2 Treatment of Disorder

One of the outstanding features of the KKR-GF method is that it provides the one-
electronGreen’s functionof a systemdirectlywithoutmakinguse ofBloch’s theorem.
Because of this, the KKR-GF method allows one to deal with substitutional diluted
and concentrated alloyswhen combinedwith the CPA [17, 72].Within this combined
approach (KKR-CPA) the propagation of an electron in a disordered alloy is regarded
as a sequence of scattering processes due to a random distribution of scatterers on
a lattice. The necessary average over all configurations of the atoms on the lattice
is taken by introducing an auxiliary effective CPA medium. As it illustrated by Fig.
4.1, this medium is determined by demanding that embedding of a component A or
B of an alloy AxB1−x should in the average lead to no additional scattering.

Within the CPA the configurationally averaged electronic properties of a disor-
dered alloy are represented by the auxiliary ordered CPA-medium. Making use of
the KKR formalism this can be described in turn by a corresponding single-site
t-matrix tCPA and site-diagonal scattering path operator τCPA. In case of a binary
system AxB1−x for example tCPA and τCPA for the CPA medium are determined by
the following so called CPA-condition (cf. Fig. 4.1):

xτA + (1 − x)τB = τCPA , (4.1)

where the angular momentum subscripts were omitted. In this equation the site-
diagonal component-projected scattering path operator τA given by the expression

τA = τCPA
[
1 + (

t−1
A − t−1

CPA

)
τCPA

]−1
, (4.2)

represents the scattering properties of an A atom embedded in the CPA medium,
where tA is the single-site t-matrix of this component. The scattering properties
of the component B embedded in the CPA medium is described by an analogous
equation. Obviously, the coupled set of equations for τCPA and tCPA have to be solved
self-consistently. This is usually achieved iteratively by means of the so-called CPA
cycle.

xA + xB =

Fig. 4.1 The major idea of the CPA: an auxiliary CPA medium that is meant to represent the
average over all possible configurations of a disordered substitutional alloy AxB1−x is constructed
by the requirement that embedding of an A or B atom does not give rise to additional scattering
with respect to the CPA medium
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4.1.3 Many-Body Effects: LSDA+DMFT Within the KKR
Formalism

The spectrum of one-particle excitations of a system of correlated electrons in a solid
is of central interest in condensed-matter physics. The theoretical understanding of
the excitation spectrum poses a long-standing and not yet generally solved prob-
lem. Within the independent-electron approximation the spectrum is simply given in
terms of the one-particle eigenenergies of the Hamiltonian. Analogously, it is widely
accepted to interpret ameasured photoemission spectrumby referring to the results of
band-structure calculations that are based on density functional theory (DFT) and the
local spin-density approximation (LSDA) [40, 41, 73]. Such an interpretation is ques-
tionable since there is actually no direct correspondence between the Kohn–Sham
eigenenergies and the one-particle excitations of the system [71, 73]. For an in prin-
ciple correct description of the excitation energies, the LSDA exchange-correlation
potential has to be supplemented by a non-local, complex and energy-dependent
self-energy which leads to the Dyson equation [73, 74] instead of the Schrödinger-
or Dirac-type equation within the non- or fully relativistic Kohn–Sham scheme.

To deal with this situation we have developed a generalized approach by account-
ing for electronic correlations beyond the LSDA. A general non-local, site-diagonal,
complex and energy-dependent self-energy ΣDMFT [75–77], has been included in
the fully relativistic Korringa–Kohn–Rostoker multiple scattering theory [63]. In the
following we shortly review an implementation of the LSDA+dynamical mean-field
theory (DMFT) formalism within the full potential fully relativistic multiple scatter-
ing KKR method [63, 78]. The implementation is completely self consistent with
respect to the charge density as well as to the self-energy. As the DMFT method
itself has already been described in several reviews, we focus here on those aspects
which are specific for the KKR framework and the charge self-consistency.

The central idea of the implementation of the LSDA+DMFT within the KKR
method is to account for the corresponding non-local, site-diagonal, complex and
energy-dependent self-energy ΣDMFT when solving the single site Schrödinger (or
Dirac) equation and this way to account for it via the numerical basis functions used.
As a consequence one can exploit directly all advantageous features of the standard
KKR Green’s function method when performing LSDA+DMFT type calculations.
This implies in particular that one can account for correlation effects for a wide range
of systems when dealing with their electronic structure.

There are several approaches to combine the LSDA with the DMFT method [76,
77] described in the literature. In most of these the LSDA part of the problem is
usually dealt with in a first step by solving the corresponding band structure problem
using a suitable basis set (e.g. LMTO). The Green’s function for this reference level
is then determined by the resulting spectral representation of the LSDAHamiltonian.
Solving in a second step theDMFTpart of the electronic structure problem, the result-
ing local self-energy ΣDMFT can be used together with the local Green’s function to
calculate a new charge density and a corresponding effective LSDA potential. How-
ever, to a achieve a coherent combination of LSDA with DMFT in line with spectral
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density functional theory [74] one has to solve the following Dyson equation in a
self-consistent manner:

G(r, r ′, E) = G0(r, r ′, E)

+
∫

d3r ′′
∫

d3r ′′′G0(r, r ′′, E) [Veff(r ′′)δ(r ′′ − r ′′′)

+ Σ(r ′′, r ′′′, E)] G(r ′′′, r ′, E) , (4.3)

with G0(r, r ′′, E) being the Green’s function for the chosen free electron reference
system. Furthermore, the effective potential is defined as Veff(r) = [V eff(r) + βσ ·
Beff(r)], with V eff(r) its spin-independent potential and Beff(r) the corresponding
spin-dependent part or magnetic field [11]. Within the relativistic formulation used
here, the matrices β and αk are the standard Dirac matrices where the latter ones can
be expressed by αk = σx ⊗σk by means of the 2×2 Pauli matrices σk (k = x, y, z).

The KKR-GF method offers the possibility to solve equation (4.3) in a very
efficient way. With the system decomposed into atomic regions, usually this means
intoWigner–Seitz-cells, and making use of the fact thatΣDMFT is an on-site quantity
a straight forward solution of the equation can be achieved via the standard KKR
technique. In practice, this implies that one first solves the corresponding so-called
single site scattering problem to obtain the wave function Ψ (r) inside an atomic
cell and the associated single site scattering t-matrix. Within relativistic spin density
functional theory [79, 80] the corresponding single site Dirac equation is given by:

[
�

i
c α · ∇ + βmc2 + Veff(r)

]
Ψ (r) +

∫
d3r ′Σ(r, r ′, E)Ψ (r ′) = EΨ (r) ,(4.4)

where Ψ (r) is an energy-dependent four-component spinor function for a given
energy E . To solve this equation the following ansatz Ψ = ∑

Λ ΨΛ for the wave
function is used. In practice, application of the DMFT scheme is restricted to corre-
latedd- or f - orbitals. In linewith this, the self-energyΣ(r, r ′, E)has to be projected
onto a localized set of orbitalsφn

Λ(r). The corresponding self-energymatrixΣΛΛ′(E)

is then delivered by a suitable DMFT solver.
It is worth to note that even if the spherical muffin-tin or atomic sphere approxima-

tion to the shape of the effective potential is used, the components of (4.4) associated
with different Λ’s are coupled in the same way as it is in a full-potential calculation.
This implies that the implementation of the LSDA+DMFT approach on the basis of
the KKR-GF requires the use of its full-potential version. Solving the set of coupled
equations for the wave functionsΨ (r) gives direct access to the associated single site
t-matrix by matching the wave functions to the Hankel and Bessel functions as free
electron solutions outside the atomic cell. When dealing this way with the single-site
problem, one accounts obviously for the entire complexity of the underlying complex
non-local self-energy of the LSDA+DMFT approach. Because of this, the resulting
regular and irregular scattering wave functions ZΛ(r, E) and JΛ(r, E), respectively,
as well as the corresponding single-site t-matrix carry the full information on the
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underlying LSDA+DMFT Hamiltonian. This means in particular that in contrast
to other LSDA+DMFT implementations that use basis functions derived from the
LSDA-part of the Hamiltonian, the effect of the self-energy is now also incorporated
into the wave functions Ψ . This becomes relevant, for example, when dealing with
disordered alloys on the basis of the CPA or when calculating the total energy of a
system or matrix elements for spectroscopy.

With the single-site t-matrix made available, the next step of a KKR-type calcula-
tion is to dealwith themultiple scattering problem. This task implies in general to find
the corresponding scattering path operator τ [81]. Technically, this step is completely
independent from the DMFT part of the electronic structure problem. Accordingly,
the expression for the retarded site diagonal Green’s function G(r, r ′, E) as speci-
fied in (4.10) above [8, 82] can be used. Knowing the Green’s function G(r, r ′, E)

makes it possible to derive all electronic properties of interest as e.g. the charge den-
sity in a straight manner with the calculated Green’s functionG(r, r ′, E) accounting
for all effects of the self-energy ΣDMFT.

In order to provide the bath Green’s function that is needed as input for the
DMFT solver, the corresponding localized Green’s function matrix is calculated
by projecting the Green’s function given by (4.10) according to the selection of
correlated atomic orbitals. This is achieved by a projection of G(r, r ′, E) with
respect to a localized set of orbitals φΛ(r):

GΛΛ′(E) =
∫

d3r
∫

d3r ′φΛ(r)G(r, r ′, E)φΛ′(r ′). (4.5)

A natural choice for these localized orbitals or projection functions φΛ(r) are regular
solutions of the Kohn–Sham–Dirac single-site equations that are normalized to unity
and also used for a representation of the self energy Σ (see below). In the case of
transition metal systems in general only the d-d sub-block of the structural Green’s
function matrix Gnn(E) has to be considered. Apart from these restrictions, the
choice of the functions φΛ(r) is rather arbitrary provided they form a complete set of
functions. This implies that a localized basis set may be set up for a given reference
energy Eref (taken to be at the center of gravity of the occupied part of the d-band for
the cases discussed here), with the spin-dependent part of the potential set to zero.
As a consequence one has to suppress all further coupling to the other �-channels
imposed by the crystal symmetry in the case of full-potential calculations.

A flow diagram that describes the resulting KKR-GF based self consistency cycle
of the LSDA+DMFT scheme is given in Fig. 4.2. For this, the set of regular (Z) and
irregular (J ) solutions to the single-site problem that account for the LSDA potential
aswell as for theDMFTself energyΣ is calculated via (4.4).Using the corresponding
t-matrix the multiple scattering problem is solved in terms of the scattering path
operator τ . With this available the KKR Green’s function is constructed based on
(4.10). As a next step the projected Green’s function matrix is constructed according
to (4.5) providing this way the necessary input to deal with the many-body problem.
The way the mutual connection between the charge density and the self-energy is
implemented deserves special attention. To start with, it should be stressed that the
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Fig. 4.2 Top: flow diagram
for a KKR-based
LSDA+DMFT calculation.
Bottom: representation of the
various involved energy
paths. The blue semicircle
represents the complex
energy path with energies z
used by the KKR-GF method
to calculate the charge
density. After the
corresponding bath Green’s
function G has been
determined, it is analytically
extrapolated to the straight
line perpendicular to the real
energy axis (red) to calculate
the self-energy ΣDMFT using
the DMFT impurity solver.
Afterwards, ΣDMFT is
analytically extrapolated
back to the semicircle energy
path used by the KKR-GF

definition of the Green’s function is not restricted to real energies E but applies
also for arbitrary complex energies z. The fact that the Green’s function G(r, r ′, z)
is analytical throughout the complex plane away from the real axis [83] allows, in
particular, to perform the necessary energy integration for the set up of the charge
density on an arbitrary contour in the complex energy plane [84]. Using a semi
circular path around 30 energy mesh points are sufficient in general. On the other
hand many schemes to deal with the DMFT problem use a Matsubara-type mesh
of frequencies providing the self-energy ΣDMFT for this mesh. As a consequence,
it is necessary to apply a suitable technique for an analytical continuation i.e. to
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transform ΣDMFT from Matsubara frequencies ω to the energy contour used within
the KKR-GF based step. Finally, it should be stressed that ΣDMFT is in general not
Hermitian and for low symmetry systems not only right but also left handed solutions
one needed (4.4) when setting up the Green’s function G(r, r ′, E) [85].

In the current fully relativistic implementation, the many-body problem is dealt
with by relying on perturbation theory. One can use either the SPTF solver (spin-
polarized T -matrix+FLEX) [86] or spin-polarized T -matrix [87] solver for T = 0 K .
However, any DMFT solver which supplies the self-energy Σ(E) can be included
when dealingwith themany-body part of the electronic structure problem. To transfer
the self-energy from the Matsubara energy path to the complex energy path used to
set up the updated KKR Green’s function the Padé analytical continuation is used
once more. In this context, the key role is played by the scattering path operator
τ nn
ΛΛ′(E), that is used to generate the new single particle Green’s function and from
this the new charge and potential in each SCF iteration.

Finally, the double counting correction HDC has to be considered. This prob-
lem is definitely one of the main challenges for first-principle calculations within
the LSDA+DMFT. The double counting correction stems from the fact that some
many-body interactions described by the DMFT formalism are already included in
the LSDA. The appropriate part, therefore, has to be subtracted to avoid it being
counted twice. So far various schemes to deal with the double counting correction
problem have been suggested in the literature [77]. The most simple scheme in this
context corresponds to the static LSDA+U scheme and has been used in our imple-
mentation. In practice, the double counting correction to the self-energy is applied
at the step when the many-body problem is solved. This implies that first the com-
plete static part of the self-energy coming from the solver is removed and then the
LSDA+U -like static part is added [88]. From many applications to pure transition
metals as well as their metallic compounds or alloys the so called around the mean
field (AMF) double counting correction was found to be most appropriate [64, 66,
88, 89]. It should be stressed, that so far it was not possible to derive an exact and
simple analytical expression for the double counting correction. On the other hand,
the combined GW+DMFT scheme [90] allows in principle to deal with the double
counting problem in an exact way. It is therefore important to perform direct compar-
ison of LSDA+DMFT based results to experimental data coming for example from
angle-resolved photoemission (ARPES) measurements to test the adequacy of the
chosen double counting correction scheme. However, to be able to select among the
various suggestions for the correction HDC in a most reliable way it is advantageous
to calculate not only the bare spectral function, i.e. �G, but to calculate the photoe-
mission spectra in a most accurate way. Actually, on the basis of the one-step model
of photoemission it could be convincingly demonstrated that the AMF suggestion
for HDC is appropriate for transition metal systems [64, 66, 89].

The fact that the DMFT is a mean field theory relying on an effective medium
(bath) reminds to another successful use of the mean field formalism in the KKR,
namely, the CPA method for dealing with disordered systems. Indeed, a similar
philosophy is applied in both cases. Thus, combining the DMFT and KKR-CPA
methods is a relatively straightforward task, because both schemes are formulated in
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their standard version on a single-site level. On the DMFT side this means that any
correlation concerning the occupation of neighboring sites for example due to short
rangeorder is ignored and the self-energyΣ is accordingly assumed tobeon-site only.
The extension of the CPA scheme for disordered alloys to account simultaneously for
many-body correlation effects can straightforwardly be done within the KKR+GF.
This is achieved by incorporating the local multi-orbital and energy dependent self-
energiesΣDMFT

A andΣDMFT
B of the components directly into the corresponding single-

site matrices tA and tB , respectively, when solving the component specific single site
problem (4.4) [63]. As a consequence, all quantities related to the Green’s function,
as for example the charge density, represent the impact of the electronic correlations
beyond theLSDA level. The combination of theCPAwith theLSDA+DMFTscheme
proved to be a rather robust and powerful technique [62, 63, 88, 91]. It is worth noting
that the combination of the KKR-CPA for disordered alloys and the DMFT scheme
is based on the same arguments as given by Drchal et al. [92] who did corresponding
work earlier using the LMTO Green’s function method for alloys [16].

We conclude by noting that the solution of the Dyson equation for a given self-
energy allows to deduce a raw photoemission spectrum. However, to allow a reli-
able interpretation of experimental data, however, it is indispensable to incorporate
all matrix element effects which may have a dramatic influence on the spectrum.
For a direct comparison to experiment, in particular the full wave-vector and energy
dependence of the transition-matrix elements has to be taken care within such calcu-
lations. The impact of these matrix element effects are well-known to be important
but nevertheless often ignored. On the one hand side, they result from multiple-
scattering processes which dominate the electron dynamics in particular in the low-
energy regime of typically 1–200 eV [39]. At least equally important is the inclusion
of selection rules and of the excitation cross section or oscillator strength via the
transition-matrix elements that are completely ignored when working with the raw
spectrum. In fact, one can say that themain task of photoemission theory is to provide
a bridge between the raw spectrum obtained by any LSDA+DMFT based electronic
structure calculation and experiment. In this context, the one-step model of photoe-
mission [37–39] proved to be the most successful and flexible theoretical approach
available providing a coherent description of all relevant aspects of the electronic
structure and of the photo emission experiment itself.

4.2 Applications of KKR-Green Function Formalism in the
Spectroscopy

4.2.1 X-ray Absorption: Formalism

If an x–ray beam with intensity I0 passes through a sample of thickness d, its atten-
uation is determined by

I = I0 exp[−μêq (ωq)d] . (4.6)
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The absorption coefficient μêq (ωq) depends on the energy �ωq , on the polarization
vector êq and also on the wave vector q (q = ω/c) of the incoming radiation.
The x-ray absorption coefficient μêq (ω) can be expressed via the Fermi’s golden
rule as [19]:

μêq (ωq) ∝
∑

i

unocc∑

f

∣∣∣〈Ψ f | X̂ êq | Ψi 〉
∣∣∣
2

δ(E f − Ei − �ωq) . (4.7)

The sum here spans all initial core states | Ψi 〉 with energies Ei that are involved
in the x-ray absorption process and all empty final states | Ψ f 〉 whose energy E f is
above EF .

The operator X̂ êq in (4.7) describes the interaction between electrons and photons

with polarization vector êq and wave vector q. In the relativistic formalism X̂ êq is
given by [19, 20]:

X̂ êq = eα · Aêq , (4.8)

where the classical vector potential Aêq represents the photon field and ecα is the
operator of the electron current. The vector α stands for the Dirac matrices [20].
In most cases, one can employ the electric dipole approximation when dealing with
X̂ êq . Going beyond the dipole approximation is straightforward [19].

When dealing with ordered solids, Bloch wavefunctions can be substituted for
the final states | Ψ f 〉 in (4.7). Suitable all-electron band-structure method can then
be applied to calculate the absorption coefficient μêq (�ωq) [21]. Another approach
consists in representing the final states | Ψ f 〉 using the Green’s function G+(E) to
arrive at [22, 23]:

μêq (�ωq) ∝
occ∑

i

〈Ψi | X̂†
êq

� [
G+(Ei + �ωq)

]
X̂ êq | Ψi 〉 δ(Ei +�ωq − EF ) . (4.9)

This equation can be further transformed if the Green’s function is expressed within
the multiple scattering framework as [8]:

G+(rn, rn′ ′, E) =
∑

ΛΛ′
Zn

Λ(r, E)τ nn′
ΛΛ′(E)Zn′×

Λ′ (r ′, E)

−
∑

Λ

[
Zn

Λ(r, E)J n×
Λ (r ′, E)Θ(r ′ − r)

+J n
Λ(r, E)Zn×

Λ (r ′, E)Θ(r − r ′)
]
δnn′ . (4.10)

Thematrix τ nn′
is the so-called scattering path operator. It transforms an incoming

electronwave arriving at the atomic site n′ into an outgoing electronwave leaving site
n while accounting for all possible scattering events that may take place in between
(see (1.68) of Chap.1 of this book). Because the initial core states |Ψi 〉 occurring
in (4.9) are localized, only site-diagonal terms of the scattering path operator τ nn

http://dx.doi.org/10.1007/978-3-319-73811-6_1
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are needed; the site label n identifies the photoabsorbing atom. If one restricts to
a non-relativistic description in (4.10), the functions ZΛ and JΛ represent regular
and irregular solutions to the Schrödinger equation but normalized as required by
the scattering theory [8]. The combined subscript Λ = (�,m�,ms) then stands the
orbital (�) and magnetic (m�,ms) quantum numbers. However, in this chapter the
relativistic formalism is mostly employed, meaning that Λ usually represents a set
of relativistic quantum numbers Λ = (κ,μ), where κ and μ stand for the spin-orbit
and magnetic quantum numbers, respectively.

When dealing with finite systems, the τ nn′
matrix can be evaluated by inverting

the so called KKR-matrix according to τ (E) = [t(E)−1 − G0(E)]−1, where t is the
single-site t-matrix and the matrix G0 represents the real space structure constants.
(The upright bold font indicates matrices with respect to site and spin-angular (Λ)
subscripts.) One speaks of calculations in the real space in this case. Alternatively,
when dealingwith a translationally periodic system such as a crystal, the equation can
be solved by employing the Fourier transformation. Then one speaks of calculations
in the reciprocal space.

In this section the absorption coefficient is mostly calculated using an equation
which can be obtained by inserting the expression (4.10) for the Green’s function
into (4.9), namely,

μêq (�ωq) ∼
occ∑

i

∑

ΛΛ′
M

êq∗
Λi (E f )�

[
τ nn
ΛΛ′(E f )

]
M

êq
Λ′i (E f ) , (4.11)

where E f = Ei + �ωq . The matrix elements M
êq
Λi (E f ) are given by:

M
êq
Λi (E f ) = 〈ZΛ(E f )|X̂ êq |Ψi 〉 . (4.12)

Equation (4.11) presents quite a general expression for evaluating the absorption
coefficient, applicable in many circumstances. For example, it can be employed
for systems which do not have translational periodicity, such as alloys, surfaces,
adsorbates or defects.

It has been assumed in (4.11) that the final states energies are restricted to the real
axis. If one uses complex energy formalism to describe the effects of relaxation or
self-energy, an additional term appears that comes from the second term in (4.10).
An explicit form for this atomic-like term can be found, e.g., in [19].

An important role in applications of spectroscopy is nowadays played by mag-
netic dichroic effects. Generally, magnetic dichroism is the difference between two
spectra for a magnetized sample recorded for different polarizations of the incoming
radiation.Magnetic dichroism results from a combined influence of spin polarization
and spin-orbit coupling. The computational scheme has to be amended to describe
this. The most consistent and robust way in this respect is to treat everything within a
fully relativistic formalism. Let us restrict the discussion to the case of x-raymagnetic
circular dichroism (XMCD) in polar geometry. If we assume that the wave vector of
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the incoming radiation q points along the z direction, the polarization vector of the
radiation can be written as

a+ = − 1√
2

⎛

⎝
1
i
0

⎞

⎠ a− = 1√
2

⎛

⎝
1
−i
0

⎞

⎠ . (4.13)

We use the convention that the first vector describes light which is left circularly
polarized (positive helicity) and the second vector in (4.13) describes light which is
right circularly polarized (negative helicity). It should be emphasized here that the
particular choice of the geometry (coordinate system) does not harm the generality
of the formalism, any other polarization of the incoming radiation can be treated
analogously.

If a fully relativistic formalism is employed, the functions ZΛ and JΛ in (4.10)
are solutions of the Dirac equation. Because the potential is spin-dependent, the
symmetry of the Dirac Hamiltonian is reduced and it is not possible to assign to
the functions ZΛ and JΛ a pure spin-angular character Λ [24, 25]. Rather, they can
be viewed as superpositions of functions ZΛ′Λ and JΛ′Λ with character Λ′, such
as ZΛ = ∑

Λ′ ZΛ′Λ. If the initial core states Ψi are also treated within in a fully
relativistic framework [26], one can account for all possible sources of the magnetic

dichroism. The form of the transition matrix elements M
êq
Λi is given in [19], together

with corresponding discussion.

4.2.2 X-Ray Absorption and X-Ray Magnetic Circular
Dichroism of Clusters

In this section we will introduce several illustrative examples how calculations of
x-ray absorption spectra via the KKR-GF formalism as given by (4.9) can be used for
structural analysis.Wewill dealwith situationswhenmultiple scattering is important.
Our focus is thus not on the extended x-ray absorption fine structure (EXAFS) region
but rather on the x-ray absorption near edge structure (XANES) region. We will
present also some cases where analysis of XANES and EXAFS complement each
other. The calculations presented below have been performed within the real space
formulation of KKR-GF equations, i.e., the τ matrix in (4.9) is evaluated for a finite
set of atoms (scattering centers), directly in real space.

4.2.2.1 XANES and XMCD of Free Fe Clusters

One of the areas where the real-space formulation of KKR-GF equations comes
handy is spectroscopy of clusters. We will illustrate few concepts on the study of
XANES and x-ray magnetic circular dichroism (XMCD) spectra of free Fe clusters
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Table 4.1 Dependence of magnetic properties of free Fe clusters on the cluster size. Number of
atoms is in the first column, average d components of the spin and orbital magnetic moments are
in the second and the third columns and the average number of holes in the d band is in the last
column [94]. Magnetic moments are in μB

Size μ
(d)
spin μ

(d)
orb n(d)

h

9 2.84 0.209 3.36

15 2.54 0.071 3.15

27 2.82 0.125 3.40

51 2.62 0.075 3.36

59 2.67 0.063 3.35

65 2.65 0.075 3.38

89 2.68 0.068 3.48

Bulk 2.37 0.055 3.44

[93]. Interest in these systems is motivatedmainly by their magnetic properties: mag-
netic moments of small systems are larger than magnetic moments of corresponding
bulk materials (when related to the same amount of atoms of given type). Some
magnetic properties of free Fe clusters as calculated via the KKR-GF formalism are
summarized in Table4.1 [94].

Comparison of theoretical Fe L2,3-edge XANES spectra for few free clusters
and for the crystal is shown in Fig. 4.3. The clusters are assumed to have a bcc-like
geometry as if cut from the bulk, so we investigate pure effect of the finite size of the
system. Spectra for clusters comprising 9, 15, 51, and 89 atoms are shown. Spectra of
clusters were obtained by superposing spectra originating from the individual atoms
of the cluster. Furthermore, common normalization was achieved by dividing the
spectra by the number of atoms in each cluster [93].

First thing to notice in Fig. 4.3 is that there is little significant variation of the
spectra with cluster size, except for some fine structure following the L3 white line
for the 9- and 15-atom clusters (at about E ≈ 2–6 eV). These features could be
markers of truly discrete states appearing below the vacuum level. The height of
the vacuum level above EF varies from 5 eV for the 9-atom cluster to 8 eV for
the 89-atom cluster [94, 95]. Formally, the continuous character of theoretical x-ray
absorption spectra in the region between EF and the vacuum is a consequence of the
Green’s function formalism, in particular, of a small imaginary component which
is included in the energy. If the cluster size increases, the number of discrete levels
increases as well, smoothening thus the (overlapping) spectral peaks and resulting
in a spectral band. Generally, it is evident from Fig. 4.3 that white lines for small
clusters are sharper than white lines for large clusters. The vacuum edge itself does
not seem to give rise to a distinct feature in the spectrum.

Another characteristic feature worth mentioning is the absence of the small bulge
around 8 eV in spectra of clusters. This feature appears in calculated XANES of bulk
Fe and has been associated with a Van Hove singularity. Its occurrence is linked to
the translational periodicity, meaning that it can appear only for large systems. In
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Fig. 4.3 Theoretical L2,3-edge XANES of free Fe clusters (thin full line) together with XANES
of a crystal (thick dashed line). The number of atoms in the cluster is indicated at each spectrum.
Note that the curve representing the crystal spectrum is identical for each of the four sub-graphs.
Figure reproduced from [93]

particular, such feature is present in a spectrum generated by the central atom of a
cluster which contains more than ∼100 atoms [96].

As one of the strong motivations for research on clusters is magnetism, it is useful
to have a look at the XMCD spectra. This is done in Fig. 4.4. It follows from the
calculations that the shape of XMCD for the clusters and for the bulk is generally
similar: spectra are dominated by two main peaks which are split by the spin-orbit
splitting. The intensities of the peaks systematically decrease if the clusters increase.
Another trend concerns the widths of the peaks: small clusters give rise to narrower
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Fig. 4.4 Theoretical
L2,3-edge XMCD of free Fe
clusters (thin full line)
together with XMCD of a
crystal (thick dashed line).
The numbers of atoms in the
clusters are also given.
Figure reproduced from [93]
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XMCD peaks than large clusters. The trends in XMCD can be seen as counterparts to
analogous trends in XANES; they can be traced to a higher localization of d electrons
in the smaller clusters.

The intensities of XMCD peaks decrease with increasing cluster size nearly
monotonously. This trend reflects the changing character of d electron states (from
atomic-like to bulk-like). On the other hand, the areas of L2,3-edge XMCD peaks do
not follow a simple trend. This should not be surprising because these areas reflect
values of magnetic moments of cluster atoms [97–99] and these values oscillate with
the cluster size (see Table4.1).

X-ray absorption spectra (XAS) for small charged clusters were measured by
Hirsch et al. [100]. The theoretical x-ray absorption spectra shown in Fig. 4.3 contain
more structure and exhibit narrower lines than the measured spectra. This difference
is probably associated with differences in the geometric structure of clusters inves-
tigated by experiment and by theory: For calculations, clusters with bulk-like bcc
structure were employed whereas in experiment it is more likely that other structures
with lower symmetry were involved. For these low symmetry clusters, more inequiv-
alent atoms are present. This gives rise to a multitude of closely separated levels and
subsequent smearing of originally sharp spectral features. XMCD spectra of free
charged Fe clusters are also available [101]. Again, experimental spectra contain
less sharp features than the calculations. The general trend that XAS and XMCD
spectra of clusters exhibit more features than spectra of bulk Fe is, nevertheless,
present both in theory and in experiment.

4.2.2.2 Rh Clusters Supported by Ag(100)

Magnetism of Rh clusters has been a controversial topic, with contradictory reports
on presence or absence of magnetism in thin Rh films and/or small Rh clusters [102–
105]. A combined experimental and theoretical study of Rh clusters on Ag(100)
demonstrated that magnetism of Rh clusters is strongly related to the geometry of
the clusters and also to the interaction of the clusters with the support [106].

Free Rh clusters are magnetic, as it follows from the experiment [104] as well as
from calculation [107–111]. To illustrate this, we present in Table4.2 average mag-
netic moments of atoms in Rh clusters of different sizes, together with magnetization
energies per atom (defined as differences of total energies obtained if the cluster is
either magnetic or non-magnetic). One can see that magnetic moments per atom as
well as magnetization energies mostly decrease with cluster size— even though this
decrease is not monotonic. Magnetic and non-magnetic states are practically degen-
erate for Rh cluster of 68 atoms. If the cluster contains 135-atoms, its ground state
is non-magnetic [111].

For supported Rh clusters, intermixing of the cluster atoms with the substrate and
formation of a surface alloy appears to be an important factor which suppresses the
magnetism. Combining experiment and theory helps to understand how themagnetic
moment is formed for Rh clusters if they are prepared by buffer-layer-assisted growth
in a Xe matrix. To begin with, the KKR-GF calculations suggest that if a Rh4 cluster
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Table 4.2 Magnetic moments μspin and μorb (in μB ) andmagnetization energies (in mRy) per atom
for free Rh clusters of 13–68 atoms [111]

N μspin μorb ΔEmag

13 1.423 0.108 –11.74

14 1.258 0.147 –2.88

19 0.771 0.110 –2.34

38 0.696 0.040 –0.61

43 0.202 0.009 –0.15

55 0.526 0.037 –0.66

68 0.062 0.009 0.00

is located atop the Ag(100) surface, its average spin magnetic moment (per Rh atom)
is μspin = 0.92μB [106]. However, if it gets embedded into the surface or even buried
beneath it, it is nonmagnetic.

Experimental XMCD study [106] demonstrates that if Rh clusters are prepared on
a Xe matrix, they are magnetic. However, if Rh is deposited directly on the Ag(100)
surface at low temperature, it shows no magnetism – in contrast to theoretical pre-
dictions that Rh clusters should be magnetic. To address this issue, spectra of Rh-
Ag systems in different geometries are calculated and compared to measurements.
The experimental XANES for a 0.1-monolayer amount of Rh deposited directly on
Ag(100) (see Fig. 4.5a) is very different from spectrum of equivalent amount of Rh
on the Xe buffer layer. In the former case the diffuse peak is not present and instead a
hump on the high-energy sides of the M3,2 peaks appears. Moreover, the resonances
are shifted to higher energies. This can be understood if one accounts for the alloying
processes (bottom panel of Fig. 4.5b). Here one compares theoretical XAS for a flat
Rh4 cluster in three different positions: (i) on the top of the Ag(100) surface, (ii)
embedded within the surface, and (iii) submerged down to the subsurface layer (i.e.,
located below the surface). In real samples the shoulder at the high-energy side of
the M3 edge would be smeared-out due to superposition of spectra originating from
clusters of different shapes and sizes, so the resulting spectrawould be similar towhat
was measured. One concludes that the suppression of Rhmagnetism observed exper-
imentally during the buffer-layer-assisted growth is mainly caused by the increase of
the cluster size and not by the cluster-substrate interactions. Nevertheless, hybridiza-
tion is important for Rh atoms if they are deposited directly on Ag(100) surface,
without the buffer layer; in that case, magnetic moments are quenched [106].

4.2.3 Modeling the Structure of Glasses

When using x-ray absorption spectroscopy for structural studies, one usually makes
use of the EXAFS range where multiple scattering effects are not very important.
Consequently, the extraction of structural data from the spectra is relatively straight-
forward. Analysis of XANES is quite complicated in this respect. In some situations,
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(a)

(b)

Fig. 4.5 a Experimental RhM3,2 XANES of Rh clusters deposited on a Xe buffer layer on Ag(100)
and of Rh clusters deposited directly on Ag(100). Spectrum of bulk Rh is shown for comparison.
bTheoreticalXANES: (upper panel) free spherically-shapedRhclusters of 19 and43 atoms together
with Rh crystal, (lower panel) flat two-dimensional Rh clusters of four atoms located either on top
of Ag(100) surface or embedded into it or buried below it. Figure reproduced from [106]
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however, getting involved in it is necessary. The cases introduced in Sect. 4.2.2 above
concerned situations where recording EXAFS is not possible because the material
is very diluted so one does not have sufficient intensity of the signal to isolate small
EXAFS oscillations. In this part we will deal with other situations where it is useful
to go beyond the single-scattering EXAFS analysis.

There are several reasons why the views on the geometry provided by XANES
and by EXAFS could be different. First, XANES is quite sensitive to multiple-
scattering contributions which are usually not so important for EXAFS. XANES
thus reflects also the bond angles. Second, as the scattering amplitude depends on
the electron energy differently for different atomic types, XANES may depend dif-
ferently than EXAFS on the chemical composition of the nearest neighborhood of
the photoabsorber. Finally, XANES features will be less damped by the disorder, so
the signals which originate from scattering by atoms in the second and further coor-
dination shells can be more important in XANES than in EXAFS [112–114]. One
expects that this will become significant for studies of systems with a strong static
disorder – such as glasses.

4.2.3.1 Local Geometry Around Ag Atoms in Ag-B-O Glasses

As an illustration, we present a study of possible structural configurations of Ag
atoms in silver borate glasses Ag2O · nB2O3. Borate glasses in general attracted
attention because of their varied optical, electrochemical or magnetic properties. Sil-
ver borate glasses in particular aroused interest due to their high ionic conductivity,
which promises potential applications in electrochemistry (solid electrolytes). Opti-
mizing technologically interesting properties requires understanding the structure at
the atomic level. Specifically, a detailed information about the local environment of
the moving ions is desirable [115].

The local geometry around Ag atoms has been studied by various approaches
both for binary (Ag2O ·nB2O3) and ternary silver borate glasses (e.g., mixed with
AgI). Based on the experimental results, a model for the structure around Ag was
initially proposed. EXAFS experiments suggested that the Ag-O distance should be
close to 2.3 Å and that the coordination number of Ag should be low (around two)
[116, 117]. On the other hand, neutron scattering experiments in connection with a
reverse Monte Carlo analysis of the data presented evidence for a different model,
where several different local geometries around Ag would co-exist, with the average
coordination number higher than what was deduced from the EXAFS [118]. This
indicated gaps in the knowledge of the local geometry around Ag in Ag2O·nB2O3

glasses. Therefore, a thorough XANES analysis was performed [119–121].
First, one has to find a good starting point. This can be achieved by comparing

theoretical spectra obtained for few generic polyhedra which simulate the nearest
neighborhood of Ag atoms. Inspired by EXAFS results [116], one can start with one
Ag atom surrounded by fewO atoms at the distance of 2.27 Å. The number of nearest
oxygens is varied between two and eight. We show several Ag K -edge spectra of
basic units in Fig. 4.6. Apparently, the crucial task for the modeling is to reproduce
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Fig. 4.6 Model Ag K -edge spectra calculated for five generic Ag-centered polyhedra. Spectral
curves are identified by names and schematical diagrams of respective polyhedra (full circles depict
Ag atoms, open circles depict O atoms). Spectrum measured for silver diborate glass Ag2O·2B2O3
is included for comparison. Figure reproduced from [120]



4 KKR Green’s Function Method in Reciprocal and Real Space 113

the first spectral peak at about 22 eV. In most cases, it is too wide and/or too low. The
modelwith eightO atoms,with cubic orderwhich resemble the nearest neighborhood
in a bcc crystal, seems to be the most plausible [120]. The general picture provided
by the data of Fig. 4.6 remains even if we randomly add some more distant atoms (to
simulate the effect of further coordination shells which would be quite disordered in
a glass).We conclude that themost promising candidate for a further improvement of
the structural model of Ag2O·nB2O3 glasses is the eight-atoms cube-like polyhedron.
Further study can focus just on this model and elaborates it in more details.

The simple cube-based model is clearly too symmetric to describe a real situ-
ation. One should consider that atoms in the nearest Ag neighborhood will have
different radial distances and different chemical types. This implies that one can-
not reproduce the measured Ag K -edge XANES of Ag-B-O glasses by employing
just a single geometric configuration. To obtain an acceptable agreement between
model spectrum and experiment, it is necessary to incorporate large structural dis-
order present in glasses via the multi-configurational approach. Conventional best-
fitting methods would fail in this situation. Therefore an alternative approach has
to be employed. Namely, we construct several cube-based semi-ordered structural
models, each comprising several individual configurations, and explore how the cal-
culated XAS changes if some characteristics of the models such as radial distances,
coordination numbers and chemical compositions of atoms in the nearest and next
nearest neighborhoods are varied.

The multi-configurational approach promoted here thus implies that each model
structure comprises a set of individual geometric configurations or clusters, as shown
in Fig. 4.7. Every cluster consists of a central Ag atom and of additional eight atoms
which are located on the diagonals of the cube – close to cube vertices but not
necessarily exactly in them.These “corner atoms” are further divided into twogroups.
The nearest N1 atoms create a more rigid first shell; these atoms are always oxygens,
all at the samedistance R1 from theAgatom in the center. The rest of the (8-N1) corner
atoms create a more diffuse second shell. We assume that KB of them are borons and
the remaining are oxygens. The second shell is radially smeared, the radial distances

Fig. 4.7 Model of local environment around Ag in Ag2O·nB2O3 glasses based on a cubic structure.
Positions of the central Ag atom and of the first-shell O atoms (marked by crosses and thicker bonds)
are fixed for all configurations which form a particular set. Radial distances and chemical types of
atoms in the second shell (depicted via empty circles and thinner bonds) are different for different
configurations. Figure reproduced from [120]
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span the 2.5–3.0 Å range equidistantly. To present a particular example, if the second
shell is formed by five atoms, each of them has a different radial distance from the
set 2.5, 2.625, 2.75, 2.875 and 3.0 Å. Imposing these conditions allows to generate
many different geometric configurations with the same first shell geometry and with
a fixed number of B atoms KB . We categorize individual configurations in such a
way that configurations with the same positions of first-shell atoms belong to the
same set. Configurations differing only by arrangement of the second-shell atoms
thus belong to the same set. Each such set defines a structural model.

We consider models with the first-shell coordination numbers N1 = 2, 3, or 4,
with the first-shell distances R1 = 2.0, 2.2, or 2.4 Å and with KB = 0, 2, or 4 borons
in each cluster. Note that the parameters N1, R1, and KB still do not specify the
model uniquely because there are several non-equivalent ways to distribute the first-
shell atoms among the eight bond directions. Ag K -edge XANES was calculated for
each of the models by averaging theoretical spectra for all configurations which are
associated with the particular model (set). Theoretical spectra for structural models
specified by N1 = 4 oxygens located in the first shell in a specific way are shown in
Fig. 4.8 [120]. The arrangement of first-shell atoms is depicted by the diagram in the

Fig. 4.8 Theoretical Ag K -edge XANES of Ag2O·nB2O3 glasses for models based on four oxygen
atoms in the first shell. Positions of atoms in the first-shell are shown in the inset above the left
panel (directions of first-shell bonds are shown via thick lines). Numbers of B atoms located in the
second shell KB vary from KB = 0 (left panel) to KB = 2 (middle panel) to KB = 4 (right panel).
Distances between O atoms in the first-shell and the Ag atom in the center vary from R1 = 2.0 Å
(uppermost graphs) to R1 = 2.2 Å (middle graphs) to R1 = 2.4 Å (lowermost graphs). Spectra for
corresponding models which have all the (8-N1) second-shell atoms at the same distance (2.75 Å)
are shown by dashed curves. Measured K -edge XANES of Ag2O·2B2O3 glass is shown at the top
of the right panel. Figure reproduced from [120]
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inset. The plot shows how the averaged spectra evolve if R1 or KB are varied. The
effect of smearing of the second shell can be seen as well: spectra for corresponding
models with equidistant second shells are shown via dashed lines for comparison.

Whether a structural model is plausible or not should be assessed according to the
ability of the model to reproduce essential spectral features seen in the experiment.
In our case this includes the relatively sharp first peak followed by a second flat
shoulder; the distance between these peaks is 41–47 eV. It turns out that the crucial
test is whether a particular structural model gives rise to the first peak. The best
agreement is obtained for model with R1 = 2.2 Å [120]. A too short Ag-O distance
(R1 = 2.0 Å) results in unsatisfactory XANES curves. If some second-shell O atoms
are substituted with B atoms, the results improve. Using KB = 4 borons leads to
better results than using KB = 2 borons. Smearing the distances in the second shell
over the whole 2.5–3.0 Å interval suppresses some redundant spectral oscillations. It
also results in a small increase of the distance between both peaks, improving further
the agreement with experiment.

Exploiting the K -edge of Ag in Ag-B-O glasses for structural analysis is quite
complicated because of the large number of O and B atoms which surround Ag at
distances below 3 Å. For glasses, this appears to be a general situation, especially
if one is interested in the local structure around the glass network modifier (as is
the case of Ag). In these cases analyzing XANES spectra can help in selecting most
plausible models for local structure.

More reliable information about local structure could be got by analyzing both
XANES and EXAFS signals together. Specifically in the case of Ag-B-O glasses, one
could use the Ag-related radial distribution function (RDF) obtained from EXAFS as
a guide for a multi-configuration analysis of XANES. It should be noted that a con-
ventional EXAFS analysis based on Fourier filtering and cumulant expansion would
not lead to reliable results for the structure of Ag2O·nB2O3 glasses due to a strong
disorder around Ag ions. Instead, one could use a method based on a direct inversion
of the EXAFS formula. Such procedure does not require a priori assumptions about
the shape of the RDF [122]. Application of this method to Ag K -edge XANES of g-
Ag2O·nB2O3 leads to the RDF shown in Fig. 4.9 [121]. Unfortunately, the procedure
used to get the RDF shown in Fig. 4.9 does not allow for specifying chemical types
of atoms in Ag neighborhood, because boron and oxygen are too close in the peri-
odic table and their scattering properties are too similar in the EXAFS photoelectron
energy range. This problem can be circumvented by employing XANES analysis:
One can calculate the Ag K -edge XANES via the multi-configuration approach,
using the RDF obtained from EXAFS analysis. When generating individual config-
urations employed in the XANES calculations, one requires that the average distri-
bution of Ag–X distances (X = O, B) is the same as the EXAFS-derived RDF shown
in Fig. 4.9. For technical reasons, the desired distribution is modeled by superposing
two Gaussian RDF’s.

In this way one can generate several sets of geometric configurations or structural
models which differ one from another by the average number of B atoms KB . As
noted above, the RDF was written in terms of superposition of two Gaussians; the
B atoms were put preferentially into the more distant of them. Only in case that
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Fig. 4.9 Radial distribution function (RDF) for atoms aroundAg inAg2O·4B2O3 glass as estimated
by best-fitting the EXAFS spectrum (full line with dots). Also shown is the approximation of this
RDF by a superposition of twoGaussians (full lines without dots) and by a semi-uniform distribution
(dashed lines). Figure reproduced from [121]

KB ≥ 4, some B atoms had to be placed also to the first shell. In the study of Kuzmin
et al. [121] each model is represented by 200 configurations. Consistently with the
multi-configuration approach, XANES for each structural model was obtained by
averaging spectra obtained for all configuration that form the respective structural
model (set of configurations).

Theoretical XANES obtained for the structural models has to be compared with
experiment; this is done in Fig. 4.10. Calculated XANES clearly depends on the
average number of B atoms KB . For small KB , the first peak appearing at about
20 eV has too low intensity in comparison with experiment. If the number of B
atoms increases, theoretical XANES becomes similar to the experimental spectrum
at about KB = 4. Further increase of KB leads to decrease of the amplitude of the
first spectral peak and to an appearance of a false pre-peak at 8 eV.

A more quantitative comparison of calculated and experimental XANES signals
one can achieved by using the R2-factor,

R2 = 100

∫
dE

[
Ythe(E) − Yexp(E)

]2
∫
dE

[
Yexp(E)

]2 ,

with Ythe and Yexp being the theoretical and experimental spectral intensities. The
R2-factors evaluated for each of the spectral curves shown in Fig. 4.10 are presented



4 KKR Green’s Function Method in Reciprocal and Real Space 117

0 20 40 60 80

experiment

K
B
=0.0

K
B
=1.0

K
B
=2.4

K
B
=3.2

K
B
=4.0

K
B
=4.8

K
B
=5.5

K
B
=6.4

K
B
=8.0

g-Ag
2
O·4B

2
O 3

Ag K-edge

A
b

so
rp

ti
o

n
 (

ar
b

. u
n

it
s)

Energy E-E
MT

 (eV)

Fig. 4.10 Calculated Ag K -edge spectrum for Ag2O·4B2O3 glass. The spectra were calculated for
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Table 4.3 Quantification of
the differences between
calculated and measureed
spectra for g-Ag2O·4B2O3
via the R2-factor. This table
accompanies the Fig. 4.10

Number of borons R2

0.0 0.2999

1.0 0.2708

2.4 0.2389

3.2 0.2112

4.0 0.1860

4.8 0.1849

5.5 0.1867

6.4 0.2084

8.0 0.3276

in Table4.3. It can be seen that most plausible models are those containing 4.0–5.5
boron atoms, consistently with what was inferred based on Fig. 4.10.

Let us conclude this part by observing that by exploiting complementarity of
EXAFS and XANES techniques one is able to find a more complete and reliable
structural model than would be possible if only EXAFS or only XANES was used.
Calculations of XANES in the real space within the KKR-GF formalism forms an
important ingredient of this approach.

In the examples presented in this section, the inclusionof the disorderwas achieved
by directed averaging over many configurations. An alternative approach might rely
on effective averaging over atomic positions via the CPA formalism (see Chap.21
of this book).

4.2.3.2 Local Geometry Around B Atoms in Ag-B-O Glasses

There is a difference between the roles which Ag and B atoms have in Ag2O·nB2O3

glasses. Namely, B atoms are directly incorporated into the B-O network, forming
rings of BO3 and BO4 units. They are thus network formers. On the other hand,
Ag atoms mostly occupy the voids between the B-O rings, they are just network
modifiers. A very important question related to the structure of borate glasses is the
ratio between the numbers of BO3 and BO4 units in the borate network.

Conventionally, the ratio of B atoms occurring in BO3 and BO4 units has been
determined by analyzing nuclear magnetic resonance (NMR) spectra of 11B [123].
Having an independent method of measuring this ratio would be, nevertheless, quite
useful. One of the reasons is that NMR spectroscopy cannot be used if the concen-
tration of B atoms is very small (for example, in materials where boron is used as
dopant). Therefore, there is a need for alternative ways of determining the ratio of
three-fold and four-fold coordinated B atoms.

The ability of XANES to distinguish between BO3 and BO4 sites can be tested
on boron-containing minerals. Their structure is quite complicated so it can be con-
sidered as a good approximation for the local structure of glasses. Let us start by
examining whether spectra generated by three-fold and by four-fold coordinated B

http://dx.doi.org/10.1007/978-3-319-73811-6_21
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are sufficiently different one from another and whether this difference can be repro-
duced by calculations. Theoretical and experimental B K -edge XANES spectra for
systems which contain only BO3 units are presented in the left graphs of Fig. 4.11,
spectra for systems with only BO4 units are presented in the right graphs of Fig. 4.11
[124]. To test the robustness of theoretical results, the calculations were done both
for non-self-consistent and self-consistent potentials, with the 1s core hole included
within the relaxed and screened model [125].
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Fig. 4.11 B K -edge XANES of selected boron-contaning minerals calculated for either selfconsis-
tent (solid lines) or non-selfconsistent (broken lines) potentials, together with experimental spectra
(dotted lines). Left panels show spectra for systems with B in BO3, right panels show spectra for
systems with B in BO4. Figure reproduced from [124]
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Figure4.11 shows that involving self-consistent potentials mostly does not have
a major impact on the calculated XANES in comparison with non-self-consistent
potentials. Particularly, the difference between the general spectral shapes for min-
erals with BO3 and with BO4 is reproduced sufficiently well for both potentials. The
biggest impact of using a self-consistent potential can be observed in the pre-edge
region (in case of BO3-containing systems): the pre-peak intensity is properly repro-
duced only for a self-consistent potential. The situation for BPO4 is specific: without
using a self-consistent potential, the B K -edge XANES cannot be reproduced even
as concerns its gross shape. It should be noted that the small pre-peak appearing in
the experimental XANES of danburite and datolite (cf. Fig. 4.11) has been attributed
to a small amount of BO3 units formed in the material due to radiation damage
[126, 127].

The objective of the research is to find out whether the main distinction between
the B K -edge XANES of mineral containing BO3 and BO4 is robust. It is evident
that the differences in theoretical B K -edge XANES spectra induced by using self-
consistent or non-self-consistent potential are smaller than differences that would
result from changing the local geometry. The conclusions drawn from minerals thus
can be taken over for studying glasses.

A more targeted test of the sensitivity of XANES towards distinction between
BO3 and BO4 units can be done on minerals which contain both BO3 and BO4 units.
The focus of such a study should not be on a detailed analysis of XANES of a single
compound but rather on observing spectral features which would be common to all
boron sites with three-fold or four-fold coordinations. That requires an analysis of
a large number of spectra. Figure4.12 displays theoretical spectra of ten minerals
which contain three-fold- aswell as four-fold-coordinatedB atoms [128]. To separate
the possible effect of the long-range order present in crystalline minerals but not in
glasses, the calculations are done both for large clusters of more than hundred of
atoms and for very small clusters comprising just the basic BO3 and BO4 units. To
provide a complex view, the spectra are shown for each boron site; this includes 13
curves corresponding to three-fold coordinated boron and 26 curves corresponding
to four-fold coordinated boron. As an aid to the eye, spectra averaged over all sites
in BO3 units and in BO4 units are shown via thick lines.

Apparently, the spectra shown in Fig. 4.12 can be categorized into two groups
according to the coordination of the photoabsorbingBatom (similarly as in Fig. 4.11).
Characteristic shapes of spectra generated at BO3 and BO4 sites are well-separated.
The gross shape of B K -edge XANES is clearly dominated by short-range
order – averaged spectra of small clusters are very similar to averaged spectra of
large clusters. Conclusions based on spectra of minerals thus may be transferred to
glasses.

Further quantitative analysis of results presented in Fig. 4.12 shows that the area of
the main peak labelled as B depends only on the number of nearest oxygens (it does
not depend on compound, distances, middle-range order etc.) It appears therefore
that the ratio of areas of peaks labelled as C and B could serve as a criterion for
estimating the ratio of BO3 and BO4 units in borate minerals and in borate glasses
alike.
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Fig. 4.12 Spectra calculated at all boron sites in ten different B-contaning minerals. Thin lines
represent spectra at individual sites, thick lines show averages over all spectra at sites with BO3
or with BO4 coordination. Areas within which 100% or 67% of curves associated with given
coordination are contained are alsomarked. The left panel shows spectra calculated for large clusters
of about 140 atoms, the right panel shows spectra calculated for small clusters of 4–5 atoms

4.2.4 Interdiffusion at Interface: Interplay Between
Electronic and Real Structure

In this part we will deal with Au L2,3-edge x-ray magnetic circular dichroism
(XMCD) of Co/Au multilayers. Experimental Au L2,3-edge XANES and XMCD
spectra are shown by thick dotted lines in Fig. 4.13 [129]. This experiment is remark-
able because it shows thatAu atoms at theCo/Au interface have appreciablemagnetic
moments, despite the fact Au atoms are hard to polarize. Let us start by comparing
these experimental spectra with theoretical spectra obtained for Au atoms at clean
(sharp) Co/Au interface (full lines in Fig. 4.13) [130]. It is obvious from this compari-
son that the system studied byWilhelm et al. [129] cannot bemodeled by amultilayer
with a clean interface: the calculated L2 XMCD peak has the same sign as the L3

peak, which strongly contradicts the experiment. However, the experimental XMCD
signal can be reproduced if one allows for some interdiffusion at the Co/Au inter-
face. Two models of Co-Au interdiffusion were considered. In the first model, the
interdiffusion spans two layers and the concentration of Au atoms in the interface
layers is 70 and 30%. In the second model, the interdiffusion spans four layers and
the Au concentration varies across the interface as 70, 55, 45, and 30%. Theoretical
Au L2,3-edge spectra obtained for these models are also included in Fig. 4.13. One
can see that allowing for the interdiffusion improves the agreement between theory
and experiment considerably. In particular, the model with interdiffusion spanning
two layers yields XMCD peak intensities very similar to what was measured [130].

Interdiffusion at the Co/Au interface is something one would not expect in the
beginning because Au and Co are mutually non-miscible. Nevertheless, for systems
prepared by various non-equilibrium procedures such as evaporating and sputtering



122 J. Minár et al.

energy from EF [eV]

0.0

0.01

0.02

0.03

0.04

0.05

A
u
L
2,
3-
ed

ge
X
A
S

[M
ba

rn
]

0 20 40 60 0 20 40 60

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

0.2

0.4

A
u
L
2,
3-
ed

ge
X
M
C
D

[1
0-

3
M
ba

rn
]

≈
≈

single Au impurity
interdiffusion across 4 layers
interdiffusion across 2 layers
clean interface
experiment

L3

L2

Fig. 4.13 Calculated and measured Au L2,3-edge XANES and XMCD of Co11Au4 multilayer.
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an Au atom embedded in bulk Co is shown for comparison. Note that XANES curves calculated
for both models of interdiffusion nearly coincide (in contrast to XMCD curves). Figure reproduced
from [130]

some interdiffusion may be present. It should be noted in this regard that interdiffu-
sion in Co/Au multilayers was assumed earlier when interpreting the dependence of
magnetic anisotropy energy on annealing conditions [131–133].

The fact that the best agreement between theoretical and experimental XMCD
signal is obtained for a specific model with interdiffusion across two layers should
not be interpreted as implying that other interdiffusion models are not acceptable. It
is quite possible that similar spectra could be obtained also for different distributions
of Au and Co atoms across the interface. Moreover, one has to keep in mind that
the structural model considered in the study [130] is still quite limited and that
calculations which rely on the LDA also have their limitations. Nevertheless, the
tendency to increase the heights of XMCD peaks if Au/Co interface interdiffusion
is allowed for is obvious.
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Interestingly, the changes in XMCD spectra which occur due to interdiffusion are
not accompanied by corresponding changes in calculated XANES (see Fig. 4.13).
This is in accordance with the idea that XANES is determined mostly by positions
of atoms around the photoabsorber: one can plausibly assume that interdiffusion will
change the chemical type of atoms close to the interface but not their positions. It
seems that the difference in scattering amplitudes of Co and Au atoms is too small to
give rise to significant changes in calculated XANES. On the other hand, magnetic
moments of Au atoms are changed considerably via interdiffusion and this leads to
significant changes in the XMCD.

4.2.5 Doped Materials

One of the areas where analysis of XANES spectra may bring useful structural
information is research on doped materials because here it might be very difficult to
get an EXAFS signal of sufficient intensity. Multiple-scattering analysis may be very
helpful in these circumstances. To demonstrate this, we present few illustrative results
for transition-metal-doped ZnO. The origin of magnetism in wurtzite w-ZnO doped
by transition metal atoms is still subject of debate [134]. Despite numerous studies of
structure and/or magnetism of doped ZnO, it is difficult to obtain a coherent picture
[135–141]. One of the reasons for this is that it is difficult to investigate magnetism
and structure simultaneously on the same footing. XANES and XMCD spectroscopy
offer interesting possibilities in this respect.

One of the key question to answer is where the dopant is located. The potential
of XANES modeling within the real-space KKR-GF formalism can be illustrated by
the study of Co-doped wurtzite ZnO byNey et al. [142]. Comparison of experimental
and theoretical Co K edge x-ray linear dichroism (XLD) provides a convincing proof
that Co atoms are located in Zn-substitutional sites (Fig. 4.14). A similar situation
was found for Cu-doped ZnO pellets [143]. On the other hand, it appears that for
Cu-doped ZnO thin films most of the Cu atoms are not built-in into the host lattice
but occur rather in CuO-like coordinations [141]. A proper analysis thus has to be
done for each system.

To assess the reliability of structural analysis based on XANES of doped ZnO,
one needs information about the structural sensitivity of the spectra for the case
of interest. Therefore, as another example, we present calculations of Cu K -edge
XANES for Cu in a number of structures: Cu at Zn-substitutional site (CuZn) in w-
ZnO, Cu at interstitial site (Cui ) in w-ZnO, monoclinic CuO, and also a hypothetic
Cu metal with the structure of w-ZnO [144]. Apart from XANES averaged over all
spatial orientations (as in polycrystalline sample), we evaluated also the XLD by
subtracting the spectra for two perpendicular orientations of the polarization vector
of the incoming radiation. The outcome is presented in Fig. 4.15. One can see that
having Cu in different environments leads to different XAS and especially different
XLD spectra. Employing the XLD thus makes it possible to distinguish reliably
between CuZn and Cui positions and also between CuO and Cu clustering.
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(a)

(b)

Fig. 4.14 Measured and calculatedXANES (upper panel) andXLD (lower panel) at the Co K edge
of Co-doped ZnO. A Zn-substitutional Co position was assumed. Figure reproduced from [142]
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Fig. 4.15 Comparison of Cu K -edge spectra (XAS in the left panel, XLD in the right panel) for
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Table 4.4 Magnetic moments (in μB ) for CuZn in ZnO if there are no vacancies and if vacancies
are present in the ab plane — either in the first or in the second shell of oxygen atoms [144]

μspin(tot) μspin(Cu) μorb(Cu)

No vacancy 1.70 0.59 0.14

Vacancy in 1st shell 0.54 0.18 0.06

Vacancy in 2nd shell 1.18 0.52 0.30

Another example how analysis of polarized XANES can facilitate studying struc-
ture of materials is given in Sect. 22.3 of this book.

One of themainmotivations for research on doped ZnO ismagnetism. Theoretical
studies suggest that whether the dopant in ZnO is magnetic or not depends on its
location. It was found that Cu atom in interstitial position in ZnO is nonmagnetic,
while Cu atom in a substitutional position is magnetic [143]. As some studies suggest
that oxygen vacancies may be important [137], it is interesting to calculate magnetic
moments for a substitutional impurity CuZn in ZnO if vacancies are included: the
oxygen vacancy VO was located in the ab wurtzite plane, in the first or in the second
shell of O atoms (Cu–VO distances were 1.98 Å or 3.80 Å) [144]. Theoretical results
for μspin and μorb at the Cu sites are summarized in Table4.4. The table presents also
the spin magnetic moment for the whole system, to demonstrate that the polarization
cloud around Cu must be quite extended.

http://dx.doi.org/10.1007/978-3-319-73811-6_22
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To study the influence of vacancies further, one can calculate Cu K -edge XMCD
for substitutional CuZn either with vacancies or without vacancies. The results are
shown inFig. 4.16 [144], togetherwithCu K edgeXMCDmeasured for paramagnetic
Cu-doped ZnO pellets [143]. If the vacancy is next to CuZn, the sharp XMCD peak
in the pre-edge region is nearly suppressed. If the vacancy is further from CuZn, it
leads to changes in the fine XMCD structure in the energy region which corresponds
to the main XANES peak. A particularly interesting feature is the case of an oxygen
vacancy in the first shell. There is small non-zero magnetic moment on Cu for this
case but the XMCD signal does not exhibit the strong pre-edge signal, clearly shown
in the theory for other geometries (and also observed in the experiment for Cu-doped
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ZnO pellets [143]). This strong sensitivity of the Cu K -edge XMCD to the presence
of vacancies can serve as yet another example how XMCD spectroscopy, together
with proper theoretical support, could be useful for structural studies.

4.2.6 Angular Resolved Photoemission

4.2.6.1 One-Step Model of Photoemission

Angle resolved photoemission (ARPES) and bremsstrahlung isochromat
spectroscopy (ARBIS) are experimental techniques for the direct determination of
the electronic structure of materials [27, 28]. Within this techniques, we have direct
and very accurate access to measure the band dispersion and the electronic structure
around the Fermi level with high resolution. During the last years many techni-
cal improvements led to an increase of the resolution of ARPES down to the meV
regime. Among others, these developments includes the use of the synchrotron and
laser photon sources and improvements of the detector side (e.g. spin resolution). On
the theory side, the photoemission many-body theory has been developed 50 years
ago [29–33]. Based on these formulations, Berglund and Spicer [34] derived so called
three-step model (3SM) of photoemission (PE), which was the first and very simpli-
fied version of a one-electron approximation for the photocurrent, In this model the
photocurrent is divided into 3 incoherent steps: the excitation of the photoelectron
(PhEl), its transport through the bulk and its escape into the vacuum. Self-energy
corrections, which describe among others damping processes and shifts in the quasi-
particle spectrum, are neglected. This means that the final and initial states in the
ARPES process are considered to be Bloch-waves with an infinite lifetime. The
assumption of an infinite lifetime can not account for transitions into evanescent gap
states. It means, exponentially decaying states into the bulk. This assumption for the
initial state also does not allow to describe PE spectra that includes surface states.

To overcome the limitations of the 3SM, a dynamic description was proposed
first for the final state by Liebsch [35] and Spanjaard et al. [36]. Later on multiple
scattering effects were included for the initial as well as final states by Pendry and
coworkers [37, 38]. This allows to include self-energy effects on equal footing.
Within the Pendry’s one-step approach (1SM) to ARPES [37, 39] the retarded one-
electron Green’s function for the initial state is calculated within the DFT [40]. Here
the electronic correlation effects are in most cases considered in by the local (spin)
density approximation (L(S)DA) [41, 42]. Lifetime effects in the initial state as well
as final states are modeled by an imaginary potential term V0. The time reversed
spin-polarized low-energy electron diffraction (SPLEED) state [39, 43] is the proper
final states for the PE process. The imaginary part V0, f here simulates the inelastic
mean free path (IMFP) leading to the decaying amplitude of the high-energy PhEl
state inside the bulk [37].

After the 1SM has been formulated, it has been generalised in many ways. For
example, the quantitative description of spin-orbit induced dichroism was worked
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out by several groups [43–50]. Furthermore, the so called full-potential formulation
of PE led to the accurate description for complex surface systems [43, 49, 51] (see
Chap.3 of this book). The treatment of disordered systems has been first proposed
by Durham et al. [46, 52]. Nowadays, the 1SM allows to consider photon energies
in a wide range from a few eV to more than 12 keV [53–60], for arbitrarily ordered
[61] and disordered systems [62] at finite temperatures, and including in addition
strong correlation effects within the DMFT [63–68].

The idea of the 1SM is to treat the actual excitation, the transport as well as the
escape into the vacuum [34] as a single quantum-mechanically coherent process.
This includes all multiple-scattering events. By describing the final and initial states
within the fully relativistic layer-dependent KKR method [1, 69, 70], it is possible
to treat ARPES from complex layered materials like thin films and multilayers.
As mentioned above, within the 1SM of PE, the ARPES is described by Pendry’s
formula [37]:

I PES ∝ � 〈E f , k‖|G+
2 X̂G

+
1 X̂

†G−
2 |E f , k||〉 . (4.14)

This equation is derivedFermi’s golden rule for the transition probability per unit time
[43, 71]within the sudden approximation. Here themanybody interaction of the PhEl
with the rest of excited system is neglected. The initial state is described by the layer
KKRGreen’s functionG+

1 . Treating an angle-, spin- and energy-resolved, experiment
the state of the PhEl at the detector can be formulated as |E f , k‖〉, where k‖ is the
component of the wave vector parallel to the surface, and E f is the kinetic energy of
the PhEl. The spin state of the PhEl is included in |E f , k‖〉 as a four-component Dirac
spinor. The advanced Green’s function G−

2 in (4.14) describes the final-state e.g., the
scattering properties of the surface at E f . By |Ψ f 〉 = G−

2 |E f , k‖〉 all multiple-
scattering events are formally included. We treat the final state within SPLEED
theory by a single plane wave |E f , k‖〉 penetrating onto the crystal surface. The X̂
is the dipole operator of electron-photon interaction and is shown in its relativistic
form in (4.8). However in ARPES, due to the numerical stability it is usefull to have a
different form of this operator, i.e. the so called ∇V form. This is derived by making
use of anticommutator and commutator with Dirac Hamiltonian analogously to the
nonrelativistic case [19].

4.2.6.2 Correlation Effects in Transition Metals

The most detailed description of the band structure of correlated matter can be seen
by angle- and spin-resolved valence band PE. Here we show various examples of
ARPES calculations done within the 1SM. These examples will demonstrate the
need to treat matrix elements in ARPES calculations in order to get a quantitative
understanding of the experimental data.

The following examples concern the ferromagnetic (FM) transition metals like Fe
and Ni as prototypes to understand magnetism and electronic correlations far beyond
the LSDA. In particular, fcc Ni has been studied by many experimental [146–152]
and theoretical studies [153–155] as a prototype of an itinerant electron FM, since

http://dx.doi.org/10.1007/978-3-319-73811-6_3


4 KKR Green’s Function Method in Reciprocal and Real Space 129

shortcomings of simple one-electron theory are obvious. LSDA calculations for fcc
Ni cannot describe various experimental aspects of the electronic structure of Ni. In
addition to the feature that valence band PE spectra of Ni [156–158] has a reduced
3d-band width compared to LSDA results [159] the PE show a satellite feature at
a binding energy (BE) of about 6 eV [146, 147, 160–163]. On the other hand, an
improved inclusion of correlations for the 3d electrons using manybody techniques
[153, 154, 164] or in a more recent view applying the LSDA+DMFT method [64,
78]. Within LSDA+DMFT method we can find more or less experimental width of
the 3d-band complex and furthermore is able to predict the 6 eV satellite feature in
the valence band.

In Fig. 4.17 we present a comparison of experimental PE results [145] and cal-
culated theoretical data using several theoretical methods [64]. In the upper panel
ARPES spectra from (011) surface if Ni along �Y for different emission angles are
shown. The dots represent the experimental ARPES data, whereas the red lines are
a single-particle spectral functions. Obviously, the LSDA-based data fails to repro-
duce the experimental data. The energetic positions of the theoretical peaks deviate
strongly from the measured ones. In addition, the complex intensity variation that is
measured for higher emission angles are not reproduced by the LSDA-based bloch
spectral functions. From the second row of this figure, it can be seen that 3BS results
provides a significant improvement when compared to the measurements. For the
complete range of angles the peak positions agree with themeasurments within about
0.1 eV. However, the overall spectral shape of the experimental intensities is different
from the calculations due to the neglect of multiple scattering, matrix element and
surface effects. In the measurement most peaks seem to be broadened. In addition,
the intensity at the normal emission is shifted by 0.1 eV to higher BEs. The inten-
sity shape resulting from the ARPES calculation are presented in the lower panel of
Fig. 4.17. Here we obtained very good quantitative agreement between measurment
and theory for all angles of emission. In the following we will closely describe spec-
trum calculated for the emission angle 	 = 5◦. The spin-integrated data shows a
pronounced double structure with BEs of 0.1 and 0.3 eV. The second peak is reduced
in intensity in agreement with the experimental data. Furthermore, the spectral width
is also quantitatively reproduced. The calculated BEs are connected to the real part of
the self-energy that shifts the energetic positions of peaks due to a dynamical renor-
malization of the quasi-particle energies. The relative peak intensities, on the other
hand, can be traced back to thematrix element effects that are included in the one-step
model of PE calculations. This double-peak structure comes from excitation of the
exchange splitted d-bands together with a significant amount of surface-state [165].

The second example within this section is devoted to a study of the prominent
6 eV satellite of Ni. As was previously shown by theory [164] and PE experiments
[149], the 6 eV satellite has finite spin-polarization. In a recent XPS experimental
study the intensity at hν = 150 eV and the spin ARPES spectra at hν = 66 eV has
been measured. Results for the latter experiment are presented in Figs. 4.18a and c.

The satellite feature is found at a BE of about 6.3 eV in good agreement with all
former studies. Furthermore, Fig. 4.18c shows the non-zero spin-polarization, again
in agreement with earlier publications [149]. After background correction, the spin-
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Fig. 4.17 Spin-integrated ARPES spectra from Ni(011) along �Y for three different angles of
emission. Upper row: comparison between LSDA-based calculation and experiment [145]; middle
row: comparison between experiment and non-self consistent quasi-particle calculations neglect-
ing matrix element and surface effects [145]; lower row: spin-integrated LSDA+DMFT spectra
including PE matrix elements (this work). Theory: solid red line, experiment: black dots. Figure
reproduced from [64]

polarization is found to be about 15%. In Fig. 4.18bwe compare themeasured spectra
with a DOS which is calculated based on the LSDA+DMFT method. The values
U = 2.8 eV and J = 0.9 eV are identical withwhatwe used for the previous example.
The satellite is found at a BE of ∼7.2 eV. This is 1 eV higher in BE compared to the
experiments. This is due to the many-body solver used here. The FLEX-solver [86]
is based on perturbation theory. As a consequence the energy-dependence of the self-
energy is underestimated and this causes this shift of about 1 eV in the BE. The spin-
and ARPES calculation is presented in Fig. 4.18d. The predicted spin-polarization
of 10% is slightly smaller than the experimental one. Besides these deviations the
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Fig. 4.18 a Measured XPS taken at hν = 150 eV. The Ni 6 eV satellite structure appears at about
6.3 eV BE. b Spin- and angle-resolved PE spectra taken in normal emission at hν = 66 eV with s-
polarized light. Open black (dark) squares: majority spin states, open red (light) squares: minority
spin states, solid black (dark) and red (light) lines serve as guides for the eyes. Spin-integrated
intensity: green (gray) thick dotted line. c LSDA+DMFT calculation of the spin-integrated DOS.
The satellite feature appears at bout 7.2 eV BE. d LSDA+DMFT spin-resolved PE calculation in
normal emission at hν = 66 eV for a U value of 3.0 eV: solid black (dark) and red (light) lines
indicate majority and minority spin states, green (gray) line shows the spin-integrated intensity.
Figure reproduced from [68]

agreement between theory and experiment is very satisfying. Thus we could show
the first ARPES calculation in which this spectral feature appears.

The second example in this section is devoted to a spectroscopic investigation of
ferromagnetic iron [66]. In the left panel of Fig. 4.19 we show the experimental peak
positions together with LSDA+DMFT spectral functions for majority and minority
states. In addition to these LSDA+DMFT calculations, correlation effects were also
described within the 3BS theoretical approach [166]. Within the 3BS method the
self-energy is formulated using a configuration interaction-like description. Three-
particle configurations as for example one hole plus one electron-hole pair are taken
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Fig. 4.19 Left panel: Spin resolved Bloch spectral functions calculated within LSDA+DMFT
and 3BS formalism. Corresponding experimental data points have been deduced from the normal
emission spectra along the �N direction. Right panel: a Experimental spin-integrated PE spectra
of the Fe(110) surface measured with p-polarization in normal emission along the �N direction
of the bulk Brillouin zone. The curves are labeled by the wave vectors in units of �N = 1.55 Å−1.
b Corresponding one-step model calculations based on the LSDA+DMFT method which include
correlations, matrix elements and surface effects. Figure reproduced from [66]

into account within the 3BS approach. This result can be directly compared to the
ARPES process and allows for a analysis of various contributions to the self-energy,
as for example electron-hole lifetime. A more detailed comparison is presented in
right panel of Fig. 4.19. Herewe show a comparison of experimental ARPES data and
theoretical LSDA+DMFTbased one-stepmodel calculations of (110) surface of iron
along the�Nof the bulk Brillouin zonewith p-polarized light. In our LSDA+DMFT
studies we use for the on-site Coulomb interaction U a value U = 1.5 eV which is
deduced from experiment [167] and other theoretical studies [88, 168]. Near the �

point (k ∼ 0.06 �N), the peak found close to the Fermi level can be ascribed to
a Σ

↓
1,3 minority surface resonance, as shown on top of Fig. 4.19. In the experiment

its Σ
↓
3 bulk component crosses the Fermi energy at k ∼ 0.33 �N. This leads to a

reversal of the experimental spin-polarization and to a reduction of the intensity at
k = 0.68 �N in the minority spin channel. The peak at the BE ∼0.7 eV, can be
assigned to degenerate Σ

↑
1,4 bulk-like majority spin states. A Σ

↑
3 peak at BE ∼1.1

eV dominates the ARPES close to the �-point. The broad intensity around 2.2 eV,
visible at most of the k-points, but not at the N-point, is connected to a majority
surface state denoted as Σ

↑
1,3. Around the N-point (0.76 ≤ k ≤ 1.0) and at BE ≥ 3

eVwe see aΣ
↓
1 band with strong sp character. The difference between its theoretical
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and measured intensity can be described by the fact that in the calculations only the
Coulomb repulsion between d states is considered, without additional lifetime effects
for other sp bands. The comparison of the calculated and measured spectra turned
out to be a very detailed check for the U value used in the calculations. This also
applies to the self-energy, that was compared to its experimental counterpart derived
from the band dispersion and line width.

In summary, spectral function calculations for ferromagnetic iron was dano in
such a way that it coherently combine description of electronic correlations, surface
emission, multiple-scattering, dipole matrix element related effects that lead to a
modification of the relative ARPES intensities. Previously, a similar study was done
for hcp Co(0001) [89] and fcc Co(001) [169]. The unified approach allows a detailed
and reliable description of high-resolution ARPES spectra of 3d-ferromagnets. It
also allows for a very stringent test of current developments in the field of DMFT
and other many-body techniques.

4.2.6.3 Disordered Correlated Alloys: NixPd1−x(001) and Diluted
Magnetic Semiconductor GaxMn1−xAs

In this section combination of electronic correlations disorder effects are discussed
[62]. The above mentioned combination of KKR band structure method with the
DMFT scheme has been generalised to the case of disordered alloys [63, 78]. In this
way one can include many-body correlation effects in the electronic structure and PE
calculations of this class of disordered materials. Application of this method to the
high-energy x-ray PE spectroscopy (HAXPES) spectroscopy is shown in Fig. 4.20
where we HAXPES spectrum for diluted magnetic semiconductor Ga1−xMnxAs is
shown. An important element for tracing back the nature of the ferromagnetism
in dilute magnetic semiconductors is the direct experimental measurement of the
electronic states close to the Fermi level. Due to the difficulty in preparation of a
good quality surface samples it is very difficult tomeasure it by UVPE. This problem
could be solved by ARPES [55] and angle integrated [56] bulk sensitive HAXPES.
In Fig. 4.20 we compare experimental a-c and theoretical data d-f based on a one
step model of angle integrated PE. Mn dopant has been described within the CPA
approach in combination with DMFT. The theory agrees quantitatively with the
experimental results over a broad range of BEs. We found bellow the Fermi level, a
feature at 250 meV, which can be seen only by to performing LDA+DMFT instead
of LDA calculations. From the theoretical data we conclude that the maximum in the
difference spectra has mainly Mn-3d (t2g) angular momentum character. A strong
hybridization is present with As 4p states which are localized around the impurity.

Figure4.21 represents a series of ARPES spectra of NixPd1−x as a function of
the concentration x . It was calculated and measured for a photon energy hν = 40
eV with linearly polarized light. The experiments are shown in the left panel and the
LSDA+DMFT PE calculations are ploted in the right hand side. Overall agreement
between theory and experiments is found for all concentrations. However, starting
from Ni0.70Pd0.30 it is clearly visible that deviation between theory and experiment
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Fig. 4.20 a–c HAXPES spectra (5953 eV) for different Mn doping in GaAs. The GaAs spectra
have been aligned to the (GaMn)As spectra using the BE position of the As 4s core level. No
background subtraction was applied. a Extended valence band PES (T = 20 K), including the
As 4s, Ga 4s, and As 4p shallow core levels of GaAs(100) and 13% Mn-doped GaAs. b Zoom
of the valence band region (T = 100 K), showing the spectra from pure GaAs (black dots), 1%
and 13% Mn-doped GaAs (red and blue dots, respectively). c High-resolution spectra measured
in the vicinity of EF . Difference spectra, corresponding to the Mn contribution only, are shown
in orange (13% Mn spectrum (blue dots) minus pure GaAs spectrum (black dots)) and grey (1%
Mn spectrum (red dots) minus pure GaAs spectrum (black dots)]. The reference Fermi level of
Au is displayed, offset. d Calculated angle-integrated PES (including matrix elements) for photon
energy and geometry (p polarization) as used in the experiment. e Calculated valence-band spectra
of GaAs(100) using LDA (black curve) and (Ga,Mn)As (13%) using both LDA (red curve) and
DMFT (blue curve). f Zoom of the vicinity of EF with calculated difference spectra, as in c, for
LDA (violet curve) and DMFT (green curve). Figure reproduced from [56]

occurs with increasing Pd concentration. This is caused by the Pd d-states that are
slightly shifted to higher BEs. This is well known from other metals like Cu. It can
be described in terms of static correlations in the Pd-states that are not explicitly
considered here.

Our study has clearly shown that the electronic properties of the NixPd1−x alloy
depend sensitively on the interplay of alloying and electronic correlation. A descrip-
tion within the CPA results in a very good description of the electronic structure of
many disordered materials like for example NixPd1−x [62]. This example illustrates
that the combination of the CPA with LSDA+DMFT approach provides a powerful
tool for electronic structure calculations. In addition its combination with the fully
relativistic one-step model of PE takes into account chemical disorder and electronic
correlation on same footing and it guarantees a unique analysis of corresponding
measured spectroscopic data.
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Fig. 4.21 ARPES spectra taken from the NixPd1−x (001) alloy surfaces as a function of the con-
centration x for a fixed photon energy of hν = 40.0 eV along �X in normal emission. Experimental
data shown in the left panel calculated spectra shown in the right panel. Depending on the concen-
tration x a pronounced shift in spectral weight towards the Fermi level is visible. Figure reproduced
from [62]

4.2.6.4 Surface Effects in ARPES

In the following section we picked up an particular example showing power of multi-
ple scattering technique to describe and identify surface states. This example is based
on the compound for iron based super conductors, BaFe2As2. In this material, a long
standing discussion and unclear experimental situation concerning possible surface
termination has beenwidely discussed.Using the 1SMof PEone can describe various
surface states and can thus understand the origin of these bands. The occurrence of
surface-states can be easly predicted within the multiple scattering theory by means
of so called determinant criteria [171, 172]. This determinant criteria is formulated
from the bulk reflection matrices Rb and from the scattering properties of surface
barrier potential Rv (which connects the inner potential of the bulk crystal with the
vacuum level). The possible appearance of a surface state than given by the following
equation:

D(E, k) = det (I − Rb(E, k)Rv(E, k)) = 0. (4.15)

For better visualization we plot 1/|D(E, k)| instead of D(E, k). If 1/|D(E, k)| is
bigger than 103 we identify given spectral feature as a surface states. For values
between 100 and 103 the spectral feature is surface resonance. For values below this
value one has bulk states. More details about this criteria can be found in the paper
by Braun and Donath [173].
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Fig. 4.22 Calculated Fermi surfaces and band structures of BaFe2As2 for either an As-terminated
surface a and b or a Ba-terminated surface c and d. The right side of each picture shows the
corresponding plot of 1/|D(E, k)|, meaning a high intensity indicates a possible surface state if
this specific structure can be also identified in the regular electronic structure calculation. Clear
surface states can be identified for the As-terminated surface as bright spots in the Fermi surface
a and as corresponding steep bands in the band structure b. These surface states are missing for a
Ba-terminated surface. Figure reproduced from [170]

This determinant approach is demonstrated in Fig. 4.22. Here we show the band
structures and the Fermi surfaces along the a-axis for an As-terminated and a Ba-
terminated surface ofBeFe2As2, respectively. The corresponding plot of 1/|D(E, k)|
is shown on the right hand side of each picture. The determinant condition itself
without a high intensity in the corresponding ARPES plot is only an indication for a
surface state or a surface resonance. Only if a high intensity in the 1/|D(E, k)| plot
agrees with a band in the ARPES one can speak about clear surface character. For
example the two high intensity spots in Fig. 4.22a along the a-axis have a surface
related origin,more specifically a surface state as the intensity of 1/|D(E, k)| is in the
order of 106. This is in agreement with the previous findings for the kz-dispersion
in ARPES, which indicates a connection to a surface related phenomenon [170].
Another proof for the surface origin of these states is represented in Fig. 4.22c and d,
where the correspondingARPESFermimaps and band structures are shown for a Ba-
terminated surface. The surface states discussed above for the As-terminated surface
have completely disapeared in theBa-terminated case. The correspondinghighvalues
of the 1/|D(E, k)| are missing in both plots. Overall, the Fermi surface and the
dispertion of bands have undergone huge changes for the Ba surface termination.
The Ba layer on top of the surface leads to the reduction of the intensity and smearing
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of the electronic states which are in turn clearly visible in an As-terminated surface.
In particular one has to note that the agreement with measured ARPES data is much
better for an As-terminated compared to the Ba-terminated surface.

This result suggest the most likely As surface termination of BaFe2As2. The
surface termination in this material is still experimentally not clear and it is under
debate [175]. According to first principle calculations only three possible surface
termination exists. Is namely a fully As-terminated or a fully Ba-terminated surface
and an As surface covered with 50% of Ba atoms [176]. Experimental low-energy
electron-diffraction (LEED) and scanning tunneling microscopy (STM) measure-
ments indicates a Ba-terminated surface [177]. However, there are also experimental
LEED and STM measurments which clearly favor an As-terminated surface [178].
Above presentedARPES calculations clearly predicts anAs-terminated surface. This
was shown by agreement of calculations with ARPES measurments.
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Chapter 5
Multichannel Multiple Scattering Theory
in R-Matrix Formalism

Peter Krüger

Abstract Multichannelmultiple scattering theory (MCMS) inR-matrix formulation
is introduced for x-ray absorption spectra calculations from spin-orbit split core-
levels. A multichannel extension of scattering theory is motivated by the occurrence
of strong electron correlation effects of the atomic multiplet type. MCMS is imple-
mented in real-space multiple scattering theory with a correlated particle-hole wave
function and the multichannel scattering matrix of the core-level site is computed
using the variational R-matrix method. This affords an accurate and numerically effi-
cient treatment of strong particle-hole configuration mixing induced by core-valence
Coulomb coupling. Applications of MCMS to L2,3-edge spectra of light transition
elements are reviewed and shown to give excellent results for metallic and insulating
Ca and Ti compounds, where long range band structure effects and particle-hole
coupling must be treated on an equal footing.

5.1 Introduction

5.1.1 Single- and Many-Electron Formulation of X-ray
Absorption Spectroscopy

In this introductory section, we introduce the theoretical basis of x-ray absorption
spectroscopy starting from the exact many-electron formula of the cross-section. We
describe its reduction to the often used single-particle theory and discuss the validity
and limitations of the latter. According to Fermi’s golden rule, the x-ray absorption
cross-section can be written as

σ(ωq) ∝
∑

F

|〈F |Hint|G〉|2δ(EF − EG − �ωq) , (5.1)
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whereHint is the interaction between the x-ray field and the matter, |G〉 is the ground
state and |F〉 are excited (final) eigenstates of themany-electron system,with energies
EG and EF , respectively. The interaction Hamiltonian is essentially given by A · p,
where A is the vector potential of the light, p is the electron momentum operator,
and a sum over all electrons is understood. Close to an absorption edge from some
core-shell c, the dominating final states are those with one hole in that core-shell.
However, for nearby core-shells, configuration mixing between states with holes in
different shells may occur, as we shall see below.

Theories for XAS can be divided into two big classes depending on whether they
are based on the independent particle approximation (IPA) or not. In the IPA, |G〉
and |F〉 are assumed to be (antisymmetrized) product functions corresponding to the
same effective single-particle Hamiltonian. Then, it is easy to show that (5.1) reduces
to

σ(ωq) ∝
∑

f

|〈 f |Hint|c〉|2δ(εf − εc − �ωq) , (5.2)

where |c〉 and | f 〉 are single-particle eigenstates (spin-orbitals) of, respectively, the
core and the unoccupied levels, which energies εc and εf . Equation (5.2) is the single
particle formula for XAS, and forms the basis of most calculations, especially for
K-edge spectra. For the computation of the continuum state | f 〉, or equivalently,
the single-particle Green’s function, multiple scattering theory is a very convenient
technique.

The single-particle formula (5.2) can be derived under somewhat more general
conditions than the IPA. But it must be assumed that |G〉 is the product between a
core-state |c〉 and a single wave function |Φ〉 of the other (N − 1) electrons, and
that |F〉 is the product of the same function |Φ〉 and the excited spin-orbital | f 〉.
Physically this means that during the excitation of the core-electron, the remaining
(N − 1) electrons are mere spectators and do not change their state. In reality, the
reaction of the other electrons is not at all negligible and may lead to strong spectral
changes, so-called core-hole effects. Often the most important effect is the change
of the effective one-electron potential due to the creation of the core-hole, that is
an additional localized positive charge. As a consequence of the deepened atomic
potential, the spectator orbitals contract or relax, and thereby screen the core-hole
charge. The orbital relaxation can be taken into account in the one-electron theory
(5.2) by calculating | f 〉 with a core-hole potential, that is an effective single-particle
potential obtained by a constrained ground state calculation where one electron is
removed from the core shell and added to the valence shell. The prescription to use
the core-hole potential instead of the ground state potential is known as the final
state rule. For K-edge spectra, the final state rule often yields improved results as
compared to the ground state potential. From a many-body point of view, the final
state rule raises an orthogonality problem. Indeed, since the ground state poten-
tial and the final state potential are different, all the orbitals are different, and so
the state of the spectator electrons can no longer be the same. So, |G〉 = |Φ〉|c〉 but
|F〉 = |Φ̃〉| f 〉 with |Φ̃〉 �= |Φ〉. Then 〈F |Hint|G〉 = 〈 f |Hint|c〉 × S, with S =
〈Φ̃|Φ〉 < 1. The loss of spectral weight expressed by S < 1 must be compensated
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elsewhere in the spectrum. This implies that for the (N − 1) electronwave function in
the presence of the core-hole, not only the (constraint) ground state |Φ̃0〉with energy
Ẽ0 but also excited states |Φ̃n〉 with energy Ẽn will give non-zero contributions to the
spectrum. In core-level photoemission, this is directly visible since the energy loss
Ẽn − Ẽ0 corresponds to an increase in binding energy, and so the excitations appear
as higher energy peaks, such as multiplet, shake-up and shake-off satellites in atoms
and charge transfer or plasmon satellites in extended systems. In other words, the
core-hole creation is necessarily accompanied by spectral weight transfer to many-
body excitations. The success of the one-electron theory forK-edge spectra indicates
that in this case, the spectral weight transfer is either small, S ≈ 1, or much spread
out in energy and thus hidden in the background.

In other cases, however, the spectral weight transfer is large and the single-particle
theory (5.2) breaks down. This is mostly due to strong configuration mixing in the
ground or final states which often occurs in 3d and 4f electron systems. The effects
are strongest when the optical transition goes directly into the open 3d or 4f shell, i.e.
at the transition metal L23 and rare earthM45 adsorption edges. For these white lines,
good results are obtained with ligand field multiplet (LFM) theory [1] where (5.1)
is evaluated with correlated N -electron wave functions for a single atom whereby
intra-atomic configuration mixing (or multiplet effects) can be easily taken account
for. However, in the case of transition metal L23 edges, the final 3d states are not fully
localized and the photo-excited electron will scatter at the surrounding atoms, which
gives rise to ligand field splittings and band broadening of L23 edge spectra. The
ligand field splittings can, to some extend, be reproduced in the LFM model, but at
the cost of empirical parameters which need to be fitted to experiment. Thus the pre-
dictive power of the LFM method is very limited. LFM theory essentially performs
an exact diagionalization of the many-electron Hamiltonian. Let us note that it is
not possible to extend this scheme in a straightforward manner to extended systems
(solids and large molecules) because the size of the Hilbert space grows exponen-
tially with electron number. Nonetheless in the last two decades, much progress
has been achieved for taking account of multiplet effects in XAS calculations of
extended systems on an ab initio level using various different approaches. Without
going into detail, we mention time-dependent density functional theory [2–5], the
Bethe–Salpeter-Equation approach [6, 7], ab initio ligand field multiplet theories
based on quantum chemistry methods [8, 9] or Wannier-states [10], as well as the
multichannel multiple scattering method [11] which is the subject of this chapter.

5.1.2 Multiple Scattering and the Need for a Multichannel
Extension

Multichannel multiple scattering theorywas first proposed in 1990 in a seminal paper
by C.R. Natoli et al. [12]. It is a generalization of multiple scattering theory to many-
electron wave functions and was motivated by the many-electron effects observed
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in x-ray absorption spectra that we have touched upon in the previous section. For
single scattering centers, multichannel scattering theory is well known since the
1950s in nuclear physics [13] and since the 1960s in atomic physics [14]. Stated
simply, MCMS theory extends multichannel scattering theory from a single atom to
a condensed systems by taking account of multiple scattering at the various atomic
sites.

In order to introduce our notation and to well understand in what sense MCMS
extends standard multiple scattering theory (MST) we shall start by recalling some
essential points of standard multiple scattering theory. More details can be found
in Chap.1. Standard MST is a numerical method for solving the single-particle,
time-independent Schrödinger equation with fixed energy ε for a solid or a finite
cluster of atoms. As a band structure method for solids it was first introduced by
Korringa [15], Kohn and Rostoker [16] and is known as the KKR method. In MST
the potential of the system is written as the sum of local potentials, V = ∑

i Vi,
where i runs over the atomic sites and each Vi is non-zero only inside the atomic
cell No i. The atomic cells must be non-overlapping and are often approximated by
spheres. The main characteristic of MST is that it divides the electronic structure
problem into a potential part, which can be solved site by site, and a structural
part which only depends on the geometry of the system. In the potential part, the
scattering response of each local potential is determined and expressed in terms of
the phase shift functions δi�(ε) or equivalently atomic t-matrices ti�(ε), where � is the
orbital quantum number and we have assumed the local potential to be spherical for
simplicity. In the structural part, the propagation of free spherical waves between the
scattering sites is determined and expressed in terms of (real-space) KKR structure
constants GiL,jL′ , which represents the transition amplitude between an outgoing free
spherical wave centered at site i with angular momentum L = (�,m) and a regular
spherical wave centered at site j with L′. By letting the waves propagate between
all sites, imposing the appropriate boundary conditions for the physical problem at
hand, and requiring that the total wave be continuous and differentiable one arrives at
consistency equations between the spherical wave amplitudes. They are the multiple
scattering equations. A central quantity of MST is the scattering path operator τ .
Its matrix elements τiL,jL′ express the transition amplitude between free waves iL
and jL′ including all possible scatterings. Here |iL〉 denotes a local solution of the
Schrödinger equation at site i with angular momentum L. τ can be calculated by
matrix inversion as

τ = M−1 where MiL,jL′ = t−1
i� δLL′δij − GiL,jL′ , (5.3)

From the knowledge of τ and the local solutions, it is easy to calculate the total wave
function.

In the single-particle theory of XAS, standard MST can be used to calculate the
final state wave | f 〉 in (5.2). If the many-electron formula (5.1) is to be used, MST
needs to be generalized to amultichannel, i.e.many-particle theory for the calculation
of |F〉.

http://dx.doi.org/10.1007/978-3-319-73811-6_1
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Multichannel scattering theory has been used since the 1940s to describe colli-
sion processes in nuclear physics. In the 1960s it was first applied to electron-atom
scattering and photoemission. The need for a multichannel theory is obvious in the
case of inelastic scattering phenomena. When an electron with energy ε0 scatters
inelastically off an atom, the electron loses a part of its energy to the atom which
is thereby excited from its electronic ground state Φ0 to some excited state Φα.
Thus each excited state gives rise to a different scattering channel α with a different
scattered electron orbital φα and energy εα = ε0 + E0 − Eα.

So the concept of multichannel scattering arises naturally in the description of
inelastic processes. This is relevant for x-ray absorption spectroscopy, because the
photoelectron may lose part of its energy in many-body excitations induced by the
creation of the core-hole and the inelastic scattering of the photoelectron. These
loss processes give rise to satellite structures in photoemission spectra. In the sud-
den approximation, the different photoemission channels are assumed uncoupled
[12]. Then, the x-ray absorption can be calculated as a convolution of the core-level
photoemission spectrum (including satellites) and the one-electron x-ray absorption
spectrum, as will become apparent in (5.7) below. In contrast, if the photoelectron
strongly interacts with the other electrons, the channels are generally coupled and
must be solved together. For high photoelectron energies the sudden approximation
is good, but in the near threshold region the excitation process may be closer to
the adiabatic regime and strong multichannel coupling can occur [12]. From a more
technical point of view, one can say that multichannel scattering theory is required
whenever there is strong configuration mixing between the excited electron in the
continuum state and the other electrons of the system.

5.2 Derivation of Multichannel Multiple Scattering Theory

5.2.1 Single-Site Multichannel Scattering

Consider x-ray absorption from a core-shell c of an isolated atom with N electrons.
The ground state is |Ψ N

g 〉 and its energy Eg . Possible final states are eigenstates of
the system with one hole in shell c and one electron in the continuum, called the
photoelectron in the following. The final state energy is E = Eg + �ωq, where �ωq is
the photon energy. We first consider the eigenstates of the core-excited ionized atom
with (N − 1)-electrons

HN−1|ΦN−1
α 〉 = EN−1

α |ΦN−1
α 〉 . (5.4)

Physically, |ΦN−1
α 〉 describes a possible final state of the ionized atom in the asymp-

totic limit when the photoelectron is infinitely far away. In this limit the total
N -electron final state is a product state |ΦN

f 〉 = |ΦN−1
α 〉|φα〉 where |φα〉 is the free

electron wave with energy εα = EN − EN−1
α .
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Now let us first assume that the total wave is a product state not only in the
asymptotic region but everywhere

|ΦN
f 〉 = |ΦN−1

α 〉|ψα〉 , (5.5)

where now ψα is the full (distorted) photoelectron wave. Then the optical transition
matrix elements have the form

〈ΦN
f |Hint|ΦN

g 〉 = 〈ψα|Hint|φc〉〈ΦN−1
α |cc|ΦN

g 〉 , (5.6)

where the subscript c denotes a core-state and cc its annihilator. The absorption
intensity can then be simplified to

∑

f

|〈ΦN
f |Hint|ΦN

g 〉|2δ(Ef − Eg − ωq) =
∫

dε IXPS(ε − ωq)I
IPA
XAS(ωq) , (5.7)

where
I IPAXAS(ωq) ≡

∑

ν

|〈ψν |Hint|φc〉|2δ(ωq + εc − εν) (5.8)

is the XAS spectrum in the independent particle approximation (5.2) and

IXPS(ε) =
∑

α

|Sα|2δ(ε − Eα + Eg) , Sα ≡ 〈ΦN−1
α |cc|ΦN

g 〉 , (5.9)

is the many-body core-level XPS spectrum in the sudden approximation. So we see
that if the total wave can be factored between the photoelectron and the rest, the
XAS spectrum can be expressed as the convolution of the XPS spectrum and the
XAS spectrum in the IPA. In this case several excitation channels may exist, but
they are uncoupled. This corresponds to the sudden approximation which should
be valid in the high energy (EXAFS) region [17]. For low photon energy, however,
the photoelectron interacts strongly with the core-hole and the other electrons and
substantial channel coupling may occur. In this case, the following full (i.e. coupled)
multichannel theory must be used.

In multichannel scattering theory theN -electron final states are expanded over the
(N − 1) electron eigenstates ΦN−1

α times a single-electron continuum state describ-
ing the photoelectron. This is known as the close coupling expansion

|Ψ N 〉 = A
∑

α

|ΦN−1
α 〉|φα〉 . (5.10)

Here, A is the antisymmetrization operator. Each state ΦN−1
α gives rise to a channel

α and in each channel, the photoelectron has a different wave function φα(r) and a
different energy

εα = E − EN−1
α . (5.11)



5 Multichannel Multiple Scattering Theory in R-Matrix Formalism 149

Assuming the states Φα to be known, the remaining problem is the calculation of the
photoelectron orbitals φα. We write the total N -electron Hamiltonian as a sum of the
Hamiltonian of the ionized atomHN−1, that of the photoelectron h and an interaction
term V

HN = HN−1 + h + V , (5.12)

h includes the kinetic energy and the external (nuclear) potential, and V is the
Coulomb interaction of the photoelectron (located at r) with the other (N − 1) elec-
trons.

V =
N−1∑

i=1

e2

|ri − r| . (5.13)

Then, the Schrödinger equation for the N electron system reads

0 = (HN − E)|Ψ N 〉 = (HN−1 + h + V − E)A
∑

β

|ΦN−1
β 〉|φβ〉 . (5.14)

For simplicity we shall disregard the antisymmetrization operatorA in the following.
We now project the above equation on a state 〈Φα| and integrate over all electron
coordinates except those of the photoelectron (r). Using (5.4) and the orthogonality
of the eigenstates |Φα〉 we get

0 =
∑

β

⎡

⎣(h + EN−1
α − E)δαβ +

∑

β

〈ΦN−1
α |V |ΦN−1

β 〉
⎤

⎦ |φβ〉 . (5.15)

This leads to the definition of the interchannel potential [12]

Vαβ(r) ≡ 〈ΦN−1
α |V |ΦN−1

β 〉 (5.16)

=
∫

Φ∗
α(r1 . . . rN−1)V (r1 . . . rN−1r)Φβ(r1 . . . rN−1)dr1 . . . drN−1 . (5.17)

Using (5.11), (5.16) we can rewrite (5.15) as

(εα − h)φα(r) =
∑

β

Vαβ(r)φβ(r) . (5.18)

Equations (5.18) are the multichannel equations [12]. They are a system of coupled
Schrödinger-like partial differential equations for the various photoelectron orbitals
φα. The orbitalsφα are coupled through the inter-channel potential Vαβ which reflects
the interaction between the photoelectron and the other (N − 1) electrons. If Vαβ = 0
then (5.18) reduces to a set of independent one-electron Schrödinger equations for
each channel. If, moreover, only the lowest energy state of the core-ionized atom is
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kept, then we get a single-particle theory of absorption, essentially equivalent to the
final state rule.

The equations (5.18) are complicated because of the presence of the interchannel
potential Vαβ . In the derivation above, we have, for simplicity, disregarded antisym-
metrization of the wave function between the photoelectron and the other electrons.
However, this is not justified for low energies, where exchange is strong. If antisym-
metrization is taken into account, the interchannel potential is non-local and (5.18)
becomes a set of coupled integro-differential equations for the wave components φα.
The calculation of the interchannel potential Vαβ with exchange and the integration
of the multichannel equations is a difficult problem. It has been successfully applied
only to simple cases of electron-atom scattering and valence photoemission from
light atoms in the late 1960s [18]. In the early 1970s, this direct method for the
solution of the multichannel equations (5.18) has been superseded by the computa-
tionallymuch simplerR-matrixmethods [19, 20]. InR-matrixmethods, it is assumed
that exchange and correlation between the photoelectron and the other electrons is
restricted to a finite reaction volume. Inside this reaction volume the orbitals φα are
expanded over a set of basis functions. Thereby, the system of integro-differential
equations simplifies to a linear algebra problem. More importantly even, the inter-
channel potential does not need to be computed in coordinate representation but only
its matrix elements between the basis functions, which is a great simplification.

5.2.2 Calculation of the Multichannel T-Matrix

We want to calculate the multichannel T -matrix corresponding to a N -electron
absorption final state |Ψ N 〉 as in (5.10). We use time-reversed LEED (low-energy-
electron-diffraction) boundary conditions appropriate for photoemission. The total
wave function is the sum of a free wave Ψ 0 and a scattered wave Ψ sc.

Ψ = Ψ 0 + Ψ sc . (5.19)

The free wave corresponds to the asymptotic region (r → ∞) or the t → ∞ limit in
a time-dependent description. For photoemission, the proper choice of the free wave
is a plane wave. In photoabsorption, all emission angles of the photoelectron are
integrated over and so we may replace the plane waves by regular spherical waves
and sum over all angular momenta. Then, the free wave of the photoelectron reads

JβLs(rσ) ≡ j�(kβr)YL(x̂)χs(σ) , (5.20)

where j� is a spherical Bessel function, YL a spherical harmonic, χs(σ) = δsσ a spin
function and k2β ≡ εβ = E − Eβ .

The N -electron free wave Ψ 0 is the product between the photoelectron free wave
JLs and an eigenstate of the ionized atom |Φβ〉. The total N -electron wave function
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is
|ΨβLs〉 = |Φβ〉|JβLs〉 +

∑

α

|Φα〉|φ−
α,βLs〉 . (5.21)

where antisymmetrization is understood, but the symbol A has been suppressed for
convenience of notation. We are looking for the scattered wave functions |φ−

α,βLs〉,
where the subscriptsβLs indicate that they depend on the freewave quantumnumbers
through the boundary conditions. The superscript “−” stands for the time-reversed
LEED boundary conditions, that is, φ− is a purely incoming spherical waves, which
behaves as exp(−ikr)/r when r → ∞. Consequentlyφ− may be expanded inHankel
functions of the second kind:

φ−
α,βLs(rσ) =

∑

L′s′
h−

� (kαr)YL′(x̂)χs′(σ)AαL′s′,βLs . (5.22)

Here the coefficients A are the scattered wave amplitudes. By definition, the multi-
channel T -matrix TαLs,βL′s′ is, up to a constant, equal to the amplitude of the scattered
wave |αLs〉 when the incoming wave is |βL′s′〉. So A = ikT . With the definition

H−
αLs(rσ) ≡ h−

� (kαr)YL(x̂)χs(σ) , (5.23)

equation (5.21) then becomes

|ΨβLs〉 = |Φβ〉|JβLs〉 +
∑

αL′s′
|Φα〉|H−

αL′s′ 〉ikαTαL′s′,βLs . (5.24)

We now combine Φα with the angular and spin part of the photoelectron wave as

ΦαLs ≡ ΦαYL(x̂)χs(σ) . (5.25)

Then

|ΨβLs〉 =
∑

αL′s′
|ΦαL′s′ 〉1

r
PαL′s′,βLs(r) , (5.26)

where

PΓ ′Γ ≡ PαL′s′,βLs(r) = rj�′(kαr)δαL′s′,βLs + ikαrh
−
�′ (kαr)TαL′s′,βLs , (5.27)

and the collective index Γ ≡ αLs has been introduced.

The R-Matrix

In R-matrix methods the interchannel coupling, i.e. the configuration interaction
between the continuum state and the rest, is restricted to a finite reaction volume v.
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For v we use an (atomic) sphere of radius r0 around the nucleus. The R-matrix is
the generalization of the logarithmic derivative for non-spherical or multichannel
potentials. It is defined as

∑

Γ ′′
RΓ Γ ′′

d

dr
PΓ ′′Γ ′

∣∣∣∣
r=r0

= PΓ Γ ′(r0) . (5.28)

Combining (5.27), (5.28) and the derivative of (5.27) with respect to r, the T matrix
can be expressed in terms of the R-matrix (or vice versa). The difference between
T and R is that T corresponds to a certain choice of boundary conditions and of
the kinetic energy zero (i.e. interstitial potential) needed for the free waves in the
outside region (see Chap.1). In contrast, R only refers to the wave function inside
the atomic sphere. It is independent of boundary conditions but nonetheless contains
all the information that determines the scattering properties of the atom.

In a channel-diagonal, spin-independent and spherically symmetric potential, it
is clear from the definition (5.28) that the R-matrix is diagonal in Γ . The diagonal
elements are P�/[dP�/dr] for k = kα, i.e. they are the inverse logarithmic derivatives
of the partial wave with channel energy εα. So the R-matrix is the direct multichannel
generalization of logarithmic derivatives, fromwhich the phase shifts or the T -matrix
can be calculated.

The Variational R-Matrix Method

The R matrix can be calculated using various numerical procedures, which lead to
different flavors of the R-matrix method [19, 20]. We have used the variational also
known as eigenchannel method [20] which yields the R-matrix directly in diagonal
form. The variational R-matrix is based on the remarkable fact that the logarithmic
derivative satisfies a variational principle [21]. By choosing as trial functions linear
combinations of fixed basis functions, the variational R-matrix method becomes an
algebraic eigenvalue problem, as in the common variational methods used for bound
state solutions of the Schrödinger equation. The variational R-matrix equations are

(E − H − L)|Ψk〉 = Q|Ψk〉 bk . (5.29)

The solutions are the (inverse) eigenvalues bk and eigenvectors Ψk of the R-matrix.
Here E is the total energy, H the Hamiltonian,

L ≡
N∑

i=1

δ(ri − r0)
1

ri

∂

∂ri
ri , (5.30)

http://dx.doi.org/10.1007/978-3-319-73811-6_1
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the so-called Bloch operator and

Q ≡
N∑

i=1

δ(ri − r0) , (5.31)

is a projection operator onto the surface of the atomic sphere. Because of the singular
nature of the operators L and Q, the variational R-matrix method does not lead to a
standard eigenvalue problem (as does the Schrödinger equation) but to a generalized
eigenvalue (i.e. singular value) problem.We are looking for solutions of (5.29) inside
the atomic sphere by expanding the Ψk ’s in a basis

|Ψk〉 =
∑

Γ ν

|ΨΓ ν〉cΓ ν,k , (5.32)

with the trial functions

|ΨΓ ν〉 ≡ A
{
|ΦΓ 〉1

r
Pν(r)

}
. (5.33)

In other words, the radial wave functions PΓ Γ ′(r) are expanded over the set of basis
orbitals Pν(r). The latter must not have all the same logarithmic derivative at r = r0.
Ideally, the basis contains functions with very different logarithmic derivatives. In
practice, one choosesopen functionswith vanishing logarithmic derivative and closed
functions with logarithmic derivative equal to ±∞. The R matrix is then given by

RΓ Γ ′ = −
∑

k

WΓ k
1

bk
W−1

kΓ ′ with WΓ k = 〈ΦΓ |Ψk〉|r=r0 . (5.34)

It is important to note that the N -electron trial functions (5.33) are states that are
totally antisymmetric with respect to exchange of any two electrons, including
the photoelectron. Hence exchange interaction is automatically and exactly taken
account for in this formalism. As stated earlier, knowledge of the R-matrix is suffi-
cient for the calculation of the multichannel T -matrix of the atom.

5.2.3 From Single to Multiple Scattering

Once the multichannel T -matrices are known for all atoms, multichannel multiple
scattering theory can be developed essentially along the same lines as standard mul-
tiple scattering theory [12]. The multichannel version of the scattering path operator
is given by

τiαLs,jα′L′s′(E) = [
δij[T−1

i ]αLs,α′L′s′(E) − δαα′δss′kαGiL,jL′(kα)
]−1

, (5.35)



154 P. Krüger

where E is the total final state energy and kα ≡ √
εα − V0 is the wave number of the

photoelectron in channel α and V0 is the interstitial potential.
In the remainder, we assume that the T -matrices of all but the absorber atom

(i = 0) are diagonal in the channel indices α, i.e.

[Ti]αLs,α′L′s′(E) = δαα′ [ti]Ls,L′s′(kα) for i �= 0 . (5.36)

Physically this means that we neglect configuration mixing in electron atom scatter-
ing processes except when the scattering occurs at the absorber site. We make this
simplification because we are mainly interested in atomic multiplet type correlation
effects induced by core-hole. It is clear from (5.35) that this restriction is not at all
necessary for the validity or principle feasibility of multichannel multiple scattering
theory. It leads, however, to an enormous gain in computation time.

For the absorption process from a core-level at site i = 0, only the i = j = 0 bloc
of the scattering path operator is needed. This block can efficiently be calculated by
partitioning the multichannel multiple scattering matrix between the absorber atom
(i = 0) and its environment, consisting of all other atoms (i �= 0). Then it is easy to
show [11] that the absorber block of the scattering path operator is given by

τ0αLs,0α′L′s′(E) = [[T−1
0 ]αLs,α′L′s′(E) − δαα′δss′ρLL′(kα)

]−1
, (5.37)

where the reflectivity ρ of the environment has been introduced [22]. Since the
T -matrices of the environment atoms are channel diagonal by assumption (5.36), so
is the reflectivity ρ. Therefore ρ(k) can be calculated separately for each k = kα in
a standard one-electron multiple scattering calculation.

ρLL′(k) =
∑

ijL1L2

G0L,iL1(k)τ̃iL1,jL2(k)GjL2,0L′(k) . (5.38)

Here τ̃ is the one-electron scattering path operator of the environment, i.e. the system
without absorber atom. The absorption cross section is then given by

σ(ωq) ∝ 

[
∑

Γ Γ ′
M ∗

Γ τ0Γ,0Γ ′(E)MΓ ′

]
with MΓ ≡ 〈Ψ in

Γ |Hint|Ψg〉 . (5.39)

Here |Ψ in
Γ 〉 is a solution of the many-electron Schrödinger equation inside the atomic

sphere for the final state energy E = Eg + �ωq. It can be calculated from the eigen-
vectors |Ψk〉 of the R-matrix [11].



5 Multichannel Multiple Scattering Theory in R-Matrix Formalism 155

5.3 The MCMS Code

We have implemented the R-matrix multichannel multiple scattering method for
x-ray absorption spectra calculations as outlined above, in a computer programnamed
mcms. Herewe give a few computational and technical details of the implementation.
The mcms code is mainly written in the C programming language, but it calls a few
Fortran77 routines, namely for the single-electron multiple scattering calculation of
the reflectivity ρ, as well as routines from the linear algebra library LAPACK/BLAS
[23]. Therefore both a C and a Fortran compiler are required. The mcms code solves
the MCMS equations for a finite cluster of atoms. On input, a structure file and
the potentials for all inequivalent atoms need to be provided. The atomic potentials
are spherically symmetric, i.e. the muffin-tin or atomic sphere approximation is
used. Accepted potential formats are those of the LMTO band structure code [24]
or the potgen code [25]. The latter is used in several other methods presented in this
collection.

Themcms code divides into twomain parts: (i) a single-channel cluster calculation
and (ii) a multi-channel, single-site calculation.

Part (i). From the potentials, the single-electron atomic t-matrices are computed
for all atoms on a fine energy mesh. The t-matrices and structural data are passed
to a routine which calculates the reflectivity of the environment ρ of (5.38). This
(Fortran) routine has been adapted from the continuum code byC.R.Natoli [25] and
performs a standard real-space multiple scattering calculation. The single electron
energy mesh for ρ needs to be quite fine, because in the multichannel calculation,
ρ(εα) must be evaluated for many energies εα, which is done by cubic interpolation.

Part (ii). The core-hole potential of the absorber atom is constructed. When the
partially screened core-hole potential is used, two potentials are required for the
absorber atom: the ground state potential and a statically screened potential corre-
sponding to the final state rule. The latter should be computed self-consistently in a
supercell or finite cluster calculation with one (spherically symmetric) core-hole on
the absorber site. The radial basis functions for the R-matrix are computed by solving
the single-electron Schrödinger equation with the previously constructed absorber
atom potential. Solutions for both open (dP/dr = 0 at r = r0) and closed bound-
ary conditions (P(r0) = 0) are found and then the basis is orthogonalized. Next the
N -electron trial functions are set up. TheN -electron basis states are all possible Slater
determinants in the chosen set of electronic configurations. The matrix elements of
the operators L and Q, and of the Hamiltonian, are computed between these Slater
determinants using second quantization algebra.

Then, in a loop over the N -electron final state energy, the eigenchannel equations
(5.29) which take the form of a generalized eigenvalue problem are solved and
the R matrix together with the inner solutions |Ψ in

Γ 〉 are obtained. By matching the
photoelectron part of the inner waves to free electron states, the atomic multichannel
T -matrix is calculated. The dipole transition matrix elements are computed. The
scattering path operator is obtained by matrix inversion of T−1 − ρ. Finally the
absorption cross section is computed using (5.39).
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Computing time. Except for very small systems of ten atoms or less, the standard
multiple scattering calculation in part (i), takes much longer than the atomic multi-
channel in part (ii). For large clusters of a few hundred atoms, a one-electron energy
point of part (i) may take a few minutes on a single CPU. As a fine energy mesh
with several hundred points is required to get all the fine structure of the L2,3-edge
spectra, computation of part (i) can easily take tens of hours on a single CPU. On
multi-processor machines the energy mesh may be sliced into parts and then com-
puted in parallel. This procedure is however not automatized in the code and requires
concatenation of the ρ output files from the different runs.

In the multichannel part (ii), the calculation of a single total energy point usually
takes less than a second, and so the whole part (ii) takes only a few minutes on a
single CPU.

5.4 L2,3 Edge Spectra of Transition Elements

We have applied the MCMS method to the calculation of x-ray absorption spectra at
the L2,3 edges 3d transition metal elements. These spectra are a challenge for theory
because they are strongly influencedby local electron correlation effects, especially in
the final state caused by core 2p spin-orbit interaction and the exchange and Coulomb
coupling between the 2p core-hole and the 3d valence states. These interactions gives
rise to a rich multiplet structure in the free atom spectra. The multiplet structures
reflect strong configuration mixing of the wave function. Generally, theories based
on single determinantal wave functions, such as the Hartree–Fock approximation
and density functional theory, badly fail to reproduce these spectra. Instead, full
configuration interaction in the active space of the open 2p and 3d shells is required.
When the transition metal atom is embedded in a solid or molecule, the valence
3d states get partially delocalized and the spectra strongly depend on the ligand
field and bonding of the 3d orbitals. A reliable description of these extra-atomic
effects requires a first-principles method for the electronic structure of the extended
system. So for L2,3-edge spectra of transition metal ions in molecules and solids a
theoretical method is needed that describes both the long range bonding properties
of the system and the strong configuration mixing in the 2p-3d shells of the absorber
atom. Traditionally, L2,3-edge spectra have been mostly calculated using the ligand-
field multiplet model [1] where an empirical ligand field is added to the atomic
multiplet Hamiltonian. This approach proved very successful for ionic compounds
in cubic symmetry, but it is not satisfactory for low-symmetry and covalent bonding
where the number of adjustable parameters increases and the predictive power of the
theory becomes very small.

Standard single-particle theories of absorption spectra generally cannot reproduce
the rich fine structure observed at the L2,3-edges of transition elements. One of
the most striking failures of one-electron theory is that it cannot account for the
highly non-statistical L3:L2 branching ratio of the light 3d elements (K-Cr). In one-
electron theories the branching (i.e. intensity) ratio of the spin-orbit-split sub-shells
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Fig. 5.1 Ca L2,3-edge spectrum obtained in atomic multiplet theory, adapted from [26]. Solid
line: full calculation with 2p-3d multiplet coupling. Broken line: calculation with 2p-3d coupling
switched off

j+ = � + 1/2 and j− = � − 1/2 is necessarily close to the statistical value (� + 1)/�
coming from the multiplicity of the sub-shells. A close-to-statistical branching ratio
is observed at most absorption edges, but not at L2,3 edges of 3d elements, where
the statistical value is 2, but the experimentally observed value varies from about
0.8 to 3 along the series. The main reason for this is the strong 2p-3d Coulomb and
exchange interaction which is of the same order of magnitude as the 2p spin-orbit
coupling [26]. This leads to final states with large configuration mixing between the
2p3/2 and 2p1/2 holes. Therefore this effect can by no means be described in a single-
particle framework. In an atomic multiplet calculation, such configuration mixing is
naturally included and highly non-statistical branching ratios are found for the early
elements in agreement with experiment. Figure5.1 shows the results of a multiplet
calculation for a (3d0) ground and (2p53d1) final state configuration, appropriate,
e.g. for Ca. It is clear from Fig. 5.1 that the 2p-3d interaction strongly modifies the
spectral shape. In the case of a (3d0) ground state, it gives rise to a prepeak and a huge
reduction of the branching ratios. The angular moment of the hole (jc) does not have
a defined value, but only the total angular moment of the atom J = j2p + j3d is a good
quantum number. Due to strong 2p-3d coupling the angular momentum is shared
between hole and electron and so the 2p3/2 and 2p1/2 holes are strongly mixed. In any
single particle scheme, the 2p-3d interaction is treated on a mean-field level and the
wave function corresponds to a single Slater determinant. As a consequence, strong
configurationmixing, i.e. non-separable combinations of several Slater determinants,
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cannot be described. The hole is described as either purely 2p3/2 or 2p1/2, and so the
branching ratio is necessarily statistical. It is clear that the L2,3-edge spectra of light
3d elements are a case of strong channel coupling between the 2p1/2 and 2p3/2 final
states. It is thus an interesting problem for multichannel multiple scattering theory.

5.4.1 Application of MCMS Theory to Calcium Compounds

Here we summarize the results that we have obtained by applying multichannel
multiple scattering theory to the Ca L2,3-edges in metallic calcium and for ionic Ca
compounds (CaF2, CaO) [11]. We use a wave function with six electrons describing
the Ca 2p core-shell of the absorber atom and the photoelectron. In the ground state
the 2p shell is filled and the electronic configuration is (2p6) which is a orbital and
spin single S = L = 0. In the final state, the (N − 1)-electron functions of the ion-
ized atom, Φα in (5.4), are one of the six states of the one-core-hole configuration
(2p5). The eigenstates are (j,mj), where j = 1 ± 1/2 is the total angular momentum
and mj its z-projection. For the final state, the Rmatrix is calculated with N -electron
trial functions made of all possible states in a (2p5, nd1) configuration. The quantum
numbers are α = (j,mj) for the 2p-hole and n�ms for the photoelectron. For simplic-
ity, only d -waves (� = 2) are included in the basis, because the p → d transitions
are dominating in L2,3-edge absorption.

More precisely, the photoelectron orbital components φα(r,σ) are developed,
inside the Ca atomic sphere, over a set of basis functions φn(r)Y�m(x̂)χs(σ), where
χ is a spin function. Some radial functions φn(r) used in the CaO calculation are
shown in Fig. 5.2. Note that n is merely a counter of the radial waves and should
not be confused with the principal quantum number of atomic orbitals. There are
two major differences. First, the waves φα are not bound states, but parts of contin-
uum waves. Second, the set of basis orbitals includes several waves with the same
number of nodes (inside the atomic sphere) but different logarithmic derivatives on
the sphere (e.g. the waves o-0 and c-0 in Fig. 5.2). Open and close functions cor-
respond to boundary condition dφ/dr(r0) = 0 and φ(r0) = 0, respectively, where
r0 is the sphere (muffin-tin) radius. These basis orbitals are calculated by solving a
single-electron, radial Schrödinger equation inside the atomic sphere. The effective
potential was obtained in a self-consistent density functional theory calculation in
the local-density-approximation (LDA) for the bulk system using the Linear-Muffin-
Tin-Orbital (LMTO) method [24]. This mean-field potential used for the construc-
tion of the basis functions must not be mistaken for the true photoelectron potential
underlying the multichannel method. If the R-matrix basis is sufficiently complete,
the potential used for the construction of the basis functions should not matter; any
potential should in principle give the same result. Because the N -electron final states
ΦN are linear combinations of the trial functions, the potential seen by photoelectron
is in fact dynamical because states with different energies (εα) are mixed. The multi-
channel potential is moreover non-spherical and spin-dependent, because of mixing
of different orbitals �m and spins s.
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Fig. 5.2 A few radial basis functions rφn(r) used in the expansion of the photoelectronwavesφα(r)
inside the sphere (of radius r0) of the absorbing atom (here: Ca in CaO). The functions are labeled
as x-i where x = o, c stands for open and closed functions and i is the number of nodes inside the
sphere. The orbital energies in Ryd are indicated in parentheses

Since in the R-matrix technique the photoelectron functions φα are expanded
over a basis set, convergence with the number of basis functions must be checked.
Figure5.3 shows the convergence of the CaO spectrum as a function of number of
basis functions, labeled as (nc, no)where nc and no are the number of closed and open
functions, respectively. Good convergence of the lineshape is found for one open and
two closed functions. Including more waves leads to a small shift of the spectrum
to lower energy and to some peak intensity reduction, which may be attributed to
spectral weight transfer to excitations into the featureless high energy continuum. In
many cases, already the minimum set, i.e. one open and one closed function gives a
sufficiently converged spectrum.

In the MCMS method, quantum mechanical exchange between electrons at the
absorber site is automatically respected because we use antisymmetrized trial func-
tions. From the multiplet analysis in Fig. 5.1 we know that the non-statistical branch-
ing ratio is due to the 2p-3d Coulomb interaction. The Coulomb interaction between
two electrons at a distance r12 can be expanded in multipoles in the usual way
as 1/r12 = ∑∞

k=0[rk</rk+1
> ]fk(x̂1, x̂2), where ri = (ri x̂i) and r> (r<) is the larger

(smaller) of r1 and r2. It is well known from atomic physics [27] and impurity
model calculations [1, 26] that the monopole part (1/r> for k = 0) is strongly
screened by the dielectric response of the other electrons, while the higher order
multipoles (k > 0) are essentially unscreened. In an atomic multiplet calculation the
monopole part of the core-valence Coulomb interaction corresponds to the Slater
integral F0(2p, 3d). By atomic relaxation and solid state screening, the F0 inte-
gral is dramatically reduced and is commonly replaced by a free parameter Udc in
Anderson impurity models [1]. The monopole part is spherically symmetric. In a
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Fig. 5.3 Convergence of the Ca L2,3-edge spectrum of CaO as a function of the number of radial
basis functions used in theR-matrix method. (nc,no) denote the number of closed and pen functions.
The spectra are vertically off-set for clarity

standard single configuration atomic multiplet calculation it is a diagonal operator,
i.e. it does not lead to any state mixing but only to a rigid energy shift of the whole
spectrum. Therefore, we take the monopole part out of the Coulomb interaction
and treat it at the single-electron level by using a screened core-hole potential for
the calculation of the final state waves. So for the monopole part of the core-hole
interaction, we follow the standard practice in one-electron theories of XAS. The
multipole part, however, is treated fully at the many-particle level and leads to con-
figuration mixing. The R-matrix equations are solved for a Hamiltonian of the form
H = ∑

i h(i) + ∑
i<j V (i, j). Here h(i) is the single particle Hamiltonian operator

acting on electron i. It includes the kinetic energy, the effective one-electron potential
(with core-hole screening) and the spin-orbit coupling in the case of 2p level. The
interaction term is the particle-hole Coulomb interaction without the monopole part,
V (i, j) = 1/rij − 1/r>, i.e. the multipole terms are taken unscreened.

For the screening of the monopole term of the electron-hole interaction, we have
used a linear mixture between a fully screened core-hole corresponding to the final
state rule and an unscreened core-hole. Figure5.4 shows the spectra of bulk calcium
metal, calculated with different choices for the core-hole screening model. Spectrum
(gs) corresponds to the LDA ground state potential, without core-hole. For the other
spectra a linear mixture was used between the screened (α = 0) and unscreened
(α = 1) core-hole potential. Broken lines correspond to the single-channel theory
(i.e. the IPA) obtained by setting V , the multipole part of the particle-hole Coulomb
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Fig. 5.4 L2,3-edge spectra of metallic Ca calculated in various approximation together with the
experimental data (exp) from [28]. The multichannel (MC) calculations including the multipole
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V = 0) as broken lines. The amount of unscreened core-hole (α-value) is indicated on the right.
(gs) corresponds to the ground state potential

interaction, to zero. Solid lines correspond to multichannel theory, with V included.
It can be seen that the single-channel calculations yield a L3:L2 branching ratio close
to the statistical value 2, as expected for the IPA. In contrast, when V is included, the
branching ratio is strongly reduced and gets close to the experimental value of about
0.8. These remarks about the branching ratio are independent of the choice of the
one-electron core-hole potential. The fine structure of the L3 and L2 peaks however,
depends considerably on the core-hole potential. If the core-hole is neglected (gs),
the lineshape shows the details of the ground state Ca-3d density of states, as we
have checked. The L3 and L2 peaks are too broad and display too much fine structure,
not seen in the experimental spectrum. The details of the Ca-3d band structure is
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Fig. 5.5 Ca-L2,3 edge spectra of CaO and CaF2. Calculations with multichannel theory (MC, solid
lines) and in the independent particle approximation (IPA, broken lines) using the partially screened
core-hole potential with (0.1) unscreened weight or the ground state (gs) potential. (exp) are the
experimental spectra

progressively lost when the core-hole strength is increased in the sequence (gs) →
(0) → (0.1) → (0.15). This is particularly obvious in the single channel spectra
(broken lines) but also valid for the multichannel calculation. It can be seen that the
multichannel spectra with α = 0.1 or 0.15 agree well with experiment. The only
disagreement is that the calculation shows some weak fine structure not seen in the
experiment. This hints to some extra broadening mechanism not included in the
present theory.

Figure5.5 shows the spectra for the ionic compounds CaO and CaF2. Essentially
the same conclusions can be drawn as for metallic Ca. Comparing the single-channel
spectra without core-hole (IPA gs) and with partially screened hole (IPA 0.1), we
see that much of the fine structure in (IPA gs), which reflects the Ca-3d ground
state density of states, is removed by the core-hole attraction. The single-channel
spectrum (IPA 0.1) shows only a doublet splitting of the L3 and L2 lines. Analysis
of the orbital character of the peaks reveals that the intense peak of the doublet is
made of Ca-d orbital of t2g symmetry and the weaker peak of eg symmetry. So the
double splitting is a ligand field effect due to the bonding of the Ca-3d orbital with
the oxygen or fluoride ligand 2p-orbitals. By comparing the (IPA gs) and (IPA 0.1)
spectra we see that the present real-space multiple scattering method describes well
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both long range band structure effects and short range ligand field splittings. While
the number of peaks and energy splittings of the (IPA 0.1) spectrum roughly agrees
with experiment, the intensities are completely wrong. Not only the L3:L2 branching
ratio is wrong, but also the relative intensity between the two ligand field split lines.
When the 2p-3d interaction V is included in the multichannel calculation (MC 0.1),
the peaks shift to higher energy and the intensity ratios change completely.Moreover,
weak prepeaks appear at threshold. Clearly, the multichannel spectra (MC 0.1) are
in very good agreement with experiment both for CaO and CaF2.

The relative weight of the unscreened core-hole was introduced as an empirical
parameter. However, from the results above it became clear that it is not a free
parameter that needs to be adjusted to experiment for each compound. Instead, a
value of 0.1 was found suitable for all Ca and Ti compounds that we have studied.
This means that the value 0.1 can safely be taken as a default value for the light 3d
elements.

In conclusion we find that the real-space multiple scattering theory describes well
long range band structure and short range ligand field effects both in metallic and
ionic Ca compounds. Inclusion of the core-hole dramatically changes the lineshape.
The monopole part of the particle-hole Coulomb interaction can be treated at the
one-electron level through a partially screened core-hole potential. The multipole
part, however, leads to strong channel coupling between the 2p3/2 and 2p1/2 core-
levels on the one hand and between the different orbital characters (t2g and eg) of the
photoelectron wave on the other hand. Before our multichannel multiple scattering
calculation, theCaO andCaF2 spectra could be reproducedwith ligand fieldmultiplet
calculations [29]. In these models, the ligand field is described by parameters those
values need to be adjusted to experiment, separately for each material. Recently, ab
initio ligand field calculations have become available basis of quantum chemistry
configuration interaction [8]. However, because of the exponential increase of the
Hilbert space with system size, these methods are limited to very small clusters.
Multichannel multiple scattering theory does not have this limitation. Since we have
separated the multiple scattering calculation for the multichannel T -matrix calcu-
lation by introducing the reflectively of the environment (see equation above), the
limitation in cluster size is the same as in standard one-electron multiple scattering
calculations. For the Ca system we have used clusters of about 300 atoms which was
sufficient for reproducing the fine structure of the Ca-d density of states of the bulk
materials.

Introduction of the Fermi Level

Atomic Ca has a [Ar]4s2 electronic configuration. In Ca compounds, the Ca-3d
band is empty in the ground state and the L-edge spectrum reflects the whole empty
d -band. In transition metals, the 3d -band is partially filled in the ground state, so the
Fermi energy needs to be introducedwhich cuts off the occupied part of the spectrum.
In the present version of the MCMS method, this is done by replacing (5.37) by the
following expression



164 P. Krüger

τ0α,0α′ = [[T−1
0 ]αα′ − δαα′t−1

0 + δαα′(t−1
0 − ρ)/(1 − f )

]−1
. (5.40)

Here, f (ε) ≡ [1 + exp(−(ε − EF )/(kBT )]−1 is the Fermi function andwe have omit-
ted the quantum numbers �ms of the photoelectron to simplify the notation. The
expression (t−1

0 − ρ)/(1 − f ) is evaluated at εα, that is the photoelectron energy in
channel α. The matrix inverse of this expression coincides with the scattering path
operator of the absorber atom in the single-electron approximation multiplied by
(1 − f ). This Fermi factor enforces the Pauli principle. In the limit of vanishing
correlations we get [T0]αα′ → δαα′t0, and (5.40) reduces to the well known single-
electron result with Fermi cut-off. Moreover, in the limit EF → −∞ we recover the
previous result for the empty valence band, (5.37). Let us note that this is a very
simple way to introduce the Fermi level. The energy cut-off is applied at the level
of the one-particle scattering path operator and so the occupied part of the one-
particle spectrum is correctly eliminated. However, the Pauli principle is not fully
taken account of in the many-body part of the calculation, because the multichannel
T -matrix is calculated as before for a local (2p5d1) configuration.Work is under way
aiming to enforce the Pauli principle also in the atomic T -matrix calculation.

5.4.2 Application to Titanium Dioxide

Titanium dioxide is a technologically important material with a very rich phase
diagram. Titania nanoparticles are used for photovoltaics and photocatalysis. In the
search of new titania nanostructures, Ti L-edge absorption spectroscopy is a useful
tool for probing the local geometrical and electronic structure of around Ti sites.
The overall lineshape of the Ti L-edge spectra can be understood from multiplet
theory with an octahedral ligand field [29]. The octahedral field reflects the fact
that the Ti ions are in a TiO6 octahedral coordination which is common for titanite
and TiO2. However, marked differences of the spectra exist between the various
phases. It is important to understand the origin of these differences for a correct
analysis of new titania nanostructures. We have applied the MCMS method to the Ti
L2,3-edge spectra of strontium titanite (SrTiO3) and titanium dioxide (TiO2) in the
rutile and anatase phases [30]. From the analysis, we could settle a long-standing
debate about the origin of the fingerprint spectral fine structure that characterizes the
rutile and anatase phases and which is absent in SrTiO3. We further studied more
complex phases found in nanostructures, namely lepidocrocite TiO2 [31] and titanite
nanotubes [32] and nanoribbons [33]. Using MCMS theory we could reproduce the
Ti L-edge spectra of these low-dimensional systems, relate the spectral features to
the electronic structure and understand the pronounced linear dichroism observed in
some of these low-symmetry phases [31, 33].

Here we briefly summarize the results obtained for rutile TiO2 [30]. The rutile
crystal is made of both corner and edge sharing TiO6 octahedra, where the oxygen
atoms have a three-fold, planar Ti coordination. The Ti ions sit in the centers of the
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weaklydistortedoctahedra andhave apoint symmetryD2h. TheTiL2.3-edge spectrum
(Fig. 5.6d) has four prominent peaks, C, D/E, F and G. The four-peak structure is
common to SrTiO3 (Fig. 5.6e) and all other (d0) ions in octahedral coordination [29].
It can be understood in a one-particle picture as being due to the spin-orbit splitting of
the 2p-hole state into L3 and L2 lines, and the splitting of the Ti-3d -like photoelectron
states into t2g and eg-symmetry by the octahedral ligand field. The appearance of the
prepeaks A,B is a genuine multiplet effect, and cannot be explained in the one-
particle picture as we have already seen in the case of Ca. When comparing the TiO2

and SrTiO3 spectra (Fig. 5.6d,e), considerable differences in terms of line width and
intensity are observed, as well as the fact that in TiO2 the L3-eg peak is split into
an asymmetric doublet D-E. In the early 1990s, these differences were attributed
to the reduced point symmetry and distortion of the TiO6 octahedra in TiO2, on
the basis of empirical ligand field multiplet [34] and TiO6 cluster calculations [35].
However this explanation was challenged by a Crocombette et al. [36]. They showed
that multiplet and TiO6 cluster calculations with realistic parameters computed from
the actual atomic structure of rutile TiO2 does not produce the D-E splitting but a
spectrum similar to that of cubic SrTiO3. They thus concluded that the (actually very
weak) distortions of the octahedra in rutile TiO2 cannot explain the characteristic
D-E doublet splitting of the L3-eg line in TiO2. Single-particle approaches have also
been applied to the Ti L-edge spectra [37, 38] but they lack the prepeak structure and
completely fail to account for the main peak intensities even in SrTiO3.

We have computed the Ti L-edge spectra with MCMS method. Because the LDA
strongly underestimates the band gap of Ti oxides, we have used a simplified LDA+U
approach for the one-electron potential. Namely, we have shifted the LDA potential
upward by 2eVwhen solving the radial Kohn-Sham equation for the Ti partial waves
of d symmetry. This corresponds to an LDA+U correction from the atomic limit [39]
for an empty d -band. The correction increases the band gap of TiO2 from ∼1.5eV
to ∼3.0eV and brings it to agreement with experiment.

The calculated L-edge spectra for rutile TiO2 are shown in Fig. 5.6. The mul-
tichannel calculation with a (0.1) partially screened core-hole potential (Fig. 5.6c)
agrees very well with experiment (Fig. 5.6d) while the IPA with (Fig. 5.6b) or with-
out core-hole (Fig. 5.6a) yields very poor results. We note that all peak positions
and intensities of the experimental TiO2 spectrum are well reproduced in the multi-
channel calculation, including the prepeaks (A,B) and the L3-eg doublet (D,E) which
is the long-debated fingerprint of the TiO2 spectrum. Figure5.6f shows the multi-
channel spectrum as a function of cluster size from 1 to 297 atoms. As expected,
the single atom spectrum (1) shows the atomic multiplet 3-peaks structure of a (d0)
ion (as in Fig. 5.1). Going to the 7-atom cluster (i.e. a TiO6 octahedron) multiple
scattering with the oxygen neighbors produces the octahedral ligand field splitting
and the main four-peak structure is obtained. However, the widths of the 4 peaks are
about the same and the D-E splitting is lacking, in disagreement with experiment.
It takes cluster sizes of about 60 atoms for these disagreements to disappear. This
clearly shows that the peak widths and especially the fingerprint D-E splitting of the
TiO2 spectrum reflect the electronic structure on a length scale of about 1nm and
can thus by no means be explained in an atomic crystal field or TiO6 cluster model.
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We could also reproduce the anatase spectrum [30]. These findings have settled the
20-year long debate on the fingerprint L3-eg peak splitting in the Ti L-edge spectra
of the various TiO2 phases. It shows the strengths of MCMS which combines (i) an
accurate description of the long-range electronic structure of any type of materials
by means of multiple scattering theory and (ii) a configuration interaction scheme to
account for the strong local electronic correlations in the 2p-hole final state.

5.5 Summary and Outlook

In summary, we have presented a multichannel multiple scattering theory with
R-matrix method for x-ray absorption spectroscopy. The method is implemented
with a particle-hole wave function in the mcms code. It affords a flexible, ab initio
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description of the medium and long-range electronic structure through real-space
multiple scattering theory and accounts for local multiplet-type final state effects
through a correlated particle-hole wave function. These two aspects catch the main
features of the L2,3-edge spectra of light 3d elements in various materials. Here, only
L2,3-edge spectra of 3d transition elements were shown, but other edges can also
be calculated. For example, in actinide O4,5-edge spectra, strong channel coupling
between the 5d3/2 and 5d5/2 sub-shells leads to a large non-statistical branching ratio.
We have applied MCMS to the Th O4,5-edge spectra and found good results [40].
Compared with other methods that also employ a correlated particle-hole function, in
particular the Bethe–Salpeter-Equation approach [7], the MCMS method is numer-
ically extremely light. Indeed, by virtue of a partitioning between the correlated
absorber and the uncorrelated rest system, a mcms calculation is only slightly heav-
ier than a standard, one-electron multiple scattering calculation. Moreover, because
it is implemented in real space, it is not restricted to perfect crystals, but can be
applied to molecules and nanostructures [32].

In the current implementation of mcms, the muffin-tin approximation is used
for the one-electron potential. The combination of multichannel and full-potential
multiple scattering theory is straightforward [12, 41]. The only change needed in
the mcms code is the replacement of the L-diagonal single-electron t-matrices ti� in
(5.36) by their full potential counterparts tiLL′ whichmay be calculated using the fpms
code (see Chap.3). Note that because of particle-hole coupling, the multichannel
T -matrix is always non-diagonal in the angular momentum L of the photoelectron
even in the present version with muffin-tin potentials.

The main limitation of MCMS method in present form is that the many-electron
state is a particle-hole wave function. This means that the interaction between the
core-hole – photoelectron pair with all other electrons is treated at the mean-field
level. This is sufficient for the beginning of a transition series, with a nearly empty
d -shell, but becomes questionable for the general case of a partially filled shell in the
middle or end the series. We have applied mcms to bulk Fe [42] and found that the
multichannel coupling does not improve the spectra over the independent particle
approximation. A version ofmcms for a general (2p53dn+1) final state wave function
is still under development. Difficulties arise because at threshold, the photoelectron
cannot be distinguished from the other electrons, while in the close-coupling and
R-matrix formalism it is assumed that only one electron occupies a continuum wave.
In order to overcome these problems, a newmethod has been devised for the solution
of the multichannel multiple scattering equations which does not use the R-matrix
but goes back to the interchannel potential (5.16). The latter has been be expressed
exactly in terms of a multichannel density matrix and the associated multichannel
Green’s function [41]. This new approach is very general and promising, but its
implementation is challenging and has not yet been completed.
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Chapter 6
Multiple Scattering in Green’s Function
Formalism: Single-Channel
and Multichannel Versions

Anna Taranukhina, Alexander Novakovich, Calogero R. Natoli
and Ondřej Šipr

Abstract In this chapter, we present two versions of the multiple scattering (MS)
theory in the real-space electronic Green’s function (GF) formalism: single-channel
(MS-GF) and multichannel (MCMS-GF). While the first one based on the single-
particle picture provides a tool for a precise description of MS processes, the second
one allows us to take into account not only MS effects but also electron correlations
and spin-orbit coupling on the same footing. Multichannel generalization of the
MS-GF method relies on the Dyson integral equation relating the GF of a perturbed
system with the GF of the corresponding unperturbed system. The second basic
feature of theMCMS-GF approach is the use of the close-couplingmethod,which via
Kohn variational principle for the reactance K -matrix gives rise to a set of the coupled
integro-differential equationswith thematrix of a potential. An iterative algorithm for
solving this systemhas been developed to evaluate single-sitemultichannel scattering
t-matrices through which the GF of the total many-atom system is expressed. In
addition, some numerical aspects concerning the application of both versions are
discussed with a focus on x-ray absorption spectroscopy.
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6.1 Introduction

The basic equations of the multiple scattering theory (MST) within the muffin-tin
approximation (MT) to cluster potentials have been derived and applied to calculat-
ing the electronic structure of polyatomic molecules by Johnson [1, 2]. The theory
provides a fast and efficient technique for solving a system of linear differential equa-
tions with corresponding boundary conditions on MT-spheres for both continuum
and bound states of a physical system. Despite the advantage of the new theory, it
was obvious that attempts to use the theory in its original wave function version
for calculations of various x-ray spectroscopic response functions would encounter
technical and/or first principle difficulties. For example, the theoretical description of
the electronic structure of disordered alloys is based on the configuration-averaged
single-particle GF [3]; the use of complex potentials also required a new formulation
of the theory. The first reformulation of the MST in terms of a real-space Green’s
function (GF) has been given independently in works [4, 5]. The aim of the authors
[4] was to develop the theory of x-ray absorption and emission spectra for disor-
dered alloys. A relatively simple method for calculating the GF has been developed
by reducing the integral Dyson equation to a system of linear algebraic equations for
the GF matrix in the so-called angular momentum-site index representation. Then
a procedure of averaging the derived equations over all configurations of the atoms
has been devised [6]. The developed MS-GF formalism opened up a wide field of
MS theory applications in the description of x-ray spectroscopies, as for instance
absorption [7], resonant photoemission [8], elastic [9] and inelastic [10] scattering,
resonant diffraction [11], and many others. The MS theory has been developed in a
series of the works of Natoli et al. [12] being formulated in terms of both the wave
functions and the Green’s function not only within MT approximation, but also for
general potentials. The GF in this theory is constructed in terms of the scattering
path operator and has widespread spectroscopy applications. The formulation and
applications of the Green’s function method on the base of the introduced in [4] GF
matrix in angular momentum-site index representation is less known. Here we will
outline this approach in details.

The MS methods and their applications in the simulation of x-ray spectroscopies
rely on one-electron picture, i.e. all electrons are considered moving independently
in a common potential field, and a single photon can interact only with a single
electron of a physical system under study. Despite limited accuracy of one-electron
approximation, in many cases it provides good results. At that time, in many pro-
cesses, electron-electron interaction essentially modifies the response of a system
to the incoming photon considerably altering the probabilities of the processes. The
outline of a many-particle description of the x-ray emission and absorption processes
was developed by a generalization of MS theory in its wave function approach and
the connection between this approach and the Green’s function approach was given
byNatoli et al. [13]. Themultichannel generalization of theMS-GFmethod (MCMS-
GF) on the basis of close-coupling approximation via the Kohn variational princi-
ple for the reactance K -matrix was devised and applied to calculating ultraviolet
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absorption spectra for alkali halides in [14, 15]. The general multichannel theory
developed in [13] has been realized in [16] within R-matrix formalism (MCMS) and
applied with success to computations of x-ray absorption spectra of various systems
(see Chap.5 of this book). Both methods, MCMS-GF and MCMS, are limited by
using MT approximation and by taking into account only electron-hole correlations.
However, it is evident that electrons of partly filled d-shells of atoms can strongly
couple with electron-hole pair in the final state of an ionization process or between
each other in the ground state in compounds. A new general multichannel theory
developed in [17] overcomes in full these problems, takes a new higher level of
MS theory and indicates the way of a practical implementation of the theory for the
description of ground and excited states of correlated systems.

The chapter is organized as follows. Section6.2 presents the derivation of the
equations of theMS-GFmethod and touches some practical aspects of its application
in modeling photoabsorption process. The multichannel reformulation of MS-GF
method along with the expressions for computation of x-ray absorption spectra is
given in Sect. 6.3.

6.2 MS-GF Formalism: Single-Channel Version

6.2.1 Solution of the Dyson Equation

The starting point of theMS-GFmethod is the Dyson equation for the single-particle
Green’s function for a finite system

G±(r, r ′, ε) = G±
0 (r, r ′, ε) +

∫
Ωn

G±
0 (r, r ′′, ε) V (r ′′) G±(r ′′, r ′, ε) dr ′′ . (6.1)

Here, V is a potential assumed to be local, G±
0 is the free electron GF given by

G±
0 (r, r ′, ε) = − 1

4π

e±ik|r−r ′|

|r − r ′| , (6.2)

where energy ε is real, k = √
ε is thewavevector of the electronwith energy ε. Atomic

units for lengths and Rydberg units for energies are used throughout this chapter.
It is our purpose to develop a procedure of solving (6.1) in the simplest case of the

muffin-tin approximation for the potential V (r) (see Figs. 1.7 and 1.8 of Chap. 1). In
this approximation, the potential of the N -atomic system is spherically symmetrized
inside non-overlapping spheres Ωn of radii bn and taken to be a constant value in the
interstitial region usually defined as the zero level of energies (MT-zero). In addition,
we use the so-called extended continuum scheme, i.e. without a surrounding sphere
enclosing all the atomic spheres. This scheme allows one to treat both continuum
and bound states applying the same algorithm. Therefore,

http://dx.doi.org/10.1007/978-3-319-73811-6_5
http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1
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V (r) =
∑
n

vn(r)

vn(r) �= 0, if r ∈ Ωn

vn(r) = 0, if r /∈ Ωn .

(6.3)

Accordingly, we introduce local coordinates ρn = r − Rn within sphere n with
the origin at the center Rn of the atomic site, and the vector Rnm = Rn − Rm con-
necting the origins of sites m and n. Radial variables are denoted by ρn = |ρn| and
angular variables by ρ̂n = ρn/ρn .

In a first step, we write in the spherical wave representation a number of local
functions associated with the truncated atomic potential vn(ρn) = vn(ρn) inside the
bounding sphere Ωn , such as the regular and irregular solutions of the Schrödinger
equation (SE) or the Lippmann–Schwinger equation, the t-matrix, and the Green’s
function. The radial part Rn

k�(ρn) of the regular solution Rn
kL(ρn) ≡ Rn

k�(ρn)YL(ρ̂n)

matches smoothly to the boundary condition at ρn = bn

Rn
k�(bn) = eiδ

n
�

[
j�(kbn) cos δn� − n�(kbn) sin δn�

]

= j�(kbn) + i sin δn� e
iδn� h+

� (kbn) ≡ j�(kbn) − ih+
� (kbn) t

n
� ,

(6.4)

while the radial part Hn
k�(ρn) of the irregular solution Hn

kL(ρn) ≡ Hn
k�(ρn)YL(ρ̂n)

matches smoothly

Hn
k�(bn) = −ih+

� (kbn) , (6.5)

where δn� is the phase shift of the potential vn(ρn) and tn� = − sin δn� e
iδn� is a partial

t-matrix introduced by definition. Throughout this chapter, we shall use real spheri-
cal harmonics YL(ρ̂n) and notations L ≡ {�,m}, jL(kρ) ≡ j�(kρ)YL(ρ̂), nL(kρ) ≡
n�(kρ)YL(ρ̂), h+

L (kρ) ≡ h+
� (kρ)YL(ρ̂), j�, n� and h+

� denote spherical Bessel, Neu-
mann and Hankel functions of the first kind respectively. Writing the different forms
of the condition in (6.4), we used known relation h+

� (z) = j�(z) + in�(z).
The regular wave function Rn

k�(ρn) satisfies the Lippmann–Schwinger equation

Rn
kL(ρn) = jL(kρn) +

∫
Ωn

G0(ρn,ρ
′
n, k)vn(ρ

′
n)R

n
kL(ρ

′
n) dρ

′
n , (6.6)

which, as one can see, automatically includes the boundary condition (6.4) under the
use of the well-known expression for the free GF

G0�(ρ, ρ′, ε) = −i k j�(kρ<) h+
� (kρ>) ,
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and the integral representation of the partial t-matrix introduced in (6.4):

∫
Ωn

jL(kρn)vn(ρn)R
n
kL ′(ρn) dρn = −δ��′

1

k
eiδ

n
� sin δn� = δ��′

1

k
tn� , (6.7)

where δ��′ is the Kronecker symbol.
Now we can express the single- and two-center expansions of the local Green’s

function in terms of the introduced regular and irregular solutions. Without loss of
generality, we shall consider the retarded GF G+

n (ρn,ρ
′
n, ε).

1 Henceforth, the sign
+ on G will be omitted for simplicity.

Let us first consider the single-center expansion of the local GF Gn(r, r ′, ε), i.e.
when r, r ′ ∈ Ωn .

This Green’s function

Gn(r, r ′, ε) = Gn
(∣∣ρn + Rn

∣∣ , ∣∣ρ′
n + Rn

∣∣ , ε)

=
∑
L

1

ρnρ′
n

Gn
�(ρn, ρ

′
n, ε)YL(ρ̂n)YL(ρ̂

′
n)

(6.8)

satisfies the differential equations in both variables ρ and ρ′:
[
Δρn

− vn(ρn) + ε
]
Gn(ρn,ρ

′
n, ε) = δ(ρn − ρ′

n)

[
Δρ′

n
− vn(ρ

′
n) + ε

]
Gn(ρn,ρ

′
n, ε) = δ(ρn − ρ′

n) .

(6.9)

The partial GFGn
�(ρ, ρ′, ε) introduced in (6.8) is the solution of the radial equation

[
d2

dρ2
− �(� + 1)

ρ2
− vn(ρ) + ε

]
Gn

�(ρ, ρ′, ε) = δ(ρ − ρ′) . (6.10)

Here and henceforth the index n in the local coordinates ρn is dropped, unless
necessary.

Evidently, the Wronskian of the functions kρRn
k�(ρ) and ρHn

k�(ρ) equals unity.
Therefore, according to the general method of the Green’s function construction
[18], one can write

Gn
�(ρ, ρ′, ε) = k ρ< ρ> Rn

k�(ρ<) Hn
k�(ρ>) , (6.11)

where ρ< (ρ>) are the lesser (the greater) of ρ and ρ′.

1In a similar way one can derive equations of the MS-GF method making use the Green’s function
of the required analyticity behavior.
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Inserting (6.11) into (6.8), one can write the single-center expansion for the local
GF as

Gn(r, r ′, ε) = k
∑
L

Rn
k�(ρ<) Hn

k�(ρ>) . (6.12)

Now we proceed to the two-center expansion of the local GF Gn(r, r ′, ε) around
another centerm, i.e.when r ∈ Ωn, r ′ ∈ Ωm, n �= m. In this caseρ > ρ′ and Hn

k�(ρ
′)

coincides with −ih+
� (kρ′). Using the well-known re-expansion [19]

− ih+
L (kρ) = k

∑
L ′

G0
nm
LL ′ jL ′(kρm), (6.13)

one can write
Gn(r, r ′, ε) = k

∑
LL ′

G0
nm
LL ′ Rn

kL(ρn) jL ′(kρ′
m), (6.14)

where the matrix elements G0
nm
LL ′ (the KKR structure factors) are given by

G0
nm
LL ′ = −4πi

∑
L ′′

i�−�′+�′′
CLL ′L ′′ h+

L ′′(kRnm) , (6.15)

with the Gaunt coefficients

CLL ′L ′′ =
∫

YL(r̂)YL ′(r̂)YL ′′(r̂) d r̂ . (6.16)

It is worth noting that for Vn(ρ) = 0 the function Rn
kL(ρn) coincides with jL(kρn)

so that (6.14) reduces to the well-known two-center re-expansion of the free electron
GF [13]

G0(r, r ′, ε) = G0(ρ + Rn,ρ
′ + Rm, k) = k

∑
LL ′

G0
nm
LL ′ jL(kρn) jL ′(kρ′

m) .

(6.17)

In the second step, we develop a method of solving the Dyson equation (6.1) for
the full Green’s function of the system.

From the spectral representation of the full GF already introduced in (2.48) of
Chap.2.

G(r, r ′, ε) = lim
η→0+

∑
j

ψ j (r)ψ∗
j (r

′)
ε − ε j + iη

, (6.18)

where ψ j (r) are the eigenstates of the SE corresponding to the energy ε j and the
index j runs over discrete and continuum states, it is clear that the GF satisfies the
differential equations in its both arguments

http://dx.doi.org/10.1007/978-3-319-73811-6_2
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(ε − Hr)G(r, r ′, ε) = δ(r − r ′)

(ε − Hr ′)G(r, r ′, ε) = δ(r − r ′),
(6.19)

where Hr = −Δr + V (r) is the Hamiltonian of the system (Ĥψ j = ε jψ j ).
The general solution of the inhomogeneous equations (6.19) is the sum of a par-

ticular solution of the equations (6.19) and the general solutions of the homogeneous
equations corresponding to (6.19).

Therefore,

• if r, r ′ ∈ Ωn, n = 1, . . . , N ,

G(r, r ′, ε) = G1
n(r, r

′, ε) + k
∑
LL ′

Gnn
LL ′ Rn

kL(ρ)Rn
kL ′(ρ′), (6.20)

where G1
n(r, r

′, ε) is a particular solution, the coefficients Gnn
LL ′ are to be deter-

mined. It is expedient to choose the GF G1
n(r, r

′, ε) so that it would satisfy the
Dyson equation within the sphere n

G1
n(r, r

′, ε) = G0(r, r ′, ε) +
∫

Ωn

G0(r, r ′′, ε) vn(r ′′)G1
n(r

′′, r ′, ε) dr ′′ ;
(6.21)

• if r ∈ Ωn, r ′ ∈ Ωm, n �= m,

G(r, r ′, ε) = k
∑
LL ′

Gnm
LL ′ Rn

kL(r) R
m
kL ′(r ′) , (6.22)

where coefficients Gnm
LL ′ are also to be determined.

Remembering (6.12) for r, r ′ ∈ Ωn, n = 1, . . . , N , we can express the GF in
(6.21) as follows:

G1
n(r, r

′, ε) = k
∑
L

Rn
kL(kρ<) Hn

kL(kρ
′
>), (6.23)

while using (6.14) for r ∈ Ωn, r ′ ∈ Ωm, n = 1..N ;m = 1..N , n �= m, we have

G1
n(r, r

′, ε) = G1
n(ρn + Rn,ρm + Rm, ε) = k

∑
LL ′

G0
nm
LL ′ Rn

kL(ρn) jL ′(kρ′
m).

(6.24)

The derivation of the system of equations for the unknown coefficients Gnm
LL ′ is

based on Dyson equation (6.1) and carried out in the following two cases:

• Case 1: r ∈ Ωn, r ′ ∈ Ωm, n �= m
Taking into account (6.22), we can rewrite (6.1) as
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G(r, r ′, ε) = k
∑
LL ′

Gnm
LL ′ Rn

kL(r) R
m
kL ′(r ′) = G0(r, r ′, ε)

+
∑

q �=n,m

∫
Ωq

G0(r, r ′′, ε) vq(r ′′)G(r ′′, r ′, ε) dr ′′

+
∫

Ωn

G0(r, r ′′, ε) vn(r ′′)G(r ′′, r ′, ε) dr ′′

+
∫

Ωm

G0(r, r ′′, ε) vm(r ′′)G(r ′′, r ′, ε) dr ′′.

(6.25)

The integrals on the right-hand side (RHS) of (6.25) can be expressed in terms of
the introduced coefficients Gnm

LL ′ as shown below.

∫
Ωq

G0(r, r ′′, ε) vq(r ′′)G(r ′′, r ′, ε) dr ′′

= k
∑
LL ′′L ′

G0
nq
LL ′′ t

q
�′′ G

qm
L ′′L jL(kρn) R

m
kL ′(ρ′

m).
(6.26)

The derivation of (6.26) is based on (6.7), (6.17), and (6.22).

∫
Ωn

G0(r, r ′′, ε) vn(r ′′)G(r ′′, r ′, ε) dr ′′

= k
∑
LL ′

Gnm
LL ′ Rn

kL(ρn)R
m
kL ′(ρm) − k

∑
LL ′

Gnm
LL ′ jL(kρn)R

m
kL ′(ρ′

m).

(6.27)

The derivation of (6.27) is based on (6.6) and (6.22).

∫
Ωm

G0(r, r ′′, ε) vm(r ′′)G(r ′′, r ′, ε) dr ′′

=
∫

Ωm

G0(r, r ′′, ε) vm(r ′′)G1
m(r ′′, r ′, ε) dr ′′

+ k
∑
L ′′L ′

Gmm
L ′′L ′

∫
Ωm

G0(r, r ′′, ε)vm(r ′′)Rm
kL ′′(r ′′)Rm

kL ′(r ′)dr ′′

= k
∑
LL ′

G0
nm
LL ′ jL(kρn) R

m
kL ′(ρ′

m) − G0(r, r ′, ε)

+ k
∑
LL ′L ′′

G0
nm
LL ′′ tm�′′ Gmm

L ′′L ′ jL(kρn) R
m
kL ′(ρ′

m).

(6.28)
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The derivation of (6.28) is based on (6.6), (6.17), (6.20), (6.21), and (6.24). Insert-
ing (6.26)–(6.28) into (6.25) and canceling several terms, we obtain

∑
LL ′

⎛
⎝Gnm

LL ′ − G0
nm
LL ′ −

∑
q �=n

∑
L ′′

G0
nq
LL ′′ t

q
�′′ G

qm
L ′′L ′

⎞
⎠ jL(kρn)R

m
kL ′(ρ′

m) . (6.29)

The functions in (6.29) are independent, therefore

Gnm
LL ′ = G0

nm
LL ′ +

∑
q �=n

∑
L ′′

G0
nq
LL ′′ t

q
�′′ G

qm
L ′′L ′ (n �= m) . (6.30)

• Case 2: r, r ′ ∈ Ωn,

The derivation of the equations for the Green’s function coefficients in this case
follows the same lines as in Case 1. One can find

Gnn
LL ′ =

∑
q �=n

∑
L ′′

G0
nq
LL ′′ t

q
�′′ G

qn
L ′′L ′ . (6.31)

Combining (6.30) with (6.31) and defining G0
nn
LL ′ ≡ 0, we finally obtain

Gnm
LL ′(ε) = G0

nm
LL ′(ε) (1 − δnm) +

∑
qL ′′

G0
nq
LL ′′(ε) t

q
�′′(ε)G

qm
L ′′L ′(ε) . (6.32)

Here we returned to the coefficients their argument ε. Thus, the solution of the
Dyson equation is reduced to the simple system of linear algebraic equations (6.32)
for the Green’s function matrix in angular momentum-site index representation.

6.2.2 Photoabsorption Cross-Section in Green’s Function
Formalism

In this section we present an illustrative example of applying the developed MS-GF
method to the description of photoabsorption. For this purpose, we will relate the
cross-section with the introduced Green’s function matrix.

The expression for the total cross-section can be written within the dipole approx-
imation as

σ(ωq) = 4π2αωq

∑
f

∣∣∣∣
∫

ψ∗
f (r) Ŵ (r)ϕi (r) dr

∣∣∣∣
2

δ(εi − ε f + ωq) , (6.33)

where α is the fine structure constant, ωq is the photon energy; the initial states and
energy are denoted by index i and the final states and energy by f . Ŵ (r) = êq · r is
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the dipole transition operator in the so-called length form, q and êq are thewavevector
and polarization of the incoming field respectively. (We shall omit henceforth the
unnecessary index q on ωq and êq for simplicity).

Here, we introduce the function �(r, r ′, ε) =∑ j ψ j (r)ψ j (r ′)δ(ε − ε j ), where
ψ j (r) are the eigenstates of the SE at energy ε j . Note that the completeness of the
set of these functions allows us to choose them real for real potentials.

Using the spectral representation of the GF (6.18) and the Sokhotski–Plemelj
theorem lim

η→0+
1

x±iη = P 1
x ∓ iπδ(x), where P denotes Cauchy principle part (see

Chap.1), one can write

�(r, r ′, ε) = − 1

π

 [G(r, r ′, ε)

]
, (6.34)

where 
 represents the imaginary part.
Using (6.34) in (6.33) allows one to avoid the summation over the final states:

σ(ω) = −4παω

{∫∫
Ωn

ϕ∗
i (r)Ŵ

∗(r)
 [G(r, r ′, ε)
]
Ŵ (r ′)ϕi (r ′) drdr ′

}
,

(6.35)

where ε = ω + εi ; the integrals are limited to the sphere n of the photoabsorbing
atom. This means that one needs to have the GF with r, r ′ ∈ Ωn , i.e. remembering
(6.20) and (6.23),

G(r, r ′, ε) = k
∑
L

Rn
kL(kρ<)Hn

kL(kρ>) + k
∑
LL ′

Gnn
LL ′ Rn

kL(ρ)Rn
kL ′(ρ′) , (6.36)

where the regular and irregular solutions of SE are complex, which makes necessary
the calculation of the imaginary part of the irregular solution.

Now we will redefine the regular and irregular solutions and rewrite (6.36) in
terms of the real solutions. Using the asymptotic forms (6.4) and (6.5) one can show

Hn
kL(kρ>) = Nn

kL(ρ>) − iR̃n
kL(ρ<) , (6.37)

where the radial part of the real regular solution R̃n
kL(ρ) = e−iδn� Rn

kL(ρ) matches to
the boundary condition

R̃n
kL(bn) = j�(kbn) cos δn� − n�(kbn) sin δn� (6.38)

and the radial part of the real irregular solution Nn
kL(ρ) matches to the condition

Nn
kL(bn) = j�(kbn) sin δn� + n�(kbn) cos δn� . (6.39)

http://dx.doi.org/10.1007/978-3-319-73811-6_1
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The Green’s function (6.36) in terms of the new solutions becomes

G(r, r ′, ε) = k
∑
L

R̃n
kL(kρ<) Nn

kL(kρ
′
>)

+ k
∑
LL ′

[
Gnn

LL ′ei(δ
n
� +δn

�′ ) − iδLL ′
]
R̃n
kL(ρ) R̃n

kL ′(ρ′)
(6.40)

with the imaginary part


 [G(r, r ′, ε)
] = k

∑
LL ′


 [Gnn
LL ′ei(δ

n
� +δn

�′ ) − iδLL ′
]
R̃n
L(r)R̃

n
L ′(r ′) . (6.41)

The substitution of (6.41) in (6.35) gives

σ(ω) = 4παωk

{∑
LL ′

A∗
i L(ε)
 [iδLL ′ − Gnn

LL ′ei(δ
n
� +δn

�′ )
]
AiL ′(ε)

}
, (6.42)

where

AiL(k) =
∫

Ωn

ϕi (r) Ŵ (r) Rn
kL(r) dr . (6.43)

6.2.3 Numerical Aspects

In many cases one needs to calculate transitions of the photoelectrons either to
the states in continuum rapidly varying with the energy or/and to the states below
MT-zero. As will be demonstrated in Chap. 13, modeling the spectra in these cases
requires extremely small real energy step, making calculations time consuming. Here
we develop an effective numerical procedure of solving this problem.

6.2.3.1 Analytical Continuation of the Green’s Function

It is known that there are two alternative ways to account for the finite lifetime of
the electron-hole pair. The first one is to convolute a spectrum calculated on the real
energy axis with a Lorentzian function of the half width Γ . Another way, to which
we will adhere, is a continuation of the GF into the upper semiplane of the complex
energy plane [7]. To take into account the Pauli principle, we introduce now the
Fermi level and show following [7] that for any photoelectron energy, except for
the vicinity of the Fermi energy εF , the convolution is mathematically equivalent to
the use of the GF calculated at the complex energy ε + iΓ . The convolution of the
cross-section (6.33) is obtained by convoluting the �(r, r ′, ε) in (6.34):

http://dx.doi.org/10.1007/978-3-319-73811-6_13
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ρ̃(r, r ′, ε) = θ(ε − εF )
Γ

π

∫ ∞

−∞
�(r, r ′, ε′)

(ε − ε′)2 + Γ 2
dε′

= Γ

π

[∫ ∞

−∞
�(r, r ′, ε′ − εF )

(ε − ε′)2 + Γ 2
dε′ −

∫ εF

−∞
�(r, r ′, ε′ − εF )

(ε − ε′)2 + Γ 2
dε′
]

,

(6.44)

where θ(x) is the step function. Remembering the relation (6.34), we notice that the
first integrand on the RHS is an analytical function of ε′ if 
(ε′) > 0. The second
integral in (6.44) decreases rapidly when ε > εF , and it can be neglected for the
transitions to continuum states above εF . Therefore, one can write

ρ̃(r, r ′, ε) ∼= Γ

π

∫ ∞

−∞

∑
j ψ j (r)ψ j (r ′)δ(ε′ − εF − ε j )

(ε − ε′)2 + Γ 2
dε′

= Γ

π

∑
j

ψ j (r)ψ j (r ′)
(ε − εF − ε j )2 + Γ 2

.

(6.45)

On the other hand, the spectral representation of the GF (6.18) for the complex
energies ε − εF + iΓ

G(r, r ′, ε − εF + iΓ ) =
∑
j

ψ j (r)ψ∗
j (r

′)
ε − εF − ε j + iΓ

(6.46)

is the analytical continuation of the GF from the positive real energy semiaxis into
the segment ε > εF of the upper semiplane of the first sheet of the complex energy
plane, where it has no poles. Remembering that we deal with the real eigenfunctions,
one finally obtains

ρ̃(r, r ′, ε) = Γ

π

∑
j

ψ j (r)ψ j (r ′)
(ε − εF − ε j )2 + Γ 2

= − 1

π


⎡
⎣∑

j

ψ j (r)ψ j (r ′)
ε − εF − ε j + iΓ

⎤
⎦ = − 1

π

 [G(r, r ′, ε − εF + iΓ )

]
.

(6.47)

Thus, if the calculations of spectra are carried out for the integration contour
shifted by the value of Γ > 0 into the upper semiplane, we obtain spectra broadened
with aLorentzian function. In addition, thismathematical trick allows one to compute
spectra in the range of both continuum and bound electronic states using the same
algorithm, since the spectrum is continuous on such a contour.
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6.2.3.2 Calculations of the Photoabsorption for Complex Electron
Energies

To calculate cross-section (6.35) for the complex energies, it is expedient to use
the GF in the form (6.36), with the regular and irregular solutions matching to the
boundary conditions (6.4) and (6.5) respectively.

As an example, let us consider K -edge unpolarized absorption cross-section, in
which case (6.35) is reduced to

σ(ω) = −8παω

3

{∫∫
Ωn

ϕi (r)r 
 [G(r, r ′, ε − εF + iΓ )
]
r ′ϕi (r

′)drdr ′
}

= −8παω

3
k


⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫ bn

0

∫ bn

0
ϕ1s(r) r

3 Rn
k1(r<) Hn

k1(r>) (r ′)3 ϕ1s(r
′) drdr ′

+
[∫ bn

0
ϕ1s(r) r

3 Rn
k1(r) dr

]2
1

3

1∑
m=−1

Gnn
1m,1m(ε − εF + iΓ )

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

(6.48)

where spin degeneracy is taken into account by a factor of two. The way to compute
the first integral in (6.48) is illustrated in Fig. 6.1.

The integration over the upper triangle (over the variable r ) in Fig. 6.1 gives

∫ bn

0

∫ r ′

0
ϕ1s(r) r

3 Rn
k1(r) H

n
k1(r

′) (r ′)3 ϕ1s(r
′) drdr ′ (6.49)

Fig. 6.1 The algorithm of
the bivariate integration in
(6.48): Horizontal lines show
intervals of integration over r
from 0 to r in (6.49) and
vertical lines over r from
0 to r in (6.50)
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and the integration over the lower triangle (over the variable r ′) gives

∫ bn

0

∫ r

0
ϕ1s(r) r

3 Rn
k1(r

′) Hn
k1(r) (r ′)3 ϕ1s(r

′) drdr ′ . (6.50)

Therefore, the double integral in (6.48) reduced to

2
∫ bn

0
ϕ1s(r) r

3Hn
k1(r) F

n
k1(r) dr , (6.51)

where we put Fn
k�(r) = ∫ r

0 Rn
k1(r

′)(r ′)3ϕ1s(r ′)dr ′.
The irregular solution Hn

k1(r) matching smoothly to −ih+
1 (kr) at bn can be com-

puted by either outward or inward integration of the radial SE.

6.3 MS-GF Formalism: Multichannel Version

As in the one-electron MS-GF method, a derivation of the multichannel equations
presented here is based on the Dyson equation for the retarded GF G(E)

G(E) = 0G(E) + 0G(E)ΔV G(E) , (6.52)

where E is the full energy of the system under study; 0G(E) is the GF of the one-
particle approach considered in Sect. 6.2; ΔV is a difference between many-particle
and single-particle Hamiltonians.

Reducing the integral Dyson equation (6.1) to the system of the linear algebraic
equations (6.32) is based on the expansions (6.12), (6.14) for the local GF and
(6.20), (6.22) for the full GF. Similar expansions are not valid for potentials which
are non-local in the radial variables. One of the reasons lies in the fact that this
potential is an integral operator not allowing the separation of variables r and r ′.
As a consequence, the Wronskian of the radial regular and irregular solutions of the
differential equation is not constant. It is worth noting that the introduced potential
is non-local not only in radial variables but also in the channel representation. We
assume at this point that the non-local potential considered here can be approximated
by a sum of separable potentials, keeping however at the same time its nonlocal
character in the channel indices. In this case, two-dimensional integrals canbedivided
into the sum of products of one-dimensional integrals, thus admitting the separation
of the radial variables. In this approach, we imply that the Wronskian has a small
dependence on the radial variables that can be neglected. So, we will construct the
Green’s function in terms of the Schrödinger equation solutions calculated with a
high accuracy within the variational principle, however, the expansion formulas for
the GF in terms of these solutions will be approximate.
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It is worth noting that the multichannel generalization of the MS-GF method
relies on the MT-approximation to the cluster potential, for this reason the type
of correlations which can be treated within this approximation is restricted to the
correlations between one electron in a delocalized state and the electrons (or holes)
in the states localized inside the MT-spheres.

6.3.1 Single-Site Multichannel Radial Equations

Prior to solving (6.52),we introduce, as before, a number of local functions associated
with the truncated atomic potential inside the sphere Ωn . The many-electron wave
function of the N -electron system with one delocalized electron scattered by the rest
of the atom with (N − 1) electrons can be approximated by a linear combination of
the antisymmetrized products, as

Ψ N (x1, . . . , xN−1; x) = 1√
N

[∑
i

Âϕi (x) Ψ N−1
i (x1, . . . , xN−1)

]
≡
∑
i

Θi ,

(6.53)

where x ≡ (r, s) denotes the radial and spin coordinates, ϕi (x) is the wave func-
tion of the scattered electron in a channel i , Â denotes the operator of permutation
of coordinates, which is equal to +1 or −1 in the cases of even or odd number
of permutation respectively, Ψ N−1

i (x1, . . . , xN−1) is the Slater determinant for the
channel i constructed from the localized orbitals of the (N − 1) - electron atom.

Our purpose in this step is to derive the radial Schrödinger equation for the wave
function of the scattering electron. We will follow the close-coupling method based
on the Kohn variational principle for the reactance K -matrix [20] formulated for a
function Ψ N assumed to be the exact solution of the many-particle problem:

δ [ (Ψ | H − E | Ψ ) − K ] = 0 .

As the exact solution of the many-particle problem is unknown, it was shown in [21]
that the above variation is equivalent to

(δΨ | H − E | Ψ ) = 0 (6.54)

if Ψ N is inexact.
Therefore, one first needs to write expressions for the matrix (Ψ |H − E |Ψ ) of

the Hamiltonian

HN = −∇2
r +

N−1∑
j=1

2

| r − r j | − 2Z

| r − Rn | + HN−1 (6.55)
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for the set of the trial channel functions Θi from (6.53). The matrix elements
(Θi |H − E |Θ j ) are just the same as used in ligand field theory [22]. Their struc-
ture depends on the definition of channels. The variation of the radial wave func-
tions of the scattered electron in each Θi leads to a system of coupled integro-
differential equations for these functions. As an illustration, let us consider the
simple but interesting example of 2p spin-orbit coupling and Coulomb interaction
between 2p core electrons and s, d electrons in the continuum. In this case HN−1

includes the operator of spin-orbit interaction
∑

i∈2p a(ri )(�i · si ) (spin-orbit cou-
pling of d electron in the continuum is negligible). The channel can be defined by
the set of quantum numbers i = j2pμ j k2i �imi ≡ αk2i Li , where j = 1/2, 3/2; μ j =
− j, . . . ,+ j; Li ≡ �imi refers to the angularmomentumof the delocalized electron;
k2i = εi = E − Eα = E − (EN − EN−1

j (2p)). Therefore,

ϕi (r) = P�i (εi , r)YLi (r̂) , (6.56)

the Slater determinantΨ N−1
i (x1, . . . , xN−1) for the channel i includes corresponding

2p-orbital
Ψi(2p)(x) = P2p(r) ×

∑
m+ms=μ j

C j
mms

Y1m(r̂)χs
ms

(σ) , (6.57)

where P2p(r) is a radial wave function of 2p electrons calculated in a one-particle
mean-field approximation for HN−1; C j

mms are the Clebsch–Gordan coefficients,
χs
ms

(σ) is a spin function of 2p electrons; P�i (εi , r) is a radial wave function of the
electron scattered in the channel i , and the Hamiltonian HN becomes

HN = −∇2
r + 2V ′(r) +

5∑
j∈2p

2

| r − r j | − 2Z

| r − Rn | + HN−1 . (6.58)

Here 2V ′(r) is a one-particle mean-field potential that includes interaction between
the scattered electron and all the localized electrons of the atom except 2p elec-
trons. Note that the Slater determinant Ψ N−1

i (x1, . . . , xN−1) is constructed from the
discrete orbitals obtained in the same approximation for HN−1 as 2p-orbitals. By
inserting (6.58) into (Θi |H − E |Θ j ), using the definition of Θi given in (6.53), and
varying the radial wave functions P�i (εi , r) ≡ Pi (r) in eachΘi , we obtain the system
of coupled radial integro-differential equations:

(
d2

dr2
− �i (�i + 1)

r2
− V (r) + k2i

)
Pi (r) −

∑
j

Wi j (r, r
′)Pj (r

′)

+
∑
q

λiq Pq(r)δ�i�q = 0 ,
(6.59)
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Wi j (r, r
′)Pj (r

′) = 2
∑
q

⎡
⎣aqi j yq (P2p P2p) Pj (r)

−cqi j yq (P2p Pi (r)) P2p(r)

⎤
⎦ , (6.60)

yq( f g) = r−q−1
∫ r

0
f (r ′)g(r ′)(r ′)q dr ′ + rq

∫ bn

r
f (r ′)g(r ′)(r ′)−q−1 dr ′ ,

(6.61)

where V (r) = 2V ′(r) + 2y0(P2p P2p) − 2Z/ |r − Rn| is the one-electron potential
within the sphere Ωn considered in Sect. 6.2. The third term in (6.59) ensures the
orthogonality of the radial function of the electron in the continuum to the radial
orbitals Pq(r) of the core electrons with �q = �i by means of the Lagrangian multi-
pliers λiq . Coefficients a

q
i j , c

q
i j in (6.60) are expressed in terms of the Gaunt coeffi-

cients
∫
Yi (r̂)Yqmq (r̂)Y j (r̂)d r̂ [23]. Note that the first term on the RHS of (6.60) is

a local potential, with q = 2, whereas the second one is a non-local potential with
q = 1, 3. Henceforth, as in Sect. 6.2, we will use the local coordinate ρ instead of
the global r .

Boundary Conditions

The single-site solution of the set of equations (6.59) is a matrix defined by asymp-
totical conditions. Let us choose them so that the matrix elements Rn

i j (εi , ρ) =
Pn
i j (εi , ρ)/(ρk j ) would smoothly match to the conditions:

Rn
i j (εi , ρ) −−→

ρ→0
ρ�i δi j , (6.62)

Rn
i j (εi , bn) =

√
ki
k j

[
j�i (kibn) δi j − i h+

�i
(kibn) t

n
i j

]
, (6.63)

where tni j is the t-matrix in the channel basis introduced by definition.
The coupled set of equations is solved iteratively and independently for each

column function which can then be normalized according to the condition (6.63)
that also determines the corresponding column of the t-matrix.

Lippmann–Schwinger Equation

The functions Rn
i j (εi , ρ) satisfy the system of coupled integral equations

Rn
i j (εi , ρ) = j�i (kiρ)δi j

+
∑
q

∫∫
Ωn

G0�i (ρ, ρ′, εi ) Ṽiq(ρ
′, ρ′′) Rn

q j (εq , ρ
′′) ρ′2ρ′′2 dρ′dρ′′ ,

(6.64)
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where

Ṽiq(ρ
′, ρ′′) =

[
V (ρ′) −

∑
p

λi p Pp(ρ
′)δ�i �p

]
δ(ρ′ − ρ′′)δiq + Wiq(ρ

′, ρ′′) , (6.65)

and the free GF G0�i (ρ, ρ′, εi ) satisfies the radial equation

[
1

ρ2
d

dρ

(
ρ2

d

dρ

)
− �i (�i + 1)

ρ2
+ εi

]
G0�i (ρ, ρ′, εi ) = δ(ρ − ρ′)

ρ2
(6.66)

with the known matrix elements in the angular momentum basis

G0�i (ρ, ρ′, εi ) = −i ki j�i (kiρ<) h+
�i
(kiρ>) δi j . (6.67)

Asymptotic Matrices

Writing (6.64) for ρ = bn , substituting the boundary condition (6.63) in the LHS
and the boundary value of the GF (6.67) in the RHS, one can obtain the integral
representation of the interchannel atomic t-matrix introduced in (6.63):

ti j (E) = √
ki k j

∑
q

∫∫
Ωn

j�i (kiρ) Ṽiq(ρ, ρ′) Rn
q j (εq , ρ

′) ρ2ρ′2 dρdρ′ . (6.68)

It is useful to write the Lippmann–Schwinger set of coupled integral equations in
terms of the potential difference as

Rn
i j (εi , ρ) = Rn

ki�i
(ρ) δi j

+
∑
q

∫∫
Ωn

Gn
i (ρ, ρ′, εi )ΔViq(ρ

′, ρ′′) Rn
q j (εq , ρ

′′) ρ′2ρ′′2 dρ′dρ′′ ,
(6.69)

where Rn
ki �i

(ρ) is the local single-channel regular solution of the Schrödinger equa-
tion with the potential vn(ρ) (see Sect. 6.2); the single-site GF Gn

i (ρ, ρ′, εi ) ≡
Gn

�i
(ρ, ρ′, ε)/(ρnρ′

n) is defined in Sect. 6.2 according to (6.11); ΔViq(ρ, ρ′) =
Ṽiq(ρ, ρ′) − vn(ρ

′)δ(ρ − ρ′)δiq .
Now one can relate the difference between the multichannel and single-channel

t-matrices to the difference between the corresponding potentials. Writing (6.69) for
ρ = bn , inserting into it the expressions for the single-site atomicGFGn

�i
(bn, ρ′, εi ) =

−iki Rn
ki �i

(ρ′) h+
�i
(kibn)δi j and the boundary conditions (6.4), (6.63) for the single-

channel and multichannel wave functions respectively, we obtain
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Δti j (E) ≡ ti j − tni δi j =
√
ki k j

∑
q

∫∫
Ωn

Rn
ki�i (ρ)ΔViq(ρ, ρ′) Rn

q j (εq , ρ
′) ρ2ρ′2 dρdρ′ .

(6.70)

In the next section, it is expedient to have the boundary condition (6.63) expressed
in terms of the reactance K -matrix. For this, defining the relation between scattering
S- and t-matrices similar to that for the single-channel problem:

ti j = δi j − Si j
2i

, (6.71)

we first reduce (6.63) to

Rn
i j (εi , bn) = 1

2

√
ki
k j

[
h−

�i
(kibn) δi j + h+

�i
(kibn) S

n
i j

]
.

Then, using the well-known relation between unitary S-matrix and Hermitian
K -matrix [24]:

S = (I + iK)(I − iK)−1 , (6.72)

we obtain the desired boundary condition equivalent to (6.63):

Rn
i j (εi , bn) =

√
ki
k j

∑
q

[
j�i (kibn) δi j − n�i (kibn) K

n
iq

]
(I − iK)−1

q j . (6.73)

6.3.2 Single-Site Multichannel Green’s Function

It is known that theWronskian for matrices of the regularΦ and irregular F solutions
of the differential equationwith the symmetrical potentialmatrix is constant if defined
as in [25]:

W (F, Φ) = F̃Φ ′ − F̃ ′Φ , (6.74)

where the tilde over them denotes the matrix transposition and the prime indicates
the radial first derivative.

The functions Φi j (εi , ρ), Fi j (εi , ρ) satisfy the set of coupled equations

[
d2

dρ2
− �i (�i + 1)

ρ2
+ k2i

]
fi j (ρ) −

∑
q

∫
Ωn

Viq(ρ, ρ′) fq j (ρ
′) dρ′ = 0 , (6.75)

where fi j (ρ) denotes either Φi j (εi , ρ) or Fi j (εi , ρ).
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Let us impose for these solutions the following boundary conditions at ρ = bn:

Φi j (εi , bn) = 1√
ki

[
j̄�i (kibn) δi j − n̄�i (kibn) Ki j

]
, (6.76)

Fi j (εi , bn) = 1√
ki

h̄+
�i
(kibn)

∑
p

(I − iK)−1
i p Apj , (6.77)

where j̄�i (kiρ) = kiρ j�i (kiρ), n̄�i (kiρ) = kiρn�i (kiρ), h̄+
�i
(kiρ) = kiρh

+
�i
(kiρ); Ki j

are matrix elements of the K -matrix in the channel basis which is real and symmet-
rical for the real and symmetrical potential in (6.75). The normalization coefficients
Apj should be determined so as the Wronskian between these solutions would be
equal to unity allowing us to use them in construction of the single-site multichannel
GF.

First, we note that the function

Ḡ(ρ, ρ′, E) =

⎧⎪⎨
⎪⎩

Φ(ρ)F̃(ρ′), ρ < ρ′

F(ρ)Φ̃(ρ′), ρ > ρ′
(6.78)

with the matrix elements

Ḡi j (ρ, ρ′, E) =

⎧⎪⎨
⎪⎩

∑
q Φiq(εi , ρ<)Fjq(ε j , ρ

′
>)

∑
q Fiq(εi , ρ>)Φ jq(ε j , ρ

′
<)

(6.79)

meets requirements to be the single-site multichannel GF, namely:

• satisfies the inhomogeneous system of the coupled integro-differential equations
corresponding to (6.75) for both variables ρ and ρ′, if ρ �= ρ′

[
d2

dρ2
− �i (�i + 1)

ρ2
+ k2i

]
Ḡi j (ρ, ρ′, E)

−
∑
q

∫
Ωn

Ṽiq(ρ, ρ′′) Ḡq j (ρ
′′, ρ′, E) dρ′′ = δ(ρ − ρ′) δi j

(6.80)

• satisfies the principle of reversibility

Ḡi j (ρ, ρ′, E) = Ḡ ji (ρ, ρ′, E) (6.81)

• satisfies the condition of continuity at ρ = ρ′.
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Next, assuming that the non-local potential introduced here can be approximated
by a potential with separable coordinates and applying the general method of the
Green’s function construction [18], we determine the normalization coefficient in
(6.77). By integrating (6.80) over ρ′ in a small interval [ρ − Δ, ρ + Δ] and using
continuity of Ḡi j (ρ, ρ′, E) we find

lim
Δ→0

d

dρ′ Ḡ(ρ, ρ′, E)

∣∣∣ρ+Δ

ρ−Δ
= 1 . (6.82)

The substitution of (6.78) in (6.82) leads to

Φ(ρ)F̃ ′(ρ) − Φ ′(ρ)F̃(ρ) = 1 .

Using the boundary conditions (6.76) and (6.77), we obtain

∑
pq

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1√
ki

( j̄iδi p − n̄i Kip)
1√
k j

k j h̄
+′
j (I − iK)−1

jq Aqp

− 1√
ki
ki ( j̄

′
i δi p − n̄′

i Kip)
1√
k j

h̄+
j (I − iK)−1

jq Aqp

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

= δi j ,

which gives Aqq = −i. Non-diagonal coefficients Apq are put to zero, so as the GF
(6.79) would go to the free GF when the potential in (6.75) tends to zero. Finally,
Apq = −iδpq .

Throughout this chapter we use the GF Gi j (ρ, ρ′, E) = Ḡi j (ρ, ρ′, E)/(ρρ′) for
which the expansion (6.79) becomes

Gi j (ρ, ρ′, E) =

⎧⎪⎨
⎪⎩

∑
q Φ̄iq(εi , ρ<) F̄jq(ε j , ρ>)

∑
q F̄iq(εi , ρ>) Φ̄ jq(ε j , ρ<)

(6.83)

being expressed in terms of the functions Φ̄iq = Φiq/ρ and F̄jq = Fjq/ρ matching
to the conditions at ρ = bn

Φ̄i j (εi , bn) = √
ki
[
j�i (kibn) δi j − n�i (kibn) Ki j

]
, (6.84)

F̄i j (εi , bn) = −i
√
ki h

+
�i
(kibn) (I − iK)−1

i j . (6.85)

In addition, it is expedient to express the irregular solution F̄ in terms of the real
regular solution Φ̄. Using the boundary conditions (6.84) and (6.85), we obtain

F̄iq = −i
∑
j

Φ̄i j (I + K2)−1
jq + Δiq , (6.86)
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where the irregular solution Δiq satisfies the condition at ρ = bn

Δiq(εi , bn) =
∑
j

√
ki
[
j�i (kibn) Ki j + n�i (kibn) δi j

]
(I + K2)−1

jq .

Note that function Δiq is a real part of the complex irregular solution F̄iq .
Similarly, one can write relation between Rn

i j matching to the boundary condition
(6.73) and Φ̄i j as

Rn
i j (εi , ρ) = 1√

k j

∑
q

Φ̄iq(εi , ρ) (I − iK)−1
q j . (6.87)

6.3.3 Solution of the Dyson Equation for the Full Green’s
Function

Here we present a scheme of solving the Dyson equation (6.52) for the full GF in
the case when strong many-electron interaction takes place only within one of the
atomic spheres in the cluster. This means that ΔV in (6.52) is equal to zero value
everywhere with the exception of the sphere n.

The general solution of (6.52) can be written in analogy with the single-channel
equation (6.20) (Sect. 6.2) as

Gi j (r, r ′, E) = Gn
i j (r, r

′, E) +
∑
pq

√
kpkq R

n
ip(r)Gpq(E) Rn

jq(r
′) , (6.88)

where r, r ′ ∈ Ωn; the coefficients Gpq(E) are to be determined; Gpq(r, r ′, E) =
YL p (r̂)Gpq(r, r ′, E)YLq (r̂

′
); Rn

ip(r) = YLi (r̂)R
n
ip(r).

Let us rewrite (6.32) for the full single-channel GF in matrix form

0G = G0 + G0
0t 0G , (6.89)

which in terms of the inverse GF becomes

0G
−1 = G0

−1 − 0t , (6.90)

where 0t is the single-channel t-matrix for the potential in sphere n.
Similarly, one can write for the full multichannel GF

G = G0 + G0 t G , (6.91)

G−1 = G0
−1 − t . (6.92)
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The subtraction (6.90) from (6.92) gives

G−1 = 0G
−1 − Δt , (6.93)

G = 0G + 0G Δt G . (6.94)

Writing (6.94) in the channel representation

Gi j = 0Gi j +
∑
pq

0GipΔtpq Gq j (6.95)

and returning to the notations of Sect. 6.2, i.e. 0Gi j (E) ≡ Gnn
Li L j

(εi )δεi ε j δαiα j , where
the coefficients Gnn

Li L j
(εi ) satisfy the coupled algebraic equations (6.32), we find

Gi j (E) = Gnn
Li L j

(εi )δεi ε j δαiα j +
∑
pq

δεi εpδαiαpG
nn
Li L p

(εi )Δtpq(E)Gqj (E) , (6.96)

in which Δtpq is determined by (6.70).

6.3.4 Photoabsorption Cross-Section in the MCMS-GF
Method

Weconsider an application of the developedmethod for calculating L2,3-edge absorp-
tion cross-section. The expression (6.33) now becomes

σ(ωq) = 4π2αωq

∑
f

∣∣∣
〈
Ψ f | Ŵ | Ψg

〉∣∣∣2 δ(Eg + ωq − E f )

= −4παωq

∑
f

〈
ΨgŴ

∣∣∣∣∣

[

Ψ f Ψ
†
f

E − E f + iη

]∣∣∣∣∣ ŴΨg

〉

= −4παωq

〈
ΨgŴ | 
 [GN (E)

] | ŴΨg

〉
,

(6.97)

whereΨg ,Ψ f and Eg , E f are respectively the many-electron ground and final eigen-
vectors and energies of N -electron atom in a cluster; Ŵ = êq ·∑N

i=1 r i denotes the
dipole transition operator; E = Eg + ωq . Note that in the final state the N -electron
absorbing atom includes 2p hole and electron in continuum s-, d-states. The many-
electron full GF of the clusterGN (E) can be expended in terms of the complete basis
set Ψ N−1

i (x1, . . . , xN−1) introduced in (6.53):
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GN (x1, . . . , xN−1, r; x′
1, . . . , x′

N−1, r
′; E)

= Â Â′∑
i j

{
Ψ N−1
i (x1, . . . , xN−1)Gi j (r, r ′, E) Ψ ∗N−1

j (x′
1, . . . , x′

N−1)
}

.

(6.98)

Here the operator Â permutates the coordinates {x1, . . . , xN−1} with r and Â′
acts similarly on the prime variables.

Writing the expansion (6.83) for Gn
i j (r, r

′, E) as

Gn
i j (r, r

′, E) =

⎧⎪⎨
⎪⎩

∑
q Φ̄iq(εi , r<) F̄jq(ε j , r>)

∑
q F̄iq(εi , r>) Φ̄ jq(ε j , r<)

(6.99)

and taking into account (6.86), (6.87), we obtain from (6.88)

Gi j (r, r ′, E) =
∑
pq

Φ̄iq(εi , r)
[
G̃ pq(E) − i(I + K2)−1

pq

]
Φ̄ j p(ε j , r ′)

+
∑
q

Φ̄iq(εi , r<)Δ jq(ε j , r ′
>) ,

(6.100)

where G̃ pq(E) denotes

G̃ pq(E) =
∑
p′q ′

(I − iK)−1
pp′ Gp′q ′(E) (I − iK)−1

q ′q . (6.101)

Putting together (6.98) and (6.100), dropping again index q on ωq , we reduce
(6.97) to

σ(ω) = 4παω 

∑
pq

{
M†

q

[
i (I + K2)−1

pq − G̃ pq(E)
]
Mp − M†

p M̃qδpq
}

, (6.102)

where dipole transition amplitudes Mq and M̃q are respectively defined as

Mq(E) =
∑
i

〈
ÂΨ N−1

i Φ̄iq(εi ) | ŴΨg

〉
, (6.103)

M̃q(E) =
∑
i

〈
ÂΨ N−1

i Δiq(εi ) | ŴΨg

〉
. (6.104)

The functions Φiq(εi , r) and Δiq(εi , r) are real, therefore the products of the
dipole transition amplitudes in (6.102) are real, thus giving
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σ(ω) = 4παω
∑
i j

{
Mi

[
(I + K2)−1

i j − 
 G̃i j (E)
]
Mj

}
. (6.105)

However, if one needs the analytical continuation of the GF into complex energy
plane, as described in Sect. 6.2, the calculations of irregular solutions of the cou-
pled integro-differential equations (6.75) are necessary. We can choose either real
Δiq(εi , r) or complex F̄iq(εi , r) as an irregular solution. If we use Δiq(εi , r), the
expression (6.102) includes the second term calculated at complex energies. Other-
wise, if we use functions F̄iq(εi , r), it is easy to show following to the same line as
in the case of Δiq(εi , r) that (6.102) becomes

σ(ω) = 4παω 

∑
pq

{−M†
q

[
G̃ pq(E)

]
Mp − M†

p M̃qδpq
}

, (6.106)

M̃q(E) =
∑
i

〈
ÂΨ N−1

i F̄iq(εi ) | ŴΨg

〉
. (6.107)

The algorithm of the bivariate integration in M†
i M̃ j is similar to that developed in

Sect. 6.2.

6.4 Outlook

In this chapter we have presented in details two methods based on the real-space
Green’s function formalism: single-channel (MS-GF) and multichannel (MCMS-
GF). Both approaches reduce the integral Dyson equations to systems of linear
algebraic equations for the GF matrices in the angular momentum-site index repre-
sentation. Since the methods rely on the MT approximation, the MCMS-GF method
accounts only for correlations between one delocalized electron and electrons local-
ized inside MT-sphere. One of the ways to go beyond this restriction could be the
extension of the MCMS-GF equations to the FPMS (Full Potential Multiple Scatter-
ing) theory [26]. The MCMS-GF theory exploits the close-coupling formalism, thus
combining the MCMS-GF and FPMS methods is a relatively straightforward task.
The second serious assumption that the non-local potential considered here can be
approximated by a sum of separable potentials, leading to the same equations of the
MCMS-GF method, requires a strict justification.
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Chapter 7
MXAN and Molecular Dynamics: A New
Way to Look to the XANES (X-ray
Absorption Near Edge Structure) Energy
Region

Maurizio Benfatto, Elisabetta Pace, Nico Sanna, Cristiano Padrin
and Giovanni Chillemi

Abstract X-rayAbsorptionNearEdgeStructure (XANES) spectroscopy is a power-
fulmethod to obtain local structural and electronic information around awell-defined
absorbing site of matter in many possible different conditions. Few years ago we pre-
sented a newmethod, calledMXAN, that allows a complete fit of the XANES energy
region in terms of well-defined set of structural parameters. MXAN calculates the
photo-absorption cross-section using the full multiple scattering theory and, in this
way, the analysis can start from the edge without any limitations in the energy range
and polarization conditions. In this paper we present with details the MXANmethod
and new possibilities, coming from the combination of molecular dynamic simula-
tions and MXAN, in the analysis of structural disordered system. Applications to
the solvation spheres analysis of Ni, Cu and Cl ions in water are also presented in
details.

7.1 Introduction

X-ray absorption spectroscopy (XAS) is a powerful method for obtaining both elec-
tronic and structural information on the absorbing atom site of different types of
matter, from biological systems to condensed materials. The low energy part of
the XAS spectrum, from the rising edge up to a few hundreds of eV, the so called
XANES (x-ray absorption near-edge structure) region, is extremely rich of electronic
and structural information. Oxidation state, overall symmetry, distances and angles
between atomic species around absorbing site [1] can derived from this part of the
XAS spectra. In principle, an almost complete quantitative recovery of the geomet-
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rical structure within 6 ÷ 7Å from the absorber can be achieved from this part of the
experimental spectrum and for long time the fit of XANES data has been an aim of
users of this technique, especially in the cases of limited k-range experimental data
where a standard EXAFS analysis cannot be performed.

A further advantage of using the XANES data lies in the limited effects of the
atomic thermal disorder. This can be easily seen by the consideration that any signal
associated with the nth multiple-scattering (MS) event can be written as a sinusoidal
function whose argument is given by kRtot + F(k, Ri , . . . , Rn) where Rtot is the
total length of the MS path of order n and the F function depends on the three-
dimensional geometry of this path.As a consequence, the associated thermal damping
factor contains always a term like exp(−k2σ2), coming from the Rtot part. This is
the dominant term and it is almost equal to 1 in the low-energy part of the spectrum,
i.e. for small k values [2].

The possibility to perform quantitative XANES analysis to obtain a structural
determination of an unknown compound can be relevant in many scientific fields,
like extra-dilute systems, biological systems where the low S/N ratio and the weak
scattering power of the light elements limits the k-range of the available experimental
data, materials under extreme conditions, and recently the analysis of time-depended
data coming from metastable systems living few pico-seconds or even less.

However, the quantitative analysis of the XANES spectra presents some diffi-
culties mainly due to the theoretical approximations needed in the treatment of the
potential and the more time-consuming algorithms to calculate the absorbing cross
section in the framework of the full multiple-scattering approach [3, 4]. For these
reasons, the XANES analysis is still considered a qualitative technique, used as a
help for standard EXAFS studies.

Several years ago Benfatto and Della Longa proposed a fitting procedure, MXAN
(Minuit XANES) based on a full MS theory [5], which is able to extract local quanti-
tative structural information around the absorbing atom from experimental XANES
data. Since then, theMXANmethod has been successfully used for analyses of many
known and unknown systems, yielding structural geometries andmetrics comparable
to x-ray diffraction and/or EXAFS results [6, 7].

In this paper we present a review of the MXAN method describing also the new
possibilities available in the latest version of the program. In particular we will
show as the link between MXAN and Molecular Dynamic (MD) simulations allows
to handle structural disordered and dynamical systems. Some applications will be
presented and discussed in details.

7.2 The MXAN Method

The method is based on the comparison between experimental data and many the-
oretical calculations performed by varying selected structural parameters starting
from a well-defined initial geometrical configuration around the absorber. The cal-
culation of XANES spectra are performed within the so-called full MS approach, i.e.
the inverse of the scattering path operator is computed exactly, avoiding any a priori
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selection of the relevant MS paths [3]. The fit procedure is performed in the energy
space without the use of any Fourier transforms algorithm; polarized spectra can be
easily analyzed because the calculation is performed using the full MS approach [5].

The optimization in the space of the parameters is achieved using the CERN-
library MINUIT routines minimizing the square residual function

S2 = m

n∑

i=1

wi
[
(ythi − yexpi )ε−1

i

]2

n∑

i=1

wi

, (7.1)

wherem is the number of the independent parameters,n is the number of experimental
data points, ythi and yexpi are the theoretical and experimental values of the absorption
coefficient, εi are the individual errors in the experimental data set and wi is a
statistical weight, this last can be chosen using a suitable flag in the mxan program.
For wi = 1, the square residual function S2 becomes the statistical χ2 function. A
typical fit involves an experimental energy range of about 150 ÷ 200 eV from the
rising edge, applications to several test cases indicates that the best-fit solution is
quite stable and independent from the starting conditions. The achievement of the
best-fit condition involves the calculation of many absorption coefficients related to
several hundred different geometrical configurations. This is done in a reasonable
time with the modern computers.

The MXAN method is based on the standard MS theoretical approach within
the muffin-tin (MT) approximation for the shape of the potential and the so-called
extended continuum scheme to calculate both the continuum and the bound part
of the XAS spectrum. It also uses the concept of complex optical potential based
on the local density approximation of the self-energy of the excited photoelectron
[3]. The total charge density needed to calculate the whole potential is derived by
superimposing atomic self-consistent Hartree-Fock charges derived using neutral or
non- neutral atoms.

In theMT approximation it is necessary to define the radii of the spheres surround-
ing all the atoms used in the calculation; they are chosen according to the Norman
criterion, with some percentage of overlap between the MT spheres. The potential is
recalculated at each step of the minimization procedure keeping fix the overlapping
factor. This parameter controls all the MT radii and it can be considered as a free
parameter of the theory. At the same time there is the need to define the constant inter-
stitial potential, this can be calculated by averaging the potential over the interstitial
volume defined as the difference between the volume of an outer sphere (centered
on the absorbing atom and encompassing the cluster) and the sum of the volumes
of each individual atomic spheres. However in the extended continuum scheme the
outer sphere is not used and the interstitial potential can also be considered as a free
parameter of the theory. Both overlapping factor and the interstitial potential can be
optimized during the fit procedure, and in the last version of the program, they are
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inside the structural loop in order to minimize the computer time and to calculate the
statistical correlations with the geometrical parameters. It turns out they are small in
most of the cases with a very weak influence in the structural determination. Clearly
the overcoming of the MT approximation [8, 9] and the use of a self-consistent field
(SCF) potential is the best way to eliminate the arbitrariness that the use of such free
parameters introduces in the calculation. However the introduction of the non-MT
corrections and the use of SCF potential in a fitting procedure where the geometrical
structure changes at each step of computation is complicated and quite time con-
suming. There is also the risk to stabilize wrong electronic configuration when the
geometry is still far from the reality with the possibility to increase the finding of
false minima.

On the other hand the optimization of both interstitial potential and MT radii can
be a way to mimic the non-MT corrections and the use of a SCF potential for the
whole cluster. This is based on the following theoretical considerations: the scattering
atomic t-matrices and non-MT corrections depend on the charge density, but they
also depend on the MT radii and the interstitial potential via the Wronskians of
the theory calculated at the boundary of the MT spheres for the given interstitial
potential; it is also possible to write a MS theory without the MT approximation
with the same formal structure of the usual MS theory by adding some suitable
quantities to scattering matrices and propagators. In fact the total photo-absorption
cross section can be written as σt ≈ �(T + H)−1 where now T = (Ta)

−1 + �T
and H = HMT + �H. Here Ta and HMT are the t-matrices and the free electron
propagators between the atomic sites calculated within the MT approximation. �T
and�H are the non-MTcorrections proportional to the interstitial volume. Indicating
with � = �T + �H we can expand the total cross section σt in series using � as
parameter:

σt ≈ �
{

∑

n=0

(−1)n
[
(T−1

a + HMT)
−1�

]n
(T−1

a + HMT)
−1)

}
. (7.2)

In this way σt becomes σt ≈ σMT + corr(E; Vint), i.e. the total non-MT photo-
absorption cross section can be written as the sum of the total photo-absorption
written in the MT approximation and corrections that decrease with the energy and
depends on the potential in the interstitial volume [10]. So a judicious choice of
MT radii and the interstitial potential can account for the influence of such non-MT
corrections and the use of SCF potential or, at least, minimize errors due to the
MT approximation, giving a good agreement between theory and experiment and an
accurate structural recovery [11].

The self-energy is calculated in the framework of the Hedin-Lundqvist (HL)
scheme [12]. The use of the full complexHLpotential introduces, inmost of the cases,
a relevant over damping at low-energies especially in the case of covalent molecular
systems. For this reason we have developed in mxan a phenomenological approach
to calculate the inelastic losses based on the convolution of the theoretical spectrum,
calculated by using only the real part of the HL potential, with a suitable Lorentzian
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Fig. 7.1 Typical behavior of the total energy dependent width of the Lorentzian function used in
the phenomenological damping

function having an energy dependent width of the form Γtot(E) = Γc + Γmfp(E)

where Γc is the core-hole width while the energy dependent term represents all the
intrinsic and extrinsic inelastic processes. All these quantities are expressed in eV.
The Γmfp(E) function is zero below an onset energy Es , that corresponds in the
extended systems to the plasmon excitation energy, and begin to increase from a
value As following the universal form of the mean free-path in solids [13]. Both
the onset energy Es and the jump As are introduced in the Γtot(E) function via an
arctangent functional form to avoid discontinuities and to simulate the electron-hole
pair excitations. In Fig. 7.1 we show a typical behavior of the Γtot(E) function.

Their numerical values are derived at each step of the fit on the basis of a Monte
Carlo thermal annealing procedure. In this way the agreement between theory and
experimental data is quite good in the whole energy range, starting from the edge.

This phenomenological approach can be justified on the basis of themulti-channel
MS theory [14]. In the sudden limit of the theory the net absorption is given by a
sum over all the possible excited states of the (N − 1)-electron system. Assuming
that all the electronic channels are near in energy, the total absorption is given by the
convolution of the one-particle spectrum, calculated with the full relaxed potential,
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with a spectral function A(E) that represents the weight of the other electronic
channels:

μtot =
∑

n

μn →
ΔE→0

∫
μ(E − E ′)A(E ′)dE ′ , (7.3)

with the ansatz that the spectral function A(E) iswell approximated by theLorentzian
functionwith the energydependentwidth previously defined.μ is the absorption coef-
ficient and E is the energy. It is also possible to demonstrate that in the case of domi-
nance of only one electron channel, the elastic one, the corresponding Green’s func-
tion G0 obeys to a Dyson-like with a suitable complex self-energy

∑opt
(r, r ′; E).

Within the approximations of locality and of homogeneous systems, this is equiv-
alent to a real calculation convoluted with a Lorentzian function having an energy
depended width. ThereforeΓtot(E) is characterized by parameters which have a clear
physical meaning and they are not free to assume any value but are forced within a
well-defined interval. To clarify this point we show in Fig. 7.2 the comparison of the
mean free path coming from the complex part of the HL potential with the one com-
ing from the use of the phenomenological damping, the core-hole width is included
in the calculation. The two curves have the same shape and are almost the same
beyond 40 eV from the edge. On the other hand there is a sizeable difference in the
in the first ten of eV where the damping coming from the HL complex potential is
too strong.

Of course, when contributions from one or more of these excited electronic states
are of the same strength of the fully relaxed channel, they must be considered explic-
itly in the calculation, as in the case of the iron K -edge of Fe3+ in water solution
[15]. It is also possible to note that the shape of Γmfp(E) function is similar to the
inverse lifetime of the quasi-particle Γk derived in GW0 scheme, without the sharp
onset at the plasmon excitation energy to account for the interference between the
intrinsic and extrinsic inelastic losses [16].

The experimental resolution is taken into account by a further convolution with
an energy independent Gaussian function. In total MXAN has four parameters that
completely control the damping procedure. The user can choose how to open them
or keep them fixed to some values. Many applications to test cases and unknown
systems have shown the reliability of this type of phenomenological approach.

Recently the mxan code has been modified to allow fitting difference spectrum,
i.e. signal coming from the difference of two XANES data. So it is possible to
analyze differential transient XAS data, which consist of the difference between the
transmission spectra of a unexcited and a laser excited sample. This approach greatly
increases the sensitivity of the data to small changes, and at the same time, reduces
the influence of systematic errors in the experiment and in the calculation. In this
way it is possible to analyze in details transient data coming from samples in states
living few picoseconds or even less [17].

The problem of an ab initio quantitative treatment of geometrical disorder in
the XANES energy region is still an open question. The only attempt to solve this
problem has been made by the use of the so-called augmented space formalism [18].
This approach needs to define the distribution functions of the stochastic variables,
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Fig. 7.2 Comparison between themean free path calculated by the complex part of theHL potential
(blue circles) and the one coming by the phenomenological approach (red points). These values
come from the best fit of Ni K -edge in water solution

like for example bond distances, but severe difficulties exist to write these functions
for structural disorder different from the Gaussian one. A possibility to overcome
such difficulties is to combine molecular dynamic (MD) andmxan simulations [19].
The proper configurational average spectrum is obtained averaging thousands of
spectra generated from distinct MD snapshots. Each snapshot is used to generate the
XANES signal associated with the corresponding instantaneous geometry, and the
averaged theoretical spectrum is obtained by summing all the instantaneous spectra
and dividing by the total number of used MD snapshots. Typically each snapshot
is taken every 50 fs starting from the time at which the system is supposed to be
equilibrated. The important question of what is the right sampling length to have
a statistically significant average is solved by imposing that the residual function,
defined as the difference between the incremental N and (N − 1) averaged spectra
is less than 10−5.

This dynamic MXAN analysis (hereafter called D-MXAN) is very sensitive to
the conformational sampling as demonstrated by its applications to several different
systems [20]. In the next paragraph we present a general overview of the classical
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MD calculations while in the last wewill show the D-MXAN analysis of the XANES
data at the K -edges of Ni, Cu and Cl ions dissolved in water.

7.3 Molecular Dynamics Background

Classical Molecular Dynamics (MD) is a well-established method applied to the
study of inorganic ad biomolecular molecules in solution [21]. It is based on the
numerical integration of f i = mi ai Newton’s equation of motion where f i is the
force vector of atom i, mi is its mass and ai is the acceleration on atom i. The inter-
acting forces among the atoms in the system are obtained by means of an empirical
conservative potential through the standard relation f i = −∂V /∂r i where r i is the
instantaneous position vector of atom i . A typical form for V , used for biological
macromolecules or polymers is

V (r1, r2, . . . , rn) =
∑

bond

1

2
kb(bn − b0)

2 +
∑

angle

1

2
kθ0(θn − θ0)

2 +

+
∑

improper−dihedral

1

2
kξ0(ξn − ξ0)

2 +
∑

dihedral

1 + cos(mnφn − δn)
2 + (7.4)

+
∑

nonbonded−pairs(i j)

[(
C (12))
i j

r12i j
− C (6))

i j

r6i j

)
+ 1

4πε0

qiq j

εr ri j

]
,

where the first four equation components describe the bonded interactions and the
last two the non-bonded interactions. The non-bonded component of the potential
are the sum of the Lennard-Jones (L−J) potential that describes the van der Waals
interactions and the Coulombian potential for the electrostatic interactions. r i j is the
distance between atoms i, j; C6 is the constant in the term describing the dispersion
attractive force between atoms; C12 is the term that describes interatomic electron
cloud repulsion; qi and q j are the partial atomic charges for atoms i and j; ε0 is the
vacuum permittivity; εr is the relative dielectric constant. The interaction between
two (stretching), three (bending) and four (planar or tetrahedral force) bonded atoms
are described by the first three components of the bonded potential, all using an
Hookean potential in which b0, θ0 and ζ0 are the equilibrium values while bn , θn
and ζn are the corresponding instantaneous values at a specific simulation time. The
last component of the bonded interaction describe the dihedral angle between four
atom in a peptide chain and it is periodic component of the potential, with φ the
angle, δ the phase andm the number of peaks in a full rotation. The simple two-body
potential of equation (7.4) is not accurate enough for the treatment of the Coulombian
interaction and corrections based on the Particle-Mesh Ewald method is usually used
for the treatment of the long-range electrostatic interactions [22].
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From the empirical potential V we can calculate the additive force on atom i due
to the interaction with all the other system atoms and then its acceleration. Newton’s
equations of motion are numerically integrated step by step using Finite Difference
methods. Thesemethods use the information available at time t to predict the system’s
coordinates r and velocities v at a time t + δt , where δt is a short time interval and
through the Taylor expansion of the position at time t + δt :

r(t + δt) = r(t) + v(t)δt + 1

2
a(t)δt2 + · · · . (7.5)

Several algorithms can be found in the literature for practical applications [23].
The length of the time step must be small compared to the period of the highest
frequency motions being simulated and for the study of ionic solutions, the typical
time step is one or two femtosecond.

The equations described for MD simulations are appropriate for the micro-
canonical NVE ensemble in which the system loses/gains no net total energy (poten-
tial plus kinetic) during the simulation. More realistic simulations, however, are car-
ried out under constant Temperature (T) and/or Pressure (P), i.e. in canonical NVT
ensemble or isothermal-isobaric NPT. This is obtained by applying algorithms that
model external temperature and pressure baths [24]. A recent and accurate algorithm
for the temperature bath is the velocity-rescaling method [25].

The D-MXAN analysis of ionic solutions used three different approaches for the
definition of the van der Waals interaction potential energy function describing the
interaction between one ion and the solvent molecules:

1. the pure pair additive potential, in which the simple L−J potential of equation
(7.4) is used;

2. the effective two body potential, in which an ad hoc andmuchmore complex func-
tion is used for the van derWaals interactions between ion and solvent molecules;

3. the molecular models, in which a force field is defined for the bonded M(H2O)n+
n

complex. This approach is necessary when quantum mechanics effects between
the ion and the nearest solvent molecules are impossible to be described by any
two body potential.

In the following we describe the D-MXAN application for each of these
approaches, namely Cl−, Ni2+ and Cu2+ ions in waters solution. All the molecu-
lar dynamic simulation are done with Gromacs package, version 4.6.5 [26].

7.4 D-MXAN of Chlorine in Water

The solvation sphere studies of ions in water are important by themselves and impact
many other fields from chemistry to biology. In particular there is a great interest in
the solvation sphere studies of halides, mainly chlorine, iodide and bromide, as many
recent reviews indicate. Here we present an application of the D-MXAN method to
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the study of the solvation sphere of Cl in water solution via the analysis of the Cl
K -edge. A more extend study is presented in [27] where experimental and analysis
details can be found. This study indicates that chlorine organize the surroundingwater
molecules into two discrete structurally coherent but axially asymmetric shells.

The D-MXANmethod is very sensitive to the conformational sampling.We show
in Fig. 7.3a the comparison between the experimental data (blue line) and three
calculations obtained with three different L−J parameters, LE , ME , and HE for the
SPC/E water model [28], developed by Reif and Hünenberger to reproduce single
ion hydration free energies [29].

Only the simulation with the LE L−J parameters is able to reproduce the spec-
trum in the whole energy range, few discrepancies remain at the rising edge where
the two peaks structure is not well reproduced. This finding is in agreement with
the EXAFS analysis of [30]. The MXAN Rsq error functions corresponding to the
MD simulations using the LE , ME and HE parameters is 16, 23, and 107, respec-
tively. It is worth noting that the C6 parameter is unchanged in the LE , ME and HE

choices. Thus, the only difference between these simulations is in the magnitude of
the L−J C12 interatomic repulsive parameter that has the value of 126.2, 98.5 and
78.3 (10−7 kJ mol−1nm12) in the LE , ME and HE parameter, respectively [29]. The
D-MXAN analysis can observe definitive differences among the XANES theoretical
spectra calculated starting from single MD frames. In panel B of Fig. 7.3 we show
the comparison of the theoretical XANES spectrum of Cl obtained from the MD
average (red line) and several spectra associated with individual MD configurations
(black lines). It is interesting to note the big spread of the calculations associated with
the individual MD snapshots indicating a strong variability of the water molecule
position around the Cl ion.

Figure7.4 shows the radial distribution functions and the coordination numbers
value for the LE , ME and HE L−J potentials. In Table7.1 are reported the positions
of the maxima of the Cl−O pair correlation function gCl-O for the first and second
hydration shell.

The first shell maximum of the LE parameter is in very good agreement with
the structural finding of the static determination while the second shell maximum is
shifted towards higher values respect with one find in the mxan structural fit. See
Table VI in [27] for more details.

As previously noted there are some problems in the edge region where the first
feature lacks of intensity near 3 eV in the energy scale of Fig. 7.3. This is the energy
region where previous MXAN analysis indicated the strong influence of the second
hydration shell. In order to obtain deeper insight into the second solvation shell
geometry, we have performed several MD simulations testing other L−J parameters
and MD conditions. In particular we have obtained a better result using the SPC/E
water model with LE parameter and the Encad-shift option for Coulomb potential
and (Rsq = 14.3). A finer refinement has further obtained selecting the MD frames
that have the Rth, defined as
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Fig. 7.3 aComparison between the experimental XANES data at Cl K -edge and three calculations
performed with the D-MXAN method for three different L−J set of parameters, b Comparison
between the average theoretical XANES data (red line) with individual theoretical calculations
associated with each configuration
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Fig. 7.4 Radial distribution functions and coordination number values for the three potentials used
in the D-MXAN analysis

Table 7.1 Positions of the maxima (in Å) of gCl-O in the first and second hydration shell

L−J parameters First shell Second shell

LE 3.11 4.93

ME 3.02 4.82

HE 2.94 4.76

Rth =

√√√√
m∑

i=1

(σMD
i − σth

i )2

m
, (7.6)

less than 7 × 10−4, where m is the total number of theoretical energy points, σMD
i is

the theoretical cross section at the i-energy point for a given MD snapshot and σth
i is

the theoretical cross section at the same energy point obtained using the geometrical
structure at the static best fit. This procedure produces a strong increase of the agree-
ment between theory and experiment with the Rsq values that goes down to 7.1. The
EXAFS parts is still well reproduced and we begin to have the two peaks structure
with the right intensity in the very low energy region. See panel a of Fig. 7.5.
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Fig. 7.5 a K -edge XAS spectrum of dissolved chloride is reported in blue points. The red line is the
XAS spectrum calculated with LE and Encad-shift options while the green line is the one obtained
with the selected frames procedure,bComparison between theCl−O radial distribution function for
the first 15 water molecules obtained from the previous MD conditions. The coordination number
N is reported for the two MD conditions in dashed lines
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To better understand the reason of such decrease we report in Fig. 7.5b the com-
parison between the two gCl-O(r) obtained with the two options previously described.
This plot clearly shows that the better reproduction of the experimental XANES sig-
nal is due to a slightly more compressed hydration structure in the region between
3.1 and 4.6 Å, while the structure is identical before and after this distance range. The
discrepancy between the value of the maximum found with the LE MD and the one
found with the static structural fit is also a clear indication of the need of a more com-
pressed structure beyond the first hydration shell. However, it is clear that this slight
more compressed structure is not enough to have a reproduction of the XANES data
of the same quality obtained with the static fit procedure. A rough comparison with
the number obtained in the static fit indicates the need of a further compression of
the second hydration shell. This effect is not easy to obtain with a two-body classical
potential, since an alteration of the Cl-water or water-water interaction parameters
would change the structure of the first hydration shell, as well.

7.5 D-MXAN of Nickel in Water - the Case of the Effective
Two Body Potential

A method to include averaged many-body terms in an effective two-body classical
potential has beendevelopedbyus for the studyofZn(II),Ni(II) andCo(II) in aqueous
solution [31] and applied to other aqueous [32, 33] and non-aqueous ionic solutions
[34]. The three steps of the computational procedure consist of (i) generation of the
ion-solvent ab initio potential energy surface (PES)with the inclusion of the averaged
many body ion-water effects by means of the polarizable continuum method [35];
(ii) fitting of the effective two-body potentials from the ab initio scans (iii) inclusion
of the effective two-body potential in the MD code and system simulation.

A typical form of the effective two-body potential for the interaction of one ion
with the aqueous solvent, is:

V = qMqO
εr rMO

+ AO

r4MO

+ BO

r6MO

+ CO

r8MO

+ DO

r12MO

+ EOe
−FO
rMO + (7.7)

∑

MH=MH1,MH2

qMqH
εr rMH

+ AH

r4MH

+ BH

r6MH

+ CH

r8MH

+ DH

r12MH

Therefore, while the electrostatic interaction ismodelled with a Coulombic poten-
tial, as in (7.4), six parameters are used to describe the interaction between the ion
(M) and the oxygen atoms of the solvent (O) and four parameters for the interaction
between M and the hydrogen atoms (H). Fitting of the ab initio PES in the previous
equation produce the parameters reported in Table7.2.

The potential with the parameters of Table7.2 were included in amodified version
of the Gromacs MD package [36] and a system composed by one Ni2+ ion and 3270
SPC/E water molecules [28] were simulated for 30 nanoseconds with a time step of
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Table 7.2 Ion-water interaction parameters and corresponding standard deviations of the equation
in this paragraph

Parameter St dev

AO −3.861 10−1 9.3 10−2

BO 6.985 10−2 9.0 10−3

CO −8.618 10−4 1.2 10−4

DO 3.538 10−8 5.7 10−9

EO −6.686 10+4 1.5 10+4

FO 24.077 7.1 10−1

AH 1.119 10−1 4.3 10−2

BH −8.688 10−4 2.3 10−3

CH −1.677 10−5 3.7 10−5

DH 9.748 10−10 2.8 10−9

1 femtosecond. This method maintains a good description of the many-body inter-
actions, while its computing efficiency allows the investigation of conformational
events in the nanosecond time scale, at variance from quantum mechanics (QM)
methods.

Panel a of Fig. 7.6 shows the radial distribution for Ni−O and Ni−H (full line,
black and red colors, respectively) with their respective integration numbers (dashed
lines). The MD simulation perfectly reproduce the Ni(II) strong interaction with the
six water molecules constituting the first hydration shell and their strong orientation,
as shown by the first peak Ni−H radial distribution function. The experimental value
of the residence times of water in the first hydration shell is in the range 10−5 − 10−7

s [37], and we observe no exchange of water molecules between first and second
hydration shells during the 30 ns long MD simulation. Panel b of Fig. 7.6 shows the
comparison between the experimental XANES data, blue points, and the D-MXAN
calculation using both first and second hydration shells. The agreement is quite good
in the whole energy range, only small discrepancies are in the 20–30 eV energy range
in line with what was found in the static best fit analysis.

7.6 D-MXAN of Copper in Water

Copper is probably themost elusive transitionmetal ion inwaterwith a lot of different
experimental results, highlighting the prevalence of five- or six-fold hydration struc-
ture [38, 39]. All studies agree on the stable presence of four equatorial water ligands,
which exhibit a uniformCu−Ow distance of about 1.96Å, while there are several dif-
ficulties in detecting the number and even presence of the axial water ligands. Initial
MXAN studies of the K -edge of copper ion dissolved in water were unambiguous in
favouring of a axially elongated square pyramid, [Cu(H2O)5]2+ (Cu−Oax = 2.35Å)
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Fig. 7.6 a radial distribution function for Ni−O (black full line) and Ni−H (red full line) ion
pair. The respective integration numbers are reported as dashed lines, b comparison between the
experimental XANES data at the Ni K -edge (blue points) and the D-MXAN calculation (red full
line)
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as the dominant average structure in liquid aqueous solution [40]. More recently a
detailed EXAFS andMXANanalysis of a high- resolutionCu K -edgeXAS spectrum
have been made to further probe the structure of [Cu(aq)]2+ in liquid solution [41].
Both analysis converge to a non-centrosymmetric square pyramidal [Cu(H2O)5]2+
inner coordination sphere with a distinct second shells at ∼3.6 Å (EXAFS) or ∼3.8
Å (MXAN). However,MXAN analysis revealed that [Cu(aq)]2+ could be dimorphic,
especially for distances greater than 2.4 Å. A new structure formed by [Cu(H2O)5]2+
includes an associated but non-bonding axial 2.9 Å water, and produce fits compara-
ble with the pure square pyramidal geometry; including both geometries the quality
of the fit further improves. The two structural arrangements are of approximately
equal probability in liquid solution. To go deeper in the details of the axial waters
dynamic we have performed a D-MXAN analysis of the XAS spectrum [20] starting
from the experimental finding that the equatorial geometry of Cu in water solution is
formed by the [Cu(H2O)4]2+ complex with structural parameters coming from the
EXAFS and MXAN analysis. A suitable force field for the [Cu(H2O)4]2+ complex
has been built using a standard QMmethodology, imposing only the Cu−O distance
and the planarity of the Cu−O4 atomswith hydrogen atoms free to rotate. This model
implicitly presumes that the interaction of the core [Cu(H2O)4]2+ hydrate with the
bulk water molecules is entirely electrostatic [40]. This approach is computationally
efficient, and allowed us to carry out a 100-ns long classic MD simulation of this
hydrate model in bulk water thus exploring the evolution of the dynamical and struc-
tural parameters on a time-scale not accessible to other computational techniques.
For example, the present simulation is more than three orders of magnitude longer
than that described in Pasquarello (18 ps) [38] or Moin (50 ps) [39]. Details of the
experimental solution and the mxan calculation can be found elsewhere [41]. Two
different water models interaction were tested: SPC/E [28] and TIP5P [42] using
the same model for equatorial bulk waters. Atomic charges were obtained by means
of RESP fitting procedure [43] from the QM calculation of the [Cu(H2O)4]2+ com-
plex at the Density Functional Theory level (B3LYP functional, 6-311++G∗∗ basis
set). The atomic charges on the equatorial water obtained by this procedure were
employed in the MD simulations accordingly to the model used, i.e. redistributing
the charges on the oxygen and hydrogen atoms (SPC/E) or on the hydrogen atoms
and the oxygen lone pairs (TIP5P). The obtained non-bonded and bonded parameters
are reported in Tables7.3 and 7.4, respectively.

Table 7.3 Non bonded parameters for the [Cu(H2O)4]2+ complex. In the TIP5P model the oxygen
atom charge is split between the dummy atoms and the oxygen atom charge is put to zero

Charge (a.u.) Sigma (nm) Epsilon (kJ/mol)

Cu 1.3424 1.917748 e−01 5.46273 e−01

O −0.8128 – –

H 0.4886 – –
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Table 7.4 Bonded parameters for the [Cu(H2O)4]2+ complex

Bonds b0 (nm) kb (kJ mol−1)

Cu−O 0.19600 frozen

O−H 0.09572 502416

Angles q0 (degree) kq (kJ mol−1 rad−1)

O−Cu−O 90.00 frozen

H−O−H 104.52 628.02

dihedrals x0 (degree) kx (kJ mol−1 rad−2)

Cu−O−O−O 0.0 frozen

O−O−O−O 0.0 frozen

The simulated systems are composed by the [Cu(H2O)4]2+ complex immersed in
1090 bulk water molecules, either SPC/E or TIP5P. After energy minimization, the
systems were equilibrated for 5 ns and then two production simulations in the NVT
ensemble were carried out, 10 and 100 nanosecond-long for the SPC/E and TIP5P
systems, respectively.

In Fig. 7.7a we report the comparison between the experimental data (red points)
and the D-MXANfit obtained by using the TIP5P (black line) and SPC/E (green line)
models, sampled along the MD trajectory. The agreement of the TIP5P D-MXAN
calculation with the experimental data is quite good in the whole energy range with
a square residual function of Rsq = 2.31. This value is similar to those obtained
in the prior static mxan fit (Rsq = 2.12) [41] and this result is quite remarkable
considering that, as already stated, no fit of parameters has been carried out in this
case. The SPC/E models produce a quite worse agreement than the previous model
with a value of the square residual function of Rsq = 5.35, more than twice the value
of TIP5P. The gCu-O(r) radial distribution functions in the distance range 2–4.5 Å
with the corresponding oxygen coordination numbers N, for the SPC/E and TIP5P
water models are shown in the panel b of Fig. 7.7, and corresponding maximum
positions are reported in Table7.5.

The first hydration shell, formed by the four-equatorial waterswhich are kept fixed
in our model at a distance of 1.94–1.98Å, is completed by the axial water molecules,
as highlighted by the presence of the peak at 2.22 Å for both models. The two curves,
however, are different in the range 2.7–3.4 Å: i.e. in the SPC/E simulation no water
molecules are present (red color in Fig. 7.7b), in marked contrast with the TIP5P
model (black color in Fig. 7.7b). This is a key difference, that explains the better
reproduction of the XANES curves using the TIP5P data, as reported in the previous
paragraph. Note that the coordination number for the TIP5P simulation is five already
at 2.3 Å (black dashed line in Fig. 7.7b), indicating that the characteristic broad form
of the gCu-O(r) peak is due to the behaviour of the sixth water. The relatively large
distance range visited by the sixth water molecule is clearly shown when the total
gCu-O(r) is divided in the partial contribution as obtainedbyordering thewater oxygen
atoms as a function of the Cu−O distance (green curve in Fig. 7.8 panel d).
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Fig. 7.7 a Comparison between the experimental data (red points) and the D-MXAN fit obtained
by using the TIP5P (black line) and SPC/E (green line) water models, b gCu-O(r) radial distribution
functions for the TIP5P and SPC/E simulations are shown in black and green lines, respectively.
The corresponding coordination number N is shown in dashed lines
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Table 7.5 Positions of the Maxima (in Å) of the gCu-O and gCu-H for the peak formed by the two
axial water molecules and for the second hydration shell

Water model Axial waters
gCu-O

Axial waters
gCu-H

Second shell
gCu-O

Second shell
gCu-H

TIP5P 2.22 2.69 4.00 4.60

SPC/E 2.22 2.64 4.16 4.83

Table 7.6 Structural parameters (in Å) of the gCu-O radial distribution function peak formed by the
two axial water molecules. Separate contribution of the fifth and sixth oxygen have been calculated
by ordering the water oxygen atoms as a function of the Cu−O distance

Positions at
maxima

Median Interquartile
range

Average
Cu−O dist

σ

5th 2.20 2.23 0.131 2.24 0.11

6th 2.30 2.47 0.538 2.61 0.38

The structural parameters for the radial distribution peak formed by the two axial
water molecules in the TIP5P simulation are reported in Table 7.6. Note that these
results are in agreement with the static mxan results both for the obtained axial
Cu−O distances, within the statistical errors, and for the contemporary presence of
a penta- and hexa-hydrated structure in the first shell of the ion.

The dynamical behaviour of the axial waters is shown in the panel A of Fig. 7.8
where the Cu−O distances as a function of simulated time are reported in different
colour for individual water molecules. In some time intervals only an axial water
molecule is present in the 2.1–2.5ÅCu−Odistance range, while the next closer water
molecule is well separated, even farther than 2.9 Å, see for example the 550–950 ps
time range. A snapshot of two geometries, the penta- and hexa- hydrated structure,
are shown in the insets B and C respectively. At a later time in the simulation, the
hexa-coordinated structure is maintained, even though one of the two axial water
molecules continuously exchanges with the bulk (see the black and yellow waters
in the 1000–1050 ps time range). The two simulations, finally, differ also for the
structure of the second hydration shell: i.e. the gCu-O(r) peaks are at 4.16 and 4.00
Å in the case of the SPC/E and TIP5P models, respectively, with a corresponding
coordination number around 15 and 18 at 4.5 Å. The combinedMD/XANES analysis
therefore allowed us to appreciate relatively small structural differences in the two
simulations that lead to significantly discrepancies with respect to the XANES data
reproduction. While the radial distribution functions achieve the convergence after
few nanoseconds, to further characterize the dynamic behaviour of the first hydration
shell in the TIP5P simulation we carried out a 100 nanosecond long simulation only
for this system.
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7.7 Conclusions

In this paper we have presented with details the main ideas that are behind the mxan
package which still remain the only package that allows a quantitative analysis of
the XANES energy region within a multiple-scattering theory to derive structural
information.mxan has been presented in the literature in 2001 and in the last 15years
has been applied by many groups to the analysis of experimental data coming from
many different samples, from biology to solid state physics. It is almost impossible
to summarize here all the obtained results. For this reason we have decided to show
a new possibility in the use of the mxan package, possibility that comes from the
combination of the program with molecular dynamic calculations, the D-MXAN
analysis. This allow to go beyond the static view of the standard fitting procedure
and derive some dynamical information that are important to characterize the system
under study. At the same time this methods allow to test the validity of the MD
procedures by a direct comparison with experimental XAS data.

Acknowledgements We thank Dr. P. Frank, of Stanford Chemistry Department and SSRL Lab-
oratory, Dr. R. Sarangi and Dr. B. Hedman of SSRL Laboratory for giving us the permission of
using the experimental data presented in this paper and for constructive criticism, suggestions in
the use of mxan code. M.B. also thanks the financial support provided over the past few years by
SLAC for the two-month visit as visiting scientist. Text in Sect. 7.6 is adapted with permission from
“Equilibrium between 5- and 6- fold coordination in the first shell of Cu(II)” by G. Chillemi et al.,
Journal of Physical Chemistry A, 120, 3958 (2016). Copyright 2016 American Chemical Society.

References

1. C. Meneghini, M. Benfatto, in Synchrotron Radiation, Basics, Methods and Application, ed.
by S. Mobilio, F. Boscherini, C. Meneghini (Springer, Berlin, 2015), p. 213

2. M. Benfatto, A. Filipponi, C.R. Natoli, Phys. Rev. B 40, 9626 (1989)
3. T.A. Tyson, K.O. Hodgson, C.R. Natoli, M. Benfatto, Phys. Rev. B 46, 5997 (1992)
4. J.J. Rehr, R.C. Albers, Rev. Mod. Phys. 72, 621 (2000)
5. M. Benfatto, S. Della Longa, J. Synchrotron Radiat. 8, 1087 (2001)
6. S. Della Longa, A. Arcovito, M. Girasole, J.L. Hazemann, M. Benfatto, Phys. Rev. Lett. 87,

155501 (2001)
7. A. Arcovito, M. Benfatto, M. Cianci, S.S. Hasnain, K. Nienhaus, G.U. Nienhaus, C. Savino,

R.W. Strange, B. Vallone, S. Della Longa, PNAS 104, 6211 (2007)
8. C.R. Natoli, M. Benfatto, S. Doniach, Phys. Rev. A 34, 4682 (1986)
9. K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, Phys. Rev. B 76, 060102 (2007)
10. M. Benfatto, S. Della Longa, P. D’Angelo, Phys. Scr. T115, 28 (2005)
11. M. Benfatto, S. Della Longa, J. Phys.: Conf. Ser. 190, 012031 (2009)
12. L. Hedin, S. Lundqvist, Solid State Physics, vol. 23 (Academic Press, New York, 1969), p. 1
13. J.E. Müller, O. Jepsen, J.W. Wilkins, Solid State Commun. 42, 365 (1982)
14. C.R. Natoli, M. Benfatto, C. Brouder, M.F. Ruiz López, D.L. Foulis, Phys. Rev. B 42, 1944

(1990)
15. M. Benfatto, J.A. Solera, J.G. Ruiz, J. Chaboy, Chem. Phys. 282, 441 (2002)
16. B. Holm, U. von Barth, Phys. Rev. B 57, 2108 (1998)
17. W. Gawelda, V.T. Pham, M. Benfatto, Y. Zaushitsyn, M. Kaiser, D. Grolimund, S.L. Johnson,

R. Abela, A. Hauser, C. Bressler, M. Chergui, Phys. Rev. Lett. 98, 057401 (2007)



7 MXAN and Molecular Dynamics: A New Way to Look to the XANES … 219

18. M. Benfatto, Phys. B 208, 42 (1995)
19. P. D’Angelo, O.M. Roscioni, G. Chillemi, S. Della Longa,M. Benfatto, JACS 128, 1853 (2006)
20. G. Chillemi, E. Pace, M. D’Abramo, M. Benfatto, J. Phys. Chem. A 120, 3958 (2016)
21. M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford Science Publishing,

Oxford, 1989)
22. T. Darden, D. York, L. Pedersen, J. Chem. Phys. 98, 10089 (1993)
23. H.J.C. Berendsen, W.F. van Gunsteren, in Molecular-Dynamics Simulations of Statistical-

Mechanical Systems Enrico Fermi Summer School (North-Holland, Amsterdam, 1986), p. 43
24. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, J.R. Haak, A. Di Nola, J. Chem. Phys.

81, 3684 (1984)
25. G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys. 126, 014101 (2007)
26. S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C. Smith,

P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics 29, 845 (2013)
27. M. Antalek, E. Pace, K.O. Hodgson, G. Chillemi, M. Benfatto, R. Sarangi, P. Frank, J. Chem.

Phys 145, 044318 (2016)
28. H.J.C. Berendsen, J.R. Grigera, T.P. Straatsma, J. Chem. Phys. 91, 6269 (1987)
29. M.M. Reif, P.H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)
30. V. Migliorati, F. Sessa, G. Aquilanti, P. D’Angelo, J. Chem. Phys. 141, 044509 (2014)
31. G. Chillemi, P. D’Angelo, N.V. Pavel, N. Sanna, V. Barone, JACS 124, 1968 (2002)
32. G. Chillemi, V. Barone, P. D’Angelo, G. Mancini, I. Persson, N. Sanna, J. Phys. Chem. B 109,

9186 (2005)
33. G. Chillemi, G. Mancini, N. Sanna, V. Barone, S. Della Longa, M. Benfatto, N.V. Pavel, P.

D’Angelo, JACS 129, 5430 (2007)
34. V. Migliorati, A. Zitolo, G. Chillemi, P. D’Angelo, ChemPlusChem 77, 234 (2012)
35. M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 24, 669 (2003)
36. H.J.C. Berendsen, D. van der Spool, R. van Drunen, Comput. Phys. Commun. 91, 43 (1995)
37. T. Miyanaga, H. Sakane, I. Watanabe, Bull. Chem. Soc. Jpn. 68, 819 (1995)
38. A. Pasquarello, I. Petri, P.S. Salmon, O. Parisel, R. Car, E. Toth, D.H. Powell, H.E. Fischer, L.

Helm, A. Merbach, Science 291, 856 (2001)
39. S.T. Moin, T.H. Hofer, A.K.H. Weiss, B.M. Rode, J. Chem. Phys. 139, 014503 (2013)
40. P. Frank, M. Benfatto, R.K. Szilagyi, P. D’Angelo, S. Della Longa, K.O. Hodgson, Inorg Chem

44, 1922 (2005)
41. P. Frank, M. Benfatto, M. Qayyam, B. Hedman, K.O. Hodgson, J. Chem. Phys. 142, 084310

(2015)
42. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)
43. C.I. Bayly, P. Cieplak, W. Cornell, P.A. Kollman, J. Phys. Chem. 97, 10269 (1993)



Chapter 8
gnxas: Advances in the Suite of Programs
for Multiple-Scattering Analysis of X-ray
Absorption Data

Fabio Iesari, Keisuke Hatada, Angela Trapananti, Marco Minicucci
and Andrea Di Cicco

Abstract This contribution presents some developments of thegnxasmethodology
and suite of programs, providing full analysis of raw experimental XAS data through
advanced multiple-scattering simulations. The main features of the gnxas suite of
programs, including the basic theoretical background based on an n-body expansion
of the x-ray absorption cross section, as well as useful information about the gnxas
flow diagram and practical usage are reviewed. The new gnxas graphical interface
w-gnxas is specifically illustrated. The recent implementation of Reverse Monte
Carlo algorithms allowing for multiatomic structural refinement into the rmc-gnxas
package is also presented in detail with specific examples.

8.1 Introduction

The gnxas package is an advanced software for x-ray absorption spectroscopy
(XAS) data analysis providing multiple-scattering (MS) calculations of the theo-
retical signals and a rigorous fitting procedure of the raw experimental data.
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X-ray absorption spectroscopy (XAS) is a powerful structural technique for inves-
tigating the short-range environment around selected atomic species in ordered and
disordered matter. Structural information can be obtained from the analysis of the
quantum interference pattern, usually detectable above any inner shell absorption
edge, generated by the scattering of the photoelectron on the potential of the sur-
rounding atoms. These oscillations are usually referred to as x-ray absorption fine
structure (XAFS) or EXAFS. X-ray absorption spectra can be collected in transmis-
sion geometry or using other secondary emission effects, like fluorescence or electron
yield. The collection of a spectrum as a function of the x-ray photon energy E allows
measurements of the EXAFS structural signal, usually expressed as a function χ(k)
of the photoelectron momentum k = √

2m(E − Ee)/� (Ee being the edge energy).
XAS experiments are possible using laboratory sources but efficient and accurate
experiments are mostly performed, since the 80’s, using synchrotron radiation.

The focus of the gnxas software development project, which started in 1990 and
for which a first version working in a VMS Digital environment was ready in 1991
[1], was the possibility to apply EXAFS data analysis to disordered systems and
consequently to link the XAS signal to features of the n-atom distribution functions
gn . This is also the origin of the name gnxas. The gnxas suite of programs included
advanced multiple-scattering (MS) calculations and a rigorous fitting procedure of
the raw experimental data [1–3]. gnxas was the result of over 10 years of research
efforts of A. Filipponi, A. Di Cicco and C.R. Natoli, in the field of x-ray absorption
spectroscopy and several scientists have contributed to its development including the
authors of this contribution (all listed in the website and in the gnxas handbooks [4,
5]). This software has been widely tested and has been applied to a variety of systems
including simple gas-phase molecules, clusters, nanocrystals, molecular solids and
liquids, crystalline and liquid metals, solid and molten salts, amorphous solids and
glasses, solutions, high-Tc superconductors, and biological matter. A publication list
limited to the first 10 years can be found in the first edition of thegnxas handbook [4].

The present standard gnxas software distribution includes the main data-analysis
programscrymol,phagen,gnpeak,gnxas, and fitheo aswell as several util-
ity programs for visualization (phaplo, readder). Distribution includes also
pre-analysis tools for sample optimization (xasam), automatic background sub-
traction and EXAFS pre-analysis (jesf), edge fitting (fitedg) and deconvolu-
tion (deconv). Other auxiliary programs include pair distribution function analysis
(grrec, grfit) and XAS calculation (grxas), simulation (edxrd) and peak
fitting (peakfit) of (energy/angular dispersive) XRD patterns.

In the last years, several efforts were devoted to implement alternative model-
independent refinement strategies for disordered systems including alsox-ray/neutron
scattering as a complementary tool (Reverse Monte Carlo), as well as adapting the
software to various operating systems and providing a graphical interface. In this
contribution, Sect. 8.2 is devoted to a brief presentation of the main characteristics
of the gnxas suite of programs (widely described elsewhere, for which full docu-
mentation can be found in [2, 4, 5]). The graphical interface [6] recently developed
for gnxas (w-gnxas) is illustrated in Sect. 8.3. The last Sect. 8.4 is devoted to the
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recent implementation of Reverse Monte Carlo algorithms into a new version of the
rmc-gnxas package [7] allowing for multiatomic structural refinement.

8.2 Overview of gnxas

The gnxas package has been developed to provide a tool for structural refinement
and full XAS data-analysis, using a rigorous fitting procedure of raw experimental
data through advanced multiple-scattering simulations, in the framework of the n-
body expansion of the x-ray absorption cross-section. The next subsections briefly
resume the theoretical background and the practical software implementation of the
method. Full details can be found in Refs. [2–5, 8].

8.2.1 Summary of the Theoretical Background for gnxas

Realistic simulations of the x-ray absorption cross-section are obtained by multiple-
scattering (MS) calculations related to a given model structure. In this framework,
the polarization averaged XAS cross-section [2] for transitions to a dipole selected
final state of angular momentum �0 can be written as

σ(ω) = σ0

[
� 1

�(t�00 )

1

2�0 + 1

∑
m0

[T(I − G0T)−1]L0,L0
0,0

]
. (8.1)

Here σ0 is the atomic cross-section, T and G0 are the atomic scattering (phase-
shift) and photoelectron propagator matrices in a local basis, indexed by i, j running
over the different atoms, and by a set of angular momenta L , L ′ (where L = {�,m}).

The T scattering matrix here is block diagonal (Ti, j = ti δi, j ) and, in the MT
approximation for the potential, also diagonal on the L indices (t L ,L ′

i = t�i δL ,L ′):

[T]i,L , j,L ′ = tiδi, jδ�,�′δm,m ′ . (8.2)

Matrix elements can be expressed in terms of the �th potential phase shift δ�
i (E),

as a function of the photoelectron energy E : t�i (E) = exp(iδ�
i (E)) sin(δ�

i (E)). Those
matrix elements can be calculated by solving the Schrödinger equation for the poten-
tial at the corresponding i site.

gnxas calculations are carried out using the muffin-tin (MT) approximation but
it is useful to remark that all MS equations, and in particular the XAS cross-section,
remains unaltered if one replaces the MT spheres with space filling cells (no inter-
stitial region), but t� is replaced by t L ,L ′

, taking in this way into account the non
spherical shape of the cell potential (non MT potentials).
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The propagator matrix is composed of null diagonal blocks, (i, i) sites, and non
null off-diagonal blocks GL ,L ′

i, j describing the free propagation from site i to site j
(i �= j):

GL ,L ′
i, j �= 0 only if i �= j . (8.3)

The expression for a single propagator block involves 3 j symbols and is given by:

GLL ′
i j = [4π(2� + 1)(2�′ + 1)]1/2

∑
�1

(2�1 + 1)1/2
(

� �′ �1
0 0 0

)

×
(

� �′ �1
m −m ′ m ′ − m

)
(−1)m

′
i�1+1h+

�1
(kRi j )Y�,m ′−m(R̂i j ) . (8.4)

Here h+
� areHankel functions, Y�,m are the spherical harmonics and Ri, j the vector

joining site j to site i .
We can see that the two important matrices appearing in the cross-section are

related to the chemistry (T using only atom indexing) and to the local structure (G0).
There is a strongnon-linear relationship betweengeometry andXASsignal:σ ∼ (I −
G0T)−1. This non-linearity is the mathematical consequence of the strong coupling
of the photoelectron with the surrounding atoms. A first approach to this problem is
to use the so-called MS expansion. Where the norm of the G0T matrix (maximum
modulus of its eigenvalues) satisfies ||G0T|| < 1 then the formal matrix expansion
T(I − G0T)−1 = T(I + G0T + G0TG0T + G0TG0TG0T + · · · ) is convergent and
gives rise to the MS series.

The above condition will certainly hold above a given energy since not only the
elements of theG0 matrix decrease like 1/

√
E but also ||T|| = max |ti | tends to zero

much more rapidly with energy. The convergence threshold is system dependent,
typical values range from below the edge to 5–50eV above the edge.

Writing down the series we obtain:

σ(ω) = σ0

⎡
⎢⎣1 +

∑
i �=0

χ0i0
2 +

∑
i �= j

i �=0, j �=0

χ
0i j0
3 +

∑
i �= j �=k
i �=0,k �=0

χ
0i jk0
4 + · · ·

⎤
⎥⎦ , (8.5)

where the generic χn structural term is:

χ0i ... j0
n = �

(
t�00

�(t�00 )

1

2�0 + 1

∑
m0

(Ξ 0i ... j0)L0,L0

)
, (8.6)

and specifically Ξ 0i0 = G0,i tiGi,0t0 for χ0i0
2 , Ξ 0i j0 = G0, j t jG j,i tiGi,0t0 for χ

0i j0
3 ,

and Ξ 0i jk0 = G0,k tkGk, j t jG j,i tiGi,0t0 for χ
0i jk0
4 . In this notation it is understood

that the internal angular momentum indices have been saturated.
The χn signals are oscillating functions of the type:
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χn(k) = A(k, R) sin(kRp + φ(k, R)) , (8.7)

where A and φ are smooth functions of k and of the geometrical parameters R. The
relevant frequency of the signal is the path length Rp.

An important inconvenience of the MS expansion is that it has no simple relation-
ship with the structure (geometry): χ2 terms probe the relative position of atoms 0
and i , χ3 terms probe the positions of the atoms 0, i and j . They are sensitive to the
two-particle and three-particle distribution respectively. For χ4 terms the situation
becomes more complicated: a generic 0i jk0 path probes four-particle correlations,
but special paths like 0i0k0 or 0i j i0 and 0i0i0 probe lower order correlations. In
general at order n, in χn there are paths involving all particle distributions from 2 to
n if n is even or from 3 to n if n is odd.

Of course, in regions of rapid convergence of the series (high-energy limit) a
single-scattering approximation may be sufficient and the structural information is
limited to the pair distribution (approximation used in the standard EXAFS analysis).

A different and potentially more powerful approach to the solution of the XAS
structural problem is based on a n-body decomposition of the cross-section [2],
which partially avoids the drawbacks related to the MS expansion. The main idea
is to reduce the dimension of the problem to the actual local physical quantities of
interest, related to n-atom properties where n � N (N being the number of atoms
of the system).

Within this approach, the total x-ray absorption cross-section for n atoms
σ(0, i, j, . . . , n) can be expanded in terms of the irreducible n-body cross sections
of lower order:

σ(0, i, j, . . . , n) = σ0 +
∑
i

σ(2)(0, i) +
∑
(i, j)

σ(3)(0, i, j)+

+
∑

(i, j,k)

σ(4)(0, i, j, k) + · · · + σ(n)(0, i, j, . . . , n) . (8.8)

In (8.8), σ0 is the atomic absorption (photoabsorber 0), σ(2)(0, i) is the pair con-
tribution to the cross-section associated with an additional atom i , σ(3)(0, i, j) is the
triplet contribution associated with a couple of atoms i, j and so on.

The dimensionless quantities γ(n) = σ(n)/σ0, represent the irreducible n-body
contributions to the structural XAS term χ(E) = (σ(E) − σ0(E))/σ0(E). In this
waywearrive to an equivalent expansion for the experimentallymeasurable structural
signal χ(E) that differs substantially from the MS series:

χ(0, i, j, . . . , n) =
∑
i

γ(2)(0, i) +
∑
(i, j)

γ(3)(0, i, j)+

+
∑

(i, j,k)

γ(4)(0, i, j, k) + · · · + γ(n)(0, i, j, . . . , n) . (8.9)
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The irreducible n-body γ(n) signals [2] are the central quantities in the gnxas
approach, since they are associated with well defined n-body arrangements of the
atoms. Using those terms, a simple linear relationship among structure (expressed in
terms of 2, 3, 4, . . . n-body distributions) and signal is obtained.Due tomean free path
effects, the higher order n-body terms are generally smaller than the lower order ones,
so that convergence with few terms is expected. Low-order γ(n) signals, involving
inversions of small matrices, can be easily calculated with different methods (within
gnxas).

As an example, for the two-body term, due to the two-blocks structure of the
matrices, only even powers of TG0 give a contribution:

{(
t0 0
0 ti

) ∞∑
n=1

[(
0 G0,i

Gi,0 0

)(
t0 0
0 ti

)]n
}0,0

=

t0G0i tiGi0t0 + t0G0i tiGi0t0G0i tiGi0t0 + · · · (8.10)

The corresponding MS expansion results:

γ(2)(0, i) = χ0i0
2 + χ0i0i0

4 + χ0i0i0i0
6 + χ0i0i0i0i0

8 + · · · (8.11)

The number ofMS terms contributing to the n-body irreducible γ signals depends
on k range, bond distance, and atomic numbers involved. In the EXAFS region, for
short bonds terms up toχ6 are found important whereas for longer bondsχ4 is usually
sufficient. The configurational average is also effective in the damping of these higher
orderMS signals.Apeculiar feature in theMSexpansion forγ(2) is that the successive
terms have leading frequencies multiple of 2R, R being the distance between atoms 0
and i . As a consequence there is a large frequency difference between the leading term
χ2 and the next order correctionχ4. In general γ(n) signals are, like theχn , oscillating
functions of the photoelectronwavevectormodulus k. They showabroader frequency
spectrum whose dominant frequency is that associated with the shortest path of the
corresponding MS series.

The advantage of incorporating in a few γ(n) signals a large (infinite) number
of MS terms is evident both from a physical and practical point of views. Indeed
different MS terms are not independent if they involve scattering processes on the
same sets of atoms, while γ signals are uniquely associated with the given atomic
configurations. Convergence properties are also very good, and it can be shown [2]
that if the MS series is absolutely convergent also the series of the γ signals will be
absolutely convergent.

For calculating a XAS signal associated with a given cluster (model structure) it
is necessary to identify the relevant n-body configurations. Identification of config-
urations can be done assuming a single photoabsorbing site (single photoabsorber
or multiple atoms placed in equivalent positions by rotation and translations), and
can be generalized for multiple prototypical photoabsorbers. An important property
is the hierarchical relationship between different n-body configurations: a n-body
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configuration contains several n − m-body sub-configurations that are not indepen-
dent. This allows to reduce the number of n-body coordinates just to the independent
ones. A typical example is the second shell contribution which usually gives rise to
detectable three-body signal. The three-body signal plus the two-body second shell
signal is defined as a total 3-body (η(3)) signal associated with the second shell, using
the same set of triplet coordinates.

Of course, even a simplemodel structure is associated withmany different n-body
configurations, and a selection procedure is necessary to include those really useful
in a XAS data-analysis process. The n-body configurations are naturally ordered
according to the corresponding leading oscillation frequency of the corresponding γ
signal, which is the length of the shortest path involving all of the atoms in the n-body
configuration (roughly corresponding to the position of the Fourier Transform peak).

This is important because any XAS experimental signal shows a natural upper
frequency cutoff Rc, limited by experimental resolution, core-hole lifetime andmean
free path effects, all affecting the signal intensity. This frequency cutoff selects auto-
matically only a finite number of n-body structures.

Therefore in the interpretation of the signal of a completely unknown structure it
is possible to make an a priori selection of the relevant n-body configurations thus
limiting considerably the number of unknowns.

We see then that the XAS signal is actually dependent only on a limited number
of distribution functions (n-body configurations) which can be easily identified and
analyzed.

A realistic simulation of the XAS signal must include a proper configurational
average which takes into account thermal and non-thermal disorder in the atomic
positions. This is very easy to do using the irreducible γ(n) MS signals. In fact, the
general expression [2, 9] of the XAS structural term is given in terms of the n-body
distribution functions gn(r) (r is a generic set of n-body coordinates):

〈χ(k)〉 =
∫ ∞

0
dr 4πr2ρ g2(r) γ(2)(r, k) +

∫
dr1dr2dφ 8π2r21r

2
2 sin(φ)

×ρ2g3(r1, r2,φ)γ(3)(r1, r2,φ, k) +
∫

dr1dr2dφdr3dΩ 8π2r21r
2
2r

2
3

× sin(φ)ρ3g4(r1, r2,φ, r3,Ω)γ(4)(r1, r2,φ, r3,Ω, k) · · · (8.12)

The integrals, because of the short range nature of the kernels γ(n), are actually
limited to a region of linear dimensions of the order of fewÅ. This is due to the strong
electron interaction at moderate kinetic energies limiting the effective electron mean
free path.

This equation should be compared with the well known expression for the static
structure factor (disordered system)which can bemeasured by using x-ray or neutron
diffraction:

S(k) = 1 + 4πρ

k

∫ ∞

0
(g2(r) − 1)r sin(kr)dr . (8.13)
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The different nature of the kernels makes the structural information on the g2(r)
obtainable in the two cases largely complementary (short vs. medium range informa-
tion). Moreover, XAS can give information beyond the pair distribution. For crystals,
where diffraction gives obviously a richer information about atomic positions, XAS
can provide unique data about local correlated vibrations.

The effect of configurational disorder or thermal vibrations can be easily taken into
account in the case of small disorder, that is in the presence of awell defined (isolated)
first peak, not necessarily Gaussian, in the distribution function. This includes the
thermal broadening or moderate structural disorder of molecular or crystalline gn
peaks.

MS signals χn(k), n-body signals γ(n)(k) or effective shell signals η(n)(k) can
be treated in the same way. In all of these cases the signal, indicated generically by
χ(k), can be written in terms of the amplitude A(k, r) and phase ψ(k, r) functions
asχ(k) = � [

A(k, r) exp(iψ(k, r))
] = A(k, r)sin[ψ(k, r)], where r here indicates a

set of geometrical coordinates which are sufficient to describe correctly the configu-
ration. Phaseψ(k, r) = kRp + φ(k, r) (Rp is the dominant frequency) and amplitude
A(k, r) are usually smooth functions of k, r .

For example, considering a specific peak of a distribution function gn(r) related
to a well-defined atomic configuration at equilibrium, we can write [2]:

〈χ(k)〉 = �
[∫

dr A(k, r) exp[iψ(k, r)]P(r)

]
, (8.14)

where P(r) is the normalized probability density describing a peak of the appropriate
n-body distribution function (configuration degeneracy, or coordination number for
n = 2, being a trivial multiplicative factor). For pair distributions n = 2, P(r) =
4πr2ρg2(r) like in the first term of (8.12).

The integral of (8.14) can be easily calculated for selected Gaussian and non-
Gaussian functional forms reproducing the peaks of the distribution function, and
the result can be expressed in terms of the derivatives of amplitude A(k, r) and
phase ψ(k, r) in the space of coordinates [2]. The configurational average results in
a damping of the XAS χ(k) structural signal, in which both amplitude and frequency
are affected by the shape of the distribution. Use of simple functional forms, like the
Gaussian distribution, considerably simplify the data-analysis because of the limited
number of parameters used in the structural refinement process. For example, for pair
configurations, a single σ2 parameter (variance of the interatomic distance) is used to
define the broadening of the distance distribution (being the entire distribution defined
by 3 parameters: average distance R, variance σ2, coordination number N ). The n-
body configurations generally require a larger set of parameters, but very often they
are closely interconnected by hierarchical and geometrical constraints. This peak-
fitting technique, which needs the identification of well-defined peaks of the n-body
distributions, is used in the gnxasmethod to treat the configurational average of MS
signals. It is clearly applicable for molecules and crystals and the same approach can
be used to treat the case of moderate structural disorder in glassy covalent systems
for which peaks of the gn distribution are clearly identified. Whenever the peaks of
the gn are not well defined (liquids for example) different average methods should
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be used. Extensions of the peak-fitting technique to highly disordered systems, using
suitable constraints, are discussed in [10, 11]. However, intrinsic limitations of the
peak-fitting technique may be overcome by using model-independent methods for
which peaks of the distribution functions are not defined a priori, like the Reverse
Monte Carlo approach discussed in [7, 12–14] and Sect. 8.4.

MS calculations and proper treatment of the configurational average of n-body
signals (8.12) are used for the final step in XAS data-analysis using gnxas, i.e. the
derivation of best-fit structural parameters from the experimentally measured x-ray
absorption coefficient α(E) (proportional to the cross-section) above a given deep
core level. Structural refinement is obtained by optimizing the model absorption
spectrum against the raw x-ray absorption data α(Ei ) including noise (not the χ(k)
or filtered data) [3, 8]. The model absorption spectrum αm(Ei ) thus includes directly
background modelling:

αm(Ei ) = αbkg(Ei ) + αexc(Ei ) + [1 + χm(Ei )]α0(Ei ) , (8.15)

where α0(Ei ) = Jσ0(Ei ) is the atomic absorption coefficient (J accounts for the
actual absorption jump), αbkg(Ei ) is a smooth polynomial background and αexc(Ei )

accounts for multi-electron excitation channels. Simultaneous modelling of back-
ground and signal (χm(Ei ) as obtained by peak distribution modelling of (8.12))
significantly reduces the introduction of systematic errors in the interpretation of
the structural signal. The same approach can be used for multi-edge studies (see for
example [8, 15]):

αm(Ei ) = αbkg(Ei ) + αexc(Ei ) +
NXAS∑
j=1

[
1 + χ j

m(Ei )
]
α

j
0(Ei ) , (8.16)

where NXAS is the number of different XAS spectra calculated for a given model
structure.

The residual function R which is minimized in the program is the sum over
i = 1, N points of the squares of the differences between model and experimental
signals in the specified energy interval times a weight function:

R =
∑
i

[α(Ei ) − αm(Ei , {λ})]2 × W (Ei ) . (8.17)

Here themodel signalαm(E, {λ}) depends on the ensemble of p structural param-
eters {λ}. The expected value for the residual function R can be calculated for a given
normalization of the weight function (for fitheo corresponds to the average noise
variance usually in the 10−6 − 10−8 range). It should be noted that in many real
situations the actual minimum value achieved for the residual function exceeds these
limiting values due to the presence of unexplained signal contributions.

Under normal conditions theweight function shouldmimic the energydependence
of the inverse noise variance 1/σ2

i , so that the R function becomes a standard χ2 like
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statistical function. This can be achieved by a using a simple inverse power law
(σ2

i ∼ k−w
i with w = 1 − 4) until a satisfactory agreement with the statistical noise

is obtained. Moreover, larger w values have the effect of giving an extra-weight to
higher energydata, and this choice canbe adopted to account for possible inaccuracies
of the theoretical model in the near-edge region (the noise variance σ2 is actually
related to the [α(Ei ) − αm(Ei )] random variable).

As it has been defined, the residual function R is expected to follow the χ2
N

distribution, and under these conditions a full statistical evaluation of the results can
be performed as follows:

1. within a given choice for the structural model, the optimal values for the {λ}
structural parameters are the set {λmin} such that the residual R is at a minimum.

2. The statistical χ2 test can be performed to check whether the actual value of R is
only due to residual noise or it contains unexplained physical information.

3. A comparison betweenmodels containing a different number of structural param-
eters can be performed, and it can be verified if the reduction of R obtained using
more parameters is statistically significant.

4. Statistical errors related to selected confidence intervals can be estimated for
the structural parameters, looking at regions in the parameter space for which
R({λ}) < Rmin + C , where C depends on the confidence level chosen and Rmin

corresponds to the expected value (when the residual contains only statistical
noise). These regions, in the second-order approximation, are p-dimensional (p
is the number of parameters) ellipsoids which provide also an insight onto the
correlation among parameters.

8.2.2 gnxas Suite of Programs

The main characteristics of the current standard version of the gnxas data-analysis
suite of programs are:

(1) atomic phase shifts calculations in the muffin-tin approximation are based on
atomic self-consistent relativistic calculations. Account for the neighbors is
taken.

(2) Inclusion of inelastic losses through complex Hedin-Lundqvist potential.
(3) Calculation of MS signals associated with two, three, and four atom configura-

tions using advanced algorithms and of proper configurational average of MS
terms.

(4) Use of an advanced fitting procedure that allows one:

(a) to fit simultaneously several spectra containing several edges,
(b) to use directly the raw data without any pre-analysis,
(c) to account for complex background multi-electron excitation features,
(d) to use various model peaks for the pair, triplet and quadruplet distribution

functions, including non Gaussian models and extremal cases. In all cases
absolute values of the structural parameters can be refined.
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(e) To treat liquid phase or disordered systems and extract reliable g(r) functions
in the short-range limit (≤4 Å).

(f) To perform a rigorous statistical error analysis and plot two-dimensional
correlation maps.

(5) To provide a flexible scientific tool for EXAFS data analysis where the user has
access to every stage of the calculation. In this sense the gnxas package is not
a black box.

(6) Full modularity that makes easy to interface parts of the gnxas software with
other available software.

(7) Specific software, fully interfacedwithgnxas, that allows to perform calculation
and structural refinements of x-ray diffraction data, as well as Reverse Monte
Carlo simulations of XAS data.

(8) Software has been developed under VMS and Linux/UNIX architecture but it
has been extended toMacintosh andWindows operating systems, also supported
by a new graphical interface.

The gnxas flow diagram is reported in Fig. 8.1, containing also information about
the main input and output files and some auxiliary programs that can be used for
check, visualization and structural refinement purposes. The reader should refer to
the legend andflowdiagram reported inFig. 8.1, and to the detailedgnxashandbooks
[4, 5] for understanding role and meaning of the various input/output files related to
a starting “abc” structure-type.

The backbone of the gnxas package is composed of three main codes identified
by the boxes in bold (Fig. 8.1):

(1) phagen optical potential and phase-shift generation
(2) gnxas n-body XAS signal calculation
(3) fitheo structural refinement of the experimental data

Two other main programs are able to prepare automatically the input for phagen
and gnxas starting directly frommodel molecular position or crystallographic data.
These are particularly useful in the case of complex structureswhere the configuration
counting is not trivial. These programs are:

(4) crymol allows to treat complex molecular and crystallographic structures pro-
viding input information for successive programs; the program identifies proto-
typical phase-shift atoms and selects a suitable cluster of atoms for successive
XAS calculations.

(5) gnpeak is based on a general algorithm able to identify inequivalent two-body,
three-body and four-body configurations in specified atomic aggregates.

Several other programs were written to facilitate the output readout, in particular:

(6) phaplo produces a graphic output for the phase-shift file generated byphagen
(typically for TopDrawer [17]).

(7) readder converts the binary signal files generated by gnxas into ASCII files
to facilitate visualizing and checking the output (typically for TopDrawer [17]).
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Fig. 8.1 Flow diagram of the gnxas suite of programs. An input file defining the initial model
structure (cryabc.in) may be the starting point of the sequence, composed by the main programs
crymol, gnpeak, phagen, gnxas, fitheo (red color in figure). Input files needing
specific typing by users are indicated in bold. Main output files of the individual programs are
encircled when needed as an input for successive programs. Other output files containing data for
graphics or in tabular form are enclosed in boxes. Graphical output is currently designed for special-
ized plotting programs like gnuplot [16] or Topdrawer [17]. Auxiliary programs of the gnxas
suite are useful for plotting phase-shifts andMS signals (phaplo, readder), for statistical error
evaluation purpose (contour) and for reconstruction of the pair distribution function (grrec)
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Another important additional program is used for the evaluation of the error bars
on best-fit structural parameters:

(8) contour, to convert character contour plots in thefitheo output and facilitate
error analysis.

Three additional programs are also available to facilitate the analysis of disordered
systems (including liquids) where the structure is efficiently described in terms of
radial distribution functions g(r). These are:

(9) grfit is a fitting utility of model radial distribution function data (not shown
in Fig. 8.1).

(10) grxas is designed to calculate the EXAFS signal associated with a given
partial radial distribution function (not shown in Fig. 8.1).

(11) grrec allows reconstruction of g(r) aftermodel refinement (also in connection
with the fitheo output).

Moreover, the gnxas distribution includes miscellaneous programs (not shown
in Fig. 8.1) useful for preparation of the XAS experiments and for pre-analysis:

(12) xasam is a program for sample thickness optimization for measurements in
transmission geometry.

(13) jesf is an automatic routine for EXAFS extraction, Fourier transformation,
and noise evaluation. This program is useful for a qualitative data-analysis and
it has been routinely used at the several beamlines for on-line data analysis (for
this reason it is believed to be used more than 106 times).

(14) fitedg is a fitting program for edge structures using analytical functions.
(15) deconv is a deconvolution program suitable to deconvolve the core-hole life-

time broadening in high quality spectra.

The extended gnxas package includes also several other advanced programs that
are available to users upon request (see full description in Ref. [5]):

(16) edxrd is a utility program able to calculate energy and angular dispersive x-ray
diffraction patterns using an input file for the structure based on crymol.

(17) peakfit is a second utility program performing multiple peak-fitting refine-
ment with different functions in presence of complex background, including
Bragg peaks in x-ray diffraction.

The next sections discuss two important recent advances implemented in the
gnxas package: the design of a graphical user interface (GUI) [6] and the real-
ization of an updated multiatomic RMC refinement package rmc-gnxas including
the rmcxas program using input files provided by gnxas and by a specialized
crymol_rmc routine that generates the initial atomic configuration (see also [7,
12]). Those programs are also available upon request.
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8.3 Overview of the gnxas Graphical User Interface

In this section we briefly present the graphical interface for the gnxas suite of
programs [6]. This is an ongoing project which aims to help new users to prepare the
input files and run all the programs in the gnxas package.

As previously mentioned, gnxas was developed in 1990 and at that time text-
based input and output files were standard asmost programswere running in terminal
windows. Since then, both computers and operating systems evolved hugely, and
nowadays the standard is a point-and-click scheme. Since the largemajority ofgnxas
support requests are related to errors and mistyping while preparing the input files,
the creation of a graphical interface for using the different programs in the gnxas
package is expected to provide a user-friendly platform solving most of the practical
difficulties of the gnxas new users.

8.3.1 Practical Implementation of the GUI

Wehavedesigned a graphical user interface (GUI) calledw-gnxas [6]which controls
the text-based operations of gnxas. This choice is thought to be a good compromise
for maintaining the necessary flexibility of accessing each stage of the calculations,
within a modern conception of a user-friendly program. The interface, created by
using the Python library “wxPython” [18], is platform independent and can be exe-
cuted on any current operating systems, such as Linux, Windows and Macintosh.

The idea is to provide a simplified window-based panel that facilitates the creation
and compilation of the input files for the various programs, allowing to run the
gnxas programs with a simple click and save input set of commands in form of files
for successive refinements. Previously existing input files, compatible with those
described in the gnxas handbooks [5], can also be loaded into thew-gnxaswindow
that will be automatically prepared for visualization and corrections in the specific
fields.

Following the scheme of the gnxas package, each program has its specific tab
in the interface as can be seen in the screenshots shown in Fig. 8.2. We have not
yet implemented a specific control panel for all the gnxas programs, but those of
the main gnxas chain are already available: crymol, gnpeak, phagen, gnxas,
and fitheo. A specific panel is also reserved to the program xasam, that is used
to calculate the optimal sample thickness fro XAS measurements in transmission
geometry.

In the next section we will briefly describe some specific details of each pro-
gram tab.
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Fig. 8.2 Two screenshots (left and right side) of the control panel of the w-gnxas interface. In
the upper part of each screenshot we can see the tab for selecting six different input panels, each
one corresponding to a specific gnxas program. Here, the crymol tab is selected and appears
highlighted in the main panel. The first input dialog is for loading a previously prepared input
file for crymol, by clicking the Load button, a window for choosing the file will be opened (see
red arrow in the left screenshot). After selecting the file, the interface will automatically fill the
blank fields with the input data contained in the loaded command file (hSn_cry.in in this case, see
right-side screenshot)

8.3.2 w-gnxas Control Panels

As discussed in the preceding section, a single window provides an interface for most
gnxas programs as shown in Fig. 8.2. It is recommended to create a different folder
for input and output files of each program in order to prevent confusion between the
different files created during the analysis process.

The first tab of the graphical interface, from left to right, controls the input of the
crymol program. When selected, the first tool appearing in this window is used
for loading an existing input file for the crymol program. After loading a selected
file, the fields corresponding to the input parameters of the crymol program are
automatically filled (see second screenshot in Fig. 8.2). This is helpful to run or
modify a previously saved input file. If no input file is loaded, then the user has to
fill the blank fields manually.

The required inputs are of various type, mostly are text-based, but there are also
multiple choice options and drop-down lists. In certain cases a specific input may
be not required and it will then appear greyed out or hidden. For example, lattice
parameters are required only for crystalline systems, therefore selecting the option
‘XYZ’ (molecule) no further unused parameterswill be required and the panel related
to the’CRY’ (crystal) option will be hidden (see Fig. 8.3, left-side screenshot). When
needed, some input parameters are automatically filled in by the GUI software. For
example, a cubic lattice type is defined by a single cell parameter a. In this case, all
the angles are automatically set to 90◦ and the b, c parameters are set equal to a (see



236 F. Iesari et al.

Fig. 8.3 Two screenshot selections (left and right side) of the crymol control panel of w-gnxas.
The GUI software interface is designed to help the user in creating a suitable set of input parameters
(successively saved into a loadable command file) by omitting or by auto-completing specific inputs
in certain cases. Two examples are shown here. Left-side screenshot: the window with the lattice
parameters is not shown in themolecularXYZcase (hiddenpanel, red arrow). Right-side screenshot:
when a cubic lattice is selected (crystal option, CRY), angles will be automatically set to 90◦ and
cell parameters b and c will be set equal to the input value a

Fig. 8.3, right-side screenshot). These are just some examples and the same principle
is applied throughout the w-gnxas interface.

After completing all the entries, an input file can be created or updated by using
the Save to a file button in the lower portion of the window (see Fig. 8.4). The saved
file can then be loaded and used to run crymol as it is. This is done using the Load
button in the lower part of the window shown in Fig. 8.4 and then selecting the Run
button on the right. The log of the crymol calculation will appear in the lowest
window of the panel, containing information on the run and showing possible errors
or warnings occurred.

After the calculation is concluded, in absence of computing problems, the standard
output files of each gnxas program are created in the same directory of the input
files and graphical outputs can be plotted using for example TopDrawer [17] and/or
gnuplot [16]. In the example reported here, which refers to the molecule SiCl4, one
of the data-analysis examples in our website, output files are named using the three
characters “abc” = SCl (see Fig. 8.1) therefore the user will find SCl.ato, SCl.in,
SCl.top files in the proper directory.

The control panels of the gnpeak and phagen program are relatively simple,
because the inputs are usually automatically generated by the preceding crymol
program as illustrated also in the gnxas flow diagram reported in Fig. 8.1.

In the gnpeak tab (Fig. 8.5) an input file can not be loaded, neither created,
because only four empty fields have to be filled as inputs for operation: (1) the name of
.ato file created by crymol without the extension; (2) the tolerance distance, which
is the minimum distance to consider two paths different; (3) the cut-off distance for
the sub-cluster size counting. Both the (2) and (3) parameters can be selected by
default (inserting 0.0 as input), being respectively 0.0002 Å and the maximum size
of the cluster; (4) the last input is the directory of the file .ato, in which also the
outputs (in this example SCl.gnp, SCl.chi, SCl.gnx) will be saved.
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Fig. 8.4 Screenshot of the lowest portion of the crymol panel in the w-gnxas interface. The last
fields appearing in the panel are used to create an input file for crymol using the Save to a file
button. When selected, all the data inserted by the user will be saved to a file with the appropriate
formatting. This file can then be run by loading it and executed with the Run button (highlighted in
figure). The console dialog (log) is shown in the final window of the panel, showing the output of
the calculation

The phagen tab has only the load and run part because the input file (in the
example considered SCl.in) is created automatically by crymol and modifications
should only be done by expert users. Again, the important output files related to
the phase-shift calculations (SCl.tl, SCl.s0) are created in the same directory of the
input file.

The gnxas tab (screenshot shown in Fig. 8.6) requires more input parameters by
the users and the design of the panel is very similar to that of the crymol program.
Similarly to the crymol window, an existing input file can be loaded with the first
entry which will auto-complete all the inputs. Otherwise, the user can write the entire
set of input parameters from scratch and then save them to file. A good practice is
to load a standard input file for gnxas as obtained from the set of data-analysis
examples and use it as a template that can be modified by the user for the current
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Fig. 8.5 Screenshot of the gnpeak window in the program. Only four options can be selected,
two of which can be left to the default value (0.0)

calculation. The tl and s0 file requested in the first two fields are produced by the
phagen program. The geometrical information needed to calculate the different
signals (two-body and higher-order configurations) is obtained from the results of
the gnpeak calculation. In particular, in the abc.gnx file are written the parameters
to insert in the g2 and g3 tables (see as an example the text of the SCl.gnx window
reported in Fig. 8.6). The gnxas window contains the same tools as the crymol
one, so the input commands can be saved, loaded and run again, checking the results
of the calculation.

The fitheo window has also a layout analogous to the crymol and gnxas
tab, in which an input file can be loaded. In this case, it is particularly convenient
to start from a previously saved input file, that can be taken by one of the data-
analysis examples. We refer to the gnxas handbook [5] for the detailed explanation
of all the input needed to run fitheo for the structural refinement of XAS data.
The table of the fitting parameters is the first and one of the most important entries
for this program. All the parameters to be refined are defined within this table. The
parameter number (first column labeled as “Number”) is used to refer to each specific
fitting parameter in the successive input lines (see Fig. 8.7). In this way, if we need
to make some adjustment to the value of the parameter or its fitting range, we just
change the value in the table without further modification in the input commands.

For simplicity, the current version of the w-gnxas interface does not incorporate
all the features of fitheo. In particular, with the present version it is possible to
perform the structural refinement of only one file containing raw XAS data (single
edge) and the number of structural signals that can be inserted for this purpose is
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Fig. 8.6 In the gnxas tab the signal corresponding to different geometrical configurations are
calculated. These information are contained in the output files of the crymol program. In the
example shown, SiCl4, we have one two-body and one three-body signal related to the Si K -edge.
The input for the atomic structure can be taken from the output of the gnpeak program (see text
of the SCl.gnx window in the upper-right part of the figure)

Fig. 8.7 Two screenshots of the fitheo tab in the graphical interface. In the left image the table
of fitting parameters is shown: each fitting parameter is defined a number which will be used as
a reference throughout the window. In the example shown, the bond distance R1 and variance
(Sig**2) for a given atomic configuration are highlighted (see red arrow). These parameters are
used as structural parameters for the two-body peak of SiCl4 and its various MS signals calculated
by gnxas. In order to do so, we insert their respective numbers (15 and 16 in the example) in the
appropriate boxes (see screenshot in the right-side). Detailed explanations for the fitting parameters
and for the fitheo inputs are reported in [5]
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limited (3 for two-body and 1 for three-body). In many practical cases this will be
sufficient to perform a successful structural refinement. In any case, the inputs can be
saved to a file and manually modified by the user if additional signals are required.
The input file can then be run with the Load and Run buttons situated at the end of
the window.

Thexasamwindow, used for samples preparation, is pretty straightforward.After
fulfilling all the requested input, clicking on the Choose button the user will select a
directory where the input and output files will be saved. The program is then executed
by clicking on the Run button.

8.4 Reverse Monte Carlo Implementation on gnxas

The ‘peak fitting’ approach described in Sect. 8.2 has limitations in the case of highly
disordered systems, such as amorphous solids or liquid matter [19]. As mentioned
before, for elemental melts, ionic binary liquids and aqueous solutions a meaningful
XAS data-analysis within this framework is still possible by introducing suitable
physical constraints in the refinement of the short range peak of the pair distribution
function provided by diffraction experiments or molecular modelling. The two-body
distribution function g(r) is decomposed into a first peak and a long range tail for
which the corresponding XAS signals are calculated. The shape of the short range
peak is then fitted to the experimental data with a suitable set of constraints. For more
details the reader is referred to the original paper [10] (and [11] for binary systems).

The application of this method requires a reliable model for the pair distribution
function, which is not always available especially when dealing with systems under
extreme conditions. Moreover, the extension of the method to multiatomic systems
is not straightforward. This imposes severe limitations to XAS data interpretation
and a different approach is required to exploit the sensitivity of XAS to short-range
ordering through pair and higher order distributions in disordered materials. The
implementation of the Reverse Monte Carlo (RMC) method has been designed to
provide ameaningful three-dimensional modelling of the structure of disordered sys-
tems, taking advantage and incorporating all of the advances related to the application
of multiple-scattering (MS) codes and the n-body expansion for XAS data-analysis
(gnxas).

8.4.1 RMC Background

ReverseMonte Carlo is an inversemodelling technique introduced byMcGreevy and
Pustzai [20] for producing three-dimensional structural models from x-ray and neu-
tron scattering experimental data. The method is a variation of the standardMetropo-
lis Monte Carlo (MMC) algorithm. A series of atomic configurations are iteratively
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generated by randommoves of single atoms until the model gives the best agreement
with one or more sets of experimental data within their uncertainties.

Interatomic potentials are not used for RMC and very few assumptions on the
structure are required. In principle only number density and chemical composition
are needed for RMCmodelling, although physical constraints are usually introduced,
as discussed in more detail in the original papers (see [21] for a review) and in the
following sections. One of the main strengths of the RMC approach is that experi-
mental data from different and complementary techniques are refined and constraint
the model simultaneously. Finally, the outcome is a set of three-dimensional struc-
tural models for the investigated system on which a full statistical analysis can be
performed to derive the pair distribution functions, the distribution of bond angles
and to identify specific local atomic arrangements.

Although initially applied to derive structural models by refinement of the struc-
ture factor from scattering experiments, the method is very general and finds applica-
tionwith any experimental technique forwhich themeasured signal can be calculated
from the atomic coordinates.

The application of the RMC for XAS data-analysis was initially introduced by
Gurman and McGreevy [22] and since then a few groups implemented and applied
this technique in several works on liquids and glasses as well as crystalline systems
(see for example [7, 12–14, 23–25]). As shown in the next section, the rmc-gnxas
software currently represents an advanced tool for XAS structural refinement using
the RMC technique.

8.4.2 Overview of rmc-gnxas

Thermc-gnxas software implementedwithin thegnxaspackage [7] allowsReverse
Monte Carlo structural modelling of both molecular and condensed structures. For
condensed systems, like liquids, glasses or crystals, the RMC algorithm is applied
simultaneously to theXAS signalwhich probes the local structure around each photo-
absorbing species, and to a model pair distribution function g(r). The g(r) function
can be obtained by x-ray/neutron diffraction data or computer simulations, and is
intended to provide a correct constraint for medium and long range ordering, because
XAS is sensitive only to short-range.

The rmcxas program, core of the rmc-gnxas chain, has been now widely opti-
mized and extended to multiatomic systems. Some of the initial features have been
therefore upgraded to improve computational efficiency and new capabilities have
been added. In particular, multi-edge XAS refinement and proper account for partial
pair distributions gαβ(r) related to the different atomic species (α, β) have been intro-
duced. The underlying algorithm is summarized below and shown in Fig. 8.8. Amore
detailed description of the calculation steps is given in the following paragraphs.

1. The initial configuration is prepared. For molecular systems, the initial config-
uration is an ensemble of molecular replicas. For liquids and glasses, the initial
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Fig. 8.8 Schematic diagram
of the RMC algorithm as
implemented in the
rmc-gnxas package

configuration consists in a set of N atoms within a simulation cell of fixed vol-
ume V with periodic boundary conditions. Such initial configuration may be
generated by randomly choosing atomic positions within the simulation box or
derived from prior simulations. It can be also generated from a crystal lattice
using the crymol-rmc program (see Sect. 8.4.3.1). In any case, it must have
the same chemical composition and number density (N/V ) of the system under
investigation.

2. Calculation of the XAFS signals χC(k) and of the pair distribution function gC(r)
to be compared with the respective experimental quantities, i.e. the χE (k), which
is the extracted EXAFS signal, and the model pair distribution function gE (r)
(or the set of partial distribution functions) obtained for example from scattering
experiments.

3. The residual χ2 is calculated using the following equation:

χ2 =
N EDGE∑
n=1

N XAS∑
i=1

[
χE
n (ki ) − χC

n (ki )
]2

σ2
n,i

+
∑
α,β

Ng∑
j=1

[
gE

αβ(r j ) − gCαβ(r j )
]2

σ2
αβ, j

,

(8.18)
where the right hand side has two terms. The first corresponds to the XAS part
for which the calculated signal is compared with the EXAFS signal determined
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by a preliminary data-analysis and σ2
n,i are the noise functions associated with the

experimental data. The noise functions can be evaluated and stored on specific
files for RMC refinement by the auxiliary program noise. Since for multiatomic
systems simultaneous multiple-edge signal refinement is possible, the first sum
indicates a sum over different XAS edges while the second one is a sum over
experimental points. The second term in r.h.s., omitted in molecular cases, cor-
respond to the pair distribution functions gCαβ calculated from atomic coordinates
and compared with model distributions obtained from x-ray/neutron diffraction
or computer simulations. For multiatomic systems, it is also possible to include
simply the total distribution function g(r) instead of the partials (in some cases
partials may be not available or affected by large uncertainty). σ2

j (or σ2
αβ, j for

partials) is the noise associated with the pair distributions.
It is worth noting that both the σ2 functions and the number of points (NXAS , Ng)
control the relative weight of each data set included in the RMC simulation.

4. A new configuration is created by moving one atom at random and the corre-
sponding new signals are calculated. The new residual χ2

n is evaluated using
(8.18). The typical maximum displacements for each atom move is initially set
to a value (fraction of atomic distances) which is tuned for reaching acceptance
ratios of about 50% during the evolution of the RMC refinement (see below).

5. The atomic move is either accepted or rejected according to the Metropolis-
Hastings algorithm. If the new residual is smaller than the older one, χ2

n < χ2
o,

the new configuration is accepted. Otherwise, the new configuration is accepted
with probability exp (−(χ2

n − χ2
o)/2). In this way, the modelling process is able

to explore the whole configurational space without being frozen in local minima.
6. If the move is rejected, the atomic positions are maintained. Otherwise the new

configuration is saved and the process repeated from step 4 until each atom in the
box has been moved.

The RMC loop continues for several cycles until the residual χ2 reaches an equi-
librium value. After convergence, a desired number of equilibrium configurations
can be saved which are the structural models consistent with the whole set of exper-
imental data and statistically independent.

Before running the RMC simulation, some preliminary calculations and data are
required. We explain here different important steps and calculation details involved.

The choice of the initial configuration is one of the main steps of any RMC refine-
ment. As reported in earlier studies [21], the final RMC models should be indepen-
dent, in principle, of the starting model, although this initial structure may affect the
number of steps needed to achieve convergence. Also, for molecular systems, the
molecular structure should possibly be pre-defined. Depending on the investigated
material, there are several strategies for producing the RMC initial atomic configu-
ration. The simplest approach for disordered systems is to position atoms at random
within a simulation box of size chosen to reproduce the experimental density. As a
step further, constraints can be applied to prevent atoms to be closer than a cut-off
distance (closest approach distance). Another possible approach is to start from a
disordered crystal structure with the correct density for the liquid. If a crude model
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for the interatomic potentials is available, classic Monte Carlo or molecular dynam-
ics simulations could be also used to produce a trial starting configuration for the
RMC refinement.

In the current rmc-gnxas implementation, the initial atomic configuration can be
generated by a suitable program (crymol_rmc) as a disordered crystalline structure
with given Gaussian disorder around each atomic position. Initial data are type and
atomic positions within a unit cell, number of atoms and size of the box, calculated
in order to obtain the right density of the modelled system. Periodic boundary condi-
tions are applied to overcome finite size effects. For molecular systems, the program
generates an ensemble of molecular replicas, with defined number of neighbors and
desired Gaussian distribution of intramolecular distances. This program is based on
the program crymol, part of the gnxas package.

Before performing the simultaneous RMC refinement of both theXAS signals and
the model g(r) (or partials), the initial configuration is usually refined to reproduce
the shape of the pair distribution function g(r) only. This is done, for example, by
using directly the rmcxas program and executing a RMC procedure limited to
the g(r). In this way, convergence is achieved faster. This is also important for the
successive RMC refinement, because theXAS sensitivity is limited to a fewÅ around
the photoabsorber and the medium and long-range order has to be constrained with
information provided by complementary techniques as discussed before.

Density and closest approach distances (i.e. the minimum interatomic distance
allowed for each couple of atomic species) are themain constraints usually included in
any implementation of the RMCbasic algorithm [21]. The choice of closest approach
distances is not always obvious and it is generally based on previous experimental
determinations of the pair distribution functions or estimated from atomic or ionic
radii. In the rmcxas program different closest approach distances for different pairs
of atoms can be chosen.

An additional constraint can be imposed formolecular cases: amaximumdistance
which atoms cannot overcome. Different maximum distances can be imposed for
different atom type pairs. Since no pair distribution function is present in this case, a
maximum distance can prevent atoms to diverge to unphysical distances if no XAS
signal for a specific type of atom is present into the simulation.

In (8.18)we compare experimental quantitieswith the calculated ones fromatomic
coordinates. For the partial pair distribution functions gCαβ(r) we start from their
definition (see for example [26]) as the ratio of the probability of finding one atom of
typeβ at a distance between r and r + dr fromone atomof typeα to the probability of
finding one atom of type β at a distance between r and r + dr of one atom of typeα in
an ideally homogeneousmaterial.During theRMCrefinement, these probabilities are
estimated from the counts and binning of distances in calculated histograms. Given
a distance interval [r, r + Δr ], the probability P of finding one interatomic distance
in that range is estimated by the ratio of the number n of distances in that interval
and all the N distances found in the system. The number of distances available is
different if we consider identical or distinct atom types, so we must distinguish the
two cases to compute the different partials:



8 gnxas: Advances in the Suite of Programs … 245

Pαβ
i = nαβ

i

NαNβ
; Pαα

i = 2nαα
i

Nα(Nα − 1)
, (8.19)

where Nα and Nβ are the number of atoms of type α and β in the actual simulation
box, and nαβ

i (nαα
i ) are the number of distances in the i th bin of the histogram for

different (identical) atom types. The probability for the ideal homogeneous material
is given by the ratio of the volume of the spherical shell in the same range [r, r + Δr ]
to the total volume available:

4π

3V

[
r3

]i+1

i . (8.20)

So in the end we have:

gαβ(ri ) = nαβ
i

NαNβ

3V

4π
[
r3

]i+1
i

(8.21)

gαα(ri ) = 2nαα
i

Nα(Nα − 1)

3V

4π
[
r3

]i+1
i

. (8.22)

Since we are dealing with a finite system in the simulations, the calculated g(ri )
values are estimates of the partial pair distribution functions. The uncertainty over
the calculated gCαβ(r) and gCαα(r) depends on the number of distances used to compute
them, so ultimately on the number of atoms used in the simulation and on the bin
size. A too small number of atoms or a too small bin size would yield large statistical
uncertainty and ‘noisy’ calculated g(r). On the other hand, selection of a box with
too many atoms increases the calculation time, which scales as N 2, and a too large
bin size results in a sparse pair distribution function. A more quantitative analysis of
this point can be found in a previous paper [7]. For the total pair distribution function
we proceed in an analogous way, but without distinguishing between the different
type of atoms.

For the calculation of the totalχC EXAFS signal, the phase shifts are calculated ab
initio, by using phagen, for a system having structure and chemical composition
similar to the liquid or amorphous material modelled by RMC (or for molecules,
crystals). Two body γ(2)

αβ (k) signals are calculated for a grid of bond distances by
using the gnxas program. The γ(2) signals, given as input to the RMC program,
are then interpolated for all the actual distances present in the model structure. In
order to take into account damping of the XAFS signal due to experimental reso-
lution and many body effects, the amplitude of the calculated signal is reduced by
a factor exp(−R2

pσ
2
exp/2k

2)S20 where Rp is the path length, σ2
exp is the HWHM of

a Gaussian energy resolution function and S20 is the amplitude reduction factor. At
the present stage, higher order n-body terms related to higher order correlations are
not included directly in the computation of χC . Signals obtained from a fit of exper-
imental data using fitheo, can be taken into account, but these are not calculated
directly from the atomic coordinates at each step of the simulation. Direct inclusion
of such contributions, essential for extending the applicability to crystalline or com-
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plex molecular systems, would increase dramatically computational time, scaling as
N 3. Their inclusion need further developments that are presently under evaluation.

At each atom move, N interatomic distances are changed due to the movement
of a single atom. Appropriate calculation strategies have been implemented for opti-
mizing the calculation of the variation of the XAS signal and the gCαβ associated with
the modification of the atomic positions during the RMC loop. The calculation time
at each step is therefore considerably reduced and it is possible to increase the size of
the model. Utilization of novel hardware devices to further decrease computational
time (such as GPUs, for example) is now under development.

The maximum size of the atomic move Δ (usually 0.1–0.3 Å) is also a relevant
parameter in RMC modelling, as it determines to which extent the configurations
space is explored. In rmcxas, the value of Δ is re-adjusted after a selected number
of RMC steps (given by the user), in order to have a ratio of accepted RMC moves
of ∼0.5. This value should be checked at each step because a value too small would
be insufficient to change the configuration in a significant way.

8.4.3 A Practical Example: AgBr

In this sectionwegive a short description of the application ofRMC-GNXAS formul-
tiatomic systems showing the input files prepared for liquid AgBr [15]. A schematic
overview of the work flow with the different steps required to perform a full simula-
tion, is shown in Fig. 8.9.

Fig. 8.9 The typical flow diagram of the rmc-gnxas package is summarized in this figure. A
completeRMCrefinement ofEXAFSdata is obtained starting froman initial configuration (prepared
by crymol-rmc) and the associated γ signals prepared by the standard gnxas chain (phagen
and gnxas). The initial configuration, usually prepared to reproduce a model pair distribution g(r)
(see text), is used by the rmcxas program for the RMC refinement of EXAFS data pre-analyzed
by the gnxas program fitheo
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8.4.3.1 Initial Configuration: crymol_Rmc Program

The very first step of the RMC simulation is to create the initial configuration.
As explained in the previous section, this can be done by using the program
crymol_rmc, which is based on the program crymol. The program runs (under
Linux) with the command:

crymol_rmc < crymolrmc.in

The input file crymolrmc.in (or any other name given by the user) used for the
analysis of silver bromide is given below:

CRY CARD 1

AgBr CARD 2

C CARD 2.1

6.0911 CARD 2.2

8 CARD 3

1 ’Ag’ 0.5000 0.5000 0.5000 4 0.0 2.31 CARD 4

2 ’Br’ 0.0000 0.0000 0.0000 4 0.0 2.31 -

3 ’Ag’ 0.5000 0.0000 0.0000 4 0.0 2.31 -

4 ’Br’ 0.0000 0.5000 0.5000 4 0.0 2.31 -

5 ’Ag’ 0.0000 0.5000 0.0000 4 0.0 2.31 -

6 ’Br’ 0.5000 0.0000 0.5000 4 0.0 2.31 -

7 ’Ag’ 0.0000 0.0000 0.5000 4 0.0 2.31 -

8 ’Br’ 0.5000 0.5000 0.0000 4 0.0 2.31 -

NNY CARD 5

1 CARD 6

’Ag’ ’Br’ 3.0 CARD 7

7.0 CARD 7.1

AgB CARD 8

1,1 CARD 9

0.05 CARD 10

1 CARD 11

1 CARD 12

1875.20,0. CARD 13

3,-.2,100.,.05 CARD 14

5,-1 CARD 15

’S’,1,40.,20.,’S’,’ ’,’S’ CARD 16

6,6,6 CARD 17

0.05 CARD 18

0.05 -

This is the same input file for the crymol program, with two additional items at
the end (CARD 17 and CARD 18) when the CRY option is selected (CARD 1). It is
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worth mentioning that when dealing with molecules (XYZ option for CARD 1), the
number of molecular replica is needed (an additional CARD 19 is used for the total
number of molecules of the calculation).

For the purpose of RMC, not all the cards are actually used. We report here the
important ones:

CARD 1: Selects between ‘CRY’ for simple crystals or ‘XYZ’ for molecules.
CARD 2: Identifying name of the material.
CARD 2.1: Crystallographic unit cell type. For liquids a cubic unit cell (C) should

be built. For molecules this card and the next one are not used.
CARD 2.2: Size of the unit cell given in Å. This is a key parameter, since it

defines the density of the system and should be chosen to reproduce
the experimental number density of the liquid. In the case of AgBr,
the unit cell contains 8 atoms and the resulting number density given
by 8/(6.0911)3 
 0.0354 atoms/Å3 in agreement with the literature
value [27].

CARD 3: Number of atoms in the unit cell (or in the molecule).
CARD 4: Specific information on each atom of the unit cell (or molecule). The

first entry is just a sequential number labeling each atom (up to the
number specified by the previous card). The second column is the
chemical symbol of the atom (e.g. ‘Ag’,‘Br’,‘ C’; note a blank char-
acter is required before single-letter symbols). Then there are the x , y
and z coordinates: formolecules onemust insert Cartesian coordinates
in Å, while for CRY, like in the example, the dimensionless fractional
coordinates must be specified. The other columns do not affect the
configuration and can be ignored.

CARD 5 to CARD 16 are not important for the purpose of RMC initial configu-
ration, apart from CARD 8 which specifies the name for the output
file.

CARD 17 na, nb, nc are the number of cells along each crystallographic direc-
tion. na · nb · nc multiplied by the number of atoms per unit cell
(CARD 3) gives the total number of atoms within the simulation box.

CARD 18 Standard deviation on the atomic positions. This card is necessary to
produce an initial configurationwithGaussiandisorder around average
atomic positions. This card has to be repeated for each atomic species.

The crymol_rmc program provides as a starting configuration a disordered
crystalline or molecular model with well-defined average distances, number and
type of atoms and density (or number of molecules). The coordinates of each atom
within the simulation box are written in the output file ABCxyz.rmc (ABC given
at CARD 8), here called AgBxyz.rmc. The file contains the coordinates of all the
atoms and a header with some useful information:
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CRYSTAL AgBr

C! Cubic -> a

6.0911

0.03539996 ! Atomic density

6 6 6 ! Number of cells

1728 ! Number of atoms

1 ! Disordered crystal configuration

2 ! Number of inequivalent atoms

’ Ag’ ! atom

0.050000 ! Standard deviation

’ Br’ ! atom

0.050000 ! Standard deviation

START ! Initial configuration for RMC run

-0.416387200 -0.417111397 -0.415618539 ’ Ag’

-0.499927670 -0.497871548 0.498389006 ’ Br’

-0.416463912 0.499605536 0.498553693 ’ Ag’

-0.497876823 -0.415489465 -0.416263878 ’ Br’

....

In particular, the order in which the different atomic species appear in the header is
important, since in the input file for the rmcxas program they are identified by this
number. This is explained in more details below.

As anticipated, for the purpose of XAS refinement of liquids or amorphous sys-
tems, the initial configuration given by crymol_rmc can be successively refined
to reproduce the shape of the pair distribution function g(r) (or the partials for
multiatomic systems) obtained by diffraction experiments or computer simulations.
This is an important aspect for the successive RMC refinement, because the XAS
sensitivity is limited to a few Å and the medium and long-range order has to be
constrained using complementary information from different techniques. For this
purpose, rmcxas can be directly used for any RMC refinement of the model pair
distribution of a given model system. The program needs in any case input data files
(cards 5.1 and 5.6 as reported below) for the EXAFS signals and the associated noise,
and the practical strategy for a simple RMC refinement of the g(r) is to artificially
increase the noise level (typical values are 10−2–10−4). When the RMC simulation
is converged for a given pair distribution model, the EXAFS signals can be turned
on improving the accuracy of the structural refinement.

8.4.3.2 RMC Simulation: rmcxas program

Once the initial configuration has been built, the Reverse Monte Carlo simulation
can be set up by preparing an input file for the rmcxas program containing several
cards (here called rmc-gnxas.in, but an arbitrary name can be chosen). Of course,
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the full rmc-gnxas refinement process can proceed only if suitable EXAFS signals
are available for the system under consideration (liquid AgBr in the present case).
Therefore, as also illustrated in Fig. 8.9, an accurate EXAFS pre-analysis must be
carried out for the extraction of the structural χE (k) signals in (8.18). This pre-
analysis is usually carried out using the fitheo program of the gnxas chain in
order to have also consistent values for the non-structural parameters E0 and S20 and
experimental resolution (see [3, 5] for their definition) to be included in the RMC
procedure.

An example is given below:

AgBxyz.rmc CARD 1

AgB CARD 2

9.50 CARD 3

Y CARD 4

2.00 CARD 4.1

1.90 -

2.80 -

2 CARD 5

../data/BrK_AgBr_725K.dat CARD 5.1

0 CARD 5.2

1. CARD 5.3

2 CARD 5.4

13474. CARD 5.5

../data/BrK_AgBr_725K.noise CARD 5.6

../data/AgK_AgBr_725K.dat CARD 5.1

0 CARD 5.2

1. CARD 5.3

1 CARD 5.4

25514. CARD 5.5

../data/AgK_AgBr_725K.noise CARD 5.6

2 CARD 6

3 CARD 6.1

1,1 CARD 6.2

../data/gr_AgAg_753K_Tas.dat CARD 6.3

../data/gr_noise_cost.dat CARD 6.4

1,2 CARD 6.2

../data/gr_AgBr_753K_Tas.dat CARD 6.3

../data/gr_noise_cost.dat CARD 6.4

2,2 CARD 6.2

../data/gr_BrBr_753K_Tas.dat CARD 6.3

../data/gr_noise_cost.dat CARD 6.4

1.90,9.50 CARD 7

1 CARD 8

1.90,.1 CARD 8.1
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0. CARD 9

1000 CARD 10

1,200 CARD 11

800 CARD 12

0.05 CARD 13

1 CARD 14

13478. CARD 15.1

0.725 CARD 15.2

1.5 CARD 15.3

25518. CARD 15.1

0.825 CARD 15.2

1.8 CARD 15.3

2 CARD 16

1,2 CARD 16.1

53 CARD 16.2

../xas_Br_K/BABG201.DER CARD 16.3

2,2 CARD 16.1

44 CARD 16.2

../xas_Br_K/BBBG201.DER CARD 16.3

2 CARD 16

1,1 CARD 16.1

52 CARD 16.2

../xas_Ag_K/AAAG201.DER CARD 16.3

1,2 CARD 16.1

53 CARD 16.2

../xas_Ag_K/AABG201.DER CARD 16.3

5.6,0.4 CARD 17

1 CARD 18

1 -

1 -

The description of the input lines is as follows:

CARD 1: Initial configuration file name. The program will choose as starting
configuration the first one preceded by the line “START”. This is
useful to select a specific starting configuration when running the
simulation several times.

CARD 2: Three characters string used for the output files.
CARD 3: Maximum cutoff distance. If the input distance is greater than the

natural cut-off (half of the simulation box), it will be reduced to the
natural cut-off.

CARD 4: Use different closest approach distances for each pair of atomic
species (Y) or use the same closest approach distance for all the
pairs (N).
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CARD 4.1: If the previous card was N, only one closest approach distance has to
be inserted. Otherwise a number b(b + 1)/2 cards are needed, where
b is the number of different atomic species present in the material (in
the example, b = 2).

CARD 5: Number of experimental EXAFS signals to be used for the RMC
refinement (in the example two signals measured at the Ag and Br
K -edges). The successive cards (5.1–5.6) have to be repeated for
each data set.

CARD 5.1: EXAFS signal file name.
CARD 5.2: Scale of the experimental signal: 0 for k (Å−1), 1 for E (eV/keV)
CARD 5.3: Weight on the input data, if kwχ(k) is used.
CARD 5.4: Number of the photo-absorbing atom. In the example, ‘Ag’ corre-

sponds to 1 and ‘Br’ to 2, because they appear in this order in the
initial configuration file. The first data set is Br K -edge and hence
the photo-absorbing atom entry is 2, while the second is Ag K -edge
and the corresponding photo-absorbing atom is 1. In this way there
is not a pre-defined order in which the different data set have to be
inserted.

CARD 5.5: Edge energy in eV.
CARD 5.6: Name of the file containing the noise function for the EXAFS signals

(σ2
n,i of (8.18)). This can be estimated by using a program called

noise (included in the package) and written in a specific file, whose
filename is given here.

CARD 6: This card is used for the g(r) refinement. Three options are possible: 0
if no g(r) are used in the simulation, 1 if only the total pair distribution
function g(r) is inserted, 2 if partial pair distribution functions are
used. If option 0 is selected, the successive card is CARD 8. Instead
if option 1 is chosen the successive cards have to be the data file name
for the total g(r) and its noise file name.

CARD 6.1: If option 2 is inserted in the previous card, we have to specify the
number ng of partial gαβ(r) functions used. The successive cards
must be repeated ng times.

CARD 6.2: This define the atom types of the corresponding partial pair distribu-
tion function, e.g. for Ag-Ag we insert 1,1, for Ag-Br 1,2.

CARD 6.3: File name of the corresponding partial gαβ(r).
CARD 6.4: File name of the noise data for gαβ(r).
CARD 7: rmin and rmax for the g(r) fitting in the RMC. Not needed if CARD

6 is 0.
CARD 8: Choice of the g(r) histogram binning. Option 0 if the same binning

as the input g(r) (total or partial) has to be used. Option 1 if the
binning is specified by the user with the additional card 8.1.

CARD 8.1: This is required only if 1 was chosen in the previous card. It is the
rmin and the Δr for the g(r) calculated by the program.

CARD 9: Weight on the EXAFS signal in the output files.
CARD 10: Number of RMC steps (for each atom).
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CARD 11: Respectively, number ofRMCsteps between successive visualization
and storage of configurations.

CARD 12: Number of RMC steps before calculating the average g(r) over dif-
ferent configurations.

CARD 13: Initial maximum size of random displacement (in Å).
CARD 14: Number ofRMCsteps between updating themaximum size displace-

ment.
CARD 15.1: This and the two following cards 15.2 and 15.3 refer to non-structural

parameters (see [3, 5]) determined by a previous analysis (for exam-
ple by fitheo) of the XAFS signals and must be repeated for each
signal included. Here the E0 energy is given.

CARD 15.2: S20 factor.
CARD 15.3: Experimental resolution, HWHM in eV.
CARD 16: Number of different signals inserted to fit the EXAFS data. For each

type of signal the successive three cards have to be specified. This
must be repeated for each EXAFS data set.

CARD 16.1: Corresponding type of atoms for the signal, like CARD 6.2. For
example for Ag-Ag we insert 1,1.

CARD 16.2: Number of .DER files to read.
CARD 16.3: File name of the first .DER file. The program will read the files up to

the number specified by CARD 16.2.
CARD 17: Maximumdistance cut-off r Ec and standard deviationσE of theGaus-

sian smoothing used for the integration of the EXAFS signal. The
EXAFS signal is calculated from r Ec up to r Ec + 3σE with a Gaussian
smoothing in order to avoid truncation problems.

CARD 18: Noise function on the g(r): 0 constant noise, based on average value
of the input noise file; 1 accounting for pair statistic; 2 read on the
inserted noise files; 3 accounting for pair statistic, but tunable, in
this case an additional card is required with the multiplying factor.
This card has to be repeated for each g(r) inserted into the fitting
procedure.

The program runs with the command

rmcxas < rmc-gnxas.in

The .DER files are created by the gnxas program, and specific instructions about
the practical use of this program can be found in [4, 5]. In the present example, the
Ag-Br Ag K -edge γ(2) signals (in form of .DER files) were calculated in a range of
distances between 1.90 and 7.00 Å with a stepΔR=0.10 Å, for a total of 52 different
.DERfiles. If the cut-off distance r Ec + 3σE defined by CARD17 results to be greater
than the maximum distance RM

der of the corresponding set of .DER files, the program
updates the cut-off r Ec appropriately (using RM

der − 3σE ).
While running the rmcxas program, many useful files are created to check the

input data and for visualization of the simulation. Detailed information is stored
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Fig. 8.10 Screenshot of the window created with the command gnuplot < sh_rmc, for the
RMC simulation of liquid AgBr at 725 K [15]. Starting from the top we have the two Br (upper)
and Ag (lower) K -edge experimental and RMC-EXAFS signals, and their difference. The residual
(χ2 of (8.18)) as a function of the RMC steps and the total pair distribution function are shown in
the middle of the figure (third row). The lower figures (last row) are the three partial g(r) obtained
by the RMC refinement compared with the models obtained by molecular dynamics [27]: from the
left, the first is AgAg, the second is AgBr and the last is BrBr

in the folder chk and the relevant files can be checked in order to avoid mistakes
and misleading results. The g_rmod files contain the models of the pair distribution
functions used for the fitting and their interpolation if binned on a different mesh,
while the XASinp and phainp files contain respectively the EXAFS data and the
phase shifts of the .DER files. Finally the phacor files contains the phase shifts
corrected for possible 2π jumps. It is advisable to check the smoothness both for
distance r and in k (or energy) variables of the phase functions, especially when
dealing with large set of .DER files.

Other files are created for visualization and storage of the various data produced by
the programwhich are updated at each loop of the simulation. The files exXrmc.gnu
contain the total experimental and calculated EXAFS signals and the residual, for
each edge under consideration. The files gam_eX.gnu contain the individual γ sig-
nals contributing to each edge. The information on the partial pair distribution func-
tions at each step is stored in the radrmcXX.gnu files, while the information on the
total distribution function is in radrmc-t.gnu. All these files can be visualized using
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gnuplot [16]. Finally, a gnuplot macro is created automatically by the program,
called sh_rmc, which allows monitoring all the previous file in a single window
during the RMC simulation. A screenshot of this window for AgBr is shown in
Fig. 8.10.

During the simulation, the atomic configurations of the RMCmodel are appended
to the file containing the initial structure AgBxyz.rmc, for selected RMC steps. In
this way, an extended set of tridimensional models of the structure is available for
successive analysis. After equilibration, those structures are all compatible with the
given experimental data and can be used for a detailed structural analysis. Typically,
a reasonable statistics is achieved considering 102–104 configurations obtained after
equilibration to a minimum residual value. Specific programs for detailed structural
analysis [12, 14], including determination of pair and triplet distributions, spherical-
harmonics invariants and common-neighbor analysis are also available from the
authors.
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Part II
Extended knowledge

The chapters of this part correspond to the talks of the joint MSNano-EUSpec con-
ference that was held at the University of Rennes 1 on July 1 and 2, 2016. This
conference was organized both as the final conference of the MSNano network and
in honor of Rino Natoli at the occasion of his 75th birthday. The talks selected
here correspond to those directly related to the multiple scattering descriptions of
spectroscopies.
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Chapter 9
(e,2e) Impact Ionization Processes
for Surface Science

Rakesh Choubisa, Didier Sébilleau, Junqing Xu and Calogero R. Natoli

Abstract We present a scattering theoretic approach to the calculation of the cross-
section of (e,2e) impact spectroscopy where all the electrons involved are treated
within the real space multiple scattering framework. This approach is particularly
suited to the reflection geometry at low kinetic energies, with the ejection of a core-
level electron. In this case, we expect (e,2e) spectroscopy can be turned into an
extremely sensitive surface structure probe.

9.1 Introduction

(e,2e) has a long history, especially in atomic and molecular physics. Originally
derived for the (p, 2p) spectroscopy in nuclear physics [1], where p represents a
proton, it was proposed in 1966 by Smirnov and coworkers [2] for the investigation
of atomic wave functions [3], upon the replacement of the protons by electrons. Since
then, it has enjoyed a widespread popularity and is often termed electron momentum
spectroscopy [4]. Indeed, in the high energy regime (primary energy ∼10–50keV),
we can represent the electron by a plane wave. If in addition, the momentum transfer
is large (K = kin − ksc ≈ kex), the collision between the impinging electron and
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the target electron can be described as a single binary collision (i.e. many-body
interactions are approximated by consecutive two-body interactions) and therefore,
the impact approximation is valid [5]. This approximation assumes that the incoming
electron interacts only with the ejected electron and neither affects the target nor
is affected by it (the spectator electrons are frozen). Within this so-called Plane
Wave Impulse Approximation (PWIA), the momentum opposite to the recoil ion
momentum vector is interpreted as the bound electron momentum. In this case, the
cross-section is proportional to the spectral momentum density �(q, ε) = |φ(q, ε)|2
where q is the momentum of the bound electron and ε its binding energy. φ(q, ε)
is the Fourier transform of the wave function φ(r, ε) before the collision. �(q, ε) is
the probability of finding a bound electron of momentum q and energy ε. Hence the
name of wave function mapping spectroscopy [6, 7] often given to (e,2e).

Although proposed since the very beginning of (e,2e), the application of the
technique to solids [2] has long been hampered by the low count rate. It is only rather
recently that technical developments in the devising of new analyzers, such as the
time-of-flight technique [8], have made it possible to use it as a probe of condensed
matter.

(e,2e) in reflection mode was proposed back in 1978 in order to study surfaces by
D’Andrea andDel Sole in a theoretical paper [9]. The first experiment was performed
in 1992 byKirschner and coworkers [10] onW(110). But it is not before 1995 that the
feasibility of this binding-energy spectroscopy with quasimomentum discrimination
was firmly established [11]. However, in this case, as we need to be sensitive to the
surface, the experiments have to be performed for primary beams of low energy and
grazing incidence in order to minimize the inelastic mean free path and the escape
depth of the outgoing electrons. In the case of surfaces, the use of (e,2e) can give
us important information on many different processes. For instance, in their seminal
paper, D’Andrea and Del Sole [9] demonstrated that the computed (e,2e) spectra
were very sensitive to the surface reconstruction. It is with this type of applications
in mind that we develop here a real space multiple scattering framework to model
(e,2e) experiments. Previous approaches were more interested in the excitation of
valence states; we focus here on core states.

9.2 Reduction of the Cross-Section

The cross section of (e,2e) can be written as

d3σ

dE1dΩkscdΩkex
= 1

8
(2π)4

(
2m

�2

)3 ksckex
kin

∑
av

∣∣〈ΦN+1
ksckex

|TI |ΦN+1
kin

〉∣∣2 . (9.1)

Here, we have noted kin, ksc and kex respectively the direction of the incoming,
scattered and excited (ejected) electron. By convention, the scattered electron is the
faster of the two outgoing electrons and the ejected (or excited) electron is the slower.
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The sum over the states noted av is a sum over degenerate final states and an average
over degenerate initial states.

Here, |ΦN+1
kin

〉 and |ΦN+1
ksckex

〉 are eigenstates of the asymptotic Hamiltonian, i.e. of
the Hamiltonian H0 without interaction. (N + 1) is the total number of electrons,
the target being assumed to contain N electrons. We can express the initial state as

|ΦN+1
kin

〉 = |ϕN−1
g 〉 |φ0〉 ⊗ |φkin〉 , (9.2)

where |φ0〉 is the initial wave state of the electron that will be excited, |φkin〉 is the
wave state of the incoming electron and |ϕN−1

g 〉 is the ground state of the remaining
(N − 1) system. Here, ⊗ represents the product in the two-electron space.

Likewise, we write the final state as

|ΦN+1
ksckex

〉 = |ϕN−1
ion 〉 |φksckex〉 , (9.3)

where |ϕN−1
ion 〉 is the residual ion state and |φksckex〉 is the outgoing two-electron state.

With these notations, the cross-section becomes

d3σ

dE1dΩkscdΩkex
= 1

8
(2π)4

(
2m

�2

)3 ksckex
kin

×∑
av

∣∣〈ϕN−1
ion | 〈φksckex | TI |ϕN−1

g 〉 |φ0〉 ⊗ |φkin〉
∣∣2 .

(9.4)

At this stage, we make a first approximation called the frozen core approximation
or the sudden approximation. This approximation assumes that the ejected electron
leaves the atom in a time much less that the time it takes for the remaining electrons
of the ion to readjust. In other words, these atoms can be considered as spectators of
the interaction process. This approximation implies

d3σ

dE1dΩkscdΩkex
= 1

8
(2π)4

(
2m

�2

)3 ksckex
kin

∑
av

∣∣SN−1
0

∣∣2 ∣∣T f i

∣∣2 , (9.5)

where we have noted
T f i = 〈φksckex | TI |φ0〉 ⊗ |φkin〉 . (9.6)

We are then left with a three-body problem plus the overlap term
∣∣SN−1

0

∣∣2 =∣∣〈ϕN−1
ion |ϕN−1

g 〉∣∣2 which is independent of the interaction process. 〈ϕN−1
ion |ϕN−1

g 〉 is
usually called the structure factorwhile 〈φksckex | TI |φ0〉 ⊗ |φkin〉 is called the collision
factor. The separation of the totalmatrix element into these two contributions is called
the factorization approximation. For the rest of the discussion, we will consider the
structure factor as constant and take it out of the sum. In this approximation, TI is a
two-body transition operator.
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9.3 The Two-Electron Differential Cross-Section

We recall that a N -body T -matrix element can be written as [12]

⎧⎨
⎩
T f i = 〈Φ f |V f |Ψ +

i 〉 = 〈Φ f |V f Ω
(+)
i |Φi 〉 post form

= 〈Ψ −
f |Vi |Φi 〉 = 〈Φ f | Ω

(−) †
f Vi |Φi 〉 prior form ,

(9.7)

where |Ψ ±〉 is an eigenket of H , the full Hamiltonian, |Φ f 〉 an eigenstate of Hf =
H − V f and |Φi 〉 an eigenstate of Hi = H − Vi . Vi and V f are the interaction
potentials respectively in the initial channel and the final channel. Ω(±) are Møller
wave operators.

Each continuum electron interacts with the cluster potential through

Vxx S =
Nat∑
n=1

Vxx n , (9.8)

where Nat is the number of atoms in the cluster. Here, xx stands for in, sc or ex, and
S for the sample. Within this 3-body approach (incoming electron, bound/ejected
electron, cluster), we can define the interactions in the initial and final channel as

⎧⎨
⎩
Vi = Vin S + Vin co + Vco S

V f = Vsc S + Vex S + Vsc ex .

(9.9)

We note that we can suppress the interaction potential Vco S between the core
state and the sample in the expression of Vi . Indeed, if the calculation of the sample
potential VS and of thewave functionφco(r) have been done properly, this has already
been accounted for.

Let us consider now the prior form of (9.7). As the interaction between the incom-
ing electron and the system Vin S cannot excite the bound electron,we can reduce Vi to
Vin co in (9.7) so thatwe have now |Φi 〉 eigenstate of Hi = H − Vin co = H0 + Vin S.
To keep the standard distorted wave notation, we will write it as |χ±

i 〉 ⊗ |φco〉. There-
fore, (9.7) becomes

T f i = 〈Φ f | Ω
(−) †
f Vin co|χ+

i 〉 ⊗ |φco〉 , (9.10)

where according to (9.9), |Φ f 〉 is an eigenstate of H0. |χ+
i 〉 is the result of the

interaction of the incoming electron with the sample through the potential Vin S. It is
therefore amultiple scattering statewhichwewill rewrite |χ±

in〉 tomake the difference
with the multiple scattering states in the final channel.

As thematrix elements of T involvemultiple scattering states |χ±〉, let us introduce
the multiple scattering Møller wave operators ω(±)

xx associated to the Hamiltonian
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Hxx = H0 + Vxx S by

ω(±)
xx |Φ〉 = (ω(±)

xx ⊗ I ) |kxx〉 ⊗ |φ〉 . (9.11)

We can now rewrite our result (9.10) in terms of the initial state and final state
plane waves solutions of H0 as

T f i = 〈ksc| ⊗ 〈kex| Ω
(−) †
f Vin co (ω(+)

in ⊗ I ) |kin〉 ⊗ |φco〉 . (9.12)

This expression is an exact result within our 3-body impact approximation.
An important issue in (e,2e) spectroscopy is to find a proper description of the

so-called post-collision interaction (PCI), i.e. the interaction between the two out-
going electrons. In our formulation, this effect is embedded within the final channel
Møller wave operator Ω

(−) †
f . We know how to compute the individual wave opera-

tors ω(±)
xx , all multiple scattering codes can do it, but Ω(±)

f is a complicated operator
taking into account all the interactions in the final state at the same time. However,
we can use the simple first order approximation derived by Briggs [12]

Ω(±) ≈
N∏

n=1

ω(±)
n . (9.13)

We will call this result Briggs’ first order approximation (Br1 in the equations).
We find then

Ω
(−) †
f

∣∣∣
Br1

= (ω(−) †
sc S ⊗ I )(I ⊗ ω(−) †

ex S ) ω(−) †
sc ex = (ω(−) †

sc S ⊗ ω(−) †
ex S ) ω(−) †

sc ex , (9.14)

where the order of the wave operators is indifferent. ω(−) †
sc ex is the PCI wave opera-

tor which describes the (screened Coulomb) interaction between the two outgoing
electrons.

Therefore, we can rewrite now the transition matrix element as

T f i

∣∣
Br1 = 〈ksc| ⊗ 〈kex| ω(−) †

sc ex︸ ︷︷ ︸
PCI scattering state

(ω(−) †
sc S ⊗ ω(−) †

ex S ) Vin co (ω(+)
in ⊗ I ) |kin〉 ⊗ |φco〉 .

(9.15)
The neglect of PCI amounts to the replacement of theMøller wave operator ω(−) †

sc ex
by the identity I⊗ in the two-electron space.

In order to simplify the notation, let us write as usual

ω(±)
xx |kxx〉 = |χ±

kxx
〉 , (9.16)

and the Coulomb interaction in the initial channel as VC as there is no ambiguity (the
one in the final channel is contained into the PCI wave operator). Note that VC is
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a short-hand notation for the antisymmetrized operator (A†
⊗VCA⊗), where A is the

antisymmetrizer.
We can now rewrite (9.15) as

T f i

∣∣
Br1 = 〈χ−

ksc
| ⊗ 〈χ−

kex
| ω(−) †

sc ex VC |χ+
kin

〉 ⊗ |φco〉 , (9.17)

where the |χ±〉 are the multiple scattering states computed by the multiple scattering
codes.

We can now inject this result into the cross-section

d3σ

dE1dΩkscdΩkex

∣∣∣∣
Br1

= 2π4

(
2m

�2

)3 ksckex
kin

∣∣SN−1
0

∣∣2 ∑
av

∣∣T f i

∣∣2 , (9.18)

to obtain a workable formula within the first Briggs approximation.
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Chapter 10
Layer-Resolved Photoemission Study
of Doped Ag-Supported Ultrathin MgO Films

Thomas Jaouen

Abstract MgO/Ag(001) ultrathin films doped with interfacialMg atoms are studied
with layer-resolved Auger electron diffraction experiments, ultraviolet photoemis-
sion measurements, multiple scattering calculations, and density functional theory
(DFT) calculations. TheMgatom intercalation at theMgO/Ag(001) interface induces
a strong rumpling of the interface layers as well as a lowering of the work function
related to interface electronic structure changes. DFT analysis of the metal-oxide
interactions responsible for the interface dipole reproduces the experimental obser-
vations and reveals that the metal/oxide work function changes essentially originate
in an increased electrostatic compression effect.

10.1 Introduction

Metal-supported ultrathin oxide films host unique chemical and physical proper-
ties owing to their reduced dimensionality and the enhanced role of the metal/oxide
interface [1]. In particular, they have been widely studied both experimentally and
theoretically in the field of heterogeneous catalysis due to their pivotal role in control-
ling charging mechanisms, adsorption properties, and catalytic activation of metal
ad-atoms and molecules [2–7]. Defects engineering further allows tuning the work
function and the electronic structure at the interface without modifying the oxide
overlayer [8–12].

For this purpose, MgO/Ag(001) represents a model system that has been inten-
sively studiedboth theoretically and experimentally [13]. For example,MgO/Ag(001)
interfaces doped with oxygen or magnesium vacancies and impurities have shown
to exhibit an enhanced catalytic activity with respect to the dissociation of H2O [14,
15] due to modifications of the metal/oxide work function [16, 17]. Nevertheless,
despite the increasing theoretical understanding of dopedmetal/oxide interfaces, few
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experiments dealingwith post-growth interface engineering have been performeddue
to the practical difficulties inherent to the buried interfaces.

In this chapter, we focus on the electronic and structural properties of experimen-
tally engineered MgO/Ag(001) interfaces. Intercalation of Mg atoms at the interface
is achieved by post-growthMg exposures. Layer-resolved Auger electron diffraction
(AED) and ultraviolet photoemission (UPS) experiments are used to demonstrate that
Mg intercalation induces a strong rumpling of the interface layers as well as a low-
ering of the work function. The origin of the induced interface dipole is discussed
through DFT calculations and the disentanglement of its charge transfer, rumpling,
and electrostatic compression contributions. It is shown that the strong rumpling
is a structural response to the interfacial charge transfer and that the metal/oxide
work function changes essentially originate in an increased electrostatic compression
effect.

10.2 Methods

10.2.1 Experimental

The experiments have been conducted in a multi-chamber ultrahigh vacuum (UHV)
system with base pressures below 2 × 10−10 mBar. The MgO monolayers (ML)
(1 ML = 2.10Å) were epitaxially grown on a freshly cleaned Ag(001) surface by
co-evaporation of Mg and O2 (oxygen pressure = 5 × 10−7 mBar) at 453K. Mg
intercalation have been performed by exposing the MgO films to an Mg flux (2.4 ×
1013 atoms/(cm2s)) at a substrate temperature of 513K for limiting Mg adsorption at
the oxide surface.

X-ray and ultraviolet photoelectron spectroscopy (XPS-UPS) have been per-
formed using a hemispherical analyzer (Omicron EA125) with a five-channel detec-
tion system, and Al Kα and He-I resonance (hν = 21.22eV) lines as the x-ray
and UV sources, respectively. The total energy resolutions were respectively 0.80
and 0.15eV for XPS and UPS. The work function of the dielectric system (φ∗

m),
defined as the energy of the vacuum level (Evac) with respect to the Fermi level
of the MgO/Ag(001) system (EF ), is determined from the low-energy cutoff (Ecut)
of the secondary photoelectron emission: φ∗

m = hν − (EF − Ecut). Auger Electron
Diffraction (AED) measurements of the Mg K L23L23 Auger transition were done
using a two axis manipulator allowing for polar and azimuthal sample rotations with
an accuracy better than 0.2◦ and AED profiles were recorded for polar sample rota-
tions (the polar angle is defined with respect to the surface normal) between−5◦ and
60◦ for the (010) and (110) inequivalent emission planes of the cubic structure of the
MgO(001) film.
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10.2.2 Computational Details

The multiple scattering spherical wave cluster calculations have been performed in
the Rehr–Albers framework [18], by using the msspec program [19, 20] for clusters
containing up to 420 atoms. Details on the calculations are given in [21]. Briefly,
the multiple scattering expansion of the photoelectron wave function was carried out
up to the fourth order which we checked to be sufficient to achieve convergence for
the configurations considered. Following various experimental works [22–24], we
assumed pseudomorphic ultrathin MgO films on Ag(001) with interface Mg atoms
occupying the substrate hollow sites and an interfacial distance between Ag and O
atoms of 2.51Å. Finally, a broadening of the AED peaks due to the formation of
mosaic observed during the growth of the MgO films on Ag(001) [25], was taken
into account by averaging the calculations over a cone of 2.5◦ half angle.

TheDFTcalculations havebeen carried out in the generalizedgradient approxima-
tion (GGA) using the Perdew–Burke–Ernzerhof (PBE) exchange-correlation func-
tional [26]. The calculations used the Projector-Augmented Wave (PAW) formalism
[27], implemented in a real-space grid in the gpaw code [28, 29], with a grid spac-
ing of 0.18Å. The MgO/Ag (001) system was modeled with three layers of MgO
on three Ag layers with lattice parameter a0 = 4.16Å and Ag interface atoms below
the oxygen anions. The vacuum region between adjacent slabs was set to ∼20Å.
(
√
2 × √

2)a0 surface unit cells were used for calculations and Brillouin zone sam-
pling were performed using a Monkhorst–Pack mesh with 4 × 4 × 1 k points [30].
During geometry optimization, only the Ag atoms of the bottom layer have been kept
fixed and a tolerance of 0.02eV/Å was applied.

10.3 Results

10.3.1 Layer-Resolved Auger Transition at the Ultrathin
Limit

Figure10.1a shows normal-emission Mg K L23L23 Auger spectra of bulk (18 ML)
and ultrathin (2–3ML)MgO films. For a non-resonant excitation, the photoemission
of Auger electrons can be described by a two-step process [31]. A core hole is first
created by photon absorption on the 1s core level, and the Auger decay then involves
two electrons of the 2p orbital. The Auger electron leaves the atom with a kinetic
energy which depends on the binding energies of the 1s and 2p core levels and onU ,
the on-site Coulomb interaction which takes into account of the Coulomb interaction
between the two holes on the L shell in the final state. Since an Auger transition does
not obey to the dipolar selection rule, many final states are allowed, explaining
the multiplet structure of the Auger transitions. For bulk MgO film [Fig. 10.1a, top
spectrum], the Mg K L23L23 spectrum exhibits two contributions corresponding to
the 1S and 1D multiplets of the Mg 2p final state. For ultrathin MgO films grown on
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Fig. 10.1 a Photoemission spectra of the Mg K L23L23 Auger transition of bulk (18 ML, top spec-
trum) and ultrathin (2–3 ML, middle and bottom spectra, respectively) Ag-supported MgO films.
Best fit and layer-by-layer decomposition are also shown. b Schematic band diagram illustrating
the spectroscopic origin of the Mg K L23L23 layer-by-layer resolution for a 3 ML-thick MgO film.
The observed increase in the Auger kinetic energy with decreasing distance from the interface has
been attributed to the image-potential screening of the localizedMg 2p holes by the metal substrate.
The distance-dependent screening of the two-holes in the Auger final state leads to different values
of the on-site Coulomb interaction for the Auger transitions involving electrons of the interface,
sub-surface and surface layers

Ag (2–3 ML) [Fig. 10.1a middle and bottom spectra], it has been demonstrated that
theMg K L23L23 spectra are layer-resolved [32].As seenFig. 10.1a, theAuger spectra
can be perfectly adjusted using an experimental Mg K L23L23 Auger spectrum of a
1 ML MgO/Ag(001) sample and including as many fitting components as there are
MgO layers. For 3ML thick MgO film, the Auger spectrum is fitted by three shifted
monolayer-Auger components C1, C2, and C3 which correspond to Auger electron
emission from the interface, sub-surface and surface oxide layers, respectively.

As previously discussed by Kaindl et al. for Xe multilayers on Pd(001) [33] and
Altieri et al. [34] in the case of MgO/Ag(001), the layer-by-layer resolution of the
Auger transition reflects the sensitivity of the two holes final states resulting from
the Auger decay to extra-atomic relaxation effects. The observed increase in the
Auger kinetic energy with decreasing distance from the interface has been attributed
to the image-potential screening of the localized Mg 2p holes by the metal substrate
that basically leads to different values of the on-site Coulomb interaction for the
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Auger transitions involving electrons of the interface, sub-surface and surface layers
[Fig. 10.1b].

10.3.2 Mg-Doped MgO/Ag(001) Interfaces

10.3.2.1 Layer-Resolved Atomic Structure Probed by Auger Electron
Diffraction

Figure10.2a shows the variation of the normal-emission Mg K L23L23 Auger spec-
trum uponMg exposure of a 3 MLMgO sample. The fourth component (labeled C0)
that appears at higher kinetic energy in theMg K L23L23 Auger spectrum is related to
electron emission from intercalated Mg atoms in the Ag substrate [32, 35]. As seen
in the inset of Fig. 10.2a, its normal-emission intensity gradually increases as a func-
tion of the exposition time suggesting that Mg intercalation takes place throughout
the Mg exposure likewise.

Figures10.2b, c respectively show the experimental and simulated layer-resolved
AED polar scans of the Mg K L23L23 Auger spectra in the (010) emission plane.
As the C1, C2, and C3 components of an as-grown Mg K L23L23 Auger spectrum
correspond respectively to the interface, sub-surface and surface oxide layers, the

Fig. 10.2 a Photoemission spectra of the Mg K L23L23 Auger transition of the 3 ML MgO film
obtained before and after exposition to anMg atomic flux. Best fit and layer-by-layer decomposition
are also shown. The inset shows the evolution of the intensity of the C0 component as a function
of the Mg exposure time. b Experimental AED polar scans of the C0, C1, C2, and C3 Auger
components in the (010) emission plane, for a 3 ML-thick MgO film exposed to Mg. c Calculated
Mg K L23L23 AED profiles in the (010) emission plane for a 3 ML MgO system with Mg atoms
occupying substitutional sites of the Ag substrate. d Rp-factor contour map using Δ1 and Δ2 as
parameters. These parameters are defined in e which shows a sketch of our structural model. The
red, green and grey atoms correspond respectively to oxygen, magnesium and silver
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intensity distribution of C3 is nearly isotropic whereas the AED profiles associated
with C1 and C2 show typical forward scattering peaks along the [001] and [101]
directions of the rocksalt structure of the MgO lattice. The C0 metallic component
curve in Fig. 10.1c also shows a well-structured pattern but with forward scattering
peaks sharper than those of the C1 and C2 components. Such a narrowing is known
to originate in defocusing effects related to the multiple scattering events [36, 37].
Therefore it is likely to be observed for electron emission from Mg atoms located
beneath the oxide layer. The fact that the defocusing effects do not cancel the forward-
scattering constructive interferences then indicates that the metallic Mg atoms are
located in the MgO/Ag interface region.

Indeed, the simulated AED curves obtained by combined multiple scattering cal-
culations and reliability factor (Rp-factor) analysis [35] (Fig. 10.2d, e) show that the
C0 component is related to electron emission fromMg atoms intercalated in the sub-
stitutional sites of the Ag plane just beneath the MgO lattice and that the MgO lattice
undergoes a significant distortion at the interface upon Mg intercalation. The Rp

factor contour map is shown in Fig. 10.2d (Δ1 and Δ2 parameters are defined in the
sketch of our structural model Fig. 10.2e). The best agreement between experimental
and calculated AED profiles is obtained for an Mg-Ag alloy concentration of about
30% with dMg−O = 2.0Å and a Rp-factor of 0.15. The Mg atoms of the interfacial
alloy are displaced toward the oxide layer by 0.1Å and the nearest neighbors O2−
ions are displaced downward by 0.4Å relatively to the Mg2+ ions position.

Such a rumpling at the interface upon Mg intercalation has been further predicted
by DFT calculations. Bader analysis has shown that the neighboring Mg and Ag
atoms of the substrate interface layer are respectively positively (−1.5 electrons per
atom) and negatively charged (0.9 electrons per atom). The structural relaxation at
the interface originates in the charge transfer between the Mg and Ag atoms of the
interfacial alloy that are respectively in attractive and repulsive Coulomb interactions
with the O2− ions directly adjacent [35].

10.3.2.2 Induced Electronic Structure Changes

Deposition of ultrathin oxide films on metals induces a metal work function shift
and a variation of the tunneling probability for charges at the interface [38–45]. This
effect has been understood has coming from the competition between the interfa-
cial charge transfer (ΔφCT), the oxide lattice polarizability and associated rumpling
dipole moment (ΔφSR), and the polarization of the metal electrons at the interface
induced by the highly ionic oxide layer, the so-called electrostatic compression effect
(Δφcomp).

Figure10.3a shows the low-energy cutoff of the secondary photoelectrons emis-
sion for the Ag(001) substrate and for the MgO(3ML)/Ag(001) sample before and
after Mg intercalation. The MgO deposition leads to a metal work function shift,
Δφm , of about −1.30 ± 0.05eV which results in a metal/oxide work function value
φ∗
m of 3.10 ± 0.05eV for our reference sample. This decrease is mainly driven by

the compression of the metal electron density at the interface induced by the oxide
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Fig. 10.3 a Low-energy cutoff of the secondary photoelectrons emission for the Ag(001) substrate
and for the MgO(3ML)/Ag(001) sample before and after exposure to a Mg flux. Δφm and Δφ∗

m
correspond to the work function variations of the metal substrate and of the metal/oxide system,
respectively.The inset shows the evolutionofΔφ∗

m as a functionof theMgexposure time.bHe-IUPS
spectra showing the valence band region of the MgO reference sample (top) and after Mg exposure
(bottom). The method used for the VBM position determination is also sketched. c Evolutions of
the calculatedΔφCT,ΔφSR, andΔφcomp contributions to the calculatedMgO(3ML)/Ag(001) work
function variation Δφ∗

m (DFT), as a function of the interface Mg atom concentration. Experimental
work function changes ΔφBO due to the band-offset (BO) variations at the metal/oxide interface
are also shown for comparison

deposition and is particularly strong for wide band gap oxides such as MgO [38,
42–44]. As seen Fig. 10.3a, intercalation of Mg at the metal/oxide interface further
modifies the metal/oxide work function. Removing the initial band bending con-
tribution of about 0.30eV [32], the metal/oxide work function can be diminished
over ΔφBO = −0.50eV depending on the intercalated-Mg concentration [see inset
Fig. 10.3a]. Comparison of the valence-band (VB) region of He-I UPS spectra corre-
sponding to the referenceMgO/Ag(001) sample (top) and to theMg-intercalated one
(bottom) [Fig. 10.3b] show that this work function diminution is related to a change
in the Fermi level pinning position in the MgO band gap.

The physical origin of the interface dipole responsible for the work function
changes induced by Mg intercalation at the MgO/Ag(001) interface has been inves-
tigatedwith the help ofDFT calculations by disentangling the contributions of charge
transfer (ΔφCT), rumpling (ΔφSR), and compression effect (Δφcomp) to the total work
function variation of the metal/oxide system (Δφ∗

m) [35]. Figure10.3c shows the
comparison between DFT-calculated [Δφ∗

m (DFT)] and experimental work function
changes [ΔφBO (Exp.)], as well as the evolutions of the calculated ΔφCT,ΔφSR, and
Δφcomp contributions as a function of the interface Mg atom concentration. As it can
be seen, the experimentalΔφBO (Exp.) values are in overall good agreement with the
DFT-predicted work function changes Δφ∗

m (DFT). In particular, the intercalation of
25% of Mg in the first interface Ag layer results in theoretical work function change
of −0.55eV in very good agreement with our experimental findings. The ΔφCT and
ΔφSR contributions respectively increases and decreases with Mg concentration in
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such a way that they compensate each other. Indeed, as previously discussed, the
local lattice distortion at the interface is a structural response to the interfacial charge
transfer. It turns out that the decay of the metal/oxide work function is mainly gov-
erned by the progressive increase of the compression effect as demonstrated by the
similar evolutions of Δφ∗

m and Δφcomp on Fig. 10.3c.
It has been shown that the compression effect scales with the inverse of the inter-

face distance between the oxide and the metal [43]. For MgO(3ML)/Ag(001), the
interface distance only diminishes by 0.1Å when the Mg concentration of the inter-
face Ag-Mg alloy varies from 0 to 100% suggesting that the distance reduction effect
induced by the Mg intercalation cannot simply explain the enhancement of the com-
pression contribution. A deeper analysis of the interface electronic structure as done
for example in BaO/metal systems [46], is therefore required for better enclosing the
richness of interaction at the metal/oxide interfaces.

10.4 Conclusion

The mechanisms responsible for the work function changes induced by the Mg
atoms intercalation at the MgO/Ag(001) interface have been studied by means of
Auger electron diffraction experiments combined with multiple scattering calcula-
tion, ultraviolet photoemission spectroscopy, and density functional theory calcula-
tions. Intercalated Mg atoms are preferentially intercalated in the substitutional site
of the Ag interface plane, lead to a strong work function change related to band-
offset variations at the MgO/metal interface and induce a significant rumpling in
the interface layers. DFT-based calculations have further shown that the work func-
tion reduction mainly reflects the increased electrostatic compression effect, since
the coupled charge transfer and rumpling contributions compensate each other. This
work gives new insights for controlling the interfacial properties of metal-supported
ultrathin oxide films such as work functions and local atomic structure which have a
significant impact on their catalytic activities.
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Chapter 11
Es2Ms: Interface from Electronic Structure
Codes to Multiple Scattering Codes

Naoki Komiya, Fukiko Ota, Junqing Xu and Keisuke Hatada

Abstract We present an interface package, called es2ms (Xu J et al. Comput Phys
Commun, 203:331, 2016, [1]) for passing self-consistent charge density and potential
from Electronic Structure (ES) codes to Multiple Scattering (MS) codes. MS theory
is based on the partitioning of the space by atomic-size scattering sites, so that
the code provides the charge densities and potentials for each scattering site. For
pseudopotential codes, the interface solves Poisson equation to construct the all-
electron potential on the radialmeshwhich is used to solve the transition operators (T -
matrix) andGreen’s functions inMScodes. ForGaussian basis set programs,we solve
recurrence relations to obtain the Coulomb potential. We describe the algorithms of
the interface and an example.

11.1 Algorithm for Peudopotential Codes Output to MS
Calculations

The vasp code [2] is a popular plane-wave code for total energy Density Func-
tional Theory (DFT) calculations in condensed matter. Plane-wave codes have the
advantage of high accuracy and computational efficiency.
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The Projector-Augmented-Wave (PAW) method [3] is widely used in electronic
structure calculations by vasp. In the PAW method, the all-electron Kohn–Sham
potential is replaced by a pseudopotential inside the augmentation spheres around
the nuclei. This pseudopotential coincides with the all-electron potential only in
the space outside the augmentation spheres. However, for MS calculations the all-
electron potential is required in all space, especially near the nuclei where the core
orbital exhibits a large amplitude. Calculations using the PAWmethod provide pseu-
dopotential and all-electron charge density. Inside the augmentation spheres, the
charge density is interpolated onto the radial mesh of the MS code. The all-electron
full-potential is obtained by solving the Poisson equation with proper boundary con-
ditions on the surface of the spheres as given by the pseudopotential. Outside the
spheres, the charge density and potential are interpolated from the Cartesian mesh
onto the radial mesh.

In order to solve Poisson equation we need to find the regular solution inside an
(augmentation) sphere S of radius rc, with the Dirichlet boundary condition on the
sphere, i.e. to solve

∇2V (r) = −4π�(r) , (11.1)

for r < rc, given the charge density � for all points inside S and the potential V on
the surface (r = rc). We introduce the function

W (r) ≡
∫
S

�(r ′)
|r − r ′| dr

′ , (11.2)

which satisfies Poisson equation but not, in general, the boundary condition. W (r)
can easily be expanded into a spherical harmonic representation,

W (r, r̂) = ∑
L

ωL(r)YL(r̂) , (11.3)

ωL(r) = ∫ rc
0

r�
<

r�+1
>

�L(r ′)4πr ′2dr ′, (11.4)

�L(r) = ∫
Y ∗
L (r̂)�(r, r̂) d r̂ , (11.5)

where r̂ = r/r . The general solution of the Poisson equation is then the sum of a
particular solution, such as W , and the general solution of the corresponding homo-
geneous (i.e., Laplace) equation. The latter can be expressed as

∑
L CLr �YL(r̂) for

arbitrary coefficients CL . By choosing CL = [υL(rc) − ωL(rc)]/r �
c , where

υL(r) =
∫
Y ∗
L (r̂)V (r, r̂) d r̂ , (11.6)

the boundary conditions are satisfied, and therefore the final solution is given by

V (r, r̂) =
∑
L

(
ωL(r) + [υL(rc) − ωL(rc)]r

�

r �
c

)
YL(r̂) . (11.7)
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Fig. 11.1 Calculated C
K -edge XAS of diamond
using non-SCF and SCF
potentials [1]

Figure11.1 shows the calculated carbon K -edge x-ray absorption spectra of a
diamond cluster of radius 18Åby the fpms code [4, 5] using non-SCF (self-consistent
field) and SCF potentials, respectively. The SCF potential is generated by the vasp
code and reconstructed by the es2ms package. It is clear that the SCF result agrees
better with the experimental data [6] than the non-SCF result.

11.2 Algorithm for GAUSSIAN Codes Output to MS
Calculations

gaussian 09 [7] is one of the widely used electronic structure calculation codes for
molecular systems. The basis sets are constructed by linear combination of Gaussian
Type Orbitals (GTOs), which makes it possible to perform a variety of calculations
very efficiently.

We describe here the algorithm that uses the gaussian output for MS theory. In
this algorithm, the electron charge density and the Hartree potential are evaluated
with and without the Muffin-tin (MT) approximation. In addition, the initial state
molecular orbital is reexpanded by a multi-site spherical harmonics. These calcula-
tions can be accomplished mostly analytically.

In theMT case, we have already applied this algorithm to compute the photoemis-
sion intensity of a pentacene molecule, where the initial state is the highest occupied
molecular orbital [8].
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11.2.1 Electron Charge Density and Hartree Potential
Constructed by Gaussian Basis Sets

As any product of two Gaussian functions is also a Gaussian function, the electron
charge density can be expanded by the Hermite Gaussian functions which are defined
by

�t,u,v(r p,α) = ∂t

∂Pt
x

∂u

∂Pu
y

∂v

∂Pv
z

e−αr2p
, (11.8)

where r p = r − P . The center P and the exponent α are chosen so that the Gaussian
function in (11.8) coincides with the Gaussian function from the product of two
GTOs.

The Hartree potential at r is equivalent to the nuclear attraction potential from the
nucleus at r with the charge of −e. Therefore we apply the McMurchie–Davidson
scheme [9] which was originally used for the nuclear attraction potential. In this
scheme, the following integral is obtained recursively

∫
�t,u,v(r p,α)

|r − C| dr = 2π

α
R0
t,u,v(α, R pc) , (11.9)

where R pc = P − C and C is the position of the interacting electron. Furthermore,
Rn
t,u,v(α, R pc) is a partial derivative of the n-th order Boys function Fn(αR2

pc) [10]

Rn
t,u,v(α, R pc) = (−2α)n

∂t

∂Pt
x

∂u

∂Pu
y

∂v

∂Pv
z

Fn(αR2
pc) , (11.10)

Fn(x) =
∫ 1

0
e−xt2 t2n dt . (11.11)

The partial derivative in (11.10) can be evaluated by the recurrence equation

Rn
t+1,u,v(α, R pc) = t Rn+1

t−1,u,v(α, R pc) − X pc R
n+1
t,u,v(α, R pc) . (11.12)

where Xcp is the x-component of the vector Rcp. The higher order derivatives of
Boys functions are obtained from the lower order derivatives. Similar equations are
satisfied for the y- and z-components.

We developed an algorithm to evaluate the spherically averaged electron density
in the MT case. The spherical averages of Hermite Gaussian functions in terms of a
given center C are obtained by integrating (11.8)

∫
�t,u,v(r p,α) d r̂c = 2π

αrc

∑
t ′u′v′

tCt ′ uCu′ vCv′ Ft−t ′,u−u′,v−v′ St ′,u′,v′ . (11.13)
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where the three coefficients such as tCt ′ are combinations. Here, we introduced the
following two terms

Ft,u,v = ∂t

∂Pt
x

∂u

∂Pu
y

∂v

∂Pv
z

1

Rcp ,
(11.14)

St,u,v = ∂t

∂Pt
x

∂u

∂Pu
y

∂v

∂Pv
z

e−αR2
cp sinh(2αrc Rcp) , (11.15)

where rc = r − C . Both terms can be calculated by recurrence equations [11].
Although they are more complicated than in the full-potential case, it is nevertheless
possible to avoid numerically evaluating the angle integration.

The spherically averaged Hartree potential V̄c is constructed from the spherically
averaged density �̄c. The subscript c denotes the center of the spherical average C.
V̄c is numerically evaluated using

V̄c(rc) = 4π

rc

∫ rc

0
r ′
c(r

′
c − rc) �̄c(r

′
c) dr

′
c +

∫
�(r ′

c + C)

r ′
c

dr ′
c , (11.16)

where � is the non-averaged electron density. The latter integral is the solution of
Poisson equation for � with the shift of the origin at C. It is calculated recursively
using (11.12).

11.2.2 Angular Momentum Expansion of Initial State

In general, centers of angular momentum expansion and of a GTO are different.
Thus the exponential function in a GTO depends on the direction from the center
of the spherical average C. With the help of the plane wave expansion formula, this
exponential function is expanded into spherical harmonics

e−αr2g = 4π e−α(r2c +R2
cg)

∑
L

(−1)� i�(2αrc Rcg) YL(r̂c) Y ∗
L (R̂cg) , (11.17)

where L = (�,m), Rcg = C − G, G is the center of the GTO, and i�(ρ) is a modified
spherical Bessel function. The monomial from a GTO can be also expanded easily
into spherical harmonics. Then, the angular momentum expansion results into the
evaluation of Gaunt coefficients

G(L1L2|L3) =
∫

YL1(r̂)YL2(r̂)Y
∗
L3

(r̂)d r̂ . (11.18)
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Table 11.1 List of the radial grids

Code Radial grid Formula

spr- kkr [12] SPRKKR xi = xmin exp { (i − 1) d }
wien2k [13] WIEN2K xi = xmin exp { (i − 1) d }
vasp [2] VASP xi = xmin exp

{
(i − 1)

(
xmax
xmin

) 1
Ngrid−1

}

lmto [14] LMTO xi = b [ exp { (i − 1) a } − 1 ]
quantum-espresso
[15]

QEPEXP xi = exp ( xmin+i d )
Ngrid

QEPSFT xi = exp ( xmin+i d ) −1
Ngrid

gpaw [16] GPAWL1 xi = i d

GPAWL2 xi = i a
Ngrid−1

GPAWEX xi = a {exp ( i d ) − 1}
GPAWIP xi = i a

1−i b

GPAWQR xi =
(

i
Ngrid

+a

)5

a − a4

abinit [17] ABINIT xi =
(

i
Ngrid

+a

)5

a − a4 (a = 10−2)

exciting [18] EXCCUB xi = xmin +
(

i−1
Ngrid−1

)3

EXCEXP xi = xmin

(
xmax
xmin

) i−1
Ngrid−1

EXC3EX xi = 0.5 {erf(yi ) + 1}
{
xmin +

(
i−1

Ngrid−1

)3}

+ [1 − 0.5 {erf(yi ) + 1}]
{
xmin

(
xmax
xmin

) i−1
Ngrid−1

}

yi = 5
i−nint

(
Ngrid
2

)

Ngrid

nint(x) rounds its argument to the nearest whole number

gamess [19] GAMLOG xi = −a ln

{
1 −

(
2i−1
2Ngrid

)3}

GAMEUL xi = a

(
i

Ngrid+1

)2

1−
(

i
Ngrid+1

)2

Hermann–
Skillman [20]

HERSKI xi = xi−1 + hi−1
h0 = 0.0025 hi is doubledevery40points

i : serial number of the points
xi : position of i-th point
xmin: minimum value of x
xmax: maximum value of x
Ngrid: total number of points
a, b, d: parameters
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Appendix

There are many electronic structure codes in material science. Each of them uses a
different kind of radial mesh, optimized for the computation of the potentials and of
the electronic charge densities. Our interface module performs also transformations
between the different radial grids whenever necessary.

When a set of original data points is given, this interface interpolates these points
by the cubic spline method, calculates the data points of the new radial grid chosen
by the user, and returns the set of these new data points. The forms of the radial grids
which can be used in this interface are as shown in Table11.1. The parameters in
these formulas can be set up by the user.
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Chapter 12
L-Edge Absorption and Dichroism in Low
Symmetry 3d0 Compounds

Peter Krüger and Calogero R. Natoli

Abstract Inorganic compounds containing light transition metal ions in a formal
(3d0) electronic configuration often have a complex atomic structure and several
polymorphs may co-exist, especially in nanomaterials. X-ray absorption spectra at
the metal L-edge probes the symmetry, electronic state and bonding of the transition
metal ion. In low symmetry crystals, linear dichroism is common and reflects a com-
plicated ligand field. We show that the metal L2,3-edge spectra, which are dominated
by strong particle-holemultiplet coupling, are well describedwithmultichannel mul-
tiple scattering theory. The ligand field and band effects are included ab initio by the
anisotropic scattering of the excited electron, whereby complex dichroism can be
accounted for. Titanite nanostructures and calcium carbonate are taken as examples.

12.1 Introduction

Many minerals contain a light 3d element (K, Ca, Ti, V), oxygen and other first
row element ligands. For each compound, several polymorphs with different, com-
plex crystal structures may coexist. The metal ion often occupies a octahedral or
tetrahedral site, but strong distortion is common and the point symmetry can be as
low as C1. L2,3-edge absorption spectroscopy is a powerful means for probing the
electronic state of the metal atom, its local atomic environment and bonding. If the
system has cubic or tetrahedral symmetry, the spectra can often be well described
using the ligand field multiplet model [1]. In these high symmetry cases, the metal 3d
states are split into two levels, t2 and e, and so the effect canbe reproducedby introduc-
ing one empirical parameter (10Dq). However, the number of ligand field parameters
rises to three in tetragonal symmetry and to even larger numbers for lower symmetry.
When so many quantities are taken as free fitting parameters, it not clear what can be
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learned from the theoretical analysis. Therefore, in low symmetry compounds, the
usefulness of the ligand field model becomes very questionable. Predictive compu-
tational methods are needed to extract the structural and electronic information from
the data. The standard first principles electronic structure methods, such the Hartree-
Fock and density functional theory, rely on the independent particle approximation.
This approximation breaks down for transition metal L2,3-edge spectra because of
strong intra-atomic correlation effects. For the light 3d-elements the crucial effect is
the Coulomb and exchange coupling between the excited (photo-) electron and the
core-hole. This effect requires the use of a correlated particle-hole wave function,
as employed in the Bethe-Salpeter-equation (BSE) approach [2]. However, BSE is
a numerically very heavy method and has so far only be applied to high-symmetry
crystal structures [3]. Alternatively, the multichannel multiple scattering (MCMS)
method can be used [4] which is presented in detail in Chap. 5 of this book. The
MCMS method is numerically light and formulated in a real-space multiple scatter-
ing framework. Therefore low symmetry and non-periodic (nano-) systems present
no difficulty. In this short chapter, we report mcms calculations of polarization
dependent L-edge absorption spectra of titanite nanocrystals and calcium carbonate.

12.2 Titanite Nanocrystals

Titanium dioxide is an important material for photocatalysis and photovoltaic appli-
cations. One-dimensional systems such as nanotubes and nanoribbons are promis-
ing for enhanced device performance because of their large surface-to-bulk ratio
and strongly anisotropic carrier transport. Using polarization dependent x-ray ab-
sorption spectra, we have recently investigated the electronic structure of individual
sodium-hydrogen titanite nanoribbons [5], which can be easily transformed to TiO2

nanoribbons by ion exchange and calcination. The titanite nanoribbons are made of
Ti3O7 layers which are separated by sodium and hydrogen cations, hydroxyl groups
and water. They have a monoclinic crystal structure and the most likely compo-
sition is NaTi3O6(OH)·2H2O [6], which contains three inequivalent Ti sites at the
centres of distorted TiO6 octahedra, see Fig. 12.1. We have calculated the Ti L2,3-
spectra usingmcms. The one-electron potential was generatedwith the linearmuffin-
tin orbital (lmto) code [7] in the local density approximation. The atomic sphere
approximations was used and empty spheres were included for approximate space
filling. The multiple scattering calculations were done with clusters containing about
150 atoms and 100 empty spheres depending on the absorber site. The calculation
of core-level energies is a difficult problem beyond the scope of this paper. Here we
have aligned the calculated spectra of each Ti site to the experimental threshold. The
other computational details are the same as in our previous works on Ti oxides [8].
We consider linear polarized light along themonoclinic crystal axes a = x and b = y
and along z. The polarization dependent spectra, averaged over all Ti absorber sites
(not shown) agree well with experiment [5]. Here we discuss the spectra of three
individual Ti sites, shown in Fig. 12.2.

http://dx.doi.org/10.1007/978-3-319-73811-6_5
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Fig. 12.1 Unit cell of NaTi3O6(OH)·2H2O crystal structure. Na in yellow, Ti in light blue, O in
red and H in white. The three inequivalent Ti atoms are numbered 1–3
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Fig. 12.2 Calculated Ti L2,3-edge spectra of NaTi3O6(OH)·2H2O for the three inequivalent Ti
sites and linear polarized light along cartesian axes x , y or z

The spectra of the three sites vary considerably, reflecting their very different lo-
cal structure. A strong polarization dependence is observed, the largest difference is
seen between the y-polarization and the x , z polarizations for sites Ti2 and Ti3. Also
in the O K -edge spectra, the strongest difference was found between y-polarization
and x or z polarization [5]. For the O K -edge, this linear dichroism can be understood
from the fact that the Ti-O bonds of the oxygen atoms on the surface of the Ti3O7

sheets, all lie in the (a, c) plane, resulting in an approximately uniaxial anisotropy
of the Ti-O electronic states along b. The Ti-O bond orientation is probably also
an important reason for the observed dichroism at the Ti L-edge. However, the ex-
planation is much more complicated at the L-edge, because there is no one-to-one
correspondence between the three polarization directions and the 2p → 3d transi-
tions, and the transitions mix through 2p spin-orbit and multiplet interactions. It is
seen from Fig. 12.2 that the dichroic effect increases in the sequence from Ti1 over
Ti2 to Ti3. This reflects the increasingly anisotropic environment. The optimized
Ti-O bond lengths are in the ranges 1.83–2.13, 1.88–2.10, 1.76–2.23 Å, for Ti1, Ti2,
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Ti3, respectively. The range is by far largest for Ti3, reflecting a strongly distorted
TiO6 octahedron, which leads to a large dichroism. However, this kind of reasoning
based on Ti–O bond lengths, is not enough since it would imply a slightly weaker
dichroism for Ti2 than for Ti1, in contrast to observation. Previously, we have shown
that in rutile and anatase TiO2 [8], the spectral fine structure, especially the L3-eg
feature (at 459–462 eV), reflects the geometrical and electronic structure of the sys-
tem on a much longer length scale than the first nearest neighbor (oxygen) shell. In
NaTi3O6(OH)·2H2O, the three Ti sites strongly differ in the second neighbor shell
which is made of Ti cations at a distance 2.9–3.2 Å and Na cations at 3.4–3.5 Å. Site
Ti1 is surrounded by six Ti and two Na ions, Ti2 has four Ti and two Na, and Ti3
has five Ti and zero Na neighbors. Inspection of Fig. 12.1 reveals that this second
neighbor cation distribution is rather isotropic for Ti1 but highly anisotropic for Ti2
and Ti3. Thus the ligand field of Ti2 and Ti3 is more anisotropic than that of Ti1,
resulting in an enhanced dichroism. From this discussion we conclude that linear
dichroism at the metal L-edge is a sensitive probe of the anisotropy of the local
electronic structure in low symmetry compounds, but its comprehension requires
theoretical methods beyond crystal field or first ligand-shell cluster models.

12.3 Calcium Carbonate

As a second example we discuss two common polymorphs of calcium carbonate
(CaCO3) namely calcite and aragonite. The local atomic structures are shown in
Fig. 12.3. The point symmetry at the Ca site is low in both cases: point group S6 in
calcite and Cs in aragonite. Looking only at the first coordination shell, calcite has
six oxygen ligands in a very nearly octahedral coordination with equal Ca-O bond
lengths (2.36 Å) and almost right O-Ca-O angles (87.4◦). Aragonite has nine oxygen
ligands at bond lengths 2.41–2.54 Å. In the independent particle picture, the Ca L3

and L2-edge spectra are both proportional to the unoccupied Ca-d density of states
(DOS). The ground state Ca-d DOS as calculated in the local density approximation
with the LMTO method are shown in Fig. 12.4 a. In both compounds the 3d-band
is 7–9 eV wide, but the mean width is clearly larger in calcite, whose DOS splits

Fig. 12.3 Atomic structure
of CaCO3 in a calcite and b
aragonite phases. Ca in light
blue, C in dark grey, O in
red. One Ca site and its
nearest neighbor CO3 units
are shown
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Fig. 12.4 Calciumcarbonate (CaCO3) in calcite (top) and aragonite phases (bottom). aGround state
Ca-d partial density of states. b Ca L-edge spectra calculated in multichannel multiple scattering
theory [9] along with experimental data taken from [10]

into two parts (t2g and eg) typical for an octahedral ligand field. The aragonite DOS
shows some fine structure, too, but the main weight is located in the center of the
band, indicating a weaker ligand field. Figure12.4 b shows the Ca L-edge spectra [9],
calculated in MCMS theory with clusters of 177 (176) atoms and 286 (68) empty
spheres for calcite (aragonite). As for the Ti spectra before, a partially screened core-
hole potential with 10% unscreened hole was used. The spectra were broadened
with a Lorentzian and a Gaussian of 0.2 eV FWHM each, and energy-shifted so as
to align the (a2) peak with the experimental data taken from [10]. Apart from a small
overestimation of some peak splittings, the calculated spectra agree very well with
the data. All peaks are reproduced with the correct intensities. In the calcite spectra
the a1 and b1 peaks have appreciable intensity. The simple four-peak structure (a1,
a2, b1, b2) is similar to CaO [4] and characteristic for metal-oxides with a formal
(3d0) ground state and octahedral symmetry [1]. The energy splitting and intensity
ratio of the a1:a2 (and b1:b2) doublet is, however, smaller in calcite than in CaO [4]
which shows that the ligand field is weaker in calcite. This fact cannot be understood
on the basis of a CaO6 model, because the octahedra are almost identical in the two
systems. The Ca-O bond length is even by 2% smaller in calcite than in CaO (2.40 Å)
which suggests a larger ligand field, which in turn should lead to an increase in a1-a2
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splitting and a1: a2 intensity ratio in contrast to observation. Clearly, second and
further coordination shells must be taken into account for a proper description of the
L-edge spectra. In the aragonite spectrum, the a1, b1 peaks are very weak and the b1
peak splits into a broad doublet (d-b1). This reflects the weak but complicated ligand
field due to the very low symmetry coordination of the Ca ion. In recent polarization
dependent measurements [11], substantial linear dichroism was observed at peak d,
which could be reproduced with our mcms calculations [9].

In summary, we have shown that L2,3-edge spectra of low symmetry (3d0) com-
pounds are very sensitive to the local atomic and electronic structure around the
metal ion. Linear dichroism is weaker than at K -edges, but nonetheless observable.
It may be useful for identifying the crystal orientation in nanostructures. The L-
edge spectra, which feature strong final state correlation effects, are generally very
well reproduced with MCMS calculations. This is because MCMS theory combines
a proper treatment of the strong particle-hole multiplet coupling with a precise de-
scription of the long-range electronic structure of the system. Owing to the flexibility
of the real-space multiple scattering method and the efficient implementation of the
MCMS equations in the R-matrix scheme, arbitrarily complex structures can be
handled with a very modest computational cost.

Acknowledgements P. K. is grateful to Dr Carla Bittencourt, Prof. Adam Hitchcock and
Dr Xiaofeng Zhu for many fruitful discussions.
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Chapter 13
Multichannel L-Absorption Calculations
by Analytical Continuation of Green’s
Function into Complex Energy Plane

Anna Taranukhina, Alexander Novakovich and Vladislav Kochetov

Abstract X-ray L2,3 absorption spectra are dominated by transitions to d states
which are either continuum states rapidly varying with the energy or collapsed bound
states formed in thefieldof the 2p hole in the absorbing atom.Computing such spectra
requires extremely small step in the real energy scale making the calculations time-
consuming even in a single-particle approach. In this paper we present an efficient
procedure of solving this problem within the multichannel multiple scattering real–
space Green’s function (MCMS-GF) method which takes into account the strong
impact of electron-hole correlations on L2,3-edge spectra. A new numerical scheme
is based on the analytical continuation of the Green’s function to complex energies.
The applicability of this approach is demonstrated by computing the K L2,3-edge
spectrum for potassium fluoride.

13.1 Introduction

It has been shown in works [1, 2] that within the Green’s function (GF) formalism
the convolution of the XANES spectra with a Lorentzian function of a half width
Γ is mathematically equivalent to calculating the GF for the integration contour
shifted by the value of Γ > 0 into the upper semiplane for any photoelectron energy
except the vicinity of the Fermi energy εF . The numerical aspects of this issue are
considered in the framework of the multiple scattering Green’s function (MS-GF)
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method in Chap.6. As an illustrative example, it is expedient to apply the developed
methods to the description of photoabsorption for the systems which are very sen-
sitive to both one-particle mean-field potential and electron-hole correlations. For
this, we consider K L2,3-edge spectrum of KF. The results presented in Sect. 13.2 for
K L-edge obtained with MS-GF method demonstrate the advantage of computing
photoabsorption spectra by the analytical continuation of the GF to complex ener-
gies. Section13.3 gives the extension of this numerical procedure to the MCMS-GF
method and illustrates the applicability of the MCMS-GF formalism in modeling
photoabsorption process.

13.2 K L-Edge Spectrum of KF Within MS-GF Method

Here we show the advantage of calculating photoabsorption spectra by the analytical
continuation of the GF to complex energies.

Throughout this chapter, atomic units for lengths and Rydberg units for energies
are used. Following the derivation of the K -edge cross-section in Sect. 6.2, one can
write the expression for L-edge unpolarized absorption cross-section in the dipole
approximation as

σ(ω) = −8παω

3

{∫∫
Ωn

ϕi (r) r � [
G(r, r′, ε − εF + iΓ )

]
r′ϕi (r

′) dr dr′
}

= −8παω

3
k �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
∫ bn

0

∫ bn

0
ϕ2p(r) r

3Rn
k2(r<)Hn

k2(r>)r ′3ϕ2p(r
′) drdr ′

+
[∫ bn

0
ϕ2p(r) r

3Rn
k2(r) dr

]2
2

5

2∑
m=−2

Gnn
2m,2m(ε − εF + iΓ )

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

(13.1)
where the absorbing atom is denoted by index n; the Green’s functionmatrix element
Gnn

2m,2m satisfies the coupled algebraic equations (see Chap. 6, Sect. 6.2)

Gnm
LL ′(ε) = G0

nm
LL ′ (ε)(1 − δnm) +

∑
qL ′′

G0
nq
LL ′′ (ε)t

q
�′′(ε)G

qm
L ′′L ′(ε) , (13.2)

where the matrix elements of the free GF G0
nm
LL ′ (ε) are the well-known KKR struc-

ture constants
G0

nm
LL ′ = −4πi

∑
L ′′

i�−�
′+�

′′
CLL ′ L ′′ h+

L ′′ (kRnm)

CLL ′ L ′′ =
∫

YL(r̂)YL ′ (r̂)YL ′′ (r̂)dr̂ .

(13.3)

The functions Rn
k2(r) and H

n
k2(r) in (13.1) are respectively the regular and irregular

solutions of the Schrödinger equation for a cluster potential inside the sphere n
associated with the absorbing atom

http://dx.doi.org/10.1007/978-3-319-73811-6_6
http://dx.doi.org/10.1007/978-3-319-73811-6_6
http://dx.doi.org/10.1007/978-3-319-73811-6_6
http://dx.doi.org/10.1007/978-3-319-73811-6_6
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[
1

r2
d

dr

(
r2

d

dr

)
− � (� + 1)

r2
− vn(r) + (ε + iΓ )

]
f (r, ε + iΓ ) = 0 , (13.4)

where f (r, ε + iΓ ) denotes either Rn
k2(r) or H

n
k2(r) which match to the boundary

conditions
Rn
k�(bn) = eiδ

n
�

[
j�(kbn) cos δn� − n�(kbn) sin δn�

]

Hn
k�(bn) = −ih+

� (kbn) ,

(13.5)

where k = √
ε + iΓ . It is worth noting that we excluded the Fermi energy from the

consideration because d-bands in the ground states of alkali halides are empty and
well-separated from the bound states by a wide band gap.

The calculation is carried out for the cluster containing 251 atoms. The non-
self-consistent muffin-tin cluster potential is constructed according to the follow-
ing scheme. First, the electron self-consistent potentials of the free atoms (neu-
tral for all atoms except the absorber which includes a hole) are computed by
the Herman–Skillman procedure [3] using Xα approximation for a local spin-
independent exchange potential with parameter α chosen according to Schwarz [4].
In addition, we take into account that the Xα potential for occupied electronic states
has a proper exchange part and a term which almost cancels self-interaction. Since
there is no need to correct unoccupied states for the self-interaction, the Xα potential
for these states is weakened by reducing Schwarz’sα. Second, we use superimposing
Herman-Skillman potentials for construction of non-self-consistent cluster potential:
inside MT-spheres it is computed as a sum of atomic potentials plus arbitrary con-
stant shifts. These shifts simulate the corrections caused by some redistribution of
electron charge in the system. The proposed model can be justified in part if tak-
ing into account that calculated spectra are often determined by the correct relative
positions of the atomic levels and/or scattering resonances rather than by the fine
details of potential behavior inside their spheres in a cluster. Therefore, changing
the potentials inside the spheres by relatively small constant shifts, one can simulate
some self-consistent potential. The K L3 -edge spectra of KF calculated for real
and complex energies using the numerical procedure described in Sect. 6.2.3.2. are
shown in Figs. 13.1 and 13.2.

Figure13.1 displays the spectra computed for complex energies with the imagi-
nary part Γ and for real energies with the subsequent convolution by a Lorentzian
function with the same Γ . Both spectra are obtained with the energy step of 0.01 Ry
in 124 points covering 0.1–1.33 Ry. In the second case, one can observe the effect
of a loss of the first t2g peak because the energy step of 0.01 Ry is too large to catch
extremely sharp resonance state in the continuum.

Figure13.2 shows that the calculation for real energies leads to the same result as
for complex energies if only the energy step equals to 0.00005Ry. To cover the energy
region 0.4–1.0 Ry, one needs to calculate spectrum in 12,000 points, as opposed to
124 points covering 0.1–1.33 Ry in the case of complex energies.

http://dx.doi.org/10.1007/978-3-319-73811-6_6
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Fig. 13.1 K L3-edge
unpolarized absorption
cross-section for KF
calculated with the
single-channel MS-GF
method showing the
comparison between the
calculations for real and
complex energies

13.3 K L2,3-Edge Spectrum of KF Within MCMS-GF
Method

In this section we present an example of applying the MCMS-GF method to the
calculation of the K L2,3-edge cross-section for KF by the analytical continuation
of the GF to complex energies. We use the expression for absorption cross-section
(6.106) derived within the MCMS-GF in Sect. 6.3.4 of this book:

σ(ω) = 4παω�
∑
pq

{
−M†

q

[
G̃ pq(E + iΓ )

]
Mp − M†

p M̃q δpq

}
. (13.6)

The formulas for all functions included in (13.6) can be found in Sect. 6.3. One
needs only to remember that now the coupled algebraic equations for themultichannel
GF and the coupled set of integro-differential equations for the regular and irregular
solutions should be solved for complex energies with the imaginary part equal to Γ .

The results of calculations using the single-channel and multichannel methods for
complex energies with Γ = 0.2 Ry are presented in Fig. 13.3 in comparison with the

http://dx.doi.org/10.1007/978-3-319-73811-6_6
http://dx.doi.org/10.1007/978-3-319-73811-6_6
http://dx.doi.org/10.1007/978-3-319-73811-6_6
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Fig. 13.2 K L3-edge
unpolarized absorption
cross-section for KF
calculated with the
single-channel MS-GF
method for real and complex
energies with the energy
steps differing by two orders

experimental data [5, 6]. The theoretical spectra are shifted in energy to match to the
position of the first peak on the experimental curve (exp2). The multichannel calcu-
lation takes into account four coupled channels in the final state: 2p−1

(
j = 1

2 ,
3
2

)
t2g

and 2p−1
(
j = 1

2 ,
3
2

)
eg . One can see a good agreement between the spectrum cal-

culated with the MCMS-GF method and the experiment over a wide range of photon
energies. The reason of the only disagreement in the vicinity of theweak peakmarked
by “a” on the experimental curve which is absent in the theoretical spectrum has to
be investigated by additional testing an accuracy of numerical procedures near the
MT-zero.

The analysis of calculation for L3 component presented in Fig. 13.1 shows that
the peak “f” has the symmetry t2g. This peak is displayed as a shoulder of the peak eg

in the L2 component at L2,3-edge (Fig. 13.3). In turn, peak “g” is the same peak “f”
which belongs to the L2 component shifted by the value of the spin-orbit splitting.
Thus, both “g” and “f” peaks are due to the multiple scattering effects. It is worth
noting that in the multichannel spectrum the symmetry of peaks “f” and “g” is not
pure t2g because of the strong multichannel coupling.
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Fig. 13.3 K L2,3-edge
unpolarized absorption
cross-section for KF
calculated with the
single-channel (MS-GF) and
multichannel (MCMS-GF)
methods for complex
energies. Curves (exp1) and
(exp2) are the experimental
data taken from [5, 6]
respectively
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Chapter 14
Ballistic Electron Emission Microscope by
Real Space Multiple Scattering Theory

Keisuke Hatada and Didier Sébilleau

Abstract Ballistic ElectronEmissionMicroscope (BEEM) is amicroscope to inves-
tigate Schottky barrier based on Scanning Tunneling Microscope (STM) setup. The
theoretical scheme widely used for STM is mostly focusing on an electric current
from the tip tunneling through the vacuum to the sample surface. However, thismodel
is not applicable for BEEM, since in the BEEM case, electrons tunneling through
the vacuum are transported in the material over a very long range. We propose a
theoretical model based on the real space full potential multiple scattering theory
in order to describe this transport phenomena within the one electron picture. It is
analogous to the theoretical model of angle resolved photoemission, except that the
electron is emitted from the tip. This framework describes the tunneling effect and
the multiple scattering in the tip and the sample and between them. Moreover this
theory can be applied for non-Hermitian Hamiltonian, so that the loss of electrons at
the Schottky barrier can be mimicked by introducing an imaginary part in the optical
potential.

14.1 Introduction

BEEMwas proposed by William Kaiser and L. Douglas Bell [1, 2] on 1998 in order
to characterize the structural and electronic properties of the interfaces involved in
the multilayers, and study the transport through all the layers. It is based on STM
and consists in the injection of electrons from the nanometer sized STM tip across
a tunneling gap into a thin metal layer that forms with a semiconductor substrate a
Schottky barrier (see Fig. 14.1). A small part of these electronswill travel ballistically
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Fig. 14.1 A brief sketch of BEEM current based on STM setup with potential energy. μt and μs are
chemical potentials for the tip and sample, respectively. ΦSB is Schottky barrier. eV0 is an applied
field

(i.e. encountering only elastic scattering by the atoms of the multilayer). At the
interface metal/semiconductor, the Schottky barrier will only allow a fraction of
them to pass (those with higher energy) and be detected as the BEEM current [3].
Being of excellent spatial resolution (∼1nm), it therefore allows to study the spatial
dependence of transport in buried interfaces such as those used to study spin injection
and has rapidly become a key tool for these studies.

Prior theoretical models for BEEM have been implemented by means of k-space
band calculations [4] and using a tight-binding method [5, 6]. The k-space band
model is very convenient to interpret the phenomena in a qualitative way, however
the diffusion process of the hot electron in real space is not considered. Likewise,
while the tight binding method can treat the transport problem in the real space, as
it relies on localized bases, it is not suitable to describe the long-range nature of the
travelling electrons.

The purpose of this study is to devise a newdescription of BEEMusing the flexible
Multiple Scattering (MS) framework, in order to better understand the transport
properties of the spin carried by electrons in heterostructures associating magnetic
electrodes and semiconductors that are at the core of the research for spin injection.
MS theory gives a good representation for a large-scale system within real space
formalism [7, 8]. We apply here the full potential Multiple Scattering theory [9, 10]
to BEEM (MSBEEM) to describe the transport phenomena accurately.
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14.2 Theory

The theoretical model which we employ here is that a probe electron in the tip
travels to the sample by tunneling then goes to the contact at the bottom of the
sample in real space (see Fig. 14.2). The main part of the theory is based on the
real space full potential multiple scattering (FPMS) theory. Since there is a loss of
electrons stopped at the Schottky barrier, we add an imaginary part of the potential to
mimic the phenomena. One of the advantages of multiple scattering theory is that the
theory is able to treat non-Hermitian Hamiltonians. Our multiple scattering model
of MSBEEM describes the interactions of the probe electron from the tip traveling
through the sample to the collector attached at the bottom of the sample. For the
collector, indium metal is used in many cases, so that there is no potential barrier
between the semiconductor and the collector and therefore we can well approximate
the probe electron by a plane wave at the collector. In any case, the electron which
participates to the current goes to the direction of the collector, so that we just
integrate the plane wave-like electron over the hemisphere in the collector. Thus we
use a time reverse picture of the process [11] from the collector to the tip via the
sample. This picture is very similar to the angle resolved photoelectron diffraction
from a molecular orbital of a molecule [12]. In order to recover the STM result, we
just need to perform the integration of the escaped electrons from the tip to the sample
over the whole angle instead of the hemisphere. For the MSBEEM formalism, we
start from Lippmann–Schwinger equation,

Fig. 14.2 A schematic model for the BEEM transport. Electrons in atomic sites (indicated as i) in
the tip are transmitted to the atomic sites j on the surface of the metal. The electrons having higher
energy than the Schottky barrier go through to the semiconductor. These electrons are collected in
the collector at the bottom from the atomic sites k. The electrons which are blocked by the Schottky
barrier are directed to the ground
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ψ(r; k) = φ0(r; k) +
∫

dr ′G0(r − r ′; k)V (r ′)ψ(r ′; k) , (14.1)

whereψ(r; k) is thewave function for the probe electron as a function of awavevector
k and the position vector r , the first term in the right hand is the free solution,
φ0(r; k) = eik·r , G0 is the free Green’s function and V is the potential of the system.
In this chapter the energy unit is chosen as Rydberg unit. The detail of the concept
of FPMS can be found in Chap.3 and in [10]. We assume that the optical potential
is local and complex, especially in the metal layer, which is attached to the ground,
in order to describe the loss.

The flux of electron dφ from the tip-sample system to the cable at the bottom of
the sample is related with the differential cross section,

dφscR
2 = dφin

dσ

dΩ
, (14.2)

where the subscript sc and in stand for scattered and incoming electron, respectively.
R is the radius of the sphere, which covers the tip and the sample, with its origin at
the bottom of the sample and dσ/dΩ is the differential cross section. The probability
density of the current for the scattered electron on a sphere which involves the tip
and the sample is,

∮
j · dS =

∫
dφscR

2dΩ =
∫

dφin
dσ

dΩ
dΩ = �k

me

∫
dk̂in

∫
tip
dr|Θψ(r; k)|2 ,

(14.3)
where me is the mass of the electron and Θ is the time-reversal operator. We have
used the time-reversed process, since the boundary condition is that the collected
electron behaves like a plane wave in the cable without interacting again with the
system. It also implies that there was no electron current in the distant past. The
volume integral

∫
tip dr is performed in the region of the source of electrons. In the

case of tip to sample tunneling, we limit the region of integration to the tip, while for
opposite bias, this region will over a small volume the sample.

In terms of the multiple scattering theory, the wave function is expanded by the
local solution of Schrödinger equation in site i [10],

ψ(r i ; k) =
∑
L

Bi
L(k)ΦL(r i ) =

∑
LL ′

Bi
L(k)RL ′L(ri )YL ′(r̂ i ) , (14.4)

where ΦL(r i ) is the solution of local Schrödinger equation,

[∇2
i + k2 − V (r i )]ΦL(r i ) = 0 , (14.5)

and normalized as ΦL(r i ) = ∑
L ′ S−1

LL ′ΦL ′(r i ) where matrix S is the Wronskian
matrix with the spherical Bessel function [10]. The subscript L is the notation for
the angular momentum, L ≡ (�,m).

http://dx.doi.org/10.1007/978-3-319-73811-6_3
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The coefficient Bi
L is estimated from the following equality, d r̂ ≡ dσ

N∑
j=1

∫
Sj

[
G+

0 (r ′ − r;κ)∇ψ(r; k) − ψ(r; k)∇G+
0 (r ′ − r;κ)

] · n j dσ j

=
∫
So

[
G+

0 (r ′ − r;κ)∇ψ(r; k) − ψ(r; k)∇G+
0 (r ′ − r;κ)

] · no dσo . (14.6)

Here Ωo = ∑
j Ω j , with surface So, centered at the origin o and G+

0 (r ′ − r; ˇ) is
the free Green’s function with outgoing wave boundary conditions satisfying the
equation (∇2 + κ2)G+

0 (r ′ − r;κ) = δ(r ′ − r), where κ2 = E − V0 and V0 is an
arbitrary constant equal to the assumed value of the cell potential outside the cell
domain. This identity is valid for all r ′ lying in the neighborhood of the origin of
each cell, since in this case the integrands are continuous with their first derivatives.
In this context we shall use two distinct k-vectors, defined respectively with k = √

E
and κ = √

E − V0. The latter will appear in the expansion of the Green’s function
G+

0 (r ′ − r;κ) by spherical functions [13]. Obviously k = κ for V0 = 0.
From the above equality we obtain an explicit form of the coefficient Bi

L

Bi
L ( k ) =

∑
j L ′

τ
i j
L L ′ A

j
L ′( k ) , (14.7)

where the amplitude A j
L ′ is

A j
L ( k ) = − i� YL ( k̂ ) ei k·R jo , (14.8)

which imposes the condition of plane wave. It satisfies the following relation,

∫
dk̂ Ai

L(k)
[
A j
L ′(k)

]∗ = J i jLL ′ . (14.9)

The matrix τ−1 is so called multiple scattering matrix, while τ is the scattering path
operator matrix,

τ = (T−1 − G0)
−1 , (14.10)

and when real spherical harmonics are chosen, the matrix is symmetric, τ̃ = τ .
Combining these results with (14.3), the electric current is

J = 2e
∫

dk k2 F( f (k2))
∫

Ω

dk̂in

∫
tip
dr

�k

me
|〈A(k)|τ |Φ(r)〉|2

= 2e

�

∫
dE F( f (E))

∫
Ω

dk̂in

∫
tip
dr |〈A(k)|kτ |Φ(r)〉|2 , (14.11)
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where the function F describes the window of energy by the Fermi distribution
function f . This range corresponds to the Ugap, that is to say from μs − eV0 to
μt − eV0. For the change of variable, we have used the relation E = �

2k2/2m for
the plane wave. By contrast, for STM, which corresponds to the absorption case,
integration must be performed over the whole solid angle.
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Chapter 15
Fully Relativistic Multiple Scattering
Calculations for General Potentials

Hubert Ebert, Jürgen Braun and Sergiy Mankovsky

Abstract The formal basis for fully relativistic Korringa–Kohn–Rostoker (KKR)
or multiple scattering calculations for a general potential including a non-local part
is reviewed. In particular the need to distinguish between right and left hand side
solutions to the Dirac equation and the explicit expression for the electronic Green’s
function are discussed.

15.1 Introduction

Recently there is strong interest in the impact of spin-orbit coupling on the electronic
structure of solids and surfaces. In this context one may mention spin transport phe-
nomena [1], magneto-dichroic phenomena in spectroscopy [2] or the occurrence of
the topological surface states in topological insulators [3]. The multiple scattering or
KKR (Korringa–Kohn–Rostoker) formalism supplies a perfect platform to deal with
spin-orbit driven effects as it gives direct access to the electronic Green’s function
(GF). Indeed a corresponding relativistic version of the KKR-GF technique is avail-
able [4, 5]. Also the treatment of a non-spherical shape of the local potential (full
potential - FP) has been incorporated [6–8]. Here we deal with technical aspects of
FP calculations and the treatment of a non-local self-energy.
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15.2 Hamiltonian and Radial Equations

The starting point of our considerations is the following Hamiltonian:

Ĥ(z) = Ĥ0 + V̂ + Σ̂(z) = Ĥ1 + Σ̂(z) , (15.1)

that consists of the free electron Hamiltonian (Ĥ0), a Hermitian local potential (V̂)
and an energy-dependent, complex and non-local self-energy (Σ̂(z)). For later use
Ĥ0 and V̂ are combined to the Hermitian local Hamiltonian Ĥ1. The aim is to derive
an expression for the real space representation of the associated Green’s function
operator Ĝ(z) defined by

(
z − Ĥ(z)

)
Ĝ(z) = 1 , (15.2)

i.e. Ĝ(z) is the right-inverse of
(
z − Ĥ(z)

)
.

Within the four-component Dirac formalism [9] the real space representation of
Ĥ1 may be written as [10]:

Ĥ1(r) = −icα · ∇ + 1

2
c2(β − 1) + V̄ (r) + β σ · B(r) + eα · A(r) , (15.3)

where cα is the electronic velocity operator and the local potential involves a spin-
independent part V̄ (r), an effective magnetic field (B(r)) coupling only to the spin
and vector potential (A(r)) coupling to the electronic current.

Restricting the self-energy Σ(r, r ′, z) to have only a spin-independent and -
dependent part one may write analogously:

Σ(r, r ′, z) = ΣV (r, r ′, z) + β σ · Σ B(r, r ′, z) (15.4)

=
∑

ΛΛ′
φΛ(r)ΣΛΛ′(z) φ

†
Λ′(r ′) , (15.5)

where we assumed that Σ(r, r ′, z) can be represented sufficiently accurate by an
expansion into a product of suitable basis functions φΛ(r).

Using spherical coordinates the electronic wave functions associated with (15.1),
(15.3) and (15.4) consist of their large and minor components with radial wave func-
tions gΛ(r, z) and fΛ(r, z) and spin angular functions (spinors) χΛ(r̂) and χ−Λ(r̂),
respectively. Here Λ = (κ, μ) and −Λ = (−κ, μ) combine the conventional spin-
orbit andmagnetic quantumnumbers κ andμ, respectively [9]. Using a superposition
of bi-spinorswith individual characterΛwhen dealingwith theHamiltonian in (15.2)
for an isolated atom (single-site problem) one is led to the following set of radial
Dirac equations:
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Fig. 15.1 Wave function
coupling scheme in the
Λ-representation for a
magnetic atom at the origin
of a hcp lattice with
Σ(r, r ′, z) = 0, the
magnetization along ẑ and
the xz-plane being a mirror
plane. Within each sub-block
the magnetic quantum
number μ runs from − j to
+ j with j = |κ| − 1/2

s1/2 p1/2 p3/2 d3/2 d5/2

s1/2 A A A
κ = −1 B B B

p1/2 C C C
κ = +1 D D D

E E E
p3/2 C C C

κ = −2 D D D
F F F
F F F

d3/2 A A A
κ = +2 B B B

E E E
D D D

F F F
d5/2 A A A

κ = −3 B B B
E E E

C C C

(
z c

(
∂
∂ r + −κ+1

r

)

c
(

∂
∂ r + κ+1

r

) −(z + c2)

) (
gΛ(r, z)
fΛ(r, z)

)

−
∑

Λ′

(
V+

Λ Λ′(r) −iUΛ −Λ′(r)
iU−Λ Λ′(r) −V−

−Λ −Λ′(r)

) (
gΛ′(r, z)
fΛ′(r, z)

)

−
∑

Λ′

∫
r ′2 dr ′

(
Σ+

Λ Λ′(r, r ′, z) gΛ′(r ′, z)
−Σ−

−Λ −Λ′(r, r ′, z) fΛ′(r ′, z)

)
= 0 , (15.6)

with the matrix element functions V±
Λ Λ′(r) for example given by:

V±
Λ Λ′(r) =

∫
d r̂ χ

†
Λ(r̂)

(
V̄ (r) ± σ · B(r)

)
χΛ′(r̂) . (15.7)

The symmetry of a considered system will decide which terms occur within an
angular momentum expansion of the various potential functions (picking rules) in
(15.3) and (15.4) [11]. This will lead to a restricted set of non-vanishing potential
matrix element functions (see e.g. (15.7)) occurring within the coupled set of radial
equations (15.6). Accordingly, any solution φΛ(r, z) = ∑

Λ′ φΛ′Λ(r, z) to the Dirac
equation will have only a restricted number of coupled terms in the sum over Λ′. An
example for the resulting coupling scheme is given in Fig. 15.1, where the letters
within a column indicate the non-vanishing terms φΛ′Λ(r, z).

The fact that Ĝ(z) has to be the right- as well as left-inverse to
(
z − Ĥ(z)

)
leads

to the demand to consider not only the standard right-hand side (RHS) solutions
to the Dirac equation but also the left-hand side (LHS) (indicated by “×”) to the
corresponding adjoined Dirac equation. This leads to a second set of coupled radial
equations for thewave functionsg×

Λ(r, z) and f ×
Λ (r, z) that differ in thematrix element

functions. Fortunately, the symmetry of the single site problem leads often to identical
matrix element functions for the RHS and LHS solutions implying that one does not
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have to distinguish these at least concerning their radial part. This favourable situation
that sometimes can been forced by the choice of the coordinate system is indicated
by a symmetric single site t-matrix [10].

15.3 Single Site t-Matrix and Green’s Function

The t-matrix operator t̂(z) for the single-site problem may be introduced when deal-
ing with the Dyson equation for the Green’s function operator:

Ĝ(z) = Ĝ0(z) + Ĝ0(z) t̂(z) Ĝ0(z) , (15.8)

where Ĝ0(z) represents the reference system that normally is the free electron system
described by the Hamiltonian Ĥ0. Using the real space representation of Ĝ0(z) in
terms of the relativistic form of the spherical Bessel jΛ(r, z) and Hankel functions
h+

Λ(r, z) [4, 6, 7] expressions can be given that allow to determine tΛΛ′(z) from a
complete set of solutions to (15.6) [10].

To get a corresponding expression for the real space representation of Ĝ(z) it is
convenient to introduce RHS solutions RΛ(r, z) and HΛ(r, z) to the Dirac equation
imposing the following behavior (specified by the label Λ) outside the single-site
potential regime (r > rcrit):

RΛ(r, z) =
∑

Λ′
jΛ(r, z) δΛΛ′ − i p̄ h+

Λ′(r, z) tΛ′Λ(z) (15.9)

HΛ(r, z) = h+
Λ(r, z) , (15.10)

where p̄ represents the relativistic electron momentum; together with LHS solutions
R×

Λ(r, z) and H×
Λ (r, z)defined analogously [10]. This leads for the single siteGreen’s

function Gn(r, r ′, z) for the atomic site n to [6, 10]:

Gn(r, r ′, z) = −i p̄
∑

Λ

RΛ(r, z) H×
Λ (r ′, z) θ(r ′ − r)

+HΛ(r, z) R×
Λ(r ′, z) θ(r − r ′) . (15.11)

However, inspection shows that this expression satisfies the inhomogeneous
Dirac-like equation corresponding to (15.2) for any r and r ′ < rcrit only in the case
of a local potential; i.e. forΣ(r, r ′, z) = 0. To arrive nevertheless at a useful expres-
sion for the Green’s function Gn(r, r ′, z) in case of a non-local potential, one can
set up in a first step the real space representation of the Green’s function operator
G1(z) connectedwith the local HamiltonianH1 using (15.11)with the corresponding
solutions R1

Λ(r, z) and H 1
Λ(r, z).

In a next step Gn(r, r ′, z) is determined on the basis of the Dyson equation

Ĝn(z) = Ĝ1(z) + Ĝ1(z) Σ̂(z) Ĝn(z) , (15.12)
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where the self-energy Σ(z) is treated as a perturbation. Equation (15.12) leads for a
general self-energy Σ(r, r ′, z) to an expression for Gn(r, r ′, z) that has the spatial
arguments r and r ′ coupled; i.e. a sum of products of terms that depend only on r
or r ′, respectively. In case that Σ(r, r ′, z) can be represented in terms of a basis as
given by (15.5), on the other hand, such a factorization gets possible leading to [10]:

Gn(r, r ′, z) = G1(r, r ′, z) +
∑

ΛΛ′
ρ1

Λ(r, z) ΓΛΛ′(z) ρ1×
Λ′ (r ′, z) , (15.13)

with the renormalized self-energy matrix

Γ (z) =
(
1 + Σ(z) G̃

1
(z)

)−1
Σ(z) , (15.14)

and the auxiliary functions

ρ1
Λ(r, z) =

∫
d3r ′ G1(r, r ′, z) φΛ(r ′) (15.15)

G̃1
ΛΛ′(z) =

∫
d3r

∫
d3r ′φ†

Λ(r) G1(r, r ′, z) φΛ′(r ′) , (15.16)

that are connected with the local Hamiltonian H1.
Finally, the Green’s function G(r, r ′, z) for an extended solid is given by adding

the back scattering term to Gn(r, r ′, z):

G(r, r ′, z) = Gn(r, r ′, z) +
∑

ΛΛ′
RΛ(r, z)Gnn

ΛΛ′(z)R×
Λ′(r ′, z) . (15.17)

The later term involves the regular solutions RΛ(r, z) associated to the full
Hamiltonian Ĥ(z) = Ĥ1 + Σ̂(z). The multiple-scattering nature of the term is
expressed here in terms of the structural Green’s function matrix Gnm(z) [4]. This
step completes the derivation of an expression for the Green’s function in case of a
non-local but site-diagonal self-energy.

References

1. K. Tauber, M. Gradhand, D.V. Fedorov, I. Mertig, Phys. Rev. Lett. 109, 026601 (2012)
2. H. Ebert, Rep. Prog. Phys. 59, 1665 (1996)
3. M.Z. Hasan, C.L. Kane, Rev. Mod. Phys. 82, 3045 (2010)
4. P. Weinberger, Electron Scattering Theory for Ordered and Disordered Matter (Oxford Uni-

versity Press, Oxford, 1990)
5. R. Feder, F. Rosicky, B. Ackermann, Z. Physik B 52, 31 (1983)
6. E. Tamura, Phys. Rev. B 45, 3271 (1992)
7. X.Wang, X.-G. Zhang, W.H. Butler, G.M. Stocks, B.N. Harmon, Phys. Rev. B 46, 9352 (1992)



306 H. Ebert et al.

8. T. Huhne, C. Zecha, H. Ebert, P.H. Dederichs, R. Zeller, Phys. Rev. B 58, 10236 (1998)
9. M.E. Rose, Relativistic Electron Theory (Wiley, New York, 1961)
10. H. Ebert, J. Braun, D. Ködderitzsch, S. Mankovsky, Phys. Rev. B 93, 075145 (2016)
11. K. Kurki-Suonio, Isr. J. Chem. 16, 115 (1977)



Chapter 16
Relativistic Effects and Gauge Invariance
in Photon Absorption and Scattering

Nadejda Bouldi and Christian Brouder

Abstract The interaction of light with matter is often described within the semi-
classical framework where light is represented by an external time-dependent vector
potential. We show that the transition probabilities so obtained suffer from two draw-
backs: their semi-relativistic limit is delicate and they are not gauge invariant. We
describe how a gauge-invariant transition probability can be obtained, for which the
semi-relativistic limit is well defined. In this way, we obtain a new spin-position
term which is not negligible in x-ray magnetic circular dichroism at the K -edge of
transition metals.

16.1 Introduction

The description of relativistic effects in x-ray spectroscopy has become necessary due
to the experimental developments that permit more and more precise measurements.
The use of a semi-relativistic description is physically appealing because it allows
to distinguish the effects related to the relativistic description of matter from the
familiar non-relativistic effects.

We show here, however, that taking existing semi-relativistic Hamiltonians as a
starting point to determine the absorption or scattering cross-sections might be deli-
cate because perturbation theory mixes the semi-relativistic states coming from two
different Hamiltonians. We propose an alternative approach in which we start from
the fully-relativistic cross-sections andwe apply a Foldy-Wouthuysen transformation
to the wave functions.
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We also discuss the question of gauge invariance of transition probabilities. We
conclude that, to obtain gauge invariant results, we must work in a framework where
the states describe both the electronic system and the photons.We show thatQuantum
Electrodynamics (QED) provides such a framework in which gauge invariance of
transition probabilities has been established for large classes of gauges.

Finally, we give the semi-relativistic expansion of the absorption and scattering
cross sections. We find that a new relativistic term (called spin-position term) must
be including in both cross sections. More details will be a given a forthcoming
publication [1].

16.2 Time-Dependent Perturbation Theory

To fix notation, we give a fast description of time-dependent perturbation theory.
Assume that a time-independent Hamiltonian H0 is perturbed by a time-dependent
term H1(t) starting at t0. Setting � = 1, the state of the perturbed system at time
t ≥ t0 is given by |ψ(t)〉 = V (t, t0)|φg〉, where |φg〉 is the ground state of H0 and
V (t, t0) = e−iH0t VI (t, t0)eiH0t0 with

VI (t, t0) = T e−i
∫ t
t0
HI (τ )dτ

.

The interactionHamiltonian is HI (τ ) = eiH0τ H1(τ )e−iH0τ and T is the time-ordering
operator (we omit the adiabatic switching factor for simplicity). Note that |ψ(t0)〉 =
|φg〉. The transition probability to the eigenstate |φn〉 of H0 at time t is

Png(t) = |〈φn|ψ(t)〉|2 = |〈φn|V (t, t0)|φg〉|2 = |〈φn|VI (t, t0)|φg〉|2 . (16.1)

For n �= g the perturbative expansion gives us, up to second order,

Png(t) = ∣
∣〈φn|

∫ t

t0

HI (τ )dτ − i
∫ t

t0

dτHI (τ )

∫ τ

t0

dτ ′HI (τ
′)|φg〉

∣
∣2 + . . . (16.2)

16.3 Gauge Invariance

The principle of gauge invariance has become a cornerstone of particle physics:
observable quantities must be independent of the gauge chosen to describe electric
and magnetic fields.



16 Relativistic Effects and Gauge Invariance … 309

In quantum mechanics, gauge transformations consist in both a change of the
potentials A′ = A + ∇Λ, φ′ = φ − ∂tΛ and a change of the phase of the wave-
functions ψ′(r, t) = MΛψ(r, t) where, MΛ = eieΛ(r,t). The time-dependent Dirac
and Schrödinger equations are invariant under gauge transformation [2] but the time
independent ones are not. Indeed, aHamiltonian H(A,φ) = f ( p − eA) + eφwhere
f is some function, becomes H(A′,φ′) = MΛH(A,φ)M†

Λ − e∂tΛ (the term ∂tΛ

arises because of the electric potential φ) while a gauge invariant operator O(A,φ)

should satisfy O(A′,φ′) = MΛO(A,φ)M†
Λ for every function Λ(r, t) [2].

If the gauge is modified by a time-dependent term Λ(r, t), the perturbation H1 =
H(A,φ) − H0 is modified into H ′

1 = H(A′,φ′) − H0. We first consider the lack
of gauge-invariance for the matrix elements of the perturbation. We compute the
difference between these matrix elements in two different gauges:

〈Ψ m |H ′
1 − H1|Ψ n〉 = 〈Ψ m |MΛHM†

Λ − H − e
∂Λ

∂t
|Ψ n〉 . (16.3)

Using the Baker–Campbell–Hausdorff formula at first order MΛHM†
Λ ≈ H +

[ieΛ, H0] , we obtain:

〈Ψ m |H ′
1 − H1|Ψ n〉 ≈ ie(Ei − E f )〈Ψ m |Λ|Ψ i 〉 − e〈Ψ m |∂Λ

∂t
|Ψ n〉 , (16.4)

that is non-zero in the general case. Note that, with the Dirac Hamiltonian, this first
order calculation is exact because H ′

1 − H1 = cα · ∇Λ + ∂Λ/∂t and c α · ∇Λ =
i[H0,Λ].

More generally, the gauge-transformed wavefunction obtained in perturbation
is |ψ′(t)〉 = V ′(t, t0)|φg〉, where V ′(t, t0) = eieΛ(t)V (t, t0)e−ieΛ(t0) [3]. We have lost
the usual gauge transformation |ψ〉 �→ eieΛ|ψ〉 because perturbation theory imposes
ψ′(t0) = |φg〉. The transition probability becomes

PΛ
ng(t)=|〈φn|ψ′(t)〉|2= ∣

∣
∫
drdr ′φ∗

n(r)e
ieΛ(r,t)V (r, t; r ′, t0)e−ieΛ(r ′,t0)φg(r ′)

∣
∣2.

Since Λ(r, t) is arbitrary, generally PΛ
ng(t) �= P0

ng(t) = Png(t) defined in (16.1) and
the transition probability is not gauge invariant. Moreover, the transition rate is
expressed in terms of the derivative of the transition probability with respect to
time. This adds a factor e ∂tΛ(r, t) to the integral which can be as large as we want,
spoiling the gauge invariance of the transition rate. In other words, when the light
beam of an absorption or scattering experiment is represented by a time-varying
external potential, then the cross section is not gauge invariant. As reviewed in [1],
several solutions of this gauge-dependence problem were proposed, but the only one
which is fully satisfactory is to use quantum electrodynamics, where the photon is
not represented by a classical electromagnetic field but by a state in Fock space.

We now discuss the semi-relativistic expansion of transition probabilities.
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16.4 Foldy–Wouthuysen Transformation and Transition
Probabilities

The semi-relativistic expansion is widely used in quantum physics.We highlight why
the straightforward way to obtain semi-relativistic cross section that would consist
in considering that the system is described by a FW Hamiltonian and computing the
transition probabilities between eigenstates of this Hamiltonian is, in fact, not valid.

In the Dirac theory, the state of the particles is described by four-components

wave functions ΨD =
(

χ1

χ2

)

. The two spinors that compose these wavefunctions,

χ1 and χ2, are called upper and lower components.
For positive energy states, the upper component is called the large component and

the lower component is called the small component. In the non relativistic limit, the
small (i.e. lower) component vanishes. For negative energy states, on the other hand,
it is the upper component that vanishes.

The Dirac Hamiltonian H has the form H =
(
H11 H12

H21 H22

)

, where each Hi j is

a 2 × 2 matrix. If H is independent of time, the idea of the Foldy–Wouthuysen
(FW) transformation is to apply a unitary operatorUH such that, even for finite light
velocity, the upper and lower components of ψFW = UHΨD are decoupled. In other
words, the transformed Hamiltonian HFW = UH HU †

H must be block diagonal.
If the Dirac Hamiltonian H is explicitly time dependent, the Foldy–Wouthuysen

state |ψFW〉 is a solution of the time-dependent Schrödinger equation for the Foldy–
Wouthuysen Hamiltonian [4]:

HFW = UH HU †
H − iUH

∂U †
H

∂t
, (16.5)

which must be block diagonal. However, HFW must not be used to calculate matrix
elements ofH because 〈ΦD|H |ΨD〉 = 〈φFW|UH HU †

H |ψFW〉 �= 〈φFW|HFW|ψFW〉 [5].
Using the dynamics given by HFW is also dangerous to calculate transition prob-

abilities. Indeed, even if we know the exact Foldy–Wouthusen transformation UH ,
we obtain |ΨFW(t)〉 = UH(t)|ΨD(t)〉. On the other hand, |Φg

D〉 being an eigenstate of
H0, its Foldy–Wouthuysen transformation is |Φg

FW〉 = UH0 |Φg
D〉. Thus, the Foldy–

Wouthuysen transition probability of (16.1) becomes

|〈ΨFW(t)|Φg
FW〉|2 = |〈ΨD(t)|U †

H(t)UH0 |Φg
D〉|2 �= Png(t) ,

because UH(t) �= UH0 .
On the other hand, we cannot use UH(t) to transform |Φg

D〉, because the state
|Φg

FW〉 would become time-dependent. The solution is to express the cross sections
in terms of Dirac wavefunctions 〈ΨD|T |ΦD〉, where T is a transition operator and
|ΦD〉 and |ΨD〉 are solutions of a time-independent Dirac equation H0, and then write
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|ΦD〉 = U †
H0

|ΦFW〉. This transforms T into TFW = UH0TU
†
H0
, ensures the conserva-

tion of the transition probability and gives a semi-relativistic meaning to the cross
sections [1].

16.5 Semi-relativistic Cross-Sections

We apply the approach of the previous paragraph to the absorption and scattering
cross-sections. From this point, we will work in a monoelectronic framework. The
FW transformation in a many-body framework is developed elsewhere [1].

16.5.1 Absorption Cross Section

The absorption cross section is calculated by assuming that initially the electron
is in the relativistic state |I 〉 that can be transformed into the Foldy–Wouthuysen
eigenstate |i〉, with energy Ei , and that a photon q, eq is present. In the final state
there is no photon and the electron is in state |F〉 (| f 〉 after transformation).

We showed that the absorption cross section can be written [1]:

σ = 4π2 α0 �ωq

∑

f

|〈 f |TFW|i〉|2δ(E f − Ei − �ωq) ,

where TFW is:

TFW = eq · r + i

2
(eq · r) (q · r) − �

4m2c2
π · (eq × Σ)

− β

2mωq
(eq × q) · (�Σ + Λ) ,

with �ωq = E f − Ei , π = p − eA0 and Λ = L − e r × A0.
It corresponds to the usual formula for the cross section [6] with Λ instead of L

and one extra relativistic term that we call spin-position, because it can be rewritten
using π = (m/i�)[r, HFW

0 ] + O(c−2), where HFW
0 is the time-independent Foldy–

Wouthuysen Hamiltonian, to get:

− �

4m2c2
〈 f |π · (eq × Σ)|i〉 = i�ωq

4mc2
〈 f |(eq × r) · Σ |i〉 .

Wecall spin-position operator the operator (eq × r) · Σ . Its evaluation at the K -edge
of materials shows that it gives a significant contribution to XMCD [7].
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16.5.2 Scattering Cross Section

The scattering cross section is calculated by assuming that initially the electron
is in the relativistic state |I 〉 with a photon qi , ei and that in the final state the
electron is in state |F〉with a scattered photon q f , e f . We do not consider the special
case when qi , ei = q f , e f . The scattering cross-section can be resonant only if the
intermediate state |l〉 involved in the transition is a positive energy state so that
the condition El = Ei + �ωi can be satisfied. The semi-relativistic expansion of the
resonant scattering term therefore writes as a sum over intermediate states of positive
energy:

d2σ

dΩdω f
=

(rem

�2

)2 ω f

ωi

∑

f

δi f

∣
∣
∣
∑

l

ΔEliΔE f l 〈 f |T ′ f l
FW(e f )|l〉〈l|T li

FW(ei )|i〉
Ei − El + �ωi + iγ

∣
∣
∣
2

,

with δi f = δ(E f + �ω f − Ei − �ωi ) , ΔEi j = Ei − E j ,

T i j
FW(ei ) = ei · r + i

2
(ei · r)(qi · r) − �

4m2c2
π · (ei × Σ)

− (ei × qi ) · (�Σ + Λ)

2mΔEi j
,

and

T ′i j
FW(e f ) = e∗

f · r − i

2
(e∗

f · r)(q f · r) − �

4m2c2
π · (e∗

f × Σ)

+ (e∗
f × q f ) · (�Σ + Λ)

2mΔEi j
.

We recover the usual monoelectronic resonant part of the scattering cross section
[8] with the additional spin-position operator that also appeared in the absorption
cross section. The semi-relativistic expansion of this cross section in the non resonant
case is more subtle because it involves negative energy intermediate states. This
question will be addressed in a future publication.
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Chapter 17
Towards Accurate and Large-Scale
Density-Functional Calculations
with the Korringa–Kohn–Rostoker Method

Rudolf Zeller

Abstract Development of advanced 21st century applications profits increasingly
from a basic quantum-mechanical understanding of material properties. Often,
density-functional theory is used to reduce the work to the solution of simple effec-
tive one-particle equations. Nevertheless, for all but the smallest systems, consid-
erable computer resources are required and accurate calculations for large systems
are difficult. One attempt to overcome this problem is kkrnano, a computer code
recently developed in Jülich, which is based on the multiple-scattering Korringa–
Kohn–Rostoker (KKR) Green-function method. In the present contribution it will be
described how this code enables to treat systems with many thousand atoms and how
the use of non-local angular projection potentials provides new insight for obtaining
accurate forces and total energies.

17.1 Introduction

In density-functional calculations, usually the Schrödinger equation is solved by
expanding the single-particle wavefunctions into a set of basis functions with expan-
sion coefficients found by minimizing the total energy. An alternative method was
suggested by Wigner and Seitz [1] in their pioneering work On the Constitution
of Metallic Sodium. They divide the crystal into non-overlapping cells centred at
the atoms and determine single-cell solutions which are joined by wavefunction
matching at the cell surfaces. However, the matching is numerically very demand-
ing so that the cellular method of Wigner and Seitz outlived its usefulness when
the multiple-scattering KKR method appeared. In this method the outgoing scat-
tered wave from the potential in one cell is analytically transformed into incoming
waves at the other cells by assuming free propagation between different scattering
events. This assumption was historically guaranteed by confining the potential to
non-overlapping muffin-tin spheres. For space-filling potentials, however, free prop-
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agation is missing which prevents that a multiple-scattering picture can be used in a
full-potential treatment. Nevertheless, it was conjectured and backed up in a number
of publications that the KKR equations remain valid with minor or no modification.
On that account, a full-potential Green-function (GF) method [2], particularly for
impurity calculations, was developed in Jülich since 1990. Thismethod is the basis of
kkrnano which was designed from the outset to treat large systems on massively par-
allel supercomputers [3, 4]. Below the main features of kkrnano will be described.
It will also be demonstrated that a full-potential treatment can be validated rigor-
ously by using the concept of non-local angular projection potentials and that this
concept helps to identify and remove problems for accurate force and total-energy
calculations.

17.2 Large Systems

Due to the advance of supercomputing power, calculations for systems with more
than one thousand atoms are possible today by standard density-functional codes.
For larger systems, however, the applicability of these codes is limited because the
computational effort scales with the third power of the number of atoms. kkrnano
overcomes this limitation by a linear-scaling implementation which is achieved as
described below. The strategy is to determine the density nn(r) from the diagonal
part of the density matrix

�nn
′
(r, r ′, T ) = − 1

π
�

[∫ ∞

−∞
f (ε − μ, T )Gnn′

(r, r ′; ε + i0+)dε

]
, (17.1)

where r and r ′ are vectors originating at the centers of cell n and n′. This integral,
which contains the Fermi–Dirac function for temperature T and chemical potential
μ, is conveniently evaluated by contour integration [5]. Dropping the parametric
dependence on ε, the Green’s function is given by

Gnn′
(r, r ′) = δnn′Gn

s (r, r
′) +

∞∑
��′

∑
mm ′

Rn
�m(r)Gnn′

�m�′m ′ Rn′
�′m ′(r ′) , (17.2)

where Rn
�m(r) and Gn

s (r, r
′) are functions that depend only on the potential confined

to cell n. The Green’s function matrix elements are obtained by

Gnn′
�m�′m ′ = Gr,nn′

�m�′m ′ +
∑
n′′

∞∑
�′′�′′′

∑
m ′′m ′′′

Gr,nn′′
�m�′′m ′′Δtn

′′
�′′m ′′�′′′m ′′′Gn′′n′

�′′′m ′′′�′m ′ , (17.3)

from the difference of the single-cell t matrices of the system and a reference sys-
tem and the Green-function matrix elements of the reference system. In kkrnano the
matrix equation (17.3) is solved iteratively without any loss of accuracy [3] by the
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Fig. 17.1 Wall-clock time
on the Jülich supercomputer
JUQUEEN for one
self-consistency step for
2048–131072 cells half
occupied by atoms. One MPI
task and four OpenMP
threads are used for each cell.
The broken line indicates the
average as a guide for eye.
The time remains almost
constant when the number of
processors is increased with
the number of atoms 8192 16384 32768 65536
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Fig. 17.2 Total energies for
a disordered Ag-Pd alloy
with 16384 atoms in the
supercell using local
interaction zones (LIZ) of
different size. The reference
energy (with zero deviation)
is for a LIZ containing all
16384 atoms. Upper and
lower curves are for (i)
neglecting all GF matrix
elements outside the LIZ or
(ii) neglecting only elements
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transpose-free quasi-minimal residual method [6]. This has a number of advantages:
(i) easy parallelization because different values n′ do not mix, (ii) quadratically scal-
ing computational effort achieved by not operating on zero matrix elements, which
occur if the repulsive reference system of the screened KKR method [7] is used,
and (iii) linearly scaling effort achieved by utilizing the decay of the density matrix
through neglect of small Green’s function matrix elements outside local interaction
zones (LIZ) around each atom. These features lead to excellent computational perfor-
mance as displayed in Fig. 17.1, where the nearly constant wall-clock times indicate
that both linear scaling and parallel efficiency are almost perfect. Since linear scaling
reduces accuracy, it is important to assess how large the deviations are. As Fig. 17.2
shows, the deviations are controllable and below millielectron-volts per atom if the
LIZ are large enough.
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17.3 Accurate Forces and Total Energies

For accurate calculations of forces and total energies a full-potential approach is
unavoidable [2]. An approach, which does not rely on the Schrödinger or Lippmann–
Schwinger equation and matching boundary conditions, is the direct determination
of the Green’s function from an integral Dyson equation [8]. Then, the only math-
ematical difficulty are conditionally convergent double angular-momentum sums.
Recently, this problem was resolved by using a mathematical model [9] with finite
sums restricted to � ≤ �P and showing that limit �P → ∞ is clearly defined [10].
In this work the cell potentials were understood as non-local angular projection
potentials

V n(r, r̂, r̂ ′
) =

�max∑
��′

∑
mm ′

Y�m(r̂)Y�′m ′(r̂ ′
)V n

�m�′m ′(r) . (17.4)

An important consequence of (17.4) is that only (�max + 1)4 functionsRn
�′m ′�m(r) in

the angular-momentum expansion for R�m(r) must be determined numerically. The
other terms are Bessel function because the integral

∫ ∞

0
r ′2G0

�′(r, r ′)
�max∑
�′′

∑
m ′′

V n
�′m ′�′′m ′′(r ′)Rn

�′′m ′′�m(r ′)dr ′ , (17.5)

which appears in the coupled radial integral equations for Rn
�′m ′�m(r), vanishes for

�′ > �max according to (17.4), but also for � > �max as shown in [9]. This result can
be used to express the density exactly by a finite number of terms with analytically
given dependence on the angular variables [10] and to conclude that the full-potential
treatment in the KKR-GF method is not responsible for systematic force and total-
energy errors.

In the past, it has been speculated that the standard expression

V n
�m(r) = 4πr �

2� + 1

∑
n′

∫
n′
dr ′nn

′
(r ′)

Y�m(r ′ + Rn′ − Rn)

|r ′ + Rn′ − Rn|�+1
, (17.6)

used in the spherical-harmonics expansion of V n(r), is responsible because it is not
valid for all points in the cells. These near-field errors, however, are easily avoided if
(17.6) is used for a fixed value rc � |r ′ + Rn′ − Rn| and simple one-center electro-
static problems [11] are used to obtain V n

�m(r) for r �= rc from the density between
rc and r . The real problem for forces is an expansion for r ′ < |Rn′ − Rn|, which
often is used to evaluate (17.6) with the help of density moments. Because too many
moments are needed for arbitrary cells, it is better to use an isoparametric integration
method [12] which is presently implemented in kkrnano to obtain rather accurate
forces.
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Fig. 17.3 Total energy
results using �P = 8 and
angular projection potentials
with different values of �max
during the self-consistency
steps, but �max = 8 for the
evaluation of the total-energy
functional after
self-consistency is reached.
The solid line is for Al, the
broken line for Cu and the
dotted line for Pd
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The situation for total energies is more complicated. Since the potential obtained
from the Poisson equation is approximated by (17.4) for calculating the single-
particle energies, these are determined with a different potential than the double-
counting terms. This inconsistency is mitigated if the total-energy functional is eval-
uated after the self-consistency steps with a higher value for �max [9]. Then much
improved total energies as in Fig. 17.3 are obtained.
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Chapter 18
3D Atomic Structure Analysis Around Local
Active Atoms by Two-Dimensional
Photoelectron Diffraction and Holography

Hiroshi Daimon

Abstract The atomic structure around specific atom in solid, such as dopant in
semiconductor, has become possible to be analyzed directly and precisely recently
by new methods of stereophotography and photoelectron holography with the aid of
new analysis code and two kinds of two-dimensional display-type analyzers. Based
on the development of these new technologies a project of 3D active-site science has
been launched to develop a new science of local atomic arrangement which is a key
of functional materials.

18.1 Introduction

The atomic structure analysis around local specific atom, such as a dopant in semi-
conductor, is a key of the functional materials but has been impossible by a standard
structure analysis method such as an x-ray diffraction because this kind of active
site has no translational symmetry. EXAFS opened a new way to study this kind of
local structure, but the obtained information is only one dimensional. Two methods
to analyze the 3D atomic structure around this kind of specific atoms with no trans-
lational symmetry are stereography of atomic arrangement [1] and photoelectron
holography [2]. Recently their accuracy improved dramatically by a development of
a new analysis code [3] and effective two-dimensional display-type electron spec-
trometers, such as DIANA (Display-type spherical mirror Analyzer) [4] or DELMA
(Display-type Ellipsoidal Mesh Analyzer) [5–7]. These techniques as well as fluo-
rescent x-ray holography [8] received renewed attentions recently. Hence a project
of 3D active-site science [9] supported by JSPS Grant-in-Aid for Scientific Research
on Innovative Areas, Grant Number 26105001 has been launched.
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Fig. 18.1 Photoelectron diffraction and holography

18.2 3D Atomic Structure Analysis Around Specific Atoms
with No translational Symmetry

18.2.1 Stereography of Atomic Arrangement

Atomic stereography [1] is a new method to realize a dream to see three dimensional
atomic arrangement directly by our eyes. This technique is based on a phenomenon
of photoelectron diffraction, which is shown in Fig. 18.1.

When an x-ray excites an inner core electron of an atom, a photoelectron is emit-
ted from this emitter atom. The photoelectron is scattered by surrounding atoms and
produces scattered waves. The interference pattern at a distance is called photoelec-
tron diffraction pattern. Strong forward focusing peaks appear along the direction
connecting the emitter atom and the scatterer atoms as shown in Fig. 18.1. Hence a
photoelectron diffraction pattern is a projected atomic image around the photoelec-
tron emitter atom. If the incident x-ray is a circularly polarized light, the forward
focusing peak was found to rotate around the circularly polarized light axis [10] as
shown in Fig. 18.2. The rotation angle Δ was expressed as

Δ = m

kR sin2 θ
, (18.1)

where k is the wave number of photoelectron directing toward the forward focusing
peak, R is the interatomic distance between the emitter and the scatterer atoms, θ is
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Fig. 18.2 Circularly
polarized light photoelectron
diffraction

the angle between k and the circularly polarized light propagating vector, and m is
the effective magnetic quantum number of the photoelectron around the light axis.
An important feature is that it is inversely proportional to the interatomic distance.
This feature is used to realize the stereography of atomic arrangement because it is
exactly the same as parallax in our stereoview [1].

Stereophotograph of atomic arrangement consists of two pictures of 3D atomic
arrangement including parallax viewed by two eyes at right and left side of the
photoelectron emitter atom. The viewpoint atom can be selected by selecting the
photoelectron kinetic energy. An example of the stereophotograph [11] is shown in
Fig. 18.3. This stereophotograph was taken using In 4d photoelectrons from the In
atoms of InP(001) surface. The direction of the view is [111], and the closest atom
A is the nearest neighbour P atom. When you see the left picture with your left eye
and the right picture with your right eye you can image the 3D atomic arrangement
around In atom directly in your brain.

18.2.2 Photoelectron Holography

Because the photoelectron pattern in Fig. 18.1 is the interference pattern between
the direct photoelectron spherical wave and the wave scattered from surrounding
objects, it was suggested by Szöke [2] in 1986 that the pattern can be considered
as a hologram. Since then many efforts have been made to reconstruct the atomic
arrangement using holographic reconstruction algorism, which are based on Fourier
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Fig. 18.3 Stereophotograph of atomic arrangement around In atom in InP(001) surface [11]. The
direction of the view is [111], and the closest atom A is the nearest neighbour P atom

Fig. 18.4 Holographically reconstructed image of Si crystal using various methods. a Normal, b
SW, cMulti-energy, and d SWEEP [12]

transformation [12]. However the reconstructed image is limited to several atoms
around the emitter atom, and the accuracy of the position was not accurate enough
to use as an analysis tool (Fig. 18.4).

In 2005 Matsushita developed a new analysis code called spea- mem [3], and
succeeded to reconstruct more than hundred atoms from only one hologram. Recent
example is the analysis of 3D imagingof intercalant atom in superconducting graphite
[13]. The local atomic structure around an intercalant atom in curious superconductor
has been precisely imaged.
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Fig. 18.5 Display-Type
spherical mirroranalyzer

18.3 Two-Dimensional Display-Type Electron
Spectrometers

18.3.1 DIANA (Display-Type Spherical Mirror Analyzer)

Two-dimensional photoelectron diffraction pattern, which is necessary for the
analysis of stereophotography and also for photoelectron holography, is effec-
tively measured by display-type two-dimensional photoelectron analyzer. Display-
type spherical mirror Analyzer (DIANA) [4] has been used for a long time to
measure photoelectron diffraction patterns aswell as three-dimensional valence band
mapping. A schematic diagram ofDIANA is shown in Fig. 18.5. It consists of a hemi-
spherical main grid, many outer electrodes, an exit aperture, retardation grids, MCP
and screen. The main grid is grounded, and the electric field between the main grid
and the outer electrodes is spherically symmetric. Photoelectrons emitted from the
sample make linear trajectory until the main grid. Inside the electric field between
the main grid and the outer electrodes, the trajectory is an ellipse obeying Kepler’s
law. All electrons of the pass energy in different directions converge exactly to the
exit aperture and diverge again and detected on the screen. The obstacle rings play a
role of low-pass filter, and the retardation grids play as a high-pass filter. Hence only
one kinetic-energy electrons are detected. The acceptance angle can be up to ±90◦,
but the size of MCP limits the detection angle to ±60◦.
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Fig. 18.6 Display-type Ellipsoidal Mesh Analyzer (DELMA)

18.3.2 DELMA (Display-Type Ellipsoidal Mesh Analyzer)

Recently Display-type Ellipsoidal Mesh Analyzer (DELMA) [6, 7] has been devel-
oped to realize high-energy resolution and microscopic measurement. A schematic
diagram of DELMA is shown in Fig. 18.6. It consists of a Wide Acceptance Angle
Electrostatic Lens (WAAEL), lens system, screen 1, CHA (concentric hemispherical
analyzer) and screen 2.We have developed a wide acceptance angle electrostatic lens
(WAAEL) using an ellipsoidal mesh lens [5], which can converge up to ±60◦ elec-
trons to one point by eliminating the spherical aberration. Because the divergence
angle is reduced to 1/5, usual einzel lens can be used afterward, and magnified image
of the sample or an angular distribution of the emitted electrons can be projected on
the screen 1. Although WAAEL has an energy resolution of about 1%, CHA is used
when higher energy resolution is needed.

18.4 3D Active-Site Science Project

Two methods stereography of atomic arrangement and photoelectron holography to
analyze the 3Datomic structure around specific atomswith no translational symmetry
have been realized, and fluorescent x-ray holography [8] has also been developed
recently, a project of 3D active-site science [9] supported by JSPS Grant-in-Aid for
Scientific Research on InnovativeAreas, Grant Number 26105001 has been launched
in 2014. This project aims to realize a new field of science of functions created by
local atomic arrangement with no translational symmetry. It reveals local functional
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structure for the first time and will make revolution in wide range of fields in physics,
chemistry, electronic devices, and bio-materials.

18.5 Summary

Two methods, stereophotography and photoelectron holography, to analyze atomic
structure around specific atom in solid, have been reviewed. The development of
two-kinds of display-type analyzers and a new analysis code realized fast and precise
analysis of local non-periodic structure for the first time. Based on the development
of these new technologies a project of 3D active-site science has been launched to
develop a new science of local atomic arrangement which is a key of functional
materials.
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Chapter 19
Plasmon Losses in Core Photoemission
Spectra

Takashi Fujikawa and Kaori Niki

Abstract A short review is presented on theoretical approach to plasmon losses
in core-level photoemission from simple metals. Full multiple elastic scatterings of
photoelectrons are taken into account before and after the plasmon losses within the
quantum cumulant (Landau) formula that can describe both intrinsic and extrinsic
losses, and overall features of core level photoemission. Far from normal emission
and in low energy excitation, we cannot apply these simple exponential formulas.

19.1 Photoemission Intensities

Main XPS (no loss) bands excited from a core φc measuring photoelectrons with
momentum p and energy εp are described in terms of the damping photoelectron
wave function f −

p under the influence of the optical potential. A basic theoretical
formula to study photoemission processes should be built on a sound many-body
theory. Here we apply Keldysh Green’s function approach. Our discussion is focused
on photoexcitation from a core orbital φc. No-loss band measuring photoelectrons
with momentum p and energy εp is given by

I 0( p;ω) = 2π|〈 f −
p |Δ|φc〉S0|2δ(E0 + ω − E∗

0 − εp) . (19.1)

Main ingredients are photoelectron wave function (Dyson orbital) f −
p for which non-

Hermitian optical potential also work in addition to Hermitian Hartree potential. The
incident photon energy is ω and Δ is the one-electron photon-electron interaction
operator. The intrinsic no-loss amplitude S0 should be close to 1. The ground state
energieswithout andwith core hole are E0 and E∗

0 . The amplitude 〈 f −
p |Δ|φc〉 is given

by a closed renormalization full multiple scattering formula [1]. The formula is quite
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useful to calculate the x-ray photoelectron diffraction (XPD) patterns. Finite-order
photoelectron diffraction (XPD) formula has been applied to calculate the depth
distribution function. In contrast to the conventional XPD calculations, finite-order
multiple scattering calculations give no satisfactory convergence for the depth profile:
Full multiple scattering calculations provide us with reasonable results [1].

19.2 Loss Bands and Quantum Landau Formula

In contrast to the no-loss band, the interference between the intrinsic and extrinsic
losses plays an important role. Both of the many-body scattering [2] and Keldysh
Green’s function [3] approaches give a very similar formula. We can use a formula
for the single-loss band exciting the mth mode whose excitation energy is ωm

I 1( p;ω) = 2π
∑

m

|〈 f −
p |Δ|φc〉Sm + 〈 f −

p |vmg(εp + ωm)Δ|φc〉S0|2

× δ(E0 + ω − E∗
0 − ωm − εp) , (19.2)

where vm is the fluctuation potential responsible for the intrinsic (see (19.3)) and the
extrinsic excitation of the mth mode. The causal Green’s function g in the second
term describes the photoelectron propagation suffering elastic scatterings before the
extrinsic loss influenced by vm . We should note that the intrinsic and the extrinsic
losses can interfere.

A simple perturbation theory gives a useful formula for the intrinsic loss amplitude
Sm ,

Sm = −〈c|vm |c〉
ωm

exp(−a/2), a =
∑

n

|〈c|vn|c〉|2
ω2
n

. (19.3)

Well above the threshold, the causal Green’s function g(ε) is approximated by the
retarded Green’s function gr (ε). Again we apply the site T -matrix expansion to the
photoelectron wave function f −

p and gr (εp + ωm). Rather high-energy (εp >100eV)
excitation and near normal emission allow us to use quite a simple expression for
the extrinsic loss amplitude [4]

〈 f −
p |vmg(εp + ωm)Δ|φc〉 ≈ 〈 f −

p |Δ|φc〉τ ex
m ( p) ,

τ ex
m ( p) = (2π)3/2

∫
dr f −∗

p (r)vm(r)g0(r − RA : p′) , (19.4)

where g0 is the damping propagator with p′; p′2/2 = p2/2 + ωm .
To recover the lowest sum I 0( p;ω) + I 1( p;ω) and also satisfy the normalization

condition, the overall photoemission profile is now written by the exponential form
with aid of the approximation (19.4)
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I∞( p;ω) = I 0( p;ω) + I 1( p;ω) + . . .

= |〈 f −
p |Δ|φc〉|2

∫ ∞

−∞
dt exp[i(ω + E0 − E∗

0 − εp)t]

× exp

[∫ ∞

0
dε β(ε)(e−itε − 1)

]
, (19.5)

and

β(ε) =
∑

m

|τ ex
m ( p) + Sm/S0|2δ(ε − ωm) . (19.6)

This exponential form (19.5) is known as Landau formula which was derived
on the basis of classical transport theory. Similar quantum formula is derived by
Hedin [2], where simple time-reversed LEED function is used instead of renor-
malized damping photoelectron wave function f −

p . This generalization is crucial to
discuss angular and energy dependence of plasmon losses, except for the grazing
photoemission.

We obtain an alternative expression for β(ε) in terms of causal screened Coulomb
interaction W

β(ε) = − 1

π

∫
drdr ′ f ∗

A(r ′) f A(r)�
[
W (r, r ′; ε)

]
, (19.7)

where f A has both of the intrinsic (first term of (19.8)) and the extrinsic loss effects
(second term)

f A(r) = −|φc(r)|2
Ec

+ (2π)3/2 f −∗
p (r)g0(r − RA; p′) , (19.8)

Ec = ω + E0 − E∗
0 − εp .

It is often reasonable to split β(ε) in a low-energy part β1(ε) and a high-energy
part β2(ε) by use of a small critical energy ε0,

β(ε) = β1(ε) + β2(ε),β1(ε) = β0θ(ε0 − ε) .

The low-energy part describes x-ray singularity for metallic systems: Only the intrin-
sic term is important because of the small energy denominator of the first term in
(19.8). The high-energy part describes the plasmon losses taking both intrinsic and
extrinsic ones into account. We thus have from (19.5)

I∞( p;ω) = 2π|〈 f −
p |Δ|φc〉|2

∫
dε D1(Ec − ε)D2(ε)

× exp

[
−

∫ ∞

0
dεβ(ε)

]
, (19.9)
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where low-(D1) and high-energy (D2) spectral functions are defined by

Dj (t) = exp

[∫ ∞

0
dε β j (ε)e

−iεt

]
, ( j = 1, 2) .

The high-energy spectral function can be expanded as

D2(ω) = δ(ω) + β2(ω) + 1

2
(β2 ∗ β2)(ω) + 1

6
(β2 ∗ β2 ∗ β2)(ω) + . . . (19.10)

where (A ∗ B)(ω) = ∫
dε A(ω − ε)B(ε) is the convolution of A and B. The first

term contributes to the main (no loss) band, the second to the single plasmon, and
the third to the double plasmon losses, and so on. Substitution of (19.10) in (19.9)
yields the overall photoemission feature excited from the core function φc on site
RA

I∞( p;ω) = 2π|〈 f −
p |Δ|φc〉|2 exp

[
−

∫ ∞

0
dε β(ε)

]

×
[
D1(Ec) + (D1 ∗ β2)(Ec) + 1

2
(D1 ∗ β2 ∗ β2)(Ec) + . . .

]
. (19.11)

As pointed out beforeβ(ε) depends on p, so that plasmon loss bands show the angular
dependence. At low energy region (εp < 200eV), prominent angular dependence of
the plasmon loss structure is observed, whereas weak dependence is observed in the
high energy region [5].

19.3 Discussion

The quantum Landau formula originally derived by Hedin et al. can explain overall
plasmon loss features accompanied by core-level photoemission; they neglect elastic
scatterings before and after the losses [2]. Ohori et al. have studied the applicability
of the quantum Landau formula over wide energy range [6]. Their results show that
the high-energy approximation used in the cumulant approximation works so well
in the range, εp > 60eV.

Kazama et al. have applied the theoretical approach presented above to the anal-
yses of the angular and energy dependence of the plasmon losses from Al and Na
2s levels [7]. The depth profiles of single-loss spectra calculated with full multiple
scatterings decay faster than without elastic scatterings. The single elastic scatter-
ing model gives rise to unexpected large loss intensities from deep emitters, which
clearly demonstrates the importance of full multiple elastic scatterings to analyze
loss bands.

Niki et al. have also calculated the surface and bulk plasmon satellites associated
with Li 1s photoemission at ω = 170eV from a Li metal taking full multiple elastic
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scatterings [8]. Although Li is quite a weak scatterer, they find rather prominent
effects from elastic scatterings on depth profile and loss band structure.

In these practical calculations they have used simple approximations used in
electron gas systems for the fluctuation potential and the screened Coulomb inter-
action W. In some cases, however, band effects, size effects are to be considered.
The former should be important for semiconductors, semimetals as graphene, and
transition metals. The latter should be inevitable for the analyses of photoemission
spectra from nano systems.
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Chapter 20
Theory of Pump-Probe Ultrafast
Photoemission Spectra

Takashi Fujikawa and Kaori Niki

Abstract Keldysh Green’s function approach is used in order to derive a practi-
cal formula to study pump-probe ultrafast photoemission spectra. The pump pulse
is strong whereas the probe pulse can be treated by use of a perturbation theory:
We expand the full Green’s function in terms of electron-probe pulse interaction
and renormalized Green’s function including pump pulse excitation. Random Phase
Approximation (RPA)-boson approach is introduced to estimate some important
factors. Well above the edge, ultrafast photoelectron diffraction provides us with
information on the transient structural change after the pump pulse excitation. In
addition to these slow processes, the rapid oscillation plays an important role related
to electronic excitation by pump pulse.

20.1 Introduction

A pump-probe photoemission technique is now a promising tool to investigate
nonequilibrium dynamics of excited molecules and solids on a femto-second time
scale. So far some theoretical methods have been proposed to study the nonequilib-
rium dynamics observed in ultrafast photoemission spectra excited by pump laser
pulse [1, 2]. They have provided us with quite interesting information on electron
dynamics in strongly correlated systems. These approaches are based on the intrinsic
approximation, so that extrinsic losses and resonant processes cannot be discussed.
Braun et al. have proposed an interesting one-step theory of pump-probe photoemis-
sion based on Keldysh Green’s function theory in a fully relativistic four-component
formalism [3]. The extrinsic and further complicated many-body effects are not
considered there. A much simpler approach based on a model Hamiltonian is
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developed by Lee, and applied to attosecond resonant photoemission of copper
dichloride [4].

Rolles et al. have presented time-resolved femtosecond x-ray photoelectron
diffraction (XPD) measurements on laser-aligned 1,4-dibromobenzene molecules
which were compared with density functional theory calculations [5]. They try to
extract useful information about time-dependent structural changes after the pump
pulse irradiation. They, however, observe no clear time dependence: They use rather
low kinetic energy (εp = 20 and 35eV). It is, however, not exactly XPD from
molecules fixed in space. First successful photoelectron diffraction measurement is
reported by Nakajima et al. from laser aligned I2 molecule using X-ray free-electron
laser (XFEL) pulses [6]. The XPD patterns of the I2 molecules aligned to the polar-
ization vector of the XFEL are well explained by multiple scattering calculations.

Ulter et al. have also studied the same problems using Kadanoff–Baym equation
[5]. These papers are focused on electron dynamics after the pump pulse irradiation.

Kazama et al. have studied the sensitivity of the XPD angular patterns to the
structural changes at rather high energy region (εp > 100eV) [7, 8]. They show that
the XPD patterns are sensitive to the structural changes, and the time-dependent XPD
can be a promising tool to study nuclear dynamics after the laser pump excitation.
We still have a question whether we can directly observe the time-dependent XPD
spectra from the pump-probe XPS. Kuleff and Cederbaum have reviewed their recent
theoretical results and some important applications after molecules are exposed to
ultrashort laser pulses [9]. They focus on electron and nuclear dynamics after the
excitation, in particular on chargemigration.Detailed discussiononpump-probeXPS
spectra has not been given there. Here our recent related work is briefly reviewed
which incorporates all effects in ultrafast XPS spectra [10].

20.2 Ultrafast XPS Theory

In the pump-probe photoemission experiments, we use two photon pulses; pump and
probe XFEL pulses. The photoemission current j at the detection site r (r → ∞)
and time t is given within the nonrelativistic theory

j(r, t) ∝
∑

σ

( ∂

∂ r ′ − ∂

∂ r

)
g<(xt, x ′t)

∣∣∣
x=x ′

, (20.1)

wherewe neglect the diamagnetic current and use x = (r, σ ) (σ = ±1) and take r ′ =
r after the differential operation. Our task is thus to calculate the Green’s function g<

including all interactions. For that purpose we notice that the full Keldysh Green’s
function G(1, 2) (1 = (x1, t1)) satisfies the Dyson equation

[
i

∂

∂t1
− h(1) − A(1) − B(1) − VH (1)

]
G(1, 2)

−
∫

c
d3 Σ(1, 3)G(3, 2) = δc(1, 2) . (20.2)
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In the above equation
∫
c means the time integration, and δc is the delta function on

the closed path. One electron operator A (B) describes the interaction between the
probe XFEL pulse (strong pump laser pulse) and an electron in the system.

As demonstrated by (20.2), the total Green’s function G includes the influence
from A. Let GB be the Green’s function only affected by the pump pulse B, which
satisfies the Dyson equation

[
i

∂

∂t1
− h(1) − B(1) − VH (1)

]
GB(1, 2)

−
∫

c
d3 ΣB(1, 3)GB(3, 2) = δc(1, 2) , (20.3)

where ΣB is the electron self-energy with no influence from the XFEL x-rays.
Wemeasure stationary photoelectron currentwhich should be caused by 2nd order

processes in regard to probe pulse A. By use of the asymptotic formulas of f −
k , the

photoemission intensity Ik measuring the momentum k is given

Ik ∝ �
[∫

d1 d2 f −∗
k (1)X<(1, 2) f −

k (2)

]
, (20.4)

where f −
k is the damping photoelectron wave function under the influence of the

optical potential. The lowest order term of X< is given by

X<(1, 2) = A(1)g<
B (1, 2)A(2).

TheGreen’s function g<
B (1, 2) has information on nonequilibrium dynamics after the

pump pulse irradiation, which is also written in terms of the time-dependent Dyson
orbitals gm for the core-hole state |m∗〉

gm(1) = 〈m∗|ψ(1)|0〉 = 〈m∗|Û (t1, t0)
†ψ̂(1)Û (t1, t0)|0〉, (20.5)

Û (t1, t0) = T exp

[
−i

∫ t1

t0

d2 B(2)ρ̂(2)

]
.

For the core excitation from φc, the Dyson orbital gm is approximated

gm(1) ≈ φc(x1)Sm(t1), Sm(t1) = 〈m∗|Û (t1, t0)
†b̂(1)Û (t1, t0)|0〉 , (20.6)

where b is the annihilation operator for the core levelφc. The time-dependent intrinsic
amplitude Sm(t1) has information about the dynamics after the pump excitation. The
main photoemission band is thus given

Ik ∝
∣∣∣
∫

d1 f −∗
k (1)A(1)φc(x1)S0(t1)

∣∣∣
2

. (20.7)
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The time integration over t1 can be carried out for some pulse function a(t1) in
A(1) = a(t1)Δ(x1).

In the high-energy (EXAFS) region, photoelectrons aremainly scattered fromcore
electrons, which are insensitive to the details of the electronic structures. We thus
assume that in the EXAFS region the photoelectrons are scattered by each atom in a
decaying time-dependent atomic configuration, and we can apply multiple scattering
expansion for the calculation of the amplitude 〈 f −

k |Δ|φc〉 in (20.7) which depends
on t1 through the temporal atomic arrangement. This time dependence is much more
slower than those in the intrinsic amplitudes Sm(t1).

We next take the screened Coulomb interaction W into account, which yields
extrinsic losses: Both W> and W< contribute to the extrinsic losses. The loss func-
tionsW> andW< are written in terms of the fluctuation potential δvl related to 0 → l
bosonic excitation,

iW>(1, 2) =
∑

l

δv∗
l (1) δvl(2), (20.8)

δvl(1) =
∫

d3
〈l|δρ(3)|0〉
|r1 − r3| . (20.9)

Summing up important extrinsic loss terms, we obtain a similar formula to the sta-
tionary XPS loss bands including the interference between the intrinsic and extrinsic
losses

I mk ∝
∣∣∣〈 f −

k |Δ|φc〉Sm(t) + 〈 f −
k |δvmgcBΔ|φc〉S0(t)

∣∣2. (20.10)

In the second amplitude in | . . . |2 the causal Green’s function gcB describes the pho-
toelectron propagation inside solids, and the fluctuation potential δvm is responsible
for the extrinsic excitation |0〉 → |m〉.

20.3 Quasi-boson Approximation

Further approximation must be introduced to calculate the pump-probe XPS spectra
given by (20.7) and (20.10). Within quasi-boson approximation, the pump pulse
excitation operator B(t) is simply written in terms of boson operator aq and a†q

B(t) = b(t)
∑

q

(
Bqaq + B∗

q a
†
q

)
.

The expansion coefficient Bq is calculated by use of solutions of RPA equation
and matrix elements of electron-photon interaction operator Δ. This approximation
allows us to calculate analytically the time evolution operator Û without further
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approximation. With aid of the above approximation, the photoemission intensity I 0k
is thus given for the very short pump- and probe-pulses.

I 0k ∝
∣∣∣M(k; Q(tA))L0(tA)

∣∣∣
2
, M(k; Q(tA)) = 〈 f −

k |Δ|φc〉tA . (20.11)

where instantaneous atomic configuration is represented as Q(tA) at time tA when
the probe pulse is applied. The multiple scattering matrix M can describe the pho-
toelectron diffraction reflecting atomic configuration Q(tA). Rapid change with tA
should be observed for L0(tA), which is due to electronic dynamics after the pump
pulse irradiation.

20.4 Discussion

A first principle many-body time-dependent theory is given here to describe pump-
probe ultrafast photoemission spectra based on aKeldyshGreen’s function approach.
Rabi-type rapid oscillation is caused by electron excitation after the pump pulse exci-
tation, and slow change in photoelectron diffraction pattern reflects the instantaneous
structural change. It is important to note that they cannot be separated out as indicated
by (20.11). Poor time resolution of XFEL excitation smears out the rapid oscillation:
Only the information on local structural change could be obtained.
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Chapter 21
Treatment of Thermal Effects by Means
of the Alloy Analogy Model

Hubert Ebert, Jürgen Braun, Ján Minár and Sergiy Mankovsky

Abstract A scheme is presented that allows to account for finite temperature
effects when calculating response functions or spectroscopic properties of solids.
The approach is based on the alloy analogy model and treats thermally induced dis-
order as chemical disorder in substitutional alloys bymeans of the Coherent Potential
Approximation (CPA). The reliability of the approach is demonstrated by calcula-
tions of the temperature dependent resistivity of ferromagnetic Fe. Calculations of
angle-resolved photoemission show for increasing temperature the expected smear-
ing of band-like features in the spectra, i.e. a transition from the so-called UPS to
the XPS regime.

21.1 Introduction

Thermally induced lattice vibrations are often accounted for in the theory of spec-
troscopy by means of the Debye–Waller factor W (T ). This applies in particular for
x-ray absorption (XAS) [1] and photoemission (PES) [2, 3]. For magnetic solids one
has in addition to account for spin fluctuations [4] that contribute to the thermally
induced disorder in a system and influence all spectroscopic properties this way.
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Fig. 21.1 Accounting for thermal disorder by means of an effective CPA medium. Left: the con-
tinuous distribution P(ΔRn(T )) of atomic displacement vectors is replaced by a discrete set of
vectors ΔRv(T ) with probabilities xv . Right: the continuous distribution P(ên) of orientations of
the magnetic moments is replaced by a discrete set of orientation vectors ê f with probabilities x f
[7]

The Coherent Potential Approximation (CPA) [5] in combination with multiple
scattering theory or the KKR (Korringa–Kohn–Rostoker) formalism, respectively,
is a well established scheme to deal with chemical disorder in substitutional alloys.
Recently, this approach to get a configurational average was applied when dealing
with thermally induced disorder [6]. Here the application of the corresponding alloy
analogy model is demonstrated for the calculation of transport properties [7] and
photoemission spectra [8].

21.2 The Alloy Analogy Model

The central idea of the corresponding alloy analogy model to deal with finite tem-
perature effects is sketched in Fig. 21.1.

Thermally induced lattice vibrations are assumed to be much slower than the
electronic propagation and for that reason they can be accounted for in a quasi static
manner. For that purpose they are represented by a discrete set of displacement
vectors ΔRv(T ) with the probability xv [7]. In a similar way spin fluctuations are
represented by a discrete set of orientation vectors ê f with probabilities x f , that may
be set up e.g. on the basis of Monte Carlo simulations [7].

In terms of the KKR formalism the single-site t-matrix t of a displaced atom can
be related to that of the unshifted atom bymeans of theU -transformation [9] as given
in (21.1), where the underline indicates matrices with respect to the combined index
Λ = (κ,μ) with the relativistic spin-orbit and magnetic quantum numbers κ and μ,
respectively [10].

tv = U (ΔRv) t U (ΔRv)
−1 (21.1)

t f = R(ê f ) t R(ê f )
−1 (21.2)

tv f = U (ΔRv) R(ê f ) t R(ê f )
−1U (ΔRv)

−1 . (21.3)

Equation (21.2) gives in a similar way the impact of the rotation of a local moment
in terms of rotation matrices R(ê), while (21.3) combines the impact of rotation and
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displacement. With this, the components of a quasi alloy are defined and the standard
CPA equations

τCPA =
∑

v f

xv f τ v f (21.4)

τ v f = [
(tv f )

−1 − (tCPA)−1 + (τCPA)−1
]−1

. (21.5)

can be used to determine the single-site t-matrix tCPA representing the CPAmedium.
The corresponding CPA scattering path operator τCPA is obtained solving the asso-
ciated multiple scattering problem.

21.3 Transport Properties

Representing the electronic structure of a solid in terms of the retarded Green’s
function G+(E) the symmetric part of the conductivity tensor for T = 0K can be
expressed by means of the Kubo–Greenwood equation:

σμν = �

πNΩ
Tr

〈
ĵμ �G+(EF) ĵν �G+(EF)

〉
c , (21.6)

with ĵ the current density operator [10], Ω the volume of the unit cell and EF

the Fermi energy. For a disordered system the bracket 〈...〉c in (21.6) implies a
configurational average. The corresponding KKR-CPA based scheme for alloys [11]
was adopted recently to deal with thermally induced disorder making use of the alloy
analogy model [7].

Figure21.2 (left) shows results of calculations of the temperature (T ) dependent
resistivity ρ(T ) of ferromagnetic bcc-Fe.

Including only thermal vibrations (ρv(vib)) one gets a nearly linear increase with
T . Accounting for spin fluctuations on the basis of Monte Carlo (MC) simulations
the corresponding resistivity (ρMC(fluct)) increases up to the critical temperature
TC and then saturates. The dashed curve gives the sum of ρv(vib) and ρMC(fluct). In
particular at higher temperatures this sumdeviates from the resistivity that is obtained
if both sources of thermal disorder are accounted for simultaneously.

The right panel of Fig. 21.2 shows the resistivity ρ(T ) obtained on the basis of
MC simulations that are found in reasonable good agreement with the experimental
data. Modeling the spin fluctuations on the basis of the experimental magnetization
curve M(T ) leads finally to a very good agreement with experiment demonstrating
that the alloy analogy model allows to account for thermal effects in a quantitative
way.



342 H. Ebert et al.

0 0.2 0.4 0.6 0.8 1 1.2
T/T

C

0

20

40

60

80

100

120

140

ρ xx
  (

10
-6

Ω
⋅c

m
)

ρ
v
 (vib)

ρ
MC

 (fluct)
ρ

(v, MC)
 (vib+fluct)

ρ
v
 + ρ

MC

0 0.2 0.4 0.6 0.8 1 1.2 1.4
T/T

C

0

20

40

60

80

100

120

ρ xx
  (

10
-6

Ω
⋅c

m
)

Expt: J. Bass
ρ

(v, MC)
 (vib + fluct)

ρ
(v, expt)

 (vib + fluct)

Fig. 21.2 Resistivity ρ(T ) of bcc-Fe. Left: accounting for vibrations (diamonds), spin fluctuations
from MC simulations (squares) and both (circles). The dashed line gives the sum of the first two
curves. Right: resistivity obtained by accounting for thermal vibrations and spin fluctuations using
MC data (squares) and the experimental magnetic moment Mexp(T ) (diamonds) compared with
experiment (circles) [7]

21.4 Photoemission

The one-step model of angle-resolved photoemission (AR-PES) was originally
implemented for ordered solids using theKKRformalism [12]. This platformallowed
to generalize the approach to deal with disordered alloys making use of the CPA [13,
14]. Recently, the one-step model could be extended to deal with thermal effects
exploiting the alloy analogymodel [8]. This way the emission intensity 〈I (ε f , k, T )〉
depending on the final state energy ε f and wave vector k as well as temperature T
can be written as:

〈I (ε f , k, T )〉 = 〈I a(ε f , k, T )〉 + 〈Im(ε f , k, T )〉 + 〈I inc(ε f , k, T )〉 . (21.7)

The first term is atomic-like, i.e. it has a local character. The other ones are
determined by multiple scattering events and this way reflect the electronic structure
of the investigated solid. The second coherent term allows to map the dispersion
relation while the third incoherent term reflects the degree of disorder in the system.
In fact, inspection of the explicit expressions for the photo current shows that the
coherent term dominates for low T and photon energies, while the incoherent term
dominates for high T or photon energies giving rise to a DOS (density of states) like
spectrum. This expected behavior is indeed confirmed by the calculated AR-PES
spectra for Au(111) and Pt(111) in Fig. 21.3.

As one can see with increasing temperature a smooth transition from the band
structure like UPS to the DOS like XPS regime is observed. This occurs the quicker
the higher the photon energy and the lower the Debye temperature ΘD (Au: ΘD =
165K, Pt: ΘD = 230K).

The experimental energy distribution curves (EDCs) of W(110) (ΘD = 400K)
for the photon energy 870eV in Fig. 21.4 clearly show the expected transition to
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Fig. 21.3 Calculated normal emission angle-resolved (AR-PES, red curves) and angle-integrated
spectra (AI-PES, blue curves) for Au(111) (left) and Pt(111) (right) at two different photon energies
(hν = 1.0 and 6.4eV) for the several temperatures [8]
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Fig. 21.4 a Experimental energy distribution curves (EDCs) for W(110) with a comparison to
broadened DOS (topmost curve). b Experimental temperature-dependent momentum distribution
curves (MDCs). c, d Corresponding theoretical results [8]

the XPS regime with increasing temperature [13]; i.e. the band like features of the
spectra observed at low temperatures are continuously washed out due to increasing
thermal disorder. This behavior is obviously well reproduced by the calculations
based on the alloy analogy model. This also applies for the momentum distribution
curves (MDCs).

For the experimental spectra finite temperature leads to a smearing out of the
spectral features but does not diminish the total intensity. This applies obviously also
for the theoretical AR-PES spectra shown in Figs. 21.3 and 21.4. This is because the
alloy analogy model leads to an effective medium that does not violate the optical
theorem. This fundamental requirement is not satisfied by simpler approaches that
account for finite temperatures by multiplying the single-site t-matrices with the
Debye–Waller factor W (T ) [3].
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Chapter 22
Local Geometry by XANES and RXS

Joaquín García Ruiz

Abstract A brief overview of the capability of x-ray absorption near edge structure
(XANES) and resonant x-ray scattering (RXS) in the hard x-ray region to determine
the local geometrical structure around the photoabsorbing atom is presented.

22.1 Introduction. Geometry Beyond the Radial
Distribution Function

X-ray absorption spectroscopy (XAS) is the appropriate technique to investigate the
neighbourhood of a photoabsorber atom embedded in a medium [1]. The x-ray ab-
sorption process is a transition between two quantum states: from an initial state with
an x-ray and a core electron to a final state with no x-ray, a core-hole and a photo-
electron. The inner shell electron is well described by atomic wave functions and the
photoelectron final states wave function for an isolated atom is well described by a
free spherical wave outgoing from the atom. The final states outgoing wave becomes
from the superposition of the free outgoing wave and the scattered waves by the
atoms surrounding the absorber one. This interference between the outgoing wave
and the scattered ones produces minima and maxima in space. Such a simplified
picture describes the multiple scattering approximation to the XAS spectrum [2–5],
where the cross section can be factorized as: σ = σ0(1 + ∑

χn). Here σ0 represents
the cross section for the isolated atom (the free outgoing wave function) and

∑
χn

comes from the processes in which the photoelectron is dispersed n − 1 times by the
neighbour atoms before interferingwith the outgoingwave at the origin. Thesemulti-
ple scattering events carry information on the topological order around the absorber,
i.e. interatomic distances and angles between bonds. Such multiple scattering signals
are always present in the XAS spectrum but their contribution rapidly decreases with
increasing the energy (or wave vector q).

The information on the local geometry contained in XAS comes from multiple
scattering processes of the outgoing wave. Joined to this, direct information on the
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geometry can be obtained from the tensor character of the absorption cross section
[6]. Therefore in anisotropic materials the spectrum is dependent on the relative
orientation of the electric field polarization of the x-ray beam to the sample orien-
tation. In the EXAFS region interatomic distances on the direction of the electric
field vector can be obtained [1]. On the other hand the energy of the absorption edge
highly depends on the polarized direction. This strong difference at the edge allows
to detect by RXS the scattered intensity for photon energies at the absorption edge
in forbidden reflections [7]. Within this contribution, we will shortly review some
experimental probes of these facts. i.e. local geometry determined by (i) multiple s-
cattering description (ii) polarized absorption spectra and (iii) ordering of distortions
by resonant x-ray scattering.

22.2 Local Geometry in XANES Spectrum. Multiple
Scattering

The interpretation of the XANES spectra was matter of controversy in the eighties.
Some studies suggested that the multiple scattering range is very small question-
ing the capability of XANES to probe high-order correlation functions. One of the
difficulties to resolve this problem was that photoabsorbing atoms in a solid are
surrounded by atoms in successive coordination shells in such a way that the con-
tribution of distant shells interfere with that coming from multiple scattering of the
nearest neighbours atoms. The simplest way to resolve this problem was by com-
paring the XAS spectra of transition metal ions in water solution where only the
first coordination shell is relevant. This controversy was resolved by comparing the
Mn K-edge absorption spectra of a water solution of potassium permanganate where
MnO−

4 ion is tetrahedrally coordinated and a water solution of Mn+
2 where this ion is

octahedrally coordinated [5]. These two spectra after rescaling the energy and renor-
malizing the amplitude shows the same sinusoidal behaviour in the energy region
sensitive only to the pair correlation function (EXAFS region). A strong difference
is observed in the XANES region due to the different geometrical arrangement of
the ligand atoms around the metal ion in the two complexes.

As illustration, Fig. 22.1 shows the expansion in the different MS contributions
of the [Mn(H2O)6]2+ octahedral cluster compared with the experimental spectrum.
As we can see the main line A for octahedral clusters is determined by a full multi-
ple scattering resonance where all the multiple scattering contributions are in phase
[5, 8]. Multiple scattering theory is nowadays the usual method to analyze the X-
ANES spectra. There is a lot of codes to calculate the XANES spectra as: mcms,
gnxas, mxan, fdmnes, feff, etc. The reader is addressed to other chapters of this
book to know the recent improvements of the different codes. Theoretical fitting of
the XANES spectra can be performed [9] and it is generalized the implementation
of the MS contributions in the analysis of the extended part of the XAS spectrum
(EXAFS) [10].
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Fig. 22.1 Comparison
between calculated and
experimental spectra of
[Mn(H2O)6]2+ ion and
expansion in its multiple
scattering contributions.
Source [5]. Reproduced with
permission from American
Physical Society

22.3 Anisotropy in the Local Geometry from Polarized
XANES Spectra

As it is shown, the local geometry can be retrieved from XANES spectra through
the theoretical simulation using MS framework. But independently of this fact, the
absorption coefficient is a symmetric tensor of rank 2 in the dipole approximation
related to the electric field vector of the incident x-ray beam (eq). In principle, six
different components are necessary to completely describe it. Depending on the local
symmetry the number of components is reduced in such a way that for octahedral
or tetrahedral symmetries the tensor is diagonal and the three components are equal,
i.e. it behaves as a scalar. For tetragonal symmetry and taken the reference frame
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as the tetragonal axis and the two directions perpendicular to it, the tensor is also
diagonal with two different components, along the tetragonal axis and perpendicu-
lar to it [6]. It is obvious that XAS spectra on oriented samples will provide direct
information on the local symmetry. In the case of the EXAFS region where the pair
distribution function is obtained, the observed path contribution is factorized by the
scalar product of eq and the bond direction [1]. For example, the EXAFS contri-
bution to the surrounding atoms located perpendicular to eq is exactly zero. In the
XANES spectra differences come mainly from the energy position of the absorption
edge, an anisotropic shift is observed. As a matter of illustration, La1−xSr1+xMnO4

compounds present a tetragonal distorted local structure around the Mn atom. The
experiments were performed with the polarization of the incident beam parallel and
perpendicular to the c- axis. XANES spectra for the three single crystals show an
anisotropic splitting being larger the for x = 0 sample and the smaller for the x = 0.5
one [11]. The magnitude of this splitting correlates with the larger Mn-O interatomic
distance along the c-axis for the x = 0 composition. Therefore, the anisotropic split-
ting measures the degree of tetragonal distortion of the MnO6 octahedron. Needless
to say that from the polarized EXAFS spectra, the in-plane Mn-O interatomic dis-
tances are determined when eq is perpendicular to the c-axis whereas the out of plane
Mn-O distances are obtained for eq parallel to c.

22.4 Ordering of the Local Distortions by Resonant X-Ray
Scattering (RXS)

RXS combines absorption and diffraction as they have in common the x-ray atom-
ic scattering factor (ASF), f , which is usually written as: f = f0 + f ′ + if " [1]. It
contains an energy independent part, f0, corresponding to the classical Thomson
scattering and two energy-dependent terms, f ′ and f ", also known as the atomic
anomalous scattering factor. RXS occurs when the x-ray energy is tuned near the
absorption edge of an atom in the crystal. We recall here the intimate relationship
between the atomic anomalous scattering factor (ASF) and the absorption coeffi-
cient, i.e. the imaginary part of the ASF is proportional to the absorption coefficient,
whereas the real part is related to the imaginary part through the Kramers–Kronig
transformation. Therefore, the ASF has the same tensorial character as the absorption
coefficient. The polarization dependence of ASF is in the origin of the observation
of RXS intensity in forbidden reflections. These reflections that are forbidden by
symmetry due to the scalar character of the Thomson scattering. They are forbidden
by symmetry elements with translation components (screw axes and glide planes)
and appear due to the presence of local anisotropy (sometimes assigned to orbital
ordering (OO)). As we have seen in the previous section, the anisotropy is main-
ly reflected in the anisotropic shift of the polarized XANES spectra (and the ASF)
and therefore, the enhancement of the scattered intensity just appear close to the
absorption threshold.
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Fig. 22.2 Left: Schematic picture of the fourMn atoms in the Pbnm crystal cell indicating the order
of the long Mn-O bond. Right: Calculated RXS of the (030) and (003) reflections. Upper panel:
Calculations with mxan. Lower panel: Experimental RXS spectra. Source [12]. Reproduced with
permission from American Physical Society

An illustrative example is the RXS at the forbidden reflections in the LaMnO3

[12]. The crystallographic symmetry of this compound is Pbnm and (odd, 0, 0),
(0, odd, 0) and (0, 0, odd) reflections are forbidden. This is due to the fact that their
structure factor comes from the difference between equivalent atoms in the unit
cell. The difference in the ASF among equivalent Mn atoms is originated by the
different orientation of the local tetragonal distortion, as it is depicted in Fig. 22.2.
Therefore, scattered reflected intensity will be observed at energies close to the
absorption edge due to the anisotropic shift between the two polarizations parallel
and perpendicular to the local tetragonal axis. As it is shown in Fig. 22.2 maximum
of the scattered intensity occurs just at the white line. The energy dependence of the
scattered intensity of the (030) and (003) forbidden reflections together with and the
calculated ones using the mxan code [13] are shown in Fig. 22.2.

22.5 Summary

Within this short paper we pretend to briefly illustrate the capability of the hard x-ray
spectroscopies to determine the local geometry around a specific atom. There is a lot
of points that are not discussed, such as DAFS, DANES, or high energy resolution
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XAS spectroscopies. The reader can be addressed to the large bibliography on these
subjects, for instance the book by J.A. vanBokhoven andC.Lamberti [14]. Regarding
the multiple scattering theory and its recent developments they can refer to the other
papers contained in this book.
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Chapter 23
Does an Electron Pair Diffract as a Whole?

Giovanni Stefani

Abstract The correlated behavior of the electrons in atoms, molecules and solids
has been, and still is, a crucial issue for the quantum mechanics. Lately, experiments
in which either a photon or an electron ionizes a system generating a pair of unbound
electrons have shown to be particularly sensitive to correlations. In this paper a brief
selection of such experiments is presented aiming at highlighting conditions under
which the two final electrons behave as a single entity rather than two independent
ones. It is concluded that whenever the pair generation occurs on an attosecond
timescale the pair is strongly correlated, i.e. it is entangled, and the electrons contin-
uously share between them the energy in excess to the pair creation threshold.

Quantummechanics is the sound background onwhichmost of nowadays technology
rests. However, in spite of this undeniable success, there are still questions that after
a century wait for an answer. Among them, one nut resulted hard to crack for both
theory and experiment: The correlated motion of electrons.

From the experimental point of view correlations are elusive as they influence
marginally the spectral response of the conventional spectroscopies. Hence the effort
to develop new classes of spectroscopies more sensitive to electron correlations.
These spectroscopies have as a common denominator the presence of two unbound
electrons in the final state (2 electrons out). It is exactly the interaction of these
electrons that shapes the cross-section making them very sensitive to correlations.
Archetypal 2 electrons out processes are: (1.) the electron impact ionization and (2.)
the resonant double photoionization. In the latter processes, the photon energy is
sufficient to create an intermediate core hole that eventually auto-ionizes generating
an Auger electron. We shall see that the lifetime of the intermediate state plays
a crucial role in generating coherent or incoherent photoelectron-Auger electron
pairs. In one of such 2 electrons out processes, usually termed as Angle-Resolved
Auger-Photoelectron Coincidence Spectroscopy (AR-APECS) [1, 2] (and references
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therein quoted) a monochromatic light beam impinges on the target, the unbound
electrons are separately discriminated in energy and momentum and detected, if and
only if, they are coincident in time, i.e. originate from the same ionization event and
not from uncorrelated ones. In the electron impact case a monochromatic electron
beam initiates an ionization process where the two final unbound electrons are again
detected in coincidence, thus generating a so called (e,2e) experiment [3, 4] (and
references therein quoted), and continuously share energy and momentum in an
entangled way. Surprisingly enough, even such conceptually simple experiments
pose key questions that we still struggle to answer and that can be summarized as it
follows.

1. Are the two unbound electrons entangled? We know from the very definition of
entanglement that if two particles interact they cannot anymore be described by
independent wave functions and that by measuring one of them the measure of
the other one will be partly or totally determined.

2. In modeling 2-electron out processes, is it possible to use a single particle
approach, which is more suitable for solids, instead of the density matrix that
is usually employed for central potentials?

3. When the unbound electron pair diffracts from a lattice, is the entanglement
preserved?

4. When the electron pair diffracts, do the two electrons behave as independent
particles or as a single quasi-particle?

In order to tackle these problems for solid targets within the single particle
approach, the first concern is to establish validity of this model in describing the
photoelectron-Auger electron pair in a simple atomic target. Lets take a closed-shell
atom like Argon and focus on the Auger L3M23M23 angular distribution as mea-
sured in coincidence with a well specific direction of the parent L3 photoelectron. In
short, an AR-APECS experiment is performed on Ar initiated by a monochromatic
linearly polarized light beam. If we were to measure the Auger angular distribu-
tion alone we would find one quantization axis only, i.e. the light polarization axis.
When detecting in coincidence the electron pair the photoelectron establishes a sec-
ond quantization axis and the Auger angular distribution is accordingly modified. In
other words, selecting the photoelectron direction implies selecting a subset of the
core ionic states fromwhich the followingAuger originates with a non-statistical dis-
tribution. Natoli and coworkers [5] have used a single-particle scattering approach for
describing the angular correlation between a photoelectron and the subsequent Auger
electron from atomic targets. This method was proposed as an alternative approach
with respect to the usual density matrix formalism, since it is more convenient for
the extension to the solid-state cases. They have derived a tensor expression for the
cross section and an equivalent expression in terms of convenient angular functions
has been treated for the case of linearly polarized light. This method was used to
calculate the aforementioned coincident Auger decay in an Ar atom described in the
single configuration Dirac-Fock scheme. Results were found to compare favorably
with experimental data [6] for different final angular momentum states of the doubly
charged ion and for different kinematical conditions.
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Fig. 23.1 Left panel.Theoretical curve for Ge(100) L3M45M45 Auger electron angular distribution
and comparison with experimental data. Right panel. Theoretical curve for Ge(100) L3M45M45
AR-APECS and comparison with experimental data. From [6]

Natoli and coworkers extended the successful single-particle scattering approach
to solids, Ge in particular, by conjugating it with multiple scattering diffraction of the
Auger-photoelectron pair from the reconstructed Ge(100) surface 2× 1 and within
the 2-step approximation, i.e. photoemission and Auger processes are assumed to
be incoherent. In this way, they have developed a generalization of the multiple-
scattering formalism to deal with AR-APECS in the solid state. Which consists in
merging the exact atomic treatment of the angular correlations between the two elec-
trons and the single-particle approach, on which the multiple scattering description
of condensed matter relies. This allows the recovering, even in extended systems,
of the entangled form of the electron-pair wave function characterizing the coinci-
dence angular diffraction pattern. In Fig. 23.1 the numerical calculations performed
for Ge(100) L3M45M45 Auger Electron angular Distribution (AED) and for Ge(100)
L3M45M45 AR-APECS are compared with the experimental data from [7].

The experiment allowed to select specific photoelectron directions and to corre-
late them to specific Auger directions. For a mild discrimination of the photoelectron
direction is evident that the Auger angular distribution as measured in coincidence
with the photoelectron (Fig. 23.1 right panel) differs markedly from the Diffraction
Pattern shown by single AED (Fig. 23.1 left panel). What is relevant is that both
experiments, AED and AR-APECS, are well accounted by the theory that uses the
atomic model to describe entanglement of the electron pair while letting the pair
diffract incoherently from the crystal lattice. Out of these results it can be concluded
that difference between AED and AR-APECS is evidence for entanglement, i.e.
evidence for the electron pair wave-function not being separable and that, at high
energies characteristic of the AR-APECS experiment on Ge L3M45M45 (Auger =
1139eV Photoelectron = 250eV), the electrons correlated in the pair diffract inde-
pendently from the crystal. A somewhat different panorama is painted when dealing
with electron impact ionization that in the final state features a pair of correlated elec-
trons as well. In this case, a monochromatic electron beam impinges on the target and
the two final electrons are detected coincident in time and discriminated in energy
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Fig. 23.2 The (e,2e) experimental cross-section on Cu(001) (full dots) at fixed incident energy of
85eV and as a function of the relative center of mass momentum (K+). Depicted are the separate
contributions of amplitudes for direct pair emission (dotted curve) and the amplitude for the pair
scattering from the lattice potential (dashed curve). Calculations using the coherent sum (solid
curve) are also shown. The calculations are performed for infinite energy and angular resolution of
the detectors. Arrows indicate the positions of the diffracted beams. From [8]

and momentum, i.e. an (e,2e) experiment is performed. Lets consider the experiment
performed by Kirschner and coworkers [8] where the electron pairs were generated
by a low energy (below 100eV) electron beam, scattered off a Cu(001) and Fe(110)
clean surfaces, and detected by time-of-flight electron spectrometers. Experimental
results are compared with a model that accounts for diffraction of the pair from the
crystal lattice. In this case, instead of the individual free electron momenta, momen-
tum of the center of mass of the pair is considered. In other words, the probability
of detecting correlated electron pairs is calculated and measured as a function of the
relative center of mass momentum (K+). The electron-pair energy-sharing spectra
shown in Fig. 23.2 display peculiar features associated with the diffraction from the
lattice of the pair as a whole. Indeed, the (e,2e) cross-section peaks when the K+-
component parallel to the sample surface matches surface reciprocal lattice vectors.
In other words, the electron pair diffracts as a whole rather than as two independent
particles. At this stage, we are brought to think that the Ge AR-APECS experiment
is well accounted by a two-step model, photoionization incoherently followed by
Auger decay, and that at high energy the two electrons of the pair, though entangled,
diffract independently out of the crystal lattice. On the contrary, the (e,2e)-process
performed at moderate energy, is eminently a one step process, i.e. a single inter-
action determines energies and momenta of the electron pair, we must use a single
quasi-particle that diffracts out of the lattice in order to describe the electron pair
behavior. Hence, we are left with a dilemma: is it the electrons kinetic energy or the
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Fig. 23.3 The coincidence 2D-energy distributions of the N23VV Auger-photoelectron pair on
the Ag(100) surface. The photon energy is 118eV. The dashed lines indicate the position of the
maximum sum energy (Emax = Eleft + Eright). Most of the coincidence intensity is confined within
the pair of solid lines. The prominent intensity band has a width of 35eV, as marked by the arrows,
and the otherwise sharp energy separation of the Auger from the photoelectron is lost. From [9]

coherence of the pair creation the critical parameter that determines the quasi-particle
rather than the independent particles behavior?

A clear answer to this question comes from an APECS experiment performed on
the Ag(100) surface [9] where the N23VV and M45VV Auger line shapes have been
investigated by measuring the 2D-energy-distribution of the time correlated Auger-
photoelectron pairs generated in the same ionization event. The two processes under
consideration end up in the same 2-valence holes manifold of final states but they
differ in the core hole intermediate state, 4p and 3d respectively. In Fig. 23.3, the
coincidence 2D energy spectrum for the N23VV transition is reported. It is well
known that the Ag 3d photoemission peak is sharp in energy and the relative core
hole is to be considered as a quasi-stationary one. Hence, in the coincidence 2D-
energy-distributions Auger and photoelectrons will pile up in sharp and well defined
energy regions [9] and the whole process is well described by a two-step model. On
the contrary, the 4p photoemission line deviates from the quasi-particle picture and
has a linewidth of 13eV. The 2D-energy-distribution that follows the 4p excitation is
reported in Fig. 23.3. The photon energy is 118eV and the dashed lines indicate the
position of the maximum sum energy (Emax = Eleft + Eright). Most of the coincidence
intensity is confined within the pair of solid lines. The prominent intensity band has
a width of 35eV, as marked by the arrows, and the otherwise sharp energy separation
of the Auger from the photoelectron is lost. Obviously, it does not make sense to
speak of an Auger or photoelectron in this decay as energy and momentum are
continuously shared between the two final electrons. The fast dynamics of the core
ionization process is responsible for them to behave as a strongly correlated pair
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(one-step process) rather than two independent particles (two-step process). Hence,
it is the lifetime of the core intermediate state that dictates for the electron pair to
behave either as a single entity or as two independent ones.

A single answer can then be given to the four questions listed at the beginning.
Whenever the electron pair generation, be that (e,2e) or APECS, is well accounted
by a one-step model, such as a (e,2e), the two final electrons will behave as a whole,
whereas they behave as separate entities when generated through a two-step process,
such as an APECS event involving a Core Valence Valence Auger transition.
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Chapter 24
A Multiple Scattering Approach
to the EELS Cross-Section

Didier Sébilleau, Junqing Xu, Rakesh Choubisa and Calogero R. Natoli

Abstract We derive a general spherical wave multiple scattering expression of the
EELS cross-section. Contrarily to most of the previous theoretical frameworks, this
approach treats all the electrons involved on an equal footing with respect to multiple
scattering. The main point in our results is that the cross-section depends not only on
Coulomb integrals on the absorbing atom, but also on contributions from all the other
atoms.We show that these external contributions should be restricted to neighbouring
atoms.

24.1 Introduction

Electron-Energy-Loss Spectroscopy (EELS) is a versatile tool that has already a long
history in condensed matter. In this spectroscopy, a beam of electrons is shone on
a material where it can loose energy through the Coulomb excitation of electrons.
It is usually performed in transmission mode (using for instance a Transmission
Electron Microscope – TEM) where it can excite different physical phenomena such
as phonons, plasmons or intraband and interband electronic transitions. Therefore,
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EELS can give access to the electronic structure of the material. A second way to
perform an EELS experiment is in the reflection mode. In this case, provided the
kinetic energy of the electrons involved is rather low, EELS can become extremely
sensitive to the local geometry near the surface. This was demonstrated experimen-
tally some years ago [1–3]. However, this approach, although very promising, was
not pursued due to the lack of a suitable theoretical framework. Indeed, EELS is
generally interpreted within the simple and appealing model developed by Kincaid,
Meixner and Platzman [4] where the incoming and the outgoing electrons are treated
as plane waves so that multiple scattering is only considered for the ejected electron.
This model has enjoyed a widespread popularity because it reduces to an expres-
sion of the cross-section which is basically that of X-ray Absorption Spectroscopy
(XAS), allowing to compute it with standard XAS codes. However, in the energy
range where EELS could become a useful surface probe (energies of the order of
20–200eV, such as in the available experimental works [1–3]), the neglect of mul-
tiple scattering effects in the description of the incoming and outgoing electrons is
clearly too strong an approximation. Further models have been developed in order
to account for the multiple scattering in the incoming and outgoing beams but they
are either approximate (multiple scattering effect treated as a crystal field) [5], or
relying on the periodicity of the system [2, 6]. This is why we propose here a new
theoretical framework where all electrons are treated on an equal footing and that
can be applied to any sort of materials.

24.2 The Generic EELS Cross-Section

The starting point of our approach is the distorted wave Born approximation of the
double differential EELS cross-section which can be written as [7]

d2σ

dEdΩksc
= 4π4 ksc

kin

∑

0,mc,n

∣∣ 〈φn | 〈ϕ−
sc |K | φ0

Lc
〉 | ϕ+

in 〉∣∣2 δ (E0 + Ein − En − Esc) ,

(24.1)
where | ϕ+

in 〉, | φ0
Lc

〉 and | ϕ−
sc 〉 are respectively the incoming electron state, the core

state that is to be excited and the scattered electron state. | ϕ+
in 〉 and | ϕ−

sc 〉 take into
account the interaction of the incoming/outgoing electron with the potential VS of
the sample. As the excited electron is not detected, we must sum over all the excited
electron states | φn 〉 that satisfy the energy conservation En = Ein + E0 − Esc.
Here, E in dE is the energy loss Ein − Esc. Note that here we have supposed all the
other electrons to be spectators so that we can work solely in a two-electron space.

K is the potential responsible for the energy loss, i.e. the Coulomb potential with a
suitable antisymmetrizer so that the direct and exchange terms in (24.1) are correctly
accounted for.

We introduce now the two-electron operator

− 1

π
| ϕ−

sc 〉 〈ϕ−
sc | ⊗ � [

G+(En)
] = − 1

π
W , (24.2)
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in order to simplify the notation.
We expand the square modulus in (24.1) to obtain

d2σ

dEdΩksc
= −4π3 ksc

kin

∑

0,mc

∑

γ,δ

∑

γ′,δ′
〈ϕγ′+

in | 〈φ0
Lc

| (K†Wδδ′K) | φ0
Lc

〉 | ϕγ+
in 〉 .

(24.3)
The incoming state is now labelled | ϕγ+

in 〉 to account for the fact that, due to
the long-range nature of the Coulomb potential, the incoming electron can be in the
vicinity of atom γ when it interacts with the core state | φ0

Lc
〉 located on atom 0.

Likewise, we have indexed the scattering state by δ. The double sum over (δ, γ) and
(δ′, γ′) comes from the fact that the sum over (δ, γ) is inside the square modulus in
(24.1).

Expression (24.3) differs from the equation previously derived by one of us [8]
where the long-range character of the Coulomb interaction was implicitly neglected.

We note the similarity with the XAS cross-section which can be expressed as

σa = −2m

�2
8π α �ωq

∑

0,mc

〈φ0
Lc

|K†� [
G+(kex)

]K | φ0
Lc

〉 . (24.4)

24.3 The Generalized Cross-Section in a Spherical Wave
Representation

We can now use the closure relation of the spherical wave basis as defined in Chap. 1
as

〈r|kL〉 = k

√
2

π
i� j�(kr)YL(r̂) , (24.5)

and insert it into (24.3) to obtain finally

d2σ

dEdΩksc
= 27

π2

ksckex
kin

∑

0,mc

∑

β,Lβ
α,Lα

�
[
A0α ∗
mcLα

(kin, ksc)τ
αβ
LαLβ

(kex)A
0β
mcLβ

(kin, ksc)
]

,

(24.6)
where

A0α
mcLα

(kin, ksc) =
∑

γ,Lγ

∑

δ,Lδ

[
Bγ (+)

Lγ
(kin)

(
Bδ (−)
Lδ

(k∗
sc)

)∗
MLαLc

LδLγ

]
, (24.7)

with the multiple scattering amplitudes on atom α given by

Bα (±)
Lα

(k) =
∑

i,Li

ταi ±
LαLi

(k) Y ∗
Li

(k̂) eik·Ri . (24.8)
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τ is the scattering path operator defined in Chap.1 and MLαLc
LδLγ

is the regular
Coulomb interaction matrix element.

Here, we have supposed the sample potential VS to be real so that we have no
extra term involving irregular Coulomb matrix elements.

24.4 The Regular Coulomb Matrix Elements

The first step in the calculation of the Coulomb matrix elements is to replace the
Coulomb potential VC by a screened Coulomb potential

V s
C(r1, r2) = e2

4πε0

e− |r1−r2|
λ

|r1 − r2| . (24.9)

We recover the Coulomb potential when λ −→ +∞. Otherwise, we can consider
the screening constant λ as an adjustable parameter, or set it to a fixed value such as
the Thomas–Fermi value λTF = 3

√
π/12

√
rs , with rs in units of the Bohr radius a0.

The reason for such a replacement is that we recognize now in the screened Coulomb
potential a quantity proportional to a Green’s function

V s
C(r1, r2) = −e2

ε0
G+

0

(
r1, r2; i

λ

)
. (24.10)

We can now expand it using the well-known one-site or two-site expansions of
Green’s functions [9]. This gives finally for the direct integrals on the absorbing atom
0 and between atom i and atom 0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DL0Lc

Li L̄i
(0) = −Nce2

λε0

(π

2

) 3
2

∑

L

ρ̃(�i , �0|�|�c, �̄i ) G(L L̄i |Li ) G(L0L|Lc)

with the pattern ↓ ↓ ↓ ↓ ↓
sc ex 1

λ co in

DL0Lc

Li L̄i
(i) = Nce2

λε0

(π

2

) 3
2

∑

L ′
i ,L

′
0

(−1)�
′
i G̃i0

L ′
i L

′
0
ρ(�i |�′

i |�̄i ) ρ(�0|�′
0|�c) ×

with the pattern ↓ ↓ ↓ ↓ ↓ ↓
sc 1

λ in ex 1
λ co

G(L ′
i L̄ i |Li ) G(L ′

0L0|Lc) ,

(24.11)
where ρ̃(�i , �0|�|�c, �̄i ) and ρ(�0|�′

0|�c) are radial integrals. The G̃i0
L ′
i L

′
0
are the matrix

elements of the propagator of the Coulomb field (24.10), and G(L L̄i |Li ) is a Gaunt
coefficient (with angular momenta on the right-hand side of | complex-conjugated).
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Fig. 24.1 Magnitude of the matrix elements of the Coulomb field for � = 2 and m = −2, and for
different values of the screening parameter λ as a function of the interatomic distance.

When we take into account the fact that the core state wave function φ0
Lc

(r) in
these radial integrals is localized on the absorbing atoms, we find the atomic selection
rules ⎧

⎨

⎩

β = 0

i = γ = δ ,

(24.12)

which simplify considerably the expression of the cross-section (24.6). Correspond-
ing results for the exchange matrix elements are derived in a similar way.

The point we want to emphasize here is that a priori all the atoms in the cluster
contribute to the Coulomb matrix elements in the expression (24.6) of the cross-
section. This is a consequence of the long-range nature of the Coulomb potential.
However, as we know that in materials Coulomb potentials are screened, let us figure
out whether all atoms contribute significantly or just a few shells of neighbours
around the absorbing atom 0.

From (24.11), we see that the main difference in magnitude between the diagonal
term DL0Lc

Li L̄i
(0) and the off-diagonal contributions DL0Lc

Li L̄i
(i) lies in thematrix elements

of the screened Coulomb field. Figure24.1 gives an example of the evolution of
such a matrix elements as a function of the distance atoms 0 and i for the case
L = (2,−2). The y-axis has a logarithmic scale. We see clearly that for different
values of the screening parameter λ, the magnitude of the matrix elements drops
very quickly to zero. This is a good indication that probably only the very first few
shells of neighbours need to be taken into account in the calculation of the EELS
cross-section.
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Chapter 25
About Spin-Orbit in the Multiple Scattering
Theory

Yves Joly

Abstract This paper presents the treatment of the spin-orbit interaction to calculate
x-ray spectroscopies. This term is here more specifically developed inside the Mul-
tiple Scattering Theory. We give the general paths resulting in a Schrödinger-like
couple of equations, whose solutions are given in terms of �,m, σ (spin) and s (solu-
tion) quantum numbers. The connection with the multiple scattering amplitudes is
then given as well as the more general expression when dealing with complex self-
energies. Finally the response functions for x-ray absorption near edge structure is
given as it is implemented in the fdmnes code.

25.1 Introduction

When studying material with heavy atoms, it is most often necessary to perform a
relativistic calculation. Fully relativistic calculations starting from theDirac equation
contains by itself the spin-orbit interaction term. Because spin-orbit is one of the
strongest term in the relativistic extension, and even more importantly because the x-
ray magnetic circular dichroism (XMCD) signal is non zero at K edge only because
of this term, it is mandatory to include it in the simulation codes.

The purpose of this paper is to present the general paths allowing the ab initio
simulation of x-ray spectroscopies taking into account the spin-orbit component of
the Hamiltonian for the photoelectron. This theoretical framework is the one used in
the fdmnes [1] codewhich allows such calculation involving absorption or scattering
processes at energies near characteristic absorption edges.

In the next section, we show how the relativistic approach is used to treat the
spin-orbit term to give first the amplitude of the radial Schrödinger-like equations
and second the multiple scattering amplitudes. Section25.3 treats the specific cases
of complex self-energies and Sect. 25.4 gives an example of a response function as
it is implemented in the fdmnes code.
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25.2 Relativistic Approach with Spin-Orbit of MST

To give the response function of core spectroscopies, one needs first to give a con-
venient description of the electronic states inside the absorbing atoms, then the con-
nection with multiple scattering amplitude can be performed. The important case of
complex self-energy is also given.

25.2.1 Solution in the Atom

FollowingWood andBoring [2]we explicitly solve only the large components instead
of the four determined by the Dirac-Slater calculations. This reformulation gives a
couple of Schrödinger like equations, including the spin-orbit effect, closely akin but
improving the Pauli equation:

(−Δ + V − E + Ω)ϕ = 0 , (25.1)

with:

Ω = −α2

4

(
(V − E)2 − B [∇V · ∇ + iS · (∇V × ∇)]

) = 0 , (25.2)

where the potential, V = V (r,σ), and the wave function, ϕ = ϕ (r,σ), are spin,
σ, dependent. S is a vector whose components are the Pauli matrices, and B =
B (r,σ) = 1/

(
1 − α2/4 (V − E)2

)
, α being the fine structure constant and E the

photoelectron energy. The last term depending on S and proportional to the potential
gradient represents the spin-orbit effect. By its Sx and Sy matrices, it connects the
spin up and spin down components of the wave function.

For its radial expression, this equation leads to the coupled system:

(
− ∂2

∂r2
+ GO�, 12

+ mGso, 12

)
u�,m,s, 12

+ srGso, 12
u�,m+1,s,− 1

2
= 0

srGso,− 1
2
u�,m,s, 12

+
(

− ∂2

∂r2
+ GO�,− 1

2
+ (m + 1)Gso,− 1

2

)
u�,m+1,s,− 1

2
= 0

(25.3)

where � and m are the usual orbital quantum numbers and we have introduced
sr = √

(� − m) (� + m + 1). When m = � and σ = 1
2 or m + 1 = −� and σ = − 1

2 ,
the two equations are decoupled and give respectively pure up or pure down spin
states. In the other cases the two solutions, indexed by s = ± 1

2 , contain both, spin
down and spin up components, respectively, u�,m+1,s,− 1

2
, and, u�,m,s, 12

. One uses the
simple radial dependence for the spin components, Vσ = Vσ (r) and Bσ = Bσ (r),
valid in the spherically symmetric area inside the atoms. So, we define:



25 About Spin-Orbit in the Multiple Scattering Theory 365

GO�σ = Vσ − E + � (� + 1)

r2
− α2

4
(Vσ − E)2 − α2

4
Bσ

∂Vσ

∂r

(
∂

∂r
− 1

r

)

Gsoσ = α2

4
Bσ

1

r

∂Vσ

∂r
, (25.4)

At the origin, the 2 solutions tend to:

u�,m+ 1
2 −σ,s,σ (r) = A|s−σ|r

√
(�+ 1

2 +s)
2−(αZ)2

, (25.5)

with A0 =
√

�−m
2�+1 and A1 =

√
�+m+1
2�+1 .

25.2.2 Normalization of the Radial Wave Functions

As shown by D. Sébilleau in the introductory chapter, to get the atomic scattering
amplitude and the corresponding amplitude of the radial wave function, one just
has to use the continuity of the wave function at the muffin radius, R, between the
solutions given above inside the atom and the known solution outside the atoms
where the potential is constant. When spin-orbit interaction is there, it is slightly
more complex, because during the scattering process, spin-flip is possible. We define
f̄� (kσr) = √

kσ/π f� (kσr), for f� = j� or h
+
� , (the Bessel and outgoing Hankel func-

tions) where the photoelectron wave vector, kσ, is set spin dependent for more gener-
ality. kσ/π = 2πδV where δV /2 is the density of states in vacuum in atomic units per
spin, and the remaining factor 4π comes with the angular integral. In the introductory
chapter, this normalization is called the normalization to one state per Rydberg. One
must consider a couple of equations corresponding to the scattering of generalized
Bessel functions, j̄� (ks ′r)Ym

� χs ′ fully spin polarized s ′ = ± 1
2 , and giving 2 outgoing

generalized Hankel functions h̄+
� (kσr) Y

m+ 1
2 −σ

� χσ, including thus a spin-flip term.
The continuity gives:

∑

σσ′
a�,m+ 1

2 −s ′ b�,m+ 1
2 −σ,σ′,σ (R) χσ = j̄� (ks ′ R) χs ′ − i ×

∑

s

t
�,m+ 1

2 −s ′,s ′

�,m+ 1
2 −s,s

h̄+
� (ks R)χs , (25.6)

where t
�,m+ 1

2 −s ′,s ′

�,m+ 1
2 −s,s

(E) are the atomic scattering amplitudes, χs is the spin projector,

and we used b (E, r) = u (E, r) /r . The normalization corresponds to a change in
the solution basis to get the radial function amplitudes equal to the atomic scattering
amplitudes, as in the casewithout spin-orbit, but for both spin components. Its interest
in MST is that it remains true when the atom is embedded in a cluster, and thus for
the multiple scattering amplitude. Mutatis mutandis using:
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Δ f� = W
(
f̄�, bm, 12 , 12

)
W

(
f̄�, bm+1,− 1

2 ,− 1
2

)
−

W
(
f̄�, bm,− 1

2 , 12

)
W

(
f̄�, bm+1, 12 ,− 1

2

)
, (25.7)

where W is the Wronskian, the atomic scattering amplitudes are given by:

t
�,m+ 1

2 −s ′,s ′

�,m+ 1
2 −s,s

= 4s ′i
Δh+

�

∑

σ

σW
(
j̄�, b�,m+ 1

2 −s,σ,s

)
W

(
h̄+

� , b�,m− 1
2 +s ′,−σ,−s ′

)
, (25.8)

whereas the normalized radial wave functions are given by:

b̄�,m+ 1
2 −σ,s,σ = − 4s

πR2Δ j�

∑

σ′
σ′W

(
j̄�, b�,m+ 1

2 −s,σ′,s

)
b�,m− 1

2 +σ,−σ′,−σ . (25.9)

25.2.3 Relation with Green’s Function and Multiple
Scattering Amplitudes

When the atom is embedded inside a cluster, the projection of the electronic states
inside the atom up to a radius where we supposed the potential spherically symmetric
can be described by an expansion in spherical harmonics. Using the (�,m, s,σ)

quantum numbers, plus a change in index, m → m − 1
2 + σ, the wave functions for

any state n can be written as:

ϕn (r, E) =
∑

L

anL (E) RL (r, E) , (25.10)

with L = (�,m + σ − s, s) or (�,m, s,σ), anL = an�,m+σ−s,s and RL = b�msσYm
� χσ.

When spin-orbit can be neglected, solution and spin indexes merge, that is s = σ.
Here we generalize the MST formulation giving the relation between the ampli-

tudes anL , and the Green’s function.When self-energy and potential are real, the latter
is given by:

G+ (
r, r ′) =

∑

LL ′
G+

LL ′
(
r, r ′) = −π

∑

LL ′
RLτLL ′ R†

L ′ , (25.11)

where symbol † means complex conjugate on the spherical harmonics but not on the
radial wave function. With the normalization done above, and thanks to the optical
theorem, this relation can be written:
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∑

n

∣∣anL RL
〉 〈
anL ′ RL ′

∣∣ δ (E − En) = i

2π

(
G+

LL ′ − G+†
L ′L

)

= − i

2
RL

(
τLL ′ − τ ∗

L ′L
)
R†
L ′ , (25.12)

where δ (E − En) is the Kronecker symbol (and not the density of states) to stress
that the summation is over the states with energy E . Note that when neglecting
spin-orbit (and thus s = σ), τ is symmetric and diagonal in spin, and one recovers:

∑

n

an�,m,σa
n∗
�′,m ′,σδ (E − En) = −�

[
τ �′,m ′
�,m,σ

]
. (25.13)

25.3 Complex Energy

It is often necessary to use complex energy, to simulate the finite lifetime of both
the core-hole and photoelectron states. Another and equivalent way is to make a first
part of the calculation with a real energy and make afterward the broadening with
a convolution by a Lorentzian. Nevertheless, when calculating at negative energy
or when the electronic states and very localized in energy, such way would need
extremely small energy step. It is then better to use a formal width, typically 0.1eV
obtained by an imaginary part of the self-energy of the same value.

We know, that in this case, the second solution, of the radial Schrödinger equation,
the so-called irregular one, does not diverge anymore [3] at the atomic core, becoming
then physical and must be taken into account, as it can be seen in the expression of
the Green’s function:

1

π
G+

LL ′
(
r, r ′) = −RLτLL ′ R′†

L + δLL ′ RL (r<) S†L ′ (r>) (25.14)

= −RL (τLL ′ − δLL ′ tLL ′) R†
L ′ − δLL ′ RL (r<) tLL ′U †

L ′ (r>) ,

where r<(>) means the lesser (greater) between r and r ′. SL andUL are the irregular
solutions obtained by inward integration from the atom sphere radius R matching
respectively j̄� (kr)Ym

� and −ih̄+
� (kr) Ym

� for both spin. The integration is m and s
dependent and couples

(
m, 1

2

)
with

(
m + 1,− 1

2

)
orbitals as for the regular solutions.

25.4 Implementation in the Fdmnes Code

25.4.1 The Fdmnes Code

The fdmnes code can calculate spectra involving one photon processes such as
X-ray Absorption Near Edge Structure (XANES) and X-ray Emission Spectroscopy
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(XES) aswell as polarization dependent ones such asXMCD,X-rayMagnetic Linear
Dichroism (XMLD), X-ray Natural linear or circular dichroism (XNLD or XNCD).
It can also calculate spectra involving two photon processes like Resonant Elastic X-
ray Scattering (REXS also called RXD or DANES) as well as Non-resonant Inelastic
X-ray Scattering (NRIXS or Raman X-ray Scattering).

To solve the states probed by the photoelectron, fdmnes uses two different DFT
techniques: the multiple scattering theory (MST) explained in the present book and
the Finite DifferenceMethod (FDM) [4]. Both are here real space techniques applied
to a cluster surrounding the absorbing atom. In fdmnes, FDM is more precise that
MST because the latter is used within the muffin-tin approximation in which the
potential is taken as spherically symmetric around the atoms and constant between
them, the full-potential MST approach developed by Hatada and Natoli [5] (seen
in Chap.3) being not included. The availability of both techniques within the same
code offers common grounds for the comparison of their respective performances,
speediness for MST and precision for FDM.

25.4.2 Formula for Spectroscopy

fdmnes uses the formalism given above to get the response functions for the different
spectroscopies. For example the cross section in XANES is given by:

σ = 4π2 α �ωq

∑

ng

|〈n |o| g〉|2 δ (E − En) (25.15)

= 4π2 α �ωq

∑

LL ′g

〈
g

∣∣o∗∣∣ i

2π

(
G+

LL ′ − G+†
L ′L

)
|o| g

〉
,

where �ωq is the photon energy. o = eq · r (1 + i/2 q · r), at second order, is the
transition operator, eq and q being here the photon polarization and wave vector.
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Chapter 26
Implementation of Exact Diagonalization
in KKR+DMFT

Ján Minár, Igor Di Marco and Jindřich Kolorenč

Abstract We describe an implementation of the LDA+DMFT method in the spr-
kkr code. The auxiliary impurity model that is at the heart of the dynamical mean-
field theory is solved by iterative diagonalization (the Lanczos method).We illustrate
that the implemented scheme accurately models the electronic structure of Mott
insulators, exemplified here by NiO.

26.1 Introduction

Complex oxides are among themost interesting systems in condensedmatter physics
due to the intricate interplay of strong Coulomb repulsion, hybridisation with ligand
states, and crystal field [1]. In particular, the electronic structure of transition-metal
monoxides has been the subject of intense experimental and theoretical investigation
for a long time [2]. The surge of interest arose when it stood clear that one-electron
band-structure calculations predict these oxides to be metallic, whereas experiments
show that they are insulators. During the last decades, much progress has been made
in developing advanced methods for electronic-structure calculations that offer an
adequate description of the transition-metal monoxides. Self-interaction correction
[3], GW [4], finite clusters [5], and dynamical mean-field theory (DMFT) [1] are
among themost successful approaches. Especially DMFT has been applied to several
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transition-metal monoxides by different groups and with great success (see [6] and
references within).

In Chap.4 of this book, a detailed description of the Korringa–Kohn–Rostoker
(KKR) method and its combination with DMFT is presented. The KKR method for
the electronic-structure calculations is based on the multiple scattering theory, and
addresses the Kohn–Sham problem directly in terms of the one-electron Green’s
function G(r, r ′, E). The KKR implementation of the LDA+DMFT scheme is built
on the solution of a Dyson-like equation which includes a self-energy Σ(r, r ′, E)

[7]. This is done by solving the single-site scattering Schrödinger (or Dirac) problem.
In this way, we account for the general non-local, site-diagonal, complex and energy-
dependent self-energy Σ(r, r ′, E) already when calculating the basis functions. It
allows us to directly exploit all the advantageous features of the KKR Green’s func-
tion method when performing LDA+DMFT calculations. Consequently, one can
investigate electronic correlation effects in a wide range of systems [8].

So far, our implementation was applicable only to moderately correlated systems,
for instance to transition metal alloys, since the auxiliary impurity model arising in
DMFT was solved by methods based on the perturbation theory, such as SPTF [9].
The reason for the limitation to the perturbative methods is the fact that other impu-
rity solvers usually provide the self-energy either at real-energy points or at (com-
plex) Matsubara frequencies. In the same time, the energy integration ofG(r, r ′, E),
which is used for obtaining the charge density, is done along a particular contour in
the complex-energy plane. Therefore, the self-energy has to be analytically continued
from the points provided by the solver to this integration contour, which is possible
only if the Green’s function has good analytic properties. Unfortunately, this is not
always true. For instance, quantumMonte Carlo techniques generally lead to numer-
ically noisy self-energies and hence their combination with KKR method has not
been possible.

In the following, we present a recent implementation of the exact diagonaliza-
tion impurity solver into the KKR+DMFT method. This approach is suitable for
description of strongly correlated systems. As an illustration, we apply the new
implementation to the electronic structure of NiO.

26.2 Formalism

Even though the KKR method is based on Green’s functions, it is more didactic
to outline the LDA+DMFT scheme in the standard Hamiltonian formalism. The
LDA+DMFT method is based on the assumption that the LDA band structure,
which we denote as HLDA, represents a non-interacting lattice model. Then, the
mean-field terms corresponding to the Coulomb interaction among the 3d electrons
are replaced with explicit two-body interaction vertices. Here we use the spheri-
cally symmetric Coulomb vertex Usph and the removed mean-field term, usually
labelled as double-counting correction UDC, is approximated in the so-called fully
localised limit [10, 11]. This construction leads to an effective Hubbard model
HHub = HLDA + ∑

n

(
Un

sph −Un
DC

)
, where n runs over the transition-metal atoms.

http://dx.doi.org/10.1007/978-3-319-73811-6_4
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The Hubbard model is solved using DMFT, that is, the many-body effects are
taken into account only locally, separately for each of the 3d shells, by means of a
momentum-independent self-energy Σ . This self-energy is evaluated in an auxiliary
impurity model that consists of one fully interacting 3d shell (the impurity) embed-
ded in a self-consistent non-interacting medium HMF = HLDA + ∑

n

(
Σn −Un

DC

)

[12].
In our implementation, the auxiliary model is discretized and solved by the

Lanczos method [13]. The discrete model can be written as Himp = H ′
imp +Usph

where the non-interacting part H ′
imp reads as

H ′
imp =

∑

i j

H i j
loc d

†
i d j +

∑

I J

H I J
bath b

†
I bJ +

∑

i J

V i J d†
i bJ + h.c. (26.1)

The lower-case indices label the d orbitals, the upper-case indices label orbitals of the
effective medium that is usually referred to as bath. We limit the bath to contain only
10 orbitals, and therefore the local hamiltonian Hloc, the bath hamiltonian Hbath as
well as the hybridisation V are all 10 × 10 matrices. The discretized model roughly
corresponds to a finite cluster that includes one 3d shell and those linear combinations
of the nearest-neighbour ligand orbitals that hybridise with the 3d shell [14]. Despite
being relatively small, such finite models were shown to accurately represent the
local electronic structure in insulating oxides [13, 14].

The parameter matrices Hloc, Hbath and V entering (26.1) are determined by a
procedure outlined in [13]. The main idea is to match the asymptotic expansion of
the d-electron Green’s function G loc, evaluated in the impurity model H ′

imp, to the
asymptotic expansion of the d-electron Green’s function G, corresponding to the
self-consistent medium HMF [12, 13, 15]. The expansion of G loc starts as G loc(z) =
1/z + Hloc/z2 + · · · where z is the complex energy. To find the matching expansion
of G, one needs to calculate the first fewmoments of G(z) along the real axis, namely
Mm = ∫

EmG(E + i0) dE for 0 ≤ m ≤ 3. In practice, these integrals are evaluated
along a semi-circular contour depicted in Fig. 26.1.

The bath Green’s function G is calculated as a projection of the KKR Green’s
function G(r, r ′, E) onto a local basis φL(r, Eref). In the case of NiO, we used d-
like regular single-site solutions of the Kohn–Sham–Dirac equations normalised to
one. This basis function is calculated at a reference energy Eref for the magnetic
field set to zero in the relativistic case. In the full-potential calculations, the non-
spherical parts of the potential have to be suppressed in the definition of the local
orbitals φL(r, Eref). The choice of the reference energy Eref turned out to be crucial
for stability of the exact-diagonalization scheme. In the previous applications of
KKR+DMFT, Eref was calculated from the centre of mass of the d band. In order
to get the correct number of localised d electrons, we alternatively propose to use an
energy for which the single-site phase shift shows a resonance. This choice leads to
a reduction of the wave-function tail extending into neighbouring atoms.

During the self-consistency cycle, G is calculated on two semi-circular contours
shown in Fig. 26.1. When using the exact-diagonalization scheme, the analytical
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Fig. 26.1 The contour in the complex-energy plane that is used for integration of the moments Mm
(blue line), and its position relative to the single-particle spectrum (represented by the total and
partial LDA densities of states of NiO). This contour has to encircle all 3d states and hence it
differs from the integration path that is used to evaluate the number of occupied states (red line)

continuation, like the Padé method [16], is avoided. In addition, the determination
of the matrices Hloc, Hbath and V directly from the moments of G can be efficiently
done also if the spin-orbital coupling is considered. In that case, the matrices become
non-diagonal which causes the usual fitting schemes to fail.

26.3 Application to NiO

The electronic structure of NiO is a typical example of the failure of LDA to pro-
duce an insulating paramagnetic ground state. The inclusion of the antiferromagnetic
order leads to a small band gap, but it is still far from the experimental value. In
Fig. 26.2 we present the total density of states of NiO calculated by means of the
full-potential KKR method [17]. The parameters of the Coulomb interaction in the
3d shells are U = 8eV and J = 1.0eV. The static, energy-independent self-energy
that one obtains in LSDA+U is sufficient for the band gap to match the experimental
data. Nevertheless, it is clear from Fig. 26.2 that several features of the photoemis-
sion and inverse photoemission experiments can not be properly described in this
approach. Inclusion of the local dynamical correlations leads to a much improved
description. In particular, the satellite structures seen at about −10eV are properly
reproduced by the LDA+DMFT method. Additionally, no artificial magnetic order
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Fig. 26.2 The total density of states of NiO compared with the experimental angle-integrated
photoemission and inverse photoemission [21]

Fig. 26.3 Bloch spectral function of NiO along �–X direction calculated by self-consistent
KKR+DMFT method. The experimental data measured by the angle-resolved photoemission are
represented by squares [22]

is required. In Fig. 26.3, the Bloch spectral function of NiO is shown and compared
to the corresponding data from angle-resolved photoemission experiments. We find
that the experimental points along �–X direction are located at energies that are well
reproduced by our LDA+DMFT scheme. Our results are in a very good agreement
with previous LDA+DMFT calculations that employed the exact-diagonalization
solver [6] and the quantum Monte Carlo solver [18]. All these results show that
the theoretical framework outlined above can be used to successfully reproduce all
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features of the valence band of NiO, including the satellites at high binding energy.
Thus, the present calculations provide a basis for a future study of the angle-resolved
photoemission spectra of NiO by means of the one-step model [19, 20]. Such an
investigation, which would include matrix elements, final-state effects and surface
effects is still missing in modern literature.
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Chapter 27
Cumulant Approach for Inelastic Losses
in X-ray Spectra

John J. Rehr and Joshua J. Kas

27.1 Introduction

The theory of inelastic losses in x-ray spectra has long been of interest. These losses
include plasmons, particle-hole pairs, Debye–Waller factors, and other many-body
effects that damp and shift the spectra. The losses give rise to additional features
known as satellites that are not present in independent electron or quasi-particle
(QP) approaches. These features lead to a path- and energy-dependent many-body
amplitude reduction factor S20 (k, R) in the extended x-ray absorption fine structure
(EXAFS) [1],

χ(k) =
∑

R

| feff(k)|
kR2

sin(2kR + Φk)|S0(k, R)|2e−2R/λke−2σ2k2 . (27.1)

Typically |S20 | ≈ 0.8 − 0.9. Formally such effects can be treated with many-body
techniques such as CI, DMFT, or the multi-channel multiple-scattering formalism of
Natoli et al. [2], but thesemethods are all computationally intensive. As a result, these
effects are usually neglected on the belief that the error is small or only contributes
a smooth background, and hence conventional theories of x-ray spectra are typically
only semi-quantitative.

Two classes of inelastic losses have been identified: (i) intrinsic losses (the static
part of S20 ) fromexcitations due to the sudden creation of a core hole, such as shake-up,
shake-off excitations; and (ii) extrinsic losses (including themean-free path term λk),
which arise from similar excitations during the propagation of the photo-electron.
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Interference between these losses is also important. The extrinsic losses are often
approximated in terms of an inelastic mean free path λk , which is related to the
imaginary part of the photoelectron self-energy [3, 4].

Recently a new approach has been developed to treat these effects based on a
particle-hole cumulant expansion and the quasi-boson approximation. Remarkably
the method can also account for effects of vibrations and other neutral (bosonic)
excitations such as charge-transfer satellites. We refer to the full paper for more
details [5]. Herewe briefly summarize themain results and explain how this approach
can be used to calculate the many-body amplitude reduction factor S20 .

Briefly, the cumulant expansion for the one particle Green’s function g(t) is an
alternative to the Dyson equation, and is based on an exponential representation in
the time-domain g(t) = g0(t)eC(t), where g0(t) is the non-interacting Green’s func-
tion and C(t) is the cumulant. This expansion was treated extensively by Hedin and
collaborators [6, 7], and a new derivation based on a functional differential equa-
tion has recently been developed [8, 9]. However, the single-particle Green’s func-
tion alone is inadequate to describe x-ray spectra, which involves the simultaneous
creation of both a particle and a hole. Consequently a generalization to an anal-
ogous exponential representation for the particle-hole Green’s function is needed,
GK (t) = G0

K (t)eC̃K (t), where the particle-hole cumulant C̃K (t) is calculated to sec-
ond order in the couplings to the excitations in the system. The structure of GK is
related to the effective Green’s function for x-ray spectra introduced by Campbell et
al. [10], transformed to the time-domain. Here K = (c, k) labels the transition from
a given core-level |c〉 to a photoelectron state |k〉. A related cumulant model for the
2-particle Green’s function has recently been introduced by Zhou et al. [9].

The real-time representation of GK (t) considerably simplifies the theory. The
formalism leads directly to an expression for the many-body XAS μ(ω) at photon
energy �ω as a convolution of the spectrum calculated in the presence of a static core
hole with an effective particle-hole spectral function AK (ω)

μ(ω) =
∫

dω′ AK ′(ω′)μ0(ω − ω′) . (27.2)

Here μ0(ω) is the independent-particle XAS calculated in the presence of a core-
hole, K ′ = (c, k(ω − ω′)), and AK ′(ω) = −(1/π)� [GK ′(ω)]. We now discuss how
a similar convolution [(49) in [10]] over the XAS fine structure χK (ω) yields S20 (R).
Effects of thermal vibrations and disorder can be included implicitly by averag-
ing over the structural variations. Convolutions similar to that in (27.2) have also
been used to incorporate inelastic losses in the XPS photocurrent Jk(ω) [6, 11, 12].
Inelastic losses beyond the independent-particle approximation are embedded in the
cumulant C̃K (t). Partitioning the cumulant into intrinsic, extrinsic, and interference
terms then facilitates practical calculations. This factorization of the particle-hole
Green’s function GK is analogous to that in the classic treatment of the x-ray edge
singularities by Nozières and de Dominicis [13]. Similarly, our generalized treat-
ment also accounts for edge-singularities from low-energy particle-hole excitations
in metals [5].
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27.2 Particle-Hole Spectral Function

The generalized cumulant C̃K (t) is obtained by transforming equation (32) of Camp-
bell et al. to the time-domain, and matching the leading terms in powers of the
quasi-boson coupling constants,

C̃K (t) =
∫

dω γK (ω)(eiωt − iωt − 1) . (27.3)

Practical calculations of the kernel γK are based on a partition of CK (t) into intrinsic
(c), extrinsic (k), and interference terms (kc), respectively, i.e.,

γ̃K (ω) = γc(ω) + γk(ω) + γck(ω), (27.4)

C̃K (t) = Cc(t) + Ck(t) + Cck . (27.5)

The Landau representation [14] of (27.3) ensures that the particle-hole spectral func-
tion

ÃK (ω) = − 1

π
�

[∫
dt eiωt G̃0

K (t)eC̃K (t)

]
, (27.6)

remains normalized with an invariant centroid. Thus the effect of the bosonic exci-
tations is a transfer of spectral weight from the main peak to the satellites while the
overall strength is conserved. Note that lifetime broadening due to the photoelectron
interactions is included naturally, while the core-hole lifetime is included by adding
a damping term, −�c|t |, to the cumulant. This representation is similar to that in the
treatment of inelastic losses in XPS [6, 11, 15].

27.3 EXAFS Reduction Factor S20

In the usual MS theory, [16] the XAFS spectrum χ(0)(ω) is a rapidly varying energy
dependent factor in the one-particle expression for the x-ray absorption,

μ(0)(ω) = μ(0)
0 (ω)[1 + χ(0)(ω)] , (27.7)

whereμ(0)
0 is the generally smooth absorption from the central embedded atom alone,

in the absence of MS. The many body XAFS function χ(ω) = (μ − μ0)/μ0 then
becomes

χ(ω) ≈
∫
dω′ Ã(ω,ω′)χ(0)(ω − ω′) , (27.8)

where Ã(ω,ω′) = AK (ω′) with ω = (1/2)k2 − Ec. If interference is neglected, the
particle-hole Green’s function would simply be a product of the core-hole Green’s
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function gc(t) = g0c (t)e
Cc(t), and the damped final state Green’s function in the pres-

ence of a core hole g̃k(t) = g̃0k (t)e
Ck (t). This approximation would imply that the

intrinsic and extrinsic losses are independent and additive, but that yields XAS satel-
lite strengths that are generally too large. Consequently the interference terms are
essential. They provide an energy dependence which tends to cancel the extrinsic and
intrinsic losses near threshold, due to the opposite signs of the hole and photoelectron
charges, while at very high energies only the intrinsic losses remain. This difference
is characterized as an adiabatic to sudden transition, and can be used to justify the
adiabatic approximation and the usual neglect of inelastic losses near threshold, i.e.,
well below the characteristic excitation energy ωp of order 10–15eV.

The full many body XAS μ(ω) can then be expressed as a convolution of an
independent particle XAS with a spectral function as in (27.2), where μ0(ω) is
the independent particle XAS calculated in the presence of a core hole. The net
effect of the convolution over a particle-hole spectral amplitude Ã(ω,ω′) in (27.8)
is clearly a decreased XAFS amplitude and a phase shifted oscillatory signal com-
pared to the one-particle XAFS χ(0). In the single scattering approximation the oscil-
latory energy dependence of χqp(ω) enters primarily through the complex expo-
nential �{exp[i2k(ω)R]}, where R is an interatomic distance and k(ω) = √

2ω is
the photoelectron wave vector. Neglecting the smoothly varying vectors, the result
of the convolution can be written in terms of a complex-valued amplitude factor
S2(ω, R) = |S(ω, R)|2 exp(iψ(ω, R)), which is given by an energy dependent pha-
sor sum over the effective normalized spectral function,

S20 (R) =
∫ ω

0
dω′ Ã(ω,ω′)ei2[k(ω−ω′)−k(ω)]R . (27.9)

The many-body phase factor ψk(ω) is usually small but can be important. An addi-
tional factor from the core-core overlap factor and from edge-singularity enhance-
ment may also be needed in some cases, but this factor is usually near unity and
neglected in this summary. The qualitative behavior of S2(ω, R) can be understood
as follows:At lowenergies comparedwith the excitation energyωp , the satellite terms
strongly cancel so A(ω,ω′) ≈ δ(ω − ω′) and hence, S20 (R) → 1. At high energies
the sudden approximation prevails, and A ≈ Aqp + Aintr , which has a strong satel-
lite structure. However, the phase difference 2[k(ω − ω′) − k(ω)] between the pri-
mary channel and satellite becomes small at high energies (ω � ωp) so that also
S2(ω, R) → 1, with a correction of order (ωp R/

√
ω) similar to an additional mean-

free path term. At intermediate energies comparable to ωp, the value of S2(ω, R) has
a minimum.

As an example, we show the experimental XAS for fcc Al metal compared to the
calculated results using the FEFF9 code including the cumulant convolution, and
those of the single particle calculation (Fig. 27.1 top). Both calculations agree fairly
well with experiment, although the single particle spectrum does not contain enough
broadening at about 1590eV, where the dip is slightly too large. The figure (bot-
tom panel) also shows the many-body amplitude reduction factor including extrinsic
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Fig. 27.1 (top) Theoretical Al K -edge XAS spectrum compared to the quasi-particle theory in this
work and experimental data [17]; and (bottom) the many-body amplitude factor for the first shell
R including extrinsic losses |S̃20 | = |S20 (R)|e−2R/λk as well as the associated phase ψk in radians.
The top figure was adapted from that in [5]

losses, |S̃20 |e−2R/λk , and the associated phase shift as a function of EXAFSwavenum-
ber k. Note the limiting behavior S20 → 1 at both lowand high k as explained above. In
addition, we see appreciable reduction in the amplitude at the minimum k ≈ 3(Å−1)

where S20 ≈ 0.65.



380 J. J. Rehr and J. J. Kas

27.4 Summary

The particle-hole cumulant expansion with a partition of the cumulant into extrinsic,
intrinsic and interference contributions. provides practical approach for calculating
inelastic losses due to intrinsic, extrinsic and interference effects in x-ray spectra.
These losses are included in the spectra in terms of a convolution with a particle-hole
spectral function that accounts for their energy dependence. The cumulant approach
simplifies the formalism and facilitates practical calculations. The theory elucidates
both their behavior and the differences between the spectral functions for XAS and
XPSwhich may be important to their interpretation. The cumulant approach can also
account for edge singularities in the spectrum. Physically, the treatment of inelastic
losses here is analogous to an excitonic polaron, i.e., the interaction of the particle-
hole created in photoexcitationwith the density fluctuations produced by the particle-
hole system. This is in contrast to the electronic polaron described by the GW
approximation [6], where the single-particle excitations arise from themuch stronger
density fluctuations due to a core-hole.
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Chapter 28
Screened KKR

Krisztián Palotás and László Szunyogh

Abstract The concept of screening in theKorringa–Kohn–Rostoker (KKR)multiple
scattering electronic structuremethod for solids is briefly presented. Themain advan-
tages of the screened KKR (SKKR) method and recent applications are highlighted.

28.1 Introduction

Since the publications of the seminal works of Korringa [1] and Kohn and Ros-
toker [2] with the aim at describing the electronic structure of periodic solids, the
Korringa–Kohn–Rostoker (KKR) Green-function-based multiple scattering method
has been considerably developed over the years [3–5]. This methodological progress
has been fueled by the steadily growing computational (hardware) facilities and con-
stantly developing efficiency in the software implementations of the KKR method.
An important step has been the introduction of the so-called screening transformation
[6, 7] that for systems with at best two-dimensional translational symmetry provides
a fast and, in principle, exact numerical solution through the casting of big (infi-
nite) matrices into a block-tridiagonal form. The ScreenedKorringa–Kohn–Rostoker
(SKKR) method has been invented in the 1990s in the groups of Peter Weinberger at
the Technical University of Vienna and László Szunyogh at the Technical University
of Budapest, where it is still hosted and being continuously developed.
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While a very detailed description of the SKKR method can be found in [8], in this
chapter we briefly present the underlying concept and highlight the main advantages
of the SKKR method together with selected recent applications.

28.2 The KKR Method

Unlike other popular electronic structure calculation methods using electron wave
functions, the KKR formalism relies on the Green’s function that has a conceptual
advantage of straightforward evaluation of physical properties. The basic ingre-
dients of the KKR method formulated within multiple scattering theory [4] are
the single-site scattering t–matrices and the structure constants. The single-site t-
matrix is an angularmomentum representation of the single-site T –operator formally
obtained in the following way: Assuming that a single-particle Hamiltonian, com-
posed in the spirit of the Kohn–Sham formulation [9] of density functional theory,
is given as a sum of an unperturbed (H0) and a Hermitian perturbation (V ) part,
H = H0 + V , the corresponding resolvents (with z a complex energy argument,
and I the identity operator) are G0(z) = (z I − H0)

−1 and G(z) = (z I − H)−1.
They can be related to each other as G(z) = G0(z) + G0(z)T (z)G0(z) by defin-
ing the T –operator T (z) = V (I − G0(z)V )−1 = (I − VG0(z))−1V , which implies
G0(z)T (z) = G(z)V and T (z)G0(z) = VG(z). If only a single scattering potential
centered at the lattice position Rn is present in the system then tn(z) represents the
single-site scattering t-matrix with respect to the product of the spherical Bessel
functions and spherical harmonics, jL(z, r) = j�(

√
zr)YL(r̂) with the abbreviation

L = (�,m).
Generalizing the system by introducing non-overlapping potentials at various

positions in space, e.g., at atomic sites, that individually act as single-site scatter-
ers, their common effect is described by multiple scattering theory. The multi-site
T –operator describes all possible scattering events: T = ∑

n t
n + ∑

nm tnG0(1 −
δnm)tm + ∑

nmo t
nG0(1 − δnm)tmG0(1 − δmo)to + . . ., which can be recast to T =∑

nm τ nm by introducing τ the so-called scattering path operator [3]. This implies
that the multiple scattering can be taken into account as simple as G = G0 +∑

nm G0τ
nmG0. The real-space structure constants, Gnm

0,LL ′(z), result from the two-
center expansion of G0(z), i.e. for n �= m and r = rn + Rn and r′ = r′m + Rm :
G0(z; rn + Rn, r′m + Rm) = ∑

LL ′ jL(z, rn)Gnm
0,LL ′(z) jL ′(z, r′m)×, where the super-

script × denotes that only the spherical harmonics are conjugated. Using a site-
angular momentum supermatrix representation, the matrix of the structure constants
is denoted by G

0
(z) = Gnm

0 (z)(1 − δnm), while the t-matrices can also be structured
in a site-angular momentum supermatrix, t(z) = tn(z)δnm , i.e. block-diagonal in the
site index.

The fundamental KKR equation defines the site-angular momentum supermatrix
representation of the scattering path operator, τ (z), in terms of the single-site t-matrix
and the structure constant matrix as
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τ (z) =
(
t(z)−1 − G

0
(z)

)−1
. (28.1)

Finally, the single-particle Green’s function is obtained from the scattering path
operator as

G(z; rn + Rn, r′m + Rm) =
∑

LL ′
Zn
L(z, rn)τ

nm
LL ′(z)Zm

L ′(z, r′m)× −

δnm
∑

L

Zn
L(z; rn,<)J n

L (z; rn,>)× ,
(28.2)

where Zn
L and J n

L are properly normalized regular and irregular scattering solutions,
respectively, and r< = min(r, r ′) and r> = max(r, r ′). From the above Green’s func-
tion the physical quantities can straightforwardly be calculated.

28.3 Screening Transformations in the KKR Method

Solving the KKR equation (28.1) for systems in reduced dimension requires the
inversion of a big matrix, and its computational time scales with N 3 (N being the
size of the system in real space). This is highly unfavorable at a large number of
scatterers (atoms) and one possibleway to overcome the problem is to use a screening
transformation. Here, a reference potential, Vr , is added to the Hamiltonian of the
unperturbed system, H ′

0 = H0 + Vr , such that H = H0 + V = (H0 + Vr ) + (V −
Vr ) = H ′

0 + V ′ with V ′ = V − Vr . The resolvent of H can then be expressed as
G(z) = G0(z)(I + VG(z)) = G ′

0(z)(I + V ′G(z)), whereG ′
0(z) = (z I − H ′

0)
−1 =

(z I − H0 − Vr )
−1. Once the potential Vr is repulsive, G ′

0(z) gets localized in real
space for �(z) < Vr , which makes the calculation of G0(z) feasible.

Turning to multiple scattering, such a reference potential is written as a superposi-
tion of non-overlapping potentials Vr = ∑

n V
n
r (rn). If the corresponding single-site

t-matrices are tnr (z) then the Green’s function matrix of the reference system, termed
as screened structure constant, is obtained as

G
r
(z) = G

0
(z)

(
I − t

r
(z)G

0
(z)

)−1
. (28.3)

By defining the screened t-matrix as the difference, t
Δ
(z) = t(z) − t

r
(z), a formally

equivalent equation to (28.1) can be obtained,

τ
Δ
(z) =

(
t
Δ
(z)−1 − G

r
(z)

)−1
, (28.4)

related to τ as

τ (z) = t(z)
(
t
Δ
(z)−1τ

Δ
(z)t

Δ
(z)−1 +

(
t(z)−1 − t

Δ
(z)−1

))
t(z) . (28.5)
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By using repulsive V n
r screening potentials, (28.3) can be solved so thatGnm

r (z) �
0 for all |Rn − Rm | > d, where d is a distance of some atomic spacings, i.e., the
structure constants in (28.4) are indeed screened and their solution reduces to the
inversion of a sparse matrix [6, 7]. In case of layered systems, the corresponding
matrix gets block-tridiagonal and the required computational time scales with N
[10]. Using (28.5), the τ -matrix in screened representation can be transformed to the
physical representation and the Green’s function is obtained from (28.2).

28.4 Suitability of the SKKR Method

The above described strategy of the SKKR method can uniformly be used for a
non-relativistic or fully relativistic angular momentum expansion, for spin-polarized
systems and for scattering potentials of spherically symmetrical or arbitrary (full-
potential) shape. The SKKR method has traditionally been used for layered sys-
tems, i.e., materials with two-dimensional translational symmetry, like thin films,
multilayers, surfaces and interfaces [8]. This combined with the Coherent Potential
Approximation (CPA) [3] enables the investigation of substitutionally disordered
random alloys described by an effective medium. The Embedded Cluster Method
(ECM) [11] enables the investigation of real-space nanostructures, like impurities,
surface islands, atomic contacts. The SKKR within a fully relativistic spin-polarized
description is extremely suitable to study diverse magnetic properties, like local
spin/orbital moments, magnetic anisotropy (MAE), domain walls [12, 13], interlayer
exchange coupling (IEC), tensorial exchange interactions [14], spin wave (magnon)
spectroscopy [14, 15]. Combined with the linear response Kubo-Greenwood the-
ory, electrical (e.g., conductance, magnetoresistance) and magneto-optical transport
(e.g., Kerr spectroscopy) properties can be studied at a fully relativistic first prin-
ciples level. For a more detailed and structured overview the reader is referred to
[8].

It is important to note that the massively parallelized kkrnano program package
[16], developed mainly in the Research Center Jülich in Germany, takes advantage
of the SKKR concept to provide an order-N electronic structure code suitable for
studying solid-state systems consisting of tens of thousands of atoms. For more
details, the reader is referred to Chap.17 of this book.

28.5 Using SKKR to Explore Complex Magnetism
of Nanostructures

Recent advancements in experimental techniques of imaging complex magnetic
structures in real space above surfaces using spin-polarized scanning tunneling
microscopy [17] require theoretical efforts for the understanding of the formation of

http://dx.doi.org/10.1007/978-3-319-73811-6_17
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complex magnetic patterns in thin films. Based on the SKKRmethod, the parameters
of a classical spin Hamiltonian, including tensorial exchange interactions, can be
extracted using either the relativistic torque method (RTM) [14] or the spin cluster
expansion (SCE) technique [18]. A suitable spin Hamiltonian is

H = −1

2

∑

i �= j

1

mim j
mi J i jm j +

∑

i

1

m2
i

mi K i
mi −

∑

i

mi · bext , (28.6)

withmi the classical spin moment of atom i , J
i j
the exchange tensor, K

i
the on-site

anisotropy matrix, and bext the external magnetic field. Based on this, the magnetic
ground state can be estimated in the following way: The energy of a spin spiral with
propagation vector q corresponds to the maximal eigenvalue of the Fourier transform
of the exchange tensor. When calculating spin spiral energies by sweeping q in the
Brillouin zone, the maximal obtained value corresponds to the estimated magnetic
ground state. Another method to find the ground state magnetic structure is based
on the zero temperature (deterministic) Landau–Lifshitz–Gilbert (LLG) equation of
atomistic spin dynamics,

∂mi

∂t
= − γ

1 + α2
mi × bi − αγ

(1 + α2)mi
mi × (mi × bi ) , (28.7)

where γ is the gyromagnetic ratio, α the Gilbert damping, and the effective field is
bi = −∂H/∂mi .

Following this multiscale approach based on the spin Hamiltonian parameters
obtainedwithin theSKKRmethod, the complex ground states of a variety ofmagnetic
thin films have been obtained ranging from spin spirals to skyrmions, for example:
1–4 monolayers (ML) of Fe on Ir(001) surface [19]; 1 ML Fe on different substrates
composed of 5d elements [20]; PdFe double layer on Ir(111) [21]; 1 ML Fe on
Rh(001) surface [22]; 1 ML Fe on W(110) and Ta(110) substrates [23]. Theoretical
analysis provides information on the relative importance and competition of isotropic
exchange, Dzyaloshinskii–Moriya, and in certain cases of biquadratic and higher
order spin interactions, partly considering the effect of layer relaxations as well.
Extending the LLG equation (28.7) to include thermal effects on the effective field
[24, 25], temperature dependence of the magnetic states can also be studied [23, 26,
27].

The above examples illustrate the importance of the SKKR method to contribute
to the theoretical understanding of complex magnetism at the atomic scale.
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Chapter 29
Magnetic Dipole Term Tz and its Importance
for Analysing XMCD Spectra

Ondřej Šipr

Abstract Magnetism of nanostructures is often studied by means of x-ray magnetic
circular dichroism (XMCD). The XMCD sum rules are a very powerful tool but
they allow for the spin magnetic moment μspin to be determined only in combination
with the magnetic dipole term Tz . This chapter presents few examples demonstrating
that neglecting Tz could in some cases lead to completely wrong conclusions about
the trends of μspin with the size of the system or with the magnetisation direction.
Further, we inspect conditions that have to be met so that eliminating of Tz from the
XMCD sum rules is possible.

29.1 Introduction

Magnetism of diluted and low-dimensional systems is one of strongly pursued
research areas. Magnetic properties of large assemblies of nanostructures are macro-
scopic and there are thus no principal problems with investigating them experimen-
tally. However, the effort to understand trends in nanomagnetism invokes the need
to study systems such as small clusters of well-defined sizes. The magnetisation of
individual clusters of just few atoms cannot be measured by macroscopic methods.
It can be, however, probed indirectly by relying on spectroscopy.

One of the most powerful methods in this respect is x-ray magnetic circular
dichroism (XMCD). It consists in measuring the difference of the absorption of left-
and right-circularly polarised x-rays in a magnetised sample while the energy of the
incident x-rays is varied. XMCD spectra are often analysed by means of the sum
rules, which link integrals of XMCD and x-ray absorption spectral peaks to local
spin and orbital magnetic moments. Recent progress in magnetism of atomic-sized
systems is mostly associated with the application of the XMCD sum rules [1–3].
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The strength of the sum rules is that they provide separate information about the
orbital magnetic moment μorb and the spin magnetic moment μspin of the photoab-
sorbing atom [4, 5]. However, extracting μorb and, especially, μspin from XMCD
spectra is not straightforward. Considering the most common case of the L2,3 edge
spectra and a sample magnetised along the α direction (α = x, y, z), the spin mag-
netic moment sum rule can be written as [5]

3

I

∫ (
ΔμL3 − 2ΔμL2

)
dE = μspin + 7Tα

nh
, (29.1)

whereΔμL2,3 are the differencesΔμ = μ(+) − μ(−) between absorption coefficients
for the left and right circularly polarised light propagating along the α direction, I is
the integral over the isotropic absorption spectrum, μspin is the local spin magnetic
moment (its d component, to be precise), and nh is the number of holes in the d band.
The term Tα is the expectation value of the intra-atomic spin dipole operator for the
valence d electrons. It is often called the magnetic dipole term in the literature. As
the magnetisation is typically in the α = z direction, one often speaks simply about
the Tz term.

The magnetic dipole Tα term can be written as [6, 7]

Tα = −μB

�
〈T̂α〉

= −μB

�

〈∑
β

QαβSβ

〉
, (29.2)

with
Qαβ = δαβ − 3r0αr

0
β , (29.3)

being the quadrupole moment operator and Sα being the spin operator. The Tα term
cannot be easily determined by experiment and its occurrence in (29.1) thus poses
a problem. This chapter is devoted to illustrating what kind of complications the
Tα term may cause and under which conditions dealing with the Tα term can be
by-passed.

29.2 Computational Framework

The results shown in this chapter were obtained within the ab initio spin density
functional theory, relying on the local spin density approximation (LSDA) with the
Vosko, Wilk and Nusair parameterisation for the exchange and correlation potential
[8]. The electronic structure is described, including all relativistic effects, by theDirac
equation, which is solved using the spin polarised relativistic multiple-scattering or
Korringa–Kohn–Rostoker (KKR) Green function formalism [9] as implemented in
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the spr- tb- kkr code [10]. The potentials were treated within the atomic sphere
approximation (ASA). More details about the Green function KKR method can be
found in Chap.4.

We present here several data obtained for monolayers, clusters and adatoms
deposited on surfaces. Technically, the calculations for supported monolayers were
accomplished by means of the tight-binding or screened KKR method [11]. The
substrate is modelled by a finite slab typically of 15 atomic layers, the vacuum is
represented by about 5 layers of empty sites. Calculations for clusters and adatoms
were accomplished by means of embedded impurity formalism: first one has to cal-
culate the electronic structure of the host system (clean surface) and then a Dyson
equation for an embedded impurity cluster is solved [12]. The embedded impurity
cluster defines the zone in which the electrons are allowed to react to the presence of
deposited atom or cluster; there is an unperturbed host beyond this zone. Typically
the embedded cluster contains about 150 sites.

29.3 Impact of the Tz Term on the Apparent Dependence
of μspin on the Cluster Size and Shape

For bulk systems, the Tα term can be often neglected (provided that the spin-orbit
coupling is not very strong [13]). However, for low-dimensional systems it can be
significant [14–16]. To make matters worse, the Tα term cannot be considered just
as an additive correction that for similar systems simply shifts the values of μspin by
approximately the same amount. We will demonstrate below that neglecting Tα for a
sequence of supportedmagnetic clusters can lead to erroneous conclusions regarding
the dependence of the average μspin on the cluster size and shape [17].

As the orientation of the magnetic field is not varied for the examples presented
in this part, we assume α = z and speak simply about the Tz term in Sect. 29.3.

29.3.1 Effect of the Cluster Size

Todemonstrate our point, let us consider a series of supportedCo clusters onAu(111).
The CoN clusters are planar, containing N = 1–7 atoms. Their shapes are compact.
Our focus is on comparing howμspin per atom and [μspin + 7Tz]/nh per atom depend
on the cluster size. This is shown in Fig. 29.1, where these values are shown averaged
over all sites of the respective cluster [17]. One can see that the trends for μspin and
for [μspin + 7Tz]/nh are exactly opposite.

http://dx.doi.org/10.1007/978-3-319-73811-6_4
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Fig. 29.1 Dependence of
μspin (lower panel) and
(μspin + 7Tz)/nh (upper
panel) per atom on the
number of atoms N in
compact CoN clusters on the
Au(111) surface. In the
upper panel, data which take
Tz into account are shown
via the full line and filled
circles, while data obtained
if Tz is neglected are shown
via the dashed line and open
diamonds. Results for a
complete monolayer
(N = ∞) are shown via
horizontal lines at the right
border of each panel. Figure
reproduced from [17]
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To prove that the increase of [μspin + 7Tz]/nh is caused by the cluster-size depen-
dence of the magnetic dipole Tz term and not of the number of holes nh , we inspect
also how the quantity μspin/nh per atom depends on N . The results are shown in
upper panel of Fig. 29.1 (broken line with open diamonds). It is evident that indeed
it is the Tz term that makes [μspin + 7Tz]/nh per atom to increase with increasing
size of the clusters.

The quantity [μspin + 7Tz]/nh appears in the XMCD spin sum rule (29.1). The
results shown above demonstrate that for some combinations of the cluster and
substrate material, ignoring the variations in Tz would lead to a completely false
estimate of how μspin per atom depends on the cluster size.

29.3.2 Effect of the Cluster Shape

We restricted ourselves to compact clusters in Sect. 29.3.1, so that results for clus-
ters of different sizes are comparable. If clusters of different shapes were involved,
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Fig. 29.2 Dependence of
μspin (lower panel) and
(μspin + 7Tz)/nh (upper
panel) per atom on the
shapes of Co4 clusters on
Au(111). The cluster shapes
are depicted below the
horizontal axis. Figure
reproduced from [17]

1.96

1.98

2.0

2.02

sp
in

[
B
]

Co on Au

0.46

0.48

0.5

(
sp
in
+
7
T
z)
/n

h
[

B
]

the values would be different: one can anticipate this by noticing that changing the
cluster shape changes the coordination numbers of atoms and that, in turn, should
result in different μspin and, presumably, also Tz [18–20]. To demonstrate to what
extent the variance in shape may influence the results, we calculated average μspin

and average [μspin + 7Tz]/nh for Co4 clusters of different shapes. Again, these clus-
ters are supported by the Au(111) surface. The results are shown in Fig. 29.2 [17].
Similarly as when inspecting the dependence on the cluster size, we observe that the
trends for μspin and for [μspin + 7Tz]/nh differ.

We have thus demonstrated that knowledge of the variations of Tz with cluster
size and shape is essential for application of the XMCD spin sum rule. For transition
metal clusters, the magnetic dipole term Tz is not just a minor factor that only mildly
affects the analysis. On the contrary, Tzmay change the overall picture completely.
It may cause that experiment will provide results which are seemingly counterin-
tuitive. Whether the Tz term will actually cause that the size-dependences of μspin

and [μspin + 7Tz]/nh will be opposite or not depends both on the clusters and on the
substrate and is difficult to be guessed beforehand [17].
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29.4 Impact of the Tα Term on the Apparent Dependence
of μspin on the Direction of the Magnetisation

Neglecting Tα and its angular dependence could introduce spurious anisotropy of
μspin for low-dimensional systems [6, 21–23]. We illustrate this point on the case
of Co adatoms and monolayers on Pd(100), Pd(111) and Pd(110) surfaces. The
corresponding structure diagrams are shown in Fig. 29.3 (for adatoms, only one Co
atom is kept obviously). Two hollow adatom positions are possible for the (111)
surface, differing by the position of the adatom with respect to the sub-surface layer;
we consider the fcc position here.

The spin sum rule (29.1) provides ameans to extract the quantityμspin + 7Tα from
XMCD spectra. The moment μspin practically does not depend on the direction of
the magnetisation. The Tα term, on the other hand, depends on it considerably. If the
value of Tα is large so that it cannot be neglected, the sum-rule-related combination
μspin + 7Tα depends on the magnetisation direction. This dependence can be quite
striking, as it is illustrated by the results summarised in Table29.1 [23]. One can
see that depending on the choice of the surface, the difference between μspin + 7Tα

evaluated for in-plane and out-of-plane orientations of the magnetisation may reach

(100)

x

y
(111)

x

y
(110)

x

y

Fig. 29.3 Structure diagrams for a Comonolayer on Pd(100), Pd(111) and Pd(110). The orientation
of the x and y coordinates used throughout Sect. 29.4 is also shown. Figure reproduced from [23]

Table 29.1 Dependence of the sum μspin + 7Tα on the direction of the magnetisation α

(α = x, y, z) for Co adatoms and monolayers deposited on three crystallographically different
Pd surfaces [23]. The bare moment μspin is also shown for comparison

System μspin μspin + 7Tx μspin + 7Ty μspin + 7Tz

Adatom on Pd(100) 2.29 2.40 2.40 2.12

Adatom on Pd(111) 2.35 2.91 2.91 1.33

Adatom on Pd(110) 2.20 2.06 3.19 1.42

Monolayer on Pd(100) 2.09 2.13 2.13 1.94

Monolayer on Pd(111) 2.02 2.27 2.27 1.56

Monolayer on Pd(110) 2.15 2.07 2.60 1.73
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50–100%. For the (110) surface, there is also a surprisingly large in-plane anisotropy
of μspin + 7Tα , especially for the case of the adatom.

We summarise this section by noting that the magnetic dipole term Tα depends
substantially on the direction of the magnetisation (and also on the crystallographic
orientation of the substrate). As a results, a strong apparent anisotropy of μspin may
be falsely deduced from the XMCD sum rules if the Tα term is neglected.

29.5 Influence of the Spin-Orbit Coupling: When the Tα

Term Can Be Eliminated

In principle, μspin can be obtained if the Tα term is calculated and inserted into
(29.1). However, one would really have to do the calculation for each system which
is studied, because the Tα term is quite sensitive to details of the electronic structure
[14, 15, 17] and taking it from calculations done for only similar systems might not
be reliable. At the same time, performing the calculations for the system in question
might be difficult or impractical.

The good news is that there appears to be a way to eliminate the Tα term from
XMCDanalysis, relying solely on experiment: either by performing a series of angle-
dependentXMCDmeasurements or by performing just a singleXMCDmeasurement
at the right geometry. The key lies in decoupling the quadrupole moment operator Q̂
and the spin operator Ŝ in (29.2). Namely, if the influence of the spin-orbit coupling
(SOC) on Tα can be neglected and some not very severe restrictions on the symmetry
are satisfied, the Tα term can be expressed as [24]

Tα =
∑
m

1

2
〈Y2m |Q̂αα|Y2m〉 μ

(m)
spin . (29.4)

Here μ
(m)
spin is the spin magnetic moment resolved into components according to

the magnetic quantum number m. The matrix elements 〈Y2m |Q̂αα|Y2m〉 depend on
the direction α along which the sample is magnetically saturated. The values of
〈Y2m |Q̂αα|Y2m〉 together with further discussion of (29.4) can be found elsewhere
[7, 23, 24].

If (29.4) is valid, further relations for the Tα term can be derivedwhich can be used
to eliminate Tα from the sum rule (29.1). One way to achieve this is by performing
three XMCD measurements and making use of the relation [24]

Tx + Ty + Tz = 0 . (29.5)

Furthermore, if the system has higher than twofold symmetry around the z axis, the
magnetic dipole term depends on the polar angle θ as [24, 25]

Tθ ≈ 3 cos2 θ − 1 , (29.6)
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Table 29.2 The ratio 7(Tx + Ty + Tz)/μspin for Comonolayers and adatoms on noblemetals (111)
surfaces [29]

Substrate 7(Tx + Ty + Tz)/μspin

Monolayer Adatom

Cu 0.01 0.21

Pd 0.02 0.07

Ag 0.02 0.37

Pt 0.01 0.10

Au 0.01 0.28

(themagnetic dipole term is denoted Tθ for a general samplemagnetisation direction).
Equation (29.6) can be employed for another way of eliminating Tθ from the XMCD
sum rules: One has tomake the XMCDmeasurement with circularly polarised x-rays
coming in the direction of the magic angle 54.7◦. The point to be emphasised is that
eliminating Tα from the sum rule analysis is possible only if the effect of SOC on Tα

can be neglected.
This raises a question whether the influence of SOC on Tα can be neglected in

common circumstances. There are theoretical indications that this influence can be
sometimes important. For example, it was found that (29.5) is strongly violated for
free-standing Cowires [26]. Considering more realistic materials, violation of (29.6)
was predicted for a Pt monolayer magnetised by the underlying Fe substrate [27].
There have been also experimental indications that the SOC may be important for
the Tα term: violation of (29.5) was observed for magnetite nanoparticles [28].

To provide a comprehensive picture to what extent the SOC is important for Tα in
thin films, adatoms or clusters, we show below theoretical results for Co monolayers
and adatoms on Cu, Pd, Ag, Pt, and Au (111) surfaces. This selection guarantees that
one accounts for effects connected with the change of dimensionality as well as for
effects connected with the change of chemical environment.

29.5.1 Sum over Magnetic Dipole Term Components Tα

The first test of the influence of SOC on the Tα term is checking the validity of (29.5).
The motivation for this test comes from the spin moment sum rule (29.1), in which
μspin appears only in combination with 7Tα , asμspin + 7Tα . The key indicator is thus
the ratio 7Tα/μspin. Table29.2 shows this ratio summed over all three coordinates,∑

α=x,y,z 7Tα/μspin. If the influence of SOC on Tα was completely neglected, this
quantity would be zero. One can see from Table29.2 that for Co monolayers the
condition (29.5) is fulfilled with a high accuracy. Equation (29.5) is thus valid and
the Tα term for monolayers can be eliminated from the XMCD spin sum rule.
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The situation changes for Co adatoms. It is obvious from Table29.2 that the
ratio

∑
α 7Tα/μspin is significantly larger for the adatoms than for the corresponding

monolayers. For Pd and Pt substrates the breakdown of (29.5) is modest. For Cu,
Ag, and Au substrates this breakdown is substantial. Elimination of the Tα term from
the XMCD spin moment sum rule in not possible in these situations.

29.5.2 Angular Dependence of Magnetic Dipole Term

Another test whether the influence of SOC on the magnetic dipole term Tθ is sig-
nificant can be performed by inspecting the full angular dependence of Tθ . If the
influence of SOC can be neglected, this dependence should satisfy (29.6).

Figure29.4 shows the Tθ term for Co monolayers and adatoms on Cu, Pd, Ag, Pt,
andAu (111) surfaces calculatedwhile varying the angle θ between themagnetisation
direction and the surface normal [29]. To test the validity of (29.6), we attempted to
fit the ab initio data to

A (3 cos2 θ − 1) , (29.7)

(dashed lines in Fig. 29.4). The fit is quite accurate except for Co adatoms on Cu,
Ag, and Au. In these cases the Tθ dependence can be fitted with the function

A (3 cos2 θ − 1 + B) , (29.8)

(full lines in Fig. 29.4). The fact that the Tθ dependence can be fitted by (29.6) only if
a rigid shift (represented by the constant B) is introduced presents another evidence
that the magnetic dipole term sum rule (29.5) is not universally valid for supported
3d systems. Likewise, for systems where the parameter B in (29.8) is important, the
term Tθ does not vanish at the universal magic angle 54.7◦. Rather, the magnetisation
tilt angle for which Tθ vanishes differs from substrate to substrate: it is 45◦ for a Co
adatom on Cu, 13◦ for an adatom on Ag, and 42◦ for an adatom on Au. For other
systems explored here, it is close to 54.7◦.

The results presented in Sect. 29.5 demonstrate that even for atoms with low SOC
such as Co, the influence of SOC on Tα in certain environments can be so large
that (29.5)–(29.6) cannot be used. While for the monolayers the influence of SOC
on Tα can be neglected for any substrate, the situation is different for the adatom.
Here for some substrates (29.5)–(29.6) are valid but for other substrates they are
not. The crucial factor turns out to be the ratio between the SOC strength and the
bandwidth, ξ/W3d [24, 29, 30]. The width of the adatom 3d band is apparently just
about what is required to make the ratio ξ/W3d large enough so that SOC becomes
important. Consequently for some substrates (such as Pd, Pt) (29.5)–(29.6) still can
be used while for others (such as Cu, Ag, Au) they cannot. Generally, one can expect
that for systems with considerable overlap between adatom and substrate density of
states around the Fermi level the influence of SOC on Tα can be neglected not only
for monolayers but also for adatoms. Otherwise (29.5)–(29.6) should rather not be
used [29].
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Fig. 29.4 Dependence of the magnetic dipole term Tθ on the magnetisation angle θ for Co mono-
layers (left panels) and Co adatoms (right panels) on different substrates. Ab initio results are shown
by crosses, fits to A(3 cos2 θ − 1 + B) are shown by full lines, fits to A(3 cos2 θ − 1) are shown by
dashed lines. Both fits are practically undistinguishable except for the cases of adatoms on Cu, Ag,
or Au. Figure reproduced from [29]
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29.6 Conclusions

The magnetic dipole term Tα is not just a minor factor that affects the sum rules
analysis of XMCD spectra. On the contrary, it may change the overall picture com-
pletely. Neglecting the Tα term could lead, e.g., to wrong conclusions concerning
the dependence of the magnetic moment on the cluster size or concerning the appar-
ent dependence of the spin magnetic moment on the direction of the magnetisation.
Whether this will actually happen or not depends both on the clusters and on the
substrate and is difficult to be guessed beforehand.

In case that the influence of spin-orbit coupling on Tα can be neglected, the Tα term
can be eliminated from theXMCD sum rules either by relying on the Tx + Ty + Tz =
0 relation or by making use of the magic angle θ = 54.7◦. For 3d transition metal
systems, the influence of SOC on Tα can be neglected only if these systems are
sufficiently large (wires, monolayers, large clusters). If the system contains just a
few 3d atoms (as is the case of adatoms or small supported clusters), the influence
of SOC on Tα may be significant. This further depends on the hybridisation between
states of the 3d atoms and of the substrate, especially around the Fermi level: if the
hybridisation is only weak, the role of the SOC is enhanced while if the hybridisation
is strong, the role of the SOC is suppressed.
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