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This book is dedicated to Calogero R. Natoli,
more widely known as Rino Natoli, on the
occasion of his 75th birthday. A conference in
his honour was organized in Rennes (France)
on July the Ist—2nd 2016, as a recognition of
his outstanding lifetime achievements in the
multiple scattering modeling of
spectroscopies and his tutoring work in the
training of two generations of multiple
scattering physicists. Part 2 of this book
gathers the contributions to this conference
directly related to multiple scattering.



Foreword

It is indeed a pleasure and an honor to write the foreword to this book on multiple
scattering theory, both for its deep and useful content, but also to honor Rino
Natoli, an outstanding scientist who has contributed so much to this field over a
long and continuing career.

As an experimentalist involved in various aspects of photoelectron spectroscopy
who has made use of multiple scattering methods through my entire career, I cannot
underestimate the importance of the theoretical developments, methods, and com-
puter codes discussed in this volume. For me personally, this spans from the
simulation and interpretation of photoelectron diffraction and holography data for
bulk- and surface-atomic structure studies, using methods developed in collabora-
tion with John Rehr, a close collaborator of Rino Natoli over many years, to the
much more complicated challenge of simulating and interpreting angle-resolved
photoemission results aimed at the most detailed determinations of electronic
structure, in collaboration with Hubert Ebert, Jiirgen Braun, and J4n Minar, who are
authors in this volume. Being able to accurately describe the final states and
intensities of electrons photoemitted from either core or valence states of atoms,
molecules, solids, surfaces, or interfaces is absolutely crucial to all applications of
photoelectron spectroscopy, including more recently greatly expanded studies of
both spin and time resolution. Recent developments in synchrotron radiation and
free-electron laser light sources, as well as high-harmonic generation sources, and
time-of-flight spectrometers and spin detectors have opened up enormously exciting
new areas for photoelectron spectroscopy in which we are really dealing with “big
data”, and it is essential that we have “big theory” to describe all this. This volume
addresses that, and the fact that, the word “photoelectron” appears over 170 times in
it and the word “photoemission” over 150 times attests to the many past, present,
and future contributions of multiple scattering in the interpretation of such data.

But beyond this area of spectroscopy also come structure studies with
low-energy electron diffraction (for which many early developments were made)
and the X-ray absorption and X-ray emission spectroscopies, including X-ray
absorption extended fine structure (EXAFS, XAFS mentioned over 80 times),
X-ray magnetic circular dichroism (XMCD-over 70 times) and linear dichroism,
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viii Foreword

and resonant inelastic X-ray scattering, forefront synchrotron radiation and
free-electron laser techniques whose understanding also critically depends on
multiple scattering and is discussed elsewhere in this book. From a fundamental
point of view, the multiple scattering methods discussed here are also very closely
related to, and based in many ways upon, the Korringa—Kohn—Rostoker method
(KKR mentioned over 180 times) that is frequently used in calculating electronic
structure.

The book is also enhanced by articles by experimentalists describing their uses
of these techniques and illustrating directly the importance of accurate theory for
the interpretation of data.

So this volume, with its intent to put in one place an introduction to the various
multiple scattering methods and available programs for using them in various
spectroscopies, is most timely and useful, and I am grateful to Didier Sébilleau,
Keisuke Hatada, and Hubert Ebert for editing it, and to all of the authors for their
authoritative and useful chapters. This book will be a highly useful reference to a
very broad scientific community.

Davis, USA Charles S. Fadley
March 2017



Preface

The purpose of this book is to provide the users of multiple scattering (MS) codes
modeling spectroscopies with all the necessary background in order to understand
the theoretical framework behind these codes. It is intended for researchers, as well
as students who want to run a multiple scattering code and want to go further than
just button pressing. It is designed as more or less self-contained as no preliminary
knowledge of scattering theory is requested.

This book is composed of two parts which reflect the two events it grew out of.
Part I provides basic knowledge of MS theory and of its use in the description of
standard spectroscopies used in materials and surface science, either at advanced
facilities (synchrotron radiation centers and free-electron lasers essentially) or in
academic/industrial research laboratories. It contains the lectures that were given at
the EUSpec training school organized in Rennes (France) from the June 27 to 30,
2016. These lectures contained all the background requested to understand the
physics behind the codes FpMs, GNXAS, MCcMs, Msspec, and MXAN, on which the
attendees had hands-on during the Rennes school, and the code spR-kKR which was
studied at the EUSpec Plzen (Czech Republic) Training School in February 2015.
Part II deals with more focused aspects of the use of MS to model spectroscopies. It
is based on some of the talks that were given at the joint MSNano-EUSpec con-
ference that followed the Rennes Training school. It addresses specific issues
related to MS and is intended for readers who want to go further in the under-
standing of MS theory for spectroscopies.

We hope this book will be helpful to the spectroscopy community to better
understand the dark side of the MS computer codes.

Finally, we want to thank all the students/researchers who attended the school
and the conference, and hope these two events will have given them a better grasp
on the codes they use or want to use.

Rennes, France Didier Sébilleau
Rennes, France Keisuke Hatada
Munich, Germany Hubert Ebert

March 2017
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The original version of the bookfrontmatter
was revised: Revised acknowledgements
content has been incorporated. The erratum
to this bookfrontmatter is available at
https://doi.org/10.1007/978-3-319-73811-6_30
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Acronyms

Spectroscopies

AED

APECS

ARBIS

ARPES

BEEM

EELS

EXAFS

HAXPES

Auger electron diffraction: spectroscopy based on electron diffraction
where the Auger electrons are monitored

Auger photoelectron coincidence spectroscopy: spectroscopy based on
photoemission where the photoelectron and the Auger electron ejected
via the corresponding deexcitation channel are measured in
coincidence

Angular-resolved Brehmsstrahlung isochromat spectroscopy (BIS):
spectroscopy often improperly termed inverse photoemission. It is the
angle-resolved form of BIS where a beam of electrons is focused onto
a sample. Within the sample, the electrons can decelerate emitting a
photon. Photons of fixed energy are then detected

Angle-resolved photoemission spectroscopy: spectroscopy where an
incident photon excites an electron on a given atom. The ejected
electron is measured by an angle-resolving detector

Ballistic electron emission microscopy: microscopy derived from STM
where only electrons that travel ballistically (i.e., those elastically
scattered) are considered

Electron energy loss spectroscopy: spectroscopy where the electrons of
an incident beam directed at the sample are used to excite electrons on
specific atoms. The scattered electrons, which have lost energy in the
process, are then probed

Extended x-ray absorption fine structure: spectroscopy using the
higher energy part of the x-ray absorption spectrum (usually ~50 eV
above the absorbing edge)

Hard x-ray photoelectron spectroscopy: photoemission using hard
x-rays with energies of several keVs

XXiii



XXiv

LEED

NMR

PED

REXS

RXS

SPLEED
ST™M

UPS
XANES
XAS

XLD

XMCD

XPS

XRD

Methods

CPA

Acronyms

Low-energy electron diffraction: a technique for the determination

of the surface structure of single-crystalline materials by bombardment
with a collimated beam of low-energy electrons (20-200 eV) and
observation of diffracted electrons as spots on a fluorescent screen
Nuclear magnetic resonance: spectroscopy based on the absorption and
reemission of an electromagnetic wave by nuclei in a magnetic field
Photoelectron diffraction: spectroscopy based on photoemission where
a feature of the photoemission spectrum (core level peak, Auger peak,
valence peak, plasmon peak, etc.) is monitored as a function of either
the energy or the emission angles

Resonant elastic x-ray scattering: x-ray scattering spectroscopy where
the incident photon excites an electron to a virtual state and is
reemitted at the same energy in the deexcitation process

Resonant x-ray scattering: generic term covering both resonant elastic
and inelastic x-ray scattering

Spin-polarized version of LEED

Scanning tunneling microscopy: used to image surfaces at the atomic
level. It is based on the quantum tunneling from the tip to the substrate
Ultraviolet photoemission spectroscopy: photoemission using incom-
ing photons in the range of a few tens of eV

X-ray absorption near-edge structure: spectroscopy using the lower
energy part of the x-ray absorption spectrum, including the rising edge
X-ray absorption spectroscopy: generic term covering both the
XANES and the EXAFS regimes

X-ray linear dichroism: spectroscopy making use of the difference in
the absorption of x-rays between two different beams with orthogonal
polarization

X-ray magnetic circular dichroism: spectroscopy making use of the
difference in the absorption of x-rays between two (right and left)
circularly polarized beams, when the sample is in a magnetic field
X-ray photoemission spectroscopy: photoemission using incoming
photons in the range of keVs

X-ray diffraction: a photon-in, photon-out spectroscopy with conser-
vation of the photon energy away from an absorbing edge of the
sample

Coherent potential approximation: method for finding the Green’s
function of an effective medium, when the potential varies randomly
from site to site in the sample. It is used to describe disordered
materials



Acronyms

DFT

DMFT

EMB

GGA

GW

IPA

KKR

LDA

LFM

LMTO

LSDA

MCMS-GF

MCMS

MD

MS-GF

MST

PAW

XXV

Density functional theory: computational quantum mechanical
method, whereby the ground-state properties of a many-body system
are assumed to be functionals of only the electron density
Dynamical mean field theory: method used to describe the electronic
structure of strongly correlated systems

Embedded cluster method: a method to describe extended defects in
an otherwise perfect solid

Generalized gradient approximation: improvement of the LDA
where the exchange and correlation functional depends both on the
electron density and its gradient

Approximation of the many-body problem where the self-energy is
calculated at the lowest diagrammatic order in terms of the
single-particle Green’s function G and the screened Coulomb
interaction W

Independent particle approximation: approximation where electron—
electron interactions are neglected or treated in an average way
Korringa—Kohn—Rostoker method: the original multiple scattering
method developed by these authors

Local density approximation: approximation of the DFT, where the
exchange and correlation functional depends solely upon the value
of the electron density at each point in space

Ligand field multiplet: many-electron computational method for the
electronic structure and spectra of atoms or ions in a field created by
the surrounding (ligand) atoms

Linear muffin-tin orbital method: ab initio electronic structure
method using muffin-tin orbitals as the basis set

Local spin density approximation: approximation where the
exchange and correlation functional depends only on the local
electron spin density (see LDA)

Multichannel multiple scattering theory: computational method
taking into account electron correlations by combining the MS-GF
and close-coupling formalism

Multichannel multiple scattering: multiple scattering theory taking
into account correlation effects

Molecular dynamics: an N-body computer simulation method to
mimic the movements of interacting atoms and molecules

Multiple scattering theory: computational method for solving the
Dyson equation

Multiple scattering theory: computational method for solving the
Schrédinger equation, covering both bound and continuum extended
states

Projector-augmented wave: electronic structure method, generaliza-
tion of the pseudopotential method, transforming the rapidly
oscillating valence wave functions into smooth wave functions and
providing a way to calculate all-electron properties from them



XXVi
PCI

PWIA

RPA

SKKR

Codes

CONTINUUM
ES2MS

FDMNES

FEFF
FPMS

GAUSSIAN
GNXAS

GPAW

KKRnano
MCMS

MC-MSGF-SP
MSGE-SP
MsSpec

MXAN

Acronyms

Post-collision interaction: interaction between two or more outgoing
electrons after the excitation process has taken place

Plane wave impulse approximation: approximation identifying
all-electron beams within the sample as plane waves and assuming
that the target does not intervene in the electron—electron interaction
Random-phase approximation: it is one of the oldest
non-perturbative methods for computing the ground-state correlation
energy of many-electron systems and screening of the long-range
Coulomb interaction

Screened version of the Korringa-Kohn-Rostoker method for a faster
computational algorithm for layered systems

A multiple scattering code, based on the Muffin-Tin approximation,
to model x-ray absorption and resonant elastic x-ray scattering
Interface package for passing self-consistent charge densities and
potentials from electronic structure codes to multiple scattering codes
Finite difference method near-edge spectroscopy: finite difference and
multiple scattering program to model XAS, RXS and other
spectroscopies

Automated program for ab initio multiple scattering calculations of
XAS, EELS and non-resonant inelastic x-ray scattering

Full potential multiple scattering: a full potential code to model x-ray
absorption and other spectroscopies

Computational chemistry code using Gaussian orbitals as the basis set
Extended suite of programs for advanced x-ray absorption data
analysis: EXAFS modeling and analysis program

DFT code based on the projector-augmented wave method and the
atomic simulation environment

Nanostructures focused KKR electronic structure code
Multichannel multiple scattering: a computer program to compute
XANES spectra for correlated systems

A multichannel version of the MSGF-SP package to compute
XANES taking into account electron correlations

Multiple scattering: a computer package to model XANES, REXS,
RXS, and other spectroscopies

Multiple scattering spectroscopies: a computer package modeling
several spectroscopies

Minuit XANES: code calculating XANES spectra and fitting them to
the experiment using the Minuit minimization algorithm



Acronyms XX Vil

SKKR Screened KKR: Fully relativistic KKR code including the screening
method for the computation of the electronic structure, magnetic and
electronic transport properties of layered and low-dimensional
materials

SPEA-MEM Scattering pattern extraction algorithm using maximum entropy
method: computer program allowing to reconstruct the atomic image
from a photoelectron hologram

SPR-KKR Spin-polarized relativistic KKR: a computer code to compute the
electronic structure of materials and the cross section of several
spectroscopies

SPR-TB-KKR  Tight-binding version of the SPR-KKR code

VASP Vienna ab initio simulation package: electronic structure package

based on pseudopotentials

A list of computer packages allowing to model spectroscopies is available at
http://www.euspec.eu/code-database at the EUSpec website.



Part I
Basic knowledge

This part corresponds to the lectures given during the first day of the EUSpec Training
School on multiple scattering codes organized at University of Rennes 1 from June
27 to 30, 2016. The three following days were devoted to hands-on training on
five codes: MXAN, GNXAS, MSSPEC, FPMS, and MCMS. These lectures have been
written to be self-contained, and therefore no prior knowledge of scattering theory is
required to read them. For the sake of conveniency, two of the original lectures have
been merged into a single chapter.
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Chapter 1
Introduction to (Multiple) Scattering Theory

Didier Sébilleau

Abstract In this introductory chapter, we develop the scattering theory necessary
to understand the theoretical models underlying the multiple scattering codes. First,
the elementary theory is presented and it is then formalized to introduce the different
operators whose matrix elements are computed in the codes. Then, we extend the
theory to the case of a collection of potentials, i.e. multiple scattering. Finally we
outline the way cross-sections can be derived from the multiple scattering framework
and give some practical examples.

1.1 Introduction

In this chapter, we develop all the theoretical tools necessary to understand the
scattering framework involved in multiple scattering codes. This framework will
be defined for local, short-ranged potentials, or more specifically for potentials
satisfying the so-called Ikebe conditions [1] which ensure both that the potential
decreases sufficiently fast so that beyond a certain distance it can be considered
as zero, and that it is not too strongly singular at the origin (in other words that
the spectrum of the Hamiltonian H of the problem has a lower bound) [2]. Note
that the first condition excludes Coulomb potentials. In practice, this will not be a
problem as in materials, the Coulomb potentials are sufficiently screened so that they
can be safely considered as short-ranged. In addition, we will suppose the potential
considered to be Hermitian so that the eigenvalues of H are real.

Furthermore, we will only consider elastic scattering so that scattering by potential
V does not change the energy of the electron. Finally, we will restrict ourselves in
this chapter to spherically symmetric potentials.
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1.2 Elementary Scattering Theory

1.2.1 The Asymptotical Behaviour of the Wave Function

We consider a potential V satisfying the conditions listed in Sect. 1.1. We choose
the center of this potential as the origin of space. Being short-ranged and spherically
symmetric, we denote a its range so that V (r) = 0 if r > a. The interaction of an
incoming electron with V can be described by the reduced Schrodinger equation (i.e.
where we have multiplied the equation by 2m /h?. Alternatively, we can use Rydberg
atomic units for which /2 = 2m = 1)

[A+K - V@) ](r) =0, (1.1)

which we want to solve.

As soon as the particle has interacted with the potential and is outside the potential
range a, it is again a free particle. Therefore, it is possible to deduce its asymptotical
form which is given by [3]

) ikr
B - a [el’”+fk<9>er } , (1.2)

where 6 is the scattering angle, as explicited in Fig. 1.1.

The amplitude modulating the outgoing spherical wave is called the scattering
amplitude or the scattering factor. For a non-spherical potential, it will depend also
on the azimuthal angle ¢, in addition to € and k. This expression is very general and
does not depend on the structure of the potential, only the expression of the scattering
amplitude is potential-dependent.

Here, we have supposed an incoming plane wave. In practice, we never really
have a single particle but rather a beam of incoming particles. In this context, the
asymptotic equation becomes clear: far away from the potential, the effect of this
potential is to suppress some particles from the incoming beam and to redistribute
them as spherical waves [4].

1.2.2 The Radial Equation for the Spherically Symmetric
Problem

As the potential is spherically symmetric, we can decompose the differential operator
A into spherical coordinates

170 (,0 1o P 1
A= 2 (22} 4 L9 (Gnpl) 4 L 13
72 [8r <’ ar> T 56 90 <Sm ae) * 7o aw} A
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Clkr

Fig. 1.1 Geometry of the scattering of an electron by a potential V (r) of range a

which we rewrite as

1
A =V? =Vf+r—2V§,w. (1.4)

But the angular momentum operator £ = r X p is such that it satisfies

1

Vi, = — . (1.5)

Therefore, the eigenfunctions of Vz’ , are the complex spherical harmonics
Y;" (0, ) [5]. More precisely, we have

Vi, Y0, 0) = =L+ 1) Y6, ) . (1.6)

From now on, in order to simplify the notation, we introduce the short-hand
notations L = (¢, m) and 7 = (6, ¢) so that we rewrite the spherical harmonics as
Y ().

Making use of the eigenvalues of V2’ ,, in (1.1) and simplifying by ¥, (F), we are
left with the sole radial equation to solve
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(vg SHED e vm) Ri(r) = 0. (1.7)

This equation can be viewed as a one-dimensional Schrodinger equation with the
constraint that » > 0, and whose potential is V (r) + £(£ + 1)/r?. The last term is
called the centrifugal barrier.

Let us consider first the free electron case. The radial equation (1.7) reduces to
the spherical Bessel equation [6] which has two linearly independent solutions to be
chosen among ( e (kr), me(kr), ki (kr), Y (kr)). ji(kr) s regular at origin, which
means that it does not diverge there. By contrast, n,(kr) is irregular at the origin.
However, for a free particle, the wave function must be finite everywhere so that only
the general solution C; j,(kr) is physically meaningful.

Then, we consider the case of the electron after its scattering by V and out-
side of the range of the potential. We have still a zero potential, but now the
general solution of the radial equation for r > a must be of the form Ry(r) =
Cél) Je(kr) + Céz)hél)(kr), or expressed as the linear combination of any other cou-
ple of independent spherical Bessel functions. Then, it can be demonstrated that
asymptotically, we must have [7]

sin (kr - gﬁ)
2

without V : lim R,(r) = C,
r—+00 kr

(1.8)

C;l) sin (k}’ — Eg + (5()

cos 0y kr

with V. lim R, (r) =
r——+00

0, is called the phase shift of order £ of potential V. The behaviour of these two
radial wave functions is represented in Fig. 1.2.

So, d, represents the shift in the asymptotical radial wave due to the presence of
the potential when the incoming wave is of angular momentum £.

Solving now the radial Schrodinger equation for r > a for the different choices
of the linearly independent spherical Bessel wave functions gives

Ry(r) = Ay [jz(kr) + isin g, e hél)(kr)] (152
A .
= 5 [P0y + a1 )] (1.9b)

CV Ljelkr) — tan & ng(kr)] . (1.9¢)
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Fig. 1.2 Comparison of the asymptotical form radial wave function with or without the presence
of potential V'

1.2.3 Partial Wave Expansions

Expansions of physical quantities in terms of L are called partial wave expansions.
The quantities i’ j, (kr) Y, (#) will arise frequently within our theoretical framework:
they are called free spherical waves as they are the partial wave solutions of the free
electron Hamiltonian Hj. Therefore, when dealing with Hy, we will be able to use
two kind of basis functions which satisfy the corresponding Schrédinger equation,
the plane waves {|k)} and the spherical waves {|kL)}. They are related through the
partial wave expansion known as Bauer’s formula [8]

e = dr Y i jukr) YL (7)Y (k) (1.10)
L
and the reverse formula
1 . ~ A
i ek VL6 = o / ey, ) d (1L11)
T

These equations allow us to make the difference between the two bases {|k)} and
{|kL)} solution of the free electron Schrodinger equation:

e |k) represents a free particle of well defined energy k> and momentum 7ik. How-
ever, it does not have a precise angular momentum
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e |kL) represents the same particle with the same energy but with a well defined
angular momentum. But its momentum is not known as the corresponding wave
function is an integral over all possible directions of the momentum

The scattering amplitude can also be expressed as a partial wave expansion

fk(ef) = 4% Z sin &, € Y, (F) Y (k) . (1.12)
L

The quantity sin d; e is often denoted ¢, for reasons that will be explicited in
Sect. 1.3.3.1.

All these expansions involve a summation over £ that must be truncated at a certain
point £,,,, for practical reasons. As simple way to estimate this truncation value can
be obtained by looking at the radial Schrodinger equation (1.7). Indeed, we see that
for the particle to be scattered by the potential V, it must first overcome the centrifugal
barrier £(£ + 1)/r?. Therefore, its kinetic energy k> must satisfy k> > £(£ 4+ 1)/r>.
This implies directly that partial waves with £ so that k> < £(¢ + 1)/a* will not
contribute to the scattering process. This gives for £,,,, the estimation

ka ~ v Linax Uax + 1) . (1.13)

1.2.4 The Scattering Amplitude

The scattering amplitude f;(6) is an important asymptotic quantity that gives us a
good insight into the scattering process. As explicited in (1.2) and Fig. 1.1, it is the
amplitude in the direction 6 of the spherical wave resulting from the scattering of
an initial plane wave. Although in practice at atomic level, the initial waves are not
plane waves, it does still provides us with a useful information on the outcome of
the scattering process. It is easily calculated by means of equation (1.12).

Figure 1.3 gives polar plots of | f;(#)| for Ni and O at kinetic energies ranging
from 60-1000eV [9]. Without doing any further calculations, it already tells us that
while at lower energies, the scattering is important in several directions, at higher
kinetic energies, it will be strongly dominated by the forward direction. This means
than in practice, for energies above 500eV, we expect the electrons to be scattered
essentially along the rows of atoms.

1.2.5 Calculation of the Phase Shifts

We see from (1.9) and (1.12) that the only unknown in order to solve the scattering
problem are the phase shifts §,. Equation (1.9) gives us the solution of the scattering
problem in terms of the §, in the asymptotic zone. Let us call R, (r) the radial solution
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Fig. 1.3 Examples of modulus of the scattering factor | f; (¢)| for Ni (left) and O (right) at several
kinetic energies [9]

of the Schrodinger equation inside the potential sphere, while the solution outside is
given by (1.9). The phase shifts can be obtained by matching R, (r) and R,(r) at the
surface of the potential sphere of radius a. This is sketched in Fig. 1.4.

If we introduce the Wronskian W of two functions f and g by

d d
WLf. gl = fd—f - gd—f , (1.14)

we find the coefficients of (1.9) given by

. Wlje, Re]
=i # (1.15a)
Wih", Rel| _
(2)
eide — _ w (1.15b)
Win, Rel| _
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Fig. 1.4 Physical
interpretation of the
matching of the wave
functions at the surface of
the potential

D. Sébilleau

incoming

reflected

Alternatively, #, can also be obtained from [10]

1.3 Formal Scattering Theory

We start by recasting the Schrédinger equation in the form

V(r)
_ Wlje, Rel
tan 6, = —W[n[,Rg] o (1.15¢)
= — / Getkr)V (MR (r) ridr . (1.16)
0
(K — H)du(r) = 0. (1.17)

This allows us to introduce the Green’s operator in the complex plane by

Giz) = (z—H)". (1.18)

Instead of finding ways to solve the Schrodinger equation (1.17), scattering theory
deals with the solution of Green’s operator. In the mathematical physics literature,
this operator is referred to as the resolvent. In the case of spectroscopies, where we
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are essentially interested into the continuum states, we call it the propagator for
reasons that will become clear later.

From (1.18), by making it act on eigenfunctions of H, we can deduce directly
two important properties of G(z):

e G(z) and H have the same eigenfunctions
e the eigenvalues of H are the poles of G(z).

This demonstrates formally that H and G contain the same information and that
therefore solving G(z) will give us the solutions of the Schrédinger equation (1.17).
It however leads to a problem as this also means that G (z) is not defined for the eigen-
values of H, which are the quantities we are ultimately interested in. To overcome
the division by zero induced by this definition, we redefine the Green’s operator by

Gi(z) = lim (z— H =+ ie)~!, (1.19)

so that we approach the eigenvalues of H either from above (+ solution) or from
below (— solution).

This definition is explicited in Fig. 1.5.

We represent schematically the fact that H and G contain the same information
by

z plane

k* +ie

discrete poles branch cut

—00000000000000 >

Fig. 1.5 Poles of the resolvent G(z) and definition of G* (k?)
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@ definition of G

1.3.1 The Free Electron Propagator

We consider first the Green’s operator Goi(kz) in the absence of a potential, i.e. for
free electrons. It can be shown that the matrix elements of this operator in the space
coordinates, also called the Green’s function, are given by [11]

1 eiik\r—r’|

F1GTED)|r) = GE' i k) = T (1.20)

We see that this equation represents the amplitude at r’ of a spherical wave issued
from r. Therefore, G (k*) represents the propagation of an outgoing wave and
G, (k?) that of an incoming wave. Hence the name free electron propagator usually
given to the Green’s function and by extension to the operator Gy.

This Green’s function can be expanded into spherical waves (the partial waves
we have defined in Sect. 1.2) as [12]

Gy (' rik?) = —ik Y jolkr )by (kr)YL(F)Y] () . (1.21)
L

Here, r - and r. represent respectively the smaller and the larger of r and r’. L
is a short-hand notation for the angular momentum indices (¢, m).

Because we are dealing with short-ranged potentials, Hy is valid outside the range
of the potential. Therefore, the solutions |¢;) of Hy are called asymptotical states as
they represent the state of the system when we are far way from the interaction zone.

1.3.2 The Full Propagator

In the presence of an external potential V, the full propagator G can be rewritten as
G@)=@-H)"'"=Gc-H-V)"=G'-V", (1.22)

where for the sake of simplicity, we have dropped the * . Some simple manipulations
of the previous equations give
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G(2) = Go(2) + Go(2)VG(2) (1.23a)
=Go(2) + G(@)VGy(z) . (1.23b)

This equation that relates the full propagator G (z) to the free electron propagator
G (z) and to the potential V is called Dyson equation.

A related equation, the Lippmann—Schwinger equation, relates the eigenfunctions
of H and Hy. Indeed, noticing that GV |1 ) is a particular solution of H, and denoting
| k) the general solution of Hy at energy k2, we can use the well-known theorem on
differential equations [13] to write

1Y) = lox) +  GoVie) . (1.24)
—— ~—— ———
general solution of H general solution of Hy  particular solution of H

GV is called the kernel of the Lippmann—Schwinger equation.

For both equations (Dyson and Lippmann—Schwinger), we note that we have the
unknown quantity (G(z) and |¢y) respectively) on both sides. This gives us two
straightforward ways to solve these equations. In the case of the Dyson equation,
this gives

1. Expand:
G(2) = Go(2) + Go(DVGo(2) + Go()VGo()VGo(z) + - - - (1.25)

which is a Born-type expansion
2. Factorize:

G@) = [I - Go@V]I™" Goz) = Gox) [I = VGo(1™',  (1.26)

where [ represents the identity.

In the first case, we have a perturbative expansion for which convergence has to be
properly considered. In the second case, we need to invert a matrix which, depending
of its size, can be time-consuming.

An important point to note is that the bound states |¢;) of H and the continuum
scattering states |1, ) form a basis of the Hilbert space HH associated to the Hamiltonian
H. Applying their closure relation to definition (1.22) of the full propagator gives
the so-called Lehmann spectral representation [14]

G() = Z | D) (Do ] n [} (U ae (127)

2 )
— 2k, 72—k

Using the well-known formula [15]

1
Iim —— = 73< ) Find(x — xp) , (1.28)
e—0t x — xg £ ie X — X0
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where P stands for Cauchy principal part which can be defined as [15]

1 1 1 1
P( ) = — lim [ — + - :| , (1.29)
X — Xo 20t | X —xg+1e  x —xg—1ie

we obtain the relation between the density of states n(k?) and the Green’s operator

nk* = :|:71TTr (3[GFN)) - (1.30)

Here, Tr represents the trace and J the imaginary part.
This expression gives a straightforward way to compute the density of states.

1.3.3 The Transition Operator

In many instances, scattering theory relies on a third approach to solve the Dyson
and the Lippmann—Schwinger equations. Indeed, we can introduce a new, unknown
operator T, called the transition operator, by

VG(z) = T(2)Go(2) (1.31a)
GV = Go()T(2) . (1.31b)

At this stage, it is just a mathematical trick to remove the unknown quantity G(z)

on the right-hand side and replace it by the equally unknown quantity 7 (z) we intend
to compute. From the definition (1.31), it can be demonstrated that we have

T =V+VGQ)V. (1.32)
This representation is important because it shows us that 7(z) and G(z) have a

similar structure and that 7T (z) contains all the information encoded into G (z).
In terms of the transition operator, our two fundamental equations now write

e Dyson equation:
GE(k*) = Gy (k*) + Gy (KO TE(kH Gy (k%) (1.33)
e Lippmann-Schwinger equation:
W) = 1) + Gy ()T (k)| (1.34)
The |@[J;t) are the scattering states solution of H. Their eigenvalues belong to the

continuum (branch cut in Fig. 1.5). Note that these scattering states are orthonormal
[16]
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Wk = (erler) (1.35)

and likewise for the incoming states [, ).
In our approach to scattering theory, we will replace the evaluation of G(z) by
that of 7'(z) so that we can now sketch this approach as

@ definition of G @ Dyson equation @

In the scattering process, the transition probability W;_, ; for the system to evolve
from the asymptotical state |p;) to the asymptotical state |¢ ) under the effect of
potential V is given by [17]

27
Wiy = 5 (o 1T )| S(Ef — Eb) . (1.36)

This explains why T is called the transition operator.
We note also that the Hermitian conjugates are given by

G'(z) = G(z%) (1.37)
T'(z) = T(Y), (1.38)

so that, for instance,
[Gy D] = GE.?) if & is real. (1.39)

The difference between T and T~ is called the generalized optical theorem. It
writes as [18]

TT—T =T"[G{ - G,]T~ (1.40a)
=V[GT-G]V. (1.40b)

Itis an important theorem that ensures the conservation of the number of particles.
Moreover, it is the theorem which allows to relate photoemission to x-ray absorption.
1.3.3.1 Matrix Elements in Standard Bases
Computing the matrix elements of the transition operator 7' will allow us to make

the connection with the partial wave theory we have developed in Sect. 1.2. Let us
consider the orthonormalized plane wave and spherical wave bases [19]



16 D. Sébilleau

(rlk) = 1 ;- elkr (1.41)
(2m)?

(rlkL) = k,/% i o (kr)Yi (7). (1.42)
T

In these bases, the matrix elements of T can be shown to be
1 ~t
(K'|T*(*)|K) = === fi(0%) 6k — K)d(K — K') (1.43)
2 k
2k . ;
(ko Lo| T (kP ki Ly) = - sin 5g,e15‘1 0,1, 0Cki — ko) 8(ky — k) . (1.44)

We recognize in the first equation the scattering amplitude defined in Sect. 1.2. The
second equation involves the quantity #, = sin 6gle“$@1 defined in the same section.

1.3.4 The Mopller Wave Operator

We can factorize (1.33) and (1.34) to make an operator [/ + Gat(kz)Ti(kz)] appear.
This is the so-called Mgller wave operator 2@ (k?). It can be written under the
different forms

2P = [1+GEEHIT (D] = [+ G #HV] = [1 - GEkH V] .
(1.45)

We can now recast our different equations in terms of £2® (k?). This gives

Dyson equation:

GE() = 2B GER) = GEI) [P )] (1.46)

Lippmann—Schwinger equation:

lWE) = B E)|er) (1.47)
e Definition of T':
Tk = Vo) = [2Pw)]' v (1.48)

This representation allows us to make a few important remarks:

2@ maps the free electron propagator G(f onto the full electron propagator G+
2@ maps the asymptotical states | ) onto the scattering states
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o TE|py) = V|¢,f) so that T acts on the asymptotical states. Moreover, its action
on these states gives the same result as the action of V on the scattering states.

We note that the Mgller wave operators satisfy
RETQE® =71, (1.49)
However, they are generally not invertible as we have [20]
RBPQE®HT =14 (1.50)

Here A = Z |op) (¢p] is called the unitary deficiency. It is the projector on the

b
subspace generated by the bound states {|¢;)}.

1.3.5 Use of Outgoing and Ingoing States

We have seen in Sect. 1.3.1 that the ™ and ~ solutions were corresponding respec-
tively to outgoing and incoming waves. We address now the important question of
which solution to use in practical cases. The Mgller wave operator £2® (k?) gives us
a useful tool to answer this question, as it allows us to construct the solution from the
known asymptotical state. Therefore, depending which asymptotical state is known
to us (the one in the past or the one in the future, considered with respect to the time
of the interaction), we will use one solution or the other [21]. This is explicited in
Fig.1.6. Here, we have taken the time at which the interaction takes place as the
origin of time.

From this interpretation, we see that if we know the state |¢i") of the electron in
the past (for instance because we use an electron gun to send a beam of particles
onto the sample), we will be able to construct |w,f) states. By contrast, if we know
the state |p™) of the electron in the future (because we measure it with a detector,
as in the case of photoemission for instance), we will only be able to construct the
|1 ) solution. This solution is often termed as the time-reversed LEED solution as
it is the Hermitian conjugate of the LEED (Low-Energy Electron Diffraction) state
constructed from the knowledge of the asymptotical state of the electron emitted by
the electron gun.

Note that some theoretical frameworks, especially in nuclear physics, use the
scattering operator S rather than the transition operator 7. This scattering operator
is defined by [21]

lpe™y = S 1)) . (1.51)
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Fig. 1.6 Physical interpretation of outgoing and ingoing states for the scattering by a short-ranged
potential V

Note also that the matrix elements of S in the spherical wave basis (1.42) S; ;- is
given by S; 6.1/, with Sy = exp[2id,]. This is the same coefficient as the one arising
in (1.9)b.

1.3.6 Two-Potential Formula

Before generalizing this scattering theoretic approach to the case of a superposition
of N potentials, let us look first at what happens when we have just two potentials.
For this, we partition the Hamiltonian H as

H=Hy+Vi+V, = H+V,, (1.52)
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where we suppose that we know how to compute the eigensolutions |X,f) of H =
Hy + Vi. In order to simplify the notation, we index by ; and ; respectively the
initial and final states.

Then, it can be demonstrated that [22]

(oI T i) = (@I T @) + (X IValdh) (1.53a)
= (7 IViler) + (G IValoi) (1.53b)
= (os 1T\ 10i) + (W51 Valxi) (1.53¢)
= (psIVilxh) + (1/1}|V2|X,-+> ; (1.53d)

or equivalently, in terms of operators
TH =T+ v ® = 17F + 2Oy, ulP (1.54)

where we have noted wgi) the Mgller wave operator for V; alone and 2@ the one
forV=V, 4+ V,.

This formula is of particular interest when the two potentials are of a very different
nature, one of them leading to elastic scattering and the other to inelastic scattering.
This is the case for instance when V) represents the potential of a cluster of atoms
and V; a Coulomb interaction leading to the ejection of an electron on a given atom.
In this case, the transition from |;) to |¢ ) cannot arise under V; alone as V; cannot
account for the ejection of the second electron. Consequently, the transition matrix
element (| Tﬁ |;) must be zero and we are left with only the second term in (1.53)
and (1.54).

Most of the time, however, the calculation of |1/)[-+) and |¢;) remains beyond
our possibilities. In this case, we can write these states in terms of the Lippmann—
Schwinger equation

) ) + GV, [yp) (1.55)

where Gf[ is the propagator in the presence on potential V; alone, and perform a
Born expansion of (1.55) to obtain

) B+ GEValxE) + -, (1.56)

If we retain only the first term in (1.56), we have the so-called distorted wave Born
approximation which is generally used to compute cross-sections in the two-potential
case. In terms of the transition operator, this gives [38]

TH = T + w7V Ty (1.57)

The term distorded wave comes from the fact that | x*) corresponds to the asymp-
totic wave |¢) distorded by potential V.
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1.4 Multiple Scattering Theory

So far, we have considered the scattering of an electron by a single potential. The
center of this potential was assumed to be at the origin of space. If we want to
generalize the previous approach to the case of a collection of N potentials distributed
all over the space, clearly their respective positions have to be taken into account into
the theoretical model. One way to do this is to make use of the translation operator.

1.4.1 The Translation Operator

We introduce the translation operator 7 (a) corresponding to a translation by a vector
a by its action on the space states |r):

T(a)lr) =|r +a) (1.58a)
(r|7(a) = (r —a| . (1.58b)

Its action on plane wave states | K) is given by

T(a)|K) = e K |K) (1.59a)
(K|T (a) = e 'K (K| . (1.59b)

We can now take into account the position of each individual potential V; located
at R; from the origin by writing [19]

V = Z Vi, (1.60)

with
Vi = T(R)HViT(—R)) . (1.61)

Equation (1.61) is the operator’s equivalent of the so-called addition theorems for
wave functions [23]. Its geometry is given in Fig. 1.7. Its interpretation is simple.
When making V; act on a state, first we translate the potential to the origin of space
with 7 (— R;) so that we can apply the scattering theory developed in Sect. 1.3. Then,
V; which is the potential referred to the origin can act on the state. Finally, we move
back the potential to its original position with 7 (R;). Therefore, V; is the potential
at site i centered at R;.
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0

Fig. 1.7 Geometry of potentials V; and V; with respect to the origin

Spherical potential

Fig. 1.8 Representations of the muffin-tin potential

1.4.2 The Muffin-Tin Approximation

In Sects. 1.2 and 1.3, we have supposed the potential to be spherically symmetric.
Now we make a further approximation, we take the potential of the system as a
muffin-tin potential: in addition of being spherically symmetric at atomic sites, the
potential is constant in the interstitial region. This is sketched in Fig. 1.8.
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Fig. 1.9 Comparison
between the full potential
(top view) and the muffin-tin
approximation to the
potential (bottom view) of
SrTiO3 [24]

Figure 1.9 gives a comparison between the full potential, as calculated with an
ab initio code and the muffin-tin potential in the case of SrTiO3 [24]. We see from
this comparison that it is in the interstitial region that the approximation is the worst.
Therefore, the muffin-tin approximation will essentially be valid for close packed
systems, or for high kinetic energies (where the electron is not sensitive to the fine
details of the potential as it is essentially scattered by the core).

1.4.3 The Transition Operator of the System

We turn now to the calculation of the transition operator 7" of the system, associated
to potential V. We denote 7; the individual transition of operator corresponding to
the scattering by potential V; alone. Following (1.32), they can be expressed as

T, = Vi +

-GV . (1.62)

Here again we drop the = in order to simplify the notation. G; is the propagator
in the presence of V; only and is given by the ith individual Dyson equation
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G: = Go+ GoT;Go . (1.63)
Contrarily to the potentials, the individual 7; do not add to form the system

transition operator 7. Indeed, from the Dyson equation in the form (1.32), we can
write

T = Z T, (1.64)

with

T, = Vi+ VGV, (1.65)

which differs from (1.62) by the quantities G and V which take into account the
effect of all the atoms.

In order to obtain an additive formulation, we must therefore correct the individual
T, by the so-called distortion operator W; [25] which takes care of the corrections
due to the presence of the rest of the atoms occuring in G and V and write

T = Z T W, . (1.66)

Because W; takes into account the distortion to 7; due to all the atoms of the
system, we can expand it in terms of a sum over all the atoms j. Combining the two
sums, we have the formulation

T=> 7", (1.67)

ij

It is then straightforward to show from (1.32) that the quantity 7// must be
expressed as

= V8 + V;GV; , (1.68)
which satisfies

FiE = [797], (1.69)

as the potentials are Hermitian.
It is related to the origin-centered 7/' through

= T(R)T'T(-R)) . (1.70)

This expression is very rewarding as it gives us a direct physical interpretation for
this operator 741 Indeed, when acting on an electron state, we see that we have first
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scattering by atom i, then propagation throughout the whole system (G) and finally

scattering by atom j. In other words, 7/¢ describes all the possible ways the electron

can travel to go from i to j. For this reason, it is called the scattering path operator.

It was first introduced in nuclear physics (without being given a name) by Faddeev

[26], and later rediscovered and named in condensed matter physics by Gyorfty [27].

We can now recast our whole formalism into the scattering path operator approach.
Note that the additive operator ‘j'j defined in (1.65) can be expressed as

T=y A (1.71)

This operator allows us to derive the optical theorem satisfied by the scattering
path operator

R R = TR (1.72)

which, for i = j simplifies to

3 [FI ] = - TETE (1.73)
2k
This result makes the connection between x-ray absorption and angular-resolved
photoemission. Indeed, upon excitation of a core state |¢.) on an atom labelled 0 by
an incoming photon, multiplying (1.73) by the photon-electron excitation operator
O on the right and by its Hermitian conjugate on the left, we obtain

2 .
dk . (1.74)

k —
T [=00(+) — —
(@:10's [ V] 010 =~ [ |wiT; 0160

The left-hand side corresponds to the x-ray absorption spectroscopy (XAS)
2

cross-section while in the right-hand side, ‘(k|‘j'o_ +0|<;56)‘ is proportional to the

angular-resolved photoemission differential cross-section (also called photoelectron
diffraction when modulations of a given feature in the photoemission spectrum are
studied as a function of energy or of the exit angle). Therefore, the optical theorem
tells us that the XAS cross-section is nothing else than the integral of the photo-
electron diffraction (PED) differential cross-section over all the directions of the
outgoing photoelectron. ‘.—Ta |k) is the so-called time-reversed LEED state commonly
used to describe the final state in the photoemission process. Expression (1.74) can
be verified numerically. This is shown in Fig. 1.10 for a 23-atom MgO(001) cluster.

Note also that the full Green’s function G(r’, r; k?) can be expanded into partial
waves, like the free electron Green’s function. This expansion is [19]
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Fig.1.10 Comparison of the XAS cross-section and the cross-section of PED integrated over 2030
directions for an 23-atom MgO(001) cluster. Black line: PED series expansion up to order 5, red
line: PED matrix inversion and dashed blue line: XAS matrix inversion. The energies are expressed
in eV (Reproduced from the MsSpec user’s guide [28])

G(r',r; k) =g > [ﬁif(rj)]*ﬂiu@i(’j)
Li,Lj
+hy [@Li_(rk)] Ji,(ris) 6ij .

L;

(1.75)

Here, 7~2fi’(ri) is the regular solution of the Schrodinger equation inside the
range of potential V; that matches 7, i’ [ Je (ki) + it hg)(kri)] YL (F;) outside

the range. J Ll (r;) is the corresponding irregular solution inside V;. It matches
i% jg, (kr;)Yr, (7;). The geometry corresponding to this equation is given in Fig.1.7.
Expansion (1.75) gives an alternative way to derive Lehmann spectral representation
(1.27) to compute the Green’s function of the system.

We can now summarize the multiple scattering framework that will allow us to
solve the Schrodinger equation of the problem by

@ definition of G @ Dyson equation @ defatiion of 79°
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1.4.4 Normalization Issues

Expression (1.75) differs from the result derived originally in the seminal paper
by Faulkner and Stocks [29]. This is due to the fact that they chose a different
normalization for the spherical wave basis functions — see (1.42). In their approach
(FS), as in many other papers in the literature, they use the definition

1 .
t[s =~z sin &y el | (1.76)

with their wave functions related to ours by

RES(r) = =k Rp(r) (1.77)
TS = T (1.78)

If we make the substitution and take into account the fact that our scattering path
operator matrix elements Ti'/ 1, scale like —2k /7 times our #, and theirs like —1/k
times #,, we recover exactly their expression

Goorik = 3[R ] Al RS )

Li,L;

B . (1.79)
—Z [R[L’FS_("[<):| 15 ris) bij
L;

Note also that in certain articles, the so-called normalization to one state per
Rydberg is used. It corresponds to radial wave functions of the form [30]

Ri(r) = @ ;! [jg(kr) 4 mhg”(kr)] (1.80)

More information on normalization issues in scattering theory can be found in
[31].

1.4.5 Computing the Scattering Path Operator

Equation (1.68), although interesting from the a didactical point of view, is not very
convenient for computations. Most multiple scattering codes rely on the knowledge
of matrix elements of the individual 7;, which are one of the building blocks of
this approach. Therefore, for practical calculations, we will use the more convenient
equation of motion of the scattering path operator given by [19, 26]
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=10 + ) TiGoT (1.81a)
Py

= Tjé,-j + Z 7_“ikG0Ti . (181b)
koti

This equation of motion is particularly interesting as it provides us directly with
two practical schemes to compute the scattering path operator from the individual
T;:

1. Factorization:
‘We can consider the individual 7; as matrix elements of a T matrix and likewise
for the propagators, when expressed in the angular momentum representation.
The equation of motion can then be seen as a matrix equation which can be
factorized as

T=T'"=G) ' =TA-GD) ™' = A-TGy) 'T. (1.82)

It is always exact from the scattering point of view. However, as it involves to
fill up a matrix and invert it, its use is limited by the size of the matrix. Indeed,
for a N, x N,, matrix, the storage will scale like Ni and the computing time,
if the matrix is not sparse which is generally the case, like N>. Here, N,, =
N (Lax + 1)%, where N is the number of atoms in the cluster.

2. Iteration:
Upon the replacement of 7* by its own equation of motion in (1.81), we obtain

FI' = Ti0i; + T;GoTi + Y T;GoTiGoT + -+ (1.83)
ki, j

This is the so-called (Watson) multiple scattering series expansion [32]. It is a
perturbative expansion and therefore its validity is subject to convergence issues
[33, 34]. More specifically, it converges only if the spectral radius p(G(T) of the
kernel matrix GoT in (1.82), defined by

p(GoT) = max |Ai] , (1.84)

where )\; is the ith eigenvalue of the kernel matrix, is strictly lower than 1.
In practice, it should be restricted to higher energies (typically larger than ~
100eV) [34]. In addition, it has to be truncated at a given scattering order.

The solution to (1.82) and (1.83) only coincide if (1.83) is convergent.

A third approach, called correlation expansion [35] or n-body expansion [36], is
discussed in Chap. 8.

The multiple scattering series expansion of the scattering path operator involves
the summation over pathway terms of the form - - - T;GoT; GoT; - - - , or equivalently


http://dx.doi.org/10.1007/978-3-319-73811-6_8
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- ([TRNTT(=R))(Go) (T(ROTT (R (Go ) (TRITT (=R -+

We can group them differently as

- TR))(T) (TERHNGT R (1) (TROGT (R ) (T )(T(Ri) - ).

ik ki
G} Go

The underbraced quantities are the matrix elements of the free electron propagator
between two atoms. In electronic structure models, they are usually called KKR
structure constants as they depend only on the positions of the atoms. They are the
matrix elements of the matrix G¢ introduced in (1.82).

Expressed into the spherical wave basis defined by (1.42), and assuming that all
operators are computed at the same reduced energy k2, the only two ingredients of
our multiple scattering framework are given by [19]

2k .
(L;|ITT|L;) = -— sin &, € 6,1, (1.85)
2im?

(LT (=R;)GGILi) = ==— > ithg"(kRji) YL(R;;) G(LLIL;) . (1.86)
L

where R;; = R; — R; and the Gaunt coefficient G(L;L|L;) is defined by [37]
G(L;LILy) = / YL, (i')YL(i‘)YZ, (F) dr . (1.87)

Note that here, in order to simplify the notations, we have replaced |kL) by |L),
assuming that all states and operators correspond to the same wave number k.

Another important quantity in the multiple scattering description of spectroscopies
is the multiple scattering amplitude. It arises each time we need the amplitude of
an electron incoming on an atom, or when we want to calculate the amplitude of an
electron originating from a given atom when it reaches the detector. It is a matrix
element of the distorted transition operator T;, which represents the scattering of the
electron by atom i in the presence of all the other atoms. Using (1.59)a, (1.71) and
the fact that (k|L) = 1/k YL(I:',), we have

- - 1 .
(LilT ) = - B (), (1.88)
with the multiple scattering amplitudes B’Li (k) given by

B, =Y 7L Y o) R (1.89)
L

|L;) = T (R;)|L;) is the spherical wave state with respect to atom i.
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1.5 Expression of the Cross-Sections

1.5.1 General Expression

Let us write now V; the interaction potential underlying the physical process, so
that we keep V for the potential of the sample. V; can be for example the photon-
electron interaction or a Coulomb interaction. Under this interaction, the system
described by H = Hy 4+ V; = Hs + Hp + V;, where Hp is the Hamiltonian of the
particle and Hy that of the sample in the absence of any interaction. We denote £ the
eigenvalues of H, which are a sum of the eigenvalues of Hp and that of Hg and |®)
the corresponding eigenstates (product of one eigenstate of Hp by one eigenstate of
Hs.

Using the expression of the transition probability (1.36), and generalizing for the
case of possible multiple outgoing electrons (see Chap.9 for such an example), we
can derive the differential cross-section as [17, 39]

d'o _ 1 27
dE, d2; --- Iy h
N ——’

n terms

7" (&) - (1.90)

where I is the flux of the incoming beam and o (5 f) is the density of states of
the detected particle(s) at energy &£;. £2,, is the solid angle into which particle m is
detected (see Fig. 1.11). The T operator matrix element is given by

Ty = (Df|T;|D;) , 1.91)

where T is the transition operator corresponding to potential V;. As discussed in
Sect. 1.3.3, the transition operator for our system can be written as

T, =Vi+ViGE&E)Vy, (1.92)

where G(&;) is the full propagator. As we do not know it, we can use the Dyson
expansion (1.25) to approximate it

T = Vi+ViGo(&E)Vi+--- (1.93)

If we keep only the first term V;, we obtain the so-called Fermi’s golden rule No
2 [40]. This is the approximation usually made to compute the photoemission cross-
section. For spectroscopies such as Resonant Elastic X-ray Spectroscopy (REXS),
or spectroscopies involving two outgoing electrons detected in coincidence, such as
Auger PhotoElectron Coincidence Spectroscopy (APECS) or (e, 2e) spectroscopy
(see Chap.9), we need to go to second order which is Fermi’s golden rule No 1 [41].

The flux and the density of states for photons and electrons are given in Table 1.1
[17].


http://dx.doi.org/10.1007/978-3-319-73811-6_9
http://dx.doi.org/10.1007/978-3-319-73811-6_9
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Fig.1.11 Geometry for the expression of the cross-section in the case of a single outgoing electron

Table 1.1 Values of the flux and density of states for photons and electrons [17]

Particle Flux Density of states
h 2
Photons < v (wg)
1% 2m)3 (hc)3
1A
Electrons ——k; L ﬂk r
Vm (2m)3 h?

4V is the box normalization volume, normally taken as @2n)?

1.5.2 Cross-Section for Some Spectroscopies

We will not make any demonstration here, but just give the resulting expression. We
refer to the literature for the exact derivation of these cross-sections.

1.5.2.1 Photoelectron Diffraction (PED)

This is an angular-resolved photoemission experiment where a core level peak is
generally monitored as a function of the escape direction. In this case, the cross-
section writes, within the dipole approximation for the photon-electron interaction,

as [19]
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% Detector

Fig. 1.12 Pictorial representation of the photoelectron diffraction process

do mw [N
= Amak— L D 0D kDA @ T(Ro)lGa)| - (199)
0 me j

« s the fine structure constant, &, the polarization of the incoming photon beam
of energy Aw,, and the sums are over all the absorbing atoms 0 and the azimuthal
quantum number m,. of the core state | ¢, ). Here, we have replaced the ‘j’o_ in (1.74) by
its equivalent form as a sum over the scattering path operators. S_Zé_)T is the so-called
renormalized Mgller wave operator [19] that takes cares of the matching between
the excitation part and the multiple scattering part. (¢4 - ), is the dipole operator
with respect to atom 0 (see (1.61) for its expression in terms of the standard dipole
operator and translation operators). A pictorial representation of the photoelectron
diffraction process with the different operators involved in the description of this
process is shown in Fig. 1.12.

A workable expression is obtained by inserting the closure relation of the spherical
wave basis whenever necessary. We find [19]
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Electron gun z Detector

{

—~

Fig. 1.13 Pictorial representation of the LEED process

9 s Yot ZZ Z 0 S F v e R (1.95)

dk Ly

where M‘L)g 1, 18 the matrix element describing the excitation of the photoelectron.

1.5.2.2 Low-Energy Electron Diffraction (LEED)

The LEED cross-section is probably the simplest possible cross-section. A sketch of
the experiment together with the operators involved is given Fig. 1.13. This cross-
section is simply

d )
ij = 4t (el Y 7 k)| (1.96)
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In a spherical wave representation, it gives [17]

2
do 4t kR, 2\ —jit ikp-Ri v (]
ey DY ety (o) 7, 0 E Y ()| (1.97)
sc i,L; j,L;
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Chapter 2
Generating Phase-Shifts and Radial Integrals
for Multiple Scattering Codes

Calogero R. Natoli and Didier Sébilleau

Abstract A brief derivation of the cross section in the independent particle approxi-
mation for some of the spectroscopies treated in the MSSPEC program package is pre-
sented . We solve the related Schrodinger equation with a complex energy-dependent
effective potential in the framework of multiple scattering theory to write the cross-
section for photoemission and photoabsorption in a physically transparent way that
provides insight in their interpretation and analysis. Relativistic corrections are also
implemented. In order to be able to apply this theory to a wide variety of systems we
use a kind of all-purpose optical potential, depending only on the local density of the
system under investigation, and discuss its merits and drawbacks. A Green’s function
approach is shown to be necessary to write the photoabsorption cross section in the
case of complex potential.

2.1 Introduction

The purpose of this chapter is to provide an introductory description of the steps
necessary to interpret and analyze the most common x-ray spectroscopies, notably
core-level photoemission, photoabsorption and photon scattering. Actually the same
scattering solution of the Schrodinger equation (SE) can also be used for other
spectroscopies, like LEED (Low Energy Electron Diffraction) and EELS (Electron
Energy Loss Spectroscopy), where the incoming probe is a beam of electrons, so
that their interpretation bears a close resemblance to the photon spectroscopies and
can be described in the same terms. The unifying framework is provided by multiple
scattering theory (MST) which we use to solve the Lippmann-Schwinger equation
(LSE) associated to the SE. This derivation generalizes that given by one of us (DS)
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in Chap. 1 in terms of scattering path and projection operators, in that the local scat-
tering potentials are not spherically symmetric. We use this solution to write down the
photoemission and photoabsorption cross sections, illustrating their physical mean-
ing in the framework of MST. Having in mind that the potential in the effective SE
can be complex we reformulate the photoabsorption cross section in terms of the
Green’s function (GF) of the system. For real potential we recover the expression for
the cross section written in terms of the scattering wave function, solution of the SE,
while for complex potential this is no longer valid and we need to use the expres-
sion involving the imaginary part of the GF. In this reformulation we take advantage
of the fact that MST provides an explicit expression for the GF that is expedient
to the analysis of the photoabsorption spectroscopy. As a particular application we
illustrate how in the case of complex potential the concept of mean free path arises
in the general term of the MS series. We show how to construct, in the muffin-tin
(MT) approximation, an all-purpose eftective potential, sum of a Coulomb part and
a (complex) local density exchange-correlation part easily applicable to a wide vari-
ety of systems. Finally we describe how to introduce relativistic corrections in the
solution of the radial SE inside the MT atomic spheres to generate corresponding
atomic f-matrices and atomic cross sections, which are the main ingredients, together
with the KKR structure factors, of any MST. They serve as an input to various MS
programs like MsSpec, MXAN, GNXAS.

2.2 Derivation of the Cross-Section for Various
Spectroscopies

For the benefit of the reader, we derive here the expression of the cross-section
for various spectroscopies dealt with in the program package MsSpec [1], restricting
ourselves to those processes where the impinging and/or the detected particles are
either electrons or photons. This derivation partly overlaps and partly complements
the one given by one of us (DS) in Chap. 1. For more details the reader is referred to
[2].

The total Hamiltonian of the particle impinging on the matter system is given by
H =Hp+Hy+V, = Hy+V;, (2.1)

where Hp describes the kinetic energy of the projectile, Hy, the matter system and
V; their interaction. In terms of the eigenstates |@) of the free Hamiltonian Hj,
scattering theory [3] tells us that the transition probability per unit time between an
initial state @; with energy E; and a final state @, with energy E/ is given by

=

Wi = = [(@4IT,(E)ID0)| o(Ey) 2.2)
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where E; = E for a real interaction, o(E ) is the density of the final states (in
general determined by the detected particle) and 7;(E) is the transition operator
associated with the interaction potential V;.

The equation defining 77 is

TI(E)=VI+VIGE)V, (2.3)

where G(E) is the Green’s function of the total Hamiltonian H, given by [3]

1
G™(E) = lim ——M— . 2.4
( ) SLI})L E— H+ie ( )

Even though (2.3) is difficult to solve, its advantage lies in the fact that, when the
interaction potential V; is small (in a sense that can be rigorously defined), one can
expand 77 in series of the perturbation V;, so that to the lowest order

T"(E)~ Vv, , (2.5)
whereas to the second order
TP (E) ~ Vi + V; Go(E) V; , (2.6)
where Gy (E) is obtained from (2.4) by replacing H with H.

The cross section is obtained by dividing the transition probability per unit time
by the incoming flux of the incident particle

I, =—, 2.7)

where v is the velocity of the projectile and V the quantization volume.

2.2.1 Cross Section for Incoming Photons

In this case the interaction potential V; is given by

2
Vi = Z <%A("i) “pi + ;—m Az("i)) ) (2.8)

where, in second quantization,

h . } —iag-r~%*
A(r) = Z v [aq,@qelq’eq tal,e ””eq] : (2.9)
q.€q
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is the vector potential of the incoming radiation and p is the momentum of the
electron in the matter system, with customary meaning of the other symbols [2]. In
the following we shall omit the sum over all the electrons, since we shall work in
the independent particle approximation. How to reduce the many-body problem to
an effective one-particle problem is outside the scope of this article and the reader is
referred to [2].

2.2.1.1 Photoabsorption and Photoemission Cross Section

In the process of photoemission the incoming photon is absorbed and an electron of
the matter system is ejected into the continuum and detected along a certain direction
k. By integrating over all the emission angles one counts the number of electron
holes created, obtaining the photoabsorption cross section. We shall henceforth limit
ourselves to photoemission from atomic core states.

In both cases, since the incoming photon is absorbed, we need 7; only to first
order in V; and consider only the destruction part of the photon operator in (2.9), so
that

ph e h N ig-
" = ZZ m(eq-p)aq,@qe‘”. (2.10)
q.€q

The cross-section do/ dk for emission of an electron along the direction kis given
by

d dw,_ ¢

—p,=—=L @11
dk dk

where I, = ¢/V is the incident photon flux and dW,_, / dk is the transition proba-
bility per unit time and solid angle given by (2.2), in which o(E ;) is now the density
of free final states for an electron ejected along k at the energy Ey. This latter is
given by the Einstein relation E ; = hw, — I., where I, is the core ionization poten-
tial. Moreover, |®;) is the system initial state, the tensor product of a photon state
a;’éq |0) times a matter electronic ground state |¢7), whereas [@ ) is the product of

the photon vacuum state |0) times an electronic final state |¢I§), the time-reversed
solution of the Schrodinger equation with scattering boundary conditions at infinity
[2, 4] and plane-wave normalization.

Inserting (2.10) into (2.2) we find

ag — A ig- 2
— =4r’a o(Ep) (U 1&g - pe'TT|di)| (2.12)

dk m? w,

where o = e?/(4meghc) is the fine structure constant, a dimensionless coefficient
whose numerical value is ~1/137.
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When in the integration volume of the core state one has gr < 1, we can neglect
the spatial dispersion of the exponential factor in this expression and use the well
known relation

(Orleq - pldi) = imwg (drleq - ridi) (2.13)

since Ef — E; = hw,. This is the so called length form of the transition matrix
element [5], valid when |¢; ) are eigenstates of the same Hamiltonian. Therefore
(2.12) can be written as

do

2
d_ic=4“20‘hwq o(Ep) (7 1&g - rlen)| - (2.14)

The density of free photoelectron final states per unit energy and solid angle is
easily found to be (see Table 1.1 of Chap. 1)

d*k Vv

|4
~ = hkm . 2.15
@m? dE, dk @by " &1

o(Ef) =

It is customary to incorporate this factor into the normalization of the photoelectron
wavefunction passing from a plane wave normalization |7,ZJ’;) to a normalization to

one state per unit energy interval |¢;). Using atomic units for lengths and Rydberg

units of energy (2m/h* — 1) we have

L 1\/? _ )16

The absorption cross section is found by integrating (2.14) over all emission angles
at the same final photoelectron energy

do . N 2
Oabs (W) =fd—2dk=4ﬂ2ahwq /dk ’(¢,§|éq -r|o))| . (2.17)

2.2.1.2 Photon Scattering Cross Section

Photon scattering is a second order process in which a photon is absorbed and another
emitted. Typical processes are Thomson and resonant scattering. The transition oper-
ator should be of second order in the vector potential (2.9), so that from (2.6) we
have

T® = (}%)2 [%A "A+A pGo(EpA- p] o (:%) : (2.18)

dropping the first order term e/m A - p. The first term A - A gives rise to Thomson
scattering (a) whereby the matrix element is
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2
2 e h 1
(@fIT ) |Pi) = —

mZEOVm<

s al i R .
x I:a‘lieq,'aqféqf +aqféqfa‘1ieqi:| |®i) .

5 o )el@i—aT
<Df|(eqf -eq.)e s

The second term gives rise to resonant (b) and non resonant scattering (c), according
to whether the incoming photon is absorbed before the scattered photon is emitted
or vice-versa. The relative matrix elements are

o BB (9018) - pe710,) (aléy, - P I6)
(¢f|T1(b)|q§i):N Z ‘ E, — E, + hw, +iec
- i n q;

EEr(¢rle, 'Pei"""lcbn)(cbnléf,f Cpe T
El' —En —hwqf +ie
eN2 h 1
v ey
m/ 2e0V /g,y

(@f|T0)|®1) = N

The corresponding scattering cross section is found by dividing these matrix elements
by the incoming photon flux ¢/ V and multiplying by the photon final density of states

Vo (hwy,)?

Phhy )= —
0" (Twg ) Qe B

We find, putting Q = 9;—q;,

dO’ _ 2wqf

_ = rO
ds2 Wy,

&y &, (Dr]e7C7 |6)

m Ei — E, + hw, + ic

LS [ (brleg, - pe™ 7 16n) (G, - PO |0)
m

n

2

’

| (sl PN (nley, - pe T |g)
E,’ —E,, —hwq/ +1€

where ry = ¢?/(4megmc?) is the classical electron radius.

In passing from the many-body matter states to the one-particle we have taken
into account the Pauli principle, whereby transitions to already occupied states are
forbidden (E, > Ep, where EF is the Fermi energy). An elegant way for performing
the sum over the intermediate states in terms of the Green’s function of the system
is given in [6].
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2.2.2 Cross Section for Incoming Electrons

When the incoming probe is a beam of electrons we have different kinds of spec-
troscopies. In LEED (Low Energy Electron Diffraction), the scattering is elastic (no
energy-loss for the scattered electrons), whereas in EELS the detected electrons have
a different energy from the incoming beam. We refer the reader to Chap. 1 for LEED
and Chap. 24 for the derivation of the corresponding cross sections and discussions.
Here we briefly sketch the derivation of the cross section for EELS in a way which is
complementary to that used in Chap. 24 and is suitable for our purposes to illustrate
the calculations of transition matrix elements.
The expression for the cross section is given by ([2], p. 214, (114))

do k 2
dk=M%XW%WMMWMﬂW%m%Wh, (2.19)
f Lo

where the plus (minus) sign applies if the two electrons are in a triplet (singlet) state.
Here V. =), j 2/|r; — rj]| is the Coulomb interaction, @, and &, are the ground
state and the excited state of the system, whereas ;" is the scattering wave function
of the incident electron, and w]? is the time reversal scattering wave function of
the final (outgoing) scattered electron. If @, and &,, are Slater Determinants (SD),
then we can take @y = ¢, (the initial core hole state) and @, = ¢., where € is the
energy of the secondary excited electron given by Ecx. = Einc — Eset — I, I, being
the ionization energy of the core state. In this case we have (in Ryd units)

2
r =7

2
<@¢MWWM=/wmmwwwmt—7@mWWL (2.20)

lr —r'|

(D} Vel Pot ) a = /drdr’cbe(r)[w}(r')]* PNy (1)

for the direct and exchange matrix elements.

When the secondary (excited) electron is not observed (the usual case), one has
to sum over all the emission directions of the intermediate state ¢, so that, making
use of the spectral representation of the Green’s function for this electron, the EELS
cross section can be written as

d k
7 4 drldrzfdrﬁdr;[zpj(r;)]*v/(|r’1 — P ()) X
dkf ki .
{¢c(r/|):‘[G(r/]v r; Eexc)]¢c(rl)} X
)V (Ir = raDly (r)1*, 2.21)

where V'(jri —r)) = — Pp) V.= (U — P12)2/(lry —rz]) and Py is the
permutation of the elements 1 and 2. Similarly for the primed variables. In keeping
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with the definitions in (2.20), the permutation operator acts only on the indices of
the same type (primed or unprimed) of the GF and the final state ’(/J;. We show in
Sect.2.4.4 that in (2.21) one can apply the operator < in front of the integral.

2.3 Multiple Scattering Theory

The method for solving the Schrodinger equation both for bound and continuum
states, necessary to calculate the various spectroscopic response functions, is based
on multiple scattering theory (MST). In its essence MST is a technique for solving
a linear partial differential equation over a region of space with certain boundary
conditions. It is implemented by dividing the space into non-overlapping domains
£2; (cells), solving the differential equation separately in each of the cells and then
assembling together the partial solutions into a global solution that is continuous and
smooth across the whole region and satisfies the given boundary conditions.

After the reduction of the many-body problem to an effective one particle problem,
the calculation of the photoemission (photoabsorption) cross section requires the
solution of the effective SE

[V + E — Ver(r; E)] thie(r) =0, (2.22)

with incoming wave boundary conditions [4] (see also Sect. 1.3.5 of Chap. 1)

—ikr

Y (r) = %"+ f*(#; —k)

. (2.23)
-
Here and in the following we shall use atomic units for lengths and Rydberg units for
energies. The normalization to one state per Rydberg can be restored at the end by
using the relation (2.16). The effective potential V. (r; E) (henceforth written simply
V(r; E)) might be complex and energy dependent. For convenience we shall work
with outgoing waves and then apply the time reversal to calculate the photoemission
cross section. Neglecting spin, this amount to take the complex conjugate of the wave
function.

For the solution of (2.22) it is expedient to introduce the free GF G(T r—r
obeying the equation

[VP+E]G{(r—r)=60r—T1), (2.24)

so that (2.22) together with the complex conjugate of the boundary condition (2.23)
is equivalent to the Lippmann-Schwinger equation

Ur(r) = e*" + / Gi(r—r)YV@'s E) Yp(r) dr' . (2.25)
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Before proceeding with the solution of (2.25) we need to define the scattering
matrix of the potential V (r) in response to an incident spherical wave Jy (r; k) =
Je(kr)Yp(r), where j,(kr) is the spherical Bessel function and for short we put

L = ¢, m. In the following we shall use real spherical harmonics Y, (7).
To this purpose we remember the expansions already introduced in Chap. 1

T =dn Y iYL (0T k) = ) AL LG k)
L L
Gi(r—rsE)y=Y Juri H (r'sk) r < 7))
L

=Y L@ OH k) (> ) (2.26)
L

where I:IZL r';k)=—i hj(kr)YL ), h; (kr) being the Hankel function of the first
kind (outgoing wave behavior at great distances), following the definition of [3]
(Chap.2, (2.20) and footnote). It can also be referred as h?)(kr).

Introducing the partial wave components of v (r) through the relation

Ye(r) = (k) = Y ALR)pL(rik) (2.27)
L
we find from (2.25)
Y (r; k) = J(r; k) —l—/ Gy(r—r)YV@'s E)yr(r's k) d*r . (2.28)

Using the third of (2.26), the asymptotic behavior of ¢, (r; k) at great distances from
the scattering center is found to be

Vil = k) YA [0 Ve v a
-

= J(rik)+ Y H k) Ty (2.29)
-

putting
Top = / T D VEY oL k) & (230)

This quantity defines the amplitude of the wave function scattered into a spherical
wave of angular momentum L’ in response to an exciting partial wave of angular
momentum L. This is the generalization of (1.16) in Chap. 1 to the non-MT case and
coincides with it for radial potentials (V (r) = V (r)) except for a factor i (imaginary
unit).


http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1
http://dx.doi.org/10.1007/978-3-319-73811-6_1

44 C. R. Natoli and D. Sébilleau

In order to solve (2.25) with the method of multiple scattering, we introduce a par-
tition of the potential that follows that of the space, so that V(r; E) = ) ;U (r; E),
where v;(r; E) coincides with V (r; E) within the cell £2; and is zero outside. We
then introduce local scattering solutions

Yr(rjs k) = Jo(rj; k) +/ Gy(rj—r kv v k& (231
2

These solutions are local in the sense that they are defined only inside the bounding
sphere of cell £2;, which is centered at R so thatr; =r — R;.
Then the global solution of (2.25) can be expressed locally as

W(rjik) =Y ClLK)NL(rji k) . (2.32)
L

We now write (2.25) referred to a generic cell £2;. We find
w(r[; k) — eik-ri eik-R;
+/ Gy (ri —ri k) vir) v(r}; k) dr]
£
+Z/ Gy (ry — 1 k) v (r) @ k) &
J#

Inserting here the relation (2.32) and remembering (2.31) we obtain an equation
determining the unknown coefficients C;

ZC’ (k)JL(r,,k)—e‘k"e'kR'—i—Z/ Gy (ri—rkyv(r))
J#i

x Y CLR)L k) & (2.33)
L

We can simplify this relation by introducing the two center expansion of the free GF
G¢ (r —r'; k) whereby

Gyr—riik)=>Y_ JL(ri;k) Gl k) (j#1D). (2.34)

Lr
where GiLjL, are the KKR structure factors given by

Gl =4rY G, L L")i™"" Hf,(Rij: k) | (2.35)
I
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in terms of the Gaunt coefficients G(L, L'; L") = [ Y, (£2)Y/(£2)Y,/(§2)d$2. The
relation (2.34) is absolutely convergent only if R;; = |[R; — R ;| > r; + r}, a condi-
tion that might not be always satisfied for two contiguous cells £2; and §2;, when r;
and r; are within the bounding spheres of the respective cells. We observe however
that the relation (2.33) is valid whatever r; in cell £2; and therefore also for r; — 0.
In this limit, exploiting the fact that the coefficients C; do not depend on r ;, we can
safely use (2.34) and obtain for them the following simple equation

Cil)y=1I,(k)+Y > GY, T}, ClLb . (2.36)
j#i L'L"

where we have defined the cell T-matrix TL],L = f Jo(r's k) vi(r) L (r's k) a3
according to (2.30) and I’ (k) = 47i‘Y, (k)e*®i. Accordingly the cell partition
should only satisfy the weaker condition that R;; should be greater than the radius
of the bounding sphere of the cell £2; (or £2;).

Summarizing, we have transformed the Lippmann—-Schwinger equation into an
algebraic equation for the coefficients C; (k) where the only ingredients are the

structure factors G7,, and the cell T-matrices 7}, , obtained in terms of the local
solutions (2.31). This is the famous separation of structure and dynamics peculiar to
MST. We refer the reader to [7] for the numerical generation of these solutions and
the calculation of 7}, in the general case of non spherically symmetric potentials.

2.3.1 Expression of Cross Sections in MST

We are now in a position to express the cross sections (2.14) and (2.17) in terms of
the solution (2.32) given by MST. '
To this purpose we introduce new expansion coefficients B; (k) defined by

B (k)= "T},.Cl.k) . (2.37)
%

and new local basis functions given by

Gp(rjik) =Y [T vk (2.38)
—

so that 4
W (r) = BlU)PL(r: k) . (2.39)
L

On the basis of (2.36) the new coefficients satisfy
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D ()1 Bl (k) =Y (1= 06;) G}, Bl (k) = I} (k) , (2.40)
L jL
from which we derive the solution
i o k L no
Bl (k) = v .// — \/j ) , Ly, ik-R; ]
! (k) ZTLLIL )=/~ ZTLLI Y (k) e*Ri | (2.41)
L JjL
in terms of the inverse of the MS matrix (T~! — Gg)

T=T"'"=Gp ', (2.42)

known as scattering path operator. Notice that we have restored the normalization to
one state per Rydberg by multiplying / 2 (k) by the factor in (2.16).

The advantage of introducing the coefficients Bi (k) lies in the fact that they are
scattering amplitudes that in case of real potentials satisfy the relation

/ ai B ) [ B0 = —}T s[4 (2.43)

which is a kind of generalized optical theorem. This relation is very important, since
it establishes the connection between the angle-integrated photoemission and the
photoabsorption cross section [7].

Using (2.39), due to the localization of the inital core state at site ¢, we can write
the photoemission cross section (2.14) as

2
do
— =4r’ ahw, Y Y My LB (2.44)
dk meo. | L
where
My o1 (E) = / dred , (ro) @q - 1) DLlre; k) (2.45)
2.

In the presence of spin-orbit coupling in the initial core state one should change the
notation m.o, to jZ for a given split edge j.. Henceforth we shall neglect altogether
the sum over spin, which will make a factor of two in front of the cross section in
non magnetic systems.

In MST the quantity 77, is a scattering amplitude for propagation of the excited
photoelectron from site i to site j, starting with angular momentum L around site
i and arriving with L’ around site j. On the basis of the solution (2.41) for the
amplitude Bj (k) the expression (2.44) substantiates our intuitive representation of
the photoemission process as one in which the photoelectron is created at site ¢
with a probability amplitude given by (2.45), propagates from this site to any site
J to escape toward the detector with an angular distribution Y, (IAc) determined by
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its angular momentum L’ around site j [2]. Since this site can coincide with the
photoabsorber site ¢, both closed and open scattering paths contribute to the cross
section.

For the total absorption cross section we get

2

~d ~

Utot(wq) = /dk —(,7: 872 a ﬁwq Z/dk
dk -

= =87 o hwy Y My, (E)Y 75| My 1(E) . (2.46)

LL
me

> My, (E) B (k)
L

the second step being valid only in the case of real potentials due to the relation
(2.43). This relation indicates that now only closed paths contribute to the process,
the photoabsorber acting simultaneously as the source and the detector of the excited
photoelectron. In this way the energy modulations observed in the cross section
originate from the interference between the outgoing and the incoming photoelectron
wave at the photoabsorbing site.

2.3.2 The Green’s Function Approach to Photoabsorption:
Real Potential

The Green’s function of the effective SE (2.22) is defined as
[VP+ E = Veg(r; E)]GT(r —r'; E) =6(r — 1) . (2.47)

It is an analytic function of E in the complex plane if one assumes the analyticity of
the energy dependence of the effective potential in the whole plane.

A solution of (2.47) analytical in the upper energy plane is given by the so-called
spectral representation in terms of all the eigenstates v, (r; E) of the Schrodinger
operator (SO) at energy E,,:

Gt (r,r’; E) = lim

n Z wn(r; E) '(/)n(r ; E) ) (248)

E—E,+ic

Here the index n runs over all eigenstates, discrete and continuum, of the SO. We

shall omit henceforth the additional dependence of the state 1) on the energy E via

that of Vi (r; E), since it will not affect the following manipulations on the GF.
From (2.48) it follows that

1
S[GrriB)] = = 3 ) () E ~ E,) . (2.49)
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Remembering that

A~ 2
Tuns(wg) = 417 oty Y [(®pleg - rI@;)| S(E; — Ef + hwy)
f

we find that o5 (w,) can also be expressed as

Oior () = —8marhioy Y 3 / f<¢2[.(r>|éq PIG(r. 1 E)leg - v\ () drdr
e 2.

(2.50)
dropping again the sum over o,.
One of the advantages of MST is that one can write an explicit form of the full
GF in terms of the scattering path operator as

Gri, /i E) =Y @i (rs k)T, @] (rj k) — 6;; Y @} (r; )AL G5 k)
LL L

, (2.51)
where @i(r ji k) is the same local function as defined in (2.38) and AiL(r>; k) is
the irregular solution of the SE inside cell £2; matching smoothly to J; (r;; k) on the
bounding sphere of the cell [7]. Notice that the singular part of the GF is real if the
potential is real, so that its imaginary part is zero. In this case, by inserting this form
of the GF into (2.50) one recovers (2.46).

2.3.3 The Green’s Function Approach to Photoabsorption:
Complex Potential

A realistic treatment of photoemission process cannot leave out of consideration the
fact that the emitted photoelectron can loose its energy either by plasmon creation
and/or inelastic scattering with other electrons in its propagation throughout the
system (extrinsic processes) or via shake-up, shake-off excitations into the system
itself (intrinsic processes).

In order to treat this problem, one can start from a many-channel formulation of
the many-body process and then eliminate all the channels except the one of interest,
usually the completely relaxed channel where the photoelectron has its maximum
energy given by the Einstein relation [2]. This reduction process leads to an effec-
tive complex optical potential Vi (r; E) that describes the effect of the eliminated
channels. Except in particular cases, their effect results in a smoothing of the spec-
tral features of the main channel. A concomitant effect of the complex potential
is to give a finite mean free path to the excited photoelectron given approximately
by A = k/J[Veg]. In this way photoemission and photoabsorption become local
structural techniques.
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With a complex potential one can still use (2.44) to calculate the photoemission
spectrum. However the integrated spectrum is no longer equal to the photoabsorption
spectrum because this latter is an all inclusive measurement that counts all processes,
elastic and inelastic, whereas in photoemission one measures a particular channel
selected by the final kinetic energy of the detected photoelectron. In other words, the
first line of (2.46) is no longer valid and is not equal to the second line.

However the second line can still be used to calculate the photoabsorption cross
section in case of complex potential, if one remembers that in scattering theory with
complex potential the optical theorem relates the imaginary part of the forward scat-
tering amplitude to the sum of the elastic plus inelastic total cross sections (Chap.7
of [3]).

Reference [2] shows how to express the cross section in terms of the one-particle
GF with complex potential. The result is that we can still use (2.50) multiplied by a
modulation function |Sy(w)|? that takes into account the overlap factor between the
initial and final many-body states and describes the effect of the creation of the core
hole on the spectrum. It is usually approximated by a numerical constant of the order
0.8-0.9.

It is expedient in this case to use an alternative form of the GF (2.51) obtained by
using the relation

Grlrjik) = Jp0r k) + Y HiY(r kT,

L

valid at the bounding sphere of cell £2; (use (2.29)).
By integrating backward the SE toward the center we find, remembering (2.38),

Y buar k)T, = Ak + Y Ik T, (2.52)

L L

where lf/LJC (rj; k) is the irregular solution of the SE matching smoothly to H Srik)
at the boundary of the cell.
Inserting this relation into (2.51) we find

G@ri. v/ E) =Y @) (s KT, — 0 T A9 (r i k)
LL
+ 0 Y @Lr T W (LK) (2.53)

LL

This form of the GF makes explicit the separation between the spectral contribution
given by the environment (first term) and the photoabsorber (second term).
In fact, insertion into (2.50) gives

Uabs(wq) = Uenv(wq) + Uat(wq) (2.54)



50 C. R. Natoli and D. Sébilleau

where ;
oulwg) = —8rahu, Y3 [MLL_;LL/ TLCL,] : (2.55)

LL

defining the new atomic absorption matrix element as

My p = /f drdr/ (¢ (r)leg - r|® (ro: W, (r i k)|eg - r'|¢5 () .
2.

‘ (2.56)
and

Tenv(Wg) = —8mahwy Y S[My L (E)(TS = Tf) ML ()]
m.LL'

= —8rakw, Y 3 [MLLL(E) > (TG TI, MLL_Lr(E)j| . @57)

m.LL' n=2

The second line of this equation follows from the expansion of the scattering path
operator in series of the matrix TGy

iy o ij 00 ij
=@ =6 = [Z(TG@" T} - {Z T (G0T>"} ,

n=0 LL n=0 LL
(2.58)

which is absolutely convergent if the spectral radius (maximum eigenvalue of TGy)
p(TGy) < 1, otherwise it is only conditionally (or asymptotically) convergent [2, 8].
The expansion in (2.57) starts from n = 2 since [Gy]}7, = 0. Due to the meaning of
T (site scattering amplitude) and Gy (free intersite spherical wave propagator) the
matrix power [(TGy)"]7, defines closed multiple scattering paths beginning and
ending at the photoabsorber. Therefore, with due precautions, one can almost always
analyze the energy modulations in terms of MS paths.

Finally we want to point out that in the case of complex potential the atomic cross
section does not factor out from the environment cross section, so that the theoretical
signal to be compared with experimental energy modulations is

Oenv (Wq )

Uat(wq) .

X(wy) = (2.59)

2.3.3.1 General Term of MST with Complex Potential: The Mean
Free Path

It is instructive to see how the concept of mean free path arises in the general
term of the multiple scattering series. We discuss this point assuming for simplic-
ity the muffin-tin (MT) approximation for the cell potential. In this case we have



2 Generating Phase-Shifts and Radial Integrals ... 51

[T].. =t = e'% sind;/k where § = §; + 16, is the (complex) phase shift of the
atomic potential (we shall omit henceforth the index ¢ since not necessary to the
following argument).

The general term of MS series is given by

(TG, =Y > Gy, 4 G il .G, (2.60)

ijok LiLy..L,

Since the propagator GiLjL, is proportional to k we shall work with the dimensionless
quantity kr. We find

kt = e sind = e 2% e sing; + % [1—e2%], (2.61)
so that, assuming d, << 1 (which is usually the case),
X [kt] = |kt]> + i [1—e %)~ ki]> +16, . (2.62)

As anticipated, according to electron-atom scattering theory with complex potential
[3], 3[¢] represents the total cross section (elastic plus inelastic), while |¢] gives the
elastic cross section (no energy loss for the impinging electron).

It is therefore clear that taking the imaginary part of (2.60) will describe all
processes (elastic and inelastic) undergone by the photoelecton in the particular path,
whereas the coherent elastic process will be obtained by taking for all k¢ factors the
first term e 2% e!' sin §; of (2.61). This is the same factor as for real potential, except
for the presence of the damping factor e =%,

In order to evaluate this factor for the general MS term, we illustrate the derivation
for three sites c, i, j, since the extension of the argument to the most general case
will then be straightforward.

Remembering the approximate expression for the propagator [9]'

. . R ikR;j
Gy~ —ikYL(Rij) Yo (R;}) —— . (2.63)

where k = /E — V; = k| +1iky, V; being the interstitial potential, and omitting
the factor —i irrelevant to the argument, for three sites the damping is given by the

exponential factor with exponent

— 205 — kyRei — 265 — kaRij — 26} — kaR;e . (2.64)

'This approximation can be easily derived from the definition (2.35) by putting

i’ I:IZC/(Ri_j; k) ~ —ikeikR"f/(k Rij) YL/r(i?i_f) and closing the sum over L” by using the relation

S0 GL L'y L") Y1 (R) = YL(R) Y/ (R).
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In the WKB approximation of the phase shift we find

R;
6 = | [E—v;(r))"*dr —kR; , (2.65)
0

where R; is the MT radius of the potential at site j.
Therefore, putting Rpan = Roi + Rij + Rj,, the damping factor is given by

g2 Roun (2.66)
where
1 1/2
Ky = 3 [E —v(r)]/dr| . (2.67)
Rpalh path
The mean free path is accordingly
1
A= —, (2.68)
2/%2

consistent with the fact that e ">®m i an attenuation factor for an amplitude of
propagation.

A further simplification comes from observing that [E — vy (#)] > va(r).
Therefore

_ 1/2 _ 12 1 v2(r)
[E —v(r)] [E —vi(r)] +2—[E—v1(r)]1/2’

so that

1 v (r) 1
Ky = / ; 2dr < / vy (r)dr , (2.69)
2Rpath path [E —vi(r)]Y 2klRpath path

implying that, in atomic units,

A=, (2.70)

where v, = fpmh v2(r)dr/Rpam is the average of the complex part of the potential
over the path. The core hole half width I7,/2 can also be considered a complex
potential that should be added to v, in (2.70) to obtain the total mean free path.
Due to the presence of the damping of the photoelectronic wave, in absorption
spectra only atoms within a sphere centered on the emitter with radius equal to
the mean free path contribute to the structural signal, since only closed paths are
possible. In contrast, in photoelectron diffraction spectroscopy this radius equals
twice the mean free path, since the cross-section is proportional to the square of a
scattering amplitude with interference between different contributions (direct atomic

versus propagation processes), as clear from (2.44).
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2.4 An All-Purpose Optical Potential

Constructing an effective ad hoc potential for any system to investigate would be
time-consuming and not very practical. In order to cope in a simple way with the wide
variety of systems encountered in practical applications one makes the ansatz that the
optical potential is a functional of the density o(r) of the system under consideration.
This assumption is akin to the local density approximation made in Density Func-
tional Theory (DFT) for the exchange-correlation potential (the Coulomb part of the
potential is already a functional of the density). There is a difference, however, since
in our case the potential regards an excited state and not the ground state. Experience
has shown that the Hedin-Lundqvist exchange-correlation potential [10] for excited
states constitutes a good candidate for this kind of universal optical potential.

Moreover, partitioning the space in non overlapping space-filling domains in an
automatic way is not straightforward for arbitrary atomic locations. This difficulty
motivates the introduction of the muffin-tin (MT) approximation, whereby one draws
a sphere around each atomic position, inside which the potential v; (r;) is spherically
averaged, whereas it is approximated by a constant suitably chosen in the interstitial
region between the spheres. Empty spheres to minimize the interstitial volume can
also be drawn.

Obviously these approximations have a price. They are reasonably good for pho-
toelectron energies E greater than ~50 eV, less good at lower energies.

2.4.1 The Construction of the Muffin-Tin Potential

Given a cluster of atoms, the Coulomb potential (in Rydberg units of energy) is given
by

2Z; 010t (1)
Very=—Y —L—+2[dr , 2.71
) Z|r—Rj|+/ r—r] 70
—— ——
electron part
nuclear part

where R and Z; denote the position and the charge of the jth atomic nucleus and
oot (1) 1s the total electronic charge density of the system.

We construct the total density by superimposing spherically symmetric self-
consistent atomic charge densities that are generated by currently available atomic
programs [11]. The resulting cluster density is not self-consistent, but it is a good
approximation to it. In order to make this superposition we have to expand a spher-
ically symmetric function referred to one center j around another center i and take
only the L = 0 component. This method was proposed by Lowdin [12] and later
utilized by Mattheiss [13]. If o(r;) is the radial charge density around center j, nor-
malized such that fooo o(rj) r‘? dr; = Z;, then the component g; _o(r) of the charge
density at distance r from the center i is given by
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R+r
or=o(r) = / 0j(rjrdr; , (2.72)
[R—r|

2Rr

where R is the distance between the two centers. Therefore, the total overlapped,
spherically averaged, charge density around center i, due to all its neighbors, is given
by

R//+r
ol (1) =o' (r) + Z / | 0;(rjridr; (2.73)

2le r

where R;; is the distance between the two centers i and j and ¢’ (r) is the charge
density of the atom at site i, which would be zero if one were dealing with an empty
sphere.

Similarly, due to the linearity of the Poisson equation in the charge density, the
total Coulomb potential around center i, generated by the charge density (2.72) is
given by

Rij+r
W) = V'O + 3 / Vrsdr; | (2.74)
Rij—r|

2R r

where V;(r) is the atomic potential generated by the charge density o;(r;) of the
atom at site j:

2 r oo
Vi(r) = ;[0 rj.g(r,-)dr,-+2f o(rj)rydr; . (2.75)

In the same spirit we can calculate the constant interstitial potential V. by taking the
average of the total Coulomb potential in the interstitial region A£2. To this purpose
we define a center of the cluster as the center of all the atomic charges, draw a sphere
of radius R, of minimum volume encircling the cluster and then expanding the total
potential around this center. Then we easily find

vV 1 1 RU o Rj i
Ve=—= /AQ V(r)dr = —— /0 VO (ryridr — 2}:/0 VI(rpridr |
(2.76)

where R; is the radius of the MT sphere at site j. Similarly, the interstitial charge
density o;,,, necessary to find the interstitial exchange-correlation part, is given by

_ 1 1 R R
O = 3 | _endr= 2o /O le(mzdr—; /0 o (rpridr; |
2.77)

In order to determine the M T radii we can follow one of the two prescriptions present
in the literature: one given by Norman [14] and the other by Wille et al. [15].
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In the Norman prescription, a Norman radius of each site i is determined such
that

Norm
R i

f o (rpridr; = Z; . (2.78)
0

Then, given two nearest-neighbor sites i and j, the touching sphere MT radius is
given by
RNorm

Ri = Rij RNorm + RNorm
i J

) (2.79)

and similarly for R;, which implies that R;/R; = RN™/ RI].‘IO”“. Empirically this
prescription works for systems with covalent bonds. An overlap of about 10-15% of
these radii is also allowed.

On the other hand, in the Wille et al. prescription the choice of the MT radii
is made in such a way that the potential discontinuity at the boundary of the MT
spheres are minimized. This prescription seems to work with ionic compounds.
In any case discontinuities are always present in the MT partition of space causing
unphysical photoelectron scattering, although this effect can be minimized by varying
the interstitial potential and overlap factors. However this situation is unsatisfactory
and has been solved by Full Potential MST [7].

2.4.2 The Construction of the Exchange-Correlation
Potential

In a many-body approach, the elimination of all the channels different from the one
carrying the structural information would lead to a very complicated and unpractical
optical potential [2], since it shoud describe all processes, intrinsic and extrinsic. The
intrinsic processes are those inelastic events ensuing the sudden creation of the core-
hole, while the extrinsic processes are inelastic events excited by the photoelectron
in its propagation through the system. These latter can be described in terms of the
self-energy of the photoelectron, for which there is a whole panoply of methods
of calculations. In the framework of many-body theory, the GW approximation to
the calculation of the self-energy is the method of choice. However, even with this
restriction, a calculation adapted to each particular system is not practically viable.
In the spirit of the local density approximation one makes the assumption that
for any system the photoelectron self-energy is given by that of the homogeneous
interacting electron gas calculated at the local density of the system under study.
Therefore we can define a kind of universal exchange-correlation potential as

2(ri E) = Zy[p(r), E = Ve(r); o(r)], (2.80)
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where, as anticipated, X[ p, w; o] is the self-energy of an electron in an homogeneous
interacting electron gas with momentum p(r), energy w = E — V,.(r) and density
o0 = o(r), the local density of the actual physical system. Since E — V,(r) ~ p*(r),
neglecting the small exchange and correlation correction, we can define an exchange-
correlation potential for the photoelectron in our system as

Vexe(r: E) = Zy[p(r), p(r); o(r)] (2.81)
where the local momentum p(r) is defined as
PX(r) + Zulp(), p*(r); o)) = K> + kp(r) + Zulkp ks o(r)] . (2.82)

Here k> = E is the photoelectron kinetic energy measured from the Fermi level in
the system and k% (r) = [37%o(r)]*/? is the local Fermi energy. Usually the small
difference between the two self-energies is ignored and one takes p*(r) ~ k> +
k2.(r).

Introducing the Wigner parameter r, = [3/(4mp)]"/ 3 which measures the aver-
age inter electronic distance in an electron gas at density p, and the constant
B = [4/97]'/3 ~ 0.52, we have

1
kr = 31%0)'° = - (2.83)

Then, according to [16], the GW expression for the electron self-energy in the inter-
acting electron gas is given by

i iw's V(p/) ’ ’ ’ ’
h(p,w) = e Go(p+p,w+w)dpdw, (2.84)
2m* e(p’,w)

corresponding to the self-energy of a test electron interacting with the charge fluc-
tuations of the medium. Here

1
Go(p,w) = — , 2.85
o(p,w) P S — (2.85)
is the momentum space propagator of the test electron and
1 w
P (2.86)

== 1 + 5 A, <
e(p,w) w? — wi(p)

is the frequency and momentum dependent dielectric function of the electron gas in
the plasmon-pole approximation [16] that screens the bare Coulomb interaction . In
this last equation
2 > o [497 P
wip)=w,+€p |75+ 71| (2.87)
3ky  kp
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is the momentum dispersion of the plasmon pole, given at zero momentum by

12
ﬁr5:| 41.7 (2.88)

=4 = ——¢eV.
Wp = Ter [37r [y (aw) P2 ©

We now have all the ingredients to calculate the self-energy (2.84) and we refer
the reader to the Appendix B of [10] for an explicit calculation. Even though this
potential was initially devised by Hedin and Lundqvist to describe exchange and
correlation corrections to the Hartree potential due to the valence charge, we follow
Lee and Beni [17] to extend the validily of (2.84) to the atomic region.

By way of illustration Fig.2.1 presents the energy dependence of the real and
imaginary part of the self-energy (2.84) at ry = 2.88 au, corresponding to a density
of o =0.01 au™3. At this value the plasmon energy is wp, = 9.64¢eV and the local
Fermi energy is k2 = 6.04eV. We assume that the Fermi level in the system is
at —9.5 eV, from which the kinetic energy of the photoelectron £ and the plasmon
energy are counted. We see that the imaginary part of X, (p, p?) begins to be different
from zero for values E slightly greater then w, [10]. At the same energy value the
real part has a dip that comes from the screened exchange part of the potential
[10]. The sudden onset of the photoelectron damping and the dip in the exchange
part are rather unphysical, since the plasmon pole approximation of the dielectric
function neglects the contribution of particle-hole excitations. A way to improve on
this situation is indicated in [ 18] where a scheme on a many-pole approximation of the
dielectric function, via the loss function, is implemented. This approach eliminates
the unphysical behavior of X, (p, p?).

Figure2.1 also indicates the constant value of the Slater exchange 3akp/7m =
—6.23 eV, at a typical value of a = 0.72. We see that the exchange-correlation part
of X, (p, p?) decreases with energy as the inverse of +/E [10], in keeping with the fact
that the Pauli principle is less and less effective the higher the photoelectron kinetic
energy, due to the descreasing overlap of its wave function with the occupied states
of the system. This behaviour is born out by the observation of the EXAFS maxima,
whose position is not reproduced by a constant exchange but is well predicted by the
HL energy-dependent exchange [19].

For comparison, in Fig. 2.2 we also give X, (p, p?) atr, = 1.34 au, corresponding
to a density of o = 0.1 au™>. The Fermi level lies again at —9.5 eV. We see that the
plasmon energy is now much higher (w, = 30.49 ¢V) whereas the Slater exchange
3akp/m = —13.42 eV is much lower.

2.4.3 Generating Phase Shifts and Atomic Cross Sections

Based on Sect.2.4, the effective potential is given by Ve (r; E) = V.(r) +
Vexc(r; E). After reduction to the MT form, in each atomic (or empty) sphere we
have to solve for each partial wave £ a radial SE of the type
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HL exchange-correlation potential
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Fig. 2.1 Behavior of the real and imaginary part of the HL exchange-correlation potential at
rg = 2.88 au: Re(vhl) =real part, Im(vhl), imaginary part, (both calculated according to the formulas
of Appendix B of [10]), Re(vhl);y, real part (calculated according the interpolation scheme of [19]),
vexs = 3akr /7, constant Slater exchange with v = 0.72

2 24d L +1)
2 4z E_ -7
|:dr2 r dr + 2

—Vi(r; E)] Ri(r)=0, (2.89)

where, for brevity, we have indicated by V (r; E) the spherically averaged Vi (r; E)
inside the sphere under consideration.

In reality this is a non relativistic potential. Relativistic corrections can be intro-
duced by the method followed in [20], whereby one starts from the radial Dirac
equation with potential V (r; E) by eliminating the lower component of the wave
function g, (r) in favor of the upper component f;(r). Defining

B(r; E) = {1 +’[E-V(; E)}™, (2.90)
where again « is the fine structure constant, and putting

ue(r) 1 qu(r)
- r BY2(r;E)

Je(r) = 291

one finds that g, (r) obeys a pseudo-SE of the type
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HL exchange-correlation potential
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Fig. 2.2 Behavior of the real and imaginary part of the HL exchange-correlation potential at
rg = 1.34 au: same legend as for Fig.2.1

d2
3 1) =GB au(r) (2.92)
where
L +1) a?

Gr)y=V(@; E)+ E — T [E—-V(r; E)]

72

+ B E 1d2[V'E]+3azB'E dv-E2

? (r; E) ;mr (r; E) T (r; E) 5 (r; E)
2

+ e et Y e e s (2.93)
4 r dr

Throughout E is the photoelectron energy without its rest mass. The last term is the
spin orbit interaction such that

1
1+28-s=0+1 forj=£+§

1
=—f forj=4(-— 5 (2.94)
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where j = £ 4 s. Equation (2.92) can be solved numerically by the Numerov method
with the starting behavior at the origin, given by the indicial equation,

lim qo(r) ~ rl/2HE =20 (2.95)
r—0

where —r is the eigenvalue of 1 + 24 - s (see (2.94)) and Z is the atomic number of
the atom inside the sphere (equal to zero if empty).

Specializing (2.29) to the spherical case, we must match smoothly the solution
of the (pseudo-)SE R, () (fe(r)) to tg je(kr) — ikhZ(kr) at the MT radius R; of the
sphere so that

i [Re(r) jykr) = Ry(r) je(kr)]

—— , L , (2.96)
k' [Re(r) (h*)y(kr) — Ry(r) hy (kr)],_g.

I

where the prime indicates derivative with respect to r. Similarly for f,(r) if the
relativistic solution is used. If the spin-orbit interaction is considered, the index £ in
this equation should be replaced by j,.

Moreover, by inward integration of the radial equations (2.89) and (2.92), we can
also generate the irregular solutions R, (r) that matches smoothly to —ih;f (kr) at the
MT radius. Then the atomic cross section (2.55), using ¢, and (2.56), turns out to be
proportional to

Ry 5 r
> {/0 dr’ ¢c(r’)T("/)RL(r/)/O dr Rp(NT (r)¢.(r)+
L

R, R, ~
/ dr’ (bc(r/)T(r/)RL(r/)/ dr <Z>c(r)T(l‘)RL(r)} ) (2.97)
0 r

where T'(r) = &, - r isthe dipole transition operator, ¢.(r) = R{(r) Y. (F), R, (r) =
Ry(r) Y. (#) and R, (r) = R,(r) Y, (F), with obvious modifications if one uses the
relativistic wave functions.

2.4.4 Calculating EELS Matrix Elements

In calculating EELS matrix elements, we follow two different strategies according
to whether we calculate Coulomb matrix elements as in (2.20) corresponding to an
experiment of the type (e — 2e), where both electrons in the final state are analyzed,
or we are interested in an all-inclusive experiment (e — ¢), in which case we have
to calculate an expression like the one in (2.21).

In the first case, in order to calculate the integrals in (2.20) we need to use an
expansion formula for the Coulomb interaction. Without loss of generality we intro-
duce a damped Coulomb interaction so that



2 Generating Phase-Shifts and Radial Integrals ... 61

2exp (—klr —r'|)

- —8mZ IL(r )KL (r-) (=D (2.98)

which reduces to the usual Coulomb interaction for k — 0. Here
Ip(r) = ig(kr)YL(F); Kp(r) = ke(kr)YL(F) , (2.99)

where i¢(xr) and k,(xr) are modified spherical Bessel and Hankel functions (the
analytical continuation of the usual functions j,(kr) and h,(kr) with k = ix). This
relation is the analytical continuation to complex k of the same expression given in
(2.26). The damping constant  describes the screening of the Coulomb interaction
of the incoming electron by the other electrons in the system. In a metal the electron
screening gives rise to a Coulomb interaction of the Yukawa type, like in (2.98), with
k= (12/m)'3 (r,)~"?au" in the Thomas-Fermi approximation. For semiconduc-
tors one can define a sort of Thomas-Fermi spatial dielectric screening £(r) that gives
rise to a screened Coulomb interaction of the type V, = —2/(r £(r)) (see [21] and
references therein) and approximate £(r) as a constant. In both cases one can use the
expansion (2.99).

The analytical continuation of the usual spherical wave propagator with positive
k given by (2.35) leads to the following two site expansion

exp (—klr —r'|) y
P |r_rr| = _KZ]L("I')GL]L/IL/(";‘) s (2100)
L

where the factor of 47(—1)* is incorporated in the definition of G/ 1o~ Therefore an

integral of the type
/ drap 20T (2.101)
lr —r'|

where the functions o(r) and o' (r’) are represented locally, as in multiple scattering
theory, can be written as

/d dr ,g(r)g (I‘) ZZ/ drz Q(r )IL(rz)GLL’/ drIQ(r])IL(r )

i#j LL'
+ZZf 'dng(r;){KL(r,-)/'dr; o)L
i L0 0
R
+ IL("[)/ dr; g’(r})KL(r;)} , (2.102)

where §2; ; denote the various cells (MT spheres) in which the space has been parti-
tioned.
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Now from (2.20) we see that for the direct integral o(r) should be identified with
G (r)oe(r) and o(r’) with 1/);“ (r’)i/J; (r"), while for the exchange integral o(r) should
be identified with ¢ (r)¢.(r) and o(r') with ¢ (r")y;" (r'). From MST we know that
at site i

U (i) =Y By (k) Re(r) YL (i)
L

Uy ) =) [BLlkp] RG)YL(F) (2.103)

L

so that at site i we can write in general

or) = ean(r)G(A, A A w0 () (2.104)

AN A

where G(L, L', L") is the usual Gaunt coefficient. Inserting this expression and the
corresponding one for o(r’) into (2.102), one can perform the angular integrals with
the aid of the Gaunt coefficients and be left only with the radial integrals, which are
calculated in the subroutine radialx_eels of the program phagen_scf.f. Notice also
that whenever ¢.(r) appears, the integral should be limited only to the cell (sphere)
of the photoabsorber.

The calculation of (2.21) proceeds along the following lines. Applying the per-
mutation operator we get four terms, a direct term, two mixed terms and a full
exchange term, according to whether no permutation, only one or both are applied
to the respective variables.

We consider first the direct term (no permutation) in (2.21). In order to make the
expression of the cross section in (2.21) resemble the usual one for electric absorption
we define the effective transition operator

Ta(ry) = /dr2¢i+(r2)vc(|rl —r2DlYy (r)]", (2.105)

so that the EELS cross section can be written as the imaginary part of

/ [ dr1drF b DT EDT G,y 11s B Ta(r)de(r1) - (2.106)

We now specialize the expression of the Green’s function (2.53) to the MT case
(as in (2.97)), whereby

G(ri,1’; Eexe) = Z RL(ri)[TijL/ - fé5LL’5i_j]RL/(r})(1 —0ij)

LL

+ i ZRL(rf)fe R.(r]). (2.107)
L
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We see that the regular part leads to radial matrix elements of the type already

introduced in (2.102), whereas the irregular part gives rise to an expression of the
type

> / / drdr’ ¢.(r)[Ta()T* [RL(NRL(HOG — 1)
L
+RL(FRL(IOG — )] Ta(r) g (r) (2.108)
which lead to the same integral of (2.97), where now the transition operator 7, (r)

is given by (2.105). Remembering the expansion (2.98) and putting for short o(r) =
ot (M[Y} (r]* we can write this transition operator as

Ry
Ty(r) = =87k Y (—=1)' {IL(r)/ dr’ K. (r')o(r)
L r

—i—KL(r)/ dr’ IL(r’)Q(r’)} . (2.109)
0

Considering the full exchange term, i.e. permuting both primed and unprimed
variables, we get

do,

k ’ ’ INT* / / — !
~¢ = 4%y {/drldrzfdrldr2 [vi ()] Vel — DY (r)
dkf ki
¢c(r/1)G(r,2» 725 Eexc)Pe(ri)

*
YT (r) Ve(lry — ) [d)}(h)] } . (2.110)
Introducing the exchange transition operator

1y = [ drigurovian - rab [u;00] @.111)

we can write (2.110) as

—S{//dndri [ @] [Te<r1>]*G<r1,r1;Eexc)TArl)wf(rl)} @112

Similarly, when operating only on the primed variables, we get the mixed term

// dridr, [6F D] [LOD] Grhrt: Ead TaGrdelr) . (2.113)

whereas, by operating only on the unprimed variables, we get the other mixed term
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/ / dridr} 6.0) [Tar D] G ris Eax) Tolr ) 1) - 2.114)

In the expression of the total cross section, the direct and full exchange term come
with a positive sign, whereas the mixed terms come with a negative sign. These latter
should be considered together before taking the imaginary part. For what concerns
the singular part of the GF, these last three expressions can be easily calculated on
the basis of (2.97) and (2.109), mutatis mutandis. The regular part does not pose
particular problems.

All EELS integrals in the program for the regular and irregular part of the Green’s
function are calculated following the formulas presented in this section.

It remains to show that in (2.21) one can apply the operator J in front of the
integral. To this purpose we note that the scattering part of the GF in (2.107) is
invariant under interchange of r and r’, provided real spherical harmonics are used,
since in this case the scattering path operator 7 and the site 7-matrix are symmetric
in the site and angular momentum indices. This is also true for the singular part, as
apparent from the expression in square brakets in (2.108). Moreover we note that all
the various terms in the EELS cross section can be written as

{f/ drdr] [A(r’l)]*?s[G(r/l,rl;Eexc)]A(rl)} , (2.115)

provided the two mixed exchange terms are lamped together.

By interchanging the integration coordinates in the integrand and taking into
account the invariance property of the GF under this operation, we find that this
expression is equal to its complex conjugate

{// dridr}] AFDS[G(r). r1; Eexe) | [A(rl)]*} ) (2.116)

We can therefore move the J sign in front of the integral.
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Chapter 3
Real Space Full Potential Multiple
Scattering Theory

Keisuke Hatada and Calogero R. Natoli

Abstract We show how to implement a Full Potential Multiple Scattering (FPMS)
code based on a real-space FPMS theory valid for both continuum and bound states,
under conditions for space partitioning that are less restrictive than those applied
so far. This theory is free from the need to expand cell shape functions in spher-
ical harmonics or to use rectangular matrices. Tests of the program show that it
is able to reproduce with very good accuracy known solutions of the Schrodinger
equation. Applications to the spectroscopy of low dimensional systems, such as one-
dimensional (1D) chain like systems, 2D layered systems and 3D diamond structure
systems, where the Muffin-Tin approximation is known to give very poor results,
show a remarkable improvement toward the agreement with experiments. The default
mode of the code uses superimposed atomic charge densities, which works satisfac-
torily in most of the applications, but with help of the ES2MS interface, incorporated
in the program, one can also use self-consistent charge densities derived from the
VASP program. The program is also incorporated in the photoelectron diffraction
code MSSPEC and parallelized for energy point.

3.1 Introduction

Multiple Scattering (MS) theory is and has been one of the techniques of election
for solving the Schrodinger Equation (SE) due to its suggestive description of the
electronic structure of solids and spectroscopic response functions, which appeals
to our physical intuition. For its implementation, one partitions the space into non-
overlapping domains (cells), solves the differential equation separately in each of
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the cells and then assembles together the partial solutions into a global solution that
is continuous and smooth across the whole space and satisfies the given boundary
conditions. The theory was proposed originally by Korringa and by Kohn and Ros-
toker (KKR) as a viable method for calculating the electronic structure of solids [1,
2] and was later extended to the calculation of bound states of polyatomic molecules
by Slater and Johnson [3] and continuum states by Dill and Dehmer [4].

A characteristic feature of the method is the complete separation between the
dynamical aspect of the system under consideration, represented by the cell scattering
power, from the structural aspect of the problem, that reflects the geometrical position
of the atoms in space. Another advantage of the theory is that one can write an explicit
form of the Green’s function (GF) (the solution of the SE with a delta-like source
term) which is essential for the description of many properties of the systems under
investigation.

For ease of computation, traditionally the KKR method has been implemented
within the so-called muffin-tin (MT) approximation, in which the potential is spher-
ically averaged inside non overlapping spheres (usually containing a physical atom)
and takes a constant value in the interstitial region. However it is known that this
approximation is only good for closed-packed and works poorly for covalently
bonded and low dimensional systems, like surfaces, sparse (and/or) layered systems
and diamond like structures [5—8]. Moreover, the introduction of empty spheres to
reduce the interstitial volume does not mitigate the problem [9]. Although in some
cases this introduction improves the calculations for X-ray Absorption Fine Struc-
ture (XAFS) and density of states (DOS) in bulk systems, where an angle-integrated
feature is probed, it still generates spurious peaks in angle resolved low-energy photo-
electron diffraction spectra, due to the unphysical diffraction caused by the potential
discontinuities between the physical and artificial scatterers.

Due to poor performance of the MT approximation, both for bound and continuum
states, investigations to overcome this approach started quite early. In their pioneering
work [10] Williams and van Morgan reformulated the MS theory for arbitrary local
potentials by partitioning the space with space filling truncated cells and applied
with success the method to a model of crystalline silicon for which exact numerical
solutions were available. The introduction of empty cells (EC) was found necessary
for the diamond type lattice of silicon in order to represent adequately the potential in
regions of substantial anisotropy and to satisfy some geometrical constraint imposed
by the re-expansion of the free GF around two sites.

They showed that the practical implementation of the method did not imply large
increases in computation with respect to the MT approach. The only point of differ-
ence was the calculation of the single site scattering power (77, matrix, no more
diagonal in the angular momentum indexes), for which they developed the vari-
able phase method to solve the SE for the truncated cell potential. However the
implications of the truncation of the angular momentum expansion necessary in the
numerical implementation of the method, posing convergence problems, were not
analyzed and remained unanswered.

Many features of the full potential MS (FPMS) theory have limited its applications.
The need to expand the truncated potential (or, equivalently, the cell shape function)
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in spherical harmonics (SH) (giving rise to the well known Gibbs phenomenon, like in
Fourier expansion), the need to converge internal sums arising from the re-expansion
of the free GF around two sites, entailing the use of rectangular matrices, the geo-
metrical restrictions on the space partitioning cells induced by this re-expansion, the
solution of a fairly complicated system of coupled differential equations to determine
the local (cell) solutions, based on the phase function method, the question of the
angular momentum convergence of the whole theory have all contributed to the slow
progress of the theory. In the few cases in which the FPMS theory has been applied,
the general attitude has been the empirical approach used in [10, 11]. The reader is
referred to the book of Gonis and Butler [12] (and references therein) for a discussion
on these points.

In [7] we have presented a derivation of a real-space FPMS theory, valid both
for continuum and bound states, that is free from the drawbacks described above
(in particular the need to expand cell shape functions in SH and the introduction
of rectangular matrices) under conditions for space partitioning that are less restric-
tive than those previously applied. This approach eliminates the inconveniences of
multiple scattering theory formulated in the muffin-tin approximation (MTA), while
preserving its ease and simplicity of application. We have implemented the FPMS
code based on this theory.

3.2 Multiple Scattering Theory

As anticipated in the introduction, MS theory is a method for solving the SE with an
effective (optionally complex for scattering states) potential V (r)

[V2+E V)] =0, (3.1)

with incoming wave boundary conditions [13] in the case of photoemission (emission
of an electron of wave-vector k into a continuum state) or photoabsorption (obtained
by integrating over all photoemission angles). When dealing with bound states one
instead imposes the usual boundary condition that lim,_, o, ¥ (r) = 0, dropping the
unnecessary index k. We use throughout Rydberg units for energies and atomic units
for lengths.

Through the introduction of the free GF G| (r — r’) obeying the equation

[V’+E|Gir—r)=06(r—1), (3.2)

one can transform the differential equation with boundary conditions into an integral
problem known as the Lippmann—Schwinger equation (LSE)

Yr(r) = e*" + f Ger—r)Y V) v &, (3.3)
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Fig. 3.1 Partition of space in non overlapping cells compared with a MT partition

where the inhomogeneous term e'*” is set to zero when dealing with bound states,
in which case k = i4/| E| in the analytical continuation of G(J{ .

In Chap. 2 of this book a method of solution of this equation in the framework of
MS theory has been given. We present here an alternative method that will allow us
to highlight some additional features of MS equations.

In order to solve (3.3), one introduces a partition of the space into non overlapping
domains £2;, called cells, and at the same time defines a partition of the potential that
follows that of the space, so that V.(r) = I (r), where v; (r) coincides with V (r)
within the cell £2; and is zero outside. We make the assumption that the potential is
short-ranged, in the sense that it behaves as 1/7>¢ with positive ¢ at great distances.
We also assume that a finite neighborhood around the origin of each cell lies in the
domain of the cell. Figure 3.1 illustrates the partition of space in the case of a five
atoms in tetrahedral coordination compared with a MT partition. The cells are BCC
Voronoi polyhedra. Empty cells (EC) are introduced in order to cover the regions of
space in which the potential is not negligible.

We start from the following identity involving surface integrals

N
Z /S [G§(r =)V () — e FYVG (r — )] - mj do
j=1 7%

= / [Gy(r — XV — k(e YVGi (r — )] - n,do, . (34)

o

valid for all r lying in the neighborhood of the origin of each cell. Here 2, = 52,
with surface S,. We choose the number of cells N in such a way as to cover the region
of space beyond which the potential reaches its asymptotic behavior.

To proceed further, we remember the following expansion of the GF
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Gy(r—r;E)= ZJL(r; k)I:I;(r’; k) (r <7
L

=Y I OH (rik) (r > 1) (3.5)
L

where J;F(r'; k) = jo(kr) YL (F), I:IZ'(r’; k) = —ih} (kr)YL(F), je(kr) and b} (kr)
being respectively the Bessel and Hankel function of the first kind (outgoing wave
behavior at great distances), following the definition of [14] (Chap.2, (2.20) and
footnote).

We now introduce the functions @, (r) which are local solutions of the SE behav-
ing as Ji in the limit r — 0. They form a complete set of basis functions such that
the global scattering wave function can be expanded inside the cell region as [15]

i) =Y ALR)PL(r) =) ALORLL()YL(F) . (3.6)
L

LL

Using the expansions (3.5) referred to the origin of cell i located at R;, so that
Gi(ri—r)) =Y, Ju(ric)H/ (r;-),takingr; = r — R, near the origin, we readily
arrive at the MST compatibility equations for the amplitudes A’ (k) in cell i:

Z HY AL (k) = Yo (k)e* Ri (kym)'? = I (k) (3.7)
JL
where
HY, = / [H (roV&p(r;) — &p(r)VH (r)]-n;do; . (3.8)
Sj

The term / i (k) =i'Y, (k) e”"R"“\/g comes from the surface integral over S, in the

rhs of (3.4), taking into account the asymptotic form of ¢ (r’) in this region when
normalized to one state per Rydberg (we refer for details to the Appendix A of [16]).

The usual derivation of the MS equations now proceeds by re-expanding H, L)
around cell j in order to calculate the surface integrals over the various surfaces S,
when j # i, using the relation

Hfr) =Y G Ju@r) (Ry>r). (3.9)
—

where G, are the usual free electron propagator in the site and angular momentum
basis (KKR real space structure factors) and R;; = |R; — R|. Unfortunately this re-
expansion introduces a further expansion parameter L’ into the theory (with related
convergence problems) that is actually unnecessary, as we are going to show.
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In fact, provided R;; > r;, one can show that the re-expansion (3.9) is absolutely
and uniformly convergent in the angular domain [7]. In order to take advantage of this
property, we impose the restriction that the partition of the space in cells satisfies the
requirement that the shortest inter-cell vector R;; joining the origins of the nearest-
neighbor cells i and j, is larger than any intracell vector r; or r;, when r is inside
cell i or j. If necessary, empty cells can be introduced to satisfy this requirement.

We observe now that the integrals over the surfaces of the various cells j can be
calculated over the surfaces of the corresponding bounding spheres (with radius R;)
by application of the Green’s theorem, since the potential is taken to be zero outside
the domain of the cell. Due to the uniform convergence of the re-expansion (3.9) we
obtain the following relations by integrating term by term

/ Yo ) A () doy = (RIY G, jo (kR))
S

- o
/YLr(rj)VjHZ'(ri).ndej:(Ré)ZGZL/W[]Z/(kRZ))], (3.10)
s Y

which are exact for all L, L', as confirmed also by numerical tests. By inserting in
(3.7) the expression for the basis functions expanded in spherical harmonics @ (r) =
> 1 Ry (r)YL (), we finally obtain

J#i
D ELL ALK = Y GLSL AL =11, (3.11)
—

i
where, defining W[ f, gl = f¢' — gf/,
E = R,f W[_ikhz, Riil; Sy = Ri Wlje, Ree] (3.12)

which reduce to diagonal matrices for MT potentials, since in this case Ry (r) =
Ry (r)dr . Equation (3.11) looks formally similar to the usual MSE. However we
notice that the sum over L” runs over the angular momentum components of the basis
functions and is not affected by convergence constraints related to the re-expansion
(3.9). Therefore the only angular momentum indexes appearing in (3.11) are those
of the radial functions Ry ;- in the expansion (3.6).

We now note that the truncation value for both indexes is the same and corresponds
to the classical relation £, = kR, where Ré is the radius of the bounding sphere
of the cell at site j. This is true for the index L, which is a reminder that the basis
function @; behaves like jo(kr)Y, near the origin. Due to the properties of the
spherical Bessel functions, when £ > kRg, @ becomes very small inside the cell,
decreasing like [(2¢ 4+ 1)!!]~!. Therefore its weight in the expansion (3.6) will be
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negligible. The other index L', as will be clear from the following (3.17), measures the
response of the potential inside the cell to an incident wave J;, of angular momentum
L into an outgoing wave of angular momentum L’. Due to the same argument as
above, familiar to scattering theory, the scattering matrix 7/, will decrease like
[(2¢ + DN2E + DN]! (see Appendix B of [7] for £, €' > kR}]). As a consequence
E’ and S/ can be considered to be square matrices.

To proceed further, we introduce new expansion coefficients defined by

Cilo) =Y Ej A} k), (3.13)
Iz
implying that we use new basis functions given by

W(ri) =Y (Bl @u(r) (3.14)
L/

so that A
D CLU WL =) AL()PL(r) . (3.15)
L L

Then (3.11) can be rewritten as

Cily=1j(ky+Y > G, T}, Cl., (3.16)
j#i L'L
putting
T, =" Sl B, (3.17)
%

The comparison of (3.16) with (2.36) of Chap. 2 shows that ¥ (r;) is alocal scattering
function, so that the cell 7 -matrix is given by the relation (3.17) in terms of the local
solutions

@L(r) =) Rur(Yu () . (3.18)

L

A more direct way to derive (3.17) is to remember the definition of the cell T-
matrix 7}, as the scattering amplitude into an outgoing spherical wave of angular
momentum L’ in response to an exciting spherical wave of angular momentum L.
This can be expressed in terms of the local scattering wave function ¥y (r ;) obeying
the LSE (3.3) for one cell j. Omitting for simplicity the index j in r ;, we have

W (r) = Jo(r: k) +/ GHir—ryv;r)w ()&, (3.19)
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where Jy (r; k) is the spherical wave component of angular momentum L of the
incident plane wave e*" = 47 ", 'Y, (k)J.(r; k). Then using (3.5) in the limit
r — 00, we obtain the relation

WL(r) = Ju(rik) + Y HY(r k)T, (3.20)
L/

putting TLJ,L = [Ju(r' k) v;(r)WL(r's k) d®r’. From this expression, using (3.14)
and transforming the volume integral into a surface integral by application of Green’s
theorem, we derive (3.17).

Summarizing, in order to generate a solution of the LSE, we need to calculate the
local solutions @ (r) and solve (3.16) for the coefficients C i

3.2.1 The Local Solutions

One of the key ingredients of our approach to FPMS [7] is the new scheme to generate
local basis functions for the truncated potential. Starting from the SE written in
polar coordinates, after elimination of the radial first derivative, the local solution
Pr(r) =r @, (r) satisfies the equation

d? 1.
— +E—-V@,F)| PL(r,F) = —LZPL(V, r), 3.21)
er r2

where L2 is the angular momentum operator, whose action on Py (r, F) can be cal-
culated in terms of the expansion @, (r) = >_,, Ry (r) Y (F) as:

L2PL(r =y € + DrRup (Y () (3.22)

L

and we have called V (r, 7) the truncated cell potential, which coincides with the true
potential inside the cell and is zero outside. We remind that the index L of Py (r) is
reminiscent of its behaviour at the origin: lim, .o Pr(r) ~ Jr(r). Its expansion in SH
does not pose convergence problems, since it is continuous with its first derivative;
however we do not expand the potential, but we use an extension of the Numerov’s
method to solve it. In fact (3.21) in the variable r looks like a second order radial
equation with an inhomogeneous term. Accordingly, putting fle = Py (r;, F;) and
dropping for simplicity the index L, the associated three point recursion relation in
Numerov approach is

6

240

£ (3.23)

iJj

A1 fiviy — Bijfij + A ficj = 9ij
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where,

2
—; ;
12 LJ

2

S5h
Bi,j =2+ ?vi,j =12 - 10Al‘,]‘

A,j:]—

Vij = V(I"i, f‘/) — F

h2
9ij = 7 14i+1.5 + 1061 + gi-1,;]

! D U+ DriRuL ()Y () (3.24)
ii = 5 ri DAL \ri) . .
4qi,j ’"iz - L'L L (¥

Here i is the index of the radial mesh points and j the index of the angular points
on a Lebedev surface grid [17]. Accordingly, r; Ryp (r;) = Zj wjPp(ri, 7)Y (F)),
where w; is the weight function for angular integration associated with the chosen
grid. The number of surface points Niep iS given by Niep ~ (2€max + 1)2/3 as a
function of the maximum angular momentum used [18], taking into account that one
has to integrate the product of two spherical harmonics.

As it is, we cannot use (3.23) to find f;y; ; by iteration, from the knowledge of
fi,j and f;_; ; at all the angular points, since the inhomogeneous term g, is not
expressible in terms of f;y; ; due to the last line of (3.24), calculated at the radial
mesh point i + 1.

In order to eliminate this point from the expression of g; ;, we observe that

h2
9.0 =15 [gi+1.; +10g; + gi—1.;]
B [ qis1j —24qi + qi—1j 5
= — : “hT+12¢q; | - 3.25
12[ = +12g;, (3.25)
The second order central difference is given by [19]
ht Ko ht
iv1 — 2q; i =hg + —q¢'+ —qg + ——qgVT ... (326
Gt =2 T4 =it 3g09 t o1e0® T G20
so that
h2 ” hz i 2
9.0~ 13 |:<q,»,j + ECI,3> h”+ 12615,,} ) (3.27)

omitting errors of order 4° and higher.
Now for the second derivative q[” ; weuse the backward formula [19]

2

" Th iv
+ hqi’,j - ﬁqi,.i , (3.28)

qi,j —2qi-1,j +qi—2,
2

"
4ij =
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to avoid the contribution of the point i 4 1. Inserting (3.28) into (3.27)

h2 5 6

,\,_[13_2 S+ g A]+h_’”_h_iv (3.29)
Yi,j 12 qi,j qi—1,j qi-2,j 12%,]‘ 24‘11',]' ) .

which is the formula we wanted to arrive at. Therefore our modified Numerov pro-
cedure becomes:

Aiv1jfivry — BijfijtAi1fi-rj = gij+ %q,"’, , (3.30)
where,
2
A j=1- Evi’j
B, =2+¥v,,,- = 12— 104,
2
9ii =15 [13gi.; — 2gi-1.; + gi—2.;] (3.31)

which now needs three backward points to start.

The appearance of the third r derivative of ¢/” in (3.30), which is strictly infinite
at the step point, does not cause practical problems. Although not necessary, one can
always assume a smoothing of the potential at the cell boundary a la Becke [20],
reducing at the same time the mesh /, so that the error at that particular step point is
negligible.

In this way, at the cost of a larger error O (h°) compared to the original Numerov
formula and the introduction of a further backward point (three points i, i — 1 and
i — 2 are now involved in (3.31)), the three-dimensional discretized equation can be
solved along the radial direction for all angles in an onion-like way, provided the
expansion (3.22) is performed at each new radial mesh point to calculate g; ;. We
use a log-linear mesh p = ar + B lnr, to reduce numerical errors around the origin
and the bounding sphere [21]. In reality, in the program we divide the radial mesh
into two regions, the first one ranging from the origin to the radius of the sphere
inscribed in the cell (usually the MT radius), the second one from this radius to the
bounding radius of the cell. The above method is used only in this second region,
which crosses the discontinuities of the truncated potential, whereas in the first region
one can safely expand the potential in spherical harmonics, due to the continuity of
its first derivatives and the fact that only few multipoles are appreciable. Here we
can project (3.21) onto Y, (#) obtaining

dr2 r2

d? L +1
) [<_ et E) Srir+ Vi (r)} Xpw(r) | (332)
—
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Fig. 3.2 Comparison between the real part of the analytical solution of the truncated potential well
described in the text with the one generated by the 3D Numerov method at four different polar
angles

where X, ;/(r) = r Ry 1(r). This equation is then solved by the matrix Numerov
method with a Gaussian elimination procedure. We refer for details to [7]. This
method of generating Py (r) is simple, fast, efficient, valid for any shape of the cell
and reduces to the minimum the number of SH in the expansion of the scattering
wavefunction. The cell T-matrix is then calculated according to (3.17).

We have checked that the method works by comparing with known solutions of the
SE [7]. As a further example, Fig. 3.2 shows the comparison between the analytical
and the numerical solution for certain directions in the special case of the truncated
potential V(x, v, z) = a0(|x| — R.) + b0(]y| — R.) + ¢ 0(|z| — R.), where 6 is the
step function, R, = 3.78au = 2.0Aanda = —0.05, b = —0.1, ¢ = —0.15Ryd, for
an energy E = 0.3 Ryd (for the solution see [22]). For this comparison we used an
£max = 7 and a number of surface points on the Lebedev grid equal to 266. For other
comparisons we refer the reader to [7].

Summarizing, contrary to past approaches, we have avoided the double series
expansion of the free GF around two centers, so that the angular momentum indexes
L L' are the same as those of the T -matrix TL] 1, and originate from the function Rz (r)
in (3.6). As a consequence, the MS matrix (I — G¢T) can be considered as square
and we show in the following section that in the £ — oo its inverse exists, providing
a firm ground for the use of FPMS theory as a viable method for electronic structure
calculations and spectroscopic response functions, with the ease and versatility of
the corresponding MT theory. The truncation parameter in the SH expansion is given
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by the classical relation ¢,,,, = kR;, where k is the electron wavevector and R}, is
the radius of the bounding sphere of the scattering cell.

We refer to [7] for details on how to use an outer sphere region in order to avoid
introducing too many empty cells to cover the region of space where the asymptotic
behavior of the scattering wave function is not yet reached or to use a constant
potential (instead of zero) outside the cell in order to accelerate the L-convergence.
The final result obviously does not depend on this constant.

3.2.2 The L-Convergence of Full Potential Multiple
Scattering Theory

The inversion of the MS matrix in (3.16) is usually done by series expansion, whereby

I—GoT)™' =) (GyT)" . (3.33)

Due to the meaning of the matrix [GiLjL,], describing a free particle propagation of

spherical waves from site i to site j, and of 7} ,,6;;, giving the scattering amplitude
of the potential at site i, a photoemission process is usually seen as a propagation of
the excited photoelectron from site to site, intercalated by scattering events due the
atomic potentials. Hence the name of the theory.

However, while this series is absolutely convergent for nonoverlapping MT
spheres, provided the spectral radius of the matrix G¢T (i.e. the modulus of its highest
eigenvalue) is less than one [23], it is known to diverge for the case of space-filling

cells due to the asymptotic relation (see Appendix B of [7])

2R 20+1
b) : (3.34)

GuTwl ~ Ry | —
|G eTyel b<Rij

since in this case 2R, > R;;, at least for nearest neighbors.

Due to this asymptotic behavior there is a widespread belief that in the case of
space-filling cells the limiting procedure of inverting exactly an ¢ truncated MS
matrix does not converge for £ — co. We want to show here that this is not the case,
provided a slight modification of the free propagator G is adopted.

To this purpose, let us start by solving the LSE (3.3) using the theory of integral
equations, before applying the method of MST. We cannot apply Fredholm theory
[24] to the solution of (3.3) as it stands, since the kernel for this integral equation

1 eik-|r’—r\

K r) = ——
) =

Vi(r), (3.35)
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is such that

Tr(K'K) = // drdr’ K*(r', ) K, r)

1) V2
_(L / / drdr’ O (336)
4r r' —r|?
and obviously diverges.

However, following the expedient of Sect. 10.3, p. 280 of [25], we can multiply
the LSE (3.3) by |V (#")|'/2, writing at the same time V (r) = |V (r)|v(r), where
v(r) is a sign factor, equal to +1 where the potential is positive and to —1 where it
is negative. Then the modified equation reads

V(' k) = V)2 k)
— |V(r/)| 1/2 eik-r’

+|V<r’>|‘/2/G(T(r’—r;lo|V(r>|“2v(r)ws<r;k>d3r. (3.37)

whose kernel is

eik-\r’—rl

1
K (r',r)=—— |V()'? ——
47

T V)", (3.38)

Consequently

Tr(K/K,) = // drdr' K (r', r)K,(r', r)
2 ’

(L) [ arar Ve
4 lr' —r|?

2 ’

< (L) / / drap Y OUVEDL (3.39)

47 |r —rl?

is finite for a large class of potentials (including the molecular ones). The kernel K;
is therefore of the Hilbert—Schmidt type and Fredholm theory for L,-kernels can
be applied. We can then obtain the solution of (3.3) simply by dividing v, (r'; k)
by |V (r')|'/?, except at points for which |V (r)|'/> = 0, where it can be defined by
continuity.

Now, the application of MST to the LSE of (3.19) for the scattering wave functions
Y, (r) transforms this equation into the infinite set of algebraic equations (3.16) for
the coefficients Cy (k), which in matrix form can be written as

I-K)C=A. (3.40)

putting K = GT and calling A the vector /] (k).
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The matrix K here is not an operator of the Hilbert—Schmidt type, since Tr (K'K)
diverges, due to (3.34) and in keeping with (3.36). However, following the procedure
used above in passing from (3.3) to (3.37), we multiply both sides of (3.40) by T'/2
obtaining the new equation

I-K)C =A", (3.41)

where C’ = T'/2C, A’ = T'/?A and
K, = T'?2G,T"? . (3.42)

In order to calculate the square root of the matrix T, we first find a similarity
transformation S such that A = STS™! is diagonal. Then we put T'/2 = S~'A!/2§
so that T!/2T!/?2 = §~'AS = T. These operations with the infinite matrix T can be
safely performed since Tr (T'T) < oo, as can be seen from the asymptotic behavior
of its matrix element in Appendix B, (B10) of [7]. Consequently the limiting proce-
dure of truncating the matrices, performing the various operations and then taking
the limit to infinite dimensions, is well defined.

By virtue of (3.39), one can show that the kernel K is such that Tr (K;‘,'Ks) is
finite, provided a slight modification of the free propagator Gy is used (we refer to
Appendix G of [7] for details). Following this modification, in order to calculate the
matrix elements of K, one should use the displaced cell approach [26], according
to which

(K7, =) {Z(TiA)l/z Jaa®)Gax(Rij +b) (Th) "1 (343)

A AN

provided that the vector b is such that |R;; + b| > R} + R} and the sums inside the
curly brackets is performed first. Here J44/(b) is the usual translation operator in
MST [26]. For b = 0 this equation reduces to the customary one, since J4 4/ (0) =
dan. Asis well known (see [24]), Tr (KST K;) < o0 is the condition for the existence
of the determinant |I — K| necessary to define its inverse, since by Hadamard’s
inequality, for any finite L,.x, one has

Lmax
- K,|* < ™ (1 + > KL |2> : (3.44)
~

and in the limit £,,,x — oo the infinite product will converge if >, | K],/ |2 =
Tr (KIK,) < N < oo [27].

This means that the sequency of inverse matrices obtained by inverting the finite
matrices I — K truncated at a certain £,,x converges absolutely in the limit £;,,x —
00. Once C’ is obtained, the original problem is solved by putting C = T~/2C’.
Moreover the scattering path operator 7 = (I — GoT)~! is given by
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=T I-K)'T"?. (3.45)

It is worth noting here that the customary way of inverting the matrix I — K by
series expansion, using the formal relation

I-K)™'=) (K. (3.46)

is not always viable. In fact, even if the kernel K is of the Hilbert- -Schmidt type
but Tr (K:Ks) > 1, the series in (3.46) diverges, whereas the process of truncating
and taking the inverse always converges. On the contrary, the series ), K" is always
divergent, since Tr (K'K) is infinite.

In practical numerical applications one does not have to worry about modifying
the structure constants as indicated by (3.43) since, for the cell geometries ordinarily
encountered in the applications (see the restrictions described in Sect. 3.2 soon after
(3.9)), £-convergence in the £-truncation procedure of the MS matrix shows up much
earlier than what predicted by the onset of divergence in (3.34), written with the
unmodified structure constants G, ,. An example of this behavior was found in [5] for
the GeCly molecule. Similar results were found for other compounds. This behavior is
probably indicative of the fact that the sequence of the inverse (I — GoT) !, truncated
as a function of €, is asymptotic in character, as is the expansion (3.33). All this
justifies the empirical attitude of many authors of MST to truncate the MS matrix (or
the MS series) to a certain £,,,x and then check if the results change by increasing
this value by one or two.

3.2.3 Construction of the Green’s Function in MST

One of the major advantages of MST is the possibility to write the Green’s function
of the system, solution of the SE with a source term

(VE4+E—-V@E)Gr,r E) =560 —7). (3.47)

in an explicit form. This is important both for writing down spectroscopic response
functions (see [16]) and for the calculation of ground state properties through contour
integration in the complex energy plane (see e.g. [11] and references therein).

In the derivation of the explicit expression for the GF, we shall follow the method
used in [28] for the MT case, generalizing it to the full potential case.

First of all, we need an expression for the GF in the case of an isolated cell. If we
write

Grr—r) = Z YL (P gro (r, )Y (F) (3.48)
LL
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the radial part gz ;- (r, ") of the GF is solution of the equation

! 1 /
> Duwr(r) guon(rr’) = 00 =L (3.49)

L"

where the operator Dy ;- (r) is given by

L +1
Dpp(r) = |:<D(r) +E - ( r—; )> o — VL’L”(”):|
1d ,d

By projecting the single site regular solution (3.18) of the SE onto the SH Y, () we
easily see that

> Dpw () R (r) =0. (3.51)

L"

We also introduce the irregular solution H 11 (r) that matches smoothly to h (P
at the bounding sphere of the cell, so that

> Dppe(r) Hon(r) = 0. (3.52)
I
From (3.51) and (3.52) we easily derive that
d pair
- ; (r W(H,., Ryy]) —0. (3.53)

In analogy with the general method of second order equations with a d-function
source term, we try

g (r,r’) = Z Ran(ro)earHap(rs) (3.54)

AN

where r_ (r-) is the lesser (greater) of r, r’, and determine the coefficients ¢ 4 o from
the condition that the jump of the first derivatives in r and r" of g;; (r, ¥’) when
r =r'be 1/r?5, 1. In other words we require that

- 1
= E catWIlHx, Raally=r = — 0w
r=r' AA r

d d
[5 gL, r’) — P grr(r, r/)i|

(3.55)
Due to (3.53) we can calculate this expression at the bounding sphere of the cell with
radius Ry, so that
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> " RE Wlhi, Ralear = Oru - (3.56)
A

Therefore c; 1 = [E] .- due to (3.12). Hence from (3.48), in view of (3.14), we find

Grr—r)=> W (r)H.(r). (3.57)
L

putting SN{L rH=>, ﬁL/L (r) Y (7). This expression gives the GF for a single cell.
In order to find the GF for a cluster, we assume that
Grri+ Rirj+ R)) = > W (r)SY W) + 0 Y Wr)HL(r2)
L

L
N (3.58)
and try to determine the matrix elements G/, starting from the identity

N
Z/ [GEr—r)V,.GT(ri =)=V, ,G{(r —r))G"(ri —1")] - n;do;

= /[Gé(r —r)V, G (ry—r) =V, Gy r —r)G*(ri —r)]-n,do,,
So
(3.59)
where the surface integration is over the variable r . This identity can also be obtained
on the basis of (3.2) and (3.47) for the free and cluster GF. It is similar to (3.4) when
one replaces the wave function v (r) with the cluster GF (3.47). For simplicity, we
neglect again the contribution of the outer surface S,, imagining to cover the space

where the potential is substantially different from zero by N cells.
We have two cases:

(a) r and r’ inside cell i
(b) r inside cell i and r’ inside cell k (i # k)

In case (a) we take r and r’ very near the origin of cell i. Then, using (3.5) and (3.58),
we find

DY LWL x

LL L"

{Z/ LH r) VW (r) — W (r)VH (r) ] -n;doj1G70, +
J#

/[Hw WL () — Wi r) VA (r)] - njdo;1 G2, }_o.

(3.60)
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We now observe that in this equation we can move the integral from the surface
S; to the corresponding bounding sphere with radius R; by Green’s theorem so that
Wy (r;) is given by (3.20). Then, using (3.9) to re-expand H ZL (r;) around another
center j, remembering that

/ [H(rpVIL(rj) — Jo(r )VHS(r )] -n;do; = =611, (3.61)
S

and putting to zero the expression inside curly brackets, we obtain the condition

Z Y GlaTinGhy =Sl =0. (3.62)

AN

Notice that the KKR structure factors GiLj 1, are not to be confused with the full GF
factors G7, .

In case (b) we take r and r’ very near the origin of cells i and k respectively, so
that we have

DY )WL) x

LL L

{ /[H+(r YWWp(r;) — W r)VH (r)]-n;do;150,, +
J#

f [FI:(ri)VWL"(ri) - q/L”(ri)VI:IZ_(ri)] n;doi]1 G+

[ﬁ:(riwsﬁcu(rk)—ﬂ%u(rkwﬁ:(ri)]~nkdak1}= 0 . (3.63)

Sk

Using the same procedure as above we find the condition

Z > G, iG-S+ Gl =0, (3.64)

AN

Putting together (3.62) and (3.64) we find that the matrix S’Z‘L, satisfies the Dyson
equation

ik, =Gk, (1= + Z Y GiATI S - (3.65)

AN

This equation constitutes the extension of the customary relation for the MT case to
the full potential (FP) case.
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3.2.4 Spectroscopic Response Functions

In Chap.?2 it has been shown that the photon absorption cross-section from a core
state (ignoring for simplicity spin-orbit coupling) can be written in terms of the GF
(3.58), even in case of complex absorptive potential, as

O (wg) = —dmafwy Y S (65 (rolleg - FIG(r. 1y E)leg - 1|65, (r,)) drdr,
meo.

(3.66)
where hw, is the impinging photon energy, o is the site of the photoabsorber and
«a ~ 1/137 is the fine structure constant. From the expression (3.58) we obtain two
terms: the singular part provides the atomic absorption, whereas the regular part
gives the contribution of the environment of the absorber. This is very handy in case
of structural analysis.

The photoemission cross-section is better written in terms of new amplitudes

Bl (k)= _T/,C{, k), (3.67)
7z

which imply another set of local basis functions

W) =Y BlH)WL(r)) . (3.68)
L
It is easily seen that, on the basis of (3.16), the new amplitudes satisfy the equation
ST =Gl Bl = 1L (3.69)
L
whereby, writing 7 = T (I — GoT)~!, we find the solution
B (k) =Y 7 i Yy (e R (k/m)' 2 (3.70)
JL
Then the photoemission cross-section is given by

2

> My LB (3.71)

do
— =47’ ahw
7 1 |2

meoe

where M| 1, is the dipole matrix element between the initial core state and the local
basis function (3.68).

These are the formulas for photoemission and photoabsorption in the case of FP.
For their physical interpretation and other spectroscopies we refer to Chap. 2 of this
book.


http://dx.doi.org/10.1007/978-3-319-73811-6_2
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3.3 The Program

3.3.1 Features and Capabilities

The FPMS code [30] focuses on the calculations of XANES spectra, but can also
calculate projected DOS and Resonant X-ray elastic Scattering [31]. It incorporates
a part of ES2MS code [32], which is an interface to use charge densities and potentials
generated by electronic structure codes, notably LMTO [9] and VASP [33]. FPMS is
incorporated into the MXAN code [34] (the so-called FP- MXAN code), to perform
structural fitting of XANES spectra without the need of the MT approximation [35].
FPMS has an option to print out 7-matrices to feed the input of the MsSpec code
[36], so that one can perform full potential calculations for photoelectron diffraction.
Point group symmetries can be specified so as to reduce the computational cost
considerably. Truncation of cells may be checked with an interactive animation based
on OpenGL library [37].

3.3.2 Requirements

The code is platform independent, it may run on Linux, Windows and Mac OS X.
The prepared executable is provided only for the serial mode, and it is stand alone,
no additional programs or libraries are required. Instead, the parallel version must
be compiled by users on their own platform. For the compilation, one needs Fortran
2003 compilers, OpenGL, MPI [38] and LAPACK [39] and BLAS [40].

9 T T T T
8 -
7 -
P
= 6r
=
= 5t
)
8 47
~ 3t
©
2f FP
1 MT —— |
0 Experliment
105 110 115 120 125

eV

Fig. 3.3 L, 3-edges unpolarized absorption cross-section for a-quartz, showing the comparison
between the MT and FP calculations against the experimental data [6]
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Fig.3.4 Comparison [8] between calculated polarized C K -edge XANES of graphene with a cluster
of radius 30 A and the experimental data from [29]. « is the angle between electric field and the xy
plane. Since o = 74°, 0 &~ 0.9240, + 0.0760, . Dashed vertical lines show the experimental peak
positions. SCF-FP, non-SCF-FP and SCF-MT. (non-)SCF represents the results of calculations using
(non-)self-consistent potential in the Full Potential (FP) and Muffin-Tin (MT) version of multiple
scattering theory

3.4 MT Versus FP Calculations

For electronic and structural studies of materials, it is important to go beyond the MT
approximation, especially for systems with open structures like layers or diamond
structure.

Figure 3.3 shows the comparison between the MT and FP calculations against
the experimental data, obtained by an electron energy loss (EELS) technique [6].
It is known that EELS spectra, in the limit of small momentum transfer and high
energy of the incoming beam, can be described as an absorption spectrum in the
dipole approximation with polarization given by the momentum transfer vector. We
see that MT calculation gives a very poor result.

In Fig. 3.4 [8], the experimental absorption spectrum [29] for graphene is shown
along with the present calculations done for different potential approximations. The
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Fig. 3.5 Ti K-edge absorption in TiO, (Anatase phase)

SCF potential has been transferred from VASP code. The size of radius of the cluster is
30 A, indeed rather large, due to the need to describe the focusing effect of the chain
like structure of Carbon atoms. As in similar cases, the graphene layer is covered by
layers of EC from both sides. It is obvious that the FP calculations (non-SCF-FP or
SCF- FP) agree much better with experiment than the MT calculation (SCF-MT).
The differences between non- SCF-FP and SCF-FP spectra are small, indicating that
self-consistency affects XANES much less than FP corrections.

As a last example we show in Fig.3.5 the absoprtion spectrum of TiO; in the
Anatase phase, calculated in the MT and FP mode for a cluster of 487 atoms, in
comparison with the experimental spectrum taken from [41]. Here too, we note the
dramatic improvement brought in by the FP approach.

Finally, it instructive to show that in the case of close-packed structures the MT
approximation gives comparable results with FP programs. Figure3.6 shows the
result of a calculation of the local density of states for a cluster of 459 Cupper atoms
with a radius of 11 A calculated in the MT approximation, compared with the same
quantity calculated with FPMS, VASP and FP- ASA programs. As anticipated, the curves
are very similar.
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Fig. 3.6 Cupper local density of states

3.5 Future Perspectives
3.5.1 Optimization

In the last version of FPMS, we introduced a new way of partitioning the MS matrix
for inversion. On an Inte]l XEON E5-2650 V2 2.6G 8C CPU the computation time
per energy point for a Cu cluster of 233 atoms with ¢,,,, = 6 was 203 s without
partitioning, reducing to 13.5 with partition, with a gain of a factor of 15. We expect
an even larger gain for larger clusters.

3.5.2 Other Spectroscopies

Now UPS (Ultraviolet Photoemission Spectroscopy) code is under development
using FPMS. Implementations for STM (Scanning Tunneling Microscope) and
BEEM (Ballistic Emission Electron Microscope) are in progress as well.
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Chapter 4
KKR Green’s Function Method in Reciprocal
and Real Space

Jén Minar, Ondiej Sipr, Jiirgen Braun and Hubert Ebert

Abstract The Korringa—Kohn—Rostoker (KKR) method is a very flexible band
structure technique which is based on the multiple scattering formalism. In con-
trast to many other band structure methods, which are based on a representation of
the electronic structure in terms of Bloch wave functions, the KKR method represents
the properties of solids in terms of Green’s functions. In this chapter we demonstrate
the flexibility of the KKR method as a tool to describe spectroscopic aspects such as
x-ray absorption spectra theory and one-step model of photoemission.

4.1 Introduction to the KKR Green’s Function Method

4.1.1 General Features

Multiple scattering formalism, as it is in detail formally discussed in the first chapter
of this book, is also the basis of the Korringa—Kohn—Rostoker Green’s function
(KKR) band structure method. Over the years many developments of this method
have been performed and are recently reviewed in detail by Ebert et al. [1]. Many
methods for solving the Schrodinger equation expand the wave functions in a suitable
basis set and use the Rayleigh—Ritz variational principle. Examples are the pseudopo-
tential methods which use the most simple and convenient set, i.e. plane waves, and
the modern linear band-structure methods [2] which use numerical basis functions
constructed from solutions of the Schrodinger equation for the potential inside an
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atomic cell centered at a lattice site. A disadvantage of variational methods is that
for very accurate results the number of basis functions rapidly increases unless they
are really well chosen for the physical system under consideration.

An alternative to variational methods is the KKR method, which uses multiple
scattering theory to provide an exact solution of the Schrodinger equation. This is
particularly appropriate when considering unoccupied states which can have arbi-
trarily large energies and which are very important for the spectroscopy applications
discussed in this chapter. Unlike most band structure methods, that provide the elec-
tronic wave functions and energy eigenvalues for a crystal, the KKR method is
aiming at a calculation of the single-particle Green’s function. In fact, knowledge
of the Green’s function is sufficient to calculate in a very elegant and efficient way
all relevant electronic properties of a crystal such as charge and spin densities and
to determine various spectroscopic properties. The application of multiple scattering
theory for the electronic structure problem in solids was first suggested by Korringa
[3] and, independently a bit later, by Kohn and Rostoker [4]. The starting point of this
original version of the KKR method, is the Lippmann—Schwinger equation for Bloch
states that involve the free-electron Green’s function, i.e. the Schrodinger equation
is formulated as an integral equation. For the ansatz of the Bloch wave function a
minimal basis set is used that is constructed from energy and angular momentum
dependent partial waves leading to an eigenvalue problem with a correspondingly
low dimensionality. Since its introduction the KKR method has been continuously
further developed leading to a wide regime of applications. Apparently, it was first
realized by Beeby that the KKR or multiple scattering formalism gives direct access
to the electronic Green’s function for a considered system [6]. The corresponding
formal developments led finally to the KKR-Green’s function (KKR-GF) method.
The last decades brought further developments for the KKR-GF theory, among others
by Faulkner [5, 7], Faulkner and Stocks [8], Gyorffy and Stocks [9] for the non—
relativistic case, and by Onodera and Okazaki [10], Strange et al. [11], Weinberger
[12], Strange [13] and Ebert [14] for the relativistic case. Among the outstanding
features of the KKR-GF method one has to emphasize that the Green’s function is
transparently related to single-site scattering and to structural quantities, and that
there are no preconditions with regard to the arrangement of the atoms, as e.g. spa-
tial periodicity. One can therefore separate the electronic structure calculations into
two parts. The first one supplies the solution corresponding to single-site scattering,
while the second one is dependent solely on the geometry of the system consid-
ered. Moreover, the Green’s function of any perturbed system can be connected to
the Green’s function of a corresponding reference system without perturbation by
means of the Dyson equation. These properties of the KKR-GF method virtually pre-
destinate it for the treatment of defect systems such as e.g. vacancies and impurities
[15], but also surfaces and interfaces [16]. A further important field of application is
disordered alloys, for which the KKR-GF Green’s function method in conjunction
with the coherent potential approximation (CPA) [17] constitutes the best available
single-site method of calculating their electronic structure [18].

In the following sections we pick up two areas of applications of the KKR-GF
method in spectroscopy. In particular, we will focus on x-ray absorption as well as
on angular resolved photoemission.
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4.1.2 Treatment of Disorder

One of the outstanding features of the KKR-GF method is that it provides the one-
electron Green’s function of a system directly without making use of Bloch’s theorem.
Because of this, the KKR-GF method allows one to deal with substitutional diluted
and concentrated alloys when combined with the CPA [17, 72]. Within this combined
approach (KKR-CPA) the propagation of an electron in a disordered alloy is regarded
as a sequence of scattering processes due to a random distribution of scatterers on
a lattice. The necessary average over all configurations of the atoms on the lattice
is taken by introducing an auxiliary effective CPA medium. As it illustrated by Fig.
4.1, this medium is determined by demanding that embedding of a component A or
B of an alloy A,B;_, should in the average lead to no additional scattering.

Within the CPA the configurationally averaged electronic properties of a disor-
dered alloy are represented by the auxiliary ordered CPA-medium. Making use of
the KKR formalism this can be described in turn by a corresponding single-site
t-matrix t“PA and site-diagonal scattering path operator 7. In case of a binary
system A, B _, for example 1™ and 7P for the CPA medium are determined by
the following so called CPA-condition (cf. Fig.4.1):

X7 + (1— x)TB = 7CPA , 4.1)

where the angular momentum subscripts were omitted. In this equation the site-
diagonal component-projected scattering path operator 7* given by the expression

A = TP (13 — o) T 4.2)

represents the scattering properties of an A atom embedded in the CPA medium,
where 2 is the single-site t-matrix of this component. The scattering properties
of the component B embedded in the CPA medium is described by an analogous
equation. Obviously, the coupled set of equations for 7°PA and t“PA have to be solved
self-consistently. This is usually achieved iteratively by means of the so-called CPA
cycle.

Fig. 41 The major idea of the CPA: an auxiliary CPA medium that is meant to represent the
average over all possible configurations of a disordered substitutional alloy A,B;_ is constructed
by the requirement that embedding of an A or B atom does not give rise to additional scattering
with respect to the CPA medium
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4.1.3 Many-Body Effects: LSDA+DMFT Within the KKR
Formalism

The spectrum of one-particle excitations of a system of correlated electrons in a solid
is of central interest in condensed-matter physics. The theoretical understanding of
the excitation spectrum poses a long-standing and not yet generally solved prob-
lem. Within the independent-electron approximation the spectrum is simply given in
terms of the one-particle eigenenergies of the Hamiltonian. Analogously, it is widely
accepted to interpret a measured photoemission spectrum by referring to the results of
band-structure calculations that are based on density functional theory (DFT) and the
local spin-density approximation (LSDA) [40, 41, 73]. Such an interpretation is ques-
tionable since there is actually no direct correspondence between the Kohn—Sham
eigenenergies and the one-particle excitations of the system [71, 73]. For an in prin-
ciple correct description of the excitation energies, the LSDA exchange-correlation
potential has to be supplemented by a non-local, complex and energy-dependent
self-energy which leads to the Dyson equation [73, 74] instead of the Schrodinger-
or Dirac-type equation within the non- or fully relativistic Kohn—Sham scheme.

To deal with this situation we have developed a generalized approach by account-
ing for electronic correlations beyond the LSDA. A general non-local, site-diagonal,
complex and energy-dependent self-energy XPMFT [75-77], has been included in
the fully relativistic Korringa—Kohn—Rostoker multiple scattering theory [63]. In the
following we shortly review an implementation of the LSDA+dynamical mean-field
theory (DMFT) formalism within the full potential fully relativistic multiple scatter-
ing KKR method [63, 78]. The implementation is completely self consistent with
respect to the charge density as well as to the self-energy. As the DMFT method
itself has already been described in several reviews, we focus here on those aspects
which are specific for the KKR framework and the charge self-consistency.

The central idea of the implementation of the LSDA+DMFT within the KKR
method is to account for the corresponding non-local, site-diagonal, complex and
energy-dependent self-energy XPMFT when solving the single site Schrodinger (or
Dirac) equation and this way to account for it via the numerical basis functions used.
As a consequence one can exploit directly all advantageous features of the standard
KKR Green’s function method when performing LSDA+DMFT type calculations.
This implies in particular that one can account for correlation effects for a wide range
of systems when dealing with their electronic structure.

There are several approaches to combine the LSDA with the DMFT method [76,
77] described in the literature. In most of these the LSDA part of the problem is
usually dealt with in a first step by solving the corresponding band structure problem
using a suitable basis set (e.g. LMTO). The Green’s function for this reference level
is then determined by the resulting spectral representation of the LSDA Hamiltonian.
Solving in a second step the DMFT part of the electronic structure problem, the result-
ing local self-energy XPMFT can be used together with the local Green’s function to
calculate a new charge density and a corresponding effective LSDA potential. How-
ever, to a achieve a coherent combination of LSDA with DMFT in line with spectral
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density functional theory [74] one has to solve the following Dyson equation in a
self-consistent manner:

G(r,r',E) = Gy(r,r ', E)
+ / d3r// / d3r///G0(r’ r //’ E) [Veff(r //)5(,. 1 _ r ///)
+ 2", r",E1G@",r',E), 4.3)

with Go(r, r”, E) being the Green’s function for the chosen free electron reference
system. Furthermore, the effective potential is defined as Vo (r) = [V (r) + So -
B (r)], with Vg (r) its spin-independent potential and B (r) the corresponding
spin-dependent part or magnetic field [11]. Within the relativistic formulation used
here, the matrices (3 and «y are the standard Dirac matrices where the latter ones can
be expressed by oy = 0, ® o} by means of the 2 x 2 Pauli matrices oy (k = x, y, z).
The KKR-GF method offers the possibility to solve equation (4.3) in a very
efficient way. With the system decomposed into atomic regions, usually this means
into Wigner—Seitz-cells, and making use of the fact that XPMFT is an on-site quantity
a straight forward solution of the equation can be achieved via the standard KKR
technique. In practice, this implies that one first solves the corresponding so-called
single site scattering problem to obtain the wave function ¥ (r) inside an atomic
cell and the associated single site scattering 7-matrix. Within relativistic spin density
functional theory [79, 80] the corresponding single site Dirac equation is given by:

[?c a-V+ Bmc? + Veff(r):| v (r)+ / ErE,r’, YY) = E¥(r),(4.4)

where ¥ (r) is an energy-dependent four-component spinor function for a given
energy E. To solve this equation the following ansatz ¥ = )" , ¥, for the wave
function is used. In practice, application of the DMFT scheme is restricted to corre-
lated d- or f-orbitals. Inline with this, the self-energy X' (r, r’, E) has to be projected
onto alocalized set of orbitals ¢" (r). The corresponding self-energy matrix X'4 4/ (E)
is then delivered by a suitable DMFT solver.

Itis worth to note that even if the spherical muffin-tin or atomic sphere approxima-
tion to the shape of the effective potential is used, the components of (4.4) associated
with different A’s are coupled in the same way as it is in a full-potential calculation.
This implies that the implementation of the LSDA+DMFT approach on the basis of
the KKR-GF requires the use of its full-potential version. Solving the set of coupled
equations for the wave functions ¥ (r) gives direct access to the associated single site
t-matrix by matching the wave functions to the Hankel and Bessel functions as free
electron solutions outside the atomic cell. When dealing this way with the single-site
problem, one accounts obviously for the entire complexity of the underlying complex
non-local self-energy of the LSDA+DMFT approach. Because of this, the resulting
regular and irregular scattering wave functions Z 4 (r, E) and J4(r, E), respectively,
as well as the corresponding single-site 7-matrix carry the full information on the
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underlying LSDA+4-DMFT Hamiltonian. This means in particular that in contrast
to other LSDA4+DMFT implementations that use basis functions derived from the
LSDA-part of the Hamiltonian, the effect of the self-energy is now also incorporated
into the wave functions ¥. This becomes relevant, for example, when dealing with
disordered alloys on the basis of the CPA or when calculating the total energy of a
system or matrix elements for spectroscopy.

With the single-site #-matrix made available, the next step of a KKR-type calcula-
tion is to deal with the multiple scattering problem. This task implies in general to find
the corresponding scattering path operator 7 [81]. Technically, this step is completely
independent from the DMFT part of the electronic structure problem. Accordingly,
the expression for the retarded site diagonal Green’s function G(r, r’, E) as speci-
fied in (4.10) above [8, 82] can be used. Knowing the Green’s function G(r, r’, E)
makes it possible to derive all electronic properties of interest as e.g. the charge den-
sity in a straight manner with the calculated Green’s function G (r, r’, E) accounting
for all effects of the self-energy XPMFT,

In order to provide the bath Green’s function that is needed as input for the
DMEFT solver, the corresponding localized Green’s function matrix is calculated
by projecting the Green’s function given by (4.10) according to the selection of
correlated atomic orbitals. This is achieved by a projection of G(r,r’, E) with
respect to a localized set of orbitals ¢ 4 (r):

Gan(E) = /d3rfd3r ‘pa(r)G(r,r', E)pa(r). (4.5)

A natural choice for these localized orbitals or projection functions ¢ 4 (r) are regular
solutions of the Kohn—Sham—Dirac single-site equations that are normalized to unity
and also used for a representation of the self energy X (see below). In the case of
transition metal systems in general only the d-d sub-block of the structural Green’s
function matrix G™ (E) has to be considered. Apart from these restrictions, the
choice of the functions ¢ 4 (r) is rather arbitrary provided they form a complete set of
functions. This implies that a localized basis set may be set up for a given reference
energy E..r (taken to be at the center of gravity of the occupied part of the d-band for
the cases discussed here), with the spin-dependent part of the potential set to zero.
As a consequence one has to suppress all further coupling to the other ¢-channels
imposed by the crystal symmetry in the case of full-potential calculations.

A flow diagram that describes the resulting KKR-GF based self consistency cycle
of the LSDA+DMFT scheme is given in Fig.4.2. For this, the set of regular (Z) and
irregular (J) solutions to the single-site problem that account for the LSDA potential
as well as for the DMFT self energy X is calculated via (4.4). Using the corresponding
t-matrix the multiple scattering problem is solved in terms of the scattering path
operator 7. With this available the KKR Green’s function is constructed based on
(4.10). As a next step the projected Green’s function matrix is constructed according
to (4.5) providing this way the necessary input to deal with the many-body problem.
The way the mutual connection between the charge density and the self-energy is
implemented deserves special attention. To start with, it should be stressed that the
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definition of the Green’s function is not restricted to real energies E but applies
also for arbitrary complex energies z. The fact that the Green’s function G (r, r’, z)
is analytical throughout the complex plane away from the real axis [83] allows, in
particular, to perform the necessary energy integration for the set up of the charge
density on an arbitrary contour in the complex energy plane [84]. Using a semi
circular path around 30 energy mesh points are sufficient in general. On the other
hand many schemes to deal with the DMFT problem use a Matsubara-type mesh
of frequencies providing the self-energy XPMFT for this mesh. As a consequence,
it is necessary to apply a suitable technique for an analytical continuation i.e. to
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transform XPMFT from Matsubara frequencies w to the energy contour used within
the KKR-GF based step. Finally, it should be stressed that Z°MFT is in general not
Hermitian and for low symmetry systems not only right but also left handed solutions
one needed (4.4) when setting up the Green’s function G(r, r’, E) [85].

In the current fully relativistic implementation, the many-body problem is dealt
with by relying on perturbation theory. One can use either the SPTF solver (spin-
polarized T -matrix+FLEX) [86] or spin-polarized 7 -matrix [8§7] solverfor T =0 K.
However, any DMFT solver which supplies the self-energy X' (E) can be included
when dealing with the many-body part of the electronic structure problem. To transfer
the self-energy from the Matsubara energy path to the complex energy path used to
set up the updated KKR Green’s function the Padé analytical continuation is used
once more. In this context, the key role is played by the scattering path operator
74" (E), that is used to generate the new single particle Green’s function and from
this the new charge and potential in each SCF iteration.

Finally, the double counting correction Hpc has to be considered. This prob-
lem is definitely one of the main challenges for first-principle calculations within
the LSDA+DMEFT. The double counting correction stems from the fact that some
many-body interactions described by the DMFT formalism are already included in
the LSDA. The appropriate part, therefore, has to be subtracted to avoid it being
counted twice. So far various schemes to deal with the double counting correction
problem have been suggested in the literature [77]. The most simple scheme in this
context corresponds to the static LSDA+U scheme and has been used in our imple-
mentation. In practice, the double counting correction to the self-energy is applied
at the step when the many-body problem is solved. This implies that first the com-
plete static part of the self-energy coming from the solver is removed and then the
LSDA+U-like static part is added [88]. From many applications to pure transition
metals as well as their metallic compounds or alloys the so called around the mean
field (AMF) double counting correction was found to be most appropriate [64, 66,
88, 89]. It should be stressed, that so far it was not possible to derive an exact and
simple analytical expression for the double counting correction. On the other hand,
the combined G W+DMFT scheme [90] allows in principle to deal with the double
counting problem in an exact way. It is therefore important to perform direct compar-
ison of LSDA+DMFT based results to experimental data coming for example from
angle-resolved photoemission (ARPES) measurements to test the adequacy of the
chosen double counting correction scheme. However, to be able to select among the
various suggestions for the correction Hpc in a most reliable way it is advantageous
to calculate not only the bare spectral function, i.e. I G, but to calculate the photoe-
mission spectra in a most accurate way. Actually, on the basis of the one-step model
of photoemission it could be convincingly demonstrated that the AMF suggestion
for Hpc is appropriate for transition metal systems [64, 66, 89].

The fact that the DMFT is a mean field theory relying on an effective medium
(bath) reminds to another successful use of the mean field formalism in the KKR,
namely, the CPA method for dealing with disordered systems. Indeed, a similar
philosophy is applied in both cases. Thus, combining the DMFT and KKR-CPA
methods is a relatively straightforward task, because both schemes are formulated in
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their standard version on a single-site level. On the DMFT side this means that any
correlation concerning the occupation of neighboring sites for example due to short
range order is ignored and the self-energy X' is accordingly assumed to be on-site only.
The extension of the CPA scheme for disordered alloys to account simultaneously for
many-body correlation effects can straightforwardly be done within the KKR+GF.
This is achieved by incorporating the local multi-orbital and energy dependent self-
energies X EMFT and ¥ B]?MFT of the components directly into the corresponding single-
site matrices 74 and #p, respectively, when solving the component specific single site
problem (4.4) [63]. As a consequence, all quantities related to the Green’s function,
as for example the charge density, represent the impact of the electronic correlations
beyond the LSDA level. The combination of the CPA with the LSDA+DMFT scheme
proved to be arather robust and powerful technique [62, 63, 88, 91]. Itis worth noting
that the combination of the KKR-CPA for disordered alloys and the DMFT scheme
is based on the same arguments as given by Drchal et al. [92] who did corresponding
work earlier using the LMTO Green’s function method for alloys [16].

We conclude by noting that the solution of the Dyson equation for a given self-
energy allows to deduce a raw photoemission spectrum. However, to allow a reli-
able interpretation of experimental data, however, it is indispensable to incorporate
all matrix element effects which may have a dramatic influence on the spectrum.
For a direct comparison to experiment, in particular the full wave-vector and energy
dependence of the transition-matrix elements has to be taken care within such calcu-
lations. The impact of these matrix element effects are well-known to be important
but nevertheless often ignored. On the one hand side, they result from multiple-
scattering processes which dominate the electron dynamics in particular in the low-
energy regime of typically 1-200 eV [39]. At least equally important is the inclusion
of selection rules and of the excitation cross section or oscillator strength via the
transition-matrix elements that are completely ignored when working with the raw
spectrum. In fact, one can say that the main task of photoemission theory is to provide
a bridge between the raw spectrum obtained by any LSDA+DMFT based electronic
structure calculation and experiment. In this context, the one-step model of photoe-
mission [37-39] proved to be the most successful and flexible theoretical approach
available providing a coherent description of all relevant aspects of the electronic
structure and of the photo emission experiment itself.

4.2 Applications of KKR-Green Function Formalism in the
Spectroscopy

4.2.1 X-ray Absorption: Formalism

If an x—ray beam with intensity /j passes through a sample of thickness d, its atten-
uation is determined by )
I = Iy exp[—pu® (wg)d] . (4.6)
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The absorption coefficient % (wq) depends on the energy hw,, on the polarization
vector €, and also on the wave vector ¢ (¢ = w/c) of the incoming radiation.
The x-ray absorption coefficient %7 (w) can be expressed via the Fermi’s golden
rule as [19]:

unocc

o N 2
pieg) o Y03 (s K, 19| O —Ej—hwp) . @4)
i f

The sum here spans all initial core states | ¥; ) with energies E; that are involved
in the x-ray absorption process and all empty final states | ¥ ) whose energy E is
above Ef.

The operator X ¢, In (4.7) describes the interaction between electrons and photons

with polarization vector €, and wave vector ¢. In the relativistic formalism X ¢, 18
given by [19, 20]:

~

X, =ea- A (4.8)

where the classical vector potential A;, represents the photon field and eca is the
operator of the electron current. The vector o stands for the Dirac matrices [20].
In most cases, one can employ the electric dipole approximation when dealing with
X ¢,- Going beyond the dipole approximation is straightforward [19].

When dealing with ordered solids, Bloch wavefunctions can be substituted for
the final states | ¥, ) in (4.7). Suitable all-electron band-structure method can then
be applied to calculate the absorption coefficient % (hwg) [21]. Another approach
consists in representing the final states | ¥, ) using the Green’s function G*(E) to
arrive at [22, 23]:

plr(hwg) o ) (W | X] S [GT(E; + hwy)] Xe, | W) 8(Ei + hwy — Er) . (4.9)

i

This equation can be further transformed if the Green’s function is expressed within
the multiple scattering framework as [8]:

GH(rrw', E) =) Z4(r, E)TYW (E)Z)(r', E)
AN

_ Z [ Z(r, ) (r', YO — 1)
A
+J4(r, EYZ3(r', EYO(r — 1) | 6w . (4.10)

The matrix 7" is the so-called scattering path operator. It transforms an incoming
electron wave arriving at the atomic site n’ into an outgoing electron wave leaving site
n while accounting for all possible scattering events that may take place in between
(see (1.68) of Chap. 1 of this book). Because the initial core states |¥;) occurring
in (4.9) are localized, only site-diagonal terms of the scattering path operator 7"
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are needed; the site label n identifies the photoabsorbing atom. If one restricts to
a non-relativistic description in (4.10), the functions Z, and J, represent regular
and irregular solutions to the Schrodinger equation but normalized as required by
the scattering theory [8]. The combined subscript A = (€, m,, my) then stands the
orbital (¢) and magnetic (m,, m;) quantum numbers. However, in this chapter the
relativistic formalism is mostly employed, meaning that A usually represents a set
of relativistic quantum numbers A = (x, i), where « and p stand for the spin-orbit
and magnetic quantum numbers, respectively.

When dealing with finite systems, the 7" matrix can be evaluated by inverting
the so called KKR-matrix according to 7(E) = [t(E) ™' — Go(E)]™!, where t is the
single-site -matrix and the matrix G¢ represents the real space structure constants.
(The upright bold font indicates matrices with respect to site and spin-angular (A)
subscripts.) One speaks of calculations in the real space in this case. Alternatively,
when dealing with a translationally periodic system such as a crystal, the equation can
be solved by employing the Fourier transformation. Then one speaks of calculations
in the reciprocal space.

In this section the absorption coefficient is mostly calculated using an equation
which can be obtained by inserting the expression (4.10) for the Green’s function
into (4.9), namely,

occ

W (hwg) ~ > S MO (E S [ (B M3 () (4.11)

AN
where Ey = E; + hw,. The matrix elements Mf{’, (E ) are given by:
Meq (Ep) = (Za(Ep)| Xe, | W) . (4.12)

Equation (4.11) presents quite a general expression for evaluating the absorption
coefficient, applicable in many circumstances. For example, it can be employed
for systems which do not have translational periodicity, such as alloys, surfaces,
adsorbates or defects.

It has been assumed in (4.11) that the final states energies are restricted to the real
axis. If one uses complex energy formalism to describe the effects of relaxation or
self-energy, an additional term appears that comes from the second term in (4.10).
An explicit form for this atomic-like term can be found, e.g., in [19].

An important role in applications of spectroscopy is nowadays played by mag-
netic dichroic effects. Generally, magnetic dichroism is the difference between two
spectra for a magnetized sample recorded for different polarizations of the incoming
radiation. Magnetic dichroism results from a combined influence of spin polarization
and spin-orbit coupling. The computational scheme has to be amended to describe
this. The most consistent and robust way in this respect is to treat everything within a
fully relativistic formalism. Let us restrict the discussion to the case of x-ray magnetic
circular dichroism (XMCD) in polar geometry. If we assume that the wave vector of
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the incoming radiation ¢ points along the z direction, the polarization vector of the
radiation can be written as

a,=—— =—1-i]. (4.13)

We use the convention that the first vector describes light which is left circularly
polarized (positive helicity) and the second vector in (4.13) describes light which is
right circularly polarized (negative helicity). It should be emphasized here that the
particular choice of the geometry (coordinate system) does not harm the generality
of the formalism, any other polarization of the incoming radiation can be treated
analogously.

If a fully relativistic formalism is employed, the functions Z, and J, in (4.10)
are solutions of the Dirac equation. Because the potential is spin-dependent, the
symmetry of the Dirac Hamiltonian is reduced and it is not possible to assign to
the functions Z 4 and J, a pure spin-angular character A [24, 25]. Rather, they can
be viewed as superpositions of functions Z4 4 and J4 4 with character A’, such
as Zy = ) 4 Zaa. If the initial core states ¥; are also treated within in a fully
relativistic framework [26], one can account for all possible sources of the magnetic

dichroism. The form of the transition matrix elements Mf“’l is given in [19], together
with corresponding discussion.

4.2.2 X-Ray Absorption and X-Ray Magnetic Circular
Dichroism of Clusters

In this section we will introduce several illustrative examples how calculations of
x-ray absorption spectra via the KKR-GF formalism as given by (4.9) can be used for
structural analysis. We will deal with situations when multiple scattering is important.
Our focus is thus not on the extended x-ray absorption fine structure (EXAFS) region
but rather on the x-ray absorption near edge structure (XANES) region. We will
present also some cases where analysis of XANES and EXAFS complement each
other. The calculations presented below have been performed within the real space
formulation of KKR-GF equations, i.e., the 7 matrix in (4.9) is evaluated for a finite
set of atoms (scattering centers), directly in real space.

4.2.2.1 XANES and XMCD of Free Fe Clusters

One of the areas where the real-space formulation of KKR-GF equations comes
handy is spectroscopy of clusters. We will illustrate few concepts on the study of
XANES and x-ray magnetic circular dichroism (XMCD) spectra of free Fe clusters
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Table 4.1 Dependence of magnetic properties of free Fe clusters on the cluster size. Number of
atoms is in the first column, average d components of the spin and orbital magnetic moments are
in the second and the third columns and the average number of holes in the d band is in the last
column [94]. Magnetic moments are in (g

Size Vipin o ni
9 2.84 0.209 3.36
15 2.54 0.071 3.15
27 2.82 0.125 3.40
51 2.62 0.075 3.36
59 2.67 0.063 3.35
65 2.65 0.075 3.38
89 2.68 0.068 3.48
Bulk 2.37 0.055 3.44

[93]. Interest in these systems is motivated mainly by their magnetic properties: mag-
netic moments of small systems are larger than magnetic moments of corresponding
bulk materials (when related to the same amount of atoms of given type). Some
magnetic properties of free Fe clusters as calculated via the KKR-GF formalism are
summarized in Table 4.1 [94].

Comparison of theoretical Fe L, 3;-edge XANES spectra for few free clusters
and for the crystal is shown in Fig.4.3. The clusters are assumed to have a bcc-like
geometry as if cut from the bulk, so we investigate pure effect of the finite size of the
system. Spectra for clusters comprising 9, 15, 51, and 89 atoms are shown. Spectra of
clusters were obtained by superposing spectra originating from the individual atoms
of the cluster. Furthermore, common normalization was achieved by dividing the
spectra by the number of atoms in each cluster [93].

First thing to notice in Fig.4.3 is that there is little significant variation of the
spectra with cluster size, except for some fine structure following the L3 white line
for the 9- and 15-atom clusters (at about E =~ 2-6 eV). These features could be
markers of truly discrete states appearing below the vacuum level. The height of
the vacuum level above E varies from 5 eV for the 9-atom cluster to 8 eV for
the 89-atom cluster [94, 95]. Formally, the continuous character of theoretical x-ray
absorption spectra in the region between Er and the vacuum is a consequence of the
Green’s function formalism, in particular, of a small imaginary component which
is included in the energy. If the cluster size increases, the number of discrete levels
increases as well, smoothening thus the (overlapping) spectral peaks and resulting
in a spectral band. Generally, it is evident from Fig.4.3 that white lines for small
clusters are sharper than white lines for large clusters. The vacuum edge itself does
not seem to give rise to a distinct feature in the spectrum.

Another characteristic feature worth mentioning is the absence of the small bulge
around 8 eV in spectra of clusters. This feature appears in calculated XANES of bulk
Fe and has been associated with a Van Hove singularity. Its occurrence is linked to
the translational periodicity, meaning that it can appear only for large systems. In
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Fig. 4.3 Theoretical L; 3-edge XANES of free Fe clusters (thin full line) together with XANES
of a crystal (thick dashed line). The number of atoms in the cluster is indicated at each spectrum.
Note that the curve representing the crystal spectrum is identical for each of the four sub-graphs.
Figure reproduced from [93]

particular, such feature is present in a spectrum generated by the central atom of a
cluster which contains more than ~100 atoms [96].

As one of the strong motivations for research on clusters is magnetism, it is useful
to have a look at the XMCD spectra. This is done in Fig.4.4. It follows from the
calculations that the shape of XMCD for the clusters and for the bulk is generally
similar: spectra are dominated by two main peaks which are split by the spin-orbit
splitting. The intensities of the peaks systematically decrease if the clusters increase.
Another trend concerns the widths of the peaks: small clusters give rise to narrower
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Fig. 4.4 Theoretical

L, 3-edge XMCD of free Fe
clusters (thin full line)
together with XMCD of a
crystal (thick dashed line).
The numbers of atoms in the
clusters are also given.
Figure reproduced from [93]
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XMCD peaks than large clusters. The trends in XMCD can be seen as counterparts to
analogous trends in XANES; they can be traced to a higher localization of d electrons
in the smaller clusters.

The intensities of XMCD peaks decrease with increasing cluster size nearly
monotonously. This trend reflects the changing character of d electron states (from
atomic-like to bulk-like). On the other hand, the areas of L, 3-edge XMCD peaks do
not follow a simple trend. This should not be surprising because these areas reflect
values of magnetic moments of cluster atoms [97-99] and these values oscillate with
the cluster size (see Table4.1).

X-ray absorption spectra (XAS) for small charged clusters were measured by
Hirsch et al. [100]. The theoretical x-ray absorption spectra shown in Fig. 4.3 contain
more structure and exhibit narrower lines than the measured spectra. This difference
is probably associated with differences in the geometric structure of clusters inves-
tigated by experiment and by theory: For calculations, clusters with bulk-like bcc
structure were employed whereas in experiment it is more likely that other structures
with lower symmetry were involved. For these low symmetry clusters, more inequiv-
alent atoms are present. This gives rise to a multitude of closely separated levels and
subsequent smearing of originally sharp spectral features. XMCD spectra of free
charged Fe clusters are also available [101]. Again, experimental spectra contain
less sharp features than the calculations. The general trend that XAS and XMCD
spectra of clusters exhibit more features than spectra of bulk Fe is, nevertheless,
present both in theory and in experiment.

4.2.2.2 Rh Clusters Supported by Ag(100)

Magnetism of Rh clusters has been a controversial topic, with contradictory reports
on presence or absence of magnetism in thin Rh films and/or small Rh clusters [102—
105]. A combined experimental and theoretical study of Rh clusters on Ag(100)
demonstrated that magnetism of Rh clusters is strongly related to the geometry of
the clusters and also to the interaction of the clusters with the support [106].

Free Rh clusters are magnetic, as it follows from the experiment [104] as well as
from calculation [107-111]. To illustrate this, we present in Table4.2 average mag-
netic moments of atoms in Rh clusters of different sizes, together with magnetization
energies per atom (defined as differences of total energies obtained if the cluster is
either magnetic or non-magnetic). One can see that magnetic moments per atom as
well as magnetization energies mostly decrease with cluster size — even though this
decrease is not monotonic. Magnetic and non-magnetic states are practically degen-
erate for Rh cluster of 68 atoms. If the cluster contains 135-atoms, its ground state
is non-magnetic [111].

For supported Rh clusters, intermixing of the cluster atoms with the substrate and
formation of a surface alloy appears to be an important factor which suppresses the
magnetism. Combining experiment and theory helps to understand how the magnetic
moment is formed for Rh clusters if they are prepared by buffer-layer-assisted growth
in a Xe matrix. To begin with, the KKR-GF calculations suggest that if a Rhy cluster
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Table 4.2 Magnetic moments fispin and fiorb (in 1425) and magnetization energies (in mRy) per atom
for free Rh clusters of 13—68 atoms [111]

N Mspin Horb AEmag
13 1.423 0.108 -11.74
14 1.258 0.147 -2.88
19 0.771 0.110 -2.34
38 0.696 0.040 -0.61
43 0.202 0.009 -0.15
55 0.526 0.037 -0.66
68 0.062 0.009 0.00

is located atop the Ag(100) surface, its average spin magnetic moment (per Rh atom)
is pepin = 0.92 143 [106]. However, if it gets embedded into the surface or even buried
beneath it, it is nonmagnetic.

Experimental XMCD study [106] demonstrates that if Rh clusters are prepared on
a Xe matrix, they are magnetic. However, if Rh is deposited directly on the Ag(100)
surface at low temperature, it shows no magnetism — in contrast to theoretical pre-
dictions that Rh clusters should be magnetic. To address this issue, spectra of Rh-
Ag systems in different geometries are calculated and compared to measurements.
The experimental XANES for a 0.1-monolayer amount of Rh deposited directly on
Ag(100) (see Fig.4.5a) is very different from spectrum of equivalent amount of Rh
on the Xe buffer layer. In the former case the diffuse peak is not present and instead a
hump on the high-energy sides of the M3 , peaks appears. Moreover, the resonances
are shifted to higher energies. This can be understood if one accounts for the alloying
processes (bottom panel of Fig.4.5b). Here one compares theoretical XAS for a flat
Rhy cluster in three different positions: (i) on the top of the Ag(100) surface, (ii)
embedded within the surface, and (iii) submerged down to the subsurface layer (i.e.,
located below the surface). In real samples the shoulder at the high-energy side of
the M3 edge would be smeared-out due to superposition of spectra originating from
clusters of different shapes and sizes, so the resulting spectra would be similar to what
was measured. One concludes that the suppression of Rh magnetism observed exper-
imentally during the buffer-layer-assisted growth is mainly caused by the increase of
the cluster size and not by the cluster-substrate interactions. Nevertheless, hybridiza-
tion is important for Rh atoms if they are deposited directly on Ag(100) surface,
without the buffer layer; in that case, magnetic moments are quenched [106].

4.2.3 Modeling the Structure of Glasses

When using x-ray absorption spectroscopy for structural studies, one usually makes
use of the EXAFS range where multiple scattering effects are not very important.
Consequently, the extraction of structural data from the spectra is relatively straight-
forward. Analysis of XANES is quite complicated in this respect. In some situations,
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Fig.4.5 aExperimental Rh M3 » XANES of Rh clusters deposited on a Xe buffer layer on Ag(100)
and of Rh clusters deposited directly on Ag(100). Spectrum of bulk Rh is shown for comparison.
b Theoretical XANES: (upper panel) free spherically-shaped Rh clusters of 19 and 43 atoms together
with Rh crystal, (lower panel) flat two-dimensional Rh clusters of four atoms located either on top
of Ag(100) surface or embedded into it or buried below it. Figure reproduced from [106]
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however, getting involved in it is necessary. The cases introduced in Sect. 4.2.2 above
concerned situations where recording EXAFS is not possible because the material
is very diluted so one does not have sufficient intensity of the signal to isolate small
EXAFS oscillations. In this part we will deal with other situations where it is useful
to go beyond the single-scattering EXAFS analysis.

There are several reasons why the views on the geometry provided by XANES
and by EXAFS could be different. First, XANES is quite sensitive to multiple-
scattering contributions which are usually not so important for EXAFS. XANES
thus reflects also the bond angles. Second, as the scattering amplitude depends on
the electron energy differently for different atomic types, XANES may depend dif-
ferently than EXAFS on the chemical composition of the nearest neighborhood of
the photoabsorber. Finally, XANES features will be less damped by the disorder, so
the signals which originate from scattering by atoms in the second and further coor-
dination shells can be more important in XANES than in EXAFS [112-114]. One
expects that this will become significant for studies of systems with a strong static
disorder — such as glasses.

4.2.3.1 Local Geometry Around Ag Atoms in Ag-B-O Glasses

As an illustration, we present a study of possible structural configurations of Ag
atoms in silver borate glasses Ag,O-nB,0s. Borate glasses in general attracted
attention because of their varied optical, electrochemical or magnetic properties. Sil-
ver borate glasses in particular aroused interest due to their high ionic conductivity,
which promises potential applications in electrochemistry (solid electrolytes). Opti-
mizing technologically interesting properties requires understanding the structure at
the atomic level. Specifically, a detailed information about the local environment of
the moving ions is desirable [115].

The local geometry around Ag atoms has been studied by various approaches
both for binary (Ag,O-nB,03) and ternary silver borate glasses (e.g., mixed with
Agl). Based on the experimental results, a model for the structure around Ag was
initially proposed. EXAFS experiments suggested that the Ag-O distance should be
close to 2.3 A and that the coordination number of Ag should be low (around two)
[116, 117]. On the other hand, neutron scattering experiments in connection with a
reverse Monte Carlo analysis of the data presented evidence for a different model,
where several different local geometries around Ag would co-exist, with the average
coordination number higher than what was deduced from the EXAFS [118]. This
indicated gaps in the knowledge of the local geometry around Ag in Ag,O-nB,0;
glasses. Therefore, a thorough XANES analysis was performed [119-121].

First, one has to find a good starting point. This can be achieved by comparing
theoretical spectra obtained for few generic polyhedra which simulate the nearest
neighborhood of Ag atoms. Inspired by EXAFS results [116], one can start with one
Ag atom surrounded by few O atoms at the distance of 2.27 A. The number of nearest
oxygens is varied between two and eight. We show several Ag K-edge spectra of
basic units in Fig.4.6. Apparently, the crucial task for the modeling is to reproduce
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Fig. 4.6 Model Ag K-edge spectra calculated for five generic Ag-centered polyhedra. Spectral
curves are identified by names and schematical diagrams of respective polyhedra (full circles depict
Ag atoms, open circles depict O atoms). Spectrum measured for silver diborate glass AgyO-2B,03
is included for comparison. Figure reproduced from [120]
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the first spectral peak at about 22 eV. In most cases, it is too wide and/or too low. The
model with eight O atoms, with cubic order which resemble the nearest neighborhood
in a bec crystal, seems to be the most plausible [120]. The general picture provided
by the data of Fig. 4.6 remains even if we randomly add some more distant atoms (to
simulate the effect of further coordination shells which would be quite disordered in
a glass). We conclude that the most promising candidate for a further improvement of
the structural model of Ag,O-nB,0O3 glasses is the eight-atoms cube-like polyhedron.
Further study can focus just on this model and elaborates it in more details.

The simple cube-based model is clearly too symmetric to describe a real situ-
ation. One should consider that atoms in the nearest Ag neighborhood will have
different radial distances and different chemical types. This implies that one can-
not reproduce the measured Ag K-edge XANES of Ag-B-O glasses by employing
just a single geometric configuration. To obtain an acceptable agreement between
model spectrum and experiment, it is necessary to incorporate large structural dis-
order present in glasses via the multi-configurational approach. Conventional best-
fitting methods would fail in this situation. Therefore an alternative approach has
to be employed. Namely, we construct several cube-based semi-ordered structural
models, each comprising several individual configurations, and explore how the cal-
culated XAS changes if some characteristics of the models such as radial distances,
coordination numbers and chemical compositions of atoms in the nearest and next
nearest neighborhoods are varied.

The multi-configurational approach promoted here thus implies that each model
structure comprises a set of individual geometric configurations or clusters, as shown
in Fig.4.7. Every cluster consists of a central Ag atom and of additional eight atoms
which are located on the diagonals of the cube — close to cube vertices but not
necessarily exactly in them. These “corner atoms” are further divided into two groups.
The nearest N| atoms create a more rigid first shell; these atoms are always oxygens,
all at the same distance R; from the Ag atom in the center. The rest of the (8-N;) corner
atoms create a more diffuse second shell. We assume that K g of them are borons and
the remaining are oxygens. The second shell is radially smeared, the radial distances

@ Ag
@ O (1-stshen)
QO O/B  (2-nd shell)

Fig. 4.7 Model of local environment around Ag in Ag,O-nB, 03 glasses based on a cubic structure.
Positions of the central Ag atom and of the first-shell O atoms (marked by crosses and thicker bonds)
are fixed for all configurations which form a particular set. Radial distances and chemical types of
atoms in the second shell (depicted via empty circles and thinner bonds) are different for different
configurations. Figure reproduced from [120]
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span the 2.5-3.0 A range equidistantly. To present a particular example, if the second
shell is formed by five atoms, each of them has a different radial distance from the
set 2.5, 2.625, 2.75, 2.875 and 3.0 A. Imposing these conditions allows to generate
many different geometric configurations with the same first shell geometry and with
a fixed number of B atoms K. We categorize individual configurations in such a
way that configurations with the same positions of first-shell atoms belong to the
same set. Configurations differing only by arrangement of the second-shell atoms
thus belong to the same set. Each such set defines a structural model.

We consider models with the first-shell coordination numbers N; = 2, 3, or 4,
with the first-shell distances R; = 2.0,2.2, 0or 2.4 A and with K g =0, 2, or 4 borons
in each cluster. Note that the parameters N, R, and Kp still do not specify the
model uniquely because there are several non-equivalent ways to distribute the first-
shell atoms among the eight bond directions. Ag K -edge XANES was calculated for
each of the models by averaging theoretical spectra for all configurations which are
associated with the particular model (set). Theoretical spectra for structural models
specified by N; = 4 oxygens located in the first shell in a specific way are shown in
Fig.4.8 [120]. The arrangement of first-shell atoms is depicted by the diagram in the

radially blurred 2nd shell

——=— equidistant 2nd shell

Kg=2

experiment

Kg=14

Ag K-edge XANES

Ag K-edge XANES
Ag K-edge XANES

0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
energy  [eV] energy  [eV] energy  [eV]

Fig. 4.8 Theoretical Ag K -edge XANES of Ag,O-nB,03 glasses for models based on four oxygen
atoms in the first shell. Positions of atoms in the first-shell are shown in the inser above the left
panel (directions of first-shell bonds are shown via thick lines). Numbers of B atoms located in the
second shell K p vary from Kz = 0 (left panel) to K g = 2 (middle panel) to K p = 4 (right panel).
Distances between O atoms in the first-shell and the Ag atom in the center vary from R} = 2.0 A
(uppermost graphs) to Ry = 2.2 A (middle graphs)to Ry =2.4 A (lowermost graphs). Spectra for
corresponding models which have all the (8-N1) second-shell atoms at the same distance (2.75 10%)
are shown by dashed curves. Measured K -edge XANES of Ag,0-2B,03 glass is shown at the fop
of the right panel. Figure reproduced from [120]
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inset. The plot shows how the averaged spectra evolve if R; or K are varied. The
effect of smearing of the second shell can be seen as well: spectra for corresponding
models with equidistant second shells are shown via dashed lines for comparison.

Whether a structural model is plausible or not should be assessed according to the
ability of the model to reproduce essential spectral features seen in the experiment.
In our case this includes the relatively sharp first peak followed by a second flat
shoulder; the distance between these peaks is 41-47 eV. It turns out that the crucial
test is whether a particular structural model gives rise to the first peak. The best
agreement is obtained for model with R; = 2.2 A [120]. A too short Ag-O distance
(R, =2.0 A) results in unsatisfactory XANES curves. If some second-shell O atoms
are substituted with B atoms, the results improve. Using Kz = 4 borons leads to
better results than using Kz = 2 borons. Smearing the distances in the second shell
over the whole 2.5-3.0 A interval suppresses some redundant spectral oscillations. It
also results in a small increase of the distance between both peaks, improving further
the agreement with experiment.

Exploiting the K-edge of Ag in Ag-B-O glasses for structural analysis is quite
complicated because of the large number of O and B atoms which surround Ag at
distances below 3 A. For glasses, this appears to be a general situation, especially
if one is interested in the local structure around the glass network modifier (as is
the case of Ag). In these cases analyzing XANES spectra can help in selecting most
plausible models for local structure.

More reliable information about local structure could be got by analyzing both
XANES and EXAFS signals together. Specifically in the case of Ag-B-O glasses, one
could use the Ag-related radial distribution function (RDF) obtained from EXAFS as
a guide for a multi-configuration analysis of XANES. It should be noted that a con-
ventional EXAFS analysis based on Fourier filtering and cumulant expansion would
not lead to reliable results for the structure of Ag,O-nB,05 glasses due to a strong
disorder around Ag ions. Instead, one could use a method based on a direct inversion
of the EXAFS formula. Such procedure does not require a priori assumptions about
the shape of the RDF [122]. Application of this method to Ag K -edge XANES of g-
Agr0-nB,03 leads to the RDF shown in Fig. 4.9 [121]. Unfortunately, the procedure
used to get the RDF shown in Fig. 4.9 does not allow for specifying chemical types
of atoms in Ag neighborhood, because boron and oxygen are too close in the peri-
odic table and their scattering properties are too similar in the EXAFS photoelectron
energy range. This problem can be circumvented by employing XANES analysis:
One can calculate the Ag K-edge XANES via the multi-configuration approach,
using the RDF obtained from EXAFS analysis. When generating individual config-
urations employed in the XANES calculations, one requires that the average distri-
bution of Ag—X distances (X = O, B) is the same as the EXAFS-derived RDF shown
in Fig.4.9. For technical reasons, the desired distribution is modeled by superposing
two Gaussian RDF’s.

In this way one can generate several sets of geometric configurations or structural
models which differ one from another by the average number of B atoms K. As
noted above, the RDF was written in terms of superposition of two Gaussians; the
B atoms were put preferentially into the more distant of them. Only in case that
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Fig.4.9 Radial distribution function (RDF) for atoms around Ag in Ag, 0-4B, 03 glass as estimated
by best-fitting the EXAFS spectrum (full line with dots). Also shown is the approximation of this
RDF by a superposition of two Gaussians (full lines without dots) and by a semi-uniform distribution
(dashed lines). Figure reproduced from [121]

Kp > 4, some B atoms had to be placed also to the first shell. In the study of Kuzmin
et al. [121] each model is represented by 200 configurations. Consistently with the
multi-configuration approach, XANES for each structural model was obtained by
averaging spectra obtained for all configuration that form the respective structural
model (set of configurations).

Theoretical XANES obtained for the structural models has to be compared with
experiment; this is done in Fig.4.10. Calculated XANES clearly depends on the
average number of B atoms Kp. For small K, the first peak appearing at about
20 eV has too low intensity in comparison with experiment. If the number of B
atoms increases, theoretical XANES becomes similar to the experimental spectrum
at about Kp = 4. Further increase of Kp leads to decrease of the amplitude of the
first spectral peak and to an appearance of a false pre-peak at 8 eV.

A more quantitative comparison of calculated and experimental XANES signals
one can achieved by using the R?-factor,

o J4E [Yue(E) - Yexp(E) |°

R* = 10 >
[dE [Yexp(E) |

with Yy and Yex, being the theoretical and experimental spectral intensities. The
R>-factors evaluated for each of the spectral curves shown in Fig.4.10 are presented
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Fig. 4.10 Calculated Ag K -edge spectrum for Agy0-4B, 03 glass. The spectra were calculated for
structural models generated consistently with either double Gaussian (full lines) or semi-uniform
(dashed lines) RDF’s (see Fig. 4.9). Structural models are determined by average numbers of B
atoms Kp (the rest of the first-shell atoms are oxygens). Vertical lines serve as guides for eye.
Figure reproduced from [121]
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Table 4.3 Quantification of Number of borons R2

the differences between

calculated and measureed 0.0 0.2999

spectra for g-Agr0-4B,03 1.0 0.2708

via the R2-factor. This table 2.4 0.2389

accompanies the Fig. 4.10 32 02112
4.0 0.1860
4.8 0.1849
5.5 0.1867
6.4 0.2084
8.0 0.3276

in Table4.3. It can be seen that most plausible models are those containing 4.0-5.5
boron atoms, consistently with what was inferred based on Fig.4.10.

Let us conclude this part by observing that by exploiting complementarity of
EXAFS and XANES techniques one is able to find a more complete and reliable
structural model than would be possible if only EXAFS or only XANES was used.
Calculations of XANES in the real space within the KKR-GF formalism forms an
important ingredient of this approach.

In the examples presented in this section, the inclusion of the disorder was achieved
by directed averaging over many configurations. An alternative approach might rely
on effective averaging over atomic positions via the CPA formalism (see Chap.21
of this book).

4.2.3.2 Local Geometry Around B Atoms in Ag-B-O Glasses

There is a difference between the roles which Ag and B atoms have in Ag,O-nB,03
glasses. Namely, B atoms are directly incorporated into the B-O network, forming
rings of BO; and BO,4 units. They are thus network formers. On the other hand,
Ag atoms mostly occupy the voids between the B-O rings, they are just network
modifiers. A very important question related to the structure of borate glasses is the
ratio between the numbers of BO5; and BOy4 units in the borate network.

Conventionally, the ratio of B atoms occurring in BO3; and BO4 units has been
determined by analyzing nuclear magnetic resonance (NMR) spectra of ''B [123].
Having an independent method of measuring this ratio would be, nevertheless, quite
useful. One of the reasons is that NMR spectroscopy cannot be used if the concen-
tration of B atoms is very small (for example, in materials where boron is used as
dopant). Therefore, there is a need for alternative ways of determining the ratio of
three-fold and four-fold coordinated B atoms.

The ability of XANES to distinguish between BO3 and BOy sites can be tested
on boron-containing minerals. Their structure is quite complicated so it can be con-
sidered as a good approximation for the local structure of glasses. Let us start by
examining whether spectra generated by three-fold and by four-fold coordinated B
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are sufficiently different one from another and whether this difference can be repro-
duced by calculations. Theoretical and experimental B K -edge XANES spectra for
systems which contain only BOj3 units are presented in the left graphs of Fig.4.11,
spectra for systems with only BO4 units are presented in the right graphs of Fig.4.11
[124]. To test the robustness of theoretical results, the calculations were done both
for non-self-consistent and self-consistent potentials, with the 1s core hole included
within the relaxed and screened model [125].
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Fig.4.11 B K-edge XANES of selected boron-contaning minerals calculated for either selfconsis-
tent (solid lines) or non-selfconsistent (broken lines) potentials, together with experimental spectra
(dotted lines). Left panels show spectra for systems with B in BOs, right panels show spectra for
systems with B in BO4. Figure reproduced from [124]



120 J. Mindr et al.

Figure4.11 shows that involving self-consistent potentials mostly does not have
a major impact on the calculated XANES in comparison with non-self-consistent
potentials. Particularly, the difference between the general spectral shapes for min-
erals with BO3; and with BOy is reproduced sufficiently well for both potentials. The
biggest impact of using a self-consistent potential can be observed in the pre-edge
region (in case of BO3-containing systems): the pre-peak intensity is properly repro-
duced only for a self-consistent potential. The situation for BPO, is specific: without
using a self-consistent potential, the B K-edge XANES cannot be reproduced even
as concerns its gross shape. It should be noted that the small pre-peak appearing in
the experimental XANES of danburite and datolite (cf. Fig.4.11) has been attributed
to a small amount of BOj3 units formed in the material due to radiation damage
[126, 127].

The objective of the research is to find out whether the main distinction between
the B K-edge XANES of mineral containing BO; and BOy is robust. It is evident
that the differences in theoretical B K-edge XANES spectra induced by using self-
consistent or non-self-consistent potential are smaller than differences that would
result from changing the local geometry. The conclusions drawn from minerals thus
can be taken over for studying glasses.

A more targeted test of the sensitivity of XANES towards distinction between
BO; and BOy units can be done on minerals which contain both BO3 and BO, units.
The focus of such a study should not be on a detailed analysis of XANES of a single
compound but rather on observing spectral features which would be common to all
boron sites with three-fold or four-fold coordinations. That requires an analysis of
a large number of spectra. Figure4.12 displays theoretical spectra of ten minerals
which contain three-fold- as well as four-fold-coordinated B atoms [128]. To separate
the possible effect of the long-range order present in crystalline minerals but not in
glasses, the calculations are done both for large clusters of more than hundred of
atoms and for very small clusters comprising just the basic BO3 and BO4 units. To
provide a complex view, the spectra are shown for each boron site; this includes 13
curves corresponding to three-fold coordinated boron and 26 curves corresponding
to four-fold coordinated boron. As an aid to the eye, spectra averaged over all sites
in BOj units and in BO4 units are shown via thick lines.

Apparently, the spectra shown in Fig.4.12 can be categorized into two groups
according to the coordination of the photoabsorbing B atom (similarly asin Fig.4.11).
Characteristic shapes of spectra generated at BO; and BOy sites are well-separated.
The gross shape of B K-edge XANES is clearly dominated by short-range
order — averaged spectra of small clusters are very similar to averaged spectra of
large clusters. Conclusions based on spectra of minerals thus may be transferred to
glasses.

Further quantitative analysis of results presented in Fig. 4.12 shows that the area of
the main peak labelled as B depends only on the number of nearest oxygens (it does
not depend on compound, distances, middle-range order etc.) It appears therefore
that the ratio of areas of peaks labelled as C and B could serve as a criterion for
estimating the ratio of BO3 and BOy units in borate minerals and in borate glasses
alike.
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Fig. 4.12 Spectra calculated at all boron sites in ten different B-contaning minerals. Thin lines
represent spectra at individual sites, thick lines show averages over all spectra at sites with BO3
or with BO4 coordination. Areas within which 100% or 67% of curves associated with given
coordination are contained are also marked. The left panel shows spectra calculated for large clusters
of about 140 atoms, the right panel shows spectra calculated for small clusters of 4-5 atoms

4.2.4 Interdiffusion at Interface: Interplay Between
Electronic and Real Structure

In this part we will deal with Au L;3-edge x-ray magnetic circular dichroism
(XMCD) of Co/Au multilayers. Experimental Au L; 3-edge XANES and XMCD
spectra are shown by thick dotted lines in Fig.4.13 [129]. This experiment is remark-
able because it shows that Au atoms at the Co/Au interface have appreciable magnetic
moments, despite the fact Au atoms are hard to polarize. Let us start by comparing
these experimental spectra with theoretical spectra obtained for Au atoms at clean
(sharp) Co/Au interface (full lines in Fig. 4.13) [130]. It is obvious from this compari-
son that the system studied by Wilhelm et al. [129] cannot be modeled by a multilayer
with a clean interface: the calculated L, XMCD peak has the same sign as the Lj
peak, which strongly contradicts the experiment. However, the experimental XMCD
signal can be reproduced if one allows for some interdiffusion at the Co/Au inter-
face. Two models of Co-Au interdiffusion were considered. In the first model, the
interdiffusion spans two layers and the concentration of Au atoms in the interface
layers is 70 and 30%. In the second model, the interdiffusion spans four layers and
the Au concentration varies across the interface as 70, 55, 45, and 30%. Theoretical
Au L, 3-edge spectra obtained for these models are also included in Fig.4.13. One
can see that allowing for the interdiffusion improves the agreement between theory
and experiment considerably. In particular, the model with interdiffusion spanning
two layers yields XMCD peak intensities very similar to what was measured [130].

Interdiffusion at the Co/Au interface is something one would not expect in the
beginning because Au and Co are mutually non-miscible. Nevertheless, for systems
prepared by various non-equilibrium procedures such as evaporating and sputtering
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Fig. 4.13 Calculated and measured Au L 3-edge XANES and XMCD of CojjAuy multilayer.
Experimental data are from Wilhelm et al. [129]. The XANES and XMCD signals are shown for a
clean interface and for two model cases with interdiffusion at the interface. Theoretical XMCD for
an Au atom embedded in bulk Co is shown for comparison. Note that XANES curves calculated
for both models of interdiffusion nearly coincide (in contrast to XMCD curves). Figure reproduced
from [130]

some interdiffusion may be present. It should be noted in this regard that interdiffu-
sion in Co/Au multilayers was assumed earlier when interpreting the dependence of
magnetic anisotropy energy on annealing conditions [131-133].

The fact that the best agreement between theoretical and experimental XMCD
signal is obtained for a specific model with interdiffusion across two layers should
not be interpreted as implying that other interdiffusion models are not acceptable. It
is quite possible that similar spectra could be obtained also for different distributions
of Au and Co atoms across the interface. Moreover, one has to keep in mind that
the structural model considered in the study [130] is still quite limited and that
calculations which rely on the LDA also have their limitations. Nevertheless, the
tendency to increase the heights of XMCD peaks if Au/Co interface interdiffusion
is allowed for is obvious.
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Interestingly, the changes in XMCD spectra which occur due to interdiffusion are
not accompanied by corresponding changes in calculated XANES (see Fig.4.13).
This is in accordance with the idea that XANES is determined mostly by positions
of atoms around the photoabsorber: one can plausibly assume that interdiffusion will
change the chemical type of atoms close to the interface but not their positions. It
seems that the difference in scattering amplitudes of Co and Au atoms is too small to
give rise to significant changes in calculated XANES. On the other hand, magnetic
moments of Au atoms are changed considerably via interdiffusion and this leads to
significant changes in the XMCD.

4.2.5 Doped Materials

One of the areas where analysis of XANES spectra may bring useful structural
information is research on doped materials because here it might be very difficult to
get an EXAFS signal of sufficient intensity. Multiple-scattering analysis may be very
helpful in these circumstances. To demonstrate this, we present few illustrative results
for transition-metal-doped ZnO. The origin of magnetism in wurtzite w-ZnO doped
by transition metal atoms is still subject of debate [134]. Despite numerous studies of
structure and/or magnetism of doped ZnO, it is difficult to obtain a coherent picture
[135-141]. One of the reasons for this is that it is difficult to investigate magnetism
and structure simultaneously on the same footing. XANES and XMCD spectroscopy
offer interesting possibilities in this respect.

One of the key question to answer is where the dopant is located. The potential
of XANES modeling within the real-space KKR-GF formalism can be illustrated by
the study of Co-doped wurtzite ZnO by Ney et al. [ 142]. Comparison of experimental
and theoretical Co K edge x-ray linear dichroism (XLD) provides a convincing proof
that Co atoms are located in Zn-substitutional sites (Fig.4.14). A similar situation
was found for Cu-doped ZnO pellets [143]. On the other hand, it appears that for
Cu-doped ZnO thin films most of the Cu atoms are not built-in into the host lattice
but occur rather in CuO-like coordinations [141]. A proper analysis thus has to be
done for each system.

To assess the reliability of structural analysis based on XANES of doped ZnO,
one needs information about the structural sensitivity of the spectra for the case
of interest. Therefore, as another example, we present calculations of Cu K -edge
XANES for Cu in a number of structures: Cu at Zn-substitutional site (Cuy,) in w-
Zn0O, Cu at interstitial site (Cu;) in w-ZnO, monoclinic CuO, and also a hypothetic
Cu metal with the structure of w-ZnO [144]. Apart from XANES averaged over all
spatial orientations (as in polycrystalline sample), we evaluated also the XLD by
subtracting the spectra for two perpendicular orientations of the polarization vector
of the incoming radiation. The outcome is presented in Fig.4.15. One can see that
having Cu in different environments leads to different XAS and especially different
XLD spectra. Employing the XLD thus makes it possible to distinguish reliably
between Cug, and Cu; positions and also between CuO and Cu clustering.
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of Co-doped ZnO. A Zn-substitutional Co position was assumed. Figure reproduced from [142]
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Fig. 4.15 Comparison of Cu K-edge spectra (XAS in the left panel, XLD in the right panel) for
Cu in different environments: substitutional Cuz, in w-ZnO, monoclinic CuO, hypothetic Cu metal
with structure of w-ZnO and interstitial Cu; in w-ZnO. Results obtained for a ground state potential
are shown via full grey lines, results obtained with a core hole included within the transition state
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Table 4.4 Magnetic moments (in pp) for Cugz, in ZnO if there are no vacancies and if vacancies
are present in the ab plane — either in the first or in the second shell of oxygen atoms [144]

Hspin(tot) Hspin(Cu) Horb(Cu)
No vacancy 1.70 0.59 0.14
Vacancy in Ist shell | 0.54 0.18 0.06
Vacancy in 2nd shell | 1.18 0.52 0.30

Another example how analysis of polarized XANES can facilitate studying struc-
ture of materials is given in Sect.22.3 of this book.

One of the main motivations for research on doped ZnO is magnetism. Theoretical
studies suggest that whether the dopant in ZnO is magnetic or not depends on its
location. It was found that Cu atom in interstitial position in ZnO is nonmagnetic,
while Cu atom in a substitutional position is magnetic [143]. As some studies suggest
that oxygen vacancies may be important [137], it is interesting to calculate magnetic
moments for a substitutional impurity Cuz, in ZnO if vacancies are included: the
oxygen vacancy Vg was located in the ab wurtzite plane, in the first or in the second
shell of O atoms (Cu—Vg distances were 1.98 Aor3.80 ;\) [144]. Theoretical results
for fispin and fior, at the Cu sites are summarized in Table 4.4. The table presents also
the spin magnetic moment for the whole system, to demonstrate that the polarization
cloud around Cu must be quite extended.
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To study the influence of vacancies further, one can calculate Cu K -edge XMCD
for substitutional Cug, either with vacancies or without vacancies. The results are
shownin Fig.4.16 [144], together with Cu K edge XMCD measured for paramagnetic
Cu-doped ZnO pellets [143]. If the vacancy is next to Cug,, the sharp XMCD peak
in the pre-edge region is nearly suppressed. If the vacancy is further from Cug,, it
leads to changes in the fine XM CD structure in the energy region which corresponds
to the main XANES peak. A particularly interesting feature is the case of an oxygen
vacancy in the first shell. There is small non-zero magnetic moment on Cu for this
case but the XMCD signal does not exhibit the strong pre-edge signal, clearly shown
in the theory for other geometries (and also observed in the experiment for Cu-doped
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ZnO pellets [143]). This strong sensitivity of the Cu K-edge XMCD to the presence
of vacancies can serve as yet another example how XMCD spectroscopy, together
with proper theoretical support, could be useful for structural studies.

4.2.6 Angular Resolved Photoemission

4.2.6.1 One-Step Model of Photoemission

Angle resolved photoemission (ARPES) and bremsstrahlung isochromat
spectroscopy (ARBIS) are experimental techniques for the direct determination of
the electronic structure of materials [27, 28]. Within this techniques, we have direct
and very accurate access to measure the band dispersion and the electronic structure
around the Fermi level with high resolution. During the last years many techni-
cal improvements led to an increase of the resolution of ARPES down to the meV
regime. Among others, these developments includes the use of the synchrotron and
laser photon sources and improvements of the detector side (e.g. spin resolution). On
the theory side, the photoemission many-body theory has been developed 50 years
ago [29-33]. Based on these formulations, Berglund and Spicer [34] derived so called
three-step model (3SM) of photoemission (PE), which was the first and very simpli-
fied version of a one-electron approximation for the photocurrent, In this model the
photocurrent is divided into 3 incoherent steps: the excitation of the photoelectron
(PhE)), its transport through the bulk and its escape into the vacuum. Self-energy
corrections, which describe among others damping processes and shifts in the quasi-
particle spectrum, are neglected. This means that the final and initial states in the
ARPES process are considered to be Bloch-waves with an infinite lifetime. The
assumption of an infinite lifetime can not account for transitions into evanescent gap
states. It means, exponentially decaying states into the bulk. This assumption for the
initial state also does not allow to describe PE spectra that includes surface states.

To overcome the limitations of the 3SM, a dynamic description was proposed
first for the final state by Liebsch [35] and Spanjaard et al. [36]. Later on multiple
scattering effects were included for the initial as well as final states by Pendry and
coworkers [37, 38]. This allows to include self-energy effects on equal footing.
Within the Pendry’s one-step approach (1SM) to ARPES [37, 39] the retarded one-
electron Green'’s function for the initial state is calculated within the DFT [40]. Here
the electronic correlation effects are in most cases considered in by the local (spin)
density approximation (L(S)DA) [41, 42]. Lifetime effects in the initial state as well
as final states are modeled by an imaginary potential term V. The time reversed
spin-polarized low-energy electron diffraction (SPLEED) state [39, 43] is the proper
final states for the PE process. The imaginary part V,  here simulates the inelastic
mean free path (IMFP) leading to the decaying amplitude of the high-energy PhEIl
state inside the bulk [37].

After the 1SM has been formulated, it has been generalised in many ways. For
example, the quantitative description of spin-orbit induced dichroism was worked
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out by several groups [43-50]. Furthermore, the so called full-potential formulation
of PE led to the accurate description for complex surface systems [43, 49, 51] (see
Chap. 3 of this book). The treatment of disordered systems has been first proposed
by Durham et al. [46, 52]. Nowadays, the 1SM allows to consider photon energies
in a wide range from a few eV to more than 12 keV [53-60], for arbitrarily ordered
[61] and disordered systems [62] at finite temperatures, and including in addition
strong correlation effects within the DMFT [63-68].

The idea of the 1SM is to treat the actual excitation, the transport as well as the
escape into the vacuum [34] as a single quantum-mechanically coherent process.
This includes all multiple-scattering events. By describing the final and initial states
within the fully relativistic layer-dependent KKR method [1, 69, 70], it is possible
to treat ARPES from complex layered materials like thin films and multilayers.
As mentioned above, within the 1SM of PE, the ARPES is described by Pendry’s
formula [37]:

I8 o S (Ef, ky|GFXGTXTGF |Ef Ky) (4.14)

This equation is derived Fermi’s golden rule for the transition probability per unit time
[43, 71] within the sudden approximation. Here the many body interaction of the PhEIl
with the rest of excited system is neglected. The initial state is described by the layer
KKR Green'’s function G . Treating an angle-, spin- and energy-resolved, experiment
the state of the PhEI at the detector can be formulated as |Ef, k), where kj is the
component of the wave vector parallel to the surface, and Ef is the kinetic energy of
the PhEIL The spin state of the PhEl is included in | E ¢, k) as a four-component Dirac
spinor. The advanced Green’s function G, in (4.14) describes the final-state e.g., the
scattering properties of the surface at E;. By |¥y) = G, |Ey, k) all multiple-
scattering events are formally included. We treat the final state within SPLEED
theory by a single plane wave |E s, k) penetrating onto the crystal surface. The X
is the dipole operator of electron-photon interaction and is shown in its relativistic
form in (4.8). However in ARPES, due to the numerical stability it is usefull to have a
different form of this operator, i.e. the so called VV form. This is derived by making
use of anticommutator and commutator with Dirac Hamiltonian analogously to the
nonrelativistic case [19].

4.2.6.2 Correlation Effects in Transition Metals

The most detailed description of the band structure of correlated matter can be seen
by angle- and spin-resolved valence band PE. Here we show various examples of
ARPES calculations done within the 1SM. These examples will demonstrate the
need to treat matrix elements in ARPES calculations in order to get a quantitative
understanding of the experimental data.

The following examples concern the ferromagnetic (FM) transition metals like Fe
and Ni as prototypes to understand magnetism and electronic correlations far beyond
the LSDA. In particular, fcc Ni has been studied by many experimental [146—152]
and theoretical studies [153—155] as a prototype of an itinerant electron FM, since
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shortcomings of simple one-electron theory are obvious. LSDA calculations for fcc
Ni cannot describe various experimental aspects of the electronic structure of Ni. In
addition to the feature that valence band PE spectra of Ni [156—158] has a reduced
3d-band width compared to LSDA results [159] the PE show a satellite feature at
a binding energy (BE) of about 6 eV [146, 147, 160-163]. On the other hand, an
improved inclusion of correlations for the 3d electrons using manybody techniques
[153, 154, 164] or in a more recent view applying the LSDA4+-DMFT method [64,
78]. Within LSDA+DMFT method we can find more or less experimental width of
the 3d-band complex and furthermore is able to predict the 6 eV satellite feature in
the valence band.

In Fig.4.17 we present a comparison of experimental PE results [145] and cal-
culated theoretical data using several theoretical methods [64]. In the upper panel
ARPES spectra from (011) surface if Ni along T'Y for different emission angles are
shown. The dots represent the experimental ARPES data, whereas the red lines are
a single-particle spectral functions. Obviously, the LSDA-based data fails to repro-
duce the experimental data. The energetic positions of the theoretical peaks deviate
strongly from the measured ones. In addition, the complex intensity variation that is
measured for higher emission angles are not reproduced by the LSDA-based bloch
spectral functions. From the second row of this figure, it can be seen that 3BS results
provides a significant improvement when compared to the measurements. For the
complete range of angles the peak positions agree with the measurments within about
0.1 eV. However, the overall spectral shape of the experimental intensities is different
from the calculations due to the neglect of multiple scattering, matrix element and
surface effects. In the measurement most peaks seem to be broadened. In addition,
the intensity at the normal emission is shifted by 0.1 eV to higher BEs. The inten-
sity shape resulting from the ARPES calculation are presented in the lower panel of
Fig.4.17. Here we obtained very good quantitative agreement between measurment
and theory for all angles of emission. In the following we will closely describe spec-
trum calculated for the emission angle ® = 5°. The spin-integrated data shows a
pronounced double structure with BEs of 0.1 and 0.3 eV. The second peak is reduced
in intensity in agreement with the experimental data. Furthermore, the spectral width
is also quantitatively reproduced. The calculated BEs are connected to the real part of
the self-energy that shifts the energetic positions of peaks due to a dynamical renor-
malization of the quasi-particle energies. The relative peak intensities, on the other
hand, can be traced back to the matrix element effects that are included in the one-step
model of PE calculations. This double-peak structure comes from excitation of the
exchange splitted d-bands together with a significant amount of surface-state [165].

The second example within this section is devoted to a study of the prominent
6 eV satellite of Ni. As was previously shown by theory [164] and PE experiments
[149], the 6 eV satellite has finite spin-polarization. In a recent XPS experimental
study the intensity at hv = 150 eV and the spin ARPES spectra at hv = 66 eV has
been measured. Results for the latter experiment are presented in Figs.4.18a and c.

The satellite feature is found at a BE of about 6.3 eV in good agreement with all
former studies. Furthermore, Fig.4.18c shows the non-zero spin-polarization, again
in agreement with earlier publications [149]. After background correction, the spin-
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Fig. 4.17 Spin-integrated ARPES spectra from Ni(011) along T'Y for three different angles of
emission. Upper row: comparison between LSDA-based calculation and experiment [145]; middle
row: comparison between experiment and non-self consistent quasi-particle calculations neglect-
ing matrix element and surface effects [145]; lower row: spin-integrated LSDA+DMFT spectra
including PE matrix elements (this work). Theory: solid red line, experiment: black dots. Figure
reproduced from [64]

polarization is found to be about 15%. In Fig. 4.18b we compare the measured spectra
with a DOS which is calculated based on the LSDA+DMFT method. The values
U =2.8eVandJ =0.9eV are identical with what we used for the previous example.
The satellite is found at a BE of ~7.2 eV. This is 1 eV higher in BE compared to the
experiments. This is due to the many-body solver used here. The FLEX-solver [86]
is based on perturbation theory. As a consequence the energy-dependence of the self-
energy is underestimated and this causes this shift of about 1 eV in the BE. The spin-
and ARPES calculation is presented in Fig.4.18d. The predicted spin-polarization
of 10% is slightly smaller than the experimental one. Besides these deviations the
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Fig. 4.18 a Measured XPS taken at hv = 150 eV. The Ni 6 €V satellite structure appears at about
6.3 eV BE. b Spin- and angle-resolved PE spectra taken in normal emission at hv = 66 eV with s-
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The satellite feature appears at bout 7.2 eV BE. d LSDA+DMEFT spin-resolved PE calculation in
normal emission at hv = 66 eV for a U value of 3.0 eV: solid black (dark) and red (light) lines
indicate majority and minority spin states, green (gray) line shows the spin-integrated intensity.
Figure reproduced from [68]

agreement between theory and experiment is very satisfying. Thus we could show
the first ARPES calculation in which this spectral feature appears.

The second example in this section is devoted to a spectroscopic investigation of
ferromagnetic iron [66]. In the left panel of Fig.4.19 we show the experimental peak
positions together with LSDA+DMFT spectral functions for majority and minority
states. In addition to these LSDA+DMFT calculations, correlation effects were also
described within the 3BS theoretical approach [166]. Within the 3BS method the
self-energy is formulated using a configuration interaction-like description. Three-
particle configurations as for example one hole plus one electron-hole pair are taken



132 J. Mindr et al.

) vE R 4 zlt‘ s gIT! 1 Ellmm esphband £}
-1
(0 -S—
145
-
L 21 o~
% 2
gs :
5 =)
23 g
-2 2z
M £
-1 )
=

<o i T T T T T T
KR (b) I (d) By 5 4 3 2 10 5 43 2 10

r NT N Binding Energy (eV) Binding Energy (eV)

Fig. 4.19 Left panel: Spin resolved Bloch spectral functions calculated within LSDA+DMFT
and 3BS formalism. Corresponding experimental data points have been deduced from the normal
emission spectra along the I'N direction. Right panel: a Experimental spin-integrated PE spectra
of the Fe(110) surface measured with p-polarization in normal emission along the I'N direction
of the bulk Brillouin zone. The curves are labeled by the wave vectors in units of TN = 1.55 A=,
b Corresponding one-step model calculations based on the LSDA+DMFT method which include
correlations, matrix elements and surface effects. Figure reproduced from [66]

into account within the 3BS approach. This result can be directly compared to the
ARPES process and allows for a analysis of various contributions to the self-energy,
as for example electron-hole lifetime. A more detailed comparison is presented in
right panel of Fig. 4.19. Here we show a comparison of experimental ARPES data and
theoretical LSDA+DMFT based one-step model calculations of (110) surface of iron
along the I'N of the bulk Brillouin zone with p-polarized light. In our LSDA4+-DMFT
studies we use for the on-site Coulomb interaction U a value U = 1.5 eV which is
deduced from experiment [167] and other theoretical studies [88, 168]. Near the I"
point (k ~ 0.06 I'N), the peak found close to the Fermi level can be ascribed to
a Ei 5 minority surface resonance, as shown on top of Fig.4.19. In the experiment

its Z‘; bulk component crosses the Fermi energy at & ~ 0.33 I'N. This leads to a
reversal of the experimental spin-polarization and to a reduction of the intensity at
k = 0.68 I'N in the minority spin channel. The peak at the BE ~0.7 eV, can be
assigned to degenerate Z’ﬂ 4 bulk-like majority spin states. A 23T peak at BE ~1.1
eV dominates the ARPES close to the I"-point. The broad intensity around 2.2 eV,
visible at most of the k-points, but not at the N-point, is connected to a majority
surface state denoted as Eﬂ 3. Around the N-point (0.76 < k < 1.0) and at BE > 3

eVweseea X IL band with strong sp character. The difference between its theoretical
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and measured intensity can be described by the fact that in the calculations only the
Coulomb repulsion between d states is considered, without additional lifetime effects
for other sp bands. The comparison of the calculated and measured spectra turned
out to be a very detailed check for the U value used in the calculations. This also
applies to the self-energy, that was compared to its experimental counterpart derived
from the band dispersion and line width.

In summary, spectral function calculations for ferromagnetic iron was dano in
such a way that it coherently combine description of electronic correlations, surface
emission, multiple-scattering, dipole matrix element related effects that lead to a
modification of the relative ARPES intensities. Previously, a similar study was done
for hcp Co(0001) [89] and fcc Co(001) [169]. The unified approach allows a detailed
and reliable description of high-resolution ARPES spectra of 3d-ferromagnets. It
also allows for a very stringent test of current developments in the field of DMFT
and other many-body techniques.

4.2.6.3 Disordered Correlated Alloys: Ni, Pd;_,(001) and Diluted
Magnetic Semiconductor Ga, Mn;_, As

In this section combination of electronic correlations disorder effects are discussed
[62]. The above mentioned combination of KKR band structure method with the
DMEFT scheme has been generalised to the case of disordered alloys [63, 78]. In this
way one can include many-body correlation effects in the electronic structure and PE
calculations of this class of disordered materials. Application of this method to the
high-energy x-ray PE spectroscopy (HAXPES) spectroscopy is shown in Fig.4.20
where we HAXPES spectrum for diluted magnetic semiconductor Ga;_,Mn, As is
shown. An important element for tracing back the nature of the ferromagnetism
in dilute magnetic semiconductors is the direct experimental measurement of the
electronic states close to the Fermi level. Due to the difficulty in preparation of a
good quality surface samples it is very difficult to measure it by UV PE. This problem
could be solved by ARPES [55] and angle integrated [56] bulk sensitive HAXPES.
In Fig.4.20 we compare experimental a-c and theoretical data d-f based on a one
step model of angle integrated PE. Mn dopant has been described within the CPA
approach in combination with DMFT. The theory agrees quantitatively with the
experimental results over a broad range of BEs. We found bellow the Fermi level, a
feature at 250 meV, which can be seen only by to performing LDA+DMFT instead
of LDA calculations. From the theoretical data we conclude that the maximum in the
difference spectra has mainly Mn-3d (t,) angular momentum character. A strong
hybridization is present with As 4 p states which are localized around the impurity.
Figure4.21 represents a series of ARPES spectra of Ni,Pd;_, as a function of
the concentration x. It was calculated and measured for a photon energy hv = 40
eV with linearly polarized light. The experiments are shown in the left panel and the
LSDA+DMEFT PE calculations are ploted in the right hand side. Overall agreement
between theory and experiments is found for all concentrations. However, starting
from Nig70Pdg 30 it is clearly visible that deviation between theory and experiment
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Fig. 420 a—c HAXPES spectra (5953 eV) for different Mn doping in GaAs. The GaAs spectra
have been aligned to the (GaMn)As spectra using the BE position of the As 4s core level. No
background subtraction was applied. a Extended valence band PES (T = 20 K), including the
As 4s, Ga 4s, and As 4p shallow core levels of GaAs(100) and 13% Mn-doped GaAs. b Zoom
of the valence band region (T = 100 K), showing the spectra from pure GaAs (black dots), 1%
and 13% Mn-doped GaAs (red and blue dots, respectively). ¢ High-resolution spectra measured
in the vicinity of Ep. Difference spectra, corresponding to the Mn contribution only, are shown
in orange (13% Mn spectrum (blue dots) minus pure GaAs spectrum (black dots)) and grey (1%
Mn spectrum (red dots) minus pure GaAs spectrum (black dots)]. The reference Fermi level of
Au is displayed, offset. d Calculated angle-integrated PES (including matrix elements) for photon
energy and geometry (p polarization) as used in the experiment. e Calculated valence-band spectra
of GaAs(100) using LDA (black curve) and (Ga,Mn)As (13%) using both LDA (red curve) and
DMEFT (blue curve). f Zoom of the vicinity of Er with calculated difference spectra, as in ¢, for
LDA (violet curve) and DMFT (green curve). Figure reproduced from [56]

occurs with increasing Pd concentration. This is caused by the Pd d-states that are
slightly shifted to higher BEs. This is well known from other metals like Cu. It can
be described in terms of static correlations in the Pd-states that are not explicitly
considered here.

Our study has clearly shown that the electronic properties of the Ni, Pd;_, alloy
depend sensitively on the interplay of alloying and electronic correlation. A descrip-
tion within the CPA results in a very good description of the electronic structure of
many disordered materials like for example Ni,Pd;_, [62]. This example illustrates
that the combination of the CPA with LSDA+DMFT approach provides a powerful
tool for electronic structure calculations. In addition its combination with the fully
relativistic one-step model of PE takes into account chemical disorder and electronic
correlation on same footing and it guarantees a unique analysis of corresponding
measured spectroscopic data.
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Fig. 4.21 ARPES spectra taken from the NiyPd;_,(001) alloy surfaces as a function of the con-
centration x for a fixed photon energy of hv = 40.0 eV along I'X in normal emission. Experimental
data shown in the left panel calculated spectra shown in the right panel. Depending on the concen-
tration x a pronounced shift in spectral weight towards the Fermi level is visible. Figure reproduced
from [62]

4.2.6.4 Surface Effects in ARPES

In the following section we picked up an particular example showing power of multi-
ple scattering technique to describe and identify surface states. This example is based
on the compound for iron based super conductors, BaFe; As,. In this material, a long
standing discussion and unclear experimental situation concerning possible surface
termination has been widely discussed. Using the 1SM of PE one can describe various
surface states and can thus understand the origin of these bands. The occurrence of
surface-states can be easly predicted within the multiple scattering theory by means
of so called determinant criteria [171, 172]. This determinant criteria is formulated
from the bulk reflection matrices R, and from the scattering properties of surface
barrier potential R, (which connects the inner potential of the bulk crystal with the
vacuum level). The possible appearance of a surface state than given by the following
equation:

D(E,k) =det(I - Ry (E, k)R (E, k)) =0. (4.15)

For better visualization we plot 1/|D(E, k)| instead of D(E, k). If 1/|D(E, k)| is
bigger than 10° we identify given spectral feature as a surface states. For values
between 10° and 10? the spectral feature is surface resonance. For values below this
value one has bulk states. More details about this criteria can be found in the paper
by Braun and Donath [173].
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Fig. 4.22 Calculated Fermi surfaces and band structures of BaFe; As; for either an As-terminated
surface a and b or a Ba-terminated surface ¢ and d. The right side of each picture shows the
corresponding plot of 1/|D(E, k)|, meaning a high intensity indicates a possible surface state if
this specific structure can be also identified in the regular electronic structure calculation. Clear
surface states can be identified for the As-terminated surface as bright spots in the Fermi surface
a and as corresponding steep bands in the band structure b. These surface states are missing for a
Ba-terminated surface. Figure reproduced from [170]

This determinant approach is demonstrated in Fig.4.22. Here we show the band
structures and the Fermi surfaces along the a-axis for an As-terminated and a Ba-
terminated surface of BeFe, As,, respectively. The corresponding plotof 1 /| D(E, k)|
is shown on the right hand side of each picture. The determinant condition itself
without a high intensity in the corresponding ARPES plot is only an indication for a
surface state or a surface resonance. Only if a high intensity in the 1/|D(E, k)| plot
agrees with a band in the ARPES one can speak about clear surface character. For
example the two high intensity spots in Fig.4.22a along the g-axis have a surface
related origin, more specifically a surface state as the intensity of 1 /| D(E, k)| is in the
order of 10°. This is in agreement with the previous findings for the k_-dispersion
in ARPES, which indicates a connection to a surface related phenomenon [170].
Another proof for the surface origin of these states is represented in Fig.4.22¢ and d,
where the corresponding ARPES Fermi maps and band structures are shown for a Ba-
terminated surface. The surface states discussed above for the As-terminated surface
have completely disapeared in the Ba-terminated case. The corresponding high values
of the 1/|D(E, k)| are missing in both plots. Overall, the Fermi surface and the
dispertion of bands have undergone huge changes for the Ba surface termination.
The Ba layer on top of the surface leads to the reduction of the intensity and smearing
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of the electronic states which are in turn clearly visible in an As-terminated surface.
In particular one has to note that the agreement with measured ARPES data is much
better for an As-terminated compared to the Ba-terminated surface.

This result suggest the most likely As surface termination of BaFe;As,. The
surface termination in this material is still experimentally not clear and it is under
debate [175]. According to first principle calculations only three possible surface
termination exists. Is namely a fully As-terminated or a fully Ba-terminated surface
and an As surface covered with 50% of Ba atoms [176]. Experimental low-energy
electron-diffraction (LEED) and scanning tunneling microscopy (STM) measure-
ments indicates a Ba-terminated surface [177]. However, there are also experimental
LEED and STM measurments which clearly favor an As-terminated surface [178].
Above presented ARPES calculations clearly predicts an As-terminated surface. This
was shown by agreement of calculations with ARPES measurments.
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Chapter 5
Multichannel Multiple Scattering Theory
in R-Matrix Formalism

Peter Kriiger

Abstract Multichannel multiple scattering theory (MCMS) in R-matrix formulation
is introduced for x-ray absorption spectra calculations from spin-orbit split core-
levels. A multichannel extension of scattering theory is motivated by the occurrence
of strong electron correlation effects of the atomic multiplet type. MCMS is imple-
mented in real-space multiple scattering theory with a correlated particle-hole wave
function and the multichannel scattering matrix of the core-level site is computed
using the variational R-matrix method. This affords an accurate and numerically effi-
cient treatment of strong particle-hole configuration mixing induced by core-valence
Coulomb coupling. Applications of MCMS to L, 3-edge spectra of light transition
elements are reviewed and shown to give excellent results for metallic and insulating
Ca and Ti compounds, where long range band structure effects and particle-hole
coupling must be treated on an equal footing.

5.1 Introduction

5.1.1 Single- and Many-Electron Formulation of X-ray
Absorption Spectroscopy

In this introductory section, we introduce the theoretical basis of x-ray absorption
spectroscopy starting from the exact many-electron formula of the cross-section. We
describe its reduction to the often used single-particle theory and discuss the validity
and limitations of the latter. According to Fermi’s golden rule, the x-ray absorption
cross-section can be written as

0 (wg) & Y |{F|Hin|G)*0(Ep — Eg — huwg) , (5.1
F
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where Hi, is the interaction between the x-ray field and the matter, |G) is the ground
state and | F') are excited (final) eigenstates of the many-electron system, with energies
E; and Ep, respectively. The interaction Hamiltonian is essentially given by A - p,
where A is the vector potential of the light, p is the electron momentum operator,
and a sum over all electrons is understood. Close to an absorption edge from some
core-shell ¢, the dominating final states are those with one hole in that core-shell.
However, for nearby core-shells, configuration mixing between states with holes in
different shells may occur, as we shall see below.

Theories for XAS can be divided into two big classes depending on whether they
are based on the independent particle approximation (IPA) or not. In the IPA, |G)
and |F) are assumed to be (antisymmetrized) product functions corresponding to the
same effective single-particle Hamiltonian. Then, it is easy to show that (5.1) reduces
to

(W) o 3 F Hinele) 206y — €0 — Ty (5.2)
!

where |c) and |f) are single-particle eigenstates (spin-orbitals) of, respectively, the
core and the unoccupied levels, which energies €. and €. Equation (5.2) is the single
particle formula for XAS, and forms the basis of most calculations, especially for
K-edge spectra. For the computation of the continuum state |f), or equivalently,
the single-particle Green’s function, multiple scattering theory is a very convenient
technique.

The single-particle formula (5.2) can be derived under somewhat more general
conditions than the IPA. But it must be assumed that |G) is the product between a
core-state |c¢) and a single wave function |@) of the other (N — 1) electrons, and
that |F') is the product of the same function |@) and the excited spin-orbital |f').
Physically this means that during the excitation of the core-electron, the remaining
(N — 1) electrons are mere spectators and do not change their state. In reality, the
reaction of the other electrons is not at all negligible and may lead to strong spectral
changes, so-called core-hole effects. Often the most important effect is the change
of the effective one-electron potential due to the creation of the core-hole, that is
an additional localized positive charge. As a consequence of the deepened atomic
potential, the spectator orbitals contract or relax, and thereby screen the core-hole
charge. The orbital relaxation can be taken into account in the one-electron theory
(5.2) by calculating | /) with a core-hole potential, that is an effective single-particle
potential obtained by a constrained ground state calculation where one electron is
removed from the core shell and added to the valence shell. The prescription to use
the core-hole potential instead of the ground state potential is known as the final
state rule. For K-edge spectra, the final state rule often yields improved results as
compared to the ground state potential. From a many-body point of view, the final
state rule raises an orthogonality problem. Indeed, since the ground state poten-
tial and the final state potential are different, all the orbitals are different, and so
the state of the spectator electrons can no longer be the same. So, |G) = |®)|c) but
|F) =1®)|f) with |@) #[®). Then (F|Hin|G) = (f|Hinlc) x S, with § =
(@|®) < 1. The loss of spectral weight expressed by S < 1 must be compensated
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elsewhere in the spectrum. This implies that for the (N — 1) electron wave function in
the presence of the core-hole, not only the (constraint) ground state |®,) with energy
E, but also excited states |&®,) with energy E, will give non-zero contributions to the
spectrum. In core-level photoemission, this is directly visible since the energy loss
E, — E, corresponds to an increase in binding energy, and so the excitations appear
as higher energy peaks, such as multiplet, shake-up and shake-off satellites in atoms
and charge transfer or plasmon satellites in extended systems. In other words, the
core-hole creation is necessarily accompanied by spectral weight transfer to many-
body excitations. The success of the one-electron theory for K-edge spectra indicates
that in this case, the spectral weight transfer is either small, S ~ 1, or much spread
out in energy and thus hidden in the background.

In other cases, however, the spectral weight transfer is large and the single-particle
theory (5.2) breaks down. This is mostly due to strong configuration mixing in the
ground or final states which often occurs in 3d and 4f electron systems. The effects
are strongest when the optical transition goes directly into the open 3d or 4f shell, i.e.
at the transition metal L,3 and rare earth M5 adsorption edges. For these white lines,
good results are obtained with ligand field multiplet (LFM) theory [1] where (5.1)
is evaluated with correlated N-electron wave functions for a single atom whereby
intra-atomic configuration mixing (or multiplet effects) can be easily taken account
for. However, in the case of transition metal L,3 edges, the final 3d states are not fully
localized and the photo-excited electron will scatter at the surrounding atoms, which
gives rise to ligand field splittings and band broadening of L,3 edge spectra. The
ligand field splittings can, to some extend, be reproduced in the LFM model, but at
the cost of empirical parameters which need to be fitted to experiment. Thus the pre-
dictive power of the LFM method is very limited. LFM theory essentially performs
an exact diagionalization of the many-electron Hamiltonian. Let us note that it is
not possible to extend this scheme in a straightforward manner to extended systems
(solids and large molecules) because the size of the Hilbert space grows exponen-
tially with electron number. Nonetheless in the last two decades, much progress
has been achieved for taking account of multiplet effects in XAS calculations of
extended systems on an ab initio level using various different approaches. Without
going into detail, we mention time-dependent density functional theory [2-5], the
Bethe—Salpeter-Equation approach [6, 7], ab initio ligand field multiplet theories
based on quantum chemistry methods [8, 9] or Wannier-states [10], as well as the
multichannel multiple scattering method [11] which is the subject of this chapter.

5.1.2 Multiple Scattering and the Need for a Multichannel
Extension

Multichannel multiple scattering theory was first proposed in 1990 in a seminal paper
by C.R. Natoli et al. [12]. It is a generalization of multiple scattering theory to many-
electron wave functions and was motivated by the many-electron effects observed



146 P. Kriiger

in x-ray absorption spectra that we have touched upon in the previous section. For
single scattering centers, multichannel scattering theory is well known since the
1950s in nuclear physics [13] and since the 1960s in atomic physics [14]. Stated
simply, MCMS theory extends multichannel scattering theory from a single atom to
a condensed systems by taking account of multiple scattering at the various atomic
sites.

In order to introduce our notation and to well understand in what sense MCMS
extends standard multiple scattering theory (MST) we shall start by recalling some
essential points of standard multiple scattering theory. More details can be found
in Chap. 1. Standard MST is a numerical method for solving the single-particle,
time-independent Schrodinger equation with fixed energy e for a solid or a finite
cluster of atoms. As a band structure method for solids it was first introduced by
Korringa [15], Kohn and Rostoker [16] and is known as the KKR method. In MST
the potential of the system is written as the sum of local potentials, V =), V;,
where i runs over the atomic sites and each V; is non-zero only inside the atomic
cell No i. The atomic cells must be non-overlapping and are often approximated by
spheres. The main characteristic of MST is that it divides the electronic structure
problem into a potential part, which can be solved site by site, and a structural
part which only depends on the geometry of the system. In the potential part, the
scattering response of each local potential is determined and expressed in terms of
the phase shift functions d;¢(¢) or equivalently atomic 7-matrices f;;(€), where £ is the
orbital quantum number and we have assumed the local potential to be spherical for
simplicity. In the structural part, the propagation of free spherical waves between the
scattering sites is determined and expressed in terms of (real-space) KKR structure
constants Gz jr/, which represents the transition amplitude between an outgoing free
spherical wave centered at site i with angular momentum L = (¢, m) and a regular
spherical wave centered at site j with L’. By letting the waves propagate between
all sites, imposing the appropriate boundary conditions for the physical problem at
hand, and requiring that the total wave be continuous and differentiable one arrives at
consistency equations between the spherical wave amplitudes. They are the multiple
scattering equations. A central quantity of MST is the scattering path operator T.
Its matrix elements 7,z ;- express the transition amplitude between free waves iL
and jL’ including all possible scatterings. Here |iL) denotes a local solution of the
Schrodinger equation at site i with angular momentum L. 7 can be calculated by
matrix inversion as

T = M_] where M,'L’ij = ligl 6LL’§ij — G,’L,ij , (53)

From the knowledge of 7 and the local solutions, it is easy to calculate the total wave
function.

In the single-particle theory of XAS, standard MST can be used to calculate the
final state wave |f) in (5.2). If the many-electron formula (5.1) is to be used, MST
needs to be generalized to a multichannel, i.e. many-particle theory for the calculation
of |F).
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Multichannel scattering theory has been used since the 1940s to describe colli-
sion processes in nuclear physics. In the 1960s it was first applied to electron-atom
scattering and photoemission. The need for a multichannel theory is obvious in the
case of inelastic scattering phenomena. When an electron with energy ¢, scatters
inelastically off an atom, the electron loses a part of its energy to the atom which
is thereby excited from its electronic ground state @( to some excited state PD,.
Thus each excited state gives rise to a different scattering channel o with a different
scattered electron orbital ¢, and energy €, = €y + Ey — E,,.

So the concept of multichannel scattering arises naturally in the description of
inelastic processes. This is relevant for x-ray absorption spectroscopy, because the
photoelectron may lose part of its energy in many-body excitations induced by the
creation of the core-hole and the inelastic scattering of the photoelectron. These
loss processes give rise to satellite structures in photoemission spectra. In the sud-
den approximation, the different photoemission channels are assumed uncoupled
[12]. Then, the x-ray absorption can be calculated as a convolution of the core-level
photoemission spectrum (including satellites) and the one-electron x-ray absorption
spectrum, as will become apparent in (5.7) below. In contrast, if the photoelectron
strongly interacts with the other electrons, the channels are generally coupled and
must be solved together. For high photoelectron energies the sudden approximation
is good, but in the near threshold region the excitation process may be closer to
the adiabatic regime and strong multichannel coupling can occur [12]. From a more
technical point of view, one can say that multichannel scattering theory is required
whenever there is strong configuration mixing between the excited electron in the
continuum state and the other electrons of the system.

5.2 Derivation of Multichannel Multiple Scattering Theory

5.2.1 Single-Site Multichannel Scattering

Consider x-ray absorption from a core-shell ¢ of an isolated atom with N electrons.
The ground state is |lI/gN ) and its energy E,. Possible final states are eigenstates of
the system with one hole in shell ¢ and one electron in the continuum, called the
photoelectron in the following. The final state energy is E = E, + hw,, where fw, is
the photon energy. We first consider the eigenstates of the core-excited ionized atom
with (N — 1)-electrons

HY o™ = By o)) (5.4)

Physically, |®Y ') describes a possible final state of the ionized atom in the asymp-
totic limit when the photoelectron is infinitely far away. In this limit the total
N-electron final state is a product state |®7') = |®}~")|¢,) Where |¢,) is the free

electron wave with energy ¢, = EV — EN=1.
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Now let us first assume that the total wave is a product state not only in the
asymptotic region but everywhere

1) = D)) ) (5.5)

where now 1), is the full (distorted) photoelectron wave. Then the optical transition
matrix elements have the form

(D) | Hi| D) = (| Hine 6 (DY el @)) (5.6)

where the subscript ¢ denotes a core-state and ¢, its annihilator. The absorption
intensity can then be simplified to

D DY | Hind| @)Y PO (Er — Ey — wy) = f de Ixps (€ — wplns(wy) . (5.7)
f

where
B (@g) = D 1l Hin|6) P0(wg + €c — €) (5.8)

is the XAS spectrum in the independent particle approximation (5.2) and

Ixps(€) = Y 1Sal?6(e — Eo + Eg) . So = (@) lcc|@)) . (5.9)

is the many-body core-level XPS spectrum in the sudden approximation. So we see
that if the total wave can be factored between the photoelectron and the rest, the
XAS spectrum can be expressed as the convolution of the XPS spectrum and the
XAS spectrum in the IPA. In this case several excitation channels may exist, but
they are uncoupled. This corresponds to the sudden approximation which should
be valid in the high energy (EXAFS) region [17]. For low photon energy, however,
the photoelectron interacts strongly with the core-hole and the other electrons and
substantial channel coupling may occur. In this case, the following full (i.e. coupled)
multichannel theory must be used.

In multichannel scattering theory the N -electron final states are expanded over the
(N — 1) electron eigenstates @~ ~! times a single-electron continuum state describ-
ing the photoelectron. This is known as the close coupling expansion

Wy =AY @) ¢a) - (5.10)

Here, A is the antisymmetrization operator. Each state @V~ gives rise to a channel
« and in each channel, the photoelectron has a different wave function ¢, (r) and a
different energy

€ =E—EN7!. (5.11)
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Assuming the states @, to be known, the remaining problem is the calculation of the
photoelectron orbitals ¢,. We write the total N -electron Hamiltonian as a sum of the
Hamiltonian of the ionized atom HY !, that of the photoelectron / and an interaction
term V

HYN =H" "'+ h+v, (5.12)

h includes the kinetic energy and the external (nuclear) potential, and V is the
Coulomb interaction of the photoelectron (located at r) with the other (N — 1) elec-
trons.

N—1 62
V = Z (5.13)
i=1

Iri—r| "
Then, the Schrodinger equation for the N electron system reads

0=H"-BEWw"y=H""4+h+V - E)AZ 12)ds) - (5.14)
I}

For simplicity we shall disregard the antisymmetrization operator A in the following.
We now project the above equation on a state (@, | and integrate over all electron
coordinates except those of the photoelectron (r). Using (5.4) and the orthogonality
of the eigenstates |®,) we get

0= | (h+EN" = E)das+ Y (@Y IVIOF ™) | I6s) - (5.15)
5] I3
This leads to the definition of the interchannel potential [12]

Vas() = (@)1 VIe] ") (5.16)

= / @;(rl . .rN_l)V(rl . .rN_lr)dig(rl . .rN_l)drl . .drN_l . (517)
Using (5.11), (5.16) we can rewrite (5.15) as

(€a = M) =Y Vas@®)es(r) . (5.18)
53

Equations (5.18) are the multichannel equations [12]. They are a system of coupled
Schrodinger-like partial differential equations for the various photoelectron orbitals
@.. The orbitals ¢, are coupled through the inter-channel potential V,, 3 which reflects
the interaction between the photoelectron and the other (N — 1) electrons. If V.3 = 0
then (5.18) reduces to a set of independent one-electron Schrodinger equations for
each channel. If, moreover, only the lowest energy state of the core-ionized atom is
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kept, then we get a single-particle theory of absorption, essentially equivalent to the
final state rule.

The equations (5.18) are complicated because of the presence of the interchannel
potential V3. In the derivation above, we have, for simplicity, disregarded antisym-
metrization of the wave function between the photoelectron and the other electrons.
However, this is not justified for low energies, where exchange is strong. If antisym-
metrization is taken into account, the interchannel potential is non-local and (5.18)
becomes a set of coupled integro-differential equations for the wave components ¢,,.
The calculation of the interchannel potential V, 3 with exchange and the integration
of the multichannel equations is a difficult problem. It has been successfully applied
only to simple cases of electron-atom scattering and valence photoemission from
light atoms in the late 1960s [18]. In the early 1970s, this direct method for the
solution of the multichannel equations (5.18) has been superseded by the computa-
tionally much simpler R-matrix methods [19, 20]. In R-matrix methods, it is assumed
that exchange and correlation between the photoelectron and the other electrons is
restricted to a finite reaction volume. Inside this reaction volume the orbitals ¢,, are
expanded over a set of basis functions. Thereby, the system of integro-differential
equations simplifies to a linear algebra problem. More importantly even, the inter-
channel potential does not need to be computed in coordinate representation but only
its matrix elements between the basis functions, which is a great simplification.

5.2.2 Calculation of the Multichannel T-Matrix

We want to calculate the multichannel 7-matrix corresponding to a N-electron
absorption final state |[¥") as in (5.10). We use time-reversed LEED (low-energy-
electron-diffraction) boundary conditions appropriate for photoemission. The total
wave function is the sum of a free wave ¥° and a scattered wave ¥,

v =yl 4y (5.19)

The free wave corresponds to the asymptotic region (r — 00) or the ¢t — oo limit in
a time-dependent description. For photoemission, the proper choice of the free wave
is a plane wave. In photoabsorption, all emission angles of the photoelectron are
integrated over and so we may replace the plane waves by regular spherical waves
and sum over all angular momenta. Then, the free wave of the photoelectron reads

JpLs(ro) = je(kgr)YL(®)xs(0) (5.20)

where j, is a spherical Bessel function, Y a spherical harmonic, x;(0) = d;, a spin
function and k2 = €3 = E — Ej.

The N-electron free wave ¥ is the product between the photoelectron free wave
Jis and an eigenstate of the ionized atom |®g). The total N-electron wave function
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is
W) = 1D ass) + D 1@, 41,) - (5.21)

where antisymmetrization is understood, but the symbol .4 has been suppressed for
convenience of notation. We are looking for the scattered wave functions [¢, 5 ),
where the subscripts GLs indicate that they depend on the free wave quantum numbers
through the boundary conditions. The superscript “—" stands for the time-reversed
LEED boundary conditions, that is, ¢~ is a purely incoming spherical waves, which
behaves as exp(—ikr) /r when r — oo. Consequently ¢~ may be expanded in Hankel
functions of the second kind:

¢(:,/)’Ls (rU) = Z h(_ (k(yr) YL’ (-%)XA’ (U)AuL’s’,ﬁLs . (522)

L's'

Here the coefficients A are the scattered wave amplitudes. By definition, the multi-
channel T-matrix T,z g1y 1S, up to a constant, equal to the amplitude of the scattered
wave |aLs) when the incoming wave is |SL's’). So A = ikT. With the definition

H,;(ro) = hy (kar)YL(®)Xs(0) | (5.23)

equation (5.21) then becomes

|wﬁLs> = |®ﬁ>|JﬂLs> + Z |¢o¢>|Ha_1"5/>ikaTaL’s’,ﬂLs . (524)

al's'

We now combine @, with the angular and spin part of the photoelectron wave as

Dors = Po YL (X)x5(0) (5.25)
Then
¥, )—Zld’ )lP (r) (5.26)
[Ls) — Z als , al's',3Ls s .
where
PF’F = PaL’s’,ﬂLs(r) = rjﬂ’ (k(yr)(suL’x’,ﬂLs + lkarhz (kar)TaL’s’,ﬂLs s (527)

and the collective index I" = «Ls has been introduced.

The R-Matrix

In R-matrix methods the interchannel coupling, i.e. the configuration interaction
between the continuum state and the rest, is restricted to a finite reaction volume v.
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For v we use an (atomic) sphere of radius ry around the nucleus. The R-matrix is
the generalization of the logarithmic derivative for non-spherical or multichannel
potentials. It is defined as

= Prpr(}’()) . (528)

r=rop

E R{ I P{ I
r d‘

Combining (5.27), (5.28) and the derivative of (5.27) with respect to r, the 7 matrix
can be expressed in terms of the R-matrix (or vice versa). The difference between
T and R is that T corresponds to a certain choice of boundary conditions and of
the kinetic energy zero (i.e. interstitial potential) needed for the free waves in the
outside region (see Chap. 1). In contrast, R only refers to the wave function inside
the atomic sphere. It is independent of boundary conditions but nonetheless contains
all the information that determines the scattering properties of the atom.

In a channel-diagonal, spin-independent and spherically symmetric potential, it
is clear from the definition (5.28) that the R-matrix is diagonal in I". The diagonal
elements are P, /[dP,/dr] for k = k,, i.e. they are the inverse logarithmic derivatives
of the partial wave with channel energy €. So the R-matrix is the direct multichannel
generalization of logarithmic derivatives, from which the phase shifts or the 7-matrix
can be calculated.

The Variational R-Matrix Method

The R matrix can be calculated using various numerical procedures, which lead to
different flavors of the R-matrix method [19, 20]. We have used the variational also
known as eigenchannel method [20] which yields the R-matrix directly in diagonal
form. The variational R-matrix is based on the remarkable fact that the logarithmic
derivative satisfies a variational principle [21]. By choosing as trial functions linear
combinations of fixed basis functions, the variational R-matrix method becomes an
algebraic eigenvalue problem, as in the common variational methods used for bound
state solutions of the Schrodinger equation. The variational R-matrix equations are

(E—H —L)|¥) = Q%) b . (5.29)

The solutions are the (inverse) eigenvalues by and eigenvectors ¥ of the R-matrix.
Here E is the total energy, H the Hamiltonian,

N
10
L= 60— ro)— i (5.30)
i=1 e
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the so-called Bloch operator and

N
Q=) 6(ri—r), (5.31)

i=1

is a projection operator onto the surface of the atomic sphere. Because of the singular
nature of the operators L and Q, the variational R-matrix method does not lead to a
standard eigenvalue problem (as does the Schrddinger equation) but to a generalized
eigenvalue (i.e. singular value) problem. We are looking for solutions of (5.29) inside
the atomic sphere by expanding the ¥;’s in a basis

W) =Y 1¥r)ervk (5.32)
I'v
with the trial functions |
Yr,) = A{I@M;Pu(r)} . (5.33)

In other words, the radial wave functions P (r) are expanded over the set of basis
orbitals P, (r). The latter must not have all the same logarithmic derivative at r = ry.
Ideally, the basis contains functions with very different logarithmic derivatives. In
practice, one chooses open functions with vanishing logarithmic derivative and closed
functions with logarithmic derivative equal to +00. The R matrix is then given by

r__ .
RFF,=—§ kab—wkr‘/ with Wi = (@1 %) =, - (5.34)
k
k

It is important to note that the N-electron trial functions (5.33) are states that are
totally antisymmetric with respect to exchange of any two electrons, including
the photoelectron. Hence exchange interaction is automatically and exactly taken
account for in this formalism. As stated earlier, knowledge of the R-matrix is suffi-
cient for the calculation of the multichannel 7-matrix of the atom.

5.2.3 From Single to Multiple Scattering

Once the multichannel 7-matrices are known for all atoms, multichannel multiple
scattering theory can be developed essentially along the same lines as standard mul-
tiple scattering theory [12]. The multichannel version of the scattering path operator
is given by

TiaLs,ja'L's' (E) = [6U[T;1]aLs,a’L’s’ (E) - 50&’5ss’kaGiL,jL’ (ka)]71 ) (535)



154 P. Kriiger

where E is the total final state energy and k, = /e, — Vp is the wave number of the
photoelectron in channel o and Vj) is the interstitial potential.

In the remainder, we assume that the 7-matrices of all but the absorber atom
(i = 0) are diagonal in the channel indices «, i.e.

[Ti]uLs,a’L’s’ (E) = 5&(!’ [ti]LS,L’s’ (ku) for i 75 0. (536)

Physically this means that we neglect configuration mixing in electron atom scatter-
ing processes except when the scattering occurs at the absorber site. We make this
simplification because we are mainly interested in atomic multiplet type correlation
effects induced by core-hole. It is clear from (5.35) that this restriction is not at all
necessary for the validity or principle feasibility of multichannel multiple scattering
theory. It leads, however, to an enormous gain in computation time.

For the absorption process from a core-level at site i = 0, only the i = j = 0 bloc
of the scattering path operator is needed. This block can efficiently be calculated by
partitioning the multichannel multiple scattering matrix between the absorber atom
(i = 0) and its environment, consisting of all other atoms (i # 0). Then it is easy to
show [11] that the absorber block of the scattering path operator is given by

_ -1
TOaLs,0a'L’s' (E) = [[TQ l](),L.Y,O,/L/S/ (E) - 50/()/ 53‘.?’ PLL (ka)] ) (537)

where the reflectivity p of the environment has been introduced [22]. Since the
T -matrices of the environment atoms are channel diagonal by assumption (5.36), so
is the reflectivity p. Therefore p(k) can be calculated separately for each k = k, in
a standard one-electron multiple scattering calculation.

pry (k) = Z Gor,ir, (K)Tir, jr, k) Gjr, 00 (k) . (5.38)
ijLi Ly

Here 7 is the one-electron scattering path operator of the environment, i.e. the system
without absorber atom. The absorption cross section is then given by

O'(wq) X3 |:ZM;ET01"'0[‘/(E)M['/:| with M = (‘I/}n|Hm[|lI/g) . (5.39)
rr

Here |11/}“) is a solution of the many-electron Schrédinger equation inside the atomic
sphere for the final state energy E = E,; 4 hw,. It can be calculated from the eigen-
vectors |¥;) of the R-matrix [11].
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5.3 The McMS Code

We have implemented the R-matrix multichannel multiple scattering method for
x-ray absorption spectra calculations as outlined above, in a computer program named
McCMS. Here we give a few computational and technical details of the implementation.
The MCMS code is mainly written in the C programming language, but it calls a few
Fortran77 routines, namely for the single-electron multiple scattering calculation of
the reflectivity p, as well as routines from the linear algebra library LAPACK/BLAS
[23]. Therefore both a C and a Fortran compiler are required. The MCMS code solves
the MCMS equations for a finite cluster of atoms. On input, a structure file and
the potentials for all inequivalent atoms need to be provided. The atomic potentials
are spherically symmetric, i.e. the muffin-tin or atomic sphere approximation is
used. Accepted potential formats are those of the LMTO band structure code [24]
or the potgen code [25]. The latter is used in several other methods presented in this
collection.

The MCMS code divides into two main parts: (i) a single-channel cluster calculation
and (ii) a multi-channel, single-site calculation.

Part (i). From the potentials, the single-electron atomic #-matrices are computed
for all atoms on a fine energy mesh. The #-matrices and structural data are passed
to a routine which calculates the reflectivity of the environment p of (5.38). This
(Fortran) routine has been adapted from the CONTINUUM code by C.R. Natoli [25] and
performs a standard real-space multiple scattering calculation. The single electron
energy mesh for p needs to be quite fine, because in the multichannel calculation,
p(€,) must be evaluated for many energies €., which is done by cubic interpolation.

Part (ii). The core-hole potential of the absorber atom is constructed. When the
partially screened core-hole potential is used, two potentials are required for the
absorber atom: the ground state potential and a statically screened potential corre-
sponding to the final state rule. The latter should be computed self-consistently in a
supercell or finite cluster calculation with one (spherically symmetric) core-hole on
the absorber site. The radial basis functions for the R-matrix are computed by solving
the single-electron Schrodinger equation with the previously constructed absorber
atom potential. Solutions for both open (dP/dr = 0 at r = rp) and closed bound-
ary conditions (P(ry) = 0) are found and then the basis is orthogonalized. Next the
N-electron trial functions are set up. The N -electron basis states are all possible Slater
determinants in the chosen set of electronic configurations. The matrix elements of
the operators L and Q, and of the Hamiltonian, are computed between these Slater
determinants using second quantization algebra.

Then, in a loop over the N-electron final state energy, the eigenchannel equations
(5.29) which take the form of a generalized eigenvalue problem are solved and
the R matrix together with the inner solutions [¥/1) are obtained. By matching the
photoelectron part of the inner waves to free electron states, the atomic multichannel
T-matrix is calculated. The dipole transition matrix elements are computed. The
scattering path operator is obtained by matrix inversion of T~' — p. Finally the
absorption cross section is computed using (5.39).
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Computing time. Except for very small systems of ten atoms or less, the standard
multiple scattering calculation in part (i), takes much longer than the atomic multi-
channel in part (ii). For large clusters of a few hundred atoms, a one-electron energy
point of part (i) may take a few minutes on a single CPU. As a fine energy mesh
with several hundred points is required to get all the fine structure of the L, 3-edge
spectra, computation of part (i) can easily take tens of hours on a single CPU. On
multi-processor machines the energy mesh may be sliced into parts and then com-
puted in parallel. This procedure is however not automatized in the code and requires
concatenation of the p output files from the different runs.

In the multichannel part (ii), the calculation of a single total energy point usually
takes less than a second, and so the whole part (ii) takes only a few minutes on a
single CPU.

5.4 L, 3 Edge Spectra of Transition Elements

We have applied the MCMS method to the calculation of x-ray absorption spectra at
the L, 3 edges 3d transition metal elements. These spectra are a challenge for theory
because they are strongly influenced by local electron correlation effects, especially in
the final state caused by core 2p spin-orbit interaction and the exchange and Coulomb
coupling between the 2p core-hole and the 3d valence states. These interactions gives
rise to a rich multiplet structure in the free atom spectra. The multiplet structures
reflect strong configuration mixing of the wave function. Generally, theories based
on single determinantal wave functions, such as the Hartree—Fock approximation
and density functional theory, badly fail to reproduce these spectra. Instead, full
configuration interaction in the active space of the open 2p and 3d shells is required.
When the transition metal atom is embedded in a solid or molecule, the valence
3d states get partially delocalized and the spectra strongly depend on the ligand
field and bonding of the 3d orbitals. A reliable description of these extra-atomic
effects requires a first-principles method for the electronic structure of the extended
system. So for L, 3-edge spectra of transition metal ions in molecules and solids a
theoretical method is needed that describes both the long range bonding properties
of the system and the strong configuration mixing in the 2p-3d shells of the absorber
atom. Traditionally, L, 3-edge spectra have been mostly calculated using the ligand-
field multiplet model [1] where an empirical ligand field is added to the atomic
multiplet Hamiltonian. This approach proved very successful for ionic compounds
in cubic symmetry, but it is not satisfactory for low-symmetry and covalent bonding
where the number of adjustable parameters increases and the predictive power of the
theory becomes very small.

Standard single-particle theories of absorption spectra generally cannot reproduce
the rich fine structure observed at the L, 3;-edges of transition elements. One of
the most striking failures of one-electron theory is that it cannot account for the
highly non-statistical L3:L, branching ratio of the light 3d elements (K-Cr). In one-
electron theories the branching (i.e. intensity) ratio of the spin-orbit-split sub-shells
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Fig. 5.1 Ca L 3-edge spectrum obtained in atomic multiplet theory, adapted from [26]. Solid
line: full calculation with 2p-3d multiplet coupling. Broken line: calculation with 2p-3d coupling
switched off

Jj+ =€+ 1/2andj_ = £ — 1/2is necessarily close to the statistical value (¢ 4 1)/¢
coming from the multiplicity of the sub-shells. A close-to-statistical branching ratio
is observed at most absorption edges, but not at L, 3 edges of 3d elements, where
the statistical value is 2, but the experimentally observed value varies from about
0.8 to 3 along the series. The main reason for this is the strong 2p-3d Coulomb and
exchange interaction which is of the same order of magnitude as the 2p spin-orbit
coupling [26]. This leads to final states with large configuration mixing between the
2p3» and 2py s, holes. Therefore this effect can by no means be described in a single-
particle framework. In an atomic multiplet calculation, such configuration mixing is
naturally included and highly non-statistical branching ratios are found for the early
elements in agreement with experiment. Figure 5.1 shows the results of a multiplet
calculation for a (3d°) ground and (2p°3d') final state configuration, appropriate,
e.g. for Ca. It is clear from Fig. 5.1 that the 2p-3d interaction strongly modifies the
spectral shape. In the case of a (3d") ground state, it gives rise to a prepeak and a huge
reduction of the branching ratios. The angular moment of the hole (j.) does not have
adefined value, but only the total angular moment of the atom J = j,, + j34 is a good
quantum number. Due to strong 2p-3d coupling the angular momentum is shared
between hole and electron and so the 2p3,, and 2p; » holes are strongly mixed. In any
single particle scheme, the 2p-3d interaction is treated on a mean-field level and the
wave function corresponds to a single Slater determinant. As a consequence, strong
configuration mixing, i.e. non-separable combinations of several Slater determinants,
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cannot be described. The hole is described as either purely 2p3/» or 2p; />, and so the
branching ratio is necessarily statistical. It is clear that the L, 3-edge spectra of light
3d elements are a case of strong channel coupling between the 2p;,, and 2p;,, final
states. It is thus an interesting problem for multichannel multiple scattering theory.

5.4.1 Application of MCMS Theory to Calcium Compounds

Here we summarize the results that we have obtained by applying multichannel
multiple scattering theory to the Ca L, 3-edges in metallic calcium and for ionic Ca
compounds (CaF,, CaO) [11]. We use a wave function with six electrons describing
the Ca 2p core-shell of the absorber atom and the photoelectron. In the ground state
the 2p shell is filled and the electronic configuration is (2p®) which is a orbital and
spin single S = L = 0. In the final state, the (N — 1)-electron functions of the ion-
ized atom, @, in (5.4), are one of the six states of the one-core-hole configuration
(2p°). The eigenstates are (j, m;), where j = 1 £ 1/2 is the total angular momentum
and m; its z-projection. For the final state, the R matrix is calculated with N-electron
trial functions made of all possible states in a (2p°, nd ") configuration. The quantum
numbers are « = (j, m;) for the 2p-hole and néms for the photoelectron. For simplic-
ity, only d-waves (¢ = 2) are included in the basis, because the p — d transitions
are dominating in L, 3-edge absorption.

More precisely, the photoelectron orbital components ¢, (r, o) are developed,
inside the Ca atomic sphere, over a set of basis functions ¢,,(r) Y, (X)xs(0), where
X is a spin function. Some radial functions ¢,(r) used in the CaO calculation are
shown in Fig.5.2. Note that n is merely a counter of the radial waves and should
not be confused with the principal quantum number of atomic orbitals. There are
two major differences. First, the waves ¢, are not bound states, but parts of contin-
uum waves. Second, the set of basis orbitals includes several waves with the same
number of nodes (inside the atomic sphere) but different logarithmic derivatives on
the sphere (e.g. the waves 0-0 and ¢-0 in Fig.5.2). Open and close functions cor-
respond to boundary condition d¢/dr(ry) = 0 and ¢(rg) = 0, respectively, where
7o is the sphere (muffin-tin) radius. These basis orbitals are calculated by solving a
single-electron, radial Schrodinger equation inside the atomic sphere. The effective
potential was obtained in a self-consistent density functional theory calculation in
the local-density-approximation (LDA) for the bulk system using the Linear-Muffin-
Tin-Orbital (LMTO) method [24]. This mean-field potential used for the construc-
tion of the basis functions must not be mistaken for the true photoelectron potential
underlying the multichannel method. If the R-matrix basis is sufficiently complete,
the potential used for the construction of the basis functions should not matter; any
potential should in principle give the same result. Because the N -electron final states
@V are linear combinations of the trial functions, the potential seen by photoelectron
is in fact dynamical because states with different energies (¢,) are mixed. The multi-
channel potential is moreover non-spherical and spin-dependent, because of mixing
of different orbitals £m and spins s.
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Fig.5.2 A few radial basis functions r¢, (r) used in the expansion of the photoelectron waves ¢, ()
inside the sphere (of radius r() of the absorbing atom (here: Ca in CaO). The functions are labeled
as x-i where x = o, ¢ stands for open and closed functions and i is the number of nodes inside the
sphere. The orbital energies in Ryd are indicated in parentheses

Since in the R-matrix technique the photoelectron functions ¢, are expanded
over a basis set, convergence with the number of basis functions must be checked.
Figure 5.3 shows the convergence of the CaO spectrum as a function of number of
basis functions, labeled as (nc, no) where nc and no are the number of closed and open
functions, respectively. Good convergence of the lineshape is found for one open and
two closed functions. Including more waves leads to a small shift of the spectrum
to lower energy and to some peak intensity reduction, which may be attributed to
spectral weight transfer to excitations into the featureless high energy continuum. In
many cases, already the minimum set, i.e. one open and one closed function gives a
sufficiently converged spectrum.

In the MCMS method, quantum mechanical exchange between electrons at the
absorber site is automatically respected because we use antisymmetrized trial func-
tions. From the multiplet analysis in Fig. 5.1 we know that the non-statistical branch-
ing ratio is due to the 2p-3d Coulomb interaction. The Coulomb interaction between
two electrons at a distance rj» can be expanded in multipoles in the usual way
as 1/rp = Z,fio[r’;/r’;“]ﬁ(()%],ﬁz), where r; = (r; X;) and r- (r.) is the larger
(smaller) of r; and r,. It is well known from atomic physics [27] and impurity
model calculations [1, 26] that the monopole part (1/r. for kK = 0) is strongly
screened by the dielectric response of the other electrons, while the higher order
multipoles (k > 0) are essentially unscreened. In an atomic multiplet calculation the
monopole part of the core-valence Coulomb interaction corresponds to the Slater
integral F°(2p, 3d). By atomic relaxation and solid state screening, the F° inte-
gral is dramatically reduced and is commonly replaced by a free parameter Uy, in
Anderson impurity models [1]. The monopole part is spherically symmetric. In a
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Fig. 5.3 Convergence of the Ca L; 3-edge spectrum of CaO as a function of the number of radial
basis functions used in the R-matrix method. (nc,n0) denote the number of closed and pen functions.
The spectra are vertically off-set for clarity

standard single configuration atomic multiplet calculation it is a diagonal operator,
i.e. it does not lead to any state mixing but only to a rigid energy shift of the whole
spectrum. Therefore, we take the monopole part out of the Coulomb interaction
and treat it at the single-electron level by using a screened core-hole potential for
the calculation of the final state waves. So for the monopole part of the core-hole
interaction, we follow the standard practice in one-electron theories of XAS. The
multipole part, however, is treated fully at the many-particle level and leads to con-
figuration mixing. The R-matrix equations are solved for a Hamiltonian of the form
H=75,h()+ ij V (i, ). Here h(i) is the single particle Hamiltonian operator
acting on electron i. It includes the kinetic energy, the effective one-electron potential
(with core-hole screening) and the spin-orbit coupling in the case of 2p level. The
interaction term is the particle-hole Coulomb interaction without the monopole part,
V(i,j) = 1/rj — 1/r., i.e. the multipole terms are taken unscreened.

For the screening of the monopole term of the electron-hole interaction, we have
used a linear mixture between a fully screened core-hole corresponding to the final
state rule and an unscreened core-hole. Figure 5.4 shows the spectra of bulk calcium
metal, calculated with different choices for the core-hole screening model. Spectrum
(gs) corresponds to the LDA ground state potential, without core-hole. For the other
spectra a linear mixture was used between the screened (o = 0) and unscreened
(ae = 1) core-hole potential. Broken lines correspond to the single-channel theory
(i.e. the IPA) obtained by setting V, the multipole part of the particle-hole Coulomb
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absorption intensity (arb.units)

relative energy (eV)

Fig. 5.4 L, 3-edge spectra of metallic Ca calculated in various approximation together with the
experimental data (exp) from [28]. The multichannel (MC) calculations including the multipole
Coulomb interaction V are shown as solid lines and the independent particle approximation (IPA,
V = 0) as broken lines. The amount of unscreened core-hole (a-value) is indicated on the right.
(gs) corresponds to the ground state potential

interaction, to zero. Solid lines correspond to multichannel theory, with V included.
It can be seen that the single-channel calculations yield a L3:L, branching ratio close
to the statistical value 2, as expected for the IPA. In contrast, when V is included, the
branching ratio is strongly reduced and gets close to the experimental value of about
0.8. These remarks about the branching ratio are independent of the choice of the
one-electron core-hole potential. The fine structure of the L3 and L, peaks however,
depends considerably on the core-hole potential. If the core-hole is neglected (gs),
the lineshape shows the details of the ground state Ca-3d density of states, as we
have checked. The L3 and L, peaks are too broad and display too much fine structure,
not seen in the experimental spectrum. The details of the Ca-3d band structure is
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absorption intensity (arb.units)

relative energy (eV)

Fig. 5.5 Ca-L; 3 edge spectra of CaO and CaF,. Calculations with multichannel theory (MC, solid
lines) and in the independent particle approximation (IPA, broken lines) using the partially screened
core-hole potential with (0.1) unscreened weight or the ground state (gs) potential. (exp) are the
experimental spectra

progressively lost when the core-hole strength is increased in the sequence (gs) —
(0) — (0.1) — (0.15). This is particularly obvious in the single channel spectra
(broken lines) but also valid for the multichannel calculation. It can be seen that the
multichannel spectra with & = 0.1 or 0.15 agree well with experiment. The only
disagreement is that the calculation shows some weak fine structure not seen in the
experiment. This hints to some extra broadening mechanism not included in the
present theory.

Figure 5.5 shows the spectra for the ionic compounds CaO and CaF,. Essentially
the same conclusions can be drawn as for metallic Ca. Comparing the single-channel
spectra without core-hole (IPA gs) and with partially screened hole (IPA 0.1), we
see that much of the fine structure in (IPA gs), which reflects the Ca-3d ground
state density of states, is removed by the core-hole attraction. The single-channel
spectrum (IPA 0.1) shows only a doublet splitting of the L; and L, lines. Analysis
of the orbital character of the peaks reveals that the intense peak of the doublet is
made of Ca-d orbital of 1, symmetry and the weaker peak of e, symmetry. So the
double splitting is a ligand field effect due to the bonding of the Ca-3d orbital with
the oxygen or fluoride ligand 2p-orbitals. By comparing the (IPA gs) and (IPA 0.1)
spectra we see that the present real-space multiple scattering method describes well
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both long range band structure effects and short range ligand field splittings. While
the number of peaks and energy splittings of the (IPA 0.1) spectrum roughly agrees
with experiment, the intensities are completely wrong. Not only the L3:L, branching
ratio is wrong, but also the relative intensity between the two ligand field split lines.
When the 2p-3d interaction V is included in the multichannel calculation (MC 0.1),
the peaks shift to higher energy and the intensity ratios change completely. Moreover,
weak prepeaks appear at threshold. Clearly, the multichannel spectra (MC 0.1) are
in very good agreement with experiment both for CaO and CaF,.

The relative weight of the unscreened core-hole was introduced as an empirical
parameter. However, from the results above it became clear that it is not a free
parameter that needs to be adjusted to experiment for each compound. Instead, a
value of 0.1 was found suitable for all Ca and Ti compounds that we have studied.
This means that the value 0.1 can safely be taken as a default value for the light 3d
elements.

In conclusion we find that the real-space multiple scattering theory describes well
long range band structure and short range ligand field effects both in metallic and
ionic Ca compounds. Inclusion of the core-hole dramatically changes the lineshape.
The monopole part of the particle-hole Coulomb interaction can be treated at the
one-electron level through a partially screened core-hole potential. The multipole
part, however, leads to strong channel coupling between the 2p3/, and 2p,, core-
levels on the one hand and between the different orbital characters (t,, and e,) of the
photoelectron wave on the other hand. Before our multichannel multiple scattering
calculation, the CaO and CaF; spectra could be reproduced with ligand field multiplet
calculations [29]. In these models, the ligand field is described by parameters those
values need to be adjusted to experiment, separately for each material. Recently, ab
initio ligand field calculations have become available basis of quantum chemistry
configuration interaction [8]. However, because of the exponential increase of the
Hilbert space with system size, these methods are limited to very small clusters.
Multichannel multiple scattering theory does not have this limitation. Since we have
separated the multiple scattering calculation for the multichannel 7-matrix calcu-
lation by introducing the reflectively of the environment (see equation above), the
limitation in cluster size is the same as in standard one-electron multiple scattering
calculations. For the Ca system we have used clusters of about 300 atoms which was
sufficient for reproducing the fine structure of the Ca-d density of states of the bulk
materials.

Introduction of the Fermi Level

Atomic Ca has a [Ar]4s? electronic configuration. In Ca compounds, the Ca-3d
band is empty in the ground state and the L-edge spectrum reflects the whole empty
d-band. In transition metals, the 3d-band is partially filled in the ground state, so the
Fermi energy needs to be introduced which cuts off the occupied part of the spectrum.
In the present version of the MCMS method, this is done by replacing (5.37) by the
following expression
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To000 = [[Tg Toa — Saerty " + Sae (t5 " — p)/(A = )] . (5.40)

Here, f (¢) = [1 + exp(— (e — Ep)/(kgT)]~" is the Fermi function and we have omit-
ted the quantum numbers €ms of the photoelectron to simplify the notation. The
expression (t, ' — p)/(1 —f) is evaluated at ¢, that is the photoelectron energy in
channel a.. The matrix inverse of this expression coincides with the scattering path
operator of the absorber atom in the single-electron approximation multiplied by
(1 —f). This Fermi factor enforces the Pauli principle. In the limit of vanishing
correlations we get [Toloar = Saato, and (5.40) reduces to the well known single-
electron result with Fermi cut-off. Moreover, in the limit Er — —o0 we recover the
previous result for the empty valence band, (5.37). Let us note that this is a very
simple way to introduce the Fermi level. The energy cut-off is applied at the level
of the one-particle scattering path operator and so the occupied part of the one-
particle spectrum is correctly eliminated. However, the Pauli principle is not fully
taken account of in the many-body part of the calculation, because the multichannel
T-matrix is calculated as before for a local (2p°d ") configuration. Work is under way
aiming to enforce the Pauli principle also in the atomic 7-matrix calculation.

5.4.2 Application to Titanium Dioxide

Titanium dioxide is a technologically important material with a very rich phase
diagram. Titania nanoparticles are used for photovoltaics and photocatalysis. In the
search of new titania nanostructures, Ti L-edge absorption spectroscopy is a useful
tool for probing the local geometrical and electronic structure of around Ti sites.
The overall lineshape of the Ti L-edge spectra can be understood from multiplet
theory with an octahedral ligand field [29]. The octahedral field reflects the fact
that the Ti ions are in a TiOg octahedral coordination which is common for titanite
and TiO,. However, marked differences of the spectra exist between the various
phases. It is important to understand the origin of these differences for a correct
analysis of new titania nanostructures. We have applied the MCMS method to the Ti
L, 3-edge spectra of strontium titanite (SrTiO3) and titanium dioxide (TiO,) in the
rutile and anatase phases [30]. From the analysis, we could settle a long-standing
debate about the origin of the fingerprint spectral fine structure that characterizes the
rutile and anatase phases and which is absent in SrTiOs;. We further studied more
complex phases found in nanostructures, namely lepidocrocite TiO, [31] and titanite
nanotubes [32] and nanoribbons [33]. Using MCMS theory we could reproduce the
Ti L-edge spectra of these low-dimensional systems, relate the spectral features to
the electronic structure and understand the pronounced linear dichroism observed in
some of these low-symmetry phases [31, 33].

Here we briefly summarize the results obtained for rutile TiO, [30]. The rutile
crystal is made of both corner and edge sharing TiOg octahedra, where the oxygen
atoms have a three-fold, planar Ti coordination. The Ti ions sit in the centers of the
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weakly distorted octahedra and have a point symmetry D»j,. The Ti L, 3-edge spectrum
(Fig.5.6d) has four prominent peaks, C, D/E, F and G. The four-peak structure is
common to SrTiOj (Fig. 5.6e) and all other (d0) ions in octahedral coordination [29].
It can be understood in a one-particle picture as being due to the spin-orbit splitting of
the 2p-hole state into L3 and L, lines, and the splitting of the Ti-3d-like photoelectron
states into 7,4 and e,-symmetry by the octahedral ligand field. The appearance of the
prepeaks A,B is a genuine multiplet effect, and cannot be explained in the one-
particle picture as we have already seen in the case of Ca. When comparing the TiO,
and SrTiO; spectra (Fig. 5.6d,e), considerable differences in terms of line width and
intensity are observed, as well as the fact that in TiO, the L3-¢, peak is split into
an asymmetric doublet D-E. In the early 1990s, these differences were attributed
to the reduced point symmetry and distortion of the TiOg octahedra in TiO,, on
the basis of empirical ligand field multiplet [34] and TiOg cluster calculations [35].
However this explanation was challenged by a Crocombette et al. [36]. They showed
that multiplet and TiOg cluster calculations with realistic parameters computed from
the actual atomic structure of rutile TiO, does not produce the D-E splitting but a
spectrum similar to that of cubic SrTiOj3. They thus concluded that the (actually very
weak) distortions of the octahedra in rutile TiO, cannot explain the characteristic
D-E doublet splitting of the L3-e, line in TiO,. Single-particle approaches have also
been applied to the Ti L-edge spectra [37, 38] but they lack the prepeak structure and
completely fail to account for the main peak intensities even in SrTiOs.

We have computed the Ti L-edge spectra with MCMS method. Because the LDA
strongly underestimates the band gap of Ti oxides, we have used a simplified LDA+U
approach for the one-electron potential. Namely, we have shifted the LDA potential
upward by 2 eV when solving the radial Kohn-Sham equation for the Ti partial waves
of d symmetry. This corresponds to an LDA+U correction from the atomic limit [39]
for an empty d-band. The correction increases the band gap of TiO, from ~1.5eV
to ~3.0eV and brings it to agreement with experiment.

The calculated L-edge spectra for rutile TiO, are shown in Fig.5.6. The mul-
tichannel calculation with a (0.1) partially screened core-hole potential (Fig.5.6c)
agrees very well with experiment (Fig. 5.6d) while the IPA with (Fig.5.6b) or with-
out core-hole (Fig.5.6a) yields very poor results. We note that all peak positions
and intensities of the experimental TiO, spectrum are well reproduced in the multi-
channel calculation, including the prepeaks (A,B) and the L3-e, doublet (D,E) which
is the long-debated fingerprint of the TiO, spectrum. Figure5.6f shows the multi-
channel spectrum as a function of cluster size from 1 to 297 atoms. As expected,
the single atom spectrum (1) shows the atomic multiplet 3-peaks structure of a (d°)
ion (as in Fig.5.1). Going to the 7-atom cluster (i.e. a TiOg octahedron) multiple
scattering with the oxygen neighbors produces the octahedral ligand field splitting
and the main four-peak structure is obtained. However, the widths of the 4 peaks are
about the same and the D-E splitting is lacking, in disagreement with experiment.
It takes cluster sizes of about 60 atoms for these disagreements to disappear. This
clearly shows that the peak widths and especially the fingerprint D-E splitting of the
TiO, spectrum reflect the electronic structure on a length scale of about 1 nm and
can thus by no means be explained in an atomic crystal field or TiOg¢ cluster model.
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Fig. 5.6 Ti-L, 3 edge spectra of rutile TiO; a-d.f and SrTiO3 e. a-c¢ TiO, spectra calculated in
independent particle approximation (IPA) or multichannel theory (MC), with ground state (gs)
or partially screened potential with (0.1) unscreened core-hole. d Experimental TiO, spectrum.
e Experimental SrTiO3z spectrum. f Cluster size dependence of TiO, spectrum calculated with
MC 0.1

We could also reproduce the anatase spectrum [30]. These findings have settled the
20-year long debate on the fingerprint Ls-e, peak splitting in the Ti L-edge spectra
of the various TiO; phases. It shows the strengths of MCMS which combines (i) an
accurate description of the long-range electronic structure of any type of materials
by means of multiple scattering theory and (ii) a configuration interaction scheme to
account for the strong local electronic correlations in the 2p-hole final state.

5.5 Summary and Outlook

In summary, we have presented a multichannel multiple scattering theory with
R-matrix method for x-ray absorption spectroscopy. The method is implemented
with a particle-hole wave function in the MCMS code. It affords a flexible, ab initio
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description of the medium and long-range electronic structure through real-space
multiple scattering theory and accounts for local multiplet-type final state effects
through a correlated particle-hole wave function. These two aspects catch the main
features of the L, 3-edge spectra of light 3d elements in various materials. Here, only
L, 3-edge spectra of 3d transition elements were shown, but other edges can also
be calculated. For example, in actinide O4 s-edge spectra, strong channel coupling
between the 5d3,, and 5ds,, sub-shells leads to a large non-statistical branching ratio.
We have applied MCMS to the Th O4 s-edge spectra and found good results [40].
Compared with other methods that also employ a correlated particle-hole function, in
particular the Bethe—Salpeter-Equation approach [7], the MCMS method is numer-
ically extremely light. Indeed, by virtue of a partitioning between the correlated
absorber and the uncorrelated rest system, a MCMS calculation is only slightly heav-
ier than a standard, one-electron multiple scattering calculation. Moreover, because
it is implemented in real space, it is not restricted to perfect crystals, but can be
applied to molecules and nanostructures [32].

In the current implementation of MCMS, the muffin-tin approximation is used
for the one-electron potential. The combination of multichannel and full-potential
multiple scattering theory is straightforward [12, 41]. The only change needed in
the MCMS code is the replacement of the L-diagonal single-electron f-matrices #;; in
(5.36) by their full potential counterparts #;;;- which may be calculated using the FPMS
code (see Chap.3). Note that because of particle-hole coupling, the multichannel
T-matrix is always non-diagonal in the angular momentum L of the photoelectron
even in the present version with muffin-tin potentials.

The main limitation of MCMS method in present form is that the many-electron
state is a particle-hole wave function. This means that the interaction between the
core-hole — photoelectron pair with all other electrons is treated at the mean-field
level. This is sufficient for the beginning of a transition series, with a nearly empty
d-shell, but becomes questionable for the general case of a partially filled shell in the
middle or end the series. We have applied MCMS to bulk Fe [42] and found that the
multichannel coupling does not improve the spectra over the independent particle
approximation. A version of MCMS for a general (2p°3d"*+!) final state wave function
is still under development. Difficulties arise because at threshold, the photoelectron
cannot be distinguished from the other electrons, while in the close-coupling and
R-matrix formalism it is assumed that only one electron occupies a continuum wave.
In order to overcome these problems, a new method has been devised for the solution
of the multichannel multiple scattering equations which does not use the R-matrix
but goes back to the interchannel potential (5.16). The latter has been be expressed
exactly in terms of a multichannel density matrix and the associated multichannel
Green’s function [41]. This new approach is very general and promising, but its
implementation is challenging and has not yet been completed.
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Chapter 6

Multiple Scattering in Green’s Function
Formalism: Single-Channel

and Multichannel Versions

Anna Taranukhina, Alexander Novakovich, Calogero R. Natoli
and Ondfrej Sipr

Abstract In this chapter, we present two versions of the multiple scattering (MS)
theory in the real-space electronic Green’s function (GF) formalism: single-channel
(MS-GF) and multichannel (MCMS-GF). While the first one based on the single-
particle picture provides a tool for a precise description of MS processes, the second
one allows us to take into account not only MS effects but also electron correlations
and spin-orbit coupling on the same footing. Multichannel generalization of the
MS-GF method relies on the Dyson integral equation relating the GF of a perturbed
system with the GF of the corresponding unperturbed system. The second basic
feature of the MCMS-GF approach is the use of the close-coupling method, which via
Kohn variational principle for the reactance K -matrix gives rise to a set of the coupled
integro-differential equations with the matrix of a potential. An iterative algorithm for
solving this system has been developed to evaluate single-site multichannel scattering
t-matrices through which the GF of the total many-atom system is expressed. In
addition, some numerical aspects concerning the application of both versions are
discussed with a focus on x-ray absorption spectroscopy.
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6.1 Introduction

The basic equations of the multiple scattering theory (MST) within the muffin-tin
approximation (MT) to cluster potentials have been derived and applied to calculat-
ing the electronic structure of polyatomic molecules by Johnson [1, 2]. The theory
provides a fast and efficient technique for solving a system of linear differential equa-
tions with corresponding boundary conditions on MT-spheres for both continuum
and bound states of a physical system. Despite the advantage of the new theory, it
was obvious that attempts to use the theory in its original wave function version
for calculations of various x-ray spectroscopic response functions would encounter
technical and/or first principle difficulties. For example, the theoretical description of
the electronic structure of disordered alloys is based on the configuration-averaged
single-particle GF [3]; the use of complex potentials also required a new formulation
of the theory. The first reformulation of the MST in terms of a real-space Green’s
function (GF) has been given independently in works [4, 5]. The aim of the authors
[4] was to develop the theory of x-ray absorption and emission spectra for disor-
dered alloys. A relatively simple method for calculating the GF has been developed
by reducing the integral Dyson equation to a system of linear algebraic equations for
the GF matrix in the so-called angular momentum-site index representation. Then
a procedure of averaging the derived equations over all configurations of the atoms
has been devised [6]. The developed MS-GF formalism opened up a wide field of
MS theory applications in the description of x-ray spectroscopies, as for instance
absorption [7], resonant photoemission [8], elastic [9] and inelastic [10] scattering,
resonant diffraction [11], and many others. The MS theory has been developed in a
series of the works of Natoli et al. [12] being formulated in terms of both the wave
functions and the Green’s function not only within MT approximation, but also for
general potentials. The GF in this theory is constructed in terms of the scattering
path operator and has widespread spectroscopy applications. The formulation and
applications of the Green’s function method on the base of the introduced in [4] GF
matrix in angular momentum-site index representation is less known. Here we will
outline this approach in details.

The MS methods and their applications in the simulation of x-ray spectroscopies
rely on one-electron picture, i.e. all electrons are considered moving independently
in a common potential field, and a single photon can interact only with a single
electron of a physical system under study. Despite limited accuracy of one-electron
approximation, in many cases it provides good results. At that time, in many pro-
cesses, electron-electron interaction essentially modifies the response of a system
to the incoming photon considerably altering the probabilities of the processes. The
outline of a many-particle description of the x-ray emission and absorption processes
was developed by a generalization of MS theory in its wave function approach and
the connection between this approach and the Green’s function approach was given
by Natoli et al. [13]. The multichannel generalization of the MS-GF method (MCMS-
GF) on the basis of close-coupling approximation via the Kohn variational princi-
ple for the reactance K-matrix was devised and applied to calculating ultraviolet
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absorption spectra for alkali halides in [14, 15]. The general multichannel theory
developed in [13] has been realized in [16] within R-matrix formalism (MCMS) and
applied with success to computations of x-ray absorption spectra of various systems
(see Chap.5 of this book). Both methods, MCMS-GF and MCMS, are limited by
using MT approximation and by taking into account only electron-hole correlations.
However, it is evident that electrons of partly filled d-shells of atoms can strongly
couple with electron-hole pair in the final state of an ionization process or between
each other in the ground state in compounds. A new general multichannel theory
developed in [17] overcomes in full these problems, takes a new higher level of
MS theory and indicates the way of a practical implementation of the theory for the
description of ground and excited states of correlated systems.

The chapter is organized as follows. Section6.2 presents the derivation of the
equations of the MS-GF method and touches some practical aspects of its application
in modeling photoabsorption process. The multichannel reformulation of MS-GF
method along with the expressions for computation of x-ray absorption spectra is
given in Sect. 6.3.

6.2 MS-GF Formalism: Single-Channel Version

6.2.1 Solution of the Dyson Equation

The starting point of the MS-GF method is the Dyson equation for the single-particle
Green'’s function for a finite system

GE(r,r',e) = GE(r,r, ) +/ Gy(r,r'", o V") GE@", r',e)dr’ . (6.1)

2,
Here, V is a potential assumed to be local, G§ is the free electron GF given by

1 e:i:iklrfr’\

+ ’
Gy(r,r,e) = —Em,

6.2)

where energy e isreal, k = /€ is the wavevector of the electron with energy e. Atomic
units for lengths and Rydberg units for energies are used throughout this chapter.

It is our purpose to develop a procedure of solving (6.1) in the simplest case of the
muffin-tin approximation for the potential V (r) (see Figs. 1.7 and 1.8 of Chap. 1). In
this approximation, the potential of the NV -atomic system is spherically symmetrized
inside non-overlapping spheres 2, of radii b, and taken to be a constant value in the
interstitial region usually defined as the zero level of energies (MT-zero). In addition,
we use the so-called extended continuum scheme, i.e. without a surrounding sphere
enclosing all the atomic spheres. This scheme allows one to treat both continuum
and bound states applying the same algorithm. Therefore,
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V) =) u(r)

v,(r) #0, ifre £,
v,(ry =0, ifré¢s$,.

(6.3)

Accordingly, we introduce local coordinates p, = r — R, within sphere n with
the origin at the center R, of the atomic site, and the vector R,,, = R,, — R,, con-
necting the origins of sites m and n. Radial variables are denoted by p, = |p, | and
angular variables by p, = p,,/pn-

In a first step, we write in the spherical wave representation a number of local
functions associated with the truncated atomic potential v, (p,) = v,(p,) inside the
bounding sphere £2,,, such as the regular and irregular solutions of the Schrodinger
equation (SE) or the Lippmann—Schwinger equation, the #-matrix, and the Green’s
function. The radial part R}, (p,) of the regular solution R}, (p,) = R}, (p.)YL(P,)
matches smoothly to the boundary condition at p, = b,

R}, (by) = € [ jo(kby) cos 6 — ny(kb,) sin 5} |
(6.4)

= jo(kb,) +isin 67e'% b (kb,) = je(kb,) — ik} (kb,) 1},

while the radial part H[,(p,) of the irregular solution H}, (p,) = H[},(p.)YL(P,)
matches smoothly

H(by) = —ih] (kby) . (6.5)

where 6} is the phase shift of the potential v, (p,) and t; = —sin 52’61‘57 is a partial
t-matrix introduced by definition. Throughout this chapter, we shall use real spheri-
cal harmonics Y, (p,) and notations L = {£, m}, j.(kp) = jo(kp)YL(p), np(kp) =
ne(kp)YL(p), hf (kp) = hf (kp)YL(P), ji, ne and h denote spherical Bessel, Neu-
mann and Hankel functions of the first kind respectively. Writing the different forms
of the condition in (6.4), we used known relation h[(z) = jo(2) +1ine(2).

The regular wave function R}, (p,) satisfies the Lippmann—Schwinger equation

R (p,) = julkp,) + / Go(p,, Py, v (P, R (P)) dpy, (6.6)

n

which, as one can see, automatically includes the boundary condition (6.4) under the
use of the well-known expression for the free GF

Goi(p, p's &) = —ik jelkp<) hf (kp-)
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and the integral representation of the partial #-matrix introduced in (6.4):

. n 1 10) o:n S1 1 n
f ]L(kpn)vn(pn)RkL’(pn) dpn = _6€K’zelék s 5{ = 6“'th ’ (67)

n

where & is the Kronecker symbol.

Now we can express the single- and two-center expansions of the local Green’s
function in terms of the introduced regular and irregular solutions. Without loss of
generality, we shall consider the retarded GF G (p,, p/,, €).! Henceforth, the sign
+ on G will be omitted for simplicity.

Let us first consider the single-center expansion of the local GF G, (r, r’, €), i.e.
whenr,r € 2,.

This Green’s function

G”(r7r/’€) =Gn(‘pn+Rn ) P;,+Rn ,6)
r ., , R N (6.8)
=2 ——Glpu A V(DY)
L pnpn
satisfies the differential equations in both variables p and p’:
[AP,, — v, (pn) + 5] Gu(p,. P, €) = 0(p, — p.,)
(6.9)

[Ap; - Un(/’;l) + E] Gn(pns P;,s 6) = 6(pn - p;l) .
The partial GF G/} (p, p', €) introduced in (6.8) is the solution of the radial equation

& e+ , ,
[ﬂ - % —vn<p>+e] Gi(p, ) = 8o — ). (6.10)

Here and henceforth the index »n in the local coordinates p,, is dropped, unless
necessary.

Evidently, the Wronskian of the functions kpR},(p) and pH},(p) equals unity.
Therefore, according to the general method of the Green’s function construction
[18], one can write

Gl(p.p &) = kp p- R{y(p=) HlY(p-) ©6.11)

where p_ (p-) are the lesser (the greater) of p and p'.

'In a similar way one can derive equations of the MS-GF method making use the Green’s function
of the required analyticity behavior.
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Inserting (6.11) into (6.8), one can write the single-center expansion for the local
GF as

Gu(r.r',e) = kY Riy(p) Hy(p.) . (6.12)
L

Now we proceed to the two-center expansion of the local GF G, (r, r’, €) around
another centerm,i.e. whenr € 2, r’ € £2,,, n # m.Inthiscase p > p’and HJ,(p")
coincides with —ihZ(kp’). Using the well-known re-expansion [19]

—ihf(kp) = kY Gt jukpy), (6.13)
L/

one can write
Gu(r.r' ) = kY_ Go}y RiL(p,) ju(kp),). (6.14)

LL

where the matrix elements G}, (the KKR structure factors) are given by

Goyy, = —4mi Y i Cryp hi (kRu) . (6.15)

L’

with the Gaunt coefficients
Crpp = / Y (P)Y (#)Y (7)) dr . (6.16)

It is worth noting that for V,(p) = 0 the function R}, (p,,) coincides with j; (kp,)
so that (6.14) reduces to the well-known two-center re-expansion of the free electron
GF [13]

GO(ra r,’ 6) - GO(P + an P, + Rma k) =k Z GOZ’IZ’ ]L(kpn) jL’(kp:n) .
LL
6.17)

In the second step, we develop a method of solving the Dyson equation (6.1) for
the full Green’s function of the system.

From the spectral representation of the full GF already introduced in (2.48) of
Chap. 2.
Y

, 6.18
€—¢€j+in ( )

G@r,r',e) = lim
( 6) 7]—1>0+Z

J

where 1);(r) are the eigenstates of the SE corresponding to the energy ¢; and the
index j runs over discrete and continuum states, it is clear that the GF satisfies the
differential equations in its both arguments
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(e—H.)G(r,r',e) =6(r —r)
(6.19)
(e—H.)G(r,r',e) =o6(r —r'),

where H, = —A, + V(r) is the Hamiltonian of the system (ﬁi/Jj =€;;).

The general solution of the inhomogeneous equations (6.19) is the sum of a par-
ticular solution of the equations (6.19) and the general solutions of the homogeneous
equations corresponding to (6.19).

Therefore,

e ifr,rref, n=1,...,N,

Gr.r',0) = Gir.r' o +k Y. Gy R (DR (0, (6.20)

LL

where G,ll (r,r', ¢) is a particular solution, the coefficients G/}, are to be deter-
mined. It is expedient to choose the GF G,lZ (r, r', €) so that it would satisfy the
Dyson equation within the sphere n

G,ll(r, r',e) = Golr,r',e) + / Go(r,r", &) v, (r") G,11 ", r, e dr’;

’ 6.21)
o ifref, ref, n#m,

G@r,r',e) =k Z Gl Rl (r) R (1), (6.22)

LL'

where coefficients G}, are also to be determined.
Remembering (6.12) for r,r' € £2,, n=1,..., N, we can express the GF in
(6.21) as follows:

Gir.r'.e) = kY Ry (kp_) Hy (kpl). (6.23)
L

while using (6.14) forr € 2,, r' € 2,, n = 1..N;m = 1..N, n # m, we have

Go(r,r', ) = G(p, + R, Py + R € = kY Gofi R () (kp,).
LL

(6.24)

The derivation of the system of equations for the unknown coefficients G}, is

based on Dyson equation (6.1) and carried out in the following two cases:

e Casel:re 2, re2, nm
Taking into account (6.22), we can rewrite (6.1) as
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G(r,r',e) = kZGLL, R, (r) R.(r') = Go(r,r',¢)

LL

+ > f Go(r,r", &) v,(r") G, r', €) dr”
q#n,m

(6.25)

—i—/ Go(r,r", e)v,(r" G, ', e) dr”
2

n

—i—/ Gor,r", &) v, ") G", r', e dr”.

m

The integrals on the right-hand side (RHS) of (6.25) can be expressed in terms of
the introduced coefficients G''}, as shown below.

/ Go(r,r",e)v,(r'"YG(r", r', ) dr”
2

q

m . (6.26)
= kY Gopf 1l GPl, jukp,) Riy(p,).
LL'L'
The derivation of (6.26) is based on (6.7), (6.17), and (6.22).
/ Go(r,r", &) v,(r" G, r',e) dr”
2,
(6.27)
= kZ G R (PR (p) — kY G jukp,) R (p),).
The derivation of (6.27) is based on (6.6) and (6.22).
| Gutrrame Gt ar
2m
= / Go(r,r", &) v, (r")G! (", 7', €) dr”
2
+ k Gmn / Go(r,r", v, (r"R (¥R (rdr”
Z Wi | Gor.rs Oun ) Ry ) R () 629)

= kY Go} jutkp,) Ry(p),) — Go(r.r',e)

LL'

+ kY Golptp Gy jLtkp,) Ry (P),).
LL'L"
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The derivation of (6.28) is based on (6.6), (6.17), (6.20), (6.21), and (6.24). Insert-
ing (6.26)—(6.28) into (6.25) and canceling several terms, we obtain

Z G — ZZGOLL’tl’ Gl | irkp )R (P),) - (6.29)

LL g#n L

The functions in (6.29) are independent, therefore

Gylo= Goyl + Y Y Gy th Gl (n#Em) (6.30)
g#n L

e Case2:r,r € £2,,
The derivation of the equations for the Green’s function coefficients in this case
follows the same lines as in Case 1. One can find

GYo=>_ > G th Gl (6.31)
q#n L"

Combining (6.30) with (6.31) and defining G¢7;, = 0, we finally obtain

G = Gopp () (1 = bum) + Z Gopp () 14,(6) GLip. () . (6.32)

Here we returned to the coefficients their argument e. Thus, the solution of the
Dyson equation is reduced to the simple system of linear algebraic equations (6.32)
for the Green’s function matrix in angular momentum-site index representation.

6.2.2 Photoabsorption Cross-Section in Green’s Function
Formalism

In this section we present an illustrative example of applying the developed MS-GF
method to the description of photoabsorption. For this purpose, we will relate the
cross-section with the introduced Green’s function matrix.

The expression for the total cross-section can be written within the dipole approx-
imation as

2
o(wy) = 4ntaw, Y ‘/w;(r) W) @i(r)dr| 0(e —ef+w,),  (6.33)
-

where « is the fine structure constant, w, is the photon energy; the initial states and
energy are denoted by index i and the final states and energy by f. W(r) = ¢, - r is
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the dipole transition operator in the so-called length form, ¢ and €, are the wavevector
and polarization of the incoming field respectively. (We shall omit henceforth the
unnecessary index ¢ on w, and &, for simplicity).

Here, we introduce the function o(r, r’, €) = Zi Yi(r);(r'o(e —€;), where
1 (r) are the eigenstates of the SE at energy ¢;. Note that the completeness of the
set of these functions allows us to choose them real for real potentials.

Using the spectral representation of the GF (6.18) and the Sokhotski—Plemelj

theorem 1i%1 e iin = 73)1{ F imd(x), where P denotes Cauchy principle part (see
n—0+

Chap. 1), one can write
4 1 /
or.r' ) = —=3[Gr.r'. o] . (6.34)
7r

where J represents the imaginary part.
Using (6.34) in (6.33) allows one to avoid the summation over the final states:

o(w) = —4raw {/:/ @f(r)W*(r)?s [G(r, r, e)] W(r’)goi(r’) drdr'} ,
« (6.35)

where € = w + ¢;; the integrals are limited to the sphere n of the photoabsorbing
atom. This means that one needs to have the GF with r, r’ € £2,, i.e. remembering
(6.20) and (6.23),

G(r.r'.e) = kY RY (kp)H} (kp.) + k> GYLRI (PRE.(p) . (636)
L

LL

where the regular and irregular solutions of SE are complex, which makes necessary
the calculation of the imaginary part of the irregular solution.

Now we will redefine the regular and irregular solutions and rewrite (6.36) in
terms of the real solutions. Using the asymptotic forms (6.4) and (6.5) one can show

H, (kp.) = NJ (po) — iRl (p.) (6.37)

where the radial part of the real regular solution E,’:L (p) =e ¥ R}, (p) matches to
the boundary condition

ﬁ,’:L (by) = je(kb,)cosdy — ny(kb,)sin gy (6.38)
and the radial part of the real irregular solution N}, (p) matches to the condition

N{, (by) = je(kb,)sindy + ne(kb,)cosdy . (6.39)
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The Green’s function (6.36) in terms of the new solutions becomes

G@r.r'.e) = kY R} (kp) N (kp.)
L

(6.40)
+ kY [Gy e s ] Ry (o) Ry (o)
LL
with the imaginary part
S[Gr.r. o] = kY S[GyeT0 — i, Ry ()R (6.41)
LL
The substitution of (6.41) in (6.35) gives
o(w) = dmawk 1Y AR (O [idy — G A f . (6.42)
LL
where
Aip(k) = / wi(r)y W(r) R}, (r)dr. (6.43)

n

6.2.3 Numerical Aspects

In many cases one needs to calculate transitions of the photoelectrons either to
the states in continuum rapidly varying with the energy or/and to the states below
MT-zero. As will be demonstrated in Chap. 13, modeling the spectra in these cases
requires extremely small real energy step, making calculations time consuming. Here
we develop an effective numerical procedure of solving this problem.

6.2.3.1 Analytical Continuation of the Green’s Function

It is known that there are two alternative ways to account for the finite lifetime of
the electron-hole pair. The first one is to convolute a spectrum calculated on the real
energy axis with a Lorentzian function of the half width I". Another way, to which
we will adhere, is a continuation of the GF into the upper semiplane of the complex
energy plane [7]. To take into account the Pauli principle, we introduce now the
Fermi level and show following [7] that for any photoelectron energy, except for
the vicinity of the Fermi energy e, the convolution is mathematically equivalent to
the use of the GF calculated at the complex energy € 4+ iI". The convolution of the
cross-section (6.33) is obtained by convoluting the o(r, r’, €) in (6.34):
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o0

r ;o
ﬁ(r,r’,e)ze(e_eF)_/ o(r,r', ¢) "
™

oo (e— N2+ T2

L[ [*® or,r,é—er) , ¢ oo(r,r, € —ep)
== CUALEL I L sl R
Tl (=€) 4172 oo (€—€)2 4 T2
(6.44)

where 6(x) is the step function. Remembering the relation (6.34), we notice that the
first integrand on the RHS is an analytical function of €' if J(¢’) > 0. The second
integral in (6.44) decreases rapidly when € > ep, and it can be neglected for the
transitions to continuum states above €. Therefore, one can write

5(","/, 6)

~ I /OO Zj¢j(r)¢j(r/)5(6/ —€r—¢€j)
= ' de
T J-00 (e—€)+TI?
(6.45)

_ EZ pi(r);(r’)
™o (e—€er—€e)2+ 12"
On the other hand, the spectral representation of the GF (6.18) for the complex
energies € — ep + 1"

i ()Y

_ (6.46)
€e—¢ep—¢€; +1I

G(r,r',e—ep+iI') = Z
J

is the analytical continuation of the GF from the positive real energy semiaxis into
the segment € > €y of the upper semiplane of the first sheet of the complex energy
plane, where it has no poles. Remembering that we deal with the real eigenfunctions,
one finally obtains

~ . _T pi(r);(r’)
pr,r', e) = - ;(G_EF_Gj)erpz

gy e

1
=——23 =—3|Gr,r', e— irn| .
€—ep —¢€; +il’ T 9[ ( c-ert )]

(6.47)

Thus, if the calculations of spectra are carried out for the integration contour
shifted by the value of I" > 0 into the upper semiplane, we obtain spectra broadened
with a Lorentzian function. In addition, this mathematical trick allows one to compute
spectra in the range of both continuum and bound electronic states using the same
algorithm, since the spectrum is continuous on such a contour.
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6.2.3.2 Calculations of the Photoabsorption for Complex Electron
Energies

To calculate cross-section (6.35) for the complex energies, it is expedient to use
the GF in the form (6.36), with the regular and irregular solutions matching to the
boundary conditions (6.4) and (6.5) respectively.

As an example, let us consider K-edge unpolarized absorption cross-section, in
which case (6.35) is reduced to

8maw

o(w)

{// ei(r3I[Gr.r' e —ep +iD)] r'o;(r')drdr’ }

by, by,
/0 [0 o153 RY (o) HY (r=) ()3 1507 drdr!
8
_8mow ,
3 by
+[/O 901s(r)r3R,’<’1(r)dr} ZG'};;lm —ep +il)
m——l
(6.48)

where spin degeneracy is taken into account by a factor of two. The way to compute
the first integral in (6.48) is illustrated in Fig.6.1.
The integration over the upper triangle (over the variable r) in Fig. 6.1 gives

b, r'
f / o1 () P R () HE () (7Y ou () drdr 6.49)
0 0

Fig. 6.1 The algorithm of
the bivariate integration in b
(6.48): Horizontal lines show
intervals of integration over r

from O to r in (6.49) and < »
vertical lines over r from (!' f') /,i
0 to 7 in (6.50) AN
/
P4
r 7
(r<n
r bn
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and the integration over the lower triangle (over the variable ') gives

by r
f / o1 (r) P R () HY () () @1, () drdr (6.50)
0 0

Therefore, the double integral in (6.48) reduced to

bn
2/ o1 (r) PP HY (r) FL () dr (6.51)
0

where we put F,(r) = [y R} (r))(r') 15 (r')dr’.
The irregular solution A}, () matching smoothly to —ihf(kr) at b, can be com-
puted by either outward or inward integration of the radial SE.

6.3 MS-GF Formalism: Multichannel Version

As in the one-electron MS-GF method, a derivation of the multichannel equations
presented here is based on the Dyson equation for the retarded GF G(E)

G(E) = °G(E) + °G(E) AV G(E) , (6.52)

where E is the full energy of the system under study; °G(E) is the GF of the one-
particle approach considered in Sect. 6.2; AV is a difference between many-particle
and single-particle Hamiltonians.

Reducing the integral Dyson equation (6.1) to the system of the linear algebraic
equations (6.32) is based on the expansions (6.12), (6.14) for the local GF and
(6.20), (6.22) for the full GF. Similar expansions are not valid for potentials which
are non-local in the radial variables. One of the reasons lies in the fact that this
potential is an integral operator not allowing the separation of variables r and r’.
As a consequence, the Wronskian of the radial regular and irregular solutions of the
differential equation is not constant. It is worth noting that the introduced potential
is non-local not only in radial variables but also in the channel representation. We
assume at this point that the non-local potential considered here can be approximated
by a sum of separable potentials, keeping however at the same time its nonlocal
character in the channel indices. In this case, two-dimensional integrals can be divided
into the sum of products of one-dimensional integrals, thus admitting the separation
of the radial variables. In this approach, we imply that the Wronskian has a small
dependence on the radial variables that can be neglected. So, we will construct the
Green’s function in terms of the Schrodinger equation solutions calculated with a
high accuracy within the variational principle, however, the expansion formulas for
the GF in terms of these solutions will be approximate.
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It is worth noting that the multichannel generalization of the MS-GF method
relies on the MT-approximation to the cluster potential, for this reason the type
of correlations which can be treated within this approximation is restricted to the
correlations between one electron in a delocalized state and the electrons (or holes)
in the states localized inside the MT-spheres.

6.3.1 Single-Site Multichannel Radial Equations

Prior to solving (6.52), we introduce, as before, a number of local functions associated
with the truncated atomic potential inside the sphere £2,,. The many-electron wave
function of the N-electron system with one delocalized electron scattered by the rest
of the atom with (N — 1) electrons can be approximated by a linear combination of
the antisymmetrized products, as

1 .
Ny, xyox) = Wi [Z Api(x) N (xy, . ,xN—l):| =) 6,

" (653

where x = (r, s) denotes the radial and spin coordinates, ; (x) is the wave func-
tion of the scattered electron in a channel i, A denotes the operator of permutation
of coordinates, which is equal to +1 or —1 in the cases of even or odd number
of permutation respectively, lIIiN -1 (x1,...,xy_1) is the Slater determinant for the
channel i constructed from the localized orbitals of the (N — 1) - electron atom.
Our purpose in this step is to derive the radial Schrodinger equation for the wave
function of the scattering electron. We will follow the close-coupling method based
on the Kohn variational principle for the reactance K-matrix [20] formulated for a
function ¥V assumed to be the exact solution of the many-particle problem:

SIW|H-—E|¥)—K]=0.

As the exact solution of the many-particle problem is unknown, it was shown in [21]
that the above variation is equivalent to

W |H—E|¥) =0 (6.54)
if UV is inexact.

Therefore, one first needs to write expressions for the matrix (¥'|H — E|¥) of
the Hamiltonian

N—-1
2 27
HY = —Vv? — HN! 6.55
,+;|r_rj| Tt (6.55)
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for the set of the trial channel functions ®; from (6.53). The matrix elements
(®;|H — E|®);) are just the same as used in ligand field theory [22]. Their struc-
ture depends on the definition of channels. The variation of the radial wave func-
tions of the scattered electron in each ©®; leads to a system of coupled integro-
differential equations for these functions. As an illustration, let us consider the
simple but interesting example of 2 p spin-orbit coupling and Coulomb interaction
between 2p core electrons and s, d electrons in the continuum. In this case H"~!
includes the operator of spin-orbit interaction ) ; e2p a(r;)(; - s;) (spin-orbit cou-
pling of d electron in the continuum is negligible). The channel can be defined by
the set of quantum numbers i = jo,u;k?;m; = ak?L;, where j = 1/2,3/2; p; =
—Jj,...,+Jj; L; = {;m; refers to the angular momentum of the delocalized electron;
ki =¢ =E—E,=E—(EY — EN, ). Therefore,

pi(r) = Py (e, )Y, (F) , (6.56)

the Slater determinant lI/iN -1 (x1, ..., xy_y) forthe channel i includes corresponding
2 p-orbital

Wiop (X) = Poy(r) x Y Ch, Yim(F)X), (0) (6.57)

m+mg =

where P,,(r) is a radial wave function of 2p electrons calculated in a one-particle

mean-field approximation for H N-L. C,'flms are the Clebsch—Gordan coefficients,
an,\ (o) is a spin function of 2p electrons; Py, (¢;, ) is a radial wave function of the
electron scattered in the channel i, and the Hamiltonian H" becomes

2 27

- HN-, 6.58
T Ir—R, (0:38)

5
HY = -V} +2V/(r) + Y _

Jj€2p

Here 2V’ (r) is a one-particle mean-field potential that includes interaction between
the scattered electron and all the localized electrons of the atom except 2p elec-
trons. Note that the Slater determinant WiN -1 (x1,...,xy_1) is constructed from the
discrete orbitals obtained in the same approximation for HV~! as 2 p-orbitals. By
inserting (6.58) into (®;|H — E|®;), using the definition of ®; given in (6.53), and
varying the radial wave functions Py, (¢;, r) = P;(r) in each &;, we obtain the system
of coupled radial integro-differential equations:

2 4+
dr? r?

— V() + kf)P,»(r) =Y Wi (r. )P
J
(6.59)

+ D XigPy(r)dpe, =0,
q
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a,q, Yq (P2pP2p) Pj(r)
Wij(r, )P () =2 . (6.60)
¢ L=l vy (Poy Pi(r)) Poy(r)

r by
ye(f9) = r_q_l/ F@HgrHH? dr’ + r"/ FHgHH 17t ar,
’ ' (6.61)

where V (r) =2V'(r) 4+ 2yo(P2, Pp) — 2Z/ |r — R,,| is the one-electron potential
within the sphere £2, considered in Sect.6.2. The third term in (6.59) ensures the
orthogonality of the radial function of the electron in the continuum to the radial
orbitals P, (r) of the core electrons with £, = ¢; by means of the Lagrangian multi-
pliers \;,. Coefficients aiqj, cfj in (6.60) are expressed in terms of the Gaunt coeffi-
cients [ Y; (F)Yym, (F)Y;(7)d7 [23]. Note that the first term on the RHS of (6.60) is
a local potential, with ¢ = 2, whereas the second one is a non-local potential with
q = 1, 3. Henceforth, as in Sect. 6.2, we will use the local coordinate p instead of
the global r.

Boundary Conditions

The single-site solution of the set of equations (6.59) is a matrix defined by asymp-
totical conditions. Let us choose them so that the matrix elements Rfj (i, p) =
Pl.’J‘. (&, p)/(pk;) would smoothly match to the conditions:

Rij(ei.p) —=> "0 (6.62)
- p—0 :
n ki . st n
Ri; (€, by) = 5 Lje, (kibn) 6ij — i hy (kiby) 23] (6.63)

where 7% is the 7-matrix in the channel basis introduced by definition.

The coupled set of equations is solved iteratively and independently for each
column function which can then be normalized according to the condition (6.63)
that also determines the corresponding column of the #-matrix.

Lippmann—-Schwinger Equation

The functions R (¢;, p) satisfy the system of coupled integral equations

Ri(ei, p) = Jo, (kip)dij

/ ~ N n /N 12 12 PN (664)
+Z/f Goe, (p. Py €) Vig(p', p) Ry (g, p7) p~p = dp'dp”
q 2
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where

Vig( 0 = [V(p/) =Y AipPp (p/)éz,.zp} 8(p" — p"big + Wig(p', p") . (6.65)
p

and the free GF Gy, (p, ¢/, €;) satisfies the radial equation

1d/,d 2+ 1) ) 5(p—p)
—— |- 46| Goy(p. pe) = 1= 6.66
|:p2dp (/J dp) e +€1i| e, (P, P, €) = (6.66)

with the known matrix elements in the angular momentum basis
Gog, (p, p' &) = —iki jo,(kip<) by (kip=) 6ij (6.67)

Asymptotic Matrices

Writing (6.64) for p = b,, substituting the boundary condition (6.63) in the LHS
and the boundary value of the GF (6.67) in the RHS, one can obtain the integral
representation of the interchannel atomic #-matrix introduced in (6.63):

ti(E) = Jkik; Y / fg Jo(kip) Vig(p. p') Rl (eq. p)) p7p” dpdp . (6.68)
q n

It is useful to write the Lippmann—Schwinger set of coupled integral equations in
terms of the potential difference as

R} (ei, p) = Ry (p) i

(6.69)
+>° f /9 G} (p.p.e) AVig(p' p") R (eq. p") 0" dp/dp”
—~JJa,

where R}, (p) is the local single-channel regular solution of the Schrodinger equa-
tion with the potential v,(p) (see Sect.6.2); the single-site GF G (p, p', ¢) =
Gy (p,p',€)/(pnp),) is defined in Sect.6.2 according to (6.11); AViu(p, p') =
Vig(p, p') — va(p)o(p — p')dig-

Now one can relate the difference between the multichannel and single-channel
t-matrices to the difference between the corresponding potentials. Writing (6.69) for
p = by, inserting into it the expressions for the single-site atomic GF G, (by, oL e) =
—iki Ry, () hZ (kiby)d;; and the boundary conditions (6.4), (6.63) for the single-
channel and multichannel wave functions respectively, we obtain
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All’j(E) =t — l‘in(;l'j =
(6.70)
S5 Y f fg R, (0) AVig(p, ) R (eq #) 70 dpdp
q n

In the next section, it is expedient to have the boundary condition (6.63) expressed
in terms of the reactance K -matrix. For this, defining the relation between scattering
S- and 7-matrices similar to that for the single-channel problem:

(6.71)

we first reduce (6.63) to

n 1 ki - + n
Rij(ei.bn) = 3 k—j[hli(kibn>6i,,- + hy (kiby) S1] -

Then, using the well-known relation between unitary S-matrix and Hermitian
K -matrix [24]:
S = I+iK)I—-iK)™!, (6.72)

we obtain the desired boundary condition equivalent to (6.63):

[ki \ .
RI' (. by) = k—jZ[Jzi(kibn>6,-,—nei(k,-bn)K,-q](I—lK>,,,-1. (6.73)
q

6.3.2 Single-Site Multichannel Green’s Function

Itis known that the Wronskian for matrices of the regular @ and irregular F' solutions
of the differential equation with the symmetrical potential matrix is constant if defined
as in [25]:

W(F,®) = Fo' — F' o, (6.74)

where the tilde over them denotes the matrix transposition and the prime indicates
the radial first derivative.
The functions @;;(¢;, p), Fij(€;, p) satisfy the set of coupled equations

|:d2 G+ 1)

7 +k?] fi) =" /g Vig(p. 0) f1i () dgf = 0. (675)
~ Jo,

where f;;(p) denotes either @;;(¢;, p) or Fj;(e;, p).



190 A. Taranukhina et al.

Let us impose for these solutions the following boundary conditions at p = b,:

1 - _
D;(ei, by) = N/ [Je, (kiby) 6i; — i, (kiby) Kij] (6.76)
1 -
Fij(€,by) = —= hy (kib,) Z I- iK)[_plApj , (6.77)
Vki .

where ji, (kip) = kipje, (kip), g, (kip) = kipne, (kip), h (kip) = kiphi (kip); Kij
are matrix elements of the K-matrix in the channel basis which is real and symmet-
rical for the real and symmetrical potential in (6.75). The normalization coefficients
A should be determined so as the Wronskian between these solutions would be
equal to unity allowing us to use them in construction of the single-site multichannel
GF.

First, we note that the function

S(F(), p<yp

Gp.p,E) = (6.78)
F(p)@), p>p

with the matrix elements
B Zq (piq(eia p<)qu(€j, P;)
Gij(p.p' E) = (6.79)
Zq F}q(eiv p>)¢jq(€js P/<)
meets requirements to be the single-site multichannel GF, namely:

e satisfies the inhomogeneous system of the coupled integro-differential equations
corresponding to (6.75) for both variables p and p/, if p # p/

a2 G+ 1) - ,
|: _—2+ki2]Gij(P7P’E)

d? p
(6.80)
_Z/ Vig(p. p) Gy (0", p E) dp" = 6(p— p) b
q
e satisfies the principle of reversibility
Gij(p, 0 E) = Gji(p, o/, E) 6.81)

e satisfies the condition of continuity at p = p/.
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Next, assuming that the non-local potential introduced here can be approximated
by a potential with separable coordinates and applying the general method of the
Green’s function construction [18], we determine the normalization coefficient in
(6.77). By integrating (6.80) over p’ in a small interval [p — A, p + A] and using
continuity of G,-j (p, ', E) we find

+A
lim FG(p,p E) =1 (6.82)

The substitution of (6.78) in (6.82) leads to

(p)F'(p) — D' (p)F(p) =

Using the boundary conditions (6.76) and (6.77), we obtain

1 - _

ﬁ(ﬁa,,, i; K,,,)\ﬁk h+ (I —iK); A,y
> 1 = 8,
" ki — Ky = f by (@ —iK) 7 A,y

which gives A,, = —i. Non-diagonal coefficients A ,, are put to zero, so as the GF
(6.79) would go to the free GF when the potential in (6.75) tends to zero. Finally,
Apg = —i0pg. _

Throughout this chapter we use the GF G;;(p, o/, E) = Gij(p, p', E)/(pp’) for
which the expansion (6.79) becomes

Zq C5iq(eia P<) qu(ej’ l)>)
Gij(p, 0/, E) = (6.83)
Zq Fig(ei, ps) @jg(ej, po)

being expressed in terms of the functions QS,-(, = ®;,/p and F iq = Fjq/p matching
to the conditions at p = b,

@i (i, bn) = vki [jo, (kiby) 8ij — ne, (kiby) Kij] (6.84)
Fij(ei.by) = —iv/ki hi (kib,) (1 —iK);;" . (6.85)

In addition, it is expedient to express the irregular solution F in terms of the real
regular solution @. Using the boundary conditions (6.84) and (6.85), we obtain

Fiy = —i Z I+ KD + Aig (6.86)
J
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where the irregular solution A;, satisfies the condition at p = b,

Aig(er b)) = Y ki [je,(kiby) Kij + ne, (kiby) 6] A+ K7
J

Note that function A;, is a real part of the complex irregular solution I:",-q.
Similarly, one can write relation between R;; matching to the boundary condition

(6.73) and &;; as

\ |« - .
R p) = —= Zq: By (i p) A —iK), | (6.87)

J

6.3.3 Solution of the Dyson Equation for the Full Green’s
Function

Here we present a scheme of solving the Dyson equation (6.52) for the full GF in
the case when strong many-electron interaction takes place only within one of the
atomic spheres in the cluster. This means that AV in (6.52) is equal to zero value
everywhere with the exception of the sphere n.

The general solution of (6.52) can be written in analogy with the single-channel
equation (6.20) (Sect.6.2) as

Gij(r.r' E) = Gli(r.r' E) + Y _\Jkykq R, (r) Gy (E) R (r') . (6.88)
Pq

where r, r’ € §2,; the coefficients G, (E) are to be determined; G, (r,r’, E) =
Y1, ()G (r, 1y EYYy, (F)): RY,(r) = Y1, (F)RY, (1)
Let us rewrite (6.32) for the full single-channel GF in matrix form
G = G+ Gy 't °G , (6.89)
which in terms of the inverse GF becomes

067" = Gyl - Y, (6.90)

where t is the single-channel #-matrix for the potential in sphere 7.
Similarly, one can write for the full multichannel GF

G =Gy +GotG, (6.91)

G'=Gy'-t. (6.92)
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The subtraction (6.90) from (6.92) gives
G'=°"- at, (6.93)
G =G+ G AtG. (6.94)
Writing (6.94) in the channel representation

Gij = "Gij+ Y _ "GipAty, Gy (6.95)
pPq

and returning to the notations of Sect. 6.2, i.e. OG,-j (E) = G’Z’Lj (€1)0¢¢;00,0,» Where
the coefficients Gﬁ’ L (€;) satisfy the coupled algebraic equations (6.32), we find

Gij(E) = GZLL/(ei)(SG;Ejaa,-(yj + Z 56,‘51)5(1,‘@1;G’ll";le(El')Atpq(E) Gq](E) ) (696)
prq

in which At,, is determined by (6.70).

6.3.4 Photoabsorption Cross-Section in the MCMS-GF
Method

‘We consider an application of the developed method for calculating L, 3-edge absorp-
tion cross-section. The expression (6.33) now becomes

2
0(Eg+wg — Ey)

o(wg) = 4mlawy Y K‘I’f | W | 11{,,>
!

wt
N2
E—Ef+in

—4row, (q/gvi/ |S[GYE)] | Vi/wg> ,

Il

|

~

3

Q
3

—_—

&

=

vi/wg> 6.97)

where ¥, ¥, and E,, E ; are respectively the many-electron ground and final eigen-
vectors and energies of N-electron atom in a cluster; W = e, - SN, ri denotes the
dipole transition operator; £ = E, + w,. Note that in the final state the N-electron
absorbing atom includes 2 p hole and electron in continuum s-, d-states. The many-
electron full GF of the cluster G (E) can be expended in terms of the complete basis
set lI/iNfl(xl, ... ,Xy_1) introduced in (6.53):
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GN(xy,...,xy_1,1; X}, ..., x|, rE)
=AY e ) G BN e
ij
(6.98)
Here the operator A permutates the coordinates {xi,...,xy_} with r and A’

acts similarly on the prime variables.
Writing the expansion (6.83) for G;’j. (r,r',E) as
Zq éiq(eis r<) qu(Ej, r>)
ij (r,r',E) = (6.99)
Zq Fiq(eia r.) (Z_jjq(fj, r.)

and taking into account (6.86), (6.87), we obtain from (6.88)

Gij(r.r' E) =Y ®iy(e;, 1) [Gpg(E) — il + K*) )] D), (cj. 1)
Pq

(6.100)
+ ) Bigle 1) Ajglej.rl)
q
where G pq (E) denotes
Gpg(E) = Y (A—iK),) Gy (E) A —iK), | . (6.101)

r'q

Putting together (6.98) and (6.100), dropping again index g on w,, we reduce
(6.97) to

o(w) = draw I Z M i@+ KD} — Gy (E)]| M, — MIM,5,,} . (6.102)
rq

where dipole transition amplitudes M, and Zl71q are respectively defined as

M,(E) = Z(AwiN—quiq(e,-) | vi/wg> , (6.103)
Wy (E) = Y (AW Ay en | W) (6.104)

i

The functions @;,(¢;, r) and A;,(€;, r) are real, therefore the products of the
dipole transition amplitudes in (6.102) are real, thus giving
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o(w) = 4maw Y {M; [+ KD =3 G| My} (6.105)
ij

However, if one needs the analytical continuation of the GF into complex energy
plane, as described in Sect.6.2, the calculations of irregular solutions of the cou-
pled integro-differential equations (6.75) are necessary. We can choose either real
Ay (€, r) or complex Fiq (&, r) as an irregular solution. If we use A;,(¢;, r), the
expression (6.102) includes the second term calculated at complex energies. Other-
wise, if we use functions Fi,,(ei, r), it is easy to show following to the same line as
in the case of A;,(¢;, r) that (6.102) becomes

o(w) =4rowS Y {=M] [Gp(E)| M, — M M,5,,} . (6.106)
rq
W,(E) = Y (AW Fgten | W) (6.107)

i

The algorithm of the bivariate integration in M;L M ;j 1s similar to that developed in
Sect. 6.2.

6.4 Outlook

In this chapter we have presented in details two methods based on the real-space
Green’s function formalism: single-channel (MS-GF) and multichannel (MCMS-
GF). Both approaches reduce the integral Dyson equations to systems of linear
algebraic equations for the GF matrices in the angular momentum-site index repre-
sentation. Since the methods rely on the MT approximation, the MCMS-GF method
accounts only for correlations between one delocalized electron and electrons local-
ized inside MT-sphere. One of the ways to go beyond this restriction could be the
extension of the MCMS-GF equations to the FPMS (Full Potential Multiple Scatter-
ing) theory [26]. The MCMS-GF theory exploits the close-coupling formalism, thus
combining the MCMS-GF and FPMS methods is a relatively straightforward task.
The second serious assumption that the non-local potential considered here can be
approximated by a sum of separable potentials, leading to the same equations of the
MCMS-GF method, requires a strict justification.
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Chapter 7

MXAN and Molecular Dynamics: A New
Way to Look to the XANES (X-ray
Absorption Near Edge Structure) Energy
Region

Maurizio Benfatto, Elisabetta Pace, Nico Sanna, Cristiano Padrin
and Giovanni Chillemi

Abstract X-ray Absorption Near Edge Structure (XANES) spectroscopy is a power-
ful method to obtain local structural and electronic information around a well-defined
absorbing site of matter in many possible different conditions. Few years ago we pre-
sented a new method, called MXAN, that allows a complete fit of the XANES energy
region in terms of well-defined set of structural parameters. MXAN calculates the
photo-absorption cross-section using the full multiple scattering theory and, in this
way, the analysis can start from the edge without any limitations in the energy range
and polarization conditions. In this paper we present with details the MXAN method
and new possibilities, coming from the combination of molecular dynamic simula-
tions and MXAN, in the analysis of structural disordered system. Applications to
the solvation spheres analysis of Ni, Cu and Cl ions in water are also presented in
details.

7.1 Introduction

X-ray absorption spectroscopy (XAS) is a powerful method for obtaining both elec-
tronic and structural information on the absorbing atom site of different types of
matter, from biological systems to condensed materials. The low energy part of
the XAS spectrum, from the rising edge up to a few hundreds of eV, the so called
XANES (x-ray absorption near-edge structure) region, is extremely rich of electronic
and structural information. Oxidation state, overall symmetry, distances and angles
between atomic species around absorbing site [1] can derived from this part of the
XAS spectra. In principle, an almost complete quantitative recovery of the geomet-
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rical structure within 6 < 7A from the absorber can be achieved from this part of the
experimental spectrum and for long time the fit of XANES data has been an aim of
users of this technique, especially in the cases of limited k-range experimental data
where a standard EXAFS analysis cannot be performed.

A further advantage of using the XANES data lies in the limited effects of the
atomic thermal disorder. This can be easily seen by the consideration that any signal
associated with the nth multiple-scattering (MS) event can be written as a sinusoidal
function whose argument is given by kR + F(k, R;, ..., R,) where Ry is the
total length of the MS path of order n and the F function depends on the three-
dimensional geometry of this path. As a consequence, the associated thermal damping
factor contains always a term like exp(—k20?), coming from the R, part. This is
the dominant term and it is almost equal to 1 in the low-energy part of the spectrum,
i.e. for small k values [2].

The possibility to perform quantitative XANES analysis to obtain a structural
determination of an unknown compound can be relevant in many scientific fields,
like extra-dilute systems, biological systems where the low S/N ratio and the weak
scattering power of the light elements limits the k-range of the available experimental
data, materials under extreme conditions, and recently the analysis of time-depended
data coming from metastable systems living few pico-seconds or even less.

However, the quantitative analysis of the XANES spectra presents some diffi-
culties mainly due to the theoretical approximations needed in the treatment of the
potential and the more time-consuming algorithms to calculate the absorbing cross
section in the framework of the full multiple-scattering approach [3, 4]. For these
reasons, the XANES analysis is still considered a qualitative technique, used as a
help for standard EXAFS studies.

Several years ago Benfatto and Della Longa proposed a fitting procedure, MXAN
(Minuit XANES) based on a full MS theory [5], which is able to extract local quanti-
tative structural information around the absorbing atom from experimental XANES
data. Since then, the MXAN method has been successfully used for analyses of many
known and unknown systems, yielding structural geometries and metrics comparable
to x-ray diffraction and/or EXAFS results [6, 7].

In this paper we present a review of the MXAN method describing also the new
possibilities available in the latest version of the program. In particular we will
show as the link between MXAN and Molecular Dynamic (MD) simulations allows
to handle structural disordered and dynamical systems. Some applications will be
presented and discussed in details.

7.2 The MXAN Method

The method is based on the comparison between experimental data and many the-
oretical calculations performed by varying selected structural parameters starting
from a well-defined initial geometrical configuration around the absorber. The cal-
culation of XANES spectra are performed within the so-called full MS approach, i.e.
the inverse of the scattering path operator is computed exactly, avoiding any a priori
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selection of the relevant MS paths [3]. The fit procedure is performed in the energy
space without the use of any Fourier transforms algorithm; polarized spectra can be
easily analyzed because the calculation is performed using the full MS approach [5].

The optimization in the space of the parameters is achieved using the CERN-
library MINUIT routines minimizing the square residual function

3w [0 = e T
52 = m = , (7.1)

n
2w
i=1

where m is the number of the independent parameters, n is the number of experimental
data points, y and y;" are the theoretical and experimental values of the absorption
coefficient, ¢; are the individual errors in the experimental data set and w; is a
statistical weight, this last can be chosen using a suitable flag in the MXAN program.
For w; = 1, the square residual function S? becomes the statistical x> function. A
typical fit involves an experimental energy range of about 150 = 200 eV from the
rising edge, applications to several test cases indicates that the best-fit solution is
quite stable and independent from the starting conditions. The achievement of the
best-fit condition involves the calculation of many absorption coefficients related to
several hundred different geometrical configurations. This is done in a reasonable
time with the modern computers.

The MXAN method is based on the standard MS theoretical approach within
the muffin-tin (MT) approximation for the shape of the potential and the so-called
extended continuum scheme to calculate both the continuum and the bound part
of the XAS spectrum. It also uses the concept of complex optical potential based
on the local density approximation of the self-energy of the excited photoelectron
[3]. The total charge density needed to calculate the whole potential is derived by
superimposing atomic self-consistent Hartree-Fock charges derived using neutral or
non- neutral atoms.

In the MT approximation it is necessary to define the radii of the spheres surround-
ing all the atoms used in the calculation; they are chosen according to the Norman
criterion, with some percentage of overlap between the MT spheres. The potential is
recalculated at each step of the minimization procedure keeping fix the overlapping
factor. This parameter controls all the MT radii and it can be considered as a free
parameter of the theory. At the same time there is the need to define the constant inter-
stitial potential, this can be calculated by averaging the potential over the interstitial
volume defined as the difference between the volume of an outer sphere (centered
on the absorbing atom and encompassing the cluster) and the sum of the volumes
of each individual atomic spheres. However in the extended continuum scheme the
outer sphere is not used and the interstitial potential can also be considered as a free
parameter of the theory. Both overlapping factor and the interstitial potential can be
optimized during the fit procedure, and in the last version of the program, they are
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inside the structural loop in order to minimize the computer time and to calculate the
statistical correlations with the geometrical parameters. It turns out they are small in
most of the cases with a very weak influence in the structural determination. Clearly
the overcoming of the MT approximation [8, 9] and the use of a self-consistent field
(SCF) potential is the best way to eliminate the arbitrariness that the use of such free
parameters introduces in the calculation. However the introduction of the non-MT
corrections and the use of SCF potential in a fitting procedure where the geometrical
structure changes at each step of computation is complicated and quite time con-
suming. There is also the risk to stabilize wrong electronic configuration when the
geometry is still far from the reality with the possibility to increase the finding of
false minima.

On the other hand the optimization of both interstitial potential and MT radii can
be a way to mimic the non-MT corrections and the use of a SCF potential for the
whole cluster. This is based on the following theoretical considerations: the scattering
atomic f-matrices and non-MT corrections depend on the charge density, but they
also depend on the MT radii and the interstitial potential via the Wronskians of
the theory calculated at the boundary of the MT spheres for the given interstitial
potential; it is also possible to write a MS theory without the MT approximation
with the same formal structure of the usual MS theory by adding some suitable
quantities to scattering matrices and propagators. In fact the total photo-absorption
cross section can be written as o, ~ (T + H)~' where now T = (T,)~' + AT
and H = Hyr + AH. Here T, and Hyr are the r-matrices and the free electron
propagators between the atomic sites calculated within the MT approximation. AT
and AH are the non-MT corrections proportional to the interstitial volume. Indicating
with A = AT + AH we can expand the total cross section o, in series using A as
parameter:

o3 Z(—l)n [(T;1 +HMT)_1A]n (T, ' + HMT)_I)} . (7.2)
n=0

In this way o, becomes o, & oyt + corr(E; Vin), i.e. the total non-MT photo-
absorption cross section can be written as the sum of the total photo-absorption
written in the MT approximation and corrections that decrease with the energy and
depends on the potential in the interstitial volume [10]. So a judicious choice of
MT radii and the interstitial potential can account for the influence of such non-MT
corrections and the use of SCF potential or, at least, minimize errors due to the
MT approximation, giving a good agreement between theory and experiment and an
accurate structural recovery [11].

The self-energy is calculated in the framework of the Hedin-Lundqvist (HL)
scheme [12]. The use of the full complex HL potential introduces, in most of the cases,
arelevant over damping at low-energies especially in the case of covalent molecular
systems. For this reason we have developed in MXAN a phenomenological approach
to calculate the inelastic losses based on the convolution of the theoretical spectrum,
calculated by using only the real part of the HL potential, with a suitable Lorentzian
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Fig. 7.1 Typical behavior of the total energy dependent width of the Lorentzian function used in
the phenomenological damping

function having an energy dependent width of the form Iio(E) = It + Inp(E)
where I, is the core-hole width while the energy dependent term represents all the
intrinsic and extrinsic inelastic processes. All these quantities are expressed in eV.
The Iy (E) function is zero below an onset energy Ej, that corresponds in the
extended systems to the plasmon excitation energy, and begin to increase from a
value Ay following the universal form of the mean free-path in solids [13]. Both
the onset energy E; and the jump A; are introduced in the I, (E) function via an
arctangent functional form to avoid discontinuities and to simulate the electron-hole
pair excitations. In Fig. 7.1 we show a typical behavior of the I (E) function.
Their numerical values are derived at each step of the fit on the basis of a Monte
Carlo thermal annealing procedure. In this way the agreement between theory and
experimental data is quite good in the whole energy range, starting from the edge.
This phenomenological approach can be justified on the basis of the multi-channel
MS theory [14]. In the sudden limit of the theory the net absorption is given by a
sum over all the possible excited states of the (N — 1)-electron system. Assuming
that all the electronic channels are near in energy, the total absorption is given by the
convolution of the one-particle spectrum, calculated with the full relaxed potential,
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with a spectral function A(E) that represents the weight of the other electronic
channels:

pow =Y = | W(E — ENAE)AE (7.3)

with the ansatz that the spectral function A (E) is well approximated by the Lorentzian
function with the energy dependent width previously defined. y is the absorption coef-
ficient and E is the energy. It is also possible to demonstrate that in the case of domi-
nance of only one electron channel, the elastic one, the corresponding Green’s func-
tion Gy obeys to a Dyson-like with a suitable complex self-energy > " (r, r'; E).
Within the approximations of locality and of homogeneous systems, this is equiv-
alent to a real calculation convoluted with a Lorentzian function having an energy
depended width. Therefore I, (E) is characterized by parameters which have a clear
physical meaning and they are not free to assume any value but are forced within a
well-defined interval. To clarify this point we show in Fig. 7.2 the comparison of the
mean free path coming from the complex part of the HL potential with the one com-
ing from the use of the phenomenological damping, the core-hole width is included
in the calculation. The two curves have the same shape and are almost the same
beyond 40 eV from the edge. On the other hand there is a sizeable difference in the
in the first ten of eV where the damping coming from the HL complex potential is
too strong.

Of course, when contributions from one or more of these excited electronic states
are of the same strength of the fully relaxed channel, they must be considered explic-
itly in the calculation, as in the case of the iron K-edge of Fe’* in water solution
[15]. It is also possible to note that the shape of I7,s(E) function is similar to the
inverse lifetime of the quasi-particle I'; derived in G W, scheme, without the sharp
onset at the plasmon excitation energy to account for the interference between the
intrinsic and extrinsic inelastic losses [16].

The experimental resolution is taken into account by a further convolution with
an energy independent Gaussian function. In total MXAN has four parameters that
completely control the damping procedure. The user can choose how to open them
or keep them fixed to some values. Many applications to test cases and unknown
systems have shown the reliability of this type of phenomenological approach.

Recently the MXAN code has been modified to allow fitting difference spectrum,
i.e. signal coming from the difference of two XANES data. So it is possible to
analyze differential transient XAS data, which consist of the difference between the
transmission spectra of a unexcited and a laser excited sample. This approach greatly
increases the sensitivity of the data to small changes, and at the same time, reduces
the influence of systematic errors in the experiment and in the calculation. In this
way it is possible to analyze in details transient data coming from samples in states
living few picoseconds or even less [17].

The problem of an ab initio quantitative treatment of geometrical disorder in
the XANES energy region is still an open question. The only attempt to solve this
problem has been made by the use of the so-called augmented space formalism [18].
This approach needs to define the distribution functions of the stochastic variables,
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Fig.7.2 Comparison between the mean free path calculated by the complex part of the HL potential
(blue circles) and the one coming by the phenomenological approach (red points). These values
come from the best fit of Ni K-edge in water solution

like for example bond distances, but severe difficulties exist to write these functions
for structural disorder different from the Gaussian one. A possibility to overcome
such difficulties is to combine molecular dynamic (MD) and MXAN simulations [19].
The proper configurational average spectrum is obtained averaging thousands of
spectra generated from distinct MD snapshots. Each snapshot is used to generate the
XANES signal associated with the corresponding instantaneous geometry, and the
averaged theoretical spectrum is obtained by summing all the instantaneous spectra
and dividing by the total number of used MD snapshots. Typically each snapshot
is taken every 50 fs starting from the time at which the system is supposed to be
equilibrated. The important question of what is the right sampling length to have
a statistically significant average is solved by imposing that the residual function,
defined as the difference between the incremental N and (N — 1) averaged spectra
is less than 1075,

This dynamic MXAN analysis (hereafter called D-MXAN) is very sensitive to
the conformational sampling as demonstrated by its applications to several different
systems [20]. In the next paragraph we present a general overview of the classical
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MD calculations while in the last we will show the D-MXAN analysis of the XANES
data at the K-edges of Ni, Cu and Cl ions dissolved in water.

7.3 Molecular Dynamics Background

Classical Molecular Dynamics (MD) is a well-established method applied to the
study of inorganic ad biomolecular molecules in solution [21]. It is based on the
numerical integration of f; = m;a; Newton’s equation of motion where f; is the
force vector of atom i, m; is its mass and a; is the acceleration on atom i. The inter-
acting forces among the atoms in the system are obtained by means of an empirical
conservative potential through the standard relation f; = —0V /Or; where r; is the
instantaneous position vector of atom i. A typical form for V, used for biological
macromolecules or polymers is

1 1
Vi, o) =) Skl —bo)® + D Ska (0 = 00)° +
bond angle

Y Sk Y Theostmd, 6+ (4

improper—dihedral dihedral

(12)) (6))
n Z Cij _ Cij T 1 qiqj
rl2 r® dmeg e,rij |

nonbonded—pairs(i ) ij ij

where the first four equation components describe the bonded interactions and the
last two the non-bonded interactions. The non-bonded component of the potential
are the sum of the Lennard-Jones (L—J) potential that describes the van der Waals
interactions and the Coulombian potential for the electrostatic interactions. r;; is the
distance between atoms i, j; Cg is the constant in the term describing the dispersion
attractive force between atoms; Cy, is the term that describes interatomic electron
cloud repulsion; ¢; and g; are the partial atomic charges for atoms i and j; ¢ is the
vacuum permittivity; €, is the relative dielectric constant. The interaction between
two (stretching), three (bending) and four (planar or tetrahedral force) bonded atoms
are described by the first three components of the bonded potential, all using an
Hookean potential in which by, 8y and (, are the equilibrium values while b,, 6,
and (,, are the corresponding instantaneous values at a specific simulation time. The
last component of the bonded interaction describe the dihedral angle between four
atom in a peptide chain and it is periodic component of the potential, with ¢ the
angle, 9 the phase and m the number of peaks in a full rotation. The simple two-body
potential of equation (7.4) is not accurate enough for the treatment of the Coulombian
interaction and corrections based on the Particle-Mesh Ewald method is usually used
for the treatment of the long-range electrostatic interactions [22].
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From the empirical potential V we can calculate the additive force on atom i due
to the interaction with all the other system atoms and then its acceleration. Newton’s
equations of motion are numerically integrated step by step using Finite Difference
methods. These methods use the information available at time ¢ to predict the system’s
coordinates » and velocities v at a time ¢ + dz, where 6t is a short time interval and
through the Taylor expansion of the position at time ¢ 4 dz:

r(t+4dt) =r() +v()ot + %a(t)étz + e (7.5)

Several algorithms can be found in the literature for practical applications [23].
The length of the time step must be small compared to the period of the highest
frequency motions being simulated and for the study of ionic solutions, the typical
time step is one or two femtosecond.

The equations described for MD simulations are appropriate for the micro-
canonical NVE ensemble in which the system loses/gains no net total energy (poten-
tial plus kinetic) during the simulation. More realistic simulations, however, are car-
ried out under constant Temperature (T) and/or Pressure (P), i.e. in canonical NVT
ensemble or isothermal-isobaric NPT. This is obtained by applying algorithms that
model external temperature and pressure baths [24]. A recent and accurate algorithm
for the temperature bath is the velocity-rescaling method [25].

The D-MXAN analysis of ionic solutions used three different approaches for the
definition of the van der Waals interaction potential energy function describing the
interaction between one ion and the solvent molecules:

1. the pure pair additive potential, in which the simple L—J potential of equation
(7.4) is used;

2. the effective two body potential, in which an ad hoc and much more complex func-
tion is used for the van der Waals interactions between ion and solvent molecules;

3. the molecular models, in which a force field is defined for the bonded M(H,O)"*
complex. This approach is necessary when quantum mechanics effects between
the ion and the nearest solvent molecules are impossible to be described by any
two body potential.

In the following we describe the D-MXAN application for each of these
approaches, namely CI~, Ni>* and Cu”* ions in waters solution. All the molecu-
lar dynamic simulation are done with Gromacs package, version 4.6.5 [26].

7.4 D-MXAN of Chlorine in Water

The solvation sphere studies of ions in water are important by themselves and impact
many other fields from chemistry to biology. In particular there is a great interest in
the solvation sphere studies of halides, mainly chlorine, iodide and bromide, as many
recent reviews indicate. Here we present an application of the D-MXAN method to
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the study of the solvation sphere of CI in water solution via the analysis of the Cl
K-edge. A more extend study is presented in [27] where experimental and analysis
details can be found. This study indicates that chlorine organize the surrounding water
molecules into two discrete structurally coherent but axially asymmetric shells.

The D-MXAN method is very sensitive to the conformational sampling. We show
in Fig.7.3a the comparison between the experimental data (blue line) and three
calculations obtained with three different L—J parameters, L g, Mg, and Hg for the
SPC/E water model [28], developed by Reif and Hiinenberger to reproduce single
ion hydration free energies [29].

Only the simulation with the Lg L—J parameters is able to reproduce the spec-
trum in the whole energy range, few discrepancies remain at the rising edge where
the two peaks structure is not well reproduced. This finding is in agreement with
the EXAFS analysis of [30]. The MXAN Ry, error functions corresponding to the
MD simulations using the Ly, Mg and Hg parameters is 16, 23, and 107, respec-
tively. It is worth noting that the C¢ parameter is unchanged in the L g, Mg and Hg
choices. Thus, the only difference between these simulations is in the magnitude of
the L—J Cj, interatomic repulsive parameter that has the value of 126.2, 98.5 and
78.3 (107 kJ mol~'nm'?) in the Lz, Mg and Hy parameter, respectively [29]. The
D-MXAN analysis can observe definitive differences among the XANES theoretical
spectra calculated starting from single MD frames. In panel B of Fig.7.3 we show
the comparison of the theoretical XANES spectrum of Cl obtained from the MD
average (red line) and several spectra associated with individual MD configurations
(black lines). It is interesting to note the big spread of the calculations associated with
the individual MD snapshots indicating a strong variability of the water molecule
position around the Cl ion.

Figure 7.4 shows the radial distribution functions and the coordination numbers
value for the Lg, Mg and Hg L—J potentials. In Table 7.1 are reported the positions
of the maxima of the C1—O pair correlation function gc.o for the first and second
hydration shell.

The first shell maximum of the Ly parameter is in very good agreement with
the structural finding of the static determination while the second shell maximum is
shifted towards higher values respect with one find in the MXAN structural fit. See
Table VI in [27] for more details.

As previously noted there are some problems in the edge region where the first
feature lacks of intensity near 3 eV in the energy scale of Fig.7.3. This is the energy
region where previous MXAN analysis indicated the strong influence of the second
hydration shell. In order to obtain deeper insight into the second solvation shell
geometry, we have performed several MD simulations testing other L—J parameters
and MD conditions. In particular we have obtained a better result using the SPC/E
water model with Lz parameter and the Encad-shift option for Coulomb potential
and (Ryq = 14.3). A finer refinement has further obtained selecting the MD frames
that have the Ry,, defined as
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Fig.7.3 a Comparison between the experimental XANES data at Cl K -edge and three calculations
performed with the D-MXAN method for three different L—J set of parameters, b Comparison
between the average theoretical XANES data (red line) with individual theoretical calculations
associated with each configuration
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Fig. 7.4 Radial distribution functions and coordination number values for the three potentials used

in the D-MXAN analysis

Table 7.1 Positions of the maxima (in A) of gc1-o in the first and second hydration shell

L—J parameters First shell Second shell
Lg 3.11 4.93
Mg 3.02 4.82
Hg 2.94 4.76

Ry =

MD thy2
D@ =)

m

(7.6)

D:

less than 7 x 10™*, where m is the total number of theoretical energy points, oMPis
the theoretical cross section at the i-energy point for a given MD snapshot and o' is
the theoretical cross section at the same energy point obtained using the geometrical
structure at the static best fit. This procedure produces a strong increase of the agree-
ment between theory and experiment with the R, values that goes down to 7.1. The
EXAFS parts is still well reproduced and we begin to have the two peaks structure
with the right intensity in the very low energy region. See panel a of Fig.7.5.
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Fig.7.5 a K-edge XAS spectrum of dissolved chloride is reported in blue points. The red line is the
XAS spectrum calculated with LE and Encad-shift options while the green line is the one obtained
with the selected frames procedure, b Comparison between the C1—O radial distribution function for
the first 15 water molecules obtained from the previous MD conditions. The coordination number
N is reported for the two MD conditions in dashed lines
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To better understand the reason of such decrease we report in Fig. 7.5b the com-
parison between the two gcy.o () obtained with the two options previously described.
This plot clearly shows that the better reproduction of the experimental XANES sig-
nal is due to a slightly more compressed hydration structure in the region between
3.1and 4.6 A, while the structure is identical before and after this distance range. The
discrepancy between the value of the maximum found with the L g MD and the one
found with the static structural fit is also a clear indication of the need of a more com-
pressed structure beyond the first hydration shell. However, it is clear that this slight
more compressed structure is not enough to have a reproduction of the XANES data
of the same quality obtained with the static fit procedure. A rough comparison with
the number obtained in the static fit indicates the need of a further compression of
the second hydration shell. This effect is not easy to obtain with a two-body classical
potential, since an alteration of the Cl-water or water-water interaction parameters
would change the structure of the first hydration shell, as well.

7.5 D-MXAN of Nickel in Water - the Case of the Effective
Two Body Potential

A method to include averaged many-body terms in an effective two-body classical
potential has been developed by us for the study of Zn(II), Ni(II) and Co(II) in aqueous
solution [31] and applied to other aqueous [32, 33] and non-aqueous ionic solutions
[34]. The three steps of the computational procedure consist of (i) generation of the
ion-solvent ab initio potential energy surface (PES) with the inclusion of the averaged
many body ion-water effects by means of the polarizable continuum method [35];
(i1) fitting of the effective two-body potentials from the ab initio scans (iii) inclusion
of the effective two-body potential in the MD code and system simulation.

A typical form of the effective two-body potential for the interaction of one ion
with the aqueous solvent, is:

A B C D —Fo
_ 4m90 i 4_O + 6_0+ 8_0 + 1_20 + Ege™o + (1.7)
&IMO Mo ™Mo ™Mo ™o
A B C D
T
MH=MHI.MH2 ""™H  'ma "MH  'MH  TMmH

Vv

Therefore, while the electrostatic interaction is modelled with a Coulombic poten-
tial, as in (7.4), six parameters are used to describe the interaction between the ion
(M) and the oxygen atoms of the solvent (O) and four parameters for the interaction
between M and the hydrogen atoms (H). Fitting of the ab initio PES in the previous
equation produce the parameters reported in Table 7.2.

The potential with the parameters of Table 7.2 were included in a modified version
of the Gromacs MD package [36] and a system composed by one Ni>* ion and 3270
SPC/E water molecules [28] were simulated for 30 nanoseconds with a time step of
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Table 7.2 Ion-water interaction parameters and corresponding standard deviations of the equation
in this paragraph

Parameter St dev
Ao —3.861 10! 9.31072
Bo 6.985 1072 9.01073
Co —8.618 10~* 1210
Do 3.538 1078 5.7107°
Eo —6.686 104 1.510%
Fo 24.077 7.1107!
An 1.119 107! 431072
By —8.688 10~* 231073
Ch —1.677 107 371073
Dy 9.748 1010 2.8107°

1 femtosecond. This method maintains a good description of the many-body inter-
actions, while its computing efficiency allows the investigation of conformational
events in the nanosecond time scale, at variance from quantum mechanics (QM)
methods.

Panel a of Fig.7.6 shows the radial distribution for Ni—O and Ni—H (full line,
black and red colors, respectively) with their respective integration numbers (dashed
lines). The MD simulation perfectly reproduce the Ni(Il) strong interaction with the
six water molecules constituting the first hydration shell and their strong orientation,
as shown by the first peak Ni—H radial distribution function. The experimental value
of the residence times of water in the first hydration shell is in the range 107> — 10~’
s [37], and we observe no exchange of water molecules between first and second
hydration shells during the 30 ns long MD simulation. Panel b of Fig. 7.6 shows the
comparison between the experimental XANES data, blue points, and the D-MXAN
calculation using both first and second hydration shells. The agreement is quite good
in the whole energy range, only small discrepancies are in the 20-30 eV energy range
in line with what was found in the static best fit analysis.

7.6 D-MXAN of Copper in Water

Copper is probably the most elusive transition metal ion in water with a lot of different
experimental results, highlighting the prevalence of five- or six-fold hydration struc-
ture [38, 39]. All studies agree on the stable presence of four equatorial water ligands,
which exhibit a uniform Cu—0,, distance of about 1.96 A, while there are several dif-
ficulties in detecting the number and even presence of the axial water ligands. Initial
MXAN studies of the K -edge of copper ion dissolved in water were unambiguous in
favouring of a axially elongated square pyramid, [Cu(H,0)5]*" (Cu—0, = 2.35A)
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Fig. 7.6 a radial distribution function for Ni—O (black full line) and Ni—H (red full line) ion
pair. The respective integration numbers are reported as dashed lines, b comparison between the
experimental XANES data at the Ni K-edge (blue points) and the D-MXAN calculation (red full
line)
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as the dominant average structure in liquid aqueous solution [40]. More recently a
detailed EXAFS and MXAN analysis of a high- resolution Cu K -edge XAS spectrum
have been made to further probe the structure of [Cu(aq)]2+ in liquid solution [41].
Both analysis converge to a non-centrosymmetric square pyramidal [Cu(H,0)s5]>*
inner coordination sphere with a distinct second shells at ~3.6 A (EXAFS) or ~3.8
A (MXAN). However, MXAN analysis revealed that [Cu(aq)]** could be dimorphic,
especially for distances greater than 2.4 A. A new structure formed by [Cu(H,0)s]*+
includes an associated but non-bonding axial 2.9 A water, and produce fits compara-
ble with the pure square pyramidal geometry; including both geometries the quality
of the fit further improves. The two structural arrangements are of approximately
equal probability in liquid solution. To go deeper in the details of the axial waters
dynamic we have performed a D-MXAN analysis of the XAS spectrum [20] starting
from the experimental finding that the equatorial geometry of Cu in water solution is
formed by the [Cu(H,0),]** complex with structural parameters coming from the
EXAFS and MXAN analysis. A suitable force field for the [Cu(H,0)4]** complex
has been built using a standard QM methodology, imposing only the Cu—O distance
and the planarity of the Cu—0O, atoms with hydrogen atoms free to rotate. This model
implicitly presumes that the interaction of the core [Cu(H,0)4]** hydrate with the
bulk water molecules is entirely electrostatic [40]. This approach is computationally
efficient, and allowed us to carry out a 100-ns long classic MD simulation of this
hydrate model in bulk water thus exploring the evolution of the dynamical and struc-
tural parameters on a time-scale not accessible to other computational techniques.
For example, the present simulation is more than three orders of magnitude longer
than that described in Pasquarello (18 ps) [38] or Moin (50 ps) [39]. Details of the
experimental solution and the MXAN calculation can be found elsewhere [41]. Two
different water models interaction were tested: SPC/E [28] and TIP5P [42] using
the same model for equatorial bulk waters. Atomic charges were obtained by means
of RESP fitting procedure [43] from the QM calculation of the [Cu(H,0)4]** com-
plex at the Density Functional Theory level (B3LYP functional, 6-311++G** basis
set). The atomic charges on the equatorial water obtained by this procedure were
employed in the MD simulations accordingly to the model used, i.e. redistributing
the charges on the oxygen and hydrogen atoms (SPC/E) or on the hydrogen atoms
and the oxygen lone pairs (TIPSP). The obtained non-bonded and bonded parameters
are reported in Tables 7.3 and 7.4, respectively.

Table 7.3 Non bonded parameters for the [Cu(Hy0)4]%+ complex. In the TIPSP model the oxygen
atom charge is split between the dummy atoms and the oxygen atom charge is put to zero

Charge (a.u.) Sigma (nm) Epsilon (kJ/mol)
Cu 1.3424 1.917748 ¢~ 5.46273 ¢~ 01
0 —0.8128 - -
H 0.4886 - -
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Table 7.4 Bonded parameters for the [Cu(H,0)41*+ complex

Bonds bo (nm) kp, (kKJ mol~1)
Cu-0O 0.19600 frozen

O-H 0.09572 502416

Angles qo (degree) kg (KJ mol~! rad—1)
0—Cu-0 90.00 frozen

H-O—-H 104.52 628.02

dihedrals xo (degree) ky (kJ mol~! rad=2)
Cu—0-0-0 0.0 frozen
0-0-0-0 0.0 frozen

The simulated systems are composed by the [Cu(H,0);]** complex immersed in
1090 bulk water molecules, either SPC/E or TIPSP. After energy minimization, the
systems were equilibrated for 5 ns and then two production simulations in the NVT
ensemble were carried out, 10 and 100 nanosecond-long for the SPC/E and TIP5P
systems, respectively.

In Fig.7.7a we report the comparison between the experimental data (red points)
and the D-MXAN fit obtained by using the TIPSP (black line) and SPC/E (green line)
models, sampled along the MD trajectory. The agreement of the TIPSP D-MXAN
calculation with the experimental data is quite good in the whole energy range with
a square residual function of Ryq = 2.31. This value is similar to those obtained
in the prior static MXAN fit (Rgq = 2.12) [41] and this result is quite remarkable
considering that, as already stated, no fit of parameters has been carried out in this
case. The SPC/E models produce a quite worse agreement than the previous model
with a value of the square residual function of Ry = 5.35, more than twice the value
of TIPSP. The gcy.o(r) radial distribution functions in the distance range 2—4.5 A
with the corresponding oxygen coordination numbers N, for the SPC/E and TIP5P
water models are shown in the panel b of Fig.7.7, and corresponding maximum
positions are reported in Table 7.5.

The first hydration shell, formed by the four-equatorial waters which are kept fixed
in our model at a distance of 1.94—1 .98A, is completed by the axial water molecules,
as highlighted by the presence of the peak at 2.22 A for both models. The two curves,
however, are different in the range 2.7-3.4 A: i.e. in the SPC/E simulation no water
molecules are present (red color in Fig.7.7b), in marked contrast with the TIPSP
model (black color in Fig.7.7b). This is a key difference, that explains the better
reproduction of the XANES curves using the TIPSP data, as reported in the previous
paragraph. Note that the coordination number for the TIPSP simulation is five already
at 2.3 A (black dashed line in Fig.7.7b), indicating that the characteristic broad form
of the gcy.o(r) peak is due to the behaviour of the sixth water. The relatively large
distance range visited by the sixth water molecule is clearly shown when the total
gcu-o(r) is divided in the partial contribution as obtained by ordering the water oxygen
atoms as a function of the Cu—O distance (green curve in Fig. 7.8 panel d).
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Fig. 7.7 a Comparison between the experimental data (red points) and the D-MXAN fit obtained
by using the TIPSP (black line) and SPC/E (green line) water models, b gcy-o (r) radial distribution
functions for the TIPSP and SPC/E simulations are shown in black and green lines, respectively.

The corresponding coordination number N is shown in dashed lines
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Table 7.5 Positions of the Maxima (in A) of the gcy-0 and gcy-y for the peak formed by the two
axial water molecules and for the second hydration shell

Water model Axial waters Axial waters Second shell Second shell
9gCu-0 9gCu-H gCu-0 9Cu-H

TIPSP 2.22 2.69 4.00 4.60

SPC/E 222 2.64 4.16 4.83

Table 7.6 Structural parameters (in A) of the gcy-o radial distribution function peak formed by the
two axial water molecules. Separate contribution of the fifth and sixth oxygen have been calculated

by ordering the water oxygen atoms as a function of the Cu—O distance

Positions at Median Interquartile | Average o
maxima range Cu—O dist
S5th 2.20 2.23 0.131 2.24 0.11
6th 2.30 2.47 0.538 2.61 0.38

The structural parameters for the radial distribution peak formed by the two axial
water molecules in the TIPSP simulation are reported in Table 7.6. Note that these
results are in agreement with the static MXAN results both for the obtained axial
Cu—O distances, within the statistical errors, and for the contemporary presence of
a penta- and hexa-hydrated structure in the first shell of the ion.

The dynamical behaviour of the axial waters is shown in the panel A of Fig.7.8
where the Cu—O distances as a function of simulated time are reported in different
colour for individual water molecules. In some time intervals only an axial water
molecule is present in the 2.1-2.5A Cu—O distance range, while the next closer water
molecule is well separated, even farther than 2.9 A, see for example the 550-950 ps
time range. A snapshot of two geometries, the penta- and hexa- hydrated structure,
are shown in the insets B and C respectively. At a later time in the simulation, the
hexa-coordinated structure is maintained, even though one of the two axial water
molecules continuously exchanges with the bulk (see the black and yellow waters
in the 1000-1050 ps time range). The two simulations, finally, differ also for the
structure of the second hydration shell: i.e. the gcy.o(r) peaks are at 4.16 and 4.00
A in the case of the SPC/E and TIP5P models, respectively, with a corresponding
coordination number around 15 and 18 at 4.5 A. The combined MD/XANES analysis
therefore allowed us to appreciate relatively small structural differences in the two
simulations that lead to significantly discrepancies with respect to the XANES data
reproduction. While the radial distribution functions achieve the convergence after
few nanoseconds, to further characterize the dynamic behaviour of the first hydration
shell in the TIP5P simulation we carried out a 100 nanosecond long simulation only
for this system.
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Fig. 7.8 a Cu(Il)-OW distances as a function of simulation time, in different colors for individ-
ual water molecules. In some intervals only an axial water molecule is present in the 2.1-2.5 A
Cu(II)-OW distance range, while the next closer water molecule is well separated, even farther than
2.9 A (see for example the 550-950 ps time range). In other intervals, two axial water molecules
are in the 2.1-2.5 A range from Cu b, ¢ Snapshots of the conformational basin CU5 and CUS,
respectively. The axial water(s) are in green color. Second shell waters in yellow color, d gcy-0(r)
for the TIP5P simulation as obtained by ordering the water oxygen atoms as a function of the Cu—O
distance. Note the large distance range covered by the sixth water molecule (green line)
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7.7 Conclusions

In this paper we have presented with details the main ideas that are behind the MXAN
package which still remain the only package that allows a quantitative analysis of
the XANES energy region within a multiple-scattering theory to derive structural
information. MXAN has been presented in the literature in 2001 and in the last 15 years
has been applied by many groups to the analysis of experimental data coming from
many different samples, from biology to solid state physics. It is almost impossible
to summarize here all the obtained results. For this reason we have decided to show
a new possibility in the use of the MXAN package, possibility that comes from the
combination of the program with molecular dynamic calculations, the D-MXAN
analysis. This allow to go beyond the static view of the standard fitting procedure
and derive some dynamical information that are important to characterize the system
under study. At the same time this methods allow to test the validity of the MD
procedures by a direct comparison with experimental XAS data.
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Chapter 8

GNXAS: Advances in the Suite of Programs
for Multiple-Scattering Analysis of X-ray
Absorption Data

Fabio Iesari, Keisuke Hatada, Angela Trapananti, Marco Minicucci
and Andrea Di Cicco

Abstract This contribution presents some developments of the GNXAS methodology
and suite of programs, providing full analysis of raw experimental XAS data through
advanced multiple-scattering simulations. The main features of the GNXAS suite of
programs, including the basic theoretical background based on an n-body expansion
of the x-ray absorption cross section, as well as useful information about the GNXAS
flow diagram and practical usage are reviewed. The new GNXAS graphical interface
w-GNXAS is specifically illustrated. The recent implementation of Reverse Monte
Carlo algorithms allowing for multiatomic structural refinement into the RMC-GNXAS
package is also presented in detail with specific examples.

8.1 Introduction

The GNXAS package is an advanced software for x-ray absorption spectroscopy
(XAS) data analysis providing multiple-scattering (MS) calculations of the theo-
retical signals and a rigorous fitting procedure of the raw experimental data.
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X-ray absorption spectroscopy (XAS) is a powerful structural technique for inves-
tigating the short-range environment around selected atomic species in ordered and
disordered matter. Structural information can be obtained from the analysis of the
quantum interference pattern, usually detectable above any inner shell absorption
edge, generated by the scattering of the photoelectron on the potential of the sur-
rounding atoms. These oscillations are usually referred to as x-ray absorption fine
structure (XAFS) or EXAFS. X-ray absorption spectra can be collected in transmis-
sion geometry or using other secondary emission effects, like fluorescence or electron
yield. The collection of a spectrum as a function of the x-ray photon energy E allows
measurements of the EXAFS structural signal, usually expressed as a function x (k)
of the photoelectron momentum k = /2m(E — E,)/h (E, being the edge energy).
XAS experiments are possible using laboratory sources but efficient and accurate
experiments are mostly performed, since the 80’s, using synchrotron radiation.

The focus of the GNXAS software development project, which started in 1990 and
for which a first version working in a VMS Digital environment was ready in 1991
[1], was the possibility to apply EXAFS data analysis to disordered systems and
consequently to link the XAS signal to features of the n-atom distribution functions
gn- This is also the origin of the name GNXAS. The GNXAS suite of programs included
advanced multiple-scattering (MS) calculations and a rigorous fitting procedure of
the raw experimental data [1-3]. GNXAS was the result of over 10 years of research
efforts of A. Filipponi, A. Di Cicco and C.R. Natoli, in the field of x-ray absorption
spectroscopy and several scientists have contributed to its development including the
authors of this contribution (all listed in the website and in the GNXAS handbooks [4,
5]). This software has been widely tested and has been applied to a variety of systems
including simple gas-phase molecules, clusters, nanocrystals, molecular solids and
liquids, crystalline and liquid metals, solid and molten salts, amorphous solids and
glasses, solutions, high-T, superconductors, and biological matter. A publication list
limited to the first 10 years can be found in the first edition of the GNXAS handbook [4].

The present standard GNXAS software distribution includes the main data-analysis
programs crymol, phagen, gnpeak, gnxas, and £itheo as well as several util-
ity programs for visualization (phaplo, readder). Distribution includes also
pre-analysis tools for sample optimization (xasam), automatic background sub-
traction and EXAFS pre-analysis (jesf), edge fitting (£itedg) and deconvolu-
tion (deconv). Other auxiliary programs include pair distribution function analysis
(grrec, grfit) and XAS calculation (grxas), simulation (edxrd) and peak
fitting (peakf£it) of (energy/angular dispersive) XRD patterns.

In the last years, several efforts were devoted to implement alternative model-
independent refinement strategies for disordered systems including also x-ray/neutron
scattering as a complementary tool (Reverse Monte Carlo), as well as adapting the
software to various operating systems and providing a graphical interface. In this
contribution, Sect. 8.2 is devoted to a brief presentation of the main characteristics
of the GNXAS suite of programs (widely described elsewhere, for which full docu-
mentation can be found in [2, 4, 5]). The graphical interface [6] recently developed
for GNXAS (w-GNXAS) is illustrated in Sect. 8.3. The last Sect. 8.4 is devoted to the
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recent implementation of Reverse Monte Carlo algorithms into a new version of the
RMC-GNXAS package [7] allowing for multiatomic structural refinement.

8.2 Overview of GNXAS

The GNXAS package has been developed to provide a tool for structural refinement
and full XAS data-analysis, using a rigorous fitting procedure of raw experimental
data through advanced multiple-scattering simulations, in the framework of the n-
body expansion of the x-ray absorption cross-section. The next subsections briefly
resume the theoretical background and the practical software implementation of the
method. Full details can be found in Refs. [2-5, 8].

8.2.1 Summary of the Theoretical Background for GNXAS

Realistic simulations of the x-ray absorption cross-section are obtained by multiple-
scattering (MS) calculations related to a given model structure. In this framework,
the polarization averaged XAS cross-section [2] for transitions to a dipole selected
final state of angular momentum ¢, can be written as

1 1
=00 |3 T — GoT)~'JEo ko | 8.1
o(w) “"[‘3(,50)%0“2[ (I —GoD) 5% } (8.1)

mo

Here o is the atomic cross-section, T and Gy are the atomic scattering (phase-
shift) and photoelectron propagator matrices in a local basis, indexed by i, j running
over the different atoms, and by a set of angular momenta L, L’ (where L = {€, m}).

The T scattering matrix here is block diagonal (7; ; = #; J; ;) and, in the MT

approximation for the potential, also diagonal on the L indices (tl.L L= tf S
[(Tliz,j.0r = 1i6i,j0e.00mm - (8.2)

Matrix elements can be expressed in terms of the £th potential phase shift &} (E),
as a function of the photoelectron energy E: t/ (E) = exp(id} (E)) sin(5} (E)). Those
matrix elements can be calculated by solving the Schrodinger equation for the poten-
tial at the corresponding i site.

GNXAS calculations are carried out using the muffin-tin (MT) approximation but
it is useful to remark that all MS equations, and in particular the XAS cross-section,
remains unaltered if one replaces the MT spheres with space filling cells (no inter-
stitial region), but ¢ is replaced by %%, taking in this way into account the non
spherical shape of the cell potential (non MT potentials).
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The propagator matrix is composed of null diagonal blocks, (i, i) sites, and non
null off-diagonal blocks G descrlbmg the free propagation from site i to site j

@@ #Jj): ,
fo #0 onlyif i#j. (8.3)

The expression for a single propagator block involves 3 j symbols and is given by:

, e
17 / 1/2 172 !
GLY = [4r(2¢ + )(2¢' + 1)] Eg Qe +1) (o 0 0>

1

x ( e n m) " (R Yo (Ri) . (84)

Here hzr are Hankel functions, Y, ,, are the spherical harmonics and R; ; the vector
joining site j to site i.

We can see that the two important matrices appearing in the cross-section are
related to the chemistry (T using only atom indexing) and to the local structure (Gy).
There is a strong non-linear relationship between geometry and XAS signal: o ~ (I —
GoT)~'. This non-linearity is the mathematical consequence of the strong coupling
of the photoelectron with the surrounding atoms. A first approach to this problem is
to use the so-called MS expansion. Where the norm of the G¢T matrix (maximum
modulus of its eigenvalues) satisfies ||GoT|| < 1 then the formal matrix expansion
TA — GoT)™' = TA + GoT + GoTGyT + GyTGoTG(T + - - - ) is convergent and
gives rise to the MS series.

The above condition will certainly hold above a given energy since not only the
elements of the Gy matrix decrease like 1/ VE but also ||T|| = max |f;| tends to zero
much more rapidly with energy. The convergence threshold is system dependent,
typical values range from below the edge to 5-50eV above the edge.

Writing down the series we obtain:

oW =00 [1+> 30+ Y 37+ Y G+ 85
i#0 0 F0 By

where the generic , structural term is:

Lo
- 1 1 o
0i...jO = 0 EOl...jO , 8.6
o X (;”s(té“) 1 mzo ( )LO,LU) (8.6)
and specifically £%° = Gy ;1;G; oty for \3°, £%° = Gy ;t;G, 1:G; oty for XOIO,

and 29K = G 1t Gy jt; G} .:t; G, oty for Xo” 0 In this notation it is understood
that the internal angular momentum indices have been saturated.
The x, signals are oscillating functions of the type:
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Xn(k) = A(k, R) sin(kR, + ¢(k, R)) , (8.7)

where A and ¢ are smooth functions of k and of the geometrical parameters R. The
relevant frequency of the signal is the path length R,.

An important inconvenience of the MS expansion is that it has no simple relation-
ship with the structure (geometry): x» terms probe the relative position of atoms 0
and i, x3 terms probe the positions of the atoms 0, i and j. They are sensitive to the
two-particle and three-particle distribution respectively. For x4 terms the situation
becomes more complicated: a generic 0i jk0 path probes four-particle correlations,
but special paths like 0i0k0 or 0iji0 and 0i0i0 probe lower order correlations. In
general at order n, in ), there are paths involving all particle distributions from 2 to
n if n is even or from 3 to n if n is odd.

Of course, in regions of rapid convergence of the series (high-energy limit) a
single-scattering approximation may be sufficient and the structural information is
limited to the pair distribution (approximation used in the standard EXAFS analysis).

A different and potentially more powerful approach to the solution of the XAS
structural problem is based on a n-body decomposition of the cross-section [2],
which partially avoids the drawbacks related to the MS expansion. The main idea
is to reduce the dimension of the problem to the actual local physical quantities of
interest, related to n-atom properties where n << N (N being the number of atoms
of the system).

Within this approach, the total x-ray absorption cross-section for n atoms
0(0,i, j,...,n) can be expanded in terms of the irreducible n-body cross sections
of lower order:

00,0, j.....my =00+ Y 00,0+ > oD .i, )+
i @)
(@i, ).k)

In (8.8), oy is the atomic absorption (photoabsorber 0), o®(0, i) is the pair con-
tribution to the cross-section associated with an additional atom i, (0, i, j) is the
triplet contribution associated with a couple of atoms 7, j and so on.

The dimensionless quantities v = o™ /oy, represent the irreducible n-body
contributions to the structural XAS term x(E) = (0(E) — 0o(E))/0o(E). In this
way we arrive to an equivalent expansion for the experimentally measurable structural
signal x(E) that differs substantially from the MS series:

X0, j..on) =" 7P0,0) + Y 40,4 )+
i @)

+ > YO+ P00 ) L (89)
(@,],%)
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The irreducible n-body v signals [2] are the central quantities in the GNXAS
approach, since they are associated with well defined n-body arrangements of the
atoms. Using those terms, a simple linear relationship among structure (expressed in
terms of 2, 3,4, . . . n-body distributions) and signal is obtained. Due to mean free path
effects, the higher order n-body terms are generally smaller than the lower order ones,
so that convergence with few terms is expected. Low-order 4™ signals, involving
inversions of small matrices, can be easily calculated with different methods (within
GNXAS).

As an example, for the two-body term, due to the two-blocks structure of the
matrices, only even powers of TGq give a contribution:

0 2700
t 0 Z 0 Go,,‘ th 0 B
01 Gio 0 01 B
10Goit; Gioto + 10G0it; GiotoGoiti Gioto + - - - (8.10)
The corresponding MS expansion results:
@0, i) = X004 Q100 0i0I00 4 010101010 4 (8.11)

The number of MS terms contributing to the n-body irreducible y signals depends
on k range, bond distance, and atomic numbers involved. In the EXAFS region, for
short bonds terms up to x are found important whereas for longer bonds 4 is usually
sufficient. The configurational average is also effective in the damping of these higher
order MS signals. A peculiar feature in the MS expansion for y? is that the successive
terms have leading frequencies multiple of 2R, R being the distance between atoms 0
andi. As aconsequence there is a large frequency difference between the leading term
X2 and the next order correction 4. In general v signals are, like the Y, oscillating
functions of the photoelectron wavevector modulus k. They show a broader frequency
spectrum whose dominant frequency is that associated with the shortest path of the
corresponding MS series.

The advantage of incorporating in a few " signals a large (infinite) number
of MS terms is evident both from a physical and practical point of views. Indeed
different MS terms are not independent if they involve scattering processes on the
same sets of atoms, while v signals are uniquely associated with the given atomic
configurations. Convergence properties are also very good, and it can be shown [2]
that if the MS series is absolutely convergent also the series of the - signals will be
absolutely convergent.

For calculating a XAS signal associated with a given cluster (model structure) it
is necessary to identify the relevant n-body configurations. Identification of config-
urations can be done assuming a single photoabsorbing site (single photoabsorber
or multiple atoms placed in equivalent positions by rotation and translations), and
can be generalized for multiple prototypical photoabsorbers. An important property
is the hierarchical relationship between different n-body configurations: a n-body
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configuration contains several n — m-body sub-configurations that are not indepen-
dent. This allows to reduce the number of n-body coordinates just to the independent
ones. A typical example is the second shell contribution which usually gives rise to
detectable three-body signal. The three-body signal plus the two-body second shell
signal is defined as a total 3-body (n®) signal associated with the second shell, using
the same set of triplet coordinates.

Of course, even a simple model structure is associated with many different n-body
configurations, and a selection procedure is necessary to include those really useful
in a XAS data-analysis process. The n-body configurations are naturally ordered
according to the corresponding leading oscillation frequency of the corresponding ~y
signal, which is the length of the shortest path involving all of the atoms in the n-body
configuration (roughly corresponding to the position of the Fourier Transform peak).

This is important because any XAS experimental signal shows a natural upper
frequency cutoff R, limited by experimental resolution, core-hole lifetime and mean
free path effects, all affecting the signal intensity. This frequency cutoff selects auto-
matically only a finite number of n-body structures.

Therefore in the interpretation of the signal of a completely unknown structure it
is possible to make an a priori selection of the relevant n-body configurations thus
limiting considerably the number of unknowns.

We see then that the XAS signal is actually dependent only on a limited number
of distribution functions (n-body configurations) which can be easily identified and
analyzed.

A realistic simulation of the XAS signal must include a proper configurational
average which takes into account thermal and non-thermal disorder in the atomic
positions. This is very easy to do using the irreducible 4" MS signals. In fact, the
general expression [2, 9] of the XAS structural term is given in terms of the n-body
distribution functions g, (r) (r is a generic set of n-body coordinates):

(x(k)) = / dr 4nrtp go(r) Y2 (r, k) + / dridryde 87%r2r3 sin(¢)
0

xng3(r1, 7, (;5)7(3) (ri, 12, ¢, k) +/dr1dr2d¢dr3d9 8772r12r22r32

x Sin(@)p’ga(r1, 12, &, 13, YD (r1, 12, G 13, 2,k -+ (8.12)

The integrals, because of the short range nature of the kernels v, are actually
limited to a region of linear dimensions of the order of few A. This is due to the strong
electron interaction at moderate kinetic energies limiting the effective electron mean
free path.

This equation should be compared with the well known expression for the static
structure factor (disordered system) which can be measured by using x-ray or neutron
diffraction:

Sk)=1+ 4%p fw(gz(r) — Drsin(kr)dr . (8.13)
0
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The different nature of the kernels makes the structural information on the g, (r)
obtainable in the two cases largely complementary (short vs. medium range informa-
tion). Moreover, XAS can give information beyond the pair distribution. For crystals,
where diffraction gives obviously a richer information about atomic positions, XAS
can provide unique data about local correlated vibrations.

The effect of configurational disorder or thermal vibrations can be easily taken into
account in the case of small disorder, that is in the presence of a well defined (isolated)
first peak, not necessarily Gaussian, in the distribution function. This includes the
thermal broadening or moderate structural disorder of molecular or crystalline g,
peaks.

MS signals x,(k), n-body signals v (k) or effective shell signals 7 (k) can
be treated in the same way. In all of these cases the signal, indicated generically by
x (k), can be written in terms of the amplitude A(k, r) and phase 1) (k, r) functions
asy(k) =3 [A(k, r)exp(iv(k, r))] = A(k, r)sin[¢(k, r)], where r here indicates a
set of geometrical coordinates which are sufficient to describe correctly the configu-
ration. Phase ¢(k, r) = kR, + ¢(k, r) (R, is the dominant frequency) and amplitude
A(k, r) are usually smooth functions of k, r.

For example, considering a specific peak of a distribution function g, (r) related
to a well-defined atomic configuration at equilibrium, we can write [2]:

(x(k)) =5 |:/ drA(k, r)expliv(k, r)]P(r)] , (8.14)

where P (r) is the normalized probability density describing a peak of the appropriate
n-body distribution function (configuration degeneracy, or coordination number for
n = 2, being a trivial multiplicative factor). For pair distributions n =2, P(r) =
47tr?pgs (r) like in the first term of (8.12).

The integral of (8.14) can be easily calculated for selected Gaussian and non-
Gaussian functional forms reproducing the peaks of the distribution function, and
the result can be expressed in terms of the derivatives of amplitude A(k,r) and
phase ¥ (k, r) in the space of coordinates [2]. The configurational average results in
a damping of the XAS x (k) structural signal, in which both amplitude and frequency
are affected by the shape of the distribution. Use of simple functional forms, like the
Gaussian distribution, considerably simplify the data-analysis because of the limited
number of parameters used in the structural refinement process. For example, for pair
configurations, a single o parameter (variance of the interatomic distance) is used to
define the broadening of the distance distribution (being the entire distribution defined
by 3 parameters: average distance R, variance o2, coordination number N). The n-
body configurations generally require a larger set of parameters, but very often they
are closely interconnected by hierarchical and geometrical constraints. This peak-
fitting technique, which needs the identification of well-defined peaks of the n-body
distributions, is used in the GNXAS method to treat the configurational average of MS
signals. It is clearly applicable for molecules and crystals and the same approach can
be used to treat the case of moderate structural disorder in glassy covalent systems
for which peaks of the g, distribution are clearly identified. Whenever the peaks of
the g, are not well defined (liquids for example) different average methods should
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be used. Extensions of the peak-fitting technique to highly disordered systems, using
suitable constraints, are discussed in [10, 11]. However, intrinsic limitations of the
peak-fitting technique may be overcome by using model-independent methods for
which peaks of the distribution functions are not defined a priori, like the Reverse
Monte Carlo approach discussed in [7, 12—14] and Sect. 8.4.

MS calculations and proper treatment of the configurational average of n-body
signals (8.12) are used for the final step in XAS data-analysis using GNXAS, i.e. the
derivation of best-fit structural parameters from the experimentally measured x-ray
absorption coefficient ao(E) (proportional to the cross-section) above a given deep
core level. Structural refinement is obtained by optimizing the model absorption
spectrum against the raw x-ray absorption data «(E;) including noise (not the x (k)
or filtered data) [3, 8]. The model absorption spectrum a,, (E;) thus includes directly
background modelling:

am(Ei) = apkg(Ei) + texc (Ei) + [1 4 xm (ED)] a0 (Ei) (8.15)

where oo (E;) = Joo(E;) is the atomic absorption coefficient (J accounts for the
actual absorption jump), apkg (E;) is a smooth polynomial background and cvexc (E;)
accounts for multi-electron excitation channels. Simultaneous modelling of back-
ground and signal (x,,(E;) as obtained by peak distribution modelling of (8.12))
significantly reduces the introduction of systematic errors in the interpretation of
the structural signal. The same approach can be used for multi-edge studies (see for
example [8, 15]):

NXAS
an(Ei) = g (E) + 0exe(E) + > [14 x5 (ED] o (Ey) . (8.16)

j=1

where NXAS is the number of different XAS spectra calculated for a given model
structure.

The residual function R which is minimized in the program is the sum over
i = 1, N points of the squares of the differences between model and experimental
signals in the specified energy interval times a weight function:

R = "[a(E) — an(Ei, DI x W(E)) . (8.17)

Here the model signal «,,, (E, {\}) depends on the ensemble of p structural param-
eters {\}. The expected value for the residual function R can be calculated for a given
normalization of the weight function (for £itheo corresponds to the average noise
variance usually in the 107® — 1078 range). It should be noted that in many real
situations the actual minimum value achieved for the residual function exceeds these
limiting values due to the presence of unexplained signal contributions.

Under normal conditions the weight function should mimic the energy dependence
of the inverse noise variance 1/ 0'1»2, so that the R function becomes a standard X2 like
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statistical function. This can be achieved by a using a simple inverse power law
(ai2 ~ k" with w = 1 — 4) until a satisfactory agreement with the statistical noise
is obtained. Moreover, larger w values have the effect of giving an extra-weight to
higher energy data, and this choice can be adopted to account for possible inaccuracies
of the theoretical model in the near-edge region (the noise variance o is actually
related to the [a(E;) — o, (E;)] random variable).

As it has been defined, the residual function R is expected to follow the X%v
distribution, and under these conditions a full statistical evaluation of the results can
be performed as follows:

1. within a given choice for the structural model, the optimal values for the {\}
structural parameters are the set { \y;in} such that the residual R is at a minimum.

2. The statistical x? test can be performed to check whether the actual value of R is
only due to residual noise or it contains unexplained physical information.

3. A comparison between models containing a different number of structural param-
eters can be performed, and it can be verified if the reduction of R obtained using
more parameters is statistically significant.

4. Statistical errors related to selected confidence intervals can be estimated for
the structural parameters, looking at regions in the parameter space for which
R({A}) < Rumin + C, where C depends on the confidence level chosen and R,
corresponds to the expected value (when the residual contains only statistical
noise). These regions, in the second-order approximation, are p-dimensional (p
is the number of parameters) ellipsoids which provide also an insight onto the
correlation among parameters.

8.2.2 GNXAS Suite of Programs

The main characteristics of the current standard version of the GNXAS data-analysis
suite of programs are:

(1) atomic phase shifts calculations in the muffin-tin approximation are based on
atomic self-consistent relativistic calculations. Account for the neighbors is
taken.

(2) Inclusion of inelastic losses through complex Hedin-Lundqvist potential.

(3) Calculation of MS signals associated with two, three, and four atom configura-
tions using advanced algorithms and of proper configurational average of MS
terms.

(4) Use of an advanced fitting procedure that allows one:

(a) to fit simultaneously several spectra containing several edges,

(b) to use directly the raw data without any pre-analysis,

(c) to account for complex background multi-electron excitation features,

(d) to use various model peaks for the pair, triplet and quadruplet distribution
functions, including non Gaussian models and extremal cases. In all cases
absolute values of the structural parameters can be refined.
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(e) Totreatliquid phase or disordered systems and extractreliable g(r) functions
in the short-range limit (<4 A).

(f) To perform a rigorous statistical error analysis and plot two-dimensional
correlation maps.

(5) To provide a flexible scientific tool for EXAFS data analysis where the user has
access to every stage of the calculation. In this sense the GNXAS package is not
a black box.

(6) Full modularity that makes easy to interface parts of the GNXAS software with
other available software.

(7) Specific software, fully interfaced with GNXAS, that allows to perform calculation
and structural refinements of x-ray diffraction data, as well as Reverse Monte
Carlo simulations of XAS data.

(8) Software has been developed under VMS and Linux/UNIX architecture but it
has been extended to Macintosh and Windows operating systems, also supported
by a new graphical interface.

The GNXAS flow diagram is reported in Fig. 8.1, containing also information about
the main input and output files and some auxiliary programs that can be used for
check, visualization and structural refinement purposes. The reader should refer to
the legend and flow diagram reported in Fig. 8.1, and to the detailed GNXAS handbooks
[4, 5] for understanding role and meaning of the various input/output files related to
a starting “abc” structure-type.

The backbone of the GNXAS package is composed of three main codes identified
by the boxes in bold (Fig. 8.1):

(1) phagen optical potential and phase-shift generation
(2) gnxas n-body XAS signal calculation
(3) fitheo structural refinement of the experimental data

Two other main programs are able to prepare automatically the input for phagen
and gnxas starting directly from model molecular position or crystallographic data.
These are particularly useful in the case of complex structures where the configuration
counting is not trivial. These programs are:

(4) crymol allows to treat complex molecular and crystallographic structures pro-
viding input information for successive programs; the program identifies proto-
typical phase-shift atoms and selects a suitable cluster of atoms for successive
XAS calculations.

(5) gnpeak is based on a general algorithm able to identify inequivalent two-body,
three-body and four-body configurations in specified atomic aggregates.

Several other programs were written to facilitate the output readout, in particular:

(6) phaplo produces a graphic output for the phase-shift file generated by phagen
(typically for TopDrawer [17]).

(7) readder converts the binary signal files generated by gnxas into ASCII files
to facilitate visualizing and checking the output (typically for TopDrawer [17]).
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Fig. 8.1 Flow diagram of the GNXAS suite of programs. An input file defining the initial model
structure (cryabc.in) may be the starting point of the sequence, composed by the main programs
crymol, gnpeak, phagen, gnxas, fitheo (red color in figure). Input files needing
specific typing by users are indicated in bold. Main output files of the individual programs are
encircled when needed as an input for successive programs. Other output files containing data for
graphics or in tabular form are enclosed in boxes. Graphical output is currently designed for special-
ized plotting programs like gnuplot [16] or Topdrawer [17]. Auxiliary programs of the GNXAS
suite are useful for plotting phase-shifts and MS signals (phaplo, readder),for statistical error
evaluation purpose (contour) and for reconstruction of the pair distribution function (grrec)
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Another important additional program is used for the evaluation of the error bars
on best-fit structural parameters:

(8) contour,toconvertcharacter contour plots in the £ i theo output and facilitate
error analysis.

Three additional programs are also available to facilitate the analysis of disordered
systems (including liquids) where the structure is efficiently described in terms of
radial distribution functions g(r). These are:

(9) grfit is a fitting utility of model radial distribution function data (not shown
in Fig. 8.1).
(10) grxas is designed to calculate the EXAFS signal associated with a given
partial radial distribution function (not shown in Fig.8.1).
(11) grrec allows reconstruction of g(r) after model refinement (also in connection
with the £itheo output).

Moreover, the GNXAS distribution includes miscellaneous programs (not shown
in Fig. 8.1) useful for preparation of the XAS experiments and for pre-analysis:

(12) xasam is a program for sample thickness optimization for measurements in
transmission geometry.

(13) jesf is an automatic routine for EXAFS extraction, Fourier transformation,
and noise evaluation. This program is useful for a qualitative data-analysis and
it has been routinely used at the several beamlines for on-line data analysis (for
this reason it is believed to be used more than 10° times).

(14) fitedgis a fitting program for edge structures using analytical functions.

(15) deconv is a deconvolution program suitable to deconvolve the core-hole life-
time broadening in high quality spectra.

The extended GNXAS package includes also several other advanced programs that
are available to users upon request (see full description in Ref. [5]):

(16) edxrdisautility program able to calculate energy and angular dispersive x-ray
diffraction patterns using an input file for the structure based on crymol.

(17) peakfit is a second utility program performing multiple peak-fitting refine-
ment with different functions in presence of complex background, including
Bragg peaks in x-ray diffraction.

The next sections discuss two important recent advances implemented in the
GNXAS package: the design of a graphical user interface (GUI) [6] and the real-
ization of an updated multiatomic RMC refinement package RMC-GNXAS including
the rmcxas program using input files provided by GNXAS and by a specialized
crymol_rmc routine that generates the initial atomic configuration (see also [7,
12]). Those programs are also available upon request.
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8.3 Overview of the GNXAS Graphical User Interface

In this section we briefly present the graphical interface for the GNXAS suite of
programs [6]. This is an ongoing project which aims to help new users to prepare the
input files and run all the programs in the GNXAS package.

As previously mentioned, GNXAS was developed in 1990 and at that time text-
based input and output files were standard as most programs were running in terminal
windows. Since then, both computers and operating systems evolved hugely, and
nowadays the standard is a point-and-click scheme. Since the large majority of GNXAS
support requests are related to errors and mistyping while preparing the input files,
the creation of a graphical interface for using the different programs in the GNXAS
package is expected to provide a user-friendly platform solving most of the practical
difficulties of the GNXAS new users.

8.3.1 Practical Implementation of the GUI

We have designed a graphical user interface (GUI) called w-GNXAS [6] which controls
the text-based operations of GNXAS. This choice is thought to be a good compromise
for maintaining the necessary flexibility of accessing each stage of the calculations,
within a modern conception of a user-friendly program. The interface, created by
using the Python library “wxPython” [18], is platform independent and can be exe-
cuted on any current operating systems, such as Linux, Windows and Macintosh.

The idea is to provide a simplified window-based panel that facilitates the creation
and compilation of the input files for the various programs, allowing to run the
GNXAS programs with a simple click and save input set of commands in form of files
for successive refinements. Previously existing input files, compatible with those
described in the GNXAS handbooks [5], can also be loaded into the w-GNXAS window
that will be automatically prepared for visualization and corrections in the specific
fields.

Following the scheme of the GNXAS package, each program has its specific tab
in the interface as can be seen in the screenshots shown in Fig.8.2. We have not
yet implemented a specific control panel for all the GNXAS programs, but those of
the main GNXAS chain are already available: crymol, gnpeak, phagen, gnxas,
and fitheo. A specific panel is also reserved to the program xasam, that is used
to calculate the optimal sample thickness fro XAS measurements in transmission
geometry.

In the next section we will briefly describe some specific details of each pro-
gram tab.
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Fig. 8.2 Two screenshots (left and right side) of the control panel of the w-GNXAS interface. In
the upper part of each screenshot we can see the tab for selecting six different input panels, each
one corresponding to a specific GNXAS program. Here, the crymol tab is selected and appears
highlighted in the main panel. The first input dialog is for loading a previously prepared input
file for crymo1l, by clicking the Load button, a window for choosing the file will be opened (see
red arrow in the left screenshot). After selecting the file, the interface will automatically fill the
blank fields with the input data contained in the loaded command file (hSn_cry.in in this case, see
right-side screenshot)

8.3.2 w-GNXAS Control Panels

As discussed in the preceding section, a single window provides an interface for most
GNXAS programs as shown in Fig. 8.2. It is recommended to create a different folder
for input and output files of each program in order to prevent confusion between the
different files created during the analysis process.

The first tab of the graphical interface, from left to right, controls the input of the
crymol program. When selected, the first tool appearing in this window is used
for loading an existing input file for the crymol program. After loading a selected
file, the fields corresponding to the input parameters of the crymol program are
automatically filled (see second screenshot in Fig.8.2). This is helpful to run or
modify a previously saved input file. If no input file is loaded, then the user has to
fill the blank fields manually.

The required inputs are of various type, mostly are text-based, but there are also
multiple choice options and drop-down lists. In certain cases a specific input may
be not required and it will then appear greyed out or hidden. For example, lattice
parameters are required only for crystalline systems, therefore selecting the option
‘XYZ’ (molecule) no further unused parameters will be required and the panel related
to the’CRY’ (crystal) option will be hidden (see Fig. 8.3, left-side screenshot). When
needed, some input parameters are automatically filled in by the GUI software. For
example, a cubic lattice type is defined by a single cell parameter a. In this case, all
the angles are automatically set to 90° and the b, ¢ parameters are set equal to a (see
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Fig. 8.3 Two screenshot selections (left and right side) of the crymo1l control panel of w-GNXAS.
The GUI software interface is designed to help the user in creating a suitable set of input parameters
(successively saved into a loadable command file) by omitting or by auto-completing specific inputs
in certain cases. Two examples are shown here. Left-side screenshot: the window with the lattice
parameters is not shown in the molecular XYZ case (hidden panel, red arrow). Right-side screenshot:
when a cubic lattice is selected (crystal option, CRY), angles will be automatically set to 90° and
cell parameters b and ¢ will be set equal to the input value a

Fig. 8.3, right-side screenshot). These are just some examples and the same principle
is applied throughout the w-GNXAS interface.

After completing all the entries, an input file can be created or updated by using
the Save to a file button in the lower portion of the window (see Fig. 8.4). The saved
file can then be loaded and used to run crymol as it is. This is done using the Load
button in the lower part of the window shown in Fig. 8.4 and then selecting the Run
button on the right. The log of the crymol calculation will appear in the lowest
window of the panel, containing information on the run and showing possible errors
or warnings occurred.

After the calculation is concluded, in absence of computing problems, the standard
output files of each GNXAS program are created in the same directory of the input
files and graphical outputs can be plotted using for example TopDrawer [17] and/or
gnuplot [16]. In the example reported here, which refers to the molecule SiCly, one
of the data-analysis examples in our website, output files are named using the three
characters “abc” = SCI (see Fig.8.1) therefore the user will find SCl.ato, SCl.in,
SCl.top files in the proper directory.

The control panels of the gnpeak and phagen program are relatively simple,
because the inputs are usually automatically generated by the preceding crymol
program as illustrated also in the GNXAS flow diagram reported in Fig. 8.1.

In the gnpeak tab (Fig.8.5) an input file can not be loaded, neither created,
because only four empty fields have to be filled as inputs for operation: (1) the name of
.ato file created by crymol without the extension; (2) the tolerance distance, which
is the minimum distance to consider two paths different; (3) the cut-off distance for
the sub-cluster size counting. Both the (2) and (3) parameters can be selected by
default (inserting 0.0 as input), being respectively 0.0002 A and the maximum size
of the cluster; (4) the last input is the directory of the file .ato, in which also the
outputs (in this example SCl.gnp, SCl.chi, SCl.gnx) will be saved.
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Fig. 8.4 Screenshot of the lowest portion of the crymo1l panel in the w-GNXAS interface. The last
fields appearing in the panel are used to create an input file for crymol using the Save to a file
button. When selected, all the data inserted by the user will be saved to a file with the appropriate
formatting. This file can then be run by loading it and executed with the Run button (highlighted in
figure). The console dialog (log) is shown in the final window of the panel, showing the output of
the calculation

The phagen tab has only the load and run part because the input file (in the
example considered SCl.in) is created automatically by crymol and modifications
should only be done by expert users. Again, the important output files related to
the phase-shift calculations (SCLtl, SC1.s0) are created in the same directory of the
input file.

The gnxas tab (screenshot shown in Fig. 8.6) requires more input parameters by
the users and the design of the panel is very similar to that of the crymol program.
Similarly to the crymol window, an existing input file can be loaded with the first
entry which will auto-complete all the inputs. Otherwise, the user can write the entire
set of input parameters from scratch and then save them to file. A good practice is
to load a standard input file for gnxas as obtained from the set of data-analysis
examples and use it as a template that can be modified by the user for the current
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Fig. 8.5 Screenshot of the gnpeak window in the program. Only four options can be selected,
two of which can be left to the default value (0.0)

calculation. The tl and sO file requested in the first two fields are produced by the
phagen program. The geometrical information needed to calculate the different
signals (two-body and higher-order configurations) is obtained from the results of
the gnpeak calculation. In particular, in the abc.gnx file are written the parameters
to insert in the g2 and g3 tables (see as an example the text of the SCl.gnx window
reported in Fig.8.6). The gnxas window contains the same tools as the crymol
one, so the input commands can be saved, loaded and run again, checking the results
of the calculation.

The fitheo window has also a layout analogous to the crymol and gnxas
tab, in which an input file can be loaded. In this case, it is particularly convenient
to start from a previously saved input file, that can be taken by one of the data-
analysis examples. We refer to the GNXAS handbook [5] for the detailed explanation
of all the input needed to run £itheo for the structural refinement of XAS data.
The table of the fitting parameters is the first and one of the most important entries
for this program. All the parameters to be refined are defined within this table. The
parameter number (first column labeled as “Number”) is used to refer to each specific
fitting parameter in the successive input lines (see Fig.8.7). In this way, if we need
to make some adjustment to the value of the parameter or its fitting range, we just
change the value in the table without further modification in the input commands.

For simplicity, the current version of the w-GNXAS interface does not incorporate
all the features of £itheo. In particular, with the present version it is possible to
perform the structural refinement of only one file containing raw XAS data (single
edge) and the number of structural signals that can be inserted for this purpose is
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Fig. 8.6 In the gnxas tab the signal corresponding to different geometrical configurations are
calculated. These information are contained in the output files of the crymol program. In the
example shown, SiCly, we have one two-body and one three-body signal related to the Si K -edge.
The input for the atomic structure can be taken from the output of the gnpeak program (see text
of the SCl.gnx window in the upper-right part of the figure)
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Fig. 8.7 Two screenshots of the £itheo tab in the graphical interface. In the left image the table
of fitting parameters is shown: each fitting parameter is defined a number which will be used as
a reference throughout the window. In the example shown, the bond distance R1 and variance
(Sig**2) for a given atomic configuration are highlighted (see red arrow). These parameters are
used as structural parameters for the two-body peak of SiCly and its various MS signals calculated
by gnxas. In order to do so, we insert their respective numbers (15 and 16in the example) in the
appropriate boxes (see screenshot in the right-side). Detailed explanations for the fitting parameters
and for the £itheo inputs are reported in [5]
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limited (3 for two-body and 1 for three-body). In many practical cases this will be
sufficient to perform a successful structural refinement. In any case, the inputs can be
saved to a file and manually modified by the user if additional signals are required.
The input file can then be run with the Load and Run buttons situated at the end of
the window.

The xasam window, used for samples preparation, is pretty straightforward. After
fulfilling all the requested input, clicking on the Choose button the user will select a
directory where the input and output files will be saved. The program is then executed
by clicking on the Run button.

8.4 Reverse Monte Carlo Implementation on GNXAS

The ‘peak fitting” approach described in Sect. 8.2 has limitations in the case of highly
disordered systems, such as amorphous solids or liquid matter [19]. As mentioned
before, for elemental melts, ionic binary liquids and aqueous solutions a meaningful
XAS data-analysis within this framework is still possible by introducing suitable
physical constraints in the refinement of the short range peak of the pair distribution
function provided by diffraction experiments or molecular modelling. The two-body
distribution function g(r) is decomposed into a first peak and a long range tail for
which the corresponding XAS signals are calculated. The shape of the short range
peak is then fitted to the experimental data with a suitable set of constraints. For more
details the reader is referred to the original paper [10] (and [11] for binary systems).

The application of this method requires a reliable model for the pair distribution
function, which is not always available especially when dealing with systems under
extreme conditions. Moreover, the extension of the method to multiatomic systems
is not straightforward. This imposes severe limitations to XAS data interpretation
and a different approach is required to exploit the sensitivity of XAS to short-range
ordering through pair and higher order distributions in disordered materials. The
implementation of the Reverse Monte Carlo (RMC) method has been designed to
provide a meaningful three-dimensional modelling of the structure of disordered sys-
tems, taking advantage and incorporating all of the advances related to the application
of multiple-scattering (MS) codes and the n-body expansion for XAS data-analysis
(GNXAS).

8.4.1 RMC Background

Reverse Monte Carlo is an inverse modelling technique introduced by McGreevy and
Pustzai [20] for producing three-dimensional structural models from x-ray and neu-
tron scattering experimental data. The method is a variation of the standard Metropo-
lis Monte Carlo (MMC) algorithm. A series of atomic configurations are iteratively
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generated by random moves of single atoms until the model gives the best agreement
with one or more sets of experimental data within their uncertainties.

Interatomic potentials are not used for RMC and very few assumptions on the
structure are required. In principle only number density and chemical composition
are needed for RMC modelling, although physical constraints are usually introduced,
as discussed in more detail in the original papers (see [21] for a review) and in the
following sections. One of the main strengths of the RMC approach is that experi-
mental data from different and complementary techniques are refined and constraint
the model simultaneously. Finally, the outcome is a set of three-dimensional struc-
tural models for the investigated system on which a full statistical analysis can be
performed to derive the pair distribution functions, the distribution of bond angles
and to identify specific local atomic arrangements.

Although initially applied to derive structural models by refinement of the struc-
ture factor from scattering experiments, the method is very general and finds applica-
tion with any experimental technique for which the measured signal can be calculated
from the atomic coordinates.

The application of the RMC for XAS data-analysis was initially introduced by
Gurman and McGreevy [22] and since then a few groups implemented and applied
this technique in several works on liquids and glasses as well as crystalline systems
(see for example [7, 12—14, 23-25]). As shown in the next section, the RMC-GNXAS
software currently represents an advanced tool for XAS structural refinement using
the RMC technique.

8.4.2 Overview of RMC-GNXAS

The RMC-GNXAS software implemented within the GNXAS package [7] allows Reverse
Monte Carlo structural modelling of both molecular and condensed structures. For
condensed systems, like liquids, glasses or crystals, the RMC algorithm is applied
simultaneously to the XAS signal which probes the local structure around each photo-
absorbing species, and to a model pair distribution function g(r). The g(r) function
can be obtained by x-ray/neutron diffraction data or computer simulations, and is
intended to provide a correct constraint for medium and long range ordering, because
XAS is sensitive only to short-range.

The rmcxas program, core of the RMC-GNXAS chain, has been now widely opti-
mized and extended to multiatomic systems. Some of the initial features have been
therefore upgraded to improve computational efficiency and new capabilities have
been added. In particular, multi-edge XAS refinement and proper account for partial
pair distributions g, 3(r) related to the different atomic species («, (3) have been intro-
duced. The underlying algorithm is summarized below and shown in Fig. 8.8. A more
detailed description of the calculation steps is given in the following paragraphs.

1. The initial configuration is prepared. For molecular systems, the initial config-
uration is an ensemble of molecular replicas. For liquids and glasses, the initial
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Fig. 8.8 Schematic diagram
of the RMC algorithm as
implemented in the
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configuration consists in a set of N atoms within a simulation cell of fixed vol-
ume V with periodic boundary conditions. Such initial configuration may be
generated by randomly choosing atomic positions within the simulation box or
derived from prior simulations. It can be also generated from a crystal lattice
using the crymol-rmc program (see Sect. 8.4.3.1). In any case, it must have
the same chemical composition and number density (N/ V') of the system under
investigation.

. Calculation of the XAFS signals ¢ (k) and of the pair distribution function g€ ()
to be compared with the respective experimental quantities, i.e. the x (k), which
is the extracted EXAFS signal, and the model pair distribution function g% (r)
(or the set of partial distribution functions) obtained for example from scattering
experiments.

. The residual x? is calculated using the following equation:

2
NfENXM:S X (k) Xn (k) ZZ [gaﬁ(rj Sﬂ(?‘j)jl
a,p j=1 ”ﬂ
(8.18)
where the right hand side has two terms. The first corresponds to the XAS part
for which the calculated signal is compared with the EXAFS signal determined
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by a preliminary data-analysis and 0’37 ; are the noise functions associated with the
experimental data. The noise functions can be evaluated and stored on specific
files for RMC refinement by the auxiliary program noise. Since for multiatomic
systems simultaneous multiple-edge signal refinement is possible, the first sum
indicates a sum over different XAS edges while the second one is a sum over
experimental points. The second term in r.h.s., omitted in molecular cases, cor-
respond to the pair distribution functions gga calculated from atomic coordinates
and compared with model distributions obtained from x-ray/neutron diffraction
or computer simulations. For multiatomic systems, it is also possible to include
simply the total distribution function g(r) instead of the partials (in some cases
partials may be not available or affected by large uncertainty). a? (or ai 8 for
partials) is the noise associated with the pair distributions.

It is worth noting that both the o functions and the number of points (Nx s, Ng)
control the relative weight of each data set included in the RMC simulation.

4. A new configuration is created by moving one atom at random and the corre-
sponding new signals are calculated. The new residual x? is evaluated using
(8.18). The typical maximum displacements for each atom move is initially set
to a value (fraction of atomic distances) which is tuned for reaching acceptance
ratios of about 50% during the evolution of the RMC refinement (see below).

5. The atomic move is either accepted or rejected according to the Metropolis-
Hastings algorithm. If the new residual is smaller than the older one, X,zl < Xﬁ,
the new configuration is accepted. Otherwise, the new configuration is accepted
with probability exp (—(x2 — x2)/2). In this way, the modelling process is able
to explore the whole configurational space without being frozen in local minima.

6. If the move is rejected, the atomic positions are maintained. Otherwise the new
configuration is saved and the process repeated from step 4 until each atom in the
box has been moved.

The RMC loop continues for several cycles until the residual x? reaches an equi-
librium value. After convergence, a desired number of equilibrium configurations
can be saved which are the structural models consistent with the whole set of exper-
imental data and statistically independent.

Before running the RMC simulation, some preliminary calculations and data are
required. We explain here different important steps and calculation details involved.

The choice of the initial configuration is one of the main steps of any RMC refine-
ment. As reported in earlier studies [21], the final RMC models should be indepen-
dent, in principle, of the starting model, although this initial structure may affect the
number of steps needed to achieve convergence. Also, for molecular systems, the
molecular structure should possibly be pre-defined. Depending on the investigated
material, there are several strategies for producing the RMC initial atomic configu-
ration. The simplest approach for disordered systems is to position atoms at random
within a simulation box of size chosen to reproduce the experimental density. As a
step further, constraints can be applied to prevent atoms to be closer than a cut-off
distance (closest approach distance). Another possible approach is to start from a
disordered crystal structure with the correct density for the liquid. If a crude model
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for the interatomic potentials is available, classic Monte Carlo or molecular dynam-
ics simulations could be also used to produce a trial starting configuration for the
RMC refinement.

In the current RMC-GNXAS implementation, the initial atomic configuration can be
generated by a suitable program (crymol_rmc) as a disordered crystalline structure
with given Gaussian disorder around each atomic position. Initial data are type and
atomic positions within a unit cell, number of atoms and size of the box, calculated
in order to obtain the right density of the modelled system. Periodic boundary condi-
tions are applied to overcome finite size effects. For molecular systems, the program
generates an ensemble of molecular replicas, with defined number of neighbors and
desired Gaussian distribution of intramolecular distances. This program is based on
the program crymol, part of the GNXAS package.

Before performing the simultaneous RMC refinement of both the XAS signals and
the model g(r) (or partials), the initial configuration is usually refined to reproduce
the shape of the pair distribution function g(r) only. This is done, for example, by
using directly the rmcxas program and executing a RMC procedure limited to
the g(r). In this way, convergence is achieved faster. This is also important for the
successive RMC refinement, because the XAS sensitivity is limited to a few A around
the photoabsorber and the medium and long-range order has to be constrained with
information provided by complementary techniques as discussed before.

Density and closest approach distances (i.e. the minimum interatomic distance
allowed for each couple of atomic species) are the main constraints usually included in
any implementation of the RMC basic algorithm [21]. The choice of closest approach
distances is not always obvious and it is generally based on previous experimental
determinations of the pair distribution functions or estimated from atomic or ionic
radii. In the rmcxas program different closest approach distances for different pairs
of atoms can be chosen.

An additional constraint can be imposed for molecular cases: a maximum distance
which atoms cannot overcome. Different maximum distances can be imposed for
different atom type pairs. Since no pair distribution function is present in this case, a
maximum distance can prevent atoms to diverge to unphysical distances if no XAS
signal for a specific type of atom is present into the simulation.

In (8.18) we compare experimental quantities with the calculated ones from atomic
coordinates. For the partial pair distribution functions ggs(r) we start from their
definition (see for example [26]) as the ratio of the probability of finding one atom of
type (3 atadistance between r and r 4 dr from one atom of type « to the probability of
finding one atom of type 3 at a distance between r and r 4 dr of one atom of type « in
anideally homogeneous material. During the RMC refinement, these probabilities are
estimated from the counts and binning of distances in calculated histograms. Given
a distance interval [r, r + Ar], the probability P of finding one interatomic distance
in that range is estimated by the ratio of the number n of distances in that interval
and all the N distances found in the system. The number of distances available is
different if we consider identical or distinct atom types, so we must distinguish the
two cases to compute the different partials:
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where N, and N are the number of atoms of type « and [ in the actual simulation
box, and 7’ (n2) are the number of distances in the ith bin of the histogram for
different (identical) atom types. The probability for the ideal homogeneous material
is given by the ratio of the volume of the spherical shell in the same range [r, r + Ar]

to the total volume available:
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Since we are dealing with a finite system in the simulations, the calculated g(7;)
values are estimates of the partial pair distribution functions. The uncertainty over
the calculated ggﬁ (r)and gffa (r) depends on the number of distances used to compute
them, so ultimately on the number of atoms used in the simulation and on the bin
size. A too small number of atoms or a too small bin size would yield large statistical
uncertainty and ‘noisy’ calculated g(7). On the other hand, selection of a box with
too many atoms increases the calculation time, which scales as N 2 and a too large
bin size results in a sparse pair distribution function. A more quantitative analysis of
this point can be found in a previous paper [7]. For the total pair distribution function
we proceed in an analogous way, but without distinguishing between the different
type of atoms.

For the calculation of the total Y© EXAFS signal, the phase shifts are calculated ab
initio, by using phagen, for a system having structure and chemical composition
similar to the liquid or amorphous material modelled by RMC (or for molecules,
crystals). Two body 7((}22 (k) signals are calculated for a grid of bond distances by

using the gnxas program. The +® signals, given as input to the RMC program,
are then interpolated for all the actual distances present in the model structure. In
order to take into account damping of the XAFS signal due to experimental reso-
Iution and many body effects, the amplitude of the calculated signal is reduced by
a factor exp(—R;0¢,,/2k*)S; where R, is the path length, o7, is the HWHM of
a Gaussian energy resolution function and Sg is the amplitude reduction factor. At
the present stage, higher order n-body terms related to higher order correlations are
not included directly in the computation of xC. Signals obtained from a fit of exper-
imental data using £itheo, can be taken into account, but these are not calculated
directly from the atomic coordinates at each step of the simulation. Direct inclusion
of such contributions, essential for extending the applicability to crystalline or com-
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plex molecular systems, would increase dramatically computational time, scaling as
N3. Their inclusion need further developments that are presently under evaluation.

At each atom move, N interatomic distances are changed due to the movement
of a single atom. Appropriate calculation strategies have been implemented for opti-
mizing the calculation of the variation of the XAS signal and the g€, associated with
the modification of the atomic positions during the RMC loop. The calculation time
at each step is therefore considerably reduced and it is possible to increase the size of
the model. Utilization of novel hardware devices to further decrease computational
time (such as GPUs, for example) is now under development.

The maximum size of the atomic move A (usually 0.1-0.3 A) is also a relevant
parameter in RMC modelling, as it determines to which extent the configurations
space is explored. In rmcxas, the value of A is re-adjusted after a selected number
of RMC steps (given by the user), in order to have a ratio of accepted RMC moves
of ~0.5. This value should be checked at each step because a value too small would
be insufficient to change the configuration in a significant way.

8.4.3 A Practical Example: AgBr

In this section we give a short description of the application of RMC-GNXAS for mul-
tiatomic systems showing the input files prepared for liquid AgBr [15]. A schematic
overview of the work flow with the different steps required to perform a full simula-
tion, is shown in Fig. 8.9.

crymol_rmc
initial conﬂguration
i phagen
l phase shifts
fitheo ' - l
EXAFS signal and non- fitting of g(r) :
structural parameters . . gnxas
l XAS slgnals
| rmcxas I
g(r)+EXAFS
results

Fig. 8.9 The typical flow diagram of the RMC-GNXAS package is summarized in this figure. A
complete RMC refinement of EXAFS data is obtained starting from an initial configuration (prepared
by crymol-rmc) and the associated +y signals prepared by the standard GNXAS chain (phagen
and gnxas). The initial configuration, usually prepared to reproduce a model pair distribution g(r)
(see text), is used by the rmcxas program for the RMC refinement of EXAFS data pre-analyzed
by the GNXAS program fitheo
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8.4.3.1 Initial Configuration: crymol_Rmc Program

The very first step of the RMC simulation is to create the initial configuration.
As explained in the previous section, this can be done by using the program
crymol_rmc, which is based on the program crymol. The program runs (under
Linux) with the command:

crymol_rmc < crymolrmc.in

The input file crymolrme.in (or any other name given by the user) used for the
analysis of silver bromide is given below:

CRY CARD 1
AgBr CARD 2
C CARD 2.
6.0911 CARD 2.2
8 CARD 3

1 'Ag’ 0.5000 0.5000 0.5000 4 0.0 2.31 CARD 4
2 'Br’ 0.0000 0.0000 0.0000 4 0.0 2.31 -

3 'Ag’ 0.5000 0.0000 0.0000 4 0.0 2.31 -

4 'Br’ 0.0000 0.5000 0.5000 4 0.0 2.31 -

5 “Ag’ 0.0000 0.5000 0.0000 4 0.0 2.31 -

6 'Br’ 0.5000 0.0000 0.5000 4 0.0 2.31 -

7 'Ag’ 0.0000 0.0000 0.5000 4 0.0 2.31 -

8 'Br’ 0.5000 0.5000 0.0000 4 0.0 2.31 -
NNY CARD 5
1 CARD 6
'Ag’ 'Br’ 3.0 CARD 7
7.0 CARD 7.1
AgB CARD 8
1,1 CARD 9
0.05 CARD 10
1 CARD 11
1 CARD 12
1875.20,0. CARD 13
3,-.2,100., .05 CARD 14
5,-1 CARD 15
's’,1,40.,20.,'s",” ','S’ CARD 16
6,6,6 CARD 17
0.05 CARD 18
0.05 -

This is the same input file for the crymol program, with two additional items at
the end (CARD 17 and CARD 18) when the CRY option is selected (CARD 1). It is
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worth mentioning that when dealing with molecules (XYZ option for CARD 1), the
number of molecular replica is needed (an additional CARD 19 is used for the total
number of molecules of the calculation).

For the purpose of RMC, not all the cards are actually used. We report here the
important ones:

CARD I: Selects between ‘CRY’ for simple crystals or ‘XYZ’ for molecules.

CARD 2: Identifying name of the material.

CARD 2.1:  Crystallographic unit cell type. For liquids a cubic unit cell (C) should
be built. For molecules this card and the next one are not used.

CARD 2.2:  Size of the unit cell given in A. This is a key parameter, since it
defines the density of the system and should be chosen to reproduce
the experimental number density of the liquid. In the case of AgBr,
the unit cell contains 8 atoms and the resulting number density given
by 8/(6.0911)% ~ 0.0354 atoms/A® in agreement with the literature

value [27].
CARD 3: Number of atoms in the unit cell (or in the molecule).
CARD 4: Specific information on each atom of the unit cell (or molecule). The

first entry is just a sequential number labeling each atom (up to the
number specified by the previous card). The second column is the
chemical symbol of the atom (e.g. ‘Ag’,*Br’,* C’; note a blank char-
acter is required before single-letter symbols). Then there are the x, y
and z coordinates: for molecules one must insert Cartesian coordinates
in A, while for CRY, like in the example, the dimensionless fractional
coordinates must be specified. The other columns do not affect the
configuration and can be ignored.

CARD 5to CARD 16 are not important for the purpose of RMC initial configu-
ration, apart from CARD 8 which specifies the name for the output
file.

CARD 17 ng, np, e are the number of cells along each crystallographic direc-
tion. n, - np - n, multiplied by the number of atoms per unit cell
(CARD 3) gives the total number of atoms within the simulation box.

CARD 18 Standard deviation on the atomic positions. This card is necessary to
produce an initial configuration with Gaussian disorder around average
atomic positions. This card has to be repeated for each atomic species.

The crymol_rmc program provides as a starting configuration a disordered
crystalline or molecular model with well-defined average distances, number and
type of atoms and density (or number of molecules). The coordinates of each atom
within the simulation box are written in the output file ABCxyz.rmc (ABC given
at CARD 8), here called AgBxyz.rmec. The file contains the coordinates of all the
atoms and a header with some useful information:
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CRYSTAL AgBr
C! Cubic -> a
6.0911
0.03539996 ! Atomic density
6 6 6 ! Number of cells
1728 ! Number of atoms
1 ! Disordered crystal configuration
2 ! Number of inequivalent atoms
! Ag’ ! atom
0.050000 ! Standard deviation
! Br’ ! atom
0.050000 ! Standard deviation
START ! Initial configuration for RMC run
-0.416387200 -0.417111397 -0.415618539 ' Ag’
-0.499927670 -0.497871548 0.498389006 Br’
-0.416463912 0.499605536 0.498553693 Ag’
-0.497876823 -0.415489465 -0.416263878 ' Br’

In particular, the order in which the different atomic species appear in the header is
important, since in the input file for the rmcxas program they are identified by this
number. This is explained in more details below.

As anticipated, for the purpose of XAS refinement of liquids or amorphous sys-
tems, the initial configuration given by crymol_rmc can be successively refined
to reproduce the shape of the pair distribution function g(r) (or the partials for
multiatomic systems) obtained by diffraction experiments or computer simulations.
This is an important aspect for the successive RMC refinement, because the XAS
sensitivity is limited to a few A and the medium and long-range order has to be
constrained using complementary information from different techniques. For this
purpose, rmcxas can be directly used for any RMC refinement of the model pair
distribution of a given model system. The program needs in any case input data files
(cards 5.1 and 5.6 as reported below) for the EXAFS signals and the associated noise,
and the practical strategy for a simple RMC refinement of the g(r) is to artificially
increase the noise level (typical values are 10~2~10~*). When the RMC simulation
is converged for a given pair distribution model, the EXAFS signals can be turned
on improving the accuracy of the structural refinement.

8.4.3.2 RMC Simulation: rmcxas program
Once the initial configuration has been built, the Reverse Monte Carlo simulation

can be set up by preparing an input file for the rmcxas program containing several
cards (here called rme-gnxas.in, but an arbitrary name can be chosen). Of course,
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the full RMC-GNXAS refinement process can proceed only if suitable EXAFS signals
are available for the system under consideration (liquid AgBr in the present case).
Therefore, as also illustrated in Fig. 8.9, an accurate EXAFS pre-analysis must be
carried out for the extraction of the structural yZ (k) signals in (8.18). This pre-
analysis is usually carried out using the £itheo program of the GNXAS chain in
order to have also consistent values for the non-structural parameters Eo and S3 and
experimental resolution (see [3, 5] for their definition) to be included in the RMC
procedure.
An example is given below:

AgBxyz.rmc CARD 1
AgB CARD 2
9.50 CARD 3
Y CARD 4
2.00 CARD 4.1
1.90 -
2.80 -
2 CARD 5
./data/BrK_AgBr_725K.dat CARD 5.1
0 CARD 5.2
1. CARD 5.3
2 CARD 5.4
13474. CARD 5.5
../data/BrK_AgBr_725K.noise CARD 5.6
../data/AgK_AgBr_725K.dat CARD 5.1
0 CARD 5.2
1. CARD 5.3
1 CARD 5.4
25514. CARD 5.5
../data/AgK_AgBr_725K.noise CARD 5.6
2 CARD 6
3 CARD 6.1
1,1 CARD 6.2
../data/gr_AgAg_753K_Tas.dat CARD 6.3
../data/gr_noise_cost.dat CARD 6.4
1,2 CARD 6.2
../data/gr_AgBr_753K_Tas.dat CARD 6.3
../data/gr_noise_cost.dat CARD 6.4
2,2 CARD 6.2
../data/gr_BrBr_753K_Tas.dat CARD 6.3
../data/gr_noise_cost.dat CARD 6.4
1.90,9.50 CARD 7
1 CARD 8
1.90,.1 CARD 8.1
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0.
1000
1,200
800
0.05

1
13478.
0.725
1.5
25518.
0.825
1.8

2

1,2

53

../xas_Br_K/BABG201.DER

2,2
44

. ./xas_Br_K/BBBG201.DER

2
1,1
52

../xas_Ag_K/AAAG201.DER

1,2
53

../xas_Ag_K/AABG201.DER

5.6,0.4

1
1
1

The description of the input lines is as follows:

CARD I:

CARD 2:
CARD 3:

CARD 4:

CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD
CARD

9

10
11
12
13
14

15.
15.
15.
15.
15.
15.

16

16.
16.
16.
16.
16.
16.

16

16.
16.
16.
16.
16.
16.

17
18

w N P Ww N w NP W N

w N P W N
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Initial configuration file name. The program will choose as starting
configuration the first one preceded by the line “START”. This is
useful to select a specific starting configuration when running the

simulation several times.
Three characters string used for the output files.

Maximum cutoff distance. If the input distance is greater than the
natural cut-off (half of the simulation box), it will be reduced to the

natural cut-off.

Use different closest approach distances for each pair of atomic
species (Y) or use the same closest approach distance for all the

pairs (N).
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CARD 4.1:

CARD 5:

CARD 5.1:
CARD 5.2:
CARD 5.3:
CARD 5.4:

CARD 5.5:
CARD 5.6:

CARD 6:

CARD 6.1:

CARD 6.2:

CARD 6.3:
CARD 6.4:

CARD 7:

CARD 8:

CARD 8.1:

CARD 9:
CARD 10:

F. Iesari et al.

If the previous card was N, only one closest approach distance has to
be inserted. Otherwise a number b(b + 1)/2 cards are needed, where
b is the number of different atomic species present in the material (in
the example, b = 2).

Number of experimental EXAFS signals to be used for the RMC
refinement (in the example two signals measured at the Ag and Br
K-edges). The successive cards (5.1-5.6) have to be repeated for
each data set.

EXAFS signal file name.

Scale of the experimental signal: 0 for k (A="), 1 for E (eV/keV)
Weight on the input data, if k" y (k) is used.

Number of the photo-absorbing atom. In the example, ‘Ag’ corre-
sponds to 1 and ‘Br’ to 2, because they appear in this order in the
initial configuration file. The first data set is Br K-edge and hence
the photo-absorbing atom entry is 2, while the second is Ag K -edge
and the corresponding photo-absorbing atom is 1. In this way there
is not a pre-defined order in which the different data set have to be
inserted.

Edge energy in eV.

Name of the file containing the noise function for the EXAFS signals
(0,2“- of (8.18)). This can be estimated by using a program called
noise (included in the package) and written in a specific file, whose
filename is given here.

This card is used for the g(r) refinement. Three options are possible: 0
ifno g(r) are used in the simulation, 1 if only the total pair distribution
function g(r) is inserted, 2 if partial pair distribution functions are
used. If option O is selected, the successive card is CARD 8. Instead
if option 1 is chosen the successive cards have to be the data file name
for the total g(r) and its noise file name.

If option 2 is inserted in the previous card, we have to specify the
number n, of partial g,5(r) functions used. The successive cards
must be repeated n, times.

This define the atom types of the corresponding partial pair distribu-
tion function, e.g. for Ag-Ag we insert 1,1, for Ag-Br 1,2.

File name of the corresponding partial g,z (r).

File name of the noise data for g,z (r).

Pmin and 7,4, for the g(r) fitting in the RMC. Not needed if CARD
6is 0.

Choice of the g(r) histogram binning. Option 0 if the same binning
as the input g(r) (total or partial) has to be used. Option 1 if the
binning is specified by the user with the additional card 8.1.

This is required only if 1 was chosen in the previous card. It is the
T'min and the Ar for the g(r) calculated by the program.

Weight on the EXAFS signal in the output files.

Number of RMC steps (for each atom).
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CARD 11: Respectively, number of RMC steps between successive visualization
and storage of configurations.

CARD 12: Number of RMC steps before calculating the average g(r) over dif-
ferent configurations.

CARD 13: Initial maximum size of random displacement (in A).
CARD 14: Number of RMC steps between updating the maximum size displace-
ment.

CARD 15.1:  This and the two following cards 15.2 and 15.3 refer to non-structural
parameters (see [3, 5]) determined by a previous analysis (for exam-
ple by £itheo) of the XAFS signals and must be repeated for each
signal included. Here the E energy is given.

CARD 15.2: 2 factor.

CARD 15.3:  Experimental resolution, HWHM in eV.

CARD 16: Number of different signals inserted to fit the EXAFS data. For each
type of signal the successive three cards have to be specified. This
must be repeated for each EXAFS data set.

CARD 16.1:  Corresponding type of atoms for the signal, like CARD 6.2. For
example for Ag-Ag we insert 1,1.

CARD 16.2: Number of .DER files to read.

CARD 16.3:  File name of the first .DER file. The program will read the files up to
the number specified by CARD 16.2.

CARD 17:  Maximum distance cut-off »£ and standard deviation o of the Gaus-
sian smoothing used for the integration of the EXAFS signal. The
EXAFS signal is calculated from rZ up to r + 30® with a Gaussian
smoothing in order to avoid truncation problems.

CARD 18: Noise function on the g(r): O constant noise, based on average value
of the input noise file; 1 accounting for pair statistic; 2 read on the
inserted noise files; 3 accounting for pair statistic, but tunable, in
this case an additional card is required with the multiplying factor.
This card has to be repeated for each g(r) inserted into the fitting
procedure.

The program runs with the command
rmcxas < rme-gnxas.in

The .DER files are created by the gnxas program, and specific instructions about
the practical use of this program can be found in [4, 5]. In the present example, the
Ag-Br Ag K-edge v® signals (in form of .DER files) were calculated in a range of
distances between 1.90 and 7.00 A with a step AR=0.10 A, for a total of 52 different
.DER files. If the cut-off distance r£ + 30 defined by CARD 17 results to be greater
than the maximum distance R} of the corresponding set of .DER files, the program
updates the cut-off r£ appropriately (using R} — 30F).

While running the rmcxas program, many useful files are created to check the
input data and for visualization of the simulation. Detailed information is stored
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Fig. 8.10 Screenshot of the window created with the command gnuplot < sh_rmc, for the
RMC simulation of liquid AgBr at 725 K [15]. Starting from the top we have the two Br (upper)
and Ag (lower) K -edge experimental and RMC-EXAFS signals, and their difference. The residual
(X2 of (8.18)) as a function of the RMC steps and the total pair distribution function are shown in
the middle of the figure (third row). The lower figures (last row) are the three partial g(r) obtained
by the RMC refinement compared with the models obtained by molecular dynamics [27]: from the
left, the first is AgAg, the second is AgBr and the last is BrBr

in the folder chk and the relevant files can be checked in order to avoid mistakes
and misleading results. The g_rmod files contain the models of the pair distribution
functions used for the fitting and their interpolation if binned on a different mesh,
while the XASinp and phainp files contain respectively the EXAFS data and the
phase shifts of the .DER files. Finally the phacor files contains the phase shifts
corrected for possible 27 jumps. It is advisable to check the smoothness both for
distance r and in k (or energy) variables of the phase functions, especially when
dealing with large set of .DER files.

Other files are created for visualization and storage of the various data produced by
the program which are updated at each loop of the simulation. The files exXrme.gnu
contain the total experimental and calculated EXAFS signals and the residual, for
each edge under consideration. The files gam_eX.gnu contain the individual v sig-
nals contributing to each edge. The information on the partial pair distribution func-
tions at each step is stored in the radrmeXX.gnu files, while the information on the
total distribution function is in radrme-t.gnu. All these files can be visualized using
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gnuplot [16]. Finally, a gnuplot macro is created automatically by the program,
called sh_rme, which allows monitoring all the previous file in a single window
during the RMC simulation. A screenshot of this window for AgBr is shown in
Fig.8.10.

During the simulation, the atomic configurations of the RMC model are appended
to the file containing the initial structure AgBxyz.rmc, for selected RMC steps. In
this way, an extended set of tridimensional models of the structure is available for
successive analysis. After equilibration, those structures are all compatible with the
given experimental data and can be used for a detailed structural analysis. Typically,
a reasonable statistics is achieved considering 10>°~10* configurations obtained after
equilibration to a minimum residual value. Specific programs for detailed structural
analysis [12, 14], including determination of pair and triplet distributions, spherical-
harmonics invariants and common-neighbor analysis are also available from the
authors.
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Part 11
Extended knowledge

The chapters of this part correspond to the talks of the joint MSNano-EUSpec con-
ference that was held at the University of Rennes 1 on July 1 and 2, 2016. This
conference was organized both as the final conference of the MSNano network and
in honor of Rino Natoli at the occasion of his 75th birthday. The talks selected
here correspond to those directly related to the multiple scattering descriptions of
spectroscopies.
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Chapter 9
(e,2¢) Impact Ionization Processes
for Surface Science

Rakesh Choubisa, Didier Sébilleau, Junqing Xu and Calogero R. Natoli

Abstract We present a scattering theoretic approach to the calculation of the cross-
section of (e,2e) impact spectroscopy where all the electrons involved are treated
within the real space multiple scattering framework. This approach is particularly
suited to the reflection geometry at low kinetic energies, with the ejection of a core-
level electron. In this case, we expect (e,2e) spectroscopy can be turned into an
extremely sensitive surface structure probe.

9.1 Introduction

(e,2e) has a long history, especially in atomic and molecular physics. Originally
derived for the (p, 2p) spectroscopy in nuclear physics [1], where p represents a
proton, it was proposed in 1966 by Smirnov and coworkers [2] for the investigation
of atomic wave functions [3], upon the replacement of the protons by electrons. Since
then, it has enjoyed a widespread popularity and is often termed electron momentum
spectroscopy [4]. Indeed, in the high energy regime (primary energy ~10-50keV),
we can represent the electron by a plane wave. If in addition, the momentum transfer
is large (K = ki, — ks = key), the collision between the impinging electron and
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the target electron can be described as a single binary collision (i.e. many-body
interactions are approximated by consecutive two-body interactions) and therefore,
the impact approximation is valid [5]. This approximation assumes that the incoming
electron interacts only with the ejected electron and neither affects the target nor
is affected by it (the spectator electrons are frozen). Within this so-called Plane
Wave Impulse Approximation (PWIA), the momentum opposite to the recoil ion
momentum vector is interpreted as the bound electron momentum. In this case, the
cross-section is proportional to the spectral momentum density o(q, €) = |o(q, o
where ¢ is the momentum of the bound electron and e its binding energy. ¢(q, €)
is the Fourier transform of the wave function ¢(r, €) before the collision. o(q, €) is
the probability of finding a bound electron of momentum ¢ and energy e. Hence the
name of wave function mapping spectroscopy [6, 7] often given to (e,2e).

Although proposed since the very beginning of (e,2e), the application of the
technique to solids [2] has long been hampered by the low count rate. It is only rather
recently that technical developments in the devising of new analyzers, such as the
time-of-flight technique [8], have made it possible to use it as a probe of condensed
matter.

(e,2e) in reflection mode was proposed back in 1978 in order to study surfaces by
D’ Andrea and Del Sole in a theoretical paper [9]. The first experiment was performed
in 1992 by Kirschner and coworkers [10] on W(110). But it is not before 1995 that the
feasibility of this binding-energy spectroscopy with quasimomentum discrimination
was firmly established [11]. However, in this case, as we need to be sensitive to the
surface, the experiments have to be performed for primary beams of low energy and
grazing incidence in order to minimize the inelastic mean free path and the escape
depth of the outgoing electrons. In the case of surfaces, the use of (e,2¢) can give
us important information on many different processes. For instance, in their seminal
paper, D’Andrea and Del Sole [9] demonstrated that the computed (e,2¢) spectra
were very sensitive to the surface reconstruction. It is with this type of applications
in mind that we develop here a real space multiple scattering framework to model
(e,2e) experiments. Previous approaches were more interested in the excitation of
valence states; we focus here on core states.

9.2 Reduction of the Cross-Section

The cross section of (e¢,2¢) can be written as

dBo 1 2m\° ko k 2
e —— VA S (il [ o SN T 1N [T (9.1
e aa — 50 () % 2 @il imie i o.n

Here, we have noted k;,, kg and kx respectively the direction of the incoming,
scattered and excited (ejected) electron. By convention, the scattered electron is the
faster of the two outgoing electrons and the ejected (or excited) electron is the slower.
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The sum over the states noted av is a sum over degenerate final states and an average
over degenerate initial states.

Here, |<D,2’“+1) and |Q>,1C\:j,;ix) are eigenstates of the asymptotic Hamiltonian, i.e. of
the Hamiltonian H, without interaction. (N + 1) is the total number of electrons,
the target being assumed to contain N electrons. We can express the initial state as

[P0 = 10} ) 160) ® k) 9.2)

where |¢) is the initial wave state of the electron that will be excited, |¢x,,) is the

wave state of the incoming electron and |<pN 1Y is the ground state of the remaining

(N — 1) system. Here, ® represents the product in the two-electron space.
Likewise, we write the final state as

|ty =

Y = 1o k) 9.3)

where |g010n ) is the residual ion state and |¢g_,, ) 1 the outgoing two-electron state.
With these notations, the cross-section becomes

d’o 1, k&kex
iEdo do_ — 3 @™
dE d$2; dS2; 77,2 kin
s¢ ex 5 (9.4)
Z N (D T1 1Y ") 160) ® I6k,,)

At this stage, we make a first approximation called the frozen core approximation
or the sudden approximation. This approximation assumes that the ejected electron
leaves the atom in a time much less that the time it takes for the remaining electrons
of the ion to readjust. In other words, these atoms can be considered as spectators of
the interaction process. This approximation implies

Bo s (2m° ksckex N_112 2
dE\d$2_ds2s. _(2) ( ) Kin ;’SO FlTal 09

where we have noted
Tri = (Proke Tr 1d0) ® |Prs,) - 9.6)

We are then left with a three-body problem plus the overlap term |S(],V ! |2 =

|(<p10n N 1)|2 which is independent of the interaction process. (gaion |g0N 1y is
usually called the structure factor while (¢ k. | T1 |po) ® |or,,) is called the collzszon
factor. The separation of the total matrix element into these two contributions is called
the factorization approximation. For the rest of the discussion, we will consider the
structure factor as constant and take it out of the sum. In this approximation, 77 is a
two-body transition operator.
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9.3 The Two-Electron Differential Cross-Section

We recall that a N-body T -matrix element can be written as [12]

Tri = (Ps|VWF) = @,V 27 |®;)  post form
9.7)
= (W |Vi|®;) = (D] .(2}‘” V;|®;) prior form |

where | ) is an eigenket of H, the full Hamiltonian, |®¢) an eigenstate of Hy =
H — V; and |®;) an eigenstate of H; = H — V;. V; and V, are the interaction
potentials respectively in the initial channel and the final channel. 2 are Mgller
wave operators.

Each continuum electron interacts with the cluster potential through

Na

Vixs = Z Vixn » (98)
n=1

where N, is the number of atoms in the cluster. Here, xx stands for in, sc or ex, and
S for the sample. Within this 3-body approach (incoming electron, bound/ejected
electron, cluster), we can define the interactions in the initial and final channel as

Vi = Vias + Vinco + Veos
9.9)
Vf = VscS+VexS+Vscex .

We note that we can suppress the interaction potential V., s between the core
state and the sample in the expression of V;. Indeed, if the calculation of the sample
potential Vg and of the wave function ¢, (r) have been done properly, this has already
been accounted for.

Let us consider now the prior form of (9.7). As the interaction between the incom-
ing electron and the system V;, s cannot excite the bound electron, we canreduce V; to
Vin co 10 (9.7) so that we have now |@; ) eigenstate of H; = H — Vip oo = Ho + Vins.
To keep the standard distorted wave notation, we will write it as |X?E) ® |¢eo)- There-
fore, (9.7) becomes

T = (@41 277 VineolX) @ [eo) - (9.10)

where according to (9.9), |@y) is an eigenstate of Hy. Ix;") is the result of the
interaction of the incoming electron with the sample through the potential Vj, s. It is
therefore a multiple scattering state which we will rewrite |X$) to make the difference
with the multiple scattering states in the final channel.

As the matrix elements of T involve multiple scattering states | x*), letus introduce
the multiple scattering Mgller wave operators w'® associated to the Hamiltonian
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Hxx = HO + VXXS by

Wi 1P) = X ® 1) Tkxx) ® [0) - (9.11)
We can now rewrite our result (9.10) in terms of the initial state and final state
plane waves solutions of Hj as

Tri = (ksel ® (kex] 277" Vinco (@i ® 1) [Kin) ® o) - 9.12)

This expression is an exact result within our 3-body impact approximation.

An important issue in (e,2e) spectroscopy is to find a proper description of the
so-called post-collision interaction (PCI), i.e. the interaction between the two out-
going electrons. In our formulation, this effect is embedded within the final channel
Mgller wave operator .Q}_) " We know how to compute the individual wave opera-

tors w®), all multiple scattering codes can do it, but .Q;i) is a complicated operator

taking into account all the interactions in the final state at the same time. However,
we can use the simple first order approximation derived by Briggs [12]

N
N® ~ ]"[ w® (9.13)

n

n=1
We will call this result Briggs’ first order approximation (Brl in the equations).
We find then

sc S sc ex ex S scex °

271 = @t e DI ®WH Wl = st ®ugsh el 0.14)
T

where the order of the wave operators is indifferent. w7 is the PCI wave opera-
tor which describes the (screened Coulomb) interaction between the two outgoing
electrons.

Therefore, we can rewrite now the transition matrix element as

Trilgy = (el ® thex] WGl WSS @ WEED Vineo W ® 1) lkin) ® [¢eo)

PCI scattering state

(9.15)
The neglect of PCI amounts to the replacement of the Mgller wave operator w{,) "
by the identity /g in the two-electron space.
In order to simplify the notation, let us write as usual
wi ko) = IXE.) (9.16)

and the Coulomb interaction in the initial channel as V as there is no ambiguity (the
one in the final channel is contained into the PCI wave operator). Note that V¢ is
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a short-hand notation for the antisymmetrized operator (AT@, Ve Ag), where A is the
antisymmetrizer.
We can now rewrite (9.15) as

Trilgn = 0| ® (X, | wQh Ve lxg,) ® 1deo) (9.17)

where the | *) are the multiple scattering states computed by the multiple scattering
codes.
We can now inject this result into the cross-section

2m\® kockex o
= (ﬁ> kin IS5 TAl . ©0a8)

av

d’o
dEd$2y, ds2

ex

Brl

to obtain a workable formula within the first Briggs approximation.
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Chapter 10
Layer-Resolved Photoemission Study
of Doped Ag-Supported Ultrathin MgO Films

Thomas Jaouen

Abstract MgO/Ag(001) ultrathin films doped with interfacial Mg atoms are studied
with layer-resolved Auger electron diffraction experiments, ultraviolet photoemis-
sion measurements, multiple scattering calculations, and density functional theory
(DFT) calculations. The Mg atom intercalation at the MgO/Ag(001) interface induces
a strong rumpling of the interface layers as well as a lowering of the work function
related to interface electronic structure changes. DFT analysis of the metal-oxide
interactions responsible for the interface dipole reproduces the experimental obser-
vations and reveals that the metal/oxide work function changes essentially originate
in an increased electrostatic compression effect.

10.1 Introduction

Metal-supported ultrathin oxide films host unique chemical and physical proper-
ties owing to their reduced dimensionality and the enhanced role of the metal/oxide
interface [1]. In particular, they have been widely studied both experimentally and
theoretically in the field of heterogeneous catalysis due to their pivotal role in control-
ling charging mechanisms, adsorption properties, and catalytic activation of metal
ad-atoms and molecules [2-7]. Defects engineering further allows tuning the work
function and the electronic structure at the interface without modifying the oxide
overlayer [8—12].

For this purpose, MgO/Ag(001) represents a model system that has been inten-
sively studied both theoretically and experimentally [13]. For example, MgO/Ag(001)
interfaces doped with oxygen or magnesium vacancies and impurities have shown
to exhibit an enhanced catalytic activity with respect to the dissociation of H,O [14,
15] due to modifications of the metal/oxide work function [16, 17]. Nevertheless,
despite the increasing theoretical understanding of doped metal/oxide interfaces, few
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experiments dealing with post-growth interface engineering have been performed due
to the practical difficulties inherent to the buried interfaces.

In this chapter, we focus on the electronic and structural properties of experimen-
tally engineered MgO/Ag(001) interfaces. Intercalation of Mg atoms at the interface
is achieved by post-growth Mg exposures. Layer-resolved Auger electron diffraction
(AED) and ultraviolet photoemission (UPS) experiments are used to demonstrate that
Mg intercalation induces a strong rumpling of the interface layers as well as a low-
ering of the work function. The origin of the induced interface dipole is discussed
through DFT calculations and the disentanglement of its charge transfer, rumpling,
and electrostatic compression contributions. It is shown that the strong rumpling
is a structural response to the interfacial charge transfer and that the metal/oxide
work function changes essentially originate in an increased electrostatic compression
effect.

10.2 Methods

10.2.1 Experimental

The experiments have been conducted in a multi-chamber ultrahigh vacuum (UHV)
system with base pressures below 2 x 107'mBar. The MgO monolayers (ML)
(1 ML = 2.10A) were epitaxially grown on a freshly cleaned Ag(001) surface by
co-evaporation of Mg and O, (oxygen pressure = 5 x 10~/ mBar) at 453 K. Mg
intercalation have been performed by exposing the MgO films to an Mg flux (2.4 x
10'3 atoms/(cm?s)) at a substrate temperature of 513 K for limiting Mg adsorption at
the oxide surface.

X-ray and ultraviolet photoelectron spectroscopy (XPS-UPS) have been per-
formed using a hemispherical analyzer (Omicron EA125) with a five-channel detec-
tion system, and Al K« and He-I resonance (hv = 21.22¢V) lines as the x-ray
and UV sources, respectively. The total energy resolutions were respectively 0.80
and 0.15eV for XPS and UPS. The work function of the dielectric system (¢;,),
defined as the energy of the vacuum level (Ey,.) with respect to the Fermi level
of the MgO/Ag(001) system (E ), is determined from the low-energy cutoff (Ey)
of the secondary photoelectron emission: ¢, = hv — (Er — Ey). Auger Electron
Diffraction (AED) measurements of the Mg K L,3L,3 Auger transition were done
using a two axis manipulator allowing for polar and azimuthal sample rotations with
an accuracy better than 0.2° and AED profiles were recorded for polar sample rota-
tions (the polar angle is defined with respect to the surface normal) between —5° and
60° for the (010) and (110) inequivalent emission planes of the cubic structure of the
MgO(001) film.
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10.2.2 Computational Details

The multiple scattering spherical wave cluster calculations have been performed in
the Rehr—Albers framework [18], by using the MsSpec program [19, 20] for clusters
containing up to 420 atoms. Details on the calculations are given in [21]. Briefly,
the multiple scattering expansion of the photoelectron wave function was carried out
up to the fourth order which we checked to be sufficient to achieve convergence for
the configurations considered. Following various experimental works [22-24], we
assumed pseudomorphic ultrathin MgO films on Ag(001) with interface Mg atoms
occupying the substrate hollow sites and an interfacial distance between Ag and O
atoms of 2.51 A. Finally, a broadening of the AED peaks due to the formation of
mosaic observed during the growth of the MgO films on Ag(001) [25], was taken
into account by averaging the calculations over a cone of 2.5° half angle.

The DFT calculations have been carried out in the generalized gradient approxima-
tion (GGA) using the Perdew—Burke—Ernzerhof (PBE) exchange-correlation func-
tional [26]. The calculations used the Projector-Augmented Wave (PAW) formalism
[27], implemented in a real-space grid in the GPAW code [28, 29], with a grid spac-
ing of 0.18 A. The MgO/Ag (001) system was modeled with three layers of MgO
on three Ag layers with lattice parameter ay = 4.16 A and Ag interface atoms below
the oxygen anions. The vacuum region between adjacent slabs was set to ~20A.
(\/5 X ﬁ)ao surface unit cells were used for calculations and Brillouin zone sam-
pling were performed using a Monkhorst—Pack mesh with 4 x 4 x 1 k points [30].
During geometry optimization, only the Ag atoms of the bottom layer have been kept
fixed and a tolerance of 0.02eV/A was applied.

10.3 Results

10.3.1 Layer-Resolved Auger Transition at the Ultrathin
Limit

Figure 10.1a shows normal-emission Mg K L3L,3 Auger spectra of bulk (18 ML)
and ultrathin (2-3 ML) MgO films. For a non-resonant excitation, the photoemission
of Auger electrons can be described by a two-step process [31]. A core hole is first
created by photon absorption on the 1s core level, and the Auger decay then involves
two electrons of the 2p orbital. The Auger electron leaves the atom with a kinetic
energy which depends on the binding energies of the 1s and 2p core levels and on U,
the on-site Coulomb interaction which takes into account of the Coulomb interaction
between the two holes on the L shell in the final state. Since an Auger transition does
not obey to the dipolar selection rule, many final states are allowed, explaining
the multiplet structure of the Auger transitions. For bulk MgO film [Fig. 10.1a, top
spectrum], the Mg K L,3L,3 spectrum exhibits two contributions corresponding to
the 'S and ! D multiplets of the Mg 2 p final state. For ultrathin MgO films grown on
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Fig. 10.1 a Photoemission spectra of the Mg K L3 L3 Auger transition of bulk (18 ML, top spec-
trum) and ultrathin (2-3 ML, middle and bottom spectra, respectively) Ag-supported MgO films.
Best fit and layer-by-layer decomposition are also shown. b Schematic band diagram illustrating
the spectroscopic origin of the Mg K L33 L>3 layer-by-layer resolution for a 3 ML-thick MgO film.
The observed increase in the Auger kinetic energy with decreasing distance from the interface has
been attributed to the image-potential screening of the localized Mg 2 p holes by the metal substrate.
The distance-dependent screening of the two-holes in the Auger final state leads to different values
of the on-site Coulomb interaction for the Auger transitions involving electrons of the interface,
sub-surface and surface layers

Ag (2-3 ML) [Fig. 10.1a middle and bottom spectra], it has been demonstrated that
the Mg K L3 L3 spectraare layer-resolved [32]. As seen Fig. 10.1a, the Auger spectra
can be perfectly adjusted using an experimental Mg K L,3L,3 Auger spectrum of a
1 ML MgO/Ag(001) sample and including as many fitting components as there are
MgO layers. For 3ML thick MgO film, the Auger spectrum is fitted by three shifted
monolayer-Auger components C;, C,, and C3 which correspond to Auger electron
emission from the interface, sub-surface and surface oxide layers, respectively.

As previously discussed by Kaindl et al. for Xe multilayers on Pd(001) [33] and
Altieri et al. [34] in the case of MgO/Ag(001), the layer-by-layer resolution of the
Auger transition reflects the sensitivity of the two holes final states resulting from
the Auger decay to extra-atomic relaxation effects. The observed increase in the
Auger kinetic energy with decreasing distance from the interface has been attributed
to the image-potential screening of the localized Mg 2 p holes by the metal substrate
that basically leads to different values of the on-site Coulomb interaction for the
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Auger transitions involving electrons of the interface, sub-surface and surface layers
[Fig. 10.1b].

10.3.2 Mg-Doped MgO/Ag(001) Interfaces

10.3.2.1 Layer-Resolved Atomic Structure Probed by Auger Electron
Diffraction

Figure 10.2a shows the variation of the normal-emission Mg K L3 L3 Auger spec-
trum upon Mg exposure of a 3 ML MgO sample. The fourth component (labeled Cy)
that appears at higher kinetic energy in the Mg K L3 L,3 Auger spectrum is related to
electron emission from intercalated Mg atoms in the Ag substrate [32, 35]. As seen
in the inset of Fig. 10.2a, its normal-emission intensity gradually increases as a func-
tion of the exposition time suggesting that Mg intercalation takes place throughout
the Mg exposure likewise.

Figures 10.2b, c respectively show the experimental and simulated layer-resolved
AED polar scans of the Mg K Ly3L,3 Auger spectra in the (010) emission plane.
As the Cy, C,, and C; components of an as-grown Mg K Ly3L,3 Auger spectrum
correspond respectively to the interface, sub-surface and surface oxide layers, the
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Fig. 10.2 a Photoemission spectra of the Mg K L»3L23 Auger transition of the 3 ML MgO film
obtained before and after exposition to an Mg atomic flux. Best fit and layer-by-layer decomposition
are also shown. The inset shows the evolution of the intensity of the Cp component as a function
of the Mg exposure time. b Experimental AED polar scans of the Cp, Cy, C2, and C3 Auger
components in the (010) emission plane, for a 3 ML-thick MgO film exposed to Mg. ¢ Calculated
Mg K L3L>3 AED profiles in the (010) emission plane for a 3 ML MgO system with Mg atoms
occupying substitutional sites of the Ag substrate. d R ,-factor contour map using A; and A; as
parameters. These parameters are defined in e which shows a sketch of our structural model. The
red, green and grey atoms correspond respectively to oxygen, magnesium and silver
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intensity distribution of C3 is nearly isotropic whereas the AED profiles associated
with C; and C, show typical forward scattering peaks along the [001] and [101]
directions of the rocksalt structure of the MgO lattice. The Cy metallic component
curve in Fig. 10.1c also shows a well-structured pattern but with forward scattering
peaks sharper than those of the C| and C, components. Such a narrowing is known
to originate in defocusing effects related to the multiple scattering events [36, 37].
Therefore it is likely to be observed for electron emission from Mg atoms located
beneath the oxide layer. The fact that the defocusing effects do not cancel the forward-
scattering constructive interferences then indicates that the metallic Mg atoms are
located in the MgO/Ag interface region.

Indeed, the simulated AED curves obtained by combined multiple scattering cal-
culations and reliability factor (R ,-factor) analysis [35] (Fig. 10.2d, ) show that the
Cy component is related to electron emission from Mg atoms intercalated in the sub-
stitutional sites of the Ag plane just beneath the MgO lattice and that the MgO lattice
undergoes a significant distortion at the interface upon Mg intercalation. The R,
factor contour map is shown in Fig. 10.2d (A; and A, parameters are defined in the
sketch of our structural model Fig. 10.2e). The best agreement between experimental
and calculated AED profiles is obtained for an Mg-Ag alloy concentration of about
30% with dyig—o = 2.0A and a R p-factor of 0.15. The Mg atoms of the interfacial
alloy are displaced toward the oxide layer by 0.1 A and the nearest neighbors 02~
ions are displaced downward by 0.4 A relatively to the Mg?* ions position.

Such a rumpling at the interface upon Mg intercalation has been further predicted
by DFT calculations. Bader analysis has shown that the neighboring Mg and Ag
atoms of the substrate interface layer are respectively positively (—1.5 electrons per
atom) and negatively charged (0.9 electrons per atom). The structural relaxation at
the interface originates in the charge transfer between the Mg and Ag atoms of the
interfacial alloy that are respectively in attractive and repulsive Coulomb interactions
with the O?~ ions directly adjacent [35].

10.3.2.2 Induced Electronic Structure Changes

Deposition of ultrathin oxide films on metals induces a metal work function shift
and a variation of the tunneling probability for charges at the interface [38—45]. This
effect has been understood has coming from the competition between the interfa-
cial charge transfer (A¢CT), the oxide lattice polarizability and associated rumpling
dipole moment (A¢3R), and the polarization of the metal electrons at the interface
induced by the highly ionic oxide layer, the so-called electrostatic compression effect
( A ¢comp).

Figure 10.3a shows the low-energy cutoff of the secondary photoelectrons emis-
sion for the Ag(001) substrate and for the MgO(3ML)/Ag(001) sample before and
after Mg intercalation. The MgO deposition leads to a metal work function shift,
A¢,,, of about —1.30 &= 0.05eV which results in a metal/oxide work function value
¢ of 3.10 £ 0.05eV for our reference sample. This decrease is mainly driven by
the compression of the metal electron density at the interface induced by the oxide
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Fig. 10.3 a Low-energy cutoff of the secondary photoelectrons emission for the Ag(001) substrate
and for the MgO(3ML)/Ag(001) sample before and after exposure to a Mg flux. A¢,, and A¢},
correspond to the work function variations of the metal substrate and of the metal/oxide system,
respectively. The inset shows the evolution of A¢;', as a function of the Mg exposure time. b He-1 UPS
spectra showing the valence band region of the MgO reference sample (fop) and after Mg exposure
(bottom). The method used for the VBM position determination is also sketched. ¢ Evolutions of
the calculated A¢CT, A¢SR, and A@°™P contributions to the calculated MgO(3ML)/Ag(001) work
function variation A¢;, (DFT), as a function of the interface Mg atom concentration. Experimental
work function changes A¢pBO due to the band-offset (BO) variations at the metal/oxide interface
are also shown for comparison

deposition and is particularly strong for wide band gap oxides such as MgO [38,
42-44]. As seen Fig. 10.3a, intercalation of Mg at the metal/oxide interface further
modifies the metal/oxide work function. Removing the initial band bending con-
tribution of about 0.30eV [32], the metal/oxide work function can be diminished
over A¢P° = —0.50eV depending on the intercalated-Mg concentration [see inset
Fig. 10.3a]. Comparison of the valence-band (VB) region of He-I1 UPS spectra corre-
sponding to the reference MgO/Ag(001) sample (top) and to the Mg-intercalated one
(bottom) [Fig. 10.3b] show that this work function diminution is related to a change
in the Fermi level pinning position in the MgO band gap.

The physical origin of the interface dipole responsible for the work function
changes induced by Mg intercalation at the MgO/Ag(001) interface has been inves-
tigated with the help of DFT calculations by disentangling the contributions of charge
transfer (A¢©T), rumpling (A¢SR), and compression effect (A¢™P) to the total work
function variation of the metal/oxide system (A¢;,) [35]. Figure 10.3c shows the
comparison between DFT-calculated [A¢;; (DFT)] and experimental work function
changes [A¢BO (Exp.)], as well as the evolutions of the calculated A¢CT, A¢SR, and
A@°™ contributions as a function of the interface Mg atom concentration. As it can
be seen, the experimental A¢B° (Exp.) values are in overall good agreement with the
DFT-predicted work function changes A¢;, (DFT). In particular, the intercalation of
25% of Mg in the first interface Ag layer results in theoretical work function change
of —0.55eV in very good agreement with our experimental findings. The A¢°T and
A@SR contributions respectively increases and decreases with Mg concentration in
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such a way that they compensate each other. Indeed, as previously discussed, the
local lattice distortion at the interface is a structural response to the interfacial charge
transfer. It turns out that the decay of the metal/oxide work function is mainly gov-
erned by the progressive increase of the compression effect as demonstrated by the
similar evolutions of A¢;, and A¢“°™ on Fig.10.3c.

It has been shown that the compression effect scales with the inverse of the inter-
face distance between the oxide and the metal [43]. For MgO(3ML)/Ag(001), the
interface distance only diminishes by 0.1 A when the Mg concentration of the inter-
face Ag-Mg alloy varies from 0 to 100% suggesting that the distance reduction effect
induced by the Mg intercalation cannot simply explain the enhancement of the com-
pression contribution. A deeper analysis of the interface electronic structure as done
for example in BaO/metal systems [46], is therefore required for better enclosing the
richness of interaction at the metal/oxide interfaces.

10.4 Conclusion

The mechanisms responsible for the work function changes induced by the Mg
atoms intercalation at the MgO/Ag(001) interface have been studied by means of
Auger electron diffraction experiments combined with multiple scattering calcula-
tion, ultraviolet photoemission spectroscopy, and density functional theory calcula-
tions. Intercalated Mg atoms are preferentially intercalated in the substitutional site
of the Ag interface plane, lead to a strong work function change related to band-
offset variations at the MgO/metal interface and induce a significant rumpling in
the interface layers. DFT-based calculations have further shown that the work func-
tion reduction mainly reflects the increased electrostatic compression effect, since
the coupled charge transfer and rumpling contributions compensate each other. This
work gives new insights for controlling the interfacial properties of metal-supported
ultrathin oxide films such as work functions and local atomic structure which have a
significant impact on their catalytic activities.
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Chapter 11
Es2Ms: Interface from Electronic Structure
Codes to Multiple Scattering Codes

Naoki Komiya, Fukiko Ota, Junqing Xu and Keisuke Hatada

Abstract We present an interface package, called ES2MS (Xu J et al. Comput Phys
Commun, 203:331, 2016, [1]) for passing self-consistent charge density and potential
from Electronic Structure (ES) codes to Multiple Scattering (MS) codes. MS theory
is based on the partitioning of the space by atomic-size scattering sites, so that
the code provides the charge densities and potentials for each scattering site. For
pseudopotential codes, the interface solves Poisson equation to construct the all-
electron potential on the radial mesh which is used to solve the transition operators (7 -
matrix) and Green’s functions in MS codes. For Gaussian basis set programs, we solve
recurrence relations to obtain the Coulomb potential. We describe the algorithms of
the interface and an example.

11.1 Algorithm for Peudopotential Codes Output to MS
Calculations

The VASP code [2] is a popular plane-wave code for total energy Density Func-
tional Theory (DFT) calculations in condensed matter. Plane-wave codes have the
advantage of high accuracy and computational efficiency.
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The Projector-Augmented-Wave (PAW) method [3] is widely used in electronic
structure calculations by VASP. In the PAW method, the all-electron Kohn—Sham
potential is replaced by a pseudopotential inside the augmentation spheres around
the nuclei. This pseudopotential coincides with the all-electron potential only in
the space outside the augmentation spheres. However, for MS calculations the all-
electron potential is required in all space, especially near the nuclei where the core
orbital exhibits a large amplitude. Calculations using the PAW method provide pseu-
dopotential and all-electron charge density. Inside the augmentation spheres, the
charge density is interpolated onto the radial mesh of the MS code. The all-electron
full-potential is obtained by solving the Poisson equation with proper boundary con-
ditions on the surface of the spheres as given by the pseudopotential. Outside the
spheres, the charge density and potential are interpolated from the Cartesian mesh
onto the radial mesh.

In order to solve Poisson equation we need to find the regular solution inside an
(augmentation) sphere S of radius r., with the Dirichlet boundary condition on the
sphere, i.e. to solve

V2V (r) = —47o(r) , (11.1)

for r < r., given the charge density p for all points inside S and the potential V on
the surface (r = r.). We introduce the function

W(I‘)E/ o) 4 (11.2)
S

lr —r'|

which satisfies Poisson equation but not, in general, the boundary condition. W (r)
can easily be expanded into a spherical harmonic representation,

W, r) = ZwL(r)YL(?) , (11.3)

L
WL (r) = [y oL ATy, (11.4)
oL(r) = [Y;(#F)o(r, F)dF , (11.5)

where 7 = r/r. The general solution of the Poisson equation is then the sum of a
particular solution, such as W, and the general solution of the corresponding homo-
geneous (i.e., Laplace) equation. The latter can be expressed as >, C.r'Y, (#) for
arbitrary coefficients Cy . By choosing C; = [v(r.) — wp(r:)]/ rf, where

vp(r) = /YZ(?')V(;’, r)dr, (11.6)

the boundary conditions are satisfied, and therefore the final solution is given by

r(ﬁ
Vi)=Y (wm) + oL (re) — m(rc)]r—l) ACY (11.7)

L c
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Fig. 11.1 Calculated C
K-edge XAS of diamond
using non-SCF and SCF
potentials [1]
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Figure 11.1 shows the calculated carbon K-edge x-ray absorption spectra of a
diamond cluster of radius 18 A by the FPMS code [4, 5] using non-SCF (self-consistent
field) and SCF potentials, respectively. The SCF potential is generated by the VASP
code and reconstructed by the ES2MS package. It is clear that the SCF result agrees
better with the experimental data [6] than the non-SCF result.

11.2 Algorithm for GAUSSIAN Codes Output to MS
Calculations

GAUSSIAN 09 [7] is one of the widely used electronic structure calculation codes for
molecular systems. The basis sets are constructed by linear combination of Gaussian
Type Orbitals (GTOs), which makes it possible to perform a variety of calculations
very efficiently.

We describe here the algorithm that uses the GAUSSIAN output for MS theory. In
this algorithm, the electron charge density and the Hartree potential are evaluated
with and without the Muffin-tin (MT) approximation. In addition, the initial state
molecular orbital is reexpanded by a multi-site spherical harmonics. These calcula-
tions can be accomplished mostly analytically.

In the MT case, we have already applied this algorithm to compute the photoemis-
sion intensity of a pentacene molecule, where the initial state is the highest occupied
molecular orbital [8].
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11.2.1 Electron Charge Density and Hartree Potential
Constructed by Gaussian Basis Sets

As any product of two Gaussian functions is also a Gaussian function, the electron
charge density can be expanded by the Hermite Gaussian functions which are defined
by

o ot o 0" a2

At.u,v(rps 04) 8P’ 8P” (9Pv s

(11.8)

where r,, = r — P.The center P and the exponent « are chosen so that the Gaussian
function in (11.8) coincides with the Gaussian function from the product of two
GTOs.

The Hartree potential at r is equivalent to the nuclear attraction potential from the
nucleus at r with the charge of —e. Therefore we apply the McMurchie-Davidson
scheme [9] which was originally used for the nuclear attraction potential. In this
scheme, the following integral is obtained recursively

Atuo(rp, @) 27
/ﬁdr: R, (o, Ry, (11.9)

Where R,. = P — C and C is the position of the interacting electron. Furthermore,
(o, R),.) is a partial derivative of the n-th order Boys function F), (aR -) [10]

luv

9 o oY
OPL OP} 5‘P”

(@, Rpe) = (=20)" o— Fy(aR3,) (11.10)

tuv

1
F,(x) = f e 2 dr . (11.11)
0

The partial derivative in (11.10) can be evaluated by the recurrence equation

Ril

rrun (@ Ry =t R (0, Rpe) — Xpe RIT! (0, Rye) (11.12)

t—1,u,v t,u,v
where X, is the x-component of the vector R.,. The higher order derivatives of
Boys functions are obtained from the lower order derivatives. Similar equations are
satisfied for the y- and z-components.

We developed an algorithm to evaluate the spherically averaged electron density
in the MT case. The spherical averages of Hermite Gaussian functions in terms of a
given center C are obtained by integrating (11.8)

Z tCt’ uCu’ va’ tht’,ufu’,va’SI’,u’,u’ . (1 113)

t'u'v'

. 27
/ At,u,v(rps a) drc =
Qr,

c
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where the three coefficients such as ;C, are combinations. Here, we introduced the
following two terms

P N L
Fruw = 55 757 7pe (11.14)
OPLOPL OPY Ry,
8[ 8[{ 81}
Siun = —— e R sinh(2ar.R.p) | (11.15)

P! OP¥ OP}

where r. = r — C. Both terms can be calculated by recurrence equations [11].
Although they are more complicated than in the full-potential case, it is nevertheless
possible to avoid numerically evaluating the angle integration.

The spherically averaged Hartree potential V. is constructed from the spherically
averaged density o.. The subscript ¢ denotes the center of the spherical average C.
V. is numerically evaluated using

_ 4 re / C
Ve(re) = —W/ ro(rl—re) 0.(rl) drc'+fg(rc——/|—)dr;, (11.16)
0 r

r(' c
where p is the non-averaged electron density. The latter integral is the solution of

Poisson equation for p with the shift of the origin at C. It is calculated recursively
using (11.12).

11.2.2 Angular Momentum Expansion of Initial State

In general, centers of angular momentum expansion and of a GTO are different.
Thus the exponential function in a GTO depends on the direction from the center
of the spherical average C. With the help of the plane wave expansion formula, this
exponential function is expanded into spherical harmonics

e = 4me R N (1) igQareReg) Y1 (Fo) V) (Rey) (11.17)
L

where L = (¢, m), R.; = C — G, G is the center of the GTO, and i, (p) is a modified
spherical Bessel function. The monomial from a GTO can be also expanded easily
into spherical harmonics. Then, the angular momentum expansion results into the
evaluation of Gaunt coefficients

G (L1 L)L) = / Vi, YL (F)YE (P)dF (11.18)
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Table 11.1 List of the radial grids

N. Komiya et al.

Code Radial grid Formula
SPR- KKR [12] SPRKKR Xi = Xminexp{(@ — 1)d}
WIEN2k [13] WIEN2K Xi = Xminexp{ (@ — 1)d}
1
VASP [2] VASP Xi = Xmin EXP { Q-1 (fc:—) Neria =1 }
LMTO [14] LMTO xi=blexp{(i—Da}—1]
Quantum-ESPRESSO | QEPEXP xi = W
[15] ‘
. eXp (Xmintid) =1
QEPSFT x; = SRUm ) =
GPAW [16] GPAWLI1 xi=id
GPAWL2  |xi = i
GPAWEX  |x; =aflexp(id) — 1}
GPAWIP xi = 1%
5
(i+)
GPAWQR Xi = - —a*
i 5
(w7)
Abinit [17] ABINIT xi=~~2—2 —a* (@=1072)
: 3
Exciting [18] EXCCUB | xi = xmin + (A,;;dil)
i—1
EXCEXP | xj = xyyp (2 ) o0
; 3
EXC3EX | xi = 0.5 {erff(y;) + 1) {xmm + ( N;;;) }
i—1
+[1— 0.5 ferf(y) + 1] {xmm () o }
i 7nint(@)
Yi = 5 Ngrid
nint(x) rounds its argument to the nearest whole number
T \3
GAMESS [19] GAMLOG | x; = —aln{1— <22;v—_1 )
grid
(wier)
GAMEUL Yi=a———"5
lf(Ng“-‘dH)
Hermann— HERSKI Xi = Xi—1 + hi—1
Skillman [20] ho = 0.0025 h; isdoubled every 40 points

i: serial number of the points
x;: position of i-th point
Xmin: Minimum value of x
Xmax: Maximum value of x
Ngiiq: total number of points

a, b, d: parameters
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Appendix

There are many electronic structure codes in material science. Each of them uses a
different kind of radial mesh, optimized for the computation of the potentials and of
the electronic charge densities. Our interface module performs also transformations
between the different radial grids whenever necessary.

When a set of original data points is given, this interface interpolates these points
by the cubic spline method, calculates the data points of the new radial grid chosen
by the user, and returns the set of these new data points. The forms of the radial grids
which can be used in this interface are as shown in Table 11.1. The parameters in
these formulas can be set up by the user.
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Chapter 12
L-Edge Absorption and Dichroism in Low
Symmetry 3d° Compounds

Peter Kriiger and Calogero R. Natoli

Abstract Inorganic compounds containing light transition metal ions in a formal
(3d%) electronic configuration often have a complex atomic structure and several
polymorphs may co-exist, especially in nanomaterials. X-ray absorption spectra at
the metal L-edge probes the symmetry, electronic state and bonding of the transition
metal ion. In low symmetry crystals, linear dichroism is common and reflects a com-
plicated ligand field. We show that the metal L, 3-edge spectra, which are dominated
by strong particle-hole multiplet coupling, are well described with multichannel mul-
tiple scattering theory. The ligand field and band effects are included ab initio by the
anisotropic scattering of the excited electron, whereby complex dichroism can be
accounted for. Titanite nanostructures and calcium carbonate are taken as examples.

12.1 Introduction

Many minerals contain a light 3d element (K, Ca, Ti, V), oxygen and other first
row element ligands. For each compound, several polymorphs with different, com-
plex crystal structures may coexist. The metal ion often occupies a octahedral or
tetrahedral site, but strong distortion is common and the point symmetry can be as
low as Cy. L, 3-edge absorption spectroscopy is a powerful means for probing the
electronic state of the metal atom, its local atomic environment and bonding. If the
system has cubic or tetrahedral symmetry, the spectra can often be well described
using the ligand field multiplet model [1]. In these high symmetry cases, the metal 3d
states are splitinto two levels, 7, and e, and so the effect can be reproduced by introduc-
ing one empirical parameter (10Dq). However, the number of ligand field parameters
rises to three in tetragonal symmetry and to even larger numbers for lower symmetry.
When so many quantities are taken as free fitting parameters, it not clear what can be
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learned from the theoretical analysis. Therefore, in low symmetry compounds, the
usefulness of the ligand field model becomes very questionable. Predictive compu-
tational methods are needed to extract the structural and electronic information from
the data. The standard first principles electronic structure methods, such the Hartree-
Fock and density functional theory, rely on the independent particle approximation.
This approximation breaks down for transition metal L, 3-edge spectra because of
strong intra-atomic correlation effects. For the light 3d-elements the crucial effect is
the Coulomb and exchange coupling between the excited (photo-) electron and the
core-hole. This effect requires the use of a correlated particle-hole wave function,
as employed in the Bethe-Salpeter-equation (BSE) approach [2]. However, BSE is
a numerically very heavy method and has so far only be applied to high-symmetry
crystal structures [3]. Alternatively, the multichannel multiple scattering (MCMS)
method can be used [4] which is presented in detail in Chap.5 of this book. The
MCMS method is numerically light and formulated in a real-space multiple scatter-
ing framework. Therefore low symmetry and non-periodic (nano-) systems present
no difficulty. In this short chapter, we report MCMS calculations of polarization
dependent L-edge absorption spectra of titanite nanocrystals and calcium carbonate.

12.2 Titanite Nanocrystals

Titanium dioxide is an important material for photocatalysis and photovoltaic appli-
cations. One-dimensional systems such as nanotubes and nanoribbons are promis-
ing for enhanced device performance because of their large surface-to-bulk ratio
and strongly anisotropic carrier transport. Using polarization dependent x-ray ab-
sorption spectra, we have recently investigated the electronic structure of individual
sodium-hydrogen titanite nanoribbons [5], which can be easily transformed to TiO,
nanoribbons by ion exchange and calcination. The titanite nanoribbons are made of
Ti3 04 layers which are separated by sodium and hydrogen cations, hydroxyl groups
and water. They have a monoclinic crystal structure and the most likely compo-
sition is NaTizO(OH)-2H,0 [6], which contains three inequivalent Ti sites at the
centres of distorted TiOg octahedra, see Fig. 12.1. We have calculated the Ti L 3-
spectra using MCMS. The one-electron potential was generated with the linear muffin-
tin orbital (LMTO) code [7] in the local density approximation. The atomic sphere
approximations was used and empty spheres were included for approximate space
filling. The multiple scattering calculations were done with clusters containing about
150 atoms and 100 empty spheres depending on the absorber site. The calculation
of core-level energies is a difficult problem beyond the scope of this paper. Here we
have aligned the calculated spectra of each Ti site to the experimental threshold. The
other computational details are the same as in our previous works on Ti oxides [8].
We consider linear polarized light along the monoclinic crystal axesa = x andb = y
and along z. The polarization dependent spectra, averaged over all Ti absorber sites
(not shown) agree well with experiment [5]. Here we discuss the spectra of three
individual Ti sites, shown in Fig. 12.2.
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Fig. 12.1 Unit cell of NaTi3O¢(OH)-2H,O crystal structure. Na in yellow, Ti in light blue, O in
red and H in white. The three inequivalent Ti atoms are numbered 1-3

absorption intensity (arb.units)

1 1 1 1 1 1 1
456 458 460 462 464 466 468 470
photon energy (eV)

Fig. 12.2 Calculated Ti Lj 3-edge spectra of NaTi3Os(OH)-2H,O for the three inequivalent Ti
sites and linear polarized light along cartesian axes x, y or z

The spectra of the three sites vary considerably, reflecting their very different lo-
cal structure. A strong polarization dependence is observed, the largest difference is
seen between the y-polarization and the x, z polarizations for sites Ti2 and Ti3. Also
in the O K-edge spectra, the strongest difference was found between y-polarization
and x or z polarization [5]. For the O K -edge, this linear dichroism can be understood
from the fact that the Ti-O bonds of the oxygen atoms on the surface of the Ti;O
sheets, all lie in the (a, c) plane, resulting in an approximately uniaxial anisotropy
of the Ti-O electronic states along b. The Ti-O bond orientation is probably also
an important reason for the observed dichroism at the Ti L-edge. However, the ex-
planation is much more complicated at the L-edge, because there is no one-to-one
correspondence between the three polarization directions and the 2p — 3d transi-
tions, and the transitions mix through 2 p spin-orbit and multiplet interactions. It is
seen from Fig. 12.2 that the dichroic effect increases in the sequence from Til over
Ti2 to Ti3. This reflects the increasingly anisotropic environment. The optimized
Ti-O bond lengths are in the ranges 1.83-2.13, 1.88-2.10, 1.76-2.23 A, for Til, Ti2,
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Ti3, respectively. The range is by far largest for Ti3, reflecting a strongly distorted
TiOg octahedron, which leads to a large dichroism. However, this kind of reasoning
based on Ti—O bond lengths, is not enough since it would imply a slightly weaker
dichroism for Ti2 than for Til, in contrast to observation. Previously, we have shown
that in rutile and anatase TiO, [8], the spectral fine structure, especially the L3-e,
feature (at 459-462 eV), reflects the geometrical and electronic structure of the sys-
tem on a much longer length scale than the first nearest neighbor (oxygen) shell. In
NaTizOg(OH)-2H, 0, the three Ti sites strongly differ in the second neighbor shell
which is made of Ti cations at a distance 2.9-3.2 A and Na cations at 3.4-3.5 A. Site
Til is surrounded by six Ti and two Na ions, Ti2 has four Ti and two Na, and Ti3
has five Ti and zero Na neighbors. Inspection of Fig. 12.1 reveals that this second
neighbor cation distribution is rather isotropic for Til but highly anisotropic for Ti2
and Ti3. Thus the ligand field of Ti2 and Ti3 is more anisotropic than that of Til,
resulting in an enhanced dichroism. From this discussion we conclude that linear
dichroism at the metal L-edge is a sensitive probe of the anisotropy of the local
electronic structure in low symmetry compounds, but its comprehension requires
theoretical methods beyond crystal field or first ligand-shell cluster models.

12.3 Calcium Carbonate

As a second example we discuss two common polymorphs of calcium carbonate
(CaCOs3) namely calcite and aragonite. The local atomic structures are shown in
Fig. 12.3. The point symmetry at the Ca site is low in both cases: point group S in
calcite and C; in aragonite. Looking only at the first coordination shell, calcite has
six oxygen ligands in a very nearly octahedral coordination with equal Ca-O bond
lengths (2.36 A) and almost right O-Ca-O angles (87.4°). Aragonite has nine oxygen
ligands at bond lengths 2.41-2.54 A. In the independent particle picture, the Ca Lj
and L,-edge spectra are both proportional to the unoccupied Ca-d density of states
(DOS). The ground state Ca-d DOS as calculated in the local density approximation
with the LMTO method are shown in Fig. 12.4 a. In both compounds the 3d-band
is 7-9 eV wide, but the mean width is clearly larger in calcite, whose DOS splits

Fig. 12.3 Atomic structure (a) calcite (b) aragonite
of CaCOj3 in a calcite and b |

aragonite phases. Ca in light
blue, C in dark grey, O in
red. One Ca site and its
nearest neighbor CO3 units
are shown
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(@ ca-dDOS (b) ca L-edge spectra

calcite

calcite

experiment

aragonite

density of states (arb.units)
absorption intensity (arb. units)

aragonite theory

b2 \_ experiment

0 2 4 6 8 10 346 348 350 352
energy (eV) photon energy (eV)

354 356

Fig.12.4 Calcium carbonate (CaCO3) in calcite (fop) and aragonite phases (bottom). a Ground state
Ca-d partial density of states. b Ca L-edge spectra calculated in multichannel multiple scattering
theory [9] along with experimental data taken from [10]

into two parts (f2, and e,) typical for an octahedral ligand field. The aragonite DOS
shows some fine structure, too, but the main weight is located in the center of the
band, indicating a weaker ligand field. Figure 12.4 b shows the Ca L-edge spectra [9],
calculated in MCMS theory with clusters of 177 (176) atoms and 286 (68) empty
spheres for calcite (aragonite). As for the Ti spectra before, a partially screened core-
hole potential with 10% unscreened hole was used. The spectra were broadened
with a Lorentzian and a Gaussian of 0.2 eV FWHM each, and energy-shifted so as
to align the (a2) peak with the experimental data taken from [10]. Apart from a small
overestimation of some peak splittings, the calculated spectra agree very well with
the data. All peaks are reproduced with the correct intensities. In the calcite spectra
the al and bl peaks have appreciable intensity. The simple four-peak structure (al,
a2, bl, b2) is similar to CaO [4] and characteristic for metal-oxides with a formal
(3d") ground state and octahedral symmetry [1]. The energy splitting and intensity
ratio of the al:a2 (and b1:b2) doublet is, however, smaller in calcite than in CaO [4]
which shows that the ligand field is weaker in calcite. This fact cannot be understood
on the basis of a CaOg model, because the octahedra are almost identical in the two
systems. The Ca-O bond length is even by 2% smaller in calcite than in CaO (2.40 A)
which suggests a larger ligand field, which in turn should lead to an increase in al-a2
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splitting and al: a2 intensity ratio in contrast to observation. Clearly, second and
further coordination shells must be taken into account for a proper description of the
L-edge spectra. In the aragonite spectrum, the al, b1 peaks are very weak and the bl
peak splits into a broad doublet (d-b1). This reflects the weak but complicated ligand
field due to the very low symmetry coordination of the Ca ion. In recent polarization
dependent measurements [11], substantial linear dichroism was observed at peak d,
which could be reproduced with our MCMS calculations [9].

In summary, we have shown that L 3-edge spectra of low symmetry (3d°) com-
pounds are very sensitive to the local atomic and electronic structure around the
metal ion. Linear dichroism is weaker than at K -edges, but nonetheless observable.
It may be useful for identifying the crystal orientation in nanostructures. The L-
edge spectra, which feature strong final state correlation effects, are generally very
well reproduced with MCMS calculations. This is because MCMS theory combines
a proper treatment of the strong particle-hole multiplet coupling with a precise de-
scription of the long-range electronic structure of the system. Owing to the flexibility
of the real-space multiple scattering method and the efficient implementation of the
MCMS equations in the R-matrix scheme, arbitrarily complex structures can be
handled with a very modest computational cost.
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Chapter 13

Multichannel L-Absorption Calculations
by Analytical Continuation of Green’s
Function into Complex Energy Plane

Anna Taranukhina, Alexander Novakovich and Vladislav Kochetov

Abstract X-ray L, 3 absorption spectra are dominated by transitions to d states
which are either continuum states rapidly varying with the energy or collapsed bound
states formed in the field of the 2 p hole in the absorbing atom. Computing such spectra
requires extremely small step in the real energy scale making the calculations time-
consuming even in a single-particle approach. In this paper we present an efficient
procedure of solving this problem within the multichannel multiple scattering real—
space Green’s function (MCMS-GF) method which takes into account the strong
impact of electron-hole correlations on L; 3-edge spectra. A new numerical scheme
is based on the analytical continuation of the Green’s function to complex energies.
The applicability of this approach is demonstrated by computing the K L, 3-edge
spectrum for potassium fluoride.

13.1 Introduction

It has been shown in works [1, 2] that within the Green’s function (GF) formalism
the convolution of the XANES spectra with a Lorentzian function of a half width
I' is mathematically equivalent to calculating the GF for the integration contour
shifted by the value of I" > 0 into the upper semiplane for any photoelectron energy
except the vicinity of the Fermi energy er. The numerical aspects of this issue are
considered in the framework of the multiple scattering Green’s function (MS-GF)
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method in Chap. 6. As an illustrative example, it is expedient to apply the developed
methods to the description of photoabsorption for the systems which are very sen-
sitive to both one-particle mean-field potential and electron-hole correlations. For
this, we consider K L; 3-edge spectrum of KF. The results presented in Sect. 13.2 for
K L-edge obtained with MS-GF method demonstrate the advantage of computing
photoabsorption spectra by the analytical continuation of the GF to complex ener-
gies. Section 13.3 gives the extension of this numerical procedure to the MCMS-GF
method and illustrates the applicability of the MCMS-GF formalism in modeling
photoabsorption process.

13.2 K L-Edge Spectrum of KF Within MS-GF Method

Here we show the advantage of calculating photoabsorption spectra by the analytical
continuation of the GF to complex energies.

Throughout this chapter, atomic units for lengths and Rydberg units for energies
are used. Following the derivation of the K-edge cross-section in Sect. 6.2, one can
write the expression for L-edge unpolarized absorption cross-section in the dipole
approximation as

8
O'(CU) [ W;w {// (,01'(1') r S[G(I‘, r/, €—€p +lr)] r’@[(r/) dr dl‘/}
2y
bn bn
g 2/0 /0 w2p(r) ’3RZz(’<)H1:'2(r>)r’3g02p(r’) drdr’
TOoW

N}

2 2
bn 2 )
+|:/(; 99217(”) 73R22(r)dri| 5 Z Ggfn’zm(e—ep-i-i]—')
m=-—2
(13.1)

where the absorbing atom is denoted by index n; the Green’s function matrix element
G, satisfies the coupled algebraic equations (see Chap. 6, Sect. 6.2)

2m,2m

Gy = Golt (1 = dun) + Y Goth (018G, (e) . (13.2)

gL”

where the matrix elements of the free GF G, (€) are the well-known KKR struc-
ture constants o
Go', = —4mi Y i Cpppe b (R y)
L (13.3)
Cii = / Y (@)Y, (&)Y, (T)dF .

The functions R}, (r) and H}, () in (13.1) are respectively the regular and irregular
solutions of the Schrodinger equation for a cluster potential inside the sphere n
associated with the absorbing atom
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1d/,d L+1) . .
——(rr— ) — v, (N +(e+i)| f(rye+il) =0, (13.4)
r2dr dr r2

where f(r, e +1I") denotes either R}, (r) or H},(r) which match to the boundary
conditions .

R}, (by) = el [jg(kb,,) cos 0, — ng(kby,) sin 52’]

(13.5)
H},(by) = —ih] (kby) ,

where k = /e +1iI". It is worth noting that we excluded the Fermi energy from the
consideration because d-bands in the ground states of alkali halides are empty and
well-separated from the bound states by a wide band gap.

The calculation is carried out for the cluster containing 251 atoms. The non-
self-consistent muffin-tin cluster potential is constructed according to the follow-
ing scheme. First, the electron self-consistent potentials of the free atoms (neu-
tral for all atoms except the absorber which includes a hole) are computed by
the Herman—Skillman procedure [3] using X« approximation for a local spin-
independent exchange potential with parameter o chosen according to Schwarz [4].
In addition, we take into account that the X « potential for occupied electronic states
has a proper exchange part and a term which almost cancels self-interaction. Since
there is no need to correct unoccupied states for the self-interaction, the X a potential
for these states is weakened by reducing Schwarz’s . Second, we use superimposing
Herman-Skillman potentials for construction of non-self-consistent cluster potential:
inside MT-spheres it is computed as a sum of atomic potentials plus arbitrary con-
stant shifts. These shifts simulate the corrections caused by some redistribution of
electron charge in the system. The proposed model can be justified in part if tak-
ing into account that calculated spectra are often determined by the correct relative
positions of the atomic levels and/or scattering resonances rather than by the fine
details of potential behavior inside their spheres in a cluster. Therefore, changing
the potentials inside the spheres by relatively small constant shifts, one can simulate
some self-consistent potential. The K L3 -edge spectra of KF calculated for real
and complex energies using the numerical procedure described in Sect.6.2.3.2. are
shown in Figs. 13.1 and 13.2.

Figure 13.1 displays the spectra computed for complex energies with the imagi-
nary part I" and for real energies with the subsequent convolution by a Lorentzian
function with the same I". Both spectra are obtained with the energy step of 0.01 Ry
in 124 points covering 0.1-1.33 Ry. In the second case, one can observe the effect
of a loss of the first 5, peak because the energy step of 0.01 Ry is too large to catch
extremely sharp resonance state in the continuum.

Figure 13.2 shows that the calculation for real energies leads to the same result as
for complex energies if only the energy step equals to 0.00005 Ry. To cover the energy
region 0.4—1.0 Ry, one needs to calculate spectrum in 12,000 points, as opposed to
124 points covering 0.1-1.33 Ry in the case of complex energies.
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Fig. 13.1 K L3z-edge ==
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13.3 K L3 3-Edge Spectrum of KF Within MCMS-GF
Method

In this section we present an example of applying the MCMS-GF method to the
calculation of the K L, 3-edge cross-section for KF by the analytical continuation
of the GF to complex energies. We use the expression for absorption cross-section
(6.106) derived within the MCMS-GF in Sect. 6.3.4 of this book:

ow) = draw3 Y {—M; [qu(E n 11*)] M, — MM, 5,,q} C o (13.6)

rPq

The formulas for all functions included in (13.6) can be found in Sect.6.3. One
needs only to remember that now the coupled algebraic equations for the multichannel
GF and the coupled set of integro-differential equations for the regular and irregular
solutions should be solved for complex energies with the imaginary part equal to I".

The results of calculations using the single-channel and multichannel methods for
complex energies with I” = 0.2 Ry are presented in Fig. 13.3 in comparison with the
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Fig. 13.2 K L3z-edge
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energies with the energy E=g+il

steps differing by two orders :Ji_: '=02eVv
g . Step =0.01 Ry
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experimental data [5, 6]. The theoretical spectra are shifted in energy to match to the
position of the first peak on the experimental curve (exp2). The multichannel calcu-

lation takes into account four coupled channels in the final state: 2p~! ( Jj= %, %) by

and 2p~! ( Jj= %, %) e4. One can see a good agreement between the spectrum cal-
culated with the MCMS-GF method and the experiment over a wide range of photon
energies. The reason of the only disagreement in the vicinity of the weak peak marked
by “a” on the experimental curve which is absent in the theoretical spectrum has to
be investigated by additional testing an accuracy of numerical procedures near the
MT-zero.

The analysis of calculation for L3 component presented in Fig. 13.1 shows that
the peak “f”” has the symmetry t,,. This peak is displayed as a shoulder of the peak e,
in the L, component at L, 3-edge (Fig. 13.3). In turn, peak “g” is the same peak “f”
which belongs to the L, component shifted by the value of the spin-orbit splitting.
Thus, both “g” and “f” peaks are due to the multiple scattering effects. It is worth
noting that in the multichannel spectrum the symmetry of peaks “f” and “g” is not
pure #,, because of the strong multichannel coupling.
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Chapter 14
Ballistic Electron Emission Microscope by
Real Space Multiple Scattering Theory

Keisuke Hatada and Didier Sébilleau

Abstract Ballistic Electron Emission Microscope (BEEM) is a microscope to inves-
tigate Schottky barrier based on Scanning Tunneling Microscope (STM) setup. The
theoretical scheme widely used for STM is mostly focusing on an electric current
from the tip tunneling through the vacuum to the sample surface. However, this model
is not applicable for BEEM, since in the BEEM case, electrons tunneling through
the vacuum are transported in the material over a very long range. We propose a
theoretical model based on the real space full potential multiple scattering theory
in order to describe this transport phenomena within the one electron picture. It is
analogous to the theoretical model of angle resolved photoemission, except that the
electron is emitted from the tip. This framework describes the tunneling effect and
the multiple scattering in the tip and the sample and between them. Moreover this
theory can be applied for non-Hermitian Hamiltonian, so that the loss of electrons at
the Schottky barrier can be mimicked by introducing an imaginary part in the optical
potential.

14.1 Introduction

BEEM was proposed by William Kaiser and L. Douglas Bell [1, 2] on 1998 in order
to characterize the structural and electronic properties of the interfaces involved in
the multilayers, and study the transport through all the layers. It is based on STM
and consists in the injection of electrons from the nanometer sized STM tip across
a tunneling gap into a thin metal layer that forms with a semiconductor substrate a
Schottky barrier (see Fig. 14.1). A small part of these electrons will travel ballistically
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3
5
<
L
o
[
Tunneling current
+eV, -
He 0 BEEM current €
Ugap
Hs- EVO
Tip T Metal layer Semiconductor Position

Fig.14.1 A brief sketch of BEEM current based on STM setup with potential energy. 1, and yi, are
chemical potentials for the tip and sample, respectively. ®@sp is Schottky barrier. eV} is an applied
field

(i.e. encountering only elastic scattering by the atoms of the multilayer). At the
interface metal/semiconductor, the Schottky barrier will only allow a fraction of
them to pass (those with higher energy) and be detected as the BEEM current [3].
Being of excellent spatial resolution (~1 nm), it therefore allows to study the spatial
dependence of transport in buried interfaces such as those used to study spin injection
and has rapidly become a key tool for these studies.

Prior theoretical models for BEEM have been implemented by means of k-space
band calculations [4] and using a tight-binding method [5, 6]. The k-space band
model is very convenient to interpret the phenomena in a qualitative way, however
the diffusion process of the hot electron in real space is not considered. Likewise,
while the tight binding method can treat the transport problem in the real space, as
it relies on localized bases, it is not suitable to describe the long-range nature of the
travelling electrons.

The purpose of this study is to devise a new description of BEEM using the flexible
Multiple Scattering (MS) framework, in order to better understand the transport
properties of the spin carried by electrons in heterostructures associating magnetic
electrodes and semiconductors that are at the core of the research for spin injection.
MS theory gives a good representation for a large-scale system within real space
formalism [7, 8]. We apply here the full potential Multiple Scattering theory [9, 10]
to BEEM (MSBEEM) to describe the transport phenomena accurately.
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14.2 Theory

The theoretical model which we employ here is that a probe electron in the tip
travels to the sample by tunneling then goes to the contact at the bottom of the
sample in real space (see Fig. 14.2). The main part of the theory is based on the
real space full potential multiple scattering (FPMS) theory. Since there is a loss of
electrons stopped at the Schottky barrier, we add an imaginary part of the potential to
mimic the phenomena. One of the advantages of multiple scattering theory is that the
theory is able to treat non-Hermitian Hamiltonians. Our multiple scattering model
of MSBEEM describes the interactions of the probe electron from the tip traveling
through the sample to the collector attached at the bottom of the sample. For the
collector, indium metal is used in many cases, so that there is no potential barrier
between the semiconductor and the collector and therefore we can well approximate
the probe electron by a plane wave at the collector. In any case, the electron which
participates to the current goes to the direction of the collector, so that we just
integrate the plane wave-like electron over the hemisphere in the collector. Thus we
use a time reverse picture of the process [11] from the collector to the tip via the
sample. This picture is very similar to the angle resolved photoelectron diffraction
from a molecular orbital of a molecule [12]. In order to recover the STM result, we
just need to perform the integration of the escaped electrons from the tip to the sample
over the whole angle instead of the hemisphere. For the MSBEEM formalism, we
start from Lippmann—Schwinger equation,

O J

Metal layer

Semiconductor

Collector

Fig. 14.2 A schematic model for the BEEM transport. Electrons in atomic sites (indicated as i) in
the tip are transmitted to the atomic sites j on the surface of the metal. The electrons having higher
energy than the Schottky barrier go through to the semiconductor. These electrons are collected in
the collector at the bottom from the atomic sites k. The electrons which are blocked by the Schottky
barrier are directed to the ground
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U(r; k) = ¢o(r; k) +/dr/Go(r —r' V)’ k), (14.1)

where ¢ (r; k) is the wave function for the probe electron as a function of a wavevector
k and the position vector r, the first term in the right hand is the free solution,
oo(r; k) = e®*r G, is the free Green’s function and V is the potential of the system.
In this chapter the energy unit is chosen as Rydberg unit. The detail of the concept
of FPMS can be found in Chap.3 and in [10]. We assume that the optical potential
is local and complex, especially in the metal layer, which is attached to the ground,
in order to describe the loss.

The flux of electron d¢ from the tip-sample system to the cable at the bottom of
the sample is related with the differential cross section,

do
dosR* = dopin— 14.2
o) ¢ 10 (14.2)

where the subscript sc and in stand for scattered and incoming electron, respectively.
R is the radius of the sphere, which covers the tip and the sample, with its origin at
the bottom of the sample and do/d$2 is the differential cross section. The probability
density of the current for the scattered electron on a sphere which involves the tip
and the sample is,

d hk ~
fj dS = / 46 R3S = / don L ao = 1% / e / drlOv(r: b |
ds2 me tip
(14.3)

where m, is the mass of the electron and @ is the time-reversal operator. We have
used the time-reversed process, since the boundary condition is that the collected
electron behaves like a plane wave in the cable without interacting again with the
system. It also implies that there was no electron current in the distant past. The
volume integral fﬁp dr is performed in the region of the source of electrons. In the
case of tip to sample tunneling, we limit the region of integration to the tip, while for
opposite bias, this region will over a small volume the sample.

In terms of the multiple scattering theory, the wave function is expanded by the
local solution of Schrodinger equation in site i [10],

Grisk) =Y By, (r) =Y BiUOR, ()Y (F),  (144)
L

LL
where @, (r;) is the solution of local Schrodinger equation,
[V} + K2 = VDIdL(r) =0, (14.5)

and normalized as @, (r;) =), SL_IE, @/ (r;) where matrix S is the Wronskian
matrix with the spherical Bessel function [10]. The subscript L is the notation for
the angular momentum, L = (¢, m).
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The coefficient Bi is estimated from the following equality, d7 = do

N
Z /S [Gg(r/ —r;R)VY(r; k) — Y, K)VGY (' —r; ;{)] -njdo;
j=1 "

:/ [GE(r' —ri )V k) = VG (r' —r; k)] -n,do, . (14.6)

o

Here 2, =) j £2;, with surface S,, centered at the origin o and GS’ r' —r;7)is
the free Green’s function with outgoing wave boundary conditions satisfying the
equation (V2 + k?) Ga'(r/ —r; k) =6(r' —r), where k2 = E — V and V} is an
arbitrary constant equal to the assumed value of the cell potential outside the cell
domain. This identity is valid for all r’ lying in the neighborhood of the origin of
each cell, since in this case the integrands are continuous with their first derivatives.
In this context we shall use two distinct k-vectors, defined respectively with k = v/ E
and k = /E — Vp. The latter will appear in the expansion of the Green’s function
G(J)r (r’ — r; k) by spherical functions [13]. Obviously k = x for Vj, = 0.
From the above equality we obtain an explicit form of the coefficient B}

Bl (k) = Z ALk, (14.7)
L

where the amplitude Ai is
Al (k) = =iy (k)etkRi (14.8)

which imposes the condition of plane wave. It satisfies the following relation,
A~ . . * .
/ dk A (k) [A’L/ (k)] =Ju,. (14.9)

The matrix 7! is so called multiple scattering matrix, while T is the scattering path
operator matrix,
T=(T"'-Gy", (14.10)

and when real spherical harmonics are chosen, the matrix is symmetric, T = T.
Combining these results with (14.3), the electric current is

~
Il

2e / dk K F(F (&) / d, / ar 5 Ao
2 tip me

2—7: dE F(f(E))/ diﬂn/ dr [(A(K)|kT|@(r)I? (14.11)
2 tip
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where the function F describes the window of energy by the Fermi distribution
function f. This range corresponds to the Ug,p, that is to say from p; — eV to
u; — eVp. For the change of variable, we have used the relation E = h*k?/2m for
the plane wave. By contrast, for STM, which corresponds to the absorption case,
integration must be performed over the whole solid angle.

Acknowledgements Parts of this work have been funded by European FP7 MSNano network
under Grant Agreement No. PIRSES-GA-2012-317554 and COST Action MP1306 EUSpec and
the European FP7 MS-BEEM (Grant Agreement No. PIEF-GA-2013-625388).

References

W. Kaiser, L. Bell, Phys. Rev. Lett. 60, 1406—-1409 (1988)

L.D. Bell, W.J. Kaiser, Phys. Rev. Lett. 61, 2368 (1988)

W.Yi, A.J. Stollenenwerk, V. Narayanamurti, Surf. Sci. Rep. 64, 169—190 (2009)

M. Hervé, S. Tricot, Y. Claveau, G. Delhaye, S. Di Matteo, P. Schieffer, P. Turban, Appl. Phys.

Lett. 103, 202408 (2013)

PL. de Andres, F.J. Garcia-Vidal, K. Reuter, F. Flores, Prog. Surf. Sci. 66, 3 (2001)

Y. Claveau, Ph.D. thesis, University of Rennes 1, France (2014). arXiv:1501.06458 [cond-

mat.mes-hall]

7. J. Xu, K. Hatada, D. Sébilleau, L. Song. arXiv:1604.04846 [quant-ph]

8. J. Xu, P. Kriiger, C.R. Natoli, K. Hayakawa, Z. Wu, K. Hatada, Phys. Rev. B 92, 125408 (2015)

9. K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, Phys. Rev. B 76, 060102(R) (2007)

0. K. Hatada, K. Hayakawa, M. Benfatto, C.R. Natoli, J. Phys. Condens. Matter 22, 185501
(2010)

11. G. Breit, H.A. Bethe, Phys. Rev. 93, 888-890 (1954)

12. N. Komiya, K. Hatada, F. Ota, P. Kriiger, T. Fujikawa, K. Niki, J. Electron Spectrosc. Relat.
Phenom. (2017). (submitted)

13. C.R. Natoli, M. Benfatto, C. Brouder, M.F. Ruiz-Lépez, D.L. Foulis, Phys. Rev. B 42, 1944—

1968 (1990)

L e

SN


http://arxiv.org/abs/1501.06458
http://arxiv.org/abs/1604.04846

Chapter 15
Fully Relativistic Multiple Scattering
Calculations for General Potentials

Hubert Ebert, Jiirgen Braun and Sergiy Mankovsky

Abstract The formal basis for fully relativistic Korringa—Kohn—Rostoker (KKR)
or multiple scattering calculations for a general potential including a non-local part
is reviewed. In particular the need to distinguish between right and left hand side
solutions to the Dirac equation and the explicit expression for the electronic Green’s
function are discussed.

15.1 Introduction

Recently there is strong interest in the impact of spin-orbit coupling on the electronic
structure of solids and surfaces. In this context one may mention spin transport phe-
nomena [ 1], magneto-dichroic phenomena in spectroscopy [2] or the occurrence of
the topological surface states in topological insulators [3]. The multiple scattering or
KKR (Korringa—Kohn—Rostoker) formalism supplies a perfect platform to deal with
spin-orbit driven effects as it gives direct access to the electronic Green’s function
(GF). Indeed a corresponding relativistic version of the KKR-GF technique is avail-
able [4, 5]. Also the treatment of a non-spherical shape of the local potential (full
potential - FP) has been incorporated [6—8]. Here we deal with technical aspects of
FP calculations and the treatment of a non-local self-energy.
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15.2 Hamiltonian and Radial Equations

The starting point of our considerations is the following Hamiltonian:
=R +V+ 2@ =H+2@) . (15.1)

that consists of the free electron Hamiltonian (7:(0) a Hermitian local potential (l>)
and an energy-dependent, complex and non-local self-energy (2(2)). For later use
HO and V are combined to the Hermitian local Hamiltonian {!. The aim is to derive
an expression for the real space representation of the associated Green’s function
operator G (z) defined by

(z-H@)G@ =1, (15.2)

i.e. G(z) is the right-inverse of (z— ﬂ(z)).
_ Within the four-component Dirac formalism [9] the real space representation of
H' may be written as [10]:

H'(r) = —ica - V + %cz(ﬁ — D)+ V@) +Bo - Br)+ea-Ar), (15.3)

where ce is the electronic velocity operator and the local potential involves a spin-
independent part V (r), an effective magnetic field (B (r)) coupling only to the spin
and vector potential (A(r)) coupling to the electronic current.

Restricting the self-energy X' (r, r’, z) to have only a spin-independent and -
dependent part one may write analogously:

S =2"rr 9+ p0- 20 r2) (15.4)
=Y 0ar) Tan () ¢y (), (15.5)
AN

where we assumed that X (r, r’, z) can be represented sufficiently accurate by an
expansion into a product of suitable basis functions ¢ 4 (r).

Using spherical coordinates the electronic wave functions associated with (15.1),
(15.3) and (15.4) consist of their large and minor components with radial wave func-
tions g (r, z) and f4(r, z) and spin angular functions (spinors) x 4 (#) and x_,(F),
respectively. Here A = (x, n) and —A = (—«, n) combine the conventional spin-
orbit and magnetic quantum numbers « and p, respectively [9]. Using a superposition
of bi-spinors with individual character A when dealing with the Hamiltonian in (15.2)
for an isolated atom (single-site problem) one is led to the following set of radial
Dirac equations:
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Fig. 1.5.1 Wave function | ||31/2|p1/2| P32 ds /s ds /2
coupling scheme in the = =~ X
: S
A—reprf?sentatlon fora o H :1/31 B B B
magnetic atom at the origin C
of a hep lattice with ,{p:l/ 3‘,‘_1 D D
X(r,r',z) =0, the E E E
magnetization along Z and P32 C C C
_ ; ; K==2 D D D
the xz-plane being a mirror FlF F
plane. Within each sub-block FIE F
the magnetic quantum 3o ||A A A
number p runs from —j to K=42 B B B
+j with j = [«| — 1/2 DE - ED E
F(F F
dss2 ||A A A
k==-3|| B B B
E E E
C C C

2 e+ E) (gm,z))
c(E+e) @+ ) \falro)
—Z< Vi) —iUA_A,(r)) (gan))
~ iU,AAf(}") —V:A,Ar(") fA’(raz)

_ 722 / EXA’(r7r,7Z) gA’(rlaz) _
;/r dr <_z—“,(r,w,z) farn) =0 (130

with the matrix element functions Vf () for example given by:

Vi () = /d? xh(#) (Viry+ o -B(1) xa(F) . (15.7)

The symmetry of a considered system will decide which terms occur within an
angular momentum expansion of the various potential functions (picking rules) in
(15.3) and (15.4) [11]. This will lead to a restricted set of non-vanishing potential
matrix element functions (see e.g. (15.7)) occurring within the coupled set of radial
equations (15.6). Accordingly, any solution ¢4 (r,z) = Y ., ¢4 a(r, z) to the Dirac
equation will have only a restricted number of coupled terms in the sum over A’. An
example for the resulting coupling scheme is given in Fig. 15.1, where the letters
within a column indicate the non-vanishing terms ¢4 4 (r, 2). .

The fact that G(z) has to be the right- as well as left-inverse to (z — H(z)) leads
to the demand to consider not only the standard right-hand side (RHS) solutions
to the Dirac equation but also the left-hand side (LHS) (indicated by “x”) to the
corresponding adjoined Dirac equation. This leads to a second set of coupled radial
equations for the wave functions gj (r,z)and f /f (r, z) that differ in the matrix element
functions. Fortunately, the symmetry of the single site problem leads often to identical
matrix element functions for the RHS and LHS solutions implying that one does not
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have to distinguish these at least concerning their radial part. This favourable situation
that sometimes can been forced by the choice of the coordinate system is indicated
by a symmetric single site #-matrix [10].

15.3 Single Site £-Matrix and Green’s Function

The ¢-matrix operator 7(z) for the single-site problem may be introduced when deal-
ing with the Dyson equation for the Green’s function operator:

G(iz) =62 +G°() 1) G°(z) . (15.8)

where G%(z) represents the reference system that normally is the free electron system
described by the Hamiltonian HP. Using the real space representation of G°(2) in
terms of the relativistic form of the spherical Bessel j4 (r, z) and Hankel functions
h}(r, 7) [4, 6, 7] expressions can be given that allow to determine 74 4/(z) from a
complete set of solutions to (15.6) [10].

To get a corresponding expression for the real space representation of G(z) itis
convenient to introduce RHS solutions R 4 (r, z) and H, (r, z) to the Dirac equation
imposing the following behavior (specified by the label A) outside the single-site
potential regime (r > rey):

RA(r,2) =) ja(r,2)8an —iphj(r,2) taa(2) (15.9)
Y%
Ha(r,2) =hj(r.2), (15.10)

where p represents the relativistic electron momentum; together with LHS solutions
Ri(r,z)and H { (r, z) defined analogously [10]. This leads for the single site Green’s
function G" (r, r’, ) for the atomic site n to [6, 10]:

G"(r,r',2) = —ip ) Ra(r,2) H;(r',2)0(" —r)
A
+Hy(r,2) R;(r',2)0(r —1'). (15.11)

However, inspection shows that this expression satisfies the inhomogeneous
Dirac-like equation corresponding to (15.2) for any » and r’ < re only in the case
of alocal potential; i.e. for X' (r, r’, z) = 0. To arrive nevertheless at a useful expres-
sion for the Green’s function G"(r, r’, z) in case of a non-local potential, one can
set up in a first step the real space representation of the Green’s function operator
G'(2) connected with the local Hamiltonian 7' using (15.11) with the corresponding
solutions R (r, z) and H}(r, 2).

In a next step G"(r, r’, z) is determined on the basis of the Dyson equation

G'2)=G'+G6' 22026 (), (15.12)
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where the self-energy X' (z) is treated as a perturbation. Equation (15.12) leads for a
general self-energy X' (r, r’, z) to an expression for G”(r, r’, z) that has the spatial
arguments r and r’ coupled; i.e. a sum of products of terms that depend only on r
or r’, respectively. In case that X' (r, r’, z) can be represented in terms of a basis as
given by (15.5), on the other hand, such a factorization gets possible leading to [10]:

G'(r.r',2) = G'(r.r',2) + Y ph(r. ) Fan (@) pi (. 2), (15.13)

AN

with the renormalized self-energy matrix

ro=(1+2080) 20, (15.14)

and the auxiliary functions

palr,z) = /d3r’G‘(r,r’,z)¢A(r’) (15.15)

Gy = / d*r / &Er'eh ) Glr, v, 2) pa (), (15.16)

that are connected with the local Hamiltonian 7'.
Finally, the Green’s function G (r, r’, z) for an extended solid is given by adding
the back scattering term to G”(r, r’, 7):

G(r.r'.2)=G"(r.r'.2)+ Y Ra(r.2) Gy (R} (. 2) . (15.17)
AN

The later term involves the regular solutions R, (r,z) associated to the full
Hamiltonian 7:((z) =H! +X (z). The multiple-scattering nature of the term is
expressed here in terms of the structural Green’s function matrix G (z) [4]. This
step completes the derivation of an expression for the Green’s function in case of a
non-local but site-diagonal self-energy.
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Chapter 16
Relativistic Effects and Gauge Invariance
in Photon Absorption and Scattering

Nadejda Bouldi and Christian Brouder

Abstract The interaction of light with matter is often described within the semi-
classical framework where light is represented by an external time-dependent vector
potential. We show that the transition probabilities so obtained suffer from two draw-
backs: their semi-relativistic limit is delicate and they are not gauge invariant. We
describe how a gauge-invariant transition probability can be obtained, for which the
semi-relativistic limit is well defined. In this way, we obtain a new spin-position
term which is not negligible in x-ray magnetic circular dichroism at the K-edge of
transition metals.

16.1 Introduction

The description of relativistic effects in x-ray spectroscopy has become necessary due
to the experimental developments that permit more and more precise measurements.
The use of a semi-relativistic description is physically appealing because it allows
to distinguish the effects related to the relativistic description of matter from the
familiar non-relativistic effects.

We show here, however, that taking existing semi-relativistic Hamiltonians as a
starting point to determine the absorption or scattering cross-sections might be deli-
cate because perturbation theory mixes the semi-relativistic states coming from two
different Hamiltonians. We propose an alternative approach in which we start from
the fully-relativistic cross-sections and we apply a Foldy-Wouthuysen transformation
to the wave functions.
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We also discuss the question of gauge invariance of transition probabilities. We
conclude that, to obtain gauge invariant results, we must work in a framework where
the states describe both the electronic system and the photons. We show that Quantum
Electrodynamics (QED) provides such a framework in which gauge invariance of
transition probabilities has been established for large classes of gauges.

Finally, we give the semi-relativistic expansion of the absorption and scattering
cross sections. We find that a new relativistic term (called spin-position term) must
be including in both cross sections. More details will be a given a forthcoming
publication [1].

16.2 Time-Dependent Perturbation Theory

To fix notation, we give a fast description of time-dependent perturbation theory.
Assume that a time-independent Hamiltonian Hj is perturbed by a time-dependent
term H,(¢) starting at #,. Setting i = 1, the state of the perturbed system at time
t >ty is given by [¢(1)) = V (¢, to)|p4), Where |@,) is the ground state of Hy and
V(t, tg) = e "V, (1, 1y)elfon with

Vilt, tg) = Te o 1T

The interaction Hamiltonian is H; (1) = &7 H| (7)e ™7 and T is the time-ordering
operator (we omit the adiabatic switching factor for simplicity). Note that |1 (t))) =

|¢4). The transition probability to the eigenstate |¢,) of Hy at time ¢ is

Pog(t) = Hul 0N = HulV (1, 10)|dg) > = [{Pul Vi (2, 10)|dg) | . (16.1)

For n # g the perturbative expansion gives us, up to second order,

Py (1) = |<¢,,|/ H[(T)dT—i/ dTH](T)/ dr H (™)lg)|* + ... (16.2)

16.3 Gauge Invariance

The principle of gauge invariance has become a cornerstone of particle physics:
observable quantities must be independent of the gauge chosen to describe electric
and magnetic fields.
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In quantum mechanics, gauge transformations consist in both a change of the
potentials A’ = A+ VA, ¢’ = ¢ — 0, A and a change of the phase of the wave-
functions 1/ (r,t) = Ma(r,t) where, M, = &“A"") The time-dependent Dirac
and Schrodinger equations are invariant under gauge transformation [2] but the time
independent ones are not. Indeed, a Hamiltonian H (A, ¢) = f(p — eA) + ep where
f is some function, becomes H(A', ¢') = M H (A, ¢)ij — ed; A (the term 0; A
arises because of the electric potential ¢) while a gauge invariant operator O (A, ¢)
should satisfy O(A’, ¢') = M, O(A, ¢)Mj‘ for every function A(r, t) [2].

If the gauge is modified by a time-dependent term A(r, t), the perturbation H; =
H(A, ¢) — Hp is modified into H{ = H(A’, ¢') — Hy. We first consider the lack
of gauge-invariance for the matrix elements of the perturbation. We compute the
difference between these matrix elements in two different gauges:

0A
(W™ H| — H||¥") = (wm|MAHM;—H—eE|w">. (16.3)
Using the Baker—Campbell-Hausdorff formula at first order M, H Mj‘ ~ H+
[ieA, Hy], we obtain:

1 n : m i m 8A n
(W"|H) — H|¥") ~ie(E; — Ef) (" [A[P") — e(¥ IEI‘I’ ), (16.4)

that is non-zero in the general case. Note that, with the Dirac Hamiltonian, this first
order calculation is exact because Hf — Hy = ca- VA+0A/Ot andc - VA =
i[Hp, Al

More generally, the gauge-transformed wavefunction obtained in perturbation
is [¢/ (1)) = V'(t, 19)|¢,), where V'(t, tp) = 1DV (¢, 1p)e 4@ [3]. We have lost
the usual gauge transformation [¢)) — e/°/|1)) because perturbation theory imposes
' (ty) = |¢,). The transition probability becomes

PA ) =gl ()= f drdr' gL (P TIOV (r 1 1, 1o)e AT g ()]

Since A(r, t) is arbitrary, generally Pn’;(t) #* P,?g (t) = P,4(t) defined in (16.1) and
the transition probability is not gauge invariant. Moreover, the transition rate is
expressed in terms of the derivative of the transition probability with respect to
time. This adds a factor e 0, A(r, t) to the integral which can be as large as we want,
spoiling the gauge invariance of the transition rate. In other words, when the light
beam of an absorption or scattering experiment is represented by a time-varying
external potential, then the cross section is not gauge invariant. As reviewed in [1],
several solutions of this gauge-dependence problem were proposed, but the only one
which is fully satisfactory is to use quantum electrodynamics, where the photon is
not represented by a classical electromagnetic field but by a state in Fock space.
We now discuss the semi-relativistic expansion of transition probabilities.
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16.4 Foldy—Wouthuysen Transformation and Transition
Probabilities

The semi-relativistic expansion is widely used in quantum physics. We highlight why
the straightforward way to obtain semi-relativistic cross section that would consist
in considering that the system is described by a FW Hamiltonian and computing the
transition probabilities between eigenstates of this Hamiltonian is, in fact, not valid.

In the Dirac theory, the state of the particles is described by four-components

X

. 1 . .
wave functions ¥p = . The two spinors that compose these wavefunctions,
2

x1 and x», are called upper and lower components.

For positive energy states, the upper component is called the large component and

the lower component is called the small component. In the non relativistic limit, the
small (i.e. lower) component vanishes. For negative energy states, on the other hand,
it is the upper component that vanishes.
Hy Hyp
H> Hy
a 2 x 2 matrix. If H is independent of time, the idea of the Foldy—Wouthuysen
(FW) transformation is to apply a unitary operator Uy such that, even for finite light
velocity, the upper and lower components of 1w = Uy ¥p are decoupled. In other
words, the transformed Hamiltonian H*Y = Uy HU ;1 must be block diagonal.

If the Dirac Hamiltonian H is explicitly time dependent, the Foldy—Wouthuysen
state |1pw) is a solution of the time-dependent Schrodinger equation for the Foldy—
Wouthuysen Hamiltonian [4]:

The Dirac Hamiltonian H has the form H = , where each H;; is

. ou};
H™Y =UyHU), - iUHa—tH : (16.5)

which must be block diagonal. However, H FW must not be used to calculate matrix
elements of H because (@ p|H|Wp) = (¢ppw Uy HU j|vpw) # (drw|H™ [¢hpw) [5].

Using the dynamics given by H"W is also dangerous to calculate transition prob-
abilities. Indeed, even if we know the exact Foldy—Wouthusen transformation Uy,
we obtain [Yew (t)) = Un)|¥p(t)). On the other hand, |q§§) being an eigenstate of
Hy, its Foldy—Wouthuysen transformation is | @) = Up,|PY,). Thus, the Foldy—
Wouthuysen transition probability of (16.1) becomes

|(Wew (DI D) = [(p(O|U; 0 Uniy | @I # Pag(t)

because Uy ) # Up,.

On the other hand, we cannot use Up ) to transform |q§;’)), because the state
|® &) would become time-dependent. The solution is to express the cross sections
in terms of Dirac wavefunctions (¥p|T|Pp), where T is a transition operator and
|®p) and [¥p) are solutions of a time-independent Dirac equation Hy, and then write
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|®p) = U;IO |@gw). This transforms 7T into Tgyw = U HOTU;,O, ensures the conserva-
tion of the transition probability and gives a semi-relativistic meaning to the cross
sections [1].

16.5 Semi-relativistic Cross-Sections

We apply the approach of the previous paragraph to the absorption and scattering
cross-sections. From this point, we will work in a monoelectronic framework. The
FW transformation in a many-body framework is developed elsewhere [1].

16.5.1 Absorption Cross Section

The absorption cross section is calculated by assuming that initially the electron
is in the relativistic state |/) that can be transformed into the Foldy—Wouthuysen
eigenstate |i), with energy E;, and that a photon g, e, is present. In the final state
there is no photon and the electron is in state | F') (| f) after transformation).

We showed that the absorption cross section can be written [1]:

o =41 ag hwy Y [(fITewli)*0(Ep — Ei — hwy)
f

where Tgy 1S:
i h
przeq-r+§(eq~r) (q~r)—m1r-(eq XE)

(eg xq)- (hX + A),

2mwy

withhwy, =Ef — E;, m=p—eAgand A =L —er x Aq.

It corresponds to the usual formula for the cross section [6] with A instead of L
and one extra relativistic term that we call spin-position, because it can be rewritten
using ™ = (m/ik)[r, HYY]+ O(c™?), where HY" is the time-independent Foldy—
Wouthuysen Hamiltonian, to get:

L dhwy .
(flm - (eq x 2)|i) = —5(fl(eg xr)- Xli) .

4m?2c? dmc

We call spin-position operator the operator (e, x r) - X.Its evaluation at the K -edge
of materials shows that it gives a significant contribution to XMCD [7].
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16.5.2 Scattering Cross Section

The scattering cross section is calculated by assuming that initially the electron
is in the relativistic state |/) with a photon ¢;, e; and that in the final state the
electron is in state | F') with a scattered photon g s, e ;. We do not consider the special
case when ¢q;, e; = gy, e;. The scattering cross-section can be resonant only if the
intermediate state |/) involved in the transition is a positive energy state so that
the condition E; = E; 4+ hw; can be satisfied. The semi-relativistic expansion of the
resonant scattering term therefore writes as a sum over intermediate states of positive
energy:

d?o _(rgm
ddw,  \ 2

E; — E; + hw; + iy

Epl

Withéif = (;(Ef —I—Fwa — El' —h/.d,') ,AEij = E,‘ — Ej,

ZAE,,-AEﬂ<f|Té€J<ef>|l><1|Téiv<e,->|i> .
l

i, i h
TY (e;) = e; - —(e; - o) —— - (e X X
Fw(€i) =€ -1+ (e -r)(gi-r) = o (e x X)
(e xgi)- (WX + A)
2mAEU

’

and

1ij * 1 * h *
Teyw(ep) = ey r— E(ef -r)(qy-1)— Wﬂ' . (ef X X)
(€7 xqp) - (hX + A)
2mAEU

We recover the usual monoelectronic resonant part of the scattering cross section
[8] with the additional spin-position operator that also appeared in the absorption
cross section. The semi-relativistic expansion of this cross section in the non resonant
case is more subtle because it involves negative energy intermediate states. This
question will be addressed in a future publication.
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Chapter 17
Towards Accurate and Large-Scale

Density-Functional Calculations
with the Korringa—Kohn-Rostoker Method

Rudolf Zeller

Abstract Development of advanced 21st century applications profits increasingly
from a basic quantum-mechanical understanding of material properties. Often,
density-functional theory is used to reduce the work to the solution of simple effec-
tive one-particle equations. Nevertheless, for all but the smallest systems, consid-
erable computer resources are required and accurate calculations for large systems
are difficult. One attempt to overcome this problem is KKRnano, a computer code
recently developed in Jiilich, which is based on the multiple-scattering Korringa—
Kohn-Rostoker (KKR) Green-function method. In the present contribution it will be
described how this code enables to treat systems with many thousand atoms and how
the use of non-local angular projection potentials provides new insight for obtaining
accurate forces and total energies.

17.1 Introduction

In density-functional calculations, usually the Schrodinger equation is solved by
expanding the single-particle wavefunctions into a set of basis functions with expan-
sion coefficients found by minimizing the total energy. An alternative method was
suggested by Wigner and Seitz [1] in their pioneering work On the Constitution
of Metallic Sodium. They divide the crystal into non-overlapping cells centred at
the atoms and determine single-cell solutions which are joined by wavefunction
matching at the cell surfaces. However, the matching is numerically very demand-
ing so that the cellular method of Wigner and Seitz outlived its usefulness when
the multiple-scattering KKR method appeared. In this method the outgoing scat-
tered wave from the potential in one cell is analytically transformed into incoming
waves at the other cells by assuming free propagation between different scattering
events. This assumption was historically guaranteed by confining the potential to
non-overlapping muffin-tin spheres. For space-filling potentials, however, free prop-
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agation is missing which prevents that a multiple-scattering picture can be used in a
full-potential treatment. Nevertheless, it was conjectured and backed up in a number
of publications that the KKR equations remain valid with minor or no modification.
On that account, a full-potential Green-function (GF) method [2], particularly for
impurity calculations, was developed in Jiilich since 1990. This method is the basis of
KKRnano which was designed from the outset to treat large systems on massively par-
allel supercomputers [3, 4]. Below the main features of KKRnano will be described.
It will also be demonstrated that a full-potential treatment can be validated rigor-
ously by using the concept of non-local angular projection potentials and that this
concept helps to identify and remove problems for accurate force and total-energy
calculations.

17.2 Large Systems

Due to the advance of supercomputing power, calculations for systems with more
than one thousand atoms are possible today by standard density-functional codes.
For larger systems, however, the applicability of these codes is limited because the
computational effort scales with the third power of the number of atoms. KKRnano
overcomes this limitation by a linear-scaling implementation which is achieved as
described below. The strategy is to determine the density n"(r) from the diagonal
part of the density matrix

, 1 ° ,

o (r,r',T) = —=3 |:/ fle—p, TYG™ (r,r'; e+ i0+)de:| , (17.1)
™ —00

where r and r’ are vectors originating at the centers of cell n and n’. This integral,

which contains the Fermi—Dirac function for temperature 7' and chemical potential

14, 1s conveniently evaluated by contour integration [5]. Dropping the parametric

dependence on ¢, the Green’s function is given by

o0
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where R}, (r) and G (r, r’) are functions that depend only on the potential confined

to cell n. The Green’s function matrix elements are obtained by

00
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o = Gt NN G A Gl . (173)
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from the difference of the single-cell + matrices of the system and a reference sys-
tem and the Green-function matrix elements of the reference system. In KKRnano the
matrix equation (17.3) is solved iterat