Scheduling Data-Intensive Workloads
in Large-Scale Distributed Systems:
Trends and Challenges

Georgios L. Stavrinides and Helen D. Karatza

Abstract With the explosive growth of big data, workloads tend to get more com-
plex and computationally demanding. Such applications are processed on distributed
interconnected resources that are becoming larger in scale and computational capac-
ity. Data-intensive applications may have different degrees of parallelism and must
effectively exploit data locality. Furthermore, they may impose several Quality of
Service requirements, such as time constraints and resilience against failures, as well
as other objectives, like energy efficiency. These features of the workloads, as well
as the inherent characteristics of the computing resources required to process them,
present major challenges that require the employment of effective scheduling tech-
niques. In this chapter, a classification of data-intensive workloads is proposed and an
overview of the most commonly used approaches for their scheduling in large-scale
distributed systems is given. We present novel strategies that have been proposed in
the literature and shed light on open challenges and future directions.

Keywords Big data - Data-intensive applications + Gang scheduling - Workflow
scheduling + Bag-of-Tasks scheduling - Data locality + Time constraints - Fault
tolerance * Energy efficiency

1 Introduction

The ever-increasing momentum of the Internet of Things, the rapid pace of techno-
logical advances in mobile devices and cloud computing, as well as the explosive
growth of social media, produce an overwhelming flow of data of unprecedented
volume and variety at a record rate. Such data are commonly referred to as big data
and are characterized by the following attributes: (a) volume, i.e. they consist of very

G. L. Stavrinides (X) - H. D. Karatza

Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece

e-mail: gstavrin@csd.auth.gr

H. D. Karatza
e-mail: karatza@csd.auth.gr

© Springer International Publishing AG 2018 19
J. Kolodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_2

20 G. L. Stavrinides and H. D. Karatza

large datasets, (b) variety, i.e. they comprise diverse structured and unstructured data
of various types and (c) velocity, i.e. the data are generated and streamed at stagger-
ing speeds [16, 31]. Computationally intensive applications are employed in a wide
spectrum of domains such as healthcare, science, engineering, business and finance,
in order to unleash the power of big data, extract useful knowledge and gain valuable
insights [51].

The advent of big data has called for a paradigm shift in the computer archi-
tecture, and consequently the applications, required for their effective processing.
Data-intensive applications are typically processed on interconnected computing
resources that are geographically distributed, encompass various heterogeneous com-
ponents, utilize virtualization, feature multi-tenancy and are able to scale up in the
foreseeable future. Computer clusters, computational grids and clouds are examples
of such platforms [13]. Furthermore, novel hybrid approaches have emerged, such
as fog computing, which extends the cloud computing paradigm by bringing data
processing at computational resources at the edge of the network, closer to where the
data are generated, while sending selected data to the cloud for historical analysis
and long-term storage [4, 9].

Data-intensive applications may have different degrees of parallelism and must
effectively exploit data locality. Furthermore, they may also impose several Quality of
Service (QoS) requirements, such as time constraints and resilience against failures,
as well as other objectives, like energy efficiency. These features of the workloads
operating on big data, as well as the characteristics of the computing resources
required to process them, present major challenges that require the employment of
effective scheduling algorithms. Due to their inherent complexity, the performance of
such algorithms is usually evaluated by simulation, rather than by analytical methods.
Analytical modeling is difficult and often requires several simplifying assumptions
that may have an unpredictable impact on the results [45].

This chapter is organized as follows: Sect.2 gives a definition of the scheduling
problem in large-scale distributed systems, as well as some of the most importan-
t scheduling objectives. In Sect.3, a classification of data-intensive workloads is
proposed, according to their degree of parallelism. An overview of the most wide-
ly used strategies for the scheduling of each class of data-intensive applications in
large-scale distributed systems is given. Section4 presents some of the major chal-
lenges of data-intensive workload scheduling, covering topics such as data locality
awareness, timeliness, fault tolerance and energy efficiency. Furthermore, novel
strategies that have been proposed in the literature are presented in Sect. 5. Finally,
Sect. 6 concludes this chapter, shedding light on open challenges and future research
directions.

2 Scheduling Problem

In its general form, the scheduling problem in large-scale distributed systems con-
cerns the mapping of a set of application tasks V = {n,ny, ..., ny} to a set of

Scheduling Data-Intensive Workloads in Large-Scale ... 21

processors P = {pi, p2, ..., pp}, in order to complete all tasks under the specified
constraints (e.g. complete each task within its deadline) [5, 20]. In this general form,
the scheduling problem has been shown to be NP-complete [14].

2.1 Scheduling Objectives

Some of the parameters that characterize a task n; € V are shown in Fig. 1. These
parameters are:

e arrival time a(n;): it is the time at which the task arrives at the system.

e start time s(n;): it is the time at which the task starts its execution.

e finish time f (n;): it is the time at which the task finishes its execution.

e deadline d (n;): it is the time before which the task should finish its execution.

Based on the above parameters, some of the most commonly used scheduling
objectives in large-scale distributed systems are:

(a) To minimize the average response time R of the tasks n; € V, where R is given
by:
- 1
R= > R(m) (1)

nmeV

where R(n;) = f (n;) — a(n;) and N is the number of tasks in V.
(b) To minimize the makespan (i.e. total execution time) M of the tasks n; € V,
where M is defined as:

M = max {f (n;)} — min {s(n;)} 2
neV neV

(c) To maximize the task guarantee ratio T GR of the tasks n; € V, where TGR is
given by:

TGR =]lv Z guar(n;) (3)

n;EV

»
time

arrival time a(n;) start time s(n;) finish time f{n;) deadline d(n;)

Fig. 1 Typical parameters that characterize a task of an application submitted for execution in a
large-scale distributed system

22 G. L. Stavrinides and H. D. Karatza

where
guar(ni) — il lff(ni) <d(n) .

0 otherwise

(d) To minimize the average tardiness T of the tasks n; € V, where T is defined as:
T==Y T Q)

where

(6)

0 otherwise

— {f(n,-) —d(m) iff () > d(n)

3 Data-Intensive Workloads in Large-Scale Distributed
Systems

The data-intensive applications scheduled for execution in large-scale distributed sys-
tems, typically consist of numerous component tasks. At the one end of the spectrum,
the tasks require frequent communication with each other during their execution. At
the other end of the spectrum, the component tasks do not require any communi-
cation and are completely independent. Between these two ends, is the case where
communication is required between the component tasks of an application, but only
before or after their execution. Consequently, data-intensive workloads in large-scale
distributed systems can be classified into the following categories:

e fine-grained parallel applications,
e coarse-grained parallel applications and
e embarrassingly parallel applications.

In the following paragraphs, each class of data-intensive applications is presented
in more detail and their corresponding, most widely used scheduling heuristics are
analyzed.

3.1 Fine-Grained Parallel Applications

An application features fine-grained parallelism when it consists of frequently com-
municating parallel tasks. A proven and effective way to schedule such applications
is gang scheduling. According to this approach, the parallel tasks of an application
form a gang and are scheduled and executed simultaneously on different processors.
Hence, all of the tasks of the application start execution at the same time. This way,

Scheduling Data-Intensive Workloads in Large-Scale ... 23

Fig. 2 An example of a [le—T T2 |- |
fine-grained parallel R T Pt S SN
application. The frequently :” 1 :__»_» 1
communicating tasks of the e e— [
application form a gang of N R U Rk R PR
S e RSN - S
parallel tasks. The - -3l
o T |« s
communication betweenthe | L____"] S » & |
tasks is depicted with arrows < R
I T PRt S
e e
'y (R—
| [Tl N
] le—]
> [- B BESR,
St H S L
n n ns nN
N J
v
N

the risk of a task waiting to communicate with another task that is currently not run-
ning is avoided. The task with the largest execution time determines the execution
time of the gang. An example of a gang with N parallel tasks is shown in Fig. 2.

Consequently, gang scheduling facilitates the synchronization between the com-
ponent tasks of a fine-grained parallel application. Without this technique, the syn-
chronization of the component tasks would require more context switches and thus
additional overhead. On the other hand, in order to utilize gang scheduling, the num-
ber of available processors must be greater than or equal to the number of parallel
tasks of the application. Furthermore, due to the requirement that all of the tasks of a
gang must start execution at the same time, there may be times at which some of the
processors are idle, even with tasks waiting in their respective queues. Specifically, a
task at the head of the queue of an idle processor may be waiting for the other tasks of
its gang, which may not be able to start execution at the particular time instant [42].
This situation is depicted in Fig. 3.

3.1.1 Gang Scheduling Policies

The two most widely used gang scheduling policies are the Adapted First Come First
Served (AFCFS) and Largest Gang First Served (LGFS) strategies.

Adapted First Come First Served (AFCFES)

This method is an adapted version of the First Come First Served (FCFES) scheduling
heuristic, according to which the gang that arrived first, has the highest priority for
execution. A gang starts execution when its tasks are at the head of their assigned
queues and the respective processors are idle. When there are not enough idle pro-
cessors for a gang with a large number of parallel tasks waiting at the front of their
assigned queues, a smaller gang with tasks waiting behind those of the larger gang
can start execution. This technique is also referred to as backfilling [18].

24 G. L. Stavrinides and H. D. Karatza

1 2
2 n, n

| .
1 [T T I?
01 2 3 456 7 8 9 10 1Ume

quene of processor p; schedule of processor p;
processor p;
1 2 3
3.2 n n n
2 1
i T T >
0123456 7 8 910 'Mm

queue of

processor p; schedule of processor p,
processor p,
2 3
31,2 n n
Tl T >
012345 6 7 8 9 10 Ume

queue of
TOCessor pj3
p! P;

processor p; schedule of processor p;

Fig. 3 Example of gang scheduling in a system with three processors py, p» and p3. The first gang
consists of the tasks n} and né, scheduled on processors p; and p», respectively. The second gang
consists of the tasks n%, n% and n%, scheduled on processors p1, p2 and p3, respectively. The third
gang consists of the tasks n% and n%, scheduled on processors po and p3, respectively. It can be
observed that the processor p3 remains idle during the execution of the tasks n} and né of the first
gang. This is due to the fact that the task n% at the head of its queue cannot start execution, because
according to the gang scheduling technique, it must start execution at the same time as the other
tasks of its gang, n% and n% which are scheduled on the other processors that are currently busy

The major drawback of this scheduling policy is that it tends to favor smaller gangs,
which leads to greater response times for larger gangs. In order to overcome this issue,
various techniques have been proposed in the literature, such as the employment
of a bypass count parameter [25] and the utilization of fask migrations [30]. The
first method, counts for each gang the number of gangs that bypassed it, due to an
insufficient number of idle processors. When the bypass count of a gang reaches a
specified threshold, it gets the highest priority for execution. According to the second
method, the tasks of a gang are candidate for migration only if at least one of them is
at the head of its assigned queue and the respective processor is idle. The tasks that
are migrated, are placed at the head of their newly assigned queues. In order to avoid
the starvation of the other tasks, there is a limit on the number of migrated tasks a
queue can accept.

Largest Gang First Served (LGFS)

According to this scheduling strategy, the tasks in the processor queues are sorted
in descending order of gang size (i.e. number of tasks) of their respective gang.
Thus, tasks that belong to larger gangs have higher priority than tasks that belong

Scheduling Data-Intensive Workloads in Large-Scale ... 25

to smaller gangs. Whenever a processor becomes idle, the scheduler searches the
queues starting from the head of each queue and the first gang with tasks that can
start execution occupies the processors [19]. Clearly, this strategy tends to favor
applications with a high degree of parallelism (i.e. large gangs), at the expense of
smaller gangs. However, this is sometimes desirable and may lead to a better system
performance, compared to the AFCFS policy.

3.2 Coarse-Grained Parallel Applications

In case an application exhibits coarse-grained parallelism, its component tasks do
not require any communication with each other during processing, but only before
or after their execution. That is, the component tasks have precedence constraints
among them, in such a way that the output data of a task are used as input by other
tasks. A component task can only start execution when its predecessor tasks have
completed. A task without any parent tasks is called an entry task, whereas a task
without any child tasks is called an exit task.

Such an application is often called a workflow application and can be represented
by a Directed Acyclic Graph (DAG) or task graph, G = (V, E), where V and E are
the sets of the nodes and the edges of the graph, respectively [37, 39, 40]. Each node
represents a component task, whereas a directed edge between two tasks represents
the data that must be transmitted from the first task to the other. Each node has a
weight that represents the computational cost of its corresponding task. Each edge
between two tasks has a weight that denotes the communication cost that is incurred
when transferring data from the first task to the other.

The level of a task in the graph is equal to the length of the longest path from the
particular task to an exit task in the graph. The length of a path is the sum of the
computational and communication costs of all of the nodes and edges, respectively,
along the path. The critical path of the graph is the longest path from an entry task
to an exit task in the graph. An example of a workflow application is illustrated in
Fig.4.

3.2.1 Workflow Scheduling Approaches

Workflow applications require a scheduling strategy that should take into account
the precedence constraints among their component tasks. The workflow scheduling
heuristics are classified into the following general categories:

list scheduling algorithms,
clustering algorithms,

task duplication algorithms and
guided random search algorithms.

These techniques are analyzed in the following paragraphs.

26 G. L. Stavrinides and H. D. Karatza

Hg

Fig.4 An example of a coarse-grained parallel application (workflow application), represented as
a Directed Acyclic Graph (DAG). The number in each node denotes the computational cost of the
represented task. The number on each edge denotes the communication cost between the two tasks
that it connects. The critical path of the DAG is depicted with thick arrows

List Scheduling Algorithms

A list scheduling algorithm consists of two phases: (a) a task selection phase and
(b) a processor selection phase. In the first phase, the tasks are prioritized based on
specific criteria and are arranged in a list according to their priority. The task with
the highest priority is selected first for scheduling. During the second phase, the
selected task is scheduled to the processor that minimizes a specific cost function,
such as the estimated start time of the task [48]. List scheduling algorithms are the
most commonly used among the workflow scheduling heuristics, because they are
generally simpler, more practical, easier to implement and they usually outperform
other techniques, incurring less scheduling overhead [53].

One of the simplest list scheduling policies is the Highest Level First (HLF) [1].
According to this method, the task prioritization phase is based on the level of each
task. In the processor selection phase, the selected task is scheduled to the processor
that can provide it with the earliest start time. Animproved version of the HLF strategy
is the Insertion Scheduling Heuristic (ISH) [21] and it is based on the observation that
idle time slots may form in the schedule of a processor (schedule gaps), due to the data
dependencies among the tasks. The task selection phase of this technique is based on
HLF. However, during the processor selection phase, a task may be inserted into a
schedule gap, as long as it does not delay the execution of the succeeding task in the

Scheduling Data-Intensive Workloads in Large-Scale ... 27

schedule and provided that it cannot start earlier on any other processor. An alternative
version of ISH, adapted for heterogeneous systems, is the Heterogeneous Earliest
Finish Time (HEFT) policy [53]. According to this approach, for the calculation of
the level of each task, the average computational and communication costs of the
tasks and edges, respectively, are used.

Clustering Algorithms

The main idea of clustering algorithms is the minimization of the communication cost
between the tasks of a DAG, by grouping heavily communicating tasks into the same
cluster and assigning all of the tasks in the cluster to the same processor. A clustering
algorithm is an iterative process. At first, each task is an independent cluster. At
each iteration, previous clusters are refined by merging some of them, according to
specific criteria. At the end of the process, a cluster merging step is needed, so that
the number of clusters is equal to the number of processors. Subsequently, a cluster
mapping step is required, in order to map each cluster to a processor. Finally, a task
ordering step is performed, in order to determine the execution order of tasks on each
processor [17].

One of the most popular clustering techniques is the Dominant Sequence Cluster-
ing (DSC) algorithm [57]. This method is based on the observation that the makespan
of a DAG is determined by the longest path in the scheduled task graph and not by its
critical path, which is calculated before the scheduling of the tasks of the DAG. The
longest path in the scheduled DAG is called the dominant sequence (DS). According
to the DSC algorithm, the tasks in a DAG are clustered in such a way, so that the
dominant sequence of the graph is minimized.

Task Duplication Algorithms

In this category of workflow scheduling heuristics, the main concept is to utilize idle
resource time by duplicating predecessor tasks in a DAG, so that the makespan of the
particular DAG is minimized. The various duplication-based algorithms differentiate
with each other, according to the criteria used for the selection of the tasks for
duplication. One of the major drawbacks of task duplication algorithms, is that they
usually have higher complexity than the other DAG scheduling techniques.

One of the most well-known duplication algorithms is the Duplication Scheduling
Heuristic (DSH) [21]. According to this approach, the tasks in a DAG are prioritized
according to their level. At each scheduling step, the task with the highest level is
selected and is allocated to the processor that can provide it with the earliest start
time. In order to calculate the earliest possible start time of the selected task on each
processor, first its start time is calculated without duplication of any predecessor
tasks. Subsequently, the duplication time slot is determined, which is the time period
between the finish time of the last scheduled task on the particular processor and the
start time of the currently examined task. The algorithm then tries to duplicate the
predecessors of the task into the duplication time slot in a recursive manner, starting
from the parent task from which the data arrives the latest, until either the slot cannot
accommodate other predecessor tasks or the start time of the examined task is not
improved.

28 G. L. Stavrinides and H. D. Karatza

Guided Random Search Algorithms

A guided random search algorithm is an iterative process of finding the best schedule
for a DAG, based on specific criteria. At each step, the previously generated schedule
is improved, by utilizing random parameters for the generation of the new schedule.
This iterative process terminates according to a predefined condition. These algo-
rithms, even though they generally generate schedules of good quality, however,
they incur a much higher scheduling overhead than the other workflow scheduling
methods. The most commonly used algorithms of this category are genetic algo-
rithms, according to which each new schedule is generated by applying evolutionary
techniques from nature, known as fitness functions [15].

Simulated Annealing (SA) is another example of a guided random search meta-
heuristic. This technique emulates the physical process of annealing in metallurgy,
which involves the heating and the controlled, slow cooling of metals, in order to
form a crystallized structure without any defects [28]. In SA, a temperature variable
is used in order to simulate this heating process. Initially, it is set at a high value
and as the algorithm runs, it is allowed to slowly cool down. While the value of the
temperature variable is high, the algorithm is allowed to accept solutions that are
worse than the current one, with higher frequency. As the value of the temperature
variable is decreased, so is the chance of accepting worse solutions. Therefore, the
algorithm gradually focuses on an area of the search space in which hopefully a
near-optimal solution can be found.

3.3 Embarrassingly Parallel Applications

An application is regarded as embarrassingly parallel when its component tasks are
independent, do not communicate with each other and can be executed in any order.
Due to these characteristics, such applications are also called Bag-of-Tasks (BoT)
applications. Due to the independence between their tasks, BoT applications are well
suited for execution on widely distributed resources, such as computational grids,
where communication can become a bottleneck for more tightly-coupled parallel
applications, such as gangs and DAGs [44, 46, 56]. An example of a BoT application
is depicted in Fig. 5.

Fig. 5 An embarrassingly parallel application, consisting of N independent parallel tasks. Such
applications are commonly referred to as Bag-of-Tasks (BoT) applications

Scheduling Data-Intensive Workloads in Large-Scale ... 29
3.3.1 Scheduling BoT Applications

The most widely used strategies for scheduling BoT applications are: (a) Min-Min, (b)
Max-Min and (c) Sufferage. All of these policies focus on minimizing the makespan
of the scheduled BoT application.

Min-Min

This heuristic is an iterative process, consisting of two steps. In the first step, the
minimum completion time (MCT) of each unassigned task is calculated, over all of
the processors in the system. In the second step, the task with the minimum MCT
is assigned to the corresponding processor. At each iteration of the algorithm, the

MCT of each unassigned task is determined taking into account the current load of
the processors, as resulted by the scheduling decision of the previous iteration [56].

Max-Min

This strategy differs from the Min-Min policy, in that the task with the maximum
(instead of the minimum) MCT is assigned to the corresponding processor in the
second step of the scheduling process. Consequently, in cases where the application
consists of a large number of tasks with small execution times and a few tasks with
large execution times, the Max-Min heuristic is likely to give a smaller makespan
than the Min-Min algorithm, since it schedules the tasks with larger execution times
at earlier iterations [50].

Sufferage

This algorithm is a two-step iterative process, like the Min-Min and Max-Min heuris-
tics. However, in this case, in addition to the MCT of each task, its second MCT is
also calculated during the first step of the process. Subsequently, the sufferage value
of each task is determined, by subtracting its MCT from its second MCT. In the
second step, the task with the largest sufferage value is assigned to the processor
that can provide it with the MCT. That is, this heuristic is based on the idea that the
highest priority for scheduling should be given to the task that would suffer the most
(in terms of completion time) if it is not assigned to the processor that can provide it
with the MCT [24].

4 Major Challenges

In addition to the challenges imposed by their degree of parallelism, data-intensive
applications in large-scale distributed systems must also effectively exploit data lo-
cality. Furthermore, they may have various QoS requirements, such as timeliness and
fault tolerance, as well as other objectives, like energy efficiency. These requirements
are usually specified in a Service Level Agreement (SLA), which is a contract between
the user that submits the application for execution and the provider of the infrastruc-
ture that the application is executed on. In the following paragraphs, representative
examples for each case are given.

30 G. L. Stavrinides and H. D. Karatza

4.1 Data Locality

The most important aspect of scheduling data-intensive applications in large-scale
distributed systems is the effective exploitation of data locality. That is, the tasks
that operate on big data should be allocated to computational resources that are as
near as possible to where the data reside, so that the communication cost incurred by
transferring for processing vast amounts of data from remote resources is minimized.

4.1.1 MapReduce & Hadoop

The MapReduce programming paradigm has been proposed by Google [11] and fa-
cilitates the massively parallel processing of large volumes of data. It is inspired by
the map and reduce functions commonly used in functional programming. A MapRe-
duce application consists of two types of tasks: (a) amap task and (b) a reduce task. A
map task takes a set of data and converts it into another set of data, where individual
elements are broken down into tuples (i.e. key/value pairs). Parallel map tasks can
process different chunks of data. A reduce task takes as input the output from map
tasks and combines those data tuples into a smaller set of tuples, in order to produce
the final result. A reduce task is always performed after the map tasks. In case a
MapReduce application has only map tasks, it is considered an embarrassingly par-
allel application. In case an application has one or more reduce tasks, it is considered
a coarse-grained parallel application. In the latter case, multiple reduce tasks can be
employed in order to enhance the parallelism of the application [12].

A simple example of a MapReduce application with two parallel map tasks and
one reduce task, is shown in Fig. 6. In the illustrated example, the overall minimum
temperature recorded in London and Athens in a five-day period needs to be calcu-
lated for each city. It is assumed that the minimum temperature for each city was
recorded daily in the form (City, MinimumTemperature). The records are split into
two files. Each file is processed in parallel by a map task. Each map task outputs
the pairs that correspond to the minimum temperature for each city, according to the
file that was processed. The results of the two map tasks are merged into two pairs
(one for each city) in the form { City, {ListOfMinimumTemperatures}). The pairs are
fed as input into the reduce task, which outputs the overall minimum temperature
recorded in each city, over the said period. This parallel processing approach is more
efficient than calculating the minimum temperature for each city in a serial fashion.

An open source - and the most popular - implementation of the MapReduce
programming model is the Apache Hadoop framework [2], which adopts a master-
slave architecture in order to exploit data locality. Specifically, the master node is
responsible for scheduling the map tasks of an application on the slave nodes, which
contain chunks of the required input data. The reduce task is performed by the master
node. When a slave node notifies the master node that it can accept a task, the master
node scans the waiting tasks in queue to find the one that can achieve the best data
locality. That is, the map task that its input data are located the nearest to the particular

<London,08>
<London,05>
<Athens,15>
<London,08>
<Athens,13>

File 1
map()u

Scheduling Data-Intensive Workloads in Large-Scale ...

<Athens,14>
<London,07>
<Athens,12>
<London,09>
File 2 <Athens,15>

B

<Athens,13>
<London,05>

<Athens,12>
<London,07>

31

<Athens,{12,13}>
<London,{05,07}>

reduce()

<Athens,12>
<London,05>

Fig. 6 An example of a MapReduce application with two parallel map tasks and one reduce task

slave node is selected. However, due to the fact that Hadoop considers only one slave
node at a time in order to schedule the map tasks, there are cases where it does
not exploit data locality effectively. Furthermore, it cannot be employed for multi-
cluster processing and for data-intensive applications that require more complex
communication and processing patterns than those supported by the MapReduce
paradigm.

4.1.2 Other Approaches

In an attempt to tackle the aforementioned shortcomings of Hadoop and MapRe-
duce, various approaches have been investigated in the literature. Among them, the
delay scheduling technique has been proposed, in order to delay the scheduling of
the waiting map tasks in case a slave node does not contain their input data, assuming
that another slave node that contains the data will become available in a short period
of time [58]. However, the drawback of this approach is that it wastes valuable time

32 G. L. Stavrinides and H. D. Karatza

postponing the scheduling of the tasks, in an attempt to achieve better data locality,
which is a goal that is not guaranteed. In order to overcome the single-cluster deploy-
ment restriction of the Hadoop framework, G-Hadoop has been proposed [55]. Itis an
extension of the traditional Hadoop framework that can schedule tasks across nodes
of multiple clusters [59]. For the scheduling of more complex data-intensive appli-
cations, various approaches have been proposed, utilizing the workflow scheduling
paradigms described in Sect.3.2.1.

4.2 Time Constraints

The most common QoS requirement that data-intensive applications may impose, is
to finish execution within a strict time constraint. Such applications are regarded as
real-time, since they have a deadline that must be met [32].

4.2.1 Real-Time Applications

Depending on the severity of a missed deadline, real-time applications are classified
into the following categories [5]:

e Applications with soft deadlines: in this case, the results of an application that
missed its deadline still have some value, but their usefulness decreases with time
(e.g. a user-system interaction application, where a delayed response to the user
input is tolerated, degrading, however, the user experience as the delay increases).

e Applications with firm deadlines: in this case, the results will be useless, but this
does not have any catastrophic consequences (e.g. a video streaming application,
where a delayed video frame that arrives after the previous one on the user’s
terminal is discarded, since there is no value in playing it back).

e Applications with hard deadlines: in this case, not only will the results be useless,
but missing the application’s deadline will have catastrophic consequences. In
this case, the damage caused by missing the deadline increases with time (e.g. a
healthcare monitoring application, where a delayed analysis of patients data may
cause loss of lives).

The impact of missing an application’s deadline, as described above, is shown
schematically in Fig.7.

Two of the most widely used policies for the scheduling of real-time data-intensive
applications are the Earliest Deadline First (EDF) and the Least Laxity First (LLF)
algorithms [23, 27]. According to the EDF strategy, the component task with the
highest priority for execution is the one with the earliest deadline. On the other
hand, according to the LLF policy, the task with the highest priority is the one with
the minimum Jaxity. The laxity of a task at a specific time instant, is defined as the
difference between its deadline and its finish time. That is, it is the maximum amount
of time that the particular task can delay its execution and still not miss its deadline.

Scheduling Data-Intensive Workloads in Large-Scale ... 33

»
>

(b)

—~_
=)

~
>

H
o
o
=
=
o
o
=

usefulness
usefulness

o

time

damage
damage

~
)
~
»
»

._.
o
o
=

usefulness

o
Y

time

damage

v

Fig. 7 The usefulness of the results of an application with a deadline d over time, when d is: a
soft, b firm and ¢ hard

A heuristic for the scheduling of real-time workflow applications in distributed
systems, is the Least Space-Time First (LSTF) policy [8], which takes into account
both the precedence and the time constraints among the tasks. Specifically, according
to this method, the task with the highest priority for scheduling is the one with the
minimum value of the space-time parameter. The space-time parameter of a task
at a specific time instant, is defined as the difference between the deadline of the
DAG and the level of the particular task. Even though this algorithm outperforms
other scheduling policies, such as EDF, LLF and HLF described earlier, in the sense
that it minimizes the maximum tardiness of the tasks, however, it exhibits poorer
performance at guaranteeing deadlines.

34 G. L. Stavrinides and H. D. Karatza
4.2.2 Approximate Computations

Based on the observation that it is often more desirable for a real-time application to
produce an approximate result by its deadline, than to produce a precise result late,
the technique of approximate computations has been proposed [22]. According to
this method, a real-time application is allowed to return intermediate, approximate
results of poorer, but still acceptable quality, when the deadline of the application
cannot be met. Approximate computations can be utilized especially in the case of
applications with monotone component tasks, where the quality of a task’s results
is improved as more time is spent to produce them (e.g. statistical estimation and
video processing tasks). Each monotone task typically consists of a mandatory part,
followed by an optional part. In order for a task to return an acceptable result, its
mandatory part must be completed. The optional part refines the result produced by
the mandatory part [35, 36]. A monotone task is illustrated in Fig. 8.

Consequently, the approximate computations technique provides scheduling flexi-
bility, by trading off precision for timeliness, since it allows the scheduler to terminate
a task that has completed its mandatory part at any time, depending on the workload
conditions of the system. For example, a video-on-demand server which streams
video content to users over the Internet can benefit from this technique. The server
may unexpectedly encounter network congestion, causing delays during the trans-
mission of video content to users. Approximate computations can allow the system
to reduce the quality of some video frames during a transmission, by omitting their
optional enhancement layers and leaving only their base layer, so that the delivered
video maintains an acceptable frame rate.

4.3 Fault Tolerance

Fault tolerant scheduling in large-scale distributed systems, such as clouds, is
usually achieved through application-directed checkpointing, which in contrast to
system-directed checkpointing, is more practical, easier to implement and system-
independent [29]. According to this approach, each application is responsible for
checkpointing its own progress periodically, at regular intervals during its execution.

Fig. 8 A monotone task

mandatory part

optional part

Scheduling Data-Intensive Workloads in Large-Scale ... 35

In parallel data-intensive applications in particular, each component task periodically
stores its state and intermediate data on persistent storage, creating a local check-
point. The set of the local checkpoints (one from each task) that form a consistent
application state, constitute a consistent global checkpoint.

When a failure occurs, the application is rolled back and resumes execution from
its last consistent global checkpoint. Checkpointing is a reactive failure management
technique, where recovery measures are taken after the occurrence of a failure. As
opposed to proactive failure management approaches, where prevention measures are
taken before the occurrence of a failure (e.g. task migrations), reactive management
is simpler to implement, since it does not require any complex failure prediction
methods.

4.4 Energy Efficiency

There is a growing focus on green computing from both the academia and the industry,
in an attempt to minimize the carbon footprint of data centers and increase the
energy efficiency of applications. Typically, in most computing systems the processor
consumes the greatest amount of energy compared to other components [47, 54]. In
embedded systems, as well as in large-scale virtualized platforms such as the cloud,
a technique that is frequently used in order to meet the energy constraints is the
Dynamic Voltage and Frequency Scaling (DVFS) method. This technique allows the
dynamic adjustment of the supply voltage and operating frequency (i.e. speed) of
a processor, based on the workload conditions, in an attempt to reduce the energy
consumption of the processor [20, 52].

A heuristic frequently used with DVFES, is the slack reclamation technique [7].
This method is based on the fact that the actual execution time of tasks is sometimes
much shorter than their estimated worst case execution time. The difference between
the actual and the worst case execution time of a task is called slack time. At runtime,
the scheduler tries to reclaim the slack time due to the early completion of a task, by
selecting an unprocessed task to be executed at a slower processor speed via DVFS
and thus save energy.

An energy-efficient scheduling strategy for real-time BoT applications in the cloud
utilizing DVFS, is the Cloud-Aware Energy-Efficient Scheduling (CAEES) algorith-
m [6]. At each scheduling step, this method attempts to reduce the total energy
consumption of the hosts, by selecting the most suitable virtual machine (VM) for
the execution of each task, in an energy-wise manner. Specifically, the algorithm
tries to schedule a task by examining specific criteria, starting from the best solution
and gradually going to the worst solution: (a) the task is scheduled to a VM in use,
without requiring an increase in its frequency, (b) the task is scheduled to a VM in
use, but its operating frequency needs to be increased, (c) the task is scheduled to an
idle VM, but there is at least one other VM on the same host that is not idle (i.e. the
host is not idle) and (d) the task is scheduled to an idle VM on an idle host.

36 G. L. Stavrinides and H. D. Karatza

5 Recent Novel Ideas and Research Trends

In an attempt to provide even more effective scheduling solutions for data-intensive
workloads in large-scale distributed systems, recent novel approaches have been pro-
posed in the literature. As virtualization technologies evolve, a growing trend is the
use of VM live migrations, in order to better exploit data locality. Another prominent
research trend is the utilization of approximate computations in combination with
other techniques, in order to achieve better scheduling performance, in terms of time-
liness, resilience against failures and energy conservation. For example, approximate
computations can be combined with:

e bin packing techniques, in order to enhance timeliness,
e checkpointing, in an attempt to improve fault tolerance and
e DVFES, for better energy efficiency.

5.1 VM Live Migrations

In virtualized platforms, the VM live migration technique refers to the process of
moving a running VM from one physical host to another, without downtime. That is,
with no impact on the availability of the VM to the end-users and without interrupting
the applications currently running on the VM. The memory, storage and network
connectivity of the VM are transferred from the initial physical host to the destination
host. Currently, the predominant use of VM live migrations, is to enhance energy
efficiency and load balancing through server consolidation [3].

However, the utilization of VM live migrations can also be used to better exploit
data locality. Specifically, a virtualization approach has been proposed, where differ-
ent VMs are used for each compute node and each storage node in the cloud [49]. In
contrast to the traditional approach where each compute and storage node are com-
bined into one VM, this approach provides better flexibility and scalability, since
compute nodes and storage nodes can be added or removed from the cloud indepen-
dently. More importantly, according to this approach, a much lower live migration
cost is incurred by migrating a compute node VM, compared to the traditional
approach, where large volumes of data should be transferred to the destination host,
since a VM would be both a compute and a storage node. In this framework, a data-
aware scheduling method, DSFvH, is employed, according to which live migrations
of compute node VMs are performed, in order to place each compute node VM on
the physical host that runs the storage node VM that contains the data required by
the tasks executing on the compute node VM. This way, better exploitation of data
locality is achieved.

Scheduling Data-Intensive Workloads in Large-Scale ... 37

5.2 Approximate Computations with Bin Packing

The traditional bin packing problem concerns the packing of a set of objects into a
set of bins, using as few bins as possible [10]. The most commonly used bin packing
techniques are: (a) First Fit (FF), where the object is placed into the first bin where
it fits, (b) Best Fit (BF), where the object is placed into the bin where it fits and
leaves the minimum unused space possible and (c) Worst Fit (WF), where the object
is placed into the bin where it fits and leaves the maximum unused space possible.

In an attempt to improve the timeliness of real-time workflow applications in a
heterogeneous distributed system, a novel list scheduling heuristic has been pro-
posed, which utilizes schedule gaps with a technique that combines approximate
computations with the FF, BF and WF bin packing policies [38, 41]. Another char-
acteristic of the proposed approach, is that it takes into account the effects of error
propagation among the tasks of an application in case of partially completed tasks.
The task prioritization is based on EDF. Once a task is selected by the scheduler, it
is allocated to the processor that can provide it with the earliest estimated start time.
In order to calculate the estimated start time of the task on the particular processor,
schedule gaps are exploited with a technique that allows only a fraction of the task
to be inserted into an idle time slot. The fraction of the task to be inserted into a
schedule gap must be at least equal to the mandatory part of the task. Moreover, its
potential output error must not exceed the input error limit of its child tasks.

The placement of the partial task into a schedule gap is performed using a modified
version of either the FF, BF or WF bin packing policy:

e First Fit with Approximate Computations (FF_AC): the task is placed into the first
schedule gap where at least its minimum possible computational cost fits.

e Best Fit with Approximate Computations (BF_AC): the task is placed into the
schedule gap where its maximum possible computational cost fits, leaving the
minimum unused time possible.

e Worst Fit with Approximate Computations (WF_AC): the task is placed into the
schedule gap where its minimum possible computational cost fits, leaving the
maximum unused time possible.

In contrast to this approach, the other list scheduling heuristics presented earlier, ISH
and HEFT, essentially use FF in order to utilize idle time slots. More importantly,
with the incorporation of approximate computations, this approach is more flexible,
allowing only a fraction of a task to be inserted into a schedule gap when the task does
not completely fitinto it. An example of scheduling tasks with the proposed heuristics
(EDF_FF_AC, EDF_BF_AC and EDF_WF_AC), compared to the baseline EDF
policy, is illustrated in Fig.9. The parameters of the tasks used in the example are
shown in Table 1.

38 G. L. Stavrinides and H. D. Karatza

(@ 4 (b) 4 © 4 d) 4
time time time time
10 10 — 10 — 10 —
9 — 9 — 9 — 9 —
ny
8 — 8 — 8 — 8 —
7 7 7 7
6 — n; 6 — n; 6 — n3 6 — n3
5 5 5 5
4 — 4 — 4 ny 4
ny
3 — 3 3 3
ny n; n; n;
2 — 2 2 2
ny
1 7:| 1 1 — 1
0 — " 0 n, 0 7:|n, 0 7:|n,
EDF EDF_FF_AC EDF_BF_AC EDF_WF_AC

Fig.9 Anexample of scheduling tasks with the strategies described in Sect.5.2. A task ny4 is sched-
uled according to one of the policies: a EDF (baseline algorithm), b EDF_FF_AC, ¢ EDF_BF_AC
and d EDF_WF_AC. The parameters of the tasks used in the example are shown in Table 1

Table 1 The parameters of the tasks used in the example of Fig. 9. For each task, d is its deadline,
tdara 18 the time at which its required input data will be available, c is its computational cost and
Cmin 18 its minimum computational cost when approximate computations are utilized

Task d tdata c Crin
ny 2 0 1 1
ny 2 1 1
n3 9 5 2 1
ny 10 1 3 1

5.3 Approximate Computations with Checkpointing

In an attempt to improve resilience against transient software failures in a SaaS cloud,
where real-time fine-grained parallel applications are scheduled and executed, the
approximate computations technique has been combined with application-directed
checkpointing [33, 34, 43]. Specifically, gang scheduling is employed, where the
prioritization of the component tasks is according to the EDF policy. In addition to
application-directed checkpointing, fault tolerance is enhanced by the use of approx-
imate computations in either a restricted manner or a more holistic approach. In the
first case, an application may provide approximate results when it has completed its
parallel mandatory part and (a) its deadline is reached, (b) a failure occurred and
its last generated checkpoint stored results corresponding to computational work
greater than or equal to its mandatory part or (c) another notified application must

Scheduling Data-Intensive Workloads in Large-Scale ... 39

start execution immediately (i.e. there is time to execute only the mandatory part
of the other application before its deadline). According to the second approach, all
applications are scheduled to complete only their mandatory part. That is, in this case
all applications give approximate results.

5.4 Approximate Computations with DVFS

In order to enhance energy efficiency, a heuristic that combines approximate com-
putations with DVFS has been proposed, for the scheduling of periodic real-time
tasks [26]. According to this approach, the tasks are scheduled according to the
Mandatory-First Earliest Deadline (MFED) policy, while the supply voltage and
processor frequency are scaled according to the Cycle-Conserving Real-Time DVFS
(CC-RT-DVFS) technique. MFED is a policy according to which the mandatory parts
of the tasks have always higher priority than the optional parts. The mandatory part
with the earliest deadline has the highest priority for execution. CC-RT-DVES is
essentially a dynamic slack reclamation technique, which utilizes the slack time that
occurs due to the early completion of a mandatory part, for the scheduling of the
optional part of the task at a lower processor speed, utilizing DVFS. Thus, in this
strategy there is a trade-off not only between result precision and timeliness, but also
between result precision and energy savings.

6 Conclusions

In this chapter, a classification of data-intensive workloads was proposed and an
overview of the most commonly used heuristics for their scheduling in large-scale
distributed systems was given. Major challenges of data-intensive applications were
covered, such as data locality awareness, timeliness, resilience against failures and en-
ergy efficiency. Furthermore, recent novel ideas and research trends were presented.

Scheduling data-intensive workloads in large-scale distributed systems remains
an active research area, with many open challenges. With the explosive growth of big
data, workloads tend to get more complex and computationally demanding. Conse-
quently, more effective scheduling heuristics must be employed. In addition to the
data locality awareness, timeliness, fault tolerance and energy efficiency objectives,
security is drawing an ever-increasing interest from both the industry and the research
community. Hence, efforts towards this direction are expected to be intensified in the
near future.

40

G. L. Stavrinides and H. D. Karatza

Acknowledgements The second author of this chapter, Helen D. Karatza, has been invited as a
trainer to the cHiPSet Training School 2016 “New Trends in Modeling and Simulation in HPC
Systems”, held in Bucharest, Romania, 21-23 September 2016, and has been supported by the
1C1406 Horizon 2020 grant.

References

10.

11.

12.

13.

14.

15.

16.

18.

19.

. Adam, T.L., Chandy, K.M., Dickson, J.R.: A comparison of list schedules for parallel processing

systems. Commun. ACM 17(12), 685-690 (1974)

. Apache: Apache Hadoop (2017). http://hadoop.apache.org/. Accessed 19 Jun 2017
. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for ef-

ficient management of data centers for cloud computing. Futur. Gener. Comput. Syst. 28(5),
755-768 (2012)

. Bonomi, F,, Milito, R., Natarajan, P., Zhu, J.: Fog Computing: A Platform for Internet of Things

and Analytics, pp. 169-186. Springer, Berlin (2014)

. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and

Applications, 3rd edn. Springer, Berlin (2011)

. Calheiros, R.N., Buyya, R.: Energy-efficient scheduling of urgent bag-of-tasks applications

in clouds through DVFS. In: Proceedings of the 6th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’14), pp. 342-349 (2014)

. Chen, J.J.,, Yang, C.Y., Kuo, T.W.: Slack reclamation for real-time task scheduling over dynamic

voltage scaling multiprocessors. In: Proceedings of the 2006 IEEE International Conference
on Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC’06), pp. 358-365 (2006)

. Cheng, B.C., Stoyenko, A.D., Marlowe, T.J., Baruah, S.K.: LSTF: a new scheduling policy for

complex real-time tasks in multiple processor systems. Automatica 33(5), 921-926 (1997)

. Cisco: Fog computing and the internet of things: extend the cloud to where the things are.

Technical Report C11-734435-00 04/15, San Jose, CA (2015)

Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin Packing Approximation
Algorithms: Survey and Classification, pp. 455-531. Springer, Berlin (2013)

Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107-113 (2008)

Ekanayake, J., Fox, G.: High performance parallel computing with clouds and cloud technolo-
gies. In: Proceedings of the First International Conference on Cloud Computing (CloudCom-
p’09), pp. 20-38 (2009)

Foster, 1., Zhao, Y., Raicu, I, Lu, S.: Cloud computing and grid computing 360-degree com-
pared. In: Proceedings of the 2008 Grid Computing Environments Workshop (GCE’08), pp.
1-10 (2008)

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New York (1979)

Gkoutioudi, K.Z., Karatza, H.D.: Multi-criteria job scheduling in grid using an accelerated
genetic algorithm. J Grid Comput. 10(2), 311-323 (2012)

Hashem, I.A.T., Yaqoob, 1., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of big
data on cloud computing: review and open research issues. Inf. Syst. 47, 98-115 (2015)

. Jiang, H.J., Huang, K.C., Chang, H.Y., Gu, D.S., Shih, PJ.: Scheduling concurrent workflows

in HPC cloud through exploiting schedule gaps. In: Proceedings of the 11th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’11), pp. 282—
293 (2011)

Karatza, H.D.: The impact of critical sporadic jobs on gang scheduling performance in dis-
tributed systems. Simul.: Trans. Soc. Model Simul. Int. 84(2-3), 89-102 (2008)

Karatza, H.D.: Scheduling jobs with different characteristics in distributed systems. In: Proceed-
ings of the 2014 International Conference on Computer, Information and Telecommunication
Systems (CITS’14), pp. 1-5 (2014)

http://hadoop.apache.org/

Scheduling Data-Intensive Workloads in Large-Scale ... 41

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Kolodziej, J.: Evolutionary Hierarchical Multi-Criteria Metaheuristics for Scheduling in Large-
Scale Grid Systems. Springer, Berlin (2012)

Kruatrachue, B., Lewis, T.G.: Duplication scheduling heuristic, a new precedence task sched-
uler for parallel systems. Technical Report. 87-60-3, Oregon State University, Corvallis, OR
(1987)

Lin, K.J., Natarajan, S., Liu, J.W.S.: Imprecise results: utilizing partial computations in real-
time systems. In: Proceedings of the 8th IEEE Real-Time Systems Symposium (RTSS’87), pp.
210-217 (1987)

Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real-time
environment. J. ACM 20(1), 46-61 (1973)

Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 59(2),
107-131 (1999)

Manickam, V., Aravind, A.: A fair and efficient gang scheduling algorithm for multicore proces-
sors. In: Proceedings of the 6th International Conference on Information Processing (ICIP’12),
pp. 467-476 (2012)

Mizotani, K., Hatori, Y., Kumura, Y., Takasu, M., Chishiro, H., Yamasaki, N.: An integration
of imprecise computation model and real-time voltage and frequency scaling. In: Proceedings
of the 30th International Conference on Computers and Their Applications (CATA’15), pp.
63-70 (2015)

Mok, A.K.: Fundamental design problems of distributed systems for the hard real-time envi-
ronment. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA (1983)
Moschakis, I.A., Karatza, H.D.: Multi-criteria scheduling of bag-of-tasks applications on het-
erogeneous interlinked clouds with simulated annealing. J. Syst. Softw. 101, 1-14 (2015)
Oldfield, R.A., Arunagiri, S., Teller, PJ., Seelam, S., Varela, M.R., Riesen, R., Roth, P.C.:
Modeling the impact of checkpoints on next-generation systems. In: Proceedings of the 24th
IEEE Conference on Mass Storage Systems and Technologies (MSST’07), pp. 30—46 (2007)
Papazachos, Z.C., Karatza, H.D.: Performance evaluation of gang scheduling in a two-cluster
system with migrations. In: Proceeding 23rd IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’09), pp. 1-8 (2009)

Russom, P.: Big data analytics. Technical Report TDWI Best Pract. Rep., Fourth Quart., TDWI
Research (2011)

Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling for Real-
Time Systems: EDF and Related Algorithms. Kluwer Academic Publishers, Dordrecht (1998)
Stavrinides, G.L., Karatza, H.D.: Performance evaluation of gang scheduling in distributed real-
time systems with possible software faults. In: Proceedings of the 2008 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS’08),
pp. 1-7 (2008)

Stavrinides, G.L., Karatza, H.D.: Fault-tolerant gang scheduling in distributed real-time systems
utilizing imprecise computations. Simul.: Trans. Soc. Model Simul. Int. 85(8), 525-536 (2009)
Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs with end-to-end deadlines
in distributed real-time systems utilizing imprecise computations. J. Syst. Softw. 83(6), 1004—
1014 (2010)

Stavrinides, G.L., Karatza, H.D.: The impact of input error on the scheduling of task graphs
with imprecise computations in heterogeneous distributed real-time systems. In: Proceedings
of the 18th International Conference on Analytical and Stochastic Modeling Techniques and
Applications (ASMTA’11), pp. 273-287 (2011)

Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs in heterogeneous distributed
real-time systems by exploiting schedule holes with bin packing techniques. Simul. Model.
Pract. Theor. 19(1), 540-552 (2011)

Stavrinides, G.L., Karatza, H.D.: Scheduling real-time DAGs in heterogeneous clusters by
combining imprecise computations and bin packing techniques for the exploitation of schedule
holes. Futur. Gener. Comput. Syst. 28(7), 977-988 (2012)

42

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

G. L. Stavrinides and H. D. Karatza

Stavrinides, G.L., Karatza, H.D.: The impact of resource heterogeneity on the timeliness of
hard real-time complex jobs. In: Proceedings of the 7th International Conference on PErvasive
Technologies Related to Assistive Environments (PETRA’14), Workshop on Distributed Sensor
Systems for Assistive Environments (Di-Sensa), pp. 65:1-65:8 (2014)

Stavrinides, G.L., Karatza, H.D.: Scheduling real-time jobs in distributed systems-simulation
and performance analysis. In: Proceedings of the 1st International Workshop on Sustainable
Ultrascale Computing Systems (NESUS’ 14), pp. 13-18 (2014)

Stavrinides, G.L., Karatza, H.D.: A cost-effective and QoS-aware approach to scheduling real-
time workflow applications in PaaS and SaaS$ clouds. In: Proceedings of the 3rd International
Conference on Future Internet of Things and Cloud (FiCloud’15), pp. 231-239 (2015)
Stavrinides, G.L., Karatza, H.D.: Scheduling different types of applications in a saas cloud. In:
Proceedings of the 6th International Symposium on Business Modeling and Software Design
(BMSD’16), pp. 144-151 (2016)

Stavrinides, G.L., Karatza, H.D.: Scheduling real-time parallel applications in saas clouds in the
presence of transient software failures. In: Proceedings of the 2016 International Symposium
on Performance Evaluation of Computer and Telecommunication Systems (SPECTS’16), pp.
1-8 (2016)

Stavrinides, G.L., Karatza, H.D.: The effect of workload computational demand variability
on the performance of a SaaS cloud with a multi-tier SLA. In: Proceedings of the IEEE 5th
International Conference on Future Internet of Things and Cloud (FiCloud’17), pp. 10-17
(2017)

Stavrinides, G.L., Karatza, H.D.: Periodic scheduling of mixed workload in distributed systems.
In: Proceedings of the 23rd ICE/IEEE International Conference on Engineering, Technology
and Innovation (ICE’17) (2017, in press)

Stavrinides, G.L., Karatza, H.D.: Scheduling real-time bag-of-tasks applications with approx-
imate computations in SaaS clouds. Concurr. Comput. Pract. Exp. (2017, in press)
Stavrinides, G.L., Karatza, H.D.: Simulation-based performance evaluation of an energy-
aware heuristic for the scheduling of HPC applications in large-scale distributed systems.
In: Proceedings of the 8th ACM/SPEC International Conference on Performance Engineering
(ICPE’17), 3rd International Workshop on Energy-aware Simulation (ENERGY-SIM’17), pp.
49-54 (2017)

Stavrinides, G.L., Duro, FR., Karatza, H.D., Blas, J.G., Carretero, J.: Different aspects of
workflow scheduling in large-scale distributed systems. Simul. Model. Pract. Theor. 70, 120-
134 (2017)

Sun, R., Yang, J., Gao, Z., He, Z.: A virtual machine based task scheduling approach to im-
proving data locality for virtualized hadoop. In: Proceedings of the 2014 IEEE/ACIS 13th
International Conference on Computer and Information Science (ICIS’ 14), pp. 297-302 (2014)
Tabak, E.K., Cambazoglu, B.B., Aykanat, C.: Improving the performance of independent task
assignment heuristics minmin, maxmin and sufferage. IEEE Trans. Parallel. Distrib. Syst. 25(5),
1244-1256 (2014)

Talia, D.: Clouds for scalable big data analytics. Computer 46(5), 98—101 (2013)
Terzopoulos, G., Karatza, H.D.: Bag-of-task scheduling on power-aware clusters using a DVFS-
based mechanism. In: Proceedings of the 28th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS’14), 10th Workshop on High-Performance, Power-Aware Com-
puting (HPPAC’ 14), pp. 833-840 (2014)

Topcuoglu, H., Hariri, S., Wu, M. Y.: Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel. Distrib. Syst. 13(3), 260-274 (2002)
Valentini, G.L., Lassonde, W., Khan, S.U., Allah, N.M., Madani, S.A., Li, J., Zhang, L., Wang,
L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A.Y., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F,,
Pecero, J.E., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster
computing systems. Clust. Comput. 16(1), 3-15 (2013)

Wang, L., Tao, J., Ranjan, R., Marten, H., Streit, A., Chen, J., Chen, D.: G-Hadoop: MapReduce
across distributed data centers for data-intensive computing. Futur. Gener. Comput. Syst. 29(3),
739-750 (2013)

Scheduling Data-Intensive Workloads in Large-Scale ... 43

56. Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applications in combination with QoS
in the computational grid. Futur. Gener. Comput. Syst. 21(2), 271-280 (2005)

57. Yang, T., Gerasoulis, A.: DSC: scheduling parallel tasks on an unbounded number of processors.
IEEE Trans. Parallel. Distrib. Syst. 5(9), 951-967 (1994)

58. Zaharia, M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay schedul-
ing: a simple technique for achieving locality and fairness in cluster scheduling. In: Proceedings
of the 5th European Conference on Computer Systems (EuroSys’10), pp. 265-278 (2010)

59. Zhao,J., Wang, L., Tao, J., Chen, J., Sun, W, Ranjan, R., Kolodziej, J., Streit, A., Georgakopou-
los, D.: A security framework in G-Hadoop for big data computing across distributed cloud
data centres. J. Comp. Syst. Sci. 80(5), 994-1007 (2014)

	Scheduling Data-Intensive Workloads in Large-Scale Distributed Systems: Trends and Challenges
	1 Introduction
	2 Scheduling Problem
	2.1 Scheduling Objectives

	3 Data-Intensive Workloads in Large-Scale Distributed Systems
	3.1 Fine-Grained Parallel Applications
	3.2 Coarse-Grained Parallel Applications
	3.3 Embarrassingly Parallel Applications

	4 Major Challenges
	4.1 Data Locality
	4.2 Time Constraints
	4.3 Fault Tolerance
	4.4 Energy Efficiency

	5 Recent Novel Ideas and Research Trends
	5.1 VM Live Migrations
	5.2 Approximate Computations with Bin Packing
	5.3 Approximate Computations with Checkpointing
	5.4 Approximate Computations with DVFS

	6 Conclusions
	References

