
Studies in Big Data 36

Joanna Kołodziej
Florin Pop
Ciprian Dobre Editors

Modeling and
Simulation in
HPC and Cloud
Systems

Studies in Big Data

Volume 36

Series editor

Janusz Kacprzyk, Polish Academy of Sciences, Warsaw, Poland
e-mail: kacprzyk@ibspan.waw.pl

The series “Studies in Big Data” (SBD) publishes new developments and advances
in the various areas of Big Data- quickly and with a high quality. The intent is to
cover the theory, research, development, and applications of Big Data, as embedded
in the fields of engineering, computer science, physics, economics and life sciences.
The books of the series refer to the analysis and understanding of large, complex,
and/or distributed data sets generated from recent digital sources coming from
sensors or other physical instruments as well as simulations, crowd sourcing, social
networks or other internet transactions, such as emails or video click streams and
other. The series contains monographs, lecture notes and edited volumes in Big
Data spanning the areas of computational intelligence incl. neural networks,
evolutionary computation, soft computing, fuzzy systems, as well as artificial
intelligence, data mining, modern statistics and Operations research, as well as
self-organizing systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.

More information about this series at http://www.springer.com/series/11970

http://www.springer.com/series/11970

Joanna Kołodziej • Florin Pop
Ciprian Dobre
Editors

Modeling and Simulation
in HPC and Cloud Systems

123

Editors
Joanna Kołodziej
Institute of Computer Science
Cracow University of Technology
Cracow
Poland

Florin Pop
Department of Computer Science
University Politehnica of Bucharest
Bucharest
Romania

Ciprian Dobre
Department of Computer Science
University Politehnica of Bucharest
Bucharest
Romania

ISSN 2197-6503 ISSN 2197-6511 (electronic)
Studies in Big Data
ISBN 978-3-319-73766-9 ISBN 978-3-319-73767-6 (eBook)
https://doi.org/10.1007/978-3-319-73767-6

Library of Congress Control Number: 2017962997

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

To our Families and Friends with Love and
Gratitude

Preface

The latest trend of computing paradigm is to push elastic resources such as com-
putation and storage to the edge of networks by splitting computation between fog
nodes (devices, set—top—boxes and datacenters). Mobile applications that utilize
Cloud computing technologies have become increasingly popular over the recent
years, with examples including data streaming, real-time video processing, IoT data
gathering and processing, social networking, gaming, etc. Such applications gen-
erally consist of a frontend component running on the mobile device and a backend
component running on the Cloud, where the Cloud provides additional data storage
and processing capabilities. With this architecture, it is possible to run complex
applications on handheld devices that have limited processing power. A mobile
device is a computing and engineering marvel, but it has limitations in terms of
what it can do. Whether the mobile device is an ultra-book, a tablet, or a smart-
phone, it will have local storage and native applications, and it will perform most
tasks locally just fine. Nonetheless, the Cloud will help the mobile device do the
“heavy lifting” when necessary. These models follow the “Smart Anything
Everywhere” trend that requires new models for application orchestration and
development. These models should be cost-aware and energy-aware in using
computation and communication.

Most of the existing Cloud providers (Amazon EC2, Google Cloud Platform,
Microsoft Azure etc.) use replication as the fundamental mechanism to provide
fault tolerance at data level (Amazon Elastic Block Store, GlusterFS, GFS, HDFS).
The motivation for this approach lies in the low cost of the Cloud components:
commodity disks, processors, memory, chip sets, etc. As for computing tasks, the
main approach is re-execution (Hadoop task and node fault-tolerance model). Tasks
are independent: they do not communicate with each other. The reduce part of the
Map-Reduce computational model is a task by itself that could be restarted in case
of failure. As a consequence, when a task fails, other tasks are not affected. Task
re-execution could be accelerated by the use of check-pointing or incremental
check-pointing. However, this is not a common situation in Clouds, where storage

vii

is mainly used for application data1. The advance modelling and performance
evaluation are the keys aspects for Cloud Providers.

Middleware infrastructures designed to manage distributed applications typically
rely on several layers. Although each previously proposed solution in the literature
adds its own layers, there are certain components generally present in all content
management systems2. The bottom level contains various sensors (physical, virtual
or logical), which include all types of sensing devices, from specialized equipment
such as air pollution analysers, to smartphones or tablets. The next layer deals with
retrieval of raw context data and provides standardized APIs to higher levels. The
third layer is responsible for pre-processing functions and is used when raw
information is too large or coarse-grained or it needs translation to a specific format.
The storage and management layer is at the next level and it handles the way data is
stored and how interested entities can request it, using either push- or pull-based
access. At top level lies the application layer, which is basically the client. Context
models are employed in order to represent gathered information in an efficient and
easily-accessible way3; they typically include key-value, mark-up schemes, and
graphical, object-oriented, logic-based or ontology-based models.

Most applications require content gathering networks built on the top of Cloud
systems. The main challenge is that there are already millions of mobile devices in
use, which can be utilized at any time. However, this also represents a disadvantage
due to the heterogeneity of these devices. Because of the high levels of mobility (as
well as energy levels, communication channels or even owner preferences), the
accuracy, latency, and confidence of the data that these devices produce can fluc-
tuate heavily at times. Therefore, the main challenge in content gathering networks
is identifying the best set of devices that could offer required data, but also con-
figuring them with suitable parameters in order to adjust the results’ quality. Cloud
systems are used for autonomous computing, a paradigm introduced by IBM4 that
aims at building systems that can manage themselves by automatically adapting to
the changing environment conditions. An autonomic system is able to continually
react to external factors and update its state according to high-level policies. To
achieve self-management, a system has to encapsulate a set of self-* properties,
including the main four properties defined by the initial IBM autonomic computing
initiative: self-configuration, self-protection, self-optimization, and self-healing.
Subsequent research efforts extended this list with new properties conceived to

1Olofsson, Kristoffer Andreas. “Gathering and organizing content distributed via social media.”
U.S. Patent 8,990,701, issued March 24, 2015.
2 Vincent C. Emeakaroha, Kaniz Fatema, Philip Healy, and John P. Morrison. “Contemporary
Analysis and Architecture for a Generic Cloud-based Sensor Data Management Platform.” Sensors
& Transducers 185, no. 2 (2015): 100.
3 Yaser Jararweh, Mahmoud Al-Ayyoub, Elhadj Benkhelifa, Mladen Vouk, and Andy Rindos.
“Software defined Cloud: Survey, system and evaluation.” Future Generation Computer Systems
(2015).
4An architectural blueprint for autonomic computing. Tech. rep., IBM, 2003.

viii Preface

enable or to complement the initial ones, such as self-awareness, self-adjusting,
self-anticipating, self-organizing, and self-recovery. A comprehensive reference
model, FORMS (FOrmal Reference Model for Self-adaptation) targets highly
dynamic and unpredictable behavior in distributed systems5.

There is a very thin theoretical effort to characterize the resistance of distributed
systems to complex faults or perturbing events (failures, cyber-attacks, internal
re-organization, or unexpected load) that may happen simultaneously. Recently,
theoretical studies investigate algorithmic building blocks for distributed systems
that may tolerate both Byzantine faults and transient faults or special kinds of
mobile Byzantine faults, which advanced the research in the field. These works
concern only two building blocks in distributed systems (agreement and storage)
and investigate only simple communication models (synchronous communication).
Note that, these studies have been done by members of cHipSet COST Action and
due to their recent publication (2016) none of the existing Cloud systems integrate
yet these theoretical advances.

Other challenges include: localized analytics, resource limitation, privacy,
security and data integrity, aggregate analytics and architecture, presented in detail
in6. Localized analytics are needed because raw data may not be suitable for direct
consumption by the application, so in a way they are the equivalent of the
pre-processing layer of the context-aware system architecture. However, it should
be noted that pre-processing of raw data should be performed in regard to the
context of the requesting node, therefore the challenge in this case is designing the
appropriate heuristics to achieve this (e.g. data mediation and context inference).

Cloud computing systems are also built for Big Data Processing. The main
research challenges and issues are: (i) the cloud infrastructure is increasingly more
heterogeneous (multi-core processors, attached co-processors like GPUs and
FPGAs); (ii) the spectrum of cloud services and cloud applications widens (e.g. in
the last year Amazon EC2 added 10+ new services, the cloud infrastructure is
expected to support an increasing number of data- and CPU-intensive Big Data
applications); (iii) Cloud over-provisioning demands high initial costs and leads to a
low system utilization (average cloud server utilization is in the 18% to 30% range,
but this strategy is not economically sustainable) and (iv) the cloud computing
landscape is fragmented (Cloud service providers support different cloud delivery
models: Amazon—IaaS, Microsoft—PaaS and Google mostly SaaS)7.

5 Danny Weyns, Sam Malek, and Jesper Andersson. “FORMS: Unifying reference model for
formal specification of distributed self-adaptive systems” (2012). ACM Trans. Auton. Adapt. Syst.
7, 1, Article 8 (May 2012), 61 pages.
6 Ganti, R. K.; Fan Ye; Hui Lei; “Mobile crowdsensing: current state and future challenges”
(November 2011) Communications Magazine, IEEE, vol. 49, no.11, pp. 32–39.
7 Dan Marinescu, “Self-organization and the Cloud Ecosystem”, Invited Talk at The 20th
International Conference on Control Systems and Computer Science, May 2015, Bucharest,
Romania.

Preface ix

Other new aspects related to Cloud systems were presented in several special
issues, published by the authors: Autonomic Computing and Big Data platforms
published in Soft Computing Journal8 being oriented on computer and information
advances aiming to develop and optimize advanced system software, networking,
and data management components to cope with Big Data processing; Advanced
topics on middleware services for heterogeneous distributed computing (Part 1 and
Part 2), being oriented on modeling of resource management and middleware
systems different computing paradigms like Cluster Computing, Grid Computing,
Peer-to-Peer Computing, and Cloud Computing all involving elements of hetero-
geneity9,10 published by Elsevier in Future Generation Computer Systems (FGCS).
Finally, the book published in Springer, Resource Management for Big Data
Platforms: Algorithms, Modelling, and High-Performance Computing
Techniques11 serves as a flagship driver towards advance research in the area of
Big Data platforms and applications being oriented on methods, techniques, and
performance evaluation.

Modelling and Simulation (MS) in the Big Data era is widely considered the
essential tool in science and engineering to substantiate the prediction and analysis
of complex systems and natural phenomena. MS offers suitable abstractions to
manage the complexity of analyzing Big Data in various scientific and engineering
domains. Unfortunately, Big Data problems are not always easily amenable to
efficient MS over HPC. Also, MS communities may lack the detailed expertise
required to exploit the full potential of HPC solutions, and HPC architects may not
be fully aware of specific MS requirements.

This book herewith presents the comprehensive analysis of state-of-the-art, solid
backgrounds and novel concepts in the analysis, implementation, and evaluation of
next generation HPC and cloud–based models, technologies, simulations and
implementations for data intensive applications. The book contains eight chapters,
where five are the summary of the tutorials and workshops organized as a part
of the Traiing School of the cHiPSet (High-Performance Modelling and Simulation
for Big Data Applications http://chipset-cost.eu) Cost Action on “New Trends in
Modeling and Simulation in HPC Systems,” held in Bucharest (Romania) on
September 21–23, 2016. The main goal of that school was to improve the partic-
ipants’ practical skills and knowledge of the novel HPC-driven models and

8Pop, Florin, Ciprian Dobre, and Alexandru Costan. “AutoCompBD: Autonomic Computing and
Big Data platforms.” (2017): 1–3.
9 Pop, Florin, Xiaomin Zhu, and Laurence T. Yang. “Midhdc: Advanced topics on middleware
services for heterogeneous distributed computing. part 1.” Future Generation Computer Systems
56 (2016): 734–735.
10Pop, Florin, Xiaomin Zhu, and Laurence T. Yang. “MidHDC: Advanced topics on middleware
services for heterogeneous distributed computing. Part 2.” (2017): 86–89.
11Pop, Florin, Joanna Kołodziej, and Beniamino Di Martino, eds. Resource Management for Big
Data Platforms: Algorithms, Modelling, and High-Performance Computing Techniques. Springer,
2016.

x Preface

http://chipset-cost.eu

technologies for Big Data applications. The trainers, who are also the authors of the
chapters of this book, explained how to design, construct, and utilize the complex
MS tools that capture many of the HPC modeling needs, from scalability to fault
tolerance and beyond. The remaining three chapters present the first results of the
school: new ideas and novel results of the research on security aspects in clouds,
first prototypes of the complex virtual models of data in Big Data streams and data
intensive computing framework for Opportunistic Networks. All that work was
realized by the trainees in their research teams.

cHiPSet Training School and Research Material

cHiPSet Training School 2016

The training school within COST Action IC140612 featured presentations and
hands-on practice and demonstration of novel methods, mechanisms, techniques,
and technologies in Modelling and Simulation (MS), with a special emphasis on
evaluation of HPC Systems. Today MS is widely considered the essential tool in
science and engineering to substantiate the prediction and analysis of complex
systems and natural phenomena. MS offers suitable abstractions to manage the
complexity of analyzing Big Data in various scientific and engineering domains.
Unfortunately, Big Data problems are not always easily amenable to efficient MS
over HPC. Also, MS communities may lack the detailed expertise required to
exploit the full potential of HPC solutions, and HPC architects may not be fully
aware of specific MS requirements. Thus, the goal of the training school was to
offer to participants, Ph.D. students and Early Stage Researchers, coming from
these two worlds, the skills to understand and work with models and concepts
coming from HPC, to design accurate modeling and simulation strategies for the
evaluation of HPC solutions, to design, construct, and use complex MS tools that
capture many of the HPC modeling needs, from scalability to fault tolerance and
beyond. At the end, participants learned how to efficiently turn massively large
HPC data into valuable information and meaningful knowledge, with the help of
covered new trends in MS.

The logical structure of the Training School programme, in terms of reached
topics and subjects, allowed participants to understand and grasp concepts related to
the terminology, properties and the models used to evaluate HPC systems using
modeling and simulation. This was continued with a set of lectures and hands-on
exercises, on tools to evaluate using modeling and simulation systems and appli-
cations, either related to distributed processing infrastructures, Cloud systems, or
various other applications. In the end, the Training School ended with lectures on
what does it mean to develop good evaluation methodologies.

12www.chipset-cost.eu.

Preface xi

http://www.chipset-cost.eu

TS Research Results

The first five chapters in this part are the etended version of the training material
presented at the cHiPSet training school. They contain the background information
of the HPC modelling and simulation domain in the Big Data modern era. New
trends, models, and challenges are addressed in this part.

In Chapter “Evaluating Distributed Systems and Applications Through Accurate
Models and Simulations”, Frincu et al. discuss the role of modeling and simulation
in the callibration and evaluation of the HPC systems implemented in the dis-
tributed environments. The chapter focuses on the theory and hands–on behind
some of the most widely used tools for simulating a Cloud environment. The
authors analyzed selected existing models for representing both applications and the
underlying distributed platform and infrastructure.In simulation part, they used
SimGrid simulator. The first author and TS trainer—Dr. Marc Frincu—is a young
promising researcher from the Department of Computer Science at UVT working
on cutting edge topics related to clouds, smart grids, and Big Data. He did his
research also at the University of Southern California working with prof. Viktor
Prasanna on smart grids and clouds. At UVT he leads the CER research group
focusing on applying cloud computing to areas such as smart grids and Big Data.

As large scale distributed systems such as grids and clouds offer computational
services to scientists, consumers and enterprises, there are important issues that
must be addressed for large scale distributed systems, such as: performance,
resource allocation, efficient scheduling, energy conservation, reliability, cost,
availability, quality. Furthermore, due to the cost of electrical power consumption
and the environmental impact, energy efficiency in large scale systems is a global IT
concern. Effective management of distributed resources is crucial to use effectively
the power of these systems and achieve high system performance. Resource allo-
cation and scheduling is a difficult task in large scale distributed systems where
there are many alternative heterogeneous computers. The scheduling algorithms
must seek a way to maintain a good response time along with energy-efficient
solutions that are required to minimize the impact of grid and cloud computing on
the environment. Furthermore, the simultaneous usage of computational services of
different distributed systems such as clusters, grids, and clouds can have additional
benefits such as lower cost and high availability.

Chapter “Scheduling Data-Intensive Workloads in Large-Scale Distributed
Systems: Trends and Challenges” presents the backgrond study on the scheduling
problems in HPC distribited environments. The detailed taxonomy of the modern
scheduling methods and models is defined in detailed, which is one of the best
sources of such systematic survey of the recent developments in the domain. The
authors present a variety of concepts on HPC systems such as grids and clouds,
based on existing or simulated grid and cloud systems, that provide insight into
problems solving and we will provide future directions in the grid and cloud
computing area. Advanced modelling and simulation techniques are a basic aspect
of performance evaluation that is needed before the costly prototyping actions

xii Preface

required for complex distributed systems. Queuing network models of large scale
distributed systems will be described and analysed and performance metrics will be
presented. Complex workloads will be examined including real time jobs and
scientific workflows. The second author, who was TS trainer—Prof. Helen Karatza—
is a world class expert in the modelling and simulation and scheduling in grids and
clouds. She is a Professor in the Department of Informatics at the Aristotle
University of Thessaloniki, Greece. Currently, she is a senior member of SCS,
IEEE and ACM, and she served as an elected member of the Board of Directors at
Large of the Society for Modeling and Simulation International (2009–2011).

Chapter “Design Patterns and Algorithmic Skeletons: A Brief Concordance” is
an extension of the training course, which was an introduction into the principles
and methods for High-Performance Computing. It made trainees familiar with the
tools to develop HPC applications, and form the set of skills for them to understand
the pitfalls and subtle details behind optimizing such applications when running
them on large distributed infrastructures. In this chapter, the authors addressed one
of the challenging problem related to the general topic of the course: how to
establish a correspondence between the well-known, accepted design pattern
approach and the programmer-oriented functional algorithmic skeleton paradigm.
The TS tariner—Dr. Horacio González–Vélez—is vice Chair of the cHiPSet Action
and head of the NCI Cloud Computing Center in Dublin, Ireland. He has been
recognized with the European Commission ICT award for his efforts on scientific
dissemination and the UK NESTA Crucible Fellowship for his inter-disciplinary
research on computational science.

The next chapter is on the “Evaluation of Cloud Systems”, the corresponding TS
course has been provided by Prof. Florin Pop, from University Politehnica of
Bucharest, Romania. The chapter covers the fundamental problems related to the
evaluation of the clouds usually met in practice. The authors explain how to
develop a correct methodology for the evaluation using simulation of Cloud ser-
vices and components. The CloudSim tool was used in the evaluation section.
Florin Pop is an expert in scheduling and resource management (decentralized
techniques, re-scheduling), multi-criteria optimization methods, Grid middleware
tools and applications development (satellite image processing an environmental
data analysis), prediction methods, self-organizing systems, contextualized services
in distributed systems.

Science gateways also called portals, virtual research environments or virtual
labs form a solution, which offer a graphical user interface tailored to a specific
research domain with a single point of entry for job and data management hiding
the underlying infrastructure. In the last 10 years quite a few web development
frameworks, containerizations, science gateway frameworks and APIs with differ-
ent foci and strengths have evolved to support the developers of science gateways
in implementing an intuitive solution for a target research domain. The selection of
a suitable technology for a specific use case is essential and helps reducing the effort
in implementing the science gateway by re-using existing software or frameworks.

Preface xiii

Thus, a solution for a user community can be provided more efficiently.
Additionally, novel developments in web-based technologies and agile web
frameworks allow for supporting developers in efficiently creating web-based sci-
ence gateways.

The topic science gateways and related technologies have gained also impor-
tance in the last 10 years for the HPC community. The first time in the history of
such solutions, providers of HPC, grid and cloud infrastructures have reported in
2014 that more of their resources have been accessed via science gateways than via
command line. The US National Science Foundation (NSF) has recommended a
Science Gateway Community Institute for funding, which will provide services
starting in July 2016. Additionally, IEEE launched a technical area on science
gateways as part of the Technical Committee on Scalable Computing.

Dr. Sandra Gesing from University of Notre Dame (USA) in Chapter “Science
Gateways in HPC: Usability Meets Efficiency and Effectiveness” focus on the
development of applications over Science gateways. Modeling and simulations,
which necessitate HPC infrastructures, are often based on complex scientific the-
ories and involve interdisciplinary research teams. IT specialists support with the
efficient access to HPC infrastructures. They design, implement and configure the
simulations and models reflecting the sophisticated theoretical models and
approaches developed and applied by domain researchers. Roles in such interdis-
ciplinary teams may overlap dependent on the knowledge and experience with
computational resources and/or the research domain. Domain researchers are
mainly not IT specialists and the requirement to employ HPC infrastructures via
command line often forms a huge hurdle for them. Thus, there is the need to
increase the usability of simulations and models on HPC infrastructures for the
uptake by the user community.

Post-TS Research Results

One of the dreams of the organizers of the Training School in Bucharest was to give
to the both trainees and trainers the inspiration to the new research, ideas and
developments. Good dreams may come true very quickly. Threfeore, we are very
happy to present in the second part of the book chapters with interesting new ideas
and results achieved by the school trainees in their research groups in the period of
10 months after the event.

In Chapter “MobEmu: A Framework to Support Decentralized Ad-Hoc
Networking”, the authors present the simulation toolkit for the opportunistic net-
works (ON). They mainly focus on the parametrisation of routing process and
dissemination of the information and data among the mobile users and resources.
The challenge in simulating mobile networks arises from two difficult problems:
formalizing mobility features and extracting mobility models. Based on two main
mobility models in ONs, namely, models where traces are the results of experi-
ments recording the mobility features of users (location, connectivity, etc.),

xiv Preface

and synthetic pure mathematical models which attempt to express the movement of
devices, the developed simulator allows to conduct experiments on realistic data.

The new challenge in today’s data intensive computing is the efficient and secure
management of larve volumes of data in the shortest possible time. Recently, some
inspirations from the financial virtual markets such as Forex and virtual stock
exchanges are discussed in the data mining community. It would allow to keep
the physical data at one storage server, while data virtual models can be used for the
processing and analysis. Chapter “Virtualisation Model for Processing of the
Sensitive Mobile Data” shows the first results of such virtualization. The authors
focused on the transmission of the personal fragile data over the obile cloud. The
achieved results seems to be very promissing and confirm the promising direction
of the further research in this domain.

The computational load of cryptographic procedures in Cloud Computing
(CC) systems are crucial to such systems effectiveness. Additionally, assuring
Quality of Service (QoS) requirements is possible when the security layer applied to
tasks does not interrupt the computing process. Such solutions have to protect both
the user data as well as the whole system. They have to support the scalability,
multi-tenancy and complexity that CC systems. In Chapter “Analysis of Selected
Cryptographic Services for Processing Batch Tasks in Cloud Computing Systems”,
the authors present a cryptographic service based on blind RSA algorithm and
Shamir secret sharing. The service was designed for batch tasks processing by
many Virtual Machines (VMs) as working nodes. Blind RSA cryptographic system
is used to encrypt the data without actually knowing any details about the tasks
content. Shamir secret sharing procedure is proposed in order to assure whether all
VMs in the system gave back their shares after deploying the batch of tasks on them
or not. Authors provided detailed analysis of proposed cryptographic service. An
extensive scalability analysis is presented. Experimental results performed in order
to evaluate the proposed model are done on CloudSim simulator.

Acknowledgements

This book project has been inspired and based upon our work from COST Action
IC1406 High-Performance Modelling and Simulation for Big Data Applications
(cHiPSet), supported by COST (European Cooperation in Science and
Technology). We are grateful to all the contributors of this book, especially trainers
and trainees as well as the organizers of the cHiPSet Training School 2016 orga-
nized in Bucharest in September 2016. We thank also to the rest of the the authors
for their interesting proposals of book chapters, their time, efforts and their research
results. We also would like to express our sincere thanks to Dr. Ralph Stuebner—
cHiPSet Cost Scientific Officer—and all cHiPSet members who have helped us
ensure the quality of this volume. We gratefully acknowledge their time and
valuable remarks and comments.

Preface xv

Our special thanks go to Prof. Janusz Kacprzyk, editor-in-chief of the Springer’s
Studies in Big Data Series, Dr. Thomas Ditzinger and all editorial team of Springer
Verlag for their patience, valuable editorial assistance and excellent cooperation in
this book project.

Finally, we would like to send our warmest gratitude message to our friends and
families for their patience, love, and support in the preparation of this volume.

Cracow, Poland Joanna Kołodziej, cHiPSet Chair
Bucharest, Romania Florin Pop
September 2017 Ciprian Dobre

xvi Preface

Contents

Evaluating Distributed Systems and Applications Through
Accurate Models and Simulations . 1
Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru
and Anca Vulpe

Scheduling Data-Intensive Workloads in Large-Scale
Distributed Systems: Trends and Challenges . 19
Georgios L. Stavrinides and Helen D. Karatza

Design Patterns and Algorithmic Skeletons:
A Brief Concordance . 45
Adriana E. Chis and Horacio González–Vélez

Evaluation of Cloud Systems . 57
Mihaela-Andreea Vasile, George-Valentin Iordache,
Alexandru Tudorica and Florin Pop

Science Gateways in HPC: Usability Meets Efficiency
and Effectiveness . 73
Sandra Gesing

MobEmu: A Framework to Support Decentralized
Ad-Hoc Networking . 87
Radu-Ioan Ciobanu, Radu-Corneliu Marin and Ciprian Dobre

Virtualization Model for Processing of the Sensitive
Mobile Data . 121
Andrzej Wilczyński and Joanna Kołodziej

Analysis of Selected Cryptographic Services for Processing
Batch Tasks in Cloud Computing Systems . 135
Agnieszka Jakóbik and Jacek Tchórzewski

xvii

Contributors

Adriana E. Chis Cloud Competency Centre, National College of Ireland, Dublin 1,
Ireland

Radu-Ioan Ciobanu University Politehnica of Bucharest, Bucharest, Romania

Ciprian Dobre University Politehnica of Bucharest, Bucharest, Romania

Marc Frincu West University of Timisoara, Timisoara, Romania

Sandra Gesing University of Notre Dame, Notre Dame, USA

Horacio González–Vélez Cloud Competency Centre, National College of Ireland,
Dublin 1, Ireland

George-Valentin Iordache Computer Science Department, Faculty of Automatic
Control and Computers, University Politehnica of Bucharest, Bucharest, Romania

Bogdan Irimie West University of Timisoara, Timisoara, Romania

Agnieszka Jakóbik Tadeusz Kościuszko Cracow University of Technology,
Cracow, Poland

Helen D. Karatza Department of Informatics, Aristotle University of
Thessaloniki, Thessaloniki, Greece

Joanna Kołodziej Cracow University of Technology, Cracow, Poland

Radu-Corneliu Marin University Politehnica of Bucharest, Bucharest, Romania

Florin Pop Computer Science Department, Faculty of Automatic Control and
Computers, University Politehnica of Bucharest, Bucharest, Romania; National
Institute for Research and Development in Informatics (ICI), Bucharest, Romania

Teodora Selea Austria Research Institute, Timisoara, Romania

Adrian Spataru Austria Research Institute, Timisoara, Romania

xix

Georgios L. Stavrinides Department of Informatics, Aristotle University of
Thessaloniki, Thessaloniki, Greece

Jacek Tchórzewski Tadeusz Kościuszko Cracow University of Technology,
Cracow, Poland; AGH University of Science and Technology Krakow, Cracow,
Poland

Alexandru Tudorica Computer Science Department, Faculty of Automatic
Control and Computers, University Politehnica of Bucharest, Bucharest, Romania

Mihaela-Andreea Vasile Computer Science Department, Faculty of Automatic
Control and Computers, University Politehnica of Bucharest, Bucharest, Romania

Anca Vulpe West University of Timisoara, Timisoara, Romania

Andrzej Wilczyński Cracow University of Technology, Cracow, Poland; AGH
University of Science and Technology, Cracow, Poland

xx Contributors

Evaluating Distributed Systems
and Applications Through Accurate
Models and Simulations

Marc Frincu, Bogdan Irimie, Teodora Selea, Adrian Spataru
and Anca Vulpe

Abstract Evaluating the performance of distributed applications can be performed
by in situ deployment on real-life platforms. However, this technique requires effort
in terms of time allocated to configure both application and platform, execution time
of tests, and analysis of results. Alternatively, users can evaluate their applications by
running them on simulators on multiple scenarios. This provides a fast and reliable
method for testing the application and platform on which it is executed. However,
the accuracy of the results depend on the cross-layer models used by the simulators.
In this chapter we investigate some of the existing models for representing both
applications and the underlying distributed platform and infrastructure.We focus our
presentation on the popular SimGrid simulator. We emphasize some best practices
and conclude with few control questions and problems.

1 Introduction

A distributed system (DS) is a collection of entities (e.g., process or device) which
communicate through a communication medium (e.g., wired or wireless network)
appearing to end users as a single coherent system. The entities are characterized
by autonomicity, programmability, asynchronicity, and failure-proneness, while the
communication medium is usually unreliable.

M. Frincu (B) · B. Irimie · A. Vulpe
West University of Timisoara, Timisoara, Romania
e-mail: marc.frincu@e-uvt.ro

B. Irimie
e-mail: bogdan.irimie90@e-uvt.ro

A. Vulpe
e-mail: anca.vulpe94@e-uvt.ro

T. Selea · A. Spataru
Austria Research Institute, Timisoara, Romania
e-mail: teodora.selea93@e-uvt.ro

A. Spataru
e-mail: florin.spataru92@e-uvt.ro

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_1

1

2 M. Frincu et al.

Distributed systems enable a form of parallel computing, namely distributed
computing, where computation and data is geographically spread, but the applica-
tions have parallel tasks processing the same or different parts of the data at the same
time.

Designing and testing platforms and application on top of them require therefore
specific configurations which due to the nature of the DS may be out of reach of
researchers and software engineers. In addition, real-life systems may not offer the
complexity and specific setup required by some applications. In situ experiments
need therefore to be replaced with a more economic and flexible alternative in which
the DS can still be properly modeled. The complexity of DSs (e.g., clouds) make
theoretical models not viable as the large number of parameters required to model
heterogeneity, dynamism, exascale, and Big Data leads to systems which are too
complex to be modeled through mathematics alone.

Simulations offer the fastest path from idea to its testing. They enable users to get
preliminary results from partial implementations and to improve their algorithms,
applications, and platforms quickly and under various settings and assumptions. They
also allow experiments on thousands of configurations fast at no cost and without
having to wait in line for available resources. Finally, they allow users to bypass
any technical challenges posed by the platform and DS letting them focus on the
application itself. Figure1 depicts the usual simulation flow from idea, experimental
setup and model to scientific results.

Despite their advantages, simulations face several challenges including:

• Validity: Results obtained through simulations should match or be close to those
obtained in real-life experiments. Approximations in any simulation should be
quantifiable such that any result would be mapped to its real-life equivalent. For
instance, Virtual Machine (VM) boot and stop times which could be ignored in
simulations should not impact the outcome of real-life deployment as predicted by
the simulation. Furthermore, the accuracy of underlying is essential in validating
the experiments. Extensive tests of SimGrid and comparison with other simulators
have outlined strange behaviors in the network modeling of simulators such as
OptorSim, GridSim, and CloudSim [2].

• Scalability: Any simulation should scale with the experiment size to allow fast
exploration of scenarios of several orders of magnitude. For instance, the simu-
lation time of a single scenario should not exceed in any case the validation on
real-life DSs.

• Tools: Simulation results are usually numerically encoded and contain lots of data
unreadable in raw format. Furthermore, if multiple scenarios are tested the visual
analysis of the raw data is practically impossible. Hence, automated tools for visual
analysis are required. In addition, to avoid the time consuming manual generation
of hundreds or thousands of experiment settings, automatic generation based on
customized parameters is necessary.

• Applicability: Simulations should match the user requirements and objectives.
Hence, the underlying models should closely match real-life scenarios while the
simulation output should match the desired goals.

Evaluating Distributed Systems and Applications … 3

Fig. 1 Simulation flow [1]

4 M. Frincu et al.

Fundamentally, to enable a good simulation sound models are required across
the simulated platform layers. These models are essential both for the validity and
applicability of the simulation. In this chapter we focus on cloud simulators as clouds
are widely researched and new algorithms for numerous problems are developed
constantly. Despite being around for more than a decade clouds have yet to unveil
their full potential with BigData and Internet of Things promising new challenges for
clouds. Simulations will play an essential role in driving the next wave of algorithms
for topics including Big Data processing, job scheduling in hybrid systems and
architectures, and Quality of Service assurance.

The rest of the chapter introduces cloud computing and cloud simulators (cf.
Sect. 2), then it moves on to discuss the assessment methods of a distributed applica-
tion (cf. Sect. 3), gives an overview of platform cross layer models (cf. Sect. 4) and
details each of them (cf. Sects. 5, 6 and 7), discusses the importance of simulation data
(cf. Sect. 8), concluding with general remarks (cf. Sect. 9). The model layers are
presented by mirroring the ones existing in the SimGrid simulator [3] and SchIaaS
extension [4].

2 Cloud Computing

According toNIST, “cloud computing is amodel for enabling ubiquitous, convenient,
on-demand network access to a shared pool of configurable computing resources
(e.g., networks, servers, storage, applications, and services) that can be rapidly provi-
sioned and released withminimal management effort or service provider interaction”
[5].

Cloud computing is characterized by:

• On demand access to storage, computational and network resources, platforms,
and applications

• Broad network access
• Pay-per-use policy varying between resource types and providers. Examples in-
clude per hour, per minute, per Gb, per request

• Resource pooling with virtually unlimited resources for users
• Rapid elasticity which allows users to horizontally (e.g., adding new/removing
VMs) or vertically (e.g., adding new/removingVMcores andmemory) scale based
on demand

• New programming paradigms such as MapReduce, Hadoop, NoSQL (Cassan-
dra, MongoDB)

• Big Data where the large cloud data centers can now store PBs of data coming
from the research community (e.g., astrophysical data, meteorological data) or
industry (e.g., social network data, banking data).

All these features are stored in a layered cloud stack (cf. Fig. 2). The Infrastructure
as a Service (IaaS) offers direct access to virtualized resources being targeted as

Evaluating Distributed Systems and Applications … 5

Fig. 2 Cloud stack

6 M. Frincu et al.

network architects and cloud administrators. The Platform as a Service (PaaS) offers
OS level functions to application developers, and finally, Software as a Service (SaaS)
targets end users by exposing fully fledged applications. The as a Service model
extends beyond these initial three layers and comprises Data as a Service (DaaS)
to emphasize the Big Data stored and accessible in clouds, Network as a Service
(NaaS), Communication as a Service (CaaS), and Monitoring as a Service (MaaS).

To simulate such complex environments various simulators have been proposed.
Next, we briefly compare them before looking at what a good simulation should offer
and what are the cloud simulation layers.

2.1 Cloud Simulators

Over the years many simulators, some of them short lived, others widely used in lit-
erature and well documented and validated, have been devised. Many of them started
as grid simulators have slowly evolved in generic cloud simulators [3]. Others [6]
have evolved into cloud simulators by borrowing from other the underlying models,
or were designed from scratch [7].

Despite many of the simulators being generic, there are also corner cases where
custombuilt solutions are required.As example, IoT applications are becoming better
integrated with the cloud and they give birth to another layer between the cloud and
the IoT devices called fog. A simulator that addresses this corner case and based on
CloudSim is presented in [8].

For a detailed classification of cloud simulators we direct the readers to [9] and
[10].

Currently, CloudSim is one of the most used cloud simulator with many related
projects such as CloudAnalyst [11], CloudReports [12, 13] expanding its function-
ality. Its main advantage is that it offers the building blocks for modeling complex
cloud infrastructure and applications that run on top of them. The entire code is
written in Java.

A different simulator which focuses on DSs but which has support for clouds is
SimGrid [3]. It relies on well tested models across the simulated system stack and
extensions are built frequently. The code is written in C but has Java, Ruby, and Lua
bindings which makes it suitable for a wider audience. SimGrid does not offer cloud
support directly but does expose a VM migration and execution model. Based on it,
cloud extensions have been proposed with an updated list available at [14].

One main drawback of today’s simulators is that they do not have accurate models
for system/application failures. In a DS, components fail all the time and those
failures can affect the overall system performance. Another major drawback is that
there is no extensive validation for many of the simulators and thus there can be big
discrepancies between results obtained using the simulators and experiments on real
cloud infrastructures due to poor or simplistic models.

Evaluating Distributed Systems and Applications … 7

3 Assessment of Applications

When assessing cloud applications users are usually interested in its correctness and
performance. Each is quantified through various metrics depending on the applica-
tion objectives. Hence correctness can be modeled through the absence of crashes,
race conditions or deadlocks. Performance indicators usually address makespan,
throughput, energy consumption or running costs. A comprehensive overview of
client side objectives is given in our previous work [15].

Due to the complexity of the environment the correction study for a cloud
application relies on model-checking as it allows an exhaustive automated explo-
ration of the state space to identify issues. Instead, performance studies rely on
simulations to test prototype applications on system models in scenarios unavailable
on real-life systems and where math is insufficient to understand the behavior of the
applications. An alternative to simulations could be emulations which rely on testing
real-life applications on synthetic systems.

In simulations a key requirement is the reproducibility of simulation results
which allows users to rerun the same experimental setup described in a paper to
benchmark on a different data set or to compare with a different approach. However,
one of the main problems in literature is the lack of sufficient details and that of
publicly available source codes on which the experiments were based on.

Another important aspect when running simulations is to have access to standard
tools which users can learn quickly without having to code their own software or to
learn several simulators for different simulation objectives. In practice, there are lots
of custom made shot lived simulators which do not provide insight on the models
used to simulate the cloud systems or make assumptions which may not be valid.
Furthermore, their validity has not been thoroughly tested despite being used inmany
research papers [1].

By having failures inserted in the simulations, we can observe how application
behaves under abnormal conditions and establish limits in the amount of failures that
our application can cope with.

4 Modeling Layers

When designing a cloud simulation and simulator, the entire cloud stack needs to be
considered to ensure a proper representation of the real-life environment. For each of
the layers, accurate models need to be implemented and validated on large amounts
of data to ensure the validity of the subsequent simulations.

Hence, the following minimal list of models should be implemented:

1. Bare metal models

• Hardware models for CPU, network, memory;

8 M. Frincu et al.

Fig. 3 Simulation stack with the equivalent SimGrid core modules and extensions

2. Virtualization models

• Models for hypervisors;

3. Cloud models

• IaaS level management similar to existing providers’ APIs;
• OS level (PaaS) models for proper abstractions and resource management;
• Models for simplistic yet accurate process/application representation.

Next, we give an overview of each of them by providing implementation examples
with reference to the SimGrid simulator. Figure3 depicts the simulation stack of Sim-
Gridwith references to the SimGrid internalmodules (i.e., SimGridMSG) or existing
extensions (i.e., SimSchlouder, SchIaas – see Sects. 7.1 and 7.2 for more details).

5 Hardware Model

At the hardware model level simulators need to consider CPU and network.
CPU processing speed s is usually expressed in flops (floating point operations

per second) whichmeans that processes running on them should be specified in terms
of required floating point operations r . At this level modeling is trivial since in order
to get the execution time of a process we simply have to compute r/s.

In resource sharing environments it is possible to model CPU sharing and to
introduce CPU availability traces to model the fluctuation of the CPU speed.

However, modern architecture are usually parallel machines with multiple cores
and processors. These architectures are usually modeled by having an array a which
describes the number of floating point operations that each processor has to execute
and a matrix B which describes the communication pattern [16]. This enables the
modeling of:

Evaluating Distributed Systems and Applications … 9

• Fully parallel tasks: a �= 0 and B = 0;
• Data redistribution tasks: a = 0 and B �= 0;
• Tasks with communication: a �= 0 and B �= 0.

The model can be further extended to account for inter-processor cache sharing,
memory, and compiler/OS particularities.

Network modeling is more complex and needs to account for latency, bandwidth
sharing, and TCP congestion in order to obtain realistic simulations. Several simu-
lation models exist in literature:

• Delay-based models: are the simplest network models. They allow the modeling
of communication time through statistical models, constants (e.g., latency), and
geographical coordinate systems to account for geographic proximity. Themotiva-
tion behind these models is that end-to-end delay greatly affects the performance
of applications running on the network [17]. One of their main drawbacks is that
they ignore network congestion and assume large bisection bandwidth (i.e., the
available bandwidth between endpoints).

• Packet level models: capture the behavior and interaction of individual packets
through complex models. Examples of simulators taking this approach include
GTNetS [18], NS2 [19] which simulate the entire protocol stack.

• Flow level models: simulate the entire communication flow as a single entity
Ti, j (S) = Li, j + S/Bi, j , where S represents the message size, Li, j is the latency
between endpoints i and j , and Bi, j represents the bandwidth. The model assumes
a steady-state and bandwidth sharing each time a new flow appears or disappears.
Given aflowφk and the capacity of the linkC j the constraint is to have

∑
k φk < C j .

Several algorithms including Max-Min fairness, Vegas, and Reno exist. In case of
Max-Min fairness the objective is to maxmin(φk) with the equilibrium reached
when increasing any flow φl decreases a given flow φk . As such it tries to give a
fair share to all flows sharing the link.

Besides models for simulating data flows the hardware model also comprises of
models of the topology. In SimGrid for instance, a DS is represented as a static

Fig. 4 Simple DS topology

10 M. Frincu et al.

topology as seen in the following simple example1 which defines an autonomous
system with full routing comprised of three machines linked together as in Fig. 4.
The hardware model in Simgrid is part of the core MSG module and can be used
when modeling any DS.

<platform version="3">

<AS id="AS0" routing="Full">

<host id="Horus" core="4" power="8095000000"

availability_file="horus_avail.trace"

state_file="horus.state" />

<host id="Osyris" core="4" power="8095000000"/>

<host id="Isis" core="4" power="8095000000"/>

<link id="link1" bandwidth="125000000"

latency="0.000100" bandwidth_file="link1.bw"

latency_file="link1.lat"/>

<link id="link2" bandwidth="125000000"

latency="0.000100"/>

<link id="link3" bandwidth="125000000"

latency="0.000500"/>

<route src="Horus" dst="Osyris"><link_ctn id="link1"/>

</route>

<route src="Horus" dst="Isis"><link_ctn id="link2"/>

</route>

<route src="Osyris" dst="Isis"><link_ctn id="link3"/>

</route>

</AS>

</platform>

where power is in flops, latency is in seconds, and bandwidth is in bytes/second.
While the topology is fixed there is the option to define traces for CPU, bandwidth
and latency fluctuations (e.g., the cases of horus host and link2), and availability
periods (e.g., simulate failures).

6 Hypervisor Model

While the previous hardwaremodels enable the simulation ofDS such as grids, clouds
require a virtualization layer where the hypervisor (e.g., Xen, KVM, VMWare) can
create and execute VMs.

1Full documentation available at: http://simgrid.gforge.inria.fr/simgrid/3.12/doc/platform.html.

http://simgrid.gforge.inria.fr/simgrid/3.12/doc/platform.html

Evaluating Distributed Systems and Applications … 11

To enable a seamless transition from simulation to real-life deployment models
shouldmimic the real systems. Hence the user level API shouldmatch that of existing
hypervisors with functions for starting, stopping, pausing, and resuming VMs.

Simulators such as SimGrid implement [20] such APIs and offer models for live
migration as well.

To enable VMmanagement two resource constraint problem need to be solved,
at physical level, and at virtualized level. In SimGrid for instance, VMs are seen as
an ordinary task executed on the physical machine. Basically, to place VMs along
side regular tasks the simulator first computes the share of the host for each of them.
Then, for eachVM it computes the shares of tasks running on themusing the allocated
shared by the host as maximum. For instance if a host has a capacityC and there are 2
VMs and one task allocated to it it first solves the constraint SVM1 + SVM2 + St < C ,
where S∗ represents the share of the host to be allocated. Second, once SVM1 and
SVM2 are determined, assuming V M1 will execute 2 tasks and V M2 one task, it solves
the constraints St1 + St2 < SVM1 and St3 < SVM2 . In addition, task priorities and VM
CPU usage capping can be specified.

Once a hypervisor model is in place, the live migration of VMs needs to be
modeled too. This capability is at the core of activities involving system mainte-
nance, load balancing, energy efficiency, reconfiguration and fault tolerance. Some
simulators such as CloudSim let users specify the migration time but this approach
is simplistic. Default live migration policies can be overridden hence allowing for
some flexibility and testing of new algorithms.

In SimGrid, the precopy live migration algorithm is implemented as part of the
core MSG, however in literature other well-known algorithms such as post copy
and hybrid exist. A detailed overview and analysis of their performance is given in
[21]. The reason for implementing the precopy algorithm is its popularity among
well-known hypervisors such as Xen, KVM, and VMWare.

• Precopy: the algorithm iteratively copiesmemory pages of theVM from the source
host to the destination. First, it copies all memory pages. At subsequent steps it
copies only the modified pages, and repeats this step until the number of modified
pages is small enough. At this stage it stops the VM and copies the remaining dirty
pages to the destination. Finally, it restarts the VM at the destination. The entire
process takes from few ms to seconds. The algorithm is reliable and robust as the
entire process can be rolled back if the migration fails.

• Postcopy: the algorithm first stops the VM and then copies using demand and pre-
paging techniques over the network. First, the VMmakes some initial preparation
of resources. Then, the VM is stopped and the execution states are transferred
and switched on at the destination host to resume the VM. During this phase the
VM is down. After the states have been transferred and the VM has resumed
the memory page will be copied. In this algorithm the transferred VM will start
immediately but will suffer from performance penalties from network page faults.
The performance of this algorithm is highly dependent on the workload and hence
choosing it requires a deep analysis with different workloads.

12 M. Frincu et al.

• Hybrid: the algorithm is a special version of postcopy where a limited number
of precopy stages are applied a priori. The algorithm is useful in cases where we
want to balance the reliability of precopy with speed of postcopy.

Depending on whether or not users want to investigate live migration algorithms
simulators can offer extensible constructs to enable their validation by relying on the
hardware models.

7 Cloud Model

With a virtualization model in place simulators can be augmented with support for
cloud models. These models should mimic the layered cloud architecture at IaaS and
PaaS with support for running applications at each one. Simulators should be generic
and extensible to allow the insertion of new cloud engines. Popular cloud IaaSmodels
include the Amazon EC2 model of instances and billing. The complexity and level
of Amazon EC2 services has enabled a vast collection of EC2 compatible APIs in
various cloud software platforms such as Eucalyptus, OpenStack, and OpenNebula
to name a few.

Contrary to the hypervisor layer, in the cloud layer users handle instances notVMs.
These instances have several characteristics including type and billingmodel, and are
automatically placed on hosts by the hypervisor. In SimGrid, users can access cloud
IaaS APIs through the SchIaas extension, while PaaS level resource management for
bag-of-tasks and workflow applications can be handled through SimSchlouder.

7.1 Infrastructure Model

In SimGrid, the cloud topology including compute and storage services, instance
types, instance images, and the physical infrastructure to host the VMs algorithms
is defined in a file similar to the simple example below:

<clouds version="1">

<cloud id="myCloud">

<storage id="myStorage"

engine="org.simgrid.schiaas.engine.storage.rise.Rise">

<config controller="Horus"/>

</storage>

<compute

engine="org.simgrid.schiaas.engine.compute.rice.Rice">

Evaluating Distributed Systems and Applications … 13

<config controller="Horus" image_storage="myStorage"

image_caching="PRE inter_boot_delay="10"/>

<instance_type id="small" core="1" memory="1000"

disk="1690"/>

<instance_type id="medium" core="2" memory="1000"

disk="1690"/>

<instance_type id="large" core="4" memory="1000"

disk="1690"/>

<image id="myImage" size="1073741824"/>

<host id="Osyris"/>

<host id="Isis"/>

</compute>

</cloud>

</clouds>

The IaaS model usually has two views. The cloud client view available to end
users where compute instances and storage can be handled; and the cloud provider
view where cloud IaaS administrators handle VM to host placement and other cloud
infrastructure management activities. In SimGrid, the provider view is handled by
default by the RICE (Reduced Implementation of Compute Engine) and RISE (Re-
duced Implementation of Storage Engine) engines part of the SchIaaS extension (cf.
Fig. 5).

Fig. 5 Simple IaaS model in SchIaaS

14 M. Frincu et al.

7.2 Platform Model

At PaaS level simulators usually provide functionality and models for simulating ap-
plication execution. Resourcemanagement for simulating bag-of-tasks andworkflow
applications is an example of such functionality.

At this level users can test scheduling algorithms on various applications, and
cloud and infrastructure topologies by relying on the simulator models for computa-
tion, communication, virtualization, and cloud. For simulators such as SimGrid this
is the where users take advantage of the full simulator stack to propose new models
for cloud resource management. SimSchlouder is one such extension which offers
basic task to VM scheduling heuristics.

7.3 Application Model

To simulate applications we require simplistic yet comprehensive models for them.
Required information should be mapped on the underlying models, namely on the
computation and communication models. The following simple example specifies
a process that will spawn a job with 10 tasks with predefined size in floating point
operations and communication size in bytes.

<process host="Horus" function="cloud.schiaas.Master">

<!-- Number of tasks -->

<argument value="10"/>

<!-- Computation size of tasks -->

<argument value="5e10"/>

<!-- Communication size of tasks -->

<argument value="1000000"/>

<!-- Number of slave processes -->

<argument value="10"/>

</process>

8 Simulation Data

Traces for platform and application bring the simulated application and DS closer
to the behavior of real-life systems. Traces can be either synthetic or from real-life
systems. Synthetic traces are based on statistical analysis of real-life systems and
capture variations which on real traces may not be visible. A detailed overview of
synthetic data and how to generate it for DS is given in [22]. A comparative study
– from more than 2 decades ago – between the two trace types has outlined no
significant differences in algorithm behavior [23].

Evaluating Distributed Systems and Applications … 15

There are many large trace sources from companies like Wikipedia [24], Google
[25] as well as traces from various parallel [26] and grid systems [27]. Despite their
advantages, one downside is that a large portion of the simulation time is spent reading
the traces from disk as those traces can have hundreds of GB in size. Furthermore,
different trace sources can use different formats for storing data hence content parsers
need to be customized based on each source.

Nevertheless, traces are a suitable choice when the goal is to build a simulation
as close as possible to a real-life scenario.

9 Conclusion

In this chapterwe have emphasized the importance of simulators and simulationmod-
els. Real-life systems require a huge amount of effort to configure the environment
(application and platform), to run tests, and to analyze results.

In contrast, simulators allow users a fast and reliable method to evaluate ap-
plications ran on a specific platform. Over the years, the diversity of simulators
has increased leading to general purpose and specialized simulators on energy effi-
ciency, network modeling, network-aware scheduling, workload planning, resource
allocation, service brokering, storage modeling (cf. Table1).

Building cloud simulations and simulators consists in implementing bare metal
models, virtualization models, and cloud models.

The bare metal model is represented by hardware model level. Here has to be
taken in consideration CPU and network. Modeling CPU is a simpler than network
modeling which has to take into account latency, bandwidth, and TCP congestion.

At virtualization level, the hypervisor model can create and execute VMs. The
most well known algorithms implemented at this level are precopy, postcopy and
hybrid.

Cloud models should mimic the layered cloud architecture at the IaaS and PaaS
layers. Simulators need to be generic and extensible to allow extensions and cus-
tomized behavior. The IaaS model is composed of two main views: client view and
provider view. The PaaS level simulators provide functionality and models for sim-
ulating application execution. The application model is mapped on the underlying
models to enable users to take full advantage of the simulation environment.

Simulation data is represented either by real-life data or by synthetic data. Syn-
thetic data is based on statistical analysis of real-life systems. It can captures varia-
tions which may not be visible on real traces.

In conclusion, with the increase complexity of DSs we expect simulators to play
a crucial role in both research and development industry by enabling applications to
be tested in scenarios not covered by the limitations of real-life systems.

16 M. Frincu et al.

Ta
bl
e
1

R
ec
om

m
en
de
d
cl
ou
d
si
m
ul
at
or
s
de
pe
nd
in
g
on

us
er

pr
io
ri
tie
s
[1
0]

Sc
en
ar
io

C
lo
ud

Si
m

G
re
en

C
lo
ud

iC
an
C
lo
ud

N
et
w
or
k

C
lo
ud

Si
m

C
lo
ud

A
na
ly
st

G
ou

nd
Si
m

C
D
O
Si
m

M
D
C
Si
m

G
D
C
Si
m

SP
E
C
I

B
ig
H
ou
se

Te
ac
hC

lo
ud

Si
m
G
ri
d

Si
m
pl
e

st
at
e

sh
ar
in
g

pr
ob

-
le
m
/h
ig
h

nu
m
be
r
of

N
od

es
(>
10
k
N
od
es
)

✓
✕

✕
✕

✕
✓

✕
✕

✕
✓

✓
✓

✓

E
ne
rg
y

ef
fic

ie
nc
y/
en
er
gy

aw
ar
e
sc
he
du

lin
g

✕
✓

✓
✕

✕
✕

✕
✕

✕
✕

✕
✕

✕

E
ne
rg
y
ef
fic

ie
nc
y/
co
ol
in
g

✕
✕

✕
✕

✕
✕

✕
✕

✓
✕

✕
✕

✕

H
ig
h

av
ai
la
bi
lit
y/
fa
ul
t
to
le
r-

an
ce

✓
✓

✕
✕

✕
✓

✕
✕

✕
✕

✕
✕

✓

N
et
w
or
k

m
od

el
in
g

an
d

ne
tw
or
k-
aw

ar
e
sc
he
du

lin
g

✕
✓

✕
✓

✕
✕

✕
✓

✕
✓

✕
✕

✓

W
or
kl
oa
d
pl
an
ni
ng

/e
va
lu
at
io
n

✓
✓

✕
✕

✓
✕

✕
✓

✕
✕

✓
✕

✓

W
or
kfl

ow
M
od
el
in
g

✓
✓

✕
✕

✕
✓

✕
✕

✕
✕

✕
✕

✓

R
es
ou

rc
e
al
lo
ca
tio

n
✓

✓
✓

✓
✓

✕
✕

✓
✕

✕
✓

✓
✓

Se
rv
ic
e
br
ok
er
in
g

✓
✕

✓
✕

✓
✕

✓
✕

✕
✕

✕
✕

✕

St
or
ag
e
m
od

el
in
g

✕
✕

✓
✕

✕
✕

✕
✕

✕
✕

✓
✓

✓

G
U
I/
ea
sy

U
se

✕
✕

✓
✕

✓
✕

✕
✕

✕
✓

✕
✓

✓

H
ig
h

re
qu

es
t/j
ob

lo
ad

(>
10
k
re
qu
es
ts
)

✓
✓

✓
✓

✓
✓

✓
✓

✕
✓

✓
✓

✓

M
ap
R
ed
uc
e
ap
pl
ic
at
io
n
m
od

-
el
in
g/
da
ta
re
pl
ic
at
io
n

✓
✓

✕
✕

✕
✕

✕
✕

✕
✕

✓
✓

✓

Evaluating Distributed Systems and Applications … 17

Acknowledgements This chapter is based upon work from COST Action IC1406 High-
Performance Modelling and Simulation for Big Data Applications (cHiPSet), supported by COST
(European Cooperation in Science and Technology).

Additionally, the first author has been invited as a trainer to the cHiPSet training school “New
trends in modeling and simulation in HPC system” held in Bucharest in September 21–23, 2016 and
has been supported by the IC1406 Horizon 2020 grant. His work has also been partially funded by
a grant of the Romanian National Authority for Scientific Research and Innovation, CNCS/CCCDI
- UEFISCDI, project number PN-III-P3-3.6-H2020-2016-0005, within PNCDI III. The work of
the second author has been partially funded by the EU H2020 VI-SEEM project under contract
no. 675121. The work of the third and forth authors has been partially funded by the EU H2020
CloudLightning project under grant no. 643946.

References

1. Martin, Q., et al.: Simgrid 101: Getting started to the simgrid project (Jan 2015). http://simgrid.
gforge.inria.fr/tutorials/simgrid-101.pdf

2. Simgrid Models. Getting started with simgrid models (2016). http://simgrid.gforge.inria.fr/
tutorials/surf-101.pdf

3. Casanova, H., Giersch, A., Legrand, A., Quinson,M., Suter, F.: Versatile, scalable, and accurate
simulation of distributed applications and platforms. J. Parallel Distrib. Comput. 74(10), 2899–
2917 (2014)

4. Julien, G., et al.: Iaas simulation upon simgrid (2015). http://schiaas.gforge.inria.fr/
5. NIST. Cloud computing (2016). https://www.nist.gov/itl/cloud-computing
6. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A.F., Buyya, R.: Cloudsim: a toolkit

for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw. Pract. Exper. 41(1), 23–50 (2011)

7. Núñez, A., Vázquez-Poletti, J.L., Caminero, A.C., Castañé, G.G., Carretero, J., Llorente, I.M.:
icancloud: a flexible and scalable cloud infrastructure simulator. J. Grid Comput. 10(1), 185–
209 (2012)

8. Gupta, H., Vahid Dastjerdi, A., Ghosh, S.K., Buyya, R.: ifogsim: a toolkit for modeling and
simulation of resource management techniques in internet of things, edge and fog computing
environments. CoRR, abs/1606.02007 (2016)

9. Ahmed, A., Sabyasachi, A.S.: Cloud computing simulators: a detailed survey and future direc-
tion (Feb 2014)

10. Sharkh, M.A., Kanso, A., Shami, A., Öhlén, P.: Building a cloud on earth: a study of cloud
computing data center simulators. Comput. Netw. 108, 78–96 (2016)

11. Wickremasinghe, B., Calheiros, R.N., Buyya, R.: Cloudanalyst: a cloudsim-based visual mod-
eller for analysing cloud computing environments and applications. In: 2010 24th IEEE In-
ternational Conference on Advanced Information Networking and Applications, pp. 446–452
(Apr 2010)

12. Samimi, P., Teimouri, Y., Mukhtar, M.: A combinatorial double auction resource allocation
model in cloud computing. Inf. Sci. 357, 201–216 (2016)

13. Sá, T.T., Calheiros, R.N., Gomes, D.G.: CloudReports: An Extensible Simulation Tool for
Energy-Aware Cloud Computing Environments, pp. 127–142. Springer International Publish-
ing, Cham (2014)

14. Simgrid Cloud. Virtualization/cloud abstractions in simgrid (2016). http://simgrid.gforge.inria.
fr/contrib/clouds-sg-doc.php

15. Frîncu, M.E., Genaud, S., Gossa, J.: Client-side resource management on the cloud: survey
and future directions. IJCC 4(3), 234–257 (2015)

16. Hunold, S., Casanova, H., Suter, F.: From simulation to experiment: a case study on multi-
processor task scheduling. In: 2011 IEEE International Symposium on Parallel and Distributed
Processing Workshops and Phd Forum (IPDPSW), pp. 665–672 (2011)

http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf
http://simgrid.gforge.inria.fr/tutorials/simgrid-101.pdf
http://simgrid.gforge.inria.fr/tutorials/surf-101.pdf
http://simgrid.gforge.inria.fr/tutorials/surf-101.pdf
http://schiaas.gforge.inria.fr/
https://www.nist.gov/itl/cloud-computing
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php
http://simgrid.gforge.inria.fr/contrib/clouds-sg-doc.php

18 M. Frincu et al.

17. Ghorbanzadeh, M., Abdelhadi, A., Clancy, C.: Delay-Based Backhaul Modeling, pp. 179–240
(2017)

18. Riley, G.F.: Large-scale network simulations with gtnets. In: Simulation Conference, 2003.
Proceedings of the 2003 Winter, vol. 1, pp. 676–684 (2003)

19. ISI. The network simulator (Nov 2016). http://www.isi.edu/nsnam/ns/
20. Hirofuchi, T., Lebre, A., Pouilloux, L.: Simgrid vm: virtual machine support for a simulation

framework of distributed systems. IEEE Trans. Cloud Comput. (99):1–1 (2015)
21. Shah, S.A.R., Jaikar, A.H., Noh, S.Y.: A performance analysis of precopy, postcopy and hybrid

live vmmigration algorithms in scientific cloud computing environment. In: 2015 International
Conference on High Performance Computing Simulation (HPCS), pp. 229–236 (2015)

22. Feitelson, D.G.: Workload Modeling for Computer Systems Performance Evaluation. Cam-
bridge University Press, Cambridge (2015)

23. Lo, V., Mache, J., Windisch, K.: A Comparative Study of Real Workload Traces and Synthetic
Workload Models for Parallel Job Scheduling, pp. 25–46. Springer, Berlin (1998)

24. Urdaneta, G., Pierre, G., van Steen,M.:Wikipedia workload analysis for decentralized hosting.
Elsevier Comput. Netw. 53(11), 1830–1845 (2009)

25. Google. Google traces (2016). https://github.com/google/cluster-data
26. Feitelson, D.: Parallel workload archive (2016). http://www.cs.huji.ac.il/labs/parallel/

workload/
27. Iosup, A., et al.: Grid workload archive (2016). http://gwa.ewi.tudelft.nl/

http://www.isi.edu/nsnam/ns/
https://github.com/google/cluster-data
http://www.cs.huji.ac.il/labs/parallel/workload/
http://www.cs.huji.ac.il/labs/parallel/workload/
http://gwa.ewi.tudelft.nl/

Scheduling Data-Intensive Workloads
in Large-Scale Distributed Systems:
Trends and Challenges

Georgios L. Stavrinides and Helen D. Karatza

Abstract With the explosive growth of big data, workloads tend to get more com-
plex and computationally demanding. Such applications are processed on distributed
interconnected resources that are becoming larger in scale and computational capac-
ity. Data-intensive applications may have different degrees of parallelism and must
effectively exploit data locality. Furthermore, they may impose several Quality of
Service requirements, such as time constraints and resilience against failures, as well
as other objectives, like energy efficiency. These features of the workloads, as well
as the inherent characteristics of the computing resources required to process them,
present major challenges that require the employment of effective scheduling tech-
niques. In this chapter, a classification of data-intensiveworkloads is proposed and an
overview of the most commonly used approaches for their scheduling in large-scale
distributed systems is given. We present novel strategies that have been proposed in
the literature and shed light on open challenges and future directions.

Keywords Big data · Data-intensive applications · Gang scheduling · Workflow
scheduling · Bag-of-Tasks scheduling · Data locality · Time constraints · Fault
tolerance · Energy efficiency

1 Introduction

The ever-increasing momentum of the Internet of Things, the rapid pace of techno-
logical advances in mobile devices and cloud computing, as well as the explosive
growth of social media, produce an overwhelming flow of data of unprecedented
volume and variety at a record rate. Such data are commonly referred to as big data
and are characterized by the following attributes: (a) volume, i.e. they consist of very

G. L. Stavrinides (B) · H. D. Karatza
Department of Informatics, Aristotle University of Thessaloniki,
54124 Thessaloniki, Greece
e-mail: gstavrin@csd.auth.gr

H. D. Karatza
e-mail: karatza@csd.auth.gr

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_2

19

20 G. L. Stavrinides and H. D. Karatza

large datasets, (b) variety, i.e. they comprise diverse structured and unstructured data
of various types and (c) velocity, i.e. the data are generated and streamed at stagger-
ing speeds [16, 31]. Computationally intensive applications are employed in a wide
spectrum of domains such as healthcare, science, engineering, business and finance,
in order to unleash the power of big data, extract useful knowledge and gain valuable
insights [51].

The advent of big data has called for a paradigm shift in the computer archi-
tecture, and consequently the applications, required for their effective processing.
Data-intensive applications are typically processed on interconnected computing
resources that are geographically distributed, encompass various heterogeneous com-
ponents, utilize virtualization, feature multi-tenancy and are able to scale up in the
foreseeable future. Computer clusters, computational grids and clouds are examples
of such platforms [13]. Furthermore, novel hybrid approaches have emerged, such
as fog computing, which extends the cloud computing paradigm by bringing data
processing at computational resources at the edge of the network, closer to where the
data are generated, while sending selected data to the cloud for historical analysis
and long-term storage [4, 9].

Data-intensive applications may have different degrees of parallelism and must
effectively exploit data locality. Furthermore, theymay also impose severalQuality of
Service (QoS) requirements, such as time constraints and resilience against failures,
as well as other objectives, like energy efficiency. These features of the workloads
operating on big data, as well as the characteristics of the computing resources
required to process them, present major challenges that require the employment of
effective scheduling algorithms. Due to their inherent complexity, the performance of
such algorithms is usually evaluated by simulation, rather than by analyticalmethods.
Analytical modeling is difficult and often requires several simplifying assumptions
that may have an unpredictable impact on the results [45].

This chapter is organized as follows: Sect. 2 gives a definition of the scheduling
problem in large-scale distributed systems, as well as some of the most importan-
t scheduling objectives. In Sect. 3, a classification of data-intensive workloads is
proposed, according to their degree of parallelism. An overview of the most wide-
ly used strategies for the scheduling of each class of data-intensive applications in
large-scale distributed systems is given. Section4 presents some of the major chal-
lenges of data-intensive workload scheduling, covering topics such as data locality
awareness, timeliness, fault tolerance and energy efficiency. Furthermore, novel
strategies that have been proposed in the literature are presented in Sect. 5. Finally,
Sect. 6 concludes this chapter, shedding light on open challenges and future research
directions.

2 Scheduling Problem

In its general form, the scheduling problem in large-scale distributed systems con-
cerns the mapping of a set of application tasks V = {n1, n2, . . . , nN } to a set of

Scheduling Data-Intensive Workloads in Large-Scale … 21

processors P = {p1, p2, . . . , pQ}, in order to complete all tasks under the specified
constraints (e.g. complete each task within its deadline) [5, 20]. In this general form,
the scheduling problem has been shown to be NP-complete [14].

2.1 Scheduling Objectives

Some of the parameters that characterize a task ni ∈ V are shown in Fig. 1. These
parameters are:

• arrival time a(ni): it is the time at which the task arrives at the system.
• start time s(ni): it is the time at which the task starts its execution.
• finish time f (ni): it is the time at which the task finishes its execution.
• deadline d(ni): it is the time before which the task should finish its execution.

Based on the above parameters, some of the most commonly used scheduling
objectives in large-scale distributed systems are:

(a) To minimize the average response time R of the tasks ni ∈ V , where R is given
by:

R = 1

N

∑

ni∈V
R(ni) (1)

where R(ni) = f (ni) − a(ni) and N is the number of tasks in V .
(b) To minimize the makespan (i.e. total execution time) M of the tasks ni ∈ V ,

where M is defined as:

M = max
ni∈V

{f (ni)} − min
ni∈V

{s(ni)} (2)

(c) To maximize the task guarantee ratio TGR of the tasks ni ∈ V , where TGR is
given by:

TGR = 1

N

∑

ni∈V
guar(ni) (3)

time

start time s(ni) deadline d(ni)arrival time a(ni)

0

finish time f(ni)

ni

Fig. 1 Typical parameters that characterize a task of an application submitted for execution in a
large-scale distributed system

22 G. L. Stavrinides and H. D. Karatza

where

guar(ni) =
{
1 if f (ni) ≤ d(ni)

0 otherwise
(4)

(d) To minimize the average tardiness T of the tasks ni ∈ V , where T is defined as:

T = 1

N

∑

ni∈V
T (ni) (5)

where

T (ni) =
{
f (ni) − d(ni) if f (ni) > d(ni)

0 otherwise
(6)

3 Data-Intensive Workloads in Large-Scale Distributed
Systems

Thedata-intensive applications scheduled for execution in large-scale distributed sys-
tems, typically consist of numerous component tasks. At the one end of the spectrum,
the tasks require frequent communication with each other during their execution. At
the other end of the spectrum, the component tasks do not require any communi-
cation and are completely independent. Between these two ends, is the case where
communication is required between the component tasks of an application, but only
before or after their execution. Consequently, data-intensive workloads in large-scale
distributed systems can be classified into the following categories:

• fine-grained parallel applications,
• coarse-grained parallel applications and
• embarrassingly parallel applications.

In the following paragraphs, each class of data-intensive applications is presented
in more detail and their corresponding, most widely used scheduling heuristics are
analyzed.

3.1 Fine-Grained Parallel Applications

An application features fine-grained parallelism when it consists of frequently com-
municating parallel tasks. A proven and effective way to schedule such applications
is gang scheduling. According to this approach, the parallel tasks of an application
form a gang and are scheduled and executed simultaneously on different processors.
Hence, all of the tasks of the application start execution at the same time. This way,

Scheduling Data-Intensive Workloads in Large-Scale … 23

Fig. 2 An example of a
fine-grained parallel
application. The frequently
communicating tasks of the
application form a gang of N
parallel tasks. The
communication between the
tasks is depicted with arrows

the risk of a task waiting to communicate with another task that is currently not run-
ning is avoided. The task with the largest execution time determines the execution
time of the gang. An example of a gang with N parallel tasks is shown in Fig. 2.

Consequently, gang scheduling facilitates the synchronization between the com-
ponent tasks of a fine-grained parallel application. Without this technique, the syn-
chronization of the component tasks would require more context switches and thus
additional overhead. On the other hand, in order to utilize gang scheduling, the num-
ber of available processors must be greater than or equal to the number of parallel
tasks of the application. Furthermore, due to the requirement that all of the tasks of a
gang must start execution at the same time, there may be times at which some of the
processors are idle, even with tasks waiting in their respective queues. Specifically, a
task at the head of the queue of an idle processor may be waiting for the other tasks of
its gang, which may not be able to start execution at the particular time instant [42].
This situation is depicted in Fig. 3.

3.1.1 Gang Scheduling Policies

The twomost widely used gang scheduling policies are the Adapted First Come First
Served (AFCFS) and Largest Gang First Served (LGFS) strategies.

Adapted First Come First Served (AFCFS)

This method is an adapted version of the First Come First Served (FCFS) scheduling
heuristic, according to which the gang that arrived first, has the highest priority for
execution. A gang starts execution when its tasks are at the head of their assigned
queues and the respective processors are idle. When there are not enough idle pro-
cessors for a gang with a large number of parallel tasks waiting at the front of their
assigned queues, a smaller gang with tasks waiting behind those of the larger gang
can start execution. This technique is also referred to as backfilling [18].

24 G. L. Stavrinides and H. D. Karatza

2
1n

0 1 3 5 8 9 time

1
1n

queue of
processor p1

processor p1

2 4 6 7 10

schedule of processor p1

1
1n

2
1n

2
2n

0 1 3 5 8 9 time

1
2n

queue of
processor p2

processor p2

2 4 6 7 10

schedule of processor p2

1
2n

2
2n

idle
2
3n

0 1 3 5 8 9 time

queue of
processor p3

processor p3

2 4 6 7 10

schedule of processor p3

2
3n

3
1n

3
1n

3
2n

3
2n

Fig. 3 Example of gang scheduling in a system with three processors p1, p2 and p3. The first gang
consists of the tasks n11 and n12, scheduled on processors p1 and p2, respectively. The second gang
consists of the tasks n21, n

2
2 and n23, scheduled on processors p1, p2 and p3, respectively. The third

gang consists of the tasks n31 and n32, scheduled on processors p2 and p3, respectively. It can be
observed that the processor p3 remains idle during the execution of the tasks n11 and n12 of the first
gang. This is due to the fact that the task n23 at the head of its queue cannot start execution, because
according to the gang scheduling technique, it must start execution at the same time as the other
tasks of its gang, n21 and n22, which are scheduled on the other processors that are currently busy

Themajor drawbackof this scheduling policy is that it tends to favor smaller gangs,
which leads to greater response times for larger gangs. In order to overcome this issue,
various techniques have been proposed in the literature, such as the employment
of a bypass count parameter [25] and the utilization of task migrations [30]. The
first method, counts for each gang the number of gangs that bypassed it, due to an
insufficient number of idle processors. When the bypass count of a gang reaches a
specified threshold, it gets the highest priority for execution. According to the second
method, the tasks of a gang are candidate for migration only if at least one of them is
at the head of its assigned queue and the respective processor is idle. The tasks that
are migrated, are placed at the head of their newly assigned queues. In order to avoid
the starvation of the other tasks, there is a limit on the number of migrated tasks a
queue can accept.

Largest Gang First Served (LGFS)

According to this scheduling strategy, the tasks in the processor queues are sorted
in descending order of gang size (i.e. number of tasks) of their respective gang.
Thus, tasks that belong to larger gangs have higher priority than tasks that belong

Scheduling Data-Intensive Workloads in Large-Scale … 25

to smaller gangs. Whenever a processor becomes idle, the scheduler searches the
queues starting from the head of each queue and the first gang with tasks that can
start execution occupies the processors [19]. Clearly, this strategy tends to favor
applications with a high degree of parallelism (i.e. large gangs), at the expense of
smaller gangs. However, this is sometimes desirable and may lead to a better system
performance, compared to the AFCFS policy.

3.2 Coarse-Grained Parallel Applications

In case an application exhibits coarse-grained parallelism, its component tasks do
not require any communication with each other during processing, but only before
or after their execution. That is, the component tasks have precedence constraints
among them, in such a way that the output data of a task are used as input by other
tasks. A component task can only start execution when its predecessor tasks have
completed. A task without any parent tasks is called an entry task, whereas a task
without any child tasks is called an exit task.

Such an application is often called a workflow application and can be represented
by a Directed Acyclic Graph (DAG) or task graph, G = (V,E), where V and E are
the sets of the nodes and the edges of the graph, respectively [37, 39, 40]. Each node
represents a component task, whereas a directed edge between two tasks represents
the data that must be transmitted from the first task to the other. Each node has a
weight that represents the computational cost of its corresponding task. Each edge
between two tasks has a weight that denotes the communication cost that is incurred
when transferring data from the first task to the other.

The level of a task in the graph is equal to the length of the longest path from the
particular task to an exit task in the graph. The length of a path is the sum of the
computational and communication costs of all of the nodes and edges, respectively,
along the path. The critical path of the graph is the longest path from an entry task
to an exit task in the graph. An example of a workflow application is illustrated in
Fig. 4.

3.2.1 Workflow Scheduling Approaches

Workflow applications require a scheduling strategy that should take into account
the precedence constraints among their component tasks. The workflow scheduling
heuristics are classified into the following general categories:

• list scheduling algorithms,
• clustering algorithms,
• task duplication algorithms and
• guided random search algorithms.

These techniques are analyzed in the following paragraphs.

26 G. L. Stavrinides and H. D. Karatza

6
1 2

4 5

2

7
6

1 3

1

3

3
3

2

7

1

4

5
9

2

3

4

6

8

1
10

2

2

5

8
7

Fig. 4 An example of a coarse-grained parallel application (workflow application), represented as
a Directed Acyclic Graph (DAG). The number in each node denotes the computational cost of the
represented task. The number on each edge denotes the communication cost between the two tasks
that it connects. The critical path of the DAG is depicted with thick arrows

List Scheduling Algorithms

A list scheduling algorithm consists of two phases: (a) a task selection phase and
(b) a processor selection phase. In the first phase, the tasks are prioritized based on
specific criteria and are arranged in a list according to their priority. The task with
the highest priority is selected first for scheduling. During the second phase, the
selected task is scheduled to the processor that minimizes a specific cost function,
such as the estimated start time of the task [48]. List scheduling algorithms are the
most commonly used among the workflow scheduling heuristics, because they are
generally simpler, more practical, easier to implement and they usually outperform
other techniques, incurring less scheduling overhead [53].

One of the simplest list scheduling policies is the Highest Level First (HLF) [1].
According to this method, the task prioritization phase is based on the level of each
task. In the processor selection phase, the selected task is scheduled to the processor
that canprovide itwith the earliest start time.An improvedversionof theHLFstrategy
is the Insertion Scheduling Heuristic (ISH) [21] and it is based on the observation that
idle time slotsmay form in the schedule of a processor (schedule gaps), due to the data
dependencies among the tasks. The task selection phase of this technique is based on
HLF. However, during the processor selection phase, a task may be inserted into a
schedule gap, as long as it does not delay the execution of the succeeding task in the

Scheduling Data-Intensive Workloads in Large-Scale … 27

schedule andprovided that it cannot start earlier on anyother processor.An alternative
version of ISH, adapted for heterogeneous systems, is the Heterogeneous Earliest
Finish Time (HEFT) policy [53]. According to this approach, for the calculation of
the level of each task, the average computational and communication costs of the
tasks and edges, respectively, are used.

Clustering Algorithms

Themain idea of clustering algorithms is theminimization of the communication cost
between the tasks of a DAG, by grouping heavily communicating tasks into the same
cluster and assigning all of the tasks in the cluster to the same processor. A clustering
algorithm is an iterative process. At first, each task is an independent cluster. At
each iteration, previous clusters are refined by merging some of them, according to
specific criteria. At the end of the process, a cluster merging step is needed, so that
the number of clusters is equal to the number of processors. Subsequently, a cluster
mapping step is required, in order to map each cluster to a processor. Finally, a task
ordering step is performed, in order to determine the execution order of tasks on each
processor [17].

One of the most popular clustering techniques is theDominant Sequence Cluster-
ing (DSC) algorithm [57]. This method is based on the observation that the makespan
of a DAG is determined by the longest path in the scheduled task graph and not by its
critical path, which is calculated before the scheduling of the tasks of the DAG. The
longest path in the scheduled DAG is called the dominant sequence (DS). According
to the DSC algorithm, the tasks in a DAG are clustered in such a way, so that the
dominant sequence of the graph is minimized.

Task Duplication Algorithms

In this category of workflow scheduling heuristics, the main concept is to utilize idle
resource time by duplicating predecessor tasks in a DAG, so that the makespan of the
particular DAG isminimized. The various duplication-based algorithms differentiate
with each other, according to the criteria used for the selection of the tasks for
duplication. One of the major drawbacks of task duplication algorithms, is that they
usually have higher complexity than the other DAG scheduling techniques.

One of themost well-known duplication algorithms is theDuplication Scheduling
Heuristic (DSH) [21]. According to this approach, the tasks in a DAG are prioritized
according to their level. At each scheduling step, the task with the highest level is
selected and is allocated to the processor that can provide it with the earliest start
time. In order to calculate the earliest possible start time of the selected task on each
processor, first its start time is calculated without duplication of any predecessor
tasks. Subsequently, the duplication time slot is determined, which is the time period
between the finish time of the last scheduled task on the particular processor and the
start time of the currently examined task. The algorithm then tries to duplicate the
predecessors of the task into the duplication time slot in a recursive manner, starting
from the parent task from which the data arrives the latest, until either the slot cannot
accommodate other predecessor tasks or the start time of the examined task is not
improved.

28 G. L. Stavrinides and H. D. Karatza

Guided Random Search Algorithms

A guided random search algorithm is an iterative process of finding the best schedule
for a DAG, based on specific criteria. At each step, the previously generated schedule
is improved, by utilizing random parameters for the generation of the new schedule.
This iterative process terminates according to a predefined condition. These algo-
rithms, even though they generally generate schedules of good quality, however,
they incur a much higher scheduling overhead than the other workflow scheduling
methods. The most commonly used algorithms of this category are genetic algo-
rithms, according to which each new schedule is generated by applying evolutionary
techniques from nature, known as fitness functions [15].

Simulated Annealing (SA) is another example of a guided random search meta-
heuristic. This technique emulates the physical process of annealing in metallurgy,
which involves the heating and the controlled, slow cooling of metals, in order to
form a crystallized structure without any defects [28]. In SA, a temperature variable
is used in order to simulate this heating process. Initially, it is set at a high value
and as the algorithm runs, it is allowed to slowly cool down. While the value of the
temperature variable is high, the algorithm is allowed to accept solutions that are
worse than the current one, with higher frequency. As the value of the temperature
variable is decreased, so is the chance of accepting worse solutions. Therefore, the
algorithm gradually focuses on an area of the search space in which hopefully a
near-optimal solution can be found.

3.3 Embarrassingly Parallel Applications

An application is regarded as embarrassingly parallel when its component tasks are
independent, do not communicate with each other and can be executed in any order.
Due to these characteristics, such applications are also called Bag-of-Tasks (BoT)
applications. Due to the independence between their tasks, BoT applications are well
suited for execution on widely distributed resources, such as computational grids,
where communication can become a bottleneck for more tightly-coupled parallel
applications, such as gangs and DAGs [44, 46, 56]. An example of a BoT application
is depicted in Fig. 5.

1 2 3 N

Fig. 5 An embarrassingly parallel application, consisting of N independent parallel tasks. Such
applications are commonly referred to as Bag-of-Tasks (BoT) applications

Scheduling Data-Intensive Workloads in Large-Scale … 29

3.3.1 Scheduling BoT Applications

Themostwidely used strategies for schedulingBoTapplications are: (a)Min-Min, (b)
Max-Min and (c) Sufferage. All of these policies focus on minimizing the makespan
of the scheduled BoT application.

Min-Min

This heuristic is an iterative process, consisting of two steps. In the first step, the
minimum completion time (MCT) of each unassigned task is calculated, over all of
the processors in the system. In the second step, the task with the minimum MCT
is assigned to the corresponding processor. At each iteration of the algorithm, the
MCT of each unassigned task is determined taking into account the current load of
the processors, as resulted by the scheduling decision of the previous iteration [56].

Max-Min

This strategy differs from the Min-Min policy, in that the task with the maximum
(instead of the minimum) MCT is assigned to the corresponding processor in the
second step of the scheduling process. Consequently, in cases where the application
consists of a large number of tasks with small execution times and a few tasks with
large execution times, the Max-Min heuristic is likely to give a smaller makespan
than the Min-Min algorithm, since it schedules the tasks with larger execution times
at earlier iterations [50].

Sufferage

This algorithm is a two-step iterative process, like theMin-Min andMax-Min heuris-
tics. However, in this case, in addition to the MCT of each task, its second MCT is
also calculated during the first step of the process. Subsequently, the sufferage value
of each task is determined, by subtracting its MCT from its second MCT. In the
second step, the task with the largest sufferage value is assigned to the processor
that can provide it with the MCT. That is, this heuristic is based on the idea that the
highest priority for scheduling should be given to the task that would suffer the most
(in terms of completion time) if it is not assigned to the processor that can provide it
with the MCT [24].

4 Major Challenges

In addition to the challenges imposed by their degree of parallelism, data-intensive
applications in large-scale distributed systems must also effectively exploit data lo-
cality. Furthermore, theymay have various QoS requirements, such as timeliness and
fault tolerance, as well as other objectives, like energy efficiency. These requirements
are usually specified in a Service Level Agreement (SLA), which is a contract between
the user that submits the application for execution and the provider of the infrastruc-
ture that the application is executed on. In the following paragraphs, representative
examples for each case are given.

30 G. L. Stavrinides and H. D. Karatza

4.1 Data Locality

The most important aspect of scheduling data-intensive applications in large-scale
distributed systems is the effective exploitation of data locality. That is, the tasks
that operate on big data should be allocated to computational resources that are as
near as possible to where the data reside, so that the communication cost incurred by
transferring for processing vast amounts of data from remote resources is minimized.

4.1.1 MapReduce & Hadoop

The MapReduce programming paradigm has been proposed by Google [11] and fa-
cilitates the massively parallel processing of large volumes of data. It is inspired by
themap and reduce functions commonly used in functional programming. AMapRe-
duce application consists of two types of tasks: (a) amap task and (b) a reduce task. A
map task takes a set of data and converts it into another set of data, where individual
elements are broken down into tuples (i.e. key/value pairs). Parallel map tasks can
process different chunks of data. A reduce task takes as input the output from map
tasks and combines those data tuples into a smaller set of tuples, in order to produce
the final result. A reduce task is always performed after the map tasks. In case a
MapReduce application has only map tasks, it is considered an embarrassingly par-
allel application. In case an application has one or more reduce tasks, it is considered
a coarse-grained parallel application. In the latter case, multiple reduce tasks can be
employed in order to enhance the parallelism of the application [12].

A simple example of a MapReduce application with two parallel map tasks and
one reduce task, is shown in Fig. 6. In the illustrated example, the overall minimum
temperature recorded in London and Athens in a five-day period needs to be calcu-
lated for each city. It is assumed that the minimum temperature for each city was
recorded daily in the form 〈City,MinimumTemperature 〉. The records are split into
two files. Each file is processed in parallel by a map task. Each map task outputs
the pairs that correspond to the minimum temperature for each city, according to the
file that was processed. The results of the two map tasks are merged into two pairs
(one for each city) in the form 〈City, {ListOfMinimumTemperatures} 〉. The pairs are
fed as input into the reduce task, which outputs the overall minimum temperature
recorded in each city, over the said period. This parallel processing approach is more
efficient than calculating the minimum temperature for each city in a serial fashion.

An open source - and the most popular - implementation of the MapReduce
programming model is the Apache Hadoop framework [2], which adopts a master-
slave architecture in order to exploit data locality. Specifically, the master node is
responsible for scheduling the map tasks of an application on the slave nodes, which
contain chunks of the required input data. The reduce task is performed by the master
node. When a slave node notifies the master node that it can accept a task, the master
node scans the waiting tasks in queue to find the one that can achieve the best data
locality. That is, themap task that its input data are located the nearest to the particular

Scheduling Data-Intensive Workloads in Large-Scale … 31

File 1

<London,08>
<London,05>
<Athens,15>
<London,08>
<Athens,13> File 2

<Athens,14>
<London,07>
<Athens,12>
<London,09>
<Athens,15>

map() map()

<Athens,13>
<London,05>

<Athens,12>
<London,07>

<Athens,{12,13}>
<London,{05,07}>

reduce()

<Athens,12>
<London,05>

Fig. 6 An example of a MapReduce application with two parallel map tasks and one reduce task

slave node is selected. However, due to the fact that Hadoop considers only one slave
node at a time in order to schedule the map tasks, there are cases where it does
not exploit data locality effectively. Furthermore, it cannot be employed for multi-
cluster processing and for data-intensive applications that require more complex
communication and processing patterns than those supported by the MapReduce
paradigm.

4.1.2 Other Approaches

In an attempt to tackle the aforementioned shortcomings of Hadoop and MapRe-
duce, various approaches have been investigated in the literature. Among them, the
delay scheduling technique has been proposed, in order to delay the scheduling of
the waiting map tasks in case a slave node does not contain their input data, assuming
that another slave node that contains the data will become available in a short period
of time [58]. However, the drawback of this approach is that it wastes valuable time

32 G. L. Stavrinides and H. D. Karatza

postponing the scheduling of the tasks, in an attempt to achieve better data locality,
which is a goal that is not guaranteed. In order to overcome the single-cluster deploy-
ment restriction of theHadoop framework, G-Hadoop has been proposed [55]. It is an
extension of the traditional Hadoop framework that can schedule tasks across nodes
of multiple clusters [59]. For the scheduling of more complex data-intensive appli-
cations, various approaches have been proposed, utilizing the workflow scheduling
paradigms described in Sect. 3.2.1.

4.2 Time Constraints

The most common QoS requirement that data-intensive applications may impose, is
to finish execution within a strict time constraint. Such applications are regarded as
real-time, since they have a deadline that must be met [32].

4.2.1 Real-Time Applications

Depending on the severity of a missed deadline, real-time applications are classified
into the following categories [5]:

• Applications with soft deadlines: in this case, the results of an application that
missed its deadline still have some value, but their usefulness decreases with time
(e.g. a user-system interaction application, where a delayed response to the user
input is tolerated, degrading, however, the user experience as the delay increases).

• Applications with firm deadlines: in this case, the results will be useless, but this
does not have any catastrophic consequences (e.g. a video streaming application,
where a delayed video frame that arrives after the previous one on the user’s
terminal is discarded, since there is no value in playing it back).

• Applications with hard deadlines: in this case, not only will the results be useless,
but missing the application’s deadline will have catastrophic consequences. In
this case, the damage caused by missing the deadline increases with time (e.g. a
healthcare monitoring application, where a delayed analysis of patients data may
cause loss of lives).

The impact of missing an application’s deadline, as described above, is shown
schematically in Fig. 7.

Two of themostwidely used policies for the scheduling of real-time data-intensive
applications are the Earliest Deadline First (EDF) and the Least Laxity First (LLF)
algorithms [23, 27]. According to the EDF strategy, the component task with the
highest priority for execution is the one with the earliest deadline. On the other
hand, according to the LLF policy, the task with the highest priority is the one with
the minimum laxity. The laxity of a task at a specific time instant, is defined as the
difference between its deadline and its finish time. That is, it is the maximum amount
of time that the particular task can delay its execution and still not miss its deadline.

Scheduling Data-Intensive Workloads in Large-Scale … 33

me

us
ef

ul
ne

ss
da

m
ag

e

0

100%

d
me

us
ef

ul
ne

ss
da

m
ag

e

0

100%

me

us
ef

ul
ne

ss
da

m
ag

e

0

100%

(a) (b)

(c)

d

d

Fig. 7 The usefulness of the results of an application with a deadline d over time, when d is: a
soft, b firm and c hard

A heuristic for the scheduling of real-time workflow applications in distributed
systems, is the Least Space-Time First (LSTF) policy [8], which takes into account
both the precedence and the time constraints among the tasks. Specifically, according
to this method, the task with the highest priority for scheduling is the one with the
minimum value of the space-time parameter. The space-time parameter of a task
at a specific time instant, is defined as the difference between the deadline of the
DAG and the level of the particular task. Even though this algorithm outperforms
other scheduling policies, such as EDF, LLF and HLF described earlier, in the sense
that it minimizes the maximum tardiness of the tasks, however, it exhibits poorer
performance at guaranteeing deadlines.

34 G. L. Stavrinides and H. D. Karatza

4.2.2 Approximate Computations

Based on the observation that it is often more desirable for a real-time application to
produce an approximate result by its deadline, than to produce a precise result late,
the technique of approximate computations has been proposed [22]. According to
this method, a real-time application is allowed to return intermediate, approximate
results of poorer, but still acceptable quality, when the deadline of the application
cannot be met. Approximate computations can be utilized especially in the case of
applications with monotone component tasks, where the quality of a task’s results
is improved as more time is spent to produce them (e.g. statistical estimation and
video processing tasks). Each monotone task typically consists of a mandatory part,
followed by an optional part. In order for a task to return an acceptable result, its
mandatory part must be completed. The optional part refines the result produced by
the mandatory part [35, 36]. A monotone task is illustrated in Fig. 8.

Consequently, the approximate computations technique provides schedulingflexi-
bility, by trading off precision for timeliness, since it allows the scheduler to terminate
a task that has completed its mandatory part at any time, depending on the workload
conditions of the system. For example, a video-on-demand server which streams
video content to users over the Internet can benefit from this technique. The server
may unexpectedly encounter network congestion, causing delays during the trans-
mission of video content to users. Approximate computations can allow the system
to reduce the quality of some video frames during a transmission, by omitting their
optional enhancement layers and leaving only their base layer, so that the delivered
video maintains an acceptable frame rate.

4.3 Fault Tolerance

Fault tolerant scheduling in large-scale distributed systems, such as clouds, is
usually achieved through application-directed checkpointing, which in contrast to
system-directed checkpointing, is more practical, easier to implement and system-
independent [29]. According to this approach, each application is responsible for
checkpointing its own progress periodically, at regular intervals during its execution.

Fig. 8 A monotone task

Scheduling Data-Intensive Workloads in Large-Scale … 35

In parallel data-intensive applications in particular, each component task periodically
stores its state and intermediate data on persistent storage, creating a local check-
point. The set of the local checkpoints (one from each task) that form a consistent
application state, constitute a consistent global checkpoint.

When a failure occurs, the application is rolled back and resumes execution from
its last consistent global checkpoint. Checkpointing is a reactive failure management
technique, where recovery measures are taken after the occurrence of a failure. As
opposed to proactive failuremanagement approaches,where preventionmeasures are
taken before the occurrence of a failure (e.g. task migrations), reactive management
is simpler to implement, since it does not require any complex failure prediction
methods.

4.4 Energy Efficiency

There is a growing focus ongreen computing fromboth the academia and the industry,
in an attempt to minimize the carbon footprint of data centers and increase the
energy efficiency of applications. Typically, inmost computing systems the processor
consumes the greatest amount of energy compared to other components [47, 54]. In
embedded systems, as well as in large-scale virtualized platforms such as the cloud,
a technique that is frequently used in order to meet the energy constraints is the
Dynamic Voltage and Frequency Scaling (DVFS)method. This technique allows the
dynamic adjustment of the supply voltage and operating frequency (i.e. speed) of
a processor, based on the workload conditions, in an attempt to reduce the energy
consumption of the processor [20, 52].

A heuristic frequently used with DVFS, is the slack reclamation technique [7].
This method is based on the fact that the actual execution time of tasks is sometimes
much shorter than their estimated worst case execution time. The difference between
the actual and the worst case execution time of a task is called slack time. At runtime,
the scheduler tries to reclaim the slack time due to the early completion of a task, by
selecting an unprocessed task to be executed at a slower processor speed via DVFS
and thus save energy.

An energy-efficient scheduling strategy for real-timeBoTapplications in the cloud
utilizing DVFS, is the Cloud-Aware Energy-Efficient Scheduling (CAEES) algorith-
m [6]. At each scheduling step, this method attempts to reduce the total energy
consumption of the hosts, by selecting the most suitable virtual machine (VM) for
the execution of each task, in an energy-wise manner. Specifically, the algorithm
tries to schedule a task by examining specific criteria, starting from the best solution
and gradually going to the worst solution: (a) the task is scheduled to a VM in use,
without requiring an increase in its frequency, (b) the task is scheduled to a VM in
use, but its operating frequency needs to be increased, (c) the task is scheduled to an
idle VM, but there is at least one other VM on the same host that is not idle (i.e. the
host is not idle) and (d) the task is scheduled to an idle VM on an idle host.

36 G. L. Stavrinides and H. D. Karatza

5 Recent Novel Ideas and Research Trends

In an attempt to provide even more effective scheduling solutions for data-intensive
workloads in large-scale distributed systems, recent novel approaches have been pro-
posed in the literature. As virtualization technologies evolve, a growing trend is the
use of VM live migrations, in order to better exploit data locality. Another prominent
research trend is the utilization of approximate computations in combination with
other techniques, in order to achieve better scheduling performance, in terms of time-
liness, resilience against failures and energy conservation. For example, approximate
computations can be combined with:

• bin packing techniques, in order to enhance timeliness,
• checkpointing, in an attempt to improve fault tolerance and
• DVFS, for better energy efficiency.

5.1 VM Live Migrations

In virtualized platforms, the VM live migration technique refers to the process of
moving a running VM from one physical host to another, without downtime. That is,
with no impact on the availability of theVM to the end-users andwithout interrupting
the applications currently running on the VM. The memory, storage and network
connectivity of the VMare transferred from the initial physical host to the destination
host. Currently, the predominant use of VM live migrations, is to enhance energy
efficiency and load balancing through server consolidation [3].

However, the utilization of VM live migrations can also be used to better exploit
data locality. Specifically, a virtualization approach has been proposed, where differ-
ent VMs are used for each compute node and each storage node in the cloud [49]. In
contrast to the traditional approach where each compute and storage node are com-
bined into one VM, this approach provides better flexibility and scalability, since
compute nodes and storage nodes can be added or removed from the cloud indepen-
dently. More importantly, according to this approach, a much lower live migration
cost is incurred by migrating a compute node VM, compared to the traditional
approach, where large volumes of data should be transferred to the destination host,
since a VM would be both a compute and a storage node. In this framework, a data-
aware scheduling method, DSFvH, is employed, according to which live migrations
of compute node VMs are performed, in order to place each compute node VM on
the physical host that runs the storage node VM that contains the data required by
the tasks executing on the compute node VM. This way, better exploitation of data
locality is achieved.

Scheduling Data-Intensive Workloads in Large-Scale … 37

5.2 Approximate Computations with Bin Packing

The traditional bin packing problem concerns the packing of a set of objects into a
set of bins, using as few bins as possible [10]. The most commonly used bin packing
techniques are: (a) First Fit (FF), where the object is placed into the first bin where
it fits, (b) Best Fit (BF), where the object is placed into the bin where it fits and
leaves the minimum unused space possible and (c)Worst Fit (WF), where the object
is placed into the bin where it fits and leaves the maximum unused space possible.

In an attempt to improve the timeliness of real-time workflow applications in a
heterogeneous distributed system, a novel list scheduling heuristic has been pro-
posed, which utilizes schedule gaps with a technique that combines approximate
computations with the FF, BF and WF bin packing policies [38, 41]. Another char-
acteristic of the proposed approach, is that it takes into account the effects of error
propagation among the tasks of an application in case of partially completed tasks.
The task prioritization is based on EDF. Once a task is selected by the scheduler, it
is allocated to the processor that can provide it with the earliest estimated start time.
In order to calculate the estimated start time of the task on the particular processor,
schedule gaps are exploited with a technique that allows only a fraction of the task
to be inserted into an idle time slot. The fraction of the task to be inserted into a
schedule gap must be at least equal to the mandatory part of the task. Moreover, its
potential output error must not exceed the input error limit of its child tasks.

The placement of the partial task into a schedule gap is performed using amodified
version of either the FF, BF or WF bin packing policy:

• First Fit with Approximate Computations (FF_AC): the task is placed into the first
schedule gap where at least its minimum possible computational cost fits.

• Best Fit with Approximate Computations (BF_AC): the task is placed into the
schedule gap where its maximum possible computational cost fits, leaving the
minimum unused time possible.

• Worst Fit with Approximate Computations (WF_AC): the task is placed into the
schedule gap where its minimum possible computational cost fits, leaving the
maximum unused time possible.

In contrast to this approach, the other list scheduling heuristics presented earlier, ISH
and HEFT, essentially use FF in order to utilize idle time slots. More importantly,
with the incorporation of approximate computations, this approach is more flexible,
allowing only a fraction of a task to be inserted into a schedule gapwhen the task does
not completely fit into it. An example of scheduling taskswith the proposed heuristics
(EDF_FF_AC, EDF_BF_AC and EDF_WF_AC), compared to the baseline EDF
policy, is illustrated in Fig. 9. The parameters of the tasks used in the example are
shown in Table1.

38 G. L. Stavrinides and H. D. Karatza

0

me

EDF

1

2

3

4

5

6

7

8

9

10

n2

0

me

EDF_FF_AC

1

2

3

4

5

6

7

8

9

10

0

me

EDF_BF_AC

1

2

3

4

5

6

7

8

9

10

0

me

EDF_WF_AC

1

2

3

4

5

6

7

8

9

10

n4

n1

n4

n3

n1

n4

n1

n4

n3

n2 n2

n3n3

n2

n1

(a) (b) (c) (d)

Fig. 9 An example of scheduling tasks with the strategies described in Sect. 5.2. A task n4 is sched-
uled according to one of the policies: a EDF (baseline algorithm), b EDF_FF_AC, c EDF_BF_AC
and d EDF_WF_AC. The parameters of the tasks used in the example are shown in Table1

Table 1 The parameters of the tasks used in the example of Fig. 9. For each task, d is its deadline,
tdata is the time at which its required input data will be available, c is its computational cost and
cmin is its minimum computational cost when approximate computations are utilized

Task d tdata c cmin

n1 2 0 1 1

n2 4 2 1 1

n3 9 5 2 1

n4 10 1 3 1

5.3 Approximate Computations with Checkpointing

In an attempt to improve resilience against transient software failures in a SaaS cloud,
where real-time fine-grained parallel applications are scheduled and executed, the
approximate computations technique has been combined with application-directed
checkpointing [33, 34, 43]. Specifically, gang scheduling is employed, where the
prioritization of the component tasks is according to the EDF policy. In addition to
application-directed checkpointing, fault tolerance is enhanced by the use of approx-
imate computations in either a restricted manner or a more holistic approach. In the
first case, an application may provide approximate results when it has completed its
parallel mandatory part and (a) its deadline is reached, (b) a failure occurred and
its last generated checkpoint stored results corresponding to computational work
greater than or equal to its mandatory part or (c) another notified application must

Scheduling Data-Intensive Workloads in Large-Scale … 39

start execution immediately (i.e. there is time to execute only the mandatory part
of the other application before its deadline). According to the second approach, all
applications are scheduled to complete only their mandatory part. That is, in this case
all applications give approximate results.

5.4 Approximate Computations with DVFS

In order to enhance energy efficiency, a heuristic that combines approximate com-
putations with DVFS has been proposed, for the scheduling of periodic real-time
tasks [26]. According to this approach, the tasks are scheduled according to the
Mandatory-First Earliest Deadline (MFED) policy, while the supply voltage and
processor frequency are scaled according to the Cycle-Conserving Real-Time DVFS
(CC-RT-DVFS) technique.MFED is a policy according to which the mandatory parts
of the tasks have always higher priority than the optional parts. The mandatory part
with the earliest deadline has the highest priority for execution. CC-RT-DVFS is
essentially a dynamic slack reclamation technique, which utilizes the slack time that
occurs due to the early completion of a mandatory part, for the scheduling of the
optional part of the task at a lower processor speed, utilizing DVFS. Thus, in this
strategy there is a trade-off not only between result precision and timeliness, but also
between result precision and energy savings.

6 Conclusions

In this chapter, a classification of data-intensive workloads was proposed and an
overview of the most commonly used heuristics for their scheduling in large-scale
distributed systems was given. Major challenges of data-intensive applications were
covered, such as data locality awareness, timeliness, resilience against failures and en-
ergy efficiency. Furthermore, recent novel ideas and research trends were presented.

Scheduling data-intensive workloads in large-scale distributed systems remains
an active research area, with many open challenges. With the explosive growth of big
data, workloads tend to get more complex and computationally demanding. Conse-
quently, more effective scheduling heuristics must be employed. In addition to the
data locality awareness, timeliness, fault tolerance and energy efficiency objectives,
security is drawing an ever-increasing interest from both the industry and the research
community. Hence, efforts towards this direction are expected to be intensified in the
near future.

40 G. L. Stavrinides and H. D. Karatza

Acknowledgements The second author of this chapter, Helen D. Karatza, has been invited as a
trainer to the cHiPSet Training School 2016 “New Trends in Modeling and Simulation in HPC
Systems”, held in Bucharest, Romania, 21–23 September 2016, and has been supported by the
IC1406 Horizon 2020 grant.

References

1. Adam,T.L.,Chandy,K.M.,Dickson, J.R.:Acomparison of list schedules for parallel processing
systems. Commun. ACM 17(12), 685–690 (1974)

2. Apache: Apache Hadoop (2017). http://hadoop.apache.org/. Accessed 19 Jun 2017
3. Beloglazov, A., Abawajy, J., Buyya, R.: Energy-aware resource allocation heuristics for ef-

ficient management of data centers for cloud computing. Futur. Gener. Comput. Syst. 28(5),
755–768 (2012)

4. Bonomi, F.,Milito, R., Natarajan, P., Zhu, J.: Fog Computing: A Platform for Internet of Things
and Analytics, pp. 169–186. Springer, Berlin (2014)

5. Buttazzo, G.C.: Hard Real-Time Computing Systems: Predictable Scheduling Algorithms and
Applications, 3rd edn. Springer, Berlin (2011)

6. Calheiros, R.N., Buyya, R.: Energy-efficient scheduling of urgent bag-of-tasks applications
in clouds through DVFS. In: Proceedings of the 6th IEEE International Conference on Cloud
Computing Technology and Science (CloudCom’14), pp. 342–349 (2014)

7. Chen, J.J., Yang, C.Y., Kuo, T.W.: Slack reclamation for real-time task scheduling over dynamic
voltage scaling multiprocessors. In: Proceedings of the 2006 IEEE International Conference
on Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC’06), pp. 358–365 (2006)

8. Cheng, B.C., Stoyenko, A.D., Marlowe, T.J., Baruah, S.K.: LSTF: a new scheduling policy for
complex real-time tasks in multiple processor systems. Automatica 33(5), 921–926 (1997)

9. Cisco: Fog computing and the internet of things: extend the cloud to where the things are.
Technical Report C11-734435-00 04/15, San Jose, CA (2015)

10. Coffman Jr., E.G., Csirik, J., Galambos, G., Martello, S., Vigo, D.: Bin Packing Approximation
Algorithms: Survey and Classification, pp. 455–531. Springer, Berlin (2013)

11. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters. Commun.
ACM 51(1), 107–113 (2008)

12. Ekanayake, J., Fox, G.: High performance parallel computing with clouds and cloud technolo-
gies. In: Proceedings of the First International Conference on Cloud Computing (CloudCom-
p’09), pp. 20–38 (2009)

13. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud computing and grid computing 360-degree com-
pared. In: Proceedings of the 2008 Grid Computing Environments Workshop (GCE’08), pp.
1–10 (2008)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman and Company, New York (1979)

15. Gkoutioudi, K.Z., Karatza, H.D.: Multi-criteria job scheduling in grid using an accelerated
genetic algorithm. J Grid Comput. 10(2), 311–323 (2012)

16. Hashem, I.A.T., Yaqoob, I., Anuar, N.B., Mokhtar, S., Gani, A., Khan, S.U.: The rise of big
data on cloud computing: review and open research issues. Inf. Syst. 47, 98–115 (2015)

17. Jiang, H.J., Huang, K.C., Chang, H.Y., Gu, D.S., Shih, P.J.: Scheduling concurrent workflows
in HPC cloud through exploiting schedule gaps. In: Proceedings of the 11th International
Conference on Algorithms and Architectures for Parallel Processing (ICA3PP’11), pp. 282–
293 (2011)

18. Karatza, H.D.: The impact of critical sporadic jobs on gang scheduling performance in dis-
tributed systems. Simul.: Trans. Soc. Model Simul. Int. 84(2–3), 89–102 (2008)

19. Karatza,H.D.: Scheduling jobswith different characteristics in distributed systems. In: Proceed-
ings of the 2014 International Conference on Computer, Information and Telecommunication
Systems (CITS’14), pp. 1–5 (2014)

http://hadoop.apache.org/

Scheduling Data-Intensive Workloads in Large-Scale … 41

20. Kolodziej, J.: EvolutionaryHierarchicalMulti-CriteriaMetaheuristics for Scheduling in Large-
Scale Grid Systems. Springer, Berlin (2012)

21. Kruatrachue, B., Lewis, T.G.: Duplication scheduling heuristic, a new precedence task sched-
uler for parallel systems. Technical Report. 87-60-3, Oregon State University, Corvallis, OR
(1987)

22. Lin, K.J., Natarajan, S., Liu, J.W.S.: Imprecise results: utilizing partial computations in real-
time systems. In: Proceedings of the 8th IEEE Real-Time Systems Symposium (RTSS’87), pp.
210–217 (1987)

23. Liu, C.L., Layland, J.W.: Scheduling algorithms for multiprogramming in a hard real-time
environment. J. ACM 20(1), 46–61 (1973)

24. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.F.: Dynamic mapping of a class
of independent tasks onto heterogeneous computing systems. J. Parallel Distrib. Comput. 59(2),
107–131 (1999)

25. Manickam,V.,Aravind,A.:A fair and efficient gang scheduling algorithm formulticore proces-
sors. In: Proceedings of the 6th International Conference on Information Processing (ICIP’12),
pp. 467–476 (2012)

26. Mizotani, K., Hatori, Y., Kumura, Y., Takasu, M., Chishiro, H., Yamasaki, N.: An integration
of imprecise computation model and real-time voltage and frequency scaling. In: Proceedings
of the 30th International Conference on Computers and Their Applications (CATA’15), pp.
63–70 (2015)

27. Mok, A.K.: Fundamental design problems of distributed systems for the hard real-time envi-
ronment. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA (1983)

28. Moschakis, I.A., Karatza, H.D.: Multi-criteria scheduling of bag-of-tasks applications on het-
erogeneous interlinked clouds with simulated annealing. J. Syst. Softw. 101, 1–14 (2015)

29. Oldfield, R.A., Arunagiri, S., Teller, P.J., Seelam, S., Varela, M.R., Riesen, R., Roth, P.C.:
Modeling the impact of checkpoints on next-generation systems. In: Proceedings of the 24th
IEEE Conference on Mass Storage Systems and Technologies (MSST’07), pp. 30–46 (2007)

30. Papazachos, Z.C., Karatza, H.D.: Performance evaluation of gang scheduling in a two-cluster
system with migrations. In: Proceeding 23rd IEEE International Parallel and Distributed Pro-
cessing Symposium (IPDPS’09), pp. 1–8 (2009)

31. Russom, P.: Big data analytics. Technical Report TDWI Best Pract. Rep., Fourth Quart., TDWI
Research (2011)

32. Stankovic, J.A., Spuri, M., Ramamritham, K., Buttazzo, G.C.: Deadline Scheduling for Real-
Time Systems: EDF and Related Algorithms. Kluwer Academic Publishers, Dordrecht (1998)

33. Stavrinides,G.L., Karatza,H.D.: Performance evaluation of gang scheduling in distributed real-
time systems with possible software faults. In: Proceedings of the 2008 International Sympo-
sium on Performance Evaluation of Computer and Telecommunication Systems (SPECTS’08),
pp. 1–7 (2008)

34. Stavrinides,G.L.,Karatza,H.D.: Fault-tolerant gang scheduling in distributed real-time systems
utilizing imprecise computations. Simul.: Trans. Soc. Model Simul. Int. 85(8), 525–536 (2009)

35. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs with end-to-end deadlines
in distributed real-time systems utilizing imprecise computations. J. Syst. Softw. 83(6), 1004–
1014 (2010)

36. Stavrinides, G.L., Karatza, H.D.: The impact of input error on the scheduling of task graphs
with imprecise computations in heterogeneous distributed real-time systems. In: Proceedings
of the 18th International Conference on Analytical and Stochastic Modeling Techniques and
Applications (ASMTA’11), pp. 273–287 (2011)

37. Stavrinides, G.L., Karatza, H.D.: Scheduling multiple task graphs in heterogeneous distributed
real-time systems by exploiting schedule holes with bin packing techniques. Simul. Model.
Pract. Theor. 19(1), 540–552 (2011)

38. Stavrinides, G.L., Karatza, H.D.: Scheduling real-time DAGs in heterogeneous clusters by
combining imprecise computations and bin packing techniques for the exploitation of schedule
holes. Futur. Gener. Comput. Syst. 28(7), 977–988 (2012)

42 G. L. Stavrinides and H. D. Karatza

39. Stavrinides, G.L., Karatza, H.D.: The impact of resource heterogeneity on the timeliness of
hard real-time complex jobs. In: Proceedings of the 7th International Conference on PErvasive
TechnologiesRelated toAssistiveEnvironments (PETRA’14),Workshop onDistributed Sensor
Systems for Assistive Environments (Di-Sensa), pp. 65:1–65:8 (2014)

40. Stavrinides, G.L., Karatza, H.D.: Scheduling real-time jobs in distributed systems-simulation
and performance analysis. In: Proceedings of the 1st International Workshop on Sustainable
Ultrascale Computing Systems (NESUS’14), pp. 13–18 (2014)

41. Stavrinides, G.L., Karatza, H.D.: A cost-effective and QoS-aware approach to scheduling real-
time workflow applications in PaaS and SaaS clouds. In: Proceedings of the 3rd International
Conference on Future Internet of Things and Cloud (FiCloud’15), pp. 231–239 (2015)

42. Stavrinides, G.L., Karatza, H.D.: Scheduling different types of applications in a saas cloud. In:
Proceedings of the 6th International Symposium on Business Modeling and Software Design
(BMSD’16), pp. 144–151 (2016)

43. Stavrinides, G.L., Karatza, H.D.: Scheduling real-time parallel applications in saas clouds in the
presence of transient software failures. In: Proceedings of the 2016 International Symposium
on Performance Evaluation of Computer and Telecommunication Systems (SPECTS’16), pp.
1–8 (2016)

44. Stavrinides, G.L., Karatza, H.D.: The effect of workload computational demand variability
on the performance of a SaaS cloud with a multi-tier SLA. In: Proceedings of the IEEE 5th
International Conference on Future Internet of Things and Cloud (FiCloud’17), pp. 10–17
(2017)

45. Stavrinides,G.L., Karatza,H.D.: Periodic scheduling ofmixedworkload in distributed systems.
In: Proceedings of the 23rd ICE/IEEE International Conference on Engineering, Technology
and Innovation (ICE’17) (2017, in press)

46. Stavrinides, G.L., Karatza, H.D.: Scheduling real-time bag-of-tasks applications with approx-
imate computations in SaaS clouds. Concurr. Comput. Pract. Exp. (2017, in press)

47. Stavrinides, G.L., Karatza, H.D.: Simulation-based performance evaluation of an energy-
aware heuristic for the scheduling of HPC applications in large-scale distributed systems.
In: Proceedings of the 8th ACM/SPEC International Conference on Performance Engineering
(ICPE’17), 3rd International Workshop on Energy-aware Simulation (ENERGY-SIM’17), pp.
49–54 (2017)

48. Stavrinides, G.L., Duro, F.R., Karatza, H.D., Blas, J.G., Carretero, J.: Different aspects of
workflow scheduling in large-scale distributed systems. Simul. Model. Pract. Theor. 70, 120–
134 (2017)

49. Sun, R., Yang, J., Gao, Z., He, Z.: A virtual machine based task scheduling approach to im-
proving data locality for virtualized hadoop. In: Proceedings of the 2014 IEEE/ACIS 13th
International Conference onComputer and Information Science (ICIS’14), pp. 297–302 (2014)

50. Tabak, E.K., Cambazoglu, B.B., Aykanat, C.: Improving the performance of independent task
assignment heuristicsminmin,maxmin and sufferage. IEEETrans. Parallel.Distrib. Syst.25(5),
1244–1256 (2014)

51. Talia, D.: Clouds for scalable big data analytics. Computer 46(5), 98–101 (2013)
52. Terzopoulos,G.,Karatza,H.D.:Bag-of-task scheduling onpower-aware clusters using aDVFS-

based mechanism. In: Proceedings of the 28th IEEE International Parallel & Distributed Pro-
cessing Symposium (IPDPS’14), 10th Workshop on High-Performance, Power-Aware Com-
puting (HPPAC’14), pp. 833–840 (2014)

53. Topcuoglu,H.,Hariri, S.,Wu,M.Y.: Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel. Distrib. Syst. 13(3), 260–274 (2002)

54. Valentini, G.L., Lassonde, W., Khan, S.U., Allah, N.M., Madani, S.A., Li, J., Zhang, L., Wang,
L., Ghani, N., Kolodziej, J., Li, H., Zomaya, A.Y., Xu, C.Z., Balaji, P., Vishnu, A., Pinel, F.,
Pecero, J.E., Kliazovich, D., Bouvry, P.: An overview of energy efficiency techniques in cluster
computing systems. Clust. Comput. 16(1), 3–15 (2013)

55. Wang, L., Tao, J., Ranjan, R.,Marten, H., Streit, A., Chen, J., Chen, D.: G-Hadoop:MapReduce
across distributed data centers for data-intensive computing. Futur. Gener. Comput. Syst. 29(3),
739–750 (2013)

Scheduling Data-Intensive Workloads in Large-Scale … 43

56. Weng, C., Lu, X.: Heuristic scheduling for bag-of-tasks applications in combination with QoS
in the computational grid. Futur. Gener. Comput. Syst. 21(2), 271–280 (2005)

57. Yang,T.,Gerasoulis,A.:DSC: scheduling parallel tasks on anunboundednumber of processors.
IEEE Trans. Parallel. Distrib. Syst. 5(9), 951–967 (1994)

58. Zaharia,M., Borthakur, D., Sen Sarma, J., Elmeleegy, K., Shenker, S., Stoica, I.: Delay schedul-
ing: a simple technique for achieving locality and fairness in cluster scheduling. In: Proceedings
of the 5th European Conference on Computer Systems (EuroSys’10), pp. 265–278 (2010)

59. Zhao, J.,Wang, L., Tao, J., Chen, J., Sun,W., Ranjan, R., Kolodziej, J., Streit, A., Georgakopou-
los, D.: A security framework in G-Hadoop for big data computing across distributed cloud
data centres. J. Comp. Syst. Sci. 80(5), 994–1007 (2014)

Design Patterns and Algorithmic Skeletons:
A Brief Concordance

Adriana E. Chis and Horacio González–Vélez

Abstract Having been designed as abstractions of common themes in
object-oriented programming, patterns have been incorporated into parallel program-
ming to allow an application programmer the freedom to generate parallel codes by
parameterising a framework and adding the sequential parts. On the one hand, paral-
lel programming patterns and their derived languages have maintained, arguably, the
best adoption rate; however, they have become conglomerates of generic attributes
for specific purposes, oriented towards code generation rather than the abstraction of
structural attributes. On the other hand, algorithmic skeletons systematically abstract
commonly-used structures of parallel computation, communication, and interac-
tion. Although there are significant examples of relevant applications—mostly in
academia—where they have been successfully deployed in an elegant manner, algo-
rithmic skeletons have not been widely adopted as patterns have. However, the ICT
industry expects graduates to be able to easily adapt to its best practices. Arguably,
this entails the use of pattern-based programming, as it has been the case in sequen-
tial programming where the use of design patterns is widely considered the norm,
as demonstrated by a myriad of citations to the seminal work of Gamma et al. [6]
widely known as the Gang-of-Four. We contend that an algorithmic skeleton can be
treated as a structural design pattern where the degree of parallelism and computa-
tional infrastructure are only defined at runtime. The purpose of this chapter is to
explain how design patterns can be mapped into algorithmic skeletons. We illustrate
our approach using a simple example using the visitor design pattern and the task
farm algorithmic skeleton.

Adriana E. Chis (B) · H. González–Vélez
Cloud Competency Centre, National College of Ireland, Dublin 1, Ireland
e-mail: adriana.chis@ncirl.ie

H. González–Vélez
e-mail: horacio@ncirl.ie

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_3

45

46 A. E. Chis and H. González–Vélez

1 Introduction

Parallel programming aims to capitalise on concurrency, the execution of different
sections of a given program at the same time, in order to improve the overall per-
formance of the program, and, eventually, that of the whole system. Despite major
breakthroughs, parallel programming is still a highly demanding activity widely
acknowledged to be more difficult than its sequential counterpart, and one for which
the use of efficient programming models and structures has long been sought. These
programming models must necessarily be performance-oriented, and are expected
to be defined in a scalable structured fashion to provide guidance on the execution
of their jobs and assist in the deployment of heterogeneous resources and policies.

Furthermore, it is widely acknowledged that one of the major challenges of the
multi/many-core era is the efficient support of parallel programming models that
can predict and improve performance for diverse heterogenous architectures [11].
Furthermore, the “Berkeley View” work established the importance of not only pro-
ducing realistic benchmarks for parallel programming models based on patterns
of computation and communication, but also developing programming paradigms
which efficiently deploy scalable task parallelism [2]. Such decoupling has allowed
them to be efficiently deployed on different dedicated and non-dedicated architec-
tures including symmetric multiprocessing, massively parallel processing, clusters,
constellations, and clouds.

Design patterns have been conceived as abstractions of common themes in object-
oriented programming [5, 6]. Parallel patterns aim to further expand this concept by
decoupling the detail or implementation from the structure of a parallel program in
order to transfer any performance improvements in the system infrastructure while
preserving the final result.

Algorithmic skeletons abstract commonly-used patterns of parallel computa-
tion, communication and interaction [3]. Skeletons provide a clear and consistent
behaviour across platforms, with the underlying structure depending on the particu-
lar implementation [7].

Diverse authors have established the importance of patterns and skeletons in par-
allel programming from a design point of view [8–10, 12], and their benefits for
applicative environments and development projects.

In this work, we give an initial example for a direct mapping of design patterns and
skeletons in order to establish a correspondence between the well-known, accepted
design pattern approach and the programmer-oriented functional algorithmic skele-
ton paradigm. This is not intended as a comprehensive survey but rather an initial
attempt to introduce the topic to early career researchers and practitioners.

This chapter is structured as follows. Firstly, Sect. 2 provides a brief introduction
to design patterns. Secondly, Sect. 3 describes the algorithmic skeleton paradigm.
Thirdly, Sect. 4 describes our mapping of a design pattern to an algorithmic skeleton.
Finally, Sect. 5 presents our conclusions.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 47

2 Design Patterns

Computers have been traditionally programmed with a sequential frame of mind, but
parallel solutions require a different way of approaching and dissecting a problem.
They require a holistic analysis and understanding of the system architecture, the
programming paradigm, and the problem constraints. Parallel computing requires
calculations to be synchronised, staged, and/or communicated over a number of dif-
ferent phases. Message-passing, threads, load-balancing, and semaphores are mat-
ters restricted to the expert software developers and, arguably, lack some high-level
design features required for large-scale software development endeavours.

Having defined a pattern as a core solution to a problem that recurrently occurs
in a given context, Alexander et al. introduced a pattern language to describe tens
of patterns applied in civil engineering [1]. Subsequently, design patterns have doc-
umented solutions to recurrent software design problems. Gamma et al. present 23
design patterns [6].

The authors classify the design patterns based on their purpose into three main
categories, namely creational patterns, structural patterns and behavioural patterns
as illustrated in Fig. 1.

Creational patterns Used to build objects such that they can be decoupled from
the implementing system.

Structural patterns Used to form large data structures from many disparate
objects.

Behavioural patterns Used to manage algorithms, relationships, and responsibili-
ties between objects.

Furthermore, Gamma et al. provide another classification of the design patterns
based on the patterns’ scope in object patterns and class patterns. As the name sug-
gests the former category of patterns specify relationships between objects, whereas
the latter category of patterns encodes relationships between classes and subclasses.

Fig. 1 Traditional classification of design patterns: creational, structural and behavioural

48 A. E. Chis and H. González–Vélez

Table 1 Examples of design patterns (creational, structural, and behavioural) (Source [6])

Category Pattern

Creational Abstract Factory, Builder, Factory Method, Prototype, Singleton

Structural Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Proxy

Behavioural Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Observer, State, Strategy, Template Method, Visitor

A complete description of these design patterns can be found in the seminal book
by Gamma et al. [6]. The authors document each pattern using a template. The core
elements of describing a pattern are: the pattern name; the problem, which presents
details about a problem in a given context; the solution in form of a generic design
solution which incorporates the relationships and interactions between objects and
classes; and the consequences of using a given pattern. A number of core design
patterns are presented in Table1.

3 Algorithmic Skeletons

Cole pioneered the field with the definition of skeletons as “specialised higher-order
functions fromwhich onemust be selected as the outermost purpose in the program”,
and the introduction of four initial skeletons: divide and conquer, iterative combina-
tion, cluster, and task queue [3]. His work described a software engineering approach
to high-level parallel programming using a skeletal (virtual) machine rather than the
deployment of a tool or language on a certain architecture.

In essence, algorithmic skeletons systematically abstract commonly-used struc-
tures of parallel computation, communication, and interaction. Skeletal parallel
programs are typically expressed by interweaving parameterised skeletons using
descending composition and control inheritance throughout the program structure,
analogously to the way in which sequential structured programs are constructed [4].
This high-level parallel programming technique, known as structured parallelism,
enables the composition of skeletons for the development of programs where the
control is inherited through the structure, and the programmer adheres to top-down
design and construction. Thus, it provides a clear and consistent behaviour across
platforms, while their structure depends on the particular implementation.

Since skeletons enable programmers to code algorithms without specifying the
machine-dependent computation and coordination primitives, they have been posi-
tioned as coordination enablers in parallel programs.

Despite its elegance andpotential, it is important to state that structured parallelism
still lacks the necessary critical mass to become a mainstream parallel programming
technique. Its principal shortcomings are its application space, since it can only

Design Patterns and Algorithmic Skeletons: A Brief Concordance 49

Table 2 A taxonomy for the algorithmic skeleton constructs based on their functionality

Skeleton Scope Main coordination
characteristic

Examples

Data-parallel Data structures I/O intensive Map, reduce

Task-parallel Tasks Scheduling Task farm, pipeline

Resolution Family of problems Computational-
intensive

Divide-and-conquer,
branch-and-bound

address well-defined algorithmic solutions, and the lack of a specification to define
and exchange skeletons between different implementations.

Skeletons can be broadly categorised into three types based on their functionality
as shown in Table2.

Data-parallel skeletons Work typically on bulk data structures. Their behaviour
establishes functional correspondences between data, and
their structure regulates resource layout at fine-grain par-
allelism, e.g. MPI collectives.

Task-parallel skeletons Operate on tasks. Their behaviour is determined by the
interaction between tasks, and their coarse-grain structure
establishes scheduling constraints among processes, e.g.
task farm and pipeline.

Resolution skeletons Delineate an algorithmicmethod to undertake a given fam-
ily of problems. Their behaviour reflects the nature of
the solution to a family of problems, and their structure
may encompass different computation, communication,
and control primitives, e.g. the divide-and-conquer and
dynamic programming skeletons.

From a coordination point of view, data-parallel skeletons are typically input/
output intensive as they operate on memory, and even disk, stored data structures,
while resolution are computational-intensive as they deploy complex algorithms
with demanding computational requirements. Task parallel can be construed as task
schedulers with intimate knowledge of the program structure.

3.1 A Classification for Algorithmic Skeletons

This section elaborates on the functionality associated with the specific algorithmic
skeletons listed in Table2.

• Data-parallel (see Fig. 2)

– Map specifies that a function or a sub-skeleton can be applied simultaneously
to all the elements of a list to achieve parallelism. The data parallelism occurs

50 A. E. Chis and H. González–Vélez

Fig. 2 Two data parallel
skeletons: map and reduce

because a single data element can be split into multiple data, then the sub-
skeleton is executed on each data element, and finally the results are united again
into a single result. The map skeleton can be conceived as single instruction,
multiple data parallelism.

– Reduce, also known as scan, is employed to compute prefix operations in a list
by traversing the list from left to right and then applying a function to each pair
of elements, typically summation. Note that as opposed to map, it maintains
aggregated partial results.

• Task-parallel (see Fig. 3)

– Task Farm or simply farm embeds the ability to schedule independent tasks in
a divisible workload across multiple computing nodes.

– Pipe enables staged computations, where parallelism can be achieved by com-
puting different stages simultaneously on different inputs. The number of stages
provided by pipe can be variable or fixed.

• Resolution (see Fig. 4)

– Divide & Conquer (d&c) calls are recursively applied until a condition is met
within an optimisation search space. Its semantics are as follows.When an input
arrives, a condition component is invoked on the input. Depending on the result
two things can happen. Either the parameter is passed on to the sub-skeleton,

Design Patterns and Algorithmic Skeletons: A Brief Concordance 51

Fig. 3 Two task parallel
skeletons: task farm and
pipeline

or the input is split with the split component into a list of data. Then, for each
list element the same process is applied recursively. When no further recursions
are performed, the results obtained at each level are merged. Eventually, the
merged results yield to one result which corresponds to the final result of the
d&c skeleton.

– Branch & Bound (b&b) divides recursively the search space (branch) and then
determines the elements in the resulting sub-spaces by mapping an objective
function (bound). Themerged results also produce one result which corresponds
to the final result of the b&b skeleton.

4 Mapping Patterns and Skeletons

In this section we show how the Visitor pattern, a behavioural design pattern, can be
mapped to the Task Farm algorithmic skeleton by documenting the latter using the
design pattern template and identifying the commonalities between the two.

Design patterns comprise intent, motivation, participants, collaborations, and con-
sequences. Given that structural design patterns have been conceived to create added
functionality via object augmentation, they can be “made” parallel. That is to say,
a standard compound structural pattern can have parallel characteristics which can
be instantiated dynamically. On the other hand, algorithmic skeletons operate on

52 A. E. Chis and H. González–Vélez

Fig. 4 Two resolution
skeletons: divide & conquer
and branch & bound

the notion of changing underlying computational resources and therefore detach the
structure from the behaviour of the program.

We contend that an algorithmic skeleton can be treated as a structural design
pattern where the degree of parallelism and computational infrastructure are only
defined at runtime. From this perspective, the programmer task is arguably sim-
plified by completely detaching the structure and behaviour as originally intended,
and additionally increasing its consistency and programmability through the design
pattern characteristics.

Visitor Pattern—A Behavioural Pattern
As introduced by Gamma et al. [6], the Visitor pattern separates structure from com-
putation by enabling new operations on existing object structures without modifying
the structures. Figure5 presents the generic solution of the Visitor pattern. The fol-
lowing description is adapted from [6]:

Intent Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

Motivation Represent an operation to be performed on the elements of an object
structure. Visitor lets you define a new operation without changing
the classes of the elements on which it operates.

Applicability The visitor pattern is useful in the following scenarios:

• An object structure contains many classes of objects with differing interfaces, and
you want to perform operations on these objects that depend on their concrete
classes.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 53

Fig. 5 Visitor pattern (source [6])

• Many distinct and unrelated operations need to be performed on objects in an
object structure, and you want to avoid “polluting” their classes with these oper-
ations. Visitor lets you keep related operations together by defining them in one
class. When the object structure is shared by many applications, use Visitor to put
operations in just those applications that need them.

• The classes defining the object structure rarely change, but you oftenwant to define
new operations over the structure. Changing the object structure classes requires
redefining the interface to all visitors, which is potentially costly. If the object
structure classes change often, then it is probably better to define the operations
in those classes.

Participants (consult the pattern structure shown in Fig. 5)

Visitor declares a visit method for each of the concrete elements that
need to be traversed.

ConcreteVisitor implements each visit method declared in the Visitor. Usually,
each ConcreteVisitor keeps track of a local state for the vis-
ited concrete element. The state is going to be updated while
recursively traversing the structure.

Element declares an accept method which allows passing in a Visitor
as a parameter

ConcreteElement declares an accept method which allows passing in a Visitor
as a parameter

ObjectStructure offer a mechanism to allow a visitor to visit the elements

Collaborations

• A client that uses the Visitor pattern must create a ConcreteVisitor object and then
traverse the object structure, visiting each element with the visitor.

54 A. E. Chis and H. González–Vélez

• When an element is visited, it calls the Visitor operation that corresponds to its
class. The element supplies itself as an argument to this operation to let the Visitor
access its state, if necessary.

Task Farm—A Task-Parallel Skeleton
Let us present an example based on a task parallel algorithmic skeleton, the task
farm, as introduced in Sect. 3. We shall therefore formalise its description by using
the notation for design patterns.

Intent A Task Farm enables the creation of a variable number of indepen-
dent tasks to be allocated to distinct computational “worker” nodes
by a central scheduling node “farmer”. Farms can be nested recur-
sively to enable a worker to become a farmer of additional nodes.

Motivation Farms are especially useful to offload large numbers of independent
tasks to several nodes. Typically there are many more tasks than
nodes. As nodes can have different architectures (e.g. based onCPUs
or GPUs) and, consequently, distinct computational characteristics,
the farmer requires to allocate tasks using greedy or other heuristics
schedulingmechanisms. Furthermore, computational resourcesmay
not necessarily be dedicated, can be geographically distributed, and
have variable latencies, making the overall scheduling dynamic and
complex.

Applicability Farms are particularly useful to offload embarrassingly-parallel
computations where the ordering and finish times of independent
tasks are not subject to hard constraints.

Participants

Farmer the process which divides and allocates tasks to workers.
Worker the processes which receive tasks and compute results based on given

function.

Collaborations

• A client that uses the Task Farm skeleton must create a Farmer object to create an
object structure for Workers. By traversing the object structure for each Worker
element, a Farmer assigns tasks to each Worker.

• When an element (Worker) completes a task (or a series of them), it calls the
Farmer operation that corresponds to its class.

We notice that if we perform a pairwise comparison that the visitor design pattern
and the task farm skeleton can be similar in nature. For instance, the intent of both
is to perform a series of tasks without altering the nature of the structure and both
have an architecture-independent approach. While the Task Farm deals with pro-
cessing heterogeneity by using scheduling mechanisms, the Visitor pattern makes
no assumption on the nature of the underlying infrastructure.

Design Patterns and Algorithmic Skeletons: A Brief Concordance 55

5 Conclusions

This initial mapping approach of patterns to skeletons has shown that, in principle,
parallel programming structures can be formally documented using a design pattern
notation to strengthen its nature and, most certainly, its readability.

With respect to the analysis of the mapping problem, the findings of this work
provide an initial idea to document large parallel programming endeavours. This
tacitly reinforces the notion that although parallel programming is complex, well-
documented parallel patterns can help to ease the burden.

From a performance standpoint, it is arguable that the overall performance of
algorithmic skeletons can be assumed to be unaltered as the design pattern notation
is mostly static. Furthermore, by assuming a skeleton is a pattern whose degree
of parallelism is determined at run-time, there is an intrinsic reinforcement to the
decoupling of computation from coordination.

However, it is a fact there are substantial avenues of research that need to be
explored to fully formalise a design pattern approach to skeletons.

Acknowledgements The authors would like to acknowledge the contribution of the ICT COST
Action IC1406 “High-PerformanceModelling andSimulation forBigDataApplications (cHiPSet)”
http://chipset-cost.eu/.

References

1. Alexander, C., Ishikawa, S., Silverstein, M.: A Pattern Language: Towns, Buildings, Construc-
tion. Oxford University Press, New York (1977)

2. Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan, N.,
Patterson, D., Sen, K., Wawrzynek, J., Wessel, D., Yelick, K.: A view of the parallel computing
landscape. Commun. ACM 52(10), 56–67 (2009)

3. Cole, M.: Algorithmic Skeletons: Structured Management of Parallel Computation, Research
Monographs in Parallel and Distributed Computing. MIT Press/Pitman, London (1989)

4. Cole, M.: Bringing skeletons out of the closet: a pragmatic manifesto for skeletal parallel
programming. Parallel Comput. 30(3), 389–406 (2004)

5. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design patterns: Abstraction and reuse of
object-oriented design. ECOOP’93. Lecture Notes in Computer Science, vol. 707, pp. 406–
431. Springer, Kaiserslautern (1993)

6. Gamma, E., Helm,R., Johnson, R., Vlissides, J.: Design Patterns: Elements of ReusableObject-
oriented Software. Addison-Wesley Longman, Boston (1995)

7. González-Vélez, H., Leyton, M.: A survey of algorithmic skeleton frameworks: high-level
structured parallel programming enablers. Softw., Pract. Exper. 40(12), 1135–1160 (2010)

8. Goswami, D., Singh, A., Preiss, B.R.: From design patterns to parallel architectural skeletons.
J. Parallel Distrib. Comput. 62(4), 669–695 (2002)

9. Hammond, K., Aldinucci, M., Brown, C., Cesarini, F., Danelutto, M., González-Vélez, H.,
Kilpatrick, P., Keller, R., Rossbory, M., Shainer, G.: The ParaPhrase Project: Parallel Patterns
forAdaptiveHeterogeneousMulticore Systems, LectureNotes inComputer Science, vol. 7542,
pp. 218–236. Springer, Torino (2013)

10. Mattson,T.G., Sanders,B.,Massingill, B.: Patterns for Parallel Programming. SoftwarePatterns
Series. Addison-Wesley Professional, Boston (2004)

http://chipset-cost.eu/

56 A. E. Chis and H. González–Vélez

11. Mittal, S., Vetter, J.S.: A survey of CPU-GPU heterogeneous computing techniques. ACM
Comput. Surv. 47(4), 69:1–69:35 (2015)

12. Rabhi, F.A., Gorlatch, S. (eds.): Patterns and Skeletons for Parallel and Distributed Computing.
Springer, London (2003)

Evaluation of Cloud Systems

Mihaela-Andreea Vasile, George-Valentin Iordache,
Alexandru Tudorica and Florin Pop

Abstract Modelling and simulation represent suitable instruments for evaluation
of distributed system. These essential tools in science are used in Cloud systems
design and performance evaluation. The chapter covers the fundamental skills for
a practitioner working in the field of Cloud Systems to have, for the development
of a correct methodology for the evaluation using simulation of Cloud services and
components. We concentrate on subjects related to tasks scheduling and resource
allocation with the focus on scalability and elasticity, the constraints imposed by
SLA and the use of CloudSim for performance evaluation of Cloud Systems. Several
metrics used in modelling and simulation are presented in this chapter.

1 Introduction

Cloud services are classified by NIST into three categories [1]: IaaS—Infrastructure
as a Service, PaaS—Platform as a Service, SaaS—Software as a Service.

This work was presented during the event cHiPSet Training School “New Trends in Modeling
and Simulation in HPC Systems” Bucharest, Romania, 21–23 September 2016, supported by
cHiPSet ICT COST Action IC1406.

M.-A. Vasile · G.-V. Iordache · A. Tudorica · F. Pop (B)
Computer Science Department, Faculty of Automatic Control and Computers,
University Politehnica of Bucharest, Bucharest, Romania
e-mail: florin.pop@cs.pub.ro

M.-A. Vasile
e-mail: mihaela.vasile@hpc.pub.ro

G.-V. Iordache
e-mail: george.iordache@cs.pub.ro

A. Tudorica
e-mail: alexandru.tudorica@cti.pub.ro

F. Pop
National Institute for Research and Development in Informatics (ICI),
Bucharest, Romania

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_4

57

58 M.-A. Vasile et al.

IaaS offers hardware infrastructure like switches, routers, servers, load balancers,
firewalls, storage. Usually these resources are virtual resources if these are baremetal
versions, then the term used is Metal as a Service (MaaS). Notable examples of IaaS
are AmazonWeb Services, Google Compute Engine, IBM Softlayer (which has both
IaaS and MaaS offerings).

PaaS goes beyond IaaS and offers a computing platform, which includes managed
operating system, execution environment, storage, database and HTTP server. The
platform is managed by the provider, this allows application developers to build
applications without the complexity and inherent cost of managing the underlying
stack.

SaaS compared toPaaSor IaaSoffers an application that is completelymanagedby
the provider. Typical applications include databases, CRM software, Git repositories,
etc. The pricing is usually pay-per-use or subscription based.

Modern day Cloud computing has adapted to the service oriented architecture by
the means of microservices. Microservices are services that are isolated from each
other and communicate over a network in order to fulfill a goal. The main differ-
ence between microservices and SOA is that the latter focuses on reusability and
integrating larger business applications, while the former focuses on replacing an
application with a set of services that can be replaced, updated and scaled indepen-
dently. Each microservice can be implemented in different programming languages,
databases and software environment thus increasing the development speed. Also in
contrast with SOA each microservice defines its required resources. Microservices
also pose the advantage that you can scale specific bottlenecks in your application,
by assigning a different number of instances to each microservice. Architecturally
speaking, microservices should be designed with fault in mind. If a microservice
instance fails while processing a task, that task gets assigned to another instance of
the same microservice.

For high availability application the placement of these instances is constrained by
locality restrictions, for example cloud service providers like Amazon often provide
multiple Availability Zones (AZs), especially designed for high availability appli-
cation such that they have a small chance of failing simultaneously. A microservice
scheduler must be able to balance the number of instances of a service across a num-
ber of AZs depending on the availability restrictions. Other restrictions imposed on
microservices might be: data locality, specific machine requirements like virtualiza-
tion mode used, presence of a certain generation of GPU or processor generation.

Scheduling microservices is very similar to the online multi-capacity bin packing
problem, for which multiple algorithms exist. This problem was studied for schedul-
ing Virtual Machines (VMs) and is sometimes combined with offline phases of the
algorithm [2] for increased performance. For example Song et al. [3] presents an
online algorithm for scheduling VMs with using as few servers as possible reaching
a competitive ratio of 3/2. Another algorithm named HarmonicMix [4] improves on
the previous work, reaching a competitive ratio of 4/3, meaning that the number of
bins necessary is only 4/3 bigger than offline scheduling algorithms with infinite
migration.

Evaluation of Cloud Systems 59

These algorithms make the assumption that all machines are equal, but in order
to optimize for the smallest price, we cant make such an assumption. The nature of
microservices, fault tolerance and scalability, make them able to be run on a cluster of
Amazon Spot instances. Amazon Spot instances are spare virtual machine capacity
auctioned off in real time by Amazon to the highest bidder. Amazon Spot prices are
usually 1/4–1/6 lower than their OnDemand counterparts, thus bringing huge cost
savings. Each type of instance in each availability zone has a dynamic price set by
supply and demand. Thus some instance types might become unavailable for periods
of time. Qu et al. [5] has shown how you can balance availability with price while
using Amazon Spot Instances to run web applications on them, by over provisioning
resources depending on the availability constraints of the application.

This chapter presents the general features of cloud systems and services in Sect. 2,
the main evaluation metrics in Sect. 3, then in Sect. 4 address the SLA issue for Cloud
Systems. Section5 presents the modeling of Cloud Systems using CloudSim and the
extension for it for scheduling algorithms.

2 General Features of Cloud Systems and Services

Cloud solutions allow users to access via Internet various types of resources such as
existing applications in the Cloud, frameworks that can be used for development of
custom built applications, access toVirtualMachines for installing operating systems
and also storage and sharing solutions.

The Cloud is now a significant choice for multiple types of users, common indi-
viduals, scientists or technical users so large datasets are generated, and have to be
processed. The scheduling algorithms used in Clouds can be improved to fit the new
patterns of jobs and big data sets using hybrid approaches that will consider inde-
pendent tasks, tasks with dependencies, asymptotic scale requests or smaller rates of
arriving jobs [7–9]. All this algorithms are designed considering the main features
of Cloud systems and services, which are presented in Table1.

A brief overview of Cloud systems considering dimensions like type, model,
locality, stakeholders, comparison with other models, benefits and future is presented
in Fig. 1.

The recent Cloud computing paradigmwas designed in order to provide end users
and businesses with various advantages such as: self-service provisioning, broad
network access, resource pooling, elasticity, measured service, pay per use [1]. This
approach is based on utility computing were we have infinite resources (as much as
you need) and a concrete billing model (e.g. hourly).

The main benefits of Cloud systems are represent by the possibility to use high-
scale/low-cost providers, by having any time/place access via a web browser, rapid
scalability (incremental cost and load sharing), and a great focus on local IT systems.

We still have several concerns andopen issues forCloud systems, like performance
evaluation, reliability and interoperability assurance, SLAnegotiation, control of data

60 M.-A. Vasile et al.

Table 1 General features of cloud systems and services

Feature Description

Availability Degree to which a system is in a specified state

Reliability Power to remain functional with time without

Efficiency The ratio of the useful work performed by a
system to the total energy expended or heat
taken in

Reusability The level to which a component may be used in
a number of systems or applications

Interoperability The capability to integrate with different
standards and technologies

Adaptability The level of efficiency in adjusting a solution
for the utilization in different context

Usability The quantity to which a Cloud service could be
used by particular consumers to gain certain
aims with usefulness

Modifiability The capability to make modifications to a
component rapidly and cost effectively

Sustainability Environmental effect of the Cloud service
(usual carbon footprint or even energy capable
of the Cloud services)

Scalability The capability of a system to handle a growing
amount of resources and workloads

Elasticity “The degree to which a system is able to adapt
to workload changes by provisioning and
de-provisioning resources in an autonomic
manner, such that at each point in time the
available resources match the current demand
as closely as possible” [6]

and offered service parameters, no standard API (a mixture of SOAP and REST and
other standards), and many open issued about privacy, security, and trust.

We classify the main characteristics and issues about Cloud system considering
nonfunctional aspects, economic models and technological features. This synthetic
approach is presented in Fig. 2.

3 Evaluation Metrics

The evaluationmetrics are presented for all described features in the previous section.
A comprehensive and well described taxonomy of evaluation metrics where pre-
sented in [10]. According with this evaluation we have basic performance metrics
(execution time, speedup, efficiency, scalability, elasticity, etc.), Cloud capabilities
(latency, throughput, bandwidth, recoverability, storage capacity, software tunning,

Evaluation of Cloud Systems 61

F
ig
.1

B
ri
ef

ov
er
vi
ew

of
C
lo
ud

Sy
st
em

s

62 M.-A. Vasile et al.

Fig. 2 Cloud computing characteristics/issues

etc.), andCloud productivity (QoS, power demand, cost of services, availability, pro-
ductivity, SLA, security, etc.). The evaluations metrics can be grouped by [11–13]:

– Availability metrics: “flexibility, accuracy, response time”;
– Reliability metrics: “service constancy, accuracy of service, fault tolerance, matu-
rity, recoverability”;

– Efficiency metrics: “utilization of resource, ratio of waiting time, time behavior”;
– Reusability metrics: “readability, coverage of variability, publicity”;
– Interoperability metrics: “serviceModularity, service interoperability, LISI (Level
of Information System Interoperability)”;

– Adaptability metrics: “coverage of Variability, other performance metrics”;
– Usability metrics: “operability, attractiveness, learnability”;
– Modifiability metric: “MTTC (Mean Time To Change)”;
– Sustainability metrics: “DPPE (Data Centre Performance per Energy) parameter,
PUE (Power Usage Efficiency)”;

– Scalabilitymetric: “average of assigned resources among the requested resources”;
– Elasticity metrics: “boot time, suspend time, delete time, provision (or Deploy-
ment) time, total acquisition time”;

– Communication metrics: “packet loss frequency, connection error rate, transfer
bit/Byte speed, transfer delay”;

Evaluation of Cloud Systems 63

– Computationmetrics: “CPULoad, benchmarkOP (FLOP) rate, instance efficiency
(% CPU peak)”;

– Storage metrics: “response time, latency, bandwidth, capacity”;
– Memory metrics: “mean hit time, memory bit/Byte Speed, randommemory update
rate, response time (ms)”;

– Time metrics: “computation time, communication time”;
– Data Security metrics: “Is SSL applicable, communication latency over SSL,
auditability, resistance to attacks”;

– Authentication metrics: “meaning, sensitivity, effectiveness, confidentiality”.

Other evaluation metrics can be defined to evaluate task scheduling and resource
allocation systems [14–16]. We highlights here several performance evaluation met-
rics for a set of N jobs that is subject to a scheduling algorithm or policy in a Cloud
system:

AverageWaitT ime = 1

N

∑

j∈Jobs

(StartT ime j − SubmitT ime j).

AverageT urnaroundT ime = 1

N

∑

j∈Jobs

(EndT ime j − SubmitT ime j).

FractionO f JobsTrans f erred = NumberO f JobsMigrated

T otalNumberO f Jobs
.

FractionDataVolumeTrans f erred =
∑

K (I nput Si zeK + Output Si zeK)∑
J (I nput Si zeJ + Output Si zeJ)

.

DataMigrationOverhead = TotalDataMigrationT ime∑
J (EndT imeJ − QueueT imeJ)

.

These are several composed metrics defined for a task scheduling systems, but
we can define many other evaluation metrics, according with the defined model and
properties.

4 Performance and Service Level Agreement

Oneof themost important constraints of resource allocation techniques in theCloud is
the level of client satisfaction. This level is described by the Service Level Agreement
(SLA) contract, which represents as a service level warranty between the provider

64 M.-A. Vasile et al.

and the customer of the service. Usually, some of the most important goals of the
SLA contract are given by the necessity to have a common language between the
customer and the services provider, and to verify the level of customer satisfaction
during the use of the agreed services. An SLA contract is designed and planned based
on the objective requests related to the cost reduction, efficiency increase and high
performance, availability and highest level of security of the provider Cloudbased
services.

Designing and implementing a SLA contract is a usual open discussion, because
it often involves complex simulations or difficult results to analyze and implement.
Our article has the purpose of presenting a survey of how Service Level Agreements
(SLAs) are specified in Cloud computing environments. One of the methods for
optimizing the resource allocation techniques is by satisfying the specifications of
the SLA. The analysis of the level of satisfaction of the Service Level Agreement
(SLA) and the improvement of the Quality of Service (QoS) is very important when
studying those methods for optimizing the Cloud resource allocation.

When designing a Service Level Agreement contract in general we can discuss
about the following phases [17–21] (see Fig. 3):

Fig. 3 SLA contract management phases

Evaluation of Cloud Systems 65

– The first phase in the design of an SLA contract is the SLA creation. During this
phase service providers propose a SLA contract based on their capabilities and the
contract contains SLA Offers. When discussing about the service consumers we
refer to the SLA requirements specifications.

– The second phase in the design of an SLA contract is the SLA discovery and
selection. During this phase, there exists a discovery of the offered services from
different service providers and the selection of the services that satisfy both func-
tional and non-functional requirements.

– The third phase in the design of an SLA contract is the SLA negotiation and it rep-
resents the negotiation and renegotiation step between providers and consumers.

– The fourth phase in the design of an SLA contract is the SLA monitoring phase
when the service is starting and is provided to the consumer. During this phase the
consumer monitors and validates the service characteristics offered by the service
provider.

– The fifth phase when discussing about an SLA contract is the SLA termination
which occurs when the SLA contract expires or either the consumer or the provider
decide to end the agreement.

Cloud computing systems (or hosting datacenters) represent one of the main
research areas in the field of distributed systems. Utility computing, reliable data
storage, and infrastructure-independent computing are example applications of such
systems [22].

Because adopting the Cloud services has various reasons such as lower costs
because of the economy of resources (in comparison with when the client has to buy
the necessary resources for example performant servers, etc.), transferring the respon-
sibility when discussing the availability, maintenance, backup and lower licensing
prices of the applications that are in place in the Cloud [23]. On the other hand, the
fact that when adopting the Cloud computing paradigmwith different purposes some
of the service characteristics is transferred out of the customer control to the Cloud
computing services providers. For this reason, there is a need for a contract (Service
Level Agreement (SLA)) between the customer and the provider [24].

In addition, one of the characteristics of the contract is represented by the profit
in the system, which depends on how the system can meet the SLA. (e.g. average
response time, number of jobs completed per unit of time, availability of the resources
in the system etc.). The SLA contract usually specifies the constraints that need to be
satisfied by the system in order to achieve the level of client satisfaction and system
quality of service (QoS) agreed in this contract. Another way of thinking about a
Service Level Agreement (SLA) contract is that it represents a complex document
that describes the parameters that need to be satisfied in the time and at the values
described by the range specified in the Service Level Agreement.

In the following section of this article we present int three Tables the Cloud
SLAs which are drafted by Cloud providers. In this section we introduce Service
Level Agreement (SLA) and Service level ranking criterion (Table2) based on the
JDN/CloudScreener/Cedexis U.S. Cloud Benchmark March 2016.

66 M.-A. Vasile et al.

Table 2 Service level agreement and service level ranking criterion

AWS Google Microsoft Rackspace IBM softlayer

Announced
SLA

99.95% 99.95% 99.95% 99.90% 99.73%

Service level
ranking

90.83 90.83 79,38 73,33 73,21

The service level index is based on different qualitative criterion such as the
geographical coverage (presence in the U.S. and outside of the U.S.), the number
of certifications, the SLA, and the range of VM (the full ranking methodology is
available on the JDN/CloudScreener/Cedexis U.S. CloudBenchmarkwebsite: http://
www.journaldunet.com/us-Cloud-benchmark/) [25]. This article presented a survey
of the existing major Cloud providers and how Service Level Agreements (SLAs)
have been defined by these providers.

SLAs are very important in utility computing systems because they characterize
the various interactions between the Cloud providers and the clients or consumers.
The future research in SLA-oriented Cloud computing has to take into account the
following goals:

– the service management has to be based on the requested levels of service charac-
teristics; the characteristics that need to be taken into considerationwhen designing
a Service Level Agreement (SLA) are related both to the computational risks and
the service requirements;

– to identify the execution risks involved in the execution of applications, risks that
might have an impact on the levels of performance specified in the Service Level
Agreements (SLAs);

– there has to exist an equilibrium between the customer satisfaction and the level
of provider profit;

– there might be a need to model the different resource management designs that
are based both on the customers service demands and existing service properties;

– there are various operations that need to be taken into consideration when
decinding to construct a Service Level Agreements contract such as: discover-
service provider, define-SLA elements, establish-agreement, monitor SLA viola-
tion, terminate-SLA and SLA violation control [17].

Currently, the automatic negotiation of a Service Level Agreement in Cloud com-
puting is still an open issue. Other open issues are scalability and heterogeneity
of a service in Cloud computing, dynamic environmental changes, multiply QoS
parameters and SLA suitable for cross domains [17]. Finally, we need to take into
consideration the fact that the SLA needed in order to define the trust and quality of
services has to be based on an agreed framework that represents a contract between
consumer and provider about service terms such as: performance, availability and
billing [26]. All these challenges are still open and can be explored in the future.

http://www.journaldunet.com/us-Cloud-benchmark/
http://www.journaldunet.com/us-Cloud-benchmark/

Evaluation of Cloud Systems 67

5 Modeling of Cloud Systems Using CloudSim

The CloudSim [27] Java toolkit allows the modeling of different entities in a Cloud
environment and simulate various scenarios: evaluate the configuration of a Cloud
System, resource allocation policies or scheduling algorithms. CloudSim is an exten-
sible framework (developed in CLOUDS Laboratory, Computer Science and Soft-
ware Engineering Department of the University of Melbourne) due to its high mod-
ularity. The Cloud entities: data centers, hosts, VMs, jobs, inter-host agreements
or VM allocation policies are modeled as classes in different packages that can be
interconnected or extended to enhance them with additional functionality. A quick
look over runningCloudSimenvironments inEclipse is presented in Fig. 4. CloudSim
has themain benefit by having cloud resource provisioningmodules, energy-efficient
management of data center resources strategies and support for optimization.

In this section we analyze the required steps to extend the CloudSim framework
for implementing a custom scheduling algorithm and evaluate the simulation results
and algorithm performance.

Cloudlet represents the abstraction of a Job/Task. Some of its properties are the
length (computational requirements) and file size (IO), either for input or output. For
statistics computation, it stores the VM that executed it, the start and finish execution
times.

We will extend the Cloudlet by creating an additional object: Task that stores
application specific information, and is connected to a Cloudlet object using the
same id value.

1 public class Task {
/ / rank the current task reported to the complete set of tasks

3 public double processingRank;
/ / rank the current task reported to the complete set of tasks

5 public double ioRank;
/ / connect the Task to a Cloudlet using this attribute

7 public int id ;
public long length ;

9 public long fileSize ;
public long outputSize ;

11 public int pesNumber;
public long deadline ;

13 public long io ;

Extend a Cloudlet using the Task class.

AVM object holds the properties of the underlying hardware, a link to the physical
host and the policy for submitting tasks on PEs. We can extend the VM with the
Resource object and add the specific attributes required by the scheduling algorithms,
in our case, we added the resource load attribute.

1 public class Resource {
/ / connect the Resource to a VM using this attribute

3 private int id ;
/ / work load of the current VM

68 M.-A. Vasile et al.

F
ig
.4

Q
ui
ck

lo
ok

ov
er

ru
nn
in
g
C
lo
ud
Si
m

en
vi
ro
nm

en
ti
n
E
cl
ip
se

Evaluation of Cloud Systems 69

5 private int load ;
public ArrayList<Task> schedTasks = new ArrayList<Task>() ;

7 private int mips;
private int ram;

9

public Resource(int id , int load , int mips, int ram) {

Extend a VM using the Resource class.

The DatacenterBroker handles the allocation of Cloudlets on VMs using the
function submitCloudlets. The implementation of a scheduling algorithm can be
done by extending this class and overwriting the submitCloudlets function.

1 protected void submitCloudlets () {
int vmIndex = 0;

3 for (Cloudlet cloudlet : getCloudletList ()) {
Vmvm;

5 / / i f user didn’ t bind this cloudlet and i t has not been executed yet
i f (cloudlet .getVmId() == −1) {

7 vm = getVmsCreatedList() . get (vmIndex) ;
} else { / / submit to the specific vm

9 vm = VmList.getById(getVmsCreatedList() , cloudlet .getVmId()) ;
i f (vm == null) { / / vm was not created

11 Log. printLine (CloudSim. clock() + " : " + getName() + " : Postponing
execution of cloudlet "

+ cloudlet . getCloudletId () + " : bount VM not available") ;
13 continue ;

}
15 }

17 Log. printLine (CloudSim. clock() + " : " + getName() + " : Sending cloudlet "
+ cloudlet . getCloudletId () + " to VM #" + vm. getId ()) ;

19 cloudlet .setVmId(vm. getId ()) ;
sendNow(getVmsToDatacentersMap() . get (vm. getId ()) ,

21 CloudSimTags.CLOUDLET_SUBMIT, cloudlet) ;
cloudletsSubmitted++;

23 vmIndex = (vmIndex + 1) % getVmsCreatedList() . size () ;
getCloudletSubmittedList () .add(cloudlet) ;

25 }

27 / / remove submitted cloudlets from waiting l i s t
for (Cloudlet cloudlet : getCloudletSubmittedList ()) {

29 getCloudletList () .remove(cloudlet) ;
}

31 }

Default scheduling in DatacenterBroker.

1 public class Scheduler extends DatacenterBroker implements IScheduler{

3 public stat ic SchedulingMethods method;
public stat ic ArrayList<Task> tasks ;

5 public stat ic ArrayList<Resource> resources ;

70 M.-A. Vasile et al.

7 @Override
protected void submitCloudlets () {

9 switch(method){
case Default : defaultSchedule () ;

11 break ;
case SJF: sj f () ;

13 break ;
case ClusteringSJF : clusteringSJF () ;

15 break ;
}

17 }

Extend a DatacenterBroker using the Scheduler class.

Collections . sort (tasks , new Comparator<Task>() {
2

@Override
4 public int compare(Task o1, Task o2) {

int r = (int) (o1. length − o2. length) ;
6 return r != 0 ? r : (int) (o1. io − o2. io) ;

}
8 }) ;

10 for (int i = 0; i < tasks . size () ; i++) {
int id = tasks . get (i) . id ;

12 Cloudlet cloudlet = cloudletList . get (id) ;
Vmvm;

14 / / i f user didn’ t bind this cloudlet and i t has not been executed yet
i f (cloudlet .getVmId() == −1) {

16 vm = getVmsCreatedList() . get (vmIndex) ;
} else { / / submit to the specific vm

18 vm = VmList.getById(getVmsCreatedList() , cloudlet .getVmId()) ;
i f (vm == null) { / / vm was not created

20 Log. printLine (CloudSim. clock() + " : " + getName() + " : Postponing
execution of cloudlet "

+ cloudlet . getCloudletId () + " : bount VM not available") ;
22 continue ;

}
24 }

26 cloudlet .setVmId(vm. getId ()) ;
sendNow(getVmsToDatacentersMap() . get (vm. getId ()) , CloudSimTags.

CLOUDLET_SUBMIT, cloudlet) ;
28 cloudletsSubmitted++;

vmIndex = (vmIndex + 1) % getVmsCreatedList() . size () ;
30 getCloudletSubmittedList () .add(cloudlet) ;

}
32

/ / remove submitted cloudlets from waiting l i s t
34 for (Cloudlet cloudlet : getCloudletSubmittedList ()) {

Implement the SJF algorithm.

Evaluation of Cloud Systems 71

6 Conclusion

The new trends in modeling and simulation of Cloud Systems require performance
evaluation metrics with a high level of accuracy. We presented in this chapter several
feature of Cloud systems and services ans a set of evaluation metrics. We included
a practical example using CloudSim. which analyze the required steps to extend the
CloudSim framework for implementing a custom scheduling algorithm and evaluate
the simulation results.

Acknowledgements The research presented in this paper is supported by the projects: DataWay:
Real-time Data Processing Platform for Smart Cities: Making sense of Big Data—PN-II-RU-
TE-2014-4-2731; MobiWay: Mobility Beyond Individualism: an Integrated Platform for Intelli-
gent Transportation Systems of Tomorrow - PN-II-PT-PCCA-2013-4-0321; and cHiPSet: High-
Performance Modelling and Simulation for Big Data Applications, ICT COST Action IC1406.

We would like to thank the reviewers for their time and expertise, constructive comments and
valuable insight.

References

1. Mell, P., Grance, T.: The NIST definition of cloud computing. Commun. ACM 53(6), 50 (2010)
2. Leinberger, W., Karypis, G., Kumar, V.: Multi-capacity bin packing algorithms with appli-

cations to job scheduling under multiple constraints. In: Proceedings of 1999 International
Conference on Parallel Processing, pp. 404–412. IEEE (1999)

3. Song, W., Xiao, Z., Chen, Q., Luo, H.: Adaptive resource provisioning for the cloud using
online bin packing. IEEE Trans. Comput. 63(11), 2647–2660 (2014)

4. Kamali, S.: Efficient bin packing algorithms for resource provisioning in the cloud. In: Algo-
rithmic Aspects of Cloud Computing, pp. 84–98. Springer (2016)

5. Qu, C., Calheiros, R.N., Buyya, R.: A reliable and cost-efficient auto-scaling system for web
applications using heterogeneous spot instances. J. Netw. Comput. Appl. 65, 167–180 (2016)

6. Herbst, N.R., Kounev, S., Reussner, R.: Elasticity in cloud computing: what it is, and what it
is not. In: Proceedings of the 10th International Conference on Autonomic Computing (ICAC
13), pp. 23–27 (2013)

7. Vasile,M.A., Pop, F., Tutueanu, R.I., Cristea, V., Kołodziej, J.: Resource-aware hybrid schedul-
ing algorithm in heterogeneous distributed computing. Future Gener. Comput. Syst. 51, 61–71
(2015)

8. Vasile,M.A., Pop, F., Tutueanu,R.I., Cristea,V.:HySARC2: hybrid scheduling algorithmbased
on resource clustering in cloud environments. In: International Conference on Algorithms and
Architectures for Parallel Processing, pp. 416–425. Springer (2013)

9. Sfrent, A., Pop, F.: Asymptotic scheduling for many task computing in big data platforms. Inf.
Sci. 319, 71–91 (2015)

10. Hwang, K., Bai, X., Shi, Y., Li, M., Chen, W.G., Wu, Y.: Cloud performance modeling with
benchmark evaluation of elastic scaling strategies. IEEE Trans. Parallel Distrib. Syst. 27(1),
130–143 (2016)

11. Bardsiri, A.K., Hashemi, S.M.: Qos metrics for cloud computing services evaluation. Int. J.
Intell. Syst. Appl. 6(12), 27 (2014)

12. Kan, S.H.: Metrics and Models in Software Quality Engineering. Addison-Wesley Longman
Publishing Co., Inc. (2002)

13. Iosup, A., Ostermann, S., Yigitbasi, M.N., Prodan, R., Fahringer, T., Epema, D.: Performance
analysis of cloud computing services for many-tasks scientific computing. IEEE Trans. Parallel
Distrib. Syst. 22(6), 931–945 (2011)

72 M.-A. Vasile et al.

14. Topcuoglu,H.,Hariri, S.,Wu,M.Y.: Performance-effective and low-complexity task scheduling
for heterogeneous computing. IEEE Trans. Parallel Distrib. Syst. 13(3), 260–274 (2002)

15. Feitelson, D.G., Rudolph, L.: Metrics and benchmarking for parallel job scheduling. In: Work-
shop on Job Scheduling Strategies for Parallel Processing, pp. 1–24. Springer (1998)

16. Pop, F., Cristea, V., Bessis, N., Sotiriadis, S.: Reputation guided genetic scheduling algo-
rithm for independent tasks in inter-clouds environments. In: 27th International Conference
on Advanced Information Networking and Applications Workshops (WAINA), pp. 772–776.
IEEE (2013)

17. Wu, L., Buyya, R.: Service Level Agreement (SLA) in Utility Computing Systems. IGI Global
(2012)

18. Debusmann,M., Keller, A.: SLA-drivenmanagement of distributed systems using the common
information model. In: Integrated Network Management VIII, pp. 563–576. Springer (2003)

19. Alhamad, M., Dillon, T., Chang, E.: SLA-based trust model for cloud computing. In: 13th
International Conference on Network-Based Information Systems (NBIS), pp. 321–324. IEEE
(2010)

20. Venticinque, S., Aversa, R., Di Martino, B., Rak, M., Petcu, D.: A cloud agency for SLA
negotiation and management. In: European Conference on Parallel Processing, pp. 587–594.
Springer (2010)

21. Sahai, A.,Machiraju, V., Sayal,M., VanMoorsel, A., Casati, F.: Automated SLAmonitoring for
web services. In: InternationalWorkshoponDistributedSystems:Operations andManagement,
pp. 28–41. Springer (2002)

22. Goudarzi, H., Ghasemazar, M., Pedram, M.: SLA-based optimization of power and migration
cost in cloud computing. In: 2012 12th IEEE/ACM International Symposium on Cluster, Cloud
and Grid Computing (CCGRID 2012), pp. 172–179. May 2012

23. Goudarzi, H., Pedram, M.: Multi-dimensional SLA-based resource allocation for multi-tier
cloud computing systems. In: 2011 IEEE International Conference on Cloud Computing
(CLOUD), pp. 324–331. IEEE (2011)

24. Dastjerdi, A.V., Tabatabaei, S.G.H., Buyya, R.: A dependency-aware ontology-based approach
for deploying service level agreement monitoring services in cloud. Softw Pract. Experience
42(4), 501–518 (2012)

25. CCMBenchmark: JDN, CloudScreener, Cedexis US. Cloud benchmark website. http://www.
journaldunet.com/us-cloud-benchmark (2016)

26. Alhamad, M., Dillon, T., Chang, E.: Conceptual SLA framework for cloud computing. In: 4th
IEEE International Conference on Digital Ecosystems and Technologies, pp. 606–610. IEEE
(2010)

27. Calheiros, R.N., Ranjan, R., Beloglazov, A., De Rose, C.A., Buyya, R.: CloudSim: a toolkit
for modeling and simulation of cloud computing environments and evaluation of resource
provisioning algorithms. Softw Pract Experience 41(1), 23–50 (2011)

http://www.journaldunet.com/us-cloud-benchmark
http://www.journaldunet.com/us-cloud-benchmark

Science Gateways in HPC: Usability Meets
Efficiency and Effectiveness

Sandra Gesing

1 Introduction

HPC (High-PerformanceComputing) infrastructures provide themeans for compute-
intensive modeling and simulations to achieve results in reasonable time. Efficiency
and effectiveness are the traditional key targets for the optimization of such applied
scientific methods and they are major drivers for research and developments in HPC.
In the last years a further target has arisen driven by the needs of user communities to
enable them to focus on their research questionswithout becoming deeply acquainted
with the complex technical details of HPC: usability of modeling and simulations
in HPC. Science gateways address this aspect as end-to-end solutions providing
intuitive user interfaces while connecting to the underlying complex infrastructures
and hiding the technical details as far as feasible and desired from the users. This
trend is reflected in quite a few web development frameworks, containerizations,
science gateway frameworks and APIs with different foci and strengths, which have
evolved to support the developers of science gateways in implementing an intuitive
solution for a target research domain. Science gateways have evolved into a new
era since 2014 when providers of distributed computing infrastructures reported the
first time that the computing and storage resources have been applied more often
via science gateways than via command line [1]. Part of this success can be credited
to the development of reliable and mature science gateway frameworks over the
last decade [2]. Especially the rise of larger data amounts and the importance of
workflows for user communities have been recognized and sophisticated data and
workflow management solutions [3] have found their way into such frameworks.

The challenges for developers of specific science gateways, which apply HPC
infrastructures, are manifold: from intuitive user interfaces for the targeted research
domain and security features through efficient job, data andworkflowmanagement to

S. Gesing (B)
University of Notre Dame, Notre Dame, USA
e-mail: sandra.gesing@nd.edu

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_5

73

74 S. Gesing

parallelization of applications employing parallel and distributed architectures. The
knowledge about existing science gateway technologies and their distinctive features
and strengths helps developers to select a suitable framework or APIwithout the need
to re-invent the wheel and to start the development of a specific solution from scratch.

In the area of science gateways several sources are available to get awell-informed
impression of the state-of-the-art technologies and novel developments. Yearly sci-
ence gateway workshops are established in Europe, the US and Australia, which are
partnering and form an international platform to shape future directions for research,
foster the exchange of ideas, standards and common requirements and push towards
the wider adoption of science gateways in science [4, 5]. The peer-reviewed publica-
tions of the workshops and the joint special issues reflect the international standard
in this field [6]. IEEE has also observed the importance of science gateways and
the IEEE Technical Area on Science Gateways is a further source of information on
events, publications and projects [7]. Besides such community-driven resources, the
USNational Science Foundation (NSF) [8] - as one of the main funding bodies in the
US - has recognized the significance of science gateways and is funding the Science
Gateways Community Institute [9]. The Science Gateway Institute provides among
other services an excellent contact for general information on projects and technolo-
gies [5]. The selection of a suitable technology for a specific use case is essential
and helps reducing the effort in implementing a science gateway by reusing existing
software or frameworks. Thus, a solution for a user community can be providedmore
efficiently. Additionally, novel developments in web-based technologies and agile
web frameworks allow for supporting developers in efficiently creating web-based
science gateways.

2 Science Gateways and Usability

The overall goal of science gateways is to provide an end-to-end solution and increase
the usability of applications especially for researchers who are not necessarily IT
specialists. The significance of usability and graphical user interfaces is evident in
the history of IT developments in the last 50years: Doug Engelbart’s Augmentation
of Human Intellect project, which developed a mouse-driven cursor and multiple
windows in the 60s [10], Apple’s designs starting in the 70s and resulting in a hype
in the last 10years around smartphones and tablets, the first web browser [11] and an
ISO standard on usability for “visual display terminals” in the 90s [12]. The Internet
revolutionized research in the last 25years with increasingly more sophisticated and
efficient distributed computing infrastructures and datamanagement solutions having
evolved to maintain and increase their usability. Novel developments in web-based
technologies as well as agile web frameworks allow for supporting developers in
efficiently creating user interfaces for web-based science gateways.

On the user interface side many libraries and frameworks have evolved and we
will only mention a few without the claim of completeness. In general, JavaScript
libraries,CSSandHTML5withAjax [13] allow for dynamicwebsites focusing on the

Science Gateways in HPC: Usability Meets Efficiency and Effectiveness 75

frontend with advanced features. jQuery [14] is a widely used JavaScript library with
standard user interface methods for HTML document traversal andmanipulation and
event handling. jsPlumb [15] is also a JavaScript library with focus on the illustration
of graphs and workflows with many implemented features for the appearance of
nodes and edges and corresponding annotations. 3D graphics can be seamlessly
created and edited in web browsers via the JavaScript API WebGL [16] without the
need of installation of further software. The front-end framework Semantic UI [17]
makes use of JavaScript library jQuery,while providing intuitive classes for designing
web user interfaces based on the philosophy “everything arbitrary is mutable”. The
web application frameworks ReactJS [18], Foundation [19], AngularJS [20] uses
declarative programming and follows the MVC concept (Model-View-Controller)
[21] to separate data, presentation and logical components in a clean design.

While the look-and-feel of the user interface is especially important for the ac-
ceptance in the user community, the backend and the integration with the underlying
infrastructure, which is mostly hidden from the users, is the more complex task from
the technical point of view. Some technologies arewidely used forweb-based science
gateways but are lacking standard libraries for the support of HPC infrastructures
such as the open source content management systems Drupal [22] and Joomla [23]
and the high-level framework Django [24]. Thus, the developers are creating such
integrations from scratch. The lack of HPC support out of the box also applies to
portal frameworks such as Liferay [25] and Pluto [26] but offering the advantage of
re-usability of so-called portlets. The portal frameworks are implementations of the
JSR168/JSR286 [27, 28] standards and they enable to implement portlets once and
deploy them in every portal framework, which supports these standards. Especially
Liferay is widely used for science gateways in the HPC community. In the last eight
years a couple of science gateway frameworks have been developed on top of Lifer-
ay, benefitting from the available authentication and authorization mechanisms and
layout features, e.g., gUSE/WS-PGRADE [29].

In general, the architecture of sciencegateway technologies for distributed systems
consists of four layers: (1) the user interface layer, (2) the application layer, (3)
the high-level services layer such as job management and data management and
if applicable workflow management and (4) the connected cluster, grid and cloud
infrastructures (see Fig. 1).While the first two layers may be specific for each science
gateway developed via a science gateway technology, the third and fourth layer are
generic and can be re-used for any science gateway irrespective of its target domain.
The generic requirements on such layers have led to the development of multiple
mature science gateway technologies. We refer to examples here, which are free and
available as open source and can be as such further developed by the community and
are not based exclusively on a business model.

One category includes workbenches such as Taverna [30], the Kepler workbench
[31], KNIME (theKonstanz InformationMiner) [32], and theUNICORERich Client
[33]. These examples are additionally offering workflow management capabilities.
They necessitate the installation of software on the user side and offer a workflow
canvas to graphically create and edit workflows and submit them to the underly-
ing infrastructure. Each user interface layer provides the same look-and-feel for all

76 S. Gesing

Fig. 1 The general infrastructure for science gateways with providing access to HPC resources.
For each layer are examples of technologies provided

applications. The target infrastructures are quite different for these examples though.
Taverna supports the workflow management of available web services, whereas
Kepler targets command line tools like R scripts or compiled C implementations.
KNIME is intuitive, versatile, widely used, and currently being extended to support
generic access toHPC resources. TheUNICORERichClient focuses on the exploita-
tion of compute and data infrastructures, which are integrated via the UNICORE grid
middleware [34].

The second category of science gateways contains web-based science gateway
frameworks. gUSE/WS-PGRADE, Galaxy [35], HUBzero [36] and the Catania Sci-
ence Gateway Framework [37] belong to this category. The first two offer workflow
editing features andworkflowmanagement aswellwhereasHUBzero provideswork-
flowmanagement options in the backend via theworkflowmanagement systemPega-
sus [38] but focuses more on the integration of single applications and collaboration
tools analogous to the Catania Science Gateway Framework. gUSE/WS-PGRADE
and Galaxy offer generic workflow canvasses capable of managing command line
tools and web services. The concepts behind creating the workflows are quite dif-
ferent though. While WS-PGRADE includes the option for the users to upload and
invoke scripts and computational tools, Galaxy is designed as toolbox, which is con-
figured by an administrator and users can select from a list of available tools. The
extension of the science gateway frameworks with user interfaces especially tailored

Science Gateways in HPC: Usability Meets Efficiency and Effectiveness 77

to a specific application can be performed in WS-PGRADE as portlets developed on
top of Liferay. Galaxy is not developed on top of a standard framework and thus does
not directly support the implementation of specific user interfaces but since it is avail-
able as open source, developers are able to extend the framework to communities’
demands.

The third category is concerned with the development of science gateways and
includesmatureAPIs and libraries offering features for the implementation of the first
three layers of the science gateway architecture. Examples are Apache Airavata [39],
the Agave Platform [40] and the Vine Toolkit [41], which aim at reducing the effort
on the developer side while enabling to apply novel user interface technologies and
frameworks. All three frameworks are supporting diverse programming languages
and the basic concept is the same.

3 Designing Science Gateways

The close collaboration with the respective user community is crucial to gather all
necessary information and requirements on a science gateway that is intended to
serve for the specific use case. This usually underestimated design task is more often
than not the most challenging one. While users are mainly experts in their research
domain, they may be not aware of the implications of using specific software, the
availability of a computational tool, security demands or concepts such asworkflows.
The exact layout for the science gateway is usually a continuous and iterative process
with suggestions from developers for the layout and feedback and comments from
the user community.

Through the experience with several projects and communities, we have creat-
ed a checklist for important topics to discuss and address in collaboration with the
communities [42]. This checklist can be used for supporting the creation of a Soft-
ware Requirement Specification (SRS), for example, following the 830-1998 - IEEE
Recommended Practice for Software Requirements Specifications [43]. According
to the recommendation a SRS should be

(a) Correct;
(b) Unambiguous;
(c) Complete;
(d) Consistent;
(e) Ranked for importance and/or stability;
(f) Verifiable;
(g) Modifiable;
(h) Traceable.

It should address the software product—not the process of producing a software
product. In the MoSGrid project (Molecular Simulation Grid) [44], for example, we
created first a survey answered by about 50 domain researchers in computational
chemistry, with questions such as which tools they use, whether they know about

78 S. Gesing

computational workflows and may use already workflows and whether they would
like to share their data and/or workflows. The domain partners of the project (five
domain researchers from three affiliations) have been directly involved in the design
process.

The topics can be distinguished in the three main categories: domain-specific
topics, organizational topics and technical topics. Domain-specific topics can be
again divided in three major groups:

1. Requirements, which lay in the nature of the research topic.
2. Requirements, which refer directly to the target community and their specific

needs, their diversity in experience and knowledge regarding the research topic
and/or computational tools and their analysis steps.

3. Requirements, which result from available specific resources from lab instru-
ments to local, on-campus, national to international distributed computing in-
frastructures.

Topics of the three groups are in detail explained in Table1.
In contrast to domain-specific topics, organizational topics refer to measures for

a successful collaboration in general, which are influenced via external factors of a
project such as time constraints of a grant or internal factors such as availability of
alpha- or beta-testers (see Table2). It may be not feasible to receive information on
all topics or to set up all organizational aspects from the beginning but important is to
raise the topics and start the conversation. The information is essential for the correct
choice of technologies and may prevent a significant amount of refactoring. While
in industry the creation of a system specification is the common approach to define
all requirements, projects in academia work differently and are often more dynamic
and less clearly specified. One reason lies in the research nature of the projects.

Besides the topics deriving from the research domain and the interdisciplinary
collaboration, also technical topics of the design of available infrastructures and
considerations regarding the involved development team or single developers are
important to examine. Such subjective project analyses are complemented by the in-
vestigation of objective conditions such as available support of suitable technologies.
See Table3 for a comprehensive list of technical topics. This checklist is intended
to support the design decision process and is general applicable. Each use case is
different and there is not one technology, which fits them all but various mature
solutions, which can form the basis for diverse science gateways.

4 Reusability of Scientific Methods and Reproducibility
of Science

One of the goals of science gateways is to offer methodologies for performing anal-
yses, which can be re-used for different data sets and by different users. Thus, many
science gateways offer sharing possibilities within a community, between different

Science Gateways in HPC: Usability Meets Efficiency and Effectiveness 79

Table 1 The checklist illustrates the domain-specific groups and the topics, which can be used by
principal investigators and/or developers for designing and implementation of a successful science
gateway

Groups Topics Examples

Requirements referring to the
research topic

Goal and target area of the
envisioned science gateway

Workflows for computational
drug design using docking
tools

Scale and format of the
available data

Molecular structures in PDB
format

Requirements referring to the
target user community

Groups of users distinguished
via their experience in the
research domain

Novel users to the research
topic such as students or
experienced users in the
research domain

Groups of users distinguished
via their experience with
computational tools

Wet-lab researchers mostly
familiar with working with
Excel or researchers familiar
with command line usage of
computational tools

Layout and feature
requirements

Strictly pre-configured user
interfaces, possibilities for
changing parameter
configurations or possibilities
to process own scripts

Priorities of features and
options

A list ranging from must-have
to great-to-have options

Integration of existing
applications or development of
new applications from scratch

Computational tools already
used in the community, e.g.,
Gromacs, or developing
statistical approaches with R

Visualization Browsing of data or interactive
modules like a molecule editor

Workflow management Pre-configuration of connected
tasks for a certain purpose
such as optimizing molecular
structures for a docking
workflow

Security and privacy
management

Private space for research
results before publication or
patents and shared spaces for
results afterwards

Requirements referring to
available infrastructures

Hardware External disk at a lab
containing the input data

Credentials Access via on-campus
accounts or Grid certificates
for national resources

Batch systems, Grid
middlewares or Cloud systems

PBS, UNICORE, etc.

Data management systems dCache, iRODS etc.

80 S. Gesing

Table 2 The checklist illustrates the external and internal topics and measures on the organi-
zational side, which can be used by principal investigators and/or developers for designing and
implementation of a successful science gateway

Groups Topics Measures

External topics Limited funding and time
constraints

Project plan with deliverables
and milestones

Availability of data and
computational tools from third
party affiliations

Communicating via emails and
calls with third party
affiliations

Internal topics Concurrent collection of
requirements and features

Weekly meetings of
researchers and developers or
development team

Concurrent feedback during
the development

Agreement on alpha- and
beta-testers in the community

Location of teams Distributed teams compared to
local teams necessitate the use
of conference calls as well as
emails to a larger extent,
maybe under consideration of
different time zones

Table 3 The checklist illustrates the subjective and objective factors and the topics, which can be
used by principal investigators and/or developers for designing a successful science gateway

Groups Topics

Subjective factors Experience with existing frameworks,
programming languages and data access
methods

Effort for extending existing frameworks
compared to novel developments for the
specific use case

Synergy effects with other science gateway
projects

Available infrastructure in the hosting
environment including security infrastructure
and resources

Objective factors Available support of suitable technologies

Scalability of suitable technologies

Technologies of the applications, which have to
be integrated

Technical requirements of the applications
and/or of access to input data

Performance measures of applications

Science Gateways in HPC: Usability Meets Efficiency and Effectiveness 81

science gateway instances of one technology or even between diverse technolo-
gies, e.g., via the SHIWA platform [45, 46]. Even though such sharing options are
available, reusability of methodologies and reproducibility of science are mainly
dependent on two main aspects:

1. The willingness of researchers to share methodologies and data.
Even with easy-to-use sharing options, researchers need to perform further steps
to provide their methodologies and data to a community, which cost time and
effort. They might have invested a large amount of time and computing power
to create these and see an advantage to keep the knowledge in their group and
between collaborators for creating further results with this part of their research.
A survey in theMoSGrid [47] community elucidated that 70%would share their
results and molecular structures in a repository after they have published them
or own a patent. The disposition to share tools and workflows was higher with
nearly 90%. If these results can be transferred to researchers in general, the 70%
or 90%, respectively, would be a promising result to achieve reproducibility of
science at a high rate.

2. Technical dependencies of methodologies and data.
Methodologies are among others dependent on operating systems, tools in di-
verse versions and local or distributed data. A study on the social marketplace
MyExperiment [48] for sharing Taverna workflows, for example, presents that
only 20% of the workflows are reproducible and reusable out of the box. For
solving such problems in science gateways, the different sharing possibilities
have to be analyzed and – where necessary – tools, data and workflows have to
be provided in diverse infrastructures and via various job and data management
systems.

While research areas and the science gateway technologies are independent of insti-
tutional, state or national boundaries, this does often not apply to research infrastruc-
tures, which offer HPC infrastructures such as EGI [49] and PRACE [50] in Europe
or XSEDE [51] in the US. The acquisition and maintenance of resources depend on
funding, which can be institutional, national or on international level. Thus, the use
of such resources is bound to policies and rules of the funding bodies. To support
user communities across such boundaries, it is essential for science gateway creators
to understand the effects of applying different research infrastructures.

Science gateways consists in general of three layers (see Fig. 1) and thus form a
science gateway infrastructure:

1. User interface layer – This layer determines the layout and design of the user
interface visible to the community.

2. Application layer –This layer is responsible for the features offered in the science
gateway, e.g., generic applications such as security features for authentication to
and authorization in the science gateway as well as domain-oriented applications
such molecular structure editors. In case of workflow-enabled science gateways,
this might be a workflow editor.

82 S. Gesing

3. Services layer—This layer connects to services of the science gateway frame-
work such as data repositories and services such as adaptors to apply batch, grid
or cloud systems or distributed data management systems.

In a well-designed science gateway, the first layer is independent of the underlying
research infrastructure while the latter influences the second and third layer.

Policies of research infrastructures add another complexity layer such as the ap-
plication process to receive allocations on and access to available resources. The
German National Grid Infrastructure, for example, only gives access to users of
German universities and their collaborators. Other research infrastructures provide
a more international approach such as InCommon [52], for example. InCommon is
an international initiative for global interfederation for security credentials joined
by over 40 national federations. However, policies of research infrastructures are
quite diverse from each other, which thus hampers to determine generic challenges
for policies of research infrastructures. The conclusion is that policies themselves
can form a technical and organizational challenge dependent on restrictions resulting
from them.

The following challenges in the application layer have to be considered.

A1. Security
Since one of the goals of science gateways is to create an easy-to-use interface to
underlying resources, a single sign-on feature for accessing the science gateway
via the same security credentials as the resources is highly desirable. Thus,
the authentication mechanism of the science gateway or an additional feature
in the science gateway has to support the credentials needed in a research
infrastructure and corresponding authorization to compute and data resources.

A2. Available tools
Diverse research infrastructures have instantiated diverse policies regarding
available tools. While some allow uploading own tools for submission to the
research infrastructure, someonly allowusing pre-installed tools on the research
infrastructure. In case of large software packages the installation has to be
performed on the infrastructure for an efficient use. It is inefficient to install
the whole package during each submission of a job referring to a tool in such
a software package. Virtualizations like Docker containers [53] form efficient
solutions here.

A3. Available data
Input data for a job or workflowmay be available locally in the science gateway
or in one research infrastructure. If the data is available in a certain research
infrastructure and mandatory for the effective and efficient application of a
tool or workflow in another research infrastructure, it needs to be added to the
targeted infrastructure.

Similar challenges are faced in the services layer, though they take place on a different
technical layer. Thus, the following challenges have to be addressed.

Science Gateways in HPC: Usability Meets Efficiency and Effectiveness 83

S1. Job management system
Each research infrastructure supports at least one job submission system. Itmight
be a local, batch, grid or cloud system, which includes authentication, authoriza-
tion and accounting mechanisms. The services available in the science gateway
infrastructure have to be analyzed whether they support one of the available
job management systems and its security demands. While diverse hardware ar-
chitectures might be available in the research infrastructure, the differences are
handled by the job management system.

S2. Data management system
The application of an available data management system in the targeted research
infrastructure results in amore efficient performanceof tools andworkflows since
it relieves the users from unnecessary uploads and downloads, which could be
very time-consuming in data-intensive analyses. Thus, the possibility to directly
access the supported datamanagement systemvia services in the science gateway
infrastructure is beneficial for the efficiency of applications. Analogue to job
management systems, each data management system possesses its own security
features with authentication, authorization and accounting mechanisms.

S3. Data transfer protocols
Additionally to the aforementioned data management systems, research infras-
tructures provide data transfer protocols for transferring data in general - whether
it consists of executables, scripts, small or large input and output data sets or
databases. Thus, the science gateway infrastructure needs to support at least one
of the available data transfer protocols applied in the research infrastructure to
be able to transfer files at all.

The aforementioned challenges are considered a minimal set regarding the technical
access to research infrastructures via science gateways.

5 Conclusion

The overall goal of science gateways in HPC is the increased usability of modeling
of data and simulations using complex underlying computing infrastructures. This
chapter introduces the generic architecture of science gateways and examples for
mature solutions. It outlines the importance of gathering information for designing
science gateways for domain researchers, who want to apply HPC infrastructures
and distributed data management. We have presented checklists for developers in
interdisciplinary projects considering domain-related, organizational and technical
aspects independent of a specific selected technology but as starting point for se-
lecting technologies and designing as well as implementing a science gateway for
a community. These checklists can be used to prepare the interaction with domain
researchers and to make informed decisions about technologies suitable for spe-
cific science gateways. A wide range of mature and maintained web frameworks
and science gateway technologies are available to aid developers in designing and

84 S. Gesing

implementing such solutions. While each of them have their own communities, they
also have their specific advantages and disadvantages for use cases. Aspects such
as scalability and feature availability narrow the scope and help to choose the most
suitable technology.

Bridging the differences between research infrastructures via science gateways
is a promising way to set the stage for reusability of scientific methodologies and
reproducibility of research on an international stage. However, current technical
implementations are not sufficient to achieve such goals but also the researchers
themselves have to be willing to open up their methodologies and data to the com-
munity. Science gateways can be beneficial for this purpose and ease the required
steps – especially if they are available in diverse research infrastructures. We have
elucidated the challenges faced when science gateways are ported to various research
infrastructures in general. While the technical challenges can be summarized in a
minimal set consisting of security mechanisms, tool and data availability as well as
data management and data transfer protocols, the challenges resulting from policies
are dependent on the policies themselves.

Acknowledgements This chapter is based upon work from COST Action IC1406 High-
Performance Modelling and Simulation for Big Data Applications (cHiPSet), supported by COST
(European Cooperation in Science and Technology).

References

1. Lawrence, K.A., Wilkins-Diehr, N., Wernert, J.A., Pierce, M., Zentner, M., Marru, S.: Who
cares about science gateways?: a large-scale survey of community use and needs. In: Proceed-
ings of the 9th Gateway Computing Environments Workshop (GCE ’14), pp. 1–4. IEEE Press,
Piscataway, NJ, USA. https://doi.org/10.1109/GCE.2014.11 (2014)

2. Dooley, R., Hanlon, M.R.: Recipes 2.0: building for today and tomorrow. Concurrency Com-
putat.: Pract. Exper. 27, 258 (2015)

3. Liu, J., Pacitti, E., Valduriez, P., Mattoso, M.: A survey of data-intensive scientific workflow
management. J. Grid Comput. 13, 457–493 (2015)

4. IWSG (International Workshop on Science Gateways). http://iwsg.info/
5. Gateway Workshops. http://sciencegateways.org
6. Gesing, S., Wilkins-Diehr, N., Barker, M., Pierantoni, G.: Special issue on science gateways.

J. Grid Comput. 14(4), 495–703 (2016)
7. IEEE Technical Area on Science Gateways. http://ieeesciencegateways.org
8. National Science Foundation (NSF). http://nsf.gov
9. Gesing, S., Wilkins-Diehr, N., Dahan, M., Lawrence, K., Zentner, M., Pierce, M., Hayden,

L.B., Marru, S.: Science gateways: the long road to the birth of an institute. In: Proceedings of
HICSS-50 (50th Hawaii International Conference on System Sciences), 4–7 Jan 2017, Hilton
Waikoloa, HI, USA. http://hdl.handle.net/10125/41919

10. Engelbart, D.C.: Augmenting Human Intellect: A Conceptual Framework, Summary Report
AFOSR-3233, Stanford Research Institute, Menlo Park, CA (Oct 1962)

11. The WorldWideWeb Browser. http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
(2016). Accessed 29 Feb 2016

12. ISO 9241-1:1992. http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.
htm?csnumber=16873 (2016). Accessed 29 Feb 2016

13. AJAX. http://www.w3schools.com/ajax/ (2016). Accessed 29 Feb 2016

https://doi.org/10.1109/GCE.2014.11
http://iwsg.info/
http://sciencegateways.org
http://ieeesciencegateways.org
http://nsf.gov
http://hdl.handle.net/10125/41919
http://www.w3.org/People/Berners-Lee/WorldWideWeb.html
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16873
http://www.iso.org/iso/iso_catalogue/catalogue_ics/catalogue_detail_ics.htm?csnumber=16873
http://www.w3schools.com/ajax/

Science Gateways in HPC: Usability Meets Efficiency and Effectiveness 85

14. jQUERY. https://jquery.com/ (2016). Accessed 29 Feb 2016
15. jsPlumb. https://github.com/sporritt/jsPlumb (2016). Accessed 29 Feb 2016
16. WebGL. https://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-

specification (2016). Accessed 29 Feb 2016
17. Semantic UI. http://semantic-ui.com/ (2016). Accessed 29 Feb 2016
18. ReactJS. http://reactjs.net/ (2016). Accessed 29 Feb 2016
19. Foundation. http://foundation.zurb.com/ (2016). Accessed 29 Feb 2016
20. AngularJS. https://angularjs.org/ (2016). Accessed 29 Feb 2016
21. Krasner, G.E., Pope, S.T.: A cookbook for using the model-view controller user interface

paradigm in Smalltalk-80. J. Object-Oriented Program. 1(3), 26–49 (1988)
22. Drupal. https://drupal.org/ (2016). Accessed 29 Feb 2016
23. Joomla. http://www.joomla.org/ (2016). Accessed 29 Feb 2016
24. Django. https://www.djangoproject.com/ (2016). Accessed 29 Feb 2016
25. Inc. Liferay. Liferay. http://www.liferay.com (2016). Accessed 29 Feb 2016
26. Apache Software Foundation. Pluto (2016). Accessed 29 Feb 2016
27. Abdelnur, A., Hepper, S.: JSR168: Portlet specification. http://www.jcp.org/en/jsr/detail?

id=168 (2003). Accessed 29 Feb 2016
28. Nicklous,M.S.,Hepper, S.: JSR286: Portlet specification2.0. http://www.jcp.org/en/jsr/detail?

id=286 (2008). Accessed 29 Feb 2016
29. Kacsuk, P., Farkas, Z., Kozlovszky, M., Hermann, G., Balasko, A., Karoczkai, K., Marton, I.:

WS-PGRADE/gUSE generic DCI gateway framework for a large variety of user communities.
J. Grid Comput. 10, 601–630 (2012)

30. Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-Reyes,
S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F., Hardisty, A.,
Nieva de la Hidalga, A., Balcazar Vargas,M.P., Sufi, S., Goble, C.: The Taverna workflow suite:
designing and executingworkflowsofWebServices on the desktop,webor in the cloud.Nucleic
Acids Res. 41(W1), W557–W561 (2013). [Online]. Available: http://nar.oxfordjournals.org/
content/41/W1/W557.abstract

31. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E.A., Tao,
J., Zhao, Y.: Scientific workflow management and the Kepler system. Concurrency Comput.:
Pract. Experience. 18(10), 1039–1065 (August 2006). [Online]. Available: https://doi.org/10.
1002/cpe.994

32. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P., Sieb, C., Thiel,
K., Wiswedel, B.: KNIME: The Konstanz Information Miner. Springer, Berlin (2008)

33. Demuth, B., Schuller, B., Holl, S., Daivandy, J., Giesler, A., Huber, V., Sild, S.: The UNICORE
rich client: facilitating the automated execution of scientific workflows. In: 2010 IEEE Sixth
International Conference on e-Science (e-Science), pp. 238–245 (2010)

34. Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K., Bergmann, S., Breu, R., Daivandy,
J.M., Demuth, B., Eifer, A., Giesler, A.: UNICORE 6—recent and future advancements. Ann.
Telecommun.-annales des Télécommunications 65, 757–762 (2010)

35. Goecks, J., Nekrutenko, A., Taylor, J., The Galaxy Team: Galaxy: a comprehensive approach
for supporting accessible, reproducible, and transparent computational research in the life
sciences. Genome Biol. 11(8), R86 (2010)

36. McLennan, M., Kennell, R.: HUBzero: a platform for dissemination and collaboration in com-
putational science and engineering. Comput. Sci. Eng. 12(2), 48–52 (2010)

37. Ardizzone, V., et al.: The DECIDE science gateway. J. Grid Comput. 10, 689–707 (2012).
https://doi.org/10.1007/s10723-012-9242-3

38. Deelman, E., Singh, G., Su, M.-H., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,
Berriman, G.B., Good, J., Laity, A., Jacob, J.C., Katz, D.S.: Pegasus: a framework for mapping
complex scientific workflows onto distributed systems. Sci. Program. 13(3), 219–237 (2005)

39. Marru, S., Gunathilake, L., Herath, C., Tangchaisin, P., Pierce, M., Mattmann, C., Singh, R.
et al.: Apache airavata: a framework for distributed applications and computational workflows.
In: Proceedings of the 2011 ACMworkshop on Gateway computing environments, pp. 21–28.
ACM, (2011)

https://jquery.com/
https://github.com/sporritt/jsPlumb
https://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-specification
https://www.khronos.org/news/press/khronos-releases-final-webgl-1.0-specification
http://semantic-ui.com/
http://reactjs.net/
http://foundation.zurb.com/
https://angularjs.org/
https://drupal.org/
http://www.joomla.org/
https://www.djangoproject.com/
http://www.liferay.com
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=168
http://www.jcp.org/en/jsr/detail?id=286
http://www.jcp.org/en/jsr/detail?id=286
http://nar.oxfordjournals.org/content/41/W1/W557.abstract
http://nar.oxfordjournals.org/content/41/W1/W557.abstract
https://doi.org/10.1002/cpe.994
https://doi.org/10.1002/cpe.994
https://doi.org/10.1007/s10723-012-9242-3

86 S. Gesing

40. Dooley, R., et al.: Software-as-a-service: the iPlant foundation API. In: 5th IEEE Workshop
on Many-Task Computing on Grids and Supercomputers (MTAGS) (Nov 2012)

41. Dziubecki, P., Grabowski, P., Krysiński, M., Kuczyński, T., Kurowski, K., Szejnfeld, D.: Easy
development and integration of science gateways with vine toolkit. J. Grid Comput. 10(4),
631–645 (2012)

42. Gesing, S., Dooley, R., Pierce, M., Krüger, J., Grunzke, R., Herres-Pawlis, S., Hoffmann, A.:
Gathering requirements for advancing simulations inHPC infrastructures via science gateways.
Future Gener. Comput. Syst. (accepted)

43. 830-1998 - IEEE Recommended Practice for Software Requirements Specifications. https://
standards.ieee.org/findstds/standard/830-1998.html

44. Krüger, J., Grunzke, R., Gesing, S., Breuers, A., Brinkmann, A., de la Garza, L., Kohlbacher,
O., Kruse, M., Nagel, W.E., Packschies, L., Müller-Pfefferkorn, R., Schäfer, P., Schärfe, C.,
Steinke, T., Schlemmer, T., Warzecha, K.D., Zink, A., Herres-Pawlis, S.: TheMoSGrid science
gateway—a complete solution for molecular simulations. J. Chem. Theor. Comput. 10(6),
2232–2245 (2014)

45. Plankensteiner,K., Prodan,R., Janetschek,M., Fahringer, T.,Montagnat, J., Rogers,D.,Harvey,
I., Taylor, I., Balaskó, A., Kacsuk, P.: Fine-grain interoperability of scientific workflows in
distributed computing infrastructures. J. Grid Comput. 11, 429 (2013). https://doi.org/10.1007/
s10723-013-9261-8

46. SHIWA (SHaring Interoperable Workflows for Large-scale Scientic Simulations on Available
DCIs). http://www.shiwa-workflow.eu/project (2016)

47. Gesing, S., Herres-Pawlis, S., Birkenheuer, G., Brinkmann, A., Grunzke, R., Kacsuk, P.,
Kohlbacher, O., Kozlovszky, M., Krüger, J., Müller-Pfefferkorn, R., Schäfer, P., Steinke, T.: A
science gateway getting ready for serving the international molecular simulation community.
In: Proceedings of Science, PoS(EGICF12-EMITC2)050 (2012)

48. Zhao, J., Gomez-Perez, J.M., Belhajjame,K.,Klyne,G., Garcia-Cuesta, E., Garrido,A., Hettne,
K., Roos, M., De Roure, D., Goble, C.: Why workflows break understanding and combating
decay in Taverna workflows. In: 2012 IEEE 8th International Conference on E-Science (e-
Science), pp. 1–9. IEEE (2012)

49. EGI – European Grid Infrastructure. http://www.egi.eu/ (2016). Accessed 29 Feb 2016
50. XSEDE. https://www.xsede.org/ (2016). Accessed 29 Feb 2016
51. PRACE. http://www.prace-ri.eu/ (2016). Accessed 29 Feb 2016
52. InCommon. https://www.incommon.org/ (2016)
53. Docker. https://www.docker.com/ (2016)

https://standards.ieee.org/findstds/standard/830-1998.html
https://standards.ieee.org/findstds/standard/830-1998.html
https://doi.org/10.1007/s10723-013-9261-8
https://doi.org/10.1007/s10723-013-9261-8
http://www.shiwa-workflow.eu/project
http://www.egi.eu/
https://www.xsede.org/
http://www.prace-ri.eu/
https://www.incommon.org/
https://www.docker.com/

MobEmu: A Framework to Support
Decentralized Ad-Hoc Networking

Radu-Ioan Ciobanu, Radu-Corneliu Marin and Ciprian Dobre

Abstract Opportunistic networks (ONs) are an extension of mobile ad hoc net-
works where nodes are generally human-carried mobile devices like smartphones
and tablets, which do not have a global view of the network. They only possess
knowledge from the nodes they encounter, so well-defined paths between a source
and a destination do not necessarily exist. There are plenty of real-life uses for
ONs, including, but not limited to, disaster management, smart cities, floating con-
tent, advertising, crowd management, context-aware platforms, distributed social
networks, or data offloading and mobile cloud computing. In order to implement and
test a routing or dissemination solution for opportunistic networks, simulators are
employed. They have the benefit of allowing developers to analyze and tweak their
solutions with reduced costs, before deploying them in a working environment. For
this reason, in this chapter we present MobEmu, an opportunistic network simulator
which can be used to evaluate a user-created routing or dissemination algorithm on
a desired mobility trace or synthetic model.

1 Introduction

In the past years, mobile devices (such as smartphones, tablets, or netbooks) have
become almost ubiquitous, which has led to the advent of several new types ofmobile
networks [1]. Such networks are composed almost entirely of mobile devices, and
differ considerably from the classic wired networks, both in terms of structure, but
also with regard to the protocols and algorithms used for routing and data dissemi-
nation. Since there is no stable topology, nodes in mobile networks are not aware of
a global structure and have no knowledge of their relationship with other nodes (like

R.-I. Ciobanu (B) · R.-C. Marin · C. Dobre
University Politehnica of Bucharest, Splaiul Independentei 313,
Bucharest, Romania
e-mail: radu.ciobanu@cs.pub.ro

R.-C. Marin
e-mail: radu.marin@cti.pub.ro

C. Dobre
e-mail: ciprian.dobre@cs.pub.ro

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_6

87

88 R.-I. Ciobanu et al.

proximity, connection quality, etc.). Each node is only aware of information about
the nodes that it is in contact with at a certain moment of time, and may act as data
provider, receiver, and transmitter, during the time it spends in the network. Thus,
a node can produce data, carry them for other nodes and transmit them, or receive
them for its own use.

One type of suchmobile networks that have been deeply researched in recent years
is represented by opportunistic networks (ONs), which are a form of delay-tolerant
networks (DTNs). They have evolved naturally from mobile ad hoc networks
(MANETs), which store routing information and update frequently. Opportunistic
networks are dynamically built when mobile devices collaborate to form commu-
nication paths while users are in close proximity. They are based on a store-carry-
and-forward paradigm [2], which means that a node that wants to relay a message
begins by storing it, then carries it around the network until the carrier encounters the
destination or a node that is more likely to bring the data close to the destination, and
then finally forwards it. ONs have also gained popularity because they come as an
alternative to using the existing wired infrastructures, which may lead to significant
power reduction, as well as the decongestion of said infrastructures.

Figure1 presents an example of the behavior of an opportunistic network. Let
us assume that Alice wants to send a message to Bob (using her smartphone), but
she does not have access to a wireless infrastructure. Alice composes the message,
which is then stored on her device until a contact opportunity arises. Later, Alice goes
for a walk and encounters Chris, who also has a mobile device. The opportunistic
algorithm decides that Chris is a good relayer, so it sends him the message for Bob
(at time t1). Chris will then continue carrying the message until he encounters Daisy
(at time t2), to whom the message is then relayed further. The cycle can continue on
like this, until finally the message arrives at Bob (at time t3). Thus, it can be seen that
data spreading in opportunistic networks employs a probabilistic approach, since no
actual paths exist between nodes, and thus no routing tables are present. When a
message is relayed to a node, it is not necessarily deleted from the carrier node, so
multiple copies of the same message can exist in the network at the same time. The
more copies there are, the higher the chance of the message reaching its destination,
but flooding the network with too many messages can easily lead to congestion.
Opportunistic algorithms employ various methods for increasing the chances of a
successful delivery method, while reducing the latency and the network congestion.

There are several challenges regarding the implementation of opportunistic net-
working in real-life. One of the main challenges is deciding which nodes should the
data be relayed to in order for them to reach their destinations efficiently. Various
types of solutions have been proposed, ranging from disseminating the information
to every encountered node in an epidemic fashion, to selecting the nodes with the
highest social coefficient or centrality. Prediction methods have also been employed,
based on the knowledge that the mobile nodes from an opportunistic network are
devices belonging to humans, which generally have the same movement and interac-
tion patterns that they follow every day. The analysis of contact time (duration of an
encounter between two nodes) and inter-contact time (duration between consecutive
contacts of the same two nodes) has also been used in choosing a suitable relay node.

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 89

tim
e

t 1
t 3

t 2

F
ig
.1

O
pp

or
tu
ni
st
ic
ne
tw
or
k
in
te
ra
ct
io
n

90 R.-I. Ciobanu et al.

Aside from selecting the node that the data will be forwarded to, research has also
focused on congestion control, privacy, security, or incentive methods for convincing
users to altruistically participate in the network.

Collaboration between mobile devices implies that the messages sent by such
a device can successfully reach their destinations. Moreover, even if ONs are
delay-tolerant networks, some applications may require data to be delivered quickly,
before they become irrelevant. This is why opportunistic network algorithms should
strive to achieve high hit rates, together with low delivery latencies. The hit rate
signifies the percentage of messages that have successfully reached their intended
destinations, while the delivery latency is the time passed between the generation
of a message and the time it is received by its destination. In some ON scenarios,
such as disaster management, ON users must have a high degree of confidence that
the messages sent reach their destinations, because these are potential life-or-death
situations. This is the reason why hit rate is often regarded as the most important
metric in ONs. However, other side effects of a high hit rate, such as congestion or
high resource usage (CPU, battery, etc.) should also be avoided, if possible.

Aside from this, another important limitation of ONs that should be taken into
consideration is that nodes do not have a global view of the entire network, since they
are dealing with a fully decentralized approach. Therefore, routing or dissemination
algorithms are only able to use information collected from encountered nodes, so
mechanisms such as gossiping are often employed. An important direction in ON
research deals with increasing an opportunistic network’s efficiency, especially with
regard to hit rate, delivery latency, and congestion.

Looking at the challenges shown above, it is clear that creating efficient rout-
ing and dissemination solutions for ONs is a difficult task. For this reason, frame-
works that allow the testing of such solutions before deploying them in real-life are
extremely useful. Developers would be able to test their solutions and tweak them
in controlled scenarios, being able to change them on the fly, without having to
incur high costs (in terms of money and time). However, the challenge in simulating
mobile networks arises from two difficult problems: formalizing mobility features
and extracting mobility models. Currently, there are two types of mobility models
in use: real mobile user traces and synthetic models. Basically, traces are the results
of experiments recording the mobility features of users (location, connectivity, etc.),
while synthetic models are pure mathematical models which attempt to express the
movement of devices. In order to test an opportunistic solution, a simulator that can
replay a real-life trace or run a synthetic mobility model, and then apply a given rout-
ing or dissemination algorithm, is needed. Thus, our contributions in this chapter are
as follows:

• We perform an analysis of the most important existing synthetic mobility models
(in Sect. 2) and real-life traces (in Sect. 3), highlighting their benefits and draw-
backs.

• We present MobEmu, an opportunistic network simulator, which can run a
user-created routing or dissemination algorithm on a desired mobility trace or
synthetic model (in Sect. 4).

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 91

2 Synthetic Mobility Models

As previously stated, the evaluation of opportunistic solutions can be done in two
ways. One way of testing an ON is to use mobility models. Several such models
were proposed along the years, ranging from basic random models, to map-based or
social-based models. In this section, we present the most relevant mobility models,
and highlight the benefits and drawbacks of using suchmodels as opposed tomobility
traces collected from real-life situations.

2.1 Random Models

One of the first random models was the Random Walk [3], where nodes move by
randomly choosing a direction and a speed, then travel for a predefined time t or
distance d, after which a new direction and a new speed are randomly chosen. When
aborder of the simulation area is reached, the nodebounces off dependingon the angle
of its direction, and continues traveling with the selected speed. Multiple versions
of the Random Walk model exist, such as 1-D Random Walk, 2-D Random Walk,
etc. A random walk on a one or two-dimensional surface returns to the origin with
a probability of 1.0, which ensures that the model tests the movements of entities
around their starting points.

The Random Waypoint model [4] is very similar to the Random Walk model,
except that, after a node finishes traveling (i.e., time t expires or distance d is walked),
it pauses for a predefined time period before choosing a new direction and speed.
The Random Direction model [5] is also similar, but nodes must travel until the edge
of the simulation area before pausing and then choosing a new direction and speed,
instead of using the t or d thresholds. This is done in order to decrease the probability
of nodes traveling through the center of the simulation area, which is high for the
Random Waypoint model.

Other mathematical models are able to control part of the randomness of existing
solutions, such as the Boundless Simulation Area model [6], the Gauss-Markov
model [7], or the Probabilistic Random Walk model [8] (other similar models are
presented in [9]). However, the disadvantage of random models is that they do not
have a good similarity to real-life patterns, where users are grouped into communities
and social circles. Thus, real users do not move around randomly, but have very
specific destinations that are visited regularly. Moreover, the movements in random
models are not realistic, since nodes can have any direction, whereas, in reality,
human movement follows streets, walkways, buildings, etc.

92 R.-I. Ciobanu et al.

2.2 Map-Based Models

Map-based models attempt to make node movements more realistic by selecting
points on a map as a node’s next position. Thus, for the Random Map-Based
model [10], a node’s speed is chosen randomly, while the direction is chosen from a
set of allowed directions (i.e., that do not pass through walls, the middle of a street,
etc.). A node moves until it encounters a restriction (such as a wall), and then a new
direction and speed are generated. For the Shortest Path Map-Based model [11], a
correct destination is chosen randomly from the valid positions on the map (or from a
list of points of interest, or PoIs), and then a shortest path algorithm such asDijkstra is
employed to compute the path that the node must take until it reaches the destination.
Upon doing so (with a randomly-chosen speed), the node computes a new destination
and speed, and repeats the previous steps. Finally, the RoutedMap-Based model [12]
allows nodes to have predefined routes, to mimic real-life movement patterns (such
as buses, trams, cars, etc.).

The problem with map-based models is that they are still not realistic enough,
and are more useful for vehicular networks than for opportunistic networks. Node
movement is not governed by social connections and is basically still random.

2.3 Social-Based Models

Social-based models take into consideration the social aspect of human movement,
and one such example is CMM [13], which models the degree of social interaction
between two people using a value between 0 and 1, and isolates highly connected
sets of nodes into social groups based on their centrality. HCMM, or the Home-Cell
Mobility Model [14], takes this approach one step further by assuming that nodes
in an opportunistic network are not driven only by the social relationships between
them, but also by the attraction of physical locations. Thus, each community has a
home cell. This mobility model is based on the caveman model [15] and assumes
that each node is attracted to its home cell according to the social attraction exerted
on that node by all nodes that are part of its community. According to this model,
the attraction of an external cell is computed based on the relationships with nodes
that have their home in that cell. When a node reaches a cell that is not its own home
community cell, it stays there with a probability pe, and returns to its home cell
with the probability 1− pe. An HCMM node starts with a preset community, having
strong links with the composing nodes. However, based on a rewiring probability pr ,
a node’s links can be randomly rewired towards nodes from different communities.
Furthermore, a node’s decision to leave its current cell or not is taken based on the
remaining probability prem .

The Working Day model [16] attempts to make node movements more realistic
by modeling three major activities that humans perform during a weekday: sleeping
(at home), working (at the office), and going out with friends (in a restaurant, in the

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 93

evening). Depending on the time of day, one of these activities is simulated, by also
using three separate transport models. Thus, nodes can move (alone or in groups) by
walking, driving, or riding a bus, which increases the heterogeneity of movement.
Furthermore, the Working Day mobility model also takes into consideration social
relationships and communities,which are composed of nodes that either live together,
work in the same office, or go to the same pubs in the evening. The advantage of the
Working Day model is that the distributions of contact and inter-contact times are
similar to the ones found in real-life traces.

2.4 Discussion

The main advantage of mobility models is that they allow the fine-tuning of many
parameters, as opposed to mobility traces, which have coarse temporal or spatial
resolution and coverage, while possibly exhibiting bias due to an incorrect choice
of participants. Although they have been regarded as suspect models due to the
limitations in mapping over reality [17], synthetic models have been largely used
in the past. However, Barabási [18] introduced a queuing model which disproved
the claims of synthetic models based on random walks on graphs. Furthermore,
Barabási’s model showed that the distributions of inter-event times in human activity
are far from being normal, as they present bursts and heavy tails. This happens
because people do not move randomly, but their behavior is activity-oriented [19–
21]. This endeavor has paved the way for researchers in human dynamics, as the
Barabási model [18] is continuously being developed [22–25], and experiments with
it are using a variety of new interesting sources: web server logs, cell phone records,
or wireless network user traces.

Thus, we believe that random models should not be employed for opportunistic
network testing. Instead, more complex models that take advantage of social infor-
mation, and that manage to obtain contact and inter-contact time distributions similar
to real-life traces should be used. Moreover, we also believe that opportunistic algo-
rithms should also be tested on mobility traces, which is why the MobEmu simulator
that we propose and present in Sect. 4 offers support for both mobility models and
traces.

3 Mobility Traces

In this section, we address mobility traces, i.e., datasets that are collected after per-
forming a tracing experiment where users carry mobile devices that record their
interactions and movement patterns.

94 R.-I. Ciobanu et al.

3.1 Tracing Experiments

This subsection describes the mobility traces that MobEmu currently supports
(i.e., that are implemented in the latest version), including two traces that were
performed by us at the University Politehnica of Bucharest (UPB 2011 and UPB
2012). At the end of this section, Table1 shows details regarding all the presented
traces.

3.1.1 St. Andrews

The St. Andrews trace [26] was collected using a mobile sensor network with Tmote
Invent devices carried by 27 participants from the University of St. Andrews: 22
undergraduate students, 3 postgraduate students, and 2 members of the staff. The
experiment was performed for a period of 79days, in which the participants were
asked to carry their devices and to keep them on at all times, whether in or out of the
town of St. Andrews.

The Invent devices were able to detect and store information about encounters
between each other within a radius of 10m, and were programmed to send discovery
beacons at every 6.67 s. The encounter information, comprised of timestamp, and
the scanning and detected devices’ IDs, was occasionally uploaded to one of three
base stations across the two Computer Science buildings located in the campus of
the university. This information was used to create a trace of encounters between
Tmotes during the duration of the experiment (the detected social network, or DSN).
In addition, a topology (the self-reported social network, or SRSN) was generated
using the participants’ Facebook information. The nodes were logically split into
three large roles according to the SRSN and four weakly-defined roles according to
the DSN.

3.1.2 Haggle Traces

Haggle1 was a European Commission-funded project that designed and developed
solutions for opportunistic networks communication, by analyzing all aspects of the
main networking functions, such as routing and forwarding, security, data dissem-
ination, and mobility traces and models [27]. The results proposed in Haggle were
soon followed by a series of other subsequent research projects targeting similar
interests: SCAMPI [28], SOCIALNETS [29], etc. Haggle is today seen by many as
the project that created the premises for the advancements on human mobility for
information and communications technology-related aspects.

Several mobility traces have been performed in the context of the Haggle project,
mostly using Bluetooth-enabled devices such as iMotes. These are mobile devices

1http://cordis.europa.eu/project/rcn/80657.

http://cordis.europa.eu/project/rcn/80657

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 95

Ta
bl
e
1

M
ob

ili
ty

tr
ac
es

st
at
is
tic

s

T
ra
ce

D
ev
ic
es

D
ur
at
io
n
(d
ay
s)

C
om

m
un

ic
at
io
n

T
ra
ce

ty
pe

So
ci
al
da
ta

In
te
re
st
da
ta

M
ob

ile
Fi
xe
d

St
.A

nd
re
w
s

27
0

79
B
lu
et
oo

th
A
ca
de
m
ic
an
d

ur
ba
n

Y
es

N
o

In
te
l

8
1

6
B
lu
et
oo

th
A
ca
de
m
ic

N
o

N
o

C
am

br
id
ge

12
0

5
B
lu
et
oo

th
A
ca
de
m
ic

N
o

N
o

In
fo
co
m

41
0

4
B
lu
et
oo

th
C
on
fe
re
nc
e

N
o

N
o

In
fo
co
m

20
06

78
20

4
B
lu
et
oo

th
C
on
fe
re
nc
e

N
o

Y
es

C
on
te
nt

36
18

25
B
lu
et
oo

th
U
rb
an

N
o

N
o

U
PB

20
11

22
0

25
B
lu
et
oo

th
A
ca
de
m
ic

Y
es

N
o

U
PB

20
12

66
0

64
B
lu
et
oo
th

an
d

W
i-
Fi

A
ca
de
m
ic

Y
es

Y
es

Si
gc
om

m
20
09

76
0

3
B
lu
et
oo

th
C
on
fe
re
nc
e

Y
es

Y
es

N
U
S

22
34
1

0
11
8

St
ud
en
ts
ch
ed
ul
e

A
ca
de
m
ic

N
o

N
o

G
eo
L
if
e

18
2

0
18
85

G
PS

U
rb
an

N
o

N
o

So
ci
al
B
lu
eC

on
n

15
0

9
B
lu
et
oo

th
A
ca
de
m
ic

Y
es

Y
es

N
C
C
U

11
5

0
15

B
lu
et
oo

th
A
ca
de
m
ic

N
o

N
o

96 R.-I. Ciobanu et al.

created by Intel, based on the Zeevo TC2001P SoC, with an ARMv7 CPU and Blue-
tooth support. Two iMote traces, called Intel and Cambridge, have been presented
and analyzed in [30]. The Intel trace was recorded for six days in the Intel Research
Cambridge Laboratory, having 17 participants from among the researchers and stu-
dents at the lab. However, data from only 9 iMotes could be collected properly, since
the others had hardware issues. The Cambridge trace was taken for five days, at the
Computer Lab of the University of Cambridge, having as participants 18 doctoral
students from the System Research Group (out of which 12 devices were used for
the final trace). For both traces, the iMotes performed five-second scans at every two
minutes, and searched for in-range Bluetooth devices. Each contact was represented
by a tuple (MAC address, start time, end time). Internal and external contacts were
analyzed, where encounters between two devices participating in the experiment
were considered internal contacts, while encounters with other devices were exter-
nal contacts. The authors analyzed the distribution of contact and inter-contact times,
as well as the influence of the time of day on encounter opportunities. Regarding
inter-contact time, the traces showed that it exhibits an approximate power law shape,
which means that inter-contact distribution is heavy-tailed. The authors showed this
observation to hold regardless of the time of day, by splitting a day into three-hour
time intervals and noticing that the resulting distributions still maintained power law
shapes. Contact durations were also noticed to follow power laws, but with much
narrower value ranges and higher coefficients.

In addition to the Intel and Cambridge traces, another trace entitled Infocom was
presented and analyzed in [31]. It was collected during the IEEE Infocom confer-
ence in Miami in 2005, and had 41 conference attendees as participants, for a total
duration of four days. The conclusions were similar to the ones above, namely that
the distribution of the inter-contact times between two nodes in an opportunistic net-
work is heavy-tailed over a large range of values, and that it can be approximated to
a power law with a less than one coefficient. The authors showed that certain mobil-
ity models (such as the Random Waypoint model) do not approximate the real-life
traces correctly. Similarly to the Infocom trace, another trace (called Infocom 2006)
was performed the following year at the same conference (in Barcelona), but on
a larger scale. The Infocom 2006 trace [32] was collected between April 24 and
April 26 2006. The nodes in the tracing experiment were also iMote devices given
to 78 participants at the student workshop, along with 20 static long-range iMotes
deployed throughout the workshop area. Interest information about the nodes was
collected through questionnaires given to participants, where they were asked to fill
in information such as nationality, school, languages, affiliations, positions, city of
residence, and topics of interest selected from among those of the workshop’s CFP.
Thus, the trace contains a total of 18 different topics, with an average of 14.53 topics
per node.

Finally, the set of Haggle traces also includes Content, which differs from the
traces presented so far, since it was not recorded in an academic or conference
environment. Instead, it contains sightings recorded in various locations around the
city of Cambridge that are likely to be visited bymany people, such as grocery stores,
pubs, market places, and shopping centers. The participants in the experiment were

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 97

students from Cambridge University, but also a series of stationary nodes placed in
the key places described above. There were 18 such fixed nodes out of a total of 54.

3.1.3 UPB 2011

TheUPB2011 trace [33] is the result of a social tracing experiment thatwe performed
between November and December 2011 at the University Politehnica of Bucharest,
which shows not only the interactions of the experiment participants, but also the
social relationships they have with each other according to their Facebook profiles.
The experiment collected mobility data using an Android application called Social
Tracer. The participants were asked to run the application whenever they were in the
faculty grounds. Social Tracer sent regular Bluetooth discovery messages at certain
intervals, looking for any type of device that had its Bluetooth on. These included
the other participants in the experiment, as well as phones, laptops, or other types of
mobile devices in range.

When encountering another Bluetooth device, the Social Tracer application
logged data containing its address, name, and timestamp. The address and name
were used to uniquely identify devices, and the timestamp was used for gathering
contact data. Data logged were stored in the device’s memory, therefore every once
in a while participants were asked to upload the data collected to a central server
located within the faculty premises. All gathered traces were then parsed and merged
to obtain a log file. Successive encounters between the same pair of devices within a
certain time interval were considered as continuous contacts, also taking into consid-
eration possible loss of packets due to network congestion or low range of Bluetooth.
The experiment lasted for a period of 35days, and involved a total of 22 participants,
chosen as statistically varied as possible in order to obtain a good approximation of
the mobility aspects of a real academic environment. Thus, there were twelve Bach-
elor students (one in the first year, nine in the third, and two in the fourth), seven
Master students (four in the first year and three in the second), and three research
assistants. The participating members were asked to start the application whenever
they arrived at the faculty and to turn it off when they left.

It is shown in [33] that theUPB trace followsHui et al.’s observations [34], namely
that the contact and inter-contact times correspond to a power law distribution. It is
also shown that the participants have been chosenwell so that they represent different
groups from the social and logical grouping of nodes in a network based on mobile
device carriers in an academic environment. Finally, the k-CLIQUE algorithm [35]
has been applied on the trace to show that the local grouping of participants into
study years yields similar results to a dynamic grouping such as k-CLIQUE, as well
as to the social network organization.

98 R.-I. Ciobanu et al.

3.1.4 UPB 2012

We collected the UPB 2012 trace [36] at the University Politehnica of Bucharest
in the spring of 2012. For this experiment, we implemented an application entitled
HYCCUPS Tracer, with the purpose of collecting contextual data from Android
smartphones. It was ran in the background and collected availability and mobile
interaction information such as usage statistics, user activity, battery statistics, or
sensor data, but it also gathered information about a device’s encounters with other
nodes or with wireless access points. Encounter collection was performed in two
ways, Bluetooth andAllJoyn.2 Bluetooth interaction scanned for paired devices in the
immediate vicinity and stored contact information such as the ID of the encountered
device and the time and duration of contact. The information stored by AllJoyn
tracing was similar, but was collected by constructing and deleting wireless sessions
using the AllJoyn framework based onWi-Fi. The difference between Bluetooth and
Wi-Fi is that Wi-Fi consumes more battery life, but is more stable. We observed
that AllJoyn interactions occurred much more often than those on Bluetooth. Thus,
there were 20,658 Wi-Fi encounters for a total of 66.27% of all the contacts, and
only 6969 Bluetooth contacts. We believe that such results were caused by the low
range of Bluetooth. Tracing was executed periodically with a predefined timeout for
Bluetooth, and asynchronously for AllJoyn interactions.

The duration of the tracing experiment was 64days, between March and May
2012, and had 66 participants. They were chosen so that they covered as many years
as possible from both Bachelor and Master courses. Thus, there were one first-year
Bachelor student, one third-year Bachelor student, 53 fourth-year Bachelor students
(from five different study directions), three Master students, two faculty members,
and six external participants (from an office environment).Wewere interested only in
the participants at the faculty, sowe eliminated the external nodes.We also eliminated
some nodes that had too little contact information, because they were irrelevant to
our experiment. Such nodes belonged to students that did not keep their Android
application on at all times when they were at the faculty as they were instructed, or
who did not attend many classes in the experiment period. In the end, we remained
with 53 nodes with useful information in the trace. By analyzing the participants’
Facebook profiles, we were also able to extract the social connections matrix, as
well as the users’ interests. There were five global topics, each participant having in
average 3.51 interests.

3.1.5 Other Traces

The Sigcomm 2009 trace [37] was collected using an opportunistic mobile social
application entitled MobiClique. The tracing experiment lasted for three days and
gathered data from 76 smartphones running MobiClique, which were given to
participants of the Sigcomm 2009 conference in Barcelona. When receiving the

2https://allseenalliance.org/framework.

https://allseenalliance.org/framework

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 99

smartphones, volunteers were asked to fill in their interest data using the Mobi-
Clique application, which were then exported anonymously for the trace. There are
151 total topics in the trace, with an average of 15.61 topics per node. NUS [38] is
a dataset of contact patterns among students, collected during the spring semester
of 2006 at the National University of Singapore, while GeoLife3 is a GPS trajectory
dataset collected from 182 users in a period of over three years. SocialBlueConn [39]
contains traces of Bluetooth encounters, Facebook friendships, and interests of a set
of users, collected through the SocialBlueConn application at University of Calabria
and, finally, NCCU [40] contains contact information for a group of college students
in a campus environment.

3.2 Discussion

The main reason for developing and using tracing applications such as the ones
previously presented (instead of synthetic mobility models) spawns from the need
for better mapping onto real-life situations. As previously stated, trace models follow
a heavy-tailed distribution with spikes and bursts, making random models obsolete.

The major benefit of tracing applications is the use of a custom data model in
order to relate to real situations, real problems, and optimized solutions for said
issues. However, this can also lead to a pitfall: if the data model is not correctly
designed at the start of the experiment, the entire outcome of the analysis can be
biased.

Among the potential challenges of setting up our tracing experiments (UPB 2011
and UPB 2012), we dealt with the following:

• Finding volunteers representative to our goals was not such an easy task as it may
seem. For example, if we would have chosen all participants from the same class,
then our results would have been biased because we would have been limiting
our targeted scope to a partition of our community graph instead of reaching the
entire collective. Moreover, all of the candidates for the experiment needed to have
Android devices capable of tracing our data model: Bluetooth connectivity, Wi-Fi
connectivity, sensors etc.

• The design and development of the tracing applications needed to take into account
compatibility with multiple types of viable Android devices of varied versions.
Furthermore, when developing the tracers, we were obliged to take into account
the additional overhead of our applications, as most participants complained about
the supplementary power consumption.

• The installation effort of the tracerwas high due to issues such asBluetooth pairing:
all of the participants’ devices needed to pair to each other in order for us to be
able to trace their interactions.

3https://www.microsoft.com/en-us/download/details.aspx?id=52367.

https://www.microsoft.com/en-us/download/details.aspx?id=52367

100 R.-I. Ciobanu et al.

• Last, but not least, we were confronted with the human factor of such experiments:
the lack of conscientiousness of our volunteers. Due to the participants not running
the tracing application as instructed, the collected data were incomplete. Further-
more, this affected the analysis of said results, as we needed to deploy measures
to deal with uncertainty.

In conclusion, we believe that human mobility traces offer a better representation
of real-life opportunistic interactions than random synthetic models. However, great
care has to be taken when performing the tracing experiments, in order for the col-
lected data to not be biased. Most importantly, the experiment participants should
be incentivized to follow the rules of the experiment and carry their mobile devices
with the tracing application started whenever it is necessary. Moreover, in order for
the collected trace to represent a correct approximation of the entire environment,
the participants have to be chosen so that each social community is represented.
A caveat of mobility traces is that they generally have a limited time granularity,
since scanning for in-range devices is performed periodically, in order to consume
less power. Thus, some contacts may be missed, leading to an incomplete trace.
Another disadvantage is that the trace results cannot be scaled, since the number of
participants is fixed.

As a conclusion, we recommend employing both real-life traces, as well as social-
based mobility models, when testing an opportunistic algorithm. For this reason, the
MobEmu simulator that we propose and present in Sect. 4 offers support for both.

4 MobEmu

In order to be able to run and test opportunistic networking solutions on mobil-
ity traces or models, a simulator for realistic ON evaluation was required. Since
the existing solutions did not offer everything we needed (as shown in Sect. 4.5),
we implemented MobEmu, an opportunistic framework used for replaying mobility
traces and emulating data routing and dissemination algorithms, which we present
in this section.

Since opportunistic networks may be composed of hundreds or thousands of
devices (if not more), testing new ideas for data routing and dissemination can prove
to be a challenge. Furthermore, if the algorithms do not function as expected on
the first go, re-deploying a new version would be necessary, which might prove
costly, both in terms of money, as well as time and organizational effort. For this
reason, simulators are used, which are able to play back existing traces (collected
from members of opportunistic networks) or run synthetic mobility models, so that
the creator of an algorithm can have an idea regarding how the algorithm behaves
prior to actually releasing it in the network.

MobEmu is such a simulator, which can run a user-created algorithm on a desired
mobility trace or synthetic model, as long as certain implementation rules are

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 101

followed. It is written in Java, so it is highly modular and easy to understand and/or
modify, and its source code is freely available on GitHub.4

4.1 Functionality

MobEmu’s functionality is relatively straightforward. It parses a mobility trace and,
at every step of the trace (given by the time unit the trace was measured in), it
checks whether a contact between two nodes occurs. If this is the case, then the
desired routing or dissemination algorithm is applied for each node, in regard to
the encountered node. Moreover, various statistics are collected, as will be shown
in the next subsection. Aside from checking for contacts, MobEmu checks at every
tick whether a node should generate messages for other nodes, an action which
is controlled by the user. Thus, the amount of messages sent, their destinations,
priorities, number of copies, TTL, etc., can be configured according to each user’s
desire. At each step, the emulator also computes a node’s community according to
the k-CLIQUE algorithm, as well as its local and global centralities (i.e., inside its
community, and outside of it).

Regarding the execution of a routing or dissemination algorithm, the user is able
to control the data memory size of each node, the amount of history it can store, the
speed with which messages can be exchanged, a node’s level of altruism, etc. When
a trace run is completed, the desired statistics are printed.

4.2 Components

This subsection presents the main components of MobEmu: the Trace (along with
the Parser, Context, and Contact components) and the Node (containing information
regarding Altruism, Battery, Messages, Network, etc.). Each of the subcomponents
will be described in detail, for a full understanding of MobEmu’s purpose and func-
tionality, and they are also shown in Fig. 2.

4.2.1 Trace

The first step in running an opportunistic algorithm is deciding what type of network
it will be run in. As we have previously stated, using mobility traces is a cheaper
alternative to deploying and testing an algorithm in a real-life network. MobEmu’s
Trace component thus contains a list of Contacts, as well as information regarding
the trace’s name. Since all kinds of mobility traces have been collected at faculties
or companies all across the Globe, a trace’s sample time may differ, as well as its

4https://github.com/raduciobanu/mobemu.

https://github.com/raduciobanu/mobemu

102 R.-I. Ciobanu et al.

N
od

e

Ex
ch
an

ge
St
at
s

Co
nt
ac
tIn

fo

Ba
er
y

Al
tr
ui
sm

N
et
w
or
k

Ce
nt
ra
lit
y

Ex
ch
an

ge
Hi
st
or
y

M
es
sa
ge

Co
nt
ex
t

M
es
sa
ge

St
at
s

To
pi
c

Tr
ac
e

Co
nt
ac
t

Pa
rs
er

St
at
s

F
ig
.2

M
ob
E
m
u
co
m
po
ne
nt
s

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 103

starting point (for example, some traces start with timestamp 0, while others use
the Linux-style epoch). In order to account for such differences, a Trace object also
contains information about the trace’s start point, end point, and sample time.

Since we stated that a Trace contains a list ofContacts, it should be noted that such
a Contact contains information about the two nodes that are in contact, as well as
the starting and finishing time of the contact. Some traces contain contacts collected
through various means (such as Bluetooth vs. Wi-Fi), so a Contact also specifies
the type of contact between the nodes. The observer and observed nodes are marked
separately, because some traces are not symmetrical, i.e., it is possible that a node
A sees a node B, but node B does not see node A, because data are collected by
polling and the contact is too short for B to start polling again. On the other hand,
even if a contact is seen by both nodes, it is highly possible that their clocks are not in
sync, or that the polling was performed at different times. However, MobEmu solves
this problem by merging contacts between two nodes, as follows: if a node A sees
a contact with node B and, while that contact is still ongoing, B sees a contact with
A, the second contact is not considered as a separate contact. In conclusion, a Trace
contains all the necessary information regarding the contacts between nodes.

MobEmu Trace objects are obtained by running a Parser, which is an interface
that contains the following methods: getTraceData (for obtaining the Trace object),
getContextData (for getting context information regarding nodes’ preferences), get-
SocialNetwork (used to obtain the social connections between nodes on online net-
works such as Facebook or Twitter), and getNodesNumber. The last function returns
the number of nodes, but is also useful for knowing the IDs of all the nodes in the
trace, since they should be numbered consecutively from 0. The next subsection
shows how the Parser interface should be implemented, in order to correctly obtain
a trace that can be used in MobEmu.

As stated above, the result of parsing a trace contains not only the Trace object
itself, but also a Context map, with a Context object for each node in the trace. A
node’s context represents information regarding the node’s interests. Thus, aContext
object contains the node’s ID and a set of Topics that the node is interested in. These
Topics are represented as integers, and correspond to real-life interests of the user
that the opportunistic node belongs to (such as music, movies, books, etc.).

4.2.2 Node

A Node object contains all the information that an opportunistic node requires for
running a data routing or dissemination algorithm in MobEmu. Firstly, it contains
each node’s ID, which is unique in the network, all nodes being consecutive integers
starting from 0.

In order to store messages that are carried opportunistically, a node has a data
memory. It contains messages received from other nodes and intended for destina-
tions other than the node itself (since information required by the node is directly sent
to the application level, when dealing with data routing). Thus, a node’s data mem-
ory is the means through which the store-carry-and-forward paradigm is enforced,

104 R.-I. Ciobanu et al.

along with the routing or dissemination algorithm. The higher a node’s data memory
size, the more messages it can carry for other nodes, which offers a great chance of
increasing the network’s hit rate. However, having many messages in a data memory
leads to longer times required for analyzing the messages and deciding which ones
should be forwarded upon an opportunistic contact. Aside from the data memory,
a node also has a separate memory where it stores the messages it generates itself.
They are kept separate, since they are being handled differently, as a node’s own
messages are never deleted frommemory. On the other hand, when the data memory
is full, some messages may need to be deleted to make room for the new ones. This
is implemented using a cache replacement policy.

Both memories (the data memory and a node’s own messages) are represented
as lists ofMessages. Such an object has a unique ID (to separate between messages
more easily), the IDs of the source and destination (or, in case we are dealing with
dissemination, the ID of the source and a Context object representing the tags this
message is marked with), as well as a timestamp specifying when it was generated. A
string for the actualmessage text is also a part of theMessage object. Statistics regard-
ing a message’s path through the network are also kept inside the Message object,
in order to make it easier to track. These stats (implemented using a MessageStats
object) include whether the message was delivered and to whom, the number of
hops the message has traveled, the latency of arriving to the intended destination (or
destinations, if performing dissemination), as well as the number of message copies
available.

Various opportunistic algorithms need to analyze a node’s memory, in order to
decide which messages maximize the overall network hit rate. Thus, MobEmu nodes
also contain a map of encountered nodes and information about them, represented
as ContactInfo objects. There is such an object for each encountered node, and it
specifies the total duration of contacts with that node (i.e., the sum of the durations
of all contacts with that node), the number of contacts, and the last encounter time.
This information is updated at every contact between two nodes, and may be used
for efficient routing or disseminating.

A node also stores statistics about data exchanges that occur at a contact, through
an ExchangeStats object, which specifies the time and duration of the last exchange
with each encountered node. This is used for aggregating contacts that are seen dif-
ferently by two nodes (as was described at the beginning of this section). Among
other statistics stored by opportunistic network nodes, we would also highlight the
number of overflow events (i.e., when the data memory is full and a message is to be
received), the total number of messages received, delivered, or exchanged, as well as
the number of encounters with every node. The history of data exchanges between
nodes is also stored, since it is useful for some algorithms. An ExchangeHistory
object is used for this purpose, which stores the timestamp of the exchange, informa-
tion about the message exchanged (such as source and destination), the nodes that
performed the exchange, and the battery level of the forwarding node.

Wepreviously specified that, aside fromapplying the data routing or dissemination
algorithm at each step of the trace, MobEmu also performs community detection
using the k-CLIQUEalgorithm.This information is stored in a list of node IDs entitled

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 105

localCommunity. Nodes from this list belong to the current node’s local community,
as computed by k-CLIQUE based on the contactThreshold and communityThreshold
parameters. As a result of applying k-CLIQUE and detecting communities, each
node also has a centrality within that community, as well as a global centrality in the
entire network. These values are stored usingCentrality objects, since information is
required about previous and cumulated values aswell. A different type of community,
the social network, is also stored as an array of boolean values that specify whether
there are friendship relationships between the node and other participants in the
network.

Since opportunistic network nodes are generally mobile devices that have limited
battery life, it is necessary to be able to model the behavior of the MobEmu nodes
as if they were such devices. This is done using a Battery object, which offers
information about a node’s current battery level, whether it is recharging or not (and
the time left to recharge, if it is), as well as the battery drain model. Consequently,
this class contains a method named updateBatteryLevel, called at every step of the
trace. This method contains for now a linear formula for draining battery, but this is
not necessarily realistic. However, the method can be easily overridden in inherited
classes, if a different behavior is expected. A node’s current battery level dictates
whether it is actively participating in tracing or not, since a node with a low battery
may choose to attempt to maximize whatever is left, and thus avoid acting as a relay
for other nodes. This is enforced using a minBatteryThreshold in the Battery object
of each node.

Aswe previously stated, wewish to have a node that behaves as close to real-life as
possible. Thus, because opportunistic contacts have limited durations, only a certain
amount of data can be exchanged at each contact, so each node should have network
information. This is implemented through aNetwork object that contains the transfer
speed of a node, measured in messages per time unit (assuming all messages have the
same size). Consequently, depending on the duration of a contact, nodes will only be
able to exchange a certain number of messages (we assume that communication is
bidirectional, a node’s transfer speed specifying the speed it is receiving data with).

Finally, each node has the context information previously described, represented
by a Context object, as well as altruism information in the shape of an Altruism
object. Nodes in opportunistic networks may not always act altruistically, for var-
ious causes: low level of battery or other resources (CPU, memory, etc.), lack of
interest in helping other nodes (such as non-community nodes), etc. Nodes’ refusals
to follow the store-carry-and-forward paradigm of opportunistic networks leads to
a high decrease of the network hit rate, and an increase of its latency. This not only
affects other nodes, but the selfish nodes as well, since they may no longer be helped
by nodes that consider them to be selfish. An Altruism object in MobEmu contains
the node’s local and global altruism levels, since they can be different based on social
or interest communities. For example, a node may only want to relay data for nodes
with common interests, or for social neighbors. Perceived altruism values for the
other nodes in the network are also stored in the Altruism object (used by selfishness
detection and incentive algorithms), as well as a boolean that specifies whether the
current node is considered selfish by others or not.When a node is considered selfish,

106 R.-I. Ciobanu et al.

it will not be helped by other devices in the network anymore, so it needs to become
more altruistic if it wishes to have its messages delivered.

4.3 Implementing a Mobility Trace Parser

In order to implement a new mobility trace parser in MobEmu, the first step is
to implement the Parser interface, which was described above. The four functions
previously presented should be implemented: getTraceData should return a Trace
object containing the Contacts between the nodes, getContextData should return a
mapwith integer keys (the IDs of the nodes) andContext values (each node’s context,
which can even contain no tags, if the node did not specify interests when the trace
was collected), getSocialNetwork should return a symmetrical bidimensional array
of boolean values (where an entry specifies whether there is a social connection
between two nodes), and getNodesNumber should return the total number of nodes
in the trace. An important note to be made is that node IDs should be integer values
between 0 and N − 1 (where N is the value returned by getNodesNumber). Parsers
for all the traces shown in Table1 are implemented in MobEmu.

Aside fromworkingwithmobility traces,MobEmu can also replay data generated
by a mobility model, and the functionality is exactly the same as when replaying a
trace. The movement and interaction data are generated by the model and stored
as Contact objects in a Trace, and then the next steps are exactly the same as when
dealing with traces. The only difference is that the parameters of mobility models can
be configured, ranging from number of nodes to the size of the network. MobEmu
currently supports the HCMM model presented in Sect. 2.

4.4 Implementing a Routing or Dissemination Algorithm

The most important step in implementing an opportunistic routing or dissemination
algorithm in MobEmu is writing the data exchange function. However, prior to pre-
senting how this is done, we start by describing the steps taken by the emulator when
two nodes are in contact.

When twoMobEmu nodes meet opportunistically (based on the data contained in
the trace), the exchangeData function is called by the observer node. This function
receives the observed node as a parameter, as well as the duration of the contact
and the current trace time. If a contact between the two nodes is already in progress
(caused, as specified before, by the differences in clocks or sampling intervals of
the nodes), then the function simply returns. However, if the contact just began,
the onDataExchange function is called. This is an abstract function that should be
implemented by any class that extends Node. All such classes implement the actual
dissemination or routing algorithm through the onDataExchange function, while at

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 107

the same having access to all the information of the current node (which is why we
decided to use inheritance, rather than composition).

Thus, all that is required for writing a routing or dissemination algorithm is imple-
menting the onDataExchange function, but there are several guidelines that should
be followed, as shown in Fig. 3. Firstly, since the first parameter of the onDataEx-
change function is of type Node, it should be checked if it is indeed an instance of
the implementing class, and cast to it. Then, the next step is generally to perform
the delivery of direct messages, which are messages destined for the current node
(when dealing with routing) or marked with tags that the node is interested in (if dis-
seminating data). This is done by calling the deliverDirectMessages method. Then,
the messages from an encountered node’s data memory and own memory (i.e., the
messages it generated itself) are analyzed and, based on an algorithm-specific deci-
sion, they are downloaded by the current node or not. A message is downloaded by
calling the insertMessage function at the current node. If the network bandwidth is
considered restricted, then the user must ensure that more messages than allowed per
contact are not downloaded. Altruism can also be taken into account when perform-
ing data exchanges upon a contact, but it is the programmer’s job to decide whether
a node is selfish or not, and whether it should not be helped by other nodes.

Statistics are collected automatically, so the user does not need to do this explic-
itly, unless more stats are needed. For this, new fields should be added to the Node
implementation, and they should be updated when necessary, by extending the cor-
responding functions. Furthermore, the statistics are aggregated by using the Stats

void onDataExchange(Node encounteredNode, long contactDura on,
long currentTime)

Cast encounteredNode to class type

Deliver direct messages (call deliverDirectMessages)

For each message in the encountered node’s data memory
If message should be downloaded

Download (call insertMessage)

Fig. 3 Steps for implementing a routing or dissemination solution

108 R.-I. Ciobanu et al.

class, which should be extended, and methods for various statistics should be added
as desired.

A user may also wish to change the way messages are generated. Currently, this
is done daily, in a time interval around lunch (since this is generally when the most
contacts occur for the majority of the traces). If the current algorithm performs point-
to-point routing, then messages are generated by default using a Zipf distribution
with exponent 1, where the most messages are sent to nodes that are both in a node’s
community, as well as in its online social network, and the fewest to nodes that have
no connection to the current node. If dissemination is performed, a node chooses
a random interest, and generates a message marked with it. The generateMessages
function from the Message class can be overridden if a new message generation
behavior is desired. The opportunistic routing or dissemination solutions currently
implemented in MobEmu are briefly described in the following subsections.

4.4.1 Epidemic

The Epidemic algorithm [41] is based on the way a virus spreads: when two potential
carriers meet, the one with the virus infects the other one, if it is not already infected.
Thus, when an ON node A encounters a node B, it downloads all the messages
from B that it does not already contain, and vice versa. The simplest version of this
algorithm assumes that a node’s data memory is unlimited, so that it can store all the
messages that can be at once in the opportunistic network.

However, this is unfeasible in real-life, especially as the network grows larger,
so a modified Epidemic version is also implemented in MobEmu, where the data
memory of a node is limited. Thus, when node A’s memory is full and it encounters
node B, first it has to drop the oldest messages in its memory, in order to make
room for the new messages that it will download from node B. This also makes
the algorithm somewhat inefficient, since some older messages may be important
(e.g., they may be addressed to nodes that A is about to encounter), while some new
ones may be totally irrelevant (e.g., their destinations may be nodes that A will never
meet). Furthermore, Epidemic nodes perform many data exchanges, especially in
large networks with highly mobile nodes, so the problem of congestion can arise.
This can happen not only in the network, but also at each individual node, especially
if the network is dense. Performing data exchanges often can also very easily deplete
a node’s battery, since opportunistic networks are mainly composed of small mobile
devices such as smartphones, with limited lifetimes.

4.4.2 BUBBLE Rap

BUBBLERap [32] is a routing algorithm for opportunistic networks that uses knowl-
edge about nodes’ communities to deliver messages. It assumes that a mobile device
carrier’s role in the society is also true in the network, thus the first part of the algo-
rithm is to forward data to nodes that are more popular than the current node. The

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 109

second assumption made by BUBBLE Rap is that the communities people form in
their social lives are also observed in the network layer, therefore the second part of
the algorithm is to identify the members of the destination community and pass them
the relevant messages. Thus, a message is bubbled up the hierarchical ranking tree
using a global popularity level, until it reaches a node that is in the same community
as the destination. Then, the message is bubbled up using a local ranking until it
reaches its target. The popularity of a node is given by its betweenness centrality,
which is the number of times a node is on the shortest path between two other nodes
in the network. Community detection is done using k-CLIQUE, while the centralities
are computed by replaying the last collected mobility trace, applying a flooding algo-
rithm, and then computing the number of times a node acts as a relay on a shortest
path.

However, this implementation of BUBBLE Rap is unfeasible in real-life, because
it has to know the behavior of the nodes beforehand. Therefore, a distributed version
entitled DiBuBB is also proposed by the authors [32]. It uses distributed k-CLIQUE
for community detection, together with a cumulative or single window algorithm
for distributed centrality computation. The single window (S-window) algorithm
computes centrality as the number of encounters the current node has had in the
last time window (chosen usually to be six hours), while the cumulative window
(C-window) algorithm counts the number of individual nodes encountered for each
time window, and then performs an exponential smoothing on the cumulated values.

4.4.3 ML-SOR

Whereas solutions like BUBBLE Rap only employ social network information,
ML-SOR (Multi-Layer SOcial network-based Routing) [42] also uses interest infor-
mation, as well as encounter history. Thus, it exploits three social network layers:
the online social network, the interest network, and the contact network. The latter
is the proximity graph created through contacts between devices, while the online
social network is extracted from virtual contacts. Thus, a layer is represented as a
weighted graph, where the edges are social links between the nodes, which are the
vertices. A tuple of multiple such social network layers is defined as a multi-layer
social network.

ML-SORextracts social network information frommultiple contexts and analyzes
encountered nodes in terms of node centrality, tie strength, and link prediction, on
different social network layers. When an ML-SOR node A encounters a node B, it
computes a social metric called MLS for all the messages in B’s memory, both from
its own standpoint, as well as from B’s. If MLS is higher for node A in terms of a
message M , then A sends a download request for M . The social metric is computed
based on three components: CS, TSS, and LPS. CS represents the centrality of the
nodes in the contact history graph, while TSS and LPS are computed with regard
to the message’s destination. TSS is the online social network strength between the
analyzed node and the destination, andLPS is a link predictor computed on an interest

110 R.-I. Ciobanu et al.

network layer. It counts the number of common interests between the encountered
node and the message’s destination.

Thus, the ML-SOR algorithm tries to forward messages to nodes that are more
important than the carrier node on three levels. An important node is defined as a
node with a high centrality (i.e., with many encounters), which is connected to the
destination on the online social network, and has multiple interests in common with
the destination. ML-SOR is therefore based on the assumptions that nodes that are
socially connected tend tomeet each other more often, and so do nodes with common
interests.

4.4.4 Moghadam-Schulzrinne

The dissemination solution proposed byMoghadam and Schulzrinne [43] uses inter-
est information when distributing data. This interest-aware algorithm is able to ana-
lyze a user’s history of cached data in order to obtain his interests. Using these inter-
ests, the algorithm is able to decide whether a document carried by an encountered
node should be downloaded or not when a contact occurs. Interests are represented
as vectors of interest, which are obtained by applying extended latent semantic anal-
ysis and singular value decomposition on the documents that have been viewed or
cached on each user’s device. When a node A meets a node B, the former has to
decide which documents should be forwarded to the latter. This is done by mapping
each document carried by A into B’s interest space and applying cosine similarity.
If the result is higher than a predefined threshold, then that document is transferred
to B.

Thus, documents are only spread to nodes that are interested in their content,which
in turn can forward them further on to nodes with similar interests. By using such
an algorithm, the number of data exchanges in the network decreases dramatically,
since a node can only carry a document that it is interested in (and that the nodes
it will encounter are, with a high probability, interested in too). The results show
that the interest-based algorithm is able to deliver 30%more relevant documents and
35% fewer irrelevant documents, when compared to Epidemic routing.

4.4.5 Social Trust

Social Trust [44] is a trust method that leverages social information to estab-
lish trustworthy communication for mobile opportunistic networks. Nodes’ trust
is social-based, since it is argued that they belong to an opportunistic network com-
posed of people’s devices (such as smartphones). Thus, socially-connected nodes
have an intrinsic trust in each other, since they are likely to interact more often in
good conditions.

The authors propose employing twomajor techniques of establishing trust: Relay-
to-Relay and Source-to-Relay. When using the former method, a node that is carry-
ing a message computes the trust in an encountered peer based on the relationship

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 111

between the two nodes, while the latter method assumes that candidate relays are
analyzed based on their relationship with the message’s source. For each of the two
trust methods, four ways of computing a node’s trust are proposed (and implemented
in MobEmu): common interests, common friends, social graph distance, and a com-
bination between common friends and social distance. These filters are based on
research in the area of human mobility, which shows that socially-connected people
are more likely to encounter each other than to have contacts with stranger nodes.
The same goes for interests: people with common interests tend to meet often and
on a regular basis. Since opportunistic network nodes are very likely humans car-
rying mobile devices, it is natural to employ knowledge about human mobility and
interactions.

4.4.6 JDER

JDER [45] is an opportunistic routing solution that is based on the idea that there
are circumstances when information about social connections is not available, or
the social network is much too large to be used efficiently. In such situations,
socially-aware algorithms do not behave efficiently, since they are mostly focused
on forwarding messages to popular nodes that are likely to communicate with many
other nodes in the network. However, there are critical nodes (cut nodes) with less
apparent popularity that play an important role in the dissemination process of mes-
sages in the network, so they have to be found and selected as forwarders in order to
guarantee a high delivery ratio.

The JDER algorithm attempts to find the cut nodes by employing two metrics: the
history encountered ratio and the Jaccard distance. The former specifies how often
each encountered node has been met, whereas the latter is a measure of similarity,
and is computed as the number of common neighbors between two nodes. Thus, if
two peers are similar according to the Jaccard distance, then they need to exchange
data. Similarly, if an encountered node is similar to the destination of a message, that
message must be transferred to the encountered node, which has a high chance of
encountering the destination.

4.4.7 IRONMAN

IRONMAN[46] is a selfishnodedetection and incentivemechanism for opportunistic
networks that uses pre-existing social information to detect and punish selfish nodes,
incentivizing them to participate in the network. Each IRONMAN node stores a
perceived altruism (or trust) value for other nodes, that is initialized based on the
social network layout: if the nodes are socially connected, this value is higher than
for non-community nodes. When a node A meets a node B, it checks its encounter
history to see if B has ever created a message for A that has been relayed to another
node C . If this is the case, and A has encountered C after B had given it the message
but A did not receive the message, then C is considered selfish, and A’s perceived

112 R.-I. Ciobanu et al.

altruism of C is decreased. Whenever a node A receives a message from a node B
which is not the source of the message, A’s perceived altruism of B is increased.

Apart fromdetecting selfish nodes, IRONMANalso uses incentives tomake nodes
behave better. Therefore, whenever a node B is considered selfish by A (its perceived
altruism is below a given threshold), it is notified, and Awill not accept anymessages
from it (but will keep on forwarding its own messages to B). Therefore, a selfish
node might end up not being able to send its messages, unless it becomes altruistic.
IRONMAN uses perceived altruism ratings for encountered nodes, in order to decide
if they are selfish or not. These ratings are computed locally based on the analysis of
the history of contacts whenever two nodes meet, but the local values are exchanged
with other nodes at every encounter, in order to inform them if a node is selfish.

4.4.8 SENSE

SENSE [47] is a novel social-based collaborative content and context-based selfish
node detection algorithm with an incentive mechanism, which aims to reduce the
issues caused by having selfish nodes in an ON. It uses gossiping and context infor-
mation to make informed decisions regarding the altruism of nodes in the network,
on one hand, and incentive mechanisms to make selfish nodes become altruistic, on
the other. SENSE takes advantage of social relationship knowledge regarding the
nodes in the ON, to decide if a node is selfish towards its own community.

When a SENSE node A encounters another peer B, A verifies B’s reputation
before deciding to employ it as a relay. This reputation is computed based on past
information regarding B’s behavior, obtained not only from A’s observations, but
also through gossiping from the other nodes in the network. If node A decides that
B is altruistic, then it continues to communicate with it normally. However, if node
B is considered selfish, then A will not only stop sending its messages to B (i.e., it
will not use it as a relay), but it will not help B deliver its messages. Thus, node B
will be forced to become unselfish if it wants its messages delivered. The SENSE
algorithm uses social information for differentiating between community altruism
and selfishness, while also taking into account other context information such as
battery level.

4.4.9 SPRINT

SPRINT [48, 49] is a data routing algorithm for opportunistic networks that uses
social information and contact prediction to perform forwarding decisions. More
specifically, upon a contact between two nodes in an ON, it employs a utility function
for computing the value of each message carried by the two nodes. The goal is
for each node to maximize the utility of the messages it is carrying, through data
exchanges. Thus, each node computes the utility of every message, and then stores
the N most valuable ones (where N is the maximum number of messages that a node
can transport).

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 113

The utility function has two components, the first of them taking into account a
message’s freshness (i.e., how much time has passed since it has been generated),
as well as the probability that the current node is able to bring the message closer to
its intended destination. This probability is computed by analyzing a node’s contact
history and its social connections, and by using a Poisson distribution. The second
component of the utility function is based on a node’s social connection with the
message’s destination, the number of hops that the message has traveled through,
the node’s popularity, and the time spent by the node in contact with the message’s
destination.

MobEmu also supports a version of SPRINT entitled SPRINT-SELF [50], which
contains SENSEmechanisms for trust and reputationwhen performing opportunistic
routing, as well as incentivizing nodes to participate in the ON.

4.4.10 ONSIDE

ONSIDE [51, 52] is an algorithm that not only uses interest knowledge for oppor-
tunistic data dissemination, but also social information about the nodes in the net-
work, in an attempt to decrease an ON’s overall bandwidth consumption and reduce
its congestion, while not affecting the average per-topic hit rate and the delivery
latency.

The ONSIDE algorithm is based on several assumptions, one of them being that
nodes with common interests tend to meet each other more often than nodes without.
The second assumption that ONSIDE is based on states that connections from online
social networks (such as Facebook, Google+, or LinkedIn) are respected in an ON
node’s encounters. Whenever two nodes running ONSIDE meet, they exchange lists
of messages in their data memory and lists of topics each node is interested in. Based
on this information, each node analyzes the other node’s messages and decides which
of them should be downloaded. This decision is firstly based on common interests
between the encountering nodes, so that data transfers are only performed between
nodes with at least one common interest. The second component of the decision
function ensures that a node will not only download a message for itself and then
drop it after use, but will also store it for others, since it is highly likely to encounter
other nodes that have interests similar to its own. The data exchange decision is also
based on the idea that a node encounters its social connections often, so, if it has
friends interested in amessage it encounters, it should download thatmessage in order
to ensure a quick delivery. The last component of the exchange function is computed
based on the nodes’ encounter history, assuming that a node’s behavior in an ON is
predictable, so that if it encountered many nodes subscribed to a certain topic, it is
likely to encounter others in the future as well.

The ONSIDE implementation fromMobEmu also contains mechanisms for sort-
ing the messages in a node’s memory, in order to ensure that, when a node’s memory
is full and it has to download a new message, it will drop the least significant one
that it has stored (instead of the oldest one, as per the default case). Furthermore, the

114 R.-I. Ciobanu et al.

MobEmu implementation of ONSIDE also contains SENSE mechanisms for trust
management and incentives.

4.4.11 Interest Spaces

Interest Spaces [53] is a context-adaptive and knowledge-based middleware for
mobile collaborative systems. Its purpose is to offer a unified framework for data
dissemination inONs, providingmobile applicationswith amessage exchangemech-
anism in networks where Wi-Fi access points or mobile broadband connections are
not available, or an alternative is needed. MobEmu has implementations for its dis-
semination and reputation components.

A node’s interest in the Interest Spaces framework is expressed as a tag, and there
are three types of nodes: publishers, subscribers, and cache nodes. The former are
nodes that can publish data. In order to do so, they must specify tags for the data
objects they publish. Other nodes that are subscribed to those tags are able to receive
messages generated by the publishers. Subscribers are nodes that are interested by
information marked with certain tags. They are able to specify the tags they are inter-
ested in at any time, as well as to unsubscribe from them. Messages that subscribers
are interested in should arrive as fast as possible, especially in environments where
data can become stale quickly. Finally, the cache nodes represent the backbone of the
Interest Spaces framework, in the sense that they perform the actual heavy lifting.
Their task is to cache and transport data items for the benefit of others. Nodes are able
to become cache nodes for certain tags when they are in the vicinity of other nodes
interested in such tags, or when they are known to interact often with said nodes.
They store data of interest to these nodes until they encounter them and deliver the
data. A node is a cache node for a certain context, which is computed on the fly and
can change very quickly.

The cache decision function is based on the idea that a node that sees a certain
tag often (i.e., it encounters nodes that carry messages marked with that tag or
that are interested in that tag) would be a good cache node for messages marked
with that particular tag. Furthermore, this decision also takes into account the social
connections between nodes. The trust and reputation component of Interest Spaces,
entitled SAROS [54], is based on node gossiping for building trust in the other peers
in the opportunistic network. Furthermore, messages that reach an interested node
are not directly delivered to the application level. Instead, multiple copies of the
same message (delivered on different routes by different nodes) are compared, and a
quorum algorithm is used for selecting the valid version. This way, malicious nodes
that alter messages can be detected, and the other nodes in the network are notified
to avoid them.

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 115

4.5 Related Work

The most well-known simulator for opportunistic networks is ONE (Opportunistic
Network Environment) [12]. It is a Java application that simulates various ON sce-
narios, allowing the customization of node behavior in terms of contacts, routing
algorithms, transfer speed, battery, etc. The main functions of the ONE simulator
are the modeling of node movement, inter-node contacts, routing, and message han-
dling. Result collection and analysis are done through visualization, reports, and
post-processing tools.

Each ONE node is represented by a main module which can connect to other
submodules that represent its capabilities, such as radio interface, persistent storage,
movement, energy consumption, or message routing. Transfer speed is abstracted
to a communication range and bit-rate, which are statically configured and remain
constant over the simulation. The node energy consumption model is based on an
energy budget approach, where each node starts with a given energy level, which
decreases when certain activities (such as data transmission) are performed.

Regarding node interactions, several approaches can be taken by a ONE simu-
lation, similarly to MobEmu. Synthetic movement models can be employed, which
include random movement models (such as Random Walk and Random Waypoint),
map-constrainedmodels (RandomMap-BasedMovement, Shortest PathMap-Based
Movement, and Routed Map-Based Movement), as well as human behavior-based
movement models (such as theWorking DayMovement model presented in Sect. 2).
Moreover, real-world traces such as the ones presented in Sect. 3 can be imported
into the ONE simulator.

Messages are generated either randomly, or with a fixed source, destination, size,
and interval. One main drawback of the ONE simulator is that all messages are
unicast and directed, so they have a specific destination, which does not allow for
data dissemination without further tweaking of the implementation.

There are six routing protocols included in the simulator, which can be run
on a mobility model or a trace: direct delivery, first contact, Spray-and-Wait [55],
PROPHET [56], MaxProp [57], and Epidemic [41]. However, new protocols can be
added to ONE by extending a class (called ActiveRouter) and implementing specific
methods.

The ONE simulator offers a Graphical User Interface (GUI) for visualizing the
simulation live (showing the positions of nodes in the simulation space, their inter-
actions, etc.), while statistics are also collected and exported in log files. Simulation
scenarios can be built by defining the ON participants and their capabilities (such as
storage capacity, transmission range and bit-rates, movement models, routing algo-
rithms, etc.), as well as global parameters (such as duration, time granularity, etc.),
through simple text-based configuration files. This offers less experienced users an
easy way of creating and testing various scenarios.

The main caveat of ONE (and the reason we implemented MobEmu) is that it
does not work for data dissemination out of the box. As stated before, messages can
only be directed towards a single destination, so a publish/subscribe-based solution

116 R.-I. Ciobanu et al.

cannot be tested. Moreover, it does not offer support for community detection, social
network knowledge, altruismmodeling, or context data (i.e., topics of interest). Since
we needed these components for implementing our routing and dissemination solu-
tions, as well as our context-adaptive and knowledge-based middleware for mobile
collaborative systems (Interest Spaces), we decided to implement our own ON sim-
ulator (MobEmu). We believe that not only does it offer more capabilities than the
ONE simulator, but it is easier to maintain and extend, due to the simplicity and
modularity of the code.

Other simulators that offer support for opportunistic networks includens-2,5 ns-3,6

DTN2,7 OMNet++,8 or GloMoSim [58], but they have either been discontinued, are
not used on a large scale, or do not offer complete support for ON simulations.

5 Conclusions

In this chapter, we have introduced the notions of mobility traces and synthetic
models, highlighting the benefits and drawbacks for each of them. We argued that,
when implementing an opportunistic routing or dissemination solution, it should be
tested both using a social-based synthetic model, as well as on multiple mobility
traces that cover as many real-life scenarios as possible.

In order to be able to do this, we presented MobEmu, an opportunistic network
simulator that is able to run a mobility model or replay a trace, while applying
the desired routing or dissemination algorithm. It is a Java application that offers
simplicity and modularity, while at the same time allowing more experienced users
a deep control over the scenarios they want to test. We showed that other similar
simulators do not have all the capabilities that MobEmu offers, so its implementation
was necessary.

Acknowledgements This chapter is based upon work from COST Action IC1406 High-
Performance Modelling and Simulation for Big Data Applications (cHiPSet), supported by COST
(European Cooperation in Science and Technology).

The research presented is also supported by national projects DataWay (PN-II-RU-TE-2014-4-
2731) and MobiWay (PN-II-PT-PCCA-2013-4-0321).

References

1. Ciobanu, R.-I., Cristea, V., Dobre, C., Pop, F.: Big Data Platforms for the Internet of Things,
pp. 3–34. Springer International Publishing, Cham, (2014)

5http://www.isi.edu/nsnam/ns/.
6https://www.nsnam.org.
7https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation.
8https://omnetpp.org.

http://www.isi.edu/nsnam/ns/
https://www.nsnam.org
https://sites.google.com/site/dtnresgroup/home/code/dtn2documentation
https://omnetpp.org

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 117

2. Pelusi, L., Passarella, A., Conti,M.:Opportunistic networking: data forwarding in disconnected
mobile ad hoc networks. Comm. Mag. 44(11), 134–141 (2006)

3. Gerl, Peter: Randomwalks on graphs. In: Heyer, Herbert (ed.) ProbabilityMeasures on Groups
VIII. LectureNotes inMathematics, vol. 1210, pp. 285–303. Springer,BerlinHeidelberg (1986)

4. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Networks. In:
Imielinski and Korth, (eds.)Mobile Computing, vol. 353. Kluwer Academic Publishers, (1996)

5. Nain, P., Towsley, D., Liu, B., Liu, Z.: Properties of random direction models. In: INFOCOM
2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies.
Proceedings IEEE, vol. 3, pp. 1897–1907. March 2005

6. Haas, Z.J.: A new routing protocol for the reconfigurable wireless networks. In: Universal
Personal Communications Record, 1997. Conference Record., 1997 IEEE 6th International
Conference on, vol. 2, pp. 562–566. (Oct 1997)

7. Liang, B., Haas, Z.J.: Predictive distance-based mobility management for multidimensional
pcs networks. IEEE/ACM Trans. Netw. 11(5), 718–732 (2003)

8. Chiang, C.-C., Gerla, M.: On-demandmulticast in mobile wireless networks. Proc. IEEE ICNP
98, 14–16 (1998)

9. Camp, T., Boleng, J., Davies, V.: A survey of mobility models for ad hoc network research.
Wireless Commun. Mobile Computing 2(5), 483–502 (2002)

10. Derrida, B., Flyvbjerg, H.: The random map model: a disordered model with deterministic
dynamics. J. de Phys. 48(6), 971–978 (1987)

11. Soares, V.N.G.J., Rodrigues, J.J.P.C., Farahmand, F.: Impact Analysis of the Shortest Path
Movement Model on Routing Strategies for VDTNs in a Rural Region. In: Proceedings of 7th
Conference on Telecommunications, CONFTELE 2009

12. Keränen, A., Ott, J., Kärkkäinen, T.: The ONE Simulator for DTN Protocol Evaluation. In: Pro-
ceedings of the 2Nd International Conference on Simulation Tools and Techniques, Simutools
’09, pp. 55:1–55:10, ICST, Brussels, Belgium, Belgium, 2009. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering)

13. Musolesi, M., Mascolo, C.: Designing mobility models based on social network theory. SIG-
MOBILE Mob. Comput. Commun. Rev. 11(3), 59–70 (2007)

14. Boldrini, C., Passarella, A.: HCMM: modelling spatial and temporal properties of human
mobility driven by users’ social relationships. Comput. Commun. 33(9), 1056–1074 (2010)

15. Watts, D.J.: Small Worlds: The Dynamics of Networks Between Order and Randomness.
Princeton University Press, Princeton, NJ, USA (2003)

16. Ekman, F, Keränen, A., Karvo, J., Ott, J.: Working day movement model. In: Proceedings of
the 1st ACM SIGMOBILE Workshop on Mobility Models, MobilityModels ’08, 33–40, New
York, NY, USA, 2008. ACM

17. Musolesi, M., Mascolo, C.: Mobility Models for Systems Evaluation. In: Garbinato, C.,
Miranda, H., Rodrigues, L. (eds.) Middleware for Network Eccentric and Mobile Applica-
tions, chap. 3, pp. 43–62. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009

18. Barabasi, A.L.: The origin of bursts and heavy tails in human dynamics. Nature 435(7039),
207–211 (2005)

19. Doci, A., Barolli, L., Xhafa, F.: Recent advances on the simulationmodels for Ad hoc networks:
real traffic and mobility models. Scalable Computing: Practice and Experience, 10(1), (2009)

20. Doci, A., Springer, W., Xhafa, F.: Impact of the Dynamic Membership in the Connectivity
Graph of the Wireless Ad hoc Networks. Scalable Computing: Practice and Experience, 10(1),
2009

21. Hummel, K.A., Hess, A.: Movement activity estimation for opportunistic networking based on
urban mobility traces. In: Wireless Days (WD), 2010 IFIP, 1–5, Oct. 2010

22. Oliveira, J.G., Barabási, A.L.: Human dynamics: darwin and Einstein correspondence patterns.
Nature 437(7063), 1251 (2005)

23. Hidalgo R, C.A.: Conditions for the emergence of scaling in the inter-event time of uncorrelated
and seasonal systems. Phys A: Stat. Mech. Its Appl. 369(2), 877–883 (2006)

24. Vázquez, A.: Exact results for the Barabási model of human dynamics. Phys. Rev. Lett. 95(24),
248701+ (2005)

118 R.-I. Ciobanu et al.

25. Vázquez, A., Oliveira, J.G., Dezsö, Z., Goh, K.-I., Kondor, I., Barabási, A.-L.: Modeling bursts
and heavy tails in human dynamics. Phys. Rev. E. 73(3), 036127+ (2006)

26. Bigwood, G., Rehunathan, D., Bateman,M., Henderson, T., Bhatti. S.: Exploiting self-reported
social networks for routing in ubiquitous computing environments. In: Proceedings of the 2008
IEEE International Conference on Wireless & Mobile Computing, Networking & Communi-
cation, WIMOB ’08, pp. 484–489, Washington, DC, USA, 2008. IEEE Computer Society

27. Su, J., Scott, J., Hui, P., Crowcroft, J., De Lara, E., Diot, C., Goel, A., Lim, M.H., Upton, E.:
Haggle: SeamlessNetworking forMobileApplications. In: Proceedings of the 9th International
Conference on Ubiquitous Computing, UbiComp ’07, 391–408. Springer. Berlin, Heidelberg,
2007

28. Pitkänen, M., Kärkkäinen, T., Ott, J., Conti, M., Passarella, A., Giordano, S., Puccinelli, D.,
Legendre, F., Trifunovic, S., Hummel, K., May, M., Hegde, N., Spyropoulos, T.: SCAMPI:
service platform for social aware mobile and pervasive computing. SIGCOMMComput. Com-
mun. Rev. 42(4), 503–508 (2012)

29. Allen, S.M., Conti, M., Crowcroft, J., Dunbar, R., Lió, P.P.., Mendes, J.F., Molva, R., Pas-
sarella, A., Stavrakakis, I., Whitaker, R.M.: Social Networking for Pervasive Adaptation. In:
Self-Adaptive and Self-Organizing Systems Workshops, 2008. SASOW 2008. Second IEEE
International Conference on, pp. 49–54, (Oct. 2008)

30. Chaintreau, A., Hui, P.: Pocket Switched Networks: Real-world mobility and its consequences
for opportunistic forwarding. Technical report, 2006 Computer Laboratory, University of Cam-
bridge, February 2005

31. Chaintreau, A., Hui, P., Crowcroft, J., Diot, C., Gass, R., Scott, J.: Impact of human mobility
on opportunistic forwarding algorithms. IEEE Trans. Mob. Comput. 6(6), 606–620 (2007)

32. Hui, P., Crowcroft, J., Yoneki, E.: BUBBLE Rap: social-based forwarding in delay tolerant
networks. In: Proceedings of the 9th ACM International Symposium on Mobile Ad Hoc Net-
working and Computing, MobiHoc ’08, 241–250, New York, USA, 2008. ACM

33. Ciobanu, R.I.: Ciprian Dobre, and Valentin Cristea. Social aspects to support opportunistic
networks in an academic environment. In: Proceedings of the 11th International Conference
on Ad-hoc, Mobile, and Wireless Networks, ADHOC-NOW’12, 69–82. Springer, Berlin, Hei-
delberg (2012)

34. Hui, P., Chaintreau,A., Scott, J., Gass, R., Crowcroft, J., Diot, C.: Pocket switched networks and
human mobility in conference environments. In: Proceedings of the 2005 ACM SIGCOMM
Workshop on Delay-Tolerant Networking, WDTN ’05, 244–251, New York, NY, USA, 2005.
ACM

35. Hui, P., Yoneki, E., Chan, S.Y., Crowcroft, J.: Distributed community detection in delay tolerant
networks. In: Proc. of 2nd ACM/IEEE inter. workshop on Mobility in the evolving internet
architecture, MobiArch ’07, 7:1–7:8, New York, NY, USA, 2007. ACM

36. Marin, R.-C., Dobre, C., Xhafa, F.: Exploring Predictability inMobile Interaction. In: Emerging
Intelligent Data and Web Technologies (EIDWT), 2012 Third International Conference on,
133–139. IEEE, 2012

37. Pietiläinen, A.-K., Oliver, E., LeBrun, J., Varghese, G., Diot, C: Mobiclique: Middleware
for mobile social networking. In: Proceedings of the 2Nd ACM Workshop on Online Social
Networks, WOSN ’09, 49–54, New York, NY, USA, 2009. ACM

38. Srinivasan, V., Motani, M., Ooi, W.T.: Analysis and Implications of Student Contact Patterns
Derived from Campus Schedules. In: Proceedings of the 12th Annual International Conference
on Mobile Computing and Networking, MobiCom ’06, 86–97, New York, NY, USA, 2006.
ACM

39. Socievole, A., De Rango, F., Caputo, A.:Wireless contacts, Facebook friendships and interests:
analysis of a multi-layer social network in an academic environment. In: Wireless Days (WD),
2014 IFIP, 1–7. IEEE, November 2014

40. Tsai, T.-C., Chan, H.-H.: NCCU Trace: social-network-aware mobility trace. Commun. Mag.
IEEE 53(10), 144–149 (2015)

41. Vahdat A., Becker, D.: Epidemic routing for partially-connected ad hoc networks. Technical
report, Duke University, April 2000

MobEmu: A Framework to Support Decentralized Ad-Hoc Networking 119

42. Socievole, A., Yoneki, E., De Rango, F., Crowcroft, J.: Opportunistic message routing using
multi-layer social networks. In: Proceedings of the 2Nd ACMWorkshop on High Performance
Mobile Opportunistic Systems, HP-MOSys ’13, 39–46, New York, NY, USA, 2013. ACM

43. Moghadam A., Schulzrinne, H.: Interest-aware content distribution protocol for mobile
disruption-tolerant networks. In: World of Wireless, Mobile and Multimedia Networks Work-
shops, 2009. WoWMoM 2009. IEEE International Symposium on a, 1–7, June 2009

44. Mtibaa A., Harras K.A.: Social-based trust inmobile opportunistic networks. In: 2011 Proceed-
ings of 20th International Conference on Computer Communications and Networks (ICCCN),
1–6, July 2011

45. Ciobanu, R.I., Dobre, C., Toral, S.L., Johnson, P.: Jder: A history-based forwarding scheme
for delay tolerant networks using jaccard distance and encountered ration. J. Netw. Comput.
Appl. Daniel Gutierrez Reina 40, 279–291 (2014)

46. Bigwood, G., Henderson, T.: Ironman: Using social networks to add incentives and reputation
to opportunistic networks. In: SocialCom/PASSAT, pp. 65–72. IEEE, (2011)

47. Ciobanu, R.-I., Dobre, C., Dascălu, M., Trăuşan-Matu, Ş., Cristea, V.: SENSE: a collabora-
tive selfish node detection and incentive mechanism for opportunistic networks. J. Network
Computer Appl. 41, 240–249 (2014)

48. Ciobanu, R.I., Dobre, C., Cristea, V.: Reducing congestion for routing algorithms in oppor-
tunistic networks with socially-aware node behavior prediction. In: Proceedings of the 2013
IEEE 27th International Conference on Advanced Information Networking and Applications,
AINA ’13, 554–561. IEEE Computer Society, Washington, DC, USA (2013)

49. Ciobanu, R.I. Dobre, C., Cristea, V: SPRINT: Social prediction-based opportunistic routing.
In: 2013 IEEE 14th International Symposium and Workshops on a World of Wireless, Mobile
and Multimedia Networks (WoWMoM), 1–7 June 2013

50. Ciobanu, R.I., Dobre, C., Cristea, V., Pop, F., Xhafa, F.: SPRINT-SELF: social-based routing
and selfish node detection in opportunistic networks. Mobile Inf. Sys. 1–12, 2015 (2015)

51. Ciobanu, R.-I., Marin, R.-C., Dobre, C., Cristea, V.: Interest-awareness in data dissemination
for opportunistic networks. Ad Hoc Networks 25(PB), 330–345 (2015)

52. Ciobanu, R.-I.,Marin, R.-C., Dobre, C., Cristea, V.,Mavromoustakis, C.X.: ONSIDE: socially-
aware and interest-based dissemination in opportunistic networks. In: Network Operations and
Management Symposium (NOMS), 2014 IEEE, 1–6 May 2014

53. Ciobanu, R.-I., Marin, R.-C., Dobre, C., Pop, F.: Interest spaces: a unified interest-based dis-
semination framework for opportunistic networks. J. Syst. Architec. 72, 108–119 (2017)

54. Ciobanu, R.-I., Marin, R.-C., Dobre, C., Cristea, V.: Trust and reputation management for
opportunistic dissemination. Pervasive Mob. Comput. 36, 44–56 (2007). (Special Issue on
Pervasive Social Computing)

55. Spyropoulos, T., Psounis, K., Raghavendra, C.S.: Spray and wait: an efficient routing scheme
for intermittently connected mobile networks. In: Proceedings of the 2005 ACM SIGCOMM
workshop on Delay-tolerant networking, WDTN ’05, 252–259, New York, NY, USA, 2005.
ACM

56. Lindgren,A.,Doria,A., Schelén,O.: Probabilistic routing in intermittently connected networks.
SIGMOBILE Mobile Computing Commun. Rev. 7(3), 19–20 (2003)

57. Burgess, J., Gallagher, B., Jensen, D., Levine B.N.: Maxprop: Routing for vehicle-based
disruption-tolerant networks. In: INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, 1–11, April 2006

58. Zeng, X., Bagrodia, R., Gerla, M.: GloMoSim: a library for parallel simulation of large-scale
wireless networks. SIGSIM Simul. Dig. 28(1), 154–161 (1998)

Virtualization Model for Processing
of the Sensitive Mobile Data

Andrzej Wilczyński and Joanna Kołodziej

Abstract In this chapter, the k-anonymity algorithm is used for anonymization of
sensitive data sending via network and analyzed by experts. Anonymization is a
technique used to generalize sensitive data to block the possibility of assigning them
to specific individuals or entities. In our proposed model, we have developed a layer
that enables virtualization of sensitive data, ensuring that they are transmitted safely
over the network and analyzed with respects the protection of personal data. Solution
has been verified in real use case for transmission sports data to the experts who send
the diagnosis as a response.

1 Introduction

1.1 Data Virtualization

Virtualization usually referrs to the situations where applications can use resources
no matter where they are located, how they are stored or implemented and where
they come from. Data virtualization is a variation of virtualization, where we can
distinguish an abstract layer that provides a simpler interface andmethods for access-
ing data. Data sources may be many, but the user who relies on this data will see
one abstract layer. User does not have to know for instance what database languages
are used to retrieve data from their physical storage, what type of API is used or
what is the message structure. The end user may have the impression that this is
one large database. Rick van der Lans describes data virtualization as follows: Data

A. Wilczyński (B) · J. Kołodziej
Cracow University of Technology, Warszawska st 24, 31-155 Cracow, Poland
e-mail: and.wilczynski@gmail.com

A. Wilczyński
AGH University of Science and Technology,
al. Mickiewicza 30, 30-059 Cracow, Poland

J. Kołodziej
e-mail: jokolodziej@pk.edu.pl

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_7

121

122 A. Wilczyński and J. Kołodziej

virtualization is the technology that offers data consumers a unified, abstracted, and
encapsulated view for querying and manipulating data stored in a heterogeneous set
of data stores, [1].

1.2 Mobile Data Virtualization

Still developing and increasingly sophisticated mobile applications need access to
business data. The security of such data is very important and communication pro-
tocols must meet the appropriate trust level. There are two issues with mobile data
transfer:

• Mobile Application Developers, which for mobile application developers is the
standard for creating queries for downloading business data. This standard greatly
improves application performance by omitting the integration process with each
of the data providers separately.

• Development and Operations, due to the sensitivity of the data, provides the right
level of security, easy access to data. Management is one of the most important
issues.

Existing mechanisms for accessing business data from mobile applications are in
most cases based on theAPI.However, there are some reputable faults associatedwith
this type of solution. First and foremost, the API is different for each data provider
and may change over time, so it is important to take care of the different ways of
integration with these providers, which involves a large and continuous workflow. A
typical mobile Api platform is an abstract backend-as-a-service (MBaaS) layer that
defines a source and makes data available to potential mobile applications.

1.3 Mobile Cloud Computing Data Virtualization Security
Issues

Nowadays, the use of mobile applications is practiced by the majority of the popula-
tion. Applications are constantly expanding and require ever-increasing computing
resources. Due to the fact that they are executed on mobile devices their performance
has some limitations. This is related to limited energy and computing resources. It
happens that the huge amount of data that they can deliver also does not fit on the
device. According to the demand appeared the concept of mobile cloud, where data
processing and storage can take place externally. This gives the ability to use very
complex applications even on weak devices. It is therefore possible to build applica-
tions that deal with such operations/problems as image processing, natural language
processing, crowd computing, GPS/Internet data sharing, sensor data applications,
multimedia search, social networking, [2]. Mobile Cloud Computing (MCC) com-
bines cloud computing with mobile cloud.

Virtualization Model for Processing of the Sensitive Mobile Data 123

There are some security challenges that need to be addressed in this kind of
systems, [3]:

• Volume - data is transferred between the different layers and then combined,which
can cause problems in the integrity and inviolability of the data.

• Velocity - the speed of data collection forces the use of such encryption algorithms,
which ensure the proper flow of data.

• Variability - data privacy must be ensured when data is no longer valid and should
be deleted.

EachMCC system should ensure that the processing and transfer of data is consistent
with the above security issues.

2 Motivation

Veryoften, data processing or computing operations onmobile devices consume large
amounts of computing resources, which in turn puts a heavy burden on power and
batteries. Processing of this data can take place in the cloud system and processing
result can be returned to the mobile device as a response. It also happens that these
data must be examined by experts so that further analysis is possible. These kind of
data are often sensitive data that can not be shared with third parties. The main goal
of this chapter is to design a model for sending sensitive data from mobile devices
to cloud computing system (CC). Model should provide satisfying level of security
and ability to analyze or process data by experts or third parties. They can not know
the identity of the person who is associated with data due to compliance with data
protection standards. The aim of this chapter is to design and implement a model
meeting above requirements.

3 Related Work and Existing Solutions

One of the working examples is the approach proposed by Rocket Software. They
provide integrated virtual views that allow direct access to mainframe data without
having to transform them, called Rocket Data Virtualization (RDV). This technology
enables real-time data usage without time–consuming ETL (extract, transform, load)
operations. Typically,mainframes use log-based replication to locate operational data
in System Management Facility (SMF). This type of data must be processed in such
a way that it can be read in RDV, moreover, these data have to be transferred several
times. The amount of data does not always allow you to quickly transfer them to the
data warehouse. RDV delivers data in the right format without having to process it,
so access to data is several times faster, [4].

124 A. Wilczyński and J. Kołodziej

Next approach of data virtualization is Red Hat JBoss Data Virtualization. This
tool allows to combine data from heterogeneous environments, create virtual models
and data access views, process them and share using simple interfaces. Data from
multiple sources can be shared using SQL, such as JDBC or web services such as
REST. For the user the data source is a one logical virtual model. Red HAT provides
a graphical interface for easy creation this type of model. Each model allows to
map source data to target formats required by end-applications. The application has
the ability to integrate as data sources such tools as Hadoop, NoSql, SaSS, Data
Warehouses and many type of files (xml, csv, excel), [5].

One possible solution for mobile data virtualization is the solution proposed by
MadMobile. They define 3 elements that should comprise the mobile data virtual-
ization platform:

• Mobile Data Sources
• Data Access APIs
• Mobile Data Catalog

The most interesting of the above three elements is Mobile Data Catalog, which
is something like a repository that contains all the data sources. MadMobile has
designed The KidoZen Mobile Data Virtualization Platform. This application cre-
ates a virtual representation for all data that can be downloaded by mobile appli-
cations, called Data Catalog. Each new element can be added to Data Catalog by
specifying: data source, data source name, connector, operation, parameters, caching
options. Next KidoZenmakes the data available through theAPI using theOpenData
Protocol, [6].

Thenext article shows theuseofmobile cloud computing for real-timemultimedia-
assisted mobile food recognition application. The authors present there a mechanism
for counting calories using CC. The main functions of the application are segmen-
tation and image processing, and the use of deep learning algorithms to classify and
recognize food. This type of operation due to the limitations of mobile devices can
not be done directly on them. They use the Android capabilities for parting appli-
cation activities into the front part installed on the mobile device and the backend
where the application processing is done on the virtual Android image located in
cloud, [7].

In the next chapter Mollah, see [8], describes the challenges and security issues
in mobile cloud computing. He draws attention to aspects of MCC security, namely:
cloud computing data security, virtualization security, partitioning offloading secu-
rity, mobile cloud applications security, mobile device security, data privacy, location
privacy and identity privacy. The general security requirements that are described by
authors in this article apply to: confidentiality, integrity, availability, authentication
and access control, privacy requirements.

Virtualization Model for Processing of the Sensitive Mobile Data 125

4 Data Anonymization

Data anonymization (DA) is a process that allows data protection. In this process we
can distinguish the mechanisms of encryption and deletion of personal data, which
make it impossible to associate with individuals, provide their anonymity. Sensitive
data transmitted over the network can be stolen and disclosed, which increases the
risk of their use to the detriment of data providers. DA provides a high level of
security even in the case of uncontrolled disclosure, because they can not be linked
to the people they describe. EU has defined safety regulations for sensitive data.
Given these regulations data can be divided into:

• Personal data - Data that allows direct identification of the person to whom they
refer through the identification number or set of characteristics describing the
person.

• Anonymous data - Data that can not be linked to the person to whom they relate.
This can not be done by either the processor or any other person. After this process
data is no longer personal data and is not subject to EU regulations on the protection
of personal data.

• Pseudonymous data - after the process of anonymity there are some personal data,
so they are still personal data. Nevertheless, the process of deanonimization is not
an easy process, and it is difficult to identify the right person.

There are two approaches to DA:

1. K-anonymity - private tables contain a set of attributes that define and describe
a person, if this set is available externally it is called a quasi-identifier.

Definition 1 (k-anonymity requirement)Each data sharingmust be done so that each
combination of quasi-identifier values can be matched to k different respondents.

Definition 2 (k-anonymity) Let T (A1, . . . , Am) be a table, and QI be a quasi-
identifier associated with it. T is said to satisfy k-anonymity with respect to QI
if each sequence of values in T [QI] appears at least with k occurrences in T [QI]
[9].

To better illustrate the above definition, we show some example. Lets assume that
we have the following table:

Table1 consists 5 attributes and 8 records. There are 2 methods for obtaining
anonymity for some k:

• Generalization - in this method, true attribute value is generalized, for instance the
value of attribute “Date of birth” - 12071990 is replaced by 11061990 < Date of
birth < 01011991.

• Suppression - in this method, some true values are replaced by asteriks’*’.

With respect to the quasi-identifiers Dateof bir th, Sex data has 2-anonymity,
because we have at least 2 rows with the same attributes, with respect to the quasi-
identifiers Dateof bir th, Sex, Salary data has 1-anonymity, becausewe have single
occurrences of values (Table2).

126 A. Wilczyński and J. Kołodziej

Table 1 Private table

Name Date of birth Sex Profession Salary

1 Melania Wolska 12071990 F Teacher 2500

2 Kajetan Nowicki 21091987 M Programmer 4000

3 Maja Nowak 21061957 F Doctor 4000

4 Stanisaw Zakrzewski 25061946 M Waitress 2000

5 Jan Zalewski 12071990 M Waiter 2000

6 Igor Gorski 25061946 M Plumber 2400

7 Zuzanna Nowakowska 21061957 F Dentist 4400

8 Anna Baran 12071990 F Doctor 4400

9 Wojciech Jakubowski 21091987 M Teacher 4400

Table 2 Public table

Name Date of birth Sex Profession Salary

1 * 12061990 < Date of birth < 12081990 F * 2500

2 * Date of birth > 21091986 M * 4000

3 * 01061957 < Date of birth < 23061957 F * 4000

4 * Date of birth < 25061947 M * 2000

5 * 12071989 < Date of birth < 12071991 M * 2000

6 * Date of birth < 25061947 M * 2400

7 * 01061957 < Date of birth < 23061957 F * 4400

8 * 12061990 < Date of birth < 12081990 F * 4400

9 * Date of birth > 21091986 M * 4400

The algorithm described above has some drawbacks, it is susceptible to two types of
attacks:

• Background Knowledge Attack - The case where the association of one or more
quasi-identifier attributes containing sensitive values leads to a reduction in the
range so that it can be deduced which record fits the individual.

• Homogeneity Attack - case where all sensitive values in set k records are identical.

2. l-Diversity - an extension of k-anonymity model, where the granularity of the
data representation is reduced.

Definition 3 (l-diversity) The table is l-diverse if for every q∗ − block

−
∑

s∈S
p(q∗,s)log(p(q∗,s′)) ≥ log(l) (1)

where p(q∗,s) = n(q∗,s)∑
s′∈S n(q∗,s′) is the fraction of tuples in the q∗ − block with sensitive

attribute value equal to s [10].

Virtualization Model for Processing of the Sensitive Mobile Data 127

Table 3 2-anonymous table

Name Date of birth Sex Profession Salary

1 * 12061990 < Date of birth < 12081990 F * 2500

8 * 12061990 < Date of birth < 12081990 F * 4400

2 * Date of birth > 21091986 M * 4000

9 * Date of birth > 21091986 M * 4400

3 * 01061957 < Date of birth < 23061957 F * 4000

7 * 01061957 < Date of birth < 23061957 F * 4400

4 * Date of birth < 25061947 M * 2000

6 * Date of birth < 25061947 M * 2400

5 * 12071989 < Date of birth < 12071991 M * 2000

Table 4 2-diversity table

Name Date of birth Sex Profession Salary

1 * 01061957 ≤ Date of birth < 12081990 F * 2500

8 * 01061957 ≤ Date of birth < 12081990 F * 4400

2 * Date of birth > 01061957 M * 4000

9 * Date of birth > 01061957 M * 4400

3 * 01061957 ≤ Date of birth < 23061957 F * 4000

7 * 01061957 ≤ Date of birth < 23061957 F * 4400

4 * Date of birth ≤ 01061957 M * 2000

6 * Date of birth ≤ 01061957 M * 2400

5 * 01061957 ≤ Date of birth < 12071991 M * 2000

Analyzing Table3, you can see that the data are not susceptible to homogeneity
attack. However, considering the records of 1 and 8, namely Melania and Anna.
Melania may be Anna’s neighbor whom she knows she was born on the same day as
her, she also knows that she’s earning 2500, so she can deduce that Anna earns 4400.
After diversity process data are not susceptible to background knowledge attack as
it presented in Table4.

5 Data Exchange Model

We present in Fig. 1 the original contribution of this chapter is a model for transmis-
sion sensitive data via network. that model ensures that the receivers of data are not
be able to assign them to real people, but they can send feedback to them. On the
model we can distinguish the following elements:

128 A. Wilczyński and J. Kołodziej

F
ig

.1
D
at
a
vi
rt
ua
liz

at
io
n
m
od

el
an
d
hi
er
ar
ch
y

Virtualization Model for Processing of the Sensitive Mobile Data 129

• Data Collector - devices for collecting data from sensors;
• Cloud Database - database for storing blinded and anonymized data;
• Computing Unit - computational unit for decrypting and anonymizing data;
• Expert - person responsible for data analysis and feedback.

Data Collector, before sending data to the database, performs blinding operations
on them using the pseudo one-time pad (OTP) algorithm. OTP is an encryption
technique where message is paired with a random secret key [11]. Each character is
encrypted by combining it with the adequate character from key. Algorithm uses a
short key and as a result returning binary data string. In this work, algorithm has been
called a pseudo OTP algorithm because the same key is used many times to encrypt
and decrypt various messages, in the real OTP after encrypt and decrypt message the
key is thrown and a new one is randomly generated. It is used only to blind sensitive
data, which is sufficient at this stage. Encryption has been extended to binary data,
which means that instead of characters, a binary key is used. After blinded operation
with the MD5 function [12], the hash of the resulting data is generated.

Blinded data together with hash goes to the Cloud Database. Once in a while, all
data records from database are downloaded by the Computing Unit and cleared up
using the same key that was used to blind them. After that, data are anonymized and
stored in the database, allowing them to be analyzed. Expert analyzes sensitive data
and sends the feedback, which is stored under the same hash as the blinded data.
Expert does not know who the data belongs to, which ensures compliance with the
personal protection laws.

After a certain period of time, data collector performs a database query to verify
the result of the analysis of the previously transmitted data. The same hash that was
previously generated from the blinded data is used for the search. If the result has
been already saved by an expert, data collector gets it, otherwise the query is repeated
in a while.

6 Model Use Case and Implementation

To illustrate the presented model, we prepared an implementation of the system
for the collection and analysis of sports data transmitted by athlete’s sensors. These
sensors collect information about the heart rate of the person performing the exercise
and send them to the CC. As a result, the person receives a diagnosis of the time
spent in each exercise zone during the training. The data used for the analysis is the
real data collected from training of 19 people. Implementation was done in JAVA.

It can be observed from Table5 that we have 8 attributes describing each person.
The heart rate attribute was cut off due to the very long representation.

Table6 presents blinded data together with generated MD5 hash. Each attribute is
first saved in JSON format, then string of JSON format is blinded. Below we present
fragment of json for a single record:

130 A. Wilczyński and J. Kołodziej

Table 5 Sport data
Name Sport Weight Height Heart rate

(resting)
Age Duration

(min)
Heart rate

… … Running … … … … … …

8 Barreta
Page

Running 51 156 90 39 115 0, 90, 92, 98, 97, 97,
99, 106, 112, 116…

9 Lens
Temple

Cycling 74 162 91 37 115 0, 0, 170, 151, 0, 196,
196, 196, 196…

10 Bevise
Kenyon

Cycling 81 167 82 35 158 0, 221, 87, 91, 102,
109,
107, 103…

11 Adolphe
Nigellus

Cycling 88 174 83 35 174 0, 111, 110, 112,
115,
116, 116, 115…

12 Bentleye
Nelson

Cycling 55 178 85 34 115 0, 0, 0, 75, 206, 199,
201, 201, 154…

… … Running … … … … … …

Table 6 Blinded sport data

Hash Data

… …

8 782d74c56dbe99d6cc494a1c7284305d 00000010 0011110 00011101 00001100
00001011 000110…

9 eaf29fdefc33c8780f53e1de61c88d52 00000010 0011110 00011101 00001100
00001011 000110…

10 4fb95b92fa76bdf9cd208d05dafb90b4 00000010 0011110 00011101 00001100
00001011 000110...

11 1e11b033a1239321a4898dd1320d5428 00000010 0011110 00011101 00001100
00001011 000110...

12 b1580545d102ca661c4dfacf292a9278 00000010 0011110 00011101 00001100
00001011 000110...

... ...

{"duration" : 115, "heartrate" : "00, 0, 170, 151, 0, 196, 196, 196, 196, 196,
196...", ...}

In implementation we used ARX library for anonymization [13]. In this library
we can distinguish 4 types of attributes: insensitive, sensitive, quasi-identifying and
identifying. Our use case classifies the attributes as follows:

• {sport, heart rate (resting), duration, heart rate} - insensitive
• {name} - identifying
• {weight, height, age} - quasi-identifying

For weight, height and age generalization has been used. For each quasi-identifier
attribute we have prepared individual generalization hierarchy using intervals. As a

Virtualization Model for Processing of the Sensitive Mobile Data 131

Table 7 2-anonymous sport data
Name Sport Weight Height Heart rate

(resting)
Age Duration

(min)
Heart rate

… … … … … … … … …

8 * Running [48, 60[* 90 [36, 45[115 0, 90, 92, 98,
97, 97, 99,
106, 112, 116…

9 * Cycling [72, 84[* 91 [36, 45[115 0, 0, 170, 151, 0, 196,
196, 196, 196…

10 * Cycling [72, 84[* 82 [24, 36[158 0, 221, 87, 91,
102, 109, 107, 103…

11 * Cycling [84, 96[* 83 [24, 36[174 0, 111, 110, 112,
115, 116, 116, 115…

12 * Cycling [48, 60[* 85 [24, 36[115 0, 0, 0, 75, 206,
199, 201, 201, 154…

… … … … … … … … …

model 2-Anonymity has been adopted. The weights of the individual attributes are
respectively: 0.5, 0.5, 0.5. Data presented in Table7 have been anonymized in such
a way that the expert has still no problems with a diagnosis.

7 Simulation Analysis

The implementation has shown that it is possible to send sensitive data meeting
appropriate standards without losing their quality and consistency. These data can
be sent to the cloud computing where their processing or analysis can be carried
out independently. This approach provides the right level of security and enables
performing computational operations or processing large amounts of data type of
Big Data in an independent cloud computing environment. As we can see on Table8
the whole process of assuming blinding and anonymization of data is done very fast.
Simulation was performed on a computer MacBook Pro, 2,7GHz Intel Core i5, 8GB
1867MHz DDR3.

Amount of data is small because in implementation we did not want to use data
generator, the real data was used. Access to this type of data is very limited. However,
the results we received are satisfactory and well predicted for the future.

Table 8 Process execution times

Operation type Average time (miliseconds)

Blinding one record of data 744

Anonymization 19 records of data 320

132 A. Wilczyński and J. Kołodziej

8 Conclusions and Future Work

Data anonymization can support processes where sensitive data is sent. In the pro-
posed model we have provided the ability to analyze data through external resources
without disclosing to whom those data belong. Experts or analysts do not need to
know the identities of the people they diagnose, all they have to do is to send feedback
to them. Model can also be implemented in different environment. For instance, in
the cloud computing in task scheduling, where the scheduler does not need to know
who orders task and for what task has to be executed.

The future work will focus on optimizing the selection of hierarchies for gener-
alizing attributes and their weights. We are considering the use of Stackelberg game
[14] to decide how best to match these parameters. Currently, this process is done
manually and should be automated.

Acknowledgements This chapter is based upon work from COST Action IC1406 High-Perfor-
mance Modelling and Simulation for Big Data Applications (cHiPSet), supported by COST (Euro-
pean Cooperation in Science and Technology).

References

1. van der Lans, R.: Data Virtualization for Business Intelligence Systems: Revolutionizing Data
Integration for Data Warehouses. Morgan Kaufmann Publishers Inc., San Francisco (2012)

2. Fernando, N., Loke, S.W., Rahayu, W.: Mobile cloud computing: a survey. Future Gener.
Comput. Syst. 29, 84106 (2013)

3. Jakóbik, A.: Big Data Security. Springer, Berlin (2016). https://doi.org/10.1007/978-3-319-
44881-7_12

4. Software, R.: Rocket data virtualization. PDFdocument, http://www.rocketsoftware.com/sites/
default/files/resource_files/DS_Data_DVS%20012615.pdf?flag=meta&product=rocket-data-
virtualization&family=rocket-data&solution=data-virtualization&resourcetype=datasheet&
resourcebn=rocket-data-virtualization&resourcefbn=DS_Data_DVS%20012615.pdf

5. Redhat: Jboss data virtualization. Electronic document, https://developers.openshift.com/
jboss-xpaas/data-virtualization.html

6. Kidozen: From mdm to mdm. PDF document, http://www.kidozen.website/wp-content/
uploads/2015/12/Mobile_Data_Virtualization.pdf

7. Pouladzadeh, P., Peddi, S.V.B., Kuhad, P., Yassine, A., Shirmohammadi, S.: A virtualization
mechanism for real-time multimedia-assisted mobile food recognition application in cloud
computing. Cluster Comput. 18, 10991110 (2015)

8. Mollah, M., Azad, M.A.K., Vasilakos, A.: Security and privacy challenges in mobile cloud
computing: Survey and way ahead. J. Netw. Comput. Appl. 84, 3854 (2017)

9. Ciriani, V., De Capitani, S., di Vimercati, S., Foresti, P.Samarati: k-anonymity. secure data
management in decentralized systems. Adv. Inf. Secur. 33, 323353 (2007)

10. A. Machanavajjhala J. Gehrke, D.Kifer, M. Venkitasubramaniam: l-diversity: Privacy beyond
k-anonymity. Proceedings of the 22nd International Conference on Data Engineering, 2006.
ICDE ’06. pp. 24–24 (2006)

11. Bellovin, S.M.: Frankmiller: Inventor of the one-time pad. Cryptologia 35(3), 203–222 (2011).
https://doi.org/10.1080/01611194.2011.583711

12. Preneel, B.: Cryptographic Hash Functions: Theory and Practice. Springer, Berlin (2010).
https://doi.org/10.1007/978-3-642-17401-8_9

https://doi.org/10.1007/978-3-319-44881-7_12
https://doi.org/10.1007/978-3-319-44881-7_12
http://www.rocketsoftware.com/sites/default/files/resource_files/DS_Data_DVS%20012615.pdf?flag=meta&product=rocket-data-virtualization&family=rocket-data&solution=data-virtualization&resourcetype=datasheet&resourcebn=rocket-data-virtualization&resourcefbn=DS_Data_DVS%20012615.pdf
http://www.rocketsoftware.com/sites/default/files/resource_files/DS_Data_DVS%20012615.pdf?flag=meta&product=rocket-data-virtualization&family=rocket-data&solution=data-virtualization&resourcetype=datasheet&resourcebn=rocket-data-virtualization&resourcefbn=DS_Data_DVS%20012615.pdf
http://www.rocketsoftware.com/sites/default/files/resource_files/DS_Data_DVS%20012615.pdf?flag=meta&product=rocket-data-virtualization&family=rocket-data&solution=data-virtualization&resourcetype=datasheet&resourcebn=rocket-data-virtualization&resourcefbn=DS_Data_DVS%20012615.pdf
http://www.rocketsoftware.com/sites/default/files/resource_files/DS_Data_DVS%20012615.pdf?flag=meta&product=rocket-data-virtualization&family=rocket-data&solution=data-virtualization&resourcetype=datasheet&resourcebn=rocket-data-virtualization&resourcefbn=DS_Data_DVS%20012615.pdf
https://developers.openshift.com/jboss-xpaas/data-virtualization.html
https://developers.openshift.com/jboss-xpaas/data-virtualization.html
http://www.kidozen.website/wp-content/uploads/2015/12/Mobile_Data_Virtualization.pdf
http://www.kidozen.website/wp-content/uploads/2015/12/Mobile_Data_Virtualization.pdf
https://doi.org/10.1080/01611194.2011.583711
https://doi.org/10.1007/978-3-642-17401-8_9

Virtualization Model for Processing of the Sensitive Mobile Data 133

13. Prasser, F., Kohlmayer, F.: Putting Statistical Disclosure Control Into Practice: The ARX Data
Anonymization Tool. Springer, Berlin (2015)

14. Jakóbik, A., Wilczynski, A.: Using polymatrix extensive stackelberg games in security aware
resource allocation and task scheduling in computational clouds. J. Telecommun. Inf. Technol.
1, 71–80 (2017)

Analysis of Selected Cryptographic Services
for Processing Batch Tasks in Cloud
Computing Systems

Agnieszka Jakóbik and Jacek Tchórzewski

Abstract This chapter evaluates the features and a computational load of two
proposed cryptographic procedures which aim to protect confidentiality and data
integrity in Cloud Computing (CC) systems. It should be kept in mind that a bad
use of some cryptographic tools may negatively impact the overall CC operation.
Regarding this, meeting the Quality of Service (QoS) requirements is only possible
when the security layer applied does not interrupt the computing process. The secu-
rity layer applied to tasks should also fulfill the advanced security conditions present
in CC systems. Thus, the solutions aiming to protect both the user data as well as the
whole system have to deliver the scalability, multi-tenancy and complexity that these
systems demand. We present a cryptographic service based on blind RSA algorithm
and Shamir secret sharing that supports batch tasks processing. Hence, this service
is suitable for CC systems equipped with a monolithic central scheduler and many
Virtual Machines (VMs) as working nodes. Blind RSA cryptographic system is used
to encrypt the data without actually knowing any details about the tasks content.
Shamir secret sharing procedure is proposed in order to assure whether all VMs in
the system gave back their shares after deploying the batch of tasks on them or not.

1 Introduction

Cloud Computing environments are very intensively used by private, academic and
commercial organizations. They may offer combined solutions where many wide-
range services and systems are offered, [1–3] as well as dedicated solutions which
focus on certain problems [4].

There are a lot of security domains in CC developed so far [5]. Assuring the proper
security level of the infrastructure, applications, user access, data and provider is

A. Jakóbik (B) · J. Tchórzewski
Tadeusz Kościuszko Cracow University of Technology, Warszawska 24, Cracow, Poland
e-mail: akrok@pk.edu.pl

J. Tchórzewski
AGH University of Science and Technology Krakow, Mickiewicza 30, Cracow, Poland
e-mail: jacek.tchorzewski@onet.pl

© Springer International Publishing AG 2018
J. Kołodziej et al. (eds.), Modeling and Simulation in HPC and Cloud Systems,
Studies in Big Data 36, https://doi.org/10.1007/978-3-319-73767-6_8

135

136 A. Jakóbik and J. Tchórzewski

essential for building any trustworthy system. Additionally, such responsibilities are
also enforced by international regulations and norms. For instance, by The Data Pro-
tection Directive, number 95/46/EC, [6], which regulates the processing of personal
data in the European Union. As in any IT system, CC systems have to assure privacy,
confidentiality, integrity and availability of the data and services involved. All tra-
ditional cryptography tools, such as: symmetric-key cryptography, public-key cryp-
tography, and crypto systems may be used. Among them: RSA encryption, Schnorr
signature, El-Gamal encryption, PGP standard, electronic cash systems, signcryption
systems, and systems for secret sharing [7].

Numerous additional features of the CC systems influence the whole crypto-
graphic process. The following features may be defined as the most important for
the system reliability:

• Elastic re-provisioning. The addition or expansion of resources result in a
dynamic behavior in terms of the number of users, services, etc.

• Virtualization. The virtualization of physical resources requires dedicated tech-
niques in order to assure that the security constraints are met.

• Competitiveness. The optimization of the cryptographic algorithms is required to
reduce the costs, which leads to achieve business profitability.

• Delocalization. A service used in many different geographical points may require
considering various user profiles with different security levels attached to them.

• Multitenancy. Additional security layers may be necessary when multiple users
can work on the same data simultaneously due to resource sharing [8].

It may be observed that any cryptography protocol has to be examined as far as
its features and scalability are concerned. In addition, it has to be designed to act
accordingly to two main scenarios: Data in transit, and Data at rest. This behav-
ioral differentiation lowers the total costs of task processing and storage. Properly
optimized cryptographic algorithms should also take into account the features of the
virtual resources that will be used during the data processing. Additional constraints
may be incorporated for Big-Data scenarios [9], and when sensitive data is involved
[10].

In this work, the authors examined the cryptographic solution based on the non-
conventional usage of two well known algorithms, thus, the Rivest - Shamir - Adle-
man cryptosystem (RSA), and the Shamir’s secret sharing algorithms. The RSA
public-key encryption scheme algorithm was used with a previous blinding step,
instead of just encode the raw data. The Shamir secret sharing was proposed in order
to assure the data completeness, instead of a traditional hash function. Such a ser-
vice allows to check data confidentiality and integrity by the means of lightweight
cryptographic algorithms. The systemwas designed to preserve the anonymity of the
obtained results outside the working nodes. Moreover it allows to encrypt the data
assuming not trustworthy data storage units. Hence, data storage units are responsible
for encoding all non-plain-text data.

On the other hand, intensive cryptographic operations are computed outside the
main task working nodes. It allows these nodes to be ready for arriving jobs as soon
as possible.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 137

In this chapter, we also presents an extensive scalability analysis of the proposed
solution. All the experiments were performed on CloudSim simulator. Due to a very
complex nature of computer networks and distributed systems, simulation-based
approaches to the performance analysis of such systems have been widely applied,
[11–13]. CloudSim tool was configured in order to simulate the features of Amazon
Cloud VMs.

Major contributions of this chapter include:

1. Description of the proposed cryptographic solution, adapted to CC systems.
2. Implementation and experimentation of the proposed algorithms, scheduling

process and tasks.
3. Extensive performance analysis of the proposed cryptographic service on the

task-processing flow.

The chapter is structured as follows. Firstly, the authors describe the batch task
execution process in Cloud Computing systems in Sect. 2. Then, in Sect. 3, a security
requirements mapping and a task security layer are described. In Sect. 4, the pro-
posed cryptography service is explained in detail. Experimental results performed in
order to evaluate the proposed model are presented in Sect. 5. In Sect. 6, the authors
summarize the chapter and propose key topics for further research.

2 Batch Task processing in Cloud Computing systems

The Cloud Computing paradigm allows sharing services and resourses by offering
a wide variety of services at different levels, such as: virtual disks, image libraries,
data storage systems, scientific computing services, Internet of Things solutions,
High Performance Computing, Backup and Recovery systems, data archiving disks,
Big Data processing frameworks, and security services [8].

They offer services and resources that may be characterized by:

• virtualization - providers are delivering a virtual (not physical) computer hardware
platform like virtual machines, storage devices in the form of virtual disks, and
virtual computer network resources;

• multitenancy - in CC model resources are shared among many users,
• massive scalability on demand - the ability to change for example computing
capacity, bandwidth and storage space, in the time that may be chosen be the user;

• flexibility - users can chose the Cloud services and solution on demand,
• pay as you go - the payment for for using services depends on the time they
consumed,

• self-provisioning of resources - additional elements i.e. Virtual Machines, storage
disks and other resources may be added to the pool of uses resources any time.

The concept of task, understood as the unit that represents the work delivered to
the CC system to be processed by its working nodes, enables to express the general
concept of jobs and services offered by CC. Unlike long running processes, which

138 A. Jakóbik and J. Tchórzewski

are run until an operator or an automatic supervisor kill them, aforementioned tasks
run for a determined amount of time in order to process their given instructions and
then finish. Various types of tasks are run using their own containers linked to users
resources. Among them:

• Performing a data-processing script.
• Backing-up data base.
• Updating NoSQL database service.
• Compiling source code, running tests, and producing software packages.
• Performing complex data flows.
• Running Distributed Denial of Service (DDoS) protection service.

Every task is identified by a unique name or ID and is executed with parameters
specified in the task definition. Tasks completion may may be dependent on other
tasks, which can be referenced by their name or ID, or on additional data. The task
definition may include access management rules to govern the access to required
resources, such as: the memory and CPU, task input file size, and task output file
size. In addition, it also specifies several properties of the container that may host the
task, such as the CPU architecture and GPU details, as well as other environmental
variables, such as security requirements.

Regarding tasks scheduling and processing, theses tasks may be processed as
single jobs or in a batch way. On one hand, processing each task as a single job
means that this task is computed independently of the other tasks. On the other hard,
processing tasks in a batch way means that the tasks that are packed together in a
batch are to be computed as parallel jobs. In this case, in order to further process the
batch, all tasks in the batch have to be successfully computed and finished. Hence,
the first tasks completed have to wait for the last tasks to finish. Then and only then
the batch may be post-processed, delivered to the end-user or to another service.
Map-Reduce tasks may be a good example of batch tasks.

In order to deploy the submitted tasks on the resources while meeting tasks’
requirements and following a set of rules and heuristics, a resource scheduler is
usually used, such as the default AWS Batch Scheduler, which is based on FIFO
queues. Cloud providers allow the usage of several scheduling approaches. Among
them: Automated scheduling, Manual scheduling, and Custom scheduling.

Like all the large-scale systems, a CC system may be architecturally described as
the following set of modules:

• Task Gathering Unit (TGU). This module collects the tasks from CC end-users
and packs them in batches.

• Dealer unit (SD). This module sends batch of tasks to the workers through its
scheduler (S), which perform the spreading logic between working nodes, accord-
ing to the chosen objective and tasks requirements.

• Worker nodes (SW). This module is responsible for actually perform task com-
putation, and usually is composed of a set of VMs.

• Storage Center (SC). This module stores the computing results for further pro-
cessing or to serve them to end-users, as described in Fig. 1.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 139

F
ig
.1

T
he

pr
op
os
ed

cr
yp
to
gr
ap
hi
c
se
rv
ic
e
fo
r
C
C
ar
ch
ite
ct
ur
e

140 A. Jakóbik and J. Tchórzewski

The main objectives of the whole batch processing system are usually related to
minimizing the batch makespan, meeting the security constraints [14], and lowering
the energy consumption [14, 15].

3 Security Layer and Requirements

Guaranteeing the security in a CloudComputing system is a complex task sincemany
inter-related elements must be orchestrated. This responsibility is usually managed
by the Cloud Computing providers, which have to deliver the proper level of authen-
tication, authorization, confidentiality and to protect their infrastructure and services
from external attacks.

These security operations and procedures generate additional costs that are to be
considered in the task scheduling process, since they consume VM computing power
as well as the tasks submitted by end users.

The security requirements mapping of the Cloud users into Cloud VMs may be
done by the means of the Security Demand Vector (SD) and the Trust Level Vector
(TL). The SD describes security requirements as follows:

SD = [sd1, . . . sdn] (1)

where sd j is the security demand parameter specified by the user for the j th task in
the batch. The TL, denoted as follows:

TL = [tl1, . . . , tlm] (2)

describes the security levels offered by allVMs in the system.A task can be scheduled
to a particular VMwhen it offers a security level equal or higher than that demanded
by SD.

Each security service or protocol adds additional computational overhead. This
security layer may be applied in a biased way, which may be divided into two parts:

• The bias related to the security requirements that must be met by the scheduler
in order to provide a proper scheduling solution. This bias includes the security
operations that have to be computed by VMs before they actually start running
the task, and post-processing security operations, such as: verification of the input
data integrity, and encoding results. This bias is described as estimated time (s)
required to deliver the security level demanded and is denoted by:

b(sd j ,wl j , tli , cci , inputSizei , outputSizei) (3)

where inputSizei is the size in bytes of the file describing the task, outputSizei is
the size in bytes of the file containing the result.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 141

The following Security Bias Matrix (SB) is therefore obtained by representing
aforementioned biases as a matrix:

SB(SD,TL) = [b(sd j ,wl j , tli , cci , inputSizei , outputSizei)] j=1,2...,n
i=1,2...,m (4)

• The rest of security processes, protocols and operations that have an impact on
the batch makespan, such as: security protocols performed by the Task Gathering
Unit in order to send the tasks to the Worker Nodes, cyphering the data stored in
the data center, and verification of the digital signature of the end user who wants
to recover some results from the Cloud Computing system. Let us denote this kind
of bias by B.

4 Proposed Cryptography Service

4.1 Blind RSA Tasks Storage Service

RSA (Ron Rivest, Adi Shamir and Leonard Adleman) is a popular public key algo-
rithm for encrypting and decrypting data [7]. It is well known that data encryption
allows to store the data at rest in a secure way. However, some data, such as task
results, may need to be sent through the data center, since this data is not always
stored on the working nodes which run the tasks but stored in dedicated virtual disks
or data warehouses.

In order to solve both problems, thus, data in motion and data at rest, the blinded
version of the RSA algorithm is used. The data in motion that is sent from SW to SC
is not ciphered but only blinded in order to protect it from unauthorized access, what
is a much more light-weight procedure. The data at rest in SC are hardly encoded.

Therefore, the SC is not longer aware of the exact data that will be encoded and
stored due to the blinding process, and therefore it works as a black-box coding
engine. Regarding an authorized final user, retrieved results are to be decoded when
retrieved from the SC.

The blind RSA algorithm is executed in three steps:

1. Key preparation. Firstly, two different large random prime numbers p and q
must be chosen by the user. Then, n = pq, the modulus for the public and
private keys, is computed. The next stage needs: φ(n) = (p − 1)(q − 1) to be
computed. Then, an integer e such that 1 < e < φ(n) and e is co-prime to e have
to be found. It means that e, and φ(n) share no factors other than 1, that is:

gcd(e, φ(n)) = 1. (5)

142 A. Jakóbik and J. Tchórzewski

The public key, which is sent to the SP, have two elements: the modulus n and
the public exponent e. The private key is composed of the modulus n and the
private exponent d:

d = e−1(mod(n)). (6)

The private key is kept by the user and should never be revealed. The public
key may be stored in a public data base. It is sent through the Cloud Computing
system to the unit that will use it.

2. Message blinding. In order to blind the data m ∈ {0, 1, . . . , n}, m has to be
multiplied by kemodn, where the blinding factor, denoted as k, is randomly
chosen. Then the SW sends the blinded message m ∗ kdmodn to the SC and the
blinding coefficient to the user.

3. Message coding. Next, the SC has to cipher and store the blinded message:
c = (m ∗ kd)emodn.

4. Message unbliding and uncoding. Finally, the message may be unblinded by the
user:

c ∗ k−1modn = (m ∗ kd)e ∗ k−1modn = (7)

me ∗ kde ∗ k−1(modn) =

me ∗ kk−1(modn)

and deciphered:
(me)d(modn) = m

4.2 Batch Completeness Verification Based on Secret Sharing

Tasks in the same batch are computed and stored in different locations. Nevertheless,
to further process the batch or to send results to the user, the CC system have to
guarantee that all the elements of the batchwere collected. The proposed schememay
be the alternative for traditional methods regarding information integrity checking
based on hash functions, such as SHA-2 [16]. Secret sharing procedures allow to
spread certain knowledge among a group of participants, so that only a given set of
them are able to recreate the knowledge by collecting and combining their shares
[17]. Let us assume a batch of tasks B that is run by a set of worker nodes (SWs) t ,
being t < n, where n denotes thewhole cluster. In order to checkwhether the result of
this batch B is complete or not, the secret must be recreated from the set of machines
t . It is also guaranteed that a subset s, being s < t , can not recreate this secret. Let
be D the first unit participant of the secret and n the number of participants in the
system. Let us assume the batch of tasks B was deployed on t − 1 VMs. Hence, each
VM in that set has at least one task from the batch to be run. The Shamir scheme
uses polynomial interpolation over finite field GF(q), where q >= n + 1.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 143

1. Secret splitting. The dealer choses n distinct nonzero elements from GF(q):

x1, x2, . . . , xn

and allocates them among participants, and sets the element K ∈ GF(q) as the
secret. The shares of the secret are therefore created by based on the scheme:

• The dealer sets the elements

a1, a2, . . . , at−1 ∈ GF(q)

randomly, uniformly and independently.
• if the equation

a(x) = K + a1x + a2x
2 + · · · + at−1x

t−1 (8)

is polynomial of degree t − 1 then the shares are defined as yi = a(xi) for
i = 1, 2, . . . n.

2. Retrieving the secret. If all t − 1 participants gather their shares together, they
formulate the set of t − 1 points (xi , yi) of the polynomial a. Using Lagrangian
interpolation [18], it is possible to find the unique polynomial of degree t − 1
passing throughout that points. The secret may be therefore found by taking the
value of that polynomial at point 0. The shares may be also computed from the
system of linear equations, for example using the Gauss Elimination method
[19]:

y1 = K + a1x1 + a2x
2
1 + · · · + at−1x

t−1
1 (9)

y2 = K + a1x2 + a2x
2
2 + · · · + at−1x

t−1
2 (10)

...
yt−1 = K + a1xt + a2x

2
t + · · · + at−1x

t−1
t (11)

where yi for i = 1, 2, . . . i − 1 are the known shares,

K , a1, a2, . . . , at−1 ∈ GF(q)

are the unknown. The solution of this system, including the secret K may be
found only if exactly t − 1 participants gave their share. In the proposed service
we assumed t − 1 = n, that means that all SW are sharing the secret.

The steps of the combined algorithm are the following, as shown in Fig. 1.

1. The unit D prepares the Shamir shares for all SW,
2. The shares are then given to the SW, as well as the schedule to be executed,

144 A. Jakóbik and J. Tchórzewski

3. The SW computes the tasks and blinds the result by the means of the RSA
blinding scheme. The blinded results are then sent to the SC,while the unblinding
number is sent to the user.

4. The SC retrieves the Shamir secret in order to verify if all SWs gave their results.
If so, the SC codes the blinded result using RSA cipher and stores it.

5. The SC sends the encoded result to the end user under his request, who can
decode and unblind it.

5 CloudSim Experimental Results

5.1 Test Bed

The tests were run using CloudSim framework for modeling and simulation of CC
infrastructures and service [20, 21].

The clusterwas simulated by extending the data center entity present inCloudSim.
Due to this, all VMs in the experiment are deployed on a sible physical host. The
data center broker works with the non deterministic central scheduler described in
[24, 25]. The data gathered from the experiment was collected by using a multi-
agent monitoring system [26], and the function used to assign tasks to VMs was
bindCloudletToVm. CloudSimworker nodes were designed bymodeling the features
present in M3 EC2 Amazon instances [27] as shown in Table1.

Table 1 Mapping M3 EC2 Amazon instances into testing bed, mips denotes computing capacity,
ram denotes VM memory in MB, CloudSim PE (Processing Element) class represents CPU unit,
defined in termsofMillions InstructionsPerSecond (MIPS) rating,pesNumber represent the number
of Pe elements in each VM Equivalent CPU speed is the clock speed of Intel Core i7 64-bit x86-64
processors with equivalent single thread performance

Amazon t

Instance vCPU Mem (GB), [22] SSD Storage
(GB)

Eq. CPU speed,
[23]

m1.small 1 1.6 160 GB HDD 0.71 GHz

m1.medium 1 3.75 410 GB HDD 1.43 GHz

m3.large 2 7.3 32 GB SSD 2.48 GHz s

m3.2 × large 8 30 2 * 80 GB SSD 2.38 GHz

CloudSim

VM type pesNumber ram (MB) size (MB) cc = mips
(MIPS)

m1.small 1 1600 163840 710

m1.medium 1 3750 419840 1430

m3.large 2 7300 32768 2480

m3.2xlarge 8 30000 163840 2380

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 145

Fig. 2 Computational power required to blur an image

The workload is composed of image processing tasks that apply a blur filter to an
image of a given size, such as 200× 200, 2000× 2000, etc. pixels, as illustrated in
Fig. 2. The details about tasks features are presented in Table2. In this experiment,
a single batch composed of one task of each kind of those presented in Table2 was
used. This workload requires 19534 millions of instructions (MI) to be complete.
Each task is modeled by using the Cloudlet CloudSim class, while the length
parameter represents the computational requirements in MI, the fileSize parameter
describes the size of the task inputs (inputSize) as shown in Eq.3, and the outputSize
parameter denotes the size of the result file.

Table 2 Tested task characteristics. Tasks were loaded as single batch. outputSizei = inputSizei
equals picture size in bytes

Task ID picture dim. [pix. ×
pix.]

wl [MI] outputSize [bytes]

1 200× 200 180 136488 b

2 400× 400 366 384992 b

3 600× 600 582 661352 b

4 800× 800 935 1001360 b

5 1000× 1000 1381 1260784 b

6 1200× 1200 1907 1764272 b

7 1400× 1400 2541 2245408 b

8 1600× 1600 2943 2747936 b

9 1800× 1800 3672 3146304 b

10 2000× 2000 5027 3421608 b

CloudSim CloudletID CloudSim
workloadvector

[MI] [bytes]

146 A. Jakóbik and J. Tchórzewski

The cryptographic services used in this work were implemented in Java using
import java.math.BigInteger and import java.util.Random libraries.

The computational requirements of the cryptographic services used in this work
were measured during run tests by using the Linux Perf command [28], and the
results of these measurements are presented in Table3. The value of n was set 1024
or 2048 bits long [10]. 1024 bits are used when the cypher text have to be obtained
quicker, 2048 bits used when very strong coding is required.

The numerical results obtained were approximated by the means of a polynomial
function of second and third degree and an exponential function. The Coefficient of
determination R2 was examined for all approximation types [29]:

R2 =

n∑

t=1
(ŷt − ȳ)2

n∑

t=1
(yt − ȳ)2

(12)

where yt is the empirical value, and ŷt is the value obtained by using polynomial or
exponential fitting. Finally, ȳ is the mean value of the empiric values. The coefficient
of determination, R2, shows the quality of the approximation.

From among many scheduling methods, the Expected Time to Compute (ETC)
matrix was used.

In order to estimate the time required to compute a particular task the scheduler
needs the computing capacity (MIPS) for all VMs available, which can be denoted
as the following vector:

CC = [cc1, . . . , ccm] (13)

The tasks may be described by their computing requirements (MI) as a vector:

Table 3 Cryptographic coat for secret sharing, in MI

VMs nb. Shamir split Shamir-Gauss retrieve Shamir-Lagrange
retrieve

10 39 234 49

20 159 1137 191

30 380 2737 268

40 655 4519 273

50 1126 24141 393

60 1638 31947 433

70 2322 38576 524

80 2907 51931 681

90 5573 78794 929

100 9960 101155 1041

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 147

WL = [wl1, . . . ,wln] (14)

To compute the schedule solutions, the Expected Time to Compute (ETC) matrix
may be used [30] for each VM i and task j as follows:

ETC = [wl j/cci] j=1,2...,n
i=1,2...,m (15)

In order to take into account the security layer applied to tasks, the ETC matrix
must be extended, and therefore the Security Biases Expected Time to Compute
(SBETC) matrix [24] is used:

SBETC[j][i](SD,TL) = wl j/cci + b(sd j ,wj , tli , cci) (16)

SBETC(SD,TL) = SB(SD,TL) + ETC. (17)

The bias b is the time required to compute the RSA blinding procedure on a single
picture. On the other hand, the bias B represents the rest of security operations.
The RSA key generation is done by the user, and therefore it is omitted. The data
transferring times were not taken into consideration in this simulation. The main
scheduling objective is to minimize makespan:

Cmax = min
S∈Schedules

{
max

j∈Tasks C j

}
, (18)

where C j is the time when task j is finished. Tasks are all tasks submitted to the
system and Schedules is the set of all possible schedules, as shown in Fig. 3.

5.2 Numerical Tests

5.2.1 Security Operations Scalability

The total computing effort required to share the Secret only depends on the number of
participants, as shown in Table3. Hence, the most efficient approach is to minimize
the number of VMs by choosing those with a larger computational capacity, as shown
in Fig. 4. Regarding this, the degree of the polynomial dega(x) = t − 1 presented in
Eq.8 is equal to the number of participants that hold the shares of the secret. To this
aim, the relation between the number of participants N ∈ Z : N ∈ [2, n], denoted
by NSha,spli t , and the number of required instructions to compute the shares, denoted
by OSha,spli t , was computed by the means of the Least Squares method [31], as
described in Table3.

As presented in Table3, 39 MI are required to compute the Shamir secret spread
process if ten worker VMs are used, while 159MI are required if 20 worker VMs are
used. These 39 MI last 0.054s if the Dealer unit is deployed on m1.small instances,

148 A. Jakóbik and J. Tchórzewski

Fig. 3 Makespan computing process

Fig. 4 Shamir secret creation computational effort in number of instructions

0.027s if deployed on m1.medium instances, and 0.015s if m3.large instances are
used. The dependence between x , which represents the number of tasks, and s, which
represents the size of the data files containing the image can be denoted as follows:
s = 11974.8 ∗ x2 + 253512x − 178297.

The computational requirements of the RSA coding increase notably according
to the task output size. These requirements, denoted by NRSA,code for the 1024-bit
RSA and by NRSA2048,code for the 2048-bit RSA, were approximated by the means
of polynomial and exponential functions, as shown in Table4.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 149

For the 2048-bit RSA, the best coefficient of determination was obtained for
the third degree polynomial, and similar results are obtained for the 1024-bit RSA.
The 2048-bit RSA is more demanding and these computational demands increase
according to the output size faster than those of the 1024-bit RSA as illustrated in
Fig. 5. As stated in Table2, if 10 tasks are considered, the 1024-bit RSA requires
2853927 MI. This represents 4019s if m1.small instances are used, while 1995 and
1150s are needed to compute the encoding for m1.medium and m3.large instances,
respectively.

The computational effort required to retrieve the Secret follows the same trend
described for spreading the Secret and presented in Fig. 4.

The Secret retrieving process may be done by the means of two approaches:
(a) Solving a set of linear equations by using the Gauss elimination method, as
described in Eqs. 9–11, and (b) Using the Lagrange interpolation for a given point
of the polynomial a. However, these methods present few differences, as described
in Fig. 6 and Table3.

The relation between the number of participants N ∈ Z : N ∈ [2, n], denoted by
NSha,spli t , and the number of instructions required to compute the shares OSha,spli t

was computed by using the Least Squares method, [31], as shown in Table3.
Regarding this, 234 MI were required when 10 VM were used, while 1137 MI

were required for 20VM. Thismeans that the secret retrieving lasts 3.29 s if m1.small
instances are used, while it lasts 0.16 and 0.09 s when m1.medium and m3.large are
used respectively if 10 virtual machines are considered.

The computational effort required for decoding the result depends on the size
of the picture that was blurred, as shown in Table4. Regarding the bits used for
RSA coding and decoding, it should be taken into account that the times required
to compute 2048-bit RSA increases non-linearly as illustrated in Fig. 7. Thus, for
the largest tasks, the 1024-bit RSA should be used, or the VM responsible for this
computation should be scaled properly according to the results of this simulation.

Fig. 5 Computational requirements for 1024-bit and 2048-bit RSA key

150 A. Jakóbik and J. Tchórzewski

Fig. 6 Computational requirements for the two methods used for retrieving the Shamir secret

Fig. 7 Number of instructions for RSA 1024 versus RSA 2048 decoding

2814420 MI were required to compute this decoding process for the task ID=10
when the 1024-bit RSA is considered, as described in Table2. This means 3963,
1995 and 1134s when m1.small, m1.medium and m3.large are used respectively.

5.2.2 Security Layer Applied to the Batch of Tasks

Various security levels are considered regarding the security layer applied to the
batch of tasks. These levels, denoted by a numerical value [0, 1, 2, 3] for both TL and
SD, describe the strategies used as follows: (a) TL = 0 means that no cryptographic
procedure is used, (b) TL = 1 denotes that the 1024-bit RSA coding is used, (c)
TL = 2 means that both 1024-bit RSA coding and Secret sharing are used, and (d)
TL = 3 that both 2048-bit RSA coding and Secret sharing are used.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 151

For 10 worker nodes, the following results were obtained

• When TL = 0 is applied, the smallest task ID = 1 requires 180MI, while the largest
task ID = 5 requires 5027 MI.

• When TL = 3 is applied to the smallest task ID = 1, the secret spreading process
adds 39 MI, while 95619 MI were added for the coding and blinding process, as
described in Table4. In addition, the secret retrieving process adds 49 MI, while
the RSA decoding adds 93528 MI. Thus, The ratio between actual task operations
and security operations for this small task is: (39 + 95619 + 49 + 93528)/180 =
1051.3

• When TL = 3 is applied to the largest task ID = 5, the secret spreading process
adds 39MI, while 9842010MI were added for the coding and blinding process, as
described in Table4. In addition, the secret retrieving process adds 49 MI, while
the RSA decoding adds 9884733 MI. Thus, for this large task, the ratio between
actual task operations and security operations is: 3924.1 (see Table4).

5.2.3 Security Impact on Makespan

In the proposed model, the makespan is only affected by the RSA blinding process,
as stated in Eq.18. When TL = 0 is applied, the maskespan may be computed by the
means of the ETC matrix, as shown in Eq.15. On the other hand, if all the machines
offer TL = 1, 2 or 3, an additional cost has to be taken into account as shown in the
following equation:

SB(SD, T L) = [b(sd j ,wl j , 1, cci , inputSizei , outputSizei)] j=1,2...,n
i=1,2...,m = (19)

[time of RSA blinding] j=1,2...,n
i=1,2...,m

Table 4 Cryptographic coat for RSA cypher, in MI

Task Blind 1024 cod. 1024 decod. 2048 cod. 2048 decod.

1 2*0.1 29814 28434 95619 93528

2 2*0.3 114485 118751 383009 379847

3 2*0.6 263890 285172 861590 862114

4 2*1.0 469494 514528 1534304 1537535

5 2*1.2 734069 733254 2407671 2399740

6 2*1.7 1057640 1161299 3471082 3459379

7 2*2.2 1520914 1356978 4728474 4712922

8 2*2.7 1938632 1822616 6179446 6160087

9 2*3.1 2386142 2435027 7971389 8002257

10 2*3.4 2853927 2814420 9842010 9884733

152 A. Jakóbik and J. Tchórzewski

Table 5 Curve approximation of number of operation for cryptographic procedures code, where
x represents the number of tasks as shown in Table2

Fitted curve R2

Sha, spli t(NSha,spli t) = 1.44627 ∗ 106N 2
Sha,spli t − 9.22222 ∗

107NSha,spli t + 1.48058 ∗ 109
0.607717

OSha,spli t (NSha,spli t) = 5.44381 ∗ 104N 3
Sha,spli t + +4.64971 ∗

102N 2
Sha,spli t + 1.04114 ∗ 107NSha,spli t − 1.42388 ∗ 109

0.988185

NRSA,code = 1.73458 ∗ 109x3 − 1.229 ∗ 1010x2 + 2.02758 ∗ 1011x −
2.14152 ∗ 1011

0.987939

NRSA,code = 1.85489 ∗ 1011e0.279988x 0.988229

NRSA2048,code = 1.01126 ∗ 109x3 + 8.55498 ∗ 1010x2 + 3.15861 ∗ 1010x −
2.58364 ∗ 1010

0.999958

NRSA2048,code = 5.527 ∗ 1011e0.292838x 0.992466

OSha,retr (N) = 1.82627 ∗ 103N 3 − 2.03002 ∗ 105N 2 + 1.63507 ∗ 107N −
8.41731 ∗ 107

0.989524

NRSA,decode(x) = −9.31435 ∗ 107x3 + 2.75375 ∗ 1010x2 + 2.1635 ∗
1010x − 2.39607 ∗ 1010

0.996551

NRSA,decode(x) = 1.84664 ∗ 1011e0.278962x 0.989757

NRSA2048,decode = 1.54141109x3 + 7.844451010x2 + 5.678761010x −
4.950661010

0.999923

NRSA2048,decode(x) = 5.468931011e(0.294253x) 0.992726

It should be kept in mind that using a light-weight secret sharing strategy has only
5% of negative impact in terms of makespan, as presented in Table7.

6 Conclusions and Future Development

In this work, various security services based on result encryption are presented.
The described approach, which stores encrypted tasks results by the means of a
blindedRSAalgorithm, increase notably the level of security of theCloudComputing
systems.

Regarding this, the Cloud Storage Unit is the responsible for receiving the blinded
results and encrypting them by using the proper cryptographic keys. The final user
or further processing units may decrypt this result on demand by the means of the
Shamir secret approach instead of a hash function.

The following conclusions can be stated in order to summarize this work:

• The proposed cryptographic layer may be divided in: (a) Operations having an
impact on the scheduling process, and (b) Operations not impacting the scheduling
process.

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 153

Table 6 The computational time savings using different type of instances

VM type TL Task Time [s] % Time saved

m1.small 0 1 0.253 0%

m1.med 0 1 0.125 100 − 12.5/0.253 = 50.59%

m3.large 0 1 0.072 100 − 7.20/0.253 = 71.54%

m1.small 0 5 1.945 0%

m1.med 0 5 0.965 100 − 96.5/1.945 = 50.39%

m3.large 0 5 0.556 100 − 55.6/1.945 = 71.41%

m1.small 0 10 7.080 0%

m1.med 0 10 3.515 100 − 351.5/7.080 = 50.35%

m3.large 0 10 2.027 100 − 202.7/7.080 = 71.37%

m1.small 1 1 82.29 0%

m1.med 1 1 40.85 100 − 4085/82.29 = 50.36%

m3.large 1 1 23.55 100 − 2355/82.29 = 71.38%

m1.small 1 5 2068.59 0%

m1.med 1 5 1027.06 100 − 102706/2068.59 = 50.35%

m3.large 1 5 592.21 100 − 59221/2068.59 = 71.37%

m1.small 1 10 7990.66 0%

m1.med 1 10 3967.39 100 − 396739/7990.66 = 50.35%

m3.large 1 10 2287.65 100 − 228765/7990.66 = 71.37%

m1.small 2 1 82.41 0%

m1.med 2 1 40.92 100 − 4092/82.41 = 50.35%

m3.large 2 1 23.59 100 − 2359/82.41 = 71.37%

m1.small 2 5 2086.22 0%

m1.med 2 5 1035.81 100 − 103581/2086.22 = 50.35%

m3.large 2 5 597.26 100 − 59726/2086.22 = 71.37%

m1.small 2 10 7990.79 0%

m1.med 2 10 3967.45 100 − 396745/7990.79 = 50.35%

m3.large 2 10 2287.68 100 − 228768/7990.79 = 71.37%

m1.small 3 1 266.78 0%

m1.med 3 1 132.45 100 − 13245/266.78 = 50.35%

m3.large 3 1 76.37 100 − 7637/266.78 = 71.37%

m1.small 3 5 37192 0%

m1.med 3 5 18466 100 − 1846600/37192 = 50.35%

m3.large 3 5 10647 100 − 1064700/37192 = 71.37%

m1.small 3 10 27791 0%

m1.med 3 10 13798 100 − 1379800/27791 = 50.35%

m3.large 3 10 7956 100 − 795600/27791 = 71.37%

154 A. Jakóbik and J. Tchórzewski

Table 7 The impact of proper scheduling and Shamir secret sharing procedure into makespan, test
for 5 VMs: all instances types included, batch of tasks built from tasks ID=1, ID=2, …, ID=10

VM number TL WL of batch [MI] Initial makespan
[s]

Final makespan
[s]

5 0 19534 11.99 2.13

5 1, 2, 3 19534 + 33 11.99 2.42

• These operationsmaybe chosen according to the kind of task considered.However,
it should be kept in mind that the number of worker nodes may have a large
impact on the performance of the cryptographic operations. Regarding this, various
strategies may be adopted in order to keep the overall performance stable, such as:
(a) Tuning the number of instances used, (b) Tuning the type of instances used,
and (c) Tuning the parameters used in the cryptographic operations.

Finally, the described model is valuable to improve the makespan of the tasks
executed in Cloud Computing systems. As future work, a further step towards the
automation of these security processes applied to Cloud Computing systems should
be explored, as described in [32].

Acknowledgements This chapter is based upon work from COST Action IC1406 High-Perfor-
mance Modelling and Simulation for Big Data Applications (cHiPSet), supported by COST
(European Cooperation in Science and Technology).

References

1. Amazon Web Services: https://aws.amazon.com
2. Google Cloud: https://cloud.google.com
3. Microsoft Cloud: http://www.microsoft.com/enterprise/microsoftcloud
4. Adobe Creative Cloud: http://www.adobe.com/pl/creativecloud.html
5. Cloud Controls Matrix Version 3.0.1, Cloud Security Alliance: https://cloudsecurityalliance.

org/group/cloud-controls-matrix/
6. Directive of the European Parliament and of the Council: On the protection of individuals with

regard to the processing of personal data and on the free movement of such data. http://eur-
lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31995L0046 (1995)

7. Stinson, D.R.: Cryptography: Theory and Practice. CRC Press (2005)
8. Mell, P.M., Grance, T.: The NIST definition of cloud computing. SP 800-145. Technical Report

(2011)
9. Jakbik, A., Grzonka, D., Koodziej, J.: Security supportive energy aware scheduling and

scaling for cloud environments. pp. 583–590 (2017). https://www.scopus.com/inward/record.
uri?eid=2-s2.0-85021827530&partnerID=40&md5=30d087573993bf732184bee293687bce.
Cited by 0

10. NIST Cloud Computing Standards Roadmap. SP 500-291, Version 2: Technical Report.
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_
2013_June18_FINAL.pdf (2013)

https://aws.amazon.com
https://cloud.google.com
http://www.microsoft.com/enterprise/microsoftcloud
http://www.adobe.com/pl/creativecloud.html
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
https://cloudsecurityalliance.org/group/cloud-controls-matrix/
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31995L0046
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:31995L0046
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021827530&partnerID=40&md5=30d087573993bf732184bee293687bce
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85021827530&partnerID=40&md5=30d087573993bf732184bee293687bce
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf
https://www.nist.gov/sites/default/files/documents/itl/cloud/NIST_SP-500-291_Version-2_2013_June18_FINAL.pdf

Analysis of Selected Cryptographic Services for Processing Batch Tasks . . . 155

11. Gilly, K., Juiz, C., Thomas, N., Puigjaner, R.: Adaptive admission control algorithm in a
QoS-aware web system. Inf. Sci. 199, 58–77 (2012). https://doi.org/10.1016/j.ins.2012.02.
018, https://doi.org/10.1016/j.ins.2012.02.018

12. Gupta, H., Dastjerdi, A.V., Ghosh, S.K., Buyya, R.: iFogSim: a toolkit for modeling and
simulation of resource management techniques in internet of things, edge and fog computing
environments. CoRR abs/1606.02007 (2016). http://arxiv.org/abs/1606.02007

13. Suchacka, G., Borzemski, L.: Web Server Support for e-Customer Loyalty Through QoS Dif-
ferentiation, pp. 89–107. Springer, Berlin Heidelberg (2013). https://doi.org/10.1007/978-3-
642-53878-0_5, https://doi.org/10.1007/978-3-642-53878-0_5

14. Jakóbik, A.: Big Data Security, pp. 241–261. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44881-7_12

15. Jakóbik, A., Grzonka, D.: Energy efficient scheduling methods for computational grids and
clouds. J. Telecommun. Inf. Technol. (2017)

16. Secure Hash Standard: Technical Report. https://doi.org/10.6028/NIST.FIPS.180-4 (2015)
17. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979). https://doi.org/

10.1145/359168.359176
18. Schubert, G.R.: Algorithm 210: Lagrangian interpolation. Commun. ACM 6(10), 616 (1963).

https://doi.org/10.1145/367651.367665
19. Gauss, E.J.: A comparison of machine organizations by their performance of the iterative

solution of linear equations. J. ACM 6(4), 476–485 (1959). https://doi.org/10.1145/320998.
321001, https://doi.org/10.1145/320998.321001

20. CloudSim: https://github.com/Cloudslab/cloudsim/
21. Buyya, R., Ranjan, R., Calheiros, R.N.: Modeling and simulation of scalable cloud computing

environments and the cloudsim toolkit: challenges and opportunities. In: 2009 International
Conference on High Performance Computing Simulation, Leipzig, 2009, pp. 1–11. https://doi.
org/10.1109/HPCSIM.2009.5192685

22. Amazon Cloud EC2 Instance Types Tests: https://www.ec2instances.info/
23. Amazon EC2 Instance Types Tests: http://www.cloudlook.com/amazon-ec2-m1-medium-

instance
24. Jakóbik, A., Grzonka, D., Kołodziej, J., Gonzalez-Velez, H.: Towards secure non-deterministic

meta-scheduling for clouds. In: Proceedings of 30th European Conference on Modelling and
Simulation, ECMS 2016, Regensburg, Germany, May 31–June 03, 2016, pp. 596–602. https://
doi.org/10.7148/2016-0596

25. Jakbik, A., Grzonka, D., Palmieri, F.: Non-deterministic security driven meta scheduler for
distributed cloud organizations. Simulation Modell. Pract. Theory 76, 67–81 (2017). ISSN
1569-190X. https://doi.org/10.1016/j.simpat.2016.10.011

26. Grzonka, D., Jakbik, A., Kołodziej, J., Pllana, S.: Using a multi-agent system and artificial
intelligence for monitoring and improving the cloud performance and security. Future Gener.
Comput. Syst. (2017). ISSN 0167-739X. https://doi.org/10.1016/j.future.2017.05.046

27. Amazon EC2 Instances: https://aws.amazon.com/ec2/instance-types/
28. Linux Perf Command: https://perf.wiki.kernel.org/index.php/Main_Page
29. Knill, O.: Probability and Stochastic Processes with Applications. Overseas Press (1994)
30. Koodziej, J.: Evolutionary Hierarchical Multi-criteria Metaheuristics for Scheduling in Large-

Scale Grid Systems. Springer (2012)
31. Bayen, A.M., and Siauw, T.: Chapter 12–Linear Algebra and Systems of Linear Equations, In

An Introduction toMATLAB® Programming andNumericalMethods forEngineers,Academic
Press, Boston, 2015, pp.177–200. ISBN 9780124202283. https://doi.org/10.1016/B978-0-12-
420228-3.00012-9

32. Jakbik A., Wilczynski, A.: Using polymatrix extensive stackelberg games in security aware
resource allocation and task scheduling in computational clouds. J. Telecommun. Inf. Technol.
(2017)

https://doi.org/10.1016/j.ins.2012.02.018
https://doi.org/10.1016/j.ins.2012.02.018
https://doi.org/10.1016/j.ins.2012.02.018
http://arxiv.org/abs/1606.02007
https://doi.org/10.1007/978-3-642-53878-0_5
https://doi.org/10.1007/978-3-642-53878-0_5
https://doi.org/10.1007/978-3-642-53878-0_5
https://doi.org/10.1007/978-3-319-44881-7_12
https://doi.org/10.1007/978-3-319-44881-7_12
https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/367651.367665
https://doi.org/10.1145/320998.321001
https://doi.org/10.1145/320998.321001
https://doi.org/10.1145/320998.321001
https://github.com/Cloudslab/cloudsim/
https://doi.org/10.1109/HPCSIM.2009.5192685
https://doi.org/10.1109/HPCSIM.2009.5192685
https://www.ec2instances.info/
http://www.cloudlook.com/amazon-ec2-m1-medium-instance
http://www.cloudlook.com/amazon-ec2-m1-medium-instance
https://doi.org/10.7148/2016-0596
https://doi.org/10.7148/2016-0596
https://doi.org/10.1016/j.simpat.2016.10.011
https://doi.org/10.1016/j.future.2017.05.046
https://aws.amazon.com/ec2/instance-types/
https://perf.wiki.kernel.org/index.php/Main_Page
https://doi.org/10.1016/B978-0-12-420228-3.00012-9
https://doi.org/10.1016/B978-0-12-420228-3.00012-9

	Preface
	cHiPSet Training School and Research Material
	TS Research Results
	Post-TS Research Results
	Acknowledgements

	Contents
	Contributors
	Evaluating Distributed Systems and Applications Through Accurate Models and Simulations
	1 Introduction
	2 Cloud Computing
	2.1 Cloud Simulators

	3 Assessment of Applications
	4 Modeling Layers
	5 Hardware Model
	6 Hypervisor Model
	7 Cloud Model
	7.1 Infrastructure Model
	7.2 Platform Model
	7.3 Application Model

	8 Simulation Data
	9 Conclusion
	References

	Scheduling Data-Intensive Workloads in Large-Scale Distributed Systems: Trends and Challenges
	1 Introduction
	2 Scheduling Problem
	2.1 Scheduling Objectives

	3 Data-Intensive Workloads in Large-Scale Distributed Systems
	3.1 Fine-Grained Parallel Applications
	3.2 Coarse-Grained Parallel Applications
	3.3 Embarrassingly Parallel Applications

	4 Major Challenges
	4.1 Data Locality
	4.2 Time Constraints
	4.3 Fault Tolerance
	4.4 Energy Efficiency

	5 Recent Novel Ideas and Research Trends
	5.1 VM Live Migrations
	5.2 Approximate Computations with Bin Packing
	5.3 Approximate Computations with Checkpointing
	5.4 Approximate Computations with DVFS

	6 Conclusions
	References

	Design Patterns and Algorithmic Skeletons: A Brief Concordance
	1 Introduction
	2 Design Patterns
	3 Algorithmic Skeletons
	3.1 A Classification for Algorithmic Skeletons

	4 Mapping Patterns and Skeletons
	5 Conclusions
	References

	Evaluation of Cloud Systems
	1 Introduction
	2 General Features of Cloud Systems and Services
	3 Evaluation Metrics
	4 Performance and Service Level Agreement
	5 Modeling of Cloud Systems Using CloudSim
	6 Conclusion
	References

	Science Gateways in HPC: Usability Meets Efficiency and Effectiveness
	1 Introduction
	2 Science Gateways and Usability
	3 Designing Science Gateways
	4 Reusability of Scientific Methods and Reproducibility of Science
	5 Conclusion
	References

	MobEmu: A Framework to Support Decentralized Ad-Hoc Networking
	1 Introduction
	2 Synthetic Mobility Models
	2.1 Random Models
	2.2 Map-Based Models
	2.3 Social-Based Models
	2.4 Discussion

	3 Mobility Traces
	3.1 Tracing Experiments
	3.2 Discussion

	4 MobEmu
	4.1 Functionality
	4.2 Components
	4.3 Implementing a Mobility Trace Parser
	4.4 Implementing a Routing or Dissemination Algorithm
	4.5 Related Work

	5 Conclusions
	References

	Virtualization Model for Processing of the Sensitive Mobile Data
	1 Introduction
	1.1 Data Virtualization
	1.2 Mobile Data Virtualization
	1.3 Mobile Cloud Computing Data Virtualization Security Issues

	2 Motivation
	3 Related Work and Existing Solutions
	4 Data Anonymization
	5 Data Exchange Model
	6 Model Use Case and Implementation
	7 Simulation Analysis
	8 Conclusions and Future Work
	References

	Analysis of Selected Cryptographic Services for Processing Batch Tasks in Cloud Computing Systems
	1 Introduction
	2 Batch Task processing in Cloud Computing systems
	3 Security Layer and Requirements
	4 Proposed Cryptography Service
	4.1 Blind RSA Tasks Storage Service
	4.2 Batch Completeness Verification Based on Secret Sharing

	5 CloudSim Experimental Results
	5.1 Test Bed
	5.2 Numerical Tests

	6 Conclusions and Future Development
	References

