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Abstract

It has been defined by Conn and colleagues in 
2000 that “Cardiac remodelling may be char-
acterized as genome expression, molecular, 
cellular and interstitial changes that are mani-
fested clinically as changes in size, shape and 
function of the heart after cardiac injury”, 
associated with ventricular dysfunction, 
malignant arrhythmias and poor prognosis. 
Conversely, the various definitions of cardiac 
remodelling stress on common molecular, 
biochemical, and mechanical pathways. 
Although the right ventricle and left ventricle 
show significant distinctions in embryology, 
form, and function, they have many similar 

findings when they adjust to damaging load-
ing or when they fail. Having a number of key 
differentiations in their molecular response to 
failure this offer a future platform for right 
ventricle for a particular therapeutic interven-
tion. It has been suggested by Friedberg and 
Redington in 2014 that “Focus on the molec-
ular pathways specific to the failing right ven-
tricle, and targeting the interactions between 
both ventricles may guide to successful treat-
ments for the right ventricle and left ventricle 
failure”. A shortly review is made with 
updated information for all factors that cause 
and affect cardiac remodelling process, espe-
cially in case of right heart.
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4.1	 �Introduction

To date, the term ‘cardiac remodelling’ (CR) was 
firstly coined by Hockman and Buckey on myo-
cardial infarction (MI) to study replacement of 
myocardial injury with scar tissue [1]. Later, 
Janice Pfeffer applied the name CR to illustrate 
the progressive dilatation of the left ventricle 
(LV) on vivo studies [2]. Nonetheless, Pfeffer and 
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Braunwald utilized the term CR for morphological 
changes caused by MI, especially for LV remod-
elling [3]. In this regard, an international forum 
published in 2000 a consensus on CR, that 
defined “CR as a group of molecular, cellular 
and interstitial changes that clinically manifest 
as changes in size, shape and function of the 
heart resulting from cardiac injury” [4]. In biol-
ogy, the term remodelling characterizes adjust-
ments that cause reorganizing of initial structures 
[5]. Even if CR was used initially to describe the 
geometric and structural modifications caused by 
MI [3, 6], CR is actually applied to a large variety 
of cardiac conditions. Esentially, Swynghedauw 
classified etiology of CR as being (1) acquired 
diseases (postmyocardial infarction, hyperten-
sive cardiopathy, valve and congenital disease, 
myocarditis, and Chagas disease); (2) genetics 
(inherited cardiomyopathies, familial hypertro-
phic cardiomyopathy, dilated cardiomyopathy, 
Marfan disease, hemochromatose, transgenic 
models, transgenic models of cardiac hypertro-
phy, transgenic models of cardiac failure); and 
(3) miscellaneous causes (aging; heart rate; use 
of catecholamines, thyroxine, or growth hor-
mone; salt, mineralo- and glucocorticoid; diabe-
tes mellitus; B6 vitamin deficiency; atrophy due 
to heterotopic transplantation and hypertrophy 
due to homeotopic transplantation (?)) [5, 7, 8]. 
Further, CR is separated into structural (hyper-
trophy and fibrosis) and electrical remodelling. 
Shortly, any type of stress induces cardiomyo-
cytes (CMs) to become hypertrophic with altered 
electrical function, while cardiac fibroblasts 
(CFs) transform in ‘activated’ myofibroblasts 
(MyoFb), which further multiply and boost extra-
cellular matrix (ECM) tissue with fibrosis [9].

During international forum from 2000 [4], 
two types of CR were established: (1) physiologi-
cal (adaptive) remodelling and (2) pathological 
remodelling. Further, Dorn et al. defined CR as 
being ‘adaptive or maladaptive’ [10]. It should be 
noted, that Hill and Olson stated that heart can 
respond to environmental stimuli by increase of 
myocardial mass or atrophy starting with a “least 

100%” [11]. More important is other mechanisms 
than remodelling also can alter the evolution of 
heart disease, even in the absence of remodel-
ling process. To reiterate, CR can be a physi-
ologic or pathologic condition [4]. Physiologic 
CR is a physiological alteration in size and func-
tion of the heart due to physiologic stimuli such 
as exercise (“athlete’s heart”) and pregnancy.  
In addition, pathologic CR occurs with pressure 
overload conditions (e.g., aortic stenosis, hyper-
tension), with volume overload conditions (e.g., 
valvular regurgitation), with cardiac injury or 
coronary artery disease (CAD), and with inflam-
matory myocardial disease (e.g., myocarditis), or 
idiopathic dilated cardiomyopathy [4]. Equally, 
physiologic CR may lead to pathologic remodel-
ling [12].

Constrictive pericardial disease, selected forms 
of congenital heart diseases (CHD), inflow 
obstruction, primary myocardial disease, and 
pressure or volume overload are each well-
described causes of right ventricular (RV) remod-
elling, RV systolic dysfunction, and cor pulmonale 
[13]. Emerging evidence suggests that RV dys-
function is the mainly marker of poor prognosis in 
pulmonary hypertension (PH) [14, 15].

For simplicity, the first adaptive reaction of 
the RV to pressure overload is hypertrophy. If 
untreated, the RV dilates to compensate increased 
RV preload and to maintain stroke volume 
according to the Frank-Starling principle. When 
further increase in RV end-diastolic filling vol-
ume do not balance progressive RV contractile 
dysfunction, clinically evident RV failure ensues. 
In advanced stages, RV dilation may also impair 
LV diastolic filling kinetics that contributes fur-
ther to global pump dysfunction and, conse-
quently, to the congestive heart failure (CHF) 
syndrome [16].

It should be restated that the RV and the LV 
don’t have same embryologic origins. The RV 
stems from the secondary/anterior heart tube and 
the LV from early/primary heart tube [17]. 
Accordingly, RV formation is specifically con-
trolled by several genes, including Hand2 and 
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Tbx20 [18]. This different embryologic origin of 
RV is associated with cellular divergence that 
controls the duration of early development to dif-
ferent LV and RV cardiomyocytes, and go on with 
distinct cell signalling and Ca2+ handling path-
ways for both chambers, altogether suggestive of 
certain essential differentiation at the cellular 
level for both ventricles [19]. For the foetal period, 
the RV propels blood into the pulmonary circula-
tion, placenta and into the inferior body. Further, 
during the switch from the foetal circulation to the 
postnatal circulation with the reduction of pulmo-
nary vascular resistance (PVR), the RV develops 
into a thin-walled, heavily trabeculated chamber 
pushing a cardiac output (CO) same to the LV but 
with lesser energy cost [20]. Normal crescent–
shaped RV with thinner walls is a low-pressure 
chamber that faces the low impedance of pulmo-
nary circulation. Thus, although the RV is a low-
resistance and low-capacitance pump, the LV is 
an high-resistance and high-pressure pump [20]. 
Additionally, the RV has a different metabolism 
and morphology in comparison with LV [20]. RV 
cardiomyoytes are disposed longitudinally and 
demonstrate faster twitch velocities than the radi-
ally oriented LV cardiomyocytes. As a result, 
because of these anatomical and physiological 
differences, both ventricles present various reac-
tions to disease forms. According to current evi-
dences, it seems that RV hypertrophy (RVH), RV 
remodelling and RV failure (RVF) can develop at 
the same time instead of progression development 
(Fig. 4.1) [21].

Also, in response to increased afterload, there 
is an activation of the foetal gene pattern in RV, 
re-expressing of genes from normal foetal 
RV.  This includes a shift from α- to β-myosin 
heavy chain expression and an increase in adren-
ergic receptors, calcineurin activation [22–24], 
and phosphodiesterase type-5 (PDE5) expres-
sion [25]. The foetal gene pattern re-expression, 
particularly the myosin heavy chain shift from 
the α to β isoform, an hallmark of foetal gene 
reactivation, is also triggered in LV failure 
(LVF) [22].

Further, using microarray gene chip studies 
of mice, Urashima et al. compared LV hyper-
trophy (LVH) from aortic banding with RVH 
from pulmonary banding, and they demon-
strated both similar and different LV and RV 
adaptive mechanisms [26]. One pathway that is 
more activated in the pressure-loaded RV com-
pared with the pressure-loaded LV is the Wnt 
signalling pathway (Fig.  4.2) [27–29]. Wnt 
regulates glycogen synthesis kinase-3b activ-
ity, a serine/threonine protein kinase active in 
multiple intracellular signalling pathways, 
including cell proliferation, migration, inflam-
mation, glucose regulation, and apoptosis [28, 
29]. Also, there are multiple variation concern-
ing the RV and LV in their adaptation to 
increased loading and likely differences in 
metabolism, mitochondrial remodelling, and 
glycolysis-to glucose oxidation coupling. 
These metabolic changes may subsequently 
lead to hyperpolarization of the mitochondrial 
membrane potential in RV hypertrophy, ineffi-
cient energy metabolism, and increased lactate 
production at an earlier stage of maladaptation 
compared with the LV [30].

In CR process, several cell markers may 
indicate an undergoing CR progression, as well 
as alterations with an rise in α- and a reduction 
in β-myosin heavy chain, raised exhibition of 
Glucose transporter type (GLUT)-1, α-actin, 
natriuretic peptides, galectin, caveolin, neuro-
nal nitric oxide synthase (NOS), angiotensin-
converting enzyme (ACE), reduction of 
GLUT-4, sarcoplasmic/endoplasmic reticulum 
Ca(2+)ATPase 2a (SERCA 2a), and a change 
from free fatty acids oxidation to glucose 
metabolism [31, 32].

To sum up, cardiac dysfunction is the most 
important effect of CR.  Because of cardiac 
injury, CR begin with genetic alterations, with 
reexpression of foetal genes, with cellular and 
molecular modifications, and gradually dam-
age of ventricular function that develops with 
signs and symptoms of HF (Fig.  4.3) [4, 31, 
33–35].
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Fig. 4.1  (a) An overview of changes associated with RV 
pressure overload. Key triggers of RV pressure overload 
include pulmonary hypertension, RV outflow tract obstruc-
tion or RV being the systemic ventricle. RV pressure over-
load induces RVH that, through remodelling, leads to RV 
failure. It is of note, however, that RV failure is a continuous 
process and may begin as the time of hypertrophy and 
remodelling rather than being seen as a sequential process. 

(b) Effect of RVH-induced ischaemia. RVH is characterised 
by tissue hypoxia arising from ischaemia and microcircula-
tory insufficiency. Ischaemia-derived ROS, through the acti-
vation of transcription factors, drive the metabolic 
remodelling, contractile dysfunction and fibrosis that occur 
in RV failure. RVH, RV hypertrophy; PA, pulmonary artery; 
ROS, reactive oxygen species; MMPs, matrix metallopro-
teinases. (From Iacobazzi [21]. It is an open access article)
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Fig. 4.2  The Wnt/β-catenin signaling pathway. In the 
Wnt-off state, defined by the absence of an active Wnt 
ligand, β-catenin is phosphorylated by the destruction 
complex (formed from the two kinases Gsk3 and Ck1, the 
scaffolding protein Axin, and the tumor suppressor Apc) 
and degraded by the ubiquitin-proteasome pathway. In the 
Wnt-on state, active Wnt ligands interact with the Fz 
receptors and the Lrp5/6 coreceptor. Phosphorylation of 
Lrp5/6 by Gsk3 and Ck1 recruits Dvl and Axin to the 

receptor complex and hence inhibits the destruction com-
plex. This, in turn, inhibits β-catenin phosphorylation and 
stabilizes β-catenin in the cytoplasm. β-catenin is then 
translocated into the nucleus, by a complex including 
Fam53b/Smp, and regulates target gene expression with 
the Tcf/Lef transcription factors. Many modulators 
including the inhibitors sFrps and Wif are known to 
tightly regulate the signaling cascade. (From Ozhan et al. 
[27]. It is an open access article)

• Myocyte loss
• Toxic/Inflammatory
• Genetic change
• Volume overload
• Pressure overload

• Genetic changes
• Biochemical changes
• Molecular changes
• Cellular changes
• Structural changes

• Asymptomatic heart failure
• Symptomatic heart failure

Injury

Remodeling

Ventricular
dysfunction

Fig. 4.3  Sequence of events from cardiac injury to 
cardiac dysfunction. (From Azevedo [33]. It is an open 
access article)
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4.2	 �Adaptive Versus Maladaptive  
Cardiac Remodelling

As already stated, CR is an adjusting and a mal-
adaptive process. The adjusting process sustains 
heart function due to pressure overload or vol-
ume overload in case of acute cardiac injury [36]. 
Even if CAD affects directly RV with regional or 
global ischemia, RV physiology and RVF are 
mainly influenced by raised preload or afterload 
[20]. It has to be underlined that RV is exclu-
sively dependent on afterload. Even small 
changes in total PVR, as demonstrated by modest 
increases in mean airway pressure during posi-
tive pressure ventilation, can reduce RV contrac-
tile performance and lower CO even when RV 
preload is maintained [37]. In contrast, signifi-
cant changes in LV afterload may induces only 
modest changes in LV stroke volume [38]. 
Although patients with acute changes in systemic 
vascular resistance can compensate over a wide 
range, those with acute pulmonary arterial hyper-
tension (PAH) if associate acute lung failure, 
often develop overt RVF and compromised CO 
[20]. In the largest part of clinical scenarios, even 
acute mild/moderate raises in RV afterload pro-
duce significant falls in RV output, including 
PAH and RV outflow obstruction, with the men-
tion that usually changes in afterload are chronic 
and occur progressively [20]. Undeniably, in the 
chronic conditions, the relative increase in RV 
afterload is much greater in PAH than the increase 
in LV afterload in systemic hypertension [20].

Only that, long-term CR is damaging and cor-
related with a weak prognosis [39, 40]. Significant 
CR causes the increase of failing cardiac function 
[39, 41] that is related with bad prognosis espe-
cially for MI [40]. Actually, there is no evidence 
to suggest the time of occurrence from adaptive 
remodelling to maladaptive remodelling or if CR 
can be recognized at right moment. For instance, 
continuing CR is usual after an initial, moder-
ately large anterior MI, but is uncommon after an 
initial small inferior MI [41]. CR after acute MI 
involving the LV may progress with LV dilatation 
and with later RV dilatation. Biventricular (BiV) 
remodelling comprises a group of patients with 

extremely poor outcomes [42]. Importantly, BiV 
failure is regarded as the terminal phase of CR 
[43, 44]. On the other hand, there is no clear 
knowledge regarding the effects of acute MI of 
LV and RV remodelling. It seems that the most 
important pathophysiological mechanism is the 
PH followed by raise of the RV afterload.

It should be mentioned that about 50% of 
patients with cardiac failing will die in five years. 
Moreover, about 40% of patients with HF die dur-
ing first one year of hospitalization [45]. Also, an 
important number of deaths related with CR and 
cardiac failing are produced by sudden death [46] 
suggestive of the fact that an asymptomatic patient 
doesn’t mean a convinced good prognosis. In the 
face of raised survival with up-to-date current treat-
ments, death rates have inadmissible values [47].

4.3	 �Basic Concepts  
of Cardiac Remodelling

As already mentioned that “CR may be charac-
terized as genome expression, molecular, cellular 
and interstitial changes that are manifested clini-
cally as changes in size, shape and function of the 
heart after cardiac injury” [4], the myocyte or 
cardiomyocyte (CM) is the most important car-
diac cell implicated in the CR process. Conversely, 
the various explanations of CR share common 
molecular, biochemical, and mechanical path-
ways. Furthermore, the interstitium, fibroblasts, 
collagen, coronary vasculature, hemodynamic 
load, and neurohumoral activation affect the pro-
cess of CR.  A shortly review is made with 
updated information for all factors that influence 
CR process especially in case of right heart.

4.3.1	 �Functional Changes

RV and LV are different in their anatomy and 
physiology. Moreover, morphologically and 
functionally, both ventricles are comprehen-
sible linked not only in health but also as they 
react to disease [20]. In same time, alterations in  
ventricular mass, and changes in composition 
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and volume negatively modify the cardiac func-
tion [39, 41, 48–50]. As CR continues over time, 
the heart dilates and becomes spherical instead 
of elliptical form [51, 52], with thinning of car-
diac walls and mitral valve incompetence. Even 
so, the evolution of CR depends on the primary 
disease, the severity of the underlying disease, 
genotype, intermittent ischemia episodes, neu-
roendocrine activation, and recommended treat-
ment [41, 53, 54].

4.3.2	 �Cellular and  
Molecular Changes

It should be emphasized that CR is related with 
numerous cellular changes as well as myocite 
hypertrophy, deficit of myocytes due to apoptosis 
[55–57] or necrosis [58], fibroblast proliferation 
[59] and fibrosis [60, 61]. At molecular level, 
recent literature has highlighted differences 
between the RV and LV in the expression of 
genes involved in the response to pressure load-
ing and failure [62]. Some of these differences 
are detailed in the following text and are summa-
rized in Table 4.1 [20, 25, 27, 63–69, 71, 72].

4.3.3	 �The Cardiomyocyte (CM)

Human myocardiums are composed of myocytes 
tied and hold up by connective tissue mainly cre-
ated from fibrillar collagen. The adult human 
heart have about 4–5 billions CMs but the myo-
cardium has insignificant basic regenerative 
capability, and the damage of an important mass 
of cardiac muscle causes scar. In fact, the normal 
myocardium consists of four components that are 
highly interrelated: CMs, CFs, the microcircula-
tion and the extracellular matrix (ECM) [73]. All 
four above components have decisive role in the 
progression of chamber remodelling with hyper-
trophy [73]. RV myocytes have mainly longitudi-
nal myocyte direction with angulated intrusion of 
superficial myocytes toward the endocardium 
creating a peristaltic contraction from the inlet to 
outlet and a bellows-like motion of the free wall 

Table 4.1  Molecular differences between the left and 
right ventricles in response to adverse loading

Molecular  
response Right ventricle Left ventricle

Wnt pathway 
activation and 
glycolysis-to-
glucose oxidation 
metabolism in 
afterload

Higher 
activation; 
potentially 
inefficient 
energy 
metabolism [27]

Lower 
activation; 
potentially 
improved 
energy 
metabolism 
[27]

Fibrotic response 
to volume loading

Stronger [63] Weaker [63]

Irx2 transcription 
factor expression 
in afterload

Not expressed 
[64]

Expressed 
[64]

Atrial natriuretic 
peptide 
expression

Not expressed 
[65]

Expressed 
[65]

miRNA 133a 
expression in 
experimental PAH

Decreased [64] –

Expression in 
afterload of 
clusterin, 
neuroblastoma 
suppression of 
tumorigenicity  
1, Dkk3, Sfrp2, 
formin binding 
protein, annexin 
A7, lysyl oxidase

Increased [66] Not increased 
[66]

Response to α-1 
adrenergic 
receptor agonists

Decrease 
contractility 
[67]

Increase 
contractility 
[67]

Response to 
long-term 
norepinephrine 
infusion

No hypertrophy 
[68]

Hypertrophy 
[68]

miRNA 28, 148a, 
and 93 expression 
in failure

Increased [66] Decreased 
[66]

Response to 
dichloroacetate in 
hypertrophy

Increased 
inotropy [27]

Unchanged 
inotropy [27]

Response to 
PDE5 inhibitors 
in hypertrophy

Increased 
inotropy [25]

Unchanged 
inotropy [25]

Response to 
recombinant  
BNP infusion

Unchanged 
inotropy [69, 
70]

Increased 
inotropy [64]

BNP indicates brain natriuretic peptide, Irx2 Iroquois 
homeobox 2, miRNA microRNA, PAH pulmonary arterial 
hypertension, PDE5 phosphodiesterase type-5
From [20] with permission
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toward the septum [74]. In addition, RV myo-
cytes present quicker twitch velocities than LV 
myocytes [75].

Even if the RV and the LV have related cellu-
lar and molecular responses to stress, there are 
various distinctions at the cellular and molecular 
levels in their responses to stress such as pressure 
overload. Furthermore, both ventricles show 
comparable modifications in genes controlling 
ECM and cytoskeleton remodelling, but with sig-
nificant differentiation in genes controlling 
energy production, mitochondrial function, reac-
tive oxygen species (ROS) production, antioxi-
dant protection, and angiogenesis [26, 70].

Unlike the CMs that comprise almost 1/3 of 
all heart’s cells [76], endothelial cells (ECs) [77], 
vascular smooth muscle cells (VSMCs) [77], 
CFs, macrophages and surrounding ECM that 
exist in the cardiac interstitium are together 
named as nonmyocyte cells [78]. The develop-
ment of nonmyocyte cells is mentioned as inter-
stitial structural remodelling and is characterized 
by the increase of collagen [78, 79]. Because the 
increase of nonmyocytes and myocytes is unre-
lated of each other, the hypertrophic process may 
be a similar and proportional or heterogeneous 
with excessive nonmyocytes raise, correspond-
ingly [80, 81].

Since CMs have low ability for cellular multi-
plication, it is clear that they can growth by cel-
lular enlargement. Consequently, the 
cross-sectional area and diameter of CMs are 
raised. Furthermore, typical characteristics of 
hypertrophy develop too: (1) sarcomere is intense 
restructured; (2) raised CMs size and myocardial 
mass by boost of protein synthesis; and (3) car-
diac specific gene expression suffers alterations 
[11, 82]. A part of these modifications are known 
as re-activation of foetal gene program that 
implies only the re-expression of normal genes 
from embryonic and neonatal heart, together with 
contractile foetal proteins such as skeletal α-actin, 
atrial myosin light chain-1 and β-myosin heavy 
chain, and signal transduction proteins such as 
atrial natriuretic peptide (ANP) or B-type natri-
uretic peptide (BNP) [9, 83]. Abnormal existence 
of these foetal proteins in adult human heart has 

an effect on cardiac contraction, myocardial 
metabolism including Ca2+ control, resulting in 
maladaptive CR [84]. Of particular interest, the 
presence of the foetal gene program does not 
exist in physiological hypertrophy [85].

Changes of CMs in the size, shape, and func-
tion are related with the raise of cell death as 
well. Deficit of CMs is mainly related to the 
chronic CR process with progression to HF, 
increased apoptosis [86], and decreased cardiac 
function of heart. For that reason, the equilibrium 
between CMs survival and apoptotic pathways 
seems the mainly factor of the shift process from 
hypertrophy to ventricular dilatation [87].

It has previously described that the term 
matricellular proteins don’t have any significant 
role in cardiac tissue structure, but they are stim-
ulated by injury with the alteration of cell to cell 
and cell to matrix connections [88]. Therefore, 
the production of matricellular proteins in the 
cardiac matrix, causes their attachment to growth 
factors, cytokines, and cardiac cells receptors of 
transducing signalling cascades. Consequently, 
matricellular proteins are controlled in CR pro-
cess and have a significant function in controlling 
of inflammatory, reparation, fibrotic and angio-
genic process [88]. It should be remembered that 
the term matricellular protein has been created by 
Bornstein [89] for ECM proteins which have no 
involvement in the structure of the ECM, except 
they appear and control cardiac cellular function 
subsequent to injury. According to current evi-
dence, matricellular proteins implied in CR com-
prise secreted protein acidic and rich in cysteine 
(SPARC), osteopontin, thrombospondin (TSP), 
periostin, and tenascin families [88, 90]. Also, 
initiation of the matricellular proteins (TSP-1, 
tenascin-C, SPARC) can produce the process of 
“de-adhesion” in tissue remodelling. This pro-
cess may be significant in supporting cell motil-
ity during inhibition of cell anoikis [88].

To sum up, the normal adult heart contains 
CMs, a complicated system of ECM, and non-
myocytes that are more numerous than CMs. 
Every CM is encircled by collagen (endomy-
sium), and connective tissue (perimysium) 
demarcates individual fibbers. Also, the normal 
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mammalian heart has a rich vascular system 
consisted of capillary, venous and arteriolar 
endothelial cells, pericytes, smooth muscle 
cells, numerous CFs, minor numbers of macro-
phages, mast cells, lymphocytes and dendritic 
cells [88]. After an injury of sufficient degree, 
CMs diminish and develop into elongated or 
hypertrophied cells to sustain stroke volume 
[49, 50]. As well as, the width of ventricles wall 
may raise due to myocyte hypertrophy [48–50]. 
Changing of heart loading conditions like raised 
preload further causes stretching of cell mem-
branes and increases of wall stress both have 
the ability to initiate the effect of hypertrophy 
genes. More precisely, in cardiac myocytes may 
be triggered new contractile proteins synthesis 
joining with new sarcomere. The final result is 
believed to be CMs elongation or the increase 
of their diameter [91].

It seems that RV dysfunction is described in 
PAH or RV obstruction [21]. Patients with RV 
dysfunction are put together even though the 
CHD can initiate different molecular, cellular 
and functional remodelling in the RV [21]. In 
addition, the evaluation of RV function is mainly 
based on techniques which assess structure and 
function of RV (e.g. echocardiography, MRI 
and pulmonary angiography) instead of explor-
ing the cellular and the molecular irregularities 
of the RV dysfunction from CHD [21]. For 
instance, some studies demonstrated the altera-
tion of gene expression in signalling pathways 
that control heart growth in children with 
Tetralogy of Fallot (TOF). Modifications such 
as significant suppression of genes in the Notch 
and Wnt pathways, in VEGF gene expression 
and numerous ECM proteins are identified as 
factors that lead to TOF [92, 93]. Another 
genome-wide array study has demonstrated 
obvious difference in gene expression between 
the TOF and other RVH phenotypes, including 
VSD and ASD. Genes related with cardiac mal-
development such as SNIP, A2BP1 and 
KIAA1437 are more active in the TOF group, 
and genes linked with stress reaction and cell 
proliferation are more exhibited in the RVH 
conditions [94].

In addition, a molecular conversion from RV 
to LV characteristics appears for the period of RV 
adjustment to pressure overload, with the men-
tion that altered genes from RVH have a normal 
representation same to the normal LV tissue. 
Additionally, the association of tissue hypoxia 
and hypertrophy can boost the protein phospha-
tase PP1 activity leading to raised phospholam-
ban (PLN-Ser16) dephosphorylation in CMs, 
followed by cardiac dysfunction [95]. As already 
described, hypoxia-inducible factor-1 (HIF1α) is 
a further contributor factor in the RV adjustment 
to tissue hypoxia and mechanical stress. In acute 
hypoxia, HIF1α is cardioprotective based on its 
property to produce angiogenic, metabolic and 
erythropoietic genes [96]. Conversely, HIF1α 
sustain transforming growth factor beta TGFβ1-
mediated organ fibrosis in chronic hypoxic states 
[96]. Also, genetic differences of HIF1α change 
myocardial adjustment to hypoxia during post-
surgical period and before RV remodelling pro-
cess [97]. Therefore, the adjustment of RV to 
hypoxia prior to TOF surgery is based on the 
HIF1α pathway and could have an effect on RV 
phenotype after surgery.

4.3.4	 �Matricellular Proteins:  
TSP Family

It should be underlined that one of the matricel-
lular proteins, TSP family contains five members 
divided into two groups. TSP-1 and TSP-2 form 
homotrimers (Subgroup A), while TSP-3, TSP-4 
and TSP-5 (COMP) form homopentamers 
(Subgroup B) [73, 98–100] (Figs. 4.4 and 4.5).

These matricellular proteins induced by heart 
injury with CR named TSPs have a significant 
function during cardiac growth [101]. However, 
numerous TSP proteins activity increases to stress. 
They have the capacity to attach with the compo-
nents of the ECM such as cytokines and growth 
factors. In addition, it’s convenient at this point to 
discuss that pressure overload quickly raise TSP 
expression, mainly TSP-1 and TSP-4 [102, 103], 
and volume overload shows a significant raise in 
TSP-4 mRNA [104]. In most of the cases, the 
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mechanisms implied are same to the post-MI, as 
well as inflammation [105] and fibrosis [106].

4.3.5	 �Endoplasmic Reticulum Stress

Theoretically, stress factors such as hypoxia, isch-
emia/reperfusion, hypertrophy, pressure overload, 
and drug-induced insults can cause activation of 
endoplasmic reticulum (ER) stress in the heart 
[107]. ER stress being closely implied in the pro-
tection of cardiovascular homeostasis, it proves a 
significant therapeutic aim for cardiovascular dis-

eases treatment. Figure  4.6 shows a schematic 
illustration of ER stress pathways with particular 
highlighting on their role in cardiac physiology 
and pathology [108]. The ER stress response or 
‘unfolded protein response’ (UPR) is essential for 
normal cellular protection, but in CR like HF can 
generate apoptosis [107, 108]. A simplistic expla-
nation is TSP-1 and TSP-2 have anti-inflamma-
tory, pro-fibrotic, and antiangiogenic properties, 
as TSP-4 induces pro-inflammatory and pro-
angiogenic consequences [109]. Also, the TSPs 
are significant aims for stopping the evolution 
from MI to HF.
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Fig. 4.4  Structure of the two thrombospondin (TSP) sub-
groups. Subgroup A form homotrimers and consist of 
TSP-1 and TSP-2, while Subgroup B form homopentam-
ers and consist of TSP-3, TSP-4, and TSP-5 (COMP). 
Subgroup A has domains that bind to CD36 and inhibit 
MMPs. The N-terminal domains tend to be family mem-

ber specific, while the CTD has high homology between 
the family members. NTD N-terminal domain (specific to 
each family member), vWF-C vonWillebrand factor 
C-type domain, MMP matrix metalloproteinase, EGF epi-
dermal growth factor, CTD C-terminal domain. (From 
Kirk et al. [73] with permission)
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Fig. 4.5  Recent work has identified several roles for 
TSPs once the heart has transitioned to heart failure. The 
effects of the TSPs on matrix remodeling and inflamma-
tion are still important in HF. However, they also regulate 
a number of pathophysiologically important elements 

within the cardiac myocyte, which exhibits hypertrophy, 
apoptosis, and contractile dysfunction with HF. However, 
our knowledge of the mechanistic function of each of the 
TSPs in the HF myocyte is still incomplete. (From Kirk 
et al. [73] with permission)
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Fig. 4.6  ER stress signaling pathways. (a) PERK-
dependent pathway activated by ER stress. PERK, a trans-
membrane kinase and endoribonuclease, interacts with 
BiP/GRP78 under nonstressed conditions. On activation of 
ER stress, BiP/GRP78 dissociates from PERK, resulting in 
dimerization of PERK and activation of its kinase domain, 
autophosphorylation, and subsequent phosphorylation of 
eIF2α. Phosphorylation of eIF2α results in attenuation of 
protein synthesis. However, expression of ATF4 is not 
inhibited, and the transcription factor induces expression 
of ERSR-containing genes. (b) ATF6 pathway. Under non-
stress conditions, ATF6, a transmembrane protein local-
ized to the ER, interacts with BiP/GRP78 and calreticulin. 
After ER stress, BiP/GRP78 and calreticulin dissociate 
from ATF6, and the protein translocates to the Golgi, 
where it undergoes cleavage by S1P and S2P proteases. 

This cleavage yields a cytoplasmic transcription factor 
(N-ATF6) that translocates to the nucleus and induces 
ERSR-containing genes. (c) IRE1 pathway. IRE1 is an ER 
transmembrane protein containing a serine–threonine 
kinase domain and a carboxyl-terminal endoribonuclease 
domain in its cytoplasmic region and binds to BiP/GRP78. 
Under ER stress conditions, BiP/GRP78 is released from 
IRE1 followed by IRE1 homodimerization and autophos-
phorylation. Phosphorylation is essential for IRE1 endori-
bonuclease activity that is responsible for splicing of 
XBP1 mRNA, yielding spliced XBP1s mRNA encoding a 
potent transcription factor. The XBP1s splice variant binds 
to ERSE-containing promoters and activates ERSE genes. 
XBP1s also binds to a second cis-acting motif, termed the 
UPRE, resulting in upregulation of genes involved in 
ERAD. (From Groenendyk et al. [108] with permission)
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4.3.6	 �Pleiotropic Functions 
of Cardiac Fibroblasts (CFs)

In particular, CFs include over 50% of the cells 
in the adult heart [110] being implied in the 
development and deterioration of the cardiac 
ECM by generating collagens, proteoglycans, 
MMPs and TIMPs. As well, CFs produce differ-
ent bioactive mediators such as VEGF-A, fibro-
blast growth factors (FGFs), transforming 
growth factor beta (TGF-β), platelet-derived 
growth factor (PDGF) which affect cardiac 
angiogenesis and CM proliferation. Furthermore, 
CFs have an effect on cardiac electrophysiology 
by protecting CM bundles, spreading of electri-
cal signals, and changing mechanical stimuli in 
electronic signals [111]. In fact, CFs develop 
intracellular electrical coupling and intercon-
nect with CMs through gap junctions (Fig. 4.7) 
[112–114]. Also, CFs being the most abundant 
cardiac cell type, they monitor CM proliferation 
during heart development. Therefore, CFs acti-
vation is a critical early repair response after 
cardiac injury.

4.3.7	 �Collagen Synthesis 
and Degradation

Collagen is synthesized by interstitial CFs which 
are degraded by locally formed enzymes named 
collagenases, such as matrix metalloproteinases 
(MMPs). The cardiac interstitium consist of 95% 
of type I and type III collagen fibers. The most 
important roles of collagen network are to con-
trol apoptosis, fix pathological processes, pre-
serve the configuration of structures, control the 
resistance conduction during fiber shortening, 
and produce cytokines and growth factors [115]. 
Each heart has inactive myocardial collagenases 
in the ventricles but they are activated after a 
myocardial injury [116]. As already noted above, 
in any failing heart, CR primarily arises as a pre-
venting reaction to protect the myocardium struc-
ture, but with gradually collagen deposit can 
causes cardiac fibrosis with diastolic and systolic 
dysfunction [117–120]. Importantly, collagen 
XIV is necessary to produce and preserve the 
ECM network in the heart growth [121]. 
Throughout fibrosis process, CMs undertake 
hypertrophic modifications, while MyoFb con-
tinue with collagen production and scar forma-
tion at the site of injury. In addition, collagen XI 
is necessary for myocardial growth supporting 
the nucleation of type I and II fibrils [122]. 
Therefore, the increased activity of collagen type 
XI alpha 2 chain (COL11A2) gene can be corre-
lated with production of heterotypic fibrils with 
collagen I that is implicated in CR [123]. 
Nevertheless, persistence of CFs in injury area 
leads to chronic scar and remodelling [119].

According to evidence, the atypical deposit of 
type III collagen and type I collagen was discov-
ered in cardiac injury, produced by several sig-
nalling pathways such as TGF-β, endothelin-1 
(ET-1), angiotensin II (Ang II), connective tissue 
growth factor, and PDGF. In this situation, fibro-
sis is related with raised myocardial stiffness, 
decreased diastolic function, reduced contrac-
tion, failed coronary flow and malignant arrhyth-
mias [124, 125].

As a result, collagen has an important role in 
the protection of cardiac structure and function. 

Fig. 4.7  Cell Communication Between Cardiac 
Fibroblasts and Myocytes. Z-section of a cell aggregate 
containing cardiac fibroblasts that were dual loaded with 
Lucifer Yellow and CMRA and myocytes that were 
unloaded. Cardiac fibroblasts appear as yellow or orange 
cells. The orange cells are fibroblasts that have transferred 
their green dye to an adjacent cell (orange arrow). Note 
the green cells, which are myocytes that have received 
green dye from an adjacent fibroblast (white arrow). 
(From Souders et al. [112] with permission)
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In CR, the equilibrium between collagen pro-
duction and degeneration is altered with numer-
ous side effects. To prevent developing of CR to 
HF is necessary of timely developed stable scar 
that restores the injured tissue [126]. This equi-
librium is preserved to some extent by MMPs 
that alter the ECM and tissue inhibitors of MMP 
(TIMPs) [127, 128]. In case of post MI, numer-
ous mechanisms are run by CFs that change into 
MyoFb [129].

It should be noted, that there is a direct sup-
port between TSP-1 and the cardiac collagen. 
More important, TSP-1 and TSP-2 can preserve 
ECM normal structure by controlling the MMPs 
[73, 130, 131] (Table  4.2). TSP-1 and TSP-2 
can directly attach to MMP2 and MMP9 
through their Type 1 Repeats [132], but this 
attachment doesn’t cause their inhibition 
directly [133]. When TSPs perform their acti-
vation by TGFβ, this diminishes MMP tran-
scription [134]. Also, TSP-1 can attach to 
collagen V and fibrinogen [135, 136] and has-
ten fiber growth [137]. On the other hand, 
TSP-4 increases fibrosis by production of col-
lagens I, II, III, and V [138] that support its 
direct role on the ECM remodelling process 
[139]. Essentially, in order to regulate cardiac 
fibrosis, TSP-4 expression is controlled by the 
transcription factor Krüppel-like factor 6 
(KLF6) [140]. Also, TSP-4 triggers TGF-β [73] 
necessary for the transdifferentiation of MyoFb 
from CFs [141]. Further, MyoFb are indispens-
able to the cardiac fibrosis by production of  
collagen [142].

4.3.8	 �Apoptosis

There are three main mechanisms involved in 
myocyte death: apoptosis or programmed cell 
death, necrosis and autophagy. According to data, 
cardiac dysfunction is correlated with modifica-
tions produced by autophagy, that can be adap-
tive or deleterious [143–145]. Initially, Sharov 
et  al. have been suggested that raised cardiac 
apoptosis with CMs damage increases LV dys-
function with chronic HF [55]. Conversely, 
Olivetti et  al. showed on myocardial samples 
from patients who underwent heart transplanta-
tion that cardiac apoptosis was increased more 
than 200-fold in the patients with failing heart 
[57]. In general, apoptosis has an important func-
tion in cardiac growth and in various heart dis-
eases with ischemic and non-ischemic origin 
[146, 147]. However, the major mechanism of 
CM death from MI is the coagulation necrosis, 
even if apoptosis is also implied in CMs damage 
(Fig. 4.8) [148, 149].

It is important to note, that there is a fast trig-
gering of caspase-3 in MI during 1 h after the onset 
of ischemia [150, 151], and the process of CM 
apoptosis can be completed within 24 h (Figs. 4.9 
and 4.10) [42, 152, 153]. Previous reports have 
been shown that apoptosis is associated with unfa-
vourable CR and HF post-MI in case of ablated 
proapoptotic protein Bnip3 [154, 155]. Also, 
TSP-1 and TSP-2 trigger apoptosis in ECs from 
microcirculation [156, 157]. Apoptosis inhibits 
endothelial tubule development and consequently 
has antiangiogenic effect. Further, vitro studies 
showed that matricellular proteins relate with the 
transmembrane glycoprotein CD36 [157–162], 
being the mainly mechanism that causes the anti-
angiogenic effect. Also, Primo et  al. showed in 
cultured human ECs the inhibition of angiogenesis 
by the pathway of the VEGF receptor modulated 
by TSP-1 [163]. Attachment of TSP-1 to CD36 
causes apoptosis of ECs by raise of death receptors 
and Fas ligand [164].

ADAMTS-7 is a member of the disinteg-
rin and MMPs with TSP motifs (ADAMTS) 
family [73, 165], being newly recognized to 
be considerably correlated genome-wide with 

Table 4.2  Thrombospondin binding partners. From Kirk 
et al. [73] with permission

Protein ECM Cell surface
Signaling 
molecules

TSP-1 MMP2, 
MMP9, 
collagen V, 
fibrinogen, 
fibronectin

CD36, CD47, 
β1, β3 
INTEGRINS

TGF-β, 
VEGF Ca2+

TSP-2 MMP-2, 
MMP9

CD36, CD47 Ca2+

TSP-4 Collagens  
I, II, III, V

Β2, β3 
integrins

Atf6α
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Fig. 4.8  Typical appearance of different types of cell death. 
(a, c, e) Confocal micrographs: counterstaining for actin, red; 
nuclei, blue; specific fluorescence, green. (b, d, f) Electron 
microscopic pictures (all bars = 2 μm). (a, b) Apoptotic cell 
death. (a) Nuclei with DNA fragmentation are green. (b) 
Nuclei show condensed chromatin. (c, d) Oncotic cell death. 

(c) Single cell oncosis labeled with C9. (d) Nuclei are elec-
tron-lucent with clumped chromatin, mitochondria are dam-
aged with flocculent densities. (e, f) Autophagic cell death. 
(e) Ubiquitin deposition and loss of nuclei. (f) Ultrastructural 
appearance with numerous autophagic vacuoles. (From 
Kostin et al. [148] with permission)
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Fig. 4.9  Schematic depiction of 
pathways leading to programmed 
cardiomyocyte death, as described 
in the text. Mechanisms of cell 
death (bottom) are, from left to 
right, caspase-dependent apoptosis, 
caspase-independent apoptosis, 
programmed necrosis, and 
authophagy. Solid lines show 
primary effects; interrupted lines 
depict cross-talk between pathways. 
(From Dorn [152] with permission).

a
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Fig. 4.10  Demonstration of apoptosis. (a) Labelling of 
nuclear DNA fragmentation using terminal deoxynucleo-
tidyl transferase mediated dUTP nick end labelling 

(TUNEL). Colocalisation of (b) TUNEL and actin and of 
(c) TUNEL and activated caspase 3. (From Bussani et al. 
[42] with permission)

4  Basic Aspects of Cardiac Remodelling



106

angiographic CAD [73, 166]. It has been pre-
viously confirmed that ADAMTS-7 support 
VSMCs migration and post injury neointima 
production via degradation of the matrix pro-
tein ‘Cartilage Oligomeric Matrix Protein’ 
(COMP or TSP-5) [73, 167]. Same researchers 
demonstrated that ADAMTS-7 breaks down 
the TSP-1 with re-endothelialization preven-
tion [73, 168]. Also, the extracellular proteases 
thrombin, cathepsins, leukocyte elastases and 
plasmin can degenerate the TSPs [169].

Autophagy is defined as the intracellular pro-
cess that removes needless cytoplasmatic compo-
nents by lysosomes [144]. To date, the 
ubiquitin-proteasome system (UPS) and the 
autophagic-lysosomal pathway (ALP) are two 
major pathways in charge for most cellular pro-
teins deterioration. Modifications of UPS and 
ALP pathways are correlated with the increase of 
proteotoxic defective proteins in the heart, a char-
acteristic of frequent heart disease [144]. Acute 
ALP inhibition (proteasome inhibition) boost 
occasionally ‘intrinsic proteasome peptidase 
activities’, but chronic ALP inhibition blocks 
UPS pathway functioning in ubiquitinated pro-
tein stage [144]. As a result, autophagy has a sig-
nificant function in proteotoxicity prevention by 
the ubiquitin system [144], and chaperones (heat 
shock protein-HSP) [145]. Particularly, the co-
chaperones Bag3 and HspB8 have significant role 
in the heart autophagy by chaperone-assisted 
selective autophagy [170, 171]. Regardless of 
myocyte death, the gradual decrease of CMs thas 
a significant function in CR and could be a poten-
tial target for therapeutic interventions.

4.4	 �Fibrosis

Just as RV fibrosis is commonly seen in the set-
ting of both severe RV afterload and chronic 
pulmonary regurgitation, LV fibrosis is com-
mon in both aortic stenosis and regurgitation 
[172–174]. At the site of MI, acute focal fibrotic 
scarring provides myocardial healing and pre-
vents rupture [175]. In contrast, chronic diffuse 
or focal reactive myocardial fibrosis is a result 
of either pressure overload or volume overload 

due to persisting hypertension, metabolic dis-
orders, valvular heart diseases, ischemic injury 
(in areas remote from the infarction), or diffuse 
myocardial diseases, such as cardiomyopathies 
[175].

Myocardial fibrosis is defined by dysregulated 
collagen turnover characterized by increased 
synthesis that dominates over unaffected or 
reduced degradation [176, 177] with excessive 
diffuse collagen accumulation in the interstitial 
and perivascular spaces [178]. For that reason, 
the dysregulation of distinct pro- and antifibrotic 
factors, including cytokines and chemokines, 
growth factors, proteases, hormones, and ROS, is 
responsible for the alteration of the collagen 
matrix (Fig. 4.11) [179, 180].

The degeneration of collagen turnover takes 
place mainly in phenotypically transformed fibro-
blasts, termed MyoFb [79, 181]. The shift of CFs 
in MyoFb implies the expression of α-SMA, a 
characteristic of SMCs [79, 181–186]. As well as, 
the development of a wide active ER stimulated 
by a number of bioactive effectors [79, 181–186]. 
CFs and particularly MyoFb form collagen type 
I and III fibrils and develop into cross-linked to 
form the final fibres [176]. Collagen cross-linking 
is a significant post-translational stage that raises 
the resistance of collagen fibres to degradation by 
MMPs [187, 188]. Only that, myocardial fibrosis 
disrupts the myocardial architecture, contributes 
to myocardial disarray, and determines mechani-
cal [189], electrical [190, 191] and vasomotor 
[192] dysfunction, thus promoting the progres-
sion of cardiac diseases to HF [175]. Fibrosis is 
induced by various genetic disorders, pressure or 
volume stress, heart injuries, and other diseases. 
There is evidence that depending on the particu-
lar trigger, distinct molecular pathways have 
varying importance for the individual types of 
fibrosis. As the development of myocardial fibro-
sis is characterized by a complex dysregulation 
of a number of different factors including inflam-
matory chemokines, angiotensin II (Ang II), and 
endothelin signalling, the FIBROTARGETS con-
sortium that is a multinational consortium with 
industrial and academic partners, funded by the 
European Commission is primarily aimed for 
characterizing novel emerging mechanisms of 
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myocardial fibrosis [180]. Targets and biomarkers  
under investigation include especially proteins, 
proteoglycans, and microRNAs (miRNAs) [180].

In increased volume loading, the RV appears 
more prone than the LV to develop fibrosis [63]. 
Similarly, patients after surgical repair of TOF 
who have long-standing RV volume load second-
ary to pulmonary insufficiency develop RV fibro-
sis [172]. This is clinically important as risk 
factor for increased propensity to arrhythmias, 
exercise intolerance, and RVF [172, 193]. It has 

been suggested that these differences in response 
between the RV and LV to volume loading may 
stem from the different embryological origin of 
the two ventricles [63].

Several single or multimodal imaging technol-
ogies have been used to assess the extent and type 
of myocardial fibrosis. Besides the direct mor-
phological display of the fibrotic tissue, indirect 
cardiac functional imaging may evidence fibro-
sis correlated with decrease of systolic function 
and increased myocardial stiffness with diastolic 

Collagen

Elastin

Fibroblast

Proteoglycans

Myocytes Coll type IV and VI
Laminin

Proteoglycans
Coll type I and III

Fibronectin
Periostin
MMPsRenin, ACE

IL-6
TGF-β
TNFα

Renin, ACE
IL-6

TGF-β
TNFα

Mechanicalstress,
proteoglycans,fibronectin,
ROS, RAAS,TNFα,IL-1b,

TGFβ,PDGF

Myofibroblast

TGF-β
Cytokines
Growth factors
MMPs
Gal-3

Macrophages
Leukocytes
Mast cells

Fig. 4.11  Schematic representation of biochemical and 
cellular mechanisms of cardiac fibrosis. Under physiolog-
ical conditions (left), fibroblasts secrete extracellular pro-
collagen chains into the interstitium that assemble into 
fibrils and are cross-linked by lysyl oxidase. Several cell 
types are implicated in fibrotic remodelling of the heart 
either directly by producing matrix proteins (fibroblasts), 
or indirectly by secreting fibrogenic mediators (macro-
phages, mast cells, lymphocytes, cardiomyocytes, and 
vascular cells). Under pathological conditions (right), 
alterations in the matrix environment, induction and 
release of growth factors and cytokines, and increase of 
mechanical stress dynamically modulate fibroblast trans-

differentiation into myofibroblasts. Higher collagen cross-
linking results in increased myocardial tensile strength. 
Resistance to degradation by matrix metalloproteinases 
(MMPs) increases cross-linked collagen, which favours 
matrisome expansion. Pink, grey, and green boxes list part 
of the secretome of mycocytes, myofibroblasts, and mac-
rophages/leucocytes/mast cells, respectively, that trigger 
and maintain fibrosis. Gal-3 galectin-3, IL interleukin, 
PDGF platelet-derived growth factor, RAAS renin–angio-
tensin–aldosterone system, ROS reactive oxygen species, 
TGF transforming growth factor, TNF tumour necrosis 
factor. (From Gyöngyösi et al. [179]. It is an open access 
article)
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dysfunction [175]. Cardiac magnetic resonance 
imaging (MRI) provides detailed tissue charac-
terization, identifying focal myocardial fibrotic 
scars with late gadolinium enhancement (ventric-
ular LGE) and an estimation of diffuse myocar-
dial fibrosis with post-contrast enhanced T1 and 
T2 mapping (Fig. 4.12) [179, 194].

Positron emission tomography (PET) imag-
ing performed by using 15O-labelled water 
(H2

15O) and carbon monoxide (C15O) allowed 
the non-invasive quantification of both myocar-
dial perfusion and fibrosis [195]. Combining 
PET and MRI has the potential for sensitive and 
quantitative imaging of cardiovascular anatomy 
and function with detection of molecular events 
at the same time [196, 197]. It’s worthwhile to 
specify that PET–MRI (Biograph mMRI, 
Siemens AG) image allows the simultaneous 
detection of myocardial global and regional 
function, ECM volume, and tissue perfusion and 
metabolism [198].

Histopathological analysis of endomyocardial 
biopsy specimens is the current gold standard for 
diagnosis and assessment of cardiac fibrosis. A 
number of circulating biomarkers, including 
(pro-) collagen cleavage products, processing 
enzymes, but also miRNAs (Table  4.3), have 

been proposed and analysed [179]. Details of 
these biomarkers and potential targets have been 
described previously including proteins and pro-
teoglycans that impact fibrosis and miRNAs that 
act in fibrosis [180]. For their use as cardiac 
fibrosis biomarkers, it seems reasonable that a 
combination of several from these increases the 
predictive power, particularly in the case of miR-
NAs [199, 200].

As a consequence, the treatment of HF patients 
improves clinical symptoms, but does not reverse 
fibrosis. Furthermore, the severity of histological 
proven myocardial fibrosis has been reported to 
be associated with higher long-term mortality in 
patients with cardiac diseases, mainly patients 
with HF [200, 201].

4.4.1	 �miRNAs

Genetic variations exist among the RV and 
the LV.  Drake et  al. [71] note the dissimilar-
ity between gene expression patterns in normal 
RV and LV in both mRNA and microRNAs 
(miRNA) types. More precisely, the transcrip-
tion factor Irx2 is not exhibited in the RV but 
insulin-like growth factor 1 (IGF-1) is exhibited 

a b c

Fig. 4.12  Representative native and T1 cardiac magnetic 
resonance imaging (cMRI) of diffuse myocardial fibrosis. 
(a) Diffuse myocardial fibrosis on the short-axis view of 
the cMRI image, with the circumference of the anterosep-
tal myocardial area (region of interest). (b) cMRI T1 map 

of a patient with moderate aortic stenosis and moderate 
diffuse myocardial fibrosis. (c) cMRI T1 map of another 
patient with severe aortic stenosis and severe diffuse 
fibrosis of the left ventricle. (From Gyöngyösi et al. [179]. 
It is an open access article)
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mainly in the LV.  Moreover, same team made 
the assumption that these dissimilarities can be 
the result of different embryologic origin or the 
RV is a low-pressure chamber compared to the 
LV. Also, Reddy et al. [66] demonstrated firstly 
that changes in miRNAs exist in RV remodeling 
from RVH to RVF and are mostly comparable to 
pressure-stressed LV but with separate signalling 
regulatory pathways.

RV dysfunction is described entirely in RV 
obstruction or PAH [21]. Only that, all patients 
with RV dysfunction are put together regardless 
of the fact that CHD have various functional, 
molecular and cellular remodelling patterns in 
the RV [21] (Fig. 4.13). Blood biomarkers, sim-
ilar to plasma proteins and miRNAs represent 
an important way to evaluate the function and 
remodelling of RV [21]. Heart miRNAs are 

Table 4.3  Potential circulating biomarkers for assessment of cardiac fibrosis

Biomarker candidates Role and correlation to fibrosis
Evidence of associatioan  
with myocardial fibrosis

ECM formation

1. �Procollagen type I C-terminal 
propeptide (PICP)

1. �Cleaved enzymatically from procollagen I 
(collagen biosynthesis)

1. Yes

2. �Procollagen type I N-terminal 
propeptide (PINP) Unknown

2. Unknown

3. �Procollagen type III N-terminal 
propeptide (PIIINP)

3. �Cleaved enzymatically from procollagen III 
(collagen biosynthesis)

3. Yes

4. �Collagen type I C-terminal 
telopeptide (CITP)

4. �Cleaved by MMP-1 (collagen I degradation), 
PICP:CITP ratio corresponds to  
collagen turnover

4. Inconclusive

Fibrolytic enzymes

1. MMP-1 and other MMPs 1. Degrades collagens I, II, and III 1. Unknown

2. TIMP-1 and other TIMPs 2. Inhibits MMPs 2. �No (TIMP-1),  
unknown (others)

miRNAs

1. miR-21 1. �Correlation with fibrosis in aortic stenosis 1. Inconclusive

2. miR-29a 2. �Correlation of plasma levels with 
hypertrophy and fibrosis in HCM, reduced 
cardiac expression

2. Unknown

3. miRNA panels 3. �Concomitant quantification of several 
miRNAs increases the diagnostic and 
prognostic value

3. Unknown

Others

1. TGF‐β1 1. �Promotes myofibroblast transactivation and 
ECM synthesis, deactivates macrophages

1. Inconclusive

2. Osteopontin 2. �Matricellular protein involved in  
macrophage regulation

2. No association

3. Galectin‐3 3. �Galactosamine binding protein associated 
with collagen deposition of fibroblasts

3. Inconclusive

4. Cardiotrophin‐1 4. �Cytokine associated with cardiac fibrosis 4. No association

5. Natriuretic peptides 5. �Triggered by myocardial stretch, correlate 
with HF

5. Unknown

From Gyöngyösi et al. [179]. It is an open access article
ECM extracellular matrix, HF heart failure, HCM hypertrophic cardiomyopathy, miRNA microRNA, MMP matrix 
metalloproteinase, TIMP tissue inhibitor of metalloproteinases, TGF transforming growth factor
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constant and quantifiable discharged in the blood 
flow as exosomes, microvesicles or joining with 
high-density lipoproteins (HDL) and RNA-
binding proteins [21].

There are numerous disrupted miRNAs during 
CR and RHF [21, 202–205] (Fig. 4.14). miRNAs 
are non-coding single-stranded RNAs formed from 
19–24 nucleotides that adjust in the negative way 
the exhibition of a particular mRNA via transla-
tional degeneration or suppression [206]. According 
to data, there have been shown in children with 
VSD in comparison with controls eight various 
miRNAs. Particularly, NOTCH1 is implied in ven-
tricular growth, and GATA4 has an important func-
tion in atrial and ventricular growth, heart partition, 
and atrioventricular valve development [21, 207].

A low number of studies have studied the 
blood miRNAs in adult patients diagnosed with 
systemic RV [21]. Patients with the RV as the SV 
after transposition of the great arteries (TGA) 

had altered miRNAs profile. On the whole, from 
the 24 miRNAs various regulated, miRNA18a 
and miRNA486-5p related negatively with sys-
temic ventricular contractility [21, 208]. Also, 
miRNA423_5p defined as a biomarker of LVF, 
has same expression in healthy adults and in SV 
after atrial repair of TGA adults [21, 209].

It seems that gene expression in signalling is 
changed in heart growth of children with TOF 
[21]. Alteration of VEGF gene expression and of 
a number of ECM proteins is established as con-
tributors of TOF [92]. Important inhibition of 
genes in the Notch and Wnt pathways implied in 
heart growth are also found in children with TOF 
[21, 93]. Even if RVH is a component of TOF, 
there is a clear molecular difference between 
TOF and RVH gene expression, including VSD 
and ASD [21]. Whereas TOF children have 
unregulated genes for heart growth such as SNIP, 
A2BP1 and KIAA1437, RVH has a higher 
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Fig. 4.13  Dysregulated miRNAs in congenital heart 
diseases (CHDs). A figure showing the link between 
CHD and miRNAs in cardiomyocytes. Small number 
of miRNAs are upregulated in cardiomyocyte during 
CHD.  These miRNAs can be released from the cell in 
microvesicles, by incorporation into exosomes, by link-
age to high-density lipoproteins or bound to RNA-binding 

proteins. Dysregulated levels of miRNAs, crucial in RV 
development, are found in the bloodstream of children 
with VSD. The differentially expressed has-miR-222-3p, 
has-let-7e-5p and has-miR-433 bind with specific tran-
scription factors (NOTCH1, GATA4, HAND1 and ZFPM) 
associated with RV morphogenesis. (From Iacobazzi et al. 
[21]. It is an open access article)
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expression of genes implied in stress reaction and 
cell proliferation [21, 94]. What’s more, there is a 
molecular conversion from RV to LV features 

that appears during RV adjustment to pressure 
overload, as a result dysregulated gene pheno-
type from RVH is same with normal LV [21]. 
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Fig. 4.14  Functional role of miRNAs in the normal and 
diseased heart. A normal and a hypertrophic heart are 
shown in schematic form, depicting miRNAs that contrib-
ute to normal function or pathological remodelling. The 
expression of selected miRNAs within the heart is shown, 
along with their corresponding functions. All arrows 
denote the normal action of each component or process. 
miR-1 and miR-133 are involved in the development of a 
normal heart (left) by regulating proliferation, differentia-
tion and cardiac conduction. For example, proliferation is 
promoted by cell-cycle regulators, but miR-1 and miR-
133 block these regulators, thus blocking proliferation. 
miR-208a also contributes to the regulation of the conduc-
tion system. After cardiac injury (right), various miRNAs 

contribute to pathological remodelling and the progres-
sion to heart failure. miR-29 and miR-21 block and pro-
mote cardiac fibrosis, respectively. miR-29 blocks fibrosis 
by inhibiting the expression of ECM components, whereas 
miR-21 promotes fibrosis by stimulating mitogen-acti-
vated protein kinase (MAPK) signalling. miR-208 con-
trols myosin isoform switching, cardiac hypertrophy and 
fibrosis. miR-23a promotes cardiac hypertrophy by inhib-
iting ubiquitin proteolysis, which itself inhibits hypertro-
phy. Hypoxia results in the repression of miR-320 and 
miR-199, which promote and block apoptosis, respec-
tively. ECM extracellular matrix, LV left ventricle, MHC 
myosin heavy chain, RV right ventricle. (From Small et al. 
[205] with permission)
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Another study based on cardiac tissues from RV 
in CHD [95], found dissimilar miRNAs in RV 
outflow tract obstruction (RVOT) in comparison 
with RVOT of normal infants [210]. Specifically, 
miRNA-424 and miRNA-222 had higher expres-
sion and they correlated with the decrease of 
heart growth being correlated with NF1 and 
HAS2 genes. Correspondingly, the increased 
expression of miR-421  in RV tissue from chil-
dren with TOF is correlated with SOX4 gene nec-
essary for cardiac outflow tract formation 
(Fig. 4.14) [21, 211, 212].

miRNA 133a is thought to suppress cardiac 
fibrosis and is decreased in LVF secondary to aortic 
constriction [213, 214]. This aligns with the marked 
upregulation of connective tissue growth factor/
CCN2 and other profibrotic signalling molecules in 
the course of RV and LV fibrosis in models of RV 
afterload and RVF [71, 88, 215]. In contrast, miRNA 
21 and 34c* may increase during LVF but decrease 
in RVF [71]. Reddy et al. [66] investigated miRNAs 
during the transition from RVH to RVF and com-
pared these with miRNA expression in LVH or 
LVF. During RVH, there was altered expression of 
miRNAs 199a-3p, which is associated with CM sur-
vival and growth. With the progression to RVF and 
switching on the foetal gene phenotype, there was 
increased miRNA 208b, miRNA 34, miRNA 21, 
and miRNA1, which are associated with apoptosis 
and fibrosis [83]. These patterns of miRNA expres-
sion are largely related to LVH and LVF. Conversely, 
there are important distinction relating RV and LV 
miRNAs linked to cell survival, proliferation, metab-
olism, ECM production, and proteasome malfunc-
tion (miRNA 28, miRNA 148a, and miRNA 93), 
which were unregulated in RVH or RVF and down-
regulated or unchanged in LVH or LVF [66].

Common findings in both RVH and LVH are 
collagen deposition, fibrosis, and ECM remodel-
ling [216]. The mechanisms inducing fibrosis are 
multiple, and in the setting of increased ventricu-
lar afterload, recognized triggers may include 
regional ischemia, necrosis, and apoptosis, 
among others [176]. There is an important match 
of the miRNA expression phenotype in human 
HF and foetal hearts in comparison with the adult 
normal heart tissue [204]. More studies data are 
necessary for a higher knowledge of these sub-

cellular events that can guide to the development 
of new ventricle-specific treatments [217].

4.5	 �Other Factors

Factors that can also contribute to CR comprise 
endothelin, cytokines (tumor necrosis factor-
alpha-TNFα and interleukins) [218], oxidative 
stress, MMPs, and peripheral monocytosis [219].

Endothelins (ET) are powerful vasoconstrictor 
peptides which increase in HF.  The endothelin 
family of peptides is typically recognized for its 
vasoconstrictive properties. There are two known 
receptors for ET-1 in the heart, the ETA and ETB 
receptors, which have been shown to play differ-
ing and sometimes opposing roles. Importantly, 
ET-1 activation of the ETA receptor is known to 
increase collagen production in isolated human 
CFs [220]. Furthermore, MyoFb isolated from 
scar tissue after experimental MI have elevated 
levels of ET-1, suggesting an important function 
for ET within these cells [221].

ET-1 is a 21-amino acid peptide formed and 
discharged by the ECs and it has a quickest 
vasoconstrictive effect [222]. Cardiac ET-1 is 
active in both autocrine and paracrine effects by 
attaching to ETB receptors from cardiac ECs and 
ETA receptors from CMs [222]. The attachment 
of ET-1 to ETB receptors causes the discharge 
of signalling molecules such as NO and pros-
taglandin I2 [222]. If ET-1 attaches to the ETA 
receptors from CMs, it triggers CM constriction 
[222, 223]. As a consequence, there may exist 
a feedback mechanism concerning cardiac ECs 
and CMs that run CM constriction by the ET-1 
system [222]. Also, patients with HF have raised 
exhibition of cardiac ET receptors and raised 
plasma ET-1 levels, both linked with disease 
severity [224]. ET antagonists they will be addi-
tionally efficacious in the treatment of pathologi-
cal fibrosis in the heart [225]. Preliminary trials 
in humans had demonstrated beneficial hemody-
namic and cardiac effects in patients with end-
stage HF [226].

Cytokines (tumor necrosis factor-alpha TNFα 
and interleukins) are small peptides or glycopro-
teins that are discharged by nucleated cells [227]. 
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Their temporary discharge adjust immune or 
repair processes by controlling cells growth, pro-
cess of differentiating, metabolism, and protein 
synthesis [228]. Fibrinogen is an acute inflamma-
tory regulator discharged by hepatocytes trig-
gered by different cytokines. Also, CRP is an 
acute-phase reactant synthesized and discharged 
largely by hepatocytes in response to the cyto-
kine IL-6. The highest levels of CRP are corre-
lated with MI size but are reduced by early 
reperfusion [229]. It seems that IL-3 is a new bio-
marker of inflammation and can induce the mul-
tiplication of lymphocytes, macrophages, 
neutrophils, and monocytes with infiltration of 
heart where trigger the discharge of cytokines 
from CMs. Moreover, IL-3 can have significant 
functions in tissue repair. Understanding better 
inflammatory response could offer measurable 
ways of immune injury to tissues.

Leukocytosis was studied especially in MI 
[230, 231]. The ischemic-reperfusion stage pro-
duces the discharge of oxygen free radicals, cyto-
kines, and other inflammation markers [231]. 
The presence of leukocytes in the microcircula-
tion is followed by inflammatory reaction [232]. 
The transfer of leukocytes from blood flow to the 
vessel wall with tissue injury and inflammation is 
regulated by the selectin family of adhesion  
molecules with attachment of leukocytes to the 
ECs by involvement of integrins and diapedesis 
[233, 234]. Recruitment of leukocytes is medi-
ated by complement triggering, TGF-β, IL-8, 
monocyte chemotactic protein-1 (MCP-1), and 
platelet activating factor (PAF) [235]. Also, the 
collection of neutrophils in the ischemic-reperfu-
sion tissue could discharge proteolytic enzymes 
or ROS with further injury of myocytes. ROS 
directly injure CMs and vascular cells, and by 
triggering cytokines causes inflammation [236, 
237]. Marginated neutrophils exert powerful 
cytotoxic effects through the adhesion with inter-
cellular adhesion molecule-1 (ICAM-1) express-
ing CMs [235]. CD11b/ICAM-1 adherence 
activates the neutrophils respiratory burst result-
ing in myocyte oxidative injury [235].

Oxidative Stress produces important alteration 
of sarcolemmal and sarcoplasmic reticulum (SR) 
membrane, causing raise of intracellular Ca2+ 

levels with severe contraction of CMs, followed 
by mitochondrial damage and cell death [238, 
239]. Specifically, ROS and redox signaling have 
an important function in apoptosis, including 
upstream signaling pro-apoptotic pathways and 
the mitochondria [240, 241]. There are signaling 
pro-apoptotic pathways that comprise the activa-
tion of ASK-1, JNK, p38MAPK, and CaMKII, as 
well as signaling anti-apoptotic pathways, such 
as Akt, Bcl2, and HSPs [241].

The cell resources of ROS comprise mito-
chondrial respiratory chain enzymes, xanthine 
oxidases (XOs), lipoxygenases, myeloperoxi-
dases, uncoupled nitric oxide synthases (NOSs), 
and Nox proteins [242, 243]. Moreover, the 
important sources of ROS in the cardiovascular 
system comprise mitochondria, NADPH oxi-
dases, NOSs, xanthine oxidases, cytochrome 
P450-based enzymes, and infiltrating inflamma-
tory cells [243]. ROS are represented by free 
radicals (species with one or more unpaired elec-
trons) such as superoxide (O2•−) and hydroxyl 
radicals (OH•), and nonradical species such as 
hydrogen peroxide (H2O2) [243]. In healthy 
adults, production of ROS is inhibited by enzy-
matic and nonenzymatic antioxidant systems that 
decrease ROS levels with preserving of a right 
redox balance in cells and tissues [243].

The first report of the presence of NADPH 
oxidases in human myocardium is of Heymes 
et al. [244]. NADPH or NADH-dependent ROS-
generating activity are existent in nonphagocytic 
cell types [243], including VSMC [245, 246], 
ECs [247, 248], adventitial and CFs [249], and 
CMs [250]. Noxs are multi-subunit transmem-
brane enzymes that use NADPH as an electron 
donor to decrease oxygen to superoxide anion 
(O2−) and hydrogen peroxide (H2O2) [243]. 
Firstly, Noxs were described in phagocytes with 
the description of the Nox2 isoform that it also 
named gp91phox) [243, 251]. The rest comprise 6 
other family members each coded by dissimilar 
genes, identified as Nox1, Nox3, Nox4, Nox5, 
dual oxidase 1 (Duox1), and Duox2 [243, 252–
254]. All forms of Nox proteins demonstrate 
21–59% similarity to Nox2, from which Nox3 is 
most alike with Nox2 and Nox5 mostly unrelated 
[243].
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Therefore, the NADPH oxidase (Nox) family 
(Fig.  4.15) is formed from 7 catalytic subunits 
termed Nox1-5 and Duox1 and Duox2 (for Dual 
Oxidase), regulatory subunits p22phox, p47phox or 
Noxo1, p67phox or Noxa1, p40phox. Further, the 
Nox1, 2, 4 and 5 enzymes are existent in normal 
cardiovascular tissues, and trigger the progres-
sion of cardiovascular disease. Nox enzymes are 
located in VSMCs, ECs, adventitial fibroblasts, 
macrophages, CMs and fibroblasts, plus adipo-
cytes and stem cells. They are associated with 
hypertension, atherosclerosis, HF, ischemia 
reperfusion injury and CR, but upregulation can 

be physiologically beneficial such as in angio-
genesis [243, 244, 255, 256]. The acutely upregu-
lation of cardiovascular NADPH oxidase activity 
by a large various patho-physiological stimuli 
comprise [243] (a) G-protein coupled receptor 
agonists such as Ang II and ET-1; (b) growth fac-
tors such as VEGF, thrombin, PDGF, and EGF; 
(c) cytokines such as TNF-β, IL-1 and TGF-β; (d) 
metabolic factors such as elevated glucose, insu-
lin, free fatty acids, and advanced glycation end 
products (AGE); (e) oxidized LDL, lysophospha-
tidylcholine, and hypercholesterolemia; (f) 
mechanical forces such as oscillatory shear 
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Fig. 4.15  Structure of NADPH oxidase in the heart. 
NADPH oxidase complex is composed of two major com-
ponents. Plasma membrane spanning cytochrome b558 
composed of p22phox and a Nox subunit (gp91phox (Nox2), 
Nox4) and cytosolic components composed of four regu-
latory subunits (p47phox, p67 phox, p40 phox and Rac1). The 
low molecular weight G protein rac1 participates in 
assembly of the active complex. Upon activation, cyto-
solic components interact with cytochrome b558 to form 

an active NADPH oxidase enzyme complex, resulting in 
release of ·O2−. The primary Nox subunit isoforms in car-
diac cells are Nox2 and Nox4. Nox4 oxidase localizes 
intracellular organelles around the nucleus. The activity of 
Nox4 results in the direct release of hydrogen peroxide 
(H2O2) in mitochondria. The mechanisms underlying the 
generation of hydrogen peroxide by Nox4 oxidase are yet 
to be fully characterized. (From Kayama et  al. [255].  
It is an open access article)
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stress; and (g) ischemia-related stimuli such as 
nutrient deprivation, membrane depolarization, 
flow cessation, hypoxia–reoxygenation, and isch-
emia [243].

Nox2 and Nox4 are the mainly isoform 
exhibited in CMs. Triggered Nox2 is mainly 
exhibited at the plasma membrane [244]. 
According to data, Nox derived ROS are implied 
in CM apoptosis. Pro-apoptotic signaling path-
way and generation of CaMKII in pro-apoptotic 
signaling pathway are triggered both by Ca2+, 
by Nox2-derived ROS, and downstream of Ang 
II [257]. Norepinephrine,  aldosterone, and 
doxorubicin are also reported to promote CM 
apoptosis through the activation of Nox2 [258–
260]. Contrary to Nox2 function in Ang 
II-induced cardiac hypertrophy, Nox2 is not 
implied in cardiac hypertrophy induced by 
pressure overload (Fig. 4.16) [261]. The major 
agonists and stimuli of Nox2 activation in CMs 
and ECs comprise G-protein coupled receptor 
agonists (GPCRs) such as Ang II and ET-1, 
growth factors, cytokines (TNF-α), mechanical 
forces, metabolic factors (glucose, insulin), 
glycated proteins [262], and oxidized low-den-
sity lipoprotein (ox-LDL) (Fig. 4.17) [261, 263, 
264]. To sum up, evidence supports different 
functions for Nox2 and Nox4  in hypertrophic 
reaction to pressure overload [243]. Important 
redox-sensitive downstream signaling path-
ways in the heart that can be affected by 
NADPH oxidase activation such as RAS, the 
MAPKs (p38MAPK, ERK1/2, JNK), c-src, 
p90RSK, the PI3 kinase (PI3K)/Akt pathway, 
AP-1, NF-ĸB, HIF-1, and others [243].

In case of RV, metabolic and ischemic mod-
ifications typical to RV remodelling are also 
correlated with accumulation of ROS [21, 265] 
(Fig. 4.18). The presence of ROS activates the 
cellular and molecular modifications with 
decrease of contractile function, lacking of 
energy production and fibrosis. Alteration of 
SM channels by oxidative stress produces 
damaging of RyR2 activation and decrease of 
sarco/endoplasmic reticulum Ca2+-ATPase 
(SERCA) activity, as a result appears tempo-

rary malfunction of myocyte Ca2+ and contrac-
tile dysfunction [21, 92]. Additionally, 
increased ROS amounts cause conversion of 
nitrotyrosine rests in TIMPs and discharge 
active MMPs with CR and fibrosis [21, 266]. 
To date, vivo studies with histological exami-
nation of collagen content in RV samples from 
pulmonary artery showed a significant raise of 
ROS, important collagen deposition with high 
levels of MMP-2, MMP-9 and MMP-13 and 
diminished TIMP-4 protein amounts. 
Additionally, ROS are second messengers 
within CMs for numerous signalling molecules 
(ATII, TGFβ1, TNFα and ET-1) to generate 
hypertrophic pathways including MAPKs, 
PKC and Src [21, 62]. Taken together, raised 
amounts of ROS can damage cellular, molecu-
lar and structural components with CR and 
failure. It is important to underline that malo-
ndialdehyde levels represent an indirect index 
of oxidative stress and are notably elevated in 
the RV in comparison with the LV. To sum up, 
these features support a decreased resistance of 
RV in oxidative stress being a contributor in 
the development of HF [267].

Peripheral Monocytosis is a sign of mono-
cyte and macrophage infiltration of the necrotic 
myocardium which arises two to three days 
after an acute MI.  Likewise, a higher peak 
monocyte level is related with a larger LV end-
diastolic volume and inferior LVEF.  It was 
shown that a peak monocyte count ≥900/μL 
independently predicts HF, LV aneurysm for-
mation, and cardiac events [219]. It should be 
stressed that monocytes have the capacity to 
generate and discharge inhibitory mediators of 
inflammation such as IL-10 and TGF-β [268]. 
There are varied monocytes with different 
functions in inflammatory response showed in 
humans such as CD16-monocytes that exhibit 
important amounts of CCR2 with pro-inflam-
matory properties same to murine Ly6Chi cells 
[268]. Further, inhibition of inflammatory sig-
nal pathways is correlated with Ly6Clo/
CX3CR1hi monocytes entrapment that gener-
ates angiogenic mediators with infarct healing. 
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Fig. 4.16  Representative immunofluorescence micro-
graphs of human heart sections labeled for the nicotinamide 
adenine dinucleotide 3-phosphate (reduced form) oxidase 
subunit gp91phox. Panels a, c, e, and g show nonfailing heart 
tissue and panels b, d, f, and h show end-stage failing tis-
sue. Transverse (a, b) and longitudinal (c, d) sections 

labeled for gp91phox show increased labeling in end-stage 
heart failure. Labeling for alpha-actinin (e, f) shows a typi-
cal intracellular pattern of myocyte costamer and interca-
lated disc labeling. Panels g and h show suprerposition of 
gp91phox and alpha-actinin labeling. All scale bars = 20 μm. 
(From Heymes et al. [244] with permission.)
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On the other hand, in patients with ST eleva-
tion MI, CD14+/CD16-cells have an early peak 
and are negatively correlated with heart recov-
ery [269].

4.6	 �Factors Influencing Cardiac 
Remodelling

4.6.1	 �Myocardial Infarction

It is the most frequent condition in which CR 
comes about. Taken together, heart ischemia 
leads to ‘necrotic cell death’. Further, the post-
MI evolution implies apoptosis, inflammation, 
ECM remodelling, fibrotic scar formation, pro-
liferation and differentiation of MyoFb, angio-
genesis, and scar maturation [21]. All these 
reactions are determined to cause healing on 
short term, but they produce evolution to HF on 
long time. Therefore, after MI occurrence, the 
poor evolution continues with additional CR, 

hypertrophy, dilation, and systolic dysfunction 
[21, 73].

A number of innate immune pathways are 
triggered in MI [149]. It appears the produc-
tion of “damage-associated molecular patterns 
(DAMP)” by necrotic cells that further trigger 
membrane-bound “Toll-Like Receptors” (TLRs) 
[270, 271]. Also, among others innate immune 
pathways such as the “High mobility group 
box 1” (HMGB1), the “receptor for advanced 
glycation end-products” (RAGE) [21, 272] 
and the complement system are also triggered 
in the onset of inflammation after MI [21]. As 
a result, ROS are produced at ischemic injury 
with further activation of inflammatory signals 
pathways and myocardial dysfunction [149]. 
All triggered “innate immune pathways” set off 
Nuclear Factor NF-κB with further initiation of 
inflammatory cytokines and chemokines [273]. 
As already described, pro-inflammatory cyto-
kines significantly modulate the inflammatory 
reaction to cardiac ischemic injury. IL-1 triggers  
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Fig. 4.17  Schematic illustrating involvement of Nox2 
NADPH oxidase in the cardiac response to activation of 
the renin angiotensin aldosterone system (RAAS) or to 
chronic pressure overload. Hypertrophy in response to 
short-term RAAS activation is dependent upon Nox2, 

whereas the hypertrophic response to pressure overload is 
not. However, Nox2 is essential for the development of 
interstitial fibrosis in response to either stimulus. (From 
Murdoch et al. [261] with permission.)
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chemokines production in MI with entrapment 
of leukocytes [274]. An inactive precursor 
named pro-IL-1β generates active IL-1β by the 
converting enzyme caspase-1. Further, caspase-1 
function is strongly controlled in multiprotein 
complexes named “inflammasomes”, which fur-
ther monitor production of IL-1β [275]. In MI, 
“inflammasome” initiation is restricted only in 
leukocytes and CFs with IL-1-mediated inflam-
matory cell infiltration and cytokine production 
[276]. ROS production and K+ efflux have a sig-

nificant function in inflammasome triggering 
from CFs. Importantly, chemokines activation 
is a significant finding of post-MI inflammation 
[277]. The activation of chemokines receptors 
from leukocytes in MI exhibit a chemokines 
profile that controls the composition of the leu-
cocytes infiltrate. Therefore, neutrophils are trig-
gered firstly in MI followed by monocytes and 
lymphocytes. Apoptotic neutrophils as nega-
tive mediators of inflammation are exposed in 
Fig. 4.19 [149].
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Fig. 4.18  ROS-induced intracellular changes in cardio-
myocyte. The increased intracellular ROS levels occurring 
in RV pressure overload affect several cardiomyocytes 
functions. ROS can stimulate pro-hypertrophic pathways 
by targeting key molecules in this process, such as MAPK, 
PKC and Src proteins. The redox-mediated activation of 
target transcription factors (HIF-1α, cMyc and FOXO1) 
might be responsible for the abnormal PKD activation, 
which inhibits mitochondrial oxidative metabolism, lead-
ing to mitochondrial dysfunction. Sustained ROS levels 
cause mPTP opening and mitochondrial membrane depo-
larisation. As a consequence, more ROS are produced and 
cytochrome c is release from mitochondria causing cell 
apoptosis. HIF-1α activation also decreases the activity of 
the O2-sensitive Kv channel (Kv1.5), resulting into mem-
brane depolarisation and elevation of cytosolic Ca2+. The 
surplus of cytosolic Ca2+, in addition to the excessive Ca2+ 
released from the sarcoplasmic reticulum, as a consequence 
ROS-mediated RyR2 channel activation and SERCA inhi-
bition, contributes to myocytes contractile dysfunction. 

ROS are also responsible for the MMPs/TIMPs imbalance 
that drives ECM remodelling and fibrosis. Antioxidant 
compounds, like Folic acid or EUK-134, by scavenging the 
ROS in excess, can help restore the impaired cardiomyo-
cyte function. Furthermore, DCA can restore ROS produc-
tion and mitochondrial membrane potential by inhibiting 
PDK and thereby improving glucose oxidation. “Upwards 
arrow” indicates increase in levels; “Lowerwards arrow” 
indicates decrease in level. ROS reactive oxygen species, 
PCK protein kinase C, MAPK mitogen-activated protein 
kinase, mPTP mitochondrial permeability transition pore, 
PDK pyruvate dehydrogenase kinase, HIF hypoxia-induc-
ible factor, FOXO1 Forkhead box protein O1, cMyc v-myc 
avin myelocytomastosis viral oncogene homologue, RyR2 
ryanodine receptor 2, Kv 1.5 potassium voltage channel, SR 
sarcoplasmic reticulum, SERCA sarcoplasmic reticulum 
Ca2+-ATPase, MMP matrix metalloproteinases, TIMP tis-
sue inhibitor metalloproteinases, ECM extracellular matrix, 
DCA dichloroacetate, PKD protein kinase D. (From 
Iacobazzi et al. [21]. It is an open access article)
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The activation of neutrophils in the MI trig-
gers apoptosis. Shortly, they are eliminated in MI 
by macrophages which activate powerful inhibi-
tory pathways. Mediators such as TNF-α and 
IL-1β can maintain activated neutrophils in MI 
[278]. On the other hand, within 3–7 days after 
MI, the neutrophils undertake apoptosis [279].

4.6.2	 �Changes in Hemodynamic 
Load

In case of patients with anterior MI, the early LV 
dilation may be increased, as well as ventricular 
hypertrophy turns up to be a late and restricted 
modification during the first year [41]. Generally, 
the outcome of ongoing CR with ventricular dila-
tion and abnormal ventricular hypertrophy causes 
a significant growing in total LV wall tension [41, 
280]. As it will become evident, triggering of 
wall stress can activate further an amount of 
mechanisms that in the absence of any efficient 
therapy may cause further CR with progressive 
HF [50, 281].

4.6.3	 �Blood Pressure

Correspondingly, high blood pressure (BP)  trig-
gers structural modifications in the LVH with 
interstitial alterations, which further may pro-
duce diastolic dysfunction with HF. Additionally 
the functional effect of pressure overload hyper-
trophy may be determined by the features of the 
CR process. For example, if remodelling is 
eccentric with LV dilatation with normal relative 
wall thickness and raised wall stress [282], HF by 
a functional damage was described. On the other 
hand, HF does not occur in animals with concen-
tric CR defined as normal chamber volume, 
raised relative wall thickness and normal wall 
stress. Previous hypertension may be related with 
extensive damaging CR and progression of HF 
after MI.  This finding was shown by Richards 
et  al. in 1093 patients, where 68% experienced 
serial neurohormonal sampling and assessment 
of LV function one to four days and three to 
5  months post-MI [283]. In this study, in com-
parison with normotensives, hypertensive 
patients had significantly higher plasma levels of 

Neutrophil
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lipoxins IL-10
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chemokine scavenging
lactoferrin

Fig. 4.19  The role of neutrophil clearance in suppression 
of the inflammatory response. Abundant neutrophils infil-
trate the infarcted myocardium. Neutrophils are short-
lived cells that undergo apoptosis; dying neutrophils may 
contribute to repression of the post-infarction inflamma-
tory response through several distinct mechanisms. First 
apoptotic neutrophils may release lactoferrin, an inhibitor 
of granulocyte transmigration. Second, during clearance 

of apoptotic neutrophils, macrophages secrete large 
amounts of anti-inflammatory and proresolving mediators 
including IL-10, TGF-β and lipoxins. Third, expression of 
decoy cytokine receptors by neutrophils may promote 
cytokine scavenging. Increased expression of chemokine 
receptors (such as CCR5) in apoptotic neutrophils may 
serve as a molecular trap for chemokines terminating their 
action. (From Frangogiannis [149] with permission)
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neurohormones at serial sampling with a signifi-
cantly enhanced raise in LV volumes by remodel-
ling at five months. Conversely, only normotensive 
patients had a recovery in LV ejection fraction at 
five months. Also, previous diagnosis of hyper-
tension was related with a greater risk of HF 
necessitating hospitalization at a mean follow-up 
of two years (12.4 versus 5.5% in normotensives) 
[283]. Moreover, Cingolani et al. discovered that 
TSP-4 from CMs, adjusts cardiac contraction 
function to acute stress and it has a major role in 
chronic CR and HF [21, 284].

4.6.4	 �Neurohormonal Activation

Progressing HF is connected with an initially 
compensatory neurohumoral activation that may 
be a factor to the development of the structural 
defects. Both the sympathetic system and the 
renin–angiotensin–aldosterone system (RAAS) 
are implied in CR.  Triggering of both systems 
turns on intracellular signaling pathways that 
increase the production of protein in CMs and 
CFs, with hypertrophy, fibrosis, switching on of 
growth factors and MMPs [285–287]. Moreover, 
it appears hemodynamic overload by vasocon-
striction and water retention, raise of oxidative 
stress activity with direct cytotoxic effect, and 
apoptosis [285–287]. Therefore, the inhibition of 
these systems can has a major therapeutic role in 
attenuation or prevention of CR. Unfortunately, 
elevated plasma norepinephrine, renin activity, 
and antidiuretic hormone levels [288, 289] are 
indicators for poor survival in these patients 
[290]. Even if, neurohumoral activation is firstly 
adjustable, it is damaging over the long term by 
pathologic remodelling, especially in case of Ang 
II and norepinephrine [291]. The studies data are 
most convincing for the activation of the 
RAAS. Also, the plasma BNP concentrations are 
raised in progressive HF and interrelated with 
prognosis [292]. In spite of this, the release of 
BNP from myocytes in HF may defend against 
pathologic remodelling [293].

The RAAS has a significant function in the  
control of BP and electrolyte equilibrium. Within 
RAAS, Ang II produces triggering of sympa-

thetic nervous system with vasoconstriction, 
sodium and water retention, and anorexia [294]. 
The damaging effects of RAAS in cardiovascular 
tissues cause CR by local triggering of the RAAS 
with autocrine and paracrine mechanisms [295–
297]. Mainly, the pathophysiological effects of 
Ang II in the cardiovascular system are controlled 
by a member of the GPCR family termed the 7 
transmembrane (TM7) spanning AT1 receptor 
[296, 298, 299]. According to recent data, the 
mechanical stress together with systemically and 
locally Ang II cause by the triggering of AT1 
receptor, cardiac hypertrophy [295–297, 300]. It 
seems that studies with the AT1 receptor blockers 
(ARBs) as candesartan showed that switching off 
of triggered AT1 receptor by mechanical stress, 
notably reduced hypertrophic reaction in cultured 
CMs [301–303]. Therefore, mechanical stress 
causes cardiac hypertrophy in vivo by initiation 
of the AT1 receptor with no correlation of Ang II 
[295, 296].

Mechanical stretch and Ang II by attachment 
to the AT1 receptor causes to its structure to 
switch on with occurrence of Cys residues inside 
the ligand-binding pocket. Further, if mechanical 
stress continues, TM7 undertakes a counter 
clockwise rotation with a modification in the 
ligand-binding pocket [304]. It is not determined 
exactly by current studies the mechanisms by 
which mechanical stress activates the AT1 recep-
tor perceives its structure change, preparing for 
dissimilar initiation of particular intracellular sig-
naling mediators [303].

4.6.5	 �Role of Angiotensin II

Significance of angiotensin II (Ang II) in patho-
logic CR is demonstrated by data of large trials in 
humans that have been shown that angiotensin-
converting-enzyme inhibitors (ACEI) increase 
survival in HF by decrease or even reverse of 
some parameters of CR [305, 306]. Shortly, Ang 
II is produced and has locally and systemically 
effects. So that, mechanical stretch directly boost 
Ang II release from CMs [301]. Also, Ang II 
seems to sustain directly CR.  Previous studies 
have been showed that human CFs cultured from 
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cardiomyopathic and ischemic hearts have on 
CMs the expression of AT1 receptors [307, 308]. 
In fact, these CFs reply to Ang II with raise of 
collagen production by activation of AT1 recep-
tor [309–311]. Despite the fact that Ang II is pro-
duced locally or systemically, it may directly 
support CR. In fact, these CFs may reply to Ang 
II with AT1 receptor-mediated collagen synthesis 
[309–311]. On the other hand, Ang II acts via the 
AT1 receptor with boosting of protein synthesis 
and results in hypertrophy of CMs [309]. Both 
ACEI and Ang II receptor antagonists can reverse 
remodelling in HF [212].

Aldosterone secretion is increased by Ang II, 
and also may be a factor in CR. The heart con-
tains mineralocorticoid receptors and takes out 
aldosterone after a MI, supporting the post MI 
remodelling [312]. Moreover, the secondary 
hyperaldosteronism commonly seen in patients 
with HF may participate to cardiac hypertrophy 
and fibrosis [313, 314]. It should be stressed that 
the benefit effects connected with spironolac-
tone or eplerenone, which both link the miner-
alocorticoid receptor may result with diminished 
fibrosis [315].

4.6.6	 �Energy Metabolism 
and Cardiac Remodelling

Ischemia, pressure and volume overload are forms 
of stress that activates human heart to adapt its 
metabolic function to use glucose instead of the 
free fatty acids [316]. It seems that free fatty acids 
provide the highest quantity of ATP to human 
heart [317]. On the other hand, the glucose metab-
olism needs a reduced amount of oxygen consum-
ing for same quantity of ATP synthesis, being the 
most effective alternative in highest metabolic 
states such as short-term of severe cardiac stress 
[318]. As a rule, in normal heart, free fatty acids 
are the main energy substance representing about 
60–90% of energy reserves. Both free fatty acids 
and glucose metabolites undergo β-oxidation and 
glycolysis in the citric acid cycle, resulting in 
FADH2 and NADH. Finally, the obtained energy 
is accumulated and carried as phosphocreatine 
(Fig. 4.20) [319].

During stress is stopped the normal inhibition 
of glucose oxidation by free fatty acids [303]. It 
seems that the nuclear receptor peroxisome pro-
liferator-activated receptor-α (PPARα) is a  
significant contributory factor that changes from 
fatty acid metabolism to glucose metabolism 
[316, 320]. Further, Karbowska et al. showed on 
ventricular biopsies from 5 patients a 54% fall of 
PPARα protein levels in end-stage HF in com-
parison with controls [316, 321]. Therefore, CR 
implies cardiac dysfunction with energy loss due 
to the disproportion from the oxygen reserve and 
use, with a diminished free fatty acids oxidation 
and raised glucose oxidation [316]. In addition, 
β-oxidation fall leads to deposit of triglycerides 
and lipotoxicity, mitochondrial dysfunction 
[316]. Altogether, these modifications causes for 
myocardial proteins further low levels of energy 
reserves with oxidative stress and ROS, with 
their sides effects (Fig. 4.21) [316, 321–324].

In case of RV, the metabolism data is from the 
LV studies. As already described, the RV has 
smaller afterload than the LV due the decreased 
pulmonary vascular resistance [316]. Even if, RV 
and LV have similar stroke volumes, the RV has 
near 25% from the stroke volume of the LV 
because of the low PVR [316, 325]. Extensive 
“transcriptional, translational and energetic” dis-
turbances to physiologic and pathophysiologic 
stress occur in RV. The conversion from pressure 
overload and volume overload to cardiac hyper-
trophy and later RVF is correlated with the switch 
from free fatty acids to glucose metabolism for 
ATP production. As a result, the RVF is an 
energy-deprived state with deficient ATP 
amounts. For this reason, PET using specific 
radioactive tracers provides a complete descrip-
tion of RV metabolism [316]. These metabolic 
differences might corelate with the dissimilarities 
in ventricular wall stress and intraventricular 
pressure dynamics (Fig. 4.22) [316].

To sum up, metabolic alteration in the hypertro-
phied RV imitates metabolic alteration of the 
hypertrophied and failing LV [316]. Nagaya et al. 
[326] studied 21 patients with RVH due to PH by 
using magnetic resonance spectroscopic imaging 
(MRSI) that associates cardiac structure with met-
abolic function. They found important RV con-
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traction dysfunction in patients with altered 
myocardial free fatty acid metabolism. Further, in 
a study of 16 patients with idiopathic PAH, 
Bokhari et  al. proved that PET imaging is for 
determining myocardial glucose assimilation and 
use [316, 327]. They demonstrated that RV glu-
cose usage is associated with hemodynamic 
parameters such as mean PA pressure, doubtlessly 
implying that RV dysfunction is switched on myo-
cardial glucose metabolism and being a sign of RV 
dysfunction. Can et  al. [328] have been demon-
strated same features on 23 patients with PAH and 
16 healthy controls evaluated by PET. Their results 

established that raised fludeoxyglucose (18F) 
increase in the RV myocardium were connected 
with raised RV loading conditions and with the 
existence of elevated pulmonary artery pressures 
but not with their stage [316, 328].

Also, MRSI for the study of myocardial triglyc-
eride load demonstrated an accurate statistically 
significance correlation with triglycerides from RV 
biopsy [316, 329]. Currently, no other study tried to 
measure in the RV the lipid transitional products.

It is not determined if cardiac metabolic altera-
tions maintain during the development of RVH, 
that is characterized by important decrease of CO, 
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Fig. 4.20  Schematic representation of classic pathways 
of cardiac metabolism. Substrates are transported across 
the extracellular membrane into the cytosol and are 
metabolized in various ways. For oxidation, the respective 
metabolic intermediates (e.g., pyruvate or acyl-CoA) are 
transported across the inner mitochondrial membrane by 
specific transport systems. Once inside the mitochon-
drion, substrates are oxidized or carboxylated (anaplero-
sis) and fed into the Krebs cycle for the generation of 
reducing equivalents (NADH2 and FADH) and GTP. The 

reducing equivalents are used by the electron transport 
chain to generate a proton gradient, which in turn is used 
for the production of ATP. This principal functionality can 
be affected in various ways during HF thereby limiting 
ATP production or affecting cellular function in other 
ways (see text and further Figures for details). IMS mito-
chondrial intermembrane space, GLUT glucose trans-
porter, FAT fatty acid transporter, MPC mitochondrial 
pyruvate transporter. (Illustration Credit: Ben Smith). 
(From Doenst et al. [319] with permission)
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increase of RV filling pressure and raised fibrosis 
[21, 330]. Consequently, RVH is correlated with 
increased mitochondrial ROS, which downregu-
lates HIF1α and triggers p53 pathways, in the end 
with dysregulated pyruvate dehydrogenase kinase 
(PDK) and diminished glucose uptake [21, 331]. 

Raised PDK expression is a frequent feature in 
RVH during glucose oxidation, as a result there is a 
decrease in mitochondrial respiration [21, 330]. A 
number of clinical trials directed on molecular dys-
function in RVH and RV failure are undergoing, 
even if the precise outcomes for pharmacologic 
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Fig. 4.21  Overview of metabolic remodeling and pro-
posed mechanisms linking it to other processes in the pro-
gression to HF. Metabolic pathways are blue. Bold lines 
indicate pathways/processes that are increased or domi-
nant. Thin lines represent pathways/ processes that are 
decreased. The question marks imply unknown causes/ 
effects. In general, metabolic remodeling in cardiac hyper-
trophy and failure is characterized by a shift away from 
energy production to activation of biosynthetic pathways 
required for structural remodeling processes such as ven-
tricular hypertrophy and fibrosis. Particularly, fatty acid 
oxidation is decreased and may not be sufficiently com-
pensated given the lack of increase in glucose oxidation. 
These alterations and further mitochondrial defects result 
in ATP depletion. Instead of being oxidized, pyruvate may 
be preferentially used for anaplerosis to maintain Krebs 
cycle moieties, which might be increasingly channeled 

into protein synthesis. Hypertrophic mediators such as 
MAPKs and NFAT are activated as a result of increased 
mitochondrial ROS and flux through the HBP, respec-
tively. Overproduction of mitochondrial ROS causes oxi-
dative damage. Although the flux through the PPP is 
increased, anti-oxidative defense might be inadequate due 
to the consumption of NADPH by the anaplerotic malic 
enzyme. Mitochondrial damage and ATP depletion may 
stimulate autophagy. Increased activity of autophagy and 
the UPS may contribute to hypertrophy by providing 
amino acids and other metabolites. Increase in mitophagy 
may trigger myocardial inflammation by releasing mito-
chondrial DNA. H hexosamine biosynthetic pathway 
(HBP), P pentose phosphate pathway (PPP), G glycolysis, 
A anaplerosis, O oxidation, ETC electron transport chain, 
ROS reactive oxygen species, UPS ubiquitin-proteasome 
system. (From Doenst et al. [319] with permission)
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involvements on RV abnormal metabolism are not 
determined [316].

4.6.7	 �Electrical Remodelling 
in Cardiac Remodelling

As already been described, the functional, struc-
tural, and electrical modifications of CMs to stress 
described by hypertrophy, HF, and ischemia 
define CR, which disposes to raised occurrence of 
ventricular ectopy and arrhythmias. “Arrhythmia-
induced changes in the electrophysiological prop-
erties of heart tissue which predisposes to an 
increased frequency of ventricular ectopy and 
arrhythmias are referred to as electrical remodel-
ling” [332].

Specifically, Na+-Ca2+ exchanger (NCX) 
mediates intracellular Ca2+ concentration and its 
activity is controlled by intracellular concentra-
tions of Ca2+, Na+, ATP, pH, and phosphorylation 
of NCX, all being modified in HF [332]. 
Therefore, HF with contractile dysfunction and 

arrhythmogenesis may be explicated by ampli-
fied NCX and diminished SERCa2+a function, 
consequently with raised Ca2+ discharge from 
CMs and delayed afterdepolarizations [332–
334]. Also, during cardiac diastole dysfunction, 
NCX sustains Ca2+ transportation from intracel-
lular space and diminishes SERCa2+a function 
[332, 333]. It has to be underlined, that NCX 
activity is mediated in cardiac hypertrophy, func-
tion sustained by diminished NCX activity but 
with raised NCX protein and transcript levels 
[332]. It seems that calcineurin inhibition weak-
ens the boost of NCX1 transcript and protein lev-
els correlated with pressure overload, advocating 
that calcineurin is vital in the adjustment of 
NCX1 transcript synthesis and degeneration 
[332, 335].

Also, there is a diminished expression and 
function of Na+-K+ATPase in HF [332, 336] that 
make susceptible cardiac tissue to arrhythmias by 
raised action potential duration, and increased 
depolarizing current, and extracellular K+ [332]. 
According to experimental cardiomyopathic 
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studies, ETA receptor blockers demonstrated to 
stop electrical remodelling and ventricular 
arrhythmias by diminishing K+ and Ca2+ current 
expression, rising QT interval and action poten-
tial duration [332, 337].

Electrical anisotropy caused by myocardial 
fibrosis and modifications of intracellular Ca2+ 
could produce the electrophysiological remodel-
ling and arrhythmias from hypertrophy [332]. 
Further, modification of the collagen amount, 
type, and cross-linking is correlated with myo-
cardial fibrosis and CR with electrophysiological 
abnormalities [338].

RVH, dilation, and septal displacement also 
create RV dyssynchronous motion [339–341] and 
dyssynchronous RV-LV contraction [341–343]. 
Delayed RV lateral wall contraction and interven-
tricular dyssynchrony in PAH are not related to 
QRS duration or abnormal electric activation such 
as left bundle-branch block but rather to RV wall 
stress, septal shift, LV end-diastolic volume, and 
stroke volume [342, 343]. These ventricular-ven-
tricular interactions almost certainly increase the 
ratio of systolic to diastolic duration because 
interventricular dyssynchrony is related to length-
ening of the RV contraction [343].

To sum up, existing data supports that myocar-
dial hypertrophy form determines the electrical CR 
and the reverse of it [332, 344]. Nevertheless, in 
pressure-overload states with reverse of hypertro-
phy is correlated with the reverse of the electrical 
remodelling [345–347]. However, the dissimilarity 
between the reverse of electrical remodelling in 
pressure-versus volume-overload states is unknow-
able [332]. Both structure and electrical CR should 
be regarded as independent clinical disorders [332]. 
The assessment of risk factors for arrhythmias has 
a significant function in the regress of hypertrophy 
and the electrical CR [347].

4.6.8	 �Coronary Vascular 
Remodelling in  
Cardiac Remodelling

Coronary vascular remodelling causes adjustable 
reactions such as the rapid adaptation of vessel 
diameter by modifications in smooth muscle tone, 

changes in vessel diameter structure, adding or 
elimination of vessels by “angiogenesis (sprout-
ing/splitting)”, or “vascular pruning” [348]. It 
important to underline that physiological vascular 
adaptation keeps an appropriate perfusion, but 
vascular maladaptation takes place in disorders 
such as hypertension [348]. Also, regulatory 
mechanisms in larger vessels are different from 
microcirculation that has a vital role in physiolog-
ical vascular adaptation and pathological states 
[348]. Generally speaking, growing of size and 
number of microvessels during exercise or involu-
tion with microvascular remodelling because of 
constant decline of physical activity appear [349]. 
Reduction of epicardial arteries with hemody-
namic- and metabolic modifications causes pro-
cess of collateralization or arteriogenesis defined 
by “structural enlargement of arteriolar vessels 
and arterio-arterial anastomoses” [348, 350].

As a result, constant chronic remodelling of 
coronary vessels leads to over-prolonged modifi-
cations of vessels diameter with or without shifts 
in wall mass (Fig.  4.23) [348, 352, 353]. 
Therefore, coronary vessels adjust to mechanical 
stimuli, such as fluid shear stress acting on ECs, 
circumferential wall stress and metabolic signals 
[348, 354, 355].

Essentially, exposure of the LV to afterload 
stress causes firstly the development of new cap-
illaries or angiogenesis, to sustain the raised 
blood flow of hypertrophied CMs. In case of 
angionesis are implied raised production of the 
proangiogenic factors hypoxia HIF1α and 
VEGF. If the LV starts to fail, the capillary den-
sity starts to decrease. On the other hand, the cap-
illary density of the RV reduces with the 
beginning of pressure overload upsurge. RVF is a 
frequent side effect of chronic RV pressure over-
load with progression to RV ischemia. 
Specifically, increased pulmonary arterial pres-
sure boosts RV wall tension and oxygen demand 
in correlation with alteration of coronary blood 
flow. For instance, Eisenmenger’s syndrome pro-
duces a level of RV afterload same to idiopathic 
PAH, only that the survival is longer with latent 
overt RVF [356]. In addition, PAH during diag-
nosis protocol have different degrees of RVF 
even if the RV afterload is highly developed.
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4.7	 �Reverse Cardiac Remodelling

CR can be reversed with maximized therapy that 
initiates ongoing recovery of cardiac function and 
thus enhances prognosis of patients [357]. Even if, 
reverse CR could arise unexpectedly in heart 
pathologies, it is more frequently seen as reaction 
to medical, device-based, or surgical therapies, 
such as beta-blockers, cardiac resynchronization 
therapy (CRT), revascularization and valve surgery 
[358]. The various cardiac pathologies with noticed 
reverse CR prove that myocardial remodelling is 
bidirectional and takes place no matter of the myo-
cardial disease aetiology, length, and severity 
(Fig. 4.24) [358]. Moreover, prognosis is improved 
in patients with reverted heart dysfunction, for that 
reason reversal of CR should be the most important 
treatment aim. Therefore, effective treatment 
should reverse cardiac remodelling [359].

Both ACEI and Ang II receptor antagonists, 
also known as angiotensin receptor blockers 
(ARBs) have been utilized to prevent 
CR.  Preventing raised RAAS stimulation that 
may limit subsequent maladaptive cardiac 
remodelling. For instance, RV samples taken 
from control patients showed higher ventricular 
weight with raised collagen and foetal contractile 

protein genes, and diminished SR Ca2+-ATPase. 
Moreover, ACEI exert antioxidant effects by 
inhibiting the transcription factor NF-kB that 
controls the synthesis of various genes associated 
with inflammatory response, such as cytokines, 
chemokines, growth factors, and cell adhesion 
molecules [360–363]. The complexity of the 
intramyocardial mechanisms involved in CR 
should also take into account endothelial dam-
age, on which PDE5 inhibition acts positively, as 
recently demonstrated in a meta-analysis of type 
2 diabetic cardiovascular patients [364]. Also, 
clinically relevant evidence suggests that PDE5 
inhibition has favourable direct myocardial 
effects via cGMP and cAMP activities that may 
counterbalance hypertrophic and proapoptotic 
signaling, including adrenergic stimulation [365].

4.7.1	 �Cardiac Regenerative 
Medicine

Production of “induced cardiac-like myocytes” 
(iCLMs) shows all the signs of a new future 
successful method to regenerate damaged CMs 
[366]. Replacing lost CMs by injecting cardiac 
progenitors, cardiospheres, or CMs derived 
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from “induced pluripotent stem cells” (iPSCs) 
and/or “embryonic stem cells” (ESCs) has been 
researched intensively [367]. Importantly, miR-
NAs are important for stem cell differentiation, 
as well as indirect and direct reprogramming 
to multiple lineages [368–371]. To sum up, 
miRNA based therapy can be used to promote 
CMs proliferation, reprogram directly fibro-
blasts to CMs or indirectly to iPSc as well as 
driving the differentiation of iPSCs, ESCs or 
CPCs to CMs (Fig.  4.25) [367]. Another new 
treatment choice is to release cells in the dam-
aged myocardium. According to evidence, vari-
ous cell categories have been utilized for heart 
regeneration, such as ESCs, CMs obtained from 
iPSCs, mesenchymal stem cells (MSCs), bone 
marrow MSCs, cardiac stem cells, cardiac pro-
genitor cells, skeletal myoblasts, ECs, adipose 
tissue-derived stem cells (ATDSCs), and CMs 
[372]. Nevertheless, studies have still unre-
markable outcomes.

4.7.2	 �Device-Based Therapies

Pharmacological treatments that diminish on 
either side PVR or systemic vascular resistance 
can reduce the development of fibrosis in the RV 
and LV, respectively. Likewise, non-pharmaco-
logical mechanical decrease of LV load by LV 
assist devices (LVADs) can attenuate fibrosis in 
both ventricles [373].

For instance, cardiac resynchronization therapy 
(CRT) with biventricular (BiV) pacing is an well-
known choice therapy in case of patients with overt 
HF, diminished LV systolic EF, and delayed ven-
tricular conduction with enlarged QRS complex 
(e.g. electrical dyssynchrony). In fact, Sachse et al. 
[374] showed that CRT reduces symptoms and 
mortality in patients affected by dyssynchronous 
heart failure (DHF) produced by dyssynchronous 
electrical and mechanical activation of the left and 
right ventricle. Also, they concluded that CR of 
electrophysiological properties, hemodynamic and 
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positive airway pressure, RAAS renin–angiotensin–aldoste-
rone system, LVAD left ventricular assist device, MVR mitral 
valve repair/replacement, AVR aortic valve replacement, 
CSD cardiac support device, CRT cardiac resynchronization 
therapy. (From Hellawell et al. [358] with permission)
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protein expression due to DHF is partially restored 
by CRT. Specifically, CRT can reverse damages of 
intracellular structures and function of CMs from 
HF, with early successful signs of recovery as tubu-
lar system structure [374].

Ventricular Assist Devices (VADs) can prevent 
ongoing CR and produce reverse CR, mainly by 
decrease of mechanical load of the damaged ven-
tricles [373]. Also, VADs are not same thing with 
artificial hearts, which are planned for temporary 
taking up of cardiac function with their latter 
withdrawal from the patient’s heart [373]. VADs 
are designed to support the LVAD, the right ven-
tricle (RVAD) or both ventricles (BiVAD). LVAD 
is the most frequent device used in a damaged 
heart, but in case of increased pulmonary arterial 
resistance, RVAD will be added to help with car-
diac circulation. According to data, the evaluation 
of LVAD outcomes looking the reverse of RV 
remodelling, showed there were no change in 
CMs size among patients with LVADs and control 

group [373]. Conversely, LVAD therapy produced 
diminishing of collagen and TNF-α from RV, sup-
porting that LVAD can reduce RVH by inhibiting 
the paracrine factors [373]. Further, Barbone et al. 
studied the involvement of these factors in reverse 
of CR [375]. Shortly, they studied heart samples 
from patients who required either LVAD or phar-
macological treatment for severe HF [375]. 
Regardless of LVAD type, the RV volume and 
CM size enlarged, but isolated RV muscle pieces 
from inserted LVAD showed a diminished force 
formation at high pacing rates. Finally, they con-
cluded that reverse RV remodelling after LVAD 
placing is minimum [375]. In conclusion, LVADs 
implantation is largely helpful for showing biol-
ogy of reverse CR: changes of mRNA and 
microRNA profiles, decrease of apoptosis, dimin-
ishing of inflammatory cytokines (e.g., TNF-α), 
ECM remodelling, regression of action potential 
lengthening, regression of cardiac myocyte hyper-
trophy, improved contractility, regression of shape 
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distortions, and improved β-adrenergic respon-
siveness [358].

Other studies evaluated hearts from end-
stage CHF with no VADs, with LVAD or with 
BiVAD [376]. In comparison with LVAD, 
BiVAD-supported hearts showed notably dimin-
ished right atrium pressures with nearly normal 
RV end-diastolic pressure-volume interactions. 
Moreover, the hearts with BiVAD demonstrated 
normalized RV myocyte diameter and myocar-
dial contraction when isoproterenol perfusion 
was used. All these modifications were not 
demonstrated in hearts with LVADs. However, 
LVADs diminish only RV afterload. To sum up, 
VADs could induce RV remodelling, but further 
studies data is necessary [376].

�Conclusions

RV remodelling is correlated with functional, 
cellular and molecular changes [316]. CMs 
hypertrophy and hyperplasia modify RV geom-
etry, while apoptosis rate and damages of intra-
cellular structures induce further remodelling 
[316]. RVH and RV dilatation can be correlated 
with diminished ventricular volume, associated 
or not with changed hemodynamic status [316]. 
As a result, physiologic and pathophysiologic 
stress produces in RV serious transcriptional, 
translational and energetic modifications [316]. 
The development of cardiac hypertrophy from 
pressure and volume overload with failing is 
correlated with transition from free fatty acids 
to glucose metabolism for ATP formation [316]. 
RVF is an energy-depleted condition with lack-
ing ATP levels. Reassuring successful molecu-
lar targets are established by ongoing clinical 
trials studying the molecular alteration from 
RVH and failure [316]. Ultimately, medical 
therapy with vasodilators seems to raise both 
RV stroke volume and CO, while ACEI and 
ARBs can postpone RVH by diminishing the 
exhibition of hypertrophy-related genes in the 
RV. Nonetheless, immunomodulator therapy is 
correlated with diminishing of RVH and remod-
elling-related gene expression [316].
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