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Chapter 1
Vitamin D Biochemistry and Physiology

Daniel D. Bikle

�Introduction

With the findings that both the vitamin D receptor (VDR) and the enzyme 
(CYP27B1, the 1α-hydroxylase) required to convert the major circulating 
metabolite of vitamin D (25-hydroxyvitamin D (25(OH)D)) to the most biologi-
cally active metabolite, 1,25-dihydroxyvitamin D (1,25(OH)2D), are found in 
many if not all cells, interest in vitamin D metabolism and mechanisms of action 
has exploded. Much of this interest is attributed to the potential for vitamin D 
metabolites and analogs to affect not only the regulation by the classic tissues—
the intestine, bone, and kidney—of bone and mineral metabolism but also that 
of most tissues and their functions not necessarily related to bone and mineral 
metabolism. This interest is further piqued by the observations from advanced 
genomic techniques such as RNA-seq and ChIP-seq that the VDR has thousands 
of binding sites throughout the genome affecting the transcription of hundreds 
of different genes, and the profile of the affected genes shows substantial diver-
sity among the different cell types. In this chapter, I will first discuss vitamin D 
production and metabolism, then focus on the mechanism of action of 
1,25(OH)2D, and conclude with a discussion of the impact of the vitamin D 
metabolites on a representative sampling of different tissues, both the classic 
and nonclassic.
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�Vitamin D Production

The skin contains substantial amounts of 7-dehydrocholesterol (7-DHC, provitamin 
D3), which when irradiated by UV light (UVB spectrum 280–320), typically from 
the sun, undergoes a two-step process to form vitamin D3 (D3) (cholecalciferol) 
(Fig. 1.1). In the first step, UVB breaks open the B ring of 7-DHC forming pre-D3 
that isomerizes to D3 in a thermosensitive but noncatalytic process. Both UVB 
intensity and skin pigmentation level contribute to the extent of D3 formation [1]. 
Skin pigmentation and other chromogenic agents that can absorb UVB block D3 
production, as do clothing and sunscreen. Moreover, both season and latitude affect 
the intensity of UVB from sunlight so that those living at higher latitudes have a 
shorter period of the year in which sunlight is capable of producing D3 [2]. Vitamin 
D can also be obtained from the diet. Most foods with the exception of fatty fish 
contain little vitamin D unless fortified, whereas fish contain only D3, which they 
obtain from plankton (or from the ingestion of other fish). Plants and fungi (e.g., 
mushrooms) contain ergosterol, which, similar to D3 production from 7-DHC, is 
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Fig. 1.1  Vitamin D Production. Vitamin D3 is produced in the skin from 7-dehydrocholesterol 
(7-DHC). The B ring of 7-DHC is broken by ultraviolet light B (UVB) to form previtamin D3 
which isomerizes in a temperature-dependent process to form vitamin D3. In the same way, ergos-
terol in plants and fungi when exposed to UVB forms previtamin D2 that isomerizes to vitamin D2. 
Vitamin D2 differs from vitamin D3 only in the side chain in having a double bond between C22 
and C23 and a methyl group at C24
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converted to D2 (ergocalciferol) by UVB via the same two-step process. D2 differs 
from D3 in having a double bond between C22 and C23 and a methyl group at 
C24 in the side chain (Fig. 1.1). Many foods such as milk and orange juice are forti-
fied by D2. Knowledge of which vitamin D is being consumed either as supplements 
or in fortified foods is important because their pharmacokinetics, metabolism, and 
measurement of their metabolites by various immunoassays differ. The structural 
differences between D2 and D3 in the side chain affect their affinity for DBP result-
ing in faster clearance of D2 from the circulation, limit the conversion of D2 to 
25(OH)D2 by at least some of the 25-hydroxylases to be described subsequently, 
and alter its catabolism by the 24-hydroxyase (CYP24A1) [3–5]. As such, equiva-
lent amounts of D2 do not give as high or as long-lasting level of 25(OH)D as does 
D3 [6]. That said, the active metabolites of D2 and D3, namely, 1,25(OH)2D2 and 
1,25(OH)2D3, have comparable affinities for the VDR [4] and are thus expected to 
have comparable biologic activity. Therefore, in this review, if no subscript is 
employed, both D2 and D3 and their metabolites are being considered.

�Vitamin D Metabolism

The three main steps in vitamin D metabolism, 25-hydroxylation, 1α-hydroxylation, 
and 24-hydroxylation, are all performed by cytochrome P450 mixed function oxi-
dases (CYPs). These enzymes are located either in the endoplasmic reticulum (ER) 
(e.g., CYP2R1) or in the mitochondria (e.g., CYP27A1, CYP27B1, and CYP24A1). 
The ER enzymes utilize nicotinamide adenine dinucleotide phosphate (NADPH)-
dependent P450 reductase as their electron donor, whereas the electron donor for 
mitochondrial enzymes is a complex of ferredoxin and ferredoxin reductase. Only 
the cytochrome P450 of the enzyme complex is specific for the substrate being 
hydroxylated. At this point, only CYP2R1 and CYP24A1 have been crystallized, 
but their homology with the other vitamin D-metabolizing enzymes suggests com-
mon structural features. These include 12 helices (A–L) and loops and a common 
prosthetic group, namely, the iron-containing protoporphyrin IX (heme) linked to 
the thiolate of cysteine. The I helix traverses the center of the enzyme above the 
heme where a threonine or serine and aspartic or glutamic acid pairing is essential 
for catalytic activity [7]. The ER enzyme CYP2R1 contains additional two helices 
thought to form a substrate channel in the bilayer of the ER [7] with the B′ helix 
serving as a gate closing on substrate. It is not known if such structures exist in the 
mitochondrial enzymes. With this overview, consideration of the individual 
enzymes follows.

25-Hydroxylase. The liver is the major but not the sole source of 25OHD 
production from vitamin D. A number of enzymes (all CYPs) have been shown 
to have 25-hydroxylase activity. CYP27A1 is the only known mitochondrial 
25-hydroxylase, initially identified as a sterol 27-hydroxylase involved in bile acid 
synthesis. Its tissue distribution is wide, not limited to the liver. A number of studies 
have cast doubt on its being the main 25-hydroxyase. First of all, CYP27A1 does 
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not 25-hydroxylate D2. Secondly, at least in the mouse, deletion of CYP27A1 actu-
ally increases 25OHD levels [8]. Finally, mutations of CYP27A1 in humans result 
in cerebrotendinous xanthomatosis with abnormal bile and cholesterol metabolism, 
but not rickets [9]. More recently, a microsomal 25-hydroxylase, CYP2R1, was 
identified in mouse liver [10]. CYP2R1 25-hydroxylates both D2 and D3 with com-
parable kinetics. Its expression is more tissue limited (primarily liver and testes), 
and this expression is increased in mice in which CYP27A1 is deleted, probably 
accounting for the rise in 25(OH)D in the CYP27A1-null mouse. In contrast to the 
CYP27A1 deletion, deletion of CYP2R1 does reduce 25(OH) (by 50%), but not to 
zero [8]. Even if both CYP2R1 and CYP27A1 are deleted, the blood level of 25OHD 
does not fall to zero. Moreover, these deletions do not significantly affect circulating 
levels of calcium and phosphate [8] indicating compensation by other enzymes with 
25-hydroxylase activity. That said, a human mutation in CYP2R1 (leu99pro) was 
found in a Nigerian with severe bone disease associated with biochemical evidence 
of rickets [11], and in vitro testing determined that this mutation had a significant 
effect on CYP2R1 activity. Other enzymes including the drug-metabolizing enzyme 
CYP3A4 have 25-hydroxylase activity [12], but CYP2R1 appears to be the major 
25-hydroxylase.

1α-Hydroxylase. The kidney is not the only tissue capable of producing 1,25(OH)2D, 
although it is the major source of circulating levels of 1,25(OH)2D. CYP27B1 is 
the only enzyme recognized to have 25-OHD 1α-hydroxylase activity as proven 
by its cloning by several laboratories from different tissues [13–16]. Mutations 
in CYP27B1 cause a hereditary form of rickets known as pseudo-vitamin D defi-
ciency due to inadequate 1,25(OH)2D production. These individuals respond to 
1,25(OH)2D but not to vitamin D itself [13–16]. CYP27B1 is highly homologous 
with the mitochondrial CYPs involved with vitamin D metabolism: CYP27A1 
and CYP24A1. As mentioned above, the kidney is not the only tissue expressing 
CYP27B1, and regulation of this critical enzyme for vitamin D metabolism differs 
among the tissues in which it is expressed [17]. Examples of extrarenal CYP27B1 
expression include the epithelial cells in the skin, lungs, breast, intestine, and pros-
tate; endocrine glands including the parathyroid gland, pancreatic islets, thyroid, 
testes, ovary, and placenta; cells of the immune system including macrophages, T 
and B lymphocytes, and dendritic cells; osteoblasts and chondrocytes; and a vari-
ety of tumors derived from these cells. In the kidney, CYP27B1 is tightly regu-
lated primarily by three hormones, PTH, FGF23, and 1,25(OH)2D itself (Fig. 1.2). 
PTH stimulates, whereas FGF23 inhibits CYP27B1. Increased levels of calcium 
and phosphate suppress CYP27B1 activity primarily by inhibiting PTH secretion 
(calcium) and stimulating FGF23 secretion from bone (phosphate), respectively, 
although these ions can have direct effects on renal CYP27B1 on their own [18, 
19]. Whether 1,25(OH)2D has a direct inhibitory effect on CYP27B1 in the kidney 
or regulates 1,25(OH)2D levels indirectly remains unclear. 1,25(OH)2D has been 
reported to inhibit CYP27B1 expression directly through a complex mechanism 
involving VDR and a vitamin D inhibitory receptor (VDIR) that brings both histone 
deacetylases (HDACs) and DNA methyl transferases to the promoter of CYP27B1 
inhibiting its transcription [20]. This observation has not been confirmed by other 
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investigators. 1,25(OH)2D acts indirectly by inhibiting PTH and increasing FGF23 
secretion. Moreover, 1,25(OH)2D induces CYP24A1 (see below) that metabolizes 
and thus reduces 1,25(OH)2D levels as well as its precursor 25(OH)D.

Regulation of extrarenal CYP27B1 differs from that in the kidney. This has been 
best studied in keratinocytes and macrophages. In keratinocytes, neither PTH nor 
FGF23 seem to play a role. Moreover, 1,25(OH)2D does not have a direct effect on 
CYP27B1 expression. Rather, 1,25(OH)2D regulates its own levels in the keratino-
cyte by inducing CYP24A1 [16]. However, CYP24A1 induction by 1,25(OH)2D 
and/or its function in macrophages is blunted [21]. The mechanism appears to 
involve the expression of a truncated form of CYP24, which includes the substrate-
binding domain but not the mitochondrial targeting sequence [22]. Cytokines such 
as tumor necrosis factor-α (TNFα) [23] and interferon-γ (IGFγ) [24] appear to be 
the major regulators of CYP27B1 activity in the keratinocyte and macrophage [21, 
25–27], although FGF23 has been shown to be inhibitory in monocytes [28]. In 
parathyroid cells, FGF23 is reported to stimulate CYP27B1 expression, opposite of 
its actions in the kidney [29].

24-Hydroxylase. Like CYP27B1, CYP24A1 is the only known 24-hydroxylase. 
This enzyme has both 24-hydroxylase and 23-hydroxylase activity, the ratio of 
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Fig. 1.2  Vitamin D metabolism. The liver converts vitamin D to 25-OHD. The kidney converts 
25-OHD to 1,25-(OH)2D and 24,25-(OH)2D. Control of metabolism is exerted primarily at the 
level of the kidney, where low levels of serum phosphorus, calcium, and fibroblast growth factor 
23 (FGF23) and high levels of parathyroid hormone (PTH) favor production of 1,25-(OH)2D, 
whereas high serum levels of phosphorus, calcium, FGF23, and 1,25-(OH)2D and low levels of 
PTH favor 24,25-(OH)2D production
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which is species dependent [30]. The human enzyme has both, but the rat enzyme is 
primarily 24-hydroxylase [31]. Single base pair mutations can shift the ratio of 23- 
to 24-hydroxylase activity [32]. The 24-hydroxylase pathway leads to the produc-
tion of calcitroic acid, a biologically inert end product, whereas the 23-hydroxylase 
pathway leads to the biologically active 1,25–26,23 lactone. All steps are performed 
by one enzyme [31]. 1,25(OH)2D and 25(OH)D are both substrates for CYP24A1. 
The initial product of CY24A1 metabolism of 1,25(OH)2D, 1,24,25(OH)3D, has 
approximately 1/10th the affinity of 1,25(OH)2D for the VDR and has biologic 
activity. 24,25(OH)2D may have biologic activity in the growth plate [33], although 
such a role is controversial. The biologic impact of deleting CYP24A1 results in 
defective mineralization of intramembranous (not endochondral) bone [34], but this 
appears to be due to large increases in 1,25(OH)2D and not to a deficiency of 
24,25(OH)2D [34]. Inactivating mutations in CYP24A1 are one cause of idiopathic 
infantile hypercalcemia, which presents with severe hypercalcemia, hypercalciuria, 
and nephrocalcinosis, decreased PTH, low 24,25(OH)2D, and inappropriately nor-
mal to high 1,25(OH)2D [35]. In this syndrome, the failure of CYP24A1 to control 
1,25(OH)2D levels appears to account for the phenotype.

Most tissues express CYP24A1, and increased expression is a nearly universal 
marker of 1,25(OH)2D action on that tissue. The promoter of CYP24A1 contains 
two vitamin D response elements (VDREs) upstream of the transcriptional start site 
to which VDR/RXR bind along with other transcription factors [36]. More distant 
sites downstream of the human CYP24A1 gene to which histone acetyl transferases 
and RNA polymerase II are recruited have been shown to play a role in CYP24A1 
induction [37]. In the kidney, CYP24A1 regulation is the reciprocal of that of 
CYP27B1 in that PTH limits the induction of CYP24A1 by 1,25(OH)2D [38, 39], 
whereas FGF23 increases its expression [40]. FGF23 has a similar role in the uterus 
[41], but this has not been studied in other tissues. On the other hand, PTH enhances 
1,25(OH)2D induction of CYP24A1 transcription in osteoblasts through the same 
apparent mechanism, namely, the cAMP/PKA pathway, by which it reduces 
CYP24A1 induction in the kidney [42]. Thus, like the regulation of CYP27B1, the 
regulation of CYP24A1 can be tissue specific.

3-Epimerase. The C-3 epimers of the vitamin D metabolites have recently gained 
widespread attention mainly as contaminants in LC-MS/MS assays of these metab-
olites. This issue is particularly important in assessing 25OHD levels in infants 
where levels of the C-3 epimer of 25OHD can equal or exceed that of 25OHD [43]. 
However, these epimers have been recognized for decades. 3-Epimerase activity 
was first identified in keratinocytes where it produces the 3-epi form of 1,25(OH)2D 
[44] but has also been found in colon cancer cells (Caco2), parathyroid cells, osteo-
blasts, and hepatocyte-derived cells (HepG2). Surprisingly, this epimer has not been 
found in renal preparations [43]. The enzyme has not yet been purified and so 
remains an activity that could be due to several enzymes. The 3-epimerase isomer-
izes the C-3 hydroxy group of the A ring from the alpha to beta orientation of all 
natural vitamin D metabolites. This does not affect subsequent metabolism but does 
reduce binding to DBP of the 3-epi form of 25(OH)D relative to 25OHD and bind-
ing to VDR of the 3-epi form of 1,25(OH)2D relative to 1,25(OH)2D [45]. Thus, the 
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C-3 epimers have reduced biologic activity in general [45], but, surprisingly, the 
3-epi form of 1,25(OH)2D appears to be equipotent to 1,25(OH)2D with respect to 
PTH suppression [46]. The extra effort required to measure the C-3 epimers sepa-
rately from the classic metabolites may prove necessary especially in children to 
accurately determine vitamin D status.

CYP11A1. CYP11A1, known also as the side chain cleavage enzyme, is a key 
enzyme essential for steroidogenesis. Recently, CYP11A1 has been shown to pro-
vide an alternative pathway for vitamin D activation converting vitamin D to 20(OH)
D [47]. 20(OH)D, or its metabolite 20,23(OH)2D, appear to have activity similar to 
1,25(OH)2D at least for some functions. It is unclear whether these metabolites 
require further metabolism by CYP27B1 to be active. The biologic significance of 
this pathway remains unclear, as it does not compensate for animals lacking 
CYP27B1.

�Transport of Vitamin D Metabolites in the Blood and Their 
Cellular Uptake

The vitamin D metabolites are transported in blood bound primarily to vitamin 
D-binding protein (DBP) (85–88%) and albumin (12–15%) [48–50]. The normal 
range of DBP concentrations is 4-8 μM, such that DBP is only about 1–2% satu-
rated by normal levels of the vitamin D metabolites. DBP has high affinity for these 
metabolites (Ka  =  5  ×  108M−1 for 25OHD and 24,25(OH)2D, 4  ×  107M−1 for 
1,25(OH)2D and vitamin D). Thus, under normal circumstances, only approxi-
mately 0.03% 25OHD and 24,25(OH)2D and 0.4% 1,25(OH)2D are free [49–51]. 
Conditions such as liver disease, nephrotic syndrome, and acute illness resulting in 
reduced DBP and albumin levels will lead to a reduction in total 25OHD and 
1,25(OH)2D levels without necessarily affecting the free concentrations [52–55]. 
On the other hand, oral (not transdermal) estrogens and pregnancy [49] increase 
DBP levels and so may increase total levels of the vitamin D metabolites without 
increasing (and may even decrease) the free concentrations [49, 56]. High levels of 
25(OH)D in cases of vitamin D intoxication can increase the degree of DBP satura-
tion such that despite the normal levels of total 1,25(OH)2D, the free concentrations 
of 1,25(OH)2D are increased [57] contributing to the hypercalcemia/hypercalciuria 
observed in these cases. DBP is a 58  kDa protein with 458 amino acids that is 
homologous to albumin and α-fetoprotein (αFP) (40% homology at the nucleotide 
level, 23% at the amino acid level) [58]. DBP like albumin and αFP is made primar-
ily but not exclusively in the liver. Other sites include the kidney, testes, and fat.

Direct measurement of the free levels of the vitamin D metabolites becomes 
important if most cells take up only the free concentration, a hypothesis known as 
the free hormone hypothesis. An early articulation of this hypothesis comes from 
observations that patients with nephrotic syndrome had low levels of circulating 
thyroid hormone (assessed as PBI) and increased urinary losses of PBI but yet 
appeared clinically euthyroid [59]. This suggested to the authors that the supply of 
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hormone to the tissues in these patients was normal. Similar observations have 
recently been made in patients with nephrotic syndrome with regard to lack of 
changes in serum calcium, phosphate, PTH, and bone mineral density measure-
ments despite lower vitamin D metabolite levels and increased urinary losses of 
DBP [53]. Similar conclusions regarding the importance of the free levels of vita-
min D metabolites come from observations that the increase in 1,25(OH)2D levels 
with administration of oral contraceptives or during the third trimester of pregnancy 
is associated with a parallel increase in DBP but not with changes in calcium metab-
olism, at least until the latter stages of pregnancy when the measured free levels of 
1,25(OH)2D increase despite the increase in DBP [49, 60]. The concept that the 
major role of DBP is as a blood transporter of the vitamin D metabolites is further 
demonstrated in mice in which the DBP gene was deleted. Although these mice lost 
substantial amounts of the vitamin D metabolites in the urine and their circulating 
levels of 25(OH)D were very low, they did not develop evidence of rickets until put 
on a low-vitamin D diet [61].

However, the free hormone hypothesis does not apply to all tissues. The renal 
tubule differs from most other tissues in its mechanism for at least 25(OH)D uptake 
and likely for all vitamin D metabolites. DBP and its bound 25(OH)D are filtered in 
the glomerulus and reabsorbed in the proximal tubule through endocytosis mediated 
by the megalin/cubilin complex. This provides 25(OH)D for further metabolism in 
the kidney tubule [62, 63]. The megalin/cubilin complex is not specific for DBP, but 
when megalin is deleted, the major protein lost in the urine is DBP, bone growth is 
slowed, and the skeleton is osteopenic [62]. Similar if less severe results were 
obtained with cubilin deletion [63]. The parathyroid gland and placenta also express 
megalin/cubilin [64], but at this point, experiments to determine the impact of either 
megalin or cubilin deletion from these tissues have not been reported.

�Vitamin D Mechanism of Action

The best-known and most widely studied actions of vitamin D involve genomic 
actions regulated by 1,25(OH)2D interacting with its receptor VDR.  However, a 
growing body of literature is concerned also with the nongenomic actions of 
1,25(OH)2D, some mediated also by VDR and others by a nonnuclear receptor vari-
ously named membrane-associated rapid response steroid (MARRS)-binding pro-
tein, ERp57/GRp58/ERp60, and protein disulfide isomerase family A member 3 
(Pdia3). In this section, the genomic and nongenomic actions will be described 
separately.

Genomic actions. All genomic actions of 1,25(OH)2D are mediated by the 
VDR. VDR is a transcription factor and member of the steroid hormone nuclear 
receptor family with which it has substantial homology especially in the DNA-binding 
domain. Based on the original cloning of the estrogen and glucocorticoid receptors, 
these nuclear hormone receptors were recognized to have six distinct domains: 
A–F. The A/B domain is the N-terminal region, known in other receptors as the 
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activation domain 1. In VDR, this domain is quite short (24 amino acids), and in the 
f allele of the FokI polymorphism, it is further shortened by 3 amino acids [65]. The 
C domain is the DNA-binding domain with 65 amino acids containing 2 zinc fingers 
that bind to the grooves of the DNA at discrete sites called vitamin D response ele-
ments (VDREs). The highly flexible hinge region (domain D) with 143 amino acids 
separates the DNA-binding domain from the E/F domain (195 amino acids) that 
contains the ligand-binding domain and terminal activation domain (AF2). This 
domain also serves the function of dimerization with VDR partners (e.g., RXR) and 
binding of corepressors as well as coactivators (in AF2). These domains are illus-
trated in Fig. 1.3. The structure of the ligand-binding domain has been solved by 
X-ray crystallography [66]. It is comprised of 12 helices. Helix 12 serves as a gating 
mechanism closing around the incorporated ligand (i.e., 1,25(OH)2D) and forming 
an interface for coactivators and the nuclear hormone dimerization partners such as 
RXR. As mentioned above, the VDR binds to select regions in the genome called 
VDREs. The sequence of VDREs is highly variable, but those with the highest affin-
ity for VDR are direct repeats of hexanucleotides with a spacing of three nucleotides 
between the half sites. This motif is called a DR3. VDR binding to its VDRE then 
recruits coregulatory complexes required for its genomic activity. These coregula-
tory complexes are required to remodel the chromatin, altering the condensation 
state by histone modifications to create binding sites for additional coregulatory 
complexes and facilitating the link to the RNA polymerase II to initiate transcrip-
tion. The complexes that participate in these functions are the ATPase-containing 
SWI/SNF complex involved with remodeling the chromosome [67], complexes 
with activities that modify the histones via histone acetyl transferases (HATs) such 
as the coactivator CBP/P300 complex containing the steroid receptor coactivator 
family (SRC 1–3), histone methyl transferases (HMTs), and histone deacetylases 
(HDACs), which are part of the corepressor complexes of SMRT and NCoR, histone 
demethylases (DMTs) [68], and the mediator complex that is thought to link the 
RNA polymerase to the transcription start site [69]. The SRC and mediator com-
plexes include a subunit that directly binds to the VDR generally through an LXXLL 
motif. Corepressors such as SMRT and NCoR, on the other hand, bind through a 
LXXXIXXX(I/L) motif. These complexes can be both gene and cell specific, enabling 
the selectivity of 1,25(OH)2D action among cell types on which it acts.

R×R Binding

ZnZn

AF1

A/B C D E/F

DNA Binding Ligand Binding AF2Hinge

Fig. 1.3  Domains of the VDR. The N terminus of VDR, domains A/B, forms the short AF1 
domain. The C domain contains the DNA domain containing the two zinc fingers. The D domain 
includes the hinge region. The E/F domains include the ligand-binding domain and the C terminal 
AF2 domain to which coactivators bind following ligand binding
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The newer techniques of RNA-seq and ChIP-seq [70, 71] have markedly 
expanded our understanding of vitamin D mechanism of action at the genomic level. 
Moreover, the development of CRISPR/Cas9 to specifically and relatively quickly 
delete regions of the genome has enabled testing of the various putative regulatory 
regions of the genome for functional significance [72]. For example, in the mouse 
osteoblast, 1200 VDR binding sites were found under basal (i.e., no 1,25(OH)2D) 
conditions, whereas 8000 sites were observed following 1,25(OH)2D administration 
[73]. In a separate study with human lymphoblastoid cell lines treated with 
1,25(OH)2D, 2776 VDR binding sites were found altering the expression of 229 
genes [74]. Although there is some overlap among different cell types, the profile of 
VDR binding sites and genes activated varies substantially from cell to cell as well 
as at different times after exposure to 1,25(OH)2D in the same cell [75]. These VDR 
binding sites can be anywhere in the genome, often quite distant from the coding 
region of the gene being regulated, and just because VDR binds to a site does not 
mean that the site is functional with respect to regulation of the expression of that 
gene in that cell. Other transcription factors and their binding sites are generally 
found in association with VDR at its binding site. In osteoblasts, for example, these 
include RUNX2 and C/EBP α and β, among others [76, 77]. These sites often dem-
onstrate a distinct epigenetic histone signature involving methylation and/or acety-
lation of lysines within H3 and H4 [78]. In general, a gene is regulated by more than 
one enhancer element [71], and the adjacent transcription factors may vary altering 
the regulation of that gene. An interesting example of this is the gene, Tnfsf11, that 
encodes RANKL. This gene is regulated by parathyroid hormone (PTH), a number 
of cytokines in addition to 1,25(OH)2D. It plays a role not only in osteoclast activa-
tion but in immune regulation and other cellular functions. Five strong VDR binding 
sites (D1–D5) were identified by ChIP-seq up to 75 kb upstream of the transcription 
start site [79]. PTH-induced CREB binding was found at some of these sites, and 
IL6-induced STAT3 binding was found at another. These sites in combination with 
additional sites even further upstream seem to regulate which cell (e.g., osteoblast 
or hematopoietic cell) and/or which hormone (PTH, cytokine, 1,25(OH)2D) regu-
lates the expression of Tnfsf1 [80, 81] in that cell. Thus, the key aspects of genomic 
regulation by VDR and its ligand 1,25(OH)2D can be summed up as follows:

	1.	 The profile of VDR binding sites in the genome varies from cell to cell and with 
time after 1,25(OH)2D administration.

	2.	 Most but not all binding sites require 1,25(OH)2D for VDR binding.
	3.	 The VDR binding sites are generally DR3 in which VDR binds in combination 

with RXR.
	4.	 VDR binding sites can be located nearly anywhere in the gene and may be close 

to or thousands of base pairs away from the transcription start site.
	5.	 The VDR binding sites are generally part of a cluster containing binding sites for 

a number of other transcription factors, which like the profile of the VDR bind-
ing sites themselves are cell specific.

Nongenomic actions. 1,25(OH)2D also exerts effects that are too rapid to involve 
a genomic action. The earliest description of this nongenomic action involved rapid 
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stimulation of intestinal calcium transport in a vitamin D replete chick, called trans-
caltachia [82]. Of interest is that this phenomenon did not occur in a vitamin 
D-deficient chick indicating that the vitamin D-induced mechanisms for calcium 
transport need to be in place. Analogs of 1,25(OH)2D that had no apparent genomic 
activity were as effective as 1,25(OH)2D itself. Other examples emerged including 
effects on the chondrocytes in the growth plate [83] and keratinocytes in the skin 
[84]. Two receptors have been identified. One is the VDR itself albeit in a different 
configuration to enable binding by nongenomic VDR agonists [85]. The second is a 
novel receptor for 1,25(OH)2D variably known as membrane-associated rapid 
response steroid (MARRS)-binding protein, ERp57/GRp58/ERp60, and protein 
disulfide isomerase family A member 3 (Pdia3) as mentioned earlier [86]. These 
receptors are located in the membrane within caveolae/lipid rafts [87] where they 
are poised to activate kinases, phosphatases, and ion channels. This latter receptor 
has not been crystallized so the binding of 1,25(OH)2D to it is not known. On the 
other hand, the VDR has been crystallized, and the structure deduced indicated that 
the binding pocket in VDR would accommodate only agonists with a 6s-trans con-
figuration. However, analogs with the 6s-cis configuration are active in inducing 
these nongenomic actions. Mizwicki and Norman [85] proposed an alternative 
model in which the 6s-cis analogs could fit into an alternative pocket in the VDR, 
although crystallographic evidence for this configuration has not been obtained. At 
this point, the physiologic significance of the nongenomic actions of 1,25(OH)2D 
remains unclear, although deletion of the MARRS (Pdia3) gene from the intestine 
in vivo [88], from osteoblasts in vitro [89], or in heterozygotes (global knockouts 
are embryonic lethal) [90] does disrupt the rapid actions of 1,25(OH)2D in those 
cells with altered intestinal calcium transport and bone and cartilage abnormalities 
in the relevant in vivo models.

�Vitamin D Regulation of Cellular Function

In this section, I will first discuss the “classic” target tissues of vitamin D involved 
with bone mineral homeostasis, following which I will discuss the “nonclassic” tis-
sues which although influenced by calcium regulation are not in themselves central 
to the regulation of calcium homeostasis.

�Classic Vitamin D Target Tissues

Intestine. Intestinal calcium absorption, in particular the active component of tran-
scellular calcium absorption, is one of the oldest and best-known actions of vita-
min D. Absorption of calcium from the luminal contents of the intestine involves 
both transcellular and paracellular pathways. The transcellular pathway dominates 
in the duodenum, and this is the pathway primarily regulated by 1,25(OH)2D [91, 
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92]. Calcium entry across the brush border membrane (BBM) occurs down a steep 
electrical-chemical gradient and requires no input of energy. This is achieved by 
changes in membrane fluidity, a 1,25(OH)2D induced calcium channel TRPV6 in the 
BBM, and a 1,25(OH)2D induced translocation of calmodulin to the BBM. Calcium 
movement through the cell occurs with minimal elevation of the intracellular free 
calcium concentration [93] by packaging the calcium in calbindin-containing ves-
icles [94–96] that form in the terminal web following 1,25(OH)2D administration. 
Removal of calcium at the basolateral membrane must work against this gradi-
ent, and energy is required. This is achieved by the CaATPase (PMCA1b) and the 
sodium/calcium exchanger NCX. The first step, calcium entry across the BBM, is 
accompanied by changes in the lipid composition of the membrane including an 
increase in linoleic and arachidonic acid [97, 98] and an increase in the phosphati-
dylcholine/phosphatidylethanolamine ratio [99]. These changes are associated with 
increased membrane fluidity [98] and are rapid and nongenomic [99]. The epithe-
lial-specific calcium channel, TRPV6, is homologous to TRPV5, a calcium channel 
originally identified in the kidney [100, 101]. Mice null for TRPV6 have a partial 
reduction in intestinal calcium transport [102], although the reduction is modest 
[103]. Calmodulin also participates in intestinal calcium transport. It is the major 
calcium-binding protein in the microvillus [104], and its concentration in the micro-
villus is increased by 1,25(OH)2D but not its overall levels in the cell and does not 
require new protein synthesis [105]. Inhibitors of calmodulin block 1,25(OH)2D-
stimulated calcium uptake by BBMV [106]. Calmodulin has been shown to regulate 
TRPV6 activity [107]. Calmodulin is bound to myosin 1A (myo1A), binding that is 
increased by 1,25(OH)2D [105]. This complex increases with differentiation of the 
intestinal epithelial cell as does the capacity for calcium transport [108]. However, 
its exact role in calcium transport is unclear in that mice null for myo1A do not 
show reduced intestinal calcium transport (Bikle and Munson, unpublished obser-
vations). Calcium entering the cytoplasm across the BBM must then be moved into 
and through the cytoplasm without disrupting the function of the cell. In the vita-
min D-deficient animal, calcium accumulates along the inner surface of the plasma 
membrane of the microvilli [109, 110], from which calcium is released following 
vitamin D or 1,25(OH)2D administration to enter the cytoplasm where it is found 
in mitochondria and calbindin-containing vesicles within the terminal web [94, 95, 
109, 110]. The vesicles appear to shuttle the calcium to the lateral membrane, where 
it is pumped out of the cell. Calbindin is the dominant calcium-binding protein 
in the cytoplasm [104, 111]. However, the role of calbindin in intestinal calcium 
transport does not appear to be critical in that mice null for calbindin9k grow nor-
mally and have normal intestinal calcium transport and their serum calcium levels 
and bone mineral content are equivalent to wild-type mice regardless of the cal-
cium content of the diet [112]. Moreover, even the double deletion of both TRPV6 
and calbindin does not completely block 1,25(OH)2D-stimulated calcium transport 
[113]. The PMCA1b and NCX at the basolateral membrane are responsible for 
removing calcium from the cell against the same steep electrochemical gradient as 
it facilitates calcium entry at the BBM [114]. PMCA1b is induced by 1,25(OH)2D 
[115]. Calmodulin activates the pump, but calbindin may do likewise [116]. The 
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effect of PMCA1b deletion on calcium transport has not been evaluated. The role of 
NCX is not considered to be as important as PMCA1b for intestinal calcium trans-
port [117]. It is clear that both genomic and nongenomic actions of 1,25(OH)2D are 
involved in regulating intestinal calcium transport, but much remains to be learned 
regarding their relative importance.

Although less studied, intestinal phosphate transport is also under the control of 
vitamin D.  Active phosphate transport is greatest in the jejunum, in contrast to 
active calcium transport that is greatest in the duodenum. NaPIIb, a sodium phos-
phate transporter in the small intestine homologous to the type IIa sodium phos-
phate transporter in the kidney, has been cloned and sequenced [118]. It is induced 
by 1,25(OH)2D [119], but the impact of deleting this transporter has not been 
reported. Moreover, it may not be the only or even the major phosphate transporter 
in the intestine [120]. Transport of phosphate through the cytoplasm is not well 
understood but, like calcium, may occur in vesicles [121].

Bone. Nutritional vitamin D deficiency, altered vitamin D responsiveness such 
as vitamin D receptor mutations (hereditary vitamin D-resistant rickets), and 
decreased 1,25(OH)2D production as in mutations in the CYP27B1 gene (pseudo-
vitamin D deficiency) all have rickets as their main phenotype indicating the criti-
cal role of vitamin D and in particular 1,25(OH)2D in bone development and 
turnover. Like most other cells, VDR is found in bone cells [122, 123], and vita-
min D metabolites have been shown to regulate many processes in bone. The VDR 
makes its first appearance in the fetal rat at day 13 of gestation with expression in 
osteoblasts and the proliferating and hypertrophic chondrocytes by day 17 [124]. 
However, fetal development is quite normal in vitamin D-deficient rats [125] and 
VDR knockout mice [126] suggesting that vitamin D and the VDR are not critical 
for skeletal formation. Rickets develops postnatally, becoming most manifest after 
weaning. Even at this point, the rickets resulting from vitamin D deficiency or 
VDR mutations (or knockouts) can be corrected by supplying adequate amounts 
of calcium and phosphate either by infusions or orally [127, 128]. Moreover, 
expressing the VDR in the intestine is sufficient to reverse the skeletal changes 
observed in the VDR-null mouse [129]. These observations suggest that the role 
of vitamin D on bone is primarily or totally indirect. However, arguing for a physi-
ologically nonredundant direct action of vitamin D on bone is the development of 
osteoporosis and decreased bone formation in VDR- or CYP27B1-null mice that 
is not corrected by the high-calcium/high-phosphate diet [130]. In vivo studies of 
the impact of vitamin D on bone are complicated by the impact of vitamin D on 
systemic calcium homeostatic mechanisms such as PTH and FGF23. Furthermore, 
within bone, the vitamin D metabolites can alter the expression and/or secretion of 
a large number of skeletally derived factors including insulin-like growth factor-1 
(IGF-I), transforming growth factor β (TGFβ) [131], vascular endothelial growth 
factor (VEGF) [132], and a number of cytokines all of which can exert effects on 
bone of their own as well as modulate the actions of the vitamin D metabolites on 
bone. Similarly, species differences, differences in responsiveness of bone and 
cartilage cells according to their states of differentiation, and differences in 
responsiveness in terms of the vitamin D metabolite being examined all contribute 
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to the complexity and uncertainty in distinguishing the direct and indirect roles of 
the vitamin D metabolites on bone formation and turnover.

The impairment of endochondral bone formation observed in vitamin D defi-
ciency is associated with decreased alkaline phosphatase activity of the hypertro-
phic chondrocytes [133], alterations in the lipid composition of the matrix [134] 
perhaps secondary to reduced phospholipase activity [135], and altered proteogly-
can degradation [136] due to changes in metalloproteinase activity [136, 137]. Both 
1,25(OH)2D and 24,25(OH)2D appear to be required for optimal endochondral bone 
formation [33]. Some of these actions of 1,25(OH)2D and 24,25(OH)2D on endo-
chondral bone formation are nongenomic in that they take place with isolated matrix 
vesicles and membrane preparations from these cells [138]. On the other hand, dele-
tion of the VDR or CYP27B1 specifically from chondrocytes does not have a direct 
impact on chondrocyte development and maturation but does affect bone through 
FGF23 regulation of phosphate [139, 140]. As mentioned above, osteoblasts at dif-
ferent stages of differentiation differ in their response to 1,25(OH)2D [141]. In the 
latter stages of differentiation, rat osteoblasts respond to 1,25(OH)2D with an 
increase in osteocalcin production [142], but do not respond to 1,25(OH)2D in the 
early stages. Mice, however, differ from rats in that 1,25(OH)2D inhibits osteocalcin 
expression [142]. Similar species differences are found for other proteins. 
Osteocalcin and osteopontin in human and rat cells have well-described VDREs in 
their promoters [143–145], but these genes in mouse cells do not [146]. These 
maturation-dependent effects of 1,25(OH)2D on bone cell function may explain the 
surprising ability of excess 1,25(OH)2D to block mineralization leading to hyperos-
teoidosis [147–149] as such doses may prevent the normal maturation of osteo-
blasts. That said, the phenotype of mice in which the VDR has been deleted in 
osteoblasts is modest and suggests more of an impact on bone resorption (decreased) 
than on bone formation [150].

1,25(OH)2D also promotes bone resorption by increasing the number and activ-
ity of osteoclasts [151]. It is unclear whether mature osteoclasts contain the VDR 
[152, 153], but the stimulation of osteoclastogenesis by 1,25(OH)2D is mediated by 
osteoblasts [154, 155]. 1,25(OH)2D induces a membrane-associated protein known 
as RANKL (receptor activator of nuclear factor (NF)-kB ligand) in osteoblasts that 
in combination with mCSF also induced by 1,25(OH)2D in osteoblasts activates 
RANK on osteoclasts and their hematopoietic precursors to stimulate the differen-
tiation of osteoclast precursors and promote their activity [156]. As discussed ear-
lier, the regulation of RANKL expression involves a number of different hormones 
working in conjunction with or independent of 1,25(OH)2D.

Kidney. The regulation of calcium and phosphate transport by vitamin D metabo-
lites in the kidney has received less study than that in the intestine, but the two tissues 
have similar although not identical mechanisms. Most of the calcium in the glo-
merular filtrate is reabsorbed in the proximal tubule. This is a paracellular, sodium-
dependent process with little or no regulation by PTH and 1,25(OH)2D. Regulation 
of calcium reabsorption by vitamin D takes place in the distal nephron where cal-
cium moves against an electrochemical gradient (presumably transcellular) in a 
sodium-independent fashion [157]. The majority of phosphate reabsorption also 
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takes place in the proximal tubule but in this case is closely regulated by PTH 
and FGF23 [158, 159]. In parathyroidectomized (PTX) animals, Puschett et  al. 
[160–162] demonstrated acute effects of 25OHD and 1,25(OH)2D on calcium and 
phosphate reabsorption. Subsequent studies indicated that PTH could enhance or 
was required for the stimulation of calcium and phosphate reabsorption by vitamin 
D metabolites [163, 164].

The molecules critical for calcium reabsorption in the distal tubule include the 
VDR, calbindin, TRPV5, and BLM calcium pump (PMCA1b as in the intestine), a 
situation similar to the mechanism for calcium transport in the intestine [165]. The 
calbindin in the kidney in most species is 28 kDa, whereas the 9 kDa form is found 
in the intestine in most species. The kidney has mostly TRPV5, whereas the intes-
tine is primarily TRPV6. Calmodulin and a brush border myosin I like protein are 
also found in the kidney brush border, but their role in renal calcium transport has 
not been explored. Not all distal tubules express these proteins [100, 101, 166, 167] 
suggesting that not all distal tubules are involved in calcium transport. 1,25(OH)2D 
upregulates the VDR [168], calbindin [169, 170], and TRPV5 expression [171]. 
Deletion studies of these proteins are limited.

Phosphate reabsorption in the proximal tubule is mediated at the brush border by 
sodium-dependent phosphate transporters (NaP2a and NaP2c) that rely on the baso-
lateral membrane Na,K-ATPase to maintain the sodium gradient that drives the 
transport process [172]. It is not clear whether 1,25(OH)2D regulates the expression 
or activities of these transporters as it does the homologous NaP2b in the intestine.

�Nonclassic Vitamin D Target Tissues

Vitamin D signaling in nonclassic target tissues can be categorized into three differ-
ent not mutually exclusive actions:

	1.	 Regulation of proliferation and differentiation
	2.	 Regulation of hormone secretion
	3.	 Regulation of immune function

Examples of these mechanisms of action will be discussed in turn.

�Regulation of Proliferation and Differentiation

In this section, I will discuss a normal tissue, the skin, as representing a good exam-
ple of the regulation of proliferation and differentiation by VDR and 1,25(OH)2D, 
followed by cancer in which such regulation is lost.

Skin. Epidermal keratinocytes express the entire vitamin D metabolic pathway 
from the production of vitamin D3 from 7-DHC, its conversion to 25(OH)D by 
CYP27A1 [173] (expression of CYP2R1 has been described in fibroblasts [174] but 
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not in keratinocytes), and its further conversion to 1,25(OH)2D by CYP27B1 [175]. 
Moreover, the skin also expresses CYP24A1, limiting the levels of 1,25(OH)2D in 
keratinocytes under vitamin D replete conditions [176, 177]. CYP27B1 is expressed 
primarily in the basal cells of the epidermis [178], as the cells differentiate the 
mRNA and protein levels of CYP27B1and its activity decline [179].

1,25(OH)2D regulates keratinocyte differentiation in partnership with calcium 
[180]. The keratinocytes express the calcium-sensing receptor (CaSR) critical for 
their response to calcium, and CaSR is induced by 1,25(OH)2D [181]. Keratinocytes 
grown at calcium concentrations below 0.07 mM continue to proliferate but fail to 
differentiate. Acutely increasing the extracellular calcium concentration (Cao) 
above 0.1 mM (calcium switch) initiates the differentiation process. Within hours of 
the calcium switch, keratinocytes switch from making the basal keratins K5 and 
K14 and begin making keratins K1 and K10 [182] followed, subsequently, by 
increased levels of profilaggrin (the precursor of filaggrin, an intermediate filament-
associated protein), involucrin, and loricrin (precursors for the cornified envelope) 
[183, 184]. Loricrin, involucrin, and other proteins [185] are cross-linked into the 
insoluble cornified envelope (CE) by the calcium-sensitive, membrane-bound form 
of transglutaminase [186, 187], which like involucrin and loricrin increases within 
24 h after the calcium switch [188]. 1,25(OH)2D increases the mRNA and protein 
levels for involucrin and transglutaminase and promotes CE formation at subnano-
molar concentrations in preconfluent keratinocytes [189–192]. Deletion of either 
the VDR or CaSR from keratinocytes in vivo [193, 194] also blocks the formation 
of the lipids that are secreted into the cornified envelope by the lamellar bodies in 
the stratum granulosum to waterproof the permeability barrier. Moreover, deletion 
of CYP27B1 from keratinocytes in vitro blocks the induction of antimicrobial pep-
tides that are likewise incorporated into the lamellar bodies and secreted into the 
cornified envelope as part of the barrier [195]. This will be discussed further in the 
section on innate immunity.

Calcium affects the ability of 1,25(OH)2D to stimulate keratinocyte differentia-
tion and vice versa [196]. The calcium switch also leads to the rapid redistribution 
of a number of proteins from the cytosol to the membrane where they participate in 
the formation of intercellular contacts. These include the calcium-sensing receptor 
(CaSR), phospholipase C-γ1 (PLC-γ1), src kinases, and E-cadherin/catenin com-
plex. This complex plays a critical role in calcium and vitamin D signaling in the 
keratinocyte. Besides E-cadherin, it contains phosphatidyl inositol 3 kinase (PI3K), 
phosphatidyl inositol 4-phosphate 5-kinase 1α (PIP5K1α), and the catenins Ctnna1, 
Ctnnb1, and Ctnnd1 (α- and β-catenin, p120). These all play important roles in cal-
cium- and vitamin D-induced differentiation [197–202]. PI3K and PIP5K1α 
sequentially phosphorylate PIP and PIP2 to PIP3 that activates PLC-γ1. PLC-γ1 
cleaves PIP2 to form IP3 and diacylglycerol. IP3 releases calcium from intracellular 
stores, important for the sustained increase in intracellular calcium (Cai) required 
for the differentiation process [203]. Diacylglycerol along with calcium activates 
protein kinase C alpha (PKCα) that also promotes differentiation [204]. 1,25(OH)2D 
is required for the formation of the E-cadherin/catenin complex and induces some 
of its constituents such as PLC-γ1 [205]. Deletion of the CaSR from keratinocytes 
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reduces their stores of calcium and like the deletion of VDR blocks their response 
to extracellular calcium (Cao) including the formation of the E-cadherin/Ctnn com-
plex and the permeability barrier [199, 206]. Thus, calcium and vitamin D signaling 
are essential partners for keratinocyte differentiation.

Cancer. The antiproliferative, prodifferentiating effects of vitamin D signaling 
on many, if not all, cell types have raised the hope that vitamin D, 1,25(OH)2D, or 
one or more of its analogs would prove useful in the prevention and/or treatment of 
cancer. This section will focus on the antiproliferative/prodifferentiating actions as 
shown in a number of cellular and animal studies, but a large number of other mech-
anisms have been invoked as recently reviewed [207].

Cellular mechanisms. Most tumors express the VDR and often express CYP27B1, 
but their expression is often lost as the tumor undergoes progressive dedifferentia-
tion [208–210]. On the other hand, CYP24A1 expression is often increased in 
tumors and is associated with resistance to 1,25(OH)2D [210, 211]. These changes 
in vitamin D metabolism and responsiveness reduce the ability of 1,25(OH)2D to 
control the proliferation and differentiation of these tumors. Moreover, a number of 
miRNAs have been identified to be regulated by 1,25(OH)2D/VDR relevant to their 
antiproliferative actions [212]. These include increased expression of miR145, 
which blocks the expression of E2F3, a key regulator of proliferation [213] or miR-
32 that blocks the proapoptotic protein Bim that somewhat paradoxically actually 
protects the cell (human myeloid leukemia) from AraC-induced apoptosis [214].

1,25(OH)2D typically causes arrest at the Go/G1 and/or G1/S transitions in the 
cell cycle associated with a decrease in cyclins and an increase in the inhibitors of 
the cyclin-dependent kinases (CDK) such as p21cip1 and p27kip1 [215, 216]. One 
class of transcription factors that have been shown to be involved in suppression of 
proliferation and increased apoptosis is the family of Forkhead box O (FoxO) pro-
teins. 1,25(OH)2D promotes their interaction with VDR as well as their regulation 
by Sirt1 and protein phosphatase 1 maintaining these proteins in the transcription-
ally active dephosphorylated state [217]. 1,25(OH)2D reduces the expression of pro-
proliferative genes such as Myc, Fos, and Jun [77] while stimulating the expression 
of IGF-binding protein 3 (IGFBP3) in prostate and breast cancer cells, thus block-
ing the proproliferative actions of IGFs 1 and 2 [218, 219]. In epithelial cells, 
1,25(OH)2D stimulates the expression of TGFβ2, which is antiproliferative in these 
cells [220–222], and suppresses components of the hedgehog pathway (HH), which 
when overexpressed result in basal cell carcinomas (BCC) [223, 224]. 1,25(OH)2D 
inhibits EGF stimulation of proliferation by inhibiting the expression of its receptor 
in breast cell lines [225]. Constitutive activation of the wnt/β-catenin pathway is the 
cause of most colorectal cancers (CRC). When activated, β-catenin enters the 
nucleus where it binds to TCF/LEF sites in genes promoting proliferation (e.g., 
cyclin D1). 1,25(OH)2D/VDR blocks this pathway both by binding to β-catenin, 
restricting its proproliferative actions in the nucleus, and by stimulating the forma-
tion of the E-cadherin/catenin complex in the cell membrane to which β-catenin 
binds restricting its translocation to the nucleus [226]. Moreover, 1,25(OH)2D can 
increase the expression of the wnt inhibitor dickkopf (DKK)-1 [227] while inhibit-
ing that of the wnt activator DKK-4 [228] in colon cancer cells.
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1,25(OH)2D promotes the apoptosis of a number of cell types [229, 230] by 
stimulating the expression of proapoptotic genes such as GOS2 (Go/G1 switch gene 
2) [216], Bax [231], DAP (death-associated protein)-3, CFKAR (caspase 8 
apoptosis-related cysteine peptidase), FADD (Fas-associated death domain), and 
caspases (e.g., caspase 3, 4, 6, and 8) [221] in a variety of cell lines, while suppress-
ing the expression of proapoptotic genes such as Bcl2 and Bcl-XL in these and oth-
ers [231–233].

Animal studies. Animal studies demonstrating the efficacy of 1,25(OH)2D in pre-
venting or slowing the progression of different tumors are numerous with those of 
the colorectum (CRC), breast, prostate, and skin being most studied in both ani-
mal and human studies. A Western diet low in calcium and vitamin D fed to mice 
increases their risk of CRC, a risk that can be reversed with a diet supplemented with 
calcium and vitamin D [234]. Tumors induced by the combination of azoxymethane 
and dextran sulfate can be at least partially prevented with the administration of 
vitamin D metabolites [235]. Activation of the wnt/β-catenin pathway caused by 
mutations in adenomatous polyposis coli (APCmin) develops tumors much faster on 
a Western diet [236], on a vitamin D-deficient diet [237], or when bred with VDR-
null mice [238]. As for CRC, the number of breast cancers induced in this case by 
dimethylbenzanthracene (DMBA) is increased when the rats are fed a Western diet 
[239] or when DMBA is given to VDR-null mice [240]. VDR agonists prevent the 
growth of breast cancer xenografts [241]. Vitamin D analogs can also inhibit the 
growth of prostate cancer regardless of androgen receptor status [242]. PC3 prostate 
cancer cells in bone grow more rapidly when the mice are fed a vitamin D-deficient 
diet [243]. Similarly, breeding the transgenic prostate tumor model, LPB-Tag with 
VDR-null mice, stimulates the growth of these tumors [244], whereas high doses of 
1,25(OH)2D suppress the development of tumors in the TRAMP model of prostate 
cancer [245]. The most common skin cancers are squamous cell carcinomas (SCC) 
and basal cell carcinomas (BCC). In animals, these tumors are typically induced by 
DMBA topically or orally often followed by repeated topical application of phor-
bol esters or by chronic exposure to UVB. Nearly all VDR-null mice treated with 
DMBA or chronic UVB exposure develop skin tumors, but not their controls [224, 
246]. Topical 1,25(OH)2D is protective at least of the early effects of UVB on mark-
ers of DNA damage such as cyclobutane pyrimidine dimers [247].

Clinical studies. Most of the evidence supporting a role for vitamin D in tumor 
prevention in humans is epidemiologic. The evidence for a link between vitamin D 
and CRC is reasonably strong [248, 249]. One such study found a risk reduction 
of 0.88 (CI 0.8–0.96) comparing the highest to lowest levels of vitamin D intake 
[248] and 0.67 (CI 0.54–0.80) comparing the highest to the lowest serum 25OHD 
levels [248]. In breast cancer, the largest cohort studies [250, 251] (Nurses’ Health 
Study with 88,891 participants and Women’s Health Study with 31,487 partici-
pants) showed a relative risk (RR) of 0.72 (CI 0.55–0.94) and 0.65 (CI 0.42–1.00), 
respectively, but only in premenopausal women. However, several meta-analyses 
did not make this distinction regarding menopause status. One such study dem-
onstrated a risk reduction of 0.55 (CI 0.38–0.80) comparing the highest quintile 
of 25OHD levels to the lowest [252]. Another meta-analysis showed a RR of 0.89 
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(0.82–0.98) for a 10  ng/mL increase in 25OHD when all studies were included 
and 0.83 (0.79–0.87) when only case control studies were pooled [253]. In con-
trast to CRC and breast cancer, the role of vitamin D in prostate cancer is decid-
edly mixed. In a recent summary of 14 studies examining the association between 
25OHD levels and the development of prostate cancer, 11 showed no association 
[254]. Similarly, studies examining the association of dietary vitamin D intake to 
prostate cancer did not show benefit [253, 255]. Studies examining the link between 
vitamin D and nonmelanoma skin cancer (NMSC) are difficult to interpret because 
UVB is the common etiologic agent for both cancer development and vitamin D 
production. Those studies that have been reported are mixed. NMSC incidence in 
the osteoporotic fractures in men (MrOS) study indicated that those with the highest 
baseline serum 25OHD levels (30 ng/mL) had a relative risk of 0.53 (CI 0.3–0.93) 
compared to those with the lowest baseline 25OHD levels [256]. However, other 
studies found that higher 25(OH)D levels were associated with an increased risk of 
BCC [257, 258].

�Regulation of Hormone Secretion

Parathyroid hormone secretion. The promoter of the parathyroid hormone (PTH) 
gene contains a negative VDRE by which 1,25(OH)2D acting through its receptor is 
thought to control PTH synthesis [259]. More recent studies identified an E-box 
element in the PTH gene similar to that found in the CYP27B1 gene. VDR/RXR 
binds to this element but through the vitamin D inhibitory receptor complex similar 
to the inhibition by 1,25(OH)2D of CYP27B1 in the kidney [260, 261]. This leads 
to suppression of transcription via the same mechanisms (HDAC recruitment) as in 
the CYP27B1 gene. Of interest is that PTH levels are more highly correlated with 
circulating 25OHD levels than with circulating 1,25(OH)2D levels [262]. As noted 
earlier, the parathyroid gland (PTG) expresses the megalin/cubilin complex likely 
enabling uptake of the 25(OH)D/DBP complex into the gland providing the sub-
strate for the CYP27B1 in the PTG to produce its own 1,25(OH)2D [263]. It was 
initially presumed that the locally produced 1,25(OH)2D utilized the PTG VDR to 
suppress PTH production, but when the VDR was specifically deleted in PTG, the 
effect on PTH secretion was modest, and hyperplasia of the gland was not observed 
[264]. However, deletion of CYP27B1 in the PTG had a much greater impact on 
PTH secretion (250% increase vs. 80% increase in the PTG VDR deletion) and a 
surprising drop in serum calcium and 1,25(OH)2D levels suggesting that the 
CYP27B1 in the PTG was also providing 1,25(OH)2D to the circulation [265]. The 
drop in serum calcium may have contributed to the greater increase in PTH secre-
tion when CYP27B1 was deleted from the PTG than when the VDR was deleted. In 
addition to suppression of PTH secretion, 1,25(OH)2D inhibits the proliferation of 
parathyroid cells (PTC) in vivo [266] and in vitro [267]. In chronic kidney disease, 
epidermal growth factor receptor (EGFR) and its ligand transforming growth factor 
α (TGFα) are increased and thought to drive the PTG hyperplasia [268, 269]. 
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1,25(OH)2D decreases TGFα and EGFR expression [268] and increases the expres-
sion of the cell cycle inhibitors p21 and p27 to block the hyperplasia [270].

1,25(OH)2D interacts with other signaling mechanisms to enhance its regulation 
of PTH secretion and PTG proliferation. The promoter of the CaSR has two func-
tional VDREs through which 1,25(OH)2D/VDR stimulates the expression of CaSR 
[271]. The CaSR may, in turn, increase VDR levels as suggested by the observation 
that low-calcium diets decrease the VDR in PTG but high-calcium diets increase the 
VDR in PTG [272]. 1,25(OH)2D also stimulates Klotho expression in PTC, which, 
along with FGF receptors, enables FGF23 responsiveness and in turn FGF23 stimu-
lates CYP27B1 [29]. This effect of FGF23 on CYP27B1 in the PTC is opposite to 
the effect of FGF23 on CYP27B1 in the kidney for unclear reasons. The ability of 
1,25(OH)2D to inhibit PTH production and secretion has been exploited clinically 
in that 1,25(OH)2D and several of its analogs are used to prevent and/or treat sec-
ondary hyperparathyroidism associated with renal failure.

Insulin secretion. 1,25(OH)2D stimulates insulin secretion, although the mecha-
nism is not well defined [273, 274]. Moreover, insulin secretion is reduced in vita-
min D deficiency [275] and in VDRKO mice [276]. However, calcium is important 
for insulin secretion, and low calcium levels can be suppressive [277]. Therefore, 
the early results with vitamin D deficiency may also have reflected the low calcium 
levels in this condition. When VDRKO mice were placed on a rescue diet to main-
tain normal calcium levels, insulin secretion was not different from wild type [278]. 
On the other hand, VDR, CYP27B1, and calbindin-D28k are found in pancreatic 
beta cells [279–281] suggesting a direct role of VDR and 1,25(OH)2D in insulin 
secretion. Moreover, studies using calbindin-D28k-null mice have suggested that 
calbindin-D28k, by regulating intracellular calcium, can modulate depolarization-
stimulated insulin release [282]. Furthermore, calbindin-D28k, by buffering calcium, 
can protect against cytokine-mediated destruction of beta cells [283]. The renin/
angiotensin system (RAS) may also play a role by impairing beta cell function 
and insulin sensitivity. 1,25(OH)2D suppresses the RAS in VDRKO mice, and this 
property in mouse islets may contribute to the ability of 1,25(OH)2D to stimulate 
insulin secretion [284].

Fibroblast growth factor (FGF23). FGF23 is produced primarily by bone, and in 
particular by osteoblasts and osteocytes. 1,25(OH)2D3 stimulates this process, but 
the mechanism is not clear [285]. As noted earlier, FGF23 in turn inhibits 1,25(OH)2D 
production by the kidney resulting in a feedback loop similar to that for PTH secre-
tion to maintain a balance in the levels of these hormones. Diseases in which FGF23 
is overexpressed or not catabolized properly result in decreased 1,25(OH)2D levels, 
whereas the opposite is true when FGF23 fails to be secreted or in conditions such 
as Klotho gene deletion when its target tissues are unresponsive [286].

Renin. VDR- and CYP27B1-null mice have increased levels of renin [287, 288]. 
Renin converts angiotensinogen to angiotensin I, which is further converted to 
angiotensin II, a powerful vasoconstrictor as well as stimulator of aldosterone pro-
duction. In mice lacking VDR or CYP27B1, blood pressure is increased, with 
increased cardiac hypertrophy, impaired systolic and diastolic function, and 
increased arterial stiffness [287–289]. In the global VDR knockout, renin expres-
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sion is reduced both in the kidney and the heart as is the cardiac expression of atrial 
natriuretic factor (ANP) [290]. However, in the cardiomyocyte-specific VDRKO, 
the increased renin expression is found, but cardiomyopathy is not, suggesting that 
the effect of renin on the heart is indirect.

�Regulation of the Immune System

The immune system is comprised of two interacting forms of immunity: adaptive 
and innate. Adaptive immunity refers to the process by which cells specialized in 
antigen presentation, dendritic cells (DC) primarily, and the cells responsible for 
antigen recognition, T and B lymphocytes, are activated by foreign antigens to initi-
ate a series of functions such as cytokine production, antibody production, and cell 
killing. The major classes of T helper cells differentiating from the parent CD4 
lymphocyte include Th1, Th2, Th9, Th17, and Treg. These responses adapt to the 
antigen presented. The innate immune response involves the activation of toll-like 
receptors (TLRs), of which there are ten in the human genome. These TLRs are 
established during cell development (innate) [291]. TLRs are found in a number of 
cells including polymorphonuclear cells (PMNs), monocytes, macrophages, and a 
wide variety of epithelial cells including keratinocytes of the skin, gingiva, intes-
tine, vagina, bladder, and lungs. TLRs are pathogen-recognition receptors that rec-
ognize various products of infectious agents including bacteria and viruses and 
trigger the cell to produce various antimicrobial peptides (AMPs), the best studied 
of which is cathelicidin. In general, vitamin D signaling suppresses adaptive immu-
nity but promotes innate immunity.

The VDR and CYP27B1 are expressed in most, if not all, cells of the immune 
system including the epithelial cells, at least when activated [292–294]. Moreover, 
several of these cells express CYP2R1 and so in combination with CYP27B1 can 
produce 1,25(OH)2D from circulating vitamin D as well as 25(OH)D [294]. As 
noted earlier, the regulation of CYP27B1 in these cells differs substantially from 
that in the kidney, being insensitive to hormonal regulators such as PTH and FGF23, 
its product 1,25(OH)2D, and calcium and phosphate levels. In these immune cells, 
CYP27B1 is stimulated by cytokines such as tumor necrosis-α (TNFα) and 
interferon-γ (IGFγ) [23–26]. Thus, activation of these immune cells in diseases such 
as sarcoidosis or lymphomas can lead to hypercalcemia with elevated 1,25(OH)2D 
levels.

Adaptive immunity. 1,25(OH)2D decreases the maturation of DC, thus decreasing 
their ability to present antigen [295]. Furthermore, 1,25(OH)2D suppresses the pro-
liferation and differentiation of the T and B cells by suppressing IL-12 production, 
important for Th1 development, IL-23 and IL-6 production important for Th17 
development, as well as their ability to secrete IGFγ and IL-2 (from Th1 cells) and 
IL-17 from Th17 cells [296–298]. The suppression of IL-12 also increases the 
development of Th2 cells and their production of IL-4, IL-5, and IL-13, which serve 
to further suppress Th1 while promoting Th2 cell number and function. 1,25(OH)2D 
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reduces IL-9 production by Th9 cells [299], which, like the products from Th1 and 
Th17 cells, plays a role in inflammatory responses. Treg cells, on the other hand, are 
induced by 1,25(OH)2D [300]. Treg cells produce the regulatory cytokine IL-10 that 
suppresses the development of Th1 and Th17 leading to immune tolerance [301]. 
The regulation of a number of cytokines involved in the inflammatory process can 
be both direct and indirect. Inhibition of IL-2 expression involves blocking NFAT 
binding to the IL-2 promoter and sequestration of runx1 by VDR [297, 302]. 
Suppression of IFNα expression involves a negative VDRE in the promoter [303]. 
Suppression of IL-17 expression involves blocking NFAT binding to the IL-17 pro-
moter and induction of Foxp3 [297]. 1,25(OH)2D blocks NFκB by inhibiting its 
nuclear translocation, its binding to the consensus sequences in the genes it regu-
lates such as IL-8 and IL-12, and by degradation of IFκB (inhibitor of NFκB) [304]. 
1,25(OH)2D3 has also been shown to bring an inhibitor complex containing histone 
deacetylase 3 (HDAC3) to the promoter of rel B, one of the members of the NFκB 
family, thus suppressing gene expression. The actions of 1,25(OH)2D3 on B cells 
have received less attention, but recent studies have demonstrated a reduction in 
proliferation, maturation to plasma cells, and immunoglobulin production [293].

Although overall myelopoiesis and composition of lymphoid tissue are normal 
in VDRKO mice, abnormalities in immune responses to stimuli have been observed. 
Moreover, a number of experimental models of autoimmune diseases including 
rheumatoid arthritis, psoriasis, type 1 diabetes mellitus (NOD mouse), systemic 
lupus erythematosus (SLE), experimental allergic encephalitis (EAE, model for 
multiple sclerosis), and inflammatory bowel disease (IBD) have been prevented/
ameliorated with the use of 1,25(OH)2D or one of its analogs [305]. The severity in 
IBD is increased when IL-10 knockout mice are bred with VDRKO mice [306]. 
Rejection of transplanted tissues is reduced when the animals are treated with 
1,25(OH)2D or one of its analogs [307]. On the other hand, the promotion of Th2 
numbers and function may have adverse effects on allergic diseases such as asthma 
and atopic dermatitis. Calcipotriol, an analog of 1,25(OH)2D, stimulated thymic 
stromal lymphopoietin (TSLP) in keratinocytes leading to an increased expression 
of Th2 cytokines and increased inflammatory responses to allergen-induced atopic 
dermatitis and asthma [308]. However, 1,25(OH)2D was shown to be protective 
against experimentally induced asthma including a reduction in IL-4 production 
and eosinophilic infiltration in studies in normal mice [309] perhaps due to its sup-
pression of IL-9, a potent part of the inflammatory response in the lungs [299]. 
Other studies have shown that mice lacking the VDR (VDRKO) are also protected 
from experimentally induced asthma [310]. The effects of 1,25(OH)2D on infec-
tions are also mixed. 1,25(OH)2D inhibition of IGFγ stimulation of reactive oxygen 
species and nitric oxide production [311] or suppression of IL-17 limiting its induc-
tion of AMPs and neutrophil recruitment [312] have been shown to reduce resis-
tance to infectious organisms such as Leishmania [311], Toxoplasma [313], and 
Citrobacter [314].

Innate immunity. Stimulation of TLR 2/1 in macrophages [315] or TLR2 and its 
coreceptor CD14 in keratinocytes [195] leads to an increase in CYP27B1 and VDR 
expression enabling these cells to produce and respond their own 1,25(OH)2D. 
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1,25(OH)2D then induces antimicrobial peptides such as cathelicidin and defensins 
that kill intracellular organisms such as Mycobacterium tuberculosis. Cathelicidin 
also promotes the chemotaxis of neutrophils, monocytes, macrophages, and T cells 
into the skin thus linking the adaptive and immune responses in the skin and other 
tissues [316]. In this way, the innate immune function of these cells acts essentially 
as the first responder to invading organisms prior to the adaptive immune response. 
The murine cathelicidin gene lacks a VDRE and so is not responsive to 
1,25(OH)2D.  However, 1,25(OH)2D stimulates the inducible NOS pathway by 
which it induces M. tuberculosis killing in these macrophages [317]. Unfortunately, 
supplementation with vitamin D of patients with M. tuberculosis has not been uni-
versally successful [318–321]. In diseases such as atopic dermatitis, the production 
of cathelicidin and other antimicrobial peptides is reduced, predisposing these 
patients to microbial superinfections [322]. Th2 cytokines such as IL-4 and IL-13 
suppress the induction of AMPs [323]. Since 1,25(OH)2D3 stimulates the differen-
tiation of Th2 cells, its administration to patients with atopic dermatitis may not be 
useful in spite of its induction of cathelicidin in contrast to its proven value in 
patients with psoriasis in which suppression of Th1 and Th17 and their cytokines 
appears central to its therapeutic effect.
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