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Abstract. Quantitative information flow measurement techniques have
been proven to be successful in detecting leakage of confidential informa-
tion from programs. Modern approaches are based on formal methods,
relying on program analysis to produce a SAT formula representing the
program’s behavior, and model counting to measure the possible infor-
mation flow. However, while program analysis scales to large codebases
like the OpenSSL project, the formulas produced are too complex for
analysis with precise model counting. In this paper we use the approxi-
mate model counter ApproxMC2 to quantify information flow. We show
that ApproxMC2 is able to provide a large performance increase for a very
small loss of precision, allowing the analysis of SAT formulas produced
from complex code. We call the resulting technique ApproxFlow and test it
on a large set of benchmarks against the state of the art. Finally, we show
that ApproxFlow can evaluate the leakage incurred by the Heartbleed
OpenSSL bug, contrarily to the state of the art.

1 Introduction

Finding vulnerabilities in programs is fundamental for producing robust programs
as well as for guaranteeing user security and data confidentiality. Due to the
increasing complexity of software systems, automated techniques must be deployed
to assist architects and engineers in verifying the quality of their code. Among
these, quantitative techniques have been shown to effectively aid in detecting
complex vulnerabilities.

Quantitative information flow (QIF) computation [13] is a powerful quantita-
tive technique to detect information leakage directly at code level. QIF leverages
information theory to measure the flow of information between different variables
of the program. An unexpectedly large flow of information may characterize a
potential leakage of information. In practice, this technique relies on the following:
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the maximum amount of information that can leak from a function (known as
channel capacity) is the logarithm of the number of distinct outputs that the
function can produce [16].

Recently, QIF computation based on program analysis and model counting
has effectively analyzed codebases of tens of thousands of lines of C code [31]. This
technique proceeds as follows. A specific fragment of the program (e.g. a function,
or the whole program) is modeled as an information-theoretic channel from its
input to its output. Program analysis techniques such as symbolic execution
or model checking are used to explore the possible executions of the fragment.
Program analysis produces a set of constraints that characterizes these executions.
Afterwards, a model counter is used to determine the number of distinct outputs
of the fragment (e.g. the return values of the function, or the outputs of the
program). Finally, the base-2 logarithm of the number of possible outputs gives
us the channel capacity in bits.

However, even small programs can result in sets of constraints that are difficult
to model count. Complex constraints can result, for instance, from complex
program constructions such as pointers in C code. As a result, QIF computation
is still not able to discover real-world, high-value security vulnerabilities.

In particular, we consider the analysis of the OpenSSL Heartbleed vulnera-
bility [1] to be an achievable target for QIF computation, and aim to analyze
vulnerabilities of this complexity. Channel capacity can be used to detect infor-
mation leakage in cases like Heartbleed. For instance, if the input of a function
has a capacity of 6 bits and the output a capacity of 8 bits, then the function
has unexpected behavior. Further investigation can determine the origin of the
information that is unaccounted for, e.g. restricted memory that the function is
not supposed to have access to. The technique has been shown to be able to help
detect and confirm bugs in software [26, 24, 27], and to signal to a developer that
there may be bugs in a particular part of the software. Indeed, QIF-based tech-
niques, while not foolproof, can use the a large information flow to a particular
part of the program as a hint to a developer in order to narrow down where to
look for bugs [31].

However, the model counting step of the procedure is very computationally
expensive, since it is #P -complete [32]. On the other hand, since channel capacity
is computed as the logarithm of the number of outputs, imprecision in the model
counting procedure will result only in minor variations of the computed channel
capacity. Hence, it is natural to consider using approximate model counting
techniques, where the precision of the result is traded for improved efficiency.

This idea has been investigated by Klebanov et al. [22]. However, in Section 5.1
we show that the approach in [22] is fundamentally incorrect, requiring a different
technique.

For these reasons, in this paper we propose ApproxFlow, a new QIF com-
putation technique to tackle problems for which precise model counting is not
efficient enough. ApproxFlow is based on the ApproxMC2 tool implemented by
Chakraborty et al. [12]. We show that ApproxFlow vastly outperforms the state
of the art on all but a few of the benchmarks, including on many cases in which
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no other tool is able to provide an answer, making it the most efficient tool for
QIF computation currently available. The contributions of this paper are:
– We present ApproxFlow, a technique to quantify information flow for deter-

ministic C programs based on the approximate projected model counter
ApproxMC2;

– We show that a small decrease in the approximation precision can yield large
performance improvements, allowing ApproxFlow to scale to complex cases
with minimal reduction in the result’s usefulness;

– We show that the technique presented in [22] is incorrect due to some mistakes
in its underlying theoretical results;

– We evaluate ApproxMC2 against the precise projected counter sharpCDCL on
a large set of benchmarks, showing that the former generally yields orders of
magnitude better performance at the cost of a small decrease in precision;

– We use ApproxFlow’s improved scalability to model and compute the leakage
of the code in the Heartbleed bug [1], unlike previous QIF techniques.
The rest of the paper is structured as follows. Section 2 introduces technical

background and notation, and Section 3 discusses related work. We describe our
technique ApproxFlow Section 4 and evaluate it in Section 5. Section 6 presents
the Heartbleed case study. Section 7 provides additional discussion, and Section 8
concludes the paper.

2 Background

This section introduces the background and notations used in this paper.

Entropy and channel capacity. Let X be a discrete finite sample set and ρ(X )
a probability distribution on it, where the probability of an outcome x ∈ X is
denoted Pr[x]. The entropy H(ρ(X )) of a probability distribution ρ(X ), measured
in bits, is defined as H(ρ(X )) = −

∑
x∈X Pr[x]·log2 Pr[x]. The conditional entropy

H(ρ(Y|X )) of the conditional probability distribution ρ(Y|X ), is defined as
H(ρ(Y|X )) = −

∑
x∈X Pr[y|x] · log2 Pr[y|x], where Pr[y|x] denotes the probability

of an outcome y ∈ Y given that an outcome x ∈ X has already occurred.
Define a deterministic channel D as a triple (I,O, F ) where I (inputs) and O

(outputs) are discrete finite sample sets and F is a function I → O defining which
output o ∈ O is produced for each input i ∈ I. Hence, any probability distribution
ρ(I) on the input I induces a probability distribution ρ(O) on the output O
via F . The channel capacity of D is defined as C(D) = maxρ(I)H(ρ(O)) where
the maximum is taken over all possible probability distributions ρ(I). For a
deterministic channel D, it is known [16] that C(D) = log2 |{o ∈ O s.t. Pr[o] >
0}|.

The mutual information of a deterministic channel D is defined as I(D) =
H(ρ(O))−H(ρ(O|I)). An alternative but equivalent formulation of D’s channel
capacity is C(D) = maxi∈I I(D).

A deterministic program can be regarded as a deterministic channel, where
I and O represent the possible values for the program’s inputs and outputs. In
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this case the channel capacity represents the maximum amount of information
that can be inferred on the program’s inputs by observing its outputs [17].

Model counting. Model counting, or #SAT, is the canonical #P -complete problem,
and is the counting analogue of the Boolean satisfiability (SAT) problem [32]. Let
φ be a SAT formula involving variables V , and a ∈ {true, false}V be a Boolean
valuation of V. We say that a is a model of φ, denoted a ` φ, if φ evaluates to
true when substituting variables with their value in a.

The model count #φ of φ is the number of valuations that satisfy φ:

#φ =
∣∣{a ∈ {true, false}V | a ` φ}∣∣ .

We introduce the notion of projection in the context of model counting [3].
We consider a subset S ⊆ V of the variables. Given a Boolean valuation a of V,
we naturally define its projection a|S on S by restricting the input domain of a
to S. The projection a|S is a Boolean valuation of S.

The projected model count of a SAT formula φ on a projection scope S is the
number of valuations of S that can be extended into a model of φ:

#φS =
∣∣{aS ∈ {true, false}S | ∃a ∈ {true, false}Va|S = aS ∧ a ` φ

}∣∣ .

Approximate projected model counting with ApproxMC2 Approximate projected
model counting [12] refers to the problem of finding an estimate on the projected
model count of a SAT formula φ onto a subset S of the variables, as opposed to
precise number.

We present the core ideas behind the ApproxMC2 tool used in this paper,
and refer the reader to [12, 11] for a full exposition. ApproxMC2 is a Karp-Luby
(or (ε, δ)) counter [20], which obtains an estimate #̂φ on #φ that falls within
a factor 1 + ε of #φ with a probability of 1− δ, i.e., given a tolerance ε and a
probability δ it holds that

Pr
[
(1 + ε)

−1 · (#φ) ≤ #̂φ ≤ (1 + ε) · (#φ)
]
≥ 1− δ .

ApproxMC2 works by randomly partitioning the set of possible models of
the SAT formula φ projected onto S ⊆ V (denoted as φS), into roughly equal
buckets, performing model counting on this single bucket, and returning this
count, multiplied by the number of buckets, as the approximation of the exact
projected model count #φS . The partitioning into buckets of roughly equal size
is key, and is done using an approach based on r-wise independent hash functions
[6], adding special randomized XOR constraints to the SAT formula. If these
randomly-chosen buckets are “too big,” the number of buckets is doubled and
the procedure is repeated with accordingly smaller buckets.

For the reader’s convenience, we present a description of ApproxMC2, the
algorithm from [12], in Algorithm 1. We note that the algorithm has a chance to
fail to return anything at line 4, when it returns ⊥. By repeating the algorithm a
sufficiently large number of times, we can obtain the desired probability 1−δ that
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Algorithm 1: ApproxMC2
Input :A SAT formula φ with |φ| SAT variables x1, ..., x|φ|
Input :A projection scope S ⊆ {x1, ..., x|φ|}
Output :An estimate of #φS , the number of models of φ projected onto S

1 p← 1 + 9.84 · (1 + ε
1+ε ) · (1 + 1

ε )
2 // pivot value p

2 b← min(p,#φS) // return p as soon as ≥ p models of #φS found
3 if b < p then
4 return b

5 cells ← 2 // Number of cells
6 C ← [ ] // Empty list
7 for i← 1 to d17 · log2(

3
δ )e do

8 Choose h at random from Hxor(|S|, |S| − 1) // Random hash function
9 Choose α at random from {0, 1}|S|−1

10 φ′ ← φ ∧ h(S) = α // Add random XOR constraint to φ
11 b′ ← min(p,#φ′S)

12 if b′ ≥ p then
13 cells ← ⊥
14 models ← ⊥
15 if cells 6= ⊥ then
16 m← log2 LogSATSearch(φ, S, h, α, p, log2 cells)
17 φ′′ ← φ ∧ h(m)(S) = α(m) // Add XOR constraints to φ
18 models← min(p,#φ′′S)
19 AppendToList(C, cells · models)

20 return C̃ // Median of C

it will succeed. In line 16, the invocation of LogSATSearch refers to a procedure
to obtain good values for m. This is beyond the scope of this paper, and we
refer to [12] for details. In lines 2 , 11 , and 18, the minimum is computed using
a SAT solver which iteratively finds up to p models. Note that this step does
not require the usage of a model counter. Thus, the precise model count is not
typically computed at these points, unless the formula (augmented with any XOR
constraints) has become constrained (small) enough to have p or fewer models.

We emphasize that ApproxMC2 allows us control the tolerance ε. We will
show in Section 4.3 how reducing the tolerance can significantly improve the
computation time.

3 Related Work

This section presents a short review of work that is related to this paper.

3.1 Quantitative Information Flow

Prior work on QIF has largely followed the paradigm of characterizing the set
of a program’s outputs. We classify related work into two categories: those
which measure channel capacity, and those that measure other kinds of entropy.
We make a note that some work in channel capacity formulates their problem
in terms of min-entropy, but it is known [25] that for deterministic channels,
min-entropy and channel capacity are equivalent. In addition, because much
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work in QIF considers conditional entropy, we remark that channel capacity
corresponds to minimizing the conditional entropy of the output given the
input [17]. This is easy to see, as (adopting the definitions and notation from
Section 2), C(D) = maxi∈I I(D) = maxi∈I(H(ρ(O))−H(ρ(O|I)). To maximize
I(D), H(ρ(O|I)) must be minimized.

Channel capacity. Meng and Smith [25] present a method to obtain empirically
good upper bounds on the channel capacity of various small synthetic example
programs, also contributing to standardizing a set of QIF benchmark programs.
In [21], Klebanov et al. show how to obtain precise measurements of the channel
capacity (alongside the conditional Shannon entropy) for a number of programs,
including the benchmarks from [25], in addition to a number of small synthetic
programs and two examples of real C code on the order of magnitude of 100 lines.
In [26], Newsome et al. present a compound approach to obtain precise channel
capacity measurements for a set of small, synthetic benchmark programs, and
very coarse approximations to large, real-world programs up to a million lines.
In [31], Val et al. present a way to measure the channel capacity for a number
of benchmarks both synthetic and real, showing how to scale to programs up
to thousands of lines of code. McCamant and Ernst [24] use a coarse upper-
bounding approach for channel capacity based on network flows, showing how
to scale to hundreds of thousands of lines of real code and contributing smaller
case studies as benchmarks. Phan and Malacaria [27] present a method that
is able to analyze and compute upper bounds on the channel capacity for C
implementations of several well-known protocols, as well as three few-hundred-line
case studies including parts of the Linux kernel. While some of the above work has
demonstrated that generating SAT formulas is possible even for large programs,
complex program structures such as pointers often result in SAT formulas that
are too difficult for model counting. In addition, the various approaches have
occupied static points on the precision vs. scale relation, unable to vary precision
to obtain significant speedups.

Other QIF measures. In [34], Weigl presents a tool sharpPI, which implements
different search heuristics for model counting, applying it to the measurement
of Shannon entropy and presenting results for a small, scalable synthetic C
program. In [8], Biondi et al. present a technique, implemented in the QUAIL
tool [10, 9], to measure Shannon entropy for a number of scalable case studies
expressed in a simple imperative language. More recently, Fremont et al. [19]
present MaxCount, a novel approximate QIF method effective at finding leaks
in programs, with increasing efficacy as the relative size of the leaks increase.
In [5], Backes et al. present a technique to analyze small, synthetic programs
with respect to various information-theoretic measures. These techniques do not
compute the channel capacity, and therefore they are not comparable with our
approach. We note that, as a special case of QIF (checking for the existence of
a non-zero flow), qualitative information flow has been demonstrated to scale
to large program sizes, and confirm bugs in real software such as the OpenSSL
Heartbleed bug [23]. However, qualitative information flow does not attempt to
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measure the amount of information flowing through a program, and therefore
cannot be directly compared to our work.

Most recently, Biondi et al. present HyLeak [7], a tool based on a combination
of channel matrix computation and simulation to compute channel capacity,
among other information-theoretic measures.

3.2 Projected Model Counting

Projected model counting is a problem that arises naturally in QIF measure-
ment [26, 21, 31, 27].

In [34], Weigl presents an approach to projected model counting used as part
of a QIF measurement technique, implementing several different search heuristics
to guide the model counting. In [31], Val et al. present SharpSubSAT, a simple
projected model counter as part of a toolchain for measuring channel capacity,
which handles projection by removing variables from the formula that are not
part of the projection subset. The projected counter SharpCDCL [21] uses a similar
technique based on the state-of-the-art model counter sharpSAT. SharpCDCL is
in fact the current state-of-the-art tool in projected model counting.

Still, precise model counting often cannot scale to larger problem sizes, prompt-
ing the need for approximate methods. Work in approximate model counting has
fallen into three categories: counters that provide no theoretical guarantees but
empirically yield good estimates on the true count, counters providing a count
that represents an upper (or lower) bound on the exact count, and counters that
provide an interval within which the exact count falls ((ε, δ)-counters). We are
especially interested in these (ε, δ)-counters, for the theoretical guarantees they
provide, and for the promise of trading precision for running time. In addition,
there are (to the best of our knowledge) no projected approximate model counters
that fall outside this category.

Klebanov et al. [22] present a counter based on ApproxMC2 [11], with scalability
to 105 variables and 106 clauses. However, as shown in Section 1, this particular
counter has some theoretical mistakes, and we cannot consider it among the state
of the art. In [12], the authors present a counter based on the one from [11], and
demonstrate scalability to formulas with 105 variables and 106 clauses. Indeed,
the counter from [12] is among the state-of-the-art (ε, δ)-counters with projection
capabilities.

Recently, Fremont et al. [19] have presented the Maximum Model Counting
technique to compute approximate subset model counts, a novel technique based
on a partitioning scheme inspired by [12], and using the same underlying algorithm
(ApproxMC2) as we do in our technique. In their approach, the effectiveness of
the algorithm increases with the number of solutions.
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Fig. 1. A high-level view of ApproxFlow’s toolchain.

4 Channel Capacity Estimation with ApproxFlow

In this section, we describe ApproxFlow5, our technique for estimating the channel
capacity of a program to a given precision, with the intention of flagging suspicious
parts to a developer applying the tool on the program. We restrict ourselves to
deterministic programs, consistent with our background in Section 2. A high-level
view of our approach can be seen in Figure 1. ApproxFlow takes as input a program,
and passes it to a model checker to generate a SAT formula representing the
program. The SAT formula must be annotated with a projection scope, which is
the subset of the variables in the formula that correspond to the original program
variables to which we wish to measure channel capacity. We consider these the
“output” variables (although they can be SAT variables corresponding to program
variables anywhere in the program), while the SAT variables corresponding to
the original program inputs are not projected upon or constrained in any way.
ApproxFlow then passes this annotated SAT formula to a projection-capable
approximate model counter in order to obtain an approximation on the number
of models of the formula, projected onto the projection scope. Finally, ApproxFlow
takes the logarithm in base 2 to obtain our final measurement – an approximation
of the channel capacity of the program. The following subsections provide details
on each part of the toolchain.

4.1 Program to SAT Formula

ApproxFlow takes as input a deterministic C program, and uses the model checker
CBMC [15] to obtain an annotated SAT formula that represents the original
program. The C program may be optionally annotated by the user to specify
a given program location or set of program variables to which to measure the
channel capacity. In practice, this program annotation is specified using CBMC’s
assertion facilities. The user can use the assertion __CPROVER_assert(0,""); to
specify where the formula should be computed. If this annotation is not provided
by the user, ApproxFlow automatically converts the program into an equivalent
program where all functions in the program have a single return point at the end
of each function, and the annotation is automatically placed immediately before
this single return point.
5 ApproxFlow is publicly available at https://github.com/approxflow/approxflow.
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CBMC performs bounded model checking on the program6, and outputs a
SAT formula in conjunctive normal form (CNF) that represents the constraints
on the variables induced by the program. This model checking step is subject
to the following limitations: 1) loop unwinding is bounded to a specified depth
(always set high enough in our experiments to capture the full behaviour of the
program), and 2) the set of possible values for pointers is overapproximated.

For a fuller treatment of the effect of bounded loop unwinding on (precise)
channel capacity computation, we refer the reader to [31], but we give a brief
treatment of the topic. For some programs, such as server software which includes
infinite loops by design, loop unwinding limits the scope of the analysis, and
underapproximates program behaviour. Consequently, the channel capacity is
also underapproximated. However, it is often the case that an output variable
to which we measure leakage already achieves maximum leakage after only a
few iterations. In addition, many loops are executed for only a few iterations,
and a bound such as 32 (our default) is more than enough to capture the loop’s
full behaviour. As our goal is approximate channel capacity measurement, we
argue that our approach is less sensitive than precise approaches to the further
approximation induced by bounding the loop unwinding. A similar argument
can be made for the overapproximation caused by CBMC’s conservative pointer
analysis, and we again refer the reader to [31] for a discussion in the context
of information flow. Both issues are orthogonal to our contributions, as they
result directly from CBMC’s limitations in performing a more precise analysis;
improvements in model checking and formula generation would benefit us directly.

Additionally, CBMC annotates the SAT formula with comments that specify
which boolean variables in the SAT formula correspond to the original program
variables. In this way, we are able to obtain a SAT formula from CBMC that
is annotated with our desired projection scope, which may be then passed to
an approximate model counter in order to obtain the number of models of the
formula projected onto the specified variables.

4.2 SAT Formula to Channel Capacity

In the second step of our approach, we take as input an annotated SAT formula
obtained from the model checker and use a projection-capable approximate model
counter to obtain an estimate of the number of models of the projected formula.
Specifically, we use an improved implementation of a state-of-the-art approximate
model counter ApproxMC2 [12] by Mate Soos and Kuldeep Meel, which is pending
publication. For the remainder of the paper, whenever we refer to ApproxMC2,
we are actually referring to this improved version.

ApproxMC2 takes a SAT formula in conjunctive normal form (CNF), specified
in the DIMACS CNF format [4], with the projection scope specified by special
comments in the file. ApproxMC2 provides an approximate number of models
of this projected formula within a specified tolerance, with high probability.
6 We do not discuss model checking in this paper. For a treatment of model checking,
please consult [14].
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While ApproxMC2 is a state-of-the-art approximate counter, it does have some
limitations even when compared to precise tools. ApproxMC2 has significant
overhead due to the requirement of adding XOR constraints, which tends to
make it perform more poorly in terms of running-time on smaller problems
relative to other counters. In addition, ApproxMC2’s expected runtime is higher
when compared to other counters when it is used to solve formulas that are
dense in their solution space – that is, formulas which have a large number of
models in relation to their formula size (in number of variables). In practice,
these limitations are not usually a problem compared to other available counters
(precise or approximate). Full details may be found in [12].

Finally, ApproxFlow takes the logarithm in base 2 of this estimated model
count in order to obtain an estimation of the channel capacity of the program.
Somewhat unique to this problem, it is worth nothing that taking the logarithm
of the approximate count exponentially squishes the error in the estimate. In
other words, a fairly coarse approximation on the model count can yield good
probabilistic bounds on the channel capacity estimate.

4.3 Performance-Precision Trade-off

0.2 0.4 0.6 0.8 1.0
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102

103
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Fig. 2. Precision-time relationship for Ap-
proxMC2. Time (in seconds) is on the vertical
axis, and the precision (or tolerance) parameter ε
is shown on the horizontal axis. Larger values of ε
represent more relaxed precision guarantees. All
measurements taken were for the preprocessed
AppleTalk case (ddp.pp.cnf) from Section 5 with
probability (1− δ) = 0.8.

Using an approximate method nat-
urally leads to a trade-off between
precision and performance. Be-
cause ApproxMC2 is able to trade
a lower precision for a shorter run-
ning time, we can choose a trade-
off point on the side of shorter run-
ning time when a close approxima-
tion is not essential (for instance,
when an approximate lower bound
is the desired outcome, as would
be desired when enforcing k-bit
policies [26]).

We evaluate this trade-off for
ApproxMC2 on the AppleTalk
Linux driver benchmark, ddp.pp
(discussed in more detail in Sec-
tion 5.3). This benchmark exhibits
a large enough channel capacity
(128 bits) such that a result with
a few bits of imprecision is still
useful. In addition, it is long-running enough (roughly 20 seconds on our machine,
detailed in Section 5) to be largely immune to small variations in time resulting
from background CPU usage, making it a good candidate for trading precision
for performance.

Figure 2 shows the relationship between precision ε and running time for
0.05 ≤ ε ≤ 1, with a fixed δ of 0.2 (the default value). As time is plotted
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on a logarithmic scale, we can see that as soon as we are able to relax the
precision/tolerance of the method by increasing epsilon, we gain a dramatic
speedup. Since channel capacity is computed as the logarithm of the number of
models, the worst case, ε = 1, represents only a single bit of imprecision, yet we
observe a speedup factor of 2-3 orders of magnitude over the ε = 0.05 case, which
represents an imprecision of log2 (1.05) ≈ 0.070 bits. Interestingly, we observed
that in all cases, the reported information flow was 128 bits. In practice, the
trade-off is even better based on these empirical observations than expected from
the theoretical guarantees.

5 Evaluation

In this section, we present an experimental evaluation of ApproxFlow compared
to the state-of-the art precise channel capacity measurement tools. We ran all
experiments on an Oracle VirtualBox virtual machine with 1 CPU and 8GB of
RAM running Linux Mint 18.1 hosted on a Windows 10 machine with a quad-core
Intel Core i7 2.9GHz CPU and 16GB of RAM.

5.1 Problems in Klebanov et al. [22]

The usage of approximate model counting to determine channel capacity was
previously explored by Klebanov et al. [22]. However, we have been unable to
replicate the results in [22]. After further investigation, we have concluded that
our inability to replicate such results depends on the fact that the theoretical
claims and proofs presented in [22] are incorrect.

The main result of [22] is presented in Theorem 2.12. The theorem aims to
show that the algorithm described in the paper terminates with high probability,
returning an estimate on the approximate model count. Unfortunately, as result
of a mistake in the proof, the probability of termination is overestimated, and
the presented algorithm appears to be more effective than it actually is at
approximating the true number of solutions. In particular, the proof of this
theorem hinges on the following claim (adopting the notation from [22]):

We now show that there is at least one iteration of the loop (indexed
by m = m′) such that with a probability of at least 1 − eb−r/2c the
following is true: the exit condition c ≤ pivot holds and the return value
2m
′ · |φh| ∈ [(1− ε)|φ|, (1 + ε)|φ|]

The authors then proceed to prove the above claim and treat it as sufficient
for the proof of Theorem 2.12. However, this is incorrect since the above claim
is not a sufficient condition for Theorem 2.12. To this end, let us define the
event Ti as condition c ≤ pivot holds for iteration m = i and the event Ui as
2i · |φh| ∈ [(1 − ε)|φ|, (1 + ε)|φ|]. Theorem 2.12 seeks to bound from below the
probability of the event S, where S = ∪ni=1((∩i−1j=1(T̄j)) ∩ Ti ∩ Ui. Note that,
Pr[S] ≥ Pr[Ti ∩ Ui] does not necessarily hold for all i. Therefore, demonstrating
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that there exists m = m′ such that Pr[Tm ∧ Um] ≥ 1− eb−r/2c is not sufficient
to support the claim in Theorem 2.12.

In addition, there is an error in the statement of Theorem 2.6. The authors
have written the upper bound on the probability as e−br/2c, instead of eb−r/2c [29,
Theorem 5]. The authors conclude that the value for pivot reported in [11] can
be made smaller, chosen as the value reported in Algorithm 3, Line 2 and shown
in Table 1. However, these conclusions are supported by Lemma 2.13, which
depends on Theorem 2.6 and the incorrect bound on the probability. As a result,
the reported precision of the algorithm is overestimated compared to the true
precision.

5.2 Comparison to Precise Channel Capacity

We compare ApproxFlow with the SharpCDCL-based technique proposed by Kle-
banov et al. [21]. Both techniques follow the same steps: 1) generating a SAT
formula from a program using CBMC [15], 2) specifying a projection scope, and
3) performing projected model counting (precise or approximate). We compare
only the step where ApproxFlow differs from Klebanov et al.’s approach, namely
projected model counting. For this comparison, we feed a SAT formula to both
tools, along with a projection scope extracted from a C program. If SAT formulas
are directly available from the existing benchmarks, we reuse those formulas,
otherwise we generate them with CBMC.

To produce the SAT formulas we use a 32-bit CBMC version 5.6 with the
arguments --32 --dimacs --function function-name --unwind loop-bound.
The parameter function-name specifies the function containing the variables for
which we want to measure channel capacity. The parameter loop-bound is the
loop unrolling depth, set to 32. We insert projection scopes corresponding to the
SAT variables in the formats required by sharpCDCL and ApproxMC2.

Finally, we run sharpCDCL and ApproxMC2 each with a timeout of 2 hours, un-
less otherwise specified. We measure the running time and the number of models
reported by each tool. As explained earlier, the base-2 logarithm of the number of
models gives us the channel capacity. If sharpCDCL times out, it reports a lower
bound on the number of models it found, while ApproxMC2 does not currently
have this feature implemented. Consequently, we report a lower bound only for
sharpCDCL, when applicable. We run sharpCDCL with arguments -countMode=2
-projection=projection-scope, where projection-scope refers to a file con-
taining the projection variables, and a countMode of 2 tells sharpCDCL to perform
model counting, rather than just SAT-solving. We ran ApproxMC2 with no ar-
guments, as the projection scope is specified as comments in the SAT formula
file. The default tolerance ε for ApproxMC2 is 0.8 (∼ 0.8 bits of error), and the
default confidence is 80% (δ = 0.2).

While we recognize that a large number of runs for each experiment would
be ideal for statistical evidence with respect to running time, many of our
experiments are long-running and doing this was not feasible. Therefore, our
figures represent the results of a single invocation of each tool.

82 F. Biondi et al.



Table 1. Leakage reported by ApproxMC2 and sharpCDCL as a number of bits, relative
error (as a percentage) in number of bits of channel capacity, running times for each
tool, and speedup factor observed when running ApproxMC2 instead of sharpCDCL
for several benchmarks. Negative entries represent slowdown factors. Speedup entries
marked as — represent entries for which at least one of the tools completed too quickly
for the precision of our timing tool (and at least one reported 0.00s). Entries marked
with error represent values for which sharpCDCL terminated with an error, and could
not produce a value for the model count. We note that in many cases, only ApproxMC2
was able to complete, with bolded entries representing cases in which both tools ran to
completion. We note that ApproxMC2 never produced an error.

Benchmarks from [26, 5, 25, 21]
Experiment sharpCDCL ApproxMC2 Relative sharpCDCL ApproxMC2 Speedup
name leakage leakage error time time factor
e-purse 5.00 5.00 0% 0.06 0.28 -4.67
pw-checker 1.00 1.00 0% 0.00 0.00 —
sum-query >22.49 32.00 ∗ t/o 0.87 ∗
10random 3.32 3.32 0% 0.00 0.00 —
bsearch16 16.00 16.00 0% 3.40 0.49 6.90
bsearch32 >22.87 32.00 ∗ t/o 2.13 ∗
mix-dupl 16.00 16.00 0% 5.91 0.20 29.60
sum32 >22.48 32.00 ∗ t/o 0.89 ∗
illustr. 4.09 4.09 0% 0.00 0.01 —
mask-cpy 16.00 16.00 0% 6.02 0.20 30.1
sanity-1 >22.82 31.04 ∗ t/o 0.94 ∗
sanity-2 >22.92 31.00 ∗ t/o 1.07 ∗
check-cpy >22.51 32.00 ∗ t/o 0.88 ∗
copy >22.49 32.00 ∗ t/o 0.84 ∗
div-by-2 >22.79 31.00 ∗ t/o 1.06 ∗
implicit >2.81 2.81 0% 0.00 0.01 —
mul-by-2 >22.46 31.00 ∗ t/o 0.89 ∗
popcnt 5.04 5.04 0% 0.00 0.01 —
simp-mask 8.00 8.00 0% 0.00 0.05 —
switch 4.25 4.25 0% 0.00 0.00 —
tbl-lookup >22.45 32.00 ∗ t/o 0.88 ∗

5.3 Benchmarks

Several benchmarks have become accepted in the QIF literature. Tables 1 to 3
show the relative error and speedup factor of running ApproxMC2 instead of
sharpCDCL on these benchmarks. As no SAT formulas were openly available for
many of these, we wrote C implementations from the descriptions of the specified
benchmarks in their respective papers, and obtained SAT formulas using CBMC
as previously described.

Table 1 ApproxMC2 and sharpCDCL on the benchmarks presented in [26, 5,
25, 21]. When both ApproxMC2 and sharpCDCL terminate before the time out,
the reported model count is identical, therefore ApproxMC2 has relative error of
zero. In the cases when sharpCDCL times out after two hours, the lower-bound
channel capacity reported by sharpCDCL ranges from 22 to 23 bits, even when the
actual result is larger. On these benchmarks, ApproxMC2 is not much slower than
sharpCDCL, and always reports the exact result. The converse tells a different
tale, with sharpCDCL often timing out after 2 hours, and providing only a coarse
lower bound in these cases. It is also somewhat surprising that sharpCDCL times
out on SAT formulas resulting from some simple programs, such as divide-by-2.
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Table 2. Leakage reported by ApproxMC2 and sharpCDCL as a number of bits, relative
error (as a percentage) in number of bits of channel capacity, running times for each
tool, and speedup factor observed when running ApproxMC2 instead of sharpCDCL
for several benchmarks. Negative entries represent slowdown factors. Speedup entries
marked as — represent entries for which at least one of the tools completed too quickly
for the precision of our timing tool (and at least one reported 0.00s). Entries marked
with error represent values for which sharpCDCL terminated with an error, and could
not produce a value for the model count. We note that ApproxMC2 never produced an
error, and further note that in many cases, only ApproxMC2 was able to complete, with
bolded entries representing cases in which both tools ran to completion. The entry fx
was run with a higher timeout (8.5 hours) instead of the usual 2 hours.

Benchmarks from [26, 5, 25, 21]
Experiment sharpCDCL ApproxMC2 Relative sharpCDCL ApproxMC2 Speedup
name leakage leakage error time time factor
ddp error 128.00 ∗ error 23.50 ∗
ddp.pp error 128.00 ∗ error 19.55 ∗
popcount 5.04 5.04 0% 0.00 0.01 —
sanitize 4.00 4.00 0% 0.00 0.00 —
openssl.1 8.00 8.00 0% 1.44 70.66 -49.10
openssl.2 16.00 16.00 0% 4.63 75.39 -16.30
openssl.3 >22.24 24.00 ∗ t/o 92.47 ∗
openssl.4 >22.91 32.00 ∗ t/o 86.32 ∗
openssl.5 >23.10 40.00 ∗ t/o 87.74 ∗
openssl.6 error 48.00 ∗ error 89.60 ∗
openssl.7 error 56.00 ∗ error 91.98 ∗
openssl.8 error 64.00 ∗ error 98.04 ∗
openssl.9 error 72.00 ∗ error 97.41 ∗
openssl.10 error 80.00 ∗ error 112.71 ∗
openssl.15 error t/o ∗ error t/o ∗
openssl.20 error 160.00 ∗ error 142.48 ∗
swirl >12.82 t/o ∗ t/o t/o —
10random 3.32 3.32 0% 0.00 0.01 —
bsearch16 16.00 16.00 0% 4.16 0.68 6.12
bsearch16.pp 16.00 16.00 0% 3.73 0.35 10.70
bsearch32 >22.79 32.00 ∗ t/o 3.21 ∗
bsearch32.pp >22.90 32.00 ∗ t/o 6.93 ∗
fx 16.00 16.00 0% 5753.42 7307.61 -1.27
mixdup 16.00 16.00 0% 8.44 0.22 38.40
sum.32 >22.78 32.00 ∗ t/o 0.98 ∗

In Table 2, we present results for a set of benchmarks described in [22, 21], for
which the authors kindly provided us the SAT formulas directly. As in the previ-
ous set of experiments, when both ApproxMC2 and sharpCDCL report a number of
models, the numbers are identical despite ApproxMC2’s fairly relaxed theoretical
tolerance and confidence. In these experiments, we found that sharpCDCL some-
times incorrectly terminates before its timeout because of two kinds of error: a
segmentation fault, or reporting the formula to be unsatisfiable (despite normally
giving a lower bound on the number of solutions if interrupted). In addition, we
witness cases in which ApproxMC2 timed out. We observe that ApproxMC2 is
slower than sharpCDCL on short-running experiments (openssl.1 and openssl.2),
but significantly faster on the more difficult, longer-running experiments (where
sharpCDCL often times out), with the exception of fx.

In Table 3, we present results for a set of scalable case studies given in [9].
These case studies consist of two models of a Voting protocol (one based on
each voter voting for a single-candidate, and one based on each voter having a
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Table 3. Leakage reported by ApproxMC2 and sharpCDCL as a number of bits, relative
error (as a percentage) in number of bits of channel capacity, running times for each
tool, and speedup factor observed when running ApproxMC2 instead of sharpCDCL for
several benchmarks. Negative entries represent slowdown factors. Entries marked with
error represent values for which sharpCDCL terminated with an error, and could not
produce a value for the model count (even in cases it completed within the timeout,
it did not report a number of solutions). We note that ApproxMC2 never produced an
error, with bolded entries representing cases in which both tools ran to completion. The
entries with 0% error had a reported solution count of 0 by both tools, so we abuse
notation and consider this a 0%, rather than undefined, error.

Benchmarks from [26, 5, 25, 21]
Experiment sharpCDCL ApproxMC2 Relative sharpCDCL ApproxMC2 Speedup
name leakage leakage error time time factor
Sing.3 error 5.81 ∗ error 1.46 ∗
Sing.5 7.62 7.86 3.15% 0.06 3.02 -50.30
Sing.7 9.63 9.70 0.73% 0.38 3.98 -10.50
Sing.9 10.97 11.00 0.27% 0.83 5.82 -7.01
Rank.3 >21.00 67.17 0% t/o 55.34 ∗
Rank.5 0.00 0.00 0% 0.40 0.52 -1.30
Rank.7 0.00 0.00 0% 0.75 0.96 -1.28
Rank.9 0.00 0.00 0% 1.26 1.58 -1.25

preference ranking of the candidates). These experiments have parameters that
control the size of the program, and therefore of the generated SAT formula. We
refer the reader to [9] for a description of the case studies and their parameters.
We translated the Java code provided on the companion website of the paper
into C, and generated SAT formulas with CBMC, with 16 as the bound for loop
unwinding. The experiment names beginning with “Sing” represent the single
candidate case from the case studies, while the experiment names beginning with
“Rank” represent the preference ranking case. In both cases, we correspond cases
in which ApproxMC2 is not clearly better than sharpCDCL. Although sharpCDCL
produces an error or times out in two of these cases, when sharpCDCL terminates,
it is between 7 and 50 times faster than ApproxMC2. We believe this is because
the resulting SAT formulas are dense in the number of solutions, which is a
weakness of ApproxMC2 (as we stated in Section 4.2). Nonetheless, ApproxMC2 is
very precise, exhibiting relative errors ranging from 0.30% to 3.10%. The Rank
entries with the number of candidates ranging from 5 to 9 represent unsatisfiable
formulas, and thus have 0 solutions.

As a consequence of the errors returned by sharpCDCL and the number of
benchmarks for which ApproxMC2 reported the exact count, we lack an in-depth
empirical evaluation of ApproxMC2’s precision. To this end, we present further
relative error measurements on the SmartGrid benchmark from [9]. These bench-
marks compute the leakage of private information obtained by observing the global
energy consumption in a smart grid. One model computes the information about a
single house, and the other computes the information about the consumption of ev-
ery house. As in the Voting protocol, we can scale the benchmark by changing the
values of the protocol’s parameters (Case A or B), the number of houses, and (for
the single-house case), the size of the house – small (S), medium (M), or large(L).
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Table 4. Relative error (as a percentage) in the
channel capacity estimation by using ApproxMC2
instead of the precise counter sharpCDCL for the
SmartGrid case study from [9]. The entry marked
as — represents a case in which sharpCDCL re-
turned an error and could not report a result.
The entry marked with a ? represents a case in
which sharpCDCL returned an incorrect chan-
nel capacity (resulting in an observed 45.25%
relative error). We compared ApproxMC2 to an-
other exact counter (SharpSubSAT [31]) which
reported the correct precise value, to obtain the
2.86% figure.

Relative error

Num Single house Global
Case houses S M L
A 36 0.32% 0.32% 0.32% 2.86%?

A 49 0.00% 0.00% 0.00% 0.00%
A 64 0.31% 0.31% 0.31% 0.32%

B 36 0.20% 0.58% 0.20% —
B 49 0.26% 0.26% 0.26% 0.26%
B 64 0.10% 0.10% 0.29% 0.10%

We refer the reader to [9] for
the full details of these models
and their parameters. We present
in Table 4 the relative error per-
centage of ApproxMC2 with re-
spect to sharpCDCL, on the num-
ber of bits of leakage reported.
As we can see, the channel ca-
pacity reported by the tools was
very close (and in many cases ex-
actly equal) in all cases when both
tools ran to completion and re-
ported a figure, except for case
A, N=36 of the global leakage ex-
periment, where we see an “er-
ror” of 45.25% when compared to
sharpCDCL. This large error re-
sults from an incorrect channel ca-
pacity measurement reported by
sharpCDCL. We verified this using
the exact projected model counter
SharpSubSAT from [31], observing
a relative error of 2.86% in the
channel capacity when compared
to this counter.

Finally, we remark that, in addition to being much faster in most cases while
maintaining very high precision, ApproxMC2 is able to report an approximate
model count in all our experiments, in contrast to the significant number of error
cases reported by sharpCDCL.

Comparison to ApproxMC-P

Although the work presented in [22] suffers from the theoretical errors that
we described in Section 1, we compared against the implementation of their
algorithm, called ApproxMC-P. We repeated the experiments from Section 5.3 for
the Voting and SmartGrid case studies, using ApproxMC-P with the cryptominisat4
[30] backend, instead of ApproxMC2. We used the same values of ε and δ as in
Section 1, but ran with a timeout of only 5 minutes instead of 2 hours. We found
that in all but 2 cases, the tool reported a spurious model count of 0 (in those
two non-zero cases, ApproxMC-P reported the exact count). We also tried using
the sharpCDCL backend instead of the cryptominisat4 backend, and results were
similar, with most cases resulting in an error. Additionally, we also ran on other
experiments described in Section 5, observing a high occurrence of 0 reported as
the model count. We similarly omit these due to space constraints.
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1 int dtls1_process_heartbeat(SSL *s) {
2
3 unsigned char *p = &s->s3->rrec.data[0], *pl;
4 unsigned short hbtype;
5 unsigned int payload;
6 unsigned int padding = 16;
7 //...
8 hbtype = *p++;
9 n2s(p, payload );

10
11 if (1+2 + payload +16 > s->s3 ->rrec.length)
12 return 0; /* missing in bugged version */
13
14 if (hbtype == TLS1_HB_REQUEST) {
15 unsigned char *buffer , *bp;
16 unsigned int write_length =
17 1 + 2 + payload + padding;
18 //..
19 buffer = OPENSSL_malloc(write_length );
20 bp = buffer;
21 *bp++ = TLS1_HB_RESPONSE;
22 s2n(payload , bp);
23 memcpy(bp, pl, payload );
24 //send buffer ...
25 }
26 }

(a)

1 int dtls1_process_heartbeat(char* input_msg ,
2 int msg_len ){
3 char *p = input_msg;
4 unsigned short hbtype;
5 unsigned int payload ;
6 unsigned int padding = 0; // ignore padding
7 hbtype = *p;
8 p++;
9 n2s(p,payload );

10
11 // only present in model for correct version
12 __CPROVER_assume (1 + 2 + payload <= msg_len );
13
14 // we model only the if true branch
15 unsigned char buffer [3 + MAX_PAYLOAD_SIZE ];
16 unsigned char *bp;
17
18 set_to_zero(buffer , 3 + MAX_PAYLOAD_SIZE );
19 bp = buffer;
20 *bp = TLS1_HB_RESPONSE;
21 bp++;
22 s2n(payload ,bp);
23 memcpy_emul(bp,p,payload );
24
25 return 0;
26 }

(b)

Fig. 3. Code model for the Heartbleed bug. a) Simplified fragment of code from
ssl/d1_both.c in OpenSSL 1.0.1f. b) Model for analysis.

6 Case Study: Heartbleed Bug

We present a case study for our technique based on the Hearbleed OpenSSL bug
[1]. We show that ApproxFlow can handle the complexity required to detect the
bug, in contrast to the state of the art of precise QIF.

The Heartbleed bug. The Heartbleed bug [1] is a vulnerability in the OpenSSL im-
plementation of the Heartbeat extension of TLS and DTLS [2]. It was introduced
in the OpenSSL code in 2012, and discovered and patched between March and
April 2014. It has been estimated that at discovery time between 24% and 55%
of the HTTPS servers in the Alexa Top 1 Million list were vulnerable to it [18].
The fact that Heartbleed went unnoticed for 2 years led the security development
community to ask why the automated techniques used to scan the OpenSSL
code for vulnerabilities did not detect it earlier, and which static and dynamic
techniques could be expected to find bugs similar to Heartbleed [28, 33, 35]. We
show how QIF can be used to model and detect the Heartbleed bug.

Fundamentally, the bug consists of a buffer over-read on a memcpy() func-
tion call in the Heartbeat implementation in OpenSSL, specifically in function
dtls1_process_heartbeat() of file d1_both.c. Figure 3 (a) presents a fragment
of the function. To verify that a server is still functional, the Heartbeat protocol
has the client ask the server to reply with a specific word. In the OpenSSL
implementation, the chosen word and its length are under the control of the
client. The length of the word is encoded in the first bytes of the message. The
pointer p is set at the start of the message from the client passed to the function
via the SSL structure in argument (line 3). First, the function decodes the type
and length of the message and stores it in the payload variable (line 8-9). In the
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vulnerable version, the checking of payload (line 11) is absent, which allows the
client to specify a word length greater than the actual length of the sent word.
Next, the function allocates a buffer large enough to store the answer message for
the client (line 19). A call to memcpy() (line 23) fills that buffer with the input
word and, if the value of payload is greater than the length of the input word,
the content of the memory after the input word. Finally, buffer is sent back
to the client. With the bugged version, the client can obtain restricted kernel
memory, which they can use to infer privileged information about the server, e.g.
the server’s private key.

Modeling the bug. We had to rewrite OpenSSL C code in a different form due to
limitations in the currently-available tools that can produce SAT formulas from
C code. This modelling step is not inherent in our approach, and may largely
disappear in the long term as SAT-formula-generation tools mature. Generating
the formulas from C code is out of the scope of this paper, and we rely on CBMC
to perform this transformation. Therefore, the code that we actually analyzed is
a model of the real code – one that CBMC can handle.

Our model is presented in Fig. 3 (b). Our goal is to compare the channel
capacity of the input_msg and buffer arrays. Since calls to malloc are not
well-supported by CBMC, we statically allocate the array (line 15). By default,
CBMC considers that unassigned values are unconstrained, therefore we set each
cell of buffer to zero with the set_to_zero macro on line 16. We then fill the
buffer as in the original function, but instead of calling memcpy(), we invoke on
line 21 a macro memcpy_emul that uses a loop to copy the values.

In order to statically set the size of buffer, we need to know the maximum
value taken by the variable payload. This variable is encoded by 16 bits. However,
we restrict it by adding CBMC constraints on input_msg so that we choose the
number of bits. The constant MAX_PAYLOAD_SIZE is set accordingly. For the
experiments, we restrict the value of payload to be encoded by 4 bits, which
corresponds to a message of at most 15 bytes. We set the message length to 1
byte, as an attacker would do to maximize the amount of information obtained
from the memory.

Due to another limitation in CBMC, we were not able to analyze the if-error-
then-return idiom, replacing it with a CBMC assumption negating the condition
of the if statement. Similarly, we only modeled the true branch of the second
conditional.

Results. We first analyze the model of the vulnerable version, that is without the
CBMC assumption about payload on line 12. Executing CBMC on the model
in Fig. 3 (b) produces a SAT formula with 39272 clauses in less than 1 second.
Since our memcpy is implemented by a loop on payload, we set the bounds on
the loop to 260 (instead of 32 as in the benchmarks from Section 5), a figure
chosen due to CBMC limitations.

First, we measure the channel capacity to input_msg. Both sharpCDCL and
ApproxMC2 terminate in less than a second and return 12 bits, which correspond
to 4 bits to encode the size of the message and 1 byte for the message itself.
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We then measure the channel capacity to buffer. The sharpCDCL tool times
out after 2 hours of trying to count the models in the formula. On the other
hand, the ApproxMC2 tool provides an approximate channel capacity of 15 bytes
in 25 seconds. Since the channel capacity to buffer is much more than the one
to input_msg, there is a suspicious leak of approximately 14 bytes of information.
By reducing the confidence to 50% (δ = 0.5), ApproxMC2 returns 15.1 bytes in 2
seconds. After such analysis, a programmer could investigate why this leakage is
so high and possibly discover the Heartbleed bug.

When adding the CBMC assumption representing the patch to fix the bug on
line 12, the leakage of buffer is down to about 1 byte (257 models) and both
sharpCDCL and ApproxMC2 terminate in less than a second. ApproxMC2 reports
264 models. This leakage value indicates that, as expected, the buffer actually
transmits one byte of information and that the patch successfully removed the
suspicious leak.

7 Discussion and Future Work

In this section, we discuss the broader meaning of our approach, its limitations,
and provide discourse on the results of the evaluation in Section 5, as well as
discussion on future directions.

We showed in Section 5 that an approximate approach can provide a large
increase in performance at the cost of a small amount of precision, especially as
problem sizes increase. A major strength of ApproxFlow is its ability to trade
efficiency for precision simply by varying the tolerance parameter ε. The ability
to relax the precision to a desired level can yield practical results in many cases.
Consider a program meant to return a value from a small set of return codes.
The corresponding leakage might be only 1 or 2 bits. In this case, a coarse
approximation would be sufficient; an observation of approximately 10 bits is just
as practically significant as an observation of precisely 10 bits – both would mark
the program as suspicious, prompting further analysis.

In Section 6, we showed that with ApproxFlow, we can perform a largely
automated analysis which is potentially useful in discovering, or confirming,
bugs in real software. Nonetheless, we recognize the need for improvements to
the technique before we can realize a fully-automated and practically useful
bug-finding tool. As explained in Section 6, limitations in CBMC force us to
analyze manually-simplified versions of some programs.

A possible improvement to formula generation would be to pursue source
code in a language easier to analyze than C. Higher-level languages such as
Java or C# present easier analysis for model checkers and symbolic execution
engines, because of features such as stronger type-checking. While C is arguably
still the most relevant language for targeting security bugs, it is perhaps too
ambitious a target for current formula generation techniques. Since the formula
generation is decoupled from the model counting, it would be interesting to study
the effectiveness of our overall approach for Java or C# source code, using a tool
such as Java PathFinder as its formula generation engine.
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In [26], Newsome et al. present the use of channel capacity measurement as a
way to enforce k-bit policies, which are policies of the form “the program leaks
no more than k bits of information from its inputs to its outputs.” Such policies
may be used as an aid to a developer looking for security issues in source code
– as soon as “too many” bits are found, the offending part of the program can
be flagged as suspicious. This is a natural use case for approximation, as the
lower bound is often already a fuzzy quantity, and a choice for the value of k
may be somewhat arbitrary. As a future direction, it would be interesting to use
an approximate lower bounding projected model counter, and observe its efficacy
compared to ApproxMC2 for enforcing k-bit policies. This use case, for example,
gives quantitative information flow techniques (such as our method) a distinct
advantage over qualitative ones, which do not reason about the size of the flow.

Finally, it would be illuminating to compare our technique to the MaxCount
tool presented by Fremont et al. [19]. Using the underlying approximate counting
algorithm they present in the place of ApproxMC2, we could study how sensitive
ApproxFlow is to the choice of counting algorithm. We expect that an approach
based on MaxCount might be more effective than our own for large leaks
(relative to the formula size), but not for small leaks. Perhaps a combination of
the two counting algorithms would be the most effective in practice.

8 Conclusions

We have presented ApproxFlow, a technique leveraging approximate model count-
ing to measure the approximate channel capacity of deterministic C programs,
showing it to be among the most efficient currently-available techniques for QIF
computation. The necessity of such a technique arises from both theoretical errors
and practical limitations in some of the prior work that applied approximate
model counting to channel capacity measurement.

ApproxFlow takes a program, performs model checking to produce a formula
which represents the program, and leverages approximate projected model count-
ing in order to obtain an approximation of the program’s channel capacity. We
show how ApproxFlow is more efficient than state-of-the-art techniques on a
number of benchmarks, with graceful degradation in the relatively few cases when
it’s less efficient. In particular, on many benchmarks, we show that ApproxFlow
can estimate the information flow while precise tools cannot, or otherwise obtain
significant speedups while maintaining high empirical precision, and exhibiting
much smaller slowdown factors when ApproxFlow is slower.

In addition, we present a new case study based on the famous OpenSSL
Heartbleed bug that showcases the power of our technique. While analysis with
state-of-the-art precise tools times out after 2 hours, ApproxFlow obtains the
channel capacity in only 25 seconds.

Our technique opens up the possibility of automatically detecting channel
capacity for larger programs than previously possible, representing a step towards
automatic vulnerability detection using QIF.
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