
Modular Analysis of Executables using
On-Demand Heyting Completion

Julian Kranz1 and Axel Simon2

1 Technische Universität München, Garching b. München, Germany,
julian.kranz@in.tum.de

2 Google Inc., Mountain View, CA, USA, axelsimon@google.com

Abstract A function-modular analysis is presented that computes pre-
cise function summaries in the presence of pointers and indirect calls.
Our approach computes several summaries for a function, each special-
ized to a particular input property. A call site combines the effect of
several summaries, based on what properties hold. The key novelty is
that the properties are tailored to the function being analyzed. Moreover,
they are represented in a domain-agnostic way by using Herbrand terms
with variables. Callers instantiate these variables, based on their state.
For each variable instantiation, a new summary is computed. Since the
computed summaries are exact with respect to the property, our fixpoint
computation resembles the process of Heyting completion where a domain
is iteratively refined to be complete wrt. the intersection with a property.
Our approach combines the advantages of a modular analysis, such as
scalability and context-sensitivity, with the ability to compute meaning-
ful summaries for functions that call other functions via pointers that
were passed as arguments. We illustrate our framework in the context of
inferring indirect callees in x86 executables.

Keywords: executable analysis, modular analysis, domain refinement

1 Introduction

One challenge in static analysis is the sheer size of the input program. This
is particularly true for the analysis of executables that have easily an order of
magnitude more statements than the corresponding source program. One key to
scalability is the treatment of functions: On the one hand, the highest precision
needed to prove the absence of run-time errors [2] can be obtained by inlining
functions at each call-site with the cost of increasing the code to be analyzed
dramatically. On the other hand, the duplicate evaluation of code can be avoided
by performing a context-insensitive analysis in which all calling contexts of a
function are merged and the return state is propagated to all call sites. A context-
sensitive analysis without duplicate evaluation of functions can be obtained by
inferring an input/output relation for each function. These function summaries
are then combined to obtain a solution to the whole program using a global
fixpoint computation. This approach is known as modular analysis [6].

c© Springer International Publishing AG 2018 291
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 291–312, 2018.
https://doi.org/10.1007/978-3-319-73721-8_14

struct Parity {

virtual bool IsEven () = 0;

virtual bool IsOdd () = 0;

};

struct Even : public Parity {

bool IsEven () { return true;}

bool IsOdd() { return false ;}

};

struct Odd : public Parity {

bool IsEven () {

even_call ++; return false ;}

bool IsOdd() { return true;}

int even_call = 0;

};

void CheckEven () {

Even even;

Check (&even);

}

void CheckOdd () {

Odd odd;

Check (&odd);

assert(odd.even_call > 0);

}

void Check(Parity* parity) {

assert(parity ->IsEven ()

!= parity ->IsOdd ());

}

Figure 1. The running example C++ program.

We illustrate the challenges of a modular analysis using the code in Fig. 1.
Here, the tests CheckEven and CheckOdd rely on the helper function Check to
test an invariant of the two sub-classes Even and Odd. In a modular analysis,
the methods Even::IsEven and Even::IsOdd are summarized by their effect of
returning a constant value. The Odd::IsEven method modifies the even_call

field pointed-to by this. A summary for this method must therefore assume the
existence of a memory region at *this containing an int field. A precise summary
of this function can be expressed by x′ = x+ 1 where x, x′ is the value of the field
before, resp. after, the call. A more challenging task is the summary of Check.
Invoking the virtual methods accessed through the parity pointer amounts to
an indirect function call. Without knowing which functions can be dispatched
to, a summary of this function would have to make worst case assumptions: the
invoked function may modify any memory reachable from global variables or the
this pointer. Without any additional information, a summary of a function fi
containing indirect calls provides little or no information.

One way to ensure that no precision loss occurs, even in the presence of higher-
order functions, is to limit the precision of the analysis up front. Specifically, by
using only abstract domains that are able to condense the effect of a function
without loss of precision, it is possible to compute a summary of a function even if
it takes other functions as parameters (examples are type inference for functional
programs [20], groundness analysis in Prolog [14] and instances of the IFDS
framework [16]). These so-called condensing domains [9] are too imprecise to
distinguish function behaviors based on pointer aliasing and numeric properties.

One particular kind of condensing domains are those whose meet distributes
over the join of the lattice, i.e. su(ttu) = (sut)t(suu). Giacobazzi and Scozzari
propose Heyting completion to make an existing domain meet-distributive [10].
This process adds new elements to a domain and may thereby refine an abstract
domain until it is isomorphic to the concrete domain (which is a set of states and
thus forms a distributive lattice). Heyting completion is therefore not generally

292 J. Kranz and A. Simon

practical. In this paper, we use Heyting completion on-demand, namely when the
analysis of a function requires it to avoid a severe loss of precision. In particular,
once a particular property p is identified for which we want to avoid the lossy
approximation {p} u (st t) A ({p} u s)t ({p} u t), we track a new abstract state
p → ({p} u s) t ({p} u t) and postpone the computation of a state in which
p does not hold until a call-site is encountered that requires it. Ultimately, a
function is summarized by a table [p1 7→ {p1} u s1, . . . pn 7→ {pn} u sn] and a
call site c applies this summary by computing

⊔
i c u {pi} u si. We present an

analysis whose predicates p state that an input to a function is equal to a function
address. For instance, analyzing CheckEven creates a summary sE of Check and
stores the mapping (parity->vtable[0] = aE) 7→ sE where aE is the address of
Even::IsEven. A second summary of Check is created for the call site in CheckOdd.
A call site such as Check(rand() ? new Odd() : new Even()) can thereafter be
evaluated by instantiating the two summaries and without re-analyzing Check.

Given a function with the predicated summary [p1 7→ s1, . . . pn 7→ sn] and a
call-site with state c, the question arises if the predicates cover the state described
by c, i.e. if γ(c) ⊆ γ(p1) ∪ . . . ∪ γ(pn). If not, new predicates pn+1, . . . pn+k must
be identified and a new summary must be computed for each predicate. For
instance, calling Check with a new sub-class Mark whose method Mark::IsEven has
address aM , the computation of a new summary sM of Check is needed, giving
the table entry (parity->vtable[0] = aM) 7→ sM . The challenge here is how to
observe when a new predicate is needed and how to obtain it. Our contribution
to this end is to represent predicates as a Herbrand abstraction (uninterpreted
terms with variables as placeholder for other terms) which gives the analyzer the
flexibility to express cross-cutting properties from several abstract domains. By
evaluating these predicates wrt. a call-site state, the variables in the predicates
will be instantiated with values that make the predicate true. Each variable
assignment of a predicate gives a ground (i.e. fully instantiated) Herbrand term.
A summary of the function is computed for each ground Herbrand term.

In summary, we make the following contributions towards modular analysis:

– We apply Heyting completion [10] on-demand in order to make the summary
of a function complete for some predicate. Predicates are created on-demand,
namely when incompleteness would lead to an unusably imprecise result.

– We propose Herbrand abstractions to express symbolic predicates that func-
tions postulate and that call-sites instantiate, thereby providing an abstract
interface between the base analysis and the completion mechanism.

– We present an implementation of this framework using an inter-procedural
control-flow-graph analysis that is able to resolve function calls in an x86
executable compiled from a higher-order functional language.

The remainder of this paper is organized as follows: The next section defines a
collecting and abstract semantics for an imperative language with indirect function
calls. Section 3 generalizes these semantics to one that relates function inputs
to outputs. Section 4 enhances this abstract interpretation with the generation
of Herbrand terms and presents how a fixpoint is obtained in a modular way.
Section 5 discusses our implementation before Sect. 6 presents related work.

Modular Analysis of Executables using On-Demand Heyting Completion 293

Prog ::= FDecl∗

FDecl ::= ident(){Stmt∗}
Lhs ::= ident.field(→field)?

Expr ::= Lhs | Loc

Stmt ::= LocS : br (Expr : LocS ;)? LocS

| LocS : Lhs = Expr

| LocS : call Expr

| LocS : return

Figure 2. The abstract grammar of the analyzed program. (E)? denotes zero or one E.

2 Preliminary Definitions

In this section we define a language with functions and define a collecting
semantics for it. Let [] denote an empty map, m := [k1 7→ v1, . . . kn 7→ vn] a
map where n values can be looked up with m[ki] = vi, let m \ k denote a map
without a mapping for k and let m[k 7→ v] denote an update at k. Let dom(m)
denote the keys in m. Let Loc = LocS] LocM be the set of memory locations of
a program P that is partitioned into statement labels LocS and statically and
dynamically allocated memory regions LocM . Define LocF ⊆ LocS to be the set
of function entry points which coincide with the first statement in each function.
We assume a C-like language where a variable v is stored at address &v ∈ LocM .
Let σ ∈ Σ : LocM → (F → V) define the program state with σ(m) being a field
map of the memory at address m ∈ LocM . A field map takes field names F to
their content V where V := Loc ∪ Z denotes numeric values and addresses. The
ability to partition a memory region into fields allows our analysis to express
that a function call only accesses some but not all fields of a memory region.

Figure 2 defines the grammar of P ∈ L(Prog). A function is a sequence
of statements consisting of conditional jumps, assignments, function calls, and
returns. Note that every statement is preceded by its unique address l ∈ LocS . The
statement Lhs = Expr updates the specified field of a memory or, via the optional
C arrow notation, a field in the pointed-to memory region. For brevity, we write
even_call for Even::IsEven.this→ even_call ∈ L(Lhs) (where Even::IsEven is
the method in Fig. 1). The concrete semantics of a statement takes an input
program state σ ∈ Σ and returns a tuple consisting of the output state and the
location where execution continues. The individual rules are explained below.

[[·]]\ : L(Stmt)×Σ → (LocS ×Σ)

[[ls: br e : lt; lf]]\σ =

{
〈lt, σ〉 if [[e]]\Exprσ = 0

〈lf , σ〉 otherwise
(1)

[[ls: m.f = e]]\σ = 〈next(ls), σ[m 7→ σ(m)[f 7→ v]]〉 where v = [[e]]\Exprσ (2)

[[ls: m.f→f′= e]]\σ = [[ls: m
′.f′ = e]]\σ where &m′ = [[m.f]]\Exprσ (3)

[[ls: call e]]
\σ = 〈&f, σ[f 7→ [ret 7→ next(ls)]]〉 where &f = [[e]]\Exprσ (4)

[[ls: return]]\σ = 〈lr, σ \ f〉 where lr = [[f.ret]]\Exprσ (5)

The evaluation of an expression e ∈ L(Expr) is defined as follows:

294 J. Kranz and A. Simon

[[·]]\Expr : L(Expr)×Σ → V

[[m.f]]\Exprσ = σ(m)(f) (6)

[[m.f→f′]]\Exprσ = [[m′.f′]]\Exprσ where &m′ = [[m.f]]\Exprσ (7)

[[l]]\Exprσ = l (rule Expr ::= Loc) (8)

Jumps, defined by Eqn. 1, are unconditional if e : lt is omitted. Equation 2
updates the field f in σ(m). It returns the program location following this state-
ment using a function next : LocS → LocS that we assume to be suitably defined
for all non-branching statements. A write through a pointer in Eqn. 3 assumes
that the pointer value m.f matches the beginning of a memory region m′ and is
undefined otherwise. Thus, we do not model general pointer arithmetic and array
accesses but assume that parity->vtable[0] is interpreted such that vtable[0]

is a field name. Our implementation supports general pointer arithmetic.
The call instruction in Eqn. 4 continues execution at the called function. It

also creates a memory region with the same name as the function. This memory
region serves as the stack frame. The return instruction in Eqn. 5 jumps to the
location in the local variable f.ret, where f is the current function. (Note that
supporting recursion requires the use of unique names for stack frames as done in
the implementation.) Moreover, we assume that function arguments are copied
by the caller into the stack frame of the callee. The semantics of expressions in
Eqns. 6 to 8 is straightforward.

A suitable collecting semantics is the classic merge-over-all-path solution. Let
Σs ⊆ Σ be the initial state at the program entry point lmain. We define:

Definition 1. The collecting semantics of P is a map colP : LocS → ℘(Σ)
satisfying Σs ⊆ colP (lmain) and for all l : stmt ∈ P , σ ∈ colP (l), and 〈σ′, l′〉 =
[[l: stmt]]\(σ) it holds that σ′ ∈ colP (l′).

The structure 〈LocS → ℘(Σ), ⊆̇, ∪̇〉 is the cpo of the concrete domain where ⊆̇
and ∪̇ are the point-wise liftings of the corresponding operations on the images of
the map. The next section details how it is approximated by an abstract domain.

2.1 Abstract Interpretation of the Collecting Semantics

The segregation of memory into distinct regions lies at the heart of a modular
analysis where a function summary leaves all but a small set of memory regions
untouched. We therefore lift the concept of a memory region to the abstract.

Specifically, an abstract interpretation of the collecting semantics abstracts
the unbounded set of memory regions in the concrete environments Σ by a
bounded set of abstract memory regions M. The memory regions define a
set of non-overlapping areas of memory. The structure of a memory region
r ∈M is defined by a map MS =M→ (F → X) whose mappings are written

[r1 7→ φ]1, . . . , rn 7→ φ]n] where each φ]i maps fields of a memory region ri to a
value domain variable x ∈ X that takes on values in V = Z ∪ Loc.

Modular Analysis of Executables using On-Demand Heyting Completion 295

The values of X ⊆ X are given by a domain DX = 〈DX ,vDX
,tDX

,uDX
,⊥D〉.

Here, X is the support set of DX , that is, the variables that DX restricts. In
our implementation, DX is a reduced product [4] of several abstract domains.
Since the inference of summaries requires the ability to express relations between
input and output variables, a domain d ∈ DX must be concretized in a way
that retains these relations. Thus, the concretization γDX : DX → ℘(V∗) maps
d ∈ DX to γDX

(d) = {v1, . . .} where each vector vi has one dimension for
each abstract variable x ∈ X . For instance, let d ∈ D{x,y} have its variables
restricted by the interval constraint x ∈ [3, 5] and the equality x+ 1 = y then
〈x, y〉 ∈ γD(d) = {〈3, 4〉, 〈4, 5〉, 〈5, 6〉}. We write v(x) to extract the value from
the vector corresponding to the dimension x ∈ X . Changes to the support set
X of a domain DX are implemented by two functions addVarx : DX → DX∪{x}
(leaving x unrestricted) and delVarx : DX∪{x} → DX that are defined iff x /∈ X.

Combining Memory Structure and Value Domain We now describe how
MS and DX are combined. For the sake of this section, let vars(ms) ⊆ X denote
the variables occurring in ms ∈ MS. The lattice of our analysis contains elements
〈m, d〉 ∈ MS× {DX | X ⊆ X} such that d ∈ Dvars(m). We denote this universe
as MS×D. The concretization of MS×D to environments Σ proceeds in three
steps: First, we define a function embed that updates an environment σ ∈ Σ
with the values in a vector v ∈ V∗ based on the fields of a memory region. The
function recursively processes each mapping by pattern matching against the
empty map and a map {r 7→ φ]}]m containing a mapping for region r and
other mappings m:

embed : MS× (Loc ∪ Z)∗ ×Σ → Σ
embed([],v, σ) = σ
embed([r 7→ φ]]]m,v, σ) = embed(m,v, σ[r 7→ embedφ(σ(r), φ],v)])
where embedφ(m,φ],v) = m[f 7→ v(φ](f)) | f ∈ dom(φ])]

Second, we apply embed to the set of all concrete stores Σ, thereby obtaining
{embed(m,v, σ) | σ ∈ Σ}, the set of concrete stores in which the fields tracked
by the abstract domain are restricted to values in v. The final step is to compute
this set for each value vector, giving the concretization function:

γMS×D : MS×D → ℘(Σ)

γMS×D(〈m, d〉) =
⋃

v∈γD(d)

{embed(m,v, σ) | σ ∈ Σ}

We now address the task of defining the lattice operations on MS×D. The
problem to address is that two structures m1,m2 ∈ MS, that are propagated to
the same program point, are associated with domains di ∈ Dvars(mi), i = 1, 2, so
that d1 and d2 range over different variables and cannot be compared or joined.

We address this problem using a cofibered abstract domains [22] and define
three sound morphisms3 addRegionr, addFieldr,f , renameFieldf : MS × D →
3 In categorical terms, MS × D is a Grothendiek construction F o C using functor
F : C → Cat where C is a small category with obj(C) = MS and Cat is a category

296 J. Kranz and A. Simon

MS×D that are applied if the memory structures ms1,ms2 differ:

〈m, d〉 addRegionr−→ 〈m[r 7→ []], d〉 (9)

〈[r 7→ φ]]]m, d〉 addFieldr,f−→ 〈[r 7→ φ][f 7→ x]]]m, addVarx(d)〉(10)

〈[r 7→ φ][f 7→ x]]]m, d〉 renameFieldf,x,y−→ 〈 r 7→ φ][f 7→ y]]]m,
delVarx([[y := x]]]addVary(d))〉

(11)

Here, [[y := x]]] in Eqn. 11 is the update transformer on DX . By applying a
composition of the three morphisms on the domain tuples 〈mi, di〉, i = 1, 2, one
can obtain tuples 〈m′i, d′i〉 with m′1 = m′2 so that the lattice operations vDX

,tDX

can be applied to d′i. The morphisms can be shown as sound wrt. γMS×D and we
obtain the abstract lattice 〈MS×D,vMS×D,tMS×D,⊥MS×D〉.

Example 1. We give an intuition on where the above morphisms are applied
using an alias domain with universe DX = X → ℘(LocM ∪{abad}). It implements
addV arx adding the mapping x 7→ {abad} where abad is a symbolic constant that
represents all illegal addresses. Consider the following two functions:

void foo() {struct { int* a; } s; if (rand ()) s.a = &f; }

void bar() {struct{int*a;} s; if(rand ()) s.a=&f; else s.a=&g;}

Assume that s initially points to a region without fields, i.e. s 7→ []. Assume
further that, in foo and bar, the then-branch updates s such that s 7→ [a 7→ x1].
For foo, we have to apply the addFields,a morphism on the else-branch state
before the join; the join, consequently, results in the alias set x1 7→ {abad, &f}. In
the else-branch of bar bar, the update creates, e.g., s 7→ [a 7→ x2]. In this case, we
have to apply renameFielda,x2,x1

so that the states to be joined have the same
support set. The join results in x1 7→ {&f, &g} for the field a.

The presented memory structures MS do not allow for summarized memory
regions as every abstract memory region r ∈ M corresponds to exactly one
concrete memory region in σ, albeit at varying addresses. Although this suffices
to illustrate our modular analysis, our implementation requires a simple form of
summaries in form of weak updates. A concretization that caters for summarized
memory regions [19] would complicate the presentation unnecessarily.

of small categories with obj(Cat) = {〈DX , ρ〉 | X ⊆ X , ρ : X → (LocM × F)}.
Here, the translation ρ provides information on how X relates to the field names
of memory regions. F maps a category of memory structures to a category of
domains over variables in that memory structure. Thus, the category F oC contains
tuples 〈m, 〈d, ρ〉〉 ∈ obj(F o C) where m ∈ MS and d ∈ Dvars(m). The morphisms

〈m1, 〈d1, ρ1〉〉
(f,g)−→ 〈m2, 〈d2, ρ2〉〉 ∈ homFoC are pairs (f, g) where m1

f−→ m2 is a

functor in C and g is a morphism F (f)(〈d1, ρ1〉)
g−→ 〈d2, ρ2〉 in Cat. A morphism

is sound if g defines an inclusion relation between its arguments [22] which is given
if the values of d1 are a subset of those in d2 modulo the translation of variables:
g(〈d1, ρ1〉,〈d2, ρ2〉) iff ∀v1∈γDX (d1).∃v2∈γDX (d2).∀x∈dom(ρ1)∧ρ1(x) ∈ dom(ρ−1

2) .
v1(x) = v2(ρ−1

2 (ρ1(x))). We omit ρ when defining morphisms as it is not needed.

Modular Analysis of Executables using On-Demand Heyting Completion 297

3 Modular Program Semantics

In this section we generalize the collecting semantics and its abstract interpreta-
tion to function summaries. Specifically, we summarize the behavior of a function
by a set of tuples 〈σ, σ̄〉 that state how an input environment σ is mapped to an
output environment σ̄ and lift this relation to an abstract input/output relation.

We first define the input/output function semantics for a single input state.
Recall that the semantics of calling f and returning from f in Eqns. 4 and 5 use
the field f.ret to store the return address. In order to define the semantics of f
independently of a caller, we evaluate it in an environment σ = [f.ret 7→ lresf]]
where lresf ∈ Loc is a location that is not used in P .

Definition 2. The semantics of f at lf ∈ LocS and executing in state σ is a map
colσf : LocS → ℘(Σ) satisfying σ[f.ret 7→ lresf] ⊆ colσf (lf) and for all l : stmt ∈ P ,

σ′ ∈ colσf (l), and 〈σ′, l′〉 = [[l: stmt]]\(σ′) it holds that σ′ ∈ colσf (l′).

We use the previous definition to define the relational semantics of f , that is,
how each input state relates to the states at each statement of f :

Definition 3. The relational semantics relf : LocS → ℘(Σ ×Σ) of a function
f is given by relf (l) = {〈σ, σ̄〉 | σ ∈ Σ ∧ σ̄ ∈ colσf (l)}.

Observe that relf is defined in terms of Equ. 4 which defines the semantics
of a call to evaluate the called function rather than using the summary relf . We
therefore use the following definition from now on:

[[ls: call e]]
\σ = 〈next(ls), σ̄〉 where &f = [[e]]\Exprσ ∧ 〈σ, σ̄〉 ∈ relf (lresf) (12)

3.1 Abstract Interpretation of the Relational Semantics

The relational semantics of a function is approximated by an abstract domain
MS 2×D that is used to abstract relf (l) for all locations l ∈ LocS within function
f . Here, MS 2 = MS ×MS are two memory structures, the first describing the
memory at the entry point of f , the second describing the memory at l. The
relation between abstract and the concrete domain is given by γMS 2×D:

γMS 2×D : MS 2 ×D → ℘(Σ ×Σ)

γMS 2×D(〈min,mout, d〉) =
⋃

v∈γD(d)

{〈embed(min,v, σ), embed(mout,v, σ)〉 | σ ∈ Σ}

The concretization retains the relational character of rell in two ways: first,
the embed functions are applied on the same numeric vector v ∈ Z∗ so that
relational information between numeric variables are manifest in the concrete
states. Second, the information of the abstract domain is embedded into the
same σ ∈ Σ. As a consequence, a field in any concrete memory region in σ that
is not present in either min nor mout is not altered. These relational properties
are illustrated in the following example:

298 J. Kranz and A. Simon

Example 2. Let le ∈ LocF be the entry point of method Odd::IsEven() in Fig. 1.
The relational semantics at le is the identity, i.e. relle(le) = {〈σ, σ〉 | σ ∈ Σ} =
γMS 2×D(〈min,mout, d〉) where min = mout = [] and d ∈ D∅. Let li ∈ LocS
denote the location after the even_call++ statement, then 〈σin, σout〉 ∈ relle(li)
contains a memory region o at lo ∈ LocM that contains the object instance.
An abstract state s = 〈m1,m2, d〉 ∈ MS 2 × D with relle(li) ∈ γMS 2×D(s) is
mi = [Odd::IsEven 7→ [this 7→ yival], o 7→ [even_call 7→ xival]], i = 1, 2 and a value
domain d ∈ D containing the constraints y1val = y2val = lo and x1val + 1 = x2val.

The algebra 〈MS 2 × D,vMS 2×D,tMS 2×D,⊥MS 2×D, ./MS 2×D〉 defines the
abstract domain. Here, ./MS 2×D is a special meet operator that combines the
current state in a caller with the input state of a function summary. It is explained
below. Other operations can be reduced to D using the following morphisms:

〈m1,m2, d〉
addRegionr−→ 〈m1[r 7→ []],m2[r 7→ []], d〉 (13)

〈 [r 7→ φ]1]]m1,

[r 7→ φ]2]]m2, d〉

addFieldr,f−→ 〈 [r 7→ φ]1[f 7→ x1]]]m1,

[r 7→ φ]2[f 7→ x2]]]m2,
[[x2 := x1]]]addVarx1

(addVarx2
(d))〉

(14)

〈[r 7→ φ][f 7→ x]]]m1,m2, d〉
renameField1

f−→ 〈 r 7→ φ][f 7→ y]]]m1,m2,
delVarx([[y := x]]]addVary(d))〉

(15)

One obvious difference between these morphisms and those in Eqns. 9-11 is
that they operate on two memory structures, namely the input ms1 and the
current state m2 that eventually becomes the output state. For the sake of brevity,
we do not handle cases where a function allocates new memory regions and can
therefore assume that dom(m1) = dom(m2) at all times. Under this assumption,
we define Eqn. 13 and 14 that allow to add a region, resp., a field. The morphism
addFieldr,f adds variables x1, x2 ∈ X that are made equal in the numeric domain,
so that the domain maps each value of the field in the input to the same value in
the output. Analogous to Eqn. 11, Eqn. 15 renames a field in m1. We omit the
symmetric definition renameField2

f that renames a field in m2 for brevity.

3.2 Abstract Semantics of Memory Accesses

This section details the abstract semantics of memory accesses and illustrates how
to deal with accesses to unknown locations. Figure 3 presents the abstract seman-
tics for expressions (abstracting Eqns. 6 and 7 by Eqns. 16 and 17, respectively)
and assignments (abstracting Eqns. 2 and 3 by Eqns. 18 and 19, respectively).

The expression semantics returns a set of variables or locations so that Eqn. 17
can return one variable for each dereferenced pointer. Note here that γD returns
vectors of possible values and that ms2(m)(f) returns the domain variable that is
used to index into the vector. Each element returned by the expression semantics
is assigned by Eqn. 2 and the various results are joined. Equation 19 computes
the assignment via a pointer as the join of writing to all possible locations &m′.

Modular Analysis of Executables using On-Demand Heyting Completion 299

[[·]]]Expr : L(Expr)× (MS 2 ×D)→ ℘(X ∪ Loc)

[[m.f]]]Expr〈ms1,ms2, d〉 = {ms2(m)(f)} (16)

[[m.f→f
′]]]Expr〈ms1,ms2, d〉 =

⋃
&m′∈γD(d)(ms2(m)(f))

[[m′.f′]]]Expr〈ms1,ms2, d〉 (17)

[[·]]] : L(Stmt)× (MS 2 ×D)→ LocS ×MS 2 ×D
[[ls: m.f = e]]]〈ms1,ms2, d〉 = 〈next(ls), (18)⊔

e′∈[[e]]]
Expr

〈ms1,ms2,d〉

〈ms1,ms2, [[ms2(m)(f) = e′]]]d〉〉

[[ls: m.f→f
′ := e]]]〈ms1,ms2, d〉 = 〈next(ls), (19)⊔

&m′∈γD(d)(ms2(m)(f))

[[ls: m
′.f′ = e]]]〈ms1,ms2, d〉〉

Figure 3. Abstract Expression Semantics.

Note that the expression ms2(m)(f) is undefined when either the memory
region m does not exist in ms2 or it does not contain a field f . Rather than
handling this case in the semantic definition, we assume that the morphisms in
Eqn. 13 and 14 are applied to prevent undefinedness. In case the transformer
would access an unknown location through a pointer (i.e. m.f in Eqn. 17 or 19), a
new region r is added using Eqn. 13 and m.f is restricted to point to it. Note that
this behavior is not sound as it assumes that m.f does not alias with any other
function inputs which may be wrong. We discuss this design choice in Sect. 5.

Example 3. We analyze even_count++ in Odd::IsEven of Fig 1. Let f.this == &i
be a test that forces this to point to the object instance i. For brevity, we use f

for Odd::IsEven, ev for even_count, and write d ∈ D as set of constraints:

〈[f 7→ []], [f 7→ []], ∅〉addFieldf,this−→ 〈[f 7→ [this 7→ x1]], [f 7→ [this 7→ x2]], {x1 = x2}〉
addRegioni−→ f.this==&i−→ 〈[. . . , i 7→ []], [. . . , i 7→ []], {x1 = x2 = li}〉

addFieldi,ev−→

〈[. . . , i 7→ [ev 7→ x3]], [. . . , i 7→ [ev 7→ x4]], {x1 = x2 = li, x3 = x4}〉
[[f.this→ev++]]]−→

〈[. . . , i 7→ [ev 7→ x3]], [. . . , i 7→ [ev 7→ x4]], {x1 = x2 = li, x3 + 1 = x4}〉

The idea of applying morphisms as a precursor to a domain operation is also
key to concisely define the ./MS 2×D operation that combines a call-site state
〈m1

in,m
1
out, d1〉 with the summary of a function 〈m2

in,m
2
out, d2〉. Assuming that

morphisms were applied so that m1
out, the current state at the caller, and m2

in,
the input state of the callee summary, contain the same fields with the same
variables while m1

in and m2
out share no variables, ./MS 2×D reduces to uD:

〈m1
in,m

1
out, d1〉 ./MS 2×D 〈m2

in,m
2
out, d2〉 = 〈m1

in,m
2
out, d

′〉 where (20)

d′ = delVarvars(m1
out)∪vars(m2

in)
(addVarvars(m2

out)
(d1) uD addVarvars(m1

in)
(d2))

Here, addVar and delVar are used to add/remove a set of domain variables so
that uD is applied to domains mapping variables of m1

in,m
1
out,m

2
in,m

2
out while

300 J. Kranz and A. Simon

d′ only contains variables relevant to the result. Ensuring that m1
out and m2

in

contain the same fields amounts to matching the memory regions at the caller
with those of the callee. Recall that the latter were created on-demand when
computing the summary of the callee so that they have arbitrary names. We
therefore compute a relation R ⊆M×M between the caller’s and the callee’s
memory regions by iteratively following pointers, starting with the actual and
formal function arguments. If a pointer s.p can be followed to a region r in the
callee but not in the caller, we apply addRegionr, addFields,p, to the caller and
add 〈r, r〉 to R. For each pair added to R, we apply addFieldf in each region until
both have the same fields. We appropriately name fields using renameFieldf .

3.3 Computing Fixpoint of the Abstract Relational Semantics

This section details how the modular abstract semantics is used to compute
a fixpoint of the whole program. A whole-program analysis populates a table
T ∈ T = LocF → MS 2×D that takes a function addresses to its summary. Since
a function f may call other functions, a call statement in f will access T to
obtain the most up-to-date summary for the called function. The semantics of
the call statement is therefore parameterized by T :

[[ls: call e]]
]
T 〈ms1,ms2, d〉 = 〈next(l),

⊔
lf∈γD(d)([[e]]])

〈ms1,ms2, d〉 ./MS 2×D T (lf)〉 (21)

The resulting summary for f must therefore be re-computed if any summaries
taken from T change. In the presence of recursive calls, widening [4] must be
applied on the summaries to ensure termination.

The summary of f , given the table T and initial state s, is defined as follows:

Definition 4. The abstract state of f is a map absTf,s : LocS → MS 2 ×D with

s vMS 2×D absTf (lf) and for all l : stmt ∈ P and 〈l′, s′〉 = [[l : stmt]]]T (absTf (l)) it

holds that s′ vMS 2×D absTf (l′). (Note: Eqns. 16-19 used [[l : stmt]]] ≡ [[l : stmt]]]T .)

Let init = 〈m1,m2, {x1 = x2 = lresf }〉 with mi = [f 7→ [ret 7→ xi]], i = 1, 2 be
the initial summary state. The summary semantics of f relates the first statement
of the function at lf with the location lresf that the return statement branches to:

Definition 5. The abstract summary of f under T is sumT
f = absTf,init(l

res
f).

This concludes the presentation of the concrete relational semantics and the
abstract summary domain and semantics. The next section tackles the challenge
of computing precise summaries in the presence of indirect function calls.

4 On-Demand Heyting Completion

This section details how we use Herbrand terms to refine a function summary in
cases where the most generic input would lead to an unacceptable precision loss.
In particular, the next sections discuss the creation of Herbrand terms to express
a need for refinement, the computation of a specialized function summary and
the call semantics that combines specialized function summaries.

Modular Analysis of Executables using On-Demand Heyting Completion 301

4.1 Extracting Refinement Information using Herbrand Terms

The challenge in specializing the summary of Check in Fig. 1 is that the variable
over which to specialize is not known until the indirect call parity->IsEven()

is analyzed. Our solution is that the analysis poses the question “What value
can parity->vtable[0] take on?” to all callers of Check who may answer “The
expression parity->vtable[0] may contain &Odd::IsEven()”. (Recall that we use
vtable[0] as a field name to fit our restricted grammar.) For each different
answer, the summary of the analysis is specialized to the value in that answer.
The analysis of Check can now proceed to the next indirect call parity->IsOdd()
for which a new question is posed to the caller. Once the indirect function calls
are resolved, Check can be summarized without posing further questions.

The “question” in the exposition above is represented by a Herbrand term
that contains variables in places where the answer is expected. The answer to
the question is given by a set of ground Herbrand terms, that is, Herbrand terms
where the variables have been replaced by values.

Definition 6. Herbrand terms Herb = L(Term) are defined by the grammar

Term ::= constructor Term∗

| variable

where variable is drawn from XH . Note that XH is distinct from X . Let vars(h)
denote all variables in h ∈ Herb. Let GHerb = {h ∈ Herb | vars(h) = ∅} denote
ground Herbrand terms. A substitution θ ∈ Θ : XH → Herb is a total map with
θ(x) = x except for a finite number of variables y ∈ XH where θ(y) 6= y. We
write [x/y] ∈ Θ with [x/y](x) = y and [x/y](v) = v for all v 6= x. Given a term
h ∈ Herb, we write θ(h) to denote the result of replacing all variables x in h by
θ(x). Let θ(H) = {θ(h) | h ∈ H} be the lifting to sets.

The generic nature of Herbrand terms enables us to formulate questions that
cut across several abstract domains in an abstract state 〈m1,m2, d〉 ∈ MS 2 ×D.

Example 4. Suppose that the constructor Deref and Field are used by the memory
domain m ∈ MS to denote a pointer or field access, respectively, while ConstPtr
is used by the numeric domain d ∈ D to denote a function pointer. Then the
term ConstPtr (Field (Deref parity) vtable[0]) aE is the request to access the
field vtable[0] of the memory region pointed-to by parity and to extract the
value as a constant pointer, denoting the result by aE ∈ XH . This query accesses
m(f) = [parity 7→ x, ...] where f is the frame of the currently analyzed function
to obtain the numeric variable x ∈ X that contains the points-to set of parity.
The numeric domain d is queried for the points-to set of x which resolves to, say,
the address of memory region even ∈M. Finally, the memory domain is used to
look up m(even) = [vtable[0] 7→ vtE , . . .] and d is queried for the values of vtE ,
the constant address vtable[0] of Even, which becomes the solution of aE .

For the sake of readability, we leave the exact definition of the term structure
open and write var->field. . .->field= aE , that is, we use C-like access paths

302 J. Kranz and A. Simon

that generalize L(Expr) by allowing several indirections. Moreover, we also omit
the memory region (i.e. we write this->vtable[0] instead of f.this->vtable[0])
since a Herbrand term is always relative to the stack frame of the current function.

Herbrand terms are used in the abstract semantics when a precise value is
needed. For instance, the call e instruction requires a precise value for the function
address e that determines which function is being invoked. An answer is computed
using a function herbEval that evaluates a term set (e.g. {“e = x′′} ⊆ Herb for
the call) given an abstract state. herbEval has the following signature:

herbEval : ℘(Herb)×MS 2 ×D → ℘(Θ)× ℘(Herb)

For variables a1, . . . an in the input Herbrand terms, herbEval returns assign-
ments in form of substitutions θ1, . . . θk where each θj = [a1/c

j
1, . . . an/c

j
n] maps

variables to constants cj1, . . . c
j
n ∈ V, j = 1, . . . k, or it rewrites the Herbrand

terms into terms over the function’s input arguments. In order to illustrate this,
we say that a Herbrand term hi matches a domain variable xi if hi represents a
field access (possibly via one or more pointer indirections) whose value is given by
the domain variable xi. We give an intuitive overview of herbEval by describing
the four cases it distinguishes:

A set of values for tabulation can be constructed. The term hi with vari-
able ai matches a domain variable xi, i = 1, . . . n. In case xi are finite in
the value domain state d, herbEval returns a set of constant value vectors
c1, . . . ck ∈ {〈v(x1), . . .v(xn)〉 | v ∈ γDX

(d)} in the form of k substitutions
θj = [a1/c

j(x1), . . . an/c
j(xn)] ∈ Θ. For example, herbEval({m.f = a}, 〈[m 7→

[f 7→ x1]], [m 7→ [f 7→ x2]], d〉) evaluates to 〈{[a/42]}, ∅〉 where d = {x2 = 42}
represents the value domain.

An exact precondition can be synthesized. A term hi matches a variable
xi. There exists x′i = xi where x′i is a domain variable of a field in the input
memory region. For each x′i, we return a Herbrand term h′i that matches x′i.
For example, herbEval({m.f = a}, 〈[m 7→ [f 7→ x1], r 7→ [g 7→ x2]], [m 7→ [f 7→
x3], r 7→ [g 7→ x4]], d) = 〈∅, {r.g = a}〉 if d = {x2 = x3} is the value domain.

A sufficient precondition can be synthesized. The term hi matches a vari-
able xi. There exist several variables {x1i , . . . x

ki
i } from which there is a flow

of information to xi. We translate the single term hi to Herbrand terms
h1i , . . . h

ki
i that match x1i , . . . x

ki
i and return the term Set h1i . . . h

ki
i . For ex-

ample, herbEval({t.q = a}, [u 7→ [r 7→ x1], v 7→ [s 7→ x2]], [. . . , t 7→ [q 7→
x3]], d) = 〈∅, {Set u.r = a1 v.s = a2}〉 where d = [x1 7→ {&p1}, x2 7→
{&p2}, x3 7→ {&p1,&p2}] represents the information of our aliasing domain
DX = X → ℘(LocM ∪{abad}) used in Ex. 1. We will disregard this case until
our discussion in Sect. 5.

No values can be synthesized. The term hi matches no variable xi nor can
a field variable be added using addFieldr,f . Thus, the values of variables in
hi are neither finite nor traceable to the input. An empty set of substitutions
and Herbrand terms is returned. A warning is generated so that the analysis
is sound if no warnings are emitted.

Modular Analysis of Executables using On-Demand Heyting Completion 303

bool Case1 () {

Odd odd;

Even even;

Parity* parity =

rnd() ? &odd : &even;

return Check(parity);

}

void Case2(Parity *p) {

Check(p);

}

void Case3(Parity *p,

Parity *q) {

Check(rnd() ? p : q);

}

Figure 4. Creating Herbrand terms for calls to Check in Fig. 1.

Example 5. We illustrate cases 1 to 3 using the functions in Fig. 4. We assume
that Check has been analyzed with no specialization such that the first indirect
call cannot be resolved. The resulting summary state is 〈⊥MS 2×D, H〉 where
H = {parity->vtable[0] = a}. As a consequence, H is evaluated at each call
site using herbEval.

Consider the code of Case1 in Fig. 4. When reaching the call to Check with
summary state s ∈ MS 2 ×D, we evaluate herbEval(H, s) which amounts to eval-
uating the value of parity->vtable[0] in s. In this case, the state at the call site
contains a finite set of values for this field, namely v1 = 〈&Odd::IsEven〉 and v2 =
〈&Even::IsEven〉. Thus, two new table entries have to be generated for Check, one
for H1 = {parity->vtable[0] = &Odd::IsEven} and H2 = {parity->vtable[0]
= &Even::IsEven}. No further queries are raised. In Case2, the state at the call
site of Check does not contain a finite set of values for the queried fields. However,
there exists an equality relation with the parameter p. Thus, herbEval rewrites H
to H ′ = {p->vtable[0] = a} in terms of the parameter and propagates it to the
callers of Case2. Finally, in Case3, herbEval is able to use the flow information com-
puted by the points-to domain to determine that the l-values in parity->vtable[0]

is a superset of the values in p->vtable[0] and q->vtable[0]. Thus, herbEval
returns a single Herbrand term Set hp hq where hi ≡ {i->vtable[0] = ai}.

We omit a formal definition of herbEval as it is parametric in the value domain
it operates on: In this case, herbEval extracts finite value sets and equalities
between variables from the value domain, but other information can exploited
as well. The next section discusses how herbEval is used to compute specialized
summaries.

4.2 Specializing Summaries with Herbrand Terms

This section illustrates how a function summary is computed that is special-
ized wrt. a set of ground terms Hg ∈ GHerb. To this end, we first define the
lattice of an abstract domain where transformers can generate Herbrand terms
whenever the function context needs to be refined. The lattice of this analysis
is a product of MS 2 × D and a set of Herbrand terms Herb that we write as
〈MS 2 × D × ℘(Herb),vH ,tH ,⊥H〉. All lattice operations are the point-wise
liftings, i.e. 〈s1, H1〉 vH 〈s2, H2〉 ≡ s1 vMS 2×D s2 ∧H1⊆H2, etc. In particular,

304 J. Kranz and A. Simon

note that the product is not reduced [5], so that 〈⊥MS 2×D, H〉 6= ⊥H unless
H = ∅.

The analysis populates a table in THerb = LocF×GHerb→ MS 2×D×℘(Herb).
Each entry 〈f,Hg〉 7→ 〈s,H〉 states that f , when specialized by Hg, has the
summary s and requires further specializations by instantiating H in its callers.
We define the following transformer to impose Hg on an abstract state:

[[test Hg]]
] : (MS 2 ×D)→ MS 2 ×D (22)

For example, given the terms Hg = {field = 42}, the initial state init in
Sect. 3.3 is refined to [[test Hg]]

]init = 〈m1,m2, {x1 = x2 = lresf , x3 = x4 = 42}〉
where mi = [f 7→ [ret 7→ xi, field 7→ xi+2]] for i = 1, 2. The semantics of a
function f for a specialization Hg is defined by sumTH

f that generalizes Def. 5:

Definition 7. The specialized abstract summary of f under TH ∈ THerb is given
by sumTH

f : GHerb→ (MS 2×D)×℘(Herb) where sumTH

f (Hg) = absTH

f,[[test Hg]]]init
.

Here, TH ∈ THerb is the table of specialized summaries. Its elements are
defined in terms of sumTH

f :

Definition 8. TH ∈ THerb is a well-formed table if TH(〈f,Hg〉) = sumTH

f (Hg)
for all 〈f,Hg〉 ∈ dom(TH).

The analysis bootstraps by computing a summary for each function f with no
specialization, thus providing the table entries with key 〈f, ∅〉. For any specializa-
tion Hg, a result 〈s,H〉 ∈ TH(〈f,Hg〉) may contain a non-empty set H ∈ Herb
that states how the function input must be specialized further so that the sum-
mary is an over-approximation of the function’s concrete semantics. We now
define how a call site of f instantiates H to a set of ground Herbrand terms
Hg ∈ GHerb that can be used to compute a specialized function summary 〈f,Hg〉
in TH .

4.3 Combining Specialized Function Summaries

We now explain the differences between the semantics of the call-statement in
Def. 21 and the following definition over the (MS 2 ×D)× ℘(Herb) domain:

[[ls: call e]]
]
TH
〈s,H〉 = 〈⊥MS 2×D, H ∪Hf 〉 tMS 2×D

⊔
lf∈{l1f ,...l

n
f }

applyEntriesTH

lf
(s, ∅, ∅)

〈{[a/l1f], . . . [a/lnf]}, Hf 〉 = herbEval({“e = a′′}, s) (23)

Rather than using the concretization function γMS 2×D to obtain the callee
addresses lf , we evaluate a Herbrand term e = a in the current state s ∈ MS 2×D
where e is the called expression. We obtain a set of function addresses lif , i ∈ [1, n]
and/or Herbrand terms Hf . Recall that a non-empty Hf are predicates over the
inputs of this function that need to be restricted to a finite set of callers before

Modular Analysis of Executables using On-Demand Heyting Completion 305

applyEntriesTH
f : ((MS 2 ×D)× ℘(Herb)× ℘(GHerb))→ (MS 2 ×D)× ℘(Herb)

applyEntriesTH
f (s,H,Hg) =

let 〈s′, H ′〉 ∈ TH(〈f,Hg〉) in (24)

if H ′ = ∅ then 〈s ./MS 2×D s′, ∅〉 else (25)

let 〈Θ,Hnew〉 = herbEval(H ∪H ′, s) in (26)

let H ′g = {H ′g | H ′g = θ(H ∪H ′) ∩GHerb, θ ∈ Θ,Hg ⊆ H ′g} in (27)

〈⊥MS 2×D, H
new〉 tMS 2×D

⊔
H′

g∈H′
g

applyEntriesTH
f (s,H ∪H ′, H ′g) (28)

Figure 5. Applying a specialized function summary in TH ∈ THerb

this call has an effect. Thus, the predicates H ∪Hf are returned with a bottom
summary ⊥MS 2×D. The effect of each known callee at lif is composed with the
current state s using a helper function applyEntries that is defined in Fig. 5.

The idea of applyEntries is to find those specializations of callee f that match
the caller state s and to combine those specializations with s. The arguments H
and Hg always contain the same number of terms, where Hg is one specialization of
H in s. In Eqn 24, we assume the table TH contains an entry for the specialization
〈f,Hg〉. It is up to the fixpoint engine to compute a missing entry on-the-fly or
to resume the evaluation of the caller once the entry is available. If the retrieved
summary s′ requires no new specializations, i.e. if H ′ = ∅, the summary s′ is
composed with the caller state in Eqn. 25 and returned. In case H ′ 6= ∅, the
summary s′ is an under-approximation and a more specialized summary must
be consulted by instantiating H ∪ H ′ in the caller’s state as done in Eqn. 26.
The evaluation has two outcomes (which are not necessarily mutually exclusive):
if Hnew 6= ∅ then herbEval was able to translate the terms H ′ of the callee to
inputs of the caller. These terms are therefore returned with the bottom summary
⊥MS 2×D so that the caller will be refined. The second case is that H ∪H ′ could
be instantiated to concrete values in form of a set of substitutions Θ. Equation 27
applies Θ to obtain sets of ground terms H ′g ∈ ℘(℘(GHerb)) of which only those

are returned that match the current specialization Hg. Each set H ′g ∈ H ′g is used
to look up a more specialized summary of f by calling applyEntries recursively.
We illustrate these definitions with an example.

Example 6. We illustrate the call semantics using the call to Check in Case1 in
Fig. 4. Assume that TH has the following entries (vt is short for parity->vtable):

1 〈&Check, ∅〉 〈⊥MS 2×D, {vt[0] = a0}〉
2 〈&Check, {vt[0]=&Even::IsEven}〉 〈s1, {vt[1] = a1}〉
3 〈&Check, {vt[0]=&Odd::IsEven}〉 〈s2, {vt[1] = a2}〉
4 〈&Check, {vt[0] = &Even::IsEven,
vt[1] = &Even::IsOdd}〉

〈s3, ∅〉

5 〈&Check, {vt[0] = &Odd::IsEven,
vt[1] = &Odd::IsOdd}〉

〈s4, ∅〉

306 J. Kranz and A. Simon

The abstract call semantics in Eqn. 23 invokes applyEntriesTH

&Check(s, ∅, ∅) where
s is the caller state at the call site. The fact that Eqn. 24 returns a non-empty
H ′ = {vt[0] = a0} means that a specialization needs to be computed, based on
s which is done by Eqn. 26. Since s provides a finite set of values for a0, Θ =
{[a0/&Even::IsEven], [a0/&Odd::IsEven]} while Hnew is empty. Applying these
substitutions in Eqn. 27 gives two specializations in H ′g, leading to two recursive
calls in Eqn. 28, namely applyEntries(s, {vt[0] = a0}, {vt[0] = &Even::IsEven})
and applyEntries(s, {vt[0] = a0}, {vt[0] = &Odd::IsEven}). We only consider the
first call as the second is analogous. Equation 24 extracts the 2nd table entry which,
yet again, returns a non-empty H ′. Equation 26 computes Θ = {θ1, θ2} where θ1 =
[a0/&Even::IsEven, a1/&Even::IsOdd], θ2 = [a0/&Odd::IsEven, a1/&Odd::IsOdd] for
the terms H ∪H ′ = {vt[0]= a0,vt[1]= a1}, thereby preserving the information
at the call site that both, vt[0] and vt[1], are taken from the same object
instance. However, θ2(H ∪H ′) is not a superset of Hg and is therefore discarded
by Eqn. 27 as it is not a specialization of table entry 2. Thus, the only recursive call
applyEntries(s,H ∪H ′, {vt[0]= &Even::IsEven, vt[1]= &Even::IsOdd}) consults
table entry 4 and applies summary s4 to the caller state using Eqn. 25.

4.4 Heyting Completion

In this section we show that the iterative tabulation of specialized function sum-
maries is a Heyting completion, a well-known domain refinement technique [10].
A domain refinement adds new elements to an abstract domain. Our contribution
is that completion is done on-demand, that is, only those elements are added to
the lattice that are required by the program that is being analyzed.

Let 〈L,vL,tL,uL〉 be a complete lattice and αX : L→ X a closure operator,
i.e., monotone Y vL Z ⇒ αX(Y) vL αX(Z), idempotent αX(αX(Y)) = αX(Y),
extensive Y vL αX(Y), ∀Y,Z ⊆ L. Then 〈L,α,X, id〉 is a Galois insertion [5].

Let⇒ ∈ L2 → L be a binary operator with a⇒ b =
⊔
L{c ∈ L | auL c vL b}.

If a⇒ b vL b then a⇒ b is called the pseudo-complement of a relative to b. A
lattice in which all pairs of elements have a pseudo-complement is called a Heyting
algebra. We lift · ⇒ · to sets A,B ⊆ L as A⇒ B = {a⇒ b ∈ L | a ∈ A, b ∈ B}.

For any X ⊆ L let
c

(X) = {
d
L Y | Y ⊆ X} define the Moore closure of X.

Let A,B ∈ L such that αA, αB exist. Then the Heyting completion of A with
respect to B is

c
(A⇒ B). Let H =

⋃
HG⊆GHerb{[[test HG]]]s | s ∈ MS 2 ×D}.

Theorem 1. H is a Heyting completion of GHerb with respect to MS 2 ×D.

Proof. First, show
c

(H) = H. Let [[test Hi]]
]si ∈ H for i = 1, 2. Then

s := [[test H1]]]s1uMS 2×D [[test H2]]]s2 = [[test H1]]][[test H2]]](s1uMS 2×Ds2) ∈ H
if there exists H ∈ GHerb with [[test H]]] = [[test H1]]]◦[[test H2]]]. If “e = c′′i ∈ Hi

exists with ci ∈ Z and c1 6= c2 then s = ⊥MS 2×D. Otherwise, since s1 uMS 2×D s2
has finitely many fields, there exists a finite H ⊆ H1 ∪H2. Thus, H ∈ GHerb.

Now show H = GHerb ⇒ MS 2 × D. Let S1 vH S2 if for all s1 ∈ S1 there
exists s2 ∈ S2 with s1 vMS 2×D s2 and note that uH exists due to

c
(H) = H.

Choose H ⊆ GHerb, b ∈ MS 2 × D. Let a = [[test H]]]〈[], [],>D〉 ∈ MS 2 × D.

Modular Analysis of Executables using On-Demand Heyting Completion 307

For the sake of contradiction, assume there exist ci with {a} uH ci vH {b} and
({a} uH c1) tH ({a} uH c2) 6vH {b}. Let Ci = {[[test H]]]s | s ∈ ci}. Then Ci ⊆ H
but also C1 ∪ C2 ⊆ H, thus C1 ∪ C2 vH {b} which is a contradiction.

Corollary 1. The entries of the table TH ∈ THerb defined in Def. 8 are a partial
Heyting completion of GHerb with respect to MS 2 ×D.

Proof. By observing that s ∈ H for all 〈f,Hg〉 7→ 〈s, ∅〉 ∈ TH .

5 Implementation and Evaluation

In this section, we discuss the implementation of our analyzer. Our analyzer
reconstructs the control flow- and call graph of an x86 binary. The input binary
is decoded and translated into the RReil language using the GDSL toolkit [12],
starting at all function entry points defined in the ELF header.

Inter-procedurally, the analysis computes summaries for all functions starting
from the initial state init defined in Sect. 3.3. The fixpoint computation proceeds
by computing the summary of a callee before continuing at a call site using a
dynamically updated partial order on the caller/callee relation. Intra-procedurally,
the basic blocks of a function are discovered on-the-fly and we identify loops by
observing jumps from higher to lower machine addresses. Within each loop, we
apply a combined widening and narrowing operator for faster convergence [1].

The value domain D of the analysis is implemented as a set of three domains.
The equality domain tracks predicates of the form x = y+c for x, y ∈ X and c ∈ Z.
The pointer domain DX = X → ℘(LocM ∪{abad})×X tracks relationships of the
form xp − xo ∈ {l1, . . . , ln} with xp, xo ∈ X , li ∈ LocM . Here, xp is the pointer
variable that is being tracked, xo contains the offset relative to the beginning
of li, the addresses of a memory region. Finally, the value set domain is used to
track finite subsets of Z and intervals. We impose no fixed bound on the size of
the subsets (i.e. no k-limiting) but widen a growing set to an interval. The three
domains form a hierarchy where a parent domain forwards any domain operation
to its child. For instance, the pointer domain transforms operations on pointer
variables to operations on pointer offsets and passes them on to its child domain.

Section 4.1 raised the possibility that only necessary preconditions can be
synthesized that are represented by a Herbrand term Set For instance, the
call to Case3Set in Fig. 4 would generate the term parity->vtable = a which is
translated to a precondition Set {p->vtable = a1, q->vtable = a2}. In this case,
instead of generating different table entries for each variable instantiation, we
specialize initH with the join of all caller states, projected onto the variables
in Set {. . .}. When the caller state on these variables change, the function
summaries need to be re-computed. Once necessary preconditions are generated,
the analysis is no longer fully context-sensitive since the state at one caller can
be propagated to the call site of a different caller. Our analysis also distinguishes
summary memory regions that are created when accessing memory regions within
loops. Any precondition generated in terms of summary memory regions are only
necessary and never exact.

308 J. Kranz and A. Simon

Binary Exact H Set H None Avg. HG Indirect Resolved Time Size

libgdsl x86 145 1 10 14.6 388 237 8.3h 1.1mb
libgdsl avr 137 3 2 5.8 224 157 9.5m 303kb
libgdsl arm7 82 0 4 3.4 153 96 13.4m 407kb

echo 0 0 0 N/A 7 2 134s 14.2kb
cat 0 0 0 N/A 7 2 8.2m 16.2kb

Table 1. Evaluation Results

Currently, each time a pointer is accessed that can be traced to the input,
we create a fresh memory region. As a result, we implicitly assume that none of
the pointer parameters alias. Thus, in general, our analysis is not sound. Future
work will address how to incorporate the input aliasing configuration into the
tabulation.

5.1 Evaluation

We have evaluated our implementation on the set of example binaries shown in
Table 1. In particular, the benchmarks starting with libgdsl are libraries that
are written in an ML-like functional programming language GDSL. GDSL is
translated into idiomatic C code where higher-order functions are translated into
C function pointers or heap-allocated closures containing function pointers [13].

Column Exact H contains the number of call / br statements that generated
a Herbrand term with a single variable, i.e., terms that correspond to exactly one
input memory field. The column Set H reports call sites that generate a term
with a Set constructor, i.e. the cases where only necessary preconditions can be
synthesized. The number of Herbrand terms that could not be translated to an
input memory field is shown in None. Note that this number is low compared
to the number of terms that can be translated to inputs, thereby showing that a
summary abstract domain compares favorably against a backward analysis: the
latter comes at the cost of implementing the backward semantic transformers.
Column Avg. HG contains the average number of instantiations for a Herbrand
term. Columns Indirect and Resolved show the number of indirect call/br
statements how many that were resolved to at least one target. Not all call sites
can be resolved due to imprecision in our analysis as well as, for the libraries, due
to the fact that many public functions take function pointers. Finally, columns
Time and Size contain the analysis time and the size of the .text section.

Note that the gathering of the experimental data has been done using a
preliminary prototype that tracks only a single summary per function by merging
all requested function summaries. However, a more faithful implementation should
only increase the precision of the analysis.

6 Related Work

One traditional approach of improving the precision of context-insensitive analysis
is to only merge call sites whose last k parent call sites are the same (so-called

Modular Analysis of Executables using On-Demand Heyting Completion 309

k-CFA) [18]. While the k-CFA approach improves the precision (i.e. Fig. 1 verifies
with k = 1), it does so without consideration for the semantics of the program.

Modular analyses are context-sensitive by combining summaries of compo-
nents/functions to a solution of the whole program. There are four principles
[6]: compute a global fixpoint over some simplified semantics of each component,
compute summaries under worst case assumptions, compute summaries using
(possibly user-supplied) interfaces, and symbolic relational separate analysis
(input/output abstractions). Most analyses combine some of these four principles.

Analyses that rely on condensing domains [9,14,15,16,20] perform a pure
symbolic relational analysis based a restricted class of domains that comprise
Herbrand terms with variables, Boolean functions and affine equalities.

The SeaHorn analyzer allows arguing over rich, numeric properties in a
modular way [11]. It simplifies the input program into Horn clauses over predicates
that are tailored to the analyzed program. These are then solved in a modular
way. The downside is that no new invariants can be synthesized interprocedurally.
Our tabulation over Herbrand terms is, in theory, less efficient than SeaHorn’s
Horn clauses since we store a summary state for each set of predicates. Yet, our
summaries allow the computation of new invariants even interprocedurally.

Specializing the input of a summary falls into the category of summarizing
with interfaces. One instance of this idea is the inference of preconditions that,
when violated, lead to an error in the analyzed code [7]. An approach called
“angelic verification” [8] goes further by restricting inputs to likely correct inputs.

Modular analyses that re-evaluate a component several times also adhere
to the principle of computing summaries with interfaces, as each summary of
a component is somehow specialized. The classic work on tabulation proposes
to analyze a function for any possible input state and to combine table entries
that match a call site [17]. Our approach is an on-demand tabulation that uses
concrete values of function pointers as keys. Amato et al. perform tabulation
based on the equality of the abstract input state [1]. Their tabulation approach
may re-analyze a function unnecessarily, i.e. when a call site state has no match
in the table but matches the join of several tabulated states. Moreover, matching
tabulated states by equality may lead to non-monotone behavior [1, Example 1].

In the context of binary analysis, Xu et al. manually summarise functions
using pre- and postconditions [23] that are similar to our Herbrand terms.

Finally, one “simplified semantics” idea is to break the program down so that
it consists of parts that can be summarized with little precision loss (with the
extreme of synthesizing transfer functions for groups of instructions [3,21]).

6.1 Conclusion

We presented a framework for modular analysis that judiciously computes multiple
summaries. Each summary is specialized by Herbrand terms whose template is
created by the function that is being analyzed and that is instantiated by its
callees. We illustrated that this versatile approach corresponds to an on-demand
Heyting completion of the domain and recovers indirect function calls.

310 J. Kranz and A. Simon

References

1. G. Amato, F. Scozzari, H. Seidl, K. Apinis, and V. Vojdani. Efficiently intertwining
widening and narrowing. Sci. Comput. Program., 120:1–24, 2016.

2. B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux,
and X. Rival. A Static Analyzer for Large Safety-Critical Software. In Programming
Language Design and Implementation, San Diego, California, USA, June 2003.
ACM.

3. J. Brauer and A. King. Automatic Abstraction for Intervals using Boolean Formulae.
In R. Cousot and M. Martel, editors, Static Analysis Symposium, volume 6337 of
LNCS, pages 182–196. Springer, September 2010.

4. P. Cousot and R. Cousot. Abstract Interpretation: A Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints. In
Principles of Programming Languages, pages 238–252, Los Angeles, California,
USA, January 1977. ACM.

5. P. Cousot and R. Cousot. Systematic Design of Program Analysis Frameworks. In
Principles of Programming Languages, pages 269–282, San Antonio, Texas, USA,
January 1979. ACM.

6. P. Cousot and R. Cousot. Modular Static Program Analysis. In R. N. Horspool, edi-
tor, Compiler Construction, pages 159–178, Grenoble, France, April 2002. Springer.
invited paper.

7. P. Cousot, R. Cousot, M. Fähndrich, and F. Logozzo. Automatic Inference of
Necessary Preconditions, pages 128–148. Springer Berlin Heidelberg, Rome, Italy,
2013.

8. A. Das, S. Lahiri, A. Lal, and Y. Li. Angelic Verification: Precise Verification
Modulo Unknowns, pages 324–342. Springer International Publishing, San Francisco,
CA, USA, 2015.

9. R. Giacobazzi, F. Ranzato, and F. Scozzari. Making Abstract Domains Condensing.
Trans. Comput. Log., 6(1):33–60, 2005.

10. R. Giacobazzi and F. Scozzari. A Logical Model for Relational Abstract Domains.
Transactions on Programming Languages and Systems, 20(5):1067–1109, 1998.

11. A. Gurfinkel, T. Kahsai, A. Komuravelli, and J. A. Navas. The SeaHorn Verification
Framework, pages 343–361. Springer, San Francisco, California, USA, July 2015.

12. J. Kranz, A. Sepp, and A. Simon. GDSL: A Universal Toolkit for Giving Semantics
to Machine Language. In C. Shan, editor, Asian Symposium on Programming
Languages and Systems, Melbourne, Australia, December 2013. Springer.

13. J. Kranz and A. Simon. Structure-Preserving Compilation: Efficient Integration of
Functional DSLs into Legacy Systems. In Principles and Practice of Declarative
Programming. ACM, September 2014.

14. K. Marriott and H. Søndergaard. Precise and Efficient Groundness Analysis for
Logic Programs. ACM Lett. Program. Lang. Syst., 2:181–196, March 1993.

15. M. Müller-Olm and H. Seidl. Precise Interprocedural Analysis through Linear
Algebra. In Principles of Programming Languages, pages 330–341. ACM, January
2004.

16. T. Reps, S. Horwitz, and M. Sagiv. Precise Interprocedural Dataflow Analysis via
Graph Reachability. In Principles of Programming Languages, pages 49–61, San
Francisco, California, USA, 1995. ACM.

17. M. Sharir and A. Pnueli. Two Approaches to Interprocedural Data Flow Analysis,
chapter 7, pages 189–234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

Modular Analysis of Executables using On-Demand Heyting Completion 311

18. O. Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, School
of Computer Science, Carnegie Mellon University, May 1991.

19. H. Siegel and A. Simon. FESA: Fold- and Expand-based Shape Analysis. In
Compiler Construction, volume 7791 of LNCS, pages 82–101, Rome, Italy, March
2013. Springer.

20. A. Simon. Deriving a Complete Type Inference for Hindley-Milner and Vector Sizes
using Expansion. Science of Computer Programming, 95, Part 2(0):254–271, 2014.

21. A. Thakur and T. Reps. A Method for Symbolic Computation of Abstract Opera-
tions. In Computer Aided Verification, LNCS, pages 174–192, Berkeley, CA, 2012.
Springer.

22. A. Venet. Abstract Cofibered Domains: Application to the Alias Analysis of
Untyped Programs. In Static Analysis Symposium, LNCS, pages 366–382, London,
UK, 1996. Springer.

23. Z. Xu, T. Reps, and B. Miller. Typestate Checking of Machine Code, pages 335–
351. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001.

312 J. Kranz and A. Simon

	14Modular Analysis of Executables usingOn-Demand Heyting Completion
	Abstract
	Keywords
	1 Introduction
	2 Preliminary De�nitions
	2.1 Abstract Interpretation of the Collecting Semantics

	3 Modular Program Semantics
	3.1 Abstract Interpretation of the Relational Semantics
	3.2 Abstract Semantics of Memory Accesses
	3.3 Computing Fixpoint of the Abstract Relational Semantics

	4 On-Demand Heyting Completion
	4.1 Extracting Re�nement Information using Herbrand Terms
	4.2 Specializing Summaries with Herbrand Terms
	4.3 Combining Specialized Function Summaries
	4.4 Heyting Completion

	5 Implementation and Evaluation
	5.1 Evaluation

	6 Related Work
	6.1 Conclusion

	References

