
Invariant Generation for Multi-Path Loops with
Polynomial Assignments

Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács?

Technische Universität Wien
Institut für Informationssysteme 184

Favoritenstraße 9-11
Vienna A-1040, Austria
ahumenbe@forsyte.at

maximilian@mjaroschek.com

lkovacs@forsyte.at

Abstract. Program analysis requires the generation of program prop-
erties expressing conditions to hold at intermediate program locations.
When it comes to programs with loops, these properties are typically
expressed as loop invariants. In this paper we study a class of multi-path
program loops with numeric variables, in particular nested loops with
conditionals, where assignments to program variables are polynomial ex-
pressions over program variables. We call this class of loops extended
P-solvable and introduce an algorithm for generating all polynomial in-
variants of such loops. By an iterative procedure employing Gröbner
basis computation, our approach computes the polynomial ideal of the
polynomial invariants of each program path and combines these ideals
sequentially until a fixed point is reached. This fixed point represents
the polynomial ideal of all polynomial invariants of the given extended
P-solvable loop. We prove termination of our method and show that the
maximal number of iterations for reaching the fixed point depends lin-
early on the number of program variables and the number of inner loops.
In particular, for a loop with m program variables and r conditional
branches we prove an upper bound of m · r iterations. We implemented
our approach in the Aligator software package. Furthermore, we eval-
uated it on 18 programs with polynomial arithmetic and compared it to
existing methods in invariant generation. The results show the efficiency
of our approach.

1 Introduction

Reasoning about programs with loops requires loop invariants expressing prop-
erties that hold before and after every loop iteration. The difficulty of generat-
ing such properties automatically comes from the use of non-linear arithmetic,

? All authors are supported by the ERC Starting Grant 2014 SYMCAR 639270.
Furthermore, we acknowledge funding from the Wallenberg Academy Fellowship
2014 TheProSE, the Swedish VR grant GenPro D0497701, and the Austrian FWF
research project RiSE S11409-N23. We also acknowledge support from the FWF
project W1255-N23.

c© Springer International Publishing AG 2018 226
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 226–246, 2018.
https://doi.org/10.1007/978-3-319-73721-8_11

unbounded data structures, complex control flow, just to name few of the rea-
sons. In this paper we focus on multi-path loops with numeric variables and
polynomial arithmetic and introduce an automated approach inferring all loop
invariants as polynomial equalities among program variables. For doing so, we
identify a class of multi-path loops with nested conditionals, where assignments
to program variables are polynomial expressions over program variables. Based
on our previous work [4], we call this class of loops extended P-solvable. Com-
pared to [4] where only single-path programs with polynomial arithmetic were
treated, in this paper we generalize the notion of extended P-solvable loops to
multi-path loops; single-path loops being thus a special case of our method.

For the class of extended P-solvable loops, we introduce an automated ap-
proach computing all polynomial invariants. Our work exploits the results of [17,9]
showing that the set of polynomial invariants forms a polynomial ideal, called
the polynomial invariant ideal. Hence, the task of generating all polynomial in-
variants reduces to the problem of generating a basis of the polynomial invariant
ideal. Following this observation, given an extended P-solvable loop with nested
conditionals, we proceed as follows: we (i) turn the multi-path loop into a se-
quence of single-path loops, (ii) generate the polynomial invariant ideal of each
single-path loop and (iii) combine these ideals iteratively until the polynomial
invariant ideal of the multi-path loop is derived.

A crucial property of extended P-solvable loops is that the single-path loops
corresponding to one path of the multi-path loop are also extended P-solvable.
For generating the polynomial invariant ideal of extended P-solvable single-path
loops, we model loops by a system of algebraic recurrences, compute the closed
forms of these recurrences by symbolic computation as described in [4] and
compute the Gröbner basis of the polynomial invariant ideal from the system
of closed forms. When combining the polynomial invariant ideals of each ex-
tended P-solvable single-path loop, we prove that the “composition” maintains
the properties of extended P-solvable loops. Further, by exploiting the algebraic
structures of the polynomial invariant ideals of extended P-solvable loops, we
prove that the process of iteratively combining the polynomial invariant ideals
of each extended P-solvable single-path loop is finite. That is, a fixed point is
reached in a finite number of steps. We prove that this fixed point is the poly-
nomial invariant ideal of the extended P-solvable loop with nested conditionals.
We also show that reaching the fixed point depends linearly on the number of
program variables and the number of inner loops. In particular, for a loop with
m program variables and r inner loops (paths) we prove an upper bound of
m · r iterations. The termination proof of our method implies the completeness
of our approach: for an extended P-solvable loop with nested conditionals, our
method computes all its polynomial invariants. This result generalizes and cor-
rects the result of [10] on programs for more restricted arithmetic than extended
P-solvable loops. Our class of programs extends the programming model of [10]
with richer arithmetic and our invariant generation procedure also applies to [10].
As such, our proof of termination also yields a termination proof for [10].

Invariant Generation for Multi-Path Loops with Polynomial Assignments 227

We implemented our approach in the open source Mathematica package Ali-
gator and evaluated our method on 18 challenging examples. When compared
to state-of-the-art tools in invariant generation, Aligator performed much bet-
ter in 14 examples out of 18.

The paper is organized as follows: We start by giving the necessary details
about our programming model in Section 2.1 and provide background about
polynomial rings and ideals in Section 2.2. In Section 3.1 we recall the notion of
extended P-solvable loops from [4]. The lemmas and propositions of Section 3.2
will then help us to prove termination of our invariant generation procedure in
Section 3.3. Finally, Section 4 describes our implementation in Aligator, to-
gether with an experimental evaluation of our approach.

Related Work. Generation of non-linear loop invariants has been addressed in
previous research. We discuss here some of the most related works that we are
aware of.

The methods of [11,18] compute polynomial equality invariants by fixing an
a priori bound on the degree of the polynomials. Using this bound, a template
invariant of fixed degree is constructed. Properties of polynomial invariants, e.g.
inductiveness, are used to generate constraints over the unknown coefficients
of the template coefficients and these constraints are then solved in linear or
polynomial algebra. An a priori fixed polynomial degree is also used in [16,2].
Unlike these approaches, in our work we do not fix the degree of polynomial
invariants but generate all polynomial invariants (and not just invariants up
to a fixed degree). Our restrictions come in the programming model, namely
treating only loops with nested conditionals and polynomial arithmetic. For such
programs, our approach is complete.

Another line of research uses abstract interpretation in conjunction with
recurrence solving and/or polynomial algebra. The work of [17] generates all
polynomial invariants of so-called simple loops with nested conditionals. The
approach combines abstract interpretation with polynomial ideal theory. Our
model of extended P-solvable loops is much more general than simple loops, for
example we allow multiplication with the loop counter and treat algebraic, and
not only rational, numbers in closed form solutions. Abstract interpretation is
also used in [3,12,7] to infer non-linear invariants. The programming model of
these works handle loops whose assignments induce linear recurrences with con-
stant coefficients. Extended P-solvable loops can however yield more complex
recurrence equations. In particular, when comparing our work to [7], we note
that the recurrence equations of program variables in [7] correspond to a sub-
class of linear recurrences with constant coefficients: namely, recurrences whose
closed form representations do not include non-rational algebraic numbers. Our
work treats the entire class of linear recurrences with constant coefficients and
even handles programs whose arithmetic operations induce a class of linear re-
currences with polynomial coefficients in the loop counter. While the non-linear
arithmetic of our work is more general than the one in [7], we note that the
programming model of [7] can handle programs that are more complex than the

228 A. Humenberger et al.

ones treated in our work, in particular due to the presence of nested loops and
function/procedure calls. Further, the invariant generation approach of [7] is
property-guided: invariants are generated in order to prove the safety assertion
of the program. Contrarily to this, we generate all invariants of the program and
not only the ones implying the safety assertion.

Solving recurrences and computing polynomial invariant ideals from a system
of closed form solution is also described in [9]. Our work builds upon the results
of [9] but generalizes [9] to extended P-solvable loops. Moreover, we also prove
that our invariant generation procedure terminates. Our termination result gen-
eralizes [10] by handling programs with more complex polynomial arithmetic.
Furthermore, instead of computing the invariant ideals of all permutations of
a given set of inner loops and extending this set until a polynomial ideal as a
fixed point is reached, we generate the polynomial invariant ideal of just one
permutation iteratively until we reach the fixed point. As a result we have to
perform less Gröbner basis computations in the process of invariant generation.

A data-driven approach to invariant generation is given in [20], where con-
crete program executions are used to generate invariant candidates. Machine
learning is then used to infer polynomial invariants from the candidate ones. In
our work we do not use invariant candidates. While the program flow in our
programming model is more restricted then [20], to the best of our knowledge,
none of the above cited methods can fully handle the polynomial arithmetic of
extended P-solvable loops.

2 Preliminaries

2.1 Programming Model and Invariants

Let K be a computable field of characteristic zero. This means that addition and
multiplication can be carried out algorithmically, that there exists an algorithm
to test if an element in K is zero, and that the field of rational numbers Q is a
subfield of K. For variables x1, . . . , xn, the ring of multivariate polynomials over
K is denoted by K[x1, . . . , xn], or, if the number of variables is clear from (or
irrelevant in) the context, by K[x]. Correspondingly, K(x1, . . . , xm) or K(x) de-
notes the field of rational functions over K in x1, . . . , xm. If every polynomial in
K[x] with a degree ≥ 1 has at least one root in K, then K is called algebraically
closed. An example for such a field is Q, the field of algebraic numbers. In con-
trast, the field of complex numbers C is algebraically closed, but not computable,
and Q is computable, but not algebraically closed. We suppose that K is always
algebraically closed. This is not necessary for our theory, as we only need the
existence of roots for certain polynomials, which is achieved by choosing K to be
an appropriate algebraic extension field of Q. It does, however, greatly simplify
the statement of our results.

In our framework, we consider a program B to be a loop of the form

while . . . do
B′

end while
(1)

Invariant Generation for Multi-Path Loops with Polynomial Assignments 229

where B′ is a program block that is either the empty block ε, an assignment vi =
f(v1, . . . , vm) for a rational function f ∈ K(x1, . . . , xm) and program variables
v1, . . . , vm, or has one of the composite forms

sequential inner loop conditional

while . . . do if . . . then
B1;B2 B1 B1 else B2

end while end if

for some program blocks B1 and B2 and the usual semantics. We omit conditions
for the loop and if statements, as the problem of computing all polynomial
invariants is undecidable when taking affine equality tests into account [11].
Consequently, we regard loops as non-deterministic programs in which each block
of consecutive assignments can be executed arbitrarily often. More precisely,
grouping consecutive assignments into blocks B1, . . . , Br, any execution path of
B can be written in the form

Bn1
1 ;Bn2

2 ; . . . ;Bnr
r ;B

nr+1

1 ;B
nr+2

2 ; . . .

for a sequence (ni)i∈N of non-negative integers with finitely many non-zero el-
ements. To that effect, we interpret any given program (1) as the set of its
execution paths, written as

B = (B∗1 ;B∗2 ; . . . ;B∗r)∗.

We adapt the well-established Hoare triple notation

{P}B{Q}, (2)

for program specifications, where P and Q are logical formulas, called the pre-
and postcondition respectively, and B is a program. In this paper we focus on
partial correctness of programs, that is a Hoare triple (2) is correct if every
terminating computation of B which starts in a state satisfying P terminates in
a state that satisfies Q.

In this paper we are concerned with computing polynomial invariants for
a considerable subset of loops of the form (1). These invariants are algebraic
dependencies among the loop variables that hold after any number of loop iter-
ations.

Definition 1. A polynomial p ∈ K[x1, . . . , xm] is a polynomial loop invariant
for a loop B = B∗1 ; . . . ;B∗r in the program variables v1, . . . , vm with initial val-
ues v1(0), . . . , vm(0), if for every sequence (ni)i∈N of non-negative integers with
finitely many non-zero elements, the Hoare triple

{p(v1, . . . , vm) = 0 ∧
m∧
i=0

vi = vi(0)}

Bn1
1 ;Bn2

2 . . . , Bnr
r ;B

nr+1

1 ; . . .

{p(v1, . . . , vm) = 0}
is correct.

230 A. Humenberger et al.

2.2 Polynomial Rings and Ideals

Polynomial invariants are algebraic dependencies among the values of the vari-
ables at each loop iteration. Obviously, non-trivial dependencies do not always
exist.

Definition 2. Let L / K be a field extension. Then a1, . . . , an ∈ L are alge-
braically dependent over K if there exists a p ∈ K[x1, . . . , xn] \ {0} such that
p(a1, . . . , an) = 0. Otherwise they are called algebraically independent.

In [8,17], it is observed that the set of all polynomial loop invariants for a
given loop forms an ideal. It is this fact that facilitates all of our subsequent
reasoning.

Definition 3. A subset I of a commutative ring R is called an ideal, written
I C R, if it satisfies the following three properties:

1. 0 ∈ I.
2. For all a, b ∈ I: a+ b ∈ I.
3. For all a ∈ I and b ∈ R: a · b ∈ I.

Definition 4. Let I C R. Then I is called

– proper if it is not equal to R,
– prime if a · b ∈ I implies a ∈ I or b ∈ I, and
– radical if an ∈ I implies a ∈ I.

The height hg(I) ∈ N of a prime ideal I is equal to n if n is the maximal length
of all possible chains of prime ideals I0 ⊂ I2 ⊂ · · · ⊂ In = I.

Example 5. The set of even integers 2Z is an ideal of Z. In general nZ for a fixed
integer n is an ideal of Z. It is prime if and only if n is a prime number.

Polynomial ideals can informally be interpreted as the set of all consequences
when it is known that certain polynomial equations hold. In fact, if we have
given a set P of polynomials of which we know that they serve as algebraic
dependencies among the variables of a given loop, the ideal generated by P then
contains all the polynomials that consequently have to be polynomial invariants
as well.

Definition 6. A subset B ⊆ I of an ideal I C R is called a basis for I if

I = 〈B〉 := {a0b0 + · · ·+ ambm | m ∈ N, a0, . . . , am ∈ R, b0 . . . , bm ∈ B}.

We say that B generates I.

A basis for a given ideal in a ring does not necessarily have to be finite.
However, a key result in commutative algebra makes sure that in our setting we
only have to consider finitely generated ideals.

Invariant Generation for Multi-Path Loops with Polynomial Assignments 231

Theorem 7 (Hilbert’s Basis Theorem – Special case). Every ideal in K[x]
has a finite basis.

Subsequently, whenever we say we are given an ideal I, we mean that we
have given a finite basis of I.

There is usually more than one basis for a given ideal and some are more
useful for certain purposes than others. In his seminal PhD thesis [1], Buchberger
introduced the notion of Gröbner bases for polynomial ideals and an algorithm
to compute them. While, for reasons of brevity, we will not formally define these
bases, it is important to note that with their help, central questions concerning
polynomial ideals can be answered algorithmically.

Theorem 8. Let p ∈ K[x1, . . . , xn] and I,J C K[x1, . . . , xn]. There exist algo-
rithms to decide the following problems.

1. Decide if p is an element of I.
2. Compute a basis of I + J .
3. Compute a basis of I ∩ J .
4. For {x̃1, . . . x̃m} ⊆ {x1, . . . , xn}, compute a basis of I ∩K[x̃1, . . . , x̃m].
5. Let q ∈ K[x]. Compute a basis for

I : 〈q〉∞ := {q ∈ K[x] | ∃n ∈ N : qnp ∈ I}.
The ideal I : 〈q〉∞ is called the saturation of I with respect to q.

We will use Gröbner bases to compute the ideal of all algebraic relations
among given rational functions. For this, we use the polynomials qiyi − pi to
model the equations yi = qi/pi by multiplying the equation with the denomina-
tor. In order to model the fact that the denominator is not identically zero, and
therefore allowing us to divide by it again, we use the saturation with respect
to the least common multiple of all denominators. To see why this is necessary,
consider y1 = y2 = x1

x2
. An algebraic relation among y1 and y2 is y1 − y2, but

with the polynomials x2y1 − x1 and x2y2 − x1, we only can derive x2(y1 − y2).
We have to divide by x2.

Theorem 9. Let r1, . . . , rm ∈ K(x) and let the numerator of ri be given by
pi ∈ K[x] and the denominator by qi ∈ K[x]. The ideal of all polynomials p in
K[y] with p(r1, . . . , rm) = 0 is given by(m∑

i=1

〈qiyi − pi〉
)

: 〈lcm(q1, . . . , qm)〉∞ ∩K[y],

where lcm(. . .) denotes the least common multiple.

Proof. Write d := lcm(q1, . . . , qm). The theorem can be easily verified from the
fact that, for any given p with p(r1, . . . , rm) = 0, there exists a k ∈ N such
that dkp(r1, . . . , rm) = 0 is an algebraic relation for p1, . . . , pm (by clearing
denominators in the equation p(r1, . . . , rm) = 0). ut

A polynomial ideal I C K[x] gives rise to a set of points in Kn for which all
polynomials in I vanish simultaneously. This set is called a variety.

232 A. Humenberger et al.

Definition 10. Let I C K[x1, . . . , xn] be an ideal. The set

V (I) = {(a1, . . . , an) ∈ Kn | p(a1, . . . , an) = 0 for all p ∈ I},

is the variety defined by I.

Varieties are one of the central objects of study in algebraic geometry. Cer-
tain geometric shapes like points, lines, circles or balls can be described by prime
ideals and come with an intuitive notion of a dimension, e.g. points have dimen-
sion zero, lines and circles have dimension one and balls have dimension two.
The notion of the Krull dimension of a ring formalizes this intuition when being
applied to the quotient ring K[x]/I. In this paper, we will use the Krull dimen-
sion to provide an upper bound for the number of necessary iterations of our
algorithm.

Definition 11. The Krull dimension of a commutative ring R is the supremum
of the lengths of all chains I0 ⊂ I1 ⊂ . . . of prime ideals.

Theorem 12. The Krull dimension of K[x1, . . . , xn] is equal to n.

3 Extended P-Solvable Loops

In [4] the class of P-solvable loops [9] was extended to so-called extended P-
solvable loops. So far, this class captures loops with assignments only, i.e. loops
without any nesting of conditionals and loops. In Section 3.3 we close this gap by
introducing a new approach for computing invariants of multi-path loops which
generalizes the algorithm proposed in [10]. Before dealing with multi-path loops,
we recall the notion of extended P-solvable loops in Section 3.1 and showcase
the invariant ideal computation.

3.1 Loops with assignments only

In this section, we restrain ourselves to loops whose bodies are comprised of
rational function assignments only. This means that we restrict the valid com-
posite forms in a program of the form (1) to sequential compositions and, for the
moment, exclude inner loops and conditional branches. We therefore consider a
loop L = B∗1 where B1 is a single block containing only variable assignments.

Each variable vi in a given loop of the form (1) gives rise to a sequence
(vi(n))n∈N, where n is the number of loop iterations. The class of eligible loops
is then defined based on the form of these sequences. Let r(x)n denote the falling

factorial defined as
∏n−1

i=0 r(x− i) for any r ∈ K(x) and n ∈ N.

Definition 13. A loop with assignments only is called extended P-solvable if
each of its recursively changed variables determines a sequence of the form

vi(n) =
∑
j∈Z`

pi,j(n, θ
n
1 , . . . , θ

n
k)((n+ ζ1)n)j1 · · · ((n+ ζ`)

n)j` (3)

Invariant Generation for Multi-Path Loops with Polynomial Assignments 233

where k, ` ∈ N, the pi,j are polynomials in K(x)[y1, . . . , yk], not identically zero
for finitely many j ∈ Z`, the θi are elements of K and the ζi are elements of
K \ Z− with θi 6= θj and ζi − ζj /∈ Z for i 6= j.

Definition 13 extends the class of P-solvable loops in the sense that each
sequence induced by an extended P-solvable loop is the sum of a finitely many
hypergeometric sequences. This comprises C-finite sequences as well as hyper-
geometric sequences and sums and Hadamard products of C-finite and hyperge-
ometric sequences. In contrast, P-solvable loops induce C-finite sequences only.
For details on C-finite and hypergeometric sequences we refer to [5].

Every sequence of the form (3) can be written as

v
(1)
j = rj(v

(0),θ, (n+ ζ)n, n)

where rj = pi/qi is a rational function, and v(0) and v(1) denote the values
of v before and after the execution of the loop. Let I(θ, ζ) C K[y0, . . . , yk+`]
be the ideal of all algebraic dependencies in the variables y0, . . . , yk+` between
the sequence (n)n∈N, the exponential sequences θn1 , . . . , θ

n
k and the sequences

(n+ ζ1)n, . . . , (n+ ζ`)
n. Note that it was shown in [4] that this ideal is the same

as the extension of the ideal I(θ) C K[y0, . . . , yk] of all algebraic dependencies
between the θn in K[y0, . . . , yk] to K[y0, . . . , yk+`], as the factorial sequences
(n+ ζi)

n are algebraically independent from the exponential sequences θni . Now
the following proposition states how the invariant ideal of an extended P-solvable
loop can be computed.

Proposition 14 ([4]). For an extended P-solvable loop with program variables
v1, . . . , vm the invariant ideal is given by((

m∑
j=1

〈
qj(v

(0),y)v
(1)
j −pj(v

(0),y)
〉)

:〈lcm(q1, . . . , qm)〉∞+I(θ, ζ)

)
∩K[v(1),v(0)].

Example 15. Consider the following loop with relevant program variables a, b
and c.

while true do
a := 2 · (n+ 1)(n+ 3

2) · a
b := 4 · (n+ 1) · b
c := 1

2 · (n+ 3
2) · c

n := n+ 1
end while

The extracted recurrence relations admit the following system of closed form
solutions:

an = 2n · a0 · (n)n · (n+
1

2
)n,

bn = 4n · b0 · (n)n,

cn = 2−n · c0 · (n+
1

2
)n.

234 A. Humenberger et al.

Since every closed form solution is of the form (3) we have an extended P-solvable
loop, and we can apply Proposition 14 to compute the invariant ideal:

(I + I(θ, ζ)) ∩K[a(1), b(1), c(1), a(0), b(0), c(0)] = 〈b(1)· c(1)· a(0)− a(1)· b(0)· c(0)〉,

where

I = 〈a(1)− y1 · a(0)· z1z2, b(1)− y2 · b(0)· z1, c(1)− y3 · c(0)· z2〉,
I(θ, ζ) = 〈y21 − y2, y1y3 − 1, y2y3 − y1〉.

The ideal I(θ, ζ) in variables y1, y2, y3 is the set of all algebraic dependencies
among 2n, 4n and 2−n, and I is generated by the closed form solutions where
exponential and factorial sequences are replaced by variables y1, y2, y3 and z1, z2.

3.2 Algebraic Dependencies of Composed Rational Functions with
Side Conditions

In this section we give the prerequisites for proving termination of the invariant
generation method for multi-path loops (Section 3.3). The results of this section
will allow us to proof termination by applying Theorem 12.

Let v(i) = v
(i)
1 , . . . , v

(i)
m and y(i) = y

(i)
1 , . . . , y

(i)
` for i ∈ N. We model the

situation in which the value of the jth loop variable after the execution of the
ith block in (1) is given by a rational function in the y(i) (which, for us, will
be the exponential and factorial sequences as well as the loop counter) and the

‘old’ variable values v(i−1) and is assigned to v
(i)
j . Set I0 =

∑m
j=1〈v

(1)
j − v

(0)
j 〉

and let Ii C K[y(i)] for i ∈ N∗. Furthermore, let q
(i)
j , p

(i)
j ∈ K[v(i),y(i)] such that

for fixed i there exists a y ∈ V (Ii) with p
(i)
j (v(i),y)/q

(i)
j (v(i),y) = v

(i)
j for all j

and with di := lcm(q
(i)
1 , . . . , q

(i)
m) we have di /∈ Ii and di(vi,y) = 1. Set

Ji =
m∑
j=1

〈q(i)j (v(i),y(i))v
(i+1)
j − p(i)j (v(i),y(i))〉.

Remark 16. The requirement for the existence of a point y in V (Ii) such that

p
(i)
j (v(i),y)/q

(i)
j (v(i),y) = v

(i)
j for all j and di(vi,y) = 1 is always fulfilled in our

context, as it is a formalization of the fact that the execution of a loop L∗ also
allows that it is executed zero times, meaning the values of the program variables
do not change.

In order to develop some intuition about the following, consider a list of con-
secutive loops L1;L2;L3; . . . where each of them is extended P-solvable. Intu-
itively, the ideals Ii then correspond to the ideal of algebraic dependencies among
the exponential and factorial sequences occurring in Li, whereas Ji stands for the

ideal generated by the closed form solutions of Li. Moreover, the variables v
(i+1)
j

correspond to the values of the loop variables after the execution of the loop
Li. The following iterative computation then allows us to generate the invariant
ideal for L1;L2;L3; . . .

Ii := ((Ji + Ii−1 + Ii) : 〈di〉∞) ∩K[v(i+1),v(0)]

Invariant Generation for Multi-Path Loops with Polynomial Assignments 235

Now the remaining part of this section is devoted to proving properties of the
ideals Ii which will help us to show that there exists an index k such that
Ik = Ik′ for all k′ > k for a list of consecutive loops L1; . . . ;Lr;L1; . . . ;Lr; . . .
with r ∈ N.

First note that the ideal Ii can be rewritten as

Ii = {p ∈ K[v(i+1),v(0)] | ∃q ∈ Ii−1, k ∈ N :

q ≡ dki p(r
(i)
1 (v(i),y(i)), . . . , r(i)m (v(i),y(i)),v(0)) (mod Ii)}. (4)

If Ii is radical, an equation mod Ii is, informally speaking, the same as substi-
tuting y with values from V (Ii), so (4) translates to

Ii = {p ∈ K[v(i+1),v(0)] | ∃q ∈ Ii−1, k ∈ N :

∀y ∈ V (Ii) : q = dki p(r
(i)
1 (v(i),y), . . . , r(i)m (v(i),y),v(0))}. (5)

We now get the following subset relation between two consecutively computed
ideals Ii.

Lemma 17. If Ii is radical, then Ii ⊆ Ii−1|v(i−1)←v(i) .

Proof. Let p ∈ Ii. We have to show that there is an r ∈ Ii−2 and a k ∈ N such
that

r ≡ dki−1p(r
(i−1)
1 (v(i−1),y(i−1)), . . . , r(i−1)m (v(i−1),y(i−1)),v(0)) (mod Ii−1).

Since Ii is radical, there is a q ∈ Ii−1, a z ∈ N, and a y ∈ V (Ii) with

q = dzi p(r
(i)
1 (v(i),y), . . . , r(i)m (v(i),y),v(0)) = p(v(i),v(0)).

Then, by Equation (4) for Ii−1, there is an r ∈ Ii−2 with the desired property.
ut

For prime ideals, we get an additional property:

Lemma 18. If Ii−1 and Ii are prime, then so is Ii.

Proof. Let a · b ∈ Ii and denote by a|r and b|r the rational functions where each

v
(i+1)
j is substituted by r

(i)
j in a, b respectively. Then there is a q ∈ Ii−1 and a

k = k1 + k2 ∈ N with dk1
i a|r, d

k2
i b|r ∈ K[v(i+1),v(0)]

q ≡ dki (a · b)|r ≡ dk1
i a|r · d

k2
i b|r (mod Ii)

If dki a|r is zero modulo Ii, then a is an element of Ii, as 0 ∈ Ii−1. The same
argument holds for b. Suppose that dk1

i a|r, d
k2
i b|r 6≡ 0 (mod Ii). Then, since Ii

is prime, K[y(i)]/Ii is an integral domain, and so it follows that q 6≡ 0 (mod Ii).
Now, because Ii−1 is prime, it follows without loss of generality that dk1

i a|r ∈
Ii−1, from which we get a ∈ Ii. ut

We now use Lemmas 17 and 18 to give details about the minimal decompo-
sition of Ii.

Proposition 19. For fixed i0 ∈ N, let all Ii, 0 ≤ i ≤ i0 be radical and let
Ii0 =

⋂n
k=0Pk be the minimal decomposition of Ii0 . Then

236 A. Humenberger et al.

1. for each k there exist prime ideals Ik,1, Ik,2, . . . such that Pk is equal to a
Ik,i0 constructed as above with J1, . . . , Ji0 and Ik,1, . . . , Ik,i0 .

2. if Ii0+1 is radical and Ii0+1 =
⋂n′

j=0P
′
j is the minimal decomposition of Ii+1,

then, for each P ′j there exists a Pk such that P ′j ⊆ Pk|v(i0)←v(i0+1) .

Proof. We prove 1. by induction. For i0 = 0, there is nothing to show. Now
assume the claim holds for some i0 ∈ N and let Ii0+1 =

⋂w
j=0Qj be the minimal

decomposition of Ii0+1. With this we get

Ii0+1 = (Ji0+1 + Ii0 + Ii0+1) : 〈di0+1〉∞ ∩K[v(i0+1),v(0)]

=

 n⋂
k=0

Ji0+1 + Pk +

w⋂
j=0

Qj

 : 〈di0+1〉∞ ∩K[v(i+1),v(0)]

=

(n⋂
k=0

w⋂
j=0

(Ji0+1 + Pk +Qj) : 〈di0+1〉∞ ∩K[v(i0+1),v(0)]︸ ︷︷ ︸
Ĩk,j

)
.

By the induction hypothesis, each Pk admits a construction as above, and thus
so does Ĩk,j . By Lemma 18, Ĩk,j is prime. This shows 1. The second claim then
follows from the fact that the prime ideals in the minimal decomposition of Ii0+1

are obtained from the Pk via Ji0+1 and Qj . Since the Qj are prime, they are
also radical, and the claim follows from Lemma 17. ut

3.3 Loops with conditional branches

In this section, we extend the results of Section 3.1 to loops with conditional
branches. Without loss of generality, we define our algorithm for a loop of the
form

while . . . do L1;L2; . . . ;Lr end while

where Li = B∗i and Bi is a block containing variable assignments only.

Let I(θi, ζi) denote the ideal of all algebraic dependencies as described in
Section 3.1 for a inner loop Li. As every inner loop provides its own loop counter,
we have that the exponential and factorial sequences of distinct inner loops are
algebraically independent. Therefore I(θ, ζ) :=

∑r
i=0 I(θi, ζi) denotes the set of

all algebraic dependencies between exponential and factorial sequences among
the inner loops L1, . . . , Lr.

Consider loop bodies B1, . . . , Br with common loop variables v1, . . . , vm. Sup-
pose the closed form of vj in the ith loop body is given by a rational function
in m+ k + `+ 1 variables:

v
(i+1)
j = r

(i)
j (v(i),θn, (n+ ζ)n, n),

where v
(i)
j and v

(i+1)
j are variables for the value of vj before and after the execution

of the loop body. Then we can compute the ideal of all polynomial invariants of
the non-deterministic program (B∗1 ;B∗2 ; . . . ;B∗r)∗ with Algorithm 1.

Invariant Generation for Multi-Path Loops with Polynomial Assignments 237

Algorithm 1 Invariant generation via fixed point computation

Input: Loop bodies B1, . . . , Br as described.
Output: The ideal of all polynomial invariants of (B∗1 ;B∗2 ; . . . ;B∗r)∗.

1: Compute I := I(θ, ζ) as described above
2: Iold = {0}, Inew =

∑m
j=1〈v

(1)
j − v(0)i 〉, j = 0

3: WHILE Iold|v((j−1)·r+1)←v(j·r+1) 6= Inew AND Inew 6= {0} DO
4: Iold ← Inew, j ← j + 1
5: FOR i = 1, . . . , r DO
6: Inew ← (Ji·j + Iold + I) ∩K[v(i·j+1),v(0)]

7: RETURN Inew

Lemma 20. I(θ, ζ) is a radical ideal.

Proof. The elements of I(θ) represent C-finite sequences, i.e. sequences of the
form

f1(n)θn1 + · · ·+ fnk θ
n
k ,

for univariate polynomials f1, . . . , fk ∈ K[y0] and pairwise distinct θ1, . . . , θk ∈
K. The claim is then proven by the fact that the Hadamard-product a2(n, a(0))
of a C-finite sequence a(n, a(0)) with itself is zero if and only if a(n, a(0)) is zero,
and I(θ, ζ) is the extension of I(θ) to K[y0, . . . , yk+`]. ut

Theorem 21. Algorithm 1 is correct and terminates.

Proof. The algorithm iteratively computes the ideals I1, I2, . . . as in Section 3.2,
so we will refer to Iold and Inew as Ii and Ii+1.

Termination: I0 is a prime ideal of height m. Suppose after an execution of
the outer loop, the condition Ii|v(i)←v(i+1) 6= Ii+1 holds. As I(θ, ζ) is radical
by Lemma 20, we then get Ii+1 ⊂ Ii|v(i)←v(i+1) by Lemma 17. Thus there is a
p ∈ K[v(i+1),v(0)] with p ∈ Ii|v(i)←v(i+1) and p /∈ Ii+1. Then, by Proposition 19,
all prime ideals Pk in the minimal decomposition of Ii+1 are have to be subsets
of the prime ideals in the minimal decomposition of Ii|v(i)←v(i+1) , where at least
one of the subset relations is proper. Since p /∈ Ii+1, the height of at least one
Pk has to be reduced. The height of each prime ideal is bounded by the height
of I0.

Correctness: Let i ∈ N be fixed and denote by I(B; i) C K[v(i+1),v(0)] the
ideal of all polynomial invariants for the non-deterministic program

(B∗1 ; . . . ;B∗r)
i/r;B∗1 ; . . . ;B∗i rem r.

It suffices to show that Ii is equal to I(B; i). In fact, after i0 iterations with
Ii0 = Ii0+1 = Ii0+2 = . . . , it follows that Ii0 is the ideal of polynomial invariants
for (B∗1 ; . . . ;B∗r)∗. Let p ∈ I(B; i). The value of the program variable vj in the
program B∗1 ; . . . ;B∗i rem r is given as the value of a composition of the closed
forms of each Bk:

vj = p
(i)
j

(
p(i−1)

(
. . .
(
p(1)(v(0), sn1

), . . .
)
, sni−1

)
, sni

)
,

238 A. Humenberger et al.

with sn = n,θn, (n+ ζ)n and n1, . . . , ni ∈ N. The correctness then follows from
the fact that that Ii is the ideal of all such compositions under the side condition
that (θn, (n+ ζ)n, n) ∈ V (I(θ, ζ)) for any n ∈ N. ut

Revisiting the subset relations of the prime ideals in the minimal decompo-
sition of I0, I1, . . . gives an upper bound for the necessary number of iterations
in the algorithm.

Corollary 22. Algorithm 1 terminates after at most m iterations of the while-
loop at line 3.

Proof. Suppose the algorithm terminates after k0 iterations of the outer loop.
We look at the ideals Ir·k, k ∈ {0, . . . , k0}. For a prime ideal P in the min-
imal decomposition of any Ir·(k+1), there is a prime ideal Q in the minimal
decomposition of Ir·k such that P ⊆ Q. If P = Q, then P is a prime ideal
in the minimal decomposition of each Ir·(k′), k′ > k. This holds because there
are only r many Ji. So if Q does not get replaced by smaller prime ideals in
Ir·k+1, Ir·k+2 . . . , Ir·(k+1), it has to be part of the minimal decomposition for
any subsequent Ii. From this it follows that, for each k, there is a prime ideal
Pk in the minimal decomposition in Ir·k, such that P0 ⊃ P1 ⊃ · · · ⊃ Pk0 is a
chain of proper superset relations, which then proves the claim since the height
of P0 = I0 is m. ut

Example 23. Consider a multi-path loop L

while . . . do L1;L2 end while

containing the following nested loops L1 and L2 and the corresponding closed
form solutions:

while . . . do
a := a− b
p := p− q
r := r − s

end while

an = a0 − nb0
pn = p0 − nq0
rn = r0 − ns0

while . . . do
b := b− a
q := q − p
s := s− r

end while

bm = b0 −ma0
qm = q0 −mp0
sm = s0 −mr0

For simplicity we chose inner loops without algebraic dependencies, i.e. I at
line 1 will be the zero ideal and we therefore neglect it in the following compu-
tation. Moreover, we write ai instead of a(i). We start with

I0 = 〈a1 − a0, b1 − b0, p1 − p0, q1 − q0, r1 − r0, s1 − s0〉
followed by the first loop iteration:

I1 = (J1 + I0) ∩K[a0, b0, p0, q0, r0, s0, a2, b2, p2, q2, r2, s2]

= 〈b0 − b2, q0 − q2, s0 − s2,−p0s2 + p2s2 + q2r0 − q2r2,
a0s2 − a2s2 − b2r0 + b2r2, a0q2 − a2q2 − b2p0 + b2p2〉

where

J1 = 〈a2 − a1 + b1n, p2 − p1 + q1n, r2 − r1 + s1n, b2 − b1, q2 − q1, s2 − s1〉

Invariant Generation for Multi-Path Loops with Polynomial Assignments 239

The following ideal I2 is then the invariant ideal for the first iteration of the
outer loop L.

I2 = (J2 + I1) ∩K[a0, b0, p0, q0, r0, s0, a3, b3, p3, q3, r3, s3]

= 〈−p0r3s0 + p3r3s3 + p3r0s0 − p3r0s3 − q3r23 + q3r0r3,

− p3s0 + p3s3 + q0r3 − q3r3,−p0s0 + p3s3 + q0r0 − q3r3,
a3s0 − a3s3 − b0r3 + b3r3, a0q0 − a3q3 − b0p0 + b3p3,

a3p0s3 − a3p3s3 − a3q3r0 + a3q3r3 − b0p3r0 + b3p3r0 + b0p0r3 − b3p0r3,
a3q0 − a3q3 − b0p3 + b3p3, a0s0 − a3s3 − b0r0 + b3r3,

− a0p3s3 + a3p3s3 + a0q3r3 − a3q3r3 + b0p3r0 − b0p0r3,
− a3b0r0 + a3b3r3 + a0b0r3 − a0b3r3 − a23s3 + a0a3s3,

− a3b0p0 + a3b3p3 + a0b0p3 − a0b3p3 − a23q3 + a0a3q3〉
where

J2 = 〈b3 − b2 + a2m, q3 − q2 + p2m, s3 − s2 + r2m, a3 − a2, p3 − p2, r3 − r2〉
By continuing this computation we get the following ideals I4 and I6 which are
the invariant ideals after two and three iterations of the outer loop L respectively.

I4 = 〈p0s0 − p5s5 − r0q0 + r5q5,

b5p5 − b0p0 + a0q0 − a5q5,
b5r5 − b0r0 + a0s0 − a5s5,
b5(−p5s0 + r5q0) + b0(p5s5 − r5q5) + a5(−s5q0 + s0q5),

b5(−p5r0 + p0r5) + a5(−p0s5 + r0q5) + a0(p5s5 − r5q5),

b0p0(−p5s5 + r5q5) + b5(p25s5 − p0r5q0 + p5(r0q0 − r5q5)) +

a5(p0s5q0 + q5(−p5s5 − r0q0 + r5q5))〉

I6 = 〈p0s0 − p7s7 − r0q0 + r7q7,

b7p7 − b0p0 + a0q0 − a7q7,
b7r7 − b0r0 + a0s0 − a7s7,
b7(−p7s0 + r7q0) + b0(p7s7 − r7q7) + a7(−s7q0 + s0q7),

b7(−p7r0 + p0r7) + a7(−p0s7 + r0q7) + a0(p7s7 − r7q7),

b0p0(−p7s7 + r7q7) + b7(p27s7 − p0r7q0 + p7(r0q0 − r7q7)) +

a7(p0s7q0 + q7(−p7s7 − r0q0 + r7q7))〉

Note that we now reached the fixed point as I6 = I4|v(5)←v(7) .

Corollary 22 provides a bound on the number of iterations in Algorithm 1.
Therefore, we know at which stage we have to reach the fixed point of the
computation at the latest, viz. after computing Ir·m. This fact allows us to
construct a new algorithm which computes the ideal Ir·m directly instead of
doing a fixed point computation. The benefit of Algorithm 2 is that we have

240 A. Humenberger et al.

to perform only one Gröbner basis computation in the end, although the new
algorithm might performs more iterations than Algorithm 1.

Algorithm 2 Invariant generation without fixed point computation

Input: Loop bodies B1, . . . , Br as described.
Output: The ideal of all polynomial invariants of (B∗1 ;B∗2 ; . . . ;B∗r)∗.

1: Compute I := I(θ, ζ) as described above
2: Inew =

∑m
j=1〈v

(1)
j − v(0)i 〉+ I

3: FOR j = 1, . . . ,m DO
4: FOR i = 1, . . . , r DO
5: Inew ← (Ji·j + Inew)

6: RETURN Inew ∩K[v(m·r+1),v(0)]

The proof of termination of the invariant generation method of [10] assumes
that the ideal of algebraic dependencies is prime. In general, this does not hold.
Consider the following loop and its closed forms with exponential sequences 2n

and (−2)n:

while . . . do
x := 2x
y := −2y

end while

x(n) = 2n · x(0)
y(n) = (−2)n · y(0)

The ideal of algebraic dependencies among the before-mentioned exponential
sequences is given by 〈a2 − b2〉 which is obviously not prime. As a consequence,
the termination proof of [10] is incorrect. This paper closes this gap by providing
a new algorithm and a corresponding termination proof.

4 Implementation and Experiments

We implemented our method in the Mathematica package Aligator1. Aliga-
tor is open source and available at:

https://ahumenberger.github.io/aligator/

Comparison of generated invariants. Based on the examples in Figure 1
we show that our technique can infer invariants which cannot be found by other
state-of-the-art approaches. Our observations indicate that our method is supe-
rior to existing approaches if the loop under consideration has some mathematical
meaning like division or factorization algorithms as depicted in Figure 1, whereas
the approach of [7] has advantages when it comes to programs with complex flow.

1 Aligator requires the Mathematica packages Hyper [14], Dependencies [6] and
FastZeil [13], where the latter two are part of the compilation package ErgoSum [15].

Invariant Generation for Multi-Path Loops with Polynomial Assignments 241

The techniques of [2] and [7] were implemented in tools called Fastind2 and
Duet3 respectively. Unlike Aligator and Fastind, Duet is not a pure in-
ference engine for polynomial invariants, instead it tries to prove user-specified
safety assertions. In order to check which invariants can be generated by Duet,
we therefore asserted the invariants computed by Aligator and checked if
Duet can prove them.

while a 6= b do
if a > b then
a := a− b
p := p− q
r := r − s

else
b := b− a
q := q − p
s := s− r

end if
end while

(a)

while r 6= 0 do
if r > 0 then
r := r − v
v := v + 2

else
r := r + u
u := u+ 2

end if
end while

(b)

while d ≥ E do
if P < a+ b then
b := b/2
d := d/2

else
a := a+ b
y := y + d/2
b := b/2
d := d/2

end if
end while

(c)

Fig. 1: Three examples: (a) Extended Euclidean algorithm, (b) a variant of Fer-
mat’s factorization algorithm and (c) Wensley’s algorithm for real division.

Let us consider the loop depicted in Figure 1a. Since we treat conditional
branches as inner loops, we have that the invariants for this loop are the same
as for the loop in Example 23. By instantiating the generated invariants with
the following initial values on the left we get the following polynomial invariants
on the right:

a0 7→ x

b0 7→ y

p0 7→ 1

q0 7→ 0

r0 7→ 0

s0 7→ 1

1 + qr − ps (I1)

bp− aq − y (I2)

br − as+ x (I3)

− bp+ aq − qry + psy (I4)

br − as− qrx+ psx (I5)

(qr − ps)(−bp+ aq + y) (I6)

Note that (I4)-(I6) are just linear combinations of (I1)-(I3). However, Fastind
was able to infer (I1)-(I3), whereas Duet was only able to prove (I2), (I5)
and (I6).

Other examples where Aligator is superior in terms of the number of in-
ferred invariants are given by the loops in Figures 1b and 1c. For Fermat’s

2 Available at http://www.irisa.fr/celtique/ext/polyinv/
3 Available at https://github.com/zkincaid/duet

242 A. Humenberger et al.

algorithm (Figure 1b) and the following initial values, Aligator found one in-
variant, which was also found by Fastind. However, Duet was not able to prove
it.

u0 7→ 2R+ 1

v0 7→ 1

r0 7→ RR−N
− 4N − 4r − 2u+ u2 + 2v − v2 (I7)

In case of Wensley’s algorithm (Figure 1c) Aligator was able to identify
the following three invariants. Fastind inferred the first two invariants, whereas
Duet could not prove any of them.

a0 7→ 0

b0 7→ Q/2

d0 7→ 1

y0 7→ 0

2b− dQ (I8)

ad− 2by (I9)

a−Qy (I10)

Benchmarks and Evaluation. For the experimental evaluation of our
approach, we used the following set of examples: (i) 18 programs taken from [2];
(ii) 4 new programs of extended P-solvable loops that were created by us. All
examples are available at the repository of Aligator.

Our experiments were performed on a machine with a 2.9 GHz Intel Core i5
and 16 GB LPDDR3 RAM; for each example, a timeout of 300 seconds was set.
When using Aligator, the Gröbner basis of the invariant ideal computed by
Aligator was non-empty for each example; that is, for each example we were
able to find non-trivial invariants.

We evaluated Aligator against Fastind. As Duet is not a pure inference
engine for polynomial invariants, we did not include it in the following evaluation.
When compared to [2], we note that we do not fix the degree of the polynomial
invariants to be generated. Moreover, our method is complete. That is, whenever
Aligator terminates, the basis of the polynomial invariant ideal is inferred; any
other polynomial invariant is a linear combination of the basis polynomials.

Table 1a summarizes our experimental results on single-path loops, whereas
Table 1b reports on the results from multi-path programs. The first column of
each table lists the name of the benchmark. The second and third columns of
Table 1a report, on the timing results of Aligator and Fastind, respectively.
In Table 1b, the second column lists the number of branches (paths) of the
multi-path loop, whereas the third column gives the number of variables used
in the program. The fourth column reports on the number of iterations until
the fixed point is reached by Aligator, and hence terminates. The fifth and
sixth columns, labeled Al1 and Al2, show the performance of Aligator when
using Algorithm 1 or Algorithm 2, respectively. The last column of Table 1b
lists the results obtained by Fastind. In both tables, timeouts are denoted by

4 Testing the Maple implementation was not possible due to constraints regarding the
Maple version.

Invariant Generation for Multi-Path Loops with Polynomial Assignments 243

Table 1: Experimental evaluation of Aligator.

(a)

Single-path Aligator Fastind

cohencu 0.072 0.043

freire1 0.016 0.041

freire2 0.062 0.048

petter1 0.015 0.040

petter2 0.026 0.042

petter3 0.035 0.051

petter4 0.042 0.104

petter5 0.053 0.261

petter20 48.290 9.816

petter22 247.820 9.882

petter23 TO 9.853

(b)

Multi-path #b #v #i Al1 Al2 Fastind

divbin 2 3 2 0.134 45.948 0.045

euclidex 2 6 3 0.433 TO 0.049

fermat 2 3 2 0.045 0.060 0.043

knuth 4 5 2 55.791 TO 1.025

lcm 2 4 3 0.051 87.752 0.043

mannadiv 2 3 2 0.022 0.025 0.048

wensley 2 4 2 0.124 41.851 err

extpsolv2 2 3 2 0.192 TO err

extpsolv3 3 3 2 0.295 TO err

extpsolv4 4 3 2 0.365 TO err

extpsolv10 10 3 2 0.951 TO err

#b,#v . . . number of branches, variables

#i . . . number of iterations until fixed point reached

Al1 . . . Aligator with Algorithm 1 (timeout 300s)

Al2 . . . Aligator with Algorithm 2 (timeout 100s)

Fastind . . . OCaml version of the tool in [2]4

TO, err . . . timeout, error

TO, whereas errors, due to the fact that the tool cannot be evaluated on the
respective example, are given as err.

The results reported in Tables 1a and 1b show the efficiency of Aligator: in
14 out of 18 examples, Aligator performed significantly better than FastInd.
For the examples petter20, petter22 and petter23, the time-consuming part
in Aligator comes from recurrence solving (computing the closed form of the
recurrence), and not from the Gröbner basis computation. We intend to improve
this part of Aligator in the future. The examples extpsolv2, extpsolv3,
extpsolv4 and extpsolv10 are extended P-solvable loops with respectively 2,
3, 4, and 10 nested conditional branches. The polynomial arithmetic of these
examples is not supported by Fastind. The results of Aligator on these ex-
amples indicate that extended P-solvable loops do not increase the complexity
of computing the invariant ideal.

We also compared the performance of Aligator with Algorithm 1 against
Algorithm 2. As shown in columns 5 and 6 of Table 1b, Algorithm 2 is not as ef-
ficient as Algorithm 1, even though Algorithm 2 uses only a single Gröbner basis
computation. We conjecture that this is due to the increased number of variables
in the polynomial system which influences the Gröbner basis computation. We
therefore conclude that several small Gröbner basis computations (with fewer
variables) perform better than a single large one.

244 A. Humenberger et al.

5 Conclusions

We proposed a new algorithm for computing the ideal of all polynomial invariants
for the class of extended P-solvable multi-path loops. The new approach com-
putes the invariant ideal for a non-deterministic program (L1; . . . ;Lr)∗ where
the Li are single-path loops. As a consequence, the proposed method can handle
loops containing (i) an arbitrary nesting of conditionals, as these conditional
branches can be transformed into a sequence of single-path loops by introducing
flags, and (ii) one level of nested single-path loops.

Our method computes the ideals I1, I2, . . . until a fixed point is reached
where Ii denotes the invariant ideal of (L1; . . . ;Lr)i. This fixed point is then
a basis for the ideal containing all polynomial invariants for the extended P-
solvable loop. We showed that this fixed point computation is guaranteed to
terminate which implies the completeness of our method. Furthermore, we gave
a bound on the number of iterations we have to perform to reach the fixed
point. The proven bound is given by m iterations where m is the number of loop
variables.

We showed that our method can generate invariants which cannot be inferred
by other state-of-the-art techniques. In addition, we showcased the efficiency of
our approach by comparing our Mathematica package Aligator with state-of-
the-art tools in invariant generation.

Future research directions include the incorporation of the loop condition into
our method. So far we operate on an abstraction of the loop where we ignore
the loop condition and treat the loop as a non-deterministic program. By doing
so we might loose valuable information about the control flow of the program.
By employing ΠΣ∗-theory [19] it might be possible to extend our work also to
loops containing arbitrary nesting of inner loops, which reflects another focus
for further research.

Acknowledgments. We want to thank the anonymous reviewers for their help-
ful comments and remarks.

References

1. Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class
Ring of a Zero Dimensional Polynomial Ideal. J. Symbolic Computation 41(3-4),
475–511 (2006)

2. Cachera, D., Jensen, T.P., Jobin, A., Kirchner, F.: Inference of Polynomial Invari-
ants for Imperative Programs: A Farewell to Gröbner Bases. In: Miné, A., Schmidt,
D. (eds.) Static Analysis - 19th International Symposium, SAS 2012, Deauville,
France, September 11-13, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7460, pp. 58–74. Springer (2012)

3. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: Proc. of FMCAD.
pp. 57–64. FMCAD Inc, Austin, TX (2015)

4. Humenberger, A., Jaroschek, M., Kovács, L.: Automated Generation of Non-Linear
Loop Invariants Utilizing Hypergeometric Sequences. In: Proceedings of the 2017

Invariant Generation for Multi-Path Loops with Polynomial Assignments 245

ACM on International Symposium on Symbolic and Algebraic Computation. pp.
221–228. ISSAC ’17, ACM, New York, NY, USA (2017)

5. Kauers, M., Paule, P.: The Concrete Tetrahedron. Text and Monographs in Sym-
bolic Computation, Springer Wien, 1st edn. (2011)

6. Kauers, M., Zimmermann, B.: Computing the algebraic relations of C-finite se-
quences and multisequences. Journal of Symbolic Computation 43(11), 787 – 803
(2008)

7. Kincaid, Z., Cyphert, J., Breck, J., Reps, T.: Non-Linear Reasoning For Invariant
Synthesis. In: POPL (2018), to appear

8. Kovács, L.: Automated Invariant Generation by Algebraic Techniques for Imper-
ative Program Verification in Theorema. Ph.D. thesis, RISC, Johannes Kepler
University Linz (October 2007)

9. Kovács, L.: Reasoning Algebraically About P-Solvable Loops. In: Tools and Algo-
rithms for the Construction and Analysis of Systems, 14th International Confer-
ence, TACAS 2008, Held as Part of the Joint European Conferences on Theory and
Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008.
Proceedings. pp. 249–264 (2008)

10. Kovács, L.: A Complete Invariant Generation Approach for P-solvable Loops. In:
Perspectives of Systems Informatics, 7th International Andrei Ershov Memorial
Conference, PSI 2009, Novosibirsk, Russia, June 15-19, 2009. Revised Papers. pp.
242–256 (2009)

11. Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: Automata, Languages
and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
July 12-16, 2004. Proceedings. pp. 1016–1028 (2004)

12. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra.
In: Artho, C., Legay, A., Peled, D. (eds.) Proc. of ATVA. pp. 479–494. Springer
(2016)

13. Paule, P., Schorn, M.: A Mathematica Version of Zeilbergers Algorithm for Proving
Binomial Coefficient Identities. Journal of Symbolic Computation 20, 673 – 698
(1995)

14. Petkovšek, M.: Mathematic package hyper (1998), http://www.fmf.uni-lj.si/

~petkovsek/
15. Research Institute for Symbolic Computation.: Mathematic Package ErgoSum

(2016), http://www.risc.jku.at/research/combinat/software/ergosum/
16. Rodriguez-Carbonell, E., Kapur, D.: Automatic Generation of Polynomial Invari-

ants of Bounded Degree using Abstract Interpretation. J. Science of Computer
Programming 64(1), 54–75 (2007)

17. Rodŕıguez-Carbonell, E., Kapur, D.: Generating all polynomial invariants in simple
loops. Journal of Symbolic Computation 42(4), 443 – 476 (2007)

18. Sankaranarayanan, S., Sipma, H.B., Manna, Z.: Non-linear loop invariant genera-
tion using gröbner bases. In: Proc. of POPL. pp. 318–329. ACM, New York, NY,
USA (2004)

19. Schneider, C.: Summation theory ii: Characterizations of rπσ-extensions and algo-
rithmic aspects. J. Symb. Comput. 80(3), 616–664 (2017), arXiv:1603.04285 [cs.SC]

20. Sharma, R., Gupta, S., Hariharan, B., Aiken, A., Liang, P., Nori, A.V.: A Data
Driven Approach for Algebraic Loop Invariants. In: Felleisen, M., Gardner, P. (eds.)
Programming Languages and Systems - 22nd European Symposium on Program-
ming, ESOP 2013, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2013, Rome, Italy, March 16-24, 2013. Proceedings.
Lecture Notes in Computer Science, vol. 7792, pp. 574–592. Springer (2013)

246 A. Humenberger et al.

	11
Invariant Generation for Multi-Path Loops withPolynomial Assignments
	Abstract

	1 Introduction
	2 Preliminaries
	2.1 Programming Model and Invariants
	2.2 Polynomial Rings and Ideals

	3 Extended P-Solvable Loops
	3.1 Loops with assignments only
	3.2 Algebraic Dependencies of Composed Rational Functions withSide Conditions
	3.3 Loops with conditional branches

	4 Implementation and Experiments
	5 Conclusions
	References

