
Parameterized Model Checking of Synchronous
Distributed Algorithms by Abstraction?

Benjamin Aminof1, Sasha Rubin2, Ilina Stoilkovska1(�), Josef Widder1, and
Florian Zuleger1

1 TU Wien, Vienna, Austria
{benj, stoilkov, widder, zuleger}@forsyte.at

2 Università degli Studi di Napoli Federico II, Naples, Italy
sasha.rubin@unina.it

Abstract. Parameterized verification of fault-tolerant distributed algo-
rithms has recently gained more and more attention. Most of the existing
work considers asynchronous distributed systems (interleaving semantics).
However, there exists a considerable distributed computing literature
on synchronous fault-tolerant distributed algorithms: conceptually, all
processes proceed in lock-step rounds, that is, synchronized steps of all
(correct) processes bring the system into the next state.

We introduce an abstraction technique for synchronous fault-tolerant dis-
tributed algorithms that reduces parameterized verification of synchronous
fault-tolerant distributed algorithms to finite-state model checking of an
abstract system. Using the TLC model checker, we automatically verified
several algorithms from the literature, some of which were not automati-
cally verified before. Our benchmarks include fault-tolerant algorithms
that solve atomic commitment, 2-set agreement, and consensus.

1 Introduction

Fault-tolerant distributed algorithms (FTDAs) are hard to design and prove
correct. It is easy to introduce bugs when developing and “optimizing” such
distributed algorithms [41]. As we currently see more and more implementations
of FTDAs [8, 31, 42, 55], it is desirable to be able to quickly check, whether an
optimization did not break the desired behavior. Hence, we observe increasing
interest in tool support for eliminating design bugs in distributed algorithms by
means of automated verification [1, 2, 17,18,26,28,35,45,52,54].

The vast majority of the existing literature on verification of distributed
systems considers asynchronous systems, that is, the methods are designed for
interleaving semantics. Disentangling the methods from the interleaving semantics
is challenging. At the same time, there is substantial literature on distributed

? This work is partially supported by the Austrian Science Fund (FWF) via NFN RiSE
(S11403, S11405), project PRAVDA (P27722), and the doctoral college LogiCS W1255;
and by the Vienna Science and Technology Fund (WWTF) through grant ICT12-059.
S. Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

c© Springer International Publishing AG 2018 1
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 1–24, 2018.
https://doi.org/10.1007/978-3-319-73721-8_1

I(n, t, f)

parameterized
system

Ĵ

abstract
system

pseudocode manual
encoding

model checking
with TLC

assign values
to n, t, f

model checking
fixed size system

[10,25,48,51]automatic

model checking
with TLC

model checking
abstract system
[22,24,27,28,29] automatic

pattern-based
predicate

abstraction
patterns provided by user

data and
counter

abstraction

automated

predicate
abstraction

[23]
CMP

[13,32,40]

counter
abstraction

[24,46]

Fig. 1: Overview of our approach and related work

algorithms that are not designed for interleaving semantics, namely round-based
distributed algorithms [9,11,12,34,37,44,47,53]. In these algorithms, computations
proceed in rounds, in which processes perform send, receive and compute transi-
tions in lock-step. There are mainly three reasons for the interest in synchronous
distributed algorithms: First, the assumption on synchrony circumvents impos-
sibility results regarding fault-tolerance in asynchronous systems [21]. Second,
for hard real-time systems, the underlying hardware and network infrastructure
exhibits predictable timing behavior, so that designers of embedded and cyber-
physical systems (e.g., in cars and planes) are willing to exploit these timing
guarantees at the algorithmic level [30]. Finally, the abstraction of a round that
is performed by all processes in lock-step makes it supposedly easier to design
algorithms; although there are counterexamples where incorrect synchronous
distributed algorithms have been published, as reported in [36].

We focus on verification of synchronous FTDAs, and will adapt and combine
several verification methods that were originally designed for asynchronous
systems, and apply them in the synchronous setting. Fig. 1 gives an overview of
our work together with references of related approaches for the asynchronous
case. Our main contribution lies in parameterized verification of FTDAs, that
is, we want to verify a distributed algorithm that is executed by n processes
in an environment where f processes fail, and designed to work if at most t
processes fail, for all values n, t, and f that satisfy some arithmetic conditions,
e.g., f ≤ t < n. This algorithm is formalized as a parameterized system I(n, t, f),

to which we apply abstraction to obtain a finite abstract system Ĵ which serves
as input to TLC [50], the model checker associated with TLA+ [33].

To understand the trade-off between parameterized model checking and model
checking of fixed size systems, we also did verification of the latter, that is, we
fix n, t, and f to small values, e.g., 5, 3, and 2. The resulting fixed size system
again serves as input to TLC, as shown in the figure. Our experiments show that
model checking fixed sized systems quickly runs into combinatorial state space
explosion. This confirms that to verify systems of bigger size, one needs to rely
on abstractions, which give verification results for systems of all sizes.

There are several existing approaches for verifying round-based distributed
algorithms. Fixed size systems, i.e., (small) instances, were verified using model
checking, e.g., in [10, 48, 51]. The following two approaches to parameterized

2 B. Aminof et al.

verification are most related as they also target the round-based model from [12]:
[17] proposes invariant checking using decision procedures, requiring the user
to provide invariants manually. [38] gives a cut-off theorem for reducing the
parameterized problem to verification of small systems (5 to 7 processes). This
cut-off theorem considers only consensus algorithms [12], while we are also
interested in other algorithms, e.g., k-set agreement or atomic commitment. We
discuss the relation of [38] to our work in more detail in Section 6.

Contributions. We introduce a new technique for parameterized model checking
of synchronous distributed algorithms.

– We introduce a special guarded command language for distributed algorithms,
and show that this language allows effective verification by abstraction.

– We combine automated abstractions [15,24,32,40,46] that had been introduced
for asynchronous systems, and adapt them to synchronous systems.

– Our modeling framework uses an independent environment to express the
semantics of the code in the presence of faults. While we focus on crash faults
in this paper, in the future this will allow us to express semantics of other
faults models (e.g., omission, Byzantine) in a modular way.

– We introduce pattern-based predicate abstraction for termination guards.
This allows verification engineers to specify verification conditions for specific
guards and environments. For termination guards found in many synchronous
algorithms, we provide verification conditions, which can be reused.

– We do experiments on several synchronous FTDAs [9, 11, 37, 47], some of
which were not automatically verified before. Our experiments show that pa-
rameterized model checking performs better than checking fixed-size systems
already for few (typically 5) processes.

2 Overview on our Approach

A synchronous distributed algorithm runs on a fully connected network of n ∈ N
processes, which communicate with each other by exchanging messages. The
computations are organized in rounds; each round consists of two phases: (1) the
message exchange phase in which each process broadcasts a message to all others,
and (2) the state transition phase in which processes update their variables based
on the messages received. The processes work synchronously in the sense that
they simultaneously switch to the next phase of every round.

We focus on fault-tolerant agreement algorithms [5,37,47], where processes
irrevocably decide a value depending on the initial values of all processes. There
are multiple agreement problems in the literature that differ in the way the
decision values are related to the initial values. In consensus, the processes reach
agreement on a value that has been initially proposed by at least one process. In
2-set agreement, processes may decide on one out of two different values from
the set of initial values. In non-blocking atomic commit, the processes decide
the value abort if there is at least one process that initially proposed abort, and
decide the value commit if all processes initially proposed commit.

Parameterized Model Checking of Synchronous Distributed Algorithms 3

FloodSet algorithm:
The message alphabet consists of subsets of
W = {0, 1}.
v0 ∈W is a default decision value
r ∈ N is the round number, initially 0
statesi:
w ⊆W , initially containing i’s initial value
d ∈ {0, 1, un}, initially un

msgsi
1. if r ≤ t then
2. send w to all other processes
3. r := r + 1
transi
4. let Xj be the message from j, for each j

from which a message arrives

5. w := w ∪
⋃
j Xj

6. if r = t+ 1 then
7. if |w| = 1 then d := v, where w = {v}
8. else d := v0

(a) The pseudocode of FloodSet

Validity: If all processes start with the same initial
value, then this is the only possible decision value.
Agreement: No two correct processes decide on
different values.
Termination: All correct processes eventually decide.

(b) Specifications
s.w s.d s.Msg s.r s.cr s.fld s.rcv
{0}
{0}
{1}
{0}
{0}



un
un
un
un
un



⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

 1


⊥
⊥
>
⊥
⊥



⊥
⊥
⊥
⊥
⊥



> > > > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >


(c) s ∈ S(n, t, f), n = 5, t = 3, f = 2

s′.w s′.d s′.Msg s′.r s′.cr s′.fld s′.rcv
{0}
{0}
{1}
{0}
{0}



un
un
un
un
un



{0} {0} {1} {0} {0}
{0} {0} ⊥ {0} {0}
{0} {0} ⊥ {0} {0}
{0} {0} ⊥ {0} {0}
{0} {0} ⊥ {0} {0}

 1


⊥
⊥
>
⊥
⊥



⊥
⊥
⊥
⊥
⊥



> > > > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >


(d) s′ ∈ S(n, t, f), for n = 5, t = 3, f = 2

(r = t+ 1) ∧ (w = {0}) ∧ (∀j msg[j] 6= {1}) ∧ (∀j msg[j] 6= {0, 1}) → w := {0}, d := 0

(e) A guarded assignment defined for FloodSet

pr ∧ (w = {0}) ∧ (∀j msg[j] 6= {1}) ∧ (∀j msg[j] 6= {0, 1}) → w := {0}, d := 0

(f) Predicate abstraction: the termination guard (r = t+ 1) is replaced by predicate pr

Fig. 2: The FloodSet algorithm

We aim at checking that the algorithms for fault-tolerant agreement satisfy
their specifications in the presence of at most t faulty processes, where t satisfies
some constraint, e.g., t < n. We focus on crash faults, exhibited by processes
that stop working and cannot restart. As a process can crash in the middle of its
execution, it can be the case that it sends a message only to a subset of processes.

We discuss the characteristics of these algorithms by using the FloodSet
consensus algorithm from Fig. 2a as example. Each process has several variables,
e.g., in FloodSet each process has the variables d and w. The variable d ∈ {0, 1, un}
stores the value the process decides on (un refers to the process being undecided),
and w ⊆W = {0, 1} stores the values the process has seen so far (starting with its
own initial value, and the ones received in messages). The processes communicate
via messages of a finite message alphabet. In FloodSet , the message alphabet
is the power set of W , and the message that a process sends is the value of its
variable w. In the (t+ 1)-st round, each process decides as follows: if w = {v},
for some v ∈W , then d = v; otherwise d is assigned a default value v0. We have
to verify that the FloodSet algorithm tolerates t process crashes where t < n.

2.1 Modeling

We model a distributed algorithm as a transition system that is composed of
n processes and an environment. The environment captures the fault model

4 B. Aminof et al.

and the round number. The system obtained in such a way is parameterized in
the parameters n and t, as well as the parameter f which refers to the actual
number of crashed processes during an execution of the algorithm. The processes
use the values of the parameters n and t; the parameter f is used only by the
environment. We are led to distinguish between f and t, as some of our case
studies (early deciding consensus) terminate in min(f + 2, t+ 1) rounds [9, 11].
Full definitions of the modeling sketched in this section are found in Section 3.

Processes and environment. To model a process, we define process variables and
process functions. The process variables either store values from a finite domain,
or are one-dimensional arrays of size n that store information about the other
processes, e.g., the messages received in the previous round. The process functions
define the way in which the values of the process variables get updated.

The environment describes how processes behave in the presence of crashes
and thus it depends only on the fault model. The environment keeps track of the
round number, the crashed processes, and for each crashed process, the subset of
processes that receive a message from it in the round in which it crashes. The
processes and the environment are defined in more detail in Section 3.1.

Global states. The (global) states of the parameterized system contain information
about the states of the n processes and the environment. For example, in FloodSet
(e.g., Fig. 2c), we have a one-dimensional array s.w of size n that store the sets of
values w, a one-dimensional array s.d that stores the decision values d for every
process, a two-dimensional array s.Msg that stores the messages exchanged by
the processes, and environment variables: the round number r, the arrays cr
and fld which store information about process crashes in the current and up to
the current round, respectively, and the array rcv, where the (i, j)-th cell flags
whether process i received a message from process j in the current round. Fig. 2d
shows the global state after process 3 crashes and only send a message (i.e., {1})
to process 1. The parameterized system is formally defined in Section 3.2.

Global transitions. A transition models the following steps: (i) the environment
increments the round number, and non-deterministically decides on new crashes
and new receiver lists; (ii) every process computes a message, which is delivered
by the environment (depending on the values of the environment variables);
(iii) every correct process updates its finite domain variables, using a set of
guarded assignments (described below), and its array variables.

The language of guarded assignments that we define is powerful enough to
capture constructs that typically occur in synchronous distributed algorithms,
such as conditional constructs and iteration over process ids. For instance, one can
check if there is a process j from which a message was received in the current and
the previous round. This construct is used in early deciding/stopping consensus
algorithms. The guards that compare the round number against a parameter,
which we call termination guards, are typically used in synchronous agreement
algorithms to check whether a certain round is reached, i.e., whether it is safe for
a correct process to make a decision (e.g., line 6 of the pseudocode). The guarded

Parameterized Model Checking of Synchronous Distributed Algorithms 5

assignments are formalized in Section 3.1. We introduce guarded assignments in
order to perform the abstraction steps syntactically, more details of which can
be found in Section 4.3.

A guarded assignment defined for the FloodSet algorithm is given in Fig. 2e.
It defines the update of the finite domain variables w and d in the case when the
current round number is equal to t+ 1 (that is, when the processes decide). The
guard is a conjunction of smaller guards, the first one of which is a termination
guard. This guarded assignment models one possible outcome of the execution of
the pseudocode between lines 5 and 8. If the set of values of the process is {0},
and there are no messages sent to that process that contain the value 1, then
in the new control state, the set of values remains the same, and the decision
value is set to 0. The remaining guarded assignments that model the pseudocode
between lines 5 and 8 follow a similar pattern.

2.2 Abstraction

We build a single abstract finite state system, which is not parameterized, and
simulates the behavior of every concrete system. Our abstraction is applied in
two steps: first t and f are eliminated using pattern-based predicate abstraction,
and then n is eliminated using data and counter abstraction.

Predicate abstraction. The set of guarded assignments defined for the algorithm
can contain termination guards that feature the parameter t. For each such guard,
we introduce a Boolean predicate, which is true when the guard is satisfied.
For every newly defined predicate in this abstraction step, a constraint that
ensures that the predicate is eventually satisfied is introduced. This eliminates
the parameter t. The parameter f is eliminated by introducing a constraint which
states that the faults eventually stop appearing. The predicate abstraction step
is described in more detail in Section 4.1.

Fig. 2f shows the guarded assignment from Fig. 2e in which the termination
guard r = t + 1 is replaced by a Boolean predicate pr. We add the constraint
F pr for this predicate, saying that eventually the (t+ 1)-st round is reached.

Data and counter abstraction. Using ideas from [13,32,40], we fix a small number
of processes (two or three), whose behaviors we keep concrete, and abstract the
remaining processes depending on the current values of their variables. The choice
of the number of fixed processes depends on the properties we are interested in
verifying. For the FloodSet algorithm, we fix this number to two, as in order to
check the agreement property (Fig. 2b), we need to check whether every pair of
processes agree on a value. Using data and counter abstraction [24,46], we reduce
the size of the array variables in the global state from n to a fixed number, which
depends on the number of fixed processes, and the states the remaining processes
are in, but is independent of n. The main idea is to store whether there are no
processes (zero) or at least one process (many) that has some particular state.
Section 4.2 formally describes the zero-many data and counter abstractions.

6 B. Aminof et al.

Consider the state s′ of FloodSet in Fig. 2d. We fix processes 1 and 2, and
abstract the behavior of processes 3, 4, and 5. Process 3 has a different valuation
of the variables w and d than processes 4 and 5, that have the same valuation.
Thus, in state s′, we say that, e.g., there are many processes in the state where
w = {0} and d = un, and there are zero processes in the state where w = {0, 1}
and d = un, as there are no processes in s′ with these values for the variables.

3 Modeling and Specifications of Synchronous FTDAs

We formalize FTDAs by introducing process variables, process functions, environ-
ment variables and parameters n, t, and f . As we consider crash faults, we assume
that the parameters satisfy the resilience condition f ≤ t < n. In this section we
define a transition system I(n, t, f) = 〈S(n, t, f),S0(n, t, f),Q(n, t, f)〉, called an
FTDA instance, for each value of n, t, and f that satisfies the resilience condition.

Notation. A transition system is a tuple M = 〈S, S0, R〉 where S is a set of
states, S0 ⊆ S is a set of initial states, and R ⊆ S × S is a transition relation.
An execution is a path in M that starts in an initial state. Typically, states are
valuations of some fixed set of variables X. We write s.x for the value of variable
x ∈ X at state s. For n ∈ N we write [n] for the set {1, 2, · · · , n}.

3.1 Processes and Environment

A process is modeled using process variables and process functions.

Definition 1 (Process variables). Let V be a finite set of process variables,
partitioned into process control variables cntl(V) = {x1, · · · , x|cntl(V)|} and
process neighborhood arrays nbhd(V) = {y1, · · · , y|nbhd(V)|}. For v ∈ V , let Dv

denote the finite set of values that v can take if v ∈ cntl(V), or that each cell in v
can take if v ∈ nbhd(V). We assume that for every y ∈ nbhd(V), the domain Dy

contains a special null value ⊥ which signifies an empty cell.
A special neighborhood array is msg ∈ nbhd(V), which is used to store the

messages the process receives in the current round. For convenience, we write M
instead of Dmsg, and call it the message alphabet.

Definition 2 (Process states). A process state p is a valuation of all the
variables in V , i.e., an element of P =

∏
x∈cntl(V)Dx ×

∏
y∈nbhd(V)(Dy)n. We

write p.control, called a process control state, for the valuation restricted to
cntl(V). Let C =

∏
x∈cntl(V)Dx denote the set of all process control states, and

let C0 ⊆ C denote a set of initial control states.

We define the domain and range of three process functions, the last one being
parameterized by n and r (the round number).

Definition 3 (Process functions). Let F be the set of process functions F =
{snd msg} ∪ {hy : y ∈ nbhd(V) \ {msg}} ∪ {updaten,r : n, r ∈ N}, where

Parameterized Model Checking of Synchronous Distributed Algorithms 7

snd msg : C → M maps process control states to messages; hy : M → Dy

maps messages to values in Dy and satisfies the restriction that hy(⊥) = ⊥; and
updaten,r : P → C maps process states to control states.

We use process functions to formally break down and encode the algorithm
executed by the processes. Note that the functions snd msg and hy (for every y)
are fixed and finite, whereas updaten,r is parameterized by n and r and represents
an infinite set of finite functions. This infinite set of functions is defined using a
finite set of guarded assignments from the following language.

Each guarded assignment is of the form g → asg, where g is a guard and asg is
an assignment. An assignment asg is a partial function with domain cntl(V) such
that if asg(x) is defined then asg(x) ∈ Dx. The guards are Boolean combinations
(negation and conjunction) of basic guards, and are evaluated over process states.
The following are the basic guards:

guard notation evaluation

empty gtrue true

control gx,v where x ∈ cntl(V) and v ∈ Dx x = v

termination gB,φ(n,t) where B ∈ {>,=}, and φ(n, t) r B φ(n, t)
is a linear combination of n and t

neighborhood gΨ where Ψ is a set of triples (y,�, v) s.t. ∃j ∈ [n]
y ∈ nbhd(V),� ∈ {=, 6=}, and v ∈ Dy

∧
Ψ (y[j]� v)

We write p |= g to signify that process state p satisfies the guard g.
Given a guarded assignment g → asg and parameters n, r, we define the

induced function updaten,r as follows. Let p ∈ P be a process state. If p 6|= g
then updaten,r(p) = p.control. If p |= g then updaten,r(p) = c where c.x = p.x if
asg(x) not defined, and c.x = asg(x) otherwise.

To fully characterize the function updaten,r, we associate with it a finite set
G of guarded assignments, where the guards are pairwise mutually exclusive.

The guards capture various constructs found in the distributed computing
literature. For example, the empty guard captures simple assignments, Boolean
combinations of control and termination guards capture conditionals, and Boolean
combinations of the neighborhood guards capture iteration over process ids when
traversing the process neighborhood arrays.

Since the process functions serve as the building blocks of the transition
relation (as we formally explain later), in Section 4 where we abstract the
transition system, we will also have to abstract the process functions. Towards
this end, a key step will involve abstracting the guarded assignments. This step
is done syntactically, by defining abstract versions of the basic guards.

Definition 4 (Environment variables V e). The environment variables are:
r, with domain De

r = N, is the current round number; cr, with domain De
cr =

{⊥,>}n, flags the crashed processes in the current round, with the value >
indicating a crash; fld, with domain De

fld = {⊥,>}n, flags the processes that
crashed in some previous round; and rcv, with domain De

rcv = {⊥,>}n·n, stores
a receivers list for every process, that defines the subset of processes to which the

8 B. Aminof et al.

process sends a message in the current round, with the value > in the (i, j)-th
cell indicating that process i receives the message from process j.

3.2 FTDA Instance I(n, t, f)

We define the transition system I(n, t, f) = 〈S(n, t, f),S0(n, t, f),Q(n, t, f)〉, as
a combination of n processes and the environment, as follows.

Global states S(n, t, f). The set S(n, t, f) of global states of an FTDA instance
is the set of all possible valuations of the following FTDA variables V :

Definition 5 (FTDA variables). The set V is the union of the sets of:

– control variables cntl(V), containing one-dimensional array variables x of
size n, that range over (Dx)n, where x ∈ cntl(V) is a process control variable.

– neighborhood arrays nbhd(V), containing two-dimensional array variables Y
of size n×n, ranging over (Dy)n·n, with y ∈ nbhd(V) a process neighborhood
array. The neighborhood array corresponding to the process neighborhood
array msg is denoted Msg, and is called the message channel.

– environment variables V e.

Intuitively, the variables in cntl(V)] nbhd(V) are used to store the values of
the process variables of each of the n processes in the FTDA instance, and the
value of Msg[i, j] is equal to the value of msg[j] of process i.

To define the rest of the FTDA instance, we need the following notations. For
a global state s and i ∈ [n], we denote by:

– s.controli the tuple 〈s.x1[i], . . . , s.x|cntl(V)|[i]〉 ∈ C;

– s.rowY
i the tuple 〈s.Y[i, 1], . . . , s.Y[i, n]〉 ∈ (Dy)n (for Y ∈ nbhd(V));

– s.locali the tuple 〈s.controli, s.rowY1
i , . . . , s.row

Y|nbhd(V)|
i 〉 ∈ P .

– s.locationi the tuple 〈s.controli, s.fld[i]〉 ∈ Loc, where Loc = C × {⊥,>} is
the set of process locations.

A process location is a pair of the process control state and a failure flag fld, whose
value is stored in the environment variable fld. As we will see in Section 4, we
need the notion of process location in our abstractions, as we need to distinguish
between correct and crashed processes that are in the same control state.

Initial global states S0(n, t, f). A global state s is initial if the values it assigns to
the different variables satisfy the following restrictions: the values of the control
variables are initial, i.e., s.controli ∈ C0 for every i ∈ [n] (recall that C0 is the
set of initial control states); all the cells of all the neighborhood arrays are empty,
i.e., s.Y[i, j] = ⊥ for all i, j ∈ [n] and all Y ∈ nbhd(V); and the environment
variables are initialized as follows: (i) s.r = 0, (ii) s.cr[i] = ⊥, for all i ∈ [n],
(iii) s.fld[i] = ⊥, for all i ∈ [n], and (iv) s.rcv[i, j] = ⊥, for all i, j ∈ [n].

Parameterized Model Checking of Synchronous Distributed Algorithms 9

Transition relation Q(n, t, f). We define three transition relations:
ENV−−−→ updates

the environment variables;
MEP−−−→ captures the message exchange phase;

PROC−−−→
updates the control variables and neighborhood arrays. A transition of the FTDA

instance is an element of the composition
ENV−−−→ MEP−−−→ PROC−−−→, i.e., (s, s′′′) ∈ Q(n, t, f)

iff there exist states s′, s′′ ∈ S(n, t, f) such that s
ENV−−−→ s′

MEP−−−→ s′′
PROC−−−→ s′′′.

Updating environment variables. We define s
ENV−−−→ s′ as follows. First, the round

number is incremented, i.e. s′.r = s.r + 1.

Second, the environment chooses which processes will crash in the current
round, while keeping the number of crashed processes below the parameter f . That
is, s′.cr is updated to a value that satisfies the following conditions: (i) for every
i ∈ [n], we have s′.cr[i] = ⊥ if s.fld[i] = >, and (ii) |{i ∈ [n] | s.fld[i]∨s′.cr[i]}| ≤ f .
Intuitively, condition (ii) reflects the non-deterministic assignment of values to
cr, by allowing at most f processes to be flagged as crashed in every execution.

Finally, the receiver lists for the next round are updated by flagging that no
message is received from processes that crashed in some previous round, receiving
all messages from the correct processes, and non-deterministically choosing which
processes receive messages from the processes that crash in the current round.
That is, for every i, j ∈ [n], the following holds for s′.rcv: (i) if s.fld[j] = > then
s′.rcv[i, j] = ⊥, and (ii) if s.fld[j] = ⊥ and s′.cr[j] = ⊥, then s′.rcv[i, j] = >.

Message exchange phase. In this transition, the cell (i, j) of the message channel
is assigned the message sent from process j to process i, if i is in the receiver list

of j for this round. We define s
MEP−−−→ s′ if (i) s′.Msg[i, j] = snd msg(s.controlj)

if rcv[i, j] = >, and (ii) s′.Msg[i, j] = ⊥ if rcv[i, j] 6= >.

Updating process variables. In this transition, the failure flags are updated, and
every correct process first applies the process function updaten,r to update its
control variables, and then updates its neighborhood arrays (except for msg)
using the messages it received.

We define s
PROC−−−→ s′ as follows. First, the failure flags are updated, i.e.,

for all i ∈ [n], s′.fld[i] = s.fld[i] ∨ s.cr[i]. Second, the control variables are
updated as follows: (i) for all i ∈ [n], s′.controli = updaten,s.r(s.locali) if
s′.fld[i] = ⊥; and (ii) s′.controli = s.controli otherwise. Third, the neigh-
borhood arrays are updated as follows: for every i ∈ [n] and every Y ∈
nbhd(V) \ {Msg}: (i) s′.Y[i, j] = hy(s.Msg[i, j]), for all j ∈ [n], if s′.fld[i] = ⊥,
and (ii) s′.Y[i, j] = s.Y[i, j], for all j ∈ [n], otherwise. Finally, the the message
channel is flushed, i.e., s′.Msg[i, j] = ⊥, for every i, j ∈ [n].

Definition 6 (FTDA instance). Given process variables V , process func-
tions F , environment variables V e, and parameter values n, t, f ∈ N, such that
f ≤ t < n, we define the FTDA instance I(n, t, f) to be the transition system
〈S(n, t, f),S0(n, t, f),Q(n, t, f)〉.

10 B. Aminof et al.

3.3 Specification Language

We use a fragment of indexed linear temporal logic [7,19] to encode the specifica-
tions of distributed algorithms. We define its semantics w.r.t. n processes and a
set of Boolean predicates Pred. The state of each process is given by the valuations
of a set of variables Vars, where each variable z ∈ Vars has an associated domain
Dz. A global state ς is given by valuations ς.z[i] for each variable z and process i
and a truth-value assignment ς.q ∈ {>,⊥} for each q ∈ Pred. We consider atomic
propositions of the form ([z = v], i), where z ∈ Vars, v ∈ Dz and i is an index,
and predicates q ∈ Pred. We use the following fragment of indexed-LTL:

Definition 7 (The fragment Fl). For l ∈ N, we write Fl for the set of indexed-
LTL formulas of the form ∀i1∀i2 · · · ∀il.ψ, where (1) ψ only contains ∃-quantifiers,
and (2) an ∃-quantifier only appears in subformulas of the form ∃i.([z = v], i).

The semantics of an atomic proposition in a state ς is defined by ς |= ([z = v], i)
iff ς.z[i] = v. We define the semantics of a predicate q ∈ Pred as follows: ς |= q
iff ς.q = >. The semantics of the logical connectives, quantifiers and temporal
operators is standard. We will also write z[i] = v instead of ([z = v], i).

The fragments Fl, for l ∈ N, are rich enough to capture specifications of
fault-tolerant agreement. To express specifications of FTDA instances, we define
Vars = cntl(V) ∪ {cr, fld}, where cr, fld are the flags stored in the environment
variables cr,fld. Below, we formalize the specifications stated in Fig. 2b, which
are evaluated over global states s ∈ S(n, t, f):

– Validity: If there is no process with an initial value different from 0, then 0
is the only decision value (there is a symmetric specification for w = {1}):

∀i. (∃j.w[j] 6= {0}) ∨ G((fld[i] = ⊥ ∧ d[i] 6= un)→ d[i] = 0)

– Agreement: No two correct processes decide differently:

∀i∀j. G((fld[i] = ⊥ ∧ fld[j] = ⊥ ∧ d[i] 6= un ∧ d[j] 6= un)→
((d[i] = 0 ∧ d[j] = 0) ∨ (d[i] = 1 ∧ d[j] = 1)))

– Termination: Every correct process eventually decides:

∀i. F(fld[i] = ⊥ → d[i] 6= un)

Note that the above stated formulas do not use Boolean propositions, i.e.,
Pred = ∅ (also the global states of FDTA instances do not contain Boolean
variables). In Section 4.1, we will state formulas that use Boolean propositions
and define abstract transition systems that have Boolean variables.

3.4 Parameterized Model Checking

The parameterized model checking question is to decide, given process variables V ,
process functions F , environment variables V e, and a specification ϕ ∈ Fl,
whether ϕ is satisfied in every FTDA instance I(n, t, f) such that f ≤ t < n.

Parameterized Model Checking of Synchronous Distributed Algorithms 11

3.5 Symmetry

We observe that the FTDA instance I(n, t, f) is a symmetric transition sys-
tem [20]. Due to the symmetry, we can fix a small number m of processes that
represent any m processes among the n processes of the FTDA instance. To
determine m, we take the maximal number of ∀-quantifiers that appear in the
specifications expressed in our fragment of indexed-LTL. For example, the va-
lidity and termination consensus specifications (cf. Section 3.3) have a single
∀-quantifier, while agreement has two. Therefore, for consensus we set m = 2.

Once we fix m, for every indexed-LTL formula ϕ, where the indices range
over [n], we define a formula ϕm, where the indices bound by ∀-quantifiers range
over [m], and the indices bound by ∃-quantifiers range over [n]. We denote by
Fm

l the set of indexed-LTL formulas {ϕm | ϕ ∈ Fl and l ≤ m}.

Proposition 1 (Symmetry). The indexed-LTL specification ϕ is satisfied in
an FTDA instance I(n, t, f) if ϕm is satisfied in I(n, t, f).

4 Abstracting Synchronous FTDAs

We define the pattern-based predicate abstraction in Section 4.1, and the zero-
many data and counter abstraction in Section 4.2. As these definitions are not
effective, in Section 4.3 we give an effective method for processes defined by the
process functions in Section 3.1. The challenge lies in the fact that we need to
abstract a family of systems parameterized by n, t, and f .

4.1 Predicate Abstraction: Eliminating t and f

Recall that the parameter f refers to the actual number of processes that
crash during a run of an instance I(n, t, f), and the parameter t appears in
the termination guards. To build a system J (n) parameterized only in n, we
introduce predicates that abstract basic termination guards, and verification
conditions that have to be satisfied in every execution of J (n).

Predicates. We introduce k Boolean predicates pr1, . . . , prk, where k is the number
of basic termination guards of the form r B φ(n, t), appearing in the set G of
guarded assignments that define the function updaten,r. Each predicate prj , for
j ∈ [k], is true whenever the basic termination guard it replaces is satisfied. By
replacing the basic termination guards with predicates in J (n), we eliminate the
variable variable r from environment, as in I(n, t, f), the variable r occurs only
in the basic termination guards. Thus, the set V of variables of J (n) contains:

– control variables x ∈ cntl(V), ranging over (Dx)n;
– neighborhood arrays Y ∈ nbhd(V), ranging over (Dy)n·n;
– environment variables cr,fld, rcv.

Additionally, for J (n), we introduce a set Pred = {pr1, . . . , prk} of Boolean
predicates. The set Σ(n) of states of J (n) is the set of all valuations of V. The
following abstraction mapping α maps states of I(n, t, f) to states from J (n).

12 B. Aminof et al.

Definition 8 (Abstraction mapping α). We define the abstraction mapping
α : S(n, t, f) → Σ(n) as: σ.x = s.x, for all x ∈ cntl(V), σ.Y = s.Y, for all
Y ∈ nbhd(V), σ.cr = s.cr, σ.fld = s.fld, σ.rcv = s.rcv and for every j ∈ [k],
σ.prj = >, if the basic termination guard r Bj φj(n, t) is satisfied in the state s,
and σ.prj = ⊥, otherwise.

Pattern-based verification conditions. We define a set of indexed-LTL formulas C
of verification conditions that we impose on J (n). The formulas in C introduce
restrictions on how the predicates in pr and the crash flags in cr are assigned
values in J (n) in a way that reflect behaviors of the concrete executions. Note
that these verification conditions are imposed on the environment, and can
therefore be reused across algorithms that operate under the same environment.

Let clean denote the formula ¬(∃i cr[i] = >). The formula clean is satisfied
in a state σ ∈ Σ(n), if there is no process that has been flagged as newly crashed
in σ. We list the conditions that we identified in multiple benchmarks, together
with an explanation of why they hold.

FG clean ensures that from some time on, there are no more crashes. It holds
because f is finite in each instance.

F (prj) and FG (prj) for j ∈ [k] where Bj is = and Bj is >, respectively. For
instance, the termination guard of FloodSet in Fig. 2 is r = t+1, and evaluates
to true once (in round t+ 1), while a guard r > t becomes and stays true.

(
∧

j ¬prj)Uclean ensures that the basic termination guards become true only
after a clean round has occurred. This is typical for consensus algorithms
that use a guard r = t+ 1 and are designed for f ≤ t faults. In this case, in
at least one of the t+ 1 rounds no process crashes, i.e., the round is clean.

While currently we perform this abstraction step manually, in the future we
aim at developing an automatic procedure for such verification conditions.

Given I(n, t, f) and Σ(n), let J (n) be the overapproximation [14] of I(n, t, f)
induced by α. Let C be a set of constraints that are satisfied in all instances
I(n, t, f), for f ≤ t < n (e.g., for FloodSet , C = {FG clean,F pr, prUclean}). Let
χC be the conjunction of all formulas in C. As there are no ∀-quantifiers in χC ,
the formula χC → ϕm is also in Fm

l .

Proposition 2 (Soundness of α). For every n ∈ N, if J (n) |= χC → ϕm then
I(n, t, f) |= ϕm, for all t, f ∈ N s.t. f ≤ t < n.

4.2 Zero-many Data and Counter Abstraction

The system J (n) obtained after applying predicate abstraction is still parame-
terized in n, i.e., the size of its array variables depends on n. To build a finite
system independent of n, we fix the size of the array variables. We proceed by
fixing m processes and abstracting the remaining n−m processes based on their
process location (defined in Section 3.2). That is, for all process locations ` ∈ Loc,
we store whether no process from the n−m processes is in location ` (zero), or
whether at least one process from the n−m processes is in location ` (many).

Parameterized Model Checking of Synchronous Distributed Algorithms 13

n

.

.

.

1

1 . . . n

x Y cr fld pr

(a) σ ∈ Σ(n)

n

.

.

.

1

1 . . . |U |

x̃ Ỹ c̃r fl̃d p̃r

(b) σ̃ ∈ Σ̃(n)

m
1

|Loc|

.

.

.

1

1 . . . |U |

x̂

â
c
t
iv

e Ŷ ĉr

fl̂d

p̂r

(c) σ̂ ∈ Σ̂

Fig. 3: Two-step zero-many abstraction (for |cntl(V)| = |nbhd(V)| = 1, and
omitting rcv for space reasons) with m fixed processes. (a) illustrates a state

σ of J (n); (b) shows the result of applying α̃n, where U = [m] ∪ Loc. Ỹ[i, v]
stores the set of values in row i of Y for all columns j witnessed by v; (c) shows

the result of applying α̂n, i.e., x̂ and fl̂d store the control variable x and the

failure flag of the m processes, âctive[u] stores if there are zero or many processes

witnessed by u ∈ Loc, Ŷ[u, v] stores the union of values Ỹ[i, v] for processes i
witnessed by u, and ĉr[u] stores the union of c̃r[i] for processes i witnessed by u.

We apply the zero-many abstractions in two steps (Fig. 3). After the first
step, the overapproximation still depends on n, but after the second step the
overapproximation is finite and independent of n.

Step one: Zero-many data abstraction. In the first step, we fix the size of the
two-dimensional arrays from the set nbhd(V)∪{rcv} so that the number of their
columns depends on Loc and m, and not on n. As a result, we obtain an abstract
system J̃ (n), that is still parameterized in n.

To build J̃ (n), we need the following notation. First, we define a set U =
[m] ∪ Loc of indices, which will be used as indices of the abstract array variables.
We say that an index u ∈ U witnesses a process, if it corresponds to one of the
fixed m processes, i.e., if u ∈ [m], or if u ∈ Loc and there exists a process whose
current location is u. In this step, we use the elements of U as indices for the
columns of the two-dimensional arrays: each cell in a column indexed by u ∈ U
is a union of the cells in the column indexed by the processes witnessed by u.

Next, we define a mapping ids : Σ(n)×U → 2[n], that maps a state σ ∈ Σ(n)
and an index u ∈ U to the set of processes witnessed by u, i.e., ids(σ, u) = {u},
if u ∈ [m], and ids(σ, u) = {i ∈ [n] \ [m] | σ.locationi = u}, if u ∈ Loc.

Finally, we define the set of variables Ṽ of J̃ (n), that contains (i) the

control variables x̃ ∈ cntl(Ṽ), ranging over (Dx)n, (ii) the neighborhood ar-

rays Ỹ ∈ nbhd(Ṽ), ranging over (2Dy)n·|U |, and (iii) the environment variables

c̃r, fl̃d, r̃cv, ranging over {⊥,>}n,{⊥,>}n, and (2{⊥,>})n·|U | respectively. The

set Σ̃(n) of states of J̃ (n) is the set of all valuations of Ṽ .

Using this notation, we introduce the abstraction mapping α̃n : Σ(n)→ Σ̃(n),

that maps states of J (n) (Fig. 3a) to states from Σ̃(n) (Fig. 3b).

Definition 9 (Abstraction Mapping α̃n). We define the abstraction mapping

α̃n : Σ(n)→ Σ̃(n) as: σ̃.x̃ = σ.x, for all x̃ ∈ cntl(Ṽ); σ̃.c̃r = σ.cr; σ̃.fl̃d = σ.fld;

14 B. Aminof et al.

σ̃.p̃rj = σ.prj, for j ∈ [k]; and for all Ỹ ∈ nbhd(Ṽ) ∪ {r̃cv}, i ∈ [n], v ∈ U ,

σ̃.Ỹ[i, v] =
⋃
{σ.Y[i, j] | j ∈ ids(σ, v)}.

Given the system J (n) and the set Σ̃(n) of states, we define J̃ (n) as the
overapproximation of J (n) induced by α̃n.

Proposition 3 (Soundness of α̃n). For every n ∈ N, and a formula ψm ∈ Fm
l ,

we have that if J̃ (n) |= ψm, then J (n) |= ψm.

Step two: Zero-many counter abstraction In this step, we store the values of
the control variables and the failure flags for the m processes in the variables

x̂ ∈ cntl(V̂) and fl̂d respectively, and for the remaining n−m processes, we keep
information whether there exists some process from [n] \ [m] in some location

` ∈ Loc in a newly introduced variable âctive. Finally, we use the elements
from the set U to index the rows of the two-dimensional arrays from the set
nbhd(V̂)∪ {r̂cv} and the one-dimensional array ĉr. Note that the failure flags of
the n−m processes are encoded in the process locations. This results in a finite
system Ĵ , which is not parameterized.

To build Ĵ , we first define the mapping ĩds : Σ̃(n)×U → 2[n] analogously to

the mapping ids above: ĩds(σ̃, u) = {u} if u ∈ [m], and ĩds(σ̃, u) = {i ∈ [n]\ [m] |
σ̃.locationi = u} otherwise. We define the set V̂ of variables of Ĵ , that contains:

– control variables x̂ ∈ cntl(V̂) of the m fixed processes, ranging over (Dx)m

– the array âctive, ranging over {0,many}|Loc|, that stores for a location

u ∈ Loc, whether there are no processes in location u (âctive[u] = 0), or if

there is at least one process in location u (âctive[u] = many);

– neighborhood arrays Ŷ ∈ nbhd(V̂), ranging over (2Dy)|U |·|U |, and

– environment variables ĉr, fl̂d, r̂cv, ranging over (2{⊥,>})|U |, {⊥,>}m, and
(2{⊥,>})|U |·|U | respectively.

Using the notation defined above, we define the abstraction mapping α̂n that
maps an abstract state σ̃ ∈ Σ̃(n) (Fig. 3b) to an abstract state σ̂ ∈ Σ̂ (Fig. 3c).

Definition 10 (Abstraction mapping α̂n). We define the abstraction map-

ping α̂n : Σ̃(n) → Σ̂ as: for u ∈ [m], σ̂.x̂[u] = σ̃.x̃[u], for all x̂ ∈ cntl(V̂),

and σ̂.fl̂d[u] = σ̃.fl̃d[u]; for u ∈ Loc, σ̂.âctive[u] = 0 if ĩds(σ̃, u) = ∅, and

σ̂.âctive[u] = many otherwise; for u ∈ U , σ̂.ĉr[u] =
⋃
{σ̃.c̃r[i] | i ∈ ĩds(σ̃, u)};

for j ∈ [k], σ̂.p̂rj = σ̃.p̃rj ; and for all Ŷ ∈ nbhd(V̂) ∪ {r̂cv}, u, v ∈ U , σ̂.Ŷ[u, v]

is
⋃
{σ̃.Ỹ[i, v] | i ∈ ĩds(σ̃, u)}.

Given J̃ (n) and Σ̂, we define the abstract system Ĵ as the overapproximation
induced by the mapping α̃n.

We now define how to evaluate formulas ψm ∈ Fm
l in states σ̂ ∈ Σ̂. As we

have removed the parameter n, when evaluating ψm in σ̂, the indices bound by

Parameterized Model Checking of Synchronous Distributed Algorithms 15

the ∃-quantifier range over the set U of abstract indices, while the indices bound
by the ∀-quantifier continue to range over the set [m].

Recall that to express specifications of agreement algorithms we defined
Vars = cntl(V) ∪ {cr, fld}, and atomic propositions in a formula of the form
([z = v], i) for z ∈ Vars, v ∈ Dz and index i. We now define the meaning of the

indexed atomic propositions in σ̂ ∈ Σ̂, by distinguishing the following cases:

z 6= cr. We define σ̂ |= ([z = v], i) if (a) i ∈ [m] and σ̂.ẑ[i] = v; or (b) i ∈ Loc
and σ̂.âctive[i] = many ∧ i.z = v;

z = cr. We define σ̂ |= ([cr = v], i) if v ∈ σ̂.ĉr[i].

Proposition 4 (Soundness of α̂n). For every n ∈ N, and a formula ψm ∈ Fm
l

we have that if Ĵ |= ψm then J̃ (n) |= ψm.

The overall soundness of our approach is a consequence of Propositions 1 – 4.

Theorem 1 (Soundness). Let I(n, t, f) be an FTDA instance, and Ĵ the
abstract system defined as the overapproximation induced by the abstraction
mapping α̂n ◦ α̃n ◦ α. If Ĵ |= χC → ϕm, then I(n, t, f) |= ϕ.

4.3 Abstract Transition Relations

In the previous section we have defined Ĵ = 〈Σ̂, Σ̂0, Θ̂〉 as the overapproximation
of the FTDA instances in {I(n, t, f) | f ≤ t < n} induced by the abstraction
mapping δ = α̂n ◦ α̃n ◦ α, without giving a constructive definition of the abstract
transition relation. In this section we show how to efficiently compute abstract

versions of the transition relations from Section 3.2: The abstract transitions
ÊNV−−−→

and
M̂EP−−−→ are straight-forward abstract encodings of updating the environment

variables (e.g., crashing processes), and the message exchange phase, respectively.

Encoding the abstract process state update
P̂ROC−−−→ is more involved: due to the

counter abstraction, from an index u ∈ U we have to decode the location that
corresponds to that index, and compute the possible successor locations which

we store in a relation Âctive ⊆ Loc× Loc. We use this relation for updating the

array âctive and the neighborhood arrays Ŷ ∈ nbhd(V̂).
We adapt several notions that we used throughout this paper. First, given an

abstract state σ̂ ∈ Σ̂ and an index u ∈ U , we say that u witnesses a process in

σ̂ if u ∈ [m] or if u ∈ Loc and σ̂.âctive[u] = many. Next, we adapt the notions

control, row and local. For an abstract state σ̂ ∈ Σ̂ and u ∈ U , we denote by:

– σ̂.controlu the tuple 〈σ̂.x̂1[u], . . . , σ̂.x̂|cntl(V̂)|[u]〉 if u ∈ [m], and u.control if

u ∈ Loc and σ̂.âctive[u] = many;

– σ̂.rowŶ
u the tuple 〈σ̂.Ŷ[u, v1], . . . , σ̂.Ŷ[u, v|U |]〉 ∈ (2Dy)|U |;

– σ̂.localu the tuple 〈σ̂.controlu, σ̂.rowŶ1
u , . . . , σ̂.row

Ŷ|nbhd(V̂)|
u 〉 ∈ P̂ , where P̂ =

C ×
∏

Ŷ∈nbhd(V̂)(2
Dy)|U | is the set of abstract process states;

16 B. Aminof et al.

Abstract environment update. The transition σ̂
ÊNV−−−→ σ̂′ is defined as follows.

First, the predicates from the set Pred are assigned values non-deterministically.
Second, to define the new crashes, for u ∈ U , the value of σ̂′.ĉr[u] is set to

{⊥} if u witnesses a failed process, that is, if u ∈ [m] and σ̂.fl̂d[u] = >, or if
u ∈ Loc and u.fld = >. Otherwise, if u witnesses a non-failed process, σ̂′.ĉr[u] is
assigned either {⊥} or {>} if u ∈ [m], and one of the values {⊥}, {>} or {⊥,>}
if u ∈ Loc, non-deterministically. If u does not witness a process, σ̂′.ĉr[u] = ∅.

To build the new receiver lists, for every u, v ∈ V that witness a process, the
value of σ̂′.r̂cv[u, v] is set to {⊥}, if v witnesses a failed process. If v witnesses
a crashed process, that is, if > ∈ σ̂′.ĉr[v], then σ̂′.r̂cv[u, v] is assigned one of
the values {⊥}, {>} or {⊥,>} non-deterministically. Otherwise, if v witnesses a
correct process, σ̂′.r̂cv[u, v] = {>}. The cells of σ̂′.r̂cv indexed by indices from
U that do not witness a process are set to ∅.

Abstract message exchange phase. A transition σ̂
M̂EP−−−→ σ̂′ is taken if (i) σ̂′.M̂sg[u, v]

contains snd msg(σ̂.controlv), for u, v ∈ U such that > ∈ σ̂.r̂cv[u, v], (ii) it con-

tains ⊥, if ⊥ ∈ σ̂.r̂cv[u, v], and (iii) σ̂′.M̂sg[u, v] = ∅ in the remaining cases.

Abstract process variable update. To define how the control states are updated
in the abstract system Ĵ , we define abstract guarded assignments. The abstract
guarded assignments are of the form ĝ → âsg, where ĝ is a Boolean combination
of abstract basic guards, and âsg is a partial function, defined in the same way as
in the concrete case. We have the following abstract basic guards :

guard notation evaluation

empty gtrue true

control gx,v where x ∈ cntl(V) and v ∈ Dx controlu.x = v

termination gp̂r where p̂r abstracts r B φ(n, t) p̂r

neighborhood gΞ where Ξ is a set of triples (Ŷ,�, vy) s.t. ∃v ∈ U
Ŷ ∈ nbhd(V),� ∈ {∈, /∈}, and vy ∈ Dy

∧
Ξ(vy � Ŷ[u, v])

The abstract guards are evaluated over localu, for u ∈ U . We write localu |= ĝ
if the abstract guard ĝ is satisfied in the abstract process state localu.

The control state update of the fixed m processes is analogous to the concrete
case: a set Ĝm of abstract guarded assignments with pairwise mutually exclusive
guards defines a function updatem : P̂ → C.

To update the control states of processes witnessed by u ∈ Loc, we define a
set ĜLoc of guarded assignments, where the guards are not pairwise mutually
exclusive. The set ĜLoc defines a function updateLoc, which returns a set of
control states. Intuitively, processes that are witnessed by the same location
may update to different control states in the concrete system, depending on the
neighborhood arrays and the environment. This is why, in the set ĜLoc, there can
be multiple guarded assignments with the same guard, but different assignments.

Definition 11 (updateLoc). The function updateLoc : P̂ → 2C maps abstract
local states to subsets of the set C of control states. For u ∈ Loc, we define
updateLoc(localu) = {c | ∃ĝ → âsg ∈ ĜLoc s.t. localu |= ĝ and âsg results in c}.

Parameterized Model Checking of Synchronous Distributed Algorithms 17

To update the array âctive, we define the following relation.

Definition 12 (Âctive). A pair (u, u′) of locations from Loc are in relation

Âctive ⊆ Loc × Loc if σ̂.âctive[u] = many and either: (i) u.failed = > and
u = u′, or (ii) u.failed = ⊥ and > ∈ σ̂.ĉr[u] and u′ = 〈σ̂.controlu,>〉, or
(iii) u.failed = ⊥ and ⊥ ∈ σ̂.ĉr[u] and u′ ∈ updateLoc(σ̂.localu).

The relation Âctive is used to update the neighborhood arrays Ŷ ∈ nbhd(V̂)\
{M̂sg}, as the update of the locations implies update in the indices of the

neighborhood arrays. When updating Ŷ, different cases based on whether u, v
are in [m] of in Loc are distinguished. For example, if u ∈ [m] and v ∈ Loc then

σ̂′.Ŷ[u, v] is the union of the sets {hy(d) | d ∈ σ̂.M̂sg[u, vo]} where hy is the
process function for updating Y, vo ∈ Loc is the old location that updated to

the new location v, and (vo, v) ∈ Âctive.

Finally, for two states σ̂, σ̂′ ∈ Σ̂, it holds that σ̂
P̂ROC−−−→ σ̂′ if:

1. for u ∈ [m], we have σ̂′.fl̂d[u] = σ̂.fl̂d[u] ∨ (σ̂.ĉr[u] = {>});
2. for u ∈ [m], we have σ̂′.controlu = updatem(σ̂.localu) if σ̂′.fl̂d[u] = ⊥, and
σ̂′.controlu = σ̂.controlu otherwise;

3. for u ∈ Loc, we have σ̂′.âctive[u] = 0 if ∀v ∈ Loc (v, u) /∈ Âctive, and

σ̂′.âctive[u] = many otherwise;

4. for u, v ∈ U and Ŷ ∈ nbhd(V̂) \ {M̂sg}, we have:

– σ̂′.Ŷ[u, v] = {hy(d) | d ∈ M̂sg[u, v]}, if u, v ∈ [m];

– σ̂′.Ŷ[u, v] =
⋃

(vo,v)∈Âctive
{hy(d) | d ∈ σ̂.M̂sg[u, vo]}, if u ∈ [m], v ∈ Loc;

– σ̂′.Ŷ[u, v] =
⋃

(uo,u)∈Âctive
{hy(d) | d ∈ σ̂.M̂sg[uo, v]}, if u ∈ Loc, v ∈ [m];

– σ̂′.Ŷ[u, v] =
⋃

(uo,u)∈Âctive

(vo,v)∈Âctive

{hy(d) | d ∈ σ̂.M̂sg[uo, vo]}, if u, v ∈ Loc.

5. for u, v ∈ U , we have σ̂′.M̂sg[u, v] = {⊥}, if u, v witness a process in σ̂′, and

σ̂′.M̂sg = ∅ otherwise.

Theorem 2 (Simulation). Let Ĵ be the overapproximation of I(n, t, f) induced
by the abstraction mapping δ = α̂n ◦ α̃n ◦ α. Suppose (s, s′′′) ∈ Q(n, t, f), such

that there exist s′, s′′ ∈ S(n, t, f) with s
ENV−−−→ s′

MEP−−−→ s′′
PROC−−−→ s′′′. Then it holds

that δ(s)
ÊNV−−−→ δ(s′)

M̂EP−−−→ δ(s′′)
P̂ROC−−−→ δ(s′′′).

5 Benchmarks and Experiments

We encoded several synchronous FTDAs from the literature in TLA+ [33] and
used the model checker TLC [50]. The experiments were run on a machine with
two 12-core Intel(R) Xeon(R) E5-2650 v4 CPUs and 256 GB RAM.

Our benchmarks contain algorithms that solve different variants of the consen-
sus problem, the k-set agreement problem, and the atomic commitment problem;

18 B. Aminof et al.

Table 1: Experimental results for parameterized model checking

algorithm problem reference m
I(n, t, f) with t ≤ n−m

m′ I(n, t, f) with n−m < t < n
states time states time

FloodSet consensus [37, p.103] 2 210 583 2min 28s 1 17 911 11s

FC fair consensus [47, p. 17] 2 160 523 3min 1 26 967 18s

EDAC early deciding consensus [11] 2 416 120 4h 35min 1 35 027 2min 28s

ESC early stopping consensus [47, p. 38] 2 163 772 44min 30s 1 12 784 1min 19s

NBAC non-blocking atomic commit [47, p. 82] 2 69 845 40s 1 4 981 5s

FloodMin k-set agreement, for k = 2 [37, p.163] 3 10 116 820 10d 16h
2 512 861 1h 39min
1 43 601 2min 2s

Table 2: Experimental results for the concrete instances of our benchmarks

algorithm
fixed size instance obtained by assigning values to n, t, and f

I(3, 2, 1) I(4, 3, 2) I(4, 3, 3) I(5, 4, 2) I(5, 4, 3)
states time states time states time states time states time

FloodSet 6 937 4s 99 783 10s 1 220 227 1min 18s 1 024 866 1min 7s 34 724 276 1h 18min

FC 9 118 4s 138 160 11s 1 685 892 1min 45s 1 591 687 1min 39s 53 816 397 1h 43min

EDAC 26 962 5s 242 605 16s 5 703 025 5min 44s 1 940 929 2min 29s 124 183 639 4h 1min

ESC 10 543 4s 170 088 12s 2 954 288 2min 16s 1 577 742 1min 34s 71 913 792 1h 57min

NBAC 256 1s 16 120 7s 16 120 7s 286 670 46s 3 335 753 10min 33s

FloodMin 13 215 6s 287 001 1min 1s 3 311 397 14min 10s 5 297 856 23min 41s out of memory in 3d 11h

see the references given in Table 1 for details. As we focus on synchronous algo-
rithms, we have a different set of benchmarks compared to the work in [17,38] that
focuses on the partially synchronous algorithms from [12]. The only exception is
that [17] considers FloodMin in the specific consensus setting (k = 1) which boils
down to our FC consensus benchmark. They check 5 user-provided verification
conditions, such as invariants or ranking functions, in less than a second. In our
model-checking approach, the user does not have to provide an invariant, thus
we have a higher degree of automation.

Table 1 summarizes the experiments for parameterized model checking. In
our experiments we assume that the fixed m processes are correct, which implies
f ≤ t ≤ n − m. To capture the corner cases n − m < t < n required by the
resilience condition f ≤ t < n, we also do experiments with m′ < m concrete
processes. In Table 1 we distinguish the cases when at most m′ < m are correct
(right), from the one where this is not the case (left). We see that most of the
verification time is spent on the case of at least m correct processes.

For comparison, Table 2 summarizes the experiments for small instances of
up to n = 5 processes, where t is set to n− 1. We observe that parameterized
verification outperforms model checking of fixed size systems already in the case
of n = 5, t = 4, and f = 3. In the case of n = 5, t = 4, and f = 4, we were
only able to verify the simplest benchmark, NBAC. For the remaining ones we
reached the limitations of the model checker, as TLC was not able to enumerate
all possible successor states due to the immense branching.

By far, FloodMin is the most challenging benchmark: its specifications are
more complicated, and we therefore have to fix 3 processes (in contrast to 2
in the other benchmarks). In the concrete instance I(5, 4, 3), i.e., where n = 5,

Parameterized Model Checking of Synchronous Distributed Algorithms 19

t = 4, and f = 3, the model checker terminated after three days with an out of
memory error.

6 Discussion

While synchronous distributed algorithms are considered “simpler” to design
than asynchronous ones, encoding and model checking synchronous algorithms is
a challenge: All processes take steps simultaneously, and each process can transfer
into several successor states depending on the received messages, which are
subject to non-determinism by the environment. We noticed in our experiments
that synchronously selecting a successor state for each process combined with
the non-determinism results in a huge branching factor. In conjunction with the
additional non-determinism introduced through abstraction, this poses serious
challenges to the explicit state model checker TLC. In future work, we will
consider other model checking back-ends, and different encodings. Our predicate
abstraction currently requires some domain knowledge to capture the interplay of
the number of faults and round numbers. As future work we consider automatic
generation of this abstraction by means of static analysis on the environment. All
other abstractions can be done automatically. Finally, more complex resilience
conditions that appear in the literature, such as n > 2t, would require a finer
abstraction than the one we present here, a topic that we reserve for future work.

Parameterized model checking is undecidable in general [3, 4, 6, 19,49]. Still,
there are techniques for specific classes of systems. A popular technique is
abstraction. Different domain-specific abstractions have been used for mutual
exclusion [15, 16, 46], cache coherence [13, 32, 40, 43], dynamic scheduling [39],
and recently to asynchronous FTDAs [2,27,28,29]. Most of these parameterized
model checking techniques consider asynchronous systems. The work most closely
related to ours are the cutoff results of [38], as (i) it targets at completely
automated verification, and (ii) while we have simulation to abstract systems, the
authors of [38] prove simulation to small systems. To achieve this, the authors
had to restrict the fragment to which the cutoff theorem applies: First, the cutoff
only applies to consensus algorithms, that is, to three specific LTL specifications.
As noted in [38], generalizing this to other specifications, e.g., k-set agreement,
non-blocking atomic commit, or even a more complete logic fragment would
require more theoretical work. Our case studies discussed in Section 5 include
other algorithms than just consensus. Second, the guarded command language
introduced in [38] can express only threshold guards containing predicates on the
number of messages received by a process in the current round. However, there
are several round-based distributed algorithms, in particular synchronous ones,
that contain other guards; for instance, termination guards that check whether
a given round number is reached, or guards that check whether messages from
the same set of processes are received in two consecutive rounds. Our guarded
commands contain such guards. Still, we currently cannot express all distributed
algorithms, and extending our verification methods to other syntactic constructs
is future work.

20 B. Aminof et al.

References

[1] C. Aiswarya, Benedikt Bollig, and Paul Gastin. An automata-theoretic approach
to the verification of distributed algorithms. In 26th International Conference on
Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015, pages
340–353, 2015.

[2] Francesco Alberti, Silvio Ghilardi, Andrea Orsini, and Elena Pagani. Counter
Abstractions in Model Checking of Distributed Broadcast Algorithms: Some Case
Studies. In Proceedings of the 31st Italian Conference on Computational Logic,
Milano, Italy, June 20-22, 2016., pages 102–117, 2016.

[3] Benjamin Aminof, Tomer Kotek, Sasha Rubin, Francesco Spegni, and Helmut
Veith. Parameterized Model Checking of Rendezvous Systems. In CONCUR 2014
- Concurrency Theory - 25th International Conference, CONCUR 2014, Rome,
Italy, September 2-5, 2014. Proceedings, pages 109–124, 2014.

[4] Krzysztof R. Apt and Dexter Kozen. Limits for Automatic Verification of Finite-
State Concurrent Systems. Inf. Process. Lett., 22(6):307–309, 1986.

[5] Hagit Attiya and Jennifer Welch. Distributed Computing. Wiley, 2nd edition, 2004.

[6] Roderick Bloem, Swen Jacobs, Ayrat Khalimov, Igor Konnov, Sasha Rubin, Helmut
Veith, and Josef Widder. Decidability of Parameterized Verification. Synthesis
Lectures on Distributed Computing Theory. Morgan & Claypool Publishers, 2015.

[7] Michael C. Browne, Edmund M. Clarke, and Orna Grumberg. Reasoning about
Networks with Many Identical Finite State Processes. Inf. Comput., 81(1):13–31,
1989.

[8] Michael Burrows. The chubby lock service for loosely-coupled distributed systems.
In 7th Symposium on Operating Systems Design and Implementation (OSDI ’06),
November 6-8, Seattle, WA, USA, pages 335–350, 2006.

[9] Armando Castañeda, Yoram Moses, Michel Raynal, and Matthieu Roy. Early
Decision and Stopping in Synchronous Consensus: A Predicate-Based Guided Tour.
In Networked Systems - 5th International Conference, NETYS 2017, Marrakech,
Morocco, May 17-19, 2017, Proceedings, pages 206–221, 2017.

[10] Mouna Chaouch-Saad, Bernadette Charron-Bost, and Stephan Merz. A Reduc-
tion Theorem for the Verification of Round-Based Distributed Algorithms. In
Reachability Problems, 3rd International Workshop, RP 2009, Palaiseau, France,
September 23-25, 2009. Proceedings, pages 93–106, 2009.

[11] Bernadette Charron-Bost and André Schiper. Uniform Consensus is Harder than
Consensus. J. Algorithms, 51(1):15–37, 2004.

[12] Bernadette Charron-Bost and André Schiper. The Heard-Of Model: Computing
in Distributed Systems with Benign Faults. Distributed Computing, 22(1):49–71,
2009.

[13] Ching-Tsun Chou, Phanindra K. Mannava, and Seungjoon Park. A Simple Method
for Parameterized Verification of Cache Coherence Protocols. In Formal Methods
in Computer-Aided Design, 5th International Conference, FMCAD 2004, Austin,
Texas, USA, November 15-17, 2004, Proceedings, pages 382–398. 2004.

[14] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model Checking and
Abstraction. ACM Trans. Program. Lang. Syst., 16(5):1512–1542, 1994.

[15] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith. Environment Ab-
straction for Parameterized Verification. In Verification, Model Checking, and
Abstract Interpretation, 7th International Conference, VMCAI 2006, Charleston,
SC, USA, January 8-10, 2006, Proceedings, pages 126–141, 2006.

Parameterized Model Checking of Synchronous Distributed Algorithms 21

[16] Edmund M. Clarke, Muralidhar Talupur, and Helmut Veith. Proving Ptolemy
Right: The Environment Abstraction Framework for Model Checking Concurrent
Systems. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, pages 33–47, 2008.

[17] Cezara Dragoi, Thomas A. Henzinger, Helmut Veith, Josef Widder, and Damien
Zufferey. A Logic-Based Framework for Verifying Consensus Algorithms. In
Verification, Model Checking, and Abstract Interpretation - 15th International
Conference, VMCAI 2014, San Diego, CA, USA, January 19-21, 2014, Proceedings,
pages 161–181, 2014.

[18] Cezara Dragoi, Thomas A. Henzinger, and Damien Zufferey. PSync: A Partially
Synchronous Language for Fault-tolerant Distributed Algorithms. In Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016, pages 400–415, 2016.

[19] E. Allen Emerson and Kedar S. Namjoshi. Reasoning about Rings. In Conference
Record of POPL’95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, San Francisco, California, USA, January 23-25, 1995,
pages 85–94, 1995.

[20] E. Allen Emerson and A. Prasad Sistla. Symmetry and Model Checking. Formal
Methods in System Design, 9(1/2):105–131, 1996.

[21] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed
consensus with one faulty process. J. ACM, 32(2):374–382, 1985.

[22] Dana Fisman, Orna Kupferman, and Yoad Lustig. On Verifying Fault Tolerance of
Distributed Protocols. In Tools and Algorithms for the Construction and Analysis
of Systems, 14th International Conference, TACAS 2008, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2008,
Budapest, Hungary, March 29-April 6, 2008. Proceedings, pages 315–331, 2008.

[23] Susanne Graf and Hassen Säıdi. Construction of Abstract State Graphs with PVS.
In Computer Aided Verification, 9th International Conference, CAV ’97, Haifa,
Israel, June 22-25, 1997, Proceedings, pages 72–83, 1997.

[24] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Param-
eterized Model Checking of Fault-tolerant Distributed Algorithms by Abstraction.
In Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20-23, 2013, pages 201–209, 2013.

[25] Annu John, Igor Konnov, Ulrich Schmid, Helmut Veith, and Josef Widder. Towards
Modeling and Model Checking Fault-Tolerant Distributed Algorithms. In Model
Checking Software - 20th International Symposium, SPIN 2013, Stony Brook, NY,
USA, July 8-9, 2013. Proceedings, pages 209–226, 2013.

[26] Charles Edwin Killian, James W. Anderson, Ryan Braud, Ranjit Jhala, and Amin
Vahdat. Mace: Language Support for Building Distributed Systems. In Proceedings
of the ACM SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, California, USA, June 10-13, 2007, pages 179–188,
2007.

[27] Igor Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. Para2: parameter-
ized path reduction, acceleration, and SMT for reachability in threshold-guarded
distributed algorithms. Formal Methods in System Design, 51(2):270–307, 2017.

[28] Igor V. Konnov, Marijana Lazić, Helmut Veith, and Josef Widder. A Short
Counterexample Property for Safety and Liveness Verification of Fault-Tolerant

22 B. Aminof et al.

Distributed Algorithms. In Proceedings of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages, POPL 2017, Paris, France, January
18-20, 2017, pages 719–734, 2017.

[29] Igor V. Konnov, Helmut Veith, and Josef Widder. On the Completeness of Bounded
Model Checking for Threshold-Based Distributed Algorithms: Reachability. Inf.
Comput., 252:95–109, 2017.

[30] Hermann Kopetz and Günter Grünsteidl. TTP - A Protocol for Fault-Tolerant
Real-Time Systems. IEEE Computer, 27(1):14–23, 1994.

[31] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L.
Wong. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Trans. Comput.
Syst., 27(4):7:1–7:39, 2009.

[32] Sava Krstić. Parametrized System Verification with Guard Strengthening and
Parameter Abstraction. In AVIS, 2005.

[33] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hardware
and Software Engineers. Addison-Wesley, 2002.

[34] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The Byzantine Generals
Problem. ACM Trans. Program. Lang. Syst., 4(3):382–401, 1982.

[35] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified Causally
Consistent Distributed Key-value Stores. In Proceedings of the 43rd Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2016, St. Petersburg, FL, USA, January 20 - 22, 2016, pages 357–370, 2016.

[36] Patrick Lincoln and John M. Rushby. A Formally Verified Algorithm for Interactive
Consistency Under a Hybrid Fault Model. In Digest of Papers: FTCS-23, The
Twenty-Third Annual International Symposium on Fault-Tolerant Computing,
Toulouse, France, June 22-24, 1993, pages 402–411, 1993.

[37] Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.
[38] Ognjen Maric, Christoph Sprenger, and David A. Basin. Cutoff Bounds for

Consensus Algorithms. In Computer Aided Verification - 29th International
Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017, Proceedings, Part
II, pages 217–237, 2017.

[39] Kenneth L. McMillan. Verification of Infinite State Systems by Compositional
Model Checking. In Correct Hardware Design and Verification Methods, 10th IFIP
WG 10.5 Advanced Research Working Conference, CHARME ’99, Bad Herrenalb,
Germany, September 27-29, 1999, Proceedings, pages 219–234, 1999.

[40] Kenneth L. McMillan. Parameterized Verification of the FLASH Cache Coherence
Protocol by Compositional Model Checking. In Correct Hardware Design and
Verification Methods, 11th IFIP WG 10.5 Advanced Research Working Conference,
CHARME 2001, Livingston, Scotland, UK, September 4-7, 2001, Proceedings, pages
179–195, 2001.

[41] Andre Medeiros. ZooKeeper’s atomic broadcast protocol: Theory and practice.
Technical report, 2012.

[42] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is More Consen-
sus in Egalitarian Parliaments. In ACM SIGOPS 24th Symposium on Operating
Systems Principles, SOSP ’13, Farmington, PA, USA, November 3-6, 2013, pages
358–372, 2013.

[43] John W. O’Leary, Murali Talupur, and Mark R. Tuttle. Protocol Verification Using
Flows: An Industrial Experience. In Proceedings of 9th International Conference
on Formal Methods in Computer-Aided Design, FMCAD 2009, 15-18 November
2009, Austin, Texas, USA, pages 172–179, 2009.

[44] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching Agreement
in the Presence of Faults. J. ACM, 27(2):228–234, 1980.

Parameterized Model Checking of Synchronous Distributed Algorithms 23

[45] Sebastiano Peluso, Alexandru Turcu, Roberto Palmieri, Giuliano Losa, and Bi-
noy Ravindran. Making Fast Consensus Generally Faster. In 46th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks, DSN
2016, Toulouse, France, June 28 - July 1, 2016, pages 156–167, 2016.

[46] Amir Pnueli, Jessie Xu, and Lenore D. Zuck. Liveness with (0, 1, infty)-Counter
Abstraction. In Computer Aided Verification, 14th International Conference, CAV
2002,Copenhagen, Denmark, July 27-31, 2002, Proceedings, pages 107–122, 2002.

[47] Michel Raynal. Fault-tolerant Agreement in Synchronous Message-passing Sys-
tems. Synthesis Lectures on Distributed Computing Theory. Morgan & Claypool
Publishers, 2010.

[48] Wilfried Steiner, John M. Rushby, Maria Sorea, and Holger Pfeifer. Model Checking
a Fault-Tolerant Startup Algorithm: From Design Exploration To Exhaustive Fault
Simulation. In 2004 International Conference on Dependable Systems and Networks
(DSN 2004), 28 June - 1 July 2004, Florence, Italy, Proceedings, pages 189–198,
2004.

[49] Ichiro Suzuki. Proving Properties of a Ring of Finite-State Machines. Inf. Process.
Lett., 28(4):213–214, 1988.

[50] TLA+ Toolbox. http://research.microsoft.com/en-us/um/people/lamport/

tla/tools.html.
[51] Tatsuhiro Tsuchiya and André Schiper. Verification of consensus algorithms using

satisfiability solving. Distributed Computing, 23(5-6):341–358, 2011.
[52] Klaus von Gleissenthall, Nikolaj Bjørner, and Andrey Rybalchenko. Cardinalities

and Universal Quantifiers for Verifying Parameterized Systems. In Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages
599–613, 2016.

[53] Josef Widder, Günther Gridling, Bettina Weiss, and Jean-Paul Blanquart. Syn-
chronous Consensus with Mortal Byzantines. In The 37th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, DSN 2007, 25-28
June 2007, Edinburgh, UK, Proceedings, pages 102–112, 2007.

[54] Doug Woos, James R. Wilcox, Steve Anton, Zachary Tatlock, Michael D. Ernst,
and Thomas E. Anderson. Planning for Change in a Formal Verification of the
RAFT Consensus Protocol. In Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, Saint Petersburg, FL, USA, January 20-22,
2016, pages 154–165, 2016.

[55] Apache ZooKeeper. Web page. http://zookeeper.apache.org/.

24 B. Aminof et al.

	1
Parameterized Model Checking of SynchronousDistributed Algorithms by Abstraction?
	Abstract

	1 Introduction
	2 Overview on our Approach
	2.1 Modeling
	2.2 Abstraction

	3 Modeling and Speci�cations of Synchronous FTDAs
	3.1 Processes and Environment
	3.2 FTDA Instance I(n; t; f)
	3.4 Parameterized Model Checking

	4 Abstracting Synchronous FTDAs
	4.1 Predicate Abstraction: Eliminating t and f
	4.2 Zero-many Data and Counter Abstraction
	4.3 Abstract Transition Relations

	5 Benchmarks and Experiments
	6 Discussion
	References

