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Preface

This volume contains the papers presented at VMCAI 2018: the International Con-
ference on Verification, Model Checking, and Abstract Interpretation held during
January 7–9, 2018, in Los Angeles, co-located with POPL 2018 (the annual ACM
SIGPLAN/SIGACT Symposium on Principles of Programming Languages). Previous
meetings were held in Port Jefferson (1997), Pisa (1998), Venice (2002), New York
(2003), Venice (2004), Paris (2005), Charleston (2006), Nice (2007), San Francisco
(2008), Savannah (2009), Madrid (2010), Austin (2011), Philadelphia (2012), Rome
(2013), San Diego (2014), Mumbai (2015), St. Petersburg, Florida (2016), and Paris
(2017).

VMCAI provides a forum for researchers from the communities of verification,
model checking, and abstract interpretation to present their research and aims to
facilitate interaction, cross-fertilization, and advancement of hybrid methods that
combine these and related areas. VMCAI topics include: program verification, model
checking, abstract interpretation, program synthesis, static analysis, type systems,
deductive methods, decision procedures, theorem proving, program certification,
debugging techniques, program transformation, optimization, hybrid and
cyber-physical systems.

This year the conference received 43 submissions, of which 24 were selected for
publication in the proceedings. Each submission was reviewed by at least three Pro-
gram Committee members, and the main selection criteria were quality, relevance, and
originality. In addition to the presentations of the 24 selected papers, the conference
also featured an invited tutorial by Mayur Naik (University of Pennsylvania) as well as
three invited keynote talks by Ken McMillan (Microsoft Research), Azadeh Farzan
(University of Toronto), and Ranjit Jhala (University of California San Diego). We
warmly thank them for their participation and contributions.

We would like to thank the members of the Program Committee and the external
reviewers for their excellent work. We also thank the members of the Steering Com-
mittee, and in particular Lenore Zuck and Andreas Podelski, for their helpful advice,
assistance, and support. We thank Annabel Satin for her help in coordinating the events
co-located with POPL 2018, and we thank the POPL 2018 Organizing Committee for
providing all the logistics for organizing VMCAI. We are also indebted to EasyChair
for providing an excellent conference management system.

Finally, we would like to thank our sponsors, Amazon Web Services and Facebook,
for their valuable contributions to VMCAI 2018.

November 2017 Isil Dillig
Jens Palsberg
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Rethinking Compositionality for Concurrent
Program Proofs

Azadeh Farzan

University of Toronto

Abstract. Classical approaches to reasoning about concurrency are based on
reductions to sequential reasoning. Typical tactics are to reason about the global
behaviour of the system (commonly employed in model checking) or to reason
about the behaviour of each thread independently (such as in Owicki-Gries or
Rely/Guarantee). We will discuss a new foundation for reasoning about
multi-threaded programs, which breaks from this mold. In the new approach,
proof ingredients extracted from a few distinct program behaviours are used as
building blocks to a program proof that is free to follow the program control
structure when appropriate and break away from it when necessary. Our algo-
rithmic solution to the automated construction of these proofs leverages the
power of sequential reasoning similar to the classical techniques, but the
sequential reasoning lines need not be drawn at the thread boundaries.

Keywords: Proofs • Concurrency • Compositionality



Reasoning About Functions

Ranjit Jhala

University of California, San Diego

Abstract. SMT solvers’ ability to reason about equality, arithmetic, strings, sets
and maps, have transformed program analysis and model checking. However,
SMT crucially relies on queries being restricted to the above theories which
preclude the specification and verification of specification and verification of
properties of higher-order, user-defined functions. In this talk, we will describe
some recent progress towards removing this restriction by presenting two
algorithms for SMT-based reasoning about functions.

The first algorithm, FUSION, enables abstract reasoning about functions.
FUSION generalizes the first-order notions of strongest post-conditions and
summaries to the higher-order setting to automatically synthesize the most
precise representation of functions expressible in the SMT logic. Consequently,
FUSION yields a relatively complete algorithm for verifying specifications over
SMT-decidable theories. While this suffices to verify classical (1-safety) spec-
ifications, e.g. array-bounds checking, it does not apply to general (k-safety)
specifications over user defined functions, e.g. that certain functions are com-
mutative or associative.

The second algorithm, PLE Proof by Logical Evaluation (PLE), enables
concrete reasoning about functions, by showing how to mimic computation
within SMT-logics. The key idea is to represent functions in a guarded form and
repeatedly unfold function calls under enabled guards. We formalize a notion of
an equational proof and show that PLE is complete, i.e.is guaranteed to find an
equational proof if one exists. Furthermore, we show that PLE corresponds to a
universal (or must) abstraction of the concrete semantics of the user-defined
functions, and hence, terminates, yielding a precise and predictable means of
automatically reasoning about user-defined functions.

Joint work with Benjamin Cosman, Niki Vazou, Anish Tondwalkar,
Vikraman Choudhury, Ryan Scott, Ryan Newton and Philip Wadler.



How to Stay Decidable

Kenneth McMillan

Microsoft Research

Abstract. Automated provers can substantially increase productivity in the
formal verification of complex systems. However, the unpredictability of
automated provers presents a major hurdle to usability of these tools. This
problem is particularly acute in case of provers that handle undecidable logics,
for example, first-order logic with quantifiers.

On the other hand, there is a long history of work on decidable logics or
fragments of logics. Generally speaking, decision procedures for these logics
perform more predictably and fail more transparently than provers for unde-
cidable logics. In particular, in the case of a false proof goal, they usually can
provide a concrete counter-model to help diagnose the problem. The problem
that remains little studied is how to apply these logics in practice in the proof of
large systems. That is, how do we effectively decompose the proof of the system
into lemmas couched in decidable fragments, and is the human effort required to
do this repaid by more reliable automation?

To answer these questions, we must address the fact that combinations of
decidable theories are generally not decidable, and that useful decidable frag-
ments are generally not closed under conjunction. This requires us to practice
separation of concerns. For example, it is important to express the implemen-
tation of a protocol in a language that captures the protocol’s logic without
mixing in low-level details such as data structures. Moreover, modularity is an
important tool for avoiding undecidability. For example, we can use a high-level
protocol model to prove global properties, which are then used as lemmas in
proving correctness of the protocol implementation. This allows us to separate
invariants which, if combined, would take us outside the decidable realm. In
particular, this strategy allows us to produce verification conditions that are
decidable because they use function symbols in a stratified way.

Preliminary experience indicates that it is possible to produce verified
implementations of distributed protocols in this way with reduced proof com-
plexity and greater reliability of proof automation, without sacrificing execution
performance.



Maximum Satisfiability in Program Analysis:
Applications and Techniques

(Invited Tutorial)

Mayur Naik1, Xujie Si1, Xin Zhang1, and Radu Grigore2

1 University of Pennsylvania
2 University of Kent

Abstract. A central challenge in program analysis concerns balancing different
competing tradeoffs. To address this challenge, we propose an approach based
on the Maximum Satisfiability (MaxSAT) problem, an optimization extension
of the Boolean Satisfiability (SAT) problem. We demonstrate the approach on
three diverse applications that advance the state-of-the-art in balancing tradeoffs
in program analysis. Enabling these applications on real-world programs
necessitates solving large MaxSAT instances comprising over 1030 clauses in a
sound and optimal manner. We propose a general framework that scales to such
instances by iteratively expanding a subset of clauses while providing soundness
and optimality guarantees. We also present new techniques to instantiate and
optimize the framework.

Keywords: Maximum satisfiability • Program analysis



Contents

Parameterized Model Checking of Synchronous Distributed Algorithms
by Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Benjamin Aminof, Sasha Rubin, Ilina Stoilkovska, Josef Widder,
and Florian Zuleger

Gradual Program Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Johannes Bader, Jonathan Aldrich, and Éric Tanter

Automatic Verification of RMA Programs via Abstraction Extrapolation . . . . 47
Cedric Baumann, Andrei Marian Dan, Yuri Meshman,
Torsten Hoefler, and Martin Vechev

Scalable Approximation of Quantitative Information Flow in Programs . . . . . 71
Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay,
Kuldeep S. Meel, and Jean Quilbeuf

Code Obfuscation Against Abstract Model Checking Attacks . . . . . . . . . . . . 94
Roberto Bruni, Roberto Giacobazzi, and Roberta Gori

Abstract Code Injection: A Semantic Approach Based
on Abstract Non-Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Samuele Buro and Isabella Mastroeni

A Framework for Computer-Aided Design of Educational
Domain Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

Eric Butler, Emina Torlak, and Zoran Popović

Automatic Verification of Intermittent Systems . . . . . . . . . . . . . . . . . . . . . . 161
Manjeet Dahiya and Sorav Bansal

On abstraction and compositionality for weak-memory linearisability. . . . . . . 183
Brijesh Dongol, Radha Jagadeesan, James Riely,
and Alasdair Armstrong

From Shapes to Amortized Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Tomáš Fiedor, Lukáš Holík, Adam Rogalewicz, Moritz Sinn,
Tomáš Vojnar, and Florian Zuleger

Invariant Generation for Multi-Path Loops with Polynomial Assignments. . . . 226
Andreas Humenberger, Maximilian Jaroschek, and Laura Kovács

http://dx.doi.org/10.1007/978-3-319-73721-8_1
http://dx.doi.org/10.1007/978-3-319-73721-8_1
http://dx.doi.org/10.1007/978-3-319-73721-8_2
http://dx.doi.org/10.1007/978-3-319-73721-8_3
http://dx.doi.org/10.1007/978-3-319-73721-8_4
http://dx.doi.org/10.1007/978-3-319-73721-8_5
http://dx.doi.org/10.1007/978-3-319-73721-8_6
http://dx.doi.org/10.1007/978-3-319-73721-8_6
http://dx.doi.org/10.1007/978-3-319-73721-8_7
http://dx.doi.org/10.1007/978-3-319-73721-8_7
http://dx.doi.org/10.1007/978-3-319-73721-8_8
http://dx.doi.org/10.1007/978-3-319-73721-8_9
http://dx.doi.org/10.1007/978-3-319-73721-8_10
http://dx.doi.org/10.1007/978-3-319-73721-8_11


Analyzing Guarded Protocols: Better Cutoffs, More Systems,
More Expressivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247

Swen Jacobs and Mouhammad Sakr

Refinement Types for Ruby . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
Milod Kazerounian, Niki Vazou, Austin Bourgerie, Jeffrey S. Foster,
and Emina Torlak

Modular Analysis of Executables Using On-Demand
Heyting Completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291

Julian Kranz and Axel Simon

Learning to Complement Büchi Automata . . . . . . . . . . . . . . . . . . . . . . . . . 313
Yong Li, Andrea Turrini, Lijun Zhang, and Sven Schewe

P5: Planner-less Proofs of Probabilistic Parameterized Protocols . . . . . . . . . . 336
Lenore D. Zuck, Kenneth L. McMillan, and Jordan Torf

Co-Design and Verification of an Available File System . . . . . . . . . . . . . . . 358
Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster

Abstraction-Based Interaction Model for Synthesis . . . . . . . . . . . . . . . . . . . 382
Hila Peleg, Shachar Itzhaky, and Sharon Shoham

Generating Tests by Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
Hila Peleg, Dan Rasin, and Eran Yahav

A Logical System for Modular Information Flow Verification . . . . . . . . . . . 430
Adi Prabawa, Mahmudul Faisal Al Ameen, Benedict Lee,
and Wei-Ngan Chin

On Constructivity of Galois Connections . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Francesco Ranzato

Revisiting MITL to Fix Decision Procedures . . . . . . . . . . . . . . . . . . . . . . . 474
Nima Roohi and Mahesh Viswanathan

Selfless Interpolation for Infinite-State Model Checking . . . . . . . . . . . . . . . . 495
Tanja Schindler and Dejan Jovanović

An Abstract Interpretation Framework for the Round-Off Error
Analysis of Floating-Point Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Laura Titolo, Marco A. Feliú, Mariano Moscato,
and César A. Muñoz

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

XVIII Contents

http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_12
http://dx.doi.org/10.1007/978-3-319-73721-8_13
http://dx.doi.org/10.1007/978-3-319-73721-8_14
http://dx.doi.org/10.1007/978-3-319-73721-8_14
http://dx.doi.org/10.1007/978-3-319-73721-8_15
http://dx.doi.org/10.1007/978-3-319-73721-8_16
http://dx.doi.org/10.1007/978-3-319-73721-8_17
http://dx.doi.org/10.1007/978-3-319-73721-8_18
http://dx.doi.org/10.1007/978-3-319-73721-8_19
http://dx.doi.org/10.1007/978-3-319-73721-8_20
http://dx.doi.org/10.1007/978-3-319-73721-8_21
http://dx.doi.org/10.1007/978-3-319-73721-8_22
http://dx.doi.org/10.1007/978-3-319-73721-8_23
http://dx.doi.org/10.1007/978-3-319-73721-8_24
http://dx.doi.org/10.1007/978-3-319-73721-8_24


Parameterized Model Checking of Synchronous
Distributed Algorithms by Abstraction?

Benjamin Aminof1, Sasha Rubin2, Ilina Stoilkovska1(�), Josef Widder1, and
Florian Zuleger1

1 TU Wien, Vienna, Austria
{benj, stoilkov, widder, zuleger}@forsyte.at

2 Università degli Studi di Napoli Federico II, Naples, Italy
sasha.rubin@unina.it

Abstract. Parameterized verification of fault-tolerant distributed algo-
rithms has recently gained more and more attention. Most of the existing
work considers asynchronous distributed systems (interleaving semantics).
However, there exists a considerable distributed computing literature
on synchronous fault-tolerant distributed algorithms: conceptually, all
processes proceed in lock-step rounds, that is, synchronized steps of all
(correct) processes bring the system into the next state.

We introduce an abstraction technique for synchronous fault-tolerant dis-
tributed algorithms that reduces parameterized verification of synchronous
fault-tolerant distributed algorithms to finite-state model checking of an
abstract system. Using the TLC model checker, we automatically verified
several algorithms from the literature, some of which were not automati-
cally verified before. Our benchmarks include fault-tolerant algorithms
that solve atomic commitment, 2-set agreement, and consensus.

1 Introduction

Fault-tolerant distributed algorithms (FTDAs) are hard to design and prove
correct. It is easy to introduce bugs when developing and “optimizing” such
distributed algorithms [41]. As we currently see more and more implementations
of FTDAs [8, 31, 42, 55], it is desirable to be able to quickly check, whether an
optimization did not break the desired behavior. Hence, we observe increasing
interest in tool support for eliminating design bugs in distributed algorithms by
means of automated verification [1, 2, 17,18,26,28,35,45,52,54].

The vast majority of the existing literature on verification of distributed
systems considers asynchronous systems, that is, the methods are designed for
interleaving semantics. Disentangling the methods from the interleaving semantics
is challenging. At the same time, there is substantial literature on distributed

? This work is partially supported by the Austrian Science Fund (FWF) via NFN RiSE
(S11403, S11405), project PRAVDA (P27722), and the doctoral college LogiCS W1255;
and by the Vienna Science and Technology Fund (WWTF) through grant ICT12-059.
S. Rubin is a Marie Curie fellow of the Istituto Nazionale di Alta Matematica.

c© Springer International Publishing AG 2018 1
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 1–24, 2018.
https://doi.org/10.1007/978-3-319-73721-8_1
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Fig. 1: Overview of our approach and related work

algorithms that are not designed for interleaving semantics, namely round-based
distributed algorithms [9,11,12,34,37,44,47,53]. In these algorithms, computations
proceed in rounds, in which processes perform send, receive and compute transi-
tions in lock-step. There are mainly three reasons for the interest in synchronous
distributed algorithms: First, the assumption on synchrony circumvents impos-
sibility results regarding fault-tolerance in asynchronous systems [21]. Second,
for hard real-time systems, the underlying hardware and network infrastructure
exhibits predictable timing behavior, so that designers of embedded and cyber-
physical systems (e.g., in cars and planes) are willing to exploit these timing
guarantees at the algorithmic level [30]. Finally, the abstraction of a round that
is performed by all processes in lock-step makes it supposedly easier to design
algorithms; although there are counterexamples where incorrect synchronous
distributed algorithms have been published, as reported in [36].

We focus on verification of synchronous FTDAs, and will adapt and combine
several verification methods that were originally designed for asynchronous
systems, and apply them in the synchronous setting. Fig. 1 gives an overview of
our work together with references of related approaches for the asynchronous
case. Our main contribution lies in parameterized verification of FTDAs, that
is, we want to verify a distributed algorithm that is executed by n processes
in an environment where f processes fail, and designed to work if at most t
processes fail, for all values n, t, and f that satisfy some arithmetic conditions,
e.g., f ≤ t < n. This algorithm is formalized as a parameterized system I(n, t, f),

to which we apply abstraction to obtain a finite abstract system Ĵ which serves
as input to TLC [50], the model checker associated with TLA+ [33].

To understand the trade-off between parameterized model checking and model
checking of fixed size systems, we also did verification of the latter, that is, we
fix n, t, and f to small values, e.g., 5, 3, and 2. The resulting fixed size system
again serves as input to TLC, as shown in the figure. Our experiments show that
model checking fixed sized systems quickly runs into combinatorial state space
explosion. This confirms that to verify systems of bigger size, one needs to rely
on abstractions, which give verification results for systems of all sizes.

There are several existing approaches for verifying round-based distributed
algorithms. Fixed size systems, i.e., (small) instances, were verified using model
checking, e.g., in [10, 48, 51]. The following two approaches to parameterized

2 B. Aminof et al.



verification are most related as they also target the round-based model from [12]:
[17] proposes invariant checking using decision procedures, requiring the user
to provide invariants manually. [38] gives a cut-off theorem for reducing the
parameterized problem to verification of small systems (5 to 7 processes). This
cut-off theorem considers only consensus algorithms [12], while we are also
interested in other algorithms, e.g., k-set agreement or atomic commitment. We
discuss the relation of [38] to our work in more detail in Section 6.

Contributions. We introduce a new technique for parameterized model checking
of synchronous distributed algorithms.

– We introduce a special guarded command language for distributed algorithms,
and show that this language allows effective verification by abstraction.

– We combine automated abstractions [15,24,32,40,46] that had been introduced
for asynchronous systems, and adapt them to synchronous systems.

– Our modeling framework uses an independent environment to express the
semantics of the code in the presence of faults. While we focus on crash faults
in this paper, in the future this will allow us to express semantics of other
faults models (e.g., omission, Byzantine) in a modular way.

– We introduce pattern-based predicate abstraction for termination guards.
This allows verification engineers to specify verification conditions for specific
guards and environments. For termination guards found in many synchronous
algorithms, we provide verification conditions, which can be reused.

– We do experiments on several synchronous FTDAs [9, 11, 37, 47], some of
which were not automatically verified before. Our experiments show that pa-
rameterized model checking performs better than checking fixed-size systems
already for few (typically 5) processes.

2 Overview on our Approach

A synchronous distributed algorithm runs on a fully connected network of n ∈ N
processes, which communicate with each other by exchanging messages. The
computations are organized in rounds; each round consists of two phases: (1) the
message exchange phase in which each process broadcasts a message to all others,
and (2) the state transition phase in which processes update their variables based
on the messages received. The processes work synchronously in the sense that
they simultaneously switch to the next phase of every round.

We focus on fault-tolerant agreement algorithms [5,37,47], where processes
irrevocably decide a value depending on the initial values of all processes. There
are multiple agreement problems in the literature that differ in the way the
decision values are related to the initial values. In consensus, the processes reach
agreement on a value that has been initially proposed by at least one process. In
2-set agreement, processes may decide on one out of two different values from
the set of initial values. In non-blocking atomic commit, the processes decide
the value abort if there is at least one process that initially proposed abort, and
decide the value commit if all processes initially proposed commit.

Parameterized Model Checking of Synchronous Distributed Algorithms 3



FloodSet algorithm:
The message alphabet consists of subsets of
W = {0, 1}.
v0 ∈W is a default decision value
r ∈ N is the round number, initially 0
statesi:
w ⊆W , initially containing i’s initial value
d ∈ {0, 1, un}, initially un

msgsi
1. if r ≤ t then
2. send w to all other processes
3. r := r + 1
transi
4. let Xj be the message from j, for each j

from which a message arrives

5. w := w ∪
⋃
j Xj

6. if r = t+ 1 then
7. if |w| = 1 then d := v, where w = {v}
8. else d := v0

(a) The pseudocode of FloodSet

Validity: If all processes start with the same initial
value, then this is the only possible decision value.
Agreement: No two correct processes decide on
different values.
Termination: All correct processes eventually decide.

(b) Specifications
s.w s.d s.Msg s.r s.cr s.fld s.rcv
{0}
{0}
{1}
{0}
{0}



un
un
un
un
un



⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥
⊥ ⊥ ⊥ ⊥ ⊥

 1


⊥
⊥
>
⊥
⊥



⊥
⊥
⊥
⊥
⊥



> > > > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >


(c) s ∈ S(n, t, f), n = 5, t = 3, f = 2

s′.w s′.d s′.Msg s′.r s′.cr s′.fld s′.rcv
{0}
{0}
{1}
{0}
{0}



un
un
un
un
un



{0} {0} {1} {0} {0}
{0} {0} ⊥ {0} {0}
{0} {0} ⊥ {0} {0}
{0} {0} ⊥ {0} {0}
{0} {0} ⊥ {0} {0}

 1


⊥
⊥
>
⊥
⊥



⊥
⊥
⊥
⊥
⊥



> > > > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >
> > ⊥ > >


(d) s′ ∈ S(n, t, f), for n = 5, t = 3, f = 2

(r = t+ 1) ∧ (w = {0}) ∧ (∀j msg[j] 6= {1}) ∧ (∀j msg[j] 6= {0, 1}) → w := {0}, d := 0

(e) A guarded assignment defined for FloodSet

pr ∧ (w = {0}) ∧ (∀j msg[j] 6= {1}) ∧ (∀j msg[j] 6= {0, 1}) → w := {0}, d := 0

(f) Predicate abstraction: the termination guard (r = t+ 1) is replaced by predicate pr

Fig. 2: The FloodSet algorithm

We aim at checking that the algorithms for fault-tolerant agreement satisfy
their specifications in the presence of at most t faulty processes, where t satisfies
some constraint, e.g., t < n. We focus on crash faults, exhibited by processes
that stop working and cannot restart. As a process can crash in the middle of its
execution, it can be the case that it sends a message only to a subset of processes.

We discuss the characteristics of these algorithms by using the FloodSet
consensus algorithm from Fig. 2a as example. Each process has several variables,
e.g., in FloodSet each process has the variables d and w. The variable d ∈ {0, 1, un}
stores the value the process decides on (un refers to the process being undecided),
and w ⊆W = {0, 1} stores the values the process has seen so far (starting with its
own initial value, and the ones received in messages). The processes communicate
via messages of a finite message alphabet. In FloodSet , the message alphabet
is the power set of W , and the message that a process sends is the value of its
variable w. In the (t+ 1)-st round, each process decides as follows: if w = {v},
for some v ∈W , then d = v; otherwise d is assigned a default value v0. We have
to verify that the FloodSet algorithm tolerates t process crashes where t < n.

2.1 Modeling

We model a distributed algorithm as a transition system that is composed of
n processes and an environment. The environment captures the fault model
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and the round number. The system obtained in such a way is parameterized in
the parameters n and t, as well as the parameter f which refers to the actual
number of crashed processes during an execution of the algorithm. The processes
use the values of the parameters n and t; the parameter f is used only by the
environment. We are led to distinguish between f and t, as some of our case
studies (early deciding consensus) terminate in min(f + 2, t+ 1) rounds [9, 11].
Full definitions of the modeling sketched in this section are found in Section 3.

Processes and environment. To model a process, we define process variables and
process functions. The process variables either store values from a finite domain,
or are one-dimensional arrays of size n that store information about the other
processes, e.g., the messages received in the previous round. The process functions
define the way in which the values of the process variables get updated.

The environment describes how processes behave in the presence of crashes
and thus it depends only on the fault model. The environment keeps track of the
round number, the crashed processes, and for each crashed process, the subset of
processes that receive a message from it in the round in which it crashes. The
processes and the environment are defined in more detail in Section 3.1.

Global states. The (global) states of the parameterized system contain information
about the states of the n processes and the environment. For example, in FloodSet
(e.g., Fig. 2c), we have a one-dimensional array s.w of size n that store the sets of
values w, a one-dimensional array s.d that stores the decision values d for every
process, a two-dimensional array s.Msg that stores the messages exchanged by
the processes, and environment variables: the round number r, the arrays cr
and fld which store information about process crashes in the current and up to
the current round, respectively, and the array rcv, where the (i, j)-th cell flags
whether process i received a message from process j in the current round. Fig. 2d
shows the global state after process 3 crashes and only send a message (i.e., {1})
to process 1. The parameterized system is formally defined in Section 3.2.

Global transitions. A transition models the following steps: (i) the environment
increments the round number, and non-deterministically decides on new crashes
and new receiver lists; (ii) every process computes a message, which is delivered
by the environment (depending on the values of the environment variables);
(iii) every correct process updates its finite domain variables, using a set of
guarded assignments (described below), and its array variables.

The language of guarded assignments that we define is powerful enough to
capture constructs that typically occur in synchronous distributed algorithms,
such as conditional constructs and iteration over process ids. For instance, one can
check if there is a process j from which a message was received in the current and
the previous round. This construct is used in early deciding/stopping consensus
algorithms. The guards that compare the round number against a parameter,
which we call termination guards, are typically used in synchronous agreement
algorithms to check whether a certain round is reached, i.e., whether it is safe for
a correct process to make a decision (e.g., line 6 of the pseudocode). The guarded
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assignments are formalized in Section 3.1. We introduce guarded assignments in
order to perform the abstraction steps syntactically, more details of which can
be found in Section 4.3.

A guarded assignment defined for the FloodSet algorithm is given in Fig. 2e.
It defines the update of the finite domain variables w and d in the case when the
current round number is equal to t+ 1 (that is, when the processes decide). The
guard is a conjunction of smaller guards, the first one of which is a termination
guard. This guarded assignment models one possible outcome of the execution of
the pseudocode between lines 5 and 8. If the set of values of the process is {0},
and there are no messages sent to that process that contain the value 1, then
in the new control state, the set of values remains the same, and the decision
value is set to 0. The remaining guarded assignments that model the pseudocode
between lines 5 and 8 follow a similar pattern.

2.2 Abstraction

We build a single abstract finite state system, which is not parameterized, and
simulates the behavior of every concrete system. Our abstraction is applied in
two steps: first t and f are eliminated using pattern-based predicate abstraction,
and then n is eliminated using data and counter abstraction.

Predicate abstraction. The set of guarded assignments defined for the algorithm
can contain termination guards that feature the parameter t. For each such guard,
we introduce a Boolean predicate, which is true when the guard is satisfied.
For every newly defined predicate in this abstraction step, a constraint that
ensures that the predicate is eventually satisfied is introduced. This eliminates
the parameter t. The parameter f is eliminated by introducing a constraint which
states that the faults eventually stop appearing. The predicate abstraction step
is described in more detail in Section 4.1.

Fig. 2f shows the guarded assignment from Fig. 2e in which the termination
guard r = t + 1 is replaced by a Boolean predicate pr. We add the constraint
F pr for this predicate, saying that eventually the (t+ 1)-st round is reached.

Data and counter abstraction. Using ideas from [13,32,40], we fix a small number
of processes (two or three), whose behaviors we keep concrete, and abstract the
remaining processes depending on the current values of their variables. The choice
of the number of fixed processes depends on the properties we are interested in
verifying. For the FloodSet algorithm, we fix this number to two, as in order to
check the agreement property (Fig. 2b), we need to check whether every pair of
processes agree on a value. Using data and counter abstraction [24,46], we reduce
the size of the array variables in the global state from n to a fixed number, which
depends on the number of fixed processes, and the states the remaining processes
are in, but is independent of n. The main idea is to store whether there are no
processes (zero) or at least one process (many) that has some particular state.
Section 4.2 formally describes the zero-many data and counter abstractions.
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Consider the state s′ of FloodSet in Fig. 2d. We fix processes 1 and 2, and
abstract the behavior of processes 3, 4, and 5. Process 3 has a different valuation
of the variables w and d than processes 4 and 5, that have the same valuation.
Thus, in state s′, we say that, e.g., there are many processes in the state where
w = {0} and d = un, and there are zero processes in the state where w = {0, 1}
and d = un, as there are no processes in s′ with these values for the variables.

3 Modeling and Specifications of Synchronous FTDAs

We formalize FTDAs by introducing process variables, process functions, environ-
ment variables and parameters n, t, and f . As we consider crash faults, we assume
that the parameters satisfy the resilience condition f ≤ t < n. In this section we
define a transition system I(n, t, f) = 〈S(n, t, f),S0(n, t, f),Q(n, t, f)〉, called an
FTDA instance, for each value of n, t, and f that satisfies the resilience condition.

Notation. A transition system is a tuple M = 〈S, S0, R〉 where S is a set of
states, S0 ⊆ S is a set of initial states, and R ⊆ S × S is a transition relation.
An execution is a path in M that starts in an initial state. Typically, states are
valuations of some fixed set of variables X. We write s.x for the value of variable
x ∈ X at state s. For n ∈ N we write [n] for the set {1, 2, · · · , n}.

3.1 Processes and Environment

A process is modeled using process variables and process functions.

Definition 1 (Process variables). Let V be a finite set of process variables,
partitioned into process control variables cntl(V ) = {x1, · · · , x|cntl(V )|} and
process neighborhood arrays nbhd(V ) = {y1, · · · , y|nbhd(V )|}. For v ∈ V , let Dv

denote the finite set of values that v can take if v ∈ cntl(V ), or that each cell in v
can take if v ∈ nbhd(V ). We assume that for every y ∈ nbhd(V ), the domain Dy

contains a special null value ⊥ which signifies an empty cell.
A special neighborhood array is msg ∈ nbhd(V ), which is used to store the

messages the process receives in the current round. For convenience, we write M
instead of Dmsg, and call it the message alphabet.

Definition 2 (Process states). A process state p is a valuation of all the
variables in V , i.e., an element of P =

∏
x∈cntl(V )Dx ×

∏
y∈nbhd(V )(Dy)n. We

write p.control, called a process control state, for the valuation restricted to
cntl(V ). Let C =

∏
x∈cntl(V )Dx denote the set of all process control states, and

let C0 ⊆ C denote a set of initial control states.

We define the domain and range of three process functions, the last one being
parameterized by n and r (the round number).

Definition 3 (Process functions). Let F be the set of process functions F =
{snd msg} ∪ {hy : y ∈ nbhd(V ) \ {msg}} ∪ {updaten,r : n, r ∈ N}, where
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snd msg : C → M maps process control states to messages; hy : M → Dy

maps messages to values in Dy and satisfies the restriction that hy(⊥) = ⊥; and
updaten,r : P → C maps process states to control states.

We use process functions to formally break down and encode the algorithm
executed by the processes. Note that the functions snd msg and hy (for every y)
are fixed and finite, whereas updaten,r is parameterized by n and r and represents
an infinite set of finite functions. This infinite set of functions is defined using a
finite set of guarded assignments from the following language.

Each guarded assignment is of the form g → asg, where g is a guard and asg is
an assignment. An assignment asg is a partial function with domain cntl(V ) such
that if asg(x) is defined then asg(x) ∈ Dx. The guards are Boolean combinations
(negation and conjunction) of basic guards, and are evaluated over process states.
The following are the basic guards:

guard notation evaluation

empty gtrue true

control gx,v where x ∈ cntl(V ) and v ∈ Dx x = v

termination gB,φ(n,t) where B ∈ {>,=}, and φ(n, t) r B φ(n, t)
is a linear combination of n and t

neighborhood gΨ where Ψ is a set of triples (y,�, v) s.t. ∃j ∈ [n]
y ∈ nbhd(V ),� ∈ {=, 6=}, and v ∈ Dy

∧
Ψ (y[j]� v)

We write p |= g to signify that process state p satisfies the guard g.
Given a guarded assignment g → asg and parameters n, r, we define the

induced function updaten,r as follows. Let p ∈ P be a process state. If p 6|= g
then updaten,r(p) = p.control. If p |= g then updaten,r(p) = c where c.x = p.x if
asg(x) not defined, and c.x = asg(x) otherwise.

To fully characterize the function updaten,r, we associate with it a finite set
G of guarded assignments, where the guards are pairwise mutually exclusive.

The guards capture various constructs found in the distributed computing
literature. For example, the empty guard captures simple assignments, Boolean
combinations of control and termination guards capture conditionals, and Boolean
combinations of the neighborhood guards capture iteration over process ids when
traversing the process neighborhood arrays.

Since the process functions serve as the building blocks of the transition
relation (as we formally explain later), in Section 4 where we abstract the
transition system, we will also have to abstract the process functions. Towards
this end, a key step will involve abstracting the guarded assignments. This step
is done syntactically, by defining abstract versions of the basic guards.

Definition 4 (Environment variables V e). The environment variables are:
r, with domain De

r = N, is the current round number; cr, with domain De
cr =

{⊥,>}n, flags the crashed processes in the current round, with the value >
indicating a crash; fld, with domain De

fld = {⊥,>}n, flags the processes that
crashed in some previous round; and rcv, with domain De

rcv = {⊥,>}n·n, stores
a receivers list for every process, that defines the subset of processes to which the
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process sends a message in the current round, with the value > in the (i, j)-th
cell indicating that process i receives the message from process j.

3.2 FTDA Instance I(n, t, f)

We define the transition system I(n, t, f) = 〈S(n, t, f),S0(n, t, f),Q(n, t, f)〉, as
a combination of n processes and the environment, as follows.

Global states S(n, t, f). The set S(n, t, f) of global states of an FTDA instance
is the set of all possible valuations of the following FTDA variables V :

Definition 5 (FTDA variables). The set V is the union of the sets of:

– control variables cntl(V ), containing one-dimensional array variables x of
size n, that range over (Dx)n, where x ∈ cntl(V ) is a process control variable.

– neighborhood arrays nbhd(V ), containing two-dimensional array variables Y
of size n×n, ranging over (Dy)n·n, with y ∈ nbhd(V ) a process neighborhood
array. The neighborhood array corresponding to the process neighborhood
array msg is denoted Msg, and is called the message channel.

– environment variables V e.

Intuitively, the variables in cntl(V ) ] nbhd(V ) are used to store the values of
the process variables of each of the n processes in the FTDA instance, and the
value of Msg[i, j] is equal to the value of msg[j] of process i.

To define the rest of the FTDA instance, we need the following notations. For
a global state s and i ∈ [n], we denote by:

– s.controli the tuple 〈s.x1[i], . . . , s.x|cntl(V )|[i]〉 ∈ C;

– s.rowY
i the tuple 〈s.Y[i, 1], . . . , s.Y[i, n]〉 ∈ (Dy)n (for Y ∈ nbhd(V ));

– s.locali the tuple 〈s.controli, s.rowY1
i , . . . , s.row

Y|nbhd(V )|
i 〉 ∈ P .

– s.locationi the tuple 〈s.controli, s.fld[i]〉 ∈ Loc, where Loc = C × {⊥,>} is
the set of process locations.

A process location is a pair of the process control state and a failure flag fld, whose
value is stored in the environment variable fld. As we will see in Section 4, we
need the notion of process location in our abstractions, as we need to distinguish
between correct and crashed processes that are in the same control state.

Initial global states S0(n, t, f). A global state s is initial if the values it assigns to
the different variables satisfy the following restrictions: the values of the control
variables are initial, i.e., s.controli ∈ C0 for every i ∈ [n] (recall that C0 is the
set of initial control states); all the cells of all the neighborhood arrays are empty,
i.e., s.Y[i, j] = ⊥ for all i, j ∈ [n] and all Y ∈ nbhd(V ); and the environment
variables are initialized as follows: (i) s.r = 0, (ii) s.cr[i] = ⊥, for all i ∈ [n],
(iii) s.fld[i] = ⊥, for all i ∈ [n], and (iv) s.rcv[i, j] = ⊥, for all i, j ∈ [n].
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Transition relation Q(n, t, f). We define three transition relations:
ENV−−−→ updates

the environment variables;
MEP−−−→ captures the message exchange phase;

PROC−−−→
updates the control variables and neighborhood arrays. A transition of the FTDA

instance is an element of the composition
ENV−−−→ MEP−−−→ PROC−−−→, i.e., (s, s′′′) ∈ Q(n, t, f)

iff there exist states s′, s′′ ∈ S(n, t, f) such that s
ENV−−−→ s′

MEP−−−→ s′′
PROC−−−→ s′′′.

Updating environment variables. We define s
ENV−−−→ s′ as follows. First, the round

number is incremented, i.e. s′.r = s.r + 1.

Second, the environment chooses which processes will crash in the current
round, while keeping the number of crashed processes below the parameter f . That
is, s′.cr is updated to a value that satisfies the following conditions: (i) for every
i ∈ [n], we have s′.cr[i] = ⊥ if s.fld[i] = >, and (ii) |{i ∈ [n] | s.fld[i]∨s′.cr[i]}| ≤ f .
Intuitively, condition (ii) reflects the non-deterministic assignment of values to
cr, by allowing at most f processes to be flagged as crashed in every execution.

Finally, the receiver lists for the next round are updated by flagging that no
message is received from processes that crashed in some previous round, receiving
all messages from the correct processes, and non-deterministically choosing which
processes receive messages from the processes that crash in the current round.
That is, for every i, j ∈ [n], the following holds for s′.rcv: (i) if s.fld[j] = > then
s′.rcv[i, j] = ⊥, and (ii) if s.fld[j] = ⊥ and s′.cr[j] = ⊥, then s′.rcv[i, j] = >.

Message exchange phase. In this transition, the cell (i, j) of the message channel
is assigned the message sent from process j to process i, if i is in the receiver list

of j for this round. We define s
MEP−−−→ s′ if (i) s′.Msg[i, j] = snd msg(s.controlj)

if rcv[i, j] = >, and (ii) s′.Msg[i, j] = ⊥ if rcv[i, j] 6= >.

Updating process variables. In this transition, the failure flags are updated, and
every correct process first applies the process function updaten,r to update its
control variables, and then updates its neighborhood arrays (except for msg)
using the messages it received.

We define s
PROC−−−→ s′ as follows. First, the failure flags are updated, i.e.,

for all i ∈ [n], s′.fld[i] = s.fld[i] ∨ s.cr[i]. Second, the control variables are
updated as follows: (i) for all i ∈ [n], s′.controli = updaten,s.r(s.locali) if
s′.fld[i] = ⊥; and (ii) s′.controli = s.controli otherwise. Third, the neigh-
borhood arrays are updated as follows: for every i ∈ [n] and every Y ∈
nbhd(V ) \ {Msg}: (i) s′.Y[i, j] = hy(s.Msg[i, j]), for all j ∈ [n], if s′.fld[i] = ⊥,
and (ii) s′.Y[i, j] = s.Y[i, j], for all j ∈ [n], otherwise. Finally, the the message
channel is flushed, i.e., s′.Msg[i, j] = ⊥, for every i, j ∈ [n].

Definition 6 (FTDA instance). Given process variables V , process func-
tions F , environment variables V e, and parameter values n, t, f ∈ N, such that
f ≤ t < n, we define the FTDA instance I(n, t, f) to be the transition system
〈S(n, t, f),S0(n, t, f),Q(n, t, f)〉.
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3.3 Specification Language

We use a fragment of indexed linear temporal logic [7,19] to encode the specifica-
tions of distributed algorithms. We define its semantics w.r.t. n processes and a
set of Boolean predicates Pred. The state of each process is given by the valuations
of a set of variables Vars, where each variable z ∈ Vars has an associated domain
Dz. A global state ς is given by valuations ς.z[i] for each variable z and process i
and a truth-value assignment ς.q ∈ {>,⊥} for each q ∈ Pred. We consider atomic
propositions of the form ([z = v], i), where z ∈ Vars, v ∈ Dz and i is an index,
and predicates q ∈ Pred. We use the following fragment of indexed-LTL:

Definition 7 (The fragment Fl). For l ∈ N, we write Fl for the set of indexed-
LTL formulas of the form ∀i1∀i2 · · · ∀il.ψ, where (1) ψ only contains ∃-quantifiers,
and (2) an ∃-quantifier only appears in subformulas of the form ∃i.([z = v], i).

The semantics of an atomic proposition in a state ς is defined by ς |= ([z = v], i)
iff ς.z[i] = v. We define the semantics of a predicate q ∈ Pred as follows: ς |= q
iff ς.q = >. The semantics of the logical connectives, quantifiers and temporal
operators is standard. We will also write z[i] = v instead of ([z = v], i).

The fragments Fl, for l ∈ N, are rich enough to capture specifications of
fault-tolerant agreement. To express specifications of FTDA instances, we define
Vars = cntl(V ) ∪ {cr, fld}, where cr, fld are the flags stored in the environment
variables cr,fld. Below, we formalize the specifications stated in Fig. 2b, which
are evaluated over global states s ∈ S(n, t, f):

– Validity: If there is no process with an initial value different from 0, then 0
is the only decision value (there is a symmetric specification for w = {1}):

∀i. (∃j.w[j] 6= {0}) ∨ G((fld[i] = ⊥ ∧ d[i] 6= un)→ d[i] = 0)

– Agreement: No two correct processes decide differently:

∀i∀j. G((fld[i] = ⊥ ∧ fld[j] = ⊥ ∧ d[i] 6= un ∧ d[j] 6= un)→
((d[i] = 0 ∧ d[j] = 0) ∨ (d[i] = 1 ∧ d[j] = 1)))

– Termination: Every correct process eventually decides:

∀i. F(fld[i] = ⊥ → d[i] 6= un)

Note that the above stated formulas do not use Boolean propositions, i.e.,
Pred = ∅ (also the global states of FDTA instances do not contain Boolean
variables). In Section 4.1, we will state formulas that use Boolean propositions
and define abstract transition systems that have Boolean variables.

3.4 Parameterized Model Checking

The parameterized model checking question is to decide, given process variables V ,
process functions F , environment variables V e, and a specification ϕ ∈ Fl,
whether ϕ is satisfied in every FTDA instance I(n, t, f) such that f ≤ t < n.
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3.5 Symmetry

We observe that the FTDA instance I(n, t, f) is a symmetric transition sys-
tem [20]. Due to the symmetry, we can fix a small number m of processes that
represent any m processes among the n processes of the FTDA instance. To
determine m, we take the maximal number of ∀-quantifiers that appear in the
specifications expressed in our fragment of indexed-LTL. For example, the va-
lidity and termination consensus specifications (cf. Section 3.3) have a single
∀-quantifier, while agreement has two. Therefore, for consensus we set m = 2.

Once we fix m, for every indexed-LTL formula ϕ, where the indices range
over [n], we define a formula ϕm, where the indices bound by ∀-quantifiers range
over [m], and the indices bound by ∃-quantifiers range over [n]. We denote by
Fm

l the set of indexed-LTL formulas {ϕm | ϕ ∈ Fl and l ≤ m}.

Proposition 1 (Symmetry). The indexed-LTL specification ϕ is satisfied in
an FTDA instance I(n, t, f) if ϕm is satisfied in I(n, t, f).

4 Abstracting Synchronous FTDAs

We define the pattern-based predicate abstraction in Section 4.1, and the zero-
many data and counter abstraction in Section 4.2. As these definitions are not
effective, in Section 4.3 we give an effective method for processes defined by the
process functions in Section 3.1. The challenge lies in the fact that we need to
abstract a family of systems parameterized by n, t, and f .

4.1 Predicate Abstraction: Eliminating t and f

Recall that the parameter f refers to the actual number of processes that
crash during a run of an instance I(n, t, f), and the parameter t appears in
the termination guards. To build a system J (n) parameterized only in n, we
introduce predicates that abstract basic termination guards, and verification
conditions that have to be satisfied in every execution of J (n).

Predicates. We introduce k Boolean predicates pr1, . . . , prk, where k is the number
of basic termination guards of the form r B φ(n, t), appearing in the set G of
guarded assignments that define the function updaten,r. Each predicate prj , for
j ∈ [k], is true whenever the basic termination guard it replaces is satisfied. By
replacing the basic termination guards with predicates in J (n), we eliminate the
variable variable r from environment, as in I(n, t, f), the variable r occurs only
in the basic termination guards. Thus, the set V of variables of J (n) contains:

– control variables x ∈ cntl(V), ranging over (Dx)n;
– neighborhood arrays Y ∈ nbhd(V), ranging over (Dy)n·n;
– environment variables cr,fld, rcv.

Additionally, for J (n), we introduce a set Pred = {pr1, . . . , prk} of Boolean
predicates. The set Σ(n) of states of J (n) is the set of all valuations of V. The
following abstraction mapping α maps states of I(n, t, f) to states from J (n).

12 B. Aminof et al.



Definition 8 (Abstraction mapping α). We define the abstraction mapping
α : S(n, t, f) → Σ(n) as: σ.x = s.x, for all x ∈ cntl(V), σ.Y = s.Y, for all
Y ∈ nbhd(V), σ.cr = s.cr, σ.fld = s.fld, σ.rcv = s.rcv and for every j ∈ [k],
σ.prj = >, if the basic termination guard r Bj φj(n, t) is satisfied in the state s,
and σ.prj = ⊥, otherwise.

Pattern-based verification conditions. We define a set of indexed-LTL formulas C
of verification conditions that we impose on J (n). The formulas in C introduce
restrictions on how the predicates in pr and the crash flags in cr are assigned
values in J (n) in a way that reflect behaviors of the concrete executions. Note
that these verification conditions are imposed on the environment, and can
therefore be reused across algorithms that operate under the same environment.

Let clean denote the formula ¬(∃i cr[i] = >). The formula clean is satisfied
in a state σ ∈ Σ(n), if there is no process that has been flagged as newly crashed
in σ. We list the conditions that we identified in multiple benchmarks, together
with an explanation of why they hold.

FG clean ensures that from some time on, there are no more crashes. It holds
because f is finite in each instance.

F (prj) and FG (prj) for j ∈ [k] where Bj is = and Bj is >, respectively. For
instance, the termination guard of FloodSet in Fig. 2 is r = t+1, and evaluates
to true once (in round t+ 1), while a guard r > t becomes and stays true.

(
∧

j ¬prj)Uclean ensures that the basic termination guards become true only
after a clean round has occurred. This is typical for consensus algorithms
that use a guard r = t+ 1 and are designed for f ≤ t faults. In this case, in
at least one of the t+ 1 rounds no process crashes, i.e., the round is clean.

While currently we perform this abstraction step manually, in the future we
aim at developing an automatic procedure for such verification conditions.

Given I(n, t, f) and Σ(n), let J (n) be the overapproximation [14] of I(n, t, f)
induced by α. Let C be a set of constraints that are satisfied in all instances
I(n, t, f), for f ≤ t < n (e.g., for FloodSet , C = {FG clean,F pr, prUclean}). Let
χC be the conjunction of all formulas in C. As there are no ∀-quantifiers in χC ,
the formula χC → ϕm is also in Fm

l .

Proposition 2 (Soundness of α). For every n ∈ N, if J (n) |= χC → ϕm then
I(n, t, f) |= ϕm, for all t, f ∈ N s.t. f ≤ t < n.

4.2 Zero-many Data and Counter Abstraction

The system J (n) obtained after applying predicate abstraction is still parame-
terized in n, i.e., the size of its array variables depends on n. To build a finite
system independent of n, we fix the size of the array variables. We proceed by
fixing m processes and abstracting the remaining n−m processes based on their
process location (defined in Section 3.2). That is, for all process locations ` ∈ Loc,
we store whether no process from the n−m processes is in location ` (zero), or
whether at least one process from the n−m processes is in location ` (many).
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Fig. 3: Two-step zero-many abstraction (for |cntl(V )| = |nbhd(V )| = 1, and
omitting rcv for space reasons) with m fixed processes. (a) illustrates a state

σ of J (n); (b) shows the result of applying α̃n, where U = [m] ∪ Loc. Ỹ[i, v]
stores the set of values in row i of Y for all columns j witnessed by v; (c) shows

the result of applying α̂n, i.e., x̂ and fl̂d store the control variable x and the

failure flag of the m processes, âctive[u] stores if there are zero or many processes

witnessed by u ∈ Loc, Ŷ[u, v] stores the union of values Ỹ[i, v] for processes i
witnessed by u, and ĉr[u] stores the union of c̃r[i] for processes i witnessed by u.

We apply the zero-many abstractions in two steps (Fig. 3). After the first
step, the overapproximation still depends on n, but after the second step the
overapproximation is finite and independent of n.

Step one: Zero-many data abstraction. In the first step, we fix the size of the
two-dimensional arrays from the set nbhd(V)∪{rcv} so that the number of their
columns depends on Loc and m, and not on n. As a result, we obtain an abstract
system J̃ (n), that is still parameterized in n.

To build J̃ (n), we need the following notation. First, we define a set U =
[m] ∪ Loc of indices, which will be used as indices of the abstract array variables.
We say that an index u ∈ U witnesses a process, if it corresponds to one of the
fixed m processes, i.e., if u ∈ [m], or if u ∈ Loc and there exists a process whose
current location is u. In this step, we use the elements of U as indices for the
columns of the two-dimensional arrays: each cell in a column indexed by u ∈ U
is a union of the cells in the column indexed by the processes witnessed by u.

Next, we define a mapping ids : Σ(n)×U → 2[n], that maps a state σ ∈ Σ(n)
and an index u ∈ U to the set of processes witnessed by u, i.e., ids(σ, u) = {u},
if u ∈ [m], and ids(σ, u) = {i ∈ [n] \ [m] | σ.locationi = u}, if u ∈ Loc.

Finally, we define the set of variables Ṽ of J̃ (n), that contains (i) the

control variables x̃ ∈ cntl(Ṽ ), ranging over (Dx)n, (ii) the neighborhood ar-

rays Ỹ ∈ nbhd(Ṽ ), ranging over (2Dy)n·|U |, and (iii) the environment variables

c̃r, fl̃d, r̃cv, ranging over {⊥,>}n,{⊥,>}n, and (2{⊥,>})n·|U | respectively. The

set Σ̃(n) of states of J̃ (n) is the set of all valuations of Ṽ .

Using this notation, we introduce the abstraction mapping α̃n : Σ(n)→ Σ̃(n),

that maps states of J (n) (Fig. 3a) to states from Σ̃(n) (Fig. 3b).

Definition 9 (Abstraction Mapping α̃n). We define the abstraction mapping

α̃n : Σ(n)→ Σ̃(n) as: σ̃.x̃ = σ.x, for all x̃ ∈ cntl(Ṽ ); σ̃.c̃r = σ.cr; σ̃.fl̃d = σ.fld;
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σ̃.p̃rj = σ.prj, for j ∈ [k]; and for all Ỹ ∈ nbhd(Ṽ ) ∪ {r̃cv}, i ∈ [n], v ∈ U ,

σ̃.Ỹ[i, v] =
⋃
{σ.Y[i, j] | j ∈ ids(σ, v)}.

Given the system J (n) and the set Σ̃(n) of states, we define J̃ (n) as the
overapproximation of J (n) induced by α̃n.

Proposition 3 (Soundness of α̃n). For every n ∈ N, and a formula ψm ∈ Fm
l ,

we have that if J̃ (n) |= ψm, then J (n) |= ψm.

Step two: Zero-many counter abstraction In this step, we store the values of
the control variables and the failure flags for the m processes in the variables

x̂ ∈ cntl(V̂ ) and fl̂d respectively, and for the remaining n−m processes, we keep
information whether there exists some process from [n] \ [m] in some location

` ∈ Loc in a newly introduced variable âctive. Finally, we use the elements
from the set U to index the rows of the two-dimensional arrays from the set
nbhd(V̂ )∪ {r̂cv} and the one-dimensional array ĉr. Note that the failure flags of
the n−m processes are encoded in the process locations. This results in a finite
system Ĵ , which is not parameterized.

To build Ĵ , we first define the mapping ĩds : Σ̃(n)×U → 2[n] analogously to

the mapping ids above: ĩds(σ̃, u) = {u} if u ∈ [m], and ĩds(σ̃, u) = {i ∈ [n]\ [m] |
σ̃.locationi = u} otherwise. We define the set V̂ of variables of Ĵ , that contains:

– control variables x̂ ∈ cntl(V̂ ) of the m fixed processes, ranging over (Dx)m

– the array âctive, ranging over {0,many}|Loc|, that stores for a location

u ∈ Loc, whether there are no processes in location u (âctive[u] = 0), or if

there is at least one process in location u (âctive[u] = many);

– neighborhood arrays Ŷ ∈ nbhd(V̂ ), ranging over (2Dy )|U |·|U |, and

– environment variables ĉr, fl̂d, r̂cv, ranging over (2{⊥,>})|U |, {⊥,>}m, and
(2{⊥,>})|U |·|U | respectively.

Using the notation defined above, we define the abstraction mapping α̂n that
maps an abstract state σ̃ ∈ Σ̃(n) (Fig. 3b) to an abstract state σ̂ ∈ Σ̂ (Fig. 3c).

Definition 10 (Abstraction mapping α̂n). We define the abstraction map-

ping α̂n : Σ̃(n) → Σ̂ as: for u ∈ [m], σ̂.x̂[u] = σ̃.x̃[u], for all x̂ ∈ cntl(V̂ ),

and σ̂.fl̂d[u] = σ̃.fl̃d[u]; for u ∈ Loc, σ̂.âctive[u] = 0 if ĩds(σ̃, u) = ∅, and

σ̂.âctive[u] = many otherwise; for u ∈ U , σ̂.ĉr[u] =
⋃
{σ̃.c̃r[i] | i ∈ ĩds(σ̃, u)};

for j ∈ [k], σ̂.p̂rj = σ̃.p̃rj ; and for all Ŷ ∈ nbhd(V̂ ) ∪ {r̂cv}, u, v ∈ U , σ̂.Ŷ[u, v]

is
⋃
{σ̃.Ỹ[i, v] | i ∈ ĩds(σ̃, u)}.

Given J̃ (n) and Σ̂, we define the abstract system Ĵ as the overapproximation
induced by the mapping α̃n.

We now define how to evaluate formulas ψm ∈ Fm
l in states σ̂ ∈ Σ̂. As we

have removed the parameter n, when evaluating ψm in σ̂, the indices bound by
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the ∃-quantifier range over the set U of abstract indices, while the indices bound
by the ∀-quantifier continue to range over the set [m].

Recall that to express specifications of agreement algorithms we defined
Vars = cntl(V ) ∪ {cr, fld}, and atomic propositions in a formula of the form
([z = v], i) for z ∈ Vars, v ∈ Dz and index i. We now define the meaning of the

indexed atomic propositions in σ̂ ∈ Σ̂, by distinguishing the following cases:

z 6= cr. We define σ̂ |= ([z = v], i) if (a) i ∈ [m] and σ̂.ẑ[i] = v; or (b) i ∈ Loc
and σ̂.âctive[i] = many ∧ i.z = v;

z = cr. We define σ̂ |= ([cr = v], i) if v ∈ σ̂.ĉr[i].

Proposition 4 (Soundness of α̂n). For every n ∈ N, and a formula ψm ∈ Fm
l

we have that if Ĵ |= ψm then J̃ (n) |= ψm.

The overall soundness of our approach is a consequence of Propositions 1 – 4.

Theorem 1 (Soundness). Let I(n, t, f) be an FTDA instance, and Ĵ the
abstract system defined as the overapproximation induced by the abstraction
mapping α̂n ◦ α̃n ◦ α. If Ĵ |= χC → ϕm, then I(n, t, f) |= ϕ.

4.3 Abstract Transition Relations

In the previous section we have defined Ĵ = 〈Σ̂, Σ̂0, Θ̂〉 as the overapproximation
of the FTDA instances in {I(n, t, f) | f ≤ t < n} induced by the abstraction
mapping δ = α̂n ◦ α̃n ◦ α, without giving a constructive definition of the abstract
transition relation. In this section we show how to efficiently compute abstract

versions of the transition relations from Section 3.2: The abstract transitions
ÊNV−−−→

and
M̂EP−−−→ are straight-forward abstract encodings of updating the environment

variables (e.g., crashing processes), and the message exchange phase, respectively.

Encoding the abstract process state update
P̂ROC−−−→ is more involved: due to the

counter abstraction, from an index u ∈ U we have to decode the location that
corresponds to that index, and compute the possible successor locations which

we store in a relation Âctive ⊆ Loc× Loc. We use this relation for updating the

array âctive and the neighborhood arrays Ŷ ∈ nbhd(V̂ ).
We adapt several notions that we used throughout this paper. First, given an

abstract state σ̂ ∈ Σ̂ and an index u ∈ U , we say that u witnesses a process in

σ̂ if u ∈ [m] or if u ∈ Loc and σ̂.âctive[u] = many. Next, we adapt the notions

control, row and local. For an abstract state σ̂ ∈ Σ̂ and u ∈ U , we denote by:

– σ̂.controlu the tuple 〈σ̂.x̂1[u], . . . , σ̂.x̂|cntl(V̂ )|[u]〉 if u ∈ [m], and u.control if

u ∈ Loc and σ̂.âctive[u] = many;

– σ̂.rowŶ
u the tuple 〈σ̂.Ŷ[u, v1], . . . , σ̂.Ŷ[u, v|U |]〉 ∈ (2Dy )|U |;

– σ̂.localu the tuple 〈σ̂.controlu, σ̂.rowŶ1
u , . . . , σ̂.row

Ŷ|nbhd(V̂ )|
u 〉 ∈ P̂ , where P̂ =

C ×
∏

Ŷ∈nbhd(V̂ )(2
Dy )|U | is the set of abstract process states;
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Abstract environment update. The transition σ̂
ÊNV−−−→ σ̂′ is defined as follows.

First, the predicates from the set Pred are assigned values non-deterministically.
Second, to define the new crashes, for u ∈ U , the value of σ̂′.ĉr[u] is set to

{⊥} if u witnesses a failed process, that is, if u ∈ [m] and σ̂.fl̂d[u] = >, or if
u ∈ Loc and u.fld = >. Otherwise, if u witnesses a non-failed process, σ̂′.ĉr[u] is
assigned either {⊥} or {>} if u ∈ [m], and one of the values {⊥}, {>} or {⊥,>}
if u ∈ Loc, non-deterministically. If u does not witness a process, σ̂′.ĉr[u] = ∅.

To build the new receiver lists, for every u, v ∈ V that witness a process, the
value of σ̂′.r̂cv[u, v] is set to {⊥}, if v witnesses a failed process. If v witnesses
a crashed process, that is, if > ∈ σ̂′.ĉr[v], then σ̂′.r̂cv[u, v] is assigned one of
the values {⊥}, {>} or {⊥,>} non-deterministically. Otherwise, if v witnesses a
correct process, σ̂′.r̂cv[u, v] = {>}. The cells of σ̂′.r̂cv indexed by indices from
U that do not witness a process are set to ∅.

Abstract message exchange phase. A transition σ̂
M̂EP−−−→ σ̂′ is taken if (i) σ̂′.M̂sg[u, v]

contains snd msg(σ̂.controlv), for u, v ∈ U such that > ∈ σ̂.r̂cv[u, v], (ii) it con-

tains ⊥, if ⊥ ∈ σ̂.r̂cv[u, v], and (iii) σ̂′.M̂sg[u, v] = ∅ in the remaining cases.

Abstract process variable update. To define how the control states are updated
in the abstract system Ĵ , we define abstract guarded assignments. The abstract
guarded assignments are of the form ĝ → âsg, where ĝ is a Boolean combination
of abstract basic guards, and âsg is a partial function, defined in the same way as
in the concrete case. We have the following abstract basic guards :

guard notation evaluation

empty gtrue true

control gx,v where x ∈ cntl(V ) and v ∈ Dx controlu.x = v

termination gp̂r where p̂r abstracts r B φ(n, t) p̂r

neighborhood gΞ where Ξ is a set of triples (Ŷ,�, vy) s.t. ∃v ∈ U
Ŷ ∈ nbhd(V ),� ∈ {∈, /∈}, and vy ∈ Dy

∧
Ξ(vy � Ŷ[u, v])

The abstract guards are evaluated over localu, for u ∈ U . We write localu |= ĝ
if the abstract guard ĝ is satisfied in the abstract process state localu.

The control state update of the fixed m processes is analogous to the concrete
case: a set Ĝm of abstract guarded assignments with pairwise mutually exclusive
guards defines a function updatem : P̂ → C.

To update the control states of processes witnessed by u ∈ Loc, we define a
set ĜLoc of guarded assignments, where the guards are not pairwise mutually
exclusive. The set ĜLoc defines a function updateLoc, which returns a set of
control states. Intuitively, processes that are witnessed by the same location
may update to different control states in the concrete system, depending on the
neighborhood arrays and the environment. This is why, in the set ĜLoc, there can
be multiple guarded assignments with the same guard, but different assignments.

Definition 11 (updateLoc). The function updateLoc : P̂ → 2C maps abstract
local states to subsets of the set C of control states. For u ∈ Loc, we define
updateLoc(localu) = {c | ∃ĝ → âsg ∈ ĜLoc s.t. localu |= ĝ and âsg results in c}.
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To update the array âctive, we define the following relation.

Definition 12 (Âctive). A pair (u, u′) of locations from Loc are in relation

Âctive ⊆ Loc × Loc if σ̂.âctive[u] = many and either: (i) u.failed = > and
u = u′, or (ii) u.failed = ⊥ and > ∈ σ̂.ĉr[u] and u′ = 〈σ̂.controlu,>〉, or
(iii) u.failed = ⊥ and ⊥ ∈ σ̂.ĉr[u] and u′ ∈ updateLoc(σ̂.localu).

The relation Âctive is used to update the neighborhood arrays Ŷ ∈ nbhd(V̂ )\
{M̂sg}, as the update of the locations implies update in the indices of the

neighborhood arrays. When updating Ŷ, different cases based on whether u, v
are in [m] of in Loc are distinguished. For example, if u ∈ [m] and v ∈ Loc then

σ̂′.Ŷ[u, v] is the union of the sets {hy(d) | d ∈ σ̂.M̂sg[u, vo]} where hy is the
process function for updating Y, vo ∈ Loc is the old location that updated to

the new location v, and (vo, v) ∈ Âctive.

Finally, for two states σ̂, σ̂′ ∈ Σ̂, it holds that σ̂
P̂ROC−−−→ σ̂′ if:

1. for u ∈ [m], we have σ̂′.fl̂d[u] = σ̂.fl̂d[u] ∨ (σ̂.ĉr[u] = {>});
2. for u ∈ [m], we have σ̂′.controlu = updatem(σ̂.localu) if σ̂′.fl̂d[u] = ⊥, and
σ̂′.controlu = σ̂.controlu otherwise;

3. for u ∈ Loc, we have σ̂′.âctive[u] = 0 if ∀v ∈ Loc (v, u) /∈ Âctive, and

σ̂′.âctive[u] = many otherwise;

4. for u, v ∈ U and Ŷ ∈ nbhd(V̂ ) \ {M̂sg}, we have:

– σ̂′.Ŷ[u, v] = {hy(d) | d ∈ M̂sg[u, v]}, if u, v ∈ [m];

– σ̂′.Ŷ[u, v] =
⋃

(vo,v)∈Âctive
{hy(d) | d ∈ σ̂.M̂sg[u, vo]}, if u ∈ [m], v ∈ Loc;

– σ̂′.Ŷ[u, v] =
⋃

(uo,u)∈Âctive
{hy(d) | d ∈ σ̂.M̂sg[uo, v]}, if u ∈ Loc, v ∈ [m];

– σ̂′.Ŷ[u, v] =
⋃

(uo,u)∈Âctive

(vo,v)∈Âctive

{hy(d) | d ∈ σ̂.M̂sg[uo, vo]}, if u, v ∈ Loc.

5. for u, v ∈ U , we have σ̂′.M̂sg[u, v] = {⊥}, if u, v witness a process in σ̂′, and

σ̂′.M̂sg = ∅ otherwise.

Theorem 2 (Simulation). Let Ĵ be the overapproximation of I(n, t, f) induced
by the abstraction mapping δ = α̂n ◦ α̃n ◦ α. Suppose (s, s′′′) ∈ Q(n, t, f), such

that there exist s′, s′′ ∈ S(n, t, f) with s
ENV−−−→ s′

MEP−−−→ s′′
PROC−−−→ s′′′. Then it holds

that δ(s)
ÊNV−−−→ δ(s′)

M̂EP−−−→ δ(s′′)
P̂ROC−−−→ δ(s′′′).

5 Benchmarks and Experiments

We encoded several synchronous FTDAs from the literature in TLA+ [33] and
used the model checker TLC [50]. The experiments were run on a machine with
two 12-core Intel(R) Xeon(R) E5-2650 v4 CPUs and 256 GB RAM.

Our benchmarks contain algorithms that solve different variants of the consen-
sus problem, the k-set agreement problem, and the atomic commitment problem;
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Table 1: Experimental results for parameterized model checking

algorithm problem reference m
I(n, t, f) with t ≤ n−m

m′ I(n, t, f) with n−m < t < n
states time states time

FloodSet consensus [37, p.103] 2 210 583 2min 28s 1 17 911 11s

FC fair consensus [47, p. 17] 2 160 523 3min 1 26 967 18s

EDAC early deciding consensus [11] 2 416 120 4h 35min 1 35 027 2min 28s

ESC early stopping consensus [47, p. 38] 2 163 772 44min 30s 1 12 784 1min 19s

NBAC non-blocking atomic commit [47, p. 82] 2 69 845 40s 1 4 981 5s

FloodMin k-set agreement, for k = 2 [37, p.163] 3 10 116 820 10d 16h
2 512 861 1h 39min
1 43 601 2min 2s

Table 2: Experimental results for the concrete instances of our benchmarks

algorithm
fixed size instance obtained by assigning values to n, t, and f

I(3, 2, 1) I(4, 3, 2) I(4, 3, 3) I(5, 4, 2) I(5, 4, 3)
states time states time states time states time states time

FloodSet 6 937 4s 99 783 10s 1 220 227 1min 18s 1 024 866 1min 7s 34 724 276 1h 18min

FC 9 118 4s 138 160 11s 1 685 892 1min 45s 1 591 687 1min 39s 53 816 397 1h 43min

EDAC 26 962 5s 242 605 16s 5 703 025 5min 44s 1 940 929 2min 29s 124 183 639 4h 1min

ESC 10 543 4s 170 088 12s 2 954 288 2min 16s 1 577 742 1min 34s 71 913 792 1h 57min

NBAC 256 1s 16 120 7s 16 120 7s 286 670 46s 3 335 753 10min 33s

FloodMin 13 215 6s 287 001 1min 1s 3 311 397 14min 10s 5 297 856 23min 41s out of memory in 3d 11h

see the references given in Table 1 for details. As we focus on synchronous algo-
rithms, we have a different set of benchmarks compared to the work in [17,38] that
focuses on the partially synchronous algorithms from [12]. The only exception is
that [17] considers FloodMin in the specific consensus setting (k = 1) which boils
down to our FC consensus benchmark. They check 5 user-provided verification
conditions, such as invariants or ranking functions, in less than a second. In our
model-checking approach, the user does not have to provide an invariant, thus
we have a higher degree of automation.

Table 1 summarizes the experiments for parameterized model checking. In
our experiments we assume that the fixed m processes are correct, which implies
f ≤ t ≤ n − m. To capture the corner cases n − m < t < n required by the
resilience condition f ≤ t < n, we also do experiments with m′ < m concrete
processes. In Table 1 we distinguish the cases when at most m′ < m are correct
(right), from the one where this is not the case (left). We see that most of the
verification time is spent on the case of at least m correct processes.

For comparison, Table 2 summarizes the experiments for small instances of
up to n = 5 processes, where t is set to n− 1. We observe that parameterized
verification outperforms model checking of fixed size systems already in the case
of n = 5, t = 4, and f = 3. In the case of n = 5, t = 4, and f = 4, we were
only able to verify the simplest benchmark, NBAC. For the remaining ones we
reached the limitations of the model checker, as TLC was not able to enumerate
all possible successor states due to the immense branching.

By far, FloodMin is the most challenging benchmark: its specifications are
more complicated, and we therefore have to fix 3 processes (in contrast to 2
in the other benchmarks). In the concrete instance I(5, 4, 3), i.e., where n = 5,
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t = 4, and f = 3, the model checker terminated after three days with an out of
memory error.

6 Discussion

While synchronous distributed algorithms are considered “simpler” to design
than asynchronous ones, encoding and model checking synchronous algorithms is
a challenge: All processes take steps simultaneously, and each process can transfer
into several successor states depending on the received messages, which are
subject to non-determinism by the environment. We noticed in our experiments
that synchronously selecting a successor state for each process combined with
the non-determinism results in a huge branching factor. In conjunction with the
additional non-determinism introduced through abstraction, this poses serious
challenges to the explicit state model checker TLC. In future work, we will
consider other model checking back-ends, and different encodings. Our predicate
abstraction currently requires some domain knowledge to capture the interplay of
the number of faults and round numbers. As future work we consider automatic
generation of this abstraction by means of static analysis on the environment. All
other abstractions can be done automatically. Finally, more complex resilience
conditions that appear in the literature, such as n > 2t, would require a finer
abstraction than the one we present here, a topic that we reserve for future work.

Parameterized model checking is undecidable in general [3, 4, 6, 19,49]. Still,
there are techniques for specific classes of systems. A popular technique is
abstraction. Different domain-specific abstractions have been used for mutual
exclusion [15, 16, 46], cache coherence [13, 32, 40, 43], dynamic scheduling [39],
and recently to asynchronous FTDAs [2,27,28,29]. Most of these parameterized
model checking techniques consider asynchronous systems. The work most closely
related to ours are the cutoff results of [38], as (i) it targets at completely
automated verification, and (ii) while we have simulation to abstract systems, the
authors of [38] prove simulation to small systems. To achieve this, the authors
had to restrict the fragment to which the cutoff theorem applies: First, the cutoff
only applies to consensus algorithms, that is, to three specific LTL specifications.
As noted in [38], generalizing this to other specifications, e.g., k-set agreement,
non-blocking atomic commit, or even a more complete logic fragment would
require more theoretical work. Our case studies discussed in Section 5 include
other algorithms than just consensus. Second, the guarded command language
introduced in [38] can express only threshold guards containing predicates on the
number of messages received by a process in the current round. However, there
are several round-based distributed algorithms, in particular synchronous ones,
that contain other guards; for instance, termination guards that check whether
a given round number is reached, or guards that check whether messages from
the same set of processes are received in two consecutive rounds. Our guarded
commands contain such guards. Still, we currently cannot express all distributed
algorithms, and extending our verification methods to other syntactic constructs
is future work.
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Abstract. Both static and dynamic program verification approaches
have significant disadvantages when considered in isolation. Inspired by
research on gradual typing, we propose gradual verification to seam-
lessly and flexibly combine static and dynamic verification. Drawing on
general principles from abstract interpretation, and in particular on the
recent Abstracting Gradual Typing methodology of Garcia et al., we sys-
tematically derive a gradual verification system from a static one. This
approach yields, by construction, a gradual verification system that is
compatible with the original static system, but overcomes its rigidity by
resorting to dynamic verification when desired. As with gradual typing,
the programmer can control the trade-off between static and dynamic
checking by tuning the (im)precision of pre- and postconditions. The
formal semantics of the gradual verification system and the proofs of
its properties, including the gradual guarantees of Siek et al., have been
fully mechanized in the Coq proof assistant.

1 Introduction

Program verification techniques have the potential to improve the correctness
of programs, by exploiting pre- and postconditions specified in formulas drawn
from a given logic, such as Hoare logic [8]. Unfortunately, traditional approaches
to verification have a number of shortcomings, as illustrated next.

Example 1.
int withdraw (int balance , int amount )

requires ( balance ≥ amount ) ensures ( balance ≥ 0) {
return balance - amount ; // returns the new balance

}

int balance : = 100;
balance : = withdraw (balance , 30);
balance : = withdraw (balance , 40);
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In this case, we reason about a variable balance representing some bank account.
The contract (pre- and postconditions) of withdraw specifies that it may only be
called if the balance is high enough to withdraw the given amount, ensuring that
no negative balance is reached. There are a number of ways to verify Example 1.
We briefly discuss static and dynamic verification, including hybrid approaches.
We then introduce gradual verification as an approach that has the potential to
overcome a number of their shortcomings.

Static verification. Formal methods like Hoare logic are used to establish
statically that a program is valid, i.e. satisfies its specification. In Example 1, the
static verifier proves both that withdraw itself complies with its contract and
that the three statements below are valid, e.g. that the precondition of withdraw
is satisfied prior to both calls.

A lack of detailed contracts may prevent the verifier from establishing that a
program is valid. In Example 1, verification of the second call to withdraw in fact
fails: after the first call, the verifier knows from the postcondition that (balance
≥ 0), which is insufficient to justify that (balance ≥ 40) as required for the
second call. Deriving such knowledge would require a stronger postcondition such
as balance = old(balance) - amount. However, this is not the postcondition
that was provided by the programmer, perhaps intentionally (e.g. if the intent
was to focus on some weaker correctness properties) or perhaps due to limited
expressiveness of the underlying logic (notation such as old(x) may not exist).
In general, a verification tool might also fail to prove program properties due to
undecidability of the underlying logic or practical limitations of the specific tool
implementation.

Hoare logic has been extended to more powerful logics like separation logic
[15] and implicit dynamic frames [20]. Yet, the requirement of rigorous an-
notation of contracts remains an issue in these settings. Due to space limi-
tations and to capture the core ideas of gradual verification, this paper fo-
cuses on a simple Hoare logic. We have formalized an extension to implicit
dynamic frames and implemented a prototype, which can both be found at
http://olydis.github.io/GradVer/impl/HTML5wp/

Dynamic verification. An alternative approach is to use dynamic verifica-
tion to ensure that a program adheres to its specification at runtime, by turning
the contract into runtime checks. A contract violation causes a runtime exception
to be thrown, effectively preventing the program from entering a state that con-
tradicts its specification. In Example 1, a dynamic verification approach would
not raise any error because the balance is in fact sufficient for both calls to
succeed. Note that because contracts are checked at runtime, one can even use
arbitrary programs as contracts, and not just formulas drawn from a logic [6].

Meyer’s Design by Contract methodology [12] integrated writing contracts in
this way as an integral part of the design process, with the Eiffel language au-
tomatically performing dynamic contract verification [11]. Dynamic verification
has also notably been used to check JML specifications [3], and has been ex-
tended to the case of separation logic by Nguyen et al. [14]. Note that unlike the
static approach, the dynamic approach only requires programmers to encode the
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properties they care about as pre- and postconditions, and does not require ex-
tra work for the sake of avoiding false negatives. However, the additional checks
impose runtime overhead that may not always be acceptable. Furthermore, vio-
lations of the specification are no longer detected ahead of time.

Hybrid approaches. Recognizing that static and dynamic checking have
complementary advantages, some approaches to combine them have emerged. In
particular, with the Java Modeling Language (JML) [2] and Code Contracts [5],
it is possible to use the same specifications for either static or dynamic veri-
fication. Additionally, Nguyen et al. explored a hybrid approach to reduce the
overhead of their approach to runtime checking for separation logic, by exploiting
static information [14].

Although useful, these techniques do not support a smooth continuum be-
tween static and dynamic verification. With the JML approach, engineers enable
static or dynamic verification; the two checking regimes do not interact. Nguyen
et al. use the static checker to optimize runtime checks, but do not try to report
static verification failures because it is difficult to distinguish failures due to con-
tradictions in the specification (which the developer should be warned about)
from failures due to leaving out parts of the specification (which could have been
intentional underspecification, and thus should not produce a warning). Their
runtime checking approach also requires the specification of heap footprints to
match in pre- and post-conditions, which like many static checking approaches
forces programmers to do extra specification work to avoid false negatives.

Gradual verification. Because this tension between static and dynamic
verification is reminiscent of the tension between static and dynamic type check-
ing, we propose to draw on research on gradual typing [18,17,7] to develop a
flexible approach to program verification, called gradual verification. Gradual
typing supports both static and dynamic checking and the entire spectrum in
between, driven by the precision of programmer annotations [19]. Similarly, grad-
ual verification introduces a notion of imprecise contracts, supporting a contin-
uum between static and dynamic verification. A static checker can analyze a
gradually-specified program and warn the programmer of inconsistencies be-
tween specifications and code, including contracts that are intended to be fully
precise but are not strong enough, as well as contracts that contradict one an-
other despite possible imprecision in each. On the other hand, the static checker
will not produce warnings that arise from a contract that is intentionally impre-
cise; in these cases, runtime checking is used instead. Programmers can rely on
a gradual guarantee stating that reducing the precision of specifications never
breaks the verifiability (and reduceability) of a program. This guarantee, orig-
inally formulated by Siek et al. in the context of gradual types [19], ensures
that programmers can choose their desired level of precision without artificial
constraints imposed by the verification technology.

It is worth noting that the similarly named work “The Gradual Verifier”
[1] focuses on measuring the progress of static verification. Their verification
technique “GraVy” is neither sound nor complete and does not comply with the
gradual guarantee.
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Gradual verification is not only useful in cases of missing information (e.g.
when reusing a library that is not annotated) but also to overcome limitations
of the static verification system as motivated by Example 1. Furthermore, pro-
grammers can gradually evolve and refine static annotations. As they do so, they
are rewarded by progressively increased static correctness guarantees and pro-
gressively decreased runtime checking, supporting a pay-as-you-go cost model.

Specifically, we support imprecision by introducing an unknown formula
? that acts like a wildcard during static verification. Semantically, the static
checker will optimistically accept a formula containing ? as long as there exists
some interpretation of ? that makes the formula valid. As we learn more infor-
mation about the program state at runtime, the dynamic checker ensures that
some valid instantiation still exists. Crucially, the unknown formula can be com-
bined with static formulas, forming imprecise formulas. For instance, going back
to Example 1, we can write the imprecise postcondition (balance ≥ 0) /\ ? in
order to enable gradual reasoning, resulting in an optimistic interpretation of ?
as (balance ≥ 40) when statically proving the precondition of the second call.
At runtime, this interpretation is checked, to ensure soundness.

Note that the postcondition we suggest is only partially unknown, preserving
the static knowledge (balance ≥ 0). This not only allows us to prove certain
goals (e.g. (balance 6= -10)) without requiring any dynamic checks, but also
to statically reject programs that provably contradict this knowledge (e.g. if a
subsequent call had balance = -10 as precondition).

Contributions. This paper is the first development of the ideas of gradual typ-
ing in the context of program logics for verification. More precisely, we first
introduce a simple statically-verified language called SVL, along with its associ-
ated program logic. We then adapt the Abstracting Gradual Typing methodology
(AGT) [7] to the verification setting and show in section 3 how the static seman-
tics of a gradually-verified language GVL can be derived from SVL using prin-
ciples of abstract interpretation. Section 4 develops GVL’s dynamic semantics.
Here, we deviate from the AGT approach and instead propose injecting a min-
imal amount of runtime assertion checks, yielding a pay-as-you-go cost model.
Finally, Section 5 briefly discusses GVLIDF, an extension of our approach to
heap-allocated objects and an extended logic with implicit dynamic frames [20].

Limitations. Our approach for dynamic semantics requires assertions to be evalu-
able at runtime, naturally limiting the logic usable for annotations. The AGT
methodology (based on combining the proof-trees at runtime) is not restricted
that way, so it may be the ideal starting point for gradual verification in presence
of higher-order logic assertions.

The formal semantics of GVL and the proofs of its properties have been fully
mechanized in the Coq proof assistant and can be found at http://olydis.
github.io/GradVer/impl/HTML5wp/. The site also includes a report with the
formal treatment of the extended logic, as well as an interactive online prototype
of GVLIDF. Due to limited space, some figures contain only selected parts of
definitions. Complete definitions can be found online as well.
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program ::= procedure s

procedure ::= T m(T x) contract { s }

contract ::= requires φ ensures φ

T ::= int

⊕ ::= + | - | ...
� ::= = | =/ | < | ...

s ∈ Stmt ::= skip | s1; s2 | T x | x := e

| x := m(x) | assert φ

e ∈ Expr ::= v | x | (e ⊕ e)
x ∈ Var ::= result | ident | old(ident)

v ∈ Val ::= n

φ ∈ Formula ::= true | (e � e) | φ /\ φ

and syntactic sugar return e
def= result := e and T x := e

def= T x; x := e

Fig. 1. SVL: Syntax

2 SVL: Statically Verified Language

In the following sections, we describe a simple statically verified language called
SVL. We formalize its syntax, semantics and soundness.

2.1 Syntax

Figure 1 shows the syntax of SVL. Programs consist of a collection of procedures
and a designated statement resembling the entry point (“main procedure”). We
include the empty statement, statement sequences, variable declarations, vari-
able assignments, procedure calls, and assertions. All statements are in A-normal
form, which is not essential semantically but does simplify the formalism. Proce-
dures have contracts consisting of a pre- and postcondition, which are formulas.
Formulas can be the constant true, binary relations between expressions, and a
conjunction /\ . Expressions can occur within a formula or variable assignment,
and consist of variables, constants and arithmetic operations. 4

For the remainder of this work we only consider well-formed programs: vari-
ables are declared before use, procedure names are unique and contracts only
contain variables that are in scope. More specifically, a precondition may only
contain the procedure’s parameters xi, a postcondition may only contain the
special variable result and the dummy variables old(xi).

To simplify the presentation of semantics, we will give rules for procedures
that have exactly one parameter.

2.2 Dynamic Semantics

We now describe the dynamic semantics of SVL. SVL has a small-step semantics
· −→ · : State ⇀ State (see Fig. 2) that describes discrete transitions between
program states. Program states that are not in the domain of this partial function
are said to be stuck, which happens if an assertion does not hold or a contract is
4 Our approach is directly applicable to, say, further control structures, a richer type
system or formulas that are arbitrary boolean expressions.
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violated before/after a call. In Section 2.3, we define a static verification system
whose soundness result implies that valid SVL programs do not get stuck.

Program states. Program states consist of a stack, i.e. State = Stack where:

S ∈ Stack ::= E · S | nil where E ∈ StackFrame = Env× Stmt

A stack frame consists of a local variable environment ρ ∈ Env = Var ⇀ Val
and a continuation statement.

Evaluation. An expression e is evaluated according to a big-step evaluation
relation ρ ` e ⇓ v, yielding value v using local variable environment ρ ∈ Env of
the top-most stack-frame. The definition is standard: variables are looked up in
ρ, and the resulting values are combined according to standard arithmetic rules.
Example: [x 7→ 3] ` x + 5 ⇓ 8

The evaluation of a formula in a given environment is specified by the pred-
icate · � · ⊆ Env × Formula. We assume standard evaluation semantics for
standard concepts like equality. We also say that a formula describes a certain
(infinite) set of environments (exactly the environments under which it holds),
yielding natural definitions for formula satisfiability and implication.

Definition 1 (Denotational Formula Semantics).
Let J·K : Formula→ P(Env) be defined as JφK def= { ρ ∈ Env | ρ � φ }

Definition 2 (Formula Satisfiability). A formula φ is satisfiable if and only
if JφK 6= ∅. Let SatFormula ⊂ Formula be the set of satisfiable formulas.

Definition 3 (Formula Implication). φ1 ⇒ φ2 if and only if Jφ1K ⊆ Jφ2K

Reduction rules. We define a standard small-step reduction semantics for state-
ments (Fig. 2). SsAssert ensures that assertions are stuck if the asserted for-
mula is not satisfied. SsCall sets up a new stack frame and makes sure that the
procedure’s precondition is satisfied by the newly set up context. Similarly, Ss-
CallExit ensures that the postcondition is satisfied before returning control to
the call site. Note our use of auxiliary functions procedure and mpost in order to
retrieve a procedure’s definition or postcondition using that procedure’s name.
Formally, we assume all rules and definitions are implicitly parameterized with
the “executing” program p ∈ Program from which to extract this information.
When required for disambiguation, we explicitly annotate reduction arrows with
the executing program p, as in −→p.

Note that SsCall also initializes old(x′), which allows assertions and most
importantly the postcondition to reference the parameter’s initial value. In re-
ality, no additional memory is required to maintain this value since it is readily
available as ρ(x), i.e. it lives in the stack frame of the call site. For a program to
be well-formed, it may not write to old(x′) in order to enable this reasoning.
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ρ � φ

〈ρ, assert φ〉 · S −→ 〈ρ, skip〉 · S
SsAssert

ρ ` e ⇓ v ρ′ = ρ[x 7→ v]
〈ρ, x := e〉 · S −→ 〈ρ′, skip〉 · S

SsAssign

procedure(m) = Tr m(T x′) requires φp ensures φq { r }
ρ ` x ⇓ v ρ′ = [x′ 7→ v, old(x′) 7→ v] ρ′ � φp

〈ρ, y := m(x); s〉 · S −→ 〈ρ′, r〉 · 〈ρ, y := m(x); s〉 · S
SsCall

post(m) = φq ρ′ � φq

〈ρ′, skip〉 · 〈ρ, y := m(x); s〉 · S −→ 〈ρ[y 7→ ρ′(result)], s〉 · S
SsCallExit

Fig. 2. SVL: Small-step semantics (selected rules)

WLP(skip, φ) = φ WLP(s1; s2, φ) = WLP(s1,WLP(s2, φ))
WLP(x := e, φ) = φ[e/x] WLP(assert φa, φ) = φa /\ φ

WLP(y := m(x), φ) = max
⇒
{ φ′ | y 6∈ FV(φ′) ∧

φ′ ⇒ mpre(m)[x/mparam(m)] ∧
(φ′ /\ mpost(m)[x, y/old(mparam(m)), result]) ⇒ φ }

Fig. 3. SVL: Weakest precondition (selected rules)

2.3 Static Verification

We define the static verification of SVL contracts through a weakest liberal pre-
condition calculus [4]. This syntax-directed approach (compared to, say, Hoare
logic, which has an existential in its sequence rule) will be useful for the dynamic
semantics of our gradual language (will be pointed out again later).
Definition 4 (Valid Procedure).
A procedure with contract requires φp ensures φq, parameter x and body s is
considered valid if φp ⇒ WLP(s, φq)[x/old(x)] holds.
We define WLP : Stmt×Formula ⇀ Formula as shown in Figure 3. WLP is
standard for the most part. The rule for calls computes a maximal formula φ′
(i.e. minimum information content) that is sufficient to imply both the proce-
dure’s precondition and the overall postcondition φ with the help of the proce-
dure’s postcondition.

Definition 5 (Valid Program). A program with entry point statement s is
considered valid if true ⇒ WLP(s, true) holds and all procedures are valid. 5

5 Note that one can demand more than true to hold at the final state by simply ending
the program with an assertion statement.

Gradual Program Verification 31



sWLP(s · nil, φ) = WLP(s, φ) · nil
sWLP(s · (y := m(x); s′) · s, φ) = WLP(s,mpost(m)) · sWLP((y := m(x); s′) · s, φ)

Fig. 4. Weakest precondition across call boundaries

Example 2 (Static Checker of SVL). We demonstrate the resulting behavior of
SVL’s static checker using example 1, but with varying contracts:

requires (balance ≥ amount)
ensures (result = old(balance) - old(amount))

withdraw is valid since the WLP of the body, given the postcondition, is
(balance - amount = old(balance) - old(amount)). Substitution gives
(balance - amount = balance - amount) which is trivially implied by
the precondition. The overall program is also valid since the main proce-
dure’s WLP is (100 ≥ 70) which is implied by true.

requires (balance ≥ amount) ensures (result ≥ 0) (as in example 1)
withdraw is valid since the body’s WLP is (balance - amount ≥ 0) which
matches the precondition. However, the program is not valid: The WLP of the
second call is (balance ≥ 40) which is not implied by the postcondition of
the first call. As a result, the WLP of the entire main procedure is undefined.

requires (balance ≥ 0) ensures (result ≥ 0)
Validating withdraw fails since the body’s WLP (same as above) is not im-
plied by the precondition.

2.4 Soundness

Verified programs should respect contracts and assertions. We have formulated
the runtime semantics of SVL such that they get stuck if contracts or assertions
are violated. As a result, soundness means that valid programs do not get stuck.
In particular, we can use a syntactic progress/preservation argument [22].

If the WLP of a program is satisfied by the current state, then execution
will not get stuck (progress) and after each step of execution, the WLP of the
remaining program is again satisfied by the new state (preservation). We use a
progress and preservation formulation of soundness not just because it allows us
to reason about non-terminating programs, but mainly because this will allow
us to naturally deal with the runtime checking needs of gradual verification.

To simplify reasoning about states with multiple stack frames, we extend
the definition of WLP to accept a stack of statements and return a stack of
preconditions, as shown in Figure 4. Note that WLP as defined previously can
only reason about procedure calls atomically since an element of Stmt cannot
encode intermediate states of an ongoing procedure call. In contrast sWLP works
across call boundaries by accepting a stack of statements and recursively picking
up the postconditions of procedures which are currently being executed.
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While before we defined what makes procedures as a whole valid, we can now
validate arbitrary intermediate program states, e.g. we can say that

sWLP


return balance - amount

·
b2 := withdraw(b1, a)

·
nil

, (b2 6= -1) /\ (a = 4)

 =

(balance - amount ≥ 0)
·

(b1 ≥ a) /\ (a = 4)
·

nil

where withdraw is defined as in example 1. If s are the continuations of some
arbitrary program state π ∈ State, then sWLP(s, true) is the precondition for
s. If sWLP(s, true) holds in the variable environments ρ of π, respectively, then
soundness guarantees that the program does not get stuck. In the following, we
extend the notion of validity to arbitrary intermediate program states in order
to formalize progress and preservation. Validity of states is an invariant that
relates the static and dynamic semantics of valid SVL programs.
Definition 6 (Valid state). We call the state 〈ρn, sn〉 · ... · 〈ρ1, s1〉 ·nil ∈ State
valid if ρi � sWLPi(sn · ... · s1 · nil, true) for all 1 ≤ i ≤ n. (sWLPi(s, φ) is the
i-th component of sWLP(s, φ))
Validity of the initial program state follows from validity of the program (Def. 5).
Proposition 1 (SVL: Progress). If π ∈ State is a valid state and π 6∈
{〈ρ, skip〉 · nil | ρ ∈ Env} then π −→ π′ for some π′ ∈ State.
Proposition 2 (SVL: Preservation). If π is a valid state and π −→ π′ for
some π′ ∈ State then π′ is a valid state.

3 GVL: Static Semantics

Having defined SVL, we can now derive its gradual counterpart GVL, which
supports gradual program verification thanks to imprecise contracts. We follow
the abstract interpretation perspective on gradual typing [7], AGT for short.
In this sense, we introduce gradual formulas as formulas that can include the
unknown formula, denoted ?:

φ̃ ::= φ | φ /\ ? and standalone formula ? as syntactic sugar for true /\ ?

We define F̃ormula as the set of all gradual formulas. The syntax of GVL
is unchanged save for the use of gradual formulas in contracts: contract ::=
requires φ̃ ensures φ̃. In Sections 3.2 to 3.4 we lift the predicates and functions
SVL uses for verification from the static domain to the gradual domain, yielding
a gradual verification logic for GVL.

3.1 Interpretation of Gradual Formulas
We call φ in φ /\ ? static part of the imprecise formula and define a helper
function static : F̃ormula→ Formula that extracts the static part of a gradual
formula, i.e. static(φ) = φ and static(φ /\ ?) = φ. Following the AGT approach,
a gradual formula is given meaning by concretization to the set of static formulas
that it represents.
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Definition 7 (Concretization of gradual formulas).
γ : F̃ormula ⇀ PFormula is defined as:

γ(φ) = { φ }
γ(φ /\ ?) = { φ′ ∈ SatFormula | φ′ ⇒ φ } if φ ∈ SatFormula
γ(φ /\ ?) undefined otherwise

A fully-precise formula concretizes to the singleton set. Importantly, we only
concretize imprecise formulas to precise formulas that are satisfiable. Note that
the concretization of any gradual formula always implies the static part of that
formula. The notion of precision between formulas, reminiscent of the notion of
precision between gradual types [19], is naturally induced by concretization [7]:

Definition 8 (Precision). φ̃1 is more precise than φ̃2, written φ̃1 v φ̃2 if and
only if γ(φ̃1) ⊆ γ(φ̃2).

3.2 Lifting Predicates

The semantics of SVL makes use of predicates that operate on formulas, namely
formula implication and formula evaluation. As GVL must operate on grad-
ual formulas, these predicates are lifted in order to deal with gradual formulas
in a consistent way. We propose the following definitions of consistent formula
evaluation and implication.
Definition 9 (Consistent Formula Evaluation).
Let · �̃ · ⊆ Env× F̃ormula be defined as ρ �̃ φ̃ ⇐⇒ ρ � static(φ̃)

Definition 10 (Consistent Formula Implication).
Let · ⇒̃ · ⊆ F̃ormula× F̃ormula be defined inductively as

φ1 ⇒ static(φ̃2)
φ1 ⇒̃ φ̃2

ĨmplStatic

φ ∈ SatFormula
φ ⇒ φ1 φ ⇒ static(φ̃2)

φ1 /\ ? ⇒̃ φ̃2
ĨmplGrad

In rule ĨmplGrad, φ represents a plausible formula represented by φ1 /\ ?.

Abstract interpretation. Garcia et al. [7] define consistent liftings of predicates
as their existential liftings:
Definition 11 (Consistent Predicate Lifting). The consistent lifting P̃ ⊆
F̃ormula× F̃ormula of a predicate P ⊆ Formula×Formula is defined as:

P̃ (φ̃1, φ̃2) def⇐⇒ ∃φ1 ∈ γ(φ̃1), φ2 ∈ γ(φ̃2). P (φ1, φ2)

Our definitions above are proper predicate liftings.
Lemma 1 (Consistent Formula Evaluation and Implication).
· �̃ · (Def. 9) is a consistent lifting of · � · and · ⇒̃ · (Def. 10) is a
consistent lifting of · ⇒ · .
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3.3 Lifting Functions
Deriving gradual semantics from SVL also involves lifting functions that operate
on formulas, most importantly WLP (Definition 3). Figure 5 gives the definition
of W̃LP : Stmt × F̃ormula ⇀ F̃ormula, the consistent lifting of WLP. For

W̃LP(skip, φ̃) = φ̃ W̃LP(s1; s2, φ̃) = W̃LP(s1, W̃LP(s2, φ̃))

W̃LP(x := e, φ̃) = φ̃[e/x] W̃LP(assert φa, φ̃) = φa /\ φ̃

W̃LP(y := m(x), φ̃) =
{
φ′ if φ̃,mpre(m),mpost(m) ∈ Formula
φ′ /\ ? otherwise

where φ′ = max
⇒
{ φ′′ | y 6∈ FV(φ′′) ∧ (φ′′ ⇒̃ mpre(m)[x/mparam(m)]) ∧

(φ′′ /\ mpost(m)[x, y/old(mparam(m)), result]) ⇒̃ φ̃ }

Fig. 5. GVL: Weakest precondition (selected rules)

most statements W̃LP is defined almost identical to WLP, however, calls are more
complex. Note that for calls, W̃LP not only has to deal with the fact that φ̃ is a
gradual formula, but also that procedure m may now have imprecise contracts.
In a sense, the function is lifted w.r.t. three formula parameters, two of them
referenced through the procedure’s name. To accomplish this, we first determine
the static part φ′ of the result which is analogous to the WLP, but resorting to
lifted predicates. Next, we determine whether it would be sufficient to return φ′
unmodified, or whether it is plausible that the precondition must be stronger. If
all three influencing formulas are precise W̃LP should coincide with WLP, so φ′ is
returned. Otherwise, φ′ might have been chosen too weak, which is counteracted
by making it imprecise.

Abstract interpretation. Again, AGT [7] formalizes the notion of consistent func-
tions using an abstraction function α that maps a set of static formulas back to
the most precise gradual formula that represents this set, such that 〈γ, α〉 forms
a Galois connection.

Definition 12 (Abstraction of formulas). Let α : PSatFormula ⇀ F̃ormula
be defined as α(φ) = min

v
{ φ̃ ∈ F̃ormula | φ ⊆ γ(φ̃) }

α is partial since min
v

does not necessarily exist, e.g. α({(x 6= x), (x = x)})
is undefined. Using concretization for gradual parameters and abstraction for
return values one can consistently lift (partial) functions:
Definition 13 (Consistent Function Lifting). Given a partial function f :
Formula ⇀ Formula, its consistent lifting f̃ : F̃ormula ⇀ F̃ormula is
defined as f̃(φ̃) = α({ f(φ) | φ ∈ γ(φ̃) })
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Lemma 2 (Consistent WLP). W̃LP is a consistent lifting of WLP.

3.4 Lifting the Verification Judgment

Gradual verification in GVL must deal with imprecise contracts. The static
verifier of SVL uses WLP and implication to determine whether contracts and
the overall program are valid (Def. 4, 5). Because contracts in GVL may be
imprecise, we have to resort to W̃LP (Fig. 5) and consistent implication (Def. 10).

Example 3 (Static Checker of GVL). Static semantics of SVL and GVL coincide
for precise contracts, so example 2 applies to GVL without modification. We
extend the example with imprecise contracts:

requires (balance ≥ amount) ensures (result ≥ 0) /\ ?
Note the similarity to the precise contract in example 1 which causes GVL’s
static checker to reject the main procedure. However, with the imprecise
postcondition we now have (balance ≥ 0) /\ ? ⇒̃ (balance ≥ 40).
As a result, the static checker optimistically accepts the program. At the
same time, it is not guaranteed that the precondition is satisfied at runtime
without additional checks. We expect GVL’s runtime semantics (Section 4)
to add such checks as appropriate. These runtime checks should succeed for
the main procedure of example 1, however they should fail if we modify the
main program as follows, withdrawing more money than available:
int b : = 100; b : = withdraw (b, 30); b : = withdraw (b, 80);

Static checking succeeds since (b ≥ 0) /\ ? ⇒̃ (b ≥ 80), but b’s value at
runtime will not satisfy the formula. Note that the presence of imprecision
does not necessarily imply success of static checking:
int b : = 100; b : = withdraw (b, 30); assert (b < 0);

It is implausible that this program is valid since (b ≥ 0) /\ ? ⇒̃ (b < 0)
does not hold. However, further weakening withdraw’s postcondition to ?
would again result in static acceptance but dynamic rejection.

requires ? ensures (result = old(balance) - old(amount)) /\ ?
This contract demonstrates that imprecision must not necessarily result in
runtime checks. The body’s W̃LP is ?, which is implied by the annotated
precondition ? without having to be optimistic (i.e. resort to the plausibility
interpretation). We expect that an efficient runtime semantics, like the one
we discuss in Section 4.3, adds no runtime overhead through checks here.

4 GVL: Dynamic Semantics

Accepting a gradually-verified program means that it is plausible that the pro-
gram remains valid during each step of its execution, precisely as it is guaranteed
by soundness of SVL. To prevent a GVL program from stepping from a valid
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state into an invalid state, we extend the dynamic semantics of SVL with (de-
sirably minimal) runtime checks. As soon as the validity of the execution is no
longer plausible, these checks cause the program to step into a dedicated error
state. Example 3 motivates this behavior.

Soundness. We revise the soundness definition of SVL to the gradual setting
which will guide the upcoming efforts to achieve soundness via runtime assertion
checks. Validity of states (Def. 6) relies on sWLP (Fig. 4) which itself consumes
postconditions of procedures. Hence, GVL uses a consistent lifting of sWLP which
we define analogous to Fig. 4, but based on W̃LP. Save for using sW̃LP instead
of sWLP, valid states of GVL are defined just like those of SVL.

We expect there to be error derivations π −̃→ error whenever it becomes
implausible that the remaining program can be run safely. Note that we do not
extend State, but instead define · −̃→ · ⊆ State × (State ∪ {error}). As a
result, we can leave Prop. 2 (Preservation) untouched.

In Section 4.1 we derive a naive runtime semantics driven by the soundness
criteria of GVL. We then examine the properties of the resulting gradually ver-
ified language. In Section 4.3 we discuss optimizing this approach by combining
W̃LP with strongest preconditions S̃P in order to determine statically-guaranteed
information that can be used to minimize the runtime checks ahead of time.

4.1 Naive semantics

We start with a trivially correct but expensive strategy of adding runtime as-
sertions to each execution step, checking whether the new state would be valid
(preservation), right before actually transitioning into that state (progress). 6

Let ρ′1..m, ρ1..n ∈ Env, s′1..m, s1..n ∈ Stmt
If 〈ρ′m, s′m〉 · ... · 〈ρ′1, s′1〉 · nil −→ 〈ρn, sn〉 · ... · 〈ρ1, s1〉 · nil holds7, then

〈ρ′m, s′m〉 · ... · 〈ρ′1, s′1〉 · nil −̃→


〈ρn, sn〉 · ... · 〈ρ1, s1〉 · nil if (ρn �̃ φ̃n) ∧ ... ∧ (ρ1 �̃ φ̃1)

where φ̃n · ... · φ̃1 · nil = sW̃LP(sn · ... · s1 · nil, true)
error otherwise

Before showing how to implement the above semantics, we confirm its sound-
ness: Progress of GVL follows from progress of SVL. The same is true for preser-
vation: in the first reduction case, validity of the resulting state follows from
preservation of SVL.
6 Note the difference between runtime assertions and the assert statement. The for-
mer checks assertions at runtime, transitioning into a dedicated exceptional state
on failure. The latter is a construct of a statically verified language, and is hence
implementable as a no-operation.

7 SsCall and SsCallExit as defined in Fig. 2 are not defined for gradual formulas.
Thus, we adjust those rules to use consistent evaluation �̃ instead of � . Since �̃
coincides with � for precise formulas, this is a conservative extension of SVL.
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While we can draw the implementation of · −→ · from SVL, implementing
the case condition (ρn �̃ φ̃n)∧ ...∧ (ρ1 �̃ φ̃1) results in overhead. As a first step,
we can heavily simplify this check using inductive properties of our language:
Stack frames besides the topmost one are not changed by a single reduction, i.e.
ρn−1, ..., ρ1, sn−1, ..., s1 stay untouched. It follows that φ̃i for 1 ≤ i < n remains
unchanged since changes in sn do not affect lower components of sW̃LP (see
Fig. 4). As a result, it is sufficient to check ρn �̃ sW̃LPn(sn · ... · s1 · nil, true).

Recall how we argued that a weakest precondition approach is more suited
for the dynamic semantics of GVL than Hoare logic. Due to the syntax-directed
sequence rule, all potentially occurring sW̃LPn are partial results of statically
precomputed preconditions. Contrast this with a gradual sequence rule of Hoare
logic: {?}skip; skip{?} could be accepted statically by, say, instantiating the
existential with (x = 3), which is allowed if both premises of the rule are lifted
independently. However, the partial result {(x = 3)}skip{?} has no (guaran-
teed) relationship with the next program state since the existential was chosen
too strong. Any attempt to fix the gradual sequence rule by imposing additional
restrictions on the existential must necessarily involve a weakest precondition
calculus, applied to the suffix of the sequence.

4.2 Properties of GVL
Before discussing practical aspects of GVL, we turn to its formal properties:
GVL is a sound, gradual language. The following three properties are formalized
and proven in Coq.

Soundness. Our notion of soundness for GVL coincides with that of SVL, save
for the possibility of runtime errors. Indeed, it is up to the dynamic semantics
of GVL to make up for the imprecisions that weaken the statics of GVL.

Lemma 3 (Soundness of GVL). GVL is sound:
Progress If π ∈ State is a valid state and π 6∈ {〈ρ, skip〉 · nil | ρ ∈ Env} then

π −̃→ π′ for some π′ ∈ State or π −̃→ error.
Preservation If π is a valid state and π −̃→ π′ for some π′ ∈ State then π′

is a valid state.

We call the state 〈ρn, sn〉 · ... · 〈ρ1, s1〉 ·nil valid if ρi �̃ sW̃LPi(sn · ... ·s1 ·nil, true)
for all 1 ≤ i ≤ n.

Conservative extension. GVL is a conservative extension of SVL, meaning that
both languages coincide on fully-precise programs. This property is true by con-
struction. Indeed, the definition of concretization and consistent lifting captures
this property, which thus percolates to the entire verification logic. In order
for the dynamic semantics to be a conservative extension, GVL must progress
whenever SVL does, yielding the same continuation. This is the case since the
reduction rules of GVL coincide with those of SVL for fully-precise annotations
(the runtime checks succeed due to preservation of SVL, so we do not step to
error).
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Gradual guarantees. Siek et al. formalize a number of criteria for gradually-
typed languages [19], which we can adapt to the setting of program verification.
In particular, the gradual guarantee captures the smooth continuum between
static and dynamic verification. More precisely, it states that typeability (here,
verifiability) and reducibility are monotone with respect to precision. We say a
program p1 is more precise than program p2 (p1 v p2) if p1 and p2 are equivalent
except in terms of contracts and if p1’s contracts are more precise than p2’s
contracts. A contract requires φ1

p ensures φ1
q is more precise than contract

requires φ2
p ensures φ2

q if φ1
p v φ2

p and φ1
q v φ2

q.
In particular, the static gradual guarantee for verification states that a valid

gradual program is still valid when we reduce the precision of contracts.

Proposition 3 (Static gradual guarantee of verification).
Let p1, p2 ∈ Program such that p1 v p2. If p1 is valid then p2 is valid.

The dynamic gradual guarantee states that a valid program that takes a step
still takes the same step if we reduce the precision of contracts.

Proposition 4 (Dynamic gradual guarantee of verification).
Let p1, p2 ∈ Program such that p1 v p2 and π ∈ State.
If π −̃→p1 π

′ for some π′ ∈ State then π −̃→p2 π
′.

This also means that if a gradual program fails at runtime, then making its
contracts more precise will not eliminate the error. In fact, doing so may only
make the error manifest earlier during runtime or manifest statically. This is
a fundamental property of gradual verification: a runtime verification error re-
veals a fundamental mismatch between the gradual program and the underlying
verification discipline.

4.3 Practical aspects

Residual checks. Compared to SVL, the naive semantics adds a runtime assertion
to every single reduction. Assuming that the cost of checking an assertion is
proportional to the formula size, i.e. proportional to the size of the WLP of the
remaining statement, this is highly unsatisfying. The situation is even worse if
the entire GVL program has fully-precise annotations, because then the checks
are performed even though they are not necessary for safety.

We can reduce formula sizes given static information, expecting formulas to
vanish (reduce to true) in the presence of fully-precise contracts and gradually
grow with the amount of imprecision introduced, yielding a pay-as-you-go cost
model. Example 4 illustrates this relationship.

Example 4 (Residual checks). Consider the following variation of withdraw:
int withdraw (int balance , int amount )

requires ? ensures result ≥ 0 {
// WLP: ( balance - amount ≥ 0) /\ ( amount > 0)
assert amount > 0;
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// WLP: balance - amount ≥ 0
balance = balance - amount ;
// WLP: balance ≥ 0
return balance ;
// WLP: result ≥ 0

}

Precomputed preconditions are annotated. Following the naive semantics (Sec-
tion 4.1), these are to be checked before entering the corresponding state, to
ensure soundness. However, many of these checks are redundant. When entering
the procedure (i.e. stepping to the state prior to the assertion statement), we
must first check φ1 = (balance - amount ≥ 0) /\ (amount > 0). According
to the naive semantics, in order to execute the assertion statement, we would
then check φ2 = (balance - amount ≥ 0). Fortunately, it is derivable stat-
ically that this check must definitely succeed: The strongest postcondition of
assert amount > 0 given φ1 is again φ1. Since φ1 ⇒ φ2 there is no point in
checking φ2 at runtime. Similar reasoning applies to both remaining statements,
making all remaining checks redundant. Only the initial check remains, which is
itself directly dependent on the imprecision of the precondition. Preconditions
(balance - amount ≥ 0) /\ ? or (amount > 0) /\ ? would allow dropping
the corresponding term of the formula, the conjunction of both (with or without
a ?) allows dropping the entire check.

The above example motivates the formalization of a strongest postcondition
function S̃P and function d̃iff which takes a formula φ̃a to check, a formula φ̃k

known to be true and calculates a residual formula d̃iff(φ̃a, φ̃k) sufficient to check
in order to guarantee that φ̃a holds.

Definition 14 (Strongest postcondition). Let SP : Stmt × Formula ⇀
Formula be defined as: SP(s, φ) = min

⇒
{ φ′ ∈ Formula | φ ⇒ WLP(s, φ′) }

Furthermore let S̃P : Stmt × F̃ormula ⇀ F̃ormula be the consistent lifting
(Def. 13) of SP.

Definition 15 (Reducing formulas).
Let diff : Formula× Formula ⇀ Formula be defined as:

diff(φa, φk) = max
⇒
{ φ ∈ Formula | (φ /\ φk ⇒ φa) ∧

(φ /\ φk ∈ SatFormula) }

Furthermore let d̃iff : F̃ormula× F̃ormula ⇀ F̃ormula be defined as:

d̃iff(φa, φ̃k) = diff(φa, static(φ̃k)) d̃iff(φa /\ ?, φ̃k) = diff(φa, static(φ̃k)) /\ ?

Both SP and diff can be implemented approximately by only approximating
min/max. Likewise, an implementation of S̃P may err towards imprecision. As
a result, the residual formulas may be larger than necessary. 8

8 Even a worst case implementation of S̃P(s, φ̃) as ? will only result in no reduction
of the checks, but not affect soundness.
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〈ρ′n, (s; sn)〉 · ... −→ 〈ρn, sn〉 · ...
〈ρ′n, (s; sn)〉 · ... −̃→ 〈ρn, sn〉 · ...

S̃sLocal

〈ρn−1, (y := m(x); sn−1)〉 · ... −→ 〈ρn,mbody(m)〉 · ...
ρn �̃ d̃iff(W̃LP(mbody(m),mpost(m)),mpre(m))

〈ρn−1, (y := m(x); sn−1)〉 · ... −̃→ 〈ρn,mbody(m)〉 · ...
S̃sCall

〈ρ′n+1, skip〉 · 〈ρ′n, (y := m(x); sn)〉 · ... −→ 〈ρn, sn〉 · ...
ρn �̃ d̃iff(sW̃LPn(sn · ..., true),

S̃P(y := m(x), sW̃LPn((y := m(x); sn) · ..., true)))
〈ρ′n+1, skip〉 · 〈ρ′n, (y := m(x); sn)〉 · ... −̃→ 〈ρn, sn〉 · ...

S̃sCallExit

Fig. 6. Dynamic semantics with reduced checks.

Definition 16 (Approximate algorithm for d̃iff).

F̃ormula d̃iff(F̃ormula φ̃a , F̃ormula φ̃b)
let φ̃1 /\ φ̃2 /\ ... /\ φ̃n := φ̃a (such that all φ̃i are atomic )
for i from 1 to n

if Jφ̃bK ∩ Jφ̃1 /\ ... /\ φ̃i−1 /\ φ̃i+1 ... /\ φ̃nK ⊆ Jφ̃aK
φ̃i := true

return φ̃1 /\ ... /\ φ̃n // one may drop the true terms

Figure 6 shows the dynamic semantics using residual checks (omitting error
reductions). Runtime checks of reductions operating on a single stack frame
vanish completely as there exists no source of imprecision in that subset of
GVL. This property can be formalized as: For all s ∈ Stmt that do not contain
a call, d̃iff(sW̃LPn(sn · ..., true), S̃P(s, sW̃LPn((s; sn) · ..., true))) ∈ {true, ?}
The check in S̃sCall vanishes if mpre(m) is precise. The check in S̃sCallExit
vanishes if mpost(m) is precise. Recall that Example 4 demonstrates this effect:
We concluded that only the initial check is necessary and derived that it also
vanishes if the precondition is precise.

If mpost(m) is imprecise, the assertion is equivalent to

ρn �̃ d̃iff(d̃iff(sW̃LPn(sn · ..., true),mpre(m)[x/mparam(m)]),
mpost(m)[x, y/old(mparam(m)), result])

which exemplifies the pay-as-you-go relationship between level of imprecision and
run-time overhead: both mpre(m) and mpost(m) contribute to the reduction of
sW̃LPn(sn · ..., true), i.e. increasing their precision results in smaller residual
checks.

Pay-as-you-go. To formally establish the pay-as-you-go characteristic of gradual
verification, we introduce a simple cost model for runtime contract checking.
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Let size(φ̃) be the number of conjunctive terms of (the static part of) φ̃, e.g.
size((x = 3) /\ (y 6= z) /\ ?) = 2. We assume that measure to be propor-
tional to the time needed to evaluate a given formula. Let checksize(p) be the
sum of the size of all residual checks in program p.

Proposition 5 (Pay-as-you-go overhead).
a) Given programs p1, p2 such that p1 v p2, then checksize(p1) ≤ checksize(p2).
b) If a program p has only precise contracts, then checksize(p) = 0.

5 Scaling up to Implicit Dynamic Frames

We applied our approach to a richer program logic, namely implicit dynamic
frames (IDF) [20], which enables reasoning about shared mutable state. The
starting point is an extended statically verified language similar to Chalice [10],
called SVLIDF. Compared to SVL, the language includes classes with publicly-
accessible fields and instance methods. We add field assignments and object cre-
ation. Formulas may also contain field accessibility predicates acc from IDF and
use the separating conjunction * instead of regular (non-separating) conjunction
/\ . An accessibility predicate acc(e.f) denotes exclusive access to the field e.f .
It justifies accessing e.f both in the source code (e.g. x.f := 3 or y := x.f)
and in the formula itself (e.g. acc(x.f) * (x.f 6= 4)), which is called framing.
Compared to SVL, the main challenge in gradualizing SVLIDF is framing.

The linear logic ensures that accessibility predicates cannot be duplicated,
hence entitling them to represent exclusive access to a field. SVLIDF can statically
prove that any field access during execution is justified. To formalize and prove
soundness, SVLIDF has a reference dynamic semantics that tracks, for each stack
frame, the set of fields that it has exclusive access to; deciding at runtime whether
a formula holds depends on this information. Of course, thanks to soundness, an
implementation of SVLIDF needs no runtime tracking.

Recall that our approach to derive a gradual language includes the insertion
of runtime checks, which requires that formulas can be evaluated at runtime.
Therefore, the overhead of the reference semantics of SVLIDF carries over to a
naive implementation semantics. Additionally, it is no longer clear how accessi-
bility is split between stack frames in case of a call: SVLIDF transfers exclusive
access to fields that are mentioned in the precondition of a procedure from the
call site to the callee’s (fresh) stack frame. As we allow ? to also plausibly rep-
resent accessibility predicates, an imprecise precondition poses a challenge.

A valid strategy is to conservatively forward all accesses from caller to callee.
As for GVL, we can devise an efficient implementation strategy for accessi-
bility tracking that results in pay-as-you-go overhead.The fact that reducing
the precision of contracts may now result in a divergence of program states
(specifically, the accessible fields) asks for an adjustment of the dynamic part
of the gradual guarantee, which originally requires lock-step reduction behav-
ior. We carefully adjust the definition, preserving the core idea that reducing
precision of a valid program does not alter the observable behavior of that pro-
gram. The formalization of SVLIDF and GVLIDF are available in a companion
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report available online, along with an interactive prototype implementation at
http://olydis.github.io/GradVer/impl/HTML5wp/.

The prototype implementation of GVLIDF displays the static and dynamic
semantics of code snippets interactively, indicating the location of inserted run-
time checks where necessary. It also displays the stack and heap at any point of
execution. A number of predefined examples are available, along with an editable
scratchpad. In particular, Example 2 demonstrates how imprecision enables safe
reasoning about a recursive data structure that was not possible in SVLIDF,
because SVLIDF lacks recursive predicates. This illustrates that, similarly to
gradual types, imprecision can be used to augment the expressiveness of the
static verification logic. In this case, the example does not even require a single
runtime check.

6 Related Work

We have already related our work to the most-closely related research, including
work on the underlying logics [8,4,15,20], the theory of gradual typing [18,17,19,7],
closely related approaches to static [10] and dynamic [6,12,11,3] verification, as
well as hybrid verification approaches [2,14]. Additional related work includes
gradual type systems that include notions of ownership or linearity; one can
think of the acc predicate as representing ownership of a piece of the heap, and
acc predicates are treated linearly in the implicit dynamic frames methodol-
ogy [20]. [21] developed a gradual typestate checking system, in which the state
of objects is tracked in a linear type system. Similar to acc predicates, permis-
sions to objects with state are passed linearly from one function to another,
without being duplicated; if a strong permission is lost (e.g. due to a gradual
specification), it can be regained with a runtime check, as long as no conflicting
permission exist.

The gradual ownership approach of [16] is also related in that, like implicit
dynamic frames, it aids developers in reasoning (gradually) about heap data
structures. In that work, developers can specify containment relationships be-
tween objects, such that an owned object cannot be accessed from outside its
owner. These access constraints can be checked either statically using a standard
ownership type system, but if the developer leaves out ownership annotations
from part of the program, dynamic checks are inserted.

Typestate and ownership are finite-state and topological properties, respec-
tively, whereas in this work we explore gradual specification of logical contracts
for the first time. Neither of these prior efforts benefited from the Abstracting
Gradual Typing (AGT) methodology [7], which guided more principled design
choices in our present work. Additionally, it is unclear whether the gradual guar-
antee of Siek et al. [19] holds in these proposals, which were developed prior to
the formulation of the gradual guarantee.

One contrasting effort, which was also a stepping-stone to our current pa-
per, is recent work on gradual refinement types [9]. In that approach, the AGT
methodology is applied to a functional language in which types can be refined by
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logical predicates drawn from a decidable logic. The present work is in a differ-
ent context, namely first-order imperative programs as opposed to higher-order
pure functional programs. This difference has a strong impact on the technical
development. The present work is simpler in one respect, because formulas do
not depend on their lexical context as in the gradual refinement setting. How-
ever, we had to reformulate gradual verification based on a weakest precondition
calculus, whereas the prior work could simply extend the type system setting
used when the AGT methodology was proposed. In addition, we provide a run-
time semantics directly designed for the gradual verification setting, rather than
adapting the evidence-tracking approach set forth by the AGT methodology and
used for gradual refinement types. In fact, we investigated using the evidence-
based approach for the runtime semantics of gradual verification, and found that
it was semantically equivalent to what we present here but introduces unneces-
sary complexities. Overall, by adapting the AGT methodology to the verification
setting, this work shows that the abstract interpretation approach to designing
gradual languages can scale beyond type systems.

7 Conclusion

We have developed the formal foundations of gradual program verification, tak-
ing as starting point a simple program logic. This work is the first adaptation
of recent fundamental techniques for gradual typing to the context of program
verification. We have shown how to exploit the Abstracting Gradual Typing
methodology [7] to systematically derive a gradual version of a weakest precon-
dition calculus. Gradual verification provides a continuum between static and
dynamic verification techniques, controlled by the (im)precision of program an-
notations; soundness is mediated through runtime checks.

Later, we briefly discuss how we applied our strategy to a more advanced
logic using implicit dynamic frames (IDF) [20] in order to reason about mutable
state. The use of IDF presents an additional challenge for obtaining a full pay-
as-you-go model for gradual verification, because the footprint has to be tracked.
We point to our prototype implementation which also references a formalization
of graualizing SVLIDF. Further optimization of this runtime tracking is an inter-
esting direction of future work. Another interesting challenge is to exercise our
approach with other, richer program logics, as well as to study the gradualization
of type systems that embed logical information, such as Hoare Type Theory [13],
establishing a bridge between this work and gradual refinement types [9].
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Abstract. Remote Memory Access (RMA) networks are emerging as
a promising basis for building performant large-scale systems such as
MapReduce, scientific computing applications, and others. To achieve
this performance, RMA networks exhibit relaxed memory consistency.
This means the developer now must manually ensure that the additional
relaxed behaviors are not harmful to their application – a task known to
be difficult and error-prone. In this paper, we present a method and a
system that can automatically address this task. Our approach consists
of two ingredients: (i) a reduction where we reduce the task of verify-
ing program P running on RMA to the problem of verifying a program
P on sequential consistency (where P captures the required RMA be-
haviors), and (ii) abstraction extrapolation : a new method to automati-
cally discover both, predicates (via predicate extrapolation) and abstract
transformers (via boolean program extrapolation) for P . This enables us
to automatically extrapolate the proof of P under sequential consistency
(SC) to a proof of P under RMA. We implemented our method and
showed it to be effective in automatically verifying, for the first time,
several challenging concurrent algorithms under RMA.

1 Introduction

Remote Memory Access (RMA) programming is a technology used in modern
data centers to communicate between machines with low overhead. It enables low
latencies (< 1µs [26]) and high bandwidth. In RMA, remote operations are exe-
cuted by the underlying network interface controller bypassing the CPU and the
operating system (in contrast to regular network operations). The network card
reads the data using Direct Memory Access (DMA), sends it over the network,
and finally the receiving network card writes the data using DMA. This approach
is faster than traditional network communication because in data centers, the
direct access propagation delay is small compared to a network message stack
overhead of standard sockets. RMA technology is available in several networks:
InfiniBand [43], IBM Blue Gene Q [6], IBM PERCS [9], Cray Gemini [7] and
Aries [25]. Typically, the RMA functionality is available through RMA libraries
(InfiniBands OFED [37], Cray DMAPP [18], Portals4 [12]). Middleware applica-
tions, such as the Hadoop File System [32], then call the RMA interface directly.

c© Springer International Publishing AG 2018 47
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 47–70, 2018.
https://doi.org/10.1007/978-3-319-73721-8_3



Newer developments introduce RMA extensions for Ethernet (RoCE [13]) or IP
routable RMA protocols (iWARP [40]).

RMA instructions of a program are executed asynchronously, i.e., the execu-
tion of the program proceeds without waiting for the completion of the remote
RMA operations. To offer guarantees on the completion of remote operations,
RMA provides the flush statement, which enforces that all remote operations
to a certain machine are executed before the execution continues.

As expected, verifying programs running under RMA is challenging because
they exhibit additional relaxed behaviors beyond those allowed by sequential
consistency (SC). Moreover, programs executing under RMA exhibit behaviors
not possible under other relaxed memory models such as Total Store Order (x86
TSO) or Partial Store Order (PSO) [19]. The goal of this paper is to address this
challenge, namely, develop automated techniques for verifying RMA programs.

The problem. Given a program P running on an RMA network and a safety
specification S, our goal is to answer whether P satisfies S under RMA, indicated
as P |=RMA S .

Our Work. In our work we approach this challenge via predicate abstraction [28],
a method shown effective in verifying concurrent programs [24, 30] and x86
TSO and PSO programs [20]. Standard predicate abstraction ( [11, 28]) as-
sumes sequential consistency (SC). Given a program P and a set of predicates
V = {p1, . . . , pn} over the variables in P , standard predicate abstraction builds
a boolean program B = BP(P ,V ) that contains one boolean variable for each
predicate in V . The boolean program comes with the guarantee that if B satisfies
a property S, then the program P satisfies S as well:

B |=SC S =⇒ P |=SC S

Checking whether B |=SC S is typically done via a (three-valued) model checker.
If a spurious counter-example execution trace is found by the model checker,
then the initial set of predicates V is refined and the procedure is repeated. An
overview of this approach is illustrated in the left part of Figure 1.

Reduction. However, the above guarantee does not hold when replacing SC with
relaxed memory models, such as x86 TSO or PSO, because naive application of
standard predicate abstraction for relaxed memory model programs is unsound
( [20]). To address this issue, we reduce the problem of verifying RMA programs
to SC verification (the Reduction box in Figure 1) by automatically constructing
a new program P that captures RMA behaviors as part of the program. P uses
set variables and boolean flags to account for these behaviors. If P satisfies a
property S under sequential consistency, then P satisfies S under RMA:

P |=SC S =⇒ P |=RMA S
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Fig. 1. Predicate abstraction for sequential consistency (left) and our verification
method for RMA programs (right).

Predicate extrapolation. Given the newly generated program P , we automatically
generate a set of predicates V based on the original set of predicates V (the Pred
Extrapolation box in Figure 1). This process is called predicate extrapolation and
we denote it as EP(V ) = V . A part of the new predicates in V contain universal
quantifiers over elements of sets. Compared to the original set of predicates
V , the extrapolated set V is approximatively twice as large (experimentally
observed on our benchmarks), therefore limiting the applicability of standard
predicate abstraction (requires an exponential number of calls to an SMT solver,
in the worst case). We address this limitation by introducing the boolean program
extrapolation technique.

Boolean program extrapolation. To side-step the potential exponential blow up,
we construct a sound approximation of BP(P,V): we introduce a novel extrapo-
lation function EBP (the Bool Prog Extrapolation box in Figure 1) to construct
a boolean program B = EBP(P , V ,B) without any call to the SMT solver. The
boolean program extrapolation is based on the boolean program B = BP(P, V )
and satisfies:

B |=SC S =⇒ BP(P , V ) |=SC S

Overall approach. Automated verification of P |=RMA S takes place in four
steps:
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1. Verify under SC : given a set of predicates V , build a boolean program B =
BP(P, V ) and show that B |=SC S.

2. Reduce to SC : Build the program P (to capture RMA behaviors for P )
and extrapolate the corresponding set of predicates V = EP(V ) from the
predicates V that worked under SC.

3. Construct extrapolated boolean program : given program P , set of predicates
V , and boolean program B = BP(P, V ), construct extrapolated boolean
program B = EBP(P , V ,B).

4. Verify boolean program: whether B |=SC S, using a model checker. If the
check fails due to abstraction imprecision, we refine the abstraction and
restart the verification process. Otherwise, the program P satisfies property
S under RMA and the process completes successfully.

Main Contributions. The main contributions of this paper are:

– A program reduction, based on sets, from RMA to SC. The construction
allows us to handle traces with infinite number of relaxed memory operations.

– A novel abstraction approach for programs running on RMA, using predi-
cates over sets and a boolean program extrapolation technique which requires
no calls to the underlying SMT solver for building the boolean program.

– An implementation of our approach in a tool that can, for the first time,
automatically verify several challenging (including infinite-state) concurrent
algorithms running on the RMA model.

Our work can be seen as a step towards the more general problem of adapting
the proof of one program to the proof of a more refined program, technically
achieved here via abstraction extrapolation (in the case of predicate abstraction,
extrapolation of the boolean program).

2 Overview

We illustrate our approach on a small RMA program shown in Figure 2. In this
example, Process 1 declares a shared variable Y with initial value 1. Process 2

declares shared variables R and X, initializes them to 0 and 2, respectively. Next,
it declares a local variable r. It then remotely puts the value of X into Y. Then,
X is set to 3 and the value of Y is remotely read from Process 1 and is written to
R. Finally, the process assigns R to local variable r. The specification (assert)
is that at the end of the program (final), r is different than 3.

Under SC semantics, the only possible value of r at the end of the program is
2. However, under RMA semantics, r can have any value from the set {0,1,2,3}.
Note that under other relaxed consistency models, such as x86 TSO, PSO, and
C++ RMM, the value of 3 is not possible for r. Yet, under RMA, the put from
the shared location X to Y, can be delayed until after assigning 3 to X. That value
can then be read into R and put into local variable r, leading to an assertion
violation. A developer will then have to manually infer the flush statements that
are required to enforce the specification, when running under RMA semantics.
We next introduce the semantics of RMA networks.
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2.1 RMA Semantics

Process 1 :
1 shared Y = 1 ;

Process 2 :
1 shared R = 0 , X = 2 ;
2 local r ;
3 put (Y, 1 , X) ;
4 store X = 3 ;
5 R = get (Y, 1 ) ;
6 load r = R;

assert final ( r != 3 ) ;

Fig. 2. RMA program consisting
of two processes and a specification
(shown at the end) which checks
whether the value of local variable
r is equal to 3.

In RMA programs, a process can access
shared variables of remote processes using re-
mote statements such as put or get. These re-
mote statements are executed asynchronously
— the process executing them does not wait
for the completion of the remote statement,
instead it continues the execution of its pro-
gram. In hardware, the program executing on
a CPU relegates the remote operation execu-
tion to a component called Network Interface
Controller (NIC) which connects to a NIC on
a remote machine. The two NICs complete the
operation, on shared locations assigned to the
operation, without involving either the local
or the remote CPU. flush statements are the
main mechanism to guarantee that pending
remote statements to a specific remote pro-
cess are completed. A flush(pid) statement
acts like a barrier, blocking the execution on
the process until all pending remote statements to process pid are completed.
The flush is expensive (increases latency) and should be used sparingly.

Table 1. Basic statements which
capture the essence of RMA pro-
gramming.

Statement Description

load u = X; local read
store X = expr; local write
X = get(Y, pid); remote get
put(Y, pid, X); remote put
flush(pid) flush

Syntax. We consider a basic programming
language, shown in Table 1, that offers RMA
primitives such as put, get and flush. The
load u = X; statement reads the value of
shared variable X and writes it in local vari-
able u. The store X = expr statement writes
to shared variable X the value of the expres-
sion on the right hand side (arithmetic ex-
pression over local variables). The put and
get statements operate over shared variables
X and Y, and also take as argument the iden-
tifier of the process storing the remote variable. The flush statement takes as
argument a process id. The semantics of these statements are described next.

Semantics. Let Procs be a finite set of process identifiers and p ∈ Procs a
process id. Let Vars be the set of all variables. We assume that each variable
is uniquely identified (no two variables have the same name) and we define
proc : Vars → Procs as the function mapping each variable to the process where
it is declared. We define a transition system as a tuple (s0, Σ, T ), where Σ is
the set of program states, s0 ∈ Σ is the initial state, and T ⊆ Σ × Actions ×Σ
is a transition relation. The Actions set contains all statements in the simple
language, and the nicr and nicw actions which correspond to the asynchronous
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non-deterministic execution of the remote statements:

Actions = {put , get ,nicr ,nicw , load , store,flush}

A program state s ∈ Σ is a tuple 〈pc,M,R,W 〉, where:

– pc : Procs → Labels is the map from process identifiers to labels. The next
label that comes after label l ∈ Labels is denoted by n(l).

– M : Vars → D is the state of the memory, mapping each variable to a value
in the domain D.

– R is a mapping from process ids to the set of pending remote read operations
triggered by the given process. For p ∈ Procs , each read operation r ∈ R(p)
has a variable to be read, denoted with var(r) ∈ Vars . Additionally, r is
mapped to a following write action denoted succ(r).

– W is the mapping from process identifiers to the set of pending remote
write operations triggered by the given process. Given p ∈ Procs , for each
w ∈W (p), we define the variable to be written, var(w) ∈ Vars and the value
to be written val(w) ∈ D.

The initial state s0 has both, the set of pending reads and the set of pending
writes initialized to be empty (∀p ∈ Procs : R(p) = W (p) = ∅). These semantics
are introduced by [17] and match the configuration without in-order routing,
where operations are not ordered between the same source and destination pro-
cesses. Each rule corresponds to a transition s

a−→ s′, where a ∈ Actions and
s, s′ ∈ Σ, s = 〈pc,M,R,W 〉 and s′ = 〈pc′,M ′, R′,W ′〉.

When a put action is executed, a pending read operation r is added to R,
and a following write operation w is declared. The variables read and written
by r and w correspond to the arguments of the put statement. The get action
has similar semantics. The execution of the pending read operations in R is non-
deterministic and, after reading the value of the target variable, the following
write operation is added to the set of pending writes W . Similarly, the pending
writes are executed non-deterministically. The local store and load actions are
executed synchronously and interact directly with the memory M (storing a
value, or reading from memory), without using the pending operation sets R
and W . Assuming process p ∈ Procs issues a flush action, after its execution
the set W (p) does not contain any pending write operations to the target process
of the flush. Similarly, the set R(p) does not contain any pending read operations
from the target process of the flush, and additionally none of the successor write
operations of the pending read operations in R(p) write to the target process.
Next, we briefly recap standard predicate abstraction, assuming SC.

2.2 Predicate Abstraction under Sequential Consistency

This section illustrates the standard predicate abstraction procedure applied to
the example program in Figure 2, assuming SC.
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SC semantics. When restricting an RMA program to SC, we assume that
all remote operations (e.g., the get statements in Figure 2) are executed syn-
chronously. For example, the R = get(Y, 1) statement has the same semantics as
a normal assignment R = Y. For our example, the predicates sufficient to verify
the specification are:

V = {(r 6= 3), (R 6= 3), (Y 6= 3), (X 6= 3)}

This set of predicates can be determined either manually or using a counter
example guided refinement loop. The result of applying predicate abstraction on
the example program using the predicates in V is a concurrent boolean program
that soundly represents all possible behaviors of the original program.

Boolean program construction. The resulting boolean program has four boolean
variables {B1, B2, B3, B4} (one for each predicate in V ). For each statement
of the program P , standard predicate abstraction computes how the state-
ment changes the values of the predicates. For instance, statement R = get(Y, 1)

(which for SC we interpret as R = Y) at line 5 in Process 2 assigns to variable
B2 (corresponding to the predicate (R 6= 3)) the value of B3. We say that the
predicate B2 is updated using the cube of size 1 containing the predicate B3. In-
tuitively, (R 6= 3) holds after the statement R = get(Y, 1) if (Y 6= 3) holds before
the statement. More details about standard predicate abstraction are presented
in subsection 4.1.

The complexity of building the boolean program using standard predicate
abstraction is exponential in the number of predicates in V ( [11, 28]) and its
main component is the search of cubes (conjunctions of predicates or negated
predicates that imply a given formula). Optimizations such as bounding the size
of cubes to a constant k lead to a complexity of |V |k, by building a coarser
abstraction, therefore losing precision.

2.3 Predicate Abstraction for RMA Programs

We next illustrate our RMA verification approach which is based on extrapolating
the proof of the program under sequential consistency (discussed in more detail
in subsection 2.2).

Step 1: Verify P under SC. The input for this step is the program P (Figure 2)
and the set of predicates V shown in subsection 2.2. Here, we assume all remote
statements are executed synchronously. After the program is verified, the result-
ing boolean program B = BP(P, V ) will be used for extrapolation in the third
step of our approach.

Step 2: Construct the reduced program P . We reduce the problem of verifying
P under RMA semantics to the problem of verifying a new program P under
SC. The program P non-deterministically accounts for all possible asynchronous
behaviors of P under RMA.
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Auxiliary variables. To construct P , we introduce auxiliary variables of two
types: sets and boolean flags. Additionally, we use two methods: addToSet, that
takes as arguments a set and an element, and adds this element to the set, and
randomElem, that takes as input a set and returns a random element of the
set. The sets accumulate all values that can be read by a get statement, or all
possible values that can be written remotely by a put statement. In our example,
we introduce two set variables: X1Set and Y1Set. For example, variable X1Set

stores all values of variable X that the put statement at line 5 in Figure 2 can
write to Y. Initially, X1Set and Y1Set are empty. A boolean flag is introduced for
each remote statement. It represents whether the remote statement is pending
to be executed asynchronously by the underlying network. For the example in
Figure 2, we introduce variables Put1Active and Get1Active, initially set to false,
corresponding to the put and get statements.

Process 2 :
1 shared R = 0 , X = 2 ,
2 Put1Active = false ,
3 Get1Active = false ,
4 Y1Set = ∅ ,
5 X1Set = ∅ ;
6 local r ;
7 // put(Y, 1, X);

8 if ( ! Put1Active )
9 Put1Active = true ;

10 X1Set = {X}
11 else

12 addToSet ( X1Set ,X) ;
13 // X=3;

14 if ( Put1Active && ?)
15 Y = randomElem ( X1Set ) ;
16 addToSet ( Y1Set ,Y) ;
17 if (?) Put1Active=false ;
18 store X = 3 ;
19 if ( Put1Active )
20 addToSet ( X1Set ,X) ;

21
...

Fig. 3. Running example translation
excerpt of P : this program contains
the RMA behaviors affecting the orig-
inal program P .

Statement translation. Next, for each
statement of P , we generate a correspond-
ing code in P . The result of translating the
program in Figure 2 is partly shown in Fig-
ure 3 (only translation for lines 1−4 of the
original program is shown).

Lines 2− 5 initialize the introduced aux-
iliary variables (initializing boolean flags
such as Put1Active and sets such as X1Set).
Lines 7−12 represent the translation of the
put statement, where the flag Put1Active

is set to true and the current value of
variable X is added to X1Set. Next, the
X = 3 statement of program P corresponds
to lines 13-20. If the put operation is ac-
tive, then the value 3 is added to X1Set (in
line 20). Before it, remote operations are
non-deterministically executed. Lines 14-
17 represent the non-deterministic asyn-
chronous execution of a pending remote
operation. In this case, the only pending
operation corresponds to the put state-
ment. The ? in the condition of line 14
represents a non-deterministic choice of
whether to take the branch or not. Line
15 selects a random element from the set
X1Set and assigns it to Y. The transformation process is described in detail in
subsection 3.1.

Predicate extrapolation. For the newly generated program P shown in Figure 3,
our technique automatically extrapolates the set of predicates V to a new set of
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predicates V = EP(V ). Given the newly introduced set variables, we generate
predicates that are universally quantified over all the elements of a set. For exam-
ple, given the initial SC predicate (X 6= 3 ), we generate the quantified predicate
∀e ∈ X1Set : e 6= 3 . For simplicity, we denote the predicate as (X1Set 6= 3 ). We
assign a special logic to the case where (X1Set 6= 3 ) is false - it implies that all
the elements in X1Set are equal to 3:

(X1Set 6= 3 ) =

 true, ∀e ∈ X1Set : e 6= 3
false, ∀e ∈ X1Set : e = 3
?, otherwise

This predicate allows to keep track of the values added to the set. When all the
elements of the set are different than 3, then the predicate is true. Importantly,
the predicate is false only when all the elements of the set are equal to 3; other-
wise, the value of the predicate is unknown, and we denote this value by ?. The
result of applying predicate extrapolation will return the following set:

V = V ∪ {(X1Set 6= 3), (Put1Active = true)}

For each boolean flag that the program translation introduces (e.g., Put1Active),
the predicate extrapolation will add a predicate that tracks the value of the flag.
In our example, the new predicate is (Put1Active = true). More details about
predicate extrapolation are presented in subsection 4.2.

Step 3: Construct the Extrapolated Boolean Program After performing the sec-
ond step, we obtain a program P and a set of predicates V . Applying standard
predicate abstraction and building a boolean program BP(P , V ) requires a sig-
nificantly higher computational effort than building BP(P, V ). The reason is
that P contains more instructions than P that have to be analyzed, and V has
more predicates than V . Instead, we generalize the idea of predicate extrapola-
tion [20] to boolean program extrapolation: starting from the boolean program
constructed for the SC semantics B = BP(P, V ), we construct a new boolean
program B = EBP(B,P , V ). By extrapolating the boolean program, we avoid
performing additional cube search (we do not require calls to an SMT solver) to
construct B, because we extrapolate cubes already found for the construction of
B.

For instance, at line 15 of Figure 3, the statement Y = randomElem(X1Set),
where a random element of X1Set is selected and assigned to Y, the boolean
program extrapolation will use as input the transformers in the boolean pro-
gram B that correspond to the statement put(Y, 1, X) from Figure 2. For the
statement put(Y, 1, X), the predicate (Y 6= 3) is assigned the value of (X 6= 3).
We extrapolate this boolean assignment for the statement put(Y, 1, X), and the
predicate (Y 6= 3) is assigned the value of the predicate (X1Set 6= 3). If the
predicate (X1Set 6= 3) is true, then all the elements inside the set X1Set are
different than 3. Therefore, selecting a random element of the set and assigning
it to X makes the value of (Y 6= 3) true. If the predicate (X1Set 6= 3) is false, it
means that the elements in X1Set are equal to 3, and assigning any of them to Y
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makes the predicate (Y 6= 3) false. A formal description of the boolean program
extrapolation is presented in subsection 4.3.

Step 4: Model Checking We verify if B, constructed in Step 3, satisfies the
specification S, using a model checker. If there is no reachable state in the
program that contradicts S, then the verification succeeds. If an error state is
discovered, there are two possibilities: either the error state is spurious, and we
refine the abstraction, or it is a valid error state, and the original program P
needs more flush statements such that property S holds under RMA. If we add
flush in all possible locations the program is guaranteed to verify, since the
program is then limited to SC executions.

Verification results. The specification holds under RMA semantics with a single
flush statement added to the program, after the put(Y, 1, X) instruction of line
3. It is important to observe that this allows the program to retain RMA specific
behaviours that do not violate the assertion and are not possible under SC. For
example, the value r = 0 is not possible under SC, while under RMA, the value
of r at the end of the program can be 0. This is because an asynchronous get

operation, can be executed even after Process 2 assigns the value of R to r.
Although the get reads into R the value 2 from Y (that value reached there with
the put of line 3 and the following flush), the line 6 assignment will write the
value of R from initialization into r. Adding a flush after the get statement would
eliminate this state under RMA. However, the state satisfies the specification of
interest (r 6= 3), and our procedure successfully identifies which flush statement
is not required.

3 Reduction of RMA programs

In this section, we describe the source-to-source transformation of a program P
running under RMA semantics to a new program P running under SC semantics,
such that P soundly approximates P . The main idea is to generate a program
P which encodes the RMA semantics of program P .

3.1 Reduction: RMA to SC

We define the translation function that takes as input a statement from program
P and returns a list of statements of program P :

[[]] : Stmt → List〈Stmt〉

Set variables. The newly generated program P contains, in addition to the vari-
ables of program P , two types of auxiliary variables that contribute to capturing
the semantics of RMA programs. Let sid be a mapping that takes as input a
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Table 2. The source to source translation of statements from program P running on
RMA to a new program P running on sequential consistency. p is the identifier of the
process that executes the statement.

[[store X = a]] [[put(Y, pid, X)]]

remoteOps(X)
store X = a;
B ∀s ∈ read(X ):

if active(s)
addToSet (set(s) ,X) ;

if ( ! active(s))
active(s) = true ;
set(s) = {X} ;

else addToSet (set(s) , X) ;

[[flush(pid)]] remoteOps(X)

while (
∨

s∈remote(p,pid) active(s))

B ∀s ∈ chain(remote(p, pid)):

if (active(s) ∧ ?)
trg(s) = randomElem (set(s) ) ;
if (?) active(s) = false ;

while (?)

B ∀s ∈ chain(write(X)):

if (active(s) ∧ ?)
trg(s) = randomElem (set(s) ) ;
addToSet (Sets(trg(s)) , trg(s) ) ;
if (?) active(s) = false ;

remote statement (put or get) of program P and returns a unique identifier of
that statement. The first type of auxiliary variables are sets. For each remote get

statement s of the form var dst = get(var src, pid) we introduce a set variable.
The name of the set variable is the concatenation of the var src variable, the
unique identifier of the get statement sid(s) and the string “Set”. For example,
assuming the statement X = get(Y, pid) with unique identifier 1, we generate the
set variable Y1Set. Similarly, for each put statement put(var dst, pid, var src ),
we generate a set variable corresponding to var src and the statement identifier.
All the set variables are initially empty. Given a remote statement s, let set(s)
be the set variable associated to s in our translation. Let Sets be the set of all
set variables of the program and Sets(X ) the sets corresponding to a variable X.

Boolean flags. The second type of auxiliary variable is a boolean flag. For each
remote put and get statement, we introduce a boolean variable, with a name
that is the concatenation of “Get”/“Put”, the statement id sid(s) and the
string “Active”. For instance, given a statement put(Y, pid, X) with statement
id equal to 3, we add the boolean flag Put3Active. All the auxiliary boolean vari-
ables are initially false. Let Flags be the set of all boolean flags. The mapping
active : Sets → Flags returns the boolean variable that corresponds to the same
remote statement as the set variable given as argument.

Chains of remote statements. Given two remote statements s1 and s2, the rela-
tion s1 ◦ s2 holds if s1 writes to a variable X and s2 reads or writes X. Let ◦+ be
the transitive closure of ◦. We define chain(s2 ) as the set of remote statements s
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such that s ◦+ s2. We overload the chain operator to sets of remote statements:
given S a set of remote statements, chain(S) =

⋃
s∈S chain(s).

Notation. For a given shared variable X, there are potentially several set vari-
ables, one for each remote statement that reads the value of X. Let write(X )
be the set of remote statements that write to X and read(X ) the set of remote
statements reading from X. We denote by remote(p, pid) all the statements ex-
ecuted by process p that remotely read or write from process pid. The variable
that is written by a remote statement s is trg(s). These functions are used in
the source to source translation.

Translation of program statements. Table 2 illustrates the source-to-source trans-
lation of program P running on RMA to a new program P that runs on SC and
captures all the behaviors of P .

Non-deterministic execution of remote operations. Since RMA remote opera-
tions are executed asynchronously, they could be executed at any point in the
program after the statement that triggers them. An exact translation would non-
deterministically execute, in any order, every pending RMA statement at each
program point. However, the state space of the resulting program would grow
significantly, making the verification more challenging.

In our approach, the resulting program P contains, at specific points, code
that executes the pending remote operations non-deterministically. This code
is described in Table 2 as remoteOps, and is parameterized by a shared vari-
able X. The statements executed non-deterministically are all the remote state-
ments that write to X and all the remote statements that form chains with
the statements writing to X, denoted chain(write(X )). For each statement s ∈
chain(write(X )), if the active flag corresponding to s (active(s)) is true, then
non-deterministically (?) assign to the target variable of s (trg(s)) a random
element of the set variable corresponding to s (set(s)). Next, the active flag is
non-deterministically set to false (there can be potentially several instances of
statement s pending, in case s is executed in a loop).

Local store. The statement store X = a writes a local variable a or numerical
value to a shared variable X that belongs to the process executing the statement.
In the translation, we first add the remoteOps(X) code. Next, we add the value
of a to the corresponding sets of the remote statements to all the set variables
that correspond to remote statements reading from X (denoted read(X )).

Remote Put. A put(Y, pid, X) statement reads a shared variable X of the lo-
cal process and writes its value to the shared variable Y at the remote process
pid. This operation is done asynchronously by the underlying network. There are
potentially several values that the local read from X can observe, when X is mod-
ified by the program, following the remote put statement. Similarly, the remote
write operation to Y at the remote process pid happens non-deterministically
after the read from X.

58 C. Baumann et al.



For our reduction, the statement s = put(Y, pid, X) is translated by first
checking if the flag variable (active(s)) is false. In this case, the s becomes
active (by setting active(s) =true), and we initialize set(s) with the current
value of X (set(s) = {X}). If the active(s) flag is true (that can be the case if s
is part of a loop), then the current value of X is added to set(s).

Flush. The flush(pid) statement makes sure that after its execution all active
RMA operations from the current process (p) to the remote process pid (denoted
by remote(p, pid)) are executed. We translate the flush statement as a loop that
executes pending operations as long as at least one of the RMA statements in
remote(p, pid) is still pending. The loop contains non-deterministic statements
to execute each of the pending statements in remote(p, pid) and statements that
create chains with the pending statements in remote(p, pid). This translation is
sound, as it covers all the possible orders of execution of the pending statements.

4 Predicate Abstraction for RMA Programs

This section describes how to adapt predicate abstraction to the task of verifying
RMA programs. The key idea is to cheaply build an RMA proof from the SC
proof by reusing predicates and transformers of the SC program proof. Note that
the safety property that we want to prove remains the same as in the SC case.
We begin by describing standard construction of predicate abstraction for SC.

4.1 Predicate Abstraction

Predicate abstraction [11, 28] is a form of abstract interpretation that employs
Cartesian abstraction over a set of predicates. Given a program P , and vocab-
ulary (set of predicates) V = {p1, . . . , pn} with corresponding boolean variables
V̂ = {b1, . . . , bn}, predicate abstraction constructs a boolean program BP(P, V )
that conservatively represents behaviors of P using only boolean variables from
V̂ (corresponding to predicates in V ). We use [pi] to denote the boolean variable
bi corresponding to pi. We note that the mapping is a bijection. We similarly
extend [·] to any boolean function ϕ.

Constructing BP(P, V ). A literal is a predicate p ∈ V or its negation. A cube
is a conjunction of literals, and the size of a cube is the number of literals it
contains. The concrete (symbolic) domain is defined as formulae over all possible
predicates. The abstract domain contains all the cubes over the variables pi ∈ V .
Predicate strengthening FV maps a formula ϕ from the concrete domain to
the largest disjunction of cubes (over V ), d, such that d =⇒ ϕ. The abstract
transformer of a statement st, w.r.t. a given vocabulary V , can be computed
using the weakest-precondition ( [11]), while performing implication checks using
an SMT solver. For each bi ∈ V̂ the abstract transformer generates:

bi = choose([FV (wp(st, pi))], [FV (wp(st,¬pi, ))])

Automatic Verification of RMA Programs via Abstraction Extrapolation 59



where choose(ϕt, ϕf ) =

 true, ϕt evaluates to true
false, only ϕf evaluates to true
?, otherwise

For example, given the predicates V = {(X > 0), (Y > 0), (Z > 2)}, the cor-
responding boolean variables V̂ = {b1, b2, b3}, and a statement X = Y + Z, predi-
cate abstraction generates the abstract transformer: b1 = choose(b2 ∧ b3 , false).
After executing the statement X = Y + Z, (X > 0) holds if (Y > 0) and (Z > 2)
hold before the statement, otherwise (X > 0) becomes ?. Different predicate
abstraction techniques use different heuristics for reducing the number of calls
to the prover.

4.2 Predicate Extrapolation, V = EP(V )

After the SC predicate abstraction is successfully completed, we extrapolate the
set V of SC predicates, and we obtain V , the predicates for the reduced pro-
gram P . The set V of predicates consists of: (i) the predicates V from the SC
proof, (ii) universally quantified predicates for each set variable, based on the
extrapolation of SC predicates, and (iii) predicates for the boolean flag variables.

Extrapolation of SC predicates for each set variable. A sound optimization of the
source-to-source translation is to generate just one variable XSet for each shared
variable X, instead of one set variable per remote statement. In the rest of the
paper, we denote XSet the set corresponding to X. The abstraction accounts
for the set variables and tracks predicates that hold for the values contained
in these sets. We generate for each predicate p ∈ V , that references a shared
variable X, a corresponding predicate for XSet , ∀e ∈ XSet : p[e/X ]. The newly
generated predicate contains a universal quantifier over all the elements of the
set. We denote this predicate as p[XSet/X].

Logic of the predicates over set variables. A predicate ∀e ∈ XSet : p[e/X ] over
a set variable XSet is true if and only if predicate p is true for every element
of XSet . However, we refine the case where the predicate ∀e ∈ XSet : p[e/X ] is
false: if p[e/X] is false for every element e ∈ XSet . Overall, the set predicates
have the following logic:

p[XSet/X ] =


true ∀e ∈ XSet : p[e/X]

false ∀e ∈ XSet : ¬p[e/X]

? otherwise

For example, assume we are given XSet (initially empty), the predicate
p = (X > 5 ), such that p[XSet/X ] = (XSet > 5 ) and a sequence of addToSet

statements that successively add the values 6, 7 and 4 to XSet . After execut-
ing the statement addToSet(XSet, 6), the predicate p[XSet/X] becomes true. After
addToSet(XSet, 7), the predicate p[XSet/X] remains true. After addToSet(XSet, 4),
p[XSet/X] becomes ?, because neither all elements in XSet are greater than 5 nor
it is the case that all elements of XSet are less or equal than 5.

60 C. Baumann et al.



If we select a random element from XSet using T = randomElem(XSet), then
the value of a predicate p[XSet/X] is the same as p[e/X], where e ∈ XSet . This can
be used to derive the value of predicates that contain variable T. For example,
given the predicates (T > 3) and (XSet > 5), if (XSet > 5) is true before
T = randomElem(XSet), then (T > 3) is true after the statement is executed.
Similarly, if (XSet > 5) is false, then a predicate such as (T > 5) becomes false
after the statement, by using the special logic we assign to the set predicates.

In our implementation, for predicates that reference two shared variables
(e.g., (X < Y ) ) we extrapolate for each shared variable separately and do not
generate a predicate involving two set variables (e.g., (XSet < Y ) and (X < YSet)
are generated, while (XSet < YSet) is not generated). This provides a good
trade-off between precision and efficiency. We observe that this over-approximation
is precise enough and there is no need to track directly the relation between two
set variables. We show in subsection 4.3 how to soundly handle this abstraction.

Generation of predicates for the boolean flags. For each remote operation (for
example a get operation at label lbl) the translation presented in subsection 3.1
generates a boolean flag variable to indicate when the remote operation (or
an instance of the operation, in case it is executed in a loop) is pending to
be executed (for the get operation, a get lbl flag boolean variable). For each
such boolean variable we generate a corresponding predicate that captures the
boolean flag state (e.g., for the get operation at label lbl , we generate the pred-
icate (get lbl f lag = 1)).

4.3 Boolean Program Extrapolation, B = EBP(P , V ,B)

Given the extrapolated predicates V , a standard construction of the boolean pro-
gram is typically quite expensive, because the number of predicates |V | and the
size of the program |P | are significantly larger than in the SC case. This observa-
tion was shown in [20] for relaxed memory models, a work which proposed cube
extrapolation to reduce the number of calls to an underlying theorem prover.
In our work, in addition to handling a more complex memory model (RMA)
and generating more complex predicates that contain quantifiers, we introduce
a novel boolean program extrapolation method that builds a boolean program
without any calls to the theorem prover. The resulting boolean program B is a
sound over-approximation of BP (P , V ).

Transformers for the set operations. The main difference between programs P
and P is that the latter contains set variables and statements that operate on the
set variables (set initialization, addToSet and randomElem). The predicates in V
refer to the set variables and we next describe how to compute the transformers
for the set operators. We again note that attempting to directly calculate their
transformers would require a large number of calls to the theorem prover.

Transformers for set initialization. We construct the translation such that all
the set initialization statements have the form XSet = {X}). A set XSet is always
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initialized with the singleton set containing the value of the variable X (the
variable to which the set corresponds). As shown in subsection 4.2, the predicate
extrapolation generates for every predicate p ∈ V that contains X a predicate
p[XSet/X ]. Therefore, after executing the statement XSet = {X}, the predicates
containing XSet have the same value as the predicates containing X:

p[XSet/X ] = p

Transformers for addToSet. All addToSet have the form addToSet(XSet, X), adding
the value of a variable X to the set XSet that corresponds to that variable. The
predicates p[XSet/X ] ∈ V are updated after addToSet(XSet, X) such that:

p[XSet/X ] = choose(p[XSet/X ] ∧ p,¬p[XSet/X ] ∧ ¬p)

If all the elements in XSet satisfy the predicate p and the value of X satisfies P ,
then, after adding the value of X to XSet, all the elements of XSet still satisfy p.

Transformers for randomElem. Every statement Y = randomElem(XSet) in pro-
gram P corresponds to a remote operation such as Y = get(X) or put(Y, X) from
program P . For the SC verification, these remote statements are assumed to be
synchronous assignments of the form Y = X. During the SC predicate abstrac-
tion, for each predicate p ∈ V that contains Y, we compute ϕt and ϕf , the
disjunctions of cubes that appear as arguments of the choose function that up-
dates p: p = choose(ϕt , ϕf ). In the case of the Y = randomElem(XSet) statement,
for all predicates p ∈ V that contain Y, we update them using the formula:

p = choose(ϕt [XSet/X ], ϕf [XSet/X ])

Consider an example with (X > 7), (Y > 5) ∈ V and a statement Y = get(X)

in P with the SC transformer (Y > 5 ) = choose((X > 7 ), false). For the cor-
responding Y = randomElem(XSet) statement in P , we generate the transformer
(Y > 5 ) = choose((XSet > 7 ), false).

The extrapolated predicates p ∈ V that contain both Y and at least one
set variable are updated to ? after the Y = randomElem(XSet) statement. This
sound over-approximation is required because V has no predicates that contain
more than one set variable. For example, given the predicates (X ≥ Z), (Y ≥
X), (Y ≥ Z) ∈ V , the extrapolated predicate (Y ≥ ZSet) ∈ V , after a statement
Y = randomElem(XSet) the predicate (Y ≥ ZSet) is set to ?, as we do not track
the predicate (XSet ≥ ZSet) that is required for a more precise transformer.

5 Experimental Evaluation

We implemented an analysis tool for RMA programs based on the method de-
scribed so far. In this section, we discuss our experimental evaluation of the tool
on a number of challenging concurrent algorithms running on RMA networks.
The experiments ran on an Intel(R) Xeon(R) 2.13GHz with 250GB RAM. The
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first research question is whether predicate and boolean program extrapolation
are sufficiently scalable to verify all benchmarks. The second question deals with
the precision of the abstractions we introduced and whether we can compute the
smallest required flush placement for each program such that our tool is precise
enough to prove that the specification holds under RMA.

Benchmarks. We tested our analyzer on 14 challenging concurrent algorithms:
Dekker [23], Peterson [38], Szymansky [42] mutual exclusion algorithms, an Al-
ternating Bit Protocol (ABP), an Array-based Lock-Free Queue, Lamport’s Bak-
ery algorithm [34], the Ticket locking algorithm [8], the Pc1, Pgsql, Kessel, Blue-
Tooth, Sober, Driver Qw, loop2 TLM programs as defined in [14], and an RMA
Lock [41]. The benchmarks have two or three processes and the number of lines
of code is between 25 and 85. Several programs have an infinite number of states
(ABP, Queue, Bakery, Ticket). The safety properties are either mutual exclu-
sion or reachability invariants involving labels of different processes. For each
benchmark, the safety property is the same for both SC and RMA.

5.1 Prototype Implementation

We implemented the RMA analyzer in Java (around 9, 000 lines of code). For the
cube search (when building the boolean program for SC verification), the tool
uses Z3 [22] as an underlying SMT solver. We use the 3-valued model checker
Fender (implemented in Java) to check if the boolean program satisfies the speci-
fication. Fender also uses Z3 for abstraction refinement. We made minor changes
to the error trace construction and interpolation methods of Fender in order to
accommodate the RMA abstraction based on sets.

Flush search. For an input program, we initially add a flush statement after
each RMA remote statement (put or get). Alternatively, the user can suggest a
different initial flush placement. The analyzer starts checking the input program
using all the flushes of the initial flush placement. If the analyzer successfully
verifies the program, then the flush search process continues by removing one
flush statement, updating the boolean program and rechecking the property
using Fender (no need to rerun the predicate abstraction).

We develop a search procedure for the smallest placement of flush statements
for which our tool successfully proves that the program satisfies its specification
under RMA. We choose a mix between breadth-first and depth-first search. In
the first phase (breadth-first search of depth 1), we repeatedly check the program
while removing one of the flush statements of the initial placement. This phase
identifies the flush statements that are always needed for the program to satisfy
the specification. In the second phase, the tool performs a depth-first search,
while trying to remove only flush statements that were successfully removed
in the first phase. This hybrid solution is much faster than a simple depth-
first or breadth-first search, especially for the cases where the number of flush

statements needed is small. Finally, the search returns one or several solutions
of flush placements that make the program satisfy the desired property.
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Table 3. Experimental results showing verification of a number of algorithms on both
SC and RMA models.

SC predicate abstraction RMA predicate abstraction

Algorithm |V | BP(P, V ) (s) B(loc) |V | B (loc) Fender (s) Min flush

Dekker 11 1 498 29 2068 876 4/12
Peterson 10 1 356 21 1045 4 4/7
Abp 16 1 485 20 662 1 1/2
Pc1 18 2 658 35 3797 126 2/7
Pgsql 12 1 418 18 1549 1 2/4
Qw 13 2 487 29 1544 1345 4/5
Sober 23 8 831 48 8466 10 0/9
Kessel 18 3 534 36 1621 16 5/10
Loop2 TLM 29 165 1068 43 1986 3960 4/4
Szymanski 34 228 1182 64 7081 316 7/14
Queue 13 24 572 22 1104 13 1/2
Ticket 17 114 640 43 3615 4320 5/6
Bakery 19 330 828 41 2947 288 6/10
RMA Lock 24 50 763 60 5932 65679 9/18

5.2 Experimental Results

The results of the analysis are presented in Table 3. For the first part of our
analysis, we perform the verification of the programs assuming SC.

Meaning of table columns. |V | represents the number of predicates used for SC
verification. To obtain these predicates, we started with a manually selected set,
then used abstraction refinement to find the sufficient set to verify the program
under SC. The BP(P, V ) (s) column records the duration in seconds of building
the boolean program abstraction. Most of this time (95%) is spent in the SMT
solver, used for the cube search. B(loc) shows the number of lines of code in
the resulting boolean program. Checking the SC boolean program with Fender
takes for each algorithm a small number of seconds, therefore we omit it from
the results table. In the second step of our analysis, we perform the boolean
program extrapolation, based on the SC boolean program B. |V | is the number
of predicates after extrapolating the SC predicates V (V = EP(V )). The column
B(loc) shows the number of lines of code of the extrapolated boolean program
B. The Fender (s) column shows the runtime of Fender for checking whether
B satisfies the specification. Finally, Min flush is the result of the search for
the minimal number of flush statements required for the program to satisfy its
specification under RMA. The first number is the smallest number of flushes for
which the verification succeeds, and the second number is the number of flushes
of the initial flush placement.

On average, the extrapolated boolean program is 5 times larger than the SC
boolean program. The resulting extrapolated predicates are twice as many, on
average, compared to the original predicates |V | (note that V ⊂ V ). We obtain
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larger running times for the Ticket and Loop2 TLM benchmarks, due to the
high number of predicates and the complexity of the programs.

Scalability of Boolean program extrapolation. The boolean program extrapola-
tion that constructs B takes under a second for each benchmark. If we took
the approach of using standard predicate abstraction of the reduced program P ,
the time would be significantly higher. For instance, we experimented with the
Bakery mutual exclusion algorithm, and the standard approach took over three
hours (compared to sub-second times for the extrapolation). The precision of
the two boolean programs is similar, as the same minimal flush placements are
found for both. This shows the advantage of our extrapolation method.

Extrapolation precision and minimal flush placement. The extrapolated boolean
program is precise enough to remove flush statements and verify the property
for all benchmark algorithms (except Loop2 TLM). For Loop2 TLM, the model
checker timed out after two hours, while checking the boolean program with
a flush removed. Surprisingly, the Sober algorithm does not require any flush

statement under RMA. This is due to the algorithm already executing the re-
mote operations in loops that have the same effect as a flush (by checking in
their condition the value returned by the get statement). Comparing these flush

placements with other memory models (x86 TSO, PSO), is challenging, due to
the one sided aspect of the remote operations. Two store operations to a shared
variable X, one in each thread, under TSO, become a store and a put in the
RMA program, since X belongs to on one of the processes.

6 Related Work

Remote Memory Access (RMA) Programming. The semantics of MPI-3 RMA
have been first described, informally, by [31]. The work of [17] introduces oper-
ational semantics for Partitioned Global Address Spaces (PGAS), which follow
the same principles as RMA programs. The focus in their work is analysing ro-
bustness of the programs using PGAS. Our work, on the other hand, focuses
on proving that safety specifications hold for a program under RMA by using
predicate abstraction. Axiomatic semantics of the core functionality of RMA pro-
grams are introduced in [19], which shows the benefits of formal specifications
in discovering inconsistencies in existing RMA libraries.

Program Analysis under Weak Memory Models There exists significant body
of work in automatically verifying programs and synthesizing fences required
for the correctness of programs running under relaxed memory models such as
x86 TSO, PSO, Power, C11. This is the first work that verifies infinite-state
concurrent programs running on RMA. The work closest to ours is [20], that
introduces predicate extrapolation and cube extrapolation for verifying programs
under PSO and x86 TSO (more restricted than RMA). While cube extrapolation
reduces the search space of cubes when constructing the boolean program, in this
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work we introduce complete boolean program extrapolation that side-steps cube
search while building the abstraction. Another important difference is that, while
[20] abstracts only bounded store buffers, in this work we handle unbounded
sets of pending operations via sets and quantified predicates. This results in
potentially less flush operations needed to enforce the specification. The work
of [3] defines a general framework for verifying programs under weak memory
models, based on the axiomatic semantics. In our work, we rely on operational
semantics of RMA for the source-to-source reduction to SC. The work of [2] uses
predicate abstraction to verify x86 TSO programs, while discovering predicates
using traditional refinement techniques. In our work, based on a more strict
semantics (SC), we directly discover the abstraction for weaker semantics (RMA)
via extrapolation. Work on predicate abstraction for infinite-state concurrent
programs assuming SC and using compositional methods such as Owicki-Gries
and rely-guarantee is presented in [29,30].

Reduction to SC The reduction of verifying programs under weak memory
models to verification under SC via program transformation is also used in
[5, 10, 21, 36]. This work introduces a new transformation and abstraction for
RMA programs, that is precise enough to verify the program specifications while
using a reduced number of flush statements. Works by [15, 16, 33, 35] consider
verification of finite-state programs under weak memory models, considering just
some of the sources of infinite-state programs (e.g. unbounded store buffers or in-
finite variable domains). Infinite-state programs are handled in [4] for x86 TSO.
In recent work, [1] explores the advantages of alternative semantics for TSO
(replacing store buffers with load buffers) that is more efficiently verified. In
the reduction step of our work, the auxiliary set variables resemble load buffers,
because when a remote write operation is performed, the value to be written is
selected randomly from the set, which collects all values that the corresponding
remote read operation might have. [39] introduces a procedure that detects un-
expected executions that might occur when porting the program from a source
to a target memory consistency model.

7 Conclusion

We introduced the first automatic verification technique for programs running
on RMA networks. The key idea is abstraction extrapolation: automatically build
an abstraction of the program for a relaxed memory model such as RMA, based
on an existing abstraction of the program under SC. We implemented the pred-
icate and boolean extrapolation methods and we successfully verified several
challenging concurrent algorithms running on RMA. To our knowledge, this the
first time these programs have been verified on the RMA memory model. We
believe this work takes a step towards applying proof extrapolation techniques
to other hardware or software relaxed memory consistency models.
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Abstract. Quantitative information flow measurement techniques have
been proven to be successful in detecting leakage of confidential informa-
tion from programs. Modern approaches are based on formal methods,
relying on program analysis to produce a SAT formula representing the
program’s behavior, and model counting to measure the possible infor-
mation flow. However, while program analysis scales to large codebases
like the OpenSSL project, the formulas produced are too complex for
analysis with precise model counting. In this paper we use the approxi-
mate model counter ApproxMC2 to quantify information flow. We show
that ApproxMC2 is able to provide a large performance increase for a very
small loss of precision, allowing the analysis of SAT formulas produced
from complex code. We call the resulting technique ApproxFlow and test it
on a large set of benchmarks against the state of the art. Finally, we show
that ApproxFlow can evaluate the leakage incurred by the Heartbleed
OpenSSL bug, contrarily to the state of the art.

1 Introduction

Finding vulnerabilities in programs is fundamental for producing robust programs
as well as for guaranteeing user security and data confidentiality. Due to the
increasing complexity of software systems, automated techniques must be deployed
to assist architects and engineers in verifying the quality of their code. Among
these, quantitative techniques have been shown to effectively aid in detecting
complex vulnerabilities.

Quantitative information flow (QIF) computation [13] is a powerful quantita-
tive technique to detect information leakage directly at code level. QIF leverages
information theory to measure the flow of information between different variables
of the program. An unexpectedly large flow of information may characterize a
potential leakage of information. In practice, this technique relies on the following:
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the maximum amount of information that can leak from a function (known as
channel capacity) is the logarithm of the number of distinct outputs that the
function can produce [16].

Recently, QIF computation based on program analysis and model counting
has effectively analyzed codebases of tens of thousands of lines of C code [31]. This
technique proceeds as follows. A specific fragment of the program (e.g. a function,
or the whole program) is modeled as an information-theoretic channel from its
input to its output. Program analysis techniques such as symbolic execution
or model checking are used to explore the possible executions of the fragment.
Program analysis produces a set of constraints that characterizes these executions.
Afterwards, a model counter is used to determine the number of distinct outputs
of the fragment (e.g. the return values of the function, or the outputs of the
program). Finally, the base-2 logarithm of the number of possible outputs gives
us the channel capacity in bits.

However, even small programs can result in sets of constraints that are difficult
to model count. Complex constraints can result, for instance, from complex
program constructions such as pointers in C code. As a result, QIF computation
is still not able to discover real-world, high-value security vulnerabilities.

In particular, we consider the analysis of the OpenSSL Heartbleed vulnera-
bility [1] to be an achievable target for QIF computation, and aim to analyze
vulnerabilities of this complexity. Channel capacity can be used to detect infor-
mation leakage in cases like Heartbleed. For instance, if the input of a function
has a capacity of 6 bits and the output a capacity of 8 bits, then the function
has unexpected behavior. Further investigation can determine the origin of the
information that is unaccounted for, e.g. restricted memory that the function is
not supposed to have access to. The technique has been shown to be able to help
detect and confirm bugs in software [26, 24, 27], and to signal to a developer that
there may be bugs in a particular part of the software. Indeed, QIF-based tech-
niques, while not foolproof, can use the a large information flow to a particular
part of the program as a hint to a developer in order to narrow down where to
look for bugs [31].

However, the model counting step of the procedure is very computationally
expensive, since it is #P -complete [32]. On the other hand, since channel capacity
is computed as the logarithm of the number of outputs, imprecision in the model
counting procedure will result only in minor variations of the computed channel
capacity. Hence, it is natural to consider using approximate model counting
techniques, where the precision of the result is traded for improved efficiency.

This idea has been investigated by Klebanov et al. [22]. However, in Section 5.1
we show that the approach in [22] is fundamentally incorrect, requiring a different
technique.

For these reasons, in this paper we propose ApproxFlow, a new QIF com-
putation technique to tackle problems for which precise model counting is not
efficient enough. ApproxFlow is based on the ApproxMC2 tool implemented by
Chakraborty et al. [12]. We show that ApproxFlow vastly outperforms the state
of the art on all but a few of the benchmarks, including on many cases in which
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no other tool is able to provide an answer, making it the most efficient tool for
QIF computation currently available. The contributions of this paper are:
– We present ApproxFlow, a technique to quantify information flow for deter-

ministic C programs based on the approximate projected model counter
ApproxMC2;

– We show that a small decrease in the approximation precision can yield large
performance improvements, allowing ApproxFlow to scale to complex cases
with minimal reduction in the result’s usefulness;

– We show that the technique presented in [22] is incorrect due to some mistakes
in its underlying theoretical results;

– We evaluate ApproxMC2 against the precise projected counter sharpCDCL on
a large set of benchmarks, showing that the former generally yields orders of
magnitude better performance at the cost of a small decrease in precision;

– We use ApproxFlow’s improved scalability to model and compute the leakage
of the code in the Heartbleed bug [1], unlike previous QIF techniques.
The rest of the paper is structured as follows. Section 2 introduces technical

background and notation, and Section 3 discusses related work. We describe our
technique ApproxFlow Section 4 and evaluate it in Section 5. Section 6 presents
the Heartbleed case study. Section 7 provides additional discussion, and Section 8
concludes the paper.

2 Background

This section introduces the background and notations used in this paper.

Entropy and channel capacity. Let X be a discrete finite sample set and ρ(X )
a probability distribution on it, where the probability of an outcome x ∈ X is
denoted Pr[x]. The entropy H(ρ(X )) of a probability distribution ρ(X ), measured
in bits, is defined as H(ρ(X )) = −

∑
x∈X Pr[x]·log2 Pr[x]. The conditional entropy

H(ρ(Y|X )) of the conditional probability distribution ρ(Y|X ), is defined as
H(ρ(Y|X )) = −

∑
x∈X Pr[y|x] · log2 Pr[y|x], where Pr[y|x] denotes the probability

of an outcome y ∈ Y given that an outcome x ∈ X has already occurred.
Define a deterministic channel D as a triple (I,O, F ) where I (inputs) and O

(outputs) are discrete finite sample sets and F is a function I → O defining which
output o ∈ O is produced for each input i ∈ I. Hence, any probability distribution
ρ(I) on the input I induces a probability distribution ρ(O) on the output O
via F . The channel capacity of D is defined as C(D) = maxρ(I)H(ρ(O)) where
the maximum is taken over all possible probability distributions ρ(I). For a
deterministic channel D, it is known [16] that C(D) = log2 |{o ∈ O s.t. Pr[o] >
0}|.

The mutual information of a deterministic channel D is defined as I(D) =
H(ρ(O))−H(ρ(O|I)). An alternative but equivalent formulation of D’s channel
capacity is C(D) = maxi∈I I(D).

A deterministic program can be regarded as a deterministic channel, where
I and O represent the possible values for the program’s inputs and outputs. In
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this case the channel capacity represents the maximum amount of information
that can be inferred on the program’s inputs by observing its outputs [17].

Model counting. Model counting, or #SAT, is the canonical #P -complete problem,
and is the counting analogue of the Boolean satisfiability (SAT) problem [32]. Let
φ be a SAT formula involving variables V , and a ∈ {true, false}V be a Boolean
valuation of V. We say that a is a model of φ, denoted a ` φ, if φ evaluates to
true when substituting variables with their value in a.

The model count #φ of φ is the number of valuations that satisfy φ:

#φ =
∣∣{a ∈ {true, false}V | a ` φ}∣∣ .

We introduce the notion of projection in the context of model counting [3].
We consider a subset S ⊆ V of the variables. Given a Boolean valuation a of V,
we naturally define its projection a|S on S by restricting the input domain of a
to S. The projection a|S is a Boolean valuation of S.

The projected model count of a SAT formula φ on a projection scope S is the
number of valuations of S that can be extended into a model of φ:

#φS =
∣∣{aS ∈ {true, false}S | ∃a ∈ {true, false}Va|S = aS ∧ a ` φ

}∣∣ .

Approximate projected model counting with ApproxMC2 Approximate projected
model counting [12] refers to the problem of finding an estimate on the projected
model count of a SAT formula φ onto a subset S of the variables, as opposed to
precise number.

We present the core ideas behind the ApproxMC2 tool used in this paper,
and refer the reader to [12, 11] for a full exposition. ApproxMC2 is a Karp-Luby
(or (ε, δ)) counter [20], which obtains an estimate #̂φ on #φ that falls within
a factor 1 + ε of #φ with a probability of 1− δ, i.e., given a tolerance ε and a
probability δ it holds that

Pr
[
(1 + ε)

−1 · (#φ) ≤ #̂φ ≤ (1 + ε) · (#φ)
]
≥ 1− δ .

ApproxMC2 works by randomly partitioning the set of possible models of
the SAT formula φ projected onto S ⊆ V (denoted as φS), into roughly equal
buckets, performing model counting on this single bucket, and returning this
count, multiplied by the number of buckets, as the approximation of the exact
projected model count #φS . The partitioning into buckets of roughly equal size
is key, and is done using an approach based on r-wise independent hash functions
[6], adding special randomized XOR constraints to the SAT formula. If these
randomly-chosen buckets are “too big,” the number of buckets is doubled and
the procedure is repeated with accordingly smaller buckets.

For the reader’s convenience, we present a description of ApproxMC2, the
algorithm from [12], in Algorithm 1. We note that the algorithm has a chance to
fail to return anything at line 4, when it returns ⊥. By repeating the algorithm a
sufficiently large number of times, we can obtain the desired probability 1−δ that
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Algorithm 1: ApproxMC2
Input :A SAT formula φ with |φ| SAT variables x1, ..., x|φ|
Input :A projection scope S ⊆ {x1, ..., x|φ|}
Output :An estimate of #φS , the number of models of φ projected onto S

1 p← 1 + 9.84 · (1 + ε
1+ε ) · (1 + 1

ε )
2 // pivot value p

2 b← min(p,#φS) // return p as soon as ≥ p models of #φS found
3 if b < p then
4 return b

5 cells ← 2 // Number of cells
6 C ← [ ] // Empty list
7 for i← 1 to d17 · log2(

3
δ )e do

8 Choose h at random from Hxor(|S|, |S| − 1) // Random hash function
9 Choose α at random from {0, 1}|S|−1

10 φ′ ← φ ∧ h(S) = α // Add random XOR constraint to φ
11 b′ ← min(p,#φ′S)

12 if b′ ≥ p then
13 cells ← ⊥
14 models ← ⊥
15 if cells 6= ⊥ then
16 m← log2 LogSATSearch(φ, S, h, α, p, log2 cells)
17 φ′′ ← φ ∧ h(m)(S) = α(m) // Add XOR constraints to φ
18 models← min(p,#φ′′S)
19 AppendToList(C, cells · models)

20 return C̃ // Median of C

it will succeed. In line 16, the invocation of LogSATSearch refers to a procedure
to obtain good values for m. This is beyond the scope of this paper, and we
refer to [12] for details. In lines 2 , 11 , and 18, the minimum is computed using
a SAT solver which iteratively finds up to p models. Note that this step does
not require the usage of a model counter. Thus, the precise model count is not
typically computed at these points, unless the formula (augmented with any XOR
constraints) has become constrained (small) enough to have p or fewer models.

We emphasize that ApproxMC2 allows us control the tolerance ε. We will
show in Section 4.3 how reducing the tolerance can significantly improve the
computation time.

3 Related Work

This section presents a short review of work that is related to this paper.

3.1 Quantitative Information Flow

Prior work on QIF has largely followed the paradigm of characterizing the set
of a program’s outputs. We classify related work into two categories: those
which measure channel capacity, and those that measure other kinds of entropy.
We make a note that some work in channel capacity formulates their problem
in terms of min-entropy, but it is known [25] that for deterministic channels,
min-entropy and channel capacity are equivalent. In addition, because much
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work in QIF considers conditional entropy, we remark that channel capacity
corresponds to minimizing the conditional entropy of the output given the
input [17]. This is easy to see, as (adopting the definitions and notation from
Section 2), C(D) = maxi∈I I(D) = maxi∈I(H(ρ(O))−H(ρ(O|I)). To maximize
I(D), H(ρ(O|I)) must be minimized.

Channel capacity. Meng and Smith [25] present a method to obtain empirically
good upper bounds on the channel capacity of various small synthetic example
programs, also contributing to standardizing a set of QIF benchmark programs.
In [21], Klebanov et al. show how to obtain precise measurements of the channel
capacity (alongside the conditional Shannon entropy) for a number of programs,
including the benchmarks from [25], in addition to a number of small synthetic
programs and two examples of real C code on the order of magnitude of 100 lines.
In [26], Newsome et al. present a compound approach to obtain precise channel
capacity measurements for a set of small, synthetic benchmark programs, and
very coarse approximations to large, real-world programs up to a million lines.
In [31], Val et al. present a way to measure the channel capacity for a number
of benchmarks both synthetic and real, showing how to scale to programs up
to thousands of lines of code. McCamant and Ernst [24] use a coarse upper-
bounding approach for channel capacity based on network flows, showing how
to scale to hundreds of thousands of lines of real code and contributing smaller
case studies as benchmarks. Phan and Malacaria [27] present a method that
is able to analyze and compute upper bounds on the channel capacity for C
implementations of several well-known protocols, as well as three few-hundred-line
case studies including parts of the Linux kernel. While some of the above work has
demonstrated that generating SAT formulas is possible even for large programs,
complex program structures such as pointers often result in SAT formulas that
are too difficult for model counting. In addition, the various approaches have
occupied static points on the precision vs. scale relation, unable to vary precision
to obtain significant speedups.

Other QIF measures. In [34], Weigl presents a tool sharpPI, which implements
different search heuristics for model counting, applying it to the measurement
of Shannon entropy and presenting results for a small, scalable synthetic C
program. In [8], Biondi et al. present a technique, implemented in the QUAIL
tool [10, 9], to measure Shannon entropy for a number of scalable case studies
expressed in a simple imperative language. More recently, Fremont et al. [19]
present MaxCount, a novel approximate QIF method effective at finding leaks
in programs, with increasing efficacy as the relative size of the leaks increase.
In [5], Backes et al. present a technique to analyze small, synthetic programs
with respect to various information-theoretic measures. These techniques do not
compute the channel capacity, and therefore they are not comparable with our
approach. We note that, as a special case of QIF (checking for the existence of
a non-zero flow), qualitative information flow has been demonstrated to scale
to large program sizes, and confirm bugs in real software such as the OpenSSL
Heartbleed bug [23]. However, qualitative information flow does not attempt to
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measure the amount of information flowing through a program, and therefore
cannot be directly compared to our work.

Most recently, Biondi et al. present HyLeak [7], a tool based on a combination
of channel matrix computation and simulation to compute channel capacity,
among other information-theoretic measures.

3.2 Projected Model Counting

Projected model counting is a problem that arises naturally in QIF measure-
ment [26, 21, 31, 27].

In [34], Weigl presents an approach to projected model counting used as part
of a QIF measurement technique, implementing several different search heuristics
to guide the model counting. In [31], Val et al. present SharpSubSAT, a simple
projected model counter as part of a toolchain for measuring channel capacity,
which handles projection by removing variables from the formula that are not
part of the projection subset. The projected counter SharpCDCL [21] uses a similar
technique based on the state-of-the-art model counter sharpSAT. SharpCDCL is
in fact the current state-of-the-art tool in projected model counting.

Still, precise model counting often cannot scale to larger problem sizes, prompt-
ing the need for approximate methods. Work in approximate model counting has
fallen into three categories: counters that provide no theoretical guarantees but
empirically yield good estimates on the true count, counters providing a count
that represents an upper (or lower) bound on the exact count, and counters that
provide an interval within which the exact count falls ((ε, δ)-counters). We are
especially interested in these (ε, δ)-counters, for the theoretical guarantees they
provide, and for the promise of trading precision for running time. In addition,
there are (to the best of our knowledge) no projected approximate model counters
that fall outside this category.

Klebanov et al. [22] present a counter based on ApproxMC2 [11], with scalability
to 105 variables and 106 clauses. However, as shown in Section 1, this particular
counter has some theoretical mistakes, and we cannot consider it among the state
of the art. In [12], the authors present a counter based on the one from [11], and
demonstrate scalability to formulas with 105 variables and 106 clauses. Indeed,
the counter from [12] is among the state-of-the-art (ε, δ)-counters with projection
capabilities.

Recently, Fremont et al. [19] have presented the Maximum Model Counting
technique to compute approximate subset model counts, a novel technique based
on a partitioning scheme inspired by [12], and using the same underlying algorithm
(ApproxMC2) as we do in our technique. In their approach, the effectiveness of
the algorithm increases with the number of solutions.
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Fig. 1. A high-level view of ApproxFlow’s toolchain.

4 Channel Capacity Estimation with ApproxFlow

In this section, we describe ApproxFlow5, our technique for estimating the channel
capacity of a program to a given precision, with the intention of flagging suspicious
parts to a developer applying the tool on the program. We restrict ourselves to
deterministic programs, consistent with our background in Section 2. A high-level
view of our approach can be seen in Figure 1. ApproxFlow takes as input a program,
and passes it to a model checker to generate a SAT formula representing the
program. The SAT formula must be annotated with a projection scope, which is
the subset of the variables in the formula that correspond to the original program
variables to which we wish to measure channel capacity. We consider these the
“output” variables (although they can be SAT variables corresponding to program
variables anywhere in the program), while the SAT variables corresponding to
the original program inputs are not projected upon or constrained in any way.
ApproxFlow then passes this annotated SAT formula to a projection-capable
approximate model counter in order to obtain an approximation on the number
of models of the formula, projected onto the projection scope. Finally, ApproxFlow
takes the logarithm in base 2 to obtain our final measurement – an approximation
of the channel capacity of the program. The following subsections provide details
on each part of the toolchain.

4.1 Program to SAT Formula

ApproxFlow takes as input a deterministic C program, and uses the model checker
CBMC [15] to obtain an annotated SAT formula that represents the original
program. The C program may be optionally annotated by the user to specify
a given program location or set of program variables to which to measure the
channel capacity. In practice, this program annotation is specified using CBMC’s
assertion facilities. The user can use the assertion __CPROVER_assert(0,""); to
specify where the formula should be computed. If this annotation is not provided
by the user, ApproxFlow automatically converts the program into an equivalent
program where all functions in the program have a single return point at the end
of each function, and the annotation is automatically placed immediately before
this single return point.
5 ApproxFlow is publicly available at https://github.com/approxflow/approxflow.
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CBMC performs bounded model checking on the program6, and outputs a
SAT formula in conjunctive normal form (CNF) that represents the constraints
on the variables induced by the program. This model checking step is subject
to the following limitations: 1) loop unwinding is bounded to a specified depth
(always set high enough in our experiments to capture the full behaviour of the
program), and 2) the set of possible values for pointers is overapproximated.

For a fuller treatment of the effect of bounded loop unwinding on (precise)
channel capacity computation, we refer the reader to [31], but we give a brief
treatment of the topic. For some programs, such as server software which includes
infinite loops by design, loop unwinding limits the scope of the analysis, and
underapproximates program behaviour. Consequently, the channel capacity is
also underapproximated. However, it is often the case that an output variable
to which we measure leakage already achieves maximum leakage after only a
few iterations. In addition, many loops are executed for only a few iterations,
and a bound such as 32 (our default) is more than enough to capture the loop’s
full behaviour. As our goal is approximate channel capacity measurement, we
argue that our approach is less sensitive than precise approaches to the further
approximation induced by bounding the loop unwinding. A similar argument
can be made for the overapproximation caused by CBMC’s conservative pointer
analysis, and we again refer the reader to [31] for a discussion in the context
of information flow. Both issues are orthogonal to our contributions, as they
result directly from CBMC’s limitations in performing a more precise analysis;
improvements in model checking and formula generation would benefit us directly.

Additionally, CBMC annotates the SAT formula with comments that specify
which boolean variables in the SAT formula correspond to the original program
variables. In this way, we are able to obtain a SAT formula from CBMC that
is annotated with our desired projection scope, which may be then passed to
an approximate model counter in order to obtain the number of models of the
formula projected onto the specified variables.

4.2 SAT Formula to Channel Capacity

In the second step of our approach, we take as input an annotated SAT formula
obtained from the model checker and use a projection-capable approximate model
counter to obtain an estimate of the number of models of the projected formula.
Specifically, we use an improved implementation of a state-of-the-art approximate
model counter ApproxMC2 [12] by Mate Soos and Kuldeep Meel, which is pending
publication. For the remainder of the paper, whenever we refer to ApproxMC2,
we are actually referring to this improved version.

ApproxMC2 takes a SAT formula in conjunctive normal form (CNF), specified
in the DIMACS CNF format [4], with the projection scope specified by special
comments in the file. ApproxMC2 provides an approximate number of models
of this projected formula within a specified tolerance, with high probability.
6 We do not discuss model checking in this paper. For a treatment of model checking,
please consult [14].
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While ApproxMC2 is a state-of-the-art approximate counter, it does have some
limitations even when compared to precise tools. ApproxMC2 has significant
overhead due to the requirement of adding XOR constraints, which tends to
make it perform more poorly in terms of running-time on smaller problems
relative to other counters. In addition, ApproxMC2’s expected runtime is higher
when compared to other counters when it is used to solve formulas that are
dense in their solution space – that is, formulas which have a large number of
models in relation to their formula size (in number of variables). In practice,
these limitations are not usually a problem compared to other available counters
(precise or approximate). Full details may be found in [12].

Finally, ApproxFlow takes the logarithm in base 2 of this estimated model
count in order to obtain an estimation of the channel capacity of the program.
Somewhat unique to this problem, it is worth nothing that taking the logarithm
of the approximate count exponentially squishes the error in the estimate. In
other words, a fairly coarse approximation on the model count can yield good
probabilistic bounds on the channel capacity estimate.

4.3 Performance-Precision Trade-off
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Fig. 2. Precision-time relationship for Ap-
proxMC2. Time (in seconds) is on the vertical
axis, and the precision (or tolerance) parameter ε
is shown on the horizontal axis. Larger values of ε
represent more relaxed precision guarantees. All
measurements taken were for the preprocessed
AppleTalk case (ddp.pp.cnf) from Section 5 with
probability (1− δ) = 0.8.

Using an approximate method nat-
urally leads to a trade-off between
precision and performance. Be-
cause ApproxMC2 is able to trade
a lower precision for a shorter run-
ning time, we can choose a trade-
off point on the side of shorter run-
ning time when a close approxima-
tion is not essential (for instance,
when an approximate lower bound
is the desired outcome, as would
be desired when enforcing k-bit
policies [26]).

We evaluate this trade-off for
ApproxMC2 on the AppleTalk
Linux driver benchmark, ddp.pp
(discussed in more detail in Sec-
tion 5.3). This benchmark exhibits
a large enough channel capacity
(128 bits) such that a result with
a few bits of imprecision is still
useful. In addition, it is long-running enough (roughly 20 seconds on our machine,
detailed in Section 5) to be largely immune to small variations in time resulting
from background CPU usage, making it a good candidate for trading precision
for performance.

Figure 2 shows the relationship between precision ε and running time for
0.05 ≤ ε ≤ 1, with a fixed δ of 0.2 (the default value). As time is plotted
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on a logarithmic scale, we can see that as soon as we are able to relax the
precision/tolerance of the method by increasing epsilon, we gain a dramatic
speedup. Since channel capacity is computed as the logarithm of the number of
models, the worst case, ε = 1, represents only a single bit of imprecision, yet we
observe a speedup factor of 2-3 orders of magnitude over the ε = 0.05 case, which
represents an imprecision of log2 (1.05) ≈ 0.070 bits. Interestingly, we observed
that in all cases, the reported information flow was 128 bits. In practice, the
trade-off is even better based on these empirical observations than expected from
the theoretical guarantees.

5 Evaluation

In this section, we present an experimental evaluation of ApproxFlow compared
to the state-of-the art precise channel capacity measurement tools. We ran all
experiments on an Oracle VirtualBox virtual machine with 1 CPU and 8GB of
RAM running Linux Mint 18.1 hosted on a Windows 10 machine with a quad-core
Intel Core i7 2.9GHz CPU and 16GB of RAM.

5.1 Problems in Klebanov et al. [22]

The usage of approximate model counting to determine channel capacity was
previously explored by Klebanov et al. [22]. However, we have been unable to
replicate the results in [22]. After further investigation, we have concluded that
our inability to replicate such results depends on the fact that the theoretical
claims and proofs presented in [22] are incorrect.

The main result of [22] is presented in Theorem 2.12. The theorem aims to
show that the algorithm described in the paper terminates with high probability,
returning an estimate on the approximate model count. Unfortunately, as result
of a mistake in the proof, the probability of termination is overestimated, and
the presented algorithm appears to be more effective than it actually is at
approximating the true number of solutions. In particular, the proof of this
theorem hinges on the following claim (adopting the notation from [22]):

We now show that there is at least one iteration of the loop (indexed
by m = m′) such that with a probability of at least 1 − eb−r/2c the
following is true: the exit condition c ≤ pivot holds and the return value
2m
′ · |φh| ∈ [(1− ε)|φ|, (1 + ε)|φ|]

The authors then proceed to prove the above claim and treat it as sufficient
for the proof of Theorem 2.12. However, this is incorrect since the above claim
is not a sufficient condition for Theorem 2.12. To this end, let us define the
event Ti as condition c ≤ pivot holds for iteration m = i and the event Ui as
2i · |φh| ∈ [(1 − ε)|φ|, (1 + ε)|φ|]. Theorem 2.12 seeks to bound from below the
probability of the event S, where S = ∪ni=1((∩i−1j=1(T̄j)) ∩ Ti ∩ Ui. Note that,
Pr[S] ≥ Pr[Ti ∩ Ui] does not necessarily hold for all i. Therefore, demonstrating
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that there exists m = m′ such that Pr[Tm ∧ Um] ≥ 1− eb−r/2c is not sufficient
to support the claim in Theorem 2.12.

In addition, there is an error in the statement of Theorem 2.6. The authors
have written the upper bound on the probability as e−br/2c, instead of eb−r/2c [29,
Theorem 5]. The authors conclude that the value for pivot reported in [11] can
be made smaller, chosen as the value reported in Algorithm 3, Line 2 and shown
in Table 1. However, these conclusions are supported by Lemma 2.13, which
depends on Theorem 2.6 and the incorrect bound on the probability. As a result,
the reported precision of the algorithm is overestimated compared to the true
precision.

5.2 Comparison to Precise Channel Capacity

We compare ApproxFlow with the SharpCDCL-based technique proposed by Kle-
banov et al. [21]. Both techniques follow the same steps: 1) generating a SAT
formula from a program using CBMC [15], 2) specifying a projection scope, and
3) performing projected model counting (precise or approximate). We compare
only the step where ApproxFlow differs from Klebanov et al.’s approach, namely
projected model counting. For this comparison, we feed a SAT formula to both
tools, along with a projection scope extracted from a C program. If SAT formulas
are directly available from the existing benchmarks, we reuse those formulas,
otherwise we generate them with CBMC.

To produce the SAT formulas we use a 32-bit CBMC version 5.6 with the
arguments --32 --dimacs --function function-name --unwind loop-bound.
The parameter function-name specifies the function containing the variables for
which we want to measure channel capacity. The parameter loop-bound is the
loop unrolling depth, set to 32. We insert projection scopes corresponding to the
SAT variables in the formats required by sharpCDCL and ApproxMC2.

Finally, we run sharpCDCL and ApproxMC2 each with a timeout of 2 hours, un-
less otherwise specified. We measure the running time and the number of models
reported by each tool. As explained earlier, the base-2 logarithm of the number of
models gives us the channel capacity. If sharpCDCL times out, it reports a lower
bound on the number of models it found, while ApproxMC2 does not currently
have this feature implemented. Consequently, we report a lower bound only for
sharpCDCL, when applicable. We run sharpCDCL with arguments -countMode=2
-projection=projection-scope, where projection-scope refers to a file con-
taining the projection variables, and a countMode of 2 tells sharpCDCL to perform
model counting, rather than just SAT-solving. We ran ApproxMC2 with no ar-
guments, as the projection scope is specified as comments in the SAT formula
file. The default tolerance ε for ApproxMC2 is 0.8 (∼ 0.8 bits of error), and the
default confidence is 80% (δ = 0.2).

While we recognize that a large number of runs for each experiment would
be ideal for statistical evidence with respect to running time, many of our
experiments are long-running and doing this was not feasible. Therefore, our
figures represent the results of a single invocation of each tool.
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Table 1. Leakage reported by ApproxMC2 and sharpCDCL as a number of bits, relative
error (as a percentage) in number of bits of channel capacity, running times for each
tool, and speedup factor observed when running ApproxMC2 instead of sharpCDCL
for several benchmarks. Negative entries represent slowdown factors. Speedup entries
marked as — represent entries for which at least one of the tools completed too quickly
for the precision of our timing tool (and at least one reported 0.00s). Entries marked
with error represent values for which sharpCDCL terminated with an error, and could
not produce a value for the model count. We note that in many cases, only ApproxMC2
was able to complete, with bolded entries representing cases in which both tools ran to
completion. We note that ApproxMC2 never produced an error.

Benchmarks from [26, 5, 25, 21]
Experiment sharpCDCL ApproxMC2 Relative sharpCDCL ApproxMC2 Speedup
name leakage leakage error time time factor
e-purse 5.00 5.00 0% 0.06 0.28 -4.67
pw-checker 1.00 1.00 0% 0.00 0.00 —
sum-query >22.49 32.00 ∗ t/o 0.87 ∗
10random 3.32 3.32 0% 0.00 0.00 —
bsearch16 16.00 16.00 0% 3.40 0.49 6.90
bsearch32 >22.87 32.00 ∗ t/o 2.13 ∗
mix-dupl 16.00 16.00 0% 5.91 0.20 29.60
sum32 >22.48 32.00 ∗ t/o 0.89 ∗
illustr. 4.09 4.09 0% 0.00 0.01 —
mask-cpy 16.00 16.00 0% 6.02 0.20 30.1
sanity-1 >22.82 31.04 ∗ t/o 0.94 ∗
sanity-2 >22.92 31.00 ∗ t/o 1.07 ∗
check-cpy >22.51 32.00 ∗ t/o 0.88 ∗
copy >22.49 32.00 ∗ t/o 0.84 ∗
div-by-2 >22.79 31.00 ∗ t/o 1.06 ∗
implicit >2.81 2.81 0% 0.00 0.01 —
mul-by-2 >22.46 31.00 ∗ t/o 0.89 ∗
popcnt 5.04 5.04 0% 0.00 0.01 —
simp-mask 8.00 8.00 0% 0.00 0.05 —
switch 4.25 4.25 0% 0.00 0.00 —
tbl-lookup >22.45 32.00 ∗ t/o 0.88 ∗

5.3 Benchmarks

Several benchmarks have become accepted in the QIF literature. Tables 1 to 3
show the relative error and speedup factor of running ApproxMC2 instead of
sharpCDCL on these benchmarks. As no SAT formulas were openly available for
many of these, we wrote C implementations from the descriptions of the specified
benchmarks in their respective papers, and obtained SAT formulas using CBMC
as previously described.

Table 1 ApproxMC2 and sharpCDCL on the benchmarks presented in [26, 5,
25, 21]. When both ApproxMC2 and sharpCDCL terminate before the time out,
the reported model count is identical, therefore ApproxMC2 has relative error of
zero. In the cases when sharpCDCL times out after two hours, the lower-bound
channel capacity reported by sharpCDCL ranges from 22 to 23 bits, even when the
actual result is larger. On these benchmarks, ApproxMC2 is not much slower than
sharpCDCL, and always reports the exact result. The converse tells a different
tale, with sharpCDCL often timing out after 2 hours, and providing only a coarse
lower bound in these cases. It is also somewhat surprising that sharpCDCL times
out on SAT formulas resulting from some simple programs, such as divide-by-2.
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Table 2. Leakage reported by ApproxMC2 and sharpCDCL as a number of bits, relative
error (as a percentage) in number of bits of channel capacity, running times for each
tool, and speedup factor observed when running ApproxMC2 instead of sharpCDCL
for several benchmarks. Negative entries represent slowdown factors. Speedup entries
marked as — represent entries for which at least one of the tools completed too quickly
for the precision of our timing tool (and at least one reported 0.00s). Entries marked
with error represent values for which sharpCDCL terminated with an error, and could
not produce a value for the model count. We note that ApproxMC2 never produced an
error, and further note that in many cases, only ApproxMC2 was able to complete, with
bolded entries representing cases in which both tools ran to completion. The entry fx
was run with a higher timeout (8.5 hours) instead of the usual 2 hours.

Benchmarks from [26, 5, 25, 21]
Experiment sharpCDCL ApproxMC2 Relative sharpCDCL ApproxMC2 Speedup
name leakage leakage error time time factor
ddp error 128.00 ∗ error 23.50 ∗
ddp.pp error 128.00 ∗ error 19.55 ∗
popcount 5.04 5.04 0% 0.00 0.01 —
sanitize 4.00 4.00 0% 0.00 0.00 —
openssl.1 8.00 8.00 0% 1.44 70.66 -49.10
openssl.2 16.00 16.00 0% 4.63 75.39 -16.30
openssl.3 >22.24 24.00 ∗ t/o 92.47 ∗
openssl.4 >22.91 32.00 ∗ t/o 86.32 ∗
openssl.5 >23.10 40.00 ∗ t/o 87.74 ∗
openssl.6 error 48.00 ∗ error 89.60 ∗
openssl.7 error 56.00 ∗ error 91.98 ∗
openssl.8 error 64.00 ∗ error 98.04 ∗
openssl.9 error 72.00 ∗ error 97.41 ∗
openssl.10 error 80.00 ∗ error 112.71 ∗
openssl.15 error t/o ∗ error t/o ∗
openssl.20 error 160.00 ∗ error 142.48 ∗
swirl >12.82 t/o ∗ t/o t/o —
10random 3.32 3.32 0% 0.00 0.01 —
bsearch16 16.00 16.00 0% 4.16 0.68 6.12
bsearch16.pp 16.00 16.00 0% 3.73 0.35 10.70
bsearch32 >22.79 32.00 ∗ t/o 3.21 ∗
bsearch32.pp >22.90 32.00 ∗ t/o 6.93 ∗
fx 16.00 16.00 0% 5753.42 7307.61 -1.27
mixdup 16.00 16.00 0% 8.44 0.22 38.40
sum.32 >22.78 32.00 ∗ t/o 0.98 ∗

In Table 2, we present results for a set of benchmarks described in [22, 21], for
which the authors kindly provided us the SAT formulas directly. As in the previ-
ous set of experiments, when both ApproxMC2 and sharpCDCL report a number of
models, the numbers are identical despite ApproxMC2’s fairly relaxed theoretical
tolerance and confidence. In these experiments, we found that sharpCDCL some-
times incorrectly terminates before its timeout because of two kinds of error: a
segmentation fault, or reporting the formula to be unsatisfiable (despite normally
giving a lower bound on the number of solutions if interrupted). In addition, we
witness cases in which ApproxMC2 timed out. We observe that ApproxMC2 is
slower than sharpCDCL on short-running experiments (openssl.1 and openssl.2),
but significantly faster on the more difficult, longer-running experiments (where
sharpCDCL often times out), with the exception of fx.

In Table 3, we present results for a set of scalable case studies given in [9].
These case studies consist of two models of a Voting protocol (one based on
each voter voting for a single-candidate, and one based on each voter having a
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Table 3. Leakage reported by ApproxMC2 and sharpCDCL as a number of bits, relative
error (as a percentage) in number of bits of channel capacity, running times for each
tool, and speedup factor observed when running ApproxMC2 instead of sharpCDCL for
several benchmarks. Negative entries represent slowdown factors. Entries marked with
error represent values for which sharpCDCL terminated with an error, and could not
produce a value for the model count (even in cases it completed within the timeout,
it did not report a number of solutions). We note that ApproxMC2 never produced an
error, with bolded entries representing cases in which both tools ran to completion. The
entries with 0% error had a reported solution count of 0 by both tools, so we abuse
notation and consider this a 0%, rather than undefined, error.

Benchmarks from [26, 5, 25, 21]
Experiment sharpCDCL ApproxMC2 Relative sharpCDCL ApproxMC2 Speedup
name leakage leakage error time time factor
Sing.3 error 5.81 ∗ error 1.46 ∗
Sing.5 7.62 7.86 3.15% 0.06 3.02 -50.30
Sing.7 9.63 9.70 0.73% 0.38 3.98 -10.50
Sing.9 10.97 11.00 0.27% 0.83 5.82 -7.01
Rank.3 >21.00 67.17 0% t/o 55.34 ∗
Rank.5 0.00 0.00 0% 0.40 0.52 -1.30
Rank.7 0.00 0.00 0% 0.75 0.96 -1.28
Rank.9 0.00 0.00 0% 1.26 1.58 -1.25

preference ranking of the candidates). These experiments have parameters that
control the size of the program, and therefore of the generated SAT formula. We
refer the reader to [9] for a description of the case studies and their parameters.
We translated the Java code provided on the companion website of the paper
into C, and generated SAT formulas with CBMC, with 16 as the bound for loop
unwinding. The experiment names beginning with “Sing” represent the single
candidate case from the case studies, while the experiment names beginning with
“Rank” represent the preference ranking case. In both cases, we correspond cases
in which ApproxMC2 is not clearly better than sharpCDCL. Although sharpCDCL
produces an error or times out in two of these cases, when sharpCDCL terminates,
it is between 7 and 50 times faster than ApproxMC2. We believe this is because
the resulting SAT formulas are dense in the number of solutions, which is a
weakness of ApproxMC2 (as we stated in Section 4.2). Nonetheless, ApproxMC2 is
very precise, exhibiting relative errors ranging from 0.30% to 3.10%. The Rank
entries with the number of candidates ranging from 5 to 9 represent unsatisfiable
formulas, and thus have 0 solutions.

As a consequence of the errors returned by sharpCDCL and the number of
benchmarks for which ApproxMC2 reported the exact count, we lack an in-depth
empirical evaluation of ApproxMC2’s precision. To this end, we present further
relative error measurements on the SmartGrid benchmark from [9]. These bench-
marks compute the leakage of private information obtained by observing the global
energy consumption in a smart grid. One model computes the information about a
single house, and the other computes the information about the consumption of ev-
ery house. As in the Voting protocol, we can scale the benchmark by changing the
values of the protocol’s parameters (Case A or B), the number of houses, and (for
the single-house case), the size of the house – small (S), medium (M), or large(L).
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Table 4. Relative error (as a percentage) in the
channel capacity estimation by using ApproxMC2
instead of the precise counter sharpCDCL for the
SmartGrid case study from [9]. The entry marked
as — represents a case in which sharpCDCL re-
turned an error and could not report a result.
The entry marked with a ? represents a case in
which sharpCDCL returned an incorrect chan-
nel capacity (resulting in an observed 45.25%
relative error). We compared ApproxMC2 to an-
other exact counter (SharpSubSAT [31]) which
reported the correct precise value, to obtain the
2.86% figure.

Relative error

Num Single house Global
Case houses S M L
A 36 0.32% 0.32% 0.32% 2.86%?

A 49 0.00% 0.00% 0.00% 0.00%
A 64 0.31% 0.31% 0.31% 0.32%

B 36 0.20% 0.58% 0.20% —
B 49 0.26% 0.26% 0.26% 0.26%
B 64 0.10% 0.10% 0.29% 0.10%

We refer the reader to [9] for
the full details of these models
and their parameters. We present
in Table 4 the relative error per-
centage of ApproxMC2 with re-
spect to sharpCDCL, on the num-
ber of bits of leakage reported.
As we can see, the channel ca-
pacity reported by the tools was
very close (and in many cases ex-
actly equal) in all cases when both
tools ran to completion and re-
ported a figure, except for case
A, N=36 of the global leakage ex-
periment, where we see an “er-
ror” of 45.25% when compared to
sharpCDCL. This large error re-
sults from an incorrect channel ca-
pacity measurement reported by
sharpCDCL. We verified this using
the exact projected model counter
SharpSubSAT from [31], observing
a relative error of 2.86% in the
channel capacity when compared
to this counter.

Finally, we remark that, in addition to being much faster in most cases while
maintaining very high precision, ApproxMC2 is able to report an approximate
model count in all our experiments, in contrast to the significant number of error
cases reported by sharpCDCL.

Comparison to ApproxMC-P

Although the work presented in [22] suffers from the theoretical errors that
we described in Section 1, we compared against the implementation of their
algorithm, called ApproxMC-P. We repeated the experiments from Section 5.3 for
the Voting and SmartGrid case studies, using ApproxMC-P with the cryptominisat4
[30] backend, instead of ApproxMC2. We used the same values of ε and δ as in
Section 1, but ran with a timeout of only 5 minutes instead of 2 hours. We found
that in all but 2 cases, the tool reported a spurious model count of 0 (in those
two non-zero cases, ApproxMC-P reported the exact count). We also tried using
the sharpCDCL backend instead of the cryptominisat4 backend, and results were
similar, with most cases resulting in an error. Additionally, we also ran on other
experiments described in Section 5, observing a high occurrence of 0 reported as
the model count. We similarly omit these due to space constraints.

86 F. Biondi et al.



1 int dtls1_process_heartbeat(SSL *s) {
2
3 unsigned char *p = &s->s3->rrec.data[0], *pl;
4 unsigned short hbtype;
5 unsigned int payload;
6 unsigned int padding = 16;
7 //...
8 hbtype = *p++;
9 n2s(p, payload );

10
11 if (1+2 + payload +16 > s->s3 ->rrec.length)
12 return 0; /* missing in bugged version */
13
14 if (hbtype == TLS1_HB_REQUEST) {
15 unsigned char *buffer , *bp;
16 unsigned int write_length =
17 1 + 2 + payload + padding;
18 //..
19 buffer = OPENSSL_malloc(write_length );
20 bp = buffer;
21 *bp++ = TLS1_HB_RESPONSE;
22 s2n(payload , bp);
23 memcpy(bp, pl, payload );
24 //send buffer ...
25 }
26 }

(a)

1 int dtls1_process_heartbeat(char* input_msg ,
2 int msg_len ){
3 char *p = input_msg;
4 unsigned short hbtype;
5 unsigned int payload ;
6 unsigned int padding = 0; // ignore padding
7 hbtype = *p;
8 p++;
9 n2s(p,payload );

10
11 // only present in model for correct version
12 __CPROVER_assume (1 + 2 + payload <= msg_len );
13
14 // we model only the if true branch
15 unsigned char buffer [3 + MAX_PAYLOAD_SIZE ];
16 unsigned char *bp;
17
18 set_to_zero(buffer , 3 + MAX_PAYLOAD_SIZE );
19 bp = buffer;
20 *bp = TLS1_HB_RESPONSE;
21 bp++;
22 s2n(payload ,bp);
23 memcpy_emul(bp,p,payload );
24
25 return 0;
26 }

(b)

Fig. 3. Code model for the Heartbleed bug. a) Simplified fragment of code from
ssl/d1_both.c in OpenSSL 1.0.1f. b) Model for analysis.

6 Case Study: Heartbleed Bug

We present a case study for our technique based on the Hearbleed OpenSSL bug
[1]. We show that ApproxFlow can handle the complexity required to detect the
bug, in contrast to the state of the art of precise QIF.

The Heartbleed bug. The Heartbleed bug [1] is a vulnerability in the OpenSSL im-
plementation of the Heartbeat extension of TLS and DTLS [2]. It was introduced
in the OpenSSL code in 2012, and discovered and patched between March and
April 2014. It has been estimated that at discovery time between 24% and 55%
of the HTTPS servers in the Alexa Top 1 Million list were vulnerable to it [18].
The fact that Heartbleed went unnoticed for 2 years led the security development
community to ask why the automated techniques used to scan the OpenSSL
code for vulnerabilities did not detect it earlier, and which static and dynamic
techniques could be expected to find bugs similar to Heartbleed [28, 33, 35]. We
show how QIF can be used to model and detect the Heartbleed bug.

Fundamentally, the bug consists of a buffer over-read on a memcpy() func-
tion call in the Heartbeat implementation in OpenSSL, specifically in function
dtls1_process_heartbeat() of file d1_both.c. Figure 3 (a) presents a fragment
of the function. To verify that a server is still functional, the Heartbeat protocol
has the client ask the server to reply with a specific word. In the OpenSSL
implementation, the chosen word and its length are under the control of the
client. The length of the word is encoded in the first bytes of the message. The
pointer p is set at the start of the message from the client passed to the function
via the SSL structure in argument (line 3). First, the function decodes the type
and length of the message and stores it in the payload variable (line 8-9). In the
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vulnerable version, the checking of payload (line 11) is absent, which allows the
client to specify a word length greater than the actual length of the sent word.
Next, the function allocates a buffer large enough to store the answer message for
the client (line 19). A call to memcpy() (line 23) fills that buffer with the input
word and, if the value of payload is greater than the length of the input word,
the content of the memory after the input word. Finally, buffer is sent back
to the client. With the bugged version, the client can obtain restricted kernel
memory, which they can use to infer privileged information about the server, e.g.
the server’s private key.

Modeling the bug. We had to rewrite OpenSSL C code in a different form due to
limitations in the currently-available tools that can produce SAT formulas from
C code. This modelling step is not inherent in our approach, and may largely
disappear in the long term as SAT-formula-generation tools mature. Generating
the formulas from C code is out of the scope of this paper, and we rely on CBMC
to perform this transformation. Therefore, the code that we actually analyzed is
a model of the real code – one that CBMC can handle.

Our model is presented in Fig. 3 (b). Our goal is to compare the channel
capacity of the input_msg and buffer arrays. Since calls to malloc are not
well-supported by CBMC, we statically allocate the array (line 15). By default,
CBMC considers that unassigned values are unconstrained, therefore we set each
cell of buffer to zero with the set_to_zero macro on line 16. We then fill the
buffer as in the original function, but instead of calling memcpy(), we invoke on
line 21 a macro memcpy_emul that uses a loop to copy the values.

In order to statically set the size of buffer, we need to know the maximum
value taken by the variable payload. This variable is encoded by 16 bits. However,
we restrict it by adding CBMC constraints on input_msg so that we choose the
number of bits. The constant MAX_PAYLOAD_SIZE is set accordingly. For the
experiments, we restrict the value of payload to be encoded by 4 bits, which
corresponds to a message of at most 15 bytes. We set the message length to 1
byte, as an attacker would do to maximize the amount of information obtained
from the memory.

Due to another limitation in CBMC, we were not able to analyze the if-error-
then-return idiom, replacing it with a CBMC assumption negating the condition
of the if statement. Similarly, we only modeled the true branch of the second
conditional.

Results. We first analyze the model of the vulnerable version, that is without the
CBMC assumption about payload on line 12. Executing CBMC on the model
in Fig. 3 (b) produces a SAT formula with 39272 clauses in less than 1 second.
Since our memcpy is implemented by a loop on payload, we set the bounds on
the loop to 260 (instead of 32 as in the benchmarks from Section 5), a figure
chosen due to CBMC limitations.

First, we measure the channel capacity to input_msg. Both sharpCDCL and
ApproxMC2 terminate in less than a second and return 12 bits, which correspond
to 4 bits to encode the size of the message and 1 byte for the message itself.
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We then measure the channel capacity to buffer. The sharpCDCL tool times
out after 2 hours of trying to count the models in the formula. On the other
hand, the ApproxMC2 tool provides an approximate channel capacity of 15 bytes
in 25 seconds. Since the channel capacity to buffer is much more than the one
to input_msg, there is a suspicious leak of approximately 14 bytes of information.
By reducing the confidence to 50% (δ = 0.5), ApproxMC2 returns 15.1 bytes in 2
seconds. After such analysis, a programmer could investigate why this leakage is
so high and possibly discover the Heartbleed bug.

When adding the CBMC assumption representing the patch to fix the bug on
line 12, the leakage of buffer is down to about 1 byte (257 models) and both
sharpCDCL and ApproxMC2 terminate in less than a second. ApproxMC2 reports
264 models. This leakage value indicates that, as expected, the buffer actually
transmits one byte of information and that the patch successfully removed the
suspicious leak.

7 Discussion and Future Work

In this section, we discuss the broader meaning of our approach, its limitations,
and provide discourse on the results of the evaluation in Section 5, as well as
discussion on future directions.

We showed in Section 5 that an approximate approach can provide a large
increase in performance at the cost of a small amount of precision, especially as
problem sizes increase. A major strength of ApproxFlow is its ability to trade
efficiency for precision simply by varying the tolerance parameter ε. The ability
to relax the precision to a desired level can yield practical results in many cases.
Consider a program meant to return a value from a small set of return codes.
The corresponding leakage might be only 1 or 2 bits. In this case, a coarse
approximation would be sufficient; an observation of approximately 10 bits is just
as practically significant as an observation of precisely 10 bits – both would mark
the program as suspicious, prompting further analysis.

In Section 6, we showed that with ApproxFlow, we can perform a largely
automated analysis which is potentially useful in discovering, or confirming,
bugs in real software. Nonetheless, we recognize the need for improvements to
the technique before we can realize a fully-automated and practically useful
bug-finding tool. As explained in Section 6, limitations in CBMC force us to
analyze manually-simplified versions of some programs.

A possible improvement to formula generation would be to pursue source
code in a language easier to analyze than C. Higher-level languages such as
Java or C# present easier analysis for model checkers and symbolic execution
engines, because of features such as stronger type-checking. While C is arguably
still the most relevant language for targeting security bugs, it is perhaps too
ambitious a target for current formula generation techniques. Since the formula
generation is decoupled from the model counting, it would be interesting to study
the effectiveness of our overall approach for Java or C# source code, using a tool
such as Java PathFinder as its formula generation engine.
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In [26], Newsome et al. present the use of channel capacity measurement as a
way to enforce k-bit policies, which are policies of the form “the program leaks
no more than k bits of information from its inputs to its outputs.” Such policies
may be used as an aid to a developer looking for security issues in source code
– as soon as “too many” bits are found, the offending part of the program can
be flagged as suspicious. This is a natural use case for approximation, as the
lower bound is often already a fuzzy quantity, and a choice for the value of k
may be somewhat arbitrary. As a future direction, it would be interesting to use
an approximate lower bounding projected model counter, and observe its efficacy
compared to ApproxMC2 for enforcing k-bit policies. This use case, for example,
gives quantitative information flow techniques (such as our method) a distinct
advantage over qualitative ones, which do not reason about the size of the flow.

Finally, it would be illuminating to compare our technique to the MaxCount
tool presented by Fremont et al. [19]. Using the underlying approximate counting
algorithm they present in the place of ApproxMC2, we could study how sensitive
ApproxFlow is to the choice of counting algorithm. We expect that an approach
based on MaxCount might be more effective than our own for large leaks
(relative to the formula size), but not for small leaks. Perhaps a combination of
the two counting algorithms would be the most effective in practice.

8 Conclusions

We have presented ApproxFlow, a technique leveraging approximate model count-
ing to measure the approximate channel capacity of deterministic C programs,
showing it to be among the most efficient currently-available techniques for QIF
computation. The necessity of such a technique arises from both theoretical errors
and practical limitations in some of the prior work that applied approximate
model counting to channel capacity measurement.

ApproxFlow takes a program, performs model checking to produce a formula
which represents the program, and leverages approximate projected model count-
ing in order to obtain an approximation of the program’s channel capacity. We
show how ApproxFlow is more efficient than state-of-the-art techniques on a
number of benchmarks, with graceful degradation in the relatively few cases when
it’s less efficient. In particular, on many benchmarks, we show that ApproxFlow
can estimate the information flow while precise tools cannot, or otherwise obtain
significant speedups while maintaining high empirical precision, and exhibiting
much smaller slowdown factors when ApproxFlow is slower.

In addition, we present a new case study based on the famous OpenSSL
Heartbleed bug that showcases the power of our technique. While analysis with
state-of-the-art precise tools times out after 2 hours, ApproxFlow obtains the
channel capacity in only 25 seconds.

Our technique opens up the possibility of automatically detecting channel
capacity for larger programs than previously possible, representing a step towards
automatic vulnerability detection using QIF.
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3 IMDEA SW Institute, Spain

Abstract. Code protection technologies require anti reverse engineer-
ing transformations to obfuscate programs in such a way that tools and
methods for program analysis become ineffective. We introduce the con-
cept of model deformation inducing an effective code obfuscation against
attacks performed by abstract model checking. This means complicating
the model in such a way a high number of spurious traces are generated
in any formal verification of the property to disclose about the system
under attack. We transform the program model in order to make the
removal of spurious counterexamples by abstraction refinement maxi-
mally inefficient. A measure of the quality of the obfuscation obtained by
model deformation is given together with a corresponding best obfusca-
tion strategy for abstract model checking based on partition refinement.

1 Introduction

Software systems are a strategic asset, which in addition to correctness deserves
security and protection. This is particularly critical with the growth of mobile
computing, where the traditional black-box security model, with the attacker
not able to see into the implementation system, is not anymore adequate. Code
protection technologies are increasing their relevance due to the ubiquitous na-
ture of modern untrusted environments where code runs. From home networks to
consumer devices (e.g., mobile devices, cloud, and IoT devices), the running envi-
ronment cannot guarantee integrity and privacy. Existing techniques for software
protection originated with the need to protect license-checking code, particularly
in games or in IP protection. Sophisticated techniques, such as white-box (WB)
cryptography and software watermarking, were developed to prevent adversaries
from circumventing anti-piracy protection in digital rights management systems.

A WB attack model to a software system S assumes that the attacker has full
access to all of the components of S, i.e., S can be inspected, analysed, verified,
reverse-engineered, or modified. The goal of the attack is to disclose properties
of the run-time behaviour of S. These can be a hidden watermark [22,18,9], a
cryptographic key or an invariance property for disclosing program semantics
and make correct reverse engineering [7]. Note that standard encryption is only
partially applicable for protecting S in this scenario: The transformed code has
to be executable while being protected. Protection is therefore implemented
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as obfuscation [6]. Essentially, an obfuscator is a compiler that transforms a
program p into a semantically equivalent one O(p) but harder to analyse and
reverse engineer. In many cases it is enough to guarantee that the attacker cannot
disclose the information within a bounded amount of time and with limited
resources available. This is the case if new releases of the program are issued
frequently or if the information to be disclosed is some secret key whose validity
is limited in time, e.g., when used in pay-per-view mobile entertainment and in
streaming of live events. Here the goal of the code obfuscation is to prevent the
attacker from disclosing some keys before the end of the event.

The current state of the art in code protection by obfuscation is characterised
by a scattered set of methods and commercial/open-source techniques employing
often ad hoc transformations; see [7] for a comprehensive survey. Examples of
obfuscating transformations include code flattening to remove control-flow graph
structures, randomised block execution to inhibit control-flow graph reconstruc-
tion by dynamic analysis, and data splitting to obfuscate data structures. While
all these techniques can be combined together to protect the code from several
models of attack, it is worth noting that each obfuscation strategy is designed to
protect the code from one particular kind of attack. However, as most of these
techniques are empirical, the major challenges in code protecting transformations
are: (1) the design of provably correct transformations that do not inject flaws
when protecting code, and (2) the ability to prove that a certain obfuscation
strategy is more effective than another w.r.t. some given attack model.

In this paper we consider a quite general model of attack, propose a measure
to compare different obfuscations and define a best obfuscation strategy.

The aim of any attack is to disclose some program property. It is known
that many data-flow analyses can be cast to model checking of safety formulas.
For example, computing the results of a set of data-flow equations is equivalent
to computing a set of states that satisfies a given modal/temporal logic speci-
fication [20,21]. Even if several interesting properties are not directly expressed
as safety properties, because they are existentially quantified over paths, their
complements are relevant as well and are indeed safety properties, i.e. they are
requested to hold for all reachable states. For these reasons ∀CTL* is a suitable
formal logic to express those program properties the attacker wants to disclose.

In this context, program analysis is therefore the model checking of a ∀CTL*
formula on a(n approximate) model associated with the program. The complex-
ity of software analysis requires automated methods and tools for WB attack to
code. Since the attacker aims to disclose the property within a bounded time
and using bounded resources, approximate methods such as abstract interpre-
tation [8] or abstract model checking [3] are useful to cope with the complex-
ity of the problem. The abstraction here is helpful to reduce the size of the
model keeping only the relevant information which is necessary for the analysis.
Safety properties expressed in ∀CTL* can be model-checked using abstraction
refinement techniques (CEGAR [2]) as in Fig. 1. An initial (overapproximated)
abstraction of the program is model-checked against the property φ. If the ver-
ification proves that φ holds true, then it is disclosed. Similarly, if an abstract
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Fig. 1. Counterexample guided abstraction refinement (CEGAR) framework

counterexample is found that corresponds to a concrete counterexample, it is
disclosed that φ is not valid. An abstract counterexample that is present in the
existential overapproximation but not in the concrete model is called spurious. If
a spurious counterexample is found the abstraction is refined to eliminate it and
the verification is repeated on the refined abstraction. Of course, the coarser the
abstraction that can be used to verify the property the more effective the attack
is. Indeed, the worst case for the attacker is when the verification cycle must be
repeated until the refined abstraction coincides with the concrete model.

Given a program p and a ∀CTL* property φ to be obfuscated we aim to:

1. define a measure to compare the effectiveness of different obfuscations of p;
2. derive an optimal (w.r.t. the above measure) obfuscation of p.

The measure of obfuscation that we propose is based on the size of the
abstract model that allows the attacker to disclose the validity of φ. Intuitively,
the larger the size of the model, the more resources and computation power the
attacker needs to spend to reach the goal.

We propose a systematic model deformation that induces a systematic trans-
formation on the program (obfuscation). The idea is to transform the source
program in such a way that:

1. its semantics is preserved: the model of the original program is isomorphic
to the (reachable) part of the model of the obfuscated program (Theorem 1);

2. the performance is preserved;
3. the property φ is preserved by the transformation (Theorem 2);
4. such transformation forces the CEGAR framework to ultimately refine the

abstract model of the transformed program into the concrete model of the
original program (Theorem 3). Therefore any abstraction-based model check-
ing becomes totally ineffective on the obfuscated program.

CEGAR can be viewed as a learning procedure, devoted to learn the partition
(abstraction) which provides a (bisimulation) state equivalence. Our transforma-
tion makes this procedure extremely inefficient. Note that several instances of
the CEGAR framework are possible depending on the chosen abstraction and
refinement techniques (e.g. predicate refinement, partition refinement) and that
CEGAR can be used in synergy with other techniques for compact represen-
tation of the state space (e.g., BDD) and for approximating the best refined
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abstraction (e.g., SAT solvers). Notably, CEGAR is employed in state-of-the-art
tools as Microsoft’s SLAM engine for the SDV framework [17]. Here we focus
on the original formulation of CEGAR based on partition refinement, but we
believe that our technique can be extended to all the other settings.

As many obfuscating transformations, our method relies on the concept of
opaque expressions and opaque predicate that are expressions whose value is
difficult for the attacker to figure out. Opaque predicates and expressions are
formulas whose value is uniquely determined (i.e. a constant), independently
from the parameters they receive, but this is not immediately evident from the
way in which the formula is written. For example it can be proved that the for-
mula x2−34y2 6= 1 is always true for any integer values of x and y. Analogously,
the formula (x2 +x) mod 2 6= 0 is always false. These expression/predicate are,
in general, constructed using number properties that are hard for an adversary
to evaluate. Of course such predicates can be parameterised so that each instance
will look slightly different. Opaque predicates/expressions are often used to in-
ject dead code in the obfuscated program in such a way that program analysis
cannot just discard it. For example, if the guard x2 − 34y2 6= 1 is used in a con-
ditional statement, then the program analysis should consider both the ”then”
and the ”else” branches, while only the first is actually executable. In this paper:
i) opaque expressions will be used to hide from the attacker the initial values
of the new variables introduced by our obfuscation procedure; and ii) opaque
predicates will be used to add some form of nondeterminism originated from
model deformations. The effects of the opaque expressions and predicates will
be similar: since the attacker will not be able to figure out their actual values,
all the possible values have to be taken into account.

Plan of the paper. In Section 2 we recall CEGAR and fix the notation. In Sec-
tion 3 we introduce the concept of model deformation and define the measure of
obfuscation. In Section 4 we define a best obfuscation strategy. Our main results
are in Section 5. Some concluding remarks are in Section 6

Related works. With respect to previous approaches to code obfuscation, all
aimed to defeat attacks based on specific abstractions, we define the first trans-
formation that defeats the refinement strategy, making our approach indepen-
dent on the specific attack carried out by abstract model checking.

Most existing works dealing with practical code obfuscation are motivated by
either empirical evaluation or by showing how specific models of attack are de-
feated, e.g., decompilation, program analysis, tracing, debugging (see [7]). Along
these lines, [23] firstly considered the problem of defeating specific and well iden-
tified attacks, in this case control-flow structures. More recently [1] shows how
suitable transformations may defeat symbolic execution attacks. We follow a
similar approach in defeating abstract model-checking attacks by making ab-
straction refinements maximally inefficient. The advantage in our case is in the
fact that we consider abstraction refinements as targets of our code protecting
transformations. This allows us both to extract suitable metrics and to apply
our transformations to all model checking-based attacks.
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A first attempt to formalise in a unique framework a variety of models of
attack has been done in [13,10,14] in terms of abstract interpretation. The idea
is that, given an attack implemented as an abstract interpreter, a transforma-
tion is derived that makes the corresponding abstract interpreter incomplete,
namely returning the highest possible number of false alarms. The use of ab-
stract interpretation has the advantage of making it possible to include in the
attack model the whole variety of program analysis tools. While this approach
provides methods for understanding and comparing qualitatively existing obfus-
cations with respect to specific attacks defined as abstract interpreters, none of
these approaches considers transformations that defeat the abstraction refine-
ment, namely the procedure that allows to improve the attack towards a full
disclosure of the obfuscated program properties.

Even if the relation between false alarms and spurious counterexamples is
known [15] to the best of our knowledge, no obfuscation methods have been
developed in the context of formal verification by abstract model checking, or
more in general by exploiting structural properties of computational models and
their logic.

2 Setting The Context

2.1 Abstract Model Checking

Given a set Prop of propositions, we consider the fragment ∀CTL* of the tempo-
ral logic CTL* over Prop [4,12]. Models are Kripke structures K = 〈Σ,R, I, ‖ · ‖〉
with a transition system 〈Σ,R〉 having states in Σ and transitions R ⊆ Σ ×Σ,
initial states I ⊆ Σ, and an interpretation function ‖ · ‖: Prop −→ ℘(Σ) that
maps each proposition p to the set ‖ p ‖⊆ Σ of all and only states where p holds.
For ∀CTL∗ the notion of satisfaction of a formula ϕ in K is as usual [11], written
K |= ϕ A path in 〈Σ,R, I, ‖ · ‖〉 is an infinite sequence π = {si}i∈N of states such
that s0 ∈ I and for every i ∈ N, R(si, si+1). Terminating executions are paths
where the final state repeats forever. We will sometimes use π to denote also a
finite path prefix {si}i∈[0,n] for some n ∈ N. Given a path π = {si}i∈N and a
state x ∈ Σ, we write x ∈ π if ∃i ∈ N such that x = si.

Any state partition P ⊆ ℘(Σ) defines an abstraction merging states into ab-
stract states, i.e., an abstract state is a set of concrete states and the abstraction
function αP : Σ → ℘(Σ) maps each state s into the partition class αP (s) ∈ P
that contains s. The abstraction function can be lifted to a pair of adjoint func-
tions αP : ℘(Σ) → ℘(Σ) and γP : ℘(Σ) → ℘(Σ), such that for any X ∈ ℘(Σ),
αP (X) =

⋃
x∈X P (x) [19]. When the partition P is clear from the context we

omit the subscript. A partition P with abstraction function α induces an abstract
Kripke structure KP = 〈Σ], R], I], ‖ · ‖]〉 that has abstract states in Σ] = P ,
ranged by s], and is defined as the existential abstraction induced by P :

– R](s]1, s
]
2) iff ∃s, t ∈ Σ. R(s, t) ∧ α(s) = s]1 ∧ α(t) = s]2,

– s] ∈ I] iff ∃t ∈ I. α(t) = s],

– ‖ p ‖]def
=
{
s] ∈ Σ]

∣∣s] ⊆‖ p ‖ },
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An abstract path in the abstract Kripke structure KP is denoted by π] =
{s]i}i∈N. The abstract path associated with the concrete path π = {si}i∈N is the
sequence α(π) = {α(si)}i∈N. Vice versa, we denote by γ(π]) the set of concrete
paths whose abstract path is π], i.e., γ(π]) =

{
π
∣∣α(π) = π]

}
.

A counterexample for ϕ is either a finite abstract path or a finite abstract path
followed by a loop. Abstract model checking is sound by construction: If there is
a concrete counterexample for ϕ then there is also an abstract counterexample for
it . Spurious counterexamples may happen: If there is an abstract counterexample
for ϕ then there may or may not be a concrete counterexample for ϕ.

2.2 Counter-Example Guided Abstraction Refinement

With an abstract Kripke structure K] and a formula ϕ, the CEGAR algorithm
works as follows [2]. K] is model checked against the formula. If no counterex-
ample to K] |= ϕ is found, the formula ϕ is satisfied and we conclude. If a
counterexample π] is found which is not spurious, i.e., γ(π]) 6= ∅, then we have
an underlying concrete counterexample and we conclude that ϕ is not satisfied.
If the counterexample is spurious, i.e., γ(π]) = ∅, then K] is further refined
and the procedure is repeated. The procedure illustrated in Fig. 1 induces an
abstract model-checker attacker that can be specified as follows in pseudocode.

Input: program p, property φ
P = init(p, φ);
K = kripke(P, p);
c = check(K,φ);
while (c != null && spurious(p, c)) {

P = refine(K, p, c);
K = kripke(P, p);
c = check(K,φ); }

return ((c == null), P);

Here we denote by init a function that takes a program p and the property ϕ
and returns an initial abstraction P (a partition of variable domains); a function
kripke that generates the abstract Kripke structure associated with a program
p and the partition P ; a function check that takes an abstract Kripke structure
K and a property ϕ and returns either null, if K |= ϕ, or a (deterministically
chosen) counterexample c; a predicate spurious that takes the program p and an
abstract counterexample c and returns true if c is a spurious counterexample and
false otherwise; and a function refine(K, p, c) that returns a partition refinement
so to eliminate the spurious counterexample c. As the model is finite, the number
of partitions that refine the initial partition is also finite and the algorithm
terminates by returning a pair: a boolean that states the validity of the formula,
and the final partition that allows to prove it.

If several spurious counterexamples exist, then the selection of one instead
of another may influence the refinements that are performed. For example, the
same refinement that eliminates a spurious counterexample may cause the disap-
pearance of several other ones. However, all the spurious counterexamples must
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be eliminated. When we assume that check is deterministic, we just fix a total
order on the way counterexamples are found. For example, we may assume that
a total order on states is given (e.g., lexicographic) and extend it to paths.

Fig. 2. Dead, bad and irrelevant states

Central in CEGAR is partition re-
finement. The algorithm identifies the
shortest prefix {s#i }i∈[0,k+1] of the ab-

stract counterexample π] that does
not correspond to a concrete path in
the model. The second to last abstract
state s#k in the prefix, called a failure
state, is further partitioned by refin-
ing the equivalence classes in such a
way that the spurious counterexam-
ple is removed. To refine s#k , the al-
gorithm classifies the concrete states
s ∈ s#k in three classes:

– Dead states: they are reachable states s ∈ s#k along the spurious coun-
terexample prefix but they have no outgoing transitions to the next states
in the spurious counterexample, i.e., there is some concrete path prefix
π ∈ γ({s#i }i∈[0,k]) such that s ∈ π and for any s′ ∈ s#k+1 it holds ¬R(s, s′).

– Bad states: they are non-reachable states s ∈ s#k along the spurious coun-
terexample prefix but have outgoing transitions that cause the spurious coun-
terexample, i.e., for any concrete path prefix π ∈ γ({s#i }i∈[0,k]) we have

s 6∈ π, but R(s, s′) for some concrete state s′ ∈ s#k+1.
– Irrelevant states: they are neither dead nor bad, i.e., they are not reachable

and have no outgoing transitions to the next states in the counterexample.

Example 1 (Dead, bad and irrelevant states). Consider the abstract path prefix

{s#0 , s
#
1 , s

#
2 , s

#
3 } in Fig. 2. Each abstract state is represented as a set of con-

crete states (the smaller squares). The arrows are the transitions of the concrete
Kripke structure and they induce abstract arcs in the obvious way. We use a
thicker borderline to mark s#0 as an initial abstract state and a dashed border-

line to mark s#2 as a failure state. The only dead state in s#2 is r, because it
can be reached via a concrete path from an initial state but there is no outgoing
transition to a state in s#3 . The states s and t are bad, because they are not

reachable from initial states, but have outgoing transitions to states in s#3 . The
states u and w are irrelevant.

CEGAR looks for the coarsest partition that separates bad states from dead
states. The partition is obtained by refining the partition associated with each
variable. The chosen refinement is not local to the failure state, but it applies
globally to all states: It defines a new abstract Kripke structure for which the
spurious counterexample is no longer valid. Finding the coarsest partition cor-
responds to keeping the size of the new abstract Kripke structure as small as
possible. This is known to be a NP-hard problem [2], due to the combinatorial
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explosion in the number of ways in which irrelevant states can be combined with
dead or bad states. In practice, CEGAR applies a heuristic: irrelevant states are
not combined with dead states. The opposite option of separating bad states
from both dead and irrelevant states is also viable.

In the following we assume that states in Σ are defined as assignments of
values to a finite set of variables x1, ..., xn that can take values in finite do-
mains D1, ..., Dn. Partitions over states are induced by partitions on domains. A
partition P of variables x1, ..., xn is a function that sends each xi to a partition
Pi = P (xi) ⊆ ℘(Di). Given the abstractions associated with partitions P1, ..., Pn
of the domains D1, ..., Dn, the states of the abstract Kripke structure are defined
by the possible ranges of values that are assigned to each variable according to
the corresponding partition.

2.3 Programs

We let P be the set of programs written in the syntax of guarded commands [5]
(e.g., in the style of CSP, Occam, XC), according to the grammar below:

d ::= x ∈ D | d, d g ::= x ∈ V | true | g ∧ g | g ∨ g | ¬g
a ::= x = e | a, a c ::= g ⇒ a | c|c p ::= (d; g; c)

where x is a variable, V ⊆
⋃
iDi is a finite set of values, and e is a well-defined

expression over variables. A declaration is a non-empty list of basic declarations
x ∈ D assigning a domain D to the variable x. We assume that all the variables
appearing in a declaration d are distinct. A basic guard is a membership predicate
x ∈ V or true. A guard g is a formula of propositional logic over basic guards.
We write x 6∈ V for ¬(x ∈ V ). An action is a non-empty list of assignments.
A single assignment x = e evaluates the expression e in the current state and
updates x accordingly. If multiple assignments x1 = e1, ..., xk = ek are present,
the expressions e1, ..., ek are evaluated in the current state and their values are
assigned to the respective variables. All the variables appearing in the left-hand
side of multiple assignments must be distinct, so the order of assignments is not
relevant. A basic command consists of a guarded command g ⇒ a: it checks if the
guard g is satisfied by the current state, in which case it executes the action a to
update the state. Commands can be composed in parallel: any guarded command
whose guard is satisfied by the current state can be applied. A program (d; g; c)
consists of a declaration d, an initialisation proposition g and a command c,
where all the variables in g and c are declared in d.

Example 2 (A sample program). We consider the following running example pro-
gram (in pseudocode) that computes in y the square of the initial value of x.

1: y = 0;
2: while (x>0) {
3: y = y + 2*x - 1;
4: x = x - 1;
5: } output(y);
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Fig. 3. An abstract Kripke structure

For simplicity we assume the possible values assigned to variables are in
quite limited ranges, but starting with larger sets of values would not change
the outcome of the application of the CEGAR algorithm. The translation of
the previous program in the syntax of guarded commands is the program p =
(d ; g ; c1|c2a|c2b|c3|c4), written below in CSP-like syntax. Intuitively, it is
obtained by adding an explicit variable pc for the program-counter and then
encoding each line of the source code as a basic command.

def x in {0,1,2} , y in {0,1,2,3,4,5} , pc in {1,2,3,4,5}; % d
init pc = 1; % g
do pc in {1} => pc=2, y=0 % c1 \
[] pc in {2} /\ x notin {0} => pc=3 % c2a |
[] pc in {2} /\ x in {0} => pc=5 % c2b > c
[] pc in {3} => pc=4, y=y+(2*x)-1 % c3 |
[] pc in {4} => pc=2, x=x-1 % c4 /
od

In this context, an attacker may want to check if y is ever assigned the value

2, which can be expressed as the property: φ
def
= ∀ G (pc ∈ {1}∨y 6∈ {2}) (i.e. for

all paths, for all states in the path it is never the case that pc 6= 1 and y = 2).

Let d = (x1 ∈ D1, ..., xn ∈ Dn). A state s = (x1 = v1, ..., xn = vn) of the
program (d; g; c) is an assignment of values to all variables in d, such that for
all i ∈ [1, n] we have vi ∈ Di and we write s(x) for the value assigned to x in
s. Given c = (g1 ⇒ a1| · · · |gk ⇒ ak), we write s |= gj if the guard gj holds in s
and s[aj ] for the state obtained by updating s with the assignment aj .

The concrete Kripke structure K(p) = 〈Σ,R, I, ‖ · ‖〉 associated with p =
(d; g; c) is defined as follows: the set of states Σ is the set of all states of the
program; the set of transitions R is the set of all and only arcs (s, s′) such that
there is a guarded command gj ⇒ aj in c with s |= gj and s′ = s[aj ]; the set of
initial states I is the set of all and only states that satisfy the guard g; the set
of propositions is the set of all sentences of the form xi ∈ V where i ∈ [1, n] and
V ⊆ Di; the interpretation function is such that ‖ xi ∈ V ‖= {s | s(xi) ∈ V }.
Example 3 (A step of CEGAR). The Kripke structure associated with the pro-
gram p from Example 2 has 90 states, one for each possible combination of values
for its variables x, y, pc. There are 18 initial states: those where pc = 1.

Assume that the attacker, in order to prove φ, starts with the following initial
partition (see [5]):

x : {{0}, {1, 2}} y : {{2}, {0, 1, 3, 4, 5}} pc : {{1}, {2, 3, 4, 5}} (1)
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Fig. 4. Failure state

The corresponding abstract Kripke structure has just 8 states (see Fig. 3) with 4
initial states marked with bold borderline in Fig. 3, where, to improve readability,
we write, e.g., y = 01345 instead of the more verbose y ∈ {0, 1, 3, 4, 5}.

There are several paths that lead to counterexamples for φ. One such path
is the one marked with bold arrows in Fig. 3. It is detailed in Fig. 4 by showing
the underlying concrete states. It is a spurious counterexample, because there
is no underlying concrete path. The abstract failure state is (x ∈ {1, 2}, y ∈
{0, 1, 3, 4, 5}, pc ∈ {2, 3, 4, 5}), depicted with dashed borderline in Fig. 3. It con-
tains one bad concrete state (x = 1, y = 1, pc = 3), two dead states ((x = 1, y =
0, pc = 2) and (x = 2, y = 0, pc = 2)) and 37 irrelevant states.

By partition refinement we get the following refined partition:

x : {{0}, {1, 2}} y : {{2}, {0}, {1, 3, 4, 5}} pc : {{1}, {2}, {3, 4, 5}} (2)

Thus the corresponding abstract Kripke structure has now 18 states, six of which
are initial states. While the previously considered spurious counterexample has
been removed, another one can be found and, therefore, CEGAR must be re-
peated, (see Fig. 6 discussed in Example 5 for further steps).

3 Model Deformations

We introduce a systematic model deformation making abstract model checking
harder. The idea is to transform the Kripke structure, by adding states and
transitions in a conservative way. We want to somehow preserve the semantics
of the model, while making the abstract model checking less efficient, in the sense
that only trivial (identical) partitions can be used to prove the property. In other
words, any non-trivial abstraction induces at least one spurious counterexample.

Let M be the domain of all models specified as Kripke structures. Formally,
a model deformation is a mapping between Kripke structures D : M→ M such
that for a given formula φ and K ∈ M: K |= φ ⇒ D(K) |= φ and there exists
a partition P such that KP |= φ ⇒ D(KP ) 6|= φ. In this case we say that D
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Fig. 5. A detail of a deformation

is a deformation for the partition P . Thus, a model deformation makes abstract
model checking imprecise yet keeping the validity of the given formula.

In Section 4, we shall show that the deformation of the Kripke structures we
consider are induced by transformations of the source program, that act as an
obfuscation strategy against an attack specified by an abstract model-checker.
Accordingly, we say that an obfuscation is a transformation O : P → P such
that for a given formula φ and program p ∈ P : K(p) |= φ ⇒ K(O(p)) |= φ and
there exists a partition P such that K(p)P |= φ ⇒ K(O(p))P 6|= φ.

Example 4 (Model deformation). Consider the program p from Example 2. The
first step of refinement with the CEGAR algorithm with the initial partition (1)
(described in Example 3) results in the partition (2). Intuitively, a deformation
of the Kripke structure that forced the CEGAR algorithm to split the sets of
variable values in classes smaller than the ones in partition (2) would weaken
the power of CEGAR. To this aim, consider a deformation D(K) of the concrete
Kripke structure K of Example 3 obtained by duplicating K in such a way that
one copy is kept isomorphic to the original one, while the second copy is modified
by adding and removing some transitions to make the CEGAR algorithm less
efficient. The copies can be obtained by introducing a new variable z ∈ {1, 2}: for
z = 1 we preserve all transitions, while for z = 2 we change them to force a finer
partition when a step of the CEGAR algorithm is applied. For example, in the
replica for z = 2, let us transform the copy of the dead state (x = 2, y = 0, pc = 2)
into a bad state. This is obtained by adding and removing some transitions. After
this transformation, assuming an initial partition analogous to partition (1),

x : {{0}, {1, 2}} y : {{2}, {0, 1, 3, 4, 5}} pc : {{1}, {2, 3, 4, 5}} z : {{1, 2}}

where all the values of the new variable z are kept together, we obtain an abstract
Kripke structure isomorphic to the one of Fig. 3, with the same counterexamples.
However, when we focus on the spurious counterexample, the situation is slightly
changed. This is shown in Fig. 5, where the relevant point is the overall shape
of the model and not the actual identity of each node. Roughly it combines two
copies of the states in Fig. 4: those with z = 1 are on the left and those with
z = 2 are on the right. The abstract state

(x ∈ {1, 2}, y ∈ {0, 1, 3, 4, 5}, pc ∈ {2, 3, 4, 5}, z ∈ {1, 2})
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is still a failure state, but it has three bad states and three dead states:

bad states dead states
( x = 1 , y = 1 , pc = 3 , z = 1 ) ( x = 1 , y = 0 , pc = 2 , z = 1 )
( x = 1 , y = 1 , pc = 3 , z = 2 ) ( x = 1 , y = 0 , pc = 2 , z = 2 )
( x = 2 , y = 0 , pc = 2 , z = 2 ) ( x = 2 , y = 0 , pc = 2 , z = 1 )

The bad state (x = 2, y = 0, pc = 2, z = 2) and the dead states (x = 1, y =
0, pc = 2, z = 2) and (x = 1, y = 4, pc = 3, z = 1) are incompatible. Therefore,
the refinement leads to the partition below, where all values of x are separated:

x : {{0}, {1}, {2}} z : {{1}, {2}} y : {{2}, {0}, {1, 3, 4, 5}} pc : {{1}, {2}, {3, 4, 5}}

3.1 Measuring Obfuscations

Intuitively, the largest is the size of the abstract Kripke structure to be model
checked without spurious counterexamples, the harder is for the attacker to reach
its goal. The interesting case is of course when the property φ holds true, but
the abstraction used by the attacker leads to spurious counterexamples.

We propose to measure and compare obfuscations on the basis of the size of
the final abstract Kripke structure where the property can be directly proved. As
the abstract states are generated by a partition of the domains of each variable,
the size is obtained just as the product of the number of partition classes for
each variable. As obfuscations can introduce any number of additional variables
over arbitrary domains, we consider only the size induced by the variables in the
original program (otherwise increasing the number of variables could increase
the measure of obfuscation without necessarily making CEGAR ineffective).

In the following we assume that p is a program with variables X and variables
of interest Y ⊆ X and φ is the formula that the attacker wants to prove.

Definition 1 (Size of a partition). Given a partition P of X, we define the
size of P w.r.t. Y as the natural number

∏
y∈Y |P (y)|.

Definition 2 (Measure of obfuscation). Let O(p) be an obfuscated program.
The measure of O(p) w.r.t. φ and Y , written #Y

φO(p), is the size of the final
partition P w.r.t. Y as computed by the above model of the attacker.

Our definition is parametric w.r.t. to the heuristics implemented in check
(choice of the counterexample) and refine (how to partition irrelevant states).
There are two main reasons for which the above measure is more significant than
other choices, like counting the number of refinements: i) it is independent from
the order in which spurious counterexamples are eliminated; ii) since the attacker
has limited resources, a good obfuscation is the one that forces the attacker to
model check a Kripke structure as large as possible.

Definition 3 (Comparing obfuscations). The obfuscated program O1(p) is
as good as O2(p), written O1(p) ≥Yφ O2(p), if #Y

φO1(p) ≥ #Y
φO2(p).
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Fig. 6. A refined abstract Kripke structure

It follows that the best measure associated with an obfuscation is
∏
y∈Y |Dy|,

where Dy denotes the domain of y. This is the case where the abstraction sepa-
rates all the concrete values that the variables in Y may assume.

Example 5 (Ctd.). Let us consider again the running example and compare it
with the semantically equivalent program p′ below:

def x in {0,1,2}, y in {0,1,2,3,4,5}, pc in {1,2};
init pc = 1;
do pc in {1} => pc=2, y=x*x
od

Let x, y be the variables of interest. We have #
{x,y}
φ p′ = 2, because the initial

partition (1) is sufficient to prove that the property φ holds.
For the obfuscated program p, the size of the initial partition is just 4 (see

partition (1) and the corresponding abstract Kripke structure in Fig. 3), and after
one step of the CEGAR refinement the size of the computed partition is 6 (see
partition (2) and the corresponding Kripke structure in Fig. 6). Since spurious
counterexamples are still present, one more step of refinement is needed. When
the attacker executes the procedure on the failure state marked with dashed
border in Fig. 6, the result is the partition

x : {{0}, {1}, {2}} y : {{0}, {1}, {2}, {3}, {4, 5}} pc : {{1}, {2}, {4}, {3, 5}}

whose size is 15 as it has been necessary to split all values for x and most values
for y. Now no more (spurious) counterexample can be found because all the
states that invalidate the property are not reachable from initial states. Thus

#
{x,y}
φ p = 15, while the best obfuscation would have measure 18, which is the

product of the sizes of the domains of x and y. As the reader may expect,

we conclude that p ≥{x,y}φ p′. In our running example, for simplicity, we have
exploited a very small domain for each variable, but if we take larger domains of

values, then #
{x,y}
φ p′ and #

{x,y}
φ p remain unchanged, while the measure of the

best possible obfuscation would grow considerably.
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4 Best Code Obfuscation Strategy

In the following, given an abstract Kripke structure K and a property φ, we let
Sφ denote the set of abstract states that contain only concrete states that satisfy
φ, and Sφ be the set with at least one concrete state that does not satisfy φ. We

denote by Oφ the obfuscation strategy realized by the following algorithm.

Input: program p, property φ
1: P = init(p, φ);
2: K = kripke(P, p);
3: (p,K,w, vw) = fresh(p,K);
4: (p,K, z, vz) = fresh(p,K);
5: S = cover(P );
6: foreach s# ∈ S {
// failure path preparation (lines 7-12, Cases 1-2)
7: π# = failurepath(s#,K, p, φ);
8: while (π# == null) {
9: if (not reach(s#,K, p, φ)

10: (p,K, vw) = makereachable(s#,K, p, φ, w, vw);
11: else (p,K, vw) = makefailstate(s#,K, p, φ, w, vw);
12: π# = failurepath(s#,K, p, φ); }
// main cycle (lines 13-19, Case 3)
13: foreach (xi, v1, v2) ∈ compatible(s#, π#, p) {
14: (s, t) = pick(xi, v1, v2, s

#);
15: if dead(t, s#, π#, p)

16: (p,K, vz) = dead2bad(t, s#, π#,K, p, z, vz);
17: else if bad(t, s#, π#, p)

18: (p,K, vz) = bad2dead(t, s#, π#,K, p, z, vz);
19: else (p,K, vz) = irr2dead(t, s#, π#,K, p, z, vz); }
20: } return p;

The algorithm starts by computing an initial partition P and the corre-
sponding abstract Kripke structure K. We want to modify the concrete Kripke
structure so that CEGAR will split the abstract states in trivial partition classes
for the variables of interest. The idea is to create several replicas of the concrete
Kripke structure, such that one copy is preserved while the others will be changed
by introducing and deleting arcs. This is obtained by introducing a new variable
z over a suitable domain Dz = {1, ..., n} such that the concrete Kripke structure
is replicated for each value z can take. As a matter of notation, we denote by
(s, z = v) the copy of the concrete state s where z = v. Without loss of general-
ity, we assume that for z = 1 we keep the original concrete Kripke structure. In
practice such value of z is hidden by an opaque expression. Actually we use two
fresh variables, named w and z (lines 3 and 4): the former is used to introduce
spurious counterexamples and failure states in the replica and the latter to force
the splitting of failure states into trivial partition classes. The function fresh up-
dates the program p and the Kripke structure K by taking into account the new
variables and initializes the variables vw and vz that keep track of the last used
values for w and z. When a new replica is created, such values are incremented.

Code Obfuscation Against Abstract Model Checking Attacks 107



The function cover (at line 5) takes the initial partition P and returns a set

of abstract states s#1 , ..., s
#
k , called a covering, such that, together, they cover all

non-trivial4 partition classes of the domains of the variable of interest, i.e. for
each variable xi, with i ∈ [1, n], for each class C ∈ P (xi) such that |C| > 1 there

is an abstract state s#j with j ∈ [1, k] and a concrete state s ∈ s#j such that
s(xi) ∈ C. Note that the set of all abstract states is a (redundant) covering.

For each s# ∈ {s#1 , ..., s
#
k } in the covering, there are three possibilities:

1. s# does not contain any concrete state that is reachable via a concrete path
that traverses only abstract states in Sφ;

2. s# is not a failure state but it contains at least one concrete state that is
reachable via a concrete path that traverses only abstract states in Sφ;

3. s# is already the failure state of a spurious counterexample.

In case (3), failurepath(s#,K, p, φ) (line 7) returns an abstract path that is a
counterexample for φ, in the other cases the function failurepath(s#,K, p, φ)
returns null and the algorithm enters a cycle (to be executed at most twice, see
lines 8–12) that transforms the Kripke structure and the program to move from
cases (1–2) back to case (3), in a way that we will explain later.

Case (3) (lines 13–19). The core of the algorithm applies to a failure state s#

of a spurious counterexample π#. In this case the obfuscation method will force
CEGAR to split the failure state s# by separating all values in the domains of
the variables of interest. Remember that CEGAR classifies the concrete states
in s# in three classes (bad, dead and irrelevant) and that dead states cannot be
merged with bad or irrelevant states. We say that two states that can be merged
are compatible. The role of the new copies of the Kripke structure is to prevent
any merge between concrete states in the set s#. This is done by making sure
that whenever two concrete states (s, z = 1), (t, z = 1) ∈ s# can be merged into
the same partition, then the states (s, z = vz + 1) and (t, z = vz + 1) cannot be
merged together, because one is dead and the other is bad or irrelevant.

The function compatible(s#, π#, p) returns the set of triples (xi, {v1, v2}) such
that xi is a variable of interest and any pair of states (s, xi = v1), (s, xi = v2) ∈
s# that differ just for the value of xi are compatible. Thus, the cycle at line 13
considers all such triples to make them incompatible. At line 14, we pick any
two compatible states (s, z = 1) and (t, z = 1) such that s(xi) = v1, t(xi) = v2
and s(x) = t(x) for any variable x 6= xi. Given the spurious counterexample
π# with failure state s# and a concrete state t ∈ s# for the program p, the
predicate dead(·) returns true if the state (t, z = 1) is dead (line 15). Similarly,
the predicate bad(·) returns true if the state (t, z = 1) is bad (line 17).

If (t, z = 1) is dead (w.r.t. s# and π#), then it means that (s, z = 1) is also
dead (because they are compatible), so we apply a dead-to-bad transformation
to t in the replica for z = vz + 1. This is achieved by invoking the function
dead2bad(·) (line 16) to be described below. The transformations bad2dead(·)
(line 18) and irr2dead(·) (line 19) apply to the other classifications for (t, z = 1).

4 A partition class is trivial if it contains only one value.
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In the following, given a concrete state s = (x1 = w1, ..., xn = wn), we
denote by G(s) the guard x1 ∈ {w1} ∧ ... ∧ xn ∈ {wn} and by A(s) the
assignment x1 = w1, ..., xn = wn. Without loss of generality, we assume for
brevity that the abstract counterexample is formed by the abstract path prefix
π# = {s#0 , s

#
1 , s

#, s#2 }, with s# the failure state and t is the concrete state in
s# that we want to transform (see Figs. 7–9).

Fig. 7. From dead to bad

Fig. 8. From bad to dead

Fig. 9. From irrelevant to dead

dead2bad(·). To make t bad, the function
must remove all concrete paths to t along the
abstract counterexample π# and add one arc
from t to some concrete state t′ in s#2 . To re-
move all concrete paths it is enough to remove
the arcs from states in s#1 to t (see Fig. 7). At
the code level, dead2bad(·) modifies each com-

mand g ⇒ a such that there is some s′ ∈ s#1
with s′ |= g and t = s′[a]. Given t and s#1 , let

S(g ⇒ a) = {s′ ∈ s#1 | s′ |= g∧t = s[a]}. Each
command c = (g ⇒ a) such that S(c) 6= ∅ is
changed to the command

g ∧
(
z 6∈ {vz + 1} ∨

∧
s′∈S(c) ¬G(s′)

)
⇒ a.

When z 6= vz + 1 the updated command is
applicable whenever c was applicable. When
z = vz + 1 the command is not applicable to
the states in S(c). To add the arc from t to a

state t′ in s#2 it is enough to add the command
z ∈ {vz + 1} ∧G(t)⇒ A(t′).

bad2dead(·). The function selects a dead state t′ in the failure state s# and a
concrete path π = 〈s0, s′, t′〉 to t′ along the abstract counterexample π#. To
make t dead in the replica with z = vz + 1, the function adds a concrete arc
from s′ to t and removes all arcs leaving from t to concrete states in s#2 (see
Fig. 8). To insert the arc from s′ to t, the command G(s′)∧ z ∈ {vz + 1} ⇒ A(t)

is added. To remove all arcs leaving from t to concrete states in s#2 , the function

changes the guard g of each command g ⇒ a such that t |= g and t[a] ∈ s#2 to
g ∧ (z 6∈ {vz + 1} ∨ ¬G(t)), which is applicable to all the states different from t
where g ⇒ a was applicable as well as to the replicas of t for z 6= vz + 1.

irr2dead(·). Here the state t is irrelevant and we want to make it dead. The
function builds a concrete path to t along the abstract counterexample π#.
As before, it selects a dead state t′ in the failure state and a concrete path
π = 〈s0, s′, t′〉 to s along the abstract counterexample 〈s#0 , s

#
1 , s

#〉. To make t
dead the function adds an arc from s′ (i.e., the state that immediately precedes
t′ in π) to t (see Fig. 9). For the program it is sufficient to add a new command
with guard G(s′) ∧ z ∈ {vz + 1} and whose assignment is A(t).
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Fig. 10. Case 1: makereachable(·)

Fig. 11. Case 2: makefailstate(·)

From cases (1–2) to case (3) (lines 7–12).
The predicate reach(s#,K, p, φ) is true if
we are in case (2) and false if we are in
case (1). In both cases we apply some pre-
liminary transformations to K and p after
which s# is brought to case (3). The func-
tion makereachable(s#,K, p, φ, w, vw) trans-
forms the Kripke structure so that in the
end s# contains at least one concrete state
that is reachable via a concrete path that tra-
verses only abstract states in Sφ, moving from
case (1) to cases (2) or (3), while the func-
tion makefailstate(s#,K, p, φ, w, vw) takes s#

satisfying case (2) and it returns a modi-
fied Kripke structure where s# now falls in
case (3). The deformations are illustrated in Figs. 10–11. At the code level,
addition and removal of arcs is realized as detailed before.

5 Main Results

Our obfuscation preserves the semantics of the program. This is because all
the transformations we have discussed maintain the original Kripke structure
associated with a distinguished value of the new variables w and z that are
introduced. Indeed,when the obfuscated program is executed with initial values
w = 1 and z = 1 it behaves exactly as the original program. By exploiting
opaque expressions to initialise the variables w and z, we hide their values from
the attacker who has to take into account all possible values for w and z and
thus run CEGAR on the deformated Kripke structure.

Theorem 1 (Embedding). Let p = (d; g; c) and Oφ(p) = ((d,w ∈ Dw, z ∈
Dz); g; c′), then K(p) is isomorphic to K((d,w ∈ {1}, z ∈ {1}); g; c′).

The isomorphism at the level of Kripke structures guarantees that the ob-
fuscation does not affect the number of steps required by any computation, i.e.,
to some extent the efficiency of the original program is also preserved.

Second, the obfuscation preserves the property φ of interest when the pro-
gram is executed with any input data for w and z, i.e. φ is valid in all replicas.

Theorem 2 (Soundness). K(p) |= φ iff K(Oφ(p)) |= φ.

Note that Theorem 1 guarantees that the semantics is preserved entirely, i.e.
not only φ is preserved in all replicas (Theorem 2) but any other property is
preserved when the obfuscated program is run with w ∈ {1} and z ∈ {1}.

The next result guarantees the optimality of obfuscated programs.

Theorem 3 (Hardness). #Y
φOφ(p) =

∏
y∈Y |Dy|.
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Fig. 12. A fragment of the model for z = 2

As a consequence, for any program p and formula φ the function mapping
K(p) into K(Oφ(p)) is a model deformation for all (non-trivial) partitions of the
variables of interest.

Theorem 4 (Complexity). The complexity of our best code obfuscation strat-
egy is polynomial in the size of the domains of the variables of interest Y .

Example 6 (Best code obfuscation). Consider the abstract Kripke structure in
Fig. 3. The failure state s# = (x ∈ {1, 2}, y ∈ {0, 1, 3, 4, 5}, pc ∈ {2, 3, 4, 5})
covers all the non-trivial partition classes for the variables of interest x and y.
Since it is a failure state for an abstract counterexample, we are in case (3). For
simplicity, since the transformations for cases (1–2) are not needed, we omit the
insertion of the variable w.

The dead state (x = 1, y = 0, pc = 2) is incompatible with the irrelevant state
(x = 1, y = 1, pc = 2), thus the triple (y, {1, 2}) is incompatible. For the same
reason the value 0 for y is also separated from the values 3, 4, 5. Our obfuscation
must separate the values 1, 2 for x and the values 1, 3, 4, 5 for y. Therefore at
most 6 replicas are needed. In the end, 5 values for z suffices. Let us take the
triple (x, {1, 2}) and let us pick the two dead states t = (x = 2, y = 0, pc = 2)
and s = (x = 1, y = 0, pc = 2) in Fig. 4. The algorithm invokes bad2dead(·) on
state (t, z = 2) to make it incompatible with the dead state (x = 1, y = 0, pc =
2, z = 2). At the code level, we note that all incoming arcs of t are due to the
command c1 (see Fig. 4). To remove them, c1 becomes c1,1.

pc in {1} /\ (z notin {2} \/ x notin {2} \/ y notin {2}) => pc=2, y=0 %c11

Moreover, to make (t, z = 2) a bad state, is added an arc from the state
(t, z = 2), to (x = 2, y = 2, pc = 2, z = 2) with the new command c1,2

pc in {1} /\ z in {3} /\ x in {1} /\ y in {1} => pc=3 %c12

In Fig. 12 we show the relevant changes on the Kripke structure for the
replica with z = 2 (compare it with Fig. 4). To complete the obfuscation more
transformations are required: one bad-to-dead and two irrelevant-to-dead trans-
formations. Finally, we obtain the program po = Oφ(p) below:
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def x in {0,1,2} , y in {0,1,2,3,4,5} , pc in {1,2,3,4,5} , z in {1,2,3,4,5};
init pc = 1;
do pc in {1} /\(z notin {2} \/ x notin {2} \/ y notin {2})=> pc=2, y=0 %c11
[] pc in {1} /\ z in {3} /\ x in {1} /\ y in {1} => pc=3 %c12
[] pc in {1} /\ z in {4} /\ x in {1} /\ y in {4} => pc=3 %c13
[] pc in {1} /\ z in {5} /\ x in {2} /\ y in {5} => pc=4 %c14
[] pc in {2} /\ x notin {0} => pc=3 %c2a
[] pc in {2} /\ x in {0} => pc=5 %c2b
[] pc in {2} /\ x in {2}} /\ y in {0} /\ z in {2} => y=2 %c21
[] pc in {3} /\(z notin {3} \/ x notin {1} \/ y notin {1})=> pc=4, y=y+(2*x)-1 %c31
[] pc in {4} => pc=2, x=x-1 %c4
od

Let us assume that the attacker starts with the abstraction of the obfus-
cated program induced by the partition x : {{0}, {1, 2}}, y : {{2}, {0, 1, 3, 4, 5}},
pc : {{1}, {2, 3, 4, 5}}, and z : {{1, 2, 3, 4, 5}}. The abstract Kripke structure is
isomorphic to the one in Fig. 3 having several spurious counterexamples for φ.
One such path is similar to the one in Fig. 3: {s#0 , s

#
1 , s

#
2 } with:

s#0 = x ∈ {1, 2}, y ∈ {0, 1, 3, 4, 5}, pc ∈ {1}, z ∈ {1, 2, 3, 4, 5}
s#1 = x ∈ {1, 2}, y ∈ {0, 1, 3, 4, 5}, pc ∈ {2, 3, 4, 5}, z ∈ {1, 2, 3, 4, 5}
s#2 = x ∈ {1, 2}, y ∈ {2}, pc ∈ {2, 3, 4, 5}, z ∈ {1, 2, 3, 4, 5}.

The failure state is s#1 . It has 5 bad concrete states and 12 dead states. By
CEGAR we get the partition that has only trivial (singletons) classes. Therefore
the abstract Kripke structure coincides with the concrete Kripke structure: it
has 450 states of which 90 are initial states.

Given that the variables of interest are x and y, the measure of the obfus-

cation is 18, i.e., it has the maximum value and thus po ≥{x,y}φ p ≥{x,y}φ p′. We
remark that when z = 1, po has the same semantics as p and p′.

The guarded command po can be understood as a low-level, flattened de-
scription for programs written in any language. However, it is not difficult to
derive, e.g., an ordinary imperative program from a given guarded command.
We do so for the reader’s convenience.

1: z = opaque1(x,y,z);
2: pc1: if ( ( z!=2 || x!=2 || y!=2 ) && opaque2(x,y,z) ) { y=0; goto pc2; }
3: else if ( z=3 && x =1 && y=1 ) goto pc3;
4: else if ( z=4 && x =1 && y=4 ) goto pc3;
5: else if ( z=5 && x =2 && y=5 ) goto pc4;
6: pc2: if ( x=2 && y=0 && z=2 && opaque3(x,y,z) ) y=2;
7: while ( x>0 ) {
8: pc3: if ( z!=3 || x!=1 || y!=1 ) y = y + 2*x - 1;
9: pc4: x = x - 1;
10: pc5: } output(y);

To hide the real value of z we initialise the variable using an opaque expression
opaque1(x, y, z) whose value is 1. Moreover, one has to pay attention to the
possible sources of nondeterminism, which can arise when there are two or more
guarded commands g1 ⇒ a1 and g2 ⇒ a2 and a state s such that s |= g1 and
s |= g2. The idea is to introduce opaque predicates so that the exact conditions
under which a branch is taken are hard to determine by the attacker, who has to
take into account both possibility (true and false) as a nondeterministic choice.
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In our example, the sources of nondeterminism are due to the pairs of commands
(c1,1, c1,2), (c1,1, c1,3), (c1,1, c1,4) and (c2,1, c2a). Consequently, we assume two
opaque predicates opaque2(x, y, z) and opaque3(x, y, z) are available. In order to
preserve the semantics, for z = 1 we require that opaque1(x, y, z) returns true,
while opaque2(x, y, z) is unconstrained. Finally, since the program counter is an
explicit variable in guarded commands, we represent its possible values by labels
and use goto instructions accordingly. Thus we write the label pcn to denote
states where pc = n and write goto pcn for assignments of the form pc = n.

6 Discussion

We have shown that it is possible to systematically transform Kripke structures
in order to make automated abstraction refinement by CEGAR hard. Address-
ing refinement procedures instead of specific abstractions makes our approach
independent from the chosen abstraction in the attack.

To enforce the protection of the real values of variable w (and analogously for
z) initialized by opaque functions against more powerful attacks able to inspect
the memory of different program runs, one idea is to use a class of values instead
of a single value. This allows the obfuscated code to introduce instructions that
assign to w different values in the same class, thus convincing the attacker that
the value of w is not invariant.

The complexity of our best code obfuscation strategy is polynomial in the
size of the domains of the variables of interest. Moreover, we note that the same
algorithm can produce a valuable obfuscation even if one selects a partial cover
instead of a complete one: in this case, it is still guaranteed that the refinement
strategy will be forced to split all the values appearing in the partial cover. This
allows to choose the right trade-off between the complexity of the obfuscation
strategy and the measure of the obfuscated program.

As already mentioned, our obfuscation assumes that CEGAR makes dead
states incompatible with both irrelevant and bad states. Our algorithm can be
generalised to the more general setting where dead states are only incompatible
with bad states. Therefore even if the attacker had the power to compute the
coarsest partition that separates bad states from dead states (which is a NP-hard
problem) our strategy would force the partition to consist of trivial classes only.

We can see abstraction refinement as a learning procedure which learns the
coarsest state equivalence by model checking a temporal formula. Our results
provide a very first attempt to defeat this procedure.

As an ongoing work, we have extended our approach to address attacks aimed
to disclose data-flow properties and watermarks. It remains to be investigated
how big the text of the best obfuscated program can grow: limiting its size is
especially important in the case of embedded systems.

We plan to extend our approach to other abstraction refinements, like pred-
icate refinement and the completeness refinement in [16] for generic abstract
interpreters and more in general for a machine learning algorithm. This would
make automated reverse engineering hard in more general attack models.
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Abstract. Code injection attacks have been the most critical security
risks for almost a decade. These attacks are due to an interference
between an untrusted input (potentially controlled by an attacker) and
the execution of a string-to-code statement, interpreting as code its
parameter. In this paper, we provide a semantic-based model for code
injection parametric on what the programmer considers safe behaviors.
In particular, we provide a general (abstract) non-interference-based
framework for abstract code injection policies, i.e., policies characterizing
safety against code injection w.r.t. a given specification of safe behaviors.
We expect the new semantic perspective on code injection to provide a
deeper knowledge on the nature itself of this security threat. Moreover,
we devise a mechanism for enforcing (abstract) code injection policies,
soundly detecting attacks, i.e., avoiding false negatives.

1 Introduction

Security is an enabling technology, hence security means power. The correct
functionality and coordination of large scale organizations, e-government, web
services, in general, relies on confidentiality and integrity of data exchanged
between different agents, and on the proper functioning of the applications. These
features, almost unavoidable, become real opportunities for the attackers seeking
to disclose and/or corrupt valuable information or, more widely, to break security.

According to OWASP (Open Web Application Security Project) [1], the most
critical security risks have been application level injections attacks for almost a
decade [21,22,23]. The reason of their success and their spread is twofold: An easy
exploitability of vulnerabilities and a severe impact of attacks. In other words,
code injection bugs allow attackers to cause extensive damage for minimum
effort. Despite this, organizations often underestimate their consequences, and
the inevitable result has been a recent history full of this kind of attacks [29].

Several approaches [3,10,11,18,19,24,28,30,31], have been studied for prevent-
ing code injection, but only few focus on the harder problem of defining it [3,24,28].
Indeed, the intuition of what can be classified as an injection attack is quite
straightforward, and it is clearly provided in the following informal definition [23]:

“Injection occurs when user-supplied data is sent to an interpreter as part of a
command or query. Attackers trick the interpreter into executing unintended
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<?php

$id = $argv[0];

$query = "SELECT * FROM users WHERE id = $id;";

$result = pg_query($conn, $query);

?>

<html><body>

<%

String user =

request.getParameter("user");

%>

<h1>Welcome <%= user %></h1>

</body></html>

Fig. 1: Example SQLi in a PHP program and of XSS in a JSP page.

independently from the web application to analyze, potentially losing the accuracy
of the mechanism, when not even the completeness with respect to the definition
above.

The problem: Defining code injection. As introduced before, code injection
is a wide category of attacks on applications where an attacker exploits the
presence of an untrusted input (i.e., an application’s input whose source is
potentially not trusted and therefore controlled by an attacker) in order to inject
code (unintended commands) that will be executed by an interpreter, altering
the course of execution.

The main types of attacks in this category are undoubtedly the SQL injection
(SQLi) and the cross-site scripting (XSS) attacks, where the attacker attempts
to execute an arbitrary query on a database server or client-side code (e.g.,
JavaScript) in the user’s browser, respectively. Consider, for instance, the program
in Fig. ??: the attacker is able to extract the whole content of the users table
by injecting the value "3 OR 1 = 1" in the untrusted input argv[0], making the
query condition a tautology. Whereas, the program in Fig. 1 is vulnerable to XSS
attacks: by injecting, for example, the string "<script>alert(’message’)</script>",
an attacker can execute his own JavaScript code in the victim’s browser.

SQLi and XSS are not the only kind of code injection attacks: eval-injection,
command injection, XPath injection, remote file injection, etc., also play a central
role in this category; examples of some of them will be discussed in the course of
the paper.

Despite the multi-faceted nature of code injection, all these attacks present a
key common feature: a code executed by an interpreter which is closely related

<html><body>

<%

String user =

request.getParameter("user");

%>

<h1>Welcome <%= user %></h1>

</body></html>

Fig. 1: Example SQLi in a

above.
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(SQLi) and the cross-site scripting (

in Fig. ??
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the paper.

key common feature:

Fig. 1: Example of SQLi in a PHP program and of XSS in a JSP page.

commands via supplying specially crafted data. Injection flaws allow attackers
to create, read, update, or delete any arbitrary data available [. . . ].”

Unfortunately, this intuitive definition does not help in formalizing a general
definition of code injection since there is a clear problem in formalizing the
concept of unintended commands. Moreover, this notion may depend on several
factors, e.g., the kind of application, the environment of execution, etc.

The essence of code injection. Code injection is a wide category of attacks
where an attacker exploits the presence of an untrusted input (i.e., an input
whose source is potentially untrusted) for injecting code (unintended commands)
that will affect the execution of a string-to-code statement (which interprets as
code its parameter), altering the output behavior of the application.

The main types of attacks in this category are undoubtedly SQL injection
(SQLi) and cross-site scripting (XSS) attacks. In SQLi the attacker attempts to
execute an arbitrary query on a database server. An example is given on the left
in Fig. 1 where the attacker is able to extract the whole content of the users table
by injecting the value "3 OR 1 = 1" in the untrusted input argv[0], making the
query condition a tautology. In XSS the attacker attempts to execute a client-side
code (e.g., JavaScript) in the user’s browser. In the program on the right in
Fig. 1, an attacker can execute his own JavaScript code in the victim’s browser
by injecting, for example, the string "<script>alert(‘message’)</script>". Other
kinds of code injection attacks such as command injection, eval-injection, XPath
injection, remote file injection, etc., also play a central role in this category.

Despite the multi-faceted nature of code injection, all these attacks present a
key common feature: A code executed by an interpreter which is dependent on the
value of an untrusted input, that alters the intended semantics of the application,
making the execution unsafe.

Up to date solutions for facing code injection. The prevention techniques
against code injection are a well-studied topic of applications security, and they can
be classified into two categories: The techniques that follow an industrial/technical
approach and those based on formal methods.

In the former case, applications are made secure by validating inputs (escaping,
whitelists, blacklists, etc., of values), by parametrizing queries (i.e., by separating
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the parameters binding from the code compilation — mainly used in the SQLi
context) and/or by using other ad hoc mechanisms. Even though they provide
some degree of security and robustness to programs, they suffer from well-known
flaws [2,10,13,18,30]. Moreover, they do not aid the programmers through the
process of securing applications.

In the latter case, there are several formal approaches claimed to be sound
and/or complete w.r.t. a given notion of code injection [28,31,10,24]. The majority
of them are mainly focused on the SQLi attacks than on the broader problem of
code injection, and they rely on dynamic taint analysis algorithms [11,19,24,31] or
parsing trees [4,28] in order to detect alterations of the syntactic queries structure
on the basis of fixed policies. To the best of our knowledge, the works that mainly
rely on the problem of defining code injection are [3,24,28]. All of them provide a
syntactic-based notion of code injection and the two most related to our approach
are [3,24]:

• In [3], the core idea is to dynamically mine the programmer-intended query
structure on any input, and to detect attacks by comparing them against the
intended query structure;

• In [24], an application’s output is considered a code injection attack if there
exists at least one tainted symbol which is code, i.e., it is not a fully evaluated
value.

It is worth noting that these definitions are indeed specific instances of the
informal definition given in the introduction. In particular, both fix a precise
notion of what a programmer could consider as unintended commands . This loss
of generality is clearly useful in practice, since it provides a decidable and easy
way to detect potential code injection attacks, but it may reduce flexibility, since
the programmer might need to weaken or strengthen the fixed notion, depending
of the environment of execution of developed applications.

Our solution: A semantic-based approach. In this paper, we propose to
shift these syntactic notions towards a semantic model of code injection — as
suggested in [24] — in order to broaden the generality of the definition.

The key point of the whole approach we propose is based on a simple observa-
tion: Each time an expression e is executed in a string-to-code statement (e.g., in
a query execution, in an eval statement, . . . ), there is a set of states1 such that the
execution of e in one of these states leads the program to an unintended/unsafe
state. Since we are focusing on code injection, we can restrict this set only to those
states depending on at least one injected (untrusted) value. In other words, we
have injection whenever there is a program statement whose parameters depend
on an untrusted input and whose execution causes an unsafe output behavior ,
namely the attacker can lead the program execution to show unsafe behaviors.
For instance, in the code on the left of Fig. 1, the query execution statement
pg_query depends on the untrusted input argv[0].
1 Intuitively, think of a state as all the information concerning the program execution
at each step of computation.
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This kind of data dependency is precisely what is called interference in
language-based security [9,26]. This means that, safety against code injection can
be seen as a non-interference policy. Being more precise, it is clear that we do
not care to model any possible interference, since any dynamic code is expected
to depend on the input in some way. There is a potential security breach only
when the dependency causes a variation between what is considered safe and
what is considered unsafe. In this sense, the right non-interference framework to
consider is abstract non-interference [8], where the interference between properties
of inputs and properties of outputs is studied. Hence, we define abstract code
injection policies parametric on what the programmer considers safe output
behaviors.

It is clear that, if we could provide a universal characterization of what is a
safe output behavior (holding for all programs, for all execution environments), we
could design a tool enforcing (abstract) code injection policies for any program.

Unfortunately, in real settings, different programs, or even the same program
in different execution contexts, may require different instances of the policy. Con-
sider a music streaming web application Pmusic with premium and free users. The
first ones have access to both copyright and copyright-free music, while the second
ones can only listen to copyright-free songs. In order to encourage free users to buy
premium subscriptions, the programmers allow them to add a copyrighted song in
their music library once per month, chosen from a list of top five hits. Suppose the
user chooses the first song and its code number (e.g., 83) is submitted to the web ap-
plication as a GET parameter: https://webappmusic.com/load_library.php?choice=83.
To load user’s library, the web application executes the following query where the
variable $free_codes_list contains the codes of all the copyright-free songs and
the variable $user_choice contains the code 832:

SELECT * FROM songs WHERE code IN ($free_codes_list, $user_choice)

�
SELECT * FROM songs WHERE code IN (5, 3, 2, 54, 32, 21, 12, ..., 83)

If the GET parameter choice is not validated, an evil user can inject an arbitrarily
long list of values, loading more than one song in his/her library, for instance

SELECT * FROM songs WHERE code IN (5, 3, 2, 54, 32, 21, 12, ..., 83, 43, 23, ...)

Consider now a web application Pdoc allowing users to download documents
from a list of pdf files. An user provides the documents’ codes he/she wishes
to download (e.g., 2, 23, 6) and an HTTP request is sent to the web applica-
tion: https://webappdoc.com/download.php?doc[]=2&doc[]=23&doc=6. Suppose the user’s
choice is stored in the PHP variable $doc_list and the following query is executed:

SELECT * FROM docs WHERE code IN ($doc_list)

�
SELECT * FROM docs WHERE code IN (2, 23, 6)

2 The highlighted code is the injected one.
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In this case, a list of values has been injected but, contrarily to the Pmusic scenario,
it is not to be considered as an attack, since the programmer’s intention and the
context are different. It follows that every model fixing a notion of unintended
commands will provide a wrong answer to, at least, one of the two examples.
Even worse, let us change the first example by supposing that the programmers
decide to allow the user to choose two songs: A list of two songs now has not
to be considered an attack. These trivial examples show how, even in the same
context, the programmer’s intention, and therefore what is unintended, may vary.

It is worth noting that a common feature in these examples is that, for
controlling code injection we have to partition inputs into two subsets: The set
of inputs producing safe output behaviors after the query execution, and all
the others, generating unsafe behaviors. With these considerations in mind, the
model we propose is based on the following key points:

1. Abstract code injection policies can be defined in terms of an output character-
ization of safe output behaviors, potentially determined by the programmer;

2. If the program does not satisfy this policy, it means that there are values
of untrusted inputs able to change the output (observable) behavior of the
program, making it unsafe. We call safe inputs those always leading to safe
output behaviors;

3. The abstract non-interference framework [8] allows us to characterize the
partition of inputs leading to different (safe/unsafe) output behaviors. This
suggests us what should be verified on the input of the application.

At this point, in order to control code injection vulnerabilities we propose to
go through two phases: First, we characterize the abstract code injection policy to
enforce, for instance by asking the programmer to specify safe inputs and/or safe
output behaviors; Second, we enforce the chosen policy. The latter phase could
be tackled both statically, by manually patching the program (but in this case
we lose flexibility), or by monitoring the program, i.e., by dynamically checking
whether the executed inputs are safe, w.r.t. some decidable characterization.

Hence, we propose a static analysis for aiding the programmer to understand
when a safe input specification is necessary, and consequently asking the pro-
grammer to annotate the program with information characterizing the abstract
injection policy to enforce. Then we propose the design of a dynamic analysis, i.e.,
a monitor checking whether the execution violate the abstract injection policy.

2 Background

The core language WhileFun. In order to show our approach, we define
the core language WhileFun that encloses all the important features from the
code injection point of view. WhileFun is dynamically typed, based on a classic
While language augmented with functions. A valid WhileFun program (denoted
by P ∈WhileFun) consists in a main function (the entry point, non-callable by
the code) and eventual user-defined functions. We assume that only a subset of
the parameters of the main function may be untrusted inputs. Furthermore, we
introduce the syntactic category str2code of string-to-code statements:
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str2code ::= exec(exp) SQL query execution (SQL injection)

| eval(exp) Code execution (eval-injection)

| system(exp) Command/Shell execution (Command injection)

| show(exp) Webpage displaying (XSS)

All these commands send the evaluated expression exp (a string of code) to the
corresponding interpreter. For the sake of simplicity, we assume that str2code
commands are only allowed in the main function. The language syntax and the
semantics of the other commands are standard.

Program semantics. Vars denotes the set of program and environment vari-
ables3, and Val the set of values. L denotes the set of line numbers (program
points). Let l ∈ L, and Stm(l) be the statement at program line l. For a given
program P , we denote by LP ⊆ L the set of all and only the line numbers
corresponding to statements of the program P , i.e., LP =

{
l ∈ L

∣∣Stm(l) ∈ P
}
.

A program state σ ∈ S is a pair 〈nk, µ〉 where n is the executed program
point, k is the number of times the statement Stm(n) has been reached so far (in
the following we will call nk execution point), µ is the memory [17]. A memory
µ ∈Mem is a map µ : Vars→ Val mapping variables to values such that µ(x) is
the value of x in µ, while µ[x← v] is the memory µ′ such that ∀y 6= x.µ′(y) = µ(y),
while µ(x) = v. For simplicity, we denote by Valx the set of values over which x
can range, i.e., the domain of x. Furthermore, we define the equivalence relation
=x between two memories µ and µ′: µ =x µ

′ ⇐⇒ ∀y 6= x. µ(y) = µ′(y).
A state trajectory τ ∈ T = S∗ ∪ Sω is a sequence of program states through

which a program goes during the execution. Any initial state has nk = 11, i.e., the
set of initial states is Sι =

{
〈11, µ〉

∣∣µ ∈Mem
}
. The state trajectory obtained

by executing program P from the input memory µ is denoted by 〈|P |〉(〈11, µ〉) and
〈|P |〉nk

(〈11, µ〉) is the prefix of 〈|P |〉(〈11, µ〉) whose last state has execution point
nk. The denotational semantics of P ∈WhileFun is the function JP K : S → S

providing the I/O characterization of program semantics. Let 〈11, µι〉 ∈ Sι, the
denotational semantics is defined as JP K(〈11, µι〉) = σa where σa is the last state
of 〈|P |〉(〈11, µι〉) if it is finite, ⊥ otherwise [6]. We similarly define JP Kn

k

(〈11, µι〉),
the denotational semantics w.r.t. to the execution point nk.

Static Single Assignment (SSA) SSA [7] is a well known code representation
where the def-use chains are made explicit. This is an intermediate non-executable
representation of code, used by compilers for simplifying some static analyses. In
the SSA form, each assignment generates a new unique name (usually denoted
by a numerical subscript) for the defined variable, and all the uses reached by
that definition are renamed. An example is shown in Fig. 2a where the program
on the left is rewritten in the one on the right. If different definitions reach the
3 Without loss of generality, we assume that the state of the str2code interpreter (for
instance, the state of the database when the interpreter is the database server) is
modeled in the set of variables Vars. This means that the memory µ contains all the
observable information concerning both the program and environment.
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V := 4 V1 := 4
Z := V + 5 Z1 := V1 + 5
V := 6 V2 := 6
W := V + 7 W1 := V2 + 7

(a) Linear SSA transformation.

if (P) if (P)
then { V := 4 } then { V1 := 4 }
else { V := 6 } else { V2 := 6 }

V3 := φ(V1, V2)

(b) SSA transformation with φ-function.

Fig. 2: Examples of SSA program representations [7].

same use of a given identifier, a special form of assignment, called φ-function,
is added: This is a special assignment identifying the join of several definitions
of the same identifier (an example is given in Fig. 2b). The presence of these
φ-functions makes the code not-executable but there exist standard techniques
for reconstructing executable programs from the SSA form: By replacing the
φ-functions with assignment operations, and by dropping subscripts [7].

Reaching definitions analysis (RD). Reaching definitions analysis (RD for
short), determines the definitions potentially reaching each use of an identifier.
In a control flow graph (CFG), a definition reaches a node if there is a path from
the definition to the node, along which the defined variable is never redefined.
On the SSA form this analysis becomes trivial since the reaching definition is
precisely the unique definition of the used identifier (see [20] for details).

3 Defining Abstract Code Injection

In this section, we define the notion of abstract code injection policy, which
consists in a code injection policy parametric on the programmer characterization
of safe/unsafe output behaviors. More specifically, a code injection vulnerability
is a potential interference between an untrusted input and the execution of
a string-to-code statement. We say that a program does not suffer of a code
injection vulnerability if it enforces a code injection policy, meaning that any
code injection vulnerability in the program is avoided.

First of all, let us define formally code injection policies in terms of non-
interference. In particular, we define a notion of non-interference between an input
and a program point, e.g., the program point of the string-to-code statement. We
recall that JP Kn

k

(see Sect. 2) computes the state at the execution point nk.

Definition 1 (NIxP(n)). Let P ∈WhileFun be a program, x be an input of P
and n ∈ LP . We say that x is non-interfering at the program point n of P iff

∀k ∈ N . NIxP(n, k)

where, for any k ∈ N, NIxP(n, k) (x non-interfering at the execution point nk in
P ) holds iff

µ0 =x µ
′
0 =⇒ JP Kn

k

(〈11, µ0〉) = JP Kn
k

(〈11, µ′0〉)
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1 f(s) { 3ret s };

2 g(s) { 4ret "1" };

4 main(s) {

5 1exec("SELECT * FROM t "

6 + "WHERE f = " + f(s));

7 2exec("SELECT * FROM t "

8 + "WHERE f = " + g(s))

9 }

(a) Program P source code.

b3 s0 := ? 1 b4 ret s0

b5 s0 := ? 1 b6 ret "1"

b0 s0 := ?

b1 exec("SELECT * FROM t "
+ "WHERE f = " + f(s0))

b2 exec("SELECT * FROM t "
+ "WHERE f = " + g(s0))

f

g

main

(b) CFG of the SSA form of P .

b1

f(s0)

b4

b3

b1

b0

b2

g(s0)

b6
(c) Trees
generated by
Paths.

b1

b4

b3

b0
(d)
Cleaned
trees.

Fig. 3: Steps of static analysis algorithms.

Intuitively, this notion states that, during the execution of P , whenever the
execution reaches the program point n, even if we change the initial value of x,
the observable behavior of P does not change. It is self-evident that an attacker
cannot perform a successfully injection attack on x if the above definition holds
for all the program points where a string-to-code statement is executed.

For instance, consider the string-to-code statement 1exec("SELECT * FROM t

WHERE f = " + f(s)) in Fig. 3a. There exist two values v1 = 1, v2 = 2 generating
two different queries (observable behaviors) after its execution. On the other hand,
if we consider the statement 2exec("SELECT * FROM t WHERE f = " + g(s)), then for
each v1, v2 ∈ Vals we have that JP K2

1

(〈11, { s→ v1 }〉) = JP K2
1

(〈11, { s→ v2 }〉)
since g(s) is a constant function.

Exactly as it happens in language-based security, this notion of non-interference
(and therefore of code injection policy) is in general too strong, since it does
not allow us to really distinguish between safe and potentially unsafe code. In
particular, this definition says that the only safe code is the one not depending on
untrusted inputs, which is in general not acceptable: String-to-code statements,
such as query executions, code evaluations, etc., have to be dependent on the
user’s input. For this reason, we need to formalize code injection parametrically
on what the programmer considers a safe (output) behavior and/or which are
the programmer (expected) safe inputs, leading only to safe outputs.

Formally, let O ⊆Mem be the set of all the output states considered safe by
the programmer after the execution of an string-to-code statement (O is the set
of safe output behaviors). We can define the characteristic map of O as

ρO(〈nk, µ〉) =
{
true if µ ∈ O

false otherwise
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At this point we can weaken Def. 1 defining abstract code injection policies,
parametric on the programmers characterization of safe outputs O as done for
abstract non-interference [8,14,15].

Definition 2 (ANIxP(O, n)). Let P ∈WhileFun be a program, x be an input
of P , n ∈ LP and O be the set of the safe output behaviors. We say that x is
non-interfering w.r.t. O at the program point n in P iff

∀k ∈ N . ANIxP(O, n, k)

where, for any k ∈ N, ANIxP(O, n, k) (x is (abstract) non-interfering w.r.t. O
with the execution point nk in P ) iff

µ0 =x µ
′
0 =⇒ ρO(JP Kn

k

(〈11, µ0〉)) = ρO(JP Kn
k

(〈11, µ′0〉))
We say that a program enforces an abstract code injection policy, w.r.t. a safe
output behaviors characterization O, if does not exist any untrusted inputs x and
string-to-code statements in P (at the program line n) such that ¬ANIx

P(O, n).
The abstract non-interference framework [8,14,15] allows us to move further

and to characterize an enforcing strategy when an abstract code injection policy
is not satisfied. It should be clear that also ANIx

P(O, n) is a too strong property,
in the sense that most “raw” programs cannot satisfy it, unless they show,
independently from the input, always the same kind of behavior (safe or unsafe).4
For all the other programs, where attackers have the possibility of exploiting an
untrusted input for leading to unsafe output behaviors, namely those vulnerable to
code injection, the abstract non-interference framework allows us to characterize
which variation of inputs causes the safe/unsafe variation of output behaviors.
In other words, in this framework it is possible to determine the input binary
partition for every input x (defined by the characterization function φx : Valx →
{true, false}) making the following equation to hold for each v1, v2 ∈ Valx [8,16]:

φx(v1) = φx(v2) =⇒ ρO(JP Kn
k

(〈11, µ0[x � v1]〉) = ρO(JP Kn
k

(〈11, µ0[x � v2]〉))

Valx

Mem

φx

¬φx

ρO

¬ρO

JP Knk
(〈11, µ0[x � v]〉)

v1

v2
JP Knk

(〈11, µ0[x � v1]〉)

JP Knk
(〈11, µ0[x � v2]〉)

Fig. 4: The bipartions induced by O.

Namely, for each pair of values for
x, both in the same equivalence
class of φx (φx(v1) = φx(v2) =
true or φx(v1) = φx(v2) = false)
the output behavior is always re-
spectively safe or unsafe. In Fig. 4
we depict the situation. All and
only the values in Valx, satisfying
φx leads the execution of P in nk
to satisfy ρO.

We can formally characterize the partition φx enforcing an abstract code
injection policy ANIx

P(O, n) (simply denoted φxO), as follows [8]:

∀v ∈ Valx . (φxO(v) ⇐⇒ ρO(JP Kn
k

(〈11, µ0[x � v]〉))) (1)
4 Note that, programs showing always unsafe behaviors are of no interest since they
are unsafe by nature, the attacker cannot force unsafety.

124 S. Buro and I. Mastroeni



It is worth noting that, the set IxO =
{
v ∈ Valx

∣∣φxO(v) = true
}
is precisely the

language of safe inputs w.r.t. O, i.e., those inputs leading to safe outputs.
Note that, we call φxO an enforcing strategy, since it characterizes what we

should check in order to avoid code injection w.r.t. O. Once we know which
are the safe inputs, we could check whether the received inputs, during com-
putation, are safe. The possibilities are two: The programmer could patch the
code implementing all the checks, but this reduces the approach flexibility (if
O changes then the code has to be partially rewritten); The programmer could
augment the code with input annotations that can be checked dynamically. In
the following section, we propose a monitor-based approach. The choice is driven
by the idea of having a flexible enforcing technique, allowing the programmer
to change O without changing the code, but only the input annotations. The
approach we propose, allows us a further degree of flexibility, allowing us to fix
input annotations depending also on the dynamic execution path.

4 Enforcing Abstract Code Injection

In this section, we propose a technique for enforcing code injection policies
w.r.t. the programmer characterization of safe output behaviors, namely able to
recognize and stop executions potentially under a code injection attack.

In the previous section, we showed that starting from a characterization of
safe output behaviors O, we can characterize the language of safe inputs w.r.t. O,
i.e., IxO for each input x. Unfortunately, even if O is decidable, the definition of
IxO does not guarantee in general its decidability, hence we propose a technique
where the programmer provides a decidable language Ix of acceptable inputs
consistent with O, namely such that it satisfies the following inclusion

∀v ∈ Valx . (v ∈ Ix ⇒ ρO(JP Kn
k

(〈11, µ0[x← v]〉))
meaning that Ix ⊆ IxO. This inclusion guarantees soundness, in the sense that it
avoids false negatives, while it can admit false positives/alarms, since there are
safe inputs that are not in the acceptable input language.

In general, it should be clear, that both soundness and completeness of the
model w.r.t. real potential attack situations depend on the choice of O and of Ix.
An over-approximation of Ix or O (meaning that there are inputs or behaviors
erroneously labeled as safe) may lead to false negatives, missing some attack
situations and therefore losing soundness w.r.t. real potential attacks. An under-
approximation of Ix or O (meaning that there are safe inputs or behaviors labeled
as unsafe) may allow false positives/alarms, hence losing precision/completeness
of the approach w.r.t. real potential attacks. In the following, we will always
talk of soundness and completeness of the enforcing technique w.r.t. the chosen
model, i.e., w.r.t. the choice of all Ix and/or O.

4.1 A contract-based approach for enforcing abstract code injection

The approach we propose is based on the idea of asking the programmer the
language Ix of acceptable input values for each untrusted input. In order to
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avoid useless contracts for untrusted inputs not leading to the execution of a
string-to-code statement, we aid the programmer providing him/her both the
inputs and the paths potentially vulnerable to code injection, and therefore
requiring him/her to fix a corresponding language of safe inputs Ix, that we call
contract. Then we propose to annotate the code with these contracts in order to
dynamically monitor the program execution for checking contracts only when
necessary, namely when a string-to-code statement, depending on an untrusted
input, is executed. The approach we propose is composed by three phases:

• Static analysis: The code is statically analyzed in order to extract the vul-
nerable paths, where some untrusted inputs interfere with the execution
of a string-to-code statement, and therefore where the programmer should
establish some input restrictions.

• Contracts request: Then we ask the programmer the contracts for all the
vulnerable paths, i.e., those paths where an untrusted inputs reaches a string-
to-code statements. This phase could be made automatic by providing a
general/unique definition of restrictions, independently from the particular
untrusted input and/or executed path. The result of this phase is an annotated
program with contracts.

• Monitor: Finally, the monitor is able to kill all the executions of an annotated
program, when a vulnerable path is executed and the involved untrusted input
violates its contract. In other words, the result of this phase is a monitored
program, namely the monitor specialized on the annotated program [12].

Basic notations. In literature, there are many variants of the CFG construction [5]:
We choose to build a single block intraprocedural CFG, in which we consider the
parameters of the main function to be potentially untrusted inputs (depicted in
red in Fig. 3b), while the parameters of the other functions are considered formal
parameters (depicted with a numerical superscript in Fig. 3b). We define the
notion of sub-path of a path b0 . . . bm in a CFG as a sequence of blocks p0 . . . pn
such that p0 = b0, pn = bm, and for each 0 < i < n if pi−1 = bk then ∃bj , j > k
such that pi = bj , intuitively, it is a path of the CFG where some intermediate
blocks are missing. Given a CFG C, if there exists a path p in it such that p′ is a
sub-path of p, then we say that p′ is sub-path of C.

In addition, we define the following domains: Blocks is the set of blocks in
the CFG, FunCalls is the set of all function calls (including arguments) in
the SSA form of the program, Fun is the set of the defined functions, Args is
the set of arguments of the function calls, and here Vars is the set of program
variables in the SSA form. We also use the following well known functions: Use
to compute the variables used and the function calls performed in a statement
or, by extension, in a block, Ret to compute the set of the returning points of a
given function, and Rd to compute the RD analysis. We call ground block any
block b such that Use(b) = ∅.

Trees is the set of trees whose nodes are either blocks, or calls, or ⊥k∈N values.
Let n be a tree node and T ⊆ Trees, the tree constructor is Tree(n,T) = 〈n : T〉
which, starting from a set of several trees T, builds one new tree with root n and

126 S. Buro and I. Mastroeni



sub-trees those in T, i.e., it adds an edge (n,m) in 〈n : T〉 for each node m root
of a tree in T. 〈n〉 ≡ 〈n : ∅〉. On a tree T , we define the function Branches(T )
that returns the set of all the paths p, from the root to a leaf, in T , and the
function Reverse(p) that changes the direction of edges in the path p. We abuse
notation by calling Reverse also its additive lift to sets of paths.

4.2 Static phase and contract request

The purpose of the static phase is to detect where the information flows within
a program under analysis. In particular, we are interested in all the vulnerable
paths, i.e., those starting from an untrusted input and affecting a string-to-code
statement. We explain our approach and algorithms also by using as running
example the code in Fig. 3a.

CFG and SSA construction. Let P be the program under analysis. The first two
steps of the analysis consist in the construction of the program representation
that will be used for performing the analysis. First, we build the control flow
graph for each procedure f declared in the program (Cfg(f)) obtaining the
set C = {Cfg(f) | f procedure in P }. After that, in order to improve the
analysis (and, in particular, RD), we consider the SSA representation of each
CFG (see Sect. 2 for details), where each variable is defined only once. Let Ssa
be the function that computes the SSA form of a given CFG. We define the set
Cssa = {Ssa(C) | C ∈ C } representing the SSA form of the program P (for an
example, see Fig. 3b).

Trees construction. The trees construction is the core step of the static analysis:
For each block b containing a string-to-code statement, the function Paths
(Fig. 5) builds, backwards, the trees of potential execution paths, looking for the
vulnerable ones.

Paths is a function with two parameters: The first one is either a block
b ∈ Blocks, or a procedure call f(a) ∈ FunCalls, or a special value ⊥k (k ∈ N);
The second parameter is a history of function calls c = [c1, . . . , ck] (ε denotes the
empty history). A function call is a triple (b, f, a) consisting in the calling block b,
in the called function f , and in its sequence of actual parameters a = [a1, . . . , am].
Given a block b ∈ Blocks containing a string-to-code statement and an initial
empty sequence of calls c = ε, the function Paths tracks backward the potential
dependencies in order to identify which untrusted inputs may affect the string-
to-code statement in b. These chains of dependencies form a tree having b as
root and as leaves either a ground block, or bottom, or a block containing the
interfering untrusted input (the latter case identifies vulnerable paths).

In order to formally define the function Paths, we have first to define the
auxiliary function Rec, used for determining the arguments of recursive calls, i.e.,
whose aim is that of computing the parameters of the recursive step of Paths:

Rec : (Blocks× (Vars ∪FunCalls)× (Blocks×Fun ×Args)∗)→
(Blocks ∪FunCalls ∪ {⊥k}k∈N)× (Blocks×Fun ×Args)∗
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Paths : (Blocks ∪FunCalls ∪ {⊥k}k∈N)× (Blocks×Fun ×Args)∗ → Trees

Paths(arg, c) =





Block(arg, c) if arg ∈ Blocks

Call(arg, c) if arg ∈ FunCalls

Bot(⊥k, c) otherwise

where c = [c1, . . . , cm] such that ∀1 ≤ i ≤ m. ci = (bi, fi,ai) and ai = [ai1, . . . , a
i
ni
]

Block : Blocks× (Blocks×Fun ×Args)∗ → Trees

Call : FunCalls× (Blocks×Fun ×Args)∗ → Trees

Bot : {⊥k}k∈N × (Blocks×Fun ×Args)∗ → Trees




(1) Block(b, c) = Tree(b, {Paths(Rec(b, u, c)) | u ∈ Use(b) }) if Use(b) 6= ∅
(2) Block(b, c) = Tree(b,∅) if Use(b) = ∅ and b does not define a formal parameter
(3) Block(b, c) = Tree(b, {Bot(⊥k, c) }) if Use(b) = ∅ and b defines the k-th formal parameter in cm
(4) Call(f(a), c) = Tree(f(a), {Paths(r, c) | r ∈ Ret(f) }) if ∀ci, cj(i 6= j) ∈ c . fi 6= fj
(5) Call(f(a), c) = Tree(f(a),∅) if ∃ci, cj(i 6= j) ∈ c . fi = fj
(6) Bot(⊥k, c) = Tree(⊥,∅) if Use(amk ) = ∅
(7) Bot(⊥k, c) = Tree(bm, {Paths(Rec(bm, u, [c1, . . . , cm−1])) | u ∈ Use(amk ) }) if Use(amk ) 6= ∅

Fig. 5: Definition of the function Paths.

Rec(b, arg, c) =

{
(Rd(b, v), c) if arg = v ∈ Vars

(f(a), [c1, . . . , cm, (b, f, a)]) if arg = f(a) ∈ FunCalls

Intuitively, if arg is a variable, Rec computes the RD analysis of arg from the
block b looking for the variables which arg depends on, while if arg is a function
call, Rec updates the history of function calls c.

The tree computation algorithm starts calling Paths(b, ε) for each block b con-
taining a string-to-code statement. Let us explain the definition of Paths(arg, c)
given in Fig. 5 case by case:

arg = b ∈ Blocks: Paths(arg, c) = Block(b, c)

• Use(b) 6= ∅ (case (1)): If we reach a block b (not ground) containing one
or more uses u, we create a tree with b as root, and as children all the trees
resulting from calling Paths on all the recursive arguments (computed by
Rec(b, u, c), for each u ∈ Use(b)).

• Use(b) = ∅ (cases (2) and (3)): When we reach a ground block b we
have to distinguish two cases: When the block does not define any formal
parameter (of the function including it), the analysis terminates on the
current block b (case (2)); Otherwise, a subtree is created with root b and
children the trees resulting from the analysis of the corresponding actual
parameter by calling Bot(⊥k, c) (case (3)).

arg = f(a) ∈ FunCalls: Paths(arg, c) = Call(f(a), c)
When Paths is called on a function call f(a), and the call has been already
met before in c, then the analysis stops adding f(a) to the tree (case (5)).
Otherwise, a subtree is created with f(a) as root, and as children all the
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trees resulting from calling Paths on all the return blocks (Ret(f)) of the
function f (case (4)). The idea beyond this strategy comes from the fact
that a function call can, in the worst case, only propagate, and not generate,
flows.

arg = ⊥k ∈ {⊥k}k∈N: Paths(arg, c) = Bot(⊥k, c)
We have ⊥k when we reach the definition of a formal parameter (as explained
in case (3)). If in the last performed call (m-th) the k-th formal parameter
contains some uses (Use(amk ) 6= ∅) then we track back these uses calling
Paths similarly to case (1) (case (7)). On the contrary, if Use(amk ) = ∅ the
analysis stops adding ⊥k to the tree (case (6)).

We define the set T = {Paths(be, ε) | ∃Cssa ∈ Cssa . be ∈ Cssa ∧ be contains a
string-to-code statement }, i.e., the set of trees generated by the function Paths.

In the example in Fig. 3a, a code injection attack may be possible via
the input s, since it interferes with the first query execution (as explained in
Sect. 1), but not with second one. The tree generated by Paths(b1, ε) is depicted
in Fig. 3c on the left. In this case the only leaf is the block b0, in which an
untrusted input s is required. This means that the corresponding path is a
code injection vulnerable path. On the other hand, the resulting tree of the
second query execution Paths(b2, ε) is given in Fig. 3c on the right. In this
case, the path ends up in the block b6 which is not an untrusted input, and
therefore meaning that it is not a vulnerable path. Hence, in this example
T = {〈b1 : 〈f(s0) : 〈b4 : 〈b3 : 〈b1 : 〈b0〉〉〉〉〉〉, 〈b2 : 〈g(s0) : 〈b6〉〉〉}.

Once we have the set of trees T with all the paths leading from a string-to-code
statement to either (i) a ground, or (ii) a bottom block or (iii) an untrusted
input block, we discard all the safe paths, i.e., those not depending on untrusted
inputs (cases (ii, iii)). In addition, we also need to remove non-executable blocks,
i.e., those added during the algorithm computation and which do not correspond
to application/code statements. These blocks are the ones related to function
calls (added by Paths in cases (4) and (5)), which are part of the abstract syntax
of others blocks and those re-added after the analysis of a function call (see
case (7) in Paths). We define Tc as the set of all cleaned up trees in T. In
the running example, Tc = {〈b1 : 〈b4 : 〈b3 : 〈b0〉〉〉〉} (Fig. 3d). Finally, it is
possible to make some transformations that will make easier to dynamically
associate the executed path with the right contract. In particular, we reverse
the paths in order to have them in the execution direction and we define the set
P = {Reverse(p) | ∃T c ∈ Tc such that p ∈ Branches(T c) }. In the example,
P = {b0 b3 b4 b1}.

Contracts. At this point, the programmer, for each path in P leading to an
untrusted input x has to provide a contract , i.e., a decidable language Ix (e.g.,
regular, context free, etc.) of acceptable values for that path:

Contracts = { (Ix, p) | Ix ⊆ Valx decidable input language, p ∈ P }

Hence, a contract (Ix, p) means that the value of the untrusted input in the
first block of p, i.e., p0, has to be in the language Ix if all the blocks in p have
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Algorithm 1 MonInt
1: procedure MonInt((C,Contracts)P , µ0)
2: V = ∅
3: µ = µ0

4: b = b0 . initial block of the program
5: while b 6= ⊥ do . ⊥ is the exit block
6: DBlocks = DBlocks ∪ {b}
7: if b 6= b0 then DEdge = DEdge ∪ {(bp, b)}
8: if b contains an untrusted input x then
9: V = V ∪ {(x, µ(x))}

10: end if
11: if b executes code then
12: Verify(V,Contracts, D, b)
13: end if
14: bp = b
15: (b, µ) = Interpreter(b, µ,C)
16: end while
17: end procedure

Algorithm 2 Verify
1: procedure Verify(V,Contracts, D, b)
2: for all c = (Ix, p0 · · · pn) ∈ Contracts do
3: if pn 6= b then continue
4: for i = 0 to n− 1 do
5: if not Reachability(D, pi, pi+1) then
6: continue to the next contract c
7: end if
8: end for
9: x = untrusted input variable in p0

10: if V (x) /∈ Ix then Throw Exception
11: end for
12: end procedure

Fig. 6: Monitor algorithm.

been executed. For instance, a contract Is for the reverse of path p of the tree in
Fig. 3d could be expressed by the regular expression 0 | [1-9][0-9]* to force the
untrusted input s to be an integer.

Finally, given a program P to analyze, the static phase provides in output
the pair (C,Contracts)P .

4.3 Dynamic phase

In this section, we explain how we intend to use the result of the static phase in
order to provide a monitor, i.e., a dynamic checker, of potential code injection
attacks. We observe that code injection is a safety property [27] since, once a
string-to-code statement depends on an untrusted input at the program point of
its execution, then a vulnerability definitively occurred, meaning that the only
possibility for enforcing the safety property is to stop computation.

The monitor algorithm. In the following, we develop a monitor, exploiting the
contracts verifier only when necessary. In particular, the idea is to design a
monitor which executes directly the language interpreter on all the statements,
except on string-to-code ones, for which the monitor has prior to check the
satisfiability of (potentially many) contracts.

The MonInt procedure (Algorithm 1 in Fig. 6) takes as input the result
(C,Contracts)P of the static analysis on the program P and an initial memory
µ0. In order to determine the right contracts to check, the algorithm keeps
up-to-date a dynamic structure D, in which the information of the path followed
by the execution is stored: Every time a new block b is reached, the set of blocks
is expanded by adding b into it (line 6), and a new edge from to previously
executed block bp to b is added to the set of edges (line 7); We will refer to
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1 main(s) {
2 i := 0;
3 copy := "";
4 while (i <= length(s)) {
5 c := s[i];
6 if (c == "a") then { copy := copy + "a" }
7 else if (c == "b") then { copy := copy + "b" }
8 ...
9 else if (c == "z") then { copy := copy + "z" };

10 i := i + 1
11 };
12 eval(copy)
13 }

Fig. 7: Example of an implicit flow through a conditional copy.

D = (Dblock , Dedge) as the dynamic CFG. Then, if the current block is the
initialization of an untrusted input x, we have to store (in V ) the initial value of
x, that will be potentially checked in future (lines 8–10). If the current block is a
string-to-code statement, the contracts verification procedure Verify (Algorithm 2
in Fig. 6) is called. It stops the execution if a contract is not satisfied, meaning
that the program is potentially under attack (lines 11–13). Finally, the previous
block bp is updated with the current block b, and the language interpreter
Interpreter executes the instruction associated to the block b and updates the
current block and memory (b, µ) (lines 14, 15).

The Verify procedure (Algorithm 2) is the contracts verifier. It is able to stop
the execution by throwing an exception if it finds an input not belonging to the
language specified in the contract. In particular, the verifier iterates over the set
of contracts (line 2) and picks only those contracts ending in the current block
b, i.e., (Ix, p0 . . . pm) ∈ Contracts such that pm = b (line 3). Then, it checks
whether the path p0 · · · pm is a sub-path of the dynamic CFG D: This is achieved
by m − 1 calls to Reachability algorithm, returning true iff there is a path
in D from pi to pi+1 (lines 4–8) for each 0 ≤ i < n. In this case, the procedure
checks whether the contract is satisfied by checking if the input value V (x) of the
untrusted variable in x, input in the block p0, is in the language Ix (lines 9, 10).

4.4 Handling the implicit information flows

In this section, we show how it is possible to extend the static analysis algorithm
in order to track not only the explicit information flows but also the implicit ones.
The explicit information flows are caused by a direct exchange of information
via copy operations, while the implicit information flows arise from the control
structure of the program [26]. For instance, consider the program in Fig. 7 which
performs a conditional copy [25] of the input and then evaluates it as code. Its
input/output semantic is identical to the program main(s) { eval(s) }, but it does
not directly copy any bit of the untrusted input into the string-to-code statement
(line 12). By only changing the Use function definition, we are able to detect
also this kind of attacks: We define the function Guard(b) which computes the
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immediate guard to which the block b is subjected. For instance, in Fig. 7, if
we compute Guard( copy := copy + "a" ) it returns the set { c == "a" }. Hence,

we can define the extended function Ũse(b) = Use(b) ∪Use(Guard(b)) which
correctly detects also the implicit flow (this technique is based on the notion of
control dependences [7]).

4.5 Soundness

In Sect. 3, we have provided a model which precisely describes safety against
code injection attacks, parametrically on the expected inputs, by embedding the
programmer’s intention into the definition (i.e., the predicate φI). However, the
semantic aspects of the model and, in particular, the abstract non-interference
predicate, make it not suitable to a straightforward implementation. Nonetheless,
a semantic definition is fundamental in order to provide an accurate description
of the real world problem of code injection.

We now prove the soundness of the proposed approach, w.r.t. an abstract code
injection policy ANIx

P(O, n) we aim at enforcing in a program P . The proposed
static analysis will capture any vulnerable path by over-approximating them.

Theorem 1 (Soundness of static analysis w.r.t. ANIxP(O, n)). Let P ∈
WhileFun be a program, x be an untrusted input of P , n ∈ LP such that
Stm(n) ∈ str2code and ANIxP(O, n) an abstract code injection policy, then

¬ANIxP(O, n) =⇒ ∃p = bx · · · bn ∈ Reverse(Branches(Paths(bn, ε)))

where bx and bn denote the blocks containing the untrusted input x and the
string-to-code statement at program point n in the main procedure, respectively.

If an untrusted input x interferes with the execution of a string-to-code statement
at a program point n, the static analysis will generate a tree rooted in bn and
leading to the leaf bx, and the programmer will have to specify a contract for
the input x concerning the cleaned and reversed path bx · · · bn. In that light, the
static analysis produces the information used by the monitor to work properly.

We now prove the correctness of the dynamic phase, namely of the MonInt
algorithm. Its semantics is straightforward: Starting from the initial memory µ0,
it executes the program until a string-to-code statement is not reached. When
this happens, if all the contracts on the executed path are satisfied, the statement
is executed, otherwise, the execution is stopped throwing an exception.

Theorem 2. Let P ∈WhileFun be a program. For each initial memory µ0 ∈
Mem, τ = 〈|MonInt |〉(C,Contracts)P (〈11, µ0〉)5 implies that

• τ is prefix of τ ′ = 〈|P |〉(〈11, µ0〉);
• τ = 〈|P |〉(〈11, µ0〉) if and only if for each string-to-code statement executed in
τ all the contracts are satisfied.

5 Execution of the monitor specialized on the annotated program.

132 S. Buro and I. Mastroeni



In other words, the monitor alters the semantics of the program (by blocking
the execution) if and only if at least one input contract, for an untrusted input
affecting an executed string-to-code statement, is not satisfied.

Finally, as a corollary to the Theorems 1 and 2, we can set out the following
result that justifies our mechanism. Let us define the function associating with
each trajectory the sequence of blocks executed in the CFG as bl(τ0 · · · τn) =
bl(τ0) · · · bl(τn), where bl(〈nk, µ〉) = b if b is the block containing Stm(n).

Corollary 1. Let P ∈ WhileFun be a program, n ∈ LP such that Stm(n) ∈
str2code, and (C,Contracts)P be the static analysis output. Let x be an in-
put of P such that ∃(Ix, p0 · · · pm) ∈ Contracts with p0 setting the input x and
pm containing Stm(n)6. Let v ∈ Valx, we define ρM as

ρM(JP Kn
k

(〈11, µ0[x← v]〉)) iff
∀(Ix, p) ∈ Contracts. p sub-trace of bl(〈|P |〉nk

(〈11, µ0[x← v]〉)) we have v ∈ Ix

Then, given φM is defined in terms of ρM as in Eq. 1, MonInt(C,Contracts)P (µ0)
enforces the abstract code injection policy: ∀x untrusted input, ∀v1, v2 ∈ Val

φxM(v1) = φxM(v2) =⇒ ρM(JP Kn
k

(〈11, µ0[x � v1]〉) = ρM(JP Kn
k

(〈11, µ0[x � v2]〉))

Note that, our mechanism is not sound “as a matter of principle”. It is sound w.r.t.
the specification of contracts characterizing safe inputs and output behaviors.

4.6 Complexity considerations

The CFG model and the SSA form are well known code representations and can
be computed in polynomial time w.r.t. the abstract syntax tree of the program.
The bottleneck of the static phase is the taint analysis, computing Paths for
each string-to-code statement. Unfortunately, the number of these paths could
be exponentially large w.r.t. the size of the Cssa . This is due to the generality of
our approach, allowing the programmer to provide a contract for each possible
vulnerable path, i.e., for each triple (x, p, e) with x untrusted input, p path, and e
string-to-code statement. In practice, it is highly unlikely to have an exponential
number of ways in which an untrusted input can interfere with a single query
execution, therefore we believe that in the average case, this approach scales well.
However, the programmer can always reduce the complexity by either providing a
(different) contract for each pair (x, e) (reducing complexity to O(ne), n number
of the untrusted inputs and e number of string-to-code blocks), or providing a
different contract only for each input x (reducing complexity to O(n)).

Dynamic monitor worst case checking cost is divided into the cost for com-
puting Reachability between each pair of adjacent nodes (which is polynomial
w.r.t. the size of Cssa) for each contract c and checking whether an untrusted in-
put u satisfies the corresponding contract c (whose cost depends on the formalism
used to model it).
6 We consider only one variable for simplicity, but in general we may have more than one
untrusted input affecting Stm(n), in this case the generalization is straightforward.
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5 Generality of Abstract Code Injection

In this section, we show also by means of two examples, that the definition of
abstract code injection that we provide is enough general to cope with the main
related works, defining specific notions of code injection [3,24] (a brief summary
of these works is given in Sec. 1).

The generality of our approach allows us to detect attacks that elude the
mechanisms proposed in the related works: The program given in Fig. 7 is not
detected by all the works based on a copy-based taint analysis (as [24]), since
that program is built on a pure semantic notion of interference. Furthermore,
the flexibility of our mechanism make it more suitable to different types of code
injection. For instance, consider the simple program main(s) { eval(s) }: all the
mechanisms based on the idea of automatically detect a manipulation of the
syntactic structure cannot infer nothing about the intended structure, since there
are no sufficient information to “guess” the programmer’s intention.

Defining code injection attacks (CIAO) [24]. From the definition of code injection
attacks given in [24], we can derive the considered set of safe output behaviors
O[24], i.e., all the states reached by a code execution that does not contain any
tainted (potentially untrusted) code symbol7. In their paper, they provide an
algorithm A(P, T, U)8 to precisely detect what is considered a potential attack,
w.r.t. their definition of safe behaviors O[24]. Being (T, U) the tuple of all (trusted
and untrusted) inputs, it corresponds to our memory µ0. We can model their
computation of safe behaviors as the characteristic function ρ[24]

O of O[24], defined
as: For each execution point nk (where a string-to-code statement is executed)

ρ[24]
O (JP Kn

k

(〈11,
i.e., (T, U)︷︸︸︷

µ0 〉)) ⇐⇒ A(P, µ0) does not detect an attack at the point nk

Hence, the algorithm proposed in [24] enforces the abstract code injection policy:
∀x ∈ U, v1, v2 ∈ Valx

φxO[24](v1) = φxO[24](v2) =⇒ ρ[24]
O (JP Kn

k

(〈11, µ0[x � v1]〉) = ρ[24]
O (JP Kn

k

(〈11, µ0[x � v2]〉))

where φxO[24] is defined in terms of ρ[24]
O as in Eq. 1. Hence, from the semantic

perspective of our approach, [24] only admits the (abstract) interference that
does not cause the execution of tainted code symbols. This is clearly an abstract
form of non-interference.

CANDID [3]. In this approach, we can still derive the implicitly used notion
of safe output behaviors O[3] as the set of all the states in which the syntactic
structures (i.e., the parsing trees) of each query9 executed by P on the inputs
i1, . . . , in, are equal to the ones produced by the execution of the program P on
the valid representation10 of the inputs i1, . . . , in, i.e., VR(i1), . . . ,VR(in). Let
7 In [24], a symbol is considered code if it is not a final value.
8 P is a program, and T and U are the set of trusted and untrusted inputs, respectively.
9 [3] is focused on the SQLi problem.

10 A valid representation of an input i is a value VR(i) which is manifestly benign and
non-attacking, and it dictates the same path of i in the application.
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B(P, i1, . . . , in) be the function returning the syntactic structure of the query
executed at the execution point nk, we can define the characteristic function ρ[3]

O

of O[3] as

ρ[3]
O(JP K

nk

(〈11,
i.e., (i1, . . . , in)︷︸︸︷

µ0 〉)) ⇐⇒ B(P, µ0)

is isomorphic to︷︸︸︷
≈ B(P,VR(µ0))

Intuitively, in CANDID are safe all the query executions that performed on an
input i or on its valid representation V R(i) provide the same execution structure.
As before, we can characterize the abstract code injection policy enforced by
CANDID as: ∀x ∈ U, v1, v2 ∈ Valx

φxO[3](v1) = φxO[3](v2) =⇒ ρ[3]
O(JP K

nk

(〈11, µ0[x � v1]〉) = ρ[3]
O(JP K

nk

(〈11, µ0[x � v2]〉))

where, again as before, φxO[3] is defined in terms of ρ[3]
O. Here, the non-admitted

interference concerns the alteration of the structure of the parsing tree.

6 Conclusion

In this paper we propose both a general model for abstract code injection policies,
i.e., code injection policies parametric on what the programmer considers safe
in output, and an algorithmic approach for enforcing abstract code injection
policies, based on the combination of a static and a dynamic analysis phase. In
particular, the static analysis aids the programmer in finding what should be
controlled and when, i.e., which inputs and which execution paths, have to be
checked during execution. The contracts that the inputs should meet are asked
to the programmer and used to annotate the program. Then a monitor checking
the contracts when necessary, namely when a vulnerable path is executed, is
proposed. In particular, the application enforcing a given abstract code injection
policy consists in the monitor specialized on the annotated program. We finally
provide the intuition of the generality of abstract code injection, by showing the
abstract injection policies enforced by the main related works.

We tested the feasibility of the monitoring approach by implementing it on a
toy language for SQL injection11, but surely in the future we aim at implementing
this analysis approach on real languages. As far as the model is concerned, there
are several aspects that deserve further study. In this paper we consider only safe
output partitions in safe/unsafe behaviors, but abstract code injection policies
could be defined in terms of more precise partitions, providing the possibility of
modeling different safety degrees of output behaviors. Finally, in the approach we
propose to enforce the policy where the output characterization of safe bahaviors
is determined by the input contracts. It would be interesting to find a way for
approximating input decidable contracts automatically generated by the output
characterization of safe behaviors.

11 The source code is available for the use at https://gitlab.com/samuele/KArMA.git.
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Abstract. Many educational applications, from tutoring to problem
generation, are built on a formal model of the operational knowledge for a
given domain. These domain models consist of rewrite rules that experts
apply to solve problems in the domain; e.g., factoring, ax+bx→ (a+b)x,
is one such rule for K-12 algebra. Domain models currently take hundreds
of hours to create, and they differ widely in how well they meet educa-
tional objectives such as maximizing problem-solving efficiency. Rapid,
objective-driven creation of domain models is a key challenge in the de-
velopment of personalized educational tools.

This paper presents RuleSy, a new framework for computer-aided au-
thoring of domain models for educational applications. RuleSy takes as
input a set of example problems (e.g., x+1 = 2), a set of basic axiom rules
for solving these problems (e.g., factoring), and a function expressing the
desired educational objective. Given these inputs, it first synthesizes a set
of sound tactic rules (e.g., combining like terms) that integrate multiple
axioms into advanced problem-solving strategies. The axioms and tac-
tics are then searched for a domain model that optimizes the objective.
RuleSy is based on new algorithms for mining tactic specifications from
examples and axioms, synthesizing tactic rules from these specifications,
and selecting an optimal domain model from the axioms and tactics.

We evaluate RuleSy on the domain of K-12 algebra, finding that it re-
covers textbook tactics and domain models, discovers new tactics and
models, and outperforms a prior tool for this domain by orders of mag-
nitude. But RuleSy generalizes beyond K-12 algebra: we also use it to
(re)discover proof tactics for propositional logic, demonstrating its po-
tential to aid in designing models for a variety of educational domains.

1 Introduction

A key challenge in the design of educational applications is modeling the oper-
ational knowledge that captures the expertise for a given domain. This knowl-
edge takes the form of a domain model, which consists of condition-action rules
that experts apply to solve problems in the domain. For example, factoring,
ax + bx → (a + b)x, is one such rule for K-12 algebra: its condition recognizes
problem states that trigger rule application, and the action specifies the re-
sult. Educational applications rely on domain models to automate tasks such as
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problem and progression generation [1], hint and feedback generation [2], student
modeling [3], and misconception detection [4].

At present, domain models are created by hand, taking hundreds of hours
of development time to model a single hour of instructional material [5]. This
limits applications to using one out of many possible models that capture the
operational knowledge for a domain. Yet recent research [6] shows that some
students need over six times more content than others to master a domain. To
best serve a broad population of students, applications therefore need multiple
models that optimize different educational objectives [7,8].

To illustrate the difficulty of model authoring, consider creating a domain
model for K-12 algebra. Suppose that our model includes the basic rules, or ax-
ioms, for solving algebra problems: e.g., factoring and constant folding, c0+c1 →
c2, where c0 and c1 are constants and c2 is their sum. Should this model also in-
clude the rule for combining like terms, c0x+c1x→ c2x, which composes factor-
ing and constant folding? While such compound rules, or tactics, are redundant
with respect to the axioms, standard domain models (e.g., [9]) include them to
enable efficient problem solving with fewer steps and less cognitive load [10]. But
there is a limit to how many rules students can remember, so the optimal set of
axioms and tactics depends on the desired tradeoff between maximizing solving
efficiency and minimizing the memorization burden.

This paper presents a new approach for rapid, objective-driven creation of
domain models that is based on program synthesis. We realize this approach in
RuleSy, a framework that assists developers with creating tactics and domain
models that optimize desired objectives. The RuleSy framework was motivated
by practical experience: the first and last authors work for Enlearn, an educa-
tional technology company building adaptive K12 applications that need custom
domain models. Developers of such applications are the intended users of this
work, and Enlearn is in the process of adopting key ideas from RuleSy.

RuleSy aids developers by generating an optimal domain model given a set
of axioms for the domain, a set of example problems, and an optimization ob-
jective expressed in terms of rule and solution costs. Using the axioms and the
problems, RuleSy synthesizes an exhaustive set of tactics that combine multi-
ple axioms into advanced problem-solving strategies. Each of these tactics is a
sound rule that shortens the solution to at least one example problem compared
to using the axioms alone. Following synthesis, RuleSy applies discrete opti-
mization to produce a subset of the axioms and tactics (i.e., a domain model)
that both solves the example problems and optimizes the given objective.

RuleSy’s algorithms are designed to solve three core technical challenges:

– Specification. Synthesizing tactics requires a functional specification of their
behavior. Since tactics compose multiple axioms, a sequence of axioms may
seem to provide such a specification. For example, we may expect A ◦ A,
where A is the additive identity rule x + 0 → 0, to describe the tactic
(x+0)+0→ x. But because a condition-action rule can fire on any part of the
problem state, A◦A describes a set of distinct tactics that also includes, e.g.,
x+0 = y+0→ x = y. RuleSy addresses this challenge with a new approach
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for extracting tactic functions from the shortest axiom-based solutions to the
example problems. Each resulting tactic specification is sound with respect
to the axioms, and useful for solving at least one example in fewer steps.

– Synthesis. Given a tactic specification, the next challenge is to find a rule
that implements it. RuleSy represents rules as programs that operate on
problem states expressed as (abstract syntax) trees. Because these trees are
unbounded in size, the rule synthesis query cannot be expressed in existing
systems for syntax-guided synthesis (e.g., [11,12,13]). To address this chal-
lenge, RuleSy employs an efficient new reduction to a set of syntax-guided
synthesis queries over (carefully constructed) trees of bounded size. Our re-
duction exploits the structure of RuleSy’s specifications and programs to
ensure that the synthesized rules are sound over trees of any size, and to
asymptotically reduce the size of the synthesis search space.

– Optimization. The final challenge is to search the axioms and tactics for a
domain model that both solves the examples and optimizes the input objec-
tive. Finding such a model is undecidable in general, since an arbitrary set of
condition-action rules (i.e., a candidate model) may not be terminating [14].
RuleSy addresses this challenge with a new algorithm for deciding a more
constrained variant of the model optimization task: it finds a domain model
that solves the examples while minimizing the objective over the model’s
rules and the shortest (rather than all) solutions obtainable with those rules.

To evaluate our algorithms, we used RuleSy to model the domain of intro-
ductory K-12 algebra, comparing the output to a standard textbook [9] and a
prior tool [15] for this domain. Applying RuleSy to examples and axioms from
the textbook, we find that it both recovers the tactics presented in the book
and discovers new ones. We also find that RuleSy can recover the textbook’s
domain model, as well as discover variants that optimize different objectives.
Finally, we find that RuleSy significantly outperforms the prior tool, both in
terms of output quality and runtime performance.

To show that RuleSy generalizes beyond K-12 algebra, we used it to model
the domain of propositional logic proofs. Applying RuleSy to textbook [16]
axioms and exercises, we find that it synthesizes both new and standard tactics
for this domain (e.g., modus ponens), just as it did for K-12 algebra.

The rest of the paper is organized as follows. Section 2 illustrates RuleSy
on a toy algebra domain. Section 3 describes RuleSy’s language of condition-
action rules. Section 4 describes the new algorithms for specification mining,
rule synthesis, and model optimization. Section 5 presents our two case studies.
Section 6 reviews related work, and Section 7 concludes.

2 Overview

This section illustrates RuleSy’s functionality on a toy algebra domain. We
show the specifications, tactics, and models that RuleSy creates for this do-
main, given a set of example problems, axioms, and an objective.
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2.1 Examples, Axioms, and Objectives

Figure 1 shows our example problems, axioms, and objective for toy algebra.

Examples. The problems (1b) are represented as syntax trees. We consider a
tiny subset of algebra that includes equations of the form x+

∑
i ci = ck, where

x is a variable and ci, ck are integer constants. Experts solve these problems by
applying condition-action rules until they obtain an equation of the form x = c.

Axioms. The axioms (1a) are expressed as programs in the RuleSy language
(Section 3). A rule program consists of a condition, which matches a syntax
tree with a specific shape, and an action, which creates a new tree by applying
editing operations (such as adding or removing nodes) to the matched tree. For
example, the axiom A matches trees of the form (+ 0 e . . .), where the order
of subtrees is ignored, and it rewrites such trees by removing the constant 0 to
produce (+ e . . .). The shown axioms can solve all problems in the toy algebra
domain. For example, we can solve p1 in two steps by applying B ◦A to obtain
x+ 1 +−1 = 5→B x+ 0 = 5→A x = 5. RuleSy uses the axioms to synthesize
tactic rules (Figure 3) that can solve the example problems in fewer steps.

Objective. The educational objective (1c) is expressed as a function of rule and
solution costs. Rule cost measures the complexity of a rule’s syntactic represen-
tation. Solution cost measures the efficiency of a solution in terms of the tree
edits performed to solve an example problem. These costs are proxy measures for
the difficulty of learning and applying knowledge in a given domain model [10].
RuleSy selects a domain model that best balances the trade-off between rule
complexity and solution efficiency specified by the objective.

2.2 Specifications, Tactics, and Domain Models

Specifications. To help with domain modeling, RuleSy first needs to synthe-
size a set of useful tactics, which can solve the input problems more efficiently
than the axioms alone. For example, we could solve p1 in one step if we had
a “cancelling opposite constants” tactic that composes the axioms B and A.
RuleSy determines which rules to synthesize, and how those rules should be-
have, by mining tactic specifications (Section 4.1) from the shortest solutions to
the example problems that are obtainable with the axioms (Figure 2a).

A RuleSy specification takes the form of a plan for applying a sequence
of axioms (Figure 2b). A plan describes which axioms to apply, in what order,
and how. Since an axiom may be applied to a problem in multiple ways, a plan
associates each axiom with an application index and a binding for the axiom’s
pattern. The application index identifies a subtree in the expression’s abstract
syntax tree (AST), and the binding specifies a mapping from the index space of
the axiom’s pattern to the index space of the subtree. The plan in Figure 2b spec-
ifies a generic tactic for cancelling opposite constants; for example, it solves p1 in
one step by reducing the expression (+ x 1−1) to x (Figure 2c). In essence, plans
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(define A ; Additive identity: (+ 0 e . . .)→ (+ e . . .)
(Rule (Condition (Pattern (Term + (ConstTerm) _ etc))

(Constraint (Eq? (Ref 1) 0)))
(Action (Remove (Ref 1)))))

(define B ; Constant folding: (+ c1 c2 . . .)→ (+ c . . .), c = c1 + c2
(Rule (Condition (Pattern (Term + (ConstTerm) (ConstTerm) etc))

(Constraint true))
(Action (Replace (Ref 1) (Apply + (Ref 1) (Ref 2)))

(Remove (Ref 2)))))

(define C ; Adding opposite: (= (+ e0 . . .) e1)→ (= (+ (− e0) e0 . . .) (+ e1 (− e0)))
(Rule (Condition (Pattern (Term = (Term + _ etc) _))

(Constraint true))
(Action (Replace (Ref 1) (Cons (Make - (Ref 1 1)) (Ref 1)))

(Replace (Ref 2) (Make + (Ref 2) (Make - (Ref 1 1)))))))

(a) Axioms in the RuleSy language (Section 3).

; Problem p0 : x+ 0 = 3
(= (+ x 0) 3)

; Problem p1 : x+ 1 +−1 = 5
(= (+ x 1 -1) 5)

; Problem p2 : x+ 2 = −4
(= (+ x 2) -4)

(b) Example problems.

f(R,G) = α
∑
R∈R

RuleCost(R) +

(1− α)

∑
G∈G SolCost(G)

|G|

(c) A sample objective function, where α ∈ [0, 1], and G
contains the shortest solutions obtained with the rulesR.

Fig. 1: The inputs to RuleSy for the toy algebra domain.

are functional specifications of tactics that can help solve the example problems
in fewer steps—and that are amenable to sound and efficient synthesis.

Tactics. Given a set of plans, RuleSy synthesizes the corresponding tactics
(Section 4.2), expressed in the same language (Section 3) as the input axioms.
Figure 3 shows two sample tactics synthesized for the plans (e.g., Figure 2b)
mined from the toy examples and axioms. These tactics perform fewer tree edits
than the axiom sequences they replace, leading to cheaper solutions. For example,
the tactic BA performs two tree edits, while the axiom sequence B◦A performs
three such edits. But the tactic also applies to fewer problem states than the
axioms. RuleSy uses discrete optimization, guided by the input objective, to
decide which axioms and tactics to include in a domain model.

Domain Models. The RuleSy optimizer (Section 4.3) searches the axioms and
tactics for a domain model that is sufficient to solve the example problems, while
minimizing the objective over all shortest solutions obtainable with such models.
Figure 4 shows two sample optimal models for the toy algebra domain. The
models R0.1 and R0.9 minimize the toy objective (Figure 1c) for different values
of the weighting factor α (0.1 and 0.9, respectively). The model R0.1 includes
more rules because lower values of α emphasize solution efficiency over domain
model economy. RuleSy helps with rapid navigation of such design tradeoffs.
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(= (+ x 0) 3)

(= x 3)

A

(= (+ x 2) -4)

(= (+ -2 2 x) (+ -4 -2))

C

(= (+ 0 x) (+ -4 -2))

B

(= (+ -2 2 x) -6)

B

(= x (+ -4 -2))

A

(= (+ 0 x) -6)

B

(= x -6)

B A

B

(= (+ x 1 -1) 5)

(= (+ 0 x) 5)

B

(= x 5)

A

(a) All shortest solutions for the toy al-
gebra problems and axioms (Figure 1).

[〈B, [], {[] 7→ [], [1] 7→ [2], [2] 7→ [3]}〉,
〈A, [], {[] 7→ [], [1] 7→ [1]}〉]

(b) A plan for applying the axioms B ◦A.

Input (= (+ x 1 -1) 5) (= (+ 0 x) 5)

Axiom B A

Binding (= (+ 1 -1 x) 5) (= (+ 0 x) 5)

Output (= (+ 0 x) 5) (= x 5)

(c) Using the plan in (b) to solve the prob-
lem p1 (Figure 1b).

Fig. 2: A sample plan (b) mined from the shortest solutions (a) to the toy algebra
problems. The plan specifies a tactic for canceling opposite constants (c).

; Canceling opposite constants: (+ c −c e . . .)→ (+ e . . .).
(define BA

(Rule (Condition (Pattern (Term + (ConstTerm) (ConstTerm) _ etc))
(Constraint (Eq? (Ref 1) (Apply - (Ref 2)))))

(Action (Remove (Ref 1))
(Remove (Ref 2)))))

; Move negated constant to other side with only one other term:
; (= (+ c1 e . . .) c2)→ (= (+ e . . .) c), c = c2 − c1.
(define CBAB

(Rule (Condition (Pattern (Term = (Term + (ConstTerm) _ etc) (ConstTerm)))
(Constraint true))

(Action (Remove (Ref 1 1) 0)
(Replace (Ref 2) (Apply - (Ref 2) (Ref 1 1))))))

Fig. 3: Sample tactics synthesized for the toy plans (e.g., Figure 2b).

3 A Language for Condition-Action Rules

This section presents the RuleSy language for specifying condition-action rules.
The language is parametric in its definition of problem states. For concreteness,
we present an instantiation of RuleSy for the domain of K-12 algebra. We de-
scribe another instantiation, for the domain of propositional logic, in Section 5.

Specifying Problems and Rules. The RuleSy domain-specific language (DSL)
for algebra represents rules as programs that operate on problems expressed as
terms (Figure 5a). RuleSy is parametric in the definition of terms, but the
structure of rules is fixed. A rule consists of a condition, which determines if the
rule is applicable to a given term, and an action, which specifies how to transform

R0.1 = {A,BA,CBAB} R0.9 = {BA,CBAB}

Fig. 4: Optimal domain models for toy algebra (Figures 1 and 3).
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program := (Rule cond action)

cond := (Condition (Pattern pattern)
:= (Constraint constr))

pattern := _ | (ConstTerm) | (VarTerm) | (BaseTerm)
| (Term op pattern+)

| (Term op pattern+ etc)
constr := true | pred | (And constr constr)

pred := (Eq? ref const) | (Neq? ref const)

action := (Action cmd+)
cmd := (Remove ref ) | (Replace ref expr)

expr := const | obj

obj := (Make op expr+)
| (Cons expr ref )
| (Cons expr obj)

const := int | ref | (Apply op const+)

ref := (Ref) | (Ref int+)

term := int | var | (op term+)
int := integer literal
var := identifier
op := + | - | * | / | =

(a) Syntax for the algebra DSL.

J(Rule c a)Kt = if JcKt then JaKt else ⊥
J(Condition p b)Kt = JpKt ∧ JbKt
J(Pattern p)Kt = JpKt
J(Constraint b)Kt = JbKt
J(Term o p1...pk)Kt = (t = (o t1 ... tk))∧

∀1≤i≤kJpiKti
J(Term o p1...pk etc)Kt = (t = (o t1 ... tn))∧

n ≥ k ∧ ∀1≤i≤kJpiKti
J(ConstTerm)Kt = literal(t)
J(VarTerm)Kt = variable(t)
J(BaseTerm)Kt = literal(t) ∨ variable(t)

J_Kt = true
JtrueKt = true
J(Eq? r e)Kt = (JrKt = JeKt)
J(Neq? r e)Kt = (JrKt 6= JeKt)
J(And b1 b2)Kt = Jb1Kt ∧ Jb2Kt
J(Action a1 ... ak)Kt = (Ja1K‖ ...‖JakK)(t)
J(Remove r)Kt = rm(t, index(r))
J(Replace r e)Kt = replace(t, index(r), JeKt)
J(Make o e1 ... ek)Kt = (o Je1Kt ... JekKt)
J(Cons e1 e2)Kt = cons(Je1Kt, Je2Kt)
J(Apply o e1 ... ek)Kt = JoK(Je1Kt, ... , JekKt)
J(Ref i1 ... ik)Kt = ref (t, [i1, ... , ik])

index((Ref i1 ... ik)) = [i1, ... , ik]
replace(t, [], s) = s
replace((o t1 ... tk), [i], s) = (o t1 ... ti−1 s ti+1 ... tk)
replace((o t1 ... tk), [i, j, ...], s) = (o t1 ... replace(ti, s, [j, ...]) ... tk)
rm((o t1 ... tk), [i]) = (o t1 ... ti−1 ti+1 ... tk)
rm((o t1 ... tk), [i, j, ...]) = (o t1 ... rm(ti, [j, ...]) ... tk)
cons(t, (o t1 ... tk)) = (o t t1 ... tk)

fire(R, t) = {JRKt | JRKt 6= ⊥} where literal(t) ∨ variable(t)

fire(R, t) = {JRKtβ | JRKtβ 6= ⊥ ∧ β ∈ B(pattern(R), t)} ∪
⋃

1≤i≤n{replace(t, [i], s) | s ∈ fire(R, ti)}
where t = (o t1 ... tn)

(b) Semantics for the algebra DSL. The expression (o t1 . . . tn) constructs a term
with the given operator and children;‖ stands for parallel function composition; [x, . . .]
is a sequence; and other notation is described in Definitions 1-4.

Fig. 5: Syntax (a) and semantics (b) for the RuleSy algebra DSL.

terms. Conditions include a pattern to match against the term’s structure and a
boolean constraint to evaluate on that structure. Actions are sequences of term
editing operations, such as removing or replacing a subterm. Both constraints
and actions can use references to identify specific subterms of the term to which
the rule is being applied. The toy problems (Figure 1b) and rules (Figures 1a
and 3) from Section 2 are all valid terms and programs in the algebra DSL.

Semantics of Rule Firing. Rule programs denote partial functions from terms
to terms (Figure 5b). If a term satisfies the rule’s condition, the result is a term;
otherwise, the result is an undefined value (⊥). We solve problems by applying
rules exhaustively, via fire(R, t), on permutations and subterms of a given term.
Permuting a term (Definition 2) reorders the arguments to any commutative
operators while leaving the rest of the term’s structure unchanged. To fire a rule
on a term, we permute the term “just enough” to establish a one-to-one mapping
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between the rule’s pattern and the term’s structure (Definition 4). By establish-
ing such mappings for all subterms of a term, fire implements the intuitive notion
of rule application given in Section 2: a rule fires on all subterms that satisfy the
rule’s condition, ignoring the order of arguments to commutative operators.

To illustrate the semantics of fire, consider firing the rule A from Figure 1a
on the term t = (+ (∗ x 2) 0). The set refs(t) of all valid tree indices for t consists
of the indices [], [1], [1, 1], [1, 2], [2], which identify the subterms t, (∗ x 2), x, 2, 0,
respectively (Definition 1). Since both + and ∗ are commutative, valid tree per-
mutations Π(t) for t consist of the following mappings (Definition 2):

tπ0 = t π0 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 1], [1, 2] 7→ [1, 2], [2] 7→ [2]}
tπ1 = (+ (∗ 2 x) 0) π1 = {[] 7→ [], [1] 7→ [1], [1, 1] 7→ [1, 2], [1, 2] 7→ [1, 1], [2] 7→ [2]}
tπ2 = (+ 0 (∗ x 2)) π2 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 1], [1, 2] 7→ [2, 2], [2] 7→ [1]}
tπ3 = (+ 0 (∗ 2 x)) π3 = {[] 7→ [], [1] 7→ [2], [1, 1] 7→ [2, 2], [1, 2] 7→ [2, 1], [2] 7→ [1]}

Next, we observe that the scope (Definition 3) of A’s pattern consists of the
indices {[], [1], [2]}. Finally, we use the permutations of t and the scope of A
to compute all valid bindings for A and t (Definition 4): β0 = {[] 7→ [], [1] 7→
[1], [2] 7→ [2]} with tβ0 = tπ0 , and β1 = {[] 7→ [], [1] 7→ [2], [2] 7→ [1]} with
tβ1 = tπ2 . The rule A applies only to tβ1 , so fire(A, t) yields {(∗ x 2)}.

Definition 1 (Tree Indices). A tree index is a finite sequence of positive inte-
gers that identifies a subterm of a term as follows: ref (t, []) = t; ref ((o t1 . . . tk), [i])
= ti if 1 ≤ i ≤ k; ref ((o t1 . . . tk), [i, j, . . .]) = ref (ti, [j, . . .]) if 1 ≤ i ≤ k;
ref (t, idx ) = ⊥ otherwise. We write refs(t) for the set {idx | ref (t, idx ) 6= ⊥}.

Definition 2 (Tree Permutations). A function π is a tree permutation for
a term t if it defines a bijective mapping from refs(t) to itself. A permutation
π is valid for t if it reorders only the children of commutative operators in t.
That is, for each [i1, . . . , in] ∈ refs(t), π([i1, . . . , in]) = [j1, . . . , jn] such that
π([i1, . . . , in−1]) = [j1, . . . , jn−1] and in = jn or ref (t, [i1, . . . , in−1]) = (op . . .)
where op is commutative. We write Π(t) to denote the set of all valid permuta-
tions of t, and tπ to denote the term obtained by applying π ∈ Π(t) to refs(t).

Definition 3 (Scopes). A tree index idx is in the scope of a pattern p if
scope(p, idx ) 6= ⊥ where: scope(p, []) = p; scope((Term o p1 . . . pk), [i]) = pi if
1 ≤ i ≤ k; scope((Term o p1 . . . pk), [i, j, . . .]) = scope(pi, [j, . . .]) if 1 ≤ i ≤ k;
scope((Term o p1 . . . pk etc), idx ) = scope((Term o p1 . . . pk), idx ); and scope(p,
idx )=⊥ otherwise. We write scope(p) to denote the set {idx | scope(p, idx ) 6= ⊥}.

Definition 4 (Bindings). Let β be a bijection from tree indices to tree indices
with a finite domain dom(β) and range ran(β). We say that β is a binding for a
pattern p if the domain of β is the scope of p; i.e., dom(β) = scope(p). A binding
β is valid for a term t if there is a permutation π ∈ Π(t) such that β−1 ⊆ π and
for all [i1, . . . , in] ∈ refs(t), if [i1, . . . , ik] ∈ ran(β) and [i1, . . . , ik+1] 6∈ ran(β),
then π([i1, . . . , in]) = β−1[i1, . . . , ik]⊕ [ik+1, . . . , in], where ⊕ stands for sequence
concatenation. We define bind(β, t) to return an arbitrary but deterministically
chosen permutation π ∈ Π(t) for which β is valid, if one exists, or ⊥ otherwise.
We write B(p, t) to denote the set {β | dom(β) = scope(p) ∧ bind(β, t) 6= ⊥} of
all valid bindings for p and t, and we write tβ to denote tbind(β,t).
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Semantics of Conditions and Actions. Rule conditions denote functions from
terms to booleans, and actions are functions from terms to terms. A condition
maps a term to ‘true’ if the term matches the condition’s pattern and satisfies
its constraint. Constraints capture conditions that are not expressible through
pattern matching, such as two subterms being syntactically equal. Actions apply
a set of parallel functional edits to disjoint subterms of the input term t. Actions
can create new terms (via Make), and both conditions and actions can evaluate
expression terms with literal arguments (via Apply).

Well-formed Rule Programs. The meaning of rule conditions and actions is
defined only for well-formed programs (Definition 5), which contain no invalid
references. A reference expression (Ref i1 . . . in) specifies an index [i1, . . . , in] into
the matched term’s abstract syntax tree (Definition 1). If a term matches the
pattern of a well-formed program, then every reference in that program specifies
a valid index into the term’s AST. Additionally, Apply and Cons expressions ref-
erence subterms of the right kind; the program’s actions edit disjoint subtrees of
the term’s AST; and (in)equality predicates only compare subterms matched by
terminal patterns. RuleSy consumes and creates only well-formed programs.

Definition 5 (Well-Formed Programs). Let R be a rule with the condition
(Condition (Pattern p) (Constraint b)) and action (Action a1 . . . an). We say
that R is well-formed if the following constraints hold:

– index (r) ∈ scope(p) for all references r in R.
– scope(p, index (r)) = (ConstTerm) for all references r in all Apply expressions.
– scope(p, index (r)) = (Term . . .) for all (Cons e r) expressions.
– scope(p, index (r)) 6= (Term . . .) for all references r in all Eq?, Neq? predicates.
– Let rk denote the first argument to a command ak in R. For all distinct
ai, aj in R, index (ri) is not a prefix of index (rj) and vice versa.

4 Rule Mining, Synthesis, and Optimization

Given an educational objective, example problems, and axioms for solving those
problems, RuleSy produces an optimal domain model in three stages: (1) speci-
fication mining, (2) rule synthesis, and (3) domain model optimization. This sec-
tion presents the algorithms underlying each stage and states their guarantees.
Proofs of these statements are available in our technical report on RuleSy [17].

4.1 Specification Mining

Specification mining takes as input a set of examples and axioms, and produces a
set of specifications for tactic rules. We describe the key challenge in specifying
tactics; show how our notion of execution plans addresses it; and present our
FindSpecs algorithm for computing these plans.

Specifying Tactics. To enable efficient synthesis of useful rules, a tactic spec-
ification should capture the semantics of a rule—i.e., a partial function—that
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can help solve some problems in fewer steps than the axioms alone. But natural
forms of specification, such as axiom sequences, do not satisfy this requirement.
To see why, consider the axiom sequence I ◦ B, where I implements factor-
ing (Figure 6) and B implements constant folding (Figure 1a). Intuitively, we
would like I ◦ B to specify the tactic IB for combining like terms (Figure 6).
Yet no interpretation of this sequence captures the meaning of the tactic. If we
interpret I ◦ B using the fire semantics, the result is a non-functional relation
that includes the meaning of multiple tactics. For example, firing I ◦ B on the
term (+ (∗ 2x) (∗ 3x) (∗ 4 y) (∗ 5 y)) produces both (+ (∗ 5x) (∗ 4 y) (∗ 5 y)) and
(+ (∗ 9 y) (∗ 2x) (∗ 3x)). But if we interpret I ◦B as the composition of the par-
tial functions denoted by its axioms—i.e., as λt.JBK(JIKt)—the resulting relation
is empty and thus fails to specify a useful tactic.

(define I ; (+ (∗ e0 e) (∗ e1 e) . . .)→ (+ (∗ (+ e0 e1) e) . . .)
(Rule (Condition (Pattern (Term + (* _ _) (* _ _) etc))

(Constraint (Eq? (Ref 1 2) (Ref 2 2))))
(Action (Remove (Ref 1))

(Replace (Ref 2 1) (Make + (Ref 1 1) (Ref 2 1))))))

(define IB ; (+ (∗ c0 e) (∗ c1 e) . . .)→ (+ (∗ c e) . . .), c = c0 + c1
(Rule (Condition (Pattern (Term + (* (ConstTerm) _) (* (ConstTerm) _) etc))

(Constraint (Eq? (Ref 1 2) (Ref 2 2))))
(Action (Remove (Ref 1))

(Replace (Ref 2 1) (Apply + (Ref 1 1) (Ref 2 1))))))

Fig. 6: The tactic IB for combining like terms combines factoring (I) and con-
stant folding (B in Figure 1a), but no interpretation of I◦B captures its behavior.

Execution Plans. We address the challenge of specifying tactic rules with exe-
cution plans. An execution plan (Definition 7) is a partial function from terms
to terms, encoded as a sequence of execution steps (Definition 6). An execution
step combines a rule R with a tree index idx and a binding β for R’s pattern.
The step 〈R, idx , β〉 uses the binding β, if it is valid for the subterm ref (t, idx ) of
a term t, to evaluate the rule R. An execution step thus specifies where to apply
a rule (i.e., to which subterm of a term) and how (i.e., to which permutation
of the subterm), while an execution plan composes a sequence of such rule ap-
plications. For example, the plan [〈I, [], β0〉, 〈B, [1, 1], β0〉], where β0 denotes the
identity binding, captures the behavior of the combine-like-terms rule on terms
of the form (+ (∗ c0 e) (∗ c1 e) . . .). Moreover, firing a program that implements
this plan (e.g., IB) captures the common understanding of what it means to
combine like terms when solving algebra problems. Execution plans thus satisfy
our requirement for tactic specifications by defining useful functional relations.

Definition 6 (Execution Step). An execution step 〈R, idx , β〉 consists of a
rule program R, tree index idx , and a binding β for R’s pattern. A step denotes
a partial function over terms where J〈R, idx , β〉Kt = replace(t, idx , JRKsβ) if s =
ref (t, idx ), β ∈ B(pattern(R), s), and JRKsβ 6= ⊥; otherwise, J〈R, idx , β〉Kt = ⊥.
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Definition 7 (Execution Plan). An execution plan S is a finite sequence of
execution steps [〈R1, idx 1, β1〉, . . . , 〈Rn, idxn, βn〉]. The plan S composes its steps
as follows: JSKt0 = tn if J〈Ri, idx i, βi〉Kti−1 = ti and ti 6= ⊥ for all 1 ≤ i ≤ n;
otherwise, JSKt0 = ⊥. The plan S is general if the step indices idx 1, . . . , idxn
have the empty index [] as their greatest common prefix.

Computing Plans. RuleSy mines execution plans from a set of example prob-
lems and axioms using the FindSpecs procedure shown in Figure 7. FindSpecs
first obtains a solution graph (Definition 8) of all shortest solutions to each ex-
ample problem (line 3). It then applies the FindPlan procedure to compute an
execution plan for every path between every pair of nodes in each resulting graph
(line 6). These plans specify the set of sound partial functions (Definition 10)
that can shorten the solution to at least one example problem (Theorem 1).

1: function FindSpecs(T : set of terms, A: set of well-formed programs)
2: S ← {}
3: for all 〈N,E〉 ∈ {Solve(t,A) | t ∈ T} do
4: for all src, tgt ∈ N do
5: paths ← allPaths(src, tgt, 〈N,E〉) . All paths from src to tgt

6: S ← S ∪ {〈FindPlan(p), src, tgt〉 | p ∈ paths ∧ |p| > 1}
7: return S . Execution plans for T and A

8: function FindPlan(p : n0 →R1
n1 →R2

. . .→Rk
nk)

9: S ← an empty array of size k with indices starting at 1
10: for all 1 ≤ i ≤ k do
11: idx , β ← firingParameters(Ri, ni−1, ni)
12: S[i]← 〈Ri, idx , β〉
13: root ← greatestCommonPrefix({idx | 〈R, idx , β〉 ∈ S})
14: for all 1 ≤ i ≤ k do . Drop the common prefix from all indices

15: 〈R, idx , β〉 ← S[i]
16: S[i]← 〈R, dropPrefix(idx , root), β〉
17: return S . A general execution plan for replaying p

Fig. 7: FindSpecs takes as input a set of example problems T and axioms A,
and produces a set of plans S for composing the axioms into tactics.

Definition 8 (Solution Graph). A directed multigraph G = 〈N,E〉 is a solu-
tion graph for a term t, predicate Reduced, and rules R if t ∈ N ; E is a set of
labeled edges 〈src, tgt〉R such that src, tgt ∈ N , R ∈ R, and tgt ∈ fire(R, src); G
is acyclic; t is the only term in G with no incoming edges; G contains at least one
sink term with no outgoing edges; and each sink satisfies the Reduced predicate.

FindPlan takes as input a path p in a solution graph and produces a gen-
eral execution plan (Definition 7) for replaying that path (Definition 9). The
first loop, at lines 10-12, creates a plan that replays the path p from n0 to nk
exactly: i.e., JSKn0 = nk. The function firingParameters (line 11) returns the
parameters used to fire the rule Ri on ni−1 to produce ni. These include the
index idx of the subterm to which Ri was applied, as well as the binding β for
permuting that subterm. The resulting execution step (line 12) thus reproduces
the edge 〈ni−1, ni〉Ri : J〈Ri, idx , β〉Kni−1 = ni. The second loop, at lines 13–16,
generalizes S to be more widely applicable, while still replaying the path p.
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Definition 9 (Replaying Paths). Let p = n0 →R1
. . . →Rk nk be a path in

a solution graph, consisting of a sequence of k edges labeled with rules R1, . . . , Rk.
An execution plan S replays the path p if S is a sequence of k steps [〈R1, idx 1, β1〉,
. . . , 〈Rk, idxk, βk〉], one for each edge in p, and there is an index idx ∈ refs(n0)
such that nk = replace(n0, idx , JSKref (n0, idx )).

To illustrate, consider applying FindPlan to the path (= (+ x 1 -1) 5) →B

(= (+ 0 x) 5)→A (= x 5) in Figure 2a. The Solve procedure computes this path
p by firing B with idx = [1], βB = {[] 7→ [], [1] 7→ [2], [2] 7→ [3]}, and A with
idx = [1], βA = {[] 7→ [], [1] 7→ [1]]}. As a result, the loop at lines 10-12 executes
twice to produce the plan S = [〈B, idx , βB〉, 〈A, idx , βA〉]. The plan S replays p
exactly: it describes a tactic for applying the axioms B◦A to a term whose first
child has two opposite constants as its second and third children. The loop at
lines 13-16 generalizes S to produce the plan in Figure 2b. This plan replays p
but applies to any term with opposite constants as its second and third children.

Definition 10 (Soundness). Let f be a partial function from terms to terms.
We say that f is sound with respect to a set of rules R if for every term t0,
f(t0) = ⊥ or there is a finite sequence of terms t1, . . . , tk such that f(t0) = tk
and ∀i ∈ {1, . . . , k}. ∃R ∈ R. ti ∈ fire(R, ti−1).

Definition 11 (Shortcuts). A path p is a shortcut path in a solution graph
G if p contains more than one edge and p is a subpath of a shortest path from
G’s source to one of its sinks.

Theorem 1. Let T be a set of terms, Reduced a predicate over terms, and A a
set of rules. If every term in T can be Reduced using A, then FindSpecs(T,A)
terminates and produces a set S of plan and term triples with the following prop-
erties: (1) for every 〈S, src, tgt〉 ∈ S, JSK is sound with respect to A, and (2)
for every shortcut path p from src to tgt in a solution graph for t ∈ T , A, and
Reduced, there is a triple 〈S, src, tgt〉 ∈ S such that S replays p.

4.2 Rule Synthesis

RuleSy synthesizes tactics by searching for well-formed programs that sat-
isfy specifications 〈S, src, tgt〉 produced by FindSpecs. This search is a form of
syntax-guided synthesis [13]: it draws candidate programs from a given syntactic
space, and uses an automatic verifier to check if a chosen candidate satisfies the
specification. We illustrate the challenges of classic syntax-guided synthesis for
rule programs; show how our best-implements query addresses them; and present
the FindRules algorithm for sound, complete, and efficient solving of this query.

Classic Synthesis for Rule Programs. In our setting, the classic synthesis query
takes the form ∃R.∀t.JRKt = JSKt, where R is a well-formed program and S is an
execution plan. Existing tools [13,11,12] cannot solve this query soundly because
it involves verifying candidate programs over terms of unbounded size.

But even if we weaken the soundness guarantee to functional correctness
over bounded inputs, these tools can fail to find useful rules because the classic
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1: function FindRules(S: plan, src, tgt: terms, k̄: ints)
2: idx ← replayIndex(S, src, tgt)
3: s, t← ref (src, idx), JSKref (src, idx)
4: p0 ← termToPattern(s) . Most refined pattern that matches s

5: R ←
⋃
p0vp

FindRule(p, S, s, t, k̄)

6: return R . Rules that best implement S for 〈src, tgt〉

7: function FindRule(p: pattern, S: plan, s,t: terms, k̄: ints) .JpKs∧t=JSKs
8: ??c ←WellFormedConstraintHole(p, k̄)
9: C ← (Condition (Pattern p) (Constraint ??c)) .Condition sketch

10: ??a ←WellFormedCommandHoles(p, k̄)

11: A← (Action ??a) . Action sketch with a sequence ??a of holes

12: T← {t | JpKt} . Symbolic representation of all terms that satisfy p

13: c← CEGIS(JCKs ∧ (∀τ ∈ T.JCKτ ⇐⇒ JSKτ 6= ⊥))
14: a← CEGIS(JAKs = t ∧ (∀τ ∈ T.JSKτ 6= ⊥ =⇒ JAKτ = JSKτ))
15: return {(Rule c a) | c 6= ⊥ ∧ a 6= ⊥}

Fig. 8: FindRules takes as input a bound k̄ on program size and an execution
plan S that replays a path from src to tgt . Given these inputs, it synthesizes all
rule programs of size k̄ that best implement S with respect to src and tgt .

query is overly strict for our purposes. To see why, consider the specification
〈S, src, tgt〉 where S is [〈A, [1], β0〉, 〈A, [2], β0〉], src is (+ (+ 0 x) (+ 0 y)), tgt is
(+x y), A is the additive identity axiom (Figure 1a), and β0 is the identity bind-
ing. The plan S specifies a general tactic for transforming a term of the form
(op (+ 0 e0) (+ 0 e1)) to the term (op e0 e1), where op is any binary operator in
our algebra DSL. Such a tactic cannot be expressed as a well-formed program
(Definition 5). But many useful specializations of this tactic are expressible, e.g.:

(Rule (Condition
(Pattern (Term + (Term + (ConstTerm) _) (Term + (ConstTerm) _) etc))
(Constraint (And (Eq? (Ref 1 1) 0) (Eq? (Ref 2 1) 0))))

(Action (Replace (Ref 1) (Ref 1 2)) (Replace (Ref 2) (Ref 2 2))))

Since we aim to generate useful tactics for domain model optimization, an ideal
synthesis query for RuleSy would admit many such specialized yet widely ap-
plicable implementations of S.

The Best-Implements Synthesis Query. To address the challenges of classic syn-
thesis, we reformulate the synthesis task for RuleSy as follows: given 〈S, src,
tgt〉, find all rules R that fire on src to produce tgt , that are sound with respect
to S, and that capture a locally maximal subset of the behaviors specified by
S. We say that such rules best implement S for 〈src, tgt〉 (Definition 12), and
we search for them with the FindRules algorithm (Figure 8), which is a sound
and complete synthesis procedure for the best-implements query (Theorem 2).

Definition 12 (Best Implementation). Let S be an execution plan that re-
plays a path from a term src to a term tgt. A well-formed rule R best implements
S for 〈src, tgt〉 if tgt ∈ fire(R, src) and ∀t.Jpattern(R)Kt =⇒ JRKt = JSKt.

Sound and Complete Verification. Verifying that a program R best implements
a plan S involves checking that R produces the same output as S on all terms t
accepted by R’s pattern. The verification task is therefore to decide the validity of
the formula ∀t.Jpattern(R)Kt =⇒ JRKt = JSKt. We do so by observing [17] that
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this formula has a small model property when R is well-formed (Definition 5):
if the formula is valid on a carefully constructed finite set of terms T, then it is
valid on all terms. At a high level, T consists of terms that satisfy R’s pattern in a
representative fashion. For example, T = {x} for the pattern (VarTerm) because
all terms that satisfy (VarTerm) are isomorphic to the variable x up to a renaming.
Encoding the set T symbolically (rather than explicitly) enables FindRules to
discharge its verification task efficiently with an off-the-shelf SMT solver [18].

Efficient Search. FindRules accelerates synthesis by exploiting the observa-
tion that a best implementation of 〈S, src, tgt〉 must fire on src to produce tgt ,
which has two key consequences. First, because S replays a path from src to tgt
(Theorem 1), src contains a subterm s at an index idx such that t = JSKs and
tgt = replace(src, idx , t) (lines 2-3). Any rule R that outputs t on s will therefore
fire on src to produce tgt , so it sufficient to look for rules R that transform s to t,
without having to reason about the semantics of fire. Second, if a rule accepts s,
its pattern must be refined (Definition 13) by the most specific pattern p0 (line 4)
that accepts s. To construct p0, we replace each literal in s with (ConstTerm),
variable with (VarTerm), and operator o with the tokens Term o. Since p0 refines
finitely many patterns p, we can enumerate all of them (line 5). Once p is fixed
through enumeration, FindRule can efficiently search for a best implementation
R with that pattern, by using an off-the-shelf synthesizer [12] to perform two
independent searches for R’s condition (line 13) and action (line 14). These two
searches explore an exponentially smaller candidate space than a single search
for the condition and action [17], without missing any correct rules (Theorem 2).

Definition 13 (Pattern Refinement). A condition pattern p1 refines a pat-
tern p2 if p1 v p2, where v is defined as follows: p v p; p v _; (ConstTerm)

v (BaseTerm); (VarTerm) v (BaseTerm); (Term o p1 . . . pk) v (Term o q1 . . . qk) if
pi v qi for all i ∈ [1..k]; and (Term o p1 . . . pn) v (Term o q1 . . . qk etc) if n ≥ k
and pi v qi for all i ∈ [1..k].

Theorem 2. Let S be an execution plan that replays a shortcut path from src
to tgt, and k̄ a bound on the size of rule programs. FindRules(S, src, tgt , k̄)
returns a set of rules R with the following properties: (1) every R ∈ R best im-
plements S for 〈src, tgt〉; (2) R includes a sound rule R of size k̄ if one exists;
and (3) for every pattern p that refines or is refined by R’s pattern, R includes
a sound rule with pattern p and size k̄ if one exists.

4.3 Rule Set Optimization

After synthesizing the tactics T for the examples T and axioms A, RuleSy ap-
plies discrete optimization to find a subset of A∪T that minimizes the objective
function f . We formulate this optimization problem in a way that guarantees
termination. In particular, our Optimize algorithm (Figure 9) returns a set of
rules R ⊆ A ∪ T that can solve each example in T and that minimize f over
all shortest solution graphs for T and A∪ T (Theorem 3). Restricting the opti-
mization to shortest solutions enables us to decide whether an arbitrary rule set
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1: function Optimize(T : set of terms, A,T : set of rules, f : objective)
2: GA∪T ← {}
3: for t ∈ T such that ¬Reduced(t) do
4: 〈N,EA〉 ← Solve(t,A) . Solve with axioms

5: ET ←
⋃
R∈T

⋃
s,t∈N{〈s, t〉 | t ∈ fire(R, s)} . Tactic edges

6: GA∪T ← GA∪T ∪ {〈N,EA ∪ ET 〉}
7: f∅ ← λR.G. if 〈∅, ∅〉 ∈ G then return ∞ else return f(R,G)
8: return min

R⊆A∪T
f∅(R, {Restrict(G,R) |G ∈ GA∪T })

9: function Restrict(〈N,E〉: solution graph, R: set of rules)
10: t← source of the graph 〈N,E〉
11: ER ← {〈src, tgt〉R ∈ E |R ∈ R} . Edges with labels in R
12: paths ←

⋃
t̂∈N∧Reduced(t̂) allPaths(t, t̂, 〈N,ER〉)

13: E ←
⋃
p∈paths pathEdges(p)

14: N ← {n | ∃e ∈ E . source(e) = n ∨ target(e) = n}
15: return 〈N,E〉 . Solution graph for t and R or 〈∅, ∅〉

Fig. 9: Optimize takes as input a set of terms T , axioms A for reducing T ,
tactics T synthesized from A and T using FindRules and FindSpecs, and an
objective function f . The output is a set of rules R ⊆ A ∪ T that minimizes f .

R ⊆ A ∪ T can solve an example t ∈ T without having to invoke Solve(t,R),
which may not terminate for an arbitrary term t and rule set R in our DSL.

The Optimize procedure works in three steps. First, for each example term
t ∈ T , lines 4-5 construct a solution graph 〈N,EA ∪ ET 〉 that contains shortest
solutions for t and all subsets of A ∪ T . Next, line 7 creates a function f∅ that
takes as input a set of rulesR and a set of graphs G, and produces∞ if G contains
the empty graph (indicating that R cannot solve some term in T ) and f(R,G)
otherwise. Finally, line 8 searches for R ⊆ A ∪ T that minimizes f over GA∪T .
This search relies on the procedure Restrict(G,R) to extract from G a solution
graph for t ∈ T andR if one is included, or the empty graph otherwise. For linear
objectives f , the search can be delegated to an optimizing SMT solver [18]. For
other objectives (e.g., Figure 1c), we use a greedy algorithm to find a locally
minimal solution (thus weakening the optimality guarantee in Theorem 3).

Theorem 3. Let T be a set of tactics synthesized by RuleSy for terms T and
axioms A, and let f be a total function from sets of rules and solution graphs to
positive real numbers. Optimize(T,A, T , f) returns a set of rules R ⊆ A∪T that
can solve each term in T , and for all such R′ ⊆ A ∪ T , f(R, {Solve(t,R) | t ∈
T}) ≤ f(R′, {Solve(t,R′) | t ∈ T}).

5 Evaluation

To evaluate RuleSy’s effectiveness at synthesizing domain models, we answer
the following four research questions:

RQ 1. Can RuleSy’s synthesis algorithm recover standard tactics from a text-
book and discover new ones?

RQ 2. Can RuleSy’s optimization algorithm recover textbook domain models
and discover variants of those models that optimize different objectives?
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RQ 3. Does RuleSy significantly outperform RuleSynth, a prior tool [15] for
modeling the domain of introductory K-12 algebra?

RQ 4. Can RuleSy support different educational domains?

The first two questions assess the quality of RuleSy’s output by comparing
the synthesized tactics and domain models to a textbook [9] written by domain
experts. The third question evaluates the performance of RuleSy’s algorithms
by comparison to an existing tool for synthesizing tactics and domain models.
The fourth question assesses the generality of our approach. We conducted two
case studies to answer these questions, finding positive answers to each. The
implementation source code and evaluation data are available online [19].

5.1 Case Study with Algebra (RQ 1–3)

We performed three experiments in the domain of K-12 algebra to answer RQ
1–3. Each experiment was executed on an Intel 2nd generation i7 processor with
8 virtual threads. The system was limited to a synthesis timeout of 20 minutes
per mined specification. The details and results are presented below.

Table 1: Example problems (a) and axioms (b) for the algebra case study.

(a) Example problems.

ID Source #
PR RuleSynth [15] 55
PT Chapter 2, Sections

1-4 of Hall et al. [9]
92

(b) Axioms.

ID Name Example
A Additive Identity x+ 0→ x
B Adding Constants 2 + 3→ 5
C Multiplicative Identity 1x→ x
D Multiplying by Zero 0(x+ 2)→ 0
E Multiplying Constants 2 ∗ 3→ 6
F Divisive Identity x

1 → x
G Canceling Fractions 2x

2y →
x
y

H Multiplying Fractions 3
(
2x
4

)
→ (2∗3)x

4
I Factoring 3x+ 4x→ (3 + 4)x
J Distribution (3 + 4)x→ 3x+ 4x
K Expanding Terms x→ 1x
L Expanding Negatives −x→ −1x
M Adding to Both Sides x+−1 = 2→ x+−1 + 1 = 2 + 1
N Dividing Both Sides 3x = 2→ 3x

3 = 2
3

O Multiplying Both Sides x
3 = 2→ 3

(
x
3

)
= 2 ∗ 3

Quality of Synthesized Rules (RQ 1). To evaluate the quality of the rules syn-
thesized by RuleSy, we apply the system to the examples (PT in Table 1a) and
axioms (Table 1b) from a standard algebra textbook [9], and compare system
output (607 tactics) to the tactics from the textbook. Since the book demon-
strates rules on examples rather than explicitly, determining which rules are
shown involves some interpretation. For example, we interpret the transforma-
tion 5x+2−2x = 2x+14−2x→ 3x+2 = 14 as demonstrating two independent
tactics, one for each side of the equation, rather than one tactic with unrelated
subparts. The second column of Table 2 lists all the tactics presented in the
book. We find that RuleSy recovers each of them or a close variation.
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In addition to recovering textbook tactics, RuleSy finds interesting varia-
tions on rules commonly taught in algebra class. Figure 10 shows an example,
which isolates a variable from a negated fraction and an addend. This rule com-
poses 9 axioms, demonstrating RuleSy’s ability to discover advanced tactics.

(define MBALNGOHG ; Isolate a variable from a negated fraction and an addend:
(Rule ; (= (+ (− (/ (∗ x . . .) b)) c) e)→ (= (∗ x . . .) (∗ b (− c e)))

(Condition
(Pattern

(Term = (Term + (Term - (Term / (Term * (VarTerm) etc) (BaseTerm)))
(ConstTerm))

_))
(Constraint true))

(Action
(Replace (Ref 1) (Ref 1 1 1 1))
(Replace (Ref 2) (Make * (Ref 1 1 1 2) (Make - (Ref 1 2) (Ref 2)))))))

Fig. 10: A custom algebra tactic discovered by RuleSy.

(define xpq ; Modus ponens: if I � A→ B and I � A, then I � B.
(Rule

(Condition (Pattern (Term known (Term |= (Term → _ _)) (Term |= _) etc))
(Constraint (Eq? (Ref 1 1 1) (Ref 2 1))))

(Action (Replace (Ref) (Cons (Make |= (Ref 1 1 2)) (Ref))))))

Fig. 11: A proof tactic synthesized by RuleSy.

Quality of Synthesized Domain Models (RQ 2). We next evaluate RuleSy’s
ability to recover textbook domain models along with variations that optimize
different objectives. An important part of creating domain models for educa-
tional tools (and curricula in general) is choosing the progression—the sequence
in which different concepts (i.e., rules) should be learned. We use RuleSy and
the objective function shown in Figure 1c to find a progression of optimal do-
main models for the problems (PT in Table 1a) and axioms (Table 1b) in [9],
and we compare this progression to the one in the book.

We create a progression by producing a sequence of domain models for Sec-
tions 1–4 of Chapter 2 in [9]. Every successive model is constrained to be a
superset of the previous model(s): students keep what they learned and use it
in subsequent sections. To generate a domain model Dn for section n, we apply
RuleSy’s optimizer to the exercise problems from section n; the objective func-
tion in Figure 1c with α ∈ {.05, .125, .25}; and all available rules (axioms and
tactics), coupled with the constraint that D1 ∪ . . . ∪Dn−1 ⊆ Dn.

Table 2 shows the resulting progressions of optimal domain models for [9],
along with the rules that are introduced in the corresponding sections. For each
rule presented in a section, the corresponding optimal model for α = .05 contains
either the rule itself or a close variation. Increasing α leads to new domain
models that emphasize rule set complexity over solution efficiency. This result
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demonstrates that RuleSy can recover textbook domain models, as well as find
new models that optimize different objectives.

Table 2: A textbook [9] progression and the corresponding optimal domain
models found by RuleSy, using 3 settings of α (Figure 1c). Row i shows the
rules that the ith model adds to the preceding models.

Section Textbook Rules ODM α = 0.05 ODM α = 0.125 ODM α = 0.25
2-1 B, M, N, G, O, M, A, K, L, LNG, NG, NG, OHG, MBA NG, OHG, MBA

BA, HG OHG, IBD, MBA
2-2 L, E LE LNG, LE E, L
2-3 J, IB, KIB, JB E, J, KIB, IB, BMBA E, K, L, J, B, IB I, K, J, B
2-4 LEIBDA, LEIB C, BD, LEIB, MLEI M, C, BD, IBD, M, C, D, LEIB

LEIB, MLEI

Comparison to Prior Work (RQ 3). We compare the performance of RuleSy to
the prior system RuleSynth by applying both tools to the example problems
PR in Table 1a and the axioms in Table 1b. We use the same problems as the
original evaluation of RuleSynth because its algorithms encounter performance
problems on the (larger) textbook problems PT . Given these inputs, RuleSy
synthesizes 144 tactics, which include the 13 rules synthesized by RuleSynth.
Figure 12 graphs the rate of rules produced by each system, which accounts for
the time to mine specifications and synthesize rules for those specifications. Our
system both learns more rules and does so at a faster rate.

RuleSy outperforms RuleSynth thanks to the soundness and complete-
ness of its specification mining and synthesis algorithms. RuleSynth employs a
heuristic four-step procedure for synthesizing tactics: (1) use the axioms to solve
the example problems; (2) extract pairs of input-output terms for all axiom se-
quences that appear in the solutions; (3) heuristically group those pairs into sets
that are likely to be specifying the same tactics; and (4) synthesize a tactic for
each resulting set. This process is neither sound nor complete, so RuleSynth
can produce incorrect tactics and miss tactic specifications found by RuleSy.

To show that RuleSy can efficiently explore spaces of rules to find optimal
domain models, we compare its runtime performance to that of RuleSynth.
Since the two systems use different input languages, we manually transcribed the
13 tactics generated by RuleSynth into our algebra DSL. Given these tactics,
the axioms in Table 1b, and the examples PR, RuleSynth finds an optimal
rule set in 20 seconds, whereas RuleSy takes 14 seconds. As the optimization is
superlinear in the number of rules, we can expect this performance difference to
be magnified on larger rule sets. Figure 13 shows that RuleSy’s optimization
algorithm finds domain models quickly, even on much larger design spaces.

5.2 Case Study with Propositional Logic (RQ 4)

To evaluate the extensibility and generality of RuleSy, we applied it to the
domain of semantic proofs for elementary propositional logic theorems. Many
students have trouble learning how to construct proofs [20], so custom educa-
tional tools could help by teaching a variety of proof strategies.
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Table 3: The axioms [16] used for the logic case study.
ID Name Description
p Contradiction If I � A and I 2 A then I � ⊥
q Branch elimination If I � ⊥ | A then I � A
r And 1 If I � A ∧ then I � A
s And 2 If I 2 A ∧ B then I 2 A | I 2 B
t Or 1 If I � A ∨ B then I � A | I � B
u Or 2 If I 2 A ∨ then I 2 A
v Not 1 If I � ¬A then I 2 A
w Not 2 If I 2 ¬A then I � A
x Implication 1 If I � A→ B, then I 2 A | I � B
y Implication 2 If I 2 A→ B, then I � A
z Implication 3 If I 2 A→ B, then I 2 B

We instantiated RuleSy with a DSL for expressing semantic proofs. The
DSL represents problem states as proof trees, consisting of a set of branches,
each containing a set of facts that have been proven so far. The DSL encodes
this proof structure with commutative operators branch and known. The problem-
solving task in this domain is to establish the validity of a propositional formula,
such as (p ∧ q)→ (p→ q), by assuming a falsifying interpretation and applying
proof rules to arrive at a contradiction in every branch. Tactics apply multiple
proof steps (i.e., axioms) at once.

We applied this instantiation of RuleSy to the axioms (Table 3) and proof
exercises (3 in total) from a textbook [16]. The system synthesized 85 rules in 72
minutes. The resulting rules includes interesting general proof rules for each of
the exercises. For example, given (p∧ (p→ q))→ q, RuleSy mines and synthe-
sizes the modus ponens tactic shown in Figure 11. These results show RuleSy’s
applicability and effectiveness extend beyond the domain of K-12 algebra.

6 Related Work

Automated Rule Learning. Automated rule learning is a well-studied problem in
Artificial Intelligence and Machine Learning. RuleSy is most closely related to
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rule learning approaches in discrete planning domains, such as cognitive architec-
tures [21]. Its learning of tactics from axioms is similar to chunking in SOAR [22],
knowledge compilation in ACT [23], and macro-learning from AI planning [24].
But unlike these systems, RuleSy can learn rules for transforming problems
represented as trees, and express objective criteria over rules and solutions.

Inductive Logic Programming. Within educational technology, researchers have
investigated automated learning of rules and domain models for intelligent tu-
tors [25]. Previous efforts have focused on applying inductive logic programming
to learn a domain model from a set of expert solution traces [26,27,28,29,30].
RuleSy, in contrast, uses a small set of axioms and example problems to syn-
thesize an exhaustive set of sound tactics, and it searches the axioms and tactics
for a model that optimizes a desired objective.

Program Synthesis. Prior educational applications of program synthesis and
automated search include problem and solution generation [31,1], hint and feed-
back generation [32,33,34], and checking of student proofs [35]. RuleSy solves a
different problem: generating condition-action rules and domain models. General
approaches to programming-by-example [36,37] have investigated the problem
of learning useful programs from a small number of input-output examples, with
no general soundness guarantees. RuleSy, in contrast, uses axioms to verify
that the synthesized programs are sound for all inputs, relying on examples only
to bias the search toward useful programs (i.e., tactics that shorten solutions).

Term Rewrite Systems. RuleSy helps automate the construction of rule-based
domain models, which are related to term rewrite systems [38]. Our work can be
seen as an approach for learning rewrite rules, and selecting a cheapest rewrite
system that terminates on a given finite set of terms. RuleSy terms are a special
case of recursive data types, which have been extensively studied in the context
of automated reasoning [39,40,41]. Our rule language is designed to support effec-
tive automated reasoning by reduction to the quantifier-free theory of bitvectors.

7 Conclusion

This paper presented RuleSy, a framework for computer-aided development of
domain models expressed as condition-action rules. RuleSy is based on new
algorithms for mining specifications of tactic rules from examples and axioms,
synthesizing sound implementations of those specifications, and selecting an opti-
mal domain model from a set of axioms and tactics. Thanks to these algorithms,
RuleSy efficiently recovers textbook tactic rules and models for K-12 algebra,
discovers new ones, and generalizes to other domains. As the need for tools to
support personalized education grows, RuleSy can help tool developers rapidly
create domain models that target individual students’ educational objectives.
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Abstract. Transiently powered devices have given rise to a new model
of computation called intermittent computation. Intermittent programs
keep checkpointing the program state to a persistent memory, and on
power failures, the programs resume from the last executed checkpoint.
An intermittent program is usually automatically generated by instru-
menting a given continuous program (continuously powered). The be-
haviour of the continuous program should be equivalent to that of the
intermittent program under all possible power failures.
This paper presents a technique to automatically verify the correctness of
an intermittent program with respect to its continuous counterpart. We
present a model of intermittence to capture all possible scenarios of power
failures and an algorithm to automatically find a proof of equivalence
between a continuous and an intermittent program.

1 Introduction

Energy harvesting devices, that harvest energy from their surroundings, such
as sunlight or RF radio signals, are increasingly getting popular. Because the
size reduction of batteries has not kept pace with the size reduction of transistor
technology, energy harvesting allows such devices to be much smaller in size, e.g.,
insect-scale wildlife tracking devices [19] and implantable medical devices [17].
Such devices are already commonplace for small dedicated computations, e.g.,
challenge-response in passive RFID cards, and are now being imagined for more
general-purpose computational tasks [15,19].

The harvested energy is unpredictable and usually not adequate for contin-
uous operation of a device. Power failures are spontaneous, and may occur after
every 100 milliseconds, for example [19]. Thus, computation needs to be split
into small chunks that can finish in these small intervals of operation, and inter-
mediate results need to be saved to a persistent memory device at the end of each
interval. A power reboot should then be able to resume from the results of the
last saved computational state. This model of computation has also been termed,
intermittent computation [15]. Typically, the intermittent programs involve in-
strumentation of the continuous programs (that are supposed to be continuously
powered) with periodic checkpoints. The checkpoints need to be close enough, so
that the computation across two checkpoints can finish within one power cycle.
On the other hand, frequent checkpoints degrade efficiency during continuous
operation. Further, a checkpoint need not save all program state, but can save
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only the necessary program state elements, required for an acceptable computa-
tional state at reboot. The presence of volatile and non-volatile program state
simultaneously, makes the problem more interesting.

An intermittent program may be written by hand, through manual reason-
ing. Alternatively, semi-automatic [15] and automatic [19, 26] tools can be used
to instrument continuous programs with checkpoints, to allow them to execute
correctly in the intermittent environments. The goal of these automated tools
is to generate an intermittent program that is equivalent to the continuous pro-
gram under all possible power failures. In addition to correctness, these tools try
to generate intermittent programs with smaller checkpoints for efficiency. These
tools reason over high-level programs (C or LLVM IR), and it has been reported
that it is a challenge [26] to work at a higher level. Given that the failures hap-
pen at the architecture instruction granularity (and possibly at microinstruc-
tion granularity) and it is the machine state that needs to be checkpointed; the
reasoning at a higher level is error-prone and could go wrong because of the
transformations (e.g., instruction reordering) performed by the compiler. More-
over, the bugs in intermittent programs could be very hard to detect because the
number of states involved is very large due to spontaneous and recurring power
failures.

Verifying the correctness of an intermittent program with respect to a contin-
uous program is important from two aspects: First, we will be able to verify the
correctness of the output of existing automatic instrumentation tools. Second,
a verification tool will enable us to model automatic-instrumentation as a syn-
thesis problem to optimize for the efficiency of generated intermittent programs,
with the added confidence of verified output.

We present an automatic technique to verify the correctness of an intermit-
tent program with respect to a continuous program. Towards this goal, we make
the following contributions: (a) A formal model of intermittence that correctly
and exhaustively captures the behaviour of intermittent programs for all possi-
ble power failures. Additionally, the model of intermittent programs is amenable
to checking equivalence with its continuous counterpart. (b) Due to recurring
executions in an intermittent program, an intermediate observable event (not
occurring at exit) may occur multiple times, causing an equivalence failure. We
show that if the observables are idempotent and commutative, then we can claim
equivalence between the two programs. (c) A robust algorithm to infer a prov-
able bisimulation relation to establish equivalence across a continuous and an
intermittent program. The problem is undecidable in general. The algorithm
is robust in the sense of its generality in handling even minimal checkpointing
states, i.e, a more robust algorithm can verify an intermittent program with
smaller checkpoints. In other words, we perform translation validation of the
translation from continuous to intermittent programs. However, in our case, in
addition to program transformation, the program execution environment also
changes. The continuous program is supplied with continuous power whereas
the intermittent program is powered with transient power.
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We have implemented our algorithm in a tool and evaluated it for verifica-
tion runtime and robustness. For measuring the robustness, we implemented a
synthesis loop to greedily minimize the checkpointed state elements at a given
set of checkpoint locations. The synthesis loop proposes smaller checkpoints,
and relies on our equivalence procedure for checking equivalence between the
continuous and the intermittent program, under the proposed checkpoints. The
synthesis loop can result in a smaller checkpoint if our equivalence procedure
can verify the same, i.e., optimization is dependent on the robustness of our
verification algorithm. We tested our tool on the benchmarks from the previous
work and compared our results with DINO [15]. The synthesis loop is able to
produce checkpoints whose size is on average 4 times smaller than that of the
checkpoints produced by DINO. The synthesis time ranges from 42 secs to 7
hours, and the average verification time is 73 secs.

2 Example

We briefly discuss, with the help of an example, the working of intermittent
programs and issues associated with it. Fig. 1a shows an x86 program that in-
crements a non-volatile global variable nv and returns 0 on success. The program
terminates after returning from this procedure. We call it a continuous program
as it is not meant to work in an environment with power failures. Fig. 1b shows
an intermittent program, generated by instrumenting the continuous program.
This program can tolerate power failures, and it is equivalent to the continuous
program, under all possible power failures. The equivalence is computed with
respect to the observable behaviour, which in this case is the output, i.e., the
value of return register eax and the value of the global variable nv.

The intermittent program has been generated from the continuous program
by inserting checkpointing logic at the checkpoint locations CP1 and CP2. During
checkpointing, the specified CPelems and the location of the current executing
checkpoint get saved to CPdata in persistent memory. In case of a power failure,
the program runs from the entry again, i.e., the restoration logic, it restores the
CPelems, and then jumps to the location stored in CPdata.eip. For the first run
of the intermittent program, the checkpoint data is initialized to ((), Entry),
i.e., CPdata.CPelems=() and CPdata.eip=Entry. This ensures that on the first
run, the restoration logic takes the program control flow to the original entry of
the program. More details on instrumentation are discussed in Sec. 4.1.

In case of power failures, the periodic checkpointing allows the intermittent
programs to not lose the computation and instead, start from the last executed
checkpoint. For example, if a failure occurs at location I5, the intermittent pro-
gram will resume its computation correctly from CP2, on power reboot. This is
so because the checkpoint CP2 gets executed while coming to I5, and the restora-
tion logic, on the next run, restores the saved state and jumps to CP2. Moreover,
under all possible scenarios of power failures, the output of the intermittent
program remains equal to that of the continuous program.
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Entry:

CP1: I1: push ebp

I2: mov esp ebp

I3: inc (nv)

CP2: I4: xor eax eax

I5: pop ebp

I6: ret

CP1: I1

CP2: I4

CPelems1:

esp, (esp), nv

CPelems2:

esp, (esp+4)

(a) Continuous program

Restoration: # new entry

restore CPdata.CPelems CPelems

jmp CPdata.eip # init to Entry:

Entry: # original entry

CP1’: # checkpointing logic

save (CPelems1, CP1) CPdata

CP1: I1: push ebp

I2: mov esp ebp

I3: inc (nv)

CP2’: # checkpointing logic

save (CPelems2, CP2) CPdata

CP2: I4: xor eax eax

I5: pop ebp

I6: ret

(b) Intermittent program

Fig. 1: The first assembly program increments a global non-volatile variable nv and
returns 0. It also shows the checkpoint locations CP1 and CP2 and respective checkpoint
elements (CPelems1 and CPelems2) that need to checkpointed at these locations. The
second program is an intermittent program, which is generated by instrumenting the
first program at the given checkpoint locations.

Notice, that we need not checkpoint the whole state of the machine, and only
a small number of checkpoint elements is sufficient to ensure the equivalence with
the continuous program. A smaller checkpoint is important as it directly impacts
the performance of the intermittent program; a smaller checkpoint results in less
time spent on saving and restoring it. Fig. 1a shows the smallest set of CPelems
that need to be saved at CP1 and CP2. The first two elements of CPelems1

and the only two elements of CPelems2 ensure that the address where return-
address is stored and the contents at this address, i.e., the return-address (both
of which are used by the ret instruction to go back to the call site) are saved
by the checkpoint. As per the semantics of ret instruction, ret jumps to the
address stored at the address esp, i.e., it jumps to (esp)1. At CP1 and CP2,
the return address is computed as (esp) and (esp+4) respectively. Note that
the expressions are different because of an intervening push instruction. Further,
checkpointing of non-volatile data is usually not required; however, (nv) needs
to be saved at CP1 because it is being read and then written before the next
checkpoint. If we do not save (nv) at CP1, failures immediately after I3 would
keep incrementing it.

Tools [15, 19, 26] that generate intermittent programs by automatically in-
strumenting the given continuous programs usually work at a higher level (C or
LLVM IR). These tools perform live variable analysis for volatile state and write-
after-read (WAR) analysis for non-volatile state to determine the checkpoint el-
ements. However, they end up making conservative assumptions because of the

1 (addr) represents 4 bytes of data in memory at address addr.
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lack of knowledge of compiler transformations (e.g., unavailability of mapping be-
tween machine registers and program variables) and the proposed checkpointed
elements contain unnecessary elements. For example, a tool, like DINO, without
the knowledge of compiler transformations would checkpoint all the registers
and all the data on the stack for our running example. Even if these analyses
are ported at the machine level, the proposed checkpoint elements would be
conservative as these analyses are syntactic in nature. For example, a live vari-
able analysis for the example program would additionally propose the following
unnecessary elements: ebp at CP1 and eax, (esp) at CP2.

The observable of the example program is produced only at the exit. Let
us consider a case, when the observable events are produced before reaching
the exit (called intermediate observables). In case of intermediate observables,
the observables may get produced multiple times due to the power failures.
For example, assume that there is an atomic instruction I5’: print("Hello,

World!") (which produces an observable event) in between I4 and I5. Due to the
power failures at I5 and I6, the program will again execute the code at I5’ and
the observable event will get produced again, resulting in an equivalence failure.
Interestingly however, it is possible that the observer cannot distinguish, whether
the observable has been repeated or not. This depends upon the semantics of
print, e.g., if it prints to the next blank location on the console, then the observer
may see multiple ”Hello, World!” on the console. However, if it prints at a fixed
location (line and column), then the multiple calls to print would just overwrite
the first ”Hello, World!”, and this would be indistinguishable to the observer.
We discuss this in detail in Sec. 5.3.

Rest of the paper is organized as: Sec. 3 presents the representation we use for
abstracting programs. The modeling of intermittent program behaviour is dis-
cussed in Sec. 4. Sec. 5 describes the procedure to establish equivalence between
the continuous and the intermittent program.

3 Program Representation

We represent programs as transfer function graphs (TFG). A TFG is a graph
with nodes and edges. Nodes represent program locations and edges encode
the effect of instructions and the condition under which the edges are taken.
The effect of an instruction is encoded through its transfer function. A transfer
function takes a machine state as input and returns a new machine state with
the effect of the instruction on the input state. The machine state consists of
bitvectors and byte-addressable arrays representing registers and memory states
respectively.

A simplified TFG grammar is presented in Fig. 2. A node is named either
by its program location (pc(int), i.e., program counter), or by an exit location
(exit(int)). An edge is a tuple with from-node and to-node (first two fields), its
edge condition edgecond (third field) (represented as a function from state to
expression), and its transfer function τ (fourth field). An expression ε could be
a boolean, bitvector, or byte-addressable array. The expressions are similar to
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T ::= (G([node], [edge]))
node ::= (pc(int) | exit(int), [CPelem])
edge ::= (node, node, edgecond, τ )
edgecond ::= state→ ε
τ ::= state→ state
state ::= [(string, type, ε)]
ε ::= const(string) | nry op([ε]) | select(ε, ε, int) | store(ε, ε, int, ε)
CPelem ::= (string) | (string, ε, int)
type ::= Volatile | NonVolatile

Fig. 2: Grammar of transfer function graph (T).

the standard SMT expressions, with a few modifications for better analysis and
optimization (e.g., unlike SMT, select and store operators have an additional
third integer argument representing the number of bytes being read/written). An
edge’s transfer function represents the effect of taking that edge on the machine
state, as a function of the state at the from-node. A state is represented as a
set of (string, type, ε) tuples, where the string names the state-element (e.g.,
register name) and the type represents whether the state-element is volatile or
non-volatile.

For intermittent execution, checkpoints can be inserted at arbitrary program
locations. A checkpoint saves the required state elements to a persistent store.
The saved state would allow the restoration logic to resume from the last exe-
cuted checkpoint. We model checkpoints by annotating the TFG nodes corre-
sponding to the checkpoint locations as checkpoint nodes with their correspond-
ing checkpointed state (specified as a list [CPelem] of checkpoint elements).
The semantics of CPelems are such that on reaching a node with CPelems, the
projections of CPelems on the state are saved. A CPelem can either specify
a named register (first field) or it can specify an address with the number of
bytes of a named memory (second field). The first type of CPelem allows to
checkpoint a register or the complete memory state, whereas the second type
allows flexibility to checkpoint a memory partially or in ranges.

Fig. 3 shows the TFGs of the continuous and the intermittent programs of
Fig. 1. The edgecond of every edge is true and the instructions are shown next
to the edges representing the mapping between the edges and the instructions.
For brevity, the transfer functions of the edges are not shown in the diagram.
An example transfer function, for the instruction “push ebp”, looks like the
following: τpush ebp(S) = {S′ = S; S′.M = store(S.M, S.esp, 4, S.ebp); S′.esp =
S.esp − 4; return S′; } The new state S′ has its memory and esp modified as
per the semantics of the instruction.
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push ebp

inc (nv)

xor eax eax

pop ebp

ret

mov esp ebp

1

2

3

4

5

6

7

restore CPdata.CPelems CPelems
jmp CPdata.eip

4’

4

save (CPelems2, 4) CPdata

1

2

3

4

5

6

7

R

Entry

Failure edge

Restore edge

R Restoration entry node

4 Checkpoint node

7 Exit

4

Fig. 3: TFGs of the continuous and the intermittent program of Fig. 1.

4 Modeling Intermittence

4.1 Instrumentation Model

Instrumenting a continuous program to generate an intermittent program in-
volves: adding the checkpointing logic at the given checkpoint nodes, adding the
restoration logic, changing the entry of the program to the restoration logic, and
setting the initial checkpoint data in the persistent memory.

The checkpointing and the restoration logic work with data called checkpoint
data (CPdata). The checkpoint data is read/written from/to a fixed location in
a persistent memory. The checkpoint data consists of CPelems of the machine
state and the checkpoint location. The checkpointing logic saves the checkpoint
data from the machine state, and the restoration logic updates the machine state
from the checkpoint data. Additionally, after updating the machine state, the
restoration logic changes the program control flow (jmp) to the stored check-
point location (CPdata.eip). The checkpointing logic is added for all the given
checkpoint nodes. The restoration logic, however, is added once, and the entry
of the program is changed from the original entry to the entry of the restora-
tion logic. The checkpoint data is initialized with the empty CPelem list and
the stored checkpoint location is set to the original entry. This ensures that the
intermittent program starts from the correct entry, i.e., the original entry, in its
very first execution. Further, it is assumed that the location where CPdata is
stored cannot alias with the addresses of the programs. In other words, the pro-
gram, except for checkpointing and restoration logic, should not read or write
CPdata.

The checkpointing logic is made atomic by using a double-buffer to save
the checkpoint data. The checkpointing logic works with two checkpoint data:
current CPdata and unused CPdata, and a pointer CPdataLocation points to
the current CPdata. While checkpointing, it writes to the unused checkpoint
data and once complete, it updates CPdataLocation to the address of unused
checkpoint data, making it the current CPdata. This technique ensures that a
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failure while executing the checkpointing logic does not corrupt the checkpoint
data. For brevity, we do not show the implementation of double buffering.

Fig. 3 shows the TFGs of the continuous and the intermittent program.
Nodes 1 and 7 are the entry and the exit locations of the continuous program
respectively. In the intermittent program, the checkpointing logic has been in-
serted at nodes 1 and 4, and the restoration logic has been appropriately added
at program entry. The CPelems at node 1 (CPelems1) and 4 (CPelems2) are
listed in Fig. 1a. A checkpoint node in the intermittent program is shown as a
single node in the program graphs; actually, it consists of multiple nodes and
edges representing the TFG of the checkpointing logic. Fig. 3 also shows the
TFG of the checkpointing logic of node 4. It saves the CPelems2 and sets the
stored program location (CPdata.eip) to the location of the checkpoint node 4
in this example. The intermittent program always starts in the restoration logic.
It restores the state from the saved CPdata.CPelems and then jumps to the
stored program location (CPdata.eip).

4.2 Modeling Power Failures

Power failures in an intermittent environment are spontaneous and can occur
at any moment. We assume that a power failure can occur before and after ev-
ery instruction of the assembly program, which is analogous to the properties
of precise-exceptions, and is guaranteed by most architectures. On architectures
where this assumption cannot be made, one can model power failures at the
microinstruction level, i.e., before and after every microinstruction of that archi-
tecture, and rest of the technique would remain the same.

At the TFG level, nodes precisely represent the instruction boundaries, i.e.,
a power failure can occur at any of the nodes of the TFG. On a power failure:
the volatile data is lost and the program, on reboot, starts from the entry,
i.e, the restoration logic. We model power failures at each node by adding a
non-deterministic failure edge from each node of the TFG to the entry of the
restoration logic.

Definition 1 (Failure edge). A failure edge is an edge of a TFG from node
n to the entry node R of the restoration logic. The edgecond and the transfer
function τ of a failure edge are defined as:

edgecond = δ

τ(S) = ∀(s,t,ε)∈S

{
(s, t, randomε) if t is Volatile

(s, t, ε) if t is NonVolatile

Where δ is a random boolean value, S is the state at the node n, (s, t, ε)
represents an element of the state S, and randomε is a random value of the type
of the expression ε.

A failure edge of a TFG models the non-determinism and the effect of a power
failure; the condition under which the edge is taken is random, i.e., spontaneous
power failure, and the effect is modeled by the transfer function and the program
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control flow change. The transfer function of a failure edge preserves the non-
volatile data and garbles the volatile data (overwritten with arbitrary/random
values) and the failure edge goes to the entry, encoding the fact the program
starts from the entry on reboot.

The failure edges are added for all the nodes of the instrumented TFG, even
for the nodes of the checkpointing and the restoration logic. The failure edges
for the nodes of checkpointing and restoration logic capture the fact that power
failures are possible even while executing the checkpointing and the restoration
logic. This failure model is exhaustive and complete, and it precisely models the
semantics of power failures. The failure edges are shown as the dashed edges in
Fig. 3.

4.3 Resolving Indirect Branches of Restoration Logic

The restoration logic changes the control flow of the program based on the
contents of stored program location. It is implemented as an indirect jump (i.e.,
jmp CPdata.eip) at the assembly level. In general, an indirect jump may point
to any program location; however, in our case we can statically determine the
set of locations the indirect jump can point to. Since the indirect jump depends
on the value stored in CPdata.eip, we determine all the values that may get
stored in CPdata.eip.

At the beginning, CPdata.eip is initialized to the original entry of the inter-
mittent program. And later, it is only modified by the checkpointing logic and
set to the locations of the checkpoint nodes. Thus, the indirect jump can either
point to the original entry or any of the checkpoint nodes. Using this informa-
tion, we resolve the indirect jump of the restoration logic and add restore edges
to the intermittent TFG to reflect the same.

Definition 2 (Restore edge). A restore edge is an edge of a TFG from the
node R, i.e., the restoration logic, to the original entry or a checkpoint node n
of the TFG. The edgecond and the transfer function τ of the restore edge are
defined as:

edgecond = (CPdata.eip == n)

τ(S) = ∀(s,t,ε)∈S


(s, t, ε) (s) /∈ CPdata.CPelems
(s, t, ε) (s, , ) /∈ CPdata.CPelems
(s, t,D) ((s) : D) ∈ CPdata.CPelems
(s, t, store(ε, a, b,D)) ((s, a, b) : D) ∈ CPdata.CPelems

Where S is the state at the node R, (s, t, ε) is an element of the state S, (s)
and (s, a, b) are checkpoint elements, CPdata.CPelems has the stored check-
point elements as a map from CPelems to the stored data (D), and s, t, ε, a
and b correspond to name, type, expression, address and size (number of bytes)
respectively.

The edge condition represents that the edge is taken to a checkpoint node n
if the stored program location CPdata.eip is equal to n. The transfer function
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restores the state by updating the state with all the CPelems available in the
CPdata.CPelems. The restore edges are added to the intermittent TFG from
the restoration logic to all the checkpoint nodes and the original entry. The
restore edges are shown as the dash-dot edges in Fig. 3.

5 Equivalence

Our goal is to establish equivalence between the continuous and the intermit-
tent program, which translates to checking equivalence between the TFGs cor-
responding to the respective programs. Significant prior work exists for sound
equivalence checking of programs in the space of translation validation and ver-
ification [4, 7, 9–14, 16, 18, 21, 23–25]. Most of these techniques try to infer a
bisimulation relation (also called simulation relation in some papers) between
the two programs. A bisimulation relation between two programs consists of
correlation and invariants. The correlation is a mapping between the nodes and
edges (or moves) of the two programs; the correlation sets the rules, which the
two programs follow to move together in a lock-step fashion. The invariants re-
late the variables across the two programs, at the correlated node pairs. The
invariants always hold when the two programs are at the respective correlated
nodes. Further, the invariants should prove the above-mentioned correlation and
equivalence of the observables of the two programs on the correlated edge pairs.

Prior work on equivalence checking has proposed different algorithms to infer
the correlation and invariants, that work in different settings and with different
goals. Because our equivalence problem is unique, we cannot just offload it to any
existing equivalence checker. The important differences that make this problem
unique are: (1) The intermittent program, which runs in an environment with
power failures, has non-determinism whereas the continuous program is deter-
ministic. Previous techniques work in a setting where both the programs are
deterministic, unlike ours, where one of the programs (the intermittent pro-
gram) has edges that can be taken non-deterministically, i.e., the failure edges.
Consequently, the correlation is different as power failures would be now mod-
eled as internal moves, and hence we instead need to infer a weak bisimulation
relation [20]. (2) Due to recurring executions in the intermittent program (be-
cause of the power failures), an intermediate observable event in the intermit-
tent program can be produced more times than in the continuous program. To
reason about the same, we describe two properties of the observables, namely
idempotence and commutativity and we use them to establish equivalence under
repeated occurrences of the observables.

As we have seen in Fig. 1, the amount of instrumentation code added to
intermittent program is quite small and most of the code of the intermittent
program remains the same. However, even in this setting, the problem of check-
ing equivalence between the continuous and the intermittent program is unde-
cidable in general. In other words, determining whether a certain checkpoint
element (CPelem) needs to be checkpointed is undecidable. We define equiv-
alence between a continuous and an intermittent program, i.e., across the in-
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(a) Simplified TFG
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(b) Correlation graph

Node: (1,1)
MC

nv = MI
nv, nvC = nvI ,

espC = espI ,
select(MC , espC , 4) =
select(MI , espI , 4)
Node: (4,4)
MC

nv = MI
nv, nvC = nvI ,

espC = espI ,
select(MC , (espC + 4), 4)
= select(MI , (espI +4), 4)
Node: (7,7)
eaxC = eaxI ,
MC

nv = MI
nv

(c) Invariants

Fig. 4: The first figure shows a simplified intermittent TFG, the edges and the nodes
have been duplicated for exposition and non-reachable failure paths have been removed.
Checkpoint-to-checkpoint paths formed by dashed edges are failure paths and that
formed by solid edges are progress paths. The second figure shows the correlation
graph; single-edges show correlations of no-moves with failure paths. The third figure
shows the invariants at the checkpoint nodes and exit.

strumentation, and we prove the theorem that determining this equivalence is
undecidable.

Definition 3 (Equivalence). A continuous TFG (C) is equivalent to an inter-
mittent TFG (I), where I has been generated by instrumenting C, if starting from
identical input state S, the two TFGs produce equivalent observable behaviour,
for all values of S.

Theorem 1. Given a continuous TFG (C) and an intermittent TFG (I), where
I has been generated by instrumenting C, determining equivalence between C and
I is undecidable.

Proof. Determining whether any function f halts can be reduced to this problem.
Consider the following construction of a continuous (C) and an intermittent (I)
program: C(a)={f(); print(a);} I(a)={CP(); f(); print(a);}, such that
CP() checkpoints the complete state except the volatile variable a. The two
functions can only be equivalent if f() does not halt. Checking whether f halts
can be written in terms of determining whether the two functions are equiva-
lent: f Halts = (C 6= I). However, the halting problem is undecidable, hence,
checking equivalence between a continuous and an intermittent program is also
undecidable.

5.1 Correlation

The correlation across two TFGs defines a mapping between the nodes and the
paths (also called moves) of the two TFGs. It tells the path taken by one program,
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if the other program takes a certain path, and vice versa. In our case, we reason
in terms of the paths from one checkpoint to another checkpoint (checkpoint-to-
checkpoint paths, defined next) and define the correlation in terms of the same.

Definition 4 (Checkpoint-to-checkpoint path). Given a continuous TFG
C and an intermittent TFG I, where I has been generated by instrumenting C:
a path from node n to node m in the intermittent TFG I is a checkpoint-to-
checkpoint path if the nodes n and m belong to the set N = {entry, exit}∪CPs,
and none of its intervening nodes between n and m belongs to N . Here entry,
exit and CPs are the original entry, the exit and the set of checkpoint nodes
respectively.

A checkpoint-to-checkpoint path in the continuous program C is defined in
the same manner, however, assuming the checkpoint nodes of the corresponding
intermittent TFG (i.e., I); this is because C has no notion of checkpoint nodes.

The checkpoint-to-checkpoint paths are further classified depending upon
whether a power failure occurs or not, on a checkpoint-to-checkpoint path.

Definition 5 (Failure path). A checkpoint-to-checkpoint path is a failure path
if a power failure occurs in it.

Theorem 2. A failure path starts and terminates on the same checkpoint. In
other words, a failure path starting and terminating on different checkpoint is
not reachable.

Proof. Since there are no intervening checkpoints on a failure path, the stored
checkpoint location (CPdata.eip) is the starting checkpoint (n), implying that
on a failure, only one restore edge, which goes from the restoration logic to the
starting checkpoint, will have its edgecond true.

Definition 6 (Progress path). A checkpoint-to-checkpoint path is a progress
path if there are no power failures in it.

A checkpoint-to-checkpoint path starting from a checkpoint can either reach
a successive checkpoint if no power failure occurs in between, or it reaches back
to the starting checkpoint (via a failure and then the restore edge to it) if there
is a power failure. A checkpoint-to-checkpoint path in the intermittent TFG is
either a failure path or a progress path. However, all the checkpoint-to-checkpoint
paths in the continuous program are progress paths as there are no failures in it.
Fig. 4a shows the failure and the progress paths of the intermittent TFG. Note
that we have not shown the edges of the TFG of checkpointing logic, we get rid
of them by composing these edges with the incoming edges of the start node of
a checkpoint, e.g., path 3→ 4′ → 4 is collapsed into an edge 3→ 4.

We use the notion of a weak bisimulation relation [20] to establish equiva-
lence between the continuous and the intermittent TFGs. The non-deterministic
failure paths of the intermittent TFG are modeled as the internal moves and
progress paths of the two TFGs are treated as the usual moves. We propose the
following correlation between the two TFGs:
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Definition 7 (Correlation). Given a continuous TFG C and an intermittent
TFG I, where I has been generated by instrumenting C, both starting from the
original entry or the same checkpoint node (nCP ):

1. If I takes a progress path p, then C takes the corresponding progress path p
in it, and vice versa. Additionally, the individual edges of the progress paths
are also taken together. That is, if C takes the edge (n → m) ∈ p, then I
takes the same edge (n → m), and vice versa. That is, for all nodes n ∈ p
and edges (n → m) ∈ p: node n and edge n → m of C are correlated with
node n and edge n→ m of I, respectively.

2. If I takes a failure path p, then C takes a no-move, i.e., C does not move
at all and stays at the same node (nCP ), and vice versa. Further, every
individual edge of the failure path of I is taken with a no-move of C. That
is, for all nodes n ∈ p: node n of I is correlated with node nCP of C.

Intuitively, the above correlation of moves states that for TFGs starting from
the entry or the same checkpoint: if there is no power failure, and the intermit-
tent program moves to a successive checkpoint, then the continuous program also
moves to the same next checkpoint, and vice versa. However, if the intermittent
program undergoes a failure, hence, returning to the starting checkpoint, then
the continuous program does not move at all, and stays at the starting check-
point, and vice versa.

Correlation between two TFGs forms a graph, whose nodes and edges are
pairs of nodes and edges of the two TFGs. That is, if (nC , nI) is a node and
(eC , eI) is an edge of the correlation graph, then nC and nI are the nodes of the
continuous and the intermittent TFG respectively, similarly, eC and eI are the
edges of the continuous and the intermittent TFG respectively. Fig. 4b shows
the correlation graph for the running example.

5.2 Inferring Invariants

Once we have fixed the correlation between the two TFGs, we need to check
if the correlation is indeed correct as it is not necessary that the two TFGs
take the same progress path starting from the same checkpoint. Furthermore,
we need to check that the two TFGs produce the same observable behaviour.
This involves inferring invariants at the nodes of the correlation graph. These
invariants are also called coupling predicates [7] as they relate the variables of
the two programs. The invariants at some node (nC , nI) of the correlation graph
should always hold if the continuous TFG is at node nC and the intermittent
TFG is at node nI .

The inferred invariants should be strong enough to prove that the correlated
edges are taken together and the observables at the correlated edges are identical.
Formally:

∀
(nC,nI )→(mC,mI )

invariants(nC,nI ) ⇒(nC,nI )→(mC,mI ) (o(nC→mC ) = o(nI→mI ))∧

(edgecond(nC→mC ) = edgecond(nI→mI ))
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Here (nC , nI) → (mC ,mI) is an edge in the correlation graph, nC → mC and
nI → mI are edges in the continuous and the intermittent TFG respectively,
invariants(nC,nI ) represents the conjunction of the invariants at the correlation
node (nC , nI), edgeconde represents the edge condition of an edge e, oe represents
the observable on an edge e, and⇒(nC,nI )→(mC,mI ) represents the implication over
the edge (nC , nI)→ (mC ,mI).

We employ a Houdini like [8] guess-and-check technique to infer invariants
of the correlation graph. Candidate invariants are generated on each node of
the correlation graph, based on certain rules, and a checking procedure then
eliminates the invalid candidate invariants. At the end, we are left with valid
invariants and use them to verify the correctness of the correlation graph and
the equivalence of observables.

We generate candidate invariants based on the following simple rule: For
every node (nC , nI) of the correlation graph, all possible predicates of the form
sC = sI are generated for every sC and sI that are read or written in the
corresponding TFGs, where sC and sI are state elements in states SnC

and SnI

respectively. Intuitively, the partial states (only the state that is read or written)
of the two programs are equated at the correlated nodes.

The checking procedure is a fixed-point computation that keeps eliminating
the incorrect invariants until all the incorrect invariants are eliminated. On every
edge of the correlation graph, the checking procedure tries to prove an invariant
at the to-node, using the invariants at the from-node, and if the invariant is not
provable, then it is eliminated. The procedure terminates if no more invariants
can be eliminated. Further, the invariants at the entry node are proven using
the condition that the states of the two TFGs are equivalent at entry, i.e., equal
inputs. Formally, we apply the following check:

(SentryC
= SentryI

)⇔ invariants(entryC,entryI )

∀
(nC,nI )→(mC,mI )

invariants(nC,nI ) ⇒(nC,nI )→(mC,mI ) invariant(mC,mI )

Here invariant(mC,mI ) is a candidate invariant at node (mC ,mI), SentryC
is the

state at the entry node of the TFG C, and invariants(nC,nI ) is the conjunction
of the current set of (not eliminated) candidate invariants at node (nC , nI).

Fig. 4c shows the inferred invariants for some nodes, which can prove the
required conditions and equivalence for the running example, under the CPelems
of Fig. 1a.

On final notes, our equivalence checking algorithm is general and handles
loops seamlessly; in fact, we are already handling the loops which get introduced
due to the failure edges. Had there been a loop in the example program, say there
is a backedge from node 3 to 2, it would reflect in the failure and progress paths
too, e.g., Fig. 4a will contain a solid as well as a dash edge from node 3 to
2. Similarly, the correlation graph too will have edges from node (3,3) to (2,2)
and node (1,3) to (1,2). Also, all the benchmarks that we used for evaluation
contain one or more loops. Finally, our technique is not without limitations, it
is possible that a correlation other than the proposed one, or an invariant of
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different shape/template (other than the one used) is required for proving the
equivalence. Though we did not encounter this in practice.

5.3 Intermediate Observables

We now discuss the issue with observables occurring at the intermediate nodes,
i.e., the nodes other than the exit node. We call these the intermediate ob-
servables. In an intermittent program, an intermediate observable event can be
produced more times than is produced in the continuous program. It happens
because of the recurring executions of an intermediate observable due to power
failures. Given a sequence λC = o1o2...oi...ox (written as a string) of observable
events on a progress path (from checkpoint node n1 to checkpoint node nx+1)
of the continuous TFG, the event oi is produced on the edge ni → ni+1, for
i ∈ [1, x+ 1). The possible sequences of observable events for the corresponding
intermittent TFG, during the moves from checkpoint node n1 to checkpoint node
nx+1 (by taking one or more failure paths followed by a progress path) are:

λI = λIn1
λC such that λIn1

= (o1|o1o2|o1o2o3|...|o1o2...ox−1)∗

The sequence is written as a regular expression, where ∗ represents Kleene start,
i.e., zero or more repetitions and | represents alternation. The first part of the
expression λIn1

represents all sequences of observables produced at node n1. The
alternation operator encodes that a failure may happen at any node ni and may
produce a sequence o1o2...oi−1 for i ∈ [1, x] (a failure at nx+1 will not take back
to n1); the ∗ operator encodes that failures may occur zero or more times. The
second part (λC) represents the case when there is no power failure and the
execution reaches the successive checkpoint nx+1.

The sequence of observables produced in the intermittent program could be
different from that produced in the continuous TFG. However, if the effects of
the two sequences, i.e., λC and λI are same, and the observer cannot differentiate
between the two, we will be able to claim the equivalence of the two programs.
To this end, we define a notion of idempotence and commutativity of observables,
and we use these properties to prove that the sequences of observables produced
by the continuous and the intermittent TFG are equivalent if the observables
are idempotent and commutative.

Definition 8 (Idempotence). On observable event o is idempotent if its re-
curring occurrences are undetectable to the observer. That is, the sequence oo
produces the same effect as o.

Definition 9 (Commutativity). The observable events o1 and o2 are com-
mutative if the order of occurrences of the two events is not important to the
observer. That is, the sequences o1o2 and o2o1 are both equivalent to the ob-
server.

Intuitively, an observable is idempotent if the observer cannot detect if the ob-
servable occurred once or multiple times. For example, the observable print(line,
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column, text), which prints text at the given line and column, is idempo-
tent. The user cannot distinguish if multiple calls to this function have been
made. Observables setpin(pin, voltage) (sets the voltage of the given pin)
and sendpkt() (send network packet) are more examples of idempotent ob-
servables. The observer cannot tell if the function setpin() is called multiple
times, as it will not change the voltage of the pin on repeated executions. In case
of sendpkt(), if the network communication is designed to tolerate the loss of
packets, and consequently, the observer/receiver is programmed to discard the
duplicate packets, then the observable is idempotent with respect to the receiver.
Two observables are commutative if it does not matter to the observer, which
one occurred first. For example, if a program lights an LED and sends a packet,
and if these two events are independent to the observer, e.g., the packet is meant
for some other process and the LED notification is meant for the user, then their
order is unimportant to the observer.

Theorem 3. λI = λC , if for all oi and oj in λC , oi is idempotent, and oi and
oj are commutative.

Proof. In sequence λI , we move an event oi to position i (by applying commu-
tativity) and if the same event is present at i + 1, we remove it (by applying
idempotence), we keep applying these steps until only one oi remains. Perform-
ing these steps in increasing order of i, will transform λI into λC . If the length
of λI is finite, termination is guaranteed.

With all the pieces, we state the final theorem now:

Theorem 4. A continuous TFG C and an intermittent TFG I, where I is
generated by instrumenting C, are equivalent if:

1. Invariants can prove the correlation and the equivalence of observables at
each correlated edge of the progress paths (Sec. 5.2).

2. On every progress path: each observable is idempotent, and every pair of
observables is commutative (Sec. 5.3).

3. Both the TFGs, i.e., C and I, terminate.

Proof. Proof by induction on the structure of programs:
Hypothesis: Both programs C and I produce the same observable behaviour on
execution till a node n, for n ∈ N = {entry, exit} ∪ CPs, where CPs is the set
of checkpoint nodes.
Base: At entry, the two C and I have same observable behaviour.
Induction: Assuming the hypothesis at all the immediate predecessor checkpoints
(m) of node (n), we prove that the observable behaviour of the two programs
are equivalent at n, where m,n ∈ N .
Observable sequence at node n for program I can be written in terms of the
observable sequence at the predecessor node m and the observable sequence pro-
duced during the moves from m to n: λIn = λImλ

I
m→n. From Condition#1, we

can prove that the two programs move together from m to n and the individual
observables of the two programs are same. Using the same along with Condi-
tion#2, Condition#3 and Theorem 3, we claim that λIm→n = λCm→n. Finally,
using the hypothesis λIm = λCm, we prove that λIn = λCn .
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6 Evaluation

We evaluate our technique in terms of the runtime of verification, and the robust-
ness and capability of our algorithm. We are not aware of any previous verifier
for this problem, and so we do not have a comparison point for the verification
runtimes of our tool. However, we do compare the robustness and capability of
our technique by using our verifier in a simple synthesis loop, whose goal is to
minimize the size of checkpoints at a given set of checkpoint nodes. Moreover, the
capability of this synthesis loop is dependent on the capability of our verifier. If
our verifier can prove the equivalence between the continuous and the intermit-
tent programs, with smaller checkpoints, then the synthesis loop can generate an
intermittent program with smaller checkpoints. This also enables us to compare
our work with DINO [15]. With similar goals, DINO automatically generates an
intermittent program from a given continuous program by instrumenting it at a
given set of checkpoint locations. It works with mixed-volatility programs and
performs a syntactic analysis to determine the checkpoint elements that need
to be checkpointed. However, unlike our tool, DINO’s output is unverified. A
detailed comparison with DINO is available in Sec. 7.

We implemented our equivalence checking technique in a verifier for the x86
architecture. Our technique is independent of the architecture, the reason why
the x86 architecture was chosen is that we had access to a disassembler and
semantic modeling of x86 ISA. Constructing a TFG from an executable required
us to resolve other indirect jumps (other than that of the restoration logic)
occurring in the program, in particular, the indirect jumps due to the function
returns, i.e., the ret instructions. A ret instruction takes back the program
control to the return-address stored in a designated location in the stack. The
return-address is set by the caller using the call instruction. We perform a
static analysis to determine the call sites of every function and hence determine
the return-addresses of every ret instruction. We appropriately add the return
edges (similar to restore edge) from the return instruction to the determined call
sites. The transfer function of the return edge is identity and its edgecond =
(return address == call site address).

While testing our verifier on some handwritten pairs of continuous and inter-
mittent programs, we found that it is very easy for a human to make mistakes
in suggesting the checkpoint elements and checkpoint locations, especially for
mixed-volatility programs. For example, in the example program, the user ought
to specify a checkpoint before I3. If a checkpoint location is not specified be-
fore I3, the intermittent program cannot be made equivalent to the continuous
program no matter what the checkpoint elements are. Our verifier gets used
by the synthesis loop, and the average runtime of our verification procedure
ranges between 1s to 332s for benchmarks taken from previous work on inter-
mittent computation [15,19]. Tab. 1 describes our benchmarks and results, and
the seventh column shows the individual average runtimes for different bench-
marks. Almost all the verification time is spent on checking satisfiability of SMT
queries. We discharge our satisfiability queries through the Yices SMT solver [6].
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Benchmark # CP
nodes

Avg. CP
size DINO

Avg. CP size
synthesis loop

Improvement
over DINO

Synthesis
time (s)

Avg. verifica-
tion runtime

DS 5 120.8 42.4 2.8x 3500 16.5

MIDI 4 80 19 4.2x 2154 11.9

AR 2 128 22 5.8x 26290 332.8

CRC 2 96 24 4x 42 1.1

Sense 3 96 25.3 3.8x 331 3.2

Table 1: For each benchmark, the second column gives the number of checkpoint
nodes, the third and the fourth column give the average checkpoint size (bytes) deter-
mined by DINO and synthesis loop respectively, the fifth column gives improvement
by synthesis loop over DINO, and the sixth and the last column give the total time
taken by the synthesis loop and the average runtime of the verifier respectively.

We implemented a synthesis loop to optimize the checkpoint size. Given a set
of checkpoint locations, the synthesis loop tries to greedily minimize the check-
point elements that need to be checkpointed. It keeps proposing smaller check-
points (with fewer CPelems), and it relies on our verifier to know the equivalence
between the continuous and the intermittent program, with the current check-
point elements. The synthesis loop starts by initializing each checkpoint node
with all possible checkpoint elements (the most conservative solution). It then
iterates over each checkpoint element of all the checkpoint nodes, and considers
each checkpoint element for elimination. It greedily removes the current check-
point element if the remaining checkpoint elements preserve equivalence. The
loop terminates after considering all the checkpoint elements and returns the
last solution. Clearly, the capability of this synthesis loop is dependent on the
robustness and capability of the verifier. If the verifier can verify intermittent
programs with fewer checkpoint elements, only then can the synthesis loop can
result in a better solution.

We took benchmarks from previous work [15,19] (all the DINO benchmarks
are included) and used the synthesis loop and DINO to generate checkpoint
elements at a given set of checkpoint nodes. For each benchmark, Tab. 1 shows
the size of checkpoints generated by the synthesis loop and DINO for the same set
of checkpoint nodes. The synthesis loop is able to generate checkpoints with 4x
improvement over DINO, i.e., the data (in bytes) that needs to be checkpointed
is on average 4 times less than that determined by DINO. The synthesis loop
is able to perform better than DINO because of the precision in the model
of the intermittent programs and the precision that we get while working at
the assembly level (Sec. 7). Additionally, the synthesis loop benefits from the
semantic reasoning over the syntactic reasoning done by DINO (Sec. 2).

7 Related Work

We compare our work with the previous work on automatic instrumentation
tools that generate intermittent programs, namely DINO [15], Ratchet [26] and
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Mementos [19]. These tools work in different settings and employ different strate-
gies for checkpointing. In contrast, our work is complementary to these tools,
and our verifier can be employed to validate their output.

DINO works with mixed-volatility programs, and given the checkpoint loca-
tions, it generates the intermittent programs automatically. It proposed a control
flow based model of intermittence, where the control flow is extended with failure
edges, going from all the nodes to the last executed checkpoints. This modeling
is conservative and incomplete as it lacks semantics and does not model the ef-
fect of the power failures, unlike ours, where the failure edge is defined formally,
in terms of the edge condition and the transfer function of a failure edge. Con-
sequently, the model is not suitable for an application like equivalence checking.
It then performs a syntactic WAR analysis (write-after-read without an inter-
vening checkpoint) of non-volatile data on this extended control flow graph to
determine the non-volatile data that needs to be checkpointed. Since it works
at a higher level and does not have a mapping between the machine registers
and the program variables, it ends up checkpointing all the registers and all the
stack slots resulting in unnecessary checkpoint elements. Further, DINO does
not work with intermediate observables and the output is not verified. Our work
is complementary to DINO, in that our verifier can be used to validate DINO’s
output.

Ratchet is a fully-automatic instrumentation tool to generate intermittent
programs from continuous programs. However, it takes a radically different ap-
proach of assuming that the whole memory is non-volatile, i.e., all program data
including the stack and heap are deemed non-volatile. Only the machine registers
are assumed to be volatile. Ratchet works by adding a checkpoint between every
WAR occurrence on non-volatile data, i.e., it breaks every WAR occurrence. By
breaking every WAR occurrence, correctness of non-volatile data across power
reboots is ensured; for the machine registers, Ratchet simply saves the live ma-
chine registers at every checkpoint. These simplifications involve a performance
cost, as it results in frequent checkpoints because the checkpoint locations are
now determined by these WAR occurrences. Further, it is not possible to insert
a checkpoint between WAR occurrences within a single instruction (e.g., “inc
(nv)”). Ratchet authors also do not allow intermediate observables. Finally,
Ratchet’s output can also be verified using our tool.

Mementos is a hardware-assisted fully-automatic instrumentation tool to gen-
erate intermittent programs. At each checkpoint location, it relies on hardware
to determine the available energy and the checkpointing logic is only executed if
the available energy is less than a threshold level, i.e., the checkpoints are con-
ditional. Interestingly, our verifier does not require any modification to work in
this setting, the only difference would be that the number of failure and progress
paths that get generated would be more. A checkpoint-to-checkpoint path can
now bypass a successive checkpoint, resulting in a checkpoint-to-checkpoint path
to a second level successor. For example, in our example, there will be also a
progress path from node 1 to the exit, because the checkpoint at node 4 is
conditional.
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Systems that tolerate power failures are not uncommon, file system is one
example that is designed to tolerate power failures. The file system design has to
ensure that across power failures, the disk layout remains consistent. In addition
to power failures, it has to worry about disk write reorderings done by the disk
controller. FSCQ [2] and Yggdrasil [22] are two recent papers that formally ver-
ified the file systems under power failures and reorderings. FSCQ is written in
Coq and requires manual annotations and proofs for verification. Yggdrasil, on
the other hand is an automatic technique. In FSCQ, the specifications are given
in Crash Hoare Logic (CHL) which allows programmers to specify the expected
behaviour under failures. The verification then entails proving that the file sys-
tem follows the given specifications. In Yggdrasil, the behavioral specifications
are provided as higher-level programs; The verification involves checking whether
the file system is a crash refinement of the given specification, i.e., it produces
states that are a subset of the states produced by the specification. The speci-
fications in both the techniques are crash-aware, i.e., the specification encodes
the behaviour under power failures. In contrast, our specifications are continu-
ous programs and are not aware of crashes, the intermittent should behave as if
there are no power failures. In addition, the problem of intermediate observables
is unique to our setting. It would be interesting to explore if our technique can
be used to verify file systems. Considering that our technique works smoothly
with loops, it would remove Yggdrasil’s important shortcoming of its inability
to reason about loops in a uniform way.

Smart card embedded systems are another interesting example of systems
that are designed to work with failures. These cards get powered by inserting
in the appropriate terminal, and suddenly removing it during an operation may
leave the card’s data in an inconsistent state. A mechanism is added to restore a
consistent state on the next insertion. A card has anti-tearing properties if it can
always be restored to a consistent state after tearing (removal) at every execution
state. Anti-tearing properties of smart cards are important and previous work [1]
formally verifies this by proving that tearing is safe at every program point in
Coq. This technique is not automatic and requires manual proofs.

Our work overlaps with previous work on equivalence checking in the context
of translation validation and verification [4,5,7,9–14,16,18,21,23–25]. The goal of
translation validation is to compute equivalence across compiler optimizations.
On the other hand, our work targets equivalence across the instrumentation,
albeit, under power failures. We have borrowed ideas from previous work, e.g.,
invariant inference is similar to that of [3–5] which are further based on Houdini
[8]. However, tackling non-determinism due to power failures and the problem
with intermediate observables is perhaps new to this space.

To conclude, we present a formal model of intermittence and a technique to
verify the correctness of the intermittent programs with respect to their contin-
uous versions. Our experiments demonstrate that synthesis along with working
at the binary level can reduce the size of the checkpoints significantly. We hope
that automatic instrumentation tools can leverage these ideas to produce verified
and efficient intermittent programs.
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Abstract. Linearisability is the de facto standard correctness condition
for concurrent objects. Classical linearisability assumes that the effect
of a method is captured entirely by the allowed sequences of calls and
returns. This assumption is inadequate in the presence of relaxed memory
models, where happens-before relations are also of importance.
In this paper, we develop hb-linearisability for relaxed memory models by
extending the classical notion with happens-before information. We con-
sider two variants: Real time hb-linearisability, which adopts the classical
view that time runs on a single global clock, and causal hb-linearisability,
which eschews real-time and is appropriate for systems without a global
clock. For both variants, we prove abstraction (so that programmers can
reason about a client program using the sequential specification of an
object rather than its more complex concurrent implementation) and
composition (so that reasoning about independent objects can be con-
ducted in isolation).

1 Introduction

An implementation is linearisable [19] if for every history of the implementa-
tion, there exists a legal history of the specification such that (1) each thread
makes the same method invocations in the same order, and (2) the order of non-
overlapping invocations is preserved. This notion of linearisability intuitively
ensures that each method invocation takes effect between its invocation and
response events. Thus, instead of complex concurrent reasoning that requires
a characterisation of all possible interactions across method invocations, lin-
earisability ensures that every method call can be understood in isolation via
preconditions and postconditions, as familiar in sequential computing.

Linearisability is a local property. Thus, we can reason compositionally about
a system; i.e., to prove the linearisability of the whole, it suffices to prove the lin-
earisability of projections to components with disjoint memories. This ability to
decompose large linearisability proofs is critical to scale the use of linearisability
in concurrent reasoning.
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In this paper, we are also interested in understanding abstraction or con-
textual refinement for correctness conditions, i.e., what correctness conditions
allow a concurrent object implementation CS to be substituted for an abstract
specification AS within a client program? Specifically, we would like to find a
condition Z between AS and CS for which

Z(AS ,CS )⇒ ∀C : Client . C[AS ] v C[CS ] (†)

holds, where v denotes some notion of refinement, C[AS ] denotes a client C
that uses the abstract object AS , and C[CS ] denotes a client C that uses the
implementation object CS .

There are different solutions to (†), depending on the notion of refinement
that one uses. Filipović et al. [16] study contextual refinement for terminating
computations. They establish refinement between the initial and final states of
C[AS ] and C[CS ] by showing that (†) holds if Z is instantiated to linearisability.
Others have studied contextual refinement for traces of C[AS ] and C[CS ], where
Z must be strengthened to cope with liveness properties [15, 17, 29, 22].

The works cited above assume that threads communicate via sequentially
consistent (sc) memory [21], where memory events appear to occur according
to a single, global, total order consistent with program order. However, high-
performance multicore systems typically implement relaxed memory models,
where memory events may appear to occur out-of-order with respect to program
order [1, 2, 5, 6, 23, 25–27]. Under sc, client memory events that occur before a
method call in program order cannot overlap with client memory events that
occur after the method call (in program order). Under relaxed memory, this
property fails to hold.

The impact of relaxed memory in the specification of concurrent data struc-
tures is already seen in practice via the explicit specification of happens-before
(hb) information, e.g., consider the ConcurrentQueue in java.util.concurrent4. In
addition to the usual guarantee — “The ConcurrentLinkedQueue class supplies
an efficient scalable thread-safe non-blocking FIFO queue” — the specification
of this class also describes memory consistency effects — “As with other con-
current collections, actions in a thread prior to placing an object into a Concur-
rentLinkedQueue happen-before actions subsequent to the access or removal of
that element from the ConcurrentLinkedQueue in another thread.” This pattern
is repeated for all the classes in this package.

In this paper, we study correctness criteria for data structures in the presence
of such memory effects.

– We provide a formalisation of sequential specifications that have been aug-
mented with happens-before information. This augmentation is essential for
compositional reasoning. Classical linearisability does not mention happens-
before information (since it assumes sc). Following [20], we demonstrate by

4 This package contains data structures and utilities for concurrent programming in
Java. See https://docs.oracle.com/javase/9/docs/api/index.html?java/util/

concurrent/package-summary.html.
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example that the traditional perspective fails to ensure contextual refinement
for threads that communicate via relaxed memory.

– We define real-time hb-linearisability, strengthening linearisability to pre-
serve happens-before.

– Concurrent programming in Java-like languages eschews a notion of global
time. Rather, the idea is that a programmer specifies ordering constraints by
defining how threads communicate with explicit mechanisms, such as locks,
to ensure that actions taken by one thread would be seen in a reasonable
way by other threads [23]. We define causal hb-linearisability to more directly
model this partial order perspective on executions.

Real-time hb-linearisability is stronger than classical linearisability. As we shall
demonstrate, causal hb-linearisability and real-time hb-linearisability are incom-
parable.

Both notions of hb-linearisability are defined relative to a memory model. For
both, we show that contextual refinement holds for any relaxed memory model
that satisfies the axioms5 of Alglave, Maranget and Tautschnig (AMT) [3], which
are summarised in Section 2. One of our key contributions is the enhancement of
AMT to account for events arising from method invocations and responses (Sec-
tions 4). We show that, under mild assumptions, any linearisable implementation
of concurrent collection must already satisfy the extra happens-before required
by a specification; thus discharging the additional proof obligations incurred
when proving correctness relative to real-time hb-linearisability.

We provide motivational examples in Section 3. The main definitions and
results follow in Sections 4 and 5, respectively.

2 Background: AMT axioms

AMT provide an exhaustive study of relaxed memory models in [3]. Impressively,
they manage to capture the details of several specific architectures (including
TSO, ARMv7 and Power) in a general framework. They provide a list of axioms
that are satisfied by all of the architectures they consider. Fortunately, these
axioms are sufficient to establish our results. In this section, we describe the
core components of this framework; we refer the interested reader to the original
paper [3] for further details.

Let E be a set of events. Each event e is a tuple consisting of a unique
identifier, id(e), a thread identifier, thread(e), an action, and other data. Actions
include memory actions, e.g., reads and writes; other actions are architecture
dependent, including fences. The axioms take as input six relations over E, which
together define an execution.

– po (program order), which defines a total order on the events of each thread.
Events of different threads are unrelated.

5 While we state our results relative to the axioms of Alglave et al., the ideas behind
real-time and causal hb-linearisability can be applied to any other axiomatic memory
model based on partial orders.
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– co (coherence order), which is a total order on the writes of each location.
– rf (reads from), which maps writes to reads. Each read must be associated

with exactly one write, but a write may map to more than one read.
– ppo (preserved program order), which is a suborder derived from po by

removing order between events that commute according to the architecture.
– fences, which relates events in po that are separated by a fence.
– prop (propagation order), which relates writes that must propagate to mem-

ory in a particular order.

Program order only relates events of the same thread. All of the other relations
come in “standard” and “external” versions, denoted with a final e. For example
rfe

M
= {(w, r) | (w, r) ∈ rf ∧ thread(w) 6= thread(r)} relates reads that see writes

from a different thread.
The first three relations are execution specific. The remaining relations are

defined by the architecture. Additionally, the axioms use the following derived
relations:

– fr
M
= {(r, w1) | ∃w0.(w0, r) ∈ rf ∧ (w0, w1) ∈ co}, pronounced “from-read”.

Here r is a read, and w1 is a write which must come after r, since r has seen
a write that preceded w1 on the same location.

– hb
M
= ppo ∪ fences ∪ rfe defines “happens-before”, ordering events that are

causally related.

Various architectures can be defined by instantiating these relations in different
ways. On TSO, ppo removes the order between a write and a subsequent read.
Thus TSO is defined by setting ppo = po\WR, fences = mfence, prop = ppo ∪
rfe∪ fr, where WR is the set of all write-read pairs and mfence orders all memory
events before a fence with respect to those after the fence.

Executions must satisfy several sanity conditions. For example, co must be
a partial order relating only writes to the same location, which is a total order
per location. In addition rf is a relation matching each read to a write with the
same value and location. For emphasis, we refer to executions that fulfil these
requirements as sane.

A sane execution is valid if it satisfies the four AMT axioms. By (No-Thin-
Air), causality cannot be cyclic. By (SC-Per-Location), each location taken
separately is sc, where po-loc is po restricted to events on the same location.
By (Observation), events hidden in the causal past cannot be observed. By
(Propagation), writes must be propagated in an order consistent with coher-
ence.

acyclic(hb) (No-Thin-Air)

acyclic(po-loc ∪ co ∪ rf ∪ fr) (SC-Per-Location)

irreflexive(fre; prop; hb∗) (Observation)

acyclic(co ∪ prop) (Propagation)

We write relations using both set and arrow notation; thus (a, b) ∈ po is syn-
onymous with a

po−→ b. We also pun between events and their labels in examples.
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3 Linearisability for Weak Memory

The goal of the paper is to distinguish “good” implementations, those that ensure
contextual refinement, from “bad” ones, that do not. In this section, we present
some examples that motivate real-time and causal hb-linearisability as well as the
contextual refinement and compositionality properties that they must guarantee.

3.1 Real-time hb-linearisability

Consider the following code, which uses a lock to coordinate the activities of two
threads.

Init: x, y = 0, 0

Thread α: lock.acq(); x := 1; y := 1; lock.rel();

Thread β: lock.acq(); print "x=" x; print "y=" y; lock.rel();

The abstract specification for a lock will forbid two returns from acq without
an intervening call to rel. From this, a programmer would expect that any
execution of the client running against a correctly implemented lock must print
y=1 whenever it prints x=1.

For sc-memory, one can establish the validity of this reasoning using classical
linearisability. This form of reasoning is unsound, however, for relaxed memory.

To see this, consider the following example, which is a possible execution of
the program using the abstract lock specification executing under TSO memory.
We extend the AMT model to include events denoting method invocation and
response. The invocation of the acquire method is depicted as acq!. The return
of the acquire method is depicted as acq?. The release method is similar.

acq!
ppo // acq?

ppo// Wα(x, 1)
ppo //

rf

��

Wα(y, 1)
ppo // rel!

ppo // rel?

Wι(x, 0),Wι(y, 0) rf

++

ppo 55

ppo ))
acq!

ppo
// acq?

ppo
// Rβ(x, 1)

ppo
// Rβ(y, 0)

ppo
//

fr

OO

rel! ppo
// rel?

We show the threads in two rows, with events ordered left to right in program
order. Applying AMT’s framework results in the set of ppo, rf and fr edges be-
tween memory events shown above. Since AMT do not address abstract method
calls, there are no edges into and out of invocation and response events, except
ppo. TSO only relaxes program order between a write and subsequent read.
Hence, in the execution above, all program order between memory events is pre-
served. Here, we have also preserved program order into and out of the method
events — in the next subsection and throughout the paper, we consider other
strategies for handling the interaction of memory and method events.

The execution satisfies all four AMT axioms, and hence is accepted as a valid
execution. However, it clearly violates a programmer’s intuition since it describes
an execution that prints x=1 and then y=0.

Of course the problem here is that the abstract method calls are being ignored
by the memory-model axioms. To remedy this, we must introduce additional
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happens-before order that is derived from the abstract specification.6 We specify
this using a specification order, so, which relates each invocation to the responses
that must happen-after that invocation.

If rel! in thread α occurs before acq? in thread β, the programmer should
be able to assume that any event that precedes rel! (in program order) must
happen before any event that follows the corresponding acq?. This should in-
validate the execution above. We repeat that execution below, augmented with
so, showing only the edges relevant to invalidating this execution.

acq! acq? Wα(x, 1) Wα(y, 1)
ppo // rel!

so

tt

rel?

Wι(x, 0),Wι(y, 0)

acq! acq?
ppo

// Rβ(x, 1)
ppo

// Rβ(y, 0)

fr

OO

rel! rel?

With hb extended to include so, the exhibited cycle above contradicts AMT’s
Observation axiom, assuming ppo between a memory and method event is
included in prop. Thus, the execution is considered invalid, as desired.

In Section 4, we formalise the concept of a specification augmented with
happens-before information and describe its effect on a program execution. We
also define real-time hb-linearisability, which is an extension of linearisability that
allows one to distinguish a good implementation of an augmented specification
from a bad one. A good implementation of the lock must be able guarantee
the happens-before relation required by the specification. To reason about such
implementations, we must also enrich the semantics of implementations to relate
method invocation/response events with memory events.

3.2 Causal hb-linearisability

Real-time hb-linearisability is appropriate for tightly coupled systems, such as
current generation multicore processors. In distributed systems, however, the
cost of real-time synchronisation is high, making real-time hb-linearisability
unattractive. We propose causal hb-linearisability as an alternative notion that
requires less synchronisation overhead. Causal hb-linearisability may be appro-
priate for future generation multicore processors: as the number of cores in-
creases, the necessary synchronisation overhead may force these systems to adopt
a looser model (c.f. [28]).

Linearisability requires that the order of non-overlapping methods be pre-
served in the specification. In the literature, this constraint is motivated by
showing that compositionality fails if one requires only that the order of method
calls in each thread be preserved. We reexamine these examples in order to
motivate causal hb-linearisability.

6 In fact, APIs such as java.util.concurrent document the happens-before be-
haviour of the methods using edges from the beginning of one method activation
to the end of another (or a set of others); that is, from call to return.
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α1 : q1.enq(1)
ppo // α2 : q2.enq(2)

ppo //

so
))

α3 : q1.deq(2)

β1 : q2.enq(1)
ppo

// β2 : q1.enq(2)
ppo

//
so

55

β3 : q2.deq(2)

Fig. 1. Non-compositional execution

α1 : q1.enq(1)

ppo

++
α2 : q2.enq(2)

so
))

α3 : q1.deq(2)

β1 : q2.enq(1)

ppo

33β2 : q1.enq(2)
so

55

β3 : q2.deq(2)

Fig. 2. Compositional execution

Fig. 1 shows a well-known example [18], with method invocation and response
collapsed into a single atomic event (shown within a box) for simplicity. Here,
threads α and β interact via a pair of queues. The queue specification naturally
imposes hb order between an enqueue and a subsequent dequeue of the same
element; therefore, the figure shows so edges between α2 and β3, as well as
between β2 and α3. In addition, the figure shows the preserved program order
(ppo) between the calls on the two queues in each thread. Recall from Section 2
that ppo ⊆ hb.

If we consider either q1 and q2 in isolation, the execution is linearisable,
since the second enqueue operation for each queue can be considered to have
taken effect first. However, the order for each queue is impossible given the order
between queues. In particular, due to the hb edges when restricting the execution
to a single queue and the FIFO ordering requirement of a queue specification,
the order of operations for q1 must be β2

hb−→ α1
hb−→ α3, while the order for q2

must be α2
hb−→ β1

hb−→ β3. In the full trace, we get a cycle α1
hb−→ α2

hb−→ β1
hb−→ β2

hb−→ α1.

Herlihy and Wing solve this problem by strengthening the definition to re-
quire that linearisability preserve real-time order of non-overlapping method
calls. Thus, the execution of at least one queue in Fig. 1 must be invalidated.

An alternative is to weaken ppo to remove the order between events on inde-
pendent queues. This is analogous to the way events on independent variables
are handled under the ARM and Power memory models. Note that we are free
to make such a choice here, outside of the implementation memory model, since
the ppo order here is at the abstract level between method events. The result is
shown in Fig. 2. Here, α1 and α3 are hb ordered, but α2 is not ordered with re-
spect to either event. In this case composition holds. We formalise this intuition
as causal hb-linearisability in Section 4.
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We prove abstraction for both real-time and causal hb-linearisability. The
story for composition is more complex since clients may be obtrusive, enforcing
additional program order between events on different objects. Formally, an ex-
ecution is unobtrusive if it matches a specification string v such that whenever
v = s·a!·a?·t·b!·b?·u and a?

hb−→b! in the execution then a!
so−→b? in the specifica-

tion. A client is unobtrusive if all of its executions are unobtrusive. An obtrusive
client, such as the one in Fig. 1, may place a fence between the method calls, or
use some form of synchronisation to enforce order between them, for example by
writing-to and then reading-from another thread. An unobtrusive client, such as
the one in Fig. 2, must perform no such synchronisation. We show that causal
hb-linearisability satisfies compositionality if the client is unobtrusive.

Obtrusive clients are not problematic if the specification is commutative,
i.e., if for any specification string s · a! · a? · t · b! · b? · u either a!

so−→ b? or
s · b! · b? · t · a! · a? ·u is a specification string. Figs. 1 and 2 show the interaction
of a client with a composite double-queue. A double-queue specification is not
commutative because it does not permit reordering of calls to enq, yet the usual
specification does not contain a happens-before specification among calls to enq.
An example of a commutative specification is a double bag or multi-set where a
call to add is specified to happen-before the corresponding remove, but where all
commutations are permitted between the operations on separate elements. We
show that causal hb-linearisability satisfies compositionality if the specification
is commutative.

4 Traces and Weak-Memory Semantics

In this section we formalise the interaction between a client and a set of objects.
We divide the event set E into four disjoint subsets: Let C be the set of client

events, let O be the set of object events, let I be the set of invocation events and
let R be the set of response events. We use M ⊆ I ∪ R to range over method
events. Like others [15–17], we assume clients and objects only communicate via
the object interface, specified as subset of I ∪R. Thus, clients and objects must
operate over disjoint sets of locations: location(e) 6= location(f) for any e ∈ C
and f ∈ O.

For any relation R ⊆ E× E and set X ⊆ E, let R|X denote the restriction of
R to X, i.e., R|X = R ∩ (X× X).

In order to connect AMT-style executions to specifications, we work with
strings of events, which we refer to as traces7. While our definitions are given
directly in terms of traces, we often use program syntax in examples. It is
straightforward to define a semantics which gives the denotation of programs
as sets of traces, where memory reads and method returns may yield any value.
For example, the semantics of “x:=1;push(5)” is the set {Wα(x, 1) · push!α(5) ·
push?α | α ∈ Threads}. The semantics of “r1:=pop();r2:=x” is the set {pop!β ·
7 Since events include unique identifiers (and therefore cannot repeat), there is an

isomorphism between strings of events and total orders over finite set of events.
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pop?β(u) · Rβ(x, v) | β ∈ Threads , u ∈ Values , v ∈ Values}. The semantics of
“x:=1;push(5) || r1:=pop();r2:=x” is any interleaving of these where α 6= β.
Note that both the pop and the read of x may return any value.

In the remainder of this introductory text, we consider method events and
memory events independently: method events relate to specifications and mem-
ory events relate to executions. In the following subsections, we show how these
can be combined, both for abstract and concrete object systems.

First we discuss method events. Rather than modelling specifications using
formal languages such as Larch, Z, or LTL, we model specifications semantically
as sets of strings of method events. Strings provide a total order on the method
events, which is sufficient to capture sequential behaviours. When considering
event strings as specifications, we ignore the thread identifier in events. For
example, the specification of stack includes strings such as push!(5) · push? ·
pop! ·pop?(5). Thus a trace of method events may be seen directly as an element
of a specification, where we ignore thread identifiers. For example, the trace
push!α(5) · push?α · pop!β · pop?β(5) is a valid trace for a stack, whereas neither
push!α(5) · push?α · pop!β · pop?β(1) nor pop!β · pop?β(5) · push!α(5) · push?α is
valid.

We now discuss memory events. From a trace, we can generate AMT execu-
tions as follows.

Definition 1. A tuple (t, co, rf, ppo, fences, prop) is an execution of trace t if
these relations satisfy AMT’s sanity conditions (see Section 2), where program
order is given by pot = {(e, f) | (e, f) ∈ t ∧ thread(e) = thread(f)}.

Let execs(t) be the set of executions of t. We use τ to range over executions.

Note that we require executions to be sane, but do not enforce validity at this
stage. We discuss validity in the following subsections. We usually drop sub-
scripts from order relations, preferring po to pot, etc.

A single trace may give rise to many executions. For example, the pro-
gram “r=x || x:=5 || x:=5” gives rise to a set of traces which includes Rα(x, 5) ·
Wβ(x, 5)·Wγ(x, 5). Executions of this trace may have either Wβ(x, 5)

rf−→Rα(x, 5)
or Wγ(x, 5)

rf−→Rα(x, 5). This program also gives rise to traces such as Rα(x, 1) ·
Wβ(x, 5) ·Wγ(x, 5), which has no executions, since the read can not be fulfilled
by any write.

The trace order of events from the same thread determines program order;
however, the trace order between events from different threads is ignored. If α 6=
β, then the traces Rα(x, 5)·Wβ(x, 5) and Wβ(x, 5)·Rα(x, 5) generate exactly the
same executions, modulo the trace itself, as do push!α(5)·push?α ·pop!β ·pop?β(5)
and pop!β · pop?β(5) · push!α(5) · push?α.

4.1 Clients with object specifications

We now discuss the semantics of client-object systems, where object behaviours
are described by a specification. In terms of condition (†) from the introduction,
this section formalises the behaviours of C[AS ]. As discussed in Section 3, it
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is important for specifications to provide happens-before guarantees to client
programs to enable writes to propagate in the correct order.

Example 2. Consider the program “x:=5;push(5) || r1:=pop();r2:=x”. If vari-
able x is initialised to 0, then the following is a trace of this program:

Wι(x, 0) ·Wα(x, 5) · push!α(5) · push?α · pop!β · pop?β(5) · Rβ(x, 0)

There are valid AMT executions of this trace. Here the thread β returns a
value 0 for x, missing the value 5 written by thread α, even if we assume that
the memory model guarantees Wι(x, 0)

hb−→Wα(x, 5). We wish to disallow such
traces via extra happens-before orders introduced via the stack specification. In
particular, we enhance the specification with an additional ordering relation that
ensures each push is hb ordered before the corresponding pop. When used in a
client program, we assume that such an enhanced specification induces additional
order, namely that it ensures Wα(x, 5)

hb−→ Rβ(x, 0). Now, if the memory model
ensures Wι(x, 0)

hb−→Wα(x, 5) the trace becomes invalid, as intended. ut
In order to encode happens-before information, we take a specification string

to be pair consisting of a string of method events, h, and a specification-based
happens-before order so, relating events in h. For example, in the stack specifi-
cation h = push!(5) · push? · pop! · pop?(5), we expect that push!(5)

so−→ pop?(5).
Various choices of so are possible. The Java concurrency APIs specify that each
push happens-before the corresponding pop. Many concurrent implementations
actually give stronger guarantees, which could be included in the specification if
one wished. For example, a Trieber stack guarantees that a push happens-before
the matching pop and every subsequent pop. If this specification were adopted,
the client programmer would be able to make stronger assumptions. Our results
are parametrised by a chosen specification.

In the following definition, we recall that M ⊆ I ∪ R is the set of method
events, and require that so only relate invocations to responses. In addition, so
must be consistent with h.

Definition 3 (Specification). A specification is a pair (M, H), where H ⊆
2M×M × 2I×R such that for each (h, so) ∈ H, h is a total order and so ⊆ h.

We now define what it means for a client to interact with an abstract speci-
fication: When projected to client events, we must have a sane AMT execution.
When projected to method events, we must have a specification string.

Definition 4 (Client-specification execution). Let AS = (M, H) be a spec-
ification, C be a client and t ∈ (M ∪ C)∗ be a trace of C[AS ]. We say that the
tuple (t, co, rf, ppo, fences, prop) is a client-specification execution for so iff

– (t|C, co, rf, ppo, fences, prop) ∈ execs(t|C), where t|C is the trace t restricted
to elements in C, and

– so ⊆ I× R is an order such that (t|M, so) ∈ H.

A valid client-specification execution must satisfy the AMT axioms, where
method events are included in the happens-before relation by lifting so to relate
memory events ordered by po; so; po.
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Definition 5 (Valid client-specification execution). A client-specification
execution for so is valid iff the AMT axioms hold with hb

M
= ppo∪fences∪rfe∪hbs,

where

hbs = {(e, e′) ⊆ C× C | ∃i ∈ I, r ∈ R. e po−→t i ∧ i
so−→ r ∧ r po−→t e

′}.

4.2 Client-implementation traces

We now describe the meaning of a client that executes with an implementation
object. In terms of condition (†) from the introduction, this section formalises
the behaviours of C[CS ]. One can interpret a client interaction with a concrete
object system as an execution by simply removing method events. For example,
if s is the sequence of memory events implementing push, and t is the sequence
of memory events implementing pop, then the following is a concrete trace of
the program in Example 2:

Wι(x, 0) ·Wα(x, 5) · push!α(5) · s · push?α · pop!β · t · pop?β(5) · Rβ(x, 0).

One could say that this trace is valid exactly if Wι(x, 0) ·Wα(x, 5) · s · t ·Rβ(x, 0)
is valid, i.e., the trace with method events removed. While sufficient for some
purposes, any connection with the abstract object system is lost. In this sec-
tion we describe how to integrate method actions into concrete executions so
as to support a notion of operational refinement between concrete and abstract
systems.

In general, a terminating thread of a client/object interaction has the form
C∗(IO∗RC∗)∗: the client may perform memory actions in C until it invokes a
method, giving control to the object; the object then may perform memory
actions O until it returns, giving control back to the client8. In executions of
concrete traces, method events are placeholders, which should have no memory
effects themselves. Any memory effects should arise from the concrete implemen-
tation. Thus we expect that empty methods should have no effects in a concrete
system. More generally, our definition should support method inlining.

The problem boils down to which po edges between method events and mem-
ory events should be preserved in ppo, and therefore hb. Since method events
denote the boundary between client events and object events, there are two sets
of edges to consider:

(1) po edges between M and C, and
(2) po edges between M and O.

We cannot preserve both (1) and (2). To see why, consider the trace t below,
where c, c′ ∈ C, i ∈ I, r ∈ R and o, o′ ∈ O are events of the same thread:

c
t // i

t // o t // . . . o′
t // r t // c′

8 Recall from the beginning of this section O and C range over disjoint sets of memory
locations.
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The preserved po edges must not introduce any new ppo order between c and
o that is not present in the memory model since the invocation i, in isolation,
cannot affect memory. In other words, if both c

po−→ i and i
po−→ o were preserved,

this would ultimately create a transitive happens-before edge between c and o,
disallowing them from being reordered even in a memory model that doesn’t
enforce this restriction. For example, in TSO, we may have c = W (z, 1) and o =
R(x, 2), which may be reordered; introduction of a method invocation between
c and o should not prevent the reordering from occurring.

We must also preserve (1) and (2) in such a way that we are able to decouple
object correctness (hb-linearisability) from contextual refinement. Our solution is
to always preserve (1), resulting in a set of edges cio (client-interface order), and
conditionally preserve (2), resulting in a set of edges oio (object-interface order).
The intention is to introduce both cio and oio into an extended hb ordering.

To justify our choices, consider the abstract trace s, given below, which shows
a client interacting with an abstract specification object. The actions cα and cβ
are client actions of separate threads, α and β.

cα
s //

po
;;

hbs

((
iα

s //

so

55rα
s // iβ

s // rβ s //

po
;;
c′β

Assume that the specification requires so between iα and rβ . Thus, by Defini-
tion 5, for any execution of s, we must have an hbs edge between client events cα
and c′β . This (again by Definition 5) means that we have cα

hb−→ c′β since hbs ⊆ hb.
Suppose we wish to determine whether the trace t below is a contextual

refinement of s.

cα
t // iα

t // o1α
t // o2α

t // rα
t // iβ

t // o3β
t // o4β

t // rβ t // c′β

Among other things, we must be able to guarantee cα
hb−→ c′β for any execution

of t (see Definition 9) since this order is present in the specification.
An implementation of the sequential object can take us part of the way

there by ensuring hb between object events. Suppose for our example that the
implementation guarantees o2α

hb−→ o3β . This, together with the fact that we
always preserve (1), results in an execution of the following form:

cα
t //

cio

;; iα
t // o1α

t // o2α
t //

hb

44rα
t // iβ

t // o3β
t // o4β

t // rβ t //

cio

;;
c′β

Note that the hb above is introduced via AMT’s standard conditions described
in Section 2, i.e., without taking invocations and responses into account.

To complete the hb chain from cα to c′β , we require edges from iα to o2α
and from o3β to rβ . The condition for preserving (2) is as follows. Suppose o is
an object event. We preserve program order from an invocation i to o if after
replacing the action in i with an arbitrarily chosen memory action to obtain
an event i′, the relation ppo ∪ fences orders i′ before o. The case for ordering o
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before a response event is similar. Since an arbitrary memory action is ordered
before o, any client memory action that occurs before i in t must also be ordered
with respect to o. Moreover, these conditions are independent of any specific
client, and hence our treatment allows one to reason about the properties of the
concurrent object (e.g., hb-linearisability) in isolation, relying on our abstraction
theorem to guarantee contextual refinement.

Suppose for our example that o2α and o3β do indeed satisfy the conditions
described above. Our execution thus becomes:

cα
t //

cio

;; iα
t //

oio

66o1α
t // o2α

t //

hb

44rα
t // iβ

t // o3β
t //

oio

66o4β
t // rβ t //

cio

;;
c′β

The presence of the oio edge to o2β means that any client memory event of
α that precedes iα in program order must also be ordered with o2β (since an
arbitrary action was considered when constructing oio). Since we do not have an
oio edge to o1α, it would be possible to reorder cα with o1α if the memory model
semantics permits the reordering. (The same applies to o4β and c′β .) Thus, we
have only introduced as much order as necessary.

Example 6. Consider TSO, and suppose cα = Wα(x, 1), o1α = Rα(y, 2) and
o2α = Wα(z, 4). We do not have iα

oio−−→ o1α since for TSO, ppo = po\WR.
However, we do have iα

oio−−→ o2α. The program under TSO could reorder cα
and o1α, but would never reorder cα and o2α. Now suppose o1α = fence and
o2α = Rα(y, 3). Again, we have iα

oio−−→ o2α, but in this instance, the order from
iα is generated by the fence.

We now formalise both orders in the context of an extended execution, i.e.,
an execution extended with orders cio and oio. Such a definition is necessary
because the definition of oio requires relabelling of invocation actions within a
trace. In the definition below, we let relabel(e, a) denote the event e with its
action relabelled to a, labels(e) = {relabel(e, a) | a is a memory action} denote
the set of all possible relabelings of e and t[e′/e] denote the trace t with event e
replaced by e′.

Definition 7 (Client-implementation execution). For a trace t, we say
that the tuple (t, co, rf, ppo, fences, prop, cio, oio) is a client-implementation exe-
cution iff the (t|(C ∪O), co, rf, ppo, fences, prop) ∈ execs(t|(C ∪O)), and

cio = pot ∩ ((C× I) ∪ (R× C))

oio = {(i, o) ∈ I×O | IO(t, i, o)} ∪ {(o, r) ∈ O× R | OR(t, o, r)}

where IO and OR are defined as follows.

IO(t, i, o) = ∀i′ ∈ labels(i). ∀τ ∈ execs(t[i′/i] | (C ∪O ∪ {i′})). i′ ppo∪fences−−−−−−→τ o

OR(t, o, r) = ∀r′ ∈ labels(r). ∀τ ∈ execs(t[r′/r] | (C ∪O ∪ {r′})). o ppo∪fences−−−−−−→τ r
′

In this definition, e
ppo∪fences−−−−−−→τ f denotes (e, f) ∈ ppoτ ∪ fencesτ , recalling that

ppoτ and fencesτ are the ppo and fences relations of the execution τ , respectively.
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Within IO(t, i, o), for any i′ obtained by replacing the action in i with a memory
action, and any execution τ of the trace t with i replaced by i′ restricted to
C∪O∪ {i′}, we have that i′ is ordered before o with respect to ppoτ or fencesτ .
The predicate OR(t, i, o) is similar.

Definition 8 (Valid client-implementation execution). We say client-im-
plementation execution is valid iff the AMT axioms hold, where hb

M
= ppo ∪

fences ∪ rfe ∪ cio ∪ oio.

Our notion of contextual refinement is based purely on the observations that
a client makes over the memory and object states. Thus, it simply ensures that
every valid execution of the client when using the implementation object is a
possible execution of the client when it uses the specification object.

Definition 9 (Contextual refinement). Suppose t is a trace of C[CS ] and s
is a trace of C[AS ]. We say t contextually refines s (denoted s v t) iff

– t|C = s|C,
– whenever (t, co, rf, ppo, fences, prop, cio, oio) is a valid client-implementation

execution, (s, co|C, rf|C, ppo|C, fences|C, prop|C) is a valid client-specification
execution.

The first condition requires that s and t restricted to client events are equal (i.e.,
they have the same denotational behaviour), whereas the second requires that a
valid execution of t can be restricted to form a valid execution of s. In particular,
if t is valid, then s must also be valid.

Contextual refinement is lifted to the level of programs in the standard man-
ner. We say C[AS ] is contextually refined by C[CS ], denoted C[AS ] v C[CS ], iff
for every valid trace t of C[CS ], there exists a valid trace s of C[AS ] such that
s v t. We say AS is contextually refined by CS , denoted AS v CS iff for any
client C, we have C[AS ] v C[CS ].

4.3 Implementation objects and happens-before linearisability

In this section, we formalise the correctness expectations on an implementation
object in terms of a sequential specification. The notions we develop are based
on linearisability. In the context of weak memory, we show that linearisability
is not sufficient: additional requirements must be enforced. At the same time,
weak memory makes it natural to look at notions of linearisability that do not
strictly enforce realtime order. In terms of (†), this section formalises the sorts
of behaviours CS must satisfy in order to prove the abstraction property.

Linearisability in a weak memory setting must preserve the happens-before
order of an abstract specification. An implementation trace comprises client/ob-
ject memory events as well as invocation/response events of object operations.
From the perspective of an object, invocation/response events abstractly repre-
sent a client’s memory events in program order. Thus preserved program order
between object memory events and invocation/response events are execution
specific, and introduced into the happens-before order of a trace.
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The final component of hb-linearisability is a restriction on how invocations
and responses can be (re)ordered. In a weak memory setting there is more than
one potential restriction. Two of these are to: (a) order operation calls according
to their real-time program order (real-time hb-linearisability), and (b) order op-
eration calls according to their happens-before order (causal hb-linearisability).
Choice (a) is closer to Herlihy and Wing’s original definition, while (b) is closer
to an ordering one might expect in a weak-memory setting.

In the definition below, like linearisability [19], since operations may take
effect before they return, we allow histories to be extended by adding matching
responses to operations that have been invoked but not yet returned.

Definition 10. A valid client execution is real-time hb-linearisable with respect
to (h, so) iff it can be extended to an execution of some trace t with happens-before
relation hb such that the following holds:

∀α ∈ Threads . [t|α|(I ∪ R) = h|α] ∨
[∃i ∈ I. t|α|(I ∪ R) = (h|α) · i]

(Permutation)

∀i ∈ I, r ∈ R. r t−→ i⇒ r
h−→ i (RTO-Preservation)

∀i ∈ I, r ∈ R. i so−→ r ⇒ i
hb−→ r (HB-Satisfaction)

An execution is linearisable with respect to a specification AS = (M, H) if it is
linearisable for some (h, so) ∈ H.

Conditions (Permutation) and (RTO-Preservation) are equivalent to Her-
lihy and Wing’s original requirements for linearisability [19]. Thus, hb-linearisability
implies standard linearisability. Condition (HB-Satisfaction) ensures that the
order between invocations and responses (of different operations) expected by
the specification is respected by the happens-before order in the implementation.

Definition 11. Causal hb-linearisability differs from real-time hb-linearisability
only in that condition (RTO-Preservation) is replaced by:

∀i ∈ I, r ∈ R. r hb+−−→ i⇒ r
h−→ i (HB-Preservation)

Real-time and causal hb-linearisability are incomparable since po and hb+ are
incomparable. The differences between these requirements are shown in Figs. 3-6.
In Fig. 3, the execution is considered to be sequential according to both con-
ditions, but in the second example, the method calls are causally ordered in a
different order to real-time order. In Fig. 4, both executions are concurrent ac-
cording to real-time order, but sequential according to causal order, in Fig. 5
the operations are considered to be concurrent according to both orders, and in
Fig. 6 the execution is real-time sequential, but causally concurrent.

Consider the following simplified version of the queue example from Sec-
tion 3.2.

Example 12. A two-place buffer has operations put1, put2, get1 and get2. The
sequential specification states that a call to geti must return the argument given
on the most recent call to puti. If we follow the model of the data structures
in java.util.concurrent, the expected happens-before relation is that puti
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m1!
t // m1?

t //

hb+

��
m2!

t // m2?

m1!
t // m1?

t // m2!
t // m2?

hb+

jj

Fig. 3. Real-time and causal sequential

m1!
t // m2!

t // m1?
t //

hb+

��
m2?

m1!
t // m2!

t // m1?
t // m2?

hb+

jj

Fig. 4. Real-time concurrent, causal
sequential

m1!
t // m2!

t // m1?
t // m2?

Fig. 5. Real-time and causal concurrent

m1!
t // m1?

t // m2!
t // m2?

Fig. 6. Real-time sequential, causal
concurrent

happens-before any geti that returns a matching value. In particular, note that
there is no happens-before expectation between put1 and get2.

It is possible to implement the two-place buffer using independent synchro-
nisation variables. Supposing that the buffer initially holds zeros, the client

Thread α: put1(5); get2()

Thread β: put2(5); get1()

can return zero for both calls to get. This execution is correct with respect to
causal hb-linearisability, but not with respect to real-time hb-linearisability.

We now turn our attention to the cases when the two notions coincide: Real-
time hb-linearisability and causal hb-linearisability coincide if for the execution
τ ∈ execs(t) under consideration hb+ = t. In particular, for the sc memory
model, real-time and causal hb-linearisability coincide.

We simply use the term hb-linearisability whenever we do not distinguish
between real-time and causal hb-linearisability. The next definition lifts hb-
linearisability to the level of objects in the standard manner.

Definition 13 (hb-linearisable implementation). We say that an object CS
is an hb-linearisable implementation of specification AS = (M, H) if for all
clients C, and all valid executions τ of C[CS ], τ is hb-linearisable with respect
to some (h, so) ∈ H.

4.4 Establishing hb-linearisability

In this section, we demonstrate that for some implementations it is no more diffi-
cult to establish hb-linearisability than it is to establish standard linearisability.
Of course, establishing standard linearisability on a relaxed memory model is
still more difficult than under sc memory.

For example, in the Treiber stack algorithm, each method call must perform
a compare-and-set operation on a single memory location, representing the top
of the stack. The order of successful CAS operations is the linearisation order
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used to establish linearisability. It also establishes happens-before between the
call of a method and the return of every method that follows it in linearisation
order, assuming that CAS is given acquire/release semantics, as in Java and
TSO.

We can establish a similar result for any classically linearisable implementa-
tion of a collection class, under one of two assumptions:

– there is a memory fence at beginning of every mutator method and at the
end of every accessor method, or

– data values are stored in memory locations with acquire/release semantics.

In the remainder of this section, we establish that, in either case, a classically
linearisable collection already satisfies the happens-before requirements of the
Java collections API.

A collection class refers to common data structures such as Stacks, Queues,
Lists, Trees that are containers of elements of objects of a given type. In the rest
of this discussion, we pick Stack as the example; however, our discussion applies
equally well to the other examples. We use the happens-before semantics of the
Java collections classes.

Recall that the signature of a Stack<T> of elements of type T is given by void

push(T), T pop(), T top() and boolean isEmpty(). The happens-before re-
quirement is carried by the objects of type T, i.e. there is a happens-before edge
to the return of any pop or top from the invocation of the corresponding push.
Notably, there are no happens-before requirement between different push or dif-
ferent pop methods.

Consider an implementation I of Stack<T>. We say that I is generic if the
operations that it performs on values of type T are restricted to load, and store.
All classical Stack (indeed, collection!) algorithms, such as Treiber stack, follow
this discipline. We call such implementations generic because such an imple-
mentation treats type T as abstract, only writing and reading the values, thus
eschewing any operation that exploit the structure of type T. The correctness of
I is implied by studying the traces that restrict the push methods to be of form
push(new T()), i.e. every push is of a new object reference that has not been
seen thus far9.

In such a restricted trace, it is immediately clear that there is a location that
is written by push(o) that is also read by a pop or top method that returns
o, since the argument to the push is a new reference. Since the AMT axioms
ensure that reads-from is always contained in happens-before, this ensures that

9 The proof of this fact is inspired by proofs of information flow. In an execution trace
of I, consider the locations partitioned into “low” locations L that store values not
of type T and “high” locations H that store values of type T. Two memories (L1,H1)
and (L2,H2) are related by E if they agree on their “low” parts. By the restrictions
on generic implementations, any program statement in a generic implementation
preserves the E relationship of memories. Thus, in order to validate I, it suffices to
consider the execution traces where pushes are restricted to have new references as
parameters.
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any classically linearisable generic implementation of Stack will always have the
required happens-before to pop or top from the corresponding push.

5 Abstraction and compositionality

Having established the formal definitions of real-time and causal hb-linearis-
ability, we now turn to their contextual guarantees. That is, we return to our
questions originally raised in Sections 1 and 3.

Our first theorem and its associated corollary establishes trace abstraction
(or contextual refinement) for (real-time and causal) hb-linearisability. That is,
if the implementation object under consideration satisfies hb-linearisability with
respect to the corresponding abstract object, any (observable) client behaviour
when it uses the implementation is a possible behaviour when it uses the abstract
specification.

Theorem 14. Suppose t is a trace of C[CS ]. If for any τ ∈ execs(t), τ is hb-
linearisable with respect to AS, then there exists a valid trace s of C[AS ] such
that s v t.

The proof of the theorem amounts to showing that assuming object calls of
t are hb-linearisable with respect to an abstract history h then, there is a valid
trace t′ that is a permutation of t such that: all calls in t′ are atomic and in the
order given by h.

Corollary 15. If CS is an hb-linearisable implementation of AS, then AS v
CS.

Following Herlihy and Wing, we say hb-linearisability is compositional if two
objects that individually satisfy hb-linearisability together satisfy hb-linearisabil-
ity. For simplicity, we define (and verify) the compositionality property for two
objects. This trivially generalises to a composition result for n objects. For causal
hb -linearisability, recall the notion of commutative specification and unobtrusive
client from Section 3.2.

Theorem 16. Let AS = (I ∪ R, H) be a specification. Suppose I = I1 ] I2 and
R = R1]R2, such that for each (h, so) ∈ H, ((R2×I1)∩so) = ∅∧((R1×I2)∩so) =
∅. For i ∈ {1, 2}, let Mi = Ii ∪ Ri and AS i = (Mi, H|Mi) be the specification
restricted to Mi, where H|Mi = {(h|Mi, so|Mi) | (h, so) ∈ H}.

Consider a trace t of C[CS 1,CS 2] and τ ∈ execs(t).

– If τ is real-time hb-linearisable with respect to each AS i, then τ is real-time
hb-linearisable with respect to AS.

– If τ is causal hb-linearisable with respect to each AS i and both AS 1 and AS 2

are commutative, then τ is causal hb-linearisable with respect to AS.
– If τ is causal hb-linearisable with respect to each AS i and C is unobtrusive,

then τ is causal hb-linearisable with respect to AS.
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The assumption ((R2 × I1) ∩ so) = ∅ ∧ ((R1 × I2) ∩ so) = ∅ ensures that AS can
be projected onto two independent objects. It is possible to generalise this by
assuming that clients ensure any “cross-object” happens-before requirements in
AS . However, such a theorem is more complicated to state formally and hence
has been omitted for space reasons.

The consequences of compositionality for real-time hb-linearisability, are sim-
ilar to those that Herlihy and Wing observed for standard linearisability: we need
only add that no so-order is lost when we combine independent suborders.

The results for causal hb-linearisability are less familiar. Consider the commu-
tative specification of a bag, where each remove happens-after the corresponding
add; the second clause of Theorem 16 establishes that two disjoint causal hb-
linearisable bags may be combined to produce a “larger” hb-linearisable bag.
Next, consider a double queue, as in section 3.2; if we can partition the client
into independent, non-synchronising thread groups, such that each group only
interacts with a single queue, then the third clause of the theorem tells us that
executions of the client with the double queue will be causal hb-linearisable.

6 Conclusion

This paper has developed two modified notions of linearisability for weak mem-
ory models based on partially ordered notions of execution. These address the
inability of standard linearisability [19] to ensure that programmer expectations
about the happens-before relations are met by the objects used (see Section 3).
Our work has been integrated with the Alglave et al’s (AMT) memory model
axioms [3], permitting it to uniformly address a variety of memory models. We
enhance the axioms of AMT to address abstract objects, invocation/response
events of concrete implementations and the consequent modelling of additional
happens-before order for both abstract and implementation levels.

We provide two alternative definitions. Our first extension, real-time hb-
linearisability, simply adds an additional condition by requiring that the happens-
before requirement of the abstract specification is appropriately reflected by the
implementation. The second, causal hb-linearisability, additionally replaces the
real-time order preservation property by a happens-before order preservation
property. We establish composition and abstraction for our two definitions of
linearisability.

The results in this paper advance the state of the art in the following ways:
firstly, we obtain a contextual refinement theorem and a composition theorem.
Secondly, we build on the framework for memory models created by Alglave et
al [3]; so our approach is generic, and applicable to any weak memory model
that is encompassed by [3], so we are also able to address TSO, C11 release-
acquire, ARM and POWER. Thirdly, our framework permits us to explore both
global-time and partial-order time variants of the definition of linearisability.

Related work. Since its introduction by Herlihy and Wing [19], linearisability has
emerged as the de-facto criterion for correctness of concurrent objects. We refer
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the reader to our survey article [13] for a detailed overview and bibliography
of the large amount of research into the verification of linearisability. These
investigations were carried out in the context of sequential consistency. Below,
we discuss the most closely related papers that explore linearisability in the
context of relaxed memory.

The study of linearisability, in the presence of relaxed memory was initiated
by Burckhardt et al. [7]. This study was carried out for the TSO memory model.
The key idea behind this paper is the association of a separate notion of atomic
update of memory to a method call in addition to the usual notion of an atomic
execution of the method. Thus, a methods is not atomic in this perspective. In
our presentation, the happens before relation in the specification describes the
requirements of memory visibility on the implementation. In order to prove hb-
linearizability, these requirements have to be established, though we have seen
that in some cases this proof is immediate.

A notion of linearisability based on transforming sc histories by delaying
returns to an associated flush event has also been explored [14, 10], allowing
abstractions to remain atomic. Separately, working in the TSO memory model,
Doherty and Derrick [12] study a weakening of linearisability using commutations
allowed by the specification. In [9], motivated in part by hardware architectures
such as Power and ARM, Derrick and Smith provide a framework for defining
linearisability in relaxed memory models by allowing the observable order of the
execution to be weaker (and hence different) from the full program order. The
causal hb-linearisability definition of our paper follows the intuitions of [9]. In this
paper, we identify the observable order in the context of AMT models. Since the
AMT models provide a rich framework of relations to describe architectures, our
methods apply to a wide class of architectures, thus including TSO, Power, and
ARM. Our results also apply to the recent ARM8 proposal [24, 8] by identifying
the “observed-before” order of that formalisation as the causal order.

Contextual refinement for the C11 memory model is studied by Batty et al. [4].
They consider histories of events constructed using guarantees and deny rela-
tions [11] — guarantees describe happens-before representing synchronisations
internal to a library, whereas denies describe orders that cannot be enforced by
a client due to the internal synchronisations within a library.

The use of happens-before in specifications to aid abstraction based reasoning
has appeared in our prior paper [20]. We provided an order theoretic enhance-
ment of linearisability that addresses TSO, PSO as well as JMM.

In this paper, we have been inspired by a simplified version of [4] (as spe-
cialised to handle the release-acquire atomics of C11) and the methods in our
own prior paper [20]. In common with [20, 4, 10] and in contrast to [7], our defini-
tions maintain the classical atomic and instantaneous view of method executions
in linearisability. In common with all the above papers, we prove abstraction re-
sults. In common with [4], but in contrast with [7], we also prove composition
results.

Acknowledgements. We thank our anonymous reviewers, whose comments have
helped improve this paper.
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Tomáš Fiedor1, Lukáš Holı́k1, Adam Rogalewicz1,
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Abstract. We propose a new method for the automated resource bound analysis
of programs manipulating dynamic data structures built on top of an underlying
shape and resource bound analysis. Our approach first constructs an integer ab-
straction for the input program using information gathered by a shape analyser;
then a resource bound analyzer is run on the resulting integer program. The inte-
ger abstraction is based on shape norms — numerical measures on dynamic data
structures (e.g., the length of a linked list). In comparison to related approaches,
we consider a larger class of shape norms which we derive by a lightweight pro-
gram analysis. The analysis identifies paths through the involved dynamic data
structures, and filters the norms which are unlikely to be useful for the later
bound analysis. We present a calculus for deriving the numeric changes of the
shape norms, thereby generating the integer program. Our calculus encapsulates
the minimal information which is required from the shape analysis.
We have implemented our approach on top of the Forester shape analyser and
evaluated it on a number of programs manipulating various list and tree structures
using the Loopus tool as the underlying bounds analyser. We report on programs
with complex data structures and/or using complex algorithms that could not be
analysed in a fully automated and precise way before.

1 Introduction
Automated resource bound analysis is an active field of research (for an overview we
refer the reader e.g. to [1] and the references therein), which aims at developing tools
and analysis techniques that allow developers to understand the performance of their
code and to verify the resource consumption of their programs in case that bounding
the resource consumption is a crucial correctness requirement.

The research of this paper is partly motivated by the experimental evaluation of
our resource bound analysis tool Loopus [1], where we analysed a large number of C
programs. Loopus computes resource bounds based on the updates to integer variables,
however, has only a limited support for pointers. One of the results of our experiments
was that missing pointer/shape analysis is the most frequent reason for the failure of
Loopus to compute a resource bound. In [1] we report that we obtained bounds for 753
of the 1659 functions in our benchmark (45%), and that by a simple (but unsound) shape
analysis we were able to increase the number of computed bounds to 1185 (71%).

In this paper, we study the automated resource bound analysis of heap-manipulating
programs. We focus on the analysis of data structures as they can be found in systems
code such as operating system kernels, compilers, or embedded systems. Performance is
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a major concern in systems code and has led to the use of customised data structures and
advanced data structures such as, e.g. red-black trees, priority heaps or lock-free linked
lists. These data structures are complex and prone to introducing errors. Thus, auto-
mated tool support promises to increase the reliability of systems and can lead to a bet-
ter user experience. Resource bound analysis of programs with data structures has been
addressed only by a few publications [2,3,4,5,6]. In this paper we improve along several
dimensions on these earlier results allowing the automated resource bounds analysis of
heap-manipulating programs that cannot be handled by existing approaches.

Our approach. Our analysis works in three steps. We first run a shape analysis and
annotate the program with the shape invariants. Then based on numeric information
about the heap using the results from the shape analysis we create a corresponding
integer abstraction of the program. Finally, we perform resource bound analysis purely
on the integer program.

The numeric abstraction is based on shape norms, which are numerical measures
on dynamic data structures (e.g. the length of a linked list). Our first contribution is
the definition of a class of shape norms that express the longest distance between two
points of interest in a shape graph and are defined in terms of basic concepts from graph
theory. Our norms are parameterized by the program under analysis and are extracted
in a pre-analysis (with a possibility of extending the initial set during the subsequent
analysis); the extracted norms then correspond to selector paths found in the program.

Our second contribution is a calculus for our shape norms that allows to derive
how the norms change along a program statement, i.e. if the norm is incremented resp.
decremented or reset to some other expression. The calculus consists of two kinds of
rules. (1) Rules that allow to directly infer the change of a norm and do not need to take
additional information into account. (2) Rules that rely on the preceding shape analysis;
the shape information is used there for (a) dealing with pointer aliasing and (b) deriving
an upper bound on the value of a norm from the result of the shape analysis (if possible).
We point out that the rules (2) encapsulate the points of the analysis where information
about the shape is needed, and thus describe the minimal requirements on the preceding
shape analysis. We believe that this separation of concern also allows the use of other
shape analysers.

When creating the integer abstraction we could use all shape norms that we ex-
tracted from the program. However, we have an additional pre-analysis phase that elim-
inates norms that are not likely to be useful for the later bound analysis. This reduction
of norms has the benefit that it keeps the number of variables in the integer abstraction
small. The smaller number of additional variables increases the readability of the re-
sulting integer abstraction and simplifies the developing and debugging of subsequent
analyses. Additionally, the number of extracted norms can be quadratic in the size of
the program; hence adding quadratically many variables can be prohibitively expensive
and the pre-analysis is therefore crucial to the success of the later bound analysis.

Finally, we perform resource bound analysis on the created integer abstraction. This
design decision has two advantages. First, we can leverage the existing research on
bound analysis for integer programs and do not have to develop a new bound analysis.
Second, being able to analyse not only shape but also integer changes has the advantage
that we can analyse programs which mix integer iterations with data structure itera-
tions; we illustrate this point by analysing the flagship example of [4], which combines
iteration over data-structures and integer loops in an intricate way.
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Implementation and Experiments. The generation of the integer program is imple-
mented on top of the shape analyser Forester [7]. We use the Loopus tool [8,1] for
inferring the computational complexity of the obtained integer abstractions. Our exper-
imental evaluation demonstrates that the combination of these tools can yield a powerful
analysis. We report on results for complex heap manipulating programs that could not
be handled by previous approaches as witnessed by experimental evaluation against the
tools AProVE [9] and COSTA [5]. We remark that our implementation leverages the
strengths of both Forester and Loopus. We inherit the capabilities of Forester to anal-
yse complex data structures, and report on analysis results for double-linked lists, trees,
2-level skip-lists, etc. Moreover, our analysis of shape norms is precise enough to lever-
age the capabilities of Loopus for amortized complexity analysis — we report on the
amortized analysis of the flagship example of [4], whose correct linear bound has to the
best of our knowledge never been inferred fully automatically.

Related work. The majority of the related approaches derive an integer program from an
input heap-manipulating program followed by a dedicated analysis (e.g. termination or
resource bounds) for arithmetic programs. The transformation has to be done conserva-
tively, i.e. the derived integer program needs to simulate the original heap-manipulating
program such that the results for the integer program hold for the original program.
The related approaches differ in the considered numeric measures on the heap, the data
structures that can be analysed and the degree of automation.

Several approaches have targeted restricted classes of data structures such as singly
linked lists [10,11,12,13,14] or trees [15,16]. It is unclear how to generalise these results
to composed or more complex data structures which require different numeric measures
or combinations thereof.

A notable precursor to our work is the framework of [17] implemented in the THOR
tool [18], which describes a general method for deriving integer abstractions of data
structures. The automation of THOR, however, relies on the user for providing the shape
predicates of interest (the implementation only comes with list predicates, further pred-
icates have to be added by the user). Further, we found during initial investigations
that THOR needlessly tracks shape sizes not required for a later termination or bounds
analysis, which can quickly bloat the program under analysis.

A general abstract interpretation-style framework for combining shape and numer-
ical abstract domains is described in [2]. The paper focuses on tracking of partition
sizes, i.e. the only considered norm is the number of elements in a data structure. Our
framework is orthogonal: we can express different norms, e.g. the height of a tree,
which cannot be expressed in [2]; on the other hand, we use numeric information only
in the second stage of the analysis which can be less precise than the reduced product
construction of [2].

An automated approach to amortized complexity analysis of object-oriented heap-
manipulating programs is discussed in [3]. The approach is based on the idea of associ-
ating a potential to (refinements of) data structure classes. Typing annotations allow to
derive a constraint system which is then solved in order to obtain valid potential anno-
tations. The implementation is currently limited to linear resource bounds and appears
to be restricted to list-like data structures.

The idea of using potentials for the analysis of data structures is also investigated
in [4]. The author extends separation logic with resource annotations exploiting the
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idea of separation in order to associate resource units to every memory cell, resulting
in an elegant Hoare-logic for resource analysis. The suggested approach is currently
only semi-automated requiring the user to provide shape predicates and loop invariants
manually.

In [5], the authors propose an automated resource analysis for Java programs, im-
plemented in the COSTA tool. Their technique is based on abstracting arrays into their
sizes and linked structures into the length of the longest chain of pointers terminated
by NULL, followed by the construction and solving of a system of recurrence equations.
However, cyclic lists and more complicated data structures such as DLLs, are, to the
best of our knowledge, out of the capabilities of this technique as they require more
general numeric size measures.

A recent paper investigates the automated resource analysis for Java programs and
reports on its implementation in the AProVE tool [6], based on first translating a pro-
gram to an integer transition system, and then using a bounds analyser to infer the com-
plexity. The technique makes use of a single size-measure which is the number of nodes
reachable from the heap node of interest together with the sum of all reachable integer
cells. This norm is orthogonal to the norms considered in this paper. On the other hand,
the norm of [6] does often not correspond to the size of interest: for example, in case
of an iteration over the top-level list of a list of lists, the relevant norm is the length of
the top-level list and not the number of total data structure elements; similarly in case
of a search in a sorted tree: the relevant size measure is the height of a tree and not the
number of elements. Moreover, it is unclear how the norm of [6] deals with cyclic data
structures; while the number of reachable elements is well-defined, it is unclear if resp.
how the norm changes when a pointer is advanced because the number of reachable
nodes does not change.

Contributions. We summarise our contributions in this paper:

1. In comparison with related approaches we consider a larger class of shape norms.
2. We develop a calculus for deriving the numeric changes of the shape norms. The

rules of our calculus precisely identify the information that is needed from a shape
analyser. We believe that this definition of minimal shape information will be useful
for the development of future resource bound analysis tools.

3. Our norms are not fixed in advance but mined from the program: We define a pre-
analysis that reduces the number of considered norms. To our experience, this re-
duction is very useful during development of the resource analysis and for reporting
the integer abstraction to the user.

4. We demonstrate in an experimental validation that we obtain a powerful analysis
and report on complex data structure iterations that could not be analysed before.

2 A Brief Overview of the Proposed Approach
We are interested in deriving the computational complexity of Algorithm 1, where we
understand the computational complexity as the total number of loop iterations. Our
analysis infers an upper bound of the computational complexity by inferring a bound
for the number of iterations of each loop and summing these loop bounds. The com-
putation of other resource bounds can often be reduced to the computation of loop
bounds in a similar way (we refer the reader to the discussion in [1] for more details).
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1 x = list;
2 y = x;
3 while x 6= NULL do
4 x = x.next;
5 if (*) then
6 while y 6= x do
7 y = y.next;

Algorithm 1: A running exam-
ple with computational complexity
2 · list〈next∗〉NULL = O(n).
* denotes nondeterministic choice.

1 x〈next∗〉NULL = list〈next∗〉NULL;
2 y〈next∗〉x = 0;
3 while x〈next∗〉NULL 6= 0 do
4 x〈next∗〉NULL−−;

y〈next∗〉x++;
5 if (*) then
6 while y〈next∗〉x 6= 0 do
7 y〈next∗〉x−−;

Algorithm 2: A pure integer pro-
gram corresponding to Algorithm 1

We thus limit the discussion in this paper to complexity bounds. A bound here is a
symbolic expression in terms of the program variables. Our implementation computes
complexity bounds with concrete constants—e.g., for Algorithm 1, we infer the bound
2 · list〈next∗〉NULL where list〈next∗〉NULL is a shape norm (we discuss shape norms
in more detail below). For ease of understanding and for comparison with related ap-
proaches, we also state asymptotic complexity bounds, which we obtain by replacing
all shape norms with n, e.g., 2 · list〈next∗〉NULL = O(n).

We now present a brief overview of our approach on Algorithm 1, a simplified
version of list partitioning. The outer loop at line 3 iterates over the single linked list
referenced by the variable list, at line 5 the loop non-deterministically processes the
partition of the list accumulated between variables y and x. We remark that deriving
bounds for Algorithm 1 is challenging because (i) we have to reason not only about the
lists x and y but also about the distance between these two pointers, and (ii) to infer the
precise bound our reasoning must track the distance between x and y precisely rather
than overapproximating it by the worst-case (which would lead to a quadratic bound).
We sketch the main steps of our analysis below.

Shape analysis. The underlying shape analysis is run first. A successful run annotates
each locations of the control-flow graph with a set of shape invariants and provides
a guarantee that no safety violations, like e.g., a NULL pointer dereference, can occur
during the program run. The shape invariants are needed to generate an integer abstrac-
tion of the program. Moreover, they can be leveraged to increase the precision of the
subsequent bounds analysis, e.g., when the length of a path between variables y and x
through the next selector is always constant. If the shape analysis fails, we end the
analysis, as we will lack the necessary information to generate an integer program.

Deriving the candidate norms. We infer suitable candidate norms from the program
control-flow as follows: (1) The loop header conditions define the set of candidate
norms of the form source〈re∗〉destination, where source is a pointer variable, desti-
nation a distinct point (such as NULL or another pointer variable) and re is a placeholder
for a regular expression over pointer selectors, which is filled in the next step. E.g., we
can drive norm x〈re∗〉NULL from the condition x 6= NULL in line 3 of Algorithm 1. We
then derive the set of possible selector paths that may be traversed during the program
run by a lightweight program analysis, in order to build the regular expression re: For
our example we infer that at each iteration of the outer cycle variable x is moved by
the selector next. We thus build the regular expression next∗ and obtain the complete
candidate norm x〈next∗〉NULL.

Analogically, we infer two candidate norms x〈next∗〉y and y〈next∗〉x for the inner
loop at line 6. We thus obtainNc = {x〈next∗〉NULL, x〈next∗〉y, y〈next∗〉x} as the inital
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set of candidate norms to be tracked. Note that this set is only an initial set and can be
further extended during the generation of the integer program: E.g., when one of the
norms µ1 ∈ Nc is reset to a norm µ2 6∈ Nc, µ2 will be added to Nc and tracked.

Arithmetic program generation. For simplicity we consider only the norms µ1 =
x〈next∗〉NULL and µ2 = y〈next∗〉x in our discussion, because these are sufficient to
obtain a precise bound. We first translate the pointer conditions to corresponding inte-
ger conditions: The condition x 6= NULL in line 3 is translated to the condition µ1 6= 0
over norms. Analogically, the condition x 6= y is translated to µ2 6= 0.

We then derive norm updates (increases, decreases, resets) for each pointer instruc-
tion: line 1 resets the norm µ1 to µ3 = list〈next∗〉NULL. We thus add µ3 to the set of
tracked normsNc. The execution of line 4, the instruction x = x→next, decrements
norm µ1 and increments µ2. The instruction at line 7 (in the inner loop) decrements
the value of norm µ2. By preserving the original control flow, but replacing all pointer
instructions by the respective changes in norm values they provoke, we finally obtain
the integer program depicted in Algorithm 2.

Bounds analysis. Finally, we apply the bounds analyser, Loopus [8], to infer a bound
on the number of times that the loops at line 3 and line 6 of the integer abstraction
Algorithm 2 can be iterated during the program run. In the following we comment on
the analysis underlying Loopus (for a detailed description, we refer the reader to [1]
or [19]): The norm x〈next∗〉NULL which decreases on the outer loop is initialized at
line 1 to the norm list〈next∗〉NULL and never reset. Hence the tool infers the bound
list〈next∗〉NULL for the outer loop. The norm y〈next∗〉x which decreases in the inner
loop of the integer program (line 6) is initialized to 0 at line 2, and never reset. However,
at each execution of line 4, y〈next∗〉x is incremented by one (which models the exe-
cution of the statement x = x → next in the concrete program). Since the number of
executions of line 4 is bounded by the number of executions of the outer loop, the norm
y〈next∗〉x is thus incremented at most list〈next∗〉NULL (the bound of the outer loop)
times and hence the overall number of times the norm y〈next∗〉x may be decremented
in the inner loop is bound by list〈next∗〉NULL. The overall complexity of the example
is the sum of both loop bounds, i.e. 2 · list〈next∗〉NULL.

3 Preliminaries

This section introduces the basic notions used, the considered programs, as well as
our requirements on the underlying shape analysis and on the way it should represent
reachable memory configurations and their possible changes.

3.1 Program Model

For the rest of the paper, we will use Vp to denote the set of pointer variables, Vi the set
of integer variables, Sp the set of pointer selectors (or fields) of dynamic data structures,
and Si the set of integer selectors. We assume all these sets to be finite and mutually
disjoint. Let V = Vp ∪Vi be the set of all program variables and S = Sp ∪Si be the set
of all selectors. Finally, let NULL denote the null pointer and assume that NULL 6∈ V∪S.

We consider pointer manipulating program statements from the set STMTSp gener-
ated by the following grammar where x, y ∈ Vp, z ∈ Vp ∪ {NULL} and sel ∈ Sp:
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stmtp ::= x = z | x = y → sel | x→ sel = z |
x = malloc() | free(x) | x == z | x 6= z

Further, we consider integer manipulating program statements from the set STMTSi
generated by the following grammar where x ∈ Vi, y ∈ Vp, sel ∈ Si, c ∈ Z, and f is
an integer operation (more complex statements could easily be added too):

stmti ::= x = op | x = f(op, op) | y → sel = op | x == op | x 6= op

op ::= c | x | y → sel

Finally, we let STMTS = STMTSp ∪ STMTSi.

Control-flow graphs. A control-flow graph (CFG) is a tupleG = (LOC, T, lb, le) where
LOC is a finite set of program locations, T ⊆ LOC × STMTS × LOC is a finite set of
transitions (sometimes also called edges), lb ∈ LOC is the initial (starting) location,
and le ∈ LOC is the final location.

Let G = (LOC, T, lb, le) be a CFG. A path in G of length n ≥ 0 is a sequence of
transitions t0 . . . tn = (l0, st0, l1)(l1, st1, l2) . . . (ln, stn, ln+1) such that ti ∈ T for all
0 ≤ i ≤ n. We denote the set of all such paths by ΦG. For a given location l, we denote
by ΦlG the set of paths where l0 = l. Given locations l1, l2 ∈ LOC, we say l1 dominates
l2 (and denote it by l1 � l2 ) iff all paths to l2 in ΦlbG lead through l1. We call a transition
(l, st, h) ∈ T a back-edge iff h � l. We call the location h a loop header and denote the
set of its back-edges as Th. Further, we denote the set of all loop headers as LH ⊆ LOC.
Note that, for a loop header hn of a loop nested in some outer loop with a loop header
ho, we have ho � hn.

Loops. Given a CFG G = (LOC, T, lb, le) with a set of loop headers LH, a loop L with
a header hL ∈ LH is the sub-CFG L′ = (LOC′, T|LOC′ , hL, hL) where LOC′ = {l ∈
LOC | ∃n ≥ 0 ∃(l0, st0, l1) . . . (ln, stn, ln+1) ∈ ΦG : l0 = ln+1 = hL ∧ (∃0 ≤ i ≤ n :
l = li) ∧ (∀1 ≤ j ≤ n : hL � lj)}, i.e., the set of locations on cyclic paths from hL
(but not crossing the header of any outer loop in which L might be nested), and T|LOC′

is the restriction of T to LOC′. We will denote the set of all program loops as L.

3.2 Memory Configurations

Let Vp, Vi, Sp, and Si be sets of pointer variables, integer variables, pointer selectors,
and integer selectors, respectively, as defined in the previous. We view memory config-
urations, i.e., shapes, as triples s = (M,σ, ν) where (1) M is a finite set of memory
locations, NULL 6∈M ,M∩Z = ∅, (2) σ : (M×Sp →M∪{NULL})∪(M×Si → Z) is
a function defining values of selectors, and (3) ν : (Vp →M ∪{NULL})∪ (Vi → Z) is
a function defining values of program variables. We denote the set of all such shapes by
S . Note that a shape is basically an oriented graph, also called a shape graph, with nodes
fromM ∪Z∪{NULL}, edges labelled by selectors, and some of the nodes referred to by
the program variables. For simplicity, we do not explicitly deal with undefined values
of pointers in what follows. For the purposes of our analysis, they can be considered
equal to null values. If the program may crash due to using them, we assume this to be
revealed by the shape analysis phase.
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We assume that the shape analyser used within our approach works with a set A
of abstract shape representations (ASRs), which can be automata, formulae, symbolic
graphs, etc. This is, each ASRA ∈ A represents a (finite or infinite) set of shapes [[A]] ⊆
S . Allowing for disjunctive abstract representations, we assume that the shape analyser
will label each location of the CFG of a program by a set of ASRs overapproximating
the set of shapes reachable at that location. Moreover, we assume that the shape analyser
introduces a special successor relation between ASRs whenever they label locations
linked by a transition s.t. the statement of the transition may be executed between some
shapes encoded by the ASRs. This leads to a notion of annotated CFGs defined below.

Annotated CFGs. An annotated CFG (ACFG) Γ is a triple Γ = (G,λ, ρ) where G =
(LOC, T, lb, le) is a CFG, λ : LOC → 2A is a function mapping locations to sets
of ASRs generated by the underlying shape analyser for the particular locations, and
ρ ⊆ (LOC × A) × (LOC × A) is a successor relation on pairs of locations and ASRs
where ((l1, A1), (l2, A2)) ∈ ρ iff A1 ∈ λ(l1), A2 ∈ λ(l2), and there is a transition
(l1, st, l2) ∈ T and shapes s1 ∈ [[A1]], s2 ∈ [[A2]] such that st transforms s1 into s2.

4 Numerical Measures on Dynamic Data Structures

Our approach uses a notion of shape norms based on regular expressions that encode
sets of selector paths between some memory locations. Intuitively, we assume that the
program needs to traverse these paths and hence their length determines (or at least
contributes to) the complexity of the algorithm. Typically, one considers selector paths
between two memory locations pointed by some pointer variables or between a location
pointed by a variable and NULL. However, one can also use paths between a source
location pointed by some variable and any location containing some specific data value.

For a concrete memory configuration, the numerical value of a shape norm corre-
sponds to the supremum of the lengths of the paths represented by the regular expression
of the norm. Indeed, in the worst case, the program may follow the longest (possibly
cyclic and hence infinite) path in the memory. However, note that our analysis does usu-
ally not work with concrete values of shape norms since we work with ASRs and hence
need to reason about the values of a given norm over potentially infinite sets of shapes.
Instead, we track relative changes (i.e., increments, decrements) of the norms in a way
consistent with all shapes in a given ASR. An exception to this is the case where the
value of a norm is equal to a constant for all shapes in the ASR (e.g., after the statement
y = x→ next, the distance from x to y via next is always 1).

When analyzing a program, we first infer an initial set of candidate norms Nc (i.e.,
norms potentially useful for establishing resource bounds of the given program) from
the CFG of the program—this set may later be extended if we realize some more norms
may be useful. Subsequently, we derive as precisely as possible the effects (i.e., incre-
ments, decrements, or resets) that particular program statements have on the values of
the candidate norms in shapes represented by the different ASRs obtained from shape
analysis. The obtained set of shape normsNc together with their relative changes could
then be directly used to prove termination and to subsequently derive bounds on the
loops by trying to form lexicographic norm vectors. The values of these vectors should
be lexicographically ordered and have the property that the value is decreased by each
loop iteration. However, we instead useNc to generate a numerical program simulating
the original program, which allows us to leverage the strength of current termination and
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resource bounds analysers for numerical programs as well as to deal with termination
and/or resource bounds arguments combining heap and numerical measures.

Below, we first formalize the notion of shape norms and then describe our approach
to generating the initial set of candidate norms.

4.1 Shape Norms
Let Sp be the set of selectors. In what follows, we will use the set RES of restricted
regular expressions re over Sp defined as follows:

re ::= ru∗ ru ::= sel | ru+ ru sel ∈ S.
Below, the ru sub-expressions are called regular units, sometimes distinguishing se-
lector units (sel) and join units (ru + ru). For re ∈ RES, we denote the language of
selector paths described by re as Lre. Intuitively, when we analyse the control-flow
graph of a program for traversals through selectors, a join unit corresponds to a branch-
ing of the control-flow, and the star expression (re∗) to a loop.

Our notion of selector regular expressions can be extended with concatenation units
(ru.ru) and nested star units (ru∗), corresponding to sequences of unit traversals and
nested loop traversals, respectively. Concatenation units are supported in our tool. How-
ever, since their introduction brings in many (quite technical) corner cases, we limit
ourselves to the join units to simplify the presentation. On the other hand, extending
the techniques below by nested stars seems to be more complicated, and we leave it for
future work. Nevertheless, note that we did not find it much useful in our experiments
as it would correspond to using the same variable as the iterator of several nested loops
(while usually different pointer variables are used as the iterators of the loops).

Let Vp be a set of pointer variables and Si a set of data selectors. We use P =
Vp ∪ {NULL} ∪ {[.data = k] | k ∈ Z, data ∈ Si} to refer to locations of memory
configurations (shapes) of a program. While x ∈ Vp denotes the location that is pointed
by the pointer variable x, and NULL denotes the special null location, [.data = k]
denotes any memory location whose selector data has the value k ∈ Z. A numerical
measure µ on a memory configuration, i.e., a shape norm, is a triple (x, re, y) ∈ Vp ×
RES ×P . We will use N to denote the set of all shape norms, and, further, we will use
x〈ru∗〉y as a shorthand for the triple (x, ru∗, y) ∈ N .

As we have already mentioned above, we are interested in evaluating norms over
ASRs, not over concrete shapes. Moreover, up to the cases where a norm has the same
constant value for all shapes in an ASR, we are not interested in absolute values of the
norms at all, and we instead track changes of the values of the norms only. However, in
order to be able to soundly speak about such changes, we need to first define the value
of a norm for a shape.

We will define the value of norms in terms of graphs. For this, we first define the
notion of the height of a pointed graph. Then we describe how to obtain a pointed graph
for a pair of a shape graph and a norm.

Pointed graphs. A pointed graph G = (N,E, n) consists of a set of nodes N , a set of
directed edges E ⊆ N × N and, a source node n ∈ N . A path π is a finite sequence
of nodes n0, · · · , nl such that (ni, ni+1) ∈ E for all 0 ≤ i < l. We call |π| = l the
length of the path. We say π starts in n if n0 = n. We define the height of G by setting
|G| = sup{|π| | path π starts in n} where we set supD =∞ for an infinite set D ⊆ N.
We note that, for a finite graph G = (N,E, n), we have |G| = ∞ iff there is a cycle
reachable from n.
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Pointed graphs associated to shape graphs and null-terminated norms. We first con-
sider norms µ that end in NULL, i.e, µ = x〈ru∗〉NULL. For a shape s = (M,σ, ν) ∈ S ,
we define the associated pointed graph Gx〈ru

∗〉NULL
s = (M ∪ {NULL}, E, ν(x)) where

E = {(n1, n2) ∈ (M ∪{NULL})× (M ∪{NULL}) | there is path from n1 to n2 in s s.t.
the string of selectors along the path matches the regular expression ru}.

Pointed graphs associated to shape graphs and non-null-terminated norms. We now
consider a norm µ = x〈ru∗〉y with y ∈ P \ {NULL}. For a shape s = (M,σ, ν) ∈ S ,
we set s(y) = {ν(y)} for y ∈ Vp, and s(y) = {m ∈ M | σ(m, data) = k} for
y = [.data = k]. We define the shape s[y/NULL] = (M \ s(y), σ[y/NULL], ν[y/NULL])
where (1) σ[y/NULL](m, sel) = σ(m, sel) ifm 6∈ s(y) and σ[y/NULL](m, sel) = NULL

otherwise, and (2) ν[y/NULL](x) = ν(x) if ν(x) /∈ s(y) and ν[y/NULL](x) = NULL

otherwise. We define the associated pointed graph as Gx〈ru
∗〉y

s = Gx〈ru
∗〉NULL

s[y/NULL] .

Values of shape norms. We are now ready to define values of shape norms in shapes. In
particular, the value of a norm µ ∈ N in a shape s ∈ S , denoted ‖µ‖s, is a value from
the set N ∪ {∞} defined such that ‖µ‖s = |Gµs |. This is, the value of the norm µ in the
shape s is defined as the height of the associated pointed graph.

The intuition behind the above definition is the following. The pointed graph as-
sociated to a norm µ = x〈ru∗〉y makes the instances of the regular expression ru

explicit. The height of the pointed graph corresponds to the longest chain of instances
of the expression ru in the given shape graph. The intuition behind replacing the tar-
gets of norms with NULL stems from the fact that one either reaches the replaced target
(and program will terminate naturally) or reaches the NULL, dereferences it and thus
crashes (hence terminating unnaturally). However, since our method uses the results of
a preceding shape analysis, we can assume memory safety and exclude termination by
crash. In case there exists a cycle in the shape reachable from the source point x, the
value of the norm is infinite. In such a case the norm is unusable for the later complexity
analysis, hinting at the potential non-termination of the program under analysis.

We now generalize the notion of values of norms from particular shapes to ASRs.
The value of a norm µ ∈ N over a set of shapes given by an ASRA ∈ A, denoted ‖µ‖A,
is a value from the set N ∪ {∞, ω} defined such that ‖µ‖A = supω{‖µ‖s | s ∈ [[A]]}
where (i) supωX = ω iff ∞ ∈ X and (ii) supω(X) = supX otherwise. Intuitively,
we need to distinguish the case when some of the represented shapes contains a cyclic
selector path and the case where the ASR represents a set of shapes containing paths of
finite but unbounded length (as, e.g., in the case when the ASR represents all acyclic
lists of any length). Indeed, in the former case, the program may loop over the cyclic
selector path while, in the latter case, it will terminate, but its running time cannot be
bounded by a constant (it is bounded, e.g., by the length of the encountered list).

4.2 Deriving the Set of Candidate Shape Norms Nc

We now discuss how we infer a suitable initial set of norm candidates. Note that this set
is only an initial set of norm candidates that could be useful for inferring the bounds on
the program loops. It is extended when tracking norm changes as discussed in Section 5.
For each program loopLwe derive a set of norm candidates in the following three steps:

1. We inspect all of the conditions of the loop L which involve pointer variables
wrt the program model of Section 3.1 and declare each variable that appears in such
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a condition as relevant. E.g., for our running example Algorithm 1 variables x and y are
declared as relevant due to the condition x 6= y in line line 6.

2. We iterate over all simple loop paths of L (a loop path is any path which stays
inside the loop L, and starts from and returns to the loop header; a loop path is simple
if it does not visit any location twice except for the loop header) and derive a set of
selectors Sx ⊆ Sp for each relevant variable x: Given a simple loop path slp and a
relevant variable x, we perform a symbolic backward execution to compute the effect
of slp on x, i.e., we derive an assignment x = exp such that exp captures how x
is changed when executing slp. For example, for our running example Algorithm 1
we infer x = x → next, y = y for both simple loop paths of the outer loop and
y = y → next, x = x for the single simple loop path of the inner loop. In case exp is
of form x → sel, i.e., the effect of the loop path is dereferencing variable x by some
selector sel ∈ Sp, we add sel to Sx. This basic approach can be easily extended to
handle consecutive dereferences of the same pointer over different selectors: We can
deal with expressions of the form exp = x→ sel1 → sel2 by adding sel1.sel2 to Sx.

3. Finally, we consider all subsets T ⊆ Sx and create norms for each T = {sel1, ...,
sell} using the regular expression join(T ) = sel1+ ...+sell. The candidate normsNL
created for different forms of conditions of the loop L are given in the right column of
Fig. 1. For example, for our running example in Sect. 2, we create norms x〈next∗〉NULL
for the outer cycle, and norms x〈next∗〉y and y〈next∗〉x for the inner loop.

Condition of L Candidate Norms NL
x ◦ y { x〈join(T)∗〉y | T ⊆ Sx}

∪{ y〈join(T)∗〉x | T ⊆ Sx}
x ◦ NULL { x〈join(T)∗〉NULL | T ⊆ Sx}
x→ d ◦ k { x〈join(T)∗〉[.data = k] | T ⊆ Sx}

Fig. 1: Norm candidates NL for a loop L, ◦ ∈ {=, 6=}

The overall set of tracked
norm candidates Nc is set to
the union of norm candidates
over all loops in the program,
i.e. Nc =

⋃
L∈LNL. For each

norm from Nc we track its
size-changes, as we discuss in
Section 5.

Note that we can optimize the size of Nc by pruning irrelevant norms, e.g. those
that never decrease; the concrete heuristics are described in Section 6.2.

5 From Shapes to Norm Changes
In the previous section, we have shown how to derive an initial set of candidate norms
Nc that are likely to be useful for deriving bounds on the number of executions of the
different program loops. This section describes how to derive numerical changes of the
values of these norms, allowing us to derive a numeric program simulating the original
program from the point of view of its runtime complexity. During this process, new
norms may be found as potentially useful, which leads to an extension of Nc and to a
re-generation of the numeric program such that the newly added norms are also tracked.

In the numeric program, we introduce a numeric variable for each candidate norm.
By a slight abuse of the notation, we use the norms themselves to denote the corre-
sponding numeric variables, so, e.g., we will write x〈u∗〉NULL == 0 to denote that the
value of the numeric variable representing the norm x〈u∗〉NULL is zero. The values these
variables may get are from the set N∪{ω} with omega representing an infinite distance
(due to a loop in a shape). In what follows, we assume that any increment/decrement of
ω yields ω again and that ω is larger than any natural number. Note that we do not need
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a special value to represent∞ for describing a finite distance without an explicit bound.
For that, we will simply introduce a fresh variable constrained to be smaller than ω.

The numeric program is constructed using the ACFG Γ = (G,λ, ρ) built on top of
the CFG G = (LOC, T, lb, le) of the original program. The original control flow is pre-
served except that each location l ∈ LOC is replaced by a separate copy for each ASR
labelling it, i.e., it is replaced by locations (l, A) for each A ∈ λ(l). Transitions be-
tween the new locations are obtained by copying the original transitions between those
pairs of locations and ASRs that are related by the successor relation, i.e., a transition
(l1, st, l2) is lifted to ((l1, A1), st, (l2, A2)) whenever ((l1, A1), (l2, A2)) ∈ ρ. Subse-
quently, each pointer-dependent condition labelling some edge in the extended CFG is
translated to a condition on the numeric variables corresponding to the shape norms
fromNc. Likewise, each edge originally labeled by a pointer-manipulating statement is
relabeled by numerical updates of the values of the concerned norm variables. Integer
conditions and statements are left untouched.

Soundness of the abstraction. The translation of the pointer statements described
below is done such that, for any path π in the CFG of a program and the shape s resulting
from executing π, the values of the numeric norm variables obtained by executing the
corresponding path in the numeric program conservatively over-approximate the values
of the norms over s. This is, if the numeric variable corresponding to some norm µ
can reach a value n ∈ N ∪ {ω} through the path π with pointer statements replaced as
described below, then ‖µ‖s ≤ n. As a consequence, we get that every bound obtained
for the integer abstraction is a bound of the original program.

Given the above, the translation of pointer conditions is easy. We translate each
condition x == NULL to a disjunction of tests x〈u∗〉NULL == 0 over all regular
units u such that x〈u∗〉NULL ∈ Nc. Likewise, every condition x == y is translated to
a disjunction of conditions of the form x〈u∗〉y == 0 over all regular units u such that
x〈u∗〉y ∈ Nc. Pointer inequalities are then translated to a negation of the conditions
formed as above, leading to a conjunction of inequalities on numeric norm variables.

Handling data-related pointer tests of the form x→ data == y is more complex.
Consider such a test on an edge starting from a location-ASR pair (l, A). Currently, we
can handle the test in a non-trivial way only if y evaluates to the same constant value in
all shapes represented byA, i.e., if there is some k ∈ N such that ν(y) = k for all shapes
(M,σ, ν) ∈ [[A]]. In this case, the test is translated to a disjunction of conditions of the
form x〈u∗〉[.data = k] == 0 over all regular units u such that x〈u∗〉[.data = k] ∈ Nc.
Otherwise, the test is left out—a better solution is an interesting issue for future work,
possibly requiring more advanced shape analysis and a tighter integration with it. Data-
related pointer non-equalities can then again be treated by negation of the equality test
(provided y evaluates to a constant value).

Finally, after a successful equality test (of any of the above kinds), all numeric
norm variables that appeared in the disjunctive condition used are set to zero. All other
variables (and all variables in general for an inequality test) keep their original value.

Next, we describe how we translate non-destructive, destructive, and data-related
pointer statements other than tests. The translation can lead to decrements, resets, or
increments of the numeric norm variables corresponding to the norms in Nc. In case,
we realize that we need some norm µ′ 6∈ Nc to describe the value of some current can-
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didate norm µ ∈ Nc, we add µ′ into Nc and restart the translation process (in practice,
of course, the results of the previously performed translation steps can be reused). Such
a situation can happen, e.g., whenNc = {x〈next∗〉NULL} and we encounter an instruc-
tion x = list, which generates a reset of the norm x〈next∗〉NULL to the value of the
norm list〈next∗〉NULL. The latter norm is then added into Nc.1

The rules for translating non-destructive, destructive, and data-related pointer up-
dates to the corresponding updates on numeric norm variables are given in Fig. 2, 3,
and 4, respectively. Before commenting on them in more detail, we first make several
general notes. First, values of norms of the form x〈u∗〉x are always zero, and hence we
do not consider them in the rules. Next, let u = sel1 + . . . + seln, n ≥ 1, be a regular
join unit. We will write sel ∈ u iff sel = seli for some 1 ≤ i ≤ n. We denote new
values of norms using an overline, and the old values without an overline. The norms
that are not mentioned in a given rule keep implicitly the same value.

Finally, in rules describing how the value of a norm variable µ is changed by firing
some statement between ASRs A1 and A2, we often use constructions of the form
µ $ expr where expr is an expression on norm variables. This construction constrains
the new value of µ using the current values of norm variables or using directly the ASRs
encountered, depending on what of this is more precise. First, if µ has the same natural
value in all shapes in [[A2]], i.e., if ‖µ‖A2

∈ N, then we let µ = ‖µ‖A2
. Otherwise, if

the value of µ is infinite in A1 and unbounded but finite in A2, i.e., if ‖µ‖A1
= ω and

‖µ‖A2 =∞, we constrain the new value of µ by the constraint µ = v ∧ v <∞ where
v is a fresh numeric variable.2 The same constraint with a fresh variable is used when
‖µ‖A2

=∞ and expr = ω. Otherwise, we let µ = expr.
The described translation allows for sound resource bounds analysis. Indeed, for

each run of the original pointer program, there will exist one run in the derived numeric
program where the norms get exact/overapproximated values. Provided that the under-
lying bounds analyser is sound in that it returns worst case bounds, the bounds obtained
for the numeric program will not be smaller than the bounds of the original program.

5.1 Non-Destructive Pointer Updates

We now comment more on the less obvious parts of the rules for non-destructive pointer
updates from Fig. 2. Concerning the rule for x = NULL, Case 1 reflects the fact that we
always consider all paths from x limited by either the designated target w or, implicitly,
NULL. Hence, after x = NULL, the distance is always 0. Likewise, in Case 1 of x =
malloc(), the distance is always 1 as we assume all fields of the newly allocated cell
to be nullified, and so the paths consist of the newly allocated cell only. Case 2 of
x = malloc() is based on that we assume the newly allocated cell to be unreachable

1 Alternatively, one could use a more complex initial static analysis that would cover, although
may be less precisely, even such dependencies among norms.

2 Intuitively, this case is used, e.g., when µ = x〈n∗〉NULL, and the encountered pointer statement
cuts an ASR representing cyclic lists of any length pointed by x to an ASR representing acyclic
NULL-terminated lists pointed by x. Naturally, when one subsequently starts a traversal of the
list, it will terminate though in an unknown number of steps.
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[x = NULL]
∀w ∈ P, ∀z ∈ Vp \ {x}

x〈u∗〉w = 0 (1)

z〈u∗〉x $ z〈u∗〉NULL (2)

[x = malloc()]
∀w ∈ P \ {x}, ∀z ∈ Vp

x〈u∗〉w = 1 (1)

z〈u∗〉x $ z〈u∗〉NULL (2)

[free(x)]
∀z ∈ Vp, ∀w ∈ P

z〈u∗〉w $

{
z〈u∗〉x AllPathsThr(A1, u, z, w, x))

z〈u∗〉w otherwise

[x = y→n (alias)]
∃v ∈ AliasNext(A1, y, n)
∀w ∈ P ∀z ∈ Vp

x〈u∗〉w $ v〈u∗〉w (1)

z〈u∗〉x $ z〈u∗〉v (2)

[x = y→n (non-unit)]
n /∈ u, ∀w ∈ P, ∀z ∈ Vp

x〈u∗〉w $ ω (1)

z〈u∗〉x $ ω (2)

[x = y→n (unit)]
n ∈ u, x 6= y, ∀t ∈ Alias(A1, y)

∀s ∈ MayAlias(A1, y)
∀w ∈ P \ MayAlias(A1, y)
∀z ∈ Vp \ Alias(A1, y)

t〈u∗〉x $ t〈u∗〉NULL (1)

x〈u∗〉s $ y〈u∗〉NULL − 1 (2)

x〈u∗〉w $ y〈u∗〉w − 1 (3)

z〈u∗〉x $ z〈u∗〉y + y〈u∗〉x (4)
[x = y]

∀z ∈ Vp ∀w ∈ P

x〈u∗〉w $ y〈u∗〉w (1) z〈u∗〉x $ z〈u∗〉y (2)

Fig. 2: Translation rules for non-destructive pointer updates. The rules are assumed to
be applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled
by a non-destructive pointer update with x, y ∈ Vp, n ∈ Sp. For all rules with left-hand
side of form a〈u∗〉b, u ranges over all regular units such that a〈u∗〉b ∈ Nc. If the norms
used on the right-hand side of any of the applied rules is not in Nc, it is added into Nc,
and the analysis is re-run with the new Nc.

from other memory locations, and so any path taken from another memory location
towards x will implicitly be bounded by NULL.3

Concerning the rules for free(x), the predicate AllPathsThr(A, u, z, w, x) holds
iff all paths over selector sequences matching u∗ between the location z and the location
w go through x in all shapes in [[A]]. In this case, clearly, all paths from z tow are shrunk
to paths to x by free(x) as x becomes undefined (which we take as equal to NULL for
our purposes). Otherwise, we take the old value of the norm since it either stays the
same or perhaps gets shorter but in some shapes only.

Concerning the rules for x = y → n, we first note that, if applicable, the “alias”
rule has priority. It is applied when the n-successor of y is pointed by some variable
v in all shapes in [[A1]]. Formally, v ∈ AliasNext(A, y, n) iff ∀(M,σ, ν) ∈ [[A]] :
σ(ν(y), n) = ν(v). Such an alias can be used to define norms based on x by copying
those based on v. Of course, the distance from x to v after the update should be zero,
which is assured by the $ operator. If there is no such v, and n does not match u, we
can only limit the new value of the norm based on the ASR, which is again taken care
by the $ operator (otherwise we take the worst possibility, i.e., ω).

The most complex rule is that for x = y → n when there is no alias for the n-
successor of y, and n matches u. First, note that the rule is provided for the case of
x being a different variable than y only. We assume statements x = x → n to be
transformed to a sequence y = x;x = y → n; for a fresh pointer variable y. In the
rules, we then use the following must- and may-alias sets: Alias(A, y) = {v ∈ Vp |
∀(M,σ, ν) ∈ [[A]] : ν(y) = ν(v)} and MayAlias(A, y) = {v ∈ Vp | ∃(M,σ, ν) ∈
[[A]] : ν(y) = ν(v)}.

Concerning Case 1, note that u can be a join unit and u∗ can match several paths
from y that need not go to the new position of x at all (and hence can stop only when
reaching NULL), or they can go there, but as there is no variable pointing already to the

3 We assume that the preceding shape analysis will discover potential problems with a location
being freed and re-allocated with some dangling pointers still pointing to it (the ABA problem).
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[x→n = NULL (unit)]
n ∈ u, ∀z ∈ Vp, ∀w ∈ P

z〈u∗〉w $

{
z〈u∗〉x + 1 AllPathsThrFld(A1, u, z, w, x, n)

z〈u∗〉w otherwise

[x→n = y (unit)]
n ∈ u, ∀s1 ∈ Alias(A1, x), ∀s2 ∈ MayAlias(A1, x)
∀t1 ∈ Alias(A1, y), ∀t2 ∈ MayAlias(A1, y)
∀w ∈ P \ (Alias(A1, x) ∪ Alias(A1, y))

∀z ∈ Vp \ (MayAlias(A1, x) ∪ MayAlias(A1, y))

s1〈u∗〉t1 $ s1〈u
∗〉t1 (1)

s2〈u∗〉w $

{
ω BadLoopClosed(A2, u, y, x, w)

s2〈u∗〉y + y〈u∗〉w otherwise
(2)

t2〈u∗〉w $

{
ω BadLoopClosed(A2, u, y, x, w)

t2〈u
∗〉w otherwise

(3)

z〈u∗〉w $


z〈u∗〉x + x〈u∗〉w AllPathsThr(A2, u, z, w, x))

max
(
z〈u∗〉x + x〈u∗〉w, z〈u∗〉w

)
SomePathsThr(A2, u, z, w, x))

z〈u∗〉w otherwise
(4)

Fig. 3: Translation rules for destructive pointer updates. The rules are assumed to be
applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled by
a destructive pointer update with x, y ∈ Vp, n ∈ Sp. The treatment of the regular units
u is the same as in Fig. 2.

new position of x, we anyway have to approximate such paths by extending them up to
NULL. The case when the only path to x is via n will then be solved by the $ operator.
The must aliases of y can naturally be treated in an equal way as y in the above.

In Case 2, start by considering paths from x to y. Since we have no alias of the n-
successor of y that could help us define the value of the norm, we have to approximate
the distance from x to y by extending the paths from x up until NULL. Further note
that such paths are a subset of those from y to NULL (since the new position of x is
a successor of y). We can thus use y〈u∗〉NULL to approximate x〈u∗〉NULL. However,
we can constrain the latter distance to be smaller by one. Indeed, if the longest path
from y to NULL does not go through the new position of x, the distance from x to NULL

is at least by one smaller. On the other hand, if the longest path goes through the new
position of x, then we save the step from y to the new position of x. The same reasoning
then applies for any variable that may alias y—for those that cannot alias it, one can do
better as expressed in the next case.

In Case 3, one can use a similar reasoning as in Case 2 as the paths from y to
w include those from the new position of x to w. Note, however, that this reasoning
cannot be applied when y may alias with w. In such a case, their distance may be zero,
and the distance from the new position of x to w can be bigger, not smaller. Finally, to
see correctness of Case 4, note that should there be a longer path over u from z to the
n-successor of y than going through y, this longer path will be included into the value
of the norm for getting from z to y too since the norm takes into account all u paths
either going to y or missing it and then going up until NULL (or looping).

The intuition behind the rule for x = y is similar to the other statements.

5.2 Destructive Pointer Updates
We now proceed to the rules for destructive pointer statements shown in Fig. 3. We start
with the translation for the statement x→ n = NULL, considering the case of n being a
unit, i.e., n ∈ u. After this statement, the distance from any source memory location z
to any target memory location w either stays the same or decreases. The latter happens
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[x→d = y (data-const)]
∃k ∈ Z : ValIsConst(A1, y, k), ∀z ∈ Vp \ {x}, ∀l ∈ Z \ {k}

x〈u∗〉[.d = k] = 0 (1)

x〈u∗〉[.d = l] $

{
x〈u∗〉NULL ValMayBe(A1, x, d, l)

x〈u∗〉[.d = l] otherwise
(2)

z〈u∗〉[.d = k] $

{
z〈u∗〉x AllPathsThr(A1, u, z, [.d = k], x)

z〈u∗〉[.d = k] otherwise
(3)

z〈u∗〉[.d = l] $

{
z〈u∗〉NULL ValMayBe(A1, x, d, l)

z〈u∗〉[.d = l] otherwise
(4)

[x→d = y (data-unknown)]
(¬∃k ∈ Z : ValIsConst(A1, y, k)), ∀z ∈ Vp, ∀l ∈ Z

z〈u∗〉[.d = l] $


z〈u∗〉[.d = l] z〈u∗〉[.d = l] < z〈u∗〉x
z〈u∗〉[.d = l] ¬ValMayBe(A1, x, d, l)

z〈u∗〉NULL

Fig. 4: Translation rules for data-related pointer updates. The rules are assumed to be
applied between location-ASR pairs (l1, A1) and (l2, A2) linked by an edge labelled by
a data-related pointer update with x ∈ Vp, y ∈ Vi, d ∈ Si. The treatment of the regular
units u is the same as in Fig. 2.

when the changed n-selector of x influences the longest previously existing path from z
to w. Identifying this case in general is difficult, but one can reasonably recognise it in
common ASRs at least in the situation when all paths between z and w whose selector
sequences match u∗ go through the n-selector of the memory location marked by x in
all shapes represented by the ASR A1, i.e., [[A1]]. We denote this fact by the predicate
AllPathsThrFld(A1, u, z, w, x, n). In this case, the new distance between z and w
clearly corresponds to the old distance between z and x plus one (for the step from x to
NULL). In all other cases, we conservatively keep the old value of the distance (up to it
can be reduced by the $ operator as usual).

Concerning the statement x → n = y, the distance between x and y (and their
aliases) can stay the same or get shortened. In Case 1 of the rule for this statement,
the latter is reflected in the use of the $ operator. In Case 2, we use the predicate
BadLoopClosed(A2, u, y, x, w) to denote a situation when the statement x → n = y
closes a loop (over the u selectors) in at least some shape represented by A2 such that
w does not appear in between of y and x in the loop. Naturally, in such a case, the
distance between x (or any of its may-aliases) and w is set to ω. Note that the may-alias
is needed in this case since it is enough that this problematic situation arises even in
one of the concerned shapes. As for correctness of the other variant of Case 2, note that
if there are paths over u∗ from x to w not passing through y, they will be covered by
x〈u∗〉y, which will consider such paths extended up until NULL. In Case 3, note that if
the loop is not closed, then the paths from y to w are not influenced.

In Case 4, if all paths from z to w in the shapes represented by A2 go through x, we
can take the original distance of z and x, which does not change between A1 and A2 as
the change happens after x, and then add the new distance from x to w. If no path from
z to w passes x, the distance is not influenced by the statement. If some but not all of
the paths pass x, we have to take the maximum of the two previous cases.

As for non-unit cases of the above two statements, i.e., the case when n 6∈ u, the
norms do not change since the paths over u∗ do not pass the changed selector.

5.3 Data-Related Pointer Updates

Our rules for translating data-related pointer updates are given in Fig. 4. The first of
them applies in case the value being written into the data field d of the memory location
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pointed by x is constant over all shapes represented by the ASR A1, i.e., if there is
some constant k ∈ Z such that ∀(M,σ, ν) ∈ [[A]] : ν(y) = k. This fact is expressed by
the ValIsConst(A1, y, k) predicate. In this case, after the statement x → d = y, the
distance from x to a data value k becomes clearly zero. Case 2 captures the fact that if
the d-field of x may be l in at least one shape represented by A1, i.e., if ∃(M,σ, ν) ∈
[[A]] : ν(y) = l, which is expressed by the ValMayBe(A1, x, d, l) predicate, the new
distance of x to a data value l is approximated by its distance to NULL. The reason is
that the old data value is re-written, and one cannot say whether another data field with
the value l may be reached before one gets to NULL. Otherwise, the norm keeps its
original value. Case 3 covers the distance from a location z other than x to a data value
k. This distance clearly stays the same or can get shorter after the statement. We are
able to safely detect the second scenario when all paths from z to a data value k lead
through x. In that case, the distance from z to a data value k shrinks to that from z to
x. Otherwise, we conservatively keep the norm value unchanged. Finally, Case 4 is an
analogy of Case 2.

In case the value being written through a data selector is not constant, which is
covered by the second rule of Fig. 4, our approach is currently rather conservative. We
keep the original value of the norms between z and a data value l if either this data
value is always reached from z before x is reached (the norm takes into account the
first occurrence of the data value) or if the re-written value of the data field d of x is not
l in any of the shapes represented by A1 (and hence the original value of the norm is
not based on the distance to this particular field). In such a case, the distance between z
and the data value l does surely not change. Otherwise, we conservatively approximate
the new distance between z and the data value l by the distance over paths matching u∗

from z up until NULL.
The stress on handling constant values of data may seem quite restricted, but it may

still allow one to verify a lot of interesting programs. The reason is that often the pro-
grams use various important constants (like 0) to steer their control flow. Moreover, due
to data-independence, it is often enough to let programs work with just a few constant
values—c.f., e.g., [20,21,22] where just a few data values (“colors”) are used when
checking various advanced properties of dynamic data structures. Still a better support
of data is an interesting issue for future work.

6 Implementation and Experiments

We have implemented our method in a prototype tool called RANGER. The implemen-
tation is based on the Forester shape analyser [23,22], which represents sets of memory
shapes using so-called forest automata (FAs). As a back-end bounds analyser for the
generated numeric programs, we use the Loopus tool [8]. We evaluated RANGER on
a set of benchmarks including programs manipulating various complex data structures
and requiring amortized reasoning for inferring precise bounds. The experimental re-
sults we obtained are quite encouraging and show that we were able to leverage both
the precise shape analysis of complex data structure provided by Forester as well as
the amortized analysis of loop bounds provided by Loopus and for the first time fully-
automatically and precisely analyse some challenging programs.
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In the rest of the section, we first briefly introduce the Forester tool in some more
detail and discuss how we implemented our approach on top of it. Next, we mention
various further optimizations we included into the implementation. Then, we present
the experiments we performed and their results.

6.1 Implementation on Top of Forester

The Forester shape analyser represents particular shapes by decomposing them into tu-
ples of tree components, and hence forests. In particular, each memory location that is
NULL, pointed by a pointer variable, or that has multiple incoming pointers becomes
a so-called cut-point. Shape graphs are cut into tree components at the cut-points, and
each cut-point becomes the root of one of the tree components. Leaves of the tree com-
ponents may then refer back to the roots, which can be used to represent both loops in
the shapes as well as multiple paths leading to the same location. Of course, Forester
does not work with particular shapes but with sets of shapes. This leads to a need of
dealing with tuples of sets of tree components, which are finitely represented using fi-
nite tree automata (TAs). A tuple of TAs then forms an FA, which we use as the ASR
in our implementation.

Hence, we need to be able to implement all the operations used on ASRs in the
previous section on FAs. Fortunately, it turns out that this is not at all difficult.4 In par-
ticular, we can implement the various operations by searching through the particular
TAs of an FA, following the TA transitions that match the relevant unit expressions.5

We can then, e.g., easily see whether the distance between some memory locations is
constant, finite but unbounded, or infinite. It is constant if the given memory locations
are linked by paths in the structure of the involved automata that are of the given con-
stant length. It is finite but unbounded if there is a loop in the TA structure in between
the concerned locations (allowing the TA to accept a sequence of any finite length).
Finally, the distance is infinite if some path from the source location leads—while not
passing through the target location—to some of the roots, which is then in turn refer-
enced back from some leaf node reachable from it. Likewise, one can easily implement
checks whether all paths go (or at least some path goes) through some location, whether
some variables are aliased (in Forester, this simply corresponds to the variables being
associated with the same root), or whether a loop is closed by some destructive update
(which must create a reference from a leaf back to a loop).

6.2 Optimizations of the Basic Approach

In RANGER, we use several heuristic optimizations to reduce the size of the generated
numeric program. First, we do not translate each pointer statement in isolation as de-
scribed in Section 5. Instead, we perform the translation per basic blocks. Basically, we
take the blocks written in the static single assignment form, translate the statements in
the blocks as described in Section 5, and then perform various standard simplifications

4 Based on our experience with other representations of sets of shapes, such as separation logic
or symbolic memory graphs, we believe that it would not be difficult with other shape repre-
sentations either.

5 In RANGER, we support even concatenation units to some degree, which requires us to look at
sequences of TA transitions to match a single unit.

222 T. Fiedor et al.



of the generated numeric constraint (evaluation of constant expressions, copy propaga-
tion, elimination of variables) using the SMT solver Z3 [24]. In our experience, the size
of the generated numeric program can be significantly reduced this way.

Our second optimization aims at reducing the number of tracked norms. For that,
we use a simple heuristic exploiting the underlying shape analysis and the principle of
variable seeding [14]. Basically, for each pointer variable x used as a source/target of
some norm inNc, we create a shadow variable x′, and remember the position of x at the
beginning of a loop by injecting a statement x′ = x before the loop. We then use our
shape analyser on the extended code to see whether the given variable indeed moves
towards the appropriate target location when the loop body is fired once. If we can
clearly see that this is not the case due to, e.g., the variable stays at the same location,
we remove it fromNc. For illustration, in our example from Section 2, we generate two
norms y〈next∗〉x and x〈next∗〉y for the loop at line 6. Using the above approach, we
can see that x is never moved, x〈next∗〉y is never decreased, and so we can discard it.
Moreover, we check which norms decrease at which loop branches (or, more precisely,
that cannot be excluded to decrease) and prune away norms that decrease only when
some other norm is decreased—we say that such a norm is subsumed.

Finally, we reduce the size of the resulting numeric program by taking into account
only those changes (resets, increments, and decrements) of the norms whose effect can
reach the loop for whose analysis the norm is relevant. For that, we use a slight adapta-
tion of the reset graphs introduced in [1].

6.3 Experimental Evaluation
Our experiments were performed on a machine with an Intel Core i7-2600@3.4 GHz
processor and 32 GiB RAM running Debian GNU/Linux. We compared our prototype
RANGER with two other tools: APROVE and COSTA. These two tools are, to the best
of our knowledge, the closest to RANGER and represent the most recent advancements
in bounds analysis of heap-manipulating programs. However, note that both of the tools
work over the Java bytecode, and thus we had to translate our benchmarks to Java. For
our tool, we report three times — the running times of the shape analysis of Forester
(SA), generation of the integer program (IG), and bounds analysis in Loopus (BA). For
the other tools, we report times as reported by their web interface6.

Further, from the outputs of the tools, we extracted the reported complexity of the
main program loop, and, if needed, simplified the bounds to the big O notation. We
remark that COSTA uses path-based norms (i.e. a subset of our norms), so it is di-
rectly comparable with RANGER. APROVE, however, uses norms based on counting
all reachable elements, and is therefore orthogonal to us. But, their norm is always big-
ger than our norms, thus if it reports an equal or bigger computational complexity we
can meaningfully compare the results.

The results are summarized in Table 1. We use TIMEOUT(60S) if a time-out of
60 seconds was hit, ERROR if the tool failed to run the example7, and UNKNOWN if
the tool could not bound the main loop of the example. We divided our benchmarks
to three distinct categories. The BASIC category consists of simple list structures —
Single-Linked Lists (SLL), Circular Single-Linked Lists (CSLL). In the ADVANCED

6 We could not directly compare the tools on the same machine due to the tool availability issues.
7 However, we verified that all our examples are syntactically correct.
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Table 1: Experimental results.
Benchmark Short description Real bounds RANGER APROVE COSTA

Bound SA IG BA Bound Time(web) Bound Time(web)

BASIC

SLL-CST Constant-length SLL Traversal O(1) O(1) 0.002s 0.023s 0.011s O(1) 3.664s O(n) 0.251s
SLL SLL Traversal O(n) O(n) 0.012s 0.087s 0.040s O(n) 6.434s O(n) 0.441s
SLL-NESTED SLL with non-reset nested traversal O(n) O(n) 0.027s 0.256s 0.057s O(n) 6.361s O(n2) 1.582s
SLL-INT SLL Traversal with int combination O(n) O(n) 0.037s 0.275s 0.057s O(n) 8.945s O(n) 0.921s
CSLL CSLL Traversal O(n) O(n) 0.013s 0.086s 0.032s ERROR UNKNOWN 0.383s
CSLL-NT Non-terminating CSLL Traversal O(∞) O(∞) 0.003s 0.001s 0.011s ERROR UNKNOWN 0.843s

ADVANCED STRUCTURES

DLL-NEXT Forward DLL Traversal O(n) O(n) 0.034s 0.518s 0.036s O(n) 5.954s UNKNOWN 0.657s
DLL-PREV Backward DLL Traversal O(n) O(n) 0.031s 0.181s 0.044s O(n) 6.459s UNKNOWN 0.712s
DLL-NT Non-terminating DLL Traversal O(∞) O(∞) 0.011s 0.004s 0.024s ERROR UNKNOWN 0.684s
DLL-INT Forward DLL Traversal with int combination O(n) O(n) 0.044s 0.654s 0.044s O(n) 5.723s UNKNOWN 0.946s
DLL-PAR Parallel Forward and Backward DLL Traversal O(n) O(n) 0.058s 0.510s 0.069s ERROR UNKNOWN 0.668s
BUTTERFLY Terminating Butterfly Loop O(n) O(n) 0.005s 0.054s 0.024s O(n) 7.389s O(n) 0.883s
BUTTERFLY-INT Terminating Butterfly Loop with int combination O(n2) O(n2) 0.026s 0.198s 0.059s O(n)∗ 3.513s UNKNOWN 0.899s
BUTTERFLY-NT Non-terminating Butterfly Loop O(∞) O(∞) 0.005s 0.090s 0.015s O(n)∗ 7.768s UNKNOWN 1.701s
BST-DOUBLE Leftmost BST Traversal with nested Rightmost O(n2) O(n2) 25.147s 12.523s 0.203s O(n2)∗∗ 14.547s UNKNOWN 3.004s
BST-LEFT Leftmost BST Traversal O(n) O(n) 2.947s 7.321s 0.171s O(n)∗∗ 13.335s UNKNOWN 2.476s
BST-RIGHT Rightmost BST Traversal O(n) O(n) 2.895s 5.779s 0.168s O(n)∗∗ 13.007s UNKNOWN 2.457s
BST-LR Random BST Traversal O(n) O(n) 3.331s 7.010s 0.188s O(n)∗∗ 14.488s UNKNOWN 2.619s
2-LVL SL-L1 2-lvl Skip-list Traversal via lvl1 O(n) O(n) 0.309s 0.837s 0.036s ERROR UNKNOWN 1.449s
2-LVL SL-L2 2-lvl Skip-list Traversal via lvl2 O(n) O(n) 0.096s 0.526s 0.042s ERROR UNKNOWN 1.442s

ADVANCED ALGORITHMS

FUNCQUEUE Queue implemented by two SLLs O(n) O(n) 0.046s 0.519s 0.136s O(n) 8.222s UNKNOWN 4.808s
PARTITIONS SLL Partitioning (from Sec 2) O(n) O(n) 0.094s 0.729s 0.059s O(n2) 8.526s O(n2) 7.047s
INSERTSORT Insert Sort on SLL O(n2) O(n2) 0.041s 0.288s 0.051s O(n2) 6.453s O(n2) 0.904s
MERGEINNER Showcase example of Atkey [4] O(n) O(n) 3.589s 14.080s 1.502s O(n2) 57.935s TIMEOUT(60S)

STRUCTURES category, we infer bounds for programs on more complex structures —
Binary Trees (BST), Double-Linked Lists (DLL), and even 2-level skip-lists (2-LVL
SL). The last category ADVANCED ALGORITHMS includes experiments with various
more advanced algorithms, including show cases taken from related work.

In benchmarks marked with (*), APROVE returned an incorrect bound in our exper-
iments. Further, in benchmarks marked with (**), we obtained different bounds from
different runs of APROVE even though it was run in exactly the same way. In both
cases, we were unable to find the reason. Moreover, we remark that while the mea-
sured times show that RANGER is mostly faster, the measured times of APROVE and
COSTA may be biased by using different target machines and implementations of the
benchmarks (C vs Java).

The results confirm that our approach, conceived as highly parametric in the under-
lying shape and bounds analyses, allowed us to successfully combine an advanced shape
analysis with a state-of-the-art implementation of amortized resource bounds analysis.
Due to this, we were able to fully automatically derive tight complexity bounds even
over data structures such as 2-level skip-lists, which are challenging even for safety
analysis, and to get more precise and tight bounds for algorithms like PARTITIONS or
FUNCQUEUE, which require amortized reasoning to get the precise bound. The most
encouraging result is the fully automatically computed precise linear bound for the
mergeInner method [4]. While APROVE was able to process the example, it was
still not able to infer the precise interplay between the traversals of the involved SLL
partitions and numeric values needed to compute the precise linear bound.

Of course, our path-based norms do have their limitations too. They are, e.g., not
sufficient to verify algorithms like the Deutsch-Schorr-Waite tree traversal algorithm or
tree destruction algorithms, which could probably be verified using size-based norms,
based on counting all memory locations reachable from a given location. We thus see an
approach combining such norms (perhaps with suitably bounded scope) with our norms
as an interesting direction of future research along with a better support of norms based
on data stored in dynamic data structures.

224 T. Fiedor et al.



References
1. Sinn, M., Zuleger, F., Veith, H.: Complexity and resource bound analysis of imperative

programs using difference constraints. J. Autom. Reasoning 59(1) (2017) 3–45
2. Gulwani, S., Lev-Ami, T., Sagiv, M.: A combination framework for tracking partition sizes.

In: Proc. of POPL’09. (2009) 239–251
3. Hofmann, M., Rodriguez, D.: Automatic type inference for amortised heap-space analysis.

In: Proc. of ESOP’13. Number 7792 in LNCS, Springer (2013)
4. Atkey, R.: Amortised resource analysis with separation logic. Logical Methods in Computer

Science 7(2) (2011)
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Abstract. Program analysis requires the generation of program prop-
erties expressing conditions to hold at intermediate program locations.
When it comes to programs with loops, these properties are typically
expressed as loop invariants. In this paper we study a class of multi-path
program loops with numeric variables, in particular nested loops with
conditionals, where assignments to program variables are polynomial ex-
pressions over program variables. We call this class of loops extended
P-solvable and introduce an algorithm for generating all polynomial in-
variants of such loops. By an iterative procedure employing Gröbner
basis computation, our approach computes the polynomial ideal of the
polynomial invariants of each program path and combines these ideals
sequentially until a fixed point is reached. This fixed point represents
the polynomial ideal of all polynomial invariants of the given extended
P-solvable loop. We prove termination of our method and show that the
maximal number of iterations for reaching the fixed point depends lin-
early on the number of program variables and the number of inner loops.
In particular, for a loop with m program variables and r conditional
branches we prove an upper bound of m · r iterations. We implemented
our approach in the Aligator software package. Furthermore, we eval-
uated it on 18 programs with polynomial arithmetic and compared it to
existing methods in invariant generation. The results show the efficiency
of our approach.

1 Introduction

Reasoning about programs with loops requires loop invariants expressing prop-
erties that hold before and after every loop iteration. The difficulty of generat-
ing such properties automatically comes from the use of non-linear arithmetic,
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unbounded data structures, complex control flow, just to name few of the rea-
sons. In this paper we focus on multi-path loops with numeric variables and
polynomial arithmetic and introduce an automated approach inferring all loop
invariants as polynomial equalities among program variables. For doing so, we
identify a class of multi-path loops with nested conditionals, where assignments
to program variables are polynomial expressions over program variables. Based
on our previous work [4], we call this class of loops extended P-solvable. Com-
pared to [4] where only single-path programs with polynomial arithmetic were
treated, in this paper we generalize the notion of extended P-solvable loops to
multi-path loops; single-path loops being thus a special case of our method.

For the class of extended P-solvable loops, we introduce an automated ap-
proach computing all polynomial invariants. Our work exploits the results of [17,9]
showing that the set of polynomial invariants forms a polynomial ideal, called
the polynomial invariant ideal. Hence, the task of generating all polynomial in-
variants reduces to the problem of generating a basis of the polynomial invariant
ideal. Following this observation, given an extended P-solvable loop with nested
conditionals, we proceed as follows: we (i) turn the multi-path loop into a se-
quence of single-path loops, (ii) generate the polynomial invariant ideal of each
single-path loop and (iii) combine these ideals iteratively until the polynomial
invariant ideal of the multi-path loop is derived.

A crucial property of extended P-solvable loops is that the single-path loops
corresponding to one path of the multi-path loop are also extended P-solvable.
For generating the polynomial invariant ideal of extended P-solvable single-path
loops, we model loops by a system of algebraic recurrences, compute the closed
forms of these recurrences by symbolic computation as described in [4] and
compute the Gröbner basis of the polynomial invariant ideal from the system
of closed forms. When combining the polynomial invariant ideals of each ex-
tended P-solvable single-path loop, we prove that the “composition” maintains
the properties of extended P-solvable loops. Further, by exploiting the algebraic
structures of the polynomial invariant ideals of extended P-solvable loops, we
prove that the process of iteratively combining the polynomial invariant ideals
of each extended P-solvable single-path loop is finite. That is, a fixed point is
reached in a finite number of steps. We prove that this fixed point is the poly-
nomial invariant ideal of the extended P-solvable loop with nested conditionals.
We also show that reaching the fixed point depends linearly on the number of
program variables and the number of inner loops. In particular, for a loop with
m program variables and r inner loops (paths) we prove an upper bound of
m · r iterations. The termination proof of our method implies the completeness
of our approach: for an extended P-solvable loop with nested conditionals, our
method computes all its polynomial invariants. This result generalizes and cor-
rects the result of [10] on programs for more restricted arithmetic than extended
P-solvable loops. Our class of programs extends the programming model of [10]
with richer arithmetic and our invariant generation procedure also applies to [10].
As such, our proof of termination also yields a termination proof for [10].
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We implemented our approach in the open source Mathematica package Ali-
gator and evaluated our method on 18 challenging examples. When compared
to state-of-the-art tools in invariant generation, Aligator performed much bet-
ter in 14 examples out of 18.

The paper is organized as follows: We start by giving the necessary details
about our programming model in Section 2.1 and provide background about
polynomial rings and ideals in Section 2.2. In Section 3.1 we recall the notion of
extended P-solvable loops from [4]. The lemmas and propositions of Section 3.2
will then help us to prove termination of our invariant generation procedure in
Section 3.3. Finally, Section 4 describes our implementation in Aligator, to-
gether with an experimental evaluation of our approach.

Related Work. Generation of non-linear loop invariants has been addressed in
previous research. We discuss here some of the most related works that we are
aware of.

The methods of [11,18] compute polynomial equality invariants by fixing an
a priori bound on the degree of the polynomials. Using this bound, a template
invariant of fixed degree is constructed. Properties of polynomial invariants, e.g.
inductiveness, are used to generate constraints over the unknown coefficients
of the template coefficients and these constraints are then solved in linear or
polynomial algebra. An a priori fixed polynomial degree is also used in [16,2].
Unlike these approaches, in our work we do not fix the degree of polynomial
invariants but generate all polynomial invariants (and not just invariants up
to a fixed degree). Our restrictions come in the programming model, namely
treating only loops with nested conditionals and polynomial arithmetic. For such
programs, our approach is complete.

Another line of research uses abstract interpretation in conjunction with
recurrence solving and/or polynomial algebra. The work of [17] generates all
polynomial invariants of so-called simple loops with nested conditionals. The
approach combines abstract interpretation with polynomial ideal theory. Our
model of extended P-solvable loops is much more general than simple loops, for
example we allow multiplication with the loop counter and treat algebraic, and
not only rational, numbers in closed form solutions. Abstract interpretation is
also used in [3,12,7] to infer non-linear invariants. The programming model of
these works handle loops whose assignments induce linear recurrences with con-
stant coefficients. Extended P-solvable loops can however yield more complex
recurrence equations. In particular, when comparing our work to [7], we note
that the recurrence equations of program variables in [7] correspond to a sub-
class of linear recurrences with constant coefficients: namely, recurrences whose
closed form representations do not include non-rational algebraic numbers. Our
work treats the entire class of linear recurrences with constant coefficients and
even handles programs whose arithmetic operations induce a class of linear re-
currences with polynomial coefficients in the loop counter. While the non-linear
arithmetic of our work is more general than the one in [7], we note that the
programming model of [7] can handle programs that are more complex than the
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ones treated in our work, in particular due to the presence of nested loops and
function/procedure calls. Further, the invariant generation approach of [7] is
property-guided: invariants are generated in order to prove the safety assertion
of the program. Contrarily to this, we generate all invariants of the program and
not only the ones implying the safety assertion.

Solving recurrences and computing polynomial invariant ideals from a system
of closed form solution is also described in [9]. Our work builds upon the results
of [9] but generalizes [9] to extended P-solvable loops. Moreover, we also prove
that our invariant generation procedure terminates. Our termination result gen-
eralizes [10] by handling programs with more complex polynomial arithmetic.
Furthermore, instead of computing the invariant ideals of all permutations of
a given set of inner loops and extending this set until a polynomial ideal as a
fixed point is reached, we generate the polynomial invariant ideal of just one
permutation iteratively until we reach the fixed point. As a result we have to
perform less Gröbner basis computations in the process of invariant generation.

A data-driven approach to invariant generation is given in [20], where con-
crete program executions are used to generate invariant candidates. Machine
learning is then used to infer polynomial invariants from the candidate ones. In
our work we do not use invariant candidates. While the program flow in our
programming model is more restricted then [20], to the best of our knowledge,
none of the above cited methods can fully handle the polynomial arithmetic of
extended P-solvable loops.

2 Preliminaries

2.1 Programming Model and Invariants

Let K be a computable field of characteristic zero. This means that addition and
multiplication can be carried out algorithmically, that there exists an algorithm
to test if an element in K is zero, and that the field of rational numbers Q is a
subfield of K. For variables x1, . . . , xn, the ring of multivariate polynomials over
K is denoted by K[x1, . . . , xn], or, if the number of variables is clear from (or
irrelevant in) the context, by K[x]. Correspondingly, K(x1, . . . , xm) or K(x) de-
notes the field of rational functions over K in x1, . . . , xm. If every polynomial in
K[x] with a degree ≥ 1 has at least one root in K, then K is called algebraically
closed. An example for such a field is Q, the field of algebraic numbers. In con-
trast, the field of complex numbers C is algebraically closed, but not computable,
and Q is computable, but not algebraically closed. We suppose that K is always
algebraically closed. This is not necessary for our theory, as we only need the
existence of roots for certain polynomials, which is achieved by choosing K to be
an appropriate algebraic extension field of Q. It does, however, greatly simplify
the statement of our results.

In our framework, we consider a program B to be a loop of the form

while . . . do
B′

end while
(1)
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where B′ is a program block that is either the empty block ε, an assignment vi =
f(v1, . . . , vm) for a rational function f ∈ K(x1, . . . , xm) and program variables
v1, . . . , vm, or has one of the composite forms

sequential inner loop conditional

while . . . do if . . . then
B1;B2 B1 B1 else B2

end while end if

for some program blocks B1 and B2 and the usual semantics. We omit conditions
for the loop and if statements, as the problem of computing all polynomial
invariants is undecidable when taking affine equality tests into account [11].
Consequently, we regard loops as non-deterministic programs in which each block
of consecutive assignments can be executed arbitrarily often. More precisely,
grouping consecutive assignments into blocks B1, . . . , Br, any execution path of
B can be written in the form

Bn1
1 ;Bn2

2 ; . . . ;Bnr
r ;B

nr+1

1 ;B
nr+2

2 ; . . .

for a sequence (ni)i∈N of non-negative integers with finitely many non-zero el-
ements. To that effect, we interpret any given program (1) as the set of its
execution paths, written as

B = (B∗1 ;B∗2 ; . . . ;B∗r )∗.

We adapt the well-established Hoare triple notation

{P}B{Q}, (2)

for program specifications, where P and Q are logical formulas, called the pre-
and postcondition respectively, and B is a program. In this paper we focus on
partial correctness of programs, that is a Hoare triple (2) is correct if every
terminating computation of B which starts in a state satisfying P terminates in
a state that satisfies Q.

In this paper we are concerned with computing polynomial invariants for
a considerable subset of loops of the form (1). These invariants are algebraic
dependencies among the loop variables that hold after any number of loop iter-
ations.

Definition 1. A polynomial p ∈ K[x1, . . . , xm] is a polynomial loop invariant
for a loop B = B∗1 ; . . . ;B∗r in the program variables v1, . . . , vm with initial val-
ues v1(0), . . . , vm(0), if for every sequence (ni)i∈N of non-negative integers with
finitely many non-zero elements, the Hoare triple

{p(v1, . . . , vm) = 0 ∧
m∧
i=0

vi = vi(0)}

Bn1
1 ;Bn2

2 . . . , Bnr
r ;B

nr+1

1 ; . . .

{p(v1, . . . , vm) = 0}
is correct.
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2.2 Polynomial Rings and Ideals

Polynomial invariants are algebraic dependencies among the values of the vari-
ables at each loop iteration. Obviously, non-trivial dependencies do not always
exist.

Definition 2. Let L / K be a field extension. Then a1, . . . , an ∈ L are alge-
braically dependent over K if there exists a p ∈ K[x1, . . . , xn] \ {0} such that
p(a1, . . . , an) = 0. Otherwise they are called algebraically independent.

In [8,17], it is observed that the set of all polynomial loop invariants for a
given loop forms an ideal. It is this fact that facilitates all of our subsequent
reasoning.

Definition 3. A subset I of a commutative ring R is called an ideal, written
I C R, if it satisfies the following three properties:

1. 0 ∈ I.
2. For all a, b ∈ I: a+ b ∈ I.
3. For all a ∈ I and b ∈ R: a · b ∈ I.

Definition 4. Let I C R. Then I is called

– proper if it is not equal to R,
– prime if a · b ∈ I implies a ∈ I or b ∈ I, and
– radical if an ∈ I implies a ∈ I.

The height hg(I) ∈ N of a prime ideal I is equal to n if n is the maximal length
of all possible chains of prime ideals I0 ⊂ I2 ⊂ · · · ⊂ In = I.

Example 5. The set of even integers 2Z is an ideal of Z. In general nZ for a fixed
integer n is an ideal of Z. It is prime if and only if n is a prime number.

Polynomial ideals can informally be interpreted as the set of all consequences
when it is known that certain polynomial equations hold. In fact, if we have
given a set P of polynomials of which we know that they serve as algebraic
dependencies among the variables of a given loop, the ideal generated by P then
contains all the polynomials that consequently have to be polynomial invariants
as well.

Definition 6. A subset B ⊆ I of an ideal I C R is called a basis for I if

I = 〈B〉 := {a0b0 + · · ·+ ambm | m ∈ N, a0, . . . , am ∈ R, b0 . . . , bm ∈ B}.

We say that B generates I.

A basis for a given ideal in a ring does not necessarily have to be finite.
However, a key result in commutative algebra makes sure that in our setting we
only have to consider finitely generated ideals.
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Theorem 7 (Hilbert’s Basis Theorem – Special case). Every ideal in K[x]
has a finite basis.

Subsequently, whenever we say we are given an ideal I, we mean that we
have given a finite basis of I.

There is usually more than one basis for a given ideal and some are more
useful for certain purposes than others. In his seminal PhD thesis [1], Buchberger
introduced the notion of Gröbner bases for polynomial ideals and an algorithm
to compute them. While, for reasons of brevity, we will not formally define these
bases, it is important to note that with their help, central questions concerning
polynomial ideals can be answered algorithmically.

Theorem 8. Let p ∈ K[x1, . . . , xn] and I,J C K[x1, . . . , xn]. There exist algo-
rithms to decide the following problems.

1. Decide if p is an element of I.
2. Compute a basis of I + J .
3. Compute a basis of I ∩ J .
4. For {x̃1, . . . x̃m} ⊆ {x1, . . . , xn}, compute a basis of I ∩K[x̃1, . . . , x̃m].
5. Let q ∈ K[x]. Compute a basis for

I : 〈q〉∞ := {q ∈ K[x] | ∃n ∈ N : qnp ∈ I}.
The ideal I : 〈q〉∞ is called the saturation of I with respect to q.

We will use Gröbner bases to compute the ideal of all algebraic relations
among given rational functions. For this, we use the polynomials qiyi − pi to
model the equations yi = qi/pi by multiplying the equation with the denomina-
tor. In order to model the fact that the denominator is not identically zero, and
therefore allowing us to divide by it again, we use the saturation with respect
to the least common multiple of all denominators. To see why this is necessary,
consider y1 = y2 = x1

x2
. An algebraic relation among y1 and y2 is y1 − y2, but

with the polynomials x2y1 − x1 and x2y2 − x1, we only can derive x2(y1 − y2).
We have to divide by x2.

Theorem 9. Let r1, . . . , rm ∈ K(x) and let the numerator of ri be given by
pi ∈ K[x] and the denominator by qi ∈ K[x]. The ideal of all polynomials p in
K[y] with p(r1, . . . , rm) = 0 is given by( m∑

i=1

〈qiyi − pi〉
)

: 〈lcm(q1, . . . , qm)〉∞ ∩K[y],

where lcm(. . . ) denotes the least common multiple.

Proof. Write d := lcm(q1, . . . , qm). The theorem can be easily verified from the
fact that, for any given p with p(r1, . . . , rm) = 0, there exists a k ∈ N such
that dkp(r1, . . . , rm) = 0 is an algebraic relation for p1, . . . , pm (by clearing
denominators in the equation p(r1, . . . , rm) = 0). ut

A polynomial ideal I C K[x] gives rise to a set of points in Kn for which all
polynomials in I vanish simultaneously. This set is called a variety.

232 A. Humenberger et al.



Definition 10. Let I C K[x1, . . . , xn] be an ideal. The set

V (I) = {(a1, . . . , an) ∈ Kn | p(a1, . . . , an) = 0 for all p ∈ I},

is the variety defined by I.

Varieties are one of the central objects of study in algebraic geometry. Cer-
tain geometric shapes like points, lines, circles or balls can be described by prime
ideals and come with an intuitive notion of a dimension, e.g. points have dimen-
sion zero, lines and circles have dimension one and balls have dimension two.
The notion of the Krull dimension of a ring formalizes this intuition when being
applied to the quotient ring K[x]/I. In this paper, we will use the Krull dimen-
sion to provide an upper bound for the number of necessary iterations of our
algorithm.

Definition 11. The Krull dimension of a commutative ring R is the supremum
of the lengths of all chains I0 ⊂ I1 ⊂ . . . of prime ideals.

Theorem 12. The Krull dimension of K[x1, . . . , xn] is equal to n.

3 Extended P-Solvable Loops

In [4] the class of P-solvable loops [9] was extended to so-called extended P-
solvable loops. So far, this class captures loops with assignments only, i.e. loops
without any nesting of conditionals and loops. In Section 3.3 we close this gap by
introducing a new approach for computing invariants of multi-path loops which
generalizes the algorithm proposed in [10]. Before dealing with multi-path loops,
we recall the notion of extended P-solvable loops in Section 3.1 and showcase
the invariant ideal computation.

3.1 Loops with assignments only

In this section, we restrain ourselves to loops whose bodies are comprised of
rational function assignments only. This means that we restrict the valid com-
posite forms in a program of the form (1) to sequential compositions and, for the
moment, exclude inner loops and conditional branches. We therefore consider a
loop L = B∗1 where B1 is a single block containing only variable assignments.

Each variable vi in a given loop of the form (1) gives rise to a sequence
(vi(n))n∈N, where n is the number of loop iterations. The class of eligible loops
is then defined based on the form of these sequences. Let r(x)n denote the falling

factorial defined as
∏n−1

i=0 r(x− i) for any r ∈ K(x) and n ∈ N.

Definition 13. A loop with assignments only is called extended P-solvable if
each of its recursively changed variables determines a sequence of the form

vi(n) =
∑
j∈Z`

pi,j(n, θ
n
1 , . . . , θ

n
k )((n+ ζ1)n)j1 · · · ((n+ ζ`)

n)j` (3)
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where k, ` ∈ N, the pi,j are polynomials in K(x)[y1, . . . , yk], not identically zero
for finitely many j ∈ Z`, the θi are elements of K and the ζi are elements of
K \ Z− with θi 6= θj and ζi − ζj /∈ Z for i 6= j.

Definition 13 extends the class of P-solvable loops in the sense that each
sequence induced by an extended P-solvable loop is the sum of a finitely many
hypergeometric sequences. This comprises C-finite sequences as well as hyper-
geometric sequences and sums and Hadamard products of C-finite and hyperge-
ometric sequences. In contrast, P-solvable loops induce C-finite sequences only.
For details on C-finite and hypergeometric sequences we refer to [5].

Every sequence of the form (3) can be written as

v
(1)
j = rj(v

(0),θ, (n+ ζ)n, n)

where rj = pi/qi is a rational function, and v(0) and v(1) denote the values
of v before and after the execution of the loop. Let I(θ, ζ) C K[y0, . . . , yk+`]
be the ideal of all algebraic dependencies in the variables y0, . . . , yk+` between
the sequence (n)n∈N, the exponential sequences θn1 , . . . , θ

n
k and the sequences

(n+ ζ1)n, . . . , (n+ ζ`)
n. Note that it was shown in [4] that this ideal is the same

as the extension of the ideal I(θ) C K[y0, . . . , yk] of all algebraic dependencies
between the θn in K[y0, . . . , yk] to K[y0, . . . , yk+`], as the factorial sequences
(n+ ζi)

n are algebraically independent from the exponential sequences θni . Now
the following proposition states how the invariant ideal of an extended P-solvable
loop can be computed.

Proposition 14 ([4]). For an extended P-solvable loop with program variables
v1, . . . , vm the invariant ideal is given by((

m∑
j=1

〈
qj(v

(0),y)v
(1)
j −pj(v

(0),y)
〉)

:〈lcm(q1, . . . , qm)〉∞+I(θ, ζ)

)
∩K[v(1),v(0)].

Example 15. Consider the following loop with relevant program variables a, b
and c.

while true do
a := 2 · (n+ 1)(n+ 3

2 ) · a
b := 4 · (n+ 1) · b
c := 1

2 · (n+ 3
2 ) · c

n := n+ 1
end while

The extracted recurrence relations admit the following system of closed form
solutions:

an = 2n · a0 · (n)n · (n+
1

2
)n,

bn = 4n · b0 · (n)n,

cn = 2−n · c0 · (n+
1

2
)n.
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Since every closed form solution is of the form (3) we have an extended P-solvable
loop, and we can apply Proposition 14 to compute the invariant ideal:

(I + I(θ, ζ)) ∩K[a(1), b(1), c(1), a(0), b(0), c(0)] = 〈b(1)· c(1)· a(0)− a(1)· b(0)· c(0)〉,

where

I = 〈a(1)− y1 · a(0)· z1z2, b(1)− y2 · b(0)· z1, c(1)− y3 · c(0)· z2〉,
I(θ, ζ) = 〈y21 − y2, y1y3 − 1, y2y3 − y1〉.

The ideal I(θ, ζ) in variables y1, y2, y3 is the set of all algebraic dependencies
among 2n, 4n and 2−n, and I is generated by the closed form solutions where
exponential and factorial sequences are replaced by variables y1, y2, y3 and z1, z2.

3.2 Algebraic Dependencies of Composed Rational Functions with
Side Conditions

In this section we give the prerequisites for proving termination of the invariant
generation method for multi-path loops (Section 3.3). The results of this section
will allow us to proof termination by applying Theorem 12.

Let v(i) = v
(i)
1 , . . . , v

(i)
m and y(i) = y

(i)
1 , . . . , y

(i)
` for i ∈ N. We model the

situation in which the value of the jth loop variable after the execution of the
ith block in (1) is given by a rational function in the y(i) (which, for us, will
be the exponential and factorial sequences as well as the loop counter) and the

‘old’ variable values v(i−1) and is assigned to v
(i)
j . Set I0 =

∑m
j=1〈v

(1)
j − v

(0)
j 〉

and let Ii C K[y(i)] for i ∈ N∗. Furthermore, let q
(i)
j , p

(i)
j ∈ K[v(i),y(i)] such that

for fixed i there exists a y ∈ V (Ii) with p
(i)
j (v(i),y)/q

(i)
j (v(i),y) = v

(i)
j for all j

and with di := lcm(q
(i)
1 , . . . , q

(i)
m ) we have di /∈ Ii and di(vi,y) = 1. Set

Ji =
m∑
j=1

〈q(i)j (v(i),y(i))v
(i+1)
j − p(i)j (v(i),y(i))〉.

Remark 16. The requirement for the existence of a point y in V (Ii) such that

p
(i)
j (v(i),y)/q

(i)
j (v(i),y) = v

(i)
j for all j and di(vi,y) = 1 is always fulfilled in our

context, as it is a formalization of the fact that the execution of a loop L∗ also
allows that it is executed zero times, meaning the values of the program variables
do not change.

In order to develop some intuition about the following, consider a list of con-
secutive loops L1;L2;L3; . . . where each of them is extended P-solvable. Intu-
itively, the ideals Ii then correspond to the ideal of algebraic dependencies among
the exponential and factorial sequences occurring in Li, whereas Ji stands for the

ideal generated by the closed form solutions of Li. Moreover, the variables v
(i+1)
j

correspond to the values of the loop variables after the execution of the loop
Li. The following iterative computation then allows us to generate the invariant
ideal for L1;L2;L3; . . .

Ii := ((Ji + Ii−1 + Ii) : 〈di〉∞) ∩K[v(i+1),v(0)]
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Now the remaining part of this section is devoted to proving properties of the
ideals Ii which will help us to show that there exists an index k such that
Ik = Ik′ for all k′ > k for a list of consecutive loops L1; . . . ;Lr;L1; . . . ;Lr; . . .
with r ∈ N.

First note that the ideal Ii can be rewritten as

Ii = {p ∈ K[v(i+1),v(0)] | ∃q ∈ Ii−1, k ∈ N :

q ≡ dki p(r
(i)
1 (v(i),y(i)), . . . , r(i)m (v(i),y(i)),v(0)) (mod Ii)}. (4)

If Ii is radical, an equation mod Ii is, informally speaking, the same as substi-
tuting y with values from V (Ii), so (4) translates to

Ii = {p ∈ K[v(i+1),v(0)] | ∃q ∈ Ii−1, k ∈ N :

∀y ∈ V (Ii) : q = dki p(r
(i)
1 (v(i),y), . . . , r(i)m (v(i),y),v(0))}. (5)

We now get the following subset relation between two consecutively computed
ideals Ii.

Lemma 17. If Ii is radical, then Ii ⊆ Ii−1|v(i−1)←v(i) .

Proof. Let p ∈ Ii. We have to show that there is an r ∈ Ii−2 and a k ∈ N such
that

r ≡ dki−1p(r
(i−1)
1 (v(i−1),y(i−1)), . . . , r(i−1)m (v(i−1),y(i−1)),v(0)) (mod Ii−1).

Since Ii is radical, there is a q ∈ Ii−1, a z ∈ N, and a y ∈ V (Ii) with

q = dzi p(r
(i)
1 (v(i),y), . . . , r(i)m (v(i),y),v(0)) = p(v(i),v(0)).

Then, by Equation (4) for Ii−1, there is an r ∈ Ii−2 with the desired property.
ut

For prime ideals, we get an additional property:

Lemma 18. If Ii−1 and Ii are prime, then so is Ii.

Proof. Let a · b ∈ Ii and denote by a|r and b|r the rational functions where each

v
(i+1)
j is substituted by r

(i)
j in a, b respectively. Then there is a q ∈ Ii−1 and a

k = k1 + k2 ∈ N with dk1
i a|r, d

k2
i b|r ∈ K[v(i+1),v(0)]

q ≡ dki (a · b)|r ≡ dk1
i a|r · d

k2
i b|r (mod Ii)

If dki a|r is zero modulo Ii, then a is an element of Ii, as 0 ∈ Ii−1. The same
argument holds for b. Suppose that dk1

i a|r, d
k2
i b|r 6≡ 0 (mod Ii). Then, since Ii

is prime, K[y(i)]/Ii is an integral domain, and so it follows that q 6≡ 0 (mod Ii).
Now, because Ii−1 is prime, it follows without loss of generality that dk1

i a|r ∈
Ii−1, from which we get a ∈ Ii. ut

We now use Lemmas 17 and 18 to give details about the minimal decompo-
sition of Ii.

Proposition 19. For fixed i0 ∈ N, let all Ii, 0 ≤ i ≤ i0 be radical and let
Ii0 =

⋂n
k=0Pk be the minimal decomposition of Ii0 . Then
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1. for each k there exist prime ideals Ik,1, Ik,2, . . . such that Pk is equal to a
Ik,i0 constructed as above with J1, . . . , Ji0 and Ik,1, . . . , Ik,i0 .

2. if Ii0+1 is radical and Ii0+1 =
⋂n′

j=0P
′
j is the minimal decomposition of Ii+1,

then, for each P ′j there exists a Pk such that P ′j ⊆ Pk|v(i0)←v(i0+1) .

Proof. We prove 1. by induction. For i0 = 0, there is nothing to show. Now
assume the claim holds for some i0 ∈ N and let Ii0+1 =

⋂w
j=0Qj be the minimal

decomposition of Ii0+1. With this we get

Ii0+1 = (Ji0+1 + Ii0 + Ii0+1) : 〈di0+1〉∞ ∩K[v(i0+1),v(0)]

=

 n⋂
k=0

Ji0+1 + Pk +

w⋂
j=0

Qj

 : 〈di0+1〉∞ ∩K[v(i+1),v(0)]

=

( n⋂
k=0

w⋂
j=0

(Ji0+1 + Pk +Qj) : 〈di0+1〉∞ ∩K[v(i0+1),v(0)]︸ ︷︷ ︸
Ĩk,j

)
.

By the induction hypothesis, each Pk admits a construction as above, and thus
so does Ĩk,j . By Lemma 18, Ĩk,j is prime. This shows 1. The second claim then
follows from the fact that the prime ideals in the minimal decomposition of Ii0+1

are obtained from the Pk via Ji0+1 and Qj . Since the Qj are prime, they are
also radical, and the claim follows from Lemma 17. ut

3.3 Loops with conditional branches

In this section, we extend the results of Section 3.1 to loops with conditional
branches. Without loss of generality, we define our algorithm for a loop of the
form

while . . . do L1;L2; . . . ;Lr end while

where Li = B∗i and Bi is a block containing variable assignments only.

Let I(θi, ζi) denote the ideal of all algebraic dependencies as described in
Section 3.1 for a inner loop Li. As every inner loop provides its own loop counter,
we have that the exponential and factorial sequences of distinct inner loops are
algebraically independent. Therefore I(θ, ζ) :=

∑r
i=0 I(θi, ζi) denotes the set of

all algebraic dependencies between exponential and factorial sequences among
the inner loops L1, . . . , Lr.

Consider loop bodies B1, . . . , Br with common loop variables v1, . . . , vm. Sup-
pose the closed form of vj in the ith loop body is given by a rational function
in m+ k + `+ 1 variables:

v
(i+1)
j = r

(i)
j (v(i),θn, (n+ ζ)n, n),

where v
(i)
j and v

(i+1)
j are variables for the value of vj before and after the execution

of the loop body. Then we can compute the ideal of all polynomial invariants of
the non-deterministic program (B∗1 ;B∗2 ; . . . ;B∗r )∗ with Algorithm 1.
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Algorithm 1 Invariant generation via fixed point computation

Input: Loop bodies B1, . . . , Br as described.
Output: The ideal of all polynomial invariants of (B∗1 ;B∗2 ; . . . ;B∗r )∗.

1: Compute I := I(θ, ζ) as described above
2: Iold = {0}, Inew =

∑m
j=1〈v

(1)
j − v(0)i 〉, j = 0

3: WHILE Iold|v((j−1)·r+1)←v(j·r+1) 6= Inew AND Inew 6= {0} DO
4: Iold ← Inew, j ← j + 1
5: FOR i = 1, . . . , r DO
6: Inew ← (Ji·j + Iold + I) ∩K[v(i·j+1),v(0)]

7: RETURN Inew

Lemma 20. I(θ, ζ) is a radical ideal.

Proof. The elements of I(θ) represent C-finite sequences, i.e. sequences of the
form

f1(n)θn1 + · · ·+ fnk θ
n
k ,

for univariate polynomials f1, . . . , fk ∈ K[y0] and pairwise distinct θ1, . . . , θk ∈
K. The claim is then proven by the fact that the Hadamard-product a2(n, a(0))
of a C-finite sequence a(n, a(0)) with itself is zero if and only if a(n, a(0)) is zero,
and I(θ, ζ) is the extension of I(θ) to K[y0, . . . , yk+`]. ut

Theorem 21. Algorithm 1 is correct and terminates.

Proof. The algorithm iteratively computes the ideals I1, I2, . . . as in Section 3.2,
so we will refer to Iold and Inew as Ii and Ii+1.

Termination: I0 is a prime ideal of height m. Suppose after an execution of
the outer loop, the condition Ii|v(i)←v(i+1) 6= Ii+1 holds. As I(θ, ζ) is radical
by Lemma 20, we then get Ii+1 ⊂ Ii|v(i)←v(i+1) by Lemma 17. Thus there is a
p ∈ K[v(i+1),v(0)] with p ∈ Ii|v(i)←v(i+1) and p /∈ Ii+1. Then, by Proposition 19,
all prime ideals Pk in the minimal decomposition of Ii+1 are have to be subsets
of the prime ideals in the minimal decomposition of Ii|v(i)←v(i+1) , where at least
one of the subset relations is proper. Since p /∈ Ii+1, the height of at least one
Pk has to be reduced. The height of each prime ideal is bounded by the height
of I0.

Correctness: Let i ∈ N be fixed and denote by I(B; i) C K[v(i+1),v(0)] the
ideal of all polynomial invariants for the non-deterministic program

(B∗1 ; . . . ;B∗r )
i/r;B∗1 ; . . . ;B∗i rem r.

It suffices to show that Ii is equal to I(B; i). In fact, after i0 iterations with
Ii0 = Ii0+1 = Ii0+2 = . . . , it follows that Ii0 is the ideal of polynomial invariants
for (B∗1 ; . . . ;B∗r )∗. Let p ∈ I(B; i). The value of the program variable vj in the
program B∗1 ; . . . ;B∗i rem r is given as the value of a composition of the closed
forms of each Bk:

vj = p
(i)
j

(
p(i−1)

(
. . .
(
p(1)(v(0), sn1

), . . .
)
, sni−1

)
, sni

)
,
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with sn = n,θn, (n+ ζ)n and n1, . . . , ni ∈ N. The correctness then follows from
the fact that that Ii is the ideal of all such compositions under the side condition
that (θn, (n+ ζ)n, n) ∈ V (I(θ, ζ)) for any n ∈ N. ut

Revisiting the subset relations of the prime ideals in the minimal decompo-
sition of I0, I1, . . . gives an upper bound for the necessary number of iterations
in the algorithm.

Corollary 22. Algorithm 1 terminates after at most m iterations of the while-
loop at line 3.

Proof. Suppose the algorithm terminates after k0 iterations of the outer loop.
We look at the ideals Ir·k, k ∈ {0, . . . , k0}. For a prime ideal P in the min-
imal decomposition of any Ir·(k+1), there is a prime ideal Q in the minimal
decomposition of Ir·k such that P ⊆ Q. If P = Q, then P is a prime ideal
in the minimal decomposition of each Ir·(k′), k′ > k. This holds because there
are only r many Ji. So if Q does not get replaced by smaller prime ideals in
Ir·k+1, Ir·k+2 . . . , Ir·(k+1), it has to be part of the minimal decomposition for
any subsequent Ii. From this it follows that, for each k, there is a prime ideal
Pk in the minimal decomposition in Ir·k, such that P0 ⊃ P1 ⊃ · · · ⊃ Pk0 is a
chain of proper superset relations, which then proves the claim since the height
of P0 = I0 is m. ut

Example 23. Consider a multi-path loop L

while . . . do L1;L2 end while

containing the following nested loops L1 and L2 and the corresponding closed
form solutions:

while . . . do
a := a− b
p := p− q
r := r − s

end while

an = a0 − nb0
pn = p0 − nq0
rn = r0 − ns0

while . . . do
b := b− a
q := q − p
s := s− r

end while

bm = b0 −ma0
qm = q0 −mp0
sm = s0 −mr0

For simplicity we chose inner loops without algebraic dependencies, i.e. I at
line 1 will be the zero ideal and we therefore neglect it in the following compu-
tation. Moreover, we write ai instead of a(i). We start with

I0 = 〈a1 − a0, b1 − b0, p1 − p0, q1 − q0, r1 − r0, s1 − s0〉
followed by the first loop iteration:

I1 = (J1 + I0) ∩K[a0, b0, p0, q0, r0, s0, a2, b2, p2, q2, r2, s2]

= 〈b0 − b2, q0 − q2, s0 − s2,−p0s2 + p2s2 + q2r0 − q2r2,
a0s2 − a2s2 − b2r0 + b2r2, a0q2 − a2q2 − b2p0 + b2p2〉

where

J1 = 〈a2 − a1 + b1n, p2 − p1 + q1n, r2 − r1 + s1n, b2 − b1, q2 − q1, s2 − s1〉
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The following ideal I2 is then the invariant ideal for the first iteration of the
outer loop L.

I2 = (J2 + I1) ∩K[a0, b0, p0, q0, r0, s0, a3, b3, p3, q3, r3, s3]

= 〈−p0r3s0 + p3r3s3 + p3r0s0 − p3r0s3 − q3r23 + q3r0r3,

− p3s0 + p3s3 + q0r3 − q3r3,−p0s0 + p3s3 + q0r0 − q3r3,
a3s0 − a3s3 − b0r3 + b3r3, a0q0 − a3q3 − b0p0 + b3p3,

a3p0s3 − a3p3s3 − a3q3r0 + a3q3r3 − b0p3r0 + b3p3r0 + b0p0r3 − b3p0r3,
a3q0 − a3q3 − b0p3 + b3p3, a0s0 − a3s3 − b0r0 + b3r3,

− a0p3s3 + a3p3s3 + a0q3r3 − a3q3r3 + b0p3r0 − b0p0r3,
− a3b0r0 + a3b3r3 + a0b0r3 − a0b3r3 − a23s3 + a0a3s3,

− a3b0p0 + a3b3p3 + a0b0p3 − a0b3p3 − a23q3 + a0a3q3〉
where

J2 = 〈b3 − b2 + a2m, q3 − q2 + p2m, s3 − s2 + r2m, a3 − a2, p3 − p2, r3 − r2〉
By continuing this computation we get the following ideals I4 and I6 which are
the invariant ideals after two and three iterations of the outer loop L respectively.

I4 = 〈p0s0 − p5s5 − r0q0 + r5q5,

b5p5 − b0p0 + a0q0 − a5q5,
b5r5 − b0r0 + a0s0 − a5s5,
b5(−p5s0 + r5q0) + b0(p5s5 − r5q5) + a5(−s5q0 + s0q5),

b5(−p5r0 + p0r5) + a5(−p0s5 + r0q5) + a0(p5s5 − r5q5),

b0p0(−p5s5 + r5q5) + b5(p25s5 − p0r5q0 + p5(r0q0 − r5q5)) +

a5(p0s5q0 + q5(−p5s5 − r0q0 + r5q5))〉

I6 = 〈p0s0 − p7s7 − r0q0 + r7q7,

b7p7 − b0p0 + a0q0 − a7q7,
b7r7 − b0r0 + a0s0 − a7s7,
b7(−p7s0 + r7q0) + b0(p7s7 − r7q7) + a7(−s7q0 + s0q7),

b7(−p7r0 + p0r7) + a7(−p0s7 + r0q7) + a0(p7s7 − r7q7),

b0p0(−p7s7 + r7q7) + b7(p27s7 − p0r7q0 + p7(r0q0 − r7q7)) +

a7(p0s7q0 + q7(−p7s7 − r0q0 + r7q7))〉

Note that we now reached the fixed point as I6 = I4|v(5)←v(7) .

Corollary 22 provides a bound on the number of iterations in Algorithm 1.
Therefore, we know at which stage we have to reach the fixed point of the
computation at the latest, viz. after computing Ir·m. This fact allows us to
construct a new algorithm which computes the ideal Ir·m directly instead of
doing a fixed point computation. The benefit of Algorithm 2 is that we have
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to perform only one Gröbner basis computation in the end, although the new
algorithm might performs more iterations than Algorithm 1.

Algorithm 2 Invariant generation without fixed point computation

Input: Loop bodies B1, . . . , Br as described.
Output: The ideal of all polynomial invariants of (B∗1 ;B∗2 ; . . . ;B∗r )∗.

1: Compute I := I(θ, ζ) as described above
2: Inew =

∑m
j=1〈v

(1)
j − v(0)i 〉+ I

3: FOR j = 1, . . . ,m DO
4: FOR i = 1, . . . , r DO
5: Inew ← (Ji·j + Inew)

6: RETURN Inew ∩K[v(m·r+1),v(0)]

The proof of termination of the invariant generation method of [10] assumes
that the ideal of algebraic dependencies is prime. In general, this does not hold.
Consider the following loop and its closed forms with exponential sequences 2n

and (−2)n:

while . . . do
x := 2x
y := −2y

end while

x(n) = 2n · x(0)
y(n) = (−2)n · y(0)

The ideal of algebraic dependencies among the before-mentioned exponential
sequences is given by 〈a2 − b2〉 which is obviously not prime. As a consequence,
the termination proof of [10] is incorrect. This paper closes this gap by providing
a new algorithm and a corresponding termination proof.

4 Implementation and Experiments

We implemented our method in the Mathematica package Aligator1. Aliga-
tor is open source and available at:

https://ahumenberger.github.io/aligator/

Comparison of generated invariants. Based on the examples in Figure 1
we show that our technique can infer invariants which cannot be found by other
state-of-the-art approaches. Our observations indicate that our method is supe-
rior to existing approaches if the loop under consideration has some mathematical
meaning like division or factorization algorithms as depicted in Figure 1, whereas
the approach of [7] has advantages when it comes to programs with complex flow.

1 Aligator requires the Mathematica packages Hyper [14], Dependencies [6] and
FastZeil [13], where the latter two are part of the compilation package ErgoSum [15].
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The techniques of [2] and [7] were implemented in tools called Fastind2 and
Duet3 respectively. Unlike Aligator and Fastind, Duet is not a pure in-
ference engine for polynomial invariants, instead it tries to prove user-specified
safety assertions. In order to check which invariants can be generated by Duet,
we therefore asserted the invariants computed by Aligator and checked if
Duet can prove them.

while a 6= b do
if a > b then
a := a− b
p := p− q
r := r − s

else
b := b− a
q := q − p
s := s− r

end if
end while

(a)

while r 6= 0 do
if r > 0 then
r := r − v
v := v + 2

else
r := r + u
u := u+ 2

end if
end while

(b)

while d ≥ E do
if P < a+ b then
b := b/2
d := d/2

else
a := a+ b
y := y + d/2
b := b/2
d := d/2

end if
end while

(c)

Fig. 1: Three examples: (a) Extended Euclidean algorithm, (b) a variant of Fer-
mat’s factorization algorithm and (c) Wensley’s algorithm for real division.

Let us consider the loop depicted in Figure 1a. Since we treat conditional
branches as inner loops, we have that the invariants for this loop are the same
as for the loop in Example 23. By instantiating the generated invariants with
the following initial values on the left we get the following polynomial invariants
on the right:

a0 7→ x

b0 7→ y

p0 7→ 1

q0 7→ 0

r0 7→ 0

s0 7→ 1

1 + qr − ps (I1)

bp− aq − y (I2)

br − as+ x (I3)

− bp+ aq − qry + psy (I4)

br − as− qrx+ psx (I5)

(qr − ps)(−bp+ aq + y) (I6)

Note that (I4)-(I6) are just linear combinations of (I1)-(I3). However, Fastind
was able to infer (I1)-(I3), whereas Duet was only able to prove (I2), (I5)
and (I6).

Other examples where Aligator is superior in terms of the number of in-
ferred invariants are given by the loops in Figures 1b and 1c. For Fermat’s

2 Available at http://www.irisa.fr/celtique/ext/polyinv/
3 Available at https://github.com/zkincaid/duet
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algorithm (Figure 1b) and the following initial values, Aligator found one in-
variant, which was also found by Fastind. However, Duet was not able to prove
it.

u0 7→ 2R+ 1

v0 7→ 1

r0 7→ RR−N
− 4N − 4r − 2u+ u2 + 2v − v2 (I7)

In case of Wensley’s algorithm (Figure 1c) Aligator was able to identify
the following three invariants. Fastind inferred the first two invariants, whereas
Duet could not prove any of them.

a0 7→ 0

b0 7→ Q/2

d0 7→ 1

y0 7→ 0

2b− dQ (I8)

ad− 2by (I9)

a−Qy (I10)

Benchmarks and Evaluation. For the experimental evaluation of our
approach, we used the following set of examples: (i) 18 programs taken from [2];
(ii) 4 new programs of extended P-solvable loops that were created by us. All
examples are available at the repository of Aligator.

Our experiments were performed on a machine with a 2.9 GHz Intel Core i5
and 16 GB LPDDR3 RAM; for each example, a timeout of 300 seconds was set.
When using Aligator, the Gröbner basis of the invariant ideal computed by
Aligator was non-empty for each example; that is, for each example we were
able to find non-trivial invariants.

We evaluated Aligator against Fastind. As Duet is not a pure inference
engine for polynomial invariants, we did not include it in the following evaluation.
When compared to [2], we note that we do not fix the degree of the polynomial
invariants to be generated. Moreover, our method is complete. That is, whenever
Aligator terminates, the basis of the polynomial invariant ideal is inferred; any
other polynomial invariant is a linear combination of the basis polynomials.

Table 1a summarizes our experimental results on single-path loops, whereas
Table 1b reports on the results from multi-path programs. The first column of
each table lists the name of the benchmark. The second and third columns of
Table 1a report, on the timing results of Aligator and Fastind, respectively.
In Table 1b, the second column lists the number of branches (paths) of the
multi-path loop, whereas the third column gives the number of variables used
in the program. The fourth column reports on the number of iterations until
the fixed point is reached by Aligator, and hence terminates. The fifth and
sixth columns, labeled Al1 and Al2, show the performance of Aligator when
using Algorithm 1 or Algorithm 2, respectively. The last column of Table 1b
lists the results obtained by Fastind. In both tables, timeouts are denoted by

4 Testing the Maple implementation was not possible due to constraints regarding the
Maple version.
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Table 1: Experimental evaluation of Aligator.

(a)

Single-path Aligator Fastind

cohencu 0.072 0.043

freire1 0.016 0.041

freire2 0.062 0.048

petter1 0.015 0.040

petter2 0.026 0.042

petter3 0.035 0.051

petter4 0.042 0.104

petter5 0.053 0.261

petter20 48.290 9.816

petter22 247.820 9.882

petter23 TO 9.853

(b)

Multi-path #b #v #i Al1 Al2 Fastind

divbin 2 3 2 0.134 45.948 0.045

euclidex 2 6 3 0.433 TO 0.049

fermat 2 3 2 0.045 0.060 0.043

knuth 4 5 2 55.791 TO 1.025

lcm 2 4 3 0.051 87.752 0.043

mannadiv 2 3 2 0.022 0.025 0.048

wensley 2 4 2 0.124 41.851 err

extpsolv2 2 3 2 0.192 TO err

extpsolv3 3 3 2 0.295 TO err

extpsolv4 4 3 2 0.365 TO err

extpsolv10 10 3 2 0.951 TO err

#b,#v . . . number of branches, variables

#i . . . number of iterations until fixed point reached

Al1 . . . Aligator with Algorithm 1 (timeout 300s)

Al2 . . . Aligator with Algorithm 2 (timeout 100s)

Fastind . . . OCaml version of the tool in [2]4

TO, err . . . timeout, error

TO, whereas errors, due to the fact that the tool cannot be evaluated on the
respective example, are given as err.

The results reported in Tables 1a and 1b show the efficiency of Aligator: in
14 out of 18 examples, Aligator performed significantly better than FastInd.
For the examples petter20, petter22 and petter23, the time-consuming part
in Aligator comes from recurrence solving (computing the closed form of the
recurrence), and not from the Gröbner basis computation. We intend to improve
this part of Aligator in the future. The examples extpsolv2, extpsolv3,
extpsolv4 and extpsolv10 are extended P-solvable loops with respectively 2,
3, 4, and 10 nested conditional branches. The polynomial arithmetic of these
examples is not supported by Fastind. The results of Aligator on these ex-
amples indicate that extended P-solvable loops do not increase the complexity
of computing the invariant ideal.

We also compared the performance of Aligator with Algorithm 1 against
Algorithm 2. As shown in columns 5 and 6 of Table 1b, Algorithm 2 is not as ef-
ficient as Algorithm 1, even though Algorithm 2 uses only a single Gröbner basis
computation. We conjecture that this is due to the increased number of variables
in the polynomial system which influences the Gröbner basis computation. We
therefore conclude that several small Gröbner basis computations (with fewer
variables) perform better than a single large one.
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5 Conclusions

We proposed a new algorithm for computing the ideal of all polynomial invariants
for the class of extended P-solvable multi-path loops. The new approach com-
putes the invariant ideal for a non-deterministic program (L1; . . . ;Lr)∗ where
the Li are single-path loops. As a consequence, the proposed method can handle
loops containing (i) an arbitrary nesting of conditionals, as these conditional
branches can be transformed into a sequence of single-path loops by introducing
flags, and (ii) one level of nested single-path loops.

Our method computes the ideals I1, I2, . . . until a fixed point is reached
where Ii denotes the invariant ideal of (L1; . . . ;Lr)i. This fixed point is then
a basis for the ideal containing all polynomial invariants for the extended P-
solvable loop. We showed that this fixed point computation is guaranteed to
terminate which implies the completeness of our method. Furthermore, we gave
a bound on the number of iterations we have to perform to reach the fixed
point. The proven bound is given by m iterations where m is the number of loop
variables.

We showed that our method can generate invariants which cannot be inferred
by other state-of-the-art techniques. In addition, we showcased the efficiency of
our approach by comparing our Mathematica package Aligator with state-of-
the-art tools in invariant generation.

Future research directions include the incorporation of the loop condition into
our method. So far we operate on an abstraction of the loop where we ignore
the loop condition and treat the loop as a non-deterministic program. By doing
so we might loose valuable information about the control flow of the program.
By employing ΠΣ∗-theory [19] it might be possible to extend our work also to
loops containing arbitrary nesting of inner loops, which reflects another focus
for further research.

Acknowledgments. We want to thank the anonymous reviewers for their help-
ful comments and remarks.
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D. (eds.) Static Analysis - 19th International Symposium, SAS 2012, Deauville,
France, September 11-13, 2012. Proceedings. Lecture Notes in Computer Science,
vol. 7460, pp. 58–74. Springer (2012)

3. Farzan, A., Kincaid, Z.: Compositional recurrence analysis. In: Proc. of FMCAD.
pp. 57–64. FMCAD Inc, Austin, TX (2015)
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10. Kovács, L.: A Complete Invariant Generation Approach for P-solvable Loops. In:
Perspectives of Systems Informatics, 7th International Andrei Ershov Memorial
Conference, PSI 2009, Novosibirsk, Russia, June 15-19, 2009. Revised Papers. pp.
242–256 (2009)

11. Müller-Olm, M., Seidl, H.: A Note on Karr’s Algorithm. In: Automata, Languages
and Programming: 31st International Colloquium, ICALP 2004, Turku, Finland,
July 12-16, 2004. Proceedings. pp. 1016–1028 (2004)

12. de Oliveira, S., Bensalem, S., Prevosto, V.: Polynomial invariants by linear algebra.
In: Artho, C., Legay, A., Peled, D. (eds.) Proc. of ATVA. pp. 479–494. Springer
(2016)

13. Paule, P., Schorn, M.: A Mathematica Version of Zeilbergers Algorithm for Proving
Binomial Coefficient Identities. Journal of Symbolic Computation 20, 673 – 698
(1995)
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More Systems, More Expressivity

Swen Jacobs, Mouhammad Sakr

Reactive Systems Group, Saarland University, Germany
{jacobs,sakr}@react.uni-saarland.de

Abstract. We study cutoff results for parameterized verification and
synthesis of guarded protocols, as introduced by Emerson and Kahlon
(2000). Guarded protocols describe systems of processes whose transiti-
ons are enabled or disabled depending on the existence of other proces-
ses in certain local states. Cutoff results reduce reasoning about systems
with an arbitrary number of processes to systems of a determined, fixed
size. Our work is based on the observation that existing cutoff results for
guarded protocols are often impractical, since they scale linearly in the
number of local states of processes in the system. We provide new cutoffs
that scale not with the number of local states, but with the number of
guards in the system, which is in many cases much smaller. Furthermore,
we consider generalizations of the type of guards and of the specifications
under consideration, and present results for problems that have not been
known to admit cutoffs before.

1 Introduction

Concurrent systems are notoriously hard to get correct, and are therefore a
promising application area for formal methods like model checking or synthesis.
However, while such general-purpose formal methods can give strong correctness
guarantees, they have two drawbacks: i) the state explosion problem prevents
us from using them for systems with a large number of components, and ii)
correctness properties are often expected to hold for an arbitrary number of
components, which cannot be guaranteed without an additional argument that
extends a proof of correctness to systems of arbitrary size. Both problems can
be solved by approaches for parameterized model checking and synthesis, which
give correctness guarantees for systems with any number of components without
considering every possible system instance explicitly.

While the parameterized model checking problem (PMCP) is undecidable
even if we restrict systems to uniform finite-state components [25], there exist
several methods that decide the problem for specific classes of systems [2–4, 11,
15–17,19,21], many of which have been collected in surveys of the literature re-
cently [9,20]. Additionally, there are semi-decision procedures that are successful
in a number of interesting cases [1, 10, 12, 23, 24]. In this paper, we consider the
cutoff approach to the PMCP, that can guarantee properties of systems of ar-
bitrary size by considering only systems of up to a certain fixed size. Thus, it
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provides a decision procedure for the PMCP if the model checking problem for
a fixed number of components is decidable, e.g., if components are finite-state.

Guarded protocols, the systems under consideration, are composed of an ar-
bitrary number of processes, each an instance of a finite-state process template.
The process templates can be seen as synchronization skeletons [14], i.e., they
only have to model the features of the system components that are important
for their synchronization. Processes communicate by guarded updates, where
guards are statements about other processes that are interpreted either con-
junctively (“every other process satisfies the guard”) or disjunctively (“there
exists a process that satisfies the guard”). Conjunctive guards can be used to
model synchronization by atomic sections or locks, while disjunctive guards can
model pairwise rendezvous or token-passing.

Emerson and Namjoshi [18] have shown that the PMCP for systems that
combine conjunctive and disjunctive guards is in general undecidable. Therefore,
research in the literature has focused on systems that are restricted to one type
of guard, called conjunctive or disjunctive systems, respectively. These classes
of systems have been studied by Emerson and Kahlon [15, 16], and cutoffs that
depend on the size of process templates are known for specifications of the form
∀p̄. Φ(p̄), where Φ(p̄) is an LTL\X property over the local states of one or more
processes p̄. Außerlechner et al. [6] have extended and improved these results, but
a number of open issues remain. We will explain some of them in the following.

initr

tr

¬w

w

tw

¬w ∧ ¬r

Motivating Example As an example, con-
sider the reader-writer protocol on the
right, modeling access to data shared be-
tween processes. A process that wants to
read the data enters state tr (“try-read”).
From tr, it can move to the reading state
r. However, this transition is guarded by
a statement ¬w. Formally, guards are sets
of states, and ¬w stands for the set of all states except w. Furthermore, this
example is a conjunctive system, which means that a guard is interpreted as “all
other processes have to be in the given set of states”. Thus, to take the transition
from tr to r, no other process should currently be in state w, i.e., writing the
data. Similarly, a process that wants to enter w has to go through tw, but the
transition into w is only enabled if no state is reading or writing.

For this example, consider parameterized safety conditions such as

∀i 6= j.G (¬(wi ∧ wj) ∧ ¬(wi ∧ rj)) ,
where indices i and j refer to processes in the system. Emerson and Kahlon [15]
show that properties from LTL\X of a single process have a cutoff of 2, which
generalizes to a cutoff of k + 1 for properties with k index variables. Moreover,
they show that a cutoff linear in the size of the process template is sufficient to
detect global deadlocks.

However, Außerlechner et al. [6] noted that for liveness properties such as

∀i.G ((tri → F ri) ∧ (twi → Fwi)) ,
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an explicit treatment of fairness assumptions on the scheduling of processes is
necessary. They show that the cutoff for LTL\X properties also holds under
fairness assumptions, but a second aspect has to be considered to adequately
treat liveness properties in guarded protocols: the detection of local deadlocks,
i.e., whether some process stops after finite time. For this problem, they give a
cutoff that is linear in the size of the process template, but a major restriction
is that the cutoff only supports systems with 1-conjunctive guards, i.e., where
each guard can only exclude a single state. Note that the example above is not
supported by these results, since one of the guards excludes 2 states.

Another drawback of the existing results is that they use only minimal kno-
wledge about the process templates: their size and the interpretation of guards.
As a result, many cutoffs depend directly on the size of the process template.
Intuitively, the communication between processes should be more important for
the cutoff than their internal state space. This can also be seen in the example
above: out of the 5 states, only 2 can be observed by the other processes, and can
thus influence their behavior. In this paper, we will explore the idea of cutoffs
that depend on the number and form of guards in the system.

Contributions We provide new cutoff results for guarded protocols:

1. For conjunctive systems, we extend the class of process templates that are
supported by cutoff results, providing cutoff results for local deadlock de-
tection in classes of templates that are not 1-conjunctive, and include exam-
ples such as the one above. However, we do not solve the general problem,
and instead show that a cutoff for arbitrary conjunctive systems has to be
at least quadratic in the size of the template.

2. For both conjunctive and disjunctive systems, we show that by closer analysis
of process templates, in particular the number and the form of transition
guards, we can obtain smaller cutoffs in many cases. This circumvents the
tightness results of Außerlechner et al. [6], which state that no smaller cutoffs
can exist for the class of all processes of a given size.

3. For disjunctive systems, we additionally extend both the class of process
templates and the class of specifications that are supported by cutoff results.
We show that systems with finite conjunctions of disjunctive guards are also
supported by variations of the existing proof methods, and obtain cutoff
results for these systems. Furthermore, we give cutoffs that support checking
the simultaneous reachability (and repeated reachability) of a target set by
all processes in a disjunctive system.

2 Preliminaries

2.1 System Model

In the following, let Q be a finite set of states.
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Processes. A process template is a transition system U = (QU , initU , δU ) with1

– QU ⊆ Q is a finite set of states including the initial state initU ,
– δU : QU × P(Q)×QU is a guarded transition relation.

Define the size of U as |U | = |QU |. An instance of template U will be called
a U -process.

Guarded Protocols. Fix process templates A and B. A guarded protocol is a
system A‖Bn, consisting of one A-process and n B-processes in an interleaving
parallel composition.2 We assume that Q = QA ∪̇QB . Different B-processes are
distinguished by subscript, i.e., for i ∈ [1..n], Bi is the ith instance of B, and qBi

is a state of Bi. A state of the A-process is denoted by qA. We denote the set
{A,B1, . . . , Bn} as P, and write p for a process in P. For U ∈ {A,B}, we write
GU for the set of non-trivial guards that are used in δU , i.e., guards different
from Q and ∅. Then, let G = GA ∪GB .

Disjunctive and Conjunctive Systems. In a guarded protocols, a local tran-
sition (qp, g, q

′
p) ∈ δU of p is enabled in s if its guard g is satisfied for p in s,

written (s, p) |= g. We distinguish two types of guarded protocols, depending on
their interpretation of guards :

In disjunctive systems: (s, p) |= g iff ∃p′ ∈ P \ {p} : qp′ ∈ g.
In conjunctive systems: (s, p) |= g iff ∀p′ ∈ P \ {p} : qp′ ∈ g.

Let set(s) = {qA, qB1
, . . . , qBn

}, and for a set of processes P = {p1, . . . , pk},
let setP (s) = {qp1

, . . . , qpk
}. Then for disjunctive systems, we can more succinctly

state that (s, p) |= g iff setP\p(s) ∩ g 6= ∅, and for conjunctive systems (s, p) |=
g iff setP\p(s) ⊆ g. A process is enabled in s if at least one of its transitions is
enabled in s, otherwise it is disabled.

Like Emerson and Kahlon [15], we assume that in conjunctive systems initA
and initB are contained in all guards, i.e., they act as neutral states. For con-
junctive systems, we call a guard k-conjunctive if it is of the form Q\{q1, . . . , qk}
for some q1, . . . , qk ∈ Q. A state q is k-conjunctive if all non-trivial guards of
transitions from q are k′-conjunctive with k′ ≤ k. A conjunctive system is k-
conjunctive if every state is k-conjunctive.

Then, A‖Bn is defined as the transition system (S, initS , ∆) with

– set of global states S = (QA)× (QB)n,
– global initial state initS = (initA, initB , . . . , initB),
– and global transition relation ∆ ⊆ S × S with (s, s′) ∈ ∆ iff s′ is obtained

from s = (qA, qB1 , . . . , qBn) by replacing one local state qp with a new local
state q′p, where p is a U -process with local transition (qp, g, q

′
p) ∈ δU and

(s, p) |= g.

1 In contrast to Außerlechner et al. [6], for simplicity we only consider closed process
templates. However, our results extend to open process templates in the same way
as explained there.

2 By similar arguments as in Emerson and Kahlon [15], our results can be extended
to systems with an arbitrary number of process templates.
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Runs. A path of a system is a sequence of states x = s1, s2, . . . such that for
all m < |x| there is a transition (sm, sm+1) ∈ ∆ based on a local transition of
some process pm. We say that process pm moves at moment m. A path can be
finite or infinite, and a maximal path is a path that cannot be extended, i.e., it
is either infinite or ends in a state where no transition is enabled.

A system run is a maximal path starting in the initial state. We say that a
run is initializing if every process that moves infinitely often also visits its initial
state init infinitely often.

Given a system path x = s1, s2, . . . and a process p, the local path of p in x
is the projection x(p) = s1(p), s2(p), . . . of x onto local states of p. A local path
x(p) is a local run if x is a run.

Deadlocks and Fairness. A run is globally deadlocked if it is finite. An infinite
run is locally deadlocked for process p if there exists m such that p is disabled for
all sm′ with m′ ≥ m. A run is deadlocked if it is locally or globally deadlocked. A
system has a (local/global) deadlock if it has a (locally/globally) deadlocked run.
Note that absence of local deadlocks for all p implies absence of global deadlocks,
but not the other way around.

A run s1, s2, . . . is unconditionally fair if every process moves infinitely often.
A run is strong fair if it is infinite and for every process p, if p is enabled infinitely
often, then p moves infinitely often.

Remark. We consider these different notions of fairness for the following reason:
we are interested in unconditionally fair runs of the system, which requires an
assumption about scheduling. However, directly assuming unconditional fairness
is too strong, since any run with a local deadlock will violate the assumption,
and therefore satisfy the overall specification. Thus, we consider strong fairness
as an assumption on the scheduler, and absence of local deadlocks as a property
of the system that has to be proved. Together, they imply unconditional fairness.

2.2 Specifications

We consider formulas in LTL\X, i.e., LTL without the next-time operator X. Let
h(A,Bi1 , . . . , Bik) be an LTL\X formula over atomic propositions from QA and
indexed propositions from QB×{i1, . . . , ik}. For a system A‖Bn with n ≥ k and
ij ∈ [1..n], satisfaction of Ah(A,Bi1 , . . . , Bik) and Eh(A,Bi1 , . . . , Bik) is defined
in the usual way (see e.g. Baier and Katoen [7]).

Parameterized Specifications. A parameterized specification is a temporal
logic formula with indexed atomic propositions and quantification over indices.
A k-indexed formula is of the form ∀i1, . . . , ik.Ah(A,Bi1 , . . . , Bik) or ∀i1, . . . , ik.
Eh(A,Bi1 , . . . , Bik). For given n ≥ k, by symmetry of guarded protocols (cp.
Emerson and Kahlon [15]) we have

A‖Bn|=∀i1, . . ., ik.Ah(A,Bi1 , . . ., Bik) iff A‖Bn |= Ah(A,B1, . . . , Bk).

The latter formula is denoted by Ah(A,B(k)), and we often use it instead of
the original ∀i1, . . . , ik.Ah(A,Bi1 , ..., Bik). For formulas with path quantifier E,
satisfaction is defined analogously, and equivalent to satisfaction of Eh(A,B(k)).
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2.3 Model Checking Problems and Cutoffs

For a given system A‖Bn and specification h(A,B(k)) with n ≥ k,

– the model checking problem is to decide whether A‖Bn |= Ah(A,B(k)),
– the (global/local) deadlock detection problem is to decide whether A‖Bn has

(global/local) deadlocks,
– the parameterized model checking problem (PMCP) is to decide whether
∀m ≥ n : A‖Bm |= Ah(A,B(k)), and

– the parameterized (local/global) deadlock detection problem is to decide whet-
her for some m ≥ n, A‖Bm does have (global/local) deadlocks.

These definitions can be flavored with different notions of fairness, and with
the E path quantifier instead of A. According to our remarks about fairness
above, we are interested in proving the absence of local deadlocks under the
assumption of strong fairness, which implies unconditional fairness and therefore
allows us to separately prove the satisfaction of a temporal logic specification
under the assumption of unconditional fairness.

Corresponding problems for the synthesis of process templates can be defined
(compare Außerlechner et al. [6]). Parameterized synthesis based on cutoffs [22]
is also supported by our cutoff results, but the details will not be necessary for
understanding the results presented here.

Cutoffs. We define cutoffs with respect to a class of systems (either disjunctive
or conjunctive), a class of process templates T , and a class of properties, which
can be k-indexed formulas for some k ∈ N or the existence of (local/global)
deadlocks. A cutoff for a given class of properties and a class of systems with
processes from T is a number c ∈ N such that for all A,B ∈ T , all properties ϕ
in the given class, and all n ≥ c:

A‖Bn |= ϕ ⇔ A‖Bc |= ϕ.

Like the problem definitions above, cutoffs may additionally be flavoured
with different notions of fairness.

Cutoffs and Decidability. Note that the existence of a cutoff implies that the
parameterized model checking and parameterized deadlock detection problems
are decidable iff their non-parameterized versions are decidable.

3 New Cutoff Results for Conjunctive Systems

In this section, we state our new results for conjunctive systems, and compare
them to the previously known results in Table 1. We give improved cutoffs for
global deadlock detection in general (Section 3.1), and for local deadlock de-
tection for the restricted case of 1-conjunctive systems (Section 3.2). After that,
we explain why local deadlock detection in general is hard, and identify a num-
ber of cases where we can solve the problem even for systems that are not 1-
conjunctive (Sections 3.3 and 3.4). We do not improve on the cutoffs for LTL\X
properties, since they are already very small and only depend on the number of
index variables in the specification.
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Additional Definitions. To analyze deadlocks in a given conjunctive system
A‖Bn, we introduce additional definitions. A deadset is a minimal set D of local
states of other processes that block all outgoing transitions of one process in its
current state q. Formally, we say that D ⊆ Q is a deadset of q ∈ Q if:

i) ∀(q, g, q′) ∈ δ : ∃q′′ ∈ D : q′′ /∈ g,

ii) D contains at most one state from QA, and

iii) there is no D′ that satisfies i) and ii) with D′ ⊂ D.

For a given local state q, dead∧q is the set of all deadsets of q:

dead∧q = {D ⊆ Q | D is a deadset of q}.

If dead∧q = ∅, then we say q is free. If a state q does not appear in dead∧q′ for
any q′ ∈ Q, then we say q is non-blocking. If a state q does not appear in dead∧q ,
then we say q is not self-blocking.

For example, in a system where B is the process template from Sect. 1,
we have dead∧tw = {{w}, {r}} and dead∧tr = {{w}}. For all other states q ∈
{init, r, w}, we have dead∧q = ∅. Regardless of A, none of the deadsets contain a
state from A, since the guards of B do not mention states of A.

In these terms, a globally deadlocked run is a run that ends in a global state
s such that for every process p and its local state q, some D ∈ dead∧q is contained
in set(s). Similarly, a locally deadlocked run is a run such that one process p will
eventually always remain in state q, and from some point on, we always have
D ⊆ set(s) for some D ∈ dead∧q . Note that in this case, it can happen that there
does not exist a single deadset D that is contained in set(s) all the time, but the
run may alternate between different deadsets of q that are contained in set(s) at
different times.

3.1 Global Deadlock Detection

For global deadlock detection, we show how to obtain improved cutoffs based on
the number of free, non-blocking, and not self-blocking states in a given process
template.

Theorem 1. For conjunctive systems and process templates A,B, let

– k1 = |D1|, where D1 ⊆ QB is the set of free states in B,

– k2 = |D2 \D1|, where D2 ⊆ QB is the set of non-blocking states in B, and

– k3 = |D3 \ (D1 ∪D2)|, where D3 ⊆ QB is the set of not self-blocking states
in B.

Then 2|B| − 2k1 − 2k2 − k3 is a cutoff for global deadlock detection.
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Proof Sketch. In order to simulate a globally deadlocked run x = s0, s1, . . . , sm of
a large system by a run y in the cutoff system, by Emerson and Kahlon [15] the
following is sufficient. We analyze the set of local states q ∈ Q that are present
in the final state sm of x, and distinguish whether any such q appears once in
sm, or multiple times. If q appears once, we identify one local run of x that ends
in q, and replicate it in the cutoff system. If q appears multiple times, we do the
same for two local runs of x that end in q. This construction ensures that in the
resulting global run x′ = s′0, . . . , s

′
m of the cutoff system, for any point in time

t and any process p, we have setp(s′t) ⊆ setp(st). Therefore, all transitions in x′

will be enabled, and x′ is deadlocked in s′m. If x′ does not contain all local runs
of x then there are stuttering steps in x′, where no process moves. By removing
these stuttering steps, we obtain the desired run y.

The construction of Emerson and Kahlon assumes that in the worst case all
local states of B appear in the deadlocked state sm. However, if D1 ⊆ QB are free
local states, then we know that no state from D1 can ever appear in sm, and thus
the cutoff is reduced by 2|D1|. Similarly, if D2 ⊆ QB are non-blocking states,
then we know that no state from D2 can be necessary for the deadlock in sm,
and therefore the construction will also work if we remove the local runs ending
in D2. This also reduces the cutoff by 2|D2|. Moreover, the original construction
assumes that all local states q may be self-blocking, which requires the second
local run that ends in q. If we know that D3 ⊆ QB are not self-blocking, then
we only need one local run for each of these states, reducing the cutoff by |D3|.
If we combine all three cases, we get the statement of the theorem.

Note that the sets of free, non-blocking, and not self-blocking states can be
identified by a simple analysis of a single process template, and the cost of this
analysis is negligible compared to the cost of a higher cutoff in verification of
the system.

3.2 Local Deadlock Detection in 1-conjunctive Systems

For local deadlock detection, we first show that smaller cutoffs can be found by
taking into account the transitions and guards of the process template. For a
1-conjunctive process template U ∈ {A,B}, let GU,B be the set of guards of U
that exclude one of the states of B, i.e., that are of the form g = Q\{q} for some
q ∈ QB . Furthermore, let maxDU = max{|D ∩ QB | | D ∈ dead∧q for some q ∈
QU} be the maximal number of states from B that appear in any deadset of a
state in U .

Theorem 2. For conjunctive systems with process templates A,B, if process
template U ∈ {A,B} is 1-conjunctive, then the following are cutoffs for local
deadlock detection in a U -process in non-fair runs:

– maxDU + 2, and

– |GU,B |+ 2.
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Proof Sketch. In order to simulate a locally deadlocked run x = s0, s1, . . . of
a large system by a run y in the cutoff system, the following construction has
been presented by Außerlechner et al. [5] for non-fair runs. Suppose process p is
locally deadlocked in local state q after the system has entered state sm. We first
copy the local runs of A and p. Since the system is 1-conjunctive, every local
state has a unique deadset. For each q′ in the deadset D of q, we copy a local run
from x that is in q′ at time m, and modify it such that it stays in q′ forever after
this point in time. Thus, the process in q is locally deadlocked because all states
in D will be present at any time after m. Finally, we copy one additional local
run of a process that moves infinitely often in x. As in the proof of Theorem 1,
all transitions of the resulting global run x′ will be enabled, and we can obtain
the desired run y by de-stuttering.

Note that the original proof uses one process for every state in the unique
deadset D of the deadlocked local state q, and assumes that in the worst case we
have D ⊇ QB , resulting in the cutoff of |QB |+ 2 for all process templates with a
given set of states QB . However, if we take into account the guards of transitions
and the individual deadsets, we can obtain smaller cutoffs: in particular, instead
of assuming that the size of some deadset is |QB |, we can compute the maximal
size of actual deadsets maxDU , and replace |QB | by maxDU to obtain a cutoff
of maxDU + 2. Further, note that (since the system is 1-conjunctive) maxDU is
bounded by |GU,B |, so |GU,B |+ 2 also is a cutoff.

Theorem 3. For conjunctive systems and process templates A,B, if process
template U ∈ {A,B} is 1-conjunctive, then 2|GU,B | is a cutoff for local deadlock
detection in a U -process in strong-fair runs.

Proof Sketch. For fair runs, the construction by Außerlechner et al. [5] is similar
as in the previous proof, but additionally we need to ensure that all processes
either move infinitely often or are locally deadlocked. We explain the original
construction in a new way that highlights our insight.

First, identify all states q′ ∈ QB in the deadset D of q such that there exists
a locally deadlocked local run in x that eventually stays in q′. For each of these
states, copy this local run. To ensure that these local runs are locally deadlocked
also in the constructed run, add the states in their deadsets to D, and if q′

is self-blocking then also copy another local run from x that eventually visits
the state q′ and stays there. Then repeat the procedure until no more states are
added to D. Note that only states that are excluded in one of the (1-conjunctive)
guards can be added to D, and for each state we have copied up to two local
runs from x. Thus, the size of D is bounded by |GU,B |, and in the worst case we
have added 2|GU,B | processes until now.

Then, let D′ ⊆ D be the set of states for which no process has been added
thus far, and let m′ be the time when all local runs that have been added until
now are locally deadlocked. Copy for each of the states q′ ∈ D′ one local run
from x that is in q′ at time m′, and add a process that stays in initB until time
m′. Then after moment m′ we can let all processes that are in D′ move in the
following way: (i) choose some q′ ∈ D′ (ii) let the process that is in initB move
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to q′ (iii) let the process that was waiting in q′ move to initB (iv) repeat with
fair choices of q′ ∈ D′. Since each of these states must appear in x at any time
after m′ without a process being locally deadlocked in the state, there must
be a local path from this state to itself in one of the local runs in x. Since for
fair conjunctive systems we assume that they are initializing, this path must go
through initB , and the construction is guaranteed to work.

Note that overall, for each state in D we have copied either one or two local
runs from x, so the bound for the number of these processes is still 2|GU,B |. Also
note that the additional process that waits in initU is only needed if at least one
of the other processes is not locally deadlocked, thus it does not increase the
needed number of processes. Finally, for the original locally deadlocked process
we can distinguish two cases: i) if we have added 2|GU,B | processes thus far, then
the original process is deadlocked in a state that does not block any transition,
and we can remove it since the run will exhibit a local deadlock regardless, or
ii) if this is not the case, then even with the original process we need at most
2|GU,B | processes overall.

Note that in a 1-conjunctive process template U , we have |GU,B | ≤ |QB |− 1.
Thus, our new cutoffs are always smaller or equal to the known cutoff from
Außerlechner et al. [6].

Table 1: Cutoff Results for Conjunctive Systems

EK [15] AJK [6] our work

k-indexed LTL\X non-fair k + 1 k + 1 unchanged

k-indexed LTL\X fair - k + 1 unchanged

Local Deadlock non-fair - |B|+ 1∗ maxDU + 2 and |GU,B |+ 2∗

Local Deadlock fair - 2|B| − 2∗∗ 2|GU,B |∗∗

Global Deadlock 2|B|+ 1 2|B| − 2 2|B| − 2k1 − 2k2 − k3
∗ : systems need to have alternation-bounded local deadlocks (see Sect. 3.4)

∗∗ : systems need to be initializing and have alternation-bounded local deadlocks
k1: number of free states

k2: number of non-blocking states that are not free
k3: number of not self-blocking states that are not free or non-blocking

3.3 Local Deadlock Detection: Beyond 1-conjunctive Systems

While Theorems 2 and 3 improve on the local deadlock detection cutoff for con-
junctive systems in some cases, the results are still restricted to 1-conjunctive
process templates. The reason for this restriction is that when going beyond
1-conjunctive systems, the local deadlock detection cutoff (even without consi-
dering fairness) can be shown to grow at least quadratically in the number of
states or guards, and it becomes very hard to determine a cutoff.
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To analyze these cases, define the following: given a process template U ∈
{A,B}, a sequence of local states q1, . . . , qk is connected if ∀qi ∈ {q1, . . . , qk} :
∃(qi, gi, qi+1) ∈ δU . A cycle is a connected sequence of states q, q1, . . . , qk, q such
that ∀qi, qj ∈ {q1, . . . , qk} : qi 6= qj . We denote such a cycle by Cq. By abuse of
notation, Cq is also used for the set of states on Cq. We denote the set of guards
of the transitions on Cq as GCq

.

Example 1. If we consider the process template in Figure 1 without the dashed
parts, then it exhibits a local deadlock in state q0 for 9 processes, but not for 8
processes: one process has to move to q0, which has four deadsets: {a, c}, {a, d},
{b, c}, and {b, d}. To preserve a deadlock in q0, the processes need to alternate
between different deadsets while always at least covering one of them. To achieve
this, for each cycle that starts and ends in states a, b, c, d, we need 2 processes
that move along the cycle to keep all guards of q0 covered at all times. Intuitively,
one process per cycle has to be in the state of interest, or ready to enter it, and
the other process is traveling on the cycle, waiting until the guards are satisfied.

init

u2

¬b ∧ ¬d ∧¬e

u1

¬a ∧ ¬c∧¬f

q0

¬a ∧ ¬b

q1

¬c ∧ ¬d

q2
¬e ∧ ¬f

abe c d f

Fig. 1: Process Template with Quadratic Cutoff for Local Deadlocks

Now, consider the modified template (including the dashed parts) where we
i) add two states e, f in a similar way as a, b, c, d, ii) add a new state connected
to q0 with guard ¬e∧¬f , and iii) change the guards in the sequence from u1 to
init to ¬a ∧ ¬c ∧ ¬e and ¬b ∧ ¬d ∧ ¬f , respectively. Then we have 6 cycles that
need 2 processes each, and we need 13 processes to reach a local deadlock in q0.

Moreover, consider the modified template where we increase the length of
the path from u1 to init by adding states u3 and u4, such that we obtain a
sequence (u1, u2, u3, u4, init), where transitions alternate between the two guards
from the original sequence. Then, for every cycle we need 3 processes instead
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of 2, as otherwise they cannot traverse the cycle fast enough to ensure that
the local deadlock is preserved infinitely long. That is, the template with both
modifications now needs 19 processes to reach a local deadlock.

Observe that by increasing the height of the template, we increase the ne-
cessary number of processes without increasing the number of different guards.
Moreover, when increasing both the width and height of the template, the num-
ber of processes that are necessary for a local deadlock increases quadratically
with the size of the template.

This example leads us to the following result.

Theorem 4. A cutoff for local deadlock detection for the class of all conjunctive
systems must grow at least quadratically in the number of states. Furthermore,
it cannot be bounded by the number of guards at all.

Proof Sketch. For a system that does exhibit a local deadlock for some size n,
but not for n− 1, the cutoff cannot be smaller than n. Thus, the example shows
that a cutoff for local deadlock detection in general is independent of the number
of guards, and must grow at least quadratic in the size of the template.

Cutoffs that can in the best case be bounded by |B|2 will not be very useful
in practice. Therefore, instead of solving the general problem, we identify in the
following a number of cases where the cutoff remains linear in the number of
states or guards.

3.4 Systems with Alternation-bounded Local Deadlocks

When comparing the proof of Theorem 2 to Example 1, we note that the re-
ason that the cutoff in Theorem 2 does not apply is the following: while in
1-conjunctive systems every state has a unique deadset, in the general case a
state may have many deadsets, and the structure of the process template may
require infinitely many alternations between different deadsets to preserve the
local deadlock. Moreover, as shown in the example, the number of processes nee-
ded to alternate between deadsets may increase with the size of the template,
even if the set of guards (and thus, the number of different deadsets) remains
the same.

However, we can still obtain small cutoffs in some cases, based on the follo-
wing observation: even if states have multiple deadsets, an infinite alternation
between them may not be necessary to obtain a local deadlock. In the following,
we will first show that for systems where infinite alternation between different
deadsets is not necessary, the cutoff for 1-conjunctive systems applies, and then
give a number of sufficient conditions to identify such systems.

Alternation-bounded Local Deadlocks. We say that a run x = s0, s1, . . .
where process p is locally deadlocked in state q is alternation-bounded if there is a
moment m and a single set D ⊆ QB such that for all m′ > m: D ⊆ setP\q(sm′)
and for some qA ∈ QA, D ∪ qA is a deadset of q. Intuitively, this means the
B-states in the deadset that preserves the deadlock only change finitely often.
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For q ∈ Q, we say that q has alternation-bounded local deadlocks for c ∈ N if
the following holds for all n ≥ c:

if A‖Bn has a local deadlock in q
then A‖Bn has an alternation-bounded local deadlock in q.

Theorem 5. For conjunctive systems and process templates A,B, the cutoffs
of Theorem 2 apply for non-fair runs, and the cutoff of Theorem 3 applies for
strong-fair runs if every q ∈ Q has alternation-bounded local deadlocks for the
cutoff value. In particular, this implies that the parameterized local deadlock de-
tection problem is decidable.

Proof Sketch. Suppose in run x of A‖Bn, with n greater than the cutoff value,
process p is locally deadlocked in local state q ∈ Q, and q has alternation-
bounded local deadlocks. Then there exists an alternation-bounded run x′ of
A‖Bn in which p is locally deadlocked in q. That is, either the local deadlock
in x′ eventually is preserved by a sequence of deadsets with unique restriction
to B-states, or a number of processes that is bounded by the size of the largest
deadset is sufficient to preserve the local deadlock in q. In the latter case, we are
done. In the former case, based on the set D, the run x′ can be simulated with
the same constructions as in the proofs of Theorems 2 and 3.

Sufficient Conditions for Alternation-bounded Local Deadlocks. In the
following, we will identify four sufficient conditions that imply that a state q has
alternation-bounded local deadlocks, and that can easily be checked directly on
the process template.

Effectively 1-conjunctive states. We say that a state q is effectively 1-conjunctive
if it is either 1-conjunctive or free.

Lemma 1. If q ∈ Q is effectively 1-conjunctive, then it has alternation-bounded
local deadlocks for c = 1.

Proof Sketch. If q is 1-conjunctive, then it has alternation-bounded local dead-
locks since it has only a single deadset. If q is free, then a local deadlock in q is
not possible, so the condition holds vacuously.

In the reader-writer example from Section 1, all states except tw are effecti-
vely 1-conjunctive.

Relaxing 1-conjunctiveness. For q ∈ Q, let Gq be the set of non-trivial guards
in transitions from q. We say that state q is relaxed 1-conjunctive if Gq only
contains guards of the form Q \ {q1, . . . , qk}, where either

– at most one of the qi is from QB , or
– whenever more than one qi is from QB , then Gq must also contain a guard

of the form Q \ {q′1, . . . , q′k, qi} for one of these qi and where all q′j are from
QA.

Lemma 2. If q ∈ Q is relaxed 1-conjunctive, then it has alternation-bounded
local deadlocks for c = 1.
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Proof Sketch. Note that the guards we allow on transitions from a relaxed 1-
conjunctive state each have at most one state from QB that can block the transi-
tion. Thus q does not necessarily have a unique deadset, but for each deadset D
the restriction to states of B is unique. Thus, every run that is locally deadlocked
in q will be alternation-bounded.

Alternation-free. For a given state q ∈ Q, let D be the set of all local states that
disable one of the k-conjunctive guards, with k > 1, on transitions from q. Then
we say that q is alternation-free if the following condition holds for at most one
q′ ∈ D:

there exists a cycle Cq′ = q′, . . . , q′ ∈ U with

– q 6∈ Cq′ , and
– ∀g ∈ GCq′ : (q ∈ g ∧ @g′ ∈ Gq : g′ ⊇ g).

Intuitively, this means that there is at most one state q′ ∈ D that is on a
cycle that can be traversed while the local deadlock is preserved — and at least
two such states would be needed to alternate between different deadsets.

In the reader-writer example from Section 1, state tw is alternation-free: i)
{w, r} is the set of states that disables the only guard that is not 1-conjunctive,
and ii) all cycles that start and end in w contain also tw.

The following lemma directly follows from the explanation above.

Lemma 3. If q ∈ Q is alternation-free, then it has alternation-bounded local
deadlocks for c = 1.

Process templates with freely traversable lassos. While the three conditions above
guarantee the existence of a fair alternation-bounded run if the original run was
fair, the following condition in general returns a run that is not strong-fair.
A lasso lo is a connected sequence of local states q0, . . . , qi, . . . , qk such that
q0 = init and qi, . . . , qk is a cycle. We denote by Glo the set of guards of the
transitions on lo. We say that a lasso lo is freely traversable with respect to a
state q ∈ Q if it does not contain q and for every deadset D of q, every g ∈ Glo

contains D ∪ {q}. Intuitively, these conditions ensure that lo can be executed
after the system has reached any of the (minimal) deadlock configurations for q.

Lemma 4. If there exists a freely traversable lasso in B with respect to q ∈ Q,
then q has alternation-bounded local deadlocks in non-fair runs for c = maxDU +
2.

Proof Sketch. Suppose there exists a freely traversable lasso with respect to
q, and x is a run where process p is locally deadlocked in q, where p is not
enabled anymore after time m. Then we obtain an alternation-bounded locally
deadlocked run x′ by picking a deadset D of q with D ⊆ setP\p(xm) and for every
q′ ∈ D a local run from x that is in q′ at time m. Since n ≥ c = maxDU +2, there
is at least one other process in A‖Bn. We replace the local run of this process
with a local run that stays in initB until m, and after m is the only process that
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moves, along the freely traversable lasso we assumed to exist. Any further local
runs stay in initU forever.

Theorem 5 and Lemmas 1 to 4 allow us to analyze the process templates,
state by state, and to conclude the existence of a small cutoff for local deadlock
detection in certain cases. The lemmas provide sufficient but not necessary con-
ditions for the existence of alternation-bounded cutoffs. They provide a template
for obtaining small cutoffs in certain cases, and for a given application they may
be refined depending on domain-specific knowledge.

3.5 Local Deadlock Detection under Infinite Alternation

For systems that do not have alternation-bounded local deadlocks, it is very
difficult to obtain cutoff results. For example, even in systems with a single 2-
conjunctive and otherwise only 1-conjunctive guards, one can show that a cutoff
based on the number of guards in general cannot exist. Moreover, the cutoff
grows at least linearly in the number of states, or, more precisely, in the number
of alternations between different deadsets that are necessary to traverse a cycle
Cq for a state q from a deadset.

4 Verification of the Reader-Writer Example

We consider again the reader-writer example from Section 1, and show how our
new results allow us to check correctness, find a bug, and check a fixed version.

With our results, we can for the first time check the given liveness property
in a meaningful way, i.e., under the assumption of fair scheduling. Since all states
in the process template have alternation-bounded local deadlocks for c = 1, by
Theorems 3 and 5 the local deadlock detection cutoff for the system is 2|GB,B | =
4. No cutoff for this problem was known before. Moreover, compared to previous
results we reduce the cutoff for global deadlock detection by recognizing that
k1 = 3 states can never be deadlocked, and k2 = 2 additional states never appear
in any guard. This reduces the cutoff to 2|B| − 2k1 − 2k2 = 10− 6− 4 = 0, i.e.,
we detect that there are no global deadlocks without further analysis.

However, checking the system for local deadlocks shows that a local dead-
lock is possible: a process may forever be stuck in tw if the other processes
move in a loop (init, tr, r)ω (and always at least one process is in r). To fix
this, we can add an additional guard ¬tw to the transition from init to tr,

initr

tr

¬tw¬w

w

tw

¬w ∧ ¬r

as shown in the process template to the right.
For the resulting system, our results give a
local deadlock detection cutoff of 2|GB,B | =
6, and a global deadlock detection cutoff of
2|B|−2k1−2k2−k3 = 10−6−2−1 = 1 (where
k3 is the number of states that do appear in
guards and could be deadlocked themselves,
but do not have a transition that is blocked
by another process in the same state).
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5 New Cutoff Results for Disjunctive Systems

In this section, we state our new cutoff results for disjunctive systems, and
compare them to the previously known results in Table 2. Moreover, we show
two extensions of the class of problems for which cutoffs are available:

1. systems where transitions are guarded with a conjunction of disjunctive
guards (Section 5.4), and

2. two important classes of specifications that cannot be expressed in prenex
indexed temporal logic (Section 5.5).

To state our results, we need the following additional definitions. Fix process
templates A,B with G = GA ∪GB . Let |B|G = |{q ∈ QB | ∃g ∈ G : q ∈ g}|. For
a state q ∈ QB in a disjunctive system, define Enableq = {q′ ∈ Q | ∃(q, g, q′′) ∈
δB : q′ ∈ g}, i.e., the set of states of A and B that enable a transition from q.

5.1 Linear-Time Properties

Theorem 6. For disjunctive systems, process templates A,B, and k-indexed
properties Φk:

– |G|+ k + 1 and |B|G + k + 1 are cutoffs in non-fair runs,
– |B|G + |G|+ k and 2|B|G + k are cutoffs in unconditionally fair runs.

Proof Sketch. Given a run x of A‖Bn where x(B1), . . . , x(Bk) satisfy Φk, Emer-
son and Kahlon [15] showed how to construct a non-fair run y in the cutoff
system that satisfies Φk. The run y includes the local runs x(B1), . . . , x(Bk),
and additional runs that ensure that all the transitions are enabled: for every
state q ∈ QB that appears in x and the local run that first visits q, we add the
prefix of that local run up to q, and then let it stay in q forever. One additio-
nal local run may have to be copied from x to ensure that the resulting run is
infinite. Thus, the resulting cutoff is |B|+ k + 1 in non-fair runs.

Based on an analysis of the process template B, we can find better cutoffs:
as a first option, we can statically check which states do appear in a guard,
and conclude that only those may need to be copied. This reduces the cutoff to
|B|G + k + 1. Furthermore, since our goal is to enable all transitions, it is also
sufficient to only copy a local run for one representative state of each guard (the
one that is visited first in x). In this way, we need at most one additional process
per guard in B, i.e., |G|+ k + 1 also is a cutoff for non-fair runs.

Außerlechner et al. [6] gave a construction that builds on the steps explained
above, and additionally preserves unconditional fairness in a given run. To this
end, distinguish local states that appear finitely often or infinitely often in x.
If state q appears infinitely often, there must be a cycle Cq = q, . . . , q in one
of the local runs. To ensure fairness while always covering q, we add two copies
of the shortest local path to q, and let the two processes take turns in moving
through Cq (i.e., while one of them moves through Cq, the other one stays in
q). If state q appears finitely often in x, we add a copy of the shortest path to
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q, and identify the moment mq when q appears for the last time in x. Instead
of staying in q forever, we let the copied local run stay in q until mq, and then
move along the local path that leaves q at that time in x, until it reaches a state
q′ that appears infinitely often. From that point on, we let the process move in
a fair way based on a cycle Cq′ taken from x. This original construction gives a
cutoff of 2|B|+k−1, since in the worst case all states appear infinitely often and
we need two copies for each, but at least one of them must also appear infinitely
often in the k processes that have to satisfy the specification.

Like in the non-fair case, an analysis of the template gives us better cutoffs.
As a first approximation, we can again limit the construction to states in |B|G,
and obtain the cutoff 2|B|G + k (now we can not assume that one of the states
also appears in the k processes). Moreover, from the states in |B|G that appear
infinitely often we can again chose one representative for each guard, and only
add two local runs for each representative. This does not work for the processes
that are visited finitely often, since we need to move them into an infinitely
visited state to ensure fairness, and then need a different representative. To
compute the cutoff, suppose f states from |B|G are visited finitely often, and
i states infinitely often. From the latter, there are r states for which we added
two local runs, with r ≤ |G| and r ≤ i. Then we need at most f + 2r + k local
runs (including the k processes that satisfy the specification). However, we have
f ≤ |B|G − i, and therefore f + 2r + k ≤ |B|G − i + 2r + k ≤ |B|G + r + k ≤
|B|G + |G|+ k.

5.2 Global Deadlock Detection

Let N = {q ∈ QB | q ∈ Enableq}, and let N ∗ be the maximal subset (wrt.
number of elements) of N such that ∀qi, qj ∈ N ∗ : qi /∈ Enableqj ∧ qj /∈ Enableqi .

Theorem 7. For disjunctive systems and process templates A,B, |B|G + |N ∗|
is a cutoff for global deadlock detection.

Proof Sketch. To construct a globally deadlocked run in the cutoff system, for
each state from N that appears in the deadlock, we copy the according local
run. To simulate the remaining part of x, we use the same construction as for
fair runs in the proof of Thm. 6, except that local states that appear in the
deadlock are considered to be visited infinitely often (and we don’t need the
fair extension of runs after reaching the state). Thus, the resulting run will be
globally deadlocked, and all transitions up to the deadlock will be enabled. The
number of local runs is bounded by |N |+ f + i, where i is the number of states
from |B|G that appear in the deadlock and are not in N , and f is the states from
|B|G that appear in the run, but not in the deadlock. Since f + i ≤ |B|G and
N ∗ is the maximal subset of N that can appear together in a global deadlock,
the number of needed local runs is bounded by |N ∗|+ |B|G.

Remark. To compute N ∗ exactly, we need to find the smallest set of states in
N that do not satisfy the additional condition. This amounts to finding the
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minimum vertex cover (MVC) for the graph with vertices from N and edges
from qi to qj if qi ∈ Enableqj .

5.3 Local Deadlock Detection

Theorem 8. For disjunctive systems and process templates A,B:

– m + |G| + 1 is a cutoff for local deadlock detection in non-fair runs, where
m = maxq∈Q∗B{|Enableq|} for Q∗B = {q ∈ QB | |Enableq| < |B|},

– |B|G + |G| + 1 and 2|B|G + 1 are cutoffs for local deadlock detection in
unconditionally fair runs.

Proof Sketch. Based on what we have already shown, the fair case is simpler: we
copy the local runs of A and the deadlocked process, and for the other processes
use the same construction as in the fair case of Thm. 6. The local deadlock is
preserved since states that appear finitely often in the original run also appear
finitely often in the constructed run, and the cutoffs are 2|B|G + 1 and |B|G +
|G|+ 1.

For the non-fair case, we use a combination of the constructions for the fair
and non-fair case from Thm. 6: if in run x a process is locally deadlocked in
local state q, then for states in Enableq that appear in x we use the construction
for finitely appearing states in fair runs. For the remaining states, we use the
non-fair construction, i.e., we find one representative per guard and stay there
forever, except that representatives now can never be from Enableq. The con-
struction ensures that all transitions that are taken are enabled, and eventually
all transitions from q are disabled. Since m gives a bound on the number of
states that can be in Enableq, the cutoff we get is m+ |G|+ 1.

Table 2: Cutoff Results for Disjunctive Systems

EK [15] AJK [6] our work

k-indexed LTL\X non-fair |B|+ k + 1 |B|+ k + 1 |G|+ k + 1 and |B|G + k + 1

k-indexed LTL\X fair - 2|B|+ k − 1 |B|G + |G|+ k and 2|B|G + k

Local Deadlock non-fair - |B|+ 2 m + |G|+ 1, with m < |B|

Local Deadlock fair - 2|B| − 1 |B|G + |G|+ 1 and 2|B|G + 1

Global Deadlock - 2|B| − 1 |B|+ |N ∗| with |N ∗| < |B|

5.4 Systems with Conjunctions of Disjunctive Guards

We consider systems where a transition can be guarded by a set of sets of states,
interpreted as a conjunction of disjunctive guards. I.e., a guard {D1, . . . , Dn} is
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satisfied in a given global state if for all i = 1, . . . , n, there exists another process
in a state from Di.

We observe that for this class of systems, most of the original proof ideas
still work. For results that depend on the number of guards, we have to count
the number of different conjuncts in guards.

Theorem 9. For systems with conjunctions of disjunctive guards, cutoff results
for disjunctive systems that do not depend on the number of guards still hold
(first and second column of results in Table 2, and cutoffs in the third column
that only refer to |B|G and constants).

Cutoff results that depend on the number of guards (last column of Table 2)
hold if we consider the number of conjuncts in guards instead. For results that
additionally refer to some measure of the sets of enabling states (m and |N ∗|,
respectively), we obtain a valid cutoff for systems with conjunctions of disjunctive
guards if we replace this measure by |B| − 1.

In particular, the existence of a cutoff implies that the respective PMCP and
parameterized deadlock detection problems are decidable.

Proof Ideas. The cutoff results that are independent of the number of guards
still hold since all of the original proof constructions still work. To simulate a run
x of a large system in a run y the cutoff system, one task is to make sure that
all necessary transitions are enabled in the cutoff system. The construction that
is used to do this works for conjunctions of disjunctive guards just as well. By
a similar argument, deadlocks are preserved in the same way as for disjunctive
systems.

For cutoffs that depend on the number of guards, transitions with conjuncti-
ons of disjunctive guards require us to use one representative for each conjunct
in a guard, in the construction explained in the proof of Theorem 6.

Finally, the reductions of the cutoff based on the analysis of states that can
or cannot appear together in a deadlock do not work in these extended systems,
and we have to replace m and |N ∗| by |B| − 1 in the cutoffs. The reason is that
Enableq is now not a set of states anymore, but a set of sets of states. A more
detailed analysis based on this observation may be possible, but is still open.

5.5 Simultaneous Reachability of Target States

An important class of properties for parameterized systems asks for the rea-
chability of a global state where all processes of type B are in a given local
state q (compare Delzanno et al. [13]). This can be written in indexed LTL\X
as F ∀i.qi, but is not expressible in the fragment where index quantifiers have to
be in prenex form. We denote this class of specifications as Target. Similarly,
repeated reachability of q by all states simultaneously can be written GF ∀i.qi,
and is also not expressible in prenex form. We denote this class of specifications
as Repeat-Target.

Theorem 10 (Disjunctive Target and Repeat-Target). For disjunctive
systems: |B| is a cutoff for checking Target and Repeat-Target.
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In particular, the PMCP with respect to Target and Repeat-Target in
disjunctive systems is decidable.

Proof Ideas. We can simulate a run x in a large system where all processes are in
q at time m in the cutoff system by first moving one process into each state that
appears in x before m, in the same order as in x. To make all processes reach
q, we move them out of their respective states in the same order as they have
moved out of them in x. For this construction, we need at most |B| processes.

If in x the processes are repeatedly in q at the same time, then we can simulate
this also in the cutoff system: if m′ > m is a point in time where this happens
again, then we use the same construction as above, except that we consider all
states that are visited between m and m′, and we move to these states from q
instead from init. The correctness argument is the same, however.

Finally, if the run with Repeat-Target should be fair, then we do not select
any m′ with the property above, but we choose it such that all processes move
between m and m′. If the original run x is fair, then such an m′ must exist.

6 Conclusion

We have shown that better cutoffs for guarded protocols can be obtained by ana-
lyzing properties of the process templates, in particular the number and form of
transition guards. We have further shown that cutoff results for disjunctive sys-
tems can be extended to a new class of systems with conjunctions of disjunctive
guards, and to specifications Target and Repeat-Target, that have not been
considered for guarded protocols before.

For conjunctive systems, previous works have treated local deadlock detection
only for the restricted case of systems with 1-conjunctive guards. We have con-
sidered the general case, and have shown that it is very difficult — the cutoffs
grow independently of the number of guards, and at least quadratically in the
size of the process template. To circumvent this worst-case behavior, we have
identified a number of conditions under which a small cutoff can be obtained
even for systems that are not 1-conjunctive.

By providing cutoffs for several problems that were previously not known to
be decidable, we have in particular proved their decidability.

Our work is inspired by applications in parameterized synthesis [8,22], where
the goal is to automatically construct process templates such that a given speci-
fication is satisfied in systems with an arbitrary number of components. In this
setting, deadlock detection and expressive specifications are particularly impor-
tant, since all relevant properties of the system have to be specified.
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Abstract. Refinement types are a popular way to specify and reason
about key program properties. In this paper, we introduce RTR, a new
system that adds refinement types to Ruby. RTR is built on top of
RDL, a Ruby type checker that provides basic type information for
the verification process. RTR works by encoding its verification prob-
lems into Rosette, a solver-aided host language. RTR handles mixins
through assume-guarantee reasoning and uses just-in-time verification
for metaprogramming. We formalize RTR by showing a translation from
a core, Ruby-like language with refinement types into Rosette. We apply
RTR to check a range of functional correctness properties on six Ruby
programs. We find that RTR can successfully verify key methods in these
programs, taking only a few minutes to perform verification.

Keywords: Ruby, Rosette, refinement types, dynamic languages

1 Introduction

Refinement types combine types with logical predicates to encode program in-
variants [32, 43]. For example, the following refinement type specification:

type : incr sec , ‘( Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’
describes a method incr sec that increments a second. With this specification,
incr sec can only be called with integers that are valid seconds (between 0 and
59) and the method will always return valid seconds.

Refinement types were introduced to reason about simple invariants, like
safe array indexing [43], but since then they have been successfully used to verify
sophisticated properties including termination [39], program equivalence [9], and
correctness of cryptographic protocols [28], in various languages (e.g., ML [18],
Racket [21], and TypeScript [40]).

In this paper, we explore refinement types for Ruby, a popular, object-
oriented, dynamic scripting language. Our starting place is RDL [17, 30], a Ruby
type system recently developed by one of the authors and his collaborators. We
introduce RTR, a tool that adds refinement types to RDL and verifies them via
a translation into Rosette [38], a solver-aided host language. Since Rosette is not
object-oriented, RTR encodes Ruby objects as Rosette structs that store object

c© Springer International Publishing AG 2018 269
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 269–290, 2018.
https://doi.org/10.1007/978-3-319-73721-8_13



fields and an integer identifying the object’s class. At method calls, RTR uses
RDL’s type information to statically overestimate the possible callees. When
methods with refinement types are called, RTR can either translate the callee
directly or treat it modularly by asserting the method preconditions and assum-
ing the postcondition, using purity annotations to determine which fields (if any)
the method may mutate. (§ 2)

In addition to standard object-oriented features, Ruby includes dynamic lan-
guage features that increase flexibility and expressiveness. In practice, this intro-
duces two key challenges in refinement type verification: mixins, which are Ruby
code modules that extend other classes without direct inheritance, and metapro-
gramming, in which code is generated on-the-fly during runtime and used later
during execution. The latter feature is particularly common in Ruby on Rails, a
popular Ruby web development framework.

To meet these challenges, RTR uses two key ideas. First, RTR incorporates
assume-guarantee checking [20] to reason about mixins. RTR verifies definitions
of methods in mixins by assuming refinement type specifications for all unde-
fined, external methods. Then, by dynamically intercepting the call that includes
a mixin in a class, RTR verifies the appropriate class methods satisfy the assumed
refinement types (§ 3.1). Second, RTR uses just-in-time verification to reason
about metaprogramming, following RDL’s just-in-time type checking [30]. In
this approach, (refinement) types are maintained at run-time, and methods are
checked against their types after metaprogramming code has executed but before
the methods have been called (§ 3.2).

We formalized RTR by showing how to translate λRB , a core Ruby-like lan-
guage with refinement types, into λI , a core verification-oriented language. We
then discuss how to map the latter into Rosette, which simply requires encod-
ing λI ’s primitive object construct into Rosette structs and translating some
control-flow constructs such as return (§ 4).

We evaluated RTR by using it to check a range of functional correctness
properties on six Ruby and Rails applications. In total, we verified 31 methods,
comprising 271 lines of Ruby, by encoding them as 1,061 lines of Rosette. We
needed 73 type annotations. Verification took a total median time (over multiple
trials) of 506 seconds (§ 5).

Thus, we believe RTR is a promising first step toward verification for Ruby.

2 Overview

We start with an overview of RTR, which extends the Ruby type checker RDL [30]
with refinement types. In RTR, program invariants are specified with refinement
types (§ 2.1) and checked by translation to Rosette (§ 2.2). We translate Ruby
objects to Rosette structs (§ 2.3) and method calls to function calls (§ 2.4).

2.1 Refinement Type Specifications

Refinement types in RTR are Ruby types extended with logical predicates. For
example, we can use RDL’s type method to link a method with its specification:
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type ‘(Integer x { 0 ≤ x < 60 }) → Integer r { 0 ≤ r < 60}’
def incr sec (x) if (x==59) then 0 else x+1 end ; end

This type indicates the argument and result of incr sec are integers in the range
from 0 to 59. In general, refinements (in curly braces) may be arbitrary Ruby
expressions that are treated as booleans, and they should be pure, i.e., have
no side effects, since effectful predicates make verification either complicated or
imprecise [41]. As in RDL, the type annotation, which is a string, is parsed and
stored in a global table which maintains the program’s type environment.

2.2 Verification using Rosette

RTR checks method specifications by encoding their verification into Rosette [38],
a solver-aided host language built on top of Racket. Among other features,
Rosette can perform verification by using symbolic execution to generate log-
ical constraints, which are discharged using Z3 [24].

For example, to check incr sec , RTR creates the equivalent Rosette program:
(define ( incr sec x) ( if (= x 59) 0 (+ x 1)))
(define−symbolic x in integer?)
( verify #:assume (assert 0 ≤ x < 60)

#:guarantee (assert (let ([ r ( incr sec x) ]) 0 ≤ r < 60)))
Here x in is an integer symbolic constant representing an unknown, arbitrary in-
teger argument. Rosette symbolic constants can range over the solvable types in-
tegers, booleans, bitvectors, reals, and uninterpreted functions. We use Rosette’s
verify function with assumptions and assertions to encode pre- and postcondi-
tions, respectively. When this program is run, Rosette searches for an x in such
that the assertion fails. If no such value exists, then the assertion is verified.

2.3 Encoding and Reasoning about Objects

We encode Ruby objects in Rosette using a struct type, i.e., a record. More specif-
ically, we create a struct type object that contains an integer classid identifying
the object’s class, an integer objectid identifying the object itself, and a field
for each instance variable of all objects encountered in the source Ruby program
(similarly to prior work [19, 34]).

For example, consider a Ruby class Time with three instance variables @sec,
@min, and @hour, and a method is valid that checks all three variables are valid:

class Time
attr accessor : sec , :min, :hour

def initialize (s , m, h) @sec = s; @min = m; @hour = h; end

type ‘() → bool’
def is valid 0 ≤ @sec < 60 ∧ 0 ≤ @min < 60 ∧ 0 ≤ @hour < 24; end

end
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RTR observes three fields in this program, and thus it defines:
(struct object ([ classid ][ objectid ]

[@sec #:mutable] [@min #:mutable] [@hour #:mutable]))
Here object includes fields for the class ID, object ID, and the three instance
variables. Note since object’s fields are statically defined, our encoding cannot
handle dynamically generated instance variables, which we leave as future work.

RTR then translates Ruby field reads or writes as getting or setting, respec-
tively, object’s fields in Rosette. For example, suppose we add a method mix to
the Time class and specify it is only called with and returns valid times:

type :mix, ‘(Time t1 { t1. is valid }, Time t2 { t2. is valid },
Time t3 { t3. is valid }) → Time r { r. is valid }’

def mix(t1,t2,t3) @sec = t1.sec ; @min = t2.min; @hour = t3.hour; self ; end
Initially, type checking fails because the getters’ and setters’ (e.g., sec and sec=)
types are unknown. Thus, we add those types:

type :sec , ‘() → Integer i { i == @sec }’
type :sec=, ‘( Integer i ) → Integer out { i == @sec }’

(Note these annotations can be generated automatically using our approach
to metaprogramming, described in § 3.2.) This allows RTR to proceed to the
translation stage, which generates the following Rosette function:
(define (mix self t1 t2 t3)

(set−object−@sec! self (sec t1))
(set−object−@min! self (min t2))
(set−object−@hour! self (hour t3))
self )

(Asserts, assumes, and verify call omitted.) Here (set−object−x! y w) writes w
to the x field of y and the field selectors sec, min, and hour are uninterpreted func-
tions. Note that self turns into an explicit additional argument in the Rosette
definition. Rosette then verifies this program, thus verifying the original Ruby
mix method.

2.4 Method Calls

To translate a Ruby method call e.m(e1, .., en), RTR needs to know the callee,
which depends on the runtime type of the receiver e. RTR uses RDL’s type
information to overapproximate the set of possible receivers. For example, if e
has type A in RDL, then RTR translates the above as a call to A.m. If e has a
union type, RTR emits Rosette code that branches on the potential types of the
receiver using object class IDs and dispatches to the appropriate method in each
branch. This is similar to class hierarchy analysis [16], which also uses types to
determine the set of possible method receivers and construct a call graph.

Once the method being called is determined, we translate the call into Rosette.
As an example, consider a method to sec that converts Time to seconds, after
it calls the method incr sec from § 2.1.
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type ‘(Time t { t. is valid }) → Integer r { 0≤r<90060 }’
def to sec (t) incr sec (t . sec) + 60 ∗ t.min + 3600 ∗ t.hour; end

RTR’s translation of to sec could simply call directly into incr sec ’s trans-
lation. This is equivalent to inlining incr sec ’s code. However, inlining is not
always possible or desirable. A method’s code may not be available because the
method comes from a library, is external to the environment (§ 3.1), or has not
been defined yet (§ 3.2). The method might also contain constructs that are
difficult to verify, like diverging loops.

Instead, RTR can model the method call using the programmer provided
method specification. To precisely reason with only a method’s specification,
RTR follows Dafny [22] and treats pure and impure methods differently.

Pure methods. Pure methods have no side effects and return the same result for
the same inputs, satisfying the congruence property ∀x, y.x = y ⇒ m(x) = m(y)
for a given method m. Thus, pure methods can be encoded using Rosette’s
uninterpreted functions. The method incr sec is indeed pure, so we can label it
as such:

type : incr sec , ‘( Integer x { 0≤x<60 }) → Integer r { 0≤r<60 }’, :pure
With the pure label, the translation of to sec treats incr sec as an uninter-
preted function. Furthermore, it asserts the precondition 0≤x<60 and assumes
the postcondition 0≤r<60, which is enough to verify to sec .

Impure methods. Most Ruby methods have side effects and thus are not pure.
For example, consider incr min, a mutator method that adds a minute to a Time:

type ‘(Time t { t. is valid ∧ t .min < 59 }) →Time r { r. is valid }’,
modifies: { t : @min, t: @sec }

def incr min(t)
if t . sec<59 then t.sec=incr sec(t . sec) else t .min+=1; t.sec=0 end
return t

end
A translated call to incr min generates a fresh symbolic value as the method’s
output and assumes the method’s postcondition on that value. Because the
method may have side effects, the modifies label is used to list all fields of
inputs which may be modified by the method. Here, a translated call to incr min
will havoc (set to fresh symbolic values) t’s @min and @sec fields.

We leave support for other kinds of modifications (e.g., global variables, tran-
sitively reachable fields), as well as enforcing the pure and modifies labels, as
future work.

3 Just-In-Time Verification

Next, we show how RTR handles code with dynamic bindings via mixins (§ 3.1)
and metaprogramming (§ 3.2).

Refinement Types for Ruby 273



3.1 Mixins

Ruby implements mixins via its module system. A Ruby module is a collection
of method definitions that are added to any class that includes the module at
runtime. Interestingly, modules may refer to methods that are not defined in the
module but will ultimately be defined in the including class. Such incomplete
environments pose a challenge for verification.

Consider the following method that has been extracted and simplified from
the Money library described in § 5.

module Arithmetic
type ‘(Integer x)→ Float r { r==x/value }’
def div by val (x) x/value ; end

end
The module method div by val divides its input x by value. RTR’s specification
for / requires that value cannot be 0.

Notice that value is not defined in Arithmetic. Rather, it must be defined
wherever Arithmetic is included. Therefore, to proceed with verification in RTR,
the programmer must provide an annotation for value:

type :value , ‘() → Float v { 0 < v }’, :pure
Using this annotation, RTR can verify div by value . Then when Arithmetic is
included in another class, RTR verifies value’s refinement type. For example,
consider the following code:

class Money
include Arithmetic
def value()

if (@val > 0) then (return @val) else (return 0.01) end
end

end
RTR dynamically intercepts the call to include and then applies the type

annotations for methods not defined in the included module, in this case verify-
ing value against the annotation in Arithmetic. Thus, RTR follows an assume-
guarantee paradigm [20]: it assumes value’s annotation while verifying div by val
and then guarantees the annotation once value is defined.

3.2 Metaprogramming

Metaprogramming in Ruby allows new methods to be created and existing meth-
ods to be redefined on the fly, posing a challenge for verification. RTR addresses
this challenge using just-in-time checking [30], in which, in addition to code,
method annotations can also be generated dynamically.

We illustrate the just-in-time approach using an example from Boxroom, a
Rails app for managing and sharing files in a web browser (§ 5). The app defines
a class UserFile that is a Rails model corresponding to a database table:
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class UserFile < ActiveRecord::Base
belongs to : folder
... type ‘(Folder target ) → Bool b { folder == target }’

def move(target) folder = target; save !; end ...
end

Here calling belongs to tells Rails that every UserFile is associated with a folder
(another model). The move method updates the associated folder of a UserFile
and saves the result to the database. We annotate move to specify that the
UserFile’s new folder should be the same as move’s argument.

This method and its annotation are seemingly simple, but there is a problem.
To verify move, RTR needs an annotation for the folder = method, which is not
statically defined. Rather, it is dynamically generated by the call to belongs to.

To solve this problem in RTR, we instrument belongs to to generate type
annotations for the setter (and getter) method, as follows:

module ActiveRecord::Associations::ClassMethods
pre(: belongs to) do |∗args |

name = args [0]. to s
cname = name.camelize
type ‘#{name}’ , ‘() → #{cname} c’, :pure
type ‘#{name}=’, ‘(#{cname} i) →#{cname} o { #{name} == i }’
true

end
end

We call pre, an RDL method, to define a precondition code block (i.e., an anony-
mous function) which will be executed on each call to belongs to. First, the block
sets name and cname to be the string version of the first argument passed to
belongs to and its camelized representation, respectively. Then, we create types
for the name and name= methods. Finally, we return true so the contract will
succeed. In our example, this code generates the following two type annotations
upon the call to belongs to:

type ‘ folder ’ , ‘() → Folder c ’, :pure
type ‘ folder =’, ‘( Folder i ) → Folder o { folder == i }’

With these annotations, verification of the initial move method succeeds.

4 From Ruby to Rosette

In this section, we formally describe our verifier and the translation from Ruby
to Rosette. We start (§ 4.1) by defining λRB , a Ruby subset that is extended
with refinement type specifications. We give (§ 4.2) a translation from λRB to an
intermediate language λI , and then (§ 4.3) we discuss how λI maps to a Rosette
program. Finally (§ 4.5), we use this translation to construct a verifier for Ruby.
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Constants c ::= nil | true | false | 0, 1,−1, . . .
Expressions e ::= c | x | x:=e | if e then e else e | e ; e

| self | f | f :=e | e.m(e) | A.new | return(e)
Refined Types t ::= {x : A | e }

Program P ::= · | d, P | a, P
Definition d ::= def A.m(t)::t; l = e

Annotation a ::= A.m :: (t)→ t ; l with l 6= exact

Labels l ::= exact | pure | modifies[x.f ]

x ∈ var ids, f ∈ field ids, m ∈ meth ids, A ∈ class ids

Fig. 1. Syntax of the Ruby Subset λRB .

Values w ::= c | object(i, i, [f w])
Expressions u ::= w | x | x:=u | if u then u else u | u ; u

| let ([x u]) in u | x(u) | assert(u)
| assume(u) | return(u) | havoc(x.f) | x.f := u | x.f

Program Q ::= · | d,Q | v,Q
Definition d ::= define x(x) = u | define-sym(x, A)

Verification Query v ::= verify(u⇒ u)

x ∈ var ids, f ∈ field ids, A ∈ types, i ∈ integers

Fig. 2. Syntax of the Intermediate Language λI .

4.1 Core Ruby λRB and Intermediate Representation λI

λRB. Figure 1 defines λRB , a core Ruby-like language with refinement types.
Constants consist of nil, booleans, and integers. Expressions include constants,
variables, assignment, conditionals, sequences, and the reserved variable self,
which refers to a method’s receiver. Also included are references to an instance
variable f and instance variable assignment; we note that in actual Ruby, field
names are preceded by a “@”. Finally, expressions include method calls, construc-
tor calls A.new which create a new instance of class A, and return statements.

Refined types {x : A | e } refine the basic type A with the predicate e.
The basic type A is used to represent both user defined and built-in classes
including nil, booleans, integers, floats, etc. The refinement e is a pure, boolean
valued expression that may refer to the refinement variable x. In the interest
of greater simplicity for the translation, we require that self does not appear
in refinements e; however, extending the translation to handle this is natural,
and our implementation allows for it. Sometimes we simplify the trivially refined
type {x : A | true } to just A.

A program is a sequence of method definitions and type annotations over
methods. A method definition defA.m({x1 : A1 | e1 }, . . . , {xn : An | en })::t; l =
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e defines the method A.m with arguments x1, . . . , xn and body e. The type spec-
ification of the definition is a dependent function type: each argument binder xi
can appear inside the arguments’ refinements types ej for all 1 ≤ j ≤ n, and can
also appear in the refinement of the result type t. A method type annotation
A.m :: (t) → t ; l binds the method named A.m with the dependent function
type (t) → t. λRB includes both method annotations and method definitions
because annotations are used when a method’s code is not available, e.g., in the
cases of library methods, mixins, or metaprogramming.

A label l can appear in both method definitions and annotations to direct the
method’s translation into Rosette as described in § 2.4. The label exact states
that a called method will be exactly translated by using the translation of the
body of the method. Since method type annotations do not have a body, they
cannot be assigned the exact label. The pure label indicates that a method is
pure and thus can be translated using an uninterpreted function. Finally, the
modifies[x.f ] label is used when a method is impure, i.e., it may modify its
inputs. As we saw earlier, the list x.f captures all the argument fields which the
method may modify.

λI . Figure 2 defines λI , a core verification-oriented language that easily trans-
lates to Rosette. λRB methods map to λI functions, and λRB objects map to
a special object struct type. λI provides primitives for creating, altering, and
referencing instances of this type. Values in λI consist of constants c (defined
identically to λRB) and object(i1, i2, [f1 w1] . . . [fn wn]), an instantiation of an
object type with class ID i1, object ID i2, and where each field fi of the object
is bound to value wi. Expressions include let bindings (let ([xi ui]) in u) where
each xi may appear free in uj if i < j. They also include function calls, assert,
assume, and return statements, as well as havoc(x.f), which mutates x’s field
f to a fresh symbolic value. Finally, they include field assignment x.f := u and
field reads x.f .

A program is a series of definitions and verification queries. A definition is a
function definition or a symbolic definition define-sym(x, A), which binds x to
either a fresh symbolic value if A is a solvable type (e.g., boolean, integer; see
§ 2.2) or a new object with symbolic fields defined depending on the type of A.
Finally, a verification query verify(u⇒ u) checks the validity of u assuming u.

4.2 From λRB to λI

Figure 3 defines the translation function e  u that maps expressions (and
programs) from λRB to λI .

Global States. The translation uses setsM, U , and F , to ensure all the methods,
uninterpreted functions, and fields are well-defined in the generated λI term:

M ::= A1.m1, . . . , An.mn U ::= A1.m1, . . . , An.mn F ::= f1, . . . , fn
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Expression Translation e u

c c T-Const x x T-Var e1  u1 e2  u2
e1 ; e2  u1 ; u2

T-Seq

e1  u1 e2  u2 e3  u3
if e1 then e2 else e3  if u1 then u2 else u3

T-If
self self T-Self

e u
x:=e x:=u T-VarAssn e u

return(e) return(u)
T-Ret

f ∈ F
f  self.f T-Inst f ∈ F e u

f :=e self.f := u
T-InstAssn

classId(A) = ic freshID(io) fi ∈ F
A.new object(ic, io, [f1 nil] . . . [f|F| nil])

T-New

typeOf(eF ) = A exact = labelOf(A.m)
A m ∈M eF  uF ei  ui

eF .m(e) A m(uF , u)
T-Exact

typeOf(eF ) = A pure = labelOf(A.m)
A m ∈ U freshVar(x, r)

specOf(A.m) = ({x : Ax | ex })→ {r : Ar | er }
eF  uF e u ex  ux er  ur

eF .m(e) let ([x u][r A m(uF , a)]) in assert(ux) ; assume(ur) ; r
T-Pure1

typeOf(eF ) = A modifies[p] = labelOf(A.m)
specOf(A.m) = ({x : Ax | ex })→ {r : Ar | er }

hx = {u.f | f ∈ F , x.f ∈ p} hF = {uF .f | f ∈ F , self.f ∈ p}
freshVar(x, r) eF  uF e u ex  ux er  ur

eF .m(e) let ([x u]) in define-sym(r, Ar);
assert(ux) ; havoc(hF ∪ hx) ; assume(ur) ; r

T-Impure1

Program Translation P  Q

· · T-Emp P  Q

A.m :: (x1:t1, . . . , xn:tn)→ t ; l, P  Q
T-Ann

ti = {xi : Axi | exi } t = {r : Ar | er }
e u exi  uxi er  ur P  Q 1 ≤ i ≤ n

def A.m(t1, . . . , tn)::t; l = e, P  

define A m(self, x1, . . . , xn) = u;
define-sym(self, A);
define-sym(xi, Axi );
verify(ux1 , . . . , uxn ⇒ ur) ; Q

T-Def

Fig. 3. Translation from λRB to λI . For simplicity rules T-Pure1 and T-Impure1
assume single argument methods.
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In the translation rules, we use the standard set operations x ∈ X and | X | to
check membership and size of the set X . Thus, the translation relation is defined
over these sets: M,U ,F ` e  u. Since the rules do not modify these environ-
ments, in Figure 3 we simplify the rules to e  u. Note that even though the
rules “guess” these environments by making assumptions about which elements
are members of the sets, in an algorithmic definition the rules can be used to
construct the sets.

Expressions. The rules T-Const and T-Var are identity while the rules T-If,
T-Seq, T-Ret, and T-VarAssn are trivially inductively defined. The rule T-
Self translates self into the special variable named self in λI . The self variable
is always in scope, since each λRB method translates to a λI function with an
explicit first argument named self . The rules T-Inst and T-InstAssn translate
a reference from and an assignment to the instance variable f , to a read from
and write to, respectively, the field f of the variable self . Moreover, both the
rules assume the field f to be in global field state F . The rule T-New translates
from a constructor call A.new to an object instance. The classId(A) function
in the premise of this rule returns the class ID of A. The freshID(io) predicate
ensures the new object instance has a fresh object ID. Each field of the new
object, f1, . . . , f|F|, is initially bound to nil.

Method Calls. To translate the λRB method call eF .m(e), we first use the func-
tion typeOf(eF ) to type eF via RDL type checking [30]. If eF is of type A, we
split cases of the method call translation based on the value of labelOf(A.m),
the label specified in the annotation of A.m (as informally described in § 2.4).

The rule T-Exact is used when the label is exact. The receiver eF is trans-
lated to uF which becomes the first (i.e., the self ) argument of the function call
to A m. Moreover, A.m is assumed to be in the global method name setM since
it belongs to the transitive closure of the translation.

We note that for the sake of clarity, in the T-Pure1 and T-Impure1 rules, we
assume that the method A.m takes just one argument; the rules can be extended
in a natural way to account for more arguments. The rule T-Pure1 is used
when the label is pure. In this case, the call is translated as an invocation to the
uninterpreted function A m, so A.m should be in the global set of uninterpreted
functions U . The specification specOf(A.m) of the method is also enforced. Let
({x : Ax | ex })→ {r : Ar | er } be the specification. We assume that the binders
in the specification are α-renamed so that the binders x and r are fresh. We use x
and r to bind the argument and the result, respectively, to ensure, via A-normal
form conversion [33], that they will be evaluated exactly once, even though x
and r may appear many times in the refinements. To enforce the specification,
we assert the method’s precondition ex and assume the postcondition er.

If a method is labeled with modifies[p] then the rule T-Impure1 is applied.
We locally define a new symbolic object as the return value, and we havoc the
fields of all arguments (including self ) specified in the modifies label, thereby
assigning these fields to new symbolic values. Since we do not translate the called
method at all, no global state assumptions are made.
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Programs. Finally, we use the translation relation to translate programs from
λRB to λI , i.e., P  Q. The rule T-Ann discards type annotations. The rule
T-Def translates a method definition for A.m to the function definition A m
that takes the additional first argument self . The rule also considers the declared
type of A.m and instantiates a symbolic value for every input argument. Finally,
all refinements from the inputs and output of the method type are translated
and the derived verification query is made.

4.3 From λI to Rosette

We write Q� R to encode the translation of the λI program Q to the Rosette
program R. This translation is straightforward, since λI consists of Rosette ex-
tended with some macros to encode Ruby-verification specific operators, like
define-sym and return. In fact, in the implementation of the translation (§ 5),
we used Racket’s macro expansion system to achieve this final transformation.

Handling objects. λI contains multiple constructs for defining and altering ob-
jects, which are expanded in Rosette to perform the associated operations over
object structs. The expressions object(ic, io, [f w]) and havoc(x.f), and the
definition define-sym(x, A), all described in § 4.1, are expanded to perform the
corresponding operations over values of the object struct type.

Control Flow. Macro expansion is used to translate return and assume state-
ments, and exceptions into Rosette, since those forms are not built-in to the
language. To encode return, we expand every function definition in λI to keep
track of a local variable ret, which is initialized to a special undefined value and
returned at the end of the function. We transform every statement return(e) to
update the value of ret to e. Then, we expand every expression u in a function
to unless-done(u), which checks the value of ret, proceeding with u if ret is
undefined or skipping u if there is a return value.

We used the encoding of return to encode more operators. For example,
assume is encoded in Rosette as a macro that returns a special fail value when
assumptions do not hold. The verification query then needs to be updated with
the condition that fail is not returned. A similar expansion is used to encode
and propagate exceptions.

4.4 Primitive Types

λRB provides constructs for functions, assignments, control flow, etc, but does
not provide the theories required to encode interesting verification properties
that, for example, reason about booleans and numbers. On the other hand,
Rosette is a verification oriented language with special support for common
theories over built-in datatypes, including booleans, numeric types, and vectors.
To bridge this gap, we encode certain Ruby expressions, such as constants c in
λRB , into Rosette’s corresponding built-in datatypes.
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Equality and Booleans. To precisely reason about equality, we encode Ruby’s
== method over arbitrary objects using the object class’ == method if one is
defined. If the class inherits this method from Ruby’s top class, BasicObject,
then we encode == using Rosette’s equality operator equal? to check equality
of object IDs. We encode Ruby’s booleans and operations over them as Rosette’s
respective booleans and their operators.

Integers and Floats. By default, we encode Ruby’s infinite-precision Integer
and Float objects as Rosette’s built-in infinite-precision integer and real
datatypes, respectively. The infinite-precision encoding is efficient and precise,
but it may result in undecidable queries involving non-linear arithmetic or loops.
To perform (bounded) verification in such cases, we provide, via a configuration
flag, the option of encoding Ruby’s integers as Rosette’s built-in finite sized
bitvectors.

Arrays. Finally, we provide a special encoding for Ruby’s arrays, which are
commonly used both for storing arbitrarily large random-access data and to
represent mixed-type tuples, stacks, queues, etc. We encode Ruby’s arrays as a
Rosette struct composed of a fixed-size vector and an integer representing the
current size of the Ruby array. Because we used fixed-size vectors, we can only
perform bounded verification over arrays. On the other hand, we avoid the need
for loop invariants for iterators and reasoning over array operations can be more
efficient.

4.5 Verification of λRB

We define a verification algorithm RTRλ that, given a λRB program P , checks if
all the definitions satisfy their specifications. The pseudo-code for this algorithm
is shown below:

def RTRλ(P )
(F , U , M) := guess(P )
for (f ∈ F ) : add field f to object struct
for (u ∈ U ) : define uninterpreted function u
P  Q� R
return if (valid(R)) then SAFE else UNSAFE

end
First, we guess the proper translation environments. In practice (as discussed
in § 4.2), we use the translation of P to generate the minimum environments
for which translation of P succeeds. We define an object struct in Rosette con-
taining one field for each member of F , and we define an uninterpreted function
for each method in U . Next, we translate P to a λI program Q via P  Q
(§ 4.2) and Q to a the Rosette program R, via Q � R (§ 4.3). Finally, we run
the Rosette program R. The initial program P is safe, i.e., no refinement type
specifications are violated, if and only if the Rosette program R is valid, i.e., all
the verify queries are valid.

We conclude this section with a discussion of the RTRλ verifier.
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RTRλ is Partial. There exist expressions of λRB that fail to translate into a
λI expression. The translation requires at each method call eF .m(e) that the
receiver has a class type A. There are two cases where this requirement fails:
(1) eF has a union type or (2) type checking fails and so eF has no type. In our
implementation (§ 5), we extend the translation to handle the first two cases.
Handling for (1) is outlined in § 2.4. Case (2) can be caused by either a type error
in the program or a lack of typing information for the type checker. Translation
cannot proceed in either case.

RTRλ may Diverge. The translation to Rosette always terminates. All trans-
lation rules are inductively defined: they only recurse on syntactically smaller
expressions or programs. Also, since the input program is finite, the minimum
global environments required for translation are also finite. Finally, all the helper
functions (including the type checking typeOf(·)) do terminate.

Yet, verification may diverge, as the execution of the Rosette program may
diverge. Specifications can encode arbitrary expressions, thus it is possible to
encode undecidable verification queries. Consider, for instance, the following
contrived Rosette program in which we attempt to verify an assertion over a
recursive method:

(define (rec x) (rec x))
(define−symbolic b boolean?)
( verify (rec b))

Rosette attempts to symbolically evaluate this program, and thus diverges.

RTRλ is Incomplete. Verification is incomplete and its precision relies on the
precision of the specifications. For instance, if a pure method A.m is marked as
impure, the verifier will not prove the congruence axiom.

RTRλ is Sound. If the verifier decides that the input program is safe, then all
definitions satisfy their specifications, assuming that (1) all the refinements are
pure boolean expressions and (2) all the labels are sound (i.e., methods match
the specifications implied by the labels). The assumption (1) is required since
verification under diverging (let alone effectful) specifications is difficult [41]. The
assumption (2) is required since our translation encodes pure methods as unin-
terpreted functions, while for the impure methods it havocs only the unprotected
arguments.

5 Evaluation

We implemented the Ruby refinement type checker RTR3 by extending RDL [30]
with refinement types. Table 1 summarizes the evaluation of RTR.

3 Code available at: https://github.com/mckaz/vmcai-rdl
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Benchmarks. We evaluate RTR on six popular Ruby libraries:

– Money [6] performs currency conversions over monetary quantities and relies
on mixin methods,

– BusinessTime [3] performs time calculations in business hours and days,
– Unitwise [7] performs various unit conversions,
– Geokit [4] performs calculations over locations on Earth,
– Boxroom [2] is a Rails app for sharing files in a web browser and uses metapro-

gramming, and
– Matrix [5] is a Ruby standard library for matrix operations.

For verification, we forked the original Ruby libraries and provided manually
written method specifications in the form of refinement types. The forked repos-
itories are publicly available [8]. Experiments were conducted on a machine with
a 3 GHz Intel Core i7 processor and 16 GB of memory.

We chose these libraries because they combine Ruby-specific features chal-
lenging for verification, like metaprogramming and mixins, with arithmetic-
heavy operations. In all libraries we verify both (1) functional correctness of
arithmetic operations (e.g., no division-by-zero, the absolute value of a number
should not be negative) and (2) data-specific arithmetic invariants (e.g., inte-
gers representing months should always be in the range from 1 to 12 and a data
value added to an aggregate should always fall between maintained @min and
@max fields). In the Matrix library, we verify a matrix multiplication method,
checking that multiplying a matrix with r rows by a matrix with c columns yields
a matrix of size r× c. Note this method makes extensive use of array operations,
since matrices are implemented as an array of arrays.

Quantitative Evaluation. Table 1 summarizes our evaluation quantitatively. For
each application, we list every verified Method. In our experiment, we focused
on methods with interesting arithmetic properties.

The Ruby LoC column gives the size of the verified Ruby program. This
metric includes the lines of all methods and annotations that were used to verify
the method in question. For each verified method, RTR generates a separate
Rosette program. We give the sizes of these resulting programs in the Rosette
LoC column. Unsurprisingly, the LoC of the Rosette program increases with the
size of the source Ruby program.

We present the median (Time(s)) and semi-interquartile range (SIQR) of
the Verification Time required to verify all methods for an application over
11 runs. For each verified method, the SIQR was at most 2% of the verification
time, indicating relatively little variance in the verification time. Overall, ver-
ification was fast, as might be expected for relatively small methods. The one
exception was matrix multiplication. In this case, the slowdown was due to the
extensive use of array operations mentioned above. We bounded array size (see
§ 4.4) at 10 for the evaluations. For symbolic arrays, this means Rosette must
reason about every possible size of an array up to 10. This burden is exacerbated
by matrix multiplication’s use of two symbolic two-dimensional arrays.
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Table 1. Method gives the class and name of the method verified. Ru-LoC and Ro-
LoC give number of LoC for a Ruby method and the translated Rosette program. Spec
is the number of method and variable type annotations we had to write. Verification
Time is the median and semi-interquartile range of the time in seconds over 11 runs.
App Total rows list the totals for an app, without double counting the same specs.

Method Ru-LoC Ro-LoC Spec Verification Time
Time(s) SIQR

Money
Money::Arithmetic#-@ 7 29 4 5.69 0.14

Money::Arithmetic#eql? 11 40 3 5.74 0.03
Money::Arithmetic#positive? 5 24 3 5.40 0.01
Money::Arithmetic#negative? 5 24 2 5.42 0.01

Money::Arithmetic#abs 5 30 4 5.49 0.01
Money::Arithmetic#zero? 5 26 2 5.38 0.02

Money::Arithmetic#nonzero? 5 24 2 5.43 0.03
App Total 43 197 10 38.56 0.25

BusinessTime
ParsedTime#- 10 58 8 6.28 0.02

BusinessHours#initialize 5 26 2 5.36 0.04
BusinessHours#non negative hours? 5 26 2 5.4 0.01

Date#week 7 32 2 5.53 0.01
Date#quarter 5 28 2 5.47 0.00

Date#fiscal month offset 5 25 2 5.41 0.02
Date#fiscal year week 7 33 2 5.53 0.03

Date#fiscal year month 12 35 3 5.65 0.02
Date#fiscal year quarter 9 42 2 5.72 0.03

Date#fiscal year 11 32 4 5.81 0.03
App Total 76 337 24 56.15 0.20

Unitwise
Unitwise::Functional.to cel 4 25 2 5.42 0.03

Unitwise::Functional.from cel 4 25 2 5.44 0.03
Unitwise::Functional.to degf 4 22 1 5.41 0.01

Unitwise::Functional.from degf 4 27 2 5.44 0.02
Unitwise::Functional.to degre 4 27 2 5.44 0.01

Unitwise::Functional.from degre 4 27 2 5.42 0.01
App Total 24 153 6 32.55 0.11

Geokit
Geokit::Bounds#center 7 31 4 5.4 0.02

Geokit::Bounds#crosses meridian? 7 35 6 5.59 0.12
Geokit::Bounds#== 9 60 5 5.97 0.13

Geokit::GeoLoc#province 5 26 2 5.52 0.11
Geokit::GeoLoc#success? 5 26 2 5.51 0.05

Geokit::Polygon#contains? 26 68 10 10.8 0.07
App Total 59 246 21 38.80 0.50

Boxroom
UserFile#move 12 34 3 5.57 0.05

Matrix
Matrix.* 57 94 9 334.35 3.99

Total 271 1061 73 505.98 5.10
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Finally, Table 1 lists the number of type specifications required to verify
each method. These are comprised of method type annotations, including the
refinement type annotations for the verified methods themselves, and variable
type annotations for instance variables. Note that we do not quantify the number
of type annotations used for Ruby’s core and standard libraries, since these are
included in RDL.

We observe that there is significant variation in the number of annotations
required for each application. For example, Unitwise required 6 annotations
to verify 6 methods, while Geokit required 21 annotations for 6 methods. The
differences are due to code variations: To verify a method, the programmer needs
to give a refinement type for the method plus a type for each instance variable
used by the method and for each (non-standard/core library) method called by
the method.

Case Study. Next we illustrate the RTR verification process by presenting the
exact steps required to specify and check the properties of a method from an
existing Ruby library. For this example, we chose to verify the << method of the
Aggregate library [1], a Ruby library for aggregating and performing statistical
computations over some numeric data. The method << takes one input, data,
and adds it to the aggregate by updating (1) the minimum @min and maximum
@max of the aggregate, (2) the count @count, sum @sum, and sum of squares
@sum2 of the aggregate, and finally (3) the correct bucket in @buckets.

def <<(data)
if 0 == @count

@min = data ; @max = data
else

@max = data if data > @max ; @min = data if data < @min
end
@count += 1 ; @sum += data ; @sum2 += (data ∗ data)
@buckets[to index(data)] += 1 unless outlier ?(data)

end
We specify functional correctness of the method << by providing a refine-

ment type specification that declares that after the method is executed, the input
data will fall between @min and @max.

type :<<, ‘( Integer data) → Integer { @min≤data≤@max }’, verify: :bind
Here, the symbol :bind is an arbitrary label. To verify the specification, we

load the library and call the verifier with this label:
rdl do verify :bind

RTR proceeds with verification in three steps:

– first use RDL to type check the basic types of the method,
– then translate the method to Rosette (using the translation of § 4), and
– finally run the Rosette program to check the validity of the specification.

Initially, verification fails in the first step with the error
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error : no type for instance variable ‘@count’
To fix this error, the user needs to provide the correct types for the instance
variables using the following type annotations.

var type :@count, ‘Integer’
var type :@min, :@max, :@sum, :@sum2, ‘Float’
var type :@buckets, ‘Array<Integer>’

The << method also calls two methods that are not from Ruby’s standard and
core libraries: to index , which takes a numeric input and determines the index of
the bucket the input falls in, and outlier ?, which determines if the given data is
an outlier based on provided specifications from the programmer. These methods
are challenging to verify. For example, the to index method makes use of non-
linear arithmetic in the form of logarithms, and it includes a loop. Yet, neither
of the calls to index or outlier ? should affect verification of the specification of
<<. So, it suffices to provide type annotations with a pure label, indicating we
want to use uninterpreted functions to represent them:

type : outlier ?, ’( Float i ) → Bool b’, :pure
type : to index , ’(Float i ) → Integer out ’, :pure

Given these annotations, the verifier has enough information to prove the post-
condition on <<, and it will return the following message to the user:

Aggregate instance method << is safe.
When verification fails, an unsafe message is provided, combined with a coun-

terexample consisting of bindings to symbolic values that causes the postcondi-
tion to fail. For instance, if the programmer incorrectly specified that data is less
than the @min, i.e.,

type :<<, ‘(Integer data) → Integer { data < @min }’
Then RTR would return the following message:

Aggregate instance method << is unsafe.
Counterexample: (model [ real data 0][ real @min 0] . . . )

This gives a binding to symbolic values in the translated Rosette program which
would cause the specification to fail. We only show the bindings relevant to
the specification here: when real data and real @min, the symbolic values corre-
sponding to data and @min respectively, are both 0, the specification fails.

6 Related Work

Verification for Ruby on Rails. Several prior systems can verify properties of
Rails apps. Space [26] detects security bugs in Rails apps by using symbolic
execution to generate a model of data exposures in the app and reporting a
bug if the model does not match common access control patterns. Bocić and
Bultan proposes symbolic model extraction [14], which extracts models from Rails
apps at runtime, to handle metaprogramming. The generated models are then
used to verify data integrity and access control properties. Rubicon [25] allows
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programmers to write specifications using a domain-specific language that looks
similar to Rails tests, but with the ability to quantify over objects, and then
checks such specifications with bounded verification. Rubyx [15] likewise allows
programmers to write their own specifications over Rails apps and uses symbolic
execution to verify these specifications.

In contrast to RTR, all of these tools are specific to Rails and do not apply
to general Ruby programs, and the first two systems do not allow programmers
to specify their own properties to be verified.

Rosette. Rosette has been used to help establish the security and reliability
of several real-world software systems. Pernsteiner et al. [27] use Rosette to
build a verifier to study the safety of the software on a radiotherapy machine.
Bagpipe [42] builds a verifier using Rosette to analyze the routing protocols used
by Internet Service Providers (ISPs). These results show that Rosette can be
applied in a variety of domains.

Types For Dynamic Languages. There have been a number of efforts to bring
type systems to dynamic languages including Python [10, 12], Racket [36, 37],
and JavaScript [11, 23, 35], among others. However, these systems do not support
refinement types.

Some systems have been developed to introduce refinement types to script-
ing and dynamic languages. Refined TypeScript (RSC) [40] introduces refinement
types to TypeScript [13, 29], a superset of JavaScript that includes optional static
typing. RSC uses the framework of Liquid Types [31] to achieve refinement in-
ference. Refinement types have been introduced [21] to Typed Racket as well. As
far as we are aware, these systems do not support mixins or metaprogramming.

General Purpose Verification Dafny [22] is an object-oriented language with
built-in constructs for high-level specification and verification. While it does
not explicitly include refinement types, the ability to specify a method’s type
and pre- and postconditions effectively achieves the same level of expressiveness.
Dafny also performs modular verification by using a method’s pre- and postcon-
ditions and labels indicating its purity or arguments mutated, an approach RTR
largely emulates. However, unlike Dafny, RTR leaves this modular treatment of
methods as an option for the programmer. Furthermore, unlike RTR, Dafny does
not include features such as mixins and metaprogramming.

7 Conclusion and Future Work

We formalized and implemented RTR, a refinement type checker for Ruby pro-
grams using assume-guarantee reasoning and the just-in-time checking technique
of RDL. Verification at runtime naturally adjusts standard refinement types to
handle Ruby’s dynamic features, such as metaprogramming and mixins. To eval-
uate our technique, we used RTR to verify numeric properties on six commonly
used Ruby and Ruby on Rails applications, by adding refinement type specifica-
tions to the existing method definitions. We found that verifying these methods
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took a reasonable runtime and annotation burden, and thus we believe RTR is
a promising first step towards bringing verification to Ruby.

Our work opens new directions for further Ruby verification. We plan to
explore verification of purity and immutability labels, which are currently trusted
by RTR. We also plan to develop refinement type inference by adapting Hindley-
Milner and liquid typing [31] to the RDL setting, and by exploring whether
Rosette’s synthesis constructs could be used for refinement inference. We will
also extend the expressiveness of RTR by adding support for loop invariants and
dynamically defined instance variables, among other Ruby constructs. Finally,
as Ruby is commonly used in the Ruby on Rails framework, we will extend
RTR with modeling for web-specific constructs such as access control protocols
and database operations to further support verification in the domain of web
applications.
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Abstract A function-modular analysis is presented that computes pre-
cise function summaries in the presence of pointers and indirect calls.
Our approach computes several summaries for a function, each special-
ized to a particular input property. A call site combines the effect of
several summaries, based on what properties hold. The key novelty is
that the properties are tailored to the function being analyzed. Moreover,
they are represented in a domain-agnostic way by using Herbrand terms
with variables. Callers instantiate these variables, based on their state.
For each variable instantiation, a new summary is computed. Since the
computed summaries are exact with respect to the property, our fixpoint
computation resembles the process of Heyting completion where a domain
is iteratively refined to be complete wrt. the intersection with a property.
Our approach combines the advantages of a modular analysis, such as
scalability and context-sensitivity, with the ability to compute meaning-
ful summaries for functions that call other functions via pointers that
were passed as arguments. We illustrate our framework in the context of
inferring indirect callees in x86 executables.

Keywords: executable analysis, modular analysis, domain refinement

1 Introduction

One challenge in static analysis is the sheer size of the input program. This
is particularly true for the analysis of executables that have easily an order of
magnitude more statements than the corresponding source program. One key to
scalability is the treatment of functions: On the one hand, the highest precision
needed to prove the absence of run-time errors [2] can be obtained by inlining
functions at each call-site with the cost of increasing the code to be analyzed
dramatically. On the other hand, the duplicate evaluation of code can be avoided
by performing a context-insensitive analysis in which all calling contexts of a
function are merged and the return state is propagated to all call sites. A context-
sensitive analysis without duplicate evaluation of functions can be obtained by
inferring an input/output relation for each function. These function summaries
are then combined to obtain a solution to the whole program using a global
fixpoint computation. This approach is known as modular analysis [6].
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struct Parity {

virtual bool IsEven () = 0;

virtual bool IsOdd () = 0;

};

struct Even : public Parity {

bool IsEven () { return true;}

bool IsOdd() { return false ;}

};

struct Odd : public Parity {

bool IsEven () {

even_call ++; return false ;}

bool IsOdd() { return true;}

int even_call = 0;

};

void CheckEven () {

Even even;

Check (&even);

}

void CheckOdd () {

Odd odd;

Check (&odd);

assert(odd.even_call > 0);

}

void Check(Parity* parity) {

assert(parity ->IsEven ()

!= parity ->IsOdd ());

}

Figure 1. The running example C++ program.

We illustrate the challenges of a modular analysis using the code in Fig. 1.
Here, the tests CheckEven and CheckOdd rely on the helper function Check to
test an invariant of the two sub-classes Even and Odd. In a modular analysis,
the methods Even::IsEven and Even::IsOdd are summarized by their effect of
returning a constant value. The Odd::IsEven method modifies the even_call

field pointed-to by this. A summary for this method must therefore assume the
existence of a memory region at *this containing an int field. A precise summary
of this function can be expressed by x′ = x+ 1 where x, x′ is the value of the field
before, resp. after, the call. A more challenging task is the summary of Check.
Invoking the virtual methods accessed through the parity pointer amounts to
an indirect function call. Without knowing which functions can be dispatched
to, a summary of this function would have to make worst case assumptions: the
invoked function may modify any memory reachable from global variables or the
this pointer. Without any additional information, a summary of a function fi
containing indirect calls provides little or no information.

One way to ensure that no precision loss occurs, even in the presence of higher-
order functions, is to limit the precision of the analysis up front. Specifically, by
using only abstract domains that are able to condense the effect of a function
without loss of precision, it is possible to compute a summary of a function even if
it takes other functions as parameters (examples are type inference for functional
programs [20], groundness analysis in Prolog [14] and instances of the IFDS
framework [16]). These so-called condensing domains [9] are too imprecise to
distinguish function behaviors based on pointer aliasing and numeric properties.

One particular kind of condensing domains are those whose meet distributes
over the join of the lattice, i.e. su(ttu) = (sut)t(suu). Giacobazzi and Scozzari
propose Heyting completion to make an existing domain meet-distributive [10].
This process adds new elements to a domain and may thereby refine an abstract
domain until it is isomorphic to the concrete domain (which is a set of states and
thus forms a distributive lattice). Heyting completion is therefore not generally
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practical. In this paper, we use Heyting completion on-demand, namely when the
analysis of a function requires it to avoid a severe loss of precision. In particular,
once a particular property p is identified for which we want to avoid the lossy
approximation {p} u (st t) A ({p} u s)t ({p} u t), we track a new abstract state
p → ({p} u s) t ({p} u t) and postpone the computation of a state in which
p does not hold until a call-site is encountered that requires it. Ultimately, a
function is summarized by a table [p1 7→ {p1} u s1, . . . pn 7→ {pn} u sn] and a
call site c applies this summary by computing

⊔
i c u {pi} u si. We present an

analysis whose predicates p state that an input to a function is equal to a function
address. For instance, analyzing CheckEven creates a summary sE of Check and
stores the mapping (parity->vtable[0] = aE) 7→ sE where aE is the address of
Even::IsEven. A second summary of Check is created for the call site in CheckOdd.
A call site such as Check(rand() ? new Odd() : new Even()) can thereafter be
evaluated by instantiating the two summaries and without re-analyzing Check.

Given a function with the predicated summary [p1 7→ s1, . . . pn 7→ sn] and a
call-site with state c, the question arises if the predicates cover the state described
by c, i.e. if γ(c) ⊆ γ(p1) ∪ . . . ∪ γ(pn). If not, new predicates pn+1, . . . pn+k must
be identified and a new summary must be computed for each predicate. For
instance, calling Check with a new sub-class Mark whose method Mark::IsEven has
address aM , the computation of a new summary sM of Check is needed, giving
the table entry (parity->vtable[0] = aM ) 7→ sM . The challenge here is how to
observe when a new predicate is needed and how to obtain it. Our contribution
to this end is to represent predicates as a Herbrand abstraction (uninterpreted
terms with variables as placeholder for other terms) which gives the analyzer the
flexibility to express cross-cutting properties from several abstract domains. By
evaluating these predicates wrt. a call-site state, the variables in the predicates
will be instantiated with values that make the predicate true. Each variable
assignment of a predicate gives a ground (i.e. fully instantiated) Herbrand term.
A summary of the function is computed for each ground Herbrand term.

In summary, we make the following contributions towards modular analysis:

– We apply Heyting completion [10] on-demand in order to make the summary
of a function complete for some predicate. Predicates are created on-demand,
namely when incompleteness would lead to an unusably imprecise result.

– We propose Herbrand abstractions to express symbolic predicates that func-
tions postulate and that call-sites instantiate, thereby providing an abstract
interface between the base analysis and the completion mechanism.

– We present an implementation of this framework using an inter-procedural
control-flow-graph analysis that is able to resolve function calls in an x86
executable compiled from a higher-order functional language.

The remainder of this paper is organized as follows: The next section defines a
collecting and abstract semantics for an imperative language with indirect function
calls. Section 3 generalizes these semantics to one that relates function inputs
to outputs. Section 4 enhances this abstract interpretation with the generation
of Herbrand terms and presents how a fixpoint is obtained in a modular way.
Section 5 discusses our implementation before Sect. 6 presents related work.
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Prog ::= FDecl∗

FDecl ::= ident(){Stmt∗}
Lhs ::= ident.field(→field)?

Expr ::= Lhs | Loc

Stmt ::= LocS : br (Expr : LocS ; )? LocS

| LocS : Lhs = Expr

| LocS : call Expr

| LocS : return

Figure 2. The abstract grammar of the analyzed program. (E)? denotes zero or one E.

2 Preliminary Definitions

In this section we define a language with functions and define a collecting
semantics for it. Let [] denote an empty map, m := [k1 7→ v1, . . . kn 7→ vn] a
map where n values can be looked up with m[ki] = vi, let m \ k denote a map
without a mapping for k and let m[k 7→ v] denote an update at k. Let dom(m)
denote the keys in m. Let Loc = LocS ] LocM be the set of memory locations of
a program P that is partitioned into statement labels LocS and statically and
dynamically allocated memory regions LocM . Define LocF ⊆ LocS to be the set
of function entry points which coincide with the first statement in each function.
We assume a C-like language where a variable v is stored at address &v ∈ LocM .
Let σ ∈ Σ : LocM → (F → V) define the program state with σ(m) being a field
map of the memory at address m ∈ LocM . A field map takes field names F to
their content V where V := Loc ∪ Z denotes numeric values and addresses. The
ability to partition a memory region into fields allows our analysis to express
that a function call only accesses some but not all fields of a memory region.

Figure 2 defines the grammar of P ∈ L(Prog). A function is a sequence
of statements consisting of conditional jumps, assignments, function calls, and
returns. Note that every statement is preceded by its unique address l ∈ LocS . The
statement Lhs = Expr updates the specified field of a memory or, via the optional
C arrow notation, a field in the pointed-to memory region. For brevity, we write
even_call for Even::IsEven.this→ even_call ∈ L(Lhs) (where Even::IsEven is
the method in Fig. 1). The concrete semantics of a statement takes an input
program state σ ∈ Σ and returns a tuple consisting of the output state and the
location where execution continues. The individual rules are explained below.

[[·]]\ : L(Stmt)×Σ → (LocS ×Σ)

[[ls: br e : lt; lf ]]\σ =

{
〈lt, σ〉 if [[e]]\Exprσ = 0

〈lf , σ〉 otherwise
(1)

[[ls: m.f = e]]\σ = 〈next(ls), σ[m 7→ σ(m)[f 7→ v]]〉 where v = [[e]]\Exprσ (2)

[[ls: m.f→f′= e]]\σ = [[ls: m
′.f′ = e]]\σ where &m′ = [[m.f]]\Exprσ (3)

[[ls: call e]]
\σ = 〈&f, σ[f 7→ [ret 7→ next(ls)]]〉 where &f = [[e]]\Exprσ (4)

[[ls: return]]\σ = 〈lr, σ \ f〉 where lr = [[f.ret]]\Exprσ (5)

The evaluation of an expression e ∈ L(Expr) is defined as follows:
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[[·]]\Expr : L(Expr)×Σ → V

[[m.f]]\Exprσ = σ(m)(f) (6)

[[m.f→f′]]\Exprσ = [[m′.f′]]\Exprσ where &m′ = [[m.f]]\Exprσ (7)

[[l]]\Exprσ = l (rule Expr ::= Loc) (8)

Jumps, defined by Eqn. 1, are unconditional if e : lt is omitted. Equation 2
updates the field f in σ(m). It returns the program location following this state-
ment using a function next : LocS → LocS that we assume to be suitably defined
for all non-branching statements. A write through a pointer in Eqn. 3 assumes
that the pointer value m.f matches the beginning of a memory region m′ and is
undefined otherwise. Thus, we do not model general pointer arithmetic and array
accesses but assume that parity->vtable[0] is interpreted such that vtable[0]

is a field name. Our implementation supports general pointer arithmetic.
The call instruction in Eqn. 4 continues execution at the called function. It

also creates a memory region with the same name as the function. This memory
region serves as the stack frame. The return instruction in Eqn. 5 jumps to the
location in the local variable f.ret, where f is the current function. (Note that
supporting recursion requires the use of unique names for stack frames as done in
the implementation.) Moreover, we assume that function arguments are copied
by the caller into the stack frame of the callee. The semantics of expressions in
Eqns. 6 to 8 is straightforward.

A suitable collecting semantics is the classic merge-over-all-path solution. Let
Σs ⊆ Σ be the initial state at the program entry point lmain. We define:

Definition 1. The collecting semantics of P is a map colP : LocS → ℘(Σ)
satisfying Σs ⊆ colP (lmain) and for all l : stmt ∈ P , σ ∈ colP (l), and 〈σ′, l′〉 =
[[l: stmt]]\(σ) it holds that σ′ ∈ colP (l′).

The structure 〈LocS → ℘(Σ), ⊆̇, ∪̇〉 is the cpo of the concrete domain where ⊆̇
and ∪̇ are the point-wise liftings of the corresponding operations on the images of
the map. The next section details how it is approximated by an abstract domain.

2.1 Abstract Interpretation of the Collecting Semantics

The segregation of memory into distinct regions lies at the heart of a modular
analysis where a function summary leaves all but a small set of memory regions
untouched. We therefore lift the concept of a memory region to the abstract.

Specifically, an abstract interpretation of the collecting semantics abstracts
the unbounded set of memory regions in the concrete environments Σ by a
bounded set of abstract memory regions M. The memory regions define a
set of non-overlapping areas of memory. The structure of a memory region
r ∈M is defined by a map MS =M→ (F → X ) whose mappings are written

[r1 7→ φ]1, . . . , rn 7→ φ]n] where each φ]i maps fields of a memory region ri to a
value domain variable x ∈ X that takes on values in V = Z ∪ Loc.
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The values of X ⊆ X are given by a domain DX = 〈DX ,vDX
,tDX

,uDX
,⊥D〉.

Here, X is the support set of DX , that is, the variables that DX restricts. In
our implementation, DX is a reduced product [4] of several abstract domains.
Since the inference of summaries requires the ability to express relations between
input and output variables, a domain d ∈ DX must be concretized in a way
that retains these relations. Thus, the concretization γDX : DX → ℘(V∗) maps
d ∈ DX to γDX

(d) = {v1, . . .} where each vector vi has one dimension for
each abstract variable x ∈ X . For instance, let d ∈ D{x,y} have its variables
restricted by the interval constraint x ∈ [3, 5] and the equality x+ 1 = y then
〈x, y〉 ∈ γD(d) = {〈3, 4〉, 〈4, 5〉, 〈5, 6〉}. We write v(x) to extract the value from
the vector corresponding to the dimension x ∈ X . Changes to the support set
X of a domain DX are implemented by two functions addVarx : DX → DX∪{x}
(leaving x unrestricted) and delVarx : DX∪{x} → DX that are defined iff x /∈ X.

Combining Memory Structure and Value Domain We now describe how
MS and DX are combined. For the sake of this section, let vars(ms) ⊆ X denote
the variables occurring in ms ∈ MS. The lattice of our analysis contains elements
〈m, d〉 ∈ MS× {DX | X ⊆ X} such that d ∈ Dvars(m). We denote this universe
as MS×D. The concretization of MS×D to environments Σ proceeds in three
steps: First, we define a function embed that updates an environment σ ∈ Σ
with the values in a vector v ∈ V∗ based on the fields of a memory region. The
function recursively processes each mapping by pattern matching against the
empty map and a map {r 7→ φ]} ]m containing a mapping for region r and
other mappings m:

embed : MS× (Loc ∪ Z)∗ ×Σ → Σ
embed([],v, σ) = σ
embed([r 7→ φ]] ]m,v, σ) = embed(m,v, σ[r 7→ embedφ(σ(r), φ],v)])
where embedφ(m,φ],v) = m[f 7→ v(φ](f)) | f ∈ dom(φ])]

Second, we apply embed to the set of all concrete stores Σ, thereby obtaining
{embed(m,v, σ) | σ ∈ Σ}, the set of concrete stores in which the fields tracked
by the abstract domain are restricted to values in v. The final step is to compute
this set for each value vector, giving the concretization function:

γMS×D : MS×D → ℘(Σ)

γMS×D(〈m, d〉) =
⋃

v∈γD(d)

{embed(m,v, σ) | σ ∈ Σ}

We now address the task of defining the lattice operations on MS×D. The
problem to address is that two structures m1,m2 ∈ MS, that are propagated to
the same program point, are associated with domains di ∈ Dvars(mi), i = 1, 2, so
that d1 and d2 range over different variables and cannot be compared or joined.

We address this problem using a cofibered abstract domains [22] and define
three sound morphisms3 addRegionr, addFieldr,f , renameFieldf : MS × D →
3 In categorical terms, MS × D is a Grothendiek construction F o C using functor
F : C → Cat where C is a small category with obj(C) = MS and Cat is a category
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MS×D that are applied if the memory structures ms1,ms2 differ:

〈m, d〉 addRegionr−→ 〈m[r 7→ []], d〉 (9)

〈[r 7→ φ]] ]m, d〉 addFieldr,f−→ 〈[r 7→ φ][f 7→ x]] ]m, addVarx(d)〉(10)

〈[r 7→ φ][f 7→ x]] ]m, d〉 renameFieldf,x,y−→ 〈 r 7→ φ][f 7→ y]] ]m,
delVarx([[y := x]]]addVary(d))〉

(11)

Here, [[y := x]]] in Eqn. 11 is the update transformer on DX . By applying a
composition of the three morphisms on the domain tuples 〈mi, di〉, i = 1, 2, one
can obtain tuples 〈m′i, d′i〉 with m′1 = m′2 so that the lattice operations vDX

,tDX

can be applied to d′i. The morphisms can be shown as sound wrt. γMS×D and we
obtain the abstract lattice 〈MS×D,vMS×D,tMS×D,⊥MS×D〉.

Example 1. We give an intuition on where the above morphisms are applied
using an alias domain with universe DX = X → ℘(LocM ∪{abad}). It implements
addV arx adding the mapping x 7→ {abad} where abad is a symbolic constant that
represents all illegal addresses. Consider the following two functions:

void foo() {struct { int* a; } s; if (rand ()) s.a = &f; }

void bar() {struct{int*a;} s; if(rand ()) s.a=&f; else s.a=&g;}

Assume that s initially points to a region without fields, i.e. s 7→ []. Assume
further that, in foo and bar, the then-branch updates s such that s 7→ [a 7→ x1].
For foo, we have to apply the addFields,a morphism on the else-branch state
before the join; the join, consequently, results in the alias set x1 7→ {abad, &f}. In
the else-branch of bar bar, the update creates, e.g., s 7→ [a 7→ x2]. In this case, we
have to apply renameFielda,x2,x1

so that the states to be joined have the same
support set. The join results in x1 7→ {&f, &g} for the field a.

The presented memory structures MS do not allow for summarized memory
regions as every abstract memory region r ∈ M corresponds to exactly one
concrete memory region in σ, albeit at varying addresses. Although this suffices
to illustrate our modular analysis, our implementation requires a simple form of
summaries in form of weak updates. A concretization that caters for summarized
memory regions [19] would complicate the presentation unnecessarily.

of small categories with obj(Cat) = {〈DX , ρ〉 | X ⊆ X , ρ : X → (LocM × F)}.
Here, the translation ρ provides information on how X relates to the field names
of memory regions. F maps a category of memory structures to a category of
domains over variables in that memory structure. Thus, the category F oC contains
tuples 〈m, 〈d, ρ〉〉 ∈ obj(F o C) where m ∈ MS and d ∈ Dvars(m). The morphisms

〈m1, 〈d1, ρ1〉〉
(f,g)−→ 〈m2, 〈d2, ρ2〉〉 ∈ homFoC are pairs (f, g) where m1

f−→ m2 is a

functor in C and g is a morphism F (f)(〈d1, ρ1〉)
g−→ 〈d2, ρ2〉 in Cat. A morphism

is sound if g defines an inclusion relation between its arguments [22] which is given
if the values of d1 are a subset of those in d2 modulo the translation of variables:
g(〈d1, ρ1〉,〈d2, ρ2〉) iff ∀v1∈γDX (d1).∃v2∈γDX (d2).∀x∈dom(ρ1)∧ρ1(x) ∈ dom(ρ−1

2 ) .
v1(x) = v2(ρ−1

2 (ρ1(x))). We omit ρ when defining morphisms as it is not needed.
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3 Modular Program Semantics

In this section we generalize the collecting semantics and its abstract interpreta-
tion to function summaries. Specifically, we summarize the behavior of a function
by a set of tuples 〈σ, σ̄〉 that state how an input environment σ is mapped to an
output environment σ̄ and lift this relation to an abstract input/output relation.

We first define the input/output function semantics for a single input state.
Recall that the semantics of calling f and returning from f in Eqns. 4 and 5 use
the field f.ret to store the return address. In order to define the semantics of f
independently of a caller, we evaluate it in an environment σ = [f.ret 7→ lresf ]]
where lresf ∈ Loc is a location that is not used in P .

Definition 2. The semantics of f at lf ∈ LocS and executing in state σ is a map
colσf : LocS → ℘(Σ) satisfying σ[f.ret 7→ lresf ] ⊆ colσf (lf ) and for all l : stmt ∈ P ,

σ′ ∈ colσf (l), and 〈σ′, l′〉 = [[l: stmt]]\(σ′) it holds that σ′ ∈ colσf (l′).

We use the previous definition to define the relational semantics of f , that is,
how each input state relates to the states at each statement of f :

Definition 3. The relational semantics relf : LocS → ℘(Σ ×Σ) of a function
f is given by relf (l) = {〈σ, σ̄〉 | σ ∈ Σ ∧ σ̄ ∈ colσf (l)}.

Observe that relf is defined in terms of Equ. 4 which defines the semantics
of a call to evaluate the called function rather than using the summary relf . We
therefore use the following definition from now on:

[[ls: call e]]
\σ = 〈next(ls), σ̄〉 where &f = [[e]]\Exprσ ∧ 〈σ, σ̄〉 ∈ relf (lresf ) (12)

3.1 Abstract Interpretation of the Relational Semantics

The relational semantics of a function is approximated by an abstract domain
MS 2×D that is used to abstract relf (l) for all locations l ∈ LocS within function
f . Here, MS 2 = MS ×MS are two memory structures, the first describing the
memory at the entry point of f , the second describing the memory at l. The
relation between abstract and the concrete domain is given by γMS 2×D:

γMS 2×D : MS 2 ×D → ℘(Σ ×Σ)

γMS 2×D(〈min,mout, d〉) =
⋃

v∈γD(d)

{〈embed(min,v, σ), embed(mout,v, σ)〉 | σ ∈ Σ}

The concretization retains the relational character of rell in two ways: first,
the embed functions are applied on the same numeric vector v ∈ Z∗ so that
relational information between numeric variables are manifest in the concrete
states. Second, the information of the abstract domain is embedded into the
same σ ∈ Σ. As a consequence, a field in any concrete memory region in σ that
is not present in either min nor mout is not altered. These relational properties
are illustrated in the following example:
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Example 2. Let le ∈ LocF be the entry point of method Odd::IsEven() in Fig. 1.
The relational semantics at le is the identity, i.e. relle(le) = {〈σ, σ〉 | σ ∈ Σ} =
γMS 2×D(〈min,mout, d〉) where min = mout = [] and d ∈ D∅. Let li ∈ LocS
denote the location after the even_call++ statement, then 〈σin, σout〉 ∈ relle(li)
contains a memory region o at lo ∈ LocM that contains the object instance.
An abstract state s = 〈m1,m2, d〉 ∈ MS 2 × D with relle(li) ∈ γMS 2×D(s) is
mi = [Odd::IsEven 7→ [this 7→ yival], o 7→ [even_call 7→ xival]], i = 1, 2 and a value
domain d ∈ D containing the constraints y1val = y2val = lo and x1val + 1 = x2val.

The algebra 〈MS 2 × D,vMS 2×D,tMS 2×D,⊥MS 2×D, ./MS 2×D〉 defines the
abstract domain. Here, ./MS 2×D is a special meet operator that combines the
current state in a caller with the input state of a function summary. It is explained
below. Other operations can be reduced to D using the following morphisms:

〈m1,m2, d〉
addRegionr−→ 〈m1[r 7→ []],m2[r 7→ []], d〉 (13)

〈 [r 7→ φ]1] ]m1,

[r 7→ φ]2] ]m2, d〉

addFieldr,f−→ 〈 [r 7→ φ]1[f 7→ x1]] ]m1,

[r 7→ φ]2[f 7→ x2]] ]m2,
[[x2 := x1]]]addVarx1

(addVarx2
(d))〉

(14)

〈[r 7→ φ][f 7→ x]] ]m1,m2, d〉
renameField1

f−→ 〈 r 7→ φ][f 7→ y]] ]m1,m2,
delVarx([[y := x]]]addVary(d))〉

(15)

One obvious difference between these morphisms and those in Eqns. 9-11 is
that they operate on two memory structures, namely the input ms1 and the
current state m2 that eventually becomes the output state. For the sake of brevity,
we do not handle cases where a function allocates new memory regions and can
therefore assume that dom(m1) = dom(m2) at all times. Under this assumption,
we define Eqn. 13 and 14 that allow to add a region, resp., a field. The morphism
addFieldr,f adds variables x1, x2 ∈ X that are made equal in the numeric domain,
so that the domain maps each value of the field in the input to the same value in
the output. Analogous to Eqn. 11, Eqn. 15 renames a field in m1. We omit the
symmetric definition renameField2

f that renames a field in m2 for brevity.

3.2 Abstract Semantics of Memory Accesses

This section details the abstract semantics of memory accesses and illustrates how
to deal with accesses to unknown locations. Figure 3 presents the abstract seman-
tics for expressions (abstracting Eqns. 6 and 7 by Eqns. 16 and 17, respectively)
and assignments (abstracting Eqns. 2 and 3 by Eqns. 18 and 19, respectively).

The expression semantics returns a set of variables or locations so that Eqn. 17
can return one variable for each dereferenced pointer. Note here that γD returns
vectors of possible values and that ms2(m)(f) returns the domain variable that is
used to index into the vector. Each element returned by the expression semantics
is assigned by Eqn. 2 and the various results are joined. Equation 19 computes
the assignment via a pointer as the join of writing to all possible locations &m′.
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[[·]]]Expr : L(Expr)× (MS 2 ×D)→ ℘(X ∪ Loc)

[[m.f]]]Expr〈ms1,ms2, d〉 = {ms2(m)(f)} (16)

[[m.f→f
′]]]Expr〈ms1,ms2, d〉 =

⋃
&m′∈γD(d)(ms2(m)(f))

[[m′.f′]]]Expr〈ms1,ms2, d〉 (17)

[[·]]] : L(Stmt)× (MS 2 ×D)→ LocS ×MS 2 ×D
[[ls: m.f = e]]]〈ms1,ms2, d〉 = 〈next(ls), (18)⊔

e′∈[[e]]]
Expr

〈ms1,ms2,d〉

〈ms1,ms2, [[ms2(m)(f) = e′]]]d〉〉

[[ls: m.f→f
′ := e]]]〈ms1,ms2, d〉 = 〈next(ls), (19)⊔

&m′∈γD(d)(ms2(m)(f))

[[ls: m
′.f′ = e]]]〈ms1,ms2, d〉〉

Figure 3. Abstract Expression Semantics.

Note that the expression ms2(m)(f) is undefined when either the memory
region m does not exist in ms2 or it does not contain a field f . Rather than
handling this case in the semantic definition, we assume that the morphisms in
Eqn. 13 and 14 are applied to prevent undefinedness. In case the transformer
would access an unknown location through a pointer (i.e. m.f in Eqn. 17 or 19), a
new region r is added using Eqn. 13 and m.f is restricted to point to it. Note that
this behavior is not sound as it assumes that m.f does not alias with any other
function inputs which may be wrong. We discuss this design choice in Sect. 5.

Example 3. We analyze even_count++ in Odd::IsEven of Fig 1. Let f.this == &i
be a test that forces this to point to the object instance i. For brevity, we use f

for Odd::IsEven, ev for even_count, and write d ∈ D as set of constraints:

〈[f 7→ []], [f 7→ []], ∅〉addFieldf,this−→ 〈[f 7→ [this 7→ x1]], [f 7→ [this 7→ x2]], {x1 = x2}〉
addRegioni−→ f.this==&i−→ 〈[. . . , i 7→ []], [. . . , i 7→ []], {x1 = x2 = li}〉

addFieldi,ev−→

〈[. . . , i 7→ [ev 7→ x3]], [. . . , i 7→ [ev 7→ x4]], {x1 = x2 = li, x3 = x4}〉
[[f.this→ev++]]]−→

〈[. . . , i 7→ [ev 7→ x3]], [. . . , i 7→ [ev 7→ x4]], {x1 = x2 = li, x3 + 1 = x4}〉

The idea of applying morphisms as a precursor to a domain operation is also
key to concisely define the ./MS 2×D operation that combines a call-site state
〈m1

in,m
1
out, d1〉 with the summary of a function 〈m2

in,m
2
out, d2〉. Assuming that

morphisms were applied so that m1
out, the current state at the caller, and m2

in,
the input state of the callee summary, contain the same fields with the same
variables while m1

in and m2
out share no variables, ./MS 2×D reduces to uD:

〈m1
in,m

1
out, d1〉 ./MS 2×D 〈m2

in,m
2
out, d2〉 = 〈m1

in,m
2
out, d

′〉 where (20)

d′ = delVarvars(m1
out)∪vars(m2

in)
(addVarvars(m2

out)
(d1) uD addVarvars(m1

in)
(d2))

Here, addVar and delVar are used to add/remove a set of domain variables so
that uD is applied to domains mapping variables of m1

in,m
1
out,m

2
in,m

2
out while
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d′ only contains variables relevant to the result. Ensuring that m1
out and m2

in

contain the same fields amounts to matching the memory regions at the caller
with those of the callee. Recall that the latter were created on-demand when
computing the summary of the callee so that they have arbitrary names. We
therefore compute a relation R ⊆M×M between the caller’s and the callee’s
memory regions by iteratively following pointers, starting with the actual and
formal function arguments. If a pointer s.p can be followed to a region r in the
callee but not in the caller, we apply addRegionr, addFields,p, to the caller and
add 〈r, r〉 to R. For each pair added to R, we apply addFieldf in each region until
both have the same fields. We appropriately name fields using renameFieldf .

3.3 Computing Fixpoint of the Abstract Relational Semantics

This section details how the modular abstract semantics is used to compute
a fixpoint of the whole program. A whole-program analysis populates a table
T ∈ T = LocF → MS 2×D that takes a function addresses to its summary. Since
a function f may call other functions, a call statement in f will access T to
obtain the most up-to-date summary for the called function. The semantics of
the call statement is therefore parameterized by T :

[[ls: call e]]
]
T 〈ms1,ms2, d〉 = 〈next(l),

⊔
lf∈γD(d)([[e]]])

〈ms1,ms2, d〉 ./MS 2×D T (lf )〉 (21)

The resulting summary for f must therefore be re-computed if any summaries
taken from T change. In the presence of recursive calls, widening [4] must be
applied on the summaries to ensure termination.

The summary of f , given the table T and initial state s, is defined as follows:

Definition 4. The abstract state of f is a map absTf,s : LocS → MS 2 ×D with

s vMS 2×D absTf (lf ) and for all l : stmt ∈ P and 〈l′, s′〉 = [[l : stmt]]]T (absTf (l)) it

holds that s′ vMS 2×D absTf (l′). (Note: Eqns. 16-19 used [[l : stmt]]] ≡ [[l : stmt]]]T .)

Let init = 〈m1,m2, {x1 = x2 = lresf }〉 with mi = [f 7→ [ret 7→ xi]], i = 1, 2 be
the initial summary state. The summary semantics of f relates the first statement
of the function at lf with the location lresf that the return statement branches to:

Definition 5. The abstract summary of f under T is sumT
f = absTf,init(l

res
f ).

This concludes the presentation of the concrete relational semantics and the
abstract summary domain and semantics. The next section tackles the challenge
of computing precise summaries in the presence of indirect function calls.

4 On-Demand Heyting Completion

This section details how we use Herbrand terms to refine a function summary in
cases where the most generic input would lead to an unacceptable precision loss.
In particular, the next sections discuss the creation of Herbrand terms to express
a need for refinement, the computation of a specialized function summary and
the call semantics that combines specialized function summaries.
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4.1 Extracting Refinement Information using Herbrand Terms

The challenge in specializing the summary of Check in Fig. 1 is that the variable
over which to specialize is not known until the indirect call parity->IsEven()

is analyzed. Our solution is that the analysis poses the question “What value
can parity->vtable[0] take on?” to all callers of Check who may answer “The
expression parity->vtable[0] may contain &Odd::IsEven()”. (Recall that we use
vtable[0] as a field name to fit our restricted grammar.) For each different
answer, the summary of the analysis is specialized to the value in that answer.
The analysis of Check can now proceed to the next indirect call parity->IsOdd()
for which a new question is posed to the caller. Once the indirect function calls
are resolved, Check can be summarized without posing further questions.

The “question” in the exposition above is represented by a Herbrand term
that contains variables in places where the answer is expected. The answer to
the question is given by a set of ground Herbrand terms, that is, Herbrand terms
where the variables have been replaced by values.

Definition 6. Herbrand terms Herb = L(Term) are defined by the grammar

Term ::= constructor Term∗

| variable

where variable is drawn from XH . Note that XH is distinct from X . Let vars(h)
denote all variables in h ∈ Herb. Let GHerb = {h ∈ Herb | vars(h) = ∅} denote
ground Herbrand terms. A substitution θ ∈ Θ : XH → Herb is a total map with
θ(x) = x except for a finite number of variables y ∈ XH where θ(y) 6= y. We
write [x/y] ∈ Θ with [x/y](x) = y and [x/y](v) = v for all v 6= x. Given a term
h ∈ Herb, we write θ(h) to denote the result of replacing all variables x in h by
θ(x). Let θ(H) = {θ(h) | h ∈ H} be the lifting to sets.

The generic nature of Herbrand terms enables us to formulate questions that
cut across several abstract domains in an abstract state 〈m1,m2, d〉 ∈ MS 2 ×D.

Example 4. Suppose that the constructor Deref and Field are used by the memory
domain m ∈ MS to denote a pointer or field access, respectively, while ConstPtr
is used by the numeric domain d ∈ D to denote a function pointer. Then the
term ConstPtr (Field (Deref parity) vtable[0]) aE is the request to access the
field vtable[0] of the memory region pointed-to by parity and to extract the
value as a constant pointer, denoting the result by aE ∈ XH . This query accesses
m(f) = [parity 7→ x, ...] where f is the frame of the currently analyzed function
to obtain the numeric variable x ∈ X that contains the points-to set of parity.
The numeric domain d is queried for the points-to set of x which resolves to, say,
the address of memory region even ∈M. Finally, the memory domain is used to
look up m(even) = [vtable[0] 7→ vtE , . . .] and d is queried for the values of vtE ,
the constant address vtable[0] of Even, which becomes the solution of aE .

For the sake of readability, we leave the exact definition of the term structure
open and write var->field. . .->field= aE , that is, we use C-like access paths
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that generalize L(Expr) by allowing several indirections. Moreover, we also omit
the memory region (i.e. we write this->vtable[0] instead of f.this->vtable[0])
since a Herbrand term is always relative to the stack frame of the current function.

Herbrand terms are used in the abstract semantics when a precise value is
needed. For instance, the call e instruction requires a precise value for the function
address e that determines which function is being invoked. An answer is computed
using a function herbEval that evaluates a term set (e.g. {“e = x′′} ⊆ Herb for
the call) given an abstract state. herbEval has the following signature:

herbEval : ℘(Herb)×MS 2 ×D → ℘(Θ)× ℘(Herb)

For variables a1, . . . an in the input Herbrand terms, herbEval returns assign-
ments in form of substitutions θ1, . . . θk where each θj = [a1/c

j
1, . . . an/c

j
n] maps

variables to constants cj1, . . . c
j
n ∈ V, j = 1, . . . k, or it rewrites the Herbrand

terms into terms over the function’s input arguments. In order to illustrate this,
we say that a Herbrand term hi matches a domain variable xi if hi represents a
field access (possibly via one or more pointer indirections) whose value is given by
the domain variable xi. We give an intuitive overview of herbEval by describing
the four cases it distinguishes:

A set of values for tabulation can be constructed. The term hi with vari-
able ai matches a domain variable xi, i = 1, . . . n. In case xi are finite in
the value domain state d, herbEval returns a set of constant value vectors
c1, . . . ck ∈ {〈v(x1), . . .v(xn)〉 | v ∈ γDX

(d)} in the form of k substitutions
θj = [a1/c

j(x1), . . . an/c
j(xn)] ∈ Θ. For example, herbEval({m.f = a}, 〈[m 7→

[f 7→ x1]], [m 7→ [f 7→ x2]], d〉) evaluates to 〈{[a/42]}, ∅〉 where d = {x2 = 42}
represents the value domain.

An exact precondition can be synthesized. A term hi matches a variable
xi. There exists x′i = xi where x′i is a domain variable of a field in the input
memory region. For each x′i, we return a Herbrand term h′i that matches x′i.
For example, herbEval({m.f = a}, 〈[m 7→ [f 7→ x1], r 7→ [g 7→ x2]], [m 7→ [f 7→
x3], r 7→ [g 7→ x4]], d) = 〈∅, {r.g = a}〉 if d = {x2 = x3} is the value domain.

A sufficient precondition can be synthesized. The term hi matches a vari-
able xi. There exist several variables {x1i , . . . x

ki
i } from which there is a flow

of information to xi. We translate the single term hi to Herbrand terms
h1i , . . . h

ki
i that match x1i , . . . x

ki
i and return the term Set h1i . . . h

ki
i . For ex-

ample, herbEval({t.q = a}, [u 7→ [r 7→ x1], v 7→ [s 7→ x2]], [. . . , t 7→ [q 7→
x3]], d) = 〈∅, {Set u.r = a1 v.s = a2}〉 where d = [x1 7→ {&p1}, x2 7→
{&p2}, x3 7→ {&p1,&p2}] represents the information of our aliasing domain
DX = X → ℘(LocM ∪{abad}) used in Ex. 1. We will disregard this case until
our discussion in Sect. 5.

No values can be synthesized. The term hi matches no variable xi nor can
a field variable be added using addFieldr,f . Thus, the values of variables in
hi are neither finite nor traceable to the input. An empty set of substitutions
and Herbrand terms is returned. A warning is generated so that the analysis
is sound if no warnings are emitted.
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bool Case1 () {

Odd odd;

Even even;

Parity* parity =

rnd() ? &odd : &even;

return Check(parity );

}

void Case2(Parity *p) {

Check(p);

}

void Case3(Parity *p,

Parity *q) {

Check(rnd() ? p : q);

}

Figure 4. Creating Herbrand terms for calls to Check in Fig. 1.

Example 5. We illustrate cases 1 to 3 using the functions in Fig. 4. We assume
that Check has been analyzed with no specialization such that the first indirect
call cannot be resolved. The resulting summary state is 〈⊥MS 2×D, H〉 where
H = {parity->vtable[0] = a}. As a consequence, H is evaluated at each call
site using herbEval.

Consider the code of Case1 in Fig. 4. When reaching the call to Check with
summary state s ∈ MS 2 ×D, we evaluate herbEval(H, s) which amounts to eval-
uating the value of parity->vtable[0] in s. In this case, the state at the call site
contains a finite set of values for this field, namely v1 = 〈&Odd::IsEven〉 and v2 =
〈&Even::IsEven〉. Thus, two new table entries have to be generated for Check, one
for H1 = {parity->vtable[0] = &Odd::IsEven} and H2 = {parity->vtable[0]
= &Even::IsEven}. No further queries are raised. In Case2, the state at the call
site of Check does not contain a finite set of values for the queried fields. However,
there exists an equality relation with the parameter p. Thus, herbEval rewrites H
to H ′ = {p->vtable[0] = a} in terms of the parameter and propagates it to the
callers of Case2. Finally, in Case3, herbEval is able to use the flow information com-
puted by the points-to domain to determine that the l-values in parity->vtable[0]

is a superset of the values in p->vtable[0] and q->vtable[0]. Thus, herbEval
returns a single Herbrand term Set hp hq where hi ≡ {i->vtable[0] = ai}.

We omit a formal definition of herbEval as it is parametric in the value domain
it operates on: In this case, herbEval extracts finite value sets and equalities
between variables from the value domain, but other information can exploited
as well. The next section discusses how herbEval is used to compute specialized
summaries.

4.2 Specializing Summaries with Herbrand Terms

This section illustrates how a function summary is computed that is special-
ized wrt. a set of ground terms Hg ∈ GHerb. To this end, we first define the
lattice of an abstract domain where transformers can generate Herbrand terms
whenever the function context needs to be refined. The lattice of this analysis
is a product of MS 2 × D and a set of Herbrand terms Herb that we write as
〈MS 2 × D × ℘(Herb),vH ,tH ,⊥H〉. All lattice operations are the point-wise
liftings, i.e. 〈s1, H1〉 vH 〈s2, H2〉 ≡ s1 vMS 2×D s2 ∧H1⊆H2, etc. In particular,
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note that the product is not reduced [5], so that 〈⊥MS 2×D, H〉 6= ⊥H unless
H = ∅.

The analysis populates a table in THerb = LocF×GHerb→ MS 2×D×℘(Herb).
Each entry 〈f,Hg〉 7→ 〈s,H〉 states that f , when specialized by Hg, has the
summary s and requires further specializations by instantiating H in its callers.
We define the following transformer to impose Hg on an abstract state:

[[test Hg]]
] : (MS 2 ×D)→ MS 2 ×D (22)

For example, given the terms Hg = {field = 42}, the initial state init in
Sect. 3.3 is refined to [[test Hg]]

]init = 〈m1,m2, {x1 = x2 = lresf , x3 = x4 = 42}〉
where mi = [f 7→ [ret 7→ xi, field 7→ xi+2]] for i = 1, 2. The semantics of a
function f for a specialization Hg is defined by sumTH

f that generalizes Def. 5:

Definition 7. The specialized abstract summary of f under TH ∈ THerb is given
by sumTH

f : GHerb→ (MS 2×D)×℘(Herb) where sumTH

f (Hg) = absTH

f,[[test Hg ]]]init
.

Here, TH ∈ THerb is the table of specialized summaries. Its elements are
defined in terms of sumTH

f :

Definition 8. TH ∈ THerb is a well-formed table if TH(〈f,Hg〉) = sumTH

f (Hg)
for all 〈f,Hg〉 ∈ dom(TH).

The analysis bootstraps by computing a summary for each function f with no
specialization, thus providing the table entries with key 〈f, ∅〉. For any specializa-
tion Hg, a result 〈s,H〉 ∈ TH(〈f,Hg〉) may contain a non-empty set H ∈ Herb
that states how the function input must be specialized further so that the sum-
mary is an over-approximation of the function’s concrete semantics. We now
define how a call site of f instantiates H to a set of ground Herbrand terms
Hg ∈ GHerb that can be used to compute a specialized function summary 〈f,Hg〉
in TH .

4.3 Combining Specialized Function Summaries

We now explain the differences between the semantics of the call-statement in
Def. 21 and the following definition over the (MS 2 ×D)× ℘(Herb) domain:

[[ls: call e]]
]
TH
〈s,H〉 = 〈⊥MS 2×D, H ∪Hf 〉 tMS 2×D

⊔
lf∈{l1f ,...l

n
f }

applyEntriesTH

lf
(s, ∅, ∅)

〈{[a/l1f ], . . . [a/lnf ]}, Hf 〉 = herbEval({“e = a′′}, s) (23)

Rather than using the concretization function γMS 2×D to obtain the callee
addresses lf , we evaluate a Herbrand term e = a in the current state s ∈ MS 2×D
where e is the called expression. We obtain a set of function addresses lif , i ∈ [1, n]
and/or Herbrand terms Hf . Recall that a non-empty Hf are predicates over the
inputs of this function that need to be restricted to a finite set of callers before
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applyEntriesTH
f : ((MS 2 ×D)× ℘(Herb)× ℘(GHerb))→ (MS 2 ×D)× ℘(Herb)

applyEntriesTH
f (s,H,Hg) =

let 〈s′, H ′〉 ∈ TH(〈f,Hg〉) in (24)

if H ′ = ∅ then 〈s ./MS 2×D s′, ∅〉 else (25)

let 〈Θ,Hnew〉 = herbEval(H ∪H ′, s) in (26)

let H ′g = {H ′g | H ′g = θ(H ∪H ′) ∩GHerb, θ ∈ Θ,Hg ⊆ H ′g} in (27)

〈⊥MS 2×D, H
new〉 tMS 2×D

⊔
H′

g∈H′
g

applyEntriesTH
f (s,H ∪H ′, H ′g) (28)

Figure 5. Applying a specialized function summary in TH ∈ THerb

this call has an effect. Thus, the predicates H ∪Hf are returned with a bottom
summary ⊥MS 2×D. The effect of each known callee at lif is composed with the
current state s using a helper function applyEntries that is defined in Fig. 5.

The idea of applyEntries is to find those specializations of callee f that match
the caller state s and to combine those specializations with s. The arguments H
and Hg always contain the same number of terms, where Hg is one specialization of
H in s. In Eqn 24, we assume the table TH contains an entry for the specialization
〈f,Hg〉. It is up to the fixpoint engine to compute a missing entry on-the-fly or
to resume the evaluation of the caller once the entry is available. If the retrieved
summary s′ requires no new specializations, i.e. if H ′ = ∅, the summary s′ is
composed with the caller state in Eqn. 25 and returned. In case H ′ 6= ∅, the
summary s′ is an under-approximation and a more specialized summary must
be consulted by instantiating H ∪ H ′ in the caller’s state as done in Eqn. 26.
The evaluation has two outcomes (which are not necessarily mutually exclusive):
if Hnew 6= ∅ then herbEval was able to translate the terms H ′ of the callee to
inputs of the caller. These terms are therefore returned with the bottom summary
⊥MS 2×D so that the caller will be refined. The second case is that H ∪H ′ could
be instantiated to concrete values in form of a set of substitutions Θ. Equation 27
applies Θ to obtain sets of ground terms H ′g ∈ ℘(℘(GHerb)) of which only those

are returned that match the current specialization Hg. Each set H ′g ∈ H ′g is used
to look up a more specialized summary of f by calling applyEntries recursively.
We illustrate these definitions with an example.

Example 6. We illustrate the call semantics using the call to Check in Case1 in
Fig. 4. Assume that TH has the following entries (vt is short for parity->vtable):

1 〈&Check, ∅〉 〈⊥MS 2×D, {vt[0] = a0}〉
2 〈&Check, {vt[0]=&Even::IsEven}〉 〈s1, {vt[1] = a1}〉
3 〈&Check, {vt[0]=&Odd::IsEven}〉 〈s2, {vt[1] = a2}〉
4 〈&Check, {vt[0] = &Even::IsEven,
vt[1] = &Even::IsOdd}〉

〈s3, ∅〉

5 〈&Check, {vt[0] = &Odd::IsEven,
vt[1] = &Odd::IsOdd}〉

〈s4, ∅〉
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The abstract call semantics in Eqn. 23 invokes applyEntriesTH

&Check(s, ∅, ∅) where
s is the caller state at the call site. The fact that Eqn. 24 returns a non-empty
H ′ = {vt[0] = a0} means that a specialization needs to be computed, based on
s which is done by Eqn. 26. Since s provides a finite set of values for a0, Θ =
{[a0/&Even::IsEven], [a0/&Odd::IsEven]} while Hnew is empty. Applying these
substitutions in Eqn. 27 gives two specializations in H ′g, leading to two recursive
calls in Eqn. 28, namely applyEntries(s, {vt[0] = a0}, {vt[0] = &Even::IsEven})
and applyEntries(s, {vt[0] = a0}, {vt[0] = &Odd::IsEven}). We only consider the
first call as the second is analogous. Equation 24 extracts the 2nd table entry which,
yet again, returns a non-empty H ′. Equation 26 computes Θ = {θ1, θ2} where θ1 =
[a0/&Even::IsEven, a1/&Even::IsOdd], θ2 = [a0/&Odd::IsEven, a1/&Odd::IsOdd] for
the terms H ∪H ′ = {vt[0]= a0,vt[1]= a1}, thereby preserving the information
at the call site that both, vt[0] and vt[1], are taken from the same object
instance. However, θ2(H ∪H ′) is not a superset of Hg and is therefore discarded
by Eqn. 27 as it is not a specialization of table entry 2. Thus, the only recursive call
applyEntries(s,H ∪H ′, {vt[0]= &Even::IsEven, vt[1]= &Even::IsOdd}) consults
table entry 4 and applies summary s4 to the caller state using Eqn. 25.

4.4 Heyting Completion

In this section we show that the iterative tabulation of specialized function sum-
maries is a Heyting completion, a well-known domain refinement technique [10].
A domain refinement adds new elements to an abstract domain. Our contribution
is that completion is done on-demand, that is, only those elements are added to
the lattice that are required by the program that is being analyzed.

Let 〈L,vL,tL,uL〉 be a complete lattice and αX : L→ X a closure operator,
i.e., monotone Y vL Z ⇒ αX(Y ) vL αX(Z), idempotent αX(αX(Y )) = αX(Y ),
extensive Y vL αX(Y ), ∀Y,Z ⊆ L. Then 〈L,α,X, id〉 is a Galois insertion [5].

Let⇒ ∈ L2 → L be a binary operator with a⇒ b =
⊔
L{c ∈ L | auL c vL b}.

If a⇒ b vL b then a⇒ b is called the pseudo-complement of a relative to b. A
lattice in which all pairs of elements have a pseudo-complement is called a Heyting
algebra. We lift · ⇒ · to sets A,B ⊆ L as A⇒ B = {a⇒ b ∈ L | a ∈ A, b ∈ B}.

For any X ⊆ L let
c

(X) = {
d
L Y | Y ⊆ X} define the Moore closure of X.

Let A,B ∈ L such that αA, αB exist. Then the Heyting completion of A with
respect to B is

c
(A⇒ B). Let H =

⋃
HG⊆GHerb{[[test HG]]]s | s ∈ MS 2 ×D}.

Theorem 1. H is a Heyting completion of GHerb with respect to MS 2 ×D.

Proof. First, show
c

(H) = H. Let [[test Hi]]
]si ∈ H for i = 1, 2. Then

s := [[test H1]]]s1uMS 2×D [[test H2]]]s2 = [[test H1]]][[test H2]]](s1uMS 2×Ds2) ∈ H
if there exists H ∈ GHerb with [[test H ]]] = [[test H1]]]◦[[test H2]]]. If “e = c′′i ∈ Hi

exists with ci ∈ Z and c1 6= c2 then s = ⊥MS 2×D. Otherwise, since s1 uMS 2×D s2
has finitely many fields, there exists a finite H ⊆ H1 ∪H2. Thus, H ∈ GHerb.

Now show H = GHerb ⇒ MS 2 × D. Let S1 vH S2 if for all s1 ∈ S1 there
exists s2 ∈ S2 with s1 vMS 2×D s2 and note that uH exists due to

c
(H) = H.

Choose H ⊆ GHerb, b ∈ MS 2 × D. Let a = [[test H]]]〈[], [],>D〉 ∈ MS 2 × D.
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For the sake of contradiction, assume there exist ci with {a} uH ci vH {b} and
({a} uH c1) tH ({a} uH c2) 6vH {b}. Let Ci = {[[test H]]]s | s ∈ ci}. Then Ci ⊆ H
but also C1 ∪ C2 ⊆ H, thus C1 ∪ C2 vH {b} which is a contradiction.

Corollary 1. The entries of the table TH ∈ THerb defined in Def. 8 are a partial
Heyting completion of GHerb with respect to MS 2 ×D.

Proof. By observing that s ∈ H for all 〈f,Hg〉 7→ 〈s, ∅〉 ∈ TH .

5 Implementation and Evaluation

In this section, we discuss the implementation of our analyzer. Our analyzer
reconstructs the control flow- and call graph of an x86 binary. The input binary
is decoded and translated into the RReil language using the GDSL toolkit [12],
starting at all function entry points defined in the ELF header.

Inter-procedurally, the analysis computes summaries for all functions starting
from the initial state init defined in Sect. 3.3. The fixpoint computation proceeds
by computing the summary of a callee before continuing at a call site using a
dynamically updated partial order on the caller/callee relation. Intra-procedurally,
the basic blocks of a function are discovered on-the-fly and we identify loops by
observing jumps from higher to lower machine addresses. Within each loop, we
apply a combined widening and narrowing operator for faster convergence [1].

The value domain D of the analysis is implemented as a set of three domains.
The equality domain tracks predicates of the form x = y+c for x, y ∈ X and c ∈ Z.
The pointer domain DX = X → ℘(LocM ∪{abad})×X tracks relationships of the
form xp − xo ∈ {l1, . . . , ln} with xp, xo ∈ X , li ∈ LocM . Here, xp is the pointer
variable that is being tracked, xo contains the offset relative to the beginning
of li, the addresses of a memory region. Finally, the value set domain is used to
track finite subsets of Z and intervals. We impose no fixed bound on the size of
the subsets (i.e. no k-limiting) but widen a growing set to an interval. The three
domains form a hierarchy where a parent domain forwards any domain operation
to its child. For instance, the pointer domain transforms operations on pointer
variables to operations on pointer offsets and passes them on to its child domain.

Section 4.1 raised the possibility that only necessary preconditions can be
synthesized that are represented by a Herbrand term Set . . .. For instance, the
call to Case3Set in Fig. 4 would generate the term parity->vtable = a which is
translated to a precondition Set {p->vtable = a1, q->vtable = a2}. In this case,
instead of generating different table entries for each variable instantiation, we
specialize initH with the join of all caller states, projected onto the variables
in Set {. . .}. When the caller state on these variables change, the function
summaries need to be re-computed. Once necessary preconditions are generated,
the analysis is no longer fully context-sensitive since the state at one caller can
be propagated to the call site of a different caller. Our analysis also distinguishes
summary memory regions that are created when accessing memory regions within
loops. Any precondition generated in terms of summary memory regions are only
necessary and never exact.
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Binary Exact H Set H None Avg. HG Indirect Resolved Time Size

libgdsl x86 145 1 10 14.6 388 237 8.3h 1.1mb
libgdsl avr 137 3 2 5.8 224 157 9.5m 303kb
libgdsl arm7 82 0 4 3.4 153 96 13.4m 407kb

echo 0 0 0 N/A 7 2 134s 14.2kb
cat 0 0 0 N/A 7 2 8.2m 16.2kb

Table 1. Evaluation Results

Currently, each time a pointer is accessed that can be traced to the input,
we create a fresh memory region. As a result, we implicitly assume that none of
the pointer parameters alias. Thus, in general, our analysis is not sound. Future
work will address how to incorporate the input aliasing configuration into the
tabulation.

5.1 Evaluation

We have evaluated our implementation on the set of example binaries shown in
Table 1. In particular, the benchmarks starting with libgdsl are libraries that
are written in an ML-like functional programming language GDSL. GDSL is
translated into idiomatic C code where higher-order functions are translated into
C function pointers or heap-allocated closures containing function pointers [13].

Column Exact H contains the number of call / br statements that generated
a Herbrand term with a single variable, i.e., terms that correspond to exactly one
input memory field. The column Set H reports call sites that generate a term
with a Set constructor, i.e. the cases where only necessary preconditions can be
synthesized. The number of Herbrand terms that could not be translated to an
input memory field is shown in None. Note that this number is low compared
to the number of terms that can be translated to inputs, thereby showing that a
summary abstract domain compares favorably against a backward analysis: the
latter comes at the cost of implementing the backward semantic transformers.
Column Avg. HG contains the average number of instantiations for a Herbrand
term. Columns Indirect and Resolved show the number of indirect call/br
statements how many that were resolved to at least one target. Not all call sites
can be resolved due to imprecision in our analysis as well as, for the libraries, due
to the fact that many public functions take function pointers. Finally, columns
Time and Size contain the analysis time and the size of the .text section.

Note that the gathering of the experimental data has been done using a
preliminary prototype that tracks only a single summary per function by merging
all requested function summaries. However, a more faithful implementation should
only increase the precision of the analysis.

6 Related Work

One traditional approach of improving the precision of context-insensitive analysis
is to only merge call sites whose last k parent call sites are the same (so-called
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k-CFA) [18]. While the k-CFA approach improves the precision (i.e. Fig. 1 verifies
with k = 1), it does so without consideration for the semantics of the program.

Modular analyses are context-sensitive by combining summaries of compo-
nents/functions to a solution of the whole program. There are four principles
[6]: compute a global fixpoint over some simplified semantics of each component,
compute summaries under worst case assumptions, compute summaries using
(possibly user-supplied) interfaces, and symbolic relational separate analysis
(input/output abstractions). Most analyses combine some of these four principles.

Analyses that rely on condensing domains [9,14,15,16,20] perform a pure
symbolic relational analysis based a restricted class of domains that comprise
Herbrand terms with variables, Boolean functions and affine equalities.

The SeaHorn analyzer allows arguing over rich, numeric properties in a
modular way [11]. It simplifies the input program into Horn clauses over predicates
that are tailored to the analyzed program. These are then solved in a modular
way. The downside is that no new invariants can be synthesized interprocedurally.
Our tabulation over Herbrand terms is, in theory, less efficient than SeaHorn’s
Horn clauses since we store a summary state for each set of predicates. Yet, our
summaries allow the computation of new invariants even interprocedurally.

Specializing the input of a summary falls into the category of summarizing
with interfaces. One instance of this idea is the inference of preconditions that,
when violated, lead to an error in the analyzed code [7]. An approach called
“angelic verification” [8] goes further by restricting inputs to likely correct inputs.

Modular analyses that re-evaluate a component several times also adhere
to the principle of computing summaries with interfaces, as each summary of
a component is somehow specialized. The classic work on tabulation proposes
to analyze a function for any possible input state and to combine table entries
that match a call site [17]. Our approach is an on-demand tabulation that uses
concrete values of function pointers as keys. Amato et al. perform tabulation
based on the equality of the abstract input state [1]. Their tabulation approach
may re-analyze a function unnecessarily, i.e. when a call site state has no match
in the table but matches the join of several tabulated states. Moreover, matching
tabulated states by equality may lead to non-monotone behavior [1, Example 1].

In the context of binary analysis, Xu et al. manually summarise functions
using pre- and postconditions [23] that are similar to our Herbrand terms.

Finally, one “simplified semantics” idea is to break the program down so that
it consists of parts that can be summarized with little precision loss (with the
extreme of synthesizing transfer functions for groups of instructions [3,21]).

6.1 Conclusion

We presented a framework for modular analysis that judiciously computes multiple
summaries. Each summary is specialized by Herbrand terms whose template is
created by the function that is being analyzed and that is instantiated by its
callees. We illustrated that this versatile approach corresponds to an on-demand
Heyting completion of the domain and recovers indirect function calls.
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Yong Li1,2, Andrea Turrini1, Lijun Zhang1,2, and Sven Schewe3

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

2 University of Chinese Academy of Sciences, Beijing, China
3 University of Liverpool, Liverpool, UK

Abstract. Complementing Büchi automata is an intriguing and in-
tensively studied problem. Complementation suffers from a theoretical
super-exponential complexity. From an applied point of view, however,
there is no reason to assume that the target language is more complex
than the source language. The chance that the smallest representation
of a complement language is (much) smaller or (much) larger than the
representation of its source should be the same; after all, complementing
twice is an empty operation. With this insight, we study the use of learn-
ing for complementation. We use a recent learning approach for FDFAs,
families of DFAs, that can be used to represent ω-regular languages, as
a basis for our complementation technique. As a surprising result, it has
proven beneficial not to learn an FDFA that represents the complement
language of a Büchi automaton (or the language itself, as complement-
ing FDFAs is cheap), but to use it as an intermediate construction in
the learning cycle. While the FDFA is refined in every step, the target
is an associated Büchi automaton that underestimates the language of
a conjecture FDFA. We have implemented our approach and compared
it on benchmarks against the algorithms provided in GOAL. The com-
plement automata we produce for large Büchi automata are generally
smaller, which makes them more valuable for applications like model
checking. Our approach has also been faster in 98% of the cases. Finally
we compare the advantages we gain by the novel techniques with ad-
vantages provided by the high level optimisations implemented in the
state-of-the-art tool SPOT.

1 Introduction

The complementation of Büchi automata [15] is a classic problem that has been
extensively studied for more than half a century; see [56] for a survey. The classic
line of research on complementation has started with a proof on the existence of
complementation algorithms [38,40] and continued to home in on the complexity
of Büchi complementation, finally leading to matching upper [47] and lower [57]
bounds (≈ (0.76n)n) for complementing Büchi automata. This line of research
has been extended to more general classes of automata, notably parity [49] and
generalised Büchi [48] automata.

The complementation of Büchi automata is a valuable tool in formal verifica-
tion (cf. [34]), in particular when a property that all runs of a model shall have is
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provided as a Büchi automaton (one tests if the automaton that recognises the
runs of a system has an empty intersection with the automaton that recognises
the complement of the property language) and when studying language inclusion
problems of ω-regular languages [3, 4, 52].

With the growing understanding of the worst case complexity, the practical
cost of complementing Büchi automata has become a second line of research.
In particular the GOAL tool suite [54] provides a platform for comparing the
behaviour of different complementation techniques on various benchmarks [53].

Traditional complementation techniques use the automaton they seek to com-
plement as a starting point for complex state space transformations. These trans-
formations may lead to a super-exponential growth in the size. While this is
generally unavoidable [57], we believe that there is no inherent reason to assume
that the complement language is harder than the initial language; after all, com-
plementing twice does not change the language1. This begs to ask the question,
if we can—and if we should—avoid or reduce the dependency on the syntactic
representation of the language we want to complement by a Büchi automaton.

This puts the focus on learning based approaches. The classic DFA learning
algorithm L* has been proposed by Angluin in [6]. Based on L*, improvements
and extensions have been made in [12,32,44]. They have been successfully applied
in formal verification, for instance in compositional reasoning [17,21,23], system
synthesis [2, 5, 13], and error localisation [20, 22]. Recently, Angluin’s learning
algorithm has been extended to ω-regular languages [8, 25,35].

Families of DFAs [8, 35] (FDFAs), introduced in [7], have emerged as an
excellent tool to represent ω-regular languages based on the representation of
ultimately periodic words uvω as pairs (u, v). Based on the experience that
DFAs tend not to be much larger than NFAs in practice, there is reasonable hope
that FDFAs relate similarly to Büchi automata. Indeed, we have observed that,
when we complement Büchi automata using existing determinisation techniques,
it is often the case that their corresponding complement Büchi automata are
much larger than themselves, while their complements by learning corresponding
FDFAs have similar size to them, see Table 2 in Section 4. Moreover, FDFAs have
proven to be well suited for learning [8,35], which makes them an ideal starting
point for developing a learning based automata complementation approach.

In a surprising twist, we found that FDFAs do not have to be learned to
exploit them in a learning approach. Instead, we use candidate FDFAs F that
are produced during the learning to infer Büchi automata B(F) that accept
a subset of the ultimately periodic words represented by F . Thus, while our
learning algorithm is driven by a core that tries to learn a corresponding FDFA
F , it often terminates well before such an FDFA is found. This is possible, be-
cause the correspoinding FDFA is only a tool in the complementation algorithm.
Broadly speaking, the algorithm uses a candidate F , its complement F c, and un-

1 The typical model checking approach to complement the specification first also as-
sumes that the translation into a Büchi automaton is equally efficient for the formula
and its negation.
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Fig. 1. The learning framework for complementing a Büchi automaton B. The learner
makes membership queries MQ(u, v), followed by the teacher revealing whether uvω is
in the complement of L(B), and equivalence queries EQ(F), upon which the teacher
either replies that B(F) complements B, or produces a counterexample CE: (u, v),
such that the learner can refine F by either removing (u, v) from the language of F (if
uvω ∈ L(B)), or by adding it to the language of F (otherwise).

derapproximations B(F) and B(F c) of their respective ω-languages as its main
components, and it can stop as soon as B(F c) complements the given NBA.

This is feasible because complementing an FDFA F into an FDFA F c is triv-
ial (see Definition 5), and, while a Büchi automaton B(F) accepts only a subset
of the ultimately periodic words defined by the FDFA F it under-approximates,
we observe that the union of B(F) and B(F c) accepts all infinite words, which
is justified by Proposition 2 in Section 3.3.

On first glance, this may sound as if this means that B(F) precisely captures
the language represented by F , but this is not always the case: an ultimately
periodic word uvω has many representations as pairs, including e.g. (u, v), (uv, v),
and (u, v7), and it can happen that some are accepted by an FDFA F , while
others are accepted by its complement F c. In this case, we show that uvω will
be accepted by B(F) or B(F c)—and possibly by both of them (Proposition 2
in Section 3.3).

We use a variation of Angluin’s classic DFA learning algorithm [6] to learn
F . Our learning approach, outlined in Figure 1, uses membership queries for F
until a consistent automaton is created. It then turns to equivalence queries. For
the membership queries, we use—cheap—standard queries [8, 35]. The novelty
lies in a careful design of equivalence queries that make use of cheap operations
whenever possible.

These equivalence queries are not executed with the FDFA F and its com-
plement F c, but with the Büchi automata B(F) and B(F c) that underestimate
them. We first check if B(F) has an empty language intersection with the au-
tomaton B we want to complement. This step is cheap, and if the answer is
negative, then we get an ultimately periodic word uvω in the language of B,
where at least some representations of uvω are accepted by F . We remove the
representative provided by the teacher from the language of F and continue.
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We then check if the language of B(F c) is included in the language of B. This
is an interesting twist, as language inclusion is one of the traditional justifications
for complementing Büchi automata. But while the problem is PSPACE complete,
it can usually be handled well by using efficient tools like RABIT [3, 4, 52].
Non-inclusion comes with a witness in the form of an ultimately periodic word
uvω accepted by B(F c), but not by B. Thus, some representations of uvω are
(incorrectly) rejected by F . We add them to the language of F and continue.
Otherwise we have L(B(F c)) ⊆ L(B). We then conclude that L(B(F)) = Σω \
L(B) and terminate the algorithm with B(F) as the complement of B, which is
justified by Theorem 2.

In a final bid for optimisation, we observe that this learning procedure can
only terminate if B(F) and B(F c) are disjoint, which is justified by Corollary 2
in Section 3.4. If they are not, each ultimately periodic word uvω in their in-
tersection will, in the final check, be a witness for language non-inclusion. It is,
however, much cheaper to find. We therefore suggest that we check disjointness
first and proceed to the more expensive language inclusion test only when the
disjointness test fails.

Remark. We have also experimented with checking universality of L(B) ∪
L(B(F)) instead of checking language inclusion of B(F c) in B in the framework
since this is a simple and more intuitive algorithm for complementing Büchi
automata based on our learning framework. It has proven to be slower than
the algorithm depicted in Figure 1 which confirms that our handling with the
equivalence queries is more practical.

Contribution. The complementation of Büchi automata is a heavily researched
field. However, to the best of our knowledge, all methods applied to it so far
have been automata based. While this focus is natural, it is an important con-
ceptional contribution to consider methods that do not focus on manipulating
the automata we seek to complement.

Technically, publications about L*-style algorithms can be divided into two
main classes: extensions of the L* family to new classes of automata [1,8,12,25,35,
36] and the works that provide suitable—and usually well-performing—teachers
for a class of learning problems (e.g. [2,5,12,13,17–23,26,27,31,32,35,41,43,44]).
This paper belongs to the latter class of contributions: we propose a simple and
practical learning algorithm for complementing Büchi automata.

The performance of learning algorithms depends heavily on the implemen-
tation of the teacher. In line with other applications of L*-style algorithms, our
contribution is the careful design of an FDFA teacher. In our context, member-
ship queries are straight forward, and the challenge is exclusively in the equiva-
lence queries. The PSPACE equivalence queries the teacher has to answer look
like a show stopper. Adding the theoretical super-exponential blow-up incurred
by complementing a Büchi automaton to the mix, it is like having the cards
stacked against you.

Looking more closely at the challenges posed by equivalence queries, however,
reveals that the high costs of equivalence checking can often be avoided. First and
foremost, we can check if the candidate language intersects with the language of
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the automaton we want to complement by a cheap emptiness query (L(B(F))∩
L(B) =? ∅). When the emptiness holds, we check if L(B(F)) and L(B(F c)) in-
tersect, using a second cheap emptiness query (L(B(F)) ∩ L(B(F c)) =? ∅). The
teacher only uses PSPACE-hard language inclusion queries (L(B(F c)) ⊆? L(B))
once both previous queries are passed. These are usually few queries, and we
found that, in spite of the theoretical complexity, existing tools can check inclu-
sion sufficiently fast for this approach to be efficient.

We have implemented the learning-based approach in the tool Buechic based
on ROLL [35]. Although we do not improve the theoretical complexity of comple-
menting Büchi automata, our careful design of the FDFA teacher makes learning
complement Büchi automata work reasonably well in practice. This is confirmed
by the experiments we have performed on the roughly 500 Büchi automata from
Büchi Store [55], the generated Büchi automata by SPOT for formulas in [50]
and NCSB-Complementation [11].

In the performance evaluation, we were particularly interested in a compari-
son with GOAL [54]—considering the time to generate the complement automata
and their size—as GOAL provides a comprehensive collection of the state-of-the-
art techniques as well as a collection of benchmarks. It is therefore well suited
for serving as a point of comparison with our novel technique.

In order to give a complete picture of the Büchi automata complementation
state of the art, we have also compared Buechic against SPOT [24]. Differently
from GOAL, SPOT only implements the most successful technique, and is a
highly engineered state-of-the-art tool that has used the insight from GOAL
and other automata manipulation techniques to obtain powerful heuristics for
state space reduction on top of the principle techniques. While we consider the
comparison with GOAL to be fair, comparing with SPOT is over-stretching what
our tool can achieve—a bit like comparing a prototype for a new model checking
approach with NuSMV. Moreover, SPOT takes advantage of a symbolic rep-
resentation of the automata, by means of Ordered Binary Decision Diagrams
(OBDDs) [14], while both Buechic and GOAL use an explicit graph data struc-
ture to represent the automata. This means that SPOT can work on multiple
states and transitions simultaneously while Buechic and GOAL can only work
on a single state/transition at a time. This is another reason why we consider the
comparison of Buechic with GOAL to be fairer than with SPOT. Since SPOT
does not provide a complementation function for general automata, but only for
deterministic ones, we have derived one based on the implemented techniques
(determinisation, complementation of deterministic automata, transformation to
Büchi) to compare the advancement obtained by our technique with the advance-
ment obtained by using symbolic encoding, states reduction, powerful heuristics,
and performance optimisation.

The complement automata we produce are generally smaller for large Büchi
automata than those generated by GOAL and SPOT, which makes them more
valuable for applications like model checking. Moreover, Buechic has also been
faster in 98% of the cases when compared to GOAL, though SPOT is often
considerably faster due to its maturity and use of symbolic data structures.
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Related Work. Current algorithms [15,28–30,33,38–40,42,45–47,51,53,54,56,
57] for the complementation of Büchi automata are based on a direct comple-
mentation approach, which is quite different from learning. For a given Büchi
automaton B, these approaches use the structure of B as a base to construct a
new Büchi automaton that recognises the complement language Σω \ L(B).

We use the learning algorithm instead to directly obtain an automaton that
recognises Σω \ L(B). It relies mainly on the language of B instead of on its
structure. This allows for obtaining a small automaton for Σω \ L(B), even one
that is much smaller than B.

Regarding the use of learning algorithms, there is a vast literature about
regular languages (see, e.g., [2, 5, 6, 12, 13, 17, 20–23, 32, 44]); learning ω-regular
languages [8, 25, 35] is a young and emerging field. In [25], they learn a Büchi
automaton for an ω-regular language L by learning a DFA defined in [16]. The
work proposed in [8] sets the general framework for learning ω-regular languages
by means of FDFAs while [35] proposes a practical implementable framework by
providing the appropriate FDFA teacher: it assumes that there exists an oracle
for the target ω-regular language L and constructs an automaton accepting
L. In this paper we design the oracle for the FDFA teacher used in [35]; the
oracle knows the complement of the language of B and is able to produce the
appropriate counterexamples that are then analysed and returned to the learner.

Organisation of the Paper. After starting with some background and nota-
tion in Section 2, we describe our learning based complementation technique in
Section 3. In Section 4, we evaluate our technique on standard complementation
benchmarks and against the competitor algorithms from the GOAL suite and
SPOT, before concluding the paper with Section 5.

2 Preliminaries

Let X and Y be two sets; we denote by X 	 Y their symmetric difference, i.e.
the set (X \ Y ) ∪ (Y \X).

Let Σ be a finite set of letters called alphabet. A finite sequence of letters
is called a (finite) word. An infinite sequence of letters is called an ω-word. We
use |α| to denote the length of the finite word α and we denote by last(α) the
last letter of α. We use ε to represent an empty word. The set of all finite words
on Σ is denoted by Σ∗, and the set of all ω-words is denoted by Σω. Moreover,
we also denote by Σ+ the set Σ∗ \ {ε}. Given a finite word α = a0a1 . . . and
i, k < |α|, we denote by α(i) the letter ai and we use α[i : k] to denote the
subword α′ = ai . . . ak of α, when i ≤ k, and the empty word ε when i > k.

Definition 1. A nondeterministic Büchi automaton (NBA) is a tuple B =
(Σ,Q, I,T,F), consisting of a finite alphabet Σ of input letters, a finite set Q of
states with a non-empty subset I ⊆ Q of initial states, a set T ⊆ Q×Σ ×Q of
transitions, and a set F ⊆ Q of accepting states.
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We denote the generic elements of an NBA B by Σ, Q, I, T, F, and we propagate
primes and indices when necessary. Thus, for example, the NBA B′i has states
Q′i, initial states I ′i, input letters Σ′i, transition set T′i, and accepting states F′i;
we use a similar notation for the other automata we introduce later.

An run of an NBA B over an ω-word α = a0a1a2 · · · ∈ Σω is an infinite
sequence of states ρ = q0q1q2 · · · ∈ Qω such that q0 ∈ I and, for each i ≥ 0,(
ρ(i), ai, ρ(i+1)

)
∈ T where ρ(i) = qi. A run ρ is accepting if it contains infinitely

many accepting states, i.e. Inf(ρ) ∩ F 6= ∅, where Inf(ρ) = { q ∈ Q | ∀i ∈ N.∃j >
i : ρ(j) = q }. A ω-word α is accepted by B if B has an accepting run on α, and
the set of words L(B) = {α ∈ Σω | α is accepted by B } accepted by B is called
its language.

We call a subset of Σω is an ω-language and the language of an NBA an ω-
regular language. Words of the form uvω are called ultimately periodic words. We
use a pair of finite words (u, v) to denote the ultimately periodic word w = uvω.
We also call (u, v) a decomposition of w. For an ω-language L, let UP(L) =
{uvω ∈ L | u ∈ Σ∗, v ∈ Σ+ } be the set of all ultimately periodic words in L.

Theorem 1 (Ultimately Periodic Words [15]). Let L, L′ be two ω-regular
languages. Then L = L′ if, and only if, UP(L) = UP(L′).

An immediate consequence of the above theorem is that, for any two ω-regular
languages L1 and L2, if L1 6= L2 then there is an ultimately periodic word
xyω ∈ UP(L1)	UP(L2).

Definition 2. A deterministic finite automaton (DFA) is a tuple A =
(Σ,Q, q̄,T, F ), consisting of a finite alphabet Σ of input letters, a finite set Q
of states with an initial state q̄ ∈ Q, a total transition function T: Q×Σ → Q,
and a set F ⊆ Q of accepting (final) states.

The complement Ac of a DFA A = (Σ,Q, q̄,T, F ) is the DFA Ac =
(Σ,Q, q̄,T, Q \ F ).

Given a DFA A and two states s and f , let As
f = (Σ,Q, s,T, {f}) be the DFA

obtained from A by setting its initial and accepting states to s and {f}, respec-
tively.

A run of a DFA A over a word α = a0 · · · ak ∈ Σ∗ is a finite sequence of states
ρ = q0 · · · qk+1 ∈ Q∗ such that q0 = q̄ and for every 0 ≤ i ≤ k, qi+1 = T(qi, ai)
where k ≥ 0. The run ρ of A on α is accepting if qk+1 ∈ F . We denote by
L(A) the language of A, i.e., the set of all words whose corresponding runs are
accepted by A. We call the language of a DFA a regular language. Given an input
word α ∈ Σ∗ and the run ρ of A on α, we denote by A(α) the last reached state
last(ρ). Given a DFA A with alphabet Σ, it holds that L(Ac) = Σ∗ \ L(A).

Note that we require T to be total so to simplify the definitions in the re-
mainder of the paper. Each DFA A with a non-total transition function can be
transformed to a DFA A′ as by Definition 2 such that L(A′) = L(A) by adding
a fresh non-final sink state, and by letting T′ agree with T where T is defined
and mapping to this fresh sink state otherwise.
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Fig. 2. An NBA B and an FDFA F = (M, {Aε}) recognising the same language L =
Σ∗ · bω.

Learning regular languages via DFAs was first proposed in [6], and the right
congruence is the theoretical foundation for it to discover states in a regular
language. A right congruence is an equivalence relation ∼ on Σ∗ such that x ∼ y
implies xv ∼ yv for every x, y, v ∈ Σ∗. We denote by |∼| the index of ∼, i.e.
the number of equivalence classes of ∼. We use Σ∗/∼ to denote the equivalence
classes of the right congruence ∼. A finite right congruence is a right congruence
with a finite index. For a word u ∈ Σ∗, we denote by [u]∼ the class of ∼ in which
u resides.

The main obstacle to learn ω-regular languages via Büchi automata is that
there is a lack of right congruence for Büchi automata. Inspired by the work
of Arnold [9], Maler and Stager [37] proposed the notion of family of right-
congruences. Based on this, Angluin and Fisman [8] further proposed to learn
ω-regular languages via a formalism called family of DFAs, in which every DFA
corresponds to a right congruence.

Definition 3 (Family of DFAs [8]). A family of DFAs (FDFA) over an alpha-
bet Σ is a pair F = (M, {Aq}) consisting of a leading DFA M = (Σ,Q, q̄,T, ∅)
and of a progress DFA Aq = (Σ,Qq, q̄q,Tq, F q) for each q ∈ Q.

In the remainder of the paper we may just write M = (Σ,Q, q̄,T) for a leading
DFA. We say that a decomposition (u, v) is accepted by an FDFA F if M(u) =
M(uv) and Aq(v) ∈ F q where q = M(u). An ultimately periodic word α ∈ Σω

is accepted by an FDFA F if there exists a decomposition (u, v) of α that is
accepted by F . Then we define UP(F) = {α ∈ Σω | α is accepted by F }. As an
example of FDFAs, consider the FDFA F shown in Figure 2: the leading DFA
M has only one state, ε, and the corresponding progress DFA for state ε is Aε.
The word abω is accepted by F since there exists the decomposition (a, b) of
abω being accepted by F . It is easy to see that UP(F) = Σ∗ · bω, which is also
recognised by the NBA B depicted in Figure 2.

In [8], Angluin and Fisman propose to use three canonical FDFAs to recognise
ω-regular languages, namely periodic FDFAs, syntactic FDFAs, and recurrent
FDFAs. In this paper, we only use syntactic FDFAs since they can be expo-
nentially smaller than their periodic counterpart [8] and have proved to be well
suited for converting to Büchi automata [35]. The right congruence ∼L of a given
ω-regular language L is defined such that x ∼L y if for each w ∈ Σω, it holds
that xw ∈ L if and only if yw ∈ L.
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Definition 4 (Syntactic FDFA [8]). Given an ω-regular language L, the syn-
tactic FDFA F = (M, {Au}) for L is defined as follows. The leading DFA M
is the tuple M = (Σ,Σ∗/∼L

, [ε]∼L
,T, ∅), where T([u]∼L

, a) = [ua]∼L
for all

u ∈ Σ∗ and a ∈ Σ.
The right congruence ≈u

S for a progress DFA Au of the syntactic FDFA is
defined as follows.

x ≈u
S y iff ux ∼L uy ∧ ∀v ∈ Σ∗.uxv ∼L u =⇒ (u(xv)ω ∈ L ⇐⇒ u(yv)ω ∈ L).

The progress DFA Au is the tuple (Σ,Σ∗/≈u
S
, [ε]≈u

S
,TS , FS), where, for each

v ∈ Σ∗ and a ∈ Σ, TS([v]≈u
S
, a) = [va]≈u

S
. The set of accepting states FS is the

set of equivalence classes [v]≈u
S

, for which uv ∼L u and uvω ∈ L hold.

Given an ω-regular language L, the corresponding syntactic FDFA for L has
finite states [8].

Lemma 1 (cf. [8]). Let F = (M, {Aq}) be a syntactic FDFA recognising the
ω-regular language L. Then we have UP(F) = UP(L) and if xyω ∈ L, then every
decomposition (u, v) of xyω with M(u) = M(uv) is accepted by F .

An example of syntactic FDFAs is the FDFA F shown in Figure 2. This
FDFA F recognises the ω-regular language Σ∗ · bω. Since abω is accepted by F ,
we have that every decomposition of abω is accepted by F .

Definition 5 (Complement of FDFA [7]). Given an FDFA F = (M, {Aq}),
the complement F c of F is the FDFA F c = (M, {Aqc}).

In contrast to [7], we consider general FDFAs instead of only canonical FDFAs in
this paper. As a consequence, though we call F c the complement of F , actually
it is possible to have UP(F)∩UP(F c) 6= ∅. This complicates the use of F c. More
details will be given in Section 3.

Transforming FDFAs to Büchi Automata. According to [35, Section 6],
an FDFA F does not necessarily recognise an ω-regular language. Thus one
cannot construct an NBA B for an arbitrary FDFA F such that UP(F) =
UP(L(B)). To overcome this obstacle, the authors of [35] propose two methods
to approximate UP(F) by means of two Büchi automata B(F) and B(F) that
accept an under- and an over-approximation, respectively, of UP(F). We use the
under-approximation method, because this ensures that UP(L(B(F))) = UP(F)
holds whenever F is a canonical FDFA (cf. [35, Lemma 3]). No such property
has been established for the over-approximation method.

We now present the idea underlying the construction of the under-approxima-
tion B(F) proposed in [35], to which we refer for details. Recall that As

f denotes
the DFA A where s is the initial state and f the only accepting state; recall
that an FDFA F = (M, {Aq}) consists of a leading DFA M = (Σ,Q, q̄,T, ∅)
and of a progress DFA Aq = (Σ,Qq, q̄q,Tq, F q) for each q ∈ Q; recall also that
UP(F) = {α ∈ Σω | α is accepted by F }, where α is accepted if there exists a
decomposition (u, v) of α, such that uvω = α, M(u) = M(uv), and Aq(v) ∈ F q,
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where q = M(u). This implies that every word α in UP(F) can be decomposed
into two parts u and v, such that u is consumed by a run of M and v by a
run of Aq. Note that, if we consider M q̄

q , then we have that uvω is accepted by
F if M q̄

q (u) = M q̄
q (uv), u ∈ L(M q̄

q ), and Aq(v) ∈ F q, where q = M(u). This
means that we can write UP(F) as UP(F) =

⋃
q∈Q,f∈F q L(M q̄

q ) · N(q,f) where

N(q,f) = { vω ∈ Σω | v ∈ Σ+ ∧ q = Mq
q (v) ∧ v ∈ L((Aq)q̄

q

f ) } is the set of all

infinite repetitions of the finite words v accepted by Aq
f .

In order to under-approximate UP(F), it is enough to match exactly L(M q̄
q )

and to under-approximate N(q,f). The former is trivial, since we already have M q̄
q ;

for the latter, consider the DFA P (q,f) = Mq
q×(Aq)q̄

q

f ×(Aq)ff , where × stands for

the standard intersection product between DFAs: the DFA Mq
q × (Aq)q̄

q

f ensures

that for any v ∈ L(Mq
q × (Aq)q̄

q

f ) and u ∈ L(M q̄
q ), we have q = M(u) = M(uv)

while (Aq)ff guarantees that v, v2 ∈ L((Aq)q̄
q

f ). Then, by the construction in [35,
Definition 4], it is possible to construct an NBA B(F) such that L(B(F)) =⋃

q∈Q,f∈F q L(M q̄
q ) ·N (q,f) where N (q,f) = L(P (q,f))

ω. B(F) under-approximates
the language of F :

Lemma 2 ([35, Lemma 3]). For every FDFA F , UP(L(B(F))) ⊆ UP(F)
holds. If F is canonical, then UP(L(B(F))) = UP(F) holds.

3 Learning to Complement Büchi Automata

In this section we present the details of our learning framework, depicted in
Figure 1, to learn the complement language L = Σω \ L(B) of a given NBA
B. We first outline the general framework. We then continue with the technical
part, where we first show that the counterexamples are correct in Section 3.2,
and then establish termination and correctness in Section 3.3, before we finally
discuss an optimisation in Section 3.4.

3.1 The Learning Framework

We begin with an introduction of the learning framework for L, depicted in
Figure 1. The framework consists of two components, namely the learner and
the teacher for complementing Büchi automaton.

The learner is a standard FDFA learner (see, e.g. [8,35]). He tries to learn an
FDFA that recognises an ω-regular language L by means of two types of queries:
membership queries of the form MQ(u, v) that provide him with information
about whether the word uvω has to be included in L; and equivalence queries of
the form EQ(F), aimed to find differences between the current conjecture F and
the language he shall learn. The learner is oblivious of the fact that the NBA
B(F) is sought after, not F itself.

The teacher provides answers to these queries based on a definition of the
complement of L by an NBA B. Answering a membership query MQ(u, v) is
easy: it reduces to checking whether uvω ∈ L, i.e. whether uvω /∈ L(B).
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The innovation is in the way the equivalence queries EQ(F) are answered.
For checking equivalence, the teacher works with two NBAs B(F) and B(F c)
that underestimate the ω-languages recognised by F and F c, respectively. She
reports equivalence to the learner, when she is satisfied that L(B(F)) = L holds.
For algorithmic reasons, this is the case when L(B(F c)) = L(B) holds, too.

In her first step in answering an equivalence query EQ(F), she constructs the
NBA B(F) from the conjecture F and then checks whether L(B(F))∩L(B) = ∅
holds. If this is not the case, then a witness xyω ∈ L(B(F))∩L(B) is constructed.
Since UP(L(B(F))) ⊆ UP(F) is established in Lemma 2, this implies xyω ∈
UP(F) ∩UP(L(B)).

She then analyses the witness xyω to get a decomposition (u, v) of xyω that
is accepted by F . She then returns (u, v) to the learner as a counterexample
(that matches Definition 6), for him to remove (u, v) from the current FDFA F ,
since uvω ∈ L(B).

When the first check L(B(F)) ∩ L(B) = ∅ has been passed successfully, the
teacher constructs B(F c) and checks whether L(B(F c)) ⊆ L(B) holds. This
language inclusion test is delegated to the off-the-shelf tool RABIT [3, 4, 52].
Note that RABIT does not complement either of the two input languages. If
language inclusion holds, we exploit L(B(F)) ∪ L(B(F c)) = Σω (a property
we establish in Proposition 2) to infer L(B(F)) ∪ L(B) = Σω. Since we know
that L(B(F)) ∩ L(B) = ∅ holds from the first check, this implies that B(F)
complements B.

If the second check fails, the teacher gets a witness xyω ∈ L(B(F c)) \ L(B),
such that UP(L(B(F c))) ⊆ UP(F c) (Lemma 2) implies xyω ∈ UP(F c) \
UP(L(B)). She then analyses the witness xyω to derive a decomposition (u, v) of
xyω that is accepted by F c. She then returns (u, v) to the learner as a counterex-
ample (that matches Definition 6), for him to add (u, v) to the current FDFA
F , since uvω /∈ L(B) and (u, v) is not accepted by F .

3.2 Correctness of the Counterexample Analysis

One important task of the teacher in the learning framework depicted in Figure 1
is the construction of the appropriate counterexample (u, v) in case the equiv-
alence query EQ(F) has to be answered negatively. Note that this is the only
step in our learning loop that depends on the representation of the complement
language by B—a much looser connection than for the off-the-shelf complementa-
tion algorithms implemented in GOAL [54] and SPOT [24]. The counterexample
we receive is an ultimately periodic word xyω. We cannot, however, simply re-
turn (x, y) but we have to infer an appropriate counterexample (u, v) such that
uvω = xyω. For this, we first recall the notion of counterexamples for FDFA
learners.

Definition 6 (Counterexample for the FDFA learner [35]). Given a con-
jectured FDFA F = (M, {Aq}) and the target language L, we say that a coun-
terexample (u, v) is

– positive if M(u) = M(uv), uvω ∈ UP(L), and (u, v) is not accepted by F ,
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– negative if M(u) = M(uv), uvω /∈ UP(L), and (u, v) is accepted by F .

Note that, when a pair (u, v) is accepted by F , then M(u) = M(uv) holds.
The FDFA learner underlying the Büchi automaton complementation learner
can use the counterexample for the FDFA learner to refine the conjecture F for
the target language L. Intuitively, if a counterexample (u, v) is positive, then F
should accept it, while F should reject it when it is negative. Our goal is to infer
a valid decomposition (u, v) from xyω, which matches the cases in Definition 6,
to be able to refine F . Proposition 1 guarantees that, if there exists xyω violating
the checks performed in our learning framework, then we can always construct
a decomposition (u, v) from xyω—that satisfies uvω = xyω—to refine F .

Proposition 1. Given an NBA B with alphabet Σ, let L = Σω \ L(B) be its
complement language and target ω-regular language. Suppose F is the current
FDFA conjecture. Whenever the teacher returns (u, v) as answer to an equiva-
lence query EQ(F), then (u, v) is either a positive or negative counterexample.

3.3 Termination and Correctness of the Learning Algorithm

Based on Proposition 1, the learner can refine the current FDFA F with the
returned counterexample (u, v) from the teacher. Since the learner is the same
as the FDFA learner proposed in [8, 35], in the worst case, we have to get the
canonical FDFA that recognises L in order to complete the learning task. More-
over, the number of membership queries and equivalence queries are polynomial
in the size of the canonical periodic FDFA [8,35].

In order to establish the correctness of our learning algorithm, we first intro-
duce a result that, while being used for proving the correctness of the algorithm,
is of interest in its own right: we establish in Proposition 2 that, for a (not neces-
sarily canonical) FDFA F , the NBAs B(F) and B(F c) that underapproximate
the languages of F and its complement F c, respectively, cover the whole Σω.
This generalises a simpler result for canonical FDFAs from [7].

Proposition 2. Given an FDFA F with alphabet Σ, it is L(B(F)) ∪
L(B(F c)) = Σω.

Proof. First one can show that for each pair of ω-regular languages L1 and L2, we
have that UP(L1 ∪ L2) = UP(L1) ∪UP(L2). By Theorem 1, it suffices to prove
that UP(L(B(F))) ∪ UP(L(B(F c))) = UP(Σω) = {uvω ∈ Σω | u ∈ Σ∗, v ∈
Σ+ } holds in order to show that L(B(F))∪L(B(F c)) = Σω holds. That is, we
need to show that, for all finite words u ∈ Σ∗ and v ∈ Σ+, uvω ∈ UP(L(B(F)))
or uvω ∈ UP(L(B(F c))).

Given an FDFA F = (M, {Aq}), for any u ∈ Σ∗ and v ∈ Σ+, by [8] we can
always find a normalised decomposition (x, y) of uvω such that q = M(x) =
M(xy) and xyω = uvω since M is a complete DFA with a finite set of states.
Then, one can show that there exists some j ≥ 1 such that yj is either accepted
by Aq or Aqc. Therefore, we can conclude that (x, yj) is either accepted by
F or F c. Consequently, we get that xyω = x(yj)ω ∈ UP(L(B(F))) or that
xyω = x(yj)ω ∈ UP(L(B(F c))), as required. ut
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The following theorem guarantees the main result about the termination and
correctness of the proposed framework. That is, the learning algorithm always
returns an NBA that accepts the complement language of the given B.

Theorem 2. Given an NBA B with alphabet Σ, the learning algorithm depicted
in Figure 1 terminates and returns an NBA B(F) such that L(B(F)) = Σω \
L(B).

Note that the algorithm can terminate before we have learned the canonical
FDFA that represents Σω \ L(B): on termination L(B(F)) = Σω \ L(B) is
guaranteed since the conjecture F satisfies L(B(F))∩L(B) = ∅ and L(B(F c)) ⊆
L(B). When a conjectured F does not satisfy L(B(F)) = Σω \ L(B), then it is
easy to conclude, together with L(B(F)) ∪ L(B(F c)) = Σω by Proposition 2,
that L(B(F)) ∩ L(B) 6= ∅ or L(B(F c)) 6⊆ L(B) holds.

Corollary 1. The learning algorithm terminates with L(B(F c)) = L(B) = Σω\
L(B(F)).

From Corollary 1, we can get a Büchi automaton B(F c) accepting the same
language of B as a for-free by-product of the complementing algorithm. This
means that we have also provided an alternative oracle that can be used to
learn the language of B, which can be another method to reduce the size of B.
Therefore, our learning based complementation algorithm has proven beneficial
not to learn an FDFA that represents the complement language of a Büchi
automaton (or the language itself, as complementing FDFAs is cheap), but to
use it as an intermediate construction in the learning cycle.

3.4 An Improved Algorithm

Once the learning algorithm terminates we have that L(B(F)) ∩ L(B) = ∅ and
L(B(F c)) ⊆ L(B). It trivially follows that L(B(F)) ∩ L(B(F c)) = ∅ holds.

Corollary 2. The learning algorithm terminates with L(B(F))∩L(B(F c)) = ∅.

Therefore, L(B(F))∩L(B(F c)) = ∅ is a necessary condition for the termination
of the learning framework. Since the most expensive step is checking language
inclusion between L(B(F c)) and L(B), we should avoid this check whenever
possible. To do so, we can simply check whether L(B(F))∩L(B(F c)) = ∅ holds
right before checking the language inclusion.

If there exists some xyω ∈ L(B(F)) ∩ L(B(F c)), then we have in particular
that some decomposition (u, v) of xyω is accepted by F c, as well as xyω ∈
L(B(F)). The latter implies with L(B(F))∩L(B) = ∅ (recall that this is checked
first) that xyω ∈ L (since L(B(F)) ⊆ L was shown). We can therefore return
the decomposition (u, v) as a positive counterexample for the FDFA learner to
refine F . Otherwise, we just proceed to check the language inclusion.

This optimisation preserves the correctness of the algorithm, and we apply
it by default.
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Table 1. Comparison between GOAL, SPOT, and Buechic on complementing
Büchi Store. The average number of letters in each alphabet is about 9.

Block
Experiments GOAL

Buechic SPOT
(States, Transitions) Ramsey Determinisation Rank Slice

1
287 NBAs
(928, 2071)

|Q| 21610 3919 21769 4537 2428 1629
|T| 964105 87033 179983 125155 35392 13623
tc 992 300 203 204 105 6

2
5 NBAs
(55, 304)

|Q|
–to–

926 38172 1541 165 495
|T| 21845 384378 50689 5768 4263
tc 28 42 12 474 <1

3
2 NBAs
(20, 80)

|Q|
–to– –to–

27372 11734 96 2210
|T| 622071 1391424 6260 102180
tc 56 152 7 1

4 Experimental Evaluation

We have implemented a prototype, Buechic, of our learning approach based on
the ROLL learning library [35]. We use RABIT [3,4,52] to perform the inclusion
check L(B(F c)) ⊆ L(B) that occurs in the evaluation of the equivalence query
EQ(F) (cf. Figure 1). The machine we used for the experiments is a 3.6 GHz
Intel i7-4790 with 16 GB of RAM, of which 8 GB were assigned to the tool.
The timeout has been set to 300 seconds in this section. In the experiments, we
compare our Büchi complementation algorithm with two tools. The first tool is
GOAL (the latest version 2015-10-18) [54], which is a mature and well-known
tool for manipulating Büchi automata. We consider four different complementing
algorithms implemented in GOAL, see [54] for more details.

We have used SPOT (the stable version 2.3.5) [24] as a second point of com-
parison. SPOT is the state-of-the-art platform for manipulating ω-automata,
including Büchi automata. Recall that SPOT does not provide a complemen-
tation function for generic Büchi automata directly, thus we first use SPOT
to get a deterministic automaton from the given Büchi automaton, then com-
plement the resulting deterministic automaton (for parity automata this simply
means adding 1 to all priorities), and finally transform the resulting complement
automaton to an equivalent Büchi automaton. (This follows one of the classic
approaches for complementing Büchi automata.)

The automata we used in this section for the experiments are taken from the
benchmark sets provided by Büchi Store [55] and the Büchi automata generated
by SPOT from the formulas in [50]. The former contains 295 NBAs with 1 to
17 states and with 0 to 123 transitions; the latter comprises 90 NBAs with 1
to 165 states and with 0 to 493 transitions. We then considered 300 randomly
generated Büchi automata generated by SPOT. All automata are represented in
the Hanoi Omega-Automata (HOA) format [10].

4.1 Complementation for Büchi Store

Büchi Store provides 295 nondeterministic Büchi automata; however, since one
of such automata has only one state without transitions and GOAL fails in recog-
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nising it as a Büchi automaton, we decided to exclude it from the experiments
and consider only the remaining 294 cases. In practice, such an automaton ac-
cepts the empty language, so its complement accepts the whole Σω. Our tool
learns a complement automaton with 3 states and 12 transitions in just 0.16
seconds, so it mildly contributes to demonstrate the efficiency of Buechic. SPOT
can also output a complement automaton with 1 state and 1 transition in just
0.02 seconds, which is the smallest Büchi automaton recognising Σω.

The experiments shown in Table 1 are organised by blocks of rows; each block
reports the experiments it represents together with the total number of states
and transitions of the considered input NBAs and comprises three rows, marked
with |Q|, |T|, tc, reporting the overall number of states and transitions, and the
total time in seconds, respectively, spent by the different tools for computing
the complement automata. For each row, we mark in bold the minimum value
among all entries.

By inspecting the entries in Table 1 we can see that our learning based com-
plementation method always outperforms the complementation methods offered
by GOAL when we consider the number of states and transitions. If we compare
Buechic with SPOT, we can find that for 287 out of the 294 tasks, SPOT pro-
duces smaller complement automata than other competitors. Moreover, SPOT
is generally faster than the other competitors on all tasks. The results are not
surprising since SPOT has implemented a lot of optimisations to reduce the size
of the automata and it makes use of very efficient data structure called OBDDs.
We note that for Block 2 and Block 3, our complementation method produces
much smaller automata than the other tools. We explain later why this happens.

Block 1 reports the results relative to 287 NBAs which can be solved by all
algorithms. For those automata, the complement NBAs learned by Buechic have
much fewer states and transitions than the automata constructed by the algo-
rithms from GOAL. Moreover, our learning algorithm spent less time than the
four complementation algorithms from GOAL. Since on average only 7 equiva-
lence queries are needed for the learning procedure for each NBA and the size
of the corresponding FDFA is small, our learning based complementation al-
gorithms perform well for those cases. Nevertheless, SPOT is faster than our
learning algorithms and even produces smaller automata. This is because that
on average there are only 3.2 states in each Büchi automaton and the opti-
misations in SPOT work quite well in reducing the size of their deterministic
automata as well as their complement Büchi automata.

Block 2 refers to five NBAs on which only the Ramsey-based complemen-
tation approach fails. The NBAs in this block induce quite large complement
automata, as we can see from the other GOAL solvers, thus quite some work is
required for constructing them; this means that a failure can be expected also
because the approach is rather slow compared with the other GOAL approaches.
This is justified by the fact that, as mentioned in [11], the Ramsey-based com-
plementation is the first complementation method proposed by Büchi [15] and
was later improved in [51]. Our approach is much slower than GOAL and SPOT
since on average 56 equivalence queries for the learning algorithm are posed
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before obtaining the appropriate conjecture F . However, the complement au-
tomata we learned have much fewer states than all approaches implemented in
GOAL—and even SPOT—since the corresponding FDFAs we learned are small.
It is worth mentioning that the reduction optimisations in SPOT are less effec-
tive here since the constructed automata by SPOT are relatively large. In our
experiments, more states in an automaton usually go along with more transi-
tions. The constructed automata by SPOT have fewer transitions since SPOT
merges all transitions which have the same source state and target state as one
transition, which is different from GOAL and Buechic.

Block 3 contains two NBAs on which both Ramsey- and determinisation-
based complementation fail. For one NBA, the determinisation method can com-
plete in 430 seconds and returns a Büchi automaton with 243 states. Regarding
the other NBA, the determinisation method cannot terminate in 600 seconds.
The bottleneck in this case is the transformation of the NBA to a determinis-
tic parity automaton. In this block, our learning algorithm learns much smaller
automata than its competitors since the corresponding FDFAs are very small.

For the given automata of Block 2 and Block 3, which are larger than the au-
tomata in Block 1, our algorithm can learn much smaller complement automata
than its competitors. This is particularly important when the complementation
is used by a model checker to check a system against a property that has been
provided as a Büchi automaton or as an ω-regular language, since it helps in
limiting the state-explosion problem the model checking algorithms are subject
to.

4.2 Complementation for Büchi Automata Generated from
Formulas

In order to compare our algorithms with GOAL and SPOT on larger Büchi au-
tomata than those in Büchi Store, we consider the Büchi automata generated by
SPOT from the formulas in paper [50]. Table 2 gives the complementation results
for the Büchi automata of 18 formulas that are explicitly given in [50]. From Ta-
ble 2, we can conclude that our algorithm can learn much smaller automata than
GOAL and SPOT on the large Büchi automata except for the formula pattern
f(0, k) where k ∈ {0, 2, 4}.

We have also considered 72 further Büchi automata generated from 72 formu-
las from [50]. In summary, Ramsey-based, Determinisation-based, Rank-based
and Slice-based GOAL approaches solve 49, 58, 61, and 62 complementation
tasks, respectively, within the time limit, while SPOT solves 66 tasks and Buechic
solves 65 tasks. The results are similar as those in Table 2; we thus only discuss
the comparison between SPOT and Buechic as best performing tools. Note that
there are 64 tasks solved by both SPOT and Buechic and those tasks solved only
by SPOT and Buechic separately are disjoint, which implies that our algorithm
complements existing complementation approaches very well. Due to the large
number of cases, in order to present the experimental results in a more intuitive
and compact way for all generated automata, we provide here the scatter plots
of Buechic and SPOT in Figure 3 for the 64 commonly solved tasks.
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Table 2. Comparison between GOAL, SPOT, and Buechic on complementing gener-
ated Büchi automata. The average number of letters in each alphabet is about 29.

Block
Experiments GOAL

Buechic SPOT
(States, Transitions) Ramsey Determinisation Rank Slice

1
gf (j=1)

(4, 8)

|Q| 17 26 34 30 4 12
|T| 75 95 167 156 16 40
tc <1 <1 <1 <1 <1 <1

2
gf (j=2)
(6,14)

|Q| 275 405 808 467 12 82
|T| 4609 5881 11408 9440 158 736
tc 10 6 2 3 <1 <1

3
gf (j=3)
(8,21)

|Q|
–to– –to–

25248 15691 34 1547
|T| 1097400 1270016 1512 60973
tc 99 175 2 2

4
gf (j=4)
(10,29)

|Q|
–to– –to– –to– –to–

95
–to–|T| 14922

tc 45

5
gffg1 (j=2)

(9,22)

|Q| 559 1497 5773 1333 22 242
|T| 9027 17386 44277 25760 210 2613
tc 48 19 6 6 <1 <1

6
gffg2 (j=3)

(21,59)

|Q|
–to– –to– –to– –to–

118 20558
|T| 2662 806312
tc 6 9

7
phi1

(4,10)

|Q| 17 5 5 5 4 5
|T| 77 15 22 22 16 11
tc <1 <1 <1 <1 <1 <1

8
phi2

(4,10)

|Q| 31 21 32 19 3 8
|T| 149 70 126 84 9 22
tc <1 <1 <1 <1 <1 <1

9
phi3

(6,14)

|Q| 39 6 9 8 4 6
|T| 165 19 38 36 16 13
tc 1 <1 <1 <1 <1 <1

10
f(0, 0)
(5,9)

|Q| 29 5 7 7 8 5
|T| 135 20 32 32 36 9
tc <1 <1 <1 <1 <1 <1

11
f(0, 2)
(9,13)

|Q| 214 13 141 56 10 7
|T| 1164 51 538 268 44 11
tc 37 <1 <1 <1 <1 <1

12
f(0, 4)
(13,17)

|Q|
–to–

15 234 101 12 9
|T| 59 854 456 52 13
tc <1 <1 <1 <1 <1

13
f(1, 0)
(12,35)

|Q|
–to–

105 8121 581 10 100
|T| 534 36685 5096 69 563
tc 1 5 2 2 <1

14
f(1, 2)
(31,88)

|Q|
–to– –to–

83050 8413 16 175
|T| 367699 82832 109 1034
tc 86 25 <1 <1

15
f(1, 4)

(107, 306)

|Q|
–to– –to– –to– –to–

18 2723
|T| 125 20442
tc 2 3

16
f(2, 0)
(18,56)

|Q|
–to– –to– –to–

31281 10 840
|T| 529216 133 6460
tc 103 26 <1

17
f(2, 2)

(47,141)

|Q|
–to– –to– –to– –to–

9 1161
|T| 144 10630
tc 2 <1

18
f(2, 4)

(165, 493)

|Q|
–to– –to– –to– –to– –to– –to–|T|

tc
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Fig. 3. Comparison between the number of states and transitions of automata gener-
ated by SPOT and Buechic on 72 automata corresponding to formulas from [50]. The
average number of letters in each alphabet is about 301.

In Figure 3, the coordinate values of the y axis and x axis are the correspond-
ing number of states (resp. transitions) in the complement automata of Buechic
and SPOT. All points below the dotted diagonal indicate that the complement
automata learned by our algorithm have smaller values than the complement
automata constructed by SPOT, which is the case for almost all large examples.
We recall that SPOT merges transitions that share the same source state and
target state as one transition, so in the right scatter plot of Figure 3, many points
are above the diagonal line. Nevertheless, we can learn from the plots that only
SPOT produces those automata with more than 104 transitions, which indicates
that the reduction optimisations of SPOT do not work well on large automata
and our algorithm performs much better on large automata. Figure 4 is simi-
lar to Figure 3 but it refers to 300 randomly generated Büchi automata with
size ranging between 1 and 69 states and between 0 and 263 transitions. The
behaviour of SPOT on these automata is similar to the one shown in Figure 3.

In order to show how the growing trend of the number of states in the com-
plement automata of the complementation algorithms behaves when we increase
the size of the given Büchi automata in some cases, we take the generated Büchi
automata of the formula pattern

∧k
i=1(GFai) → GFb. The growing trend of the

number of states in the complement automata for the approaches in GOAL,
SPOT, and Buechic are plotted in Figure 5. The number of states in the com-
plement automaton constructed by GOAL and SPOT is growing exponentially
with respect to the parameter k, while the number of states in the complement
automaton learned by our learning algorithm grows much more slowly than oth-
ers. The experimental results show that the performance of our algorithm can
be much more stable for some automata with their growth of the states. Thus an
advantage of our learning approach is that it has potentially better performance
on large automata compared to classic complementation techniques.
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Fig. 4. Comparison between the number of states and transitions of automata con-
structed by SPOT and Buechic on 300 randomly generated automata. The average
number of letters in each alphabet is about 7.
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Fig. 5. States comparison of GOAL, SPOT, and Buechic on the formula pattern∧k
i=1(GFai)→ GFb. The number of letters in the alphabet is 2k+1 for case k.

4.3 Further Experimental Results

We have conducted further experiments. We have considered double complemen-
tation on the automata from Büchi Store and generated automata by SPOT.
We define double complementation as first using a complementation algorithm
to complement the input NBA B to get the complement Bc of B; and then
complementing Bc using the same algorithm. It is actually an empty opera-
tion. From the experiments, in particular where the complement automata were
large, we gained advantage over the competitor algorithms. As another set of
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benchmarks, we have also considered the complementation of semi-deterministic
automata (sometimes called limit-deterministic automata). We considered all
106 SDBAs from [11], and additionally compared them with the NCSB method
from [11], which is implemented in GOAL. Note that this is a specialist method
and we compete on its soil. This becomes quite clear when comparing with the
other general complementation techniques. The experimental evaluation shows
that we are competitive with the specialised method from [11] and the highly
optimised tool SPOT. Finally, we considered a variation of our learning algo-
rithm, that is, we experimented with checking completeness of L(B(F)) ∪ L(B)
instead of testing language inclusion L(B(F c)) ⊆ L(B), as proposed in Figure 1.
The universality check for L(B(F))∪L(B) is only invoked after the disjointness
test for L(B(F)) and L(B) is passed. According to the experimental results, our
handling with the equivalence queries in Figure 1 is more practical.

5 Conclusion

We have introduced a learning based approach for the complementation of Büchi
automata. We expected that learning based approaches provide small comple-
mentations, that they are less perceptive of the initial representation of the
ω-regular language to complement, and that they tend to be fast. In short: that
they are practical.

Our experimental evaluation has confirmed our expectation that learning
based complementation usually provides smaller complements. More surpris-
ingly, the language inclusion checks in the loop are usually quite fast. As a result,
the running time displayed by Buechic is competitive. We have also seen that,
while we did gain a clear advantage over the basic techniques as implemented
in GOAL, the comparison with SPOT shows that this advantage is not quite in
the same league as the advantages one can obtain by high level optimisations
implemented in SPOT. We expect that, after the pure technique has proven to
be a very strong competitor, many improvements will follow. One improvement
is to make the approach symbolic since learning algorithms usually become slow
when dealing with large alphabets. This needs a symbolic learning algorithm for
FDFAs, which is an interesting future work.
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Büchi automata with applications to temporal logic. Theoretical Computer Science,
49(3):217–239, 1987.

52. R. tool. http://languageinclusion.org/doku.php?id=tools, 2016.
53. M. Tsai, S. Fogarty, M. Y. Vardi, and Y. Tsay. State of Büchi complementation.
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Abstract. Liveness of many probabilistic parameterized protocols are proven by
first crafting a family of sequences of “good” random draws, thus, in effect “de-
probabilizing” the system, and then proving the system just as one would for
a non-probabilistic parameterized system. The family of “good” random draws
(known in different names, such as “planner” and “strategy”) is often an intri-
cate piece of machinery, arising from the need to reason about a parameterized
Markov Decision Process (MDP). In effect, it represents a parameterized strategy
for an infinite game played between a probabilistic player and a non-deterministic
adversary.
We present a novel approach to the problem that avoids the need to de-probabilize
the system. First, we abstract the parameterized MDP to a finite MDP. The prob-
abilistic choices of this abstraction are drawn not from an independent identically
distributed random variable, but instead from a parameterized Markov chain. That
is, the distribution of the random variable at any time is dependent on its history
and also on the system’s parameters. Then, we prove properties about infinite be-
haviors of the Markov chain and transfer these to the finite MDP. At this point,
the proof can be completed by ordinary finite-state model checking. By using
abstraction to separate parameterization from nondeterminism, we eliminate the
parameterized game and avoid the need for a planner.

1 Introduction

Probabilistic elements were introduced into concurrent systems in the early 1980s to
provide solutions (with high probability) to problems that do not have deterministic
solutions. Among the pioneers of probabilistic protocols are [19, 29]. One of the most
challenging problems in the study of probabilistic protocols has been their formal ver-
ification. While methodologies for proving safety (invariance) properties still hold for
probabilistic protocols, formal verification of their liveness properties has been, and still
remains, elusive. The main difficulty stems from the two types of nondeterminism that
occur in such programs: Their asynchronous execution, that assumes a hostile (though
somewhat fair) scheduler, and the nondeterminism associated with the probabilistic ac-
tions, that assumes an even-handed scheduler.

It had been realized that if one only wants to prove that a certain property is P-valid,
that is, holds with probability 1 over all (fair) executions of a system, then for the case
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of finite-state system this can be attained in a manner that is independent of the precise
probabilities. Decidability of P-validity of termination properties over finite-state sys-
tems had been first established in [12] using a methodology that is graph-theoretic in
nature. The work in [26] extends the [12] method and presents deductive proof rules for
proving P-validity for termination and progress properties of finite-state program. The
work in [26] presents sound and complete methodology for establishing P-validity of
general temporal properties over probabilistic systems, and [31, 26, 28] describe model
checking procedure for the finite-state case.

The emerging interest in networked systems brought forth a surge of research in au-
tomatic verification of parameterized systems, that, having unbounded number of states,
are not easily amenable to model checking techniques. In fact, verification of such sys-
tems is known to be undecidable [2] for important classes of systems. Much of the
recent research has been devoted to identifying conditions that enable automatic veri-
fication of parameterized systems and abstraction tools to facilitate the task (e.g., [18,
3, 10, 9, 8, 24].) Many of the protocols that have been proposed and studied (e.g., [19,
29, 27, 6]) are probabilistic. An obvious question is therefore whether we can combine
verification tools of parameterized systems with those of probabilistic ones.

The first such attempt is perhaps [32], where the probabilistic selections are con-
verted to compassion (strong fairness) requirements (in a way that exactly captures
P-validity of a certain class of temporal properties) and network invariants [22] are
manually crafted to abstract the protocols. While this method is sound, as other meth-
ods based on network invariants, it is often difficult to apply.

An alternative approach to dealing with such protocols is to replace the probabilis-
tic choices in a protocol with a finite string of “good” random selections. This is based
on the observation that for every finite string σ of probabilistic choices, each truly ran-
dom infinite string of coin flips (made by the same probabilistic coin tosser) is bound to
have infinitely many occurrences of σ (in other words, the measure of paths that have σ
infinitely many times is 1). To apply this idea, the proof of P-validity is replaced by “reg-
ular” liveness proof, where the the random coin flips are replaced by non-deterministic
ones that, infinitely many times, at arbitrary points, produces the particular good string
of flips. This method, in effect, removes the probabilistic elements of a protocol making
it purely non-deterministic, and amenable to other methods for verification.

This method was applied in [4] where the recurring finite string was termed a “plan-
ner” (later a “strategy”) and might depend on the parameter value or system state. An
alternative formulation is called a “pattern” [11]. A pattern is a non-repeating infinite
sequence of strings that is independent of the parameter value or system state. The two
approaches differ in their pragmatics, but have the same theoretical power.

The power of these methods is that, once a pattern/planner is obtained, one can use
“standard” techniques on the resulting non-probabilistic parameterized model checking
problem (PMCP) and these are (usually) simpler to apply than network invariants. Yet,
finding a good pattern/planner may present an intricate puzzle and requires deep under-
standing of the protocol. Some impressive progress has been made [20] in automating
pattern discovery using automaton learning techniques, but this process may diverge.
Moreover the PMCP is itself undecidable, posing an additional challenge.
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The need for a planner arises from the need to reason about a parameterized Markov
Decision Process (MDP). In effect, it represents a parameterized strategy for an infinite
game played between a probabilistic player and a non-deterministic adversary. We sug-
gest a novel approach to this type of reasoning. In our approach we avoid the planner
by reasoning in two steps. First, we abstract the parameterized MDP to a finite MDP.
The probabilistic choices of this abstraction are drawn not from an independent iden-
tically distributed (i.i.d.) random variable, but instead from a parameterized Markov
chain. That is, the distribution of the random variable at any time is dependent on its
history and also on the parameter N – the parameter (say, number of processes) the
system depends on. In the second step, we prove properties about infinite behaviors of
the Markov chain and transfer these to the finite MDP. At this point, the proof can be
completed by ordinary finite-state model checking.

By using abstraction to separate parameterization from nondeterminism, we elimi-
nate the parameterized game and avoid the need for a carefully crafted planner. More-
over, our abstraction allows us to work with probabilities, rather than abstract them
away, while still enabling us to effectively reason about the protocol.

Of course, finding good abstractions is an art, and does require understanding of
the protocol. We will see using some example protocols, however, that the abstraction
approach captures in a direct way our intuition about the correctness of the protocol,
namely that there is an underlying random walk that is independent of scheduler choice.
The approach provides an alternative in case a planner cannot be discovered or the
PMCP cannot be solved. We also think it provides a useful insight into the nature of the
protocol.

2 Preliminaries

As a computational model for parameterized bounded-data systems we define fair prob-
abilistic transition systems, that are a variant fair transition system of [21].

A probabilistic fair transition system is described byD = 〈V,Θ, T ,P,J , C〉, with:

• V = {u1, . . . , un}— A finite set of typed system variables. A state s of the system
provides a type-consistent interpretation of the system variables V , assigning to
each variable v ∈ V a value s[v] in its domain. Let Σ denote the set of all states
over V . An assertion over V is a first order formula over V . A state s satisfies an
assertion ϕ, denoted s |= ϕ, if ϕ evaluates to T by assigning s[v] to every variable
v appearing in ϕ. We say that s is a ϕ-state if s |= ϕ.
• Θ — The initial condition: An assertion characterizing the initial states. A state is

called initial if it is a Θ-state.
• T — A set of labeled transitions. Every transition τ ∈ T is an assertion τ(V, V ′)

relating the values V of the variables in state s ∈ Σ to the values V ′ in an S-
successor state s′ ∈ Σ. Given a state s ∈ Σ, we say that s′ ∈ Σ is a τ -successor
of s if 〈s, s′〉 |= τ(V, V ′) where, for each v ∈ V , we interpret v as s[v] and v′ as
s′[v]. Let En(τ) denote the assertion ∃V ′.τ(V, V ′) characterizing the set of states
in which τ is enabled. We refer to the transition whose label is ` by τ`.
A system is deterministic if for every s ∈ Σ, there is at most one τ(s) ∈ T such
that s |= En(τ).
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• P — A set of labels of probabilistic selections. Each probabilistic selection is a
tuple P = 〈τ1(V, V ′), . . . , τk(V, V ′)〉 of transitions that are enabled in the same
states, i.e., for all i, j, 1 ≤ i, j ≤ k, En(τi) ≡ En(τj). A selection P indicates
that τ1, . . . , τk are the the possible outcomes of P , which we refer to as modes.
The modes of the transitions are associated with probabilities (that sum to 1). We
assume that there exists some ε > 0 such that all probabilities are greater than ε,
thus, they are all bounded from below. A mode label is of the form `i where ` is the
label of a probabilistic selection P and i ∈ 1 . . . k is the index of a mode of P . We
also assume that each transition in T appears in at most one probabilistic selection.
In other words, the set T can be viewed as partitioned, with each transition belong-
ing to some probabilistic selection or appearing as a singleton set (and then is not a
member of P for any P ∈ P .)
If P = ∅ then the system is a standard fair transition system.

• J — A finite set of justice (weak fairness) requirements. The justice requirement
J ∈ J is an assertion, intended to guarantee that every computation contains in-
finitely many J-states (states satisfying J).

• C — A finite set of compassion (strong fairness) requirements. Each compassion
requirement is a pair of assertions, 〈p, q〉 intended to guarantee that every compu-
tation that has infinitely many p-states also has infinitely many q-states.

Fix a systemD = 〈V,Θ, T ,P,J , C〉 and let L be the set of all transition labels (i.e.
labels of non-probabilistic transitions) and mode labels ofD. We consider infinite trees,
whose nodes are labeled by states and whose edges are labeled by elements of L. A tree
T is a computation tree if the following conditions hold:

• Initiality — The root of the tree, n0, must be labeled by a Θ-state;
• Consecution — For every tree node n labeled by s whose children are n1, . . . , na

labeled by s1, . . . , sa respectively, exactly one of the following holds:
1. a = 1 and the edge from n to n1 is labeled by a transition ` such that ` does

not label any transition in P and (s, s1) ∈ τ`;
2. there exists some P = 〈τ1(V, V ′), . . . τa(V, V ′)〉 ∈ P whose label is `, such

that for every i = 1, . . . , a, the edge (n, ni) is labeled by `i and τi(s, si);
• Justice — For every justice property J ∈ J , every infinite path in T has infinitely

many nodes labeled by J-states;
• Compassion — For every compassion property 〈p, q〉 ∈ C, every infinite path in
T has either infinitely many nodes labeled by q-states or only finitely many nodes
labeled by p-states.

We say that a computation tree is admissible if the measure of the set of just and
compassionate paths in the tree is 1 (according to the standard definition of the measure
of set of paths in a trees, as in [31, 28]). We say that a temporal property ϕ is P-valid in
a computation tree if the measure of paths in the tree that satisfy ϕ is 1. Similarly, ϕ is
P-valid over D if it is P-valid over every admissible computation tree of D.

Note that when D is non-probabilistic, that is, when P is empty, then the notion of
P-validity over D coincides with the usual notion of validity over D.
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2.1 Parameterized Systems

In this work we are interested in parameterized systems, where there is a parameter N
such that the system can be instantiated over any N ≥ 1 processes. The description of
components of the system may depend on the parameter. Uniform verification of such
system allows one to verify all values of the parameter (N ≥ 2) at one fell swoop [30].

For a running example we take a variant of the Israeli-Jalfon mutual exclusion pro-
tocol of [14] for a token ring. The system is stable when there is a single token in the
system. At times the system may become unstable, and the protocol guarantees that
it eventually stabilizes. This problem is one of many that admit no symmetric (where
each process follows the same protocol) solution that does not involve some random-
ization. (The impossibility proof is similar to that in [19] for the case of the dining
philosophers.)

In the Israeli-Jalfon solution, the processes are arranged in a bi-directional ring,
where each process has a “left” and a “right” link. When a token holder is scheduled,
it flips a coin and decides whether to send its token to the left or to the right. If a two
tokens “collide”, that is, a process holds them both, one of them gets eliminated.

Assume the N processes are arranged in the ring as P0 . . . , PN−1. For 0 ≤ i ≤
N − 1, we denote by i ⊕ 1 the number (i + 1) mod N , and by i 	 1 the number
(i− 1) mod N .

Presented as a parametrized (by N , the number of processes) protocol, the system’s
variables can be an array token of N booleans, such that token[i] denotes that process
i has a token. The initial condition Θ(N) is that the number of tokens in the system is
positive, that is,

∨N−1
i=0 token[i]. There are three types of transitions in the system. One

of a non-token holder that does nothing, one of a token-holder that moves its token to
the right, and one of the token-holder that moves its token to the left. More formally,
for each i, we have three transitions:

T1(i) : ¬token[i] ∧
∧N−1
j=0 token ′[j] = token[j]

T2(i) : token[i] ∧ ¬(token ′[i]) ∧ token ′[i⊕ 1] ∧
∧N−1
j=0, 6=i,i⊕1 token

′[j] = token[j]

T3(i) : token[i] ∧ ¬(token ′[i]) ∧ token ′[i	 1] ∧
∧N−1
j=0, 6=i,i	1 token

′[j] = token[j]

and the transition relation, T (N), is the union of all three types over all i = 0, . . . , N −
1. For each i there is a probabilistic selection P (i) = 〈T2(i), T3(i)〉, where each mode
has probability half, and P includes all P (i)’s. Thus, a step of process i is the determin-
istic T1 if process i does not hold a token (¬token[i]), or the probabilistic P (i) when
process i holds a token.

Finally, for every process i there is a justice property J(i). The goal of J(i) is to
guarantee that process i takes infinitely many moves. Since the only variable associated
with process i is token[i], and whenever a process i takes a step it doesn’t have the
token right after it takes the step, it suffices to let J(i) be ¬token[i]. The system has no
compassion properties.

The self-stabilization property of the protocol is:

φ : 10(∃i.token[i] ∧ ∀j 6= i.¬token[j])

of, alternatively, that10(
∑N−1
i=0 token[i] = 1).
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2.2 Trading Measure Theory for Fairness

Since the introduction of probabilistic protocols and in the early 1980s, there have been
several proposals how to replace reasoning about measure theory in their verification.
This is especially easy when studying P-validity (validity with probability 1) with sys-
tems where all probabilities are bounded from below, since the actual probabilities can
be ignored (replaced, e.g., by uniform distribution over outcomes).

One such approach, initiated by Pnueli [23], is to add some new fairness constraints
that depend on probabilistic choices, such that validity over all fair paths implies P-
validity in the measure theoretic sense. In other words, a finite set of sets of paths with
measure 0 is excluded, leaving the system with a set of paths whose measure is 1. This
remaining set of paths can be described using fairness constraints, allowing the property
to be verified using standard, non-probabilistic, verification methods.

There are variants among the fairness constraints that have been proposed. On the
two ends of the spectrum are extreme fairness of [23] which is sound but incomplete.
to α-fairness of [28] which is sound and complete for finite-state systems. In between
there are variants that are all sound. Here we are dealing here with parametrized sys-
tems, for which even the simplest properties are undecidable ([2]), thus we restrict
sound methodologies, for which we choose one that is in between the spectrum that
was termed γ-fairness in [4] where γ stands for “global”.

A computation σ = s0, s1, . . . of a probabilistic transition system is γ-fair if it
is just, compassionate, and, in addition, for every state s and probabilistic selection
P = 〈τ1(V, V ′), . . . τk(V, V ′)〉, if for infinitely many i’s, (si, si+1) ∈ τj for some
j ∈ [1..k], then for every j ∈ [1..k], there are infinitely many i’s such that si = s and
(si, si+1) ∈ τj . In other words, γ-fairness requires that if some probabilistic selection is
taken infinitely many times from the same state, then each mode of it is taken infinitely
many times from that state. The notion of γ-fairness is sound:

Theorem 1. If all γ-fair computations of the system satisfy a temporal property ψ, then
ψ is P-valid over the system.

One of the implications of the study of γ-fairness, which was first implemented in
[4], is that instead of verifying a probabilistic system, one can verify a similar, non-
probabilistic system, such that if the latter satisfies a property, this property is P-valid
over the former. The “similar non-probabilistic” system is obtained as follows:

1. All probabilistic selections are replaced by non-deterministic selections;
2. The system is (synchronously) composed with a “decider”3 (which, as stated in

the introduction, has several names including planner, strategy, and pattern) given
a state of a system and a probabilistic selection, determines a mode that is to be
taken;

3. The system alternates between two modes. In one it replaces all probabilistic selec-
tions by non-deterministic selections, that is, each P = 〈τ1(V, V ′), . . . , τk(V, V ′)〉
is replaced by a non-deterministic choice between τ1, . . . , τk. In the other mode,
each probabilistic selection is replaced by the mode determined by the decider;

3 whose proper name is W
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4. At arbitrary (non-deterministic) points, the system is in the second mode for a pre-
determined finite sequence of probabilistic selections which have to eventually oc-
cur according to the fairness requirements.

For example, consider the Israeli-Jalfon mutual exclusion protocol above. There are
many ways to define a decider. For example, consider the following decider that at-
tempts to make location 0 the ultimate token holder. Assume thatN is odd. Let location
in the range [1, N−12 ] be right locations and locations in the range [N+1

2 , N − 1] be
left locations. The decider proceeds in (at most N−12 ) phases, at each it focuses on the
token holder with the highest index on the right, and the lowest index on the left. When
each of these are scheduled, the decider makes it move the token to the left (resp. right).
That is, when P (i) is to be taken, then if i∗ is the maximal index of the token holder
on the right (1 ≤ i ≤ N−1

2 ), the decider awaits until i∗ is scheduled and then chooses
the ⊕ mode for it, and if i∗ is the minimal index of a token holder on the left, the de-
cider chooses the	mode for i∗. Thereafter, as long as the decider is active, ¬token[i∗]
holds. All other modes can be chosen non-deterministically.

At the end of each phase the decider reduces the distance between the extreme right,
or extreme left, token holder and 0, after no more than N phases there will be a single
token at position 0.

In essence, this methodology calls for replacing probabilistic choices with addi-
tional, yet somewhat restricted, non-determinism and to treat the verification of prob-
abilistic parameterized system as if they are “normal” non-deterministic parametrized
systems which are, in turn, usually verified using abstraction (most often data abstrac-
tion or control abstraction, see [18].)

Crafting a decider is often tricky (as above example demonstrate), and several meth-
ods have been proposed to accomplish that in more automated fashion.

Here we pursue a different approach for verification of probabilistic parameterized
systems: we propose to abstract a probabilistic parameterized system into a probabilis-
tic non-parameterized one and then directly verify it using finite-state methods for P-
validity.

3 Probabilistic Abstraction

The main two methods to verifying large systems (that are too large to be handled
by model checking) are data abstraction and control abstraction. Roughly speaking,
the former directly abstracts the components of the transition system, while the latter
constructs, in essence, a new system that is shown to implement the original one. In both
these methods, the abstraction are constructed such that every property that is valid
in the abstracted system is also valid in the original (concrete) system. (We consider
both regular model checking and the method of invisible invariants to fall under the
former category since, in essence, if successful, they provide an abstraction of a system
components.)

A detailed formal description of the two abstraction methodologies is in [18]. Both
methods can be easily (though cumbersomely) applied to probabilistic systems, where
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the probabilistic selections are kept as a tuple of transitions with the correct probabilities
assigned.

In the following sections we give several examples of applications of the strategy
advocated here. In all but one (namely, Rabin’s Choice Coordination Protocol in Sec-
tion 4) we use counter-abstraction, and in this section we elaborate on its probabilistic
version. We emphasize that other (control or data) abstractions can be used, after ex-
tending them to the probabilistic case. Note that “counter abstraction” is traditionally
used to abstract each state according to how many processes are in each location, while
our use of the method here is more liberal and not restricted to locations.

The current methods to verify that ϕ is P-valid over probabilistic parameterized
system, first use a decider to convert the probabilistic choices to non-deterministic tran-
sitions, and then apply some abstractions to the resulting system. The decider (together
with the fairness assumptions) guarantee that if ϕ is valid over the new system, it is
P-valid over the original one. Consequently, if ϕ is valid over the abstract system, it is
P-valid over the original one.

Appendix A provides a detailed example of extending [18] to probabilistic systems.
Control abstraction can be similarly defined.

3.1 Finite Counter Abstraction for Probabilistic Systems

The term counter abstraction is often used to describe an abstraction that replaces a state
of a parameterized system (that usually consists of the state of each process together
with values of global information) with a vector that assumes a finite set of possible
local states, and replaces the vector of states of each process by the count of number
processes in each state. Thus, the vector [0012] indicating that processes 0 and 1 are in
state 0 and processes 2 and 3 are in states 1 and 2 respectively, will be abstracted into
[2, 1, 1] indicating that there are 2 process in location 0 and one each in states 2 and 3.

Counter abstraction is one of the oldest abstraction methods of parameterized sys-
tems and has been used for decades to establish safety properties of such systems. The
abstraction becomes finite when instead of using the full range, say [1..N ], to the coun-
ters, one can partition the range into finitely many segments and replace each counter
with its appropriate segment. In [25] we observed that in practice often it’s enough to
partition the range into 0, 1, and “more than 1”. A formal definition is in Appendix A.

There we also noted that to obtain the abstraction of the justice properties we need
to augment the states with auxiliary information (recording which transition entered
the current state) which is then used to define new compassion properties to replace
the trivial justice. In retrospect, this could have been accomplished directly by some
annotation, which we call here marking, on transitions, and to state the compassion
properties in terms of this annotation.

For example, consider the counter-abstracted state [2, 1, 1] above. If we abstract
the state into finite counters in the range 0 (for none) and 1 (for more than one), we
obtain the abstract state [1, 1, 1]. Assume now that processes in location 0 can always
transition into location 1. Thus, from the (non-finite) abstracted state [2, 1, 1] the system
can reach state [1, 2, 1] and then [0, 3, 1]. Consequently, the (finite-) counter abstracted
state [1, 1, 1] can lead to [1, 1, 1] or [0, 1, 1]. This non-determinism in the abstraction
is not surprising. Now suppose that there is a fairness assumption that requires that for
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every process i, i cannot remain forever in location 0. Thus, we haveN (whereN is the
number of processes) justice properties that require ¬π[i] = 0 where π[i] is ith location
counter. Since the counter abstraction doesn’t offer us means to track any particular
process, the only possibly abstraction of these N justice properties is T. However, the
role of justice is to rule out “bad” schedulers, and a T justice rules out nothing.

In fact, we know that, as long as no process joins location 0, the transition that keeps
the system in the abstracted state [1, 1, 1] can be taken finitely many times, namely, as
many times as the number of (concrete) processes in location 0. The solution of [25] to
this problem is to add a new compassion property that requires that if a process leaves
location ` infinitely many times, then a process enters location ` infinitely many times.
To record which locations are left/entered, [25] annotates the (abstract) states with to
and from variables.

We follow the idea, however, place the marking on the transitions. So that the tran-
sition of a process in location from the (finite counter) state [1, 1, 1] into itself is marked
by m = (−,+, 0) denoting the the first location was decremented, the second incre-
mented, and the third is unchanged. This is also the marking of the transition from
[1, 1, 1] into [0, 1, 1]. With each transition we associate a compassion property that states
that for every coordinate, if a computation has infinitely many + marking on that co-
ordinate, it must have infinitely many − marking on that coordinate, and vice versa. In
fact, it is often the case that a transition in a (finite) counter-abstracted system has an
escape mode that is taken when a pointer is depleted. Here the transition into [0, 1, 1] is
such an escape for the outgoing transition from [1, 1, ] marked by m. We describe the
marking in Section 3.3.

3.2 P-validity on abstract system

If we manage to successfully counter-abstract a system so that it defines, say, an ab-
sorbing Markov Chain with the absorption corresponding to the goal state we wish to
verify, then the abstraction provides us with the required proof.

Example 1. Consider the Israeli-Jalfon protocol. The decider in the previous section is
a refinement of some intuition to verify the protocol, namely, that if the length of the
maximal chain of token-less processes monotonically increases then eventually there
will be a single token holder. The decider arbitrarily decided on 0 as the convergence
point, and its actions are designed so that it guarantees the single token to end up there.
Every decider implies some possible abstraction. The decider we used implies a counter
abstraction where the counter may be, for example, the sum of distances from the end-
point processes to position 0. Yet, we do not, and don’t need to, fully define the decider,
or a more precise planner/pattern, rather we use our somewhat vague intuition to ab-
stract the system. This is true in general: Crafting a correct decider requires a deep
understanding of the protocol, while our abstraction, which maintains the probabilistic
selection, is considerably less detailed.

In this case we can reason as follows. The protocol attempts to reduce the number
of tokens, so one counter can store the number of tokens. The only way to reduce the
number of tokens is to have collisions, and the closer tokens are the more collisions
there are. Hence, the sum of distances between tokens also seems to be a candidate
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for a counter. Since the closer tokens are, the faster there are collisions, it makes sense
to “reward” the system when this distance is small. To this end, we assign distances
between tokens non-linear weights, such that the less distance there is between adjacent
tokens are the less weight they carry (in other words, guaranteeing that “less is more.”)

In more details, when there are more than one token in the system, define, for every
position i:

d(i) =

{
0 ¬token[i]
minimal hops # of from i to collide with a token token[i]

and let w(i) = log (d(i)) when d(i) 6= 0 and 0 otherwise. The counter abstraction is
then (

∑N−1
i=0 token[i],

∑N−1
i=0 w(i)).

Consider, for example, a state where the token holder process i is scheduled and
let j1 and j2 the closest token holders on both its sides. That is, in the ring there is a
sequence:

token[j1],¬token[j1 ⊕ 1], . . .︸ ︷︷ ︸
no token holders

, token[i],¬token[i⊕ 1], . . .︸ ︷︷ ︸
no token holders

, token[j2]

The case that j1 = j2 and similarly to the case that j1 = i 	 1 or j2 = i ⊕ 1 can be
easily handled. Assume it’s none of these cases, i.e., that j1 6= j2, ¬token[i ⊕ 1], and
¬token[i	 1]. To avoid modulo reasoning, we assume, without loss of generality, that
0 ≤ j1 < i < j2 ≤ N − 1 and that (i − j1) ≤ (j2 − i). Denote d = d(i). We now
consider the new weights once i moves its token to the left:

1. w′[i] = 0 becomes 0 since ¬token ′[i];
2. w′(i− 1) = log (d− 1) (since the d′(i+ 1) = d− 1);
3. w′(j1) ≤ w(j1): The move may decrease d(j1) and cannot increase it;
4. w′(j2) ≤ log (d+ 1): If d(j2) = d, the move may increase d(j2) to d + 1. Other-

wise, d(j2) remains intact.
5. No other weight is impacted.

It follows that w(i) is replaced by the smaller w′(i−1), but that when d(j2) = d, w(j2)
may increase. In this case we have:

w(i)+w(j2) = 2·log(d) = log(d2) > log(d2−1) = log(d−1)+log(d+1) = w′(i−1)+w(j2)

(Any other concave function can replace log4.) It follows that a transition of a token
holder has a positive probability (bounded from below by 1

2 ) to bring the system into a
state where (

∑N−1
i=0 token ′[i],

∑N−1
i=0 w′(i)) ≺lex (

∑N−1
i=0 token[i],

∑N−1
i=0 w(i)). This

also induces a potential ranking function on states, such that every (probabilistic) tran-
sition has a mode that reduces the rank. The rank is well founded using lexicographical
ordering among its coordinates. The first coordinate is in the range [1..N ]. For a given
N , the second coordinate is any value that can be obtained summing weights of k,
2 ≤ k ≤ N distances whose sum is bounded by N − k. This value can be computed,
but we don’t have to compute it. All that we need is to know that it can take on finitely
many non-negative values and therefore ≤ is well-founded over it.

4 We thank Xinhua Zhang for pointing this out, as well as suggesting the log function, to us
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Together with a scheduler, the (non-finite) counter abstraction defines a 2D-random
walk, where the x-coordinate is in the range [1..N ] (number of tokens) and the y-
coordinate is some finite range (for weights), that is bound to reach x = 1. A move
along the x-axis can only decrement x. A move along the y-axis can increase or de-
crease y, but there is always a mode (positive probability) of reducing y, and, eventu-
ally, x. From here we can use a finite counter abstraction, or just reason directly on the
random walk.

Once we realize that every token-holding process has a mode that makes progress in
the chain (until the x-coordinate reaches 0), we can abstract away the non-determinism
and consider a single transition that can always progress towards the goal, where we
don’t need to quantify progress (which is nondeterministic and hard to compute), and
one that may increase the y-coordinate.

3.3 Transition Marking

Assume the state is abstracted into k counters. Each transition will then be marked with
a k-tuple over {=,−,+}. Consider a (concrete) from location ` into location `′. In the
abstract system, the coordinate corresponding to ` is marked with −, and the one cor-
responding to `′ with +. The associated compassion-like requirement then will change
to requiring that for every coordinate, if infinitely many transitions have + marking on
the coordinate, then infinitely many transitions have − marking on that coordinate, and
vice versa.

For probabilistic selections the markings are similar. There, however, one needs to
add the escape transition to every mode of the a probabilistic selection.

Recall that obtaining counter abstraction is done in two steps. In the first the sys-
tem is counter abstracted into unbounded counters, and in the second the unbounded
countered are bounded into ranges. It is often easier to mark the transitions on the un-
bounded counter system, where the marking does not add any information about the
system and where the escape transitions do not exist. However, once they appear in the
unbounded countered system, it’s trivial to construct them for the finite state counter
abstracted system.

Example 2. Consider the Israeli-Jalfon protocol. In the previous example we presented
an unbounded counter abstraction of the system that describes a 2D random walk.
From each point, each probabilistic selection may lead to a “better” state: one where
the x-coordinate is lowered, or where the x-coordinate remains the same and the y-
coordinate is lowered. In fact, we can’t always exactly compute the possible values of
the y-coordinate, but we know that for each N there are finitely many such values.
Moreover, the y-coordinate can be reduced (or increased) by many values, depending
on the exact configuration and the process that is scheduled. The power of the method-
ology we advocate here is that we don’t need to know these details. We can abstract
the system so that it includes two states, (m,m) denoting that there are more than one
tokens and the sum of the weights is “whatever”, and (1,m) denoting there is a single
token. From (m,m) there is a single probabilistic selection with two modes:
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1. The first mode corresponds to a good selection that reduces the current location. It
is marked by a non-deterministic choice (=,−) or (−, ?) where ? abbreviates +,
−, or = (all three possibilities), with an escape mode to (1,m);

2. The second mode corresponds to a selection that may, like the previous case, move
towards the goal, or move away from the goal, but only on the y-coordinate. Note,
e.g., that when a token holding location is in the midst of a chain of token, either
move is good as it reduces the number of tokens. When there are no immediate
token-holding neighbors, a move of a token away from the closest token may still
reduce the sum of the weights, i.e., maintain x and reduce y. This mode can be
marked with a non-deterministic selection between (=, ?) and (−, ?). The first,
(=, ?), may at time cover moves where the y coordinate is increased (while the
x one remains intact, but then, the transition may always choose the good mode
described in (1).

As we noted in the previous example, this is clearly an absorbing Markov Chain
and it may be easier to verify it reaching stabilization using this observation.

Going back to our transition marking, a random walk that always has a non-zero
probability of decreasing will escape any lower bound infinitely often, even if we al-
low infinitely many increases. Let us then put the probabilistic selections and the non-
probabilistic transitions into three classes with respect to counter i (treating the non-
probabilistic case as a single-mode selection). A decreasing selection is one which has
some mode marked −. A maintaining selection has all modes marked =. An increas-
ing selection is anything else. With this terminology, we can now give a compassion
constraint on marked probabilistic systems with k counters, each counter i with a lower
bound Vi:

For every i = 1, . . . , k, a computation that has infinitely many decreasing tran-
sitions with respect to counter i and only finitely many increasing ones must
take infinitely many escapes with respect to Vi.

In other words, the set of runs in which we go on an infinite random walk without
infinitely escaping some lower bound can be eliminated as having zero measure. The
exclusion of a set of zero measure doesn’t change the measure of the remaining set of
computations (which is 1). The key difference in the probabilistic case is that a proba-
bilistic transition can be treated as decreasing even if it has both − and + outcomes.

This is of course not the only set of paths we remove, since we also ignore all paths
that are not extremely fair, i.e., those that take the same probabilistic selection from
the same state infinitely many time and always choose the same mode. This too is a
measure 0 set. Thus, we can use fairness properties to identify a measure 1 set of paths,
and can use any finite-state model checker to verify the resulting system.

3.4 Summary

To summarize the method, we take the following steps:

1. Choose appropriate counters and construct an infinite counter abstraction of the
system.
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2. Abstract to finite state, keeping marks on the transitions to preserve the counter
directions.

3. Strengthen the finite abstraction by adding compassion constraints that derive from
extreme fairness and treating the counters as a random walk.

4. Use finite-state model checking to prove correctness.

Notice that in this method, we never prove properties about a non-deterministic
parameterized system. The only parameterized system we prove properties about is a
Markov chain (and a generic one at that). This is in contrast to the planner/pattern ap-
proach in which we convert a parameterized MDP to a non-deterministic parameterized
system, which we must then prove correct by some means.

While we used a result about random walks to remove a set of behaviors of zero
measure, there is no reason in principle why we could not consider sets of finite mea-
sure. In other words, we could use the same method to prove properties that hold with
some quantitative probability bound less than one.

4 Rabin’s Choice Coordination

In [29] Rabin gave a protocol whereN processes have to choose one of 2 cells by means
of writing values in a given range onto the cells, and a special value denoting that a
cell is “chosen”. The goal of the protocol is to guarantee that with a high probability
(depending on the cardinality of the set of values that can be written onto a cell) a
single cell will be “chosen” while it is never the case that both cells are chosen. We give
a variant of the protocol here and use our methodology to prove its correctness.

Assume two cells, cell0 and cell1 , each can take on a value in {0..M} × {0, 1}.
Unless the cell’s value is (0, 1), the first coordinate is its phase and the second is its
value. Both cells are initialized to (0, 0). There are N > 0 processes, each pointing to
some cell and having three states, playing, indicating it is still trying to choose a cell,
gaveup (indicating it has given up choosing a cell), and decided indicating it chose a
cell. Once a process gives up or decides, it remains pointing to the same cell. Otherwise,
it may change the value of the cell it is pointing to, and switch to the other. The goal
is to have one cell chosen by all N processes, or all processes giving up. A chosen cell
has a value (0, 1).

A playing process “remembers” the value of the last cell it has seen. If it sees a larger
value, it leaves that cell’s value unchanged (and switches cells), if it sees a smaller value,
it choses that cell, by setting the cell’s value to (0, 1), and remains there in a “decided”
state. If it sees an equal value to what it last saw and the phase of the cell is less then
M , it increments the cell’s phase and probabilistically chooses a value (in {0, 1}) for it.
If, however, the phase is M , it gives up and remains on the cell. Recall that a playing
process always switches cells after reading one, and that a process that has decided or
given up remains pointing to the same cell.

4.1 Reducing to a two-process system

To prove a bound on the probability of successful termination, it will help to simplify
the problem by reducing it to two-process systems. We can show that a two-process
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system simulates an N -process system, in the non-probabilistic sense. More precisely,
for any sequence of coin flips and for any schedule of N processes, there is a schedule
of 2 processes that performs the same sequence of operations on the cells.

We used TLV to obtain the proof for several instantiations of N (we stopped at 9
out of boredom rather than state explosion) and are working on getting the proof for
general N in IVY. We can also construct a manual proof: roughly speaking, we track
the two most advanced processes in the system. Initially these are any two processes
such that if there are processes on both sides, we chose one from each side. If one
process decides or gives up, this process is one of the two. Otherwise, the cells contents
are (k0, b0) and (k1, b1) where K = max(k0, k1) > 0. If k1 = k2. If there exists a
process who saw both current values, we choose this process. If there are more than
one, we choose both. If there are now two such processes, we choose those who last
wrote on the cells. (There must be two of them.) Otherwise, assume without loss of
generality that k0 > k1. We choose the process who last wrote on cell0 , and for the
second process we choose anyone who saw cell0 before the update (when its value was
that of the current cell1 ). If no such process exists, any would do.

For the 2-process system, we proved, using invisible invariants, (1) and (2) below.
Note that (1) has to do with the cell values (thus uses the parameterM ) while (2) is only
about the processes. To prove (3) we used a simple conversion of liveness to safety, from
where we used invisible invariants.

0(¬(cell0 = (0, 1) ∧ cell1 (0, 1))) (1)
∀i 6= j. 0(¬(state[i] = decided ∧ state[j] = gaveup)) (2)

∀i. 1(state[i] = decided ∨ state[i] = gaveup) (3)

The last property only holds under fairness, that is, when each process takes infinitely
many steps.

These are all properties of a non-probabilistic system and make no assumptions on
the random choices.

4.2 Showing successful termination with high probability

We first show that once the contents of both cells are equal and the processes are on
different sides, both having observed a value at the current phase of the cells, eventually
(as a matter of fact, within 4 steps) one of the following occurs:

1. the phase is M and then one processes gives up, which, by (2) and (3) implies that
they eventually both do;

2. at least one process decides, which, by (1) and (3) mplies that eventually both de-
cide on the same cell;

3. a similar state is reached, only with a higher phase number.

Note: When both processes are on the same side and the cells have the same content
with phase < M , then it is easy to show (as well as follows from a portion of Fig. 1),
that eventually the cell on this side has its value incremented and is chosen.

Formally, we have:

P 5: Planner-less Proofs of Probabilistic Parameterized Protocols 349



Lemma 1. For every process i, let s l p[i] denote that the last cell process i saw has
phase K which is the maximum of the two phases stored in cells. Then, for every k,
0 ≤ k < M ,

phase[0] = k ∧ cells eq ∧ s l p[1] ∧ s l p[2] ∧ side[1] 6= side[2] =⇒(
phase[0] = k + 1 ∧ cells eq ∧ s l p[1] ∧ s l p[2] ∧ side[1] 6= side[2]
∨ ¬playing[1] ∨ ¬playing[2]

) )
(The formula p =⇒ q, read “p entails q, is the progress property0(p→1 q).)

Proof. Since a picture is worth a thousand words, we provide a proof by picture in
Fig. 1, where cells eq denotes cell0 = cell1 . The dashed boxes denote states. The
labels on transitions denote which process is scheduled under which condition. E.g.,
“k < M any process Pi” indicates when k < M , either P1 or P2 can lead into the state
denoted by the transition.

The states enclosed by dashes are the goal states: the top left denotes that one pro-
cess gives up, the bottom right denotes that one process decides, and the one in the
middle right denotes that the system returns to the state it started with, only with a
higher k.

The random coin tosser is denoted by the hand flipping a coin. When the coin flip
is used (when scheduling the process who was not last scheduled), with probability 1

2
the first goal (of returning to the initial state, with a higher phase) is attained, with with
probability 1

2 , within 3 steps a one of the processes reaches a decision.

Rather than showing termination, our goal is to show decision with probability ≥
1− 2−M .

Fig. 1 gives us means to abstract the system. Every state where no decision is made
and no process gives up can be abstracted to either right-hand-side of Lemma 1 or to the
(simpler) case where both cells are equal, the phase is k, both s l p[1] and s l p[2] hold,
but side[1] = side[2]. We focus on the first case and abstract it by a counter that equals
the phase of the cells, say k. From Fig. 1 it follows that if k < M and the processes
are scheduled P1, P2 or P2, P1, then with probability 1

2 , then the system reaches the
abstract state k + 1. In all other cases, it reaches a decision. When k = M it reaches a
deadlock (giving up) state.

In the (finite) counter abstracted system we have a self loop on the state k with a
+ annotation on the mode, with another mode leading to a decision. When k is incre-
mented sufficiently many times, it reaches M , in which case the only transition leads
to a giving-up state. Since the counter is initialized to 0, after M increments it reaches
M . It thus follows, from the counter-abstracted system, that the probability of reaching
a giving-up state is bounded from above by 2−M . We thus have:

Lemma 2. The system reaches a decision with probability at least 1− 2−M .

This is a very different use of counter abstraction than the usual one. It is used to
simplify a system and to show that some event occurs with a non-trivial (0 or 1) proba-
bility. We gave this example to demonstrate the power of delaying the de-probabilization
of coin flips (the decider W accomplishes). In this example, it allowed us to go beyond
P-validity.
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Fig. 1. Proof of Lemma 1

5 Example: A P2P protocol

The work in [16] describes a P2P parameterized probabilistic protocol. We present a
variant of it here which we show to be correct using out new methodology.

The protocol assumes a fully connected (clique) of processes, each of which has
a weight. At each phase one process is activated. When activated, the process, say i,
randomly, with uniform probability, selects one of its neighbors, say j. That is, the
choice of i is non-deterministic (and constrained by the obvious justice property: no
process can be ignored forever) while the selection of j is probabilistic. Once i chooses
j, both “give” the other half of its weight, that is, w′[i], w′[j] = (w[i] + w[j])/2. The
goal of the system is to have all processes hold weights that are roughly equal.

Let A denote the average of the weights (note the the sum of the weights remains
constant throughout the protocol). Let ε be some precision requirement. The termination
property of the protocol is:

1(∀i. w[i] ∈ [A− ε

2
, A+

ε

2
])
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which we want to show is P-valid.
Assume that the range of the original weights are [L,H]. Either this range, or a

super-range of it, and ε itself have to be known in advance in order to make our analysis
sound. Without loss of generality, assume that A−L ≥ H−A and let k = dA−Lε e. Let
σ−k, . . . , σ−1, σ0, σ1, . . . , σk be k+1 consecutive intervals, each of length ε, such that
σ0 = [A− ε, A+ ε]. This range obviously covers [L,H]. Note that while we chose the
intervals with A at the center, this choice of intervals is only for proof purposes and we
don’t assume A is known in advance. Rather, we prove that once the system operates
long enough, it is almost guaranteed to have the weights of all processes in the middle
interval σ0.

Before we proceed, we’ll state some properties of the system:

1. LetW be the maximal weight in the system and let i be the single process such that
w[i] =W . After i is scheduled once, the maximal weight in the system will always
be < W .

2. Let W be the minimal weight in the system and let i be the single process such that
w[i] =W . After i is scheduled once, the minimal weight in the system will always
be > W .

3. Let j > 0 be the maximum such that for some i, w[i] ∈ j. Then there is a mode of
i’s probabilistic selection that, once taken, w′[i] < j.

4. Let jh > 0 be the maximum such that for some ih, w[ih] ∈ σjh and let jl < 0 be
the minimum such that for some il, w[il] ∈ σjl. Then if ih is scheduled, there is a
mode that if taken, w′[ih] ∈ σi where jl < i < jh, and similarly for il.

As before, some intuition on why the protocol may converge helps in abstracting the
system. Here we try to “look” at the movement of processes among the intervals. Ob-
viously (and also from (1) and (2)), processes at the endpoints, once scheduled, move
away from the endpoints and will never be replaced — new endpoints will be defined
that are closer to A. Eventually the endpoints will be in σ0 and remain there. The coun-
ters may count the number of processes on the extreme intervals, since, once depleted
remain so, and we can then focus on more central intervals. To avoid separating the
positive and negative sides, we “fold” the domain at the A point. Let the results be
I0, . . . , Ik. That is, I0 = σ0, and for every I = 1, . . . , k, Ik = σ−i ∪ σi.

At this point we can identify a decider: When activated, start with the highest index
j such that for some i,w[i] ∈ Ij and letQj be the set of such processes. When a process
in Qj is scheduled, let it choose the process whose weight is the furthest from it (which
may be in the same Ij with an opposite polarity) which moves it out ofQj . Hence, after
at mostN activations the highest index j reduces. Unlike other deciders, here we cannot
bound the number of times the decider is activated since, as we stated, this depends on
the precise instantiation. However, since there are finitely many I’s, and at each round
of decider we lose one, it is guaranteed that eventually all weights will be in I0. With
this, the decider so defined is way outside the common definition of planner/ strategy/
pattern due to the numerous parameters of the system (range of weights, true average,
etc.)

Of course, once we have a decider, counter abstraction is easy. For example, we can
use a 2D counter again, where the first coordinate is the maximal j such that Qj = {i :
w[i] ∈ Ij} is nonempty, and the second is the cardinality of this set. The first coordinate
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is monotonically increasing, and each step of a process in Ij has a mode that decreases
the second coordinate (or, when the latter is 1, it has an escape which decreases the first
coordinate), and it can be increased finitely many times by processes outside of Qj .
(This is because the only way into Qj is for a process p with weight in Ij1 to select a
process q ∈ Qj process. Both may end in Qj , but their weight will be closer to Ij1 than
that original weight of q.)

Note that, unlike the decider, the counter abstracted system allows us to ignore all
the information that makes it hard/ infeasible for other methods to verify the protocol.

6 Other Examples

We have counter-abstracted (almost?) all the examples of probabilistic parameterized
systems that are in the formal methods literature, including another asynchronous token
ring protocol ([5]), mutual exclusion protocols ([27], as well as the less cited [6]), and
the Ittai and Rodeh’s leader election protocol for a ring with a known size (N ) ([15]).
(We exclude Hermman’s Protocol, [13] because of its synchronous nature, though we
did verify it using our methodolgies.)

All can be reduced to random walk. In Ittai and Rodeh’s leader election protocol,
as well as in the mutual exclusion protocols (which are asynchronous and considerably
more complicated) there is a notion of “competitors” that flip coins. Those who flip
“heads” continue to the next round of the competition, while the others drop out (in the
mutual exclusion case, they wait until there are no more competitors.) If nobody flips
“heads”, all the competitors make it to the next round. Else, only those who flipped
“heads” do. Eventually, with probability 1, there is only one competitor who is the
winner. While the mechanism of determining whether a competitor in one round is
also competing in the next one differs in those three protocols, we can abstract this
away and just keep a counter for the number of competitors, which, with a positive
probability, decreases at each round. For the mutual exclusion protocols some other
counters are needed. For example, in the [27] protocols, there is a notion of a “waiting
room” where those who wish to enter the critical section, but either failed to reach the
competition in time, or lost the competition, wait. These counters, however, belong to
the non-probabilistic part of the system so we need no describe them. See Section ??
for an example of an application of our method to the mutual exclusion protocol of [27].

The group of “usual suspects” of parameterized probabilistic protocols there are
some for each local reasoning may suffice. These include both Free Philosophers and
Courteous Philosophers of [19] and the leader election in the Firewire protocol [1].
The “free philosophers” algorithm allows a hungry philosopher to randomly choose a
side s, wait for its s-chopstick to be available, then if the other chopstick is available,
the process eats, else it puts down the s-chopstick and goes back to selecting a side.
The “courteous” philosophers algorithm is similar, only there a philosopher Phil is not
allowed to pick up a chopstick if its neighbor, with whom Phil shares the chopstick, is
also hungry and Phil ate before its neighbor did.

The property whose P-validity one usually want to prove is that if there are some
hungry philosophers then eventually one of them gets to eat (obtain both chopsticks),
or that if some philosopher is hungry that this philosopher eventually gets to eat. The
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P-validity of these protocols can be established by first observing that each hungry
philosopher who doesn’t eat lifts a chopstick infinitely many times (that is, doesn’t
starve by indefinitely waiting for one of the chopsticks), a proof that doesn’t require
probabilistic reasoning. Then, it can be easily shown, using local probabilistic reason-
ing, that among each two adjacent philosophers, at least one of whom is hungry, one of
them gets to eat. In the courteous philosophers case, if one of them eats then the other
eventually eats. Thus, once the main (non-probabilistic) claim is established, possibly
using counter abstraction or some control abstraction, the P-validity of the protocol can
be established using local (2 or 3 adjacent processes) reasoning and doesn’t require our
methodologies. One can always define some decider to these protocol, but that may be
an overkill in the sense that such a decider determines what every process does, while
only a few matter. For example, in the Free Philisophers all processes but one can draw
“left” while the remaining one draws “right”, which will guarantee that there exists a
pair whose common fork is available, so that the first process to pick up one fork will
be able to eat. (The protocol only guarantees P-validity of “if someone is hungry then
eventually someone eats”.) But this pair, where the left one draws left the the right one
draw right (so once one of them succeeds to pick up a fork it can eat) is essentially
local and doesn’t need to involve a decider that decides on a number of coin flips which
depends on N .

7 Conclusions

Previous approaches to verification of parameterized probabilistic systems have taken
the route of reducing P -validity for a parameterized MDP to the ordinary parameterized
model checking problem (PMCP) by introducing a pattern or planner [4, 11]. Here we
have taken a different route, isolating the parameterized reasoning to a Markov chain.
We observed that a number of protocols embed a Markov chain in their state spaces that
becomes apparent when the state space is abstracted appropriately. In fact, for several
it is the same Markov chain. In a way, this argument exposes the underlying common
reason why these protocols work, and may actually aid the verifier in finding a suitable
planner (if one is still necessary) because of the reduction to a finite state abstraction.

The strategy presented here builds on existing techniques but applies them in a
novel way, advocating abstraction of probabilistic parameterized system directly into
simpler probabilistic systems rather than first fixing some probabilistic choices (letting
the others be nondeterministic). From our experience, this is often simpler and requires
less familiarity with the details of a system. Yet, this is a subjective experience and it is
difficult to argue whether it is easier in general to discover a pattern/planner or a suitable
abstraction. A clear advantage of the abstraction approach is that it avoids the need to
solve the undecidable PMCP.

Another possible advantage is that the strategy presented here is also applicable to
properties with quantitative probability bounds and not just to P -validity. In contrast,
selecting a planner instead of abstraction limits the verifier to non-quantitative analysis.
We have applied the abstraction approach, for example, to Rabin’s Choice Coordination
protocol [29]. This seems a promising avenue for future research.
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A Data Abstraction for Probabilistic Systems

The method of finitary abstraction, introduced in [17], allows to reduce a verification
problem into one on a smaller system. The idea behind finitary abstraction (as well as
other abstraction methods, all inspired by [7]) is to reduce the problem of verifying
that a given concrete system D satisfies its (concrete) specifications ψ, into a problem
of verifying that some (carefully crafted, finite-state) abstract system Dα satisfies its
(finite-state) abstract specifications ψα.

We sketch here the basic elements of the method, and refer the reader to [18] for ad-
ditional details. Consider a probabilistic transition system D = 〈V,Θ, T ,P,J , C〉. As-
sume a set of abstract variables V

A
and a set of expressions Eα, such that V

A
= Eα(V )

expresses the values of the abstract variables in terms of concrete variables. For any state
assertion p(V ), we say α+(p) is the set of abstract states that abstract emmsome p-state.
That is, α+(p) = ∃V. (V

A
= Eα(V ) ∧ p(V )). Similarly, α−(p) is the set of abstract

states such that abstract only p-states, that is, α−(p) = ∀V.(Eα(V ) ⇒ p(V )). Both
α− and α+ can be generalized to temporal formulae [18]. To be conservative, a for-
mula φ to be proved is abstracted by ψα = α−(ψ). For example, (0(p →1 q))α =
0(α+(p)→1(α−(q))).

The abstract systemDα that corresponds toD under α is the probabilistic transition
system (V α, Θα, T α,Pα,J α, Cα) where:

– V α = V
A

;
– Θα = α+(Θ);
– T α =

⋃
τ∈T α

++(ρ), where α++(τ) = ∃V, V ′ : V
A
= Eα(V ) ∧ V ′

A
= Eα(V ′) ∧

τ(V, V ′)
– Pα =

⋃
〈τ1,...,τk〉∈P〈α

++(τ1), . . . , α
++(τk)〉 (recall that all modes of a probabilis-

tic selection share the same preconditions.)
– J α = {α+(J) : J ∈ J }, and
– Cα = {〈α−(p), α+(q)〉 : 〈p, q〉 ∈ C}

Theorem 2. The abstraction is sound, that is, Dα |= ψα =⇒ D |= ψ

Proof (Outline). The only part that needs to be added to the proof of [18] is to show
that the α-abstraction of every γ-fair D computation is a γ-fair Dα computation, which
follows from the definitions.

Counter Abstraction. Consider a set V
A

of k abstract variables, say V1, . . . , Vk, each
of which can take on values from a finite range that depends on the system’s parameter,
that is, for each i = 1, . . . , k, Vi evaluates into a value in a finite domain Bi. (Usually,
Bi = [0..g(N)] where g(N) ≤ N .) Let Eα, such that V

A
= Eα(V ).

The resulting system Dα is a counter abstraction of the system D.
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Abstract. Distributed file systems play a vital role in large-scale en-
terprise services. However, the designer of a distributed file system faces
a vexing choice between strong consistency and asynchronous replica-
tion. The former supports a standard sequential model by synchronising
operations, but is slow and fragile. The latter is highly available and
responsive, but exposes users to concurrency anomalies. In this paper,
we describe a rigorous and general approach to navigating this trade-off
by leveraging static verification tools that allow to verify different file
system designs. We show that common file system operations can run
concurrently without synchronisation, while still retaining a semantics
reasonably similar to Posix hierarchical structure. The one exception is
the move operation, for which we prove that, unless synchronised, it will
have an anomalous behaviour.

1 Introduction

The market for distributed storage is fueled by cloud computing, big data, ex-
ascale computing and so on. Classical file system designs continue to represent
approximately 30% of distributed storage needs according to IDC [30], especially
for entreprise applications. Modern distributed file system design can improve
performance and be highly available by replicating data at several servers. A
user can access a file as long as at least one replica of it is available [21, 39].
Ideally, we would like the replicated file system to provide the standard Posix
semantics [2], as if a single centralised server handled all operations. However,
Posix was designed under the assumption of strong consistency, which requires
synchronisation in the critical path. For instance, an operation accessing some
file might lock all the directories along the path to the file. This synchronous,
strong-consistency approach is used in systems such as Frangipani, GFS, GPFS,
and Lustre [19, 40, 41, 46]. Although safe, it is unlikely to perform well at large
scale, and is unavailable in case of network partition [15].

Experience with real-world applications shows that concurrent updates to
the same file system objects are rare [7, 26, 33, 47, 49]. Thus, the synchronous
approach often causes more synchronization than the application really needs.
Therefore, many recent systems, such as HDFS [43], NFS [34, 38], or PVFS
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[12] eschew Posix semantics to gain better performance and scalability. A client
reads or writes its local replica without synchronisation with other replicas, and
immediately returns to the client, while any updates are transmitted to other
replicas in the background. We call this approach asynchronous replication.

Unfortunately, asynchronous replication faces the challenge of replica diver-
gence, and may violate some application desirable properties, called integrity
invariants [35, 48]. Consider this simple example: Alice in Anchorage adds file
f to directory d to her local replica, while at the same time, Bob in Brussels
removes directory d. The outcome may well result in f existing but being un-
reachable. Such anomalies are undesirable, and this poses a major challenge to
the design of a replicated file system [27].

The correctness of applications implemented on top of a given file system is
highly dependent on subtle behaviors of the underlying file system. Thus, pro-
grammers require to reason about the file system behaviour, taking into account
which anomalies are disallowed by a given file system semantics and whether
disallowing these anomalies is enough to ensure correctness.

We address this problem by considering the integrity invariants that both
sequential and replicated file systems must satisfy. Our goal is to come up with
a design that is as asynchronous as possible while satisfying the invariants. We
are helped in this road by a static analysis tool based on the CISE logic, which
was proved sound for replicated data under the causal consistency assumption
[20]. CISE is a variant of rely-guarantee reasoning [25]. A successful analysis
proves that any execution of operations over replicated data, under a given
synchronisation protocol, maintains the given invariants.

We apply this analysis to file system design. For simplicity, we focus only
on a single naming tree and ignore hard links, devices, mounts, file attributes,
and the like; we are reasonably confident that our analysis extends readily to
a more detailed file system model. The targeted invariant is that the directory
structure forms a tree. Our model covers the Posix commands [2] affecting the
tree structure, including creating, removing, moving, and changing directory
entries, as well modifying files.

We first formulate a sequential specification of Posix file system, and prove
that this semantics maintains the tree invariant. Next, we extend the sequential
semantics to support concurrent users; we study two different concurrent seman-
tics, each exposing a different amount of parallelism, and different anomalies.

The first one, called Fully Asynchronous, optimistically accepts all concur-
rent updates, and resolves conflicts by weakening the sequential Posix semantics.
This achieves better availability and latency, which are essential for large-scale
applications. Applying the CISE analysis verifies that most operations of a repli-
cated file system can execute without synchronisation. The only exception is that
concurrent move operations may violate the tree invariant, resulting in a discon-
nected cyclic component. To fix this issue, our design follows the geoFS system
[45]: if a cycle would occur, it effectively replaces move with a copy-delete, which
preserves the tree invariant but might duplicate the directories that would oth-
erwise end up in a cycle.
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If replacing move with copy-delete is undesirable, an alternative safe solution
is to use synchronisation in order to disallow the concurrent execution of move
operations that would violate the tree invariant. However, several concurrency
control algorithms are possible; it is not obvious which is best. Synchronising
too much hurts performance and availability, but synchronising too little would
result in violating the tree invariant. Using the CISE analysis, we identify the
minimal synchronization sufficient for move operations. Accordingly, we design
our Mostly-Asynchronous file system, in which the common operations run in
asynchronous mode, and only some move-directory operations might be blocked
by synchronisation.

In summary, this paper makes the following contributions:

– We provide a rigorous specification for Posix-like file system for both cen-
tralized/synchronous and replicated/asynchronous semantics.

– Using the CISE analysis, we describe a rigorous and general approach that
helps developers to encode and verify a variety of concurrent file system
designs.

– We study and verify two different replicated file system semantics, each ex-
posing a different amount of parallelism, and different anomalies.

– We identify and verify synchronization is necessary and sufficient for a repli-
cated file system to maintain the tree invariant.

The remainder of the paper is organized as follows: Section 2 introduces the
file system objects and models, and gives an overview of the CISE logic. Section 3
presents and verifies a sequential specification of the file system. Section 4 does
the same with a concurrent specification of the file system. Sections 5 and 6
discuss our proposed Fully-Asynchronous and Mostly-Asynchronous file system
semantics respectively. Related work is discussed in Section 8. Finally, Section 9
summarizes our results and concludes the paper.

2 Model

2.1 File System Objects

The abstract state of a file system consists of a naming tree of directories. A
directory d ∈ Dir maps a set of locally-unique names n ∈ Name, to a set of
inodes ∈ INode. An inode represents a file system object, which is either a
directory or a file:

Dir : Name→ INode
INode : File|Dir

This hierarchical file system structure has a single fixed root directory. Each
inode is identified by a path. The path is a sequence of directory names, and
possibly a final file name, separated by a separator or delimiter. Following the
Unix convention, we use the ”/” character as the separator.

We use Greek letters to denote paths.
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Definition 1 (Parent Relation). Directory u ∈ Dir is the direct parent of
inode v ∈ INode, denoted by u ↓ v, if and only if u contains a mapping to v, i.e.,
there is a name n ∈ Name, such that (n, v) ∈ u.

Definition 2 (Path Prefix). Path π is called a prefix of path γ, noted π v γ,
if and only if γ = π/α for some path α.

The transitive closure of the parent relation defines the ancestor relation. We
say directory u ∈ Dir is an ancestor of inode v ∈ INode, noted u ↓∗ v, if and only
if:

u ↓∗ v =
{
true if (u ↓ v)
∃w ∈ Dir, (u ↓ w) ∧ (w ↓∗ v) otherwise

Definition 3 (Least Common Ancestor). The Least Common Ancestor of
nodes u and v, noted LCA(u, v), is the ancestor of both u and v that is the
farthest from the root. If u and v are inodes from the same file system then
LCA(u, v) exists and is unique.

2.2 Operation Execution Model
We assume a replicated model where each replica stores a full copy of the file sys-
tem. We use a Read-One-Write-All approach [9], under the operation execution
model proposed by Gotsman et al. [20]. A client interacts with the file system
through a set of operations Op; it submits an operation to an arbitrary single
replica, called the origin replica for that operation. The operation is divided
into two phases: generator and effector. The generator executes at the origin
replica. This returns a value Val to the client and computes the effector of the
operation, a function encoding the update to be done by the operation. Every
replica eventually applies the effector to its own state.

More precisely, the semantics of operations is defined by a function

F ∈ Op→ (State→ (Val× (State→ State)× set(Token))).

The function is formulated as follows for some operation o:

∀σ ∈ State, o ∈ Op, Fo(σ) = (Fval
o (σ),Feff

o (σ),Ftok
o (σ)),

Fval
o (σ) ∈ Val

Feff
o (σ) ∈ State→ State
Ftok

o (σ) ∈ set(Token)

Given state σ ∈ State at the origin replica in which an operation o ∈ Op
executes,
– The Fo() function is the generator.
– Fval

o (σ) is the return value of operation o. We use ⊥ for operations that return
no value.

– Feff
o (σ)() is the effector function of operation o. It will be sent to every

replica; when received by a replica, the replica applies this transformation
to its own state.

– Ftok
o (σ) is the set of concurrency-control tokens acquired by operation o.

Tokens are described in Section 2.3.
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σ = map(Name 7→ INode) n ∈ Name u ∈ INode

Fadd(n)(σ) :
{
Fval

add(n)(σ) = ⊥,Ftok
add(n)(σ) = ∅, u = inode()

F
eff
add(n,u)(σ) = λ(σ′). σ′[n 7→ u]

Fremove(n)(σ) :
{
Fval

remove(n)(σ) = ⊥,Ftok
remove(n)(σ) = ∅

F
eff
remove(n)(σ) = λ(σ′). σ′[n 7→ ∅]

Fquery(n)(σ) :


Fval

query(n)(σ) = u | σ[n 7→ u]
Ftok

query(n)(σ) = ∅
F

eff
query(n)(σ) = skip

Precondition Operation
6 ∃e ∈ INode, (n, e) ∈ σ Fadd(n)(σ)
∃e ∈ INode, (n, e) ∈ σ Fremove(n)(σ)
∃e ∈ INode, (n, e) ∈ σ Fquery(n)(σ)

Fig. 1. A sequential specification of directory

2.3 Concurrency

A replica is a process that executes a sequence of generator and effector events.
An operation o is visible to operation o′ if some replica executes the effector of
o before the generator of o′. We assume causal consistency, i.e., the visibility
relation is transitive. Two operations that are not related by visibility are said
concurrent.

The tokens mentioned in the previous section are an abstraction of concur-
rency control mechanisms. Tokens are related by a symmetric conflict relation
(./). If two operations acquire tokens conflicting according to ./, then one must
be visible to the other. If their tokens do not conflict by ./, the operations are
allowed to be concurrent.

2.4 Example

Consider a directory d in the file system. Figure 1 illustrates a simple implemen-
tation of d as follows: Let σ denote the state of d at the origin replica. State
σ is a map of names to inodes, representing the content of the directory. The
directory semantics supports operations to add, remove, and query mappings in
the directory.

We start with a sequential specification for the directory, shown in Fig. 1.
To add an inode to d, the add(n) operation’s generator in the origin replica,
computes return value, tokens, and creates a new inode to prepare its effector
if σ satisfies the operation’s precondition. The precondition of add(n) is that no
inode under the same name n exists in the directory d. We assume a function
u = inode() to create a new and unique inode identifier u. The effector for add(n)
takes name n and inode u as its arguments, reads state of d at the current replica,
denoted σ′ (which can be different from σ, due to concurrency), and then adds
the inode u under name n to it, denoted by σ′[n 7→ u]. Similarly, to remove
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an inode named n from directory d, the remove(n) operation’s effector, reads
the state of directory at each replica, denoted by σ′, and removes the mapping
for name n, noted by σ′[n 7→ ∅]. The query(n) operation computes the inode u
mapped to the name n at the origin replica, and simply returns u, i.e., σ[n 7→ u];
its effect is simply skip where skip = (λσ′.σ′).

2.5 CISE Logic and Analysis

Any replicated system needs to ensure convergence, i.e., executing the same
operations produces the same results at different replicas. Furthermore, a given
system must maintain a specific integrity invariant, i.e., a safety condition over
replica states. The invariant of interest for file systems is that its directories form
a tree (the tree invariant). In this work, we do not consider liveness properties.

To this effect, we leverage CISE [20], a sound logic that allows to verify such
safety conditions statically (in polynomial time) for a replicated system with
causal consistency. We use the CISE verification tool [31], which takes as input
the specification of the system’s operations (their preconditions and effects) and
of the targeted invariant. The tool checks the following proof rules: (i) Individual
Correctness: each operation individually maintains the invariant. (ii) Commuta-
tivity: any two concurrent operations commute (operations that have conflicting
tokens need not commute). (iii) Stability: every operation’s precondition is sta-
ble under concurrent updates (but not necessarily against an operation that
acquires a conflicting token). A successful analysis proves that any execution of
the given operations, under the given tokens, maintains the given invariant.

Unsuccessful analysis returns a counter-example, which indicates the problem
to the developer. The developer can fix the problem, either by weakening the
application semantics, or by strengthening the token system, and then run the
check again. This process constitutes co-design of the application semantics and
of its concurrency control.

3 Sequential Specification

In this section, we first formulate a sequential specification of a Posix-like file
system, and prove that this semantics preserves the tree invariant.

3.1 Tree Invariant

An directory is a map of names to inodes (files or directories). We model the
directory structure as a graph, where a directory is a node, and there is an edge
from this parent directory to each directory that it names (its children). The tree
main invariant I of the file system is the conjunction of the following assertions:
(1) The file system has a fixed root node. (2) The root is an ancestor of every
other node in the tree. (3) Every node has exactly one parent, except the root,
which has none. (Since we ignore symbolic links, a file cannot have several parent
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σ = set(INode) σinit = {root} n ∈ Name c ∈ Content
d, dp, dpnew , dpold ∈ Dir f ∈ File

mkdir(path) :
{path = π/n, dp = L(π), d = inode()
F

eff
mkdir(dp,n,d)(σ) = λ(σ′). σ′.dp[n 7→ d]

rmdir(path) :
{path = π/n, dp = L(π),
F

eff
rmdir(dp,n)(σ) = λ(σ′). σ′.dp[n 7→ ∅]

mkfile(path) :
{path = π/n, dp = L(π), f = inode()
F

eff
mkfile(dp,n,f)(σ) = λ(σ′). σ′.dp[n 7→ f ]

rmfile(path) :
{path = π/n, dp = L(π),
F

eff
rmfile(dp,n)(σ) = λ(σ′). σ′.dp[n 7→ ∅]

write(path, c) :
{
f = L(path),
F

eff
write(f,c)(σ) = λ(σ′). σ′.f.write(c)

mvdir(old, new) :

{
old = π/n, new = γ/n, dpold = L(π), d = L(old), dpnew = L(γ),
F

eff
mvdir(dpold

,n,dpnew ,d)(σ) = λ(σ′). (σ′.dpold [n 7→ ∅];σ′.dpnew [n 7→ d])

mvfile(old, new) :

{
old = π/n, new = γ/n, dpold = L(π), f = L(old), dpnew = L(γ),
F

eff
mvfile(dpold

,n,dpnew ,f)(σ) = λ(σ′). (σ′.dpold [n 7→ ∅];σ′.dpnew [n 7→ f ])

Precondition Operation
6 ∃e ∈ INode, (n, e) ∈ dp ∧ root ↓∗ dp Fmkdir(dp,n,d)(σ)

6 ∃e ∈ INode,m ∈ Name, (m, e) ∈ d ∧ root ↓∗ d Frmdir(dp,n,d)(σ)
6 ∃e ∈ INode, (n, e) ∈ dp ∧ root ↓∗ dp Fmkfile(dp,n,f)(σ)

root ↓∗ f Frmfile(dp,n,f)(σ)
root ↓∗ f Fwrite(f,c)(σ)

6 ∃e ∈ INode, (n, e) ∈ dpnew ∧ root ↓∗ d ∧ dpold ↓ d Fmvdir(dpold
,n,dpnew ,d)(σ)

∧root ↓∗ dpnew ∧ d 6↓∗ dpnew

6 ∃e ∈ INode, (n, e) ∈ dpnew ∧ root ↓∗ f Fmvfile(dpold
,n,dpnew ,f)(σ)

∧dpold ↓ f ∧ root ↓∗ dpnew

Fig. 2. A sequential hierarchy file system design

directories.) (4) The directory graph is acyclic. (5) The names in a directory are
unique with respect to that directory. Formally:

I = ∀e1, e2 ∈ INode, d1, d2 ∈ Dir, n1, n2 ∈ Name, π, π′ ∈ Path
(1) root ∈ INode
(2) ∧ e1 6= root =⇒ root ↓∗ e1
(3) ∧ (d1 ↓ e1 ∧ d2 ↓ e1 =⇒ d1 = d2 ∧ e1 6= root)
(4) ∧ (d1 ↓∗ d2 ∧ d2 ↓∗ d1 =⇒ d1 = d2)
(5) ∧ (π/n1 7→ e1 ∧ π/n2 7→ e2 ∧ e1 6= e2 =⇒ n1 6= n2)

3.2 File System Operations

The file system semantics that we study in this paper consists of a set of opera-
tions, which abstract the Posix commands to manipulate the tree structure and
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to update file content. They include creating, deleting, and renaming directories
or files, and modifying files. We identify a file or a directory by a path. Given
the path argument of an operation, a resolution function L is executed at the
operation’s origin replica to find the inode located in the path,

L : Path→ INode.

Figure 2 shows a sequential specification of the file system. We denote σ the
state of the file system, and the dot notation, for instance σ.e, to refer to a
particular inode e in it.

We assume that update operations return no value, i.e., Fval
o (σ) = ⊥, and

an exclusive token is assigned to each operation that forbids the concurrent
execution of these operations. For complex operations like move operation, whose
effect updates two directories, indicated by old and new, we use semicolon to
denote a sequence of changes over the file system state. We assume that inodes
have unique identifiers across replicas. The arguments to the effector of some
operation includes the inode determined by the generator, rather than its path;
this is unnecessary in the sequential specification but will prove useful when we
consider concurrent updates.

For instance, consider that Alice wants to create a new directory using the
operation mkdir(/share/album/paris). In Alice’s replica of the file system, this
resolves to creating name to name paris, within the directory whose path is
/share/album, which evaluates to inode dp (subscript p stands for “parent”).
A minimal precondition is that dp exists, and it does not contain name paris.
If satisfied, effector F

eff
mkdir(dp,”paris”,d) is generated and sent to all replicas. On

delivering the effector, every replica (including Alice’s) applies its effect, which is
to create the new directory d, and to update the parent directory dp by mapping
the name ”paris” to directory d, denoted by dp[paris 7→ d]. Note, we use the
notation f.write(c) for writing the content c into a file f .

We apply the CISE effector safety to check if the file system operations pre-
serve the tree invariant in isolation, with the minimal preconditions of the previ-
ous paragraph (since no operations are concurrent, the other two rules are void).
The CISE tool returns an error for mvdir. The associated counter-example shows
that the source directory must not be an ancestor of the destination directory,
because otherwise, a cycle occurs. The developer strengthens the pre-condition
to avoid this; with this stronger specification, the tool indicates that mvdir is
now safe. We proceed similarly for the other operations, thus co-designing the
sequential specification. Finally, we reach the specification illustrated in Fig. 2,
which is proved safe.

4 Concurrent Specification

In this section, we extend the sequential semantics to support concurrent users.
We present a concurrent specification of the file system that optimistically ac-
cepts all concurrent updates, and resolves conflicts but it trades the sequential
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σ = (d× ρ) d = map(Name 7→ INode) ρ = map(INode 7→ INode)
n ∈ Name u, v, w, e1, . . . , ek ∈ Dir

Fadd(n)(σ) :


Fval

add(n)(σ) = ⊥, Ftok
add(n)(σ) = ∅, u = inode()

F
eff ∗

add(n,u)(σ) = λ(σ′). (IF(σ′.d[n 7→ v] ∧ w == v
⊕

u)
(σ′.d[n 7→ w], σ′.ρ[u 7→ w, v 7→ w])(σ′.d[n 7→ u], σ′.ρ)

Fremove(n)(σ) :


Fval

remove(n)(σ) = ⊥, Ftok
remove(n)(σ) = ∅,

F
eff ∗

remove(n,u)(σ) = λ(σ′). (IF(σ′.d[n 7→ w] ∧ σ′.ρ[u 7→ w])
(σ′.d, σ′.ρ[u 7→ ∅])(σ′.d[n 7→ ∅], σ′.ρ)

Fquery(n)(σ) :


Fval

query(n)(σ) = w | d[n 7→ w] ∧ (ρ[e1 7→ w, e2 7→ w, . . . , ek 7→ w]
=⇒ w = e1

⊕
e2 . . .

⊕
ek)

Ftok
query(n)(σ) = ∅, F

eff ∗

query(n)(σ) = skip

Fig. 3. A concurrent specification of directory d

Posix semantics for availability. The concurrent design exploits Conflict-Free
Replicated Data Types (CRDT) [42] to address conflicts. CRDTs include many
useful data types, such as counters, sets, graphs, and maps, which encapsulate
conflict resolution policies for automatically merging the effects of operations
performed on each object concurrently.

4.1 File System Objects as CRDTs

We use the idea of CRDTs to carefully design conflict-free replicated file system
objects, which ensures convergent outcomes reflecting effects of all operations
performed to each file or directory at different replicas. To this goal, we first
discuss conflict cases that may occur as a result of concurrent execution of file
system operations, and then propose the concurrent file system semantics, which
converges by design.

4.2 Name Conflict

Users may perform concurrent updates to a directory. Concurrently adding or
moving inodes under the same name in the same directory is problematic because
it violates the name uniqueness property in the tree invariant (name conflict).

To address such conflicts, we define a merge operator
⊕

. The merge operator⊕
may have different merge semantics depending on directories or files, or may

be different for different files. We choose the following merge semantics: concur-
rently adding or moving two directories under the same name to the same parent
directory merges these directories, i.e., takes their union. For files with the same
name, the merge semantics renames files by appending a replica-specific suffix
to a locally-unique file name. We assume that type of each file system object is
embedded in its name, and hence name conflicts between files and directories
cannot occur.
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Definition 4 (Union Merge Function). Let u and v be two different directo-
ries with the same name n under parent directory dp. We define the union merge
of u and v as follows:

w = u
⊕

v | dp[n 7→ w] ∧ (∀e ∈ INode, u[− 7→ e] ∨ v[− 7→ e] =⇒ w[− 7→ e])

Where w is a new directory whose content is union of contents of directories
u and v. The merge function is recursively applied to sub-directories if there are
naming conflicts.

A concurrent effector may still use the old directories u and v. To solve this
problem, each replica’s state has map ρ, which keeps a record of the equivalence
relation between the directories and their merged directory e.g., ρ[u 7→ w, v 7→ w]
where w = u

⊕
v. Thus, when a replica receives an effector updating a directory,

the replica first queries the equivalence relation ρ to check if the directory has
been merged. Unused identifiers can be garbage-collected and removed from ρ.
For brevity, we do not attempt to formalise this property.

Definition 5 (Rename Merge Function).
Let u and v be two files with the same name n under the same parent directory

dp, which originally are generated in replica r1 and r2, respectively. A merge
decision to solve the file name conflicts would be to change the names by adding
the replica’s suffixes to the original name. Thus, we define the rename merge
function of files u and v as follows:

u
⊕

v : dp[n1 7→ u, n2 7→ v]

Where n1 = n+ r1 and n2 = n+ r2 are new unique names mapped to u, and v
respectively.

The merge operator must satisfy the following properties:

– u
⊕
u = u (idempotent)

– u
⊕
v = v

⊕
u (commutative)

– u
⊕

(v
⊕
w) = (u

⊕
v)
⊕
w (assosiative)

where u, v, and w are file system objects.
Figure 3 illustrates the concurrent implementation of directory d using the

merge operator. Feff ∗

o is the effector of operation o that integrates the merge pol-
icy for managing name conflicts. The directory’s state σ consists of two maps:
d that is a map of names to inodes, representing the directory’s content, and ρ
that is a map of inodes to inodes, tracking the equivalence relation of merged
sub-directories in d. The add(n) operation creates a new inode u; its effector
reads the directory’s state at each replica, denoted by σ′, and if there is no
name conflict, it simply adds the pair (n, u) to the directory’s content, denoted
by σ′.d[n 7→ u]. For simplicity, we assume the name n refers to a directory. In
the case where a directory v is concurrently added under the same name n,
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σ = set(INode) σinit = {root} Token = ∅ ./= ∅

mkdir(path) :

{
path = π/n, dp = L(π), d = inode()
F

eff
mkdir(dp,n,d)(σ) = λ(σ′). (Feff ∗

add(n,d)(σ
′.dp); recurAdd(σ′.dp))

rmdir(path) :

{
path = π/n, dp = L(π), d = L(path)
F

eff
rmdir(dp,n,d)(σ) = λ(σ′). (Feff ∗

remove(n)(σ
′.dp))

mkfile(path) :

{
path = π/n, dp = L(π), f = inode()
F

eff
mkfile(dp,n,f)(σ) = λ(σ′). (Feff ∗

add(n,f)(σ
′.dp); recurAdd(σ′.dp))

rmfile(path) :

{
path = π/n, dp = L(π), f = L(path)
F

eff
rmfile(dp,n,f)(σ) = λ(σ′). (Feff ∗

remove(n)(σ
′.dp))

write(path, c) :
{
f = L(path)
F

eff
write(f,c)(σ) = λ(σ′). σ′.f.write(c); recurAdd(σ′.f)

mvdir(old, new) :


old = π/n, new = γ/n, dpold = L(π) ∧ d = L(old), dpnew = L(γ)
F

eff
mvdir(dpold

,n,dpnew ,d)(σ) = λ(σ′). (Feff ∗

remove(n)(σ
′.dpold );

F
eff ∗

add(n,d)(σ
′.dpnew ); recurAdd(σ′.dp))

mvfile(old, new) :


old = π/n, new = γ/n, dpold = L(π) ∧ f = L(old), dpnew = L(γ)
F

eff
mvfile(dpold

,n,dpnew ,f)(σ) = λ(σ′). ((Feff ∗

remove(n)(σ
′.dpold );

F
eff ∗

add(n,f)(σ
′.dpnew ); recurAdd(σ′.dp))

Fig. 4. A concurrent specification of the file system (fully asynchronous)

in such a way that w = u
⊕
v, the effector adds the pair (n,w) to the direc-

tory’s content, and updates the directory’s equivalence relation ρ by adding the
corresponding equivalence into, denoted by σ′.ρ[u 7→ w, v 7→ w]. Similarly, the
remove(n) operation’s effector simply removes the mapping for name n from the
directory’s content at each replica, denoted by σ′.d[n 7→ ∅]. If u is a directory
which is merged into new directory w due to name conflicts, i.e., σ′.d[n 7→ w] and
σ′.ρ[u 7→ w], the effector removes equivalence mapping for u from the relation ρ
at each replica, i.e., σ′.ρ[u 7→ ∅]. The query(n) operation computes the directory
mapped to the name n by first reading the relation ρ at the origin replica and
computing all directories ei1≤i≤k

concurrently added to the directory’s content
d under the name n, and returns w, where w = e1

⊕
e2
⊕
. . .
⊕
ek.

4.3 Remove/Update Conflict

A different kind of conflict happens when a replica updates an inode, while
another replica concurrently removes the inode. This kind of conflict is called
a remove/update conflict. For instance, when a replica receives an operation to
add directory u to directory v, if directory v has been removed by a concurrent
user, the operation execution results in an unreachable directory u.

The replicated data types support two main approaches, called add-wins and
remove-wins, to address this problem. They differ by the result of concurrent
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mvdirPRE:v  u↓

mvdirPRE:v  u

mvdir(root,n2,v,u)

mvdir(root,n1,u,v)

uv

root
↓*

replica r1

replica r2
*

root

uv

root

uv

Fig. 5. Counter-example for violation of tree invariant due to of concurrent moves

add and remove of the same elements. In the add-wins semantics, when there
are concurrent add or remove of the same element, add wins and the effects
of concurrent remove operations are ignored. Remove-wins follows the opposite
semantics. When an element is removed, any concurrent updates of the same
element are lost.

Given the directory semantics in Fig. 3, concurrent adding inodes into the
same directory d commute since each inode is unique. Concurrent removes com-
mute because removing different inodes has independent effects, and removing
the same inode is identical. Moreover, concurrent adding and removing inodes
to the same directory d commute, i.e., the add wins because the unique inode
created by add operation cannot be observed by remove operation.

Figure 4 illustrates a concurrent specification of the file system. The con-
current semantics is token-free, and relies on the effectors F

eff ∗

add , and Feff ∗

remove
presented in Fig. 3 to handle name conflicts occurring within a directory. Fol-
lowing the add-wins semantics, function recurAdd(d) recursively re-creates the
removed directories, which have been concurrently updated. The function takes
an inode, e.g., directory d, as input, and then checks whether the directory is
reachable by the root, if not, the full directory’s path from the root is re-created
as follows:

recurAdd(d) = F
eff ∗

add(n,d)(d.Parent) + recurAdd(d.Parent)

where d.Parent is parent of d. The function recurAdd(d) uses the effector
F

eff ∗

add(n,d)(d.Parent) to re-add a removed directory d into its parent directory.
For instance, consider the concurrent semantics of mkdir(path) operation for

creating a new empty directory identified by the path argument. In the origin
replica, this operation resolves to creating name to name n, within the directory
whose path is π, which evaluates to inode dp. Its sequential semantics is to
create the new directory d, and to update the parent directory dp by mapping
the name n to directory d. However, concurrent conflicts may arise: 1) other
directories concurrently added or moved into parent directory dp under the same
name n, 2) the directory dp has been removed concurrently. To address name
conflicts when applying mkdir effector on directory dp in any replica state σ′, the
concurrent semantics uses the name conflict resolutions given by F

eff ∗

add(n,f)(σ
′.dp).
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mvdir(root,n2,v,u)

mvdir(root,n1,u,v)

replica r1

replica r2
root

uv
mvdir(root,n2,v,u)

uv

root
uv

root

u v

cycle

root

uv

remove 
the cycle

Fig. 6. Asynchronous solution design for conflicting move operations

mvdir(root,n2,v,u)

mvdir(root,n1,u,v)

uv

root

replica r1

replica r2

(τu ⋈ τv )

{τu, τv}

{τu, τv} ✘
root

uv

Fig. 7. Avoiding concurrent execution of conflicting moves

The concurrent semantics also uses function recurAdd(σ′.dp), which re-creates
directory dp if it has been removed concurrently from the replica state σ′.

We remark that removing a directory does not actually delete the directory,
as it only removes the mapping for the directory from its parent, as the directory
exists but is unreachable. Re-creating a directory adds it into its parent directory
again. Therefore, if multiple replicas concurrently re-create directory d, they all
will end up with the same state.

We use the CISE-enabled analysis to verify the concurrent design. The com-
mutativity analysis verifies that the concurrent operations results in a convergent
state because all possible pairs of concurrent operations commute. The applica-
tion of the CISE stability analysis for the concurrent file system design verifies
that most operations of the file system can execute without synchronisation, and
only concurrent move operations may violate the tree invariant. The precondi-
tion of move directory operation is not stable when there is another concurrent
move operation. Figure 5 illustrates a counter-example: consider a file system
with three directories, root, u and v, replicated at two replicas. Initially, the
root is parent of u and v. One replica asks to move directory u named n under
directory v using the move operation mvdir(root, n, u, v). The precondition of
this move operation is true, i.e., the directory u is not an ancestor of directory
v. However, concurrently, another replica moves directory v under directory u,
and hence, the precondition of move is not true any more. If indeed we were to
continue and apply the effect of the first move operation, we come to the state,
with a cycle of u and v, disconnected from the root. Obviously, it is not a tree.
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Table 1. Required tokens for the mostly-asynchronous file system

Effector Tokens
mvdir(dpold ,n, dpnew , d) { τd, τdpnew

} ∪
{τe | e ∈ Dir ∧ e ↓∗ dpnew∧

LCA(d, dpnew ) ↓∗ e}
mvfile(dpold ,n, dpnew , f ) τf

5 Fully-Asynchronous File System

If high performance and availability of update operations are important to the
file system application, a simple approach to fix move conflicts is to allow move
operations to execute without restriction, and to repair the tree invariant viola-
tions after the fact. Thus, we design a fully-asynchronous file system that accepts
all concurrent operations, and if cycles occur due to concurrently moving two
directories u, and v, it has a merge function, which will duplicate all directories
in the cycle. For instance, in Fig. 6, the cycle between directories u and v is
removed by making copies of the directories u and v. This merge semantics is
used in real file systems, such as geoFS [45].

We use the CISE analysis to verify the merge semantics for move operations.
The analyser proves that the merge function is commutative, and also guarantees
the tree invariants.

6 Mostly-Asynchronous File System

One alternative approach for handling move conflicts is to add synchronisation
in order to avoid concurrent execution of move operations that would violate
the tree invariant. Thus, we co-design the file system semantics, in which the
common operations run in asynchronous mode, and only some move directory
operations need to be synchronised.

A developer may define a mutually exclusive token for each inode e ∈ INode :
τe, such that τe ./ τe. To ensure that cycles do not happen, we assign a set of
tokens to each move operation. For any pair of move operations, if their tokens
are conflicting, only one of them can take effect, because token semantics requires
that the operations exchange messages, which ensures that one of the operations
is aware of the other. However, other move operations are causally independent,
and hence can proceed in parallel.

Using the CISE analysis, we identify and verify the necessary and sufficient
token assignments for move directory operations ensuring the tree invariant in
any possible executions.

Lemma 1. Assume a move directory operation moving directory d into its des-
tination directory dpnew

. Let set A be the set of ancestors of the destination
directory dpnew

up to LCA(d, dpnew ). Token set T = {τd, τdpnew
} ∪ {τe | e ∈ A}

represents the necessary and sufficient tokens required by the move directory op-
eration.

Co-Design and Verification of an Available File System 371



Proof. First, we follow the CISE analysis to prove that the set T is indeed suffi-
cient for maintaining the tree invariant. To this goal, we prove that precondition
of move operation is stable against all concurrent move operations allowed by
the tokens. Assume operation Fmvdir(dpold

,n,dpnew ,d) moving directory d located
in the parent directory dpold

to its new parent directory dpnew
. The operation is

associated with tokens τd, and τdpnew
over the directory d and dpnew

, and a set
of tokens τe, for all directories e, which are ancestors of the new parent directory
dpnew up to LCA(d, dpnew ).

The precondition of move operation requires that (1) directory dpold
is the

parent of directory d, and (2) directory d is not reachable from dpnew . The first as-
sertion becomes false when another move operation concurrently moves directory
d. Token τd in set T disallows this concurrent execution. The second assertion
will be violated when another move operation concurrently move directory dpnew

under directory d. Acquiring token τdpnew
and the tokens over dpnew

’s ancestors
in set T forbids such concurrent situation.

However, we only need to acquire tokens over ancestors of τdpnew
up to the

least common ancestor of d and τdpnew
. We use contradiction to support this

claim. For brevity, we use mvdir(dpnew
, d) to indicate moving directory d in to

directory dpnew
. Let assume that the ancestors’ tokens up to the LCA(d, dpnew

)
is not sufficient, and a cycle is created as follows:

a ↓ c . . . ↓ dpnew ↓ d . . . b ↓ a

Where c, b, a are directories. This happens when there are move opera-
tions concurrently moving the dpnew

’s ancestors, which are located above the
LCA(d, dpnew ). The left side of this cycle (a ↓ c . . . ↓ dpnew ↓ d) indicates that
there is an operation mvdir(a, c) concurrently moving one of common ancestors
of dpnew

and d, say c, in to directory a. This operation succeeds iff directory a
is not a descendant of c (it’s the move’s precondition).

Now, consider the right side (b ↓ a), where another concurrent operation
mvdir(b, a) moves directory a in to one of d’s descendants, say b. This operation
requires tokens over directory b up to LCA(b, a). Depending on the location of
LCA(b, a), we consider two cases: 1) directory d is located between LCA(b, a)
and the destination directory b, i.e., directory d is in set A of mvdir(b, a) operation
(LCA(b, a) ↓+ d ↓+ b). Thus, moving a to b requires token over d, which conflicts
with the token set of mvdir(dpnew

, d) operation. 2) LCA(b, a) is located under d.
This means that directory a is d’s descendant. Knowing c is d’s ancestor, a is
also c’s descendant. This violates the precondition of operation mvdir(a, c), which
requires directory c not to be a’s ancestor, and hence, the execution of opera-
tion mvdir(a, c) cannot happen. Unless, there was another operation mvdir(d, a)
moving directory a in to directory d concurrently with operation mvdir(a, c).
However, this move operation also requires token d conflicting with the tokens
of mvdir(dpnew

, d) operation.
Thus, independent of LCA’s location, the right and left hand side of cycle

cannot be true at the same time, i.e., directory a cannot move in to one of d’s
descendants while moving d’s ancestors in to a. This contradicts the original
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assumption that the cycle is created, and the above is impossible. Therefore, we
conclude that acquiring tokens up to LCA(d, dpnew

) is sufficient.
Now, we show that set T is necessary, i.e., it contains the minimal set of

tokens, by contradiction: We assume that T is not minimal, meaning that it
includes unnecessary tokens. We remove a token τ ∈ T , and then check whether
concurrent executions of move operations still maintain the tree invariant. If so,
set T is not minimal.

1. τd is the token over the source directory d. Removing token τd from set
T allows concurrent operations to move the same directory d to another
destination directory d1. If d1 6= dpnew , then d will have two parents; violating
the tree invariant.

dpnew
↓ d ∧ d1 ↓ d

2. τdpnew
is the token over destination directory dpnew . Removing token τdpnew

from set T allows another move operation to concurrently move destination
directory dpnew

to directory d1. If d1 = d, or if directory d1 is a descendent
of directory d, i.e., d ↓+ d1, then cycles occur.

d1 ↓ dpnew
∧ dpnew

↓ d ∧ d ↓+ d1

3. τd1 is the token over one of dpnew
’s ancestors, say d1. . Removing token τd1

from set T allows another move operation to concurrently move directory
d1 to directory d2. If d2 = d, or if directory d2 is a descendent of source
directory d, i.e., d ↓+ d2, then cycles occur.

d2 ↓ d1 ∧ d1 ↓+ dpnew
∧ dpnew

↓ d ∧ d ↓+ d2

Thus, for moving directory d, we only require to acquire tokens over d, its
destination directory τdpnew

, and all ancestors of τdpnew
up to LCA(d, dpnew

).
Concurrent move operations are allowed as long as their token sets are compati-
ble. The intuition behind acquiring tokens over ancestors up to the least common
ancestor is: if a directory is a common ancestor of directory d and its destination
directory, the directory cannot be involved in concurrent move operations that
result into the tree invariant’s violation because it is disallowed by the move
operation’s precondition.

For instance, Fig. 7 illustrates how the token assignment avoids previous
counter example. Operation mvdir(root, n1, v, u) acquires tokens {τu, τv}, and
operation mvdir(root, n2, u, v) acquires the tokens {τu, τv}. Their token sets are
not compatible, token τu is not compatible with token τv, i.e., ./= {(τu, τv)}.
When another move operation executes at a different replica r2. This will force it
to synchronise with other replicas to find out if there are other move operations.
So, it will get the information about the first move operation in replica r1, and
cannot succeed.

We add the corresponding tokens to the move semantics, and perform the
CISE stability analysis again. This time, the tool generates a counter-example
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Table 2. A summary of file semantics verified by tool

Semantics #Op #Tokens #Invariant Anomaly Verification Time(ms)
Sequential Design 7 7 1 NO 278
Concurrent Design 7 0 1 invariant violation 1297

Fully-Asynchronous Design 7 0 1 duplication 2350
Mostly-Asynchronous Design 7 2 1 NO 1570

that indicates that two concurrent users might move the same file to different
locations. Thus, the file would end up with two parent directories; violating the
tree invariant. To avoid this issue, we assign an exclusive move token τf over
file f to each move file operation. Table 1 presents the move tokens required in
the mostly- asynchronous file system design. The semantics successfully passes
all three CISE analyses. The analyser proves that the consistency choices for
different move operations are sufficient to preserve the tree invariant.

7 Evaluation

We have developed a verification tool that leverages the CISE analysis to co-
design and verify a replicated file system. Our tool is currently implemented as
a few hundred lines of Java code that reduces the CISE obligations to Satisfia-
bility Modulo Theories (SMT) queries. We built the tool on the Z3 SMT solver
[1], developed by Microsoft Research for the verification and analysis of software
applications. Using the tool, we are able to encode a variety of file system se-
mantics. The challenge of file system verification using the SMT solver was to
translate reachability property because the SMT solver does not support any
built-in transitive closure operator. We employed the tactics and strategies pro-
posed in [28] and [16] to incorporate the reachability property in the context of
the SMT solver. Table 2 summaries the results of verification of four file system
semantics and the time taken by the tool. The tool was run on a Mac Mini, 3
GHz Intel Core i7. The number of operations is given without taking into account
operation arguments. The number of tokens specifies the number of operations
that require synchronization. The analyzer shows that the concurrent execution
of move operations is anomalous, i.e., it may violate the tree invariant. It follows
that no file system can support an unsynchronised move without anomalies, such
as loss or duplication.

8 Related work

First-Order Logic Reasoning. A number of formalisations of file systems
have been proposed using first-order logic [6, 17, 23]. Most of them focus only
on primitive file I/O operations, such as reading and writing file content [6, 29].
Arkoudas et al. [6] have proved the correctness of read and write operations for
a basic file system implementation using Athena, an interactive theorem prover.
Given a simple file system implementation, Athena constructs 283 lemmas and
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theorems in order to verify the isolation of reading and writing files in a directory.
Hughes [24] has specified a visual file system using the Z notations [44]. He
focuses on modelling of a hierarchical file system, so that its model covers basic
operations affecting the tree structure, including move and remove directories.
However, its specification does not consider the no-loop property, it only takes
transitive closure (i.e., reachability) as the main property of a tree structure.
Inspired by Hughes’s specification, Damchoom et al. [14] have formalised and
proved a tree-structured file system by using Event-B and Rodin platform [5].
Like our specification, their model is based on acyclic directory structure. A set
of permissions are attached to an object, so that accesses to the object depend
on the permissions allowed. The Rodin toolset generates 162 proof obligations
to verify the specification model. Hesselink and Lali [23] have introduced an
alternative approach to formulate the file structure using partial functions from
paths to data.

However, the first-order logic reasoning does not scale well when reasoning
about operation executions of a Posix file system [32]. The Posix English speci-
fication defines a set of preconditions for each operation, which must be satisfied
before its execution. For instance, moving a source directory into a destination
directory takes effect, if the source directory is not an ancestor of the desti-
nation directory. Encoding such conditions using first-order logic entails many
proof obligations and constraints that increase non-linearly with respect to the
size of programs [32].
Separation Logic Reasoning. Recent work on file system verification relies
on separation logic [37]. Haogang et al. [22] have introduced Crash Hoare Logic
(CHL) for developing and verifying sequential and fault-tolerant file systems.
The CHL logic checks whether a storage system implementation will recover to
a state consistent with its specification after a failure. Using the analysis, the
authors specified and verified FSCQ, a crash-safe user-space file system imple-
mented in Haskell. The FSCQ’s interface consists of a series of Hoare triples over
high-level operations. The specification model of FSCQ relies on the separation
logic to reason about operations at different level of abstractions including disk,
files, directories, and logical disk. FSCQ uses a write-ahead log for failure recov-
ery. The CHL analysis proved that the write-ahead log guarantees atomicity of
updates by adding fault-conditions into the Hoare triples.

Biri and Galmiche [10] have proposed a separation logic rule for trees and
local reasoning over global paths. However, their simple tree model forbids struc-
tural modifications, as neither new nodes can be created nor nodes can be moved,
i.e., the tree structure is static.

Gardner et al. [18] have proposed a formal model of Posix file system based on
separation logic. The semantics of Posix operations are captured with precondi-
tions and postconditions in a Hoare-logic style. Some permissions are associated
into each operation to control access to shared paths. Before applying an update,
the necessary permissions must be obtained in order to ensure that the effect
of the update is propagated to entries whose path may overlap. However, the
specification model does not support concurrent Posix users.
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Conflict Resolution in File systems. Clements et al. [13] have proposed
a cache conflict-free implementation of Posix file system on a shared-memory
multiprocessor system. They explore the commutativity of Posix operations to
design a scalable file system implementation. They have presented an anal-
yser, called COMMUTER, which checks the commutativity of Posix operations.
COMMUTER relies on symbolic executions for program testing. A symbolic
model tests all permutations of operations, and computes necessary conditions
under which those operations commute. Using the commutativity conditions,
they modify the Posix semantics. COMMUTER generates different test cases
to verify the semantics in a real implementation. However, they focus only on
scalability, not on the safety of executing commutative operations; they do not
verify that the commutative operations maintain the tree invariant.

Balasubramaniam and Pierce [8] have proposed an optimistic files system
replication model from a semantics perspective. Causally-dependent operations
are ordered according to a happen-before relation, while concurrent operations
may be executed in any orders. Concurrent updates on the same directory are
allowed if they do not conflict. For instance, concurrent users can add different
files with different names to the same directory, but if one user modifies a file,
and another deletes its parent directory, a conflict happens. The model requires
users to manually resolve conflicts. This specification model was later formalised
and proved by Ramsey and Csirmaz [36]. However, the operation-based model
is limited i.e., the algebra model contains 51 different rules for few operations,
including create, remove, and edit. It is not clear how one can extend the model
to support more complex operations, such as move operations involving different
directories. In addition, the model does not check the tree invariant; it is difficult
to describe the acyclic property by using their model.

Bjφrner [11] has proposed a replicated file system reconciler (DFS-R) that
automatically resolves conflicts when they arise. The author uses model checkers
to verify the conflict resolution strategies. Similarly to the CISE-enabled tool, the
analysis gives a counter-example for concurrent moves, meaning that concurrent
move operations do not maintain directory hierarchies as tree-like structure.
However, this reconciler does not address how to add synchronisation when the
tree invariant is violated. In this vein, Microsoft One Drive [4] discards the
directories involved, thus restoring a tree. Similarly, Google Drive [3] moves the
involved directories directly under the root. The geoFS [45] system effectively
executes a problematic move as copy-delete, duplicating the directories involved.

9 Conclusion and Future Work

We have applied the CISE analysis to verify and co-design an available file
system. Initially, the file system specification models the POSIX file system.
The main invariant is that the file system structure must be shaped as a tree.
We verified that our co-design approach is able to remove synchronisation for
the common file system operations, while ensuring the tree invariant.
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There are several avenues for future work from both verification and per-
formance perspective. First, the CISE analysis only verifies the correctness of
the file system against concurrent executions. In the future,we plan to propose
proof rules that allow developers to reason about the operation executions in
the presence of replica and network failures. Thus, programmers would be able
to prove that a file system specifications model handles properly any possible
faults. This entails formalisation of failure models, as the specification of the file-
system API captures its semantics under crashes. We are going to implement
the three file system semantics to compare their actual performance under real
workloads. The plan is to integrate our co-design findings into a highly-scalable
geo-replicated file system. The challenge is to translate the tokens into an effi-
cient concurrency control protocol, which is also dead-lock free. We are looking
for dynamic and heuristic analysis that allow to measure and improve the token
implementations.
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Abstract. Program synthesis is the problem of computing from a specification
a program that implements it. New and popular variations on the synthesis prob-
lem accept specifications in formats that are easier for the human synthesis user
to provide: input-output example pairs, type information, and partial logical spec-
ifications. These are all partial specification formats, encoding only a fraction of
the expected behavior of the program, leaving many matching programs. This
transition into partial specification also changes the mode of work for the user,
who now provides additional specifications as long as they are unhappy with the
result. This turns synthesis into an iterative, interactive process.
We present a formal model for interactive synthesis, leveraging an abstract do-
main of predicates on programs in order to describe the iterative refinement of the
specifications and reduction of the candidate program space. We use this model to
describe the behavior of several real-world synthesizers. Additionally, we present
two conditions for termination of a synthesis session, one hinging only on the
properties of the available partial specifications, and the other also on the behav-
ior of the user. Finally, we show conditions for realizability of the user’s intent,
and show the limitations of backtracking when it is apparent a session will fail.

1 Introduction
Program synthesis is the problem of computing from a specification a program that
implements it. The classic synthesis problem searches for an implementation to a full
specification, usually encoded in some logic. Newer variations on the problem have
turned to partial specifications, such as input-output examples or type information, that
are easier for the user to provide but describe a much wider array of matching programs.

Synthesis tools for end-users are available for a wide variety of purposes from cre-
ating formulae in Microsoft Excel [10] to formulating SQL queries [34]. Programming
by Example tools that accept input-output pairs as their specification have also matured
enough to be practical on their own [2, 10, 17, 18, 20, 23, 34, 35, 36] or as a way to
refine the results of type-driven synthesis [7, 24].

When the specifications are partial, the user is often brought into the loop to aid
the synthesizer to determine the correctness of the final product and to direct it with
additional feedback in case of ambiguity. Gulwani [11] separates synthesizers by their
model of interaction with the user. Notably two categories are (i) user-driven synthesis
tools, in which the user is responsible for verifying the artifact returned by the syn-
thesizer, and if incorrect, for providing additional specifications to the synthesizer, and
(ii) synthesizer-driven tools, in which the synthesizer poses the user with membership
queries for ambiguous examples until it has reached a level of confidence high enough
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to return a program to the user as a validation query. Counterexample-guided Induc-
tive Synthesis (CEGIS) [33], in which a verifier is provided with a specification, and
each program from the synthesizer is verified to produce either acceptance or an auto-
matically generated counterexample, is seen as its own category, as the interactivity is
between the synthesizer and the verifier.

Interactive synthesis Despite the fact that few user-driven tools define themselves as
interactive synthesis tools, it is important to note that interactivity is always inherent in
the synthesis workflow: the user provides some initial specification, runs the synthesis
procedure, and is presented with an answer. However, they may not be satisfied with
this answer, which leads to refinement of the specifications and another execution of
the synthesizer. This iterative process of candidate solution and refinement is rarely
discussed, as focus tends to remain on each single attempt to reach the user’s intended
program with as partial a specification as possible, via rankings and biases.

Interaction via predicates on programs Likewise, while each synthesis tool usually
treats the mode of specification it leverages as its own domain—input-output examples,
types, etc.—the common ground is often overlooked. Each of these modes of feedback
can be seen as a predicate over programs, and the process of providing a partial spec-
ification as constraining the space of possible programs to just those that satisfy each
of the predicates. For instance, an input-output pair (i, o), often seen as the simple and
natural tool for partial specification, can be seen as the predicate JprogramK(i) = o.
As previous work [4, 26] has shown, examples are a weak tool with which to provide
specification. The addition of other predicates in works such as [1, 24, 26] allows for
better separation between programs.

The most comprehensive specification that describes a target program m∗ is every
predicate available in the system that holds form∗. However, this complete specification
is very likely infinite or not computable. On the other hand, an initial specification can
be so partial as to rule out only a small number of programs in the candidate space. The
solution is to leverage the user’s ability to compute what is incomputable. In the words
of Knuth, “Some tasks are best done by machine, while others are best done by human
insight; and a properly designed system will find the right balance” [15] — by incre-
mentally providing additional predicates to refine the specification, a process which at
the limit will reach the comprehensive specification. In this paper, we limit our scope to
this form of iterative synthesis, where the set of predicates is built monotonically.

Properties of iterative synthesis The attempts to get program synthesis tools to return
a “suitable” program as soon as possible are based in heuristics and optimizations, and
vary greatly from one tool to the next. Additionally, these tools often have no concept of
convergence, or when the session will be forced to end, to explain their behavior should
these heuristics fail. While a few of the tools have been modeled individually, in order
to prove specific properties, the field is still lacking a generic model that can be used
to prove properties such as termination and establish criteria for the designers of future
synthesis tools to take into account as they design their new frameworks.

Goal The goal of this work is to investigate the theoretical foundation of interactive
synthesis. To this end, we present a model of the iterative synthesis process, centered
around the interaction between the synthesizer and a human user, and grounded in the
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theory of abstract domains [3]. This model aims to capture work with a wide array of
user-driven synthesizers. We use this model to prove both existing properties of synthe-
sizers and desirable properties in future synthesis tools. In order to do so, our defini-
tions and results are grounded in real-world examples. This model provides us with a
theoretical understanding of the properties of the interaction (e.g, progress, termination
guarantees) which can then be applied to current and future synthesizers.

Existing work Previous work has modeled single iterations of different flavors of syn-
thesis [1, 29], and the counterexample-guided model of synthesis (CEGIS) [14, 31].
The synthesizer-driven model of program synthesis [21] has also been modeled via
predicates, where user answers to membership queries are translated into constraints
and used to reduce the search space for the next iteration. A learner-teacher model of
program synthesis [22] has been presented mainly to model CEGIS, but can be applied
to an iterative, user-driven synthesizer as well, with the human user taking on the role
of the teacher. However, this model provides only guarantees stemming from the prop-
erties of the program space made available by the synthesizer, with little consideration
of the way feedback is provided to the synthesizer. For a CEGIS model, this is suffi-
cient, as communication between the teacher and learner is chiefly in examples, but is
unsuitable for a more generic model where feedback formats and specification tools are
multiform.

1.1 Our approach

In this paper, we formulate a model for interactive synthesis using the theory of abstract
domains.

An abstract domain of predicates Given a domain of programs M and a domain of
predicates on programs P , we define the concrete domain of the synthesis algorithm to
be sets of programs (2M ,⊆) and the abstract domain to be sets of predicates (2P ,⊇),
with an abstraction function that produces the incomputable set of all predicates that
hold for the set of programs, and a concretization function that produces the equally
incomputable set of all programs that satisfy a conjunction of all predicates in a given
set. Since both these sets are likely not computable, a real synthesizer relies on the syn-
thesizer’s representation of the state to replace a concretization, and the user to replace
the abstraction. Section 3 formally defines these domains and the operations on them.

Iterative, interactive synthesis In this domain, we can then define an iterative synthesis
algorithm as an iterative refinement (i.e., adding of predicates) of the specification in
each iteration of the process. This creates a synthesizer state, in itself an abstract el-
ement, from which the next program displayed to the user as a candidate solution is
selected. This process, in essence, is leveraging the user to compute the abstraction of
the target program, or more accurately, a finite subset of it. If a finite subset that un-
derapproximates the target exists, the synthesis session can converge regardless of the
implementation. Section 4 defines an iterative synthesis session, the notion of progress
by the user, and the terms for convergence.

Properties of interactive synthesis Using this model, we show several properties of
interactive synthesis. In section 6 we define the point from which a synthesis session can
no longer converge, even if the user has, from their point of view, only provided correct
specifications, and properties of the point we must backtrack to when that happens.
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Section 5 offers two separate sets of limitations on the model that lead to convergence
(i.e., a finite session) in every session. A well-quasi-order of predicates ensures that
all sessions will terminate, and a locally strongest user condition ensures termination
when predicates only have a well-founded-ordering. We demonstrate these conditions
and properties using realistic examples.

Implications Finally, section 7 discusses the implications of these properties for the
designers of future synthesis tools.

1.2 Main contributions

The main contributions of this paper are:

– A general model for iterative synthesis using the theory of abstract domains,
– Convergence conditions for iterative synthesis sessions, based on properties of the

predicates and user behavior,
– Insights about backtracking when a session can no longer converge, and
– Recommendations for designers of future synthesis tools.

2 Background
In this work we address program synthesis. Below we provide some background on
synthesis methods and terminology.

The synthesis problem description Readers familiar with software verification would
most likely recognize the common verification problem ∀ι. ϕ(ι), where ι ranges over
possible program inputs and ϕ is a property to check (safety, liveness, termination, etc.).
In synthesis, the problem is commonly stated as ∃m. ∀ι. ϕ(m, ι), where m ranges over
the domain of candidate programs, and the synthesizer is tasked with finding one pro-
gram that satisfies the desired property on all inputs. Different tools have varying ways
to define the candidate program space. Since this space is huge even when considering
a modest program size, sifting through it to find a single program with the property ϕ
is computationally hard.

Program semantics In the most abstract sense, a program m accepts input ι and pro-
duces output ω. In programs that have effects on their environment (sending network
packets, moving a robotic arm) the environment state can be folded into the input and
output spaces; so for all purposes, we can assume a definition of program semantics as
JmK : I → O∪{⊥}. The special value ⊥ indicates abnormal behavior, which may be
a run-time error or non-termination. It means there is no execution of the program with
the given input that reaches the designated “successful” exit point.

Partial specification Often, it is quite hard to describe the property ϕ to the synthesizer
precisely. Most synthesizers offer a domain-specific language for describing weaker
properties in a way that both the user and the synthesizer can understand and (hope-
fully) the synthesizer can efficiently generate a corresponding program. We present two
examples for such property domains.

– Type-directed synthesis is a sub-class of the synthesis problem where the specifi-
cations are in the forms of types: the types of the input variables and the expected
output type. Likewise, the construction of programs is guided by derivation rules
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that are constructed from the typing rules. On a very basic level, the construction
of well-typed programs is type-directed synthesis, but synthesizers often contain
derivation rules that select a small number of operations to derive when adding
operations or assigning parameters.
This class can be restricted to our setting of monotonic refinement if at each step the
user can only (a) remove variables from the scope, (b) generalize an input variable’s
type to a super-type, or (c) concretize the expected return type to a sub-type.

– Programming by Example (PBE) is a sub-class of the synthesis problem where
all communication with the synthesizer is done using input-output examples. The
classic PBE problem is defined as a set E of examples, each of which is a pair of an
input and its corresponding expected output; the result is a program m, within the
candidate space, that satisfies every example in E . PBE has become widely popular
since examples are easier to create than full logical specifications, can be provided
in many formats from tabular data to unit tests, and can even be created by non-
programmers. Since there might be more than one program m in the language L
that matches all specifications, the iterative PBE problem was introduced. In the
iterative model, each candidate program mi is presented to the user, which may
then accept mi and terminate the run, or answer the synthesizer with additional
examples Ei that direct it in continuing the search.
As an extension of this approach, abstract examples can be used to describe a (pos-
sibly infinite) set of examples using a short description. This description usually
uses a weak abstraction mechanism, such as regular expressions.

3 Foundations for Synthesis with Abstract Domains
In this paper, we formalize interactive synthesis using abstract domains, where the role
of the user is to strengthen the abstraction of the target program, while the role of the
synthesizer is to concretize the abstraction and pick a concrete element from it as a
candidate program. To do so, we start, in this section, by formalizing a single iteration
that consists of a user providing a spec as input and the synthesizer returning a program.

Let us consider U the domain of all programs, in all languages. Out of these, only
a subset is available to the user via the synthesizer. We denote this, our program search
space, M ⊆ U .

User-driven synthesis is guided by the concept of a target program in the user’s
mind. We denote U∗ ⊆ U the set of programs that satisfy the user’s concept of a correct
program, and M∗ = U∗ ∩M , the subset of U∗ that is in the synthesizer’s search space.
A user’s intention is realizable if M∗ 6= ∅. It is important to notice for the remainder
of this paper that M∗, while a subset of the synthesizer’s search space, is not actually
known to the synthesizer.

In order to encode the specification, let us also consider a (possibly infinite) set P of
predicates over programs. We assume that every p ∈ P is decidable. When considered
against some set of programs T , each predicate p ∈ P defines a subset of programs
from T that satisfy it, denoted {m ∈ T | m � p}. In this way, the same set of predicates
P can define subsets of both M and U . In this sense, the predicates can be viewed
as formulas, and the programs as structures. We do not, however, assume or use any
internal structure of the predicates in this paper.
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In particular, we will use predicates in implication modulo a theory of programs.
We write p ⇒T q to denote ∀m ∈ T. m � p ⇒ m � q. The same extends to a set of
predicates, A⇒T q, to mean as their conjunction.

The remainder of this paper assumes working with a specific P and a specific M ,
and that the user is seeking a specific M∗. This means all the definitions that follow are
parametric in M and P , and when used also in M∗.

3.1 An abstract domain for programs

Our concrete domain consists of the powerset lattice (2M ,⊆) (where the least element
is ∅ and the greatest element is M ). That is, each concrete element is a set of programs,
and the sets get smaller when lower in the lattice.

During the synthesis process, the synthesizer represents (or abstracts) sets of pro-
grams from the concrete domain using sets of predicates from P . Formally, letA = 2P .
The synthesis process uses an abstract domain that consists of the powerset lattice
(A,v), where v is defined as ⊇. That is, each abstract element is a set of predicates
(interpreted as a conjunction), and the sets get larger (or more constrained) when lower
in the lattice. Join, meet, bottom, and top are defined as they usually are in the powerset
domain: For two abstract elements A1, A2 ∈ A, meet is defined as A1 uA2 = A1 ∪A2

and join as A1 tA2 = A1 ∩A2. Further, > = ∅ and ⊥ = P .
From here on, we refer to A ∈ P as elements in the lattice and as sets of predi-

cates interchangeably. Which one we mean should be clear from the context (e.g.., the
operators used).
Galois connection We would like an abstract element A ∈ A to represent the set of
programs s ∈ M for which every predicate p ∈ A holds. To do so, we define a Galois
connection between (2M ,⊆) and (A,v).

Definition 1 (Abstraction). For a single program m ∈ M , we define the abstraction
function β(m) = {p ∈ P | m � p}, which abstracts m into the set of all predicates
that hold for m. From this we define for a set of programs C ⊆ M the abstraction
α(C) =

⊔
m∈C β(m) = {p ∈ P | ∀m ∈ C.m � p}.

This is similar to the abstraction performed by Houdini [8], Daikon [5], and D3 [25].

Definition 2 (Concretization). For an abstract element A ∈ A, we define the con-
cretization function γ(A) = {m ∈M | ∀p ∈ A. m � p}, or all programs for which all
constraints in A hold.

It is easy to verify that (α, γ) is a Galois connection.
Recall that in the abstract domain, ⊥ = P and > = ∅. Therefore, γ(>) = M ,

which means that the top element represents all valid programs inM , as desired. On the
other hand, γ(⊥) is not necessarily the empty set, since there might be valid programs
that satisfy all predicates in P . However, in the typical case, P contains contradicting
predicates (e.g., a predicate and its negation, or examples mapping the same input i to
different outputs o1 6= o2), in which case γ(⊥) represents an empty set of programs.
Reducing the search space The non-interactive, single-step, synthesis problem can
now be described as one for which the input is a (partial) specification of the target
program in the form of an abstract element A ∈ A, and the output is some program
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from the set of programs it describes. The selection is (usually) not random, but rather
influenced by internal representation in the synthesizer, as well as ranking functions. To
reason about the synthesizer’s role, we define Select : A →M ∪{⊥}, the synthesizer’s
operation of finding such a program. Select(A) amounts to picking a concrete element
from γ(A), or returning ⊥ if no such element exists; hence, it can be understood as
partially concretizing the abstract element. The implementation of Select is dependent
on the synthesis algorithm being used.

3.2 Examples

Type-directed synthesis as an abstract domain A widely used domain of predicates
is a domain of type information. When creating a procedure via type-directed synthe-
sis, the specification to the synthesis procedure is provided via type predicates for the
procedure’s formals (name, τ) ∈ Formals × T and a desired return-type predicate,
τret ∈ T which will hold according to the v relation on types. A similar specification
is used for type-directed synthesis that produces code snippets: the same τret specifies
the target type (usually assigned to a variable) and the available variables are specified
using type predicates (name, τ) ∈ V ars× T for local variables V ars.

PBE as an abstract domain Another frequently used domain of predicates is the do-
main of input-output examples. Recall that each program m defines a function, JmK :
I → O ∪ {⊥}, that maps inputs to outputs (or to error). Programming by example con-
siders the predicates P = I × O, where each pair (ι, ω) ∈ P dictates that for input ι,
the program outputs ω. For this purpose, we define m � (ι, ω) ⇐⇒ JmK(ι) = ω.

Syntactic feedback as an abstract domain [26] introduces a domain of predicates that
provide syntactic restrictions on programs, intended for use by programmers. For in-
stance, an include(f) predicate which holds only for programs that make use of a
function or operator f , or exclude(f) which holds only when they do not. For linear
functional programs, these operators can also be generalized to sequences of methods,
either as a continuous subsequence—exclude(f ·g) will hold only for programs where
f is not immediately followed by g—or for general subsequences—exclude(f ·g) will
hold for programs where there are no i < j s.t. fi = f, fj = g. The predicates used
in this work are limited to these, but in several examples in this paper we make use of
predicates suggested by or simply in the spirit of those shown in [26].

3.3 Computability of the model

We notice that, in general, both α and γ are non computable: α because P may be in-
finite; and even though any A provided by the user will always be a finite set, γ may
still not be computable as a finite set of predicates may return an infinite subset of an
infinite M . Because of that, neither of them is used directly by any concrete implemen-
tation of the model. Concretization is only performed as part of a Select(A) operation,
representing the synthesizer’s generation of a program based on its description of the
reduced program space A, which need not actually create the concrete set of programs
represented by A. In synthesizers based on version space algebra (VSA) [19], for in-
stance, only a representation of the space of all programs is constructed, from which a
single concrete program is then selected.
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Abstraction is also never performed by the algorithm, but rather by the user: the
target programs, M∗, as envisioned by the user, are described in the input specification
A by the selected predicates. This is less precise than a full (and possibly infinite)
α({m∗}) of some m∗ ∈M∗, but in an iterative synthesis process can be refined by the
user when the result is insufficient, which means that the synthesizer state (representing
the accumulated user input) comes closer to α({m∗}) with each iteration. (Note that
unlike a classical abstraction framework [3], where it is important to soundly abstract
the entire set M∗, in synthesis it suffices to abstract some nonempty subset of M∗.)
Intuition If the user could produce a full specification S∗ ⊆ P (or as full as P al-
lows), satisfying it could be a matter of arbitrarily selecting any program from γ(S∗).
However, since creating full specifications is hard or even impossible, the process of
interactive synthesis, which will be described in the next section, is essentially building
up to a fuller specification in every iteration. The user adds new specifications to rule
out each undesirable candidate program, and the meet operation collects added specifi-
cations into the synthesizer state, which at the limit will reach S∗.

4 An Abstract Model of Interactive Synthesis
Section 3 discussed a model for a single iteration of synthesis. We now wish to describe
the iterative process that exists, even if implicitly, in most synthesizers. In it the user
will keep adding to the specifications given every time the synthesis procedure offers
an unsatisfactory candidate. We formulate this as questions (candidate programs) and
answers (additional specifications).

Definition 3 (Synthesis session). A synthesis session is a sequence of steps by the user
and synthesizer S = (A0, q1), (A1, q2), . . . such that qi ∈ M ∪ {⊥} are synthesizer
questions and Ai ∈ Pfin(P) ∪ {⊥} are user answers, where Pfin(P) is the set of all
finite subsets of P and ⊥ signifies a forced contradiction. We denote A0 the initial
specifications provided by the user.

Within a synthesis session we define the state of the synthesizer via the constraints
on it provided by the user, as follows:

Definition 4 (Synthesizer state). The state of the synthesizer S ⊆ P is an abstract
element describing the portion of the search space requested by the user. If the user
has given feedback for i iterations in the form of the elements A0, A1, . . . , Ai ⊆ P , the
state after i iterations of feedback is Si =

⋃
0≤j≤iAj .

Interactive synthesis can now be formalized as a process in which both the state of
the synthesizer and the interaction between the synthesizer and the user are based on ab-
stract elements. In step i, the synthesizer selects a program qi ∈M using Select(Si−1),
and poses qi as a validation question to the user. The user accepts or rejects the program.
In case of rejection, the user responds with an answer Ai ∈ A in the form of an abstract
element which consists of one or more predicates out of P . Given the user’s answer
Ai, the new state of the synthesizer in step i + 1 is set to Si+1 = Si u Ai+1, thus
narrowing the set of concretizations to consider. Or, in other words, we can now define
Si+1 =

d
0≤j≤i+1Aj . The search is over either when Select returns nothing because

γ(Si) = ∅ and represents no programs, or when the user is satisfied and accepts the
program.
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Notice that, unlike the classical use of abstraction, where the intent is to describe as
many concrete states as possible, and so new information is appended via join, here our
purpose is to refine, and so we use meet.
Synthesis users In order to reason about iterative synthesis, we must define the user’s
behavior. We have already defined U∗ the set of programs in U the user is willing to
accept, as well as M∗, the intersection between the user’s concept of the target pro-
gram and the search space of the synthesizer. We now add guarantees for the iterative
behavior:

Definition 5 (User correctness). A user step, providing Ai as an additional specifica-
tion, is correct when Ai ⊆ {p ∈ P | ∃m ∈ U∗.m � p}.

Correctness means the user will not provide predicates that are inconsistent with their
idea of the target. Notice that this set of predicates may still contain a contradiction, as
it contains predicates of different programs, and that even if no explicit contradiction
exists, subsets of it may still evaluate to ∅ over the domain M .

According to definition 5, a correct user may still provide predicates that hold for
some, but not all, of U∗. This may seem unintuitive, but realistically occurs because
(a) U∗ may not be sufficiently described with predicates from P , but a subset of it may,
(b) given a current candidate program m, the user sets a trajectory for the synthesis
procedure and makes local decisions that may rule out some programs in U∗, or conflict
with other (similarly local) decisions made in the past.

Definition 6 (Synthesis user). The behavior of the user includes the following guaran-
tees:

1. The user is correct for as long as they can be. If the user can no longer provide an
answer that is correct, they will answer ⊥.

2. If a user sees a program in M∗, they will accept it.

Finally we define a feasible synthesis session as a session that can be reached by the
actions of a user and a synthesizer:

Definition 7 (Feasible synthesis session). A feasible synthesis session is a synthesis
session S = (A0, q1), (A1, q2), . . . that satisfies the following:

(a) All Ai are correct steps (definition 5) or ⊥,
(b) qi = Select(Si−1), i.e. qi ∈ γ(Si−1)∪{⊥}, where⊥ signifies no possible program,
(c) If qn ∈M∗ ∪ {⊥} then S is finite and of length n, and
(d) In a finite S of length n, qn ∈M∗ ∪ {⊥}

where item b is a requirements for synthesizer correctness, and items a, c and d are
requirements for user correctness.

Remember that additionally, from the definition of Select, if S is finite of length n,
then qn = ⊥ ⇐⇒ γ(Sn−1) = ∅.

These mean that a feasible synthesis session is either (i) infinite, (ii) ends by return-
ing ⊥, (iii) or ends with the user accepting qn the last program.

For the remainder of this paper we are only interested in feasible synthesis sessions.
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Definition 8 (Convergence). A synthesis session (A0, q1), (A1, q2), . . . , (An, qn) is
said to converge if γ(Sn) ⊆M∗. It has converged successfully if γ(Sn) 6= ∅.

When a session has terminated with any result other than ⊥, this will mean that
the user accepts qn, but convergence is in fact a stronger condition. This is because
definition 7(d) can refer to a case where the synthesizer has offered a program out of
M∗ at any point in the session, because of the implementation of Select, ranking, or
domain knowledge, thereby causing the session to end immediately. Convergence, on
the other hand, ensures that regardless of the implementation of Select, a program from
M∗ will be returned (or no program at all). This definition reflects the fact that, unlike
classical abstraction frameworks, where one seeks an overapproximation of the target
that is “precise” enough, convergence of a synthesis procedure requires an underap-
proximation of the target. For convergence to be successful, that underapproximation
must be nonempty. For the remainder of this paper we will be mostly interested in the
worst-case implementation of Select, where the session either converges or is infinite.

4.1 Progress-making sessions

The first basic property needed in order to explore convergence is that the synthesis
session is progressing—refining not only the abstract element of the synthesizer state
but also its concretization in the program space. We consider two kinds of progress,
weak and strong, which differ by the effect of the step on the synthesizer state. Section 5
will leverage progress into results on termination.

Definition 9 (Weak progress). A user answer Ai is said to create weak progress in
iteration i of a synthesis session if γ(Si−1 u Ai) ( γ(Si−1). This means that Ai has
ruled out at least one program from M described by Si−1 .

We say a synthesis session makes weak progress if every user answer Ai in the
session makes weak progress.

Note that it is not enough to demand that Si−1 u Ai A Si−1: the user can provide
a predicate p that rules out no program in γ(Si−1), which means γ(Si−1) = γ(Si) but
since it was not given before by the user, Si−1 uAi A Si−1.

Lemma 1 (Weak progress by implication). User answerAi in iteration i of synthesis
session makes weak progress if and only if Si−1 6⇒M Ai.

Proof. Let S be a synthesis session. Step imakes weak progress ⇐⇒ γ(Si−1uAi) (
γ(Si−1) ⇐⇒ ∃m ∈ M.m ∈ γ(Si−1),m 6∈ γ(Si−1 u Ai) = γ(Si−1) ∩ γ(Ai) ⇐⇒
∃m ∈ M.m ∈ γ(Si−1),m 6∈ γ(Ai) ⇐⇒ ∃m ∈ M.∀p ∈ Si−1.m � p, ∃p ∈ Ai.m 6�
p ⇐⇒ ∃p ∈ Ai.Si−1 6⇒M p ⇐⇒ Si−1 6⇒M Ai. ut

Lemma 1 gives us a test for the synthesizer to apply should the creators of the
synthesizer wish for it to enforce progress in every iteration.

Example 1. Let us examine predicates used for providing positive feedback. In PBE this
might be an example that reinforces some behavior that is good in the current program.
In other predicates this might be okaying a syntactic portion on the program, or in other
words, asking the synthesizer to keep something for future programs. Another option
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is approving of an intermediate value of the program for a specific input—something
which holds for the current program.

All of these, while not ruling out the current program, may rule out other programs
in the space. This means that in a synthesizer which enumerates the entire space of M
in some order, the same qi will be displayed as qi+1. However, since the portion of the
program space represented by Sn is different, some implementations of Select may
return a different program.

Definition 10 (Strong progress). A user answer Ai is said to create strong progress in
the synthesis session if qi 6∈ γ(Si−1 uAi), or in other words, if α({qi}) 6v Ai.

We say a synthesis session makes strong progress if every user answer in the session
makes strong progress.

Definition 10 is stronger than that defined in definition 9 as it ensures the user will
not be shown the same program again, regardless of the implementation of Select. If
Select has some preference bias—such as an ordering over the programs—then non-
strong progress will essentially lead to the same program being returned; however, we
do not preclude the general case where changing the specification in any way or even
just re-running the synthesizer may yield a different program.

Example 2. The FlashFill implementation in Microsoft Excel [10] allows only predi-
cates that would cause strong progress. Specifically, as the program candidate in each
iteration of FlashFill is executed on the entire dataset and the results are shown to the
user. The user can then make changes to records where the result of the executed pro-
gram is not the desired result. This mean that the set of predicates available to the user at
iteration i is not any {(r, o) | r is a record in the table}, but only {(r, o) | JqiK(r) 6= o}.
Since every p ∈ Ai necessarily rules out qi, this is an even stronger requirement than
that of strong progress in definition 10.

Due to our assumption on the user correctness, the strong progress requirement
can be equivalently formulated by requiring the user to use at least one predicate that
differentiates qi from M∗:

Definition 11 (Diff). We define the diff between two programs m1,m2 ∈ M in the
program space over the set of available predicates to be diff (m1,m2) = {p ∈ P |
m2 � p ∧m1 6� p} = β(m2) \ β(m1).

Lemma 2 (Correct strong progress by differentiating predicate). A correct user an-
swer Ai in iteration i + 1 of a synthesis session makes strong progress if and only if
Ai ∩

⋃
m∈M∗ diff (qi,m) 6= ∅.

While progress is a natural requirement to make, it may not always be obtainable
with the available predicates. There may simply not be predicates with which to rule out
the current program, for instance, but, most often, there is simply no correct step with
which to continue the session. Next, we define the result of the clash between progress
and correctness and demonstrate a scenario where it manifests:

Definition 12 (Non-progress point). Iteration i is a weak non-progress point (resp.
strong non-progress point) if any predicate p that would cause weak (resp., strong)
progress is incorrect, i.e., ∀m ∈ U∗.m 6� p.
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In the sequel, we simply refer to a “non-progress point” since the weak/strong qualifier
is determined by the kind of interaction enforced by the synthesizer.

If iteration i is a non-progress point, then by correctness the user is forced to answer
⊥. In practice, this means iteration i+ 1 will necessarily be (⊥P ,⊥M ).

Example 3. Consider a domain of programs and a set of predicatesP = {exclude(f) |
f ∈ V} ∪ {include(f) | f ∈ V} over some vocabulary of methods V . The user is
looking for a program that will provide them with the second element of a list of strings.
Let us assume that U∗ = M∗ = {input.tail.head}, and that the user is shown
qi =input.head.tail.

If the current synthesizer enforces strong progress, the user is now at an impasse:
includes are a form of positive feedback, approving of something in the current pro-
gram. While they may rule out some program in the synthesizer state, they will not
rule out qi. However, with the given set of predicates, either option that will make
any progress, exclude(head) and exclude(tail), will violate correctness, and will
cause Si ∩M∗ = ∅.

5 Termination
In general, a synthesis session may never terminate. For instance, it is easy to show
using this model that PBE may never terminate: let us assume the user is searching for
a program where conversion from polar to cartesian coordinates is required. The user
will provide some examples for desired input-output pairs, and a program that applies
the sine function to implement the conversion will be part of the synthesizer state, but
no matter how many examples are provided, there will still be programs that use some
interpolated polynomial instead of sine, thereby keeping γ(Si) from ever reaching M∗.

We now show two conditions for termination for synthesizers, based on properties
of their predicates. The first is a condition for both strong and weak progress sessions,
demanding a strong requirement from the synthesizer, a well-quasi-ordering of the
predicates. The second is a condition for synthesis sessions that make strong progress,
and is modeled on a property similar to well-quasi-order’s finite basis property. In it, we
can weaken the requirement on the predicates, but in exchange add a requirement from
the user.

5.1 WQO predicates

We first show that termination can be guaranteed using the theory of well-quasi-ordering:

Definition 13 (Well-quasi-order [16]). Let 5 be quasi-order on X (i.e., 5⊆ X ×X
is a reflexive and transitive relation). By convention, x > y denotes y 5 x∧x 65 y. The
following definitions are equivalent:

(1) 5 is a wqo over space X
(2) In every infinite sequence x1, x2, . . . there exist i < j s.t. xi 5 xj , and
(3) X satisfies both: (a) every sequence x1 > x2 > . . . is finite (the strictly de-

scending chain condition, also known as well-foundedness), and (b) every sequence
x1, x2, . . . with xi 65 xj for i 6= j is finite (the incomparable chain condition, also
known as the antichain condition).
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Theorem 1. Let p � p′ ⇐⇒ p ⇒M p′. If � is a well-quasi-ordering over the set⋃
m′∈M∗ β(m

′), then any synthesis session that makes (weak or strong) progress will
always converge in a finite number of steps.

Proof. Since every strong progress session also makes weak progress, it suffices to
prove the theorem for weak progress sessions.

Let us assume, by way of contradiction, that S is an infinite synthesis session that
makes weak progress. We construct the infinite sequence p0, p1, . . . such that pi is
some progress-making predicate from Ai. Since S makes weak progress, we know that
Si−1 6⇒M pi (Lemma 1) and in particular, for every p′ ∈ Si−1, p′ 6⇒M pi. From
definition 4, ∀pj .j < i⇒ (pi 6⇒M pj), or in other words, ∀pj .j < i⇒ (pi 6� pj). But
since� is a wqo, in every infinite sequence ∃i, j.i < j∧pi � pj (from definition 13(b)),
leading to a contradiction. This means a session must be finite, i.e. converge. ut

From this, if the entire predicates set P is a wqo, then the synthesizer will terminate
for every M∗.

Example 4. While it is easy to see that examples are not a wqo, as the entire domain
is incomparable, there are domains of predicates that do create a wqo. For instance,
a family of syntactic predicates exclude(f1 · · · f2 · · · fn) that exclude programs con-
taining a specific subsequence of function calls (not necessarily consecutive) will be a
wqo over the domain of linear programs [13]. In this domain, a user can express feed-
back such as exclude(close · · · read), thereby ruling out every program that creates
a read-after-close error.

5.2 Locally strongest user

In this subsection, we relax the well-quasi-order requirement on the predicates, and
prove another termination property by assuming some locally-optimal property of the
user.

Definition 14 (Base set). Let S ⊆ P be a set of predicates. We define the base of S,
Base(S) = {p ∈ S | ∀p′.p′ ⇒M p⇒ p = p′}, i.e. the set of strongest predicates in S.

In order to simplify we assume P does not contain equivalent predicates.
Let us now add a new restriction on the user, which strengthens the strong progress

requirement of the synthesizer:

Definition 15 (Locally strongest user). Given a candidate program qi 6∈ M∗, a lo-
cally strongest user will answer with Ai such that Ai ∩

⋃
m′∈M∗ Base(diff (qi,m

′)) 6=
∅. That is, at least one predicate in the answerAi will be taken from Base(diff (qi,m

′))
of some target program m′ (where the latter means that no stronger predicate exists in
diff (qi,m

′)).

In other words, a locally strongest user will always make progress using the most
effective (i.e., strongest) predicates available. This means that, for instance when us-
ing GIM predicates [26], given a choice between two sequence exclusion predicates
exclude(drop) and exclude(drop · take), if they are both relevant, the user will
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select the one making more impact – which is the sensible choice, as excluding the
subsequence when the individual function is undesirable could cause it to appear again.

We notice that in case the sets of predicates in question have an infinitely decreasing
(i.e., infinitely getting stronger) sequence of predicates, this restriction on the user is
at odds with correctness: no predicate from the infinite decreasing sequence will be
represented in its base set, which means the user may have a correct predicate available
to them from

⋃
m′∈M∗ diff (qi,m

′) but no action in the union on the base sets.
To counteract this, we would like to make sure every chain of predicates would

have a strongest element to add to the base set. We therefore add a requirement for⋃
m′∈M∗ β(m

′) to be a well-founded order: we recall that if X is a wfo, it satisfies the
strictly descending chain condition in definition 13(c) (but not necessarily the incom-
parable chain condition). The following lemma shows that if

⋃
m′∈M∗ β(m

′) is a wfo,
then a correct user that is able to make strong progress can also be locally strongest,
i.e., it will never get stuck due to inability to find a “strongest” predicate.

Lemma 3. Let p � p′ ⇐⇒ p ⇒M p′. If � is a wfo over
⋃

m′∈M∗ β(m
′), then

whenever
⋃

m′∈M∗ diff (qi,m
′) 6= ∅, we have that

⋃
m′∈M∗ Base(diff (qi,m

′)) 6= ∅ as
well.

Proof. First note that if � is a wfo over
⋃

m′∈M∗ β(m
′), then it is also a wfo over⋃

m′∈M∗ diff (qi,m
′) for any qi 6∈ M∗. This is immediate from the property that

diff (qi,m
′) ⊆ β(m′) and hence

⋃
m′∈M∗ diff (qi,m

′) ⊆
⋃

m′∈M∗ β(m
′). Since⋃

m′∈M∗ diff (qi,m
′) is nonempty, well foundedness ensures that its base set is also

nonempty, and hence also
⋃

m′∈M∗ Base(diff (qi,m
′)) 6= ∅. ut

We can now formalize our termination result for a locally strongest user. We start
with the simpler case whereM∗ is a singleton set, and then extend it to the general case.

Theorem 2. If
⋃

m′∈M∗ β(m
′) is a wfo,

⋃
m′∈M∗ Base(β(m′)) is finite and the user

is locally strongest, then any synthesis session that makes strong progress will converge
in a finite number of steps.

Notice that when using ⇒M as an order relation, the requirement of finiteness of⋃
m′∈M∗ Base(β(m′)) is similar to a wqo’s finite basis requirement (Higman [13]).

However, this requirement is only applied to β(m′) for m′ ∈ M∗, not to all sets,
and does not require an upwards-closed set. Also notice that if

⋃
m′∈M∗ β(m

′) was
a wqo, as required from theorem 1, this would already be true because of the finite
basis property.

Proof. First we show that Base(diff (qi,m
∗)) ⊆ Base(β(m∗)) for every m∗ ∈ M∗

and qi ∈ M . Let us assume, by way of contradiction, that there exists a predicate p ∈
Base(diff (qi,m

∗)), p 6∈ Base(β(m∗)). We know that p ∈ β(m∗), since diff (qi,m
∗) ⊆

β(m∗), so for p to not be in Base(β(m∗)) there must be p′ ∈ Base(β(m∗)) s.t.
p′ ⇒M p. p′ is not in diff (qi,m

∗), or it would also be in Base(diff (qi,m
∗)) in-

stead of p, which means that qi � p′. However, since qi 6� p and p′ ⇒M p, we
have reached a contradiction. This trivially implies that

⋃
m′∈M∗ Base(diff (qi,m

′)) ⊆⋃
m′∈M∗ Base(β(m′)), and hence finiteness of

⋃
m′∈M∗ Base(β(m′)) ensures that⋃

m′∈M∗ Base(diff (qi,m
′)) is finite as well.
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Next we see that since
⋃

m′∈M∗ Base(diff (qi,m
′)) is finite, then if the user makes

strong progress by selecting a predicate from
⋃

m′∈M∗ Base(diff (qi,m
′)) in each iter-

ation, the session will always converge in at most n ≤ |
⋃

m′∈M∗ Base(diff (qi,m
′))|

iterations when one of the following will occur:

– γ(Sn) ⊆ M∗ (as will be seen later in definition 16, Sn = B ∈ B), and the session
has converged successfully, or

– γ(Sn) = ∅, which means qn+1 = ⊥, or the session has converged unsuccessfully.

The first option is a successful convergence. The second option, in which the session
fails to converge successfully, is possible for two reasons. First, because our requirement
for the user is not to select only from

⋃
m′∈M∗ Base(diff (qi,m

′)), and other correct
user actions may still lead to a contradiction. Second, throughout the session, the user
may select predicates from Base(diff (qi,m

′)) ⊆ β(m′) of a different m′, and these
predicates may contradict. The latter is no longer a possibility if M∗ is a singleton set.

ut

Example 5. Let us assume a singleton M∗ = {m∗}, a domain of functional programs
over a vocabulary V and a set of syntactic predicatesP = {include(seq), exclude(seq)}
predicates over all continuous sequences of methods seq = f1 · f2 · · · fn ∈ V .

We can see immediately that P itself is not a wfo: for every sequence used by
include, there is a stronger predicate which includes a subsuming sequence. However,
a specific target program m∗, and its description β(m∗), is a different matter. While
exclude sequences can longer than the length of m∗ as long as we wish and will still
appear in β(m∗), include sequences that are longer than m∗ will rule out m∗. This
means that the chain of include predicates in β(m∗) is finite, and so β(m∗) has a
well-founded ordering.

6 Successful Convergence and Backtracking
In this section we characterize the cases where a synthesis session may converge suc-
cessfully, in the sense that the user has a path that leads to successful convergence. We
then examine situations in which a synthesis session trying to achieve a realizable target
program goes awry and fails to converge successfully. The expected user behavior in
these cases is to backtrack — to remove some of the provided specification or to can-
cel recent steps. We show that the point of realization that backtracking is needed is in
many cases farther along the session than the point which necessitates backtracking. We
explore the amount of sufficient backtracking, and show that it may be of any length.

Recall that a user’s intention is realizable if M∗ 6= ∅ (see Section 3). We observe
that this is a necessary condition but in general not sufficient, and successful conver-
gence requires a stronger notion of realizability. To formalize this notion, we need the
following definition:

Definition 16 (Core set). We say that a set B ⊆ P is a complete specification if ∅ 6=
γ(B) ⊆ M∗. We define the core set of the synthesis problem as the set of all finite
specifications, B = {B ⊆ P | ∅ 6= γ(B) ⊆M∗ ∧ |B| ∈ N}.

If there exists no B ∈ B such that ∅ 6= γ(B) ⊆ M∗, then there is no finite under-
approximation of the target space in the abstract domain defined by P . In this situation,
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every synthesis will always fail, even if the specification is technically realizable. Based
on this observation, we define a stronger notion of realizability:

Definition 17 (P-realizability). We say that M∗ is P-realizable if B 6= ∅.

Indeed, P-realizability is a necessary condition for successful convergence. For ex-
ample example 3 describes the case in which the available predicates are syntactic pred-
icates on a single function. If all programs in M that implement the user’s intention are
of length 2 or more, then there may not be an underapproximation of M∗. Likewise,
when working with examples it may take infinitely many examples to differentiate be-
tween two programs (as shown in section 5), which means that the space described by
any finite number of examples will still contain some program outside of M∗.

Even with P-realizability, the user’s steps may lead to a point where successful
convergence is no longer possible. Next we generalize the above condition to refer to
any point along the session. Furthermore, we show that the general condition is not only
necessary but also sufficient for successful convergence (i.e., the user has a possible
path to it). In order to provide the general condition we first define a property of the
synthesizer’s state that captures situations where successful convergence is out of reach.

Definition 18 (Inevitable failure point). Let S be a session. The state Si is called an
inevitable failure point if ∀B ∈ B. γ(Si) ∩ γ(B) = ∅.

In particular, if γ(Si) ∩M∗ = ∅, then Si is a point of inevitable failure. However, in
general, this may not be the case — valid programs may exist even at an inevitable
failure point (such programs are not contained in any B ∈ B).

We note that the condition of an inevitable failure point can be equivalently defined
as ∀B ∈ B. γ(Si) 6⊇ γ(B). Clearly, an empty intersection of γ(Si) with (the nonempty)
γ(B) implies that γ(Si) is not a superset of γ(B). For the other direction, if there
exists B such that γ(Si) ∩ γ(B) 6= ∅, then by taking the finite set B′ = Si ∪ B we
get γ(B′) = γ(Si) ∩ γ(B) ⊆ γ(Si). Moreover, γ(B′) is nonempty and included in
γ(B) ⊆M∗, hence B′ ∈ B.

Theorem 3 (Successful convergence). Let S be the prefix of length n of a synthesis
session. Then the following conditions are equivalent:

1. Sn−1 is not an inevitable failure point,
2. there exists a session S ′ that extends S and converges successfully.

Proof. The proof uses the equivalent formulation of inevitable failure point.

2⇒ 1 If S ′ converges successfully at step m, we select its final state Sm−1 to be B.
Because of the successful convergence, ∅ 6= γ(Sm−1) ⊆ M∗, and since Sm−1 v
Sn−1, then γ(Sm−1) ⊆ γ(Sn−1) (Galois connection).

1⇒ 2 Since Sn−1 is not an inevitable failure point, there exists some B such that
γ(Sn−1) ⊇ γ(B). Since B is finite, the user can answer with An = B. Adding
the step An leads to successful convergence: S′n = Sn−1 u An = Sn−1 u B, so
γ(S′n) = γ(Sn−1) ∩ γ(B) = γ(B).

Abstraction-Based Interaction Model for Synthesis 397



We note that unless qn ∈M∗ (in which case the prefix S is complete), the extension S ′
of S constructed from the non-inevitable failure point by selecting An = B constitutes
both weak and strong progress. The reason is that for qn 6∈ M∗, qn 6� B, which makes
this step a strong progress step, and, since some program has been eliminated, also a
weak progress step.

Recall that convergence considers a worst-case synthesizer, which only returns a
program from M∗ when γ(Si) ⊆M∗. Theorem 3 implies that for such a synthesizer, if
a synthesis session reaches an inevitable failure point, the session can either be infinite
or end with qn = ⊥. This means that backtracking is necessary. However, in the worst
case the failure may become observable to the user only when (if) the session terminates
with qn = ⊥. A more sophisticated user may realize this earlier, at the first inevitable
failure point where γ(Si) ∩M∗ = ∅. We refer to this point as the first infeasible point,
and to the prior point as the last feasible point. We note that these points are only
observable if M∗ = U∗ (or if the user is aware of M∗).

6.1 Unbounded Backtracking

We now consider the amount of steps that have to be traced back from the point where
qn = ⊥ (i.e., the session terminates with failure) or from the point where γ(Si)∩M∗ =
∅ (i.e., the first infeasible point in the session) to recover a synthesizer state from which
there is a suffix that leads to successful convergence. We argue that there is no bound
on the number of steps that we need to backtrack; this is demonstrated via the following
scenario.

Consider a syntesizer where M is all the programs in a language generated by if

expressions, equality (==), all list constants over integers (e.g. [], [1, 2, 3] etc.),
recursive call f , the input variable i, and the library functions cons, max, remove,
sort, and reverse.

The predicate set P contains all input-output examples (ι, ω), and syntactic exclu-
sion of a single element, that is “exclude e” for e ∈ {if, ==, cons, · · · }.

The user wants to sort a list of integers in descending order. The following table
shows a possible interactive session with the synthesizer.

i Ai−1 qi

1
([], [])
([1, 2], [2, 1])

reverse(i)

2 exclude reverse if (i == [1, 2]) [2, 1]
else i

3 ([1, 3], [3, 1])
if (i == [1, 2]) [2, 1]
else if (i == [1, 3]) [3, 1]
else i

...

n exclude == ⊥

The first two examples lead the synthesizer to generate a simple list reversal pro-
gram. The user is not interested in this program, and disqualifies it by excluding reverse.
The synthesizer then, quite unfortunately, takes the path of over-fitting the example set
via branching using the if construct with equality conditions. The user keeps provid-
ing examples, but is handed an ever-growing chain of programs. After n such steps, the
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user chooses to block the synthesizer from over-fitting to particular inputs by excluding
the equality operator, at which point the synthesizer can no longer find a program in M
that satisfies Sn−1, and Select returns ⊥.

Core set The core set B for this instance is the set of all finite sets of predicates contain-
ing no contradiction and (at least)

– One of {exclude if, exclude ==}
– Two examples {(ι1, ω1), (ι2, ω2)} with ι1,2 two lists such that

∣∣〈x ∈ ι1 | x >

head(ι1)〉
∣∣ > |ι2|, and ω1,2 their corresponding descending sorts.

To see why this is the core set, first note that the exclusion of either if or ==, rules
out conditionals as well as any form of recursion (since any recursive call will then be
infinite). Including two input examples with the specified property rules out programs
that use remove to reorder the elements. 3 Moreover, when excluding neither if nor ==,
no number of examples is sufficient to make a complete specification since switch-like
over-fitting is always a valid solution.

Inevitable failure point In this example, an inevitable failure point occurs after the
second step. The reason being, that any m ∈ γ(B) must use reverse, since any non-
recursive program without it can correctly order only a fixed number of elements from
the input. {exclude reverse} disallows that, leading to γ(B) ∩ γ(S1) = ∅.

It is possible for a correct user to reach this state, since the user expects the program
sortBy(i, neg), which is a valid program (∈ U ) — but this program is beyond the
synthesizer’s search space ( 6∈M ).

First infeasible point It should also be noted that that after the second step, γ(S1) ∩
M∗ 6= ∅, since if (i==[]) [] else cons(max(i), f(remove(i, max(i)))

(also known as max-sort) is a realization of the goal. So S1 is still a feasible point,
and so are S2..(n−2) — since the examples consist of valid descending sorts, hence
max-sort � A2..(n−2). Max-sort is only discarded at An−1, by the exclusion of ==, and
since reverse has already been excluded, reverse(sort(i)) or any other compo-
sition of sort and reverse cannot be generated. Now, γ(Sn−1) ∩M∗ = ∅, making
iteration n the first infeasible point. It so happens that the three examples shown are
enough to make γ(Sn−1) empty, so the synthesizer returns ⊥.

The last, important thing is that we can construct the session with an arbitrarily large
n, such that the inevitable failure point (i = 2) is any number of steps away from the
last feasible point (i = n− 1), and also from the actual failure with⊥ (i = n). It means
that any bounded backtracking is insufficient for recovering the session in this case.

Theorem 4. For any given k ∈ N, there exist:

1. a session S of length k + i where Si is an inevitable failure point and qk+i = ⊥.
2. a session S where Si is an inevitable failure point and Sk+i is the first infeasible

point.

3 The number of removes has to be at least
∣∣〈x ∈ ι1 | x > head(ι1)〉

∣∣, but at most |ι2|, which
is not possible without branches.
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Proof. Using the construction described above, having i = 1 and either n = k + 1 (for
1) or n = k+2 (for 2). Notice that in this scenario, the nth iteration exhibits both a first
infeasible point and failure with ⊥.

7 Discussion

In this section we discuss the implication of some of the conditions posed in definitions
and theorems in the previous sections.

7.1 Progress models

Progress of the synthesizer is important not only for making sure the session will con-
verge, but also as a tool for the user to understand their status in the synthesis session.

Synthesizers that do not actively define themselves as iterative have no way of en-
forcing progress, of course, but if the implementation of Select is order-dependent,
then the user can tell whether their feedback has moved the session along. This is tricky
when considering weak progress—Select might stop at the same program even though
other programs have been eliminated from the space. This, of course, is the danger of
weak progress. One of the reasons it would be helpful for synthesizers to start consider-
ing themselves as interactive is so they can provide this feedback to the user, and limit
frustration and confusion.

We have already seen an example of a synthesizer that enforces very strict strong
progress in FlashFill, and FlashExtract [20] and BlinkFill [30] follow the same work-
flow. GIM [26] puts forth a set of predicates that allow the user to provide positive feed-
back on the program, which means that even if strong progress is to be enforced, it must
be enforced at the more relaxed level described in definition 10, allowing predicates that
hold for the current program along with those that rule it out. In an enumerating synthe-
sizer that unifies sub-programs based on observational equivalence, such as [24], weak
progress may be sufficient: a change in the search space could change the equivalence
classes created while enumerating, leading to a different result from Select even though
the current program was not eliminated. This could also aid a realistic user who might
not be completely certain whether a program is in M∗.

When designing a new synthesizer, there are pros and cons to each of the progress
models. Strong progress, paired with a Select that will return the same program again
and again, will reduce user frustration. Weak progress has been shown [26] to help an
uncertain user reach a better program. However, the feasibility of enforcing the progress
model is itself an issue: strong progress is easy to test, as it only requires for the user
answer to rule out the current program. Weak progress, as seen in lemma 1, requires
the ability to check implication of the predicates over the current domain of programs.
This, even for simple predicates, may be difficult.

There is also the possibility of not enforcing progress at all. It can be easily seen that
termination, as proved in section 5, is not impeded if the user provides finitely many
answers that do not make progress along with those that do. (This also applies to finitely
many steps made by predicates for which termination is not guaranteed). However, we
believe forcing progress is a way to keep the user on track.
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7.2 Realizability gap

One of the problems a synthesizer can suffer from is a gap between the expectations
of the user and the ability of the synthesizer. Often, this is expressed by the fact that
M∗ ⊂ U∗, as in the example in section 6.1. In such a case, a user can repeatedly
backtrack and try new predicates, and still fail because they may not even be able to
pinpoint the first infeasible point of a session, let alone the initial point of inevitable
failure of their session.

Unfortunately, there is not much that can be done about this, especially since limi-
tations on the expressibility of M have been previously shown to be important for both
termination [22] and for heuristically arriving at the user’s intentions faster [20]. All
that remains for the synthesizer to do is to better communicate the limitations of M .

7.3 Sharing more with the user

One of the design tenets behind [26] is to enrich the interaction model with the user and
to include more information about the program. Another way in which the interaction
can be made more informative is by communicating more information about the state
of the synthesizer. Section 7.1 suggesting an indication of whether, and what level, of
progress has been made is an example of this.

Similarly, the synthesizer can communicate additional data about M and P . Show-
ing the user a visualization of the remaining search space may help with problems such
as the realizability gap or to identify points of failure faster. Suggesting to the user
stronger predicates they may wish to use in their answer might help the process termi-
nate faster.

8 Related Work

Programming by Example In PBE the interaction between user and synthesizer for
demonstrating the desired behavior is restricted to examples, both in initial specifica-
tions and any refinement. FlashFill [10, 29] is a PBE tool for automating transforma-
tions on an Excel data set, and is included in Microsoft Excel. Its implementation is
based on the theory of Version-Space Algebra [19]. FlashFill is iterative by design, ac-
cepting a (strong progress) update to its specification if the resulting program is not
satisfactory. The FlashMeta family of synthesizers [20, 29, 30] follow this same trend.

Counterexample-guided inductive synthesis CEGIS is a synthesis framework that has
been formalized in [31] and [21]. It is implemented in tools such as Sketch [32, 33],
which allows the user to restrict the search space via structural elements (e.g. condi-
tions or loops) containing holes to be synthesized. Sketching is a way to leverage a
programmer’s knowledge of expected syntactic elements, and when used in conjunc-
tion with restrictions on the syntax [1] can allow very intricate synthesis. Sketch ex-
hibits two forms of iterative processes: the first one is an internal loop that involves a
solver and a verifier, where the solver attempts to fill the holes in the sketch and the
verifier provides a stream of input-output examples until the result passes validation;
and the second, external one involves the human user and the tool, where the user may
not like the generated program or the tool rejects the sketch because it is unsatisfiable.
The internal loop is example-driven, with the verifier taking the place of the user. The
external one is non-monotonic, as the user can remove assertions from the specification
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or change the syntactic class of the program entirely. The only monotonic changes are
(i) adding an assertion, (ii) removing an assumption, and (iii) replacing a numeric hole
with a constant.
Type-directed synthesis In type-directed synthesis tools such as [9, 12, 27], the spec-
ification is provided entirely by types. These tools tend to not use an iterative model,
as refining the specification is not trivial. Synquid [28] is a type-directed synthesis tool
that uses refinement types, which encode constraints on the solution program to be im-
posed on the candidate space. Refinement types have rich semantics and a definition of
subtyping based on logical implication. The user can add syntactic structure (roughly,
the top of the tree) to help the synthesizer, and can also strengthen the return type of the
program (by replacing it with a subtype) or loosen the precondition for the types of the
arguments (by replacing them with a supertype). These are all monotonic progression
steps, but the user can also change a type to any other type or change the number of
inputs to the program, which are not monotonic. Tools that combine type-directed syn-
thesis with examples [6, 7, 24] make for a more iterative model, as adding examples is
always monotonic.
Formal models of synthesis procedures Models of families of synthesizers exist for
enumerative, syntax-based synthesizers [1], VSA-based synthesizers [29], and oracle-
driven synthesizers via inductive learning [14]. These all describe a single-iteration in-
teraction with the user (though [14], which describes the counterexample-driven model
as well, does describe iterative behavior with the oracle). Two recent works describe
an iterative model of interactive synthesis. One [21] focuses on the synthesizer-driven
model of interactive synthesis: the synthesizer asking the user about differentiating ex-
amples, and turning the answer back into constraints on the search space. This model
is somewhat specialized for VSA-based synthesizers and is an interactive expansion of
[29]. The work of Loding et al. [22] which is intended mostly to describe the internal
iteration of a CEGIS synthesizer, is also suited to a user-driven model of interactive
synthesis, as is the one presented in this paper. The model is based in machine learning
terminology, with a teacher-learner model exploring a hypothesis space (i.e., a space
of programs or other classifiers), and use a sample space containing input-output ex-
amples and no additional forms of feedback. Finally, they offer a weaker termination
result, showing the existence of a terminating learner (user) hinging on an ordering of
the hypothesis space.
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Abstract. Property-based testing is a technique combining parametric
tests with value generators, to create an efficient and maintainable way to
test general specifications. To test the program, property-based testing
randomly generates a large number of inputs defined by the generator to
check whether the test-assertions hold.

We present a novel framework that synthesizes property-based tests from
existing unit tests. Projects often have a suite of unit tests that have been
collected over time, some of them checking specific and subtle cases. Our
approach leverages existing unit tests to learn property-based tests that
can be used to increase value coverage by orders of magnitude. Further,
we show that our approach: (i) preserves the subtleties of the original test
suite; and (ii) produces properties that cover a greater range of inputs
than those in the example set.

The main idea is to use abstractions to over-approximate the concrete
values of tests with similar structure. These abstractions are then used
to produce appropriate value generators that can drive the synthesized
property-based test.

We present JARVIS, a tool that synthesizes property-based tests from
unit tests, while preserving the subtleties of the original unit tests. We
evaluate JARVIS on tests from Apache projects, and show that it pre-
serves these interesting tests while increasing value coverage by orders of
magnitude.

1 Introduction

Parametric unit-tests [52, 51, 45, 53, 55] are a well-known approach for increas-
ing coverage and thus increasing confidence in the correctness of a test artifact.
Parametric unit tests (PUTs) are also a common target of automatic test gen-
eration [22, 7] and unit test generalization [23, 50, 10]. A parametric unit test
consists of a test body defining the parametric code to execute, and a set of
assumptions that define the requirements from input values.

Parametric unit tests can either be symbolically executed or instantiated,
which is the process of turning them back into unit tests [52, 51]. One way to
instantiate PUTs is to provide them with concrete values based on whitebox
knowledge of the program under test [53, 58]. Another way is to provide a value
generator for the parameters, usually hand-crafted by an expert, which generates
appropriate values on demand. This type of test is called a property-based test
(PBT) [19, 11, 16, 30].
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The paradigm of property-based testing [13, 4, 1, 43] defines the desired be-
havior of a program using assertions on large classes of inputs (“property”). To
test the program, property-based testing generates inputs satisfying the precon-
dition to check whether the assertion holds. Property-based testing is known to
be very effective in checking the general behavior of the code under test, rather
than just on a few inputs describing the behavior. It does this by describing
the behavior as assertions over classes of input, generating random inputs from
that class to check the assertion against. This has the advantages of increasing
both instruction coverage and value coverage, and exposing bugs which may be
hidden behind the selection of specific representative test cases.

In this paper we present a technique for automatic synthesis of PBTs—
parametric unit tests, together with an appropriate value generator—from repet-
itive unit tests.

The value generators synthesized by our approach follow relationships cap-
tured by an abstract representation to explore values within the test’s input
assumptions. In contrast to the assumptions of parametric unit tests which
require a separate enumeration technique (e.g., based on whitebox guidance),
abstraction-based generators contain nothing but the definition of the desired
input space, and so can be sampled directly and repeatedly to provide a large
number of additional values that satisfy the required assumptions.

Our approach generalizes existing unit tests by finding tests with a similar
structure such that their concrete values can be over-approximated using an ab-
stract domain. This allows us to use the executed code from the original test, as
well as the oracle (assertion) of the test, and execute them with new concrete
values. Our approach learns from both positive and negative test-cases (i.e.,
tests expected to succeed and fail, resp.), enabling a more precise generalization
of tests. Specifically, it finds an over-approximation for the positive examples,
while excluding any negative examples, and vice versa. In addition, our general-
ized tests preserve constraints inherent in concrete unit tests, such as types and
equalities, which allow us to address the subtle nuances tested by them.

Challenges To achieve our goal, we have to address the following challenges:

– Identify which tests, along with their oracles, should be generalized together
to obtain parametric tests.

– Generalize matching tests to find an over-approximation that represents all
positive examples but none of the negative ones. This will allow us to syn-
thesize value generators that match the generalized tests.

Existing Techniques Thummalapenta et al. [50] conducted an empirical study
analyzing the cost and benefits of manually generalizing unit tests, and have
shown that the human effort pays off in increased coverage and newly detected
bugs. Shamshiri et al. [46] conducted a test of state-of-the-art test-generators and
concluded that they do not create tests as meaningful as human-written tests,
leading to the conclusion that basing generalization on existing tests will lead
to better results. Fraser and Zeller [23] create tests with pre- and postconditions
on parameters, but do so by assuming a baseline version of the program and, in
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practice, incorporate its bugs into the tests. Francisco et al. [21] created PBTs
for web services, but did so from a semantic description that had to be manually
written for each web service. Loscher and Sagonas [34] improve upon PBTs with
guided value generation, rather than simple random sampling.

Our Approach The main idea is to leverage the repetitive nature of existing
unit tests to automatically synthesize parametric tests and generators. Techni-
cally, we define a partial order on the set of tests, that captures the generality
of the test data. This order allows our technique to use the same unit test as
an example for several different PBTs, capturing different subtleties, and at the
same time staves off over-unification of example sets that would yield meaningful
results individually, but a non-informative generalization together. We use safe
generalization [42] to separate positive and negative examples.

Dividing Tests Provided with individual example unit-tests to be used as a
training set, we aim to divide them into sets to be abstracted, in order to create
the smallest number of abstractions that are still meaningful, and can still be
sampled. We then aim to determine how many value generators are to be created
for each such abstracted region of the parameter space. The goal of the division
is to create a set of value generators for the property-based tests that will be
generated such that each abstracted region can over-approximate the maximal
number of examples, and different value generators are created over the same
region preserve the testing nuances seen in the original tests. The motivation is
that a generator for a PBT must contain the constraints of the subtle cases that
were selected by the programmer, to guarantee that these cases are covered in a
non-negligible probability when the PBT is executed.

To support this goal, we define a partial order of generality between PBTs.
This allows us to create a value generator for each testing nuance, and do so on
the maximal number of examples that are compatible with this subtlety.

Safe Generalization of Tests Given a set of compatible positive tests (ex-
pected to succeed) and negative tests (expected to fail), we wish to generalize
them into a region that a PBT’s value generator can sample. To that end, we
use an abstraction method for separating positive and negative examples, called
Safe Generalization [42].

Implementation We present JARVIS (Junit Abstracted for Robust Valida-
tion In Scalacheck), a tool that extracts repetitive tests from unit test suites,
determines their place in the partial order, and synthesizes from them PBTs
that generate inputs based on preserved properties. We test JARVIS on unit
tests from Apache projects. We also show that sampling the abstracted over-
approximations increases value coverage[8, 29] of the exercised code while not
losing instruction coverage. In addition, we demonstrate JARVIS’s ability to
discover historical bugs when run on test suites in the previous versions.

Main Contributions The contributions of this paper are:

– An inclusion relation between parameterized tests that allows the sharing
of examples between different abstracted generators without hindering the
ability to abstract.
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– A technique that generalizes test values from individual unit tests into value
generators for a PBT using safe generalization (separating positive and neg-
ative examples).

– A tool, JARVIS, that automatically synthesizes parametric tests, oracles
and abstraction-based generators from unit tests, while preserving the subtle
cases that are captured in these tests.

2 Overview

Unit tests are an integral part of the software development process. They are
used to test small components of large software systems independently. Such
components can typically receive many possible inputs, and in order to cover
their different behaviors, a component is often run using the same test code
with several different input values. In practice this leads to repetitive test code
to exercise the same unit under test again and again. An initial study of the
repetitiveness in the test suites of five large Apache projects (Commons-Math,
Commons-Codec, Collections, Sling and Spark core) showed that of 13, 359 total
tests, 40% are not unique test scenarios, and 17% are repetitive by being written
as an assertion called inside a loop. In some test files, all test code is non-unique
either by virtue of repetition or loops. This means that repetition of individual
tests is not only present but frequent.

However, these tests still use the same values every time the test suite is run.
Running identical code with other possible values may reveal a bug, and new
bugs may be introduced that will not be tested because of the test values are
constant. In fact, tracing through the history of the testing code shows us many
such cases: identical tests with a small change of constant values that were later
added to represent a bug that has been discovered, and often has been in the
code for a full version or more.

We set out to take repetitive test suites and synthesize from them testing
properties for property-based testing. Once we have in our possession a parame-
terized test with an assertion to test its postcondition, as well as a set of values
for the parameters labeled for expected success or failure of the test, we can use
previous work [47, 49, 33, 20, 17] to learn a precondition on the data and convert
it to a data generator for a PBT.

However, dividing test traces into compatible sets is not trivial. Tests may
seem to be representing the same case but in their over-unification harm the
abstraction. In addition there may be sets of tests that represent an interesting
test case, such as equal parameters or a subtype being used, which should be
preserved when sampling.

This paper addresses the following problems:

1. Finding individual tests that can be generalized together (“compatible”);
2. Generalizing the tests into a property-based test that would cover a superset

of the original tests; and
3. Creating abstraction-based value generators that will sample the abstraction

while preserving testing nuances.
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1 Assert.assertTrue(Precision.equals (153.0000 , 153.0000 , .0625));
2 Assert.assertTrue(Precision.equals (153.0000 , 153.0625 , .0625));
3 Assert.assertTrue(Precision.equals (152.9375 , 153.0000 , .0625));
4 Assert.assertFalse(Precision.equals (153.0000 , 153.0625 , .0624));
5 Assert.assertFalse(Precision.equals (152.9374 , 153.0000 , .0625));

Fig. 1. Several unit tests from the test suite of the Apache commons-math project,
using the JUnit testing framework.

To solve 1 we define the notion of tests that are compatible—that test the
same thing, and so have the same notion of correctness behind the examples. To
solve 2, we use the notion of Safe Generalization in order to find an abstraction
that will separate completely the example test cases that are expected to suc-
ceed from those that are expected to fail. Finally, to solve 3, we sample these
abstractions in a constrained manner dictated by the original tests.

We demonstrate these steps on a real-world example taken from the Apache
Commons-Math test suite.

The code segment in Fig. 1 depicts duplicate tests with different constant
values in the class PrecisionTest in the Commons-Math project. We notice that
the seemingly straightforward duplication is not exact duplication. For instance,
the test in line 1 uses the same value twice, creating an equality constraint. In
fact, in the larger file, there are several such tests, using different constants but
repeating the value between the first and second parameter.

This means that there is an explicit intention to test the case where the two
parameters are equal. Leaving this to chance while drawing reals would make
getting two equal values highly unlikely, and the synthesized property would be
skipping an intentional special test case if this is not performed. We therefore
wish to generate as our output not one but two tests: one for the general case
and one for the test with the equality constraint.

Parameterized tests Each test trace is turned into a parameterized test. In
a parameterized test, constants are extracted and replaced by parameters of
the same type. Parameter extraction takes into account constraints that ex-
ist in the concrete test, which means that if the same value appears more
than once it will be extracted as the same parameter every time. For instance,
assertTrue(Precision.equals(153.0000, 153.0000, .0625))); (line 1) will be pa-
rameterized to pt1 = assert(Precision.equals(x, x, y)); with types type(x) =
type(y) = double, and the parameter mapping of {x 7→ 153.0, y 7→ .0625, res 7→
+} is preserved, where res signifies the expected result of the assert. Similarly,
lines 2− 5 will all be parameterized into pt2 = assert(Precision.equals(x, y,

z)); with type(x) = type(y) = type(z) = double, with four matching parameter
mappings.

Grouping parameterized tests into scenarios Parameterized tests that test
the same sequence of statements but for the different parameters are grouped
together into scenarios. All parameterized tests in such a scenario would yield a
property-based test that runs the same code, only with differently drawn values
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for the parameters. In Fig. 1, both the parameterized tests pt1 and pt2 are testing
assert(Precision.equals(?,?,?)) and will be grouped into the same scenario.

All parameterized tests in the same scenario execute the same trace, or in
other words test the same thing. A naive solution could use the parameterized
data from all test traces belonging to a scenario, and simply perform the ab-
straction on them, generating a single property-based test for the entire scenario.
However, because of the transition from constant values to randomly generated
ones, information about the intent of the test is lost. E.g., if the parameter-
ized test sends an integer to a double argument of a method, there is an intent
for a number with no fractional part. If the parameterized test repeats a value
throughout the test (e.g. between method arguments) there may be an intent
for equality. In both cases, the chance of obtaining a value that fits the intention
when drawing random values—e.g. from R3 in the case of Fig. 1—is slim at best.

A simple solution for this could be to keep the tests separated by the pa-
rameterized tests that contain them. This means all examples from tests that
match assert(Precision.equals(x,x,y)) with type(x) = type(y) = double will
be joined, separate from those that match assert(Precision.equals(x,y,z))

with type(x) = type(y) = type(z) = double. This would generate an additional
test forcing the equality of arguments, but would withhold from the uncon-
strained case with three parameters the additional data points that were sep-
arated out. Since both these parameterized tests call the same method, these
data points contribute to the understanding of the method’s general behavior,
and this would cause the generalization of the second test to learn from fewer
samples.

A hierarchy of tests A more realistic solution is to abstract as many examples
as can be safely unified together, and sample each abstracted region separately
later. To do this, we create a hierarchy of parameterized tests based on their
parameters. For each parameterized test, we may also consider the data from all
the tests below it in the hierarchy. When creating abstractions for the scenario,
we consider the maxima of the hierarchy, along with all additional tests that
have propagated up to them. This shares as many examples as possible, while
preventing over-unification.

To do this, we define an inclusion relation between parameterized tests be-
longing to the same scenario, based on the sequence of all parameter uses in the
test trace. In our example, pt1 has the parameter sequence x · x · y whereas pt2
has the parameter sequence x · y · z.

We will say pt1 is a subtest of pt2 because (i) every parameter in place i
in the sequence for pt1 has an implicit conversion to the parameter type of the
parameter in place i in the sequence of pt2, and (ii) any equality constraint in
the usage sequence of pt2 (i.e. the parameter is repeated between places i and
j) is also present in the sequence of pt1. In this case, (i) holds trivially as the
types are the same, and (ii) holds because the constraints in pt1 are relaxed to
no constraints in pt2.

Section 4.2 details the v relation between two parameterized tests. Section 7
presents experimental data on the importance of using the hierarchical approach.
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Abstracting the test data Now that the parameterized tests have been ordered
and their concrete samples shared, we can abstract the values of the maxima of
the v relation to a more general behavior. Earlier we parameterized the expected
result of the trace with the assignment for res, indicating whether the concrete
test should succeed when tested with the constants in the current parameter
assignment. This can be used as a label for the parameter assignments as positive
or negative examples of the more general property, which we wish to abstract.
The examples comprising pt2 yield the following two sets:

Positive = {(153.0000, 153.0000, .0625),

(153.0000, 153.0625, .0625),

(152.9375, 153.0000, .0625)}
Negative = {(153.0000, 153.0625, .0624),

(152.9374, 153.0000, .0625)}

We are interested in finding an abstraction for the Positive and Negative
sets which explains the partition above, and enables us to generate many more
positive and negative examples. It is vital that the abstraction will create a clear-
cut separation between the positive and negative examples, in order to ensure
that the values drawn will be a superset of the existing examples. This is also a
reason that having a large example set is important: having more examples helps
grow the abstraction, and having more counterexamples will limit the positive
abstraction from covering portions of the input space that should be negative.

To do this, we use the notion of Safe Generalization, and abstract both the
positive and negative samples simultaneously, checking that the abstraction of
positive examples has not grown to cover negative examples and vice versa.

If there are several maxima in the relation that are being abstracted sep-
arately, we notice that the Negative set for each of them contains negative
examples for the scenario behavior. This means each Positive set should be
separated from all Negative sets, and vice versa. These additional points to be
used as counterexamples will improve the separation.

In our case, the abstraction describing the positive examples is |x − y| ≤
z, and its negation for the negative examples. Section 5 formally defines Safe
Generalization and details the use of JARVIS’s template library.

In cases where the abstraction is performed on very few samples, there is
a lot of room for error for any abstraction. In other programming by example
tools such as [28, 31], the solution is to allow the user to mark the solution
as incorrect and provide more examples. Section 5.1 discusses the reasons the
abstraction may not be ideal and possible solutions.

Sampling the abstraction Once an abstraction is obtained for some set PT =
{pt1, pt2, . . . , ptn} of parameterized tests, we turn our attention to sampling the
abstracted region, and to the preservation of testing nuances. Because we con-
sider test cases written by the user a weighted sampling of the abstract behavior,
we want to make sure we model the sampling of our PBTs in the same fashion.
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1 val gen_double_1_pos = for(
2 y <- Arbitrary.arbitrary[Double ].map(Math.abs);
3 x <- Arbitrary.arbitrary[Double ];
4 z <- Gen.choose[Double ](x - y, x + y)
5 ) yield (x,y,z)
6 forAll (gen_double_1_pos) {_ match {
7 case (d1: Double ,d3: Double ,d2: Double) =>
8 Precision.equals(d1 , d2, d3)
9 }}

10 val gen_double_1_neg = for(
11 y <- Arbitrary.arbitrary[Double ].map(Math.abs);
12 x <- Arbitrary.arbitrary[Double ];
13 z <- Gen.oneOf(
14 Gen.choose[Double ]( Double.MinValue ,x - y). suchThat(_ < x - y),
15 Gen.choose[Double ](x + y,Double.MaxValue ). suchThat(_ > x + y))
16 ) yield (x,y,z)
17 forAll (gen_double_1_neg) {_ match {
18 case (d1: Double ,d3: Double ,d2: Double) =>
19 !( Precision.equals(d1, d2, d3))
20

21 }}

Fig. 2. The ScalaCheck properties synthesized from the test traces shown in Fig. 1.

To do this, we generate an abstraction-based value generator for each pti ∈
PT , which will practice constrained sampling, i.e., draw values from the abstract
region under the parameter constraints of the parameterized test. Section 6 de-
tails the way value generators are created over the abstract region.

Finally, we synthesize a PBT to includes each value generator. Fig. 2 shows
the resulting properties both the positive and negative data abstractions applied
to the concrete samples in PT = {pt1, pt2}, sampled according to pt2.

Running this property will test the parameterized test on hundreds of values
each time. This means that values matching the expected behavior but not
covered by the concrete tests will now be tested. This can find bugs that are
simply not tested for, and if the test property is added to the test suite, can
help stave off bugs that will be added in future changes to the code. Section 8
shows a case study of a historical bug in Apache Commons-Math that was found
by using JARVIS on the library’s test suite in the version before the bug was
corrected.

3 Preliminaries

In this section we introduce concepts used in this paper, including property-based
testing and value-based coverage metrics.

Unit test A unit test consists of stand-alone code executed against a Unit
Under Test (UUT), the result of which is tested against an oracle (an assertion)
for correctness. In practice, the code exercising the UUT often targets a small
unit, and the oracle is implemented by a set of assertions testing the state and
output of the unit test code. Unit testing tools such as JUnit [2] and NUnit [3]
provide an environment that can execute an entire test suite of unit tests.
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Property-based test PBTs consist of test code and an oracle that are defined
over parameterized classes of values. For that class of values, the PBT is phrased
as a “forall” statement or axiom on the behavior of a component. This means
PBTs mirror not a specific code path, but the specifications of the UUT. For
example, a simple property on strings would specify that ∀s1, s2, len(s1 · s2) =
len(s1) + len(s2).

A property-based test is comprised of two parts: the test body and oracle,
which are the code operating on the UUT and the boolean statement which must
hold, in this example concatenating and testing the length of strings; and the
generator, which defines the class of inputs on which the PBT is defined, in this
example any two non-null strings.

This is similar to the way parameterized unit tests [52] are defined. However,
PUTs define the input class by assumptions on the parameters. This means that
in order to run as tests in the test suite, PUTs need to be run through a solver or
a symbolic execution of the UUT in order to be instantiated with values for the
parameters, methods which are usually whitebox. The instantiated parameters
are added to the test, which is then transformed into a conventional unit test.
Barring a re-run of the solver, the values on which the resulting tests are run
are constant.

In contrast, PBTs are intended for execution of the test body on a random
sample of values that are drawn from the generator. The generator, rather than
describing the input class as a boolean formula (i.e., the conjunction of all as-
sumptions) that filters inputs, defines concretely a portion of the input space
from which values can be drawn.

A test using the generator can be added as-is to a test suite using PBT frame-
works such as QuickCheck [30, 13], PropEr [41], JSVerify [1] and ScalaCheck [4]
that include an initial implementation for the building blocks of generators, such
as ScalaCheck’s Gen.choose used in Fig. 2.

It has been shown [50] that test parametrization is worthwhile in terms of the
human effort it requires and the bugs that are detected. It can be extrapolated
that PBTs, for which it is easier to draw a large set of test values, would be a
worthwhile substitute.

4 Compatible Tests

4.1 From Test Trace to Parameterized Test

In this section, we formally describe how different unit test within a single test
suite can be viewed as a repetition of the same test with different parameters. We
then continue and formalize what we consider as subtle cases, or testing nuances,
appearing is such a group of repetitive tests, and explain how our technique still
preserves them.

The first step of our technique is to identify test traces in the original test
suite. A test trace is a sequence of (not necessarily adjacent) statements ending
with a single tested assertion, that can be executed sequentially.
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For example, lines 3−4 of Fig. 3 form the test trace Interval interval = new

Interval(2.3,5.7); assertEquals(3.4,interval.getSize());. Each line in Fig. 1
forms its own test trace, e.g. assertTrue(Precision.equals(153.0,153.0,.0625));
is formed by line 1.

To handle the many test traces in a library’s test suite, we must group them
into sets of tests that are compatible for a common abstraction. To this end, we
first normalize them and create tests that do not use any specific constant values.
This normal form is called a parameterized test. Technically, a parameterized
test obtained from a test trace contains the same statements as in the test trace,
where constant values are replaced by an uninterpreted parameter of the same
type as the constant. Moreover, if the same constant appears multiple times in
the test trace (at different locations), all occurrences are replaced by the same
parameter. Finally, specific assertions such as assertTrue or assertFalse are
replaced with a general assert command.

As seen in Section 2, the test trace in line 1 of Fig. 1 is parameterized as
pt1 = assert(Precision.equals(x, x, y)); with types type(x) = type(y) =
double. Similarly, the test trace in lines 3−4 of Fig. 3 is parameterized as Interval
interval = new Interval(x,y); assert(z==interval.getSize()); with type(x) =
type(y) = type(z) = double.

Note that while a concrete test trace holds correctness information (i.e., the
desired result of the assertion on a concrete execution of the trace), a parame-
terized test no longer encodes any such information. The expected result of the
assertion is stripped along with the constant values, as it depends on them: the
exact same parameterized test might be a positive test on one set of values and
a negative test on another.

The relation between a parameterized test and a test trace from which it was
originated, relies on the following definition:

Definition 1 (Parameter mapping). A parameter mapping for a parameter-
ized test is a function f that maps every parameter x to a constant c = f(x) s.t.
type(x) = type(c). Additionally, f maps a new variable res to {+,−}.

Essentially, a parameter mapping is a function that reproduces the original test
trace from a parameterized test. The role of res in the definition above is to
represent the type of the assertion (positive or negative). We can think of a
test suite as a set of parameterized tests, where each such parameterized test is
equipped with a set of parameter mappings F = {f1, . . . , fn}. Applying each fi
to pt will yield a concrete test trace ti.

4.2 Separation

Section 5 will explore the abstraction mechanism, but it is easy to see that an ab-
stract representation could be more accurate when working on as large a number
of examples as possible. An abstraction that only takes into account the values
obtained by the parameter mappings attached to a certain parameterized test
may result with a small number of concrete samples. This may yield an abstract
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representation which is too coarse. Even worse, the abstract representation may
provide no generalization.

To address this, we introduce another definition relying only on the state-
ments in the test trace:

Definition 2 (Scenario). A scenario S is a set of parameterized tests which
execute the same sequence of statements, differing only by their parameters. The
code of a scenario S, is the sequence of statements mutual to all parameterized
tests in S, after discarding parameter information. We say that a parameterized
test pt belongs to a scenario S if the code of S is obtained by discarding pt’s
parameter information.

Continuing our example with pt1 = assert(Precision.equals(x, x, y));, if
S is the scenario to which pt1 belongs, then the code of S is the statement
assert(Precision.equals(?, ?, ?)); (without parameter information).

The unification of parameterized tests into scenarios is driven by the fact that
despite the different parameter mappings, they are all running the same code (It
is important to note that method overloading information is not discarded.)

Next, we formalize subsumption between parameterized tests of the same
scenario. These definitions will allow us to increase the number of parameter
mappings that can be attached to a single parameterized test.

To define subsumption, we wish to compare two parameterized tests from
the same scenario and assess their generality. To do that, we need to compare
the parameter uses in the parameterized test in sequence. We therefore rely on
the following definition:

Definition 3 (Sequence of parameters). Given a parameterized test pt, let
params(pt) be the sequence of parameters across all statements in the parame-
terized test pt (with repetitions).

This notion is needed so that we may compare two parameterized tests in the
same scenario with a different number of parameters or with equality constraints
in different places in the test trace. E.g., for pt =foo(x,y);assert(bar(x,z)); we
have params(pt) = x · y · x · z.

Definition 4 (generality of parameterized tests, v). For two parameter-
ized tests pt1, pt2 with params(ptk) = xk1 · · · xkn for k ∈ {1, 2}, both belonging to
the same scenario S, we say that pt1 v pt2 if ∀i, j ∈ {1 . . . n}:

1. type(x1
i ) v type(x2

i ) (we use the standard notion of this relation, e.g. int v
double, String v Object.)

2. name(x2
i ) = name(x2

j )⇒ name(x1
i ) = name(x1

j )

The definition above allows us to create a parameter mapping f2 for a param-
eterized test pt2 from a parameter mapping f1 for parameterized test pt1, such
that pt1 v pt2. We do this by defining the result of f2 for every x2

i ∈ params(pt2)
by f2(x2

i ) = f1(x1
i ).

The implication of the correctness of behavior described by all parameterized
tests in a scenario is that all parameter mappings in a scenario can and should
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be abstracted together. However, creating a single abstraction for the entire
scenario will create a unification problem.

Example 1. Let us consider three parameterized tests that have several parame-
ter mappings each: pt1 = int prev = x.size(); x.add(y); assert(x.size() ==

prev + 1); with type(x) = List<String> and type(y) = String, pt2 is identical
to pt1 except for having type(x) = ArrayList<String>, and pt3 is identical to
pt1 except for having type(x) = Set<String>. Since add and size are methods
on List and Set’s shared parent interface Collection, pt1, pt2, and pt3 all belong
to the same scenario.

Since params(pt1) = params(pt2) = params(pt3) = x · x · y · x, and since
ArrayList is a subtype of List, but Set and List only share a common ancestor,
we see that pt2 v pt1, and pt3 is incomparable with both.

We notice that even though pt1 and pt3 are incomparable, there exists a pa-
rameterize test pt4, with the same test code and type(x) = Collection<String>
and type(y) = String for which pt1 v pt4 and pt3 v pt4.

If we aim to abstract pt4, we can see that our unification problem is twofold.
First, we now need to abstract (and later generate values for) collections in
general, not just lists and sets, from concrete data that only includes lists and
sets. We also see that there is a difference in behavior between sets and lists in this
test code which needs to be captured by the abstraction: for a set, res 7→ true
only if y is not already a member of the set, whereas for a list (ArrayList or
otherwise), res 7→ true always. This problem is made even worse in cases where
the shared ancestor is Object.

In order to avoid these problems we set a unification rule as follows:

Definition 5 (Abstraction candidates). Let T ⊆ S be the set of parameter-
ized tests in a scenario S such that for every pt ∈ T , ¬∃pt′ ∈ S.pt v pt′∧pt 6= pt′.
We define the abstraction candidates for S to be the sets of parameter mappings
ACS = {{f ∈ pt′ | pt′ v pt} | pt ∈ T}. When performing abstraction, each
s ∈ ACS will be abstracted on its own.

In other words, given the DAG defined by the v relation, we create an ab-
straction for every root pt, including with it the parameter mappings of every
parameterized test reachable from pt. This means we only create abstractions for
parameterized tests that exist “in the wild”, whilst reusing as many test traces
as possible in order to abstract them.

5 Abstracting the test data

In the following section, we abstract each of the sets of examples in ACS .
Once a parameterized test has its final set of concrete test traces, the res

parameter can be used to divide them into positive and negative samples. For
instance, the parameterized test for Precision.equals(x,y,z) with type(x) =
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type(y) = type(z) = double from Fig. 1 has the following data:

C+ = {(153.0, 153.0, .0625), (153.0, 153.0625, .0625), (152.9375, 153.0, .0625)},
C− = {(153.0, 153.0625, .0624), (152.9374, 153.0, .0625)}.

Safe Generalization We are interested in an abstraction in some language
that would be a Safe Generalization [42], or an abstraction that provides sepa-
ration from a set of counterexamples. Safe Generalization is defined as an op-
eration that further generalizes a set of abstract elements A from an abstract
domain [14] into another set of abstract elements, A′, while avoiding a set of
concrete counterexamples Ccex, and provides the following properties:

1. Abstraction: A′ contains every concrete element that is abstracted by A
(even though A v A′ may not hold)

2. Separation: No c ∈ Ccex is abstracted by A′

3. Precision: Generalization is a direct result of the elements in A.

as well as a strive for maximality that is not relevant for this use. We wish to
generate two properties for the parameterized test that we are abstracting: one
expecting the test to succeed, and one expecting it to fail. The code in these two
properties is the same except for a negation of the assertion, but they require
different data generators. In order to create these two generators, we need two
abstractions, A+ for the positive examples of the parameterized test, and A−

for the negative.
It is important to notice that, when a scenario has multiple abstraction can-

didate sets, they are still all representing the same behavior in the code under
test, which means they are influenced by the counterexamples in the other sets
as well. Specifically, while the positive examples were separated by the unifica-
tion rule, and should not be abstracted together, they should still be separated
from every negative point in the scenario, as they all represent some negative
case for the same code. This applies symmetrically to the negative points.

We therefore define for an abstraction candidate a ∈ ACS the following
example sets:

C+ = {f ∈ a|f(res) = +} C− = {f ∈ a|f(res) = −}

C+
cex =

⋃
b∈ACs

{f ∈ b|f(res) = −} C−cex =
⋃

b∈ACs

{f ∈ b|f(res) = +}

and attempt to attain the separating abstraction for A+ from (C+, C+
cex) and

for A− from (C−, C−cex).
It is clear that not every abstraction language will be able to accommodate

this requirement. In addition, when there are few samples, many different ele-
ments from each language may fit, and we are not necessarily interested in the
most precise one, which means we will need to relax the precision requirement
of Safe Generalization.

In some domains such as Intervals, we are able to easily compute Safe Gener-
alization using algorithms such as Hydra [36], but we may still wish to perform
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a controlled loss of precision on the result. In other domains, computing Safe
Generalization will be doubly exponential. Instead, we utilize a Safe Generaliza-
tion relation, denoted SG(C,Ccex), which includes the set of abstractions that
are safe generalizations for ({β(c) | c ∈ C}, Ccex), where β is the abstraction
function for a single concrete element. SG relaxes the precision requirement,
allowing abstractions to be included in SG(C,Ccex) even for very small example
sets C,Ccex.

In theory we would construct SG over every available abstraction. In practice,
we use SG to test a set of given abstractions.

Abstraction templates In order to select an abstraction language and an ele-
ment of that language, JARVIS contains a library of abstraction templates, such
as |x− y| ≤ z, x ∈ [a, b], etc. As previously shown by the FlashFill project [48],
the case of learning from few examples (in FlashFill, often only one example)
requires the notion of ranking the possible programs, or in our case, possible
abstractions, so that correct programs will be ranked higher than incorrect ones,
and likely programs higher than unlikely ones. While in [48] this ranking is
learned from examples, in our implementation the templates have a predefined
ranking that is applied for all instantiated abstractions that hold for all samples.

Every template t of the template library is instantiated, and in the case of
templates such as x ∈ [a, b] or |a ∗ x − y| ≤ b, the parameters are selected
based on the existing samples. Templates are instantiated in pairs, one as an
abstraction for the positive examples and one for the negative. The result is
A = {(A+, A−)|(A+, A−) ∈ SG(C+, C+

cex), (A−, A+) ∈ SG(C−, C−cex)}. We
then select from A the highest ranking (A+, A−), and create code sampling
them as the generators for the properties.

This means the template library can be extended to include more abstrac-
tions, and the ranking can be modified to better suit a specific project or domain.

5.1 Handling Impreciseness

The abstractions we use are conservative, and overapproximate the concrete data
that they abstract. On the one hand, this guarantees that cases that are present
in the original unit test will be included in the generated PBTs. However, in
some cases, even the best abstraction available in the template library will be
too conservative, and also represent data points that will fail the PBT. This can
happen for one of two reasons:

– The abstraction itself is not precise enough (e.g. a single interval, when the
data requires a disjunctive abstraction, or a set of intervals).

– The number of examples is too low to precisely generalize from (e.g. gen-
eralizing from two examples, there is not enough data to reduce the set of
abstraction templates).

Both cases require manual intervention: in the first case, the user can provide
a finer abstraction, in the second case she can provide more examples, and in
either case she can manually edit the resulting tests.
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6 Sampling from the Abstraction

We now wish to sample the abstraction that was created in the previous sec-
tion. When creating the abstraction-based value generators that will sample the
abstraction, we take our cue from the original test traces and their parameter-
ized tests. We consider the original tests written by the programmers to be a
weighted sample from the region of the domain that is described by the “true”
precondition of the tested behavior. That is, the user has already selected points
that they deem important. We therefore wish to preserve them.

We have created an abstraction of each region – an underapproximation of
the positive and negative regions for each of the maxima of the v relation. We
now wish to generate property-based tests, or in essence, to generate code that
will sample from the concretization of our abstraction. The sampling component
of the code in Fig. 2 is shown in lines 1 − 6 and 11 − 17. It is composed of the
representation of the space and types of the variables to be sampled into.

In this section we describe the creation of such sampling for the abstractions
we performed.

Sampling based on user-encoded testing nuances We notice that we may
wish to sample each abstracted region more than once. Since the constraints
of parameterized tests lower in the hierarchy represent constrained values sam-
pled by the user, we wish to cover them in our generated sampling. Let us ex-
amine the parameterized test pt1 = assert(Precision.equals(x, x, y)); with
type(x) = type(y) = double from Section 2. It is sampled out of the region
abstracted for the entire scenario S containing pt1 as well as other tests for
Precision.equals. Abstracting the topmost parameterized test by the v rela-
tion yields an abstraction in R3. When sampling (x, y, z) ∈ A ⊆ R3 the odds
of satisfying the constraint in pt1, i.e., x = y, are infinitesimal. If we wish to
preserve the constraint entered by the user, we must sample the special case in
which x = y on its own.

Sampling the constraints In order to sample each set of constraints on its
own, we create a sampling component as follows: for every pt ∈ S, we create
a sampling component over each abstraction for an abstraction candidate s for
which pt has contributed its parameter mappings. For each region sampled, the
constraints of pt are added to the restrictions on the domain. For example, when
sampling the region |x − y| ≤ z for pt1 seen in Section 2, the new sampling
constraints are |x − y| ≤ z ∧ x = y, or 0 ≤ z, sampling (x, z) out of this region
s.t. type(x) = type(z) = double.

Sampling guarantee Finally, we formulate our guarantee for points that will
be sampled:

Claim. Let T be a set of test traces from the same scenario S, |T | ≥ 2. For each
t ∈ T , if ∃t′ 6= t s.t. PT (t) v PT (t′), then

1. t will be used in an abstraction, and
2. PT (t) will be used to create an abstraction-based value generator for a PBT.
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Scenarios Repeating scenarios Hierarchy
no. of no. PTs have no. of

avg repeating traces per scenario multiple height roots
Library size scenarios avg max avg max PTs avg max avg max
Commons-CLI 4.2 38.3% 3.5 14 1.067 2 6.7% 1.033 2 1.50 2
Commons-Codec 2.2 38.2% 3.4 8 1.088 2 8.8% 1.088 2 1.00 1
Commons-Collections 2.1 13.3% 2.8 5 1.133 4 6.7% 1.033 2 2.50 3
Commons-Configuration 3.5 14.6% 3.7 15 1.015 2 1.6% 1.012 2 1.25 2
Commons-CSV 3.2 27.8% 2.0 2 1 1 0.0% 1.000 1 1.00 1
Commons-Email 2.3 60.0% 2.7 5 1.1 2 10.0% 1.100 2 1.00 1
Commons-IO 2.9 23.8% 3.6 14 1.069 4 4.7% 1.042 2 1.11 2
Commons-JEXL 4.6 25.9% 2.4 4 1.037 2 3.7% 1.000 1 2.00 2
Commons-Lang 2.1 36.7% 5.5 37 1.273 5 19.1% 1.212 3 1.04 3
Commons-Math 4.3 19.7% 4.1 45 1.182 9 10.2% 1.075 4 1.79 6
Commons-Pool 3.9 33.3% 2.0 2 1.222 2 22.2% 1.222 2 1.00 1
Commons-Text 2.5 36.7% 6.2 15 1.133 2 13.3% 1.133 2 1.00 1

Table 1. Scenario makeup of the JUnit test suites of Apache-Commons projects. Re-
peating scenarios are those with the number of concrete test traces greater than 1.

This allows for a maximal reuse of examples for abstraction, and on the other
hand, the sampling of all special cases that are abstracted.

7 Experimental evaluation

We implemented JARVIS to operate on JUnit test suites written in Java and to
synthesize ScalaCheck PBTs. Scala has a seamless interoperability with Java [38],
which means properties for ScalaCheck, which are written in Scala, can mimic
completely the functionality of the original test traces. JARVIS uses the Polyglot
compiler [37] and the ScalaGen [5] project to translate test traces from Java to
Scala. Template instantiation is aided by the Z3 SMT solver [15].

We ran JARVIS on the test suites of several open source libraries. We tested
whether the hierarchy and unification rule of abstraction candidates are relevant
to real-world test suites.

7.1 Examining Apache test suites

Tab. 1 shows the result of running JARVIS on the test suites of 12 Apache
Commons projects. This summary of JARVIS’s ability to unify shows us several
things in regard to the problems it addresses:

Identifying tests In all projects, the average length of extracted test traces is
over two statements. This shows JARVIS identifies and extracts elaborate tests.

Repetition of tests The data shows that there is, in fact, enough repetition
of tests to justify test generalization. In the project with the least amount of
repetition, Commons-Collections, only 13% of the scenarios contain more than
one concrete test trace, but in half the projects this number is over 30%.

Existence of constraints When examining the scenarios that contain more
than one test trace, we see that this is, on average, 9% of scenarios, with as many
as 9 separate parameterized tests, or sets of constraints, in the same scenario.
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These are all user-encoded sampling constraints that would see their probability
plummet without a specific sampler generated for them.

Importance of the unification rule In scenarios that have multiple param-
eterized tests, we see that the number of roots in the hierarchy DAG (i.e., in-
comparable maxima of the relation) is, on average, 1.35. This means that it is
not infrequent to have scenarios where the least upper bound of two or more
parameterized tests does not occur in the test traces. Since this is a frequent
occurrence in the real world, we deem it frequent enough to address the issues
that arise from over-unification within the scenario (as described in Section 4.2).

7.2 Increased coverage

The extended version of our paper contains coverage experiments comparing
JARVIS-generated PBTs to the original test suite from which it was generated.
Scenarios from Apache Commons-Math and Commons-Lang were included.

Instruction coverage, or the number of lines of code in the library under test
that were exercised by the test code, was preserved or marginally improved for
all benchmarks. Value coverage, however, was sometimes increased by up to two
orders of magnitude. This increase is especially important because of the ability
to find bugs that are not “boundary values” in terms of the structure of the
program, like the one described in Section 8.

Additionally, while running these experiments we managed to identify a bug
in the Common-Lang test suite, and our submitted repair1 was accepted.

8 Discovering Bugs: A Case Study

In this section we review a historical bug in Apache Commons-Math that we
discovered by running JARVIS on the unit test suite for the version before the
bug was fixed.

The extended version of this paper includes a second bug found by JARVIS:
a critical severity bug in the ContinuedFraction class, discovered via the PBT
generated from the unit tests for the FDistribution class2. Unlike the full case
study presented here, this bug required manual intervention as described in
Section 5.1.

8.1 MATH-1256: Interval bounds

In Apache Commons-Math versions prior to 3.6, the test suite for the Interval

class included the code in Fig. 3. A bug in the interval class which is not tested
in these unit tests was opened as “MATH-1256: Interval class upper and lower
check”3. An Interval object could be created with a lower bound greater than its

1 http://github.com/apache/commons-lang/pull/230
2 http://issues.apache.org/jira/browse/MATH-785
3 http://issues.apache.org/jira/browse/MATH-1256
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1 @Test
2 public void testInterval () {
3 Interval interval = new Interval (2.3, 5.7);
4 Assert.assertEquals (3.4, interval.getSize(),
5 1.0e -10);
6 Assert.assertEquals (4.0, interval.getBarycenter (),
7 1.0e -10);
8 Assert.assertEquals(Region.Location.BOUNDARY ,
9 interval.checkPoint (2.3, 1.0e -10));

10 // Other asserts on properties of interval
11 }
12 // ...
13 @Test
14 public void testSinglePoint () {
15 Interval interval = new Interval (1.0, 1.0);
16 Assert.assertEquals (0.0, interval.getSize(),
17 Precision.SAFE_MIN );
18 Assert.assertEquals (1.0, interval.getBarycenter (),
19 Precision.EPSILON );
20 }

Fig. 3. Unit test code for the Interval class from the Apache Commons-Math project

1 val gen_double_1_pos = for(
2 x <- Gen.posNum[Double ];
3 y <- Arbitrary.arbitrary[Double ];
4 z <- Gen.oneOf(y-x,y+x)
5 .suchThat(t => Math.abs(t-y) == x)
6 ) yield (x,y,z)
7

8 forAll (gen_double_1_pos) {_ match {
9 case (double_1 ,double_3 ,double_2) =>

10 val interval = new Interval(double_1 , double_2)
11 double_3 ~= interval.getSize
12 }}

Fig. 4. The ScalaCheck generator and property generated by JARVIS from the unit
tests in Fig. 3.

upper bound, which would result in an invalid interval with a negative size. The
bug report shows test code initializing Interval interval0 = new Interval(0.0,

(-1.0)); and showing that it would result in interval0.getSize() being −1.0.

This bug hinges on the two parameters accepted by the Interval constructor.
Since it only requires y > x, it exists in nearly 50% of the parameter space.
However, the conventional unit tests in IntervalTest only cover 2 values.

Running JARVIS on IntervalTest.java from release 3.5 yields 9 different sce-
narios. The scenario testing getSize contains two parameterized tests, one for
the parameters double1, double2 and double3, from the code in testInterval

and one for double1 and double2 from the code in testSinglePoint. We de-
note them pt3 and pt4, respectively. Since pt4 v pt3, the concrete test from
testSinglePoint is added to the parameterized test for testInterval, resulting
in C+ = {(2.3, 5.7, 3.4), (1.0, 1.0, 0.0)}.

From the abstraction template library for 3D abstractions, the abstraction
selected for these points by the criteria outlined in Section 5 is |y − z| = x.
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JARVIS outputs the code in Fig. 4 to generate values matching the abstraction.
Running the test with ScalaCheck fails in cases where the upper bound of the
interval is negative while the lower bound is generated as always positive. Since
the bug exists in nearly 50% of the space, it occurs almost immediately when
running the PBT. These cases expose MATH-1256 without the additional unit
tests that were later added after it was reported and fixed.

9 Related Work

Learning from examples Learning from examples or “Programming by Ex-
ample” is a field of synthesis with many different applications, such as Inductive
Programming [18], string processing [28, 27, 48] and data extraction [31]. In par-
ticular, the FlashFill and FlashExtract projects [48, 31] present an interactive
algorithm for synthesis by examples used to generate code for string manipu-
lation, showing that it is possible to synthesize a program from few examples,
despite having several compatible solutions.

Genrating Tests and Oracles An experiment described in [46] reveals that
state of the art automatic test generation tools are far from satisfactory. However,
an experiment described in [44] shows that manual unit tests, written by devel-
opers aided by an automatic test generation tool, create better code coverage.
[40] use code instrumentation of the system under test to guide test generation
by path discovery. [39] suggest a technique that improves random test genera-
tion by avoiding sequences calls after an object has reached an illegal state. [57]
extend this technique further to increase coverage and diversity for automati-
cally generated tests. However, their method only generates the tests and they
do not suggest how to generate oracles. [22] describe a technique for automat-
ically generating unit tests together with appropriate pre and post-conditions,
based on mutations of the tested class and test inputs. However, the basis for
the postcondition is the observable state after the test execution, which means
that bugs in the program will result in incorrect postconditions. [24] suggests a
mutation-based technique to select variables for which an oracle would detect a
high number of faults in the program. However, a tester is still required to write
the oracles. [58] generate unit tests using symbolic execution and incremental re-
finement. [54] generate both tests and oracles from use case specifications, using
natural language processing techniques.

Parameterized Unit Tests PUTs are defined in [52] and as “theory-based
testing” in [45] and developed further in [51, 53, 55]. [50] is an empirical study
in unit test parametrization that strongly advocates parameterized unit testing.
Generalizing unit tests to parameterized unit tests was shown as useful in de-
tecting new bugs and required feasible human effort, though one that required
expertise with additional tools. However, their proposed methodology contains
manual steps for parametrization and generalization, and they do not address
the problem of extracting and grouping the tests. [23] extends [22] to parame-
terized unit tests, but exactly as in [22], the postcondition is derived from the
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observable state after the test execution. In contrast, JARVIS creates test oracles
from the oracles of the original unit tests, and treats their assertions as part of
the generalization, making no assumptions based on the execution.

Property Based Testing and Fuzzing [21] creates PBTs for web services,
but does so from both a syntactic and manually-written semantic description
of the service. Later work [32] is intended to track API changes in web services
and update existing PBTs. [25] recognizes the important connection between
conventional unit tests and PBTs, and describe a tool that checks whether a
given unit test is covered by a given PBT. [56] is a tool for automatic PBT
generation, based on feedback directed random test generation [39]. However,
similar to previous feedback directed random test generation techniques, the or-
acles are specified by the developer. Fuzz testing or “fuzzing”, another testing
technique, is very similar to property-based testing: it draws inputs or enumer-
ates them, but usually does not use oracles, only looks for crashes, and does not
test components but rather the whole program. Works such as [9] draw their
inputs from grammars of valid or invalid inputs. Others add to this a white-box
approach [26, 35], attempting to draw inputs that increase coverage. [12] suggest
combining fuzzing with ranking, based on the diversity of the test cases. [6] aim
to draw inputs for fuzzing that will direct the fuzzing to a part of the program.

10 Conclusion

We presented JARVIS, a tool to extract repetitive tests from unit test suites and
synthesize from them property-based tests. We have shown the foundations for
its operation: sorting the existing unit tests into sets of compatible tests; a better
abstraction, achieved using a hierarchy of generality between parameterized tests
which allows abstractions to generalize more tests; generalizing the examples to
a data generator, taking into consideration the positive and negative examples
(tests expected to succeed and fail, resp.) using the notion of Safe Generaliza-
tion; and preserving the subtleties of human-written unit tests by sampling each
abstracted region according to constraints found in the test data.

We applied JARVIS to the JUnit test suites of 12 Apache Commons APIs,
and have shown there is ample repetition in the data of real-world test suites,
which can be used to generate PBTs. We have also shown that the repetition
often includes subtleties, in the same testing scenario. Additionally, we have
shown that JARVIS-generated PBTs maintain the instruction coverage of the
original unit tests, and increase parameter value coverage by as much as two
orders of magnitude. PBTs generated by JARVIS have found a known bug in
Apache Commons-Math, and with the help of JARVIS we identified a bug in
the Commons-Lang test suite.
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Abstract. Information Flow Control (IFC) is important to ensure se-
cure programs where secret data does not influence any public data. The
pervasive standard that IFC aims to is non-interference. Current IFC sys-
tems are separated into dynamic IFC, static IFC, and hybrids between
static and dynamic. With dynamic IFC suffering from high overhead and
limited ability to prevent implicit flows due to the paths not taken, we
propose a novel modular static IFC system. To the best of our knowledge,
this is the first modular static IFC system. Unlike type-based static IFC
systems, ours is logic-based. The limitation of type-based IFC systems
is in the inviolability of static security label declarations for fields. As
such, they suffer from transient leaks on fields. Our proposed system uses
a Hoare-like logic. It verifies each function independently with the help
of separation logic. Furthermore, we provide the proof of correctness for
our novel IFC system with respect to termination- and timing-insensitive
non-interference.

1 Introduction

Information Flow Control (IFC) tracks the propagation of information through a
program. IFC is used to ensure that secret data does not influence public data.
In other words, an attacker cannot infer secret data by observing any public
data. This independence between secret and public data is the semantic notion
proposed by Goguen and Meseguer as non-interference [13].

In many IFC systems, information release policies are based on a lattice
of security labels [12, 23, 29]. In the context of non-interference, it means that
information cannot flow from a higher security label to lower security label in
the lattice. Given a piece of information and its corresponding security label, it
must have been influenced by information from lower security labels.

The way information flows in a program is through assignment operations.
This is called explicit flow. Sabelfeld and Myers [24] also classifies six covert chan-
nels based on the definition by Lampson [16] where information may flow from.
Out of the six channels mentioned by Sabelfeld and Myers, the commonly tackled
channels in information flow analysis are implicit flows, termination channels,
and timing channels.
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In implicit flows, information flows through control structures. Termination
channels propagate information through the termination or non-termination of
a computation while timing channels propagate information through how long
a program is run.

Our IFC system handles only explicit and implicit flows while excluding ter-
mination and timing channels. This is called termination- and timing-insensitive
non-interference. In other words, our system ensures that if the program termi-
nates, it will have no information leakage.

Additionally, our system assumes a strong capability of attacker. In partic-
ular, we assume that the attackers may change all public input arguments and
may see all resulting public values. Furthermore, to the best of our knowledge,
our system is the first modular verifier for information flow analysis with recur-
sion. It is modular as each function is checked independently of the context in
which it is called.

There are various types of IFC. Static systems statically verify non-
interference through type systems [18, 24] or program logic [4, 5, 11]. Dynamic
systems uses run-time security labels attached to values and propagate them
during program execution [8, 10]. Hybrid systems that combine static and dy-
namic analysis have also been studied [28]. Interestingly, IFC can be transposed
into a safety problem as shown by Barthe et al. [3] and Terauchi and Aiken [27].

2 Motivation

Although IFC systems are based on a lattice of security labels, two levels, Hi
and Lo, where Lo v Hi are sufficient for illustration. Given a lattice of security
labels, we can enumerate all pairs of security labels and designate them as either
Hi or Lo accordingly. Hence, we will only consider the two levels Hi and Lo in
this paper.

Recent advances in information flow analysis have focused on dynamic anal-
ysis due to its potential use in Javascript [8, 10, 25]. However, dynamic IFC sys-
tems suffer from a large run-time overhead and they cannot prevent implicit flows
due to paths not taken since propagation of security labels is done at run-time.
While there are advances on the latter problem such as no sensitive upgrade and
permissive upgrade [6, 7, 32], they rely on static analysis or crowdsourcing [15].

The problem with dynamic propagation of security labels can be seen in the
example below. Consider an object o with four fields w, x, y, and z such that
only x and w are declared as Hi. Suppose o.x is either True or False, the value
of o.z will equal o.x at the end. Information from o.x flows to o.z through o.y
implicitly via the path not taken (i.e., via the else branch).

However, the security label of o.x is not propagated to o.z. In the case of
o.x = True, the propagation from o.x to o.y does not occur since the statement
o.y := True is not executed. In the case of o.x = False, although propagation
from o.x to o.y occurs, the propagation from o.y to o.z does not occur since the
statement o.z := True is not executed. As such, in both scenarios, the security
label of o.x is not propagated to o.z.
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o.y := False; o.z := False; o.w := True;

if o.x == False then o.y := True; else o.w := False;

if o.y == False then o.z := True; else o.w := False;

In static analysis, the most prevalent analysis method is using a type system
[14, 18, 23, 24, 28, 29]. Type-based IFC declares security labels of fields statically
and checks for violations to non-interference. Violations occur when information
from higher security labels flow into the fields with lower security labels. In type-
based IFC, a field with static security label Lo can never be assigned a value with
security label Hi even when it is going to be immediately reassigned to another
value with security label Lo.

As such, type-based IFC systems except for the system by Hunt and Sands
[14] are flow-insensitive on object fields. Consider y.f := x; y.f := 0;, if y.f
is statically declared with security label Lo and x with Hi, the first assignment
y.f := x violates the static security label declaration. This is despite having the
value of y.f rewritten immediately in y.f := 0. Thus, type-based IFC systems
suffer from a high rate of false positives.

In logic-based IFC systems, Amtoft and Banarjee [4] shows how analysis on
the independence of program variables, as opposed to dependence, can be used to
analyze information flow on simple programs. In their system, they use a Hoare-
like logical system with programming language syntax based on the While
language without functions. This system is then extended to analyze Java-like
programs [5]. However, it resulted non-modular interprocedural analysis.

Costanzo and Shao gave a logic-based IFC system with a semantic-based
declassification policy and dynamic context lifting [11]. Similar to Amtoft and
Banarjee, their language is based on the While language without functions.
Hence, program verification in their system is done on the entire program even
though it supports separation logic. The frame rule introduced in separation
logic [1, 9, 21, 26] allows for modular verification. In short, separation logic is
a logic with separation conjunction. Separation conjunction is used to reason
about shared mutable resources such that verification can be done modularly.

2.1 Contribution

In this paper, we introduce a novel modular logic-based IFC system. Our goal is
to ensure termination- and timing-insensitive non-interference in a fully modular
way. The basic idea of our system is to abstract the lattice of security labels into
security bounds. The security bound of a value written as x <: ςx intuitively
means that the security level of x is at most ςx. A flow from x to y is then
represented as a transfer of the security bound from one value to another.

To achieve modularity, our programming language is extended with func-
tion calls and function definitions. Every function definition is annotated with
a precondition and postcondition that includes separation logic and a security
formula consisting of security bounds. The details of the syntax and semantics
of the language is presented in Section 3.

Verification of functions proceeds by assuming the precondition to obtain the
post-state that is used to entail the postcondition. Therefore, the verification is
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modular as each function can be verified independently using only the stated
precondition and postcondition. In short, the essence of our system is to find
the sound approximation of the security bounds of all the values in a function.
This information is then used to entail the postcondition. To the best of our
knowledge, this is the first modular information flow analysis system.

Being a static analysis system, our system does not suffer from the high
overhead incurred in dynamic systems. Furthermore, as static systems consider
all the possible paths including the paths not taken, our system can handle
implicit flow easily. In comparison with a type-based system, our system allows
flow-sensitive analysis even on object fields. As such, temporary assignments to
higher security labels simply transfer the bounds and do not trigger an error.

In summary, the main contribution of our paper is as follows:

1. A novel logic-based IFC system that allows for modular verification via pre
and postconditions containing security formulas. Our system is modular as
verification of functions are independent of the context in which the function
is called.

2. A proof of correctness for the novel IFC system introduced in this paper. The
proof of correctness uses observation equivalence or bisimulation equivalence
as defined by Milner [17] and Park [20].

Additionally, as a minor contribution, our system handles aliasing directly
through the use of separation logic. As an added advantage, our system over-
comes the limitations of dynamic IFC, namely high run-time overhead, dynamic
security label propagation. Furthermore, unlike type-based IFC, our system is
flow-sensitive even on object fields.

3 Language

In this section, we discuss our programming and assertion languages. Our pro-
gramming language is an expression-oriented pointer programming language. We
assume that programs written are well-typed for simplicity. We denote variables,
reference variables, and constants by v, r and c respectively. We use r exclusively
for reference variables. Class names (or structures), fields, and function names
are denoted by C, i, and f respectively. We also denote the binary operators =,
≤, +, and − by �.

In our language while statements are represented by recursive functions with
reference parameters. A variable v can be either local, l or reference, r. Global
variables are also represented by references.

Definition 1. An expression in our language is defined as below.

e ::= c | v | e1 � e2 | new C(−→v ) | v.i | f(−→r ,−→v ) | v := e | if v then e1 else e2

| v1.i := v2 | e1; e2
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The expression new C(−→v ) is like malloc of the C language except that it
requires initialization of all its fields by −→v and it returns an instance of the class
(or structure) C. We consider classes to consist of only fields and not functions.
In other words, functions are independent of the classes. We represent v.i as the
field i of the instance v of some class C where i is a declared field of C.

Definition 2. Our assertion language is defined as below.

∆ ::= Θ ∧ Φ Θ ::=
∨

(∃−→v .Π ∧Σ) Σ ::= emp | v 7→ 〈−−→i : y〉 | Σ1 ∗Σ2

Π ::= a | ¬Π | Π1 ∧Π2 | Π1 ∨Π2 | Π1 → Π2 | ∃y.Π | ∀y.Π
a ::= d1 = d2 | d1 ≤ d2 d ::= c | v | c× d | d1 + d2 | −d
Φ ::= v <: ς | v.i <: ς | θ <: ς | Φ1 ∧ Φ2 ς ::= Hi | Lo

Our program specification is given as a separation logic formula extended

with a security formula. We use the heap formula v 7→ 〈−−→i : y〉 to indicate an

object v with fields
−→
i such that each field i has a value y. A security formula

describes a set of variables with their respective security upper bounds. Security
bounds are defined by ς that is a lattice of security labels with s denoting an
element of this lattice. We use ςv to denote the security bound of variable v. Every
variable is bounded by this security label as shown in v <: ςv. For simplicity, we
consider only Hi and Lo where Lo v Hi as the ς in this paper. In theory, our
system works for any lattice of security labels. In particular, we can consider
every pair (s1, s2) of security label in a lattice such that if s1 @ s2, then for all
sh such that s2 v sh, we set it to be Hi. Similarly, for all sl such that sl v s1,
we set it to be Lo.

For the pure formula, we consider Presburger arithmetic for its decidability.
θ is another special variable to capture the result or output value and security
upper bound of an expression. The symbol θ indicates the security bound of the
result of evaluating an expression.

Informally, v <: Lo means v must be public data and v <: Hi means v can be
either public or secret data. For example, if a field f of an object x has a value
y and a security bound Lo, we can write x 7→ 〈f : y〉 ∗x.f <: Lo. This allows our
system to be practically applied to some real-world applications.

Although we have separating conjunction, we do not have separating impli-
cation. The main reason for this design choice is that our logical system consists
of only the forward rules. So, separating implication will not be necessary. A

program P consists of class declarations
−→
C followed by function definitions

−→
F .

A program is defined below.

P ::=
−→
A
−→
F A ::= data C{−→i } F ::= f(−→r ,−→v )(∆)(∆′){e}

We say that a function declaration f(−→r ,−→v )(A∧Φ)(A′∧Φ′){e} is well-defined
if −→r ∪{θ} = FV(Φ′) where FV(Φ) denotes the free variable of formula Φ. In other
words, a well-defined function declaration has to capture all effects (i.e., return
value and reference variables) of the function. Note that when it appears in the
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postcondition ∆′, the symbol θ denotes the result of the function. However, in
the source code, we use res instead of the symbol θ.

It is a typical requirement that the flow formula of ∆ contains at least the
parameters that have security upper bound Lo. Otherwise, in the absence of a
parameter in the flow formula, Hi is considered as the default security upper
bound. We consider call-by-reference for reference parameters and call-by-value
for non-reference parameters in recursive functions as defined by Winskel [31].
The use of call-by-reference is needed to simulate iteration statements such as
the while statement. Note that we do not have explicit variable declarations and
we will assume that all the variables in a function body are declared implicitly
at the beginning of the body.

We define our environment Γ as the set of asserted programs that consists
at least all {∆}f(−→v ){∆′} for all function declarations f(−→v )(∆)(∆′){e} as in [1,
2]. In our system, judgements are in the form Γ ` {∆}e{∆′} where Γ is the set
of asserted programs.

Note that our language does not feature the annotation of a variable or
a field with a security upper bound. By default, context always starts from
Lo and so we need a starting point where we can write a program with vari-
ables upper bounded by Hi. This can be done by using the special function
secret (p) (p <: Lo) (res <: Hi) { p }.

3.1 Semantics

The semantics of our programming language and assertion language are dis-
cussed here. Our semantics are influenced by Costanzo’s paper [11] and is based
on [31]. The set N is defined as the set of natural numbers. The set Vars is de-
fined as the set of variables. The set Locs is defined as the set {n ∈ N | n > 0}.
The set Ψ is the set of elements of the given security lattice that is {Lo, Hi} in
our paper.

Our model of a program state consists of a store, a heap, and a set of security
upper bounds of values. A Store is defined as an infinite function from Vars∪{θ}
to N and is denoted by s. In other words, the domain of s is infinite. A Heap
is defined as a finite function from Locs to N and is denoted by h. A Bound
–denoted by b– is defined as an infinite function from Vars ∪ Locs ∪ {θ, κ} to
Ψ where κ is a special variable that is used to track the security upper bound
of the current execution environment. We also refer to κ as the context of the
execution. A State is defined by a tuple of Store×Heap×Bound and is denoted
by σ. We define s|V to be s(x) for all x ∈ V and undefined otherwise. We define
b|V in a similar way. We define −→x to be the sequence x0, . . . , xk for some k and
we sometimes use it to denote the set {xi | 0 ≤ i ≤ k} as well.

We define the operational semantics of e to be a function of type P(e) ×
State→ State. [[e]]((s, h, b)) evaluates the expression e for the given state (s, h, b).
We also define the semantics of the binary operators as follow. [[n1 + n2]] is the
addition of n1 and n2; [[n1 − n2]] is the subtraction of n2 from n1; and [[n1 = n2]]
and [[n1 < n2]] are 1 if n1 = n2 and n1 < n2 are true respectively and 0 otherwise.
We take F to be the set of functions in P .
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Definition 3. The function next(h, k) of type Heap × N → N is defined to be
the smallest n such that n > 0, n+ 0, . . . , n+ k 6∈ Dom(h).

Below we define the security-aware operational semantics of our programming
language.

Definition 4. We define the security-aware operational semantics of our pro-
gramming language as below.

〈c, (s, h, b)〉 −→κ (s[θ := c], h, b[θ := κ])
(CONST)

〈v, (s, h, b)〉 −→κ (s[θ := s(v)], h, b[θ := b(v) t κ])
(VAR)

n = next(h, k) b′ = b[θ := κ, n+ 0 := κ t b(v0), . . . , n+ k := κ t b(vk)]

〈new C(v0, . . . , ck), (s, h, b)〉 −→κ

(s[θ := n], h[n+ 0 := s(v0), . . . , n+ k := s(vk)], b′)

(NEW)

s(v) + i ∈ Dom(h)

〈v.i, (s, h, b)〉 −→κ (s[θ := h(s(v) + i)], h, b[θ := b(s(v) + i) t b(v) t κ])
(READ)

〈e1, (s, h, b)〉 −→κ (s1, h, b1) 〈e2, (s, h, b)〉 −→κ (s2, h, b2)

〈e1 � e2, (s, h, b)〉 −→κ (s[θ := [[s1(θ) � s2(θ)]]], h, b[θ := b1(θ) t b2(θ)])
(BINARY)

〈e, (s, h, b)〉 −→κ (s′, h, b′)

〈x := e, (s, h, b)〉 −→κ (s[x := s′(θ)], h, b[x := b′(θ)])
(ASSIGN)

s(v) + i ∈ Dom(h) n = s(v) + i

〈v.i := v′, (s, h, b)〉 −→κ (s, h[n := s(v′)], b[n := b(v′) t κ])
(WRITE)

s(v) 6= 0 〈e1, (s, h, b)〉 −→κtb(v) (s′, h′, b′)

〈if v then e1 else e2, (s, h, b)〉 −→κ (s′, h′, b′)
(IF-TRUE)

s(v) = 0 〈e2, (s, h, b)〉 −→κtb(v) (s′, h′, b′)

〈if v then e1 else e2, (s, h, b)〉 −→κ (s′, h′, b′)
(IF-FALSE)

〈e1, (s, h, b)〉 −→κ (s1, h1, b1) 〈e2, (s1, h1, b1)〉 −→κ (s′, h′, b′)

〈e1; e2, (s, h, b)〉 −→κ (s′, h′, b′)
(COMP)

f(−→r ,−→u )(∆pre)(∆post){e} ∈ F−→
l = FV(e)− (−→u ∪ −→r )

−→
l ′ fresh

〈e[
−→
l :=

−→
l ′][−→r := −→v ][−→u :=

−−→
s(y)], (s, h, b)〉 −→κ (s′, h′, b′)

〈f(−→y ,−→v ), (s, h, b)〉 −→κ (s′, h′, b′)
(RECURSION)

The definition of the operational semantics for our programming language
above is an ordinary operational semantics extended with security-awareness. It
achieves security-awareness by keeping track of the security upper bounds of the
data and propagating it throughout the execution. Thus, it tracks which data
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might have been influenced by some high-security data and may eventually lead
to a leak. The machine configurations on which the semantics operates consists
of a program state and an expression. The set of function declarations F is also
taken into consideration, and is implicit in the configuration. It is not made
explicit for the sake of brevity. Note that the context, κ, is the standard infor-
mation flow control construct. It keeps track of the information flow resulting
from the control flow of the execution. When an execution enters a branching
construct, it elevates the upper bound of the context κ based on the security
upper bound of the variable that represents the conditional expression.

Since transformation of the store and the heap due to the execution is
straightforward and similar semantics are discussed in [1, 2], we will discuss the
part of the semantics that deals with the security upper bounds only.

In the rule (CONST), κ is propagated to the resulting variable θ.

In the rule (VAR), the least upper bound of κ and the variable v is propagated
to the resulting variable θ.

In the rule (NEW), next(h,k) is used to get the first consecutive k number of
unallocated locations in h. For example, in a heap h1 = {(1, 0), (3, 0)}, next(h1,
2)=4 and in a heap h2 = {(1, 0), (4, 0)}, next(h2, 2)=2. Thus, the semantics
are deterministic. The least upper bound of κ and security upper bound of
the initializer variables are propagated the corresponding fields and finally κ
propagates to the resulting variable θ.

The least upper bound of κ, security upper bound of v, and that of v.i
propagates to the resulting variable θ in the rule (READ).

In both the rule (READ) and (WRITE), it is assumed that v is an instance
of a class C, which has the declared field i. Hence if the value of v in s is n then
n+ i is in the domain of both h and b. In other words, value of v.i is h(s(v) + i)
and the security upper bound of v.i is b(s(v)+ i). Note that unlike the definition
of program semantics in [1], we do not have abort.

In the rule (ASSIGN), the least upper bound of ςκ and upper bounds of all
the free variables in e propagates to θ in b′ and then it propagates to x. The
propagation of κ and security upper bound of v′ to v.i is also similar.

In the rule (BINARY), b1 and b2 have their own θ where the κ has already
been propagated to. The least upper bound of b1(θ) and b2(θ) is then propagated
to the resulting variable θ and thus, κ also propagates to θ.

In the rule (IF-TRUE) and IF-FALSE, κ is raised for their corresponding
expression block if the security upper bound of the conditional variable is higher.

In the rule (RECURSION), −→u and e are respectively the set of parameters

and the body of function f .
−→
l is the set of local variables (variables other than

parameters) in e.
−→
l ′ is a list of fresh variables with the same number of variables

as
−→
l . Note that we do not have global variables.

−→
l are substituted by

−→
l ′ in

e to avoid name conflicts of newly introduced variables in e with the existing
variables of the Store. Since local variables are fresh after substitution, there is
no harm in keeping them in the Store even after the execution of e. For example,
consider these two functions:
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f1(p) (p <: Lo) (res <: Lo) { x := p; x }

f2() () {res <: Lo} { x := 1; f1(x) }

In both functions above, x is local but they might have a name
clash with each other when f1 is unfolded So, we first rename x in f1

to a fresh variable x’ before calling f1 from f2. Then we have now
f1(p) (p <: Hi) (res <: Hi) {x’ := p; x’}. Hence the names no longer
clash with each other. For example, since (x := p;x)[x := x′][p := x]
is the same as x′ := x;x′, and 〈x′ := x;x′, ({(x, 1)}, ∅, {(x, Lo)})〉 −→
({(x, 1), (x′, 1), (θ, 1)}, ∅, {(x, Lo), (x′, Lo), (θ, Lo)}), we
have 〈f1(x), ({(x, 1)}, ∅, {(x <: Lo)})〉 −→
({(x, 1), (x′, 1), (θ, 1)}, ∅, {(x <: Lo), (x′ <: Lo), (θ, Lo)}).

Now we define the semantics of our assertion language. Our assertion lan-
guage consists of two parts - a separation logic formula and bounds. For the
semantics of the separation logic formula, we use the standard semantics as de-
fined in [21, 1]. That is - [[A]](s,h,b) is true if and only if [[A]](s,h) is true. Now we
define the semantics of a bound formula.

Definition 5. The meaning of the bound formula is defined below.

[[v <: ς]](s,h,b) iff b(v) v ς
[[θ <: ς]](s,h,b) iff b(θ) v ς

[[v.i <: ς]](s,h,b) iff b(s(v) + i) v ς
[[Φ1 ∧ Φ2]](s,h,b) iff s, h, b |= Φ1 and s, h, b |= Φ2

Static verification is done on the entire program P modularly. In particu-
lar, for each function f(−→r ,−→v )(∆)(∆′){e}, we infer the strongest postcondition
from the precondition ∆ and expression e. We then check that this strongest
postcondition entails the given postcondition ∆′. The strongest postcondition
is computed by the inference rule in Definition 13. In particular, algorithm to
compute the strongest precondition is a direct implementation of Definition 13.

Now we define the meaning of an entailment in our assertion language.

Definition 6. A1 ∧ Φ1 |= A2 ∧ Φ2 is true if and only if for all w <: ςw in Φ2

there exists z <: ςz in Φ1 such that A1 |= z = w and ςz <: ςw.

Here we define the semantics of the asserted program {∆}e{∆′}. It is inspired
from the ordinary separation logic [1]. But one exception is that we do not have
the condition on abort.

Definition 7. κ |= {∆}e{∆′} is defined to be True if and only if for all
(s, h, b) and (s′, h′, b′) if [[∆]](s,h,b) = True and 〈e, (s, h, b)〉 −→κ (s′, h′, b′) then
[[∆′]](s′,h′,b′) = True.

Note that termination of a program is a condition of the above definition.
If a program e does not terminate, then there is no (s, h, b) and (s′, h′, b′) such
that 〈e, (s, h, b)〉 −→κ (s′, h′, b′) holds. Here we define semantics of a judgement.
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Definition 8. Γ, κ ` {∆}e{∆′} is defined to be true when the following holds:
κ |= {∆}e{∆′} is True if Lo |= {∆i}e{∆′i} is True for all {∆i}e{∆′i} ∈ Γ .

In Definition 8, we start the modular verification from low context. Hence,
we define judgment based on Lo |= {∆i}e{∆′i}.

Definition 9. F (−→r ,−→v )(A ∧ Φ)(A′ ∧ Φ′){e} is valid if and only if Lo |= {A ∧
Φ1}e{A′ ∧ Φ′} is True, (−→r ∪ −→v ) ∈ FV(Φ) and (−→r ∪ {θ}) ∈ FV(Φ′) where
Φ1 = Φ ∧

∧
x∈FV(e)−(−→r ∪−→v ) x <: Hi.

4 Logical System

In this section we define our logical system.
We write A[x := e] for the formula obtained from A by replacing x by e. We

will write the formula e 7→ e1, e2 to denote (e 7→ e1) ∗ (e+ 1 7→ e2). We will also
write {x1, . . . , xn} <: ςx to denote x1 <: ςx ∧ . . . ∧ xn <: ςx.

Definition 10. Disjunction over our formula, (A1 ∧Φ1)∨ (A2 ∧Φ2), is defined
to be (A1 ∨ A2) ∧ Φ where ∀x(Φ |= x <: ς ⇐⇒ ∃ς1ς2(ς = ς1 t ς2 ∧ Φ1 |=
x <: ς1 ∧ Φ2 |= x <: ς2)).

Definition 11. A∧Φ1◦vB∧Φ2 is an abbreviation of ∃x.(A∧ΦA)[v := x]◦B∧Φ2

where x is fresh and ◦ is either ∧ or ∗.

Definition 12. We define β to be a function of type ∆× E → ς as follows.

β(A ∧ Φ, z) =

{
ς Φ � z <: ς

Hi otherwise

The intuition behind the default security bound being Hi is to forbid down-
grading the security upper bound of a value. Although we may replace ς with
Lo in the definition of β, we keep it as ς to allow for extension to an arbitrary
lattice of security level. We will discuss our logical system in two parts. First, we
will give the inference rules for the language without recursive function. Next,
we will provide the inference rules to handle recursive function call.

4.1 System without Recursion

Definition 13. Our logical system for the language without function call con-
sists of the following inference rules.

[Const] Γ, κ ` {∆}c{∆ ∧θ θ=c ∧ θ <: κ}

[Var] Γ, κ `{∆}v{∆ ∧θ θ=v ∧ θ <: (β(∆, v) t κ)}

[New]

{∆}
Γ, κ ` new C(v0, . . . , vk)

{∆ ∗θ θ 7→ (i0 : v0, . . . , ik : vk) ∧ θ <: κ ∧
∧k
j=0 θ.ij <: (β(∆, vj) t κ)}
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[Read]

∆ |= x = v ςθ = (β(∆, v) t β(∆,x.i) t κ)

{∆ ∗ x 7→ (. . . , i : w, . . .)}
Γ, κ ` v.i

{∆ ∗ x 7→ (. . . , i : w, . . .) ∧θ θ = w ∧ θ <: ςθ}

[Write]

∆ |= x = v1 ςθ = (β(∆, v1) t β(∆, v2) t κ)

{∆ ∗ x 7→ (. . . , i : , . . .)}
Γ, κ ` v1.i := v2

{∆ ∗x.i,θ x 7→ (. . . , i : v2, . . .) ∧ x.i <: ς ∧ θ = v2 ∧ θ <: ςθ}

[Assign]

Γ, κ ` {∆}e{∆′}
Γ, κ ` {∆}v := e{∃x.∆′[v := x][θ := v] ∧ θ = v ∧ θ <: β(∆′, θ)}

[If]

Γ, κ t β(∆, v) ` {∆ ∧ v 6= 0}e1{∆1} Γ, κ t β(∆, v) ` {∆ ∧ v = 0}e2{∆2}
Γ, κ ` {∆}if v then e1 else e2{∆1 ∨∆2}

[Binary]

Γ, κ `{∆}e1{∆ ∧ θ = v1 ∧ θ <: s1}
Γ, κ `{∆}e2{∆ ∧ θ = v2 ∧ θ <: s2}

Γ, κ ` {∆}e1 � e2{∆ ∧θ θ = v1 � v2 ∧ θ <: (s1 t s2)}

[Comp]

Γ, κ ` {∆}e1{∆1} Γ, κ ` {∆1}e2{∆2}
Γ, κ ` {∆}e1; e2{∆2}

[Consequence]

Γ, κ ` {∆′
1}e{∆′

2} ∆1 � ∆′
1 ∆′

2 � ∆2

Γ, κ ` {∆1}e{∆2}

The rule [New] captures the flow from κ to the θ and all the newly allocated
fields. It also captures the flows from all the initializing variables to the fields.
We will explain the latter kind of flow with the following example. We can prove
Lo ` {z <: Hi}x := new C(z);x.i1{x 7→ (i0 : z) ∧ θ <: Hi} as follows.

1. By [New]:
Lo ` {z <: Hi}new C(z){z <: Hi ∗ θ 7→ (i0 : z) ∧ θ <: Lo ∧ θ.i0 <: Hi}

2. By [Assign]:
Lo ` {z <: Hi}x := new C(z){z <: Hi ∗ x 7→ (i0 : z) ∧ x <: Lo∧

x.i0 <: Hi ∧ θ = x ∧ θ <: Lo}
3. Let ∆ be {z <: Hi ∗ x 7→ (i0 : z) ∧ x <: Lo ∧ x.i0 <: Hi ∧ θ = x ∧ θ <: Lo},

by [Read]:
Lo ` {∆}x.i1{∆ ∧θ θ = z ∧ θ <: ςθ} where ςθ = β(∆,x) t β(∆,x.i0) t κ = Hi

4. Lastly, by [Consequence]:
Lo ` {z <: Hi}x := new C(z);x.i1{x 7→ (i0 : z) ∧ θ <: Hi}

Similarly, a dual judgement, Lo ` {z <: Lo}x := new C(z);x.i1{x 7→ (i0 :
z)∧ θ <: Lo}, is also provable in our system. In a similar way, the flow from the
context to the fields can be explained using the provability of Hi ` {z <: Lo}x :=
new C(z);x.i1{x 7→ (i0 : z) ∧ θ <: Hi}.

To invoke the rule [Read] with the expression v.i, it is necessary for the
precondition ∆ to have the allocation x 7→ (. . . , i : w, . . .) such that ∆ |= x = v.
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Thus aliasing of the objects is handled using separation logic. This rule captures
all the flows from the context κ, the object v and all of its aliases, and the field
x.i to the result θ. For example, Lo ` {z = t ∧ t = w ∗ z 7→ (b : g) ∧ g <: Lo ∧
z <: Hi∧ z.b <: Lo}w.b{w 7→ (b : g)∧ θ = g∧ θ <: Hi} is provable in our system.

In case of unavailablity of such an object x or a field i, the judgement cannot
be proved.

The rule [Write] ensures that if the security upper bound of an object is
Hi, then the security upper bound of all of its fields also remain Hi. But it is not
the same if the security upper bound of the object is Lo. In that case, any of its
fields may become upper bounded by Hi if that particular field is mutated in a
Hi context or by a Hi value.

The rule [If] is not a conventional one since it has partial disjunction - the
separation logic parts are disjuncted whereas the bounds are combined. We com-
bine the bounds by taking least upper bound of the upper bounds of each values.
This non-standard interpretation of disjunction is needed since our assertion lan-
guage does not allow disjunction on security bound formula. Hence, we have to
combine the security formula. We explain it using the following simple example.

Suppose we have Lo ` {p <: Lo ∧ h <: Hi ∧ l <: Lo}h{θ = h ∧ θ <: Hi}
and Lo ` {p <: Lo ∧ h <: Hi ∧ l <: Lo}l{θ = l ∧ θ <: Lo}.

Then Lo ` {p <: Lo ∧ h <: Hi ∧ l <: Lo}if p then h else l{(θ = h ∨ θ =
l) ∧ θ <: Hi} is provable in our system by Definition 10. Because θ is upper
bounded by Lo and Hi in the two former judgements. Since the least upper
bound of Lo and Hi is Hi, finally θ is upper bounded by Hi.

Like most other works [11, 28] in the relevant area, our [If] rule also lifts the
context to prove the sub-properties of the inner blocks if the upper bound of
the condition is higher than the context. This lifted context is used only for the
inner blocks of the ‘if’ expression. For example, suppose we want to prove
Lo ` {p <: Hi ∧ l <: Lo ∧ l′ <: Lo}if p then l else l′{(θ = l ∨ θ = l′) ∧ θ <: Hi}.
For that we have to prove
Hi ` {p <: Hi ∧ l <: Lo ∧ l′ <: Lo}l{θ = l ∧ θ <: Hi} and
Hi ` {p <: Hi ∧ l <: Lo ∧ l′ <: Lo}l′{θ = l′ ∧ θ <: Hi}.
Indeed they are provable using the rule [Var] and [Consequence]. Thus our
[If] rule captures the implicit direct flow.

In the rule [Binary], the value and the upper bound of the result θ of an
expression is obtained from θ of the judgements regarding its subexpressions.
Note that the flow of the context to θ is captured by all the rules for atomic
expressions. By induction, we can say that the flow of the context to θ is captured
in the judgements of the subexpressions.

4.2 System with Recursion

Now we will discuss the inference rules to handle recursive functions in a modular
way.

Definition 14. Our logical system for the language with recursive functions con-
sists of the inference rules in Definition 13 extended with the following inference
rules.
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[Recursion]

∆ � ∆f [−→r := −→z ][−→u := −→y ] {∆f}f(−→r ,−→u ){∆′f ∧ θ <: ς} ∈ Γ
f(−→r ,−→u )(∆f )(∆′f ){ef} m = {Modified(ef )} ∩ {−→r }

Γ, κ ` {∆}f(−→z ,−→y ){∆ ∗θ,−→z ∆′f [−→r := −→z ] ∧ ({θ} ∪m) <: (ς t κ)}

[Frame]

Γ, κ ` {∆}e{∆′}
Γ, κ ` {∆ ∗∆1}e{∆′ ∗∆1} (FV(∆1) ∩ FV(e) = ∅)

In [Recursion], for the function call expression f(−→z ,−→y ), we assume that we
have a function declaration f(−→r ,−→u )(∆f )(∆′f ){ef} and so {∆f}f(−→r ,−→u ){∆′f} ∈
Γ . Then we say that the function call is valid for Γ , a context κ, and an specifi-
cation consists of the precondition ∆ and the postconditiom ∆1 if the following
hold:

1. the function with its formal parameters as arguments f(−→r ,−→u ) is valid for
its declared precondition ∆f and the postcondition ∆′f and ∆1 = ∆ ∗θ,−→z
∆′f [−→r := −→z ] ∧ θ <: (β(∆′f , θ) t κ); and

2. the precondition ∆ implies the declared precondition with its parameters
substituted by the arguments ∆f [−→r := −→z ][−→u := −→y ]

The arguments −→z corresponds to the reference parameters −→r . It is assumed
that ∆′f contains all the necessary information about the effect on the reference

variables. So, we first substitute −→z from ∆ by the fresh variables. Substitution
of −→r by −→z in ∆′f transforms it as the effects of the function body is local to
the calling program. Additionally, we elevate the security bound of the result
and modified reference variables to the current context κ. We obtained the over-
approximation of modified variable in expression e using Modified(e).

For example, suppose we have the declaration
f(r, v)(r <: Lo∧ v <: Hi)((r 7→ (f1 : 1)∨ r 7→ (f1 : 2))∧ r <: Hi∧ θ <: Lo){r :=
if v then new C(1) else new C(2); 0}.
Now we can show that the following judgement is not provable.
Lo ` {z <: Lo ∧ y <: Hi}f(z, y){z <: Lo}.
Because, we have
Lo ` {z <: Lo ∧ y <: Hi}f(z, y){∃z′.z′ <: low ∧ y <: Hi ∧ (z 7→ (f1 : 1) ∨ z 7→
(f1 : 2)) ∧ z <: Hi ∧ θ <: Lo}
is provable and
∃z′.z′ <: Lo∧y <: Hi∧(z 7→ (f1 : 1)∨z 7→ (f1 : 2))∧z <: Hi∧θ <: Lo 6|= z <: Lo.
A full example is given below to show a potential security leak where our [Re-
cursion] rule failed to prove. Note that in the source code, we write ~ for
reference parameters.

For the ultimate verification, we also assume that all the function declara-
tions are locally provable according to the definition below. Although the two
conditions FV(Φ) = −→r ∪−→v and FV(Φ′) = −→r ∪{θ} may seem too strong, prepro-
cessing can be done to ensure that the condition is satisfied. The preprocessing
adds x <: Hi to Φ for every x ∈ −→r ∪−→v and x /∈ Φ. Similarly, it adds x <: Hi to
Φ for every x ∈ −→r ∪ {θ} and x /∈ Φ′. Lastly, the preprocessing removes x <: ς in
Φ if x /∈ −→r ∪ −→v as well as removes x <: ς in Φ′ if x /∈ −→r ∪ {θ}.
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data C{ f1 }

f1 (~r, v) (r<:Lo & v<:Hi) ((r->(f1:1) | r->(f1:2)) & r<:Hi & res<:Lo)

{ r := if v then new C(1) else new C(2); 0 }

f2 (z, y) (z <: Lo & y <: Hi) (res <: Lo)

{ x := f(z, y); z.f1 }

Fig. 1. Example of potential leakage due to reference variables.

Definition 15. A function declaration f(−→r ,−→u )(A ∧ Φ)(A′ ∧ Φ′){e} is locally
provable if Lo ` {A∧Φ}ef{A′∧Φ′} is provable, (−→r ∪−→v ) = FV(Φ) and (−→r ∪{θ}) =
FV(Φ′).

Note that, the context is considered as Lo to verify a declared function locally.
But it does not affect the context from which the function is being called. Because
the flow from the κ to θ is captured in our [Recursion] rule.

Now we will discuss the intuitions behind one of our design decisions.

Substitution of θ

Now we will discuss the intuition behind ◦θ in each of the rules. We substitute
the θ using ∧θ for preserving soundness. Consider the program: x = 1. In the
rule [Assign], we first compute e and the result is expressed through θ. In the
example, if 1 has the security bound Hi, then we have θ = 1∧θ <: Hi. Now when
we assign e to x, the properties of θ should be transferred to x and it is achieved
by substitution as follows: (θ = b ∧ θ <: Hi)[θ := x]. The result is equivalent to
(x = b ∧ x <: Hi).

5 Correctness

Theorem 1 (Soundness). If κ ` {∆}e{∆′} is derivable in our inference rules,
then κ |= {∆}e{∆′} is True based on Definition 7.

The proof of the theorem is done via structural induction over e and it
is straightforward for the system without recursion. However, note that for
(WRITE), we record the security bound of the location s(v) + i in b. Thus,
all accesses to the same location will see only a single security bound for the
location. This is mimicked in [Write] as a rewriting of x.i for all x such that
∆ |= x = v1.

Although the language does not have aborts, our inference rule is designed
in such a way that an abort program cannot be verified. For instance, in the
rule [Read], the precondition of v.i should contain v 7→ 〈i : 〉. Hence, it ensures
that the program does not abort.

For the system with recursion, to ensure correctness and modularity, we
require the function declaration to be well-defined. Since reference variables are
replaced by the name of argument, these variables will affect the resulting store
s′. On the other hand, since non-reference variables are replaced by the value
of argument in the store s, these variables will not affect the resulting store s′.
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These are enforced by the condition FV(Φ′) = −→r ∪ {θ} in Definition 15 which
states that the security formula of the postcondition must contain exactly the
reference variables and θ.

For [[∆ ∗A ∧θ,−→z Φ′[−→r := −→z ] ∧ θ <: (ς t κ)]](s′,h′,b′) = True to hold, the con-
dition is necessary. Without the condition, we may have −→u ⊆ FV(Φ′) and
−→u ⊆ ∆. Consider the case where u ∈ −→u such that (u <: Lo) ∈ Φ′f and
(u <: Hi) ∈ ∆. Then we have [[s, h, b]](u <: Hi∧u <: Lo) which is True iff b(u) v Lo.
But (u <: Hi) ∈ ∆ implies b(u) ⊆ Hi and u ∈ −→u implies that b(u) should not
change.

Thus, without the condition, soundness is not preserved. The intuition behind
the condition is that the postcondition contains all the necessary changes to the
state of the caller. Since changes are only through reference variables and θ,
these should be in the postcondition.

5.1 Non-Interference

Definition 16 (Observable Equivalence). Suppose σ1 and σ2 are program
states such that σ1 = (s1, h1, b1) and σ2 = (s2, h2, b2). We say that they are
observably equivalent, written σ1 ∼ σ2, if:

– For all program variables x: b1(x) = Lo and s1(x) = v if and only if b2(x) =
Lo and s2(x) = v

– For all program variables x: b1(x) = Hi and s1(x) = v1 if and only if there
exists v2 such that b2(x) = Hi and s2(x) = v2

– For all locations l: b1(l) = Lo and h1(l) = v if and only if b2(l) = Lo and
h2(l) = v

Observable equivalence depends on the capability of the attacker. In our
case, the attacker is capable of seeing the values of all the variables such that
the security bound is upper bounded by Lo. Therefore, any variables x or location
l such that b(x) (or respectively b(l)) is marked as Lo should produce the same
result. On the other hand, any variables marked as Hi can have different values.

Since the operational semantics described in §3.1 uses instrumented seman-
tics, we need to show that these two produce equivalent result in standard se-
mantics without instrumentation. The standard semantics is similar to our in-
strumented semantics with the exclusion of the Bound b. This property can be
stated as the following:

Theorem 2. Suppose 〈e, (s, h, b)〉 −→κ (s′, h′, b′) in the instrumented seman-
tics. Further suppose that Γ, κ ` {Θ ∧ Φ}e{Θ′ ∧ Φ′}. Then for some s′′ and h′′,
〈e, (s, h)〉 −→ (s′′, h′′) and Γ ` {Θ}e{Θ′} in the standard semantics such that
(s′, h′, b′) ∼ (s′′, h′′, b′).

Theorem 3. Suppose 〈e, (s, h)〉 −→ (s′, h′) in the standard semantics. Further
suppose that Γ ` {Θ}e{Θ′}. Then for some b, b′′, s′′, and h′′, 〈e, (s, h, b)〉 −→κ

(s′′, h′′, b′′) and Γ, κ ` {Θ ∧ Φ}e{Θ′ ∧ Φ′} in the instrumented semantics such
that (s′, h′, b′′) ∼ (s′′, h′′, b′′).
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We can then state the non-interference property as the following.

Theorem 4 (Non-Interference). Suppose (s1, h1, b1) ∼ (s2, h2, b2) such that
〈e, (s1, h1, b1)〉 −→κ (s′1, h

′
1, b
′
1) and 〈e, (s2, h2, b2)〉 −→κ (s′2, h

′
2, b
′
2), then

(s′1, h
′
1, b
′
1) ∼ (s′2, h

′
2, b
′
2).

The proofs of these theorems are relatively straightforward by structural
induction on e. It relies on the fact that the inference rule [If] merges the security
bound of the variables modified in either branch via ∆1 ∨∆2 and Definition 10.
Hence, any modification by one branch will affect the security bound of variables
on the other branch after the if statement.

Theorem 4 together with Theorem 2 and 3 ensure that the non-interference
property is maintained even in standard semantics. Hence, it shows that the
inference rules soundly capture the absence of information leakage.

6 Implementation and Result

We have implemented a basic verifier for our programming language and the
associated assertion language. With our verifier, we verified the validity of a va-
riety of examples ranging from simple one line programs to programs containing
function calls and object aliasing. Figure 2 shows the categories and number of
programs in each category of test programs, along with the number of programs
we manually check to contain security leaks that we have tested. To further il-
lustrate our logic, we shall step through the verification process in our logic with
some examples in this section.

Category Total Programs Insecure Programs

Constant 12 1
Assignment, Binary Operations 20 5
Objects 8 1
Aliasing 8 2
Non-recursive functions 72 19
Recursive functions 9 1

Total 126 29

Fig. 2. Number and Category of Programs Verified

Here we briefly explain the categories.
Constant. Constant refers to functions that make no change to their arguments
and simply either return a constant, or the argument unchanged.
Assignment and Binary Operations. Assignment refers to programs that
contains information flow using assignments only. Both implicit and explicit
flows are verified. Binary operations involve one of our binary operators of =,
≤, +, and −.
Objects. These are the programs that make use of objects within their body,
such as creating a new object. This excludes cases where aliasing happens as we
consider those separately.
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Aliasing. Aliasing happens when more than one different names access the same
memory location. In our language, this happens when the same object is assigned
to another variable, which may or may not be aliased to other variables.

The following examples demonstrates how our system proves a secured program
and disproves an insecure program. Here we will show only high level of verifica-
tion processes for easy understanding which starts with the context Lo. The first
example concerns a non-leaking program that is provable within our system.

f (p) (p <: Hi) (res <: Lo) {

{ p <: Hi }
c1 := new C(0); c2 := new C(0); c3 := c1;

{ c3 = c1 ∗ c1 7→ (f1 : 0) ∗ c2 7→ (f1 : 0) ∧ p <: Hi ∧ c1 <: Lo∧
c1.f1 <: Lo ∧ c2 <: Lo ∧ c2.f1 <: Lo }

t := if p then 1 else 2

{ (p 6= 0 ∧ t = 1 ∧ c3 = c1 ∗ c1 7→ (f1 : 0) ∗ c2 7→ (f1 : 0))
∨(p = 0 ∧ t = 2 ∧ c3 = c1 ∗ c1 7→ (f1 : 0) ∗ c2 7→ (f1 : 0))∧
p <: Hi ∧ c1 <: Lo ∧ c1.f1 <: Lo ∧ c2 <: Lo ∧ c2.f1 <: Lo ∧ t <: Hi }

c3.f1 := t;

{ (p 6= 0 ∧ t = 1 ∧ c3 = c1 ∗ c1 7→ (f1 : 1) ∗ c2 7→ (f1 : 0))
∨(p = 0 ∧ t = 2 ∧ c3 = c1 ∗ c1 7→ (f1 : 2) ∗ c2 7→ (f1 : 0))∧
p <: Hi ∧ c1 <: Lo ∧ c1.f1 <: Hi ∧ c2 <: Lo ∧ c2.f1 <: Lo ∧ t <: Hi }

c2.f1;

{ (p 6= 0 ∧ t = 1 ∧ c3 = c1 ∧ θ = 0 ∗ c1 7→ (f1 : 1) ∗ c2 7→ (f1 : 0))
∨(p = 0 ∧ t = 2 ∧ c3 = c1 ∧ θ = 0 ∗ c1 7→ (f1 : 2) ∗ c2 7→ (f1 : 0))∧
p <: Hi ∧ c1 <: Lo ∧ c1.f1 <: Hi ∧ c2 <: Lo ∧ c2.f1 <: Lo ∧ t <: Hi∧
θ <: Lo }

|= θ <: Lo

In the above verification, the lines above and below of each expression are
considered to be its precondition and postcondition respectively. Now consider
a similar example with a minor change to the last line, returning c3.f1 instead
of c2.f1.

. . .
{ (p 6= 0 ∧ t = 1 ∧ c3 = c1 ∗ c1 7→ (f1 : 1) ∗ c2 7→ (f1 : 0))
∨(p = 0 ∧ t = 2 ∧ c3 = c1 ∗ c1 7→ (f1 : 2) ∗ c2 7→ (f1 : 0))∧
p <: Hi ∧ c1 <: Lo ∧ c1.f1 <: Hi ∧ c2 <: Lo ∧ c2.f1 <: Lo ∧ t <: Hi }

c3.f1;

{ (p 6= 0 ∧ t = 1 ∧ c3 = c1 ∧ θ = 0 ∗ c1 7→ (f1 : 1) ∗ c2 7→ (f1 : 0))
∨(p = 0 ∧ t = 2 ∧ c3 = c1 ∧ θ = 0 ∗ c1 7→ (f1 : 2) ∗ c2 7→ (f1 : 0))∧
p <: Hi ∧ c1 <: Lo ∧ c1.f1 <: Hi ∧ c2 <: Lo ∧ c2.f1 <: Lo ∧ t <: Hi∧
θ <: Lo }

6|= θ <: Lo

Indeed there is a leak in the above example since there is a direct implicit
flow from p to t, and an indirect flow from p to θ where θ is given as Lo in
the specification. Now we will show that our logical system does not prove the
program as safe. The second analysis is the same as the first except for the last
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few lines. For brevity, we present only the last few lines, where the analysis is
different.

As can be observed from the analysis above, the program’s specification is
not provable, and hence there is a potential leak.
Non-recursive functions. Function calls refer to programs that call functions.
Because the ability to perform verification of such functions is the core of our
modular system, these form the bulk of our examples.
Recursive functions. Recursive function calls refer to programs that contain
functions that call themselves during their execution, whether directly (calling
itself within its own body) or indirectly (mutual recursion). Figure 3 shows an
example of a mutual recursion.

f(x) (x <: Hi) (res <: Hi)

{ b := x = 0;

y := if b then 1 else 0; g(y) }

g(p) (p <: Hi) (res <: Hi)

{ b := p = 0;

if b then f(p) else 0 }

Fig. 3. Example of mutual recursion.

In the above example, all the parameters are bounded by Hi and the result is
also bounded by Hi. It means that the programmer intends to use these functions
only to deal with secured information.

Here we rigorously demonstrate how our verification system works for the
above mututal recursive functions. From the example above, we have Γ =
{{x <: Hi}f(x){θ <: Hi}, {p <: Hi}g(p){θ <: Hi}}. First, we will prove that
‘f(x)’ is safe.We will prove:
Γ, Lo ` {x <: Hi}b := x = 0; y := if b then 1 else 0; g(y){θ <: Hi}

1. By [Var], [Const], [Binary], and [Consequence]:
Γ, Lo ` {x <: Hi}x = 0{θ = (x = 0) ∧ θ <: Hi}

2. By [Assign]:
Γ, Lo ` {x <: Hi}b := x = 0{b = (x = 0) ∧ b <: Hi}

3. Since Lo t Hi = Hi, by [Const] and [Consequence]:
Γ, Hi ` {b = (x = 0) ∧ b 6= 0 ∧ b <: Hi}1{b <: Hi ∧ θ = 1 ∧ θ <: Hi}
and
Γ, Hi ` {b = (x = 0) ∧ b = 0 ∧ b <: Hi}0{b <: Hi ∧ θ = 0 ∧ θ <: Hi}

4. By [If]:
Γ, Lo ` {b = (x = 0) ∧ b <: Hi}if b then 1 else 0{(θ = 1 ∨ θ = 0) ∧ b <: Hi

∧θ <: Hi}
5. By [Assign]:

Γ, Lo ` {b = (x = 0) ∧ b <: Hi}y := if b then 1 else 0{(y = 1 ∨ y = 0)∧
b <: Hi ∧ y <: Hi}

6. By [Comp]:
Γ, Lo ` {x <: Hi}b := x = 0; y := if b then 1 else 0{(y = 1 ∨ y = 0) ∧ y <: Hi}

7. Since y <: Hi |= (p <: Hi)[p := y], by [Recursion]:
Γ, Lo ` {(y = 1 ∨ y = 0) ∧ y <: Hi}g(y){(y = 1 ∨ y = 0) ∧ y <: Hi ∧ θ <: Hi}
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8. Lastly, by [Comp] and [Consequence]:
Γ, Lo ` {x <: Hi}b := x = 0; y := if b then 1 else 0; g(y){θ <: Hi}

Similarly, our system can also show that the function ‘g(p)’ is safe by proving
Γ, Lo ` {p <: Hi}b := p = 0; if b then f(p) else 0{θ <: Hi}. Thus, our system
concludes that the above example is safe (i.e., there is no security leak).

Our verification system is able to identify all test programs that we manually
checked to contain security leaks by showing that the program cannot be proved.

7 Future Work and Conclusion

In this section we will briefly discuss some of the limitations of our system and
the implementation. We will also try to discuss possible directions of solving it
for the future works. At the end, we will give the conclusion.

7.1 Future Work

Implementation Limitations Our implementation only accepts integer pa-
rameters for functions, and cannot take objects as parameters. Also, the main
concern of the implementation was to verify the correctness of our logic with
respect to flows, and as such, it does not fully handle our fragment of separation
logic. Furthermore, objects may only have integer fields.

We would like to extend our implementation to fully handle our fragment of
separation logic, and perform more in-depth experiments.

False Positives Because our logic does not fully take into account the semantics
of the programming language, there are cases where our system fails to prove a
valid program. We explore two such cases here.

data C { f1 }

g(p) (p <: Hi) (res <: Lo)

{ c1 := new C(1); b := p = p; c1.f1 := if b then 10 else 9; c1.f1 }

Fig. 4. If-else always returns true.

In Figure 4, the condition p = p is always true, and hence the value of c1.f1
is always the same regardless of the value of p. Hence c1.f1 can be bounded
by Lo. However, in our system, because its value is set in a conditional where
the test is bounded by Hi, c1.f1 is always bounded by Hi, and this causes the
verification to fail, despite the fact that it leaks no information.

To handle such issues, one direction is to have two special forms of [If] rule
as follows.
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[If-True]
∆ ` v 6= 0 Γ, κ ` {∆}e1{∆1}

Γ, κ ` {∆}if v then e1 else e2{∆1}

[If-False]
∆ ` v = 0 Γ, κ ` {∆}e2{∆2}

Γ, κ ` {∆}if v then e1 else e2{∆2}
The rule [If-True] and [If-False] are for constant truth value of the con-

dition. These rules can be used to eliminate some false positives. In the presence
of a constant value of the condition, an ‘if-then-else’ expression is equivalent
to one of its blocks. In this case, there is no implicit flow occurs. For example,
v := 1;x := if v then 1 else 0 is equivalent to v := 1;x := 1. So, we can say that
κ ` {∆ ∧ v = 1}if v then 1 else 0{∆′} is provable if κ ` {∆ ∧ v = 1}1{∆′} is
provable.

Another false positive is shown in Figure 5. In this example, the if-else expres-
sion returns the same value in both of its branches. In such a case, an attacker
cannot infer any information about the conditional since the result is always the
same. However, our logical system is unable to prove that there is no information
flow leak in such a situation.

data C { f1 }

f2 (p) (p <: Hi) (res <: Lo)

{ c1 := new C(1); t := if p then c1 else c1; c1.f1 }

Fig. 5. False positive - same return value in both branches of if-else.

However, we may add a special rule, which is a variant of the rule [If], to
handle this situation as follows.

[If2]

Γ, κ t β(∆, v) ` {∆}e1{∆1}Γ, κ t β(∆, v) ` {∆}e2{∆2}
∆1 ⇐⇒ ∆2 Γ, κ ` {∆}e1{∆3}
Γ, κ ` {∆}if v then e1 else e2{∆3}

That said, it can be difficult to prove that ∆1 ⇐⇒ ∆2; deciding if two
logical formulas are equivalent is known to be coNP for Boolean propositional
logic.

7.2 Conclusion

We have introduced a novel modular logic-based static IFC system that verifies
each function independently. We have also shown the correctness of our system
with respect to termination- and timing-insensitive non-interference .

In comparison with other systems, our static IFC system does not suffer the
high overhead and dynamic security label propagation of dynamic IFC systems.
We chose logic-based IFC system due to the higher precision in comparison with
type-based systems as the latter requires the inviolability of the static security
label declaration. This results in an inability to verify programs with transient
leak.

Additionally, we provide examples on how the system can be used for verifi-
cation. Currently, our implementation of the verifier is still limited in its func-
tionality. We leave the implementation of the full functionality of our verifier for
future work.
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On Constructivity of Galois Connections
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Abstract. Abstract interpretation-based static analyses rely on abstract domains
of program properties, such as intervals or congruences for integer variables. Ga-
lois connections (GCs) between posets provide the most widespread and use-
ful formal tool for mathematically specifying abstract domains. Darais and Van
Horn [2016] put forward a notion of constructive Galois connection for unordered
sets (rather than posets), which allows to define abstract domains in a so-called
mechanized and calculational proof style and therefore enables the use of proof
assistants like Coq and Agda for automatically extracting certified algorithms of
static analysis. We show here that constructive GCs are isomorphic, in a mathe-
matical meaning which includes sound abstract functions, to so-called partition-
ing GCs — an already known class of GCs which allows to cast standard set parti-
tions as an abstract domain. Darais and Van Horn [2016] further provide a notion
of constructive Galois connection for posets, which we prove to be mathemati-
cally isomorphic to plain GCs. Drawing on these findings, we put forward purely
partitioning GCs, a novel class of constructive abstract domains for a mechanized
approach to abstract interpretation. We show that this class of abstract domains
allows us to represent a set partition in a flexible way while retaining a construc-
tive approach to Galois connections.

1 Introduction

Abstract interpretation [4,5] is probably the most used and successful technique for
defining approximations of program semantics (or, more in general, of computing sys-
tems) to be used for designing provably sound static program analyzers. Abstract do-
mains play a crucial role in any abstract interpretation, since they encode, both logically
for reasoning purposes and practically for implementations, which program properties
are computed by a static analysis. Since its beginning [4], one major insight of abstract
interpretation is given by the use of Galois connections (GCs) for defining abstract
domains. A specification of an abstract domain D through a Galois connection pre-
scribes that: (1) both concrete and abstract domains, C and D, are partially ordered,
and typically they give rise to complete lattices; (2) concrete and abstract domains are
related by a pair of so-called abstraction α : C → D and concretization γ : D → C
maps; (3) α and γ give rise to an adjunction relation: α(c) ≤D d ⇔ c ≤C γ(d). GCs
carry both advantages and drawbacks. One major benefit of GCs is the so-called cal-
culational style for defining abstract operations [2,17]. If f : C → C is any concrete
operation involved by some semantic definition (e.g., integer addition or multiplication)
then a corresponding correct approximation on A is defined by α ◦ f ◦ γ : A → A,
which turns out to be the best possible approximation of f on the abstract domain A
and, as envisioned by Cousot [2], allows to systematically derive abstract operations
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in a correct-by-design manner. On the negative side, GCs have two main weaknesses.
First, GCs formalize an ideal situation where each concrete property in C has a unique
best abstract approximation in D. Some very useful and largely used abstract domains
cannot be defined by a GC, convex polyhedra being a prominent example of abstract
domain where no abstraction map can be defined [9]. This problem motivated weaker
abstract interpretation frameworks which only need concretization maps [6]. Secondly,
it turns out that abstraction maps of GCs cannot be mechanized [18,20], meaning that
one cannot use automatic formal proof systems like Coq in order to extract certified al-
gorithms of abstract interpretation, e.g., based on best correct approximations α ◦ f ◦γ,
since the existence of an abstraction map would require a non-constructive axiom (see
[20, Section 3.3.2]). In other terms, the calculational approach of abstract interpretation
cannot be automatized. Notably, Verasco [15,16] (and its precursor described in [1]) is
a static analyzer for C which has been formally designed and verified using the Coq
proof assistant, and is based on abstract interpretation using concretization maps only.
This latter motivation was one starting point of Darais and Van Horn [10] for investi-
gating constructive versions of Galois connections, together with the observation that
many useful abstract domains, even if defined by an abstraction map, still would permit
a mechanization of their soundness proofs. Also, Darais and Van Horn’s approach [10]
generalizes ‘Galculator’ [24], which is a proof assistant based on a given algebra of
Galois connections.

Constructive Galois connections (acronym CGCs) [10] stem from the observation
that for many commonly used abstract domains1: (1) the concrete domain is a pow-
erset (also called collecting) domain ℘(A) of an unordered carrier domain A; (2) the
abstraction map α on the powerset ℘(A) is defined as a lifting to the powerset of a basic
abstraction function η, called extraction, which is defined just on the carrier domain A
and takes values belonging to an unordered abstract domain B, that is, η : A → B;
(3) the concretization (or interpretation) map µ : B → ℘(A) provides a meaning in
℘(A) to basic abstract values ranging in B; (4) the standard α/γ adjunction relation
of GCs can be equivalently reformulated in terms of the following correspondence be-
tween η and µ: for all a ∈ A and b ∈ B,

a ∈ µ(b)⇔ η(a) = b (CGC-Corr)

The intuition is similar to GCs: b approximates a set containing a iff b is the abstraction
of a. Moreover, CGCs allow to give a soundness condition for pairs of concrete and
abstract functions which are defined on the carrier concrete and abstract domainsA and
B. As a simple example taken from [10, Section 2], the standard parity (toy) abstraction
for integer variables can be defined as a CGC as follows. The carrier concrete domain is
Z, the unordered parity domain is P = {even, odd}, while abstraction parity : Z → P
and concretization µ : P → ℘(Z) mappings are straightforwardly defined and satisfy
(CGC-Corr): z ∈ µ(a) ⇔ parity(z) = a. Also, from a successor concrete operation
succ : Z → Z one can constructively derive a sound abstract successor succ] : P → P
such that succ](even) = odd and succ](odd) = even.

Darais and Van Horn [10] further provide a notion of constructive Galois connection
for posets (acronym CGP), where the carrier concrete domainA and the abstract domain

1 We follow the notation used in [10].
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B are posets (rather than unordered sets), and where the above condition (CGC-Corr)
is replaced by:

a ∈ µ(b)⇔ η(a) ≤B b (CGP-Corr)

This enables a constructive definition for ordered abstract domains like the following
abstract lattice Sign:

Z

≥06=0≤0

>0<0 =0

∅

whose partial order relation ≤Sign encodes an approximation relation between its ab-
stract values and where η : Z → Sign and µ : Sign → ℘(Z). Here, η(a) provides the
sign of a ∈ Z in the subset {<0, =0, >0} ⊆ Sign, so that η(a) = b of (CGC-Corr) is
weakened to η(a) ≤Sign b.

Contributions. Our initial observation was that CGCs always encode a partition of
the concrete carrier set A. As a simple example, for the above parity domain P, the
induced partition of the carrier concrete domain Z obviously consists of two blocks:
{z ∈ Z | z even} and {z ∈ Z | z odd}. Conversely, if an abstract domainD of a powerset
domain ℘(A) is defined through a standard Galois connection G and D does not induce
an underlying partition of the carrier set A then we observed that the GC G cannot
be equivalently formulated by a CGC. Abstract domains which encode a partition of a
given carrier set have been previously studied and formalized as so-called partitioning
Galois connections (PGCs) or elementwise set abstractions [3,7,8]. Intuitively, a Galois
connection defining a domain D which abstracts a concrete powerset domain ℘(A) is
called partitioning [7,22] when D represents a partition P of the set A, namely when
there exists a partition P of A such that any γ(d) ∈ ℘(A) is a union of blocks of P .
For example, the GC defining the abstract domain Sign above is partitioning, where the
induced partition of Z consists of the blocks {z ∈ Z | z < 0}, {0} and {z ∈ Z | z > 0}.

Our first contribution shows that CGCs are isomorphic to PGCs in the following pre-
cise meaning. We define two invertible transforms TPGC and TCGC such that: (1) TPGC
transforms any CGC into a PGC; (2) TCGC transforms any PGC into a CGC; (3) the
transforms are one the inverse of the other, i.e., TCGC ◦ TPGC = id = TPGC ◦ TCGC.
Moreover, this isomorphism includes the soundness of abstract operations, meaning
that we extend the transforms TPGC and TCGC in order to convert a pair 〈f, f ]〉 of con-
crete and sound abstract operations on a CGC C to a pair of concrete and sound abstract
operations TPGC(〈f, f ]〉) on the PGC TPGC(C), and analogously the other way round
from PGCs to CGCs.

Secondly, we studied Darais and Van Horn’s CGPs, in order to investigate whether
they can be similarly characterized as a suitable subclass of Galois connections. We
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show that CGPs are mathematically equivalent to plain GCs of a powerdomain, mean-
ing that here we define two transforms TGC and TCGP that give rise to an isomorphism
between standard Galois connections relating an abstract domain B to a powerdomain
℘↓(A) and CGPs of the ordered abstract domain B into the carrier set A. Therefore, it
turns out that CGPs do not identify a proper subclass of Galois connections.

It is worth remarking that the above transforms TCGC and TCGP are nonconstruc-
tive, meaning that the definitions of TCGC(G) and TCGP(G) rely on the abstraction map
which determines their input Galois connection G. Nonetheless, these transforms are
still useful since they provide a formal definition to be used for manually designing a
constructive abstract domain starting from a partitioning Galois connection or any Ga-
lois connection of a concrete powerdomain.

Drawing on these results, our third contribution is the definition of a novel class
of constructive Galois connections, called purely constructive GCs (PCGCs). The ba-
sic idea underlying PCGCs is as follows. CGCs essentially represent a partition P of
the concrete carrier domain A encoded through an abstract domain B. We showed that
this encoding of P can also be viewed as an implicit representation for all the possible
unions of blocks in P . Hence, this observation can be naturally generalized by allowing
to select which unions of blocks of P to consider in the abstract domain B. In other
terms, B may be defined as a partition P of A together with an explicit choice of some
unions of blocks of P , where this selection may range from none to all (where all boils
down to CGCs). As an example, consider a sign abstraction like Sign 6= , Signr{6=0},
where the abstract value 6=0 is taken out from the above abstract lattice Sign. Then, it
turns out that Sign 6= cannot be formalized as a CGC, although Sign 6= still represents a
partition of Z. In fact, Sign 6= just lacks a representation for the union of the two blocks
{z ∈ Z | z < 0} and {z ∈ Z | z > 0}, i.e., it precisely lacks the removed abstract value
6=0 which would represent this union. In our setting, Sign 6= can be defined as a PCGC.
More precisely, a PCGC of a poset abstract domain B into an unordered concrete car-
rier set A is defined by η : A → B and µ : B → ℘(A) which satify the following two
conditions:

a ∈ µ(η(a′)) ⇔ η(a) = η(a′) (PCGC-Corr1)
a ∈ µ(b) ⇔ η(a) ≤B b (PCGC-Corr2)

Therefore, (PCGC-Corr2) exactly coincides with (CGP-Corr), while (PCGC-Corr1) is
a weakening of (CGC-Corr) because it amounts to (CGC-Corr) restricted to abstract
values ranging in η(A). Thus, as an example, we have that Sign 6= is a CGP because
(PCGC-Corr2) clearly holds, i.e. a ∈ µ(b) ⇔ η(a) ≤Sign 6= b holds, while Sign 6= is not a
CGC because, e.g., 2 ∈ µ(≥0) while η(2) 6= ≥0 so that the condition (CGC-Corr) does
not hold. On the other hand, let us remark that the weakening (PCGC-Corr1) instead
does hold, so that Sign 6= turns out to be a PCGC. Thus, PCGCs still represent a partition
P of the concrete carrier domain as CGCs do, while retaining a constructive approach
to abstract interpretation and providing a flexible way of representing unions of blocks
in P . Also, PCGCs come together with a definition of sound abstract operations and of
the notion of completeness commonly used in abstract interpretation.
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2 Background

Notation. Let f : A → B, g : A → ℘(B) and h : ℘(A) → B, k : A → C, where
A and B are sets and C is a complete lattice with lub ∨. We then use the following
definitions:

powerset (or collecting) lifting: f� : ℘(A)→ ℘(B) f�(X) , {f(x) | x ∈ X}
singleton powerset lifting: fB : A→ ℘(B) fB(a) , {f(b)}

domain powerset lifting: g∗ : ℘(A)→ ℘(B) g∗(X) , ∪x∈Xg(x)
singleton lowering: h{·} : A→ B h{·}(a) , h({a})

lub domain powerset lifting: k∨ : ℘(A)→ C k∨(X) , ∨a∈Xk(a)

Somewhere we use f(X) as an alternative notation for f�(X). If f, f ′ : A → C
and C is a poset then we write f v f ′ when for any a ∈ A, f(a) ≤C f ′(c). If
A is a poset and X ⊆ A then ↓X , {y ∈ A | ∃x ∈ X.y ≤ x}, and, in turn,
℘↓(A) , {X ∈ ℘(A) | X = ↓X} denotes the downward powerdomain of A, which is
a complete lattice when it is ordered by subset inclusion. We use ↓a as a shorthand for
↓{a}. Recall that any set A can be viewed as a poset w.r.t. the so-called discrete partial
order ≤d: for all x, y ∈ A, x ≤d y iff x = y. Let us also recall that P ⊆ ℘(A) is a
partition of A when: (1) B ∈ P ⇒ B 6= ∅; (2) if B1, B2 ∈ P and B1 6= B2 then
B1 ∩B2 = ∅; (3) ∪B∈PB = A.

Galois Connections. Recall that G = 〈α,C,D, γ〉 is a Galois connection (GC) when
C and D are posets, α : C → D, γ : D → C and α(c) ≤D d ⇔ c ≤C γ(d). By
following a standard terminology in abstract interpretation,C andD are called concrete
and abstract domains, while α and γ are called abstraction and concretization maps. G
is a disjunctive GC when γ is additive (intuitively, this means that G is able to represent
concrete logical disjunctions with no loss of precision). G is a Galois insertion (GI)
when α is surjective, or, equivalently, γ is injective.

Let us also recall some standard definitions and terminology of abstract interpreta-
tion [4,5]. Let f : C → C and f] : D → D be, respectively, concrete and abstract
functions. We then have the following definitions:

〈f, f]〉G is sound if: α ◦ f ◦ γ v f] (equivalently: α ◦ f v f] ◦ α)
〈f, f]〉G is optimal if: α ◦ f ◦ γ = f]

〈f, f]〉G is backward complete if: α ◦ f = f] ◦ α
〈f, f]〉G is forward complete if: f ◦ γ = γ ◦ f]

〈f, f]〉G is precise if: f = γ ◦ f] ◦ α

The abstract function fG , α ◦ f ◦ γ is called the best correct approximation (b.c.a.) of
f induced by G.

Let G1 = 〈α1, C,D1, γ1〉 and G2 = 〈α2, C,D2, γ2〉 be two GCs with a common
concrete domain C. G1 is more precise than G2, denoted by G1 v G2, when γ1 ◦ α1 v
γ2 ◦ α2; This is the standard definition, where the intuition is that the approximation in
D1 is more precise than in D2, namely, for any c ∈ C, γ1(α1(c)) ≤C γ2(α2(c)). Let
us also recall that this happens iff γ2(α2(C)) ⊆ γ1(α1(C)), i.e., any concrete property
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which is precisely represented by D2 is also precisely represented by D1. In turn, G1
and G2 are called isomorphic when G1 v G2 and G2 v G1, i.e., when γ1 ◦α1 = γ2 ◦α2

holds. Hence, the intuition is that G1 and G2 abstractly encode the same properties of
C up to a renaming of the abstract values in Di. This notion can be shifted to abstract
functions as follows: If f ]1 : D1 → D1 and f ]2 : D2 → D2 are two abstract functions
for a common concrete function f : C → C then f ]1 is called isomorphic to f ]2 when
γ1 ◦ f ]1 ◦ α1 = γ2 ◦ f ]2 ◦ α2, that is, the following diagram commutes:

D1 D1

C C

D2 D2

f]1

γ1α1

α2

f]2

γ2

3 Constructive Galois Connections

Constructive Galois connections (CGCs) have been put forward by Darais and Van
Horn [10, Section 3] to feature a full “calculational” reasoning style in defining abstract
domains and operations, which can therefore support an automatic mechanization by
proof assistants. CGCs are defined by a Galois connection-like correspondence between
sets rather than posets: 〈η,A,B, µ〉 is a CGC when A and B are mere sets related by
two functions η : A→ B and µ : B → ℘(A) which satisfy the following equivalence:

a ∈ µ(b) ⇔ η(a) = b (CGC-Corr)

The intuition is that A is a carrier set of the concrete powerset domain ℘(A), B is an
unordered abstract domain, η is a representation function (also called extraction func-
tion) for concrete singletons {a}, while µ is a concretization function, which give rise
to a sort of unordered adjunction relation between A and B. CGCs enjoy the following
two key properties.

Lemma 3.1 (CGC properties). Consider a CGC 〈η,A,B, µ〉.

(1) η(a1) = η(a2) ⇔ µ(η(a1)) = µ(η(a2)) ⇔ µ(η(a1)) ∩ µ(η(a2)) 6= ∅
(2) µ(b) = ∅ ⇔ b 6∈ η(A)

Thus, the main consequence of Lemma 3.1 is that {µ(η(a))}a∈A are the blocks of
a partition of A. In fact, we have that: A = ∪a∈Aµ(η(a)); by (2), any block µ(η(a)) is
nonempty; by (1), if µ(η(a1)) 6= µ(η(a2)) then µ(η(a1))∩µ(η(a2)) = ∅. The abstract
values ranging in B r η(A) can be viewed as “useless” abstract values, because, by
Lemma 3.1 (2), they all represent the empty set. This leads to a notion of constructive
Galois insertion (CGI) which is the analogue of standard Galois insertions: 〈η,A,B, µ〉
is called a CGI when it is a CGC and η is surjective.
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Example 3.2. Consider the unordered abstract domain B , {−, 0,+,⊥}, the extrac-
tion function η : Z → B which encodes the sign of an integer, and µ : B → ℘(Z) de-
fined by: µ(−) , Z<0, µ(0) , {0}, µ(+) , Z>0, µ(⊥) , ∅. Then C = 〈η,Z, B, µ〉
is clearly a CGC. This is not a CGI because η(Z) ( B. Let us notice that here
{µ(η(z))}z∈Z gives rise to the partition {Z<0, {0},Z>0} of Z and that, accordingly
with Lemma 3.1 (2), µ(⊥) must necessarily be set to ∅, since ⊥ 6∈ η(B). ut

Darais and Van Horn [10, Section 3.1] also define constructive Galois connections
for posets (acronym CGPs) as follows. A tuple 〈η,A,B, µ〉 is a CGP when 〈A,≤A〉 and
〈B,≤B〉 are posets, η : A → B and µ : B → ℘↓(A) are monotone and the following
equivalence holds:

a ∈ µ(b) ⇔ η(a) ≤B b (CGP-Corr)

Hence, in (CGP-Corr) the partial order relation ≤B replaces the equality relation of
(CGC-Corr). We also recall that since A is a poset, we have that 〈℘↓(A),⊆〉 is a com-
plete lattice. It turns out that CGPs have the following properties.

Lemma 3.3 (CGP properties). Consider a CGP 〈η,A,B, µ〉.

(1) η(a1) = η(a2) ⇔ µ(η(a1)) = µ(η(a2))
(2) µ(b) = ∅ ⇔ ↓b ∩ η(A) = ∅
(3) If B is a complete lattice then 〈η∨, ℘↓(A), B, µ〉 is a GC.
(4) µ(B) = µ(η∨(℘↓(A)))

Hence, let us remark that by moving from CGCs to CGPs, properties (1) and (2) of
Lemma 3.1 are lost and replaced by the weaker properties (1) and (2) of Lemma 3.3. In
particular, we lose the key property of CGCs, namely that {µ(η(a))}a∈A is partition of
the carrier concrete poset A. Let us see an example of this phenomenon.

Example 3.4. Consider Z with the discrete partial order, so that ℘↓(Z) = ℘(Z), and
consider the following abstract domain B:

>

+

Let η : Z → B be defined by η(x) , if x > 0 then + else> and µ : Z → ℘(Z) be
defined by µ(+) , Z>0 and µ(>) , Z. It turns out that C = 〈η,Z, B, µ〉 is not a CGC,
because 1 ∈ µ(>) while + = η(1) 6= >. Instead, + = η(1) ≤B > holds, and indeed
C turns out to be a CGP. Notice that here {µ(η(z)) | z ∈ Z} = {Z>0,Z} does not give
rise to a partition of Z. ut

3.1 Comparing CGCs

In the following we will need to compare CGCs having a common concrete carrier set.

Definition 3.5 (Comparison of CGCs). Let C1 = 〈η1, A,B1, µ1〉 and C2 = 〈η2, A,B2,
µ2〉 be CGCs. Then, C1 more precise than C2 (or, C2 more abstract than C1), denoted
by C1 v C2, when:
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(1) µ1 ◦ η1 v µ2 ◦ η2;
(2) η1(A) = B1 ⇒ η2(A) = B2.

Also, C1 and C2 are isomorphic, denoted by C1 ∼= C2, when C1 v C2 and C2 v C1. ut
Condition (1) is analogous to GCs and formalizes the intuition that B1 is a more pre-
cise abstract domain than B2. However, this is not enough for CGCs, because, by
Lemma 3.1 (2), if η2(A) ( B2 then there exists some b2 6∈ η2(A) such that µ2(b2) = ∅,
meaning that B2 is able to represent the empty property, so that this must also hold for
B1. This is exactly stated by condition (2), which therefore allows us to provide the
right comparison relation for CGCs. We also define a nonempty comparison relation
v∅ that does not take into account possible empty properties in µ(Bi): C1 v∅ C2 when
just µ1 ◦ η1 v µ2 ◦ η2 holds. In turn, we have nonempty isomorphism: C1 ∼=∅ C2 when
C1 v∅ C2 and C2 v∅ C1.

Lemma 3.6.
(1) C1 ∼= C2 iff µ1(B1) = µ2(B2).
(2) C1 ∼=∅ C2 iff µ1(B1)r {∅} = µ2(B2)r {∅}.

Hence, the intuition of the isomorphism relation is the same of Galois connections,
as defined in Section 2: two CGCs are isomorphic when they exactly represent the
same abstraction of the concrete domain ℘(A) up to a renaming of abstract values. This
notion of isomorphism is also justified by the following result, where f1,2 and f2,1 play
the role of renaming functions: f1,2 : η1(A)→ η2(A) encodes abstract values in η1(A)
as abstract values in η2(A), and conversely for f2,1 : η2(A) → η1(A), where f1,2 and
f2,1 are one the inverse of the other and also commute with the concretizations µ1 and
µ2.

Lemma 3.7 (CGC Isomorphism). Let C1 = 〈η1, A,B1, µ1〉 and C2 = 〈η2, A,B2, µ2〉
be CGCs. Then, C1 ∼=∅ C2 iff there exist f1,2 : η1(A) → η2(A) and f2,1 : η2(A) →
η1(A) such that f1,2 ◦ f2,1 = id = f2,1 ◦ f1,2, µ1 ◦ η1 = µ2 ◦ f1,2 ◦ η1 and µ2 ◦ η2 =
µ1 ◦ f2,1 ◦ η2.

In particular, let us remark that Lemma 3.7 requires that the following two diagrams
commute:

η1(A)

A ℘(A)

η1(A) η2(A)

µ1η1

η1

f1,2

µ2

η2(A)

A ℘(A)

η2(A) η1(A)

µ2η2

η2

f2,1

µ1

4 Partitioning Galois Connections

Partitioning Galois connections/insertions (PGCs/PGIs) have been introduced by Cousot
and Cousot as particular examples of Galois connections in a number of articles, where
they have been called elementwise set abstractions (or homomorphic abstractions): [7,
Section 5], [8, Example 13] and [3, Example 6]. Given a partition P of a setA, the basic
idea is that any subset X ∈ ℘(A) is over-approximated by the unique minimal cover of
X through blocks in P , denoted by coverP(X) and depicted in the following picture:
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P

X

coverP(X)

The definition of PGCs given here has been studied and used in [21,22,23] for gen-
eralizing strong preservation of temporal logics in model checking. Let us consider a
GC G = 〈α, ℘(A)⊆, D≤, γ〉, where A is any unordered carrier set and D is a complete
lattice. Let us remark that, as a consequence of the properties of GCs, D must necessar-
ily be a complete lattice (rather than a mere poset). If prt(G) , {γ(α({a}))}a∈A then
G is called a partitioning Galois connection when:

(1) prt(G) is a partition of A;
(2) γ is additive, i.e., γ preserves arbitrary lub’s.

The main property of a PGC is that any abstract value d ∈ D represents a union of
blocks of the partition prt(G), namely γ(d) = ∪a∈γ(d)γ(α({a})), and, vice versa, for
any set of blocks {γ(α({a}))}a∈S of the partition prt(G), for some S ⊆ A, there exists
d ∈ A such that γ(d) = ∪a∈Sγ(α({a})). In other terms, the abstract domain D is
a representation of all the possible unions of blocks in prt(G). Alternatively, instead
of representing all the possible unions of blocks of a partition, one could equivalently
represent no union of blocks at all. This means that the above condition (2), requiring
the additivity of the concretization map γ, could be replaced by:

(2′) if x, y ∈ D and x, y are uncomparable then γ(x ∨D y) = A.

In this case, if α({a1}) and α({a2}) represent in D two different blocks then their lub
represents no information at all, that is, γ(α({a1, a2})) = A.

Example 4.1. Consider the Sign abstract lattice for sign analysis as depicted in Sec-
tion 1 and encoded by the GI S = 〈α, ℘(Z), Sign, γ〉, where abstraction and con-
cretization maps are defined as usual. It turns out that S is a PGC (more precisely, a
PGI), where the partition of Z is given by prt(S) = {γ(α({z})) ⊆ Z | z ∈ Z} =
{Z<0,Z=0,Z>0}. ut

It turns out that the notion of CGC is equivalent to that of PGC. This equivalence is
formalized by two transforms TPGC and TCGC such that: (1) any CGC C can be trans-
formed into a PGC TPGC(C); (2) any PGC G can be transformed into a CGC TCGC(G);
(3) these transforms are one the inverse of the other up to (nonempty) isomorphism, i.e.,
TCGC(TPGC(C)) ∼=∅ C and TPGC(TCGC(G)) ∼= G.

Theorem 4.2 (CGC-PGC Equivalence).
(1) If C = 〈η,A,B, µ〉 is a CGC then TPGC(C) , 〈η�, ℘(A)⊆, ℘(B)⊆, µ

∗〉 is a PGC.
(2) If G = 〈α, ℘(A)⊆, D≤, γ〉 is a PGC then TCGC(G), 〈α{·}, A, {α({a}) | a ∈ A}, γ〉
is a CGC.
(3) The transforms TPGC and TCGC are one the inverse of the other, up to nonempty
isomorphism.
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Let us remark that in Theorem 4.2, according to the definitions in Section 2:

(1) In the PGC TPGC(C) = 〈η�, ℘(A)⊆, ℘(B)⊆, µ
∗〉, we have that for any X ∈ ℘(A)

and Y ∈ ℘(B): η�(X) = {η(x) | x ∈ X} ∈ ℘(B) and µ∗(Y ) = ∪y∈Y µ(y) ∈
℘(A).

(2) In the CGC TCGC(G) = 〈α{·}, A, {α({a}) | a ∈ A}, γ〉, we have that: α{·} : A →
{α({a}) | a ∈ A} and γ : {α({a}) | a ∈ A} → ℘(A), where α{·}(a) = α({a})
and γ(α({a})) ∈ ℘(A).

Example 4.3. Let us consider the PGC S = 〈α, ℘(Z), Sign, γ〉 of Example 4.1. Then,
TCGC(S) provides a CGC which is nonempty isomorphic to the CGC C = 〈η,Z, B, µ〉
of Example 3.2: indeed, these two CGCs only differ for the element ⊥ ∈ B whose
meaning is ∅ = µ(⊥). Conversely, TPGC(C) is a PGC which is isomorphic to S . In
fact, the abstract domain of TPGC(C) is ℘(B), so that, since B includes the “useless”
value ⊥, we obtain a PGC rather than a PGI, because its concretization map µ∗ is not
injective, e.g., µ∗({⊥,+}) = µ∗({⊥}). ut

Furthermore, it turns out that the transforms of Theorem 4.2 preserve the relative
precision relations between CGCs/PGCs as follows.

Corollary 4.4. If C1 and C2 are CGCs then C1 v∅ C2 iff TPGC(C1) v TPGC(C2). If G1
and G2 are PGCs then G1 v G2 iff TCGC(G1) v∅ TCGC(G2).

As a consequence, one can define the lattice of all CGCs having a common concrete car-
rier set, ordered w.r.t. their relative precision up to nonempty isomorphism v∅, which
turns out to be order-theoretically isomorphic to the standard lattice of partitioning ab-
stract domains [23, Theorem 3.2].

Let us mention that [10] also puts forward a notion of Kleisli Galois connection
(KGC) between posets, which relies on a “monadic” notion of abstraction/concretization
maps. Actually, this class of constructive abstract domains is shown to be equivalent to
CGCs (cf. [10, Section 6]), where this isomorphism includes the notions of soundness
and optimality for abstract functions. Hence, we do not need to replicate our isomor-
phism between KGCs and PGCs, which comes as a consequence.

CGCs as Least Disjunctive Bases. Given a CGC C = 〈η,A,B, µ〉, Theorem 4.2
shows that TPGC(C) = 〈η�, ℘(A)⊆, ℘(B)⊆, µ

∗〉 is a PGC. Let us observe here that
{{x} | x ∈ B} is the set of join-irreducible elements of the complete lattice 〈℘(B),⊆〉.
Recall that an element x of a complete latticeC is join-irreducible when, for any S ⊆ C,
x = ∨S ⇒ x ∈ S, namely when any element x ∈ C can never be represented as a
lub of a subset S ⊆ C not containing x. In abstract interpretation terms (see [11]), this
observation means that the set {{x} | x ∈ B} can be viewed as the so-called least dis-
junctive basis of the partitioning abstract domain ℘(B)⊆. Least disjunctive bases have
been introduced in [11] as an inverse operation to the well-known disjunctive comple-
tion of abstract domains [5]. Given an abstract domain D, its least disjunctive basis is
defined to be the most abstract domain which has the same disjunctive completion asD.
Hence, the least disjunctive basis of D reveals and therefore removes all the disjunctive
information inside D by keeping only the information which cannot be reconstructed
through logical disjunction. It turns out that a concrete domain which is a powerset,
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as it is the case of ℘(A)⊆ in the PGC TPGC(C), satisfies the hypotheses of [11, The-
orem 4.13], and this latter result ensures that the least disjuctive basis of any abstract
domain D exists and is characterized as the closure under arbitrary meets of the join-
irreducible elements of D. This result can be therefore applied to the abstract domain
℘(B)⊆ of the PGC TPGC(C), whose least disjunctive basis is given by the meet-closure
of {{x} | x ∈ B}. We observe that this meet-closure of {{x} | x ∈ B} simply adds ∅
and B. Hence, in this sense, the role of the abstract domain B in a CGC 〈η,A,B, µ〉
can also be viewed as least disjunctive basis of a partitioning abstract domain.

Constructive Closure Operators. In abstract interpretation, abstract domains up to re-
naming of abstract values are encoded by closure operators on the concrete domain,
which turn out to be fully isomorphic to Galois connections [5] and allow to reason on
abstract domains independently of a specific representation of abstract values. Recall
that a map ρ : C → C is a closure operator when ρ is monotone, idempotent and ex-
tensive (i.e., x ≤C ρ(x)). Hence, the isomorphism between CGCs and PGCs given by
Theorem 4.2 leads us to a notion of “constructive closure operator”.

Given any concrete unordered carrier set A, a map ϕ : A→ ℘(A) is a constructive
closure operator (CCO) when the following condition holds:

x ∈ ϕ(y) ⇔ ϕ(x) = ϕ(y) (CCO-Corr)

CCOs turn out to be the right notion, since they do not rely on a specific representation
of abstract values and are equivalent to CGCs, as shown by the following result.

Corollary 4.5 (CGC-CCO Equivalence).
(1) If C = 〈η,A,B, µ〉 is a CGC then TCCO (C) , µ ◦ η : A→ ℘(A) is a CCO.
(2) If ϕ : A→ ℘(A) is a CCO then TCGC (ϕ) , 〈ϕ,A, {ϕ(a) | a ∈ A}, id〉 is a CGC.
(3) The transforms TCCO and TCGC are one the inverse of the other, up to nonempty
isomorphism.

Example 4.6. Consider the CGC C = 〈η,Z, B, µ〉 of Example 3.2, where the un-
ordered abstract domain is B = {−, 0,+,⊥}. The corresponding constructive closure
operator TCCO(C) : Z → ℘(Z) is therefore trivially defined, by Corollary 4.5 (1), as
follows:

TCCO(z) =


Z<0 if z < 0

{0} if z = 0

Z>0 if z > 0

Analogously to closure operators for standard Galois connections, this map TCCO(C)
allows us to encode the approximation of the constructive Galois connection C inde-
pendently of the specific representation of the abstract domain B. ut

4.1 Characterization of CGPs

Let us now turn on CGPs. Can this class of constructive abstractions be characterized
in terms of some subclass of Galois connections?
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Consider a CGP 〈η,A,B, µ〉, so that the concrete carrier setA is a poset, the abstract
domain B is a poset, and the maps η : A → B and µ : B → ℘↓(A) are monotone.
Here, for our characterization, we additionally need that the abstract domain B is a
complete lattice. Following the proof of Theorem 4.2, hence relying on the definition of
two CGPs/GCs transforms, we show that the class of CGPs turns out to be isomorphic
to the whole class of GCs of the concrete powerdomain ℘↓(A).

Theorem 4.7 (CGP-GC Equivalence).
(1) If C = 〈η,A,B, µ〉 is a CGP then TGC(C) , 〈η∨, ℘↓(A)⊆, B, µ〉 is a GC.
(2) If G = 〈α, ℘↓(A)⊆, D≤, γ〉 is a GC then TCGP(G) , 〈λa.α(↓{a}), A,D, γ〉 is a
CGP.
(3) The transforms TGC and TCGP are one the inverse of the other, up to isomorphism.

Otherwise stated, this result shows that the generalization from CGCs to CGPs,
which takes care of concrete and abstract carrier sets which are posets, actually pro-
vides a constructive characterization of the whole class of Galois connections of the
powerdomain ℘↓(A).

Example 4.8. Consider the following lattice D of integer intervals ordered by subset
inclusion:

Z

[−9,+∞)

[−7, 7]

[1, 5][−5,−1]

∅

This lattice D gives rise to a Galois insertion G = 〈α, ℘(Z), D, γ〉 where Z is consid-
ered with the discrete order, γ is the identity and, for example, we have that α({2}) =
[1, 5], α({0}) = α({6}) = [−7, 7], α({10}) = [−9,+∞), α({−10}) = Z. Let us
observe that γ is not additive, because [−5, 5] = [−5,−1] ∪ [1, 5] = γ([−5,−1]) ∪
γ([1, 5]) ( γ([−5,−1] ∨D [1, 5]) = [−7, 7]. Hence, this Galois insertion is neither
partitioning nor disjunctive.
By Theorem 4.7 (2), it turns out that TCGP(G) = 〈λz.α({z}),Z, D, γ〉 is a CGP, and
this allows us to view D as a constructive abstract domain. Let us remark that this is
true even if G is neither partitioning nor disjunctive.
Let us remark that Theorem 4.7 applies to infinite abstract domains as well. As a simple
example, consider the complete lattice E , {[0, n] | n ∈ N} ∪ {N}, ordered by subset
inclusion, which is an infinite increasing chain of intervals of natural numbers. This
complete lattice gives rise to a GI E = 〈α, ℘(N), E, γ〉 where N is discretely ordered
and γ is the identity. Here, Theorem 4.7 (2) yields a CGP TCGP(E) = 〈η,N, E, id〉
where η(n) = [0, n]. As a further infinite example, consider the well-known complete
lattice of integer intervals Int, which is defined by a GI I = 〈αInt, ℘(N), Int, γInt〉
where N is discretely ordered [4,5]. Here, Theorem 4.7 (2) yields a CGP TCGP(I) =
〈ηInt,N, Int, γInt〉 where ηInt(n) = [n, n]. ut
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4.2 On the Meaning of the Isomorphisms

Theorem 4.2 provides an isomorphism between CGCs and partitioning GCs, while The-
orem 4.7 yields an isomorphism between CGPs and standard GCs. In particular, Theo-
rem 4.2 (2) shows how a partitioning GC G can be transformed into an equivalent CGC
TCGC(G), while Theorem 4.7 (2) establishes how a standard GC G of a concrete power-
domain can be mapped to an equivalent CGP TCGP(G). It should be remarked that the
transforms TCGC(G) and TCGP(G) are nonconstructive, meaning that their definitions
rely on the abstraction map α which determines the input Galois connection G. Never-
theless, these transforms are still useful since they provide a precise formal definition
which can be used for manually designing a CGC out of a partitioning GC and a CGP
out of any GC of a concrete powerdomain, in this latter case thus making possible to
define a constructive abstract domain starting from any GC.

5 Soundness of Abstract Operations

Our next step is to transform a pair of sound abstract functions from CGCs to PGCs and
vice versa, in order to show that the equivalence between CGCs and PGCs also include
soundness of abstract functions. Analogously for optimality. For notational simplicity,
we consider unary functions, but the whole approach can be straighforwardly general-
ized to generic n-ary functions (that indeed we will use in some examples).

Let C = 〈η,A,B, µ〉 be a CGC, f : A→ A be a concrete function and f] : B → B
be a corresponding abstract function. Darais and Van Horn [10] provide four equivalent
soudness conditions for the pair 〈f, f]〉 w.r.t. C, which are as follows:

x ∈ µ(y) & y′ = η(f(x)) ⇒ y′ = f](y) (CGC-Snd/ηµ)
x ∈ µ(y) & x′ = f(x) ⇒ x′ ∈ µ(f](y)) (CGC-Snd/µµ)
y = η(f(x)) ⇒ y = f](η(x)) (CGC-Snd/ηη)
x′ = f(x) ⇒ x′ ∈ µ(f](η(x))) (CGC-Snd/µη)

Given two CGCs Ci = 〈ηi, A,Bi, µi〉, i = 1, 2, a concrete function f : A → A

and two corresponding abstract functions f ]i : Bi → Bi, we extend the notion of CGC
isomorphism (given in Section 3.1) to functions as follows: 〈f, f ]1〉 ∼= 〈f, f

]
2〉 when

(1) fi is sound for f w.r.t. Ci; (2) µ1 ◦f ]1 ◦η1 = µ2 ◦f ]2 ◦η2. This corresponds to require
that the concrete projections of f ]1 and f ]2 , which are of type A → ℘(A), coincide, so
that f ]1 and f ]2 can be regarded as being isomorphic.

Let us first consider TPGC which transforms a CGC C into an equivalent partitioning
Galois connection TPGC(C) = 〈η�, ℘(A)⊆, ℘(B)⊆, µ

∗〉. Here, the pair of functions
〈f, f]〉 w.r.t. C is transformed, through the powerset lifting (·)� of Section 2, into a
pair of functions TPGC(〈f, f]〉) w.r.t. TPGC(C), that is, TPGC(〈f, f]〉) , 〈f�, f�] 〉, where
f� : ℘(A)→ ℘(A) and f�] : ℘(B)→ ℘(B).

Conversely, let G = 〈α, ℘(A)⊆, D≤, γ〉 be a PGC, so that the abstract domain D
represents a partition prt(G) of A. Here, we need to consider concrete functions on the
powerset ℘(A) which are defined as powerset lifting of a mapping g : A → A on the
unordered carrier set A, that is, g� : ℘(A) → ℘(A) will be our concrete function. On
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the abstract side, a monotone abstract function g] : D → D is called block-preserving
(w.r.t. blocks in prt(G)) when g] maps (abstract representations of) blocks to (abstract
representations of) blocks, namely, when the following condition holds:

∀a ∈ A.∃a′ ∈ A. g](α({a})) = α({a′}).

Example 5.1. Consider the PGC (actually PGI) S = 〈α, ℘(Z), Sign, γ〉 of Exam-
ple 4.1. Similarly to the examples in [10, Section 2], we consider the successor concrete
function succ : Z→ Z on the concrete carrier domain Z, so that succ� : ℘(Z)→ ℘(Z).
The corresponding best correct approximation succSign , α ◦ succ� ◦ γ is as follows:

succSign = {∅ 7→ ∅, <0 7→ ≤0, =0 7→>0, >0 7→>0,

≤0 7→ Z, 6=0 7→ Z, ≥0 7→>0, Z 7→ Z}

Then, succSign is not block-preserving because succSign(α({−1})) = ≤0 and there
exists no z ∈ Z such that α({z}) = ≤0.
As a further example, consider the concrete square function sq : Z → Z, namely,
sq(z) = z2, its powerset lifting sq� : ℘(Z)→ ℘(Z), and, in turn, its corresponding best
correct approximation sqSign , α ◦ sq� ◦ γ:

sqSign = {∅ 7→ ∅, <0 7→>0, =0 7→=0, >0 7→>0,

≤0 7→ ≥0, 6=0 7→>0, ≥0 7→ ≥0, Z 7→ ≥0}

Here, it turns out that sqSign is instead block-preserving. ut

Lemma 5.2. If G is a PGI, 〈g�, g]〉 is sound and g] is block-preserving then, for any
a ∈ A, g](α({a})) = α({g(a)}) and g�(γ(α({a}))) ⊆ γ(α({g(a)})).

In order to transform a sound pair of functions 〈g�, g]〉 w.r.t. G, where g] is assumed
to be block-preserving, into a pair of functions for TCGC(G) = 〈α{·}, A, {α({a}) | a ∈
A}, γ〉, we consider:

(i) the concrete carrier function g : A→ A
(ii) the restriction gr] of the abstract function g] to abstract representations of blocks, as

determined by Lemma 5.2, namely, gr] : {α({a}) | a ∈ A} → {α({a}) | a ∈ A},
with gr] (α({a})), α({g(a)}).

This transform of pair of functions from PGCs to CGCs is denoted by TCGC(〈g�, g]〉) ,
〈g, gr] 〉. It allows us to extend our correspondance between CGCs and PGCs in order to
include soundness as follows.

Theorem 5.3.
(1) Let C = 〈η,A,B, µ〉 be a CGC, f : A→ A and f] : B → B. Then, 〈f, f]〉 is sound
iff TPGC(〈f, f]〉) is sound w.r.t. TPGC(C).
(2) Let G = 〈α, ℘(A)⊆, D≤, γ〉 be a PGC, g� : ℘(A) → ℘(A), for some g : A →
A, and g] : D → D be monotone and block-preserving. Then, 〈g�, g]〉 is sound iff
TCGC(〈g�, g]〉) is sound w.r.t. TCGC(G).
(3) If 〈f, f]〉 is sound then TCGC(TPGC(〈f, f]〉)) ∼= 〈f, f]〉. If 〈g�, g]〉 is sound and g] is
block-preserving and additive then TPGC(TCGC(〈g�, g]〉)) ∼= 〈g�, g]〉.
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Example 5.4. Consider Example 5.1, where the best correct approximation sqSign :
Sign → Sign of the concrete square operation sq� : ℘(Z) → ℘(Z) is (monotone and)
block-preserving. Indeed, the set of (abstract) blocks is B = {α({z}) | z ∈ Z} =
{< 0, =0, > 0} and sqSign maps blocks to blocks. Here, we have that TCGC(S) =
〈η,Z, B, µ〉 and TCGC(〈sq�, sqS〉) = 〈sq, sqrS〉 where sq : Z → Z and the restriction
sqrS : B → B is such that sqrS(α({z})) = α({sq(z)}), namely:

sqrS = {<0 7→>0, =0 7→=0, >0 7→>0} ut

5.1 Completeness

As observed in [10], the above four equivalent soundness conditions (CGC-Snd) for
CGCs lead to four non-equivalent conditions of completeness for abstract functions,
where⇔ replaces⇒:

x ∈ µ(y) & y′ = η(f(x)) ⇔ y′ = f](y) (CGC-Cmp/ηµ)
x ∈ µ(y) & x′ = f(x) ⇔ x′ ∈ µ(f](y)) (CGC-Cmp/µµ)
y = η(f(x)) ⇔ y = f](η(x)) (CGC-Cmp/ηη)
x′ = f(x) ⇔ x′ ∈ µ(f](η(x))) (CGC-Cmp/µη)

It turns out that these completeness conditions for a pair 〈f, f]〉 can be equivalently
stated using the standard optimality/completeness/precision conditions for Galois con-
nections, as recalled in Section 2, for the transformed pair TPGC(〈f, f]〉).

Lemma 5.5.
(1) 〈f, f]〉 satisfies (CGC-Cmp/ηµ) iff TPGC(〈f, f]〉) is optimal w.r.t. TPGC(C).
(2) 〈f, f]〉 satisfies (CGC-Cmp/µµ) iff TPGC(〈f, f]〉) is forward complete w.r.t. TPGC(C).
(3) 〈f, f]〉 satisfies (CGC-Cmp/ηη) iff TPGC(〈f, f]〉) is backward complete w.r.t. TPGC(C).
(4) 〈f, f]〉 satisfies (CGC-Cmp/µη) iff TPGC(〈f, f]〉) is precise w.r.t. TPGC(C).

Example 5.6. Consider Example 5.4, namely the CGC C = 〈η,Z, B, µ〉, with B =
{<0, = 0, > 0}, the concrete square operation sq : Z → Z and the corresponding
abstract square operation sq] : B → B

sq] = {<0 7→>0, =0 7→=0, >0 7→>0}

It turns out that 〈sq, sq]〉 satisfies (CGC-Cmp/ηµ), (CGC-Cmp/µµ) and (CGC-Cmp/ηη)
but not (CGC-Cmp/µη). This can be easily checked on the transformed pair of functions
TPGC(〈sq, sq]〉) = 〈sq�, sq�] 〉 by resorting to Lemma 5.5: in fact, we have that sq�] :
℘(B)→ ℘(B) is clearly both backward and forward complete (and therefore optimal)
for sq� : ℘(Z)→ ℘(Z), while it is not precise, because sq� 6= γ ◦ sq�] ◦ α. ut

6 Purely Partitioning Galois Connections

Drawing on the above results, we define a novel class of constructive abstract domains,
which we call purely constructive Galois connections (PCGCs). The idea is that PCGCs
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generalize CGCs as follows. We have shown that CGCs may be viewed as representing
a partition of the concrete carrier domain A through an abstract domain B. We proved
that this view of a CGC as a partition also implicitly represents all the possible unions
of its blocks. The goal here is to generalize this approach by allowing to choose which
unions of blocks to consider in the abstract domain B. Hence, B may be defined as a
partition P of A together with an explicit selection of unions of blocks of P , where this
selection may range from none to all.

A purely constructive Galois connection (PCGC) 〈η,A,B, µ〉 consists of a concrete
unordered carrier set A and of an abstract ordered domain 〈B,≤〉 which is required to
be a poset, together with two maps η : A → B and µ : B → ℘(A) which satify the
following two conditions:

a ∈ µ(η(a′)) ⇔ η(a) = η(a′) (PCGC-Corr1)
a ∈ µ(b) ⇔ η(a) ≤ b (PCGC-Corr2)

Thus, (PCGC-Corr2) coincides with (CGP-Corr), while the condition (PCGC-Corr1)
amounts to (CGC-Corr) restricted to abstract values ranging in η(A). PCGCs have the
following properties.

Lemma 6.1 (PCGC properties). Consider a PCGC 〈η,A,B≤, µ〉.
(1) η(a1) = η(a2) ⇔ µ(η(a1)) = µ(η(a2)) ⇔ µ(η(a1)) ∩ µ(η(a2)) 6= ∅
(2) µ(b) = ∅ ⇒ b 6∈ η(A), while the viceversa does not hold.
(3) If B is a complete lattice then 〈η∨, ℘(A)⊆, B≤, µ〉 is a GC.

In particular, let us remark that:

– by Lemma 6.1 (1), which is the same property of Lemma 3.1 (1) for CGCs, we
have that {µ(η(a))}a∈A still is a partition of A;

– by Lemma 6.1 (2), differently from CGCs (cf. Lemma 3.1 (2)), if b 6∈ η(A) it may
happen that µ(b) 6= ∅;

– by Lemma 6.1 (3), analogously to CGPs, η∨ and µ give rise to a GC, analogously
to what happens for CGPs (cf. Lemma 3.3 (3)).

Example 6.2. Consider the following finite lattice B of integer intervals ordered by
subset inclusion:

Z

[−9,+∞)(−∞, 9]

[−9, 9]

[10,+∞)[1, 9][0, 0][−9,−1](−∞,−10]

∅
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Let η : Z→ B be defined as follows:

η(x) ,



(−∞,−10] if x ∈ (−∞,−10]
[−9,−1] if x ∈ [−9,−1]
[0, 0] if x = 0

[1, 9] if x ∈ [1, 9]

[10,+∞) if x ∈ [10,+∞)

while µ : B → ℘(Z) is simply defined as the identity map. Then, it is simple to check
thatP = 〈η,Z, B, µ〉 is a PCGC. It turns out thatP is not a CGC: in fact, 0 ∈ µ([−9, 9])
while η(0) = [0, 0] 6= [−9, 9], thus (CGC-Corr) does not hold. Also, if Z is considered
as a poset w.r.t. the discrete order then ℘↓(Z) = ℘(Z) and η and µ are monotone
functions, so that, since (PCGC-Corr2) holds, P turns out to be a CGP as well.
Consider now the following lattice B′:

Z

[−10, 10]

[10,+∞)[1, 9][0, 0][−9,−1](−∞,−10]

∅

In this case, we have that 〈η,Z, B′, µ〉 is not a PCGC, because 10 ∈ µ([−10, 10]) but
η(10) = [10,+∞) 6⊆ [−10, 10], so that (PCGC-Corr2) does not hold. The intuition is
that whileB′ still includes a subset which gives rise to a partition of Z, the whole lattice
B′ cannot be coeherently seen as a partition representation, because [−10, 10] ∈ B′ is
not the union (i.e., lub) of the blocks [−9,−1], [0, 0] and [1, 9].
Finally, consider the CGC C = 〈η,Z, B, µ〉 defined in Example 3.4. Then, C is not a
PCGC because 1 ∈ µ(η(0)) = Z but + = η(1) 6= η(0) = >, that is, (PCGC-Corr1)
does not hold. ut

Similarly to Theorems 4.2 and 4.7, let us now characterize PCGCs as a class of
Galois connections. Recall that a GC G = 〈α, ℘(A)⊆, D≤, γ〉 is a PGC when prt(G) is
a partition of A and γ is additive. By dropping this latter requirement of additivity for
γ, we define G to be a purely partitioning Galois connection (PPGC) just when prt(G)
is a partition of A. The terminology “purely partitioning” hints at the property (which
is not hard to check) that the disjunctive completion of D indeed yields a partitioning
Galois connection.

Example 6.3. Consider the following abstract domain Sign 6= , Signr{6=0}, already
mentioned in Section 1:
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Z

≥0≤0

>0<0 =0

∅

Then, S 6= = 〈α, ℘(Z), Sign 6=, γ〉 is not a PCG because γ is not additive (in fact:
γ(<0) ∪ γ(> 0) 6= γ(< 0 ∨ > 0) = γ(Z)). However, prt(S 6=) = {Z<0, {0}, Z>0}
still is a partition of Z, so that S 6= is a PPCG. ut

It turns out that this class of GCs precisely characterize PCGCs as follows.

Theorem 6.4 (PCGC-PPGC Equivalence).
(1) If B≤ is a complete lattice and C = 〈η,A,B≤, µ〉 is a PCGC then TPPGC(C) ,
〈η∨, ℘(A)⊆, B≤, µ〉 is a PPGC.
(2) If G = 〈α, ℘(A)⊆, D≤, γ〉 is a PPGC then TPCGC(G), 〈α{·}, A,D≤, γ〉 is a PCGC.
(3) The transforms TPPGC and TPCGC are one the inverse of the other, up to isomorphism.

Example 6.5. Let us consider the PCGC P defined in Example 6.2. Then, TPPGC(P) =
〈η∨, ℘(Z)⊆, B≤, id〉 is a purely partitioning GC where the corresponding partition of
Z is

P = {(−∞, 10], [−9,−1], [0, 0], [1, 9], [10,+∞)}

and the abstraction map η∨ approximates a set of integers X ∈ ℘(Z) by the least
union of blocks of P which belongs to B: for example, η∨({1, 10}) = [−9,+∞) and
η∨({0, 1}) = [−9, 9]. ut

CGCs as PCGCs as CGPs. Let us show that any CGC is indeed a PCGC, which, in
turn, is a CGP. Let 〈η,A,B, µ〉 be a CGC. Firstly, it is enough to consider B as a
poset for the discrete partial order≤d, since this makes 〈η,A,B≤d , µ〉 a PCGC. In fact:
(1) a ∈ µ(η(a′)) iff, by (CGC-Corr), η(a) = η(a′); (2) if b ∈ η(A) then b = η(a′),
for some a′, so that, by (CGC-Corr), a ∈ µ(b) ⇔ η(a) = b, while if b 6∈ η(A), then,
by Lemma 3.1 (2), µ(b) = ∅. Secondly, any PCGC 〈η,A,B≤B , µ〉 can be viewed as
a CGP simply by making the concrete unordered carrier set A a poset for the discrete
order ≤d, so that ℘↓(A) = ℘(A), and η : A → B becomes trivially monotone as well
as µ : B → ℘(A): in fact, if b1 ≤B b2 and a ∈ µ(b1) then η(a) ≤B b1 ≤B b2, so that
a ∈ µ(b2), namely µ(b1) ⊆ µ(b2).

6.1 Soundness of Abstract Operations

Let C = 〈η,A,B≤, µ〉 be a PCGC and f : A → A be a concrete function. By relying
on Theorem 6.4 (1), we are able to define the best correct approximation of the lifted
function f� : ℘(A) → ℘(A) w.r.t. the PPGC 〈η∨, ℘(A)⊆, B≤, µ〉 = TPPGC(C). This
b.c.a. is denoted by fC : B → B and is therefore defined by fC , η∨ ◦ f� ◦ µ, so that:

fC(b) = ∨{η(f(a)) | a ∈ µ(b)}.
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Hence, given an abstract function f] : B → B, this b.c.a. suggests to define 〈f, f ]〉
to be sound for the PCGC C when f] is less precise than the b.c.a., that is, when for
any b ∈ B, fC(b) ≤ f](b). It is easy to check that this latter condition turns out to be
equivalent to the following definition: 〈f, f ]〉 is sound w.r.t. C when

η(a) ≤ b ⇒ η(f(a)) ≤ f](b) (PCGC-Snd)

It is then easy to transform a sound pair of concrete/abstract functions 〈f, f]〉 for a
PCGC C into a pair TPPGC(〈f, f]〉) , 〈f�, f]〉 for the corresponding PPGC TPPGC(C) =
〈η∨, ℘(A)⊆, B≤, µ〉. Conversely, if D = 〈α, ℘(A)⊆, D≤, γ〉 is a PPGC and 〈g�, g]〉 is
a sound pair for D, where g� : ℘(A) → ℘(A) for some g : A → A, then 〈g�, g]〉 is
transformed into TPCGC(〈g�, g]〉) , 〈g, g]〉 relatively to the PCGC TPCGC(D). Hence,
an equivalence result analogous to Theorem 5.3 can then be proved.

Theorem 6.6.
(1) Let C = 〈η,A,B≤, µ〉 be a PCGC, with B complete lattice, f : A → A and
f] : B → B. Then, 〈f, f]〉 is sound iff TPPGC(〈f, f]〉) is sound w.r.t. TPPGC(C).
(2) Let D = 〈α, ℘(A)⊆, D≤, γ〉 be a PPGC, g� : ℘(A)→ ℘(A), for some g : A→ A,
and g] : D → D. Then, 〈g�, g]〉 is sound iff TPCGC(〈g�, g]〉) is sound w.r.t. TPCGC(D).
(3) The transforms TPPGC and TPCGC are one the inverse of the other.

Since f] is defined to be sound when η∨◦f�◦µ v f] holds, it is then natural to define
f] to be optimal when η∨ ◦ f� ◦ µ = f], backward complete when η∨ ◦ f� = f] ◦ η∨
and forward complete when f� ◦ µ = µ ◦ f]. In particular, these definitions allow us
to apply the abstraction refinement operators introduced in [14] for minimally refining
the abstract domainB in order to obtain a backward/forward complete abstract function
and the technique introduced in [12,13] for simplifying abstract domains while retaining
the optimality of abstract operations.

6.2 An Example of PCGC

Consider the following infinite complete lattice 〈B,≤〉.
Z

≥06=0≤0

>0<0

210−1−2· · · · · ·
· · · · · ·

· · · · · ·

∅

470 F. Ranzato



B is intended to be an abstract domain which includes both constant and sign informa-
tion of an integer variable. Indeed B can be defined as the well-known reduced prod-
uct [5] of the standard constant propagation domain [19] and of the abstraction Sign in
Example 4.1. For example, for a while program such as:

x := 2; y := 2; while x < 9 do x := x ∗ y;

a standard analysis with this abstract domain B allows us to derive the loop invariant
{x > 0, y = 2}.

It turns out that the abstraction B can be constructively defined. This definition of
B relies on η : Z → B and µ : B → ℘(Z) which are essentially defined as identity
functions. It should be clear thatB is a purely partitioning domain, while it is not a fully
partitioning domain, and therefore B cannot be equivalently defined by a constructive
Galois connection. In fact, C = 〈η,Z, B, µ〉 is not a CGC, because 1 ∈ µ(> 0) while
1 = η(1) 6= >0, so that (CGC-Corr) does not hold. Instead, C turns out to be a PCGC.

Consider the concrete binary integer multiplication ⊗ : Z × Z → Z. By following
Theorem 6.6 (1), we define a corresponding abstract multiplication ⊗] : B × B → B
as follows:

⊗](b1, b2) , η∨(⊗�(µ(b1), µ(b2))
This means that ⊗] is defined as best correct approximation of the powerset lifting
⊗� : ℘(Z) × ℘(Z) → ℘(Z) w.r.t. the PPGC 〈η∨, ℘(Z)⊆, B≤, µ〉 = TPPGC(C), i.e.,
⊗] = η∨◦⊗�◦µ. For instance, we have that⊗](2, <0) = <0 and⊗](−2,≤0) = ≥ 0.
Then, since 〈⊗�,⊗]〉 is sound, by construction, for TPPGC(C), we have that 〈⊗,⊗]〉 is
sound for C. Furthermore, as expected, it turns out that ⊗] is backward complete for C,
meaning that for any X,Y ∈ ℘(Z), ∨B{x ⊗ y | x ∈ X, y ∈ Y } = ⊗](∨BX,∨BY ).
For instance, we have that:

∨B (⊗�({2, 4}, {−1, 0})) = ∨B{0,−2,−4} = ≤0 =

⊗] (>0, ≤0) = ⊗](∨B{2, 4},∨B{−1, 0}).

7 Conclusion

This paper showed that constructive Galois connections, proposed by Darais and Van
Horn [10] as a way to define domains to be used in a mechanized and calculational
approach to abstract interpretation, are mathematically isomorphic to an already known
class of Galois connections which formalize partitions of an unordered set as an abstract
domain. Building on that, we defined a novel class of constructive abstract domains,
called purely constructive Galois connections. We showed that this class of abstract
domains permits to represent a set partition in a flexible way while preserving a con-
structive approach to Galois connections.
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Abstract. Metric Interval Temporal Logic (MITL) is a well studied real-
time, temporal logic that has decidable satisfiability and model checking
problems. The decision procedures for MITL rely on the automata theo-
retic approach, where logic formulas are translated into equivalent timed
automata. Since timed automata are not closed under complementation,
decision procedures for MITL first convert a formula into negated normal
form before translating to a timed automaton. We show that, unfortu-
nately, these 20-year-old procedures are incorrect, because they rely on
an incorrect semantics of the R operator. We present the right semantics
of R and give new, correct decision procedures for MITL. We show that
both satisfiability and model checking for MITL are EXPSPACE-complete,
as was previously claimed. We also identify a fragment of MITL that we
call MITLWI that is richer than MITL0,∞, for which we show that both sat-
isfiability and model checking are PSPACE-complete. Many of our results
have been formally proved in PVS.

1 Introduction

Specifications for real time systems often impose quantitative timing constraints
between events that are temporally ordered. Classical temporal logics such as
Linear Temporal Logic (LTL) [12] are therefore not adequate. Among the many
real-time extensions of LTL, the most well studied is Metric Temporal Logic
(MTL) [7]. The temporal modalities in this logic, like UI, are constrained by a
time interval I which requires that the second argument of the U operator be
satisfied in the interval I. For example, the MTL formula in Equation 1 specifies
that, at all times, every request should be followed by a response within 5 units
of time, or in case there is no response during that time, an error should be
raised within the next 0.1 units of time.

� req→
(
♦[0,5)resp ∨

(
�[0,5)¬resp ∧ ♦(5,5.1]error

))
(1)

Classical decision problems for any logic are satisfiability and model check-
ing. For MTL, these problems are highly undecidable; both problems are Σ1

1 -
complete [2]. Undecidability in these cases arises because of specifications that
?? Part of this work was carried out while the first author was at the University of

Illinois, Urbana-Champaign.
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require events to happen exactly at certain time points, which can be described
in the logic by having temporal operators decorated by singleton intervals (i.e.,
intervals containing exactly one point). If one considers the sublogic of MTL,
called Metric Interval Temporal Logic (MITL), which prohibits the use of single-
ton intervals, then both these problems are claimed to be EXPSPACE-complete [2].

LTL
ϕ

LTL
¬ϕ

Büchi
J¬ϕK

Büchi
B

B ∩ J¬ϕK
?= ∅

Yes

No

Büchi
JϕK

Negate
¬JϕK

(a) Model Checking LTL. Inputs
are LTL formula ϕ and Büchi au-
tomaton B.

MITL
ϕ

MITL
¬ϕ

Timed
Auto.
J¬ϕK

Timed
Auto.

T

T ∩ J¬ϕK
?= ∅

Yes

No

(b) Model Checking MITL. Inputs
are MITL formula ϕ and timed au-
tomaton T .

Fig. 1. Model Checking Steps for LTL and MITL Formulas.

The decision procedures for satisfiability and model checking of MITL, follow
the automata theoretic approach. In the automata theoretic approach to satis-
fiability or model checking, logical specifications are translated into automata
such that the language recognized by the automaton is exactly the set of models
of the specification. In case of LTL, this involves translating formulas to Büchi
automata, and the model checking procedure is shown in Figure 1a. For MITL,
formulas are translated into timed automata. Model checking timed automata
against MITL specifications is schematically shown in Figure 1b. The specification
ϕ is negated, a timed automaton J¬ϕK for ¬ϕ is constructed, and then one checks
that the system represented as a timed automaton T has an empty intersection
with J¬ϕK. Since timed automata are not closed under complementation [1, 9],
MITL decision procedures crucially rely on transforming specifications ϕ (for the
satisfaction problem) and ¬ϕ (for the model checking problem) into negated nor-
mal form, i.e., one where all the negations have been pushed all the way inside
to only apply to propositions. Using negated normal forms requires considering
formulas with the full set of boolean operators (both ∧ and ∨) and temporal
operators (both U and its dual R).

Unfortunately, the well known decision procedures for MITL [2] are incorrect.
This is because we show that the semantics used for the R operator, which is
lifted from the semantics of R in LTL, is not the dual of U (see Example 5).
Therefore, the timed automata constructed for the negated normal form of a
formula in MITL, is not logically equivalent to the original formula. We give a
new, correct semantics for R (Definition 6 in Section 3). Defining the semantics
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for R in MTL is non-trivial because of the subtle interplay of open and closed
intervals. Our definition uses 3 quantified variables (unlike 2, which is used in the
semantics of U in both LTL and MTL, and R in LTL and the incorrect definition
for MTL). We show that under fairly general syntactic conditions, one cannot use
2 quantified variables to correctly define the semantics of R in MTL.

We present a new translation of MITL formulas into timed automata that uses
our new semantics (Section 4). We show, using our new construction, that the
complexity of the satisfiability and model checking problems remains EXPSPACE-
complete as was previous claimed [2]. MITL0,∞ is a fragment of MITL that has
PSPACE decision procedures for satisfiability and model checking. Our last result
(Section 5) shows that MITL0,∞ can be generalized. We introduce a new, richer
fragment of MITL that we call MITLWI, for which we prove that satisfiability and
model checking are both PSPACE-complete.

Proofs for results about MITL are subtle due to the presence of a continuous
time domain and topological aspects like open and closed sets. This is evidenced
by the fact that the errors we have exposed in this paper, have remained undis-
covered for over 20 years, despite many researchers working on problems related
to MITL. Therefore, to gain greater confidence in the correctness of our claims,
we have formally proved many of our results in PVS [11]. The PVS proof objects
can be downloaded from http://uofi.box.com/v/PVSProofsOfMITL.

Related Work. The complexity of satisfiability and model checking of MITL
formulas was first considered in [2]. We show that the decision procedures are
unfortunately flawed because of the use of an incorrect semantics for R. A dif-
ferent translation of MITL to timed automata is presented in [8]. However, their
setting is restricted in that all intervals are closed, and all signals are continuous
from the right. Note that Example 5 and Theorem 12 in our paper, both use
signals that are not continuous from right. Therefore, their algorithm does not
fix the problem in [2]. Papers [4,5] present decision procedures for an event-based
semantics for MITL which associates a time with every event. State-based seman-
tics, considered here and in [2,8], is very different. For example, in a signal where
p is only true in the interval [0, c], there is no time that can be ascribed to the
event when p first becomes false. A recent survey of results concerning MTL and
its fragments can be found in [10]. Finally, robust model checking of coFlat-MTL
formulas with respect to sensor and environmental noise, is considered in [3].

2 Preliminaries

Sets and Functions. The set of natural, positive natural, real, positive real, and
non-negative real numbers are respectively denoted by N, N+, R, R+, and R≥0.
For a set A, power set of A is denoted by 2A, Cartesian product of sets A and
B is denoted by A×B. Cardinality of A is denoted by |A|. The set of functions
from A to B is denoted by A −→ B. For a set A, we denote the fact that a is an
element of A by the notation a : A. If A is a subset of R then for any ε : R≥0, we
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define Bε∞(A) := {x : R | ∃a : A·|x− a| ≤ ε} to be the ε-ball around A. Finally,
for any two numbers a, b : R, we define a .− b to be max{a− b, 0}.

Intervals. Every interval of real numbers is specified by a constraint of the form
a C1 x C2 b, where a : R ∪ {−∞}, b : R ∪ {∞}, and C1,C2 : {<,≤}. We use
the usual notation [a, b], (a, b), (a, b], and [a, b) to denote closed, open, left-open,
or right-open intervals. The set of intervals and non-negative intervals over R,
are denoted by I and I≥0, respectively. For any interval I, we use I and I to
respectively denote infimum and supremum of I; if I is empty, I = ∞ and
I = −∞. Width of an interval, denoted by ‖I‖, is defined to be I− I. Thus the
width of the empty interval is −∞. Finally, an interval with only one element is
called a singleton; the width of such an interval (by the above definition) is 0.

For any interval I : I, we use 〈I]? := I 6∈ R∨I ∈ I to check if I is closed from
right. Similarly, we use ?[I〉 and ?(I〉 to check if I is closed/open from left. We use
(|I|) := I\{I, I} to denote the interval which is achieved after removing infimum
and supremum of I from it. We also use the following intervals: [I〉 := I ∪ {I};
[I|) := (I ∪ {I}) \ {I}; and (|I] := (I ∪ {I}) \ {I}.

Signal. Throughout this paper, AP is a non-empty set of atomic propositions 3.
Signal is any function of type R≥0 −→ 2AP. Therefore, each signal is function that
defines the set of atomic propositions that are true at each instant of time. For
a signal f and time point r : R≥0, we define fr : R≥0 −→ 2AP : t 7→ f(r + t) to be
another signal that shifts f by r.

2.1 Metric Temporal Logic

In this section, we first define the syntax of metric temporal logic (MTL) and
its subclasses metric interval temporal logic (MITL), and metric temporal logic
with restricted intervals (MITL0,∞). We then define the current semantics of
these logics from the literature and call this the old semantics. Finally, we define
the transformation to a negated normal form (nnf) and the finite variability
condition (fvar) that are used in decision procedures for these logics.

Definition 1 (Syntax of MTL, MITL, and MITL0,∞). Syntax of a MTL formula
is defined using the following BNF grammar, where by p and I, we mean an
element of AP and I≥0.

ϕ ::= > | ⊥ | p | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | ϕUIϕ | ϕRIϕ

We assume ¬ has the highest precedence. Syntax of a MITL formula is the same,
except that singleton intervals cannot be used. Finally, MITL0,∞ is the sublogic
of MITL where for every interval I appearing in a formula, I = 0 or I =∞ hold.

Definition 2, gives the semantics of MTL that was introduced in [2] and is
commonly used in the literature. Since MITL and MITL0,∞ are sublogics of MTL,
their semantics follow from the semantics of MTL. Later in Example 5, we show
3 In Section 3.1 and Example 11, we require |AP| > 1.
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that this is not the right semantics because U and R are not duals of each
other. In Definition 6, we introduce a new semantics that fixes this problem. We
distinguish the two semantics by putting words OLD and NEW, in gray, below the
satisfaction relation |= (Definition 2 uses |=

OLD
and Definition 6 uses |=

NEW
).

Definition 2 (Semantics of MTL). Let f : R≥0 −→ 2AP be an arbitrary signal.
For a MTL formula ϕ, satisfaction relation f |=

OLD
ϕ is defined using the following

inductive rules:
f |=

OLD
> is true

f |=
OLD
⊥ is false

f |=
OLD
p iff p ∈ f(0)

f |=
OLD
¬ϕ iff ¬(f |=

OLD
ϕ)

f |=
OLD
ϕ1 ∨ ϕ2 iff (f |=

OLD
ϕ1) ∨ (f |=

OLD
ϕ2)

f |=
OLD
ϕ1 ∧ ϕ2 iff (f |=

OLD
ϕ1) ∧ (f |=

OLD
ϕ2)

f |=
OLD
ϕ1UIϕ2 iff ∃t1 : I·(f t1 |=OLD

ϕ2) ∧ ∀t2 : (0, t1)·f t2 |=OLD
ϕ1

f |=
OLD
ϕ1RIϕ2 iff ∀t1 : I·f t1 |=OLD

ϕ2 ∨
∃t1 : R+·(f t1 |=OLD

ϕ1) ∧ ∀t2 : [0, t1] ∩ I·f t2 |=OLD
ϕ2

Finally, f 6|=
OLD
ϕ is defined to be ¬(f |=

OLD
ϕ).

The decision procedures for satisfiability and model checking of MITL intro-
duced in [2], rely on translating the formulas into timed automata. Since timed
languages are not closed under complementation [1], complementation cannot be
handled as a first-class operation. Instead, one constructs an equivalent formula,
where the negations are pushed all the way inside to only apply to propositions.
We present this definition of the negation normal form (Definition 3) of a MTL
formula next. The implicit assumption is that a formula is semantically equiv-
alent to its negation normal form for certain special signals that are said to be
finitely variable. We will define finite variability after presenting the definition
of negation normal form.

Definition 3 (Negated Normal Form). For any MTL formula ϕ, its negated
normal form, denoted by nnf(ϕ), is a formula that is obtained by pushing all the
negations inside operators. It is formally defined using the following inductive
rules (p : AP is an atomic formula, and ϕ1 and ϕ2 are arbitrary MTL formulas):
nnf(>) := > nnf(¬>) := ⊥ nnf( p) := p
nnf(⊥) := ⊥ nnf(¬⊥) := > nnf(¬p) := ¬p nnf(¬¬ϕ) := nnf(ϕ)
nnf(ϕ1 ∨ ϕ2) := nnf(ϕ1) ∨ nnf(ϕ2) nnf(ϕ1UIϕ2) := nnf(ϕ1)UInnf(ϕ2)
nnf(ϕ1 ∧ ϕ2) := nnf(ϕ1) ∧ nnf(ϕ2) nnf(ϕ1RIϕ2) := nnf(ϕ1)RInnf(ϕ2)
nnf(¬(ϕ1 ∨ ϕ2)) := nnf(¬ϕ1) ∧ nnf(¬ϕ2) nnf(¬(ϕ1UIϕ2)) := nnf(¬ϕ1)RInnf(¬ϕ2)
nnf(¬(ϕ1 ∧ ϕ2)) := nnf(¬ϕ1) ∨ nnf(¬ϕ2) nnf(¬(ϕ1RIϕ2)) := nnf(¬ϕ1)UInnf(¬ϕ2)

The semantics of the modal operators U and R are defined using quantifiers,
and both of them are ∃∀ formulas. However, U and R are supposed to be duals
of each other (see Definition 3) eventhough they are defined using formulas with
the same quantifier alternation. Thus, U and R work as duals only for special
signals that are finitely variable [2, 6, 10]. Intuitively, it means during any finite
amount of time, number of times a signal changes its value is finite. Definition 4
formalizes this condition.
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Definition 4 (Finite Variability). For an implicitly known satisfaction rela-
tion |=, a signal f : R≥0 −→ 2AP is said to be finitely variable from right with
respect to a MTL formula ϕ, denoted by fvarR(f, ϕ), iff

∀r : R≥0·(∀ε : R+·∃t : (r, r + ε)·f t |= ϕ
)
⇒(

∃ε : R+·∀t : (r, r + ε)·f t |= ϕ
)

f is said to be finitely variable from left with respect to a MTL formula ϕ, denoted
by fvarL(f, ϕ), iff

∀r : R+·(∀ε : (0, r)·∃t : (r − ε, r)·f t |= ϕ
)
⇒(

∃ε : (0, r)·∀t : (r − ε, r)·f t |= ϕ
)

f is said to be finitely variable with respect to a MTL formula ϕ, denoted by
fvar(f, ϕ), iff fvarL(f, ϕ) ∧ fvarR(f, ϕ). f is said to be finitely variable (from
left/right) iff for any MTL formula ϕ, f is finitely variable (from left/right) with
respect to ϕ. Whenever we use finite variability, precise definition of |= will be
clear from the context.

Finite variability as defined here (Definition 4), is formulated differently than
the definition given in [6, 10]. However, the two definitions are equivalent, and
we prefer the presentation given here because it makes the quantifier alternation
in the definition explicit.

Definition 4 suggests that to establish finite variability of a signal, we need to
consider all possible MTL formulas. However, it is known that a signal is finitely
variable iff it is finitely variable over all atomic formulas; we will prove that this
observation also holds for the new semantics for R that we define in the next
section (Lemma 8).

Every finitely variable signal can be specified using (finite or countably in-
finite) sequence of intervals paired with subsets of atomic propositions that are
true during that interval. For example, ([0, 1], {p}), ((1, 4), {q}), ([4,∞), {p, q})
specifies a signal that is {p} during [0, 1], {q} during (1, 4), and {p, q} at all
other times. All our examples use this representation for (finitely variable) sig-
nals.

Equivalence for formulas in MTL will only be considered with respect to finitely
variable signals. That is, two MTL formulas ϕ1 and ϕ2 are said to be equivalent,
iff for any finitely variable signal f we have (f |= ϕ1) ⇔ (f |= ϕ2); here |= can
either be taken to be the relation defined in Definition 2 or the one we will define
in the next section (Definition 6).

3 Defining the Semantics of Release

The semantics of release as defined in Definition 2 does not ensure that R and U
are duals. Example 5 describes a finite variable signal f such that f 6|=

OLD
pUIq (for

propositions p, q and interval I) and f 6|=
OLD
¬pRI¬q. Thus, the transformation to

negation normal form described in Definition 3 does not preserve the semantics,
making decision procedures for satisfiability and model checking outlined in [2]
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incorrect. In this section, we identify the correct semantics of the release operator
so that the transformation to negation normal form described in Definition 3 is
semantically correct. Our semantics for R is more complicated than the one
in Definition 2, in that uses 3 quantified variables. We conclude this section
by establishing that this increase in expression complexity is necessary — it is
impossible to define the semantics of R using a ∃∀ formula that uses only two
quantified variables.
Example 5. Let c : (|I|) be an arbitrary point, and
define f to be the signal ([0, c], {p}), ((c,∞), {q}).
Clearly, f 6|=

OLD
pUIq and hence f |=

OLD
¬(pUIq). On

the other hand, ¬q is not true throughout I
and whenever ¬p is true, ¬q is false. Therefore,
f 6|=

OLD
¬pRI¬q. Thus, Definition 3 does not preserve

Interval I
cp,¬q

¬p, q ∞

Fig. 2. Signal f

the semantics, making decision procedures for satisfiability and model check-
ing [2] of MITL that first convert a formula into negation normal form, incorrect.

Since the semantics of release is incorrect (from the perspective of ensuring
that U and R are duals), we define a new semantics for the release operator.
Denseness of the time domain, along with subtleties introduced due to open and
closed endpoints of intervals, make proofs about MTL challenging to get right.
Therefore, to have greater confidence in our results, we have proved most of
our results in Prototype Verification Systems (PVS) [11]. We explicitly mark all
lemmas and theorems that were proved in PVS 4. Space limitations prevent these
formal proofs to be part of this paper. However they can be downloaded from
http://uofi.box.com/v/PVSProofsOfMITL.

Definition 6 (New Semantics for MTL). Let f : R≥0 −→ 2AP be an arbitrary
signal. For a MTL formula ϕ, satisfaction relation f |=

NEW
ϕ is defined using the

following inductive rules:
f |=

NEW
> is true

f |=
NEW
⊥ is false

f |=
NEW
p iff p ∈ f(0)

f |=
NEW
¬ϕ iff ¬(f |=

NEW
ϕ)

f |=
NEW
ϕ1 ∨ ϕ2 iff (f |=

NEW
ϕ1) ∨ (f |=

NEW
ϕ2)

f |=
NEW
ϕ1 ∧ ϕ2 iff (f |=

NEW
ϕ1) ∧ (f |=

NEW
ϕ2)

f |=
NEW
ϕ1UIϕ2 iff ∃t1 : I·(f t1 |=NEW

ϕ2) ∧ ∀t2 : (0, t1)·f t2 |=NEW
ϕ1

f |=
NEW
ϕ1RIϕ2 iff ∀t1 : I·f t1 |=NEW

ϕ2 ∨
∃t1 : R+·(f t1 |=NEW

ϕ1) ∧ ∀t2 : [0, t1] ∩ I·f t2 |=NEW
ϕ2 ∨

∃t1 : [I〉, t2 : I ∩ (t1,∞)·∀t3 : I·(t3 ≤ t1 −→ f t3 |=
NEW
ϕ2)

∧(t1 < t3 ≤ t2 −→ f t3 |=
NEW
ϕ1)

f 6|=
NEW
ϕ is defined to be ¬(f |=

NEW
ϕ).

Example 7. Consider the signal f from Example 5 that does not satisfy pUIq.
Observe that f |=

NEW
¬pRI¬q by meeting the third condition for satisfying release

4 Each such result is annotated by 〈lemma-name〉@〈theory-name〉. Theory name thry
can be found in a file named thry.pvs.
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operators under the new semantics as follows. Take t1 = c, and t2 = c + ε such
that [c, c + ε] ⊆ I. Now, for any t3 ≤ t1, f t3 |=NEW

¬q, and for any t1 < t3 ≤ t2,
f t3 |=

NEW
¬p.

We will show that the new semantics (Definition 6) ensures that the trans-
formation to negation normal form (Definition 3) preserves the semantics when
considering finite variable signals. Before presenting this result (Theorem 9), we
recall that a signal is finitely variable iff the truth of every formula in the logic
changes only finitely many times within any bounded time. This is difficult to
establish. Instead, in [2], it was shown that proving the finite variablity of a
signal with respect to atomic propositions, guarantees its finite variability with
respect to all formulas. We show that such an observation is also true for the
new semantics we have defined.

Lemma 8
PVS

5 (Finite Variability). Using the semantics in Definition 6, for
any signal f , the following conditions hold:(

∀p : AP·fvarL(f, p)
)
⇔
(
∀ϕ : MTL·fvarL(f, ϕ)

)
(
∀p : AP·fvarR(f, p)

)
⇔
(
∀ϕ : MTL·fvarR(f, ϕ)

)
We now present the main result about the correctness of the new semantics.

Theorem 9
PVS

6 (Duality). If a signal f is finitely variable from right then for
any MTL formula ϕ, f |=

NEW
ϕ iff f |=

NEW
nnf(ϕ).

We conclude this section by introducing a new (defined) temporal operator
that we will use. For any MTL formula ϕ, let ©ϕ be defined as ϕR(0,∞)ϕ. Intu-
itively, f |=

NEW
©ϕ iff ϕ becomes true and stays true for some positive amount of

time. Proposition 10 formalizes this observation. Note that instead if ∞ in def-
inition of ©ϕ, one can use any other positive number and obtain an equivalent
formula 7. In writing formulas, we assume © has higher precedence than U and
R operators but lower precedence than ∨ and ∧ operators.

Proposition 10
PVS

7 (Operator ©). Let |= be the satisfaction relation given
in Definition 2 or Definition 6. For any signal f we have f |= ©ϕ iff ∃ε : R+·∀t :
(0, ε)·f t |= ϕ.

The correctness of our semantics (Theorem 9) was only established for signals
that were finitely variable from the right. Unfortunately, our next example shows
that this assumption cannot be relaxed.

Example 11. Let ϕ be the following formula.
(©q) ∧ ¬

(
pU(0,1)q

)
∧ ¬
(
¬pU(0,1)q

)
ϕ is satisfied by a signal that is finitely variable from the left as follows. Consider
f to be such that q is true at all times, and p is true at times t = 1

2n for n ∈ N and
5 atom_finitevar_eqv_fml_finitevar_left@mtl and atom_finitevar_eqv_fml_finitevar_right@mtl.
6 sat_eqv_nnfsat@mtl.
7 next_def_1@mtl, next_def_3@mtl.
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false at all other times. First, observe that f is not finitely variable from right (it
is, however, finitely variable from left). Also, f |= ϕ, no matter whether |= is given
by Definition 2 or by Definition 6. Putting ϕ into its NNF we obtain the following
formula which is not satisfiable (using either Definition 2 or Definition 6).

(©q) ∧
(
¬pR(0,1)¬q

)
∧
(
pR(0,1)¬q

)
3.1 Necessity of Using Three Variables

The new semantics of the release operator, given in Definition 6, is defined by
quantifying over 3 time points. A natural question to ask is whether this is nec-
essary. Is there a “simpler” definition of the semantics of the release operation?
In this section, we show that this is in some sense impossible. We show that
no first order definition of the semantics of release that quantifies over only two
time points can be correct.

Let us fix the formula ϕ = ¬(pUIq), where p and q are proposition. The goal
is to show that ¬ϕ cannot be expressed by a “simple” ∃∀-formula. Let us first
define what we mean by “simple” formulas. Let Lp,q,I be the collection of first
order formulas of the form∧

i:{1,...,n}

∨
j:{1,...,in}

∃t1 : R·∀t2 : R·φi,j(f, t1, t2) (2)

Here n : N and in : N, and formula φi,j is given by the BNF grammar
φ ::= ¬φ | φ ∨ φ | α1t1 + α2t2 ./ β | f tu |= ψ

where α1, α2, β : R are arbitrary constants, ./: {<,≤, >,≥} is an arbitrary
relation symbol, u : {1, 2}, and ψ : {p, q,¬p,¬q}. We assume |= here is either |=

OLD

or |=
NEW
; it doesn’t make a difference because ψ is propositional. We call constraints

of the form α1t1 + α2t2 ./ β domain constraints and constraints of the form
f tu |= ψ signal constraints.

Before presenting the main theorem of this section, we examine the restric-
tions imposed on formulas in Lp,q,I. The requirements that φ ∈ Lp,q,I be in
conjuctive normal form, or that there be no ∨ or ∧ operations between quanti-
fiers, or that ψ in the BNF only be {p, q,¬p,¬q} do not restrict the expressive
power. Any formula not satifying these conditions can be transformed into one
that does. The main restrictions are that all domain constraints are linear and
that f in the signal constraints only be shifted by t1 or t2 and not by an arith-
metic combination of them.

Theorem 12. There is no formula in Lp,q,I that is logically equivalent to ¬(pUIq)
over finite variable signals. In fact, for any φ ∈ Lp,q,I, there are signals f1 and
f2 in which the truth of any atomic proposition changes at most 2 times such
that f1 |= ¬(pUIq), f2 |= (pUIq) but either both f1, f2 satisfy φ or neither does.

The rest of the section is devoted to proving Theorem 12. Suppose (for con-
tradiction)

φ =
∧

i:{1,...,n}

∨
j:{1,...,in}

∃t1 : R·∀t2 : R·φi,j(f, t1, t2)
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is logically equivalent to ¬(pUIq). We begin by observing that φ can be assumed
to be in a special canonical form. We then identify two parameters r and δ that
are used in the construction of signals that demonstrate the inequivalence of φ
and ¬(pUIq). Finally, we use these parameters to construct the signals and prove
the inequivalence.

Cannonical Form of φ. We can assume without loss of generality, that φ has
the following special form.
1. Negations are pushed all the way inside, and are only applied to p or q. This

is always possible since {<,≤, >,≥} is closed under negation and ¬(f t |= ψ)
is, by de nition, equivalent to f t |= ¬ψ. Note that after this step, φi,j may
contain ∧ operator.

2. Each φi,j is a conjunction of clauses that we denote as φi,j,k.
3. Every clause in φi,j , has at most one signal constraint of the form f t1 |= ψ1

and one signal constraint of the form f t2 |= ψ2 where ψ1 and ψ2 are boolean
combinations of p and q.

4. For an arbitrary clause φi,j,k in φi,j , let S and P be, respectively, the set
of signal and negated domain constraints in φi,j,k. φi,j,k is equivalent to
(
∧
θ:P θ) −→ (

∨
s:S s). The left hand side of this implication de nes a 2-

dimensional convex polyhedron using variables t1 and t2.
For the rest of the proof, wlog., we assume every clause in every φi,j is
of the form P −→ S, where P is a polyhedron over t1 and t2, and S is a
disjunction of 0, 1, or 2 signal constraints. For any polyhedron P , we de ne
�P � := {(t1, t2) | P (t1, t2)} to be the set of points in P . Also, cl(�P �) is
de ned to be the closure of �P �. Finally, let P be the set of all polyhedra
used in φ.

I tried a lot of different ways. 

This is the only one where I can keep the fonts in Linux and iPad without touching quality! 

0 r
p,¬q δ

¬p,q

t2

t1

L

a b

P

xr

δ
p,¬q δ

¬p,¬q

∞
p,q

Interval I

0
p,¬q δ

¬p,q

δ
p,¬q δ

¬p,¬q

∞
p,q

0 r
p,¬q δ

p,q

δ
p,¬q δ

¬p,¬q

∞
p,q

r
Interval I

Interval I

t2

t1

L

a b

P

Fig. 3.

Figure 3 shows a geometrical interpretation of the poly-
hedral representation of clauses in φi,j . Let φi,j,k be a clause
that is speci ed by P −→ S. An arbitrary horizontal line
L, may or may not have intersection with P . Either way,
L witnesses ∃t1·∀t2·φi,j,k i for all points in this possi-
bly empty intersection, S is satis ed. Every φi,j is a set
of constraints of the form P −→ S. Therefore, L witnesses
∃t1·∀t2·φi,j i L witnesses all clauses in φi,j . Further-
more, ∃t1·∀t2·φi,j is true i there is a horizontal line L that witnesses it.

Identifying Parameters δ and r. For any P : P, de ne VP to be the set
of vertices of P , and LP to be the set of points on vertical edges of P (that is,
segments of a line of the form t2 = c for some c : R). Let C1 :=

⋃
P :P(VP ∪LP ).

De ne C2 := {t2 : R | ∃t1 : R·(t1, t2) ∈ C1} be the projection of points in C1
on t2. Take C3 := C2 if I =∞, and C3 := C2 ∪ {I}, otherwise. Observe that C3
is always a nite set. Therefore, for some ε : R+, I \ Bε∞(C3) 6= ∅. Fix r : I \ C3
such that for some ε, Bε∞(r) ⊆ I \ C3.

For any P : P and c : R, cl(�P �) ∩ �t1 = c� is equal to {c} × J , for some
(possibly empty) interval J . De ne ‖cl(�P �) ∩ �t1 = c�‖ to be ‖J‖. The main
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0 r ∞
Interval I

p,¬q
¬p, q
δ p,¬q

(a) f1: Since f1 |=
OLD

¬(pUIq), we
must have f1 |=

NEW
φ.

0 r+ε ∞
Interval I

p,¬q
¬p, q
δ–ε p,¬q

(b) f ε2 : Since f ε2 6|=
OLD

¬(pUIq), we
must have f ε2 6|=

NEW
φ.

Fig. 5. Signals f1 and f ε2 (interval widths are not proportional).

property we exploit about our choice of r, is that if (r, c) ∈ J then ‖J‖ is either
≤ 0 or “large”. This is the content of our next lemma.

Lemma 13. There is a δ : R+ such that for any P : P and c : R, we have that
if (c, r) ∈ cl(�P �) then ‖cl(�P �) ∩ �t1 = c�‖ /∈ (0, δ].

Proof. For the purpose of contradiction, let us assume that the lemma does not
hold. Since P is a nite set, we therefore have,

∃P : P·∀n : N+·∃cn : R·(cn, r) ∈ cl(�P �) ∧ ‖cl(�P �) ∩ �t1 = cn�‖ ∈
(
0, 1
n

)
Let P be the polyhedron witnessing the violation of the lemma as in the above
equation. If �P � is an empty set, point or a line/line segment/half line that is
not horizontal then its intersection with �t1 = cn� is either empty or has width
0, which contradicts the fact that P violates the lemma. Otherwise, if �P � is a
horizontal line, a horizontal half line, or a horizontal line segment, its intersection
with �t1 = cn� is either empty or has a xed width, which again contradicts
P violating the lemma. Therefore, consider the case when P has a non-empty
interior. Since P has a nite number of vertices, an in nite subsequence of (cn, r)
converges to a vertex of P . However, this is also a contradiction since our choice
of r ensures that (cn, r) is always ε away from any point in C1.

I tried a lot of different ways. 

This is the only one where I can keep the fonts in Linux and iPad without touching quality! 
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∞
p,q

Interval I

0
p,¬q δ

¬p,q

δ
p,¬q δ

¬p,¬q

∞
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Fig. 4.

For the rest of this section, let us x r as above, and
take δ to be such that in addition to Lemma 13, it satis es
I−r > δ. Figure 4 shows a geometric interpretation for the
parameters r, δ we have identi ed. For any clause P −→ S
in φ and for any horizontal line L de ned by t1 = c (for
any c : R), if (c, r) ∈ �P � then we have 1. either a = b = r,
or 2. if S contains a constraint of the form f t2 |= ψ then
then S is checked for all values of t2 in an inveral of size
> δ around r.

Constructing Signal f1. Figure 5a shows the signal f1. f1 is the signal
([0, r], {p,¬q}), ((r, r + δ], {¬p, q}), ((r + δ,∞), {p,¬q}). It is easy to see that
f1 |= ¬(pUIq) (where |= is either |=

OLD
or |=

NEW
); the reason is similar to Example 5.

Therefore, if φ is equivalent to ¬(pUIq), then f1 also satis es φ.
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Constructing signal fε2. Since f1 satisfies φ, there are c1, c2, . . . cn : R and
j1, . . . , jn : N such that for any i : {1, . . . , n}, line Li := (t1 = ci) witnesses
the satisfaction of ∃t1·∀t2· φi,ji . Consider a clause φi,ji,k of φi,ji of the form
Pi,ji,k −→ Si,ji,k. We know that line Li witnesses the satisfaction of this clause.
Define interval Ji,ji,k to be the interval given by JPi,ji,kK ∩ JLiK = {ci} × Ji,ji,k.
Choose εi,ji,k : R+ to be such that either (r, r+ εi,ji,k) ⊆ Ji,ji,k or (r, r+ εi,ji,k)∩
Ji,ji,k = ∅. Such a choice of εi,ji,k always exists no matter what Ji,ji,k is. Fix the
parameter ε to be

ε := 1
2 min({εi,ji,k | any i, ji, k} ∪ {ci − r | ci > r}).

Notice that our choice of ε ensures that for i, ji, k, (r, r + ε) is either contained
in Ji,ji,k or is disjoint from it.

Having defined ε, we are ready to describe the signal f ε2 which is shown
in Figure 5b. f ε2 is given as ([0, r + ε), {p,¬q}), ([r + ε, r + δ], {¬p, q}), ((r +
δ,∞), {p,¬q}). Notice f1 and f ε2 only differ in the interval (r, r+ ε). Further, f ε2
satisfies pUIq.

Deriving a Contradiction. Let c1, c2, . . . cn, L1, L2, . . . Ln, and j1, . . . jn, as
defined above, be the witness that demonstrates that f1 satisfies φ. We will
show that these also witness the fact that f ε2 satisfies φ, giving us the desired
contradiction. That is, we will show that the lines Li := (t1 = ci) witness the
fact that f ε2 satisfies ∃t1·∀t2· φi,ji . Consider any clause Pi,ji,k −→ Si,ji,k of φi,ji .
– Suppose Si,ji,k is of the form f t1 |= ψ, where ψ is a boolean combination

of propositions p, q. Observe that by construction t1 6∈ (r, r + ε), and so
f1(t1) = f ε2(t1). Therefore, since f1 satisfies Si,ji,k, so does f ε2 .

– Suppose Si,ji,k is of the form f t2 |= ψ. Let Ji,ji,k be as defined above. By our
choice of ε, we know that either (r, r+ ε)∩Ji,ji,k = ∅ or (r, r+ ε) ⊆ Ji,ji,k. In
the first case, we have f1(t) = f ε2(t) for all t ∈ Ji,ji,k. Therefore, f1 satisfies
∀t2 ∈ Ji,ji,k· Si,ji,k iff f ε2 satisfies the same condition. Now, let us consider
the more interesting case when (r, r + ε) ⊆ Ji,ji,k. Observe that in this
case r ∈ cl(JJi,ji,kK), and so Lemma 13 applies, and we can conclude that
‖cl(JJi,ji,kK)‖ > δ. This means that either there is a t < r such that t ∈ Ji,ji,k

or there is a t > r+ δ such that t ∈ Ji,ji,k. Thus, for any t2 ∈ (r, r+ ε), there
is a t ∈ Ji,ji,k such that f ε2(t2) = f1(t). Hence, once again we can conclude
that Li witnesses the satisfaction of ∀t2·Si,ji,k by f ε1 since f1 does.

– The last case to consider is when Si,ji,k is of the form f t1 |= ψ1∨f t2 |= ψ2. In
this case also we can conclude that f ε2 satisfies this clause using the reasoning
in the previous two cases.

4 Satisfiability and Model Checking MITL Formulas

The satisfiability and model checking problems for MITL are as follows. In sat-
isfiability, given an MITL formula ϕ, one needs to determine if there is a finite
variable signal f that satisfies ϕ. The model checking problem is, given a timed
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automaton T and a MITL formula ϕ, determine if every finite variable signal pro-
duced by T satisfies ϕ. Algorithms for both these problems rely on translating
the MITL formula ϕ (or its negation, in the case of model checking) to a timed
automaton JϕK and then either checking emptiness of JϕK (for satisfiability) or
checking the emptiness of the intersection of two timed automata (for model
checking). Since timed automata are not closed under complementation, deci-
sion procedures rely on translating a formula in NNF. As observed in Example 5,
since the semantics of R is incorrect, the decision procedures for satisfiability
and model checking given in [2, 6, 10] are incorrect. In this section, we describe
a translation of MITL to timed automata with respect to the correct semantics
given in Definition 6.

The translation given in [2] from MITL in NNF to timed automata, is correct
when the semantics of R is taken to be as given in Definition 2. We will exploit
this construction to give a translation with respect to the semantics in Defini-
tion 6. More precisely, in Definition 14, we transform an MITL formula ϕ into
old(ϕ) such that for any signal f , we have (f |=

NEW
ϕ)⇔ (f |=

OLD
old(ϕ)).

Definition 14. The transformation old is inductively defined as follows. In this
definition, ϕ′1 and ϕ′2 are old(ϕ1) and old(ϕ2), respectively.

old(>) := > old(p) := p old(ϕ1 ∨ ϕ2) := ϕ′1 ∨ ϕ′2
old(⊥) := ⊥ old(¬ϕ) := ¬old(ϕ) old(ϕ2 ∧ ϕ2) := ϕ′1 ∧ ϕ′2
old(ϕ1UIϕ2) := ϕ′1UIϕ

′
2

old(ϕ1RIϕ2) := (ϕ′1RIϕ
′
2) ∨ (©ϕ′1RIϕ

′
2) if I > 0

(ϕ′1RIϕ
′
2) ∨ (©ϕ′1RIϕ

′
2) ∨ ©ϕ′1 if I = 0 ∧ ?(I〉

(ϕ′1RIϕ
′
2) ∨ (©ϕ′1RIϕ

′
2) ∨ (ϕ′2 ∧ ©ϕ′1) otherwise

The transformation old ensures that the semantics of the transformed for-
mula old(ϕ) with respect to |=

OLD
, is the same as the semantics of ϕ with respect

to |=
NEW
.

Lemma 15
PVS

8 . For any signal f and MTL formula ϕ, we have (f |=
NEW
ϕ) ⇔

(f |=
OLD

old(ϕ)).

Proof (idea). Use induction on the structure of ϕ. Special treatment for I is
needed because both Definition 2 and Definition 6 define what is called strict
semantics, in which value of signal at time 0 is not important when I > 0.

It is worth emphasizing that Definition 14 and Lemma 15 apply to any MTL
formula (not just MITL), and the soundness of the transformation holds for any
signal (and not just finite variable signals).

Lemma 15 immediately gives us a procedure for transforming a negated nor-
mal formula into a timed automaton according to Definition 6. For any MITL
formula ϕ, we transform old(nnf(ϕ)) into a timed automaton according to [2].
Note that output of old is in NNF iff its input is 9. Using Theorem 9 and Lemma 15
we know that the transformation is correct.
8 sat_and_isat@mtl.
9 toISatNNF@mtl.
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The main problem with this approach and Definition 14, is that old(ϕ) could
be exponentially larger than ϕ. So we need to address the concern that this
might change the complexity of satisfiability and model checking. The com-
plexity of the transformation in [2] for MITL and MITL0,∞ depends only on the
number of distinct subformulas in ϕ, and not on the formula size of ϕ itself 10.
In Proposition 16, we show that the number of subformulas of old(ϕ) is linearly
related to the number of subformulas of ϕ. Thus using the construction in [2] for
old(nnf(ϕ)) does not change the complexity results for satisfiability and model
checking 11.

Proposition 16. For any MTL formula ϕ, we have |Sold(ϕ)| ≤ 6|Sϕ|, where for
any MTL formula ψ, Sψ is the set of subformulas of ψ (including ψ, itself).

It is worth noting that this proposition also applies to any MTL formula and
not just MITL. Using Proposition 16, we can conclude that the complexity of
satisfiability and model checking remain unchanged in the new semantics.

Corollary 17. With respect to the semantics in Definition 6, the satisfiability
and model checking problems for MITL0,∞ and MITL are PSPACE-complete and
EXPSPACE-complete, respectively.

5 MITL with Wide Intervals (MITLWI)

One important result in [2] is the identification of sublogic MITL0,∞ of MITL, for
which the satisfiability and model checking problems are in PSPACE, as opposed
to EXPSPACE for MITL. In this section we prove that this result can be generalized.
We identify a more expressive sublogic of MITL for which satisfiability and model
checking are in PSPACE.

For a formula ϕ of MITL, the size of ϕ is the size of the formula, where the
constants appearing in the intervals are represented in binary. Here we do not
restrict constants in ϕ to be natural numbers (as in [2]), but instead allow them
to be rational numbers; as is standard, we represent a rational number as a
pair of binary strings encoding the numerator and denominator of the fractional
representation. Define MITLWI to be the collection of MITL formulas ϕ such that
every interval I appearing in ϕ, has 1. I = 0 or 2. I = ∞ or 3. I

I−I
≤ n when

0 < I < I <∞, where n is the size of ϕ.
Notice that every MITL0,∞ formula is also a MITLWI formula, and there are

many MITLWI formulas that are not MITL0,∞ formulas. Thus, MITLWI is a richer
fragment of MITL. Condition 3 above in the definition of MITLWI says that when
there is an interval not conforming to the restrictions of MITL0,∞, and it has a
10 The complexity depends on the size of the DAG representation of the formula, and

not its syntactic representation.
11 There are multiple initial transformations in [2], and each one of them can make the

size of formula exponentially bigger. However, the number of distinct subformulas
remains linear to the size of original formula.
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large supremum, then the size of the interval must also be large. Thus, intervals
in MITLWI can be thought of as being “wide” (and hence the name). The main
result of this section is the following.

Theorem 18. For any MITLWI formula ϕ of size n, there is a timed automaton
JϕK satisfying the following properties.
1. For any finite variable signal f , f is in the language of JϕK Iff f |=

NEW
ϕ.

2. JϕK has at most 2O(n2) many locations and edges.
3. JϕK has at most O(n2) clocks.
4. JϕK has at most O(n) distinct integer constants, each bounded by 2O(n).
Furthermore, JϕK can be constructed in polynomial space from ϕ.

The proof of this result will be presented over the course of this section, but
it is worth noting that Theorem 18 immediately gives a PSPACE algorithm for
satisfiability and model checking of MITLWI.

Corollary 19. Model checking and satisfiability problems for MITLWI is PSPACE-
complete.

Proof. Being in PSPACE is an immediate consequence of Theorem 18, and PSPACE-
hardness follows from the PSPACE-hardness of MITL0,∞.

The rest of this section is devoted to proving Theorem 18. We begin by
highlighting the crucial features of MITL0,∞ that make it easier to decide than
MITL (Section 5.1). In Section 5.2, we sketch the proof of Theorem 18, by drawing
on the observations in Section 5.1.

5.1 MITL vs. MITL0,∞

The algorithm (from [2]) for constructing a timed automaton for a MITL for-
mula ϕ applies a series of syntactic transformations to ϕ such that the resulting
formula 1. is in negated normal form, 2. has at most linearly more distinct
subformulas, 3. has the same maximum constant as the original formula, and
most importantly, 4. is in the normal form given in Definition 20. These trans-
formations can be carried out in polynomial time, and the construction of the
timed automaton assumes that the MITL formula is in the normal form given by
Definition 20 below.

Definition 20 (Normal Form [2, Definition 4.1]). MITL formula ϕ is said
to be in normal form iff it is built from propositions and negated propositions
using conjunction, disjunction, and temporal subformulas of the following six
types:

1. ♦Iϕ
′ with ?(I〉, I = 0, and I ∈ R,

2. �Iϕ
′ with ?(I〉, I = 0, and I ∈ R,

3. �ϕ′.

4. ϕ1UIϕ2 with I > 0, and I ∈ R,
5. ϕ1RIϕ2 with I > 0, and I ∈ R,
6. ϕ1Uϕ2,
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The main challenge (in terms of complexity) is in handling formulas of Type 4
and Type 5. If the formula you start with is in MITL0,∞ then it can be seen that
the normal form does not have any subformulas of Type 4 and Type 5. Hence,
the timed automaton constructed for MITL0,∞ formulas is “small”, which results
in PSPACE decision procedures.

To see the difficulty of transforming Type 4 and Type 5 formulas into timed
automata, consider �(3,4)(p→ ♦(1,2)q). Intuitively, the formula says, during the
4th unit of time, every p should be followed by a q within 1 to 2 units of time.
A naïve approach, starts and dedicates a clock after seeing every p during 4th

unit of time, and uses that clock to ensure that there will be at least one q, 1
to 2 units of time after the corresponding p was seen. However, this approach
does not work, since there is no bound on number of p that one can expect to
see during any period of time, which makes number of required clocks infinite.

Instead, the construction in [2] divides R≥0 into [0, 1), [1, 2), . . . intervals. Two
important facts are central to the construction. 1. For any interval [n, n+1) and
any Type 4 U or Type 5 R formula ϕ, the subset of times in [n, n+ 1) for which
ϕ is true is exactly union of two possibly empty intervals. Using this property,
for each interval [n, n + 1), we first guess those two intervals and then use at
most 4 clocks to verify our guess. 2. We can start reusing a clock at most I units
of time after we started using it. Therefore, total number of clocks required for
checking each Type 4 and Type 5 formula is bounded by 4I. Since I could be
exponentially big, the resulting timed automaton could have exponentially many
clocks 12.

5.2 Witness Points and Intervals

Let us define step size of an interval I as follows.

sz(I) :=
{

I− I if I− I < I
I otherwise (3)

The crucial observation needed to prove Theorem 18 is that the truth of Type 4
and Type 5 does not change very frequently. We show that for a bounded
non-empty interval I with I > 0, using constantly many clocks, the timed au-
tomaton can monitor the truth of a formula of Type 4 or Type 5 for intervals
[0, c), [c, 2c), . . ., where c := sz(I), instead of intervals [0, 1), [1, 2), . . . as in the
construction given in [2]. This has two important consequences.
1. If a formula is in MITLWI, then number of required clocks will be at most

linear in the size of formula. For example, verifying �[n,2n]ϕ requires constant
number of clocks, as opposed to exponentially many clocks in [2].

12 The construction in [2], keeps track of the subset of clocks that are free (i.e. can be
reused) in the discrete modes of the timed automaton. This makes the number of
locations doubly exponential. However, it is possible to reuse clocks in a queue like
fashion and instead of encoding a subset of free clocks in discrete modes, one can
just encode the index of the next free clock. This approach exponentially decreases
number of required discrete modes. This optimization however does not change the
asymptotic complexity.
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2. Consider satisfiability of ϕ := �[1,2]♦[0.01,0.02]ϕ
′ formula. The algorithm

in [2], first changes ϕ to an “equivalent” formula ϕ := �[100,200]♦[1,2]ϕ
′,

because if observation intervals are [0, 1), [1, 2), . . . then all constants in the
input formula must be natural numbers. Therefore, timed automaton will
have hundreds of clocks. However, we show there is no need for observation
intervals to have natural numbers as endpoints. This means that the timed
automaton for ϕ requires at most 8 clocks for each of �[1,2] and ♦[0.01,0.02]
sub-formulas. Note that the algorithm to check emptiness of timed automata
will replace all rational numbers by natural numbers by scaling, when con-
structing the region graph [1]. However, in spite of this, it is worth observing
that the complexity of emptiness checking of timed automata has an expo-
nentially worse dependence on the number of clocks, than on constants [1,
Lemma 4.5].

Witness Points for U Operators. For the rest of this section, let us fix an ar-
bitrary signal f . We begin by presenting some technical definitions of “witnesses”
that demonstrate when an U -formula is satisfied.

Definition 21 (Witness Sets for U). For every MTL formulas ϕ1 and ϕ2,
and i : {1, 2, 3}, we define witnessiU(ϕ1, ϕ2) to be a subset of R2

≥0 defined by the
following predicates over (r, w):
1. r ≤ w ∧

(
∀t : (r, w)·f t |=NEW

ϕ1

)
∧ fw |=

NEW
ϕ2

2. r < w ∧ ∃ε : R+·(∀t : (r, w)·f t |=NEW
ϕ1

)
∧
(
∀t : (w .− ε, w)·f t |=NEW

ϕ2

)
3. r < w ∧ ∃ε : R+·(∀t : (r, w + ε)·f t |=NEW

ϕ1

)
∧
(
∀t : (w,w + ε)·f t |=NEW

ϕ2

)
Notice, that if (r, w) is in any of the witness sets given in Definition 21, then

it provides proof that certain until formulas are true. This is captured by the
definition of proof sets, given next.

Definition 22 (Proof Sets for U). For every MTL formulas ϕ1 and ϕ2, times
r, w : R≥0, interval I : I≥0, and i : {1, 2, 3}, we define proofsetiU(ϕ1, ϕ2, r, w, I)
to be a subset of R≥0 defined by the following predicates over t:
1. witness1

U(r, w) ∧ r ≤ t ∧ w − t ∈ I
2. witness2

U(r, w) ∧ r ≤ t ∧ w − t ∈ (|I]
3. witness3

U(r, w) ∧ r ≤ t ∧ w − t ∈ [I|)

A proof set proofsetiU(ϕ1, ϕ2, r, w, I) establishes the fact that ϕ1UIϕ2 is true
at time r in signal f . This is proved next.

Proposition 23
PVS

13 (Proof Sets for U). For any MTL formulas ϕ1 and ϕ2,
times r, w : R≥0, interval I : I≥0, i : {1, 2, 3}, and t : proofsetiU(ϕ1, ϕ2, r, w, I) we
have f t |=

NEW
ϕ1UIϕ2.

In Proposition 23, the signal f need not be finitely variable. Also, the formulas
ϕ1, ϕ2 could be any MTL formulas. The truth of ϕ1UIϕ2 within [0, sz(I)) changes
13 def_until_witness_{1,2,3}_proofset@mtl_witness.
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only finitely many times. This crucial observation helps limit the number of
clocks needed to monitor the truth of U -subformulas.
Theorem 24

PVS
14 (Finite Variability of U). For any MTL formulas ϕ1 and

ϕ2, and interval I : {I : I | I, I ∈ R+}, there are two intervals T1 : I≥0 and
T2 : I≥0 with the following properties:
– ∀t1 : T1, t2 : T2·t1 < t2, and
– ∀t : R≥0·(t < sz(I) ∧ f t |=

NEW
ϕ1UIϕ2)⇔ (t ∈ T1 ∪ T2)

It is worth noting that Theorem 24 is not restricted to MITL or to finite
variable signals. Since within [0, sz(I)), the times when ϕ1UIϕ2 is true can be
partitioned into two intervals, suggests that a timed automaton checking this
property can just guess these intervals. But how can such intervals be guessed?
Definition 21 provides an answer. These observations are combined in the next
theorem, to identify what the timed automaton needs to guess and check for
U -formulas.
Theorem 25

PVS
15 (Witness Point for U). In Theorem 24, if fvar(f) then T1

and T2 have the following properties:
– If T1 6= ∅ then there are w1 : R+ and i : {1, 2} such that:

1. if i = 1 then w1 − T1 ∈ I, otherwise, w1 − T1 ∈ 〈I]
2. (T1, w1) ∈ witnessiU(ϕ1, ϕ2)
3. T1 ⊆ proofsetiU(ϕ1, ϕ2, T1, w1)

– If T2 6= ∅ then there are w2 : R+ and i : {1, 3} such that:
1. w2 − T2 ∈ 〈I]
2. (T2, w2) ∈ witnessiU(ϕ1, ϕ2)
3. T2 ⊆ proofsetiU(ϕ1, ϕ2, T2, w2)

In Theorem 25, the 1st property bounds possible values of wi, and hence
bounds possible values that should be guessed by timed automaton. The 2nd

property specifies what wi should satisfy (i.e. what timed automaton should
verify about the guess), and the 3rd property states that wi is enough for proving
that ϕ1UIϕ2 is satisfied by f at all times in Ti.

Witness Intervals for R Operators. We now identify how a timed automa-
ton can check R-formulas. We will repeat the steps from the previous section.
We will identify witness intervals, and proof sets for R-formulas. As in the case
of U , these provide proofs of when a R formula is true.
Definition 26 (Witness Interval for R). For every MTL formulas ϕ1 and ϕ2,
and i : {1, . . . , 4}, we define witnessiR(ϕ1, ϕ2) to be a subset of I defined by the
following predicates over I:

1. ∀t : I·f t |=NEW
ϕ2

2. I 6= ∅ ∧ ?[I〉∧∀t : I·f t |=NEW
ϕ1

3. I 6= ∅ ∧ 〈I]?∧∀t : I·f t |=NEW
ϕ2 ∧ fI |=

NEW
ϕ1

4. [I〉6= ∅ ∧ 〈I]?∧∀t : I·f t |=NEW
ϕ2 ∧ ∃ε : R+·∀t : (I, I + ε)·f t |=NEW

ϕ1
14 until_witness_interval_2@mtl_witness.
15 until_witness_interval_3@mtl_witness.
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Definition 27 (Proof Sets for R). For every MTL formulas ϕ1 and ϕ2, inter-
vals I, J : I≥0, and i : {1, 2, 3, 4}, we define proofsetiU(ϕ1, ϕ2, I, J) to be a subset
of R≥0 defined by the following predicates over t : R≥0:

1. I ∈ witness1
R(ϕ1, ϕ2)∧t+ J ⊆ I

2. I ∈ witness2
R(ϕ1, ϕ2)∧t+ J ⊆ (I,∞) ∧t < I ∧ J > 0

3. I ∈ witness3
R(ϕ1, ϕ2)∧t+ J ⊆ I + R≥0∧t < I

4. I ∈ witness4
R(ϕ1, ϕ2)∧t+ J ⊆ I + R≥0∧t ≤ I

Proposition 28
PVS

16 (Proof Sets for R). For any MTL formulas ϕ1 and ϕ2,
intervals I, J : I≥0, i : {1, 2, 3, 4}, and t : proofsetiR(ϕ1, ϕ2, I, J) we have f t |=

NEW

ϕ1RJϕ2.

Like U -formulas, a formula ϕ1RIϕ2 changes its truth only finitely many times
in the interval [0, sz(I)).

Theorem 29
PVS

17 (Finite Variability of R). For any MTL formulas ϕ1 and ϕ2,
and non-empty positive bounded interval I, there are four intervals T1, . . . , T4
with the following properties:
–∀i, j : {1, . . . , 4}, ti : Ti, tj : Tj·i < j ⇒ ti < tj , and
–∀t : R≥0·(t < sz(I) ∧ f t |=

NEW
ϕ1RIϕ2)⇔ (t ∈

⋃
i:1,...,4 Ti)

Like in Theorem 25, we can combine Theorem 29 and Definition 26 to come
up with how a timed automaton can check such R formulas.

Theorem 30
PVS

17 (Witness Interval for R). In Theorem 29, if fvar(f) then
T1, . . . , T4 have the following properties:

– If T1 6= ∅ then ∃I : I such that:
1. I ⊆ (0, sz(J))
2. witness2

R(ϕ1, ϕ2, I)
3. T1 ⊆ proofset2

R(ϕ1, ϕ2, I, J)
– If T2 6= ∅ then ∃I : I such that:

1. I ⊆ [sz(J), sz(J) + J)
2. witness1

R(ϕ1, ϕ2, I)
3. T2 ⊆ proofset1

R(ϕ1, ϕ2, I, J)

– If T3 6= ∅ then ∃I : I such that:
1. I ⊆ [sz(J), sz(J) + J)
2. witness4

R(ϕ1, ϕ2, I)
3. T3 ⊆ proofset4

R(ϕ1, ϕ2, I, J)
– If T4 6= ∅ then ∃I : I, i : {2, 3, 4}

such that:
1. I ⊆ [sz(J), sz(J) + J)
2. witnessiR(ϕ1, ϕ2, I)
3. T4 ⊆ proofsetiR(ϕ1, ϕ2, I, J)

Constructing a timed automaton for MITLWI. One can use Theorem 25
and Theorem 30 and follow the same ideas outlined in [2] to construct a timed
automaton for Type 4 and Type 5 formulas. Let us outline how this works for
Type 4 formulas. If the automaton guesses that T1 is not empty then it must
make this guess at time exactly T1. At the same time, the automaton takes two
more actions: First, it resets a free clock x and remembers that this clock is not
free anymore. Second, it guesses whether i should be 1 or 2. Suppose, i is chosen
16 def_release_witness_{1,2,3,4}_proofset@mtl_witness.
17 release_witness_interval_1@mtl_witness.
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to be 1. As long as x is not free, the automaton makes sure that the input signal
satisfies ϕ1. Note that this is a different proof obligation and will be considered
by an induction on the structure of input formula. At the same time or at some
time later, the automaton should guess whether the current time is T1. At any
point in time, if the automaton does not make that call (i.e. decides the current
time is not T1), it means the automaton wants to prove that the input signal
satisfies the U formula at all points in time between T1 and sometime in the
future. As soon as the automaton guesses that the current time is T1, it resets
a new free clock y and marks it as non-free. The automaton then makes sure
that when current values of x and y belong to I, the input signal satisfies ϕ2
at least once. As soon as ϕ2 becomes true during during this period, the proof
obligation is over and x and y will both be marked as free clocks (note that
ϕ1 does not need to be true when ϕ2 becomes true). Using Theorem 25, we
know what the automaton checks, guarantees ∀t : T1·f t |=NEW

ϕ1UIϕ2. However,
the automaton has only finitely many clocks and it cannot reuse a clock while it
is not free. The significance of Theorem 24 is that it guarantees simultaneously
guessing and proving at most d I

sz(I)e + 1 number of T1, T2 intervals is enough.
Since clocks x and y will be freed at most I units of time after they became
non-free, number of required clocks for each Type 4 formula will be only twice
the number of simultaneous proof obligations. The same argument holds for R
operators, except that the automaton has to simultaneously guess and prove at
most d I

sz(I)e+ 1 number of T1, T2, T3, T4 intervals.

6 Conclusion

We proved that the classical decision procedures for satisfiability and model
checking of MITL [2] are incorrect. This is because they rely on a semantics for
the R operator which is not the dual of U . We give a new semantics of R and
prove that it behaves like the dual of U over signals that are finitely variable.
Identifying the right semantics for R is subtle as we show that it is not possible
to give a correct semantics using characterization that uses only two quantified
variables. Using the new semantics, we give a translation from MITL to timed
automata and thereby correcting the decision procedures for MITL. Finally, we
also identify a fragment of MITL called MITLWI, that is more expressive than
MITL0,∞, but nonetheless has decision procedures in PSPACE.
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Selfless Interpolation for Infinite-State Model
Checking?

Tanja Schindler1 and Dejan Jovanović2

1 University of Freiburg
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Abstract. We present a new method for interpolation in satisfiability
modulo theories (SMT) that is aimed at applications in model-checking
and invariant inference. The new method allows us to control the finite-
convergence of interpolant sequences and, at the same time, provides
expressive invariant-driven interpolants. It is based on a novel integration
of model-driven quantifier elimination and abstract interpretation into
existing SMT frameworks for interpolation. We have integrated the new
approach into the sally model checker and we include experimental
evaluation showing its effectiveness.

1 Introduction

Many modern model-checking techniques rely on Craig interpolation [14,30] as a
learning oracle to support abstraction refinement and invariant inference. Inter-
polants themselves are artifacts usually computed from proofs of correctness for
a finite unrolling of the system under analysis. While it is possible for a model
checker to compute interpolants on its own, in most cases interpolation is pro-
vided by the underlying reasoning engine (such as an SMT solver) that is unaware
of the application-specific needs. The importance of good interpolants is widely
acknowledged – a single “magical” interpolant can make a difference between
verifying the model instantaneously and verification failure – and it is no sur-
prise that interpolants and their properties have been studied extensively. Some
examples of interpolant properties are interpolant (logical) strength [16,38,34],
size [18], and beauty [1].

Interpolant properties mentioned above are conceptually appealing but focus
on single interpolants in isolation. In this paper we investigate interpolants as
used in the IC3/PDR class of model-checking algorithms (e.g. [4,7,23,22]), in the
context of analysis of infinite state systems. The IC3/PDR class of algorithms
reasons locally, without unrolling the systems, and constructs abstractions and
invariant candidates incrementally. The overall algorithm performs not one, but
a sequence of reasoning queries that are interleaved and interact with results of
interpolation. Therefore, we are ultimately more interested in properties of the
interpolation sequence3 rather than a single interpolant. Ideally, the interpolation

? The research presented in this paper has been supported by NSF grant 1528153.
3 Not to be confused with sequence interpolants [29].
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procedure would offer some convergence guarantees of this reasoning sequence.
For example, in the pdkind method [22] (a variant of PDR), interpolation is used
to incrementally refine the current candidate invariant by examining induction
failures. If this refinement sequence is allowed to continue indefinitely, the pd-
kind method will never get to reason past its current invariant candidate and
will fail to make progress. Similarly, in IC3/PDR algorithms, a non-converging
interpolation sequence will result in verification failure where all reachability
frames are refined indefinitely.

Example 1 (Model Checking Divergence). Consider a simple transition system
defined with the initial states and a transition relation:

I = (x = 0) ∧ (c = 1) , T ≡ (x′ = x+ c) ∧ (c′ = 2c) .

The system above satisfies the invariant (x ≥ 0). Nevertheless, well-known
interpolation-based model checkers such as nuXmv [5]4 and spacer [23], and
our own tool sally [22] diverge and fail to prove the property. ut

We propose a new interpolation method that is based on the following two
guiding principles:

1. The interpolation method should interact well with the underlying model-
checking algorithm and offer guarantees of convergence for interpolation se-
quences.

2. The interpolation method should be aware of the model checking context and
be able to accept suggestions from the model checker in order to produce
invariant-driven interpolants.

Our new method is developed within the interpolation framework available in all
major SMT solvers (e.g. [10]). For the theory of arithmetic, most SMT solvers
produce interpolants through application of the Farkas lemma [35]. We first show
how this approach can result in divergence, as in the example above, and then
propose a solution based on model-driven quantifier elimination that guarantees
convergence. The new method is very flexible and allows the model checker to
also provide interpolant suggestions. We use this feature to make the result-
ing interpolants invariant-directed, by integrating abstract interpretation [12]
into the interpolation process. To the best of our knowledge, our interpolation
method is the first to combine interpolation, quantifier elimination, and abstract
interpretation, in a framework readily reusable in any interpolating SMT solver.

We have implemented our new approach into the sally model-checker by
relying on the mathsat5 SMT solver [9] and the apron domain library [20].
We present experimental data that shows the effectiveness of the approach and
illuminates the impact of quantifier elimination and abstract interpretation.

4 In order to rely only on interpolation, we disable predicate abstraction in nuXmv.
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2 Background

2.1 Satisfiability Modulo Theories

We work in the setting of satisfiability modulo theories (SMT) and assume the
usual notation of first order logic (see, e.g. [2]). In the following, we use the letters
x, y, z to denote variables, and c to denote constants. We consider the quantifier-
free theory of linear arithmetic over the rationals (Tla). We denote with p and q
linear terms over Q, i.e., terms of the form cnxn + · · ·+ c1x1 + c0 over variables
x = 〈x1, . . . , xn〉 with coefficients c0, . . . , cn ∈ Q. A theory atom in arithmetic is
a linear constraint, i.e., an inequality of the form (p � 0) with � ∈ {≤, <},5 and
a literal is an atom or its negation. A clause is a disjunction of literals and we
denote with ⊥ the empty clause. As usual, formulas are constructed inductively
from atoms and the usual Boolean connectives. We denote with atoms(F ) the
set of all atoms appearing in a formula F , and with literals(F ) the set of all
literals of F , i.e. literals(F ) = {a,¬a | a ∈ atoms(F )}. If formula A has all
its free variables in x, we denote this with A(x). A formula A(x) is satisfiable if
there is an assignment mapping its variables to real values such that A evaluates
to true in the usual interpretation. A conjunction of literals C is a Tla-conflict,
if C is inconsistent with Tla. A Tla-lemma is a clause C such that ¬C is a Tla-
conflict or, in other words, C is a valid statement in arithmetic. To ease notation,
we also treat conjunctions and clauses as sets of literals.

Given a formula F that is unsatisfiable in Tla, a resolution proof of F is a
tree P such that a) the root of P is the empty clause, b) leafs of P are either
clauses from F , or Tla-lemmas, and c) each non-leaf node C is an application of
Boolean resolution, i.e. C ≡ (C1∨C2) and has two parents (C1∨ l) and (¬l∨C2)
as below.

(C1 ∨ l) (¬l ∨ C2)

(C1 ∨ C2)

Most modern SMT solvers rely on some variant of the DPLL(T ) framework
[32] to check satisfiability of formulas. In this framework, to solve a formula F ,
a CDCL SAT solver is used to enumerate the truth values of the propositional
skeleton of the formula F . As the formula atoms are assigned to true or false
by the SAT solver, a dedicated decision procedure for the theory T checks the
consistency of the literals A ⊆ literals(F ) corresponding to the Boolean as-
signment. If A is unsatisfiable, the decision procedure returns a T -conflict C ⊆ A
(or equivalently a T -lemma ¬C) that explains the inconsistency in Boolean terms
to the SAT solver. The basic DPLL(T ) framework can be extended to also pro-
vide proofs of unsatisfiability by stitching together the Boolean reasoning and
the T -lemmas resulting from the conflicts. In proofs generated by a DPLL(T )
solver, by construction, the clauses that make up the proof only contain atoms
from the original formula. 6

5 For simplicity we do not consider equality, since they can be eliminated by rewriting
(p = 0) with (p ≤ 0) ∧ ¬(p < 0).

6 In general, SMT solvers may introduce new literals to support reasoning in more
expressive theories, but for reasoning in Tla this is unnecessary.
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In the case of linear real arithmetic, we are talking about DPLL(Tla), and
the decision procedure most commonly used is based on a variant of the Simplex
algorithm [17] engineered specifically for DPLL(Tla). Besides its efficiency, this
Simplex algorithm also has a remarkable property that the Tla-conflicts that it
produces are minimal.

2.2 Craig Interpolation

Definition 1 (Craig interpolant). Given two formulas A(x,y) and B(y, z)
such that A∧B is unsatisfiable, a Craig interpolant is a formula J(y) such that
A⇒ J and J ⇒ ¬B. We call the pair (A,B) an interpolation problem.

The formulation above is the general version of the interpolation problem. In
model checking applications, interpolation problems are often specialized so that
the formulas in question are of the form A(x,x′) and B(x′). In such cases, it is
easy to see that J ≡ ¬B is a solution to the interpolation problem, and we call
J the trivial interpolant.

Interpolants for the interpolation problem (A,B) can be computed from a
proof of unsatisfiability of the formula A ∧ B. The underlying technique of this
proof-based interpolation is generally attributed to Pudlák [19,25,33], and was
revisited in recent years in the context of model checking and SMT solving (see,
e.g. [27,28,10]). Given a proof of unsatisfiability for A ∧ B, the interpolant can
be computed inductively over the structure of the proof tree. As the proof tree is
traversed from the leaves to the root, each clause C in the proof tree is associated
a partial interpolant. A partial interpolant of a clause C is an interpolant of the
formulas

(A ∧ (¬C ↓ A)) , (B ∧ (¬C ↓ B)) .

The projection functions (· ↓ A) and (· ↓ B) operate on literals and have the
following properties. For a literal l, one of (l ↓ A) and (l ↓ B) must be l. The pro-
jection (l ↓ A) may be l, if l ∈ literals(A), or it must be > otherwise. Dually,
(l ↓ B) may be l, if l ∈ literals(B), or it must be > otherwise. The projection
function is extended to conjunctions of literals, as expected. Intuitively, the pro-
jection functions are used to extract literals that come from A or B, with some
flexibility in the ownership of shared literals.7 For a clause C, we write ¬C \ A
as a shortcut for the literals in ¬C without (¬C ↓ A), and analogously for B.
Note that the partial interpolant of the empty clause ⊥ is an interpolant of the
original problem that can be read of as the partial interpolant associated to the
root of the proof. The rules for computing partial interpolants depend on the
type of the proof node, as follows.

1. For an input clause C from A the partial interpolant is ¬(¬C \A).
2. For an input clause C from B the partial interpolant is ¬C \B.

7 This flexibility allows interpolants of different logical strength [16].
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3. For a T -lemma C, the conjunction ¬C is unsatisfiable, and the partial inter-
polant is computed by a T -lemma interpolator as the interpolant of (¬C ↓ A)
and (¬C ↓ B).

4. For a resolvent clause C the partial interpolant J is computed as follows

(C1 ∨ l) : J1 (¬l ∨ C2) : J2

(C1 ∨ C2) : J
where J =


J1 ∨ J2, if l ↓ B = >,
J2 ∧ J2, if l ↓ A = >,
ite(l, J2, J1), otherwise.

For a general and more detailed exposition on the overall framework we refer
the reader to [6]. Given a T -lemma interpolator P , we denote with itpJP K the
proof-based interpolation procedure that uses P to interpolate the T -lemma
nodes of the proof.

In general, the structure of proof-based interpolants is hard to control: an
interpolant will be a Boolean combination of parts of A clauses, parts of B
clauses, and the interpolants from the T -lemmas. Nevertheless, we can guarantee
that no literals that are exclusively in B can sneak into the interpolant, unless
introduced by the lemmas.

Lemma 1. Given an interpolation problem (A,B), the interpolant J = itpJP K
is a Boolean combination over the atoms of A and atoms from the T -lemma
interpolants.

Proof. We only have to show that no atom from B, that neither appears in
A nor is produced by the T -lemma interpolator, can ever sneak into the final
interpolant. This is trivial for the partial interpolants for input clauses from A
and theory lemmas. The only atoms that can be added to the interpolant in
resolution nodes, are atoms for which l ↓ A = l (and l ↓ B = l) holds, and hence
l ∈ literals(A). We are left with the case of a proof node that is an input clause
from B. In this case the partial interpolant is J ≡ (¬C \ B). By definition, for
each l ∈ J we know that l ↓ B = >. Therefore we must have l ↓ A = l and
l ∈ literals(A). ut

2.3 Arithmetic Interpolation

In the proof-based interpolation framework, for an SMT solver to provide inter-
polation in the theory of arithmetic, it needs to be able to provide interpolation
for each Tla-theory lemma that it contributes to the proof. For an interpolation
problem (A,B), the lemmas of the proof correspond to Tla-conflicts that were
found by the solver during the solving process. In case of arithmetic, and SMT
solvers based on Simplex, each Tla-conflict will be a set of literals C that is
inconsistent (and minimal). Each conflict C can be separated into the A part
and B part, and the goal is to find an interpolant for the interpolation problem
(C ↓ A,C ↓ B).

For linear arithmetic, the most common way to obtain the interpolant of a
conflict is to rely on the Farkas lemma. A Tla-theory conflict C is an unsatisfiable
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conjunction of inequalities

Ii ≡ (
∑
j

cijxj + ci0 �i 0) ,

for �i ∈ {<,≤}. By Farkas lemma, there exist coefficients ki > 0 that can certify
the inconsistency, i.e. such that∑

i

ki × Ii = (1 < 0) .

The lemma interpolant can then be given by summing up the A contributions
to the conflict, i.e., the interpolant is

J ≡
∑

Ii∈C↓A

ki × Ii .

It is not hard to see that J is a valid interpolant. The advantage of the Farkas
approach is that the coefficients ki can easily be read off the state of the Simplex
solver when it detects a conflict. We will denote the Tla-lemma interpolator
based on the Farkas lemma as Pfk.

Note that an interpolant obtained with Pfk is always a single inequality.
The ability to produce a single inequality can be advantageous, as it allows the
interpolant to relate variables that might not be syntactically related in A, by
using the B part. On the other hand, as we will see in the next section, the
disadvantage of Pfk is that it can lead to diverging interpolant sequences.

3 Sequences of Interpolants

Behavior of interpolant sequences was first explored in [22], where the notion
of finite-covering interpolation was proposed as an assumption that supports
termination and deductive power of the pdkind method.

Definition 2 (Finite Covering Interpolation). An interpolation procedure
P (or a T -lemma interpolator) is finite covering if for a fixed A(x,y), it can
only produce a finite number of distinct interpolants.

Example 2. If the interpolation problems are of the form A(x,x′) and B(x′),
the trivial interpolation method can always return ¬B as the interpolant. This
kind of interpolation is not useful in general and is not finite covering.

Finite covering is a strong property. Most interpolation procedures are proof-
based and, since the space of proofs and lemmas is infinite, they do not ensure
finite covering. Nevertheless, for theories that admit quantifier elimination, for
any given A, one can construct a single interpolant J(y) by eliminating x from
(∃x . A(x,y)) that refutes any B that needs to be interpolated. In principle, for
arithmetic theories, a finite-covering interpolation procedure could be devised
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by relying on procedures such as MCSat [15] that are based on quantifier elim-
ination. But, since none of the available interpolating SMT solvers are MCSat-
based, it would be desirable to have some control over the number of potential
invariants in the existing proof-based interpolation framework.

Definition 3 (Interpolation Sequence). Given a formula A(x,y) and two
sequences of formulas (Jk(y)) and (Bk(y, z)), we call (Jk) an interpolation se-
quence for A and (Bk) if for all k it holds that

1. Bk is consistent with
∧

i<k Ji;
2. Bk is inconsistent with A;
3. Jk is the interpolant between A and Bk.

Definition 4 (Finite Convergence). We say that an interpolation procedure
has a finite convergence property if it does not allow infinite interpolation se-
quences.

To put the definitions above in perspective, in a typical model checking appli-
cation, the formula A will correspond to some abstraction of reachable states
(including the transition relation), formulas Bk will correspond to potentially
bad states, and the interpolants Jk will be learned facts that refute the poten-
tially bad states. The finite convergence property then guarantees that no matter
how we choose the potentially bad states, the interpolation procedure will even-
tually refute all of them. Finite convergence differs from finite covering in that
it is semantic and more directly addresses the undesirable interpolant behavior.

Example 3 (Finite Convergence). Consider the interpolation procedure itpJPfkK,
i.e. the standard SMT interpolation for Tla based on Farkas derivation. Let
A(x, y1, y2) be the constraints

I1 ≡ (y1 − x < 0) , I2 ≡ (x < 0) , I3 ≡ (y2 − x < 0) .

Now, consider the sequence of formulas (Bk), where Bk(y1, y2) ≡ (y1 +ky2 > 0).
Interpolating from A against an individual Bk using the Farkas approach will
always result in an interpolant Jk that is a single inequality constructed as a
combination of formulas from A, i.e., we will obtain

Jk ≡ 1× I1 + (k + 1)× I2 + k × I3 ≡ (y1 + ky2 < 0) .

Since interpolating from A over the sequence (Bk) results in an infinite sequence
of distinct interpolants, the Farkas approach to interpolation does not have the
finite-covering property, i.e., neither Pfk nor itpJPfkK guarantee finite conver-
gence.

On the other hand, we can rely on Fourier-Motzkin quantifier elimination to
simply eliminate x from A and obtain the conjunction J ≡ (y1 < 0) ∧ (y2 < 0)
that is a suitable interpolant for all Bk simultaneously (it is derivable from A
and singlehandedly refutes all Bk). Note that, as mentioned before, the Farkas-
based interpolants relate variables y1 and y2 in the interpolants. On the other
hand, the interpolants based on Fourier-Motzkin do not. ut
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An interesting property of finite convergence is that we can interleave an in-
terpolation procedure P1 with finite convergence with an arbitrary interpolation
procedure P2 and still obtain finite convergence, as long as the interleaving is
fair to the procedure P1.8

The following lemma shows that we do not need to devise an entirely new
interpolation procedure to ensure finite convergence. Instead, we only need to
devise a finite-covering T -lemma interpolator that can then be used in the stan-
dard proof-based interpolation framework.

Lemma 2. If a T -lemma interpolator P is finite covering, then the proof-based
interpolation procedure itpJP K has the finite convergence property.

Proof. Assume that itpJP K does not have the finite convergence property. This
means that there is an infinite interpolation sequence, i.e. there is a formula A,
and two sequences of formulas Jk and Bk as in Definition 3. In this sequence,
the interpolants Jk must be distinct functions because for each k

– Jk is inconsistent with Bk; but
– Ji is consistent with Bk, for i < k.

On the other hand, P can only produce a finite number of lemma interpolants
and, by Lemma 1, itpJP K (as a proof-based procedure) can only produce Boolean
combinations of clauses from A and lemma interpolants. Therefore, the overall
procedure itpJP K will only be able to produce a finite number of distinct inter-
polants (seen as functions), proving the case by contradiction. ut

4 Interpolation with Conflict Resolution

In this section we present a Tla-lemma interpolator Pcr that replaces the tra-
ditional interpolator based on the Farkas lemma Pfk. Throughout this section
we therefore assume a global interpolation problem, i.e. formulas A(x,y) and
B(y, z), with A ∧ B unsatisfiable. In addition, we assume a global ordering on
variables so that z ≺ y ≺ x. Our goal is to devise the Tla-lemma interpolator
Pcr that is finite covering. In order to achieve this we will rely on a model-driven
variant of Fourier-Motzkin (FM) quantifier elimination.

4.1 Fourier-Motzkin Elimination

Given an inconsistent set of inequalities F , a FM proof of F has the same
structure as a Boolean resolution proof would, but with clauses replaced with
inequalities, and the resolution rule replaced with the FM elimination rule. Given
two inequalities sharing a variable x of opposite signs, the FM rule deduces a
new inequality with this variable eliminated.9

8 In a way, an interpolation procedure that has the finite convergence property is
analogous to the widening operator in abstract interpretation.

9 The presented rule is over strict inequalities only, other cases are as expected.
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Il ≡ (p− x < 0) : Iu ≡ (x− q < 0)
FM x

R ≡ (p− q < 0)

We first explain the general idea behind the new lemma interpolation proce-
dure. Each Tla-lemma interpolation problem consists of two sets of inequalities
CA(x,y) and CB(y, z), with CA ∧ CB unsatisfiable. Therefore, there exists a
FM elimination proof of inconsistency that is ordered according to ≺. In other
words, in the FM proof the x variables are eliminated first, followed by the y
variables, and finally the z variables. The order of elimination ensures, for ex-
ample, that if any inequality I in the proof contains an x variable, I must have
been derived from CA. Let J be the set of inequalities in the proof that do not
contain any x variables but were either a) derived from two inequalities that
contain x variables; or b) appear in CA directly. By construction, then CA ⇒ J
and J is in y variables only. In addition, the inequalities in J constitute a cut of
the proof tree that is enough to refute CB . In other words, J is an interpolant
between CA and CB . This selection of inequalities from the proof can be done
locally at each resolution node, and we denote the procedure that returns the
relevant inequalities as select(R, Il, Iu).

Example 4. Let’s revisit the interpolation problem of Example 3, i.e., let

CA ≡ (y1 − x < 0) ∧ (x < 0) ∧ (y2 − x < 0) , CBk
≡ (y1 + ky2 > 0) .

Below is a Fourier-Motzkin proof of unsatisfiability of CA ∧ CBk
, with the vari-

ables ordered as y2 ≺ y1 ≺ x. We mark inequalities derived only from CA with
red bold font, and all other inequalities with blue.

y1 − x < 0 x < 0
x

y1 < 0 −y1 − ky2 < 0
y1 −ky2 < 0

y2 − x < 0 x < 0
x

↓
y2 < 0

y2
0 < 0

As discussed above, we can examine the proof and get that

select((y1 < 0), (y1 − x < 0), (x < 0)) = {(y1 < 0)} ,
select((y2 < 0), (y2 − x < 0), (x < 0)) = {(y2 < 0)} .

Therefore the set of inequalities J = { (y1 < 0), (y2 < 0) } is an interpolant for
CA and CBk

for any k. ut

4.2 Conflict Resolution

Although we could use FM elimination to derive the Tla-lemma interpolants, as
above, this would likely not be efficient. FM elimination is a quantifier elimi-
nation procedure and can become very inefficient even with small numbers of
variables. Instead, we will adopt a model-driven variant of FM elimination called
conflict resolution (CR). The conflict resolution algorithm was originally intro-
duced in [24] for solving systems of linear inequalities. CR is an instance of a
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recent class of model-based decision procedures, such as Generalized DPLL [26]
and MCSat [15], but is simpler as it targets conjunctions of constraints only.
The algorithm is related to FM elimination in the same way the CDCL algo-
rithm is related to Boolean resolution: instead of trying to prove the problem
unsatisfiable by saturating the FM rule, conflict resolution attempts to build a
model and only applies the FM rule when the model-building fails. This princi-
pled way of deriving new inequalities makes it possible to produce a proof while
only deducing inequalities that are relevant for unsatisfiability.

We use a variation of the original algorithm [24] adapted to the context of
Tla-lemma interpolation. In this context, we are given two sets of inequalities
CA(x,y) and CB(y, z) that together are known to be unsatisfiable. The algo-
rithm will construct a proof that CA ∧ CB is unsatisfiable and, as a side-effect,
collect the set of inequalities J that will form the interpolant of CA and CB .
Before we describe the algorithm itself, we go trough some of its ingredients.

We order all the variables so that 〈v1, . . . , vn〉 = 〈z,y,x〉 and call i the level
of variable vi. A variable vi is the top variable in I, if vi is the largest variable in
I with respect to ≺, and we denote with level(I) the function that returns the
level i. Given a set of inequalities I, we can partition it by level and we denote
with Iv the set of all inequalities from I with v as the top variable.

The algorithm maintains an assignment σ of variables to values in Q. Any in-
equality I with vi as the top variable implies a bound on the possible values that
vi can take with respect to the current assignment of v1, . . . , vi−1. For example,
if I ≡ (vi + p ≤ 0), then the implied bound is vi ≤ −σ(p). For each variable
vi, the algorithm maintains an interval feasible[vi] = (l, u) that represents the
strongest lower and upper bounds inferred on vi. Additionally, the bounds of
this interval are associated with the inequalities Il[vi], Iu[vi] that imply them.
We say that the variable vi is in conflict, denoted with in-conflict(vi), if the
current lower and upper bounds on vi are in conflict, i.e., when feasible[vi] is
either a (half-)open interval with l ≥ u, or a closed interval with l > u.

The main inference mechanism in the algorithm is bound propagation on in-
equalities, which is an arithmetic analogue to unit propagation that SAT solvers
perform on clauses. Given an inequality I with vi as its top variable, we de-
note with propagate-bounds(I, vi) the procedure that computes the bound
that I implies on vi and updates the bound information if the new bound
is stronger than the existing one. We overload bound propagation to oper-
ate over a set of inequalities Ivi

with vi as its top variable, and denote with
propagate-bounds(Ivi

, vi) the procedure that resets the current bound infor-
mation on vi and then updates it by propagating bounds over all inequalities in
Ivi . If, after performing exhaustive propagation over Ivi , the variable vi is not
in conflict, then we can safely pick a value α ∈ feasible[vi], which we denote
with pick-value(vi).

10 In this case, by construction, it is guaranteed that the
value can be used to satisfy Ivi

, i.e., σ{vi 7→ α} � Ivi
.

The algorithm starts at level 1 and tries to gradually build a satisfying as-
signment σ for the variables v, by assigning them values one by one. We know

10 For example we can pick l+u
2

, which is what we do in our implementation.
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Algorithm 1 Interpolation with Conflict Resolution.

Require: Sets of inequalities CA(x,y) and CB(y, z), known to be inconsistent.
Ensure: Set of inequalities J is an interpolant for CA and CB .

1 function Pcr(CA, CB)
2 v ← 〈z,y,x〉 . order the variables z ≺ y < x.
3 i← 1; I ← CA ∪ CB ; J ← ∅ . initialize and start from bottom
4 loop
5 propagate-bounds(Ivi , vi) . compute bounds for vi
6 while in-conflict(vi) do . resolve any conflicts
7 R← fm-resolve(Il[vi], Iu[vi], vi) . compute the resolvent
8 J ← J ∪ select(R, Il[vi], Iu[vi]) . add relevant inequalities to J
9 if (R 6= ⊥) then . backtrack with resolvent

10 i = level(R) . level to backtrack to
11 I = I ∪ {R} . remember the new inequality
12 propagate-bounds(R, vi) . update bounds with new inequality
13 else return J . J is the interpolant.

14 σ[vi]← pick-value(vi) . pick a value for vi in feasible(vi)
15 i← i+ 1 . continue with next variable

that a complete model does not exist, and the failed model-building attempts will
guide the process of FM resolution. At each level i the algorithm performs bound
propagation to compute the interval of potential values that the variable vi can
take with respect to the assignment of variables v1, . . . , vi−1. If bound propaga-
tion produces a feasible interval, then the algorithm assigns to vi a value in this
interval and moves on to the next variable. Otherwise, in-conflict(vi) is true,
and there are two inequalities11

Il[vi] ≡ (p− vi < 0) , Iu[vi] ≡ (vi − q < 0) ,

such that the bounds they imply on vi are inconsistent, i.e., we know that σ(p) ≥
σ(q). Mimicking a SAT solver, we can resolve this conflict by applying Fourier-
Motzkin resolution to derive the resolvent R = (p − q < 0). We denote the
resolution inference over inequalities I1 and I2 that eliminates variable vi with
R = fm-resolve(I1, I2, vi). The inequality R is a potential new node in the FM
proof, and we examine the proof inference and add any relevant inequalities to
the interpolant J . In addition we use the resolvent R to backtrack as follows.
Since the resolvent R does not include vi, it must be of level less than i. We
also know by σ(p)− σ(q) ≥ 0 that R is inconsistent with the current model, i.e.
that σ 6� R. If R ≡ ⊥, we have found the proof of unsatisfiability and the set of
inequalities J is the final interpolant. Otherwise, we use R to backtrack to the
level of R and update the bounds of its top variable with new information.

Properties of Pcr. The termination and correctness of the algorithm follows from
the termination and correctness of the original conflict resolution algorithm [24],
and the fact that we can obtain the interpolant from the computed FM proof.

11 For simplicity we only consider the case of strict inequalities, other cases are similar.
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Another way of looking at the Pcr algorithm is as a semantic interpolation game
where each model that can be constructed for CB inequalities is refuted by an
inequality derived from CA.

FM elimination allows us to put a bound on the number of literals that
can appear in the interpolant J . First, for a fixed global A, and any lemma
interpolation problem (CA, CB), we know that literals(CA) ⊆ literals(A).
Therefore, the inequalities that can appear in J are limited to the inequalities
that one can obtain by FM elimination on literals(A). From this bound and
Lemma 2 we can then show the following two properties of Pcr.

Lemma 3. Pcr is a finite-covering Tla-lemma interpolator.

Lemma 4. itpJPcrK interpolation procedure has the finite convergence property.

5 Improving Interpolation with Abstract Interpretation

The Pcr lemma interpolator described in the previous section ensures finite con-
vergence of interpolation sequences. This is achieved by restricting the language
of the potential interpolants by relying on quantifier elimination. Since our in-
terest in interpolation comes from its use in construction of invariants, this also
restricts the potential invariants that we can construct and can be seen as a dis-
advantage of the method. In this section we consider the interpolation problem
specifically in the context of model checking and invariant inference and try to
remedy this.

Model Checking. We assume a finite set of variables x called state variables. To
each variable x ∈ x, we associate its primed version x′. We call any formula
F (x) over the state variables a state formula, and any formula T (x,x′) a state-
transition formula. A state-transition system is a pair S = 〈I, T 〉, where I(x)
is a state formula describing the initial states and T (x,x′) is a state-transition
formula describing the system’s evolution.

Example 5. Let S = 〈I, T 〉 be a transition system defined as

I ≡ (x = 0) ∧ (y = 0) , T ≡ (x′ = x+ 1) ∧ (y′ = y + 1) .

It is easy to see that (x = y) is an invariant of S. Nevertheless, consider a typical
query that a model checker would use to check if a potential bad state (x < y)
is reachable.

CA︷ ︸︸ ︷
I(x, y) ∧ T (x, y, x′, y′)∧

CB︷ ︸︸ ︷
(x′ < y′) .

The query above is unsatisfiable, and we can use it to derive an interpolant to use
in invariant inference. Unfortunately, by using Pcr, since we are only inferring
inequalities from CA, we can never deduce an inequality that relates the variables
x and y, and the resulting interpolant is (x′ = 1) ∧ (y′ = 1).
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On the other hand, because it must produce a single constraint, the Farkas-
based Pfk will relate the variables x and y, and produce the desired interpolant
as follows

(x′ = x+ 1) + (y′ = y + 1) + (x = 0) + (y = 0) ≡ (x′ = y′) .

This remarkable capacity of Pfk to relate relevant variables is probably one of
the main reasons for its successful adoption. ut

Abstract Interpretation. As the example above shows, restricting the language
of interpolants with quantifier elimination can put Pcr at a loss when inferring
invariants. In order to improve the invariant-inference capacity of Pcr, we will
rely on the tools provided by one of the most successful frameworks for invariant
inference – abstract interpretation [12]. Abstract interpretation is a theory for
sound approximation of the semantics of transition systems. The appeal of ab-
stract interpretation is that it can efficiently compute a superset of all possible
behaviors of a system by means of abstractions. These abstractions are com-
puted by abstracting the semantics of the system with semantic techniques that
are orthogonal to the syntactic, proof-based approach of quantifier elimination.
Abstract interpretation provides a range of abstract domains D# that can be
used for approximating Tla transition systems, such as the interval [11], octagon
[31], and the polyhedra [13] domains.

Since we are working in the context of model checking, we assume a global
interpolation problem of the form

A(x,x′) ≡ (I(x) ∧ T (x,x′)) , B(x′) ,

with A ∧B unsatisfiable. Note that the usual SMT interpolation procedures do
not have this information (the relationship between x and x′ variables has to
be provided by the model checker).

As part of the proof of unsatisfiability of A∧B, we also assume a Tla-conflict
separated into CA(x,x′) and CB(x′) that we need to interpolate. The formula
CA ∧ CB is unsatisfiable and we can view CA as containing one piece of the
transition relation T . The transition piece itself is in convenient conjunctive form
expressed with linear inequalities and we therefore pick the polyhedra domain
as our precise concrete domain C#. For the abstract domain we can choose any
other arithmetic domain D# mentioned above. We will be using the following
operations provided by the domains:

– Abstraction function α : C# 7→ D#, mapping concrete domain elements to
their abstract representation.

– Concretization function γ : D# 7→ C#, mapping abstract domain elements
to their concrete representation.

– Join operator t# : D# × D# 7→ D# that, given two abstract domain ele-
ments, computes the abstract element capturing both of them.

– Projection operator ∃# that can eliminate variables from elements of D#.
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Example 6. We illustrate the approach on Example 5 where Pcr was not satis-
factory. Let D# be the polyhedra domain (so no abstraction is necessary). First,
we project the CA formula to its state representation and next state projections,
obtaining

DA = (∃# x′, y′ . A) = (x = 0) ∧ (y = 0) ,

DB = (∃# x, y . A) = (x′ = 1) ∧ (y′ = 1) .

As usual in abstract interpretation, we can combine the two domain elements
using a join operation to obtain

DJ = (DA{x, y/x′, y′})t#DB = (x′ = y′) ∧ (0 ≤ x) ∧ (x ≤ 1) ,

which is the invariant we were looking for.12 ut

As the example above shows, we can use the tools from abstract interpreta-
tion to infer new facts that take into account the transition system semantics
(at least partially). In general, the facts inferred by abstract interpretation will
not constitute an interpolant (they might not be inconsistent with CB). But, the
inferred facts are valid consequences of CA, so we can freely conjoin them to CA

and resort to Pcr to complete the interpolant. The Tla-lemma interpolator Pai,
based on this approach, is fully described in Algorithm 2. We emphasize again
that this approach relies on the model checker to provide the information about
the transition system – the substitution DA{x/x′} at line 5 can not be done
without knowing the correspondence between the x and x′ variables.

Algorithm 2 Interpolation with Abstract Interpreation.

Require: Sets of inequalities CA(x,x′) and CB(x′), known to be inconsistent.
1 function Pai(CA, CB)
2 D ← α(CA) . abstract the partial transition
3 DA ← ∃#x′. D . project on state variables x
4 DB ← ∃#x . D . project on next-state variables x′

5 DJ ← (DA{x/x′})t#DB . join the two abstractions
6 return Pcr(CA ∪ γ(DJ), CB) . compute the interpolant

Properties of Pai. The argument to show that Pai is finite covering is similar
to the argument we used for Pcr. For a fixed A, and any Tla-lemma interpola-
tion problem (CA, CB), we know that literals(CA) ⊆ literals(A). Therefore,
overall, abstract interpretation will always operate on subsets of literals(A)
and can only ever infer a bounded number of new facts. This finite set of poten-
tial new literals does not interfere with finite covering by adding them to Pcr,
it only increases the basis which quantifier elimination can derive inequalities
from.
12 For readers unfamiliar with the polyhedra domain, the join DJ is computed as the

convex closure of the points {(0, 0), (1, 1)}.
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Lemma 5. Pai is a finite-covering Tla-lemma interpolator.

Lemma 6. itpJPaiK interpolation procedure has the finite convergence property.

6 Experiments

We have implemented the new interpolation method in the sally model-checker
by relying on the mathsat5 SMT solver [9] for interpolation and apron [20] for
abstract interpretation over arithmetic domains.13 We use the default pdkind
implementation in sally and denote with pdkind+cr the method that uses the
new interpolation method with conflict resolution (but no abstract interpreta-
tion), and with pdkind+cr+polka the method that uses the new interpolation
method with both conflict resolution and abstract interpretation based on the
polyhedra domain.

We have evaluated the new procedure on a range of benchmarks. Several of
our benchmarks are related to fault-tolerant algorithms (om, ttesynchro and
ttastartup, unifapprox, azadmanesh, approxagree, hacms, and misc prob-
lem sets). We also used benchmarks from software model checking (cav12,
ctigar). The lustre benchmarks are from the benchmark suite of the kind
model-checker, cons are simple concurrent programs, and lfht problems model
a lock-free hash table. Some of the benchmarks were obtained from an existing
repository.14

Our main goal is to illustrate the impact of the new interpolation method
but, to put the results in context, we also compare nuXmv [5,8] (nuXmv was the
most robust model checker in our previous work [22]) The results are presented
in Figure 1. Each problem instance was run with a timeout of 10 minutes. Each
column of the table corresponds to pdkind with a different Tla-lemma interpo-
lator, and each row corresponds to a different problem set. For each problem
set and interpolator we report the number of problems that the tool has solved,
how many of the solved problems were valid and invalid properties, and the total
time (in seconds) that the tool took to solve those problems.

First we evaluate the impact of using conflict resolution (pdkind+cr) and
abstract interpretation (pdkind+cr+polka) as the interpolator, compared to
the default pdkind with the Farkas-based interpolator. The results are shown
in Figure 1. Overall, by adding conflict resolution as the lemma interpolator
(pdkind+cr), the method can find more counter-examples (but can prove fewer
properties) than the default pdkind. Then, by extending it with abstract in-
terpretation (pdkind+cr+polka), the tool retains the advantage at finding
counter examples, but can, in addition, prove more valid properties. These re-
sults are aligned with our expectations. With the interpolation providing conver-
gence guarantees, the pdkind method does not get stuck in individual invariant

13 sally is open source on GitHub. The majority of the interpolator code can be seen
in https://github.com/SRI-CSL/sally/blob/interpolation/src/smt/mathsat5/

conflict_resolution.cpp.
14 https://es-static.fbk.eu/people/griggio/vtsa2015/
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Fig. 1. Comparison of different Tla-lemma interpolators. Rows correspond to different
problem sets and columns correspond to pdkind with different interpolators (separate
column for nuXmv for context). Each table entry shows the number of problems that
the tool has solved, how many of those were valid and invalid, and the total time it
took for the solved instances.

pdkind pdkind+cr pdkind+cr+polka nuXmv

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approxagree (9) 9 8/1 185 9 8/1 240 9 8/1 238 6 5/1 477

azadmanesh (20) 20 17/3 278 20 17/3 173 20 17/3 174 20 17/3 1269

cav12 (99) 68 48/20 2541 71 49/22 3722 71 49/22 2966 74 51/23 2910

conc (6) 4 4/0 117 3 3/0 6 5 5/0 30 4 4/0 220

ctigar (110) 74 54/20 1252 73 53/20 1532 74 54/20 1686 81 61/20 1829

hacms (5) 4 2/2 955 3 2/1 463 5 3/2 923 4 2/2 459

lfht (27) 17 17/0 106 17 17/0 681 23 23/0 2194 24 24/0 562

lustre (790) 772 438/334 2730 755 419/336 5209 773 438/335 1964 769 434/335 3542

misc (10) 8 7/1 117 8 6/2 200 9 7/2 241 8 8/0 320

om (9) 9 7/2 3 9 7/2 1 9 7/2 1 9 7/2 469

ttastartup (3) 1 1/0 7 1 1/0 7 1 1/0 6 1 1/0 1

ttesynchro (6) 6 3/3 16 6 3/3 9 6 3/3 9 5 2/3 1428

unifapprox (11) 11 8/3 225 11 8/3 134 11 8/3 132 11 8/3 271

1003 614/389 8532 986 593/393 12377 1016 623/393 10564 1016 624/392 13757

inference frames and can make progress towards the counter-examples. But, due
to its restricted interpolation language it is bound to also be restricted in invari-
ant inference, which is why pdkind+cr can show fewer valid properties correct.
The addition of abstract interpretation inferences improves this situation by
extending the expressiveness of interpolants and making the interpolants more
invariant-directed.

Next, we evaluate the effect of using different abstract domains. The apron
library provides the standard interval [11], octagon [31], and polyhedra [13]
domains, and we denote variants of pdkind that use these domains as pd-
kind+cr+box, pdkind+cr+oct, and pdkind+cr+polka. Results of the
comparison are presented in Figure 2. The main takeaway from comparing dif-
ferent abstract domains is that, the more expressive the domain, the better the
results. In general, expressive abstract domains are desirable in verification appli-
cation, but suffer from scalability problems. The polyhedra domain, for example,
is worst case exponential complexity in both space and time, and there is ongo-
ing work to try and make it more efficient in practice [36]. In our context, we
can easily apply the polyhedra domain even by relying on an off-the-shelf library
such as apron, as we use the domains solely on the cores of the theory lemmas
produced by the SMT solver, where the number of variables and lemmas tends
to be small. Figure 3 shows the distribution of the interpolation problems with
respect to the number of constrains and the number of variables.
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Fig. 2. Comparison of different abstract domains. Each row corresponds to a different
problem set. Each column corresponds to pdkind+cr with a different abstract domain.
Each table entry shows the number of problems that the engine solved, how many of
those were valid and invalid, and the total time it took for the solved instances.

pdkind+cr pdkind+cr+box pdkind+cr+oct pdkind+cr+polka

problem set solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s) solved valid/invalid time (s)

approxagree (9) 9 8/1 240 9 8/1 240 9 8/1 237 9 8/1 238

azadmanesh (20) 20 17/3 173 20 17/3 170 20 17/3 170 20 17/3 174

cav12 (99) 71 49/22 3722 71 49/22 3291 67 48/19 1474 71 49/22 2966

conc (6) 3 3/0 6 5 5/0 35 5 5/0 47 5 5/0 30

ctigar (110) 73 53/20 1532 74 54/20 1395 73 53/20 884 74 54/20 1686

hacms (5) 3 2/1 463 4 2/2 799 4 3/1 1036 5 3/2 923

lfht (27) 17 17/0 681 20 20/0 1020 20 20/0 772 23 23/0 2194

lustre (790) 755 419/336 5209 757 421/336 3075 762 428/334 3063 773 438/335 1964

misc (10) 8 6/2 200 9 7/2 303 9 7/2 220 9 7/2 241

om (9) 9 7/2 1 9 7/2 1 9 7/2 1 9 7/2 1

ttastartup (3) 1 1/0 7 1 1/0 6 2 1/1 459 1 1/0 6

ttesynchro (6) 6 3/3 9 6 3/3 10 6 3/3 9 6 3/3 9

unifapprox (11) 11 8/3 134 11 8/3 131 11 8/3 130 11 8/3 132

986 593/393 12377 996 602/394 10476 997 608/389 8502 1016 623/393 10564

Fig. 3. The distribution of the number of constraints and variables in Tla-lemma in-
terpolation problems over our whole dataset (vertical axis is logarithmic). Of all inter-
polation problems, 66.55% have 5 variables or less, 87.18% have 10 variables or less,
and 96.22% have 20 variables or less.
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7 Conclusion

We presented a new approach for proof-based interpolation in SMT that can
guarantee convergence of interpolation sequences and is invariant-driven. Both
of these properties are valuable in the context of model checking techniques
such as IC3/PDR. For example, with the new interpolation method, we can fi-
nally guarantee that the theoretical results for our own pdkind method [22] also
hold in practice. The approach combines two orthogonal approaches to invari-
ant inference – symbolic reasoning through quantifier elimination and semantic
reasoning with abstract interpretation – to provide interpolants that are both
expressive invariant-driven facts and can be controlled to provide convergence
guarantees. The new interpolation method takes advantage of the strengths of
the individual parts of the usual model-checking reasoning stack. For a sys-
tem under analysis, the model checker provides information about the system,
the SMT solver discharges the control-flow of the system, the interpolator pro-
vides the symbolic forward reasoning, and the abstract interpretation improves
the interpolants by interpreting the pieces of the system with no control flow.
For example, both quantifier elimination and abstract interpretation can be ex-
pensive or ineffective on expressive domains when the problems involve many
variables and disjunctions. Our new method sidesteps these issues since we only
need to reason on the unsatisfiable cores provided by the SMT solver, which are
minimal and conjunctive. The overall architecture of the new approach is shown
in Figure 4.

Model Checker Abstract Interpretation

SMT Solver

Proof-Based Interpolation Quantifier Elimination

Query Interpolant

Proof Interpolant
T -conflict

T -co
nflict

Interpolant

Abstraction

System information

Fig. 4. All participants in the interpolation framework.

The method is implemented in the sally model checker, by relying on
the proof-based interpolation framework of the mathsat5 SMT solver and the
apron abstract domain library. Our experimental evaluation shows that the new
interpolation method is effective and improves the performance of sally in both
invariant inference and bug-finding.

Future Work. The new interpolation method is modular and enables cross-
pollination of the different techniques across the whole reasoning stack. This
gives rise to many interesting directions for future work. As the first steps, we
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plan to explore the use of tools from abstract interpretation to improve the in-
terpolation in the theories of integer arithmetic, bit-vectors and arrays. In the
other direction, we also see a possibility to contribute symbolic techniques to
abstract interpretation. For example, if we lift the restriction that the lemma
interpolants must refute the B part of the interpolation problem, the result
of the proof-based interpolant computation is not an interpolant but rather
an abstraction of the A formula. This could be a potential direction toward a
property-driven logical interpretation (e.g., [37,3]). It is important to note that,
although our new method guarantees convergence of the interplant sequences,
it does not guarantee the convergence of the overall model-checking procedure.
The overall convergence can be achieved by adding even more control over the
interpolation language (e.g. [21]), and we plan to explore this direction.

Acknowledgements. We would like to thank Alberto Griggio for providing an
interface to mathsat5 that allowed us to replace the default T -interpolator
with our custom external interpolator.
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Abstract. This paper presents an abstract interpretation framework
for the round-off error analysis of floating-point programs. This frame-
work defines a parametric abstract analysis that computes, for each com-
bination of ideal and floating-point execution path of the program, a
sound over-approximation of the accumulated floating-point round-off
error that may occur. In addition, a Boolean expression that charac-
terizes the input values leading to the computed error approximation
is also computed. An abstraction on the control flow of the program is
proposed to mitigate the explosion of the number of elements generated
by the analysis. Additionally, a widening operator is defined to ensure
the convergence of recursive functions and loops. An instantiation of this
framework is implemented in the prototype tool PRECiSA that gener-
ates formal proof certificates stating the correctness of the computed
round-off errors.

1 Introduction

Floating-point numbers are often used as a finite representation of real num-
bers in computer programs. While floating-point numbers offer a good compro-
mise between efficiency and precision for most applications, round-off errors in
floating-point computations may be unacceptably large for some applications. In
particular, in safety-critical systems, even small computational errors may have
catastrophic consequences when they are not appropriately accounted for. To
guarantee the safety of such systems, it is essential to correctly characterize the
difference between a computed result and its ideal real number computation and
the impact of this difference in the control-flow of a program.

Significant progress has been made in the last decade in the formal analysis of
floating-point computations [1–6]. However, as stated in [7], none of the proposed
approaches provides at the same time (i) a rigorous round-off errors analysis that
generates externally checkable proofs certificates, (ii) the possibility of handling

⋆ Research by the first three authors was supported by the National Aeronautics and
Space Administration under NASA/NIA Cooperative Agreement NNL09AA00A.

c© Springer International Publishing AG 2018 516
I. Dillig and J. Palsberg (Eds.): VMCAI 2018, LNCS 10747, pp. 516–537, 2018.
https://doi.org/10.1007/978-3-319-73721-8_24



a wide variety of mathematical operators, and (iii) sound support for typical
programming language constructs such as conditionals, recursion, and loops.
Another feature, which is not supported by the current errors analysis tools, is
compositionality, i.e., the ability of analyzing a program in a modular way. This
property is essential for obtaining a scalable and efficient approach.

This paper presents an abstract interpretation framework for the round-off
error analysis of floating-point programs that addresses all the concerns above.
The proposed framework defines a parametric semantics that collects, for each
combination of ideal and floating-point computational path of a functional pro-
gram, an error expression representing a provably sound upper-bound of the
accumulated round-off error. Intuitively, the semantics associates conditions to
each computed round-off error. The information accumulated in these conditions
includes the path conditions, domain conditions ensuring that all expressions are
total, e.g., divisors are non-zero, and additional conditions that enable tighter
round-off errors for particular values. These conditions not only allow for more
precise estimations of the round-off errors, but also enable the characterization
of the input values that may lead to errors larger than expected.

The defined semantics is parametric with respect to round-off error bounds
defined for a set of arithmetic operators. Hence, the analysis supports the exten-
sion of the programming language with new built-in operators as long as sound
upper bounds of the operators’ round-off errors are provided. The semantics is
also parametric with respect to a set of execution paths of interests. These paths
are individually examined by the analysis, while the other paths are condensed
together in a sole abstract execution path. This abstraction makes the analysis
more efficient and enables the analysis of programs with several nested condi-
tionals. Finally, the semantics is parametric with respect to abstract domains of
the real and Boolean expressions. Hence, the analysis supports different rigorous
enclosure methods such as interval arithmetic, affine arithmetic, Bernstein and
Taylor models, etc.

An instance of the presented framework has been implemented in the proto-
type tool PRECiSA. The input to PRECiSA is a functional program consisting
of a set of floating-point functions. The output is a set of round-off error bounds
with their associated conditions. Numerical values for these expressions are com-
puted using an optimizer based on a formally verified branch-and-bound algo-
rithm. PRECiSA generates proof certificates in the form of lemmas stating an
accumulated round-off error estimation for each function in the program. These
lemmas are equipped with proof scripts that automatically discharge them in an
interactive theorem prover.

The paper is organized as follows. In Section 2, a formalization of floating-
point round-off errors is presented. Section 3 presents the concrete semantics
that computes the set of conditional error expressions associated to a program.
In Section 4, the abstraction scheme and the widening operator are defined.
A prototype tool that implements an instance of the proposed framework is
presented in Section 5. Related work is discussed in Section 6. Section 7 concludes
the paper.
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2 Formalization of Floating-Point Round-off Errors

A floating-point number can be formalized as a pair of integers (m, e) ∈ Z2 [8,9]
where m is called the significand and e the exponent of the float. A floating-point
format f is defined as a pair of integers (p, emin), where p is called the precision
and emin is called the minimal exponent. Given a base β, a pair (m, e) ∈ Z2

represents a floating-point number in the format (p, emin) if and only if it holds
that ∣m∣ < βp and −emin ≤ e. For instance, IEEE single and double precision
floating-point numbers are specified by the formats (24,149) and (53,1074),
respectively.

A conversion function R ∶ Z2 → R is defined to refer to the real number
represented by a given float, i.e., R((m, e)) =m ⋅βe . Since the function R is not
injective, the representation of floating-point numbers is redundant. Therefore,
notions about normality and canonicity are needed. A canonical float is a float
such that is either a normal or subnormal. A normal float is a float such that
the significand cannot be multiplied by the radix and still fit in the format. A
subnormal is a float having the minimal exponent such that its significand can
be multiplied by the radix and still fit in the format. Henceforth, F represents
the set of floating-point numbers in canonical form. The expression ṽ will denote
a floating-point number (m,e) in F.

The expression Ff(r) denotes the floating-point number in format f closest
to r . The format f will be omitted when clear from the context. Let ṽ be a
floating-point number that represents a real number r , the difference ∣R(ṽ) − r ∣
is called the round-off error (or rounding error) of ṽ with respect to r . The
unit in the last place (ulp) is a measure of the precision of a floating-point
number as a representation of a real number. Given r ∈ R, ulp(r) represents the
difference between two closest consecutive floating-point numbers ṽ1 and ṽ2 such
that ṽ1 ≤ r ≤ ṽ2 and ṽ1 ≠ ṽ2. It is defined in [9] as ulp(ṽ) = βeṽ , where eṽ is the
exponent of the canonical form of ṽ that is the floating-point number closest to
r. The ulp can be used to bound the round-off error of a real number r with
respect to its floating-point representation in the following way:

∣R(F(r)) − r ∣ ≤ 1
2

ulp(r). (2.1)

Given a set Ω̃ of pre-defined arithmetic floating-point operations, the corre-
sponding set Ω of operations over real numbers, a denumerable set V of vari-
ables representing real values, and a denumerable set Ṽ of variables representing
floating-point values, where V and Ṽ are disjoint, the sets A and Ã of arithmetic
expressions over real numbers and over floating-point numbers, respectively, are
defined by the following grammar.

A ∶∶= d ∣ x ∣ op(A, . . . ,A) Ã ∶∶= d̃ ∣ x̃ ∣ õp(Ã, . . . , Ã)

where A ∈ A, d ∈ R, x ∈ V, op ∈ Ω, Ã ∈ Ã, d̃ ∈ F, x̃ ∈ Ṽ, and õp ∈ Ω̃. It is assumed
that there is a function χr ∶ Ṽ→ V that associates to each floating-point variable
x̃ a variable x ∈ V representing the real value of x̃. Given a variable assignment σ ∶
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V → R, evalA(σ,A) ∈ R denotes the evaluation of the real arithmetic expression
A with respect to σ. Similarly, given Ã ∈ Ã and σ̃ ∶ Ṽ→ F, ẽval Ã(σ̃, Ã) ∈ F denotes

the evaluation of the floating-point arithmetic expression Ã with respect to σ̃.
The (partial) order relation between arithmetic expressions is defined as follows:
A1 ≤ A2 if and only if for all σ ∶ V→ R, evalA(σ,A1) ≤ evalA(σ,A2).

The round-off error of the floating-point expression õp(ṽ1, . . . , ṽn) with re-
spect to the real-valued expression op(r1, . . . , rn), where õp is a floating-point
operator representing a real-valued operator op and ṽi is a floating-point value
representing a real value ri, for 1 ≤ i ≤ n, depends of (a) the error introduced
by the application of õp versus op and (b) the propagation of the errors carried
out by the arguments, i.e., the difference between ṽi and ri, for 1 ≤ i ≤ n, in the
application. In the case of arithmetic operators, the IEEE-754 standard states
that every basic operation is correctly rounded, therefore it should be performed
as if it would be calculated with infinite precision and then rounded to the near-
est floating-point value. Then, from Formula (2.1), the application of an n-ary
floating-point operator õp to the floating-point values ṽ1, . . . , ṽn must fulfill the
following condition.

∣R(õp(ṽi)ni=1) − op(R(ṽi))ni=1∣ ≤ 1
2

ulp(op(R(ṽi))ni=1), (2.2)

where the notation f(xi)ni=1 is used to represent f(x1, . . . , xn).
To estimate how the errors of the arguments are propagated to the result of

the application of the operator, it is necessary to bound the difference between
the application of the real operator on real values and the application of the same
operator on the floating-point arguments. The expression εop(ei)ni=1 is used to
represent such difference, where each ei is a bound of the round-off error carried
by every floating-point ṽi representing a real value ri, i.e., ∣R(ṽi) − ri∣ ≤ ei.
Therefore, εop(ei)ni=1 satisfies the following condition.

∣op(R(ṽi))ni=1 − op(ri)ni=1∣ ≤ εop(ei)ni=1. (2.3)

The following bound of the round-off error between the floating-point expression
and the real-valued counterpart follows from Formula (2.2), Formula (2.3), and
the triangle inequality.

∣R(õp(ṽi)ni=1) − op(ri)ni=1∣ ≤ εop(ei)ni=1 + 1
2

ulp(op(R(ṽi))ni=1). (2.4)

In this paper, for a given expression, the round-off error in the right-hand side
of Formula (2.4) is expressed as an error expression.

Definition 1 (Error Expression). An error expression is an arithmetic ex-
pression or the element +∞ representing an arbitrary large round-off error.

The domain of error expressions is denoted as E and it is defined as E ∶= A∪{+∞}.
The order relation on error expressions naturally extends the one on arithmetic
expressions by stating that for all e ∈ E, e ≤ +∞. The function max (respectively
min) returns the maximum (respectively minimum) of a set error expressions
with respect to the order relation ≤. The tuple (E, ≤, max , min, +∞, 0) is a
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complete lattice, where max is the least upper bound, min is the greatest lower
bound, +∞ is the greatest element of the domain, and 0 is the least element of
the domain.

Additional conditions are needed in Formula (2.4) when the operators are
not total. For example, when dealing with the division operation, it is necessary
to guarantee that the second argument of both the floating-point operator and
the real-valued operator is not zero. Furthermore, some arithmetic operations
are associated to tighter error bounds under certain conditions. These conditions
can be used to refine the estimation of the round-off error. Boolean expressions
are used to model such conditions.

The sets B and B̃ of Boolean expressions over real numbers and over floating-
point numbers, respectively, are defined by the following grammar.

B ∶∶= true ∣ false ∣ B ∧B ∣ B ∨B ∣ ¬B ∣ A < A ∣ A = A

B̃ ∶∶= true ∣ false ∣ B̃ ∧ B̃ ∣ B̃ ∨ B̃ ∣ ¬B̃ ∣ Ã < Ã ∣ Ã = Ã

where B ∈ B, A ∈ A, B̃ ∈ B̃, and Ã ∈ Ã. The conjunction ∧, disjunction ∨,
negation ¬, true, and false have the usual classical logic meaning.

Given a variable assignment σ ∶ V → R, evalB(σ,B) ∈ {true, false} denotes
the evaluation of the real Boolean expression B. In the same way, given B̃ ∈ B̃
and σ̃ ∶ Ṽ→ F, ẽval B̃(σ̃, B̃) ∈ {true, false} denotes the evaluation of the floating-

point Boolean expression B̃. The (partial) order relation between Boolean ex-
pressions over real numbers is defined as follows: B1 ⇒ B2 if and only if for all
σ ∶ V → {true, false}, evalB(σ,B1) implies evalB(σ,B2). Similarly, for floating-
point Boolean expressions, the order relation is defined as follows: B̃1 ⇒ B̃2 if
and only if for all σ̃ ∶ Ṽ → {true, false}, ẽval B̃(σ̃, B̃1) implies ẽval B̃(σ̃, B̃2). The
symbol true (respectively false) is the greatest (respectively least) Boolean ex-
pression of both domains B and B̃. The equivalence relation derived from ⇒ is
defined as B1 ⇔ B2 if and only if B1 ⇒ B2 and B2 ⇒ B1. In the following, by
abuse of notation, a formula B ∈ B ∪ B̃ and its equivalence class will be denoted
with the same symbol.

The function RB ∶ B̃→ B that converts a Boolean expression on floating-point
numbers to a Boolean expression on real numbers is defined by simply replacing
each floating-point operation with the corresponding operation on real numbers
and by applying R and χr to floating-point values and variables, respectively.

Henceforth, it is assumed that for any floating-point operator of interest
op there exists at least one formula of the following form that holds for all
e1, . . . , en ∈ E such that ∣R(ṽi) − ri∣ ≤ ei with 1 ≤ i ≤ n,

φop(ri)ni=1 ∧φõp(ṽi)ni=1 implies ∣R(õp(ṽi)ni=1) − op(ri)ni=1∣ ≤ εõp(ri, ei)ni=1, (2.5)

where φop(ri)ni=1 ∈ B, φop(ri)ni=1 /⇒ false, φõp(ṽi)ni=1 ∈ B̃, φõp(ṽi)ni=1 /⇒ false, and
εõp ∶ An × En → E. For the same floating-point operator there may be more
than one formula of the form of Formula (2.5). In this case, the disjunction of
all conditions in the left-hand side of Formula (2.5) should be complete for the
domain of the operator. The framework presented in this paper does not require
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those conditions to be disjoint, but better estimations are usually computed
when these conditions are disjoint.

Example 1. Instances of Formula (2.5) for the four basic arithmetic operators
are defined below.

– ε+̃(r1, e1, r2, e2) ∶= e1 + e2 + 1/2 ulp(∣r1 + r2∣ + e1 + e2), φ+(r1, r2) ∶= true, and
φ+̃(ṽ1, ṽ2) ∶= true.

– ε−̃(r1, e1, r2, e2) ∶= e1 + e2 + 1/2 ulp(∣r1 − r2∣ + e1 + e2), φ−(r1, r2) ∶= true, and

φ−̃(ṽ1, ṽ2) ∶= ṽ2/̃2 > ṽ1 ∨ ṽ1 > 2∗̃ṽ2.

– ε−̃(r1, e1, r2, e2) ∶= e1 + e2, φ−(r1, r2) ∶= true and φ−̃(ṽ1, ṽ2) ∶= ṽ2/̃2 ≤ ṽ1 ∧ ṽ1 ≤
2∗̃ṽ2.

– ε∗̃(r1, e1, r2, e2) ∶= ∣r1∣e2+∣r2∣e1+e1e2+1/2 ulp((∣r1∣+e1)(∣r2∣+e2)), φ∗(r1, r2) ∶=
true, and φ∗̃(ṽ1, ṽ2) ∶= true.

– ε
/̃
(r1, e1, r2, e2) ∶= ∣r1∣e2+∣r2∣e1

r2r2−e2∣r2∣
+1/2 ulp(∣r1∣+e1

∣r2∣−e2
), φ/(r1, r2) ∶= r2 ≠ 0, and φ

/̃
(ṽ1, ṽ2)

∶= ṽ2 ≠ 0.

For instance, the round-off error of the sum includes the propagation of the
errors of the operands (e1 and e2) and the error of rounding the result of the sum
(1/2 ulp(∣r1−r2∣+e1+e2)). In the case of the division operator, Boolean conditions
are used to guarantee the validity of the operation, i.e., the conditions φ/ and
φ
/̃

state that the divisors of the real and floating point expressions, respectively,

are different from zero. In the case of the subtraction operator, conditions that
improve the error approximation are provided. Indeed, in [10], it is proven that

the floating-point subtraction x −̃ y is computed exactly when y /̃2 ≤ x ≤ 2 ∗̃y.

3 Concrete Denotational Semantics

This section presents a compositional structural denotational semantics for a
generic declarative programming language. This semantics collects information
about the round-off error of floating point operations and relies on the floating-
point error formalization presented in Section 2. This semantics is an enhance-
ment of the one introduced in [6] and it uses a more expressive domain.

The expression language considered in this paper contains conditionals, let
expressions, and function calls, possibly recursive. Given a set Ω̃ of pre-defined
arithmetic floating-point operations, a set Σ of function symbols, and a denumer-
able set Ṽ of floating-point variables, S denotes the set of program expressions.
The syntax of programs in S is given by the following grammar, where the syntax
of floating-point arithmetic expressions given in Section 2 is augmented with a
function call.

Ã ∶∶= d̃ ∣ F(d) ∣ x̃ ∣ õp(Ã, . . . , Ã) ∣ f(Ã, . . . , Ã)
S ∶∶= Ã ∣if B̃ then S else S ∣ let x̃ = Ã in S

where Ã ∈ Ã, B̃ ∈ B̃, d̃ ∈ F, d ∈ R, x̃ ∈ Ṽ, õp ∈ Ω̃, and f ∈ Σ. Bounded recursion is
added to the language as syntactic sugar using the convention for(i, j,S , g) ∶=if
i > j then S else g(j, for(i, j − 1,S , g)).
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A program is defined as a set of function declarations of the form f(x̃1, . . . , x̃n)
= S , where x̃1, . . . , x̃n are pairwise distinct variables in Ṽ and all free variables
appearing in S are in {x̃1, . . . , x̃n}. The natural number n is called the arity of
f . Henceforth, it is assumed that programs are well-formed in the sense that for
every function call f(x̃1, . . . , x̃n) that occurs in a program P , a unique function
f of arity n is defined in P . The set of programs is denoted as P.

The proposed semantics collects, for each program path, the corresponding
path conditions (for both the real and the floating-point execution), and two
expressions representing (1) the value of the output assuming the use of real
arithmetic and (2) an upper bound for the accumulated round-off error that
might affect the result due to floating-point operations. Since the semantics col-
lects information about real and floating-point execution paths, it is possible to
consider the error of taking the incorrect branch compared to the ideal execution
using real arithmetic. This enables a sound treatment of unstable tests.

Definition 2 (Test Stability). A conditional statement if φ̃ then Ẽ1 else Ẽ2

is said to be unstable if there exist two assignments σ̃ ∶ Ṽ → F and σ ∶ V → R
such that for all x̃ ∈ Ṽ, σ(χr(x̃)) = R(σ̃(x̃)) and evalB(σ,RB(φ̃)) ≠ ẽval B̃(σ̃, φ̃).
Otherwise the conditional expression is said to be stable.

In other words, a conditional statement is unstable when there exists an assign-
ment from the variables in φ̃ to F such that φ̃ and RB(φ̃) evaluate to different
Boolean values.

A condition is a set of pairs of the form (φ, φ̃), with φ ∈ B and φ̃ ∈ B̃. The
domain of conditions is (℘(B × B̃), ⇒̂ , ∨̂ , ∧̂ , {(true, true)}, {(false, false)}),
where

– ⇒̂ is the order relation over ℘(B × B̃) defined as for all η1, η2 ∈ ℘(B × B̃),
η1 ⇒̂ η2 if and only if ⋁(b1,b̃1)∈η1(b1 ∧ b̃1)⇒ ⋁(b2,b̃2)∈η2(b2 ∧ b̃2),

– the equivalence relation ⇔̂ derived from ⇒̂ is defined as follows, η1 ⇔̂ η2 if
and only if η1 ⇒̂ η2 and η2 ⇒̂ η1, and the equivalence class of a condition η
is denoted as [η]⇔̂,

– ∨̂ is the least upper bound defined as η1 ∨̂ η2 = [η1 ∪ η2]⇔̂,
– ∧̂ is the greatest lower bound defined as η1 ∧̂ η2 = ⋃{(b1 ∧ b2, b̃1 ∧ b̃2) ∣
(b1, b̃1) ∈ η1(b2, b̃2) ∈ η2},

– {(true, true)} is the greatest element of the domain, and
– {(false, false)} is the least element of the domain.

Paths in the control flow of a program are represented by sequences, possibly
empty, of 0’s and 1’s.

Definition 3 (Decision path). A decision path π is defined by the grammar
π = ε ∣ π ⋅ 0 ∣ π ⋅ 1, where ε denotes the empty path and ⋅ is the concatenation
operator.

The domain of all decision paths is denoted by Path. A decision path π mod-
els all the decision paths π′ such that π is prefix of π′. Given π1, π2 ∈ Path,
the order relation on decision paths is defined as π1 ≤prefix π2 if and only if
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π1 is a prefix of π2. A decision path univocally identifies a subprogram or subex-
pression inside the input program. Subexpressions corresponding to the then
branch of a conditional statement are identified by the index 1. Conversely, the
subexpressions corresponding to the else branch are identified by the index 0.
For example, consider the following program expression:

E =if x̃ > 0 then (if ỹ > 2 then 5 else ỹ + 1) else (if z̃ > 0 then x̃ + z̃ else ỹ ∗ z̃)

All the decision paths of expression E are identified by ε. The path corresponding
to the arithmetic expression ỹ+1 is 1⋅0, and the path corresponding to expression
x̃ + z̃ is 0 ⋅ 1.

The semantics collects information in the form of conditional error bounds.

Definition 4 (Conditional Error Bound). A conditional error bound is an
expression of the form ⟨η⟩t↠ (r, e)π, where η ∈ ℘(B× B̃), r ∈ A, e ∈ E, π ∈ Path,
and t ∈ {s,u}. A conditional error bound is said to be valid if it exists (φ, φ̃) ∈ η,
φ /⇒ false and φ̃ /⇒ false.

Intuitively, ⟨η⟩t↠ (r, e)π indicates that for the decision path π, if the condition η
is satisfied, the output of the ideal real numbers implementation of the program
is r and the round-off error of the floating-point implementation is bounded
by e. The sub-index t is used to mark by construction whether a conditional
error bound is unstable (t = u), or stable (t = s).

Conditional error bounds are ordered in the following way ⟨η1⟩t1 ↠ (r1, e1)π1≤
⟨η2⟩t2 ↠ (r2, e2)π2 if and only if η1 ⇒̂ η2, r1 = r2, e1 ≤ e2, π2 ≤prefix π1, and t1 =
t2. The domain C of conditional error bounds is defined as a set of tuples in
℘(B × B̃) × A × E × Path × {s,u}. Sets of conditional error bounds are (par-
tially) ordered as follows. For all C1,C2 ⊆ C, C1 ⊑ C2 if and only iff for all
c1 ∈ C1, there exists c2 ∈ C2 such that c1 ≤ c2. The equivalence relation de-
rived from ⊑ is defined as C1 ≡ C2 if and only if C1 ⊑ C2 and C2 ⊑ C1. In
the following, by abuse of notation, the quotient of ⊑ over equivalence classes
will be denoted with the same symbol. Furthermore, sets of conditional error
bounds will be used modulo ≡ and their class will be denoted as C. The do-
main (C, ⊑ , ⊔, ⊓, [C]≡, ∅) is a complete lattice where the least upper bound
is defined as C1 ⊔C2 ∶= [C1 ∪ C2]≡ and the greatest lower bound is defined as
C1 ⊓C2 ∶= [{c ∈C ∣ ∃c1 ∈ C1.c ≤ c1, ∃c2 ∈ C2.c ≤ c2}]≡.

An environment is defined as a function mapping a variable to a set of con-
ditional error bounds, i.e., Env = Ṽ → C. The empty environment is denoted as
�Env and maps every variable to the empty set ∅. Let M ∶= {f(x̃1, . . . , x̃n) ∣ f ∈
Σ, x̃1, . . . , x̃n ∈ Ṽ} be the set of all possible function calls. An interpretation is a
function I ∶M → C modulo variance3. The set of all interpretations is denoted as
I. The empty interpretation is denoted as �I and maps everything to ∅.

Let õp be an n-ary floating-point operator in Ω̃ such that op in Ω is its
real-valued counterpart and there exist εõp ∶ An × En → E, φop(ri)ni=1 ∈ B and

3 Two functions I1, I2∶M → C are variants if for each m ∈ M there exists a renaming
ρ such that (I1(m))ρ = I2(mρ).
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φõp(ṽi)ni=1 ∈ B̃ such that Formula (2.5) holds. Given σ ∈ Env and I ∈ I, the se-
mantics of program expressions, E ∶ S × Env × I × Path → C, returns the set of
conditional error bounds representing an upper bound of the round-off error for
each execution path, together with the corresponding conditions. The function
χe ∶ Ṽ → V associates to each floating-point variable x̃ a variable in V repre-
senting the error of x̃. In the following, for the sake of simplicity, the singleton
condition ⟨{(φ, φ̃)}⟩ will be denoted as ⟨φ, φ̃⟩.

EJd̃Kπ(σ,I) ∶= {⟨true, true⟩s↠ (R(d̃),0)π}

EJF(d)Kπ(σ,I) ∶= {⟨true, true⟩s↠ (d, ∣d −F(d)∣)π}

EJx̃Kπ(σ,I) ∶=
⎧⎪⎪⎨⎪⎪⎩

{⟨true, true⟩s↠ (χr(x̃), χe(x̃))π} if σ(x̃) = ∅
σ(x̃) otherwise

EJõp(Ãi)ni=1Kπ(σ,I) ∶=

⊔{⟨
n

⋀
i=1
φi ∧ φop(ri)ni=1,

n

⋀
i=1
φ̃i ∧ φõp(Ãi)ni=1⟩s↠ (op(ri)ni=1, εõp(ri, ei)ni=1)π ∣∀1 ≤ i ≤ n∶

⟨φi, φ̃i⟩s↠ (ri, ei)πi∈ EJÃiKπ(σ,I),
n

⋀
i=1
φi∧φop(ri)ni=1 /⇒ false,

n

⋀
i=1
φ̃i∧φõp(Ãi)ni=1 /⇒ false}

EJlet x̃ = Ã in SKπ(σ,I) ∶= EJSKπ(σ[x̃↦EJÃKπ
(σ,I)],I)

EJif B̃ then S1 else S2Kπ(σ,I) ∶= EJS1Kπ⋅1(σ,I) ⇓(RB(B̃),B̃) ⊔ EJS2Kπ⋅0(σ,I) ⇓(¬RB(B̃),¬B̃) ⊔

⊔{⟨φ2, φ̃1⟩u ↠ (r2, e1 + ∣r1 − r2∣)ε ∣ ⟨φ1, φ̃1⟩t1 ↠ (r1, e1)
π1 ∈ EJS1Kπ⋅0(σ,I),

⟨φ2, φ̃2⟩t2 ↠ (r2, e2)
π2 ∈ EJS2Kπ⋅1(σ,I)} ⇓(¬RB(B̃),B̃) ⊔

⊔{⟨φ1, φ̃2⟩u ↠ (r1, e2 + ∣r1 − r2∣)ε ∣ ⟨φ1, φ̃1⟩t1 ↠ (r1, e1)
π1 ∈ EJS1Kπ⋅1(σ,I),

⟨φ2, φ̃2⟩t2 ↠ (r2, e2)
π2 ∈ EJS2Kπ⋅0(σ,I)} ⇓(RB(B̃),¬B̃)

EJf(Ãi)ni=1Kπ(σ,I) ∶=⊔{⟨φ′ ∧
n

⋀
i=1
φi, φ̃

′ ∧
n

⋀
i=1
φ̃i⟩t ↠ (r′, e′)π

′

∣

⟨φ, φ̃⟩t ↠ (r, e)π
′

∈ I(f(x̃i)ni=1),∀1 ≤ i ≤ n∶ ⟨φi, φ̃i⟩ti ↠ (ri, ei)
πi ∈ EJÃiKπ(σ,I),

r′ = r[χr(x̃i)/ri]ni=1, e′ = e[χe(x̃i)/ei]ni=1, φ′ = φ[χr(x̃i)/ri, χe(x̃i)/ei]ni=1,

φ̃′ = φ̃[χr(x̃i)/ri, χe(x̃i)/ei]ni=1, φ′ ∧
n

⋀
i=1
φi /⇒ false, φ̃′ ∧

n

⋀
i=1
φ̃i /⇒ false}

The semantics of a variable x̃ ∈ Ṽ consists of two cases. If x̃ belongs to the envi-
ronment, then the variable has been previously bound to a program expression
S through a let-expression. In this case, the semantics of x̃ is exactly the seman-
tics of S . If x̃ does not belong to the environment, then x̃ is a parameter of the
function. Here, a new conditional error bound is added with two place holders,
χr(x̃) and χe(x̃), representing the real value and the error of x̃, respectively.

The semantics of a floating-point arithmetic operation õp is computed by
composing the semantics of its operands. The real value is obtained by applying
the correspondent real arithmetic operation op to the real values of the operands,
and the new error bound is obtained by applying εõp to the errors and real
values of the operands. The new conditions are obtained as the combination of
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the conditions of the operands. Predicates φop and φõp represent the additional
constraints needed when op and õp are not total (as explained in Section 2).

The semantics of the expression let x̃ = Ã in S updates the current environ-
ment by associating to variable x̃ the semantics of expression Ã.

The semantics of the conditional uses an auxiliary operator ⇓ for propagating
new information in the conditions.

Definition 5 (Condition propagation operator). Given b ∈ B and b̃ ∈ B̃,
⟨η⟩t↠ (r, e)π ⇓(b,b̃)= ⟨⋃(φ,φ̃)∈η(φ∧b, φ̃∧b̃)⟩t↠ (r, e)

π if ⋁(φ,φ̃)∈η (φ ∧ b ∧ φ̃ ∧ b̃) /⇒
false, otherwise it is undefined. The definition of ⇓ naturally extends to sets of
conditional error bounds: given C ∈ C, C ⇓

(b,b̃)= ⋃c∈C c ⇓(b,b̃).

The semantics of S1 and S2 are enriched with the information about the fact that
real and floating-point execution paths match, i.e., both B̃ and RB(B̃) have the
same value. If real and floating point execution paths do not coincide, the error
of taking one branch instead of the other has to be considered. For example, if
B̃ is satisfied but RB(B̃) is not, the then branch is taken in the floating point
computation, but the else would have been taken in the real one. In this case,
the error is the difference between the real value of the result of S2 and the
floating point result of S1. It has been shown that this error is bounded by the
round-off error of S1 plus the difference between the real values of S1 and S2.
The condition (¬RB(B̃), B̃) is propagated in order to model that B̃ holds but
RB(B̃) does not. The conditional error bounds representing this case are marked
with u, denoting that the error is due to an unstable test. The parameter π of
the semantics is augmented by one index that indicates the decision taken: 1 for
the then and 0 for the else branch.

The semantics of a function call combines the conditions coming from the
interpretation of the function and the ones coming from the semantics of the
parameters. Variables representing real values and errors of formal parameters
are replaced with the expressions coming from the semantics of the actual pa-
rameters.

The semantics of a program is a function F ∶ P × Env → C defined as the
least fixed point of the immediate consequence operator P ∶ P×Env × I→ C, i.e.,
given P ∈ P, FJP K ∶= lfp(PJP K�I), which is defined as follows for each function
symbol f defined in P :

PJP KI(f (x̃1 . . . x̃n)) ∶= EJSKε(�Env ,I)
if f (x̃1 . . . x̃n) = S ∈ P. (3.2)

The least fixed point of P is guaranteed to exist from the Knaster-Tarski
Fixpoint theorem [11] since P is monotonic over C.

Example 2. Let P be a program composed by the declaration f(x̃, ỹ) = if x̃ >
1 then 3 elseif ỹ ≤ 2 then x̃+̃ỹ else x̃/̃ỹ. The semantics of P is defined as

FJP K = ⋃3
i=1{si}∪⋃6

i=1{ui} where the conditional error bounds si corresponding
to the stable cases are:

s1 = ⟨RB(x̃ > 1), x̃ > 1⟩s↠ (R(3),0)1
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s2 = ⟨RB(¬(x̃ > 1)) ∧RB(ỹ ≤ 2),¬(x̃ > 1) ∧ ỹ ≤ 2⟩s↠ (χr(x̃) + χr(ỹ),
ε+̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))01

s3 = ⟨RB(¬(x̃ > 1))∧RB(¬(ỹ ≤ 2))∧χr(x̃ ≠ 0),¬(x̃ > 1) ∧ ¬(ỹ ≤ 2) ∧ x̃ ≠ 0⟩s↠
(χr(x̃)/χr(ỹ), ε/̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))00

The conditional error bounds modeling unstable cases ui are six and rep-
resent all the cases when real and floating-point flows diverge. For instance:
u1 = ⟨RB(x̃ > 1),¬(x̃ > 1) ∧ ỹ ≤ 2⟩u ↠ (R(3), ∣R(3) − (χr(x̃) + χr(ỹ))∣ +
ε+̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))ε models a case in which the outermost condi-
tional is unstable, and u2 = ⟨RB(¬(x̃ > 1)) ∧RB(ỹ ≤ 2),¬(x̃ > 1) ∧ ¬(ỹ ≤ 2)⟩u ↠
(χr(x̃)+χr(ỹ), ∣χr(x̃)+χr(ỹ)−(χr(x̃)/χr(ỹ))∣+ε/̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))ε
models a similar case for the inner conditional.

4 Abstraction Scheme

The semantics presented in Section 3 is not computable since the least fixed point
of the operator defined in Equation (3.2) does not converge in a finite number of
steps for recursive programs. In addition, the sound treatment of unstable tests
provokes an explosion of the number of semantic elements generated when several
nested if-then-else occur in a function. To overcome these problems, this section
presents an abstraction framework for the semantics of Section 3 that limits
the combinatory explosion due to nested if-then-else expressions. A widening
operator is also defined to ensure the convergence of the analysis of recursive
programs. This abstraction framework yields a computable abstract semantics
that is suitable for the definition of a parametric static analysis of floating-point
round-off errors. The proposed abstract semantics is parametric with respect to
two Galois insertions:

– (E,≤) −−−−−→Ð→←−−−−−−
αE

γE (Ė, ≤̇) between (concrete) error expressions and abstract error

expression in the complete lattice (Ė, ≤̇ , ⊕̇ , ⊗̇ , ⊺Ė, �Ė), where ≤̇ is the
order relation, ⊕̇ is the least upper bound (lub), ⊗̇ is the greatest lower
bound (glb), ⊺Ė is the top, and �Ė is the bottom of the domain.

– (℘(B × B̃), ⇒̂) −−−−−→Ð→←−−−−−−
αB

γB (Ḃ, ⇒̇) between (concrete) conditions and abstract

condition in the complete lattice (Ḃ, ⇒̇ , ∨̇ , ∧̇ , ⊺Ḃ, �Ḃ), where ⇒̇ is the
order relation, ∨̇ is the lub, ∧̇ is the glb, ⊺Ḃ is the top, and �Ḃ is the
bottom.

These Galois insertions have to satisfy the following properties: αE(0) = �Ė,
αB({false, false}) = �Ḃ, and αB(η1 ∧̂ η2) = αB(η1) ∧̇ αB(η2).

The abstract semantics collects approximated information and stores it in an
abstract conditional error bound.

Definition 6 (Abstract Conditional Error Bound). An abstract condi-
tional error bound is defined as a tuple of the form ⟨η̇⟩t↠ (R, ė)π, where η̇ ∈ Ḃ,
R ∈ ℘(A), ė ∈ Ė, π ∈ Path, and t ∈ {s,u}. An abstract conditional error bound is
valid when η̇ /̇⇒ �Ḃ.
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Abstract conditional error bounds are ordered in the following way: ⟨η̇1⟩t1 ↠
(R1, ė1)π1 t ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ⇐⇒ η̇1 ⇒̇ η̇2, R1 ⊆ R2, ė1 ≤̇ ė2, t1 =
t2, and π2 ≤prefix π1.

The merge (collapse) of two abstract error bounds is defined as follows.

Definition 7. Let ⟨η̇1⟩t1 ↠ (R1, ė1)π1 and ⟨η̇2⟩t2 ↠ (R2, ė2)π2 be two abstract
conditional error bounds. Their merge is defined as ⟨η̇1⟩t1 ↠ (R1, ė1)π1⊙⟨η̇2⟩t2 ↠
(R2, ė2)π2 ∶= ⟨η̇1 ∨̇ η̇2⟩t1 ↠ (R1 ∪R2, ė1 ⊕̇ ė2)mcp(π1,π2) if t1 = t2, otherwise it is
undefined.

In Definition 7, the expression mcp(Π̇) denotes the maximum common prefix of
a set of decision paths Π̇. For example, mcp({0 ⋅ 1 ⋅ 0 ⋅ 1,0 ⋅ 1 ⋅ 0 ⋅ 0,0 ⋅ 1}) = 0 ⋅ 1.

As already mentioned, the concrete semantics of Section 3 computes one
conditional error bound for every possible combination of real and floating-point
execution path. This guarantees a sound treatment of unstable tests, but four
different conditional error bounds are produced for each if-then-else. As a con-
sequence, computing the semantics can become costly for programs with nested
if-then-else expressions since the number of computed semantics elements grows
exponentially. To overcome this limitation, an abstraction function is introduced
to approximate sets of (concrete) conditional error bounds into sets of abstract
ones. The main idea behind this abstraction is that the semantics is precisely
computed just for a finite set of decision paths of interests, which are given as
an input of the analysis. The conditional error bounds that correspond to other
decision paths are collapsed together. Since, in general, the errors associated
to unstable cases are several order of magnitude bigger than the ones due to
floating-point rounding, stable and unstable cases are collapsed separately. This
way, the abstraction does not lose too much precision.

The semantics presented in Section 3 is able to compute the conditions under
which an unstable test occurs and to bound the error due to the difference
between what is actually computed in the floating-point execution and what
should have been computed in the ideal execution on real numbers. In general,
this difference is large and, most of the times, one is interested just in knowing if
unstable tests can occur in a program and under which circumstances. For this
reason, the proposed abstraction collapses the unstable conditional error bounds
in a unique expression. Using this approach, the abstract semantics is still able
to soundly deal with unstable tests and to provide a sound approximation of
the conditions under which the instability occurs. It also avoids the burden of
differentiating each possible combination of real and floating-point paths that
leads to an unstable test.

Given Π̇ ∈ ℘(Path), let ĊΠ̇ be the domain composed of sets of abstract

conditional error bounds Ċ such that for all ⟨η̇⟩t ↠ (R, ė)π ∈ Ċ the following
properties hold.

1. If there exists π′ ∈ Π̇ such that π′ ≤prefix π then the cardinality of R is 1.

2. If t = s and there is no element in Ċ of the form ⟨η̇′⟩s ↠ (R′, ė′)π
′

different
from ⟨η̇⟩t↠ (R, ė)π such that for all π′′ ∈ Π̇, it holds that π′′ /≤prefix π

′.
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3. If t = u, then there is no another unstable element in Ċ of the form ⟨η̇′⟩u↠
(R′, ė′)π

′

different from ⟨η̇⟩t↠ (R, ė)π.

Sets of abstract conditional error bounds in ĊΠ̇ are (partially) ordered as follows.

For all Ċ1, Ċ2 ∈ ĊΠ̇ , Ċ1 ⊑̇ Ċ2 if and only if for all ċ1 ∈ Ċ1 ∃ċ2 ∈ Ċ2. ċ1 t ċ2. The

equivalence relation derived from ⊑̇ is defined as Ċ1≡̇Ċ2 if and only if Ċ1 ⊑̇
Ċ2 ∧ Ċ2 ⊑̇ Ċ1. In the following, by abuse of notation, the quotient of ⊑̇ over
equivalence classes will be denoted with the same symbol. Furthermore, sets of
conditional error bounds will be used modulo ≡̇ and their class will be denoted
as ĊΠ̇ . Given Ċ1, Ċ2 ∈ ĊΠ̇ , their least upper bound is defined as follows

Ċ1 ⊔̇ Ċ2 ∶= [⋃{⟨η̇⟩t↠ (R, ė)π ∈ Ċ1 ∪ Ċ2 ∣ ∃π′ ∈ Π̇. π′ ≤prefix π, t = s}]≡̇∪

⊙{⟨η̇⟩t↠ (R, ė)π ∈ Ċ1 ∪ Ċ2 ∣ /∃ π′ ∈ Π̇. π′ ≤prefix π, t = s}∪

⊙{⟨η̇⟩t↠ (R, ė)π ∈ Ċ1 ∪ Ċ2 ∣ t = u}

(4.1)

The tuple (ĊΠ̇ , ⊑̇ , ⊔̇, ⊓̇, ⊺ĊΠ̇ , ∅) is a complete lattice, where ⊺ĊΠ̇ ∶= ⋃{⟨⊺Ḃ⟩t↠
(R,⊺Ė)

ε ∣ t ∈ {u, s}} is the greatest element of ĊΠ̇ , ∅ is the least element, and

the greatest lower bound (⊓̇) is defined as follows Ċ1 ⊓̇ Ċ2 ∶= [{ċ ∈ Ċ ∣ ∃ċ1 ∈
Ċ1.ċ t ċ1, ∃ċ2 ∈ Ċ2.ċ t ċ2}]≡̇.

Given Π̇ ∈ ℘(Path), the abstraction function αΠ̇ collapses together all the
stable abstract conditional error bounds that are not produced from a path in
Π̇. In addition, it collapses all the unstable conditional error bounds in a unique
one. The abstraction function αΠ̇ and its adjoint γΠ̇ are defined as follows and

form a Galois insertion (C,⊑) −−−−−→Ð→←−−−−−−−
αΠ̇

γΠ̇ (ĊΠ̇ , ⊑̇).

Definition 8. Let Π̇ ∈ ℘(Path), C ∈ C and Ċ ∈ ĊΠ̇ , the abstraction and con-
cretization functions are defined as follows.

αΠ̇(C) ∶= ⊔̇{⟨αB(η)⟩t↠ ({r}, αE(e))π ∣ ⟨η⟩t↠ (r, e)π ∈ C,
∃π′ ∈ Π̇.π′ ≤prefix π, t = s} ⊔̇

⊙{⟨αB(η)⟩t↠ ({r}, αE(e))π ∣ ⟨η⟩t↠ (r, e)π ∈ C,
/∃ π′ ∈ Π̇.π′ ≤prefix π, t = s} ⊔̇

⊙{⟨αB(η)⟩t↠ ({r}, αE(e))π ∣ ⟨η⟩t↠ (r, e)π ∈ C, t = u}
γΠ̇(Ċ) ∶=⊔{⟨γB(η̇)⟩t↠ (r, γE(ė))

π ∣ ∃⟨η̇⟩t↠ (R, ė)π ∈ Ċ, r ∈ R}

Lemma 1. Given Π̇ ∈ ℘(Path), the pair of functions (αΠ̇ , γΠ̇) is a Galois in-

sertion between (C,⊑) and (ĊΠ̇ , ⊑̇).

Given Π̇ ∈ ℘(Path), an abstract environment is defined as a function mapping
a variable to a set of abstract conditional error bounds, i.e., ˙Env Π̇ = Ṽ → ĊΠ̇ .
The empty abstract environment is denoted as � ˙Env and maps every variable to
the empty set ∅.
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Given Π̄ ∈ [M → ℘(Path)], an abstract interpretation is a function İ such
that ∀f(x̃i)ni=1 ∈ M, İ(f(x̃i)ni=1) ∈ ĊΠ̄(f(x̃i)ni=1) modulo variance. The set of all

interpretations respecting the aforementioned property is denoted as İΠ̄ . The
empty interpretation is denoted as �İΠ̄ and maps everything to the empty set.
The Galois insertion of Definition 8 can be lifted to the interpretation level in
the following way.

Definition 9. Let Π̄ ∈ [M → ℘(Path)], given I ∈ I and İ ∈ İΠ̄ , the abstrac-
tion function for interpretations and its adjoint are defined as follows for every
function f(x̃)ni=1 defined in I.

ᾱΠ̄(I)(f(x̃)ni=1) ∶= αΠ̄(f(x̃)ni=1)(I(f(x̃)
n
i=1))

γ̄Π̄(İ)(f(x̃)ni=1) ∶= γΠ̄(f(x̃)ni=1)(İ(f(x̃)
n
i=1))

Lemma 2. Given Π̄ ∈ [M → ℘(Path)], (ᾱΠ̄ , γ̄Π̄) is a Galois insertion between
(I,⊑) and (İΠ̄ , ⊑̇), where ⊑ and ⊑̇ denotes the natural extension of these order
relations to interpretations.

Given Π̄ ∈ [M → ℘(Path)], abstract interpretation theory [12] defines the
best correct abstract version of the semantic operator P with respect to the
Galois insertion (αΠ̇ , γΠ̇) simply as the composition αΠ̇ ○P ○γΠ̇ . Abstract inter-

pretation theory [12] ensures that the abstract fixpoint semantics Ḟ Π̇ ∶= lfp(ṖΠ̇ )
is the best correct approximation of F . It is correct because αΠ̇(F) ⊑̇ Ḟ

Π̇ and it
is the best because it is the minimum (with respect to ⊑̇) of all correct approxi-
mations.

Example 3. Consider the program of Example 2 and its concrete semantics. Sup-
pose that the selected decision path of interest is 01 and the error expressions
and conditions abstraction functions are the identity. The abstract semantics of
P is defined as Ḟ{01}JP K = s2 ⊔̇ (s1 ⊙ s3) ⊔̇⊙ 6

i=1ui.
The conditional error bound s2, corresponding to the decision path of interest

01, is computed precisely. The other two stable bounds are collapsed together in
one abstract conditional error bound of the form s1⊙s3 = ⟨RB(x̃ > 1)∨(RB(¬(x̃ >
1)) ∧ RB(¬(ỹ ≤ 2)) ∧ χr(x̃ ≠ 0)), x̃ > 1 ∨ (¬(x̃ > 1) ∧ ¬(ỹ ≤ 2) ∧ x̃ ≠ 0)⟩s ↠
({R(3), χr(x̃)/χr(ỹ)}, ε/̃(χr(x̃), χe(x̃), χr(ỹ), χe(ỹ)))ε. The unstable cases are

collapsed together in ⊙ 6
i=1ui.

Widening operators [12, 13] provide a solution to the convergence problem
by over-approximating infinite increasing chains in a finite number of steps.
A widening operator for the domain of abstract conditional error bounds is
defined. Intuitively, it approximates to the top of the domain when the recursion
is possibly non terminating (the conditions are not changing and the error is
growing), otherwise it tries to converge in k steps for recursion calls that could
terminate (the conditions are changing and they are converging to false).
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Definition 10. Given Π̄ ∈ [M → ℘(Path)], A1,A2 ∈ ĊΠ̇ such that Ċ1 ⊑̇ Ċ2,

n1, n2 ∈ N such that n1 ≤ n2, and k ∈ N, the operator ▽k ∶ (ĊΠ̇ ×N)× (ĊΠ̇ ×N)→
(ĊΠ̇ ×N) is defined as follows.

(Ċ1, n1)▽k (Ċ2, n2) ∶=

(⊔̇{⟨η̇2⟩t2 ↠ (R2,⊺Ė)
π2 ∈ Ċ2 ∣ ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∈ Ċ2, (n2 > k or

(∃⟨η̇1⟩t1 ↠ (R1, ė1)π1 ∈ Ċ1 such that η̇1↔̇η̇2, R1 ⊆ R2 and ė1 <̇ ė2) } ⊔̇

⊔̇{⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∈ Ċ2 ∣ ⟨η̇2⟩t2 ↠ (R2, ė2)π2 ∈ Ċ2, n2 ≤ k,
(/∃ ⟨η̇1⟩t1 ↠ (R1, ė1)π1 ∈ Ċ1 such that η̇1↔̇η̇2, R1 ⊆ R2 and ė1 <̇ ė2) }, n2)

Lemma 3. Given k ∈ N and Π̄ ∈ [M → ℘(Path)], the operator ▽k is a widening
operator on (ĊΠ̇ ×N).

Because of Lemma 3 and the results in [12, 13] it is guaranteed that, for any
k ∈ N, Π̄ ∈ [M → ℘(Path)], program P ∈ P and function f(x̃)ni=1 defined in P ,
the chain defined as follows converges in a finite number of steps.

(İ0(f(x̃)ni=1), n0) = (∅,0)

(İi+1(f(x̃)ni=1), ni+1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(İi(f(x̃)ni=1), ni) if ṖΠ̄ JP Kİi(f(x̃)
n
i=1) ⊑̇ Ii(f(x̃)ni=1)

and ni ≤ ni+1

(İi(f(x̃)ni=1), ni)▽k (ṖΠ̄ JP Kİi(f(x̃)
n
i=1), ni + 1)

otherwise

5 PRECiSA

This section presents the prototype tool PRECiSA4 (Program Round-off Error
Certifier via Static Analysis) that implements a possible instantiation of the ab-
straction framework defined in Section 4. This tool is an enhancement of the tool
presented in [6]. PRECiSA supports the basic arithmetic operations (addition,
subtraction, multiplication, and division), square root, logarithm, exponential,
trigonometric functions, floor, and absolute value. As illustrated in Fig. 1, PRE-
CiSA accepts as inputs a program written in a simple functional language that
follows the grammar in Section 4 or in PVS syntax, initial ranges for the input
variables of the program, and a set of computational paths of interest for each
function in the input program.

PRECiSA computes the abstract semantics presented in Section 4. The con-
ditional error bounds corresponding to the execution paths selected by the user
are computed precisely, while the others are collapsed together. A decision path
of interest intuitively corresponds to a subprogram or subexpression inside a
function of the input program. If the user does not select any subprogram of
interest, the tool will just produce the overall round-off error for the stable case
and for the unstable one.

4 The web-interface of PRECiSA is available at http://precisa.nianet.org.
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Fig. 1. Functional architecture of PRECiSA.

No additional abstraction is done for errors and conditions. Thus, the Galois

insertions are simply defined as (E,)
id

id
(E,) and (( B B), )̂

id

id

(( B B), )̂ . The merge of abstract conditional error bounds will be instan-
tiated as follows η̇1 t1 ( R1, ė1)π1 η̇2 t2 ( R2, ė2)π2= η̇1 ˆ η̇2 t1

(R1 R2,max(ė1, ė2))mcp(π1,π2).

The semantics presented in Section 4 is completely independent from the in-
put values provided to the program. This makes the proposed approach scalable
since it enables a compositional analysis that reuses already computed results.
However, given the initial ranges for the input variables, it is essential to com-
pute numerical bounds from the (abstract) conditional error bounds. To this
aim, the proposed prototype tool uses the optimizer Kodiak [14] which is based
on the formally verified branch-and-bound algorithm presented in [15]. This
branch-and-bound algorithm relies on enclosure functions for arithmetic opera-
tors. These enclosure functions compute provably correct over approximations
of the symbolic error expressions using either interval arithmetic or Bernstein
basis. The algorithm recursively splits the domain of the function into smaller
subdomains and computes an enclosure of the original expression in these sub-
domains. The recursion stops when a precise enclosure is found, based on a given
precision, or when a given maximum recursion depth is reached. The output of
the algorithm is a numerical enclosure for each symbolic error expression.

Besides computing error bounds, PRECiSA generates proof certificates en-
suring that these bounds are correct. Having an externally checkable certificate
increases the level of trustworthiness of the proposed tool. PRECiSA relies on
the higher-order logic interactive theorem prover PVS [16] and a floating-point
formalization originally presented in [9] and extended in [6]. Therefore, each com-
puted conditional error bound is translated into a lemma stating that, provided
the conditions are satisfied, the floating-point value resulting from the execution
of f on floating-point values differs from the exact real-number computation by
at most the round-off error approximation computed by the semantics. PRECiSA
generates proof scripts that automatically discharge the generated lemmas.

In the following, PRECiSA is compared in terms of accuracy and perfor-
mance with the following floating-point analysis tools: Gappa (ver. 1.3.1) [5],
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Fluctuat (ver. 3.1376) [4], FPTaylor (ver. 0.9) [2], Real2Float [17], and Rosa [3]
(see Section 6 for a description of each tool). This comparison was performed
using benchmarks taken from the Rosa and FPTaylor repositories. The selected
benchmarks involve nonlinear expressions and polynomial approximations of
functions, taken from equations used in physics, control theory, and biological
modeling. In addition, some extra benchmarks taken from real-world avionics al-
gorithms are considered. The experimental environment consisted of a 2.5 GHz
Intel Core i7-4710MQ with 24 GB of RAM, running under Ubuntu 16.04 LTS.
The benchmarks presented in this section and the corresponding proof certifi-
cates are available as part of the PRECiSA distribution.5

Table 1 shows numerical round-off error bounds computed by the aforemen-
tioned tools. Since the considered tools offers different configurations and options
for the analysis, only the best estimation obtained by each tool for each exam-
ple is reported in the table. In fact, FPTaylor offers two different optimization
algorithms and two different rounding models. Gappa and Fluctuat allow the
user to manually provide hints to obtain tighter error bounds. For the sake of
uniformity, for all examples and tools, input variables and constants are assumed
to be real numbers. This means that they carry a round-off error that has to be
taken into consideration in the analysis. PRECiSA compares favorably to the
other tools in terms of precision. Additionally, it supports a large set of basic
and transcendental operators as well as common programming languages con-
structs such as conditionals and loops. On the contrary, some of the other tools
lack that support, hence, they cannot analyze all the benchmarks. For instance,
the floor operator appears in the cpr yz0 and it is not supported by Real2Float,
Rosa, and FPTaylor. Stynlinski and PolyCARP contain conditionals that are
not handled by FPTaylor and Gappa. PRECiSA is the only tool that is able to
analyze the recursive program mult pow2 rec.

The times for the computation of the bounds in Table 1 are shown in Table 2.
Overall, Fluctuat is the fastest approach but it does not produce certificates for
the soundness of its results. The performance of PRECiSA is in line with similar
tools for most of the examples, and for some of the considered benchmarks
PRECiSA is the fastest approach.

In summary, for the considered examples, the proposed tool provides a good
trade-off between accuracy and performance together with a wide support for
arithmetic operations and programming constructs.

6 Related Work

The use of abstract interpretation and semantics based approaches for the prob-
lem of analyzing floating-point programs is not new. The static analyzer Astrée [18]
automatically detects the presence of potential floating-point run-time excep-
tions such as overflows by means of sound floating-point abstract domains [19,20].
The abstraction scheme presented here shares some similarities with the ap-

5 The PRECiSA distribution is available at https://github.com/nasa/PRECiSA.
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Gappa Fluctuat Real2Float Rosa FPTaylor PRECiSA

azimuth n/a n/a 2.83E-13 n/a 8.32E-15 1.19E-13
carbonGas 6.01E-09 1.17E-08 2.21E-08 1.60E-08 5.90E-09 7.17E-09
doppler1 1.61E-13 1.27E-13 7.65E-12 2.68E-13 1.22E-13 1.98E-13
doppler2 2.86E-13 2.35E-13 1.57E-11 6.45E-13 2.23E-13 3.81E-13
doppler3 8.69E-14 7.12E-14 8.59E-12 1.01E-13 6.63E-14 1.09E-13
himmilbeau 8.51E-13 1.00E-12 1.42E-12 1.00E-12 1.00E-12 1.00E-12
jet 4.45E+03 1.07E-10 n/a 4.91E-09 1.03E-11 1.59E-11
kepler0 1.09E-13 1.03E-13 1.20E-13 8.28E-14 7.47E-14 1.06E-13
kepler1 4.68E-13 3.51E-13 4.67E-13 4.14E-13 2.86E-13 3.90E-13
kepler2 2.38E-12 2.24E-12 2.09E-12 2.15E-12 1.58E-12 1.53E-12
predatorPrey 1.67E-16 2.35E-16 2.51E-16 1.98E-16 1.59E-16 1.84E-16
rigidBody1 2.95E-13 3.22E-13 5.33E-13 3.22E-13 2.95E-13 2.95E-13
rigidBody2 3.61E-11 3.65E-11 6.48E-11 3.65E-11 3.61E-11 3.60E-11
sine 6.91E-16 7.41E-16 6.03E-16 5.18E-16 3.87E-16 6.37E-16
sineOrder3 6.54E-16 1.09E-15 1.19E-15 9.96E-16 5.94E-16 1.17E-15
sphere n/a n/a 1.52E-14 n/a 8.11E-15 9.99E-15
sqroot 5.35E-16 6.83E-16 1.28E-15 6.18E-16 5.01E-16 4.29E-16
t div t1 9.99E+00 2.80E-12 8.53E-16 5.68E-11 2.22E-16 3.91E-15
turbine1 2.41E-14 3.09E-14 2.46E-11 5.99E-14 1.66E-14 2.17E-14
turbine2 3.32E-14 2.59E-14 2.07E-12 7.67E-14 1.99E-14 2.81E-14
turbine3 3.52E-01 1.34E-14 1.70E-11 4.62E-14 9.55E-15 1.22E-14
verhulst 2.84E-16 4.80E-16 4.66E-16 4.67E-16 2.47E-16 3.74E-16
PolyCARP (stable) n/a 1.89E-15 n/a n/a n/a 1.83E-15
PolyCARP (unstable) n/a n/a 6.60E+00 n/a n/a 6.00E-01
Stynlinski (stable) n/a 2.29E-14 n/a 2.31E-14 n/a 4.28E-14
Stynlinski (unstable) n/a 2.29E-14 n/a 2.31E-14 n/a 1.61E+02
cpr yz0 1.35E+05 1.31E+05 n/a n/a n/a 1.31E+05
logExp n/a n/a 2.52E-15 n/a 1.49E-15 3.22E-15
hartman3 n/a n/a 2.99E-13 n/a 3.26E-15 1.58E-14
hartman6 n/a n/a 5.07E-13 n/a 5.26E-15 2.24E-13
mult pow2 rec (stable) n/a n/a n/a n/a n/a 7.11E-15

Table 1. Experimental results for absolute round-off error bounds (bold indicates the
best approximation, italic indicates the second best.)

proach of [21] where the analysis is refined by partitioning the program with
respect to its control flow.

Some semantics-based approaches have been proposed to estimate the round-
off error of a program. In [22], a family of abstract semantics parametric with
respect to the error order and to a partition of the program is proposed for
floating-point round-off errors. In [23], several abstract semantics for the static
analysis of finite precision computations are defined. In contrast to the approach
presented in this paper, the abstract semantics in [22] and [23] are not compo-
sitional since in these approaches the error is computed starting from a set of
input ranges for the initial variables.

Diverse analysis techniques and tools to estimate the round-off error of floating-
point computations have been proposed in the literature. Fluctuat [4] is a com-
mercial analyzer that accepts as input a C program with annotations about input
bound and uncertainties, and it produces bounds for the round-off error of the
program expressions decomposed with respect to its provenance. Fluctuat uses
a zonotopic abstract domain [23] that is based on affine arithmetic [24]. It is able
to soundly treat unstable tests as explained in [25] and it provides support for
iterative programs by using the widening operators introduced in [26, 27]. The
widening operator presented in this paper is different from the ones of [26, 27]
in that it takes advantage of the information contained in the path conditions.
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Gappa Fluctuat Real2Float Rosa FPTaylor PRECiSA

azimuth n/a n/a 1.986 n/a 26.050 5.204
carbonGas 2.130 0.062 0.776 26.734 0.497 0.090
doppler1 3.475 6.904 5.957 17.293 1.280 0.447
doppler2 3.456 6.835 5.934 18.336 1.504 0.402
doppler3 3.604 6.837 5.846 26.996 1.449 0.419
himmilbeau 1.636 0.013 0.193 4.478 0.473 0.106
jet 8.604 1.033 n/a 264.811 2.457 255.278
kepler0 8.107 9.467 0.203 3.377 2.813 2.878
kepler1 2.088 0.430 8.509 132.313 1.642 8.964
kepler2 9.303 2.233 6.630 63.256 0.743 345.785
predatorPrey 1.259 0.019 0.684 26.452 0.521 0.021
rigidBody1 0.030 0.013 0.434 0.298 0.427 0.049
rigidBody2 0.047 0.014 0.272 2.752 0.470 1.035
sine 4.147 0.022 0.872 4.513 0.625 0.631
sineOrder3 1.966 0.017 0.296 0.771 0.437 0.021
sphere n/a n/a 0.033 n/a 35.116 0.020
sqroot 4.968 0.014 0.713 1.328 43.428 0.047
t div t1 0.160 0.017 34.656 6.207 0.418 0.021
turbine1 6.222 5.410 67.599 19.254 62.760 1.746
turbine2 4.185 4.311 3.927 6.483 44.138 2.003
turbine3 6.927 5.417 66.991 20.642 62.623 4.569
verhulst 0.346 0.018 0.425 7.730 0.418 0.019
Polycarp (stable) n/a 0.013 n/a n/a n/a 0.018
Polycarp (unstable) n/a n/a 0.024 n/a n/a 0.018
Stynlinski (stable) n/a 0.266 n/a 58.543 n/a 16.376
Stynlinski (unstable) n/a 0.313 n/a 58.543 n/a 16.376
yz0 7.177 0.014 n/a n/a n/a 0.249
logExp n/a n/a 0.664 n/a 0.389 0.026
hartman3 n/a n/a 1.760 n/a 84.147 44.309
hartman6 n/a n/a 87.582 n/a 2191.622 4320.212
mult pow2 rec (stable) n/a n/a n/a n/a n/a 0.037

Table 2. Times in seconds for the generation of round-off error bounds and certificates
(bold indicates the best time, italic indicates the second best.)

RangeLab [28] is an interactive tool that determines the range of the round-
off errors for elementary arithmetic expression based on the semantics of [22].
RangeLab is able to deal with while loops by means of a widening operator based
on the classical interval domain widening. However, it does not provides a sound
approximation of unstable conditionals. RangeLab and Fluctuat do not generate
formal certificates for the computed bounds and they are not compositional.

FPTaylor [2] uses symbolic Taylor expansions to approximate floating-point
expressions and applies a global optimization technique to obtain tight bounds
for round-off errors. In addition, FPTaylor emits certificates for HOL Light [29]
except for the configurations that use an improved rounding model that cor-
relates error terms and allows much tighter error bounds [7]. Because of the
technique used by FPTaylor, it is restricted to smooth functions. Unlike PRE-
CiSA, which targets programs with conditional and function calls, FPTaylor is
designed to analyze arithmetic expressions. FPTuner [1] uses FPTaylor to imple-
ment a rigorous approach to precision allocation of mixed-precision arithmetic
expressions.

VCFloat [30] is a tool that automatically computes round-off error terms for
numerical C expressions along with their correctness proof in Coq. This tool
uses interval arithmetic to approximate the error bounds and generates valid-
ity conditions on the expressions. Similarly to FPTaylor, VCFloat targets only
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arithmetic expressions. Real2Float [17] computes certified bounds for round-off
errors by using an optimization technique employing semidefinite programming
and sum of square certificates. Real2Float at the moment does not handle de-
normal floating-point numbers nor loops. Gappa [5] computes enclosures for
floating-point expressions via interval arithmetic. This enclosure method enables
a quick computation of the bounds, but may result in pessimistic error estima-
tions. Gappa also generates a proof of the results that can be checked in the Coq
proof assistant. In Gappa, the bound computation, the certification construction,
and their verification may require hints from the user. Thus, some level of ex-
pertise is required, unlike PRECiSA, which is fully automatic. Rosa [3,31] uses a
compilation algorithm that, from an ideal real-valued implementation, produces
a finite-precision version (if it exists) that is guaranteed to meet a given desired
precision. Rosa soundly deals with unstable tests and with bounded loops with
bounded variables.

7 Conclusion

In this paper, a semantic framework based on abstract interpretation has been
presented with the aim of providing a parametric round-off error static analysis
for floating-point programs. The abstract semantics defined by this framework
enjoys several features. It is defined in a compositional way, which allows for an
incremental, modular, and efficient treatment of the program being analyzed.
This makes the analysis defined upon this framework scalable and reusable.
Moreover, the semantics is able to deal with any floating-point operator provided
the existence of a round-off error estimation that satisfies Formula (2.5). Finally,
recursion and conditionals are soundly handled.

The semantic analysis proposed in this paper is sound with respect to un-
stable tests and it associates conditions to the computed error estimation. This
makes the analysis more precise since different execution paths may lead to
different round-off errors. The proposed technique also avoids considering com-
putations that lead to runtime errors such as division by zero or square root
of a negative number. Additionally, the information collected in the conditions
is used to discard impossible execution paths and to characterize initial input
values that may cause large round-off errors.

PRECiSA is an implementation of the proposed framework that, addition-
ally, generates proof certificates ensuring the correctness of the computed error
bounds. In future work, the authors plan to integrate in PRECiSA other abstract
domains such as affine arithmetic and a compositional version of the symbolic
Taylor expansions of [2]. This way, the most suitable domain can be chosen de-
pending on the input program and on the desired tradeoff between efficiency
and precision. Another interesting future direction is the integration of PRE-
CiSA with the static analyzer Frama-C [32]. This integration will enable the
automated formal verification of C floating-point programs.
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