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Abstract We discuss the problem of eigenstresses caused by distributed dislocations

and disclinations in a hollow solid sphere of linearly elastic isotropic micropolar

material. For any spherically symmetric distribution of dislocations and disclinations

the exact solution of the boundary value problem is obtained. The derived solution

is expressed in primary functions. The spherically symmetric eigenstresses problem

is also resolved in the framework of the classical theory of elasticity that is without

couple stresses.
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1 Introduction

A common feature of the structure of solids is a micro nonhomogeneity. To account

the materials micro nonhomogeneity in the framework of continuum mechanics the

model of the micropolar body can be applied, i.e. the model of a medium with couple

stresses and the rotational interaction of material particles. The model of the microp-

olar medium, also called the Cosserat continuum, is often used for the description

of grain polycrystalline bodies, polymers, composites, suspensions, liquid crystals,

geophysical structures, biological tissues, nanostructured materials, see e.g. [1–9]

and the extended bibliography therein.

Another important element of the microstructure of solids are defects of the

crystal lattice such as dislocations and disclinations. In many cases, the number
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of dislocations and disclinations in a bounded volume of the body is very large.

So instead of considering a discrete set of defects it more efficient to analyze the

continuous distribution of defects and use the theory of distributed dislocations and

disclinations. The continuum dislocations theory in non-polar elastic bodies, i.e. in

the simple materials was described, for example, in [10–19]. The theory of continu-

ously distributed dislocations and disclinations in micropolar media is described in

[16, 20, 21]. Up to our knowledge, nowadays in the literature there are practically no

solutions presented for static boundary value problems of the micropolar elastic bod-

ies with distributed dislocations and disclinations. This is because of the complexity

of the system of governing differential equations, which in general case consists of

six equilibrium equations for stresses and couple stresses and eighteen incompatibil-

ity equations regarding the metric and bending deformations. In the paper within the

framework of the linear isotropic micropolar elasticity theory we find the exact solu-

tion of the eigenstresses problem in hollow solid sphere with spherically symmetric

distribution of dislocations and disclinations. The solution is given in elementary

functions. The solution is also compared with solution of the same problem obtained

within the framework of the classic linear theory of elasticity of non-polar materials.

2 Input Relations

The system of static equations of a linear elastic isotropic micropolar body consists

of the equilibrium equations for the stresses [4–6]

div𝐓 + 𝐟 = 0, div𝐌 + 𝐓× + 𝐡 = 0 (1)

constitutive relations

𝐓 = 𝜆𝐄tr 𝜀𝜀𝜀 + (𝜇 + 𝜏)𝜀𝜀𝜀 + (𝜇 − 𝜏)𝜀𝜀𝜀T

𝐌 = 𝜈𝐄tr𝜅𝜅𝜅 + (𝛾 + 𝜂)𝜅𝜅𝜅 + (𝛾 − 𝜂)𝜅𝜅𝜅T (2)

and the geometric relations

𝜀𝜀𝜀 = grad𝐮 + 𝐄 × 𝜃𝜃𝜃, 𝜅𝜅𝜅 = grad𝜃𝜃𝜃 (3)

Here 𝐓 is the stress tensor, 𝐌 is the couple stress tensor, 𝜀𝜀𝜀 is the non-symmetric

metric strain tensor, 𝜅𝜅𝜅 is the bending strain tensor called also the wryness tensor, see

[22, 23], 𝜃𝜃𝜃 is the microrotation vector field, 𝐮 is the displacement field of the elastic

medium, 𝐄 is the unit tensor. 𝜆, 𝜇, 𝜏, 𝜈, 𝛾 , 𝜂 are the elastic modules, 𝐟 is the volume

density of mass forces, 𝐡 is the volume density of mass moments. The div and grad
operators are defined as in [24, 25]. The symbol 𝐓× denotes the vector invariant of

a second-order tensor:



Spherically Symmetric Deformations of Micropolar Elastic . . . 359

𝐓× = (Tsk𝐫s⊗𝐫k)× = Tsk𝐫s×𝐫k

where 𝐫s, s = 1, 2, 3, is a vector basis, see e.g. [25].

To introduce the dislocations density in the micropolar medium let us consider

the problem of determination of the displacement field 𝐮(𝐫) for a given strain tensor

field 𝜀𝜀𝜀(𝐫) and microrotation vector field 𝜃𝜃𝜃(𝐫) defined in multiply-connected domain

v. Here 𝐫 is the radius-vector of point in the 3D space. The fields 𝜀𝜀𝜀 and 𝜃𝜃𝜃 are assumed

to be differentiable and single-valued. According to (3)

grad𝐮 = 𝜀𝜀𝜀 − 𝐄 × 𝜃𝜃𝜃, (4)

in the case of the multiply-connected domain vector field 𝐮(r) can not be uniquely

determined, in general. This results in the appearance of translational dislocations

[10–12] in the body, each of which is characterized by the Burgers vector

𝐛N = ∮
𝛾N

d𝐫 ⋅ (𝜀𝜀𝜀 − 𝐄 × 𝜃𝜃𝜃), N = 1, 2,…N0 (5)

Here 𝛾N is an arbitrary simple closed contour enclosing the axis of the Nth disloca-

tion. The total Burgers vector of the discrete set of N0 dislocations is defined accord-

ing to (5) by the relation

𝐁 =
N0∑

N=1
𝐛N =

N0∑

N=1
∮
𝛾N

d𝐫 ⋅ (𝜀𝜀𝜀 − 𝐄 × 𝜃𝜃𝜃) (6)

Using the known properties of contour integrals the sum of integrals in (6) can be

replaced by a single integral over the closed contour 𝛾0 surrounding the lines of all

N0 dislocations as follows

𝐁 = ∮
𝛾0

d𝐫 ⋅ (𝜀𝜀𝜀 − 𝐄 × 𝜃𝜃𝜃) (7)

Following [13, 14] we passed from a discrete set of dislocations to their continuous

distribution, transforming the integral (7) by Stokes’ formula

𝐁 = ∫
𝜎0

𝐧 ⋅ rot(𝜀𝜀𝜀 − 𝐄 × 𝜃𝜃𝜃)d𝜎 (8)

Here 𝜎0 is the surface drawn over 𝛾0, 𝐧 is the unit normal to 𝜎0. The relationship

(8) allows to introduce the density of continuously distributed dislocations 𝛼𝛼𝛼 as a

second-order tensor, whose flux across any surface yields the total Burgers vector of

the dislocations crossing this surface
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rot(𝜀𝜀𝜀 − 𝐄 × 𝜃𝜃𝜃) = 𝛼𝛼𝛼 (9)

Let us assume that elastic body with continuously distributed dislocations occu-

pies the multiply-connected domain and state the problem on rotation field 𝜃𝜃𝜃(𝐫)
determination in multiply-connected domain with single-valued and differentiable

fields 𝜀𝜀𝜀 and 𝜅𝜅𝜅. Now we do not use the requirement that the rotations are single-

valued. By analogy with (4) the system of equations with respect to vector 𝜃𝜃𝜃 takes

the form

grad𝜃𝜃𝜃 = 𝜅𝜅𝜅 (10)

In the case of multiply-connected domain it has not uniquely defined solution, in

general, that means existence in the body of rotational linear defects, i.e. disclinations

[16–19]. The certain disclination is characterized by Frank’s vector 𝐪N

𝐪N = ∮
𝛾N

d𝐫 ⋅ 𝜅𝜅𝜅, N = 1, 2,…N0 (11)

The total Frank’s vector of a discrete disclinations set can, in accordance with (11),

be represented as

𝐐 =
N0∑

N=1
𝐪N =

N0∑

N=1
∮
𝛾N

d𝐫 ⋅ 𝜅𝜅𝜅 (12)

In a similar way we passed from a discrete set of disclinations to their continuous

distribution and define the density of distributed disclinations 𝛽𝛽𝛽 as a second-order

tensor, whose flux across any surface yields the total Frank vector of all disclinations

crossing this surface. This definition leads to the relation rot𝜅𝜅𝜅 = 𝛽𝛽𝛽.

Thus, in the presence of distributed dislocations and disclinations, the geomet-

ric relations (3) are transformed to the incompatibility equations with regard to the

metric and bending deformations

rot𝜀𝜀𝜀 − 𝜅𝜅𝜅

T + 𝐄tr𝜅𝜅𝜅 = 𝛼𝛼𝛼 (13)

rot𝜅𝜅𝜅 = 𝛽𝛽𝛽 (14)

The Eq. (13) is derived from the relationship (9) and expression of the tensor𝜅𝜅𝜅 in (3).

The incompatibility equation (13) and (14) are deduced earlier in [16] with another

method. If𝛼𝛼𝛼 ≠ 0 and𝛽𝛽𝛽 ≠ 0, the fields of displacements 𝐮 and rotations𝜃𝜃𝜃 do not exist.

If 𝛼𝛼𝛼 ≠ 0 but 𝛽𝛽𝛽 = 0, the displacements field does not exist and there exists a rotation

field. In what follows we assume that the dislocations and disclinations densities are

given tensor functions of coordinates, as mass loads 𝐟 and 𝐡. These functions cannot

be taken arbitrarily, since they obey the equations of continuity [16].
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div𝛼𝛼𝛼 + 𝛽𝛽𝛽× = 0, div𝛽𝛽𝛽 = 0 (15)

The Eq. (15) are easy to obtain as a necessary condition of solvability of incompati-

bility equations (13) and (14) by exclusion of the unknown functions 𝜀𝜀𝜀 and 𝜅𝜅𝜅.

3 Spherically Symmetric State

Considering the problem for a hollow sphere we introduce spherical coordinates r,
𝜑, 𝜃 by formula

x1 = rcos𝜑cos𝜃, x2 = rsin𝜑cos𝜃, x3 = rsin𝜃,

here x1, x2, x3 is the Cartesian coordinates, r (r1 ≤ r ≤ r0) is the radial coordinate, 𝜑

(0 ≤ 𝜑 ≤ 2𝜋) is the longitude, 𝜃 (− 𝜋

2
≤ 𝜃 ≤ 𝜋

2
) is the latitude. Unit vectors tangent

to the lines of spherical coordinates are denoted by 𝐞r, 𝐞𝜑, 𝐞
𝜃

. The dislocations and

disclinations density tensors take the form

𝛼𝛼𝛼 = 𝛼1(r)𝐠 + 𝛼2(r)𝐝 + 𝛼3(r)𝐞r ⊗ 𝐞r (16)

𝛽𝛽𝛽 = 𝛽1(r)𝐠 + 𝛽2(r)𝐝 + 𝛽3(r)𝐞r ⊗ 𝐞r (17)

𝐠 = 𝐞
𝜑

⊗ 𝐞
𝜑

+ 𝐞
𝜃

⊗ 𝐞
𝜃

, 𝐝 = 𝐞
𝜑

⊗ 𝐞
𝜃

− 𝐞
𝜃

⊗ 𝐞
𝜑

(18)

The tensor fields (16) and (17) have a spherical symmetry in the sense that their

components in the basis 𝐞r, 𝐞𝜑, 𝐞
𝜃

on each spherical surface r = conts are the same at

all points of the spherical surface and the tensors 𝛼𝛼𝛼, 𝛽𝛽𝛽 invariant under rotations about

the radial axis, i.e. about 𝐞r vector. The last property means that for any function 𝜒(r)
there is the identity

𝛺𝛺𝛺 ⋅ 𝛼𝛼𝛼 ⋅𝛺𝛺𝛺T = 𝛼𝛼𝛼

𝛺𝛺𝛺 = 𝐠cos𝜒(r) + 𝐝sin𝜒(r) + 𝐞r ⊗ 𝐞r

The first summand in (16) describes the distribution of screw dislocations the

axes of which coincide with the parallels and meridians, the last summand describes

the distribution of screw dislocations with radial axis. The meaning of the (16) cor-

responds to a distribution of edge dislocations.

The first summand in (17) describes the distribution of wedge disclinations the

axes of which coincide with the parallels and meridians, whereas the last summand

describes the distribution of wedge disclinations with radial axis. The meaning of

the (17) corresponds to a distribution of twist disclinations.

In order to specify loadings, we assume spherically symmetric vector fields

𝐟 = f (r)𝐞r, 𝐡 = h(r)𝐞r (19)
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Using the constitutive relations (2) the equilibrium equations (1) can be easily

converted into a system of two vector equations for tensor functions 𝜀𝜀𝜀 and 𝜅. They

should connect the two tensor incompatibility equations (13) and (14). Thus, we

obtain the system of 24 scalar equations for 18 unknown scalar functions, i.e. for

components of the tensors 𝜀𝜀𝜀 and 𝜅. The spherically symmetric solution of this sys-

tem will be obtained similar to (16)

𝜀𝜀𝜀 = 𝜀1(r)𝐠 + 𝜀2(r)𝐝 + 𝜀3(r)𝐞r ⊗ 𝐞r
𝜅𝜅𝜅 = 𝜅1(r)𝐠 + 𝜅2(r)𝐝 + 𝜅3(r)𝐞r ⊗ 𝐞r

(20)

With (2) and (19) for isotropic material we get

𝐓 = t1(r)𝐠 + t2(r)𝐝 + t3(r)𝐞r ⊗ 𝐞r
𝐌 = m1(r)𝐠 + m2(r)𝐝 + m3(r)𝐞r ⊗ 𝐞r

(21)

On the basis of (16) and (17), the tensor incompatibility equations (13) is trans-

formed to the three scalar ordinary differential equations

1
r
(r𝜀2)∕ = 𝛼1 − 𝜅1 − 𝜅3,

𝜀3 − 𝜀1
r

− 𝜀

∕
1 = 𝛼2 − 𝜅2,

2𝜀2
r

= 𝛼3 − 2𝜅1 (22)

whereas the tensor incompatibility equations (14) is also results into the three equa-

tions

1
r
(r𝜅2)∕ = 𝛽1,

𝜅3 − 𝜅1
r

− 𝜅

∕
1 = 𝛽2,

2𝜅2
r

= 𝛽3 (23)

Two vector continuity equations (15) are reduced to two scalar differential equations

𝛼

∕
3 +

2
r
(𝛼3 − 𝛼1) + 2𝛽2 = 0, 𝛽

∕
3 +

2
r
(𝛽3 − 𝛽1) = 0 (24)

The continuity equations (24) does not include the density of edge dislocations func-

tion 𝛼2(r). So this function can be arbitrary, including the Dirac delta-function.

With (21) the equilibrium equations (1) are equivalent to the following

t∕3 +
2
r
(t3 − t1) + f (r) = 0, m∕

3 +
2
r
(m3 − m1) + 2t2 + h(r) = 0 (25)

It’s easy to check that the first equation of (22) is not independent since it follows

from the third Eq. (22), the second Eq. (23) and the first Eq. (24). Similarly, the first

equation of (23) is a consequence of the third relation (23) and the second relation

(24). Thus, there are four independent incompatibility equations.

If we express in the equilibrium equation (25) the components of the stress tensor

ts and the couple stress tensor mk with the help of constitutive relations (2) through

the values 𝜀k and 𝜅s, we get two differential equations for functions 𝜀k(r), 𝜅s(r).
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Adding to these another four incompatibility equations, we will have 6 ordinary dif-

ferential equations with 6 unknown functions: 𝜀1, 𝜀2, 𝜀3, 𝜅1, 𝜅2, 𝜅3.

Thus, even in the total system of resolving Eqs. (1), (2), (13) and (14) the number

of equations exceeds the number of unknown functions, in the case of a spherically

symmetric deformation, the number of ordinary differential equations coincides with

the number of unknown functions.

For the spherically symmetric state we rewrite the constitutive relations in the

following form

t1 = 2(𝜆 + 𝜇)𝜀1 + 𝜆𝜀3, t2 = 2𝜏𝜀2, t3 = 2𝜆𝜀1 + (𝜆 + 2𝜇)𝜀3 (26)

m1 = 2(𝜈 + 𝛾)𝜅1 + 𝜈𝜅3, m2 = 2𝜂𝜅2, m3 = 2𝜈𝜅1 + (𝜈 + 2𝛾)𝜅3 (27)

Proceeding from (22) and (26) we obtain

𝜀2 =
r𝛼3
2

− r𝜅1, t2 = 𝜏r𝛼3 − 2𝜏r𝜅1

Therefore, the second equilibrium equations (25) will be sought in the following form

m∕
3 +

2
r
(m3 − m1) − 4𝜏r𝜅1 + 2𝜏r𝛼3 + h(r) = 0 (28)

It follows from (23), (27) that

𝜅3 = r𝜅∕
1 + 𝜅1 + r𝛽2,

m1 = (3𝜈 + 2𝛾)𝜅1 + 𝜈r𝜅∕
1 + 𝜈r𝛽2 (29)

m3 = (3𝜈 + 2𝛾)𝜅1 + (𝜈 + 2𝛾)r𝜅∕
1 + (𝜈 + 2𝛾)r𝛽2 (30)

m3 − m1 = 2𝛾r𝜅∕
1 + 2𝛾r𝛽2

m∕
3 = (𝜈 + 2𝛾)r𝜅∕∕

1 + 4(𝜈 + 𝛾)𝜅∕
1 + (𝜈 + 2𝛾)(r𝛽2)∕ (31)

With (29)–(31) relation (28) becomes the equation for the function 𝜅1(r)

r2𝜅∕∕
1 + 4r𝜅∕

1 −
4𝜏

𝜈 + 2𝛾
r2𝜅1 =

= − r
𝜈 + 2𝛾

[
(𝜈 + 2𝛾)(r𝛽2)∕ + 4𝛾𝛽2 + 2𝜏r𝛼3 + h

] (32)
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The right side of the Eq. (32) contains given functions 𝛽2(r), 𝛼3(r), h(r). After

determining the unknown function 𝜅1(r), the function 𝜅3(r) can be determined from

the second relation (23), and the function 𝜅2(r) we can find directly.

Now let us deduce an equation for the function 𝜀1(r). Using (22) we get

𝜀3 = (r𝜀1)∕ + r𝛼2 −
1
2
r2𝛽3 (33)

and on the basis of (26) we have

t3 − t1 = 2𝜇(𝜀3 − 𝜀1) (34)

Substitute (33) into (34) we have

t3 − t1 = 2𝜇
[
(r𝜀1)∕ + r𝛼2 −

1
2
r2𝛽3 − 𝜀1

]
(35)

Further, differentiating the third relation in (26) and using (33), we obtain

t∕3 = 2𝜆𝜀∕1 + (𝜆 + 2𝜇)𝜀∕3 =

= 2𝜆𝜀∕1 + (𝜆 + 2𝜇)
[
(r𝜀1)∕∕ + (r𝛼2)∕ −

1
2
(r2𝛽3)∕

] (36)

We transform (35) into

t3 − t1
r

= 2𝜇
(
𝜀

∕
1 + 𝛼2 −

1
2
r𝛽3

)
(37)

Substituting (36) and (37) to the first equilibrium equation (25), we obtain the

equation for 𝜀1(r)

(𝜆 + 2𝜇)r𝜀∕∕ + 4(𝜆 + 2𝜇)𝜀∕1 =

= (𝜆 + 2𝜇)
[1
2
(r2𝛽3)∕ − (r𝛼2)∕

]
+ 4𝜇

(1
2
r𝛽3 − 𝛼2

)
− f

(38)

The homogeneous equation (38) is an equation of Euler’s type and can be solved

elementary. The inhomogeneous equations (38) can be solved by the above tech-

nique.

Once the functions 𝜀1 and 𝜅1 are found, the other unknowns can be determined

directly with (22) and (23). And then with the use of (26) and (27) it is possible to

find all stresses.
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4 Solution of the Eigenstresses Problem in a Hollow Solid
Sphere from Micropolar Material

Let us consider the differential equations (32) and (38)

r2𝜅∕∕
1 + 4r𝜅∕

1 − br2𝜅1 = G(r), b = 4𝜏
𝜈 + 2𝛾

(39)

G(r) = − r
𝜈 + 2𝛾

[
(𝜈 + 2𝛾)(r𝛽2)∕ + 4𝛾𝛽2 + 2𝜏r𝛼3 + h

]

(𝜆 + 2𝜇)r𝜀∕∕1 + 4(𝜆 + 2𝜇)𝜀∕1 = F(r) (40)

F(r) = (𝜆 + 2𝜇)
[1
2
(r2𝛽3)∕ − (r𝛼2)∕

]
+ 4𝜇

(1
2
r𝛽3 − 𝛼2

)
− f

where the right sides are expressed through the given functions describing the distri-

bution of dislocations, disclinations and mass loads. As for the eigenstresses prob-

lem there are no external mass and surface loads we assume that 𝐟 = 𝐡 = 0, and the

boundary conditions on the inner and outer spherical boundaries of the ball have the

form

m3(r)|r=r1 = 0, m3(r)|r=r0 = 0 (41)

t3(r)|r=r1 = 0, t3(r)|r=r0 = 0

In the case of b > 0 the general solution of the differential equations (39) has the

form

𝜅1 (r) =
1
r3

(
A1e−

√
br(br +

√
b) + A2e

√
br(br −

√
b)
)
+

+ 1
2 b2r3

[
e−

√
br(br +

√
b)∫

(1
r
−
√
b
)
G(r)e

√
brdr −

−e
√
br(br −

√
b)∫

(1
r
+
√
b
)
G(r)e−

√
brdr

]
(42)

For the differential equations (39) in the case of b < 0 we obtain the general

solution
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𝜅1(r) = 𝜅1(r) =
1
r3

(
A1er

√
−b(br + I

√
b) + A2e−r

√
−b(br − I

√
b)
)
+

+ 1
2r3b

⎡
⎢
⎢
⎢⎣
er

√
−b(I

√
b + rb)∫

G(r)r
(
I
√
b − rb

)
e−r

√
−b

r2
√
(−b)3 + I

√
b −

√
−b

dr−

−e−r
√
−b(I

√
b − rb)∫

G(r)r
(
I
√
b + rb

)
er

√
−b

r2
√
(−b)3 + I

√
b −

√
−b

dr
⎤
⎥
⎥
⎥⎦

(43)

For the inhomogeneous differential equations (40) we obtain the general solution

𝜀1(r) = B1 +
B2

r3
+ 1

𝜆 + 2𝜇 ∫
1
r4

(

∫ F(r)r3dr
)
dr (44)

Constants A1,A2,B1,B2 have to be determined from boundary conditions (41).

Thus, for (42), (43), and (44) with the boundary conditions (41) it is possible to find

exact solutions of the eigenstresses problem.

5 Spherically Symmetric State with a Non-polar Elastic
Medium with Distributed Dislocations and Disclinations

Let us also consider the problem of a hollow sphere equilibrium within the frame-

work of the classic linear theory of elasticity, i.e. for a simple (non-polar) material.

In this case, the Cauchy stress tensor 𝐓 is symmetric and the system of equations of

statics of an isotropic body in the absence of distributed defects has the form [24]

div𝐓 + 𝐟 = 0 (45)

𝐓 = 𝜆𝐄tr𝐞 + 2𝜇𝐞 (46)

𝐞 = 1
2
[
grad𝐮 + (grad𝐮)T

]
(47)

Derivation of incompatibility equations for a simple elastic material with dislo-

cations and disclinations is similar to that outlined in Sect. 1. With (47) it is given

by

grad𝐮 = 𝐞 − 𝐄 ×𝜑𝜑𝜑 (48)

here𝜑𝜑𝜑 is the linear rotation vector [24]. Considering the problem of determining the

displacement field 𝐮 for a given in multiply-connected domain unique fields of the

symmetric strain tensor 𝐞 and rotation vector 𝜑𝜑𝜑, and arguing as in Sect. 1, we come
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to the expression of a tensor density of dislocations

rot𝐞 − rot(𝐄 ×𝜑𝜑𝜑) = 𝛼𝛼𝛼 (49)

Equation (49) can be transformed as follows

grad𝜑𝜑𝜑 = (rot𝐞)T + 1
2
𝐄tr𝛼𝛼𝛼 − 𝛼𝛼𝛼

T
(50)

We consider (50) as a system of equations for determination of the rotation vec-

tor field in a multiply-connected domain with given fields 𝐞 and 𝛼𝛼𝛼. Repeating the

arguments of Sect. 1, we obtain an expression for the tensor of disclination density 𝛽𝛽𝛽

𝛽𝛽𝛽 = rot(rot𝐞)T − rot
(
𝛼𝛼𝛼

T − 1
2
𝐄tr𝛼𝛼𝛼

)
(51)

Considering the 𝛼𝛼𝛼 and 𝛽𝛽𝛽 tensor fields as given quantities whereas the symmet-

ric strain tensor 𝐞 as the unknown function, from (51) we get the incompatibility

equation of the classic theory of elasticity

rot(rot𝐞)T = rot
(
𝛼𝛼𝛼

T − 1
2
𝐄tr𝛼𝛼𝛼

)
+ 𝛽𝛽𝛽 (52)

As it is known [24], the tensor rot(rot𝐏)T is symmetric, if 𝐏 = 𝐏T
. Therefore, a nec-

essary condition for the solvability of equations (52) is the symmetry requirement of

the right side. This leads to the relation div𝛼𝛼𝛼 + 𝛽𝛽𝛽× = 0. The second solvability con-

dition can be obtained by applying divergence operator to Eq. (52) and has the form

div𝛽𝛽𝛽 = 0. Thus, the conditions of solvability of the incompatibility equations (52)

coincide with the continuity equations (15) of the micropolar theory of elasticity.

Because of the symmetry of tensors 𝐞 and 𝐓 the spherically symmetric solution of

equilibrium equations (45) and the incompatibility equations (52) for simple linearly

elastic isotropic material should be sought in the form

𝐞 = e1(r)𝐠 + e3(r)𝐞r ⊗ 𝐞r, 𝐓 = t1(r)𝐠 + t3(r)𝐞r ⊗ 𝐞r (53)

Considering (16), (17) and continuity equations (24) the right part of the incom-

patibility equations (52) takes the form

rot
(
𝛼𝛼𝛼

T − 1
2
𝐄tr𝛼𝛼𝛼

)
+ 𝛽𝛽𝛽 =

[
𝛽1 −

1
r
(r𝛼2)∕

]
𝐠 +

(
𝛽3 −

2𝛼2
r

)
𝐞r ⊗ 𝐞r (54)

Components of the dislocation densities 𝛼1, 𝛼3 and the component 𝛽2 of disclination

density are not included in the expression (54). This means that the components

of distributed defects do not affect the stress state of solid sphere made of linear

elastic nonpolar material, whereas in the micropolar material, these defects manifest

themselves, i.e. creating their own stresses. Note that the dislocation densities 𝛼1
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and 𝛼3 manifest themselves also in the framework of nonlinear elasticity theory of

simple materials [26]. In other words, these dislocations in non-polar material cause

nonlinear effects. Using (53) and taking into account the continuity equations (15)

the tensor incompatibility equations (54) is reduced to one scalar equation

de1
dr

+
e1 − e3

r
= r

2
𝛽3 − 𝛼2 (55)

Vector equilibrium equations (46) with 𝐟 = 0 on the basis of (53) results in one

scalar equation. By using constitutive relations (46) this equation is converted to a

differential equation for functions e1(r) and e3(r). The latter by means of (55) is the

equation of the second order with respect to function e1(r). This equation not differs

from Eq. (36) corresponding to the micropolar material.

6 Conclusion

Using the concept of spherical symmetric tensor field, we reduced a complex sys-

tem of differential equilibrium equations of the micropolar elastic medium with dis-

tributed dislocations and disclinations to two ordinary differential equations. We

demonstrate that it is possible to find exact solution of the problem of eigenstresses

in a hollow solid sphere made of micropolar material for any spherically symmetric

distribution of dislocations and disclinations. This problem is also solved within the

framework of the classical theory of elasticity which does not take into account the

couple stresses. We established that in this case some components of the dislocations

and disclinations density tensors do not affect the stress state of the solid sphere, i.e.

the effect of these defects may not be identified in the framework of the classical

theory of elasticity.
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