
123

Viviane Almeida dos Santos
Gustavo Henrique Lima Pinto
Adolfo Gustavo Serra Seca Neto (Eds.)

8th Brazilian Workshop, WBMA 2017
Belém, Brazil, September 13–14, 2017
Revised Selected Papers

Agile Methods

Communications in Computer and Information Science 802

Communications
in Computer and Information Science 802

Commenced Publication in 2007
Founding and Former Series Editors:
Alfredo Cuzzocrea, Xiaoyong Du, Orhun Kara, Ting Liu, Dominik Ślęzak,
and Xiaokang Yang

Editorial Board

Simone Diniz Junqueira Barbosa
Pontifical Catholic University of Rio de Janeiro (PUC-Rio),
Rio de Janeiro, Brazil

Phoebe Chen
La Trobe University, Melbourne, Australia

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Krishna M. Sivalingam
Indian Institute of Technology Madras, Chennai, India

Takashi Washio
Osaka University, Osaka, Japan

Junsong Yuan
Nanyang Technological University, Singapore, Singapore

Lizhu Zhou
Tsinghua University, Beijing, China

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Viviane Almeida dos Santos
Gustavo Henrique Lima Pinto
Adolfo Gustavo Serra Seca Neto (Eds.)

Agile Methods
8th Brazilian Workshop, WBMA 2017
Belém, Brazil, September 13–14, 2017
Revised Selected Papers

123

Editors
Viviane Almeida dos Santos
Federal University of Pará
Tucurui
Brazil

Gustavo Henrique Lima Pinto
Federal University of Pará
Belém
Brazil

Adolfo Gustavo Serra Seca Neto
Federal University of Technology
Paraná
Brazil

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-319-73672-3 ISBN 978-3-319-73673-0 (eBook)
https://doi.org/10.1007/978-3-319-73673-0

Library of Congress Control Number: 2017963762

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Preface

The 8th Brazilian Workshop on Agile Methods (WBMA 2017) was part of the Agile
Brazil Conference. In 2017, the workshop was held in Belém, Pará, Brazil, during
September 13–14. The workshop is the academic research track of the Agile Brazil
Conference. The 2017 edition received 19 paper submissions and an impressive
number of attendees (students, researchers, and practitioners) from different countries.
This year, the workshop also strongly encouraged practitioners’ submissions as a way
to integrate and strengthen the conference target audience (industry and academy)
relationships.

The submitted papers were peer reviewed by three referees. The paper-review
process considered technical quality, relevance, significance, clarity, and concision.
The Steering Committee decided to accept ten full papers and four short papers.
However, two of the short papers were not presented at the workshop, and we had to
exclude them from the WBMA 2017 proceedings. Thus, this CCIS volume comprises
revised selected peer-reviewed versions of ten full papers and two short papers. The
accepted papers present empirical studies on: agile values and principles; agile prac-
tices; agile adoption; agile testing and quality; metrics; conceptual studies; cultural
aspects on agile business; organizational transformation and future trends.

The organizers thank the Program Committee members for their valuable contri-
butions, the Agile Brazil organizers and sponsors, and especially all those who sub-
mitted papers to the workshop. We also thank Springer for producing the WBMA 2017
proceedings.

November 2017 Adolfo Gustavo Serra Seca Neto
Gustavo Henrique Lima Pinto
Viviane Almeida dos Santos

Organization

Steering Committee

Gustavo Henrique Lima
Pinto

Federal University of Pará, Brazil

Viviane Almeida dos Santos Federal University of Pará, Brazil
Adolfo Gustavo Serra Seca

Neto
Federal University of Technology Paraná, Brazil

Program Committee

Ademar Aguiar University of Porto, Portugal
Adolfo Gustavo Serra Seca

Neto
Universidade Tecnológica Federal do Paraná, Brazil

Alexandre Vasconcelos Universidade Federal de Pernambuco, Brazil
Alfredo Goldman University of São Paulo, Brazil
Breno de França Universidade de Campinas, Brazil
Célio Santana Universidade Federal de Pernambuco, Brazil
Cleidson de Souza Universidade Federal do Pará, Brazil
Eduardo Guerra National Institute of Space Research, Brazil
Fabio Kon Universidade de São Paulo, Brazil
Fábio Levy Siqueira Escola Politécnica da Universidade de São Paulo,

Brazil
Felipe Furtado Universidade Federal de Pernambuco, C.E.S.A.R,

Brazil
Graziela Tonin Universidade Federal de Pernambuco, Brazil
Gustavo Pinto Universidade Federal do Pará, Brazil
Hugo Sereno Ferreira FEUP and INESC TEC, Brazil
Jutta Eckstein IT Communication, Germany
Maria Istela Cagnin Universidade Federal do Mato Grosso do Sul, Brazil
Patrícia Vilain Universidade Federal de Santa Catarina, Brazil
Paulo Meirelles Universidade de Brasília, Brazil
Rafael Prikladnicki PUCRS, Brazil
Rodrigo De Toledo UFRJ, Brazil
Sandro Oliveira Universidade Federal do Pará, Brazil
Teresa Maciel Universidade Federal Rural de Pernambuco, Brazil
Theodore D. Hellmann USA
Tiago Silva Da Silva Universidade Federal de São Paulo, Brazil
Vinicius Garcia Universidade Federal de Pernambuco, Brazil
Viviane Almeida dos Santos Universidade Federal do Pará, Brazil
Xiaofeng Wang Free University of Bozen-Bolzano, Italy

Conference Logo

Sponsors

VIII Organization

Organization IX

Contents

Agile Principles, Lean Manufacturing and Other Disciplines

Towards a Definition of Simplicity in Agile Software Development:
A Focus Group Study . 3

Wylliams B. Santos, José Adson O. G. Cunha, Hermano Moura,
and Tiziana Margaria

Agile Testing and Quality: Techniques, Patterns and Automated Support

ASA: Agile Software Development Self-assessment Method. 21
Matheus Florêncio, Fernando Sambinelli,
and Marcos Augusto Francisco Borges

Agile Testing in Brazil: A Systematic Mapping . 31
João Farias, Alexandre Vasconcelos, and Ivaldir Junior

Metrics, Measurements and Mining Repositories in the Context of Agile

Using Function Points in Agile Projects: A Comparative Analysis Between
Existing Approaches . 47

Eduardo Garcia Wanderley, Alexandre Vasconcelos,
and Bruno Tenório Avila

Adoption of Agile/Lean

Agile in 3D: Agility in the Animation Studio . 63
Avelino F. Gomes Filho, Danilo Alencar, and Rodrigo de Toledo

Concerns and Limitations in Agile Software Development:
A Survey with Paraguayan Companies. 77

Myrian R. Noguera Salinas, Adolfo G. Serra Seca Neto,
and Maria Claudia F. P. Emer

Scrum and the 10 Personal Entrepreneurial Competencies of Empretec 88
Ludimila Monjardim Casagrande

An Agile Approach Applied in Enterprise Project Management Office. 95
Luis Gustavo Araujo Ferreira, Priscila Bibiana Viegas,
and Dagoberto Trento

http://dx.doi.org/10.1007/978-3-319-73673-0_1
http://dx.doi.org/10.1007/978-3-319-73673-0_1
http://dx.doi.org/10.1007/978-3-319-73673-0_2
http://dx.doi.org/10.1007/978-3-319-73673-0_3
http://dx.doi.org/10.1007/978-3-319-73673-0_4
http://dx.doi.org/10.1007/978-3-319-73673-0_4
http://dx.doi.org/10.1007/978-3-319-73673-0_5
http://dx.doi.org/10.1007/978-3-319-73673-0_6
http://dx.doi.org/10.1007/978-3-319-73673-0_6
http://dx.doi.org/10.1007/978-3-319-73673-0_7
http://dx.doi.org/10.1007/978-3-319-73673-0_8

Conceptual Studies and Theoretical Foundations of Agile/Lean

Metamodel for Requirements Traceability and Impact Analysis
on Agile Methods . 105

Carlos Andrei Carniel and Raquel Aparecida Pegoraro

Organizational Transformation and Cultural Aspects on Agile Business

For Some Places More Than Others - Agility and Organizational Culture 121
Lourenço P. Soares and Ângela Freitag Brodbeck

Agile Practices and Future Trends, Evolution and Revolution
(Technical or Managerial)

A Study on the Perception of Researchers About the Application
of Agile Software Development Methods in Research 137

Nelson Marcelo Romero Aquino, Adolfo Gustavo Serra Seca Neto,
and Heitor Silvério Lopes

Mob Programming: The State of the Art and Three Case Studies
of Open Source Software . 146

Herez Moise Kattan, Frederico Oliveira, Alfredo Goldman,
and Joseph William Yoder

Author Index . 161

XII Contents

http://dx.doi.org/10.1007/978-3-319-73673-0_9
http://dx.doi.org/10.1007/978-3-319-73673-0_9
http://dx.doi.org/10.1007/978-3-319-73673-0_10
http://dx.doi.org/10.1007/978-3-319-73673-0_11
http://dx.doi.org/10.1007/978-3-319-73673-0_11
http://dx.doi.org/10.1007/978-3-319-73673-0_12
http://dx.doi.org/10.1007/978-3-319-73673-0_12

Agile Principles, Lean Manufacturing
and Other Disciplines

Towards a Definition of Simplicity in Agile
Software Development: A Focus Group Study

Wylliams B. Santos1,2(B), José Adson O. G. Cunha3(B), Hermano Moura1(B),
and Tiziana Margaria4(B)

1 Centre for Informatics, Federal University of Pernambuco,
Recife, Pernambuco, Brazil
{wbs,hermano}@cin.ufpe.br

2 University of Pernambuco, Caruaru, Pernambuco, Brazil
3 Exact Sciences Department, Federal University of Paráıba,

João Pessoa, Paráıba, Brazil
adson@dcx.ufpb.br

4 University of Limerick and Lero - The Irish Software Research Centre,
Limerick, Ireland

tiziana.margaria@lero.ie

Abstract. Although Agile Software Development (ASD) has proven to
be an important set of methods that promotes simplicity issues, there
are difficulties in defining simplicity. In order to develop a conceptual
model of simplicity from the agile teams perspective, a literature review
was conducted covering models related to simplicity in different research
areas. Based on that, a conceptual model was developed, which was
then triangulated through a focus group with six ASD experts. Five
simplicity perspectives in the context of ASD were identified. From the
agile teams perspective, simplicity is defined as the theoretical virtue
disposing the team towards an analytic attitude that leads agile projects
to be successful. The conceptual model of simplicity in agile software
development is an invitation to practitioners to do what they already do,
but to do so more consciously. This consciousness can make a substantial
difference in real situations.

Keywords: Simplicity · Agile software development · Focus group

1 Introduction

Considering the emerging challenges and opportunities in software development,
Agile Software Development (ASD) represents an alternative to the heavyweight
methodologies. It puts less emphasis on up-front and strict control and relies
more on informal collaboration, coordination, and learning [1,2].

According to the Agile Manifesto [3], the ASD demands a focus on simplic-
ity stating that it is essential. Although there is a variety of methodologies and
frameworks of ASD (eXtreme Programming, Scrum, Lean Software Develop-
ment, Feature-Driven Development, and Crystal methodologies), few academic
c© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 3–17, 2018.
https://doi.org/10.1007/978-3-319-73673-0_1

4 W. B. Santos et al.

studies directly address simplicity [4–8]. In order to provide a better under-
standing of simplicity, this work proposes a definition of simplicity from the
agile team’s perspective and a conceptual model based on a literature review
which were then triangulated with experts through a focus group.

The remainder of this paper is organised as follows. Section 2 introduces the
background and related work of simplicity in three domains: Philosophy, Infor-
mation and Communications Technology (ICT), and Agile Software Develop-
ment. Section 3 presents the research method and the focus group conducted with
practitioners and researchers. Section 4 presents the conceptual model underly-
ing simplicity definition from the agile team’s perspective. Section 5 discusses the
limitations and implications for practices of our study. Finally, Sect. 6 addresses
conclusions and opportunities for future works.

2 Theoretical Background

The study of simplicity is an interdisciplinary endeavor with many concepts and
attributes. Margaria et al. [9] emphasises that the concept of simplicity is by far
not a simple concept because there are many perspectives on the perception of
simplicity.

2.1 Simplicity in Philosophy

Simplicity principles have been proposed in various forms by theologians, philoso-
phers, and scientists, from ancient to modern times. There is a widespread philo-
sophical presumption that simplicity is a theoretical virtue. This presumption
that simpler theories are preferable appears in many guises [10,11]. According
to Gambrel and Cafaro [10], virtue refers to the generic term commonly used for
any character trait people wish to commend. In both common speech and philo-
sophical discourse, the virtues refer to those qualities whose possession makes a
person, a good person.

Additionally, following Nussbaums schema [12], Gambrel and Cafaro [10]
define simplicity as the virtue disposing us to act appropriately within the sphere
of our consumer decisions. From this point of view, simplicity is a conscien-
tious and restrained attitude toward material goods that typically includes (i)
decreased consumption and (ii) a more conscious consumption, (iii) greater delib-
eration regarding our consumer decision, (iv) a more focused life in general, and
(v) a greater and more nuance appreciation for other things besides material
goods.

2.2 Simplicity in Information and Communications Technology

According to Margaria and Hinchey [5], the culture of “less” can be profoundly
disruptive, cutting out existing “standard” elements from products and busi-
ness models, thereby revolutionising entire markets. Ebert [13] affirms that what
determines a product’s success isn’t the number of features; it’s the few features

Towards a Definition of Simplicity in ASD 5

Table 1. Dimensions of simplicity [4,9].

Dimension Description

The art of
knowing

Knowing about an IT system, the more simple it appears to
that user

Structure The notions of layering and decomposition boundaries direct
the focus to a smaller subset of the problem thus leading
towards a simpler problem domain

Orthogonality Systems where the components are orthogonal, and the results
are predictable are viewed as simpler IT systems. This design
concept is keenly important when dealing with modularisation

Size The goal of simplicity in IT is to reduce aspects of systems,
such as the number of functions offered, the number of
modules, to the core ones desired by users

Transparency Transparent systems which explicit their assumptions are
perceived as being simpler

Predictability Systems whose behaviour and structure are predictable are
perceived to be simpler. The early feedback contributes to
eliminate, or at least to mitigate through early discovery, the
surprises in the systems

Communication Transparency and predictability taken together led often to the
fundamental question of how much, how, and when to
communicate

Automation Simplicity is also characterised as a measure of how little the
end user has to do

Abstraction By focusing on a right set of concepts and relationships, one can
highlight the essence of the problem that needs to be addressed

Context and
Subjectivity (felt
complexity)

Simplicity does not so much relate to a problem as such, but
rather to the way how this is perceived by the various
stakeholders

that differentiate it from other products. Complexity scales must be mastered
with product strategy, sound engineering process, and technology management
to achieve the necessary simplicity that secures the growth and sustains the
markets.

The predominant philosophy is that simplicity “is about subtracting the
obvious, and adding the meaningful”. Based on models of simplicity and find-
ings resulted from a Systematic Literature Review and direct interaction with
experts (individual interviews and focus group) in the area of ICT, Margaria,
Floyd, Bernhard and Bosselmann [4,9] compiled evidences (a set of recommenda-
tions) for possible lines of action, characterisation and dimensions of simplicity,
as presented in Table 1. These studies support that the philosophy of simplicity
is strategically important, yet still insufficiently understood.

6 W. B. Santos et al.

2.3 Simplicity in Agile Software Development

Based on the evolution of Project Management (PM) thinking, Moura and
Skibniewski [14] presented the Software Project Framework (SPF), composed
of disciplines, principles and dimensions in order to verify how PM and related
research have evolved over the years and to identify related trends. Simplic-
ity is one of the 14 dimensions (directions) for advancing research proposed by
the SPF. Moura and Skibniewski considered the agile methods as a promising
approach to this dimension.

In order to satisfy the agile values, some principles1 should be respected,
including that “Simplicity, the art of maximising the amount of work not done,
is essential”. Various methods propose agility in their definitions, aiming to find
efficient ways for developing software of quality across an agile development
process. In essence, agile methods emphasise simplicity. The goal is to get user
feedback quickly by delivering software at short increments, even if it covers only
a subset of the expected functionality [15].

Additionally, Meyer [15] affirms that who has ever obtained the first solution
to a problem of any kind, found it complex, and tried to simplify it. Therefore,
achieving simplicity often means adding work, sometimes lots of it. From this
point of view, achieving simplicity is not the same as minimising work [16].

Lean [17] also puts a very strong emphasis on simplicity. Lean comes from
Lean Manufacturing and is a set of principles for achieving quality, speed and
costumer alignment. Poppendieck and Poppendieck [18] adapted the principles
from Lean Manufacturing to fit software development. The Lean principle of
eliminate waste is supported and discussed by some empirical studies [19,20].
Zanoni et al. [19] extend the definition of waste to fit in the software inten-
sive product development context. More recently, in 2017, Sedano, Ralph and
Péraire identified and described different types of waste in software develop-
ment: building the wrong feature or product, mismanaging the backlog, rework,
unnecessarily complex solutions, extraneous cognitive load, psychological dis-
tress, waiting/multitasking, knowledge loss, and ineffective communication.

In this space, this research work provides the definition of simplicity in agile
software development and a conceptual model that support its definition. In
this sense, it is an invitation to practitioners to do what they already do, but
to do so more consciously. This consciousness can make a substantial difference
in real situations. From this perspective, rethinking means committing oneself
to a course of action where plausible analysis exists, to reexamine the adopted
practices focused on simplicity.

3 Research Method

Our conceptual model of simplicity in ASD was based on the general process
(Fig. 1). The first step, Literature Review, embodies the initial literature review

1 http://agilemanifesto.org/principles.html.

http://agilemanifesto.org/principles.html

Towards a Definition of Simplicity in ASD 7

Fig. 1. Research design.

(Sect. 2), gathering knowledge of ASD and the key concepts in the field of sim-
plicity, with emphasis on the agile software development aspects. Based on the
early findings from the literature review, an initial conceptual model and simplic-
ity definition from agile team’s perspective is proposed (Sect. 4.1). The second
step, Focus Group, addresses the focus group session performed to evaluate the
main elements and relationships proposed in the Initial model step. The Provi-
sional Model (Sect. 4.2) is dedicated to incorporate and improve the model based
on the focus group and literature review.

As a method of qualitative research data collection, a focus group is an inter-
view on a topic with a group of people who have knowledge of the topic [21,22].
Since the data we obtained from a focus group is socially constructed within
obtaining feedback on specific the group, a interpretivist (constructivism) per-
spective underlies this data collection procedure.

In this sense, this research adopts the main steps of the guideline for conduct-
ing and discussing focus group sessions in software engineering research proposed
by Kontio [23]. Following, we provide more information about the design and
arrangements of the study.

3.1 Defining the Research Problem

This study aim is to obtain an in-depth feedback on the proposed definition of
simplicity, generating ideas, collecting, prioritising potential problems, discover-
ing underlying ground and motivations. Furthermore, our focus group session
also centralises attention on obtaining feedback on specific elements of our con-
ceptual model underlying simplicity from the agile team’s perspective.

3.2 Selecting the Participants

According to Kontio [23], the value of the method is very sensitive to the expe-
rience and insight of the participants. Thus recruiting representative, insightful
and motivated participants is critical to the success of a focus group study. In
this sense, we purposely sampled six high qualified researchers and practition-
ers in ASD with different roles, such as project manager, consultant, professor,
researcher, scrum master and Project Manager Officer (PMO) with different
genders, ages and levels of education, to achieve maximum variation in data col-
lection. We considered only PhD researchers in the project management area.
Table 2 compiles the participants’ demographic profile.

8 W. B. Santos et al.

Table 2. Profile of participants

Role Education Gender PM (years) Agile (years) Agile

methods

Certification

P1 Researcher

Consultant

Professor

Scrum Master

PhD Male 6 to 10 6 to 10 Scrum

Kanban

LSD

CSM

P2 Project Manager

Researcher

Professor

Scrum Master

PhD Male 16 to 20 11 to 15 Scrum

Kanban

LSD

ASD

MAnGve [24]

CSM

ITIL

COBIT

P3 Consultant

Researcher

Professor

Scrum Master

PhD Male 11 to 15 6 to 10 Scrum

XP

CSM

CSPO

MPS.BR

P4 PMO Manager

Researcher

Professor

Scrum Master

PhD Male 11 to 15 6 to 10 Scrum

Kanban

PMP

P5 Consultant

Researcher

Professor

Scrum Master

PhD Female 6 to 10 6 to 10 Scrum

Kanban

CSM

CSD

MPS.BR

CERTICS

P6 Researcher

Professor

Scrum Master

PhD Male 6 to 10 6 to 10 Scrum

XP

PMP

CSM

Due to anonymity and ethical issues, the participants are labelled by P1 to P6
codes. All of participants are Certified Scrum Master (CSM), with exception to
P4, who is a Project Management Professional (PMP). Besides CSM and PMP,
all participants are specialists in project management, governance and software
quality. According to Table 2, they hold extensive industry certifications, includ-
ing Certified Scrum Product Owner (CSPO), Certified Scrum Developer (CSD),
Information Technology Infrastructure Library (ITIL), Control Objectives for
Information and Related Technologies (COBIT), Certificate on Technology and
Innovation in Brazil (CERTICS), and Brazilian Process Improvement Model
(MPS.Br).

3.3 Planning and Conducting the Focus Group Session

We held a pilot session with two researchers, who is not included in those
described in Table 2, in order to practice the focus group process and evalu-
ate the questions. As a result, a few minor changes in question phrasing were
made.

All the subjects agreed to participate in this focus group session and gave
their written informed consent. The focus group session lasted 120 min and was
recorded with an MP3 player. The use of audio recording ensured an identical
replication of the session, thus facilitating its analysis.

Towards a Definition of Simplicity in ASD 9

The session started with an overview of the objectives of the study and full
explanation about the nature of participation. The audio data of the session
was transcribed by the investigator using oTranscribe2 and analysed through
ATLAS.ti3. Based on Kontio’s guideline [23], the discussion transcript was issue-
based, i.e., each issue or point raised was documented verbatim, but the tran-
script did not include clarification discussions, jokes, or other non-related com-
munications in the meeting. Aiming to keep the anonymity and confidentiality,
just the named investigators had access to the verbatim data collected during
the session.

The first author of this paper worked as a facilitator of the session by moti-
vating the participants to discuss and by leading the discussion. The interview
script was composed of open-end questions. This kind of question is designed to
encourage a full, meaningful answer using the subject’s own knowledge. In order
to reach the research problem (Sect. 3.1), we set out to answer the following
research questions (RQs):

– RQ1: Is the definition of simplicity from the agile teams perspective under-
standable? Please explain.

– RQ2: Are the conceptual model and their elements which support the defini-
tion of simplicity from the agile teams perspective understandable?

– RQ3: Are the conceptual model and their elements which support the defini-
tion of simplicity from the agile teams perspective reasonable?

4 Conceptual Model

According to our literature review, we identified five simplicity perspectives in
the context of Agile Software Development (see Fig. 2): agile team, product,
project process, customer, and user. Each of these perspectives are following
summarised.

Fig. 2. Simplicity perspectives in agile software development.

2 http://otranscribe.com.
3 http://atlasti.com.

http://otranscribe.com
http://atlasti.com

10 W. B. Santos et al.

– Agile Team perspective addresses various aspects of team dynamics. e.g.,
organization and communication;

– Product perspective focuses on aspects regarding the software (value) that
are developed. e.g., usability and easy integration;

– Project Process perspective is related to agile practises and techniques
for managing and developing the project. e.g., delivery strategy and pair
programming;

– Customer’s viewpoint addresses aspects regarding the business requirements.
e.g., coordination of financial side, product backlog and sprint planning
meeting.

– Simplicity from the user’s viewpoint addresses aspects regarding the user-
experience (UX). e.g., you must first know the user and continually test your
assumptions.

Additionally, our representation (see Fig. 2) is composed by a pictogram,
which represents different viewpoints or perspectives of each dimension of
simplicity. The proposed model is particularly interested in addressing agile
team’s point of view. Conforming to Margaria et al. [9] there are many per-
spectives on the concept of simplicity. For example, simplicity can be related to
the number of components a system possesses. It can also reflect the amount of
effort a user of the system has to expend to use the system or the level of effort
and amount of knowledge to understand the system.

4.1 Initial Definition and Conceptual Model Based on a Literature
Review

Outlining the diverse definitions from different areas, we defined simplicity from
the agile team’s perspective by adopting the ultimate function, rather than defin-
ing a set of practises. In this sense, we define simplicity in ASD as:

“The theoretical virtue disposing the team towards a conscientious, mini-
malistic and analytic attitude that leads agile projects to be successful”.

This definition was inspired by the functional definition of agile proposed by
Kruchten [25]. He also illustrates a great analogy by defining a road: “Would
you define a road as something made of crushed rocks and tar, or define it as
a surface that is black rather than white, flat rather than undulated, and with
painted lines rather than monochrome? Or would you rather define a road as a
component of a transportation system, allowing people and goods to be moved
on the ground surface from point A to point B? And then let the properties
or components of the road be derived from this functional definition, allowing
some novel approaches in road design, rather than defining it narrowly using a
common recipe.” The same analogy is applied to our definition of simplicity from
the perspective of the agile team.

Our conceptual model (See Fig. 3) is a coherent system of interrelated funda-
mentals that lead to consistent explanation regarding the definition of simplicity

Towards a Definition of Simplicity in ASD 11

from the agile team’s perspective. It is set up and inspired by Egyptian pyra-
mids, certainly one of the most perfect and extraordinary shapes created by
humans [26]. Additionally, the regular tetrahedron, comprising only four equi-
lateral triangles, has a claim to simplicity and symmetry [27]. Analogously, these
are the main characteristics of our pyramid.

Fig. 3. Pyramid of simplicity in ASD.

Figure 3 provides an overview of the conceptual model illustrating the nature
and relationships between the different components of the pyramid. The pyra-
mid is revolving around the Agile Manifesto (iii), which unifies and establishes
a common set of values and principles; (ii) dimensions of simplicity (Table 1),
which identify the structures and aspects that lead to simplicity. On the top of
the pyramid, (iv) Critical Success Factors [28] - are the factors that must be
present for the agile project to be successful. The (i) philosophical concept of
simplicity [10] is considered as the centre or as a core part of the model.

4.2 Provisional Conceptual Model and Definition Based on a Focus
Group

A focus group session was conducted to triangulate the conceptual model and
definition with experts. Participants were asked about their understanding of the
proposed definition of simplicity in agile software development. The findings of
this step are presented here. For each quote, the following format was adopted:
[P participant number]. The main investigator acted as the moderator of the
session with special care to not interfere in the discussion, just clarifying unclear
issues.

12 W. B. Santos et al.

The thematic analysis method was used for identifying, analysing, and report-
ing patterns (themes) within the transcribed data. Cruzes and Dyb̊a [29] describe
the main steps and checklist items proposed for thematic synthesis in Software
Engineering: extract data, code data, translate codes into themes, create a model
of higher-order themes, and access the trustworthiness of the synthesis. The the-
matic map relating the categories extracted during the focus group analysis are
illustrated in Fig. 4 and described further below.

Fig. 4. Thematic map: Focus group session.

(a) Simplifying the Definition: All participants were clear in standing that
simplicity in the context of ASD needs a simple definition. According to them,
the proposed definition is not clear and some enhancement are necessary in order
to keep the desired statement (simple as possible). As some participants strongly
indicated:

“the definition of simplicity in agile software development must be simple.”
[P4]
“There isn’t a definition that the user can read and immediately under-
stands, so we have to present additional explanations. The current setting
is complex.”[P3]

Additionally, all experts state that according to the agile culture, simple
definitions are preferred by the agile practitioners.

(b) Restructuring the Definition: All experts were headed towards a sys-
temic restructuring of the definition, as indicated in the following quote.

“... restructure the definition to make it cleaner (the way of writing). Make
the definition less philosophical.”[P5]

Towards a Definition of Simplicity in ASD 13

Fig. 5. Pyramid of simplicity in ASD: Relationship between the conceptual model and
the tailoring mechanism.

(c) Integration Among the Elements: All experts claimed that all unit
elements have to be in synergy towards simplicity, as indicated in the following
excerpt:

“ the components (conceptual model) are coherent, but there must be a
conceptual integration among them.”[P2]

As can be seen in Fig. 5, the arrow involving the pyramid symbolises “the
tailoring mechanism” of our conceptual model, which proposes an integration
and accommodation of concepts among the different elements of our conceptual
model: (i) philosophical concept of simplicity, (ii) dimensions of simplicity, (iii)
agile manifesto, and (iv) critical success factors.

We argue that by incorporating the tailoring mechanism, an overarching
concept-centric view of simplicity would allow practitioners and researchers to
critically reflect on agile methods, and constantly find ways of extending or
tailoring the method to foster and promote simplicity in order to continuous
improvement.

(d) Rethinking Simplicity: This new way of dealing with simplicity in the
context of agile software development requires the capacity to rethink the under-
lying competences under a different image of project, demanding a new team’s
mindset in order to further boost the success of the projects with focus on sim-
plicity, as stated by one of our participants.

14 W. B. Santos et al.

“it’s an interesting topic. Both, researchers and practitioners must dis-
cuss, enrich and extend the topic of simplicity beyond its current concep-
tual foundations”. [P1]

Furthermore, relationships between the components of the pyramid are not
stated in a linear/sequential way. Essentially, they must be present in order to
keep the “spirit of simplicity”.

Provisional Definition and Model: Based on participants understanding and
analysis resulted from the focus group session, some enhancements were needed
in our proposed definition. As following, we present the amended definition. The
new text is underlined and important deletions are indicated using strikethrough.

“the theoretical virtue disposing the team towards a conscientious, mini-
malistic and an analytic attitude that leads agile projects to be successful”.

All participants were unanimous in emphasising that conscientious and min-
imalistic are embodied by the term analytic attitude. According to participants,
a person who advocates or practises minimalism, automatically embodies an
analytic attitude. Additionally, in order to proceed analytic attitude, a very
seriously and conscientious postures are necessary. In this regards, these terms
were removed from the provisional definition, stated as:

“the theoretical virtue disposing the team towards an analytic attitude that
leads agile projects to be successful”.

Each element of our definition is exploited in Fig. 5 as: (i) “the theoretical
virtue disposing the team towards an analytic attitude” is related with the philo-
sophical concept of simplicity (core of the pyramid); (ii) the term “that leads”
addresses the connection with “Dimensions of Simplicity”, the first base of the
pyramid; (iii) “agile projects” refers to the values and principles of “Agile Man-
ifesto”, the second base of the pyramid; and (iv) “to be successful” is based on
the Critical Success Factors triangle (top of the pyramid).

5 Discussion

In this section, we discuss the limitations, validity, and reliability of our results.
Implications of the results for practice are also addressed.

5.1 Addressing Limitations, Validity and Reliability

The validity and reliability of our results are discussed from the perspective
proposed by Merriam [30].

Construct validity in qualitative research is related to the precise and clear-
cut definition of constructs that is consistent with the meanings assigned by the

Towards a Definition of Simplicity in ASD 15

research participants. Although we constantly compared and contrasted our con-
struct definitions with the literature, another focus group session can be executed
for obtaining additional qualitative insights and feedback from practitioners.

Internal validity, or credibility, is related to the extent that the results match
reality. To increase credibility, we sampled experts in ASD with different roles
in software projects, as described in Table 2. The preliminary results were dis-
cussed between the authors to refine the findings. In this sense, we reduced the
potential bias in interpreting the results by having another person reviewing all
interpretations made during the analysis. A limitation is that we conducted only
one focus group session.

Reliability refers to the extent that the results can be replicated. We tried
to provide a rich description of the research method, the context in which the
research was performed, and the results themselves.

Finally, this study reflects the results from a focus group with six experts
with different points of view and perceptions about the studied phenomenon.
Although they contributed to a rich description of the definition, we aim to
replicate our protocol in other cases.

5.2 Implications for Practice

The provisional conceptual model and definition of simplicity is proposed to be
a careful tool to understand the simplicity phenomena in ASD. It aims to be
useful and reflective in its approach to both researchers and practitioners.

In this regard, the practitioners that desire to achieve simplicity through a
thoughtful way can be benefited to do what they already do, but to do so more
consciously. As an example, from this analysis, some agile practices could be
refocused and re-prioritised as a vehicle to promote effective results, disposing
the agile team toward the focus on critical factors to project success.

This consciousness can make a substantial difference in real situations,
because simplicity does relate to the way how this is perceived by the agile
team. It can influence the actions that follow, and the eventual results that
might be achieved. As usual, when building mindsets, awareness sharpens the
sight, especially in critical situations.

6 Concluding Remarks and Future Works

Simplicity has been increasingly recognised as a driving paradigm in ICT devel-
opment, maintenance, use and management, but according to the experts and the
literature, there are difficulties in defining simplicity and its impact on projects.

This study is part of an ongoing research aimed to identify laws, practises,
strategies, factors, techniques and theories in order to improve the simplicity
management [7,8,31]. This article presents a conceptual model underlying sim-
plicity definition from the agile team’s perspective. We believe that an exhaustive
comprehension of this phenomena could support academics and practitioners in
the direction of increasing the success rates of projects.

16 W. B. Santos et al.

Future works will focus on the development of a deeper knowledge and com-
prehensive understanding based on a Systematic Mapping Study. Qualitative
studies will be conducted to understand how project managers and software
engineers (developers) interpret their experiences about simplicity in ASD in
the workplace. Besides, we aim to conduct another focus group session with
developers as source of information to capture the agile team perspective.

Acknowledgements. The authors would like to acknowledge the Brazilian National
Research Council - CNPq (142296/2013-9), Brazil’s Science without Borders Program
(205663/2014-1), the SFI grant 13/RC/2094 to Lero - the Irish Software Research
Centre (www.lero.ie), and University of Limerick for the support of this research.

References

1. Dyb̊a, T., Dingsøyr, T., Moe, N.B.: Agile project management. In: Ruhe, G.,
Wohlin, C. (eds.) Software Project Management in a Changing World, pp. 277–300.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55035-5 11

2. Mello, R., Silva, P., Travassos, G.: Agilidade em Processos de Software: Evidências
Sobre Caracteŕısticas de Agilidade e Práticas Ágeis. In: XIII Brazilian Symposium
on Software Quality (SBQS). Technical Papers, pp. 151–164. Brazilian Computer
Society (SBC), Blumenau (2014)

3. Beck, K., Beedle, M.: Manifesto for agile software development (2001). http://
agilemanifesto.org. Accessed 19 June 2017

4. Floyd, B.D., Bosselmann, S.: ITSy - simplicity research in information and com-
munication technology. Computer 46(11), 26–32 (2013)

5. Margaria, T., Hinchey, M.: Simplicity in IT: the power of less. Computer 46(11),
23–25 (2013)

6. Margaria, T., Steffen, B.: Simplicity as a driver for agile innovation. Computer
43(6), 90–92 (2010)

7. Santos, W., Perrelli, H.: Towards an approach to foster simplicity in agile soft-
ware development projects. In: 9th Workshop on Information System PhD and
Master’s Thesis (12th Brazilian Symposium on Information Systems). SBSI 2016,
Florianópolis-SC, Brazil, pp. 4–7. Association for Computing Machinery (ACM)
(2016)

8. Santos, W.: Towards a better understanding of simplicity in agile software develop-
ment projects. In: Proceedings of the 20th International Conference on Evaluation
and Assessment in Software Engineering. EASE 2016, pp. 2:1–2:4. ACM, New York
(2016)

9. Margaria, T., Floyd, B.D., Steffen, B.: ITSy - recommendation document. Univer-
sity of Postdam, Postdam, Technical report (2011). https://www.cs.uni-potsdam.
de/gsse/ITSy/files/ITSy final report.pdf. Accessed 19 June 2017

10. Gambrel, J.C., Cafaro, P.: The virtue of simplicity. J. Agric. Environ. Ethics 23,
85–108 (2009). VN-r

11. Baker, A.: Simplicity. The Standard Encyclopedia of Philosophy (2013). http://
plato.stanford.edu/archives/fall2013/entries/simplicity/. Accessed 19 June 2017

12. Nussbaum, M.C.: Non-relative virtues: an aristotelian approach. Midwest Stud.
Philos. 13(1), 32–53 (1988)

13. Ebert, C., Hoefner, G., Mani, V.S.: What next? Advances in software-driven indus-
tries. IEEE 32, 22–28 (2015)

http://www.lero.ie
https://doi.org/10.1007/978-3-642-55035-5_11
http://agilemanifesto.org
http://agilemanifesto.org
https://www.cs.uni-potsdam.de/gsse/ITSy/files/ITSy_final_report.pdf
https://www.cs.uni-potsdam.de/gsse/ITSy/files/ITSy_final_report.pdf
http://plato.stanford.edu/archives/fall2013/entries/simplicity/
http://plato.stanford.edu/archives/fall2013/entries/simplicity/

Towards a Definition of Simplicity in ASD 17

14. Moura, H., Skibniewski, M.: The evolution of management thinking. In: Interna-
tional Research Network on Organizing by Project (IRNOP) (2011)

15. Meyer, B.: Agile! The Good, the Hype and the Ugly. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-05155-0

16. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies:
towards explaining agile software development. J. Syst. Softw. 85(6), 1213–1221
(2012)

17. Womack, J.P., Jones, D.T.: Lean Thinking: Banish Waste and Create Wealth in
Your Corporation, 2nd edn. Productivity Press, New York (2003)

18. Poppendieck, M., Poppendieck, T.: Lean Software Development: An Agile Toolkit.
Addison-Wesley Longman Publishing Co., Inc., Boston (2003)

19. Zanoni, M., Perin, F., Fontana, F.A., Viscusi, G.: Extending value stream mapping
through waste definition beyond customer perspective. J. Softw. Evol. Process
26(12), 1172–1192 (2014)

20. Sedano, T., Ralph, P., Péraire, C.: Software development waste. In: 39th Interna-
tional Conference on Software Engineering - ICSE 2017, May 2017, pp. 130–140.
IEEE Computer Society (2017)

21. Seaman, C.: Qualitative methods in empirical studies of software engineering. IEEE
Trans. Software Eng. 25(4), 557–572 (1999)

22. Runeson, P., Höst, M.: Guidelines for conducting and reporting case study research
in software engineering. Empir. Softw. Eng. 14(2), 131–164 (2009)

23. Kontio, J., Lehtola, L., Bragge, J.: Using the focus group method in software engi-
neering: obtaining practitioner and user experiences. In: International Symposium
on Empirical Software Engineering (ISESE 2004), pp. 271–280. IEEE Computer
Society, Washington, DC (2004)

24. de Oliveria Luna, A.J.H., de Farias Junior, I.H., Kruchten, P., Moura, H.:
MAnGve : a step towards deploying agile governance. In: Brazilian Symposium on
Software Engineering (SBES) - Industry Track (CBSoft 2014), November, Maceió,
AL, Brazil (2014)

25. Kruchten, P.: Contextualizing agile software development. J. Softw. Evol. Process
24, 351–361 (2013)

26. Morris, G., Schadla-Hall, R.T.: Ancient Egypt on the small screen - from fact
to fiction in the UK. In: Consuming Ancient Egypt, Chap. 14, pp. 195–215. UCL
Press - Institute of Archaeology, London (2003). http://discovery.ucl.ac.uk/11409/.
Accessed 19 June 2017

27. Humbert, J.-M., Price, C.: Imhotep Today: Engyptianizing Architecture. UCL
Press - Institute of Archaeology, London (2003)

28. da Silva, K.M.B., dos Santos, S.C.: Critical factors in agile software projects accord-
ing to people, process and technology perspective. In: 6th Brazilian Workshop on
Agile Methods (WBMA 2015), Agile Brazil 2015, Porto de Galinhas (2015)

29. Cruzes, D.S., Dyb̊a, T.: Recommended steps for thematic synthesis in software
engineering. In: International Symposium on Empirical Software Engineering and
Measurement, no. 7491, pp. 275–284 (2011)

30. Merriam, S.B.: Qualitative Research: A Guide to Design and Implementation.
Jossey-Bass Higher and Adult Education Series, 2nd edn. Wiley, Hoboken (2009)

31. Moreira, B., Barbosa Santos, W., Júnior, I., Moura, H., Margaria, T.: Simplicidade
no Desenvolvimento Ágil de Software: Resultados Preliminares de um Mapeamento
Sistemático da Literatura. In: XIII Brazilian Symposium on Information Systems
(SBSI), 4th Workshop on Information Systems Undergraduate Research (WICSI),
pp. 89–92. Brazilian Computer Society (SBC), Lavras (2017)

https://doi.org/10.1007/978-3-319-05155-0
http://discovery.ucl.ac.uk/11409/

Agile Testing and Quality: Techniques,
Patterns and Automated Support

ASA: Agile Software Development Self-assessment Method

Matheus Florêncio, Fernando Sambinelli(✉), and Marcos Augusto Francisco Borges

Faculdade de Tecnologia, Universidade Estadual de Campinas,
Campus Limeira, R. Paschoal Marmo, 1888, Limeira, SP 13484-332, Brazil

m137014@dac.unicamp.br, f180172@g.unicamp.br,
marcosborges@ft.unicamp.br

Abstract. The migration from classical development to agile methodologies
presents itself as a journey with many obstacles. New methods and tools for
evaluating teams and organizations that support this process have been devel‐
oped by the academic community and industry. However, questions have been
raised on the inconsistencies for alignment of these methods with respect to
the principles contained in the Agile Manifesto. The objective of this work
was to investigate these possible inconsistencies and propose solutions in
order to solve them. A critical analysis of the main agile evaluation methods
and tools was carried out, based on a review of the literature, and misalign‐
ments were identified regarding the agile principles of flexibility, simplicity
and pursuit for excellence. A new method of evaluation, the Agile Self-
Assessment, has been proposed to address these gaps and to add to the
capacity for continuous improvement in this process. A prototype tool was
also developed that implements the method proposed in this work.

Keywords: Agile methodologies · Agile Manifesto · Continuous improvement

1 Introduction

The way in which software is developed has changed considerably since the emergence
of agile methods in the late 1990s [1], inspired by the Agile Manifesto [2]. In contrast
to previously dominant classical methodologies, which presented problems concerning
cost and deadlines, and other shortcomings [3], Agile Software Development (ASD), or
simply agile methods, introduced new principles, methods and tools and have achieved
prominence in the software industry for presenting more satisfactory results [4]. The
ASD has attracted the interest of the academia, where research on this subject has
obtained relevant representation in recent years [5].

Migration from classical development to agile methodologies takes time and effort.
It has been focusing on software companies for a number of years, mainly because of
the risk of wasted time and investment [6] and the obstacles typically encountered on
this journey [7]. The adoption of ASD is an ongoing process in constant evolution and
maturation, of all the team and company structures, including people, technologies,
management and process. Therefore, it is not an end in itself, but an ongoing process of
organizational learning [8].

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 21–30, 2018.
https://doi.org/10.1007/978-3-319-73673-0_2

Researchers have studied and developed new methods and tools to evaluate the
processes that sustain the ASD, making it possible to measure the progress of its adop‐
tion, helping teams in the continuous improvement process and supporting the compar‐
ison of agility among teams and organizations [6]. However, there are still few models
and methods of measurement proposed and, for the most part, still exposed to many
problems and challenges [9]. Furthermore, these methods have generated discussions
in the academic community about their alignment with the agile principles [6, 10] present
in the Agile Manifesto, a common basis for agile methods.

The objective of this work was to analyze the main methods and tools of ASD eval‐
uation in relation to the agile principles of flexibility, simplicity and pursuit for technical
excellence, and to propose a solution more in line with these parameters.

Section 2 describes the research methodology used in this work. Section 3 mentions
the main agile assessment tools and methods. Section 4 presents the preliminary results
obtained so far. Finally, Sect. 5 concludes the discussions of this study and indicates
future work.

2 Research Methodology

At the begin of the research were searched the following strings: “Agile AND Self-
Assessment”, “‘Agile Software Development’ AND Assessment”, “Agile AND Assess‐
ment AND Process Improvement” AND “Agile AND (Practices OR Methods)” within
the bases IEEE xplore, Springer, ACM, Elsevier Journal of Systems and Software and
Google Scholar. In search of agile assessment methods and it characteristics and char‐
acteristics of agile practices. After, we selected the articles based on three criteria: first,
if the article presents an assessment method. Second, if it summarizes or analyzes an
assessment method. Third, if the article presents characteristics of agile practices that
could be used to create the evaluation criteria for each practice in ASA.

Based on this, a literature review of 21 articles were read and then mapped the
particular characteristics of each method. The mapping was built by checking specific
characteristics. These characteristics were capacity of the method to be flexible to a team
or organization context, the number of evaluation criteria, if it is a continuous improve‐
ment enabler and the method comprehensiveness. The characteristics were derived from
the agile principles found in the Agile Manifesto.

So, a critical analysis was made related to the adherence of the assessment methods
to the characteristics. The First analysis was if an assessment method is sensitive to a
team or organization context what implies in greater or lesser flexibility. The Second
analysis was if an assessment method has an increased or reduced number of evaluation
criteria what implies in greater or lesser simplicity. The third analysis was if the method
has or not an explicit feature that enables the assessor improve continually. Ultimately,
not related with agile principles, the comprehensiveness of the method. It means how
many practices and agile characteristics the assessment method covers. From the first
three characteristics analyzed was possible to verify the alignment of the assessment
methods with the agile principles of flexibility, simplicity and pursuit for excellence set
out in the Agile Manifesto. Subsequently, from the issues in alignment between

22 M. Florêncio et al.

assessment methods and agile principles found. A new method and a prototype were
proposed to enable better tuning in relation to the agile principles.

3 Main ASD Assessment Methods and Tools

As mentioned, the number of ASD models and assessment methods is relatively low.
The works of Nafchi et al. [6] identified the main methods and evaluation tools of ASD
published in recent years:

• Comparative Agility (CA) by William et al. [11]: A tool that measures the level of
agility between teams or organizations through a 125-question questionnaire. The
verified items address the agile practices present in SCRUM and XP and are answered
using the Likert scale [12];

• OPP Framework by Soundararajan et al. [9]: the method considers three spheres for
assessing agility, which are the adaptation of the method to agile principles, the
company’s ability to apply the method and the effectiveness of the method;

• Sidky Agile Measurement Index (SAMI) by Sidky et al. [13]: the tool consists of 4
components that are: agility levels; agile principles; agile practices; and indicators.
The evaluation is based on the verification of 300 indicators that measure organiza‐
tional and practical characteristics with an aim to achieve the implementation of agile
principles;

• Thoughtworks Assessment Model (TAM) by the company Thoughtworks [14]: an
online self-assessment tool consisting of 21 questions that when answered indicate
the agility level of a team or agile organization;

• 4-D Framework (4-D) by Qumer and Henderson-Sellers [15]: self-assessment
method based on 4 dimensions that are: scope of the method; agility characterization;
characterization of agile values; and characterization of the software development
process. The method has 23 questions related to these dimensions, resulting in the
level of agility of a team or agile organization.

3.1 Analysis of ASD Main Methods and Assessment Tools

The inconsistencies between ASD assessment methods and agile principles may lead to
a low interest in the application of these methods by practitioners [10]. That is the reason
why the alignment between them is so important. At this stage of the work, the agile
evaluation methods CA, SAMI, TAM, 4-D and OPP were analyzed critically, seeking
to identify these possible misalignments. The following inconsistencies and considera‐
tions were raised upon completion of this preliminary analysis:

• Inconsistency with the agile principle of flexibility: As mentioned above CA is
composed by a group of statements that indicates an organization agility level. These
statements are related with agile practices and are not allowed to be chosen given a
team or organization context. Could infer so, that if the assessor does not want to
apply a particular practice he will be negatively impacted in his agility level. Simi‐
larly, as quoted SAMI has indicators, related with agile practices, that help an

ASA: Agile Software Development Self-assessment Method 23

organization understand to what extent it is agile using five agility levels. The indi‐
cators measure agile characteristics within the organization through questions that
try to check the presence of these agile characteristics. In this way, if a question is
marked with a null response because is a practice not applicable within the organi‐
zation. The assessment, which is the agility level, will be impaired. Even if the prac‐
tice is misaligned with the organization context. The other methods OPP, 4-DAT and
TAM presents a similar pattern as described in CA and SAMI. Considering that all
the explained methods measures agility levels based on the presence of agile practices
and more presence means a higher agility. In addition, the methods do not allow
choose the practices or characteristics given a team or organization context. So, in
this aspect, the models quoted is similar to that proposed by CMMI [16], since it
evaluates the software development process based on maturity levels. The analogy
between CMMI and Agile Assessment Methods is that one measures processes and
the other practices and, the first is based on maturity level and the second in agility
levels. Therefore, the evaluation models cited induce the evaluated team or organi‐
zation to adopt practices that may not be appropriate to the context at that time in
order to achieve higher levels of agility. Therefore, these five models are inconsistent
with the agile principle of flexibility;

• Inconsistency with the agile principle of simplicity: the CA tool consists of 125
characteristics of agile methods, evaluated according to the Likert scale [12]. SAMI
consists of 300 indicators that measures an organization agility level. Assuming that
a team takes two minutes, on average, to evaluate a characteristic or indicator of the
aforementioned methods, it would take around 4 h to respond to a complete assess‐
ment through CA and 10 h through SAMI. The principle of simplicity is described
in the Agile Manifesto as the art of maximizing the amount of work that did not have
to be done [2]. It was assumed that it is counter-intuitive to have such a large number
of questions that demand such a considerable amount of time for its application. Thus,
CA and SAMI are inconsistent with the agile principle of simplicity. The OPP
method, which evaluates the agility of a team by means of 27 practices (i.e., criteria),
was presented as the simplest among them;

• Inconsistency with the agile principle of pursuit of excellence: all tools analyzed,
even in different ways, indicate the level of agility of a team after performing an
evaluation, in other words they indicate the current situation. It is observed in these
methods the absence of extensions that provide the establishment of goals and action
plans that aim at the continuous improvement of the process of adoption of the agile
methodology or its evolution in teams that have already implemented such an
approach. Thus, it can be assumed that the agile principle of pursuit for excellence
is not covered in its totality in the methods and tools analyzed;

• Comprehensive agile evaluation methods and tools: it was observed that the eval‐
uation methods CA, SAMI and 4-D have been considered as only a perspective of
the agile development process. The CA verifies the presence of agile practices that
are inherent characteristics in the team or organization. SAMI measures an organi‐
zational characteristic related to a particular agile practice. The 4-D method verifies
the presence of agile characteristics related to one of its 4 dimensions: scope of the
method; agile characterization; characterization of agile values; characterization of

24 M. Florêncio et al.

the software process. On the other hand, the OPP method uses in its evaluation three
perspectives: the adaptation of the method of development to the agile principles, the
capacity of a team to use the method and the effectiveness of the method itself. The
OPP method is apparently more comprehensive than the others evaluated.

4 Preliminary Results

4.1 The Agile Self-assessment Method

From the observation of the inconsistencies in alignment between the ASD assessment
methods and tools and some principles originated in the Agile Manifesto [2], the Agile
Self-Assessment (ASA) method was proposed. The ASA proposes to address these gaps
by making evaluation criteria more flexible to the application context, simplifying the
assessment and its ability to promote continuous improvement, and proposing compre‐
hensive evaluation perspectives to the method. The main characteristics of ASA are
described below:

• Flexibility of the evaluation criteria to the application context: the ASA method
establishes evaluation criteria beforehand, also known as practice and the corre‐
spondent evaluation criteria for each practice. However, ASA allows agile practices
that are not aligned with the context of the team or organization to be disregarded,
and thus, only the practices that are aligned with the team or organization context are
counted in the evaluation result. For example, the practice of pair programming is
not always consensus in all agile teams, and it is possible to disregard this practice,
as an evaluation criterion, because of the organization context is not aligned with it.
This approach offers greater flexibility for the ASA, when compared to the other
methods described in Sect. 2. In contrast, the option to remove the initial practices
from the evaluation will require maturity and good sense from the teams, since they
could disregard important agile components for an effective evaluation. In short, in
ASA, agile teams will be allowed to choose the practices that are compatible with
their context, what is not allowed in the other mentioned methods. Therefore, ASA
have greater flexibility, when compared, with the other analyzed methods.

• Simplicity in the application of the evaluation: based on the analysis of the main
methods of evaluation of the ASD, described in Sect. 3.1, it is noticed that the agile
principle of simplicity is more aligned to the OPP method because it involves less
evaluation criteria. Therefore, it was decided to adopt the evaluation items of this
model as the initial basis for the ASA. These evaluation items are the objectives,
principles and practices present on OPP. Also, the relationship chain between these
evaluation items. In a complementary way, when examining the OPP, it was observed
that it would be possible to merge four of its agile practices into only two, reducing
the total of practices to 25 and consequentially the number of evaluation criteria
correspondent to the merged practices. In the ASA, the practice “iterative and incre‐
mental development” and “small and frequent releases” has become just one practice,
called “iterative and incremental development and small, frequent releases”. The
practice of “iterative and incremental development” is based on development through

ASA: Agile Software Development Self-assessment Method 25

evolutionary cycles of product functionalities over time and on staged deliveries of
the software. The practice of “small and frequent releases” considers that delivery of
development should be small and frequent, in an incremental way. Thus, it was
possible to observe that the two practices could be merged because they intersect.
Finally, the “automated test build” practice is described in the OPP as the automatic
construction of a software after the commit of a developer and the automatic reali‐
zation of the unit tests. However, the practice of “continuous delivery” includes in
its scope the process of building and testing automated systems. It is noted that the
practice “automated test build” is part of the “continuous delivery” practice, and
could therefore be merged also. In this way, it was possible to reduce the number of
evaluation criteria in ASA to 25 practices and 54 evaluation criteria related to these
practices that support measurement of agile adoption. In comparison with CA and
SAMI, ASA is simpler. Thus, more aligned with the simplicity agile principle;

• Introduction of continuous improvement to the evaluation method: the ASA
method considers in its evaluation application approach the possibility of jointly
implementing the continuous improvement of agility. For this, it uses the PDCA meth‐
odology, also known as Shewhart Cycle or Deming Cycle. The PDCA (Plan, Do,
Check, Act) has as its basic function the aid in the diagnosis, analysis and prognosis
of organizational problems, being extremely useful for solving problems and very
effective in the search for continuous improvement [17]. After applying an agile
assessment through the ASA, the team or organization outlines action plans and
improvement goals on practices that are identified as still deficient based on the gap
between the evaluation result for the current state of agile adoption and the target state,
this is the Planning stage. The evaluation result is generated through the assessor
application of ASA by the selection of present or absent evaluation criteria from the
listed practices in ASA, columns “Current Evaluation” and “Target” shown in Fig. 2,
and the result is presented for both, current state and target state, as shown in the
Fig. 3. Soon after, the team executes the action plan defined jointly by the evaluated
team: this is the Execution phase. Again, after a period of time defined by the team
under evaluation, it is submitted to a new examination by the ASA method: this is the
Verification step. As the new ASA assesses results, the team compares the improve‐
ment actions and planned goals at the beginning of the cycle, performs a critical anal‐
ysis, considers new chances for improvement, and can make decisions about the next
steps: this phase is called Action. After this, the cycle starts again with the Planning
phase. It is expected that the PDCA cycle execution will bring about constant improve‐
ment of the ASD, making the evaluation method an instrument of improvement, not
only a reflection of possible agility problems of the team. As criteria of analysis, were
searched on the evaluation methods features that are enablers of continuous improve‐
ment. Although, the evaluation methods analyzed did not show these features. There‐
fore, these methods are less aligned with the pursuit for excellence agile principle.
However, ASA was built with PDCA, continuous improvement methodology. Thus,
ASA is more aligned with the pursuit for excellence agile principle than the other
methods because it provides continuous improvement;

• Comprehensive assessment dimensions: the ASA method proposes to use the same
evaluation dimensions suggested in the OPP, assessing, in addition to the suitability

26 M. Florêncio et al.

of software development to the agile principles, the capacity and effectiveness of a
team or organization in that journey. This more comprehensive option considers the
means and quality of the results achieved by a team or organization to what is required
as satisfactory by the evaluation method, so it is presented as a more complete
approach. Up to the present time of this research, efforts have focused on the devel‐
opment of the ASA method and prototype in the capacity assessment dimension to
agile principles. The other dimensions will be considered in the future work.

4.2 The Agile Practices Assessment Criteria

The next step after mapping the agile practices that would make up the ASA method
was to develop the criteria that would be used to assess the adoption of agile practices
by teams or organizations.

The evaluation criteria for each of the 25 agile practices in ASA were based on a
review of the literature. In addition to the literature review, the observable properties of
people, projects and processes found in the OPP method were used as the basis for
creating evaluation criteria for ASA. In ASA, on average, each practice has 3 criteria.
Figure 1 presents the relationship between objectives, principles and practices as the
criteria behind the practices. First, related to the relationship is possible to measure how
aligned to the agile objectives and principles is a team or organization based on the
adoption of the agile practices. Second, related to the practices is possible to measure
the adoption of a practice based on the presence of related criteria.

Fig. 1. Examples of relationships between objectives, principles, practices and ASA assessment
criteria.

ASA: Agile Software Development Self-assessment Method 27

4.3 The Agile Self-assessment Tool Prototype

After selecting the agile practices, that would compose the ASA and the respective
assessment criteria, a prototype was elaborated with the purpose of validating the
proposal of this method. This prototype is presented in Fig. 2. In the leftmost part of
Fig. 2 it is possible to observe the option of applying or not the agile practices in the
assessment context. In the central part, the highlighted practices and their evaluation
criteria are noted. For each criterion, to the left side of the prototype, it is informed the
suitability or not of the team or organization in relation to the criteria. Note that there
are two options to fill in on leftmost part of the prototype. Both are considered during
the Verification cycle of the PDCA of ASA. The first, identified as “Current Evaluation”,
is used to evaluate the current situation of the team; the second, called “Target”, is
informed to set improvement goals for the next PDCA cycle and application of ASA.

Fig. 2. Prototype for the ASA tool: evaluation criteria. See the full prototype in http://bit.ly/agile-
self-assessment

Another feature implemented in the ASA prototype was the presentation of the eval‐
uation result. As shown in Fig. 3, three ranges of team suitability values were used for
agile practices: excellent (80–100%), good (40–79%) and poor (0–39%). And, following

Fig. 3. Prototype for the ASA tool: evaluation result

28 M. Florêncio et al.

http://bit.ly/agile-self-assessment
http://bit.ly/agile-self-assessment

the OPP proposal, the capacity results obtained from the practices are used to establish
adherence to agile principles and, consequently, to agile objectives.

5 Preliminary Conclusions and Future Work

As already mentioned at the beginning of this paper, inconsistencies between ASD
assessment methods and agile principles can lead to low interest in the application of
these methods by practitioners. Currently, besides the fact that there are few methods
and tools for this purpose, there are ongoing discussions in the academic community
about the presence of inconsistencies in alignment with agile principles.

This work analyzed the main methods of evaluation of ASD and pointed out prob‐
lems in relation to the agile principles of flexibility, simplicity and pursuit for excellence.
From these gaps and the review of the literature, a new method - Agile Self-Assessment
(ASA) was proposed. The ASA seeks to address these inconsistencies, in addition to
providing a new aspect of evaluation, continuous improvement through PDCA cycles.
A prototype was developed to apply the ASA method.

As a future work, the ASA tool should be applied in case studies in order to evaluate
the real effectiveness of the method developed with development teams. The prototype
will also be complemented with the dimensions of adequacy and effectiveness of the
OPP method.

References

1. Dingsøyr, T., Nerur, S., Balijepally, V., Moe, N.B.: A decade of agile methodologies: towards
explaining agile software development. J. Syst. Softw. 85, 1213–1221 (2012)

2. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R.C., Mellor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Agile Manifesto. http://agilemanifesto.org/

3. Johnson, J., Crear, J., Vianna, L., Mulder, T., Lynch, J.: Standish Group 2015 Chaos Report.
http://blog.standishgroup.com/post/50

4. Fitzgerald, B., Stol, K.J.: Continuous software engineering: a roadmap and agenda. J. Syst.
Softw. 123, 176–189 (2017)

5. Al-Zewairi, M., Biltawi, M., Etaiwi, W., Shaout, A.: Agile software development
methodologies: survey of surveys. J. Comput. Commun. 5, 74–97 (2017)

6. Nafchi, M.Z., Zulzalil, H., Gandomani, T.J.: On the current agile assessment methods and
approaches. In: 8th Malaysian Software Engineering Conference (MySEC), Langkawi,
Malaysia, pp. 251–254. IEEE (2014)

7. Gandomani, T.J., Zulzalil, H., Ghani, A.A.A., Sultan, M.A.B., Nafchi, M.Z.: Obstacles in
moving to agile software development methods; at a glance. J. Comput. Sci. 9, 620–625
(2013)

8. Gandomani, T.J., Zulzalil, H., Ghani, A.A.A., Sultan, M.A.B.: Towards comprehensive and
disciplined change management strategy in agile transformation process. Res. J. Appl. Sci.
Eng. Technol. 6, 2345–2351 (2013)

9. Soundararajan, S., Arthur, J.D., Balci, O.: A methodology for assessing agile software
development methods. In: Agile Conference (AGILE), Dallas, TX, USA, pp. 51–54. IEEE
(2012)

ASA: Agile Software Development Self-assessment Method 29

http://agilemanifesto.org/
http://blog.standishgroup.com/post/50

10. Fontana, R.M., Reinehr, S., Malucelli, A.: Maturing in agile: what is it about? In: Cantone,
G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 94–109. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06862-6_7

11. Williams, L., Rubin, K., Cohn, M.: Driving process improvement via comparative agility
assessment. In: 2010 Agile Conference, Nashville, TN, USA, pp. 3–10. IEEE (2010)

12. Likert, R., Roslow, S., Murphy, G.: A simple and reliable method of scoring the thurstone
attitude scales. J. Soc. Psychol. 5, 228–238 (1934)

13. Sidky, A., Arthur, J., Bohner, S.: A disciplined approach to adopting agile practices: the agile
adoption framework. Innov. Syst. Softw. Eng. 3, 203–216 (2007)

14. Thoughtworks: Thoughtworks Assessment Model. http://www.agileassessments.com/
15. Qumer, A., Henderson-Sellers, B.: An evaluation of the degree of agility in six agile methods

and its applicability for method engineering. Inf. Softw. Technol. 50, 280–295 (2008)
16. Software Engineering Institute: CMMI for Development, Version 1.3 (2010)
17. Deming, E.: Out of the Crisis. MIT Press, Cambridge (1986)

30 M. Florêncio et al.

http://dx.doi.org/10.1007/978-3-319-06862-6_7
http://www.agileassessments.com/

Agile Testing in Brazil: A Systematic Mapping

João Farias(✉), Alexandre Vasconcelos(✉), and Ivaldir Junior(✉)

Universidade Federal de Pernambuco, Recife, PE 50670-901, Brazil
{jgfd,almv,ihfj}@cin.ufpe.br

Abstract. The increasing adoption of agile methodologies is changing the land‐
scape of software testing. Both the manifold of testing techniques and the agile
mindset have shown as challenges for professionals. In this context, this work
conducted a systematic mapping of studies published in Brazil, with the goal of
gathering evidence on the use of agile testing practices in the country. Using the
Agile Testing Quadrants as classification model, testing techniques, their benefits
and challenges were identified. This systematic mapping revealed that, despite
the quality improvements and reduction of costs brought by the use of agile testing
techniques, learning curves and lack of management cooperation introduce
significant difficulties for the full adoption of agile testing.

Keywords: Software testing · Agile methodologies · Systematic mapping

1 Introduction

Given the exponential growth of human dependency upon software and the high risk
associated with unexpected and incorrect behavior in computational systems, it is neces‐
sary to give prominence to testing processes in industry. The quality of testing activities
is crucial for the success of software projects.

Traditional testing methodologies are focused on validating the software against a
detailed and thorough set of requirements, ensuring that the expected product has been
built. Conversely, agile methodologies recognize that is almost impossible to architect
a whole project up front. Thus, in agile projects, testing is used to generate information
about the product behavior, with the goal of driving the next steps to be taken. This
paradigm demands from the professionals involved in software testing new skills and
flexibility.

However, it is notorious the difficulty in adoption of testing in agile projects, due to
issues related to technical capability, appropriated planning and skills to deal with
changes. A survey promoted by SauceLabs [1] with 732 software professionals showed
that 89% of them follow agile methodologies, but only 32% consider themselves totally
immersed in the agile mindset. In the light of these problems and the importance of
testing in software projects, this paper aims to obtain evidence of the application of agile
testing techniques in Brazil. These evidences will provide an overview of studies of the
field in the country and help researchers and practitioners to further improve their work
in this context.

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 31–43, 2018.
https://doi.org/10.1007/978-3-319-73673-0_3

After this introductory section, Sect. 2 presents the theoretical references about
testing and the agile movement. Section 3 explains the procedure used by this paper to
search and select primary studies. Section 4 summarizes the findings of the research.
Final considerations and suggested future works are exposed in Sect. 5.

2 Theoretical Background

This section explains the theoretical basis of this systematic mapping. Firstly, the origins
and purpose of the agile movement are presented. Secondly, the definition of agile testing
used throughout this study is detailed.

2.1 The Agile Movement

The experiences that led to the emergence of the agile development movement, which
began in the 1990s, came as a reaction to traditional methodologies. These methodolo‐
gies are focused on up front planning, static processes, dense documentation, and rigid
requirements. In 2001, the Agile Manifesto [2] brought a set of 4 values and 12 practices
for software development focused on customer interaction, valuing developers as
thinking assets, flexibility for change and constant user feedback. These values and
practices are rapidly being adopted by the software development practitioners and
companies as a way to produce high quality products in short periods of time.

2.2 Software Testing

Software testing promotes the mechanisms to verify the behavior of a software product
against a set of requirements, in order to mitigate the risks in its use. These activities,
on average, represent 45% of the development costs of a product; additionally, inac‐
curacy in early failure detection increases the associated repair cost up to 100 times [3].
Thus, it is evident the importance of performing testing effectively and efficiently.

2.2.1 Agile Testing
Agile methodologies treat testing from a different perspective. Since agile projects are
highly dynamic in nature and composed by short iterations, testing in these environments
aims to provide information to drive planning for the following iterations and to increase
the confidence of the development team in the value added by the product [4]. Crispin
and Gregory developed, as an improvement to Marick’s work [5], a classification model
for the most commonly techniques for software testing in agile development projects,
called Agile Testing Quadrants [6] (Fig. 1).

The model consists of four categories of tests with different objectives, divided by
two axes. The Q1 and Q2 quadrants aim to support the development team in its activities,
ensuring a better understanding of the product in development. Q1 quadrant encom‐
passes the tests that drive the architecture design, validating its internal quality [11].
These tests give developers confidence that significant code changes do not cause func‐
tionality regressions [12]. Q2 quadrant consists of tests pertaining to requirements

32 J. Farias et al.

design. Functional tests, generally automated, are performed in order to guarantee the
system’s external quality of the system. Prototyping, mock-ups, and wireframes help to
validate whether the understanding of requirements is correct before functionality is
implemented.

Tests of the Q3 and Q4 quadrants criticize the implemented product, with the goal
of generating information to guide the progress of development. Q3 quadrant consists
of tests which investigate if the product meets the user needs, using usability validations
and exploratory testing. Q4 quadrant investigates the behavior of the system in produc‐
tion environment. Performance, load and stress tests validate if the system is able to
withstand situations of extreme use. Security testing is critical to ensure that the product
and the information it handles are protected from malicious attacks.

3 Research Method

The systematic mapping of the literature performed in this study followed the instruc‐
tions of Kitchenham and Charters [7]. In the following sections, the steps covered during
the research are distilled.

3.1 Research Questions

This study aims to answer the following Primary Research Question (PRQ):

• PRQ: How agile testing is conducted in Brazil?

The following Secondary Research Questions (SRQ) guide the process of systematic
mapping of the literature:

Fig. 1. Agile testing quadrants

Agile Testing in Brazil: A Systematic Mapping 33

• SRQ1: Which techniques related to the First Quadrant of Agile Testing (Q1) are
used?

• SRQ2: Which techniques related to the Second Quadrant of Agile Testing (Q2) are
used?

• SRQ3: Which techniques related to the Third Quadrant of Agile Testing (Q3) are
used?

• SRQ4: Which techniques related to the Fourth Quadrant of Agile Testing (Q4) are
used?

3.2 Search Strategy

Following the recommendations of Wohlin [8], a search was made based on the process
of snowballing. However, given that this study is focused on the research carried out in
Brazil, it was sought to identify researchers interested in agile testing working in the
country.

From a list of researchers formed by literature indication [9] and manual inspection
on conference proceedings, a search was conducted in the Lattes1 curriculum system on
April 16, 2017. For each curriculum analyzed, we selected the papers related to agile
testing (published between 2012 and 2016) and the set of authors who collaborated in
these works. The new list of researchers was analyzed by the same procedure. The
process ended when no new researcher was identified. The process is described in Fig. 2.

Fig. 2. Snowballing process

The process denominated “Extract publications” was supported by the tool Script‐
Lattes [10]. This tool aggregates publications of a set of Lattes curricula in a well-
structured report, allowing the analysis of curricula in batch.

Using the ScriptLattes’ report as input, the process denominated “Select relevant
publications” was performed in three steps, using the inclusion and exclusion criteria
from Sect. 3.3. Firstly, the report was analyzed in a semi-automatized way, utilizing a

1 The “Lattes Curriculum” is considered the brazilian standard for information of scientific and
academic production, students, professors, researches and professionals envolved in science
and technology.

34 J. Farias et al.

Python script2 developed by the authors. This program asks the user if the title of a paper
is relevant to the mapping, saving the paper’s meta-data in a report when a positive
answer is given. If the paper title was not determinant to exclusion of the search process,
it was considered for further analysis. In the second step, the abstract of each paper was
analyzed, filtering the studies which have shown non-conformity with the inclusion and
exclusion criteria. Lastly, the remaining papers were analyzed in full text, excluding the
papers that do not conform with the inclusion and exclusion criteria.

3.3 Inclusion and Exclusion Criteria

Table 1 lists the inclusion and exclusion criteria for primary studies. To be selected, a
study must meet all the inclusion criteria and can not meet any of the exclusion criteria.

Table 1. Inclusion and exclusion criteria

Inclusion criteria • Studies which exercise at least one Agile
Testing technique
• Studies with validation in industry;
• Primary studies;
• Peer-reviewed studies;
• Complete studies published in periodicals or
annals of congresses;
• Qualitative or quantitative research;

Exclusion criteria • Repeated studies, with no new information;
• Chapters of books, artistic production,
patents, abstracts, texts in newspapers or
magazines;
• Secondary or tertiary studies;
• Studies limited to educational application;
• Studies not available in UFPE’s institutional
network;
• Studies not performed in Brazil;

3.4 Data Extraction and Synthesis

Information about primary study context, used techniques, and results were extracted in
a standard form. The data was analyzed using scripts written in Python. Charts and tables
were created using the LibreOffice tool.

3.5 Process Overview

The research was conducted in 3 stages. The initial list of authors was created using the
list of researchers of agile methodologies in Brazil indicated by Goldman and Katayama
[9], adding to a set of authors who published relevant (considering the criteria from
Sect. 3.3) papers in the conferences SBES, SBQS, WAMPS, WASHES and WTDQS

2 The Python script is available on the following link: https://goo.gl/PguSfd.

Agile Testing in Brazil: A Systematic Mapping 35

https://goo.gl/PguSfd

between 2012 and 2016. From this list of authors, the snowballing process described in
Sect. 3.2 formed the studies repository of this mapping.

4 Results

4.1 Results of the Search Procedure

The snowballing process of authors resulted in the analysis of papers from 239
researchers, from which a total of 4664 unique studies were extracted. The analysis of
titles and abstracts reduced the number of studies to 223. After the full text analysis, the
final set of 40 studies was defined. Figure 3 shows the study numbers resulting from
each step. The list of selected articles is available for download3.

Fig. 3. Literature search results

Figure 4 shows the distribution of papers by year of publication. Of the 40 studies
selected, 55% were published in the last 2 years, showing the growth of experiments
with agile testing techniques in the Brazilian academic community.

Fig. 4. Distribution of papers per year of publication

The primary publishing medium in these studies were conferences, symposia and
workshops. The events with the highest number of publications were the Brazilian Soft‐
ware Quality Symposium (SBQS) and the Conference on Software Engineering and
Knowledge Engineering (SEKE).

3 List of articles available on the following link: https://goo.gl/19IAXO.

36 J. Farias et al.

https://goo.gl/19IAXO

Figure 5 displays the paper distribution by related Agile Testing Quadrant. The most
cited quadrants in the articles are related to development support (Q1 and Q2). Based
on this, we can observe less interest in the study of techniques related to product critique
(Q3 and Q4). Q3 is important to detect opportunities to improve user experience and
validate whether the product meets the user needs. While Q4 is critical to guarantee the
sustainability of software in the production environment, especially in times of intense
use or under malicious attacks.

Fig. 5. Studies distribution per related Agile Testing Quadrant

The majority of the selected studies were the result of studies in the Northeast and
North regions of Brazil, especially the states of Pernambuco and Amazonas, followed
by the South and Southeast regions. The most active universities were UFAM, UFPE,
UFCE and PUCRS. An important observation is that only 22 researchers (18% of the
total) are connected to non-academic institutions, showing a possible lack of incentive

Fig. 6. Collaboration graph between researches of different states

Agile Testing in Brazil: A Systematic Mapping 37

to research and dissemination of experiences directly from the industry. Figure 6
displays the relationship of collaboration between researches of different states.

4.2 Evidences of Agile Testing Practices in Brazil

This section presents the results concerning each Secondary Research Question.
SRQ1: Which techniques related to the First Quadrant of Agile Testing (Q1)

are used?
A total of 14 studies reported test techniques which support the development team

with focus on code quality, as shown in Fig. 7. These studies demonstrated the use of
11 different techniques. The most used technique was Unit Testing, followed by Test-
Driven Development (TDD) and Static Code Analysis.

Fig. 7. Techniques related to the First Agile Testing Quadrant

The work of Filho et al. [13] studied the impact of the TDD methodology in relation
to the severity of errors detected after the building process. In projects that used TDD,
only 27% of the errors found after building were considered severe. In projects that did
not use TDD, 51% of these errors were considered severe.

Static analysis proved to be a good tool to ensure internal software quality [12],
allowing teams to manage their technical debt and giving quick feedback on possible
code degradation, such as code smells and high coupled components [15]. This software
internal quality control enables teams to make changes without causing unexpected
damages to the system, constantly adding value to the product [12].

SRQ2: Which techniques related to the Second Quadrant of Agile Testing (Q2)
are used?

A total of 19 studies reported testing techniques aimed at supporting development
with a focus on business, as shown in Fig. 8. These studies demonstrated the use of 5
different techniques. The most used techniques were Automated Functional Tests (AFT)
and Usability Inspection.

38 J. Farias et al.

Fig. 8. Techniques related to the Second Agile Testing Quadrant

Due to the fast feedback and capacity to guarantee the external quality of the soft‐
ware, automated functional tests were shown as fundamental in agile projects. De Castro
et al. [16] developed an abstraction of the Selenium framework for database verification
which reduced the time of functional tests execution by 88% when compared to manual
tests. AFT was also effective in contexts of mobile applications [17] and critical soft‐
ware [18].

The works of De Vaz et al. [19] and Rivero et al. [20] defined usability inspection
procedures, demonstrating how this technique is able to detect failures in the require‐
ments elicitation phase. The use of tools that aid the inspection process was effective,
however, significant differences were observed in the quantity and severity of the defects
when comparing inspectors of different levels of experience, reinforcing the need to
value human skill in testing.

SRQ3: Which techniques related to the Third Quadrant of Agile Testing (Q3)
are used?

A total of 12 studies reported testing techniques with the aim of criticizing the product
with a focus on business, as shown in Fig. 9. These studies demonstrated the use of 4
different techniques. The most cited technique was Usability Testing.

The main objective of usability testing is to verify if the end user can use the product
effectively and easily. The tester can rely on a list of usability principles [20], use tools
for automatic fault detection [22, 23] and collect feedback from users in the form of
surveys.

Falcao and Soares [24] used usability testing to validate competitive advantage a
product. They analyzed whether a gesture-based device could bring effectiveness
improvements to design professionals as compared to traditional mouse and keyboard-
based input tools. After raising a list of usability issues, in addition to data on input error
rate and effectiveness of use, the researchers showed that the device would not serve its
users effectively.

Agile Testing in Brazil: A Systematic Mapping 39

SRQ4: Which techniques related to the Fourth Quadrant of Agile Testing (Q4)
are used?

A total of 3 studies reported testing techniques with the aim of criticizing the product
with a technological focus, as shown in Fig. 10. These studies demonstrate the use of
Performance Testing and Security Testing techniques.

Fig. 10. Techniques related to the Fourth Agile Testing Quadrant

Tests from this quadrant evaluate the product under production conditions, where
peaks of use and malicious attacks can lead to serious organizational damage. However,
these tests, due their purely technical nature, are often postponed until the final stages
of the projects [6]. Lucena and Tizzei [25] highlighted the problems caused by this type
of decision:

“When the software is finally deployed in the real customer environment one often finds inte‐
gration and performance issues which could be prevented earlier. Late software deployments
also limit useful feedback for the development team and delays customer return of the invest‐
ment.”

Fig. 9. Techniques related to the Third Agile Testing Quadrant

40 J. Farias et al.

5 Final Considerations

This section summarizes the findings of this study and provide insights about the state
of agile testing in Brazil.

5.1 Results

The frequency of techniques revealed by this study are similar to global surveys [1]. The
Q1 quadrant tests proved to be able to increase the internal quality of the code, techni‐
cally enabling programmers to incorporate the agile principle of “embrace change”.

In agile projects, it is common that the requirements understanding becomes a
problem, due to the inexhaustive documentation and rapid iterations. It was shown that
techniques such as usability inspection and automated functional testing are able to
mitigate this problem by ensuring that the correct product is being built.

The high number of papers reporting the use of usability testing can be justified by
the fact that this technique is part of a set of user-centered design techniques. It was
observed how the structured application of usability testing, especially when supported
by tools, allows the detection of problems that seriously diminish the value brought by
the software [22, 23].

Similar to Mohammed et al. [26], the studies related the Q4 quadrant have high‐
lighted common problems of priority management. Due to their technical nature,
security and performance issues are usually delayed until the end of the project. The
problems detected at this stage are extremely costly and seriously reduce the value of
the developed product.

5.2 Research Limitations

Approximately 12% of the papers selected by the snowballing process could not be
analyzed in full text because they were not available for download in the UFPE’s
network. Possibly some relevant work was not included in the analysis.

Furthermore, this systematic mapping used only one source of information on the
investigated researchers, named the Lattes Curriculum. Although Lattes is the standard
for scientific research in Brazil, using it as the single source of information is twofold
limiting. Firstly, the Lattes curriculum is primarily used for academic researches. The
low number of non-academic papers discussed on Sect. 4.1 can be a result of this limi‐
tation. Second, it increases the likelihood of missing published works not included in
researches’ curriculum, specially for non-academic papers. Aggregating the Lattes
results with other sources of information, such as ResearchGate, and direct contact with
the researches would mitigate the risk of missing published papers related to agile
testing.

Agile Testing in Brazil: A Systematic Mapping 41

5.3 Future Studies

The snowballing strategy presented in Sect. 3.2 was based on the work of Melo et al.
[27]. We intend to validate quantitatively the effectiveness of this strategy in comparison
with the technique presented by Wohlin [8].

The results of this systematic mapping will be used as source of information for the
construction of a survey in practitioners, which will be conducted in the Porto Digital
of the city of Recife. The goal is to compare the use of agile testing techniques in the
Brazilian academic environment and the practitioners in this hub of development.

References

1. Sauce Labs: Testing Trends in 2017: A Survey of Software Professionals. https://
saucelabs.com/news/sauce-labs-releases-third-annual-state-of-testing-survey-results.
Accessed 5 June 2017

2. Agile Manifesto: Manifesto for Agile Software Development. http://www.agilemanifesto.org.
Accessed 5 June 2017

3. Viana, V.: Um Método para Seleção de Testes de Regressão para Automação. Dissertação
de Mestrado pelo Centro de Informática da UFPE (2006)

4. Williams, L., Cockburn, A.: Agile software development: it’s about feedback and change.
Computer 6, 39–46 (2003)

5. Marick, B.: Agile testing directions: tests and examples. http://www.exampler.com/old-blog/
2003/08/21.1.html#agile-testing-project-1. Accessed 5 June 2017

6. Crispin, L., Gregory, J.: Agile Testing: A Practical Guide for Testers and Agile Teams, 1st
edn. Addison-Wesley, Reading (2009)

7. Kitchenham, B.A., Charters, S.: Guidelines for performing systematic literature reviews in
software engineering, vol. 2.3, EBSE-2007-01, Keele, UK (2007)

8. Wohlin, C.: Guidelines for snowballing in systematic literature studies and a replication in
software engineering. In: 18th International Conference on Evaluation and Assessment in
Software Engineering, pp. 1–10 (2014)

9. Goldman, A., Katayama, E.: Retrato da comunidade acadêmica de métodos ágeis no Brasil.
In: Workshop Brasileiro de Métodos Ágeis. WBMA, pp. 1–10 (2011)

10. Mena-Chalco, J.P., Marcondes Jr., C.R.: ScriptLattes: an open-source knowledge extraction
system from the Lattes platform. J. Brazilian Comput. Soc. 15(4), 31–39 (2009)

11. Beck, K.: Extreme Programming Explained: Embrace the Change, 1st edn. Addison-Wesley,
Boston (2000)

12. Fowler, M.: Refactoring: Improving the Design of Existing Code, 1st edn. Addison-Wesley,
Boston (1999)

13. Filho, M.C., Vasconcelo, J.L., Santos, W.B., Silva, I.F.: Um Estudo de Caso sobre o Aumento
de Qualidade de Software em Projetos de Sistemas de Informação que Utilizam Test Driven
Development. In: SBSI, pp. 315–326 (2012)

14. Gouveia, V., Júnior, N.L., Furtado, A.P., Junior, I.F., Furtado, F.: Avaliando as métricas ágeis
utilizadas pelas empresas certificadas no nível F do MPS.Br. In: WAMPS, pp. 85–93. (2016)

15. Lucena, P., Tizzei, L.P.: Applying software craftsmanship practices to a scrum project: an
experience report. In: WASHES, pp. 73–84 (2016)

16. De Castro, A.M.F.V., Macedo, G.A., Collins, E.F., Dias-Neto, A.C.: Extension of Selenium
RC tool to perform automated testing with databases in web applications. In: AST, pp. 125–
131 (2013)

42 J. Farias et al.

https://saucelabs.com/news/sauce-labs-releases-third-annual-state-of-testing-survey-results
https://saucelabs.com/news/sauce-labs-releases-third-annual-state-of-testing-survey-results
http://www.agilemanifesto.org
http://www.exampler.com/old-blog/2003/08/21.1.html#agile-testing-project-1
http://www.exampler.com/old-blog/2003/08/21.1.html#agile-testing-project-1

17. Villanes, I.K., Costa, E.A.B., Dias-Neto, A.C.: Automated mobile testing as a service (AM-
TaaS). In: SERVICES 2015, pp. 79–86 (2015)

18. Braz, A., Rubira, C.M.F., Vieira, M: Development of complex software with agile method.
In: Agile Conference, pp. 97–101 (2015)

19. Vaz, V.T., Conte, T., Travassos, G.H.: Empirical Assessments of a tool to support Web
usability inspection. CLEI Electron. J. 16(3), 6–22 (2013)

20. Rivero, L., Kawakami, G., Conte, T.U.: Using a controlled experiment to evaluate usability
inspection technologies for improving the quality of mobile web applications earlier in their
design. In: SBES, pp. 161–170 (2014)

21. Neves, C.E., Campos, F.: Teste de Usabilidade do Módulo de Atendimento da Ferramenta
Desktop de Gestão de Clínicas de Diagnóstivo por Imagem Uniclinika Ris. In: CONERG,
pp. 117–135 (2014)

22. De, R.Q., Ribeiro, C.P., Monteiro, R., Marcio, M.: Análise de Usabilidade da Homepage de
um Equipamento de Eletroencefalograma: Emotiv Epoc. In: ERGODESIGN, pp. 47–60
(2014)

23. Nascimento, I., Gaspar, W., Conte, T., Gadelha, B., Elaine, H.: Melhor prevenir do que
remediar: Avaliando usabilidade e UX de software antes de levá-lo para a sala de aula. In:
SBIE, pp. 806–815 (2016)

24. Falcao, C., Lemos, A.C., Soares, M.: Evaluation of natural user interface: a usability study
based on the leap motion device. In: AHFE Conference, pp. 5490–5495 (2015)

25. Ali, S., Briand, L., Hemmati, H., Panesar-Walawege, R.: A systematic review of the
application and empirical investigation of search-based test case generation. IEEE Trans.
Softw. Eng. 5, 1–22 (2008)

26. Mohammed, N.M., Niazi, M., Alshayeb, M., Mahmood, S.: Exploring software security
approaches in software development lifecycle: a systematic mapping study. Comput. Stand.
Interfaces 50, 107–115 (2017)

27. Melo, C., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Goldman, A., Kon, F.:
The evolution of agile software development in Brazil: education, research, and the state-of-
the-practice. J. Braz. Comput. Soc. 19(4), 523–552 (2013)

Agile Testing in Brazil: A Systematic Mapping 43

Metrics, Measurements and Mining
Repositories in the Context of Agile

Using Function Points in Agile Projects: A Comparative
Analysis Between Existing Approaches

Eduardo Garcia Wanderley1(✉), Alexandre Vasconcelos2, and Bruno Tenório Avila2

1 IFPE – Instituto Federal de Educação, Ciência e Tecnologia, Garanhhuns, Pernambuco, Brazil
eduardo.wanderley@garanhuns.ifpe.edu.br

2 UFPE – Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
amlv@cin.ufpe.br, brunotavila@gmail.com

Abstract. Agile Software Development has become increasingly common in
the software development environment, but effort estimates in software projects
using Agile methodologies are made differently from those made in traditional
way projects. This paper presents a comparative analysis of the different
approaches of applying Function Point Analysis (FPA) in software projects that
make use of some existing agile methodologies. Through an experimental, empir‐
ical and controlled research, the existing proposals in the literature in order to test
your application and analyze its results were evaluated. The results showed that
in the context studied, the approach Agile Estimation Using Functional Metrics
was best suited up.

Keywords: Effort estimation · Cost estimation · Size estimation · Agile
Scrum

1 Introduction

Agile methods are approaches for software development based on iterative and incre‐
mental development, direct involvement of customer, early delivery of higher business
values and rapid responses to changes [1]. According to Soares [2], agile methods do
not reject process and tools, documentation, contract negotiation or planning, but simply
define them as secondary importance.

As reported by Mens and Demeyer [3], the companies’ demand for products and
services in the information technology field has been consistently increased, however
the budgets and schedules are getting inflexible, due, for instance, to the need of cost-
cutting policy and shorter deadlines for on time delivery performance. Therefore, the
increase in quality and productivity becomes essential to software development. For this
purpose, software metrics are used to: (i) serve as source of information to the monitoring
of software process current situation; (ii) determine the evolution of software develop‐
ment; (iii) identify delays and deviations during project implementation; (v) prioritize
accurate data over subjectivity and intuition.

Researcher’s reviews have illustrated that in the last few decades, too little progress
was made in the software estimation field [4]. This is a major concern in industry,
because the low performance in estimation process very often leads to exceeded budget,

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 47–59, 2018.
https://doi.org/10.1007/978-3-319-73673-0_4

delays, sub-optimal allocated resources, contract losses or very low quality software [5].
Due to these problems, there is a high demand for enhancements in estimation process.

The development time of a feature in software can be measured by its size. However,
there are several forms of measuring the size of software [6]. One of the best forms is
the Automated Function Point (AFP) specification [7] which was standardized by the
ISO/IEC 20.926 regulation [8] as a functional size measurement, added to the ISO/IEC
14.143 regulation [9]. A research from the Quality Assurance Institute [10] pointed that
AFP is the proper metric to measure quality and productivity in software projects. In
1993, AFP became the most applied and studied metric in software engineering [11].

The advantages of using AFP are: (i) it is an objective method to find the score of
an element; (ii) it might serve as a comparative basis between two different projects or
even two different teams [12]; (iii) to equate communication and expectative about the
system size; (iv) system size is defined by the customer insight [13]. Due to these
circumstances, it is noticed that the use of AFP has become consolidated [14]. About
371 out of 893 of the licensed AFP professionals in the world are from Brazil [15].

In Brazil, many private and public institutions started using AFP on account of the
several benefits this metric presents, and yet, by recommendation of regulatory agencies,
it has been utilized in the contracts of development and maintenance of software in
government organizations, which made AFP unanimous in the national metric industry
[16]. In Brazilian public administration domain, normative instruction no. 4 [17], article
10 clearly outlines that the estimated financial cost must be measured. Article 14 affirms
that the procedures planning and the measuring of the offered services – including
metrics, indicators and values must be done.

Consequently, software development companies that already employ agile method‐
ology must now have planning and measuring at top of agenda. Nonetheless, during
agile development process, the software is incrementally developed, made in small iter‐
ations and the customers’ feedback is an important asset to the following iterations. This
implies that planning and estimation must be accomplished progressively [18]. Further‐
more, taking into account the high number of iterations in agile methods, planning and
estimation are done differently from classic software development [19]. From the
perspective of estimation, All metrics and conventional life cycle models can be used
in agile methods, but they require adaptation [20]. Therefore, specific techniques for
agile methods were proposed and are being utilized in projects [1].

In this article a comparative analysis has been made between three different
approaches (Extending Function Point Analysis [21], Function Point Analysis [22], and
Functional Metrics [23]) to assess which was the ideal form of measuring effort in agile
projects. The choices were mainly based on a systematic literature mapping. From this
mapping, the three most relevant metrics were selected.

As a result of this work, it is noticed that two approaches can be satisfactorily used,
and that a third one had been assessed truly insufficient and, therefore, may be discarded
from all types of projects, not only the ones mentioned in this study. It is expected that
the outcomes of this article may also support the using of effort metrics in agile meth‐
odology projects, benefiting mainstream software development community and,
possessing a more accurate effort estimation, may bargain longer deadlines and better
costs, assisting both customer and developer and, also, simplifying the adoption of AFP

48 E. G. Wanderley et al.

techniques by the companies that already make use of agile methods in their projects,
leading the academic community to find new paths of research.

Due to the page break, some aspects of the experiment were suppressed. To obtain
a more complete version, please contact us. This article is based on the master degree
dissertation, presented by the main author, in 2015 [24].

2 Method

In software engineering, an experiment is a procedure carried out to combine facts with
assumptions, speculations and beliefs so plentiful in software development [25]. It
presents a systematic, disciplined and computable mode of assessment of human
activity. Experiments are proper processes to achieve the validation of theories, confirm
common knowledge, explore the relationships, assess model predictions or validate the
measures. The possibilities of repetition, the full control over the process and the vari‐
ables compose the major asset of the experiment.

The goals of an experiment study are the description, assessment, prediction, control
and enhancement of products, processes, resources, models, theories etc. [26].

2.1 Experiment Planning

2.1.1 Goals
The GQM (Goal Question Metric) [26] approach was used to organize the objectives of
this work, whose structure is presented as follows:

To assess the process of development effort estimation.
Intending to understand the utilization of different estimation processes.
In terms of accuracy and ease of application.
From the developers point of view.
In the context of the system analysts.

2.1.2 Metric and Question
What is the most accurate approach? Extending Function Point Analysis [21], Function
Point Analysis and Cost Estimation in An Agile Development Environment [22] or Agile
Estimation Using Functional Metrics [23]? The choices were given through a systematic
literature mapping. From it, the three most relevant metrics were selected. The article
about the non-selected approaches that were considered relevant, did not present suiT‐
able detailing about their right use, and for this reason, were disregarded. The criteria
used to choose the best estimate was to elect the closest to the real value. For instance,
if the real value was 50, the best estimate was the one that presented the closest value
to 50. In order to appraise the accuracy of the experiment, the estimated value (measured
in weekly function points) will be considered.

Using Function Points in Agile Projects 49

2.2 Experiment Description

2.2.1 Hypothesis
The main hypothesis of this study is the null hypothesis that says there are no significant
statistic differences between the three approaches. Therefore, the work attempted to
refute this hypothesis. The possible hypotheses are listed below:

• Null hypothesis: The estimated value (EV) is not significantly different when utilized
the three distinct approaches.

• Alternative hypothesis 1: The estimated value is more accurate utilizing Extending
Function Point Analysis approach.

• Alternative hypothesis 2: The estimated value is more accurate utilizing Function
Point Analysis and Cost Estimation in an Agile Development Environment approach.

• Alternative hypothesis 3: The estimated value is more accurate utilizing Agile Esti‐
mation Using Functional Metrics approach.

2.2.2 Unity and Experimental Subject
The objects on which the experiment is based are called experimental units or experi‐
mental objects. Two studies from a municipal company were selected.

The person who applies the methods and techniques in the experimental unity is
called experimental subject. This study employed eight system analysts who have never
had contact with function points and development effort estimation.

2.2.3 Parameters and Factors
They are the input variables for the controlled experiment that defines the parameters
(variables whose values will be kept constant throughout the experiment) and factors
(Variables representing the procedures to be received by the experimental objects). They
have as independent variables the measurement approaches and as dependent variables
the estimated value. Since the analysts having different professional experience in esti‐
mation and the projects being distinct influence the experiment outcomes, non-experi‐
enced analysts were selected. To avoid interference in the experiment, the eight analysts
were randomly arranged.

2.3 Execution Planning

2.3.1 Context
The experiment execution is part of the curriculum of the postgraduate student of Federal
University of Pernambuco Informatics Center. The analyst team was preferred among
the industry of Pernambuco state. All members are, at least, five years experienced
system analysts.

2.3.2 Training and Participant Profile
Intending to standardize and ensure a minimum level of knowledge before the experi‐
ment performance, a few trainings were planned and performed earlier than the launch

50 E. G. Wanderley et al.

of the experiment pilot experiment scheme. The first training group was related to the
function point technique. Firstly, they were introduced to the concepts and how to do
the counting. After the conceptual starting point, exercises were practiced to assure that
there was a proper understanding of the techniques use. Already knowing about function
points, the participants had training in the experiment approaches. A total of 19 h were
spent at the training sections, where 10 h were employed for function points whilst the
approaches had been left with 3 h each.

Aiming to form cohesive and uniform teams, in which the effect related to the
knowledge and experience could be mitigated, it was created and applied a characteri‐
zation survey, where the participants could answer and be profiled.

2.4 Experiment Design

It is known that the proposed design for experimentation critically influences the forma‐
tion of the teams. The Latin square was chosen as experimental model, due to its ideal
suitability to the experiment. As stated in Juristo and Moreno [27], the Latin square
presents as characteristic that each factor occurs once in each line and once in each
column, it means that, it may take place only once to each possible combination of two
blocking variables. For one to use the Latin square, it is necessary to set three different
teams, where each of them will execute all approaches in each of the projects.

2.4.1 Round Execution and Pilot Scheme
With the purpose of systematizing data collection, some data (approaches/study, projects
and analyst group) were divided into three groups, where two groups had three analysts
each and one group had two of them. All groups executed the proposed activities and
collected the data containing in the data collection form, to each one of the studies and
with dissimilar tools.

A pilot stage was launched in order to validate the elements of instrumentalization
and the data processing. At this stage, a fake project and different participants from the
real experiment were used. At this point it was possible to diagnose the main issues and
doubts the participants could have and, therefore, have them answered and not compro‐
mise the experiment performance.

2.4.2 Data Analysis Processing
In order to not interfere with the data analysis, approaches and analysts’ info were
omitted from data collection before data analysis.

2.5 Methods for Data Analysis

The analysis of the study aimed to compare the data collected from the experiment
performance and check if the null hypothesis could be rejected. This analysis assessed
the approaches utilized to estimate the software development effort in agile projects.

The performed experiment presented only one factor, and the distribution of the
projects and approaches between the subjects were randomly made, by lot. With the

Using Function Points in Agile Projects 51

purpose of rejecting null hypothesis, the ANOVA (analysis of variance) statistical model
was utilized [29]. To assess the magnitude of these differences, it was chosen the
Turkey’s range test which is a single-step multiple comparison procedure and statistical
test [30].

The ANOVA [29] statistical model says that in an experiment, each Yij observation
may be decomposed as the following model equation:

Yij = 𝜇 + 𝜏i+ ∈ iiji = 1,… , Iej = 1,… , J

Where μ is the constant effect (general mean), τi is the effect of the ith procedure, ϵij
is the error related to the ith procedure in the jth experimental unit.

ANOVA is based on the partition of the total variance of response variable into
components attribuTable to the procedures (variation among) and experimental error
(variation within). This variation can be measured by the sum of squares defined to each
of the components as presented in the following equations:

n∑

i=1

(yi − ȳ)2 = SST(Sum of Squared Total)

n∑

i=1

(ŷi − ȳ)2 = SSR(Sum of Squared Regression)

n∑

i=1

(yi − ŷi)
2 = SSE(Sum of Squared Error)

Thereby, the equation is written: SST = SSR + SSE, in which the sum of squared
totals is decomposed into the sum of squared regression and sum of squared error. This
sum of squares is organized in a Table, named variance analysis Table (Table 2).

To test the H0 hypothesis (null), the F-test was used, as presented at Variance Anal‐
ysis Table (Table 1).

Table 1. Variance analysis table.

Causes of
variation

Degrees of
freedom

Sum of squares Median squares F calculated

Procedures I−1 SSR MSR = SSR/(I−1) MSR/MSE
Residual I(J−1) SSE MSE = SSE/(I(J−1))
Total IJ−1 SST

So whether F-calculated is higher than F-Tabled, then the null hypothesis (H0) must
be rejected, it means that there are evidences of significant difference among at least one
pair of treatment means, at α chosen level of significance. Otherwise, null hypothesis
(H0) must not be rejected; it means that there are no significant differences between the
treatments, at α chosen level of significance.

Consequently, the collected data will be assessed in order to try to reject the null
hypothesis revealing that the mean of techniques are not equal, taking into account a

52 E. G. Wanderley et al.

certain significance level (α). At this experiment, regarding the small quantity of partic‐
ipants involved, there will be considered a 0,05 level of significance (α).

In other words, there will be adopted a 95% confidence interval on the outcomes of
this study.

After concluding that there is significant differences among treatments by F-test, it
was assessed the magnitude of these differences by utilizing a single-step multiple
comparison procedure.

Tukey’s range test allow one to test any contrast, always between two treatment
means, it implies that it does not permit to compare groups with each other. The test is
based on the Honest Significant Difference (HSD). The test statistic is given by the
equation below:

TSD = q𝛼(k, N − k)
√

MSE∕n

Where q is the total studentized amplitude, Tabled, MSR is the mean square of
residuals and n is the number of repetitions. The value of q depends on the number of
treatments and residual degree of freedom. It was utilized a 5% level of significance. In
case that the contrast is higher than Δ, the measures differ at α level of significance.

Since Tukey’s test is somewhat independent from F-test, it is possible that, even with
the value of F-calculated being significant, one may not find significant differences
among the mean of contrasts [28].

3 Outcomes

The project/studies utilized at the experiment were chosen from a public company of
Recife/PE, whose real values were selected without participants knowing. Thereafter,
it were compared the estimations made by each one of them with real values, calculating
the estimation error. The time necessary for colleting was not considered, because it was
not an experiment concern. This fact gave participants freedom to spend the time they
need.

3.1 Description of the Study

Previously than any outcome analysis it is necessary to present the characteristics of
each study. These characteristics are:

• E1 study: New system with several features, developed in 3 iterations.
• E2 study: New feature for an ongoing system, with 2 iterations.

3.2 Collected Data

Listed below are the data collected from the participants. The Tables 2 and 3 illustrate
the data divided into two studies. The first lines of each Table represent the estimation
error value, presented in number of weeks. The value was obtained by subtracting the
time estimated by each participant by the real time spent at the study development. The

Using Function Points in Agile Projects 53

line ‘means’ reveals the mean of error of the approach. The line called ‘general mean’
illustrates the mean error value among the approaches. The line named ‘effect’ demon‐
strates the effect of every approach on response variable. The effect is calculated by
subtracting the error mean of each approach by the general mean of the experiment. It
is worth noting that the participant 8 did not deliver the data related to E1 study. Due to
this fact, the E1 study remained with seven valid experiments.

Table 2. Experiment data with E1 study.

E1 study CA approach FM approach EX approach
Participant 1 2,5875 0,1500 0,0309
Participant 2 2,5875 0,1125 0,2441
Participant 3 2,5875 0,6750 0,8333
Participant 4 1,2750 0,1875 0,3226
Participant 5 2,5875 0,4875 0,3844
Participant 6 1,2750 0,1125 0,0084
Participant 7 1,2750 0,6000 0,5025
Mean 2,0250 0,3321 0,3325
General Mean 0,8965
Effect 1,1285 −0,5643 −0,5642

Table 3. Experiment data with E2 study.

E2 study CA approach FM approach EX approach
Participant 1 1,5000 0,0750 0,3630
Participant 2 1,5000 0,0750 0,3630
Participant 3 1,5000 0,7875 0,7875
Participant 4 1,5000 0,2250 0,5020
Participant 5 1,5000 0,0750 0,4328
Participant 6 1,5000 0,4125 0,5896
Participant 7 1,5000 0,4125 0,5896
Participant 8 1,5000 0,0375 0,3806
Mean 1,5000 0,2625 0,5010
General Mean 0,7545
Effect 0,7455 −0,4920 −0,2535

Tables 4 and 5 represent the errors (residuals) of each observation in relation to the
error mean of each approach. These values illustrate the difference between the values
obtained from each participant and the mean of each approach.

54 E. G. Wanderley et al.

Table 4. Residuals related to each observation at E1 study.

E1 study CA approach FM approach EX approach
Participant 1 0,5625 −0,1821 −0,3014
Participant 2 0,5625 −0,2196 −0,0882
Participant 3 0,5625 0,34286 0,5010
Participant 4 −0,7500 −0,1446 −0,0097
Participant 5 0,5625 0,1554 0,0521
Participant 6 −0,7500 −0,2196 −0,3239
Participant 7 −0,7500 0,2678 0,1702

Table 5. Residuals related to each observation at E2 study.

E2 study CA approach FM approach EX approach
Participant 1 0,0000 −0,1875 −0,1380
Participant 2 0,0000 −0,1875 −0,1380
Participant 3 0,0000 0,5250 0,2865
Participant 4 0,0000 −0,0375 0,0010
Participant 5 0,0000 −0,1875 −0,0682
Participant 6 0,0000 0,1500 0,0886
Participant 7 0,0000 0,1500 0,0886
Participant 8 0,0000 −0,2250 −0,1204

3.3 Null Hypothesis

Considering that each study presents their own characteristics, it was not possible to
group their outcomes in a single experiment, thus each of them was assessed as a sepa‐
rated experiment and due to this fact, the null hypothesis was rejected in each project.

The ANOVA statistical method was utilized as above-mentioned, and it states that
one must compare the value of F-calculated with the value of F-Tabled, and whether F-
calculated > F-Tabled then the null hypothesis must be rejected. The P1 project presents
treatment and residual degrees of freedom (2 and 21 respectively). Consulting T-Student
Table [30] with the values of F-Tabled F(2,21) will reveal the value of 3,467. At P2
project, the value of F (2,18) was used and the number found was 3,555. At Tables 6
and 7, the calculated value of F was always higher the Tabled value, and consequently
the null hypothesis must be reject in all performed experiments.

Table 6. Analysis of variance data related to E1 study.

Causes of
variance

Degrees of
freedom

Sum of squares Median squares F-calculated

Treatments 2 13,3722 6,6861
Residuals 18 3,8035 0,2113
Total 20 31,6423

Using Function Points in Agile Projects 55

Table 7. Analysis of variance data related to E2 study.

Causes of
variance

Degrees of
freedom

Sum of squares Median squares F-calculated

Treatments 2 6,8967 3,4484
Residuals 21 0,6331 0,0301
Total 23 114,37

3.4 Tukey’s Test

It was calculated an honest significant difference (HSD) to each project. Conforming to
Tukey [30], if the difference between the means is higher than HSD one must reject the
hypothesis of equality among the mean levels. According to Table 8, the HSD value of
0.63 in E1 study is higher than the differences among the means of each approach, and
for this reason, the hypothesis of equality among the mean levels must not be rejected.
In E2 study, presented at Table 9, it may be noticed that the HSD for this experiment
was 0.22 and the means of the Extending Function Point Analysis (EX), Function Point
Analysis and Cost Estimation in An Agile Development Environment (CA) and Agile
Estimation Using Functional Metrics (FM) approaches were 1.5000, 0.2625 and 0.5010
respectively. Since the differences between all approaches were higher than HSD, one
must reject the hypothesis of equality among the mean levels with a 95% level of signif‐
icance. Seeing that the means represent the errors in estimates, one concludes that in E2
study the Function Point Analysis and Cost Estimation in An Agile Development Envi‐
ronment approach were found to have the ideal performance.

Table 8. The means values and the differences among them at E1 study.

E1 study Mean Dif. with CA Dif. with FM Dif. with EX
HSD 0,6300 N/A N/A N/A
CA approach 2,0250 N/A 1,6929 1,6925
FM approach 0,3321 −1,6929 N/A −0,0004
Ex approach 0,3325 −1,6925 0,0004 N/A

Table 9. The means values and the differences among them at E2 study.

E2 study Mean Dif. with CA Dif. with FM Dif. with EX
HSD 0,2200 N/A N/A N/A
CA approach 1,5000 N/A 1,2375 0,9990
FM approach 0,2625 −1,2375 N/A −0,2385
Ex approach 0,5010 −0,9990 0,2385 N/A

3.5 Outcome Assessment

As illustrated in Sect. 3.3, the null hypothesis was effortlessly rejected, what reveals that
the approaches are different from each other. In every studies, the Function Point

56 E. G. Wanderley et al.

Analysis and Cost Estimation in An Agile Development Environment – CA [26]
approach presented very divergent numbers from other approaches and a high level of
errors.

At E1 study, the Extending Function Point Analysis – EX and Agile Estimation
Using Functional Metrics – FM approaches handed out very similar outcomes and a
reduced error mean, and for that it may be concluded that in similar projects, both
approaches can be considered acceptable.

At E2 study, the Agile Estimation Using Functional Metrics – FM approach was,
considerably the ideal approach to measure projects with characteristics related to the
study. This was largely due to a problem with the Extending Function Point Analysis –
EX approach. It presents a statement that in new stories developed in iteration, only
53.52% of the activities can be developed in the same iteration, in other words, it becomes
possible to conclude only up to 53.53% of the development of a new story. It leads the
iterations that have only one story to low performance, since they become limited to the
above-mentioned percentage, which is the case of E2 Study.

4 Concluding Remarks

From the controlled experiment results, it was noticed that the Function Point approach
Analysis and Cost Estimation in an Agile Development Environment - CA is a very
specific to the environment which the approach was described, since it determines fixed
values of hours for each ALI found independent ALI found independent of the features
that will be developed and because of this did not go well when it was used in an envi‐
ronment other than proposed by the author. It was also noticed that, despite the Extending
Function Point Analysis - EX and Agile Estimation Using Functional Metrics - FM have
similarities and values, the FM approach presented a lower mean error, especially with
the E2 study and therefore was considered the most adequate for the study.

4.1 Threats to Validity

4.1.1 Internal Validity
At this experiment a few system analysts were utilized as subject and they may have
suffered influence throughout the project and it may lead to some changes at the outcome.
In relation to the subjects’ commitment, they could have become discouraged during
working time, although to bypass the problem it was accorded to their managements
that they could earn a time off for their help in the project. The fatigue of estimating
could have been another factor, and for this the delivery time was increased in 40% so
they could relieve the pressure on the estimates delivery.

4.1.2 Conclusion Validity
It is about to the correctness of applying the statistical tests on the outcomes obtained
during the experiment, and for this, a statistic professional monitored the project. At this
study, the Tukey’s Test was utilized to compare the outcome data.

Using Function Points in Agile Projects 57

4.1.3 Construct Validity
The training applied to the developers on the estimate metrics may not be fully under‐
stood by them, thus affecting the outcomes of the experiment.

4.1.4 External Validity
At this study, metrics to estimate software development effort using agile method were
tested. In order to guarantee such validity, one may repeat the experiment in different
groups with other characteristics in consideration of ensure the outcomes can be gener‐
alized.

4.1.5 Empirical Reliability
The procedures for carrying out the research were documented in detail, seeking to serve
as a source of information and so, to enable that other researchers can repeat it in the
future, contributing to a greater empirical reliability.

4.2 Future Works

The following works are recommended:

• Develop case studies about the theme involving Brazilian software development
companies;

• Develop action researches for testing if the outcomes of this experiment may be
confirmed by using them with other companies.

References

1. Sommerville, I.: Engenharia de Software. Editora Addison-Wesley (2011)
2. dos Santos Soares, M.: Comparação entre Metodologias Ágeis e Tradicionais para o

Desenvolvimento de Software. Unipac-Universidade Presidente Antônio Carlos (2010)
3. Mens, T., Demeyer, S.: Future trends in software evolution metrics. In: Proceedings of the

4th International Workshop on Principles of Software Evolution, IWPSE 2001, pp. 83–86
(2001)

4. França, L.P.A., et al.: Medição de Software para Pequenas Empresas: uma Solução Baseada
na Web. PUC-RJ, Rio de Janeiro (1998)

5. Usman, M., et al.: Effort estimation in agile software development: A systematic literature
review. In: Proceedings of the 10th International Conference on Predictive Models in
Software Engineering, pp. 82–91. ACM (2014)

6. Kan, S.: Metrics and Models in Software Quality Engineering. Addison-Wesley, Boston
(2002)

7. Albrecht, A.J.: Measuring application development productivity. In: Proceedings of the IBM
Applications Development Symposium, p. 83. GUIDE, IBM Corp., Monterey (1979)

8. SO/IEC 20926: Disponível em (2002). www.iso.org/iso/cataloguedetail.htm
9. Dekkers, C.: Measuring the logical or function a Size of Software Projects and Software

Application. Spotlight Software, ISO Bulletin, May 2003
10. Perry, W.E.: The best measures for measuring data processing quality and productivity.

Quality Assurance Institute Technical Report (1986)

58 E. G. Wanderley et al.

http://www.iso.org/iso/cataloguedetail.htm

11. Jones, C.: Function points. Computer 27(8), 66–67 (1994)
12. Santana, C., Gusmão, C.: Uso de Análise de Pontos de Funções em Ambientes Ágeis. In:

Engenharia de Software Magazine, pp. 33–40, 20 December 2009
13. Oest, C.: Quando a Análise de Pontos de Função se Torna um Método Ágil? In: 2nd

Conferência Brasileira de Medição e Analise de Software, São Paulo, Brasil 2011
14. BFPUG: Brazilian Function Point Users Group, Número de CFPS por País (2008)
15. SISP: Roteiro de Métricas de Software do SISP: V. 2.0. Ministério do Planejamento,

Orçamento e Gestão: Secretaria de Logistica e Tecnologia da Informação, Brasília (2012)
16. Governo Federal: Disponível em (2008). http://www.governoeletronico.gov.br/anexos/

instrucao-normativa-n-04
17. Usman, M., et al.: Effort estimation in Agile Software Development: A systematic literature

review. In: Proceedings of the 10th International Conference on Predictive Models in
Software Engineering, pp. 82–91. ACM (2014)

18. Cohn, M.: Agile Estimation and Planning. Addison-Wesley, Upper Saddle River (2005)
19. Schmietendorf, A., et al.: Effort estimation for agile software development projects. In: 5th

Software Measurement European Forum (2008)
20. Fuqua, A.M.: Using function points in XP - considerations. In: Marchesi, M., Succi, G. (eds.)

XP 2003. LNCS, vol. 2675, pp. 340–342. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-44870-5_46

21. Banerjee, A.U., et al.: Estimating agile iterations by extending function point analysis. In:
WORLDCOMP 2012 (2012)

22. Alexander, A.J.: Case Study: Function Point Analysis and Cost Estimation in An Agile
Development Environment (2011)

23. Cagley, T.: Agile Estimation Using Functional Metrics. The IFPUG Guide to IT and Software
Measurement IFPUG. CRC Press (2009)

24. Wanderley, E.G.: Aplicação de Pontos por Função em Projetos que Usam Métodos.
Dissertação de Mestrado UFPE (2015)

25. Kitchenham, B., et al.: Towards a framework for software measurement validation. IEEE
Trans. Softw. Eng. 21(12), 929–943 (1995)

26. Sousa, K., De, D., et al.: Uso do GQM para avaliar implantação de processo de manutenção
de software. Universidade Católica de Brasília (2005)

27. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-1-4757-3304-4

28. Travassos, G.H., et al.: Introdução à Engenharia de Software Experimental (2002)
29. Fisher, R.A.: Statistical Methods for Research Workers. Oliver & Boyd, Edinburgh (1925)
30. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Reading (1977)

Using Function Points in Agile Projects 59

http://www.governoeletronico.gov.br/anexos/instrucao-normativa-n-04
http://www.governoeletronico.gov.br/anexos/instrucao-normativa-n-04
http://dx.doi.org/10.1007/3-540-44870-5_46
http://dx.doi.org/10.1007/3-540-44870-5_46
http://dx.doi.org/10.1007/978-1-4757-3304-4

Adoption of Agile/Lean

Agile in 3D: Agility in the Animation Studio

Avelino F. Gomes Filho1(B), Danilo Alencar2, and Rodrigo de Toledo3

1 Postgraduate Program in Computer Science (PPGI),
Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil

avelino.filho@ppgi.ufrj.br
2 Knowledge 21 (K21), Rio de Janeiro, Brazil

danilo@k21.com.br
3 Department of Computer Science (DCC),

Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
rtoledo@dcc.ufrj.br

Abstract. Agile Software Development has been gaining importance
because of its adaptability, focus on people, continuous improvement,
and short construction and delivery cycles. Companies outside the soft-
ware engineering context also desire such qualities. This paper presents
a case study where a 3D animation production company adapted Scrum
and Lean Kanban methods to achieve better results by reducing the effort
required to create their products and make them available. The results
demonstrate that the adaptation led to a shorter animation development
time, helped the team track product evolution, increased automation,
made the development process transparent and improved team engage-
ment. This paper provides evidence that the animation industry can
benefit from adapting and adopting Agile.

Keywords: Agile · Scrum · Lean · Kanban · Animation · 3D
Studio

1 Introduction

Animation studios are companies that deliver solutions ranging from the creation
of illustrations and small special effects to the development of feature films.
They operate in creative environments, characterized by the non-linearity of
their actions and by their complexity and even chaos. However, they also face
the restrictions of corporate environments, such as costs, deadlines, scopes, client
relationships, contracts, etc. [12].

The challenge of conciliating these characteristics, and the difficulty of mak-
ing the professionals respect these restrictions and stop missing deadlines, led
the 3D animation studio described in this paper to search for a solution to the
following problem: How to do creative work while respecting the deadlines and
the production pace agreed upon with the clients?

This work presents the result of the action research carried out and describes
how Scrum and Lean Kanban practices were used to shed light on the problem

c© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 63–76, 2018.
https://doi.org/10.1007/978-3-319-73673-0_5

64 A. F. Gomes Filho et al.

and help find a solution. The objective was to explore how Agile software devel-
opment methods can be adapted to the production of 3D animation, engaging
people not only in the development, but also in the self-management of their
products, reducing delays and consequently improving client satisfaction. Here
we describe how the work process was built collaboratively and iteratively by col-
lecting efficiency metrics, feedback and views from those involved in the process.

The paper is divided as follows: Sect. 2 presents related work used as support
for this study. Section 3 describes the action research method used. Section 4
presents the experiments carried out to build the management model used in the
animation studio. Section 5 presents the results obtained in the study. Section 6
concludes this work and indicates next steps in the research.

2 Related Work

Agile Methods have crossed the boundaries of software development. They are
currently used for teaching [6], scientific research [9] and hardware product build-
ing [4]. Animation and visual effect creation has also experienced the benefits
of these methodologies. Yothino et al. [13] described the experience of adopting
Scrum for visual effect production. The authors identify the framework’s ability
to increase control over the creation process and improve project quality as the
main reason to adopt it.

In another application, the same group of researchers applied Scrum again,
this time as a knowledge equalizer, so that professionals from different back-
grounds could create visual effects collaboratively. The framework was used to
speed up the creation process, in the short space of just three weeks [14].

These contributions show that Agile Methods can assist in the management
of animation creation through iteration cycles. However, they were applied to
new projects and controlled environments. The present research was applied to
a real company, with the corporate pressures of costs and deadlines, and to
an ongoing project. The goal was to reduce delays, identify bottlenecks in the
process, and adapt not only Scrum [11], but Lean Kanban as well [1].

3 Research Method

The action research method was considered the most appropriate because of the
need for researchers and study participants to collaborate, the qualitative nature
of the results, the complexity of the system assessed, and the need to perform
multiple experiment cycles to reach the best possible result [8].

This scientific method has similarities with Scrum [11] and Lean Startup [10]
Agile development cycle. The researchers start by identifying solution hypothe-
ses, plan the validation and execute the experiment. At the end, after result
collection and analysis, the researchers can assess and propose new solutions to
the problem, thus achieving continuous improvement [7].

However, there are challenges to action research, because data capture and
analysis depends on qualitative information perceived by the researchers and

Agile in 3D: Agility in the Animation Studio 65

obtained through feedback and interviews with the team under study. To reduce
this challenge, we used the Cognitive Task Analysis (CTA) method. This method
is recommended when the tasks to be analyzed require intense cognitive activity
by the user, such as decision making, problem solving, memory, etc. [5].

3.1 Method

The activities carried out in this study began with an interview with the anima-
tor responsible for the team and the researchers. The purpose of the interview
was only to identify the challenges faced by the production company.

Following the CTA process, based on the interviewee’s information, a timeline
with the most significant events the team had gone through was drawn. We then
determined the most relevant points in the discussion. This way, we were able to
classify the attention points into four types: Management, Development Process,
Deadline, and Client. Figure 1 presents the result of this initial analysis.

Fig. 1. CTA of information captured during the interview with the professional in
charge of the animation.

Once classified, the issues were prioritized by the interviewee as follows: 1.
“The process is in people’s minds”; 2. The team lacks engagement with man-
agement; 3. Dependence on animator responsible for the team; and 4. Late per-
ception of delays. According to the interviewee, variable process and client dis-
satisfaction are consequences of the prioritized problems. The short, one-week
deadline is a given that cannot be negotiated.

This way we were able to understand the issues the company was facing,
develop the research question (Sect. 1), and create assumptions and experiments
to solve the problem (Sect. 4).

After applying the CTA, we carried out bibliographic research to assess how
other organizations operating in a similar context have dealt with the issues
identified.

66 A. F. Gomes Filho et al.

Table 1. Experiment summary table

Experiment cycle Problem Objective Duration

1st Chaotic and unstructured
process and high dependence
on the responsible animator

To structure the work process 15 days

2nd Delays and Process
Variability

Define and give transparency to
the process stages, highlight
bottlenecks, increase team
engagement

15 days

3rd Delays and Process
Variability

Deliver an episode of the
animation in 7 days

15 days

We used the IEEE, Springer, ACM DL and Google Scholar databases to
locate academic contributions. The most relevant results are mentioned in
Sect. 2. Because the number of academic contributions was small, the researchers
searched Google for industry solutions to this type of challenge.

Based on the obtained results, the researchers proposed a process-monitoring
model based on Scrum [11] and Lean Kanban [1]. The method was applied and
improved in three research cycles, each one lasting two weeks. At the end, a
new interview was carried out with the head animator to record his feedback
and assess the results achieved by the model in relation to the issues identified
through the CTA. Table 1 shows the experiment cycles, the problem that each
experiment tried to solve, goals and duration.

3.2 Limitations

The proposed model was created to accommodate the production specificities
described in Subsect. 4.1. Some characteristics of the professionals involved in
this experiment made the model implementation easier. The most important
of these are the company culture of innovation and experimentation and the
adaptation capacity of the team members.

Moreover, the results obtained are qualitative, so they depend on the subjec-
tive analysis by those involved both in the team under study and the research
team.

Another limitation is the small number of academic contributions available on
the theme. This limitation makes it difficult to compare the proposed model’s
results with others. The expectation is that this model can be adapted and
applied to other producers, so we can assess its potential generalization.

4 Experimentation Cycles

4.1 Context

The company that participated in the action research is a 3D and 2D anima-
tion producer. It has several production contracts and provides services from

Agile in 3D: Agility in the Animation Studio 67

scriptwriting to post-production. The team that participated in this research is
composed of five people: two animators and a production assistant who work
exclusively in the production under study, as well as a scriptwriter who is respon-
sible for each episode’s narrative, and a voice talent who does the character voices.
The two latter team members divide their time among various animation teams.

The company’s need to improve the way it manages its creative process arose
from a new contract, whereby they would produce and publicize a series of two-
minute videos published on YouTube every week. Production started in a poorly
organized and hurried manner. The production stages started to get behind sched-
ule, and team members missed what had to be done. It was important for them
to visualize what was happening and how they could make up for lost time [3].

The challenge was how to efficiently manage the creation process for this
animation series so that there were no delays, ensuring client satisfaction and a
lasting contract. The initial delay was of more than seven days.

4.2 First Cycle: Scrum Adaptation

The first experiment cycle had the goal of making the creation process man-
agement easier. Because Scrum [11] is a simple framework with clearly defined
development stages, roles and ceremonies, it was the method of choice for this
goal.

During the cycle, items were defined that could make activity monitoring
easier. The stories that represent the client’s needs (User Story) were adapted to
represent the series episodes. Each episode is defined by the producer’s manager,
who played the role of Product Owner (PO). His main responsibility is to define
and prioritize the themes each episode should cover. He actively participates in
each episode’s planning and review when these are presented by the creation
team. The professional in charge of the animation team played the role of Scrum
Master (SM), facilitating the team’s work. The remaining team members played
the role of the Creation Team.

One of the assumptions for the animation series was that it would include
recent topics in the media and promotions, so the PO must keep a clean Product
Backlog. He has stories for one or two iterations (Sprints), which last two and a
half weeks.

Iteration Planning (Sprint Planning) is done between the PO, the SM and
the Creation Team. In this planning, the PO presents the episode topics and
the team chooses what will be done in that iteration. For each iteration, three
episodes are chosen to be part of the Sprint Backlog.

The team also adopted as Definition of Ready that the topic must have been
chosen by the PO and debated with the team during planning. The execution
is monitored through Daily Meetings. The episode is ready (Definition of Done)
when it is created, rendered, edited and has the promotional material prepared.

At the end of the iteration, the revision meeting is held to show the animation
to the PO and collect his feedback. The PO, the SM and the Creation Team are
present in the meeting.

68 A. F. Gomes Filho et al.

After the review, in the Retrospective Meeting, the team’s feedback is col-
lected about the method and how it could be improved. According to the team,
Scrum was useful to define roles and significantly reduce the team’s dependence
on the head animator. That was important to “take people’s minds off the pro-
cess”. However, the project started behind schedule, with stories that had not
been delivered at the end of the iteration. The team also showed little engage-
ment with project monitoring, and the process continued to be non-predictive,
with tasks arising during the Sprint. Moreover, although they had realized that
they were going to be delayed, they thought this was not very clear. In fact, the
delay observed before the beginning of the experiment was not shortened.

4.3 Second Cycle: Life Cycle with Kanban

The objective of the second cycle was to make the process stages more transpar-
ent and the delays easier to visualize. Kanban was chosen because it is a method
that can represent the entire value chain of the work process and reveal handoffs
and bottlenecks [1].

The concepts adapted from Scrum were maintained: the roles of PO, SM and
Team; the Planning, Daily, Review and Retrospective meetings; the definitions
of Prepared and Ready; the Sprint Backlog; and the episodes as User Stories.
After analyzing the activities carried out by the Team, it was observed that the
creation of episodes could have been better described through the following value
chain:

1. Script: Creation of the story to be told in the episode;
2. Narration: The voice talent reads the script;
3. Modeling: Creation of the animation items: characters, vehicles, objects,

background, etc.;
4. Blocking: Animation of key sketches of characters and objects in the scene;
5. Cleaning: First refinement after blocking;
6. Lip Sync: Synchronizing the characters’ movements and the narration;
7. Refining: Refinement of the animation to check for problems;
8. Rendering: Animation rendering, which results in the first version of the

video, still without the background;
9. Correction: After putting the video together and rendering it for the first

time, motions and element synchrony must be corrected;
10. Composition: Addition of background scenery to characters and objects;
11. Editing: The whole video is watched and, if needed, edited to fix any

remaining problems.

Moreover, the need for the team to also focus on the promotion process of
the episodes was identified. This process begins after the Blocking stage and
involves composing the promotional material and creating the opening sequence
that will be used to promote the animation.

Based on this feedback, the board was redesigned, as shown in Fig. 2.
Not all process stages are sequential. As can be seen in Figs. 2 and 3, after

the Script is defined, the Narration and Modeling stages can be done in parallel.

Agile in 3D: Agility in the Animation Studio 69

Fig. 2. Kanban Board to monitor animation production.

However, both must be ready for the Blocking stage. After that, the process is
divided into two well-defined sub-processes: episode Creation (upper line) and
Promotion (lower line).

Besides the board, the team adopted important Lean Kanban features: the
first is a limited quantity of items in execution (Work in Progress). Each stage
can have one execution item at most. However, because there are two animators
on the team and each episode is two minutes long, they decided to divide the
episode into Minute 1 and Minute 2, working on Cleaning, Lip Sync, Refining
and Rendering in parallel. Minute 1 is placed above the name of the stage, and
Minute 2 is placed below.

The action and waiting steps in each stage are also represented. When the
episode is to the left of the division (three tacks), it means that the item is
stopped, awaiting execution (To Do). When it is to the right of the tacks, it
means that the item is being executed (Doing). When the animator concludes
that stage, he moves it to the To Do column of the next stage.

Observing Fig. 4, the board should be read as follows. For the current itera-
tion, Episode 4 was selected. Minute 1 of the episode is being rendered. Minute 2
is in the Lip Sync stage. Meanwhile, in the Promotion process, the composition
was done and the episode is awaiting the opening sequence.

The Definition of Ready adopted by the team was maintained, but it started
to be visually represented on the board by the three editing boxes (blue paper
in Fig. 5). The first box is occupied by Minute 1, the second by Minute 2, and
the third by the promotional material. When all three are completed, it means
that the episode is ready.

70 A. F. Gomes Filho et al.

Fig. 3. Approximate view of the first part of the Kanban Board.

With this new format, another experimentation cycle was planned and exe-
cuted, and the first three episodes were delivered. Once again, comparing the rel-
evant points brought up during the CTA, the team displayed better engagement
with self-management, dependence on the head animator was virtually nonexis-
tent, the creation process became clear with the board illustrated in Fig. 2, and
it was no longer subject to variability. The animations were delivered, although
four days behind schedule.

4.4 Third Cycle: Lean Kanban

The last experiment cycle had the objective of eliminating delivery delays. To
achieve that, we chose to explore Lean Kanban techniques [1] more deeply.

The team started to work on a continuous flow of episodes. Instead of doing
Sprint Planning and defining what the next three episodes would cover, they
decided that at each delivery they would present the episode to the PO and

Agile in 3D: Agility in the Animation Studio 71

Fig. 4. Approximate view of the second part of the Kanban Board.

then define the following one to be created. The goal was to keep three episodes
in production, thus generating a minimum reserve of episodes.

With the Work in Progress restriction, the team started to notice downtimes
in the productive chain. Since the work they develop is highly specialized, they
chose not to do swarming [1]. Instead, they decided to use the downtimes to
automate animation items, thus reducing the effort needed to draw them and,
consequently, the production time.

Automation is the creation of compositions that can be reused in different
episodes in the series. For instance, the team had a few days off, so they used
them to do Character Irrigation, which improves connecting joints such as arms,
legs, neck and hands, making the motions more natural and without cuts. They
also automated facial expressions and created some plugins to save time in future
animations.

The team also agreed that each stage should last at most one work day.
The script was written on a Wednesday, and from then each stage had to be

72 A. F. Gomes Filho et al.

Fig. 5. Approximate view of the third part of the Kanban Board. (Color figure online)

executed in up to one business day. The only exception was Rendering, which
was executed automatically and could take one weekend.

As an example of delay visualization, going back to Fig. 4 and assuming that
it is Thursday on the first week, we could infer that Minute 1 of Episode 4 is one
day ahead of schedule. Minute 2 of the same episode is one day behind schedule,
because Refinement was supposed to take place on Thursday.

These changes allowed them to notice the delays and identify production
bottlenecks. The episodes started to be delivered with a delay of two days.

5 Results

To collect the results obtained with the method described, at the end of the
third Experiment Cycle a second interview was carried out with the animator
in charge of the series [2]. The goal of this interview was to assess whether the
proposed model was able to solve or mitigate the problems identified during the
CTA (Fig. 1).

Agile in 3D: Agility in the Animation Studio 73

5.1 Management

Regarding the adoption of the method by the team, the interviewee said that
there was some initial resistance. However, with time, the team started to feel
represented on the board, which led them to start adopting self-management.
The head animator no longer had to tell team members what to do, as they
begun to select the tasks they had to work on. The daily meetings continued to
happen, and the board was updated by the team.

The fact that the board represented the creation process saved significant
time that was previously used for team management. There used to be a good
deal of discussion about what each one should do. The head animator spent a
lot of time organizing the process, but because he was also one of the animators,
this caused delays in the animation development. After the process was detailed
on the board, there was no more discussion. “I still act as responsible for the
team, but now all I have to do is monitor”, said the interviewee.

The board also brought two positive side effects. The first is that the area
manager, who was not directly involved in the team’s activities, realized the
value of process transparency. “At a glance, he knows what is happening, if
anything is delayed, what people are doing.” [2] Another effect which emerged
was the interest of other teams in using the model to start managing their
creative processes.

5.2 Process

The board also resulted in a standardized creation process. Without variations
in the stages, the team could now predict when an episode would be ready, when
there was room for improvement and where there would be delays.

5.3 Deadlines

Regarding delay reduction, the interviewee said that the model adopted was cru-
cial to identify delays and to find out which stages of the process had bottlenecks.
Although the delays were reduced, they still happened during the experiment.
However, assisted by the board, the animator responsible for the team was able
to justify the need to hire one more employee for the team.

A few weeks after the interview, the head animator told us that a new member
had joined the Creation Team and that the team started to deliver the episodes
within one week. Figure 6 shows the reduction of the production time obtained
in each experiment cycle.

5.4 Client

Finally, even with small delays in some episodes, the client’s relationship with the
producer became stable. The client is satisfied with the product being delivered.

74 A. F. Gomes Filho et al.

Fig. 6. Reduction of time of episode production per experiment cycle.

6 Conclusions and Future Work

The objective of this work was to build, collaboratively and iteratively, an Agile
management model for the creation of 3D animations. We used Cognitive Task
Analysis to understand the problem faced by the company and verify the results
achieved when the model was implemented. As has been demonstrated, the
action research method implemented through the experimentation cycle can
assist in the continuous improvement of the solution proposed.

Fig. 7. Team response after the Agile adoption

Agile in 3D: Agility in the Animation Studio 75

Based on the perceived results, it is possible to claim that the method was
able to solve problems related to the team’s lack of engagement in managing
the creation process, encouraged self-management, improved process visibility,
reduced process variability, uncovered bottlenecks and reduced delays. Moreover,
it was able to demonstrate the need to increase the number of professionals on
the team so that the goals could be met in the turnaround time agreed upon
with the client.

In the end, we sent the CTA analysis to the production team (Fig. 1). We
asked them to indicate with a positive signal if they believed that the problem
had been solved and with the negative signal if the problem had not been solved.
The result is in Fig. 7. According to the them, with the exception of the Short
deadline defined at the time of hiring, all major problems were solved.

In the future, this method will be applied to other teams in the same company
to assess how it can be expanded to other contexts. The researchers are also
searching for other video production companies to verify whether the method
can be broadened and its results extrapolated beyond the company under study.

Acknowledgments. The authors of this work would like to thank Felipe Assis for his
participation and great support of this work.

References

1. Anderson, D.: Kanban: Successful Evolutionary Change for Your Technology Busi-
ness. Blue Hole Press, Seattle (2010)

2. Assis, F.: Final interview, July 2017. Gomes Filho, A.F.: Interviewer. São Paulo
[s.n.] (2017)

3. Assis, F.: Initial interview, January 2017. Gomes Filho, A.F.: Interviewer. São
Paulo [s.n.] (2017)

4. Boralli, A.B., França, R.B.: Applying continuous integration principles in safety-
critical airborne software. In: Anais do 5◦ Workshop Brasileiro de Métodos Ágeis,
pp. 1–12. INPE, São José dos Campos (2014)

5. Crandall, B., Klein, G.A., Hoffman, R.R.: Working Minds: A Practitioner’s Guide
to Cognitive Task Analysis. Mit Press, Cambridge (2006)

6. Gomes Filho, A.F., de Resende, C.F.C., de Toledo, R.: Usando métodos ágeis para
ensinar métodos ágeis. In: Proceedings of the 5th Workshop Brasileiro de Métodos
Ágeis, pp. 1–12. INPE, São José dos Campos (2014)

7. Gomes Filho, A.F., de Toledo, R.: Visual management and blind software devel-
opers. In: 2015 Agile Conference, pp. 31–39, August 2015

8. Lewin, K.: Action research and minority problems. J. Soc. Issues 2(4), 34–46 (1946)
9. Lima, I.R., de Castro Freire, T., Costa, H.A.X.: Adapting and using scrum in a

software research and development laboratory. Revista de Sistemas de Informação
da FSMA 9, 16–23 (2012)

10. Ries, E.: The Lean Startup: How Today’s Entrepreneurs Use Continuous Innova-
tion to Create Radically Successful Businesses. Crown Business, New York (2011)

11. Sutherland, J., Schwaber, K.: The scrum guide: The definitive guide to scrum:
The rules of the game (2013). http://www.scrumguides.org/docs/scrumguide/v1/
scrum-guide-us.pdf. Accessed 20 Dec 2015

http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf
http://www.scrumguides.org/docs/scrumguide/v1/scrum-guide-us.pdf

76 A. F. Gomes Filho et al.

12. Wingo, R.S., Tanik, M.M.: Using an agile software development methodology for
a complex problem domain. In: SoutheastCon 2015, pp. 1–8, April 2015

13. Yothino, M., Rueangsirasak, W., Chaisricharoen, R.: Novel management model
to increase visual effect productivity. In: 2013 13th International Symposium on
Communications and Information Technologies (ISCIT), pp. 751–756, September
2013

14. Yothino, M., Rueangsirasak, W., Chaisricharoen, R.: Visual effects production
improvement for thai film industry. In: The 4th Joint International Conference
on Information and Communication Technology, Electronic and Electrical Engi-
neering (JICTEE), pp. 1–7, March 2014

Concerns and Limitations in Agile Software Development:
A Survey with Paraguayan Companies

Myrian R. Noguera Salinas(✉), Adolfo G. Serra Seca Neto(✉),
and Maria Claudia F. P. Emer(✉)

Academic Department of Informatics, Federal University of Technology,
Curitiba, Paraná, Brazil

michinoguera@gmail.com, adolfo@utfpr.edu.br,
mclaudia@dainf.ct.utfpr.edu.br

Abstract. The Agile Manifesto has been around form more than fifteen years
and, all over the world, companies and researchers seek for understand their
adoption stage, as well as the benefits, barriers, and limitations of agile methods.
Although there are some survey studies at the global level, we know little about
how the Paraguayan software community is adopting agile methods. The present
work conducted a research to characterize the current stage of adoption, initial
concerns and barriers on the implementation of agile methods in software devel‐
opment companies in Paraguay. An online survey was sent to managers of 53
Paraguayan companies. Of these, 9 (17%) managers responded. The main concern
about adopting agile methods (44.44% of respondents) was the lack of reliability
in product quality if developed using agile methods. The main barrier was the
lack of experience (66.66%) of the companies.

Keywords: Agile methods · Agile Adoption · Survey
Software development enterprise

1 Introduction

Agile Software Development (ASD) was formally presented to the software engineering
community in 2001 in a document called “Agile Manifesto”, which mentions a set of
core values and principles that emphasized Agility, in other words, the ability to adapt
to fast volatile requirements [1]. However, agile principles don’t suggest specific activ‐
ities or artifacts; these are defined in a number of methods and practices such as Scrum,
Extreme Programming (XP), Test Driven Development, Lean Software Development,
Kanban etc. Practices vary and focus on different aspects of agile principles and address
different problems in software development.

Since then, development with agile methods has attracted the attention of many
researchers. Most of the available studies report experiences, generally positive, with
their application in specific organizations and projects and, therefore, are hardly gener‐
alizable.

Motivated by the current popularity of agile methods and the interest of the first
author (of Paraguayan nationality), we decided to investigate the concerns and

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 77–87, 2018.
https://doi.org/10.1007/978-3-319-73673-0_6

limitations to the adoption of agile methods. The remainder of this paper is organized
as follows. Section 2 is the literature review followed by Sect. 3, which outlines objec‐
tives and research methodology. In Sect. 4, we analyse the results, and Sect. 5 presents
the conclusion.

2 Literature Review

The term “Agile Methodologies” emerged in 2001, when a group of software develop‐
ment practitioners decided to meet in the US to discuss ways to improve the performance
of their projects. They wrote a document entitled The Agile Manifesto. Methods and
practices like TDD [21], Pair Programming [22] and Planning Poker [23], related to this
manifesto, have been increasingly adopted in recent years.

Several authors have pointed out the advantages of agile methods, with their
emphasis on individuals and iterative processes, client collaboration on formal contracts
and negotiations, and responsiveness to rigid planning [8–12, 15–18]. However, there
are few studies on adoption difficulties [8, 13, 14, 19, 20].

A survey conducted by VersionOne in 2016 suggested the main difficulties in
adopting agile methods are: organizational culture in disagreement with agile values,
(63%) and lack of skills or experience with agile methods (47%).

Another research [3, 13] was conducted in 2013 to characterize the current stage of
adoption and adaptation of agile methods in Brazil. The results showed that the main
concern in adopting the agile methods was the lack of documentation. In addition, the
major barrier to broad adoption was the ability to change organizational culture.

In February 2015, both Gartner and Software Advice [4, 5] launched research and
analysis on agile life-cycle management or project management tools. Of the project
managers who responded, 49% say that coaching others is a common challenge they
face, especially when adopting agile culture.

Another literature review study [6] focused on the current challenges of this agile
movement. The most significant were team management, agility in distributed teams,
prioritization of requirements, documentation, change requirement, organizational
culture, process and monitoring, and feedback.

3 Objectives and Methodology

3.1 Definition of Goals

The main objective of our study was to characterize the current adoption stage, barriers
and limitations regarding the use of agile methods in software development companies
in Paraguay.

3.2 Methodology

For the accomplishment of the study a research was prepared by means of an online
survey. The following are the steps performed in the study (Fig. 1):

78 M. R. N. Salinas et al.

Fig. 1. Methodology adopted

Participant selection. A common problem when conducting an online survey is
finding the right respondents and collecting enough answers so that you have relevant
data. Our primary concern, therefore, was to find the right respondents, whose response
is valuable enough to analyse the end result as managers and development managers. In
our research, the questionnaire was disseminated directly to the directors or development
managers of the companies.

According to the list provided by the Directorio de la Red de Inversiones y Expor‐
taciones (REDIEX), which belongs to the Ministerio de Industria y Comercio de Para‐
guay, there are 53 companies registered in the Software Development category in Para‐
guay. The questionnaire was sent to all the companies on the list and 9 of them answered.

Survey design. We created an online questionnaire that consisted of ten multiple-
choice questions.

The first section of this survey has general information. The details sought include
the name of the organization to which the respondent belongs, the position, and how
many people in total are employed in the company.

The second section deals with the adoption of agile methods, in which the questions
were structured in such a way as to answer the main issues of adoption: concerns and
barriers. The questions were, for instance, how many years of experience do you have
using agile methods (to understand the extent of company familiarity with agile devel‐
opment) and what were the difficulties of adoption (to identify the reasons).

The last section complements previous data with the percentage of projects devel‐
oped using agile methods.

Concerns and Limitations in Agile Software Development 79

Survey application. The research survey was directly disclosed to the directors or
development managers of the companies through an e-mail, to which they responded
by filling out the online questionnaire.

The participants were mainly representatives who had full knowledge of the
company policies, the various methods used and the time the company has been using
process development.

Result analysis. The analysis of the results was based on the answers that we received
through the online questionnaire. Responses were carefully analysed in order to get
accurate results based on the research. The main concern was to interpret the information
in the wrong way, which would definitely not serve the purpose of our investigation.

4 Results

The data collected with the help of the form gave us a clear idea of the respondent and
his position. Most of the participants are Project Managers or President of the Company,
33.33% in both cases, which ensures a responsible and official response (Fig. 2) and also
confirms the current use of agile methods by 100% of the participants (Fig. 3).

Fig. 2. Participant’s role Fig. 3. Does the company use agile methods?

Another important feature is the size of the software development team. Most
(66.66%) of the companies have up to 20 employees in their team (Fig. 4).

80 M. R. N. Salinas et al.

Fig. 4. Size of organization

One of the main themes of this research details the following concerns (Fig. 5):

• Inability to scale: Corresponds to the lack of organizational capacity to make the shift
to agile methods.

• Reduced software quality: It’s the perception of lack of reliability in delivering a
quality product or ensuring customer satisfaction.

• Development team opposed to change: Occurs when developers are not convinced
or motivated to make the move to agile methods.

• Lack of early planning: When participants are unaware of the activities needed to
make the change because of lack of planning.

• Internal company regulations: When standards or company rules don’t conform to
the principles of the methods.

• No concerns: They had no concerns about adopting the methods.

Fig. 5. Concerns about adopting agile

Concerns and Limitations in Agile Software Development 81

The data show that 44.44% of the participants had concerns about software quality
when adopting agile methods. Other significant reasons are: inability to escalate, with
22.22%, and development team resistant to changes, with 22.22%.

Other important theme is identifying barriers to further adoption in the enterprise
(Fig. 6). The reasons are detailed as follows:

• Company’s internal rules or standards: When the company’s rules don’t match with
the principles of agile methods.

• Budget constraints: The company has no budget for the broad adoption, but it has
already implemented agile methods in some of its projects.

• Project complexity: The company also works with large and complex projects and
uses agile methods to develop small projects.

• Customer collaboration: The client has no interest in participating in meetings and
other activities appropriate to the agile methods or techniques used.

• Confidence in the ability to scale: Corresponds to difficulties to make the change to
agile methods in order to increase its scale. That is, the difficulty in using agile
methods in more projects and/or bigger projects.

• Lack of experience: The team does not have sufficient experience for the wide adop‐
tion of agile methods.

• Other: Other reasons not mentioned on the list.
• None: They had no barriers in adopting agile methods.

Fig. 6. Barriers to further Agile Adoption

The factors which are mainly chosen as main barriers to the adoption of agile methods
(Fig. 6) are: (a) lack of experience with 66.66%, (b) project complexity, 33.33% (c)
customer collaboration, with 33.33% and (d) confidence in the ability to scale with
33.33%.

82 M. R. N. Salinas et al.

Experience time is an important factor for the wide adoption of agile methods. The
majority (55.56%) of the participating companies have average experience of 1 to 2 years
(Fig. 7).

Fig. 7. Company experience with agile

The choices of methods and techniques are also fundamental according to the
knowledge, the characteristics of the team and of the company (Figs. 8 and 9). Most of
the companies interviewed prefer Scrum and the most used practices are: Unit tests with

Fig. 8. Agile methodology used

Concerns and Limitations in Agile Software Development 83

55.56%, Short iterations with 44.44%, Backlogs prioritized with 33.33%, Daily meeting
with 22, 22%, Retrospectives with 22,22%, Release planning with 22,22%, Continuous
integration with 22,22% and Open work area with 22,22%.

Fig. 9. Agile techniques used

Another data that allows us to visualize the adoption level is the quantity of projects
developed with agile methods (Fig. 10). The majority (55.56%) of the companies used
agile methods in 50% or more of their projects.

84 M. R. N. Salinas et al.

Fig. 10. Number of projects using agile methods

5 Discussion

When analyzing the results obtained, we can see that it was possible to identify simi‐
larities with the study conducted by VersionOne [2], mainly in the difficulties for the
adoption of agile methods: organizational culture in disagreement with agile values
(63%) and lack of skills or experience with agile methods (47%). Our study shows that
the main barrier to the full adoption of agile methods in Paraguay is the lack of experience
(66.66%). One of the possible causes may be the lack of training in agile methods and
techniques, according to the opinions expressed by people related to the agile community
in Paraguay.

In three aspects our results were very similar to those obtained in [13]: total size of
the technology team, experience of the company in agile methods and most used method
(Scrum). The main differences were related to:

• Percentage of projects carried out with agile methods. In [13], 30.4% of the companies
developed all of their projects using agile methods. In our study, 11.11% of companies
do the same;

• Profile of participants in the survey. In [13], 18.5% of respondents were developers.
In our study, by the very design of the research, no developer was a respondent.

The greatest concern for the initial adoption reflects the following: 44.44% of partic‐
ipants had concerns about software quality at the time they adopted agile methods. The
other reasons are: inability to scale, 22.22%, and development team resistant to changes,
22.22%. We believe that the concern with lack of reliability in software quality is prob‐
ably the result of lack of knowledge or training on agile methods and techniques. Agile
methods propose a better response to client expectations, so that more software quality
is what should be expected.

Concerns and Limitations in Agile Software Development 85

It is important to note that the results cannot be generalized statistically because it
corresponds to a preliminary study that aims to be complemented with more data to be
significant and to allow a more concrete visualization of the mentioned scenario.

6 Conclusions

This research was carried out with the purpose of identifying the level of adoption of
agile methods in software development companies in Paraguay, raising the barriers and
the concerns for their implementation. The answers to the questionnaire reveal that these
companies experience the use of methods and techniques, and the main concerns they
reported are (a) reduced software quality, (b) change resistant development team, and
(c) inability to scale.

The barriers reported are (a) little experience, (b) confidence in the ability to scale
agile methods, (c) little or no customer collaboration, and (d) complexity or size of
projects. Another interesting result is that more than 50% of the companies adopt the
Scrum Framework.

References

1. Beck, K., Beedle, M., Van Bennekum, A., Cockburn, A., Cunninngham, W., Fowler, M.,
Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R., Mellor,
S., Schwaber, K., Sutherland, J., Thomas, D.: Manifiesto for agile software development
(2001). http://agilemanifesto.org/

2. VersionOne Inc.: 11th Annual State of Agile Survey (2016). http://www.versionone.com/
3. Melo, C., Santos, V., Corbucci, H., Katayama, E., Goldman, A., Kon, F.: Métodos ágeis no

Brasil: estado da prática em times e organizações, Relatório Técnico RT-MAC-2012-03.
Departamento de Ciência da Computação. IME-USP (2012)

4. InfoQ: Gartner and Software Advice examine Agile Lifecycle Management Tools (2015).
https://www.infoq.com/news/2015/02/agile-management-tools

5. SoftwareAdvise: Agile Project Management Software User Report – 2015 (2015). http://
www.softwareadvice.com/resources/agile-project-management-user-trends-2015/

6. Resti, W., Rahayu, P., Indra, D.: Challenges in agile software development: a systematic
literature review. In: 2016 International Conference on Computer Science and Information
Systems (ICACSIS), Malang, Indonesia, pp. 155–164. IEEE Xplore (2016). https://doi.org/
10.1109/ICACSIS.2016.7872736

7. Kamei, F., Pinto, G., Cartaxo, B., Vasconcelos, A.: On the benefits/limitations of agile
software development: an interview study with Brazilian companies. In: 21st Evaluation and
Assessment in Software Engineering Conference (EASE), Karlskrona, Sweden, pp. 154–159.
ACM Digital Library (2017). https://doi.org/10.1145/3084226.3084278

8. Nazir, N., Hasteer, N., Bansal, A.: A survey on agile practices in the Indian IT industry. In:
6th International Conference Cloud System and Big Data Engineering (Confluence), India.
IEEEXplore (2016). https://doi.org/10.1109/CONFLUENCE.2016.7508196

9. Hoda, R., Salleh, N., Grundy, J., Mien Tee, H.: Systematic literature reviews in agile software
development: a tertiary study. Inf. Softw. Technol. 85, 60–70 (2017). https://doi.org/10.1016/
j.infsof.2017.01.007. ScienceDirect

86 M. R. N. Salinas et al.

http://agilemanifesto.org/
http://www.versionone.com/
https://www.infoq.com/news/2015/02/agile-management-tools
http://www.softwareadvice.com/resources/agile-project-management-user-trends-2015/
http://www.softwareadvice.com/resources/agile-project-management-user-trends-2015/
http://dx.doi.org/10.1109/ICACSIS.2016.7872736
http://dx.doi.org/10.1109/ICACSIS.2016.7872736
http://dx.doi.org/10.1145/3084226.3084278
http://dx.doi.org/10.1109/CONFLUENCE.2016.7508196
http://dx.doi.org/10.1016/j.infsof.2017.01.007
http://dx.doi.org/10.1016/j.infsof.2017.01.007

10. Pinto, J., Serrador, P.: Does agile work? A quantitative analysis of agile project success. Int.
J. Project Manage. 33, 1040–1051 (2015). https://doi.org/10.1016/j.ijproman.2015.01.006.
ScienceDirect

11. Dyba, T., Dingsøyr, T.: Empirical studies of agile software development: a systematic review.
Inf. Softw. Technol. 50, 833–859 (2008). https://doi.org/10.1016/j.infsof.2008.01.006.
ScienceDirect

12. Chow, T., Cao, D.: A survey study of critical success factors in agile software projects. J.
Syst. Softw. 81, 961–971 (2008). https://doi.org/10.1016/j.jss.2007.08.020. ScienceDirect

13. Melo, C., Santos, V., Katayama, E., Corbucci, H., Prikladnicki, R., Goldman, A., Kon, F.: The
evolution of agile software development in Brazil – Education, research and the state of the
practice. J. Braz. Comput. Soc. 523–552 (2013). https://doi.org/10.1007/s13173-013-0114-x.
Springer Link

14. Solinski, A., Petersen, K.: Prioritizing agile benefits and limitations in relation to practice
usage. Softw. Qual. J. 24, 447–482 (2016). https://doi.org/10.1007/s11219-014-9253-3.
Springer Link

15. Petersen, K., Wohlin, C.: A comparison of issues and advantages in agile and incremental
development between state of the art and an industrial case. J. Syst. Softw. 82, 1479–1490
(2009). https://doi.org/10.1016/j.jss.2009.03.036. ScienceDirect

16. Pikkarainen, M., Haikara, J., Salo, O., Abrahamsson, P., Still, J.: The impact of agile practices
on communication in software development. Empir. Softw. Eng. 13, 303–337 (2008). https://
doi.org/10.1007/s10664-008-9065-9. Springer Link

17. Chandra, S., Kumar, V., Kumar, U.: Identifying some important success factors in adopting
agile software development practices. J. Syst. Softw. 82, 1869–1890 (2009). https://doi.org/
10.1016/j.jss.2009.05.052. ScienceDirect

18. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional methods
at Nokia: a survey of opinions on agile transformation. Inf. Softw. Technol. 53, 276–290
(2011). https://doi.org/10.1016/j.infsof.2010.11.010. ScienceDirect

19. Javdani, T., Ziaei, M.: Agile transition and adoption human-related challenges and issues: a
Grounded Theory approach. Comput. Hum. Behav. 62, 257–266 (2016). https://doi.org/
10.1016/j.chb.2016.04.009. ScienceDirect

20. Corbucci, H., Melo, C., Santos, V., Katayama, E., Goldman, A., Kon, F.: Genesis and
evolution of the agile movement in Brazil - a perspective from the academia and the industry.
In: 25th Brazilian Symposium on Software Engineering (SBES). IEEE Xplore (2011). https://
doi.org/10.1109/SBES.2011.26

21. Bissi, W., Neto, A., Emer, M.C.: The effects of test driven development on internal quality,
external quality and productivity: a systematic review. Inf. Softw. Technol. 74, 45–54 (2016).
https://doi.org/10.1016/j.infsof.2016.02.004. Science Direct

22. Lima, V., Neto, A., Emer, M.C.: Investigação experimental e práticas ágeis: ameaças à
validade de experimentos envolvendo a prática ágil Programação em par. In: Proceedings of
the 3rd Brazilian Workshop on Agile Methods (WBMA’2012) (2012). https://doi.org/
10.5329/RESI.2014.1301005

23. Tissot, A., Neto, A., Emer, M.C.: Influence of the review of executed activities utilizing
Planning Poker. In: 29th Brazilian Symposium on Software Engineering (SBES). IEEE
Xplore (2015). https://doi.org/10.1109/SBES.2015.26

Concerns and Limitations in Agile Software Development 87

http://dx.doi.org/10.1016/j.ijproman.2015.01.006
http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1016/j.jss.2007.08.020
http://dx.doi.org/10.1007/s13173-013-0114-x
http://dx.doi.org/10.1007/s11219-014-9253-3
http://dx.doi.org/10.1016/j.jss.2009.03.036
http://dx.doi.org/10.1007/s10664-008-9065-9
http://dx.doi.org/10.1007/s10664-008-9065-9
http://dx.doi.org/10.1016/j.jss.2009.05.052
http://dx.doi.org/10.1016/j.jss.2009.05.052
http://dx.doi.org/10.1016/j.infsof.2010.11.010
http://dx.doi.org/10.1016/j.chb.2016.04.009
http://dx.doi.org/10.1016/j.chb.2016.04.009
http://dx.doi.org/10.1109/SBES.2011.26
http://dx.doi.org/10.1109/SBES.2011.26
http://dx.doi.org/10.1016/j.infsof.2016.02.004
http://dx.doi.org/10.5329/RESI.2014.1301005
http://dx.doi.org/10.5329/RESI.2014.1301005
http://dx.doi.org/10.1109/SBES.2015.26

Scrum and the 10 Personal Entrepreneurial
Competencies of Empretec

Ludimila Monjardim Casagrande(✉)

Apoema Consultoria, Vitória, ES, Brazil
ludimila.casagrande@apoemaconsultoria.com.br

Abstract. This article presents the correlations between the practices applied by
the Scrum framework and the 10 Personal Entrepreneurial Competencies (PECs)
associated with the performance of successful entrepreneurs and validated by the
United Nations Conference on Trade and Development (UNCTAD). This is based
on our observation as consultants and on the experience in implementing the
Scrum framework in software companies over the last 5 years.

Keywords: Scrum · Empretec · Entrepreneurial profile
Personal Entrepreneurial Competencies · Project management
Software engineering

1 Introduction

For businessmen the ideal company is composed by employees that think and act as
entrepreneurs, that is, by persistent and committed people, focused on results, well
defined goals and on client satisfaction. Thus, aiming to disseminate the use of Scrum
as a management model in software development companies, and suggesting a way to
develop such desired skills, this article presents the correlation between the Personal
Entrepreneurial Competencies (PECs), associated with the performance of successful
entrepreneurs, and the practices supported and implemented by Scrum. This correlation
is based on our experience, observation and perception as consultants and trainers in the
software industry.

2 Empretec Personal Entrepreneurial Competencies

The Personal Entrepreneurial Competencies (PECs) referenced in this article have been
identified and scientifically proven by research initially carried out in the United States.
Currently, PECs are disseminated by Empretec, an entrepreneurial education program
designed by the United Nations (UN), promoted in about 34 countries and implemented
in Brazil through SEBRAE (Brazilian Service for Support to Micro and Small Enter‐
prises). Empretec was created more than 20 years ago and is one of the greatest achieve‐
ments in the history of SEBRAE. The program also develops behavioral changes,
promotes the revision of concepts and attitudes and prepares the entrepreneur for the
market and for life [1].

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 88–94, 2018.
https://doi.org/10.1007/978-3-319-73673-0_7

The PECs developed in Empretec are listed in Table 1.

Table 1. Empretec Personal Entrepreneurial Competencies (PECs) [2].

Empretec Personal Entrepreneurial Competencies (PECs)
1. Systematic Planning and Monitoring 6. Fulfilling Commitments
2. Goal Setting 7. Demand for Efficiency and Quality
3. Opportunity-seeking and Initiative 8. Information-seeking
4. Taking Calculated Risks 9. Persuasion and Networking
5. Persistence 10. Independence and Self-confidence

3 Correlations with Scrum

3.1 Systematic Planning and Monitoring

Successful entrepreneurs plan by dividing large activities into tasks with defined dead‐
lines and they constantly revise their plans taking into account the obtained results and
circumstantial changes.

Scrum does precisely the same because it follows an incremental and iterative devel‐
opment approach, in which the project scope is subdivided and worked into parts. These
parts or functional blocks are implemented in development cycles called Sprints, which
have a maximum duration of one month. At each Sprint start, a planning meeting is held
in which the development team establishes the Sprint goals with the client. These goals
state what can be completed and delivered to the client during the Sprint period.

During the subsequent days, the team meets daily to assess their progress, identify
problems and possible impediments, and carry out or plan corrective actions, if needed.
This way, the team stays in sync and maintains their work under control.

At the end of each Sprint, the team presents the achieved results to the client at a
review meeting and, if the goals have not been fully met, states what has not been
accomplished and presents their reasons. At this meeting, the client can inspect, give
feedback on the work done and correct any deviations caused by communication prob‐
lems.

Shortly after the review, a retrospective meeting takes place in which the Scrum team
self-assesses, identifies relevant issues and problems, discusses what people have done
well and what they could have done better, and lastly defines a plan of action to prevent
certain problems from recurring and to mitigate risks in general.

These planning and monitoring events are systematically repeated in each develop‐
ment cycle, promoting a continuous process of inspection and adaptation.

3.2 Goal Setting

As previously mentioned, in Scrum the Sprint goals are set at the planning meeting held
on the first day of each new cycle. What stands out here is that these goals are set based
on the size, experience, and estimates made by the team members themselves. Therefore,
in Scrum, the estimates are not defined by the business department or by top management

Scrum and the 10 Personal Entrepreneurial Competencies of Empretec 89

people. Respecting the deadlines defined by the team is essential to attain the team’s
commitment to the established goals. In addition, the team can have direct contact with
the client to clarify their questions so that they can better estimate and plan the commit‐
ments made at the Sprint. Since a Sprint lasts a maximum of one month, the goals are
always short-term and are evaluated at the end of this period.

3.3 Opportunity-Seeking and Initiative

The pursuit of opportunities is inherent in the development of software projects, without
which the projects simply do not exist, but what we want to highlight here is the indi‐
vidual pursuit of opportunities and initiatives of the development team members. Scrum
promotes the development of this competency by adopting a management model in
which teams are self-organized and in which the members themselves take the initiative
to perform certain project activities. This means that in Scrum the activities are not
assigned or imposed on each developer by a project manager, the developer himself
requests or volunteers to perform an activity. Alternatively, the team, in consensus,
indicates the one they consider the best member to perform each task, thus valuing the
outstanding abilities of each one, enhancing the team’s skills and better tapping the
resources.

Consequently, people feel more valued for having their specific skills recognized by
the team and feel motivated to have the opportunity to work on what they like best or
have the chance to take up a challenge and learn how to execute a different task.

3.4 Taking Calculated Risks

Taking calculated risks means putting oneself in situations that involve challenges or
moderate risks and that is exactly what Scrum does. Because it is a highly flexible model,
Scrum accepts the changes and is prepared to deal with them. Scrum understands that
changes in requirements and unexpected circumstances are inherent in the extremely
volatile and dynamic nature of software projects. Scrum can deal well with changes by
following the incremental and iterative approach and because it works with open scope;
this means that in Scrum projects it is not necessary to define or know the full scope at
the beginning of the project. The requirements that make up the scope are gradually
identified and defined, allowing clients to mature the project goals throughout the devel‐
opment process. The iterative approach, with short cycles, also allows for greater
involvement and frequent client feedback, which allows deviations from the desired
outcome to be identified more quickly, reducing the risk of propagating a mistake or
misunderstanding, within the one-month deadline.

In addition, to take calculated risks, one must control them, evaluate alternatives,
and act to minimize them, since, despite the scope flexibility, many clients naturally
impose cost and time constraints. How does Scrum control this? Given the limitations
of the project, each Sprint requirements are prioritized by the client, who should request
that the most important and highest business value requirements are carried out first,
obviously respecting any technical constraints. By adopting this approach, the fulfill‐
ment of what is really essential is guaranteed in the initial stages of the project. From

90 L. M. Casagrande

there, the client continues to prioritize what shall be developed, bearing in mind that
eventually some requirements, considered less important, will need to be discarded. The
assignment of the degree of relevance of a requirement, in this way, must always be
carried out by the client so that he assumes responsibility for the obtained results and
especially for the eliminated items, thus maximizing the chances of success of the project
since ultimately, success means client satisfaction and earned value.

The other way to control risks is through inspection and adaptation, two of the three
pillars of Scrum. Per Schwaber and Sutherland, authors of the official Scrum Guide,
“each event in Scrum is a formal opportunity to inspect and adapt something” [3]. To
minimize the risk of not meeting client expectations in terms of team productivity, once
the scope is open, Sprint goals are collaboratively established in Sprint Planning, thereby
setting expectations and goals to be achieved and allowing them to be monitored.

The most important Scrum events in terms of control are the Sprint end events, that
is, Sprint Review and Sprint Retrospective. Scrum considers that having the team
members present the Sprint results directly to the client increases the degree of respon‐
sibility and commitment of the group, since it enables people to be valued when there
is merit and creates discomfiture when there is no commitment to undertaken goals.

In addition, the review meeting promotes alignment between provider and client and
allows the client to inspect, evaluate, give feedback, acquire knowledge and adapt the
developing work, increasing their chances of achieving their goals.

In the retrospective meeting, the Scrum team inspects how the last Sprint went with
regards to people, relationships, practices, and tools; it identifies and sorts the key items
that went well and the potential improvements; and it creates an action plan to implement
the identified issues and to mitigate risks in general, thus closing a cycle of inspection
and adaptation and promoting continuous improvement.

3.5 Demand for Efficiency and Quality

In addition to the previously mentioned permanent work of inspection and adaptation
of the processes and people, continuous attention to technical excellence and good
design is one of the agile software principles [4], and since Scrum is currently the most
widely used agile “method” [4], this base principle could not be ignored. Since Scrum
is not a prescriptive model, it admits that many techniques and good software develop‐
ment practices are associated with its framework. Therefore, Scrum projects often use
the implementation of automated tests, the adoption of TDD (Test Driven Develop‐
ment), continuous integration, pair programming, peer review, refactoring, among many
other practices and techniques that promote software quality and efficiency.

3.6 Fulfilling Commitments

Commitment is simply one of the five Scrum values, as can be seen in Fig. 1 of Scrum.org
[6]. In Scrum, people personally commit to achieving the goals of the entire team.
Commitment includes collaborating with your work partners or taking responsibility in
their place, if needed, to finalize a task and to achieve a particular goal. Commitment
also involves staying focused on the client, striving to understand the real needs of their

Scrum and the 10 Personal Entrepreneurial Competencies of Empretec 91

http://Scrum.org

business and contributing to the fact that the developed software product, in fact, adds
value, thus achieving customer satisfaction and loyalty.

Fig. 1. Scrum values by Scrum.org.

Scrum encourages commitment by supporting team self-organization, setting clear
goals in planning meetings, allowing developers to be able to take on certain responsi‐
bilities and tasks, removing the traditional role of the project manager, sharing the project
responsibility, stimulating real teamwork by explicitly establishing that everyone is
responsible for all the tasks and goals set for the project and that, when the goals set in
a Sprint are not met, it means that everyone has failed.

3.7 Information-Seeking

The transparency factor and non-hierarchical structure of Scrum teams allow any
member of the development team to interact directly with the client or third parties to
seek relevant and assertive information for the execution of their activities in the project,
thus providing opportunities for people to develop their communication skills. It is worth
emphasizing that communication problems are often pointed out as one of the main
factors responsible for the failure of software projects. Moreover, a self-organized team
demands dialogue and joint decision-making, which favors interpersonal relationships
and makes the communication channels between the less and more experienced
members of the project more open. Finally, software development alone requires inves‐
tigations, research and expert consultations in order to solve particular problems or to
obtain technical assistance, as the technologies evolve very rapidly.

3.8 Persistence

The characteristic persistence is closely linked to courage, which is one of the Scrum
values. For Scrum, the team has the courage to do the right thing and work through
problems. It is often impossible to meet client needs by attempting to implement a closed
scope or by following a strictly defined plan at the beginning of the project - as the
traditional development approach suggests. Over time “meeting the scope” becomes

92 L. M. Casagrande

http://Scrum.org

incompatible with “doing what needs to be done to add value to the client’s business”.
It is in this respect that a client who requires a closed scope, with the intention of
conducting a safer negotiation with the supplier, betrays himself; because real projects
mature, evolve and change over time, demanding flexibility and frequent changes.
Therefore, the team must always be prepared to accommodate contingencies and
changes, and to constantly adapt to a new scenario. Certainly, being flexible is much
more difficult and complex than following a well-defined plan, which requires team
persistence and an extraordinary effort to achieve their goals.

3.9 Persuasion and Networking

Because the Scrum Team is self-organized and does not have a hierarchical structure,
technical project decisions are always made together. This makes possible solutions and
consequent decisions to be broadly discussed, forcing team members to develop their
ability to argue for or against a given solution, and therefore to promote persuasion skills
in team members. This also favors the emergence of natural leaders in the project, based
on respect and recognition. In addition, because the responsibility for the project success
is shared, everyone needs to act in search of solutions and consequently, they often need
to turn to third parties. In this way, team members use key people to solve problems,
thus strengthening relationships with external people and their networks.

3.10 Independence and Self-confidence

Once again, the adoption of a self-organizing and non-hierarchical team allows team
members to have greater independence and autonomy. The Scrum team members define
the activity estimates and decide the goals of each Sprint together with the client, thus
increasing their degree of involvement, responsibility, and commitment to these goals.
Shared responsibility and joint decisions value the individuals and the contributions of
each one, thus increasing their self-confidence.

In addition, the constant adaptation needs of the development model proposed by
Scrum requires the team to have more maturity, security, and control to deal with adverse
situations and keep going forward in search of success.

4 Conclusion

We can conclude that the framework proposed by Scrum is fully adherent and helps to
develop in people the Personal Entrepreneurial Competencies contained in the Empretec
program of the United Nations. For these and other reasons, companies should at least
consider the benefits they could have by abandoning the traditional command-and-
control management model and by offering more autonomy to their team members so
that they are able to exploit their best skills and potential - which will certainly translate
into increased speed, productivity gains and financial return for the company.

The model proposed by Scrum increases the interaction and the degree of involve‐
ment of both the clients and the developers, also increasing their level of commitment

Scrum and the 10 Personal Entrepreneurial Competencies of Empretec 93

to the goals to be achieved. In this way, Scrum promotes healthier relationships between
companies and suppliers and more sustainable businesses, thus increasing the chances
of success of both.

References

1. SEBRAE: Empretec - Manual do Participante, Brasília, DF (2011)
2. UNCTAD. Entrepreneurship Policy Framework and Implementation Guidance (2012)
3. Schwaber, K., Sutherland, J.: The scrum guide - the definitive guide to scrum: the rules of the

game (2016)
4. Beck, K., Schwaber, K., Sutherland, J., et al.: Principles Behind the Agile Manifesto (2001).

http://agilemanifesto.org/principles.html. Accessed 26 Oct 2017
5. Scrum Alliance. The 2016 State of Scrum Report (2016)
6. Scrum.org. The Home of Scrum: What is Scrum? https://www.scrum.org/resources/what-is-

scrum. Accessed 26 Oct 2017

94 L. M. Casagrande

http://agilemanifesto.org/principles.html
https://www.scrum.org/resources/what-is-scrum
https://www.scrum.org/resources/what-is-scrum

An Agile Approach Applied in Enterprise Project
Management Office

Luis Gustavo Araujo Ferreira1(✉), Priscila Bibiana Viegas1(✉),
and Dagoberto Trento2(✉)

1 University of Vale do Rio dos Sinos (UNISINOS), São Leopoldo, Brazil
luis.gustavo.af@gmail.com, pribibiana@gmail.com

2 Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
trentodagoberto@gmail.com

Abstract. In a highly connected world, surrounded by many changes, companies
need to adapt to remain competitive in the market. Many of the initiatives occur
through projects, that need to be dynamic to meet the business need combined
with the organization’s strategic planning. The Project Management Office
(PMO) in this scenario has the role of supporting the organization with tools and
techniques to overcome this changes and ensure alignment with the organization’s
strategic initiatives. This paper presents an acting model for an Agile PMO putting
the PMO at the center of the organizational changes being it the catalyst of infor‐
mation and the disseminator of good practices and knowledge to sustain the
changes.

Keywords: Agile PMO · Agile project management
Exponential Organizations

1 Introduction

Companies are currently undergoing several transformations. The ever-changing market
acts as a driver for companies to adapt to new scenarios. Most of the organizational
transformations occur in companies through projects [1]. These projects need to be
aligned with the organization’s need through its strategic planning. In this sense, the role
of the Project Management Office (PMO) is to help organizations plan, implement and
monitor these projects so that they achieve their goals.

A great motivator of change in organizations is the digital transformation [2], where
companies need to adapt technology to remain competitive in the market. Many organ‐
izations that not technologically evolve in the coming years will probably have diffi‐
culties in surviving in a competitive market. The companies that are currently guiding
the market are those that have an exponential growth, called exponential organizations
(ExO). They are organizations that grow rapidly, reach growth 10 times their size in just
2 to 3 years [3]. How to be prepared for the changes you have seen with this growth?
What is the role of the PMO in this scenario?

The PMO must be prepared to adapt to these changes and often be the area where
the company’s strategic shall be supported to be supported to maintain communication

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 95–102, 2018.
https://doi.org/10.1007/978-3-319-73673-0_8

and engagement of senior management with the progress of the projects. According to
the Project Management Institute (PMI), the focus of senior management organizations
remains largely focused on the bridge between strategy formulation and execution. Thus,
giving greater emphasis to be more agile, customer-focused and competitive [4].

The PMO, being an important agent in this entire process of transformation, must
have mastery of models and techniques capable of supplying the organization. His own
actions have to follow a model that allows it to adapt and change their focus to monitor
the company’s needs. The vision of where the PMO wants to reach, its goals, its objec‐
tives and its systematic monitoring of their actions becomes a focal point for the contin‐
uous delivery of PMO value to the organization.

In this context, this paper presents a role model for Agile PMO containing elements
that support its operations amid a backdrop of many changes. This model can be applied
in many organizations, especially in cases where there are many transformations.

2 Theoretical Foundation

2.1 Massive Transformative Purpose

In 2015 Salim Ismail proposed in his book [3] a concept called MTP, Massive Trans‐
formative Purpose. This is a concept that indicates what the company intends to do and
not what it does. Its main purpose is to provide organizations with a purpose with a focus
and goals that are transformative.

The MTP is a feature of the companies called Exponential Organization (ExO),
whose impact (or result) is disproportionately large - at least ten times higher - compared
to its peers, due to the use of new organizational techniques that leverage accelerated
technologies [3].

These companies are guided through their MTP and present 10 attributes in common.
Of these, 5 attributes are internal (SCALE) and are responsible for the creativity, growth
and uncertainty of the business: Team on demand, Communities and Crowd, Algo‐
rithms, Leveraged Assets and Engagement. The other 5 attributes are external (IDEAS)
and are responsible for order, control and stability: Interface, Dashboards, Experimen‐
tation, Autonomy and Social.

2.2 Objectives and Results

Many companies guide their management by setting objectives and results. In 1999 John
Doerr introduced a new model for Google, which he had first learned in Intel, the Objec‐
tive and Key Results (OKR), a framework for goal setting [5].

The OKR consists of clear definition of objectives and their results, being measur‐
able, enabling them to be monitored and controlled. The OKR model is a standard for
aligning company strategy with individual team goals [6]. An OKR should be described
simply and clearly. The model suggests that it is written as follows: “I will (goal) meas‐
ured by (the result set).” The OKR definition consists of two levels. A strategic level set
by the organization with a one year horizon. The other level is the OKR defined by the
team and has a horizon of three months.

96 L. G. A. Ferreira et al.

2.3 Scrum Framework

Scrum is a framework created in the 90s, initially used for development and support of
complex products. The framework has several good practices that can be adopted by
different teams. Being a framework, it can be used as needed by the team. [7] The
framework is used, partially or totally, by about 95% of organizations that use agile
methods in their companies [8].

The Scrum framework is based on an empirical process based on three pillars: trans‐
parency, inspection and adaptation. Scrum consists of the Scrum team and their roles,
events, artifacts and associated rules. Scrum rules link events, roles, and artifacts,
managing relationships and interacting with each other. The Scrum team consists of
three roles:

• Product Owner (PO): responsible for maximizing the value of the product to be
delivered through the work that the development team will build;

• Scrum Master (SM): responsible for ensuring that the Scrum framework is under‐
stood by everyone on the team and that it is being followed;

• Developer: are responsible for making deliveries. They are organized and empow‐
ered by the organization to manage their work.

The events in the Scrum framework aim to create rhythms in deliveries and minimize
the need to hold meetings not defined in Scrum. All events have a set time for their
realization (time-box).

• Sprint: is the main Scrum event, its time-box is one month or less. This is the period
of making deliveries;

• Sprint Planning: Sprint initial event, where your planning is done. The expected result
for this ceremony is the definition of what will be done, how it will be done and the
purpose of Sprint;

• Daily Scrum: daily meeting with 15 min time-box. In this meeting, each of the team
must answer three questions: (1) what I did yesterday, (2) what I’ll do today and (3)
if there is any impediment to the performance of my activities;

• Sprint Review: is the time where the team presents Sprint deliveries and collects
feedback, incrementing the backlog, if necessary. His time-box is 4 h for a one month
Sprint;

• Sprint Retrospective: this ceremony is the opportunity the team has, to inspect at
Sprint and create a plan to implement improvements in the next Sprint.

The artifacts are used to promote transparency and create opportunities for inspection
and adaptation. The main artifacts are the Product Backlog, an ordered list of the actions/
tasks the product needs, and the Sprint Backlog, a list of items that will be worked on
in the following Sprint.

3 Methodology

The objective of this paper is to provide a model to enable the PMO to be the support
for the organization in massive transformations (MTP), being guided by focus on

An Agile Approach Applied in Enterprise Project Management Office 97

deliverables and measurable results (OKR), through its team, joining efforts to realize
the deliverables in periods of time (Agile). The Fig. 1 presents the performance model
for an Agile PMO containing the elements necessary for its operation.

Fig. 1. Operating model of a PMO Agile. (Source: own authorship).

3.1 Agile PMO MTP

The massive transformative purpose is something that must be the great motivator of
the PMO’s existence. As Salim Ismail quotes in his book [3], an MTP needs to impact
many people to be relevant and make sense.

This definition associated to a PMO means that his actions and initiatives need to
transpire beyond the organization department and permeate throughout the organization.
It is necessary to think about how their actions can positively impact everyone in your
company.

Some PMOs are already considered Enterprise PMO [9] and their actions must act
throughout the organization. In this case, the definition of the MTP is something easier
to define because its vision of every organization is implicit in its purpose. Another type
of PMO, considered departmental, needs a little more understanding about its scope of
action to define its MTP. It is worth mentioning that the tendency is for the PMO to
become more and more corporate, helping the organization to monitor strategic initia‐
tives [4].

For the formulation of MTP it is necessary to seek together the senior management
directing the PMO to organization. With this information, bring together the PMO team,
search for the essence words to describe their purpose and formulate the main phrase of
the MTP. Other information may be described in addition to the main sentence.

3.2 PMO OKR

The OKR PMO are the objectives and results that the area intends to achieve. These are
OKR that will give direction to all other actions that the team will propose. They need
to be in sync with the organization MTP definition.

98 L. G. A. Ferreira et al.

The definition of these OKR occurs by the high management of the organization
giving the direction of the PMO. The vision is one year and aims to answer the question,
where the PMO wants to be a year from now.

The main purpose of this OKR is to challenge the team to make deliveries above
expectations. These are goals that take the team from the comfort zone and make people
rethink the way they work to achieve maximum performance. For this reason, these
goals are rarely achieved and serve to constantly challenge the team.

3.3 Team OKR

The Team OKR are the goals and results that the team wants to achieve to meet the PMO
OKR. These objectives are more focused and detailed, serving as input for the definition
of actions that the team will perform.

The definition of these OKR is performed by the team itself with a three-month view.
The objectives and expected outcomes are to be achieved and have the ambition to create
challenges for the PMO team to work together and with clear and defined focus.

If during the definition of Team OKR there are already identified some actions, these
should be noted and included in the team’s backlog for further discussion during Sprint
Planning.

3.4 Sprint Planning

Sprint Planning is the first meeting to begin Sprint. It is the moment of planning the
actions that will be performed by the PMO team during the Sprint. In this case, it is
suggested that the duration of Sprint is one month. This ceremony should be held with
the whole team of the PMO, they will be responsible for knowing the team and ability
to commit to the delivery of Sprint.

The main result of this event are the actions set to be held on Sprint beginning. One
way to control these actions is to use a kanban [10], as presented in Fig. 2.

Fig. 2. Monitoring framework of the actions of Sprint. (Source: own authorship).

An Agile Approach Applied in Enterprise Project Management Office 99

To determine what Sprint actions will be, the team must consider the actions that are
already in their backlog and the actions they will propose to achieve Team OKRs. The
actions that are selected must be moved or added in the “To Do” kanban column. An
important point is that in this ceremony one should not focus on the details of how each
action will be performed. It should be clear “What” will be done, the “How” can be
detailed when any member of the team takes that action.

In order to conduct this and other Sprint ceremonies, the role of PO is performed by
the PMO manager. The role of SM is performed by any team member who knows the
methodology, except for the PO. The role of SM must be alternated between the
members of the team anytime. it is suggested that the exchange occurs every three
months. The exchange of members for the role of SM is important so that all team
consolidate the understanding of the methodology facilitating in the moment of dissem‐
inating this knowledge.

3.5 Weekly Meeting

The Weekly Meeting is a meeting with all the PMO team. Its purpose is to monitor the
actions. This meeting should take place in front of the team kanban and should take a
maximum of 15 min.

Each team member should answer the three questions: What did I do last week?
What will I do this week? Is there any impediment for completing my job?

This moment is important for the team to synchronize the activities being carried out
and the main milestone for the kanban to be updated. Ideally, the update is performed
as the actions are initiated (by moving tasks from “to do” to “doing” status) or completed
(by moving tasks from “doing” to “done” status). If it does not, the actions must be
updated at the most before the Weekly Meeting.

3.6 Sprint Review

This ceremony is the moment where the team presents its deliverables, the result of the
completion of the actions defined for Sprint. All team members must participate and can
also be of top management people invited to contribute feedback of deliveries made.

If any action has not been completed, it must return to the team’s backlog. This action
will be evaluated at the next Sprint, if it continues to be a priority compared to other
backlog actions. In addition, the feedback obtained during the ceremony may generate
new items in the backlog, which in turn will be evaluated together with the others in the
Sprint Planning meeting.

At the end of the meeting, after deliveries have been submitted and with the feedback
received, it is time to update the Team OKR and PMO OKR based on the result obtained
in Sprint. In this moment, only the team participates and must be used to reflect on the
evolution of its goals and the next challenges.

100 L. G. A. Ferreira et al.

3.7 Sprint Retrospective

Sprint Retrospective is a time for the team to review how Sprint was going. This is an
exclusive event for the PMO team member who participated in Sprint. This is the cere‐
mony that ends Sprint.

It is the moment where it seeks to identify the positives and negatives that have
occurred throughout the Sprint. For the positives, a collective agreement is created by
the group in maintaining these attitudes, as well as defining improvement actions to be
implemented in the next Sprint for points that are negative.

4 Discussion and Results

According to research conducted by VersionOne, 87% of companies that use the agile
approach say their main benefit is their ability to manage with changing priorities [11].
This agility is essential considering the current market scenario that is constantly
changing. For organizations to remain competitive they need to be agile to make changes
and the PMO in this scenario becomes fundamental.

The PMO has the role of keeping the organization’s strategy and its execution in
line, as well as providing tools and techniques to support the organization in these trans‐
formations. Approximately 73% of the organizations surveyed by PMI, believed that
one of the main tasks of the PMO is to provide standards for Project Management [4].

The use of agile approaches to project management has been steadily increasing to
meet the need for changing organizational priorities. About 71% of organizations report
that they use agile approaches to their projects sometimes, often and always [4].

Analyzing this context, as the PMO can be the reference in Project Management with
Agile approaches, while he does not use this approach in their daily work? The model
of performance proposed in this article comes in response to this questioning, providing
the PMO with an agile approach to its operation. The use of this model evidences the
pillars of the agile methods transparency, inspection and adaptation, making the PMO
can be considered a PMO Agile.

5 Conclusion

This paper presented a model of action for a PMO Agile. The fact that companies are
seeking market competitiveness, forces them to have the need to make changes, and the
Agile PMO serves as support for them.

The proposed model may brings contributions to the community regarding agile
practices applied to project management and innovative practices for agile businesses.
The proposed model provides new techniques for PMO performance and can be widely
used, thus contributing to the growth of new techniques for agile project management.
In organizational transformations, the proposed model may contribute to the manage‐
ment of complexity as well as a support strategy to scale the agile in large organizations.

This model is currently used in the PMO of a private company in the region of Rio
Grande de Sul. Its use in the first months has already shown benefits in terms of

An Agile Approach Applied in Enterprise Project Management Office 101

organization, transparency and focus of the PMO’s performance in the organization.
Based on reports from the team members themselves, there is an improvement in several
points of daily life:

• Individuals and Interactions: from the implantation of the model weekly interactions
are carried out to discuss the team objectives and activities, before this interaction
occurred monthly or bimonthly;

• Response to change: changes occur more naturally, as the focus becomes on the
OKRs and more on the activities;

• Partial and recurring deliveries: the team delivers smaller deliveries, collect feedback,
and evolve;

• Transparency of work: Every team has visibility of what is being done and can
contribute;

• Motivated individuals: the team knows where it wants to go and works in synergy to
achieve the results.

As future work, it is expected to collect some more information throughout the year
of 2017 and later be consolidated and disclosed to test the performance improvement of
the PMO.

References

1. Project Management Institute (PMI): Um Guia do Conhecimento em Gerenciamento de
Projetos - Guia PMBOK®. Project Management Institute, 5th edn., Pennsylvania (2013)

2. Berman, S.: Digital transformation: opportunities to create new business models. Strategy
Leadersh. 40(2), 16–24 (2012)

3. Ismail, S., Malone, M.S., Geest, Y.V.: Organizações exponenciais: por que elas são 10 vezes
melhores, mais rápidas e mais baratas que a sua (e o que fazer a respeito). HSM Editora, São
Paulo (2015)

4. Project Management Institute (PMI): Pulse of the Profession: 9th Global Project
Management Survey. http://www.pmi.org/-/media/pmi/documents/public/pdf/learning/
thought-leadership/pulse/pulse-of-the-profession-2017.pdf. Accessed 15 May 2017

5. Duggan, K.: Getting Started with Objectives & Key Results (OKRs). E-book. BetterWorks,
Palo Alto (2015)

6. Wodtke, C.: Introduction to OKRs. O’Reilly Media, Sebastopol (2016)
7. Schwaber, K., Sutherland, J.: The Scrum Guide. http://www.scrumguides.org/docs/

scrumguide/v2016/2016-Scrum-Guide-US.pdf. Accessed 21 Apr 2017
8. Scrum Alliance: The 2015 State of Scrum Report. https://www.scrumalliance.org. Accessed

15 Apr 2017
9. Crawford, J.K.: The Strategic Project Office: A Guide to Improving Organizational

Performance. Marcel Dekker, New York (2001)
10. Ohno, T.: O sistema Toyota de produção: além da produção em larga escala. Bookman, Porto

Alegre (1997)
11. VersionOne: The 10th Annual State of AgileTM Report. http://stateofagile.versionone.com.

Accessed 10 Apr 2017

102 L. G. A. Ferreira et al.

http://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
http://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf
http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
http://www.scrumguides.org/docs/scrumguide/v2016/2016-Scrum-Guide-US.pdf
https://www.scrumalliance.org
http://stateofagile.versionone.com

Conceptual Studies and Theoretical
Foundations of Agile/Lean

Metamodel for Requirements Traceability
and Impact Analysis on Agile Methods

Carlos Andrei Carniel(B) and Raquel Aparecida Pegoraro(B)

Federal University of Fronteira Sul, Chapecó, SC, Brazil
carlos.andreic@gmail.com, raquel.pegoraro@uffs.edu.br

Abstract. Requirements traceability is a requirements management
activity used to identify relations between requirements and to enable
the comprehension of its dependencies. In the agile development changes
are normal and occur at any moment in the project, requirements are
written in the format of user stories which have dependencies between
them. These dependencies can be technical or related to the business
being developed. Handling dependencies among requirements and impact
analysis is a challenge due to the possibility of refactoring and mainte-
nance caused by not analyzed changes. This paper aims to propose a
metamodel that enables requirements traceability and impact analysis
in agile methods. The proposed metamodel presents the following con-
tributions: enable traceability analysis through the mapping of depen-
dencies between user stories; (b) allow identification of dependencies
between user stories and between tasks; (c) management of the evolution
of requirements; (d) support on impact analysis of changes.

Keywords: Metamodel · Requirements traceability · Agile methods
User stories

1 Introduction

Requirements traceability is a technique used to identify the relationships
between requirements, architecture, and system implementation [6,18]. The doc-
umentation generated by the requirements traceability enables the comprehen-
sion of the dependencies relations, and it is implemented using a set of links
among the requirements that relate to one another, and among the components
which implement the requirements.

In the agile development, the most used way of describing requirements is
through user stories. Dependencies and relations also apply to user stories [8],
which normally are implemented taking into account the business value order
given by the customer and not the technical dependencies in terms of project
construction. If the user stories are implemented without taking into account
the order and dependency in which they are inserted, there might happen signi-
ficative changes along the project which will lead to a high level of refactoring
and consequently to rework and costs higher than planned [4].
c© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 105–117, 2018.
https://doi.org/10.1007/978-3-319-73673-0_9

106 C. A. Carniel and R. A. Pegoraro

Dealing with dependencies between requirements is a success factor in build-
ing a product which meets certain specifications and at the same time contributes
so that the project is developed under the budget [15]. Another factor that moti-
vates this research is that agile methods usually do not present tools or methods
that deal with requirement dependencies [22] as well as they often lack of impact
analysis of changes [15].

This paper presents a metamodel intended to help on requirements traceabil-
ity on agile method projects through the mapping of dependencies between user
stories. Section 2 presents requirements traceability concepts. Section 3 presents
the proposed metamodel. In the Sect. 3.1 assumptions that guided the construc-
tion of the metamodel are identified. Section 3.2 discusses the built metamodel,
an analysis of its relations and the correspondent assumptions. Section 4 com-
pares the proposed metamodel with other existing ones. Finally, Sect. 5 concludes
with considerations and future work.

2 Requirements Traceability in Agile Methods

Requirements traceability is defined as the ability to describe and track a require-
ment from its origin to its end, that is, throughout its specification and devel-
opment, until its subsequent deployment and use [6].

Rossberg [24] highlights the benefits of adopting traceability management in
a software project:

– Risk minimization: a consequence of the ability to estimate the impact of a
change before it is done.

– Scope change control: change management throughout the development pro-
cess.

– Reduced development costs: a result of reduced rework and consequent time
savings.

– Increasing team productivity: keeps the team synchronized, decreasing the
chance that the workload is directed only to a specific team member, aligning
deadlines for completing tasks.

– Test coverage: tracking a requirement since its inception and highlighting its
dependencies makes it easy to test before each delivery.

– Visibility: makes it easy to view flow and development processes for everyone
involved.

Rossberg [24] also stresses the importance of research on traceability of
requirements in agile methods. The author affirms that the main expected con-
tributions in improving the techniques of representing the requirements, their
relations and dependencies in agile projects are: the improvement in the quality
of the development, a greater understanding of the product during the develop-
ment and control of changes.

The traceability of requirements in agile methods is a recurring theme
of research, as it is not yet properly used by developers, a problem that is
described in [6,19,25]. A survey by Espinoza and Garbajosa [6], emphasizes

Metamodel for Requirements Traceability and Impact Analysis 107

that most of the traceability techniques used depend on characteristics of the
traditional method of development and there is a gap in research on traceability
methods independent of development models and that can be applied in agile
methodologies.

In agile development, it is assumed that changes in requirements through-
out software development should be considered as normal and are part of the
process of product evolution. Among the most common reasons for changing
requirements, it is worth noting, according to Sayão and Leite [25]:

– Unidentified needs at the beginning of the project;
– Changes in the context where the problem is inserted;
– Correction of errors detected by quality processes;
– New perspectives from stakeholders.

Such changes result in changes in the design architecture, in the code base
and in tests suite, according to Sayão and Leite [25]. Traceability assists in
tracking these changes so that all artifacts related to a requirement that has
been changed are readjusted. Changes in requirements affect the system as a
whole, as they are the starting point for defining architecture and deciding the
order of implementation, guiding developers to the generation of test cases and
validation with the user.

3 Proposed Metamodel

This work aims to propose a metamodel that enables the traceability of require-
ments and analysis of impact in agile methods. For the development of the
proposal initially, the assumptions that guided the construction of the meta-
model for traceability of requirements through the dependence between user
stories and analysis of impact on agile methods were identified. Subsequently,
the metamodel was constructed in order to meet the defined assumptions. In
the next step, the proposed metamodel is analyzed in each of its relations and
the corresponding assumptions are confirmed. Finally, the proposed metamodel
is compared to other existing metamodels located in the literature review.

3.1 Assumptions Identified for the Metamodel Construction

In order to delimit the assumptions to be used in the construction of the meta-
model, information regarding the requirements engineering activities were con-
sidered according to Pressman [17]. The characteristics of user stories have been
identified in the literature, with Cohn [4,5], Ambler [1], and Rosenberg and
Stephens [21] authors established on the subject. In addition, it was taken into
account agile project management in accordance with the iterative and incre-
mental development process of the agile Scrum and XP methods, which use user
stories to represent requirements [20]. Scrum and XP methods were considered
because 77% of agile software projects use these methods, according to Version
One (2017) [23].

108 C. A. Carniel and R. A. Pegoraro

The set of assumptions defined to construct the proposed metamodel is pre-
sented below.

AS1 - Requirements are written in the format of user stories: a require-
ment which is specified in the format of a user story describes functionalities with
business value to stakeholders [1,4,17,21].

AS2 - User stories are documented in a structured way: user stories
have a documentation structure which makes it possible to identify information
from requirements. This structure is generally written in the form [1,4,13]:

As a <stakeholder>,
I can <feature>,
so that <business value>.

AS3 - User stories have people with roles involved, called stakeholders:
user stories are written, developed, and validated by team members, customers
and other people called stakeholders, who have influence on the user stories and
interest on the requirements [4]. The user stories do not contain technical infor-
mation, since they are written with simple language terms, aiming to represent
the user view [1,5,7,17]. In the agile Scrum method, the stakeholder is called
Product Owner.

AS4 - User stories are written and developed along the iterations:
iterations or sprints are time periods predefined by stakeholders, which determine
which stories will be developed during the iteration. One or more iterations
may be part of a release, which is a version of the product delivered to the
customer and comprises a set of features. The list of user stories constantly
evolves throughout the project [4,5,8,17,22].

AS5 - User stories can have dependencies between them: the depen-
dencies can be related to the business or technical (project or implementa-
tion) [7,8,15,22].

AS6 - User stories generate tasks that may also have dependencies:
user stories generate tasks to be developed in an iteration. Tasks are implemen-
tation activities, architecture, or testing that produce tangible results. Tasks
are intrinsically related and may depend on each other. These dependencies
occur between tasks from the same user story and between different story
tasks [2,4,17,21].

AS7 - Changing a user story might impact other user stories: the
impact can occur between requirements (business rules) and between compo-
nents (projects related to system building, generating bugs). Technical changes
can lead to code or architecture refactoring [4,22].

AS8 - Dependencies between user stories and between tasks may cause
impact: User stories, as well as tasks, are intrinsically related to each other.
These relationships can be dependencies that impact stories when there is a
change. It is possible, through user analysis, to assign an impact intensity to the
dependencies between stories and between tasks [4,22].

Metamodel for Requirements Traceability and Impact Analysis 109

3.2 Metamodel

For the development of the proposed solution, orientations from the Object
Management Group (2015) [16], which specifies standards for metamodels in
UML notation, were followed. To explain how the assumptions have been met,
all of the metamodel relations are presented. The complete metamodel can be
visualized in Fig. 1.

Fig. 1. Proposed metamodel for traceability of requirements in agile methods

User Stories, Their Textual Structure, and Stakeholders. The AS1
assumption states that the requirements are written in the form of user stories.
In this way, the metamodel must be able to represent user stories describing its
functionality and business value.

The AS2 assumption emphasizes that user stories are documented in a struc-
tured way and follow a textual pattern often used in agile methods. In this
way, the metamodel must be able to store information about user stories and
stakeholders, functionalities that should be developed in the story, and expected
business value with story execution.

110 C. A. Carniel and R. A. Pegoraro

The AS3 assumption emphasizes that user stories have people and roles
involved, called stakeholders. User stories are written from the perspective of
these stakeholders and seek to meet their interests. As they are written to fit the
user’s vision, clear and easy-to-understand language is used, without specifying
technical information. Thus, the metamodel should enable the user story rela-
tionship with stakeholders so that it is possible to manage roles and functions
in a project.

Meeting the assumptions AS1 and AS2, the class UserStory was defined.
This class presents the structure of a user story, with the attributes userStoryID
(attribute identifier of each user story), feature (description of the functionality
to be developed), and businessValue (description of the business value or benefit
to be achieved with the development of the story).

Complementing the proposal, there is a need to distinguish between func-
tional requirements (RF) and nonfunctional requirements (RNF). For this rea-
son, the class Requirement was specialized in two other classes (NFR and User-
Story). These two classes can be related through the association NFR-FR-
Association.

Meeting the assumption AS3, the class Stakeholder was defined. This class
presents the characteristics of a stakeholder in the metamodel. The stakeholder
writes the user story and has a defined function related to the business value
to be achieved with the development of the story. This class has the attributes
stakeholderID and stkFunction (description of the stakeholder function in the
system).

Development Along Iterations and User Stories Versioning. The AS4
assumption emphasizes that user stories are written and modified throughout
the project iterations. Thus, the metamodel should allow the representation of
changes in user stories throughout the iterations. To do this, user stories must
be related to the iterations of which they are part, as well as iterations should
be related to their corresponding releases. In addition, the metamodel must be
able to represent versioning of user stories.

Meeting the assumption AS4, the class UserStoryVersion was defined. It
presents the versioning of user stories, in order to represent changes between
versions. UserStoryVersion is related to the classes UserStory and Stakeholder,
that denote the stakeholder that made the change in the story. This class has
the attributes versionID, creationDate (date the version was created), descrip-
tion (description of the change leading to the new version), reason (reason for
changing the story) and parentUserStoryID (previous version of a user story to
allow tracing story version).

Also considering the AS4 assumption, the classes Sprint and Release were
defined. The Sprint class, related to the class UserStory, is intended to indi-
cate which iteration a user story is bound to. This class has the attributes
sprintID (iteration identifier attribute), startDate (iteration start date), and
endDate (iteration end date). The Sprint class also relates to the Release class
in order to express which release the iteration is bound to. Release has the

Metamodel for Requirements Traceability and Impact Analysis 111

following attributes: releaseID, startDate(release start date), endDate (Release
end date) and objective (objective to be achieved with the development of release
to be delivered to the client).

User Stories, Tasks and Artifacts Traceability. The AS5 assumption
emphasizes that user stories may have dependencies on one another. These
dependencies can be related to the business (referring to the order of execution,
a situation where the most important stories are prioritized by the stakeholder)
or techniques (software design and implementation). Thus, the metamodel must
perform requirements traceability through links between user stories with depen-
dent user stories, in addition to the link to related artifacts used for their
implementation.

The AS6 assumption emphasizes that user stories generate tasks that may
also have dependencies on each other. These dependencies can happen between
tasks from the same story and tasks from different stories. Therefore, the meta-
model must be able to perform traceability of dependencies through the link
between tasks with dependent tasks.

Meeting the assumption AS5, the class UserStoryDependency was defined.
This class is related to the UserStory class and has the following attributes:
dependencyID (dependency identifier attribute), dependentUserStoryID (iden-
tifier of the dependent user story), and dependencyType (Type of depen-
dency). The type of dependency was specialized in two other classes: Tech-
nicalDependency (relative to technical dependency and having the depen-
dencyClassification attribute, which classifies the dependencies in M/V/C
(Model/View/Controller), which can be related to the database and architecture
- Model, the interface View, and the code Controller) and BusinessDependency
(which has the description attribute to describe the business dependency).

Meeting the assumption AS6, the Task class was constructed. This class is
related to the class UserStory and describes the characteristics of a task gen-
erated from a user story. It has the following attributes: taskID (task identifier
attribute), description (description of what should be done in the task) and
taskType (task type - architecture, interface or code). Considering that tasks
can also have dependencies on one another, the class TaskDependency has been
defined. This class is related to the class Task and has the following attributes:
dependencyID, dependentTaskID, and dependencyClassification (which classifies
dependencies in M/V/C, as explained in the previous paragraph).

The metamodel also specifies the representation of relationships between
user stories and artifacts through the UserStoryArtifactLink class. This class
is related to the UserStory class and has the attribute relationID. Artifacts are
represented by the Artifact class, which defines, for each artifact, an artifactID
(artifact identifier attribute) and description (artifact description).

112 C. A. Carniel and R. A. Pegoraro

Impact of Dependencies and Changes. The AS7 assumption emphasizes
that changing one user story can impact other user stories. These changes, if left
untreated, can generate code or architecture refactoring. Thus, the metamodel
must indicate, through the analysis of the user, what is the impact that a story
or task that has dependency with another will cause if it is modified.

The AS8 assumption emphasizes that dependencies between user stories and
between tasks can also have an impact. In this way, the metamodel should present
a way to indicate, through the stakeholder analysis, what the impact would be
between dependencies if any modification of the stories/tasks occurred.

Considering the assumptions AS7 and AS8, in order to represent the impact of
dependencies between user stories and between tasks, in addition to determining
the impact caused by a change, the class ImpactIntensity was defined. This class
is related to the other three classes previously presented (UserStoryVersion,User-
StoryDependency andTaskDependency) and has the attributes impactID (impact
identifier), intensity (which assigns an intensity to the impact), and description
(description about the impact).The impact prediction canbeperformedbyanalyz-
ing the dependencies. In this way, one should carefully observe the tasks that were
performed to develop the story. This analysis makes it possible to know if what was
done in the tasks of past story will have an impact on the tasks of the current story
being developed. The intensity attribute in the relationship between ImpactInten-
sity and UserStoryDependency along with ImpactIntensity and TaskDependency,
seeks to measure how much the stories or tasks are dependent on one another and
how much a story or task may be affected if the necessary corrections are not made
after changes are made. In the relationship between ImpactIntensity and UserSto-
ryVersion, the attribute intensity informs how much impact will be caused by a
change that led to a new version of a story.

4 Comparison of the Metamodel with Existing Ones

This section presents a comparative table between the metamodels of traceabil-
ity of requirements in the literature with the proposed metamodel. In order to
compare the metamodels, it is necessary to define criteria based on expected
attributes or functionalities of traceability models applied in the management of
requirements. Lang and Duggan [12] lists a set of requirements that traceability
models should be able to contemplate. Among them, we highlight the following:

– To register unique descriptions of all requirements;
– To classify the requirements into logical groups defined by the user;
– To specify requirements using textual, graphical, or model-based descriptions;
– To define traceable associations between requirements;
– To register and control changes and versions.
– To support cooperative work between members of a team;
– To support notation and modeling patterns.

Hoffmann et al. [9] also elaborates a set of desirable attributes for traceability
models and requirements management:

Metamodel for Requirements Traceability and Impact Analysis 113

– Support to changes and versioning of requirements;
– Requirements traceability support;
– To allow analysis of progress of requirements throughout the project;
– To allow interface with other tools and relate requirements of different models;

From the requirements presented by Lang and Duggan [12] and Hoffmann
et al. [9] and based on the objectives of this work, aimed at the traceability of
requirements in projects using agile methods, 10 criteria were identified in order
to compare the models:

C1 - Supports relationships with other documents: allows one to relate arti-
facts or requirements with external documents related to stories and tasks.

C2 - Supports textual representation of requirements: allows the representa-
tion and storage of requirements in a way that they can be visualized textually.

C3 - Supports vertical traceability : allows traceability between requirements
and different artifacts throughout development, that is, the traceability of rela-
tionships and dependencies.

C4 - Supports horizontal traceability : allows traceability of different versions
of the same requirement or artifact at a given point in the project.

C5 - Supports the representation of changes: allows the representation of
changes along the iterations.

C6 - Supports impact representation: allows the representation of impact of
changes.

C7 - Supports representation of impact of dependencies between user stories:
allows the representation of the impact of dependencies between stories and
between tasks through the analysis of user stories.

C8 - Supports versioning : allows the representation and registering of the
different versions of requirements (user stories) throughout the development.

C9 - Supports the relationship of stakeholders to requirements and artifacts:
allows representing which stakeholders are directly involved with requirements
or artifacts, in order to identify roles and attributions.

C10 - Constructed aiming the application in agile methodologies: specified
in order to fit the phases of an agile software development project (releases,
iterations, tasks) and how requirements are written through user stories.

The models compared are:

– M1 - Ramesh’s model [19]: This model focuses on the analysis of information
related to agents, sources, and objects, considered as the three dimensions of
traceability models.

– M2 - Lang’s model [12]: In this model, RMTool is presented, a prototype
of a tool that controls and manages requirements in a multidisciplinary pro-
cess, focusing on the characteristics that are not adequately addressed by
commercial use tools.

– M3 - Letelier’s model [14]: This metamodel of traceability requirements
designed in UML language aims to represent software artifacts and the rela-
tionships between requirements.

114 C. A. Carniel and R. A. Pegoraro

– M4 - Briand’s model [3]: This metamodel is built in UML notation and
presents related diagrams that express the impact caused by changes in
requirements. The purpose of this impact analysis is to identify what can
be affected by a change and, based on this information, to keep the model
current and consistent.

– M5 - Kassab’s model [11]: Built in UML notation, this metamodel aims to
represent nonfunctional requirements, functional requirements and their rela-
tionships, each requirement being related to a phase of software development.

– MP - Metamodel proposed.

Thus, as shown in Table 1, the models were compared with respect to whether
they meet the defined criteria.

The M1 model allows the association of artifacts and requirements with exter-
nal documents, and thus meets criterion C1. This model also supports textual
representation of requirements and vertical traceability, meeting the criteria C2
and C3. However, the model is not able to trace requirements horizontally, relating
their different versions, and therefore, does not meet the C4 criterion. The model
is still able to represent changes made to the requirements and define relationships
with stakeholders, meeting criteria C5 and C9. However, it does not present any
kind of representation of the impact of dependencies between requirements and
between user stories, thus it does not meet criteria C6 and C7. Likewise, it does
not allow to represent the versioning of the requirements and it is not focused on
agile methodologies, therefore it does not cover the criterion C10.

The model M2 does not allow to relate the requirements with artifacts and in
this way does not meet criterion C1. Nevertheless, this model supports the tex-
tual representation of the requirements, vertical and horizontal traceability and
representation of changes, contemplating criteria C2, C3, C4, and C5. However,
the M2 model does not support the representation of impact nor dependencies
between user stories, it does not support versioning, nor has it been designed
to be applied in agile software development projects, thus failing to criteria C6,
C7, C8, and C10. However, it supports the relationship of stakeholders with
requirements and artifacts, thus covering criterion C9.

In the same way as the M2 model, the M3 model does not consider the rela-
tionship of requirements with artifacts and, therefore, does not meet criterion C1.
This model supports the textual representation of the requirements and imple-
ments both horizontal and vertical traceability, satisfying the C2, C3, and C4 cri-
teria. Criterion C9 is also met since it is possible to relate stakeholders to require-
ments and artifacts. However, the M3 model does not allow the representation of
changes, the impact of changes and between dependencies. Furthermore, it does
not support versioning and was not designed to be suitable for agile methods.
Therefore, it does not meet the criteria C5, C6, C7, C8, and C10.

The M4 model also does not allow the relationship of requirements to soft-
ware artifacts and, unlike the models previously compared, it does not support
the textual representation of requirements, thus not meeting criteria C1 and
C2. As this model allows for vertical traceability, the representation of changes,
impact of changes and versioning, the criteria C3, C5, C6, and C7 are met.

Metamodel for Requirements Traceability and Impact Analysis 115

However, horizontal traceability, impact representation through dependencies
between user stories, stakeholder relationships with requirements and artifacts,
and appropriateness with agile software methods are not attributes presented by
this model, which therefore does not meet the criteria C4, C7, C9, and C10.

The M5 model allows associating requirements with artifacts, enables the
textual representation of requirements, vertical and horizontal traceability, and
supports the relationship of stakeholders to requirements and artifacts, thus
including criteria C1, C2, C3, C4, and C9. However, the M5 model does not sup-
port the representation of changes over iterations and their impact. In addition,
the impact of dependencies between user stories and tasks is also not supported
by the model, which, like the previously compared models, was not specified in
order to meet the development process of agile methods. Thus, criteria C5, C6,
C7, C8, and C10 are not met by the M5 model.

Finally, the metamodel proposed (MP) supports the relationship of user sto-
ries with artifacts, as mentioned in Sect. 3.2, thus meeting criterion C1. The
MP also supports the textual representation of the requirements, since the class
UserStory allows registration of attributes referring to user stories. In this way,
the proposed metamodel contemplates criterion C2. In addition, MP supports
vertical traceability, so that it is possible to relate different user stories and tasks
and analyze their dependencies. The metamodel also supports horizontal trace-
ability, and it is possible to represent the different versions of the same user
story throughout the development. Thus, the proposed metamodel meets the
C3 and C4 criteria. The MP also covers criterion C5, since through the different
versions of the stories it is possible to verify what was modified and the reasons
that led to the modification. Regarding the impact, the MP model supports both
the impact representation caused by changes and the impact that can exist in
the dependency between user stories, thus contemplating the C6 and C7 criteria.
The model also supports the versioning of the stories, and the relationship of the
stories with requirements and artifacts, thus meeting criteria C8 and C9. Finally,
considering that the proposed metamodel was constructed with the purpose of
attending agile methodologies that use user stories to represent requirements
and that present an iterative and incremental development process, it can be
stated that criterion C10 is met.

Table 1. Traceability models comparison

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

M1 X X X X X

M2 X X X X X

M3 X X X X

M4 X X X X

M5 X X X X X

MP X X X X X X X X X X

116 C. A. Carniel and R. A. Pegoraro

5 Conclusion and Future Work

This work presented a metamodel built to assist in the traceability of require-
ments in agile methods. The study of models and methods to represent depen-
dencies between user stories and the impact analysis presents itself as a recurrent
theme of research, given the need to manage changes in agile methods.

The metamodel was elaborated based on assumptions about user stories
found in the literature. Subsequently, each assumption was analyzed with respect
to the corresponding classes specified in the metamodel. The comparison of the
proposed metamodel with other existing metamodels demonstrated that trace-
ability models can be applied for different purposes.

Considering the analysis of the described results, it was observed that the
work presents the following contributions: (a) An analysis of requirements trace-
ability through dependency mapping between user histories; (b) The identifica-
tion of dependencies between user stories and between tasks; (c) The visibility of
the evolution of requirements; (d) The support in the impact analysis of changes.

Although a metamodel is essential for managing dependencies in agile meth-
ods, it is not enough. A tool is needed for populating the metamodel with user
stories, tasks, and dependencies. To this end, a software visualization tool is
being developed to represent the user stories and their dependencies so that the
evolution of requirements and the impact of changes can be visualized.

References

1. Ambler, S.: Agile Modeling: Effective Practices for Extreme Programming and the
Unified Process. Wiley, New York (2002)

2. Breitman, K., Leite, J.C.S.P.: Managing user stories. In: International Workshop
on Time-Constrained Requirements Engineering (2002)

3. Briand, L.C., Labiche, Y., O’Sullivan, L.: Impact analysis and change management
of UML models. In: Proceedings of the International Conference on Software Main-
tenance. ICSM, 22–26 September 2003. IEEE Computer Society, Washington, DC
(2003)

4. Cohn, M.: User Stories Applied: For Agile Software Development. Addison-Wesley
Professional, Boston (2004)

5. Cohn, M.: Succeeding with Agile: Software Development Using Scrum. Pearson
Education, London (2010)

6. Espinoza, A., Garbajosa, J.: A study to support agile methods more effectively
through traceability. Innovations Syst. Softw. Eng. 7, 53–69 (2011)

7. Gaur, V., Soni, A.: A novel approach to explore inter agent dependencies from user
requirements. Procedia Technol. 1, 412–419 (2012)

8. Gomez, A., Rueda, G., Alarcón, P.P.: A systematic and lightweight method to
identify dependencies between user stories. In: Sillitti, A., Martin, A., Wang, X.,
Whitworth, E. (eds.) XP 2010. LNBIP, vol. 48, pp. 190–195. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-13054-0 17

9. Hoffmann, M., Kuhn, N., Weber, M.: Requirements for requirements management
tools. In: Proceedings of the 12th IEEE International Requirements Engineering
Conference, pp. 301–308 (2004)

https://doi.org/10.1007/978-3-642-13054-0_17

Metamodel for Requirements Traceability and Impact Analysis 117

10. Kannenberg, A., Saiedian, H.: Why software requirements traceability remains a
challenge. CrossTalk J. Def. Softw. Eng. 22(5), 14–19 (2009)

11. Kassab, M., Ormandjieva, O., Daneva, M.: Traceability metamodel for change man-
agement of nonfunctional requirements. In: Proceedings of the 2008 Sixth Inter-
national Conference on Software Engineering Research, Management and Appli-
cations. IEEE Computer Society, Washington, DC (2008)

12. Lang, M., Duggan, J.: A tool to support collaborative software requirements man-
agement. Requir. Eng. J. 6, 161–172 (2001)

13. Leffingwell, D.: Agile Software Requirements: Lean Requirements Practices for
Teams, Programs, and the Enterprise. Addison-Wesley Professional, Boston (2010)

14. Letelier, P.: A framework for requirements traceability in UML-based projects. In:
Proceedings of the 1st International Workshop on Traceability in Emerging Forms
of Software Engineering (TFFSE 2002) (2002)

15. Martakis, A., Daneva, M.: Handling requirements dependencies in agile projects: a
focus group with agile software development practitioners. In: 2013 IEEE Seventh
International Conference on Research Challenges in Information Science (RCIS).
IEEE (2013)

16. Object Management Group: Unified Modeling Language Specification. UML 2.5
with Action Semantics, Final Adopted Specification (2015). www.omg.org

17. Pressman, R.S.: Software Engineering: A Practitioner’s Approach. Palgrave
Macmillan, New York (2005)

18. Ramesh, B., Powers, T., Stubbs, C., Edwards, M.: Implementing requirements
traceability: a case study. In: Proceedings of the Second IEEE International Sym-
posium on Requirements Engineering. IEEE (1995)

19. Ramesh, B., Jarke, M.: Toward reference models for requirements traceability.
IEEE Trans. Softw. Eng. 27, 58–93 (2001)

20. Sliger, M., Broderick, S.: The Software Project Manager’s Bridge to Agility.
Addison-Wesley Professional, Boston (2008)

21. Rosenberg, D., Stephens, M.: Extreme Programming Refactored: The Case Against
XP. Apress, Berkeley (2008)

22. Trkman, M., Mendling, J., Krisper, M.: Using business process models to better
understand the dependencies among user stories. Inf. Softw. Technol. 71, 58–76
(2015)

23. Version One: 11th annual state of agile survey. Technical report, Version One (2017)
24. Rossberg, J.: Beginning Application Lifecycle Management. Apress, Berkeley

(2014)
25. Sayão, M., Leite, J.C.S.P.: Rastreabilidade de requisitos. RITA 13.1 (2006)

www.omg.org

Organizational Transformation and
Cultural Aspects on Agile Business

For Some Places More Than Others - Agility
and Organizational Culture

Lourenço P. Soares1,2(✉) and Ângela Freitag Brodbeck2

1 ThoughtWorks Brasil, Porto Alegre, Brazil
lous@thoughtworks.com

2 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
angela@brodbeck.com.br

Abstract. The adoption of agile methods for software development has proven
to be an activity sensitive to the culture of the organizations seeking to adopt them.
Agile projects occur in different situations: from the most ideal to those that
require extensive adaptations. This study aims to explore the relationship between
selected basic cultural assumptions of organizations and agile practices. Corre‐
lations identified were explored looking to offer an initial map suggesting
approaches to introduce agile practices based on the cultural profile of the organ‐
ization. The most notable results were that basic cultural assumptions of “Prag‐
matism”, “Favors communication” and “Collegial/participative” are the ones
most correlated with agile practices and the practices of “co-location”, “Test
Driven Development”, “Continuous Integration”, “Code refactoring”, “pair
programming” and “Stand-up meeting” showed no representative correlations
with basic cultural assumptions, indicating that they may be a good alternative to
start an agile adoption by technical practices. One of the main contributions of
this work is proposing a preliminary model that highlights the relationship
between organizational culture and adoption of agile practices, suggesting areas
for further research.

Keywords: Organizational culture · Agile methodologies · Agile practices
Adoption of agile practices · Cultural dimensions · Basic assumptions
TDD · Continuous integration · Stand-up meeting · Co-location

1 Introduction

There are few companies these days that can remain competitive without Information
Technology. Be it at the core of the business or limited to opportunistic explorations, IT
projects can determine the success or failure of an organization. These projects are
managed in many different ways, from ad hoc processes to the waterfall model using
Gantt charts.

At the turn of century, noticing the chaos of the absence of a proper process and the
frequent inefficiency of the waterfall model [1], a group of software developers proposed
“agile” as a more appropriate way to manage IT projects [2]. Highsmith [3], one of the
signatories of the Agile Manifesto [4] states that the growth and the criticism of agile

© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 121–133, 2018.
https://doi.org/10.1007/978-3-319-73673-0_10

methods have to do with values and culture, and not taking cultural factors into account
is the main cause of failure in the adoption of software development methodologies.
Research by Begel and Nagappan [5] identified the incompatibility with culture as one
of the barriers to adoption of agile methods.

In contrast, Robinson and Sharp [6] indicate that agile practices can be adapted to
produce a methodology that is appropriate for a particular culture, and cultural analysis
can help prepare an organization to introduce changes [7].

Often, there is a conflicting relationship between culture and practices that one seeks
to adopt in IT organizations, which can harm change initiatives, particularly in the
context of agile methodologies adoption. Thus, this study aims to:

(a) Identify in literature how the various characteristics of an organizational culture are
described and how they can be measured;

(b) Identify the practices that best represent, for the purposes of this work, the principles
behind agile methodologies;

(c) Identify which basic assumptions of organizational culture are more or less related
to the adoption of agile practices by mapping the basic assumptions prevailing in
organizational culture of different companies and their correlation with the adoption
of agile practices in the implementation of information systems in said companies.

2 Main Elements of Study Execution

This study was based on cultural elements that can be classified as national, regional,
organizational, group or individual, focusing on organizational elements. Besides these,
elements of agile methods and its main practices were analyzed and mapped.

2.1 Culture Elements

Ali and Brooks [8] define culture as “shared patterns of behavior.” Within the organi‐
zation, the definition by Ed Schein, also used by Fleury et al. [9] was used:

The culture of a group can now be defined as a pattern of shared basic assumptions learned by
a group as it solved its problems of external adaptation and internal integration, which has worked
well enough to be considered valid and, therefore, to be taught to new members as the correct
way to perceive, think, and feel in relation to those problems [10].

Both Hofstede and Hofstede [11] and Schein [10] suggest the use of different dimen‐
sions to describe an organizational culture in aspects relevant to empirical studies. For
Schein basic assumptions are organized in the following dimensions [12]:

Nature of Human Activity: Between Environment dominant (the organization acts as
if subordinate to the environment it operates) and Organization dominant (the organi‐
zation believes in its ability to determine the environment and the market). Between
Proactive (the organization accepts that individuals can cause instability in the search
for improvement) and Reactive/fatalistic (the organization expects the protocol to be
followed and when unforeseen results happen, it accepts the consequences).

122 L. P. Soares and Â. F. Brodbeck

Nature of Reality and Truth: Between Moralistic authority (the organization trusts
the boss/expert/manual to determine the proper way of doing things) and Pragmatism
(the organization tries to obtain objective information and believes truth emerges from
the exchange of ideas among all).

Nature of Space: Between Favors privacy (the organization creates private spaces and
discloses information as needed) and Favors communication (the organization adopts
an environment that facilitates the rapid exchange of ideas).

Nature of Time: Between Near future oriented (the organization uses its planning as
basis for decisions) and Past oriented (the organization revisits previous experiences to
look for solutions to problems). Between Long time units (organization favors a long-
term view, disregards minor delays) and Short time units (the organization plans its
activities with a short horizon of time and sees small delays as significant).

Nature of Human Nature: Between Humans are basically good (the organization
believes that properly motivated people will exceed expectations) and Humans are
basically evil (the organization suspects that people will act inappropriately if given the
chance). Between Human nature is fixed (the organization believes that people are what
they are and cannot change) and Human nature is mutable (the organization believes
that people adapt to different situations and can improve depending on the context).

Nature of human relationships: Between Groupism (the organization believes that
all good things come from the group and strive to create consensus) and Individualism
(the organization believes that individual talent is key to problem solving). Between
Collegial/participative (authority is determined by the context and the leader defers to
the group) and Authoritarian/paternalistic (the organization believes in a strong hier‐
archy).

2.2 Elements of Agile Methods

The Agile Manifesto [4] and the methodologies associated with it caused a significant
change in the way teams develop software. According to Taylor [13]:

Agile methodologies generally promote a project management process that encourages frequent
inspection and adaptation, a leadership philosophy that encourages teamwork, self-organization
and accountability, a set of engineering best practices that allow for rapid delivery of high-quality
software and a business approach that aligns development with customer needs and company
goals.

Fowler [29] points out that “one of the hardest parts of introducing agile methods
into an organization is the cultural change it causes.” Because of the flexible nature of
agile methodologies, it is often better to adapt practices when these prove inadequate to
a given context, provided the agile values are respected [2, 6, 14, 15].

In order to compare practices and adoption, a number of agile practices were selected
based on a comparison of several authors [2, 5, 14, 16–20] (Table 1). They were selected
by measuring how often they were mentioned in the reference literature and mapping

For Some Places More Than Others 123

them according to the 12 principles of the Agile Manifesto [4] (the principle of “Our
highest priority is to satisfy the customer…” was considered as a meta principle,
resulting of the conjunction of the others and as a guiding principle for the application
of all practices, not mapping exclusively to a single practice).

Table 1. List of selected Agile practices and its corresponding principles. Number of papers
considered that reference the practice in parenthesis.

Practices (mentions) Reference Principles
Delivery planning (5) PLAN Welcome changing requirements…
Requirements in form of stories (3) REQS
Iterations/small, frequent deliveries (7) ITER Deliver working software frequently…
Active customer involvement (7) CUST Business people and developers must

work together…Multidisciplinary team (2) MULT
Motivation (2) MOTV Build projects around motivated

individuals…
Co-location (2) COLO The most efficient (…) face-to-face

conversation
Test Driven Development (8) TDDV Working software is the primary

measure…Continuous Integration (8) CINT
Sustainable pace (6) PACE Agile processes promote sustainable

development…
Code refactoring (6) REFA Continuous attention to technical

excellence…Pair programming (7) PAIR
Simplicity (5) SIMP Simplicity…
Incremental project (2) INCR
Minimum modeling/documentation (2) MIND
Collective understanding (7) COLU The best (…) designs emerge from self-

organizing teamsStand-up meeting (3) STND
Visual progress indicators (4) VIND
Retrospectives/learning (3) RETR At regular intervals, the team reflects…

3 Study Method

This work is understood as exploratory study [21]. At the time the survey was performed,
no other studies were found relating cultural dimensions and agile practices adoption.

This study used a quantitative research method [22], using as instrument an online
survey form. It was considered, according to literature [10, 11], to be good enough for
an initial search of insights into the role of culture in inhibiting or facilitating organiza‐
tional change.

The case study was carried out between March and April of 2011 in the company
ThoughtWorks Inc., global leader in consulting and the use of Agile methodologies in
implementation of software development projects [23]. The source data was collected
from ThoughtWorks Inc. consultants delivering software or providing advice on soft‐
ware delivery based on their experience during the delivery or after it has finished. These

124 L. P. Soares and Â. F. Brodbeck

consultants were distributed globally in many different organizations and cultures, which
have different levels of knowledge of Agile.

For cultural dimensions, the model used was adapted from the one proposed by
Schein [12] described in Sect. 2.1. A five point scale between the cultural assumptions
at each end of a given dimension was used to measure an organization’s manifested
behavior with regards to that dimension.

A comparative analysis of previous works was used for the selection of agile prac‐
tices surveyed (Table 1). The adoption of a given practice was measured using the scale
proposed by Boehm and Turner [24] for “Levels of Software Method Understanding
and Use” (Table 2).

Table 2. Levels of software method understanding and use.

Level Description
Level -1 May have technical skills, but unable or unwilling to collaborate or follow shared

methods
Level 1B With training, able to perform procedural method steps
Level 1A With training, able to perform discretionary method steps
Level 2 Able to tailor a method to fit a precedented new situation
Level 3 Able to revise a method (break its rules) to fit an unprecedented new situation

The responses were based on the subjective perception of consultants from Thought‐
Works Inc. on the client’s experience and satisfaction with agile methods; the culture
of the client organization; and the understanding and use of agile methods put forward
by employees of the organization at the end of the project.

For data analysis, descriptive and multivariate statistical procedures were
employed using statistical functions as Pearson correlation and hypothesis test (t test
error probability Type I (α) accepted of 0.01) [25–27]. No data cleansing process
was performed. Each dimension of culture was separated in the two basic assump‐
tions it corresponds to, with assumptions on the left of the scale having the negative
correlation value, and assumptions on the right of the scale having the positive
correlation value. Thus, negative correlations between a practice and a dimension
indicate, in fact, a direct correlation with the assumption on the left in a certain
cultural dimension. To avoid drawing conclusions on extreme situations with a low
number of responses, only the top 20% of the assumption and practice pairs with the
highest correlation were selected for analysis [13].

4 Analysis of Results

The survey consisted of questionnaires distributed to a population of 1400 consultants,
with a return rate of 8.14% (114 responses), which allowed calculation of a correlation
between the cultural dimensions researched and selected agile practices. The question‐
naires were validated by two specialists from ThoughtWorks and the results verified and
commented by five others. Both questionnaire and results were reviewed by three
members on an examination board. The results can be seen in Table 3. The darker the

For Some Places More Than Others 125

Table 3. Map of the correlation between practices and cultural dimensions.

Practices
(Reference
in Table 1) En

vi
ro

nm
en

t d
om

in
an

t →

O
rg

an
iz

at
io

n
do

m
in

an
t

Pr
oa

ct
iv

e
→

R

ea
ct

iv
e/

fa
ta

lis
tic

M
or

al
is

tic
 a

ut
ho

rit
y
→

Pr

ag
m

at
is

m

Fa
vo

rs
 p

riv
ac

y
→

 F
av

or
s

co
m

m
un

ic
at

io
n

N
ea

r f
ut

ur
e

or
ie

nt
ed

 →
 P

as
t

or
ie

nt
ed

Lo
ng

 ti
m

e
un

its
 →

 S
ho

rt
tim

e
un

its

H
um

an
s a

re
 b

as
ic

al
ly

 g
oo

d
→

 H
um

an
s a

re
 b

as
ic

al
ly

 e
vi

l

H
um

an
 n

at
ur

e
is

 fi
xe

d
→

H

um
an

 n
at

ur
e

is
 m

ut
ab

le

G
ro

up
is

m
 →

 In
di

vi
du

al
is

m

C
ol

le
gi

al
/p

ar
tic

ip
at

iv
e
→

A

ut
ho

rit
ar

ia
n/

pa
te

rn
al

is
tic

PLAN 0,0578 0,4233 0,4362 0,3699 0,2518 0,1772 0,4088 0,0438 0,1982 0,4590

REQS 0,1591 0,2092 0,3400 0,3332 0,2405 0,0515 0,1742 0,2145 0,3033 0,3520

ITER 0,1494 0,4451 0,3814 0,2531 0,1768 ,0140 0,4144 0,0609 0,0848 0,3022

CUST 0,0614 0,3764 0,4178 0,4326 0,1178 0,0528 0,4955 0,3452 0,1751 0,3813

MULT 0,1268 0,1566 0,2876 0,3104 0,1620 0,0156 0,2419 0,2609 0,3674 0,3361

MOTV 0,0924 0,4077 0,4707 0,3840 0,1633 0,0261 0,5151 0,2859 0,2716 0,4349

COLO 0,0933 0,1612 0,2235 0,2871 0,0955 0,0988 0,3396 0,1935 0,1233 0,2527

TDDV 0,1785 0,0787 0,1787 0,0939 0,1686 0,1747 0,1309 0,0960 0,2463 0,2139

CINT 0,1001 0,1864 0,1428 0,0964 0,2848 0,1218 0,1677 0,0276 0,1656 0,1809

PACE 0,1152 0,2627 0,3881 0,3031 0,0218 0,0932 0,2931 0,2706 0,2961 0,2848

REFA 0,0236 0,1775 0,2552 0,1582 0,0469 0,0485 0,2506 0,1642 0,1586 0,2092

PAIR 0,1198 0,2237 0,1950 0,2899 0,1532 0,1033 0,2398 0,2499 0,1796 0,3226

SIMP 0,1149 0,3330 0,2517 0,3791 0,1446 0,0701 0,3686 0,2827 0,2453 0,4057

INCR 0,1122 0,2733 0,1849 0,2393 0,1589 0,1834 0,3195 0,1962 0,2312 0,4253

MIND 0,2079 0,2834 0,3052 0,4489 0,1682 0,0017 0,3626 0,2177 0,2900 0,4686

COLU 0,1373 0,3687 ,4271 0,4221 0,1198 0,1067 0,4515 0,3250 0,4153 0,5238

STND 0,0709 0,0533 0,1778 0,2507 0,1013 0,0831 0,2499 0,1376 0,2340 0,2589

VIND 0,2309 0,2252 0,3512 0,3755 0,3043 0,0371 0,2999 0,1438 0,2138 0,3306

RETR 0,1840 0,1112 0,3902 0,3941 0,0981 0,1143 0,2353 0,1519 0,3413 0,2780

126 L. P. Soares and Â. F. Brodbeck

cell the higher the correlation, either positive or negative. It is important to notice that
a high value for modular correlation does not imply that this correlation is significant.
This requires a hypothesis test, which was done in selected cases.

Positive or negative correlations represent the influence of different assumptions on
the adoption of a practice. In Table 3 cultural dimensions are in columns, so negative
values indicate a strong correlation with assumptions to the left in the column heading
while positive values indicate a strong correlation with assumptions to the right in the
column heading. Only the highest 20% of the correlation results (in bold in Table 3)
were selected for a detailed analysis. All correlations highlighted proved significant.

Based on the results, it is worth noting that the basic assumptions of “Pragmatism”,
“Favors communication” and “Collegial/participative” are the ones that correlate more
with agile practices, with 8 practices with high correlation for each assumption. This
can be seen as aligned with the four values of the Agile Manifesto [4] as seen in Table 4.

Table 4. Values of the agile manifesto and basic cultural assumptions.

Individuals and interactions over processes and tools “Favors communication”
Working software over comprehensive documentation “Pragmatism”
Customer collaboration over contract negotiation “Collegial/participative”, “Favors

communication”
Responding to change over following a plan “Pragmatism”

On the other hand, four dimensions showed no correlation among the 20% analyzed:
Between “Environment dominant” and “Organization dominant”; Between “Near future
oriented” and “Past oriented”; Between “Long time units” and “Short time units”; and
between “Human nature is fixed” and “Human nature is mutable”. It is surprising that
the last one showed no correlation, since the concept of “Agile Mindset” [28] speaks
explicitly about the belief that people can change.

Another interesting observation is that the practices of “co-location”, “Test Driven
Development”, “Continuous Integration”, “Refactoring code”, “Pair programming” and
“Stand-up meeting” showed no representative correlation with any basic assumption.
This suggests that these practices are more culture “agnostic” and possibly can be
adopted more easily by any organization. Many of these practices (“Test Driven Devel‐
opment”, “Continuous Integration”, “Refactoring code” and “Pair programming”) are
highly technical, which may explain why many adoptions of agile methodologies in
organizations are led by software development teams.

Therefore, one could assume that, particularly in organizations with predominantly
“Favors privacy”, “Moralistic authority” and “Authoritarian/paternalistic” cultural
assumptions, an Agile adoption will be more successful if it starts by implementing the
practices of “co-location”, “Test Driven Development”, “Continuous Integration”,
“Refactoring code”, “Pair programming” and “Stand-up meeting”.

For Some Places More Than Others 127

5 Conclusions and Contributions

Based on the highlighted correlations, one can argue that it was possible to identify
cultural assumptions that are related to the adoption of agile practices. This was achieved
by seeking in literature instruments which allow the classification of the culture of an
organization, listing a set of practices representative of agile principles and looking to
measure the correlations between these in real situations.

Although the results are encouraging, one must be aware that their validity is limited
due to the inherent limitations and biases of surveys and the small number of responses.
It is also a subjective matter within a fairly homogeneous population, limiting extrapo‐
lation of results.

Therefore it is considered that this work may contribute to a deeper exploration of
the theme by suggesting significant correlations between the adoption of agile practices
and cultural assumptions of different organizations.

To the academia, this work serves as an initial model to look into agile methods and
practices in the organizational culture domain. We hope that these results encourage
researchers to consider organizational culture as an important aspect in studies of adop‐
tion of these methodologies. For practitioners, we hope this inspire companies looking
to adopt agile methodologies to consider the culture of its organization, and plan strategy
accordingly, aiming, for example, to start the journey by the practices that seem less
sensitive to culture, and eventually seeking to adapt their culture (or the expected results)
according to these limitations.

Several possibilities for future studies arise from this work. To confirm its results,
and mitigate any bias that this study could have been subject of, it is necessary to expand
the set of sources analyzed, seeking a greater volume and diversity of data. In addition,
a longitudinal study with a limited set of customers observing the impact of agile prac‐
tices in organizational culture can help to establish a causal relationship and deepen the
understanding of the nexus between agile practices and organizational culture. We
believe it is also important that the practitioners of agile methodologies - from beginners
to the more experienced - pay attention to day-to-day moments where culture was an
impediment to improvement, or, to the contrary, a boost to change. Conveniently, the
Agile Manifesto itself suggests moments of reflection where this debate can be
rewarding.

Appendix A – Survey Questionnaire

Culture and Agile Practices
Please answer the questions below based on your experience in past and present
ThoughtWorks projects you’ve been involved. Your name and the client/project infor‐
mation will be kept private and used only for data aggregation and to calculate response
rate. Please feel free to leave feedback, remarks or describe a case of particular interest
in the field available at the end of the form. Thanks for your time!

128 L. P. Soares and Â. F. Brodbeck

Project profile
The next few questions will be used to identify the project characteristics for aggregate
analysis:

Client/project:
Client country of origin:
Project type (Onshore / Offshore):

Your role:
Project end date:
Project duration:

Client’s experience with Agile: No experience 1 2 3 4 5 Experienced practitioners
Client’s satisfaction with Agile: Extremely frustrated 1 2 3 4 5 Extremely satisfied
Did the project finish on target and on budget? Yes/No/Not finished/I don’t know

Client Organization Culture
For the following questions, please answer what, in your opinion, best reflects the atti‐
tudes, behaviors and beliefs of the group involved in the project from the client’s side.

Nature of Human Activity – 1. Does the organization acts as if dominated by the
environment it is part of, trying to find available niches and considering all external
factors before doing anything (e.g.: they refuse to make any changes without consulting
every stakeholder, like legal and design people)? Or the organization believes in its
capacity to influence the market with their own effort, displaying a belief in progress
regardless of what the current consensus is (e.g.: they try and release products they
believe in, regardless of marketing surveys)?

Environment dominant 1 2 3 4 5 Organization dominant

Nature of Human Activity – 2. Does the organization let its members act pro-actively
and improve things even if it means making the environment unstable for everyone else
sometimes (e.g.: They try many physical lay-outs until they find the one that is acceptable
for everyone)? Or the organization expects its members to follow detailed instructions
and act according to protocol, accepting their fate if something unexpected happens and
the protocol breaks down (e.g.: They avoid updating their tech stack without many
meetings and a detailed timeline)?

Pro - active 1 2 3 4 5 Reactive, fatalistic

Nature of Reality and Truth. Does the organization trusts the boss, local specialist or
“the right way of doing things” to determine what is right when it is time to make a
decision amid great uncertainty (e.g.: there is a methodology book that every one regards
as the final arbitrator of any dispute)? Or the organization try to gather objective infor‐
mation and, in lack of those, believes that truth will come out of debate among everyone
involved (e.g.: to make a decision, two or more members of the team explain their ideas
and test it out to see what works best)?

Moralistic Authority 1 2 3 4 5 Pragmatism

For Some Places More Than Others 129

Nature of Space. Does the organization adopts a working environment that favors
private conversation, avoiding disrupting anybody with conversations that are not perti‐
nent to the whole group, and only releasing information in a need-to-know basis (e.g.:
the boss have people come to his office when he wants to talk to them and interrupting
a colleague without permission is an offense)? Or the organization adopts a working
environment that makes the fast exchange of ideas easy at the expense of individual
privacy (e.g.: the team – including the boss – shares a common working area and the
group is all facing the centre of the room when possible)?

Allowing privacy 1 2 3 4 5 Allowing communication

Nature of Time – 1. Is the organization normally focused in the near future, using a
quarterly or annual goal as benchmark for decision-making (e.g.: they postpone a change
until after the current release in order to avoid risking it)? Or the organization normally
looks to past experiences when looking for solutions for a problem (e.g.: they do not
adopt a given methodology because they tried before and it didn’t work)? An inter‐
mediate position would be focus on the task at hand, without looking into long-term
consequences or previous experiences.

Near future orientation 1 2 3 4 5 Past orientation

Nature of Time – 2. Does the organization favors a long term vision (months or years)
and don’t worry too much about small delays (e.g.: they are fine with a complex task
taking longer than expected and are willing to negotiate the consequent delay in order
to do the right thing). Or the organization plan activities with a short time frame (days
or weeks) and consider small delays a big issue (e.g.: holding weekly status meetings
where every delay is immediately looked into)?

Long time units 1 2 3 4 5 Short time units

Nature of Human Nature – 1. Does the organization believes that people are intrinsi‐
cally good and, when properly motivated, will exceed expectations when performing the
tasks they are responsible for (e.g.: they do not demand results, focusing on making sure
everyone has all the resources necessary to do the job)? Or the organization believes people
is intrinsically bad and believe people will misbehave if given the opportunity (e.g.: an
organization that has cameras everywhere to make ensure security and good behavior)?

Humans are basically good 1 2 3 4 5 Humans are basically evil

Nature of Human Nature – 2. Does the organization believe that people are what they
are and can’t change their nature regardless of any context changes (e.g.: the organization
prefers to postpone a meeting then let someone represent somebody else that is out sick)?
Or the organization believes people can change, adapting to different roles depending
on the situation and/or the way they are treated (e.g.: the organization lets a user pair
with a developer if the user believes he can help that way)?

Human nature is fixed 1 2 3 4 5 Human nature is malleable

130 L. P. Soares and Â. F. Brodbeck

Nature of Human Relations – 1. Does the organization believes that all good things
come from the group and members strive for conformity (e.g.: people frequently ask
everybody else’s opinion before deciding on trivial things)? Or the organization believes
that individual talent is the solution for any problem (e.g.: if somebody works all night
alone to do a nasty hack to fix an issue in production, then he or she is praised as an
example)?

Group as center 1 2 3 4 5 Individual as center

Nature of Human Relations – 2. Is the authority in the organization determined by
context, with the boss deferring to the group members’ experience to assign power
according to the situation (e.g.: the input of skilled engineers holds more weight in the
decisions regarding the tech stack)? Or the organization believes in a strong hierarchy
where power and influence are a consequence of each person’s relative status (e.g.: no
matter how obvious a solution is, it must be cleared with the boss first)?

Collegial∕Participative 1 2 3 4 5 Authoritarian∕paternalistic

May have tech‐
nical skills but
unable or
unwilling to
collaborate or
follow shared
methods

With training, able
to perform proce‐
dural method steps

With training, able
to perform discre‐
tionary method
steps

Able to tailor a
method to fit a
precedented new
situation

Able to revise a
method (break its
rules) to fit an
unprecedented
new situation

Release planing
Use of stories
Frequent releases
Client participa‐
tion
Morale
Colocation
TDD
CI
Sustainable pace
Refactoring
Whole team
Pair Programming
Simple design
Incremental
design
Minimal docu‐
mentation
Shared under‐
standing
Stand-ups
Information Radi‐
ators
Retrospective/
self-improvement

For Some Places More Than Others 131

Agile practices adoption
In the table below, please check the option that matches your perception of the client’s
team skill level in each given practice in the last day of the project.

Agile practices mastery levels
If a particular practice wasn’t tried/does not apply in the project you are describing or
the scale doesn’t fit, leave that row unanswered. Mastery levels based on Cockburn
(2000), Boehm and Turner (2003) and Sato et al. (2006).

References

1. Royce, W.: Software Project Management: A Unified Framework. Addison-Wesley
Professional, Reading (1998)

2. Parsons, D., Ryu, H., Lal, R.: The impact of methods and techniques on outcomes from agile
software development projects. In: McMaster, T., Wastell, D., Ferneley, E., DeGross, Janice
I. (eds.) TDIT 2007. IIFIP, vol. 235, pp. 235–249. Springer, Boston, MA (2007). https://
doi.org/10.1007/978-0-387-72804-9_16

3. Highsmith, J.: Agile Software Development Ecosystems. Addison-Wesley, Boston (2002)
4. Beck, K., Beedle, M., van Bennekum, A., et al.: Manifesto for Agile Software Development.

In: Agilemanifesto.org (2017). http://agilemanifesto.org. Accessed 15 June 2017
5. Begel, A., Nagappan, N.: Usage and perceptions of agile software development in an

industrial context: An exploratory study. In: International Symposium on Empirical Software
Engineering and Measurement, vol. 1, pp. 255–264 (2007)

6. Robinson, H., Sharp, H.: XP culture: Why the twelve practices both are and are not the most
significant thing. In: Agile Development Conference, vol. 1, pp. 12–21 (2003)

7. Dubé, L., Robey, D.: Software stories: three cultural perspectives on the organizational
practices of software development. Acc. Manage. Inf. Technol. 9, 223–259 (1999)

8. Ali, M., Brooks, L.: A situated cultural approach for cross-cultural studies in IS. J. Enterp.
Inf. Manage. 22, 548–563 (2009)

9. Fleury, M.T., Shinyashiki, G., Stevanato, L.A.: Entre a antropologia e a psicanálise: dilemas
metodológicos dos estudos sobre cultura organizacional. Revista de Administração 32, 23–
37 (1997)

10. Schein, E.: Organizational Culture and Leadership. Jossey-Bass, San Francisco (2010)
11. Hofstede, G., Hofstede, G.J.: Cultures and Organizations: Software for the Mind. McGraw-

Hill, New York (2004)
12. Schein, E.: Organizational Culture. Working paper (Sloan School of Management) (1988).

2088-88
13. Taylor, P.: The Lazy Project Manager. Infinite Ideas, Oxford (2009)
14. Sato, D., Bassi, D., Bravo, M., et al.: Experiences tracking agile projects: an empirical study.

J. Braz. Comput. Soc. 12, 45–64 (2006)
15. Cockburn, A.: Agile Software Development. Addison-Wesley Professional, Reading (2001)
16. Beck, K., Andres, C.: Extreme Programming Explained. Addison-Wesley Professional,

Reading (2004)
17. Rumpe, B., Schröder, A.: Quantitative survey on extreme programming projects. In:

International Conference on Extreme Programming and Flexible Processes in Software
Engineering, vol. 3, pp. 26–30 (2002)

18. Forrester Research: Agile Development: Mainstream Adoption Has Changed Agility (2010)

132 L. P. Soares and Â. F. Brodbeck

http://dx.doi.org/10.1007/978-0-387-72804-9_16
http://dx.doi.org/10.1007/978-0-387-72804-9_16
http://agilemanifesto.org

19. Krebs, W.: Turning the knobs: A coaching pattern for XP through agile metrics. In: Wells,
D., Williams, L. (eds.) XP/Agile Universe 2002. LNCS, vol. 2418, pp. 60–69. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45672-4_7

20. Williams, L., Layman, L., Krebs, W.: Extreme Programming Evaluation Framework for
Object-Oriented Languages, v. 1.4. Department of Computer Science, North Carolina State
University (2004)

21. Yin, R.: Case Study Research: Design and Methods. Sage, Thousand Oak (2008)
22. Severino, A.: Metodologia do trabalho científico. Cortez, São Paulo (2002)
23. Palmer, L., Lawler, J.: Agile methodology in offshore outsourcing. J. Bus. Case Stud. 1, 35–

46 (2005)
24. Boehm, B., Turner, R.: Rebalancing your organization’s agility and discipline. In: Maurer,

F., Wells, D. (eds.) XP/Agile Universe 2003. LNCS, vol. 2753, pp. 1–8. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45122-8_1

25. Schmuller, J.: Statistical Analysis with Excel For Dummies. Wiley, San Francisco (2009)
26. Chatman, J., Jehn, K.: Assessing the relationship between industry characteristics and

organizational culture: how different can you be? Acad. Manag. J. 37, 522–553 (1994)
27. Prajogo, D., McDermott, C.: The relationship between total quality management practices

and organizational culture. Int. J. Oper. Prod. Manage. 25, 1101–1122 (2005)
28. Rising, L.: The Power of an Agile Mindset (2011)
29. Fowler, M.: Using an agile software process with offshore development. In: Martinfowler.com

(2006). http://www.martinfowler.com/articles/agileOffshore.html. Accessed 15 June 2017

For Some Places More Than Others 133

http://dx.doi.org/10.1007/3-540-45672-4_7
http://dx.doi.org/10.1007/978-3-540-45122-8_1
http://www.martinfowler.com/articles/agileOffshore.html

Agile Practices and Future Trends,
Evolution and Revolution
(Technical or Managerial)

A Study on the Perception of Researchers
About the Application of Agile Software

Development Methods in Research

Nelson Marcelo Romero Aquino(B), Adolfo Gustavo Serra Seca Neto,
and Heitor Silvério Lopes

Federal University of Technology - Paraná, Av. Sete de Setembro,
3165 - Rebouças CEP, Curitiba 80230-901, Brazil

nmarceloromero@gmail.com, {adolfo,hslopes}@utfpr.edu.br

Abstract. Papers on Agile Software Development methods are often
focused on their applicability in commercial projects or organizations.
There are no current studies that we know about addressing the applica-
tion of these methods in research projects. The objective of this work is
to describe the perception of researchers on the application of agile soft-
ware development practices and principles for research projects. A study
was conducted by constructing and applying a questionnaire to Brazilian
researchers of different affiliations, formation and research areas in order
to obtain information about their knowledge and openness to follow agile
software development principles and practices.

Keywords: Agile software development methods
Software for research projects

1 Introduction

Since the arrival of Agile Software Development (ASD) approaches, the research
community has been pursued to analyze their applicability in commercial envi-
ronments, projects or organizations. Some works regarding this field of study are
based on comparing traditional development methods with ASD [1], others seek
to study the challenges derived from the application of agile processes in tra-
ditional organizations [2] or the suitability of using ASD methods to particular
environments [3,4]. To the best of our knowledge, no research has been published
to evaluate the application of ASD methods and practices in research projects
within universities or the openness of the researchers to apply them to projects
in which it is necessary to develop some kind of software.

The objective of this work is to describe researchers knowledge regarding
ASD and their openness to follow agile software development principles and
practices in research projects. For this purpose, data was collected from Brazilian
researchers from different backgrounds by applying a questionnaire divided in
several parts, each one regarding a concrete aspect such as the agreement with
the agile principles or the knowledge about agile methods.
c© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 137–145, 2018.
https://doi.org/10.1007/978-3-319-73673-0_11

138 N. M. R. Aquino et al.

This work is organized as follows: Sect. 2 presents related works. Section 3
describes details about the construction of the questionnaire and its application.
Section 4 presents the results obtained and explores their implications. Section 5
contains the conclusion and final discussions derived from this work.

2 Related Work

Although there are no works regarding the application of ASD in research
projects in particular, several papers address their application in commercial
environments. In [5], the perception of the impact of agile methods when
deployed in a very large software development environment was evaluated,
mainly from the viewpoint of agile transformation. The work applied a ques-
tionnaire on a population consisting of more than 1000 respondents working at
Nokia from seven different countries in Europe, North America, and Asia. Among
the respondents, 90% represented the Research and Development (R&D) area.
The work concludes that ASD received very positive feedback. In the work pre-
sented by [6], a survey regarding the adoption of ASD from Finnish software
practitioners was conducted, gathering answers from 408 persons representing
200 different organizations. Results show that most respondents were using ASD
methods and that they are often adopted in order to increase the productivity
and quality of the products and services. The study also concludes that the most
common reasons preventing the adoption of ASD methods are lack of knowledge
and a too traditionalist culture within an organization. The work by [7] addresses
the knowledge regarding ASD methods by people working at commercial envi-
ronments, concretely in the Brazilian market. A qualitative questionnaire was
prepared and applied to 24 Information Technology professionals distributed
across 5 states of Brazil. Results of the work show that although the partici-
pants are familiar with agile principles, they adopt few agile practices.

3 Methodology

A questionnaire containing 9 questions was devised in order to obtain infor-
mation about the knowledge and the application of agile software development
methods in research projects, which we consider as any project conducted with
research purposes involving software development. The size of the software that
is developed by the researchers was not considered relevant for this study, since
the participants develop from small applications to big systems depending on
the needs of their projects. The number of questions was selected aiming to keep
simple the structure of the survey so that it could remain brief and user-friendly
for the participants. Details about the building process of the survey and its
application are discussed in this Section.

3.1 Building the Questionnaire

The questions of the survey were built by taking into account different aspects:
knowledge about agile methods, application of agile methods, agreement with

A Study on the Perception of Researchers About the Application 139

the agile principles and technical information about the researcher. The topics
of each question of the questionnaire are explained next.

– Question 1: refers to whether the participant has insight into agile methods.
– Question 2: concerns the knowledge of the researcher about specific agile

methods.
– Question 3: is related to which agile methods the researcher has ever applied

for developing software in research projects.
– Question 4: inquires about which agile practices the researcher has ever

applied in their research projects. This question is presented without men-
tioning the formal names of the practices since the researcher may have
applied them (even partially) without knowing that they are part of some
agile method.

– Question 5: refers to the agreement of the subject with each of the Agile
Principles defined by the Agile Alliance [8]. Some of the Agile Principles are
related to the relationship between the developers and the clients. Thus, we
did not consider them for the questionnaire since they are not applicable to
research projects.

– Question 6: this question has the same objective as Question 5 but instead of
the Agile Principles from the Agile Alliance the question focuses on the Lean
Software Development (LSD) principles Poppendieck [9].

– Question 7: inquires about to the openness of the subject to update his knowl-
edge regarding software development.

– Questions 8 and 9: gather personal information as affiliation and line of
research.

3.2 Applying the Questionnaire

The survey was made available on-line in Portuguese. The link of the question-
naire was sent through social media and e-mail. It was applied to 20 anonymous
subjects chosen randomly from 9 laboratories from 7 Brazilian cities and one
Australian city. The participants were MSc and Phd students, research pro-
fessors working at universities, undergraduate students working on their final
graduation projects and undergraduate students working as interns at laborato-
ries. The education and experience of the participants, was very diverse, which
was intentionally pursued in order to gather data from a very heterogeneous
population. The individuals are not related to the agile community.

4 Results

This Section presents an analysis of the results obtained after the application of
the questionnaire briefly described in Sect. 3.

A summary of the answers from the first question of the survey is shown in
Fig. 1. The question refers to the basic knowledge of the participants about agile
methods. Results show that 60% of the participants have deep knowledge about

140 N. M. R. Aquino et al.

Fig. 1. Percentages of researchers that have knowledge about agile software develop-
ment methods.

Fig. 2. Number of participants with knowledge about each agile method.

agile methods whilst the other 40% at least heard about them, although their
knowledge is not too broad. There were no researchers stating that they have
never heard about them, a sign of their spreading in the late years.

Results from the second question of the questionnaire, presented in Fig. 2,
show that the most known method is Scrum, followed by XP. The first is known
by 90% of the participants, whilst XP is known by 80%. This is similar to the
results presented in a recent survey related to the state of the agile development
[10], which states that Scrum is currently the most used method. The study
also refers to a hybrid between XP and other methods as the second most used
approach, which also correspond to the result obtained in this work. Kanban
is in the third place of the list, since 60% of the participants know details or
at least heard about the method. There is a significant difference between the
first three methods, which we consider as the most known, and the remaining:
LSD (15%), DSDM (5%) and Crystal (0%). One participant selected the option
Other, adding the Planning Poker [11] practice as one of the methods he has

A Study on the Perception of Researchers About the Application 141

Fig. 3. Percentages of researchers that applied agile methods on their research projects.

Fig. 4. Number of researchers that applied each agile practice in their research projects.

knowledge about, although it is a practice that commonly used within the scope
of XP.

Results from the Question 3 are presented at Fig. 3. More than half of the
participants (55%) stated that they have never applied agile methods to develop
software for their research. Notwithstanding, they intend to apply them in future
projects, even though they may not have much knowledge about them.

For Question 4, although we present the answers in the Fig. 4 with the formal
names of the practices (e.g., Pair Programming or TDD), they were displayed in
the questionnaire by using descriptions of them. Results for this question show
that daily meetings to discuss issues about the software in development is a
common task for the researchers. They may not be formal Daily Scrum Meetings,
but the core activity (daily meetings to discuss aspects of the project) remains.
Pair programming was the second most applied practice. It should also be treated
as the practice discussed before: we consider that at least the core concept of
the practice is applied. Incremental development (with Sprints or Iterations) and

142 N. M. R. Aquino et al.

Fig. 5. Number of participants that agree with each agile principle of the Agile Alliance.

Fig. 6. Number of participants that agree with each of the LSD principles.

Continuous Software Design were the following practices, although with almost
the same percentage as Pair Programming. Test Driven Development was the
less applied practice. The use of Class Responsibility Collaborator (CRC) Cards
[12] for software design was also an option for this question. However, none of
the participants applied it.

Figure 5 presents results for the Question 5, which regards to the Agile Princi-
ples defined by the Agile Alliance [8]. At least more than 50% of the participants
agree with each principle. The principle with less researchers support was the
one stating that technical excellence is mandatory (55%) whilst the most sup-
ported principles are those related to the simplicity, continuous integration and
motivation for develop, all three are supported by 70% of the participants. This
shows that researchers tend to be pragmatic and that their projects requirements
are usually dynamic.

Results related to the agreement with the LSD principles are presented in
Fig. 6. As the Agile Alliance principles, there is consensus of the participants

A Study on the Perception of Researchers About the Application 143

regarding the LSD principles (8 of the 9 principles have the support of at least
50% of the participants). However, the correct integration of the software mod-
ules does not seem to be so relevant for the researchers, since only 40% of the
participants agree with it. Another important issue to point out is that 5% of
the participants did not agree with any of the LSD principles.

As for the interest for updating their knowledge about software development,
which results are shown in Fig. 7, most of the participants (55%) confirmed that
they try to update their knowledge only when it is necessary for a project. A
high percentage (40%) of participants also stated that they always try to keep
updated whilst only 5% considers that it is not necessary. This shows that most
researchers recognize that this is a crucial task for doing research.

Fig. 7. Openness to update the knowledge regarding software development.

Fig. 8. Lines of research of the participants. The inferior axis presents the number of
researchers working at each field.

144 N. M. R. Aquino et al.

Although all researchers develop software to a greater or lesser extent for their
research projects or experiments, they work in different areas. Figure 8 presents
their lines of research. In the survey, this question allowed the researcher to
specify his line of research, which is why the figure presents a high number of
research areas. The most common line of research is Computational Intelligence:
25% of the researchers work in that field.

4.1 Threats to Validity

The number of participants is a threat to validity of this work. We also consider
that the backgrounds and research areas of the participants may bias the results
of this work, since most were computer scientists. Future works may aim at
collecting data from a bigger and more heterogeneous group of participants,
they can also include non-Brazilian researchers, in order to obtain more general
results.

5 Conclusion

This work aimed at studying the perception of researchers about the application
of agile software development methods for research projects. Since, as far as we
are aware of, there are no research has been published regarding the application
of agile principles and practices in the research field, this study addressed this
issue by constructing and applying a questionnaire to 20 researchers of diverse
backgrounds that need to develop software for their projects.

Results show that researchers are open to apply Agile Software Develop-
ment methods for their projects and that they already apply at least the core
concepts of some agile practices. They also agree with the agile principles and
exhibit openness to updating their knowledge regarding software development.
The leading agile method is Scrum, followed by eXtreme Programming. The per-
ception of researchers on applying agile software development methods on their
projects is positive. There is a consensus regarding the benefits of agile develop-
ment, since the participants demonstrated openness to apply agile practices and
principles.

Taking these results into account, we can conclude that, in general,
researchers consider Agile Methods as a viable option to develop software for
their projects, since the software they develop usually have dynamic require-
ments and most of them already apply agile practices even without having for-
mal knowledge about them. This positive response of the researchers may allow
to carry more studies aiming at evaluating the application of ASD methods in
research projects and their impact on the development process when compared
to traditional methods.

For future works, the number of participants can be augmented along with
the questions contained in the questionnaire. Another survey structure can also
be applied by building one questionnaire for each agile method in order to obtain
more specific results for each. The heterogeneity of the participants is another

A Study on the Perception of Researchers About the Application 145

objective that can be pursued in future works, since the results presented in this
document correspond to those obtained Brazilian researchers only. Thus, the
survey can be also applied to participants from another countries.

References

1. Aitken, A., Ilango, V.: A comparative analysis of traditional software engineering
and agile software development. In: Proceedings of the 2013 46th Hawaii Interna-
tional Conference on System Sciences, HICSS 2013, pp. 4751–4760. IEEE Com-
puter Society, Washington, DC, USA (2013). ISBN: 978-0-7695-4892-0, https://
doi.org/10.1109/HICSS.2013.31

2. Boehm, B., Turner, R.: Management challenges to implementing agile processes in
traditional development organizations. IEEE Softw. 22(5), 30–39 (2005). https://
doi.org/10.1109/MS.2005.129. ISSN: 0740–7459

3. Conforto, E.C., Salum, F., Amaral, D.C., da Silva, S.L., de Almeida, L.F.M.,
Project Management Institute: Can agile project management be adopted by
industries other than software development? Project Manage. J. 45(3), 21–34
(2014). From Academia: Summaries of new research for the reflective practitioner

4. Turk, D., France, R., Rumpe, B.: Assumptions underlying agile software develop-
ment processes (2014). arXiv preprint arXiv:1409.6610

5. Laanti, M., Salo, O., Abrahamsson, P.: Agile methods rapidly replacing traditional
methods at Nokia: A survey of opinions on agile transformation. Inf. Softw. Tech-
nol. 53(3), 276–290 (2011)

6. Rodŕıguez, P., Markkula, J., Oivo, M., Turula, K.: Survey on agile and lean usage
in finnish software industry. In: Proceedings of the ACM-IEEE International Sym-
posium on Empirical Software Engineering and Measurement, ESEM 2012, pp.
139–148. ACM, New York (2012). ISBN 978-1-4503-1056-7, https://doi.org/10.
1145/2372251.2372275

7. Diel, E., Bergmann, M., Marczak, S., Luciano, E.: On the understanding of agile
methods and their practice in Brazil. In: Workshop Brasileiro de Métodos Ageis,
Florianópolis, Brazil (2014)

8. Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler,
M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin,
R.C., Mallor, S., Shwaber, K., Sutherland, J.: The agile manifesto. Technical report,
The Agile Alliance (2001)

9. Poppendieck, M.: Lean software development. In: Companion to the Proceedings of
the 29th International Conference on Software Engineering, ICSE COMPANION
2007, pp. 165–166. IEEE Computer Society, Washington, DC, USA (2007). ISBN
0-7695-2892-9, https://doi.org/10.1109/ICSECOMPANION.2007.46

10. VersionOne: State of Agile Development (2010). http://stateofagile.versionone.
com/

11. Cohn, M.: Agile Estimating and Planning. Prentice Hall PTR, Upper Saddle River
(2005)

12. Beck, K., Cunningham, W.: A laboratory for teaching object oriented thinking.
SIGPLAN Not. 24(10), 1–6 (1989). ISSN 0362–1340, https://doi.org/10.1145/
74878.74879

https://doi.org/10.1109/HICSS.2013.31
https://doi.org/10.1109/HICSS.2013.31
https://doi.org/10.1109/MS.2005.129
https://doi.org/10.1109/MS.2005.129
http://arxiv.org/abs/1409.6610
https://doi.org/10.1145/2372251.2372275
https://doi.org/10.1145/2372251.2372275
https://doi.org/10.1109/ICSECOMPANION.2007.46
http://stateofagile.versionone.com/
http://stateofagile.versionone.com/
https://doi.org/10.1145/74878.74879
https://doi.org/10.1145/74878.74879

Mob Programming: The State of the Art
and Three Case Studies of Open Source Software

Herez Moise Kattan1(B), Frederico Oliveira2, Alfredo Goldman1,
and Joseph William Yoder3

1 Department of Computer Science, Institute of Mathematics and Statistics
of the University of Sao Paulo (IME-USP), Sao Paulo, Sao Paulo, Brazil

{herez,gold}@ime.usp.br
2 Samsung SIDI Institute, Campinas, Sao Paulo, Brazil

f.oliveira@samsung.com
3 The Refactory, Inc., Urbana, IL, USA

joe@joeyoder.com

Abstract. Mob programming is a whole team technique that includes
programmers and others such as product owners or testers working
together in the same space and time, discussing solutions and writing
code in a fast succession on a shared screen and keyboard. This paper
includes a literature review and case studies of Mob Programming in
software development of three open source software in an academic set-
ting. Aspects and practices involved in the Mob Programming are ana-
lyzed. The identification of common practices can serve as standards in
the Mob Programming sessions. We carried out experiments with teams
practicing this technique. The bond formed among the members were
the strengths of the three teams experience. The noise from work in an
open room irritated two members, but two members of the same team
did not get bothered and was not a problem for the remaining ten other
participants. The approval of Mob Programming was unanimous in each
retrospective. Providing the infrastructure to use more computers could
be useful for parallel searches when a task on the Mob Programming
computer takes too long, or when the team needs learn new technolo-
gies. We conclude that improved the team learning.

Keywords: Collaboration in software development · Agile practice
Programming teams · Programming technique
Software development approach · Mob programming

1 Introduction

Mob Programming is a software development approach where the whole team
works on the same thing, at the same time, in the same space, and at the
same computer [1]. Mob Programming, as Zuill [1] describes, is similar to pair
programming [3], where two persons work on the same computer and collaborate
on the same code at the same time.
c© Springer International Publishing AG 2018
V. A. Santos et al. (Eds.): WBMA 2017, CCIS 802, pp. 146–160, 2018.
https://doi.org/10.1007/978-3-319-73673-0_12

Mob Programming: The State of the Art and Three Case Studies of OSS 147

The main difference, compared to pair programming is that the whole team
works together as part of the pairing. In addition to software coding, Mob Pro-
gramming teams work together on almost all tasks that a typical software devel-
opment team tackles, such as defining stories, designing, testing, deploying soft-
ware, and collaborating with the customer [1].

Since the popularization of Mob Programming by Zuill [1] there has been
Mob sessions experiences described in some papers [1,5,11–13,15,17,18]. Mob
Programming techniques also resembles the Randori [4] style of programming
popular at Coding Dojos commonly used during sessions to learn new technolo-
gies and techniques [5].

This report describes common practices that could serve as standards in the
Mob Programming sessions. We reviewed the most relevant Mob Programming
literature and carried out experiments with teams practicing the technique. Our
motivation is to find a way to develop quality software in the most productive
way possible. The goal of this paper is to deepen the knowledge about Mob
Programming by the conduction of case studies in an academic setting with three
different teams and discover what we could learn about Mob Programming in
practice.

2 Research Method and Organization of the Work

The authors have experience practicing Mob Programming [16]. The scope of the
research involved a review of the literature and application examples to learn
in the practice [6–8]. The literature review aimed to identify, analyze, interpret
and report the relevant studies available to answer the research question “What
are the practices used in the industry on Mob Programming?”.

The sources of the search for this paper are IEEE Xplore (ieeexplore.ieee.org),
ACM Digital Library (dl.acm.org), SpringerLink (springerlink.com), Elsevier,
others websites like Agile Alliance, Google, and Portal for Periodicals of the
CAPES (periodicos.capes.gov.br). The search string used was ‘Mob Program-
ming’ that found thirteen studies, that were evaluated based on the inclusion
and exclusion criteria described in Table 1, with emphasis on EC3, to exclude
abstracts and slides. The eight accepted papers passed in all inclusion criteria
and the five rejected papers did fail in either one of the exclusion criteria.

We conducted Case Studies of Mob Programming with three teams in an
academic setting, trying to validate the literature findings and also to provide

Table 1. Inclusion and exclusion criteria.

Inclusion criteria Exclusion criteria

IC1. Studies about Mob Programming,
including grey literature [9]

EC1. Repeated studies

IC2. Studies applied in industry EC2. Incomplete studies and drafts

IC3. Qualitative or quantitative research EC3. Slides and abstracts

http://ieeexplore.ieee.org/
http://dl.acm.org/
https://springerlink.bibliotecabuap.elogim.com/
http://www.periodicos.capes.gov.br/

148 H. M. Kattan et al.

new insights. We looked for common aspects and practices involved. The Partic-
ipant Selection process was: who had enrollment at LabXP and voluntarily did
accept to collaborate with this research. Fourteen people participated, thirteen
men, and only one woman. The fourteen people were members of the three teams
and answered all the questions, twelve individual questions, and forty-one team
questions (two questionnaires). The response rate for the survey was 100%.

The survey design split into two parts, a first about one questionnaire with
individual questions, and a second with questions thought to the team, look-
ing for examining their experience practicing Mob Programming about relevant
aspects described in the literature.

The first questionnaire got fifty-six individual answers of the all fourteen
participants. The team questions of the second got one hundred twenty-three
answers of the three teams. Below are more details about the two questionnaires.

Individual Questions of the First Questionnaire:

– How many years have you been programming? (educational and professional
experience in any language)

– How do you evaluate your current level of knowledge in the programming
language used currently?

– Do you like Mob Programming? Did you Have practical experience with Mob
Programming before this course?

– How would you compare Mob Programming with other practices?

The Second Questionnaire is About the Experience with Mob Pro-
gramming at LAB XP Was Answered by Each Team and Had Ques-
tions Related to:

– The setup of the room and also a description of the Mob setting;
– Driver rotation;
– Retrospectives and mini-retrospectives;
– Automation of the job;
– Avoiding idle time;
– Learning as a team;
– Groupthink;
– Collective intelligence;
– Learning and mentoring;
– Continuous Improvement.

All projects are open source. The consent term, photos, two questionnaires
and all answers of the fourteen members of the three teams are available online
at the IME-USP CCSL Wiki [28].

The paper has six sections. The literature review is following, in the next
section, and looking for aspects related to Mob Programming. In the fourth
section, are the details of the case studies. After that, in the fifth section, is the
analysis of the results. In the last section of this paper, we conclude and address
the limitations. The acknowledgments are in the end before the references.

Mob Programming: The State of the Art and Three Case Studies of OSS 149

3 State of the Art

We review the literature of Mob Programming looking for patterns of relevant
aspects and practices involved most frequently used that guided the case studies.
The next subsection is the background. Subsequently, Mob Programming aspects
are analyzed.

3.1 Background

Tens and hundreds of interactions between people occur every day in their work.
The people express ideas, discuss problems, explore possible solutions, and share
thoughts all day long. To make it possible and to keep this high level of com-
munication happening throughout the day, the team must adopt the principle
of treating each other with kindness, consideration, and respect [1].

Retrospectives are used in Mob Programming sessions [1]. In these cere-
monies, the team frequently evaluates what is working for them, what problems
they might be having, and how they can improve. These are usually quick and
focused on one item.

A possibility to Mob Programming is adopting the Driver/Navigators pattern
adapted from Llewellyn Falco’s “strong” pair programming style [10]. The basic
rule is for an idea to go from your head into the computer it MUST go through
someone else’s hands.

There are two roles: the Driver, and the Navigator. The Driver has the pos-
session of the keyboard. The Navigators discuss the idea being coded and guide
the Driver in creating the code [1].

The team adopting Mob Programming has the possibility of a timed rotation.
Each team member plays the role of Driver with the possession of the keyboard
for a short time. The timer remembers the current driver when can pass the
possession of the keyboard to the next driver when their turn ends up [1].

Another important aspect is the configuration of the room. The room must
be physically comfortable while the team members work relatively close to each
other, using shared monitors, keyboards, computer setup, and programming
tools. There is only one computer in use for programming [1].

A set up of the room possible is two projectors or monitors. The goal is
to keep the screens at about the same size, general position, resolution, and
brightness to make them comfortable to work with all day long. There are also
two keyboards and two mouses (a simple one and another ergonomic one).

Everyone has the choice to suit him/herself in the better way. Each team
member has its own chair which is moved around on the different roles (Driver
or Navigator). Thus, the people not need constantly readjust the chair settings
making each one stay as comfortable as possible [2].

Finally, the room has a rolling magnetic whiteboard to keep track the work
in an informative workspace. Figure 1 illustrates a setup that worked very well
and had been seen it at some companies [2]. A possibility is to have one, two, or
more monitors. The readjustment of the monitor height to be a height suitable
for everyone.

150 H. M. Kattan et al.

Fig. 1. A setup that has been used it at some companies [2].

3.2 Aspects and Practices Involved in Mob Programming

Here, we present the results of the literature review about aspects and practices
involved in Mob Programming. Table 2 is a correlation of the selected papers
for this study and all others papers. We only consider a common aspect when is
cited in at least two papers.

Table 2. Practices versus papers.

Aspect or practice [1] [5] [11] [12] [13] [15] [17] [18]

Room setup X X X X X X

Driver rotation X X X X X X X

Retrospectives X X X X

Automation X X

Structured breaks X X

Setup of the Room. The setup of the room is one of the pillars of Mob
Programming [1] and the configurations are described in details by all papers
[1,5,11–13,15].

According to Boekhout [12], the team found the screen too small, so it was
hard to get everyone in a position near enough to it, due to all the desks. Dis-
tractions from outside were an issue that causes many interruptions. They have

Mob Programming: The State of the Art and Three Case Studies of OSS 151

Fig. 2. The setup of the room using one projector [12].

a room designed for training that was a little more isolated, with fewer inter-
ruptions, a projector and a big monitor for presentations. The team quickly
discovered that the resolution of the projector was low and harmful. A high-
resolution projector is a suitable solution. Then they had to use the big monitor.
The team also decided to use proper office chairs, and have everybody move
around keeping their chair to save time and avoid continuously fiddling with the
chair configuration. Figure 2 illustrates a setup of the room using one projector.

Wilson [5] also describes an issue about the lower resolution of television or
projector. The solution was to supplement paired workstation with an additional
50-in monitor that was a mirror of the workstation screen. It has been placed
at right angles to the actual monitor, with the intention of the team watching
the big screen and the driver can see both the screen and the rest of the team.
Figure 3 illustrates this possible configuration.

Driver Rotation. In the opinion of Wilson [5], the ideal time of rotation for a
Mob of 4–6 people seems to be 5 min. But, for a Mob of 3 people, ten minutes
was more appropriate.

In the report of Kerney [11], a team consisting of five people rotates who has
the possession of the keyboard at each fifteen minutes. But, not always means
that the team must rotate when the timer is up, the team decides in each case
and sometimes not use fifteen-minute rotations. Change the time of rotation in
special circumstances, such as for visitors or learning sessions.

152 H. M. Kattan et al.

Fig. 3. Running a four people mob. The driver is in the background [5].

In the report of Boekhout [12], the team copying Woody’s video [19] started
with a rotation of ten minutes. Unfortunately, it seemed to them that every
change of driver and navigator became an interruption and it took the team
time to get back to focus on the problem at hand. There was clearly no sign
of flow. So, they followed a tip that Boekhout [12] got from Llewellyn at Agile
2015 [33] and proved to be very important: lower the rotation cycle from ten to
four minutes. By rotating so quickly, the switch has to go smoothly, so that you
really need to make sure the workspace is good, you have a good timer and most
important, that everybody is fully involved all the time. After a while, another
team slowed to five minutes and declared that worked better for them too.

Retrospectives. In the view of Zuill [1], the team always looks for ‘action
items’, and limit themselves to only one or two that they can use to ‘tune and
adjust’ the process. They have found that having more than one or two ‘action
items’ is almost always counter-productive. The team also set aside from half
an hour to an hour to reflect on the last week or two. In these sessions, they
gather information on sticky notes, do affinity groupings, dot-voting, and have
conversations about the things they have observed and new things they would
like to try.

There are also Just-In-Time Ad-hoc retrospectives. When anyone on the team
notices something they feel we should reflect on, the team simply go ahead and

Mob Programming: The State of the Art and Three Case Studies of OSS 153

Fig. 4. An early task and retro board - notice the focus on the hourly retro [12].

do it while the experience is fresh. These are usually quick and focused on one
item [14].

Kerney [11] described that the team does the retrospectives immediately
when they found a problem. For example, the team realized that the projectors
they had were constantly going dim, and it made the text hard to read. The
immediately team tried several adjustments to fix it until they found a solution.

According to Boekhout [12], a core practice for the teams was the hourly
retrospectives. An hourly retro needs to be short and to go to-the-point. The
team started with a simple positive/negative items system and made sure this
was visualized on their daily scrum board. Figure 4 illustrates this board.

The Fig. 4 shows the basis of the board is the horizontal axis for the hourly
blocks. According to Boekhout, every hour the corresponding column is used.
The top part for positive, the lower part of the improvements. The left of the
board is a basic scrum board (To Do/In Progress/Done), turned on its side,
where the team keeps track of the tasks about the user story of the day [12].

Automation. Kerney [11] mentioned that the team strives to make things as
fluid as possible so that they do not have to break their flow. Some benefits
as such as the team have an environment that is easy to maintain, and people
cannot focus all the time on something that is tedious.

Structured Breaks. According to Boekhout [12] and Griffith [13], full involve-
ment all the time can be exhausting. So the team made sure that every hour

154 H. M. Kattan et al.

there was a 5–10 min break after the retrospective where people weren’t allowed
to be behind the screen. Even then a full day can feel like a marathon [12].

4 Case Studies of Open Source Software

The programmers are attendees of LABXP, a regular course offered by the Uni-
versity of Sao Paulo, to graduate and undergraduate Computer Science students.
First, the teams watched a lecture about Mob Programming with Alfredo Gold-
man and Joseph Yoder. They showed one video to the attendees about the
time-lapse of a full day of work of a team of Mob Programmers [19].

The course requires a minimum of at least eight hours per week of dedica-
tion, and there is a lunch once a week, to allow the students to share experiences.
The conduction of these examples of Mob Programming application in an aca-
demic setting with three different teams began in 08/08/2016 and finished on
12/12/2016. All the projects are open source. A questionnaire was applied to
deepen the knowledge about the experience of the fourteen team members.

4.1 GeoXPerience: gitlab.com/geoxperience

A georeferencing platform for Casa dos Meninos, a social project [27]. It is a web
georeferencing system that allows the user to create customized maps [26].

The website through a CSV file upload latitude and longitude data on a map
to show the coordinates of the Basic Health Units of the City of Sao Paulo, as
well as any other point on the map of interest of the user.

4.2 The Game of Life: github.com/Automata-Life

Automata.Life is a multiplayer web-based game based on JohnConway’s Game
of Life where several players need to fight for the survival of their single-celled
species in an arena like Agar.io.

You can ‘program’ your cells to better try to dominate your space, or yield
under the forces of Darwinism [24,25].

Figure 5 is a photo of the team of the game of life working in the program-
ming, note that they are using a laser pointer, making easier to point an issue
in the source code to be fixed. They had two projectors available and computers
to parallel searches.

4.3 Mezuro: mezuro.org

Mezuro is a free/libre web platform for collaborative source code evaluation.
Able to evaluate source code with the most popular SCMs (like Git and SVN),
just by providing its URL.

For now, it can evaluate C, C++, Java, Ruby, Python, and PHP source
codes, but the Mezuro team are looking forward to supporting more languages
in the future. Mezuro is continuously under development [20–23].

http://gitlab.com/geoxperience
http://github.com/Automata-Life
http://Agar.io
http://mezuro.org

Mob Programming: The State of the Art and Three Case Studies of OSS 155

Fig. 5. The team of the game of life is working in the programming, note that they are
using a laser pointer, making easier to point an issue in the source code to be fixed.

4.4 Questionnaire: ccsl.ime.usp.br/wiki/SwarmQuestionnaire

Consent term, photos, two questionnaires and all answers of the fourteen members
of the three teams, are available online at the CCSL Wiki of the IME-USP [28].

5 Result Analysis

Table 3 correlates the answers of the questionnaires with the aspects that were
considered relevant by previous works and explanations emerged using the axial
code technique of Grounded Theory.

During all process, we (the researchers) takes photos and wrote memos. These
memos contain the key points observed to help us in their categorization. After,
we reviewed again the literature looking for answers that would contribute to
formulating a theory based on the results produced by the questionnaires and
metrics. Figure 6 shows the programming experience of all the fourteen members
(thirteen men and one woman).

Mob Programming reflects very well the Weinberg [32] idea of ego-less pro-
gramming, where the software is owned by the team as a whole, instead of the
individuals being responsible for problems with the code.

http://ccsl.ime.usp.br/wiki/SwarmQuestionnaire

156 H. M. Kattan et al.

Table 3. The answers that justify the aspects and new insights.

Aspects The answers that justify the aspect

Room setup Sometimes, a team member was able to help a member from another group

due to the shared room. The noise from work in an open room irritated two

members, but two members of the same team did not get bothered and was

not a problem for the remaining ten other participants.

The team of Automata.Life worked with two projectors and more

computers available to use if needed. The team of GeoXperience worked

with one projector and two notebooks available to use. The team of

Mezuro worked with one big screen television and more computers and

notebooks available to use

Kindness and

respect

The bond formed among the members were the strengths of the three

teams experience

The

Driver/Navigators

Pattern

Automata.Live team used the laser pointer during some work sessions to

the navigators communicate with the driver. GeoXPerience team said that

the laser pointer is a good idea. Mezuro team members usually stand up to

show something with the hand on television to the entire team

Automation The team of Automata.Live automated the timer, build, test, and deploy

processes. They did it because those tools helped them perform daily tasks.

The Mezuro team tried to reduce wasted time by making use of our text edi-

tor’s automated functionalities (Vim of Linux). Furthermore, they frequently

used shell commands to speed up some processes.

The GeoXPerience team automated the tests and CI and reported that was

useful, and would have been more productive if they had automated more

stuff

Retrospectives They did daily mini-retrospectives, a mid-project retrospective with

Professor Alfredo, and technical retrospectives with Joe Yoder, coaching all

the three teams

Structured Breaks They like to have spontaneous breaks, where the team members usually left

to and came back from the breaks individually. Thus, was valued individual

freedom of choice of breaks and the team continues to make progress even

when individuals left for having a break. So, occurred few structured team

breaks

Driver rotation All teams developed their own timer tool, which received an integer as

argument and warned them when the time was up. They enjoyed because it

helped us organized the rotation, typically used 15–20min. Automata.Live

and Mezuro teams were able to use the Strong Style at some points.

Automata.Live had difficulty enforcing it all the time because found it

difficult to force the rotation when the current driver had an idea to solve

the problem, but they were able to do that sometimes. Mezuro team used

more the Strong Style with a timer to Driver rotation

Others Computers Providing the infrastructure to use more computers could be useful for

parallel searches when a task on the Mob Programming computer takes too

long, or when the team needs learn new technologies

Using Mob

Programming is

not advantageous

in doubt moments

When no one of the team knows a specific technology, it is better to do

individuals searches to learn and after regroup again.

Mezuro: “There are some tasks that the team does not seem fit for Mob

Programming all the times. The solving of some DevOps tasks were

improved using Mob Programming, but others not so much. Especially

the ones which the team did not know what to do for sure and the

approach was trial and error”

Sharing knowledge The capacity to distribute the knowledge through a streamlined method

and working with friends, we observed that increased the learning

Developers

approved and

enjoyed

The fourteen members of the three teams approved and enjoyed.

Mezuro: “Yes. The approval of Mob Programming was unanimous at

every retrospective”

Mob Programming: The State of the Art and Three Case Studies of OSS 157

Fig. 6. Programming experience of team members.

Fig. 7. One member of the team is pointing with the hands an issue in the source code.

We agree that different types of collaboration are suited to different kinds
of problems. If the particular problem stem from the team not having a shared
understanding of the project, Mob Programming that involve the entire team

158 H. M. Kattan et al.

is a great approach [1,5,11–13,15,16,29]. Western Electric made experiments
attempted to determine the relationship between light levels and worker effi-
ciency. The data compiled by the Illumination Experiments indicated only a
minor correlation between light levels and worker productivity [30]. However,
one interesting observation is sometimes when increasing the light level, the
productivity grows up and when decrease the light level the productivity grow
up too. Thus, the light experiment showed that increased interest of the
workers increased productivity. Mob Programming increase the satisfaction,
bond among team members, and learning of the software developer. These are
factors of productivity that could justify the use of Mob Programming.

Mob Programming in an open work-space environment increases the Integra-
tion Among Teams in the LABXP course, that is one relevant factor to Inter-
team Knowledge Sharing and open work-space environment provide great value,
but software developers have to deal with the problem of noise [31].

Overall, there was a very positive experience to all teams. Figure 7 is showing
the team of the Mezuro working in the programming. In the photo, one member
of the team is pointing with the hands, an issue in the source code. A laser-
pointer seems to be a good idea.

6 Conclusion and Limitations

We confirm the literature reviewed about the advantages of the use of Mob Pro-
gramming over other techniques to sharing knowledge, learning, and satisfaction
of the programmer. We also confirm that sometimes it is better to alternate with
other techniques like pair programming. Additionally, we noted that collabora-
tion among teams is improved and the bond formed among the team members.

Our answers to questionnaire did not confirm the literature that most pro-
grammers have practically non-existent moments of frustration in a Mob Pro-
gramming session. We observed that in moments when nobody of the team
knows a tool/framework was exhaustive to the whole group to approach these
situations. When no one of the team knows a specific technology, it is better to
do individuals searches to learn and after regroup again.

Limitations. The case studies performed are a qualitative research strategy
and not permit generalizations, but all our data (source code hosted at Gitlab or
Github, metrics, and questionnaires) are open source, thus could be audited. Our
questionnaire is very extensive because we tried to confirm all details observed,
these data are auditable observations available publicly in the Wiki.

Acknowledgments. Authors would like to thank the CAPES and the IME-USP.

Mob Programming: The State of the Art and Three Case Studies of OSS 159

References

1. Zuill, W.: Mob Programming: A Whole Team Approach. Experience report,
Agile (2014). https://www.agilealliance.org/resources/experience-reports/mob-
programming-whole-team-approach-woody-zuill/

2. Zuill, W., Meadows, K.: Mob Programming - A Whole Team Approach. This book
is 95% complete (2016). http://leanpub.com/mobprogramming. Last Updated on
29 Oct 2016

3. Beck, K., Andres, C.: Extreme Programming Explained: Embrace Change, 2nd
edn. Addison-Wesley, Boston (2004). 75 p

4. Rooksby, J., Hunt, J., Wang, X.: The theory and practice of randori coding dojos.
In: Cantone, G., Marchesi, M. (eds.) XP 2014. LNBIP, vol. 179, pp. 251–259.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06862-6 18

5. Wilson, A.: Mob programming - what works, what doesn’t. In: Lassenius, C.,
Dingsøyr, T., Paasivaara, M. (eds.) XP 2015. LNBIP, vol. 212, pp. 319–325.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18612-2 33

6. Kattan, H.M.: Illuminated arrow: a research method to software engineering based
on action research, systematic review and grounded theory. In: CONTECSI 2016,
13th International Conference on Information Systems and Technology Manage-
ment, Paper submission: 1 Dec 2015 - Presented at Session4A - AUD Systems
Auditing and IT Governance 02 Jun 2016-15H30, pp. 1971–1978 (2016). https://
doi.org/10.5748/9788599693124-13CONTECSI/PS-3926

7. Kattan, H.M.: Those who fail to learn from history are doomed to repeat it.
In: Agile Processes in Software Engineering and Extreme Programming: Poster
Presented at the 18th International Conference on Agile Software Development,
XP 2017, Held in Cologne, Germany, 22–26 May 2017 (2017). https://doi.org/10.
13140/RG.2.2.20864.02563

8. Moise Kattan, H., Goldman, A.: Software development practices patterns. In:
Baumeister, H., Lichter, H., Riebisch, M. (eds.) XP 2017. LNBIP, vol. 283, pp.
298–303. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57633-6 23

9. Schöpfel, J.: Towards a prague definition of grey literature. In: Proceedings of
the Twelfth International Conference on Grey Literature: Transparency in Grey
Literature. Grey Tech Approaches to High Tech Issues, Prague, December 6–7
(2010)

10. Falco, L.: Llewellyn’s strong-style pairing (2014). http://llewellynfalco.blogspot.
com.br/2014/06/llewellyns-strong-style-pairing.html

11. Kerney, J.: Mob Programming - My first team. Experience report, via Initiative of
Agile Alliance (2016)

12. Boekhout, K.: Mob programming: find fun faster. In: Sharp, H., Hall, T. (eds.) XP
2016. LNBIP, vol. 251, pp. 185–192. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-33515-5 15

13. Griffith, A.: Mob Programming for the Introverted. Experience report, Agile (2016)
14. Arsenovski, D.: Swarm: beyond pair, beyond Scrum. Experience report, Agile

(2016)
15. Hohman, M., Slocum, A.: Mob Programming and the Transition to XP (2001)
16. Kattan, H.M.: Programming and review simultaneous in pairs: a pair program-

ming extension. Master dissertation, Institute for Technological Research of the Sao
Paulo State (2015). http://aleph.ipt.br/F or http://ipt.br, click on: Online Con-
sultations, then click on: Library. https://doi.org/10.13140/RG.2.2.15831.68004

https://www.agilealliance.org/resources/experience-reports/mob-programming-whole-team-approach-woody-zuill/
https://www.agilealliance.org/resources/experience-reports/mob-programming-whole-team-approach-woody-zuill/
http://leanpub.com/mobprogramming
https://doi.org/10.1007/978-3-319-06862-6_18
https://doi.org/10.1007/978-3-319-18612-2_33
https://doi.org/10.5748/9788599693124-13CONTECSI/PS-3926
https://doi.org/10.5748/9788599693124-13CONTECSI/PS-3926
https://doi.org/10.13140/RG.2.2.20864.02563
https://doi.org/10.13140/RG.2.2.20864.02563
https://doi.org/10.1007/978-3-319-57633-6_23
http://llewellynfalco.blogspot.com.br/2014/06/llewellyns-strong-style-pairing.html
http://llewellynfalco.blogspot.com.br/2014/06/llewellyns-strong-style-pairing.html
https://doi.org/10.1007/978-3-319-33515-5_15
https://doi.org/10.1007/978-3-319-33515-5_15
http://aleph.ipt.br/F
http://ipt.br
https://doi.org/10.13140/RG.2.2.15831.68004

160 H. M. Kattan et al.

17. Lilienthal, C.: From pair programming to mob programming to mob architecting.
In: Winkler, D., Biffl, S., Bergsmann, J. (eds.) SWQD 2017. LNBIP, vol. 269, pp.
3–12. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49421-0 1

18. Balijepally V., Chaudhry S., Nerur S.: Mob programming - a promising innovation
in the agile toolkit. In: Twenty-third Americas Conference on Information Systems,
Boston (2017)

19. Zuill, W.: A Day of Mob Programming (2012). https://www.youtube.com/watch?
v=p pvslS4gEI

20. Mezuro Wiki. http://ccsl.ime.usp.br/wiki/Mezuro
21. Mezuro. http://Mezuro.org
22. Mezuro GitLab. http://gitlab.com/mezuro
23. Mezuro GitHub. http://github.com/mezuro
24. The Game of Life Wiki. http://ccsl.ime.usp.br/wiki/Automata.Life
25. The Game of Life GitHub. http://github.com/Automata-Life
26. GeoXP: http://ccsl.ime.usp.br/wiki/Sistema online de georreferenciamento
27. GeoXP GitLab. http://gitlab.com/geoxperience
28. Questionnaire. http://ccsl.ime.usp.br/wiki/SwarmQuestionnaire
29. GDS post. http://gds.blog.gov.uk/2016/09/01/using-mob-programming-to-solve-

a-problem/
30. Western Electric Company Hawthorne Studies Collection, Baker Library, Harvard

Business School. http://oasis.lib.harvard.edu/oasis/deliver/∼bak00047
31. Santos, V., Goldman, A., Souza, C.: Fostering effective inter-team knowledge shar-

ing in agile software development. Empir. Softw. Eng. 20, 1006–1051 (2015)
32. Weinberg, G.: The Psychology of Computer Programming. Van Nostrand, New

York (1971)
33. Falco, L.: Group Learning. Today’s exercise: Unit Testing. Session at Agile (2015)

https://doi.org/10.1007/978-3-319-49421-0_1
https://www.youtube.com/watch?v=p_pvslS4gEI
https://www.youtube.com/watch?v=p_pvslS4gEI
http://ccsl.ime.usp.br/wiki/Mezuro
http://Mezuro.org
http://gitlab.com/mezuro
http://github.com/mezuro
http://ccsl.ime.usp.br/wiki/Automata.Life
http://github.com/Automata-Life
http://ccsl.ime.usp.br/wiki/Sistema_online_de_georreferenciamento
http://gitlab.com/geoxperience
http://ccsl.ime.usp.br/wiki/SwarmQuestionnaire
http://gds.blog.gov.uk/2016/09/01/using-mob-programming-to-solve-a-problem/
http://gds.blog.gov.uk/2016/09/01/using-mob-programming-to-solve-a-problem/
http://oasis.lib.harvard.edu/oasis/deliver/~bak00047

Author Index

Alencar, Danilo 63
Aquino, Nelson Marcelo Romero 137
Avila, Bruno Tenório 47

Brodbeck, Ângela Freitag 121

Carniel, Carlos Andrei 105
Casagrande, Ludimila Monjardim 88
Cunha, José Adson O. G. 3

de Toledo, Rodrigo 63

Emer, Maria Claudia F. P. 77

Farias, João 31
Ferreira, Luis Gustavo Araujo 95
Florêncio, Matheus 21
Francisco Borges, Marcos Augusto 21

Goldman, Alfredo 146
Gomes Filho, Avelino F. 63

Junior, Ivaldir 31

Kattan, Herez Moise 146

Lopes, Heitor Silvério 137

Margaria, Tiziana 3
Moura, Hermano 3

Neto, Adolfo Gustavo Serra Seca 77, 137

Oliveira, Frederico 146

Pegoraro, Raquel Aparecida 105

Salinas, Myrian R. Noguera 77
Sambinelli, Fernando 21
Santos, Wylliams B. 3
Soares, Lourenço P. 121

Trento, Dagoberto 95

Vasconcelos, Alexandre 31, 47
Viegas, Priscila Bibiana 95

Wanderley, Eduardo Garcia 47

Yoder, Joseph William 146

	Preface
	Organization
	Contents
	Agile Principles, Lean Manufacturing and Other Disciplines
	Towards a Definition of Simplicity in Agile Software Development: A Focus Group Study
	1 Introduction
	2 Theoretical Background
	2.1 Simplicity in Philosophy
	2.2 Simplicity in Information and Communications Technology
	2.3 Simplicity in Agile Software Development

	3 Research Method
	3.1 Defining the Research Problem
	3.2 Selecting the Participants
	3.3 Planning and Conducting the Focus Group Session

	4 Conceptual Model
	4.1 Initial Definition and Conceptual Model Based on a Literature Review
	4.2 Provisional Conceptual Model and Definition Based on a Focus Group

	5 Discussion
	5.1 Addressing Limitations, Validity and Reliability
	5.2 Implications for Practice

	6 Concluding Remarks and Future Works
	References

	Agile Testing and Quality: Techniques, Patterns and Automated Support
	ASA: Agile Software Development Self-assessment Method
	Abstract
	1 Introduction
	2 Research Methodology
	3 Main ASD Assessment Methods and Tools
	3.1 Analysis of ASD Main Methods and Assessment Tools

	4 Preliminary Results
	4.1 The Agile Self-assessment Method
	4.2 The Agile Practices Assessment Criteria
	4.3 The Agile Self-assessment Tool Prototype

	5 Preliminary Conclusions and Future Work
	References

	Agile Testing in Brazil: A Systematic Mapping
	Abstract
	1 Introduction
	2 Theoretical Background
	2.1 The Agile Movement
	2.2 Software Testing
	2.2.1 Agile Testing

	3 Research Method
	3.1 Research Questions
	3.2 Search Strategy
	3.3 Inclusion and Exclusion Criteria
	3.4 Data Extraction and Synthesis
	3.5 Process Overview

	4 Results
	4.1 Results of the Search Procedure
	4.2 Evidences of Agile Testing Practices in Brazil

	5 Final Considerations
	5.1 Results
	5.2 Research Limitations
	5.3 Future Studies

	References

	Metrics, Measurements and Mining Repositories in the Context of Agile
	Using Function Points in Agile Projects: A Comparative Analysis Between Existing Approaches
	Abstract
	1 Introduction
	2 Method
	2.1 Experiment Planning
	2.1.1 Goals
	2.1.2 Metric and Question

	2.2 Experiment Description
	2.2.1 Hypothesis
	2.2.2 Unity and Experimental Subject
	2.2.3 Parameters and Factors

	2.3 Execution Planning
	2.3.1 Context
	2.3.2 Training and Participant Profile

	2.4 Experiment Design
	2.4.1 Round Execution and Pilot Scheme
	2.4.2 Data Analysis Processing

	2.5 Methods for Data Analysis

	3 Outcomes
	3.1 Description of the Study
	3.2 Collected Data
	3.3 Null Hypothesis
	3.4 Tukey’s Test
	3.5 Outcome Assessment

	4 Concluding Remarks
	4.1 Threats to Validity
	4.1.1 Internal Validity
	4.1.2 Conclusion Validity
	4.1.3 Construct Validity
	4.1.4 External Validity
	4.1.5 Empirical Reliability

	4.2 Future Works

	References

	Adoption of Agile/Lean
	Agile in 3D: Agility in the Animation Studio
	1 Introduction
	2 Related Work
	3 Research Method
	3.1 Method
	3.2 Limitations

	4 Experimentation Cycles
	4.1 Context
	4.2 First Cycle: Scrum Adaptation
	4.3 Second Cycle: Life Cycle with Kanban
	4.4 Third Cycle: Lean Kanban

	5 Results
	5.1 Management
	5.2 Process
	5.3 Deadlines
	5.4 Client

	6 Conclusions and Future Work
	References

	Concerns and Limitations in Agile Software Development: A Survey with Paraguayan Companies
	Abstract
	1 Introduction
	2 Literature Review
	3 Objectives and Methodology
	3.1 Definition of Goals
	3.2 Methodology

	4 Results
	5 Discussion
	6 Conclusions
	References

	Scrum and the 10 Personal Entrepreneurial Competencies of Empretec
	Abstract
	1 Introduction
	2 Empretec Personal Entrepreneurial Competencies
	3 Correlations with Scrum
	3.1 Systematic Planning and Monitoring
	3.2 Goal Setting
	3.3 Opportunity-Seeking and Initiative
	3.4 Taking Calculated Risks
	3.5 Demand for Efficiency and Quality
	3.6 Fulfilling Commitments
	3.7 Information-Seeking
	3.8 Persistence
	3.9 Persuasion and Networking
	3.10 Independence and Self-confidence

	4 Conclusion
	References

	An Agile Approach Applied in Enterprise Project Management Office
	Abstract
	1 Introduction
	2 Theoretical Foundation
	2.1 Massive Transformative Purpose
	2.2 Objectives and Results
	2.3 Scrum Framework

	3 Methodology
	3.1 Agile PMO MTP
	3.2 PMO OKR
	3.3 Team OKR
	3.4 Sprint Planning
	3.5 Weekly Meeting
	3.6 Sprint Review
	3.7 Sprint Retrospective

	4 Discussion and Results
	5 Conclusion
	References

	Conceptual Studies and Theoretical Foundations of Agile/Lean
	Metamodel for Requirements Traceability and Impact Analysis on Agile Methods
	1 Introduction
	2 Requirements Traceability in Agile Methods
	3 Proposed Metamodel
	3.1 Assumptions Identified for the Metamodel Construction
	3.2 Metamodel

	4 Comparison of the Metamodel with Existing Ones
	5 Conclusion and Future Work
	References

	Organizational Transformation and Cultural Aspects on Agile Business
	For Some Places More Than Others - Agility and Organizational Culture
	Abstract
	1 Introduction
	2 Main Elements of Study Execution
	2.1 Culture Elements
	2.2 Elements of Agile Methods

	3 Study Method
	4 Analysis of Results
	5 Conclusions and Contributions
	Appendix A – Survey Questionnaire
	References

	Agile Practices and Future Trends, Evolution and Revolution (Technical or Managerial)
	A Study on the Perception of Researchers About the Application of Agile Software Development Methods in Research
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Building the Questionnaire
	3.2 Applying the Questionnaire

	4 Results
	4.1 Threats to Validity

	5 Conclusion
	References

	Mob Programming: The State of the Art and Three Case Studies of Open Source Software
	1 Introduction
	2 Research Method and Organization of the Work
	3 State of the Art
	3.1 Background
	3.2 Aspects and Practices Involved in Mob Programming

	4 Case Studies of Open Source Software
	4.1 GeoXPerience: gitlab.com/geoxperience
	4.2 The Game of Life: github.com/Automata-Life
	4.3 Mezuro: mezuro.org
	4.4 Questionnaire: ccsl.ime.usp.br/wiki/SwarmQuestionnaire

	5 Result Analysis
	6 Conclusion and Limitations
	References

	Author Index

