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Abstract
Soft computing has been extensively studied and applied in the last three decades for
scientific research and engineering computing. In environmental engineering,
researchers and engineers have successfully employed different methods of soft
computing for modeling of various real-life environmental problems. In this study,
applications of core soft computing techniques, such as artificial neural networks
(ANN), fuzzy logic (FL), adaptive neuro fuzzy inference systems (ANFIS), and
support vector machines (SVM), are investigated and important mathematical aspects
of these methods are highlighted. Considering the concepts and methods, this study
briefly reviews applications of soft computing techniques in the field of environmen-
tal engineering, especially in water/wastewater treatment and air quality/pollution
control/forecasting. A brief introduction to complexity of environmental problems
and the general definition soft computing concept are presented in the first section of
this chapter. The second section comprises four subsections and presents mathemat-
ical background of four different soft computing methods. Section “Implementation
of Soft Computing Methods in Environmental Engineering,” which is consisted of
eight subsections, reviews successful applications of soft computing-based prediction
models implemented in the field of environmental engineering and summarizes the
important findings obtained in these studies. At the end of the overview of the
published works on soft computing applications in different environmental areas,
in the last section, some special illustrative soft computing examples and the
respective MATLAB

®

-based solutions are presented for environmental engineers.
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Introduction

The real-life environmental problems are very complex and highly dependent on
several process configurations, different influent characteristics, and various opera-
tional conditions. For a sustainable control of environmental-related problems, the
proposed systems must be continuously monitored and properly controlled due to
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possible instabilities in circumstance conditions. Although statistical models may be
able to establish a relationship between the input and the output variables without
detailing the causes and effects in the formation of pollutants, they are not capable of
capturing the inherent nonlinear nature of the environmental problems. For this
reason, the complicated inter-relationships among a number of system factors in
the process may be explicated through a number of attempts in developing repre-
sentative and powerful prediction models allowing the investigation of the key
variables in greater detail. At this point, soft computing-based control of real-time
process variables may provide several potential advantages, such as protection of the
system from possible risks associated with significant fluctuations in influent char-
acteristics, optimization of the process at a reasonable cost, providing a rapid
evaluation and estimation of pollutant loads and emissions on energetic basis, and
also development of a continuous early-warning strategy without requiring a com-
plex formulation and laborious parameter estimation procedures (Yetilmezsoy et al.
2011a, b, 2015).

The principal soft computing technologies can be categorized as fuzzy algo-
rithms, neural networks, supporting vector machines, evolutionary communication,
machine learning, and probabilistic reasoning (Jang and Topal 2014). McCulloch
and Pitts (1943) introduced an initial model of an artificial neural network (ANN),
which was recognized as the first study of artificial intelligence. It has been widely
accepted as an approach, which acts like a “black- box” model derived from a
simplified concept of the human brain, for prediction, control systems, classification,
optimization, and decision-making in various fields (Antwi et al. 2017). In 1965,
fuzzy logic (FL) theory was proposed by Zadeh (1965) as a new soft computing
methodology in order to address uncertainty and subjectivity (i.e., human experience
and intuition) within the framework of fuzzy sets which could be described by
linguistic variables and membership functions according to a fuzzy rule-based
system (Assimakopoulos et al. 2013). In 1993, soft computing became a formal
area of computer science and many new and hybrid algorithms, i.e., adaptive neuro
fuzzy inference systems (ANFIS) (Jang 1993), were introduced with the help of
advanced computer technology (Jang and Topal 2014). The SVM method, devel-
oped by Vapnik (1995), can provide an effective novel approach to overcome the
inherent drawbacks such as over-fitting training, local minima, and poor generaliza-
tion performance of ANN when studying with large initial data. Since SVM imple-
ments Structural Risk Minimization Principle (SRMP), instead of the Empirical Risk
Minimization Principle (ERMP) like feed-forward neural networks, its process leads
to better generalization than conventional methods (Yeganeh et al. 2012). The main
advantage of the SVM over multilayer perceptron (MLP) or neuro-fuzzy network is
its good generalization ability, acquired at relatively small number of learning data
and at large number of input nodes (high dimensional problem) (Osowski and
Garanty 2007; Yeganeh et al. 2012).

Among soft computing techniques, ANN provides configurations made up of
interconnecting artificial neurons that mimic the properties of biological neurons. It
is used in a wide range of applications as a multilayer feed-forward network with
back propagation learning algorithm. A typical neural network includes three layers:
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first, the input layer, second, the output layer, and third, the hidden layer or
intermediate layer (Gocic et al. 2015). Other alternative methodologies have also
emerged from artificial intelligence, such as FL, which is currently being tested in
real environmental problems. Its success is mainly due to its closeness to human
perception and reasoning, as well as its intuitive handling and simplicity, which are
important factors for handling of imprecise data (Kotti et al. 2013). This method
develops multivalued, nonnumeric linguistic variables for modeling human rea-
soning in an imprecise environment. Nevertheless, it is noted that both ANN and
FL control sometimes exist some shortages. For instance, ANN may have limita-
tions in performing heuristic reasoning of the domain problem; on the other hand,
the FL control may be difficult to design and adjust automatically. Moreover, the
use of artificial neural networks is, however, challenged by the difficulty of
network design and parameterization. Many factors affect the performance of
ANN that include network topology, training algorithm and parameters setting,
and network architecture. Likewise, the outcome of fuzzy classification highly
depends on the predefined fuzzy rules (Dwarakish and Nithyapriya 2016). So
ANFIS is designed as a fuzzy neural network model, it can use the both advan-
tages. ANFIS consists of both ANN and FL including linguistic express of
membership functions and if-then rules of Takagi and Sugeno’s type (Mingzhi
et al. 2009). SVM is another novel soft learning algorithm that has been recently
realized for a wide range of applications in the field of soft computing, hydrology,
and environmental studies. It emerged as a set of supervised generalized linear
classifiers and often provide higher classification accuracies than multilayer
perceptron ANN. It is essentially a kernel-based procedure and relatively new
machine learning method that has been recently applied as one of the leading
techniques for pattern classification and function approximation (Gocic et al. 2015;
Huang et al. 2010; Pai et al. 2011; Singh et al. 2011).

This chapter is aimed at bringing forward original and the recent trends and
efforts in the application of some soft computing methods in environmental engi-
neering. It is especially interested in describing the successful application and
advances in soft computing-based modeling of real-world environmental processes.
The sections of this chapter summarize various applications of (1) artificial neural
networks (ANN), (2) fuzzy logic (FL) control systems, (3) adaptive neurofuzzy
inference systems (ANFIS), and (4) support vector machines (SVM) for modeling of
various environmental problems based on water and wastewater treatment and air
quality/pollution control/forecasting.

Description of Soft Computing Methods

In this section, the basis of the widely used AI-based techniques, such as ANN,
FL, ANFIS, and SVM, are briefly summarized and important mathematical
aspects of these methods are highlighted. Moreover, computational issues, advan-
tages, and particular theoretical principles are described, and some methodolog-
ical techniques are discussed to make a comparative assessment of the present
AI-based prediction models.
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Artificial Neural Networks (ANN)

To better control a specific environmental process, a robust mathematical tool for
predicting the process performance must be developed based on past observations of
certain key parameters. Modeling a multivariate system is highly difficult due to the
complexity of the environmental processes exhibiting nonlinear behavior that are
difficult to describe by linear mathematical models (Hamed et al. 2004). Although
deterministic models (also called white-box models) may provide insight into the
mechanism, they require hard work before being applied to a specific environmental
process. As an alternative to physical models, artificial neural networks (ANNs) are a
valuable forecast tool in environmental sciences. They can be used effectively due to
their learning capabilities and their low computational costs (Wieland et al. 2002).
Because of their reliable, robust, and salient characteristics in capturing the nonlinear
relationships between variables (multi-input/output) in multivariate systems, numer-
ous applications of ANN-based models have been successfully utilized in the field of
environmental engineering in the past decade (Yetilmezsoy and Demirel 2008).

The ANN-based models are meant to interact with objects in the real world in the
same way that the biological nervous system does. The calibration of ANN-based
models is easier than the white-box models as fewer parameters are used in the
model development process. For this reason, artificial intelligence techniques using
ANN have recently become immensely popular and attractive mathematical tools for
both modeling and controlling of several complex environmental processes. When
the measured variables begin showing difference with the response of ANN, the
model can be retrained using the newer data used for cross-checking. These facts and
the quality of the results they provide make the ANN-based models more attractive
than conventional models (Agirre-Basurko et al. 2006).
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Fig. 1 Simple schematic of an ANN model (Adapted from Hamed et al. 2004)
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A simple diagram of an ANN model is depicted in Fig. 1. As seen in Fig. 1, each
neuron is connected to several of its neighbors, with varying coefficients or weights
representing the relative influence of the different neuron inputs to other neurons.
The weighted sum of the inputs are transferred to the hidden neurons, where it is
transformed using an activation function such as a tangent sigmoid activation
function. In turn, the outputs of the hidden neurons act as inputs to the output neuron
where they undergo another transformation. The output of a feed-forward ANN with
one hidden layer and one output neural network is given as follows (Hamed et al.
2004; Antwi et al. 2017):

Yo ¼ f o
XHN
j¼1

WOj � f h
Xm
i¼1

WHij � Xit þ bj

 !
þ bo

" #
(1)

whereWHij is the weight of the link between the ith input and the jth hidden neuron,
m is the number of input neurons, WOj is the weight of the link between the jth
hidden neuron and the output neuron, fh is the hidden neuron activation function, fo is
the output neuron activation function, bj is the bias of the jth hidden neurons, bo is
the bias of the output neuron, Xit is the input variable, and HN is the number of
hidden neurons.

Hamed et al. (2004) reported that the tangent sigmoid (tansig) activation func-
tions for the input and hidden neurons are needed to introduce nonlinearity into the
network in order to make nets more powerful than plain perceptrons. Moreover, the
authors reported that a linear activation function, such as linear transfer function
(purelin), could be selected for the output neuron since it is appropriate for contin-
uous valued targets.

The logarithmic sigmoid function logsig(x) produces outputs between 0 and 1 as
the node’s net input goes from negative to positive infinity. Alternatively, the tansig
(x) as transfer function can be used. Sigmoid outputs nodes are often employed for
pattern recognition problems, while linear or purelin(x) transfer function is applied
for function fitting problems shows the purelin transfer function (Ghaedi and Vafaei
2017). The mathematical definitions of some widely used differentiable activation or
transfer functions are given as follows (Yetilmezsoy and Sapci-Zengin 2009; Ghaedi
and Vafaei 2017):

Function graphs Mathematical definitions

+1

–1

0
n

y ¼ logsig xð Þ ¼ f xð Þ ¼ 1
1þe�xð Þ (2)

+1

–1

0
n

y ¼ tansig xð Þ ¼ f xð Þ ¼ 2
1þe�2xð Þ � 1 ¼ 1�e�2xð Þ

1þe�2xð Þ
(3)

(continued)
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Function graphs Mathematical definitions
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y ¼ radbas xð Þ ¼ f xð Þ ¼ e�x2 (4)

+1
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y = purelin(x) = f(x) = x (5)

Among the many types of ANNs, backpropagation (BP) networks have recently
been considered as one of the simplest and most widely used network models
(Cai et al. 2009). The learning process of a BP network consists of two main iterative
steps: forward computing of data stream and backward propagation of error signals.
During forward computing, original data are transmitted from the input layer to the
output layer through the hidden processing layer, with the neurons of each layer only
affecting the neurons of the succeeding layer. One of the main advantages of BP
networks over other types of networks is that if the desired output cannot be obtained
from the output layer, the error is propagated backwards through the network against
the direction of forward computing (Cai et al. 2009; Liu and Meng 2009). According
to the error signal of BP, the network changes the network connection of all layers to
determine the best weight set and realize the correct network output (Liu and Meng
2009). Therefore, with these two steps performing iteratively, the error between network
output and desired output can be minimized using the delta rule (Cai et al. 2009).

The network training is a process by which the connection weights and biases of
the ANN are adapted through a continuous process of simulation by the embedded
network’s environment. The training function applies the inputs to the new network,
calculates the outputs, compares them to the associated targets, and calculates a
mean square error. If the error goal is met, or if the maximum number of epochs is
reached, the training is stopped and the training function returns the new network
and a training record. Otherwise, the training goes through another epoch. During
the adaptation phase, the training algorithm receives part of the data (inputs and
outputs) and automatically develops the ANN model. After development, the model
could generate the appropriate responses for simulations with varying levels of data
input. When the learning is complete, the neural network is used for prediction. The
primary goal of training is to minimize an error function by searching for a set of
connection strengths and biases that causes the ANN to produce outputs equal or
close to the targets. In other words, the training aims at estimating the parameters
(WHij, WOj, bj, and bo) by minimizing an error function (Yetilmezsoy et al. 2011a).

As data set was trained, the input pattern given to the input layers of the network
would compute the output in the output layer. The BP learning rule defined a method
to adjust the weights of the networks (Antwi et al. 2017). A BP algorithm as one of the
strongest learning algorithms is a gradient descent algorithm that can be employed to
learn these multilayer feed-forward networks with differentiable transfer functions.
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The learning method is based on a gradient search, with a criterion of errors between
the values of network output and desired output (Ghaedi and Vafaei 2017):

E ¼
XN
i¼1

On � Odð Þ2 (6)

where E is the total sum squared error of all data in the training set, in which On is the
network output for the nth data and Od is the desired output.

In the training process, the weights of all the connecting nodes are modified until
the required error level is obtained or the maximum number of iteration is reached. In
order to minimize the total error of the network trained by BP algorithm, the weights
are adjusted according to the following equation (Ghaedi and Vafaei 2017;
Pendashteh et al. 2011):

Δwn
ki mþ 1ð Þ ¼ �η� @E

@Δwn
ki

þ μ� Δwn
ki mð Þ (7)

where Δwki
n(m) is the correction of the weight at the mth learning step, η is the

training rate (a small parameter to alter the correction each time), and μ is the
momentum factor (decrease an oscillation and helps quick convergence). Network
learning adjusts using suitable values of these parameters.

Because gradient decent usually slows down near minima, so the
Levenberg–Marquardt algorithm (LMA) method can be used to obtain faster
convergence. LMA is a blend of simple gradient descent and the Gauss–Newton
method. The algorithm for parameter updating is presented by the following
equation (Pendashteh et al. 2011):

Δw ¼ � JTJ þ μI
� ��1

JTe (8)

where e = [e1 e2 . . . eP]
T is the error vector. μ is a positive constant, I is the identity

matrix, and J is the Jacobian matrix given by (Pendashteh et al. 2011):

J ¼

@e1=@w1 @e1=@w2 � � � @e1=@wN

@e2=@w1 @e2=@w2 � � � @e2=@wN

� � � � � �
� � � � � �

@eP=@w1 @eP=@w2 � � � @eP=@wN

2
66664

3
77775 (9)

In general, ANNs are sensitive to the number of neurons in their hidden layers. Too
few neurons may lead to underfitting. Conversely, too many neurons may contribute to
overfitting, wherein all training points fit well, although the fitting curve may take wild
oscillations between the points. In this case, the error on the training set is driven to a
very small value, however, when new data are presented to the network, the error
becomes enlarged. Although the network has memorized the training examples, it has
not learned to generalize to new situations. This can be prevented either by training
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with Bayesian regulation, a modification of the Levenberg–Marquardt algorithm
(LMA), or by using early stopping with any of the other training routines. In turn,
this requires that the user pass a validation set to the training algorithm, in addition to
the standard training set (Akkoyunlu et al. 2010). However, in practice, it is difficult to
know which training algorithm will perform fastest for a given problem. It will depend
on many factors, including the complexity of the problem and the number of data
points in the training set (Yetilmezsoy and Saral 2007).

In general, on networks that contain up to a few hundred weights, the LMAwill have
the fastest convergence. It has found to be the fastest method for training moderate sized
feedforward ANN, where the training rate is 10 to 100 times faster than the usual
gradient descent BP method (Al-Daoud 2009). However, when the number of network
weights is large, the requirement for computation and memory becomes significant.
Since in LMA, inversion of square matrix JTJ + μI is involved; thus, a large memory
space is required to store the Jacobian matrix and the Hessian matrix (JTJ) along with
inversion of approximated Hessian matrix in each iteration (Pendashteh et al. 2011).
The Quasi–Newton methods are often the next fastest algorithms on networks of
moderate size, while the Broyden–Fletcher–Goldfarb–Shanno (BFGS) Quasi–Newton
BP algorithm is generally faster than the conjugate gradient algorithms. Of the
conjugate gradient algorithms, the Powell-Beale procedure requires the most storage,
but usually has the fastest convergence. Meanwhile, the Polak–Ribiére has perfor-
mance similar to the Powell–Beale, the storage requirements for which (4 vectors) are
slightly larger than for the Fletcher–Reeves (3 vectors). The Fletcher–Reeves generally
converges in fewer iterations than the Resilient backpropagation algorithm (Rprop).
Although more computation is required in each iteration, the Rprop and the scaled
conjugate gradient algorithm do not require a line search and have small storage
requirements. They are reasonably fast and are very useful for large problems. The
variable learning rate algorithm is usually much slower than the other methods and has
approximately the same storage requirements as Rprop; however, it can still be useful
for some problems. The one-step secant algorithm requires less storage and compu-
tation per epoch than does the BFGS algorithm; however, it requires slightly more
storage and computation per epoch than do the conjugate gradient algorithms. This
algorithm can be considered a compromise between the Quasi–Newton algorithms and
the conjugate gradient algorithms. In the batch gradient methods, the weights and
biases are updated in the direction of the negative gradient of the performance
function. The scaled conjugate gradient (SCG) algorithm uses a step size scaling
mechanism and avoids a time-consuming line-search per learning iteration, which
takes the algorithm faster than other second order conjugate gradient algorithms,
Quasi–Newton algorithms, and heuristics algorithms. Therefore, this method shows
superlinear convergence on most problems (Zakaria et al. 2010). The loss on the
optimality of the estimates/predictions produced by some other training algorithms
may be attributed to the combinatorial nature and nonlinear structure of the considered
problem. Therefore, the complexity analysis of the present problem can be validated
by the results of several training algorithms used in the benchmark comparison.

Based on the above-mentioned facts, it can be noted that the performance of
the various algorithms can be affected by the accuracy required of the
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approximation, which is dependent on the mean square error, versus that of several
representative algorithms. When the problem formulation has a combinatorial
nature, the definition of each process parameter results in a complex interaction of
variables used in the calculations. A number of benchmark comparisons of the
various training algorithms are needed in order to choose the best-suited algorithm
for obtaining a good performance on the laborious interactive and nonlinear prob-
lems. In general, the LMA will have the fastest convergence on combinatorial
function approximation (or nonlinear regression) problems (Akkoyunlu et al. 2010).

Since ANN-based models contain no preconceptions regarding what the model
shape will be, they are ideal for cases with low system knowledge. They are useful
for functional prediction and system modeling where the physical processes are not
understood or are highly complex. Consequently, it is believed that ANN-based
techniques, which have recently been applied to various environmental problems,
may provide a good alternative to statistical and theoretical techniques, as well as to
iterative problems, because of their speed and capability of learning, robustness,
nonlinear characteristics, nonparametric regression capabilities, generalization prop-
erties, and ease of working with regards to high-dimensional data.

Fuzzy Logic (FL)

The fuzzy logic system based on linguistic expressions includes uncertainty rather
than numerical probabilistic, statistical, or perturbation approaches. Fuzzy set theory
(Zadeh 1965) was introduced to provide a definition for uncertainties caused by
imprecision and vagueness present in real-world applications (Ozcan et al. 2009;
Nasiri and Huang 2008). Rihani et al. (2009) reported that fuzzy logic has recently
become a useful tool for modelling highly complex systems whose behaviors are not
well understood. For instance, considering the complex qualitative relationships
among the variables in a water-in-oil emulsion system, the fuzzy logic methodology
has the advantage of the relatively simple mathematical calculations in linguistic
terms instead of complicated equations used in the conventional methods. Since a
fuzzy logic-based model does not need to handle tedious empirical formulations and
complex mathematical expressions, this technique provides a transparent and a
systematic analysis for the interpretation of dynamic behavior of a water-in-oil
emulsion-based problem by a set of logical connectives (Yetilmezsoy et al. 2012).
The key idea in fuzzy logic, in fact, is the allowance of partial belongings of any
object to different subsets of a universal set instead of belonging to a single set
completely. This is an artificial intelligence method utilizes fuzzy sets and linguistic
terms to describe the complex qualitative relationships between model components
(Ozcan et al. 2009; Nasiri and Huang 2008; Rihani et al. 2009).

There are basically five parts of the fuzzy inference process:

In the first step (fuzzification), crisp numerical inputs and outputs are divided into
different fuzzy categories associated with linguistic terms (i.e., low, high, big,
small, too-cold, cold, warm, hot, too-hot, young, old, etc.), where the output is
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always a fuzzified degree of a specific membership function within the range
from 0 to 1 (Jantzen 1999; Altunkaynak et al. 2005; Sozen et al. 2004). Instead
of a definition for the developed fuzzy set categories such as moderately low,
low, moderate, moderately high, high, etc., the membership functions can be
defined as A, B, C, D, E, etc., to simplify processing of the rules (Yetilmezsoy
et al. 2012). Since multiple measured crisp inputs first have to be mapped into
the specific fuzzy membership functions, Sozen et al. (2004) reported that the
fuzzification process requires good understanding of all the variables. Before
the rules can be evaluated, the inputs must be fuzzified according to each of
these linguistic sets.

In second step, after the inputs are fuzzified, the fuzzy operator (AND or OR) in
different pieces of the antecedent is performed in the fuzzy inference system (FIS)
for each fuzzy rule. It is noted that the fuzzy rule base contains some rules that
include all possible fuzzy relations between inputs and output variables
(or actions and conclusions). In fuzzy set theory, there are no mathematical
equations and model parameters, and therefore, all the uncertainties, nonlinear
relationships, and model complications are included in the descriptive fuzzy
inference procedure in the form of if-then (if premise then consequent) logical
statements, called fuzzy rules (Rihani et al. 2009; Akkurt et al. 2004; Acaroglu
et al. 2008). If the antecedent of a given rule has more than one part, the fuzzy
operator is applied to obtain one number that represents the result of the ante-
cedent for that rule. This number is then applied to the output function. The input
to the fuzzy operator is two or more membership values from fuzzified input
variables. The output is a single truth value. Two kinds of built-in AND methods
(min (minimum) and prod (product): prod(a,b) = ab), and two kinds of built-in
OR methods (max (maximum) and probor (the probabilistic OR method: probor
(a,b) = a + b � ab)) can be used in the fuzzy logic toolbox (Altunkaynak et al.
2005; Sozen et al. 2004; Akkurt et al. 2004).

In the third step, an implication process from the antecedent to the consequent is
performed in the FIS. This procedure is defined as the shaping of the consequent
(a fuzzy set) based on the antecedent (a single number). The input for the
implication process is a single number given by the antecedent, and the output
is a fuzzy set (Kusan et al. 2010). Before applying the implication method, the
rule’s weight must be determined. Every rule has a weight (a number between
0 and 1), which is applied to the number given by the antecedent. After proper
weighting has been assigned to each rule, the implication method is implemented.
A consequent is a fuzzy set represented by a membership function, which weights
appropriately the linguistic characteristics that are attributed to it. The consequent
is reshaped using a function associated with the antecedent (a single number). The
input for the implication process is a single number given by the antecedent, and
the output is a fuzzy set. Implication is implemented for each rule. For this
process, two built-in methods are basically supported by the fuzzy logic toolbox,
and they are the same functions that are used by the AND operator: min (mini-
mum), which truncates the output fuzzy set, and prod (product), which scales the
output fuzzy set (Altunkaynak et al. 2005; Sozen et al. 2004; Akkurt et al. 2004).
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In the fourth step, aggregation process is performed to fuzzy sets to obtain a single
fuzzy set that represents the outputs of each fuzzy rule. Because decisions are
based on the testing of all of the rules in a FIS, the rules must be combined in
some manner in order to make a decision. Therefore, aggregation is the process
by which the fuzzy sets that represent the outputs of each rule are combined into a
single fuzzy set. The input of the aggregation process is the list of fuzzy sets that
represent the outputs of each rule. Aggregation only occurs once for each output
variable, just prior to the fifth and final step, defuzzification. The input of the
aggregation process is the list of truncated output functions returned by the
implication process for each rule. The output of the aggregation process is a
fuzzy set. There are a number of aggregation methods (i.e., max (maximum), sum
(simply the sum of each rule’s output set), probor, etc.) supported by the FIS
(Altunkaynak et al. 2005; Sozen et al. 2004; Akkurt et al. 2004). The nature of the
information retrieval dictates that the determination of the ranking should be done
based on all of the rules. In this case, the sum aggregation method appears to be a
much better fit (Rubens 2006).

Finally, the defuzzifier produces the crisp values corresponding to the final
fuzzy outputs as a conclusion (Jantzen 1999). The input for the defuzzification
process is a fuzzy set (the aggregate output fuzzy set) and the output is a single
number. There are many defuzzification methods such as center of gravity (COG
or; centroid), bisector of area (BOA), mean of maxima (MOM), leftmost maxi-
mum (LM), rightmost maximum (RM), etc. (Nasiri and Huang 2008). In the
defuzzification step, linguistic results obtained from the fuzzy inference are
translated into a crisp numerical output (real value) by using the rule base
provided (Kusan et al. 2010; Biyikoglu et al. 2005). In the literature, several
defuzzification methods, such as center of gravity (COG or centroid), bisector of
area, mean of maxima, leftmost maximum, rightmost maximum, have been
reported (Jantzen 1999). It is apparent from several fuzzy logic-based studies
(Turkdogan-Aydinol and Yetilmezsoy 2010; Yetilmezsoy et al. 2012; Altunkaynak
et al. 2005; Akkurt et al. 2004; Rubens 2006; Sadiq et al. 2004), centroid method is
most widely used defuzzification technique, since it satisfies the underlying proper-
ties of the system and exhibits the best performance. It is determined as follows
(Turkdogan-Aydinol and Yetilmezsoy 2010; Yetilmezsoy et al. 2012; Sozen et al.
2004; Akkurt et al. 2004):

yið Þd ¼
Pn
i¼1

μ yið Þyi
Pn
i¼1

μ yið Þ
(10)

where (yi)d is the defuzzified output, yi is the output value (or the centroidal distance
from the origin) in the ith subset, and μ(yi) is the membership value of the output
value in the ith subset. For the continuous case, the summations in Eq. (5) are
replaced by integrals, as given by Sadiq et al. (2004). On the basis of above-
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mentioned fuzzy steps, a detailed schematic of a sample MISO (multiple inputs and
single output) fuzzy system is depicted in Fig. 2.

The situations of uncertainties in fuzzy-logic are defined via giving appropriate
membership functions to the elements of the set that represent the situation. The
value of the variation between 0 and 1 (the highest level) for each element is called
membership degree and its value in subset is called membership function (Topcu and
Saridemir 2008). In fuzzy models, the shape of membership functions of fuzzy sets
can be triangular, trapezoidal, bell-shaped, sigmoidal, or another appropriate form,
depending on the nature of the system being studied (Acaroglu et al. 2008;
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Fig. 2 A detailed schematic of a sample MISO fuzzy system (Adapted from Yetilmezsoy and
Abdul-Wahab 2012)
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Metternicht and Gonzalez 2005). Among them, triangular and trapezoidal shaped
membership functions are predominant in current applications of fuzzy set theory,
due to their simplicity in both design and implementation based on little information
(Yetilmezsoy et al. 2012; Rihani et al. 2009). A schematic overview of the
trapezoidal-based membership function is given in Fig. 3. The trapezoidal curve is
the membership function of a vector, x, and depends on four scalar parameters, a, b,
c, d, as follows (Turkdogan-Aydinol and Yetilmezsoy 2010; Yetilmezsoy et al. 2012;
Altunkaynak et al. 2005; Sozen et al. 2004; Adriaenssens et al. 2006):

μ xð Þ ¼ μ x; a, b, c, dð Þ ¼

0, x � a
x� a

b� a
, a < x < b

1, b � x � c

d � x

d � c
, c < x < d

0, x � d

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;

(11)

In the applications of the fuzzy system in both control and forecasting, there are
two types of fuzzy inference systems, namely, Mamdani-type (Mamdani and
Assilian 1975) and Takagi-Sugeno-type (Takagi and Sugeno 1985) fuzzy systems
(Rihani et al. 2009; Ozger and Sen 2007; Sadrzadeh et al. 2009). Sadrzadeh et al.
(2009) reported that each if-then rule produces a fuzzy set for the output variable in
the Mamdani approach, and hence defuzzification step is indispensable to obtain
crisp values of the output variable. Because of allowing a simplified representation
and interpretation of the fuzzy rules, Mamdani’s fuzzy inference method is the most
commonly applied fuzzy methodology (Turkdogan-Aydinol and Yetilmezsoy 2010;
Yetilmezsoy et al. 2012; Akkurt et al. 2004; Acaroglu et al. 2008; Adriaenssens et al.
2006; Traore et al. 2005).

Fig. 3 A schematic overview
of the trapezoidal-based
membership function
(Adapted from Yetilmezsoy
et al. 2011a)
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Adaptive Neuro-Fuzzy Inference System (ANFIS)

The ANFIS consists of two parts, antecedent and conclusion, which are connected
to each other by fuzzy rules based on the network form. Since the consequent
parameters are calculated forward, while the premise parameters are calculated
backward, operation of the ANFIS looks like feed-forward back propagated
(FFBP) ANN (Atmaca et al. 2001). Zero or first-order Sugeno inference systems
or Tsukamoto inference system can be used in the fuzzy section. The output
variables ( fi) are then obtained by performing several fuzzy rules to fuzzy sets
of input variables (Yetilmezsoy et al. 2011a, 2015; Atmaca et al. 2001; Cakmakci
et al. 2010):

Rule 1 : If x is A1 and y is B1, then f 1 ¼ p1xþ q1yþ r1 (12)

Rule 2 : If x is A2 and y is B2, then f 2 ¼ p2xþ q2yþ r2 (13)

where p1, p2, q1, q2, r1, and r2 are linear parameters, and A1, A2, B1, and B2 are the
nonlinear parameters.

The ANFIS architecture (equivalent of a two input first-order Sugeno FIS
model) including the input (x and y) of nodes (A1, A2, B1, and B2), membership
functions ðμAi

xð Þ or μBj
yð ÞÞ, membership grades (or outputs of layers) of the fuzzy

sets (Q1,i, Q2,i, Q3,i, Q4,i, Q5,i), weight functions of the next layers (w1 and w2),
normalized firing strengths (w1 andw2), and the consequent parameters ( p1, q1, r1,
p2, q2, r2) is illustrated in Fig. 4. As seen in Fig. 4, the equivalent ANFIS
architecture consists of five layers: Fuzzy layer, product layer (π), normalized
layer (N), defuzzy layer, and total output layer (Yetilmezsoy et al. 2011a, b, 2015;
Cakmakci et al. 2010).

As seen in Fig. 4, Layer 1 is the fuzzy layer, in which x and y are the input of
nodes A1, A2, B1, and B2, respectively. A1, A2, B1, and B2 are the linguistic labels used
in the fuzzy theory for dividing the membership functions. Parameters in this layer
are referred to as premise parameters. Every node i in Layer 1 is an adaptive node
with a specific function. Nodes in Layer 1 implement fuzzy membership functions,
mapping input variables to corresponding fuzzy membership values. The member-
ship relationship between the output and input functions of this layer can be
expressed as (Yetilmezsoy et al. 2011a, b):

Q1
i ¼ μAi

xð Þ, for i ¼ 1, 2 or; (14)

Q1
i ¼ μBi

yð Þ, for i ¼ 1, 2 (15)

where x or y is the input to node i, and Ai or Bi is the linguistic label (such as small,
large, etc.) associated with this node function, Q1

i denotes the output functions, and
μAi(x) or μBi(y) usually denotes the bell-shaped membership functions with a
maximum equal to 1 and a minimum equal to 0, such as (Yetilmezsoy et al. 2011a, b;
Jang 1993; Esmaeelzadeh and Dariane 2014):
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μAi
xð Þ ¼ 1

1þ x�ci
ai

� �2� �bi or; (16)

μAi
xð Þ ¼ exp � x� ci

ai

� 	2
" #

(17)

where (ai, bi, and ci) is the parameter set. As the values of these parameters
change, the bell-shaped functions vary accordingly, thus exhibiting various
forms of membership functions on linguistic label, Ai. In fact, any continuous
and piecewise differentiable functions, such as commonly used trapezoidal and
triangular-shaped membership functions, are also be used as node functions in
this layer (Jang 1993).

Layer 2 is the product layer that consists of two fixed circle nodes labelled π, which
multiply the incoming signals and provides the outputs of the product. The output w1

and w2 are the weight functions of the next layer. The output of this layer is the product
of the input signal, which is defined as follows (Yetilmezsoy et al. 2011a, b; Jang 1993;
Esmaeelzadeh and Dariane 2014):

Q2
i ¼ wi ¼ μAi

xð Þ � μBi
yð Þ, for i ¼ 1, 2 (18)

where Q2
i denotes the output of Layer 2. Each node output represents the firing

strength of a rule.
The third layer is the normalized layer, whose nodes are labelled N. The ith node

calculates the ratio of the ith rules firing strength to the sum of all rule’s firing
strengths. Its function is to normalize the weight function in the following process
(Yetilmezsoy et al. 2011a, b; Jang 1993; Esmaeelzadeh and Dariane 2014):

Q3
i ¼ wi ¼ wi

w1 þ w2

, for i ¼ 1, 2 (19)

where Q3
i denotes the output of Layer 3. The outputs of this layer are called

normalized firing strengths.
The fourth layer is the defuzzy layer, whose nodes are adaptive. Every node i in

this layer is an adaptive node with a specific function. The output equation is wi

pixþ qiyþ rið Þ , where pi, qi, and ri denote the linear parameters or so-called
consequent parameters of the node. The defuzzy relationship between the input
and output of this layer can be defined as follows (Yetilmezsoy et al. 2011a, b; Jang
1993; Esmaeelzadeh and Dariane 2014):

Q4
i ¼ wif i ¼ wi pixþ qiyþ rið Þ, for i ¼ 1, 2 (20)

where Q4
i denotes the output of Layer 4.

The fifth layer is the total output layer, whose node is labelled Σ. The output of
this layer is the total of the input signals, which represents the vehicle shift decision
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result. The results can be written as (Yetilmezsoy et al. 2011a, b; Jang 1993;
Esmaeelzadeh and Dariane 2014):

Q5
i ¼ overall output ¼

X
i

wi f i ¼
P

iwif iP
iwi

(21)

where Q5
i denotes the output of Layer 5.

Although ANN and fuzzy logic models are the basic areas of artificial intelligence
concept, the ANFIS combines these two methods and uses the advantages of both
methods. Since the ANFIS is an adaptive network which permits the usage of ANN
topology together with fuzzy logic, it includes the characteristics of both methods
and also eliminates some disadvantages of their lonely used case. Therefore, this
technique it is capable of handling complex and nonlinear problems. Even if the
targets are not given, the ANFIS may reach the optimum result rapidly. In addition,
there is no vagueness in ANFIS as opposed to ANNs (Atmaca et al. 2001; Jang et al.
1997). Moreover, the learning duration of ANFIS is very short compared to
ANN-based models. It implies that ANFIS may reach to the target faster than
ANN. Therefore, when a more sophisticated system with a high-dimensional data
is implemented, the use of ANFIS instead of ANN would be more appropriate to
overcome faster the complexity of the problem (Atmaca et al. 2001).

In the ANFIS structure, the implication of the errors is different from that of the
ANN case. In order to find the optimal result, the epoch size is not limited. In training
of high-dimensional data, the ANFIS can give results with the minimum total error
compared to ANN and fuzzy logic methods. Moreover, fuzzy logic method seems to
be the worst in contrast to others at a first look, since the rule size is limited and the
number of membership functions of fuzzy sets were chosen according to the
intuitions of the expert. However, if different types of membership functions and
their combinations had been tested and more membership variables and more rules
had been used to enhance the prediction performance of the proposed diagnosis
system, better results would have been available (Turkdogan-Aydinol and
Yetilmezsoy 2010; Atmaca et al. 2001).

Support Vector Machines (SVM)

The SVM is a linear machine of one output y(x), working in the high dimensional
feature space formed by the nonlinear mapping of the N-dimensional input vector
x into a K-dimensional feature space (K > N ) through the use of the nonlinear
function φ(x). The number of hidden units (K ) is equal to the number of so-called
support vectors that are the learning data points, closest to the separating hyperplane.
The learning task is transformed to the minimization of the error function, while
keeping the weights of the network at minimum. The error function is defined
through the so-called e-insensitive loss function Le(d, y(x)) (Vapnik 1998; Osowski
and Garanty 2007; Yeganeh et al. 2012):
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Le d, y xð Þð Þ ¼ d � y xð Þj j � e for d � y xð Þj j � e,
0 for d � y xð Þj j < e,



(22)

where e is the assumed accuracy, d is the destination, x the input vector, and y(x) the
actual output of the network under excitation of x and the actual output signal of the
SVM network is defined by

y xð Þ ¼
XK
j¼1

wjφj xð Þ þ b ¼ wTφ xð Þ þ b, (23)

where w = [w1, . . ., wK]
T is the weight vector, b the bias, and φ(x) = [φ1(x), . . .,

φK(x)]
T the basis function vector.

The solution of the so defined optimization problem is solved by the introduction
of the Lagrangian function and the Lagrange multipliers αi, α0i (i = 1, 2, . . ., p)
responsible for the functional constraints defined by (1). The minimization of the
Lagrangian function has been transformed to the so-called dual problem (Vapnik
1998; Platt 1998; Osowski and Garanty 2007; Yeganeh et al. 2012):

max
Xp
i¼1

di αi � α0i
� �� e

Xp
i¼1

αi � α0i
� �� 1

2

Xp
i¼1

Xp
j¼1

αi � α0i
� �

αj � α0j
� �

K
�
xi, xj

�( )

(24)

at the constraints

Xp
i¼1

αi � α0i
� � ¼ 0, 0 � αi � C, 0 � α0i � C, (25)

where K(xi, xj) = φΤ(xi)φ(xj) is an inner-product kernel defined in accordance with
the Mercer’s theorem (Vapnik 1998) for the learning data set x. After solving the
dual problem, all weights are expressed through the Nsv nonzero Lagrange multi-
pliers αi, α0i and the same number of learning vectors xi associated with them. The
network output signal y(x) can be then expressed in the form (Vapnik 1998; Osowski
and Garanty 2007; Yeganeh et al. 2012):

y xð Þ ¼
XNSV

i¼1

αi � α0i
� �

K x, xið Þ þ b (26)

The most known kernel functions used in practice are radial (Gaussian), polyno-
mial, spline, or even sigmoidal functions (Vapnik 1998; Schölkopf and Smola 2002).
The most important is the choice of coefficients e and C. Constant e determines the
margin within which the error is neglected. The smaller its value the higher accuracy
of learning is required, and more support vectors will be found by the algorithm. The
regularization constant C is the weight, determining the balance between the
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complexity of the network, characterized by the weight vector w and the error of
approximation, measured by the slack variables and the value of e (Osowski and
Garanty 2007; Yeganeh et al. 2012). For the normalized input signals, the value of
e is usually adjusted in the range (10�3–10�2), and C is much bigger than 1 (Osowski
and Garanty 2007).

Implementation of Soft Computing Methods in Environmental
Engineering

In this section, successful applications of soft computing-based prediction models
(ANN, FL, ANFIS, SVM) in the field of environmental engineering are examined in
terms of water/wastewater treatment and air pollution related problems, and the
important findings obtained in these studies are summarized.

ANN-Based Applications for Water and Wastewater Treatment

Yetilmezsoy et al. (2013) developed two three-layer ANN models to predict biogas
and methane production rates in a pilot-scale mesophilic up-flow anaerobic sludge
blanket (UASB) reactor treating molasses wastewater. A tangent sigmoid transfer
function (tansig) at the hidden layer and a linear transfer function (purelin) at the
output layer were conducted for the proposed ANN models. After backpropagation
training combined with principal component analysis (PCA), the scaled conjugate
gradient algorithm (trainscg) was found as the best of the other training algorithms.
Computational results demonstrated that compared to the conventional multiple
regression-based methodology, the proposed ANN-based models produced smaller
deviations and exhibited superior predictive accuracy with satisfactory determina-
tion coefficients of about 0.935 and 0.924, respectively, for the forecasts of biogas
and methane production rates.

In a recent study, Podder and Majumder (2016) proposed a three-layer feed-
forward back propagation (BP) ANN (4:5:1) with Levenberg–Marquardt (LM)
training algorithm for predicting the phycoremediation efficiency of both As(III)
and As(V) ions from wastewater using Botryococcus braunii. The study concluded
that the proposed ANN architecture exhibited good agreements with the actual
experimental and predicted values of both As(III) and As(V) and could describe
the behavior of the complex reaction system with very high determination coeffi-
cient (R2 = 0.99977 and 0.9998 for As(III) and As(V), respectively) under
different conditions.

More recently, Antwi et al. (2017) developed three-layered feedforward
backpropagation (BP) ANN and multiple nonlinear regression (MnLR) models
were to estimate biogas and methane yield in an upflow anaerobic sludge blanket
(UASB) reactor treating potato starch processing wastewater. In the study, Quasi-
Newton method and conjugate gradient backpropagation (BP) algorithms were
found as the best among other training algorithms. The authors have reported that
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compared with the MnLR model, BP-ANN model demonstrated significant
performance, suggesting possible control of the anaerobic digestion process
with the BP-ANN model.

In another recent work, Ghaedi and Vafaei (2017) reviewed important research
studies of ANN on dyes adsorption from aqueous solution. The study concluded that
ANN approaches could be successfully applied for the modeling and forecasting of
dye adsorption process with acceptable accuracy compared to conventional linear
models such as multiple linear regression (MLR) and PLS. In particular, the hybrid
networks with optimization approaches were found to be more efficient to the
performance of dye adsorption.

Furthermore, Qaderi and Babanezhad (2017) attempted to employ a feed-forward
ANN-based model with four hidden layer and nine independent variables (i.e.,
concentrations of ions K, Na, Mg, Ca, Sr, Ba, CO3, HCO3, NO3, Cl, and SO4) to
predict the costs of water treatment through reverse osmosis process for supplying
drinking water from the available water resources. The results concerning the ANN
indicated that the proposed predictive model performed desirably for estimating the
costs of treating the groundwater in the region with the accuracy of approximately
98%, where the root mean square error (RMSE) percentage was 2.02% indicating an
acceptable error level for the ANN model.

Finally, Hu et al. (2017) developed a three-layer backpropagation BP-ANN
model to predict the chemical oxygen demand (COD) removal performance of an
expanded granular sludge bed (EGSB) reactor. Activation function of hidden layer
and output layer were “tansig” and “purelin” individually. Several comparisons were
conducted to obtain an optimal network structure. Dividerand function was chosen
to divide the operating data into training group, testing group, and validation group.
The Levenberg–Marquardt algorithm (trainlm) was found as the best of the tested
training algorithms. The result indicated that the proposed ANN model exhibited
high forecast accuracy (R2 = 0.8156) for the forecast of COD removal performance
by EGSB system.

Apart from the above-mentioned studies, several other successful ANN modeling
studies (Oliveira-Esquerre et al. 2002; Molga et al. 2006; Sahinkaya et al. 2007;
Daneshvar et al. 2006; Rangasamy et al. 2007; Raduly et al. 2007; Ozkaya et al.
2007, 2008; Yetilmezsoy and Demirel 2008; Yetilmezsoy and Sapci-Zengin 2009;
Yetilmezsoy 2012; Sahinkaya 2009; Pendashteh et al. 2011) have been conducted
previously in various parts of the field of wastewater engineering (Fig. 5).

ANN-Based Applications for Air Quality/Pollution Control/
Forecasting

In the past years, it has become apparent that ANN-based prediction models have
been effectively conducted on a substantial number of research activities in the field
of air pollution engineering. In these investigations, several authors have developed
different types of ANN models, and the results have been compared with the fore-
casts obtained using multiple regression models. For instance, Nunnari et al. (2004)
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modeled SO2 concentration at a point by intercomparing several stochastic techniques
such as ANN, fuzzy logic, and generalized additive techniques. Because the ANN
models worked better in the prediction of critical episodes, they recommended the
ANN approach for the implementation of a warning system for air quality control.

Yetilmezsoy (2006) proposed an ANN model and a new empirical model to
determine optimum body diameter (OBD) of air cyclones for 505 different artificial
scenarios given in a wide range of five operating variables, namely, gas flow rate,
particle density, temperature, and two design parameters, namely, Ka and Kb, selected
in the cyclone design. The study concluded that maximum diameter deviations from
the well-known Kalen and Zenz’s model were recorded as 1.3 cm and 0.0022 cm for
the empirical model and ANN outputs, respectively. Although both approaches

Fig. 5 Various topological architectures of ANN models proposed for water and wastewater
treatment (Adapted from (a) Yetilmezsoy 2010; (b) Podder and Majumder 2016; (c) Yetilmezsoy
et al. 2013; (d) Qaderi and Babanezhad 2017; and (e) Hu et al. 2017)
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produced promising results, the ANN model exhibited speed and practicality, as well
as a more robust and superior performance in the prediction of OBD values.

Agirre-Basurko et al. (2006) developed two multilayer perceptron (MLP)-based
models and one multiple linear regression-based model to forecast ozone (O3) and
nitrogen dioxide (NO2) levels in Bilbao, Spain. In their study, traffic variables were
used as predictor variables in the developed models. Results indicated the
MLP-based models showed remarkably better performance than the multiple linear
regression model in predicting pollutant concentrations.

In another study (Yetilmezsoy and Saral 2007), an ANN-based approach and
nonlinear regression analysis were performed for the determination of single droplet
collection efficiency (SDCE) of countercurrent spray towers. The authors reported
that predicted results obtained from the nonlinear regression analysis and the ANN
model were in agreement with the theoretical data, and that all predictions proved to
be satisfactory with a correlation coefficient of approximately 0.921 and 0.99,
respectively. The study concluded that the development of a new mathematical
model and the creation of an ANN-based model for the prediction of SDCE of
countercurrent spray towers eliminated complex interactions of variables and diffi-
cult iterative calculations typically performed in the theoretical approach.

Finally, there have also been other studies (Wieland et al. 2002; Wotawa and
Wotawa 2001; Abdul-Wahab and Al-Alawi 2002; Iliadis et al. 2007; Al-Alawi et al.
2008; Ozdemir et al. 2008) on the prediction of tropospheric and surface O3

concentrations reporting the advantages and adaptability properties of ANN-based
models. Moreover, the use of ANN allows the prediction of daily and/or hourly
particulate matter (PM2.5 and PM10) emissions (Chaloulakou et al. 2003; Chelani
2005; Grivas and Chaloulakou 2006; Kurt et al. 2008; Feng et al. 2015; Vakili et al.
2015; Bai et al. 2016; Biancofiore et al. 2017; Park et al. 2018) in many urban and
residential areas. ANN-based models have also been used in the prediction of urban
and ground-level SO2 concentrations, demonstrating successful results when con-
sidering the complex and nonlinear structure of the atmosphere (Akkoyunlu et al.
2010; Saral and Erturk 2003; Sofuoglu et al. 2006; Bai et al. 2016). Furthermore,
ANN-based models have given reliable forecasts of carbon monoxide (CO) and
nitrogen dioxide (NO2) concentrations in other studies (Kurt et al. 2008;
Elangasinghe et al. 2014; Bai et al. 2016) (Fig. 6).

FL-Based Applications for Water and Wastewater Treatment

Murnleitner et al. (2002) modelled and controlled two-stage anaerobic wastewa-
ter pretreatment using a Mamdani-type FL expert system. Hydrogen concentra-
tion together with methane concentration, gas production rate, pH, and the filling
level of the acidification buffer tank were used as input variables for the FL
system. With the use of the proposed FL system, very strong fluctuations in the
concentration of the substrate and the volumetric loading rate could be success-
fully handled, and heavy overload could be avoided by taking proper control
actions automatically.
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In another anaerobic study, Turkdogan-Aydınol and Yetilmezsoy (2010) devel-
oped a FL-based model to predict biogas and methane production rates in a pilot-
scale 90-L mesophilic up-flow anaerobic sludge blanket (UASB) reactor treating
molasses wastewater. In the study, trapezoidal membership functions with eight
levels were conducted for the fuzzy subsets, and a Mamdani-type fuzzy inference
system was used to implement a total of 134 rules in the if-then format. The authors
concluded that compared to nonlinear regression models, the proposed FL-based
model produced smaller deviations and exhibited a superior predictive performance
on forecasting of both biogas and methane production rates with satisfactory deter-
mination coefficients over 0.98.

Yetilmezsoy (2012) proposed a multiple inputs and multiple outputs (MIMO)
FL-based model was proposed to estimate color and chemical oxygen demand
(COD) removal efficiencies in the posttreatment of anaerobically pretreated poultry
manure wastewater (PMW) effluent using Fenton’s oxidation process. The author
used trapezoidal membership functions with eight levels that were conducted for the
fuzzy subsets, and a Mamdani-type fuzzy inference system to implement a total of
70 rules in the if-then format. The product (prod) and the center of gravity (centroid)
methods were applied as the inference operator and defuzzification methods, respec-
tively. The results of the study demonstrated that a highly dynamic process, such as

Fig. 6 Different architectures of MLP type ANNmodels proposed for air quality/pollution control/
forecasting (Adapted from (a) Yetilmezsoy and Saral 2007; (b) Kurt et al. 2008; (c) Elangasinghe
et al. 2014; and (d) Feng et al. 2015)
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Fenton’s oxidation of anaerobically pretreated PMW effluent, could be successfully
(R2 = 0.99 for both color and COD removals) and cost-effectively (CPU usage =
3–4% when simulating the model) modeled using FL methodology, compared to the
classical regression-based method (R2 = 0.772 and 0.861 for color and COD
removals, respectively, and CPU usage = 5–6%).

Furthermore, there have also been other studies on modeling water-in-oil emul-
sion formation (Yetilmezsoy et al. 2012), biological oxygen demand (BOD) removal
prediction in free-water surface constructed wetlands (Kotti et al. 2013), and model-
ing of an integrated process for predictions of COD, total organic carbon (TOC),
color, and ammonia nitrogen (NH3–N) removal efficiencies in the treatment of
landfill leachates (young, middle-aged, and stabilized) (Sari et al. 2013) reporting
robustness and cost-effectiveness of FL-based modeling tools.

FL-Based Applications for Air Quality/Pollution Control/Forecasting

Yetilmezsoy and Abdul-Wahab (2012) proposed a prognostic approach that is based
on a FL model to estimate suspended dust concentrations (PM10) in a specific
residential area in Kuwait with high traffic and industrial influences. The authors
employed trapezoidal membership functions with 10 and 15 levels employed for the
fuzzy subsets of each model variable. A Mamdani-type fuzzy inference system (FIS)
was developed to introduce a total of 146 rules in the if-then format. The product
(prod) and the center of gravity (centroid) methods were performed as the inference
operator and defuzzification methods, respectively, for the proposed FIS. The study
concluded that the proposed FL model produced very small deviations from the
actual results, and showed better predictive performance than an multiple regression-
based exponential model with regard to forecasting PM10 levels, with a very high
determination coefficient of over 0.99.

In a recent study, Olvera-García et al. (2016) described a new evaluation
model using weighted fuzzy inference systems combined with an Analytic
Hierarchy Process (AHP), providing a new air quality index (AQI) for Mexico
City and its Metropolitan area. The authors evaluated six key pollutants (ozone
(O3), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO),
particulate matter smaller than 10 and 2.5 μm (PM10 and PM2.5)) as environmen-
tal parameters according to toxicological levels, and assessed different air quality
situations using a fuzzy reasoning process. They employed five score stages,
such as excellent, good, regular, bad, and dangerous, in order to define a set of
174 inference rules in the if-then format for the proposed FIS. The results showed
that a good performance of the proposed AQI against those in literature
depending on the assignment of weights according to an importance level for
each environmental parameter using a priority analysis based on the AHP
procedure.

Additionally, some other FL-based studies on classification of air quality in
Tehran, Iran (Sowlat et al. 2011), assessment and prediction of air quality in Mexico
City and its Metropolitan area (Carbajal-Hernández et al. 2012), and modeling the

82 Applications of Soft Computing Methods in Environmental Engineering 2025



indoor air quality (IAQ) of the underground trains in Athens, Greece
(Assimakopoulos et al. 2013), can be found in the literature.

ANFIS-Based Applications for Water and Wastewater Treatment

In addition to ANNmodeling studies, several ANFIS-based models have been proposed
to evaluate and optimize various water and wastewater treatment processes. For instance,
autoregressive integrated moving average (ARIMA) and Takagi-Sugeno (TS) fuzzy
methods were used by Altunkaynak et al. (2005) for predicting future monthly water
consumption values from three antecedent water consumption amounts, considered as
independent variables. The TS fuzzy predicted results better than the ARIMA.

Civelekoglu et al. (2007) employed ANFIS-based models for the prediction of
carbon and nitrogen removal in the aerobic biological treatment stage of a full-scale
WWTP treating process wastewaters from the sugar production industry. In the
study, a total of six independent ANFIS models were developed with or without
PCA using the correlations among the influent and effluent data from the plant. With
the use of PCA, results showed that the ANFIS modeling approach could be an
effective advanced technique for performance prediction and control of treatment
processes.

An ANFIS-based model was used by Firat and Gungor (2007) to estimate the
flow of River Great Menderes, located west of Turkey. As a result, they discovered
that ANFIS could be successfully applied for river flow estimation, providing high
accuracy and reliability. Firat et al. (2009) compared two types of FIS for predicting
municipal water consumption time series. Their results demonstrated that the ANFIS
model is superior to Mamdani fuzzy inference systems (MFIS).

Cakmakci (2007) used an ANFIS-based technique for modeling of anaerobic
digestion system of primary sludge of the Kayseri WWTP, Turkey. In the study,
effluent volatile solid (VS) and methane yield were predicted by the ANFIS model
using the routinely measured parameters in the anaerobic digester. The study con-
cluded that due to highly nonlinear structure of the ANFIS model, a highly complex
system such as anaerobic digestion process could be easily modeled. Filter head loss
was also estimated by Cakmakci et al. (2008) using this ANFIS model. In their study,
rule base sets were generated with subtractive clustering and grid partition. They
determined that using a grid partition for modeling was superior to that of subtractive
clustering. The correlation coefficients were greater than 0.99 in both tap and
deionized water. Furthermore, filter iron removal rate was also modeled by
Cakmakci et al. (2010). The best results for tap and deionized water were obtained
with grid partition and subtractive clustering. The index of agreement (IA) values for
tap water and deionized water were calculated as 0.996 and 0.971, and R2 values
were determined as 0.99 and 0.89, respectively. The study concluded that neuro-
fuzzy modeling could be successfully used to predict effluent iron concentration in
sand filtration.

In another study, for a real-scale anaerobic WWTP operating under unsteady state
conditions, Perendeci et al. (2008) proposed a conceptual ANFIS-based using
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available on-line and off-line operational input variables to estimate the effluent COD.
The study concluded that the developed ANFIS model with phase vector and history
extension successfully represented the behavior of the considered treatment system.

A principal component analysis-adaptive neuro-fuzzy inference systems
(PCA-ANFISs) method was used by Goodarzi et al. (2009) for the analysis of ternary
mixtures of Al(III), Co(II), and Ni(II) over the range of 0.05–0.90, 0.05–4.05, and
0.05–0.95 g/mL, respectively. As a result, the method accurately and simultaneously
determined the content of metal ions in several synthetic mixtures.

Finally, there have also been other computational studies (Tay and Zhang 2000;
Wu and Lo 2008; Mingzhi et al. 2009; Pai et al. 2009; Erdirencelebi and Yalpir 2011;
Mullai et al. 2011; Yetilmezsoy et al. 2011b; Wan et al. 2011; Pai et al. 2011; Mandal
et al. 2015; Yetilmezsoy et al. 2015; Rahimzadeh et al. 2016) in the literature for
modeling of various environmental problems based on water and wastewater treat-
ment using ANFIS methodology.

ANFIS-Based Applications for Air Quality/Pollution Control/
Forecasting

Several adaptive neuro-fuzzy techniques emerging from the fusion of ANN and FIS
have successfully found application in various areas of air pollution control. For
instance, Yildirim and Bayramoglu (2006) used an adaptive neuro-fuzzy logic
method to estimate the impact of meteorological factors on SO2 and total suspended
particular matter (TSP) pollution levels over the city of Zonguldak, Turkey. The
study concluded that the proposed ANFIS model satisfactorily forecasts the trends in
SO2 and TSP concentration levels, with performance levels between 75–90% and
69–80%, respectively.

An artificial intelligence-based modeling approach was conducted in another
study by Noori et al. (2010) to predict daily carbon monoxide (CO) concentration
in the atmosphere of Tehran, Iran, by means of developed ANN and ANFIS models.
In the study, forward selection (FS) and gamma test (GT) methods were
implemented for selecting input variables and developing hybrid models with
ANN and ANFIS. The authors concluded that FS-ANN and FS-ANFIS models
were the best models, considering R2, mean absolute error, and developed discrep-
ancy ratio statistics, for predicting pollution episodes.

Apart from the foregoing studies, several researchers (Shahraiyni et al. 2015;
Ausati and Amanollahi 2016; Mishra and Goyal 2016; Prasad et al. 2016; Taylan
2017; Xie et al. 2017) have been successfully used ANFIS-based models in air
quality/pollution control/forecasting.

SVM-Based Applications for Water and Wastewater Treatment

Singh et al. (2011) used support vector classification (SVC) and support vector
regression (SVR) models for (1) classification of the sampling sites with a view to
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identify similar ones in the monitoring network for reducing their number for the
future water quality monitoring; (2) classification of the sampling months into the
groups of seasons for reducing the annual sampling frequency; and (3) to predict the
biochemical oxygen demand (BOD) of the river water using simple measurable
water quality variables. They studied with the data set comprised of 1500 water
samples representing 10 different sites monitored for 15 years. The study concluded
that The SVC model achieved a data reduction of 92.5% for redesigning the future
monitoring program, and the SVR model provided a tool for the prediction of the
water BOD using set of a few measurable variables.

Garcia Nieto et al. (2013) proposed a hybrid approach based on support vector
regression (SVR) in combination with genetic algorithms (GA), namely, genetic
algorithm support vector regression (GA-SVR) model, in forecasting the
cyanotoxins presence in the Trasona reservoir, Northern Spain. The authors reported
that a correlation coefficient equal to 0.98 was obtained when the hybrid GA-SVR
technique was applied to the experimental data set, and the predicted results for the
model demonstrated to be consistent with the history of observed actual
cyanobacteria blooms from 2006 to 2011.

In another study, Liu et al. (2013) described a hybrid approach, known as
real-value genetic algorithm support vector regression (RGA-SVR), to forecast
aquaculture water quality in a high-density river crab culture situation. The authors
concluded that the RGA-SVR forecasting method could help avoid economic losses
caused by water quality problems to a certain extent. On the other hand, they
reported that different types and rates of crossover and mutation should be set for
different problems, since the operation of the genetic algorithm was difficult in the
training process of the RGA-SVR model.

Furthermore, there have also been other recent studies on prediction of effluent
concentration in a wastewater treatment plant in Ulsan Metropolitan city, Korea
(Guo et al. 2015), prediction of Cd(II) removal by biosorption in Iasi city, Romania
(Hlihor et al. 2015), numerical modeling for algal blooms of freshwater in in
Macau Main Storage Reservoir located at south of China (Lou et al. 2017),
prediction of five-day biochemical oxygen demand (BOD5) parameter in the
Sefidrood River basin, Iran (Noori et al. 2015), lake management to prevent
eutrophication in in Chaohu Lake located in southeast China (Xu et al. 2015),
predicting the sorption capacity of lead (II) ions in India (Parveen et al. 2016), and
eutrophication (enrichment of a water body with nutrients) classification in Dez
reservoir located in Iran (Bashiri et al. 2017) reporting the advantages and gener-
alization ability of the SVM method based over multilayer perceptron (MLP) or
neuro-fuzzy network.

SVM-Based Applications for Air Quality/Pollution Control/
Forecasting

It has been reported that air quality is essential to people’s health and the
environment, and accurate forecasting of the concentration of air pollutants is

2028 K. Yetilmezsoy



crucial to the effective monitoring of air quality (Lin et al. 2011). From this point
of view, the accurate models for air pollutant prediction are needed because
such models would allow forecasting and diagnosing potential compliance or
noncompliance in both short- and long-term aspects (Lu and Wang 2005). In
recent years, based on the emission and meteorological data collected from
air-monitoring stations in different parts of the world, SVM paradigm has
become popular and gained importance in forecasting problems related to air
quality (Yeganeh et al. 2012).

Lu and Wang (2005) examined the feasibility of applying SVM to predict air
pollutant levels in advancing time series based on the monitored air pollutant
database in Hong Kong downtown area. The experimental comparisons between
the SVM model and the classical radial basis function (RBF) network demon-
strated that the SVM was superior to the conventional RBF network in predicting
air quality parameters with different time series and of better generalization
performance than the RBF model. The study concluded that SVM model provided
a promising alternative and advantage in time series forecast and offered several
advantages (i.e., it contains fewer free parameters (or small number of learning
data), and eliminates the typical drawbacks, such as over-fitting training and local
minima, of conventional neural network) over the conventional feed-forward RBF
neural networks.

Osowski and Garanty (2007) used SVM and wavelet decomposition for daily
air pollution forecasting based on the observed data of NO2, CO, SO2, and dust in
the northern region of Poland. The authors decomposed the measured time series
data into wavelet representation and predicted the wavelet coefficients in order to
obtain the acceptable accuracy of predictions. The study concluded that applica-
tion of SVM instead of classical MLP had enabled to obtain much better accuracy
of forecast of the wavelet coefficients and the whole pollutant concentration at all
stations.

Lin et al. (2011) proposed a support vector regression with logarithm pre-
processing procedure and immune algorithms (SVRLIA) model to forecast concen-
trations of air pollutants, namely, particulate matter (PM10), nitrogen oxide, (NOx),
and nitrogen dioxide (NO2), in Taiwan. Experimental results of the study indicated
that the proposed SVRLIA model provided more accurate forecasting results than
the other models such as general regression neural networks (GRNN), seasonal
autoregressive integrated moving average model (SARIMA), and backpropagation
neural networks (BPNN).

Yeganeh et al. (2012) conducted studies on an innovative method of daily air
pollution prediction using combination of SVM as predictor and Partial Least Square
(PLS) as a data selection tool in the forecasting of CO concentrations. The authors
aimed to examine the feasibility of applying SVM and hybrid PLS-SVM models to
predict air pollutant levels in short- and long-term periods based on the measured air
pollutant database in Tehran. The study concluded that the proposed hybrid
PLS-SVM model required lower computational time than SVM model and had
better performance (more accurate and faster prediction ability) to predict air pollu-
tion in different time intervals.
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In Rio de Janeiro City (Brazil), Luna et al. (2014) analyzed the behavior of the
variables (nitrogen dioxide (NO2), nitrogen monoxide (NO), nitrogen oxides (NOx),
carbon monoxide (CO), ozone (O3), scalar wind speed, global solar radiation,
temperature, and moisture content in the air), using the method of PCA for explor-
atory data analysis, and proposed forecasts of O3 levels from primary pollutants and
meteorological factors, using nonlinear regression methods like ANN and SVM,
from primary pollutants and meteorological factors. The study concluded that the
models’ predictions and the actual observations were consistent, and PCA-ANN-
SVM demonstrated their robustness as useful tools for modeling and analysis of O3

concentrations in tropospheric levels.
In recent study, Moazami et al. (2016) proposed a modeling approach to

analyze the uncertainty of support vector regression (SVR) and FS-SVR models
for the prediction of the next day CO concentration in Tehran metropolitan. They
compared the results of the present study and another research on uncertainty
determination of ANFIS and ANN. The results showed that the SVR had less
uncertainty in CO prediction than the ANN and ANFIS models. On the other
hand, they reported that the running time for uncertainty determination of SVR
and FS-SVR models were more than one day, and high computational time was
one of the most limitations of the implemented methodology. For this reason, the
authors suggested using the faster optimization techniques for tuning the SVR
parameters and applying the stop training algorithm instead of cross validation
technique in order to reduce the running time for uncertainty determination of
SVR model.

Illustrative Soft Computing Examples for Environmental
Engineers

In this section, some special illustrative soft computing examples on ANN and FL
modeling and the respective MATLAB

®

-based solutions are presented for environ-
mental engineers.

Example 1

A three-layer feed-forward back propagated (FFBP) artificial neural network (ANN)
model is proposed to predict the daily biogas production from a laboratory-scale
anaerobic sludge bed reactor (ASBR) (Fig. 7). The input variables of the proposed
ANN model are selected as follows: Total chemical oxygen demand (TCOD = X1 =
S0: kg/m

3), daily operating temperature (X2 = T: �C), and pH of the feeding slurry
(X3 = pH). In the model structure, logarithmic sigmoid function (logsig) is used for
both hidden layer and the output layer as an activation and transfer function,
respectively. The learning rate is selected as η = 0.90. The model variables (X1,
X2, X3, and Y) will be normalized for the scale factors of a = 0.60 and b = 0.20 by
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using the min-max rule based on the following formulation: Oi ¼ a Xi�Xmin

Xmax�Xmin
þ b

� �
.

The ranges of model variables are given in Table 1. For the first iteration, the initial
values of weights (wij and wjk) and bias terms (θj and θk) are given in Table 2.

Based on the above-noted facts, write a MATLAB
®

script to determine the
following questions:

(a) At the steady-state conditions, an experimental data is given as follows: The
daily biogas production is measured as Qg = 13.2 L/day for the values of
S0 = 14.8 kg TCOD/m3, T = 32 �C, and pH = 7.1. According to this data,
evaluate the performance of the proposed ANN model in prediction of the daily
biogas production by denormalizing the predicted value.

(b) Update the initial values of weights and bias terms by performing a back-
propagation (BP) process. After the BP operation, perform a new feed-forward
process to observe the recovery in prediction of the daily biogas production
(Table 3).

Table 1 Ranges of model variables

Model variables Symbols and units Ranges

Total chemical oxygen demand TCOD = X1 = S0 (kg/m
3) 11.2–19.6

Daily operating temperature X2 = T (�C) 26–37

pH of the feeding slurry X3 = pH 6.2–8.5

Daily biogas production Y = Qg (L/day) 8.4–14.6

Table 2 Initial values of weights (w) and bias (y) terms for the first iteration

Weights (wij and wjk) Bias terms (θ)

w14 = + 0.20 w15 = �0.30 w46 = �0.30 θ4 = �0.40

w24 = + 0.40 w25 = + 0.10 w56 = �0.20 θ5 = + 0.20

w34 = �0.50 w35 = + 0.20 θ6 = + 0.10

1

2

3

4

5

6

INPUT LAYER = 3

HIDDEN LAYER = 2

OUTPUT LAYER = 1

X1 = S0

X2 = T

X3 = pH

Y = Qg

Fig. 7 A three-layer feed-
forward back propagated
(FFBP) artificial neural
network (ANN) proposed to
predict the daily biogas
production from a laboratory-
scale anaerobic sludge bed
reactor (ASBR)
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Solution of Example 1

MATLAB® script

%Artificial Neural Network Model
%Programmed by Assoc.Prof.Dr. Kaan Yetilmezsoy
clear, clc

%Scale factors
a = 0.60;  b = 0.20;

%Learning rate
L = 0.90;

%Ranges of variables
X1min = 11.2;  X1max = 19.6;  X2min = 26;  X2max = 37;
X3min = 6.2;  X3max = 8.5;  Ymin = 8.4;  Ymax = 14.6;

%Experimental data
X1 = 14.8;  X2 = 32;  X3 = 7.1;  Y = 13.2

%Normalization of input variables
O1 = a*((X1-X1min)/(X1max-X1min))+b;
O2 = a*((X2-X2min)/(X2max-X2min))+b;
O3 = a*((X3-X3min)/(X3max-X3min))+b;
Yn = a*((Y-Ymin)/(Ymax-Ymin))+b

%Weight values
w14 = 0.20;  w24 = 0.40;  w34 = -0.50;  w15 = -0.30;
w25 = 0.10;  w35 = 0.20;  w46 = -0.30;  w56 = -0.20;

%Bias values
t4 = -0.40;  t5 = 0.20;  t6 = 0.10;

%ITERATION #1

%Computation of hidden neurons 4 and 5
I4 = (O1*w14 + O2*w24 + O3*w34) + t4;
I5 = (O1*w15 + O2*w25 + O3*w35) + t5;
%Computation of activation functions
O4 = 1/(1+exp(-I4)); O5 = 1/(1+exp(-I5)); 
%Computation of hidden neuron 6
I6 = (O4*w46 + O5*w56) + t6;
%Computation of transfer function
O6 = 1/(1+exp(-I6))
%Denormalization of predicted value
Yp1 = (((O6-b)/a)*(Ymax-Ymin))+Ymin

%Error at node 6
E6 = O6*(1-O6)*(Yn-O6); 
E5 = O5*(1-O5)*E6*w56;
E4 = O4*(1-O4)*E6*w46;

%Update of weights
w14_1 = w14 + L*E4*O1;  w24_1 = w24 + L*E4*O2;
w34_1 = w34 + L*E4*O3;  w15_1 = w15 + L*E5*O1;
w25_1 = w25 + L*E5*O2;  w35_1 = w35 + L*E5*O3;
w46_1 = w46 + L*E6*O4;  w56_1 = w56 + L*E6*O5;
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%Update of bias terms
t4_1 = t4 + L*E4; t5_1 = t5 + L*E5; t6_1 = t6 + L*E6;

%ITERATION #2

%Computation of hidden neurons 4 and 5
I4_1 = (O1*w14_1 + O2*w24_1 + O3*w34_1) + t4_1;
I5_1 = (O1*w15_1 + O2*w25_1 + O3*w35_1) + t5_1;
%Computation of activation functions
O4_1 = 1/(1+exp(-I4_1));
O5_1 = 1/(1+exp(-I5_1)); 
%Computation of hidden neuron 6
I6_1 = (O4_1*w46_1 + O5_1*w56_1) + t6_1;
%Computation of transfer function
O6_1 = 1/(1+exp(-I6_1))
%Denormalization of predicted value
Yp2 = (((O6_1-b)/a)*(Ymax-Ymin))+Ymin

%Error at node 6
E6_1 = O6_1*(1-O6_1)*(Yn-O6_1);
E5_1 = O5_1*(1-O5_1)*E6_1*w56_1;
E4_1 = O4_1*(1-O4_1)*E6_1*w46_1;

%Update of weights
w14_2 = w14_1 + L*E4_1*O1; w24_2 = w24_1 + L*E4_1*O2;
w34_2 = w34_1 + L*E4_1*O3; w15_2 = w15_1 + L*E5_1*O1;
w25_2 = w25_1 + L*E5_1*O2; w35_2 = w35_1 + L*E5_1*O3;
w46_2 = w46_1 + L*E6_1*O4_1; w56_2 = w56_1 + L*E6_1*O5_1;

%Update of bias terms
t4_2 = t4_1 + L*E4_1;
t5_2 = t5_1 + L*E5_1;
t6_2 = t6_1 + L*E6_1;

%ITERATION #3 (with no updates for weights and bias terms)

%Computation of hidden neurons 4 and 5
I4_2 = (O1*w14_2 + O2*w24_2 + O3*w34_2) + t4_2;
I5_2 = (O1*w15_2 + O2*w25_2 + O3*w35_2) + t5_2;
%Computation of activation functions
O4_2 = 1/(1+exp(-I4_2)); O5_2 = 1/(1+exp(-I5_2)); 

 

 
 

 
%Computation of hidden neuron 6 
I6_2 = (O4_2*w46_2 + O5_2*w56_2) + t6_2; 
%Computation of transfer function 
O6_2 = 1/(1+exp(-I6_2)) 
%Denormalization of predicted value 
Yp3 = (((O6_2-b)/a)*(Ymax-Ymin))+Ymin 
Answer 
Y = 13.2000
    

Yn = 0.6645 
     

O6 = 0.4659
     

Yp1 = 11.1475 
    

O6_1 = 0.4824 
     

Yp2 = 11.3186
    

O6_2 = 0.4977
     

Yp3 = 11.4759 
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Example 2

A fuzzy logic (FL) model is introduced to estimate the daily biogas production
obtained from an experimental study. The properties of the proposed FL model are
summarized below.

(a) The proposed FL model is a MISO (Multiple Input Single Output) type model
which is consisted of 2 inputs (X1 = OLR = Organic loading rate (kg COD/m3/
day), X2 = T = Temperature (�C)) and 1 output (Y = Qg = Daily biogas
production (L/day)).

(b) Trapezoidal membership functions (trapmf) with two and three levels are used,
respectively, for input and output variables, and the functions are categorized as
LOW, MOD, and HIGH for processing of the fuzzy rules.

(c) The ranges of model variables are given in Table 4. The ranks of the membership
functions for input and output variables considered in the fuzzy sets are pre-
sented in Table 5.

Table 3 Mathematical expressions for the proposed ANN model

Explanation
Mathematical
expression

Net value transferred from input layer to hidden layer (or net value
transferred from hidden layer to output layer)

Ij = � wijOi + θj
Ik = � wjkOj + θk

Output of logsig activation or transfer function Oj = 1/[1 + exp (�Ij)]
Ok = 1/[1 + exp (�Ik)]

Error value at the output layer (only for logsig function) δk = Ok(1 � Ok)
(Tk � Ok)

Error value at the hidden layer (only for logsig function) δj = Oj(1 � Oj) � δkwjk

Updated weight terms (wij and wjk) wn
ij ¼ wij þ ηδjOi

wn
jk ¼ wjk þ ηδkOj

Updated bias terms (θj and θk) θnj ¼ θj þ ηδj
θnk ¼ θk þ ηδk

Table 4 Ranges of model variables

Model variables Symbols and units Ranges

Organic loading rate X1 = OLR (kg COD/m3/day) 3–12

Daily operating temperature X2 = T (�C) 10–40

Daily biogas production Y = Qg (L/day) 20–100
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(d) The rule base is developed by taking into account the experimental results and
the suggestions of the experts (Table 6). The weight factors are taken as equal
(1) for each fuzzy rule.

(e) The fuzzy inference system (FIS) is proposed as the Mamdani’s type, and the
prod (product) method is used by the AND operator for each fuzzy rule in the
FIS. The other methods implemented for implication, aggregation, and
defuzzification processes are prod, max, and centroid (COG), respectively.

(f) The steady-state data obtained from experimental studies are given in
Table 7.

According to the foregoing points, write a MATLAB
®

script to estimate the
outputs of the FL-based model for each experimental data given in Table 7 and to
calculate the value of the determination coefficient (R2) associated with these
predictions.

Table 5 Ranks of the trapezoidal membership functions selected for the model variables

Model variables Low Mod High

X1 = OLR = organic loading rate
(kg COD/m3/day)

[�4 2 4 10] – [4 10 14 20]

X2 = T = temperature (�C) [�15 5 15 35] – [15 35 45 65]

Y=Qg= daily biogas production (L/day) [�10 0 40 50] [40 50 80 90] [80 90 110 120]

Table 6 Rule sets for the proposed FL-based model

X1 = OLR = organic loading rate
(kg COD/m3/day)

X2 = T =
temperature (�C)

Y = Qg = daily biogas
production (L/day)

Low Low Low

High High High

High Low Mod

Table 7 Steady-state
data obtained from
experimental studies

# OLR (kg COD/m3/day) T (�C) Qg (L/day)

1 5 16 41

2 9 32 87

3 8 17 60

82 Applications of Soft Computing Methods in Environmental Engineering 2035



Solution of Example 2

MATLAB® script (development of the fuzzy inference system, FIS)

[System]
Name='fuzzy1'
Type='mamdani'
NumInputs=2
NumOutputs=1
NumRules=3
AndMethod='prod'
OrMethod='max'
ImpMethod='prod'
AggMethod='max'
DefuzzMethod='centroid'

[Input1]
Name='OLR'
Range=[3 12]
NumMFs=2
MF1='LOW':'trapmf',[-4 2 4 10]
MF2='HIGH':'trapmf',[4 10 14 20]

[Input2]
Name='Temperature'
Range=[10 40]
NumMFs=2
MF1='LOW':'trapmf',[-15 5 15 35]
MF2='HIGH':'trapmf',[15 35 45 65]

[Output1]
Name='Qg'
Range=[20 100]
NumMFs=3
MF1='LOW':'trapmf',[-10 0 40 50]
MF2='MOD':'trapmf',[40 50 80 90]
MF3='HIGH':'trapmf',[80 90 110 120]

[Rules]
1 1, 1 (1) : 1
2 2, 3 (1) : 1
2 1, 2 (1) : 1

The numbers in the parentheses represent weights that can be applied to each rule if desired. 
You can specify the weights by typing in a desired number between zero and one. If you do 
not specify them, the weights are assumed to be unity (1).

Save the file as fuzzy1.fis by selecting File > Save (or use CTRL + S).
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>> a = readfis('fuzzy1') >> plotfis(a)
a = 

name: 'fuzzy1'
type: 'mamdani'

andMethod: 'prod'
orMethod: 'max'

defuzzMethod: 'centroid'
impMethod: 'prod'
aggMethod: 'max'

input: [1x2 struct]
output: [1x1 struct]

rule: [1x3 struct]

System fuzzy1: 2 inputs, 1 outputs, 3 rules

OLR (2)

Temperature (2)

Qg (3)

fuzzy1

(mamdani)

3 rules

>> showrule(a)

ans =

1. If (OLR is LOW) and (Temperature is LOW) then (Qg is LOW) (1)   
2. If (OLR is HIGH) and (Temperature is HIGH) then (Qg is HIGH) (1)
3. If (OLR is HIGH) and (Temperature is LOW) then (Qg is MOD) (1)

>> showrule(a,1)

ans =

1. If (OLR is LOW) and (Temperature is LOW) then (Qg is LOW) (1)

>> showrule(a,2)

ans =

2. If (OLR is HIGH) and (Temperature is HIGH) then (Qg is HIGH) (1)

>> showrule(a,3)

ans =

3. If (OLR is HIGH) and (Temperature is LOW) then (Qg is MOD) (1)
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>> plotmf(a,'input',1)
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>> plotmf(a,'input',2)
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>> plotmf(a,'output',1)
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Show overall results (measured and predicted) in the form of a table.
Calculation of determination coefficient (R2)
MATLAB® script

clear, clc
a = readfis('fuzzy1');
data = [5 16; 9 32; 8 17];
predictions = evalfis(data, a);
measured = [41; 87; 60];

%Create a table using “measured” and “predictions” vectors. 
%Since these vectors are in vertical format, use transpose of them.
%Add a semicolon operator between them, and insert this table 
%in fprintf function.

table = [measured';predictions'];

%Location of the title words can be adjusted 
%as desired by pressing the SPACE key on the keyboard.
%i.e., 4 Spaces for "Observed" word 
%and 3 Spaces for "Predicted" word.

disp('    Observed   Predicted')
fprintf('%10.2f %11.2f \n',table)

O = measured;
P = predictions;
Om = mean(O);
Pm = mean(P);
n = numel(O);

%Determination of linear regression coefficient (b) 
%and constant term (a)
%Microsof Excel uses this formulation
b = (n*sum(O.*P)-sum(O)*sum(P))/((n*sum(O.^2))-((sum(O))^2));
a = (sum(P)-b*sum(O))/n;
%Determination coefficient (Rsqr)
Rsqr = ((b^2)*sum((O-Om).^2))/(sum((P-Pm).^2))

%Determination coefficient (Rsqr): 
%Same result by using the compact form
Rsqr1 = ((sum((O-Om).*(P-Pm)))^2)/((sum((O-Om).^2))*(sum((P-Pm).^2)));
Answer 
Observed   Predicted
41.00 40.30 
87.00      82.02 
60.00      58.44

Rsqr = 0.9994

82 Applications of Soft Computing Methods in Environmental Engineering 2039



Conclusion

In this chapter, important applications of the soft computing-based prediction models,
such as ANN, FL, ANFIS, and SVM, are specifically explored for the real-life problems
of environmental engineering field. It is apparent from the literature that soft computing
methods can be successfully implemented as complementary technologies in various
applications of water/wastewater treatment and air quality/pollution control/forecasting.
Modeling of environmental processes is very difficult, since they include biological,
chemical, and physical phenomena, together. At this point, soft computing techniques
serve as a modern paradigm for computing and simulating complex natural processes
with basic principles of the prediction modeling using environmental data sets obtained
from various real applications. Additionally, the applicability of these models is very
simple, posing no need to identify nonlinear relationships between multiple variables
and define the complex reactions in the environmental problems.

It is worth mentioning that many investigators have compared the performance of
soft computing-based techniques with conventional methods. Based on the literature
review, it can be concluded that soft computing-based models have provided better
results compared to traditional linear/nonlinear regression methods due to their ability
to precisely discriminate the arbitrary nonlinear functional relationship between input
and output data sets. Furthermore, the literature findings clearly corroborate that the
soft computing methodology could describe the behavior of the complex reaction
system with the range of experimental conditions adopted. Simulation based on these
models can estimate the behavior of the system under different conditions. To con-
clude, a simulation on the basis of the soft computing model can deliver further
contribution in developing a better understanding of the dynamic behavior of the
environmental processes where still some phenomena cannot be clarified in all details.

The encouraging results obtained from the application of the described soft
computing-based approaches in modeling of water and air pollution-related prob-
lems indicate that these techniques are worth for further research and extension to
other similar real-life problems from the environmental engineering field. Consid-
ering the predictive capability and robustness, of the soft computing-based method-
ology, these prognostic models may be integrated into full-scale water/wastewater
treatment plants and mobile pollution air monitoring stations as advanced control,
early warning, and decision support systems using different on-line and off-line
control strategies in a cost-effective manner by means of energy and environment.
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