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Abstract We compute the homology of the multiple point spaces of stable pertur-
bations of two germs (Cn, 0) → (Cn+1, 0) of corank 2, using a variety of techniques
based on the image computing spectral sequence ICSS. We provide a reasonably
detailed introduction to the ICSS, including some low-dimensional examples of its
use. The paper is partly expository.
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1 Introduction

In studying a singularity of mapping from n-space to (n + 1)-space, a rôle analogous
to that of Milnor fibre is played by a stable perturbation of the singularity, and in
particular by its image. The image of a map acquires non-trivial homology through
the identification of points of the domain, and these identifications are encoded in the
multiple point spaces of the map. For germs of corank 1, these multiple point spaces
are well understood. For germs of corank > 1 the situation is radically different.

In this paper we study the multiple point spaces of stable perturbations of
two map-germs of corank 2 from n-space to (n + 1)-space. In one case n = 3
and in the other n = 5. Previous work of Marar, Nuño-Ballesteros and Peñafort,
in [16, 17] has explored the case where n = 2. Increasing the dimension intro-
duces new difficulties. Confronting these will require a range of new techniques.
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Our work here is a preliminary exploration. Following the invitation of the editors
to provide an accessible account, we have expanded the preliminary material on
multiple-point spaces, disentanglements, and the image computing spectral sequence
ICSS, our principle technical tool, and included, in Sect. 1.6, some examples of cal-
culation using the ICSS.

The first of the two corank 2 map-germs we look at is the germ of lowest codi-
mension in Sharland’s list [24] of weighted homogeneous corank 2 map-germs
(C3, 0) → (C4, 0):

f0 : (C3, 0) → (C4, 0), f0(x, y, z) = (x, y2 + xz + x2y, yz, z2 + y3). (1.1)

This has Ae-codimension 18.
The second is the lowest dimensional example of corank 2 map germ with Ae-

codimension 1,

f0 : (C5, 0) → (C6, 0), f0(x, y, a, b, c) = (x2 + ax + by, xy, y2 + cx + ay, a, b, c).
(1.2)

For each of these, we calculate a number of (topological) homology groups with
rational coefficients, related to its disentanglement. By “disentanglement” we do not
mean just the stable perturbation

ft : Ut Xt ⊂ C
n+1

of the germ f0 (where Ut is a contractible neighbourhood of 0 in C
n), as the term has

been used by de Jong and van Straten in [4] and by Houston in [10] and subsequent
papers. A richer picture is obtained by considering the “semi-simplicial resolution”

. . .

D3( ft )

D2( ft )

Ut Xt

(1.3)

Here, for each integer 2 ≤ k ≤ n, Dk( ft ) is the closure, in U k
t , of the set of k-tuples

of pairwise distinct points (“strict” k-tuple points) sharing the same image, and
the k distinct arrows πk

j : Dk( ft ) → Dk−1( ft ), 1 ≤ j ≤ k, are the restriction of the
projections U k

t → U k−1
t obtained by forgetting the j’th factor in the product U k

t .
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For k > n, an A-finite mono-germ f : (Cn, 0) → (Cn+1, 0) will have no strict
k-tuple points, since the dimension of Dk( f0) at a strict k-tuple point is n − k + 1 (see
Sect. 1.1 below). In this case Dk( f0) is defined by a slightly different procedure: we
pick a stable unfolding F : (Cn × C

d , 0) → (Cn+1 × C
d , 0) of f0, define Dk(F) as

above, and then take Dk( f0) as the fibre over 0 ∈ C
d of Dk(F). We note that it is an

easy consequence of the Mather–Gaffney criterion for A-finiteness that if we apply
this second procedure when k ≤ n, we get the same space Dk( f0) as defined above.

The disentanglement, in this wider sense, contains complete information about
the way that points ofUt are identified by ft . The image Xt has the homotopy type of
a wedge of n-spheres [25] whose number, the “image Milnor number” of f , μI ( f ),
is the key geometric invariant of an A-finite germ (Cn, 0) → (Cn+1, 0). Since the
homology of Xt arises through the identifications induced by ft , it is better described
by the information attached to the diagram (1.3). This will become clearer in what
follows.

Note that the πk
j for fixed k and different j are left-right equivalent to one another

thanks to the symmetric group actions on Dk and Dk−1, permuting the copies of Ut .
In what follows we will consider only πk

k , which we will refer to simply as πk . We
will denote the image of πk in Dk−1 by Dk

k−1, and, more generally, for � < k, we
denote the image of π�+1 ◦ · · · ◦ πk in D� by Dk

� .

Remark 1.1 (1) Any finite map-germ f : (Cn, S) → (Cn+1, 0) is an embedding out-
side D2

1( f ), which is the “non-embedding locus” of f . More generally each map
πk : Dk( f ) → Dk−1( f ) is an embedding outside Dk+1

k ( f ), and each map πk+1

parameterises the non-embedding locus of its successor πk . Thus the tower (1.3)
shows a strong analogy with a free resolution of a module. If f is stable then Dk( f ),
if not empty, is n − k + 1-dimensional. It follows that the length of this resolution
is at most n.
(2) For maps Mn → N n+1 with n < 6 there is no stable singularity of corank 2.
Every A-finite germ is stable outside 0, so if n < 6, any singularity outside 0 of an
A-finite germ f0 : (Cn, 0) → (Cn+1, 0), must be of corank 1. For stable germs of
corank 1, all non-empty multiple point spaces are smooth [14]. It follows that for any
A-finite germ f0 : (Cn, 0) → (Cn+1, 0) with n < 6, Dk( f0) has (at most) isolated
singularity. It also follows that a stable perturbation ft has no singularities of corank
> 1. Therefore all of the non-empty multiple point spaces Dk( ft ) are smooth –
indeed, are smoothings of the isolated singularities Dk( f0). For any map f , D�(πk)

can be identified with Dk+�−1( f ), by the obvious map

(
(x1, . . ., xk−1, x (1)

k ), (x1, . . ., xk−1, x (2)
k ), . . ., (x1, . . ., xk−1, x (�)

k )
)

←→
(

x1, . . ., x (1)
k , x (2)

k , . . ., x (�)
k

)
(1.4)

– the left hand side here shows a point of D�(πk), and the right hand side shows
the corresponding point of Dk+�−1( f ). This observation is the basis of the “method
of iteration” developed by Kleiman in [11]. From the smoothness of the Dk+ j ( ft )

therefore follows smoothness of the multiple-point spaces of the projections πk :
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Dk( ft ) → Dk−1( ft ). The singularities of πk are all of corank 1; this can be seen
quite easily by writing f in linearly adapted coordinates, but see also [1]. By the
characterisation of the stability of corank 1 map-germs by the smoothness of their
multiple point spaces [14], it follows that provided n < 6, if ft is stable then all of
the projections πk are stable maps.

1.1 Multiple Points

If f0 : (Cn, 0) → (Cn+1, 0) is A-finite then the set of strict k-tuple points is dense
in Dk( f0), unless Dk( f0) consists only of the point (0, . . ., 0). The subset where f
is an immersion at each of the xi is still dense in Dk( f0). If (x1, . . ., xk) is such a
k-tuple point, with f0(xi ) = y for i = 1, . . ., k, then by theMather–Gaffney criterion
forA-finiteness, the images of the germs f0 : (Cn, xi ) → (Cn+1, y) meet in general
position. It follows that their intersection has dimension n + 1 − k. This is therefore
the dimension of Dk( f0), provided k ≤ n + 1, and, similarly, of Dk( ft ). If k > n + 1
then because ft is stable, Dk( ft ) = ∅.

1.2 Alternating Homology

The developments in this section are due principally (but in some cases implicitly)
to Goryunov in [6].
Notation For any topological space V , Ck(V ) is the free abelian group of singular
k-chains in X , and C•(V ) is the singular chain complex. For a continuous map
ϕ : V → W , we denote by ϕ# the map C j (V ) → C j (W ) induced by ϕ, and reserve
the term ϕ∗ for the corresponding map on homology.

Suppose f : X → Y is surjective. Recall the action of Sk on Dk( f ), permuting
the copies of X . Define

CAlt
j (Dk( f )) = {c ∈ C j (Dk( f )) : σ#(c) = sign(σ)c for all σ ∈ Sk}.

This gives a subcomplex, as ∂(CAlt
j ) ⊂ CAlt

j−1, so we have alternating homology

HAlt
j (Dk( f )).

Now observe also that πk
# : CAlt

j (Dk( f )) ⊂ CAlt
j (Dk−1( f )). To see this, let σ ∈ Sk−1,

and define σ̃ ∈ Sk by setting σ̃(i) = σ(i) for 1 ≤ i ≤ k − 1 and σ̃(k) = k. Then
sign(σ̃) = sign(σ), and so if c ∈ CAlt

j (Dk( f )),

σ#(π
k
#(c)) = πk

#(σ̃#(c)) = πk
#(sign(σ̃)c) = sign(σ)πk

#(c).



Disentanglements of Corank 2 Map-Germs: Two Examples 233

In fact we have a double complex: on CAlt
j (Dk( f )), πk−1

# ◦ πk
# = 0; for

πk−1
# ◦ πk

# = πk−1
# ◦ πk

# ◦ (k, k − 1)#,

and on alternating chains (k, k − 1)# is multiplication by−1. By the same argument,
f# ◦ π2

# = 0. Thus, denoting X by D1( f ), Y by D−1( f ), and f by π1, we have

Proposition 1.2 (CAlt
j (D•( f )),π•) is a complex, and (CAlt• (D•( f )), ∂, (−1)•π•

#) is
a double complex. �

The relevance to the homology of the image can be seen from two short calcula-
tions. In each, “ck

j” always denotes an alternating chain, when k ≥ 2.

Example 1 let c2j ∈ ZAlt
j (D2( f )).

D2( f ) 0 c2j
∂

X 0 π2
#(c

2
j )

f#

∃ c1j+1
∂

e.g. if Hj (X) = 0

Y f#π2
#(c

2
j ) = 0 f#(c1j+1)

∂

Because f# ◦ π2
# = 0 on alternating chains, f#(c1j+1) is a cycle in Y . So from an

alternating j-cycle c2j in D2( f ), we get a j + 1 cycle on Y – provided π2
#(c

2
j ) is a

boundary in X , i.e. provided π2∗[c2j ] = 0 in Hj (X).

Example 2 let c3j ∈ ZAlt
j (D3( f )).

D3( f ) 0 c3j
∂

D2( f ) 0 π3
# (c

3
j )

∂ ∃ c2j+1

∂
provided π3∗[c3j ] = 0 ∈ HAlt

j (D2( f ))

X 0 π2
# (c

2
j+1)

∂ ∃ c1j+2

∂
provided π2∗[c2j+1] = 0 ∈ Hj+1(X)

Y 0 f#(c1j+2)
∂

Here, a j-dimensional homology class in D3( f ) leads to a j + 2-dimensional class
in Y , provided certain homology classes vanish.

Note that in both cases, if ck
j is the cycle we begin with, then
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• if ck
j = πk+1

# (ck+1
j ) for some ck+1

j ∈ CAlt
j (Dk+1( f )) then πk

#(c
k
j ) = 0, and

• if ck
j = ∂ck

j+1 for some ck
j+1 ∈ CAlt

j+1(Dk( f )), then we can take ck−1
j+1 = πk

#(c
k
j+1)

so the homology class we get in HAlt
j+1(Dk−2( f )) is zero.

So we are really interested in

ker πk∗ : HAlt
j (Dk( f )) → HAlt

j (Dk−1( f ))

imπk+1∗ : HAlt
j (Dk+1( f )) → HAlt

j (Dk( f ))
.

1.3 The Image-Computing Spectral Sequence

Lurking behind the two calculations we have just gone through is the Image-
computing spectral sequence, ICSS. Thiswas introduced in [7] and further developed
in [6]. It calculates the homology of the image Xt in terms of the alternating homol-
ogy HAlt∗ (Dk( ft )) of the multiple point spaces Dk( ft ). The version introduced in [7]
worked with the subspace of H∗(Dk( f ); Q) on which Sk acts by its sign representa-
tion:

Alt Hj (Dk( f ); Q) = {[c] ∈ Hj (Dk( f ); Q) : σ∗([c]) = sign(σ)[c] for all σ ∈ Sk}.

If we take the complex of alternating chains described in the last paragraph and
replace integer coefficients by rational coefficients, then the two versions coincide:

Alt Hj (Dk( f ); Q) = HAlt
j (Dk( f ); Q).

The ICSS has E1
p,q = HAlt

q (D p+1( ft )) and converges to Hp+q(Xt ). The dif-

ferential on the E1 page, d1 : E1
p,q → E1

p−1,q is the simplicial differential π
p+1
∗ :

HAlt
q (D p+1( ft )) → HAlt

q (D p( ft )). In [7], a great deal hinges on the fact that for
a stable perturbation ft of an A-finite germ f0 of corank 1, the Dk( ft ) are Mil-
nor fibres of the isolated complete intersection singularities Dk( f0) (see [14]), and
therefore their vanishing homology is confined to middle dimension. Since (over Q)
HAlt

i (Dk( ft )) ⊂ Hi (Dk( ft )), the vanishing alternating homology of Dk( ft ) is also
confined to middle dimension. From this it follows, in the case of a stable pertur-
bation of a mono-germ, that the ICSS collapses at E1: for all r ≥ 1, Er

p,q = E1
p,q .

The fact that the spectral sequence converges to Hp+q(Xt ) therefore means that, for
map-germs (Cn, 0) → (Cn+1, 0), as Q-vector space,

For a germ (Cn, 0) → (Cn+c, 0) with c > 1, the corresponding formula is

H̃ j (Xt ) � HAlt
n−(k−1)c(Dk( ft )) if j = n − (k − 1)(c − 1) with 2 ≤ k ≤ n

c
+ 1,

= 0 otherwise.
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Hn(Xt ) � HAlt
n−1(D2( ft )) ⊕ HAlt

n−2(D3( ft )) ⊕ · · · ⊕ HAlt
0 (Dn+1( ft )). (1.5)

The argument for collapse is as follows: for each space D p+1( ft ) there is at most
one non-zero alternating homology group, HAlt

n−p(D p+1( ft )), and therefore either the
source or the target of every differential at E1 is equal to 0. Thus E2

p,q = E1
p,q . The

higher differentials dr : Er
p,q → Er

p−r,q+r−1 all vanish for exactly the same reason:
for each one, either its source or its target is zero.

Notice that this is exactly what is needed to justify the assumptions we made
in our two calculations in the previous paragraph. Whenever Dk( ft ) has non-trivial
alternating homology in dimension j , then Dk−1( f ) does not.

The situation for stable perturbations of multi-germs is slightly more compli-
cated, as can be seen with the example of Reidemeister moves II and III in Sect. 1.6
below. Here Dk( ft ) may have more than one connected component, and hence
have vanishing alternating homology in dimension 0 as well as in middle dimen-
sion. As the calculations with Reidemeister moves II and III show, the differentials
πk∗ : HAlt

0 (D p+1( ft )) → HAlt
0 (D p( ft )) may not all be zero.

From (1.5) it follows that for a stable perturbation of a mono-germ

(Cn, 0) → (Cn+1, 0)

μI ( f ) =
n+1∑
k=2

rank HAlt
n−k+1(Dk( ft )). (1.6)

In [10, Theorem 4.6], Kevin Houston showed the remarkable fact that that if ft is a
stable perturbation of anA-finite mono-germ f0 of any corank, then the alternating
homology of Dk( ft ) is once again confined to middle dimension, even though the
ordinary homology of Dk( f0) may not be.1 From Houston’s theorem its follows that
(1.5) and (1.6) hold for stable perturbations of mono-germs of any corank.

In both of our examples of corank 2 mono-germs, the multiplicity of f0,

dimC

OCn ,0

f ∗
0 mCn+1,0 OCn ,0

,

is equal to 3, so ft has no quadruple or higher multiple points, and (1.6) reduces to

μI ( f0) = rank HAlt
n−1(D2( ft )) + rank HAlt

n−2(D3( ft )). (1.7)

If f0 : (Cn, 0) → (Cn+1, 0) is a germ with μI ( f0) = 1, then (1.6) implies that the
vanishing homology of the image comes from just one of the multiple point spaces.
It is an interesting project to determine, for each such f0, which one this is. It is
possible to show that the answer depends only on the isomorphism class of the local

1In fact for the stable perturbation ft of the germ (C5, 0) → (C6, 0) described below, both D2( ft )

and D3( ft ) have non-trivial homology below middle dimension.
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algebra of f0. It is far from clear to me how to determine the answer from the local
algebra. Nevertheless, examples support the following conjecture:

Conjecture 1.3 If (n, n + 1) are in Mather’s nice dimensions (i.e. n < 15) and if
f0 : (Cn, 0) → (Cn+1, 0) has μI = 1 then the vanishing homology in the image of
a stable perturbation ft comes from Dk( ft ), where k is the dimension of the local
algebra of f0 (and is the highest integer for which Dk( f0) �= ∅).

This is proved for germs of corank 1 in [2, Sect. 4].

1.4 Symmetric Group Actions on the Homology of the
Multiple Point Spaces

From here on, and in the rest of the paper, we will consider only germs of maps from
n-space to n + 1-space, we will consider only homology with rational coefficients,
and by Hi (Dk( ft )) we will mean always Hi (Dk( ft ); Q).

As we have seen, each multiple-point space Dk( ft ) is acted upon by the sym-
metric group Sk , permuting the factors of U k

t . The resulting representation of Sk on
H∗(Dk( ft ); Q) splits as a direct sum of isotypal components, whose ranks are the
principle numerical invariants of the disentanglement. We have

Hi (D2( ft )) � H T
i (D2( ft )) ⊕ HAlt

i (D2( ft )),

where the two summands are the subspaces of Hi (D2( ft )) on which S2 acts trivially,
and by its sign representation, respectively, and

Hi (D3( ft )) = H T
i (D3( ft )) ⊕ HAlt

i (D3( ft )) ⊕ H ρ
i (D3( ft )),

where now the summands correspond to the trivial, sign and irreducible degree 2
representation of S3.

Let Mk( f0) and Mk( ft ) denote the set of target k-tuple points of f and f0 respec-
tively – points with at least k preimages, counting multiplicity. By e.g. [20], the
germ (Mk( f0), 0) is defined by the (k − 1)’st Fitting ideal of the OCn+1,0-module
f0∗(OCn )0, that is, the ideal generated by the (m − k + 1) × (m − k + 1) minors of
the m × m matrix of a presentation of f0∗(OCn )0.

Lemma 1.4 Let f0 : (Cn, 0) → (Cn+1, 0) have multiplicity k and isolated instabil-
ity, and suppose that Mk( f0) is non-singular. Let ft be a stable perturbation of f0.
Then H T

i (Dk( ft )) = 0 for all i > 0.

Proof Because the multiplicity of f0 is k, ft has no (k + 1)-tuple points, and it fol-
lows that Mk( ft ) � Dk( ft )/Sk , and therefore Hi (Mk( ft )) � H T

i (Dk( ft )). Because
Mk( f0) is smooth, Mk( ft ) is contractible, and the result follows. �
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Lemma 1.4, with k = 3, applies to both of the germs we consider. Smoothness of
M3( ft ) can be seen in each case by considering a presentation of f0∗(OCn )0.

Suppose f has corank > 1. We have no closed formula for generators of the ideal
defining Dk( f ) for k ≥ 3, but for D2( f ) there is a formula, introduced in [18], for
germs of any corank. The ideal ( f × f )∗(I�n+1) obtained by pulling back the ideal
defining the diagonal inC

n+1 × C
n+1 vanishes on D2( f ), but also on the diagonal in

�n ⊂ C
n × C

n . To remove �n and leave only the points in the closure of the set of
strict double points, we proceed as follows. The ideal ( f × f )∗(I�n+1), generated by
fi (x (1)) − fi (x (2)), for i = 1, . . ., n + 1, is contained in I�n , which is generated by
x (1)

j − x (2)
j , j = 1, . . ., n. Thus for i = 1, . . ., n + 1 there are functionsαi j (x (1), x (2))

such that

fi (x (1)) − fi (x (2)) =
n∑

j=1

αi j (x (1), x (2))
(

x (1)
j − x (2)

j

)
.

The (n + 1) × n matrix α = (αi j ) restricts to the jacobian matrix of f on �n . We
take

I2( f ) = ( f × f )∗(I�n+1) + minn(α).

Lemma 1.5 Let f0 : (Cn, 0) → (Cn+1, 0) be A-finite and not an immersion. Then
D2( f0), as defined by I2( f0), is Cohen–Macaulay of dimension n − 1, and normal.
�

The proof of Cohen–Macaulayness has been part of the folklore for some time,
but has recently been written up carefully by Nuño-Ballesteros and Peñafort in [21].
When n = 3, D2( f0) is therefore a normal surface singularity, and so by the Greuel–
Steenbrink theorem, [9, Theorem 1], H1(D2( ft )) = 0.

1.5 Calculating µI ( f )

Let f0 : (Cn, 0) → (Cn+1, 0) have finite codimension and let

F : (
C

n × C
d , (0, 0)

) → (
C

n+1 × C
d , (0, 0)

)
, F(x, u) = ( fu(x), u)

be a versal deformation. IfG is a reduced equation for the image of F then for u ∈ C
d ,

gu := G(_, u) is a reduced equation for the image of fu . By a theorem of Siersma
[25], the image of gu has the homotopy type of a wedge of n-spheres, whose number
is equal to the number of critical points of gu (counting multiplicity) which move off
the zero level as u leaves 0. Note that the number of n-spheres is, by definition, the
image Milnor number μI ( f0). We can therefore calculate μI ( f0) as follows: define
the relative jacobian ideal J rel

G by
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J rel
G =

(
∂G

∂y1
, . . .,

∂G

∂yn+1

)

where y1, . . ., yn+1 are coordinates on (Cn+1, 0). The relevant critical points of the
functions gt together make up the residual components of V (J rel

G ) after removal of
its components lying in {G = 0}. This residual set can be found as the zero-locus of
the saturation (J rel

G : G∞), defined as

⋃
k∈N

{h ∈ OCn+1×Cd ,(0,0) : hGk ∈ J rel
G }.

We denote the zero locus of (J rel
G : G∞) by �. Thus the image Milnor number

μI ( f0) is the degree of the projection (�, 0) → (Cd , 0). This degree can be calculated
as the intersection number

(
�, C

n+1 × {0})
(0,0). If � is Cohen–Macaulay then

μI ( f0) = (
�, C

n+1 × {0})
(0,0) = dimC

( OCn+1×Cd ,(0,0)

(J rel
G : G∞) + (u1, . . ., ud)

)
(1.8)

where u1, . . ., ud are coordinates on (Cd , 0).
In both of the examples considered here, this is the case, and it is a straightforward

Macaulay2 [8] calculation to follow this procedure (including to check the Cohen–
Macaulayness of �) and find μI ( f0): it is 18 for the germ (C3, 0) → (C4, 0), and 1
for the germ (C5, 0) → (C6, 0).

If � is not Cohen–Macaulay, the intersection number can be calculated using
Serre’s formule clef, [23], which we use to calculate a related intersection number in
Sect. 3.2 below.

Remark 1.6 The method outlined here gives no hint to any relation between μI ( f0)
and the Ae-codimension of f0. It is conjectured that provided (n, n + 1) are nice
dimensions, the standard “Milnor–Tjurina” relation holds, namely

Ae-codim f0 ≤ μI ( f0) (1.9)

with equality if f0 is weighted homogeneous. In [19] another slightly more compli-
catedmethod for calculating μI is explained, with a similar case-by-case justification
– verification of the Cohen Macaulayness of a certain relative T 1 module, T 1 rel

Kh,e
i ,

and consequent conservation of multiplicity. The virtue of this second method is that
the relation (1.9) is an immediate consequence, whenever Cohen–Macaulayness of
the relative T 1 can be shown, since T 1

Ae
f0 is a quotient of T 1

Kh,e
i0.
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1.6 Examples

Example I: the ICSS for a stable perturbation of f (x, y) = (x, y3, xy + y5). Here
we apply the calculations described in Sect. 1.2 to a stable perturbation of the germ
of the title of this subsection, of type H2. For any map-germ f : (C2, 0) → (C3, 0)
of the form f (x, y) = (x, f2(x, y), f3(x, y)), D2( ft ) is defined in (x, y1, y2)-space
by the equations (see [14])

∣∣∣∣
1 fi (x, y1)
1 fi (x, y2)

∣∣∣∣
∣∣∣∣
1 y1
1 y2

∣∣∣∣
i = 2, 3 (1.10)

and D3( f ) is defined in (x, y1, y2, y3)-space by the equations

∣∣∣∣∣∣
1 fi (x, y1) y21
1 fi (x, y2) y22
1 fi (x, y3) y23

∣∣∣∣∣∣
∣∣∣∣∣∣
1 y1 y21
1 y2 y22
1 y3 y23

∣∣∣∣∣∣

,

∣∣∣∣∣∣
1 y1 fi (x, y1)
1 y2 fi (x, y2)
1 y3 fi (x, y3)

∣∣∣∣∣∣
∣∣∣∣∣∣
1 y1 y21
1 y2 y22
1 y3 y23

∣∣∣∣∣∣

i = 2, 3. (1.11)

In this case these give

y21 + y1y2 + y22 , x + y41 + y31 y2 + y21 y22 + y1y32 + y42

for D2( f ) and

P2(y1, y2, y3), y1 + y2 + y3, x + P4(y1, y2, y3), P3(y1, y2, y3)

for D3( f ), where each Pj is a symmetric polynomial of degree j . Thus D2( f ) is
an A1 curve singularity and D3( f ) is a non-reduced point of multiplicity 6. If ft is
a stable perturbation then D2( ft ) is a Milnor fibre of the A1 singularity, homotopy
equivalent to a circle, and D3( ft ) consists of 6 points forming a single S3-orbit.
By judicious choice of parameter values u and v in the miniversal deformation
fu,v(x, y) = (x, y3 + uy, xy + y5 + vy2) (see [15]), one can arrange that the real
picture of D2( ft ) and D3( ft ), and their projections D3

1( ft ), D2
1( ft ), are as shown in

the following diagram.
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Here S and T in Ut are the non-immersive points of ft . At each, the germ of ft

is equivalent to the parametrisation of the Whitney umbrella, (x, y) �→ (x, y2, xy),
since this is the only stable non-immersive germ in this dimension range. The non-
strict double points (S, S) and (T, T ) are the fixed points of the involution (1, 2) on
D2( ft ), which, in our picture, is induced by a reflection in the straight line joining
them.

As a single faithful S3-orbit, D3( ft ) carries an alternating cycle,

c0 = (P, Q, R) − (P, R, Q) + (R, P, Q) − (R, Q, P) + (Q, R, P) − (Q, P, R).

The projection of this cycle to D2( ft ), π3
#(c0), is an alternating boundary, as in

Example 2 of Sect. 1.2: for instance

π3
#(c0) = (P, Q) − (P, R) + (R, P) − (R, Q) + (Q, R) − (Q, P) = ∂(c1)

where c1 is the alternating 1-chain

[(T, T )(Q, R)] − [(T, T )(R, Q)] + [(Q, P)(R, P)] − [(P, Q)(P, R)]

(here, for any two non-antipodal points A, B ∈ D2( ft ), [A, B] denotes the singular
1-simplex parametrising the shorter arc from A to B). The projection of c1 to Ut is
a 1-cycle in Ut , and is the boundary of a 2-chain c2 with support equal to the union
of the first and third bounded regions of the complement of D2

1( ft ), counting from
left to right. And by the argument above, ft#(c2) is a cycle in the image Xt , indeed
one of the two generators of H2(Xt ). Another generator comes from the alternating
1-cycle c′

1 on D2( ft ) consisting of the anticlockwise arc [(S, S)(T, T )] minus the
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clockwise arc [(S, S)(T, T )]. I encourage the reader to find a 2-chain c′
2 on Ut such

that ∂c′
2 = π2

#(c
′
1).

Example II: the Reidemeister moves. The Reidemeister moves of knot theory are
versal deformations of the three Ae-codimension 1 singularities of mappings from
the line to the plane. It is instructive to look at their disentanglements (in the sense
described above), and at the resulting ICSS. The codimension 1 germs are shown in
themiddle column of the table below, and the right hand column shows a 1-parameter
versal deformation, which, fixing t �= 0, gives a stable perturbation.

I f0 : x �→ (x2, x3) ft : x �→ (x2, x3 − t x)

I I f0 :
{

x �→ (x, x2)

y �→ (y,−y2)
ft :

{
x �→ (x, x2 − t)
y �→ (y,−y2)

I I I f0 :
⎧⎨
⎩

x �→ (x, x)

y �→ (y, 0)
z �→ (z,−z)

ft :
⎧⎨
⎩

x �→ (x, x)

y �→ (y, t)
z �→ (z,−z)

(1.12)

For all three cases, the non-trivial modules in the E1 page of the ICSS for ft are
contained in the single column

0

HAlt
0 (D3( ft ))

π3∗

HAlt
0 (D2( ft ))

π2∗

H0(Ut )

0

(1.13)

Reidemeister I. Take F : (x, t) �→ (t, ft (x)) as stable unfolding. Since in order
that F(t1, x1) = F(t2, x2), we must have t1 = t2, we can embed D2(F) in C

3 with
coordinates t, x1, x2. There, following the recipe preceding Lemma 1.5 above, we
find that D2(F) is defined by the equations

x2
1 − x2

2

x1 − x2
= x3

1 − t x1 − (x3
2 − t x2)

x1 − x2
= 0. (1.14)
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Simplifying, this gives

x1 + x2 = 0 x2
1 + x1x2 + x2

2 = t. (1.15)

Thus D2( f0) is a 0-dimensional A1 singularity. Setting t > 0 for a good real picture,
and denoting

√
t by P and −√

t by Q, D2( ft ) is its Milnor fibre, the point-pair
{(P, Q), (Q, P)}. Then for t �= 0, HAlt

0 (D2( ft )) � Q, generated by the class of
[(P, Q)] − [(Q, P)]. Note that HAlt

0 (D2( f0)) = 0, since when t = 0, P = Q. For
both f0 and ft , D3 = ∅.

In the E1 page (1.13), HAlt
0 (D3( ft )) = 0. We have π2∗ = 0, for π2∗

([(P, Q)] −
[(Q, P)]) = [P] − [Q], and Ut is connected, so that [P] = [Q]. Hence the spectral
sequence collapses at E1, and for t �= 0

H0(Xt ) = H0(Ut ) = Q, H1(Xt ) = HAlt
0 (D2( ft )) = Q.

Reidemeister II.Here both branches of the bi-germ f0 are immersions, so allmultiple
points are strict. Denote by 0x and 0y the origins of the coordinate systems with
coordinates x and y respectively. The domain of the stable perturbation ft is a disjoint
union Ut = Ux,t ∪ Uy,t , where Ux,t is a contractible neighbourhood of 0x and Uy,t is
a contractible neighbourhood of 0y . Thus H0(Ut ) � Q

2. There are no triple points,
and D2( ft ) consists of

{(x, y) ∈ (C, 0x ) × (C, 0y) : x = y, x2 − t = −y2} (1.16)

together with its image under the involution (1, 2) sending (x, y) to (y, x). When
t = 0 this is a pair of 0-dimensional A1 singularities, interchanged by (1, 2). To
describe D2( ft ) for t �= 0, denote the points in (C, 0x ) with x coordinates

√
t/2 and

−√
t/2 by Px and Qx respectively, and the points in (C, 0y)with y coordinates

√
t/2

and −√
t/2 by Py and Qy . Then for t �= 0,

D2( ft ) = {(Px , Py), (Py, Px ), (Qx , Qy), (Qy, Qx )}, (1.17)

with the involution (1, 2) interchanging the first and second points, and the third and
fourth. For t = 0, this collapses just to

D2( f0) = {(0x , 0y), (0y, 0x )}.

Thus for t �= 0, HAlt
0 (D2( ft )) is two-dimensional,with basis [(Px , Py)] − [(Py, Px )],

[(Qx , Qy)] − [(Qy, Qx )], and for t = 0, HAlt
0 (D2( f0)) has basis [(0x , 0y)]

− [(0y, 0x )]. With respect to the basis of HAlt
0 (D2( ft )) described above, and the

basis [Px ], [Py] for H0(Ut ), π2∗ has matrix

(
1 1

−1 −1

)
when t �= 0, and thus has

1-dimensional kernel and cokernel. The spectral sequence collapses at E2, and
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H1(Xt ) = E2
1,0 = ker π2

∗ � Q, H0(Xt ) = E2
0,0 = Coker π2

∗ � Q.

Reidemeister III. We use the same conventions as for Reidemeister II. Let Px and
Py denote the points in Ux,t and Uy,t with x and y coordinate t , and let Qy and Qz

denote the points in Uy,t and Uz,t with y and z coordinate −t . Note that when t = 0,
then Px = 0x , etc. Then

D2( ft ) ∩ (
Ux,t × Uy,t

) = {(Px , Py)}
D2( ft ) ∩ (

Ux,t × Uz,t
) = {(0x , 0y)}

D2( ft ) ∩ (
Uy,t × Uz,t

) = {(Qx , Qz)}
(1.18)

and

D3( f0)
⋂

Ux,t × Uy,t × Uz,t = {(0x , 0y, 0z)}.

Thus
HAlt

0 (D3( f0)) � Q HAlt
0 (D3( ft )) = 0

HAlt
0 (D2( f0)) � Q

3 HAlt
0 (D2( ft )) � Q

3

H0(U0) � Q
3 H0(Ut ) � Q

3

(1.19)

with bases shown in the following table.

Module Basis

HAlt
0 (D3( f0)) [(0x , 0y, 0z)] − [(0x , 0z, 0y)] + [(0z, 0x , 0y)] − [(0z, 0y, 0x )]

+[(0y, 0z, 0x )] − [(0y, 0x , 0z)]

HAlt
0 (D2( ft )) [(Px , Py)] − [(Py, Px )], −[(0x , 0z)] + [(0z, 0x )],

[(Qy, Qz)] − [(Qz, Qy)]

H0(Ut ) [0x ] = [Px ], [Py] = [Qy], [Qz] = [0z]

With respect to these bases, the differentials πk∗ have the following matrices (with
the first only for t = 0):

π3∗ =
⎛
⎝
1
1
1

⎞
⎠ π2∗ =

⎛
⎝

1 −1 0
−1 0 1
0 1 −1

⎞
⎠

In the spectral sequence for f0, the image of π3∗ kills the kernel of π2∗. When t �=
0, D3 vanishes, along with its homology, while HAlt

0 (D2( ft )) remains unchanged.
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The spectral sequence collapses at E2, and

H1(Xt ) = E2
1,0 = ker π2

∗ � Q, H0(Xt ) = E2
0,0 = Coker π2

∗ � Q.

2 New Examples: Disentanglements of Two Germs of
Corank 2

2.1 Summary of Results

2.1.1 A Germ of Corank 2 from 3-Space to 4-Space

Let
f0(x, y, z) = (x, y2 + xz + x2y, yz, z2 + y3).

The rows of the following table show relations between the ranks of the isotypal
subspaces of the homology groups of D2( ft ) and D3( ft ) and of the homology groups
of their projections to Ut , D2

1( ft ) and D3
1( ft ), and V D∞, the number of Whitney

umbrellas on D2
1( ft ), which plays a crucial role in our calculation. The left hand

column shows where in the paper the calculation is made. Blank spaces indicate
zeros.

datum H T
2 (D2) HAlt

2 (D2) H2(D2
1) H T

1 (D3) HAlt
1 (D3) Hρ

1 (D3) H1(D3
1) V D∞

(1.7) 1 1 = 18
δ(D3

1) in §4.2 1 = 8
δ(M3) in §4.2 1 = 0

(3.4) 1 1 1 −2 −1 = −1
(3.6) 1 = 10
(3.7) −1 1 −1 = −1
(3.9) 1 = 27

(3.10) − (3.13) 1 1 −1 1 1
2 = 0

(2.1)

The rank of the matrix of coefficients is 8, so we are able to compute all of the
invariants. The following table shows their values.

H T
2 (D2) HAlt

2 (D2) H2(D2
1) H T

1 (D3) HAlt
1 (D3) H ρ

1 (D3) H1(D3
1) V D∞

1 9 27 0 9 16 8 10
(2.2)

2.1.2 A Germ of Corank 2 from 5-Space to 6-Space

Let
f0(x, y, a, b, c) = (x2 + ax + by, xy, y2 + cx + ay, a, b, c).
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We are able to show

(a) HAlt
3 (D3( ft )) � Q and HAlt

4 (D2( ft )) = 0, so the vanishing homology of the
image comes from the triple points.

(b) H1(D3( ft )) = 0, H2(D3( ft )) = H ρ
2 (D3( ft )) � Q

2, and
H3(D3( ft )) = HAlt

3 (D3( ft )) � Q.
(c) H1(D2( ft )) = 0, H2(D2( ft )) = H T

2 (D2( ft )) � Q.
(d) dimQH4(D2( ft )) = dimQH3(D2( ft )) ≤ 1. Both groups are S2-invariant, by

Houston’s theorem [10, Theorem 4.6]

Statements (a) and (b) are shown in Sect. 4.3, and (c) and (d) are shown in Sect. 4.4.
This is the first example I know of a stable perturbation of a map-germ f0 :

(Cn, 0) → (Cn+1, 0) for which the vanishing homology of the multiple point spaces
is not confined to middle dimension, though of course many such examples are to
be expected when f0 has corank > 1.

3 Calculations for the Germ (CCC3, 0) → (CCC4, 0)

3.1 Triple Points

Since no closed formula for a set of generators for the ideal defining D3( f ) in (C3)3

is known, we do not have direct access to any of the invariants of D3( ft ). However,
we are able to build up a complete picture of the representation of S3 on its homology,
and in particular to calculate the dimension of HAlt

1 (D3( ft )), by working our way
up from its image under projection to Ut , D3

1( ft ).

Lemma 3.1 D3
1( ft ) is a smoothing of D3

1( f )

Proof We have to show both that D3
1( ft ) is smooth, and that it is the fibre of a flat

deformation of D3
1( f ). The first statement is a consequence of the classification of

stable map-germs. Up to A-equivalence, the only stable germs of maps C
3 → C

4

are

(a) a trivial unfolding of the parameterisation of the Whitney umbrella:

p1(u, v, w) = (u, v, w2, vw);

(b) a bi-germ whose two branches are a germ of type (a) and an immersion, meeting
in general position in C

4;
(c) a multi-germ consisting of k immersions meeting in general position, for k =

1, 2, 3, 4 (we denote these by (c1), …, (c4)).

Since ft is stable, every one if its germs is one of these types, and one can easily check
that for each of them, except for (c4), the triple point locus D3

1, where non-empty, is
smooth. In the mapping ft there are no points of type (c4), so D3

1 ft ) is smooth.
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For the second statement, let F : (C3 × S, (0, 0)) → (C4 × S, (0, 0)) be a stable
unfolding of f over a smooth base S. Then D3(F) has dimension 1 + dimS. By
the principle of iteration, D3

1(F) = M2(π
2 : D2(F) → C

3 × S) (where M2 means
the set of double points in the target). Now D2(F) is Cohen–Macaulay, and π2 is
finite and generically 1-1, so M2(π

2) is also Cohen Macaulay [20]. Flatness of the
projection D3

1(F) → S now follows from the fact that the dimension of its fibre,
D3

1( ft ), is equal to dimD3
1(F) − dimS. �

It follows from the lemma that rank H1(D3
1( ft )) = μ(D3

1( f ), 0). We find μ by
using Milnor’s formula μ = 2δ − r + 1 [13], where δ is the δ-invariant of a curve-
germ and r the number of its branches. We find D3

1( f ) as the zero locus of the
ideal f ∗(Fitt2), where Fitt2 := Fitt2( f∗ OC3,0)) is the second Fitting ideal of OC3,0

considered asOC4,0-module via f ∗. Macaulay2 [8] gives the following presentation
of f∗(OC3):

⎛
⎝

−X2U2 − 2XU V + V 2 − U W X4 + U2 + X3V X3U + 2X2V + X W
X4 + U2 + X3V −X6 − 2X2U − X V − W −X5 − XU + V

X3U + 2X2V + X W −X5 − XU + V −X4 − U

⎞
⎠ (3.1)

from which we see that

Fitt2 = (X4 + U, V, X2U + W ) (3.2)

and
f ∗Fitt2 = (x4 + x2y + y2 + xz, yz, x3z + z2). (3.3)

Primary decomposition of the ideal (3.3) shows that the curve D3
1( f ) has three

smooth components:

C1 = V (y, x3 + z), C2 = V (z, y − ξx2) C3 = V (z, y − ξ2x2)

where ξ = e2iπ/3, with parameterisations

γ1(t) = (t, 0,−t3), γ2(u) = (u, ξu2, 0), γ3(v) = (v, ξ2v2, 0).

Denoting byO�̃ := C{t} ⊕ C{u} ⊕ C{v} the ring of the normalisation of�, we find
that

n∗(O�,0) = (t3) ⊕ (u3) ⊕ (v3) + Sp{(1, 1, 1), (t, u, v), (t2, u2, v2), (0, ξu2, ξ2v2)} ⊂ O�̃ .

Hence

δ(D3
1( f )) = dimC

O�̃, 0

n∗ O�,0
= 5,

and
rank H1(D3

1( ft )) = μ(D3
1( f )) = 2δ − 3 + 1 = 8.
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The projection D3( ft ) → D3
1( ft ) is a double cover, with points (a, b, c) and

(a, c, b) sharing the same image, and no points of higher multiplicity, as f has no
quadruple points. The cover is simply branched at triple points of the form (a, b, b);
there are no triple points of the form (a, a, a), since if there were, then ft would have
multiplicity ≥3 at a, and as we see in the list of stable germs in the proof of Lemma
3.1, none has multiplicity > 2. Thus

χ(D3( ft )) = 2χ(D3
1( ft )) − #branch points = −14 − #branch points. (3.4)

To complete the calculation of the Euler characteristic of D3( ft ), we have to compute
the number of branch points. This seems not to be straightforward. Though the branch
points are points of intersection of D3

1( ft ) and the non-immersive locus R( ft ), both
of these are curves so their intersection inUt is not a proper intersection. Both curves
lie in the surface D2

1( ft ), where the intersection is proper, but D3
1( ft ) is the singular

locus of D2
1( ft ) and so again calculation of the intersection number is difficult. Instead

we use the fact that the branch points are Whitney umbrella points of D2
1( ft ), which

we explain in the next section, and count them using a theorem of Theo de Jong in [3].

3.2 Double Points

Lemma 3.2 (a, b, b) ∈ D3( ft ) if and only if (a, b) ∈ D2( ft ) is a Whitney umbrella
point of the projection π2 : D2( ft ) → Ut .

Proof This is, once again, the principle of iteration. The map

(a, b, c) �→ ((a, b), (a, c))

identifies D3( ft )with D2(π2 : D2( ft ) → Ut ). A point of the form (a, b, b) becomes
a fixed point of the involution ((a, b), (a, c)) �→ ((a, c), (a, b)), and thus a non-
immersive point of π2. By Remark 1.1, this must be a Whitney umbrella point. �

From Lemma 3.2 we see that to find the dimension of HAlt
1 (D3( ft )) we must

count the number of Whitney umbrellas on D2
1( ft ). Let W (D2

1( ft )) denote the set
of all such points. They appear when ft has a bi-germ of type (b) in the list in
the proof of Lemma 3.1: the Whitney umbrella appears on D2

1( ft ) at the source
point of the immersive member of the bi-germ. If R( ft ) is the set of non-immersive
points of ft , then W (D2

1( ft )) = D3
1( ft ) ∩ R( ft ), so one might hope to calculate the

number of points in W (D2
1( ft )) as an intersection number. But as remarked above,

the intersection is improper: both D3
1( ft ) and R( ft ) are curves. We are forced to

look further afield, and use a theorem of Theo de Jong [3]. The virtual number of
D∞ points on a germ of singular surface (S, x0) ⊂ C

3, with 1-dimensional singular
locus �, and with reduced equation h, is defined as follows. Let θ(h) be the restric-
tion to � of the germs of vector fields on (C3, x0) tangent to all level sets of h.
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Then θ(h) ⊂ θ� . Let �̃ be the normalisation of �. Since vector fields lift uniquely
to the normalisation we can consider the quotient θ�̃,x̃0/θ(h). De Jong defines

VD∞(S) = dimC

(
θ�̃,x̃0

θ(h)

)
− 3δ(�) (3.5)

and shows ([3, Theorem 2.5]) that V D∞(S) is conserved in a flat deformation of S
which induces a flat deformation of �.

Let us apply this to the case where S is the surface D2
1( f ) for a finitely determined

map-germ f : (C3, 0) → (C4, 0). In this case� = D3
1( f ). A deformation of f over

a smooth base S induces a flat deformation of D2
1( f ), since this is a hypersurface.

We have already seen that D3
1( f ) deforms flat over S. Thus we may apply de Jong’s

theorem. The special points on D3
1( ft ), where D2

1( ft ) is not a normal crossing of two
sheets, are of two types: Whitney umbrella points and triple points. We have already
seen howWhitney umbrella points arise; triple points correspond to quadruple points
of ft , in which four pieces of C

3 are mapped immersively and in general position.
We denote the number of these by Q.

Corollary 3.3 VD∞(D2
1( f )) = |Fix(1, 2)| − 8Q

Proof Each Whitney umbrella point contributes 1 to VD∞(D2
1). Each quadruple

point gives rise to four triple points on D2
1( f ). Each triple point contributes −2 to

VD∞(D2
1)) [3, Example 2.3.3]. So

VD∞(D2
1( f )) = #Whitney umbrellas − 2#triple points = |Fix(1, 2)| − 8Q.

�

Now we return to the map germ f of Sharland that is the focus of our interest.
To compute V D∞(D2

1) we need to find lifts to the normalisation �̃ of D3
1( f ) of

the vector fields annihilating the equation h of D2
1( f ). A Macaulay calculation finds

that modulo the defining ideal of D3
1( f ), these vector fields are generated by

χ1 = (x3y2 + 2xy3 − 3xz2)
∂

∂x
+ (2x2y3 + 4y4)

∂

∂y
− 9z3

∂

∂z

χ2 = (y4 + x2z2)
∂

∂x
− (2x3y3 − 2xy4)

∂

∂y
+ 3xz3

∂

∂z

These lift to

χ̃1 =
(

−3t7
∂

∂t
, (2 + ξ2)u7 ∂

∂u
, (2 + ξ)v7 ∂

∂v

)
, χ̃2 =

(
t8

∂

∂t
, ξu8 ∂

∂u
, ξ2v8 ∂

∂v

)

in θ�̃ = C{t}∂t ⊕ C{u}∂u ⊕ C{v}∂v . The OC3 -submodule of θ�̃ they generate is
equal to
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(t10)∂t ⊕ (u10)∂u ⊕ (v10)∂v + SpC{χ̃1, xχ̃1, x2χ̃1, χ̃2, xχ̃2}.

Hence dimC(θ�̃/θ(h)) = 25 so that

V D∞(D2
1) = 25 − 3 × 5 = 10. (3.6)

We have proved

Lemma 3.4 The involution (2, 3) has 10 fixed points on D3( ft ). �

Corollary 3.5 dimQH1(D3( ft ); Q) = 25.

Proof By the lemma and (3.4), χ(D3( ft )) = −24. �

Proposition 3.6 dimQH Alt
1 (D3( ft )) = 9, dimQH ρ

1 (D3( ft )) = 16, and dimQH Alt
2

(D2( ft )) = 9.

Proof We use the Lefschetz fixed point theorem:

10 = #fixed points of (2, 3) =
∑
k≥0

(−1)k
(
trace(2, 3)∗ : Hk(D3( ft )) → Hk(D3( ft ))

)

= 1 − trace(2, 3)∗ : H1(D3( ft ) → H1(D3( ft )) = 1 + dimQHAlt
1 (D3( ft )) − dimQH T

1 (D3( ft )).
(3.7)

The last equation here follows from the fact that the trace of (2, 3) on the irreducible
sign representation of S3, on the trivial representation and on the irreducible 2-
dimensional representation is −1, 1 and 0 respectively. It is straightforward to check
that each fixed point of (2, 3) is non-degenerate and therefore has Leftschetz number
1. Since H T

1 (D3( ft )) = 0,weobtain thefirst equality in the statement of the corollary.
The second equality now follows by Corollary 3.5 and the third by the fact that
18 = μI ( f ) = dimQHAlt

2 (D2( ft )) + dimQHAlt
1 (D3( ft )). �

Now we compute H2(D2( ft )). Although we have a formula for the ideal defining
D2( f ), we have nomethod of deriving from it a formula for the rank of the homology
of D2( ft ). So once again we proceed indirectly, by calculating the homology of the
image of its projection to Ut , D2

1( ft ).

Lemma 3.7 D2
1( ft ) has the homotopy type of a wedge of 27 2-spheres.

Proof We use the technique explained in Sect. 1.5, based on Siersma’s theorem [25]
that the rank of the vanishing homology of D2

1( f ) is equal to the number of critical
points of a reduced defining equation of D2

1( f ) which move off the zero level as t
moves off 0. The unfolding

F(t1, t2, t3, x, y, z) = (t1, t2, t3, x, y2 + xz + x2y, yz + t1y + t2z, z2 + y3 + t3y)

is stable, by Mather’s algorithm for the construction of stable germs as unfoldings of
germs of rank 0, and D2

1( ft ) is the fibre of D2
1(F) over t ∈ C

3. Let G be an equation
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for D2
1(F), let gt be its restriction to {t} × C

3, and let J rel
G be the relative jacobian

ideal (∂G/∂X, ∂G/∂Y, ∂G/∂Z). As in Sect. 1.5, we compute the number of critical
points of a reduced defining equation of D2

1( f ) which move off the zero level as t
moves off 0, as the intersection multiplicity

(
V (J rel

G : G∞) · ({0} × C
3)

)
(0,0) . (3.8)

In fact calculation shows that in this case (J rel
G : G∞) is equal to the transporter (J rel

G :
G). However, unlike the situation discussed in Sect. 1.5, V (J rel

G : G∞) is not Cohen–
Macaulay; it has projective dimension 5 as OC6,0-module, while its codimension is
3. To compute the intersection multiplicity, we have to use Serre’s formule clef, from
[23]. Denote (J rel

G : G∞) by Q; then

(V (Q), {0} × C
3)0 =

∑
j

(−1) jdimCTor
O
j

(O
Q

,
O

(t1, t2, t3)

)

where O = OC6,0. Since t1, t2, t3 is a regular sequence there are at most three non-
vanishing Tor modules, for j = 0, 1, 2. AMacaulay calculation shows that they have
dimension 29, 3, 1 respectively, so that

dimQH2(D2
1( ft )) = (V (Q), {0} × C

3)(0,0) = 29 − 3 + 1 = 27. (3.9)

�

It is striking that in this case V (Q) is not Cohen–Macaulay. In all of the examples
I know, where one uses the procedure of Sect. 1.5 to calculate μI , and G is the
defining equation of the image of the stable unfolding F , the corresponding space
V (J rel

G : G∞) is Cohen Macaulay.
To relate the homology of D2

1( ft ) to the homology of D2( ft ), we use the
image computing spectral sequence: D2

1( ft ) is the image of the projection π2 :
D2( ft ) → Ut . Taking account of the facts that ft has no quadruple points, so that π2

has no triple points, and that H1(D2( ft )) = 0, the E1 term is reduced to

0 = HAlt
0 (D2(π2)) HAlt

1 (D2(π2))

d1

0

H0(D2( ft )) 0 H2(D2( ft ))

(3.10)

and the spectral sequence collapses here. So

27 = dimCH2(D2
1( ft )) = dimCH2(D2( ft )) + dimCHAlt

1 (D2(π2)). (3.11)

Recall from Remark 1.1 the isomorphism i : D3( ft ) → D2(π2 : D2( ft ) → Ut ),
given by (a, b, c) �→ ((a, b), (a, c)). The involution on D2(π2) lifts to the
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transposition (2, 3) on D3( ft ). Thus under the induced isomorphism of first homol-
ogy, HAlt

1 (D2(π2)) corresponds to the −1 eigenspace of (2, 3)∗ on H1(D3( ft )). On
each copy of the 2-dimensional irreducible representation ρ, and on each copy of the
sign representation, (2, 3) has 1-dimensional−1 eigenspace. Thus, using Proposition
3.6 for the second equality,

dimQHAlt
1 (D2(π2)) = dimQHAlt

1 (D3( ft )) + 1

2
dimQH ρ

1 (D3( ft )) = 17, (3.12)

and, by (3.11),
dimQH2(D2( ft )) = 10. (3.13)

4 Calculations for the Germ (CCC5, 0) → (CCC6, 0)

The germ

f0(x, y, a, b, c) = (x2 + ax + by, xy, y2 + cx + ay, a, b, c)

has μI = Ae-codimension = 1, and versal unfolding

F(x, y, a, b, c, t) = (x2 + ax + by, xy, y2 + cx + (a + t)y, a, b, c, t).

Let Ut
ft

Xt be a stable perturbation of f0, with contractible domain Ut ⊂ C
5.

By (1.7),

1 = rank H5(Xt ) = rank HAlt
4 (D2( ft )) + rank HAlt

3 (D3( ft )).

As in the previous section, we approach D3( ft ) via its projection to Ut , D3
1( ft ). As

before, D3
1( ft ) is defined by the pull-back of the second Fitting ideal of OC5,0 con-

sidered as OC6,0-module. The OC6×C,(0,0)-module F∗
(OC5×C,(0,0)

)
has presentation

⎛
⎝

Y 2 − X Z − abZ − bcY + atY aY + cX + tY aY + bZ
aY + cX + tY −Z − ac Y − bc

aY + bZ Y − bc −X − ab − bt

⎞
⎠ . (4.1)

so
Fitt2 = (Z + ac, Y − bc, X + (a + t)b)

and



252 D. Mond

F∗Fitt2 = (y2 + y(a + t) + xc + ac, xy − bc, x2 + xa + yb + ab + bt)

= min2

⎛
⎝

−y −c
x + a −y − a − t

b x

⎞
⎠

Thecorresponding ideal for t = 0defines the3-fold singularity D3
1( f0).AMacaulay2

[8] calculation shows that the T 1 of D3
1( f0)) has dimension 1. Therefore D3

1( f0) is
isomorphic to the unique non-ICIS codimension 2CohenMacaulay 3-fold singularity
with τ = 1, which one can find in the table on p. 22 of [5]. This table also lists the
Betti numbers of a smoothing, from which we obtain

h0(D3
1( ft )) = 1, h1(D3

1( ft )) = 0, h2(D3
1( ft )) = 1, h3(D3

1( ft )) = 0. (4.2)

In particular, χ(D3
1( ft )) = 2.

Now D3( ft ) and D3
1( ft ) are smoothings of D3( f0) and D3

1( f0). Let π = π2 ◦ π3

be the projection from D3( ft ) to Ut , π(P, Q, R) = P . Then D3( ft ) is a branched
double cover of D3

1( ft ): for a generic point P ∈ D3
1( ft ), which shares its ft -image

with Q and R, π−1(P) = {(P, Q, R), (P, R, Q)}. Because there are no quadruple
points, the branching is of two types:

• over a point P where ft has a stable singularity of type �1,1,0,
π−1(P) = {(P, P, P)}. The set of all such points P is denoted �1,1 ft . It lies
in the closure of the set of branch points of the second kind:

• if ft (P) = ft (Q)with ft an immersion at P and of type�1,0 at Q, then π−1(P) =
{(P, Q, Q)}, so (P, Q, Q) is a branch point.

Wedenote the set of all suchpoints P by D3
1,0( ft ).Note that (Q, P, Q) and (Q, Q, P)

are not branch points.
Thus

χ(D3( ft )) = 2χ(D3
1( ft )) − χ(D3

1,0( ft )) = 4 − χ(D3
1,0( ft )). (4.3)

4.1 Equations for �1,1 f

The ramification ideal R f , generated by the 5 × 5 minors of the jacobian matrix J of
f0 defines the non-immersive locus� f of f0. Then�1,1( f ) is defined by the ideal of
maximal minors of the matrix obtained by concatenating J with the jacobian matrix
of a set of generators of R f (see e.g. [12]). By removing from this ideal anm-primary
component we obtain the ideal

S := (3y + a, 3x + a, ac − 3bc, ab − 3bc, a2 − 9bc),
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easily recognised as defining a curve isomorphic to the germ of the union of the three
coordinate axes in (C3, 0). This has δ = 2 and thereforeμ = 2δ − r + 1 = 2. It is not
quite evident that this is deformed flat in a deformation of f0, but nevertheless this is
the case. The corresponding locus for the 1-parameter versal deformation F of f0 has
an m-primary component, whose removal leaves a 2-dimensional Cohen–Macaulay
component which restricts to �1,1 f0.

4.2 Equations for D3
1,0( f0)

By the description above, D3
1,0( f0) is the “shadow component” of f −1

0 ( f (� f0)),
that is, the closure of f −1

0 ( f0(� f0)) � � f0. To find equations for it, we first look for
equations for the support of f0∗(OS /R f0). Let I0 be the radical of the zero’th Fitting
ideal of f0∗(OS /R f0), let I1 = f ∗

0 (I0), and let I2 be the saturation I1 : R∞
f0
, in this

case equal to I1 : R2
f0
. After some effort one finds that I2 is the ideal of maximal

minors of the 2 × 4 matrix

(
a b x y

−3y + a x + a −y − a 3y − a + 4c

)
.

This is isomorphic to the cone over the rational normal curve of degree 4 (Pinkham’s
example). In the versal deformation F , the same construction leads to the ideal of
maximal minors of the 2 × 4 matrix

(
a b x y + t

−3y + a + t x + a −y − a − t 3y − a + 4c − t

)

One checks that this defines a smoothing of D3
1,0( f0), over the Artin component of

the base space (since it is given by theminors of a 2 × 4matrix). So the only non-zero
reduced Betti number is β2 = 1 (see e.g. [22] p. 173). In particular

χ(D3
1,0( ft )) = 2. (4.4)

4.3 Homology of D3( ft)

By (1.7) and Lemma 1.4,

Hi (D3( ft )) = HAlt
i ⊕ H ρ

i . (4.5)

Denote by hAlt
i and hρ

i the ranks of these summands.
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Because there are no quadruple points, D3
1( ft ) is the quotient of D3( ft ) by the

Z2-actiongeneratedby the transposition (2, 3)(P, Q, R) = (P, R, Q). So Hi (D3
1( ft ))

is the part of Hi (D3( ft )) invariant under (2, 3)∗. Since H T
i (D3( ft )) = 0 for i > 0,

the (2, 3)∗ -invariant part of Hi (D3( ft )) is the (2, 3)∗-invariant part of H ρ
i (D3( ft )),

and thus isomorphic to the sum of copies of the subspace of ρ invariant under (2, 3).
The (2, 3)-invariant subspace of ρ is 1-dimensional. Thus,

hi (D3
1( ft )) = 1

2
hρ

i (D3( ft )) (4.6)

for i > 1. Hence, by (4.2),

hρ
1(D3( ft )) = 0, hρ

2(D3( ft )) = 2, hρ
3(D3( ft )) = 0. (4.7)

On the other hand, as D3( ft ) is a branched cover of degree 2 of D3
1( ft ), branched

along D3
1,0( ft ), it follows that

χ(D3( ft )) = 2χ(D3
1( ft )) − χ(D3

1,0( ft )) = 2.

Putting this together with (4.6), we have

2 = χ(D3( ft )) = 1 −
(

hρ
1 + hAlt1

)
+

(
hρ
2 + hAlt2

)
−

(
hρ
3 + hAlt3

)
= 1 − hAlt1 + hAlt2 + 2 − hAlt3 .

so
− 1 = −hAlt

1 + hAlt
2 − hAlt

3 . (4.8)

By [10, Theorem 4.6], the alternating homology of the multiple point spaces of a sta-
ble perturbation of a finitely determined map-germ is concentrated in middle dimen-
sion. As D3( ft ) is a 3-fold, this means hAlt

i (D3( ft )) = 0 for i �= 3 and so from (4.8),
hAlt
3 (D3

1( ft )) = 1. Since here μI = 1, we conclude from (1.7) that hAlt
4 (D2( ft )) = 0.

Also, from (4.7) and (4.5), we conclude that H1(D3( ft )) = 0, dimQH2(D3( ft )) = 2
and dimQH3(D3( ft )) = 1.

Remark 4.1 An application of the extended version of the Lefschetz Fixed Point
Theorem gives the same conclusion: the fixed set of the involution (2, 3) on D3( ft )

is homeomorphic to the branch locus D3
1,0( ft )), and so by the extended version of

the Lefschetz Fixed Point Theorem,

2 = χ(Fix(2, 3)) =
∑

i

(−1)i
(
Tr(2, 3)∗ : Hi (D3( ft )) → Hi (D3( ft ))

)
.

Because χρ(2, 3) = 0 and H T
i (D3( ft )) = 0 for i > 0, this alternating sum is equal

to 1 + hAlt
1 − hAlt

2 + hAlt
3 . This gives us the same information as (4.8).
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4.4 Double Points

The double locus of F is defined by F∗(Fitt2(F∗(OS)), which is a principle ideal
generated by the composite with F of the determinant of the lower right 2 × 2
submatrix of (4.1). We will call this composite G. As in Lemma 3.7, D2

1( ft ) has the
homotopy type of a wedge of 4-spheres, whose number is the intersection number
of V (J rel

G : G∞) with C
5 × {0}. A Macaulay2 [8] calculation gives

(J rel
G : G∞) = (J rel

G : G) = (3c − t, 3b + t, 2a + t, 6y + t, 6x − t). (4.9)

The zero-locus of this ideal is a smooth curve of degree 1 over the t-axis, so D2
1( ft )

is homotopy-equivalent to a single 4-sphere, by Siersma’s theorem [25].

Themapof pairs (D2( ft ), D3
2( ft ))

π2
1

(D2
1( ft ), D3

1( ft )) induces amorphism

between the long exact sequences of reduced homology of the pairs. Because π2
1 :

D2 → D2
1 is an isomorphismoutside D3

2 , themorphisms Hi (D2, D3
2) → Hi (D2

1, D3
1)

are isomorphisms for all i . From the segment

· · · H2(D2, D3
2) H1(D3

2) H1(D2) H1(D2, D3
2) 0

· · · H2(D2
1, D3

1) H1(D3
1) H1(D2

1) H1(D2
1, D3

1) 0

and the fact that H1(D2
1) = 0 = H1(D3

2) (the latter equality because D3
2 � D3, as

there are no quadruple points) we see that H1(D2( ft )) = 0. Because H2(D2
1, D3

1) is
sandwiched between 0’s in the lower sequence, continuing to the left we have

Q Q2

H4(D2, D3
2 ) H3(D3

2 ) H3(D2) H3(D2, D3
2 ) H2(D3

2 ) H2(D2) 0

H4(D2
1 , D3

1 ) H3(D3
1 ) H3(D2

1 ) H3(D2
1 , D3

1 ) H2(D3
1 ) H2(D2

1 ) 0

Q 0 0 Q Q 0

We deduce successively

• H3(D2, D3
2) � Q and H3(D2, D3

2) → H2(D3
2) is injective, and therefore

• H2(D2) � Q.
• H3(D3

2) → H3(D2) is surjective

The left end of the upper sequence is thus
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0 H4(D2) H4(D2, D3
2) H3(D3

2) H3(D2) 0

with the two inner modules both isomorphic to Q.

4.5 Homology of M2( ft)

Bycomparing the homologyof D2( ft ) and M2( ft ) (whichwewill shortly determine),
we might hope to gain some information about the homology of D2( ft ). All of the
homology groups of M2( ft ) vanish. This can be seen with the help of the morphism
ft∗ from the long exact sequence of the pair (Ut , D2

1( ft )) to the long exact sequence of
the pair (Xt , M2( ft )). Because ft is an isomorphism outside D2

1( ft ), the morphisms
of relative homology groups

ft∗ : Hi (Ut , D2
1( ft )) → Hi (Xt , M2( ft ))

are all isomorphisms. From the top row of the diagram

0 0 = H5(Ut ) H5(Ut , D2
1) H4(D2

1) H4(Ut ) = 0

0 H5(Xt ) H5(Xt , M2) H4(M2) H4(Xt ) = 0

we see that H5(Ut , D2
1) � Q. Hence H5(Xt , M2) � Q also, and then from the bottom

row it follows that H4(M2) = 0. A similar argument shows that Hi (M2) = 0 for
0 < i < 4.

In fact Houston shows in [10] by a rather more sophisticated argument that for a
stable perturbation ft of an A-finite germ ft , all of the Mk( ft ) have the homotopy
type of wedges of spheres in middle dimension. In this case the number of spheres
in the wedge homotopy-equivalent to M2( ft ) is 0.

4.6 Relation Between D2 and M2

There is a surjective map f (2)
t : D2( ft ) → M2( ft ), f (2)

t (P, Q) = ft (P). The multi-
ple point spaces of f (2)

t are related to those of ft , but are not identical. Consider the
following maps:

α : D2( f ) → D2( f (2)
t ), (P, Q) �→ (

(
(P, Q), (Q, P)

)

β : D2( f (2)
t ) → D2( ft ),

(
(P, Q), (R, S)

) �→ (P, R).
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Denote by (1, 2) the usual involution on D2. The diagrams

D2( ft )

α

(1,2)
D2( ft )

α

D2( f (2)
t )

(1,2)
D2( f (2)

t )

D2( f )
(1,2)

D2( f )

D2( f (2)
t )

(1,2)

β

D2( f (2)
t )

β

both commute, and β ◦ α is the identity on D2( f ). It follows that α and β induce
morphisms

HAlt
i (D2( ft ))

α∗
HAlt

i (D2( f (2)
t )

β∗

and β∗ ◦ α∗ is the identity.
However α is not surjective and β is not injective. Suppose that (P, Q, R) ∈

D3( ft ) with P, Q, R pairwise distinct. Then

(
(P, Q), (Q, P)

)
,
(
(P, Q), (Q, R)

)
,
(
(P, R), (Q, P)

)
,
(
(P, R), (Q, R)

)

all lie in D2( f (2)
t ) and all are mapped by β to (P, Q). And, of these, only(

(P, Q), (Q, P)
)
is in the image of α.

We draw no further conclusion from this, but ask whether further consideration
of the multiple point spaces of the map f (2)

t and indeed of f (k)
t for higher k may

provide useful information.
Nevertheless, from the vanishing of H1(M2( ft )), and the image-computing spec-

tral sequence, we obtain a second argument that H1(D2( ft )) = 0.
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