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Abstract In this paper we study holomorphic foliations with singularities having
a homogeneous transverse structure of projective model (i.e., IPSL(2,C) model).
Our basic situation is the case of a foliation with singularities F on a complex
analytic space M of dimension two and the structure exists in the complement of
some analytic subset S ⊂ M of codimension one. The main case occurs, as we shall
see, when the analytic set is invariant by the foliation. We address both, the local
and the global cases. This means two basic situations: (i) M is a projective surface
(like M = CP(2) orC × C) and (ii) M = (C2, 0)which means the case of germs of
foliations at the origin 0 ∈ C2, having an isolated singularity at the origin.Our focus is
the extension of the structure in a suitable sense. After performing a characterization
of the existence of the structure in terms of suitable triples of differential forms, we
consider the problem of extension of such structures to the analytic invariant set for
germs of foliations and for foliations in complex projective spaces. Basic examples of
this situation are given by logarithmic foliations and Riccati foliations.We also study
the holonomy of such invariant sets, as a consequence of a strict link between this
holonomy and the monodromy of a projective structure. These holonomy groups
are proved to be solvable. Our final aim is the classification of such object under
some mild conditions on the singularities they exhibit. In this work we perform
this classification in the case where the singularities of the foliation are supposed
to be non-dicritical and non-degenerate (more precisely, generalized curves). This
case, we will see, corresponds to the transversely affine case and therefore to the
class of logarithmic foliations. The more general case, which has to do with Riccati
foliations, is dealt with by some extension results we prove and evoking results from
Loray-Touzet-Vitorio.
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1 Foliations and Transverse Structure

The Riccati differential equation

p(x)dy − (a(x)y2 + b(x)y + c(x))dx = 0

where (x, y) ∈ C2 and p, a, b, c are complex polynomials is well-known to be a
basic model for complex foliations, on projective surfaces, with projective transverse
structure outside an invariant algebraic curve. Similarly the Bernoulli equation

p(x)dy − (a(x)yk+1 + b(x)y)dx = 0

stands for a model with an affine structure outside of an algebraic invariant curve [8,
27]. In this work we develop the study and classification of transversely projective
holomorphic foliations. More precisely, we study codimension one holomorphic
foliations with singularities, under the hypothesis of the existence of a projective
transverse structure off some analytic codimension one subset.

Recall that a foliation (holomorphic of codimension one, with singularities) is
transversely projective if the corresponding non-singular foliation is given by an atlas
of local submersions with projective relations, i.e., two such submersions y : U → C

and ỹ : Ũ → C are related by ỹ = ay+b
cy+d for some a, b, c, d ∈ C locally constant and

satisfying ad − bc = 1. This is a particular case of foliation having a homogeneous
transverse structure (cf. [4]) and in the holomorphic framework it is natural to con-
sider the case where the foliation exhibits singularities and the transverse structure
is defined in the complement of some analytic subset of codimension one [27]. This
situation has two main examples given by the class of logarithmic foliations, i.e.,
foliations defined by simple poles closed meromorphic one-forms; and by the class
of Riccati foliations, i.e., foliations induced by Riccati differential equations.

1.1 Holomorphic Foliations

The basic concepts of differentiable manifolds (as tangent space, tangent bundle,
etc.) can be introduced in the complex holomorphic setting. This is also the case of
the concept of foliation:

Definition 1 (holomorphic foliation) A holomorphic foliation F of (complex)
dimension k on a complex manifold M is given by a holomorphic atlas {ϕ j : Uj ⊂
M → Vj ⊂ Cn} j∈J with the compatibility property: Given any intersection Ui ∩
Uj �= ∅ the change of coordinates ϕ j ◦ ϕ−1

i preserves the horizontal fibration on
Cn 	 Ck × Cn−k .

Examples of such foliations are, like in the “real” case, given by non-singular
holomorphic vector-fields, holomorphic submersions, holomorphic fibrations and
locally free holomorphic complex Lie group actions on complex manifolds.
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Remark 1 (i) As in the “real” case, the study of holomorphic foliations may be
very useful in the classification theory of complex manifolds.

(ii) In a certain sense, the “holomorphic case” is closer to the “algebraic case” than
the case of real foliations.

1.2 Holomorphic Foliations with Singularities

One of the most common compactifications of the complex affine space Cn is the
complex projective space CP(n). It is well-known that any foliation (holomorphic)
of codimension k ≥ 1 onCP(n)must have some singularity (in other words,CP(n),
for n ≥ 2, exhibits no holomorphic foliation in the sense we have considered up to
now, cf. [2].) Thus one may consider such objects: singular (holomorphic) foliations
as part of the zoology. Let us illustrate this concept through some examples:

Example 1 (Polynomial vector fields onC2)Given affine coordinates (x, y) ∈ C2, let
X = P(x, y)(∂/∂x) + Q(x, y)(∂/∂y) = (P, Q) be a polynomial vector field (with
isolated singularities) on C2. We have an ordinary differential equation:

{
ẋ = P(x, y)
ẏ = Q(x, y)

The local solutions are given by Picard’s Theorem (the existence and uniqueness
theorem of ordinary differential equations):

ϕ(z) = (x(z), y(z))

dϕ

dz
= ϕ̇(z) = X (ϕ(z))

Gluing the images of these unique local solutions, we can introduce the orbits of X
on C2. The orbits are immersed Riemann surfaces on C2, which are locally given by
the solutions of X .

Now we may be interested in what occurs these orbits in “a neighborhood of
the infinity”. We may for instance compactify C2 as the projective plane CP(2) =
C2 ∪ L∞, L∞ ∼= CP(1).

1. What happens to X in a neighborhood of L∞?
2. Is it still possible to consider its orbits around L∞?

We may rewrite X as the coordinate system (u, v) = (1/x, y/x): X (u, v) =
1
um Y (u, v), m ∈ IN ∪ \0 where Y is a polynomial vector field, also with isolated sin-
gularities. The exterior product of X and Y is zero in common domainU : X ∧ Y =
0. Thus, orbits of Y (or X ) are orbits of X (or Y ), respectively in U . Then the orbits
of X extend to the (u, v)-plane as the corresponding orbits of Y along L∞. In this
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same way, we may consider the extension of the orbits to the (r, s) = (x/y, 1/y)
coordinate system. These extensions are called leaves of a foliation induced by X
on CP(2). We obtain this way: A decomposition of CP(2) into immersed complex
curves which are locally arrayed, as the orbits (solutions) of a complex vector field.
This is a holomorphic foliation F with singularities of dimension one on CP(2).

Remark 2 (singularities are defined by differential forms) Assume that we have
a holomorphic non-singular foliation F0 on U \ {0}, 0 ∈ C2, U ∩ sing(F) = \0.
Choose local coordinates (x, y) centered at 0 and define a meromorphic function
f : U \ {0} → C, p ∈ U \ {0}, as f (p) = the inclination of the tangent to the leaf
L p of F0. By Hartogs’ Extension Theorem [18, 34] f extends to a meromorphic
function f : U → C. We may write f (x, y) = a(x,y)

b(x,y) , a, b ∈ O(U ) and define

dy

dx
= f (x, y) = b(x, y)

a(x, y)
,

that is, {
ẋ = a(x, y)

ẏ = b(x, y).

}

Therefore,F is defined by a holomorphic 1-formω = a(x, y) dy − b(x, y) dx inU .

The above remark also motivates the following definition:

Definition 2 (holomorphic foliation with singularities) Let M be a complex mani-
fold. A singular holomorphic foliation of codimension one F on M is given by an
open cover M = ⋃

j∈J U j and holomorphic integrable 1-forms ω j ∈ ∧1
(Uj ) such

that if Uj ∩Uj �= ∅, then ωi = gi jω j in Ui ∩Uj , for some gi j ∈ O∗(Ui ∩Uj ). We
put sing(F) ∩Uj = {p ∈ Uj ; ω j (p) = 0} to obtain sing(F) ⊂ M , a well-defined
analytic subset of M , called singular set ofF . The open subset M \ sing(F) ⊂ M is
foliated by a holomorphic codimension one (non-singular) foliationF0. By definition
the leaves of F are the leaves of F0.

Remark 3 Wemay always assume that sing(F) ⊂ M has codimension≥ 2. If ( f j =
0) is an equation of codimension one component of sing(F) ∩Uj , then we getω j =
f nj ω̄ j where ω̄ j is a holomorphic 1-form and sing(ω̄ j ) does not contain ( f j = 0).

Remark 4 (Convention) Let M be a complex manifold. From now on, in the absence
of a specific mention, by foliation on M we shall mean a codimension one holo-
morphic foliation with singularities. We shall also assume that the singular set
sing(F) ⊂ M has codimension ≥ 2. In particular, if M has dimension two then
sing(F) is a discrete set of points of M .

Example 2 Let f : M → C be ameromorphic function on the complexmanifoldM .
Then ω = d f defines a holomorphic foliation of codimension one with singularities
on M . The leaves are the connected components of the levels { f = c}, c ∈ C.



On Singular Holomorphic Foliations with Projective … 185

Example 3 Let G be a complex Lie group and ϕ : G × M → M a holomorphic
action of G on M . The action is foliated if all its orbits have a same fixed dimension.
In this case there exists a holomorphic non-singular foliation F on M , whose leaves
are orbits of ϕ. However, usually, actions are not foliated, though they may define
singular holomorphic foliations. For instance, an action ϕ of G = (C,+) on M ,
ϕ : C × M → M is a holomorphic flows. We have a holomorphic complete vector
field X = ∂φ

∂t |t=0 on M . The singular set of X may be assumed to be of codimension
≥ 2 and we obtain a holomorphic singular foliation of dimension oneF on M whose
leaves are orbits of X , or equivalently, of ϕ.

Problem 1 Study and classify actions of complex Lie groups G on a given compact
complex M , in terms of the corresponding foliation.

The general problem above may be therefore regarded under the stand-point of
singular holomorphic foliations theory.

Example 4 (Darboux foliations) Let M be a complex manifold and let f j :
M → C be meromorphic functions and λ j ∈ C∗ complex numbers, j = 1, . . . , r .

The meromorphic integrable 1-form ω = (
r∏
j=1

f j )
r∑

i=1
λi

d fi
fi

defines aDarboux folia-

tionF = F(ω) onM . The foliationF has f =
r∏
j=1

f
λ j

j as a logarithmic first integral.

Example 5 (Riccati foliations) A Riccati Foliation onC × C is given in some affine
chart (x, y) ∈ C × C by a polynomial one-form ω = p(x)dy − (y2c(x) − yb(x) −
a(x))dx . This will be thoroughly studied in the next section.

The concept of holonomy in the singular case Let now F be a holomorphic foli-
ation (with isolated singularities) on a complex manifold M . Given a leaf L0 of F
we choose any base point p ∈ L0 ⊂ M \ sing(F) and a transverse disc Σp ⊂ M
to F centered at p. Denote by Di f f (Σp, p) the group of germs of complex dif-
feomorphisms of Σp with a fixed point at p. The holonomy group of the leaf L0

with respect to the disc Σp and to the base point p is the image of the representa-
tion Hol : π1(L0, p) → Di f f (Σp, p) obtained by lifting closed paths in L0 with
base point p, to paths in the leaves of F , starting at points z ∈ Σp, by means of a
transverse fibration to F containing the disc Σp [6, 17]. Given a point z ∈ Σp we
denote the leaf through z by Lz . Given a closed path γ ∈ π1(L0, p) we denote by
γ̃z its lift to the leaf Lz and starting (the lifted path) at the point z. Then the image
of the corresponding holonomy map is h[γ ](z) = γ̃z(1), i.e., the final point of the
lifted path γ̃z . This defines a diffeomorphism germ map h[γ ] : (Σp, p) → (Σp, p)
and also a group homomorphism Hol : π1(L0, p) → Di f f (Σp, p). The image
Hol(F , L0,Σp, p) ⊂ Di f f (Σp, p) of such homomorphism is called the holonomy
group of the leaf L0 with respect to Σp and p. By considering any parametrization
z : (Σp, p) → (D, 0)wemay identify (in a non-canonical way) the holonomy group
with a subgroup of Di f f (C, 0). It is clear from the construction that the maps in the
holonomy group preserves the leaves of the foliation.
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Separatrices and local holonomies Fix now a germF of holomorphic foliationwith
a singularity at the origin 0 ∈ C2. Choose a representativeF(U ) forF , defined in an
open neighborhoodU of the origin. A leaf ofF(U ) accumulating only at 0 is closed
off 0, thus by Remmert–Stein extension theorem [19] it is contained in an irreducible
analytic curve through 0. Such a curve is called a local separatrix of F through 0.
A separatrix is therefore the union of a leaf of F |U which is closed off the singular
point, and the singular point 0 ∈ C2. By Newton–Puiseux parametrization theorem,
ifU is small enough, there is an analytic injective map f : D → U from the unit disk
D ⊂ C into the separatrix,mapping the origin to 0 ∈ C2, and non-singular outside the
origin 0 ∈ D. Therefore the leaf contained in a separatrix, locally has the topologyof a
punctured disk. In particular, given a separatrixΓ wemay choose a loop γ ∈ Γ \ {0}
generating the (local) fundamental group π1(Γ \ {0}). The corresponding holonomy
map hγ is defined in terms of a germ of complex diffeomorphism at the origin of a
local disc Σ transverse to F and centered at a non-singular point q ∈ Γ \ {0}. This
map is well-defined up to conjugacy by germs of holomorphic diffeomorphisms, and
is generically referred to as local holonomy of the separatrix Γ with respect to the
singularity 0 ∈ C2.

1.3 Irreducible Singularities, Separatrices and Reduction of
Singularities

Let ω = a(x, y)dx + b(x, y)dy be a holomorphic one-form defined in a neighbor-
hood 0 ∈ U ∈ C2. We say that 0 ∈ C2 is a singular point of ω if a(0, 0) = b(0, 0) =
0, and a non-singular point otherwise. We say that 0 ∈ C2 is an irreducible singular
point of ω if the eigenvalues λ1, λ2 of the linear part of the corresponding dual vector
field X = −b(x, y) ∂

∂x + a(x, y) ∂
∂y at 0 ∈ C2 satisfy one of the following conditions:

(1) λ1.λ2 �= 0 and λ1/λ2 /∈ Q+
(2) either λ1 �= 0 and λ2 = 0, or vice-versa.

In case (1) there are two invariant curves tangent to the eigenvectors corresponding to
λ1 and λ2. In case (2) there is an invariant curve tangent at 0 ∈ C2 to the eigenspace
corresponding to λ1. These curves are called separatrices of the foliation.

Suppose that 0 ∈ C2 is either a non-singular point or an irreducible singularity of a
foliationF . Then in suitable local coordinates (x, y) in a neighborhood 0 ∈ U ∈ C2

of the origin, we have the following local normal forms for the one-forms defining
this foliation [7]:

(Reg) dy = 0, whenever 0 ∈ C2 is a non-singular point of F .
and whenever 0 ∈ C2 is an irreducible singularity of F̃ , then either

(Irr.1) xdy − λydx + ω2(x, y) = 0 where λ ∈ C\Q+, ω2(x, y) is a holomorphic
one-form with a zero of order ≥ 2 at (0, 0). This is called non-degenerate
singularity. Such a singularity is resonant if λ ∈ Q− and hyperbolic if λ /∈ IR,
or
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(Irr.2) yt+1dx − [x(1 + λyt ) + A(x, y)]dy=0 ,whereλ ∈ C, t ∈ IN={1, 2, 3, . . . }
and A(x, y) is a holomorphic function with a zero of order ≥ t + 2 at (0, 0).
This is called saddle-node singularity. The strong manifold or strong separa-
trix of the saddle-node is given by {y = 0}. If the singularity admits another
separatrix then it is necessarily smooth and transverse to the strong manifold,
it can be taken as the other coordinate axis and will be called centralmanifold
of the saddle-node. This class of irreducible singularity is thoroughly studied
in [22].

Therefore, for a suitable choice of the coordinates, we have {y = 0} ⊂ sep(F ,U )

⊂ {xy = 0},where sep(F ,U )denotes the unionof separatrices ofF through0 ∈ C2.
An irreducible singularity xdy − λydx + . . . = 0 is in the Poincaré domain if

λ /∈ IR− and it is in the Siegel domain otherwise. For singularities in the Poincaré
domain, the non-resonance condition (λ /∈ Q) actually implies, by Poincaré lineariza-
tion theorem, that the singularity is analytically linearizable (cf. [16]). For singular-
ities in the Siegel domain, this question is quite more delicate [23]).

Given a foliationF of dimension one on a complex surface M with finite singular
set sing(F), theTheoremof reduction of singularities of Seidenberg reads as follows:

Theorem 1 ([31]) There is a proper holomorphic map π : M̃ → M which is a finite
composition of quadratic blowing-up’s at the singular points of F in M such that
the pull-back foliation F̃ := π∗F of F by π satisfies:

(a) sing(F̃) ⊂ π−1(sing(F)), and
(b) Any singularity p̃ ∈ sing(F̃) is irreducible.

Indeed, we can say more:
We call F̃ the desingularization or reduction of singularities of F . Moreover,

the exceptional divisor E = π−1(sing(F)) ⊂ M̃ of the reduction π can be written
as E = ⋃m

j=1 IP j , where each IP j is diffeomorphic to an embedded projective line
CP(1) introduced as a divisor of the successive blowing-up’s. The IP j are called
components of the divisor E . A singularity q ∈ sing(F) is non-dicritical if π−1(q)

is invariant by F̃ . Any two components IPi and IP j , i �= j , intersect (transversely) at
most one point, which is called a corner. Moreover, there are no triple intersection
points. Any non-invariant component of the exceptional divisor is transverse to the
lifted foliation F̃ at every point. Given any analytic curve Λ ⊂ M we denote by
Λ̃ := π−1(Λ \ sing(F)) ⊂ M̃ the strict transform of Λ.

As seen above, a separatrix ofF at 0 ∈ C2 is the germ at 0 ∈ C2 of an irreducible
analytic curve, containing the singular point,which is invariant byF . By the reduction
of singularities (Theorem 1) we conclude that a separatrix Γ of F is the projection
Γ = π(Γ̃ ) of a curve Γ̃ invariant by F̃ and transverse to the exceptional divisor
π−1(0). A singularity is called dicritical if it exhibits infinitely many separatrices.
We shall say that a separatrix Γ is a dicritical separatrix if Γ̃ meets the exceptional
divisor only at non-singular points. Equivalently, Γ = π(Γ̃ ) is non-dicritical if Γ̃

is a separatrix of some singularity of F̃ . A non-dicritical separatrix is geometrically
characterized by the fact that it is isolated in the set of separatrices. Indeed, notice that
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a neighborhood of some projective line in a finite sequence of blowing-ups starting at
the origin corresponds to what we call sectorwith vertex at the origin. Thus, from the
Resolution theorem (Theorem 1) a dicritical separatrix is always one which is con-
tained in the interior of a “sector of separatrices”. Given a representative for the germ
F in a neighborhoodU of the singularity, we shall denote byN D(sep(F ,U )) ⊂ U
the analytic set which is the union of the non-dicritical separatrices of F in U .

Definition 3 (generalized curve - [10] p. 144) A germ of a foliation singularity at
the origin 0 ∈ C2 is a generalized curve if (i) it is non-dicritical and (ii) it exhibits
no saddle-node in its reduction by blow-ups.

Generalized curves play an important role in the zoology of the singularities of
holomorphic foliations. They are those whose desingularization/reduction of singu-
larities is like the one of a holomorphic function f : C2, 0 → C, 0 [10]. In this work
we will consider a slightly more general concept which is the following:

Definition 4 ((non-resonant) extended generalized curve) A germ of a foliation
singularity at the origin 0 ∈ C2 will be called an extended generalized curve if the
singularity exhibits no saddle-node in its reduction by blow-ups. This includes the
case of dicritical singularities. An extended generalized curve singularity is called
non-resonant if each connected component of the invariant part of exceptional divisor
contains some non-resonant singularity.

2 Foliations with Projective Transverse Structure

2.1 Transversely Homogeneous Foliations

A (transversely) holomorphic foliation F on a smooth manifold M has a holo-
morphic homogeneous transverse strucutre if there are a complex Lie group G,
a connected closed subgroup H < G such that F admits an atlas of submer-
sions y j : Uj ⊂ M → G/H satisfying yi = gi j ◦ y j for some locally constant map
gi j : Ui ∩Uj → G for eachUi ∩Uj �= ∅. In other words, the transversely holomor-
phic atlas of submersions for F has transiction maps given by left translations on
G and submersions taking values on the homogeneous space G/H . We shall say
that F is transversely homogeneous of model G/H . Some important properties of
transversely homogeneous holomorphic foliations are listed below:

1. Any transversely homogeneous holomorphic foliation is a transversely holomor-
phic foliation with a holomorphic homogeneous transverse structure.

2. Given a foliation F on M as in (1) with model G/H then any real submanifold
M ⊂ M transverse to F is equipped with a transversely holomorphic foliation
F1 = F |M with holomorphic homogeneous transverse structure of model G/H .

3. Let F = G/H be an homogeneous space of a complex Lie group G (H � G is a
closed Lie subgroup). Any homomorphism representation ϕ : π1(N ) → Aut (F)
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gives rise to a transversely holomorphic foliationFϕ on (Ñ × F)/ϕ = Mϕ which
is holomorphically transversely homogeneous of model G/H .

4. For the case G = IPSL(2,C) and H ⊂ G is the affine group H = A f f (C)

(isotropy group of the point at infinity ∞ ∈ CP1), we have that the quotient
G/H 	 CP1 is the Riemann sphere and the foliations with this transverse model
are called transversely projective.

More precisely we have, for the non-singular case:

Definition 5 (transversely projective foliation: non-singular) A codimension one
non-singular holomorphic foliation F on a manifold M is called transversely pro-
jective if there is an open cover

⋃
j∈J

U j = M such that in each Uj the foliation is

given by a submersion f j : Uj → C and if Ui ∩Uj �= ∅ then we have fi = fi j ◦ f j
in Ui ∩Uj where fi j : Ui ∩Uj → IPSL(2,C) is locally constant. Thus, on each
intersectionUi ∩Uj �= ∅, we have fi = ai j f j+bi j

ci j f j+di j
for some locally constant functions

ai j , bi j , ci j , di j with ai j di j − bi j ci j = 1. The data P = {Uj , f j , fi j , j ∈ J } is called
a projective transverse structure for F .

Basic references for transversely affine and transversely projective foliations (in
the non-singular case) are found in [17].

(5) Based on the Rieman-Koebe uniformization theorem we have:

Proposition 1 ([27] Theorem 6.1 p. 203).) Let F be a transversely homogeneous
holomorphic foliation of codimension one on Mn. Then F is transversely projective
foliation on Mn.

Proof We know that G/H is a simply-connected complex manifold of dimension
one. By the Riemann-Koebe Uniformization theorem we have a conformal equiva-
lence G/H ≡ C,C or D the unitary disc. This implies that either G ⊂ Aut (C) =
IPSL(2,C),G ⊂ Aut (C) = A f f (C) or G ⊂ Aut (D) ∼= IPSL(2, IR). The proposi-
tion follows.

Let F be a codimension � foliation on a manifold M . If F admits a Lie group
transverse structure of model G, or a G-transverse structure for short, then we shall
call F a G-foliation or, simply, Lie foliation. The characterization of G-foliations
in terms of differential forms is given below. Let {ω1, . . . , ω�} be a basis of the Lie
algebra of G. Then we have dωk = ∑

i< j
cki jωi ∧ ω j for a family constants {cki j } called

the structure constants of the Lie algebra in the given basis.

Theorem 2 (Darboux-Lie, [17]) Let G be a complex Lie group of dimension �.
Let {ω1, . . . , ω�} be a basis of the Lie algebra of G with structure constants {cki j }.
Suppose that a complex manifold Vm of dimension m ≥ � admits a system of one-
forms Ω1, . . . ,Ω� in M such that:

(i) {Ω1, . . . ,Ω�} is a rank � integrable system which defines F .
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(ii) dΩk = ∑
i< j

cki jΩi ∧ Ω j .

Then:

(iii) For each point p ∈ M there is a neighborhood p ∈ Up ⊆ M equipped with a
submersion f p : Up → G which definesF in Up such that f ∗

p (ω j ) = Ω j in Up,
for all j ∈ {1, . . . , q}.

(iv) If Up ∩Uq �= ∅ then in the intersection we have fq = Lgpq ( f p) for some locally
constant left translation Lgpq in G.

(v) If M is simply-connected we can take Up = M.

2.2 Transversely Projective Foliations with Singularities

Let M be a complex manifold. As already stated, if no specific mention is made,
by foliation on M we shall mean a codimension one holomorphic foliation with
singularities and dimC M ≥ 2.

Definition 6 (transversely projective: singular) A foliation F on M is called trans-
versely projective if the underlying “non-singular” foliation F0 =: F ∣∣

M\sing(F)
is

transversely projective.Thismeans that there is anopen cover
⋃
j∈J

U j = M \ sing(F)

such that in each Uj the foliation is given by a submersion f j : Uj → C and if Ui ∩
Uj �= ∅ then we have fi = fi j ◦ f j in Ui ∩Uj where fi j : Ui ∩Uj → IPSL(2,C)

is locally constant. Thus, on each intersection Ui ∩Uj �= ∅, we have fi = ai j f j+bi j
ci j f j+di j

for some locally constant functions ai j , bi j , ci j , di j with ai j di j − bi j ci j = 1.

As observed in [27] the singularities of a foliation admitting a projective trans-
verse structure are all of type d f = 0 for some local meromorphic function (indeed,
if Δ ⊂ Cn is a polydisc centered at the origin then Δ \ {0} is simply-connected for
n ≥ 2). In this work we will be considering foliations which are transversely projec-
tive in the complement of codimension one invariant divisors. Such divisors may, a
priori, exhibit singularities which do not admit meromorphic first integrals.

2.3 Riccati Foliations

Example 6 (Riccati Foliations) The Riccati differential equation

p(x)dy − (a(x)y2 + b(x)y + c(x))dx = 0

where (x, y) ∈ C2 and p, a, b, c are complex polynomials has been proved to be an
important model for complex foliations, on projective surfaces. In the particular case



On Singular Holomorphic Foliations with Projective … 191

when c ≡ 0, it as an important example of a foliation with affine transverse structure
outside an algebraic invariant set [8, 27].

Fix affine coordinates (x, y) ∈ C2 and consider a polynomial one-form Ω =
p(x)dy − (

a(x)y2 + b(x)y + c(x)
)
dx on C2. Then Ω defines a Riccati foliation

R on C × C as follows: if we change coordinates via u = 1
x , v = 1

y then we

obtain Ω(x, v) = p(x)dv + (
a(x) + b(x)v + c(x)v2

)
dx . Similarly for Ω(u, y) =

u−n[ p̃(u) dy − (
ã(u)y2 + b̃(u)y + c̃(u)

)
du] andΩ(u, v) = u−n[ p̃(u) dv − (

ã(u) +
b̃(u)v + c̃(u)v2

)
du]. The similarity of these four expressions shows thatΩ defines a

holomorphic foliationRwith isolated singularities onC × C and having a geometry
as follows (see Fig. 1):
(i) R is transverse to the fibers {a} × C except for invariant fibers which are given
in C2 by {p(x) = 0}.
(ii) If S =

r⋃
j=1

{a j } × C is the set of invariant fibers thenR is transversely projective

in (C × C)\S. Indeed, R|(C×C)\S is conjugate to the suspension of a representation

ϕ : π1(C\
r⋃
j=1

{a j }) → IPSL(2,C).

(iii) For a generic choice of the coefficients a(x), b(x), c(x), p(x) ∈ C[x] the sin-
gularities of R on C × C are hyperbolic, S is the only algebraic invariant set and
therefore for each singularity q ∈ sing(R) ⊂ S there is a local separatrix ofR trans-
verse to S passing through q.

Now we consider the canonical way of passing from C × C to CP(2) by a map
σ : C × C → CP(2) obtained as a sequence of birationalmaps as follows: first blow-
up a point, for example the origin, of C2 ⊂ C × C then blow-down two suitable
projective lines of self-intersection equals −1 as indicated in Fig. 1. Following this
process step by stepwe conclude that the foliationF = σ∗(R) = (σ−1)∗(R) induced
byR on CP(2) has the following characteristics:
(i’) F is transversely projective in CP(2)\S where S ⊂ CP(2) is the union of a

finite number of projective lines of the form
r⋃
j=1

{x = a j } ⊂ CP(2) in a suitable

affine chart (x, y) ∈ C2 ⊂ CP(2).
(ii’) For a generic choice of the coefficients of Ω , the singularities of F in S are
hyperbolic except for one single dicritical singularity q∞ : (x = ∞, y = 0) ∈ CP(2)
which after one blow-up gives a non-singular foliation transverse to the projective
line except for a single tangency point. This singularity will be called a radial type
singularity. The foliation F also has two other nonhyperbolic singularities, belong-
ing to the line at infinity L∞ = CP(2) \ C2, which is invariant, one linearizable with
holomorphic first integral and the other dicritical of radial type, admitting a mero-
morphic first integral. Also, in general, S ∪ L∞ is the only algebraic invariant set
and sing(F) ⊂ S ∪ L∞.
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radial singularity

blow−down
this line

CP(2)

dicritical
radial singularity

dicritical
tangency singularity

C x C 

blow−up
this point

generic fiber

blow−down
this line

dicritical

Fig. 1 A Riccati foliation from C × C to CP(2)

(iii’) Finally, we stress that on CP(2) the foliation F is transversely projective in a
neighborhood of L∞ \ (L∞ ∩ sing(F)).

In this work we shall focus on the problem of extension of the structure to the
analytic set, as well as on the consequences of this extension. The very basic result
relating transversely homogeneous foliations and suitable systems of differential
forms is the classic Darboux-Lie theorem [4, 17, 27].

Example 7 (pull-backs) Let F be a transversely projective foliation on M . Let
π : N → M be a holomorphic map transverse to F , then the pull-back foliation
π∗(F) is transversely projective in N . This can be used to construct examples of
foliations on projective manifolds, which are transversely projective outside of some
algebraic invariant curve. Take for instance a rational mapπ : M → C × CwhereM
is a non-singular projective manifold. Given a Riccati foliationR onC × C the pull-
back F := π∗(R) is then a foliation on M which is transversely projective outside
of some algebraic C ⊂ M of codimension ≥ 1. As we will see, we can assume that
C is invariant by F , otherwise the projective structure extends to some component
of C .

Example 8 (suspensions of subgroups of IPSL(2,C)) A well known way of
constructing transversely homogeneous foliations on fibered spaces, having a pre-
scribed holonomy group is the suspension of a foliation by a group of biholo-
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morphisms. This construction is briefly described below: Let G ⊂ Di f f (N ) be
a finitely generated group of biholomorphisms of a complex manifold N . We
can regard G as the image of a representation h : π1(M) → Di f f (N ) of the
fundamental group of a complex (connected) manifold M . Considering the uni-
versal holomorphic covering of M , π : M̃ → M we have a natural free action
π1 : π1(M) × M̃ → M̃ , i.e., π1(M) ⊂ Di f f (M̃) in a natural way. Using this we
define an action H : π1(M) × M̃ × N → M̃ × N in the natural way: H = (π1, h).
The quotient manifold M̃×N

H = Mh is called the suspension manifold of the repre-
sentation h. The group G appears as the global holonomy of a natural foliation Fh

on Mh (see [17]), this foliation is called suspension foliation of G. When G is (iso-
morphic to) a finitely generated subgroup of IPSL(2,C) the suspension foliation is
transversely projective in Mh .

2.4 Development of a Transversely Projective Foliation

We recall the notion of development of a transversely projective foliation, first men-
tioned in the Introduction, already adapting it to our current framework. Let G be a
(non-singular) holomorphic foliation on a complex manifold N . Suppose that G
is transversely projective in N . There is a Galoisian (i.e., a transitive) covering
π : P → N where π is holomorphic, a homomorphism h : π1(N ) → IPSL(2,C)

and a holomorphic submersion Φ : P → CP1 such that:

(i) Φ is h-equivariant. This means that for any homotopy class [γ ] ∈ π1(N ), we
have

h([γ ])(Φ(x)) = Φ([̃γ ](x)), ∀x ∈ M\S

where by [̃γ ] : P → P we denote the covering map induced by [γ ] in the
Galoisian covering p : P → N .

(ii) π∗(G∣∣
N

)
is the foliation defined by the submersion Φ.

In the above construction of the development, we may take P as the universal
covering π : Ñ → N of N . We shall refer to the submersion Θ : Ñ → CP1 as a
multiform first integral of G given by the projective structure in N . Given a homotopy
class [γ ] ∈ π1(M\S), the corresponding monodromy map is the image h([γ ]) ⊂
IPSL(2,C).

Definition 7 The global monodromy of the foliation, with respect to this develop-
ment, is the image Mon(G) = h(π1(N )) ⊂ IPSL(2,C).

Remark 5 Some remarks about the above construction are: The construction of the
development in [17] requires the foliation to be non-singular. Assume now that
F is a foliation with singular set of codimension ≥ 2 on a complex manifold M .
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Then N = M \ sing(F) is a complex manifold and G := F ∣∣
N is non-singular. By

definition F is transversely projective if and only if G is transversely projective.
Moreover, since sing(F) ⊂ M has real codimension ≥ 4, we conclude that there is
a natural isomorphism π1(N ) ∼= π1(M). In particular, we can assume in the above
construction that M = N , i.e., the notion of development above introduced can be
introduced for foliations with singularities. Finally, thanks to Hartogs’ extension
theorem [18], any holomorphic map from M\sing(F) to CP1 extends uniquely to
a holomorphic map from M to CP1.

2.5 Holonomy Groups of Transversely Projective Foliations

Inwhat followswe consider the following situation. LetF be a holomorphic foliation
on a complex surface M , Λ ⊂ M a closed analytic invariant subset of pure dimension
one (a curve) and assume that F is transversely projective in M\Λ. We will follow
original ideas from [26] in the same vein as in [28].
Monodromy: Using the notion of development we can introduce the notion of mon-
odromy of the projective transverse structure of F ∣∣

M\Λ as follows:
Fix a base point m0 ∈ M\Λ and a local determination fm0 of the submersion Φ

in a small ball Bm0 centered at m0 (we have the following commutative diagram)

P ⊃ p−1(Bm0) Φ
∣∣
p−1(Bm0 )

p ↓ p
∣∣
p−1(Bm0 )

↓ ↘
M\Λ ⊃ Bm0

fm0−→ CP(1)

Notice that p−1(Bm0) = ⋃
α∈A

Uα, p
∣∣
Uα

: Uα → Bm0 is a biholomorphism for each

α ∈ A.
By construction, the total space of the covering p : P → M\Λ is obtained by

analytic continuation of fm0 along all the elements in π1(M\Λ,m0).
The fiber p−1(m0) is the set of all local determinations fm0 at m0. We can, by the

general theory of transitive covering spaces, identify the group Aut (P, p) of deck
transformations of p : P → M\Λ to the quotient π1(M\Λ;m0)

/
p#π1(P; fm0).

This is the monodromy group of F ∣∣
M\Λ which will be denoted by Mon(F ,Λ).

The monodromy map is the natural projection

ρ : π1(M\Λ;m0) −→ π1(M\Λ;m0)
/
p#π1(P; fm0) =: Mon(F ,Λ)

Our first remark is the following:
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Lemma 1 Themonodromy groupMon(F ,Λ) is naturally isomorphic to a subgroup
of IPSL(2,C).

Proof This is clear since F ∣∣
M\Λ is transversely projective on M\Λ.

Holonomy In what follows we consider the following situation. LetF be a holomor-
phic foliation on a complex surface M , Λ ⊂ M a closed analytic invariant subset of
pure dimension one (a curve) and assume that F is transversely projective in M\Λ.
Let S ⊂ Λ be an irreducible component of Λ. We suppose that each singular point
in S is irreducible and exhibits at most one separatrix transverse to S.

Here we keep on following arguments originally in [26] and mimed in [28]. We
proceed to study the holonomy of each irreducible component of M . It is enough
to assume that M is the union of a smooth compact curve S and local analytic
separatrices sep(F , S) ofF transverse to S; M = S ∪ sep(F , S), all of them smooth
invariant and without triple points. We suppose that sing(F) ∩ S �= ∅, each singular
point in S is irreducible and, if it admits two separatrices then one is transverse
to S). In this case we can consider a C∞ retraction r : W → S from some tubular
neighborhood W of S on M onto S such that, ∀m ∈ S the fiber r−1(m) is either a
disc transverse to F or a local branch of sep(F , S) at m ∈ sing(F). We set V =
W\(M ∩ W ) to obtain a C∞ fibration r

∣∣
V : V → S\sing(F) by punctured discs

over S\sing(F). Since π2(S\sing(F)) = 0 the homotopy exact sequence of the
above fibration gives the exact sequence

0 −→ ZZ −→ π1(V, m̃0)
τ−→ π1(S\sing(F);m0) −→ 0

where m̃0 ∈ V is a base point and m0 ∈ S\sing(F) is its projection and τ = (r
∣∣
V )#.

Now we consider the restriction of the covering space P to V ; indeed for our
purposes wemay assume thatW = M and V = M\Λ so that we are just considering
the space P itself. Let ρ be the monodromy map

ρ : π1(V ; m̃0) −→ π1(V ; m̃0)
/
p#(π1(p−1(V ); fm̃0)) =: Mon(F , V )

Denote by Mon(F , S) the quotient of Mon(F , V ) by the (normal) subgroup
Ker(τ ) ∼= ZZ . Then there is a unique morphism [ρ] such that the diagram com-
mutes:

0 −→ ZZ → π1(V ; m̃0) −→ π1(S\sing(F);m0) → 0
↘ ρ ↓ [ρ] ↓

Mon(F , V ) −→ Mon(F , S) → 0

The morphism [ρ] is the monodromy of F ∣∣
V seen as follows:

given any element [γ ] ∈ π1(S\sing(F);m0) themonodromy [ρ]([γ ]) is the analytic
continuation of the local first integral fm0 alongγ and its holonomy lifting. This gives:
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Lemma 2 There exists a surjective group homomorphism α : Hol(F , S) −→ Mon
(F , S) such that the diagram commutes

π1(S\sing(F))

Hol ↙ ↘ [ρ]
Hol(F .S)

α−→ Mon(F; S)

where Hol : π1(S\sing(F)) −→ Hol(F; S) is the holonomy morphism of the leaf
S\sing(F) of F , and [ρ] : π1(S\sing(F)) −→ Mon(F; S) is as above.

The kernel of α is the subgroup Ker(α) < Hol(F; S) of those diffeomorphisms
keeping fixed any element �(z) of the fiber of r

∣∣
V : V → S\sing(F) over mo ∈

S\sing(F). The invariance group of �, I nv(�, z), defined as follows I nv(�, z) ={
h ∈ Di f f (C, 0); � ◦ h ≡ �

}
, where Di f f (C, 0) denotes the group of germs of

complex diffeomorphisms fixing the origin 0 ∈ C. Therefore Ker(α) is a subgroup
of the invariance group I nv(�, z), in the sense that if p� : V� → D∗ is the covering
space of the punctured disc D∗ = D\{0} associated to � then � ◦ h ≡ � means that
∀m ∈ D∗, ∀ �m ∈ p−1

� (m), ∃ �h(m) ∈ p−1
� (h(m)), �h(m) ◦ h = �m .

In particular, to any element h ∈ I nv(�, z) there is associated a pair (h̃, h) where
h̃ is the lifting of h to the covering space V� defined by h̃ : �m �→ �h(m).
Another lemma we need is:

Lemma 3 Let 0 → G → H → K → 0 be an exact sequence of groups. Then H is
solvable if, and only if, G and K are solvable.

From the above discussion we have an exact sequence

0 −→ Ker(α) −→ Hol(F , S)
α−→ Mon(F , S) −→ 0

We claim that I nv(�, z) is solvable. Indeed, suppose the contrary. ByNakai’s Density
Lemma [25] the orbits of a non-solvable subgroup of Di f f (C, 0) are locally dense in
a neighborhood Γ of the origin. Let thereforem ∈ Γ be a point and Γm ⊂ Γ \ {0} be
a small sector with vertex at the origin, such that the orbit of m in Γm is dense in Γm .
Denote by �Γm a local determination of � in Γm . Then �Γm is constant along each orbit
of I nv(�, z) in Γm and the orbit of m is dense in Γm so that �Γm is constant in Γm . By
analytic continuation � and the first integral Φ are constant yielding a contradiction.
Thus the group I nv(�, z) is solvable and therefore embeds in IPSL(2,C). Hence
Hol(F , S)

/
Ker(α) 	 Mon(F , S) embeds in IPSL(2,C) but Hol(F , S) embeds in

Di f f (C, 0), aswell as Ker(α) embeds in I nv(�)which is a subgroup of Di f f (C, 0)
and therefore Hol(F , S)

/
Ker(α) is isomorphic to a subgroup of IPSL(2,C) with a

fixed point. This implies that indeed, Hol(F , S)
/
Ker(α) is solvable and conjugate

to a subgroup of A f f (C, 0). Therefore Mon(F , S) is solvable and by Lemma 3 the
holonomy group Hol(F , S) is solvable.
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Summarizing the above discussion we have:

Theorem 3 Let F be a holomorphic foliation on a complex surface M, Λ ⊂ M
a closed analytic invariant curve and assume that F is transversely projective in
M\Λ. Let S ⊂ Λ be an irreducible component of Λ. We suppose that each singular
point in S is irreducible and exhibits a single separatrix transverse to S. Then the
holonomy group Hol(F , S) of the leaf S\(sing(F) ∩ S) of F is a solvable group.

2.6 Transversely Affine Foliations

A particular case of transversely projective foliations is described below. As above,
we consider a codimension-one holomorphic foliation F on a complex manifold
Mn , n ≥ 2, with singular set sing(F) ⊂ M of codimension ≥ 2. We say that F is
transversely affine in an open subset U ⊂ M if there exists an open cover {Uα}α∈A

of U\sing(F) such that there are holomorphic submersions yα : Uα → C such that
F ∣∣

Uα
is given by dyα = 0, and for each Uα ∩Uβ �= ∅ we have yβ = aαβ yα + bαβ

for some affine map (z �→ aαβ z + bαβ). Transversely affine foliations have been
studied by several authors, in the real case [17, 32] and in the holomorphic case [3,
14, 27]. Examples of such complex foliations are logarithmic foliations andBernoulli
foliations as well as rational pull-backs of such foliations [8, 27]. For all of these, the
foliation is transversely affine outside of some algebraic invariant curve S ⊂ CP(2).
In [27] we find that a foliationF on M = CP(2)which is transversely affine outside
some algebraic invariant curve S ⊂ CP(2) is a logarithmic foliation under somemild
conditions on sing(F) ∩ S. Relaxing slightly the hypothesis on sing(F) ∩ Swemay
prove thatF admits a Liouvillian first integral as follows: Letω be a polynomial one-
formwhich definesF in some affine spaceC2 ⊂ CP(2), thenω admits a one-form η

which is rational, with simple poles and such that dω = η ∧ ω. We call the form η a
generalized integrating factor forω. The Liouvillian first integral forF is F = ∫

ω

e
∫

η

[8, 33]. Using [8] onemay therefore conclude that, under some suitable hyperbolicity
hypotheses, eitherF is givenby a closed rational one-formonCP(2), or it is a rational
pull-back of a Bernoulli foliation as followsR: p(x)dy − (y2a(x) + yb(x))dx = 0.

We separate the following useful definition:

Definition 8 (generalized integrating factor) Let Ω be a meromorphic one-form on
a complex manifold M . A meromorphic one-form η in M is called a meromorphic
generalized integrating factor for Ω if we have: (1) dΩ = η ∧ Ω and (2) dη = 0.
If this is the case then Ω is integrable and defines a foliation F (holomorphic, of
codimension one, with singularities) on M . We shall say that η is a generalized
integrating factor for the foliation F .
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3 Projective Structures and Differential Forms

3.1 Projective Triples

The very basic result relating transversely homogeneous foliations and suitable sys-
tems of differential forms is the classical Darboux-Lie theorem [4, 17, 27]. In the
case of projective transverse structure this can be stated as:

Proposition 2 ([27], Proposition 1.1 p. 190)Assume thatF is given by an integrable
holomorphic one-formΩ on M and suppose that there exists a holomorphic one-form
η on M such that (Proj.1)dΩ = η ∧ Ω . ThenF is transversely projective on M if and
only if there exists a holomorphic one-form ξ on M such that (Proj.2)dη = Ω ∧ ξ

and (Proj.3)dξ = ξ ∧ η.

The proof is found below.

3.2 Examples

Example 9 Let α be a closed meromorphic one-form on M and let f : M → C

be a meromorphic function. Define (Ω, η, ξ) by: Ω = d f − f 2α, η = 2 f α and
ξ = 2α. Then (Ω, η, ξ) is a projective triple and therefore Ω defines a holomorphic
foliation on M , transversely projective in the complement of the analytic invariant
codimension one set S ⊂ M , S = (α)∞ ∪ ( f )∞. The same conclusion holds for
Ωλ = Ω + λα, where λ ∈ C. The foliationF(Ωλ) is also transversely affine in some
smaller open set of the form M\S′ where S′ ⊃ S, S′ = S ∪ ( f 2 − λ = 0). (In fact

Ωλ

f 2−λ
= d f

f 2−λ
− α is closed and holomorphic in M\S′).

Example 10 Let h : M → C∗ be holomorphic such that dξ = − dh
2h ∧ ξ where ξ is

holomorphic (we can write this condition as d(
√
h.ξ ) = 0). Let F be any holo-

morphic function and write (for λ ∈ C)Ω = F · (
dF
F − 1

2
dh
h

) −
(

F2

2 − λ
2h

)
.ξ, η =

1
2
dh
h + F · ξ. The triple (Ω, η, ξ) satisfies the conditions of Proposition 2 and then

F = F(Ω) is a transversely projective foliation on M .

3.3 Proof of Proposition 2

Let us now give a proof for Proposition 2. We start with a remark about its need.

Remark 6 Proposition 2 is stated (for the real non-singular case) with an idea of its
proof, in [17] (see Proposition 3.20, pp. 262). However, it seems that the suggested
proof uses some triviality hypothesis on principal fiber-bundles of structural group
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A f f (C), over the manifold M (see [17] Proposition 3.6 pp. 249–250). In our case
this is replaced by the existence of the form η in the statement. On the other hand,
since some of its elements will be useful later, we supply a proof for Proposition 2.

We will use the two following lemmas whose proofs are straightforward conse-
quences of Darboux-Lie theorem, Theorem 2, therefore left to the reader:

Lemma 4 Let x, y, x̃, ỹ : U ⊂ Cn → C be meromorphic functions satisfying:

(i) ydx − xdy = ỹd x̃ − x̃d ỹ;

(ii) x̃
ỹ = ax+by

cx+dy ,

(
a b
c d

)
∈ IPSL(2,C).

Then x̃ = ε.(ax + by) and ỹ = ε.(cx + dy) for some ε ∈ C, ε2 = 1.

Lemma 5 Let x, y, x̃, ỹ : U ⊂ Cn → C be meromorphic functions satisfying x̃ =
ax + by, ỹ = cx + dy for some

(
a b
c d

)
∈ IPSL(2,C). Then xdy − ydx = x̃d ỹ −

ỹd x̃ .

Proof (Proof of Proposition 2) Suppose F is transversely projective in Mn , say,
{ fi : Ui → C} is a projective transverse structure for F in M\sing(F). In each
Ui we have Ω = −gi d fi for some holomorphic gi ∈ Ø(Ui )

∗. In each Ui ∩Uj �= φ

we have: gi d fi = g j d f j and (1) fi = ai j f j+bi j
ci j f j+di j

as in Definition 6. Since dΩ =
d(−gi d fi ) = dgi

gi
∧ Ω we have η = dgi

gi
− hiΩ for some holomorphic hi in Ui . We

define xi , yi , ui , vi : Ui → C in the following way: (2) y2i = gi ,
xi
yi

= fi , hi = 2vi
yi

andxivi − yiui = 1. Thus we have: Ω = xi dyi − yi dxi and (3) η = 2(vi dxi −
ui dyi ). This motivates us to define local models (see [17] Sect. 3.18 pp. 261): ξi =
2(vi dui − ui dvi ) in Ui . It is easy to check that we have dξi = ξi ∧ η, dη =
Ω ∧ ξi in Ui . We can assume that dxi and dyi are independent for all i ∈ I . In
fact dxi ∧ dyi = 0 ⇒ dΩ

∣∣
Ui

= 2 dxi ∧ dyi = 0 ⇒ dΩ = 0 in M (we can assume
M to be connected) ⇒ we have 0 = dΩ = η ∧ Ω so that η = hΩ for some holo-
morphic function h : M → C ⇒we can choose ξ = h2Ω

2 + hη + dh which satisfies
the relations dη = Ω ∧ ξ and dξ = ξ ∧ η.

Claim (1)We have ξi = ξ j in each Ui ∩Uj �= φ and therefore the ξi ’s can be glued
into a holomorphic one-form ξ in M\sing(F) satisfying the conditions of the state-
ment.

Proof From (1) and (2) we obtain xi
yi

= ai j x j+bi j y j
ci j x j+di j y j

. Therefore according to Lemma 4

we have (4) xi = ε.(ai j x j + bi j x j ), yi = ε.(ci j x j + di j y j ) ε2 = 1. Using (3) and
(4) we obtain: (ai jvi − ci j ui )dx j + (bi jvi − di j ui )dy j = ε.(v j dx j − u j dy j ) and
therefore: (5) v j = ε(ai j vi − ci j ui ), u j = ε(−bi j vi + di j u j ). It follows form (5)
and Lemma 5 that vi dui − ui dvi = v j du j − u j dv j which proves the claim.

Claim (2)We have ξ = ξi = h2i
Ω
2 + hiη + dhi in each Ui .
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Proof We have h2i Ω = 4v2i
y2i

(xi dyi − yi dxi ), hiη = 4vi
yi

(vi dxi − ui dyi ), dhi =
2d

(
vi
yi

)
. Hence h2i Ω

4 + hiη
2 + dhi

2 = v2i
yi
dxi − vi

y2i
(xivi − 1)dyi + dvi

yi
.

On the other hand a straightforward calculation shows that ξi
2 = vi dui − ui dvi =

v2i
yi
dxi − vi

yi
(xivi − 1)dyi + dvi

yi
. And thus Claim 2 is proved.

Since codim sing(F) ≥ 2 it follows that ξ extends holomorphically to M . This
proves the first part. Nowwe assume that (Ω, η, ξ) is holomorphic as in the statement
of the proposition:

Claim (3) Given any p ∈ M\sing(F) there exist holomorphic x, y, u, v : U → C

defined in an open neighborhood U � p such that: Ω = xdy − ydx, η = 2(vdx −
udy) and ξ = 2(vdu − udv).

Proof This claim is a consequence of Darboux’s Theorem (see [17] pp. 230), but we
can give an alternative proof as follows: We write locally Ω = −gd f = xdy − ydx
and η = dg

g
− hΩ = 2(vdx − udy) as in the proof of the first part. Using Claim 2

above and the last part of Proposition 3 below we obtain locally ξ = h2Ω
2 + hη +

dh + �.Ω; for some holomorphic function � satisfying d�
−2� ∧ Ω = dΩ . This last

equality implies that d(
√

�.Ω) = 0 and then � = r( f )
g2

for some holomorphic func-

tion r(z). Now we look for holomorphic functions f̃ , g̃ and h̃ satisfying: Ω =
−g̃d f̃ , η = d g̃

g̃
− h̃Ω and ξ = h̃2Ω

2 + h̃η + dh̃. We try f̃ = U ( f ) for some holo-

morphic non-vanishing U (z). Using Ω = gd f = −g̃d f̃ we get g̃ = g
U ′( f ) . Using

η = dg
g

− dΩ = d g̃
g̃

− h̃Ω we get h̃ = h − U ′′
gU ′ . Using ξ = h2Ω

2 + hη + dh + �Ω =
h̃2Ω
2 + h̃η + dh̃ we get d

(
U ′′( f )
U ′( f )

)
= r( f )d f .

Therefore it is possible to writeΩ , η and ξ as in the statement of the claim: define
x = f̃ y, y = √

g̃, v = h̃ y
2 and u = xv−1

y as in the first part of the proof. This proves
Claim 3.

Using Claim 3we prove thatF is transversely projective inM\sing(F), that is inM .
The last part of Proposition 2 can be proved using the relation stated above between
the projective structure and the local trivializations for Ω , η and ξ . For instance we
prove the following.

Claim (4) The triples (Ω, η, ξ) and ( f Ω, η + d f
f , 1

f ξ) define the same projective
structure for F , for any holomorphic f : M → C∗.

Proof Using the notation of the first part we define x̂i = √
f . xi , ŷi = √

f . yi ,
ûi = 1√

f
. ui and v̂i = 1√

f
. vi . Then: f Ω = x̂i d ŷi − ŷi d x̂i , η + d f

f = 2(v̂i d x̂i −
ûi d ŷi ) and 1

f ξ = 2(v̂i dûi − ûi d v̂i ). Furthermore we have x̂i
ŷi

= xi
yi

= ai j x j+bi j y j
ci j x j+di j y j

=
ai j x̂ j+bi j ŷ j
ci j x̂ j+di j ŷ j

, and this proves the claim and finishes the holomorphic part of the proof.

Now we only have to observe that if (Ω, η) is a pair of meromorphic one-forms
and if F is transversely projective in M , then the same steps of the first part of the
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proof apply to construct a meromorphic one-form ξ satisfying the relations of the
statement.

Let F be a codimension one holomorphic foliation with singular set sing(F) of
codimension ≥ 2 on a complex manifold M . As mentioned in the Introduction, the
existence of a projective transverse structure for F is equivalent to the existence of
suitable triples of differential forms (cf. Proposition 2, see also [27] Sect. 3, page
193):
This motivates the following definition:

Definition 9 (projective triple) Given holomorphic one-forms (respectively, mero-
morphic one-forms) Ω , η and ξ on M we shall say that (Ω, η, ξ) is a holomorphic
projective triple (respectively, a meromorphic projective triple) if they satisfy rela-
tions (Proj.1), (Proj.2) and (Proj.3) above. The foliationF⊥ defined by the one-form
ξ is called transverse foliation corresponding to the projective triple. If η is not iden-
tically zero then F⊥ is really a foliation on M which is transverse to F outside of a
proper analytic subset.

The following definition will play a fundamental role in the last section of this
work.

Definition 10 (moderate growth (transversely projective foliations)) A foliation F
on M will be called transversely projective of moderate growth if it admits a mero-
morphic projective triple (Ω, η, ξ) defined in M . This means that F is transversely
projective in some the complementar of some analytic subsetΛ ⊂ M of codimension
one.

The termonilogy foliation with moderate growth has already been introduced in [35].
With the above definitions, and the notation of Proposition 2, this last says that F
is transversely projective on M if and only if the holomorphic pair (Ω , η) may
be completed to a holomorphic projective triple. Moreover, a foliation F which is
transversely projective of moderate growth exhibits a projective transverse structure
P in the complement of some codimension divisor D ⊂ M (D contained in the polar
set of the projective triple). One question then is whether the projective transverse
structure P extends to the divisor D. The other question, apparently simpler, is
whether the foliationF is actually projective of moderate growth. According to [27]
we may perform modifications in a projective triple as follows:

Proposition 3 ([27]) Let M be a connected complex manifold.

(i) Given a meromorphic projective triple (Ω, η, ξ) and meromorphic functions
g, h on M we can define a new meromorphic projective triple as follows:
(Mod.1) Ω ′ = gΩ

(Mod.2) η′ = η + dg
g

+ h Ω

(Mod.3) ξ ′ = 1
g

(
ξ − dh − hη − h2

2 Ω
)

(ii) Two holomorphic projective triples (Ω, η, ξ) and (Ω ′, η′, ξ ′) define the same
projective transverse structure for a given foliation F if and only if we have
(Mod.1), (Mod.2) and (Mod.3) for some holomorphic functions g, h with g
non-vanishing.
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(iii) Let (Ω, η, ξ) and (Ω, η, ξ ′) be meromorphic projective triples. Then ξ ′ =
ξ + F Ω for some meromorphic function F in M with d Ω = − 1

2
dF
F ∧ Ω .

This last proposition implies that suitable meromorphic projective triples also define
projective transverse structures.We can rewrite condition (iii) on F as d(

√
F Ω) = 0.

This implies that if the projective triples (Ω, η, ξ) and (Ω, η, ξ ′) are not identical
then the foliation defined by Ω is transversely affine outside the codimension one
analytical invariant subset S = {F = 0} ∪ {F = ∞} [27].

This approach is useful because of the following proposition:

Proposition 4 ([27] Theorem 4.1 p. 197) Let F be a foliation on M where M is
either an open polydisc M ⊂ Cm or a projective manifold over C of dimension
m ≥ 2. Assume that F admits a meromorphic projective triple (Ω, η, ξ) defined in
M. If ξ admits a meromorphic first integral in U then F is a meromorphic pull-back
of a Riccati foliation.

Proof By hypothesis, ξ defines a foliationwhich admits ameromorphic first integral.
Since we are either on a projective manifold or in a polydisc centered at the origin,
we can write ξ = g dR for somemeromorphic functions g and R (these functions are
rational in the case of a projective surface). Then we may replace the meromorphic
triple (Ω, η, ξ) by (Ω ′, η′, ξ ′) where Ω ′ = gΩ , η′ = η + dg

g
and ξ ′ = 1

g
ξ = dR.

The relations dΩ ′ = η′ ∧ ξ ′, dη′ = Ω ′ ∧ ξ ′, dξ ′ = ξ ∧ η′ imply that η′ = HdR
for some meromorphic function H . Now we define ω := H 2

2 ξ ′ − Hη′ + dH =
1
2 H 2dR + dH one-form such that dω = −HdH ∧ dR. On the other hand η′ ∧ ω =
HdR ∧ dH = −HdH ∧ dR. Thus dω = η′ ∧ ω. We also have dη′ = dH ∧ dR =
(− 1

2 H 2dR + dH) ∧ dR = ω ∧ ξ ′. The meromorphic triple (ω, η′, ξ ′) satisfies the
projective relations dω = η′ ∧ ω, dη′ = ω ∧ ξ ′, dξ ′ = ξ ′ ∧ η′ and therefore by
Proposition 3 (iii) we conclude that Ω ′ = ω + F.ξ ′ for some meromorphic function
F such that dξ ′ = ξ ′ ∧ 1

2
dF
F · This implies dF ∧ dR ≡ 0. By the classical Stein Fac-

torization theorem we may assume from the beginning that R has connected fibers
and therefore dF ∧ dR ≡ 0 implies F = ϕ(R) for some one-variable meromorphic
function ϕ(z) ∈ C(z). In the case where M is a projective manifold all the meromor-
phic objects are rational and therefore ϕ(z) is also a rational function. We obtain
therefore Ω ′ = − 1

2 H 2dR + dH + ϕ(R)dR == dH − ( 12 H 2 − ϕ(R))dR. If we
define ameromorphicmap σ : M → C × C by σ(p) = (

R(p), H(p)
)
then clearly

Ω ′ = σ ∗(dy − ( 12 y
2 − ϕ(x))dx) and thereforeF is the pull-backF = σ ∗(R) of the

Riccati foliationR given onC × C by the meromorphic (rational if M is a projective
manifold) one-form Ωϕ := dy − ( 12 y

2 − ϕ(x))dx .

Definition 11 A meromorphic projective triple (Ω ′, η′, ξ ′) is geometric if it can
be written locally as in (Mod.1), (Mod.2) and (Mod.3) for some (locally defined)
holomorphic projective triple (Ω, η, ξ) and some (locally defined) meromorphic
functions g, h.
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As an immediate consequence we obtain:

Proposition 5 A geometric projective triple (Ω ′, η′, ξ ′) defines a transversely pro-
jective foliation F given by Ω ′ on M.

Example 11 (Riccati Foliations - revisited) Fix affine coordinates (x, y) ∈ C2 and
consider a polynomial one-formΩ = p(x)dy − (y2 c(x) − yb(x) − a(x))dx . Then
Ω defines a Riccati foliation R on C × C as seen in Example 6 above. Now
we study the Lie Algebra associated to this example. Put η = 2 dy

y + p′+b
p dx +

2a
yp dx and ξ = −2a

y2 p2 dx . Then (Ω, η, ξ) satisfies the projective relations stated in

Proposition 2. This shows thatF is transversely projective inC × Cminus the alge-
braic subset {x ∈ C | p(x) = 0} × C ∪ C × {y = 0}. But since in the case a(x) �≡ 0,
only the subset S = {p(x) = 0} × C is F invariant it follows that the transverse
projective structure extends to C × C\S. Indeed according to Proposition 3 if
we define g = −1

p(x)y then η′ = η + 2gΩ = p′−b+2yc
p dx and ξ ′ = ξ − 2dg − 2gη −

2g2Ω = 2c
p2 dx ; define a triple (Ω, η′, ξ ′) holomorphic in (C × C) \ S which gives

a projective structure forF in this affine set. This projective structure coincides with
the one given in (C × C) \ (S ∪ C × {y = 0}) by (Ω, η, ξ). The one-form η is closed
if and only if a ≡ 0. ThereforeF is transversely affine inC × C\(S ∪ C × {y = 0})
if the projective line {y = 0} is invariant. The forms (Ω, η′, ξ ′) define a rational pro-
jective triple and the projective transverse structure of the foliation F⊥ defined by ξ

extends from C2\S to C × C. Indeed, Fξ admits a rational first integral. We will see
this is a general fact, under suitable hypothesis on the singularities of the foliation
F on C × C, admitting a projective transverse structure in the complementary of an
algebraic one dimensional invariant subset S ⊂ C × C.

Remark 7 (Ricatti versus logarithmic) In general, Ricatti foliations are not given by
closed one-forms, hence are not logarithmic foliations.

3.4 Germs of Foliations and Foliations on Projective Surfaces

Let F be a holomorphic foliation aaa of codimension one on CP2 having sin-
gular set sing(F) ⊂ CP2. As it is well-known we can assume that sing(F) is
of codimension ≥ 2 and F is given in any affine space C2 ⊂ CP2 with coordi-
nates (x, y), by a polynomial one-form Ω(x, y) = A(x, y)dx + B(x, y)dy with
sing(F) ∩ C2 = sing(Ω). In particular sing(F) ⊂ CP2 is a nonempty finite set
of points. Given any algebraic subset S ⊂ CP2 of dimension one we can therefore
always obtain a meromorphic (rational) one-form Ω onCP2 such that Ω defines F ,
(Ω)∞ is non-invariant and in general position (indeed, we can assume that (Ω)∞ is
any projective line in CP(2)). Also if we take η0 = Bx

B dx + Ay

A dy then we obtain a
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rational one-form such that dΩ = η0 ∧ Ω and with polar set given by (η0)∞ =
{(x, y) ∈ C2 : A(x, y) = 0} ∪ {(x, y) ∈ C2 : B(x, y) = 0} ∪ (Ω)∞ . In particular,
(η0)∞ ∩ C2 has order one and the “residue" of η0 along any component T of (Ω)∞
equals −k where k is the order of T as a set of poles of Ω . Any rational one-form η

such that dΩ = η ∧ Ω writes η = η0 + hΩ for some rational function h. We obtain
in this way one-forms η with appropriately located set of poles, with respect to F ,
and applying Propositions 2 and 3 we obtain:

Proposition 6 (foliations on projective spaces) Let F be a holomorphic foliation
on CP(2). Assume that F is transversely projective in CP(2)\S for some algebraic
subset S of dimension one. Then F has a projective triple (Ω, η, ξ) on CP(2) \
S where Ω and η are rational one-forms and ξ is meromorphic on CP(2)\S. In
particular ξ defines a transverse foliation F⊥ to F on CP(2)\S having a projective
transverse structure.

The same holds, with a very similar proof, for germs of foliations at the origin
0 ∈ C2 where the curve S is replaced by a finite set of local branches of separatrices
of the foliation through the singularity. More precisely:

Proposition 7 (germs of foliations) Let F be a germ of a holomorphic foliation
with a singularity at the origin 0 ∈ C2. Assume that F is transversely projective
in the complement of an analytic subset S ⊂ sep(F , 0) of the set of separatrices
through the origin. Then, for a sufficiently small bidisc 0 ∈ M ⊂ C2 the germ F has
a projective triple (Ω, η, ξ) where Ω is a holomorphic one-form in M, the form η is
meromorphic in M and ξ is meromorphic in M\S.
Remark 8 (Generalizations for algebraic projective manifolds) Let us consider M2

a non-singular algebraic projective surface. Let F be a foliation on M2. Since we
can define in a natural way, polynomial and rational functions on M2 we can define
in a natural way algebraic leaves of F . Let S ⊂ M be an algebraic curve, i.e., a pure
codimension one analytic subset. The condition that M\S is affine is equivalent to
say that it is a Stein manifold. This does not hold in general, very much depending
on the curve S ⊂ M . Any meromorphic function on a projective surface is a rational
function. A foliation F on M is therefore given by a rational one-form Ω on M
admitting a rational one-formη such thatdΩ = η ∧ Ω .Wehave thennatural versions
of Propositions 2, 3 and 6 to this situation.

4 Extension of Projective Triples

In this section we address the following basic problem. Let F be a foliation on a
complex manifold M with a projective transverse structure in M\S for some codi-
mension one analytic subset S ⊂ M . Under which conditions does the projective
structure P extends to S?. A more appropriate question may be as follows: suppose
that the projective transverse structure P on M \ S is given by a projective triple
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(Ω, η, ξ)with (as it is natural to assume),Ω and η meromorphic in M .Under which
conditions does the one-form ξ admits a meromorphic extension to S?We shall focus
on two main cases.

(1) The local case, where M is a neighborhood of the origin 0 ∈ C2. In this case we
regard F as a germ of a foliation at the origin 0 ∈ C2 and consider S as a subset
of its set of separatrices.

(2) The projective case, where M is a projective surface. In this case the objects are
rational once they are meromorphic in M and S ⊂ M is an algebraic curve.

4.1 Algebraic Leaves and Local Separatrices

Given a foliation F on a projective surface M , by an algebraic leaf of F we mean
a leaf L of the foliation which is contained in an algebraic curve in M . Thanks to
the Identity Principle and to Remmert–Stein extension theorem, a leaf L of F is
algebraic if and only if it accumulates only at singular points of F . In this case the
algebraic curve consists of the leaf and such accumulation points. The following
remark will be useful:

Lemma 6 ([30] Lemma 7.5 (iii)) LetF andF1 be distinct foliations on a projective
surface M. If a leaf L of F is also a leaf of F1 then this leaf is algebraic.

Proof We choose affine coordinates (x, y) ∈ M and polynomial equations for F
and F1 in these coordinates, say: F is given by dy

dx = P(x,y)
Q(x,y) and F1 by

dy
dx = P1(x,y)

Q1(x,y)
where P, Q and P1, Q1 are relatively prime polynomials. Suppose (x(z), y(z)), z ∈
V ⊂ C is a common solution of the foliations F and F1 on M . Then we have

P(x(z), y(z)

Q(x(z), y(z))
= dy/dz

dx/dz
= P1(x(z), y(z))

Q1(x(z), y(z))

so that (PQ1 − P1Q)(x(z), y(z)) = 0. By hypothesis PQ1 − P1Q �≡ 0 so that L
satisfies the non-trivial algebraic equation PQ1 − P1Q = 0. It follows that L is
algebraic.

The following statement is about transversely projective foliations with moderate
growth (cf. Definition 10). It is a compilation of some results above and a preparatory
step for the final conclusion:

Theorem 4 Let F be a foliation on a projective surface M, with a projective trans-
verse structure outside of an algebraic subset S ⊂ M of dimension one. Let (Ω, η, ξ)

be a rational projective triple defining the projective transverse structure outside of
the curve S. We have the following possibilities:
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1. S contains all the non-dicritical separatrices of F in S.
2. There is some singularity p ∈ sing(F) ∩ S and a (non-dicritical) separatrix Γ

of F through p, which is not contained in S. In this case we have the following
possibilities:

(a) The leaf containing Γ is not algebraic and F⊥-invariant. In this case F⊥
coincideswithF ,η is closed andF admits a rational generalized integrating
factor.

(b) The leaf containing Γ is not algebraic and is not F⊥ invariant.
(c) The leaf containing Γ is algebraic. In this case F is transversely affine in

M \ (S ∪ A) for some algebraic invariant curve A ⊂ M not contained in S.

Proof We perform the resolution of singularities for F in S and obtain a projective
surface M̃ and a resolution morphism σ : M̃ → M , a divisor E = σ−1(S) = D ∪ S̃,
where D is the exceptional divisor and S̃ is the strict transform of S, equipped with a
pull-back foliation F̃ = σ ∗(F) with irreducible singularities in E . The foliation F̃
is transversely projective in M̃ \ E . By Lemma 10 the projective transverse structure
of F̃ extends to the non-invariant part of D so that, for our purposes we may assume
that D is F̃-invariant, though not necessarily connected. If S contains all the non-
dicritical separatrices of F in S then we are in case (1).

Thus, from now on we suppose that there is a singular point q̃ ∈ S̃ ∩ sing(F̃)

such that F̃ exhibits some local separatrix Γ̃ through q̃ which is not contained in E .
Denote by F̃⊥ = σ ∗(F⊥) the inverse image ofF⊥ = Fξ on M̃ . Assume that the leaf
Ã of F̃ containing Γ̃ is not algebraic. In this case its projection A = σ( Ã) onto M is
not algebraic. We have two possibilities. If Γ̃ is Fξ -invariant then by, Lemma 6, F
coincides with F⊥ and we are in case (2)(a) in the statement. The second possibility
is that Γ̃ is not F̃-invariant. This corresponds to case (2)(b) in the statement.

Assume now that Ã ⊃ Γ̃ is an algebraic leaf of F̃ not contained in E . This
algebraic leaf projects onto an algebraic leaf A ofF , not contained in S. Theprojective
transverse structure ofF has A as a set of fixed points and thereforeF is transversely
affine in M \ (S ∪ A) what corresponds to case (2) (c) in the statement.

Thought the above statement already gives some information, it remains to study
the last case, 2(c) above. We must explore the consequences of the existence of a
non-dicritical separatrix which is not contained in the curve S, in the final description
of the foliation. This is done in what follows. In few words, for the case of extended
generalized curves, this allows to extend the projective triple, more precisely, the
one-form ξ extends to the irreducible component of S that contains this separatrix.

4.2 Extension of Projective Triples (irreducible Case)

Our main extension result for projective triples is so far the following:
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Theorem 5 LetF be a holomorphic foliation (respectively a germ of a holomorphic
foliation) on a projective surface U (respectively at the origin ofC2). Assume thatF
is transversely projective in U \ S where S ⊂ U is an algebraic invariant curve in
the projective surface (respectively a finite union of local branches of non-dicritical
separatrices ofF through the origin and U is a bidisc centered at the origin 0 ∈ C2,
where F has a representative). Suppose that the singularities of F in S are non-
resonant extended generalized curves. Then F admits a meromorphic projective
triple (respectively a germ of a meromorphic projective triple) (Ω, η, ξ) defined in
U (respectively at the origin), which defines the projective transverse structure in
U \ S (respectively in the complement of S).

In this section we pave the way to the proof of Theorem 5.
We recall the following fundamental result from [35]:

Theorem 6 (Touzet, [35] Theorem II.3.1 p. 821) A non-degenerate non-resonant
singularity xdy − λydx + Ω2(x, y) = 0, λ ∈ C \ Q+, is analytically linearizable if
and only if the corresponding foliationF is transversely projective inU \ sep(F ,U )

for some neighborhood U of the singularity.

One other tool is discussed below. LetF be a germ of an irreducible singularity at
the origin 0 ∈ C2, assumed to be of resonant type or of saddle-node type. According
to [35], Theorem II.4.2, the foliation admits a meromorphic projective triple in a
neighborhoodU of the singularity if and only if in a neighborhood of the singularity
F is the pull-back of a Riccati foliation on C × C by a meromorphic map. The
proof of this theorem is based in the study and classification of the Martinet-Ramis
cocycles of the singularity expressed in terms of some classifying holonomymap of a
separatrix of the singularity. For a resonant singularity any of the two separatrices has
a classifying holonomy and for a saddle-node it is necessary to consider the strong
manifold holonomy map. Thus we conclude that the proof given in [35] actually
shows that:

Lemma 7 ([35], Theorem II.4.2) Let F be a germ of an irreducible singularity at
the origin 0 ∈ C2, assumed to be of resonant type or of saddle-node type. The germ
F is the pull-back of a Riccati foliation onC × C by a meromorphic map if and only
if there exists a meromorphic projective triple (Ω ′, η′, ξ ′) in a neighborhood U0 of
a separatrix S ⊂ sep(F ,U ) provided that S is the strong separatrix if the origin is
a saddle-node.

As a further motivation for our approach wemention two results which are proved
in [9]. Such results imply the existence of a globally defined projective triple, parting
from a geometric projective triple, in a situation similar to the one we are dealing
with:

Proposition 8 ([9]) Let F be a holomorphic foliation in a neighborhood V of the
origin 0 ∈ C2 given by the holomorphic one-form Ω admitting a meromorphic one-
form η in V with dΩ = η ∧ Ω . Suppose that F has an irreducible non-degenerate
singularity at the origin and is transversely projective in U \ sep(F ,U ) for some
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neighborhood U ⊂ V of the origin whereF has an expression in irreducible normal
form. Let be given a holomorphic one-form ξ defined in U \ sep(F ,U ) such that
(Ω, η, ξ) is a geometric projective triple in U \ sep(F ,U ). Then ξ extends as a
meromorphic one-form to U. provided that, if the singularity is resonant, ξ extends
as a meromorphic one-form to S∗ = S − {0}, for some separatrix S ⊂ sep(F ,U ).

This proposition or the Globalization theorem in [9] give for the non-dicritical
case:

Proposition 9 (extension conditions) Let F be a holomorphic foliation defined in a
neighborhood V of 0 ∈ C2 with an isolated non-dicritical singularity at the origin.
Suppose that F is transversely projective in U \ sep(F ,U ) for some neighborhood
U ⊂ V of the origin where F is given by a holomorphic one-form Ω admitting a
meromorphic one-form η such that dΩ = η ∧ Ω in U. Let ξ be a meromorphic one-
form defined in U \ sep(F ,U ) such that (Ω, η, ξ) is a geometric projective triple.
Let π : Ũ → U be the reduction morphism of the singularity and denote by (Ω̃, η̃, ξ̃ )

the pull-back by π of the triple (Ω, η, ξ). Then the one-form ξ extends to U provided
that:

(Ext.1) At any non-resonant irreducible singularity of the foliation, the form ξ̃

admits a meromorphic extension (from a neighborhood of the singularity
minus its separatrices) to a neighborhood of the singularity.

(Ext.2) At any resonant irreducible singularity of the foliation, the one-form ξ̃

admits a meromorphic extension (from a neighborhood of an annulus con-
tained in one of the separatrices and around the singularity) to a neighbor-
hood of the singularity.

The (extension) conditions of the proposition above are satisfied in our current
situation, as we will see below (cf. Proposition 10).

We shall reprove and extend these results by considering meromorphic triples,
but which are not assumed to be geometric projective triples along the separatrices.

Remark 9 The above additional assumption (that ξ can be chosen holomorphic off
the set of separatrices) is not restrictive. Indeed, in the sequel (in the paper), the
foliation is assumed tobe transversely projective off the set of local separatrices. Since
Ω is defined meromorphic in a neighborhood of the singularity, we can assume that
it is holomorphic otherwise we replace it conveniently (see also Lemma 11). Thus,
if we write the one-form Ω = A(x, y)dx + B(x, y)dy with A, B holomorphic with
an isolated common zero at the origin, then we can choose η = Bx

B dx + Ay

A dy. The
polar set of η is contained in the curves {A = 0} and {B = 0}. So we can assume in
the case of a non-degenerate non-resonant singularity that the poles of η are contained
in the separatrices, which are the coordinate axes in suitable coordinates. Under this
hypothesis, the hypothesis of existence of a projective transverse structure off the
separatrices gives a holomorphic one-form ξ in the complement of the separatrices,
such that Ω, η, ξ is a (holomorphic) geometric projective triple off the axes.
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Next we show that the (extension) conditions in Proposition 9 are satisfied and
that we can apply some of these techniques also in the dicritical case. In order to do
this we remake the basic steps with the necessary changes. The starting point is the
non-resonant case considered below:

Proposition 10 (non-resonant case) Suppose that the origin is a nondegenerate non-
resonant singularity. Assume that F is transversely projective on U \ sep(F ,U ).
Let η be a meromorphic one-form on U and ξ be a meromorphic one-form on
U \ sep(F ,U ) such that on U \ sep(F ,U ) the one-forms Ω, η, ξ define a projec-
tive triple. Then ξ extends as a meromorphic one-form to U.

Before going into the proof we state a lemma:

Lemma 8 (non-resonant case) Let � be a meromorphic function inU ∗ = U \ {xy =
0} such that dΩ = − 1

2
d�
�

∧ Ω where Ω = g(xdy − λydx) for some holomorphic
non-vanishing function g inU and λ ∈ C \ Q. Then � = c̃.(gxy)−2 for some constant
c̃ ∈ C.

Proof Fix a complex number a ∈ C and introduce the one-form η0 = d(xyg)
xyg +

a(
dy
y − λ dx

x ) in U . Since Ω
gxy = dy

y − λ dx
x is closed it follows that dΩ = η0 ∧ Ω .

Thus the one-form Θ := − 1
2

d�
�

− η0 is closed meromorphic in U ∗ and satisfies
Θ ∧ Ω = dΩ − dΩ = 0. This implies that Θ ∧ (

dy
y − λ dx

x ) = 0 in U ∗ and there-

fore we have Θ = h.(
dy
y − λ dx

x ) for some meromorphic function h in U ∗. Taking
exterior derivatives we conclude that dh ∧ (

dy
y − λ dx

x ) = 0 inU ∗ and therefore h is a
meromorphic first integral forΩ inU ∗. Since λ /∈ Qwemust have h = c, a constant:
indeed, write h = ∑

i, j∈ZZ
hi j x i y j in Laurent series in a small bidisc around the origin.

Then from dh ∧ (
dy
y − λ dx

x ) = 0 we obtain (i + λ j)hi j = 0, ∀(i, j) ∈ ZZ × ZZ and
since λ /∈ Q this implies that λi j = 0, ∀(i, j) �= (0, 0).

This already shows that the one-form Θ always extends as a meromorphic one-
form with simple poles to U and therefore the function � extends as a mero-
morphic function to U . The residue of Θ along the axis {y = 0} is given by
Res{y=0}Θ = −Res{y=0} 12

d�
�

− Res{y=0}η0 = − 1
2k − (1 + a) where k ∈ IN is the

order of {y = 0} as a set of zeroes of � or minus the order of {y = 0} as a set of
poles of �. Thus by a suitable choice of a we can assume that Res{y=0}Θ = 0 and
therefore by the expression Θ = c( dyy − λ dx

x ) we conclude that, for such a choice of

a, we have 0 = Θ = − 1
2

d�
�

− η0 and thus − 1
2

d�
�

= dx
x + dy

y + dg
g

+ a(
dy
y − λ dx

x )

and therefore, comparing residues along the axes {y = 0} and {x = 0} we obtain
that 1 + a ∈ Q and 1 − aλ ∈ Q. Since λ /∈ Q the only possibility is a = 0. This
proves that indeed − 1

2
d�
�

= dx
x + dy

y + dg
g
in U and integrating this last expression

we obtain � = c̃(gxy)−2 for some constant c̃ ∈ C. This proves the lemma.

Now we can prove Proposition 10.
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Proof (Proof of Proposition 10) By hypothesis the foliation is given in suitable local
coordinates around the origin by xdy − λydx + Ω2(x, y) = 0 where λ ∈ C\Q,
Ω2(x, y) is a holomorphic one-form of order ≥ 2 at 0 ∈ C2.

Claim The singularity is analytically linearizable.

Indeed, if λ /∈ IR− then the singularity is in the Poincaré domainwith no resonance
and by Poincaré-Linearization Theorem the singularity is analytically linearizable.
Assume now that λ ∈ IR−\Q−. In this case the singularity is in the Siegel domain
and, a priori, it is not clear that the singularity is linearizable. Nevertheless, by
hypothesis F is transversely projective in U ∗ = U \ sep(F ,U ) and by Theorem 6
the singularity p ∈ sing(F) is analytically linearizable. This proves the claim.

Therefore we can suppose that Ω
∣∣
U = g(xdy − λydx) for some holomorphic

non-vanishing function g in U . We define η0 = dg
g

+ dx
x + dy

y in U . Then η0 is
meromorphic and satisfies dΩ = η0 ∧ Ω so that η = η0 + hΩ for some mero-
morphic function h in U . We also take ξ0 = 0 so that dη0 = 0 = Ω ∧ ξ0 and
dξ0 = 0 = ξ0 ∧ η. The triple (Ω, η0, ξ0) is a meromorphic projective triple in U
so that according to Proposition 3 we can define a meromorphic projective triple
(Ω, η, ξ1) inU by setting ξ1 = ξ0 − dh − hη0 − h2

2 Ω = −dh − hη0 − h2

2 Ω . Then
we have by Proposition 3 (iii) that ξ = ξ1 + �.Ω for some meromorphic function �

in U ∗ such that dΩ = − 1
2

d�
�

∧ Ω .
By Lemma 8 above we have � = c̃.(gxy)−2 in U ∗ and therefore ξ extends to U

as ξ = ξ1 + c̃.(gxy)−2 in U ∗. This proves the lemma.
Now we deal with the second extension condition (Ext. 2) in Proposition 9. The

first step is:

Lemma 9 (resonant case)LetF beagermof aholomorphic foliationwith a resonant
irreducible (non-degenerate) singularity at the origin 0 ∈ C2 and let 0 ∈ U ⊂ C2

be a bidisc centered at the origin where F is defined by a holomorphic one-form Ω .
Denote by sep(F ,U ) the set of local separatrices of F through the origin in U. Let
� be a meromorphic function in U \ sep(F ,U ) such that d Ω = − 1

2
d�
�

∧ Ω . Then
� extends as a meromorphic function to U provided that � admits a meromorphic
extension to (a neighborhood of) S∗ = S \ {0} for some separatrix S ⊂ sep(F ,U ).
Indeed, we have the following possibilities for F in suitable coordinates in a neigh-
borhood of the origin:

(i) F is analytically linearizable, i.e., analytically conjugate to the form xdy −
λydx = 0 for some λ ∈ C \ {0}.

(ii) F is a non-linearizable resonance analytically conjugate to the normal form:
Ωn,m = ny dx + mx(1 +

√−1
2π xn ym)dy = 0 where n,m ∈ IN.

In all cases S is given by {y = 0} and the function � extends as meromorphic
function to a neighborhood of the origin.

Proof We define the one-form η = − 1
2

d�
�
. Then η is a closed meromorphic one-

form in U \ [sep(F ,U ) \ S] such that dΩ = η ∧ Ω , moreover the polar set of η is
contained in S and has order at most one. If η is holomorphic inU \ [sep(F ,U ) \ S]
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then the foliation F is transversely affine in U \ [sep(F ,U ) \ S] and therefore the
holonomymap of the leaf L0 = S \ {0} is linearizable. Since the origin is irreducible
and S is not a central manifold the conjugacy class of this holonomy map classifies
the foliation up to analytic conjugation. Thus the singularity is itself linearizable.
Assume now that (η)∞ �= ∅. In this case we have the residue of η along S given by
ResSη = − 1

2 k where k is either the order of S as zero of � or minus the order of S
as pole of �. We have two possibilities:

(a) If − 1
2 k /∈ {2, 3, . . .} then by [27], Lemma 3.1, the holonomy map of the leaf

L0 is analytically linearizable and the same holds for the singularity.
(b) If − 1

2 k = t + 1 ≥ 2 for some t ∈ IN then by [27], Lemma 3.1, the holonomy
map of L0 is conjugate to a map of the form h(z) = αz

(1+βzt )
1
t
, i.e., this is a finite

ramified covering of an homography. Suppose that the singularity is nondegenerate
say Ω = xdy − λydx + .... If λ /∈ Q then the map h(z) is analytically linearizable
and therefore, again, the singularity is linearizable. Suppose now that the map h
is not analytically linearizable. Then we must have λ = − n

m for some n,m ∈ IN,
< n,m >= 1 and the holonomy h is analytically conjugate to the corresponding
holonomy of the germ of singularity Ωn,m = ny dx + mx(1 +

√−1
2π xn ym)dy; such

a singularity is called a non-linearizable resonant saddle. As it is well-known, in the
Siegel domain and in particular in the class of resonant singularities, the analytical
classification of the holonomy implies the analytical classification of the singularity.
More precisely, by [23, 24] we may assume that F is of the form Ωn,m = 0 in the
variables (x, y) ∈ U . So far we have proved that the following are the possibilities
for the singularities:

(1) The singularity is analytically linearizable, this is the case if it is not a resonance.
(2) The singularity is analytically conjugated to Ωn,m if it is resonant and not ana-

lytically linearizable.

Let us now use these two models in order to conclude the extension of � to U .
Case 1. In the linearizable case we can write S : {y = 0} and Ω = g(xdy − λydx)
for some holomorphic non-vanishing function g in U . If we introduce η0 = d(gxy)

gxy
then we have dΩ = η0 ∧ Ω and therefore (η − η0) ∧ Ω = 0 so that (η − η0) ∧
(
dy
y − λ dx

x ) = 0 and then η = η0 + F.(
dy
y − λ dx

x ) = 0 for some meromorphic func-
tion F in U0 := U \ [sep(F ,U ) \ S]. Since η and η0 are closed we conclude that
d(F.(

dy
y − λ dx

x )) = 0 in U0. Write now F = ∑
i, j∈ZZ

Fi j xi y j in Laurent series in a

small bidisc around the origin. We obtain from the last equation that (i + λ j)Fi j =
0, ∀i, j ∈ ZZ . If λ /∈ Q this implies that F = F00 is constant. Assume now that
λ = − n

m ∈ Q−. Then we have Ω ∧ d(xn ym) = 0 and also F = ϕ(xn ym) for some
function ϕ(z) = ∑

t∈ZZ
ϕt zt defined in a punctured disc around the origin. Neverthe-

less, the function F is meromorphic along the axis {y = 0} and therefore ϕ admits
a meromorphic extension to the origin 0 ∈ C and thus F extends as a meromorphic
function F = ϕ(xn ym) to a neighborhood of the origin.
Case 2. In the non-linearizable (resonant) case we can write S : {y = 0} and Ω =
gΩn,m = g(ny dx + mx(1 +

√−1
2π xn ym)dy) for some holomorphic non-vanishing
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function g on U . Define η0 = d(gxn+1 ym+1)

gxn+1 ym+1 . As above we conclude that η = η0 +
F.(n dx

xn+1 ym + m dy
xn ym+1 + m

√−1
2π

dy
y ) for some meromorphic function F in U0 such

that dF ∧ (n dx
xn+1 ym + m dy

xn ym+1 + m
√−1
2π

dy
y ) = 0. In other words, F is a meromorphic

first integral in U0 for the foliation F . This implies that F is constant. In order to
see this it is enough to use Laurent series as above. Alternatively one can argue as
follows. If F is not constant then the holonomy map h of the leaf L0 ⊂ S leaves
invariant a nonconstant meromorphic map (the restriction of the first integral F to a
small transverse disc to S). This implies that h is a mapwith finite orbits and indeed h
is periodic. Nevertheless this is never the case of the holonomy map of the separatrix
{y = 0} of the foliation Ωn,m . Thus the only possibility is that F is constant.

Summarizing the above discussion, we have proved that in all cases η = η0 + F.ω

for some meromorphic function F in U and some meromorphic closed one-form ω

in U . Moreover, F is constant except in the resonant case. This shows that η =
− 1

2
d�
�
admits a meromorphic extension to U and therefore also � admits a extends

meromorphic extension to U . The lemma is proved.

The remaining step for the irreducible resonant case is the following:

Proposition 11 (resonant case) Let F be a germ of a holomorphic foliation with
a resonant (irreducible) singularity at the origin 0 ∈ C2 and let 0 ∈ U ⊂ C2 be a
bidisc centered at the origin where F is defined by a holomorphic one-form Ω .
Fix a separatrix S ⊂ sep(F ,U ). Let η be a meromorphic one-form in U and ξ be a
meromorphic one-form in (U \ sep(F ,U )) ∪ S such that in U \ sep(F ,U ) the one-
forms Ω, η, ξ define a projective triple. Then ξ extends as a meromorphic one-form
to U.

Proof By hypothesis we are in the resonant case, i.e., Ω = g(xdy − λydx + . . .)

with λ = − n
m ∈ Q−. Suppose first that the singularity is not analytically linearizable.

As we have seen in Lemma 7, F is the pull-back of a Riccati foliation on C × C

by some meromorphic map σ : U → C × C provided that there is a meromorphic
projective triple (Ω ′, η′, ξ ′) in a neighborhood W of a separatrix S ⊂ sep(F ,U ).
From our hypothesis such a projective triple is given by the restrictions of Ω and
η to U \ [sep(F ,U ) \ S] and by the one-form ξ . Thus we conclude that F is a
meromorphic pull-back of a Riccati foliation and in particular there is a one-form ξ ′
defined in a neighborhood Ũ of the origin such that (Ω, η, ξ ′) is a projective triple
in this neighborhood. This implies that ξ = ξ ′ + �.Ω in Ũ for some meromorphic
function � in Ũ such that dΩ = − 1

2
d�
�
in Ũ . Now we have two possibilities. Either

ξ = ξ ′ in Ũ or � �≡ 0. In the first case ξ extends meromorphically toU as ξ = ξ ′. In
the second case we apply Lemma 9 above in order to conclude that the singularity is
analytically normalizable and � extends as a meromorphic function to U . Suppose
now that the singularity is resonant analytically linearizable and F is given in U by
Ω = g

(
xdy + n

m ydx
)
where n,m ∈ IN and g is a meromorphic function in U . In

this case as above we define η0 = dg
g

+ dx
x + dy

y , write η = η0 + hΩ and define ξ0 =
0, ξ1 = ξ0 − dh − hη0 − h2

2 Ω = −dh − hη0 − h2

2 Ω . Now we have ξ = ξ1 + �Ω
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for some meromorphic function � in U ∗. In this case we have from d� = − 1
2

d�
�

∧
Ω that �(gxy)2 = [ϕ(xn ym)]2 for some meromorphic function ϕ(z) defined in a
punctured neighborhood of the origin 0 ∈ C. In particular we conclude that since
ξ extends meromorphically to some separatrix {x = 0} or {y = 0} then it extends
meromorphically to U .

Thus ξ extends as a meromorphic one-form to U in all cases proving the desired
result.

Remark 10 Propositions 6, 10 and 11 already prove Theorem 5 in the case of a
germ of a foliation with an irreducible singularity at the origin.

4.3 Extension to Non-invariant Divisors

Since we are considering the possibility of existence of non-invariant components
in the exceptional divisor, we shall be able to extend the projective triple to such
components. This is done by means of the following lemma regarding the non-
invariant case:

Lemma 10 (non-invariant divisor, [9]) Let be given a holomorphic foliation F on
a complex surface M. Suppose that F is given by a meromorphic integrable one-
form Ω which admits a meromorphic one-form η on M such that dΩ = η ∧ Ω .
If F is transversely projective in M\S for some non-invariant irreducible analytic
subset S ⊂ M of codimension one thenF is transversely projective in M. Indeed, the
projective transverse structure forF in M\S extends to M as a projective transverse
structure for F . In particular, if ξ is a meromorphic one-form in M \U such that
(Ω, η, ξ) is a projective triple on M\S, then ξ admits a meromorphic extension to
S.

Proof Our argumentation is local, i.e., we consider a small neighborhood U of a
generic point q ∈ S where F is transverse to S. Thus, since S is not invariant by F ,
performing changes as Ω ′ = g1Ω and η′ = η + dg1

g1
we can assume that Ω and η

have poles in general position with respect to S in U . The existence of a projective
transverse structure for F in M\S then gives a meromorphic one-form ξ in M \ S
such (Ω, η, ξ) is a geometric projective triple in M \ S. ForU small enough we can
assume that for suitable local coordinates (x, y) ∈ U we have S ∩U = {x = 0} and
also

Ω = gdy, η = dg

g
+ hdy

for some holomorphic function g, h : U → Cwith 1/g also holomorphic inU . Then
we have

ξ = −1

g

[
dh + h2

2
dy

]
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where
d(

√
�gdy) = 0

Thus,
√

�g = ϕ(y) for some meromorphic function ϕ(y) defined for x �= 0 and
therefore for x = 0. This shows that ξ extends to U as a holomorphic one-form and
then the projective structure extends to U . This shows that the transverse structure
extends to S.

4.4 Extended Generalized Curves

Let us consider the general case, where we allow singularities which are not irre-
ducible, but belong to the the class of (non-resonant) generalized curve. For this type
of singularity we have the following extension result:

Proposition 12 (extension - generalized curve) Let F be a germ of a non-resonant
(and non-dicritical) generalized curve at the origin 0 ∈ C2. Suppose thatF is trans-
versely projective inU \ sep(F ,U ), for some bidiscU centered at the origin, and let
(Ω, η, ξ) be a meromorphic projective triple in U \ sep(F ,U ) withΩ holomorphic
in U, η meromorphic in U and ξ meromorphic in U \ sep(F ,U ). Then the one-form
ξ extends to U as a meromorphic one-form.

Proof Let π : Ũ → U be the reduction morphism of the singularity and denote by
(Ω̃, η̃, ξ̃ ) the pull-back by π of the triple (Ω, η, ξ). Because the singularity is non-

dicritical, the exceptional divisor E = π−1(0) =
r⋃
j=1

IP j in the reduction process is

connected and invariant. By the non-resonance hypothesis, this divisor contains some
non-resonant singularity say p0 ∈ IP j0 . Thanks to Hartogs’ extension theorem, the
one-form ξ̃ also extends to the irreducible component IP j0 minus the singularities of
the lifted foliation. Now according to Propositions 10 and 11, the form ξ̃ also extends
to all the components IP j intersecting IP j0 . The same argument and the connectedness
of E show that the projective triple (Ω̃, η̃, ξ̃ ) extends to a neighborhood of the
exceptional divisor.

We will prove a more general case in what follows. In a natural extension of the
arguments in the proof of Proposition 12 we obtain the following result which is
Theorem 5 in the local case.

Proposition 13 (extension - extended generalized curve) Let F be a germ of a
holomorphic foliation at the origin 0 ∈ C2. Suppose that for some small bidisc U
centered at the origin, the representative of F is transversely projective in U \ S
where S ⊂ N D(sep(F ,U )) ⊂ sep(F ,U ) is a (finite) union of local branches, all of
them corresponding to non-dicritical separatrices. Assume that the singularity 0 ∈ S
is a non-resonant extended generalized curve. Then F admits in U a meromorphic
projective triple. Indeed, let (Ω, η, ξ) be ameromorphic triple inU \ sep(F ,U )with
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Ω holomorphic in U, η meromorphic in U and ξ meromorphic in U \ sep(F ,U ).
Then the one-form ξ extends to U as a meromorphic one-form.

Proof (Proof of Theorem 5) The proof is similar to the one given for the case of
generalized curve (Proposition 12). The existence of a meromorphic projective triple
(Ω, η, ξ) with Ω, η meromorphic in U and ξ in U \ S is granted by Proposition 6.
Notice that by hypothesis each branch Sj in S is a non-dicritical separatrix and
therefore it meets the exceptional divisor in some singular point p̃ j ∈ sing(F̃) of an
invariant component IP(Sj ). We have Sj ∩ IP(Sj ) = { p̃ j }, where we still denote by
Sj the strict transform of Sj .

By the non-resonance hypothesis the component IP(Sj ) belongs to a connected
component E(Sj ) of the invariant part of E , which contains some non-resonant
singularity q̃ j ∈ E(Sj ) ∩ sing(F̃). Therefore, by the same arguments in the proof of
Proposition 11we conclude that third formof the pull-back projective triple (Ω̃, η̃, ξ̃ )

extends as a meromorphic one-form to this component each connected component
of the invariant part of the exceptional divisor E obtained in the reduction of the
singularity. The extension of ξ̃ to the non-invariant components of the exceptional
divisor is granted by Lemma 10. If a connected component Ei of the invariant part of
E does not contain a singularity belonging to a branch of S, still it contains some non-
resonant singularity and the extension to Ei is assured as above. Thus Theorem 5 is
proved in the local situation. The global case, i.e., the case of foliations on projective
surfaces, is proved in the same way.

For the case of projective surfaces we promptly have:

Theorem 7 Let F be a holomorphic foliation by curves on a projective manifold
M. Assume that F is transversely projective in M\S where S ⊂ M is an algebraic
curve. Suppose that the singularities of F in S are non-resonant extended general-
ized curves. Then F admits a rational projective triple (Ω, η, ξ), which defines the
projective structure for F in M \ S.

4.5 Extension of Projective Structures P

In this sectionwe investigate the extension not only ofmeromorphic projective triples
but, of projective transverse structures (generically denoted by P) to a codimension
one divisor. According to Lemma 10 we may assume that the divisor is invariant by
the foliation.

Proposition 14 (extension through a point) Let (Ω, η, ξ) be a meromorphic pro-
jective triple on a complex surface M2, and S ⊂ M an irreducible analytic subset
of dimension one. Suppose that the triple defines a projective transverse structure
P outside S. If there is a point q ∈ S and a neighborhood q ∈ U ⊂ M to which the
projective structure P extends, then this projective structure extends to M.
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Proof According to the preceding lemma, we may assume that S is F-invariant. We
consider the local case where the foliation F is given by a holomorphic one-form
Ω in an open subsetW ⊂ Cn with isolated zeros and admitting a meromorphic one-
form η on W satisfying dΩ = η ∧ Ω . We can assume that Ω and η have poles in
general position with respect to S.

ForU ⊂ W small enough we can find a holomorphic submersion y : U → C and
meromorphic functions g, h in U such that

Ω = gdy, η = dg

g
+ hdy, ξ = −1

g

[
dh + h2

2
dy

] + �gdy

where
d(

√
�gdy) = 0.

Thus,
√

�g = ϕ(y) for some meromorphic function ϕ(z) and therefore � = ϕ2(y)
g2

.
Hence we have

Ω = gdy, η = dg

g
+ hdy, ξ = −1

g

[
dh + h2

2
dy

] + ϕ2(y)

g
dy

We investigate under which conditions we can write

Ω = g̃d ỹ, η = d g̃

g̃
+ h̃d ỹ, ξ = −1

g̃

[
dh̃ + h̃2

2
d ỹ

]

for some suitable meromorphic functions g̃, h̃, ỹ.
Imposing the above equations we obtain

⎧⎪⎨
⎪⎩
gdy = g̃d ỹ
dg
g

+ hdy = d g̃
g̃

+ h̃d ỹ

− 1
g

[
dh + h2

2 dy
] + ϕ2(y)

g
dy = − 1

g̃

[
dh̃ + h̃2

2 d ỹ
] (1)

We shall refer to equations in (1) as main equations. From gdy = g̃d ỹ we obtain
g = r(y)g̃ for somemeromorphic function r(y). This implies d ỹ = r(y)dy and then
dg
g

+ hdy = d g̃
g̃

+ r ′(y)
r(y) dy + hdy so that replacing in the second main equation we

obtain d g̃
g̃

+ h̃d ỹ = d g̃
g̃

+ r ′(y)
r(y) dy + hdy and then r ′(y)

r(y) dy + hdy = h̃d ỹ = h̃r(y)dy.
This last equation rewrites

r ′(y)
r(y)

+ h = h̃r(y) (2)

and the final form

h̃ = 1

r(y)

[r ′(y)
r(y)

+ h
]

(3)
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Let us turn our attention to the third main equation. From this we obtain

1

g

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= 1

g̃

[
dh̃ + h̃2

2
d ỹ

]

Then
g̃

g

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= dh̃ + h̃2

2
d ỹ

1

r(y)

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= dh̃ + h̃2

2
d ỹ

1

r(y)

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= dh̃ + h̃2

2
r(y)dy

dh +
(
h2

2
− ϕ2(y)

)
dy = r(y)

[
d

(
1

r(y)

(
r ′(y)
r(y)

+ h

))
+ 1

2r(y)2

(
r ′(y)
r(y)

+ h

)2

r(y)dy

]

dh +
(
h2

2
− ϕ2(y)

)
dy = r(y)

[
d

(
1

r(y)

(
r ′(y)
r(y)

+ h

))
+ 1

2

1

r(y)

(
r ′(y)
r(y)

+ h

)2

dy

]

dh +
(
h2

2
− ϕ2(y)

)
dy = 1

2

(
r ′(y) + h

r(y)

)2

dy − r ′(y)
r(y)

(
r ′(y)
r(y)

+ h

)
dy + d

(
r ′(y)
r(y)

+ h

)

This last equation is equivalent to

− ϕ2(y) = −1

2

(
r ′(y)
r(y)

)2

+
(
r ′(y)
r(y)

)′
(4)

Let us put

s(y) := r ′(y)
r(y)

Then equation (4) rewrites

s ′ − 1

2
s2 = −ϕ2 (5)

So, the original question is reduced to find conditions under which the equation
above has a holomorphic solution. This is the case, for instance if ϕ is holomorphic.
Now we need to return to equation r ′(y)

r(y) = s(y) and study its solutions. It is clear
from integration that there is a holomorphic solution, which must be given by r(y) =
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e
∫
s(y)dy , if and only if the given data s(y) is either holomorphic or meromorphic with

a simple pole and integral positive residue at y = 0.
First case. If s(y) has a simple pole at y = 0. We may assume for simplicity that
s(y) = a/y for some a ∈ C∗. In this case from the differential equation s ′ − s2/2 =
−ϕ2 we obtain ϕ =

√
2a−a2
y . Integrating r(y) = e

∫
s(y)dy we obtain r(y) = ya . Since

r(y) = g/g̃ we have that r(y) is holomorphic without zeros. In particular we cannot
have a �= 0, contradiction.
Second case. If s(y) has a pole of order m + 1 ≥ 2 at y = 0. In this case we can
assume that s(y) = a/ym+1 for some m ≥ 1 and integration gives r(y) = e− a

mym

which is not meromorphic at the origin, contradiction.
Third case. If s(y) is holomorphic at y = 0. In this case we write s(y) = aym for
some m ≥ 0. We obtain r(y) = e

a
m+1 y

m+1
which is holomorphic and non-vanishing.

Let us now finish the proof. Because the projective structure extends to U the
equation (1) has a holomorphic solution and this implies that ϕ(y) is holomorphic
according to the above considerations. As a consequence the one-form ξ is also
holomorphic in U and therefore admits a holomorphic extension to S \ [(Ω)∞ ∪
(η)∞]. Hence, the projective structure extends to S \ [(Ω)∞ ∪ (η)∞] and then to S.

The next lemma shows that once we have fixed the forms Ω and η associated
to a transverse projective structure, then we may replace the third form ξ without
changing the invariant set S to which we wish to extend the structure.

Lemma 11 Let (Ω, η, ξ) be a meromorphic projective triple in a complex surface
M. Assume that the triple defines a projective transverse structure for F in M\S for
some invariant codimension one analytic subset S ⊂ M. Let ξ ′ be a meromorphic
one-form in M such that (Ω, η, ξ ′) is also a projective triple. Then S is ξ -invariant
if and only if it is ξ ′-invariant.

Proof We fix a local coordinate system (x, y) ∈ U centered at a point p ∈ M such
that F is given in these coordinates by Ω = gdy and S by {y = 0}. We may write
ξ ′ = ξ + �Ω where d(

√
�Ω) = 0. Then we have � = ϕ2(y)

g
for some meromorphic

function ϕ(z). Assume by contradiction that S is not ξ -invariant but S is ξ ′-invariant.
We may assume that the polar set of ξ has no irreducible component contained
in S and therefore ϕ(y) and g have no poles on {y = 0}. Write ξ ′ = Adx + Bdy
with holomorphic coefficients A(x, y), B(x, y). Since S is ξ ′-invariant we have
A(x, y) = y A1(x, y) for some holomorphic function A1(x, y). Then from ξ ′ = ξ +
�Ω we get ξ = yA1(x, y)dx + (B(x, y) − ϕ2(y)

g
)dy. Since A1 and B(x, y) − ϕ2(y)

g
have no poles in {y = 0}we conclude from the above expression that S is ξ -invariant,
contradiction.



On Singular Holomorphic Foliations with Projective … 219

5 Classification of Transversely Projective Foliations

5.1 Classification of Transversely Projective Foliations:
Non-dicritical Case

We consider now an application of the above study to the classification of foliations
with projective transverse structure. Nevertheless, because of the non-dicriticalness
hypothesis on the singularities, we will still be dealing with the affine case (see
Remark 11 (i)). The (dicritical) projective non-affine case will be dealt with later
on in this work. We point out that the non-dicriticity hypothesis excludes the “pure”
transversely projective case, i.e., the casewhere the structure is not transversely affine
in some other “affine” subset. We prove:

Theorem 8 LetF be a germ of a (non-dicritical) holomorphic foliation at the origin
0 ∈ C2. Suppose that:

(i) F is a germ of a non-resonant generalized curve and can be reduced with a
single blow-up.

(ii) F is transversely projective outside of the set sep(F , 0) of local separatrices of
F through 0.

ThenF admits a generalized integrating factor. In particular,F is transversely affine
in some neighborhood of the origin minus its set of local separatrices sep(F , 0).

As for the global case we have:

Theorem 9 LetF be a foliation on a compact projective surface M. Assume thatF
is transversely projective in the complement of an algebraic invariant curve S ⊂ M.
Suppose that for some smooth irreducible component S0 ⊂ S we have:

(i) The singularities of F in S0 are irreducible and non-degenerate, one of which
is non-resonant.

(ii) M\S0 is a Stein manifold.

Then F admits a rational generalized integrating factor. In particular F is trans-
versely affine in an open subset M \ C for some algebraic curve C ⊂ M.

We point-out that, since the singularities in S0 are irreducible non-degenerate,
usually the non-resonance hypothesis appearing in Theorem 8 is automatic. Indeed,
for instance for the case of the projective plane M = CP(2) this is a consequence of
the Index theorem [7] and of the special geometry of CP(2). Actually, we can state:

Theorem 10 Let F be a foliation on the projective plane CP(2), which is trans-
versely projective in the complement of an algebraic curve S ⊂ CP(2). Suppose that
for some smooth irreducible component S0 ⊂ S the singularities of F in S0 are irre-
ducible and non-degenerate. ThenF admits a rational generalized integrating factor.
In particular F is transversely affine in an open subset M \ C for some algebraic
curve S ⊂ C ⊂ CP(2).
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As we see from Examples 6 and 11 the general Riccati case appears when we
allow the curve S to have some dicritical singularities.

Let us pave the way to the proof of Theorems 8 and 9. Let G ⊂ Di f f (C, 0) be a
solvable subgroup of germs of complex diffeomorphisms fixing the origin 0 ∈ C. We
recall that [13] if the group of commutators [G,G] is not cyclic (in particular G is
solvable not abelian) then G is analytically conjugate to a subgroup of IHk = {

z �→
az

k√1+bzk
; a ∈ C \ {0}, b ∈ C

}
for some k ∈ IN. This is the case if G (is solvable and)

contains some non-resonant element. Using this we can state the following well-
known technical result.

Lemma 12 Let G < Di f f (C, 0) be a solvable subgroup of germs of holomor-
phic diffeomorphisms fixing the origin 0 ∈ C containing some non-resonant element
f ∈ G of the form f (z) = e2π iλ z + . . . with λ ∈ C\Q. We have the following pos-
sibilities:

(i) G is abelian. In this case G admits a formal meromorphic invariant one-form.
(ii) If G is not abelian then f is analytically linearizable in a coordinate that also

embeds G into some IHk .

Proof (i) is in [13]. Indeed, it is well-known that G admits a formal invariant holo-
morphic vector field say M̂ with an isolated singularity at the origin 0 ∈ C. Such
a vector field can be written M̂(z) = yk+1

1+λyk
∂
∂y , for some k ∈ IN and some λ ∈ C.

Moreover, according to [13] (see also [5, 28, 29]), because this group contains some
non-resonant element, this vector field is indeed analytic. Now we take the corre-
sponding dual one-form ω̂ = λyk+1

yk+1 dy. Since M̂ is invariant by the maps in G the
same holds for ω̂. This proves (i).

Now we prove (ii). Since G contains a non-resonant element we can, as already
observed above, choose a holomorphic coordinate z ∈ (C, 0) which embeds G as a
subgroup of the group IHk for some k ∈ IN. Given then a non-resonantmap f ∈ G we
can write f (z) = e2π iλ z

k√1+bzk
for some k ∈ IN, b ∈ C. Since λ ∈ C\Q the homography

H(z) = e2π iλ z
1+bz is conjugate by another homography to its linear part z �→ e2π iλ z and

therefore f is analytically linearizable in a coordinate that also embeds G into IHk .

Proof (Proof of Theorem 8) Let F be defined in an open bidisc 0 ∈ U ⊂ C2 by
the holomorphic one-form Ω . Put F̃ = π∗(F) in Ũ = π−1(U ) where π : C̃2

0 → C2

is the blow-up of C2 at 0 ∈ C2. Let also Ω̃ = π∗(Ω) be the lift of Ω to Ũ . The
exceptional divisor S = π−1(0) is a compact invariant curve (a projective line).
Each singularity of F̃ in S is irreducible and exhibits a separatrix transverse to S.
This set of separatrices (of F̃ transverse to S) is sep(F̃ , S) = π−1(sep(F , 0)\{0}) =
π−1(sep(F , 0))\S in Ũ . Now, because of (ii) the pull-back foliation F̃ is transversely
projective in Ũ\M̃ where M̃ = S ∪ sep(F̃, S). According to Theorem 3 this implies
that the holonomy group Hol(F̃ , S) of the leaf S\sing(F̃) of F̃ is solvable. We have
two cases to consider:
Case 1. The group Hol(F̃ , S) is abelian.

Because this holonomy group is analytically conjugate to an abelian subgroup of
Di f f (C, 0), it follows fromLemma12 (i) that there exists ameromorphic integrating
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factor h̃ for Ω̃ , defined over the open curve S0 = S\sing(F̃). By this we mean a
meromorphic function h̃ defined in a neighborhood of S0 such that the form 1

h̃
Ω̃

is closed. Moreover, according to [5, 28, 29], because of the hypothesis on the
singularities in S, this integrating factor extends as a meromorphic integrating factor
for Ω̃ in a neighborhood of S. Therefore, the foliation F̃ is defined by a closed
meromorphic one-form ω̃ = 1

h̃
Ω̃ in a neighborhood of S.

Case 2. The holonomy group Hol(F̃ , S) is solvable but not abelian. By the non-
resonance hypothesis this group contains some element of the form f (z) = e2π iλ z +
. . . with λ ∈ C\Q. By Lemma 12 this map f is analytically linearizable and in the
same analytic coordinate that embeds the holonomy group in the group

IHk = {
ϕ(z) = az

k
√
1 + bzk

, a �= 0
}

for some k ∈ IN.

According to Sect. 5 in [27] (see also [8, 28]), this implies that the foliation is trans-
versely affine in the complement of its set of separatrices, admits a so called closed
logarithmic derivative which is a closed meromorphic one-form η̃0, with simple
poles defined in a small neighborhood of the origin. The form η̃0 satisfies

dΩ̃ = η̃0 ∧ Ω̃.

Nowwe can “project” the one-form η̃0 via the blow-upmapπ : C̃2
0 → C2 onto a one-

form η0 defined in a punctured neighborhood of the origin. This one-form satisfies
η̃0 = π∗(η0) and, by classical Hartogs’ extension theorem [18] it extends (to the
origin) as a meromorphic one-form in a neighborhood of the origin. It is clear that
η0 is closed and satisfies dΩ = η0 ∧ Ω . This proves Theorem 8.

In the same line of reasoning we can prove Theorem 10:

Proof (Proof of Theorem 10) We know that F is given by a rational one-form Ω on
CP(2). We shall prove that Ω admits a rational generalized integrating factor η on
CP(2). This is partially done as in the proof of Theorem 8. Nevertheless, in order to
mimic the proof of Theorem 8 we must prove:

Claim Some singularity in S0 is non-resonant.

Proof (Proof of Claim 5.1) Recall that an irreducible non-degenerate singularity can
be written in the form xdy − λydx + h.o.t. = 0, where λ ∈ C \ Q+ and {xy = 0}
is the set of local separatrices. If we fix the separatrix {y = 0} then the Index of the
singularity with respect to this separatrix is given by λ. With respect to the other
separatrix the index is 1/λ. By the Index theorem [7] the sum of all indexes of
singularities in S0 with respect to the local branches of S is equal to a (natural)
positive number, the self-intersection number of S0 in the projective plane CP(2).
This implies that not all indexes are rational negative. Since by definition the index of
an irreducible singularity is never a positive rational number, this implies that some
singularity has a non-rational index. This singularity is clearly non-resonant.
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By the above claim, the holonomy group of (the leaf contained in) S0 contains
some non-resonant germ. From the proof of Theorem 8 there is a meromorphic
generalized integrating factor η defined in some neighborhood V of S0 in CP(2).
SinceCP(2) \ S0 is a Stein surface [34], by a theorem of Levi (see [11, 34]), we can
conclude that the one-form η extends as a meromorphic one-form toCP(2) (see [10]
for similar extension arguments). Finally, the extended one-form η must be rational
because we are on a projective manifold. As in [27] the existence of η implies the
final part of the statement.

Proof (Proof of Theorem 9) As for the proof of Theorem 9 very few remains to say.
Indeed, the proof of Theorem 10 gives all the steps. The hypotheses (i) and (ii) are
then necessary since we cannot prove a version of Claim 5.1 in this case.

Remark 11 (1) Theorems 8 and 10 above show that in order to capture the generic
foliations in the class of Riccati foliations it is necessary to allow dicritical
singularities or curves containing all of its separatrices.

(2) Theorem 8 completes an example given in [35] of a germF satisfying (i) and (ii)
but which is not a meromorphic pull-back of a Riccati foliation on an algebraic
surface. Indeed, the construction given in [35] exhibits F having as projective
holonomy group G, i.e., the holonomy group G = Hol(F̃ , D), where D is the
exceptional divisor of the blow-up, a non-abelian solvable group conjugate to
a subgroup of IH1 = {

z �→ λz
1+μz

}
.

(3) In [35] it is also given an example of a foliationH on a rational surface Y such
thatH is transversely projective on Y\M for some algebraic curve M ⊂ Y and
such that H is not birationally equivalent to a Riccati foliation on C × C.

5.2 Logarithmic Foliations, Separatrices and Invariant
Curves

Let us recall that a logarithmic foliation on a projective surface M is one given by
a closed rational one-form β with simple poles. If M = C × C or CP(2) then a

logarithmic foliation is given by a rational one-form β as follows: β =
r∑
j=1

λ j
d f j
f j
,

where the f j are rational functions on V and λ j ∈ C \ {0}.
In [20] the author gives the following nice characterization of logarithmic folia-

tions:

Theorem 11 (cf. [20], Theorem A) Let F be a holomorphic foliation on a compact
algebraic surface M and let S be a compact curve invariant by F . Assume that one
of the following conditions holds:

(i) Pic(M) is isomorphic to ZZ.
(ii) Pic(M) is torsion free, H 1(M,C) = 0, S2 > 0 and

∑
p∈sing(F)−S

BBp(F) ≥ 0.
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Also assume that every local separatrix ofF through any p ⊂ sing(F) ∩ S is a local
branch of S and that every singularity of F in S is a generalized curve. Then F is a
logarithmic foliation.

Here, by BBp(F) we mean the Baum-Bott index associated to the Chern number
c21 of the normal sheaf of the foliation [1]. Also, Pic(M) = H 1(M,O∗

M) is the Picard
group of M , while S2 denotes the self-intersection number of S. We point-out that
Pic(M) = ZZ for the case of projective spaces M = CP(m),m ≥ 2. Regarding
condition (ii), the part H 1(M,C) = 0, S2 > 0 is verified for the case of projective
spaces.

As a particular case we have:

Corollary 1 Let F be a holomorphic foliation on CP(2) and let S ⊂ CP(2) be an
invariant algebraic curve byF . Assume that: (i) every local separatrix ofF through
any p ⊂ sing(F) ∩ S is a local branch of S and that (ii) every singularity of F in S
is a (non-dicritical) generalized curve. Then F is a logarithmic foliation.

As for the last inequality in Theorem 11 (ii) we have:
The condition

∑
p∈sing(F)−S

BBp(F) ≥ 0 holds if each singularity of F in M \ S is

linearly of Morse type (i.e.F is locally given by the holomorphic one-form d(xy) +
h.o.t.). This condition also holds when F a has local holomorphic first integral
around each point of M which is not in S. In particular we have:

Lemma 13 Let F be a holomorphic foliation on a compact algebraic surface M
and let S be an invariant compact curve byF . IfF is transversely projective in M\S
and the singularities in M\S are all non-dicritical then

∑
p∈sing(F)−S

BBp(F) ≥ O.

Proof Since F is transversely projective in M \ S, any singularity p ∈ sing(F) ∩
M\S admits a meromorphic first integral. Because this singularity is non-dicritical,
there is a holomorphic first integral. The conclusion follows from what we remarked
above.

From this lemma and Theorem 11 and also Theorem 5 we promptly obtain:

Corollary 2 Let F be a holomorphic foliation on a compact algebraic surface M
and let S be an invariant compact curve by F . Suppose that F is transversely pro-
jective in M\S and that every singularity of F in S is a generalized curve. Assume
that one of the following conditions hold:

(i) Pic(M) is isomorphic to ZZ.
(ii) Pic(M) is torsion free, H 1(M,C) = 0, S2 > 0 and the singularities off S are

non-dicritical.

There are two possibilities:

(a) Every local separatrix of F through any p ⊂ sing(F) ∩ S is a local branch of
S. In this case F is a logarithmic foliation.
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(b) There is a singular point p ∈ S exhibiting a separatrix Γp not contained in S.
In this case F admits a rational projective triple (Ω, η, ξ), defined on M.

Let F be a holomorphic foliation on CP(2) of degree m, then
∑

p∈sing(F)

BBp(F) =
(m + 2)2 ≥ 4. The author proves the following extension of the second part of The-
orem 1 in [12] to compact complex surfaces (cf. [20] Proposition 3.1):

Proposition 15 ([20] Proposition 3.1) Let F be a holomorphic foliation on a com-
pact algebraic surface M with H 1(M,C) = 0 and Pic(M) = ZZ. Let S be an invari-
ant compact curve with only nodal type singularities.
If

∑
p∈sing(F)−S

BBp(F) < S2, then F is logarithmic.

By taking a look at the proof given in [20] we conclude that the conclusion of
Theorem 11 holds for a foliation F on the complex projective plane CP(2) having
an invariant algebraic curve S such that each singularity of F in S is an extended
generalized curve (cf. Definition 4) and if S contains each non-dicritical separatrix
of each singularity of F in S.

Corollary 3 ([20], Corollary 3.1) Let F be a holomorphic foliation on a com-
pact algebraic surface M with H 1(M,C) = 0 and Pic(M) = ZZ. Let S ⊂ M be
an invariant compact curve with only nodal type singularities. If sing(F) ∩ S =
sing(S) and the singularities ofF in S are non-degenerated, thenF is a logarithmic
foliation.

5.2.1 Logarithmic Case and Moderate Growth

Theorem 12 Let F be a foliation on a projective surface M such that Pic(M)

is isomorphic to ZZ. Assume that F is transversely projective in M\S for some
algebraic curve S ⊂ M and that the singularities of F in S are (non-dicritical) non-
resonant generalized curves. Then F is a logarithmic foliation or it is transversely
projective of moderate growth.

Proof (Proof of Theorem 12) We will follow the notation in the proof of Theorem 4.
Because the singularities ofF are non-dicritical, the resolution divisor E = D ∪ S̃ is
invariant by F̃ . Moreover, each connected component S j of S originates a connected
component of the resolution divisor. Therefore, for sake of simplicity of notation,
let us assume that the singularities of F are already irreducible in M , i.e., S and E
exhibit the same number of connected components. If we denote by σ : M̃ → M the

resolution morphism for the singularities of F in S, then σ
∣∣
˜M\S : ˜M \ S → M \ S is

a diffeomorphism, in particular the fundamental groups π1(˜M\S) and π1(M\S) are
isomorphic.
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We have the following possibilities:

1. S contains all the separatrices of F in S.
2. There is a singularity of F , say q ∈ S, exhibiting a separatrix Γ which is not

contained in S.

In case (1), since the singularities are assumed to be generalized curves we may
apply Theorem 11 and conclude that F is a logarithmic foliation.

Assume that we are in case (2). Then by Theorem 5 and other results in Sect. 4.5
we conclude that the projective structure in M \ S defines a projective triple that
extends to S. We have therefore a rational projective triple for F in M , i.e., F is
transversely projective of moderate growth.

Clearly a logarithmic foliation is of moderate growth. Therefore we obtain:

Corollary 4 Let F be a foliation on M = CP(2). Assume that F is transversely
projective in CP(2) \ S for some algebraic curve S ⊂ CP(2) and that the singu-
larities of F in S are (non-dicritical) non-resonant generalized curves. Then F is
transversely projective of moderate growth.

5.3 Classification of Projective Foliations: Moderate Growth
On Projective Manifolds

In [21] we find the following definition of transversely projective foliation on a
smooth projective manifold. Let M be a smooth projective manifold overC.A (holo-
morphic singular) codimension one foliation F on M .The foliation is said to be
transversely projective if given a non zero rational 1-form ω defining F (and there-
fore satisfying the Frobenius integrability condition ω ∧ dω = 0) we have that there
are rational 1-forms α and β on M such that the sl2-connection on the rank 2 trivial

vector bundle defined by Δ = d +
(

α β

ω −α

)
is flat.

Let us compare the above definition with the one we have been using so far in
this work. Indeed, compared to Definitions 6 and 6 there is a difference, quite easy
to explain. In the above definition, we already assume that the foliation admits a
rational projective triple, i.e., a projective triple meromorphic defined everywhere
in the manifold M . This is not necessarily the case if we just start with a foliation
which is (according to our definition Definition 6) transversely projective in M\S for
some algebraic curve S ⊂ M . Nevertheless, often we cannot extend the projective
transverse structure to the curve S (for instance, in the case of Riccati foliations or
logarithmic foliations). Thus what is considered in [21] are what we have called
transversely projective foliations with moderate growth (cf. Definition 9). projective
structure in M\S.

The authors also introduce the following notion:
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Definition 12 ([21]) A Riccati foliation over a projective manifold M consists of
a pair (π : P → M; H) = (P; H) where π : P → M is a locally trivial IP1 fiber
bundle in the Zariski topology, this means that P is the projectivization of the total
space of a rank two vector bundle E , and H is a codimension one foliation on P
which is transverse to a general fiber of π . In the case of a clear context, the IP1-
bundle P is omitted from the notation. Then H is called a Riccati foliation. The
foliation H is defined by the projectivization of horizontal sections of a (non unique)
at meromorphic connection r on E . The connection r is uniquely determined by H
and its trace on det(E). We say that the Riccati foliation H is non-singular if it lifts to
a meromorphic connection r with at worst non-singular singularities (see [15]), and
irnon-singular if not. It is said that a Riccati foliation (P; H) over M factors through
a projective manifold M ′ if there exists a Riccati foliation (π ′ : P ′ → M ′, H ′) over
M ′, and rational maps φ : M → M ′ andΦ : P → P ′, such that π ′ ◦ Φ = φ ◦ π , and
Φ has degree one when restricted to a general fiber of P , and H = Φ∗H ′.

Using the notion above, alternatively, in [21] the authors state that a foliation F
on M is transversely projective if there exists a triple P = (P; H ; σ) satisfying

1. (P; H) is a Riccati foliation over M ; and
2. σ : M → P is a rational section generically transverse to H such thatF = σ ∗H .

After making the conversion between the notions of transversely projective folia-
tion in [21] and the one we consider in our work, we can state the main classification
result of [21] as follows:

Theorem 13 (cf. [21], Theorem D) Let F be a codimension one transversely pro-
jective foliation of moderate growth on a projective manifold M. Then at least one
of the following assertions holds true.

1. There exists a generically finite Galois morphism f : Y → M such that f ∗F is
defined by a closed rational one-form.

2. There exists a rationalmap f : M → S to a ruled surface S, andaRiccati foliation
R on S such that F = f ∗R.

3. The transverse projective structure forF has at worst non-singular singularities,
and the monodromy representation of F factors through one of the tautological
representations of a polydisk Shimura modular orbifold H.

Combining this result and Theorem 7 we promptly obtain:

Theorem 14 Let F be a holomorphic foliation by curves on a projective manifold
M. Assume that F is transversely projective in M\S where S ⊂ M is an algebraic
curve. Suppose that the singularities ofF in S are non-resonant extended generalized
curves. Then at least one of the following assertions holds true.

1. There exists a generically finite Galois morphism f : Y → M such that f ∗F is
defined by a closed rational one-form.

2. There exists a rationalmap f : M → S to a ruled surface S, andaRiccati foliation
R on S such that F = f ∗R.
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3. The transverse projective structure forF has at worst non-singular singularities,
and the monodromy representation of F factors through one of the tautological
representations of a polydisk Shimura modular orbifold H.
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