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Abstract This is an introduction to the study of the equisingularity of sets using the
theory of the integral closure of ideals and modules as the main tool. It introduces
the notion of the landscape of a singularity as the right setting for equisingularity
problems.
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Introduction

“Let me now take a new tack which promises a better wind. Instead of dealing with
a pair of hypersurfaces, let us consider analytic families of hypersurfaces Vr , all
having a singular point at the origin and depending on a set of parameters.” O.
Zariski, Presidential Address, Bulletin A.M.S. 77 No. 4 (1971), 481–491 [41].

Given a family of sets or maps, when are all the members the same? When are
some of the members different? Equisingularity is the study of these questions. As
Zariski noticed, it is easier to say when a member of family is different, than it is to
say when two sets or two maps are the same. Often the change in a single invariant
suffices to pick out the members which are out of step with the rest.

A basic question is what do we mean by “the same”? And how do we tell when
a family of sets are the same using invariants of the members of the family? These
questions are explored in these lectures.

As Zariski indicates earlier in his address, equisingularity had its roots in both
differential topology and algebraic geometry, and both areas continue to contribute
important ideas. The use of algebraic geometry naturally leads to the use of commu-
tative algebra to count and to control.
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In answering the question of what “the same” means a topologist might ask that
the members of the family be homeomorphic; a differential topologist would ask that
some of the infinitesimal structure, such as limiting tangent planes and secant lines
be preserved as well, while an algebraic geometer might ask that the singularities
have the same multiplicity.

In these lectures we work in the complex analytic case using the Whitney condi-
tions or Verdier’s W, known to be equivalent in the complex analytic case [38], to
say when the members of a family are the same. These conditions imply all three
of the above possible answers. The theory of integral closure of ideals and modules
provides an algebraic description of these conditions from which we may abstract
the invariants which control them in families.

Here is an overview of my current approach to equisingularity questions. Given
a set X , decide on the landscape that the set is part of. This means deciding on
the allowable families that include the set, and the generic elements that appear in
allowable families. Each set should have a unique generic element that it deforms
to, and some elements of the topology of this generic element should be important
invariants of our set. Describing the connection between the infinitesimal geometry
of X and the topology of the generic element related to X is part of understanding
the landscape. Based on the allowable deformations, determine the corresponding
first order infinitesimal deformations of X . These make up a module N (X). The
Jacobian module of X , J M(X) is the module generated by the partial derivatives of
a set of defining equations for X . These can be viewed also as the infinitesimally
trivial deformations of X . For the case of sets, the invariants we need for checking
condition W come from the pair (J M(X), N (X)) and N (X) by itself. A change at
the infinitesimal level of the family is always tied to a change in the topology of the
generic related elements.

Those who have studied maps using stabilizations [31] will recognize many ele-
ments of the overview in that context.

This paper is divided into three lectures with an afterword. They are designed to
help you reach the point where the overview makes sense. In the afterword we will
look at the overview again, using determinantal singularities as an example.

The first lecture introduces theWhitney conditions andVerdier’s conditionW , and
shows howVerdier’s conditionW can be described using analytic inequalities. In the
second lecture, the theory of the integral closure of ideals and modules is introduced,
allowing us to recast the analytic inequalities of the first lecture in algebraic terms.
This lecture contains a new and shorter proof of the integral closure formulation
of Whitney equisingularity, Proposition2.34. The third lecture introduces the main
source of our invariants–the multiplicity of ideals and modules. In applications these
multiplicities are infinitesimal objects, being intersection numbers connected with
conormal spaces. The polar variety of a module is defined, and in the applications,
these are local objects on our families. Through theMultiplicity Polar Theorem3.22,
they are connected to our infinitesimal invariants. The third lecture continues by
applying all of these ideas to the study of determinantal singularities, which are a
reasonable next step in complexity beyond complete intersections.
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For complete intersections our families are obtained by varying the equations
directly; for determinantal singularities we cannot vary the equations freely, but
we can vary the entries of the matrix defining the singularity freely. This is the
connection with complete intersections. However, since determinantal singularities
are the inverse images of generic determinantal singularities, the polar varieties of the
generic determinantal singularities contribute to the invariants we need to describe
Whitney equisingularity in this context. (Cf. Theorem3.28.)

Since these lectures are meant to be a tool for students to enter the subject, there
are many exercises scattered through the lectures. I encourage you to try all of them.
There are also some readings which fill in gaps in the proofs or provide deeper
understanding. I encourage you to try these as well.

A first reading which gives an overview of how the material in these lectures
developed can be found on the conference web site, along with the abstract for the
course. It is a PDF of the talk I gave at Aussois in June ’15 to celebrate the 70th
birthday of Bernard Teissier. Teissier has made all of his papers available on his
web site, (webusers.imj-prg.fr/ bernard.teissier/articles-Teissier.html) and many of
the suggested readings can be found there.

It is a pleasure to thank the organizers of the conference for giving me the chance
to speak about these beautiful ideas, and to share some of my thoughts about them.

1 Equisingularity Conditions

We start with some notation to describe a family of sets. In the diagram:

Xd(0) ⊂ X d+k ⊂ Y × C
N

0 ∈ Y = C
k

pY πY

the parameter space is Y , X (0) denotes the fiber of the family over {0},X d+k denotes
the total space of the family which is contained in Y × C

N . We usually assume
Y ⊂ X d+k , and X = F−1(0), X (y) = fy

−1(0), where fy(z) = F(y, z).
Given a family ofmap germs as above,we say the family is holomorphically trivial

if there exists a holomorphic family of origin preserving bi-holomorphic germs ry

such that ry(X (0)) = X (y). If the map-germs are only homeomorphisms we say the
family is C0 trivial.

Every subject needs a good example to start with. Here is ours:

Example 1.1 Let X be the family of four moving lines in the plane with equation
F(x, y, z) = xz(z + x)(z − (1 + y)x) = 0. Here y is the parameter, the x and z axis
are fixed, as is the line z + x = 0while the line z − (1 + y)x = 0moveswith y. Here
is a picture of the total space of the family:
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This family is not holomorphically trivial as the next exercise shows, but it should
be equisingular for any reasonable definition of equisingularity.

Problem 1.2 Show that the family of 4 lines is not homomorphically trivial by fol-
lowing the hints and proving them: If ry is a trivialization of the family of sets,
Dry(0) must carry the tangent lines of X (0) to X (y). If a linear map preserves the
lines defined by x = 0, z = 0, z = −x then the linear map must be a multiple of the
identity. Hence ry can’t map z = x to z = (1 + y)x, y �= 0.

Thus, we need a notion of equisingularity that is less restrictive than holomorphic
equivalence.

The Whitney conditions imply C0 triviality but also imply the family is well-
behaved at the infinitesimal level.

If X is an analytic set, X0 the set of smooth points on X , Y a smooth subset of X ,
then the pair (X0, Y ) satisfies Whitney’s condition A at y ∈ Y if for all sequences
{xi } of points of X0,

{xi } → y
{T Xxi } → T

⇒ T ⊃ T Yy

The pair (X0, Y ) satisfies Whitney’s condition B at y ∈ Y if for all sequences
{xi } of points of X0,

{xi } → y
{T Xxi } → T

sec(xi ,πY (xi )) → L
⇒ T ⊃ L

Problem 1.3 Show that the family of 4 lines satisfies the Whitney conditions. (Hint:
The family consists of submanifolds meeting pairwise transversely.)

Example 1.4 This is a famous example used inmany singularities talks.X is defined
by F(x, y, z) = z3 + x2 − y2z2 = 0. The members of the family X (y) consist of
node singularities where the loop is pulled smaller and smaller as y tends to zero,
becoming a cusp at y = 0. Here is a picture:
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The singular locus is the y-axis. Whitney A holds because every limiting tangent
plane contains the y-axis. But Whitney B fails. Notice that the parabola z = y2 is in
the surface, and letting xi = (0, ti , ti 2) and yi = (0, ti , 0), ti any sequence tending to
0, we see that the limiting secant line is the z-axis, while the limiting tangent plane
along this curve is the xy-plane.

We see that the dimension of the limiting tangent planes at the origin is 1, while it
is zero elsewhere on the y-axis. This kind of drastic change at the infinitesimal level
is prevented by the Whitney conditions.

Reading You can read about the Whitney conditions in many places. Two refer-
ences are the first chapter of [22], and Chap. III of [38]. The latter is more in the
spirit of the way we are developing the subject, though harder. When you begin to
study the polar varieties of a module in the third lecture, the lectures of Teissier [36]
on the historical development of the polar variety of a space, and its connections to
the Whitney conditions are very interesting. (Among other things, he explains why
they are called “polar” varieties.)

Verdier’s Condition W

The next condition, while equivalent to the Whitney conditions in the complex ana-
lytic case (proved by Teissier [38]) is easier to work with using algebra.

Condition W says that the distance between between the tangent space to X at a
point xi of X0 and the tangent space to Y at y goes to zero as fast as the distance
between xi and Y . We first need to define what we mean by the distance between
two linear spaces.

Suppose A, B are linear subspaces at the origin in C
N , then define the distance

from A to B as:

dist(A, B) = sup
u ∈ B⊥ − {0}
v ∈ A − {0}

‖(u, v)‖
‖u‖ ‖v‖ .
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In the applications B is the “big” space and A the “small” space. The inner product
is the Hermitian inner product when we work over C. The same formula also works
over R.

Example 1.5 For this example, we work with linear subspaces of R3. Let A = x-
axis, B a plane with unit normal u0, then the formula for the distance from A to B
reduces to cos θ, where θ is the small angle between u0 and the x-axis, in the plane
they determine. So when the distance is 0, B contains the x-axis.

We recall Verdier’s condition W.

Definition 1.6 SupposeY ⊂ X̄ ,where X, Y are strata in a stratificationof an analytic
space, and dist(T Y0, T Xx ) ≤ Cdist(x, Y ) for all x close to Y . Then the pair (X, Y )

satisfies Verdier’s condition W at 0 ∈ Y .

Problem 1.7 Show that W fails for Teissier’s example for X0, Y where Y is the
y-axis at the origin.

As a first step to understanding the condition, we consider the case where X is a
hypersurface in Cn . We would like to re-write this condition in terms of F where F
defines X . This will allow us to develop an algebraic formulation of theW condition.

Set-up: We use the basic set-up with X k+n a family of hypersurfaces in Y k × C
n+1.

Proposition 1.8 Condition W holds for (X0, Y ) at (0, 0) if and only if there exists
U a neighborhood of (0, 0) in X and C > 0 such that

‖∂F

∂yl
(y, z)‖ ≤ C sup

i, j
‖zi

∂F

∂z j
(y, z)‖

for all (y, z) ∈ U and for 1 ≤ l ≤ k.

Proof In this set-up, Y is a k-plane, so we will set A = Y , and calculate the distance
between Y and a tangent plane to X0 at (y, z) which is our B. At a smooth point of
X k+n , we can use DF(y, z)/‖DF(y, z)‖ for u ∈ B⊥, and the standard basis for the
vectors from A.

Then the distance formula says that condition W holds if and only if

sup
1≤l≤k

‖ ∂F
∂yl

(y, z)‖
‖DF(y, z)‖ ≤ C ′′dist((y, z), Y ) = C ′ sup

1≤i≤n+1
‖zi‖

This is equivalent to

‖∂F

∂yl
(y, z)‖ ≤ C sup

1≤i≤n+1
‖zi‖ sup

1≤ j≤n+1
‖ ∂F

∂z j
(y, z)‖

From which the desired result follows. �
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Denote the ideal generated by the partial derivatives of F with respect to the z
variables by Jz(F), and the ideal generated by z j by mY . Then zi

∂F
∂z j

are a set of
generators for mY Jz(F). The inequality above says that the partial derivatives of
F with respect to yl go to zero as fast as the ideal mY Jz(F). We will examine the
implications of this in the next section.

Reading After you read a little about the integral closure of ideals, reading pp.
589–605 [37] will give you a good background on the integral closure approach to
Whitney equisingularity for hypersurfaces with isolated singularities.

2 The Theory of Integral Closure of Ideals and Modules

Many operations on ideals and submodules of a free module come from operations
on rings. (For other examples of this, see [14, 15, 18].)

We illustrate this idea by reviewing the notions of the integral closure of a ring
and the normalization of an analytic space.

Definition 2.1 Let A, B be commutative Noetherian rings with unit, A ⊂ B a sub-
ring. Then h ∈ B is integrally dependent on A if there exists a monic polynomial
f (T ) = T n + ∑

i=0
fi T i , fi ∈ A such that f (h) = 0. The integral closure of A in B

consists of all elements of B integrally dependent on A.

Example 2.2 Let A be the ring of convergent power series in the germs t2 and t3,
denoted C{t2, t3}, B = C{t}. Then if f (T ) = T 2 − t2 we have f (t) = 0, so t is
integrally dependent on A. In fact, B is the integral closure of A in B.

Definition 2.3 Let A be the local ring of an analytic space X, x , B the ring of
meromorphic functions on X at x ; the space associated with the integral closure of
A in B is the normalization of X .

Example 2.4 Let A = C{t2, t3}, B = C{t}. Then A is the local ring at the origin of
the cusp x3 − y2 = 0, and since t3/t2 = t , the ring of meromorphic functions on X
at the origin is C{t}. So by the previous example the normalization of the cusp is a
line.

In this context a ring A is normal if the integral closure of A in its quotient
field is A. A space germ is normal if its local ring is normal. Normal spaces have
nice properties–they are non-singular in codimension 1 and the Riemann removable
singularities theorem is true for them. Given a space germ X , we always have a map
πN X from the normalization of X , denoted N X , to X which is finite and generically
1-1. N X and πN X are unique up to holomorphic right equivalence. You can read
proofs of these facts in [23] pp. 154–163, working backwards as necessary.

The following exercise is easy assuming the facts in the last paragraph.

Problem 2.5 Show that the normalization of an irreducible curve germ X, x is C, 0.
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If you know a little bit about singularities of maps, the next exercise is also easy.

Problem 2.6 Suppose f : Cn, 0 → C
p, 0, n < p and f is a finitely determined

map-germ. Show (Cn, 0), f is a normalization of the image of f .

Basic Results from the Theory of Integral Closure for Ideals

The operation of integral closure of rings creates, as we shall see, an operation on
ideals, the operation of forming the integral closure of I , which is an ideal, denoted
I . Assume I is an ideal in OX,x , f ∈ OX,x . In discussing the properties of integral
closure, sometime we work on a small neighborhood of X . In this case, I refers to
the coherent sheaf I generates on U .
List of Basic Properties f is integrally dependent on I if one of the following
equivalent conditions obtain:

(i) There exists a positive integer k and elements a j in I j , so that f satisfies the
relation f k + a1 f k−1 + · · · + ak−1 f + ak = 0 in OX,0.

(ii) There exists a neighborhood U of 0 in C
N , a positive real number C , repre-

sentatives of the space germ X , the function germ f , and generators g1, . . . , gm of
I on U , which we identify with the corresponding germs, so that for all x in U we
have: ‖ f (x)‖ ≤ C max{‖g1(x)‖, . . . , ‖gm(x)‖}.

(iii) For all analytic path germs φ : (C, 0) → (X, 0) the pull–back φ∗ f = f ◦ φ
is contained in the ideal generated by φ∗(I ) in the local ring ofC at 0. If for all paths
φ∗ f is contained in φ∗(I )m1, then we say f is strictly dependent on I and write
f ∈ I †.
Let N B denote the normalization of the blowup of X by I , D̄ the pullback of the

exceptional divisor of the blowup of X by I to N B by the normalization map. Then
we have:

(iv) For any component C of the underlying set of D̄, the order of vanishing of the
pullback of f to N B along C is no smaller than the order of the divisor D̄ along C.

This implies that the pullback of f lies in the ideal sheaf generated by the pullback
of I .

The set of all elements ofOX,x which are integrally dependent on I is the integral
closure of I and is denoted I .

Proposition 2.7 If I is an ideal in OX,x , then so is I .

Proof Weuseproperty (iii). Letφ : (C, 0) → (X, 0)be any analytic curve, g ∈ OX,x ,
f1, f2 in I . Then (g f1 + f2) ◦ φ = (g ◦ φ)( f1 ◦ φ) + ( f2 ◦ φ) ∈ φ∗(I ), since φ∗(I )
is an ideal in O1. �

The proof of this for general rings is Corollary 1.3.1 of [35].
The first property is usually taken as the definition, and shows that integral depen-

dence is an algebraic idea. This permits the extension of the concept to ideals in any
ring. For the development of the idea of the integral closure of an ideal or module
from the algebraic point of view see [35].
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The second property is used to control equisingularity conditions. It already
appeared in the discussion of Verdier’s condition W in the hypersurface case earlier,
and we will revisit it shortly.

The third property is convenient for computations, and often for proofs as the proof
of the previous proposition shows. It is also helpful in understanding conditions
involving limits. In the analytic setting, definitions that use sequences of points,
such as the Whitney conditions, can be checked with curves, often leading to an
interpretation of the condition in terms of the integral closure of an ideal or module.
We will see an example of this in the study of limiting tangent hyperplanes in the
next section.

The notion of strict dependence defined in the third property is used to describe
properties like Whitney A, or Thom’s A f condition where integral dependence is
insufficient–see the problem later on about Whitney A.

Given a curve φ(s), and a germ f , if f ◦ φ is defined, it is equal to csr mod mr+1
1

for c �= 0 for some r . We call r the order of f on φ and write fφ = r , and Jφ for the
order of an ideal J on φ.

Because the exceptional divisor of the blow-upof the Jacobian ideal tracks limiting
infinitesimal information, the fourth property is perhaps the most important. Since
N B is normal, each component of the exceptional divisor is generically a smooth
submanifold of a manifold, so the ideal vanishing on the component is locally prin-
cipal. This means we can talk about the order of vanishing on each component. The
order of the divisor D̄ is just the order of vanishing along the component of the pull-
back of I to N B. Concretely, pick a local generator u of the ideal of the component,
and write the elements of I in terms of u. The smallest power of u that appears is the
order of I along C .

The fourth property also shows how a closure operation on rings gives a closure
operation on ideals– start with a ring and an ideal, enlarge the ring by a closure
operation, look at the ideal generated in the new ring, then intersect with the original
ring to define the closure operation on the ideal.

Reading For detailed proofs of the equivalences between these properties see
[28] pp. 18–27. You can download this paper from Teissier’s list of publications–it
is #15. Try this after reading the proofs of the equivalences contained here.

In the next example, we practice using the first property.

Example 2.8 Let A = O2, I = (xn, yn). Suppose f = xi y j , i + j ≥ n. Consider
the monic polynomial h(T ) = T n − (xn)i (yn) j . Since (xn)i (yn) j is in (I i )(I j ) ⊂
I i+ j ⊂ I n , and h( f ) = 0, then f ∈ I .

Now we do a computation using the third property.

Example 2.9 Let A = O2, I = (xa, yb). Given m = xi y j define the weight of m to
be bi + aj , given f (x, y), define the weight of f to be the minimum weight of all
monomials appearing in a power expansion of f . We will show that I consists of all
f such that weight of f ≥ ab.
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First, we’ll show weight of m ≥ ab implies m ∈ I . It suffices to check this for
curves φ(t) = (tr , t s) as higher order terms don’t affect the order of I or m on the
curve. Since I is an ideal, this will show that f ∈ I .

We have Iφ =min{ra, sb}; assume ra ≤ sb.
It is convenient to think of the monomial xi y j as the point (i, j) in the xy-plane.

Consider the parallel lines r x + sy = c. Then if m is any monomial on this line,
mφ = c, and mφ > c if m lies above this line. If the weight of m ≥ ab then m lies
above or on the line connecting (a, 0) and (0, b), so it will lie above or on any line
passing through (a, 0), which lies below or on (0, b). This implies that mφ ≥ ra and
shows m ∈ I .

Suppose the power expansion of f contains a monomial m which lies below the
line connecting (a, 0) and (0, b). Then the convex hull of the monomials appearing
in f has a vertex m ′ which lies below the line connecting (a, 0) and (0, b). We can
find a line passing through this vertex which lies below (a, 0) and (0, b). Then for
the curve ψ defined by this line,

fψ = m ′
ψ < Iψ

which shows that f /∈ I .
This kind of reasoning is very useful in studying properties of ideals which are

well connected to their Newton polygons. In this example, the Newton polygon of
I is all the points of R2 above or on the line connecting (a, 0) and (0, b) in the
first quadrant. For more examples and details see [39], which is #46 on Teissier’s
publication list or [34].

Next, we use property 2 to characterize Verdier’s W in the hypersurface case.
Set-up: We use the basic set-up with X k+n a family of hypersurfaces in Y k × C

n+1.

Proposition 2.10 Condition W holds for (X0, Y ) at (0, 0) if and only if ∂F
∂yl

∈
mY Jz(F) for 1 ≤ l ≤ k.

Proof By the last proposition of the first section we know that W holds if and only
if

‖∂F

∂yl
(y, z)‖ ≤ C sup

i, j
‖zi

∂F

∂z j
(y, z)‖

But, by property 2 this is equivalent to ∂F
∂yl

∈ mY Jz(F) for 1 ≤ l ≤ k. �

If we have a curve φ on X k+n , φ(0) = 0, and the image of φ in X k+n
0 except at 0,

and J (F)φ = r then we can calculate the limiting tangent hyperplane to X k+n along
φ as

limit
s→0

(1/sr )(DF(φ(s)))

If ∂F
∂yl

∈ Jz(F) for 1 ≤ l ≤ k, then the limiting plane is never vertical, but it does
not necessarily contain Y .
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Problem 2.11 Show that if ∂F
∂yl

for 1 ≤ l ≤ k is strictly dependent on Jz(F) then
every limit of tangent planes along every curve φ not in V (Jz(F)) contains Y .

Problem 2.12 Show that if ∂F
∂yl

for 1 ≤ l ≤ k is strictly dependent on Jz(F) then WA
holds.

We will prove a few of the implications showing the equivalence of the basic
properties.

Proposition 2.13 Property 1 implies property 3

Proof Let f satisfy the relation f k + a1 f k−1 + · · · + ak−1 f + ak = 0 inOX,0, and
let φ : C, 0 → X, 0. Choose g ∈ I such that gφ = Iφ. We may assume the image of
φ does not lie in V (I ). Then

( f ◦ φ)k

(g ◦ φ)k
+ a1 ◦ φ

(g ◦ φ)

( f ◦ φ)k−1

(g ◦ φ)k−1
+ · · · + ak−1 ◦ φ

(g ◦ φ)k−1

( f ◦ φ)

(g ◦ φ)
+ ak ◦ φ

(g ◦ φ)k
= 0

and ai ◦φ
(g◦φ)i is holomorphic for all i . Since O1 is normal, it follows that ( f ◦φ)

(g◦φ)
is holo-

morphic, hence f ◦ φ ∈ φ∗(I ).

Proposition 2.14 Property 3 implies property 4

Proof We will only prove this for the case where V (I ) = 0.
Consider the components {Ci } of D̄. Since N B is normal and the Ci have codi-

mension 1, we can pick out points ci on each Ci and curves φ̃i , such that φ̃i (0) = ci ,
and φ̃i is transverse to Ci . We can choose ci so that π∗

N B(I ) vanishes only on Ci in a
neighborhood of ci , and the same is true for f ◦ πN B . If ui defines Ci at ci , then we
have f ◦ πN B = hi ui

fi , hi a unit. The exponent fi is the order of vanishing of f along
Ci . Since φ̃i is transverse to Ci at ci , ui ◦ φi (t) = t , so f ◦ πN B ◦ φi (t) = h′

i (t)t
fi ,

h′ a unit.
We can also find local generators of π∗

N B(I ) of form ui
Ii where Ii is the order of I

along Ci . Now πN B ◦ φ̃i is a map from C, 0 → X, 0, since πN B(Ci ) = 0, and hence
πN B(ci ) = 0. (This is the reason for restricting to this case.) Hence, if property 3
holds, fi ≥ Ii for all i . If we work at any point of D̄ since π∗

N B(I ) is principal, we
can find g ◦ πN B a local generator then f ◦ πN B/g ◦ πN B is a meromorphic function
which is well defined off a set of codimension 2. Since N B is normal, the function
is analytic, so f ◦ πN B ∈ π∗

N B(I ). �

Proposition 2.15 Property 4 implies property 2

Proof Choose a compact neighborhood U of 0, and consider its inverse image in
N B. The inverse image must be compact as well. So, since f ◦ πN B ∈ π∗

N B(I ), we
can cover π−1

N B(U ) with a finite number of sets and choose elements of I such that

‖ f ◦ πN B(p′)‖ ≤ C max{‖g1 ◦ πN B(p′)‖, . . . , ‖gm ◦ πN B(p′)‖}
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holds on π−1
N B(U ). Then it is clear that

‖ f (πN B(p′))‖ ≤ C max{‖g1(πN B(p′))‖, . . . , ‖gm(πN B(p′))‖}.

Since πN B surjects on U , this finishes the proof. �

There is a nice corollary of the method of proof used in the previous proposition
and of property 2 which we now describe. Given a subset S of an analytic set X ,
f X, S → Y, y where S = f −1(y) denotes the germ of an analytic map along S.
Given an ideal I in OY,y , f ∗(I ) denotes the ideal sheaf along S obtained by pulling
back I by f .

Proposition 2.16 Suppose f X, S → Y, y where S = f −1(y), f proper and surjec-
tive. Suppose I an ideal of OY,y , h ∈ OY,y . Then h ∈ I if and only if h ◦ f ∈ f ∗(I )
along S.

Proof Since f is proper, S is compact, and as in the last proof we can cover S with
a collection of neighborhoods such that on the union the germ of a function along
S is in f ∗(I ) if an only if it satisfies an analytic inequality of the type described by
property 2. Since f is surjective, the inequalities push down/pullback to Y, y. �

Problem 2.17 Use the finite map f (x, y) = (xb, ya) to give another proof that
(xa, yb) consists of all g such that weight of g ≥ ab.

We have Proposition 2.10 to describe W for hypersurfaces, but what about sets
of higher codimension? We will see that the theory of integral closure of modules
provides the tools we need to describe the higher codimension case.

The Theory of Integral Closure for Modules: Motivation

Verdier’s condition W is based on the distance between the tangent space T Xx to X
at smooth points x and the tangent space T to Y . Recall this distance is defined as

dist(T, T Xx ) = sup
u ∈ T X⊥

x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖ .

If u ∈ T X⊥
x − {0}, then the set of points perpendicular to u consists of a hyper-

planewhich contains T Xx . These hyperplanes are called tangent hyperplanes; denote
a tangent hyperplane to X, x by Hx , and the collection of all tangent hyperplanes to
X, x by C(X)x . Then we can rephrase the distance formula as

dist(T, T Xx ) = sup
Hx ∈C(X)x

dist(T, Hx )

If X = F−1(0) where F C
n → C

p, then at a smooth point p of X , the projec-
tivisation of the rowspace of the matrix of partial derivatives of F is C(X)p. Since
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the tangent hyperplanes are what we need to control the distance between the tan-
gent space of X, p and T Y, 0, this suggests we should look at the module generated
by the partial derivatives of F denoted J M(X), just as we looked at J (F) in the
hypersurface case.

Basic Results from the Theory of Integral Closure for Modules

Notation: M ⊂ N ⊂ F p, F p a free OX,x module of rank p, M, N submodules of
F . If M is generated by g generators {mi }, then let [M] be the matrix of generators
whose columns are the {mi }.

We will develop properties for modules similar to those for ideals; however a
convenient entry way into the theory is:

Definition 2.18 If h ∈ F p then h is integrally dependent on M , if for all curves φ,
h ◦ φ ∈ φ∗(M). The integral closure of M denoted M consists of all h integrally
dependent on M .

A good very basic reference on properties of integral closure of modules is [9, pp.
301–307]. The development of these ideas in the setting ofmodules over commutative
rings can be found in [35] starting with the chapter “Integral Closure of Modules”.

Problem 2.19 M is a module, M = M

Example 2.20 Let [M] =
[

x y 0
0 x y

]

, then M = m2O2
2.

It is clear that M ⊂ m2O2
2; we will show that

(
y
0

)

∈ M .

Given a curve φ we can assume yφ < xφ otherwise

(
y ◦ φ
0

)

∈
(

x ◦ φ
0

)

O1.

Then (
y
0

)

◦ φ =
(

y
x

)

◦ φ − x/y ◦ φ

(
0
y

)

◦ φ

where x/y ◦ φ ∈ O1.

Connection with the Theory of Integral Closure of Ideals I

Notation: Given an element h ∈ F and a submodule M , then (h, M) denotes the
submodule generated by h and the elements of M . Given a submodule N of F ,
Jk(N ) denotes the ideal generated by the set of k by k minors of a matrix whose
columns are a set of generators of N . If M is an OX module then the rank of M is
k on a component V of X if Jk(M) �= (0) on V and k is the largest value for which
this is true.

Theorem 2.21 (Jacobian principle) Suppose the rank of (h, M) is k on each com-
ponent of (X, x). Then h ∈ M if and only if Jk(h, M) ⊂ Jk(M)
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Proof The complete proof appears in [9, p. 304]. The easy part is to show that h ∈ M
implies Jk(h, M) ⊂ Jk(M).

We have

φ∗(Jk(h, M)) = Jk(φ
∗(h, M)) = Jk(φ

∗(M) = φ∗(Jk(M))

which implies the result.
The problem in the other direction is checking for curves which lie in the set

of points where the rank is less than maximal, so that all the elements of Jk(h, M)

vanish, but h doesn’t vanish. We approach this problem in two steps.
Assume first that the image of our curve φ does not lie entirely in V (Jk(h, M)).
Then, by hypothesis φ∗(Jk(h, M)) = φ∗(Jk(M)) �= 0. So, there is a non-zero

minor of the matrix of generators [M], of M , J (I, K ) such that J (I, K ) ◦ φ is
generator of φ∗(Jk(M)). Here I is an index of the rows and K an index of the
columns which comprise the k × k submatrix whose determinant is J (I, K ).

Consider MI,K the submodule of Fk defined using as matrix of generators the
square submatrix of [M] whose determinant is J (I, K ), and let hI be the element
obtained from h by using the entries indexed by I .

Applying Cramer’s rule, we have that hI ◦ φ ∈ φ∗(MI,K ), where hI ◦ φ(t) =
([MI,K ] ◦ φ(t))ξ(t) for some column vector ξ(t), given by composing the output of
Cramer’s rulewithφ(t). Let [MK ] be the submatrix of [M] using the columns indexed
by K . Consider hI ◦ φ(t) − ([MK ] ◦ φ(t))ξ(t). If this is zero, we have checked the
condition for φ. If it is not zero, then φ∗(h, M) has rank greater than k which is a
contradiction.

Now suppose the image of φ does lie entirely in V (Jk(h, M)), so φ∗(Jk(h,

M)) = 0.
Here the argument breaks into two parts again. We first assume X is smooth so

that we can vary the curve freely, then we use the resolution of singularities to reduce
to the smooth case.

Supposeφ∗(M) �= φ∗(h, M). Now, by theArtin–Rees theoremweknow that there
exists ν0 > 0, ν0 ∈ Z such that

ml
1O p

1 ∩ φ∗(h, M) = ml−ν0
1 (mν0

1 O p
1 ∩ φ∗(h, M)).

This implies, that in fact,

φ∗(M) �= φ∗(h, M) mod ml
1O p

1

for any l > ν0. If not, then h ◦ φ = g mod φ∗(M), with g ∈ ml
1O p

1 , and so

g ∈ ml
1O p

1 ∩ φ∗(h, M),

hence
g, h ◦ φ ∈ φ∗(M) + m1(m

ν0
1 O p

1 ∩ φ∗(h, M)).



Equisingularity and the Theory of Integral Closure 103

Sinceφ∗(M) + m1φ
∗(h, M) = φ∗(h, M),Nakayma’s lemmawould imply the result.

Now choose l > ν0; since X is smooth, we can find a curve φ1, by changing terms
of the power series expansion φ of order ≥l, such that the image of φ1 does not lie
in V (Jk(h, M)).

This implies that
φ∗
1(M) = φ∗(M) mod ml

1O p
1

φ∗
1(h, M) = φ∗(h, M) mod ml

1O p
1

φ∗
1(M) = φ∗

1(h, M)

This gives a contradiction in this case.
If X is not smooth, then we can make a resolution, X̃ ,π, of singularities of X , lift

φ to φ̃ on X̃ . Then φ∗(M) �= φ∗(h, M) if and only if φ̃∗π∗(M) �= φ̃∗π∗(h, M), then
we can again vary φ̃∗ as before. �

If h ∈ M , this last proposition allows us to to do more than show h ∈ M along
curves.

Proposition 2.22 Suppose h ∈ M, then there exists an open cover {UI,K } of the
complement of V (J (M)), such that on each UI,K , h = [M]ξI,K , where the entries
of ξI,K are locally bounded on UI,K .

Proof The open cover {UI,K } is constructed by constructing an open cover {VI,K }
of the fiber over the origin in N BJ (M)(X) such that on each VI,K , the pullback of
J (I, K ) is a local generator of the pullback of J (M). Then Cramer’s rule applies,
and the pullbacks of the ξI,K are holomorphic, hence locally bounded on the images
of the VI,K which are the UI,K . �

As another application we can develop the analogue of property 2 for ideals.

Proposition 2.23 ([9], Proposition 1.11) Suppose h ∈ O p
X,x , M a submodule ofO p

X,x

of generic rank k on each component of X. Then h ∈ M if and only if for each choice
of generators {si } of M, there exists a constant C > 0 and a neighborhood U of x
such that for all ψ ∈ �(Hom(Cp,C)),

‖ψ(z) · h(z)‖ ≤ C sup
i

‖ψ(z) · si (z)‖

for all z ∈ U.

For each choice ofψ, the {ψ · si (z)} give a linear combination of the rows of [M] at
each point, while ψ(z) · h(z) is the analogous combination of the entries of h. So the
inequality of the theorem relates the size of row vectors of [M(x)] to corresponding
combinations of the entries of h. The constant C and the neighborhood U depend on
h and M but not on ψ.
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Proof We will use the Jacobian principle to show that the inequality implies the
integral closure inclusion, by using special ψi .

Let SI be a k × (k − 1) submatrix of [M], going through all such submatrices
as I varies, let hI be a k-tuple gotten by dropping the same entries from h as rows
from [M] in forming SI . LetψI (z)(h(z)) = det[hI (z), SI (z)]. Note thatψI (z)si (z) =
det[si (z), SI (z)], a generator of Jk(M).

The inequality which we are assuming then shows that Jk(h, M) ⊂ Jk(M), which
gives the result by the Jacobian principle.

A weaker version of the other direction is easy; if h ∈ M , then for any curve φ,
(ψ(z) · h(z)) ◦ φ ∈ φ∗({ψ(z) · si (z)}), hence (ψ(z) · h(z)) ∈ ({ψ(z) · si (z)}). Then
the result follows by property 2 for ideals. However, here the constant does depend
on ψ.

Instead we argue like this. Let {si } be a set of generators of M . Applying property
2 to the finite set of elements {gi } that make up the numerators of the entries of the
ξI,K in the last proposition, we have that there exists U and C such that if gi is such
a numerator, then

‖gi (z)‖ ≤ C sup ‖JI,K (z)‖.

We have that JI,K (z)h(z) = ∑
gi si for appropriate gi . Then working first at z /∈

V (J (M))

‖ψ(z) · h(z)‖ = ‖
∑

(gi/J (I, K ))(z)ψ(z) · si (z)‖ ≤ C N sup
i

‖ψ(z) · si (z)‖

where N is the number of terms in the sum. Since the inequality is between continuous
functions and holds on an open dense subset of U it holds on U . �

Corollary 2.24 Suppose h ∈ O p
X,x , M a submodule of O p

X,x of generic rank k on

each component of X. Then h ∈ M if and only if for each choice of generators {si }
of M, there exists a constant C > 0 and a neighborhood U of x such that for all
T ∈ C

p,
‖T · h(z)‖ ≤ C sup

i
‖T · si (z)‖

for all z ∈ U.

Proof In one direction, take ψ to be constant; in the other we can replace T by ψ,
using the fact that the constant C is independent of the choice of T . �

The corollary reflects the equivalence of h ∈ M and ρ(h) ∈ M. (The notions of
ρ(h),M and the equivalence will be developed later.)

There is a useful variant of the last Proposition.

Proposition 2.25 ([17]) For a section h ∈ O p
X to be integrally dependent on M

at 0, it is necessary that, for all maps φ : (C, 0) → (X, 0) and ψ : (C, 0) →
(Hom(Cp,C),λ) with λ �= 0, the function ψ(h ◦ φ) on C belong to the ideal
ψ(M ◦ φ).
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Conversely, it is sufficient that this condition obtain for every φ whose image meets
any given dense Zariski open subset of X.

Wewill use these ideas to extend our criterion for conditionW to equidimensional
sets of any codimension, but first we develop the analogue of property 4 for modules.

Blowing Up Modules and Connection with Ideals II

We now develop the analogue of property 4 for modules.Wewill want a construction
that works for pairs of submodules, not just a single submodule.

Given a submodule M of a free OXd module F of rank p, we can associate a
subalgebra R(M) of the symmetric OXd algebra on p generators. This is known
as the Rees algebra of M . If (m1, . . . , m p) is an element of M then

∑
mi Ti is

the corresponding element of R(M). Then Projan(R(M)), the projective analytic
spectrum ofR(M) is the closure of the projectivised row spaces of M at points where
the rank of a matrix of generators of M is maximal. Denote the projection to Xd by
c, or by cM where there is ambiguity.

Example 2.26 If M is the Jacobian module of X , then Projan(R(M)) is C(X), the
projectivised conormal space of X .

If M is a submodule of N or h is a section of N , then h and M generate ideals on
ProjanR(N ); denote them by ρ(h) and M. If we can express h in terms of a set of
generators {ni } of N as

∑
gi ni , then in the chart in which T1 �= 0, we can express a

generator of ρ(h) by
∑

gi Ti/T1.

Example 2.27 If M is the Jacobian module of X and N = F p then V (M) consists
of pairs (x, L) where x ∈ X and L ∈ PHom(Cp,C), and L ◦ DF(x) = 0. If H is
the hyperplane which is the kernel of L , then the image of DF(x) lies in H .

Using Proposition2.23 it is easy to show that h is integrally dependent on M at
the origin, if and only the ideal sheaf induced from h is integrally dependent as an
ideal sheaf on M along 0 × P

p−1. In other words, if and only if ρ(h) is integrally
dependent onM. The combination ψ(t),φ(t) amounts to giving path on X × P

p−1.
This is the second connection between integral closure of ideals and modules.

Looking at a pair (M, N ) allows us to “strip out” one copy of N from M , as the
following example shows.

Example 2.28 Let M = I = (x2, xy, z) = J (z2 − x2y) and N = J = (x, z). M is
the Jacobian ideal of the Whitney umbrella, and N defines the singular locus
of the umbrella. So, working on C

3, ProjanR(N ) = BJ (C
3), which has ring

R = C[T1, T2]/(zT1 − xT2), and where the map from R(N ) to R is given by
x → T1, z → T2. Writing the generators of I in terms of the generators of J as
x2 = x · x, xy = y · x, z = z the map fromR(I ) to R has image (xT1, yT1, T2) and
this induces the ideal sheaf I on ProjanR(N ). We see that this is supported only at
the point (0, [1, 0]).

The next proposition and the ideas behind it, is very useful in the study of deter-
minantal singularities. It is also a good example of stripping a copy of a module N
from M .
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Proposition 2.29 Suppose M ⊂ N ⊂ O p
X,0 are O p

X modules with matrix of gener-
ators [M], [N ], and [F] is a matrix such that [M] = [N ][F]. Let F be the ideal
sheaf induced on Projan(R(N )) by the module F with matrix of generators [F].
Then M = N if and only if V (F) is empty.

Proof We are going to apply Proposition2.25, so we must show that for all
maps φ (C, 0) → (X, 0) and ψ (C, 0) → (Hom(Cp,C),λ), that the order in t of
ψ(t)[M] ◦ φ(t) and ψ(t)[N ] ◦ φ(t) are the same. We have

ψ(t)[M] ◦ φ(t) = ψ(t)[N ][F] ◦ φ(t).

Suppose the order of ψ(t)[N ] ◦ φ(t) in t is k. Then we can lift φ,ψ to a
curve on Projan(R(N )) as follows. Define � : C, 0 → X × P

g(N )−1, by �(t) =
(φ(t), [(1/t k)(ψ(t)[N ] ◦ φ(t)]). We have �(0) = (0, lim

t→0
(1/t k)(ψ(t)[N ] ◦ φ(t)),

and the image of � for t �= 0 clearly lies in Projan(R(N )).
Given an element f ∈ F , the value of f along � is (φ(t), [(1/t k)(ψ(t)[N ] f̃ ◦

φ(t)]), where f̃ is the element of F which induces f . Then V (F) is empty if and
only if the order of F along all � is zero. Since [M] = [N ][F] this is equivalent to
the order of M and N being the same on (ψ,φ). �

Notice that if M ⊂ N and F are as above then the inclusion of M in N always
induces a map from Projan(R(N ))\V (F) to Projan(R(M)). The map is given by
taking (x, p) to (x,F(p)), where F(p) is evaluation of the set of generators of F
which come from the columns of [F]. The next corollary includes this setting in our
discussion of reduction.

Corollary 2.30 Suppose M and N as above, then the following are equivalent:

1. M is reduction of N .
2. V (F) is empty.
3. The induced map is a finite map from Projan(R(N )) to Projan(R(M)).

Proof (1) and (2) are equivalent by the previous proposition. The material in Sect. 2
of [26] shows that the induced map is finite if and only if V (F) is empty. �

Here is a typical way that (3) is used.

Proposition 2.31 Suppose N ⊂ F, F a free OX,x module, and suppose the fiber
of ProjanR(N ) over x has dimension k. Then N has a reduction M, where M is
generated by k + 1 elements.

Proof Let g be the number of generators of N , so we view ProjanR(N ) as a subset
of X × P

g−1. For a generic choice of plane P in P
g−1 of codimension k + 1, the

intersection of P and the fiber of ProjanR(N ) over x is empty. We can choose coor-
dinates on P

g−1 so that the plane given by T1 = · · · = Tk+1 = 0 is such a plane, Ti

coordinates on Pg−1. Choosing coordinates on Pg−1 is equivalent to choosing gener-
ators on N . Let M be the submodule of N generated by the first k + 1 generators of
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N after the new choice of generators. Then the projection onto the first k + 1 coor-
dinates of Pg−1, when restricted to ProjanR(N ) gives a finite map to ProjanR(M).
Hence M is a reduction of N by (3). �

Corollary 2.32 Suppose N ⊂ F, F a freeOX,x module, Xd equidimensional, N has
generic rank e on each component of X, x, then N has a reduction with d + e − 1
generators.

Proof Since the generic rank of N is e, the generic fiber dimension of ProjanR(N )

is e − 1, so the dimension of ProjanR(N ) is d + e − 1. Then d + e − 2 is the largest
the dimension of the fiber of ProjanR(N ) over x can be, so N has a reduction with
(d + e − 2) + 1 generators. �

Having defined the ideal sheaf M, we blow up by it. The advantages of this we
will see in the next section, as it gives a constructive/geometric way to calculate
the multiplicity of a pair of modules. But for now, this gives the context for which
property 4 in the ideal case holds. As an example of how the blow up comes up, if we
are in the basic set-up, and M = mY J M(X ) then the blow up by M is the blowup
of the conormal of X by the ideal defining the stratum Y . Teissier has shown [38]
that conditionW holds for the pair (X0, Y ) at the origin if and only if the exceptional
divisor of this blow up is equidimensional over Y . We will see the proof of one
direction of this in the next section as well.

To state our result some more notation is needed. Given M a submodule of N ⊂
F p, h ∈ N , let N BM(ProjanR(N )),πM be the normalized blow-up of ProjanR(N )

byM with projection πM to ProjanR(N ).

Proposition 2.33 (Analogue of Property 4 for ideals) In the above set-up h ∈ M if
and only if π∗

M(ρ(h)) ∈ π∗
M(M).

Proof We give the proof for the case where N is free for simplicity. We apply
Corollary 2.24, so h ∈ M if and only if for all φ (C, 0) → (X, 0) and ψ (C, 0) →
(Hom(Cp,C),λ),wehave the functionψ(h ◦ φ)onCbelongs to the idealψ(M ◦ φ).
Giving the pair (φ,ψ) is equivalent to giving a path on X × P

p−1, the order of ρ(h)

on the path is the order of ψ(h ◦ φ). So 2.23 is equivalent to : h ∈ M if and only if
the ideal sheaf induced by ρ(h) is in the integral closure of the ideal sheaf M. In
turn, by property 4 for ideals, this implies the result. �

As an application we can extend our criterion for conditionW to equidimensional
sets of any codimension.
Set-up: We use the basic set-up withX k+n an equidimensional family of equidimen-
sional sets, X k+n ⊂ Y k × C

N , J M(X) ⊂ O p.

Proposition 2.34 Condition W holds for (X0, Y ) at (0, 0) if and only if ∂F
∂yl

∈
mY J M(F) for 1 ≤ l ≤ k.

Proof We re-work the form of Verdier’s condition W to fit our current framework.
If we work at a smooth point x of X , then a conormal vector u of X at x can always
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be written as S · DF(x), where S ∈ C
p; S is not unique unless DF(x) has rank p.

Conversely, any such S gives a conormal vector. It is clear also that W holds if the
distance inequality holds for the standard basis for the tangent space T of Y . Then

dist(T, T Xx ) = sup
u ∈ T X⊥

x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖ .

becomes

dist(T, T Xx ) = sup
S ∈ C

p − {0}
1 ≤ i ≤ k, S · DF(x) �= 0

‖S · ∂ f
∂yi

‖
‖S · DF(x)‖

because ‖u‖ = ‖S · DF(x)‖, and ‖v‖ = 1.
So Verdier’s condition W becomes:

sup
S ∈ C

p

1 ≤ i ≤ k

‖S · ∂ f

∂yi
‖ ≤ C‖z‖ ‖S · DF(x)‖ .

Since the functions are analytic and the inequality holds on a Z-open set of X , we
can assume it holds on a neighborhood of the origin.

Now consider the integral closure condition, ∂F
∂yl

∈ mY J M(F) for 1 ≤ l ≤ k.

Using Corollary 2.4, we have ∂F
∂yl

∈ mY J M(F) for 1 ≤ l ≤ k if and only if

sup
S ∈ C

p

1 ≤ i ≤ k

‖S · ∂ f

∂yi
‖ ≤ C sup

1≤i≤n
‖zi S · DF(x)‖ .

But this is easily seen to be equivalent to the previous inequality. �

This last result shows that Verdier’s conditionW is exactly the geometric meaning
of the ideal sheaf induced by the ∂ f

∂yi
being in the integral closure of the ideal sheaf

induced by mY J M(X) on X × P
p−1.

In the next section we will see how to describe and control equisingularity con-
ditions using multiplicity of ideals and modules.
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3 Multiplicities, Integral Closure and the
Multiplicity-Polar Theorem

Themultiplicity of an ideal or module or pair of modules is one of themost important
invariants we can associate to an m-primary module. It is intimately connected with
integral closure. It has both a length theoretic definition and intersection theoretic
definition. We give the definition in terms of length first, for ideals, and submodules
of a free module. Denote the length of a module M by l(M).

Theorem/Definition 3.1 (Buchsbaum–Rim [1]) Suppose M ⊂ F, M, F both A-
modules, F free of rank p, A a Noetherian local ring of dimension d, F/M of finite
length, F = A[T1, . . . , Tp], R(M) ⊂ F , then

λ(n) = l(Fn/Mn) is eventually a polynomial P(M, F) of degree d+p-1.
Writing the leading coefficient of P(M, F) as e(M)/(d + p − 1)!, then we define

e(M) as the multiplicity of M.

It is possible to compute simple ideal examples by hand as we show:

Example 3.2 Let M = I = (x2, xy, y2) ⊂ O2. Then e(M) = 4.

Wehave p = 1, F = O2, andweworkwithF = O2[T1]. (Notice that ProjanF =
C

2.)
Now Mn = I nT n = m2n

2 T n , so

l(Fn/Mn) = l(O2/m2n) = (2n)(2n + 1)/2 = 4n2/2! + (l.o.t.)

So e(M) = 4.

Problem 3.3 Let M = I = (x2, y2) ⊂ O2. Show e(M) = 4. (Hint: Try to show that
the terms that are missing in this problem due to the missing xy term, grow only
linearly with n, so the leading term of the polynomial is the same.)

It is possible to do the very simplest module examples by hand easily as well.

Problem 3.4 Let M = m2O2
2 . Show e(M) = 3.

The next problem is harder–try to use the same strategy as in Problem3.3.

Problem 3.5 Let [M] =
[

x y 0
0 x y

]

. Show e(M) = 3.

If OXd ,x is Cohen–Macaulay, and M has d + p − 1 generators where M ⊂ F p,
then there is a useful relation between M and its ideal of maximal minors and the
multiplicity of both of them. The multiplicity of M is the colength of M , and is also
the colength of the ideal of maximal minors, by some theorems of Buchsbaum and
Rim [1], 2.4 p. 207, 4.3 and 4.5 p. 223. A proof of this theorem in the context of
analytic geometry using the Multiplicity Polar theorem is given in [13]. Using this
result, it is easy to do Problem3.5.
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Challenge Problem 3.6 Buchsbaum and Rim showed e(M) = l(F p/M), if M has
d + p − 1 generators, F a module over a Cohen–Macaulay ring. What is a gener-
alization of this to e(M, N )? (If M and N are ideals there is something along these
lines in [12] Theorem 2.3.)

An important theoremboth for computational and theoretical purposeswas proved
by Rees in the ideal case. A proof of a generalization to modules appears in [26].

Theorem 3.7 Suppose M ⊂ N are m primary submodules of F p, and M = N. Then
e(M) = e(N ). Suppose further that OX,x is equidimensional, then e(M) = e(N )

implies M = N.

Several generalizations of this result exist: Kleiman and Thorup [[26], (6.8)(b)]
proved a similar result in which F p is replaced by an arbitrary finitely generated
module whose support is equidimensional; they also proved an additivity result in
Theorem (6.7b)(i) of [26] for the three pairs of modules arising from three nested
modules. Generalizations also exist where the multiplicity is not defined. Gaffney
and Gassler did the case of ideals [16], and Gaffney for modules [10], while Ulrich
and Valadoshti have an approach using the epsilon multiplicity.

For computational purposes, this is coupled with another result–given any M ⊂
F p, M a module over a local ring of dimension d, there exists a submodule R of M
with d + p − 1 generators such that M = R. Such an R is called a reduction of M .

So if OXd ,x is Cohen–Macaulay, we can try to find a reduction R of M with the
right number of generators d + p − 1, then calculate the length of F/R. (This length
is also called the colength of R.) Here is a very simple example.

Problem 3.8 Suppose I is any ideal in mn
2O2 which contains xn, yn. Then e(I ) = n2.

Now we want to give an intersection theoretic definition of the multiplicity. This
definition applies to pairs of modules as well.

The next diagram shows the spaces that come into the definition.

BM(ProjanR(N )) ProjanR(N )

ProjanR(M) X

πM

πN

πX N
πX M

On the blow up BM(ProjanR(N )) we have two tautological bundles. One is the
pullback of the bundle on ProjanR(N ). The other comes from ProjanR(M). Denote
the corresponding Chern classes by cM and cN , and denote the exceptional divisor
by DM,N . Suppose the generic rank of N (and hence of M) is g.

Then the multiplicity of a pair of modules M, N is:

e(M, N ) =
∑d+g−2

j=0

∫

DM,N · cd+g−2− j
M · c j

N .

Kleiman and Thorup show that this multiplicity is well defined at x ∈ X as long
as M = N on a deleted neighborhood of x . This condition implies that DM,N lies
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in the fiber over x , hence is compact. Notice that when N = F and M has finite
colength in F then e(M, N ) is the Buchsbaum-Rim multiplicity e(M,O p

X,x ).
Kleiman and Thorup also showed that e(M, N ) vanishes if and only if M and N

have the same integral closure, provided the support of N is equidimensional. ([26],
(6.3)(ii).)

Remark 3.9 We have seen that there is a map from ProjanR(N )\V (F) → Projan
R(M). The diagram used in the definition of e(M, N ) can be used to make this
more precise. Namely, the complement of πM DM,N is the largest open subset V
of ProjanR(M) such that the map π−1

M V \DM,N → V is finite. Plainly, πN is an
isomorphism over the complement U of V (F), and π−1

N U contains π−1
M V .

Let’s re-calculate two examples using this definition.

Example 3.10 Let M = I = (x2, xy, y2) ⊂ O2. Then e(M) = 4.

Here d = 2, p = g = 1, ProjanR(N ) = C
2, Projan(M) = BI (C

2) = BM
(ProjanR(N )), and Projan(M) ⊂ C

2 × P
1. So the only term we need to calculate is∫

DM,N · cM . We can calculate this term as follows: Intersect BI (C
2) with C2 × H ,

H a generic hyperplane in P1, which represents c(M). Project this curve to C2, and
calculate the order of I on the curve. Projecting the curve to C

2 amounts to setting
a generic combination of the generators to zero, and looking at the curve obtained,
removing any components in V (I ). In this case a generic curve is x2 − ay2 = 0,
a �= 0. This consists of two branches (x − y = 0 and x + y = 0 if a = 1) and the
colength of the ideal on each branch is 2 so the multiplicity is 2 + 2 = 4.

Example 3.11 Let [M] =
[

x y 0
0 x y

]

. Show e(M) = 3.

Here d = 2, p = g = 2, N = O2
2, ProjanR(N ) = C

2 × P
1, ProjanR(M) ⊂

C
2 × P

2, dimension of BM(ProjanR(N )) is 3. Sowe need to calculate
∫

DM,N · c2M ,∫
DM,N · cM · cN (Notice that c2N = 0, since we are working on ProjanR(N ) =

C
2 × P

1.) Now we have two choices: as before we intersect a representative of each
class with the blow-up then push down to X , then see what the multiplicity of M is
on each curve. Or, we can push down to ProjanR(N ) and evaluateM on each curve.
(For details of how this approach works, the reader should consult [11] Theorem 3.1
and the two examples which follow.)

Taking the second route, projecting the intersection of the blow-up with a hyper-
plane from C

2 × P
1 and a hyperplane from C

2 × P
2, is a curve on C2 × P

1, defined
by a linear relation T1 = aT2, and by setting one of the elements of M restricted to
this set to zero. The restriction of M to the locus T1 = aT2 is the ideal generated
by the entries of the linear combination of the first row and a times the second row
from the original matrix. A generic curve is given by setting x + ay = 0, and the
multiplicity of M on this curve is 1. So,

∫
DM,N · cM · cN = 1.

Projecting the intersection of the blow-up with two hyperplanes from C
2 × P

2,
amounts to setting two generic elements ofM to zero and removing any components
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of V (M). Setting xT1 + yT2 and yT1 + xT2 = 0 gives two curves. One curve is
x = y, T1 = 1 = −T2 and the other curve is x = −y, T1 = 1 = T2.

The restriction of M to the first curve is x so the multiplicity is 1; as it is on the
second curve as well, for a total of 3.

Notice that in the last example 3 = e(M) �= e(J (M)) = 4. (J(M) is the ideal of
maximal order non-vanishing minors, and is (x2, xy, y2) in this case.) But,

Problem 3.12 Suppose M ⊂ N ⊂ F are m primary OX,x modules, X, x equidi-
mensional. Show that e(M) = e(N ) if and only if e(J (M)) = e(J (N )).

There are examples though, where there is a family of ICIS singularities where
e(J M(X y)) is independent of y, but e(J (J M(X y))) is not. In the example due to
Henry and Merle, the embedding dimension of the singularity changes at y = 0–the
singularity goes from being codimension 2 to being codimension 1, because one of
the defining equations is no longer singular off the origin. Is this the only way for
the connection between the two invariants to break?

Challenge Problem 3.13 Give a geometric characterization of when e(J M(X y))

is independent of y, but e(J (J M(X y))) is not.

This problem is connected with the difference between using the conormal mod-
ification to study equisingularity conditions and using the Nash modification, which
is why it is interesting. In the ICIS case a difference in the value of the multiplicity
between the generic point y and the origin implies there is a jump in the dimension
of the fiber of the exceptional divisor over the origin. So if the value of e(J M(X y))

is independent of y, but e(J (J M(X y))) is not, then the set of limiting tangent planes
has a jump in dimension at the origin, but the set of limiting tangent hyperplanes
does not.

Reading In Sect. 3 of [11] these ideas are developed further. It also contains the
example due to Henry and Merle mentioned above.

There is an important case where it is easy to calculate the multiplicity of the pair.
Suppose we are givenOX modules M ⊂ N ⊂ F , where F is free, X has dimension
1, and e(M, N ) is defined.Wewant a procedure to calculate e(M, N ). The first step is
to find a normalization X̃ , n of the curve. Then we can use the following proposition.

Proposition 3.14 Suppose X is a curve singularity, then e(M, N ) = e(n∗(M),

n∗(N )).

Proof This is a corollary of Theorem 5.1 of [25]. �

We’ll illustrate the rest of the procedure with an example taken from [7]. The
procedure is also described in [25].

The curves we consider are the Xl , defined by the minors of

Fl =
⎡

⎣
z x
y z
xl y

⎤

⎦ .
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We assume l − 1 is not divisible by 3. With this assumption we have a normaliza-
tion given by (C, nl) where nl(t) = (t3, t2l+1, t l+2). The assumption on l means that
the exponents on the first and last terms in the formula for n are relatively prime. The
form of n is a reflection of the fact that Xl is weighted homogeneous with weights
(3, 2l + 1, l + 2).

In this example the module N is F∗
l (J M(�2)) where �2 is the linear maps of

rank < 2, and we view Fl as map from C
3 → Hom(C2,C3). Then M = J M(Xl).

The next step is to find a minimal set of generators for n∗
l (N ) and n∗

l (M). Pulling
back the generators of J M(�2) using Fl ◦ nl , we get:

n∗
l (N ) =

⎡

⎣
t l+2 −t3 0 −t2l+1 t l+2 0
0 t2l+1 −t l+2 0 −t3l t2l+1

t2l+1 0 −t3 −t3l 0 t l+2

⎤

⎦ .

As this matrix has generic rank 2, n∗
l (N ) can be generated freely by 2 generators

since we are working overO1, so a matrix of generators RN of n∗
l (N )with a minimal

number of columns is

RN =
⎡

⎣
−t3 0
t2l+1 −t l+2

0 −t3

⎤

⎦ .

A calculation shows that n∗
l (J M(X)) is generated by the columns of:

RJ M =
⎡

⎣
−t3 2t l+2

2t2l+1 −t3l

t l+2 t2l+1

⎤

⎦ .

Note that

RJ M = RN

[
1 −2t l−1

−t l−1 −t2l−2

]

.

Denote the submodule ofO2
1 whosematrix of generators is the 2 × 2matrix in the last

line by K . Since n∗
l (N ) is freely generated, it is isomorphic toO2

1. The isomorphism
carries the pair (n∗

l (J M(X)), n∗
l (N )) to (K ,O2

1). Then e(n∗
l (J M(X)), n∗

l (N )) =
e(K ,O2

1). Since O1 is Cohen–Macaulay, the multiplicity of the second pair is the
colength of the determinant of the matrix of generators of K , which is 2l − 2.

Polar Varieties of a Module

Intuitively, the polar varieties of a module measure the “curvature” of ProjanR(M),
and we have encountered them in the examples of the previous paragraph. As we
shall see, the projection of BM(ProjanR(N )) · c2M to C

2, studied in Example 3.11
is the polar curve of M .

The polar variety of codimension l of M in X , denoted �l(M), is constructed
by intersecting ProjanR(M) with X × Hg+l−1 where Hg+l−1 is a general plane of
codimension g + l − 1, then projecting to X .
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So, in the setting of Example 3.11, g = 2, and g + l − 1 = 2 + 1 − 1 = 2, and the
projection of BM(ProjanR(N )) · c2M to ProjanR(M) is the intersection ofC2 × H2

with ProjanR(M). Thus the projection of BM(ProjanR(N )) · c2M to C2 is �1(M).
The polar varieties of M can be constructed by working only on X . The plane

Hg+l−1 consists of all hyperplanes containing a fixed plane HK of dimension g +
l − 1. By multiplying the matrix of generators of M by a basis of HK we obtain a
submodule of M denoted MH .

Proposition 3.15 In this set-up the polar variety of codimension l consists of the
closure in X of the set of points where the rank of MH is less than g, and the rank of
M is g.

Proof Since Hg+l−1 is generic, the general point of ProjanR(M) ∩ X × Hg+l−1 lies
over points where the rank of M is g. Choose coordinates so that a basis for HK

consists of the last g + l − 1 elements of the standard basis of C j , j the number of
generators of M . We can find v such that v[MH ] = 0 but v[M] �= 0 if and only if we
are at a point where the rank of MH < g. The existence of v is equivalent to being
able to find a combination of the rows of [M], such that the last g + l − 1 entries are
0. This row is a hyperplane which lies in Hg+l−1. �

Teissier [36, 38] defined the polar varieties of an analytic germ (Xd , x) ⊂ C
n of

codimension l as follows: take a generic projection π of Xd → C
d−l+1, and take the

closure of the critical points of the restriction of the projection to the smooth points
of X . Using the last proposition, it is easy to see that these polar varieties are the
polar varieties of the Jacobian module of X .

For, given (Xd , x) ⊂ C
n , the generic rank g of the Jacobian module of X is

n − d. The kernel of a generic projection to Cd−l+1 has dimension n − d + l − 1 =
g + l − 1. Let the fixed plane HK in the previous proposition be the kernel of π.
Then the rank of MH is less than maximal at a smooth point of X if and only if the
tangent space of X has larger than expected intersection with the kernel of π. Thus,
a tangent hyperplane of X contains HK at a smooth point of X if and only if x is a
critical point for the restriction of the projection to X at x . Thus the two notions of
polar variety coincide.

If M is an ideal and we are working on X , then MH is a sheaf of ideals and the
polar varieties are the closure of the set defined by this sheaf on the complement of
V (M).

Problem 3.16 Given M ⊂ N ⊂ O p
X,x , M and N both OX modules, M induces an

ideal sheaf on ProjanR(N ), and we can define the polar varieties of this ideal sheaf.
(To do this we must work on the fiber ofProjanR(N ) over x.) Show that the projection
of the polar of dimension d defined in this way to X is �d(M).

Thus, there are 4 different settings for studying the polar varieties. It is often useful
in proofs to move between them.

There is a special casewhichwill be important to us. The diagrambelow represents
the smoothing of an isolated singularity.
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Xd(0) ⊂ X d+1 ⊂ Y × C
N ⊃ X (y)

0 ∈ Y = C ⊃ y �= 0

pY πY

Let M = J Mz(X ), Then �d(X ) by the previous proposition is defined by select-
ing N − 1 generic generators of J Mz(X ), and looking to see where they have less
than maximal rank. Assume coordinates chosen so that the first N − 1 columns of
[J M(X )] are generic. Then the points where the polar intersectsX (y) are the critical
points of zN restricted toX (y). The number of such points is the number of sheets of
�d(X ) over Y is the multiplicity of �d(X ) over Y at the origin. If the smoothing is
unique up to diffeomorphism, then the invariant is denoted md(X). It is clear that the
number of critical points of a generic linear form on a smoothing of X is important
to the topology of X (y), so this number is an important invariant of X .

By construction, the existence of a polar variety of M at x ∈ X is tied to the
dimension of the fiber of ProjanR(M) over x .

Problem 3.17 Suppose Xd , x equidimensional and M has the same generic rank g
on each component of X at x. Show that �l(M, x) is non-empty if and only if the
dimension of the fiber of ProjanR(M) over x is greater than or equal to l + g − 1.

There is a strong connection between polar varieties and integral closure thanks
to an important result of Kleiman and Thorup [26, 27], which we next discuss. The
following theorem ties the dimension of this fiber to integral closure conditions.
Set-up: X the germ of a reduced analytic space of pure dimension d, F a free OX -
module, M ⊂ N ⊂ F two nested submodules with M �= N , M and N are generi-
cally equal and free of rank e. Set r := d + e − 1. Set C := Projan(R(M)) where
R(M) ⊂ S ymF is the subalgebra induced by M in the symmetric algebra on F . Let
c : C → X denote the structure map. Let W be the closed set in X where N is not
integral over M , and set E := c−1W .

Theorem 3.18 (Kleiman-Thorup, [26, 27]) If N is not integral over M, then E has
dimension r − 1, the maximum possible.

Proof Since this theorem is so important to us, we give a concise version, due to
Kleiman [24], of the proof that appears in [27].

Given an element h ∈ N that’s not integral over M , let H be themodule generated
by h and M . Nowweuse the notation of the diagramused in the definition of e(M, N ).
We have DM,H is nonempty by Remark 3.9, so of dimension r − 1 where r :=
dimProjanR(M). But πH embeds DM,H in ProjanR(M) because H/M is cyclic.
Moreover, Remark 3.9 implies that N is integral over M locally off πM DM,N ; so H
is too; so Remark 3.9 implies that πM DM,N contains πM DH,N . Plainly, πM DH,N lies
in E . Thus dim E = r − 1. �

A recent proof in a more general setting appears in [33].
We give an example the usefulness of this Theorem by giving a simple proof of

one direction of a theorem of Teissier describing Whitney equisingularity.
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Set-up: Suppose Y k, 0 ⊂ Xd+k, 0, Y k smooth, y coordinates on Y , I (Y ) = mY . Set

M = mY J M(X), N = M + C{ ∂ f
∂y }, then Projan(R(M)) = BmY (C(X)), M = N

off Y .
Let E denote the exceptional divisor of BmY (C(X)).

Theorem 3.19 (Teissier, [38]) If the fibers of E, the exceptional divisor of BmY

(C(X)) over Y , have the same dimension, then the Whitney conditions hold along Y .

Proof If the Whitney conditions fail along Y , they do so on a proper closed subset
S ⊂ Y . Then S is the set where M �= N [9]. By the Kleiman-Thorup theorem there
must be a component of E over S, so the fibers of E have larger dimension over
points in S than over the generic point of Y . �

For the ICIS case we can use the machinery of multiplicities, together with the
Kleiman-Thorup theorem to get criteria for a family of sets to be Whitney equisin-
gular, in which the criteria depend only on the members of the family, not the total
space. We describe how this developed.

The first theorem is a generalization of a result of Teissier, who used it in con-
junction with hypersurfaces. This theorem is useful in showing that if invariants are
independent of parameter then equisingularity conditions hold.

Theorem 3.20 (Principle of Specialization of Integral Dependence) Assume that X
is equidimensional, and that y �→ e(y) is constant on Y k. Let h be a section of a free
OX module E whose image in E(y) is integrally dependent on the image of M(y)

for all y in a dense Zariski open subset of Y . Then h is integrally dependent on M.

Proof Cf. Theorem 1.8 [17]. �

The proof of the PSID proceeds by showing that the constancy of the multiplicity
means that M has a reduction MR which is generated by dim(X (y)) + p − 1 gen-
erators, which is the minimum possible if e(M(y)) is well defined for all y. To do
this, first we find such an MR whose restriction MR(0) to X (0) is a reduction of M
restricted to X (0), so e(MR(0)) = e(M(0)) byTheorem3.7. Then the uppersemicon-
tinuity of the multiplicity ([17], 1.1 p. 547), implies e(MR(0)) ≥ e(MR(y)), while
MR(y) ⊂ M(y) implies e(MR(y)) ≥ e(M(y)). This gives us the inequality:

e(M(0)) = e(MR(0)) ≥ e(MR(y)) ≥ e(M(y)) = e(M(0)).

Thus, by Theorem3.7, MR(y) is a reduction of M(y) for all y.
Now replace M by the submodule generated by MR and g, where g may be h or

any element of M not in MR . A lemma ([17] 1.2, p. 548) shows that if the set of
points where g fiberwise is not integrally dependent on MR is a proper Zariski closed
subset of Y , then the set of points where g is not integrally dependent on MR is also
a proper Zariski closed subset W of Y . This implies that MR is a reduction of (M, h)

off a Zariski closed set of Y as this is true fiberwise.
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Now, the dimension of the fiber of Projan(R(MR)) over our base point x0 ∈ X is at
most dim(X (y)) + p − 2, which is one less than the number of generators. Now the
inverse image of W in Projan(R(MR)) must have dimension at most dim(X (y)) +
p − 2 + k − 1. Then since

dim(X (y)) + p − 2 + k − 1 ≤ (dim(X (y)) + k) + (p − 1) − 2

= (dim(X) + p − 1) − 2,

the Kleiman-Thorup theorem then shows that M̄R = M̄ , which gives the result.
In order to show that the equisingularity condition implied that the invariants were

independent of y more ideas are necessary. These are discussed in the proof of the
next theorem.

Theorem 3.21 Suppose (Xd+k, 0) ⊂ (Cn+k, 0) is a complete intersection, X =
F−1(0), F : Cn+k → C

p, Y a smooth subset of X, coordinates chosen so that
C

k × 0 = Y . Then the following are equivalent:

(i) the pair (X − Y, Y ) satisfies W at 0;
(ii) The sets X (y) are complete intersections with isolated singularities and

e(my J M(X y)) is independent of y for all y ∈ Y near 0.

Proof For the proof that (ii) implies (i), the condition on e(my J M(X y)) implies that
the singularities do not split, so that X − Y is smooth. Since the integral closure
condition is a generic condition, the PSID applies.

For the proof that (i) implies (ii) the proof is more complicated. An expansion
formula shows that e(my J M(X y)) is a sum of multiplicities. Each multiplicity that
appears is the sum of two Milnor numbers of plane sections of the ICIS X (y).
SinceWhitney equisingularity of X implies theWhitney equisingularity of the plane
sections of X , and the Milnor numbers of the sections are topological invariants, the
multiplicities, and hence their sum is invariant as well. �

With this result you can see that the Whitney conditions imply in the ICIS case,
that the fiber of BmY (C(X)), the blow-up of the conormal modification along Y , is
equidimensional over Y . For the Whitney conditions imply that the multiplicity of
mY J M(X (y)) along Y is constant. Then the technique of proof used in the Principle
of Specialization implies that we can pick d + p − 1 elements of mY J M(X (0))
which generate a reduction N first of mY J M(X (0)), then of mY J M(X). This
implies that there exists a finite map from BmY (C(X)) to Projan(R(N )). Now since
Projan(R(N )) ⊂ X × P

d+p−2, the fiber dimension of BmY (C(X)) over 0 ∈ X is less
than or equal to d + p − 2 = n − 2 which is the minimum possible.

For an ICIS X , we use the multiplicity of mY J M(X) to control the Whitney
equisingularity type. What do we use when e(mY J M(X)) is not defined? Since
e(mY J M(X)) is defined only when J M(X) has finite codimension inO p

X , it is only
defined for ICIS.
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Looking at the ideas relating e(mY J M(X)) to the Whitney conditions, though
the connections are beautiful, the proofs that Whitney implies the constancy of the
multiplicities seem unnecessarily round about. The Whitney conditions themselves
are described by the behavior of the exceptional divisor of BmY (C(X)). Is there a
direct link between e(mY J M(X)) and the exceptional divisor, so that it would not
be necessary to go through topology to show that Whitney implies the constancy of
e(mY J M(X))?

To answer the first question, start with thinking about the pair of modules
(J M(X),O p

X ). The module J M(X) can be viewed as the module of infinitesimal,
first order trivial deformations of X . (Trivial with respect to biholomorphic equiv-
alences of Cn .) The module O p

X is then the module of all infinitesimal, first order
deformations of X since we can deform the equations of X freely, and get a family
of ICIS. It is known that if X has an isolated singularity, then again the codimension
of J M(X) inside the module N (X) of all infinitesimal, first order deformations of
X is finite. This suggests using e(J M(X), N (X)).

However, two problems surface. We want specialization of N from the total space
of a family to the fibers. This is necessary if the results are to depend only on the
fibers of the family and not on the total space. This will be true, provided any first
order linear infinitesimal deformation of a space lifts to a deformation of the family.
However this is clearly false, if the base space of the versal deformation space has
components. If the base space of the verbal deformation space is smooth for example,
then the specialization property is true.

Another problem enters because N (X) may have curvature. Here we are making
an analogy between N and J M(X). Moonen [29] has shown that the multiplicities
of the polar varieties of X, x are related to the curvature of X at x . (In the real case
see also [4]) This curvature then is related to the limiting tangent hyperplanes of X
at x . Since the polar varieties of N are related to limiting hyperplanes defined by row
vectors of a matrix of generators of N , it is reasonable to call the phenomena picked
up by polar multiplicities of N as the curvature of N . How this curvature enters into
the invariants we want will be a main theme of the next section.

In the next section we give also an example which shows the multiplicity of the
pair may be zero, but the curvature contribution of N gives a non-zero invariant.

Since the Whitney conditions are controlled by the dimension of the fiber of the
exceptional divisor of BmY (C(X )), and the dimension of the fibers are detected by
the presence of the polar varieties of the relative Jacobian module, it is reasonable to
look for a connection between invariants associated with integral closure and those
associated with polar varieties.

An approach for linking the behavior of the multiplicity of an ideal in a family to
the degree of the exceptional divisor is given by Teissier in [38, p. 345]. We include
an excerpt from this reference where this idea is mentioned.
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Here is how we can understand Teissier’s formula. The fiber of the exceptional
divisor over 0 ∈ Xd+1 is a projective variety so it has a degree. When we intersect
this variety with a linear space of complementary dimension, on the one hand, the
number of points we get is the degree of the variety, on the other, because intersecting
BI (X)with this linear space defines the polar curve of I , it is the number of points in
the polar curve over a generic t value. Call this number md(I, X). Now one way to
define the polar curve is to pick d generic elements of I , chosen so that they define
a reduction of I (0) and are a reduction of I on the total space over D − 0, and see
where they are zero. Call this ideal J . By construction the points where they are zero
outside of V (I ), will be a Z-open and dense set of the polar curve, and at points of
V (I ), I (y) = J (y) and so e(I (y)) = e(J (y)) at such points. Since J is generated
by d elements, a lemma shows that e(J (y)) is independent of y. So

degDvert = md(I, X)= e(J · OX (0)) − e(J · OX (y))= e(I · OX (0)) − e(I · OX (y)).

If we extend this approach to pairs of modules we find that the polar variety of N
enters as well as the polar variety for M .
Set-up: M ⊂ N ⊂ F , a free OX module, X equidimensional, a family of sets over
Y , with equidimensional fibers, Y smooth, M = N off a set C of dimension k which
is finite over Y .

Let �(e(M, N )) = e(M(0), N (0),OX (0), 0) − e(M(y), N (y),OX (y), (y, x)) be
the change in the multiplicity of the pair (M, N ) as the parameter changes from y
to 0.

Theorem 3.22 (Multiplicity Polar Theorem[6, 11]):

�(e(M, N )) = multy�d(M) − multy�d(N )

Many applications of this theorem can be found in: [7, 11–13, 19].
To show its powerwegive a simple proof ofTheorem3.21which links e(J M(X y))

and the Whitney conditions. The proof that that (ii) implies (i) avoids the use of
topology.

Proof (of 3.21): (i) implies (ii) The Whitney conditions imply that the fiber of
D ⊂ BmY (C(X)), the exceptional divisor is equidimensional over Y . Because the
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dimension of the fiber is small, there is no polar variety of codimension d for
mY J M(X). SinceO p

X has no polar varieties, the Multiplicity Polar Theorem implies
that e(m J M(X y)) is independent of y.

(ii) implies (i) The independence of e(m J M(X y)) from y implies that there is no
polar variety of codimension d for mY J M(X), and hence the fiber of D over Y k is
equidimensional. At this point we apply the theorem of Kleiman-Thorup (3.18). We
know that J MY (X), the submodule generated by the partial derivatives taken with
respect to coordinates on Y , is in the integral closure of mY J M(X) at points in a
Z-open subset of Y . Since the dimension of the set of points of Projan(mY J M(X))

over the set of points where the integral closure condition does not hold is at most
(k − 1) + (d + g − 2) < (d + k) + (g − 1) − 1, it follows that J MY (X) is in the
integral closure of mY J M(X) at all points of Y . �

In the next part, we examine an important class of singularities for which the
module N of first order deformations does specialize as we desire.

Determinantal Singularities

We begin with F , a (n + k, n) matrix, with entries in Oq ; we view F as a map from
C

q → Hom(Cn,Cn+k). Let �r denote elements of Hom(Cn,Cn+k) of rank less
than r . Let Ir be the ideal inOn2+nk generated by the minors of size r of elements of
Hom(Cn,Cn+k). It is easy to check that the codimension of�r in Hom(Cn,Cn+k) is
(n − r + 1)(n + k − r + 1). The elements of Hom(Cn,Cn+k) of rank r , 0 ≤ r ≤ n
give a stratification of Hom(Cn,Cn+k) which we call the rank stratification.

Assume F is transverse to the rank stratification of Hom(Cn,Cn+k) on C
q − 0.

Let �r (F) := V (F∗(Ir )), then F∗(Ir ) is generated by the minors of size r of F .
�r (F) is determinantal i.e. codim �r (F) =codim �r . If q < (n − r + 2)(n + k −
r + 2) then�r (F)has a smoothing, becausewhenwedeform F so that it is transverse
to the rank stratification there will be no points where the rank< r − 1.

We fix the class of deformations and fix a unique smoothing by only considering
deformations of �r (F) which come from deformations of the entries of F . As we
shall see, the geometric meaning of the invariants we develop is tied to the topology
of the smoothing.

We may freely vary the entries of F and deformations of the entries of F induce
deformations of the generators of F∗(Ir ); first order deformations define the module
N (X F ). Generators of N (X F ) are tuples of minors of F of size r − 1. If F and r are
understood we simply write N (X).

Properties of N (X)

The operation of forming N (X) has some nice properties.

• N is universal. If the entries of F are coordinates on Hom(Cn,Cn+k) denote N (X)

by NU . Then for any M , N (X F ) = F∗NU .
• NU is stable; NU = J M(�r ). Coupled with universality this implies N (X F ) =

F∗ J M(�r ), which explains why the generators of N (X F ) are tuples of minors of
F of size r − 1. (We say that the first order linear infinitesimal deformations are
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stable if they are trivial. Here the first order linear trivial infinitesimal deformations
are deformations are J M(�r ).)

• Stability implies the polar varieties of �r are the polar varieties of NU .
• Universality implies �i (N (X F )) = F∗�i (NU ).
• Together they imply if F̃ defines a smoothing X̃ of Xd

F , then

multC�d(N (X̃ F̃ )) = F(Cq) · �d(�).

In general, the intersection number F(Cq) · �d(�) is defined as follows. Work
on C

q × Hom(Cn,Cn+k) and consider the intersection of the graph of F with
C

q × �d(�), where, since �d(�) is the polar variety of codimension d in
�d(�), the graph of F and C

q × �d(�) have complementary dimension in
C

q × Hom(Cn,Cn+k). If F is one to one, then the intersection number is that
of the image of F with �d(�) in Hom(Cn,Cn+k).

If r = n which is the case that Ir is the ideal of maximal minors, F(Cq) · �d(�)

is computed in terms of the entries of F in [7]. We give a brief introduction to the
formula in this paper in order to continue the study of curve singularities begun at
the end of the section on multiplicities. This will also show why singularities defined
by maximal minors are easier to study.

To study the polar varieties of F∗ J M(�n), we need to understand
Projan(R(F∗ J M(�n))). At a smooth point M of X F , consider pairs (l1, l2) where
l1 ∈ ker Mt , l2 ∈ ker M . Here l2 ∈ P

n−1 is unique, while the set of l1 ∈ P
n+k−1

has dimension k. Take the closure of this set in X F × P
n+k−1 × P

n−1. This is
the M-transform of X , denoted X M . In [7], this is shown to be isomorphic to
Projan(R(F∗ J M(�n))). The isomorphism is defined by

�(x, (T1, . . . , Tn+k), (S1, . . . , Sn)) = (x, T · S),

where T · S is an element of PHom(n, n + k).
If F̃ is defines a smoothing X of Xd , then we want to calculate the degree over

the base C of the polar curve of F̃∗ J M(�n), denoted md(F∗ J M(�n)). Ideally,
we would want to find the equations of the polar variety of �n of complementary
dimension to q, pull them back toX and take degree. This seems difficult. Instead, we
will define “mixed polars” for which we can find equations, and which will define
Cohen–Macaulay germs. To define these we look again at the construction of the
polar varieties of �n and their pull backs–the polars of F̃∗ J M(�n).

First, denote the fiber over the origin in X of ProjanR(F̃∗ J M(�n)) by E . The
generic rank of F̃∗ J M(�n) is the same as the generic rank of J Mz(X ) which is
k + 1, the codimension of the generic fiber of X . Then the polar curve is gotten
by intersecting ProjanR(F̃∗ J M(�n)) with d + k hyperplanes and projecting to X .
The degree of the polar curve over C is just E · hd+k in PHom(n, n + k), where h
is the hyperplane class of PHom(n, n + k). Now we use the isomorphism between
ProjanR(F̃∗ J M(�n)) and XM . Denote the hyperplane classes on X × P

n−1 and
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X × P
n+k−1 by h2 and h1 respectively. As classes, the pullback of h toX × P

n+k−1 ×
P

n−1 by the Veronese V is h1 + h2. So,

md(F∗ J M(�n)) =
∑d+k

i=0

(
d + k

i

)

hi
1hd+k−i

2 · E .

The simple description we have of C(�n) which permits the decomposition of
the last formula seems to be unique to r = n. This decomposition is the key to being
able to write md(F∗ J M(�n)) as the alternating sum of colengths of ideals defined
using the entries of F .

Define�i, j (F̃∗ J M(�n)) to be πX (XM ∩ hi
1h j

2). We call these the mixed polars of
type (i, j) of F̃∗ J M(�n). Denote the degree of thismixed polar overC by hi

1h j
2.Then

md(F∗ J M(�n)) =
∑d+k

i=0

(
d + k

i

)

hi
1hd+k−i

2 .

It is shown in [7] that the mixed polars are related to certain determinantal varieties,
and that the hi

1h j
2 are the alternating sum of degrees of these determinantal varieties.

These degrees are just the lengths of the rings gotten by modding out the local ring
of the associated determinantal variety by the coordinate on C. In turn, these are just
the lengths of the pullbacks by F of the rings defining the corresponding varieties
on �n . So, these numbers depend only on the component functions of F .

Now we consider again the determinantal space curves Xl defined by F−1
Xl

(�2),

FXl =
⎡

⎣
z x
y z
xl y

⎤

⎦ .

We have n = 2, k = 1, d = 1, so

m1(F∗
Xl

J M(�n)) = h2
1 + 2h1h2 + h2

2.

The h2
2 term is zero, because we are working on Xl × P

2 × P
1, and the square of

the hyperplane class on P
1 is zero.

To calculate h2
1, note that if we choose (1, 0, 0) as the point of intersection

of our two hyperplanes on P
2, the ideal of �2,0 for this choice on Hom(2, 3), is

(a1,1, a1,2, a2,1a3,2 − a2,2a3,1), for these are the points of �2 for which (1, 0, 0) is in
the kernel of Mt , M ∈ Hom(2, 3). Pulling this ideal back by F∗

Xl
gives (x, z, y2),

which has colength 2, so h2
1 = 2.

To compute h1h2, choose (0, 1) as the point on P1 defined by the hyperplane, and
let (0, 0, 1) be the hyperplane on P

2. So, we are looking for M such that (0, 1) is
in the kernel of M and some line defined by (a, b, 0) is in the kernel of Mt . The
ideal that defines this set is (a2,1, a2,2, a2,3). This is already determinantal, so our
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procedure simplifies in this case. We get h1h2 is the colength of (x, y, z) which is 1,
so m1(F∗

Xl
J M(�n)) = 2 + 2(1) + 0 = 4 for all l.

Putting together our previous work, we see that if l = 1, then e(J M(X1),

F∗
1 (J M(�2))) = 0, but e(J M(X1), F∗

1 (J M(�2))) + m1(F∗
1 (J M(�2))) = 3. In

fact, for isolated space curve singularities, the invariant e(J M(X F ), F∗(J M(�k)))

+ m1(F∗
1 (J M(�k))) is never zero, since the polar of codimension 1 of �r is non-

empty for r > 1. (If r = 1, then F defines an ICIS, and e(J M(X F ), F∗(J M(�1))) =
e(J M(X F )) �= 0.)

It is important to understand when an invariant is zero. The next proposition gives
a geometric criterion for when e(J M(X F ), F∗(J M(Y )) = 0, and also relates this
invariant to the map F .

Proposition 3.23 Suppose F C
q , 0 → C

n, 0, (Y, 0) ⊂ C
n, Y reduced and X F

defined with reduced structure also. Then e(J M(X F ), F∗(J M(Y ))) = 0 if and only
if no limiting tangent hyperplane to Y along the image of F contains the image of
DF(0).

Proof Let G = 0 define Y with reduced structure. By hypothesis, G ◦ F defines X
with reduced structure also. This implies that J M(X F ) ⊂ F∗(J M(Y )), by the Chain
rule. The condition that e(J M(X F ), F∗(J M(Y ))) = 0 is equivalent to J M(X F ) =
F∗(J M(Y )). By Proposition 2.29 this is exactly the condition that the ideal sheaf
induced by J M(X F ) on ProjanR(F∗(J M(Y ))) is irrelevant ie. does not vanish on
the fiber of ProjanR(F∗(J M(Y ))) over 0 ∈ X F . Since Projan(J M(Y )) is C(Y ),
the fiber of ProjanR(F∗(J M(Y ))) over 0 is just limiting tangent hyperplanes to Y
along the image of F .

The set ProjanR(F∗(J M(Y ))) is a subset of X F × P
n−1. By the Chain Rule

we know DG(F(x)) ◦ DF(x) = D(G ◦ F)(x). Now, DF(x) induces an ideal
sheaf on X × P

n−1, because F has n component functions. If we restrict this
sheaf to ProjanR(F∗(J M(Y ))), we get the ideal sheaf induced by J M(X) on
ProjanR(F∗(J M(Y ))), because this ideal sheaf arises from writing the generators
of J M(X) in terms of the generators of F∗(J M(Y )), and this is exactly what the
Chain Rule does for us. Denote this sheaf by F .

The condition that this ideal sheaf vanish at a point (x, H) ∈ ProjanR(F∗
(J M(Y ))) is just that the linear form defining H when applied to each of the genera-
tors ofF give zero. For, the value of the i-th generator,

∑n
1

∂Fj

∂zi
Tj on (x, (a1, . . . , an))

is
∑n

1
∂Fj

∂zi
(x)a j . Since the fiber over 0 is the limiting tangent hyperplanes to Y along

F at the origin the result follows. �

We explore the case of three lines in C
3 (l = 1) further. It is simpler to do this if

we use the map

F =
⎡

⎣
z 0
y y
0 x

⎤

⎦ .

For this F , X F is the coordinate axes.
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Example 3.24 The fiber of ProjanR(F∗ J M(�2)) over 0 consists of three copies of
P
1, namely, ⎡

⎣
0 0
0 a
0 b

⎤

⎦,

⎡

⎣
a 0
b 0
0 0

⎤

⎦,

⎡

⎣
a −a
0 0
b −b

⎤

⎦, (a, b) ∈ P
1.

Further, the image of DF(0) is not contained in any element of the fiber of
ProjanR(F∗ J M(�2)) over 0.

To see why these assertions are true, note that the fiber of ProjanR(F∗ J M(�2))

is constant over the z axis for z �= 0. This is because F and �2 are homogeneous.
We have a general result which describes the fiber of C(�r ) which we can apply

here, which we now describe.
We know that the fiber to the normal bundle to the smooth manifold �r+1 − �r

at M ∈ �r+1 − �r , is Hom(K (M), C(M)) where K (M) denotes the kernel of M
and C(M) denotes the cokernel, which we think of as the vectors in C

n+k which
annihilate the image of M .

So up to some identifications, the fiber of C(�r+1) at M is inside PHom(K (M),

C(M)). Let � j (M) denote the elements of Hom(K (M), C(M)) of kernel rank j .
Let X j denote the projective variety determined by � j . If M ∈ Hom(Cn,Cn+k),

then we denote P(�r (M)) by Xr (M).

Theorem 3.25 (Conormal fiber Theorem) Suppose M is in �s , s > r . Then the fiber
of the conormal of C(�r ) at M is Xs−r (M).

Proof See the Conormal Fiber Theorem at the end of Sect. 2 of [7]. �

In the case of singularities defined by maximal minors if we know the M-
modification of X F we can compute these fibers. For example, at points on the z
axis of X F , z �= 0, we see that the fiber is (0, a, b) × (0, 1), because (0, 1) is the
kernel of F(0, 0, 1), and (0, a, b) is the kernel of Ft (0, 0, 1). Then a point of the
fiber maps to ⎡

⎣
0 · 0 0 · 0
0 · a 1 · a
0 · b 1 · b

⎤

⎦

The condition that the image of DF(0) is contained in a limiting tangent hyper-
plane implies that

∂F
∂x ·

⎡

⎣
0 0
0 a
0 b

⎤

⎦ = 0, ∂F
∂y ·

⎡

⎣
0 0
0 a
0 b

⎤

⎦ = 0.

Expanding we get:
⎡

⎣
0 0
0 0
0 1

⎤

⎦ ·
⎡

⎣
0 0
0 a
0 b

⎤

⎦ =
⎡

⎣
0 · 0 0 · 0
0 · 0 0 · a
0 1 · b

⎤

⎦ = 0,

⎡

⎣
0 0
1 1
0 0

⎤

⎦ ·
⎡

⎣
0 0
0 a
0 b

⎤

⎦ =
⎡

⎣
0 · 0 0 · 0
1 · 0 1 · a
0 0 · b

⎤

⎦ = 0.
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This implies that a = b = 0; thus no element of the fiber which is a limit of tangent
hyperplanes to �2 along the image of the z axis in �2 can contain the image of
DF(0).

Problem 3.26 Prove the rest of the assertions of the last example.

Wecanuse this simple example to get some idea of the possibleways our invariants
can change in a family. Given a family of singularities {Xd

t }, with parameter t , let
e(J M(Xt ), F∗

t J M(�r ), t) denote the sum of e(J M(Xt ), F∗
t J M(�r ), x) over all

x ∈ Xt ; let

e�(M, F∗
t J M(�r ), x) = e(J M(Xt ), F∗

t J M(�r ), x) + md(F∗
t J M(�r ), x),

and define e�(M, F∗
t J M(�r ), t) in a way similar to e(J M(Xt ), F∗

t J M(�r ), t).

Example 3.27 Let Ft =
⎡

⎣
z 0

y − t y + t
0 x

⎤

⎦ . Let Xt = X Ft , then Xt for t �= 0 consists

of three lines which intersect in two plane curve singularities–both ordinary nodes.
Further e(J M(Xt ), F∗

t J M(�2), t) is 0 for t = 0 and 4 for t �= 0, hence is not upper
semicontinuous. The invariant e�(M, F∗

t J M(�2), t) = 4, for all t .

The example shows that e�(M, F∗
t J M(�2), t) = 4 being independent of t does

not prevent the singularity from splitting. If we assume the parameter space is embed-
ded in X as C × 0, and ask that e�(M, F∗

t J M(�2), (t, 0)) is independent of t , then
splitting cannot occur because e�(M, F∗

t J M(�2), t) is upper semicontinuous, and
e�(M, F∗

t J M(�2), x) is always non-zero in the curve case if x is singular.

Equisingularity of Determinantal Varieties

In this section we bring together many elements of these lectures to prove a theorem
on the Whitney equisingularity of families of determinantal singularities.

The key invariant is the generalization of the invariant md(Xd) in the ICIS case.
As in the definition of md(F∗ J M(�n)) we pick a smoothing F̃ of F . We can extend
the sheaf J M(X F ) over X F̃ by considering the sheaf of modules generated by the
partial derivatives of F̃ with respect to the variables of Cq , the ambient space of X F .
Denote this by J Mz(X F̃ ). Now assume X = X F = F−1(�r ); for simplicity, assume
X has a smoothing. Applying the MPT to this set-up (3.22), we know that

md (X) = e(J M(X F ), F∗(J M(�r ))) + F(Cq ) · �d (�r ) := e�(J M(X F ), F∗(J M(�r ))).

In an analogous way we can define md(m J M(X)), and again we have as a corol-
lary of the MPT,

md(m J M(X)) = e(m J M(X F ), F∗(J M(�r ))) + F(Cq) · �d(�
r ) :

= e�(m J M(X F ), F∗(J M(�r ))).
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(In picking the smoothing it is necessary to ensure that F̃(t, 0) /∈ �r for t �= 0.) We
use the notation e� for the multiplicity of a pair corrected by the curvature of the
larger module.

If we have a family of sets X F defined by F : Ct × C
q → Hom(Cn,Cn+k), Y =

C
t × 0 ⊂ X F , we show that md(m J M(X)) controls the Whitney conditions for the

open stratum of X F along Y . The precise statement follows.

Theorem 3.28 Suppose (Xd+t , 0) ⊂ (Cq+t , 0), X = F−1(�r ), F : Cq+t →
Hom(Cn,Cn+k), Y a smooth subset of X, coordinates chosen so that Ct × 0 = Y ,
F induced from a deformation of the presentation matrix of X (0), X equidimen-
sional with equidimensional fibers, of expected dimension, X (y) has only isolated
singularities for all y.

(A) Suppose the singular set of X is Y . Suppose e�(my J M(X y), F∗
y J M(�r )) is

independent of y. Then the union of the singular points of X (y) is Y , and the pair of
strata (X − Y, Y ) satisfies condition W .

(B) Suppose the singular set of X is Y and the pair (X − Y, Y ) satisfies condition
W . Then e�(my J M(Fy), F∗

y J M(�r )) is independent of y.

Proof First, we prove (A). We can embed the family in a restricted versal unfold-
ing with smooth base Ỹ l . Consider the polar variety of mY J Mz(F) of dimension
l, and the degree of its projection to Ỹ l along points of Y . The hypothesis on
e�(my J M(X y), F∗

y J M(�r )) implies by the multiplicity polar theorem that this
degree is constant over Y . In turn this implies that the polar variety over Y does
not split, hence the polar of the original deformation is empty. This implies that the
fiber of the exceptional divisor of BmY Projan(J Mz(F)) cannot be maximal, since
there is no polar variety. By the theorem of Kleiman-Thorup on the dimension of
this fiber, it then follows that J MY (F) ⊂ mY J Mz(F) which implies W.

This also implies that J M(F) ⊂ J Mz(F). Hence the union of the singular points
of Fy which is the cosupport of J Mz(F) is equal to the cosupport of J M(F)which is
Y . Then the inclusion J MY (F) ⊂ mY J Mz(F) implies W for (X − Y, Y ). (Cf. [9].)

Now we prove (B). W implies J MY (F) ⊂ mY J Mz(F) which implies that
mY J M(F) = mY J Mz(F). We know by [38] that condition W implies that the
fiber dimension of the exceptional divisor of BmY (C(X)) over each point of Y
is as small as possible. The integral closure condition mY J M(F) = mY J Mz(F)

implies that the same is true for BmY (ProjanR(J Mz(F))). This implies that the
polar of mY J Mz(F) is empty, hence by the multiplicity polar formula the invariant
e�(m J M(Fy), F∗

y J M(�r )) is independent of y. �

We also have a geometric description of our invariant based on the smoothing and
the existence of a unique Milnor fiber.

Theorem 3.29 e(J M(X y), F∗
y J M(�r )) + F(y)(Cq) · �d(�

r ) = (−1)dχ(Xs,y) +
(−1)d−1χ((X ∩ H)s,y), Xs,y a smoothing of X (y).

Proof (Cf. [11, p. 130], [32].) �
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Example 3.30 Consider the family of curves Xl , defined by the minors of

FXl =
⎡

⎣
z x
y z
xl y

⎤

⎦ .

Then by our previous work we have e�(J M(Xl), F∗
l J M(�2)) = 2l + 2, for l =

1 or l − 1 not divisible by 3, l > 1. Since −χ(Xs,l) + χ((X ∩ H)s,l) = μ(Xl) +
m(Xl) − 1, we have μ(Xl) = 2l recovering a result of Watanabe et al. [30].

Challenge Problems and Further Directions in Determinantal Singularities

• In the maximal minor case, the work of [7] gives a formula for the Euler character-
istic of a smoothing of a nondeterminantal singularity. Canwe say something about
the Betti-numbers of a smoothing when there is more than 1? (Frühbis–Krüger
and Zach have some results for three-folds. Cf. [5, 40].)

• What is the connection between the results of [7] on the Euler characteristic of a
smoothing and Damon–Pike [3] in the (2,3) case?

• What is the relation in the curve case between between the results of [7] and those
of Greuel and Buchweitz [2] and Rosenlicht differentials?

• For what determinantal singularities is the invariant md(Xd) = 0? Hopefully, we
can classify them. In May 2015, work was done giving the dimensions in which
they can appear, and a transversality condition that must be satisfied. In September
of 2016 as part of a project with Ruas and Pedersen, normal forms for the space
curve-maximal minor case were found.

• What additional invariants are needed to ensure the singular locus of a family does
not split? In the ICIS case the independence from parameter of md(X y) ensures
the singular locus is the parameter axis. Because some determinantal singularities
have md(X) = 0, this is not true for families of determinantal singularities, even
in the maximal minor (2, 3) case.

• Is there a way to connect the terms that appear in the calculation of the multiplicity
of the polar of F∗ J M(�n) with the geometry of X F in the (n, n + k) case?

• What is a formula in terms of the entries of the presentation matrix for F(Cq) ·
�d(�

r ), 1 < r < n?
• What can we say about EIDS (Essentially Isolated Determinantal Singulari-
ties)? These include determinantal singularities which are isolated, but cannot
be smoothed, because the dimension of the domain is too large, as well as deter-
minantal singularities which are non-isolated, but which are well behaved away
from the origin.) Some work on these has been done in [7, 20] and other papers
mentioned in their bibliographies.

• Can we calculate the multiplicities of the polar varieties of�r ⊂ Hom(Cn,Cn+k)

at the origin of Hom(Cn,Cn+k)? This is known for the cases r = n, 2 ([8]). This
will give a lower bound on the size of the contribution of F(Cq) · �d(�

r ) to
e�(J M(X), F∗ J M(�r )). Since the �r are homogeneous, their ideals define pro-
jective varieties, and these multiplicities will be the degrees of the polar classes of
the projective varieties.
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• There are other invariants associated with X such as the index of differential forms
and the Milnor number(?) of functions with isolated singularities. Compute these
in terms of infinitesimal invariants similar to those of these lectures.(Cf. [19] for
a framework for doing this.)

4 Afterword: Examples of the Point of View
of the Introduction

We will talk about two examples of our point of view.
Hypersurfaces with isolated singularities are our first example. Suppose Xn, 0 has

an isolated singularity at the origin, X = f −1(0).
Choose the landscape This is done by looking at the possible deformations of X .

We see we can deform f freely, and still, for small deformations, get a hypersurface
with at most isolated singularities. So, the landscape will be all hypersurfaces in
C

n+1 with at most isolated singularities. The generic element that X deforms to is
its Milnor fiber.

Describe the connection between X and its generic element To do this, deform X
to its Milnor fiber, using F(y, z) = f (z) − y. Then the ideal Jz(F), when restricted
to the graph, vanishes only at (0, 0), so its polar curve is given by the vanishing
of the first n partial derivatives, in generic coordinates. Applying the MPT, we get
e(J ( f ),OX,0) = multC�n(Jz(F)).

In turn multC�n(Jz(F)) is the colength of the ideal ( f, ∂ f
∂z1

, . . . ,
∂ f
∂zn

) in On+1.
This is μ(X) + μ(X ∩ H), H a generic hyperplane.

Determine the first order infinitesimal deformations Since f → f + tg where g
is arbitrary, is a first order defomation, and the corresponding infinitesimal first order
deformation is f → ∂ f +tg

∂t = g, the first order infinitesimal deformations are just
OX,0.

Our invariant for controlling Whitney equisingularity is e(m J ( f ),OX,0).
If we have a family of hypersurfaces X , then if μ(X) + μ(X ∩ H) changes, then

so must e(J ( f ),OX,0), and the exceptional divisor of BJz(F)(X ) must pick up a
vertical component and vice-versa. The change in the topology of the landscape is
reflected in a dramatic change in the fibers of the exceptional divisor, which is the
infinitesimal information.

For determinantal singularities the story is similar.
If we look at all possible deformations, then we have examples where the same

singularity can be deformed in two different ways, even givingWhitney equisingular
families in which the generic fiber has non-homeomorphic smoothings [7]. So, we
restrict our deformations by using the same size presentation matrix. The entries of
the matrix can be deformed freely.

Then, the landscape will be the determinantal singularities corresponding to a
matrix of fixed size. The generic element associated to X will be smooth, given some
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dimension restriction; otherwise we can say what the stabilizations of the singularity
are, and can begin to study those [20].

In the case of smoothable singularities, by use of the multiplicity polar theorem
and some topology, we get Theorem3.29 which gives the connection between the
topology of smoothing and the algebraic invariants of the singularity, which are
connected to its infinitesimal geometry. This is generalized in [20] to the EIDS case.

The first order infinitesimal deformations of X can be explicitly computed; deform
an entry of the presentation matrix by t , calculate the minors of the order used to
define X ; taking derivative with respect to t then gives a map from the defining
equations for X into tuples in Og

X,0, where g is the number of defining equations.
These give the generators of N (X). It is clear from this formulation that N is universal
and specializes well in families. We can calculate J M(�) explicitly–the partial with
respect to the (i, j) entry of the matrix is just the corresponding generator of N . So
� is stable. The geometric representation of C(�n) in terms of kernels of M and Mt

gives the formula for computing multC�d(N (X̃ M̃)) using the presentation matrix,
but leaves the formula in terms of the entries still to be determined in general.

Once again, a change at the infinitesimal level of the family is always tied to a
change in topology of the generic related elements. Here, the infinitesimal level of a
familyX t+d ⊂ C

t+q is the relative conormal modification CY (X ) ofX , which is the
limits of tangent hyperplanes in C

q to the fibers of X over Ct . Assume the singular
locus of the family isCt × 0. By a change at the infinitesimal level, we mean that the
dimension of the fiber ofCY (X ) over the origin inX (0) jumps in dimension from the
generic value of q − d − 1 to at least q − 1. This is equivalent to the polar variety of
dimension t of the module J Mz(X ) at (0, 0) being non-empty. In turn by the MPT,
this implies that md(X (0)) > md(X (y)), y a generic value of Ct . By Theorem3.29,
this implies that the topology of the smoothings of X (0) and X (y) are different.
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