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Abstract We give a quick survey of problems concerning Equisingularity.
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Introduction

A singularity is the germ of a complex analytic space (X, x). Equisingularity means
the same singularity.

A naive view would be that two singularities are equisingular if they are analyt-
ically the same. It is known that two singularities (X, x) and (Y, y) are analytically
the same if and only if the local rings OX,x and OY,y are isomorphic (see e.g. [8]).

In the case of complex singularities of hypersurfaces, it seems that one may use
analytic isomorphism to define equisingularity, since for the most “simple” singular-
ities analytic isomorphisms and ambient homeomorphisms between the singularities
are equivalent.

For instance two complex cusps of plane curves are equally locally homeomorphic
in the local ambient space or analytically isomorphic. One expresses this property
by saying that the moduli of a complex cusp singularity is reduced to a point. More
generally themoduli of a space or a singularity is the parameter space of a deformation
of complex analytic spaces or singularities having the same “topological features”,
but being analytically different.

However, one knows that the moduli of a singularity is in general not reduced to
a point. In the case of plane curves the moduli of the germs of plane curves with one
Puiseux pair (3, 7) (see e.g. [25] Sect. 1 p. 284) is not reduced to a point. There is the
famous example of Riemann of a family of cubic curves having different analytic
structures. The cones on these cubic curves define a family of complex singularities
having different analytic structures.
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Therefore, the analytic isomorphism of germs does not seem to be the adequate
answer for equisingularity, since the analytic type can change continuously on a
complex analytic space.

Several mathematicians like H. Whitney, R. Thom, O. Zariski have tried to give
a good definition of equisingularity.

H. Whitney (see [30]) introduced a partition of a general complex analytic space,
called a Whitney stratification (see below). The article [30] is the fruit of several
discussions that H. Whitney had with R. Thom. Later R. Thom and J. Mather (in
[13, 22]) proved that locally along the strata of a Whitney stratification the analytic
space is a topological product.

In a paper published in 1937, O. Zariski used an argument very similar to equi-
singularity to prove that the fundamental group of the complement of a complex
projective hypersurface of dimension n ≥ 2 is isomorphic to the fundamental group
of the complement of the complex curve intersection of the hypersurface with a
general complex plane in the general plane section (see “A theorem on the Poincaré
group of an algebraic hypersurface”, Ann. of Math. 38 (1937), 131–141).

Unfortunately, at that timeO. Zariski did not have a clear definition of what should
be a general plane section and a fortiori of what should be equisingular sections. O.
Zariski used to call jokingly that paper his last italian paper.

The term of equisingularity appears in the papers of O. Zariski (see [32, 34]). The
viewpoint changed somehow. One considers a partition of the analytic space X such
that, for two points x1, x2 of a stratum of the partition, the germs (X ,x1) and (X, x2)
are equisingular. For Zariski, he considers algebraic varieties and he wants that the
partition is defined by algebraic data. In the case of a complex hypersurface the big
stratum is the stratum of non-singular points and the stratum of codimension one is
the one such that transversal sections by a plane of dimension 2 give a germ of plane
curve with the same Puiseux pairs, if the germ is a branch, or a germ of plane curve
with a given topology in the case of several analytic branches.

He could characterize the codimension one stratum with a new concept called the
saturation (see [36]).

In the period from 1965 to 1968, O. Zariski introduced the notion of saturation
of a ring. Then, he published an algebraic understanding of what he called equisin-
gularity in several papers [31–36]. Surprisingly these papers attract little attention
of the community of algebraic geometers. One of the reasons of this attitude might
be because the notion of equisingularity was not clearly defined but in the case
of plane curves for which equisingular germs of plane curves are germs of plane
curves with isomorphic saturation rings. Unfortunately this definition does not work
in dimension ≥2.

When the hypersurface singularity is isolated, in [14] (1968) J. Milnor has intro-
duced a multiplicity that we call the Milnor number of the isolated singularity which
is a topological invariant of the embedded topology of the hypersurface (see e.g. [26]
Proposition p. 261). However, two isolated hypersurface singularities having the
same Milnor number may not be topologically equisingular: two plane curves with
one Puiseux pair (p1, q1) and (p2, q2) such that (p1 −1)(q1 −1) = (p2 −1)(q2 −1)
have the same Milnor number:
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μ = (p1 − 1)(q1 − 1) = (p2 − 1)(q2 − 1)

but, if p1 �= p2, are not topologically equisingular.
In 1968 in a seminar at IHES, H. Hironaka made a conjecture that in a family of

plane curves withMilnor number constant, the local topology of the plane curve does
not change. In 1970 I found a proof of this conjecture (see [24] published in 1971). In
1971 together with C.P. Ramanujam I extended this result to complex hypersurfaces
of dimension≥3 (see [27] published in 1976). The restriction on the dimension came
from the use of the h-cobordism Theorem.

This topological result showed that equisingularity can be understood either topo-
logically, or algebraically, as Zariski tried to do for plane curves. The different ways
to define equisingularity should at least imply topological equisingularity. Further-
more one should be able to “stratify” an algebraic variety with equisingular germs
along each strata. The case of plane curves which should correspond to strata of
codimension one in a hypersurface would be the typical first example.

Finally, the concept of equisingularity, although vague, can be formulated in the
following way:

Let X be a complex analytic space. There is an analytic partition X = ∐
i∈I Xi ,

such that:

• The definition of the analytic partition should be given by algebraic conditions on
the local ring OX,x ;

• All the germs (X, x) with x ∈ Xi should be equisingular, e.g. topologically equi-
singular in the case of hypersurfaces;

• Following Zariski (see [31]) themultiplicity of (X, x) should be constant along Xi .

In these notes, in a quick way we shall present most of the aspects of Equisingularity
theory that is known nowadays, hoping that it will motivate younger mathematicians
to make research in this direction.

1 Basic Notions

1.1 Germs

Let X be complex analytic spaces and let x be a point of X . One calls germ of X
at the point x the pair (X, x). Let (X, x) and (Y, y) be complex analytic germs. The
germ at x of morphism from (X, x) into (Y, y) is the equivalence class of complex
analytic morphisms defined on a neighborhood of x in X into Y such that the image
of x is y and two such morphisms coincide on a neighborhood of x in X .

Germs of complex analytic spaces with germs of complex analytic morphisms
form a category that we shall call German. The objects of this category are germs
of complex analytic spaces and the arrows from (X, x) into (Y, y) are the germs of
morphisms of (X, x) into (Y, y).
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Similarly complex analytic algebras isomorphic to the local ringOX,x of germs of
complex analytic functions of some complex analytic space X at x form a category
Algan in which the objects are complex analytic algebras and the arrows are C-
homomorphisms of these algebras.

We have a natural functor:

� : German◦→ Algan

where German◦ is the opposite category of German and such that�((X, x)) = OX,x ,
where OX,x is the local ring of germs at x of complex analytic functions on X .

It is known that (see [8] p. 13–02):

Theorem 1.1 The functor � : German◦→Algan is an equivalence of categories
from the opposite of the category of complex analytic germs with the category of
complex analytic local algebras.

1.2 Analytic Equivalence

Of course one can classify singularities using analytic equivalence. Using Theorem
1.1 two singularities (X, x) and (Y, y) are analytically equivalent if the local analytic
rings OX,x and OY,y are isomorphic. However such a classification is too fine and if
x ∈ X the analytic structure of OX,x can vary continuously.

For instance, the complex surface ofC3 given by X (X−Y )(X+Y )(X+TY ) = 0
has a continuous analytic structure at the points (0, 0, t).

1.3 Topological Equivalence

In the case of hypersurfaces, one has an notion of topological equivalence.
The germs of hypersurfaces (X, x) and (Y, y) ofCn are topologically equivalent if

there exists a germ of homeomorphisms ϕ of (Cn, x) into (Cn, y) such that the image
of (X, x) is (Y, y). In what follows, we shall say that two topologically equivalent
hypersurface singularities are topologically equisingular.

This notion of topological equivalence does not extend to codimension ≥2 ana-
lytic spaces. For instance, two analytically irreducible germs of curves of Cn are
topologically equivalent if n ≥ 3.

1.4 Plane Curves

The case of germs of complex plane curves is the test case where all the criteria for
a good equivalence are working.
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As Zariski did, we shall call analytic plane branch an analytically irreducible
germ of reduced complex plane curve. Let us suppose that an analytic branch (C, 0)
is defined by the equation f = 0 where f is an irreducible germ of complex analytic
function of (C2, 0) at the origin 0. Let us suppose that the coordinates X,Y of (C2, 0)
satisfy the Weierstrass type condition:

f (0,Y ) �= 0.

One can define the Puiseux exponents relatively to the coordinates X,Y (see [25]).
Those Puiseux exponents define the knot type of the intersection { f = 0}∩Sε(0) ofC
and a sufficiently small sphere Sε(0) centered at 0 with radius ε (e.g. see [25] Sect. 1).

Puiseux Theorem shows that one can parametrize the branch (C, 0), i.e. there exist
a convergent series �(X1/n) in X1/n such that f (X,�(X1/n)) ≡ 0 and n equals the
valuation of f (0,Y ):

φ
(
X

1
x

)
= �ak X

k
n

Let us now define the Puiseux exponents relatively to the coordinates (X,Y ).
If n = 1, the Puiseux expansion is a formal series with coefficients in C. In this

case, there are no Puiseux exponent.
If n > 1, the set E1 = {k/n /∈ N, ak �= 0} is not empty, since n is the smallest

integer �, such that �(X1/n) ∈ C[[X1/�]].
Define the first Puiseux exponent relatively to the coordinates (X,Y ):

k1
n

= inf{k/n /∈ N, ak �= 0}.

Then, either (k1, n) are relatively prime and there is only one Puiseux exponent, or

k1
n

= m1

n1

and n1 < n. The set E1 = {k/n /∈ (1/n1)N, ak �= 0, k > k1} is not empty, otherwise
�(X1/n) belongs to C[[X1/n1 ]].

Define the second Puiseux exponent by:

k2
n

:= inf{ k
n

/∈ 1

n1
N, ak �= 0, k > k1}.

There is a unique way to write:
k2
n

= m2

n1n2

in such a way that (m2, n2) are relatively prime.
Then, either n1n2 = n and there are only two Puiseux exponents, or n1n2 < n

and the set:
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E2 = { k
n

/∈ 1

n1n2
N, ak �= 0, k > k2}

is not empty.
By induction, one defines mh/n1 . . . nh , where (mh, nh) are relatively prime.

Either, n1 . . . nh = n and there are h Puiseux exponents, or n1 . . . nh < n and
the set:

Eh = { k
n

/∈ 1

n1 . . . nh
N, ak �= 0, k > kh}

is not empty, in which case inf Eh = kh+1/n = mh+1/n1 . . . nh+1, where (mh+1,

nh+1) are relatively prime and unique.
The process has to end, since n has a finite number of divisors.
The pairs (m1, n1), . . . , (mh, nh) are called the Puiseux pairs of (C, 0) relatively

to the coordinates (X,Y ) and the exponents:

m1

n1
, . . . ,

mh

n1 . . . nh

are called the Puiseux exponents of (C, 0) relatively to the coordinates (X,Y ).
One can prove:

Theorem 1.2 Two plane branches (C1, 0) and (C2, 0) are topologically equivalent
if and only if, there are coordinates for which their Puiseux exponents are equal.

In [36]O. Zariski introduced the notion of saturation ÕX,x of the local ringOX.x when
(X, x) is a complex analytic plane branch (see below inSect. 3.2). The saturation ÕX,x

is a local ringwhich contains the local ringOX.x and is contained in the normalization
ŌX,x :

OX.x ⊂ ÕX.x ⊂ ŌX,x .

It is known that the normalization ŌX,x is the ring of germs ofmeromorphic functions
whose restriction to (X, x) are bounded (e.g. see [18] Chapter VI).

Similarly F. Pham and B. Teissier have proved that the saturation ÕX,x is the ring
of germs of meromorphic functions on (X, x) which are Lipschitz functions (see
[19] or [7]).

1.5 Hypersurfaces

In the case of reduced hypersurfaces (X, x) we proved in [26] (Proposition of the
Introduction) that the local monodromy of the local Milnor fibration of (X, x) (see
[14] Sect. 4 for the definition and existence) is a topological invariant of (X, x). In
particular the Milnor numbers of two topological equisingular hypersurfaces (X1, 0)
and (X2, 0) are the same.

It is remarkable that, in a smooth family of complex hypersurfaces containing the
origin 0 and having at 0 the sameMilnor number, the hypersurfaces are topologically
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equisingular (see [27]). However the dimension n of the hypersurfaces is �= 2 because
the proof uses the h-cobordism Theorem.

Conjecture: It is natural to conjecture that this result holds also in
dimension 2.

1.6 Whitney Stratifications

As we have mentioned in the introduction, in 1965 H.Whitney introduced the notion
of Whitney condition (see [30]).

Let X be a reduced complex analytic space. Let �X the subset of singular points
of X . It is known that�X is an complex analytic subspace of X . We have the partition
of X :

X = (X − �X )
∐

�X .

Defining by induction X1 = �X and, for i ≥ 1, Xi+1 = �Xi , we have:

X = (X − �X )
∐

(X1 − X2)
∐

(X2 − X3)
∐

. . .

which has to be afinite partition since Xi−Xi+1 is amanifold and dim Xi > dim Xi+1

if Xi �= ∅. It is called the partition by dimension of X .
The partition by the connected components of Xi −Xi+1 is called the full partition

by dimension of X . If X is a complex analytic space, its full partition by dimension
might not be finite but it is locally finite.

A complex analytic manifold Y contained in a complex analytic space X is strict
if the closure Ȳ of Y in X and the difference Ȳ − Y are complex analytic subspace
of X .

If Y is strict of dimension m, then Lemma 3.13 of [30] shows that the dimension
of Ȳ is m and the dimension of Ȳ − Y is < m.

A strict partition of a complex analytic space X is a partition, which is locally
finite, into strict manifolds. The elements of a strict partition are called the strata of
the strict partition.

Lemma 18.2 of [30] states that the partition by dimension and the full partition
by dimension of a complex analytic space X are strict partitions of X .

A strict partition (Xi )i∈I of a complex analytic space X satisfies the frontier
condition if:

∀i, j ∈ I, Xi ∩ X̄ j �= ∅ ⇒ Xi ⊂ X̄ j and dim Xi < dim X j .

Definition 1.1 Let X be a complex analytic space. A stratification of X is a locally
finite strict partition by connected strata which satisfies the frontier condition.

Now we can define the conditions of Whitney.

Definition 1.2 LetM and N be two complex analyticmanifolds strict in the complex
analytic space X . Assume that N ⊂ M̄ . Let x ∈ N . We may assume that locally at
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x the are neighborhoods V of x in N and U of x in M such that V ⊂ Ū ⊂ C
N . One

says that M satisfies the Whitney condition (a) at x along N if, for any sequence
(xn) of points of M converging x for which the sequence of tangent spaces Txn (M)

converge to T , we have Tx (N ) ⊂ T .

Definition 1.3 LetM and N be two complex analyticmanifolds strict in the complex
analytic space X . Assume that N ⊂ M̄ . Let x ∈ N . We may assume that locally at
x the are neighborhoods V of x in N and U of x in M such that V ⊂ Ū ⊂ C

N . One
says that M satisfies theWhitney condition (b) at x along N if, for any sequence (xn)
of points of M and any sequence (yn) of N converging x , for which the sequence
of tangent spaces Txn (M) converges to T and for which the sequence of lines ynxn
converges to �, we have � ⊂ T .

In [13] (Proposition 2.4) it is proven that If M satisfies the Whitney condition (b) at
x along N , then it satisfies the condition of Whitney (a) at x along N .

We say that M satisfies Whitney condition (b) along N if it satisfies Whitney
condition (b) at any point x of N along N .

Definition 1.4 A stratification (Si )i∈I of the complex analytic space X is a Whitney
stratification if, for any pair (Si , Sj ) of strata such that Si is contained in the closure
S̄ j , the stratum Sj satisfies the condition of Whitney (b) at any point x of Si along Si .

In [30] (Theorem 19.2 p. 540, H. Whitney proved that any reduced complex analytic
space has a Whitney stratification.

The remarkable result of Mather and Thom is that for any Whitney stratifica-
tion of a complex analytic space X the topology of X along any strata is a local
product. Namely let (Si ) be a Whitney stratification of X , for any point x ∈ Si ,
there is a neighborhood Ux of x in X , such that Ux is homeomorphic to the product
(Ux ∩ Si )× (Nx ∩U ) where Nx is a slice of X transverse at x to Si in a local smooth
ambient space.

Since the strata of a Whitney stratification are pathwise connected, the topology
of the germ of Nx at x does not depend on the point x in a stratum.

In fact, the notion of stratification as well as Whitney conditions can be extended
to subanalytic spaces or even to definable spaces.We shall not consider this extension
in these notes.

1.7 The Concept of Equisingularity

Equisingularity is up to nowa rather vague concept.We shall try to fix someproperties
which should be satisfied by a proper definition of equisingularity.

As we said in the introduction, roughly speaking two germs of complex analytic
spaces should be equisingular if their singularity are somehow the “same”.Wealready
mentioned that considering complex analytic equivalence is too strong, because in a
family the analytic structure might change continuously.

We can give some basic features which should characterize Equisingularity:
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1. It is an equivalence relation in the class of complex analytic germs;
2. Two equisingular hypersurfaces should be topologically equisingular;
3. If X is a complex analytic space, the disjoint subspaces:

Sx = {y ∈ X | (X, y) is equisingular to (X, x)}

define a strict partition of X .
4. Two equisingular spaces (X, x) and (Y, y) should have the same multiplicity.
5. Equisingularity should be characterized algebraically.

In the paper of Zariski, “A theorem on the Poincaré group of an algebraic hypersur-
face”, quoted in the introduction above, one of themain arguments of the proof is that
two general hyperplane sections of a projective hypersurface and their embedding
in their hypersurface are homeomorphic or equivalently the germs of their cones at
the origin are topologically equisingular.

2 Whitney Equisingularity

A possible definition of Equisingularity is Whitney Equisingularity. Let X be a
reduced complex analytic space. Let x and y be points of X .

Definition 2.1 The singularities (X, x) and (X, y) areWhitney equisingular if there
is aWhitney stratification (Si )i∈I of X such that x and y belong to the same stratum Si .

We shall see that Whitney equisingularity satisfies the features mentioned above.

2.1 Topological Properties

Let X be a reduced complex analytic space. Let S = (Si )i∈I be a Whitney strat-
ification of X . There is a local topological triviality of X along the strata of the
stratification S in the following sense:

As we have said above, for any x ∈ X , let Si(x) be the stratum of the stratification
S of X which contains x , then there exist an open neighborhood V of x in Si(x) and
a slice Nx , i.e. in a local embedding (X, x) ⊂ (CN , x) the intersection of X with a
linear subspace of CN transverse to Si(x) at x in a neighborhood of x in X, such that
a neighborhood of x in X is homeomorphic to the product V × (Nx ∩ V ).

This result was announced by R. Thom in [22] and one can find a sketch of proof
by J. Mather in [13].

As a consequence, using the tubular neighbourhoods of J. Mather (see p. 480 of
[13]), we can prove that, for any point x ∈ Si , the slices Nx are diffeomorphic.

In particular, if X is a hypersurface, if x, y ∈ X are points of X , since they belong
to the same Whitney stratum of some Whitney stratifications the germs (X, x) and
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(X, y) are homeomorphic germs of hypersurface, so they are topologically equisin-
gular.

2.2 Equimultiplicity

Let X be a reduced complex analytic space. Let S = (Si )i∈I be a Whitney stratifi-
cation of X . In his paper [9] Corollary 6.2, H. Hironaka proves that for any points
x ∈ Si , the multiplicity of X is the same. Then, along its Whitney strata, a reduced
analytic space is equimultiple.

2.3 Polar Varieties

Let X be an equidimensional reduced complex analytic space of dimension d and
let x be a point of X . Consider the integers k, 2 ≤ k ≤ d + 1.

We may embed (X, x) ⊂ (CN , x). In [28] (2.2.2) we show that the set of germs
of projection:

p : (X, x) → (Ck, 0)

induced by surjective affine maps (CN , x) → (Ck, 0) contains an Zariski dense
subset �k such that, for any p ∈ �k , the critical locus C(p) of the restriction of p to
the non-singular part X \�X is a reduced complex analytic space and the multiplicity
mk(X, x) of germ of the closure C(p) at the point x does not depend on p ∈ �k .

For p ∈ �k the germ (C(p), x) is called a polar variety Pk−1(X, x) of (X, x) of
dimension k−1. Beware that Pk−1(X, x) can be empty in which case its multiplicity
at x is 0.

Therefore, one can associate a d-uple M(X, x) = (m2(X, x), . . . ,md+1(X, x))
to the germ (X, x). Notice that some mk(X, x) can be 0 and md+1(X, x) is the
multiplicity of X at x , because Pd(X, x) = (X, x).

We have the following algebraic characterisation of Whitney stratification due to
B. Teissier (see [21] Chapitre 5 Théorème 1.2) which gives somehow an algebraic
characterisation of Whitney equisingularity:

Theorem 2.1 Let X be a reduced equidimensional complex analytic space. Let
S = (Si )i∈I be a stratification of X (see Definition1.1). Suppose that, for any pair
(Si , Sj ), such that Si ⊂ S j , the dim(Sj )-uple M(S j , x) is constant for x ∈ Si . Then,
the stratification S is a Whitney stratification of X.
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2.4 Vanishing Euler Characteristics

Let X be a d-equidimensional reduced complex analytic space and x be a point of
X . We may assume that (X, x) ⊂ (CN , x). We have seen that, for any p ∈ �k ,
where �k is a Zariski dense open subset of the space of projections of (X, x) onto
(Ck, 0) induced by affine maps (CN , x) → (Ck, 0), we can define �k , such that the
general local fiber p−1(u) ∩Bε, where Bε is the ball centered at x of radius ε in CN ,
0 < ‖u‖ � ε and u ∈ C

k is a general point, of p at x has a homotopy type which
does not depend on p (see 3.1.2 in [23]).

We call the general local fiber p−1(u) ∩ Bε of p at x a local vanishing fiber of
(X, x) of dimension d − k. When k = d + 1 the local vanishing finer is empty, so
we put χd+1(X, x) = 0 for the Euler characteristic of the empty fiber.

Definition 2.2 We call the Euler characteristic of the local vanishing fiber of p :
(X, x) → (Ck, 0) the vanishing Euler characteristic χk(X, x). The vanishing Euler
characteristics of (X, x) is the dim X -uple:

K(X, x) = (χ2(X, x), . . . , χdim X+1(X, x))

In [23] (Théorème (5.3.1)) we have the following characterization of Whitney strat-
ification:

Theorem 2.2 Let X be an equidimensional reduced complex analytic space and let
S = (SI )i∈I be a stratification of X. Suppose that for any pair (Si , Sj ) of strata of
S, such that Si ⊂ S j we have that the vanishing Euler characteristics K(S j , x) is
constant for x ∈ Si , then the stratification S is a Whitney stratification.

As it is noticed in [23] (5.3) this theorem can be understood as a converse of Thom-
Mather first isotopy theorem.

In fact, Theorem 2.2 is a consequence of Teissier’s Theorem 2.1 stated above by
using Théorème 4.1.1 of [23].

2.5 Summary

All this results show that Whitney equisingularity satisfies the requirements of 1.7.
TheTheorem2.2 is given to show that aWhitney stratification can be characterized

by topological data and leads naturally to the question:
Can a Whitney stratification on a real analytic space (or a subanalytic space)

be characterized by a real version of Theorem2.2?



338 L. D. Tráng

3 Saturation

In this section we essentially follow O. Zariski in [36].

3.1 Definition

Let O be a ring with identity. Let K be its total ring of fractions and Let L ⊂ K be
s a subfield of K . We assume:

1. The ring has no divisor of zero �= 0;
2. In view of the preceding hypothesis, the total ring of fractions K being noetherian,

the ring K is the direct sum of finite number of fields:

K = K1 ⊕ · · · ⊕ Kr ;

3. The field L contains the unit of K , or equivalently no element �= 0 is a zero divisor
of K ;

4. Let εi be the unit of Ki . Then Ki is a finite separable extension of Lεi ;
5. If R = O ∩ L then, the ring O is integral over R.

Let us fix an algebraic closure� of L . Consider L-homomorphisms of K into�. Let
ψ such a homomorphism. Then, for some i , ψ(εi ) = 1 and, for j �= i , ψ(ε j ) = 0.
Then, for j �= i , ψ(K j ) = 0 while ψ induces an isomorphism of Ki onto its image
and ψ(αεi ) = α for any α ∈ L . According to the hypothesis 4 above the number of
L-homomorphisms of K into � is finite.

For any given i ,1 ≤ i ≤ r , the compositum K ∗
i of the fields ψ(Ki ) as ψ varies,

i.e. the smallest field of � which contains the ψ(Ki )’s, is a finite Galois extension
of L . Similarly, the compositum K ∗ of the fields ψ(K ) is a finite Galois extension
of L .

Following O. Zariski, we shall say for two elements ξ and η of K , ξ dominates η

if for any pair of homomorphismsψ1 andψ2, eitherψ1(η) �= ψ2(η) and the quotient:

ψ1(ξ) − ψ2(ξ)

ψ1(η) − ψ2(η)

is integral over R, while ψ1(η) = ψ2(η) implies ψ1(ξ) = ψ2(ξ).
Note that if. for some i , ψ1 and ψ ′

1 are L-homomorphisms of K into � such that
ψ1(εi ) = ψ ′

1(εi ) = 1, then there is a L-monomorphism φ0 of ψi (K ) into � such
that ψ ′

1 = φ0ψ1. The monomorphism φ0 can be extended to a L-automorphism of
the compositum K ∗ of the fields ψ(K ). Thus, for any element η of K , the set of
elements ψ ′

1(η) − ψ2(η) is the set of φ-images of the elements ψ1(η) − ψ2(η) (ψ ′
1

and ψ1 being fixed as above).
It yields that, if one fixes for each i = 1, . . . , r (where r is the number of fields in

the hypothesis 2 above) a L-homomorphismψ
(i)
1 of K into� such thatψ(i)

1 (εi ) = 1,
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then, in order to verify that ξ dominates η, it is sufficient to verify the conditions of
domination only for the pairs (ψ1, ψ2)whereψ1 ranges over the set {ψ(1)

1 , . . . , ψ
(r)
1 }

and ψ2 is any L-homomorphism of K into �.
In particular if O is a domain of integrity K is a field and r = 1. So, we may

assume that K ⊂ �. Then, the compositum K ∗ in � is the smallest Galois extension
of L containing K . One can take ψ

(1)
1 to be the injection map of K into �. Then, the

definition of domination is the following:
The element ξ dominates η if, for any element σ of the Galois group of the

compositum K ∗ over L , the following holds: if σ.η �= η, then the quotient (σ.ξ −
ξ)/(σ.η − η) is integral over R = O ∩ L , while σ.η − η = 0 implies σ.ξ − ξ = 0.

Now, we can define:

Definition 3.1 Let O be the integral closure of O in K . The ring O is said to be
saturatedwith respect to the field L if it contains every element ofOwhich dominates
an element of O.

Since the integral closureO is saturatedwith respect to the field L , the set of saturated
rings with respect to L which contain O and are contained in O is not empty.

The intersection of two rings saturated with respect to the field L which contain
O and are contained in O is also saturated with respect to L . It implies:

Proposition 3.1 The set of saturated rings with respect to the filed L which contain
O and are contained inO has a smallest element for the order induced by inclusion.

Definition 3.2 The smallest element of the set of saturated rings with respect to the
field L which contain O and are contained in O is called the saturation of O with
respect to L and is denoted by ÕL .

3.2 Dimension 1

We shall be interested in complex analytic local rings, i.e. local rings isomorphic
to quotients of a ring of convergent series by an ideal. It is known that a complex
analytic local ring is noetherian (see e.g. [10]).

A complex analytic local ring O is isomorphic to the ring OX,x of germs of
complex analytic functions on complex analytic space X at a point x .

IfO is reduced the normal closure ofO ofO in its total ring of fractions is isomor-
phic to the germ of meromorphic functions which are bounded in a neighborhood of
x in X .

In the case of a complex analytic local ring of dimension 1 a result of F. Pham and
B. Teissier proves that the saturation ÕX,x of OX,x with respect to the quotient field
of the ring of convergent series in a parameter u ofOX,x is the ring of meromorphic
functions which are Lipschitz in a neighborhood of x in X (see [19]).

Then, they prove that two germs of plane branches are topologically equisingular
if the saturations of their local rings with respect to the quotient field of the ring of
convergent series in a general parameter are isomorphic.
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In fact in [7] A. Fernandes proved a geometrical result:

Theorem 3.1 Let (X, 0) and (X ′, 0) be germs of complex analytic curves inC2 with
branches Xi , i ∈ I and X ′

j , j ∈ J :

X = ∪i∈I Xi and X ′ = ∪ j∈J X
′
j .

Then the following conditions are equivalent:

1. There exists a germ of the subanalytic bi-Lipschitz map F : (X, 0) → (X ′, 0);
2. There exists a bijectionσ : I → J such thatβ(Xi ) = β(X ′

σ(i)) for all i ∈ I , where
β(�) is the Puiseux exponents of the branch � at 0, and such that (Xi , X j )0 =
(X ′

σ(i), X
′
σ( j))0, for all i, j ∈ I , where (•, •)0 denotes the intersection multiplicity

at the point 0;
3. (X, 0) is topologically equivalent to (X ′, 0);
4. There exist an integer d, a germ of the curve (C, 0) ⊂ (Cd , 0), and two linear

projections p, p′ : Cd → C
2, both general for C at 0 and such that p(C) = X

and p′(C) = X ′.

In summary two germs of plane curves at 0 have isomorphic saturations with respect
to the quotient field of the ring of series in a transversal parameter, i.e. a parameter
whose valuation in the normalization of the local rings is equal to the multiplicity
of the local rings, if and only if there is a bijection between the branches such that
corresponding branches have the same topology and pairwise intersection numbers
at 0 of branches and their corresponding branches are equal, i.e. if and only if the
two germs of curves at 0 are topologically equisingular.

3.3 Zariski Equisingularity

In [35] O. Zariski introduced the notion of equisingularity in codimension one for
an algebraic variety. It is easy to adapt his definition to define equisingularity in
codimension one for a germ of complex analytic set.

Definition 3.3 Let (X, x) be a germ of a reduced equidimensional complex analytic
space. Let Y be a codimension one complex analytic subspace of X which is smooth
at x . We suppose that (X, x) is embedded in C

N . We say that X is equisingular in
codimension one if the intersections of X with smooth spaces Sv transverse to Y in
C

N define germs of curves (Sv ∩ X, Sv ∩ Y ) which are equisingular for any point
Sv ∩ Y is a neighborhood of x .

Here equisingularity is concerning curves and is taken in the sense of [34]. According
to what is said above, equisingularity means that the saturations of the local rings
OSv∩X,Sv∩Y with respect to the quotient field of the ring of convergent series of a
general parameter of the local rings.
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In the case the singular locus has not codimension one, e.g. in the case of a
normal germ of complex analytic space, one cannot use equisaturation to define
equisingularity since the saturation of a ring is contained in its normalization and,
when the singular locus has codimension 2, the local ring might be normal.

This is why O. Zariski imagines to define equisingularity by induction (see [37]
Definition 3 p. 589):

Let (X, x) be a germ of d-equidimensional reduced complex analytic space. Let
(Y, x) the germ of a smooth subspace of (X, x) which is contained in the singular
locus. Let p : (X, x) → (Cd , 0) a general projection of (X, x) onto (Cd , 0). Then,
p is finite and one can define the discriminant of p. Let �(p) be the discriminant
of p. The reduced germ (|�(p)|, 0) contains (p(Y ), 0) which is smooth, since p
is a general projection. Then, (X, x) is equisingular along (Y, x) at the point x if
(|�(p)|, 0) is equisingular along (p(Y ), 0) at the point 0.

Then, Zariski equisingularity can be defined by induction on the dimension of the
ambient space.

In the case of a hypersurface, if the germ (Y, 0) has codimension one in (X, x),
then (p(Y ), x) ⊂ (|�(p)|, 0), and we know that (X, x) is topologically equisingular
at x along (Y, x) if and only if it is equisaturated along Y at x , which means that
the Milnor number of the plane curve, intersection of a plane transversal P to Y at
P ∩ Y , plus its multiplicty minus 1 is constant along Y in a neighborhood of x in Y
which implies (p(Y ), x) = (|�(p)|, 0).

In the case of a subspace (Y, x) of higher codimension little is known. Recently
W. Neumann and A. Pichon have studied hypersurfaces of dimension 3 and have
related Zariski equisingularity with Lipschitz equisingularity which we shall define
in the following section.

4 Lipschitz Viewpoint

Although F. Pham and B. Teissier were the first to relate Lipschitz meromorphic
function and Saturation of local rings (see [19]), T. Mostowski introduced Lipschitz
equisingularity where instead of homeomorphisms, he considers Lipschitz homeo-
morphisms (see [15–17]).

In particular, T. Mostowski proved that any complex analytic space have a Lips-
chitz stratification (see [15]).

Little has been done about Lipschitz equisingularity. L. Birbrair and T.Mostowski
have introduced the notion of normal embedding in [3]. For instance, suppose that
the reduced complex analytic space X ⊂ U ⊂ C

N , where U is an open set of CN ,
then X is endowed by two metrics: the outer and the inner metrics. The outer metric
is the metric induced by the embedding X ⊂ U . The inner metric is the the metric
defined by d(x, y) = inf l(γ ) where γ is a piecewise C1 continuous path and l(γ )

is the length of γ . It may happen that these two metrics are different. When, they are
the same one says that the embedding X ⊂ U is normal.
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In fact, in [7] A. Fernandes proved that topological equisingularity and Lipschitz
equisingularity are the same for germs of plane curves.

For the case of surfaces, there are several papers on the Lipschitz structure of a
germ of surface which begins with [1] until [4].

In higher dimensions little is known about the Lipschitz structure.
A lot is to be done with Lipschitz viewpoint.
Let us cite the recent result of [2] where it is proved that a germ of d-

equidimensional reduced complex analytic space (X, x)which is bi-Lipschitz home-
omorphic by a subanalyticmap to (Cd , 0) is non-singular. The results on theLipschitz
structure of germs of complex surfaces should encourage new results on germs of
reduced complex analytic spaces of higher dimension.

5 Open Problems

In this section we shall list some open problems on equisingularity.

5.1 Zariski Multiplicity Conjecture

Among basic problems about equisingularity, there is a basic problem by O. Zariski
(see [31] and [37] p. 483):
Conjecture 1 Let (X, x) and (X ′, x ′) be topologically equisingular hypersurfaces.
Their multiplicity e(X, x) and e(X ′, x ′) are equal.

In fact, we can weaken this conjecture:
Conjecture 2Let (Xt , xt ) be a complex analytic family of topologically equisingular
hypersurfaces. The multiplicty e(Xt , xt ) is constant.

Both of these conjectures are true for complex analytic plane curves.
In a natural way, one may ask the same conjecture in the case of Lipschitz singu-

larities.

5.2 Do the Diverse Definitions of Equisingularity Satisfy
the Conditions of 1.7?

Above in 1.7 we give some hints which should be satisfy by an notion of equisingu-
larity on a given complex analytic space.

For instance:
Question 3 Does Lipschitz equisingularity have an algebraic definition?

We saw above that this conjecture has a positive answer for a hypersurface along
a codimension one stratum of the singular locus where one has topological equisin-
gularity.
Question 4 Does Lipschitz equisingularity imply equimultiplicity?
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This is nearly proved by G. Comte in the case the constants of the bi-Lipschitz
homeomorphism satisfy some inequality in relation with the multiplicities of the
singularities (see [6]). His proof might imply Question 4 for an analytic family of
reduced complex analytic spaces.

5.3 What Are the Relations Between the Diverse
Equisingularites

It was asked by Zariski (see [37] p. 487):
“Does topological equisingularity implies differential equisingularity (i.e. Whit-

ney equisingularity)?”
It was proved by J. Briançon and J.P. Speder that the answer is negative in [5].
However, one should investigate other relations between the diverse notions of

equisingularity.
For instance, a result of R. Thom and J. Mather (see [22] and [13]) shows that

Whitney equisingularity implies topological equisingularity on a reduced complex
analytic space. By definition Lipschitz equisingularity implies topological equisin-
gularity.

Recent results of W. Neumann and A. Pichon assert that Lipschitz equisingularity
is equivalent to Zariski equisingularity in dimension ≤3. Of course, it remains to
understand the general case.

5.4 Is There Any Other Type of Equisingularity?

Then, it remains to find if there are other types of equisingularity.
Since it could be required that equisingularity is defined by algebraic data, we

should study algebraic invariants for some equisingularity. For instance, Teissier
proved that Whitney equisingularity is defined by the constancy of the multiplicities
of some Polar varieties (see [21]). One should investigate the meaning of the con-
stancy of Lê numbers or Lê cycles introduced by D. Massey in [12] (see also [11]).

5.5 Real Case

As we have mentioned above, is there a result similar to Theorem 2.2 in the real
case?

Is there a characterization of Whitney stratification in the real case?
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