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Preface

The last mathematical proceedings of an event held at the Institute of Mathematics
of the Federal University of Bahia were the famous volume of the “SALVADOR
SYMPOSIUM ON DYNAMICAL SYSTEMS,” organized in 1971 by Jacob Palis,
Elon L. Lima, and Mauricio Matos Peixoto and published in 1973.

As is well known, several of the papers published there have played an important
role in the areas of Dynamical Systems, Singularity Theory, and Foliation Theory.

Forty-six years on (almost a half-century), it would be wonderful to present
some mathematical developments following on from those foundations.

This volume of proceedings comes as an initiative in that direction.
In fact, this book is a result of the joint organization, by the Brazilian and

Mexican research groups in Singularities and Foliations, of two international
mathematical meetings in the Brazilian Northeast: the 3rd Singularity Theory
Meeting of Northeast region (or 3o ENSINO), from July 8 to 11, 2015, and the
Brazil-Mexico 2nd Meeting on Singularities, from July 13 to 17, 2015.

The choice of the city of Salvador was intended to promote the development of
research in Singularities and Foliations in the Northeast of Brazil.

The organization from the Brazilian side was carried out by the Singularities
group of ICMC-USP/São Carlos, the groups from the Federal Universities of
Paraiba and Ceará, and Simone Moraes, Kleiber Cunha and Evandro Carlos dos
Santos from the Institute of Mathematics of the Federal University of Bahia.

From the Mexican side, the organizers were F. Aroca, E. Rosales, J. Seade, and
J. Snoussi from Instituto de Matemáticas UNAM, together with X. Gómez-Mont
from CIMAT and A. Giles Flores from Universidad Autónoma de Aguascalientes.

The meetings brought some of the leading researchers from Brazil and Mexico
and from elsewhere, to the Northeast of Brazil, to discuss the latest developments in
Singularity Theory, Foliations, and associated areas.

Since the 1980s, there has been a strong collaboration between Mexican and
Brazilian researchers in Singularities and Complex Dynamical Systems. Current
interactions involve researchers and students from São Carlos, João Pessoa, and
Fortaleza, on the Brazilian side, and from the Institute of Mathematics of
Cuernavaca (UNAM), CIMAT, and the Faculty of Science of the UNAM in
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Mexico. The 1st Brazil/Mexico meeting on Singularities took place in Querétaro,
Mexico, from August 1 to 3, 2013, with the participation of 30 researchers and
students from both sides.

During the 3rd Singularity Theory Meeting of Northeast region, a school was
offered for young researchers and graduate students at master’s and Ph.D. levels,
with minicourses delivered by Nicolas Dutertre (Université Aix-Marseille—France),
Terence Gaffney (Northeastern University—USA), David Mond (University of
Warwick—England), and Juan J. Nuño-Ballesteros (Universitat de Valencia—Spain).

During the Brazil-Mexico 2nd Meeting on Singularities, plenary talks were
delivered by participants from Brazil and Mexico, as well as by invited mathe-
maticians from different countries, as described below.

Brazilian team: Abramo Hefez (UFF), Alexandre Fernandes (UFC), Alice
Libardi (UNESP), Aurélio Menegon (UFPB), Jonny Ardila (UFRJ), Leonardo
Câmara (UEFS), Marcelo Escudeiro (UEM), Marcio Soares (UFMG), Marcos
Craizer (PUC), Maria Elenice (UEM), M. Salarinoghabi (ICMC), N. Thuy
(UNESP), Roberta Wik Atique (ICMC), Rodrigo Mendes (UFC).

Mexican team: Agustín Romano (UNAM), Edwin Leon (CONACyT/CIMAT),
Ernesto Rosales (UNAM), Federico Sánchez-Bringas (UNAM), Fuensanta Aroca
(UNAM), Jessica Jáurez (UNAM), José-Luis Cisneros-Molina (UNAM), Mirna
Gómez (UNAM), Daniel Duarte (CONACyT/UAZ), José Seade (UNAM), Jawad
Snoussi (UNAM), L. Nunes (CIMAT).

Invited Speakers from the International Math Community:

Alexey Remizov (Russia), Carles Bivià-Ausina (Spain), Maria del Carmen Romero
Fuster (Spain), Christopher Eyral (Poland), Jean-Paul Brasselet (France), Kasuto
Takao (Japan), Lê Dũng Tráng (France), Mutsuo Oka (Japan), Osamu Saeki (Japan).

Beside the speakers listed above, there were poster sessions presented by postdoctoral
researchers and master’s and Ph.D. students from all over Brazil, from Mexico, and
from many others countries. Further information on the minicourses, plenary talks, and
poster presentation sessions and a list of participants may be found via the link

http://bramexsing2015.icmc.usp.br/index.php/programme.
We hope this initiative does not stop here and that in the near future it will motivate

many other meetings in Singularity Theory and Foliation Theory, contributing to their
development and to the development of mathematics in the Northeast of Brazil.

The Brazil/Mexico 3rd Meeting on Singularities was held in Cuernavaca,
Mexico, from August 7 to 11, 2017. Further information may be found in the link
http://www.matcuer.unam.mx/3rdMeetingOnSingularities/.

São Carlos, Brazil Raimundo Nonato Araújo dos Santos
João Pessoa, Brazil Aurélio Menegon Neto
Coventry, UK David Mond
São Carlos, Brazil Marcelo J. Saia
Cuernavaca, Mexico Jawad Snoussi
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Combinatorial Models in the Topological
Classification of Singularities
of Mappings

J. J. Nuño-Ballesteros

Abstract The topological classification of finitely determined map germs f :
(Rn, 0) → (Rp, 0) is discrete (by a theorem due to R. Thom), hence we want to
obtain combinatorial models which codify all the topological information of the
map germ f . According to Fukuda’s work, the topology of such germs is determined
by the link, which is obtained by taking the intersection of the image of f with a
small enough sphere centered at the origin. If f −1(0) = {0}, then the link is a topo-
logically stable map γ : Sn−1 → Sp−1 (or stable if (n, p) are nice dimensions) and
f is topologically equivalent to the cone of γ. When f −1(0) �= {0}, the situation is
more complicated. The link is a topologically stable map γ : N → Sp−1, where N
is a manifold with boundary of dimension n − 1. However, in this case, we have to
consider a generalized version of the cone, so that f is again topologically equivalent
to the cone of the link diagram.We analyze some particular cases in low dimensions,
where the combinatorial models are provided by objects which are well known in
Computational Geometry, for instance, the Gauss word or the Reeb graph.

Keywords Finite determinacy · Topological classification · Gauss word · Reeb
graph
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4 J. J. Nuño-Ballesteros

1 Introduction

René Thom showed in [39] that the topological classification of finitely determined
map germs f : (Rn, 0) → (Rp, 0) is discrete and hence, there are no moduli. The
same assertion is not true if we consider the C∞ classification by A -equivalence
(for instance, consider the 1-parameter family ft (x, y) = xy(x + y)(x − t y)) or if
we remove the finite determinacy assumption. In fact, Thom himself found a 1-
parameter family of germs ft : (R3, 0) → (R3, 0) with the property that any two
distinct members of the family are not topologically equivalent (see [38]). Since the
classification problem is discrete, a natural open question is to find a good combina-
torial model which codifies the topological information of the map germ.

In [9], T. Fukuda proved that if the map germ is finitely determined and has
isolated zeros (i.e., if f −1(0) = {0}), then f has a cone structure on its link. The link
is obtained by intersecting the image of f with a small enough sphere centered at
the origin in R

p. The main result is that the link turns out to be a mapping between
spheres γ : Sn−1 → Sp−1 which is topologically stable (in fact, stable if (n, p) are
nice dimensions in Mather’s sense). Moreover, f is topologically equivalent to the
cone of its link. Thus, the topological classification of germs can be deduced from
the topological classification of topological stable mappings between spheres of
one dimension less. We remark that the condition of isolated zeros is automatically
satisfied when n ≤ p. We review the proof of Fukuda’s cone structure theorem for
germs with isolated zeros in Sect. 4.

In a later paper [10], Fukuda also considered the case of non isolated zeros (i.e.,
f −1(0) �= {0}). The classification problem in this case is much more complicated.
He showed the link is a mapping γ : N → Sp−1 from a manifold with boundary N
which is again topologically stable (or stable in nice dimensions). However, the germ
f has not a cone structure on its link in the usual sense. We introduce in Sect. 7 the
notion of generalized cone (following [5]) and also give an adapted version of the
cone theorem for the case of non isolated zeros, by using this generalized version of
the cone.

In low dimensions, the topological classification of finitely determinedmap germs
has been widely developed by the author and other collaborators. We have studied
the cases of map germs f : (R2, 0) → (R3, 0) in [22–24], map germs f : (R2, 0) →
(R2, 0) in [30, 31, 33] and map germs f : (R3, 0) → (R3, 0) in [32, 34, 35]. In
all these cases, the combinatorial model used for the topological classification is
provided by the Gauss words.

More recently, we have also considered the case of map germs f : (R3, 0) →
(R2, 0) in [2, 4] where we use the Reeb graph as a good combinatorial model for the
singularity and the case of map germs f : (R2, 0) → (R4, 0) in [25], where we find a
connection with Knot Theory. In [5], we also consider the topological classification
of map germs with respect to the contact equivalence K instead of the right-left
equivalence A .

Gausswords andReeb graphs arewell knownobjects inComputationalGeometry.
Wewill explain in Sects. 5, 6 how to construct thesemodels aswell as themain results
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for the case of map germs f : (R2, 0) → (R3, 0) and map germs f : (R3, 0) →
(R2, 0) with isolated zeros, respectively.

In Sects. 2 and 3 we review the basic concepts of stability and finite determinacy
that we need for the course. There are no proofs for all the results in these sections,
but we provide precise references which can be found basically in the celebrated six
papers about stability by Mather [16–21], the survey papers byWall [40, 41] and the
book by Gibson et al. [12].

2 Stability

Along the text, we use the following notation:

En = set of C∞ function germs h : (Rn, 0) → R,

E (n, p) = set of C∞ map germs f : (Rn, 0) → (Rp, 0),

Rn = set of C∞ diffeomorphism germsφ : (Rn, 0) → (Rn, 0).

Definition 2.1 We say that two germs f, g ∈ E (n, p) areA -equivalent if there exist
φ ∈ Rn and ψ ∈ Rp such that g = ψ ◦ f ◦ φ−1. That is, the following diagram is
commutative, where the columns are diffeomorphisms:

(Rn, 0)
f−−−−→ (Rp, 0)

⏐
⏐
�φ

⏐
⏐
�ψ

(Rn, 0)
g−−−−→ (Rp, 0)

In the case that φ,ψ are homeomorphisms instead of diffeomorphisms, then we say
that f, g are C0-A -equivalent.

We can characterize the A -equivalence through the group action Rn ×Rp on
E (n, p) given by (φ,ψ) · f = ψ ◦ f ◦ φ−1. Then f, g ∈ E (n, p) are A -equivalent
if they are in the same orbit.

Given f ∈ E (n, p), an r -parameter unfolding of f is another germ F ∈ E (r +
n, r + p) of the form F(u; x) = (u; fu(x)) and such that f0 = f .

Definition 2.2 Two unfolding F,G of f are A -equivalent (as unfoldings) if there
exist diffeomorphisms � ∈ Rr+n and � ∈ Rr+p unfoldings of the identity maps in
(Rn, 0) and (Rp, 0) respectively, such that G = � ◦ F ◦�−1.

We say that an unfolding F of f is trivial if F is A -equivalent to the con-
stant unfolding G = id× f . If F(u; x) = (u; fu(x)), �(u; x) = (u;φu(x)) and
�(u; y) = (u;ψu(y)), we have

ψu ◦ fu ◦ φ−1u = f.
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Thus, the germ of fu at the point φ−1u (0) is A -equivalent to f , but in general we do
not have φ−1u (0) = 0.

We say that f ∈ E (n, p) is stable if any unfolding F of f is trivial.

The above definition is known as stability by deformations or by homotopies
when we consider mappings instead of germs. An immediate consequence of the
definition is that the property that a germ is stable is invariant underA -equivalence.
Therefore, the definition can be extendedwithout problemby taking coordinate charts
for smooth map germs between smooth manifolds f : (N , x) → (P, y).

Example 2.3 From the definition, one deduces easily that if f is regular (i.e., the
differential d f0 has maximal rank), then f is stable.

The set of germs En has a structure of commutative and unit local R-algebra,
whose maximal ideal mn is given by the germs h ∈ En such that h(0) = 0. Any
f ∈ E (n, p) induces an R-algebra homomorphism f ∗ : Ep → En through f ∗(h) =
h ◦ f . Moreover, E (n, p) has a structure of En-module and of Ep-module via f ∗.

Given f ∈ E (n, p), we denote by θ( f ) the set of C∞ germs of vector fields
η : (Rn, 0) → TRp along f , that is, such that π ◦ η = f where π : TRp → R

p is
the canonical projection. A generic element of θ( f ) is written in a unique way as

η =
p

∑

i=1
gi

(
∂

∂yi
◦ f

)

, gi ∈ En,

where y1, . . . , yp are the coordinates in R
p. In this way, θ( f ) has a structure of En-

module isomorphic to (En)p, after identification of η with the p-tuple (g1, . . . , gp).
In case that f is the germ of the identity map in (Rn, 0) or (Rp, 0), we denote θ( f )
by θn or θp respectively.

For each f ∈ E (n, p)we can define two module homomorphisms. First, we have
an En-module homomorphism:

t f : θn → θ( f )
ξ 	→ d f ◦ ξ

,

where d f is the differential of f . On the other hand, we have an Ep-module homo-
morphism:

w f : θp → θ( f )
η 	→ η ◦ f

,

where now in θ( f ) we consider the Ep-module structure induced by f ∗ : Ep → En .

Definition 2.4 Given f ∈ E (n, p), the A -tangent space (of f ) and the extended
A -tangent space (of f ) are defined respectively as

TA f = t f
(

mnθn
)+ w f

(

mpθp
)

,

TAe f = t f
(

θn
)+ w f

(

θp
)

.
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The A -codimension and the Ae-codimension are defined as

A − codim( f ) = dimR

mnθ( f )

TA f
,

Ae − codim( f ) = dimR

θ( f )

TAe f
.

The following theorem is known as the infinitesimal stability criterion of Mather.
The proof can be found in [12, 2.2].

Theorem 2.5 A germ f ∈ E (n, p) is stable if and only if itsAe-codimension is zero.

By using the above identification of θ( f ) with (En)p, the above theorem says that
f ∈ E (n, p) is stable if and only if for each α ∈ (En)p there exist g ∈ (En)n and
h ∈ (Ep)

p such that

α = h ◦ f +
n

∑

i=1
gi

∂ f

∂xi
.

Example 2.6 We begin with the case of functions p = 1, we see that f ∈ E (n, 1)
has stable singularity if and only f is a Morse function. In fact, if f is a Morse
function (i.e., it has non degenerate critical point at the origin) by the Morse lemma,
we can assume that f is given (up to coordinate changes) by

f (x) = x21 + · · · + x2s − x2s+1 − · · · − x2n ,

in such a way that ∂ f
∂xi
= ±2xi . Given α ∈ En , by the Hadamard lemma there exist

gi ∈ En such that α is written as

α = α(0)+
n

∑

i=1
xigi = α(0) ◦ f +

n
∑

i=1

(

±gi

2

) ∂ f

∂xi
,

and f is stable by Theorem 2.5.
Conversely, suppose that f is not a Morse function and has a degenerate critical

point at the origin. Consider the n-parameter unfolding F(a, x) = (a, fa(x)) given
by

fa(x) = f (x)+ a1x1 + · · · + anxn.

Fix a representative F : Rn ×U → R
n × R, where U ⊂ R

n is an open neighbour-
hood of the origin. By the Thom Transversality Theorem [13, Theorem 4.9], for
almost any a ∈ R

n , fa : U → R is a Morse function, and hence, fa cannot be A -
equivalent to f . This shows that the unfolding F is not trivial and f is not stable.

Example 2.7 Let n = 1 and p = 2. Then f ∈ E (1, 2) is stable only in the case that
f is an immersion. In fact, if f is singular we can consider the 2-parameter unfolding
F(a, x) = (a, fa(x)) given by
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fa(x) = f (x)+ ax .

Again we fix a representative F : R2 × (−ε, ε) → R
2 × R

2. By the Thom Transver-
sality Theorem, for almost any a ∈ R

2, fa : (−ε, ε) → R
2 is an immersion and fa

cannot be A -equivalent to f . Thus, F is not trivial and f is not stable.

Sometimes it can be complicated to see that a certain germ is stable by means of
Theorem 2.5. Also, the genericity arguments we have used to check that the germs
are the only stable singularities may not work in higher dimensions. We present here
a pair of results which give easy methods to check stability and to obtain normal
forms for stable germs. Both are related to the concept of contact orK -equivalence.
This is another important equivalence introduced by Mather, which is weaker than
A -equivalence. We do not include here the definition, details can be found in [19].

Definition 2.8 For each germ f ∈ E (n, p), the K -extended tangent space is
defined as:

TKe f = t f (θn)+ ( f ∗mp)θ( f ).

Note thatω f (mpθp) ⊂ ( f ∗mp)θ( f ), henceω f induces awell definedmorphism:

ω f : Rp ∼= θp

mpθp
−→ θ( f )

TKe f
.

Lemma 2.9 ([19, Proof of Proposition I.6]) A germ f ∈ E (n, p) is stable if and
only if ω( f ) is an epimorphism.

Anequivalent statement of Lemma2.9 is that f is stable if and only if θ( f )/TKe f
is generated over R by the classes of the canonical basis {e1, . . . , ep} in R

p. Note
that TKe f is an En-module which is finitely generated, in fact, it is generated over
En by ∂ f/∂xi , i = 1, . . . , n and by f j ek , with j, k = 1, . . . , p. Thus, it is possible
to compute it by using some computer algebra system like Singular [14].

Definition 2.10 For each germ f ∈ E (n, p), the local algebra (of f ) is defined as

Q( f ) = En
f ∗mp

.

Theorem 2.11 ([19]) Two stable germs are A -equivalent if and only if their local
algebras are isomorphic.

Example 2.12 Let us see that for n = p = 2, a singular germ f ∈ E (2, 2) is stable
if and only if f has a singularity of type fold f (x, y) = (x, y2) or cusp f (x, y) =
(x, xy + y3).



Combinatorial Models in the Topological Classification … 9

If f is a fold, we have:

TKe f = E2

{(

1
0

)

,

(

0
2y

)}

+ 〈x, y2〉E 2
2

= E2

{(

1
0

)

,

(

0
x

)

,

(

0
y

)}

.

Thus θ( f )/TKe f is generated over R by the class of (0, 1) and the map ω f is
obviously surjective, so f is stable by Lemma 2.9.

In the case of the cusp, we have:

TKe f = E2

{(

1
y

)

,

(

0
3y2 + x

)}

+ 〈x, y3 + xy〉E 2
2

= E3

{(

1
y

)

,

(

0
x

)

,

(

0
y2

)}

.

Now, θ( f )/TKe f is generated over R by the classes of {(1, 0), (0, 1)}. Again ω f
is surjective and hence, f is stable.

Assume now that f is stable, so that ω f is surjective. If f has rank 0, then
TKe f ⊂ m2θ( f ). Since θ( f )/m2θ( f ) has dimension 2, we must have necessar-
ily that TKe f = m2θ( f ). Moreover, ( f ∗m2) ⊂ m2

2θ( f ), the classes of ∂ f/∂x and
∂ f/∂y should generate m2θ( f )/m2

2θ( f ) over R. But this is not possible, since this
space has dimension 4.

Thus, f must have rank 1 and after a coordinate change in the source, we can
assume that f (x, y) = (x, g(x, y)), for some function g ∈ m2

2. In other words, we
see f as an unfolding of g0(y) = g(0, y). An easy exercise shows that

θ( f )

TKe( f )
∼= θ(g0)

TKe(g0)
∼= E1
〈g′0〉

.

If g0 ∈ m4
1, then g′0 ∈ m3

1 and thus dimR(E1/〈g′0〉) ≥ 3, which is not possible by the
surjectivity of ω f . Hence, g0 must have order 2 or 3. But this implies that either
Q( f ) ∼= E1/〈y2〉 or Q( f ) ∼= E1/〈y3〉. By Theorem 2.11, f is A -equivalent either
to the fold or the cusp, respectively.

Given a germ f ∈ E (n, p), for each k ∈ N we denote by j k f (0) the k-jet of f ,
that is, the Taylor polynomial of degree k of f at the origin. The k-jet space J k(n, p)
is the space of k-jets j k f (0) of germs f ∈ E (n, p). Then J k(n, p) is identified with
the space of polynomial maps σ : Rn → R

p of degree less than or equal to k and such
that σ(0) = 0.We denote by Lk(n) ⊂ J k(n, n) the group of k-jets of diffeomorphism
germswith the product defined by the k-jet of the composition.Moreover,we have the
action of Lk(n)× Lk(p) on J k(n, p) induced by the action ofRn ×Rp on E (n, p).

The k-jet spaces provide a finite-dimensional model of the classification problem
byA -equivalence. The jet space J k(n, p) can be identified with an Euclidean space
R

N and the group G = Lk(n)× Lk(p) is a Lie group of finite dimension acting on
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J k(n, p) in a semialgebraic way. As a consequence, for each σ ∈ J k(n, p) the orbit
G · σ is a semialgebraic submanifold of J k(n, p). In fact, G · σ is a semialgebraic
subset which contains at least a regular point. But the orbit is locally diffeomorphic
at all of its points because of the group action. Thus, G · σ is regular at all of its
points.

For each f ∈ E (n, p), we have an epimorphism from mnθ( f ) to J k(n, p) given
by g 	→ j kg(0) and whose kernel is mk+1

n θ( f ). This allows us to identify

Tσ(J k(n, p)) ∼= mnθ( f )

mk+1
n θ( f )

.

Under this identification, the tangent space to the orbit G · σ is precisely

Tσ(G · σ) = TA f +mk+1
n θ( f )

mk+1
n θ( f )

.

In particular, if mk+1
n θ( f ) ⊂ TA f , we deduce that the codimension of the orbit

G · σ is equal to the A -codimension.
Given f ∈ E (n, p), we denote by j k f : (Rn, 0) → J k(n, p) the germ of the k-

jet extension of f (for each x ∈ R
n , j k f (x) is the k-jet of f at the point x after

translation to the origin). Then, we have the following result which characterizes the
stability in terms of k-jets.

Theorem 2.13 Let f ∈ E (n, p), k ≥ p + 1 and σ = j k f (0). Then:

(1) f is stable if and only if j k f : (Rn, 0) → J k(n, p) is transverse to G · σ.
(2) If f is stable, then mk+1

n θ( f ) ⊂ TA f and hence, codim(G · σ) = A −
codim( f ).

(3) If f is stable, then g is A -equivalent to f if and only if j kg(0) ∈ G · σ.
Proof Part (1) can be found in [41, Theorem 15] whilst (2) and (3) follow from the
fact that if f is stable then it is (p + 1)-determined (see again [41, Theorem 15] and
Sect. 3), then use [40, Theorem 1.2]. �

Definition 2.14 Given a stable germ f ∈ E (n, p), we denote by A ⊂ (Rn, 0) the
germ of the subset of points x such that the germ of f at x is A -equivalent to the
germ of f at 0. As a consequence of Theorem 2.13, A is the germ of a submanifold
in (Rn, 0) of codimension A − codim( f ) and the restriction f |A : A→ (Rp, 0) is
an immersion (unless the trivial case that f is a submersion). We say that A is the
analytic stratum of f in the source. Note that if f is defined by a polynomial map,
then A is a semialgebraic subset of Rn .

We pass now to the study ofmulti-germs. Given a finite subset S = {x1, . . . , xr } ⊂
R

n , we consider multi-germs of C∞ maps of the form f : (Rn, S) → (Rp, y). The
definitions of A -equivalence, unfolding, trivial unfolding and stable germ can be
generalized without any problem for multi-germs. Also the definitions of θ( f ) and



Combinatorial Models in the Topological Classification … 11

of extended A -tangent space TeA f can be adapted to the case of multi-germs and
the infinitesimal stability criterion (Theorem 2.5) is still true.Moreover, next theorem
allows to check in a relatively easy way whether a multi-germ is stable.

Given a multi-germ f : (Rn, S) → (Rp, y) with S = {x1, . . . , xr }, we denote the
restriction germ by fi : (Rn, xi )→ (Rp, y) and by Ai the analytic stratum of fi in
the source, i = 1, . . . , r .

Theorem 2.15 ([19, 1.6]) A multi-germ f : (Rn, S) → (Rp, y) is stable if and only
if for each i = 1, . . . , r , fi is stable and the subspaces

d fx1(Tx1 A1), . . . , d fxr (Txr Ar )

have regular intersection in Rp.

The regular intersection condition means that the codimension of the intersection
is the sum of all the codimensions. Note that if f is a submersion at a point xi , then
d fxi (Txi Ai ) = R

p. In this way, if S̃ ⊂ S is the subset of critical (i.e., non submersive)
points of f , f : (Rn, S) → (Rp, y) is stable if and only if f : (Rn, S̃)→ (Rp, y) is
stable. Thus, we can assume without loss of generality that all the points of S are
critical.

Example 2.16 Let us see what happens in the above examples when we consider
multi-germs.

• Let f : (Rn, S) → (R, y). At each critical point xi of S, f must be a Morse
singularity and the analytic stratum Ai is only the point {xi }. Hence, f is stable if
and only if S is a single point and f has a Morse singularity at that point.

• Let f : (R, S) → (R2, y). Then f is stable only in the case that it is an immersion
with normal crossings. So, the stable multi-germs are the simple regular point and
the transverse double point.

• Let f : (R2, S) → (R2, y). At each critical point xi of S, f must have fold or cusp
type. If any of the points xi has cusp type, then again the analytic stratum is {xi }
and necessarily S = {xi }. Otherwise, if all the points have fold type, then each
Ai is a curve and now the regular intersection condition implies that we can have
either simple points or transverse double points. In conclusion, f is stable if and
only if S is made of a simple fold, a simple cusp or two transverse folds.

Given a C∞-mapping f : N → P between manifolds, we denote by �( f ) ⊂ N
the set of critical points (where f is not submersive) and its image�( f ) = f (�( f ))
is called the discriminant.

Definition 2.17 Given a stable multi-germ f : (Rn, S) → (Rp, y), we denote by
B ⊂ (Rp, y) the germ of all points y′ ∈ �( f ) such that the multi-germ of f at
S′ = f −1(y′) ∩�( f ) isA -equivalent to the multi-germ of f at S. Then B is a germ
of submanifold in (Rp, y) which results from the intersection of the submanifolds
fi (Ai ), where each Ai is the analytic stratumof fi : (Rn, xi )→ (Rp, y) in the source.
We say that B is the analytic stratum of f in the target.
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If dim B = d, thenwe say that themulti-germ f represents a d-dimensional stable
type. In particular, when d = 0, we say that f is a 0-stable type. Again, in the case
that f is polynomial, B is a semialgebraic subset of Rp.

Next, we will prove an interesting property which will be used in Sect. 4 to con-
struct the cone structure of finitely determined germs.

Definition 2.18 For each germ f ∈ E (n, p), we define τ ( f ) as the subspace of Rp

given by the kernel of ω f : Rp → θ( f )/TKe f .

We will see that if f is stable, then τ ( f ) is nothing but T0B, where B is the
analytic stratum of f in the target. The first step is to prove that they have the same
dimension.

Lemma 2.19 If f ∈ E (n, p) is stable, then dim B = dimR τ ( f ), where B is the
analytic stratum in the target.

Proof Assume that dimR τ ( f ) = d. By Lemma 2.9, we have

dimR

θ( f )

TKe f
= dimR

R
p

τ ( f )
= p − d.

We use the formulas of [40, 4.5.1, 4.5.2], which give:

A − codim( f ) = p − d + (n − p) = n − d.

It follows from Theorem 2.13 that this is equal to the codimension of the analytic
straum in the source in (Rn, 0). Thus, the analytic stratum in the source (and hence
in the target) has dimension d. �

Lemma 2.20 Let f ∈ E (n, p) be a stable germ and assume that dimR τ ( f ) = d.
Then f is A -equivalent to idRd ,0×g0, where g0 ∈ E (n − d, p − d) is also a stable
germ.

Proof We choose linear coordinates in R
p such that τ ( f ) = R

d × {0}. Given v ∈
τ ( f ), there exists ξ ∈ θp such that ξ0 = v and ω f (ξ) = t f (η)+ ν, for some η ∈ θn
and ν ∈ f ∗mpθ( f ) and evaluating at 0, we get v = d f (η0). This shows that τ ( f ) ⊂
d f0(Rn). Hence, we can choose smooth coordinates in (Rn, 0) such that f is an
unfolding of a map germ g ∈ E (n − d, p − d), that is,

f (u, x) = (u, gu(x)), u ∈ R
d , x ∈ R

n−d .
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Consider the following commutative diagram:

R
p

τ ( f )

∼=−−−−→ θ( f )
TK e( f )

∼=
⏐
⏐
�

⏐
⏐
�∼=

R
p−d ωg0−−−−→ θ(g0)

TK e(g0)

The top arrow is an isomorphism induced by ω f and the columns are also isomor-
phisms: the left arrow is induced by the projection and is an isomorphism because
τ ( f ) = R

d × {0} and the right arrow is also an isomorphism because f is an unfold-
ing of g0. Then, ωg0 is also an isomorphism, so g0 is stable by Lemma 2.9. By
definition of stability, f is A -equivalent to the constant unfolding idRd ,0×g0. �

Corollary 2.21 If f ∈ E (n, p) is stable, then τ ( f ) = T0B, where B is the analytic
stratum in the target.

Proof By Lemma 2.20, we can assume that f = idRd ,0×g0, where g0 ∈ E (n −
d, p − d) is also a stable germ such that τ (g0) = {0}. We know from Lemma 2.19
that the analytic stratum of g0 is also equal to {0}, so

τ ( f ) = R
d × {0} = T0B. �

Proposition 2.22 Let f : (Rn, S) → (Rp, y) be a stable multi-germ and let B be
the analytic stratum in the target. If P ⊂ R

p is a submanifold transverse to B at y,
then N = f −1(P) is a submanifold ofRn in a neighbourhood of S and the restriction
f |N ,S : (N , S) → (P, y) is stable.

Proof For each i , we have that d fxi (R
n) ⊃ d fxi (Txi Ai ) ⊃ Ty B. If B and P are

transverse at y, then f is transverse to P at xi and N is a submanifold of R
n

in a neighbourhood of xi . Let us assume for a moment that each restriction
f |N ,xi : (N , xi ) → (P, y) is a stable germ. The analytic stratum in the source is
N ∩ Ai and the image by the differential of the tangent space is

d fxi (Txi (N ∩ Ai )) = d fxi (Txi Ai ) ∩ Ty P.

Thus, the transversality between B and P at the point y ensures that the images of
the tangent spaces of N ∩ Ai have regular intersection in Ty P .

It only remains to show that each germ f |N ,xi : (N , xi )→ (P, y) is stable.
We assume, for simplicity, that xi = 0 and y = 0. By Lemma 2.20, we can also
assume that fi = idRd ,0×g, where g ∈ E (n − d, p − d) is also a stable germ and
d = dim Ai . The transversality assumption implies that T0P contains {0} × R

p−d
and T0N contains {0} × R

n−d .
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Consider the following diagram:

(N , 0)
f |N ,0−−−−→ (P, 0)


⏐
⏐i


⏐
⏐ j

(Rn−d , 0)
g−−−−→ (Rp−d , 0),

where i(z) = (0, z) and j (w) = (0, w). Then we have that i, j are immersions, that
j is transverse to f |N ,0 and that diagram is cartesian (that is, it is commutative and
the mapping (i, g) from R

n−d into the submanifold {(x, w) ∈ N × R
p−d : f (x) =

j (w)} is a diffeomorphism). Thus, f |N ,0 can be seen, after A -equivalence, as an
unfolding of g (see [12, III.0.1]). But it is easy to see that if g is stable, then any
unfolding of g is also stable. �

If instead of germs of C∞ maps, we consider germs of analytic maps (real or
complex), then all the definitions of A -equivalence, unfoldings, stability, extended
A -tangent space,Ae-codimension as well as all the theorems relating these concepts
are still valid. In that case, the diffeomorphisms, vector fields and manifolds are con-
sidered also of analytic class (real or complex). Moreover, all the showed examples
of stable germs or multi-germs work in the same way in the analytic case (real or
complex). In fact, we have the following result which gives the relation between the
three classes [40, 1.7].

Proposition 2.23 Let f : (Rn, S) → (Rp, y) be a real analytic multi-germ, then the
following statements are equivalent:

(1) f is stable as a C∞ multi-germ.
(2) f is stable as a real analytic multi-germ.
(3) The complexification f̂ is stable as a complex analytic multi-germ.

We finish this section with the notion of stability of mappings.

Definition 2.24 We say that f : N → P is locally stable if

(1) the restriction f : �( f )→ P is finite (i.e., finite-to-one and closed),
(2) for any y ∈ �( f ), the multi-germ f : (N , S) → (P, y) is stable, where S =

f −1(y) ∩�( f ).

Example 2.25 Wecome back to the above examples. Let f : N → P , with dim N =
n and dim P = p.

• If p = 1, then f is locally stable if and only if f is a Morse function with distinct
critical points (see Fig. 1).

• If n = 1 and p = 2, then f is locally stable if and only if f is an immersion with
transverse double points (see Fig. 2).

• If n = p = 2, then f is locally stable if and only if the singularities of f are simple
folds, simple cusps of transverse double folds (see Fig. 3).
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Fig. 1 Example of locally
stable function

f

Fig. 2 Example of locally
stable plane curve

f

Fig. 3 Example of locally
stable map between surfaces

f

There exists a concept of global stability. We say that a C∞ mapping f : N → P
between smooth manifolds is globally stable if there exists a neighbourhoodW of f
in C∞(N , P) with the Whitney C∞ topology, such that any g ∈ W isA -equivalent
to f . Mather proved in [18] that if the restriction f |�( f ) is proper, then the local
and the global stability coincide. However, this result cannot be used in the real or
complex analytic case.

3 Finite Determinacy

We begin this section with the definition of finite determinacy.

Definition 3.1 Given f ∈ E (n, p) and k ∈ N, we say that f is k-determined if for
any g ∈ E (n, p) such that j k f (0) = j kg(0), then f, g areA -equivalent. We say that
f is finitely determined (FD) if it is k-determined for some k ∈ N.

From the definition we deduce that if f is k-determined then f is A -equivalent
to j k f (0). Thus, when studying FD germs, we can assume without loss of generality
that f is the germ of a polynomial mapping. Another consequence of the definition
and of Theorem 2.13 is that if f ∈ E (n, p) is stable, then it is (p + 1)-determined.
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Finite determinacy is a very desirable property, but usually it is difficult to check it
directly from the definition. By this reason, the criteria of finite determinacy are very
important. The following criterion is known as the infinitesimal criterion of finite
determinacy. It is due to J. Mather and a proof can be found in [40, 1.2].

Theorem 3.2 A germ f ∈ E (n, p) is FD if and only if itsAe-codimension is finite.

Next property is analogous to the Proposition 2.23 and it relates the finite deter-
minacy of the three classes of map germs: C∞, real analytic and complex analytic.
The proof is based again on the fact that the Ae-codimension coincides in the three
classes [40, 1.7].

Proposition 3.3 Let f ∈ E (n, p) a real analytic germ, then the following statements
are equivalent:

(1) f is FD as a C∞ germ.
(2) f is FD as a real analytic germ.
(3) The complexification f̂ is FD as a complex analytic germ.

We give now the geometric criterion of finite determinacy of Mather-Gaffney
which works for complex analytic germs. Roughly speaking, it says that a germ is
FD if and only if it has isolated instability at the origin. The proof can be found in
[40, Theorem 2.1].

Theorem 3.4 Let f : (Cn, 0) → (Cp, 0) a complex analytic germ. Then f is FD
if and only if there exists a representative f : U → V where U, V are open neigh-
bourhoods of the origin in Cn and Cp respectively, such that f −1(0) ∩�( f ) = {0}
and the restriction f : U \ f −1(0)→ V \ {0} is a locally stable mapping.

If f : (Rn, 0) → (Rp, 0) is FD and is defined by polynomials, then we can com-
plexify f̂ : (Cn, 0) → (Cp, 0) and apply the geometric criterion to f̂ . We deduce
that there exists a representative f : U → V whereU, V open neighbourhoods of the
origin in Rn and Rp respectively, such that f −1(0) ∩�( f ) = {0} and the restriction
f : U \ f −1(0)→ V \ {0} is a locally stable mapping.
The converse is not true in general in the real case. For instance, consider the

function f : (R2, 0) → (R, 0) given by f (x, y) = (x2 + y2)2. We have f −1(0) =
�( f ) = {0} and the restriction f : R2 \ {0} → R \ {0} is regular and hence, locally
stable. However, f̂ −1(0) = �( f̂ ) = {(x, y) ∈ C

2 : x2 + y2 = 0}, so f is not FD by
Proposition3.3 and Theorem3.4.

Since f −1(0) ∩�( f ) = {0}, after shrinking the neighbourhoods U, V if nec-
essary, we can assume that the restriction f : �( f )→ V is finite. Moreover, if
f : U \ f −1(0)→ V \ {0} is a locally stable mapping, then the 0-stable types are
isolated points in U \ {0}. But since these sets are semialgebraic, then by the Curve
Selection Lemma [27], we have that the 0-stable types are also isolated points in U .
Thus, we can shrink the neighbourhoods U, V in such a way that f has no 0-stable
singularities in U \ {0}.

This fact motivates the following definition.
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Definition 3.5 We say that a germ f ∈ E (n, p) has isolated instability (II) if there
exists a representative f : U → V whereU, V are open neighbourhoods of the origin
in Rn and R

p respectively, such that

(1) f −1(0) ∩�( f ) = {0},
(2) the restriction f : �( f )→ V is finite,
(3) the restriction f : U \ f −1(0) → V \ {0} is a locally stable mapping with no

0-stable singularities.

In such case we also say that f : U → V is a good representative of f . In the case
that f is a polynomial mapping, we also add the condition that the open sets U, V
are semialgebraic.

It follows from the above remarks that any FD germ has II, but the converse is
not true in general.

Other important definitions related to the finite determinacy are the concepts of
finite type singularity and of finite germ. These two concepts correspond to the finite
determinacywhenwe consider the groupsK andC respectively instead of the group
A (see [40, Theorem 1.2]).

Definition 3.6 Given f ∈ E (n, p), we say that f has finite singularity type if

dimR

θ( f )

TKe f
< +∞,

where TKe f was defined in Definition2.8. We say that f is finite if

dimR Q( f ) < +∞.

Some properties can be deduced immediately from the definitions:

(1) f is FD =⇒ f has finite singularity type.
(2) f is finite =⇒ f has finite singularity type.
(3) f is finite =⇒ n ≤ p.
(4) If n ≤ p, f has finite singularity type =⇒ f is finite.

Properties (1) and (2) are consequence of the fact that theC and theA -equivalence
imply theK -equivalence. Property (3) follows from the fact that if n > p, then f ∗mp

is generated by less that n elements and hence, it cannot have finite codimension.
Finally, property (4) is proved in [40, 2.4.(ii)] (note that the case n < p is trivial).

Given a complex analytic germ f : (Cn, 0) → (Cp, 0), we have that f has finite
singularity type if and only if f −1(0) ∩�( f ) = {0} and f is finite if and only if
f −1(0) = {0}. Both properties are consequence of the Hilbert Nullstellensatz (in the
complex analytic version [7, Theorem 3.4.4]).

In the real case we have only one of the implications: if f ∈ E (n, p) has finite
singularity type then f −1(0) ∩�( f ) = {0} and if f is finite then f −1(0) = {0}.
Another two very important properties are stated in the next theorem, the proof can
be found in [12, 2.8, 3.1].
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Theorem 3.7 Let f ∈ E (n, p).

(1) f has finite singularity type if and only if there exists a stable unfolding F of f .
(2) If F,G are r-parameter stable unfoldings of f , then F,G are A -equivalent.

Let f ∈ E (n, p) be of finite singularity type and let F a stable unfolding of f .
Given a stable type represented by theA -class of a stable multi-germ g : (Rn, S) →
(Rp, y), we say that F presents the stable type if for any representative F : U →
V there exists (u; y′) ∈ V such that the multi-germ fu : (Rn, S′)→ (Rp, y′), with
S′ = f −1u (y′) ∩�( fu), is A -equivalent to g.

Definition 3.8 We say that f ∈ E (n, p) has discrete stable type (DST) if there exists
a stable unfolding F of f which only presents a finite number of stable types.

Some cases in which f ∈ E (n, p) has DST are:

(1) when (n, p) are nice dimensions or are in the boundary of the nice dimensions
in Mather’s sense [21];

(2) when f has corank 1.

Definition 3.9 Let f : U → V be a good representative of a germ f ∈ E (n, p)with
II and DST. We construct a stratification (A,B) of f defined as follows:

• The strata B ofB are either B = {0}, B = V \�( f ) or B is the analytic stratum in
the target of f : (Rn, S) → (Rp, y) for some y ∈ �( f ) and S = f −1(y) ∩�( f ).

• The strata A of A are either strata of the form A = f −1(B) ∩�( f ) or strata of
the form A = f −1(B) \�( f ), for some B ∈ B. In particular, we always have the
strata A = {0} and A = f −1(0) \ {0} (if f −1(0) �= {0}).

We call (A,B) the stratification by stable types. The fact that f has DST guarantees
that the stratification is finite. If in addition f is polynomial, then all the strata are
semialgebraic sets.

4 The Cone Structure Theorem for Map Germs with
Isolated Zeros

In this section, we show the cone structure theorem for FD germs f ∈ E (n, p), with
f −1(0) = {0} and DST, following the arguments of Fukuda in [9]. We fix some
notation:

Dp
ε = {y ∈ R

p : ‖y‖2 ≤ ε}, Sp−1
ε = {y ∈ R

p : ‖y‖2 = ε}.

Given a map germ f : (Rn, 0) → (Rp, 0) we take a representative f : U → V and
put:

D̃n
ε = f −1(Dp

ε ), S̃n−1ε = f −1(Sp−1
ε ).
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We recall that if f ∈ E (n, p) is FD, then after coordinate changes we can assume
that it is polynomial and has II.

Theorem 4.1 ([9]) Let f : U → V agood representative of a polynomialmap germ
f ∈ E (n, p)with II, DST and such that f −1(0) = {0}. Then, there exists ε0 > 0 such
that for any ε with 0 < ε ≤ ε0 we have:

(1) S̃n−1ε is a smooth submanifold diffeomorphic to Sn−1,
(2) f |S̃n−1ε

: S̃n−1ε → Sp−1
ε is a stable mapping, whose A -class is independent of ε,

(3) f |D̃n
ε \{0} : D̃n

ε \ {0} → Dp
ε \ {0} isA -equivalent to the product map id× f |S̃n−1ε

:
(0, ε] × S̃n−1ε → (0, ε] × Sp−1

ε ,
(4) By adding the origin, f |D̃n

ε
: D̃n

ε → Dp
ε is C0-A -equivalent to the cone of f |S̃n−1ε

.

Proof Let (A,B) be the stratification by stable types of f : U → V , which has a
finite number of semialgebraic strata. We consider the polynomial function g : U →
R given by g = ‖ f ‖2 and its restriction g|Ai : Ai → R to each stratum Ai of A. By
the Curve Selection Lemma [27], each g|Ai has a finite number of critical values.
Thus, there exists ε0 > 0 such that for any ε with 0 < ε ≤ ε0, ε is a regular value of
g and g|Ai for all Ai ∈ A.

Since ε is a regular value of g, S̃n−1ε = g−1(ε) is a hypersurface in U . Moreover,
the condition that ε is a regular value of g|Ai , for all Ai ∈ A, is equivalent to that
Sp−1

ε is transverse to all the strata Bi of B. By Proposition 2.22, the restriction
f |S̃n−1ε

: S̃n−1ε → Sp−1
ε is stable. Thus, we have showed the first part of (2).

To see (1), we use Reeb’s theorem [26, p. 25]. Since f −1(0) = {0}, 0 is an isolated
minimum of g. Then, D̃n

ε = g−1([0, ε]), is homeomorphic to the closed disk Dn .
Thus, S̃n−1ε = ∂ D̃n

ε is homeomorphic (and hence diffeomorphic) to Sn−1.
It only remains to show the second part of (2) and (3), since (4) is an immediate

consequence of (3). We set I = (0, ε] and consider the following diffeomorphisms:

� : D̃n
ε \ {0} −→ I × S̃n−1ε , � : Dp

ε \ {0} −→ I × Sp−1
ε ,

x 	−→ (g(x),φ(x)), y 	−→
(

‖y‖2,√ε
y

‖y‖
)

,

where φ(x) is the point of S̃n−1ε where the integral curve of the gradient of g passing
through x meets S̃n−1ε . We define F : I × S̃n−1ε → I × Sp−1

ε as F = � ◦ f ◦�−1.
By construction, we have that F({t} × S̃n−1ε ) ⊂ {t} × Sp−1

ε , for any t ∈ I . This
implies that F canbewritten in the form F(t; x) = (t; ft (x)),with ft : S̃n−1ε → Sp−1

ε

and t ∈ I .
It is obvious that ft isA -equivalent to f |S̃n−1t

and thus, ft is stable. In particular, the

unfolding F must be trivial, that is, there exist diffeomorphisms H : I × S̃n−1ε → Ĩ ×
Sn−1ε and K : I × Sp−1

ε → I × Sp−1
ε of the form H(t; x) = (t; ht (x)) and K (t; y) =

(t; kt (y)) and such that K ◦ F ◦ H−1 = id× fε. Hence, we have (3). The second part
of (2) follows form the fact that kt ◦ ft ◦ h−1t = fε. �
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Definition 4.2 Let f : U → V a good representative of a polynomial map germ
f ∈ E (n, p) with II, DST and such that f −1(0) = {0}. We say that ε0 > 0 is a
Milnor-Fukuda radius for f if for any ε with 0 < ε ≤ ε0, Sp−1

ε is transverse to the
stratification by stable types of f .

We also say that the mapping f |S̃n−1ε
: S̃n−1ε → Sp−1

ε is the link of f and denote it
by L( f ). It follows from Theorem 4.1 that:

(1) the link is a stable mapping between spheres,
(2) the link is well defined up to A -equivalence,
(3) the germ f is C0-A -equivalent to the cone of its link.

We include now a couple of important remarks with respect to Theorem 4.1 and
the definition of the link.

Remark 4.3 The condition f −1(0) = {0} is always satisfied if f ∈ E (n, p) is FD
and n ≤ p. In the case n > p, wemay have the two possibilities, either f −1(0) = {0}
or f −1(0) �= {0}. We will give another version of the cone structure theorem for the
case f −1(0) �= {0} in the last section.
Remark 4.4 If f is real analytic instead of polynomial, then the theorem is still valid,
it is enough to use the semianalytic version of the Curve Selection Lemma. When f
is only of class C∞, if f is FD, f is A -equivalent to a polynomial map and hence,
the theorem is valid for a representative of a germ which isA -equivalent to f . If we
want to apply the theorem directly to a representative f : U → V of f , then we have
to change the spheres Sp−1

ε by hypersurfaces Pε ⊂ V diffeomorphic to the sphere
Sp−1 (since the diffeomorphisms do not preserve spheres in general).

More exactly, there exists a function called control function ρ : V → R with a
unique critical point of Morse type in the origin, which plays the role of the function
‖y‖2 in the analytic case.We consider g = ρ ◦ f : U → R and choose ε0 > 0 in such
a way that for all ε with 0 < ε ≤ ε0, ε is a regular value of g|Ai for all Ai ∈ A. The
hypersurfaces Pε are defined as Pε = ρ−1(ε) and are diffeomorphic to Sp−1. Then, the
inverse image Nε = f −1(Pε) is diffeomorphic to Sn−1, the restriction f |Nε

: Nε → Pε

is stable and f is topologically equivalent to the cone of f |Nε
.

Remark 4.5 If f has no DST, then the theorem is still valid with the only difference
that the link f |S̃n−1ε

: S̃n−1ε → Sp−1
ε is C0-stable instead of stable. The proof in this

case can be adapted by using the Mather canonical stratification (see [12]) instead
of the stratification by stable types. We leave the details of this construction for the
reader.

Next corollary is an immediate consequence of Theorem 4.1.

Corollary 4.6 Let f, g ∈ E (n, p) be two FD germs with f −1(0) = g−1(0) = {0}.
If L( f ), L(g) are C0-A -equivalent, then f, g are C0-A -equivalent.

Example 4.7 Let f ∈ E (1, 1) be a FD germ, then the link is amapping γ : S0 → S0.
Since that S0 = {−1, 1}, we have only twonon equivalent possibilities, namely, either
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γ = id or γ = constant. In fact, if f is FD, then the infinite jet j∞ f (0) �= 0. Thus,
we have that j∞ f (0) = akxk + · · · , with ak �= 0, and f is A -equivalent to xk . We
have

γ =
{

id, if k is odd,

constant, if k is even.

Basically, this is the well known criterion by the Calculus students for the existence
of local maxima, minima or inflections in one variable functions (Fig. 4).

Example 4.8 Given a FD germ f ∈ E (1, 2), its link is a non constant mapping
γ : S0 → S1. In this case, two non constant mappings γ1, γ2 : S0 → S1 are always
C0-A -equivalent, it is enough to take any homeomorphism from S1 to S1 which takes
two points in other two points. As a consequence, there exists a unique topological
class of FD germs f ∈ E (1, 2) (Fig. 5).

Example 4.9 Given a FD germ f ∈ E (2, 1) such that f −1(0) = {0}, the link is a
constant mapping γ : S1 → S0 and again we have only one topological class (Fig. 6).

Fig. 4 Graph of f ∈ E (1, 1)
when k even (left) and k odd
(right)

Fig. 5 The link of a FD
germ f ∈ E (1, 2)
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f

Fig. 6 A FD germ f ∈ E (2, 1) with f −1(0) = {0}

We conclude this section with the main open questions related to the topological
classification of FD germs f ∈ E (n, p) with isolated zeros:

(1) Find a good combinatorial model which codifies all the topological information
of a stable mapping γ : Sn−1 → Sp−1 (and hence, of the germ f ).

(2) Determine the stable mappings γ : Sn−1 → Sp−1 which can be realized as the
link of a FD germ f , with f −1(0) = {0}.

(3) Determine if the converse of Corollary 4.6 is true or not, that is, if f, g are
C0-A -equivalent, then does this imply that L( f ), L(g) are C0-A -equivalent?

(4) Find relations between analytic invariants of f (corank, 0-stable invariants,Ae-
codimension, etc.) and the topological invariants of the link (number of 0-stable
singularities, Vassiliev invariants, etc.).

(5) Study the topological transitions in 1-parameter families of FD germs, in partic-
ular, study the topological triviality of the family.

5 Gauss Words

Let f ∈ E (2, 3) be FD germ. Then the link is a stable map γ : S1 → S2, that is, γ
defines a closed regular curve in S2 with only transverse double points or crossings.
We call such type of curves doodles. The topological classification of doodles in the
sphere S2 (or in the planeR2) is well known sinceGauss time [11]. The combinatorial
model is given by the so-called “Gauss words”.Most the results of this section appear
in the paper [22].

Definition 5.1 Let γ : S1 → S2 be a doodle with r crossings. We choose r letters
a1, . . . , ar to label the crossings, orientations in S1 and S2, and a base point z0 ∈ S1.
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Fig. 7 Gauss word of the
trefoil

base point

a

b

c Gauss word:  a bc ab c-1 -1 -1

-+

We define the Gauss word as the sequence of crossings starting from the base point
and following the orientation of the curve. Each letter ai appears twice, one with
exponent +1 and another one with exponent −1, according to the orientation of the
two branches near the crossing in the sphere S2 (see Fig. 7).

It is obvious that the Gauss word is not uniquely defined since it depends on the
choice of the labels of the crossings, the base point and the orientations in S1, S2.
Different choices will produce the following changes in the Gauss word:

(1) permuting the alphabet set a1, . . . , ar ;
(2) cyclically permuting the sequence;
(3) reversing the sequence;
(4) changing all the exponents from +1 to −1 and vice versa.

We say that two Gauss words are equivalent if they related by means of these four
operations. Up to this equivalence, the Gauss word is now well defined. Moreover,
the following theorem shows that the Gauss words provide a complete invariant in
the topological classification of doodles in the sphere.

Theorem 5.2 (Gauss Theorem) Two doodles on the sphere are C0-A -equivalent if
and only if their Gauss words are equivalent.

Proof Let γ, δ : S1 → S2 be two doodles which are C0-A -equivalent. There exist
homeomorphismsα : S1 → S1 and β : S2 → S2 such that δ = β ◦ γ ◦ α−1.We start
with γ andwe choose letters a1, . . . , ar to label the crossings, a base point z0 ∈ S1 and
orientations in S1, S2, so that we have the Gauss word of γ. Since β takes crossings
of γ into crossings of δ, we can choose for each crossing of δ the same letter of the
corresponding crossing in γ through β. We also take α(z0) ∈ S1 as the base point of
δ. Finally, we choose in S1, S2 the orientations induced by α,β respectively. With
these choices, we have that the Gauss word of δ is equal to the Gauss word of γ.

To see the converse, we first observe that each doodle γ : S1 → S2 has a natural
CW-structure: in S1 the 0-cells are the inverse images of the crossings and the 1-cells
are the connected components of the complement. In S2, the 0-cells are the crossings,
the 1-cells are the edges of the curve joining the crossings and the 2-cells are the
connected components of the complement of the curve (this is possible because the
curve is a connected graph).

It follows that the CW-structure of S2 can be read from theGauss word. In fact, the
0-cells are given by the letters a1, . . . , ar , each 1-cell is an oriented edge defined by
two consecutive letters aε

i a
η
j in the Gauss word (including the oriented edge joining
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the last with the first letter) and each 2-cell is a face which is determined by a closed
sequence of oriented edges or their inverses.

Assume now that γ, δ : S1 → S2 have the same Gauss word. Then the two S2 are
isomorphic as CW-complexes with the CW-structure induced by γ, δ. We choose any
cellular homeomorphism β : S2 → S2. Then we construct another cellular homeo-
morphism α : S1 → S1 such that δ = β ◦ γ ◦ α−1. In fact, on each 1-cell E , α is
univocally defined as α|E = (δ−1 ◦ β ◦ γ)|E and then α is extended by continuity to
the 0-cells.

If γ, δ : S1 → S2 have equivalent Gauss words, then we can take homeomor-
phisms α : S1 → S1 and β : S2 → S2 such that β ◦ γ ◦ α−1 and δ have the same
Gauss word. Then, we apply the above argument to these two doodles. �

Example 5.3 In the trefoil (see Fig. 7), the CW-structure on the sphere is constructed
from the Gauss word a−1bc−1ab−1c as follows:

(1) we have three 0-cells given by a, b and c;
(2) we have six 1-cells given by a−1b, bc−1, c−1a, ab−1, b−1c and ca−1;
(3) there are five 2-cells given by three 2-gons {ab−1, ba−1}, {bc−1, cb−1}, {ca−1,

ac−1} and two triangles {a−1b, b−1c, c−1a}, {a−1c, c−1b, b−1a}.
The theorem is not true for doodles in the planeR2. For instance, the twodoodles in

Fig. 8 are topologically equivalent on the sphere and have the sameGauss word aa−1,
but they are not topologically equivalent on the plane (in fact, they have different
Whitney index).

We show in Fig. 9 the classification of doodles in the sphere with up to three
crossings. There are 10 non equivalent doodles and their corresponding Gauss words
are the following;

(a) ∅
(b) aa−1
(c) ab−1ba−1
(d) abb−1a−1
(e) ab−1cc−1ba−1
(f) ab−1c−1cba−1
(g) abcc−1b−1a−1
(h) ab−1ca−1bc−1
(i) aa−1bb−1cc−1
(j) aa−1b−1bcc−1

Gauss was interested in the problem of “planarity” of Gauss words: determine the
words which can be realized as the word of a doodle in the sphere (or in the plane). It

Fig. 8 Two non equivalent
doodles in the plane with the
same Gauss word aa−1



Combinatorial Models in the Topological Classification … 25

(a)                     (b)                        (c)                         (d)

(e)                        (f )                                   (g) (h)                    (i)                       (j)

Fig. 9 Doodles with up to three crossings

Fig. 10 A doodle in the
torus with Gauss word
aba−1b−1

a

b

is well known that any Gauss word can be realized as the word of a doodle in some
orientable compact surface of genus g. For instance, the word aba−1b−1 cannot be
realized in the sphere (or the plane), but it can be realized in the torus (see Fig. 10).

Gauss could not solve the planarity problem, but he only was able to find a
necessary condition. The planarity problem was completely solved by M. Dehn in
1936 [6]. The planarity problem of Gauss words is of the same nature as the planarity
problem of graphs (Kuratowski Theorem). Nowadays, the Gauss words constitute a
very active field of research in Computational Geometry.

Definition 5.4 Given a FD germ f ∈ E (2, 3), we define theGauss word of f as the
Gauss word of the doodle of f .

It follows from Gauss Theorem that if two map germs have equivalent Gauss
words, then they are C0-A -equivalent. We will see that the converse is also true. But
to this we need to analyze the structure of a FD germ.

We begin with the characterization of stable singularities. We see that a C∞
mapping f : N 2 → P3 is stable if and only if it is semiregular in the sense ofWhitney
[42]: f is an immersion with normal crossings, except at isolated points, where f
presents singularities of type cross-cap or Whitney umbrella. At each of this points,
the germ of f isA -equivalent to the germ in E (2, 3) given by (x, y) 	→ (x, y2, xy)
(see Fig. 11).

Theorem 5.5 The only stable multi-germs from R
2 to R3 are: regular simple point,

transverse double point, transverse triple point and cross-cap.
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Fig. 11 Stable singularities of surfaces in R3

Proof We first show that a singular germ f ∈ E (2, 3) is stable if and only if it has
cross-cap type. After coordinate changes in the source and the target, we can assume
that f is given by the standard parametrization f (x, y) = (x, y2, xy), then:

TKe f = E2

⎧

⎨

⎩

⎛

⎝

1
0
y

⎞

⎠ ,

⎛

⎝

0
2y
x

⎞

⎠

⎫

⎬

⎭
+ 〈x, y2〉E 2

2

= E2

⎧

⎨

⎩

⎛

⎝

1
0
y

⎞

⎠ ,

⎛

⎝

0
x
0

⎞

⎠ ,

⎛

⎝

0
y
0

⎞

⎠ ,

⎛

⎝

0
0
x

⎞

⎠ ,

⎛

⎝

0
0
y2

⎞

⎠

⎫

⎬

⎭
.

We have that θ( f )/TKe f is generated over R by the classes of the canonical basis
{e1, e2, e3}, hence ω f is surjective and f is stable by Lemma 2.9.

To see the converse, suppose first that f is stable and has rank 0. Then TKe f ⊂
m2θ( f ). Since θ( f )/m2θ( f ) has dimension 3, we must have necessarily that
TKe f = m2θ( f ). Moreover, ( f ∗m3) ⊂ m2

2θ( f ), hence the classes of ∂ f/∂x and
∂ f/∂y should generate m2θ( f )/m2

2θ( f ) over R. But this is not possible, since this
space has dimension 6.

Thus, if f is stable, it must have rank 1 and after a coordinate change in the
source, we can assume that f (x, y) = (x, g(x, y)), for some germ g ∈ E (2, 2). In
other words, we see f as an unfolding of g0(y) = g(0, y). In particular, we have:

θ( f )

TKe( f )
∼= θ(g0)

TKe(g0)
∼= E 2

1

〈g′0〉
.

If g0 ∈ m3
1E

2
1 , then g′0 ∈ m2

1E
2
1 and thus dimR(E 2

1 /〈g′0〉) ≥ 4, which is not possible
by the surjectivity of ω f . Hence, g0 must have order 2. But this implies that Q( f ) ∼=
E1/〈y2〉, hence f is A -equivalent to the cross-cap by Theorem 2.11.

We consider now multi-germs f : (R2, S) → (R3, y), with S ⊂ R
2 a finite set. If

one of the points xi ∈ S is singular, then f has cross-cap type at xi and the analytic
stratum is only the point {xi }. Thus, the regular intersection condition of Theorem
2.15 implies that S = {xi }. Otherwise, if all the points of S are regular, then f is an
immersion with normal crossings and we find the remaining types: regular simple
point, transverse double point and transverse triple point. �
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Fig. 12 Orientation of the
branches

Assume now that f ∈ E (2, 3) is FD. The 0-stable types are the cross-caps and
the triple points. Thus, a good representative of f is a mapping f : U → V where
U ⊂ R

2 and V ⊂ R
3 are open neighbourhoods of the origin such that:

(1) f −1(0) = {0},
(2) f : U → V is proper,
(3) f : U \ {0} → V \ {0} is an immersion with only transverse double points.

An important set associated with f is the double point curve, which is defined as

D( f ) = {z ∈ U : f −1( f (z)) �= {z}} ∪ S( f ),

where S( f ) is the singular set. Then D( f ) is a closed subset ofU . Since f is a good
representative, it follows that S( f ) = {0} and that D( f ) \ {0} is a 1-dimensional
submanifold of U . By shrinking the neighbourhoods if necessary, we can assume
that all the connected components of D( f ) \ {0} are arcs going from the origin to
the boundary of U .

Moreover, f restricted to each connected component is a diffeomorphism, so that
the image f (D( f )) \ {0} is also a 1-dimensional submanifold of V , whose connected
components are arcs going from the origin to the boundary of V (since f is proper).
Moreover, the restriction f : D( f ) \ {0} → f (D( f )) \ {0} is a 2-fold covering. The
connected components of D( f ) (resp. f (D( f ))) are called half-branches of D( f )
(resp. f (D( f ))).

We claim that we can recover the Gauss word of f just by looking at the relative
position of the half-branches of D( f ) and f (D( f )) and the orientation of the leaves
of f (U ) at each half-branch. In fact, each half-branch of f (D( f )) corresponds to a
crossing in the doodle of f . So, we can choose letters a1, . . . , ar to label the half-
branches. We also choose orientations in U, V and a base point in U . Then, we
construct the Gauss word as the sequence of letters according to the relative position
of the half-branches of D( f ) in U , starting from the base point and following the
orientation in U . Moreover, we put the exponent +1 if the two leaves of f (U )

intersect positively along the half-branch or −1 otherwise. It is obvious that the
word obtained with this method is exactly the Gauss word of f (see Fig. 12).

Assume now that we have two FD f, g ∈ E (2, 3) which are C0-A -equivalent.
Then, the homeomorphismsmust preserve the double point sets D( f ) and f (D( f )).



28 J. J. Nuño-Ballesteros

An argument analogous to that of the proof of Theorem 5.2 gives that f, g have the
same Gauss word (up to equivalence). Thus, we have proved the following theorem
(see [22, Corollaries 3.4 and 3.8]).

Theorem 5.6 Let f, g ∈ E (2, 3) be two FD germs. The following statements are
equivalent:

(1) f, g are C0-A -equivalent,
(2) the doodles of f, g are C0-A -equivalent,
(3) f, g have equivalent Gauss words.

Example 5.7 All the doodles with up to three crossings (see Fig. 9) are realizable as
the link of a FD map germ f ∈ E (2, 3):

(a) (x, y, 0), (b) (x, y2, xy),
(c) (x, y2, y(x2 − y2)), (d) (x, xy + y3, xy3 + 3

2 y
5),

(e) (x, y2, xy(x2 − y2)), ( f ) (x, x4 − 6x2y2 + y4, x3y − xy3),
(g) (x, x4 − 6x2y2 + y4, x3y − xy3), (h) (x, xy + y3, xy2 + 3

4 y
4),

(i) (x, xy + y3, xy2 + 5
4 y

4), ( j) (x2, xy + y3, 1
2 x

3 + 1
4 x

2y + 3xy3 + 3y5).

To check this, we use a tailor-made computer program SphereXSurface by
A. Montesinos-Amilibia [29], which pictures the doodle of any map. We remark that
all of them except “Mickey” (j) admit a corank 1 realization. We do not know, up to
now, if it is also possible to find a corank 1 realization for this doodle.

To finish this section, we see the topological classification of all FD germs f ∈
E (2, 3) with Boardman type �1,0. We recall the definition of Boardman symbol of
order 2.

Definition 5.8 Given f ∈ E (n, p), letM1, . . . , Mr be theminors of order n − i + 1
of the Jacobian matrix of f and set f̃ = ( f1, . . . , f p, M1, . . . , Mr ). We say that it
has Boardman type �i, j if

dimR ker d f (0) = i, dimR ker d f̃ (0) = j.

The following lemma is due to Mond [28] and gives a prenormal form for all
germs with Boardman type �1,0.

Lemma 5.9 Let f ∈ E (2, 3) be a germ with Boardman type �1,0. Then f is A -
equivalent to a map germ of the form

f̃ (x, y) = (x, y2, yp(x, y2)),

for some p ∈ E2.

Proof The condition that dimR ker d f (0) = 1 implies that f has corank 1, then after
A -equivalence, f can be written in the form
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f (x, y) = (x, g(x, y), h(x, y)),

for someg, h ∈ m2
2. Then the 2-minors of the Jacobianmatrix aregy ,hy ,gxhy − gyhx ,

where the subscripts mean the partial derivatives. Then, an easy computation shows
that f has Boardman type �1,0 if and only if either gyy(0) �= 0 or hyy(0) �= 0.

Assume, for instance, that gyy(0) �= 0. Then, we can write

f (x, y) = (x, ax2 + 2bxy + cy2 + g̃(x, y), h(x, y)),

where g̃ ∈ m3
2 and c �= 0. If c > 0, we put

ax2 + 2bxy + cy2 = (
b√
c
x +√cy)2 + (a − b2

c
)x2,

then the coordinate change in the source given by ȳ = (b/
√
c)x +√cy, followed

by the coordinate change in the target given by Ȳ = Y − (a − b2/c)X2 transform f
into:

(x, y) 	→ (x, y2 + G(x, y), H(x, y)),

for some G ∈ m3
2 and H ∈ m2

2.
Now we use the fact that the fold (x, y) → (x, y2) is 2-determined. This implies

that there are coordinate changes in the source and the target which transform the
above map germ into:

(x, y) 	→ (x, y2, K (x, y)),

for some K ∈ m2
2. Finally, by the Malgrange Preparation Theorem, we split K as

K (x, y) = K1(x, y
2)+ yK2(x, y

2).

We take the coordinate change in the target given by Z̄ = Z − K1(X,Y ), which now
transforms the map germ into

(x, y) 	→ (x, y2, yK2(x, y
2)). �

Theorem 5.10 ([22]) Any FD germ f ∈ E (2, 3) with Boardman type �1,0 has a
doodle of type “warm” (see Fig.13). In particular, two FD germs with Boardman
type�1,0 are C0-A -equivalent if and only if their double point curves have the same
number of half-branches.

Proof Wecan assume f (x, y) = (x, y2, yp(x, y2)).We consider f : U → V a good
representative and ε > 0 aMilnor-Fukuda radius. The doodle is given by f |S̃1ε : S̃1ε →
S2ε . We have D( f ) = {(x, y) : p(x, y2) = 0} and

S̃1ε = {(x, y) : x2 + y4 + y2 p(x, y2)2 = ε2},
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Fig. 13 Singularity of type �1,0 with six crossings

and both sets are symmetric with respect to the x-axis.
We choose z0 = (ε, 0) as the base point of S̃1ε . The crossings of the doodle are

determined by D( f ) ∩ S̃1ε , which gives: z1, . . . , zr and z1, . . . , zr , with

zi = (xi , yi ), zi = (xi ,−yi ), −ε < xr ≤ · · · ≤ x1 < ε, yi ≥ 0.

This implies that the Gauss word of the doodle (up to the signs) is equal to:

a1a2 · · · arar · · · a2a1,

where ai = f (zi ) = f (zi ) (see Fig. 14). The doodle has the following properties:

• The doodle is contained in the hemisphere Y ≥ 0 of S2ε and intersects the equator
Y = 0 at the base point f (z0) and its opposite f (−z0).

• The doodle is symmetric with respect to the meridian Z = 0.
• The doodle intersects the meridian Z = 0 only at the double points a1, . . . , ar ,
together with f (z0) and f (−z0). Moreover, they present the following relative
position on the meridian:

f (−z0) < ar < · · · < a1 < f (z0).

The only possible doodleswhich satisfy these properties are those of type “warm”,
with Gauss word:

a1a
−1
2 · · · a±1r a∓1r · · · a2a−11 . �

We remark that any doodle of type “warm” with r is crossings is realizable as the
link of a FD f ∈ E (2, 3). In fact, we consider:

f (x, y) = (x, y2,�((x + iy)r+1)),

where �(z) is imaginary part of z ∈ C. Then, we have
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Y = 0

Fig. 14 Configuration of the crossings

p(x, y2) = �((x + iy)r+1)/y =
r

∏

k=1

(

− sin

(
kπ

r + 1

)

x + cos

(
kπ

r + 1

)

y

)

,

hence D( f ) = {(x, y) : p(x, y2) = 0} has exactly 2r half-branches.

6 Reeb Graphs

In this section we consider the topological classification of FD germs f ∈ E (3, 2)
with isolated zeros, that is, f −1(0) = {0}. By Theorem 4.1, the link is a stable map-
ping γ : S2 → S1, that is, it has only Morse singularities with distinct critical values.
The combinatorial model to describe this type of mappings is given by the Reeb
graph. The Reeb graph was introduced by Reeb in [36] and it is well known that it
is a complete topological invariant for Morse functions from S2 to R (see [1, 37]).
In this section we extend the concept of Reeb graph for stable maps from S2 to S1.
All the results of this section appear in the paper [4].

The following result is probablywell known for fibre bundles (that is, locally trivial
fibrations), but we include here a elementary proof for the sake of completeness.

Lemma 6.1 Let p : E → B be a fibre bundle with fibre F, where B, E, F are all
finite CW-complexes. Then,

χ(E) = χ(B)χ(F).

Proof After subdivision, we can choose a finite covering {Ui }ki=1 of B which trivi-
alizes the fibre bundle and such that each Ui is a subcomplex of B. For each i , there
exists a homeomorphism ϕi : p−1(Ui ) → Ui × F such that π1 ◦ ϕi = p, where π1

is the projection onto the first factor. In particular, we have that p−1(A) is homeo-
morphic to A × F , for any subset A ⊆ Ui and i = 1, . . . , k.

Let Bi = ∪i
j=1Uj , then we see that χ(p−1(Bi )) = χ(Bi )χ(F) by induction on i .

In fact, this is true for i = 1 and if we assume it for i , then
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χ(p−1(Bi+1)) = χ(p−1(Bi ))+ χ(p−1(Ui+1))− χ(p−1(Bi ∩Ui+1))
= χ(Bi )χ(F)+ χ(Ui+1)χ(F)− χ(Bi ∩Ui+1)χ(F)

= (χ(Bi )+ χ(Ui+1)− χ(Bi ∩Ui+1))χ(F)

= χ(Bi+1)χ(F). �

Proposition 6.2 Let γ : S2 → S1 be a stable map. Then γ is not a regular map.

Proof Suppose γ is a regular map, then γ(S2) ⊂ S1 would be an open set. Since
γ(S2) is also closed, we get γ(S2) = S1 and hence, γ is surjective. By Ehresmann’s
fibration theorem [8, p. 31], f is a smooth fibre bundle. In particular, if F is the fiber,
we have by Lemma 6.1 that

2 = χ(S2) = χ(S1)χ(F) = 0,

which is an absurd. �

Given a continuous map f : X → Y between topological spaces, we consider the
following equivalence relation on X : x ∼ y if f (x) = f (y) and x and y are in the
same connected component of f −1( f (x)).

Proposition 6.3 Let γ : S2 → S1 be a stable map. Then the quotient space S2/ ∼
admits the structure of a connected graph in the following way:

(1) the vertices are the connected components of level curves γ−1(v), where v ∈ S1

is a critical value;
(2) each edge is formed by points that correspond to connected components of level

curves γ−1(v), where v ∈ S1 is a regular value.

Proof Since γ is stable we have a finite number of critical values v1, . . . , vr and for
each i = 1, . . . , r , γ−1(vi ) has a finite number of connected components. Then,

γ|S2 − γ−1({v1, . . . , vr }) : S2 − γ−1({v1, . . . , vr })→ S1 − {v1, . . . , vr }

is regular, and the induced map

γ̃ : (S2 − γ−1({v1, . . . , vr }))/ ∼→ S1 − {v1, . . . , vr }

is a local homeomorphism. Each connected component of S1 − {v1, . . . , vr } is home-
omorphic to an open interval, so each connected component of (S2 − γ−1({v1,
. . . , vr }))/ ∼ is also homeomorphic to an open interval. �

Each vertex of the graph can be of three types, depending on if the connected
component has a maximum/minimum critical point, a saddle point or just regular
points. Then, the possible incidence rules of edges and vertices are given in Fig. 15.

Let v1, . . . , vr ∈ S1 be the critical values of γ. We choose a base point v0 ∈ S1

and an orientation. We can reorder the critical values such that v0 ≤ v1 < . . . < vr
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(b)(a) (c)

Fig. 15 Incidence rules for the three types of vertices
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1
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S1S2

γ

Fig. 16 Example of Reeb graph of a stable map γ : S2 → S1

and we label each vertex with the index i ∈ {1, . . . , r}, if it corresponds to the critical
value vi .

Definition 6.4 The graph given by S2/∼ together with the labels of the vertices, as
previously defined, is said to be thegeneralizedReebgraph associated toγ : S2 → S1

(see Fig. 16).

For simplicity, from now on we will just call Reeb graph to the generalized Reeb
graph, unless otherwise specified.

Proposition 6.5 Let γ : S2 → S1 be a stable map. Then the Reeb graph of γ is a
tree.

Proof Let � be the Reeb graph of γ. Since � is connected, in order to show that � is
a tree, we only need to prove that its Euler characteristic is χ(�) = 1. We have that
χ(�) = V − E , where V, E are the number of vertices and edges of�, respectively.

On one hand, V = M + S + I where M, S, I are the numbers of vertices of
each type: maximum/minimum, saddle or regular, respectively. Note that V �= 0 by
Proposition 6.2.
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Fig. 17 Two non-equivalent stable maps with the same classical Reeb graph

On the other hand, by Euler’s formula E = 1
2

∑

deg(vi ) where vi are the vertices
of � and deg(vi ) is the degree of vi , that is, the number of edges adjacent to vi .
Since γ is stable, the degree of each vertex of maximum/minimum type is 1, while
of regular type is 2 and of saddle type is 3 (see Fig. 15). Hence,

χ(�) = V − E = M + S + I − 1

2
( M + 2I + 3S) = M − S

2
= 1,

where the last equality follows from the Morse formula: M − S = χ(S2) = 2. �

Remark 6.6 The classical Reeb graph is defined in the same way, but the vertices are
just the connected components of level curves γ−1(v) which contain a critical point.
Hence, our generalized Reeb graph contains some extra vertices corresponding to the
regular connected components of γ−1(v), where v is a critical value. Of course the
classical Reeb graph can be obtained from the generalized one just by eliminating
the extra vertices and joining the two adjacent edges. But in general, the generalized
Reeb graph provides more information.

We present in Fig. 17 two examples of stable maps γ1, γ2 : S2 → S1 with their
respective generalized Reeb graphs. Both examples share the same classical Reeb
graph, but the generalized Reeb graphs are different. The example on the left hand
side is a non-surjective map, whilst the map on the right hand side is surjective,
therefore the maps are not topologically equivalent. This shows that the classical
Reeb graph is not sufficient to distinguish between these two examples.

Notice that if γ : S2 → S1 is not surjective, then γ may be regarded as a Morse
function from S2 to R (via stereographic projection). In this case, the generalized
Reeb graph can be deduced from the classical one just by adding the extra vertices
each time that one passes through a critical value.

It is obvious that labeling of vertices of the Reeb graph is not uniquely determined,
since it depends on the chosen orientations and the base points on each S1. Different
choices will produce either a cyclic permutation or a reversion of the labeling in the
Reeb graph. This leads us to the following definition of equivalent Reeb graphs.
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Let γ, δ : S2 → S1 be two stable maps. Let �γ and �δ be their respective Reeb
graphs. Consider the induced quotient maps γ̄ : �γ → S1γ and δ̄ : �δ → S1δ , where
S1γ, S

1
δ is S1 with the graph structure whose vertices are the critical values of γ, δ

respectively (as illustrated in Fig. 17).

Definition 6.7 We say that �γ is equivalent to �δ and we denote it by �γ ∼ �δ , if
there exist graph isomorphisms j : �γ → �δ and l : S1γ → S1δ , such that the following
diagram is commutative:

Vγ

γ̄|Vγ−−−−→ �γ

j |Vγ

⏐
⏐
�

⏐
⏐
�l|�γ

Vδ
δ̄|Vδ−−−−→ �δ

whereVγ = {vertices of�γ},Vδ = {vertices of�δ} and�γ and�δ are their respective
discriminant sets.

Theorem 6.8 Let γ, δ : S2 → S1 be two stable maps. If γ and δ are C0-A - equiv-
alent then their respective Reeb graphs are equivalent.

Proof Since γ and δ are topologically equivalent there exist homeomorphisms h :
S2 → S2 and k : S1 → S1 such that k ◦ γ ◦ h = δ. Then h maps critical points into
critical points and k maps critical values into critical values. Hence h induces a graph
isomorphism from �γ to �δ and k induces a graph isomorphism from S1γ to S1δ which
gives the equivalence between the Reeb graphs. �

The above theorem allows us to extend the definition of Reeb graph for C0-stable
maps between topological spheres.

Definition 6.9 Let γ : M → P be a continuous map, where M is homeomorphic to
S2 and P is homeomorphic to S1. We say that γ is C0-stable if there exist a C∞-
stable map δ : S2 → S1 and homeomorphisms k : M → S2, h : P → S1 such that
the following diagram is commutative

M
γ−−−−→ P

k

⏐
⏐
�

⏐
⏐
�h

S2
δ−−−−→ S1

We say that y ∈ P is a critical value of γ if h(y) is a critical value of δ. Moreover,
M/ ∼ has a graph structure induced by the Reeb graph of δ. We call this graph the
Reeb graph of γ and denote it by �γ . The notion of equivalence of graphs given
in Definition 6.7 can be also extended for C0-stable maps in the obvious way. By
Theorem 6.8, the Reeb graph �γ is well defined up to equivalence of graphs.

The main result is the following theorem which says that the Reeb graph is a
complete invariant forA -equivalence of stable maps from S2 to S1. The idea of the
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proof is that we can “inflate” the Reeb graph and then recover the surface together
with the stable map. Near each vertex, we have a Morse singularity and the local
normal form is given in Fig. 14. Along the edges, themap is regular, sowe have pieces
of “tubes” which connect the singularities. The detailed proof, although intuitive, is
rather technical and in fact is an adaptation of the proof of [15, Theorem 4.1]. All
the details can be found in [4, Theorem 3.8].

Theorem 6.10 Let γ, δ : S2 → S1 be two stable maps such that �γ ∼ �δ . Then γ
is A -equivalent to δ.

As we said before, the two Theorems6.8 and 6.10 together give that the Reeb
graph is a complete topological invariant for stable maps from S2 to S1. In fact, we
have a little bit more, as we can see in the following corollary.

Corollary 6.11 Let γ, δ : S2 → S1 be two stable maps. Then the following state-
ments are equivalent:

(1) γ, δ are A -equivalent,
(2) γ, δ are C0-A -equivalent,
(3) �γ ∼ �δ .

In the last part of this section, we consider the Reeb graph of the link of a finitely
determined map germ with isolated zeros.

Definition 6.12 Given a FD germ f ∈ E (3, 2) with f −1(0) = {0}, we define the
Reeb graph of f as the Reeb graph of the link of f .

It follows from Theorem 6.10 and Corollary 4.6 that if two FD germs have equiv-
alent Reeb graphs, then they are C0-A -equivalent. Again in this case we can show
the converse. But we need to see how is the structure of a FD germ in this case.
The first step is to describe the stable singularities. The characterization of stable
singularities of maps from R

3 to R2 is well known (cf. [13]) and it is given by:

Theorem 6.13 Let f : (R3, S) → (R2, 0) be a C∞ multi-germ germ such that f is
singular at each point of S. Then, f is stable if only if |S| ≤ 2 and f isA -equivalent
to one of the following normal forms:

(1) For |S| = 1:

• (x, y2 + z2), called definite fold D;
• (x, y2 − z2), called indefinite fold I ;
• (x, y3 + xy + z2), called cusp.

(2) For |S| = 2:

• (x1, y21 + z21), (y
2
2 + z22, x2), called double-fold D&D;

• (x1, y21 + z21), (y
2
2 − z22, x2), called double-fold D&I ;

• (x1, y21 − z21), (y
2
2 − z22, x2), called double-fold I&I .
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Proof We follow the same arguments as in Example 2.12 and Theorem 5.5. We first
consider the mono-germ case |S| = 1. If f is a fold (either definite or indefinite),
then

TKe f = E3

{(

1
0

)

,

(

0
2y

)

,

(

0
±2z

)}

+ 〈x, y2 ± z2〉E 2
3

= E3

{(

1
0

)

,

(

0
x

)

,

(

0
y

)

,

(

0
z

)}

.

Thus θ( f )/TKe f is generated over R by the class of (0, 1) and the map ω f is
obviously surjective, so f is stable (see Lemma 2.9). In the case of the cusp, we
have:

TKe f = E3

{(

1
y

)

,

(

0
3y2 + x

)

,

(

0
±2z

)}

+ 〈x, y3 + xy + z2〉E 2
3

= E3

{(

1
y

)

,

(

0
x

)

,

(

0
y2

)

,

(

0
z

)}

.

Now, θ( f )/TKe f is generated over R by the classes of {(1, 0), (0, 1)}. Again ω f
is surjective and hence, f is stable.

Assume now that f ∈ E (3, 2) is stable. If f has rank 0, then TKe f ⊂ m3θ( f ).
Since θ( f )/m2θ( f ) has dimension 2, we must have necessarily that TKe f =
m2θ( f ). Moreover, ( f ∗m2) ⊂ m2

3θ( f ), hence the classes of ∂ f/∂x , ∂ f/∂y and
∂ f/∂z should generate m3θ( f )/m2

3θ( f ) over R. But this is not possible, since this
space has dimension 6.

Thus, if f is stable, it must have rank 1 and after a coordinate change in the source,
we can assume that f (x, y, z) = (x, g(x, y, z)), for some function g ∈ m2

3. In other
words, we see f as an unfolding of g0(y, z) = g(0, y, z). In particular, we have:

θ( f )

TKe( f )
∼= θ(g0)

TKe(g0)
∼= E2

〈
∂g0
∂y ,

∂g0
∂z , g0

〉 .

Let I =
〈
∂g0
∂y ,

∂g0
∂z , g0

〉

. If g0 ∈ m3
2, then I ⊂ m2

2 and thus dimR(E2/I ) ≥ 3, which is

not possible by the surjectivity of ω f . Hence, the Hessian matrix of g0 at the origin
must have rank ≥ 1. By the splitting lemma, g0 is A -equivalent to yk+1 ± z2, for
some k ≥ 1. This implies dimR(E2/I ) = k, hence we must have necessarily k ≤ 2.
If k = 1, then f is a fold (either definite or indefinite) and if k = 2, then f is a cusp,
by Theorem 2.11.

We consider now multi-germs f : (R3, S) → (R2, y), with S ⊂ R
3 a finite set.

If one of the points xi ∈ S is a cusp, then the analytic stratum is only the point
{xi }. Thus, the regular intersection condition of Theorem 2.15 implies that S =
{xi }. Otherwise, if all the points of S are folds, the analytic stratum at each point
is a line. The regular intersection condition now implies that |S| ≤ 2 and that the
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two lines are transverse in the plane in the case |S| = 2. This implies that f is
a double-fold. �

Note that the 0-stable types are the cusps and the double-folds. Hence if f ∈
E (3, 2) is FD, then there exists a good representative f : U → V such that

(1) S( f ) ∩ f −1(0) = {0},
(2) the restriction f : U \ f −1(0)→ V \ {0} has only definite and indefinite simple

fold singularities.

We have that S( f ) and the discriminant �( f ) = f (S( f )) are curves which are
regular outside the origin. After shrinking U, V if necessary, we can assume that
S( f ),�( f ) aremade of afinite number of arcs joining the originwith the boundary of
U, V , called half-branches. Moreover, the restriction f : S( f ) \ {0} → �( f ) \ {0}
is a diffeomorphism. Each half-branch of �( f ) corresponds to a critical value of
the link of f , which is of type max/min if we are in a half-branch of type definite
fold and of type saddle if we are in a half-branch of type indefinite fold. Another
important set is

X ( f ) = f −1(�( f )) \ S( f ).

The set X ( f ) is a regular surface outside the origin and will also assume that the
connected components of X ( f ) \ {0} are cylinders going from the origin to the
boundary ofU . Each half-branch of S( f ) corresponds to a vertex of the Reeb graph
of type max/min if we are in a half-branch of type definite fold and of type saddle
if we are in a half-branch of type indefinite fold. Each connected component of
X ( f ) \ {0} corresponds to a regular vertex of the Reeb graph.

Theorem 6.14 Let f, g ∈ E (3, 2) be FD germs such that f −1(0) = {0} = g−1(0).
If f and g are C0-A -equivalent then their Reeb graphs are equivalent.

Proof By hypothesis, there exist two homeomorphisms germs h, k such that the
following diagram commutes:

(1)

(R3, 0)
f−−−−→ (R2, 0)

h

⏐
⏐
�

⏐
⏐
�k

(R3, 0)
g−−−−→ (R2, 0)

We take representatives of f , g, h and k and for any small enough ε > 0, the next
diagram is also commutative:

(2)

S̃2ε
γ f−−−−→ S1ε

h

⏐
⏐
�

⏐
⏐
�k

Mε
g|Mε−−−−→ Pε
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where Mε = h(S̃2ε ) and Pε = k(S1ε ).
From the commutativity of diagram (2) follows that g|Mε is C0-stable. Choose

ε0, ε1 > 0 such that γ f : S̃2ε0 → S1ε0 and γg : S̃2ε1 → S1ε1 are the links of f and g,
respectively, and S1ε1 ⊂ k(D2

ε0
). By Definition 6.9, let �g|Mε0

be the Reeb graph asso-
ciated to g|Mε0 . Then, we can conclude that �g|Mε0

is equivalent to �γ f , where �γ f

is the Reeb graph of γ f .
Consider A1, . . . , An the half branches of the discriminant �(g) ordered in the

anti-clockwise orientation. By the cone structure of f (see Theorem 4.1), each half
branch Ai intersects Pε0 in a unique point vi so that v1, . . . , vn are the critical points
of g|Mε0 . Analogously, each Ai intersects S1ε1 in a unique point wi , where now
w1, . . . , wn are the critical points of γg . We have a graph isomorphism l : Pε0 → S1ε1
given by l(vi ) = wi , ∀i = 1, . . . , n.

Let C1, . . . ,Cr be the connected components of

g−1(�(g)) \ {0} = ∪n
i=1g

−1(Ai ).

Again by the cone structure of f , each connected component C j intersects Mε0

in a unique connected component Vj of some g−1(vi ), so that V1, . . . , Vr are the
vertices of �g|Mε0

. Finally, each C j intersects S̃2ε1 in a unique connected component
Wj of g−1(wi ), in such a way that W1, . . . ,Wr are now the vertices of �γg

. We
have a bijection ϕ defined by ϕ(Vj ) = Wj , ∀ j = 1, . . . , r . In order to have a graph
isomorphism between �g|Mε0

and �γg
we need to show that ϕ is edge preserving.

Consider U = k(D2
ε0
) \ (�(g) ∪ B2

ε1
), and let Yi be one of its connected compo-

nents limited by two consecutive half branches Ai and Ai+1. We denote by αi and
βi the arcs of S1ε1 and Pε0 respectively, which bound Yi , ∀i = 1, . . . , n (see Fig. 18).
The connected components of g−1(αi ) and g−1(βi ) give all the edges of the graphs
�γg

and �g|Mε0
, respectively.

Take X any connected component of f −1(Yi ), for some 1 ≤ i ≤ n. Since g|X :
X → Yi is regular, the induced map g̃ : X/ ∼→ Yi is a local homeomorphism and
hence, a covering space. But Yi is simply connected, so g̃ is in fact a homeomorphism.
We deduce that the boundary of X/ ∼ has two components: one is an edge of �γg

given by the quotient of X ∩ g−1(αi ) and the other is an edge of �g|Mε0
given by the

quotient of X ∩ g−1(βi ).
Notice that all the edges of �γg

and �g|Mε0
can be obtained in this way, hence we

have a bijection between the edges of �γg
and �g|Mε0

which is compatible with the
above bijection ϕ defined between the vertices. �

Again, Theorem 6.14 together with Corollary 4.6 and Theorem 6.10 show that
the Reeb graph is a complete topological invariant for map germs from with isolated
zeros.

Corollary 6.15 Let f, g ∈ E (3, 2) be FD germs such that f −1(0) = {0} = g−1(0).
Then the following statements are equivalent:

(1) f, g are C0-A -equivalent,
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Fig. 18 The graph
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(2) the Reeb graphs of f, g are equivalent,
(3) the links of f, g are C0-A -equivalent.

As we did in Sect. 5, in the last part of this section, we will describe the topology
of FD germs f ∈ E (3, 2) with Boardman type �2,1. These germs constitute the
simplest non trivial class of singular germs. The Boardman type �2 means that f
has corank 1 and the next result gives a restriction on the link for this class of germs.

Lemma 6.16 Let f ∈ E (3, 2) be a corank 1 FD germ given by f (x, y, z) =
(x, hx (y, z)). Then h0 : (R2, 0) → (R, 0) is FD.

Proof Since f is FD, we can assume it is polynomial. Then its complexification fC
is also FD and by the Mather-Gaffney criterion S( fC) ∩ f −1

C
(0) = {0} (see Theo-

rem3.4). This implies that S((h0)C) ∩ (h0)
−1
C

(0) = {0} and hence h0 is FD for the
contact groupK . But for function germs, it is well-known that the FD with respect
the contact groupK is equivalent to the FD with respect to the groupA (see again
[40, Proposition 2.3]). �

Theorem 6.17 Let f ∈ E (3, 2) be a corank 1 FD germ with f −1(0) = {0}. Then
the link of f is not surjective.

Proof Consider f written by f (x, y, z) = (x, hx (y, z)), where h0 is also FD and
h−10 (0) = {0}. By Theorem 4.1, h−10 (S0ε ) is diffeomorphic to S1, for small enough
ε > 0.

Suppose that associated link of f is surjective. Then (0, ε) and (0,−ε) belong to
image of the map γ f : f −1(S1ε ) → S1ε . But

γ−1f ({(0, ε), (0,−ε)}) = f −1({(0, ε), (0,−ε)}) � h−10 ({ε,−ε}) � S1,

where� indicates homeomorphism of sets. This gives a contradiction because S1 is
connected, {(0, ε), (0,−ε)} is not connected and γ f is a continuous map. �

Remark 6.18 (1) It follows from Theorem 6.17 that the stable map γ : S2 → S1

presented in the right hand side of Fig. 17 cannot be realized as the link of a
corank 1 FD map germ f ∈ E (3, 2). Up to this moment, we do not know if in
fact, this stable map can be realized or not as the link of a corank 2 map germ.
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(2) Another consequence of Theorem 6.17 is that if f has corank 1 and f −1(0) =
{0}, then the generalized Reeb graph can obtained from the classical one, since
the link is not surjective (see Remark 6.6). From now on in this section, the Reeb
graph will be referred to the classical version, unless otherwise specified.

Any corank 1 germ f ∈ E (3, 2)may have Boardman type�2,0 or�2,1,�2,2. It is
easy to see that if f has type�2,0, then it isA -equivalent to the definite or indefinite
fold (x, y, z) 	→ (x, y2 ± z2), so we do not need to consider this case. From now on,
we restrict ourselves to germs of type �2,1.

Lemma 6.19 Any FD germ f ∈ E (3, 2) of Boardman type �2,1 with f −1(0) = {0}
can be written, up to A -equivalence, as

(3) f (x, y, z) = (x, yk + ak−2(x)yk−2 + · · · + a1(x)y + z2),

for some k ≥ 4 even and functions a1, . . . , ak−2 ∈ E1.

Proof Consider f written by f (x, y, z) = (x, hx (y, z)), where h0 is also FD and
h−10 (0) = {0}. The fact f has type �2,1 implies that the Hessian of h0 has rank 1,
hence up toA -equivalence, h0 is given by h0(y, z) = yk + z2, for some k ≥ 4 even.
The mini-versal deformation of h0 is

H(a1, . . . , ak−2, y, z) = yk + ak−2yk−2 + · · · + a1y + z2.

Then, there exist functions a1, . . . , ak−2 ∈ E1 such that

f (x, y, z) = (x, H(a1(x), . . . , ak−2(x), y, z)). �

Definition 6.20 We say that a FD germ f ∈ E (3, 2) of Boardman type �2,1 with
f −1(0) = {0} has multiplicity k, if it can be written, up to A -equivalence as in (3).

Let f ∈ E (3, 2) be FD germ of Boardman type �2,1 with f −1(0) = {0} and
multiplicity k given as in (3). We write, for simplicity,

hx (y) = yk + ak−2(x)yk−2 + · · · + a1(x)y.

We fix a good representative f : U → V and take ε > 0 such that (−ε, ε)×
(−ε, ε)× (−ε, ε) ⊂ U . The singular points of f are points (x, y, 0) such that
h′x (y) = 0. The fact that f has fold type outside the origin implies if x �= 0, then
h′′x (y) �= 0 at the singular points. Moreover, f has a definite fold if h′′x (y) > 0 and an
indefinite fold if h′′x (y) < 0. Moreover, all the critical values of have to be distinct.

We deduce that x with 0 < |x | < ε, the function hx : (−ε, ε) → R is a Morse
with distinct critical values. In particular, all the functions hx with 0 < x < ε are
A -equivalent and all the functions hx with −ε < x < 0 are also A -equivalent. In
both we have a Morsification of xk and the relative position of the critical values in
both functions determine the Reeb graph of f .
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Since k is even, hx will have an odd number of critical points y1, . . . , yr with r ≤
k − 1. The points y1, y3, . . . , yr are the local minima and the points y2, y4, . . . , yr−1
are the local maxima of hx . If the critical values are v1 < · · · < vr , then can associate
with hx a permutation σ ∈ �r such that hx (yi ) = vσ(i). We denote by σ+,σ− the
two permutations of hx for x > 0 and x < 0 respectively. Then, the pair (σ+,σ−)

determines the Reeb graph of f .

Example 6.21 Let f ∈ E (3, 2)beFDgermofBoardman type�2,1 with f −1(0)={0}
andmultiplicity 4.After changeof coordinates in the source and target,we can assume
f is given by

f (x, y, z) = (x, y4 + a(x)y2 + b(x)y + z2).

Notice that the bifurcation set B of the versal unfolding of h0 in this case is given in
the (a, b)-plane by by b(−4a3 − 27b2) = 0 (see Fig. 19), which permits us to choose
appropriate functions a(x) and b(x) such that we can obtain all types of possible
configurations.

Then, there are three possibilities for the Reeb graph of the link of f , according
to the number of saddles:

• 0 saddle, in this case (σ+,σ−) = ((1), (1)), then f is topologically equivalent to
(x, y4 + x2y + z2) (see Fig. 20);

• 1 saddle, this corresponds to (σ+,σ−) = ((1), (1, 3, 2)), then f is topologically
equivalent to (x, y4 + xy2 + 3x5y + z2) (see Fig. 21);

• 2 saddles, this happens if (σ+,σ−) = ((1, 3, 2), (1, 3, 2)) and f is topologically
equivalent to (x, y4 − x2y2 + x5y + z2). (see Fig. 22).

We remark that the configuration ((1, 3, 2), (2, 3, 1)) is topologically equivalent
to ((1, 3, 2), (2, 3, 1)) since the corresponding Reeb graphs are equivalent.

7 The Cone Structure Theorem for Map Germs with Non
Isolated Zeros

The case of a FD germ f ∈ E (n, p) with f −1(0) �= {0} is much more complicated
than the case with f −1(0) = {0}. Fukuda gave in [10] an analogous theorem to
Theorem 4.1, which in our notation can be stated as follows(see [10, Theorem 1’]).

Theorem 7.1 Let f : U → V a good representative of a polynomial map germ f :
(Rn, 0) → (Rp, 0)with II, DST and such that f −1(0) �= {0}. Then, there exist ε0 > 0
and a strictly increasing smooth function δ : [0, ε0] → [0,+∞) with δ(0) = 0 such
that for any ε, δ with 0 < ε ≤ ε0 and 0 < δ ≤ δ(ε), the following properties hold:

(1) f −1(0) ∩ Sn−1ε is a smooth submanifold of dimension n − p − 1, whose diffeo-
morphic type is independent of ε.
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Fig. 23 The map f |Nε,δ

(2) Nε,δ := Dn
ε ∩ f −1(Sp−1

δ ) is a smooth submanifold with boundary of dimension
n − 1, whose diffeomorphic type is independent of ε, δ.

(3) The restriction f |Nε,δ
: Nε,δ → Sp−1

δ is a stable mapping, whoseA -class is inde-
pendent of ε, δ.

The proof of this theorem can be done by using similar arguments to those of the
proof of Theorem 4.1 for the case f −1(0) = {0}. Of course, we can define the link
of f as being the stable mapping f |Nε,δ

: Nε,δ → Sp−1
δ (Fig. 23). The main problem

now is that f is not C0-A -equivalent to the cone of f |Nε,δ
in the usual sense. In fact,

since Nε,δ is not a sphere, its cone is not a disk. So, we need to introduce a generalized
version of the cone in order to solve this. The following construction is given in [5].
We recall that if X,Y are topological spaces and f : A→ Y is a continuous map on
A ⊂ X , then the attachment is defined as

X ∪ f Y = X � Y

x ∼ f (x) : ∀x ∈ A
,
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where �means disjoint union and∼ indicates that all points of A are identified with
its images.

Definition 7.2 A link diagram is a diagram of the form

V
r←−−−− N

γ−−−−→ Sp−1,

where N is a manifold with boundary, γ is a continuous map, V is a contractible
space and r is a continuous surjective map such that the attachment (N × I ) ∪r V is
homeomorphic to the closed disk Dn (here we identify N ≡ N × {0} ⊂ N × I ).

Definition 7.3 Given a link diagram V
r←−−−− N

γ−−−−→ Sp−1, the generalized
cone of a link diagram is the induced map

C(γ, r) : (N × I ) ∪r V → c(Sp−1),

defined in the obvious way (that is, [x, t] 	→ [γ(x), t] if (x, t) ∈ N × I and [y] 	→
[0] if y ∈ V ).

Notice that here we are using the small letter c to the usual notion of cone and the
capital letterC to indicate the generalized cone. Also note that in applying the notion
of generalized cone of a link diagram for the case V = {0}, we obtain essentially the
usual notion of the cone.

Definition 7.4 We say that two link diagrams

V0
r0←−−−− N0

γ0−−−−→ Sp−1, V1
r1←−−−− N1

γ1−−−−→ Sp−1

are A -equivalent (resp. C0-A -equivalent) if there are diffeomorphisms (resp.
homeomorphisms) α : V0 → V1, φ : N0 → N1 and ψ : Sp−1 → Sp−1 such that
r1 = α ◦ r0 ◦ φ−1 and γ1 = ψ ◦ γ0 ◦ φ−1.

The following lemma follows easily from the definitions.

Lemma 7.5 If two link diagrams areC0-A -equivalent, then their generalized cones
are C0-A -equivalent.

Wepresent now the structure cone theorem formap germswith non isolated zeros.
Let f ∈ E (n, p), in order to simplify the notation, we put fε,δ := f |Nε,δ : Nε,δ →
Sp−1

δ and Vε = f −1(0) ∩ Dn
ε .

Theorem 7.6 ([3]) Let f : U → V a good representative of a polynomial map germ
f ∈ E (n, p) with II, DST and such that f −1(0) �= {0}. For each ε, δ with 0 < δ !
ε! 1, there exists a continuous and surjective mapping rε,δ : Nε,δ → Vε, such that:

(1) The link diagram

Vε
rε,δ←−−−− Nε,δ

fε,δ−−−−→ Sp−1
δ

is independent of ε, δ up to C0-A -equivalence.
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(2) The restriction f |Dn
ε ∩ f −1(Dp

δ ) : Dn
ε ∩ f −1(Dp

δ )→ Dp
δ is C0-A -equivalent to the

generalized cone:

C( fε,δ, rε,δ) : (Nε,δ × I ) ∪rε,δ Vε → c(Sp−1
δ ),

where I = [0, δ].
Here we give a sketch of the proof of Theorem 7.6, full details of the proof can be

found in [3, Theorem 4.4]. Let (A,B) be the stratification by stable types of f , which
is a Thom stratification of f . We choose ε0 > 0 and 0 < δ0 ! ε0 ! 1 small enough
and denote by Bn

ε0
, Bp

δ0
the interiors of Dn

ε0
, Dp

δ0
respectively. Then Dn

ε0
∩ f −1(Bp

δ0
)

is a manifold with boundary. We consider the mappings

Dn
ε0
∩ f −1(Bp

δ0
)

f−−−−→ Bp
δ0

ρ−−−−→ [0, δ0),

where ρ(y) = ‖y‖2. Both are proper and we have that the restriction of (A,B)

is a Thom stratification of f and (B, C) is a Thom stratification of ρ, where C =
{(0, δ0), {0}}. We take stratified vector fields X,Y, T on Dn

ε0
∩ f −1(Bp

δ0
), Bp

δ0
and

[0, δ0) respectively, as follows: T = d
dt in (0, δ0) and T0 = 0; Y is a lifting of T

through ρ and X is a lifting of Y through f . The existence of X,Y is given by [12,
Theorem 3.2]. Moreover, since T is globally integrable, then Y, X are also globally
integrable, by [12, Lemma 4.8].

Let 0 < δ1 < δ0. We define the mapping

r : Dn
ε0
∩ f −1(Dp

δ1
)→ Vε0 ,

such that r(x) is the point of Vε0 where the integral curve of X passing through x
meets Vε0 . We consider the link diagram:

Vε0
r←−−−− Nε0,δ1

f−−−−→ Sp−1
δ1

We define
� : Dn

ε0
∩ f −1(Dp

δ1
) → (Nε0,δ1 × [0, δ1]) ∪r Vε0 ,

as follows:

�(x) =
{

[φ(x), ‖ f (x)‖2], if x /∈ Vε0 ,

[r(x), 0], if x ∈ Vε0 ,

being φ(x) the point of Nε0,δ1 where the integral curve of X passing through x meets
Nε0,δ1 . Analogously, we also define � : Dp

δ1
→ c(Sp−1

δ1
), as

�(y) =
{

[ψ(y), ‖y‖2], if y �= 0,

[y0, 0], if y = 0,
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being ψ(y) the point of Sp−1
δ1

where the integral curve of Y passing through y meets

Sp−1
δ1

and y0 ∈ Sp−1
δ1

. It is not difficult to see that �,� are homeomorphisms which
make commutative the following diagram

Dn
ε0
∩ f −1(Dp

δ1
)

f−−−−→ Dp
δ1

�

⏐
⏐
� �

⏐
⏐
�

(Nε0,δ1 × [0, δ1]) ∪r Vε0

C( f,r)−−−−→ c(Sp−1
δ1

).

This proves that f is C0-A -equivalent to the generalized cone of the link diagram.
The construction for other values of ε, δ can be done by using Theorem 7.1.

In the case that f has no DST, then the theorem is still valid, but we use the
canonical Thom stratification of f instead of the stratification by stable types (see
[12, page 32]).

Definition 7.7 Let f : U → V a good representative of a polynomial map germ
f ∈ E (n, p) with II and f −1(0) �= {0}. The link diagram of f is the link diagram

Vε
rε,δ←−−−− Nε,δ

fε,δ−−−−→ Sp−1
δ

given in Theorem 7.6 for 0 < δ ! ε! 1. Then, f is C0-A -equivalent to the gen-
eralized cone of its link diagram.

Corollary 7.8 Let f, g ∈ E (n, p) be two FD germs with non isolated zeros. If their
link diagrams are C0-A -equivalent, then f, g are C0-A -equivalent.

Example 7.9 Consider a FD function germ f ∈ E (2, 1) with f −1(0) �= {0}. The
FD condition implies that f has isolated critical point in the origin. We fix 0 < δ !
ε! 1 as in Theorems 7.1 and 7.6. We can assume f is polynomial, hence f −1(0)
is the algebraic curve given by f (x, y) = 0. Then, Vε = f −1(0) ∩ D2

ε is made of a
finite an even number 2r of half-branches which intersect transversally the boundary
S1ε and separate the disk D2

ε into 2r sectors, so that the sign of f alternates on
consecutive sectors.

The manifold Nε,δ is given by the level curves f (x, y) = ±δ in D2
ε . It has 2r

connected components, one in each sector of D2
ε \ f −1(0) and diffeomorphic to a

closed interval. Moreover, he retraction map r : Nε,δ → Vε, when restricted to each
connected component, is a diffeomorphism onto the two half-branches which bound
the sector containing the connected component.

Thus, theC0-A -class only depends on the number of half-branches 2r .We deduce
that two functions f, g are C0-A -equivalent if and only if the curves f −1(0) and
g−1(0) have the same number of half-branches (Fig. 24).
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Fig. 24 The link of a FD
function f ∈ E (2, 1)
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Topology of Real Singularities

Nicolas Dutertre

Abstract In this mini-course, we study the topology of real singularities. After
recalling basic notions and classical results of differential topology, we present for-
mulas for topological invariants of semi-analytic or semi-algebraic sets due to several
authors.
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Real Milnor fibre · Semi-algebraic sets

1 Introduction

This mini-course is aimed at young researchers and graduate students who want to
learn basic tools and techniques of real singularity theory.

It starts with well-known notions and results of differential topology: the Brouwer
degree, the index of a vector-field, the Poincaré–Hopf theorem, Morse functions.
Although theses notions may be very familiar to any researcher experienced in sin-
gularity theory, we believe it is worth recalling them here.

In the next chapter, we apply these techniques of differential topology to some
real analytic or semi-analytic sets and we get several nice formulas for topological
invariants of these sets. In chapter “Degree Formulas and Signature Formulas for
the Euler Characteristic of Algebraic Sets and Semi-algebraic Sets”, always using
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characteristic of a real algebraic or semi-algebraic set.
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2 The Brouwer Degree, the Poincaré–Hopf Index
and Morse Functions

In this chapter, we recall important tools and results from differential topology. We
will apply them in the next chapters in order to study the topology of real singularities.
We refer to [20, 22, 28, 29] for more details.

2.1 The Brouwer Degree

LetM be a compact orientedmanifoldwithout boundary of dimension n and N a con-
nected oriented manifold without boundary of the same dimension. Let f : M → N
be a smooth (i.e. C∞) map and let x be a regular point of f . The differential map
Df (x) : TxM → T f (x)N is a linear isomorphism between the two oriented tangent
spaces. The “sign” of Df (x) is +1 (resp. −1) if Df (x) preserves (resp. reverses)
the orientation.

Definition 2.1.1 If y ∈ N is a regular value of f , we define

deg( f, y) =
∑

x∈ f −1(y)

sign D f (x).

Remark 2.1.2 The integer deg( f, y) is well-defined because f −1(y) is a
0-dimensional submanifold of M , hence a finite union of points since M is com-
pact.

Theorem 2.1.3 ([29], p. 28, Theorem A) The integer deg( f, y) does not depend on
the regular value y.

Definition 2.1.4 The integer deg( f, y) is called the (Brouwer) degree of f and
denoted by deg f .

Theorem 2.1.5 ([29], p. 28, Theorem B) If f is smoothly homotopic to g then
deg f = deg g.

Examples: (1) The map on the left has degree 0 and the map on the right has
degree 1.

+ -

+

-
+
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(2) The following map has degree 2.
+

+

(3) Let ri : Sn → Sn be given by

ri (x1, . . . , xi−1, xi , xi+1, . . . , xn+1) = (x1, . . . , xi−1,−xi , xi+1, . . . , xn+1).

The map ri has degree −1.
(4) The map S1 ⊂ C → S1 ⊂ C, z �→ zm , m ∈ Z

∗, has degree m. It is easy to
see because each point in S1 has exactly m preimages and the map is regular and
preserves orientation if m > 0 and reverses it if m < 0.

Proposition 2.1.6 Let M, N and L be three smooth oriented manifolds of the same
dimension. We assume that M and N are compact and that N and L are connected.
If f : M → N and g : N → L are two smooth maps then deg(g ◦ f ) = deg g ×
deg f .

Proof It is an easy application of the definition of the degree. �

Example: Let σ : Sn → Sn , x �→ −x be the antipodal map. It has degree (−1)n+1

because σ = r1 ◦ r2 ◦ · · · ◦ rn+1, where the maps ri , i = 1, . . . , n + 1, are defined
on Example 3. Therefore for n even, σ is not smoothly homotopic to the identity.

Theorem 2.1.7 ([29], p. 28, Lemma 1) If M is the boundary of a compact oriented
manifold W and f : M → N extends to a map F : W → N then deg f = 0.

N

f

M

W

Application: Here is an application of the previous theorem that we will use in the
next chapters.

We consider a smooth compact connected hypersurface M in Rn . By the Jordan–
Brouwer Separation Theorem, it bounds a connected bounded and open subset D ⊂
R

n , i.e. M = ∂D. The canonical orientation on D induces an orientation on M . Let
F : D → R

n be a smooth map which does not vanish on ∂D. We assume that F has
a finite number of zeroes p1, . . . , pm inside D and that p1, . . . , pm are regular points
of F . The map F = F

|F | : M → Sn−1 is well-defined and we have
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deg F =
m∑

i=1

sign det[DF(pi )].

M

W

Let us prove briefly this equality. Around each pi , we remove a small open ball
B(pi , εi ) and set W = D \ ∪m

i=1B(pi , εi ). It is a manifold with boundary

∂W = M
⋃

∪m
i=1S(pi , εi ).

The hypersurface ∂W is oriented by the canonical orientation of the boundary. Let
F∂W : ∂W → Sn−1 be defined by F∂W (x) = F

|F | (x). Then F∂W extends to W , and

so by Theorem 2.1.7, deg F∂W = 0. But this degree is also equal to

deg F −
m∑

i=1

deg Fi ,

where Fi = F
|F | : S(pi , εi ) → Sn−1. The minus sign is explained by the fact that the

orientation of S(pi , εi ) as a component of the boundary of W is the opposite of the
orientation of S(pi , εi ) as the boundary of B(pi , εi ).

Since pi is a regular point of F , the degree of Fi is equal to the signof det[DF(pi )],
because F

|F | : S(pi , εi ) → Sn−1 is homotopic to the map

S(pi , εi ) → Sn−1, p �→ DF(pi )(p − pi )

|DF(pi )(p − pi )| ,

and so has the same degree as the map

S(0, εi ) → Sn−1, h �→ DF(pi )(h)

|DF(pi )(h)| .

This last map has degree equal to sign det [DF(pi )], because the map h �→
DF(pi )(h) is homotopic to ±I dRn , depending on the sign of det[DF(pi )] since
GL(n,R) has two connected components.

2.2 The Poincaré–Hopf Index

Definition 2.2.1 LetM be a smoothmanifold.Avector fieldV onM is a smoothmap
V : M → T M such that for all x ∈ M , pr(V (x)) ∈ TxM , where pr : T M → M is
the natural projection.
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Remark 2.2.2 If M is a submanifold of R
n , a vector field is a smooth map

V : M → R
n such that for all x ∈ M , V (x) ∈ TxM .

M

V (x)

Definition 2.2.3 Let V be a vector field on a manifold M of dimension n and let p
be an isolated zero of a vector field V . In local coordinates, V can be seen as a map
from a small open set U ⊂ R

n to a small open set U ′ ⊂ R
n where 0 ∈ U , 0 ∈ U ′

and 0 is the only zero of V in U . We define the Poincaré–Hopf index of V at p by

Ind(V, p) = degree of
V

|V | : Sn−1
ε → Sn−1,

where Sn−1
ε is a small sphere centered at 0 and included in U .

Examples in R
2 :

1. If V (x, y) = (y,−x) (circulation) then Ind(V, 0) = +1.

2. If V (x, y) = (−x,−y) (sink) then Ind(V, 0) = +1.

3. If V (x, y) = (x, y) (source) then Ind(V, 0) = +1.

4. If V (x, y) = (−x, y) (saddle) then Ind(V, 0) = −1.



56 N. Dutertre

5. If V (x, y) = (x2, x + y) then Ind(V, 0) = 0.

6. If V (x, y) = (x2 − y2, 2xy) (z �→ z2 in complex coordinates) then Ind(V, 0) =
+2.

Remark 2.2.4 The definition of Ind(V, p) does not depend on the choice of the local
coordinates (see [20, 29] for example).

Theorem 2.2.5 (Poincaré–Hopf theorem) Let M be a smooth compact manifold.
Let V be a smooth vector field on M, with a finite number of zeroes p1, . . . , pk. We
have

χ(M) =
k∑

i=1

Ind(V, pi ).

Proof See [29], p. 35, [20], p. 134 or [22], p. 133. �

2.3 Morse Functions

Definition 2.3.1 Let M be a smooth manifold of dimension n, let p ∈ M and f :
M → R be a smooth function. Let (x1, . . . , xn) be a local coordinate system around
p in M . We say that p is a non-degenerate critical point of f if p is a critical point
of f (i.e. ∂ f

∂x1
(p) = · · · = ∂ f

∂xn
(p) = 0) and the Hessian matrix

[
∂2 f

∂xi∂x j
(p)

]

1≤i, j≤n

,

is non-singular.

Remark 2.3.2 The previous definition does not depend on the local coordinates (see
[20] or [28]).
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Proposition 2.3.3 (Morse lemma) Let M be a smooth manifold of dimension n and
p ∈ M be a non-degenerate critical point of a smooth function f : M → R. There
exists a local coordinate system (u1, . . . , un) around p such that

f = f (p) − u21 − · · · − u2λ + u2λ+1 + · · · + u2n.

Proof See [28], p. 6, Lemma 2.2. �

Definition 2.3.4 The integer λ is called the (Morse) index of f at p.

Corollary 2.3.5 Non-degenerate critical points are isolated in the set of critical
points.

Definition 2.3.6 Let M be a smooth manifold. A function f : M → R is called a
Morse function if it admits only non-degenerate critical points.

Theorem 2.3.7 (Openness and density) For any manifold M, Morse functions form
a dense open set in C∞

S (M,R), where C∞
S (M,R) denotes the space C∞(M,R)

equipped with the strong Whitney topology (see [22], Chap. 2).

Proof It is a consequence of the Thom transversality theorem (see [18, 22]
or [1]). �

In the next chapters, we will be interested in semi-analytic or semi-algebraic
subsets of euclidian spaces, so from now on, we shall assume that M ⊂ R

N and that
dim M = n. Let f : M → R be a smooth function. The gradient vector field of f
on M , denoted by ∇M f , is defined as follows:

∀p ∈ M,∀v ∈ TpM, Df (p)(v) = 〈∇M f (p), v〉,
where 〈−,−〉 is the usual scalar product. Therefore the critical points are exactly the
zeroes of ∇M f . If p is a Morse critical point of f of index λ, then there is a local
coordinate system such that

f = f (p) − u21 − · · · − u2λ + u2λ+1 + · · · + u2n,

and so
∇M f = (−2u1, . . . ,−2uλ, 2uλ+1, . . . , 2un).

We see that the Poincaré–Hopf index Ind(∇M f, p) is equal to (−1)λ because, as
already explained above, the mapping ∇M f

|∇M f | : S(p, ε) → Sn−1 has degree equal to
sign det[D(∇M f )(p)].
Theorem 2.3.8 Let M ⊂ R

N be a smooth compact manifold and let f : M → R be
a Morse function with critical points p1, . . . , pk. We have

χ(M) =
k∑

i=1

(−1)λ(pi ),

where λ(pi ) denotes the Morse index of pi .
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In our study of the topology of semi-analytic and semi-algebraic sets, wewill need
a version of this theorem for manifolds with boundary and manifolds with corners.
Let us start with some basic facts on manifolds with corners. Our reference is [7]. A
manifold with corners M is defined by an atlas of charts modelled on open subsets of
R

k+ × R
n−k . We write ∂M for its boundary. We will make the additional assumption

that the boundary is partitioned into pieces ∂i M , themselves manifolds with corners,
such that in each chart, the intersections with the coordinate hyperplanes {x j = 0}
correspond to distinct pieces ∂i M of the boundary. For any set I of suffices, we write
∂I M = ∩i∈I∂i M and we make the convention that ∂∅M = M \ ∂M .

Any n-manifold M with corners can be embedded in a n-manifold M+ without
boundary so that the pieces ∂i M extend to submanifolds ∂i M+ of codimension 1 in
M+. We will assume that M+ is provided with a Riemannian metric.

Let M be a manifold with corners and f : M+ → R a smooth map. We consider
the points P which are critical points of f|∂I M+ .

Definition 2.3.9 A critical point P is correct (respectively Morse correct) if, taking
I (P) := {i |P ∈ ∂i M}, P is a critical (respectively Morse critical) point of f|∂I (P)M+ ,
and is not a critical point of f|∂J M+ for any proper subset J of I (P).

Note that a 0-dimensional corner point P is always a critical point because in that
case ∂I (P)M+ = {P}, which is a 0-dimensional manifold.

Definition 2.3.10 Themaps f with all critical pointsMorse correct are calledMorse
correct.

Proposition 2.3.11 The set of Morse correct functions is dense and open in the
space of all maps M+ → R.

Proof It is clear from classical Morse theory, because there is a finite number of
pieces ∂I M+. �

The index λ(P) of f at a Morse correct point P is defined to be that of f|∂I (P)M+ .
If P is a correct critical point of f , i ∈ I (P), and J is formed from I (P) by deleting
i , then in a chart at P with ∂J M mapping to Rp

+ and ∂I (P)M to the subset {x1 = 0},
the function f is non-critical, but its restriction to {x1 = 0} is. Hence ∂ f/∂x1 �= 0.

Definition 2.3.12 We say that f is inward at P if, for each i ∈ I (P), we have
∂ f/∂x1 > 0.

Remark 2.3.13 By our convention, if I (P) = ∅, then f is inward at P .

Theorem 2.3.14 If M is compact and f is Morse correct,

χ(M) =
∑{

(−1)λ(P) | P inward Morse critical point
}
.

Proof This is a consequence of stratified Morse theory [19]. The manifold with
corners M is a compact Whitney stratified set of M+, with stratum the ∂I M’s. The
function f : M → R is easily seen to be a Morse function in the sense of [19] and so
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χ(M) =
∑

{α( f, P) | Pcorrect critical point} ,

where
α( f, P) = 1 − χ

(
f −1( f (P) − δ) ∩ B(P, ν)

)
,

with 0 < δ � ν � 1. Here B(P, ν) is the ball centered at P of radius ν in the Rie-
mannian manifold M+. If P belongs to ∂∅M then α( f, P) is exactly (−1)λ(P). If
P belongs to ∂I M , I �= ∅, then α( f, P) = (−1)λ(P).αnor( f, P), where αnor( f, P)

is the normal index of f at P . It is defined as follows. Choose a normal slice V at
P , that is a closed submanifold of M+ of dimension n − dim ∂I M , which intersects
∂I M in P transversally, then

αnor( f, P) = 1 − χ
(
f −1( f (P) − δ) ∩ B(P, ν) ∩ V

)
.

Let us compute this normal index. We can assume that f (P) = 0. We can choose a
local chart (x1, . . . , xn) centered at P such that ∂I M is given by {x1 = · · · = xk = 0},
V is given by {xk+1 = · · · = xn = 0}, k < n. Locally M is the set {x1 ≥ 0, . . . , xk ≥
0}. Furthermore, since P is a correct point, ∂ f/∂x j (P) �= 0 for each j ∈ {1, . . . , k}
and, by an appropriate change of coordinates, the restriction of f to V is just the
linear form

k∑

j=1

∂ f

∂x j
(P)x j .

It is then straightforward to see that αnor( f, P) = 1 if ∂ f/∂x j (P) > 0 for all
j ∈ {1, . . . , k} and αnor( f, P) = 0 otherwise. This proves the theorem. �

Let us apply this to the case of manifolds with boundary. Let (M, ∂M) ⊂ R
N be a

manifold with boundary. Let q ∈ ∂M , then Tq∂M is a hyperplane in TqM and TqM
decomposes in the following way:

TqM = Tq∂M � TqM
+ � TqM

−,

where TqM+ consists of outwards pointing vectors (outward vectors for short) and
TqM− consists of inwards pointing vectors.
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Let f : (M, ∂M) → R be a smooth function. In this situation, a point q ∈ ∂M is
a correct critical point of f if q is a critical point of f|∂M : ∂M → R and Df (q)|TqM
is not identically zero. Now let us assume that (M, ∂M) is compact and that f :
(M, ∂M) → R is a correct Morse function. Let us denote by p1, . . . , pk the critical
points of f|M\∂M and by q1, . . . , ql those of f|∂M . In this case, Theorem 2.3.14
becomes

χ(M) =
k∑

i=1

(−1)λ(pi ) +
∑

j | ∇M f (q j ) inward

(−1)μ(q j ),

where λ(pi ) is the Morse index of f at pi and μ(q j ) is the Morse index of f|∂M
at q j .

In the following chapters of this mini-course, we will often use relative versions
of the previous theorems on Morse theory.

Theorem 2.3.15 Let M ⊂ R
N be a smooth compact manifold and let f : M → R

be a Morse function with critical points p1, . . . , pk. For any α ∈ R, we have:

χ(M ∩ { f ≥ α}, M ∩ { f = α}) =
∑

i | f (pi )>α

(−1)λ(pi ),

where λ(pi ) is the Morse index of pi .

Proof See [22], p. 161, Theorem 3.4. �

Theorem 2.3.14 has a similar relative version.

3 The Eisenbud–Levine Formula, the Khimshiashvili
Formula and Some Generalizations

3.1 The Eisenbud–Levine Formula

As seen in the second chapter, the Poincaré–Hopf index of a vector field plays an
important role in the topology of manifolds. Here we present an algebraic formula
for this index.

Let f = ( f1, . . . , fn) : (Rn, 0) → (Rn, 0) be a C∞ map-germ (this is exactly the
local expression of a vector field on a smooth manifold). We assume that
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Q( f ) = C∞(Rn, 0)

( f1, . . . , fn)
,

is a finite dimensional vector space over R. Here C∞(Rn, 0) is the algebra of germs
at 0 ∈ R

n of C∞ real valued functions and ( f1, . . . , fn) is the ideal generated by
the components f1, . . . , fn of f . We write dimRQ( f ) < +∞. We denote by J f the
jacobian of the map-germ f . Namely, we have

J f = ∂( f1, . . . , fn)

∂(x1, . . . , xn)
.

Theorem 3.1.1 (TheEisenbud–Levine formula)Let f : (Rn, 0) → (Rn, 0)beaC∞
map-germ such that dimRQ( f ) < +∞. Then we have

1. 0 is isolated in f −1(0),
2. J f �= 0 in Q( f ),
3. ∀g ∈ Q( f ), gJ f = g(0)J f in Q( f ),
4. let ϕ : Q( f ) → R be a linear form such that ϕ(J f ) > 0 and let � : Q( f ) ×

Q( f ) → R be the bilinear symmetric form defined by �(g, h) = ϕ(gh). Then �

is non-degenerate and signature � = Ind( f, 0).

Proof See [1, 17] or [4]. For a first approach, see [16]. �

Example: Let f be the map-germ defined by

f : (R2, 0) → (R2, 0)
(x, y) �→ (x2 − y2, 2xy).

Wehave Q( f ) = C∞(R2,0)
(x2−y2,2xy) .We see that dimRQ( f ) = 4 and that 1̄, x̄ , ȳ and x2 + y2

form a basis of Q( f ). It is clear that 0 is isolated in f −1(0). Let us compute J f :

J f (x, y) =
∣∣∣∣
2x −2y
2y 2x

∣∣∣∣ = 4(x2 + y2).

Let ϕ : Q( f ) → R be the linear form given by

ϕ(1̄) = ϕ(x̄) = ϕ(ȳ) = 0 and ϕ(x2 + y2) = 1

4
.

Thenϕ(J f ) = 1. Let� be the linear symmetric formdefined by�(P, Q) = ϕ(PQ).
Let us compute its matrix in the basis (1̄, x̄, ȳ, x2 + y2). We have

�(1̄, 1̄) = ϕ(1̄) = 0,�(1̄, x̄) = �(x̄, 1̄) = 0,�(1̄, ȳ) = �(ȳ, 1̄) = 0,

�(x̄, x̄) = ϕ(x̄2) = ϕ

(
1

2
x2 + y2

)
= 1

8
,
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�(ȳ, ȳ) = ϕ(ȳ2) = ϕ

(
1

2
x2 + y2

)
= 1

8
,

�(x̄, ȳ) = ϕ(xy) = ϕ(0̄) = 0 = �(ȳ, x̄),

�(1̄, x2 + y2) = 1

4
,�(x̄, x2 + y2) = ϕ(x̄3 + xy2) = ϕ(0̄) = 0,

�(ȳ, x2 + y2) = 0,�(x2 + y2, x2 + y2) = ϕ
(
(x2 + y2)(x2 + y2)

) = 0.

So this matrix is ⎡

⎢⎢⎣

0 0 0 1
4

0 1
8 0 0

0 0 1
8 0

1
4 0 0 0

⎤

⎥⎥⎦ .

The eigenvalues are 1
8 with multiplicity 2, 1

4 with multiplicity 1 and − 1
4 with multi-

plicity 1. So the signature of � is 3 − 1 = 2 = Ind( f, 0).
The Eisenbud–Levine formula gives an algebraic formula for the index of a vec-

tor field, hence an algebraic and “effective” way to compute a topological data. In
the sequel, using technics introduced in the second chapter, we will present several
formulas relating topological invariants to indices of vector fields. Thanks to the
Eisenbud–Levine formula, these topological invariants become algebraically com-
putable.

3.2 The Khimshiashvili Formula

Let f : (Rn, 0) → (R, 0) be an analytic-map germ with an isolated critical point
at 0. The Khimshiashvili formula (see [24]) relates the Poincaré–Hopf index of the
gradient vector field ∇ f of f to the topology of a small regular level of f .

Theorem 3.2.1 We have

χ
(
f −1(δ) ∩ Bn

ε

) = 1 − sign(−δ)nInd(∇ f, 0), (1)

where δ is a regular value of f , 0 < |δ| � ε � 1, and

χ({ f ≥ δ} ∩ Bn
ε ) − χ({ f ≤ δ} ∩ Bn

ε ) = sign(−δ)n+1Ind(∇ f, 0). (2)

Proof LetU be a small open subset ofRn such that 0 ∈ U , and f is defined inU . We
perturb f into a Morse function f̃ : U → R. Let p1, . . . , pk be the critical points of
f̃ , with respective indices λ1, . . . ,λk . Let δ > 0, by Morse theory we have
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χ
(
f −1([−δ, δ]) ∩ Bn

ε

)− χ
(
f −1(−δ) ∩ Bn

ε

) =
k∑

i=1

(−1)λi .

Actually we can choose f̃ sufficiently close to f so that the pi ’s lie in f −1([− δ
4 ,

δ
4 ]).

Now, f −1([−δ, δ]) ∩ Bn
ε retracts to the central fibre f −1(0) ∩ Bn

ε and f −1(0) ∩ Bn
ε

is the cone over f −1(0) ∩ Sn−1
ε (see [30]) so

χ
(
f −1([−δ, δ]) ∩ Bn

ε

) = 1.

Moreover, we have

k∑

i=1

(−1)λi =
k∑

i=1

sign det[D(∇ f̃ )(pi )].

The sum on the right hand-side is the degree of the map ∇ f̃
|∇ f̃ | : Sn−1

ε → Sn−1

which is equal, by homotopy, to the degree of ∇ f
|∇ f | : Sn−1

ε → Sn−1. By defini-
tion, this last degree is Ind(∇ f, 0). This gives the result for a negative regular
value. For a positive regular value, we apply the result to − f and use the relation
Ind(−∇ f, 0) = (−1)nInd(∇ f, 0). This proves formula (1). Formula (2) is proved
with similar arguments. �

We will call f −1(δ) ∩ Bn
ε the (positive or negative) real Milnor fibre. The follow-

ing formulas are due to Arnol’d [2] and Wall [39].

Corollary 3.2.2 With the same hypothesis on f , we have

χ({ f ≤ 0} ∩ Sn−1
ε ) = 1 − Ind(∇ f, 0),

χ({ f ≥ 0} ∩ Sn−1
ε ) = 1 + (−1)n−1Ind(∇ f, 0).

If n is even, we have:

χ({ f = 0} ∩ Sn−1
ε ) = 2 − 2 Ind(∇ f, 0).
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Proof By a deformation argument due to Milnor [30], f (−δ) ∩ Bn
ε , δ > 0, is home-

omorphic to { f ≤ −δ} ∩ Sn−1
ε , which is homeomorphic to { f ≤ 0} ∩ Sn−1

ε if δ is
very small.

�

3.3 Non-isolated Critical Points

We would like to obtain similar results in the case when 0 is not an isolated critical
point of f : (Rn, 0) → (R, 0). The following result is due to Szafraniec [33].

Let ω(x) = x21 + · · · + x2n . We suppose that f is defined in an open set U ⊂ R
n

and 0 ∈ U . Let � f,ω be the following polar set:

� f,ω = {x ∈ U | rank(∇ω(x),∇ f (x)) ≤ 1} ,

and let V be defined by

V = {
(x, ε, y) ∈ U × R × R | ω(x) = ε2, x ∈ � f,ω, y = f (x)

}
.

Then V is an analytic subset of Rn × R × R. Let π : Rn × R × R → R × R be the
projectionπ(x, ε, y) = (ε, y). Then π|V : V → R × R is proper in the neighborhood
of the origin. Hence π(V ) is closed and semi-analytic in the neighborhood of the
origin. Let us set Y1 = R × {0} and Y2 = π(V ) \ Y1. The set Y2 is semi-analytic.
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If ε �= 0 then

π(V ) ∩ ({ε} × R) = {ε} × {
critical values of f|Sn−1

ε

}
.

So π(V ) ∩ ({ε} × R) is finite and dim π(V ) = dim Y2 = 1. Therefore 0 is an isolated
point of Y1 ∩ Y2. By the Łojasiewicz’s inequality [26], there exist C > 0 and α > 0
such that

d ((ε, y),Y1) ≥ Cd ((ε, y), {0})2α ,

for (ε, y) ∈ Y2. Here d((ε, y), Z) is the distance from (ε, y) to the set Z . This implies
that |y| ≥ Cε2α for (ε, y) ∈ Y2 sufficiently close to (0, 0) and that for x ∈ � f,ω \
{ f = 0} close to the origin,

| f (x)| ≥ Cω(x)q , (∗)

if q ∈ N and q ≥ α.

Proposition 3.3.1 ([33], p. 412, Lemma 1) Let f : (Rn, 0) → (R, 0) be a real
analytic function germ. Let g : (Rn, 0) → (R, 0) be defined by g = f − cωq with
c ∈]0,C[, q ∈ N and q ≥ α. Then g has an isolated critical point at the origin.
Moreover, for 0 < ε � 1,

χ({ f ≤ 0} ∩ Sn−1
ε ) = 1 − Ind(∇g, 0).

Proof We work in an open set U , 0 ∈ U , as above. Note that � f,ω = �g,ω in the
neighborhood of the origin. Furthermore we see that g does not vanish on �g,ω \ {0}
by the inequality (∗). Therefore if ε is small enough, 0 is a regular of g|Sn−1

ε
. This

implies that g has an isolated critical point at the origin because {∇g = 0} ⊂ {g = 0}
and {∇g = 0} ⊂ �g,ω in a neighborhood of the origin.

Let us fix ε > 0 sufficiently small. Let N f = {x ∈ Sn−1
ε | f (x) ≤ 0} and

Ng = {x ∈ Sn−1
ε | g(x) ≤ 0} = {x ∈ Sn−1

ε | f (x) ≤ cεq}.

Then N f ⊂ Ng . Furthermore, f|Sn−1
ε

has no critical point on Ng \ N f by the inequality
(∗) and so N f is a retract by deformation of Ng . But by Corollary 3.2.2,

χ(Ng) = 1 − Ind(∇g, 0). �

Of course, applying this argument to− f , we obtain a similar formula for χ({ f ≥
0} ∩ Sn−1

ε ) and, as a consequence of the Mayer–Vietoris sequence, a formula for
χ({ f = 0} ∩ Sn−1

ε ).
When f is homogeneous, we can improve the previous result.

Proposition 3.3.2 ([6], p. 550, Theorem 5 or [35], p. 242, Lemma 3) Let f :
R

n → R be a homogeneous polynomial of degree d. Let q = d + 1 if d is odd or
q = d + 2 if d is even. Then the function g defined by
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g(x) = f (x) − xq1 + · · · + xqn
q

,

has an algebraically isolated critical point at 0 (i.e. 0 is an isolated zero of∇g−1
C

(0))
and

χ
({ f ≤ 0} ∩ Sn−1) = 1 − Ind(∇g, 0).

Remark 3.3.3 Since 0 is an algebraically isolated critical point of g, we can use
the Eisenbud–Levine formula to compute Ind(∇g, 0), which was not necessarily the
case in Proposition 3.3.1.

Remark 3.3.4 In [35], Szafraniec studied weighted homogeneous polynomials. The
above formula is a particular case of the results proved in [35].

3.4 Semi-analytic Versions

Asan application ofMorse theory formanifoldswith corners,we extend theKhimshi-
ashvili formula to a class of semi-analytic sets.

Let f : (Rn, 0) → (R, 0) be an analytic function-germ with an isolated critical
point at 0. We will denote by Mδ the Milnor fibre f −1(δ) ∩ Bn

ε , by L the link of
the singularity f −1(0) ∩ Sn−1

ε and by A+ (resp. A−) the set {x ∈ Sn−1
ε | f (x) ≥ 0}

(resp. {x ∈ Sn−1
ε | f (x) ≤ 0}). For any subset W of Rn , for all k ∈ {1, . . . , n} and

for all ν = (ν1, . . . , νk) ∈ {0, 1}k , we write

W (ν) = W (ν1, . . . , νk) = W ∩ {(−1)ν1x1 ≥ 0, . . . , (−1)νk xk ≥ 0} ,

and |ν| = ∑k
i=1 νi . For each k ∈ {1, . . . , k}, letHk( f ) : (Rn, 0) → (Rn, 0)bedefined

by

Hk( f ) =
(
x1

∂ f

∂x1
, . . . , xk

∂ f

∂xk
,

∂ f

∂xk+1
, . . . ,

∂ f

∂xn

)
.

The next results were proved in [12].

Theorem 3.4.1 If 0 is isolated in Hk( f )−1(0) then

∑

ν∈{0,1}k
(−1)|ν|χ ((Mδ(ν)) = −sign(−δ)nInd(Hk( f ), 0).

Proof For each l ∈ {0, . . . , k}, we write Il for a subset of {1, . . . , k} with l elements
and Il for its complement in {1, . . . , k}. We put

FIl = {x | xi = 0 for each i ∈ Il} .
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By our assumption on Hk( f ), f admits an isolated critical point at 0 on each space
FIl , l ∈ {0, . . . , k}. This implies that, on each of these spaces, f −1(0) intersects Sn−1

ε

transversally for ε sufficiently small. By transversality, the same is true for a regular
fibre f −1(δ), 0 < |δ| � ε. Moving f a little if necessary, we can assume that f is a
Morse function on each manifold with corners {(−1)ν1x1 ≥ 0, . . . , (−1)νk xk ≥ 0},
(ν1, . . . , νk) ∈ {0, 1}k . Let δ > 0 be a small regular value of f and let us consider the
set {P} of correct critical points of f on these 2k manifolds such that | f (P)| < δ.
Note that none of these points belongs to Sn−1

ε because of our above transversality
argument and that {P} is exactly the zero set of Hk( f ), after the small perturbation
of f .

For each set Il and for each k-tuple ν of {0, 1}k , we define a subset Cν
Il
of {P} as

follows:

Cν
Il =

{
P ∈ FIl | (−1)νi

∂ f

∂xi
(P) > 0 if i ∈ Il and (−1)ν j x j (P) > 0 if j ∈ Il

}
.

By Theorem 2.3.14, we have for a fixed ν

χ
(
f −1([−δ, δ]) ∩ Bn

ε ∩ {(−1)νi xi ≥ 0, i = 1, . . . , k}, M−δ(ν)
)

=
k∑

l=0

∑

Il

∑

P∈Cν
Il

(−1)λ(P),

where λ(P) is the Morse index of P . Since the semi-analytic set

f −1([−δ, δ]) ∩ Bn
ε ∩ {(−1)νi xi ≥ 0, i = 1, . . . , k}

is contractible, this gives

(−1)|ν|χ (M−δ(ν)) = (−1)|ν| − (−1)|ν|
k∑

l=0

∑

Il

∑

P∈Cν
Il

(−1)λ(P).

It remains to relate (−1)|ν| · (−1)λ(P) to the Poincaré–Hopf of Hk( f ) at P . This
index is the sign of the Jacobian determinant of the map Hk( f ) at P , which is easily
seen to be ⎛

⎝
∏

i∈Il
sign

∂ f

∂xi
(P)

∏

j∈Il
sign x j (P)

⎞

⎠ · (−1)λ(P).

The product of the signs in front of (−1)λ(P) is equal to (−1)|ν| and we just have to
sum over all the k-tuples ν to get the result for a negative regular value of f . The
formula for a positive regular value is obtained replacing f by − f . �
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The following corollary is obtained with the same deformation arguments and
using the Mayer–Vietoris sequence as in Corollary 3.2.2.

Corollary 3.4.2 If 0 is isolated in Hk( f )−1(0), then

∑

ν∈{0,1}k
(−1)|ν|χ(A−(ν)) = −Ind(Hk( f ), 0),

∑

ν∈{0,1}k
(−1)|ν|χ(A+(ν)) = (−1)n−1Ind(Hk( f ), 0).

If n is even, we have

∑

ν∈{0,1}k
(−1)|ν|χ(L(ν)) = −2 Ind(Hk( f ), 0).

If n is odd, we have ∑

ν∈{0,1}k
(−1)|ν|χ(L(ν)) = 0.

Let us apply this corollary to get a generalization of Proposition 3.3.1.We consider
an analytic function-germ f : (Rn, 0) → (R, 0) and we do not assume that 0 is an
isolated critical point of f . We suppose that f is defined in an open setU ⊂ R

n and
0 ∈ U . For i, j = 1, . . . , n, i �= j , let

�i j ( f ) =
∣∣∣∣∣∣

∂ω
∂xi

∂ω
∂x j

∂ f
∂xi

∂ f
∂x j

∣∣∣∣∣∣
.

For each set Il , we define

�Il ( f ) =
{
x ∈ FIl ∩U | �i j ( f )(x) = 0 for all (i, j) ∈ Il

2
, i �= j

}
.

Note that for l < n, �Il ( f ) ∩ Sn−1
ε is the set of critical points of f|FIl ∩Sn−1

ε
. If l = n

then In = {1, . . . , n} and �In ( f ) = {0}.
Applying the method of Szafraniec explained in Sect. 3.3 and because there is

a finite number of Il ’s, we see that there exist C > 0 and α > 0 such that for x ∈(∪k
l=1 ∪Il �Il ( f )

) \ { f = 0},

| f (x)| ≥ Cω(x)q ,

for q ∈ N and q ≥ α.

Proposition 3.4.3 Let f : (Rn, 0) → (R, 0) be a real analytic function-germ. Let
g : (Rn, 0) → (R, 0) be defined by g = f − cωq with c ∈]0,C[, q ∈ N and q ≥ α.
Then for k ∈ {1, . . . , n}, Hk(g) has an isolated zero at the origin. Moreover,
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∑

ν∈{0,1}k
(−1)|ν|χ(A−(ν)) = −Ind(Hk(g), 0).

Proof We see that Hk(g) has an isolated zero at 0 if and only if for each set Il ,
l ∈ {0, . . . , k}, g|FIl

: (FIl , 0) → (R, 0) has an isolated critical point at 0 ∈ FIl . So
we can conclude that Hk(g) has an isolated zero as in Proposition 3.3.1. The rest of
the proof is similar to Proposition 3.3.1. �

Replacing f by − f , we obtain a similar formula for

∑

ν∈{0,1}k
(−1)|ν|χ(A+(ν)),

and applying the Mayer–Vietoris sequence, a formula for

∑

ν∈{0,1}k
(−1)|ν|χ(L(ν)).

When f is homogeneous, we can improve this result.

Proposition 3.4.4 Let f : Rn → R be a homogeneous polynomial of degree d. Let
q = d + 1 if d is odd and q = d + 2 if d is even. Then for k ∈ {1, . . . , n}, the map
Hk(g) has an algebraically isolated zero at 0 where g is defined by

g(x) = f (x) − xq1 + · · · + xqn
q

.

Moreover, we have

∑

ν∈{0,1}k
(−1)|ν|χ(A−(ν)) = −Ind(Hk(g), 0).

As already mentioned, we can use the Eisenbud–Levine formula to compute
Ind(Hk(g), 0).

Remark 3.4.5 In [12], we studied the more general case of weighted homogeneous
polynomials.

4 Degree Formulas and Signature Formulas for the Euler
Characteristic of Algebraic Sets and Semi-algebraic Sets

Let F = (F1, . . . , Fk) : Rn → R
k be a polynomial mapping and let W = F−1(0).

Let G1, . . . ,Gl : Rn → R be polynomials. We would like to compute
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χ (W ∩ {G1?10, . . . ,Gl?l0}) ,

where ? j ∈ {≤,<,>,≥} for j ∈ {1, . . . , l}, in terms of the polynomials F1, . . . , Fk

and G1, . . . ,Gl . We will see that it is possible in some cases. We will start with the
case of algebraic sets and then give results for some classes of semi-algebraic sets.

4.1 Case of 0-Dimensional Algebraic Sets

Let us consider the algebra AF = R[x1,...,xn ]
(F1,...,Fk )

and let us assume that

dimRAF < +∞.

This implies that W is a finite number of points and that χ(W ) = #W .
For each f ∈ AF , let L f : AF → AF be the linear endomorphism of multiplica-

tion by f , i.e. ∀g ∈ AF , L f (g) = f g. Let Q be the quadratic form AF defined by
Q( f ) = Trace(L f 2).

Theorem 4.1.1 ([3], p. 280, Proposition 4.2 or [31], p. 205, Theorem 2.1)We have

signature Q = #W = χ(W ).

4.2 Case of a Compact Algebraic Set

Here we present a formula due to Bruce [6] and Szafraniec [33, 36] that expresses the
Euler characteristic of a compact algebraic set of Rn as the signature of a quadratic
form. It relies strongly on the formula for the Euler characteristic of the link of a
homogeneous singularity (Proposition 3.3.2).

We recall that W = F−1
1 (0) ∩ · · · ∩ F−1

k (0) and we assume that W is compact.
Let d be the highest degree of the Fi ’s. For i = 1, . . . , k, let Gi be the homogeneous
polynomial function in the variables x0, x1, . . . , xn of degree d + 1 defined by

Gi (x0, x1, . . . , xn) = xd+1
0 Fi

(
x1
x0

, . . . ,
xn
x0

)
.

Let G be the polynomial function given by G = G2
1 + · · · + G2

k . Then G is homo-
geneous of degree 2d + 2. Let q = 2d + 4 and let Ḡ : Rn+1 → R be defined by

Ḡ(x0, x1, . . . , xn) = G(x0, x1, . . . , xn) − xq0 + xq1 + · · · + xqn
q

.
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Theorem 4.2.1 ([6], p. 550, Proposition 7 or [33], p. 412, Theorem 1) The polyno-
mial function Ḡ has an algebraically isolated critical point at the origin and

χ(W ) = 1

2

(
(−1)n − Ind(∇Ḡ, 0)

)
.

Proof Since the Gi ’s are homogeneous, W is homeomorphic to the sets

{
x ∈ Sn | x0 > 0,G1(x) = · · · = Gk(x) = 0

}
,

and {
x ∈ Sn | x0 < 0,G1(x) = · · · = Gk(x) = 0

}
.

Since W is compact,

χ
({
x ∈ Sn | G1(x) = · · · = Gk(x) = 0

}) = 2χ(W ) + χ(Sn−1).

So we get that

χ(W ) = 1

2

(
χ
({
x ∈ Sn | G1(x) = · · · = Gk(x) = 0

})− 1 − (−1)n−1
) =

1

2

(
χ
({
x ∈ Sn | G(x) ≤ 0

})− 1 + (−1)n
)
,

and, by Proposition 3.3.2,

χ(W ) = 1

2

(
1 − Ind(∇Ḡ, 0) − 1 + (−1)n

)
. �

Remark 4.2.2 1. As observed by Zbigniew Szafraniec, if W is not compact, the
formula is still valid replacing χ(W ) by χc(W ).

2. Since Ḡ has an algebraically isolated critical point at 0, Ind(∇Ḡ, 0) can be
computed as the signature of a quadratic form on

R{x0, x1, . . . , xn}(
∂Ḡ
∂x0

, ∂Ḡ
∂x1

, . . . , ∂Ḡ
∂xn

) ,

thanks to the Eisenbud–Levine formula.

4.3 Case of a Smooth Complete Intersection

The above formula works only for compact algebraic sets of Rn . When W is not
compact, Bruce and Szafraniec also obtained a signature formula for χ(W ), but it
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is not effective since one can not compute explicitly one of the constant involved in
the formula.

In this section, we present a method due to Szafraniec [34] in the case whereW is
a smooth complete intersection of codimension k. We recall that F = (F1, . . . , Fk) :
R

n → R
k is a polynomial mapping and that W = F−1(0). Furthermore, we assume

that 1 ≤ k ≤ n − 1 and that for x ∈ W , rank[DF(x)] = k. This implies that W is a
smooth manifold of dimension n − k (maybe empty). Therefore, we can use tools
of differential topology to study the topology of W .

Let (x;λ) = (x1, . . . , xn;λ1, . . . ,λk) be a coordinate system of Rn+k . Let H be
the following polynomial mapping:

H : R
n+k → R

n+k

(x1, . . . , xn;λ1, . . . ,λk) �→ (x +∑k
i=1 λi∇Fi (x), F(x)).

Theorem 4.3.1 ([34], p. 199, Theorem 2.2) The set H−1(0) is compact. Let R > 0
be such that H−1(0) ⊂ Bn+k

R then

χ(W ) = (−1)kInd(H,∞),

where Ind(H,∞) is the Brouwer degree of the map H
|H | : Sn+k−1

R → Sn+k−1.

Proof We just give a sketch of proof. The reader can refer back to Szafraniec’s
paper for the details. The fact that H−1(0) is compact is not difficult to prove. For
simplicity, we assume that H has only non-degenerate roots. This means that for
each (p,β) ∈ H−1(0), det[DH(p,β)] �= 0, where DH is the Jacobian matrix of H .
Let us write

H−1(0) = {(p1,β1), . . . , (pr ,βr )}.

Let ρ(x) = 1
2 (x

2
1 + · · · + x2n ), then ∇ρ(x) = x for x ∈ R

n . The points pi are exactly
the critical points of ρ|W . Furthermore they are Morse critical points and, if si is the
Morse index of ρ|W at pi then, by a computation of determinants, we get

(−1)si = (−1)ksign det[DH(pi ,βi )].

We can apply Morse theory to ρ|W and we obtain that

χ(W ) =
r∑

i=1

(−1)si =
r∑

i=1

(−1)ksign det[DH(pi ,βi )] =

(−1)k
(

r∑

i=1

sign det[DH(pi ,βi )]
)

.
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But by the application after Theorem 2.1.7, we know that

Ind(H,∞) =
r∑

i=1

sign det[DH(pi ,βi )]. �

The formula in the above theorem is completely explicit and if

dimR

R[x1, . . . , xn;λ1, . . . ,λk]
〈H〉 < +∞,

where 〈H〉 is the ideal generated by the components of H , then Ind(H,∞) can be
computed as the signature of a quadratic form on this polynomial algebra (see [38]).
However, we have to add k more variables and this makes the computations difficult
in practice. In the sequel, we will briefly present a second method due to Szafraniec
and his collaborators which is more algebraic and more effective, because it does not
require any extra variable.

Let A be the following algebra:

A = R[x1, . . . , xn](
F1, . . . , Fk; ∂(ρ,F1,...,Fk )

∂(xi1 ,...,xik+1 )

) ,

where ∂(ρ,F1,...,Fk )
∂(xi1 ,...,xik+1 )

is the (k + 1) × (k + 1)-minor of the Jacobian matrix

D(ρ, F1, . . . , Fk) with respect to the variables xi1 , . . . , xik+1 . We assume that A is a
finite dimensional real vector space. The following theorem was proved in [9].

Theorem 4.3.2 ([9], p. 374, Theorem 1.4) We have

χ(W ) ≡ dimRA mod 2.

This result was later improved by Szafraniec in [37]. He managed to construct
a linear functional ϕ on A and with this linear functional, he defined two bilinear
symmetric forms � and �M in the following way:

∀( f, g) ∈ A × A, �( f, g) = ϕ( f g) and �M( f, g) = ϕ(M f g),

where

M = ∂(F1, . . . , Fk)

∂(x1, . . . , xk)
.

The following theorem relates χ(W ) to the signatures of � and �M .
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Theorem 4.3.3 ([37], p. 357, Theorem 5.5) If n − k is odd then we have

χ(W ) = (−1)ksignature �.

If n − k is even then we have

χ(W ) = signature �M .

4.4 Case of Complete Intersections with Isolated Singularities

In two papers [11, 13], we improved the above results of Szafraniec in some cases
where W has isolated singularities.

In [11], we did not assume that W was smooth but we still assumed that the
dimension of the above algebra A was finite. This implies that W can admit a finite
number of singularities that we denote by q1, . . . , qr .

Theorem 4.4.1 ([11], p. 132, Theorem 2.2) We have

χ(W ) +
r∑

j=1

μ(FC, q j ) ≡ dimRA mod 2,

where FC is the complexification of F and μ(FC, q j ) is its Milnor number at q j .

In the same paper, we were able to replace this mod 2 equality with an equality in
Z in the case of curves (k = n − 1) ([11], Theorem 5.2, Corollary 5.3 and Theorem
5.4) and for odd dimensional hypersurfaces (n even, k = 1) ([11], Theorem 4.3 and
Corollary 4.4).

Later in [13], we found a new method that works for all hypersurfaces, even or
odd dimensional ones. Let us explain it now.

Let F : Rn → R be a polynomial function such that its set of critical points
∇F−1(0) is finite and such that F(0) > 0. This implies thatW = F−1(0) is a hyper-
surface with isolated singularities and that 0 /∈ W . Let (x,λ) = (x1, . . . , xn,λ) be
a coordinate system of Rn+1 and let us define four polynomial mappings H , K , L1

and L2 as follows:

H(x,λ) = (λx + ∇F, F), K (x,λ) = (λx + ∇F,λF), L1(x,λ) = (∇F,λF − 1),

and L2(x,λ) = (∇F,λF2 − 1).
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The next theorem can be viewed as a global version of the Khimshiashvili formula
(Theorem 3.2.1).

Theorem 4.4.2 ([13], p. 330, Theorem 5.10) The sets H−1(0), K−1(0), L−1
1 (0) and

L−1
2 (0) are compact. If n is even, then

χ(W ) = Ind(H,∞) + Ind(∇F,∞) − Ind(L2,∞),

χ ({F ≥ 0}) − χ ({F ≤ 0}) = 1 − Ind(K ,∞) + Ind(L1,∞).

If n is odd, then
χ(W ) = Ind(K ,∞) − Ind(L1,∞),

χ ({F ≥ 0}) − χ ({F ≤ 0}) = 1 − Ind(H,∞) − Ind(∇F,∞) + Ind(L2,∞).

Proof We will just prove briefly the equality

χ(W ) = Ind(K ,∞) − Ind(L1,∞),

when n is odd. The fact that K−1(0) and L−1
1 (0) are compact is easy to prove. Let

us write
∇F−1(0) = {q1, . . . , qt } = {q1, . . . , qr } ∪ {qr+1, . . . , qt },

where for i ∈ {1, . . . , r}, qi ∈ W and for j ∈ {r + 1, . . . , t}, q j /∈ W .
Let us choose R′ � 1 sufficiently big so that χ(W ) = χ(W ∩ Bn

R′) and
∇F−1(0) ⊂ Bn

R′ . Let δ, 0 < |δ| � 1, be a small regular value of F . The follow-
ing equality is proved in the same way as the Khimshiashvili formula (Theorem
3.2.1):

χ(F−1(δ) ∩ Bn
R′) = χ(W ∩ Bn

R′) + (sign δ)

r∑

i=1

Ind(∇F, qi ).

Let Kδ be the following perturbation of K :

Kδ(x,λ) = (λx + ∇F,λ(F − δ)) .

Let R > 0be such that K−1(0) ⊂ Bn+1
R . If R is sufficiently big and δ sufficiently small

then the mapping K
|K | : SnR → Sn and Kδ

|Kδ | : SnR → Sn are homotopic. This implies

that Ind(K ,∞) is equal to the topological degree of the map Kδ

|Kδ | : SnR → Sn .

Let ρ(x) = 1
2 (x

2
1 + · · · + x2n ). Then it is not difficult to see that

K−1
δ (0) ∩ Bn+1

R =
{
(p,λ) | p critical point of ρ|F−1(δ)∩Bn

R′

}⋃
�t

j=1{(q j , 0)}.
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For simplicity, let us assume that ρ|F−1(δ)∩Bn
R′ is a Morse function. Then it admits a

finite number of critical points p1, . . . , pm , with respective indices s1, . . . , sm , and

K−1
δ (0) ∩ Bn+1

R = {(p1,λ1), . . . , (pm,λm)}
⋃

�t
j=1{(q j , 0)}.

A computation of determinants gives that

(−1)si = sign
[
(λi )

n−1det[DKδ(pi ,λi )]
]
,

for i = 1, . . . ,m. By Morse theory and since n is odd, we have

χ(F−1(δ) ∩ Bn
R′) =

m∑

i=1

(−1)si =
m∑

i=1

sign det[DKδ(pi ,λi )].

It remains to study Ind(Kδ, (q j , 0)) for j = 1, . . . , t . It is not difficult to see that

Ind(Kδ, (q j , 0)) = sign(F(q j ) − δ)Ind(∇F, q j ).

Actually, this equality is easy to prove when q j is a non-degenerate zero of ∇F . To
establish it in the general case, we just use a small perturbation of F . Putting together
all these results, we obtain that

Ind(K ,∞) = χ(F−1(δ) ∩ Bn
R′) +

t∑

j=1

sign(F(q j ) − δ)Ind(∇F, q j ) =
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χ(F−1(δ) ∩ Bn
R′) +

r∑

j=1

sign(F(q j ) − δ)Ind(∇F, q j )+

t∑

j=r+1

sign(F(q j ) − δ)Ind(∇F, q j ).

For j = 1, . . . , r , we have sign(F(q j ) − δ) = −sign(δ) and for j = r + 1, . . . , t ,
sign(F(q j ) − δ) = sign(F(q j )) because δ is a small regular value of f . Therefore,
we get

Ind(K ,∞) = χ(F−1(δ) ∩ Bn
R′) − sign(δ)

r∑

j=1

Ind(∇F, q j )+

t∑

j=r+1

sign(F(q j ))Ind(∇F, q j ) = χ(W ) +
t∑

j=r+1

sign(F(q j ))Ind(∇F, q j ).

But the zero set of L1 is exactly ∪t
j=r+1(q j ,

1
F(q j )

) and a straightforward calculation
shows that

Ind

(
L1,

(
q j ,

1

F(q j )

))
= sign(F(q j ))Ind(∇F, q j ). �

Let us end this section with some remarks.

Remark 4.4.3 In [14], we generalized Szafraniec’s results (Theorem 4.3.1) to the
case when W admits a compact singular set, i.e. the set

{x ∈ W | rank[DF(x)] < k} ,

is compact. However, although the formula is completely explicit, it is not effective in
practice because we need to add k + 1 variables and we use a Łojasiewicz exponent
of size O(2kd)n , where d is the degree of the map F .

4.5 Semi-algebraic Versions

4.5.1 0-Dimensional Semi-algebraic Sets

Weconsider a polynomial mapping F = (F1, . . . , Fk) : Rn → R
k such that the alge-

bra AF = R[x1,...,xn ]
(F1,...,Fk )

is finite dimensional, i.e. dimRAF < +∞. Let G : Rn → R be
another polynomial. Keeping the notations of Sect. 4.1, we define a quadratic form
QG on AF as follows:

∀ f ∈ AF , QG( f ) = Trace(L f 2G).
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Theorem 4.5.1 ([3], p. 280, Proposition 4.2 or [31], p. 205, Theorem 2.1)We have

signature QG

= #W ∩ {G > 0} − #W ∩ {G < 0}
= χ(W ∩ {G > 0}) − χ(W ∩ {G < 0}).

When we have several polynomials G1, . . . ,Gl then applying the above formula to
the polynomials Gα1

1 . . .Gαl
l , where αi ∈ {0, 1, 2} for i ∈ {1, . . . , l}, it is possible to

compute the cardinalities

#W ∩ {Gi1 ∗i1 0, . . . ,Gim ∗im 0},

where m ∈ {1, . . . , l}, {i1, . . . , im} ⊂ {1, . . . , l} and ∗i j ∈ {=,<,>} for
j ∈ {1, . . . ,m}. An algorithm for such a computation is explained in [32], Sect.
5.1, in the univariate case, but it also works in the multivariate case.

4.5.2 Compact Semi-algebraic Sets

We assume that W = F−1
1 (0) ∩ · · · ∩ F−1

k (0) is compact. Keeping the notations of
Sect. 3.4 and Proposition 3.4.4, we obtain a formula for

∑

ν∈{0,1}l
(−1)|ν|χ(W (ν)),

l even and l ∈ {1, . . . , n}. The method is similar to the one applied by Bruce and
Szafraniec for χ(W ).

Let d be the highest degree of the Fi ’s. For i = 1, . . . , k, let Gi be the homoge-
neous polynomial function in the variables x1, . . . , xn, xn+1 of degree d + 1 defined
by

Gi (x1, . . . , xn, xn+1) = xd+1
n+1 Fi

(
x1
xn+1

, . . . ,
xn
xn+1

)
.

Let G be the polynomial function given by G = G2
1 + · · · + G2

k . Then G is homo-
geneous of degree 2d + 2. Let q = 2d + 4 and let Ḡ : Rn+1 → R be defined by

Ḡ(x1, . . . , xn+1) = G(x1, . . . , xn+1) − xq1 + · · · + xqn+1

q
.

Theorem 4.5.2 For l even in {1, . . . , n}, the polynomial function Hl(Ḡ) has an
algebraically isolated zero at the origin and
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∑

ν∈{0,1}l
(−1)|ν|χ(W (ν)) = −1

2
Ind(Hl(Ḡ, 0)).

Proof For each ν ∈ {0, 1}l , let ν̄ ∈ {0, 1}l be defined by ν̄i = 0 if νi = 1 and ν̄i = 1
if νi = 0. It is clear that |ν| + |ν̄| = l and that (−1)|ν| = (−1)|ν̄|. Since the Gi ’s are
homogeneous, W (ν) is homeomorphic to

{
x ∈ Sn | G1(x) = · · · =Gk(x) = 0, xn+1 > 0

}

∩ {(−1)ν1x1 ≥ 0, . . . , (−1)νl xl ≥ 0
}
,

and W (ν̄) is homeomorphic to

{
x ∈ Sn | G1(x) = · · · =Gk(x) = 0, xn+1 < 0

}

∩ {(−1)ν1x1 ≥ 0, . . . , (−1)νl xl ≥ 0
}
.

Let L = {x ∈ Sn | G1(x) = · · · = Gk(x) = 0}. Since W is compact, we have

χ(L(ν)) = χ(W (ν)) + χ(W (ν̄)) + χ(Sn−1(ν)).

Using the equality (−1)|ν| = (−1)|ν̄|, we find that

2
∑

ν∈{0,1}l
(−1)|ν|χ(W (ν)) =

∑

ν∈{0,1}l
(−1)|ν|χ(L(ν)) −

∑

ν∈{0,1}l
(−1)|ν|χ(Sn−1(ν)).

Applying Corollary 3.4.2 to the function ω(x) = x21 + · · · + x2n , we see that

∑

ν∈{0,1}l
(−1)|ν|χ(Sn−1(ν)) = 0,

because for l ∈ {1, . . . , n}, Ind(Hl(ω), 0) = 0 since at least one of the components
of Hl(ω) is non-negative. Proposition 3.4.4 enables us to conclude because

L(ν) = {x ∈ Sn | G(x) ≤ 0} ∩ {(−1)νi xi ≥ 0, i = 1, . . . , l}. �

Remark 4.5.3 In [12], Theorem 5.1, we proved a more general formula without
assumption on the parity of l. However it is more complicated than the one presented
above since it is based on a version of Proposition 3.4.4 for weighted homogeneous
polynomials, inspired by the results of Szafraniec [35, 36] on the link of a weighted
homogeneous singularity.
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4.5.3 Non-compact Semi-algebraic Sets

We present an adaptation, due to Julie Lapébie (Ph.D. student of the author), to
semi-algebraic sets of Szafraniec’s result explained in Theorem 4.3.1.

We still consider a polynomial mapping F = (F1, . . . , Fk) : Rn → R
k , with 1 ≤

k ≤ n − 1, and we assume that for x ∈ W = F−1(0), rank[DF(x)] = k. Let G =
(G1, . . . ,Gl) : Rn → R

l be another polynomialmap such that k + l ≤ n.We assume
that the sets W and G−1

i (0) fulfill the following transversality condition:

∀{i1, . . . , is} ⊂ {1, . . . , k},∀x ∈ W ∩ G−1
i1

(0) ∩ · · · ∩ G−1
is

(0),

rank[DF(x), DGi1(x), . . . , DGis (x)] = k + s.

Let (x,λ,μ) = (x1, . . . , xn;λ1, . . . ,λk;μ1, . . . ,μl) be a coordinate system
of Rn+k+l . Let L be the following mapping:

L : R
n+k+l → R

n+k+l

(x,λ,μ) �→
(
x +∑k

i=1 λi∇Fi (x) +∑l
j=1 μ j∇G j (x),

F(x),μ1G1(x), . . . ,μlGl(x)
)
.

For any subset Y of Rn and for all ν = (ν1, . . . , νl) ∈ {0, 1}l , we set

YG(ν) = YG(ν1, . . . , νl)

= Y ∩ {x ∈ R
n | (−1)ν1G1(x) ≥ 0, . . . , (−1)νl Gl(x) ≥ 0}.

In her Ph.D. thesis [25] Lapébie proved the following theorem.

Theorem 4.5.4 The set L−1(0) is compact. Let R > 0 be such that L−1(0) ⊂ Bn+k+l
R

then ∑

ν∈{0,1}l
(−1)|ν|χ(WG(ν)) = (−1)kInd(L ,∞),

where Ind(L ,∞) is the Brouwer degree of the map L
|L| : Sn+k+l−1

R → Sn+k+l−1.

Proof We give a sketch of proof in the case l = 1 and k + 1 < n. We write G = G1

and then

L(x,λ,μ) =
(
x +

k∑

i=1

λi∇Fi (x) + μ∇G(x), F(x),μG(x)

)
.

We have to show that

χ(W ∩ {G ≥ 0}) − χ(W ∩ {G ≤ 0}) = (−1)kInd(L ,∞).
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The fact that L−1(0) is compact is not too difficult to prove. Let ρ(x) = 1
2 (x

2
1 + · · · +

x2n ) then ∇ρ(x) = x for all x ∈ R
n . For simplicity, let us assume that ρ|W∩{G≥0} and

ρ|W∩{G≤0} are Morse correct functions. Then L−1(0) splits into two subsets:

L−1(0) = {(p1,β1, 0), . . . , (pm,βm, 0)} � {(q1,β′
1, γ1), . . . , (qs,β

′
s, γs)},

where p1, . . . , pm are the critical points of ρ|W and q1, . . . , qs are those of ρ|W∩{G=0}.
Note that since ρ|W∩{G≥0} and ρ|W∩{G≤0} are correct, G(pi ) �= 0 for i = 1, . . . ,m
and γ j �= 0 for j = 1, . . . , s. Moreover the points (p1,β1, 0), . . . , (pm,βm, 0) are
non-degenerate zeroes of L and a computation of determinants gives that for i ∈
{1, . . . ,m},

sign det DL(pi ,βi , 0) = (sign G(pi )) (−1)σi+k,

where σi is the Morse index of ρ|W at pi . Similarly the points (q1,β′
1, γ1), . . . ,

(qs,β′
s, γs) are non-degenerate zeroes of L and for j ∈ {1, . . . , s},

sign det DL(q j ,β
′
j , γ j ) = (

sign γ j
)
(−1)τ j+k+1,

where τ j is the Morse index of ρ|W∩{G=0} at q j . By Morse theory for manifolds with
boundary, we have

χ(W ∩ {G ≥ 0}) =
∑

i | g(pi )>0

(−1)σi +
∑

j | γ j<0

(−1)τ j ,

χ(W ∩ {G ≤ 0}) =
∑

i | g(pi )<0

(−1)σi +
∑

j | γ j>0

(−1)τ j ,

and so

χ(W ∩ {G ≥ 0})−χ(W ∩ {G ≤ 0})

=
m∑

i=1

(sign G(pi ))(−1)σi −
s∑

j=1

(sign γ j )(−1)τ j .

Therefore we get

χ(W ∩ {G ≥ 0}) − χ(W ∩ {G ≤ 0})

= (−1)k

⎛

⎝
m∑

i=1

sign det DL(p j ,β j , 0) +
s∑

j=1

sign det DL(q j ,β
′
j , γ j )

⎞

⎠

= (−1)kInd(L ,∞).
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The proof of the general case is similar and usesTheorem2.3.14. The extra difficulties
come from the notations and the fact that we have to study the critical points of ρ
restricted to 2l manifolds with corners, as in the proof of Theorem 3.4.1. �

Remark 4.5.5 1. In her Ph.D. thesis, Lapébie also proved generalizations of
Theorem 4.4.2.

2. In Theorem 4.5.2 and 4.5.4, we gave formulas for weighted sums of Euler char-
acteristics of some semi-algebraic sets, the weights been equal to +1 or −1, but
not for the Euler characteristic of the semi-algebraic sets considered. In [12], we
presented a method that enables us to compute these Euler characteristics from
the formulas for weighted sums of Euler characteristics.

5 Topology of the Real Milnor Fibration

In this chapter, we review some results about the real Milnor fibration and the topol-
ogy of the real Milnor fibre. We start with some results due to Massey [27] which
generalize the ones of Milnor [30], Chap. 11.

5.1 Milnor’s Conditions (a) and (b) and the Fibration
Theorem

Let F = ( f1, . . . , fk) : (Rn, 0) → (Rk, 0) be an analyticmap-germ, 1 ≤ k ≤ n − 1,
V = F−1(0) and �F be the set of critical points of F , i.e.

�F = {
x ∈ R

n | rank(∇ f1(x), . . . ,∇ fk(x)) < k
}
,

(of course F is not constant).
Let ρ(x) = 1

2 (x
2
1 + · · · + x2n ) and let us denote by �F,ρ the set of critical points

of the pair (F, ρ), i.e.

�F,ρ = {
x ∈ R

n | rank(∇ f1(x), . . . ,∇ fk(x),∇ρ(x)) < k + 1
}
.

It is clear that �F ⊆ �F,ρ.

The following two conditions were introduced by Massey [27].

Definition 5.1.1 ([27]) Let F and ρ be as above.

1. We say that F satisfies Milnor’s condition (a) at the origin if �F ⊂ V in a neigh-
borhood of the origin.

2. We say that F satisfies Milnor’s condition (b) at the origin if 0 is isolated in
V ∩ �F,ρ \ V in a neighborhood of the origin.
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Examples: (1) Let f : (Cn, 0) → (C, 0) be a holomorphic function-germ. It is well
known that � f ⊂ f −1(0) in a neighborhood of the origin so it satisfies Milnor’s
conditions (a).

Furthermore, Hamm and Lê [21], p. 323, proved that the Thom a f -condition is
satisfied for a Whitney stratification of V . Hence, Milnor’s condition (b) is also
satisfied.

(2) Similarly if f : (Rn, 0) → (R, 0) is an analytic function-germ then it satisfies
Milnor’s conditions (a) and (b). Condition (b) follows from the fact that the a f -
condition is satisfied (see [5], Proposition 10).

(3) Let F : (Rn, 0) → (Rk, 0) be an analytic map-germ with an isolated singular
point at origin. Then Milnor’s conditions (a) and (b) hold. Milnor’s condition (b) is
satisfied because the zero locus V of F is transverse to all small spheres.

We say that ε > 0 is aMilnor radius for F at the origin if

Bn
ε ∩ (�F − V ) = ∅ and Bn

ε ∩ V ∩ (�F,ρ \ V ) ⊆ {0}.

Under Milnor’s conditions (a) and (b), we see that for 0 < |δ| � ε � 1, the fibre
F−1(δ) is smooth and transverse to Sn−1

ε .

Theorem 5.1.2 ([27], p. 284, Theorem 4.3) Let F = ( f1, . . . , fk) : (Rn, 0) →
(Rk, 0), 2 ≤ k ≤ n − 1, be an analytic map-germ satisfying Milnor’s conditions (a)

and (b) at the origin and let ε0 > 0 be a Milnor radius for F at origin. Then, for
each 0 < ε ≤ ε0, there exists δ ∈ R

k with 0 < |δ| � ε, such that

F̄ : Bn
ε ∩ F−1(B̊k

δ \ {0}) → B̊k
δ \ {0}, (5.1)

where F̄ is the restriction of F to Bn
ε ∩ F−1(B̊k

δ \ {0}), is the projection of a smooth
locally trivial fibration.

Proof It relies on Ehresmann’s fibration theorem for manifolds with boundary. It
is proved in [27], Theorem 4.3 in the general case and in [30], Theorem 11.2 and
Lemma 11.3 in the case of an isolated critical point. �

From now on, we will denote by MF the fibre of this fibration.
Example: This example is inspired by examples in [8].

Let F : (R3, 0) → (R2, 0) be defined by F(x, y, z) = (x2z + y2, x). It is easy to
see that�F = {(0, 0, z) : z ∈ R} ⊆ V and soMilnor’s condition (a) holds. However,
for any δ > 0 the fibres F−1(δ, 0) and F−1(−δ, 0) are not homeomorphic because
F−1(−δ, 0) is empty. Hence, Milnor’s condition (b) does not hold.

5.2 Topology of the Real Milnor Fibre

In this section, we give a method to obtain a topological degree formula for the
Euler characteristic of MF . We still consider F = ( f1, . . . , fk) : (Rn, 0) → (Rk, 0),
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1 ≤ k ≤ n − 1, an analytic map-germ. Let l ∈ {1, . . . , k} and I = {i1, . . . , il} be a
subset of l pairwise distinct elements of {1, . . . , k}. We denote by f I the mapping
( fi1 , . . . , fil ) : (Rn, 0) → (Rl, 0). Suppose that F satisfies Milnor’s condition (a) at
the origin. Then, we have

� f I ⊂ �F ⊂ F−1(0) ⊂ f −1
I (0),

and so the map f I also satisfies Milnor’s condition (a) at the origin.
The following results are proved in [15], Sect. 4.

Lemma 5.2.1 Assume that F satisfies Milnor’s conditions (a) and (b) at the origin.
Then, for l ∈ {1, . . . , k} and I = {i1, . . . , il} ⊂ {1, . . . , k}, the map fI : (Rn, 0) →
(Rl , 0) satisfies Milnor’s conditions (a) and (b).

Corollary 5.2.2 There exists ε0 > 0 such that, for all l ∈ {1, . . . , k} and I =
{i1, . . . , il} ⊂ {1, . . . , k}, the maps fI : (Rn, 0) → (Rl , 0) have ε0 as a Milnor
radius.

Nowwe give a result which was stated as a conjecture in Milnor [30], Chap. 11. It
was first proved by King in his unpublished Ph.D.-Thesis in the isolated singularity
case and by the author and Araújo dos Santos [15] in the general case. We note that
Jacquemard [23] also proved a version of this Milnor conjecture.

Theorem 5.2.3 (Milnor’s conjecture) Let F = ( f1, . . . , fk) : (Rn, 0) → (Rk, 0),
3 ≤ k ≤ n − 1, be an analytic map-germ that satisfies Milnor’s conditions (a) and
(b) at the origin and let φ be the mapping ( f1, . . . , fk−1) : (Rn, 0) → (Rk−1, 0). Let
MF be the Milnor fibre of F and let Mφ be the Milnor fibre of φ. Then the fibre Mφ

is homeomorphic to MF × [−1, 1].
Proof We just give an idea of the proof for an isolated singularity.We denote by g the
function fk . By an easy application of the Curve Selection Lemma, we can prove that
for ε > 0 sufficiently small, the critical points of g|φ−1(0)∩Sn−1

ε
lie in {g �= 0} (see [15],

Lemma 3.1) and are outwards-pointing in {g > 0} and inwards-pointing in {g < 0}
([15], Lemma 3.3). So let ε > 0 be a Milnor radius for F and φ and let δ ∈ R

k−1 be
a regular value of φ. We can assume that

1. 0 < |δ| � ε � 1,
2. Mφ is homeomorphic to φ−1(δ) ∩ Bn

ε ,
3. MF is homeomorphic to φ−1(δ) ∩ g−1(0) ∩ Bn

ε because �F ⊂ F−1(0),
4. the critical points of g restricted to φ−1(δ) ∩ Bn

ε lie in {g �= 0}, are outwards-
pointing in {g > 0} and inwards-pointing in {g < 0}.

Note that g|φ−1(δ)∩B̊n
ε
has no critical points because�φ,g ⊂ φ−1(0) ∩ g−1(0). By a ver-

sion of Ehresmann’s fibration theorem for manifolds with boundary (see for instance
[15], Lemma 6.1), φ−1(δ) ∩ Bn

ε ∩ {g ≥ 0} is homeomorphic to φ−1(δ) ∩ Bn
ε ∩ {g =

0} × [0, 1]. Similarly φ−1(δ) ∩ Bn
ε ∩ {g ≤ 0} is homeomorphic to φ−1(δ) ∩ Bn

ε ∩
{g = 0} × [−1, 0]. Therefore φ−1(δ) ∩ Bn

ε is homeomorphic to φ−1(δ) ∩ Bn
ε ∩ {g =

0} × [−1, 1] because it is homeomorphic to the gluing ofφ−1(δ) ∩ Bn
ε ∩ {g ≥ 0} and

φ−1(δ) ∩ Bn
ε ∩ {g ≤ 0} along φ−1(δ) ∩ Bn

ε ∩ {g = 0}. �
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Corollary 5.2.4 Under the above conditions, we have χ(MF ) = χ(Mφ).

Corollary 5.2.5 Let l ∈ {2, . . . , k} and let I = {i1, . . . , il} be a subset of l pairwise
distinct elements of {1, . . . , k}. Then we have χ(M fI ) = χ(MF ).

It remains to consider the fibres of the function f j : (Rn, 0) → (R, 0). Here such
a function admits two Milnor fibres : M+

f{ j} = f −1
j (δ) ∩ Bn

ε and M−
f{ j} = f −1

j (−δ) ∩
Bn

ε , where 0 < δ � ε � 1.
Let us write for instance f = f1 and g = f2. Using the same argument as above,

we see that M+
f is homeomorphic to M( f,g) × [−1, 1] and that M−

f is also homeo-
morphic M( f,g) × [−1, 1].
Corollary 5.2.6 For every j ∈ {1, . . . , k}, we have χ(M+

f{ j}) = χ(M−
f{ j}) = χ(MF ).

In the case of an isolated singularity, we can easily deduce from this corollary and
the Khimshiashvili formula a topological degree formula for χ(MF ).

Proposition 5.2.7 Let F = ( f1, . . . , fk) : (Rn, 0) → (Rk, 0),1 ≤ k ≤ n − 1, be an
analytic map-germ with an isolated singularity at the origin. Then for i = 1, . . . , k,
fi also has an isolated singularity at the origin. The following holds:

(i) if n is even, then Ind(∇ f1, 0) = · · · = Ind(∇ fk, 0) and

χ(MF ) = 1 − Ind(∇ f1, 0),

(ii) if n is odd, then Ind(∇ f1, 0) = · · · = Ind(∇ fk, 0) = 0 and

χ(MF ) = 1.

Proof We know that for all i ∈ {1, . . . , k},

χ(MF ) = χ(M+
f{i}) = χ(M−

f{i}).

If n is even, by the Khimshiashvili formula,

χ(M+
f{i}) = χ(M−

f{i}) = 1 − Ind(∇ fi , 0).

If n is odd, we have

χ(M+
f{i}) = 1 + Ind(∇ fi , 0) = χ(M−

f{i}) = 1 − Ind(∇ fi , 0). �

Now we would like to explain how to establish a similar formula in the case of
a mapping F satisfying Milnor’s conditions (a) and (b). The strategy is to relate
χ(MF ) to the Euler characteristic of the link of a real analytic singularity and apply
Szafraniec’s result (Proposition 3.3.1).

Let F = (F1, . . . , Fk) : (Rn, 0) → (Rk, 0), 1 ≤ k ≤ n − 1, be an analytic map-
germ satisfying Milnor’s conditions (a) and (b) at the origin. Let us choose l ∈
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{2, . . . , k} and I = {i1, . . . , il} a subset of l pairwise distinct elements of {1, . . . , k}.
We write J = {i1, . . . , il−1} and g = fil . We also denote by LI (resp. LJ ) the link of
the zero-set of f I (resp. f J ). If l = 1 then we put J = ∅ and f J = 0.

Proposition 5.2.8 We have:

χ(LJ ) − χ(LI ) = (−1)n−l2χ(MF ).

Proof Let us write VJ = f −1
J (0). By the deformation argument due to Milnor (see

Corollary 3.2.2), VJ ∩ g−1(δ) ∩ Bn
ε is homeomorphic to VJ ∩ {g ≥ δ} ∩ Sn−1

ε and
VJ ∩ g−1(−δ) ∩ Bn

ε is homeomorphic to VJ ∩ {g ≤ −δ} ∩ Sn−1
ε for 0 < δ � ε � 1.

By the Mayer–Vietoris sequence, we can write:

χ(VJ ∩ Sn−1
ε ) = χ(VJ ∩ Sn−1

ε ∩ {g ≥ δ}) + χ(VJ ∩ Sn−1
ε ∩ {g ≤ −δ})+

χ(VJ ∩ Sn−1
ε ∩ {−δ ≤ g ≤ δ}) − χ(VJ ∩ Sn−1

ε ∩ {g = δ}) − χ(VJ ∩ Sn−1
ε ∩ {g = −δ}).

By the above remark and Corollaries 5.2.5 and 5.2.6, the first two terms of the right-
hand side of this equality are equal to χ(MF ). The third term is equal to χ(LI )

because by Durfee’s result ([10], Proposition 1.6), LI is a retract by deformation of
VJ ∩ Sn−1

ε ∩ {−δ ≤ g ≤ δ}. Furthermore, if n − l is even then the last twoEuler char-
acteristics are equal to 0 because VJ ∩ Sn−1

ε ∩ {g = δ} and VJ ∩ Sn−1
ε ∩ {g = −δ}

are odd-dimensional compact manifolds. If n − l is odd, they are equal to 2χ(MF )

because they are boundaries of odd-dimensional Milnor fibres of f I . �

Corollary 5.2.9 Let j ∈ {1, . . . , k}. If n is even, then we have χ(L{ j}) = 2χ(MF )

and if n is odd, then we have χ(L{ j}) = 2 − 2χ(MF ).

Proof We apply the previous proposition to the case l = 1. In this case, if n is even
then χ(LJ ) = 0 and if n is odd then χ(LJ ) = 2. �

Corollary 5.2.10 Let l ∈ {3, . . . , k} and let I = {i1, . . . , il} ⊂ {1, . . . , k}. Let K be
a subset of l − 2 pairwise distinct elements of I . Then we have χ(LK ) = χ(LI ).

Proof Let J be a subset of l − 1 pairwise distinct elements of I built from adding to
K one element of I \ K . By the previous proposition, we see that χ(LJ ) − χ(LI ) =
χ(LJ ) − χ(LK ). �

So, in order to express the Euler characteristics of all the links LI , we just need
to compute the Euler characteristic of a link LI where #I = 2. Let us set I = {1, 2}.
By Proposition 5.2.8, we find that

χ(LI ) = χ(L{1}) − (−1)n2χ(MF ).

So we see that χ(LI ) = 0 if n is even and that χ(LI ) = 2 if n is odd. We can
summarize all these results in the following theorem.
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Theorem 5.2.11 Let l ∈ {1, . . . , k} and let I = {i1, . . . , il} be a subset of l pairwise
distinct elements of {1, . . . , k}. If n is even, then we have

χ(LI ) = 2χ(MF ) if l is odd and χ(LI ) = 0 if l is even.

If n is odd, then we have

χ(LI ) = 2 − 2χ(MF ) if l is odd and χ(LI ) = 2 if l is even.

Using this last theorem and Szafraniec’s formula (Proposition 3.3.1), we can state a
Poincaré–Hopf type formula for non-isolated singularities.

Proposition 5.2.12 Let F = ( f1, . . . , fk) : (Rn, 0) → (Rk, 0), 1 ≤ k ≤ n − 1, be
an analytic map-germ that satisfies Milnor’s conditions (a) and (b) at the origin.
Then there exist c > 0 and an integer K such that for g(x) = f 21 (x) − cρ(x)K , we
have

(i) if n is even, then χ(MF ) = 1
2 (1 − Ind(∇g, 0)),

(ii) if n is odd, then χ(MF ) = 1
2 (1 + Ind(∇g, 0)).

Of course if one of the components of F is homogeneous, we can use the Bruce-
Szafraniec formula (Proposition 3.3.2) to get a signature for χ(MF ).
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Equisingularity and the Theory of Integral
Closure

Terence Gaffney

Abstract This is an introduction to the study of the equisingularity of sets using the
theory of the integral closure of ideals and modules as the main tool. It introduces
the notion of the landscape of a singularity as the right setting for equisingularity
problems.

Keywords Equisingularity · Multiplicity of ideals and modules · Integral closure
of ideals · Integral closure of modules

Introduction

“Let me now take a new tack which promises a better wind. Instead of dealing with
a pair of hypersurfaces, let us consider analytic families of hypersurfaces Vr , all
having a singular point at the origin and depending on a set of parameters.” O.
Zariski, Presidential Address, Bulletin A.M.S. 77 No. 4 (1971), 481–491 [41].

Given a family of sets or maps, when are all the members the same? When are
some of the members different? Equisingularity is the study of these questions. As
Zariski noticed, it is easier to say when a member of family is different, than it is to
say when two sets or two maps are the same. Often the change in a single invariant
suffices to pick out the members which are out of step with the rest.

A basic question is what do we mean by “the same”? And how do we tell when
a family of sets are the same using invariants of the members of the family? These
questions are explored in these lectures.

As Zariski indicates earlier in his address, equisingularity had its roots in both
differential topology and algebraic geometry, and both areas continue to contribute
important ideas. The use of algebraic geometry naturally leads to the use of commu-
tative algebra to count and to control.
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In answering the question of what “the same” means a topologist might ask that
the members of the family be homeomorphic; a differential topologist would ask that
some of the infinitesimal structure, such as limiting tangent planes and secant lines
be preserved as well, while an algebraic geometer might ask that the singularities
have the same multiplicity.

In these lectures we work in the complex analytic case using the Whitney condi-
tions or Verdier’s W, known to be equivalent in the complex analytic case [38], to
say when the members of a family are the same. These conditions imply all three
of the above possible answers. The theory of integral closure of ideals and modules
provides an algebraic description of these conditions from which we may abstract
the invariants which control them in families.

Here is an overview of my current approach to equisingularity questions. Given
a set X , decide on the landscape that the set is part of. This means deciding on
the allowable families that include the set, and the generic elements that appear in
allowable families. Each set should have a unique generic element that it deforms
to, and some elements of the topology of this generic element should be important
invariants of our set. Describing the connection between the infinitesimal geometry
of X and the topology of the generic element related to X is part of understanding
the landscape. Based on the allowable deformations, determine the corresponding
first order infinitesimal deformations of X . These make up a module N (X). The
Jacobian module of X , J M(X) is the module generated by the partial derivatives of
a set of defining equations for X . These can be viewed also as the infinitesimally
trivial deformations of X . For the case of sets, the invariants we need for checking
condition W come from the pair (J M(X), N (X)) and N (X) by itself. A change at
the infinitesimal level of the family is always tied to a change in the topology of the
generic related elements.

Those who have studied maps using stabilizations [31] will recognize many ele-
ments of the overview in that context.

This paper is divided into three lectures with an afterword. They are designed to
help you reach the point where the overview makes sense. In the afterword we will
look at the overview again, using determinantal singularities as an example.

The first lecture introduces theWhitney conditions andVerdier’s conditionW , and
shows howVerdier’s conditionW can be described using analytic inequalities. In the
second lecture, the theory of the integral closure of ideals and modules is introduced,
allowing us to recast the analytic inequalities of the first lecture in algebraic terms.
This lecture contains a new and shorter proof of the integral closure formulation
of Whitney equisingularity, Proposition2.34. The third lecture introduces the main
source of our invariants–the multiplicity of ideals and modules. In applications these
multiplicities are infinitesimal objects, being intersection numbers connected with
conormal spaces. The polar variety of a module is defined, and in the applications,
these are local objects on our families. Through theMultiplicity Polar Theorem3.22,
they are connected to our infinitesimal invariants. The third lecture continues by
applying all of these ideas to the study of determinantal singularities, which are a
reasonable next step in complexity beyond complete intersections.
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For complete intersections our families are obtained by varying the equations
directly; for determinantal singularities we cannot vary the equations freely, but
we can vary the entries of the matrix defining the singularity freely. This is the
connection with complete intersections. However, since determinantal singularities
are the inverse images of generic determinantal singularities, the polar varieties of the
generic determinantal singularities contribute to the invariants we need to describe
Whitney equisingularity in this context. (Cf. Theorem3.28.)

Since these lectures are meant to be a tool for students to enter the subject, there
are many exercises scattered through the lectures. I encourage you to try all of them.
There are also some readings which fill in gaps in the proofs or provide deeper
understanding. I encourage you to try these as well.

A first reading which gives an overview of how the material in these lectures
developed can be found on the conference web site, along with the abstract for the
course. It is a PDF of the talk I gave at Aussois in June ’15 to celebrate the 70th
birthday of Bernard Teissier. Teissier has made all of his papers available on his
web site, (webusers.imj-prg.fr/ bernard.teissier/articles-Teissier.html) and many of
the suggested readings can be found there.

It is a pleasure to thank the organizers of the conference for giving me the chance
to speak about these beautiful ideas, and to share some of my thoughts about them.

1 Equisingularity Conditions

We start with some notation to describe a family of sets. In the diagram:

Xd(0) ⊂ X d+k ⊂ Y × C
N

0 ∈ Y = C
k

pY πY

the parameter space is Y , X (0) denotes the fiber of the family over {0},X d+k denotes
the total space of the family which is contained in Y × C

N . We usually assume
Y ⊂ X d+k , and X = F−1(0), X (y) = fy

−1(0), where fy(z) = F(y, z).
Given a family ofmap germs as above,we say the family is holomorphically trivial

if there exists a holomorphic family of origin preserving bi-holomorphic germs ry

such that ry(X (0)) = X (y). If the map-germs are only homeomorphisms we say the
family is C0 trivial.

Every subject needs a good example to start with. Here is ours:

Example 1.1 Let X be the family of four moving lines in the plane with equation
F(x, y, z) = xz(z + x)(z − (1 + y)x) = 0. Here y is the parameter, the x and z axis
are fixed, as is the line z + x = 0while the line z − (1 + y)x = 0moveswith y. Here
is a picture of the total space of the family:
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This family is not holomorphically trivial as the next exercise shows, but it should
be equisingular for any reasonable definition of equisingularity.

Problem 1.2 Show that the family of 4 lines is not homomorphically trivial by fol-
lowing the hints and proving them: If ry is a trivialization of the family of sets,
Dry(0) must carry the tangent lines of X (0) to X (y). If a linear map preserves the
lines defined by x = 0, z = 0, z = −x then the linear map must be a multiple of the
identity. Hence ry can’t map z = x to z = (1 + y)x, y �= 0.

Thus, we need a notion of equisingularity that is less restrictive than holomorphic
equivalence.

The Whitney conditions imply C0 triviality but also imply the family is well-
behaved at the infinitesimal level.

If X is an analytic set, X0 the set of smooth points on X , Y a smooth subset of X ,
then the pair (X0, Y ) satisfies Whitney’s condition A at y ∈ Y if for all sequences
{xi } of points of X0,

{xi } → y
{T Xxi } → T

⇒ T ⊃ T Yy

The pair (X0, Y ) satisfies Whitney’s condition B at y ∈ Y if for all sequences
{xi } of points of X0,

{xi } → y
{T Xxi } → T

sec(xi ,πY (xi )) → L
⇒ T ⊃ L

Problem 1.3 Show that the family of 4 lines satisfies the Whitney conditions. (Hint:
The family consists of submanifolds meeting pairwise transversely.)

Example 1.4 This is a famous example used inmany singularities talks.X is defined
by F(x, y, z) = z3 + x2 − y2z2 = 0. The members of the family X (y) consist of
node singularities where the loop is pulled smaller and smaller as y tends to zero,
becoming a cusp at y = 0. Here is a picture:
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The singular locus is the y-axis. Whitney A holds because every limiting tangent
plane contains the y-axis. But Whitney B fails. Notice that the parabola z = y2 is in
the surface, and letting xi = (0, ti , ti 2) and yi = (0, ti , 0), ti any sequence tending to
0, we see that the limiting secant line is the z-axis, while the limiting tangent plane
along this curve is the xy-plane.

We see that the dimension of the limiting tangent planes at the origin is 1, while it
is zero elsewhere on the y-axis. This kind of drastic change at the infinitesimal level
is prevented by the Whitney conditions.

Reading You can read about the Whitney conditions in many places. Two refer-
ences are the first chapter of [22], and Chap. III of [38]. The latter is more in the
spirit of the way we are developing the subject, though harder. When you begin to
study the polar varieties of a module in the third lecture, the lectures of Teissier [36]
on the historical development of the polar variety of a space, and its connections to
the Whitney conditions are very interesting. (Among other things, he explains why
they are called “polar” varieties.)

Verdier’s Condition W

The next condition, while equivalent to the Whitney conditions in the complex ana-
lytic case (proved by Teissier [38]) is easier to work with using algebra.

Condition W says that the distance between between the tangent space to X at a
point xi of X0 and the tangent space to Y at y goes to zero as fast as the distance
between xi and Y . We first need to define what we mean by the distance between
two linear spaces.

Suppose A, B are linear subspaces at the origin in C
N , then define the distance

from A to B as:

dist(A, B) = sup
u ∈ B⊥ − {0}
v ∈ A − {0}

‖(u, v)‖
‖u‖ ‖v‖ .
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In the applications B is the “big” space and A the “small” space. The inner product
is the Hermitian inner product when we work over C. The same formula also works
over R.

Example 1.5 For this example, we work with linear subspaces of R3. Let A = x-
axis, B a plane with unit normal u0, then the formula for the distance from A to B
reduces to cos θ, where θ is the small angle between u0 and the x-axis, in the plane
they determine. So when the distance is 0, B contains the x-axis.

We recall Verdier’s condition W.

Definition 1.6 SupposeY ⊂ X̄ ,where X, Y are strata in a stratificationof an analytic
space, and dist(T Y0, T Xx ) ≤ Cdist(x, Y ) for all x close to Y . Then the pair (X, Y )

satisfies Verdier’s condition W at 0 ∈ Y .

Problem 1.7 Show that W fails for Teissier’s example for X0, Y where Y is the
y-axis at the origin.

As a first step to understanding the condition, we consider the case where X is a
hypersurface in Cn . We would like to re-write this condition in terms of F where F
defines X . This will allow us to develop an algebraic formulation of theW condition.

Set-up: We use the basic set-up with X k+n a family of hypersurfaces in Y k × C
n+1.

Proposition 1.8 Condition W holds for (X0, Y ) at (0, 0) if and only if there exists
U a neighborhood of (0, 0) in X and C > 0 such that

‖∂F

∂yl
(y, z)‖ ≤ C sup

i, j
‖zi

∂F

∂z j
(y, z)‖

for all (y, z) ∈ U and for 1 ≤ l ≤ k.

Proof In this set-up, Y is a k-plane, so we will set A = Y , and calculate the distance
between Y and a tangent plane to X0 at (y, z) which is our B. At a smooth point of
X k+n , we can use DF(y, z)/‖DF(y, z)‖ for u ∈ B⊥, and the standard basis for the
vectors from A.

Then the distance formula says that condition W holds if and only if

sup
1≤l≤k

‖ ∂F
∂yl

(y, z)‖
‖DF(y, z)‖ ≤ C ′′dist((y, z), Y ) = C ′ sup

1≤i≤n+1
‖zi‖

This is equivalent to

‖∂F

∂yl
(y, z)‖ ≤ C sup

1≤i≤n+1
‖zi‖ sup

1≤ j≤n+1
‖ ∂F

∂z j
(y, z)‖

From which the desired result follows. �
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Denote the ideal generated by the partial derivatives of F with respect to the z
variables by Jz(F), and the ideal generated by z j by mY . Then zi

∂F
∂z j

are a set of
generators for mY Jz(F). The inequality above says that the partial derivatives of
F with respect to yl go to zero as fast as the ideal mY Jz(F). We will examine the
implications of this in the next section.

Reading After you read a little about the integral closure of ideals, reading pp.
589–605 [37] will give you a good background on the integral closure approach to
Whitney equisingularity for hypersurfaces with isolated singularities.

2 The Theory of Integral Closure of Ideals and Modules

Many operations on ideals and submodules of a free module come from operations
on rings. (For other examples of this, see [14, 15, 18].)

We illustrate this idea by reviewing the notions of the integral closure of a ring
and the normalization of an analytic space.

Definition 2.1 Let A, B be commutative Noetherian rings with unit, A ⊂ B a sub-
ring. Then h ∈ B is integrally dependent on A if there exists a monic polynomial
f (T ) = T n + ∑

i=0
fi T i , fi ∈ A such that f (h) = 0. The integral closure of A in B

consists of all elements of B integrally dependent on A.

Example 2.2 Let A be the ring of convergent power series in the germs t2 and t3,
denoted C{t2, t3}, B = C{t}. Then if f (T ) = T 2 − t2 we have f (t) = 0, so t is
integrally dependent on A. In fact, B is the integral closure of A in B.

Definition 2.3 Let A be the local ring of an analytic space X, x , B the ring of
meromorphic functions on X at x ; the space associated with the integral closure of
A in B is the normalization of X .

Example 2.4 Let A = C{t2, t3}, B = C{t}. Then A is the local ring at the origin of
the cusp x3 − y2 = 0, and since t3/t2 = t , the ring of meromorphic functions on X
at the origin is C{t}. So by the previous example the normalization of the cusp is a
line.

In this context a ring A is normal if the integral closure of A in its quotient
field is A. A space germ is normal if its local ring is normal. Normal spaces have
nice properties–they are non-singular in codimension 1 and the Riemann removable
singularities theorem is true for them. Given a space germ X , we always have a map
πN X from the normalization of X , denoted N X , to X which is finite and generically
1-1. N X and πN X are unique up to holomorphic right equivalence. You can read
proofs of these facts in [23] pp. 154–163, working backwards as necessary.

The following exercise is easy assuming the facts in the last paragraph.

Problem 2.5 Show that the normalization of an irreducible curve germ X, x is C, 0.
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If you know a little bit about singularities of maps, the next exercise is also easy.

Problem 2.6 Suppose f : Cn, 0 → C
p, 0, n < p and f is a finitely determined

map-germ. Show (Cn, 0), f is a normalization of the image of f .

Basic Results from the Theory of Integral Closure for Ideals

The operation of integral closure of rings creates, as we shall see, an operation on
ideals, the operation of forming the integral closure of I , which is an ideal, denoted
I . Assume I is an ideal in OX,x , f ∈ OX,x . In discussing the properties of integral
closure, sometime we work on a small neighborhood of X . In this case, I refers to
the coherent sheaf I generates on U .
List of Basic Properties f is integrally dependent on I if one of the following
equivalent conditions obtain:

(i) There exists a positive integer k and elements a j in I j , so that f satisfies the
relation f k + a1 f k−1 + · · · + ak−1 f + ak = 0 in OX,0.

(ii) There exists a neighborhood U of 0 in C
N , a positive real number C , repre-

sentatives of the space germ X , the function germ f , and generators g1, . . . , gm of
I on U , which we identify with the corresponding germs, so that for all x in U we
have: ‖ f (x)‖ ≤ C max{‖g1(x)‖, . . . , ‖gm(x)‖}.

(iii) For all analytic path germs φ : (C, 0) → (X, 0) the pull–back φ∗ f = f ◦ φ
is contained in the ideal generated by φ∗(I ) in the local ring ofC at 0. If for all paths
φ∗ f is contained in φ∗(I )m1, then we say f is strictly dependent on I and write
f ∈ I †.
Let N B denote the normalization of the blowup of X by I , D̄ the pullback of the

exceptional divisor of the blowup of X by I to N B by the normalization map. Then
we have:

(iv) For any component C of the underlying set of D̄, the order of vanishing of the
pullback of f to N B along C is no smaller than the order of the divisor D̄ along C.

This implies that the pullback of f lies in the ideal sheaf generated by the pullback
of I .

The set of all elements ofOX,x which are integrally dependent on I is the integral
closure of I and is denoted I .

Proposition 2.7 If I is an ideal in OX,x , then so is I .

Proof Weuseproperty (iii). Letφ : (C, 0) → (X, 0)be any analytic curve, g ∈ OX,x ,
f1, f2 in I . Then (g f1 + f2) ◦ φ = (g ◦ φ)( f1 ◦ φ) + ( f2 ◦ φ) ∈ φ∗(I ), since φ∗(I )
is an ideal in O1. �

The proof of this for general rings is Corollary 1.3.1 of [35].
The first property is usually taken as the definition, and shows that integral depen-

dence is an algebraic idea. This permits the extension of the concept to ideals in any
ring. For the development of the idea of the integral closure of an ideal or module
from the algebraic point of view see [35].
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The second property is used to control equisingularity conditions. It already
appeared in the discussion of Verdier’s condition W in the hypersurface case earlier,
and we will revisit it shortly.

The third property is convenient for computations, and often for proofs as the proof
of the previous proposition shows. It is also helpful in understanding conditions
involving limits. In the analytic setting, definitions that use sequences of points,
such as the Whitney conditions, can be checked with curves, often leading to an
interpretation of the condition in terms of the integral closure of an ideal or module.
We will see an example of this in the study of limiting tangent hyperplanes in the
next section.

The notion of strict dependence defined in the third property is used to describe
properties like Whitney A, or Thom’s A f condition where integral dependence is
insufficient–see the problem later on about Whitney A.

Given a curve φ(s), and a germ f , if f ◦ φ is defined, it is equal to csr mod mr+1
1

for c �= 0 for some r . We call r the order of f on φ and write fφ = r , and Jφ for the
order of an ideal J on φ.

Because the exceptional divisor of the blow-upof the Jacobian ideal tracks limiting
infinitesimal information, the fourth property is perhaps the most important. Since
N B is normal, each component of the exceptional divisor is generically a smooth
submanifold of a manifold, so the ideal vanishing on the component is locally prin-
cipal. This means we can talk about the order of vanishing on each component. The
order of the divisor D̄ is just the order of vanishing along the component of the pull-
back of I to N B. Concretely, pick a local generator u of the ideal of the component,
and write the elements of I in terms of u. The smallest power of u that appears is the
order of I along C .

The fourth property also shows how a closure operation on rings gives a closure
operation on ideals– start with a ring and an ideal, enlarge the ring by a closure
operation, look at the ideal generated in the new ring, then intersect with the original
ring to define the closure operation on the ideal.

Reading For detailed proofs of the equivalences between these properties see
[28] pp. 18–27. You can download this paper from Teissier’s list of publications–it
is #15. Try this after reading the proofs of the equivalences contained here.

In the next example, we practice using the first property.

Example 2.8 Let A = O2, I = (xn, yn). Suppose f = xi y j , i + j ≥ n. Consider
the monic polynomial h(T ) = T n − (xn)i (yn) j . Since (xn)i (yn) j is in (I i )(I j ) ⊂
I i+ j ⊂ I n , and h( f ) = 0, then f ∈ I .

Now we do a computation using the third property.

Example 2.9 Let A = O2, I = (xa, yb). Given m = xi y j define the weight of m to
be bi + aj , given f (x, y), define the weight of f to be the minimum weight of all
monomials appearing in a power expansion of f . We will show that I consists of all
f such that weight of f ≥ ab.
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First, we’ll show weight of m ≥ ab implies m ∈ I . It suffices to check this for
curves φ(t) = (tr , t s) as higher order terms don’t affect the order of I or m on the
curve. Since I is an ideal, this will show that f ∈ I .

We have Iφ =min{ra, sb}; assume ra ≤ sb.
It is convenient to think of the monomial xi y j as the point (i, j) in the xy-plane.

Consider the parallel lines r x + sy = c. Then if m is any monomial on this line,
mφ = c, and mφ > c if m lies above this line. If the weight of m ≥ ab then m lies
above or on the line connecting (a, 0) and (0, b), so it will lie above or on any line
passing through (a, 0), which lies below or on (0, b). This implies that mφ ≥ ra and
shows m ∈ I .

Suppose the power expansion of f contains a monomial m which lies below the
line connecting (a, 0) and (0, b). Then the convex hull of the monomials appearing
in f has a vertex m ′ which lies below the line connecting (a, 0) and (0, b). We can
find a line passing through this vertex which lies below (a, 0) and (0, b). Then for
the curve ψ defined by this line,

fψ = m ′
ψ < Iψ

which shows that f /∈ I .
This kind of reasoning is very useful in studying properties of ideals which are

well connected to their Newton polygons. In this example, the Newton polygon of
I is all the points of R2 above or on the line connecting (a, 0) and (0, b) in the
first quadrant. For more examples and details see [39], which is #46 on Teissier’s
publication list or [34].

Next, we use property 2 to characterize Verdier’s W in the hypersurface case.
Set-up: We use the basic set-up with X k+n a family of hypersurfaces in Y k × C

n+1.

Proposition 2.10 Condition W holds for (X0, Y ) at (0, 0) if and only if ∂F
∂yl

∈
mY Jz(F) for 1 ≤ l ≤ k.

Proof By the last proposition of the first section we know that W holds if and only
if

‖∂F

∂yl
(y, z)‖ ≤ C sup

i, j
‖zi

∂F

∂z j
(y, z)‖

But, by property 2 this is equivalent to ∂F
∂yl

∈ mY Jz(F) for 1 ≤ l ≤ k. �

If we have a curve φ on X k+n , φ(0) = 0, and the image of φ in X k+n
0 except at 0,

and J (F)φ = r then we can calculate the limiting tangent hyperplane to X k+n along
φ as

limit
s→0

(1/sr )(DF(φ(s)))

If ∂F
∂yl

∈ Jz(F) for 1 ≤ l ≤ k, then the limiting plane is never vertical, but it does
not necessarily contain Y .
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Problem 2.11 Show that if ∂F
∂yl

for 1 ≤ l ≤ k is strictly dependent on Jz(F) then
every limit of tangent planes along every curve φ not in V (Jz(F)) contains Y .

Problem 2.12 Show that if ∂F
∂yl

for 1 ≤ l ≤ k is strictly dependent on Jz(F) then WA
holds.

We will prove a few of the implications showing the equivalence of the basic
properties.

Proposition 2.13 Property 1 implies property 3

Proof Let f satisfy the relation f k + a1 f k−1 + · · · + ak−1 f + ak = 0 inOX,0, and
let φ : C, 0 → X, 0. Choose g ∈ I such that gφ = Iφ. We may assume the image of
φ does not lie in V (I ). Then

( f ◦ φ)k

(g ◦ φ)k
+ a1 ◦ φ

(g ◦ φ)

( f ◦ φ)k−1

(g ◦ φ)k−1
+ · · · + ak−1 ◦ φ

(g ◦ φ)k−1

( f ◦ φ)

(g ◦ φ)
+ ak ◦ φ

(g ◦ φ)k
= 0

and ai ◦φ
(g◦φ)i is holomorphic for all i . Since O1 is normal, it follows that ( f ◦φ)

(g◦φ)
is holo-

morphic, hence f ◦ φ ∈ φ∗(I ).

Proposition 2.14 Property 3 implies property 4

Proof We will only prove this for the case where V (I ) = 0.
Consider the components {Ci } of D̄. Since N B is normal and the Ci have codi-

mension 1, we can pick out points ci on each Ci and curves φ̃i , such that φ̃i (0) = ci ,
and φ̃i is transverse to Ci . We can choose ci so that π∗

N B(I ) vanishes only on Ci in a
neighborhood of ci , and the same is true for f ◦ πN B . If ui defines Ci at ci , then we
have f ◦ πN B = hi ui

fi , hi a unit. The exponent fi is the order of vanishing of f along
Ci . Since φ̃i is transverse to Ci at ci , ui ◦ φi (t) = t , so f ◦ πN B ◦ φi (t) = h′

i (t)t
fi ,

h′ a unit.
We can also find local generators of π∗

N B(I ) of form ui
Ii where Ii is the order of I

along Ci . Now πN B ◦ φ̃i is a map from C, 0 → X, 0, since πN B(Ci ) = 0, and hence
πN B(ci ) = 0. (This is the reason for restricting to this case.) Hence, if property 3
holds, fi ≥ Ii for all i . If we work at any point of D̄ since π∗

N B(I ) is principal, we
can find g ◦ πN B a local generator then f ◦ πN B/g ◦ πN B is a meromorphic function
which is well defined off a set of codimension 2. Since N B is normal, the function
is analytic, so f ◦ πN B ∈ π∗

N B(I ). �

Proposition 2.15 Property 4 implies property 2

Proof Choose a compact neighborhood U of 0, and consider its inverse image in
N B. The inverse image must be compact as well. So, since f ◦ πN B ∈ π∗

N B(I ), we
can cover π−1

N B(U ) with a finite number of sets and choose elements of I such that

‖ f ◦ πN B(p′)‖ ≤ C max{‖g1 ◦ πN B(p′)‖, . . . , ‖gm ◦ πN B(p′)‖}



100 T. Gaffney

holds on π−1
N B(U ). Then it is clear that

‖ f (πN B(p′))‖ ≤ C max{‖g1(πN B(p′))‖, . . . , ‖gm(πN B(p′))‖}.

Since πN B surjects on U , this finishes the proof. �

There is a nice corollary of the method of proof used in the previous proposition
and of property 2 which we now describe. Given a subset S of an analytic set X ,
f X, S → Y, y where S = f −1(y) denotes the germ of an analytic map along S.
Given an ideal I in OY,y , f ∗(I ) denotes the ideal sheaf along S obtained by pulling
back I by f .

Proposition 2.16 Suppose f X, S → Y, y where S = f −1(y), f proper and surjec-
tive. Suppose I an ideal of OY,y , h ∈ OY,y . Then h ∈ I if and only if h ◦ f ∈ f ∗(I )
along S.

Proof Since f is proper, S is compact, and as in the last proof we can cover S with
a collection of neighborhoods such that on the union the germ of a function along
S is in f ∗(I ) if an only if it satisfies an analytic inequality of the type described by
property 2. Since f is surjective, the inequalities push down/pullback to Y, y. �

Problem 2.17 Use the finite map f (x, y) = (xb, ya) to give another proof that
(xa, yb) consists of all g such that weight of g ≥ ab.

We have Proposition 2.10 to describe W for hypersurfaces, but what about sets
of higher codimension? We will see that the theory of integral closure of modules
provides the tools we need to describe the higher codimension case.

The Theory of Integral Closure for Modules: Motivation

Verdier’s condition W is based on the distance between the tangent space T Xx to X
at smooth points x and the tangent space T to Y . Recall this distance is defined as

dist(T, T Xx ) = sup
u ∈ T X⊥

x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖ .

If u ∈ T X⊥
x − {0}, then the set of points perpendicular to u consists of a hyper-

planewhich contains T Xx . These hyperplanes are called tangent hyperplanes; denote
a tangent hyperplane to X, x by Hx , and the collection of all tangent hyperplanes to
X, x by C(X)x . Then we can rephrase the distance formula as

dist(T, T Xx ) = sup
Hx ∈C(X)x

dist(T, Hx )

If X = F−1(0) where F C
n → C

p, then at a smooth point p of X , the projec-
tivisation of the rowspace of the matrix of partial derivatives of F is C(X)p. Since



Equisingularity and the Theory of Integral Closure 101

the tangent hyperplanes are what we need to control the distance between the tan-
gent space of X, p and T Y, 0, this suggests we should look at the module generated
by the partial derivatives of F denoted J M(X), just as we looked at J (F) in the
hypersurface case.

Basic Results from the Theory of Integral Closure for Modules

Notation: M ⊂ N ⊂ F p, F p a free OX,x module of rank p, M, N submodules of
F . If M is generated by g generators {mi }, then let [M] be the matrix of generators
whose columns are the {mi }.

We will develop properties for modules similar to those for ideals; however a
convenient entry way into the theory is:

Definition 2.18 If h ∈ F p then h is integrally dependent on M , if for all curves φ,
h ◦ φ ∈ φ∗(M). The integral closure of M denoted M consists of all h integrally
dependent on M .

A good very basic reference on properties of integral closure of modules is [9, pp.
301–307]. The development of these ideas in the setting ofmodules over commutative
rings can be found in [35] starting with the chapter “Integral Closure of Modules”.

Problem 2.19 M is a module, M = M

Example 2.20 Let [M] =
[

x y 0
0 x y

]

, then M = m2O2
2.

It is clear that M ⊂ m2O2
2; we will show that

(
y
0

)

∈ M .

Given a curve φ we can assume yφ < xφ otherwise

(
y ◦ φ
0

)

∈
(

x ◦ φ
0

)

O1.

Then (
y
0

)

◦ φ =
(

y
x

)

◦ φ − x/y ◦ φ

(
0
y

)

◦ φ

where x/y ◦ φ ∈ O1.

Connection with the Theory of Integral Closure of Ideals I

Notation: Given an element h ∈ F and a submodule M , then (h, M) denotes the
submodule generated by h and the elements of M . Given a submodule N of F ,
Jk(N ) denotes the ideal generated by the set of k by k minors of a matrix whose
columns are a set of generators of N . If M is an OX module then the rank of M is
k on a component V of X if Jk(M) �= (0) on V and k is the largest value for which
this is true.

Theorem 2.21 (Jacobian principle) Suppose the rank of (h, M) is k on each com-
ponent of (X, x). Then h ∈ M if and only if Jk(h, M) ⊂ Jk(M)
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Proof The complete proof appears in [9, p. 304]. The easy part is to show that h ∈ M
implies Jk(h, M) ⊂ Jk(M).

We have

φ∗(Jk(h, M)) = Jk(φ
∗(h, M)) = Jk(φ

∗(M) = φ∗(Jk(M))

which implies the result.
The problem in the other direction is checking for curves which lie in the set

of points where the rank is less than maximal, so that all the elements of Jk(h, M)

vanish, but h doesn’t vanish. We approach this problem in two steps.
Assume first that the image of our curve φ does not lie entirely in V (Jk(h, M)).
Then, by hypothesis φ∗(Jk(h, M)) = φ∗(Jk(M)) �= 0. So, there is a non-zero

minor of the matrix of generators [M], of M , J (I, K ) such that J (I, K ) ◦ φ is
generator of φ∗(Jk(M)). Here I is an index of the rows and K an index of the
columns which comprise the k × k submatrix whose determinant is J (I, K ).

Consider MI,K the submodule of Fk defined using as matrix of generators the
square submatrix of [M] whose determinant is J (I, K ), and let hI be the element
obtained from h by using the entries indexed by I .

Applying Cramer’s rule, we have that hI ◦ φ ∈ φ∗(MI,K ), where hI ◦ φ(t) =
([MI,K ] ◦ φ(t))ξ(t) for some column vector ξ(t), given by composing the output of
Cramer’s rulewithφ(t). Let [MK ] be the submatrix of [M] using the columns indexed
by K . Consider hI ◦ φ(t) − ([MK ] ◦ φ(t))ξ(t). If this is zero, we have checked the
condition for φ. If it is not zero, then φ∗(h, M) has rank greater than k which is a
contradiction.

Now suppose the image of φ does lie entirely in V (Jk(h, M)), so φ∗(Jk(h,

M)) = 0.
Here the argument breaks into two parts again. We first assume X is smooth so

that we can vary the curve freely, then we use the resolution of singularities to reduce
to the smooth case.

Supposeφ∗(M) �= φ∗(h, M). Now, by theArtin–Rees theoremweknow that there
exists ν0 > 0, ν0 ∈ Z such that

ml
1O p

1 ∩ φ∗(h, M) = ml−ν0
1 (mν0

1 O p
1 ∩ φ∗(h, M)).

This implies, that in fact,

φ∗(M) �= φ∗(h, M) mod ml
1O p

1

for any l > ν0. If not, then h ◦ φ = g mod φ∗(M), with g ∈ ml
1O p

1 , and so

g ∈ ml
1O p

1 ∩ φ∗(h, M),

hence
g, h ◦ φ ∈ φ∗(M) + m1(m

ν0
1 O p

1 ∩ φ∗(h, M)).
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Sinceφ∗(M) + m1φ
∗(h, M) = φ∗(h, M),Nakayma’s lemmawould imply the result.

Now choose l > ν0; since X is smooth, we can find a curve φ1, by changing terms
of the power series expansion φ of order ≥l, such that the image of φ1 does not lie
in V (Jk(h, M)).

This implies that
φ∗
1(M) = φ∗(M) mod ml

1O p
1

φ∗
1(h, M) = φ∗(h, M) mod ml

1O p
1

φ∗
1(M) = φ∗

1(h, M)

This gives a contradiction in this case.
If X is not smooth, then we can make a resolution, X̃ ,π, of singularities of X , lift

φ to φ̃ on X̃ . Then φ∗(M) �= φ∗(h, M) if and only if φ̃∗π∗(M) �= φ̃∗π∗(h, M), then
we can again vary φ̃∗ as before. �

If h ∈ M , this last proposition allows us to to do more than show h ∈ M along
curves.

Proposition 2.22 Suppose h ∈ M, then there exists an open cover {UI,K } of the
complement of V (J (M)), such that on each UI,K , h = [M]ξI,K , where the entries
of ξI,K are locally bounded on UI,K .

Proof The open cover {UI,K } is constructed by constructing an open cover {VI,K }
of the fiber over the origin in N BJ (M)(X) such that on each VI,K , the pullback of
J (I, K ) is a local generator of the pullback of J (M). Then Cramer’s rule applies,
and the pullbacks of the ξI,K are holomorphic, hence locally bounded on the images
of the VI,K which are the UI,K . �

As another application we can develop the analogue of property 2 for ideals.

Proposition 2.23 ([9], Proposition 1.11) Suppose h ∈ O p
X,x , M a submodule ofO p

X,x

of generic rank k on each component of X. Then h ∈ M if and only if for each choice
of generators {si } of M, there exists a constant C > 0 and a neighborhood U of x
such that for all ψ ∈ �(Hom(Cp,C)),

‖ψ(z) · h(z)‖ ≤ C sup
i

‖ψ(z) · si (z)‖

for all z ∈ U.

For each choice ofψ, the {ψ · si (z)} give a linear combination of the rows of [M] at
each point, while ψ(z) · h(z) is the analogous combination of the entries of h. So the
inequality of the theorem relates the size of row vectors of [M(x)] to corresponding
combinations of the entries of h. The constant C and the neighborhood U depend on
h and M but not on ψ.
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Proof We will use the Jacobian principle to show that the inequality implies the
integral closure inclusion, by using special ψi .

Let SI be a k × (k − 1) submatrix of [M], going through all such submatrices
as I varies, let hI be a k-tuple gotten by dropping the same entries from h as rows
from [M] in forming SI . LetψI (z)(h(z)) = det[hI (z), SI (z)]. Note thatψI (z)si (z) =
det[si (z), SI (z)], a generator of Jk(M).

The inequality which we are assuming then shows that Jk(h, M) ⊂ Jk(M), which
gives the result by the Jacobian principle.

A weaker version of the other direction is easy; if h ∈ M , then for any curve φ,
(ψ(z) · h(z)) ◦ φ ∈ φ∗({ψ(z) · si (z)}), hence (ψ(z) · h(z)) ∈ ({ψ(z) · si (z)}). Then
the result follows by property 2 for ideals. However, here the constant does depend
on ψ.

Instead we argue like this. Let {si } be a set of generators of M . Applying property
2 to the finite set of elements {gi } that make up the numerators of the entries of the
ξI,K in the last proposition, we have that there exists U and C such that if gi is such
a numerator, then

‖gi (z)‖ ≤ C sup ‖JI,K (z)‖.

We have that JI,K (z)h(z) = ∑
gi si for appropriate gi . Then working first at z /∈

V (J (M))

‖ψ(z) · h(z)‖ = ‖
∑

(gi/J (I, K ))(z)ψ(z) · si (z)‖ ≤ C N sup
i

‖ψ(z) · si (z)‖

where N is the number of terms in the sum. Since the inequality is between continuous
functions and holds on an open dense subset of U it holds on U . �

Corollary 2.24 Suppose h ∈ O p
X,x , M a submodule of O p

X,x of generic rank k on

each component of X. Then h ∈ M if and only if for each choice of generators {si }
of M, there exists a constant C > 0 and a neighborhood U of x such that for all
T ∈ C

p,
‖T · h(z)‖ ≤ C sup

i
‖T · si (z)‖

for all z ∈ U.

Proof In one direction, take ψ to be constant; in the other we can replace T by ψ,
using the fact that the constant C is independent of the choice of T . �

The corollary reflects the equivalence of h ∈ M and ρ(h) ∈ M. (The notions of
ρ(h),M and the equivalence will be developed later.)

There is a useful variant of the last Proposition.

Proposition 2.25 ([17]) For a section h ∈ O p
X to be integrally dependent on M

at 0, it is necessary that, for all maps φ : (C, 0) → (X, 0) and ψ : (C, 0) →
(Hom(Cp,C),λ) with λ �= 0, the function ψ(h ◦ φ) on C belong to the ideal
ψ(M ◦ φ).
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Conversely, it is sufficient that this condition obtain for every φ whose image meets
any given dense Zariski open subset of X.

Wewill use these ideas to extend our criterion for conditionW to equidimensional
sets of any codimension, but first we develop the analogue of property 4 for modules.

Blowing Up Modules and Connection with Ideals II

We now develop the analogue of property 4 for modules.Wewill want a construction
that works for pairs of submodules, not just a single submodule.

Given a submodule M of a free OXd module F of rank p, we can associate a
subalgebra R(M) of the symmetric OXd algebra on p generators. This is known
as the Rees algebra of M . If (m1, . . . , m p) is an element of M then

∑
mi Ti is

the corresponding element of R(M). Then Projan(R(M)), the projective analytic
spectrum ofR(M) is the closure of the projectivised row spaces of M at points where
the rank of a matrix of generators of M is maximal. Denote the projection to Xd by
c, or by cM where there is ambiguity.

Example 2.26 If M is the Jacobian module of X , then Projan(R(M)) is C(X), the
projectivised conormal space of X .

If M is a submodule of N or h is a section of N , then h and M generate ideals on
ProjanR(N ); denote them by ρ(h) and M. If we can express h in terms of a set of
generators {ni } of N as

∑
gi ni , then in the chart in which T1 �= 0, we can express a

generator of ρ(h) by
∑

gi Ti/T1.

Example 2.27 If M is the Jacobian module of X and N = F p then V (M) consists
of pairs (x, L) where x ∈ X and L ∈ PHom(Cp,C), and L ◦ DF(x) = 0. If H is
the hyperplane which is the kernel of L , then the image of DF(x) lies in H .

Using Proposition2.23 it is easy to show that h is integrally dependent on M at
the origin, if and only the ideal sheaf induced from h is integrally dependent as an
ideal sheaf on M along 0 × P

p−1. In other words, if and only if ρ(h) is integrally
dependent onM. The combination ψ(t),φ(t) amounts to giving path on X × P

p−1.
This is the second connection between integral closure of ideals and modules.

Looking at a pair (M, N ) allows us to “strip out” one copy of N from M , as the
following example shows.

Example 2.28 Let M = I = (x2, xy, z) = J (z2 − x2y) and N = J = (x, z). M is
the Jacobian ideal of the Whitney umbrella, and N defines the singular locus
of the umbrella. So, working on C

3, ProjanR(N ) = BJ (C
3), which has ring

R = C[T1, T2]/(zT1 − xT2), and where the map from R(N ) to R is given by
x → T1, z → T2. Writing the generators of I in terms of the generators of J as
x2 = x · x, xy = y · x, z = z the map fromR(I ) to R has image (xT1, yT1, T2) and
this induces the ideal sheaf I on ProjanR(N ). We see that this is supported only at
the point (0, [1, 0]).

The next proposition and the ideas behind it, is very useful in the study of deter-
minantal singularities. It is also a good example of stripping a copy of a module N
from M .
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Proposition 2.29 Suppose M ⊂ N ⊂ O p
X,0 are O p

X modules with matrix of gener-
ators [M], [N ], and [F] is a matrix such that [M] = [N ][F]. Let F be the ideal
sheaf induced on Projan(R(N )) by the module F with matrix of generators [F].
Then M = N if and only if V (F) is empty.

Proof We are going to apply Proposition2.25, so we must show that for all
maps φ (C, 0) → (X, 0) and ψ (C, 0) → (Hom(Cp,C),λ), that the order in t of
ψ(t)[M] ◦ φ(t) and ψ(t)[N ] ◦ φ(t) are the same. We have

ψ(t)[M] ◦ φ(t) = ψ(t)[N ][F] ◦ φ(t).

Suppose the order of ψ(t)[N ] ◦ φ(t) in t is k. Then we can lift φ,ψ to a
curve on Projan(R(N )) as follows. Define � : C, 0 → X × P

g(N )−1, by �(t) =
(φ(t), [(1/t k)(ψ(t)[N ] ◦ φ(t)]). We have �(0) = (0, lim

t→0
(1/t k)(ψ(t)[N ] ◦ φ(t)),

and the image of � for t �= 0 clearly lies in Projan(R(N )).
Given an element f ∈ F , the value of f along � is (φ(t), [(1/t k)(ψ(t)[N ] f̃ ◦

φ(t)]), where f̃ is the element of F which induces f . Then V (F) is empty if and
only if the order of F along all � is zero. Since [M] = [N ][F] this is equivalent to
the order of M and N being the same on (ψ,φ). �

Notice that if M ⊂ N and F are as above then the inclusion of M in N always
induces a map from Projan(R(N ))\V (F) to Projan(R(M)). The map is given by
taking (x, p) to (x,F(p)), where F(p) is evaluation of the set of generators of F
which come from the columns of [F]. The next corollary includes this setting in our
discussion of reduction.

Corollary 2.30 Suppose M and N as above, then the following are equivalent:

1. M is reduction of N .
2. V (F) is empty.
3. The induced map is a finite map from Projan(R(N )) to Projan(R(M)).

Proof (1) and (2) are equivalent by the previous proposition. The material in Sect. 2
of [26] shows that the induced map is finite if and only if V (F) is empty. �

Here is a typical way that (3) is used.

Proposition 2.31 Suppose N ⊂ F, F a free OX,x module, and suppose the fiber
of ProjanR(N ) over x has dimension k. Then N has a reduction M, where M is
generated by k + 1 elements.

Proof Let g be the number of generators of N , so we view ProjanR(N ) as a subset
of X × P

g−1. For a generic choice of plane P in P
g−1 of codimension k + 1, the

intersection of P and the fiber of ProjanR(N ) over x is empty. We can choose coor-
dinates on P

g−1 so that the plane given by T1 = · · · = Tk+1 = 0 is such a plane, Ti

coordinates on Pg−1. Choosing coordinates on Pg−1 is equivalent to choosing gener-
ators on N . Let M be the submodule of N generated by the first k + 1 generators of
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N after the new choice of generators. Then the projection onto the first k + 1 coor-
dinates of Pg−1, when restricted to ProjanR(N ) gives a finite map to ProjanR(M).
Hence M is a reduction of N by (3). �

Corollary 2.32 Suppose N ⊂ F, F a freeOX,x module, Xd equidimensional, N has
generic rank e on each component of X, x, then N has a reduction with d + e − 1
generators.

Proof Since the generic rank of N is e, the generic fiber dimension of ProjanR(N )

is e − 1, so the dimension of ProjanR(N ) is d + e − 1. Then d + e − 2 is the largest
the dimension of the fiber of ProjanR(N ) over x can be, so N has a reduction with
(d + e − 2) + 1 generators. �

Having defined the ideal sheaf M, we blow up by it. The advantages of this we
will see in the next section, as it gives a constructive/geometric way to calculate
the multiplicity of a pair of modules. But for now, this gives the context for which
property 4 in the ideal case holds. As an example of how the blow up comes up, if we
are in the basic set-up, and M = mY J M(X ) then the blow up by M is the blowup
of the conormal of X by the ideal defining the stratum Y . Teissier has shown [38]
that conditionW holds for the pair (X0, Y ) at the origin if and only if the exceptional
divisor of this blow up is equidimensional over Y . We will see the proof of one
direction of this in the next section as well.

To state our result some more notation is needed. Given M a submodule of N ⊂
F p, h ∈ N , let N BM(ProjanR(N )),πM be the normalized blow-up of ProjanR(N )

byM with projection πM to ProjanR(N ).

Proposition 2.33 (Analogue of Property 4 for ideals) In the above set-up h ∈ M if
and only if π∗

M(ρ(h)) ∈ π∗
M(M).

Proof We give the proof for the case where N is free for simplicity. We apply
Corollary 2.24, so h ∈ M if and only if for all φ (C, 0) → (X, 0) and ψ (C, 0) →
(Hom(Cp,C),λ),wehave the functionψ(h ◦ φ)onCbelongs to the idealψ(M ◦ φ).
Giving the pair (φ,ψ) is equivalent to giving a path on X × P

p−1, the order of ρ(h)

on the path is the order of ψ(h ◦ φ). So 2.23 is equivalent to : h ∈ M if and only if
the ideal sheaf induced by ρ(h) is in the integral closure of the ideal sheaf M. In
turn, by property 4 for ideals, this implies the result. �

As an application we can extend our criterion for conditionW to equidimensional
sets of any codimension.
Set-up: We use the basic set-up withX k+n an equidimensional family of equidimen-
sional sets, X k+n ⊂ Y k × C

N , J M(X) ⊂ O p.

Proposition 2.34 Condition W holds for (X0, Y ) at (0, 0) if and only if ∂F
∂yl

∈
mY J M(F) for 1 ≤ l ≤ k.

Proof We re-work the form of Verdier’s condition W to fit our current framework.
If we work at a smooth point x of X , then a conormal vector u of X at x can always
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be written as S · DF(x), where S ∈ C
p; S is not unique unless DF(x) has rank p.

Conversely, any such S gives a conormal vector. It is clear also that W holds if the
distance inequality holds for the standard basis for the tangent space T of Y . Then

dist(T, T Xx ) = sup
u ∈ T X⊥

x − {0}
v ∈ T − {0}

‖(u, v)‖
‖u‖ ‖v‖ .

becomes

dist(T, T Xx ) = sup
S ∈ C

p − {0}
1 ≤ i ≤ k, S · DF(x) �= 0

‖S · ∂ f
∂yi

‖
‖S · DF(x)‖

because ‖u‖ = ‖S · DF(x)‖, and ‖v‖ = 1.
So Verdier’s condition W becomes:

sup
S ∈ C

p

1 ≤ i ≤ k

‖S · ∂ f

∂yi
‖ ≤ C‖z‖ ‖S · DF(x)‖ .

Since the functions are analytic and the inequality holds on a Z-open set of X , we
can assume it holds on a neighborhood of the origin.

Now consider the integral closure condition, ∂F
∂yl

∈ mY J M(F) for 1 ≤ l ≤ k.

Using Corollary 2.4, we have ∂F
∂yl

∈ mY J M(F) for 1 ≤ l ≤ k if and only if

sup
S ∈ C

p

1 ≤ i ≤ k

‖S · ∂ f

∂yi
‖ ≤ C sup

1≤i≤n
‖zi S · DF(x)‖ .

But this is easily seen to be equivalent to the previous inequality. �

This last result shows that Verdier’s conditionW is exactly the geometric meaning
of the ideal sheaf induced by the ∂ f

∂yi
being in the integral closure of the ideal sheaf

induced by mY J M(X) on X × P
p−1.

In the next section we will see how to describe and control equisingularity con-
ditions using multiplicity of ideals and modules.
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3 Multiplicities, Integral Closure and the
Multiplicity-Polar Theorem

Themultiplicity of an ideal or module or pair of modules is one of themost important
invariants we can associate to an m-primary module. It is intimately connected with
integral closure. It has both a length theoretic definition and intersection theoretic
definition. We give the definition in terms of length first, for ideals, and submodules
of a free module. Denote the length of a module M by l(M).

Theorem/Definition 3.1 (Buchsbaum–Rim [1]) Suppose M ⊂ F, M, F both A-
modules, F free of rank p, A a Noetherian local ring of dimension d, F/M of finite
length, F = A[T1, . . . , Tp], R(M) ⊂ F , then

λ(n) = l(Fn/Mn) is eventually a polynomial P(M, F) of degree d+p-1.
Writing the leading coefficient of P(M, F) as e(M)/(d + p − 1)!, then we define

e(M) as the multiplicity of M.

It is possible to compute simple ideal examples by hand as we show:

Example 3.2 Let M = I = (x2, xy, y2) ⊂ O2. Then e(M) = 4.

Wehave p = 1, F = O2, andweworkwithF = O2[T1]. (Notice that ProjanF =
C

2.)
Now Mn = I nT n = m2n

2 T n , so

l(Fn/Mn) = l(O2/m2n) = (2n)(2n + 1)/2 = 4n2/2! + (l.o.t.)

So e(M) = 4.

Problem 3.3 Let M = I = (x2, y2) ⊂ O2. Show e(M) = 4. (Hint: Try to show that
the terms that are missing in this problem due to the missing xy term, grow only
linearly with n, so the leading term of the polynomial is the same.)

It is possible to do the very simplest module examples by hand easily as well.

Problem 3.4 Let M = m2O2
2 . Show e(M) = 3.

The next problem is harder–try to use the same strategy as in Problem3.3.

Problem 3.5 Let [M] =
[

x y 0
0 x y

]

. Show e(M) = 3.

If OXd ,x is Cohen–Macaulay, and M has d + p − 1 generators where M ⊂ F p,
then there is a useful relation between M and its ideal of maximal minors and the
multiplicity of both of them. The multiplicity of M is the colength of M , and is also
the colength of the ideal of maximal minors, by some theorems of Buchsbaum and
Rim [1], 2.4 p. 207, 4.3 and 4.5 p. 223. A proof of this theorem in the context of
analytic geometry using the Multiplicity Polar theorem is given in [13]. Using this
result, it is easy to do Problem3.5.
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Challenge Problem 3.6 Buchsbaum and Rim showed e(M) = l(F p/M), if M has
d + p − 1 generators, F a module over a Cohen–Macaulay ring. What is a gener-
alization of this to e(M, N )? (If M and N are ideals there is something along these
lines in [12] Theorem 2.3.)

An important theoremboth for computational and theoretical purposeswas proved
by Rees in the ideal case. A proof of a generalization to modules appears in [26].

Theorem 3.7 Suppose M ⊂ N are m primary submodules of F p, and M = N. Then
e(M) = e(N ). Suppose further that OX,x is equidimensional, then e(M) = e(N )

implies M = N.

Several generalizations of this result exist: Kleiman and Thorup [[26], (6.8)(b)]
proved a similar result in which F p is replaced by an arbitrary finitely generated
module whose support is equidimensional; they also proved an additivity result in
Theorem (6.7b)(i) of [26] for the three pairs of modules arising from three nested
modules. Generalizations also exist where the multiplicity is not defined. Gaffney
and Gassler did the case of ideals [16], and Gaffney for modules [10], while Ulrich
and Valadoshti have an approach using the epsilon multiplicity.

For computational purposes, this is coupled with another result–given any M ⊂
F p, M a module over a local ring of dimension d, there exists a submodule R of M
with d + p − 1 generators such that M = R. Such an R is called a reduction of M .

So if OXd ,x is Cohen–Macaulay, we can try to find a reduction R of M with the
right number of generators d + p − 1, then calculate the length of F/R. (This length
is also called the colength of R.) Here is a very simple example.

Problem 3.8 Suppose I is any ideal in mn
2O2 which contains xn, yn. Then e(I ) = n2.

Now we want to give an intersection theoretic definition of the multiplicity. This
definition applies to pairs of modules as well.

The next diagram shows the spaces that come into the definition.

BM(ProjanR(N )) ProjanR(N )

ProjanR(M) X

πM

πN

πX N
πX M

On the blow up BM(ProjanR(N )) we have two tautological bundles. One is the
pullback of the bundle on ProjanR(N ). The other comes from ProjanR(M). Denote
the corresponding Chern classes by cM and cN , and denote the exceptional divisor
by DM,N . Suppose the generic rank of N (and hence of M) is g.

Then the multiplicity of a pair of modules M, N is:

e(M, N ) =
∑d+g−2

j=0

∫

DM,N · cd+g−2− j
M · c j

N .

Kleiman and Thorup show that this multiplicity is well defined at x ∈ X as long
as M = N on a deleted neighborhood of x . This condition implies that DM,N lies



Equisingularity and the Theory of Integral Closure 111

in the fiber over x , hence is compact. Notice that when N = F and M has finite
colength in F then e(M, N ) is the Buchsbaum-Rim multiplicity e(M,O p

X,x ).
Kleiman and Thorup also showed that e(M, N ) vanishes if and only if M and N

have the same integral closure, provided the support of N is equidimensional. ([26],
(6.3)(ii).)

Remark 3.9 We have seen that there is a map from ProjanR(N )\V (F) → Projan
R(M). The diagram used in the definition of e(M, N ) can be used to make this
more precise. Namely, the complement of πM DM,N is the largest open subset V
of ProjanR(M) such that the map π−1

M V \DM,N → V is finite. Plainly, πN is an
isomorphism over the complement U of V (F), and π−1

N U contains π−1
M V .

Let’s re-calculate two examples using this definition.

Example 3.10 Let M = I = (x2, xy, y2) ⊂ O2. Then e(M) = 4.

Here d = 2, p = g = 1, ProjanR(N ) = C
2, Projan(M) = BI (C

2) = BM
(ProjanR(N )), and Projan(M) ⊂ C

2 × P
1. So the only term we need to calculate is∫

DM,N · cM . We can calculate this term as follows: Intersect BI (C
2) with C2 × H ,

H a generic hyperplane in P1, which represents c(M). Project this curve to C2, and
calculate the order of I on the curve. Projecting the curve to C

2 amounts to setting
a generic combination of the generators to zero, and looking at the curve obtained,
removing any components in V (I ). In this case a generic curve is x2 − ay2 = 0,
a �= 0. This consists of two branches (x − y = 0 and x + y = 0 if a = 1) and the
colength of the ideal on each branch is 2 so the multiplicity is 2 + 2 = 4.

Example 3.11 Let [M] =
[

x y 0
0 x y

]

. Show e(M) = 3.

Here d = 2, p = g = 2, N = O2
2, ProjanR(N ) = C

2 × P
1, ProjanR(M) ⊂

C
2 × P

2, dimension of BM(ProjanR(N )) is 3. Sowe need to calculate
∫

DM,N · c2M ,∫
DM,N · cM · cN (Notice that c2N = 0, since we are working on ProjanR(N ) =

C
2 × P

1.) Now we have two choices: as before we intersect a representative of each
class with the blow-up then push down to X , then see what the multiplicity of M is
on each curve. Or, we can push down to ProjanR(N ) and evaluateM on each curve.
(For details of how this approach works, the reader should consult [11] Theorem 3.1
and the two examples which follow.)

Taking the second route, projecting the intersection of the blow-up with a hyper-
plane from C

2 × P
1 and a hyperplane from C

2 × P
2, is a curve on C2 × P

1, defined
by a linear relation T1 = aT2, and by setting one of the elements of M restricted to
this set to zero. The restriction of M to the locus T1 = aT2 is the ideal generated
by the entries of the linear combination of the first row and a times the second row
from the original matrix. A generic curve is given by setting x + ay = 0, and the
multiplicity of M on this curve is 1. So,

∫
DM,N · cM · cN = 1.

Projecting the intersection of the blow-up with two hyperplanes from C
2 × P

2,
amounts to setting two generic elements ofM to zero and removing any components
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of V (M). Setting xT1 + yT2 and yT1 + xT2 = 0 gives two curves. One curve is
x = y, T1 = 1 = −T2 and the other curve is x = −y, T1 = 1 = T2.

The restriction of M to the first curve is x so the multiplicity is 1; as it is on the
second curve as well, for a total of 3.

Notice that in the last example 3 = e(M) �= e(J (M)) = 4. (J(M) is the ideal of
maximal order non-vanishing minors, and is (x2, xy, y2) in this case.) But,

Problem 3.12 Suppose M ⊂ N ⊂ F are m primary OX,x modules, X, x equidi-
mensional. Show that e(M) = e(N ) if and only if e(J (M)) = e(J (N )).

There are examples though, where there is a family of ICIS singularities where
e(J M(X y)) is independent of y, but e(J (J M(X y))) is not. In the example due to
Henry and Merle, the embedding dimension of the singularity changes at y = 0–the
singularity goes from being codimension 2 to being codimension 1, because one of
the defining equations is no longer singular off the origin. Is this the only way for
the connection between the two invariants to break?

Challenge Problem 3.13 Give a geometric characterization of when e(J M(X y))

is independent of y, but e(J (J M(X y))) is not.

This problem is connected with the difference between using the conormal mod-
ification to study equisingularity conditions and using the Nash modification, which
is why it is interesting. In the ICIS case a difference in the value of the multiplicity
between the generic point y and the origin implies there is a jump in the dimension
of the fiber of the exceptional divisor over the origin. So if the value of e(J M(X y))

is independent of y, but e(J (J M(X y))) is not, then the set of limiting tangent planes
has a jump in dimension at the origin, but the set of limiting tangent hyperplanes
does not.

Reading In Sect. 3 of [11] these ideas are developed further. It also contains the
example due to Henry and Merle mentioned above.

There is an important case where it is easy to calculate the multiplicity of the pair.
Suppose we are givenOX modules M ⊂ N ⊂ F , where F is free, X has dimension
1, and e(M, N ) is defined.Wewant a procedure to calculate e(M, N ). The first step is
to find a normalization X̃ , n of the curve. Then we can use the following proposition.

Proposition 3.14 Suppose X is a curve singularity, then e(M, N ) = e(n∗(M),

n∗(N )).

Proof This is a corollary of Theorem 5.1 of [25]. �

We’ll illustrate the rest of the procedure with an example taken from [7]. The
procedure is also described in [25].

The curves we consider are the Xl , defined by the minors of

Fl =
⎡

⎣
z x
y z
xl y

⎤

⎦ .
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We assume l − 1 is not divisible by 3. With this assumption we have a normaliza-
tion given by (C, nl) where nl(t) = (t3, t2l+1, t l+2). The assumption on l means that
the exponents on the first and last terms in the formula for n are relatively prime. The
form of n is a reflection of the fact that Xl is weighted homogeneous with weights
(3, 2l + 1, l + 2).

In this example the module N is F∗
l (J M(�2)) where �2 is the linear maps of

rank < 2, and we view Fl as map from C
3 → Hom(C2,C3). Then M = J M(Xl).

The next step is to find a minimal set of generators for n∗
l (N ) and n∗

l (M). Pulling
back the generators of J M(�2) using Fl ◦ nl , we get:

n∗
l (N ) =

⎡

⎣
t l+2 −t3 0 −t2l+1 t l+2 0
0 t2l+1 −t l+2 0 −t3l t2l+1

t2l+1 0 −t3 −t3l 0 t l+2

⎤

⎦ .

As this matrix has generic rank 2, n∗
l (N ) can be generated freely by 2 generators

since we are working overO1, so a matrix of generators RN of n∗
l (N )with a minimal

number of columns is

RN =
⎡

⎣
−t3 0
t2l+1 −t l+2

0 −t3

⎤

⎦ .

A calculation shows that n∗
l (J M(X)) is generated by the columns of:

RJ M =
⎡

⎣
−t3 2t l+2

2t2l+1 −t3l

t l+2 t2l+1

⎤

⎦ .

Note that

RJ M = RN

[
1 −2t l−1

−t l−1 −t2l−2

]

.

Denote the submodule ofO2
1 whosematrix of generators is the 2 × 2matrix in the last

line by K . Since n∗
l (N ) is freely generated, it is isomorphic toO2

1. The isomorphism
carries the pair (n∗

l (J M(X)), n∗
l (N )) to (K ,O2

1). Then e(n∗
l (J M(X)), n∗

l (N )) =
e(K ,O2

1). Since O1 is Cohen–Macaulay, the multiplicity of the second pair is the
colength of the determinant of the matrix of generators of K , which is 2l − 2.

Polar Varieties of a Module

Intuitively, the polar varieties of a module measure the “curvature” of ProjanR(M),
and we have encountered them in the examples of the previous paragraph. As we
shall see, the projection of BM(ProjanR(N )) · c2M to C

2, studied in Example 3.11
is the polar curve of M .

The polar variety of codimension l of M in X , denoted �l(M), is constructed
by intersecting ProjanR(M) with X × Hg+l−1 where Hg+l−1 is a general plane of
codimension g + l − 1, then projecting to X .
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So, in the setting of Example 3.11, g = 2, and g + l − 1 = 2 + 1 − 1 = 2, and the
projection of BM(ProjanR(N )) · c2M to ProjanR(M) is the intersection ofC2 × H2

with ProjanR(M). Thus the projection of BM(ProjanR(N )) · c2M to C2 is �1(M).
The polar varieties of M can be constructed by working only on X . The plane

Hg+l−1 consists of all hyperplanes containing a fixed plane HK of dimension g +
l − 1. By multiplying the matrix of generators of M by a basis of HK we obtain a
submodule of M denoted MH .

Proposition 3.15 In this set-up the polar variety of codimension l consists of the
closure in X of the set of points where the rank of MH is less than g, and the rank of
M is g.

Proof Since Hg+l−1 is generic, the general point of ProjanR(M) ∩ X × Hg+l−1 lies
over points where the rank of M is g. Choose coordinates so that a basis for HK

consists of the last g + l − 1 elements of the standard basis of C j , j the number of
generators of M . We can find v such that v[MH ] = 0 but v[M] �= 0 if and only if we
are at a point where the rank of MH < g. The existence of v is equivalent to being
able to find a combination of the rows of [M], such that the last g + l − 1 entries are
0. This row is a hyperplane which lies in Hg+l−1. �

Teissier [36, 38] defined the polar varieties of an analytic germ (Xd , x) ⊂ C
n of

codimension l as follows: take a generic projection π of Xd → C
d−l+1, and take the

closure of the critical points of the restriction of the projection to the smooth points
of X . Using the last proposition, it is easy to see that these polar varieties are the
polar varieties of the Jacobian module of X .

For, given (Xd , x) ⊂ C
n , the generic rank g of the Jacobian module of X is

n − d. The kernel of a generic projection to Cd−l+1 has dimension n − d + l − 1 =
g + l − 1. Let the fixed plane HK in the previous proposition be the kernel of π.
Then the rank of MH is less than maximal at a smooth point of X if and only if the
tangent space of X has larger than expected intersection with the kernel of π. Thus,
a tangent hyperplane of X contains HK at a smooth point of X if and only if x is a
critical point for the restriction of the projection to X at x . Thus the two notions of
polar variety coincide.

If M is an ideal and we are working on X , then MH is a sheaf of ideals and the
polar varieties are the closure of the set defined by this sheaf on the complement of
V (M).

Problem 3.16 Given M ⊂ N ⊂ O p
X,x , M and N both OX modules, M induces an

ideal sheaf on ProjanR(N ), and we can define the polar varieties of this ideal sheaf.
(To do this we must work on the fiber ofProjanR(N ) over x.) Show that the projection
of the polar of dimension d defined in this way to X is �d(M).

Thus, there are 4 different settings for studying the polar varieties. It is often useful
in proofs to move between them.

There is a special casewhichwill be important to us. The diagrambelow represents
the smoothing of an isolated singularity.
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Xd(0) ⊂ X d+1 ⊂ Y × C
N ⊃ X (y)

0 ∈ Y = C ⊃ y �= 0

pY πY

Let M = J Mz(X ), Then �d(X ) by the previous proposition is defined by select-
ing N − 1 generic generators of J Mz(X ), and looking to see where they have less
than maximal rank. Assume coordinates chosen so that the first N − 1 columns of
[J M(X )] are generic. Then the points where the polar intersectsX (y) are the critical
points of zN restricted toX (y). The number of such points is the number of sheets of
�d(X ) over Y is the multiplicity of �d(X ) over Y at the origin. If the smoothing is
unique up to diffeomorphism, then the invariant is denoted md(X). It is clear that the
number of critical points of a generic linear form on a smoothing of X is important
to the topology of X (y), so this number is an important invariant of X .

By construction, the existence of a polar variety of M at x ∈ X is tied to the
dimension of the fiber of ProjanR(M) over x .

Problem 3.17 Suppose Xd , x equidimensional and M has the same generic rank g
on each component of X at x. Show that �l(M, x) is non-empty if and only if the
dimension of the fiber of ProjanR(M) over x is greater than or equal to l + g − 1.

There is a strong connection between polar varieties and integral closure thanks
to an important result of Kleiman and Thorup [26, 27], which we next discuss. The
following theorem ties the dimension of this fiber to integral closure conditions.
Set-up: X the germ of a reduced analytic space of pure dimension d, F a free OX -
module, M ⊂ N ⊂ F two nested submodules with M �= N , M and N are generi-
cally equal and free of rank e. Set r := d + e − 1. Set C := Projan(R(M)) where
R(M) ⊂ S ymF is the subalgebra induced by M in the symmetric algebra on F . Let
c : C → X denote the structure map. Let W be the closed set in X where N is not
integral over M , and set E := c−1W .

Theorem 3.18 (Kleiman-Thorup, [26, 27]) If N is not integral over M, then E has
dimension r − 1, the maximum possible.

Proof Since this theorem is so important to us, we give a concise version, due to
Kleiman [24], of the proof that appears in [27].

Given an element h ∈ N that’s not integral over M , let H be themodule generated
by h and M . Nowweuse the notation of the diagramused in the definition of e(M, N ).
We have DM,H is nonempty by Remark 3.9, so of dimension r − 1 where r :=
dimProjanR(M). But πH embeds DM,H in ProjanR(M) because H/M is cyclic.
Moreover, Remark 3.9 implies that N is integral over M locally off πM DM,N ; so H
is too; so Remark 3.9 implies that πM DM,N contains πM DH,N . Plainly, πM DH,N lies
in E . Thus dim E = r − 1. �

A recent proof in a more general setting appears in [33].
We give an example the usefulness of this Theorem by giving a simple proof of

one direction of a theorem of Teissier describing Whitney equisingularity.



116 T. Gaffney

Set-up: Suppose Y k, 0 ⊂ Xd+k, 0, Y k smooth, y coordinates on Y , I (Y ) = mY . Set

M = mY J M(X), N = M + C{ ∂ f
∂y }, then Projan(R(M)) = BmY (C(X)), M = N

off Y .
Let E denote the exceptional divisor of BmY (C(X)).

Theorem 3.19 (Teissier, [38]) If the fibers of E, the exceptional divisor of BmY

(C(X)) over Y , have the same dimension, then the Whitney conditions hold along Y .

Proof If the Whitney conditions fail along Y , they do so on a proper closed subset
S ⊂ Y . Then S is the set where M �= N [9]. By the Kleiman-Thorup theorem there
must be a component of E over S, so the fibers of E have larger dimension over
points in S than over the generic point of Y . �

For the ICIS case we can use the machinery of multiplicities, together with the
Kleiman-Thorup theorem to get criteria for a family of sets to be Whitney equisin-
gular, in which the criteria depend only on the members of the family, not the total
space. We describe how this developed.

The first theorem is a generalization of a result of Teissier, who used it in con-
junction with hypersurfaces. This theorem is useful in showing that if invariants are
independent of parameter then equisingularity conditions hold.

Theorem 3.20 (Principle of Specialization of Integral Dependence) Assume that X
is equidimensional, and that y �→ e(y) is constant on Y k. Let h be a section of a free
OX module E whose image in E(y) is integrally dependent on the image of M(y)

for all y in a dense Zariski open subset of Y . Then h is integrally dependent on M.

Proof Cf. Theorem 1.8 [17]. �

The proof of the PSID proceeds by showing that the constancy of the multiplicity
means that M has a reduction MR which is generated by dim(X (y)) + p − 1 gen-
erators, which is the minimum possible if e(M(y)) is well defined for all y. To do
this, first we find such an MR whose restriction MR(0) to X (0) is a reduction of M
restricted to X (0), so e(MR(0)) = e(M(0)) byTheorem3.7. Then the uppersemicon-
tinuity of the multiplicity ([17], 1.1 p. 547), implies e(MR(0)) ≥ e(MR(y)), while
MR(y) ⊂ M(y) implies e(MR(y)) ≥ e(M(y)). This gives us the inequality:

e(M(0)) = e(MR(0)) ≥ e(MR(y)) ≥ e(M(y)) = e(M(0)).

Thus, by Theorem3.7, MR(y) is a reduction of M(y) for all y.
Now replace M by the submodule generated by MR and g, where g may be h or

any element of M not in MR . A lemma ([17] 1.2, p. 548) shows that if the set of
points where g fiberwise is not integrally dependent on MR is a proper Zariski closed
subset of Y , then the set of points where g is not integrally dependent on MR is also
a proper Zariski closed subset W of Y . This implies that MR is a reduction of (M, h)

off a Zariski closed set of Y as this is true fiberwise.
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Now, the dimension of the fiber of Projan(R(MR)) over our base point x0 ∈ X is at
most dim(X (y)) + p − 2, which is one less than the number of generators. Now the
inverse image of W in Projan(R(MR)) must have dimension at most dim(X (y)) +
p − 2 + k − 1. Then since

dim(X (y)) + p − 2 + k − 1 ≤ (dim(X (y)) + k) + (p − 1) − 2

= (dim(X) + p − 1) − 2,

the Kleiman-Thorup theorem then shows that M̄R = M̄ , which gives the result.
In order to show that the equisingularity condition implied that the invariants were

independent of y more ideas are necessary. These are discussed in the proof of the
next theorem.

Theorem 3.21 Suppose (Xd+k, 0) ⊂ (Cn+k, 0) is a complete intersection, X =
F−1(0), F : Cn+k → C

p, Y a smooth subset of X, coordinates chosen so that
C

k × 0 = Y . Then the following are equivalent:

(i) the pair (X − Y, Y ) satisfies W at 0;
(ii) The sets X (y) are complete intersections with isolated singularities and

e(my J M(X y)) is independent of y for all y ∈ Y near 0.

Proof For the proof that (ii) implies (i), the condition on e(my J M(X y)) implies that
the singularities do not split, so that X − Y is smooth. Since the integral closure
condition is a generic condition, the PSID applies.

For the proof that (i) implies (ii) the proof is more complicated. An expansion
formula shows that e(my J M(X y)) is a sum of multiplicities. Each multiplicity that
appears is the sum of two Milnor numbers of plane sections of the ICIS X (y).
SinceWhitney equisingularity of X implies theWhitney equisingularity of the plane
sections of X , and the Milnor numbers of the sections are topological invariants, the
multiplicities, and hence their sum is invariant as well. �

With this result you can see that the Whitney conditions imply in the ICIS case,
that the fiber of BmY (C(X)), the blow-up of the conormal modification along Y , is
equidimensional over Y . For the Whitney conditions imply that the multiplicity of
mY J M(X (y)) along Y is constant. Then the technique of proof used in the Principle
of Specialization implies that we can pick d + p − 1 elements of mY J M(X (0))
which generate a reduction N first of mY J M(X (0)), then of mY J M(X). This
implies that there exists a finite map from BmY (C(X)) to Projan(R(N )). Now since
Projan(R(N )) ⊂ X × P

d+p−2, the fiber dimension of BmY (C(X)) over 0 ∈ X is less
than or equal to d + p − 2 = n − 2 which is the minimum possible.

For an ICIS X , we use the multiplicity of mY J M(X) to control the Whitney
equisingularity type. What do we use when e(mY J M(X)) is not defined? Since
e(mY J M(X)) is defined only when J M(X) has finite codimension inO p

X , it is only
defined for ICIS.
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Looking at the ideas relating e(mY J M(X)) to the Whitney conditions, though
the connections are beautiful, the proofs that Whitney implies the constancy of the
multiplicities seem unnecessarily round about. The Whitney conditions themselves
are described by the behavior of the exceptional divisor of BmY (C(X)). Is there a
direct link between e(mY J M(X)) and the exceptional divisor, so that it would not
be necessary to go through topology to show that Whitney implies the constancy of
e(mY J M(X))?

To answer the first question, start with thinking about the pair of modules
(J M(X),O p

X ). The module J M(X) can be viewed as the module of infinitesimal,
first order trivial deformations of X . (Trivial with respect to biholomorphic equiv-
alences of Cn .) The module O p

X is then the module of all infinitesimal, first order
deformations of X since we can deform the equations of X freely, and get a family
of ICIS. It is known that if X has an isolated singularity, then again the codimension
of J M(X) inside the module N (X) of all infinitesimal, first order deformations of
X is finite. This suggests using e(J M(X), N (X)).

However, two problems surface. We want specialization of N from the total space
of a family to the fibers. This is necessary if the results are to depend only on the
fibers of the family and not on the total space. This will be true, provided any first
order linear infinitesimal deformation of a space lifts to a deformation of the family.
However this is clearly false, if the base space of the versal deformation space has
components. If the base space of the verbal deformation space is smooth for example,
then the specialization property is true.

Another problem enters because N (X) may have curvature. Here we are making
an analogy between N and J M(X). Moonen [29] has shown that the multiplicities
of the polar varieties of X, x are related to the curvature of X at x . (In the real case
see also [4]) This curvature then is related to the limiting tangent hyperplanes of X
at x . Since the polar varieties of N are related to limiting hyperplanes defined by row
vectors of a matrix of generators of N , it is reasonable to call the phenomena picked
up by polar multiplicities of N as the curvature of N . How this curvature enters into
the invariants we want will be a main theme of the next section.

In the next section we give also an example which shows the multiplicity of the
pair may be zero, but the curvature contribution of N gives a non-zero invariant.

Since the Whitney conditions are controlled by the dimension of the fiber of the
exceptional divisor of BmY (C(X )), and the dimension of the fibers are detected by
the presence of the polar varieties of the relative Jacobian module, it is reasonable to
look for a connection between invariants associated with integral closure and those
associated with polar varieties.

An approach for linking the behavior of the multiplicity of an ideal in a family to
the degree of the exceptional divisor is given by Teissier in [38, p. 345]. We include
an excerpt from this reference where this idea is mentioned.
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Here is how we can understand Teissier’s formula. The fiber of the exceptional
divisor over 0 ∈ Xd+1 is a projective variety so it has a degree. When we intersect
this variety with a linear space of complementary dimension, on the one hand, the
number of points we get is the degree of the variety, on the other, because intersecting
BI (X)with this linear space defines the polar curve of I , it is the number of points in
the polar curve over a generic t value. Call this number md(I, X). Now one way to
define the polar curve is to pick d generic elements of I , chosen so that they define
a reduction of I (0) and are a reduction of I on the total space over D − 0, and see
where they are zero. Call this ideal J . By construction the points where they are zero
outside of V (I ), will be a Z-open and dense set of the polar curve, and at points of
V (I ), I (y) = J (y) and so e(I (y)) = e(J (y)) at such points. Since J is generated
by d elements, a lemma shows that e(J (y)) is independent of y. So

degDvert = md(I, X)= e(J · OX (0)) − e(J · OX (y))= e(I · OX (0)) − e(I · OX (y)).

If we extend this approach to pairs of modules we find that the polar variety of N
enters as well as the polar variety for M .
Set-up: M ⊂ N ⊂ F , a free OX module, X equidimensional, a family of sets over
Y , with equidimensional fibers, Y smooth, M = N off a set C of dimension k which
is finite over Y .

Let �(e(M, N )) = e(M(0), N (0),OX (0), 0) − e(M(y), N (y),OX (y), (y, x)) be
the change in the multiplicity of the pair (M, N ) as the parameter changes from y
to 0.

Theorem 3.22 (Multiplicity Polar Theorem[6, 11]):

�(e(M, N )) = multy�d(M) − multy�d(N )

Many applications of this theorem can be found in: [7, 11–13, 19].
To show its powerwegive a simple proof ofTheorem3.21which links e(J M(X y))

and the Whitney conditions. The proof that that (ii) implies (i) avoids the use of
topology.

Proof (of 3.21): (i) implies (ii) The Whitney conditions imply that the fiber of
D ⊂ BmY (C(X)), the exceptional divisor is equidimensional over Y . Because the
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dimension of the fiber is small, there is no polar variety of codimension d for
mY J M(X). SinceO p

X has no polar varieties, the Multiplicity Polar Theorem implies
that e(m J M(X y)) is independent of y.

(ii) implies (i) The independence of e(m J M(X y)) from y implies that there is no
polar variety of codimension d for mY J M(X), and hence the fiber of D over Y k is
equidimensional. At this point we apply the theorem of Kleiman-Thorup (3.18). We
know that J MY (X), the submodule generated by the partial derivatives taken with
respect to coordinates on Y , is in the integral closure of mY J M(X) at points in a
Z-open subset of Y . Since the dimension of the set of points of Projan(mY J M(X))

over the set of points where the integral closure condition does not hold is at most
(k − 1) + (d + g − 2) < (d + k) + (g − 1) − 1, it follows that J MY (X) is in the
integral closure of mY J M(X) at all points of Y . �

In the next part, we examine an important class of singularities for which the
module N of first order deformations does specialize as we desire.

Determinantal Singularities

We begin with F , a (n + k, n) matrix, with entries in Oq ; we view F as a map from
C

q → Hom(Cn,Cn+k). Let �r denote elements of Hom(Cn,Cn+k) of rank less
than r . Let Ir be the ideal inOn2+nk generated by the minors of size r of elements of
Hom(Cn,Cn+k). It is easy to check that the codimension of�r in Hom(Cn,Cn+k) is
(n − r + 1)(n + k − r + 1). The elements of Hom(Cn,Cn+k) of rank r , 0 ≤ r ≤ n
give a stratification of Hom(Cn,Cn+k) which we call the rank stratification.

Assume F is transverse to the rank stratification of Hom(Cn,Cn+k) on C
q − 0.

Let �r (F) := V (F∗(Ir )), then F∗(Ir ) is generated by the minors of size r of F .
�r (F) is determinantal i.e. codim �r (F) =codim �r . If q < (n − r + 2)(n + k −
r + 2) then�r (F)has a smoothing, becausewhenwedeform F so that it is transverse
to the rank stratification there will be no points where the rank< r − 1.

We fix the class of deformations and fix a unique smoothing by only considering
deformations of �r (F) which come from deformations of the entries of F . As we
shall see, the geometric meaning of the invariants we develop is tied to the topology
of the smoothing.

We may freely vary the entries of F and deformations of the entries of F induce
deformations of the generators of F∗(Ir ); first order deformations define the module
N (X F ). Generators of N (X F ) are tuples of minors of F of size r − 1. If F and r are
understood we simply write N (X).

Properties of N (X)

The operation of forming N (X) has some nice properties.

• N is universal. If the entries of F are coordinates on Hom(Cn,Cn+k) denote N (X)

by NU . Then for any M , N (X F ) = F∗NU .
• NU is stable; NU = J M(�r ). Coupled with universality this implies N (X F ) =

F∗ J M(�r ), which explains why the generators of N (X F ) are tuples of minors of
F of size r − 1. (We say that the first order linear infinitesimal deformations are
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stable if they are trivial. Here the first order linear trivial infinitesimal deformations
are deformations are J M(�r ).)

• Stability implies the polar varieties of �r are the polar varieties of NU .
• Universality implies �i (N (X F )) = F∗�i (NU ).
• Together they imply if F̃ defines a smoothing X̃ of Xd

F , then

multC�d(N (X̃ F̃ )) = F(Cq) · �d(�).

In general, the intersection number F(Cq) · �d(�) is defined as follows. Work
on C

q × Hom(Cn,Cn+k) and consider the intersection of the graph of F with
C

q × �d(�), where, since �d(�) is the polar variety of codimension d in
�d(�), the graph of F and C

q × �d(�) have complementary dimension in
C

q × Hom(Cn,Cn+k). If F is one to one, then the intersection number is that
of the image of F with �d(�) in Hom(Cn,Cn+k).

If r = n which is the case that Ir is the ideal of maximal minors, F(Cq) · �d(�)

is computed in terms of the entries of F in [7]. We give a brief introduction to the
formula in this paper in order to continue the study of curve singularities begun at
the end of the section on multiplicities. This will also show why singularities defined
by maximal minors are easier to study.

To study the polar varieties of F∗ J M(�n), we need to understand
Projan(R(F∗ J M(�n))). At a smooth point M of X F , consider pairs (l1, l2) where
l1 ∈ ker Mt , l2 ∈ ker M . Here l2 ∈ P

n−1 is unique, while the set of l1 ∈ P
n+k−1

has dimension k. Take the closure of this set in X F × P
n+k−1 × P

n−1. This is
the M-transform of X , denoted X M . In [7], this is shown to be isomorphic to
Projan(R(F∗ J M(�n))). The isomorphism is defined by

�(x, (T1, . . . , Tn+k), (S1, . . . , Sn)) = (x, T · S),

where T · S is an element of PHom(n, n + k).
If F̃ is defines a smoothing X of Xd , then we want to calculate the degree over

the base C of the polar curve of F̃∗ J M(�n), denoted md(F∗ J M(�n)). Ideally,
we would want to find the equations of the polar variety of �n of complementary
dimension to q, pull them back toX and take degree. This seems difficult. Instead, we
will define “mixed polars” for which we can find equations, and which will define
Cohen–Macaulay germs. To define these we look again at the construction of the
polar varieties of �n and their pull backs–the polars of F̃∗ J M(�n).

First, denote the fiber over the origin in X of ProjanR(F̃∗ J M(�n)) by E . The
generic rank of F̃∗ J M(�n) is the same as the generic rank of J Mz(X ) which is
k + 1, the codimension of the generic fiber of X . Then the polar curve is gotten
by intersecting ProjanR(F̃∗ J M(�n)) with d + k hyperplanes and projecting to X .
The degree of the polar curve over C is just E · hd+k in PHom(n, n + k), where h
is the hyperplane class of PHom(n, n + k). Now we use the isomorphism between
ProjanR(F̃∗ J M(�n)) and XM . Denote the hyperplane classes on X × P

n−1 and
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X × P
n+k−1 by h2 and h1 respectively. As classes, the pullback of h toX × P

n+k−1 ×
P

n−1 by the Veronese V is h1 + h2. So,

md(F∗ J M(�n)) =
∑d+k

i=0

(
d + k

i

)

hi
1hd+k−i

2 · E .

The simple description we have of C(�n) which permits the decomposition of
the last formula seems to be unique to r = n. This decomposition is the key to being
able to write md(F∗ J M(�n)) as the alternating sum of colengths of ideals defined
using the entries of F .

Define�i, j (F̃∗ J M(�n)) to be πX (XM ∩ hi
1h j

2). We call these the mixed polars of
type (i, j) of F̃∗ J M(�n). Denote the degree of thismixed polar overC by hi

1h j
2.Then

md(F∗ J M(�n)) =
∑d+k

i=0

(
d + k

i

)

hi
1hd+k−i

2 .

It is shown in [7] that the mixed polars are related to certain determinantal varieties,
and that the hi

1h j
2 are the alternating sum of degrees of these determinantal varieties.

These degrees are just the lengths of the rings gotten by modding out the local ring
of the associated determinantal variety by the coordinate on C. In turn, these are just
the lengths of the pullbacks by F of the rings defining the corresponding varieties
on �n . So, these numbers depend only on the component functions of F .

Now we consider again the determinantal space curves Xl defined by F−1
Xl

(�2),

FXl =
⎡

⎣
z x
y z
xl y

⎤

⎦ .

We have n = 2, k = 1, d = 1, so

m1(F∗
Xl

J M(�n)) = h2
1 + 2h1h2 + h2

2.

The h2
2 term is zero, because we are working on Xl × P

2 × P
1, and the square of

the hyperplane class on P
1 is zero.

To calculate h2
1, note that if we choose (1, 0, 0) as the point of intersection

of our two hyperplanes on P
2, the ideal of �2,0 for this choice on Hom(2, 3), is

(a1,1, a1,2, a2,1a3,2 − a2,2a3,1), for these are the points of �2 for which (1, 0, 0) is in
the kernel of Mt , M ∈ Hom(2, 3). Pulling this ideal back by F∗

Xl
gives (x, z, y2),

which has colength 2, so h2
1 = 2.

To compute h1h2, choose (0, 1) as the point on P1 defined by the hyperplane, and
let (0, 0, 1) be the hyperplane on P

2. So, we are looking for M such that (0, 1) is
in the kernel of M and some line defined by (a, b, 0) is in the kernel of Mt . The
ideal that defines this set is (a2,1, a2,2, a2,3). This is already determinantal, so our
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procedure simplifies in this case. We get h1h2 is the colength of (x, y, z) which is 1,
so m1(F∗

Xl
J M(�n)) = 2 + 2(1) + 0 = 4 for all l.

Putting together our previous work, we see that if l = 1, then e(J M(X1),

F∗
1 (J M(�2))) = 0, but e(J M(X1), F∗

1 (J M(�2))) + m1(F∗
1 (J M(�2))) = 3. In

fact, for isolated space curve singularities, the invariant e(J M(X F ), F∗(J M(�k)))

+ m1(F∗
1 (J M(�k))) is never zero, since the polar of codimension 1 of �r is non-

empty for r > 1. (If r = 1, then F defines an ICIS, and e(J M(X F ), F∗(J M(�1))) =
e(J M(X F )) �= 0.)

It is important to understand when an invariant is zero. The next proposition gives
a geometric criterion for when e(J M(X F ), F∗(J M(Y )) = 0, and also relates this
invariant to the map F .

Proposition 3.23 Suppose F C
q , 0 → C

n, 0, (Y, 0) ⊂ C
n, Y reduced and X F

defined with reduced structure also. Then e(J M(X F ), F∗(J M(Y ))) = 0 if and only
if no limiting tangent hyperplane to Y along the image of F contains the image of
DF(0).

Proof Let G = 0 define Y with reduced structure. By hypothesis, G ◦ F defines X
with reduced structure also. This implies that J M(X F ) ⊂ F∗(J M(Y )), by the Chain
rule. The condition that e(J M(X F ), F∗(J M(Y ))) = 0 is equivalent to J M(X F ) =
F∗(J M(Y )). By Proposition 2.29 this is exactly the condition that the ideal sheaf
induced by J M(X F ) on ProjanR(F∗(J M(Y ))) is irrelevant ie. does not vanish on
the fiber of ProjanR(F∗(J M(Y ))) over 0 ∈ X F . Since Projan(J M(Y )) is C(Y ),
the fiber of ProjanR(F∗(J M(Y ))) over 0 is just limiting tangent hyperplanes to Y
along the image of F .

The set ProjanR(F∗(J M(Y ))) is a subset of X F × P
n−1. By the Chain Rule

we know DG(F(x)) ◦ DF(x) = D(G ◦ F)(x). Now, DF(x) induces an ideal
sheaf on X × P

n−1, because F has n component functions. If we restrict this
sheaf to ProjanR(F∗(J M(Y ))), we get the ideal sheaf induced by J M(X) on
ProjanR(F∗(J M(Y ))), because this ideal sheaf arises from writing the generators
of J M(X) in terms of the generators of F∗(J M(Y )), and this is exactly what the
Chain Rule does for us. Denote this sheaf by F .

The condition that this ideal sheaf vanish at a point (x, H) ∈ ProjanR(F∗
(J M(Y ))) is just that the linear form defining H when applied to each of the genera-
tors ofF give zero. For, the value of the i-th generator,

∑n
1

∂Fj

∂zi
Tj on (x, (a1, . . . , an))

is
∑n

1
∂Fj

∂zi
(x)a j . Since the fiber over 0 is the limiting tangent hyperplanes to Y along

F at the origin the result follows. �

We explore the case of three lines in C
3 (l = 1) further. It is simpler to do this if

we use the map

F =
⎡

⎣
z 0
y y
0 x

⎤

⎦ .

For this F , X F is the coordinate axes.
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Example 3.24 The fiber of ProjanR(F∗ J M(�2)) over 0 consists of three copies of
P
1, namely, ⎡

⎣
0 0
0 a
0 b

⎤

⎦,

⎡

⎣
a 0
b 0
0 0

⎤

⎦,

⎡

⎣
a −a
0 0
b −b

⎤

⎦, (a, b) ∈ P
1.

Further, the image of DF(0) is not contained in any element of the fiber of
ProjanR(F∗ J M(�2)) over 0.

To see why these assertions are true, note that the fiber of ProjanR(F∗ J M(�2))

is constant over the z axis for z �= 0. This is because F and �2 are homogeneous.
We have a general result which describes the fiber of C(�r ) which we can apply

here, which we now describe.
We know that the fiber to the normal bundle to the smooth manifold �r+1 − �r

at M ∈ �r+1 − �r , is Hom(K (M), C(M)) where K (M) denotes the kernel of M
and C(M) denotes the cokernel, which we think of as the vectors in C

n+k which
annihilate the image of M .

So up to some identifications, the fiber of C(�r+1) at M is inside PHom(K (M),

C(M)). Let � j (M) denote the elements of Hom(K (M), C(M)) of kernel rank j .
Let X j denote the projective variety determined by � j . If M ∈ Hom(Cn,Cn+k),

then we denote P(�r (M)) by Xr (M).

Theorem 3.25 (Conormal fiber Theorem) Suppose M is in �s , s > r . Then the fiber
of the conormal of C(�r ) at M is Xs−r (M).

Proof See the Conormal Fiber Theorem at the end of Sect. 2 of [7]. �

In the case of singularities defined by maximal minors if we know the M-
modification of X F we can compute these fibers. For example, at points on the z
axis of X F , z �= 0, we see that the fiber is (0, a, b) × (0, 1), because (0, 1) is the
kernel of F(0, 0, 1), and (0, a, b) is the kernel of Ft (0, 0, 1). Then a point of the
fiber maps to ⎡

⎣
0 · 0 0 · 0
0 · a 1 · a
0 · b 1 · b

⎤

⎦

The condition that the image of DF(0) is contained in a limiting tangent hyper-
plane implies that

∂F
∂x ·

⎡

⎣
0 0
0 a
0 b

⎤

⎦ = 0, ∂F
∂y ·

⎡

⎣
0 0
0 a
0 b

⎤

⎦ = 0.

Expanding we get:
⎡

⎣
0 0
0 0
0 1

⎤

⎦ ·
⎡

⎣
0 0
0 a
0 b

⎤

⎦ =
⎡

⎣
0 · 0 0 · 0
0 · 0 0 · a
0 1 · b

⎤

⎦ = 0,

⎡

⎣
0 0
1 1
0 0

⎤

⎦ ·
⎡

⎣
0 0
0 a
0 b

⎤

⎦ =
⎡

⎣
0 · 0 0 · 0
1 · 0 1 · a
0 0 · b

⎤

⎦ = 0.
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This implies that a = b = 0; thus no element of the fiber which is a limit of tangent
hyperplanes to �2 along the image of the z axis in �2 can contain the image of
DF(0).

Problem 3.26 Prove the rest of the assertions of the last example.

Wecanuse this simple example to get some idea of the possibleways our invariants
can change in a family. Given a family of singularities {Xd

t }, with parameter t , let
e(J M(Xt ), F∗

t J M(�r ), t) denote the sum of e(J M(Xt ), F∗
t J M(�r ), x) over all

x ∈ Xt ; let

e�(M, F∗
t J M(�r ), x) = e(J M(Xt ), F∗

t J M(�r ), x) + md(F∗
t J M(�r ), x),

and define e�(M, F∗
t J M(�r ), t) in a way similar to e(J M(Xt ), F∗

t J M(�r ), t).

Example 3.27 Let Ft =
⎡

⎣
z 0

y − t y + t
0 x

⎤

⎦ . Let Xt = X Ft , then Xt for t �= 0 consists

of three lines which intersect in two plane curve singularities–both ordinary nodes.
Further e(J M(Xt ), F∗

t J M(�2), t) is 0 for t = 0 and 4 for t �= 0, hence is not upper
semicontinuous. The invariant e�(M, F∗

t J M(�2), t) = 4, for all t .

The example shows that e�(M, F∗
t J M(�2), t) = 4 being independent of t does

not prevent the singularity from splitting. If we assume the parameter space is embed-
ded in X as C × 0, and ask that e�(M, F∗

t J M(�2), (t, 0)) is independent of t , then
splitting cannot occur because e�(M, F∗

t J M(�2), t) is upper semicontinuous, and
e�(M, F∗

t J M(�2), x) is always non-zero in the curve case if x is singular.

Equisingularity of Determinantal Varieties

In this section we bring together many elements of these lectures to prove a theorem
on the Whitney equisingularity of families of determinantal singularities.

The key invariant is the generalization of the invariant md(Xd) in the ICIS case.
As in the definition of md(F∗ J M(�n)) we pick a smoothing F̃ of F . We can extend
the sheaf J M(X F ) over X F̃ by considering the sheaf of modules generated by the
partial derivatives of F̃ with respect to the variables of Cq , the ambient space of X F .
Denote this by J Mz(X F̃ ). Now assume X = X F = F−1(�r ); for simplicity, assume
X has a smoothing. Applying the MPT to this set-up (3.22), we know that

md (X) = e(J M(X F ), F∗(J M(�r ))) + F(Cq ) · �d (�r ) := e�(J M(X F ), F∗(J M(�r ))).

In an analogous way we can define md(m J M(X)), and again we have as a corol-
lary of the MPT,

md(m J M(X)) = e(m J M(X F ), F∗(J M(�r ))) + F(Cq) · �d(�
r ) :

= e�(m J M(X F ), F∗(J M(�r ))).
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(In picking the smoothing it is necessary to ensure that F̃(t, 0) /∈ �r for t �= 0.) We
use the notation e� for the multiplicity of a pair corrected by the curvature of the
larger module.

If we have a family of sets X F defined by F : Ct × C
q → Hom(Cn,Cn+k), Y =

C
t × 0 ⊂ X F , we show that md(m J M(X)) controls the Whitney conditions for the

open stratum of X F along Y . The precise statement follows.

Theorem 3.28 Suppose (Xd+t , 0) ⊂ (Cq+t , 0), X = F−1(�r ), F : Cq+t →
Hom(Cn,Cn+k), Y a smooth subset of X, coordinates chosen so that Ct × 0 = Y ,
F induced from a deformation of the presentation matrix of X (0), X equidimen-
sional with equidimensional fibers, of expected dimension, X (y) has only isolated
singularities for all y.

(A) Suppose the singular set of X is Y . Suppose e�(my J M(X y), F∗
y J M(�r )) is

independent of y. Then the union of the singular points of X (y) is Y , and the pair of
strata (X − Y, Y ) satisfies condition W .

(B) Suppose the singular set of X is Y and the pair (X − Y, Y ) satisfies condition
W . Then e�(my J M(Fy), F∗

y J M(�r )) is independent of y.

Proof First, we prove (A). We can embed the family in a restricted versal unfold-
ing with smooth base Ỹ l . Consider the polar variety of mY J Mz(F) of dimension
l, and the degree of its projection to Ỹ l along points of Y . The hypothesis on
e�(my J M(X y), F∗

y J M(�r )) implies by the multiplicity polar theorem that this
degree is constant over Y . In turn this implies that the polar variety over Y does
not split, hence the polar of the original deformation is empty. This implies that the
fiber of the exceptional divisor of BmY Projan(J Mz(F)) cannot be maximal, since
there is no polar variety. By the theorem of Kleiman-Thorup on the dimension of
this fiber, it then follows that J MY (F) ⊂ mY J Mz(F) which implies W.

This also implies that J M(F) ⊂ J Mz(F). Hence the union of the singular points
of Fy which is the cosupport of J Mz(F) is equal to the cosupport of J M(F)which is
Y . Then the inclusion J MY (F) ⊂ mY J Mz(F) implies W for (X − Y, Y ). (Cf. [9].)

Now we prove (B). W implies J MY (F) ⊂ mY J Mz(F) which implies that
mY J M(F) = mY J Mz(F). We know by [38] that condition W implies that the
fiber dimension of the exceptional divisor of BmY (C(X)) over each point of Y
is as small as possible. The integral closure condition mY J M(F) = mY J Mz(F)

implies that the same is true for BmY (ProjanR(J Mz(F))). This implies that the
polar of mY J Mz(F) is empty, hence by the multiplicity polar formula the invariant
e�(m J M(Fy), F∗

y J M(�r )) is independent of y. �

We also have a geometric description of our invariant based on the smoothing and
the existence of a unique Milnor fiber.

Theorem 3.29 e(J M(X y), F∗
y J M(�r )) + F(y)(Cq) · �d(�

r ) = (−1)dχ(Xs,y) +
(−1)d−1χ((X ∩ H)s,y), Xs,y a smoothing of X (y).

Proof (Cf. [11, p. 130], [32].) �
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Example 3.30 Consider the family of curves Xl , defined by the minors of

FXl =
⎡

⎣
z x
y z
xl y

⎤

⎦ .

Then by our previous work we have e�(J M(Xl), F∗
l J M(�2)) = 2l + 2, for l =

1 or l − 1 not divisible by 3, l > 1. Since −χ(Xs,l) + χ((X ∩ H)s,l) = μ(Xl) +
m(Xl) − 1, we have μ(Xl) = 2l recovering a result of Watanabe et al. [30].

Challenge Problems and Further Directions in Determinantal Singularities

• In the maximal minor case, the work of [7] gives a formula for the Euler character-
istic of a smoothing of a nondeterminantal singularity. Canwe say something about
the Betti-numbers of a smoothing when there is more than 1? (Frühbis–Krüger
and Zach have some results for three-folds. Cf. [5, 40].)

• What is the connection between the results of [7] on the Euler characteristic of a
smoothing and Damon–Pike [3] in the (2,3) case?

• What is the relation in the curve case between between the results of [7] and those
of Greuel and Buchweitz [2] and Rosenlicht differentials?

• For what determinantal singularities is the invariant md(Xd) = 0? Hopefully, we
can classify them. In May 2015, work was done giving the dimensions in which
they can appear, and a transversality condition that must be satisfied. In September
of 2016 as part of a project with Ruas and Pedersen, normal forms for the space
curve-maximal minor case were found.

• What additional invariants are needed to ensure the singular locus of a family does
not split? In the ICIS case the independence from parameter of md(X y) ensures
the singular locus is the parameter axis. Because some determinantal singularities
have md(X) = 0, this is not true for families of determinantal singularities, even
in the maximal minor (2, 3) case.

• Is there a way to connect the terms that appear in the calculation of the multiplicity
of the polar of F∗ J M(�n) with the geometry of X F in the (n, n + k) case?

• What is a formula in terms of the entries of the presentation matrix for F(Cq) ·
�d(�

r ), 1 < r < n?
• What can we say about EIDS (Essentially Isolated Determinantal Singulari-
ties)? These include determinantal singularities which are isolated, but cannot
be smoothed, because the dimension of the domain is too large, as well as deter-
minantal singularities which are non-isolated, but which are well behaved away
from the origin.) Some work on these has been done in [7, 20] and other papers
mentioned in their bibliographies.

• Can we calculate the multiplicities of the polar varieties of�r ⊂ Hom(Cn,Cn+k)

at the origin of Hom(Cn,Cn+k)? This is known for the cases r = n, 2 ([8]). This
will give a lower bound on the size of the contribution of F(Cq) · �d(�

r ) to
e�(J M(X), F∗ J M(�r )). Since the �r are homogeneous, their ideals define pro-
jective varieties, and these multiplicities will be the degrees of the polar classes of
the projective varieties.
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• There are other invariants associated with X such as the index of differential forms
and the Milnor number(?) of functions with isolated singularities. Compute these
in terms of infinitesimal invariants similar to those of these lectures.(Cf. [19] for
a framework for doing this.)

4 Afterword: Examples of the Point of View
of the Introduction

We will talk about two examples of our point of view.
Hypersurfaces with isolated singularities are our first example. Suppose Xn, 0 has

an isolated singularity at the origin, X = f −1(0).
Choose the landscape This is done by looking at the possible deformations of X .

We see we can deform f freely, and still, for small deformations, get a hypersurface
with at most isolated singularities. So, the landscape will be all hypersurfaces in
C

n+1 with at most isolated singularities. The generic element that X deforms to is
its Milnor fiber.

Describe the connection between X and its generic element To do this, deform X
to its Milnor fiber, using F(y, z) = f (z) − y. Then the ideal Jz(F), when restricted
to the graph, vanishes only at (0, 0), so its polar curve is given by the vanishing
of the first n partial derivatives, in generic coordinates. Applying the MPT, we get
e(J ( f ),OX,0) = multC�n(Jz(F)).

In turn multC�n(Jz(F)) is the colength of the ideal ( f, ∂ f
∂z1

, . . . ,
∂ f
∂zn

) in On+1.
This is μ(X) + μ(X ∩ H), H a generic hyperplane.

Determine the first order infinitesimal deformations Since f → f + tg where g
is arbitrary, is a first order defomation, and the corresponding infinitesimal first order
deformation is f → ∂ f +tg

∂t = g, the first order infinitesimal deformations are just
OX,0.

Our invariant for controlling Whitney equisingularity is e(m J ( f ),OX,0).
If we have a family of hypersurfaces X , then if μ(X) + μ(X ∩ H) changes, then

so must e(J ( f ),OX,0), and the exceptional divisor of BJz(F)(X ) must pick up a
vertical component and vice-versa. The change in the topology of the landscape is
reflected in a dramatic change in the fibers of the exceptional divisor, which is the
infinitesimal information.

For determinantal singularities the story is similar.
If we look at all possible deformations, then we have examples where the same

singularity can be deformed in two different ways, even givingWhitney equisingular
families in which the generic fiber has non-homeomorphic smoothings [7]. So, we
restrict our deformations by using the same size presentation matrix. The entries of
the matrix can be deformed freely.

Then, the landscape will be the determinantal singularities corresponding to a
matrix of fixed size. The generic element associated to X will be smooth, given some
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dimension restriction; otherwise we can say what the stabilizations of the singularity
are, and can begin to study those [20].

In the case of smoothable singularities, by use of the multiplicity polar theorem
and some topology, we get Theorem3.29 which gives the connection between the
topology of smoothing and the algebraic invariants of the singularity, which are
connected to its infinitesimal geometry. This is generalized in [20] to the EIDS case.

The first order infinitesimal deformations of X can be explicitly computed; deform
an entry of the presentation matrix by t , calculate the minors of the order used to
define X ; taking derivative with respect to t then gives a map from the defining
equations for X into tuples in Og

X,0, where g is the number of defining equations.
These give the generators of N (X). It is clear from this formulation that N is universal
and specializes well in families. We can calculate J M(�) explicitly–the partial with
respect to the (i, j) entry of the matrix is just the corresponding generator of N . So
� is stable. The geometric representation of C(�n) in terms of kernels of M and Mt

gives the formula for computing multC�d(N (X̃ M̃)) using the presentation matrix,
but leaves the formula in terms of the entries still to be determined in general.

Once again, a change at the infinitesimal level of the family is always tied to a
change in topology of the generic related elements. Here, the infinitesimal level of a
familyX t+d ⊂ C

t+q is the relative conormal modification CY (X ) ofX , which is the
limits of tangent hyperplanes in C

q to the fibers of X over Ct . Assume the singular
locus of the family isCt × 0. By a change at the infinitesimal level, we mean that the
dimension of the fiber ofCY (X ) over the origin inX (0) jumps in dimension from the
generic value of q − d − 1 to at least q − 1. This is equivalent to the polar variety of
dimension t of the module J Mz(X ) at (0, 0) being non-empty. In turn by the MPT,
this implies that md(X (0)) > md(X (y)), y a generic value of Ct . By Theorem3.29,
this implies that the topology of the smoothings of X (0) and X (y) are different.
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A Brief Survey on Singularities of Geodesic
Flows in Smooth Signature Changing Metrics
on 2-Surfaces

N. G. Pavlova and A. O. Remizov

Abstract We present a survey on generic singularities of geodesic flows in smooth
signature changingmetrics (often called pseudo-Riemannian) in dimension 2.Gener-
ically, a pseudo-Riemannian metric on a 2-manifold S changes its signature (degen-
erates) along a curve S0, which locally separates S into a Riemannian (R) and a
Lorentzian (L) domain. The geodesic flow does not have singularities over R and
L , and for any point q ∈ R ∪ L and every tangential direction p ∈ RP there exists
a unique geodesic passing through the point q with the direction p. On the contrary,
geodesics cannot pass through a point q ∈ S0 in arbitrary tangential directions, but
only in some admissible directions; the number of admissible directions is 1 or 2 or
3. We study this phenomenon and the local properties of geodesics near q ∈ S0.

Keywords Pseudo-Riemannian metrics · Geodesics · Singular points · Normal
forms
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1 Introduction

Let S be a real smooth manifold, dim S = n ≥ 2. By metric on S we mean a sym-
metrical covariant tensor field of the second order on the tangent bundle TS, not
necessary positive defined. Moreover, metrics whose signature has different signs at
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( )
L=U

The observable
Universe

Cosmos without
time and motion

R=P
( )

Fig. 1 Sakharov’s cosmological model. Here the region L (which apparently includes the observ-
able Universe) is denoted by U and the region R (cosmos without time and motion) is denoted by
P (after Parmenides, a Greek philosopher theorized about space and time). The hypersurface S0 is
represented by the dotted line

different points of S, are of the special interest. For instance, in the quantum the-
ory of gravitation and general relativity two types of signature changing metrics are
considered:

• Smooth. The metric is degenerate on a hypersurface S0 ⊂ S that divides the Rie-
mannian region R ⊂ S with signature (+ · · · + +) from the Lorentzian region
L ⊂ S with signature (+ · · · + −). Example: ds2 = dx2

1 + · · · + dx2
n−1 + xndx2

n .
• Discontinuous. The metric is smooth and non-degenerate everywhere except for
a hypersurface S0 ⊂ S (which separates R and L defined as above), where it fails
to be continuous. Example: ds2 = dx2

1 + · · · + dx2
n−1 + 1

xn
dx2

n .

In the paper [27], Russian physicist A.D. Sakharov conjectured there exist states
of the physical continuum which include regions with different signatures of the
metric; the observed Universe and an infinite number of other Universes arose as
a result of quantum transitions with a change in the signature of the metric. This
concept is exemplified by Fig. 1.

In his cosmological model, Sakharov used discontinuous metrics. However, some
other authors consider models with smooth signature changing metrics; see e.g., [1,
18–20] and the references therein. From physical viewpoint, the difference between
smooth and discontinuous signature changing metrics corresponds to different phys-
ical proposals, in particular, different solutions of the Einstein equation. Euclidean-
Lorentzian transitions (junctions) between the domains R and L play an important
role, both in the smooth and discontinuous models. The term Euclidean is used in
sense of Riemannian, that is typical for physical literature, see e.g., [2]. Similarly,
the term Lorentzian is referred to non-degenerate indefinite metrics.

In this paper, we discuss a purely mathematical problem connected with smooth
signature changingmetrics (further called pseudo-Riemannian): the local behavior of
geodesics in a neighborhood of the points where the metric has a generic degeneracy.
Such points are singular points of the geodesic flow, and the standard existence
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and uniqueness theorem for ordinary differential equations is not applicable. This
leads to an interesting geometric phenomenon: geodesics cannot pass through a
degenerate point in arbitrary tangential directions, but only in certain directions said
to be admissible.

A study of this phenomenon for two-dimensional pseudo-Riemannian metrics is
started in [13, 24–26]; similar results in three-dimensional case were announced in
[22]. In theseworks,mainly the local properties of geodesics and geodesic flowswere
considered, some global properties of geodesics of pseudo-Riemannian metrics with
differentiable groups of symmetries are investigated in [25]. This allows, in particular,
to obtain the phase portraits of geodesics on surfaces of revolution (sphere, torus,
etc.) embedded in three-dimensional Minkowski space.

Various other aspects of pseudo-Riemannianmetrics (including theGauss–Bonnet
formula) are treated by many authors, see e.g., [12, 16, 17, 19–21, 28] and the ref-
erences therein. However, there exist a number of unsolved problem connected with
degeneracy of metrics. According to our knowledge, the problem of local geodesic
equivalence of pseudo-Riemannian metrics at degenerate points is not studied yet,
although it is well studied for Riemannian and Lorentzian metrics, see e.g., [7] (in
this paper, the authors call pseudo-Riemannian what we call Lorentzian, i.e., non-
degenerate indefinite metrics).

From now we always assume that dim S = 2.
Similarly, just as Riemannian metrics naturally appear on surfaces embedded in

Euclidean space, pseudo-Riemannian metrics can be generated in pseudo-Euclidean
space. Let S be a smooth surface embedded in 3DMinkowski space (X, Y, Z)with the
pseudo-Euclidean metric d X2 + dY 2 − d Z2. Then the pseudo-Euclidean metric in
the ambient (X, Y, Z)-space induced a pseudo-Riemannianmetric on S. For instance,
let S be the standard Euclidean sphere

X2 + Y 2 + Z2 = 1.

Themetric induced on the sphere S degenerates on two parallels Z = ±1/
√
2, which

separate S into three regions, where the metric has constant signatures. The North(
Z > 1/

√
2
)
and the South

(
Z < −1/

√
2
)
regions are Riemannian, while the equa-

torial region |Z | < 1/
√
2 is Lorentzian; see Fig. 2 (left). The condition of the point

q ∈ S belonging to R or S0 or L depends on the mutual relationships between the
tangent plane Tq S and the isotropic (light) cone

d X2 + dY 2 − d Z2 = 0;

see Fig. 2 (right).
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Z

R

L

R

Riemannian LorentzianDegenerate

q q

dX +dY dZ2 2 2

Fig. 2 On the left: pseudo-Riemannian metric on the sphere X2 + Y 2 + Z2 = 1 in 3DMinkowski
space. Here S0 consists of two parallels Z = ±1/

√
2 depicted as dotted lines. On the right: inter-

sections of the light cone with the tangent plane Tq S, q ∈ S

2 Definition of Geodesics

Consider a two-dimensional manifold (surface) S with pseudo-Riemannian metric

ds2 = a(x, y) dx2 + 2b(x, y) dxdy + c(x, y) dy2, (1)

whose coefficients are smooth (i.e., C∞). Geodesics in the metric (1) can be defined
via variational principles similarly to the Riemannian case, with additional nuances.

For instance, the arc-length parametrization is not defined for the isotropic lines
(or lightlike lines or null curves). Moreover, the Lagrangian of the length functional

Jl(γ) =
∫

γ

√
aẋ2 + 2bẋ ẏ + cẏ2 dt → extr,

where the dot means differentiation by the parameter t , fails to be differentiable on
the isotropic surface F

a(x, y) dx2 + 2b(x, y) dxdy + c(x, y) dy2 = 0, (2)

and the Euler–Lagrangian equation for the length functional is not defined on F .
Note that Eq. (2) defines the isotropic surface F in the complement of the zero
section of T S or, equivalently, in the projectivized tangent bundle PTS.

Binary differential equation (2) defines a direction field on F , whose integral
curves correspond to isotropic lines in themetric (1). This equation plays an important
role for understanding the behavior of geodesics, and we consider it in more detail
below.

As already mentioned above, the Euler–Lagrangian equation for the length func-
tional Jl does not allow to define extremals on F . However, this problem does not
arise if we define geodesics as extremals of the action functional
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Fig. 3 The relationship
between the fields χl and χa .
The horizontal arrow means
the projectivization
� : T S → PT S. Two lower
arrows are the standard
projections T S → S and
PT S → S

Ja(γ) =
∫

γ

(aẋ2 + 2bẋ ẏ + cẏ2) dt → extr.

The corresponding Euler–Lagrange reads

{
2(aẍ + bÿ) = (cx − 2by)ẏ2 − 2ay ẋ ẏ − ax ẋ2,

2(bẍ + cÿ) = (ay − 2bx )ẋ2 − 2cx ẋ ẏ − cy ẏ2,
(3)

and the corresponding parametrization is called natural or canonical. Obviously,
the definition of geodesics as auto-parallel curves in the Levi–Civita connection
generated by the metric (1) leads to the same Eq. (3).

The natural parametrization is well defined for all types of geodesics, including
isotropic. For non-isotropic geodesics it coincides with the arc-length (of course,
here the length to be real or imaginary). The functionals Jl (length) and Ja (action)
define the corresponding fields of extremals: χl on PT S away of F and χa on the
complement of the zero section of T S (including F ). The relationship between the
fields χl and χa is as follows (see also Fig. 3).

The natural projectivization� : T S → PT S sends the fieldχa to a direction field
on PT S, which is parallel to the vector field

	V = 2�

(
∂

∂x
+ p

∂

∂y

)
+ M

∂

∂ p
, p = dy

dx
, (4)

where

�(x, y) = ac − b2, M(x, y, p) =
3∑

i=0

μi (x, y)pi ,

with the coefficients
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μ0 = a(ay − 2bx ) + ax b,

μ1 = b(3ay − 2bx ) + ax c − 2acx ,

μ2 = b(2by − 3cx ) + 2ayc − acy,

μ3 = c(2by − cx ) − bcy .

(5)

The vector field 	V given by (4) is defined and smooth at all points of PT S
including the isotropic surfaceF . It is worth observing that the direction field χl is
parallel to (4) at all points where χl is defined, i.e., at all points away from the surface
F . One can interpret the direction field given by (4) as a natural extension of χl to
F . This brings us to the following definition: the projections of integral curves of the
field (4) from PT S to S distinguished from a point are non-parametrized geodesics
in the pseudo-Riemannian metric (1).

Moreover, let 	W be the vector field on PT S (determined uniquely up to multipli-
cation by a non-vanishing scalar factor) that corresponds to the length functional Jl .
Since the length functional is invariantwith respect to reparametrizations, one can put
t = x and take as 	W the vector field corresponding to the Euler–Lagrange equation
with the Lagrangian

√
F , where F(x, y, p) = a(x, y) + 2b(x, y)p + c(x, y)p2. A

straightforward calculation (see [25]) shows that

	W = 1

2F
3
2

	V and div 	W = 0 at all points where F 
= 0. (6)

The field 	W is divergence-free, since it comes directly from an Euler–Lagrange
equation, while 	V is not, since it is obtained via an additional procedure, the pro-
jectivization � : T S → PT S. The property (6) plays an important role, due to the
following general fact:

Theorem 1 ([13]) Let 	V (ξ), ξ ∈ R
n, be a smooth vector field, f (ξ) be a smooth

scalar function such that the hypersurface F = {ξ : f (ξ) = 0} is regular, r be a
positive real number. Suppose that the field 	W (ξ) = f −r (ξ) 	V (ξ) is divergence-free
at all points where it is defined, i.e., at all points ξ /∈ F . Then F is an invariant
hypersurface of the field 	V . Moreover, let ξ∗ ∈ F be a singular point of 	V and
λ1, . . . ,λn be the eigenvalues of the linearization of 	V at ξ∗. Then λ1 + · · · + λn =
rλ j for at least one j .

By Theorem 1, we have the following assertions:

• The isotropic surface F is an invariant surface of the field (4) and all isotropic
lines are geodesics (with identically zero length).1

• Geodesics do not change their type (timelike, spacelike, isotropic) away of degen-
erate points. This statement follows from the previous one.

1The first assertion is valid for any dim S ≥ 2, while the second assertion (about isotropic lines)
is valid for dim S = 2 only. Indeed, in the case dim S > 2 there exist isotropic lines that are not
geodesics; see the example in [25].
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Fig. 4 The isotropic surface
F in PTS, integral curves of
the field X (top) and integral
curves of the equation
F(x, y, p) = 0 (down). The
dashed lines represent the
criminant (top) and the
discriminant curve (down)

F= 0

( )x,y

p

L

R

3 Equation of Isotropic Lines

Suppose that set
S0 = {q = (x, y) ∈ S : �(x, y) = 0}

is a regular curve. It is called the degenerate or discriminant curve of the metric (1),
and points q ∈ S0 are called degenerate points of the metric. Then the coefficients
a, b, c do not vanish simultaneously, and the isotropic direction

p0(q) = −a

b
(q) = −b

c
(q), q ∈ S0, (7)

is defined and unique at every point q ∈ S0.
The projectivization � : T S → PT S transforms binary differential equation (2)

into the implicit differential equation

F(x, y, p) = 0, where F = a(x, y) + 2b(x, y)p + c(x, y)p2. (8)

In the space PT S, the surfaceF composes a two-sheeted covering of the Lorentzian
domain of S (� < 0) with branching along the discriminant curve S0. Over the
Riemannian domain (� > 0), the surfaceF does not pass. See Fig. 4.

A well-known geometrical approach to study implicit equation (8) consists of the
lift the multivalued direction field on S to a single-valued direction field X on the
surface F .2 The field X is an intersection of the contact planes dy = pdx with the
tangent planes to the surfaceF , that is, X is defined by the vector field

ẋ = Fp, ẏ = pFp, ṗ = −(Fx + pFy), (9)

whose integral curves become isotropic lines of the metric (1) after the projection
π : F → S along the p-direction. Further we shall call this direction vertical in
the space PT S. The locus of the projection π : F → S (given by the equations

2This approach is applicable to implicit differential equations F(x, y, p) = 0with a smooth function
F not necessarily quadratic in p. The idea goes back to H. Poincaré and A. Clebsch, see [23] for
details.
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n fC D D Ds

Fig. 5 From the top to the bottom: integral curves of the field (9) on the isotropic surface F and
isotropic lines, obtained by the projection π : F → S. The dashed lines represent the criminant
(top) and the discriminant curve (down)

F = Fp = 0) is called the criminant of Eq. (8). It is not hard to see that the criminant
consists of the points (q, p0(q)), q ∈ S0 (see formula (7)).

Since F is an invariant surface of the field (4) and both fields (4) and (9) are
tangent to the contact planes dy = pdx , the restriction of (4) to the invariant surface
F is parallel to (9). Moreover, the restriction of the field (4) to F is equal to the
field (9) multiplied by a smooth scalar function vanishing along the criminant (see
[13]). Generically, here there are two possible cases:

• The case C : the isotropic direction p0(q) is transversal to S0. Then the field (9) at
the point (q, p0(q)), q ∈ S0, is non-singular, and binary equation (2) has Cibrario
normal form dx2 = y dy2. See Fig. 5 (left).

• The case D: the isotropic direction p0(q) is tangent to S0. The field (9) at
(q, p0(q)), q ∈ S0, has a non-degenerate singular point: saddle or node or focus
(subcases Ds, Dn, D f , respectively). Under certain additional conditions (formu-
lated below), binary equation (2) has Dara–Davydov normal form

dy2 = (y − εx2) dx2, (10)

where ε < 0 (if saddle) or 0 < ε < 1
16 (if node) or ε > 1

16 (if focus). See Fig. 5.

The normal form dx2 = y dy2 is named after Italian mathematician Maria
Cibrario who established it first inCω (real analytic) category when studying second-
order linear partial differential equations of the mixed type [8]. Later on, a general
(and rather simple) proof of the Cibrario normal form (in Cω and C∞ categories)
was presented in the famous Arnold’s book [5].

The normal form (10) was firstly conjectured by Brazilian mathematician Lak
Dara [9] and then proved by A.A. Davydov [10] under the following genericity
conditions. Let α1,2 be the eigenvalues of the linearization of the vector field (9)
at the singular point considered. Then α1,2 are roots of the characteristic equation
α2 − α + 4ε = 0, and the excluded values ε = 0 and ε = 1

16 correspond to a degen-
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erate singular point (saddle-node or degenerate node, respectively). The additional
conditions required for the normal form (10) are the following.

First, the ratio of α1,2 is different from±1, and the eigendirections are not tangent
to the criminant. Second, the germ of the vector field (9) is C∞-linearizable, i.e., it
is C∞-smoothly equivalent to its linear part. The C∞-linearizability condition holds
true, for instance, if between the eigenvalues α1,2 there are no resonant relations
αi = n1α1 + n2α2 with integers n1,2 ≥ 0, n1 + n2 ≥ 2 (SternbergChen Theorem,
see e.g., [4, 14]). The proof presented in [10] is done in C∞ category, but is valid
in Cω as well (the requirement of C∞-linearizability should be replaced with Cω-
linearizability), see also the recent paper [6].

4 Singular Points of the Geodesic Flow

In addition to the isotropic surface F , the vector field 	V given by (4) has one more
evident invariant surface – the vertical surface

S0 = {(q, p) q = (x, y) ∈ S0, p ∈ RP}.

The restriction of the field (4) to S0 is vertical at almost all points (except for the
points where M = 0, and the field vanishes). Hence the surface S0 is filled with
vertical integral curves of the filed (4) and its singular points.

Singular points of the field (4) are given by two equations:

�(x, y) = 0 and M(x, y, p) = 0, (11)

and consequently, they are not isolated, but form a curve (or curves) in PT S. Alge-
braically, this property can be expresses in the following form: all components of the
vector field (4) belong to the ideal I (in the ring of smooth functions) generated by
two of them, namely, I = 〈�, M〉.
Remark 1 The fact that the horizontal generator �(x, y) of the field (4) does not
depend on p and the vertical generator M(x, y, p) is a cubic polynomial in p, plays
a crucial role in a general geometrical context, e.g., in the framework of Cartan’s
theory of the projective connection [3, 5].

Let us list those of the properties of the field (4) that we are going to use:

• Singular points of the field (4) are given by Eq. (11) and form a curve (or several
curves) in PT S.

• The spectrum of the linearization of the field (4) at every singular point contains
one zero eigenvalue and two real eigenvalues λ1,2, which vanish (simultaneously)
at those points where the cubic polynomial M(q, p) has a double root p. The latter
condition is equivalent to the direction p is tangent to S0 at the point q.
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• For every point q ∈ S0 and any p ∈ RP such that M(q, p) 
= 0 there exists a
unique integral curve of the field (4) that passes through the point (q, p) – a
vertical straight line, whose projection on S is not a geodesic. Consequently, the
vertical surface S0 is an invariant surface of (4).

• Geodesics cannot enter a point q ∈ S0 in arbitrary tangential direction, but only in
admissible directions p that satisfy the condition M(q, p) = 0.

• The isotropic direction p0(q) given by formula (7) is admissible at every point
q ∈ S0, i.e., M(q, p0(q)) = 0 for all q ∈ S0.

Depending on the roots of the cubic polynomial M (see Fig. 6), we have four
cases:

• C1: the isotropic direction p0 is a unique real root of M ,
• C2: M has a simple root p0 and a double non-isotropic real root p1 = p2,
• C3: M has three simple real roots: isotropic p0 and non-isotropic p1, p2,
• D : the isotropic double root p0 = p1 and a simple non-isotropic root p2.

If Re λ1,2 
= 0, the set W is the center manifold of the field, and the restriction
of the field to W is identically zero. Hence in a neighborhood of every singular
point where Re λ1,2 
= 0, the phase portrait of the field has a very simple topological
structure. Indeed, the reduction principle [4, 15] asserts that the germ of the field is
orbitally topologically equivalent to the direct product of the standard 2-dimensional
node (if Re λ1,2 have the same sign) or saddle (if Re λ1,2 have different signs) and 1-
dimensional zero vector field. However, the topological classification is not enough.

The paper [23] presents finite-smooth local normal forms of such fields, [26]
contains a brief survey (Appendix A) on the smooth and Cω classifications. These
results allow to establish smooth local normal forms of the field (4) at all singular
points (q, pi ), q ∈ S0, where pi is a simple real root of M(q, p). This gives the
description of geodesics that enter a degenerate point with all possible admissible
directions for the cases C1, C3. To study geodesics with the isotropic admissible
direction in the cases C2 and D, one can use a blow-up procedure.

Choosing appropriate local coordinates, we shall further assume that in a neigh-
borhood of the point q ∈ S0, Eq. (2) has the form dx2 = y dy2 in the case C and (10)
in the case D. Consequently, the discriminant curve S0 is the axis y = 0 in the case
C and the parabola y − εx2 = 0 in the case D. Since multiplication the metric by
the factor −1 does not change the geodesic flow, without loss of generality, assume
that y > εx2 and y < εx2 (including the case ε = 0) are Lorentzian and Riemannian
domains, respectively.

From now on, we shall consider geodesics outgoing from a degenerate point
q ∈ S0 with the isotropic admissible direction p0(q) as semitrajectories starting from
q.Wedistinguishgeodesics outgoing into theLorentzian (resp.Riemannian) domains
using the superscript + (resp. −). Let us clarify this with the following example.

Example 1 For the metric ds2 = dx2 − ydy2, the discriminant curve S0 = {y = 0}
divides the plane into the Lorentzian (y > 0) and Riemannian (y < 0) domains.
Formula (5) yields M(q, p) = p2, and we have the case C2.
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At every degenerate point q ∈ S0 there exist two admissible directions: p1 = 0
(non-isotropic, double root) and p0 = ∞ (isotropic). To see that the direction p0 =
∞ is admissible, it is convenient to interchange x and y. In the new coordinates
x̄ = y, ȳ = x , p̄ = 1/p, the polynomial M(q, p̄) = − p̄ has the root p̄ = 0.

The corresponding field (4) has a unique integral curve y = 0 that pass through
every point q ∈ S0 with tangential direction p1 = 0. Substituting y = 0 directly in
(3), one can see that y = 0 is an extremal of the action functional and its natural
parametrization is given by the equation ẍ = 0. Moreover, given degenerate point
q ∈ S0 there exists a one-parameter family of geodesics outgoing from q with the
tangential direction p = ∞. For instance, consider the family �0 of geodesics γα,
α ∈ R, outgoing from the origin; see Fig. 8 (right). They can be presented in the
agreed upon way as

γα =
{

γ+
α : x = αy

3
2 , y ≥ 0,

γ−
α : x = α(−y)

3
2 , y ≤ 0.

(12)

4.1 The Case C

The linearization of the field (4) at every singular point (q, pi ), q ∈ S0, i = 0, 1, 2,
has the spectrum (λ1,λ2, 0) with non-zero real eigenvalues λ1,2. Moreover, at a
singular point (q, p0) corresponding to the isotropic admissible direction the resonant
relation λ1 = 2λ2 holds. On the other hand, at a singular point (q, pi ), i = 1, 2,
corresponding to non-isotropic admissible direction the resonant relation λ1 + λ2 =
0 holds.3 Using the smooth classification of vector fields with non-isolated singular
points (see e.g., [26], Appendix A), we have the following results.

The germ of the field (4) at any point (q, p0), q ∈ S0, has C∞ orbital normal form

2ξ
∂

∂ξ
+ η

∂

∂η
+ 0

∂

∂ζ
(13)

with the first integrals I1 = ξ/η2 and I2 = ζ. The germ of the field (4) at any point
(q, pi ), q ∈ S0, i = 1, 2, has C∞ orbital normal form

ξ
∂

∂ξ
− η

∂

∂η
+ ξη

∂

∂ζ
(14)

3The relationλ1 = 2λ2 is a corollary ofλ1 + λ2 + λ3 = rλ1 with r = 3
2 andλ3 = 0, seeTheorem1

and formula (6). The relation λ1 + λ2 = 0 follows form the fact that the field 	W is divergence-free
and the function F does not vanish in a neighborhood of (q, pi ), i = 1, 2.
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with the first integral I = ξη. One can see that to every singular point of the field
(13) corresponds a one-parameter family of integral curves passing through this
point, while to every singular point of the field (14) correspond only two integral
curves. Projecting the integral curves down, we obtain the following results.

Theorem 2 ([24, 25]) Suppose that C holds true. Then to the isotropic direction
p0 corresponds a one-parameter family �0 of geodesics outgoing from the point q.
There exist smooth local coordinates centered at q such that the discriminant curve
S0 coincides with the x-axis, the isotropic direction p0(q) = ∞ and the geodesics
γ±

α ∈ �0 are semi-cubic parabolas

x = ατ 3X±
α (τ ), y = τ 2Y ±

α (τ ), α ≥ 0, (15)

where X±
α , Y ±

α are smooth functions, X±
α (0) = 1, Y ±

α (0) = ±1.

Theorem 3 ([24, 25]) Suppose that C3 holds true. Then to each admissible direction
pi , i = 1, 2, corresponds a unique geodesic passing through the point q. Both these
geodesics are smooth and timelike.

In the left panel of Fig. 7 we present the invariant foliations of the field (4) in
a neighborhood of the point (q, p0), q ∈ S0, that correspond to the first integrals
I1 = ξ/η2 (left) and I2 = ζ (right) of the normal form (13). Intersection of these
foliations gives the family of integral curves of (4). The family �0 of the geodesics
(15) is obtained (by the projection PT S → S) from the family of integral curves of
the field (4) that pass through its singular point (q, p0). The subfamily�+

0 ⊂ �0 of the
geodesics (15) outgoing into the Lorentzian semiplane, contains timelike, spacelike,
and isotropic geodesics.

In the right panel of Fig. 7 we present those of the leaves of the invariant foliation
of the field (4) in a neighborhood of the point (q, pi ), q ∈ S0, i = 1, 2, that pass
through (q, pi ). This foliation corresponds to the first integral I = ξη in the normal
form (14), and the leaves passing through (q, pi ) coincide with the planes ξ = 0 and
η = 0, while none of the remaining leaves contains singular points of (4). One of
these leaves coincides with the vertical surface S0 filled with vertical integral curves
whose projection on S are points of S0. Another invariant surface is filled with non-
vertical integral curves, through every point (q, pi ), q ∈ S0, there pass exactly one
curve.

Example 2 To illustrate the above, return to Example 1. In the coordinates x̄ = y,
ȳ = x , p̄ = 1/p, the equation of isotropic lines coincides with Cibrario normal form.
After multiplication by −1, the corresponding vector field (4) reads

	V = 2x̄

(
∂

∂ x̄
+ p̄

∂

∂ ȳ

)
+ p̄

∂

∂ p̄
. (16)

It is easy to check that the field (16) possesses the invariant foliation x̄ = c p̄2,
which includes, in particular, the vertical surface S0 (for c = 0), the isotropic surface
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Fig. 6 Real roots of the cubic polynomial M(p) and the set of singular point of the field (4). The
double line presents {(q, p0), q ∈ S0}, the bold lines present {(q, pi ), q ∈ S0}, i = 1, 2, the dotted
line presents S0

(for c = 1). This foliation is presented in the left side of the left panel of Fig. 7.
The restriction of the field (16) to every invariant leaf x̄ = c p̄2 reads 2c p̄3 ∂

∂ ȳ +
p̄ ∂

∂ p̄ . Canceling the factor p̄, we obtain the non-singular field 2c p̄2 ∂
∂ ȳ + ∂

∂ p̄ , whose
integral curves are presented in Fig. 5 (left). Fixing a degenerate pointq ∈ S0, in going
through all invariant leaves x̄ = c p̄2 and projecting down, we obtain the family (12)
of geodesics γ+

α (for c > 0) and γ−
α (for c < 0) presented in Fig. 8 (right).4 In Fig. 9,

two more examples of geodesics outgoing from a degenerate point are presented:
the family (12) in the case C1 (on the left) and the family (12) together with two
geodesics that have non-isotropic admissible directions in the case C3 (on the right).

4The attentive reader may remark that this invariant foliation contains also the leaf p̄ = 0, which
can be considered as the limiting case for c → ∞. The restriction of (16) to this leaf is filled with
integral curves parallel to the x̄-axis. This gives the family of geodesics x = const, which are the
limiting case of the semi-cubic parabolas (15): the two branches are glued together.
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( )x,y( )x,y
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Fig. 7 The cases C1, C3. Left panel: two invariant foliations of the field (4) near the point (q, p0),
q ∈ S0. Right panel: the invariant leaves of the field (4) passing through the point (q, pi ), q ∈ S0,
i = 1, 2. The dotted lines present the set of singular points of the field (4) and its projection, the
discriminant curve

y

x

y

x

Fig. 8 Two examples of the family �0 in Theorem 2. Geodesics in the metrics eydx2 − ydy2

(left) and dx2 − ydy2 (right) outgoing from q = 0. Timelike, spacelike, and isotropic geodesics
are depicted as solid, dashed, and bold solid lines respectively

Remark 2 If the pseudo-Riemannian metric on the surface S is induced by the
pseudo-Euclidean metric d X2 + dY 2 − d Z2 of the ambient space (see the example
above), the difference between the cases C1 and C3 has a graphical interpretation.
Namely, C1 and C3 correspond to positive and negative Gaussian curvature of the
surface S calculated in the Euclidean metric d X2 + dY 2 + d Z2.

Theorem 4 Suppose that C2 holds true. Generically, the point q locally separates
the curve S0 in two parts, filled with C1 and C3 points, respectively, and there exist
smooth local coordinates centered at q such that the metric has the form

ds2 = a(x, y) dx2 + ye(x, y) dy2, a(0) 
= 0, e(0) 
= 0, ay(0) = 0, axy(0) 
= 0.
(17)

Then to the double admissible direction p1 = p2 corresponds a unique geodesic
passing through the point q, a semicubic parabola with branches outgoing from q
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x

Fig. 9 Geodesics in the metrics ds2 = a(y)dx2 − ydy2 with a(y) = 1 + (y + y1)2 outgoing from
q = 0. The case C1 (y1 < 0, left) and the case C3 (y1 > 0, right). Timelike, spacelike, and isotropic
geodesics are depicted as solid, dashed, and bold solid lines respectively. Geodesics passing through
0 with non-isotropic admissible directions (right) are depicted as long-dashed bold lines. The grey
domains do not contain geodesics passing though 0

2C

y

1C

x

3C

Fig. 10 Geodesics in the metrics (17) outgoing from three different degenerate points: C1 (x < 0,
left), C2 (x = 0, center), and C3 (x > 0, right). Here timelike, spacelike, and isotropic geodesics
outgoing from q ∈ S0 with the isotropic direction p0 = ∞ are depicted as dashed lines, while the
geodesics outgoing from q ∈ S0 with non-isotropic admissible direction p1 = 0 are depicted as
bold lines

into the Lorentzian and Riemannian domains (depicted as long-dashed line in Fig.10,
center).

The proof is not published yet. In Example 1 considered above, we deal with a
non-generic case C2, since the condition axy(0) 
= 0 in (17) does not hold true. This
leads to the geodesic y = 0 instead of a semicubic parabola mentioned in Theorem 4.

4.2 The Case D

The cubic polynomial M at q ∈ S0 has the isotropic double root p0 = p1 and a
simple non-isotropic root p2. For the admissible direction p2, the analogous assertion
to Theorem 3 holds true: the germ of the field (4) at (q, p2) has C∞ normal form
(14), and to the direction p2 corresponds a unique smooth geodesic passing through
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the point q. However, the study of geodesics with the isotropic direction is more
complicated.

A special feature of the case D is that the linear part of the germ (4) at (q, p0),
q ∈ S0, has three zero eigenvalues. This prevents the possibility to obtain a normal
form similar to (13) in Theorem 2 or similar to (14) in Theorem 3. Moreover, in this
case even the reduction principle does not allow to establish the topological normal
form of this filed, since the center subspace5 of the germ (4) at (q, p0) coincides with
the whole tangent space, see [4]. However, using appropriate blowing up procedure,
one can reduce the germ (4) at (q, p0) to a smooth vector fieldwith non-zero spectrum
and study the obtained vector field using the standard methods.

Further we always assume that in the cases Ds and Dn the following genericity
condition holds true: there are no non-trivial integer relations

n1α1 + n2α2 + n3α3 = α j , n1 + n2 + n3 ≥ 1, ni ∈ Z+, j = 1, 2, 3,

where α1,2 are the eigenvalues of the linearization of the vector field (9) at (q, p0)

and α3 = 2. This condition implies the germ of a vector field obtained from (4) by
the blowing up procedure is linearizable, as well as the germ of the field (9).

4.2.1 The Cases Dn and D f

In a neighborhood of the considered point (q, p0), q ∈ S0, the field (4) above the
Lorentzian domain has an invariant foliation {Fα} presented in the left panel of
Fig. 11. Here the invariant leaf F0 coincides with the isotropic surface F . The
invariant leaves above the Riemannian domain are not depicted, since they contain
no integral curves that pass through (q, p0).

The linear part of the restriction of the field (4) to every invariant leaf Fα at
its singular point (q, p0) is equal to (9) multiplied by a smooth scalar function σα

vanishing along the criminant. Therefore, the restriction of the field (4) to every
invariant leaf Fα has the local phase portrait of the same type: node or focus. See
Fig. 11 (right panel). In going through all invariant leaves Fα and projecting the
integral curves down, we obtain the following result.

Theorem 5 ([26]) Let the case Dn or D f holds true. Then to the isotropic direction
p0 corresponds a two-parameter family �0 of C2-smooth geodesics γ+

α outgoing from
q into the Lorentzian domain, while there are no geodesics outgoing from q into the
Riemannian domain. Given α, the geodesics γ+

α,β ∈ �0 with fixed α and varying β
are projections of the integral curves from the leaf Fα; see Fig.11, center for Dn

and right for D f . The geodesics γ+
α,β ∈ �0 are timelike if α < 0, spacelike if α > 0

and isotropic if α = 0.

5The center subspace Tc of a vector filed 	V at its singular point 0 is spanned by the generalized
eigenvectors of the linearization of 	V at 0 corresponding to the eigenvalues λ with Re λ = 0.
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Fig. 11 The cases Dn and D f . The left panel: the invariant foliation {Fα} of the field (4) above
the Lorentzian domain (the isotropic surface F = F0 is depicted as bold). Here the leaves filled
with timelike, spacelike and isotropic geodesics are depicted as solid, dashed and bold solid lines,
respectively. The right panel: integral curves of the restriction of field (4) toFα and their projections
(the case Dn on the left and D f on the right). The criminant and the discriminant curve are depicted
as dotted lines

x

y

p y

x

x

y

p

Fig. 12 The case Ds . On the left: invariant foliation {Fα} of the field (4) above the Lorentzian
domain (the isotropic surface F = F0 is depicted as bold). Center: integral curves of the field (4)
on an invariant leaf Fα. On the right: geodesics outgoing from the point q ∈ S0. Timelike and
spacelike geodesics are depicted as solid and dashed lines, respectively. The bold solid and the
double solid lines present two isotropic geodesics. The criminant and the discriminant curve are
depicted as dotted lines

4.2.2 The Case Ds

In a neighborhood of the considered point (q, p0), q ∈ S0, the field (4) above the
Lorentzian domain has an invariant foliation {Fα} presented in the left panel of
Fig. 12. Here the invariant leaf F0 coincides with the isotropic surface F . The
invariant leaves above the Riemannian domain are not depicted, since they contain
no integral curves that pass through (q, p0).

The linear part of the restriction of the field (4) to every invariant leaf Fα at
its singular point (q, p0) is equal to (9) multiplied by a smooth scalar function σα
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n fD DDs

Fig. 13 Computer generated geodesics (solid lines) of the metric dy2 + (εx2 − y)dx2 with ε < 0
(the case Ds ), 0 < ε < 1

16 (the case Dn), and ε > 1
16 (the case D f ). The parabola depicted as dotted

line is the discriminant curve S0

vanishing along the criminant. Therefore, the restriction of the field (4) to every
invariant leaf Fα has a saddle at (q, p0). See Fig. 12 (right panel).

Theorem 6 ([26]) Let the case Ds holds true. Then to the isotropic direction p0

corresponds a one-parameter family �0 of C2-smooth geodesics outgoing from q
into the Lorentzian domain, while there are no geodesics outgoing from q into the
Riemannian domain. There exist smooth local coordinates centered at q such that S0
is the parabola y = εx2 and the geodesics γ+

α ∈ �0 outgoing from q have the form

y = ε1

2
x2 + Yα(x), Yα(x) = o(x2), α ∈ R, (18)

together with one additional isotropic geodesic

y = ε2

2
x2 + Y (x), Y (x) = o(x2), (19)

where ε1ε2 = ε, ε1 + ε2 = 1
2 , ε1 > 1

2 , ε2 < 0. Geodesics (18) are timelike if α < 0,
spacelike if α > 0, isotropic if α = 0; see Fig.12, right.

It is interesting to note that invariant foliations in the cases Dn , D f and Ds have
the different topological structures (compare the left panels of Figs. 11 and 12). In
the cases Dn , D f all invariant leaves intersect on the criminant only, while in the
case Ds they intersect on the criminant (dotted line) and on the double line, whose
projection is the isotropic geodesic (19). In Fig. 13, we present computer generated
geodesics in the cases Ds , Dn , D f .
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4.3 Example: Clairaut Type

It is of interest to observe an important difference between the families �0 in the
cases C1, C3 and D. In the cases C1, C3, the family �0 is symmetric with respect
to S0 in the following sense: it contains an infinite number of geodesics γ+

α ∈ �0

outgoing into the Lorentzian domain and an infinite number of geodesics γ−
α ∈ �0

outgoing into the Riemannian domain. On the contrary, in the case D, the family
�0 is non-symmetric: it contains an infinite number of geodesics γ+

α ∈ �0 outgoing
into the Lorentzian domain and no geodesics γ−

α ∈ �0 outgoing into the Riemannian
domain.

To understand this phenomenon better, consider the case when the isotropic direc-
tion p0 is tangent to the curve S0 at all points q ∈ S0, for instance, the metric
dy2 + (εx2 − y)dx2. The equation of geodesics in the metric ds2 = dy2 − ydx2

can be studied using qualitative methods, see [25] (Sect. 3). The Lagrangian of the
length functional L = √

p2 − y does not depend on the variable x , hence the field (4)
possesses the energy integral H = L − pL p. After evident transformations, equation
H = const can be reduced to

p2 = y − αy2, α ∈ R, (20)

which is a family of implicit differential equations of Clairaut type [11].
Every (unparameterized) geodesic in the metric ds2 = dy2 − ydx2 is a solution

of Eq. (20). Conversely, every solution of (20) is a geodesic except the horizontal
lines y ≡ const, each of which is the envelop of the family of integral curves of (20)
for a given α (see [25]). For instance, the value α = 0 corresponds to the isotropic
surface p2 = y (a parabolic cylinder) and gives, in particular, the isotropic geodesic
y = 1

4 x2 passing through the origin.
For determining non-isotropic geodesics, observe that every invariant surface

(20) is a cylinder whose generatrices are parallel to the x-axis and the base is an
ellipse (if α > 0) or a hyperbola (if α < 0). In the latter case, the hyperbolic cylinder
p2 = y − αy2 consists of two connected components: positive and negative lying in
the domains y ≥ 0 and y ≤ α−1, respectively. Positive components of the hyperbolic
cylinders (α < 0) together with all other cylinders (α ≥ 0) form an invariant foliation
over the Lorentzian domain y > 0. Negative components of the hyperbolic cylinders
form an invariant foliation over the Riemannian domain y < 0; they do not intersect
the plane y = 0, and consequently, do not contain integral curves whose projections
to the (x, y)-plane are geodesics passing through the x-axis. See Fig. 14 (left).

Thus to everyα ≥ 0 corresponds a geodesic γ+
α ∈ �0 which is timelike ifα > 0 or

isotropic ifα = 0. To everyα < 0 corresponds a spacelike geodesic γ+
α ∈ �0, whose

lift belongs to the positive component of the hyperbolic cylinder p2 = y − αy2. In
contrast to this, the negative component of the same cylinder is filled with integral
curves of the field (4) whose projections on the (x, y)-plane are separated from the x-
axis by the horizontal strip α−1 < y < 0. Therefore, there are no geodesics outgoing
into the Riemannian domain. See Fig. 14, right.
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Fig. 14 The invariant foliation p2 = y − αy2 in the (x, y, p)-space (left) and the corresponding
geodesics (right). Timelike, spacelike and isotropic geodesics are solid, dashed and bold solid lines,
respectively
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Orbital Formal Rigidity for Germs of
Holomorphic and Real Analytic Vector Fields

Jessica Angélica Jaurez-Rosas

Abstract This survey paper is focused on discussing themain facts from the (orbital)
formal rigidity phenomenon for germs of holomorphic and real analytic vector fields
in the complex and real planes, exploring their similar and different properties.

Keywords Holomorphic vector fields · Real analytic vector fields · Orbital formal
rigidity

1 Introduction

The (orbital) formal rigidity and (orbital) real-formal rigidity, as any rigidity phe-
nomenon, take place when a weaker equivalence implies a stronger equivalence: the
(orbital) formal rigidity phenomenon takes place when a formal relation between
germs of holomorphic vector fields at̂0 ∈ C

2 implies that such germs coincide under
a (an orbital) holomorphic change of coordinates (Sect. 2.1), while the (orbital) real-
formal rigidity phenomenon takes place when a formal relation between germs of
real analytic vector fields at ̂0 ∈ R

2 implies that such germs coincide under a (an
orbital) real analytic change of coordinates (Sect. 2.2).

Despite the fact that the complexification of a germ of real analytic vector field at
̂0 ∈ R

2 allows us to consider it as a germ of holomorphic vector field at̂0 ∈ C
2, the

(orbital) real-formal rigidity phenomenon is not an immediate consequence of the
(orbital) formal rigidity phenomenon (Sects. 2.3, 3.1 and 4).

First of all, let us briefly discuss the (orbital) formal rigidity. Poincaré’s lineariza-
tion theorem precedes the study of this phenomenon: Poincaré’s theorem states
that, given a germ of holomorphic vector field with a singularity at the origin in
C

2, if its linear part has nonresonant spectrum belonging to the Poincaré domain
(Definitions 3.1 and 3.2), then there exists a germ of biholomorphism at ̂0 ∈ C

2

sending the germ of vector field to the vector field induced by its linear part (see
Theorem 3.4).
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The search of understanding the cases which do not satisfy the genericity con-
ditions of Poincaré’s linearization theorem led to the study of the (orbital) formal
rigidity phenomenon. This point of view has allowed to understand the invariants of
the (orbital) analytic classification of germs of holomorphic vector fields, as men-
tioned in Sects. 3 and 4.

The well-known results due to Poincaré-Dulac and Brjuno (Theorems 3.4 and
3.7) allow us to conclude that the (orbital) formal rigidity takes place for germs of
real analytic vector fields with generic nonzero linear part. But this phenomenon in
general fails for germs with nonzero linear part which do not satisfy the genericity
assumptions of these rigidity theorems (Sect. 3.2).

The case with zero linear part was recently studied by Laura Ortiz-Bobadilla,
Ernesto Rosales-González and Serguei M. Voronin (Sect. 4). In particular, Voronin
proved that the orbital formal rigidity phenomenon takes place for a generic class of
germs of holomorphic vector fields with zero linear part (Theorem4.1).

Now, we briefly refer the case of the (orbital) real-formal rigidity phenomenon.
Theorems 3.5 and 3.8 are the real analytic versions of Poincaré-Dulac’s and Brjuno’s
results. These theorems allow us to conclude that, for germs of real-analytic vector
fields with generic nonzero linear part, the (orbital) real-formal rigidity takes place.
The Euler vector field shows that this phenomenon fails when germs with nonzero
linear part do not satisfy the generic assumptions of these results: the vector field

x2
∂

∂ x
+ (y − x)

∂

∂ y

has a unique complex separatrix, that is, an invariant irreducible analytic curve pass-
ing through the singularity, namely the line {x = 0}. This vector field is (orbitally)
real-formally equivalent to a real analytic vector field with two different separatrices,
namely its (orbital) formal normal form (see [14]). As a consequence, they are not
(orbitally) real-analytic equivalent.

In [15] it was proved the real-analytic version of Voronin’s rigidity theorem:
under generic conditions the orbital real-formal rigidity takes place for germs of real
analytic vector fields with zero linear part (see Theorem 4.1).

We briefly mention the structure of this survey paper. Section2 is focused on
describing the (orbital) formal rigidity phenomena for holomorphic and real analytic
germs. The (orbital) formal rigidity problem for germs with nonzero linear part is
discussed in Sect. 3.

Section4 is focused on discussing the main results from the orbital rigidity phe-
nomenon for holomorphic and real analytic germswith zero linear part. In this section
is included a detailed outline of the proof of Voronin’s rigidity theorem and its real-
analytic version (Theorem 4.1), having as principal aim to discuss further similarities
and differences between the holomorphic and the real-analytic cases.
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2 Analytic Equivalence and Formal Rigidity

2.1 Holomorphic Vector Fields

Let V be the class of germs of holomorphic vector fields with an isolated singularity
at the origin̂0 in the complex plane C

2. Given v,w ∈ V , we denote by Fv and Fw

the singular foliations induced by representatives of v and w, that is, the partition
of (C2,̂0) into the complex trajectories of v and w (see [14]).

We say that v andw areorbitally analytically equivalent (or their foliationsFv and
Fw are analytically equivalent) if there exists a holomorphic change of coordinates
mapping the leaves ofFv into the leaves ofFw. Equivalently, there exist a germ of
biholomorphismH at̂0 ∈ C

2 and a germ of holomorphic mapK at̂0 ∈ C
2 which

is nonzero at the origin, satisfying

w = K H∗(v) := K
[

(DH · v) ◦ H −1
]

. (1)

If the change of coordinates preserves the parametrization of the complex trajectories
of v and w, then K ≡ 1. In such case we shall say that v and w are analytically
equivalent.

Differentiating both sides of the equality (1) we obtain a formal relation induced
by the Taylor series ofH andK between the Taylor series of v and w. In general,
this relation is described as follows: there exist an invertible formal transformation
H ∈ (

C[[x, y]])2 with zero constant term in each component and a formal series
K ∈ C[[x, y]] with nonzero constant term satisfying

ŵ = K H∗(̂v) := K
[

(D H · v̂) ◦ H−1
]

, (2)

where v̂ and ŵ are Taylor series of v and w, respectively. In this case, we shall say
that v and w are orbitally formally equivalent (or their foliations Fv and Fw are
formally equivalent). If K ≡ 1 we shall say that v and w are formally equivalent.

Remark 2.1 The (orbital) analytic equivalence and the (orbital) formal equivalence
induce equivalence relations on the class V .

As we have seen, the existence of a (an orbital) formal equivalence is a necessary
condition for the existence of an (orbital) analytic equivalence between two germs
of holomorphic vector fields. Since it is easier to prove the existence of a (an orbital)
formal equivalence, it is important to know whether it is also a sufficient condition.
This phenomenon will be called (orbital) formal rigidity.
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2.2 Real Analytic Vector Fields

Let v = (v1, v2) andw = (w1,w2) be two germs of real analytic vector fields with an
algebraic isolated singularity at̂0 ∈ R

2, that is, v1 and v2 (w1 and w2) are coprime
in the ring of convergent complex series C〈x, y〉.

The real singular foliations induced by representatives of v andw (i.e., the partition
of (R2,̂0) into their real trajectories) will be denoted by Fv and Fw, respectively.

As above, we shall define equivalence relations on the class of germs of real
analytic vector fields with an algebraic isolated singularity at̂0 ∈ R

2.
We say that v andw are orbitally real-analytically equivalent if there exist a germ

of real analytic diffeomorphismmapping the leaves of the foliationFv into the leaves
ofFw, that is, if v andw satisfy the relation (1), takingH as a germ of real analytic
diffeomorphism at̂0 ∈ R

2 and K as a germ of real analytic map which is nonzero
at the origin. If the germH preserves the parametrization of the real trajectories of
v and w, then K ≡ 1, in which case v and w are real-analytically equivalent.

These geometric equivalent relations between v andw imply the following formal
relations: v and w are orbitally real-formally equivalent if the Taylor series of v and
w satisfy the equality (2), where H ∈ (

R[[x, y]])2 has zero constant term in each
component and K ∈ R[[x, y]] has nonzero constant term. If K ≡ 1 we say that v
and w are real-formally equivalent.

As in the complex case, whether the (orbital) real-formal equivalence is also a
sufficient condition for the (orbital) real-analytic equivalence, we shall say that the
(orbital) real-formal rigidity phenomenon takes place.

2.3 Formal Rigidity and Real-Formal Rigidity

In this subsection we shall relate the (orbital) formal rigidity with the (orbital) real-
formal rigidity. As a result we may show their basic differences.

In what follows we refer to (R2,̂0) and (C2,̂0) as neighborhoods of the origin in
R

2 and C
2, respectively.

Given v a real vector field defined on (R2,̂0) we shall denote by vC its complexi-
fication, that is, the holomorphic vector field defined on (C2,̂0) which results from
the extension of the domain of v to an open neighborhood of the origin in C

2.
The complexification process establishes an one-to-one correspondence between

the class of germs of real analytic vector fieldswith an algebraic isolated singularity at
̂0 ∈ R

2 and the class of germsof holomorphic vector fieldswith an isolated singularity
at̂0 ∈ C

2 whose components are convergent series with real coefficients. The last
class will be denoted by VR.

Under such identification, the (orbital) real-analytic equivalence and the (orbital)
real-formal equivalence induce equivalence relations on VR, which will be called in
the same way.



Orbital Formal Rigidity for Germs … 161

Remark 2.2 Two germs v,w ∈ VR are (orbital) real-analytic equivalent if and only if
they are (orbital) analytic equivalent andH (the pair (H ,K )) realizing the equiv-
alence as in (1) is the complexification of the germ of a real analytic diffeomorphism
(pair). As a consequence H preserves the real plane R

2.
On the other hand, v,w ∈ VR are (orbital) real-formal equivalent if and only if

they are (orbital) formal equivalent and H (the pair (H, K )) realizing the equivalence
as in (2) has real coefficients.

As in Sect. 2.2, we shall say that the (orbital) real-formal rigidity phenomenon
takes place VR if the (orbital) real-analytic equivalence and the (orbital) real-formal
equivalence coincide.

The orbital formal rigidity phenomenon does not imply the orbital real-formal
rigidity phenomenon: if vC andwC are orbitally analytically equivalent and the germ
of biholomorphism H realizes the analytic equivalence between their foliations,
then does not necessarily preserve the real plane, as the following examples shows.

Example 2.3 We consider vC ∈ VR. Let φv (t; (x, y)) be the flow of a representative
of v with initial condition (x, y) = φv (0; (x, y)). Its complexification, denoted by
φC
v (t; (x, y)), is defined on Dε × Bδ , where Dε is an open disc of radius ε > 0

centered at 0 ∈ C and Bδ is an open disc of radius δ > 0 centered at̂0 ∈ C
2.

It is defined below a holomorphic map t(x, y) such that the transformation
(x, y) �→ φC

v (t(x, y), (x, y)) does not preserve the real plane R
2. As a consequence,

we obtain an orbital automorphism of vC which is not the complexification of a real
analytic diffeomorphism.

Let (x0, y0) ∈ R
2 be a nonsingular point of v with x0 
= 0 belonging to Bδ . Since

(x0, y0) is nonsingular then there exists α ∈ C � R as close to 0 as desired, such that
φv (α, (x0, y0)) does not belong to R

2. Let α0 ∈ Dε such a number.
We consider t(x, y) := β0x , where β0 := α0/x0. The set

A := t−1 (Dε) ∩ Bδ =
{

(x, y) ∈ C
2 | ‖(x, y)‖ < δ , |x | < ε

|β0|
}

satisfies the following properties:

• It is an open convex subset ofC
2, that is, the line segment connecting two elements

of A is contained in A. As a consequence A is connected.
• It is invariant by complex conjugacy, that is, (x, y) ∈ A if and only if (x̄, ȳ) ∈ A.
• The origin̂0 and the point (x0, y0) belong to A.

As a consequence theholomorphic transformationH(x, y) := φC
v (t(x, y); (x, y))

is defined on A. Moreover, it is a biholomorphism around the origin in C
2.

We shall show that H does not preserve the real planeR
2. Otherwise, it must coin-

cide with the holomorphic transformation ˜H(x, y) := H (x̄, ȳ) in an open neigh-
borhood of the origin. Since A is invariant by complex conjugacy, both trans-
formations are defined on A. Moreover, H and ˜H must coincide in A, since A
is a connected open neighborhood of ̂0 ∈ C

2 (see Identity Theorem, [11]). But
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H(x0, y0) = φC
v (α0; (x0, y0)) does not belongs to R

2 by the choice of α0, leading
to a contradiction.

3 Formal Rigidity for Elementary Singularities

In this subsection we shall discuss Poincaré-Dulac’s and Brjuno’s theorems together
with their real analytic versions. These theorems state that the formal and real-formal
rigidity phenomenon take place for generic germs of vector fields with nonzero linear
part. Even though these results are valid for C

m and R
m , we are only focused on C

2

andR
2. At the end of this subsectionwe shall consider special caseswhere the formal

rigidity phenomenon does not take place.

3.1 Poincaré-Dulac’s and Brjuno’s Theorems

In what follows v,w will be germs of holomorphic vector fields with an isolated
singularity at ̂0 ∈ C

2 (that is v,w ∈ V) and A will be the linear part of v at the
singular point.

Definition 3.1 ((Non)resonant pairs and resonant vector monomials) The pair
(λ1,λ2) ∈ C

2 is called resonant, or more precisely, additive resonant if there exists
(m1,m2) ∈ N

2 such that m1 + m2 � 2, satisfying

λi = m1λ1 + m2λ2 , for some i ∈ {1, 2} . (3)

The equality (3) will be called resonance and the monomial vector field xm1
1 xm2

2
∂

∂ xi
will be the resonant vector monomial corresponding to the resonance (3). If there
does not exist a pair of natural numbers satisfying the property (3), we shall say that
(λ1,λ2) is nonresonant.

When the vector field v has nonzero linear part, we shall say that v is resonant if
the spectrum of its linear part is resonant. Otherwise, v will be nonresonant.

If v has nonzero linear part A, it is possible to show that there exists a for-
mal change of coordinates H such that H∗(v) = A + ṽ, where ṽ is a formal vector
field with order greater than 1 having only resonant vector monomials correspond-
ing to the resonances of the spectrum of A: the nonresonant vector monomials can
be eliminated recursively by means of suitable polynomial transformations. More
specifically, the nonresonant vector monomial xn11 xn22

∂
∂ xi

is eliminated by a polyno-
mial transformation having a coefficient with factor (λi − n1λ1 − n2λ2)

−1, where
λ1,λ2 are the eigenvalues of A; the number λi − n1λ1 − n2λ2 will be called small
denominator.
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This formal vector field is called the formal normal form of v and it is unique
with respect to such properties. In particular ṽ ≡ 0 whenever the spectrum of A is
nonresonant, that is, if v is nonresonant then it is formally linearizable. Accurate
proofs of the previous assertions can be found in [1, 14].

The following properties will be useful to describe when the (orbital) formal
rigidity phenomenon takes place.

Definition 3.2 (Poincaré and Siegel domains) ThePoincaré domain is the collection
of ordered pairs (λ1,λ2) ∈ C

2 such that 0 ∈ C does not belong to the convex hull of
λ1,λ2 in C. The Siegel domain is the complement of the Poincaré domain in C

2.

Remark 3.3 By the definition, (λ1,λ2) belongs to the Poincaré domain if and only if
λ1,λ2 
= 0 and its quotient is not a negative real number. Therefore this is a generic
property.

It follows directly that (λ1,λ2) has a finite number of resonances when it belongs
to the Poincaré domain. As a consequence v has a polynomial formal normal form
whenever the spectrum of its linear part A belongs to the Poincaré domain.

If (λ1,λ2) belongs to the Siegel domain and λ1,λ2 
= 0 has a negative irrational
quotient, then the pair is nonresonant. Otherwise (λ1,λ2) has an infinite number of
resonances.

Theorems 3.4 and 3.7 state that the (orbital) formal rigidity phenomenon takes
place under generic conditions over the linear part of germs of nondegenerate holo-
morphic vector fields. The real analytic versions of such results (Theorems 3.5 and
3.8) are not their immediate corollaries, as will be seen from the outlines of their
proofs appearing at the end of this subsection.

Theorem 3.4 (Poincaré-Dulac) If the spectrum of A, the linear part of v ∈ V at the
singular point, belongs to the Poincaré domain then v andw are (orbitally) formally
equivalent if and only if they are (orbitally) analytically equivalent.

Theorem 3.5 (Poincaré-Dulac, real analytic version) If the spectrum of A belongs
to the Poincaré domain and v and w are the complexification of germs of real ana-
lytic vector fields being (orbitally) formally equivalent then they are (orbitally) real-
analytically equivalent.

Accurate proofs of Theorems 3.4 and 3.5 can be found in [1, 5, 14, 26].

Definition 3.6 (Brjuno’s condition) A nonresonant pair (λ1,λ2) ∈ C
2 satisfies the

Brjuno’s condition if there exist C, ε > 0 such that

∣

∣λi − (m1λ1 + m2λ2)
∣

∣

−1� C exp(|m|1−ε)

for m := (m1,m2) ∈ N
2, with |m| := m1 + m2 large enough.

In what follows we formulate Brjuno’s theorem and its real analytic version,
whose proofs can be found in [1, 3, 14].
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Theorem 3.7 (Brjuno) If the spectrumof A, being nonresonant, belongs to the Siegel
domain and satisfies the Brjuno’s condition, then v is analytically linearizable. As a
consequence, if v and w are (orbitally) formally equivalent then they are (orbitally)
analytically equivalent.

An earlier result is Siegel’s theorem which has the same conclusion as Brjuno’s
theorem assuming that the spectrum of A is Diophantine. Even though this condi-
tion is more restrictive than the Brjuno’s condition, the pairs in C

2 which are not
Diophantine have Lebesgue measure zero (see [1]).

Theorem 3.8 (Brjuno, real analytic version) If v and w are the complexifications of
germs of real analytic vector fields being (orbitally) formally equivalent, under the
conditions of Brjuno’s theorem, they are (orbitally) real-analytically equivalent.

Finally, we briefly outline the main ideas of the proofs of the above results. Under
the conditions of Theorems 3.4 and 3.7 we can conclude that the formal normal form
of v is a polynomial vector field. Moreover, the formal transformation H mapping
v into its formal normal form is convergent, since in these cases the small denomi-
nators decay no faster than 1

C exp(|m|ε−1) and as a consequence, the growth of the
coefficients of H is controlled.

If v and w are (orbitally) formally equivalent, then we can suppose that they have
the same k-jet for an arbitrary finite order k after a polynomial change of coordinates
(multiplied by a polynomial with nonzero constant term if the equivalence is orbital),
which is induced by a suitable finite jet of the formal transformations realizing the
equivalence. As a consequence, they have the same formal normal form (by the
uniqueness of the formal normal form). Therefore w will be analytically equivalent
to this formal normal form, and in this way one can conclude Theorems 3.4 and 3.7.

The real analytic versions of Poincaré-Dulac’s and Brjuno’s theorems (Theorems
3.5 and 3.8) are proved by the previous arguments, after proving that the formal
normal formof the complexification of a real analytic vector field has real coefficients,
in the sameway as the (orbital) formal change of coordinates which conjugates them.

3.2 Cases Where Formal Rigidity Fails

What happens when the conditions of Poincaré-Dulac’s and Brjuno’s theorems are
not satisfied?We shall briefly mention some cases where this conditions are violated
and as a consequence, the formal rigidity phenomenon does not take place: Cremer
saddles, resonant complex saddles, and complex saddle-nodes.

We consider the germ of a holomorphic vector field at̂0 ∈ C
2. It will be called

complex saddle if its linear part has nonzero eigenvalues belonging to the Siegel
domain. By Hadamard-Perron’s theorem this germ has two separatrices. After an
analytic change of coordinates we may assume that these separatrices are the axes,
and multiplying this latter vector field by a nonzero constant we can assume that
its linear part is ∂

∂ x + λ ∂
∂ y , where λ is the respective quotient of the eigenvalues.
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In what follows the holonomy map over a positive small loop on the x-axis will be
referred as the holonomy map of the complex saddle. Note that the linear coefficient
of this holonomy map is exp(2πiλ) ∈ S

1.
There exist complex saddles, called Cremer saddles, which are formally lineariz-

able but are not analytically linearizable. The analytic classification of such complex
saddles is unknown. Below we shall briefly indicate the arguments to guarantee the
existence of this type of complex saddles.

The only analytic invariant of the complex saddles with the same linear part is
their holonomy map [8, 14]. On the other hand we have the following realization
theorem whose proof can be found in [25] or [9].

Theorem 3.9 For any conformal germ f (z) = exp(2πiφ)z + O(z2),φ ∈ R and any
λ < 0 such that λ ≡ φ modZ, there exists a vector field with linear part ∂

∂ x + λ ∂
∂ y

whose holonomy map coincides with f .

From the above results and the following theorem due to Yoccoz (see [35, 36]),
the existence of the complex saddles which are formally linearizable but are not
analytically linearizable follows.

Theorem 3.10 (Yoccoz) If the complex number μ = exp(2πil), with l ∈ R, violates
the Brjuno’s condition, then there exists a holomorphic germ at 0 ∈ C with linear
part μz which is not analytically linearizable.

Recall that a complex number μ = exp(2πil), with l ∈ R, satisfies the Brjuno’s
condition if it is not a root of unity and there exist ε,C > 0 such that for all k ∈ N,
| μk − 1 |−1< C exp(k1−ε).

Now we shall mention the case of resonant complex saddles (eigenvalues have
rational negative ratio). The (orbital) formal classification of these saddles depends
on scalar parameters (see [12, 13]).

Given a formal equivalence class of resonant complex saddles, there is a functional
modulus of analytic classification which is known as Ecalle–Voronin’s modulus (this
modulus was discovered independently by Ecalle and Voronin, [6, 13, 18, 31, 33]).
The existence of such functional moduli implies that the formal rigidity phenomenon
cannot take place.

This modulus is obtained from the analytic classification of the holonomymaps of
the resonant complex saddles, passing through the analytic classification of parabolic
germs (i.e., holomorphic germs at (C, 0) with linear part equal to 1). A complete
exposition of these results can be found in [14].

Finally we shall briefly discuss the germs of holomorphic vector fields at̂0 ∈ C
2

whose linear part has one zero and one nonzero eigenvalue. It will be called saddle-
node.
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A saddle-node is orbitally formally equivalent to

xr+1

1 + axr
∂

∂ x
− y

∂

∂ y

for some a ∈ C (the coordinate axes are separatrices of these vector fields). In general
a saddle-node does not have a holomorphic separatrix related to the zero eigenvalue.
J. Martinet and J.-P. Ramis obtained the moduli of analytic classification for every
formal equivalence class of saddle-nodes. Suchmoduli are functional moduli (equiv-
alent to Ecalle–Voronin’s moduli) and it is known as Martinet-Ramis’s moduli [7,
13, 17, 18, 34]. Hence the orbital formal classification has one-dimensional mod-
uli (a ∈ C), and the orbital analytic classification has functional moduli. Thus, the
formal rigidity phenomenon cannot take place.

Exceptionally, orbital formal rigidity phenomenon takes place for germs of vector
fields having nilpotent linear part, that is, the orbital formal and orbital analytic
classification coincide [4, 9, 16, 19, 29, 30].

4 Rigidity for Singularities with Zero Linear Part

We shall denote byVn the class of germs of holomorphic vector fieldswith an isolated
singularity at̂0 ∈ C

2, zero (n − 1)-jet, and nonzero n-jet, for n � 2. The class VR
n

is the intersection Vn ∩ VR, that is, is the class of germs of complexifications of real
analytic vector fields belonging to Vn .

In [32] Voronin proved that the orbital formal rigidity phenomenon takes place
for generic germs of vector fields in the class Vn (Theorem 4.1). Later Ortiz, Rosales,
and Voronin proved that the formal rigidity phenomenon also takes place for generic
germs of vector fields in Vn [20]. After that, they proved that formal rigidity and
orbital formal rigidity takes place for generic dicritical germs of vector fields in Vn ,
obtaining in addition theminimal invariants for the strict orbital analytic classification
of such germs [21]. Recently they obtained the minimal invariants for strict orbital
analytic classification of generic nondicritical germs [23]. It is important to mention
that in order to obtain the minimal invariants, they constructed orbital formal normal
forms for both dicritical and nondicritical germs, which are in fact analytic normal
forms for generic cases [22, 24].

The main goal of the rest of this section is to give a detailed outline of the proof
of Theorem 4.1 which includes Voronin’s rigidity theorem [32] and its real analytic
version proved recently in [15]. The presented outline is an adjustment of the proof
appearing in [15].

Theorem 4.1 (Voronin-Jaurez) Under generic conditions, v,w ∈ Vn are orbitally
formally equivalent if and only if they are orbitally analytically equivalent.
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Whenever v and w are the complexifications of real analytic germs, they are
orbitally real-formally equivalent if and only if they are orbitally real-analytically
equivalent.

In Sect. 4.1 are introduced the basic notions used in the rest of this section. The
generic conditions of Theorem 4.1 are specified in Sect. 4.2. The outline of the proof
is achieved in Sect. 4.3, while Sect. 4.4 collects the fundamental results used in the
proof of Theorem 4.1.

4.1 Basic Notions and Definitions

4.1.1 Complex and Real Möbius Band

The complex Möbius band MC is the closure in C
2 × CP

1 of the set constituted by
the pairs ((x, y), (x; y)), where (x; y) is the element in CP

1 generated by the point
(x, y) ∈ C

2
� {̂0}. The boundary of this subset in C

2 × CP
1 is DC := {̂0} × CP

1

called the complex exceptional divisor.
The complex Möbius band MC has an analytic manifold structure induced by the

following embeddings

C
2 �

C
2 × CP

1

(x, u) ((x, xu), (1; u))

, C
2 �

C
2 × CP

1

(v, y) ((vy, y), (v; 1))

The Cartesian projection π : MC −→ C
2 is called the (standard) monoidal map or

the blow-down. Its inversemapπ−1 : C
2

� {̂0} −→ MC � DC is defined as (x, y) �→
((x, y), (x; y)). This map is known as the complex blow-up.

The set MC ∩ (

R
2 × RP

1
)

will be called the real Möbius band and it will be
denoted by MR. Its boundary in R

2 × RP
1 is {̂0} × RP

1 = DC ∩ (

R
2 × RP

1
)=: DR

and it will be called the real exceptional divisor.
In what follows, the map � (�) together with its domain will be called the

coordinate chart (x, u = y/x) (the coordinate chart (v = x/y, y)).

4.1.2 Vanishing Holonomy Group

Definition 4.2 Given υ ∈ Vn , the foliation induced by υ on (C2,̂0) will be denoted
by Fυ . The blow-up of Fυ (or the blow-up of υ), denoted by ˜Fυ , is the foliation
obtained by extending π−1 (Fυ) on the complex exceptional divisor DC (see [14]).

Let (Pn, Qn) be the n-jet of υ ∈ Vn . We shall say that υ ∈ Vn is nondicritical if the
homogeneous polynomial xQn − yPn does not vanishes identically, or equivalently,
if the complex exceptional divisor DC is a separatrix of the foliation ˜Fυ . Otherwise
υ will be called dicritical.
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Letυ ∈ Vn be a nondicritical germ. In this case the complex exceptional divisorDC

is an invariant set of the foliation ˜Fυ which has (not necessarily different) n + 1
singular points d1, . . . , dn+1 in DC. Let d0, d′

0 ∈ DC � {d1, . . . , dn+1} nonsingular
points and γ : [0, 1] −→ DC � {d1, . . . , dn+1} be a path beginning at d0 and ending
at d′

0.
We shall consider Td0 and T ′

d′
0
two germs of complex curves which are contained

in MC and intersect DC transversally at d0 and d′
0, respectively (i.e., Td0 and T ′

d′
0
are

cross-sections to DC).

Definition 4.3 (Correspondence map over a path) The map obtained by the lift of
the path γ on each leaf sufficiently close to the complex exceptional divisor DC will
be called the correspondence map for the foliation ˜FC

υ over the path γ. We shall
denote this map by �υ

γ : (

Td0 , d0
)−→ (

T ′
d′
0
, d′

0

)

.

A careful exposition of the previous concept and its resulting properties can be
found in [14].

It is important to notice that the correspondence map �υ
γ is a germ of biholomor-

phism whose inverse map is �υ
γ−1 : (

T ′
d′
0
, d′

0

)−→ (

Td0 , d0
)

, where γ−1 is defined as
t �→ γ(1 − t).

Givenα ∈ �1
(

DC � {d1, . . . , dn+1}, d0
)

and two representatives σ, σ̃ ∈ α, it can
be verified that�υ

σ = �υ
σ̃ : (

Td0 , d0
)−→ (

T ′
d0

, d0
)

. As a consequencewe shall denote
by�υ

α : (

Td0 , d0
)−→ (

T ′
d0

, d0
)

the correspondencemapover any representative ofα.
In particular, if Td0 = T ′

d0
, the map �υ

α will be called the holonomy map for the
foliation ˜FC

υ over α.

Definition 4.4 (Vanishing holonomy group) The group of germs

Gυ =
{

�υ
α : (

Td0 , d0
)−→ (

Td0 , d0
) ∣

∣α ∈ �1
(

DC � {d1, . . . , dn+1}, d0
)

}

is called the vanishing holonomy group of ˜FC
υ on

(

Td0 , d0
)

.
This group modulo a simultaneous conjugacy will be referred to as holonomy

group of ˜FC
υ , being independent of a cross-section or even a base point.

4.2 Generic Conditions: Classes �n and �R
n

A germ υ ∈ Vn belongs to the class �n if it satisfies the following conditions:

i. The germ υ is nondicritic. Furthermore, if (Pn, Qn) is n-jet of υ, the homoge-
neous polynomial xQn − yPn has n + 1 simple linear factors.

As a consequence, the foliation ˜Fυ has n + 1 pairwise different singular points
d1, · · · , dn+1 on the complex exceptional divisor DC. Given 1 ≤ j ≤ n + 1 we con-
sider λ1

j , λ2
j the eigenvalues of the linear part of the foliation ˜Fυ at the singular
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point d j , being λ2
j the eigenvalue related to the complex exceptional divisor. It can

verified that λ2
j is nonzero. The ratio λ j := λ1

j/λ
2
j is the characteristic number (or

Camacho-Sad index) of the foliation ˜Fυ at the singular point d j .

ii. For all 1 ≤ j ≤ n + 1, λ j ∈ C �
(

Q+ ∪ {̂0}).
iii. The vanishing holonomy group of the foliation ˜Fυ is nonsolvable.

The class�R
n is defined as the intersectionVR

n ∩ �n , that is, a germυ ∈ Vn belongs
to�R

n if and only ifυ is the complexification of a real analytic vector field and satisfies
the properties i, ii, and iii.

The conditions i and iii are generic on the class Vn (VR
n ) in the algebraic sense:

the n-jet of a germ in Vn (VR
n ) violating the condition i satisfies a finite number of

(real) polynomial identities, and if a germ in Vn (VR
n ) does not meet the condition iii,

its (n + 2)-jet satisfies a finite number of real polynomial identities (see [28]). In the
sense of Lebesgue measure, the condition ii is satisfied by most germs in VR

n (VR
n )

whose blow-ups have singularities with positive characteristic numbers.

Remark 4.5 By the conditions i and ii, the blow-up of a germ υ in�n is the desingu-
larization of the foliationFυ . In what followswe refer to ˜Fυ as the desingularization
of υ.

4.3 Detailed Outline of the Proof of Theorem 4.1

In what follows, v,w ∈ �n are orbitally formally equivalent, or orbitally real-
formally equivalent if v andw are the complexifications of real analytic vector fields.
The pair (H, K ) realizes the equivalence as it is expressed by Eq. (2). By Lemma
4.6 we may assume without loss of generality that H has linear part equal to the
identity, K has constant term 1, and moreover, v and w have the same separatrices
S1, . . . , Sn+1. As a consequence, the desingularizations ˜Fv and ˜Fw have the same
singular points p1, . . . , pn+1 ∈ DC together with their respective characteristic num-
bers. These singular points belong to the chart (x, u) except for a linear change of
variables in v and w, which preserves the real plane whenever v,w ∈ �R

n .
Let p0 ∈ DC be a nonsingular point belonging to the chart (x, u). We consider a

cross-section �p0 to the complex exceptional divisor DC at the point p0. Given a loop
γ with base point p0 and image contained in DC � {p1, . . . , pn+1}, we shall denote
by �v

γ,�
w
γ : (

�p0 , p0
) −→ (

�p0 , p0
)

the holonomy maps for the foliations ˜Fv and
˜Fw over γ, respectively.
Theorems 4.7 and 4.8 state that there exists h : (

�p0 , p0
) −→ (

�p0 , p0
)

a holo-
morphic map with linear part equal to the identity such that

�w
γ = h ◦ �v

γ ◦ h−1 , (4)

for all loop γ with base point p0 and image contained in DC � {p1, . . . , pn+1}. More-
over, if v and w are the complexifications of real analytic vector fields, p0 ∈ DR and



170 J. A. Jaurez-Rosas

the cross-section �p0 is the complexification of a real analytic curve then h is the
complexification of a real analytic diffeomorphism defined around̂0 ∈ R

2.
The main idea of the rest of the proof is to extend h as a biholomorphism defined

on some neighborhood of the complex exceptional divisor, in such a way that the
biholomorphism sends the leaves of the foliation ˜Fv into the leaves of ˜Fw. In this
way, the blow-down of the biholomorphism obtained will be an orbital analytic
equivalence between v and w. Furthermore, we look for the invariance of the real
Möbius band by the biholomorphism, whenever v and w are the complexifications
of real analytic vector fields.

Below it is presented an heuristic discussion about the extension of h on a neigh-
borhood of DC but far from the singular points p1, . . . , pn+1. This discussion will
serve as a motivation for the notion of auxiliary foliation and, at the same time, it
will allow us to show the main problems appeared in the rest of the proof.

4.3.1 Heuristic Discussion on the Extension of h

Suppose that we obtained a dicritical holomorphic foliation ˜F in (MC, DC) without
singularities or tangency points, such that the desingularization of the separatrices
are invariant subsets of this foliation. Since its leaves cross the complex exceptional
divisor DC transversally, then we can extend the map h given by (4) by means of
analytic continuation of the leaves of ˜Fν and ˜Fω along any path free from singulari-
ties. In this way one can construct a biholomorphismH far from the singular points.
More specifically, if p0 ∈ DC is a nonsingular point as above, q0 ∈ DC is another
nonsingular point, and Lp0 , Lq0 are the leaves of the dicritical foliation ˜F passing
through p0 and q0, respectively, then

H|Lq0
:= �ω

τ ◦ h ◦ �ν
τ−1 , (5)

where τ is any path contained in DC � {p1, . . . , pn+1}, beginning at p0, and ending
at q0, and �v

τ ,�
w
τ : (

Lp0 , p0
) −→ (

Lq0 , q0
)

are the correspondence maps for the
foliations ˜Fv and ˜Fw over τ , respectively. As a consequence of the conjugation (4),
H is a well defined biholomorphism outside the desingularization of the separatrices.

In such a situation wewould need to holomorphically extendH to a neighborhood
of the desingularization of each separatrix. In this way we would conclude that the
blow-down of this transformation onto C

2 conjugates the foliation Fν with the
foliationFω .

Moreover, we would like to prove that the biholomorphism H leaves invariant
the real Möbius band, whenever v and w are the complexifications of real analytic
vector fields and p0 ∈ DR, since in this way the blow-down of this biholomorphism
leaves invariant the real plane R

2.
Unfortunately, the existenceof such adicritical holomorphic foliation in (MC, DC)

is equivalent to the existence of a holomorphic change of coordinates which simul-
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taneously rectifies the separatrices (that is, it transforms all separatrices into straight
lines), but in general this is impossible (see [10]). However, the assumptions on the
dicritical foliation can be considerably relaxed, as explained below.

4.3.2 Extension of h Using an Auxiliary Foliation

Lemma 4.9 states that given q1, . . . , qn−2 ∈ DC pairwise different nonsingular points
belonging to the chart (x, u), there exists a dicritical holomorphic vector field X
defined around̂0 ∈ C

2 whose blow-up ˜FX , called auxiliary foliation, satisfies the
followingproperties: the desingularization of the separatrices S1, . . . , Sn+1 are invari-
ant subsets of ˜FX , its leaves intersect DC at all its points transversally, except for
q1, . . . , qn−2, where the leaves have simple tangencies with DC. As a consequence,
˜FX does not have any singularity on (MC, DC).
The auxiliary foliation provides a way to extend the transversal conjugation h

outside the locus of tangency between the foliation ˜Fv and the auxiliary foliation
˜FX , as in Eq. (5). This locus consists of the desingularization of the separatrices
S1, . . . , Sn+1 and n − 2 smooth analytic curves T1, . . . , Tn−2 crossing the exceptional
divisor DC transversally at the points q1, . . . , qn−2, respectively (Lemma 4.10). The
last curves are called polar curves.

It is important to mention that, whenever v andw are the complexifications of real
analytic vector fields there are other special properties: if q1, . . . , qn−2 ∈ DR there
exists an auxiliary foliation induced by the complexification of a real analytic vector
field and in this case, the polar curves T1, . . . , Tn−2 are the complexification of real
analytic curves.

In what follows we shall denote byH the extension of h far from the separatrices
and the polar curves, as in (5). It should be mentioned that the extension of H will
send the leaves of the auxiliary foliation ˜FX into themselves.

4.3.3 Preparation for the Extension of H

Let p0 ∈ DC be a fixed nonsingular point such that the leaf Lp0 of the auxiliary
foliation passing through p0 is transversal to the exceptional divisor DC. Given j =
1, . . . , n − 2 we choose a path γ j contained inDC � {p1, . . . , qn+1}, beginning at q j ,
and ending atq0.Wedenote by�v

γ j
,�w

γ j
: (Tj , q j ) −→ (Lp0 , p0) the correspondence

maps over γ j for the foliations ˜Fv and ˜Fw, respectively.
In [32] it is proved that, except for a holomorphic change of variables in w whose

linear part is the identity, the locus of tangency points of the foliations ( ˜Fw, ˜FX )

coincideswith the locus of tangency points of the pair ( ˜Fv, ˜FX ) (that is, it is the union
of the separatrices S1, . . . , Sn+1 and the polar curves T1, . . . , Tn−2). Moreover, the
biholomorphism h : (

Lp0 , p0
) −→ (

Lp0 , p0
)

conjugating the holonomy maps as in
(4) is the identitymap, and the correspondencemaps�v

γ j
and�w

γ j
coincide for all j =

1, . . . , n − 2. In [15] it is proved that, whenever v andw are the complexifications of
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real analytic vector fields and p0 belongs to DR, the holomorphic change of variables
is the complexification of a real analytic diffeomorphism.

In thisway, for all q0 ∈ DC nonsingular point such that the leafLq0 of the auxiliary
foliation passing through q0 is transversal to the complex exceptional divisor MC,
the restriction of H onLq0 is

H∣

∣

Lq0
= �w

τ ◦ �v
τ−1 , (6)

where τ is a path contained in DC � {p1, . . . , pn+1}, beginning at p0, and ending
at q0, and �w

τ ,�v
τ : (

Lp0 , p0
) −→ (

Lq0 , q0
)

are the correspondence maps for the
foliations ˜Fv and ˜Fw over τ , respectively.

4.3.4 Extension of H Around Polar Curves and Separatrices

Now we shall briefly discuss the key arguments used to extend H around the polar
curves and the separatrices.

By (6), the transformationH is the identity onDC, except for finitely many points.
As a consequence, its extension should send every leaf of the auxiliary foliation ˜FX

and every polar curve Tj onto itself. Moreover, H|Tj should be the identity map,
since �w

γ j
◦ �v

γ−1
j
is the identity map.

To extend H around the polar curve Tj are considered local models of foliations
(F ,Fg), where F is the trivial foliation {x = c}c∈(C,0) and Fg is the foliation
{x + g(u) = c}c∈(C,0), with g a nonconstant holomorphic map at 0 ∈ C satisfying
g(0) = g′(0) = 0. Every parametrization of the polar curve Tj determines uniquely
the local models and the holomorphic change of coordinates defined around q j ∈ DC

sending the pairs of foliations ( ˜Fv, ˜FX ) and ( ˜Fw, ˜FX ) to the respective models. In
[15, 32] it is proved that, given a parametrization of the polar curve Tj , the models
coincide and the biholomorphism H is extended as the identity transformation with
respect to the fixed model.

Now we shall discuss the extension of H around the separatrices. The char-
acteristic number corresponding to the singular point pi is denoted by λi , for all
i = 1, . . . , n + 1.

Since the complex saddles have the property of saturation of short cross-sections
and, as a consequence, the holonomy maps are the moduli for the orbital analytic
classification of germs of complex saddles (see [8] or [14]), whenever λi is a negative
number, the transformation H is holomorphically extended at pi .

In the case ofλi belongs toC � (R− ∪ Q+ ∪ {0}), the pairs of foliations ( ˜Fv, ˜FX )

and ( ˜Fw, ˜FX ) are identified with the local model (Fi , {u = c}c∈(C,0)) where Fi is
the foliation induced by the linear vector field λi × ∂

∂ x + u ∂
∂ u . These identifications,

induced by local changes of coordinates, are consequences of the Poincaré’s lin-
earization theorem. With respect to the described model,H is extended around pi by
the transformation (x, u) �→ (αi x, u) for some αi ∈ C � {0} [15, 32].
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4.3.5 Invariance of the Real Analytic Möbius Band MR

In what follows, v and w will be the complexifications of real analytic vector fields.
It will be proved that in this case the biholomorphism H constructed above, leaves
invariant the real Möbius band MR. For that purpose we shall recall some key prop-
erties used in the construction.

The auxiliary foliation ˜FX of v is the blow-up of the complexification of a real
analytic vector field, and the polar curves T1, . . . , Tn−2 of the pair ( ˜Fv, ˜FX ) are the
complexification of n − 2 smooth real analytic curves, which cross the exceptional
divisor DC transversally at the tangency points q1, . . . , qn−2 ∈ DR (Lemmas 4.9 and
4.10).

Let p0 ∈ DR be a nonsingular point such that the leafLp0 of the auxiliary foliation
cross the exceptional divisor DC transversally. In [15] it is proved that, except for a
change of variables in w which is the complexification of a real analytic diffeomor-
phismwith linear part equal to the identity, wemay assumewithout loss of generality
that w and v have the same separatrices, the pairs ( ˜Fv, ˜FX ) and ( ˜Fw, ˜FX ) have the
same locus of tangency points, and the conjugation between the holonomy groups
of v and w on (Lp0 , p0) is the identity (that is, for all loop γ with base point p0 and
image contained in DC � {p1, . . . , pn+1}, the holonomy maps on (Lp0 , p0) for the
foliations ˜Fv and ˜Fw over γ, coincide).

The biholomorphismH conjugating ˜Fv with ˜Fw is defined on a neighborhood of
the complex exceptional divisor DC in the complex Möbius band MC and preserves
the auxiliary foliation ˜FX . Far from the singular points p1, . . . , pn+1 and the tangency
points q1, . . . , qn−2, the biholomorphism is defined in the following way: given a
nonsingular point q0 ∈ DC such that the leaf of the auxiliary foliation Lq0 passing
through q0 crosses the exceptional divisor DC transversally, then the restriction ofH
on the leaf Lq0 is defined as

H∣

∣

Lq0
:= �w

γq0
◦ �v

γ−1
q0

,

where γq0 is a path contained in DC � {p1, . . . , pn+1}, beginning at p0, and ending
at q0, and �v

γq0
,�w

γq0
: (

Lp0 , p0
) −→ (

Lq0 , q0
)

are the correspondence maps over

γq0 for the foliations ˜Fv and ˜Fw, respectively.
To prove the biholomorphism H leaves invariant the real Möbius band, we shall

stress that it is enough to prove the existence of a neighborhood of p0 where the
biholomorphism leaves invariant the real Möbius band MR, that is, H(x0, u0) =
H(x0, u0) for all (x0, y0) in a neighborhood of (0, p0), where u(p0) = p0.

Without loss of generality we may assume that H is defined on U ⊆ C
2 a con-

nected open neighborhood of the axis {x = 0} which is invariant by complex conju-
gation. Since the map (x, u) �→ H (x̄, ū) is a well defined holomorphic map in U ,
then the equality H(x0, u0) = H(x̄0, ū0) for (x0, u0) in a neighborhood of (0, p0)
implies that the same happens all over U (see Identity Theorem, [11]). Hence, for

(a, b) ∈ R
2 ∩U , H(a, b) = H (

a, b
) = H(a, b). Therefore for any q ∈ DR which
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belongs to the coordinate chart (x, u), Lq ∩ MR is invariant by H. In the coordi-
nate chart (v = x/y, y) we denote byL∞ the leaf of the auxiliary foliation passing
through (v, y) = (0, 0). For p ∈ L∞ ∩ MR we take a sequence of points (̃pi )i∈N
tending to p, such that p̃i ∈ Lq̃i ∩ MR for q̃i ∈ DR belonging to the chart (x, u).
The continuity ofH implies that

(H(̃pi )
)

i∈N= H(p). Since in (v, y) this is a Cauchy
sequence in R

2, then H(p) ∈ R
2. Thus L∞ ∩ MR is invariant by H.

It remains to prove the existence of a neighborhood of p0 inMC in whichH leaves
invariant the real Möbius band MR. We consider q ∈ DR belonging to (x, u), with
u(q) = q, such that the path δq defined as t �→ (0, tq + (1 − t)p0) with respect to
the coordinate chart (x, u), does not pass through any singular point. Given that v

and w are the complexifications of real analytic vector fields, the restrictions of the
correspondence maps �v

δq
and �w

δq
on Lp0 ∩ MR are the continuation of solutions

of the real analytic vector fields describing the desingularizations of v and w. As
a consequence, �v

δq
and �w

δq
take the intersection Lp0 ∩ MR into Lq ∩ MR, and

so, H∣

∣

Lq
= �ω

δq
◦ �ν

δ−1
q

leaves invariant Lq ∩ MR. Since p0 is a nonsingular point,

there is a sufficiently small connected neighborhood of p0 in MC such that any point
in the intersection of this neighborhood with MR satisfies the previous condition.
Therefore in this neighborhood H leaves invariant the real Möbius band MR.

4.4 Fundamental Results Used in the Proof of Theorem 4.1

4.4.1 Equivalence of Separatrices

Let v,w ∈ �n be orbitally formally equivalent holomorphic vector fields. Further-
more, if v,w ∈ �R

n then they are orbitally real-formally equivalent.
We denote the singular points of ˜Fv in the complex exceptional divisor DC by

p1, . . . , pn+1. These singularities belong to the chart (x, u = y/x) except for a linear
change of variables in v, which preserves the real plane whenever v is the complex-
ification of a real analytic vector field.

Lemma 4.6 There existsw1 an orbital analytic equivalent vector field tow with the
same separatrices. Moreover, the invertible formal transformation and the scalar
formal series realizing the equivalence between w1 and v have linear part equal to
the identity and constant term 1, respectively. If v and w are the complexifications
of real analytic vector fields, then w1 is orbitally real-analytical equivalent to w.

Sketch of the proof of Lemma 4.6. We consider H ∈ (C[[x, y]])2 the invertible
formal transformation and the formal series K ∈ C[[x, y]] with nonzero constant
term satisfying

w = K
[

(D H · v) ◦ H−1
]

.
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Given m := n + 2, we denote Hm the m-jet of H and Km−1 the (m − 1)-jet of
1/K ◦ H−1

m . The holomorphic vector field

w0 := Km−1
[

(D Hm · w) ◦ H−1
m

]

belongs to the class �n and has the same 2n + 2 as v. As a consequence, if
the curves {y = φi (x)} and y = {y = ψi (x)} are the separatrices of v and w0

whose desingularization intersect DC at the singular point pi , then the difference
φi (x) − ψi (x) has order at 0 greater or equal to n + 2.

Thus the transformation G(x, y) = (x, y + g(x, y)) defined around ̂0 ∈ C
2,

where g(0, y) = 0 and

g(x, y) =
n+1
∑

i=1

(φi (x)−ψi (x))
∏

j 
=i (y−ψ j (x))
∏

j 
=i (ψi (x)−ψ j (x))
, when x 
= 0 ,

is an invertible holomorphic function with linear part equal to the identity. Then we
define w1 as (DG · w0) ◦ G−1.

If v,w ∈ �R
n are orbitally real-analytically equivalent, then w0 ∈ �R

n is orbital
real-analytic equivalent to w and the Taylor series of G has real coefficients since
for each summand there is another term conjugated to it. Therefore, w1 belongs to
�R

n . �
As a consequence of Lemma 4.6, we can suppose without loss of generality that v

and w have the same separatrices, and their desingularizations ˜Fv and ˜Fw have the
same singular points p1, . . . , pn+1 ∈ DC and their respective characteristic numbers.

4.4.2 Formal and Analytic Conjugation of Holonomy Groups

Let p0 ∈ DC be a nonsingular point belonging to the coordinate chart (x, u) and
�0 = {u = p0 := u(p0)} be the straight line passing through p0. Given a loop γ with
base point p0 whose image is contained in DC � {p1, . . . , pn+1}, we shall denote by
�v

γ,�
w
γ : (�0, p0) −→ (�0, p0) the holonomy maps for the foliations ˜Fv y ˜Fw over

γ, respectively.

Theorem 4.7 There exists a formal transformation ρ ∈ C[[x]] with zero constant
term and linear part x such that for all loop γ with base point p0 and image contained
in DC � {p1, . . . , pn+1},

ρ ◦ �v
γ ◦ ρ−1 = �w

γ . (7)

The invertible formal transformation ρ belongs to R[[x]] whenever v and w are
the complexification of real analytic vector fields and p0 ∈ DR.
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As a consequence of the following formal rigidity theorem for nonsolvable finitely
generated groups of germs of holomorphic self-maps on (C, 0) due to D. Cerveau, R.
Moussu [4] and J. P.Ramis [27],ρ is convergent, that is,ρ is the germof a holomorphic
self-map.Moreover, it is the complexification of the germof an invertible real analytic
diffeomorphism at (R, 0) provided that v and w are the complexification of real
analytic vector fields and p0 ∈ DR.

Theorem 4.8 Let G and H be nonsolvable finitely generated groups of germs of
holomorphic self-maps on (C, 0). Suppose that there exists an invertible formal
transformation with zero constant term h0 ∈ C[[z]] which conjugates G with H,
that is

H = h0Gh−1
0 := {

h0 ◦ g ◦ h−1
0 | g ∈ G

}

.

Then h0 is a convergent series.

In what follows we shall construct ρ stated in Theorem 4.7 for the purpose of
showing that it belongs to R[[x]] whenever v,w ∈ �R

n and p0 ∈ DR.
We consider the invertible formal transformation with complex coefficients and

linear part equal to the identity H(x, y) = (H1(x, y), H2(x, y)) which conjugates v

with w orbitally. As a consequence, ˜H , the blow-up of H , conjugates the foliation
˜Fv with the foliation ˜Fw. In the coordinate chart (x, u = y/x) the transformation
˜H is defined as follows.

˜H(x, u) = (

˜H1, ˜H2
)

(x, u) :=
(

H1(x, xu), H2(x,xu)

H1(x,xu)
.
)

We define the formal curve ̂�0 := {

(x, u) = (

˜H1(x, p0), ˜H2(x, p0)
)}

which is a
formal cross-section to the exceptional divisor DC at the point p0.

Let ṽ and w̃ = (w̃1, w̃2) be the vector fields in (x, u) which induce the foliations
˜Fv and ˜Fw, respectively. We define the nonautonomous differential equation

d x

d u
= w̃1(x, u)

w̃2(x, u)
=

∑

k�1

Sk(u)xk , (8)

where Sk is a rational function in u with poles at u(p1), . . . , u(pn+1). Then the
extended phase portrait of the differential equation (8) coincides with the foliation
˜Fw in a neighborhood of the axis {x = 0} without the separatrices of ˜Fw.
Let U, V ⊆ C be open discs centered at p0 and 0, respectively, such that for all

ũ ∈ U , x ∈ V the complex trajectory u �→ X(u, ũ, x) is the solution of Eq. (8) with
initial condition x = X(̃u, ũ, x). Then the flow map X is defined on U 2 × V .

We define the formal series ρ(x) := X
(

p0, ˜H2(x, p0), ˜H1(x, p0)
)

which has lin-
ear part equal to the identity and as a consequence, it is an invertible formal trans-
formation. It is proved that such transformation conjugates the holonomy group of
v on (�0, p0) with the holonomy group of w on (�0, p0), as follows:
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ρ ◦ �v
γ ◦ ρ−1 = �w

γ ,

for all loop γ with based point p0 whose image is contained in DC � {p1, . . . , pn+1}.
If v,w ∈ �R

n and p0 ∈ DR, ˜H has real coefficients and X is the complexification
of a real analytic map. As a result, ρ belongs to R[[x]].

4.4.3 Auxiliary Foliation and Polar Curves

This part is devoted to give a sketch of the proof of the existence of an auxiliary
foliation. At the end the notion of polar curve is introduced.

We consider ϑ ∈ �n and its separatrices C1, . . . ,Cn+1. The singular points of
the desingularization ˜Fϑ belong to the chart (x, u) except for a linear change of
variables in ϑ, which preserves the real plane whenever ϑ is the complexification
of a real analytic vector field. Let q̃1, . . . , q̃n−2 ∈ DC be n − 2 pairwise different
nonsingular points belonging to the chart (x, u).

Lemma 4.9 There exists a dicritical holomorphic vector field Y at (C2,̂0) whose
blow-up ˜FY is a holomorphic foliation on (MC, DC) satisfying the following condi-
tions:

1. The desingularization of the separatrices C1, . . . ,Cn+1 are invariant subsets of
˜FY .

2. For all q ∈ DC � {̃q1, . . . , q̃n−2}, the leaf of the foliation ˜FY passing through q
intersects the exceptional divisor DC transversally.

3. Around the point q̃ j the foliation ˜FY is described by the ordinary differential
equation

d x

d u
= f j (u) + g j (x, u) ,

where f j , g j are holomorphic analytic functions defined around u(̃q j ) = q̃ j and
(0, q̃ j ), respectively. Moreover, g j (x, u) = O(x) and ordq̃ j ( f j ) = 1, that is, the
leaf of the foliation ˜FY passing through q̃ j has a simple tangency with DC.

4. Whenever the separatrices are invariant by complex conjugation (as in the case
ϑ ∈ �R

n ) and q̃1, . . . , q̃n−2 belong to the real exceptional divisorDR, it is possible
to choose Y being the complexification of a dicritical real analytic vector field. In
this case for all 1 � j � n − 2, f j , g j are the complexifications of real analytic
maps.

In Lemma 4.9 we say that the separatrices are invariant by complex conjugation
in the following sense. We consider m smooth analytic curves Li = {y = ψi (x)} at
(C2,̂0) satisfying ψ′

j (0) 
= ψ′
k(0) if j 
= k. The curves L1, . . . ,Lm are said to be

invariant by complex conjugation if given 1 � i � m such that ψi (x) = ∑

r�1 ar x
r

there exists 1 � j � m satisfying ψ j (x) = ∑

r�1 ār x
r , where ā is the complex con-

jugate of a ∈ C.
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From the properties 2 and 3 of Lemma4.9 it is concluded that the foliation ˜FY ,
called auxiliary foliation of the vector field ϑ, does not have any singular point on
(MC, DC).

Sketch of the Proof of Lemma 4.9. The separatricesCi = {y = ˜φi (x)} are invariant
by a holomorphic vector field ˜P ∂

∂ x + ˜Q ∂
∂ y if and only if there exists a convergent

series C ∈ C〈x, y〉 such that

˜PRx + ˜QRy = RC , (9)

being R(x, y) = ∏n+1
i=1

(

y − ˜φi (x)
) = rn+1(x, y) + rn+2(x, y) + · · · , where ri is an

homogeneous polynomial of degree i with complex coefficients. In what follows,
we shall construct holomorphic vector fields satisfying Eq. (9) and some additional
conditions.

Considering h(x, y) := ∏n−2
j=1

(

y − q̃ j x
)

, by substituing C := (n + 1)h, ˜P :=
xh + ̂P and ˜Q := yh + ̂Q into Eq. (9), it is obtained

̂PRx + ̂QRy = h
(

(n + 1)R − x Rx − yRy
)

. (10)

Since the right-hand side of Eq. (10) has order greater or equal to 2n, it belongs to the
gradient ideal of R, IR = {ARx + BRy | A, B ∈ C〈x, y〉}, as it is proved in [2, 32].
Then it is possible to find ̂P and ̂Q satisfying the equality (10) having order greater
or equal to n at the origin̂0, since rn+1,x and rn+1,y are relative primes in C〈x, y〉.

Considering ˜P = xh + ̂P , ˜Q = yh + ̂Q, C = (n + 1)h as before and c ∈ C, the
holomorphic vector field ˜Pc

∂
∂,x + ˜Qc

∂
∂,y satisfy Eq. (9), being

˜Pc := ˜P − cRy , ˜Qc := ˜Q + cRx .

We denote p̂n and q̂n the homogeneous components of degree n of ̂P and ̂Q,
respectively. Since q̃1, . . . , q̃n−2 are nonsingular points, the property q̂n(1, q̃ j ) −
q̃ j p̂n(1, q̃ j ) + c(n + 1)rn+1(1, q̃ j ) 
= 0 for all 1 � j � n − 2, is satisfied for all
c ∈ C except for a finitely many complex number. Choosing one such c ∈ C, it
is verified that the holomorphic vector field ˜Pc

∂
∂ x + ˜Qc

∂
∂ y satisfies all required con-

ditions of Lemma 4.9.
Whenever the separatrices are invariant by complex conjugation and the points

q̃1, . . . , q̃n−2 ∈ DR, then R and h are the complexifications of real analytic maps. As
a consequence, the right-hand side of the equality (10) belongs to the gradient ideal
of R with respecto to R〈x, y〉,˜IR = {

ARx + BRy | A, B ∈ R〈x, y〉}, as it is proved
in [15].

Then it is possible to find ̂P, ̂Q ∈ R〈x, y〉 satisfying the equality (10). Choos-
ing c ∈ R such that the number q̂n(1, q̃ j ) − q̃ j p̂n(1, q̃ j ) + c(n + 1)rn+1(1, q̃ j ) is

nonzero for all 1 � j � n − 2, we take ˜Pc, ˜Qc defined as above. The vector field
˜Pc

∂
∂ x + ˜Qc

∂
∂ y is the complexification of a real analytic vector field which satisfies

the required properties of Lemma 4.9. �
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The following result describes the locus ˜T on (MC, DC) where the leaves of the
foliation ˜Fϑ and its auxiliary foliation ˜FY are tangent. This result is an immediate
consequence of the holomorphic and the real analytic implicit function theorems.

Lemma 4.10 The set ˜T consists of the desingularization of the separatrices of ϑ,
C1, . . . ,Cn+1, and n − 2 analytic curves ˜T1, . . . , ˜Tn−2 which cross the exceptional
divisor DC transversally at the points q̃1, . . . , q̃n−2, respectively.

Moreover, if v is the complexification of a real analytic vector field and the points
q̃1, . . . , q̃n−2 belong to DR then the curves ˜T1, . . . , ˜Tn−2 are the complexifications of
real analytic curves.

Remark 4.11 The set ˜T is the locus of tangency points of the pair ( ˜Fϑ, ˜FY ), and
the curves ˜T1, . . . , ˜Tn−2 are called the polar curves of the pair ( ˜Fϑ, ˜FY ).
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On Singular Holomorphic Foliations
with Projective Transverse Structure

Bruno Scárdua

Abstract In this paper we study holomorphic foliations with singularities having
a homogeneous transverse structure of projective model (i.e., IPSL(2,C) model).
Our basic situation is the case of a foliation with singularities F on a complex
analytic space M of dimension two and the structure exists in the complement of
some analytic subset S ⊂ M of codimension one. The main case occurs, as we shall
see, when the analytic set is invariant by the foliation. We address both, the local
and the global cases. This means two basic situations: (i) M is a projective surface
(like M = CP(2) orC × C) and (ii) M = (C2, 0)which means the case of germs of
foliations at the origin 0 ∈ C2, having an isolated singularity at the origin.Our focus is
the extension of the structure in a suitable sense. After performing a characterization
of the existence of the structure in terms of suitable triples of differential forms, we
consider the problem of extension of such structures to the analytic invariant set for
germs of foliations and for foliations in complex projective spaces. Basic examples of
this situation are given by logarithmic foliations and Riccati foliations.We also study
the holonomy of such invariant sets, as a consequence of a strict link between this
holonomy and the monodromy of a projective structure. These holonomy groups
are proved to be solvable. Our final aim is the classification of such object under
some mild conditions on the singularities they exhibit. In this work we perform
this classification in the case where the singularities of the foliation are supposed
to be non-dicritical and non-degenerate (more precisely, generalized curves). This
case, we will see, corresponds to the transversely affine case and therefore to the
class of logarithmic foliations. The more general case, which has to do with Riccati
foliations, is dealt with by some extension results we prove and evoking results from
Loray-Touzet-Vitorio.
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1 Foliations and Transverse Structure

The Riccati differential equation

p(x)dy − (a(x)y2 + b(x)y + c(x))dx = 0

where (x, y) ∈ C2 and p, a, b, c are complex polynomials is well-known to be a
basic model for complex foliations, on projective surfaces, with projective transverse
structure outside an invariant algebraic curve. Similarly the Bernoulli equation

p(x)dy − (a(x)yk+1 + b(x)y)dx = 0

stands for a model with an affine structure outside of an algebraic invariant curve [8,
27]. In this work we develop the study and classification of transversely projective
holomorphic foliations. More precisely, we study codimension one holomorphic
foliations with singularities, under the hypothesis of the existence of a projective
transverse structure off some analytic codimension one subset.

Recall that a foliation (holomorphic of codimension one, with singularities) is
transversely projective if the corresponding non-singular foliation is given by an atlas
of local submersions with projective relations, i.e., two such submersions y : U → C

and ỹ : Ũ → C are related by ỹ = ay+b
cy+d for some a, b, c, d ∈ C locally constant and

satisfying ad − bc = 1. This is a particular case of foliation having a homogeneous
transverse structure (cf. [4]) and in the holomorphic framework it is natural to con-
sider the case where the foliation exhibits singularities and the transverse structure
is defined in the complement of some analytic subset of codimension one [27]. This
situation has two main examples given by the class of logarithmic foliations, i.e.,
foliations defined by simple poles closed meromorphic one-forms; and by the class
of Riccati foliations, i.e., foliations induced by Riccati differential equations.

1.1 Holomorphic Foliations

The basic concepts of differentiable manifolds (as tangent space, tangent bundle,
etc.) can be introduced in the complex holomorphic setting. This is also the case of
the concept of foliation:

Definition 1 (holomorphic foliation) A holomorphic foliation F of (complex)
dimension k on a complex manifold M is given by a holomorphic atlas {ϕ j : Uj ⊂
M → Vj ⊂ Cn} j∈J with the compatibility property: Given any intersection Ui ∩
Uj �= ∅ the change of coordinates ϕ j ◦ ϕ−1

i preserves the horizontal fibration on
Cn 	 Ck × Cn−k .

Examples of such foliations are, like in the “real” case, given by non-singular
holomorphic vector-fields, holomorphic submersions, holomorphic fibrations and
locally free holomorphic complex Lie group actions on complex manifolds.
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Remark 1 (i) As in the “real” case, the study of holomorphic foliations may be
very useful in the classification theory of complex manifolds.

(ii) In a certain sense, the “holomorphic case” is closer to the “algebraic case” than
the case of real foliations.

1.2 Holomorphic Foliations with Singularities

One of the most common compactifications of the complex affine space Cn is the
complex projective space CP(n). It is well-known that any foliation (holomorphic)
of codimension k ≥ 1 onCP(n)must have some singularity (in other words,CP(n),
for n ≥ 2, exhibits no holomorphic foliation in the sense we have considered up to
now, cf. [2].) Thus one may consider such objects: singular (holomorphic) foliations
as part of the zoology. Let us illustrate this concept through some examples:

Example 1 (Polynomial vector fields onC2)Given affine coordinates (x, y) ∈ C2, let
X = P(x, y)(∂/∂x) + Q(x, y)(∂/∂y) = (P, Q) be a polynomial vector field (with
isolated singularities) on C2. We have an ordinary differential equation:

{
ẋ = P(x, y)
ẏ = Q(x, y)

The local solutions are given by Picard’s Theorem (the existence and uniqueness
theorem of ordinary differential equations):

ϕ(z) = (x(z), y(z))

dϕ

dz
= ϕ̇(z) = X (ϕ(z))

Gluing the images of these unique local solutions, we can introduce the orbits of X
on C2. The orbits are immersed Riemann surfaces on C2, which are locally given by
the solutions of X .

Now we may be interested in what occurs these orbits in “a neighborhood of
the infinity”. We may for instance compactify C2 as the projective plane CP(2) =
C2 ∪ L∞, L∞ ∼= CP(1).

1. What happens to X in a neighborhood of L∞?
2. Is it still possible to consider its orbits around L∞?

We may rewrite X as the coordinate system (u, v) = (1/x, y/x): X (u, v) =
1
um Y (u, v), m ∈ IN ∪ \0 where Y is a polynomial vector field, also with isolated sin-
gularities. The exterior product of X and Y is zero in common domainU : X ∧ Y =
0. Thus, orbits of Y (or X ) are orbits of X (or Y ), respectively in U . Then the orbits
of X extend to the (u, v)-plane as the corresponding orbits of Y along L∞. In this



184 B. Scárdua

same way, we may consider the extension of the orbits to the (r, s) = (x/y, 1/y)
coordinate system. These extensions are called leaves of a foliation induced by X
on CP(2). We obtain this way: A decomposition of CP(2) into immersed complex
curves which are locally arrayed, as the orbits (solutions) of a complex vector field.
This is a holomorphic foliation F with singularities of dimension one on CP(2).

Remark 2 (singularities are defined by differential forms) Assume that we have
a holomorphic non-singular foliation F0 on U \ {0}, 0 ∈ C2, U ∩ sing(F) = \0.
Choose local coordinates (x, y) centered at 0 and define a meromorphic function
f : U \ {0} → C, p ∈ U \ {0}, as f (p) = the inclination of the tangent to the leaf
L p of F0. By Hartogs’ Extension Theorem [18, 34] f extends to a meromorphic
function f : U → C. We may write f (x, y) = a(x,y)

b(x,y) , a, b ∈ O(U ) and define

dy

dx
= f (x, y) = b(x, y)

a(x, y)
,

that is, {
ẋ = a(x, y)

ẏ = b(x, y).

}

Therefore,F is defined by a holomorphic 1-formω = a(x, y) dy − b(x, y) dx inU .

The above remark also motivates the following definition:

Definition 2 (holomorphic foliation with singularities) Let M be a complex mani-
fold. A singular holomorphic foliation of codimension one F on M is given by an
open cover M = ⋃

j∈J U j and holomorphic integrable 1-forms ω j ∈ ∧1
(Uj ) such

that if Uj ∩Uj �= ∅, then ωi = gi jω j in Ui ∩Uj , for some gi j ∈ O∗(Ui ∩Uj ). We
put sing(F) ∩Uj = {p ∈ Uj ; ω j (p) = 0} to obtain sing(F) ⊂ M , a well-defined
analytic subset of M , called singular set ofF . The open subset M \ sing(F) ⊂ M is
foliated by a holomorphic codimension one (non-singular) foliationF0. By definition
the leaves of F are the leaves of F0.

Remark 3 Wemay always assume that sing(F) ⊂ M has codimension≥ 2. If ( f j =
0) is an equation of codimension one component of sing(F) ∩Uj , then we getω j =
f nj ω̄ j where ω̄ j is a holomorphic 1-form and sing(ω̄ j ) does not contain ( f j = 0).

Remark 4 (Convention) Let M be a complex manifold. From now on, in the absence
of a specific mention, by foliation on M we shall mean a codimension one holo-
morphic foliation with singularities. We shall also assume that the singular set
sing(F) ⊂ M has codimension ≥ 2. In particular, if M has dimension two then
sing(F) is a discrete set of points of M .

Example 2 Let f : M → C be ameromorphic function on the complexmanifoldM .
Then ω = d f defines a holomorphic foliation of codimension one with singularities
on M . The leaves are the connected components of the levels { f = c}, c ∈ C.
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Example 3 Let G be a complex Lie group and ϕ : G × M → M a holomorphic
action of G on M . The action is foliated if all its orbits have a same fixed dimension.
In this case there exists a holomorphic non-singular foliation F on M , whose leaves
are orbits of ϕ. However, usually, actions are not foliated, though they may define
singular holomorphic foliations. For instance, an action ϕ of G = (C,+) on M ,
ϕ : C × M → M is a holomorphic flows. We have a holomorphic complete vector
field X = ∂φ

∂t |t=0 on M . The singular set of X may be assumed to be of codimension
≥ 2 and we obtain a holomorphic singular foliation of dimension oneF on M whose
leaves are orbits of X , or equivalently, of ϕ.

Problem 1 Study and classify actions of complex Lie groups G on a given compact
complex M , in terms of the corresponding foliation.

The general problem above may be therefore regarded under the stand-point of
singular holomorphic foliations theory.

Example 4 (Darboux foliations) Let M be a complex manifold and let f j :
M → C be meromorphic functions and λ j ∈ C∗ complex numbers, j = 1, . . . , r .

The meromorphic integrable 1-form ω = (
r∏
j=1

f j )
r∑

i=1
λi

d fi
fi

defines aDarboux folia-

tionF = F(ω) onM . The foliationF has f =
r∏
j=1

f
λ j

j as a logarithmic first integral.

Example 5 (Riccati foliations) A Riccati Foliation onC × C is given in some affine
chart (x, y) ∈ C × C by a polynomial one-form ω = p(x)dy − (y2c(x) − yb(x) −
a(x))dx . This will be thoroughly studied in the next section.

The concept of holonomy in the singular case Let now F be a holomorphic foli-
ation (with isolated singularities) on a complex manifold M . Given a leaf L0 of F
we choose any base point p ∈ L0 ⊂ M \ sing(F) and a transverse disc Σp ⊂ M
to F centered at p. Denote by Di f f (Σp, p) the group of germs of complex dif-
feomorphisms of Σp with a fixed point at p. The holonomy group of the leaf L0

with respect to the disc Σp and to the base point p is the image of the representa-
tion Hol : π1(L0, p) → Di f f (Σp, p) obtained by lifting closed paths in L0 with
base point p, to paths in the leaves of F , starting at points z ∈ Σp, by means of a
transverse fibration to F containing the disc Σp [6, 17]. Given a point z ∈ Σp we
denote the leaf through z by Lz . Given a closed path γ ∈ π1(L0, p) we denote by
γ̃z its lift to the leaf Lz and starting (the lifted path) at the point z. Then the image
of the corresponding holonomy map is h[γ ](z) = γ̃z(1), i.e., the final point of the
lifted path γ̃z . This defines a diffeomorphism germ map h[γ ] : (Σp, p) → (Σp, p)
and also a group homomorphism Hol : π1(L0, p) → Di f f (Σp, p). The image
Hol(F , L0,Σp, p) ⊂ Di f f (Σp, p) of such homomorphism is called the holonomy
group of the leaf L0 with respect to Σp and p. By considering any parametrization
z : (Σp, p) → (D, 0)wemay identify (in a non-canonical way) the holonomy group
with a subgroup of Di f f (C, 0). It is clear from the construction that the maps in the
holonomy group preserves the leaves of the foliation.
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Separatrices and local holonomies Fix now a germF of holomorphic foliationwith
a singularity at the origin 0 ∈ C2. Choose a representativeF(U ) forF , defined in an
open neighborhoodU of the origin. A leaf ofF(U ) accumulating only at 0 is closed
off 0, thus by Remmert–Stein extension theorem [19] it is contained in an irreducible
analytic curve through 0. Such a curve is called a local separatrix of F through 0.
A separatrix is therefore the union of a leaf of F |U which is closed off the singular
point, and the singular point 0 ∈ C2. By Newton–Puiseux parametrization theorem,
ifU is small enough, there is an analytic injective map f : D → U from the unit disk
D ⊂ C into the separatrix,mapping the origin to 0 ∈ C2, and non-singular outside the
origin 0 ∈ D. Therefore the leaf contained in a separatrix, locally has the topologyof a
punctured disk. In particular, given a separatrixΓ wemay choose a loop γ ∈ Γ \ {0}
generating the (local) fundamental group π1(Γ \ {0}). The corresponding holonomy
map hγ is defined in terms of a germ of complex diffeomorphism at the origin of a
local disc Σ transverse to F and centered at a non-singular point q ∈ Γ \ {0}. This
map is well-defined up to conjugacy by germs of holomorphic diffeomorphisms, and
is generically referred to as local holonomy of the separatrix Γ with respect to the
singularity 0 ∈ C2.

1.3 Irreducible Singularities, Separatrices and Reduction of
Singularities

Let ω = a(x, y)dx + b(x, y)dy be a holomorphic one-form defined in a neighbor-
hood 0 ∈ U ∈ C2. We say that 0 ∈ C2 is a singular point of ω if a(0, 0) = b(0, 0) =
0, and a non-singular point otherwise. We say that 0 ∈ C2 is an irreducible singular
point of ω if the eigenvalues λ1, λ2 of the linear part of the corresponding dual vector
field X = −b(x, y) ∂

∂x + a(x, y) ∂
∂y at 0 ∈ C2 satisfy one of the following conditions:

(1) λ1.λ2 �= 0 and λ1/λ2 /∈ Q+
(2) either λ1 �= 0 and λ2 = 0, or vice-versa.

In case (1) there are two invariant curves tangent to the eigenvectors corresponding to
λ1 and λ2. In case (2) there is an invariant curve tangent at 0 ∈ C2 to the eigenspace
corresponding to λ1. These curves are called separatrices of the foliation.

Suppose that 0 ∈ C2 is either a non-singular point or an irreducible singularity of a
foliationF . Then in suitable local coordinates (x, y) in a neighborhood 0 ∈ U ∈ C2

of the origin, we have the following local normal forms for the one-forms defining
this foliation [7]:

(Reg) dy = 0, whenever 0 ∈ C2 is a non-singular point of F .
and whenever 0 ∈ C2 is an irreducible singularity of F̃ , then either

(Irr.1) xdy − λydx + ω2(x, y) = 0 where λ ∈ C\Q+, ω2(x, y) is a holomorphic
one-form with a zero of order ≥ 2 at (0, 0). This is called non-degenerate
singularity. Such a singularity is resonant if λ ∈ Q− and hyperbolic if λ /∈ IR,
or
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(Irr.2) yt+1dx − [x(1 + λyt ) + A(x, y)]dy=0 ,whereλ ∈ C, t ∈ IN={1, 2, 3, . . . }
and A(x, y) is a holomorphic function with a zero of order ≥ t + 2 at (0, 0).
This is called saddle-node singularity. The strong manifold or strong separa-
trix of the saddle-node is given by {y = 0}. If the singularity admits another
separatrix then it is necessarily smooth and transverse to the strong manifold,
it can be taken as the other coordinate axis and will be called centralmanifold
of the saddle-node. This class of irreducible singularity is thoroughly studied
in [22].

Therefore, for a suitable choice of the coordinates, we have {y = 0} ⊂ sep(F ,U )

⊂ {xy = 0},where sep(F ,U )denotes the unionof separatrices ofF through0 ∈ C2.
An irreducible singularity xdy − λydx + . . . = 0 is in the Poincaré domain if

λ /∈ IR− and it is in the Siegel domain otherwise. For singularities in the Poincaré
domain, the non-resonance condition (λ /∈ Q) actually implies, by Poincaré lineariza-
tion theorem, that the singularity is analytically linearizable (cf. [16]). For singular-
ities in the Siegel domain, this question is quite more delicate [23]).

Given a foliationF of dimension one on a complex surface M with finite singular
set sing(F), theTheoremof reduction of singularities of Seidenberg reads as follows:

Theorem 1 ([31]) There is a proper holomorphic map π : M̃ → M which is a finite
composition of quadratic blowing-up’s at the singular points of F in M such that
the pull-back foliation F̃ := π∗F of F by π satisfies:

(a) sing(F̃) ⊂ π−1(sing(F)), and
(b) Any singularity p̃ ∈ sing(F̃) is irreducible.

Indeed, we can say more:
We call F̃ the desingularization or reduction of singularities of F . Moreover,

the exceptional divisor E = π−1(sing(F)) ⊂ M̃ of the reduction π can be written
as E = ⋃m

j=1 IP j , where each IP j is diffeomorphic to an embedded projective line
CP(1) introduced as a divisor of the successive blowing-up’s. The IP j are called
components of the divisor E . A singularity q ∈ sing(F) is non-dicritical if π−1(q)

is invariant by F̃ . Any two components IPi and IP j , i �= j , intersect (transversely) at
most one point, which is called a corner. Moreover, there are no triple intersection
points. Any non-invariant component of the exceptional divisor is transverse to the
lifted foliation F̃ at every point. Given any analytic curve Λ ⊂ M we denote by
Λ̃ := π−1(Λ \ sing(F)) ⊂ M̃ the strict transform of Λ.

As seen above, a separatrix ofF at 0 ∈ C2 is the germ at 0 ∈ C2 of an irreducible
analytic curve, containing the singular point,which is invariant byF . By the reduction
of singularities (Theorem 1) we conclude that a separatrix Γ of F is the projection
Γ = π(Γ̃ ) of a curve Γ̃ invariant by F̃ and transverse to the exceptional divisor
π−1(0). A singularity is called dicritical if it exhibits infinitely many separatrices.
We shall say that a separatrix Γ is a dicritical separatrix if Γ̃ meets the exceptional
divisor only at non-singular points. Equivalently, Γ = π(Γ̃ ) is non-dicritical if Γ̃

is a separatrix of some singularity of F̃ . A non-dicritical separatrix is geometrically
characterized by the fact that it is isolated in the set of separatrices. Indeed, notice that
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a neighborhood of some projective line in a finite sequence of blowing-ups starting at
the origin corresponds to what we call sectorwith vertex at the origin. Thus, from the
Resolution theorem (Theorem 1) a dicritical separatrix is always one which is con-
tained in the interior of a “sector of separatrices”. Given a representative for the germ
F in a neighborhoodU of the singularity, we shall denote byN D(sep(F ,U )) ⊂ U
the analytic set which is the union of the non-dicritical separatrices of F in U .

Definition 3 (generalized curve - [10] p. 144) A germ of a foliation singularity at
the origin 0 ∈ C2 is a generalized curve if (i) it is non-dicritical and (ii) it exhibits
no saddle-node in its reduction by blow-ups.

Generalized curves play an important role in the zoology of the singularities of
holomorphic foliations. They are those whose desingularization/reduction of singu-
larities is like the one of a holomorphic function f : C2, 0 → C, 0 [10]. In this work
we will consider a slightly more general concept which is the following:

Definition 4 ((non-resonant) extended generalized curve) A germ of a foliation
singularity at the origin 0 ∈ C2 will be called an extended generalized curve if the
singularity exhibits no saddle-node in its reduction by blow-ups. This includes the
case of dicritical singularities. An extended generalized curve singularity is called
non-resonant if each connected component of the invariant part of exceptional divisor
contains some non-resonant singularity.

2 Foliations with Projective Transverse Structure

2.1 Transversely Homogeneous Foliations

A (transversely) holomorphic foliation F on a smooth manifold M has a holo-
morphic homogeneous transverse strucutre if there are a complex Lie group G,
a connected closed subgroup H < G such that F admits an atlas of submer-
sions y j : Uj ⊂ M → G/H satisfying yi = gi j ◦ y j for some locally constant map
gi j : Ui ∩Uj → G for eachUi ∩Uj �= ∅. In other words, the transversely holomor-
phic atlas of submersions for F has transiction maps given by left translations on
G and submersions taking values on the homogeneous space G/H . We shall say
that F is transversely homogeneous of model G/H . Some important properties of
transversely homogeneous holomorphic foliations are listed below:

1. Any transversely homogeneous holomorphic foliation is a transversely holomor-
phic foliation with a holomorphic homogeneous transverse structure.

2. Given a foliation F on M as in (1) with model G/H then any real submanifold
M ⊂ M transverse to F is equipped with a transversely holomorphic foliation
F1 = F |M with holomorphic homogeneous transverse structure of model G/H .

3. Let F = G/H be an homogeneous space of a complex Lie group G (H � G is a
closed Lie subgroup). Any homomorphism representation ϕ : π1(N ) → Aut (F)
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gives rise to a transversely holomorphic foliationFϕ on (Ñ × F)/ϕ = Mϕ which
is holomorphically transversely homogeneous of model G/H .

4. For the case G = IPSL(2,C) and H ⊂ G is the affine group H = A f f (C)

(isotropy group of the point at infinity ∞ ∈ CP1), we have that the quotient
G/H 	 CP1 is the Riemann sphere and the foliations with this transverse model
are called transversely projective.

More precisely we have, for the non-singular case:

Definition 5 (transversely projective foliation: non-singular) A codimension one
non-singular holomorphic foliation F on a manifold M is called transversely pro-
jective if there is an open cover

⋃
j∈J

U j = M such that in each Uj the foliation is

given by a submersion f j : Uj → C and if Ui ∩Uj �= ∅ then we have fi = fi j ◦ f j
in Ui ∩Uj where fi j : Ui ∩Uj → IPSL(2,C) is locally constant. Thus, on each
intersectionUi ∩Uj �= ∅, we have fi = ai j f j+bi j

ci j f j+di j
for some locally constant functions

ai j , bi j , ci j , di j with ai j di j − bi j ci j = 1. The data P = {Uj , f j , fi j , j ∈ J } is called
a projective transverse structure for F .

Basic references for transversely affine and transversely projective foliations (in
the non-singular case) are found in [17].

(5) Based on the Rieman-Koebe uniformization theorem we have:

Proposition 1 ([27] Theorem 6.1 p. 203).) Let F be a transversely homogeneous
holomorphic foliation of codimension one on Mn. Then F is transversely projective
foliation on Mn.

Proof We know that G/H is a simply-connected complex manifold of dimension
one. By the Riemann-Koebe Uniformization theorem we have a conformal equiva-
lence G/H ≡ C,C or D the unitary disc. This implies that either G ⊂ Aut (C) =
IPSL(2,C),G ⊂ Aut (C) = A f f (C) or G ⊂ Aut (D) ∼= IPSL(2, IR). The proposi-
tion follows.

Let F be a codimension � foliation on a manifold M . If F admits a Lie group
transverse structure of model G, or a G-transverse structure for short, then we shall
call F a G-foliation or, simply, Lie foliation. The characterization of G-foliations
in terms of differential forms is given below. Let {ω1, . . . , ω�} be a basis of the Lie
algebra of G. Then we have dωk = ∑

i< j
cki jωi ∧ ω j for a family constants {cki j } called

the structure constants of the Lie algebra in the given basis.

Theorem 2 (Darboux-Lie, [17]) Let G be a complex Lie group of dimension �.
Let {ω1, . . . , ω�} be a basis of the Lie algebra of G with structure constants {cki j }.
Suppose that a complex manifold Vm of dimension m ≥ � admits a system of one-
forms Ω1, . . . ,Ω� in M such that:

(i) {Ω1, . . . ,Ω�} is a rank � integrable system which defines F .
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(ii) dΩk = ∑
i< j

cki jΩi ∧ Ω j .

Then:

(iii) For each point p ∈ M there is a neighborhood p ∈ Up ⊆ M equipped with a
submersion f p : Up → G which definesF in Up such that f ∗

p (ω j ) = Ω j in Up,
for all j ∈ {1, . . . , q}.

(iv) If Up ∩Uq �= ∅ then in the intersection we have fq = Lgpq ( f p) for some locally
constant left translation Lgpq in G.

(v) If M is simply-connected we can take Up = M.

2.2 Transversely Projective Foliations with Singularities

Let M be a complex manifold. As already stated, if no specific mention is made,
by foliation on M we shall mean a codimension one holomorphic foliation with
singularities and dimC M ≥ 2.

Definition 6 (transversely projective: singular) A foliation F on M is called trans-
versely projective if the underlying “non-singular” foliation F0 =: F ∣∣

M\sing(F)
is

transversely projective.Thismeans that there is anopen cover
⋃
j∈J

U j = M \ sing(F)

such that in each Uj the foliation is given by a submersion f j : Uj → C and if Ui ∩
Uj �= ∅ then we have fi = fi j ◦ f j in Ui ∩Uj where fi j : Ui ∩Uj → IPSL(2,C)

is locally constant. Thus, on each intersection Ui ∩Uj �= ∅, we have fi = ai j f j+bi j
ci j f j+di j

for some locally constant functions ai j , bi j , ci j , di j with ai j di j − bi j ci j = 1.

As observed in [27] the singularities of a foliation admitting a projective trans-
verse structure are all of type d f = 0 for some local meromorphic function (indeed,
if Δ ⊂ Cn is a polydisc centered at the origin then Δ \ {0} is simply-connected for
n ≥ 2). In this work we will be considering foliations which are transversely projec-
tive in the complement of codimension one invariant divisors. Such divisors may, a
priori, exhibit singularities which do not admit meromorphic first integrals.

2.3 Riccati Foliations

Example 6 (Riccati Foliations) The Riccati differential equation

p(x)dy − (a(x)y2 + b(x)y + c(x))dx = 0

where (x, y) ∈ C2 and p, a, b, c are complex polynomials has been proved to be an
important model for complex foliations, on projective surfaces. In the particular case
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when c ≡ 0, it as an important example of a foliation with affine transverse structure
outside an algebraic invariant set [8, 27].

Fix affine coordinates (x, y) ∈ C2 and consider a polynomial one-form Ω =
p(x)dy − (

a(x)y2 + b(x)y + c(x)
)
dx on C2. Then Ω defines a Riccati foliation

R on C × C as follows: if we change coordinates via u = 1
x , v = 1

y then we

obtain Ω(x, v) = p(x)dv + (
a(x) + b(x)v + c(x)v2

)
dx . Similarly for Ω(u, y) =

u−n[ p̃(u) dy − (
ã(u)y2 + b̃(u)y + c̃(u)

)
du] andΩ(u, v) = u−n[ p̃(u) dv − (

ã(u) +
b̃(u)v + c̃(u)v2

)
du]. The similarity of these four expressions shows thatΩ defines a

holomorphic foliationRwith isolated singularities onC × C and having a geometry
as follows (see Fig. 1):
(i) R is transverse to the fibers {a} × C except for invariant fibers which are given
in C2 by {p(x) = 0}.
(ii) If S =

r⋃
j=1

{a j } × C is the set of invariant fibers thenR is transversely projective

in (C × C)\S. Indeed, R|(C×C)\S is conjugate to the suspension of a representation

ϕ : π1(C\
r⋃
j=1

{a j }) → IPSL(2,C).

(iii) For a generic choice of the coefficients a(x), b(x), c(x), p(x) ∈ C[x] the sin-
gularities of R on C × C are hyperbolic, S is the only algebraic invariant set and
therefore for each singularity q ∈ sing(R) ⊂ S there is a local separatrix ofR trans-
verse to S passing through q.

Now we consider the canonical way of passing from C × C to CP(2) by a map
σ : C × C → CP(2) obtained as a sequence of birationalmaps as follows: first blow-
up a point, for example the origin, of C2 ⊂ C × C then blow-down two suitable
projective lines of self-intersection equals −1 as indicated in Fig. 1. Following this
process step by stepwe conclude that the foliationF = σ∗(R) = (σ−1)∗(R) induced
byR on CP(2) has the following characteristics:
(i’) F is transversely projective in CP(2)\S where S ⊂ CP(2) is the union of a

finite number of projective lines of the form
r⋃
j=1

{x = a j } ⊂ CP(2) in a suitable

affine chart (x, y) ∈ C2 ⊂ CP(2).
(ii’) For a generic choice of the coefficients of Ω , the singularities of F in S are
hyperbolic except for one single dicritical singularity q∞ : (x = ∞, y = 0) ∈ CP(2)
which after one blow-up gives a non-singular foliation transverse to the projective
line except for a single tangency point. This singularity will be called a radial type
singularity. The foliation F also has two other nonhyperbolic singularities, belong-
ing to the line at infinity L∞ = CP(2) \ C2, which is invariant, one linearizable with
holomorphic first integral and the other dicritical of radial type, admitting a mero-
morphic first integral. Also, in general, S ∪ L∞ is the only algebraic invariant set
and sing(F) ⊂ S ∪ L∞.
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radial singularity

blow−down
this line

CP(2)

dicritical
radial singularity

dicritical
tangency singularity

C x C 
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this point

generic fiber

blow−down
this line

dicritical

Fig. 1 A Riccati foliation from C × C to CP(2)

(iii’) Finally, we stress that on CP(2) the foliation F is transversely projective in a
neighborhood of L∞ \ (L∞ ∩ sing(F)).

In this work we shall focus on the problem of extension of the structure to the
analytic set, as well as on the consequences of this extension. The very basic result
relating transversely homogeneous foliations and suitable systems of differential
forms is the classic Darboux-Lie theorem [4, 17, 27].

Example 7 (pull-backs) Let F be a transversely projective foliation on M . Let
π : N → M be a holomorphic map transverse to F , then the pull-back foliation
π∗(F) is transversely projective in N . This can be used to construct examples of
foliations on projective manifolds, which are transversely projective outside of some
algebraic invariant curve. Take for instance a rational mapπ : M → C × CwhereM
is a non-singular projective manifold. Given a Riccati foliationR onC × C the pull-
back F := π∗(R) is then a foliation on M which is transversely projective outside
of some algebraic C ⊂ M of codimension ≥ 1. As we will see, we can assume that
C is invariant by F , otherwise the projective structure extends to some component
of C .

Example 8 (suspensions of subgroups of IPSL(2,C)) A well known way of
constructing transversely homogeneous foliations on fibered spaces, having a pre-
scribed holonomy group is the suspension of a foliation by a group of biholo-
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morphisms. This construction is briefly described below: Let G ⊂ Di f f (N ) be
a finitely generated group of biholomorphisms of a complex manifold N . We
can regard G as the image of a representation h : π1(M) → Di f f (N ) of the
fundamental group of a complex (connected) manifold M . Considering the uni-
versal holomorphic covering of M , π : M̃ → M we have a natural free action
π1 : π1(M) × M̃ → M̃ , i.e., π1(M) ⊂ Di f f (M̃) in a natural way. Using this we
define an action H : π1(M) × M̃ × N → M̃ × N in the natural way: H = (π1, h).
The quotient manifold M̃×N

H = Mh is called the suspension manifold of the repre-
sentation h. The group G appears as the global holonomy of a natural foliation Fh

on Mh (see [17]), this foliation is called suspension foliation of G. When G is (iso-
morphic to) a finitely generated subgroup of IPSL(2,C) the suspension foliation is
transversely projective in Mh .

2.4 Development of a Transversely Projective Foliation

We recall the notion of development of a transversely projective foliation, first men-
tioned in the Introduction, already adapting it to our current framework. Let G be a
(non-singular) holomorphic foliation on a complex manifold N . Suppose that G
is transversely projective in N . There is a Galoisian (i.e., a transitive) covering
π : P → N where π is holomorphic, a homomorphism h : π1(N ) → IPSL(2,C)

and a holomorphic submersion Φ : P → CP1 such that:

(i) Φ is h-equivariant. This means that for any homotopy class [γ ] ∈ π1(N ), we
have

h([γ ])(Φ(x)) = Φ([̃γ ](x)), ∀x ∈ M\S

where by [̃γ ] : P → P we denote the covering map induced by [γ ] in the
Galoisian covering p : P → N .

(ii) π∗(G∣∣
N

)
is the foliation defined by the submersion Φ.

In the above construction of the development, we may take P as the universal
covering π : Ñ → N of N . We shall refer to the submersion Θ : Ñ → CP1 as a
multiform first integral of G given by the projective structure in N . Given a homotopy
class [γ ] ∈ π1(M\S), the corresponding monodromy map is the image h([γ ]) ⊂
IPSL(2,C).

Definition 7 The global monodromy of the foliation, with respect to this develop-
ment, is the image Mon(G) = h(π1(N )) ⊂ IPSL(2,C).

Remark 5 Some remarks about the above construction are: The construction of the
development in [17] requires the foliation to be non-singular. Assume now that
F is a foliation with singular set of codimension ≥ 2 on a complex manifold M .
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Then N = M \ sing(F) is a complex manifold and G := F ∣∣
N is non-singular. By

definition F is transversely projective if and only if G is transversely projective.
Moreover, since sing(F) ⊂ M has real codimension ≥ 4, we conclude that there is
a natural isomorphism π1(N ) ∼= π1(M). In particular, we can assume in the above
construction that M = N , i.e., the notion of development above introduced can be
introduced for foliations with singularities. Finally, thanks to Hartogs’ extension
theorem [18], any holomorphic map from M\sing(F) to CP1 extends uniquely to
a holomorphic map from M to CP1.

2.5 Holonomy Groups of Transversely Projective Foliations

Inwhat followswe consider the following situation. LetF be a holomorphic foliation
on a complex surface M , Λ ⊂ M a closed analytic invariant subset of pure dimension
one (a curve) and assume that F is transversely projective in M\Λ. We will follow
original ideas from [26] in the same vein as in [28].
Monodromy: Using the notion of development we can introduce the notion of mon-
odromy of the projective transverse structure of F ∣∣

M\Λ as follows:
Fix a base point m0 ∈ M\Λ and a local determination fm0 of the submersion Φ

in a small ball Bm0 centered at m0 (we have the following commutative diagram)

P ⊃ p−1(Bm0) Φ
∣∣
p−1(Bm0 )

p ↓ p
∣∣
p−1(Bm0 )

↓ ↘
M\Λ ⊃ Bm0

fm0−→ CP(1)

Notice that p−1(Bm0) = ⋃
α∈A

Uα, p
∣∣
Uα

: Uα → Bm0 is a biholomorphism for each

α ∈ A.
By construction, the total space of the covering p : P → M\Λ is obtained by

analytic continuation of fm0 along all the elements in π1(M\Λ,m0).
The fiber p−1(m0) is the set of all local determinations fm0 at m0. We can, by the

general theory of transitive covering spaces, identify the group Aut (P, p) of deck
transformations of p : P → M\Λ to the quotient π1(M\Λ;m0)

/
p#π1(P; fm0).

This is the monodromy group of F ∣∣
M\Λ which will be denoted by Mon(F ,Λ).

The monodromy map is the natural projection

ρ : π1(M\Λ;m0) −→ π1(M\Λ;m0)
/
p#π1(P; fm0) =: Mon(F ,Λ)

Our first remark is the following:
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Lemma 1 Themonodromy groupMon(F ,Λ) is naturally isomorphic to a subgroup
of IPSL(2,C).

Proof This is clear since F ∣∣
M\Λ is transversely projective on M\Λ.

Holonomy In what follows we consider the following situation. LetF be a holomor-
phic foliation on a complex surface M , Λ ⊂ M a closed analytic invariant subset of
pure dimension one (a curve) and assume that F is transversely projective in M\Λ.
Let S ⊂ Λ be an irreducible component of Λ. We suppose that each singular point
in S is irreducible and exhibits at most one separatrix transverse to S.

Here we keep on following arguments originally in [26] and mimed in [28]. We
proceed to study the holonomy of each irreducible component of M . It is enough
to assume that M is the union of a smooth compact curve S and local analytic
separatrices sep(F , S) ofF transverse to S; M = S ∪ sep(F , S), all of them smooth
invariant and without triple points. We suppose that sing(F) ∩ S �= ∅, each singular
point in S is irreducible and, if it admits two separatrices then one is transverse
to S). In this case we can consider a C∞ retraction r : W → S from some tubular
neighborhood W of S on M onto S such that, ∀m ∈ S the fiber r−1(m) is either a
disc transverse to F or a local branch of sep(F , S) at m ∈ sing(F). We set V =
W\(M ∩ W ) to obtain a C∞ fibration r

∣∣
V : V → S\sing(F) by punctured discs

over S\sing(F). Since π2(S\sing(F)) = 0 the homotopy exact sequence of the
above fibration gives the exact sequence

0 −→ ZZ −→ π1(V, m̃0)
τ−→ π1(S\sing(F);m0) −→ 0

where m̃0 ∈ V is a base point and m0 ∈ S\sing(F) is its projection and τ = (r
∣∣
V )#.

Now we consider the restriction of the covering space P to V ; indeed for our
purposes wemay assume thatW = M and V = M\Λ so that we are just considering
the space P itself. Let ρ be the monodromy map

ρ : π1(V ; m̃0) −→ π1(V ; m̃0)
/
p#(π1(p−1(V ); fm̃0)) =: Mon(F , V )

Denote by Mon(F , S) the quotient of Mon(F , V ) by the (normal) subgroup
Ker(τ ) ∼= ZZ . Then there is a unique morphism [ρ] such that the diagram com-
mutes:

0 −→ ZZ → π1(V ; m̃0) −→ π1(S\sing(F);m0) → 0
↘ ρ ↓ [ρ] ↓

Mon(F , V ) −→ Mon(F , S) → 0

The morphism [ρ] is the monodromy of F ∣∣
V seen as follows:

given any element [γ ] ∈ π1(S\sing(F);m0) themonodromy [ρ]([γ ]) is the analytic
continuation of the local first integral fm0 alongγ and its holonomy lifting. This gives:
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Lemma 2 There exists a surjective group homomorphism α : Hol(F , S) −→ Mon
(F , S) such that the diagram commutes

π1(S\sing(F))

Hol ↙ ↘ [ρ]
Hol(F .S)

α−→ Mon(F; S)

where Hol : π1(S\sing(F)) −→ Hol(F; S) is the holonomy morphism of the leaf
S\sing(F) of F , and [ρ] : π1(S\sing(F)) −→ Mon(F; S) is as above.

The kernel of α is the subgroup Ker(α) < Hol(F; S) of those diffeomorphisms
keeping fixed any element �(z) of the fiber of r

∣∣
V : V → S\sing(F) over mo ∈

S\sing(F). The invariance group of �, I nv(�, z), defined as follows I nv(�, z) ={
h ∈ Di f f (C, 0); � ◦ h ≡ �

}
, where Di f f (C, 0) denotes the group of germs of

complex diffeomorphisms fixing the origin 0 ∈ C. Therefore Ker(α) is a subgroup
of the invariance group I nv(�, z), in the sense that if p� : V� → D∗ is the covering
space of the punctured disc D∗ = D\{0} associated to � then � ◦ h ≡ � means that
∀m ∈ D∗, ∀ �m ∈ p−1

� (m), ∃ �h(m) ∈ p−1
� (h(m)), �h(m) ◦ h = �m .

In particular, to any element h ∈ I nv(�, z) there is associated a pair (h̃, h) where
h̃ is the lifting of h to the covering space V� defined by h̃ : �m �→ �h(m).
Another lemma we need is:

Lemma 3 Let 0 → G → H → K → 0 be an exact sequence of groups. Then H is
solvable if, and only if, G and K are solvable.

From the above discussion we have an exact sequence

0 −→ Ker(α) −→ Hol(F , S)
α−→ Mon(F , S) −→ 0

We claim that I nv(�, z) is solvable. Indeed, suppose the contrary. ByNakai’s Density
Lemma [25] the orbits of a non-solvable subgroup of Di f f (C, 0) are locally dense in
a neighborhood Γ of the origin. Let thereforem ∈ Γ be a point and Γm ⊂ Γ \ {0} be
a small sector with vertex at the origin, such that the orbit of m in Γm is dense in Γm .
Denote by �Γm a local determination of � in Γm . Then �Γm is constant along each orbit
of I nv(�, z) in Γm and the orbit of m is dense in Γm so that �Γm is constant in Γm . By
analytic continuation � and the first integral Φ are constant yielding a contradiction.
Thus the group I nv(�, z) is solvable and therefore embeds in IPSL(2,C). Hence
Hol(F , S)

/
Ker(α) 	 Mon(F , S) embeds in IPSL(2,C) but Hol(F , S) embeds in

Di f f (C, 0), aswell as Ker(α) embeds in I nv(�)which is a subgroup of Di f f (C, 0)
and therefore Hol(F , S)

/
Ker(α) is isomorphic to a subgroup of IPSL(2,C) with a

fixed point. This implies that indeed, Hol(F , S)
/
Ker(α) is solvable and conjugate

to a subgroup of A f f (C, 0). Therefore Mon(F , S) is solvable and by Lemma 3 the
holonomy group Hol(F , S) is solvable.
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Summarizing the above discussion we have:

Theorem 3 Let F be a holomorphic foliation on a complex surface M, Λ ⊂ M
a closed analytic invariant curve and assume that F is transversely projective in
M\Λ. Let S ⊂ Λ be an irreducible component of Λ. We suppose that each singular
point in S is irreducible and exhibits a single separatrix transverse to S. Then the
holonomy group Hol(F , S) of the leaf S\(sing(F) ∩ S) of F is a solvable group.

2.6 Transversely Affine Foliations

A particular case of transversely projective foliations is described below. As above,
we consider a codimension-one holomorphic foliation F on a complex manifold
Mn , n ≥ 2, with singular set sing(F) ⊂ M of codimension ≥ 2. We say that F is
transversely affine in an open subset U ⊂ M if there exists an open cover {Uα}α∈A

of U\sing(F) such that there are holomorphic submersions yα : Uα → C such that
F ∣∣

Uα
is given by dyα = 0, and for each Uα ∩Uβ �= ∅ we have yβ = aαβ yα + bαβ

for some affine map (z �→ aαβ z + bαβ). Transversely affine foliations have been
studied by several authors, in the real case [17, 32] and in the holomorphic case [3,
14, 27]. Examples of such complex foliations are logarithmic foliations andBernoulli
foliations as well as rational pull-backs of such foliations [8, 27]. For all of these, the
foliation is transversely affine outside of some algebraic invariant curve S ⊂ CP(2).
In [27] we find that a foliationF on M = CP(2)which is transversely affine outside
some algebraic invariant curve S ⊂ CP(2) is a logarithmic foliation under somemild
conditions on sing(F) ∩ S. Relaxing slightly the hypothesis on sing(F) ∩ Swemay
prove thatF admits a Liouvillian first integral as follows: Letω be a polynomial one-
formwhich definesF in some affine spaceC2 ⊂ CP(2), thenω admits a one-form η

which is rational, with simple poles and such that dω = η ∧ ω. We call the form η a
generalized integrating factor forω. The Liouvillian first integral forF is F = ∫

ω

e
∫

η

[8, 33]. Using [8] onemay therefore conclude that, under some suitable hyperbolicity
hypotheses, eitherF is givenby a closed rational one-formonCP(2), or it is a rational
pull-back of a Bernoulli foliation as followsR: p(x)dy − (y2a(x) + yb(x))dx = 0.

We separate the following useful definition:

Definition 8 (generalized integrating factor) Let Ω be a meromorphic one-form on
a complex manifold M . A meromorphic one-form η in M is called a meromorphic
generalized integrating factor for Ω if we have: (1) dΩ = η ∧ Ω and (2) dη = 0.
If this is the case then Ω is integrable and defines a foliation F (holomorphic, of
codimension one, with singularities) on M . We shall say that η is a generalized
integrating factor for the foliation F .
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3 Projective Structures and Differential Forms

3.1 Projective Triples

The very basic result relating transversely homogeneous foliations and suitable sys-
tems of differential forms is the classical Darboux-Lie theorem [4, 17, 27]. In the
case of projective transverse structure this can be stated as:

Proposition 2 ([27], Proposition 1.1 p. 190)Assume thatF is given by an integrable
holomorphic one-formΩ on M and suppose that there exists a holomorphic one-form
η on M such that (Proj.1)dΩ = η ∧ Ω . ThenF is transversely projective on M if and
only if there exists a holomorphic one-form ξ on M such that (Proj.2)dη = Ω ∧ ξ

and (Proj.3)dξ = ξ ∧ η.

The proof is found below.

3.2 Examples

Example 9 Let α be a closed meromorphic one-form on M and let f : M → C

be a meromorphic function. Define (Ω, η, ξ) by: Ω = d f − f 2α, η = 2 f α and
ξ = 2α. Then (Ω, η, ξ) is a projective triple and therefore Ω defines a holomorphic
foliation on M , transversely projective in the complement of the analytic invariant
codimension one set S ⊂ M , S = (α)∞ ∪ ( f )∞. The same conclusion holds for
Ωλ = Ω + λα, where λ ∈ C. The foliationF(Ωλ) is also transversely affine in some
smaller open set of the form M\S′ where S′ ⊃ S, S′ = S ∪ ( f 2 − λ = 0). (In fact

Ωλ

f 2−λ
= d f

f 2−λ
− α is closed and holomorphic in M\S′).

Example 10 Let h : M → C∗ be holomorphic such that dξ = − dh
2h ∧ ξ where ξ is

holomorphic (we can write this condition as d(
√
h.ξ ) = 0). Let F be any holo-

morphic function and write (for λ ∈ C)Ω = F · (
dF
F − 1

2
dh
h

) −
(

F2

2 − λ
2h

)
.ξ, η =

1
2
dh
h + F · ξ. The triple (Ω, η, ξ) satisfies the conditions of Proposition 2 and then

F = F(Ω) is a transversely projective foliation on M .

3.3 Proof of Proposition 2

Let us now give a proof for Proposition 2. We start with a remark about its need.

Remark 6 Proposition 2 is stated (for the real non-singular case) with an idea of its
proof, in [17] (see Proposition 3.20, pp. 262). However, it seems that the suggested
proof uses some triviality hypothesis on principal fiber-bundles of structural group
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A f f (C), over the manifold M (see [17] Proposition 3.6 pp. 249–250). In our case
this is replaced by the existence of the form η in the statement. On the other hand,
since some of its elements will be useful later, we supply a proof for Proposition 2.

We will use the two following lemmas whose proofs are straightforward conse-
quences of Darboux-Lie theorem, Theorem 2, therefore left to the reader:

Lemma 4 Let x, y, x̃, ỹ : U ⊂ Cn → C be meromorphic functions satisfying:

(i) ydx − xdy = ỹd x̃ − x̃d ỹ;

(ii) x̃
ỹ = ax+by

cx+dy ,

(
a b
c d

)
∈ IPSL(2,C).

Then x̃ = ε.(ax + by) and ỹ = ε.(cx + dy) for some ε ∈ C, ε2 = 1.

Lemma 5 Let x, y, x̃, ỹ : U ⊂ Cn → C be meromorphic functions satisfying x̃ =
ax + by, ỹ = cx + dy for some

(
a b
c d

)
∈ IPSL(2,C). Then xdy − ydx = x̃d ỹ −

ỹd x̃ .

Proof (Proof of Proposition 2) Suppose F is transversely projective in Mn , say,
{ fi : Ui → C} is a projective transverse structure for F in M\sing(F). In each
Ui we have Ω = −gi d fi for some holomorphic gi ∈ Ø(Ui )

∗. In each Ui ∩Uj �= φ

we have: gi d fi = g j d f j and (1) fi = ai j f j+bi j
ci j f j+di j

as in Definition 6. Since dΩ =
d(−gi d fi ) = dgi

gi
∧ Ω we have η = dgi

gi
− hiΩ for some holomorphic hi in Ui . We

define xi , yi , ui , vi : Ui → C in the following way: (2) y2i = gi ,
xi
yi

= fi , hi = 2vi
yi

andxivi − yiui = 1. Thus we have: Ω = xi dyi − yi dxi and (3) η = 2(vi dxi −
ui dyi ). This motivates us to define local models (see [17] Sect. 3.18 pp. 261): ξi =
2(vi dui − ui dvi ) in Ui . It is easy to check that we have dξi = ξi ∧ η, dη =
Ω ∧ ξi in Ui . We can assume that dxi and dyi are independent for all i ∈ I . In
fact dxi ∧ dyi = 0 ⇒ dΩ

∣∣
Ui

= 2 dxi ∧ dyi = 0 ⇒ dΩ = 0 in M (we can assume
M to be connected) ⇒ we have 0 = dΩ = η ∧ Ω so that η = hΩ for some holo-
morphic function h : M → C ⇒we can choose ξ = h2Ω

2 + hη + dh which satisfies
the relations dη = Ω ∧ ξ and dξ = ξ ∧ η.

Claim (1)We have ξi = ξ j in each Ui ∩Uj �= φ and therefore the ξi ’s can be glued
into a holomorphic one-form ξ in M\sing(F) satisfying the conditions of the state-
ment.

Proof From (1) and (2) we obtain xi
yi

= ai j x j+bi j y j
ci j x j+di j y j

. Therefore according to Lemma 4

we have (4) xi = ε.(ai j x j + bi j x j ), yi = ε.(ci j x j + di j y j ) ε2 = 1. Using (3) and
(4) we obtain: (ai jvi − ci j ui )dx j + (bi jvi − di j ui )dy j = ε.(v j dx j − u j dy j ) and
therefore: (5) v j = ε(ai j vi − ci j ui ), u j = ε(−bi j vi + di j u j ). It follows form (5)
and Lemma 5 that vi dui − ui dvi = v j du j − u j dv j which proves the claim.

Claim (2)We have ξ = ξi = h2i
Ω
2 + hiη + dhi in each Ui .
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Proof We have h2i Ω = 4v2i
y2i

(xi dyi − yi dxi ), hiη = 4vi
yi

(vi dxi − ui dyi ), dhi =
2d

(
vi
yi

)
. Hence h2i Ω

4 + hiη
2 + dhi

2 = v2i
yi
dxi − vi

y2i
(xivi − 1)dyi + dvi

yi
.

On the other hand a straightforward calculation shows that ξi
2 = vi dui − ui dvi =

v2i
yi
dxi − vi

yi
(xivi − 1)dyi + dvi

yi
. And thus Claim 2 is proved.

Since codim sing(F) ≥ 2 it follows that ξ extends holomorphically to M . This
proves the first part. Nowwe assume that (Ω, η, ξ) is holomorphic as in the statement
of the proposition:

Claim (3) Given any p ∈ M\sing(F) there exist holomorphic x, y, u, v : U → C

defined in an open neighborhood U � p such that: Ω = xdy − ydx, η = 2(vdx −
udy) and ξ = 2(vdu − udv).

Proof This claim is a consequence of Darboux’s Theorem (see [17] pp. 230), but we
can give an alternative proof as follows: We write locally Ω = −gd f = xdy − ydx
and η = dg

g
− hΩ = 2(vdx − udy) as in the proof of the first part. Using Claim 2

above and the last part of Proposition 3 below we obtain locally ξ = h2Ω
2 + hη +

dh + �.Ω; for some holomorphic function � satisfying d�
−2� ∧ Ω = dΩ . This last

equality implies that d(
√

�.Ω) = 0 and then � = r( f )
g2

for some holomorphic func-

tion r(z). Now we look for holomorphic functions f̃ , g̃ and h̃ satisfying: Ω =
−g̃d f̃ , η = d g̃

g̃
− h̃Ω and ξ = h̃2Ω

2 + h̃η + dh̃. We try f̃ = U ( f ) for some holo-

morphic non-vanishing U (z). Using Ω = gd f = −g̃d f̃ we get g̃ = g
U ′( f ) . Using

η = dg
g

− dΩ = d g̃
g̃

− h̃Ω we get h̃ = h − U ′′
gU ′ . Using ξ = h2Ω

2 + hη + dh + �Ω =
h̃2Ω
2 + h̃η + dh̃ we get d

(
U ′′( f )
U ′( f )

)
= r( f )d f .

Therefore it is possible to writeΩ , η and ξ as in the statement of the claim: define
x = f̃ y, y = √

g̃, v = h̃ y
2 and u = xv−1

y as in the first part of the proof. This proves
Claim 3.

Using Claim 3we prove thatF is transversely projective inM\sing(F), that is inM .
The last part of Proposition 2 can be proved using the relation stated above between
the projective structure and the local trivializations for Ω , η and ξ . For instance we
prove the following.

Claim (4) The triples (Ω, η, ξ) and ( f Ω, η + d f
f , 1

f ξ) define the same projective
structure for F , for any holomorphic f : M → C∗.

Proof Using the notation of the first part we define x̂i = √
f . xi , ŷi = √

f . yi ,
ûi = 1√

f
. ui and v̂i = 1√

f
. vi . Then: f Ω = x̂i d ŷi − ŷi d x̂i , η + d f

f = 2(v̂i d x̂i −
ûi d ŷi ) and 1

f ξ = 2(v̂i dûi − ûi d v̂i ). Furthermore we have x̂i
ŷi

= xi
yi

= ai j x j+bi j y j
ci j x j+di j y j

=
ai j x̂ j+bi j ŷ j
ci j x̂ j+di j ŷ j

, and this proves the claim and finishes the holomorphic part of the proof.

Now we only have to observe that if (Ω, η) is a pair of meromorphic one-forms
and if F is transversely projective in M , then the same steps of the first part of the
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proof apply to construct a meromorphic one-form ξ satisfying the relations of the
statement.

Let F be a codimension one holomorphic foliation with singular set sing(F) of
codimension ≥ 2 on a complex manifold M . As mentioned in the Introduction, the
existence of a projective transverse structure for F is equivalent to the existence of
suitable triples of differential forms (cf. Proposition 2, see also [27] Sect. 3, page
193):
This motivates the following definition:

Definition 9 (projective triple) Given holomorphic one-forms (respectively, mero-
morphic one-forms) Ω , η and ξ on M we shall say that (Ω, η, ξ) is a holomorphic
projective triple (respectively, a meromorphic projective triple) if they satisfy rela-
tions (Proj.1), (Proj.2) and (Proj.3) above. The foliationF⊥ defined by the one-form
ξ is called transverse foliation corresponding to the projective triple. If η is not iden-
tically zero then F⊥ is really a foliation on M which is transverse to F outside of a
proper analytic subset.

The following definition will play a fundamental role in the last section of this
work.

Definition 10 (moderate growth (transversely projective foliations)) A foliation F
on M will be called transversely projective of moderate growth if it admits a mero-
morphic projective triple (Ω, η, ξ) defined in M . This means that F is transversely
projective in some the complementar of some analytic subsetΛ ⊂ M of codimension
one.

The termonilogy foliation with moderate growth has already been introduced in [35].
With the above definitions, and the notation of Proposition 2, this last says that F
is transversely projective on M if and only if the holomorphic pair (Ω , η) may
be completed to a holomorphic projective triple. Moreover, a foliation F which is
transversely projective of moderate growth exhibits a projective transverse structure
P in the complement of some codimension divisor D ⊂ M (D contained in the polar
set of the projective triple). One question then is whether the projective transverse
structure P extends to the divisor D. The other question, apparently simpler, is
whether the foliationF is actually projective of moderate growth. According to [27]
we may perform modifications in a projective triple as follows:

Proposition 3 ([27]) Let M be a connected complex manifold.

(i) Given a meromorphic projective triple (Ω, η, ξ) and meromorphic functions
g, h on M we can define a new meromorphic projective triple as follows:
(Mod.1) Ω ′ = gΩ

(Mod.2) η′ = η + dg
g

+ h Ω

(Mod.3) ξ ′ = 1
g

(
ξ − dh − hη − h2

2 Ω
)

(ii) Two holomorphic projective triples (Ω, η, ξ) and (Ω ′, η′, ξ ′) define the same
projective transverse structure for a given foliation F if and only if we have
(Mod.1), (Mod.2) and (Mod.3) for some holomorphic functions g, h with g
non-vanishing.
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(iii) Let (Ω, η, ξ) and (Ω, η, ξ ′) be meromorphic projective triples. Then ξ ′ =
ξ + F Ω for some meromorphic function F in M with d Ω = − 1

2
dF
F ∧ Ω .

This last proposition implies that suitable meromorphic projective triples also define
projective transverse structures.We can rewrite condition (iii) on F as d(

√
F Ω) = 0.

This implies that if the projective triples (Ω, η, ξ) and (Ω, η, ξ ′) are not identical
then the foliation defined by Ω is transversely affine outside the codimension one
analytical invariant subset S = {F = 0} ∪ {F = ∞} [27].

This approach is useful because of the following proposition:

Proposition 4 ([27] Theorem 4.1 p. 197) Let F be a foliation on M where M is
either an open polydisc M ⊂ Cm or a projective manifold over C of dimension
m ≥ 2. Assume that F admits a meromorphic projective triple (Ω, η, ξ) defined in
M. If ξ admits a meromorphic first integral in U then F is a meromorphic pull-back
of a Riccati foliation.

Proof By hypothesis, ξ defines a foliationwhich admits ameromorphic first integral.
Since we are either on a projective manifold or in a polydisc centered at the origin,
we can write ξ = g dR for somemeromorphic functions g and R (these functions are
rational in the case of a projective surface). Then we may replace the meromorphic
triple (Ω, η, ξ) by (Ω ′, η′, ξ ′) where Ω ′ = gΩ , η′ = η + dg

g
and ξ ′ = 1

g
ξ = dR.

The relations dΩ ′ = η′ ∧ ξ ′, dη′ = Ω ′ ∧ ξ ′, dξ ′ = ξ ∧ η′ imply that η′ = HdR
for some meromorphic function H . Now we define ω := H 2

2 ξ ′ − Hη′ + dH =
1
2 H 2dR + dH one-form such that dω = −HdH ∧ dR. On the other hand η′ ∧ ω =
HdR ∧ dH = −HdH ∧ dR. Thus dω = η′ ∧ ω. We also have dη′ = dH ∧ dR =
(− 1

2 H 2dR + dH) ∧ dR = ω ∧ ξ ′. The meromorphic triple (ω, η′, ξ ′) satisfies the
projective relations dω = η′ ∧ ω, dη′ = ω ∧ ξ ′, dξ ′ = ξ ′ ∧ η′ and therefore by
Proposition 3 (iii) we conclude that Ω ′ = ω + F.ξ ′ for some meromorphic function
F such that dξ ′ = ξ ′ ∧ 1

2
dF
F · This implies dF ∧ dR ≡ 0. By the classical Stein Fac-

torization theorem we may assume from the beginning that R has connected fibers
and therefore dF ∧ dR ≡ 0 implies F = ϕ(R) for some one-variable meromorphic
function ϕ(z) ∈ C(z). In the case where M is a projective manifold all the meromor-
phic objects are rational and therefore ϕ(z) is also a rational function. We obtain
therefore Ω ′ = − 1

2 H 2dR + dH + ϕ(R)dR == dH − ( 12 H 2 − ϕ(R))dR. If we
define ameromorphicmap σ : M → C × C by σ(p) = (

R(p), H(p)
)
then clearly

Ω ′ = σ ∗(dy − ( 12 y
2 − ϕ(x))dx) and thereforeF is the pull-backF = σ ∗(R) of the

Riccati foliationR given onC × C by the meromorphic (rational if M is a projective
manifold) one-form Ωϕ := dy − ( 12 y

2 − ϕ(x))dx .

Definition 11 A meromorphic projective triple (Ω ′, η′, ξ ′) is geometric if it can
be written locally as in (Mod.1), (Mod.2) and (Mod.3) for some (locally defined)
holomorphic projective triple (Ω, η, ξ) and some (locally defined) meromorphic
functions g, h.
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As an immediate consequence we obtain:

Proposition 5 A geometric projective triple (Ω ′, η′, ξ ′) defines a transversely pro-
jective foliation F given by Ω ′ on M.

Example 11 (Riccati Foliations - revisited) Fix affine coordinates (x, y) ∈ C2 and
consider a polynomial one-formΩ = p(x)dy − (y2 c(x) − yb(x) − a(x))dx . Then
Ω defines a Riccati foliation R on C × C as seen in Example 6 above. Now
we study the Lie Algebra associated to this example. Put η = 2 dy

y + p′+b
p dx +

2a
yp dx and ξ = −2a

y2 p2 dx . Then (Ω, η, ξ) satisfies the projective relations stated in

Proposition 2. This shows thatF is transversely projective inC × Cminus the alge-
braic subset {x ∈ C | p(x) = 0} × C ∪ C × {y = 0}. But since in the case a(x) �≡ 0,
only the subset S = {p(x) = 0} × C is F invariant it follows that the transverse
projective structure extends to C × C\S. Indeed according to Proposition 3 if
we define g = −1

p(x)y then η′ = η + 2gΩ = p′−b+2yc
p dx and ξ ′ = ξ − 2dg − 2gη −

2g2Ω = 2c
p2 dx ; define a triple (Ω, η′, ξ ′) holomorphic in (C × C) \ S which gives

a projective structure forF in this affine set. This projective structure coincides with
the one given in (C × C) \ (S ∪ C × {y = 0}) by (Ω, η, ξ). The one-form η is closed
if and only if a ≡ 0. ThereforeF is transversely affine inC × C\(S ∪ C × {y = 0})
if the projective line {y = 0} is invariant. The forms (Ω, η′, ξ ′) define a rational pro-
jective triple and the projective transverse structure of the foliation F⊥ defined by ξ

extends from C2\S to C × C. Indeed, Fξ admits a rational first integral. We will see
this is a general fact, under suitable hypothesis on the singularities of the foliation
F on C × C, admitting a projective transverse structure in the complementary of an
algebraic one dimensional invariant subset S ⊂ C × C.

Remark 7 (Ricatti versus logarithmic) In general, Ricatti foliations are not given by
closed one-forms, hence are not logarithmic foliations.

3.4 Germs of Foliations and Foliations on Projective Surfaces

Let F be a holomorphic foliation aaa of codimension one on CP2 having sin-
gular set sing(F) ⊂ CP2. As it is well-known we can assume that sing(F) is
of codimension ≥ 2 and F is given in any affine space C2 ⊂ CP2 with coordi-
nates (x, y), by a polynomial one-form Ω(x, y) = A(x, y)dx + B(x, y)dy with
sing(F) ∩ C2 = sing(Ω). In particular sing(F) ⊂ CP2 is a nonempty finite set
of points. Given any algebraic subset S ⊂ CP2 of dimension one we can therefore
always obtain a meromorphic (rational) one-form Ω onCP2 such that Ω defines F ,
(Ω)∞ is non-invariant and in general position (indeed, we can assume that (Ω)∞ is
any projective line in CP(2)). Also if we take η0 = Bx

B dx + Ay

A dy then we obtain a



204 B. Scárdua

rational one-form such that dΩ = η0 ∧ Ω and with polar set given by (η0)∞ =
{(x, y) ∈ C2 : A(x, y) = 0} ∪ {(x, y) ∈ C2 : B(x, y) = 0} ∪ (Ω)∞ . In particular,
(η0)∞ ∩ C2 has order one and the “residue" of η0 along any component T of (Ω)∞
equals −k where k is the order of T as a set of poles of Ω . Any rational one-form η

such that dΩ = η ∧ Ω writes η = η0 + hΩ for some rational function h. We obtain
in this way one-forms η with appropriately located set of poles, with respect to F ,
and applying Propositions 2 and 3 we obtain:

Proposition 6 (foliations on projective spaces) Let F be a holomorphic foliation
on CP(2). Assume that F is transversely projective in CP(2)\S for some algebraic
subset S of dimension one. Then F has a projective triple (Ω, η, ξ) on CP(2) \
S where Ω and η are rational one-forms and ξ is meromorphic on CP(2)\S. In
particular ξ defines a transverse foliation F⊥ to F on CP(2)\S having a projective
transverse structure.

The same holds, with a very similar proof, for germs of foliations at the origin
0 ∈ C2 where the curve S is replaced by a finite set of local branches of separatrices
of the foliation through the singularity. More precisely:

Proposition 7 (germs of foliations) Let F be a germ of a holomorphic foliation
with a singularity at the origin 0 ∈ C2. Assume that F is transversely projective
in the complement of an analytic subset S ⊂ sep(F , 0) of the set of separatrices
through the origin. Then, for a sufficiently small bidisc 0 ∈ M ⊂ C2 the germ F has
a projective triple (Ω, η, ξ) where Ω is a holomorphic one-form in M, the form η is
meromorphic in M and ξ is meromorphic in M\S.
Remark 8 (Generalizations for algebraic projective manifolds) Let us consider M2

a non-singular algebraic projective surface. Let F be a foliation on M2. Since we
can define in a natural way, polynomial and rational functions on M2 we can define
in a natural way algebraic leaves of F . Let S ⊂ M be an algebraic curve, i.e., a pure
codimension one analytic subset. The condition that M\S is affine is equivalent to
say that it is a Stein manifold. This does not hold in general, very much depending
on the curve S ⊂ M . Any meromorphic function on a projective surface is a rational
function. A foliation F on M is therefore given by a rational one-form Ω on M
admitting a rational one-formη such thatdΩ = η ∧ Ω .Wehave thennatural versions
of Propositions 2, 3 and 6 to this situation.

4 Extension of Projective Triples

In this section we address the following basic problem. Let F be a foliation on a
complex manifold M with a projective transverse structure in M\S for some codi-
mension one analytic subset S ⊂ M . Under which conditions does the projective
structure P extends to S?. A more appropriate question may be as follows: suppose
that the projective transverse structure P on M \ S is given by a projective triple
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(Ω, η, ξ)with (as it is natural to assume),Ω and η meromorphic in M .Under which
conditions does the one-form ξ admits a meromorphic extension to S?We shall focus
on two main cases.

(1) The local case, where M is a neighborhood of the origin 0 ∈ C2. In this case we
regard F as a germ of a foliation at the origin 0 ∈ C2 and consider S as a subset
of its set of separatrices.

(2) The projective case, where M is a projective surface. In this case the objects are
rational once they are meromorphic in M and S ⊂ M is an algebraic curve.

4.1 Algebraic Leaves and Local Separatrices

Given a foliation F on a projective surface M , by an algebraic leaf of F we mean
a leaf L of the foliation which is contained in an algebraic curve in M . Thanks to
the Identity Principle and to Remmert–Stein extension theorem, a leaf L of F is
algebraic if and only if it accumulates only at singular points of F . In this case the
algebraic curve consists of the leaf and such accumulation points. The following
remark will be useful:

Lemma 6 ([30] Lemma 7.5 (iii)) LetF andF1 be distinct foliations on a projective
surface M. If a leaf L of F is also a leaf of F1 then this leaf is algebraic.

Proof We choose affine coordinates (x, y) ∈ M and polynomial equations for F
and F1 in these coordinates, say: F is given by dy

dx = P(x,y)
Q(x,y) and F1 by

dy
dx = P1(x,y)

Q1(x,y)
where P, Q and P1, Q1 are relatively prime polynomials. Suppose (x(z), y(z)), z ∈
V ⊂ C is a common solution of the foliations F and F1 on M . Then we have

P(x(z), y(z)

Q(x(z), y(z))
= dy/dz

dx/dz
= P1(x(z), y(z))

Q1(x(z), y(z))

so that (PQ1 − P1Q)(x(z), y(z)) = 0. By hypothesis PQ1 − P1Q �≡ 0 so that L
satisfies the non-trivial algebraic equation PQ1 − P1Q = 0. It follows that L is
algebraic.

The following statement is about transversely projective foliations with moderate
growth (cf. Definition 10). It is a compilation of some results above and a preparatory
step for the final conclusion:

Theorem 4 Let F be a foliation on a projective surface M, with a projective trans-
verse structure outside of an algebraic subset S ⊂ M of dimension one. Let (Ω, η, ξ)

be a rational projective triple defining the projective transverse structure outside of
the curve S. We have the following possibilities:
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1. S contains all the non-dicritical separatrices of F in S.
2. There is some singularity p ∈ sing(F) ∩ S and a (non-dicritical) separatrix Γ

of F through p, which is not contained in S. In this case we have the following
possibilities:

(a) The leaf containing Γ is not algebraic and F⊥-invariant. In this case F⊥
coincideswithF ,η is closed andF admits a rational generalized integrating
factor.

(b) The leaf containing Γ is not algebraic and is not F⊥ invariant.
(c) The leaf containing Γ is algebraic. In this case F is transversely affine in

M \ (S ∪ A) for some algebraic invariant curve A ⊂ M not contained in S.

Proof We perform the resolution of singularities for F in S and obtain a projective
surface M̃ and a resolution morphism σ : M̃ → M , a divisor E = σ−1(S) = D ∪ S̃,
where D is the exceptional divisor and S̃ is the strict transform of S, equipped with a
pull-back foliation F̃ = σ ∗(F) with irreducible singularities in E . The foliation F̃
is transversely projective in M̃ \ E . By Lemma 10 the projective transverse structure
of F̃ extends to the non-invariant part of D so that, for our purposes we may assume
that D is F̃-invariant, though not necessarily connected. If S contains all the non-
dicritical separatrices of F in S then we are in case (1).

Thus, from now on we suppose that there is a singular point q̃ ∈ S̃ ∩ sing(F̃)

such that F̃ exhibits some local separatrix Γ̃ through q̃ which is not contained in E .
Denote by F̃⊥ = σ ∗(F⊥) the inverse image ofF⊥ = Fξ on M̃ . Assume that the leaf
Ã of F̃ containing Γ̃ is not algebraic. In this case its projection A = σ( Ã) onto M is
not algebraic. We have two possibilities. If Γ̃ is Fξ -invariant then by, Lemma 6, F
coincides with F⊥ and we are in case (2)(a) in the statement. The second possibility
is that Γ̃ is not F̃-invariant. This corresponds to case (2)(b) in the statement.

Assume now that Ã ⊃ Γ̃ is an algebraic leaf of F̃ not contained in E . This
algebraic leaf projects onto an algebraic leaf A ofF , not contained in S. Theprojective
transverse structure ofF has A as a set of fixed points and thereforeF is transversely
affine in M \ (S ∪ A) what corresponds to case (2) (c) in the statement.

Thought the above statement already gives some information, it remains to study
the last case, 2(c) above. We must explore the consequences of the existence of a
non-dicritical separatrix which is not contained in the curve S, in the final description
of the foliation. This is done in what follows. In few words, for the case of extended
generalized curves, this allows to extend the projective triple, more precisely, the
one-form ξ extends to the irreducible component of S that contains this separatrix.

4.2 Extension of Projective Triples (irreducible Case)

Our main extension result for projective triples is so far the following:
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Theorem 5 LetF be a holomorphic foliation (respectively a germ of a holomorphic
foliation) on a projective surface U (respectively at the origin ofC2). Assume thatF
is transversely projective in U \ S where S ⊂ U is an algebraic invariant curve in
the projective surface (respectively a finite union of local branches of non-dicritical
separatrices ofF through the origin and U is a bidisc centered at the origin 0 ∈ C2,
where F has a representative). Suppose that the singularities of F in S are non-
resonant extended generalized curves. Then F admits a meromorphic projective
triple (respectively a germ of a meromorphic projective triple) (Ω, η, ξ) defined in
U (respectively at the origin), which defines the projective transverse structure in
U \ S (respectively in the complement of S).

In this section we pave the way to the proof of Theorem 5.
We recall the following fundamental result from [35]:

Theorem 6 (Touzet, [35] Theorem II.3.1 p. 821) A non-degenerate non-resonant
singularity xdy − λydx + Ω2(x, y) = 0, λ ∈ C \ Q+, is analytically linearizable if
and only if the corresponding foliationF is transversely projective inU \ sep(F ,U )

for some neighborhood U of the singularity.

One other tool is discussed below. LetF be a germ of an irreducible singularity at
the origin 0 ∈ C2, assumed to be of resonant type or of saddle-node type. According
to [35], Theorem II.4.2, the foliation admits a meromorphic projective triple in a
neighborhoodU of the singularity if and only if in a neighborhood of the singularity
F is the pull-back of a Riccati foliation on C × C by a meromorphic map. The
proof of this theorem is based in the study and classification of the Martinet-Ramis
cocycles of the singularity expressed in terms of some classifying holonomymap of a
separatrix of the singularity. For a resonant singularity any of the two separatrices has
a classifying holonomy and for a saddle-node it is necessary to consider the strong
manifold holonomy map. Thus we conclude that the proof given in [35] actually
shows that:

Lemma 7 ([35], Theorem II.4.2) Let F be a germ of an irreducible singularity at
the origin 0 ∈ C2, assumed to be of resonant type or of saddle-node type. The germ
F is the pull-back of a Riccati foliation onC × C by a meromorphic map if and only
if there exists a meromorphic projective triple (Ω ′, η′, ξ ′) in a neighborhood U0 of
a separatrix S ⊂ sep(F ,U ) provided that S is the strong separatrix if the origin is
a saddle-node.

As a further motivation for our approach wemention two results which are proved
in [9]. Such results imply the existence of a globally defined projective triple, parting
from a geometric projective triple, in a situation similar to the one we are dealing
with:

Proposition 8 ([9]) Let F be a holomorphic foliation in a neighborhood V of the
origin 0 ∈ C2 given by the holomorphic one-form Ω admitting a meromorphic one-
form η in V with dΩ = η ∧ Ω . Suppose that F has an irreducible non-degenerate
singularity at the origin and is transversely projective in U \ sep(F ,U ) for some
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neighborhood U ⊂ V of the origin whereF has an expression in irreducible normal
form. Let be given a holomorphic one-form ξ defined in U \ sep(F ,U ) such that
(Ω, η, ξ) is a geometric projective triple in U \ sep(F ,U ). Then ξ extends as a
meromorphic one-form to U. provided that, if the singularity is resonant, ξ extends
as a meromorphic one-form to S∗ = S − {0}, for some separatrix S ⊂ sep(F ,U ).

This proposition or the Globalization theorem in [9] give for the non-dicritical
case:

Proposition 9 (extension conditions) Let F be a holomorphic foliation defined in a
neighborhood V of 0 ∈ C2 with an isolated non-dicritical singularity at the origin.
Suppose that F is transversely projective in U \ sep(F ,U ) for some neighborhood
U ⊂ V of the origin where F is given by a holomorphic one-form Ω admitting a
meromorphic one-form η such that dΩ = η ∧ Ω in U. Let ξ be a meromorphic one-
form defined in U \ sep(F ,U ) such that (Ω, η, ξ) is a geometric projective triple.
Let π : Ũ → U be the reduction morphism of the singularity and denote by (Ω̃, η̃, ξ̃ )

the pull-back by π of the triple (Ω, η, ξ). Then the one-form ξ extends to U provided
that:

(Ext.1) At any non-resonant irreducible singularity of the foliation, the form ξ̃

admits a meromorphic extension (from a neighborhood of the singularity
minus its separatrices) to a neighborhood of the singularity.

(Ext.2) At any resonant irreducible singularity of the foliation, the one-form ξ̃

admits a meromorphic extension (from a neighborhood of an annulus con-
tained in one of the separatrices and around the singularity) to a neighbor-
hood of the singularity.

The (extension) conditions of the proposition above are satisfied in our current
situation, as we will see below (cf. Proposition 10).

We shall reprove and extend these results by considering meromorphic triples,
but which are not assumed to be geometric projective triples along the separatrices.

Remark 9 The above additional assumption (that ξ can be chosen holomorphic off
the set of separatrices) is not restrictive. Indeed, in the sequel (in the paper), the
foliation is assumed tobe transversely projective off the set of local separatrices. Since
Ω is defined meromorphic in a neighborhood of the singularity, we can assume that
it is holomorphic otherwise we replace it conveniently (see also Lemma 11). Thus,
if we write the one-form Ω = A(x, y)dx + B(x, y)dy with A, B holomorphic with
an isolated common zero at the origin, then we can choose η = Bx

B dx + Ay

A dy. The
polar set of η is contained in the curves {A = 0} and {B = 0}. So we can assume in
the case of a non-degenerate non-resonant singularity that the poles of η are contained
in the separatrices, which are the coordinate axes in suitable coordinates. Under this
hypothesis, the hypothesis of existence of a projective transverse structure off the
separatrices gives a holomorphic one-form ξ in the complement of the separatrices,
such that Ω, η, ξ is a (holomorphic) geometric projective triple off the axes.
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Next we show that the (extension) conditions in Proposition 9 are satisfied and
that we can apply some of these techniques also in the dicritical case. In order to do
this we remake the basic steps with the necessary changes. The starting point is the
non-resonant case considered below:

Proposition 10 (non-resonant case) Suppose that the origin is a nondegenerate non-
resonant singularity. Assume that F is transversely projective on U \ sep(F ,U ).
Let η be a meromorphic one-form on U and ξ be a meromorphic one-form on
U \ sep(F ,U ) such that on U \ sep(F ,U ) the one-forms Ω, η, ξ define a projec-
tive triple. Then ξ extends as a meromorphic one-form to U.

Before going into the proof we state a lemma:

Lemma 8 (non-resonant case) Let � be a meromorphic function inU ∗ = U \ {xy =
0} such that dΩ = − 1

2
d�
�

∧ Ω where Ω = g(xdy − λydx) for some holomorphic
non-vanishing function g inU and λ ∈ C \ Q. Then � = c̃.(gxy)−2 for some constant
c̃ ∈ C.

Proof Fix a complex number a ∈ C and introduce the one-form η0 = d(xyg)
xyg +

a(
dy
y − λ dx

x ) in U . Since Ω
gxy = dy

y − λ dx
x is closed it follows that dΩ = η0 ∧ Ω .

Thus the one-form Θ := − 1
2

d�
�

− η0 is closed meromorphic in U ∗ and satisfies
Θ ∧ Ω = dΩ − dΩ = 0. This implies that Θ ∧ (

dy
y − λ dx

x ) = 0 in U ∗ and there-

fore we have Θ = h.(
dy
y − λ dx

x ) for some meromorphic function h in U ∗. Taking
exterior derivatives we conclude that dh ∧ (

dy
y − λ dx

x ) = 0 inU ∗ and therefore h is a
meromorphic first integral forΩ inU ∗. Since λ /∈ Qwemust have h = c, a constant:
indeed, write h = ∑

i, j∈ZZ
hi j x i y j in Laurent series in a small bidisc around the origin.

Then from dh ∧ (
dy
y − λ dx

x ) = 0 we obtain (i + λ j)hi j = 0, ∀(i, j) ∈ ZZ × ZZ and
since λ /∈ Q this implies that λi j = 0, ∀(i, j) �= (0, 0).

This already shows that the one-form Θ always extends as a meromorphic one-
form with simple poles to U and therefore the function � extends as a mero-
morphic function to U . The residue of Θ along the axis {y = 0} is given by
Res{y=0}Θ = −Res{y=0} 12

d�
�

− Res{y=0}η0 = − 1
2k − (1 + a) where k ∈ IN is the

order of {y = 0} as a set of zeroes of � or minus the order of {y = 0} as a set of
poles of �. Thus by a suitable choice of a we can assume that Res{y=0}Θ = 0 and
therefore by the expression Θ = c( dyy − λ dx

x ) we conclude that, for such a choice of

a, we have 0 = Θ = − 1
2

d�
�

− η0 and thus − 1
2

d�
�

= dx
x + dy

y + dg
g

+ a(
dy
y − λ dx

x )

and therefore, comparing residues along the axes {y = 0} and {x = 0} we obtain
that 1 + a ∈ Q and 1 − aλ ∈ Q. Since λ /∈ Q the only possibility is a = 0. This
proves that indeed − 1

2
d�
�

= dx
x + dy

y + dg
g
in U and integrating this last expression

we obtain � = c̃(gxy)−2 for some constant c̃ ∈ C. This proves the lemma.

Now we can prove Proposition 10.
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Proof (Proof of Proposition 10) By hypothesis the foliation is given in suitable local
coordinates around the origin by xdy − λydx + Ω2(x, y) = 0 where λ ∈ C\Q,
Ω2(x, y) is a holomorphic one-form of order ≥ 2 at 0 ∈ C2.

Claim The singularity is analytically linearizable.

Indeed, if λ /∈ IR− then the singularity is in the Poincaré domainwith no resonance
and by Poincaré-Linearization Theorem the singularity is analytically linearizable.
Assume now that λ ∈ IR−\Q−. In this case the singularity is in the Siegel domain
and, a priori, it is not clear that the singularity is linearizable. Nevertheless, by
hypothesis F is transversely projective in U ∗ = U \ sep(F ,U ) and by Theorem 6
the singularity p ∈ sing(F) is analytically linearizable. This proves the claim.

Therefore we can suppose that Ω
∣∣
U = g(xdy − λydx) for some holomorphic

non-vanishing function g in U . We define η0 = dg
g

+ dx
x + dy

y in U . Then η0 is
meromorphic and satisfies dΩ = η0 ∧ Ω so that η = η0 + hΩ for some mero-
morphic function h in U . We also take ξ0 = 0 so that dη0 = 0 = Ω ∧ ξ0 and
dξ0 = 0 = ξ0 ∧ η. The triple (Ω, η0, ξ0) is a meromorphic projective triple in U
so that according to Proposition 3 we can define a meromorphic projective triple
(Ω, η, ξ1) inU by setting ξ1 = ξ0 − dh − hη0 − h2

2 Ω = −dh − hη0 − h2

2 Ω . Then
we have by Proposition 3 (iii) that ξ = ξ1 + �.Ω for some meromorphic function �

in U ∗ such that dΩ = − 1
2

d�
�

∧ Ω .
By Lemma 8 above we have � = c̃.(gxy)−2 in U ∗ and therefore ξ extends to U

as ξ = ξ1 + c̃.(gxy)−2 in U ∗. This proves the lemma.
Now we deal with the second extension condition (Ext. 2) in Proposition 9. The

first step is:

Lemma 9 (resonant case)LetF beagermof aholomorphic foliationwith a resonant
irreducible (non-degenerate) singularity at the origin 0 ∈ C2 and let 0 ∈ U ⊂ C2

be a bidisc centered at the origin where F is defined by a holomorphic one-form Ω .
Denote by sep(F ,U ) the set of local separatrices of F through the origin in U. Let
� be a meromorphic function in U \ sep(F ,U ) such that d Ω = − 1

2
d�
�

∧ Ω . Then
� extends as a meromorphic function to U provided that � admits a meromorphic
extension to (a neighborhood of) S∗ = S \ {0} for some separatrix S ⊂ sep(F ,U ).
Indeed, we have the following possibilities for F in suitable coordinates in a neigh-
borhood of the origin:

(i) F is analytically linearizable, i.e., analytically conjugate to the form xdy −
λydx = 0 for some λ ∈ C \ {0}.

(ii) F is a non-linearizable resonance analytically conjugate to the normal form:
Ωn,m = ny dx + mx(1 +

√−1
2π xn ym)dy = 0 where n,m ∈ IN.

In all cases S is given by {y = 0} and the function � extends as meromorphic
function to a neighborhood of the origin.

Proof We define the one-form η = − 1
2

d�
�
. Then η is a closed meromorphic one-

form in U \ [sep(F ,U ) \ S] such that dΩ = η ∧ Ω , moreover the polar set of η is
contained in S and has order at most one. If η is holomorphic inU \ [sep(F ,U ) \ S]



On Singular Holomorphic Foliations with Projective … 211

then the foliation F is transversely affine in U \ [sep(F ,U ) \ S] and therefore the
holonomymap of the leaf L0 = S \ {0} is linearizable. Since the origin is irreducible
and S is not a central manifold the conjugacy class of this holonomy map classifies
the foliation up to analytic conjugation. Thus the singularity is itself linearizable.
Assume now that (η)∞ �= ∅. In this case we have the residue of η along S given by
ResSη = − 1

2 k where k is either the order of S as zero of � or minus the order of S
as pole of �. We have two possibilities:

(a) If − 1
2 k /∈ {2, 3, . . .} then by [27], Lemma 3.1, the holonomy map of the leaf

L0 is analytically linearizable and the same holds for the singularity.
(b) If − 1

2 k = t + 1 ≥ 2 for some t ∈ IN then by [27], Lemma 3.1, the holonomy
map of L0 is conjugate to a map of the form h(z) = αz

(1+βzt )
1
t
, i.e., this is a finite

ramified covering of an homography. Suppose that the singularity is nondegenerate
say Ω = xdy − λydx + .... If λ /∈ Q then the map h(z) is analytically linearizable
and therefore, again, the singularity is linearizable. Suppose now that the map h
is not analytically linearizable. Then we must have λ = − n

m for some n,m ∈ IN,
< n,m >= 1 and the holonomy h is analytically conjugate to the corresponding
holonomy of the germ of singularity Ωn,m = ny dx + mx(1 +

√−1
2π xn ym)dy; such

a singularity is called a non-linearizable resonant saddle. As it is well-known, in the
Siegel domain and in particular in the class of resonant singularities, the analytical
classification of the holonomy implies the analytical classification of the singularity.
More precisely, by [23, 24] we may assume that F is of the form Ωn,m = 0 in the
variables (x, y) ∈ U . So far we have proved that the following are the possibilities
for the singularities:

(1) The singularity is analytically linearizable, this is the case if it is not a resonance.
(2) The singularity is analytically conjugated to Ωn,m if it is resonant and not ana-

lytically linearizable.

Let us now use these two models in order to conclude the extension of � to U .
Case 1. In the linearizable case we can write S : {y = 0} and Ω = g(xdy − λydx)
for some holomorphic non-vanishing function g in U . If we introduce η0 = d(gxy)

gxy
then we have dΩ = η0 ∧ Ω and therefore (η − η0) ∧ Ω = 0 so that (η − η0) ∧
(
dy
y − λ dx

x ) = 0 and then η = η0 + F.(
dy
y − λ dx

x ) = 0 for some meromorphic func-
tion F in U0 := U \ [sep(F ,U ) \ S]. Since η and η0 are closed we conclude that
d(F.(

dy
y − λ dx

x )) = 0 in U0. Write now F = ∑
i, j∈ZZ

Fi j xi y j in Laurent series in a

small bidisc around the origin. We obtain from the last equation that (i + λ j)Fi j =
0, ∀i, j ∈ ZZ . If λ /∈ Q this implies that F = F00 is constant. Assume now that
λ = − n

m ∈ Q−. Then we have Ω ∧ d(xn ym) = 0 and also F = ϕ(xn ym) for some
function ϕ(z) = ∑

t∈ZZ
ϕt zt defined in a punctured disc around the origin. Neverthe-

less, the function F is meromorphic along the axis {y = 0} and therefore ϕ admits
a meromorphic extension to the origin 0 ∈ C and thus F extends as a meromorphic
function F = ϕ(xn ym) to a neighborhood of the origin.
Case 2. In the non-linearizable (resonant) case we can write S : {y = 0} and Ω =
gΩn,m = g(ny dx + mx(1 +

√−1
2π xn ym)dy) for some holomorphic non-vanishing
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function g on U . Define η0 = d(gxn+1 ym+1)

gxn+1 ym+1 . As above we conclude that η = η0 +
F.(n dx

xn+1 ym + m dy
xn ym+1 + m

√−1
2π

dy
y ) for some meromorphic function F in U0 such

that dF ∧ (n dx
xn+1 ym + m dy

xn ym+1 + m
√−1
2π

dy
y ) = 0. In other words, F is a meromorphic

first integral in U0 for the foliation F . This implies that F is constant. In order to
see this it is enough to use Laurent series as above. Alternatively one can argue as
follows. If F is not constant then the holonomy map h of the leaf L0 ⊂ S leaves
invariant a nonconstant meromorphic map (the restriction of the first integral F to a
small transverse disc to S). This implies that h is a mapwith finite orbits and indeed h
is periodic. Nevertheless this is never the case of the holonomy map of the separatrix
{y = 0} of the foliation Ωn,m . Thus the only possibility is that F is constant.

Summarizing the above discussion, we have proved that in all cases η = η0 + F.ω

for some meromorphic function F in U and some meromorphic closed one-form ω

in U . Moreover, F is constant except in the resonant case. This shows that η =
− 1

2
d�
�
admits a meromorphic extension to U and therefore also � admits a extends

meromorphic extension to U . The lemma is proved.

The remaining step for the irreducible resonant case is the following:

Proposition 11 (resonant case) Let F be a germ of a holomorphic foliation with
a resonant (irreducible) singularity at the origin 0 ∈ C2 and let 0 ∈ U ⊂ C2 be a
bidisc centered at the origin where F is defined by a holomorphic one-form Ω .
Fix a separatrix S ⊂ sep(F ,U ). Let η be a meromorphic one-form in U and ξ be a
meromorphic one-form in (U \ sep(F ,U )) ∪ S such that in U \ sep(F ,U ) the one-
forms Ω, η, ξ define a projective triple. Then ξ extends as a meromorphic one-form
to U.

Proof By hypothesis we are in the resonant case, i.e., Ω = g(xdy − λydx + . . .)

with λ = − n
m ∈ Q−. Suppose first that the singularity is not analytically linearizable.

As we have seen in Lemma 7, F is the pull-back of a Riccati foliation on C × C

by some meromorphic map σ : U → C × C provided that there is a meromorphic
projective triple (Ω ′, η′, ξ ′) in a neighborhood W of a separatrix S ⊂ sep(F ,U ).
From our hypothesis such a projective triple is given by the restrictions of Ω and
η to U \ [sep(F ,U ) \ S] and by the one-form ξ . Thus we conclude that F is a
meromorphic pull-back of a Riccati foliation and in particular there is a one-form ξ ′
defined in a neighborhood Ũ of the origin such that (Ω, η, ξ ′) is a projective triple
in this neighborhood. This implies that ξ = ξ ′ + �.Ω in Ũ for some meromorphic
function � in Ũ such that dΩ = − 1

2
d�
�
in Ũ . Now we have two possibilities. Either

ξ = ξ ′ in Ũ or � �≡ 0. In the first case ξ extends meromorphically toU as ξ = ξ ′. In
the second case we apply Lemma 9 above in order to conclude that the singularity is
analytically normalizable and � extends as a meromorphic function to U . Suppose
now that the singularity is resonant analytically linearizable and F is given in U by
Ω = g

(
xdy + n

m ydx
)
where n,m ∈ IN and g is a meromorphic function in U . In

this case as above we define η0 = dg
g

+ dx
x + dy

y , write η = η0 + hΩ and define ξ0 =
0, ξ1 = ξ0 − dh − hη0 − h2

2 Ω = −dh − hη0 − h2

2 Ω . Now we have ξ = ξ1 + �Ω
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for some meromorphic function � in U ∗. In this case we have from d� = − 1
2

d�
�

∧
Ω that �(gxy)2 = [ϕ(xn ym)]2 for some meromorphic function ϕ(z) defined in a
punctured neighborhood of the origin 0 ∈ C. In particular we conclude that since
ξ extends meromorphically to some separatrix {x = 0} or {y = 0} then it extends
meromorphically to U .

Thus ξ extends as a meromorphic one-form to U in all cases proving the desired
result.

Remark 10 Propositions 6, 10 and 11 already prove Theorem 5 in the case of a
germ of a foliation with an irreducible singularity at the origin.

4.3 Extension to Non-invariant Divisors

Since we are considering the possibility of existence of non-invariant components
in the exceptional divisor, we shall be able to extend the projective triple to such
components. This is done by means of the following lemma regarding the non-
invariant case:

Lemma 10 (non-invariant divisor, [9]) Let be given a holomorphic foliation F on
a complex surface M. Suppose that F is given by a meromorphic integrable one-
form Ω which admits a meromorphic one-form η on M such that dΩ = η ∧ Ω .
If F is transversely projective in M\S for some non-invariant irreducible analytic
subset S ⊂ M of codimension one thenF is transversely projective in M. Indeed, the
projective transverse structure forF in M\S extends to M as a projective transverse
structure for F . In particular, if ξ is a meromorphic one-form in M \U such that
(Ω, η, ξ) is a projective triple on M\S, then ξ admits a meromorphic extension to
S.

Proof Our argumentation is local, i.e., we consider a small neighborhood U of a
generic point q ∈ S where F is transverse to S. Thus, since S is not invariant by F ,
performing changes as Ω ′ = g1Ω and η′ = η + dg1

g1
we can assume that Ω and η

have poles in general position with respect to S in U . The existence of a projective
transverse structure for F in M\S then gives a meromorphic one-form ξ in M \ S
such (Ω, η, ξ) is a geometric projective triple in M \ S. ForU small enough we can
assume that for suitable local coordinates (x, y) ∈ U we have S ∩U = {x = 0} and
also

Ω = gdy, η = dg

g
+ hdy

for some holomorphic function g, h : U → Cwith 1/g also holomorphic inU . Then
we have

ξ = −1

g

[
dh + h2

2
dy

]
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where
d(

√
�gdy) = 0

Thus,
√

�g = ϕ(y) for some meromorphic function ϕ(y) defined for x �= 0 and
therefore for x = 0. This shows that ξ extends to U as a holomorphic one-form and
then the projective structure extends to U . This shows that the transverse structure
extends to S.

4.4 Extended Generalized Curves

Let us consider the general case, where we allow singularities which are not irre-
ducible, but belong to the the class of (non-resonant) generalized curve. For this type
of singularity we have the following extension result:

Proposition 12 (extension - generalized curve) Let F be a germ of a non-resonant
(and non-dicritical) generalized curve at the origin 0 ∈ C2. Suppose thatF is trans-
versely projective inU \ sep(F ,U ), for some bidiscU centered at the origin, and let
(Ω, η, ξ) be a meromorphic projective triple in U \ sep(F ,U ) withΩ holomorphic
in U, η meromorphic in U and ξ meromorphic in U \ sep(F ,U ). Then the one-form
ξ extends to U as a meromorphic one-form.

Proof Let π : Ũ → U be the reduction morphism of the singularity and denote by
(Ω̃, η̃, ξ̃ ) the pull-back by π of the triple (Ω, η, ξ). Because the singularity is non-

dicritical, the exceptional divisor E = π−1(0) =
r⋃
j=1

IP j in the reduction process is

connected and invariant. By the non-resonance hypothesis, this divisor contains some
non-resonant singularity say p0 ∈ IP j0 . Thanks to Hartogs’ extension theorem, the
one-form ξ̃ also extends to the irreducible component IP j0 minus the singularities of
the lifted foliation. Now according to Propositions 10 and 11, the form ξ̃ also extends
to all the components IP j intersecting IP j0 . The same argument and the connectedness
of E show that the projective triple (Ω̃, η̃, ξ̃ ) extends to a neighborhood of the
exceptional divisor.

We will prove a more general case in what follows. In a natural extension of the
arguments in the proof of Proposition 12 we obtain the following result which is
Theorem 5 in the local case.

Proposition 13 (extension - extended generalized curve) Let F be a germ of a
holomorphic foliation at the origin 0 ∈ C2. Suppose that for some small bidisc U
centered at the origin, the representative of F is transversely projective in U \ S
where S ⊂ N D(sep(F ,U )) ⊂ sep(F ,U ) is a (finite) union of local branches, all of
them corresponding to non-dicritical separatrices. Assume that the singularity 0 ∈ S
is a non-resonant extended generalized curve. Then F admits in U a meromorphic
projective triple. Indeed, let (Ω, η, ξ) be ameromorphic triple inU \ sep(F ,U )with
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Ω holomorphic in U, η meromorphic in U and ξ meromorphic in U \ sep(F ,U ).
Then the one-form ξ extends to U as a meromorphic one-form.

Proof (Proof of Theorem 5) The proof is similar to the one given for the case of
generalized curve (Proposition 12). The existence of a meromorphic projective triple
(Ω, η, ξ) with Ω, η meromorphic in U and ξ in U \ S is granted by Proposition 6.
Notice that by hypothesis each branch Sj in S is a non-dicritical separatrix and
therefore it meets the exceptional divisor in some singular point p̃ j ∈ sing(F̃) of an
invariant component IP(Sj ). We have Sj ∩ IP(Sj ) = { p̃ j }, where we still denote by
Sj the strict transform of Sj .

By the non-resonance hypothesis the component IP(Sj ) belongs to a connected
component E(Sj ) of the invariant part of E , which contains some non-resonant
singularity q̃ j ∈ E(Sj ) ∩ sing(F̃). Therefore, by the same arguments in the proof of
Proposition 11we conclude that third formof the pull-back projective triple (Ω̃, η̃, ξ̃ )

extends as a meromorphic one-form to this component each connected component
of the invariant part of the exceptional divisor E obtained in the reduction of the
singularity. The extension of ξ̃ to the non-invariant components of the exceptional
divisor is granted by Lemma 10. If a connected component Ei of the invariant part of
E does not contain a singularity belonging to a branch of S, still it contains some non-
resonant singularity and the extension to Ei is assured as above. Thus Theorem 5 is
proved in the local situation. The global case, i.e., the case of foliations on projective
surfaces, is proved in the same way.

For the case of projective surfaces we promptly have:

Theorem 7 Let F be a holomorphic foliation by curves on a projective manifold
M. Assume that F is transversely projective in M\S where S ⊂ M is an algebraic
curve. Suppose that the singularities of F in S are non-resonant extended general-
ized curves. Then F admits a rational projective triple (Ω, η, ξ), which defines the
projective structure for F in M \ S.

4.5 Extension of Projective Structures P

In this sectionwe investigate the extension not only ofmeromorphic projective triples
but, of projective transverse structures (generically denoted by P) to a codimension
one divisor. According to Lemma 10 we may assume that the divisor is invariant by
the foliation.

Proposition 14 (extension through a point) Let (Ω, η, ξ) be a meromorphic pro-
jective triple on a complex surface M2, and S ⊂ M an irreducible analytic subset
of dimension one. Suppose that the triple defines a projective transverse structure
P outside S. If there is a point q ∈ S and a neighborhood q ∈ U ⊂ M to which the
projective structure P extends, then this projective structure extends to M.
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Proof According to the preceding lemma, we may assume that S is F-invariant. We
consider the local case where the foliation F is given by a holomorphic one-form
Ω in an open subsetW ⊂ Cn with isolated zeros and admitting a meromorphic one-
form η on W satisfying dΩ = η ∧ Ω . We can assume that Ω and η have poles in
general position with respect to S.

ForU ⊂ W small enough we can find a holomorphic submersion y : U → C and
meromorphic functions g, h in U such that

Ω = gdy, η = dg

g
+ hdy, ξ = −1

g

[
dh + h2

2
dy

] + �gdy

where
d(

√
�gdy) = 0.

Thus,
√

�g = ϕ(y) for some meromorphic function ϕ(z) and therefore � = ϕ2(y)
g2

.
Hence we have

Ω = gdy, η = dg

g
+ hdy, ξ = −1

g

[
dh + h2

2
dy

] + ϕ2(y)

g
dy

We investigate under which conditions we can write

Ω = g̃d ỹ, η = d g̃

g̃
+ h̃d ỹ, ξ = −1

g̃

[
dh̃ + h̃2

2
d ỹ

]

for some suitable meromorphic functions g̃, h̃, ỹ.
Imposing the above equations we obtain

⎧⎪⎨
⎪⎩
gdy = g̃d ỹ
dg
g

+ hdy = d g̃
g̃

+ h̃d ỹ

− 1
g

[
dh + h2

2 dy
] + ϕ2(y)

g
dy = − 1

g̃

[
dh̃ + h̃2

2 d ỹ
] (1)

We shall refer to equations in (1) as main equations. From gdy = g̃d ỹ we obtain
g = r(y)g̃ for somemeromorphic function r(y). This implies d ỹ = r(y)dy and then
dg
g

+ hdy = d g̃
g̃

+ r ′(y)
r(y) dy + hdy so that replacing in the second main equation we

obtain d g̃
g̃

+ h̃d ỹ = d g̃
g̃

+ r ′(y)
r(y) dy + hdy and then r ′(y)

r(y) dy + hdy = h̃d ỹ = h̃r(y)dy.
This last equation rewrites

r ′(y)
r(y)

+ h = h̃r(y) (2)

and the final form

h̃ = 1

r(y)

[r ′(y)
r(y)

+ h
]

(3)
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Let us turn our attention to the third main equation. From this we obtain

1

g

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= 1

g̃

[
dh̃ + h̃2

2
d ỹ

]

Then
g̃

g

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= dh̃ + h̃2

2
d ỹ

1

r(y)

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= dh̃ + h̃2

2
d ỹ

1

r(y)

[
dh +

(
h2

2
− ϕ2(y)

)
dy

]
= dh̃ + h̃2

2
r(y)dy

dh +
(
h2

2
− ϕ2(y)

)
dy = r(y)

[
d

(
1

r(y)

(
r ′(y)
r(y)

+ h

))
+ 1

2r(y)2

(
r ′(y)
r(y)

+ h

)2

r(y)dy

]

dh +
(
h2

2
− ϕ2(y)

)
dy = r(y)

[
d

(
1

r(y)

(
r ′(y)
r(y)

+ h

))
+ 1

2

1

r(y)

(
r ′(y)
r(y)

+ h

)2

dy

]

dh +
(
h2

2
− ϕ2(y)

)
dy = 1

2

(
r ′(y) + h

r(y)

)2

dy − r ′(y)
r(y)

(
r ′(y)
r(y)

+ h

)
dy + d

(
r ′(y)
r(y)

+ h

)

This last equation is equivalent to

− ϕ2(y) = −1

2

(
r ′(y)
r(y)

)2

+
(
r ′(y)
r(y)

)′
(4)

Let us put

s(y) := r ′(y)
r(y)

Then equation (4) rewrites

s ′ − 1

2
s2 = −ϕ2 (5)

So, the original question is reduced to find conditions under which the equation
above has a holomorphic solution. This is the case, for instance if ϕ is holomorphic.
Now we need to return to equation r ′(y)

r(y) = s(y) and study its solutions. It is clear
from integration that there is a holomorphic solution, which must be given by r(y) =
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e
∫
s(y)dy , if and only if the given data s(y) is either holomorphic or meromorphic with

a simple pole and integral positive residue at y = 0.
First case. If s(y) has a simple pole at y = 0. We may assume for simplicity that
s(y) = a/y for some a ∈ C∗. In this case from the differential equation s ′ − s2/2 =
−ϕ2 we obtain ϕ =

√
2a−a2
y . Integrating r(y) = e

∫
s(y)dy we obtain r(y) = ya . Since

r(y) = g/g̃ we have that r(y) is holomorphic without zeros. In particular we cannot
have a �= 0, contradiction.
Second case. If s(y) has a pole of order m + 1 ≥ 2 at y = 0. In this case we can
assume that s(y) = a/ym+1 for some m ≥ 1 and integration gives r(y) = e− a

mym

which is not meromorphic at the origin, contradiction.
Third case. If s(y) is holomorphic at y = 0. In this case we write s(y) = aym for
some m ≥ 0. We obtain r(y) = e

a
m+1 y

m+1
which is holomorphic and non-vanishing.

Let us now finish the proof. Because the projective structure extends to U the
equation (1) has a holomorphic solution and this implies that ϕ(y) is holomorphic
according to the above considerations. As a consequence the one-form ξ is also
holomorphic in U and therefore admits a holomorphic extension to S \ [(Ω)∞ ∪
(η)∞]. Hence, the projective structure extends to S \ [(Ω)∞ ∪ (η)∞] and then to S.

The next lemma shows that once we have fixed the forms Ω and η associated
to a transverse projective structure, then we may replace the third form ξ without
changing the invariant set S to which we wish to extend the structure.

Lemma 11 Let (Ω, η, ξ) be a meromorphic projective triple in a complex surface
M. Assume that the triple defines a projective transverse structure for F in M\S for
some invariant codimension one analytic subset S ⊂ M. Let ξ ′ be a meromorphic
one-form in M such that (Ω, η, ξ ′) is also a projective triple. Then S is ξ -invariant
if and only if it is ξ ′-invariant.

Proof We fix a local coordinate system (x, y) ∈ U centered at a point p ∈ M such
that F is given in these coordinates by Ω = gdy and S by {y = 0}. We may write
ξ ′ = ξ + �Ω where d(

√
�Ω) = 0. Then we have � = ϕ2(y)

g
for some meromorphic

function ϕ(z). Assume by contradiction that S is not ξ -invariant but S is ξ ′-invariant.
We may assume that the polar set of ξ has no irreducible component contained
in S and therefore ϕ(y) and g have no poles on {y = 0}. Write ξ ′ = Adx + Bdy
with holomorphic coefficients A(x, y), B(x, y). Since S is ξ ′-invariant we have
A(x, y) = y A1(x, y) for some holomorphic function A1(x, y). Then from ξ ′ = ξ +
�Ω we get ξ = yA1(x, y)dx + (B(x, y) − ϕ2(y)

g
)dy. Since A1 and B(x, y) − ϕ2(y)

g
have no poles in {y = 0}we conclude from the above expression that S is ξ -invariant,
contradiction.
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5 Classification of Transversely Projective Foliations

5.1 Classification of Transversely Projective Foliations:
Non-dicritical Case

We consider now an application of the above study to the classification of foliations
with projective transverse structure. Nevertheless, because of the non-dicriticalness
hypothesis on the singularities, we will still be dealing with the affine case (see
Remark 11 (i)). The (dicritical) projective non-affine case will be dealt with later
on in this work. We point out that the non-dicriticity hypothesis excludes the “pure”
transversely projective case, i.e., the casewhere the structure is not transversely affine
in some other “affine” subset. We prove:

Theorem 8 LetF be a germ of a (non-dicritical) holomorphic foliation at the origin
0 ∈ C2. Suppose that:

(i) F is a germ of a non-resonant generalized curve and can be reduced with a
single blow-up.

(ii) F is transversely projective outside of the set sep(F , 0) of local separatrices of
F through 0.

ThenF admits a generalized integrating factor. In particular,F is transversely affine
in some neighborhood of the origin minus its set of local separatrices sep(F , 0).

As for the global case we have:

Theorem 9 LetF be a foliation on a compact projective surface M. Assume thatF
is transversely projective in the complement of an algebraic invariant curve S ⊂ M.
Suppose that for some smooth irreducible component S0 ⊂ S we have:

(i) The singularities of F in S0 are irreducible and non-degenerate, one of which
is non-resonant.

(ii) M\S0 is a Stein manifold.

Then F admits a rational generalized integrating factor. In particular F is trans-
versely affine in an open subset M \ C for some algebraic curve C ⊂ M.

We point-out that, since the singularities in S0 are irreducible non-degenerate,
usually the non-resonance hypothesis appearing in Theorem 8 is automatic. Indeed,
for instance for the case of the projective plane M = CP(2) this is a consequence of
the Index theorem [7] and of the special geometry of CP(2). Actually, we can state:

Theorem 10 Let F be a foliation on the projective plane CP(2), which is trans-
versely projective in the complement of an algebraic curve S ⊂ CP(2). Suppose that
for some smooth irreducible component S0 ⊂ S the singularities of F in S0 are irre-
ducible and non-degenerate. ThenF admits a rational generalized integrating factor.
In particular F is transversely affine in an open subset M \ C for some algebraic
curve S ⊂ C ⊂ CP(2).
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As we see from Examples 6 and 11 the general Riccati case appears when we
allow the curve S to have some dicritical singularities.

Let us pave the way to the proof of Theorems 8 and 9. Let G ⊂ Di f f (C, 0) be a
solvable subgroup of germs of complex diffeomorphisms fixing the origin 0 ∈ C. We
recall that [13] if the group of commutators [G,G] is not cyclic (in particular G is
solvable not abelian) then G is analytically conjugate to a subgroup of IHk = {

z �→
az

k√1+bzk
; a ∈ C \ {0}, b ∈ C

}
for some k ∈ IN. This is the case if G (is solvable and)

contains some non-resonant element. Using this we can state the following well-
known technical result.

Lemma 12 Let G < Di f f (C, 0) be a solvable subgroup of germs of holomor-
phic diffeomorphisms fixing the origin 0 ∈ C containing some non-resonant element
f ∈ G of the form f (z) = e2π iλ z + . . . with λ ∈ C\Q. We have the following pos-
sibilities:

(i) G is abelian. In this case G admits a formal meromorphic invariant one-form.
(ii) If G is not abelian then f is analytically linearizable in a coordinate that also

embeds G into some IHk .

Proof (i) is in [13]. Indeed, it is well-known that G admits a formal invariant holo-
morphic vector field say M̂ with an isolated singularity at the origin 0 ∈ C. Such
a vector field can be written M̂(z) = yk+1

1+λyk
∂
∂y , for some k ∈ IN and some λ ∈ C.

Moreover, according to [13] (see also [5, 28, 29]), because this group contains some
non-resonant element, this vector field is indeed analytic. Now we take the corre-
sponding dual one-form ω̂ = λyk+1

yk+1 dy. Since M̂ is invariant by the maps in G the
same holds for ω̂. This proves (i).

Now we prove (ii). Since G contains a non-resonant element we can, as already
observed above, choose a holomorphic coordinate z ∈ (C, 0) which embeds G as a
subgroup of the group IHk for some k ∈ IN. Given then a non-resonantmap f ∈ G we
can write f (z) = e2π iλ z

k√1+bzk
for some k ∈ IN, b ∈ C. Since λ ∈ C\Q the homography

H(z) = e2π iλ z
1+bz is conjugate by another homography to its linear part z �→ e2π iλ z and

therefore f is analytically linearizable in a coordinate that also embeds G into IHk .

Proof (Proof of Theorem 8) Let F be defined in an open bidisc 0 ∈ U ⊂ C2 by
the holomorphic one-form Ω . Put F̃ = π∗(F) in Ũ = π−1(U ) where π : C̃2

0 → C2

is the blow-up of C2 at 0 ∈ C2. Let also Ω̃ = π∗(Ω) be the lift of Ω to Ũ . The
exceptional divisor S = π−1(0) is a compact invariant curve (a projective line).
Each singularity of F̃ in S is irreducible and exhibits a separatrix transverse to S.
This set of separatrices (of F̃ transverse to S) is sep(F̃ , S) = π−1(sep(F , 0)\{0}) =
π−1(sep(F , 0))\S in Ũ . Now, because of (ii) the pull-back foliation F̃ is transversely
projective in Ũ\M̃ where M̃ = S ∪ sep(F̃, S). According to Theorem 3 this implies
that the holonomy group Hol(F̃ , S) of the leaf S\sing(F̃) of F̃ is solvable. We have
two cases to consider:
Case 1. The group Hol(F̃ , S) is abelian.

Because this holonomy group is analytically conjugate to an abelian subgroup of
Di f f (C, 0), it follows fromLemma12 (i) that there exists ameromorphic integrating
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factor h̃ for Ω̃ , defined over the open curve S0 = S\sing(F̃). By this we mean a
meromorphic function h̃ defined in a neighborhood of S0 such that the form 1

h̃
Ω̃

is closed. Moreover, according to [5, 28, 29], because of the hypothesis on the
singularities in S, this integrating factor extends as a meromorphic integrating factor
for Ω̃ in a neighborhood of S. Therefore, the foliation F̃ is defined by a closed
meromorphic one-form ω̃ = 1

h̃
Ω̃ in a neighborhood of S.

Case 2. The holonomy group Hol(F̃ , S) is solvable but not abelian. By the non-
resonance hypothesis this group contains some element of the form f (z) = e2π iλ z +
. . . with λ ∈ C\Q. By Lemma 12 this map f is analytically linearizable and in the
same analytic coordinate that embeds the holonomy group in the group

IHk = {
ϕ(z) = az

k
√
1 + bzk

, a �= 0
}

for some k ∈ IN.

According to Sect. 5 in [27] (see also [8, 28]), this implies that the foliation is trans-
versely affine in the complement of its set of separatrices, admits a so called closed
logarithmic derivative which is a closed meromorphic one-form η̃0, with simple
poles defined in a small neighborhood of the origin. The form η̃0 satisfies

dΩ̃ = η̃0 ∧ Ω̃.

Nowwe can “project” the one-form η̃0 via the blow-upmapπ : C̃2
0 → C2 onto a one-

form η0 defined in a punctured neighborhood of the origin. This one-form satisfies
η̃0 = π∗(η0) and, by classical Hartogs’ extension theorem [18] it extends (to the
origin) as a meromorphic one-form in a neighborhood of the origin. It is clear that
η0 is closed and satisfies dΩ = η0 ∧ Ω . This proves Theorem 8.

In the same line of reasoning we can prove Theorem 10:

Proof (Proof of Theorem 10) We know that F is given by a rational one-form Ω on
CP(2). We shall prove that Ω admits a rational generalized integrating factor η on
CP(2). This is partially done as in the proof of Theorem 8. Nevertheless, in order to
mimic the proof of Theorem 8 we must prove:

Claim Some singularity in S0 is non-resonant.

Proof (Proof of Claim 5.1) Recall that an irreducible non-degenerate singularity can
be written in the form xdy − λydx + h.o.t. = 0, where λ ∈ C \ Q+ and {xy = 0}
is the set of local separatrices. If we fix the separatrix {y = 0} then the Index of the
singularity with respect to this separatrix is given by λ. With respect to the other
separatrix the index is 1/λ. By the Index theorem [7] the sum of all indexes of
singularities in S0 with respect to the local branches of S is equal to a (natural)
positive number, the self-intersection number of S0 in the projective plane CP(2).
This implies that not all indexes are rational negative. Since by definition the index of
an irreducible singularity is never a positive rational number, this implies that some
singularity has a non-rational index. This singularity is clearly non-resonant.
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By the above claim, the holonomy group of (the leaf contained in) S0 contains
some non-resonant germ. From the proof of Theorem 8 there is a meromorphic
generalized integrating factor η defined in some neighborhood V of S0 in CP(2).
SinceCP(2) \ S0 is a Stein surface [34], by a theorem of Levi (see [11, 34]), we can
conclude that the one-form η extends as a meromorphic one-form toCP(2) (see [10]
for similar extension arguments). Finally, the extended one-form η must be rational
because we are on a projective manifold. As in [27] the existence of η implies the
final part of the statement.

Proof (Proof of Theorem 9) As for the proof of Theorem 9 very few remains to say.
Indeed, the proof of Theorem 10 gives all the steps. The hypotheses (i) and (ii) are
then necessary since we cannot prove a version of Claim 5.1 in this case.

Remark 11 (1) Theorems 8 and 10 above show that in order to capture the generic
foliations in the class of Riccati foliations it is necessary to allow dicritical
singularities or curves containing all of its separatrices.

(2) Theorem 8 completes an example given in [35] of a germF satisfying (i) and (ii)
but which is not a meromorphic pull-back of a Riccati foliation on an algebraic
surface. Indeed, the construction given in [35] exhibits F having as projective
holonomy group G, i.e., the holonomy group G = Hol(F̃ , D), where D is the
exceptional divisor of the blow-up, a non-abelian solvable group conjugate to
a subgroup of IH1 = {

z �→ λz
1+μz

}
.

(3) In [35] it is also given an example of a foliationH on a rational surface Y such
thatH is transversely projective on Y\M for some algebraic curve M ⊂ Y and
such that H is not birationally equivalent to a Riccati foliation on C × C.

5.2 Logarithmic Foliations, Separatrices and Invariant
Curves

Let us recall that a logarithmic foliation on a projective surface M is one given by
a closed rational one-form β with simple poles. If M = C × C or CP(2) then a

logarithmic foliation is given by a rational one-form β as follows: β =
r∑
j=1

λ j
d f j
f j
,

where the f j are rational functions on V and λ j ∈ C \ {0}.
In [20] the author gives the following nice characterization of logarithmic folia-

tions:

Theorem 11 (cf. [20], Theorem A) Let F be a holomorphic foliation on a compact
algebraic surface M and let S be a compact curve invariant by F . Assume that one
of the following conditions holds:

(i) Pic(M) is isomorphic to ZZ.
(ii) Pic(M) is torsion free, H 1(M,C) = 0, S2 > 0 and

∑
p∈sing(F)−S

BBp(F) ≥ 0.
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Also assume that every local separatrix ofF through any p ⊂ sing(F) ∩ S is a local
branch of S and that every singularity of F in S is a generalized curve. Then F is a
logarithmic foliation.

Here, by BBp(F) we mean the Baum-Bott index associated to the Chern number
c21 of the normal sheaf of the foliation [1]. Also, Pic(M) = H 1(M,O∗

M) is the Picard
group of M , while S2 denotes the self-intersection number of S. We point-out that
Pic(M) = ZZ for the case of projective spaces M = CP(m),m ≥ 2. Regarding
condition (ii), the part H 1(M,C) = 0, S2 > 0 is verified for the case of projective
spaces.

As a particular case we have:

Corollary 1 Let F be a holomorphic foliation on CP(2) and let S ⊂ CP(2) be an
invariant algebraic curve byF . Assume that: (i) every local separatrix ofF through
any p ⊂ sing(F) ∩ S is a local branch of S and that (ii) every singularity of F in S
is a (non-dicritical) generalized curve. Then F is a logarithmic foliation.

As for the last inequality in Theorem 11 (ii) we have:
The condition

∑
p∈sing(F)−S

BBp(F) ≥ 0 holds if each singularity of F in M \ S is

linearly of Morse type (i.e.F is locally given by the holomorphic one-form d(xy) +
h.o.t.). This condition also holds when F a has local holomorphic first integral
around each point of M which is not in S. In particular we have:

Lemma 13 Let F be a holomorphic foliation on a compact algebraic surface M
and let S be an invariant compact curve byF . IfF is transversely projective in M\S
and the singularities in M\S are all non-dicritical then

∑
p∈sing(F)−S

BBp(F) ≥ O.

Proof Since F is transversely projective in M \ S, any singularity p ∈ sing(F) ∩
M\S admits a meromorphic first integral. Because this singularity is non-dicritical,
there is a holomorphic first integral. The conclusion follows from what we remarked
above.

From this lemma and Theorem 11 and also Theorem 5 we promptly obtain:

Corollary 2 Let F be a holomorphic foliation on a compact algebraic surface M
and let S be an invariant compact curve by F . Suppose that F is transversely pro-
jective in M\S and that every singularity of F in S is a generalized curve. Assume
that one of the following conditions hold:

(i) Pic(M) is isomorphic to ZZ.
(ii) Pic(M) is torsion free, H 1(M,C) = 0, S2 > 0 and the singularities off S are

non-dicritical.

There are two possibilities:

(a) Every local separatrix of F through any p ⊂ sing(F) ∩ S is a local branch of
S. In this case F is a logarithmic foliation.
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(b) There is a singular point p ∈ S exhibiting a separatrix Γp not contained in S.
In this case F admits a rational projective triple (Ω, η, ξ), defined on M.

Let F be a holomorphic foliation on CP(2) of degree m, then
∑

p∈sing(F)

BBp(F) =
(m + 2)2 ≥ 4. The author proves the following extension of the second part of The-
orem 1 in [12] to compact complex surfaces (cf. [20] Proposition 3.1):

Proposition 15 ([20] Proposition 3.1) Let F be a holomorphic foliation on a com-
pact algebraic surface M with H 1(M,C) = 0 and Pic(M) = ZZ. Let S be an invari-
ant compact curve with only nodal type singularities.
If

∑
p∈sing(F)−S

BBp(F) < S2, then F is logarithmic.

By taking a look at the proof given in [20] we conclude that the conclusion of
Theorem 11 holds for a foliation F on the complex projective plane CP(2) having
an invariant algebraic curve S such that each singularity of F in S is an extended
generalized curve (cf. Definition 4) and if S contains each non-dicritical separatrix
of each singularity of F in S.

Corollary 3 ([20], Corollary 3.1) Let F be a holomorphic foliation on a com-
pact algebraic surface M with H 1(M,C) = 0 and Pic(M) = ZZ. Let S ⊂ M be
an invariant compact curve with only nodal type singularities. If sing(F) ∩ S =
sing(S) and the singularities ofF in S are non-degenerated, thenF is a logarithmic
foliation.

5.2.1 Logarithmic Case and Moderate Growth

Theorem 12 Let F be a foliation on a projective surface M such that Pic(M)

is isomorphic to ZZ. Assume that F is transversely projective in M\S for some
algebraic curve S ⊂ M and that the singularities of F in S are (non-dicritical) non-
resonant generalized curves. Then F is a logarithmic foliation or it is transversely
projective of moderate growth.

Proof (Proof of Theorem 12) We will follow the notation in the proof of Theorem 4.
Because the singularities ofF are non-dicritical, the resolution divisor E = D ∪ S̃ is
invariant by F̃ . Moreover, each connected component S j of S originates a connected
component of the resolution divisor. Therefore, for sake of simplicity of notation,
let us assume that the singularities of F are already irreducible in M , i.e., S and E
exhibit the same number of connected components. If we denote by σ : M̃ → M the

resolution morphism for the singularities of F in S, then σ
∣∣
˜M\S : ˜M \ S → M \ S is

a diffeomorphism, in particular the fundamental groups π1(˜M\S) and π1(M\S) are
isomorphic.
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We have the following possibilities:

1. S contains all the separatrices of F in S.
2. There is a singularity of F , say q ∈ S, exhibiting a separatrix Γ which is not

contained in S.

In case (1), since the singularities are assumed to be generalized curves we may
apply Theorem 11 and conclude that F is a logarithmic foliation.

Assume that we are in case (2). Then by Theorem 5 and other results in Sect. 4.5
we conclude that the projective structure in M \ S defines a projective triple that
extends to S. We have therefore a rational projective triple for F in M , i.e., F is
transversely projective of moderate growth.

Clearly a logarithmic foliation is of moderate growth. Therefore we obtain:

Corollary 4 Let F be a foliation on M = CP(2). Assume that F is transversely
projective in CP(2) \ S for some algebraic curve S ⊂ CP(2) and that the singu-
larities of F in S are (non-dicritical) non-resonant generalized curves. Then F is
transversely projective of moderate growth.

5.3 Classification of Projective Foliations: Moderate Growth
On Projective Manifolds

In [21] we find the following definition of transversely projective foliation on a
smooth projective manifold. Let M be a smooth projective manifold overC.A (holo-
morphic singular) codimension one foliation F on M .The foliation is said to be
transversely projective if given a non zero rational 1-form ω defining F (and there-
fore satisfying the Frobenius integrability condition ω ∧ dω = 0) we have that there
are rational 1-forms α and β on M such that the sl2-connection on the rank 2 trivial

vector bundle defined by Δ = d +
(

α β

ω −α

)
is flat.

Let us compare the above definition with the one we have been using so far in
this work. Indeed, compared to Definitions 6 and 6 there is a difference, quite easy
to explain. In the above definition, we already assume that the foliation admits a
rational projective triple, i.e., a projective triple meromorphic defined everywhere
in the manifold M . This is not necessarily the case if we just start with a foliation
which is (according to our definition Definition 6) transversely projective in M\S for
some algebraic curve S ⊂ M . Nevertheless, often we cannot extend the projective
transverse structure to the curve S (for instance, in the case of Riccati foliations or
logarithmic foliations). Thus what is considered in [21] are what we have called
transversely projective foliations with moderate growth (cf. Definition 9). projective
structure in M\S.

The authors also introduce the following notion:
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Definition 12 ([21]) A Riccati foliation over a projective manifold M consists of
a pair (π : P → M; H) = (P; H) where π : P → M is a locally trivial IP1 fiber
bundle in the Zariski topology, this means that P is the projectivization of the total
space of a rank two vector bundle E , and H is a codimension one foliation on P
which is transverse to a general fiber of π . In the case of a clear context, the IP1-
bundle P is omitted from the notation. Then H is called a Riccati foliation. The
foliation H is defined by the projectivization of horizontal sections of a (non unique)
at meromorphic connection r on E . The connection r is uniquely determined by H
and its trace on det(E). We say that the Riccati foliation H is non-singular if it lifts to
a meromorphic connection r with at worst non-singular singularities (see [15]), and
irnon-singular if not. It is said that a Riccati foliation (P; H) over M factors through
a projective manifold M ′ if there exists a Riccati foliation (π ′ : P ′ → M ′, H ′) over
M ′, and rational maps φ : M → M ′ andΦ : P → P ′, such that π ′ ◦ Φ = φ ◦ π , and
Φ has degree one when restricted to a general fiber of P , and H = Φ∗H ′.

Using the notion above, alternatively, in [21] the authors state that a foliation F
on M is transversely projective if there exists a triple P = (P; H ; σ) satisfying

1. (P; H) is a Riccati foliation over M ; and
2. σ : M → P is a rational section generically transverse to H such thatF = σ ∗H .

After making the conversion between the notions of transversely projective folia-
tion in [21] and the one we consider in our work, we can state the main classification
result of [21] as follows:

Theorem 13 (cf. [21], Theorem D) Let F be a codimension one transversely pro-
jective foliation of moderate growth on a projective manifold M. Then at least one
of the following assertions holds true.

1. There exists a generically finite Galois morphism f : Y → M such that f ∗F is
defined by a closed rational one-form.

2. There exists a rationalmap f : M → S to a ruled surface S, andaRiccati foliation
R on S such that F = f ∗R.

3. The transverse projective structure forF has at worst non-singular singularities,
and the monodromy representation of F factors through one of the tautological
representations of a polydisk Shimura modular orbifold H.

Combining this result and Theorem 7 we promptly obtain:

Theorem 14 Let F be a holomorphic foliation by curves on a projective manifold
M. Assume that F is transversely projective in M\S where S ⊂ M is an algebraic
curve. Suppose that the singularities ofF in S are non-resonant extended generalized
curves. Then at least one of the following assertions holds true.

1. There exists a generically finite Galois morphism f : Y → M such that f ∗F is
defined by a closed rational one-form.

2. There exists a rationalmap f : M → S to a ruled surface S, andaRiccati foliation
R on S such that F = f ∗R.
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3. The transverse projective structure forF has at worst non-singular singularities,
and the monodromy representation of F factors through one of the tautological
representations of a polydisk Shimura modular orbifold H.
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Disentanglements of Corank 2 Map-Germs:
Two Examples

David Mond

Abstract We compute the homology of the multiple point spaces of stable pertur-
bations of two germs (Cn, 0) → (Cn+1, 0) of corank 2, using a variety of techniques
based on the image computing spectral sequence ICSS. We provide a reasonably
detailed introduction to the ICSS, including some low-dimensional examples of its
use. The paper is partly expository.

Keywords Disentanglement · Multiple-point spaces
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1 Introduction

In studying a singularity of mapping from n-space to (n + 1)-space, a rôle analogous
to that of Milnor fibre is played by a stable perturbation of the singularity, and in
particular by its image. The image of a map acquires non-trivial homology through
the identification of points of the domain, and these identifications are encoded in the
multiple point spaces of the map. For germs of corank 1, these multiple point spaces
are well understood. For germs of corank > 1 the situation is radically different.

In this paper we study the multiple point spaces of stable perturbations of
two map-germs of corank 2 from n-space to (n + 1)-space. In one case n = 3
and in the other n = 5. Previous work of Marar, Nuño-Ballesteros and Peñafort,
in [16, 17] has explored the case where n = 2. Increasing the dimension intro-
duces new difficulties. Confronting these will require a range of new techniques.
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Our work here is a preliminary exploration. Following the invitation of the editors
to provide an accessible account, we have expanded the preliminary material on
multiple-point spaces, disentanglements, and the image computing spectral sequence
ICSS, our principle technical tool, and included, in Sect. 1.6, some examples of cal-
culation using the ICSS.

The first of the two corank 2 map-germs we look at is the germ of lowest codi-
mension in Sharland’s list [24] of weighted homogeneous corank 2 map-germs
(C3, 0) → (C4, 0):

f0 : (C3, 0) → (C4, 0), f0(x, y, z) = (x, y2 + xz + x2y, yz, z2 + y3). (1.1)

This has Ae-codimension 18.
The second is the lowest dimensional example of corank 2 map germ with Ae-

codimension 1,

f0 : (C5, 0) → (C6, 0), f0(x, y, a, b, c) = (x2 + ax + by, xy, y2 + cx + ay, a, b, c).
(1.2)

For each of these, we calculate a number of (topological) homology groups with
rational coefficients, related to its disentanglement. By “disentanglement” we do not
mean just the stable perturbation

ft : Ut Xt ⊂ C
n+1

of the germ f0 (where Ut is a contractible neighbourhood of 0 in C
n), as the term has

been used by de Jong and van Straten in [4] and by Houston in [10] and subsequent
papers. A richer picture is obtained by considering the “semi-simplicial resolution”

. . .

D3( ft )

D2( ft )

Ut Xt

(1.3)

Here, for each integer 2 ≤ k ≤ n, Dk( ft ) is the closure, in U k
t , of the set of k-tuples

of pairwise distinct points (“strict” k-tuple points) sharing the same image, and
the k distinct arrows πk

j : Dk( ft ) → Dk−1( ft ), 1 ≤ j ≤ k, are the restriction of the
projections U k

t → U k−1
t obtained by forgetting the j’th factor in the product U k

t .
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For k > n, an A-finite mono-germ f : (Cn, 0) → (Cn+1, 0) will have no strict
k-tuple points, since the dimension of Dk( f0) at a strict k-tuple point is n − k + 1 (see
Sect. 1.1 below). In this case Dk( f0) is defined by a slightly different procedure: we
pick a stable unfolding F : (Cn × C

d , 0) → (Cn+1 × C
d , 0) of f0, define Dk(F) as

above, and then take Dk( f0) as the fibre over 0 ∈ C
d of Dk(F). We note that it is an

easy consequence of the Mather–Gaffney criterion for A-finiteness that if we apply
this second procedure when k ≤ n, we get the same space Dk( f0) as defined above.

The disentanglement, in this wider sense, contains complete information about
the way that points ofUt are identified by ft . The image Xt has the homotopy type of
a wedge of n-spheres [25] whose number, the “image Milnor number” of f , μI ( f ),
is the key geometric invariant of an A-finite germ (Cn, 0) → (Cn+1, 0). Since the
homology of Xt arises through the identifications induced by ft , it is better described
by the information attached to the diagram (1.3). This will become clearer in what
follows.

Note that the πk
j for fixed k and different j are left-right equivalent to one another

thanks to the symmetric group actions on Dk and Dk−1, permuting the copies of Ut .
In what follows we will consider only πk

k , which we will refer to simply as πk . We
will denote the image of πk in Dk−1 by Dk

k−1, and, more generally, for � < k, we
denote the image of π�+1 ◦ · · · ◦ πk in D� by Dk

� .

Remark 1.1 (1) Any finite map-germ f : (Cn, S) → (Cn+1, 0) is an embedding out-
side D2

1( f ), which is the “non-embedding locus” of f . More generally each map
πk : Dk( f ) → Dk−1( f ) is an embedding outside Dk+1

k ( f ), and each map πk+1

parameterises the non-embedding locus of its successor πk . Thus the tower (1.3)
shows a strong analogy with a free resolution of a module. If f is stable then Dk( f ),
if not empty, is n − k + 1-dimensional. It follows that the length of this resolution
is at most n.
(2) For maps Mn → N n+1 with n < 6 there is no stable singularity of corank 2.
Every A-finite germ is stable outside 0, so if n < 6, any singularity outside 0 of an
A-finite germ f0 : (Cn, 0) → (Cn+1, 0), must be of corank 1. For stable germs of
corank 1, all non-empty multiple point spaces are smooth [14]. It follows that for any
A-finite germ f0 : (Cn, 0) → (Cn+1, 0) with n < 6, Dk( f0) has (at most) isolated
singularity. It also follows that a stable perturbation ft has no singularities of corank
> 1. Therefore all of the non-empty multiple point spaces Dk( ft ) are smooth –
indeed, are smoothings of the isolated singularities Dk( f0). For any map f , D�(πk)

can be identified with Dk+�−1( f ), by the obvious map

(
(x1, . . ., xk−1, x (1)

k ), (x1, . . ., xk−1, x (2)
k ), . . ., (x1, . . ., xk−1, x (�)

k )
)

←→
(

x1, . . ., x (1)
k , x (2)

k , . . ., x (�)
k

)
(1.4)

– the left hand side here shows a point of D�(πk), and the right hand side shows
the corresponding point of Dk+�−1( f ). This observation is the basis of the “method
of iteration” developed by Kleiman in [11]. From the smoothness of the Dk+ j ( ft )

therefore follows smoothness of the multiple-point spaces of the projections πk :
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Dk( ft ) → Dk−1( ft ). The singularities of πk are all of corank 1; this can be seen
quite easily by writing f in linearly adapted coordinates, but see also [1]. By the
characterisation of the stability of corank 1 map-germs by the smoothness of their
multiple point spaces [14], it follows that provided n < 6, if ft is stable then all of
the projections πk are stable maps.

1.1 Multiple Points

If f0 : (Cn, 0) → (Cn+1, 0) is A-finite then the set of strict k-tuple points is dense
in Dk( f0), unless Dk( f0) consists only of the point (0, . . ., 0). The subset where f
is an immersion at each of the xi is still dense in Dk( f0). If (x1, . . ., xk) is such a
k-tuple point, with f0(xi ) = y for i = 1, . . ., k, then by theMather–Gaffney criterion
forA-finiteness, the images of the germs f0 : (Cn, xi ) → (Cn+1, y) meet in general
position. It follows that their intersection has dimension n + 1 − k. This is therefore
the dimension of Dk( f0), provided k ≤ n + 1, and, similarly, of Dk( ft ). If k > n + 1
then because ft is stable, Dk( ft ) = ∅.

1.2 Alternating Homology

The developments in this section are due principally (but in some cases implicitly)
to Goryunov in [6].
Notation For any topological space V , Ck(V ) is the free abelian group of singular
k-chains in X , and C•(V ) is the singular chain complex. For a continuous map
ϕ : V → W , we denote by ϕ# the map C j (V ) → C j (W ) induced by ϕ, and reserve
the term ϕ∗ for the corresponding map on homology.

Suppose f : X → Y is surjective. Recall the action of Sk on Dk( f ), permuting
the copies of X . Define

CAlt
j (Dk( f )) = {c ∈ C j (Dk( f )) : σ#(c) = sign(σ)c for all σ ∈ Sk}.

This gives a subcomplex, as ∂(CAlt
j ) ⊂ CAlt

j−1, so we have alternating homology

HAlt
j (Dk( f )).

Now observe also that πk
# : CAlt

j (Dk( f )) ⊂ CAlt
j (Dk−1( f )). To see this, let σ ∈ Sk−1,

and define σ̃ ∈ Sk by setting σ̃(i) = σ(i) for 1 ≤ i ≤ k − 1 and σ̃(k) = k. Then
sign(σ̃) = sign(σ), and so if c ∈ CAlt

j (Dk( f )),

σ#(π
k
#(c)) = πk

#(σ̃#(c)) = πk
#(sign(σ̃)c) = sign(σ)πk

#(c).
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In fact we have a double complex: on CAlt
j (Dk( f )), πk−1

# ◦ πk
# = 0; for

πk−1
# ◦ πk

# = πk−1
# ◦ πk

# ◦ (k, k − 1)#,

and on alternating chains (k, k − 1)# is multiplication by−1. By the same argument,
f# ◦ π2

# = 0. Thus, denoting X by D1( f ), Y by D−1( f ), and f by π1, we have

Proposition 1.2 (CAlt
j (D•( f )),π•) is a complex, and (CAlt• (D•( f )), ∂, (−1)•π•

#) is
a double complex. �

The relevance to the homology of the image can be seen from two short calcula-
tions. In each, “ck

j” always denotes an alternating chain, when k ≥ 2.

Example 1 let c2j ∈ ZAlt
j (D2( f )).

D2( f ) 0 c2j
∂

X 0 π2
#(c

2
j )

f#

∃ c1j+1
∂

e.g. if Hj (X) = 0

Y f#π2
#(c

2
j ) = 0 f#(c1j+1)

∂

Because f# ◦ π2
# = 0 on alternating chains, f#(c1j+1) is a cycle in Y . So from an

alternating j-cycle c2j in D2( f ), we get a j + 1 cycle on Y – provided π2
#(c

2
j ) is a

boundary in X , i.e. provided π2∗[c2j ] = 0 in Hj (X).

Example 2 let c3j ∈ ZAlt
j (D3( f )).

D3( f ) 0 c3j
∂

D2( f ) 0 π3
# (c

3
j )

∂ ∃ c2j+1

∂
provided π3∗[c3j ] = 0 ∈ HAlt

j (D2( f ))

X 0 π2
# (c

2
j+1)

∂ ∃ c1j+2

∂
provided π2∗[c2j+1] = 0 ∈ Hj+1(X)

Y 0 f#(c1j+2)
∂

Here, a j-dimensional homology class in D3( f ) leads to a j + 2-dimensional class
in Y , provided certain homology classes vanish.

Note that in both cases, if ck
j is the cycle we begin with, then
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• if ck
j = πk+1

# (ck+1
j ) for some ck+1

j ∈ CAlt
j (Dk+1( f )) then πk

#(c
k
j ) = 0, and

• if ck
j = ∂ck

j+1 for some ck
j+1 ∈ CAlt

j+1(Dk( f )), then we can take ck−1
j+1 = πk

#(c
k
j+1)

so the homology class we get in HAlt
j+1(Dk−2( f )) is zero.

So we are really interested in

ker πk∗ : HAlt
j (Dk( f )) → HAlt

j (Dk−1( f ))

imπk+1∗ : HAlt
j (Dk+1( f )) → HAlt

j (Dk( f ))
.

1.3 The Image-Computing Spectral Sequence

Lurking behind the two calculations we have just gone through is the Image-
computing spectral sequence, ICSS. Thiswas introduced in [7] and further developed
in [6]. It calculates the homology of the image Xt in terms of the alternating homol-
ogy HAlt∗ (Dk( ft )) of the multiple point spaces Dk( ft ). The version introduced in [7]
worked with the subspace of H∗(Dk( f ); Q) on which Sk acts by its sign representa-
tion:

Alt Hj (Dk( f ); Q) = {[c] ∈ Hj (Dk( f ); Q) : σ∗([c]) = sign(σ)[c] for all σ ∈ Sk}.

If we take the complex of alternating chains described in the last paragraph and
replace integer coefficients by rational coefficients, then the two versions coincide:

Alt Hj (Dk( f ); Q) = HAlt
j (Dk( f ); Q).

The ICSS has E1
p,q = HAlt

q (D p+1( ft )) and converges to Hp+q(Xt ). The dif-

ferential on the E1 page, d1 : E1
p,q → E1

p−1,q is the simplicial differential π
p+1
∗ :

HAlt
q (D p+1( ft )) → HAlt

q (D p( ft )). In [7], a great deal hinges on the fact that for
a stable perturbation ft of an A-finite germ f0 of corank 1, the Dk( ft ) are Mil-
nor fibres of the isolated complete intersection singularities Dk( f0) (see [14]), and
therefore their vanishing homology is confined to middle dimension. Since (over Q)
HAlt

i (Dk( ft )) ⊂ Hi (Dk( ft )), the vanishing alternating homology of Dk( ft ) is also
confined to middle dimension. From this it follows, in the case of a stable pertur-
bation of a mono-germ, that the ICSS collapses at E1: for all r ≥ 1, Er

p,q = E1
p,q .

The fact that the spectral sequence converges to Hp+q(Xt ) therefore means that, for
map-germs (Cn, 0) → (Cn+1, 0), as Q-vector space,

For a germ (Cn, 0) → (Cn+c, 0) with c > 1, the corresponding formula is

H̃ j (Xt ) � HAlt
n−(k−1)c(Dk( ft )) if j = n − (k − 1)(c − 1) with 2 ≤ k ≤ n

c
+ 1,

= 0 otherwise.
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Hn(Xt ) � HAlt
n−1(D2( ft )) ⊕ HAlt

n−2(D3( ft )) ⊕ · · · ⊕ HAlt
0 (Dn+1( ft )). (1.5)

The argument for collapse is as follows: for each space D p+1( ft ) there is at most
one non-zero alternating homology group, HAlt

n−p(D p+1( ft )), and therefore either the
source or the target of every differential at E1 is equal to 0. Thus E2

p,q = E1
p,q . The

higher differentials dr : Er
p,q → Er

p−r,q+r−1 all vanish for exactly the same reason:
for each one, either its source or its target is zero.

Notice that this is exactly what is needed to justify the assumptions we made
in our two calculations in the previous paragraph. Whenever Dk( ft ) has non-trivial
alternating homology in dimension j , then Dk−1( f ) does not.

The situation for stable perturbations of multi-germs is slightly more compli-
cated, as can be seen with the example of Reidemeister moves II and III in Sect. 1.6
below. Here Dk( ft ) may have more than one connected component, and hence
have vanishing alternating homology in dimension 0 as well as in middle dimen-
sion. As the calculations with Reidemeister moves II and III show, the differentials
πk∗ : HAlt

0 (D p+1( ft )) → HAlt
0 (D p( ft )) may not all be zero.

From (1.5) it follows that for a stable perturbation of a mono-germ

(Cn, 0) → (Cn+1, 0)

μI ( f ) =
n+1∑
k=2

rank HAlt
n−k+1(Dk( ft )). (1.6)

In [10, Theorem 4.6], Kevin Houston showed the remarkable fact that that if ft is a
stable perturbation of anA-finite mono-germ f0 of any corank, then the alternating
homology of Dk( ft ) is once again confined to middle dimension, even though the
ordinary homology of Dk( f0) may not be.1 From Houston’s theorem its follows that
(1.5) and (1.6) hold for stable perturbations of mono-germs of any corank.

In both of our examples of corank 2 mono-germs, the multiplicity of f0,

dimC

OCn ,0

f ∗
0 mCn+1,0 OCn ,0

,

is equal to 3, so ft has no quadruple or higher multiple points, and (1.6) reduces to

μI ( f0) = rank HAlt
n−1(D2( ft )) + rank HAlt

n−2(D3( ft )). (1.7)

If f0 : (Cn, 0) → (Cn+1, 0) is a germ with μI ( f0) = 1, then (1.6) implies that the
vanishing homology of the image comes from just one of the multiple point spaces.
It is an interesting project to determine, for each such f0, which one this is. It is
possible to show that the answer depends only on the isomorphism class of the local

1In fact for the stable perturbation ft of the germ (C5, 0) → (C6, 0) described below, both D2( ft )

and D3( ft ) have non-trivial homology below middle dimension.
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algebra of f0. It is far from clear to me how to determine the answer from the local
algebra. Nevertheless, examples support the following conjecture:

Conjecture 1.3 If (n, n + 1) are in Mather’s nice dimensions (i.e. n < 15) and if
f0 : (Cn, 0) → (Cn+1, 0) has μI = 1 then the vanishing homology in the image of
a stable perturbation ft comes from Dk( ft ), where k is the dimension of the local
algebra of f0 (and is the highest integer for which Dk( f0) �= ∅).

This is proved for germs of corank 1 in [2, Sect. 4].

1.4 Symmetric Group Actions on the Homology of the
Multiple Point Spaces

From here on, and in the rest of the paper, we will consider only germs of maps from
n-space to n + 1-space, we will consider only homology with rational coefficients,
and by Hi (Dk( ft )) we will mean always Hi (Dk( ft ); Q).

As we have seen, each multiple-point space Dk( ft ) is acted upon by the sym-
metric group Sk , permuting the factors of U k

t . The resulting representation of Sk on
H∗(Dk( ft ); Q) splits as a direct sum of isotypal components, whose ranks are the
principle numerical invariants of the disentanglement. We have

Hi (D2( ft )) � H T
i (D2( ft )) ⊕ HAlt

i (D2( ft )),

where the two summands are the subspaces of Hi (D2( ft )) on which S2 acts trivially,
and by its sign representation, respectively, and

Hi (D3( ft )) = H T
i (D3( ft )) ⊕ HAlt

i (D3( ft )) ⊕ H ρ
i (D3( ft )),

where now the summands correspond to the trivial, sign and irreducible degree 2
representation of S3.

Let Mk( f0) and Mk( ft ) denote the set of target k-tuple points of f and f0 respec-
tively – points with at least k preimages, counting multiplicity. By e.g. [20], the
germ (Mk( f0), 0) is defined by the (k − 1)’st Fitting ideal of the OCn+1,0-module
f0∗(OCn )0, that is, the ideal generated by the (m − k + 1) × (m − k + 1) minors of
the m × m matrix of a presentation of f0∗(OCn )0.

Lemma 1.4 Let f0 : (Cn, 0) → (Cn+1, 0) have multiplicity k and isolated instabil-
ity, and suppose that Mk( f0) is non-singular. Let ft be a stable perturbation of f0.
Then H T

i (Dk( ft )) = 0 for all i > 0.

Proof Because the multiplicity of f0 is k, ft has no (k + 1)-tuple points, and it fol-
lows that Mk( ft ) � Dk( ft )/Sk , and therefore Hi (Mk( ft )) � H T

i (Dk( ft )). Because
Mk( f0) is smooth, Mk( ft ) is contractible, and the result follows. �
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Lemma 1.4, with k = 3, applies to both of the germs we consider. Smoothness of
M3( ft ) can be seen in each case by considering a presentation of f0∗(OCn )0.

Suppose f has corank > 1. We have no closed formula for generators of the ideal
defining Dk( f ) for k ≥ 3, but for D2( f ) there is a formula, introduced in [18], for
germs of any corank. The ideal ( f × f )∗(I�n+1) obtained by pulling back the ideal
defining the diagonal inC

n+1 × C
n+1 vanishes on D2( f ), but also on the diagonal in

�n ⊂ C
n × C

n . To remove �n and leave only the points in the closure of the set of
strict double points, we proceed as follows. The ideal ( f × f )∗(I�n+1), generated by
fi (x (1)) − fi (x (2)), for i = 1, . . ., n + 1, is contained in I�n , which is generated by
x (1)

j − x (2)
j , j = 1, . . ., n. Thus for i = 1, . . ., n + 1 there are functionsαi j (x (1), x (2))

such that

fi (x (1)) − fi (x (2)) =
n∑

j=1

αi j (x (1), x (2))
(

x (1)
j − x (2)

j

)
.

The (n + 1) × n matrix α = (αi j ) restricts to the jacobian matrix of f on �n . We
take

I2( f ) = ( f × f )∗(I�n+1) + minn(α).

Lemma 1.5 Let f0 : (Cn, 0) → (Cn+1, 0) be A-finite and not an immersion. Then
D2( f0), as defined by I2( f0), is Cohen–Macaulay of dimension n − 1, and normal.
�

The proof of Cohen–Macaulayness has been part of the folklore for some time,
but has recently been written up carefully by Nuño-Ballesteros and Peñafort in [21].
When n = 3, D2( f0) is therefore a normal surface singularity, and so by the Greuel–
Steenbrink theorem, [9, Theorem 1], H1(D2( ft )) = 0.

1.5 Calculating µI ( f )

Let f0 : (Cn, 0) → (Cn+1, 0) have finite codimension and let

F : (
C

n × C
d , (0, 0)

) → (
C

n+1 × C
d , (0, 0)

)
, F(x, u) = ( fu(x), u)

be a versal deformation. IfG is a reduced equation for the image of F then for u ∈ C
d ,

gu := G(_, u) is a reduced equation for the image of fu . By a theorem of Siersma
[25], the image of gu has the homotopy type of a wedge of n-spheres, whose number
is equal to the number of critical points of gu (counting multiplicity) which move off
the zero level as u leaves 0. Note that the number of n-spheres is, by definition, the
image Milnor number μI ( f0). We can therefore calculate μI ( f0) as follows: define
the relative jacobian ideal J rel

G by
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J rel
G =

(
∂G

∂y1
, . . .,

∂G

∂yn+1

)

where y1, . . ., yn+1 are coordinates on (Cn+1, 0). The relevant critical points of the
functions gt together make up the residual components of V (J rel

G ) after removal of
its components lying in {G = 0}. This residual set can be found as the zero-locus of
the saturation (J rel

G : G∞), defined as

⋃
k∈N

{h ∈ OCn+1×Cd ,(0,0) : hGk ∈ J rel
G }.

We denote the zero locus of (J rel
G : G∞) by �. Thus the image Milnor number

μI ( f0) is the degree of the projection (�, 0) → (Cd , 0). This degree can be calculated
as the intersection number

(
�, C

n+1 × {0})
(0,0). If � is Cohen–Macaulay then

μI ( f0) = (
�, C

n+1 × {0})
(0,0) = dimC

( OCn+1×Cd ,(0,0)

(J rel
G : G∞) + (u1, . . ., ud)

)
(1.8)

where u1, . . ., ud are coordinates on (Cd , 0).
In both of the examples considered here, this is the case, and it is a straightforward

Macaulay2 [8] calculation to follow this procedure (including to check the Cohen–
Macaulayness of �) and find μI ( f0): it is 18 for the germ (C3, 0) → (C4, 0), and 1
for the germ (C5, 0) → (C6, 0).

If � is not Cohen–Macaulay, the intersection number can be calculated using
Serre’s formule clef, [23], which we use to calculate a related intersection number in
Sect. 3.2 below.

Remark 1.6 The method outlined here gives no hint to any relation between μI ( f0)
and the Ae-codimension of f0. It is conjectured that provided (n, n + 1) are nice
dimensions, the standard “Milnor–Tjurina” relation holds, namely

Ae-codim f0 ≤ μI ( f0) (1.9)

with equality if f0 is weighted homogeneous. In [19] another slightly more compli-
catedmethod for calculating μI is explained, with a similar case-by-case justification
– verification of the Cohen Macaulayness of a certain relative T 1 module, T 1 rel

Kh,e
i ,

and consequent conservation of multiplicity. The virtue of this second method is that
the relation (1.9) is an immediate consequence, whenever Cohen–Macaulayness of
the relative T 1 can be shown, since T 1

Ae
f0 is a quotient of T 1

Kh,e
i0.
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1.6 Examples

Example I: the ICSS for a stable perturbation of f (x, y) = (x, y3, xy + y5). Here
we apply the calculations described in Sect. 1.2 to a stable perturbation of the germ
of the title of this subsection, of type H2. For any map-germ f : (C2, 0) → (C3, 0)
of the form f (x, y) = (x, f2(x, y), f3(x, y)), D2( ft ) is defined in (x, y1, y2)-space
by the equations (see [14])

∣∣∣∣
1 fi (x, y1)
1 fi (x, y2)

∣∣∣∣
∣∣∣∣
1 y1
1 y2

∣∣∣∣
i = 2, 3 (1.10)

and D3( f ) is defined in (x, y1, y2, y3)-space by the equations

∣∣∣∣∣∣
1 fi (x, y1) y21
1 fi (x, y2) y22
1 fi (x, y3) y23

∣∣∣∣∣∣
∣∣∣∣∣∣
1 y1 y21
1 y2 y22
1 y3 y23

∣∣∣∣∣∣

,

∣∣∣∣∣∣
1 y1 fi (x, y1)
1 y2 fi (x, y2)
1 y3 fi (x, y3)

∣∣∣∣∣∣
∣∣∣∣∣∣
1 y1 y21
1 y2 y22
1 y3 y23

∣∣∣∣∣∣

i = 2, 3. (1.11)

In this case these give

y21 + y1y2 + y22 , x + y41 + y31 y2 + y21 y22 + y1y32 + y42

for D2( f ) and

P2(y1, y2, y3), y1 + y2 + y3, x + P4(y1, y2, y3), P3(y1, y2, y3)

for D3( f ), where each Pj is a symmetric polynomial of degree j . Thus D2( f ) is
an A1 curve singularity and D3( f ) is a non-reduced point of multiplicity 6. If ft is
a stable perturbation then D2( ft ) is a Milnor fibre of the A1 singularity, homotopy
equivalent to a circle, and D3( ft ) consists of 6 points forming a single S3-orbit.
By judicious choice of parameter values u and v in the miniversal deformation
fu,v(x, y) = (x, y3 + uy, xy + y5 + vy2) (see [15]), one can arrange that the real
picture of D2( ft ) and D3( ft ), and their projections D3

1( ft ), D2
1( ft ), are as shown in

the following diagram.
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Here S and T in Ut are the non-immersive points of ft . At each, the germ of ft

is equivalent to the parametrisation of the Whitney umbrella, (x, y) �→ (x, y2, xy),
since this is the only stable non-immersive germ in this dimension range. The non-
strict double points (S, S) and (T, T ) are the fixed points of the involution (1, 2) on
D2( ft ), which, in our picture, is induced by a reflection in the straight line joining
them.

As a single faithful S3-orbit, D3( ft ) carries an alternating cycle,

c0 = (P, Q, R) − (P, R, Q) + (R, P, Q) − (R, Q, P) + (Q, R, P) − (Q, P, R).

The projection of this cycle to D2( ft ), π3
#(c0), is an alternating boundary, as in

Example 2 of Sect. 1.2: for instance

π3
#(c0) = (P, Q) − (P, R) + (R, P) − (R, Q) + (Q, R) − (Q, P) = ∂(c1)

where c1 is the alternating 1-chain

[(T, T )(Q, R)] − [(T, T )(R, Q)] + [(Q, P)(R, P)] − [(P, Q)(P, R)]

(here, for any two non-antipodal points A, B ∈ D2( ft ), [A, B] denotes the singular
1-simplex parametrising the shorter arc from A to B). The projection of c1 to Ut is
a 1-cycle in Ut , and is the boundary of a 2-chain c2 with support equal to the union
of the first and third bounded regions of the complement of D2

1( ft ), counting from
left to right. And by the argument above, ft#(c2) is a cycle in the image Xt , indeed
one of the two generators of H2(Xt ). Another generator comes from the alternating
1-cycle c′

1 on D2( ft ) consisting of the anticlockwise arc [(S, S)(T, T )] minus the
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clockwise arc [(S, S)(T, T )]. I encourage the reader to find a 2-chain c′
2 on Ut such

that ∂c′
2 = π2

#(c
′
1).

Example II: the Reidemeister moves. The Reidemeister moves of knot theory are
versal deformations of the three Ae-codimension 1 singularities of mappings from
the line to the plane. It is instructive to look at their disentanglements (in the sense
described above), and at the resulting ICSS. The codimension 1 germs are shown in
themiddle column of the table below, and the right hand column shows a 1-parameter
versal deformation, which, fixing t �= 0, gives a stable perturbation.

I f0 : x �→ (x2, x3) ft : x �→ (x2, x3 − t x)

I I f0 :
{

x �→ (x, x2)

y �→ (y,−y2)
ft :

{
x �→ (x, x2 − t)
y �→ (y,−y2)

I I I f0 :
⎧⎨
⎩

x �→ (x, x)

y �→ (y, 0)
z �→ (z,−z)

ft :
⎧⎨
⎩

x �→ (x, x)

y �→ (y, t)
z �→ (z,−z)

(1.12)

For all three cases, the non-trivial modules in the E1 page of the ICSS for ft are
contained in the single column

0

HAlt
0 (D3( ft ))

π3∗

HAlt
0 (D2( ft ))

π2∗

H0(Ut )

0

(1.13)

Reidemeister I. Take F : (x, t) �→ (t, ft (x)) as stable unfolding. Since in order
that F(t1, x1) = F(t2, x2), we must have t1 = t2, we can embed D2(F) in C

3 with
coordinates t, x1, x2. There, following the recipe preceding Lemma 1.5 above, we
find that D2(F) is defined by the equations

x2
1 − x2

2

x1 − x2
= x3

1 − t x1 − (x3
2 − t x2)

x1 − x2
= 0. (1.14)
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Simplifying, this gives

x1 + x2 = 0 x2
1 + x1x2 + x2

2 = t. (1.15)

Thus D2( f0) is a 0-dimensional A1 singularity. Setting t > 0 for a good real picture,
and denoting

√
t by P and −√

t by Q, D2( ft ) is its Milnor fibre, the point-pair
{(P, Q), (Q, P)}. Then for t �= 0, HAlt

0 (D2( ft )) � Q, generated by the class of
[(P, Q)] − [(Q, P)]. Note that HAlt

0 (D2( f0)) = 0, since when t = 0, P = Q. For
both f0 and ft , D3 = ∅.

In the E1 page (1.13), HAlt
0 (D3( ft )) = 0. We have π2∗ = 0, for π2∗

([(P, Q)] −
[(Q, P)]) = [P] − [Q], and Ut is connected, so that [P] = [Q]. Hence the spectral
sequence collapses at E1, and for t �= 0

H0(Xt ) = H0(Ut ) = Q, H1(Xt ) = HAlt
0 (D2( ft )) = Q.

Reidemeister II.Here both branches of the bi-germ f0 are immersions, so allmultiple
points are strict. Denote by 0x and 0y the origins of the coordinate systems with
coordinates x and y respectively. The domain of the stable perturbation ft is a disjoint
union Ut = Ux,t ∪ Uy,t , where Ux,t is a contractible neighbourhood of 0x and Uy,t is
a contractible neighbourhood of 0y . Thus H0(Ut ) � Q

2. There are no triple points,
and D2( ft ) consists of

{(x, y) ∈ (C, 0x ) × (C, 0y) : x = y, x2 − t = −y2} (1.16)

together with its image under the involution (1, 2) sending (x, y) to (y, x). When
t = 0 this is a pair of 0-dimensional A1 singularities, interchanged by (1, 2). To
describe D2( ft ) for t �= 0, denote the points in (C, 0x ) with x coordinates

√
t/2 and

−√
t/2 by Px and Qx respectively, and the points in (C, 0y)with y coordinates

√
t/2

and −√
t/2 by Py and Qy . Then for t �= 0,

D2( ft ) = {(Px , Py), (Py, Px ), (Qx , Qy), (Qy, Qx )}, (1.17)

with the involution (1, 2) interchanging the first and second points, and the third and
fourth. For t = 0, this collapses just to

D2( f0) = {(0x , 0y), (0y, 0x )}.

Thus for t �= 0, HAlt
0 (D2( ft )) is two-dimensional,with basis [(Px , Py)] − [(Py, Px )],

[(Qx , Qy)] − [(Qy, Qx )], and for t = 0, HAlt
0 (D2( f0)) has basis [(0x , 0y)]

− [(0y, 0x )]. With respect to the basis of HAlt
0 (D2( ft )) described above, and the

basis [Px ], [Py] for H0(Ut ), π2∗ has matrix

(
1 1

−1 −1

)
when t �= 0, and thus has

1-dimensional kernel and cokernel. The spectral sequence collapses at E2, and
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H1(Xt ) = E2
1,0 = ker π2

∗ � Q, H0(Xt ) = E2
0,0 = Coker π2

∗ � Q.

Reidemeister III. We use the same conventions as for Reidemeister II. Let Px and
Py denote the points in Ux,t and Uy,t with x and y coordinate t , and let Qy and Qz

denote the points in Uy,t and Uz,t with y and z coordinate −t . Note that when t = 0,
then Px = 0x , etc. Then

D2( ft ) ∩ (
Ux,t × Uy,t

) = {(Px , Py)}
D2( ft ) ∩ (

Ux,t × Uz,t
) = {(0x , 0y)}

D2( ft ) ∩ (
Uy,t × Uz,t

) = {(Qx , Qz)}
(1.18)

and

D3( f0)
⋂

Ux,t × Uy,t × Uz,t = {(0x , 0y, 0z)}.

Thus
HAlt

0 (D3( f0)) � Q HAlt
0 (D3( ft )) = 0

HAlt
0 (D2( f0)) � Q

3 HAlt
0 (D2( ft )) � Q

3

H0(U0) � Q
3 H0(Ut ) � Q

3

(1.19)

with bases shown in the following table.

Module Basis

HAlt
0 (D3( f0)) [(0x , 0y, 0z)] − [(0x , 0z, 0y)] + [(0z, 0x , 0y)] − [(0z, 0y, 0x )]

+[(0y, 0z, 0x )] − [(0y, 0x , 0z)]

HAlt
0 (D2( ft )) [(Px , Py)] − [(Py, Px )], −[(0x , 0z)] + [(0z, 0x )],

[(Qy, Qz)] − [(Qz, Qy)]

H0(Ut ) [0x ] = [Px ], [Py] = [Qy], [Qz] = [0z]

With respect to these bases, the differentials πk∗ have the following matrices (with
the first only for t = 0):

π3∗ =
⎛
⎝
1
1
1

⎞
⎠ π2∗ =

⎛
⎝

1 −1 0
−1 0 1
0 1 −1

⎞
⎠

In the spectral sequence for f0, the image of π3∗ kills the kernel of π2∗. When t �=
0, D3 vanishes, along with its homology, while HAlt

0 (D2( ft )) remains unchanged.
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The spectral sequence collapses at E2, and

H1(Xt ) = E2
1,0 = ker π2

∗ � Q, H0(Xt ) = E2
0,0 = Coker π2

∗ � Q.

2 New Examples: Disentanglements of Two Germs of
Corank 2

2.1 Summary of Results

2.1.1 A Germ of Corank 2 from 3-Space to 4-Space

Let
f0(x, y, z) = (x, y2 + xz + x2y, yz, z2 + y3).

The rows of the following table show relations between the ranks of the isotypal
subspaces of the homology groups of D2( ft ) and D3( ft ) and of the homology groups
of their projections to Ut , D2

1( ft ) and D3
1( ft ), and V D∞, the number of Whitney

umbrellas on D2
1( ft ), which plays a crucial role in our calculation. The left hand

column shows where in the paper the calculation is made. Blank spaces indicate
zeros.

datum H T
2 (D2) HAlt

2 (D2) H2(D2
1) H T

1 (D3) HAlt
1 (D3) Hρ

1 (D3) H1(D3
1) V D∞

(1.7) 1 1 = 18
δ(D3

1) in §4.2 1 = 8
δ(M3) in §4.2 1 = 0

(3.4) 1 1 1 −2 −1 = −1
(3.6) 1 = 10
(3.7) −1 1 −1 = −1
(3.9) 1 = 27

(3.10) − (3.13) 1 1 −1 1 1
2 = 0

(2.1)

The rank of the matrix of coefficients is 8, so we are able to compute all of the
invariants. The following table shows their values.

H T
2 (D2) HAlt

2 (D2) H2(D2
1) H T

1 (D3) HAlt
1 (D3) H ρ

1 (D3) H1(D3
1) V D∞

1 9 27 0 9 16 8 10
(2.2)

2.1.2 A Germ of Corank 2 from 5-Space to 6-Space

Let
f0(x, y, a, b, c) = (x2 + ax + by, xy, y2 + cx + ay, a, b, c).
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We are able to show

(a) HAlt
3 (D3( ft )) � Q and HAlt

4 (D2( ft )) = 0, so the vanishing homology of the
image comes from the triple points.

(b) H1(D3( ft )) = 0, H2(D3( ft )) = H ρ
2 (D3( ft )) � Q

2, and
H3(D3( ft )) = HAlt

3 (D3( ft )) � Q.
(c) H1(D2( ft )) = 0, H2(D2( ft )) = H T

2 (D2( ft )) � Q.
(d) dimQH4(D2( ft )) = dimQH3(D2( ft )) ≤ 1. Both groups are S2-invariant, by

Houston’s theorem [10, Theorem 4.6]

Statements (a) and (b) are shown in Sect. 4.3, and (c) and (d) are shown in Sect. 4.4.
This is the first example I know of a stable perturbation of a map-germ f0 :

(Cn, 0) → (Cn+1, 0) for which the vanishing homology of the multiple point spaces
is not confined to middle dimension, though of course many such examples are to
be expected when f0 has corank > 1.

3 Calculations for the Germ (CCC3, 0) → (CCC4, 0)

3.1 Triple Points

Since no closed formula for a set of generators for the ideal defining D3( f ) in (C3)3

is known, we do not have direct access to any of the invariants of D3( ft ). However,
we are able to build up a complete picture of the representation of S3 on its homology,
and in particular to calculate the dimension of HAlt

1 (D3( ft )), by working our way
up from its image under projection to Ut , D3

1( ft ).

Lemma 3.1 D3
1( ft ) is a smoothing of D3

1( f )

Proof We have to show both that D3
1( ft ) is smooth, and that it is the fibre of a flat

deformation of D3
1( f ). The first statement is a consequence of the classification of

stable map-germs. Up to A-equivalence, the only stable germs of maps C
3 → C

4

are

(a) a trivial unfolding of the parameterisation of the Whitney umbrella:

p1(u, v, w) = (u, v, w2, vw);

(b) a bi-germ whose two branches are a germ of type (a) and an immersion, meeting
in general position in C

4;
(c) a multi-germ consisting of k immersions meeting in general position, for k =

1, 2, 3, 4 (we denote these by (c1), …, (c4)).

Since ft is stable, every one if its germs is one of these types, and one can easily check
that for each of them, except for (c4), the triple point locus D3

1, where non-empty, is
smooth. In the mapping ft there are no points of type (c4), so D3

1 ft ) is smooth.
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For the second statement, let F : (C3 × S, (0, 0)) → (C4 × S, (0, 0)) be a stable
unfolding of f over a smooth base S. Then D3(F) has dimension 1 + dimS. By
the principle of iteration, D3

1(F) = M2(π
2 : D2(F) → C

3 × S) (where M2 means
the set of double points in the target). Now D2(F) is Cohen–Macaulay, and π2 is
finite and generically 1-1, so M2(π

2) is also Cohen Macaulay [20]. Flatness of the
projection D3

1(F) → S now follows from the fact that the dimension of its fibre,
D3

1( ft ), is equal to dimD3
1(F) − dimS. �

It follows from the lemma that rank H1(D3
1( ft )) = μ(D3

1( f ), 0). We find μ by
using Milnor’s formula μ = 2δ − r + 1 [13], where δ is the δ-invariant of a curve-
germ and r the number of its branches. We find D3

1( f ) as the zero locus of the
ideal f ∗(Fitt2), where Fitt2 := Fitt2( f∗ OC3,0)) is the second Fitting ideal of OC3,0

considered asOC4,0-module via f ∗. Macaulay2 [8] gives the following presentation
of f∗(OC3):

⎛
⎝

−X2U2 − 2XU V + V 2 − U W X4 + U2 + X3V X3U + 2X2V + X W
X4 + U2 + X3V −X6 − 2X2U − X V − W −X5 − XU + V

X3U + 2X2V + X W −X5 − XU + V −X4 − U

⎞
⎠ (3.1)

from which we see that

Fitt2 = (X4 + U, V, X2U + W ) (3.2)

and
f ∗Fitt2 = (x4 + x2y + y2 + xz, yz, x3z + z2). (3.3)

Primary decomposition of the ideal (3.3) shows that the curve D3
1( f ) has three

smooth components:

C1 = V (y, x3 + z), C2 = V (z, y − ξx2) C3 = V (z, y − ξ2x2)

where ξ = e2iπ/3, with parameterisations

γ1(t) = (t, 0,−t3), γ2(u) = (u, ξu2, 0), γ3(v) = (v, ξ2v2, 0).

Denoting byO�̃ := C{t} ⊕ C{u} ⊕ C{v} the ring of the normalisation of�, we find
that

n∗(O�,0) = (t3) ⊕ (u3) ⊕ (v3) + Sp{(1, 1, 1), (t, u, v), (t2, u2, v2), (0, ξu2, ξ2v2)} ⊂ O�̃ .

Hence

δ(D3
1( f )) = dimC

O�̃, 0

n∗ O�,0
= 5,

and
rank H1(D3

1( ft )) = μ(D3
1( f )) = 2δ − 3 + 1 = 8.
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The projection D3( ft ) → D3
1( ft ) is a double cover, with points (a, b, c) and

(a, c, b) sharing the same image, and no points of higher multiplicity, as f has no
quadruple points. The cover is simply branched at triple points of the form (a, b, b);
there are no triple points of the form (a, a, a), since if there were, then ft would have
multiplicity ≥3 at a, and as we see in the list of stable germs in the proof of Lemma
3.1, none has multiplicity > 2. Thus

χ(D3( ft )) = 2χ(D3
1( ft )) − #branch points = −14 − #branch points. (3.4)

To complete the calculation of the Euler characteristic of D3( ft ), we have to compute
the number of branch points. This seems not to be straightforward. Though the branch
points are points of intersection of D3

1( ft ) and the non-immersive locus R( ft ), both
of these are curves so their intersection inUt is not a proper intersection. Both curves
lie in the surface D2

1( ft ), where the intersection is proper, but D3
1( ft ) is the singular

locus of D2
1( ft ) and so again calculation of the intersection number is difficult. Instead

we use the fact that the branch points are Whitney umbrella points of D2
1( ft ), which

we explain in the next section, and count them using a theorem of Theo de Jong in [3].

3.2 Double Points

Lemma 3.2 (a, b, b) ∈ D3( ft ) if and only if (a, b) ∈ D2( ft ) is a Whitney umbrella
point of the projection π2 : D2( ft ) → Ut .

Proof This is, once again, the principle of iteration. The map

(a, b, c) �→ ((a, b), (a, c))

identifies D3( ft )with D2(π2 : D2( ft ) → Ut ). A point of the form (a, b, b) becomes
a fixed point of the involution ((a, b), (a, c)) �→ ((a, c), (a, b)), and thus a non-
immersive point of π2. By Remark 1.1, this must be a Whitney umbrella point. �

From Lemma 3.2 we see that to find the dimension of HAlt
1 (D3( ft )) we must

count the number of Whitney umbrellas on D2
1( ft ). Let W (D2

1( ft )) denote the set
of all such points. They appear when ft has a bi-germ of type (b) in the list in
the proof of Lemma 3.1: the Whitney umbrella appears on D2

1( ft ) at the source
point of the immersive member of the bi-germ. If R( ft ) is the set of non-immersive
points of ft , then W (D2

1( ft )) = D3
1( ft ) ∩ R( ft ), so one might hope to calculate the

number of points in W (D2
1( ft )) as an intersection number. But as remarked above,

the intersection is improper: both D3
1( ft ) and R( ft ) are curves. We are forced to

look further afield, and use a theorem of Theo de Jong [3]. The virtual number of
D∞ points on a germ of singular surface (S, x0) ⊂ C

3, with 1-dimensional singular
locus �, and with reduced equation h, is defined as follows. Let θ(h) be the restric-
tion to � of the germs of vector fields on (C3, x0) tangent to all level sets of h.
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Then θ(h) ⊂ θ� . Let �̃ be the normalisation of �. Since vector fields lift uniquely
to the normalisation we can consider the quotient θ�̃,x̃0/θ(h). De Jong defines

VD∞(S) = dimC

(
θ�̃,x̃0

θ(h)

)
− 3δ(�) (3.5)

and shows ([3, Theorem 2.5]) that V D∞(S) is conserved in a flat deformation of S
which induces a flat deformation of �.

Let us apply this to the case where S is the surface D2
1( f ) for a finitely determined

map-germ f : (C3, 0) → (C4, 0). In this case� = D3
1( f ). A deformation of f over

a smooth base S induces a flat deformation of D2
1( f ), since this is a hypersurface.

We have already seen that D3
1( f ) deforms flat over S. Thus we may apply de Jong’s

theorem. The special points on D3
1( ft ), where D2

1( ft ) is not a normal crossing of two
sheets, are of two types: Whitney umbrella points and triple points. We have already
seen howWhitney umbrella points arise; triple points correspond to quadruple points
of ft , in which four pieces of C

3 are mapped immersively and in general position.
We denote the number of these by Q.

Corollary 3.3 VD∞(D2
1( f )) = |Fix(1, 2)| − 8Q

Proof Each Whitney umbrella point contributes 1 to VD∞(D2
1). Each quadruple

point gives rise to four triple points on D2
1( f ). Each triple point contributes −2 to

VD∞(D2
1)) [3, Example 2.3.3]. So

VD∞(D2
1( f )) = #Whitney umbrellas − 2#triple points = |Fix(1, 2)| − 8Q.

�

Now we return to the map germ f of Sharland that is the focus of our interest.
To compute V D∞(D2

1) we need to find lifts to the normalisation �̃ of D3
1( f ) of

the vector fields annihilating the equation h of D2
1( f ). A Macaulay calculation finds

that modulo the defining ideal of D3
1( f ), these vector fields are generated by

χ1 = (x3y2 + 2xy3 − 3xz2)
∂

∂x
+ (2x2y3 + 4y4)

∂

∂y
− 9z3

∂

∂z

χ2 = (y4 + x2z2)
∂

∂x
− (2x3y3 − 2xy4)

∂

∂y
+ 3xz3

∂

∂z

These lift to

χ̃1 =
(

−3t7
∂

∂t
, (2 + ξ2)u7 ∂

∂u
, (2 + ξ)v7 ∂

∂v

)
, χ̃2 =

(
t8

∂

∂t
, ξu8 ∂

∂u
, ξ2v8 ∂

∂v

)

in θ�̃ = C{t}∂t ⊕ C{u}∂u ⊕ C{v}∂v . The OC3 -submodule of θ�̃ they generate is
equal to
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(t10)∂t ⊕ (u10)∂u ⊕ (v10)∂v + SpC{χ̃1, xχ̃1, x2χ̃1, χ̃2, xχ̃2}.

Hence dimC(θ�̃/θ(h)) = 25 so that

V D∞(D2
1) = 25 − 3 × 5 = 10. (3.6)

We have proved

Lemma 3.4 The involution (2, 3) has 10 fixed points on D3( ft ). �

Corollary 3.5 dimQH1(D3( ft ); Q) = 25.

Proof By the lemma and (3.4), χ(D3( ft )) = −24. �

Proposition 3.6 dimQH Alt
1 (D3( ft )) = 9, dimQH ρ

1 (D3( ft )) = 16, and dimQH Alt
2

(D2( ft )) = 9.

Proof We use the Lefschetz fixed point theorem:

10 = #fixed points of (2, 3) =
∑
k≥0

(−1)k
(
trace(2, 3)∗ : Hk(D3( ft )) → Hk(D3( ft ))

)

= 1 − trace(2, 3)∗ : H1(D3( ft ) → H1(D3( ft )) = 1 + dimQHAlt
1 (D3( ft )) − dimQH T

1 (D3( ft )).
(3.7)

The last equation here follows from the fact that the trace of (2, 3) on the irreducible
sign representation of S3, on the trivial representation and on the irreducible 2-
dimensional representation is −1, 1 and 0 respectively. It is straightforward to check
that each fixed point of (2, 3) is non-degenerate and therefore has Leftschetz number
1. Since H T

1 (D3( ft )) = 0,weobtain thefirst equality in the statement of the corollary.
The second equality now follows by Corollary 3.5 and the third by the fact that
18 = μI ( f ) = dimQHAlt

2 (D2( ft )) + dimQHAlt
1 (D3( ft )). �

Now we compute H2(D2( ft )). Although we have a formula for the ideal defining
D2( f ), we have nomethod of deriving from it a formula for the rank of the homology
of D2( ft ). So once again we proceed indirectly, by calculating the homology of the
image of its projection to Ut , D2

1( ft ).

Lemma 3.7 D2
1( ft ) has the homotopy type of a wedge of 27 2-spheres.

Proof We use the technique explained in Sect. 1.5, based on Siersma’s theorem [25]
that the rank of the vanishing homology of D2

1( f ) is equal to the number of critical
points of a reduced defining equation of D2

1( f ) which move off the zero level as t
moves off 0. The unfolding

F(t1, t2, t3, x, y, z) = (t1, t2, t3, x, y2 + xz + x2y, yz + t1y + t2z, z2 + y3 + t3y)

is stable, by Mather’s algorithm for the construction of stable germs as unfoldings of
germs of rank 0, and D2

1( ft ) is the fibre of D2
1(F) over t ∈ C

3. Let G be an equation
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for D2
1(F), let gt be its restriction to {t} × C

3, and let J rel
G be the relative jacobian

ideal (∂G/∂X, ∂G/∂Y, ∂G/∂Z). As in Sect. 1.5, we compute the number of critical
points of a reduced defining equation of D2

1( f ) which move off the zero level as t
moves off 0, as the intersection multiplicity

(
V (J rel

G : G∞) · ({0} × C
3)

)
(0,0) . (3.8)

In fact calculation shows that in this case (J rel
G : G∞) is equal to the transporter (J rel

G :
G). However, unlike the situation discussed in Sect. 1.5, V (J rel

G : G∞) is not Cohen–
Macaulay; it has projective dimension 5 as OC6,0-module, while its codimension is
3. To compute the intersection multiplicity, we have to use Serre’s formule clef, from
[23]. Denote (J rel

G : G∞) by Q; then

(V (Q), {0} × C
3)0 =

∑
j

(−1) jdimCTor
O
j

(O
Q

,
O

(t1, t2, t3)

)

where O = OC6,0. Since t1, t2, t3 is a regular sequence there are at most three non-
vanishing Tor modules, for j = 0, 1, 2. AMacaulay calculation shows that they have
dimension 29, 3, 1 respectively, so that

dimQH2(D2
1( ft )) = (V (Q), {0} × C

3)(0,0) = 29 − 3 + 1 = 27. (3.9)

�

It is striking that in this case V (Q) is not Cohen–Macaulay. In all of the examples
I know, where one uses the procedure of Sect. 1.5 to calculate μI , and G is the
defining equation of the image of the stable unfolding F , the corresponding space
V (J rel

G : G∞) is Cohen Macaulay.
To relate the homology of D2

1( ft ) to the homology of D2( ft ), we use the
image computing spectral sequence: D2

1( ft ) is the image of the projection π2 :
D2( ft ) → Ut . Taking account of the facts that ft has no quadruple points, so that π2

has no triple points, and that H1(D2( ft )) = 0, the E1 term is reduced to

0 = HAlt
0 (D2(π2)) HAlt

1 (D2(π2))

d1

0

H0(D2( ft )) 0 H2(D2( ft ))

(3.10)

and the spectral sequence collapses here. So

27 = dimCH2(D2
1( ft )) = dimCH2(D2( ft )) + dimCHAlt

1 (D2(π2)). (3.11)

Recall from Remark 1.1 the isomorphism i : D3( ft ) → D2(π2 : D2( ft ) → Ut ),
given by (a, b, c) �→ ((a, b), (a, c)). The involution on D2(π2) lifts to the
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transposition (2, 3) on D3( ft ). Thus under the induced isomorphism of first homol-
ogy, HAlt

1 (D2(π2)) corresponds to the −1 eigenspace of (2, 3)∗ on H1(D3( ft )). On
each copy of the 2-dimensional irreducible representation ρ, and on each copy of the
sign representation, (2, 3) has 1-dimensional−1 eigenspace. Thus, using Proposition
3.6 for the second equality,

dimQHAlt
1 (D2(π2)) = dimQHAlt

1 (D3( ft )) + 1

2
dimQH ρ

1 (D3( ft )) = 17, (3.12)

and, by (3.11),
dimQH2(D2( ft )) = 10. (3.13)

4 Calculations for the Germ (CCC5, 0) → (CCC6, 0)

The germ

f0(x, y, a, b, c) = (x2 + ax + by, xy, y2 + cx + ay, a, b, c)

has μI = Ae-codimension = 1, and versal unfolding

F(x, y, a, b, c, t) = (x2 + ax + by, xy, y2 + cx + (a + t)y, a, b, c, t).

Let Ut
ft

Xt be a stable perturbation of f0, with contractible domain Ut ⊂ C
5.

By (1.7),

1 = rank H5(Xt ) = rank HAlt
4 (D2( ft )) + rank HAlt

3 (D3( ft )).

As in the previous section, we approach D3( ft ) via its projection to Ut , D3
1( ft ). As

before, D3
1( ft ) is defined by the pull-back of the second Fitting ideal of OC5,0 con-

sidered as OC6,0-module. The OC6×C,(0,0)-module F∗
(OC5×C,(0,0)

)
has presentation

⎛
⎝

Y 2 − X Z − abZ − bcY + atY aY + cX + tY aY + bZ
aY + cX + tY −Z − ac Y − bc

aY + bZ Y − bc −X − ab − bt

⎞
⎠ . (4.1)

so
Fitt2 = (Z + ac, Y − bc, X + (a + t)b)

and
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F∗Fitt2 = (y2 + y(a + t) + xc + ac, xy − bc, x2 + xa + yb + ab + bt)

= min2

⎛
⎝

−y −c
x + a −y − a − t

b x

⎞
⎠

Thecorresponding ideal for t = 0defines the3-fold singularity D3
1( f0).AMacaulay2

[8] calculation shows that the T 1 of D3
1( f0)) has dimension 1. Therefore D3

1( f0) is
isomorphic to the unique non-ICIS codimension 2CohenMacaulay 3-fold singularity
with τ = 1, which one can find in the table on p. 22 of [5]. This table also lists the
Betti numbers of a smoothing, from which we obtain

h0(D3
1( ft )) = 1, h1(D3

1( ft )) = 0, h2(D3
1( ft )) = 1, h3(D3

1( ft )) = 0. (4.2)

In particular, χ(D3
1( ft )) = 2.

Now D3( ft ) and D3
1( ft ) are smoothings of D3( f0) and D3

1( f0). Let π = π2 ◦ π3

be the projection from D3( ft ) to Ut , π(P, Q, R) = P . Then D3( ft ) is a branched
double cover of D3

1( ft ): for a generic point P ∈ D3
1( ft ), which shares its ft -image

with Q and R, π−1(P) = {(P, Q, R), (P, R, Q)}. Because there are no quadruple
points, the branching is of two types:

• over a point P where ft has a stable singularity of type �1,1,0,
π−1(P) = {(P, P, P)}. The set of all such points P is denoted �1,1 ft . It lies
in the closure of the set of branch points of the second kind:

• if ft (P) = ft (Q)with ft an immersion at P and of type�1,0 at Q, then π−1(P) =
{(P, Q, Q)}, so (P, Q, Q) is a branch point.

Wedenote the set of all suchpoints P by D3
1,0( ft ).Note that (Q, P, Q) and (Q, Q, P)

are not branch points.
Thus

χ(D3( ft )) = 2χ(D3
1( ft )) − χ(D3

1,0( ft )) = 4 − χ(D3
1,0( ft )). (4.3)

4.1 Equations for �1,1 f

The ramification ideal R f , generated by the 5 × 5 minors of the jacobian matrix J of
f0 defines the non-immersive locus� f of f0. Then�1,1( f ) is defined by the ideal of
maximal minors of the matrix obtained by concatenating J with the jacobian matrix
of a set of generators of R f (see e.g. [12]). By removing from this ideal anm-primary
component we obtain the ideal

S := (3y + a, 3x + a, ac − 3bc, ab − 3bc, a2 − 9bc),
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easily recognised as defining a curve isomorphic to the germ of the union of the three
coordinate axes in (C3, 0). This has δ = 2 and thereforeμ = 2δ − r + 1 = 2. It is not
quite evident that this is deformed flat in a deformation of f0, but nevertheless this is
the case. The corresponding locus for the 1-parameter versal deformation F of f0 has
an m-primary component, whose removal leaves a 2-dimensional Cohen–Macaulay
component which restricts to �1,1 f0.

4.2 Equations for D3
1,0( f0)

By the description above, D3
1,0( f0) is the “shadow component” of f −1

0 ( f (� f0)),
that is, the closure of f −1

0 ( f0(� f0)) � � f0. To find equations for it, we first look for
equations for the support of f0∗(OS /R f0). Let I0 be the radical of the zero’th Fitting
ideal of f0∗(OS /R f0), let I1 = f ∗

0 (I0), and let I2 be the saturation I1 : R∞
f0
, in this

case equal to I1 : R2
f0
. After some effort one finds that I2 is the ideal of maximal

minors of the 2 × 4 matrix

(
a b x y

−3y + a x + a −y − a 3y − a + 4c

)
.

This is isomorphic to the cone over the rational normal curve of degree 4 (Pinkham’s
example). In the versal deformation F , the same construction leads to the ideal of
maximal minors of the 2 × 4 matrix

(
a b x y + t

−3y + a + t x + a −y − a − t 3y − a + 4c − t

)

One checks that this defines a smoothing of D3
1,0( f0), over the Artin component of

the base space (since it is given by theminors of a 2 × 4matrix). So the only non-zero
reduced Betti number is β2 = 1 (see e.g. [22] p. 173). In particular

χ(D3
1,0( ft )) = 2. (4.4)

4.3 Homology of D3( ft)

By (1.7) and Lemma 1.4,

Hi (D3( ft )) = HAlt
i ⊕ H ρ

i . (4.5)

Denote by hAlt
i and hρ

i the ranks of these summands.
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Because there are no quadruple points, D3
1( ft ) is the quotient of D3( ft ) by the

Z2-actiongeneratedby the transposition (2, 3)(P, Q, R) = (P, R, Q). So Hi (D3
1( ft ))

is the part of Hi (D3( ft )) invariant under (2, 3)∗. Since H T
i (D3( ft )) = 0 for i > 0,

the (2, 3)∗ -invariant part of Hi (D3( ft )) is the (2, 3)∗-invariant part of H ρ
i (D3( ft )),

and thus isomorphic to the sum of copies of the subspace of ρ invariant under (2, 3).
The (2, 3)-invariant subspace of ρ is 1-dimensional. Thus,

hi (D3
1( ft )) = 1

2
hρ

i (D3( ft )) (4.6)

for i > 1. Hence, by (4.2),

hρ
1(D3( ft )) = 0, hρ

2(D3( ft )) = 2, hρ
3(D3( ft )) = 0. (4.7)

On the other hand, as D3( ft ) is a branched cover of degree 2 of D3
1( ft ), branched

along D3
1,0( ft ), it follows that

χ(D3( ft )) = 2χ(D3
1( ft )) − χ(D3

1,0( ft )) = 2.

Putting this together with (4.6), we have

2 = χ(D3( ft )) = 1 −
(

hρ
1 + hAlt1

)
+

(
hρ
2 + hAlt2

)
−

(
hρ
3 + hAlt3

)
= 1 − hAlt1 + hAlt2 + 2 − hAlt3 .

so
− 1 = −hAlt

1 + hAlt
2 − hAlt

3 . (4.8)

By [10, Theorem 4.6], the alternating homology of the multiple point spaces of a sta-
ble perturbation of a finitely determined map-germ is concentrated in middle dimen-
sion. As D3( ft ) is a 3-fold, this means hAlt

i (D3( ft )) = 0 for i �= 3 and so from (4.8),
hAlt
3 (D3

1( ft )) = 1. Since here μI = 1, we conclude from (1.7) that hAlt
4 (D2( ft )) = 0.

Also, from (4.7) and (4.5), we conclude that H1(D3( ft )) = 0, dimQH2(D3( ft )) = 2
and dimQH3(D3( ft )) = 1.

Remark 4.1 An application of the extended version of the Lefschetz Fixed Point
Theorem gives the same conclusion: the fixed set of the involution (2, 3) on D3( ft )

is homeomorphic to the branch locus D3
1,0( ft )), and so by the extended version of

the Lefschetz Fixed Point Theorem,

2 = χ(Fix(2, 3)) =
∑

i

(−1)i
(
Tr(2, 3)∗ : Hi (D3( ft )) → Hi (D3( ft ))

)
.

Because χρ(2, 3) = 0 and H T
i (D3( ft )) = 0 for i > 0, this alternating sum is equal

to 1 + hAlt
1 − hAlt

2 + hAlt
3 . This gives us the same information as (4.8).
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4.4 Double Points

The double locus of F is defined by F∗(Fitt2(F∗(OS)), which is a principle ideal
generated by the composite with F of the determinant of the lower right 2 × 2
submatrix of (4.1). We will call this composite G. As in Lemma 3.7, D2

1( ft ) has the
homotopy type of a wedge of 4-spheres, whose number is the intersection number
of V (J rel

G : G∞) with C
5 × {0}. A Macaulay2 [8] calculation gives

(J rel
G : G∞) = (J rel

G : G) = (3c − t, 3b + t, 2a + t, 6y + t, 6x − t). (4.9)

The zero-locus of this ideal is a smooth curve of degree 1 over the t-axis, so D2
1( ft )

is homotopy-equivalent to a single 4-sphere, by Siersma’s theorem [25].

Themapof pairs (D2( ft ), D3
2( ft ))

π2
1

(D2
1( ft ), D3

1( ft )) induces amorphism

between the long exact sequences of reduced homology of the pairs. Because π2
1 :

D2 → D2
1 is an isomorphismoutside D3

2 , themorphisms Hi (D2, D3
2) → Hi (D2

1, D3
1)

are isomorphisms for all i . From the segment

· · · H2(D2, D3
2) H1(D3

2) H1(D2) H1(D2, D3
2) 0

· · · H2(D2
1, D3

1) H1(D3
1) H1(D2

1) H1(D2
1, D3

1) 0

and the fact that H1(D2
1) = 0 = H1(D3

2) (the latter equality because D3
2 � D3, as

there are no quadruple points) we see that H1(D2( ft )) = 0. Because H2(D2
1, D3

1) is
sandwiched between 0’s in the lower sequence, continuing to the left we have

Q Q2

H4(D2, D3
2 ) H3(D3

2 ) H3(D2) H3(D2, D3
2 ) H2(D3

2 ) H2(D2) 0

H4(D2
1 , D3

1 ) H3(D3
1 ) H3(D2

1 ) H3(D2
1 , D3

1 ) H2(D3
1 ) H2(D2

1 ) 0

Q 0 0 Q Q 0

We deduce successively

• H3(D2, D3
2) � Q and H3(D2, D3

2) → H2(D3
2) is injective, and therefore

• H2(D2) � Q.
• H3(D3

2) → H3(D2) is surjective

The left end of the upper sequence is thus
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0 H4(D2) H4(D2, D3
2) H3(D3

2) H3(D2) 0

with the two inner modules both isomorphic to Q.

4.5 Homology of M2( ft)

Bycomparing the homologyof D2( ft ) and M2( ft ) (whichwewill shortly determine),
we might hope to gain some information about the homology of D2( ft ). All of the
homology groups of M2( ft ) vanish. This can be seen with the help of the morphism
ft∗ from the long exact sequence of the pair (Ut , D2

1( ft )) to the long exact sequence of
the pair (Xt , M2( ft )). Because ft is an isomorphism outside D2

1( ft ), the morphisms
of relative homology groups

ft∗ : Hi (Ut , D2
1( ft )) → Hi (Xt , M2( ft ))

are all isomorphisms. From the top row of the diagram

0 0 = H5(Ut ) H5(Ut , D2
1) H4(D2

1) H4(Ut ) = 0

0 H5(Xt ) H5(Xt , M2) H4(M2) H4(Xt ) = 0

we see that H5(Ut , D2
1) � Q. Hence H5(Xt , M2) � Q also, and then from the bottom

row it follows that H4(M2) = 0. A similar argument shows that Hi (M2) = 0 for
0 < i < 4.

In fact Houston shows in [10] by a rather more sophisticated argument that for a
stable perturbation ft of an A-finite germ ft , all of the Mk( ft ) have the homotopy
type of wedges of spheres in middle dimension. In this case the number of spheres
in the wedge homotopy-equivalent to M2( ft ) is 0.

4.6 Relation Between D2 and M2

There is a surjective map f (2)
t : D2( ft ) → M2( ft ), f (2)

t (P, Q) = ft (P). The multi-
ple point spaces of f (2)

t are related to those of ft , but are not identical. Consider the
following maps:

α : D2( f ) → D2( f (2)
t ), (P, Q) �→ (

(
(P, Q), (Q, P)

)

β : D2( f (2)
t ) → D2( ft ),

(
(P, Q), (R, S)

) �→ (P, R).
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Denote by (1, 2) the usual involution on D2. The diagrams

D2( ft )

α

(1,2)
D2( ft )

α

D2( f (2)
t )

(1,2)
D2( f (2)

t )

D2( f )
(1,2)

D2( f )

D2( f (2)
t )

(1,2)

β

D2( f (2)
t )

β

both commute, and β ◦ α is the identity on D2( f ). It follows that α and β induce
morphisms

HAlt
i (D2( ft ))

α∗
HAlt

i (D2( f (2)
t )

β∗

and β∗ ◦ α∗ is the identity.
However α is not surjective and β is not injective. Suppose that (P, Q, R) ∈

D3( ft ) with P, Q, R pairwise distinct. Then

(
(P, Q), (Q, P)

)
,
(
(P, Q), (Q, R)

)
,
(
(P, R), (Q, P)

)
,
(
(P, R), (Q, R)

)

all lie in D2( f (2)
t ) and all are mapped by β to (P, Q). And, of these, only(

(P, Q), (Q, P)
)
is in the image of α.

We draw no further conclusion from this, but ask whether further consideration
of the multiple point spaces of the map f (2)

t and indeed of f (k)
t for higher k may

provide useful information.
Nevertheless, from the vanishing of H1(M2( ft )), and the image-computing spec-

tral sequence, we obtain a second argument that H1(D2( ft )) = 0.

Acknowledgements The calculations in Sect. 3 were begun in collaboration with Isaac Bird, as
part of his final yearMMath project atWarwick. I am grateful to him for agreement to use them here,
and for his enthusiasm on the project, which contributed a great deal to its further development. I
also thank Mike Stillman for help finding the 2 × 4 matrices of Sect. 4.2, and Juan José Nuño for
pointing out the results of Greuel and Steenbrink in [9].

References
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Singular Fibers of Stable Maps of Manifold
Pairs and Their Applications

Osamu Saeki and Takahiro Yamamoto

Abstract Let (M, N ) be a manifold pair, where M is a closed 3-dimensional
manifold and N is a closed 2-dimensional submanifold of M . In this paper, we first
classify singular fibers ofC∞ stablemaps of (M, N ) into surfaces. Then,we compute
the cohomology groups of the associated universal complex of singular fibers, and
obtain certain cobordism invariants for Morse functions on manifold pairs (M ′, N ′),
whereM ′ is a closed surface and N ′ is a closed 1-dimensional submanifold ofM ′.We
also give the 2-colored versions of all these results, when the submanifold separates
the ambient manifold into two parts.

Keywords Manifold pair · Stable map · Singular fiber · Cobordism · 2-coloring
2000 Mathematics Subject Classification Primary 57R45 · Secondary 57R35
57R90 · 58K15 · 58K65

1 Introduction

Let M be a C∞ manifold and N a closed C∞ submanifold of M . In this paper,
we call such a pair (M, N ) a manifold pair. Its dimension is defined to be the
pair (dim M, dim N ) of dimension of the ambient manifold and that of the sub-
manifold. For a C∞ map f : M → Q into another manifold Q, we often write
it as f : (M, N ) → Q when we need to specify the submanifold N . A C∞ map
f : (M, N ) → Q is said to be C∞ stable (or C0 stable) if there exists an open
neighborhood N ( f ) of f in the mapping space C∞(M, Q), endowed with the
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Whitney C∞ topology, such that for every g ∈ N ( f ) we have the commutative
diagram

(M, N )
�−−−−→ (M, N )

f

⏐
⏐
�

⏐
⏐
�g

Q
ϕ−−−−→ Q

(1.1)

for some diffeomorphisms (resp. homeomorphisms) � and ϕ with �(N ) = N . In
the following, when we just use the terminology “stable map”, it will mean “C∞
stable map”.

For a C∞ map f : (M, N ) → Q and a point q ∈ Q, the pre-image pair

( f −1(q), f −1(q) ∩ N )

is called the level set of f over q. Furthermore, we call the map germ along the level
set

f : ((M, N ), ( f −1(q), f −1(q) ∩ N )) → (Q, q)

the fiber over q, adopting the terminology introduced in [4]. If a point q ∈ Q is a
regular value of both f and f |N , then we call the fiber (or the level set) over q a
regular fiber (resp. a regular level set); otherwise, a singular fiber (resp. a singular
level set).

Equivalence relations among fibers are defined as follows. Let fi : (Mi , Ni ) →
Qi , i = 0, 1, be C∞ maps. For qi ∈ Qi , i = 0, 1, we say that the fibers over q0 and
q1 are C∞ equivalent (or C0 equivalent) if for some open neighborhoodsUi of qi in
Qi , there exist diffeomorphisms (resp. homeomorphisms)� : ( f −1

0 (U0), f −1
0 (U0) ∩

N0) → ( f −1
1 (U1), f −1

1 (U1) ∩ N1) and ϕ : U0 → U1 with ϕ(q0) = q1 which make
the following diagram commutative:

(( f −1
0 (U0), f −1

0 (U0) ∩ N0), ( f
−1
0 (q0), f −1

0 (q0) ∩ N0))
f0−−−−→ (U0, q0)

�

⏐
⏐
�

⏐
⏐
�ϕ

(( f −1
1 (U1), f −1

1 (U1) ∩ N1), ( f
−1
1 (q1), f −1

1 (q1) ∩ N1))
f1−−−−→ (U1, q1).

Now, suppose that N is a codimension one submanifold ofM and that N separates
M into two parts R and B: i.e.,

R ∪ B = M \ N , R ∩ B = ∂R = ∂B = N ,

where R and B denote the closures of R and B in M , respectively, and we set
∂R = R \ R and ∂B = B \ B. In such a case, we say that (M, N ) is a 2-colored
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manifold pair.1 A C∞ map f : (M, N ) → Q of a 2-colored manifold pair is said
to be C∞ stable (resp. C0 stable) if in the above definition of a stable map of a
manifold pair, there exist diffeomorphisms (resp. homeomorphisms) � and ϕ as in
(1.1) such that �(B) = B and �(R) = R. We can define the equivalence relations
for fibers similarly, which we call C∞ color equivalence and C0 color equivalence,
respectively.

The notion of singular fibers of C∞ maps between manifolds was first intro-
duced in [4], where classifications of singular fibers of stable maps M → Q with
(dim M, dim Q) = (2, 1), (3, 2) and (4, 3) were obtained. Later, singular fibers of
stable maps of manifolds with or without boundary were studied in [4–10, 14–16],
especially in connection with cobordisms. The first author [4] established the theory
of universal complex of singular fibers of C∞ maps as an analogy of the Vassiliev
complex for map germs [3, 12]. This can be used for getting certain cobordism
invariants of singular maps. For example, the first author [4] obtained cobordism
invariants for stable Morse functions on closed surfaces, and the second author [16]
studied the universal complex of singular fibers of two-coloredC∞ maps, computing
its cohomology groups, where in [16], two-colorings are considered for the target.
In these theories, for a certain set of singular fibers τ , cohomology classes of the
universal complex of singular fibers of τ -maps provide τ -cobordism invariants for
τ -maps.

In this paper, we study singular fibers of proper C∞ stable maps of (3, 2)-
dimensional manifold pairs into surfaces. By using such fibers, we obtain cobordism
invariants for stable Morse functions on (2, 1)-dimensional manifold pairs. As far
as the authors know, this is the very first study of singular fibers for generic maps of
manifold pairs.

The paper is organized as follows. In Sect. 2, we classify fibers of properC∞ stable
maps of (3, 2)-dimensional manifold pairs into surfaces. For this we use several
known results on the classification of stable singularities of maps on manifold pairs
together with the techniques developed by the first author in [4]. The equivalence
relation that we consider in this paper is the following weak one: near the singular
points, the diffeomorphisms (or the homeomorphisms) of the sources should preserve
the submanifolds, and when the source manifold pairs are 2-colored, they should
preserve the 2-colorings as well. However, we ignore the submanifolds away from
the singular points (for details, see Definitions2.6 and 2.14). We will see that the
classification results are essentially different from those for singular fibers of stable
maps of 3-dimensional manifolds with boundary into surfaces. This is because a
fiber has “boundary points” if it intersects the boundary, while in the case of maps
of manifold pairs, a fiber is not cut even if it intersects the submanifold. We will also
see that the 2-colored version is somewhat different from the non-colored version as
we take the 2-colorings into consideration.

1It is known that for a given manifold pair (M, N ) with dim N = dim M − 1, it can be given
a structure of a 2-colored manifold pair if and only if the Poincaré dual to the homology class
represented by N vanishes in H1(M;Z2).
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In Sect. 3, we obtain several co-existence formulae of singular fibers for C∞
stable maps of (3, 2)-dimensional manifold pairs into surfaces. These formulae can
be obtained by analyzing the adjacencies of the singular fibers.

In Sect. 4, we construct the universal complexes of singular fibers for proper C∞
stable maps of (2-colored) manifold pairs. The constructions are similar to those
given in [9, Sect. 4] for maps of manifolds with boundary. The equivalence relation
for fibers that we consider takes into account the parity of the number of regular
components. This is necessary for getting non-trivial cohomology classes. Then, we
compute their cohomology groups of dimensions 0 and 1.

In Sect. 5, we use the cohomology classes of the universal complexes obtained in
Sect. 4 to get cobordism invariants for singular maps. More explicitly, we obtain
certain cobordism invariants for stable Morse functions on (2, 1)-dimensional
(2-colored) manifold pairs. We will see that, unfortunately, these invariants are not
fine enough to give complete invariants in most of the cases. However, in the case of
stableMorse functions on 2-coloredMorse functions on (2, 1)-dimensionalmanifold
pairs, we get a complete invariant.

Finally in AppendicesA and B, we will determine the cobordism groups of (2, 1)-
dimensionalmanifold pairs and that of 2-colored ones, using standard and elementary
techniques. These are included in this paper, since as far as the authors know, there
are no such explicit results in the literature except for Wall’s sophisticated result
[13], and we need to calculate them for measuring the efficiency of the cobordism
invariants obtained by using singular fibers.

Throughout the paper, all manifolds and maps between them are smooth of class
C∞ unless otherwise stated. For a smooth map f : M → Q between manifolds, we
denote by S( f ) the set of points in M where the differential of f does not have
maximal rank min{dim M, dim Q}. For a space X , idX denotes the identity map of
X . For a (co)cycle c, we denote by [c] the (co)homology class represented by c.

2 Classification of Singular Fibers

In this section, we classify singular fibers of properC∞ stablemaps ofmanifold pairs
(M, N )with (dim M, dim N ) = (3, 2) into surfaces Q, where a map f : (M, N ) →
Q is proper if f −1(K ) is a compact subset of M for every compact subset K of Q.

2.1 Stable Maps of Manifold Pairs

For a proper C∞ map (M, N ) → Q as above, let us consider the associated map
germ at a point in N . For the classification of such map germs, we use those source
diffeomorphism germs of M which preserve the submanifold N , and this leads to
a geometrically defined subgroup of A in the sense of Damon [1]. Consequently,
the infinitesimal method can be used; for example, a map germ as above is C∞
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stable if and only if it is infinitesimally stable (see, for example, [1, Theorem 9.3]).
Note that to a map germ as above are associated two map germs of 3-dimensional
manifolds with boundary into surfaces, since N locally divides the source open set
(of a representative of the map germ) into two parts. Then, the infinitesimal method
implies that if a given map germ of a manifold pair is C∞ stable, then the two
associated map germs defined on manifolds with boundary are also C∞ stable.

Therefore, we can use the known characterization of proper C∞ stable maps of
3-dimensional manifolds with boundary into surfaces (for example, see [9]), which
can be deduced by using results obtained in [2, 11], in order to get a similar charac-
terization for maps of manifold pairs.

Note that an arbitrarily given pair of map germs of manifolds with boundary may
not be associated with a map germ of manifold pairs: they should match along the
boundary. On the other hand, when we work with maps of manifold pairs, source
diffeomorphisms which interchange the two parts of the complement of N are also
allowed so that the list of stable singularities may get smaller.

With these remarks in mind, we can get the following characterization of C∞
stable maps of manifold pairs.

Proposition 2.1 A proper C∞ map f : (M, N ) → Q with (dim M, dim N ; dim Q)

= (3, 2; 2) is C∞ stable if and only if it satisfies the following conditions.

(1) (Local conditions) In the following, for p ∈ N,we use local coordinates (x, y, z)
around p such that N corresponds to the set {z = 0}.

(1a) For p ∈ M \ N, the germ of f at p is right-left equivalent to one of the
following:

(x, y, z) �→

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(x, y), p : regular point,
(x, y2 + z2), p : definite fold point,
(x, y2 − z2), p : indefinite fold point,

(x, y3 + xy − z2), p : cusp point.

(1b) For p ∈ N \ S( f ), the germ of f at p is right-left equivalent to one of the
following:

(x, y, z) �→

⎧

⎪
⎨

⎪
⎩

(x, y), p : regular point of f |N ,

(x, y2 + z), p : relative fold point,
(x, y3 + xy + z), p : relative cusp point.

(1c) For p ∈ N ∩ S( f ), the germ of f at p is right-left equivalent to one of the
following:

(x, y, z) �→
{

(x, y2 + xz + z2), p : definite B2 point,

(x, y2 + xz − z2), p : indefinite B2 point.
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q q

q

q
q

q
qq

(1) (2) (3) (4)

(5) (6) (7) (8)

Fig. 1 The images of multi-germs of f |S( f )∪S( f |N )

(2) (Global conditions) For each q ∈ f (S( f )) ∪ f (S( f |N )), the multi-germ

( f |S( f )∪S( f |N ), f −1(q) ∩ (S( f ) ∪ S( f |N )))

is right-left equivalent to one of the eight multi-germs whose images are
depicted in Fig.1, where the ordinary curves correspond to f (S( f )) and the
dotted curves to f (S( f |N )): (1) and (4) represent immersion mono-germs
(R, 0) 	 t �→ (t, 0) ∈ (R2, 0) which correspond to a single fold point and a sin-
gle relative fold point respectively, (3), (6) and (7) represent normal crossings of
two immersion germs, each of which corresponds to a fold point or a relative fold
point, (2) and (5) represent cusp mono-germs (R, 0) 	 t �→ (t2, t3) ∈ (R2, 0)
which correspond to a cusp point and a relative cusp point respectively, and (8)
represents the restriction of the mono-germ (1c), corresponding to a single point
in N ∩ S( f ), to the singular point set.

Note that if a C∞ map f : (M, N ) → Q is C∞ stable, then so is f |N : N → Q.
Let Mi be smooth manifolds and Ai ⊂ Mi be subsets, i = 0, 1. A continuous

map g : A0 → A1 is said to be smooth if for every q ∈ A0, there exists a smooth map
g̃ : V → M1 defined on a neighborhood V of q ∈ M0 such that g̃|V∩A0 = g|V∩A0 .
Furthermore, a smooth map g : A0 → A1 is called a diffeomorphism if it is a homeo-
morphismand its inverse is also smooth.When there exists a diffeomorphismbetween
A0 and A1, we say that they are diffeomorphic.

By Proposition 2.1, we have the following local descriptions for singular level
sets. In the statement, it may not be necessary to distinguish some of the cases if only
the topology of level sets is concerned; nevertheless, we divide the cases as below in
order to introduce symbols which take corresponding map germs into account.

Lemma 2.2 Let f : (M, N ) → Q be a proper C∞ stable map of a manifold
pair into Q with (dim M, dim N ; dim Q) = (3, 2; 2). Then, every point p ∈ S( f ) ∪
S( f |N ) has one of the following neighborhoods in its corresponding singular level
set (see Figs.2 and 3 for references):
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(1) (2) (3) (4)

(5) (6) (7)

Fig. 2 Neighborhoods of singular points in their singular level sets

(1) isolated point diffeomorphic to {(y, z) ∈ R
2 | y2 + z2 = 0}, if p ∈ M \ N is a

definite fold point,
(2) union of two transverse arcs diffeomorphic to {(y, z) ∈ R

2 | y2 − z2 = 0}, if
p ∈ M \ N is an indefinite fold point,

(3) cuspidal arc diffeomorphic to {(y, z) ∈ R
2 | y3 − z2 = 0}, if p ∈ M \ N is a

cusp point,
(4) arc diffeomorphic to {(y, z) ∈ R

2 | y2 + z = 0}, if p ∈ N is a relative fold point,
(5) arc diffeomorphic to {(y, z) ∈ R

2 | y3 + z = 0}, if p ∈ N is a relative cusp point,
(6) isolated point diffeomorphic to {(y, z) ∈ R

2 | y2 + z2 = 0}, if p ∈ N ∩ S( f ) is
a definite B2 point,

(7) union of two transverse arcs diffeomorphic to {(y, z) ∈ R
2 | y2 − z2 = 0}, if

p ∈ N ∩ S( f ) is an indefinite B2 point.

Remark 2.3 Note that in Fig. 2, a black dot (1) and a black dot surrounded by a
square (6) both represent an isolated point; however, we use distinct symbols in
order to distinguish their corresponding map germs. For an arc with square (4) and
an arc with black square (5), we use distinct symbols by a similar reason, and for (2)
and (7) as well. In the figures, squares represent points on the submanifold N ; more
precisely, they are points in S( f |N ).

In Fig. 3, singular level sets that intersect the submanifold N ⊂ M are depicted,
where the surfaces appearing in the figures correspond to the submanifold x = 0,
the intersection of x = 0 with N is depicted by thick curves, and the associated map
germs restricted to x = 0 correspond to the respective height functions. In fact, for
cases (4) and (5), the relevantmapgerms are right-left equivalent to the suspensions of
the function germs in a sense similar to that in [9, Definition 4.2]. As to cases (6) and
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(4) (5)

(6) (7)

Fig. 3 Singular level sets touching the submanifold N

(7), the relevant map germs are obtained by using certain “generic deformations”
of the function germs. As in Fig. 2(7), we use a square together with a small line
segment inside. This line segment is chosen in such a way that it is tangent to the
curve N ∩ {x = 0} as depicted in Fig. 3(7).

For the local nearby level sets, we have the following, which can be proved by
direct calculations using the corresponding normal forms.

Lemma 2.4 Let f : (M, N ) → Q be a proper C∞ stable map of a manifold pair
into Q with (dim M, dim N ; dim Q) = (3, 2; 2). For p ∈ S( f ) ∪ S( f |N ) such that
f −1( f (p)) ∩ (S( f ) ∪ S( f |N )) = {p}, the level set near p is as depicted in Fig.4:

(1) p ∈ M \ N is a definite fold point,
(2) p ∈ M \ N is an indefinite fold point,
(3) p ∈ M \ N is a cusp point,
(4) p ∈ N is a relative fold point,
(5) p ∈ N is a relative cusp point,
(6) p ∈ S( f ) ∩ N is a definite B2 point,
(7) p ∈ S( f ) ∩ N is an indefinite B2 point,

where each of the 0-dimensional objects and the thin 1-dimensional objects rep-
resents a portion of the level set over the corresponding point in the target, each
of the thick curves represents f (S( f )), and each of the dotted curves represents
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∅

∅

(1) (2) (3)

(4) (5)

(6) (7)

Fig. 4 Local degenerations of level sets

f (S( f |N )) near f (p). Furthermore, the dotted squares represent (transverse) inter-
sections with N.

Definition 2.5 Suppose that we are given a finite number of fibers of smooth maps,
where all the dimensions of the sources are the same and those of the targets are
also the same. Then, their disjoint union is the fiber corresponding to the single map
defined on the disjoint union of the sources, where the target spaces are all identified
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to a single small open disk. This definition clearly depends on such identifications;
however, in the following, we can choose “generic identifications” in such a way
that the resulting fiber is C∞ stable, and the result is unique up to C∞ equivalence
as long as the above identifications are generic.

In order to get a classification result, let us introduce the following notion.

Definition 2.6 Let fi : (Mi , Ni ) → Qi , i = 0, 1, be C∞ maps of manifold pairs.
For qi ∈ Qi , i = 0, 1, we say that the fibers over q0 and q1 are weakly C∞ equiva-
lent (or weakly C0 equivalent) if for some neighborhoods N ′

i of f −1
i (qi ) ∩ (S( fi ) ∪

S( fi |Ni )) in Ni and for some small open neighborhoods Ui of qi in Qi , there
exist diffeomorphisms (resp. homeomorphisms) � : ( f −1

0 (U0), f −1
0 (U0) ∩ N ′

0) →
( f −1

1 (U1), f −1
1 (U1) ∩ N ′

1), and ϕ : U0 → U1 with ϕ(q0) = q1 which make the fol-
lowing diagram commutative:

(( f −1
0 (U0), f −1

0 (U0) ∩ N ′
0), ( f

−1
0 (q0), f −1

0 (q0) ∩ N ′
0))

f0−−−−→ (U0, q0)

�

⏐
⏐
�

⏐
⏐
�ϕ

(( f −1
1 (U1), f −1

1 (U1) ∩ N ′
1), ( f

−1
1 (q1), f −1

1 (q1) ∩ N ′
1))

f1−−−−→ (U1, q1).

In other words, considering weak C∞ equivalence classes instead of the usual ones
corresponds to ignoring transverse intersections of the central level sets with the
submanifold Ni away from the neighborhoods of singular points.

In the following, a trivial circle bundle refers to the projection (S1, P) × B → B
to the second factor, where (S1, P) is a manifold pair, P is a finite set of points in
S1, and B is a manifold.

Now, by using the method developed in [4], we get the following list of singular
fibers. We omit the proof here.

Proposition 2.7 Let us consider proper C∞ stable maps f : (M, N ) → Q with
(dim M, dim N ; dim Q) = (3, 2; 2).

(i) Each diagram in Fig.5 uniquely determines a weak C∞ equivalence class of
fibers of amap f in such away that the diagram represents the corresponding central
level set modulo transverse intersections with N, under the convention described in
Remark 2.3, where dotted squares are ignored.

(ii) Every fiber of f is weakly C∞ equivalent to the disjoint union of one of the
fibers in the following list and a finite number of copies of a fiber of a trivial circle
bundle:

(1) fibers as depicted in Fig.5, i.e. p̃0
0
, p̃I

μ
with 1 ≤ μ ≤ 4, p̃II

μ
with 5 ≤ μ ≤ 12,

p̃II
a
, p̃II

b
, p̃II

c
, p̃II

d
, p̃II

e
and p̃II

f
,

(2) fibers p̃II
μ,ν

with 1 ≤ μ ≤ ν ≤ 4, where p̃II
μ,ν

means the disjoint union of p̃I
μ

and p̃I
ν
.
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κ = 0

κ = 1

p0
0

pI
1

pI
2

pI
3

pI
4

κ = 2

pII
5

pII
6

pII
7

pII
8

pII
9

pII
10

pII
11

pII
12

pII
a

pII
b

pII
c

pII
d

pII
e

pII
f

Fig. 5 List of the fibers of proper C∞ stable maps (M, N ) → Q with (dim M, dim N ; dim Q) =
(3, 2; 2) up to weak C∞ equivalence

More precisely, two such fibers containing no singular points of the restriction to
the submanifold N are weakly C∞ equivalent if and only if their corresponding
level sets are diffeomorphic. Therefore, in the figures, the associated level sets are
depicted together with the information on the corresponding local map germs which
are depicted in accordance with Lemmas 2.2 and 2.4.

In Fig. 5, κ denotes the codimension of the set of points in the target Q whose
correspondingfibers areweaklyC∞ equivalent to the relevant one (see [4] for details).



270 O. Saeki and T. Yamamoto

Furthermore, the symbols p̃0
∗
, p̃I

∗
, and p̃II

∗
mean the names of the corresponding

(weak C∞ equivalence classes of) fibers. Note that we have named the fibers so that
each fiber with connected central level set has its own number or letter, and a fiber
with disconnected central level set has the name consisting of the numbers of its
“connected components”.

We can prove Proposition 2.7 by using the relative version of Ehresmann’s fibra-
tion theorem together with Proposition 2.1. See [4, Proof of Theorem 3.5] for details.

As to the usualC∞ equivalence class,we see easily that twoweaklyC∞ equivalent
fibers are C∞ equivalent if and only if there exists a homeomorphism between their
central level sets which respects C∞ equivalence classes of singular map germs
of f and f |N at the points in S( f ) ∪ S( f |N ) and which respects the transverse
intersections with the submanifold N .

Then, we immediately obtain the following corollary. (For details, see [4, Proof
of Corollary 3.9].)

Corollary 2.8 Let fi : (Mi , Ni ) → Qi , i = 0, 1, be proper C∞ stable maps with
(dim Mi , dim Ni ; dim Qi ) = (3, 2; 2). For qi ∈ Qi , i = 0, 1, the fibers over q0 and
q1 are C∞ equivalent if and only if they are C0 equivalent.

Remark 2.9 If the source 3-dimensional manifold is orientable, then the singular
fibers of types p̃I

4
, p̃II

9
, p̃II

10
, p̃II

11
, p̃II

12
, and p̃II

f
never appear.

Remark 2.10 Let (V,W ) be a manifold pair with (dim V, dimW ) = (2, 1), and Q
be the real line R or the circle S1. A proper C∞ function f : (V,W ) → Q is C∞
stable (i.e. it is a stable Morse function) if and only if it satisfies the following
conditions.

(1) (Local conditions) In the following, for p ∈ W , we use local coordinates (x, y)
around p such that W corresponds to the set {y = 0}.

(1a) For p ∈ V \ W , the germ of f at p is right-left equivalent to one of the
following:

(x, y) �→
{

x, p : regular point,
x2 ± y2, p : fold point or non-degenerate critical point.

(1b) For p ∈ W , the germ of f at p is right-left equivalent to one of the following:

(x, y) �→

⎧

⎪
⎨

⎪
⎩

x, p : regular point of f |W ,

x2 + y, p : relative fold point or
non-degenerate critical point of f |W .

(2) (Global conditions) f (p1) = f (p2) if p1 = p2 ∈ S( f ) ∪ S( f |W ).

The list of weak C∞ equivalence classes of singular fibers of proper stable Morse
functions (V,W ) → Q can be obtained in a similar fashion. The result corresponds
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to those appearing in Fig. 5 with κ = 0, 1. In fact, it is not difficult to show that the
suspensions of the fibers of such functions in a sense similar to that in [9, Defini-
tion 4.2] coincide with those appearing in the figure. However, in the following, by
abuse of notation, we use the symbols in Fig. 5 with κ = 0, 1 for the fibers of stable
Morse functions as well.

2.2 Stable Maps of 2-Colored Manifold Pairs

In this subsection, M is a 3-dimensional manifold and N is a closed 2-dimensional
submanifold of M such that M \ N consists of two disjoint open submanifolds R
and B with ∂R(= R \ R) and ∂B(= B \ B) both coinciding with N . In other words,
(M, N ) is a 2-colored manifold pair. In this case, we call (R, B) the coloring pair.
For aC∞ map (M, N ) → Q into a surface Q, we have the following characterization
of C∞ stable maps as in Proposition 2.1.

Proposition 2.11 Let (M, N ) be a 2-colored manifold pair with coloring pair
(R, B) and with (dim M, dim N ) = (3, 2), and Q be a surface. A proper C∞ map
f : (M, N ) → Q is C∞ stable if and only if it satisfies the following conditions.

(1) (Local conditions) In the following, for p ∈ N,we use local coordinates (x, y, z)
around p such that N , R and B correspond to the sets {z = 0}, {z > 0} and
{z < 0}, respectively.

(1a) For p ∈ M \ N, the germ of f at p is right-left equivalent to one of the
following:

(x, y, z) �→

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(x, y), p : regular point,
(x, y2 + z2), p : definite fold point,
(x, y2 − z2), p : indefinite fold point,

(x, y3 + xy − z2), p : cusp point.

(1b) For p ∈ N \ S( f ), the germ of f at p is right-left equivalent to one of the
following:

(x, y, z) �→

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

(x, y), p : regular point of f |N ,

(x, y2 + z), p : relative B-fold point,
(x, y2 − z), p : relative R-fold point,
(x, y3 + xy + z), p : relative cusp point.

(1c) For p ∈ N ∩ S( f ), the germ of f at p is right-left equivalent to the map
germ
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(x, y, z) �→
{

(x, y2 + xz + z2), p : definite B2 point,

(x, y2 + xz − z2), p : indefinite B2 point.

(2) (Global conditions) For each q ∈ f (S( f )) ∪ f (S( f |N )), the multi-germ

( f |S( f )∪S( f |N ), f −1(q) ∩ (S( f ) ∪ S( f |N )))

is right-left equivalent to one of the eight multi-germs whose images are depicted
in Fig.1.

Please note that in Proposition 2.11 (1b), we have two cases for relative fold
points, which was not present in Proposition 2.1. This distinction is necessary for
distinguishing the region R from B.

Lemma 2.12 Let f : (M, N ) → Q be a proper C∞ stable map of a 2-colored man-
ifold pair with coloring pair (R, B) into Q with (dim M, dim N ; dim Q) = (3, 2; 2).
Then, every point p ∈ S( f ) ∪ S( f |N ) has one of the following neighborhoods in its
corresponding singular level set (see Figs.6 and 7 for references):

(1) isolated point diffeomorphic to {(y, z) ∈ R
2 | y2 + z2 = 0}, if p ∈ M \ N =

R ∪ B is a definite fold point,
(2) union of two transverse arcs diffeomorphic to {(y, z) ∈ R

2 | y2 − z2 = 0}, if
p ∈ M \ N = R ∪ B is an indefinite fold point,

(3) cuspidal arc diffeomorphic to {(y, z) ∈ R
2 | y3 − z2 = 0}, if p ∈ M \ N = R ∪

B is a cusp point,
(4) arc diffeomorphic to {(y, z) ∈ R

2 | y2 + z = 0} or {(y, z) ∈ R
2 | y2 − z = 0}, if

p ∈ N is a relative fold point,
(5) arc diffeomorphic to {(y, z) ∈ R

2 | y3 + z = 0}, if p ∈ N is a relative cusp point,
(6) isolated point diffeomorphic to {(y, z) ∈ R

2 | y2 + z2 = 0, }, if p ∈ N ∩ S( f ) is
a definite B2 point,

(7) union of two transverse arcs diffeomorphic to {(y, z) ∈ R
2 | y2 − z2 = 0}, if

p ∈ N ∩ S( f ) is an indefinite B2 point.

In the figures, each black dot or black curve corresponds to the part in R, while each
blue2 dot or curve corresponds to the part in B.

In Figs. 6 and 7, we use the same conventions as in Figs. 2 and 3. However, as we
need to distinguish the region R from B, we use colors and put shadows for the blue
part.

For the local nearby level sets, we have the following, as before.

Lemma 2.13 Let f : (M, N ) → Q be a proper C∞ stable map of a 2-colored
manifold pair with coloring pair (R, B) into Q with (dim M, dim N ; dim Q) =
(3, 2; 2). For p ∈ S( f ) ∪ S( f |N ) such that f −1( f (p)) ∩ (S( f ) ∪ S( f |N )) = {p},
the level set near p as depicted in Fig.8:

2In the monochrome printing version, “blue” should be replaced by “gray”.
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o o o

o

(2) (3)(1)

(5) (6) (7)(4)

Fig. 6 Neighborhoods of singular points in their singular level sets

(4) right(4) left (5)

(6) (7)

Fig. 7 Singular level sets touching the submanifold N : shadowed regions correspond to B

(1A) p ∈ R is a definite fold point,
(1B) p ∈ B is a definite fold point,
(2A) p ∈ R is an indefinite fold point,
(2B) p ∈ B is an indefinite fold point,
(3A) p ∈ R is a cusp point,
(3B) p ∈ B is a cusp point,
(4A) p ∈ N is a relative B-fold point,
(4B) p ∈ N is a relative R-fold point,

(5) p ∈ N is a relative cusp point,
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∅

∅

∅

(1A) (2A) (3A)

(1B) (2B) (3B)

(4A) (4B) (5)

(6) (7)

Fig. 8 Local degenerations of level sets
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(6) p ∈ S( f ) ∩ N is a definite B2 point,
(7) p ∈ S( f ) ∩ N is an indefinite B2 point,

where we adopt the convention as in Figs.4 and 6.

In order to get a classification result, let us introduce the following notion, similar
to Definition 2.6.

Definition 2.14 Let fi : (Mi , Ni ) → Qi be C∞ maps of 2-colored manifold pairs
with coloring pair (Ri , Bi ), i = 0, 1. For qi ∈ Qi , i = 0, 1, we say that the fibers over
q0 and q1 areweakly C∞ color equivalent (orweakly C0 color equivalent) if for some
neighborhoods M ′

i of f −1
i (qi ) ∩ (S( fi ) ∪ S( fi |Ni )) in Mi and for some small open

neighborhoodsUi of qi in Qi , there exist diffeomorphisms (resp. homeomorphisms)
� : ( f −1

0 (U0), f −1
0 (U0) ∩ N ′

0) → ( f −1
1 (U1), f −1

1 (U1) ∩ N ′
1) with �(M ′

0 ∩ R0) =
M ′

1 ∩ R1 and �(M ′
0 ∩ B0) = M ′

1 ∩ B1, and ϕ : U0 → U1 with ϕ(q0) = q1 which
make the following diagram commutative:

(( f −1
0 (U0), f −1

0 (U0) ∩ N ′
0), ( f

−1
0 (q0), f −1

0 (q0) ∩ N ′
0))

f0−−−−→ (U0, q0)

�

⏐
⏐
�

⏐
⏐
�ϕ

(( f −1
1 (U1), f −1

1 (U1) ∩ N ′
1), ( f

−1
1 (q1), f −1

1 (q1) ∩ N ′
1))

f1−−−−→ (U1, q1),

where N ′
i = Ni ∩ M ′

i , i = 0, 1. In other words, considering weak C∞ color equiv-
alence classes instead of the usual C∞ color equivalence classes corresponds to
ignoring transverse intersections of the central level sets with the submanifold Ni

away from the neighborhoods of singular points.

Then, we get the following list of singular fibers. We omit the proof here.

Proposition 2.15 Let us consider proper C∞ stable maps f : (M, N ) → Q of 2-
colored manifold pairs (M, N ) with coloring pairs (R, B) into surfaces Q with
(dim M, dim N ; dim Q) = (3, 2; 2).

(i) Each diagram in Figs.9 and 10 uniquely determines a weak C∞ color equiv-
alence class of fibers of a map f in such a way that the diagram represents the
corresponding central level set modulo transverse intersections with N, under the
convention described in Remark 2.3, where dotted squares are ignored.

(ii) Every fiber of f is weakly C∞ color equivalent to the disjoint union of one
of the fibers in the following list and a finite number of copies of a fiber of a trivial
circle bundle:

(1) fibers as depicted in Fig.9, i.e. c̃0
0
, c̃I

μA
and c̃I

μB
with 1 ≤ μ ≤ 4,

(2) fibers c̃II
μA,νA

, c̃II
μA,νB

and c̃II
μB,νB

with 1 ≤ μ ≤ ν ≤ 4, where c̃II
μ∗,ν�

means
the disjoint union of c̃I

μ∗
and c̃I

ν�
for (∗, �) = (A, A), (A, B) or (B, B),

(3) fibers as depicted in Fig.10, i.e. c̃II
μ∗
, c̃II

b
, c̃II

c
, c̃II

d
, c̃II

e
and c̃II

f
, where

5 ≤ μ ≤ 12 or μ = a and ∗ = A, B,C for μ = 5, 6, 8, 9, 11, ∗ = A, B,C, D
for μ = 7, 10, 12, and ∗ = A, B for μ = a.
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κ = 0

κ = 1

c0
0

cI
1A

cI
2A

cI
3A

cI
4A

cI
1B

cI
2B

cI
3B

cI
4B

Fig. 9 List of the fibers of proper C∞ stable maps (M, N ) → Q of (3, 2)-dimensional 2-colored
manifold pairs into surfaces up to weak C∞ color equivalence, for κ = 0, 1

(Note that in the figures, dotted curves represent nonsingular curves whose colors
or transverse intersections with N are ignored.) More precisely, two such fibers
containing no singular points of the restriction to the submanifold N are weakly
C∞ color equivalent if and only if their corresponding level sets are diffeomorphic.
Therefore, in the figures, the associated level sets are depicted together with the
information on the corresponding local map germs which are depicted in accordance
with Lemmas 2.12 and 2.13.

Then, we immediately obtain the following corollary as before. (For details, see
[4, Proof of Corollary 3.9].)

Corollary 2.16 Let fi : (Mi , Ni ) → Qi , i = 0, 1, be proper C∞ stable maps of
2-colored manifold pairs with (dim Mi , dim Ni ; dim Qi ) = (3, 2; 2). For qi ∈ Qi ,
i = 0, 1, the fibers over q0 and q1 are C∞ equivalent if and only if they are C0

equivalent.

Remark 2.17 If the source 3-dimensional manifold is orientable, then the singular
fibers of types c̃I

4A
, c̃I

4B
, c̃II

9A
, c̃II

9B
, c̃II

9C
, c̃II

10A
, c̃II

10B
, c̃II

10C
, c̃II

10D
, c̃II

11A
,

c̃II
11B

, c̃II
11C

, c̃II
12A

, c̃II
12B

, c̃II
12C

, c̃II
12D

, and c̃II
f
never appear.

Remark 2.18 Let (V,W ) be a 2-colored manifold pair with coloring pair (R, B)

with (dim V, dimW ) = (2, 1), and Q be the real line R or the circle S1. A proper
C∞ function f : (V,W ) → Q is C∞ stable (i.e. it is a stable Morse function) if and
only if it satisfies the following conditions.

(1) (Local conditions) In the following, for p ∈ W , we use local coordinates (x, y)
around p such that W , R and B correspond to the sets {y = 0}, {y > 0} and
{y < 0}, respectively.
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κ = 2

cII
5A

cII
5B

cII
5C

cII
6A

cII
6B

cII
6C

cII
7A

cII
7B

cII
7C

cII
7D

cII
8A

cII
8B

cII
8C

cII
9A

cII
9B

cII
9C

cII
10A

cII
10B

cII
10C

cII
10D

cII
11A

cII
11B

cII
11C

cII
12A

cII
12B

cII
12C

cII
12D

cII
aA

cII
aB

cII
b

cII
c

cII
d

cII
e

cII
f

Fig. 10 List of the fibers of proper C∞ stable maps (M, N ) → Q of (3, 2)-dimensional 2-colored
manifold pairs into surfaces up to weak C∞ color equivalence, for κ = 2
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(1a) For p ∈ V \ W , the germ of f at p is right-left equivalent to one of the
following:

(x, y) �→
{

x, p : regular point,
x2 ± y2, p : fold point or non-degenerate critical point.

(1b) For p ∈ W , the germ of f at p is right-left equivalent to one of the following:

(x, y) �→

⎧

⎪
⎨

⎪
⎩

x, p : regular point of f |W ,

x2 ± y, p : relative fold point or
non-degenerate critical point of f |W .

(2) (Global conditions) f (p1) = f (p2) if p1 = p2 ∈ S( f ) ∪ S( f |W ).

The list of weak C∞ color equivalence classes of singular fibers of proper sta-
ble Morse functions (V,W ) → Q can be obtained in a similar fashion. The result
corresponds to those appearing in Fig. 9 with κ = 0, 1. In fact, it is not difficult to
show that the suspensions of the fibers of such functions in a sense similar to that
in [9, Definition 4.2] coincide with those appearing in the figure. However, in the
following, by abuse of notation, we use the symbols in Fig. 9 with κ = 0, 1 for the
fibers of stable Morse functions as well.

Remark 2.19 In [16], the second author studied singular fibers of certain two-colored
maps, where the coloring in that paper refers to that of the target.

3 Co-existence of Singular Fibers

3.1 Stable Maps of Manifold Pairs

Let f : (M, N ) → Q be a C∞ stable map of a manifold pair into Q with (dim M,

dim N ; dim Q) = (3, 2; 2). We suppose that M is closed. Let F̃ be a weak C∞
equivalence class of singular fibers of codimension ≥ 1. Define F̃( f ) to be the set
of points q ∈ Q such that the fiber over q is weakly C∞ equivalent to the disjoint
union of F̃ and some copies of a fiber of a trivial circle bundle. Furthermore, define
F̃o( f ) (or F̃e( f )) to be the subset of F̃( f ) which consists of the points q ∈ Q such
that the number of regular fibers, namely the total number of p̃0

0
components in the

fiber, is odd (resp. even). For codimension zero fibers, by convention, we denote by
p̃0

0
o( f ) (or p̃0

0
e( f )) the set of points q ∈ Q over which lies a regular fiber consisting

of an odd (resp. even) number of components.
If F̃ is of codimension 1, then the closure of F̃o( f ) (or F̃e( f )) is a finite graph

embedded in Q. Its vertices correspond to points over which lies a singular fiber of
codimension 2.
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The handshake lemma of the classical graph theory implies the following formu-
lae. In the following, for a finite set S, |S| denotes its cardinality.
Proposition 3.1 Let f : (M, N ) → Q be a C∞ stable map of a manifold pair into
Q with (dim M, dim N ; dim Q) = (3, 2; 2). We suppose that M is closed. Then, the
following numbers are always even:

(1) |p̃II1,2( f )| + |p̃IIao( f )|,
(2) |p̃II1,2( f )| + |p̃IIae ( f )|,
(3) |p̃II1,3( f )| + |p̃II2,3( f )| + |p̃II7( f )|,
(4) |p̃II1,4( f )| + |p̃II2,4( f )| + |p̃II10( f )|.

By eliminating the terms of the formsFo( f ) andFe( f ), we obtain the following.

Corollary 3.2 Let f : (M, N ) → Q be a C∞ stable map of a manifold pair into
Q with (dim M, dim N ; dim Q) = (3, 2; 2). We suppose that M is closed. Then, the
following numbers are always even:

(1) |p̃IIa( f )|,
(2) |p̃II1,3( f )| + |p̃II2,3( f )| + |p̃II7( f )|,
(3) |p̃II1,4( f )| + |p̃II2,4( f )| + |p̃II10( f )|.

Remark 3.3 Let (V,W ) be a manifold pair with (dim V, dimW ) = (2, 1), and Q
be the real line R or the circle S1. Suppose that V is closed. By using the same
method, we obtain similar co-existence results for singular fibers of a C∞ stable
Morse function f : (V,W ) → Q:

|p̃I1( f )| + |p̃I2( f )| ≡ 0 mod 2,

where we are using the notation for the relevant fibers in the sense of Remark 2.10.

3.2 Stable Maps of 2-Colored Manifold Pairs

Let f : (M, N ) → Q be aC∞ stable map of a 2-colored manifold pair with coloring
pair (R, B) into Q with (dim M, dim N ; dim Q) = (3, 2; 2). We suppose that M is
closed.Byusingnotational conventions and arguments similar to those in the previous
section, we get the following.

Proposition 3.4 Let f : (M, N ) → Q be a C∞ stable map of a 2-colored manifold
pair with coloring pair (R, B) into Q with (dim M, dim N ; dim Q) = (3, 2; 2). We
suppose that M is closed. Then, the following numbers are always even:

(1) |c̃II1A,1B
( f )| + |c̃II1A,2A

( f )| + |c̃II1A,2B
( f )| + |c̃IIaAe ( f )| + |c̃IIco( f )|,

(2) |c̃II1A,1B
( f )| + |c̃II1A,2A

( f )| + |c̃II1A,2B
( f )| + |c̃IIaAo ( f )| + |c̃IIce( f )|,
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(3) |c̃II1A,1B
( f )| + |c̃II1B,2A

( f )| + |c̃II1B,2B
( f )| + |c̃IIaBe ( f )| + |c̃IIco( f )|,

(4) |c̃II1A,1B
( f )| + |c̃II1B,2A

( f )| + |c̃II1B,2B
( f )| + |c̃IIaBo ( f )| + |c̃IIce( f )|,

(5) |c̃II1A,2A
( f )| + |c̃II1B,2A

( f )| + |c̃II2A,2B
( f )| + |c̃II5C( f )| + |c̃II9Co ( f )|

+|c̃IIaAo ( f )| + |c̃IIdo( f )| + |c̃IIeo( f )|,
(6) |c̃II1A,2A

( f )| + |c̃II1B,2A
( f )| + |c̃II2A,2B

( f )| + |c̃II5C( f )| + |c̃II9Ce ( f )|
+|c̃IIaAe ( f )| + |c̃IIde ( f )| + |c̃IIee( f )|,

(7) |c̃II1A,2B
( f )| + |c̃II1B,2B

( f )| + |c̃II2A,2B
( f )| + |c̃II5C( f )| + |c̃II9Co ( f )|

+|c̃IIaBo ( f )| + |c̃IIdo( f )| + |c̃IIeo( f )|,
(8) |c̃II1A,2B

( f )| + |c̃II1B,2B
( f )| + |c̃II2A,2B

( f )| + |c̃II5C( f )| + |c̃II9Ce ( f )|
+|c̃IIaBe ( f )| + |c̃IIde ( f )| + |c̃IIee( f )|,

(9) |c̃II1A,3A
( f )| + |c̃II1B,3A

( f )| + |c̃II2A,3A
( f )| + |c̃II2B,3A

( f )| + |c̃II7A( f )|
+|c̃II7C( f )| + |c̃IIbo( f )| + |c̃IIco( f )| + |c̃IIde ( f )| + |c̃IIeo( f )| + |c̃II fo ( f )|,

(10) |c̃II1A,3A
( f )| + |c̃II1B,3A

( f )| + |c̃II2A,3A
( f )| + |c̃II2B,3A

( f )| + |c̃II7A( f )|
+|c̃II7C( f )| + |c̃IIbe( f )| + |c̃IIce( f )| + |c̃IIdo( f )| + |c̃IIee( f )| + |c̃II fe ( f )|,

(11) |c̃II1A,3B
( f )| + |c̃II1B,3B

( f )| + |c̃II2A,3B
( f )| + |c̃II2B,3B

( f )| + |c̃II7B( f )|
+|c̃II7D( f )| + |c̃IIbo( f )| + |c̃IIco( f )| + |c̃IIde ( f )| + |c̃IIeo( f )| + |c̃II fo ( f )|,

(12) |c̃II1A,3B
( f )| + |c̃II1B,3B

( f )| + |c̃II2A,3B
( f )| + |c̃II2B,3B

( f )| + |c̃II7B( f )|
+|c̃II7D( f )| + |c̃IIbe( f )| + |c̃IIce( f )| + |c̃IIdo( f )| + |c̃IIee( f )| + |c̃II fe ( f )|,

(13) |c̃II1A,4A
( f )| + |c̃II1B,4A

( f )| + |c̃II2A,4A
( f )| + |c̃II2B,4A

( f )| + |c̃II9Co ( f )|
+|c̃II10A( f )| + |c̃II10C( f )| + |c̃II fo ( f )|,

(14) |c̃II1A,4A
( f )| + |c̃II1B,4A

( f )| + |c̃II2A,4A
( f )| + |c̃II2B,4A

( f )| + |c̃II9Ce ( f )|
+|c̃II10A( f )| + |c̃II10C( f )| + |c̃II fe ( f )|,

(15) |c̃II1A,4B
( f )| + |c̃II1B,4B

( f )| + |c̃II2A,4B
( f )| + |c̃II2B,4B

( f )| + |c̃II9Co ( f )|
+|c̃II10B( f )| + |c̃II10D( f )| + |c̃II fo ( f )|,

(16) |c̃II1A,4B
( f )| + |c̃II1B,4B

( f )| + |c̃II2A,4B
( f )| + |c̃II2B,4B

( f )| + |c̃II9Ce ( f )|
+|c̃II10B( f )| + |c̃II10D( f )| + |c̃II fe ( f )|.

By eliminating the terms of the formsFo( f ) andFe( f ), we obtain the following.

Corollary 3.5 Let f : (M, N ) → Q be a C∞ stable map of a 2-colored manifold
pair with coloring pair (R, B) into Q with (dim M, dim N ; dim Q) = (3, 2; 2). We
suppose that M is closed. Then, the following numbers are always even:

(1) |c̃IIaA( f )| + |c̃IIc( f )|,
(2) |c̃IIaB( f )| + |c̃IIc( f )|,
(3) |c̃II9C( f )| + |c̃IIaA( f )| + |c̃IId( f )| + |c̃IIe( f )|,
(4) |c̃II9C( f )| + |c̃IIaB( f )| + |c̃IId( f )| + |c̃IIe( f )|,
(5) |c̃IIb( f )| + |c̃IIc( f )| + |c̃IId( f )| + |c̃IIe( f )| + |c̃II f ( f )|,
(6) |c̃II9C( f )| + |c̃II f ( f )|.
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Remark 3.6 We see easily that the numbers in Corollary 3.5 are all even if and only
if the following numbers are all even:

(1) |c̃IIb( f )|,
(2) |c̃IIc( f )| + |c̃IId( f )| + |c̃IIe( f )| + |c̃II f ( f )|,
(3) |c̃IIaA( f )| + |c̃IIaB( f )|,
(4) |c̃IIaA( f )| + |c̃IIc( f )|,
(5) |c̃II9C( f )| + |c̃II f ( f )|.
Remark 3.7 Let (V,W ) be a manifold pair with (dim V, dimW ) = (2, 1), and Q
be the real line R or the circle S1. Suppose that V is closed. By using the same
method, we obtain a similar co-existence result for singular fibers of a C∞ stable
Morse function f : (V,W ) → Q:

|c̃I1A( f )| + |c̃I1B( f )| + |c̃I2A( f )| + |c̃I2B( f )| ≡ 0 mod 2,

where we are using the notation for the relevant fibers in the sense of Remark 2.18.

4 Universal Complex of Singular Fibers

In this section, we consider certain universal complexes of singular fibers for maps
of manifold pairs, as we have discussed for maps of manifolds with boundary in
[9, Sect. 4]. As all the notions and constructions are almost parallel to those given
in [9], we omit most of the details here and describe only essential materials. Their
applications to cobordisms of singular maps will be discussed in Sect. 5. We work
with Z2-coefficients.

4.1 Stable Maps of Manifold Pairs

For a positive integer n, let

PSpr(n, n − 1; n − 1)

be the set of fibers for proper C0 stable Thom maps of manifold pairs (M, N ) into
Q with (dim M, dim N ; dim Q) = (n, n − 1; n − 1). We put

PSpr =
∞
⋃

n=1

PSpr(n, n − 1; n − 1).
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Furthermore, let ρn,n−1;n−1(2) be theweak C0 equivalence relation modulo two regu-
lar fibers for fibers in PSpr(n, n − 1; n − 1): i.e., two fibers in PSpr(n, n − 1; n − 1)
are ρn,n−1;n−1(2)-equivalent if they become weakly C0 equivalent after we add some
regular fibers to each of them with the numbers of added components having the
same parity.

We denote by ρ(2) the equivalence relation on PSpr induced by ρn,n−1;n−1(2).
Note that the set PSpr and the equivalence relation ρ(2) satisfy conditions (a)–(e) in
[9, Sect. 4].

Remark 4.1 For the construction of the universal complex of singular fibers, we use
C0 stable Thom maps for some technical reasons. However, for low dimensional
cases (for example, the cases with n = 2, 3 that we are interested in), a map is a C0

stable Thommap if and only if it isC∞ stable. Therefore, we can use the classification
results of fibers obtained in Sect. 2.

For a weak C0 equivalence class F̃ of singular fibers, denote by F̃o (or F̃e)
the equivalence class with respect to ρn,n−1;n−1(2) which consists of singular fibers
of type F̃ with an odd number (resp. even number) of regular fiber components.
For n = 2, 3, we denote by p̃0

0
o (resp. p̃0

0
e) the equivalence class with respect to

ρn,n−1;n−1(2) which consists of regular fibers with an odd (resp. even) number of
components.

Then,we can construct the universal complex C(PSpr(3, 2; 2), ρ3,2;2(2)) of singu-
lar fibers (for details, see [4] or [9, Sect. 4]). Furthermore, we see that the coboundary
homomorphism is given by the following formulae, which are obtained with the help
of Lemma 2.4:

δ0(p̃0
0
o) = δ0(p̃0

0
e) = p̃I

1 + p̃I
2
,

δ1(p̃I
1
o) = δ1(p̃I

2
e) = p̃II

1,2 + p̃II
a
e ,

δ1(p̃I
1
e) = δ1(p̃I

2
o) = p̃II

1,2 + p̃II
a
o,

δ1(p̃I
3
o) = δ1(p̃I

3
e) = p̃II

1,3 + p̃II
2,3 + p̃II

7
,

δ1(p̃I
4
o) = δ1(p̃I

4
e) = p̃II

1,4 + p̃II
2,4 + p̃II

10
,

where F̃ denotes F̃o + F̃e.
Then, by a straightforward calculation, we obtain the following.

Proposition 4.2 The cohomology groups of

C(PSpr(3, 2; 2), ρ3,2;2(2))

of dimensions 0 and 1 are described as follows:

(1) H 0(PSpr(3, 2; 2), ρ3,2;2(2)) ∼= Z2, generated by [p̃00o + p̃0
0
e],

(2) H 1(PSpr(3, 2; 2), ρ3,2;2(2)) ∼= Z2 ⊕ Z2 ⊕ Z2, generated by

α = [p̃I4], β = [p̃I3], γ = [p̃I1o + p̃I
2
e] = [p̃I1e + p̃I

2
o].
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Note that the ranks of Cκ(PSpr(3, 2; 2), ρ3,2;2(2)), κ = 0, 1, 2, are equal to 2, 8
and 48, respectively.

4.2 Admissible Stable Maps of Manifold Pairs

Let us now consider a certain restricted class of stable maps. For a positive integer
n, let

PASpr(n, n − 1; n − 1)

be the set of fibers for proper admissible C0 stable Thom maps of manifold
pairs (M, N ) into Q with (dim M, dim N ; dim Q) = (n, n − 1; n − 1). Here, a map
f : (M, N ) → Q is admissible if it is a submersion on a neighborhood of N . In
particular, when n = 3, a stable map f : (M, N ) → Q is admissible if and only
if it has no definite or indefinite B2 points. Note also that stable Morse functions
on manifold pairs (M, N ) with (dim M, dim N ) = (2, 1) and their suspensions are
always admissible.

We set

PASpr =
∞
⋃

n=1

PASpr(n, n − 1; n − 1).

Note that the above set together with the equivalence relation induced by ρ(2), which
we still denote by ρ(2) by abuse of notation, satisfy conditions (a)–(e) mentioned in
[9, Sect. 4]. Then, we can construct the universal complex

C(PASpr(3, 2; 2), ρ3,2;2(2))

of singular fibers for admissible C∞ stable maps (M, N ) → Q with

(dim M, dim N ; dim Q) = (3, 2; 2).

Observe that in the coboundary formulae for C(PSpr(3, 2; 2), ρ3,2;2(2)) given
just before Proposition 4.2, there appears no singular fiber containing a B2 point.
Therefore, we have the following.

Proposition 4.3 The cohomology groups of

C(PASpr(3, 2; 2), ρ3,2;2(2))

of dimensions 0 and 1 are naturally isomorphic to those of the universal complex
C(PSpr(3, 2; 2), ρ3,2;2(2)).

Note that the ranks of Cκ(PASpr(3, 2; 2), ρ3,2;2(2)), i = 0, 1, 2, are equal to 2,
8 and 40, respectively.
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4.3 Stable Maps of 2-Colored Manifold Pairs

For a positive integer n, let

PcSpr(n, n − 1; n − 1)

be the set of fibers for proper C0 stable Thom maps (M, N ) → Q of 2-colored
manifold pairs with (dim M, dim N ; dim Q) = (n, n − 1; n − 1). Recall thatM \ N
is divided into two regions R and B, which are fixed and ordered. For example, if we
interchange R and B, then it is considered to be a different 2-colored manifold pair.

We put

PcSpr =
∞
⋃

n=1

PcSpr(n, n − 1; n − 1).

Furthermore, let ρcn,n−1;n−1(2) be the weak C0 color equivalence relation mod-
ulo two regular fibers for fibers in PcSpr(n, n − 1; n − 1): i.e., two fibers in
PcSpr(n, n − 1; n − 1) are ρcn,n−1;n−1(2)-equivalent if they become weaklyC0 color
equivalent after we add some regular fibers to each of them with the numbers of
added components having the same parity.

We denote by ρc(2) the equivalence relation on PcSpr induced by ρcn,n−1;n−1(2),
n ≥ 1. Note that the set PcSpr and the equivalence relation ρc(2) satisfy conditions
(a)–(e) described in [9, Sect. 4].

For a weak C0 color equivalence class F̃ of singular fibers, denote by F̃o (or F̃e)
the equivalence class with respect to ρcn,n−1;n−1(2) which consists of singular fibers
of type F̃ with an odd number (resp. even number) of regular fiber components.
For n = 2, 3, we denote by c̃0

0
o (resp. c̃0

0
e) the equivalence class with respect to

ρcn,n−1;n−1(2) which consists of regular fibers with an odd (resp. even) number of
components.

Then, we can construct the universal complex C(PcSpr(3, 2; 2), ρc3,2;2(2)) of
singular fibers for maps of (3, 2)-dimensional 2-colored manifold pairs into 2-
dimensional manifolds with respect to the relation ρc3,2;2(2). Its coboundary homo-
morphism is given by the following formulae, which are obtained with the help of
Lemma 2.13:

δ0(c̃0
0
o) = δ0(c̃0

0
e) = c̃I

1A + c̃I
1B + c̃I

2A + c̃I
2B

,

δ1(c̃I
1A
o ) = c̃II

1A,1B + c̃II
1A,2A + c̃II

1A,2B + c̃II
aA
e + c̃II

c
o,

δ1(c̃I
1A
e ) = c̃II

1A,1B + c̃II
1A,2A + c̃II

1A,2B + c̃II
aA
o + c̃II

c
e,

δ1(c̃I
1B
o ) = c̃II

1A,1B + c̃II
1B,2A + c̃II

1B,2B + c̃II
aB
e + c̃II

c
o,

δ1(c̃I
1B
e ) = c̃II

1A,1B + c̃II
1B,2A + c̃II

1B,2B + c̃II
aB
o + c̃II

c
e,

δ1(c̃I
2A
o ) = c̃II

1A,2A + c̃II
1B,2A + c̃II

2A,2B + c̃II
5C + c̃II

9C
o + c̃II

aA
o

+c̃II
d
o + c̃II

e
o,
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δ1(c̃I
2A
e ) = c̃II

1A,2A + c̃II
1B,2A + c̃II

2A,2B + c̃II
5C + c̃II

9C
e + c̃II

aA
e

+c̃II
d
e + c̃II

e
e,

δ1(c̃I
2B
o ) = c̃II

1A,2B + c̃II
1B,2B + c̃II

2A,2B + c̃II
5C + c̃II

9C
o + c̃II

aB
o

+c̃II
d
o + c̃II

e
o,

δ1(c̃I
2B
e ) = c̃II

1A,2B + c̃II
1B,2B + c̃II

2A,2B + c̃II
5C + c̃II

9C
e + c̃II

aB
e

+c̃II
d
e + c̃II

e
e,

δ1(c̃I
3A
o ) = c̃II

1A,3A + c̃II
1B,3A + c̃II

2A,3A + c̃II
2B,3A + c̃II

7A + c̃II
7C

+c̃II
b
o + c̃II

c
o + c̃II

d
e + c̃II

e
o + c̃II

f
o ,

δ1(c̃I
3A
e ) = c̃II

1A,3A + c̃II
1B,3A + c̃II

2A,3A + c̃II
2B,3A + c̃II

7A + c̃II
7C

+c̃II
b
e + c̃II

c
e + c̃II

d
o + c̃II

e
e + c̃II

f
e ,

δ1(c̃I
3B
o ) = c̃II

1A,3B + c̃II
1B,3B + c̃II

2A,3B + c̃II
2B,3B + c̃II

7B + c̃II
7D

+c̃II
b
o + c̃II

c
o + c̃II

d
e + c̃II

e
o + c̃II

f
o ,

δ1(c̃I
3B
e ) = c̃II

1A,3B + c̃II
1B,3B + c̃II

2A,3B + c̃II
2B,3B + c̃II

7B + c̃II
7D

+c̃II
b
e + c̃II

c
e + c̃II

d
o + c̃II

e
e + c̃II

f
e ,

δ1(c̃I
4A
o ) = c̃II

1A,4A + c̃II
1B,4A + c̃II

2A,4A + c̃II
2B,4A + c̃II

9C
o + c̃II

10A

+c̃II
10C + c̃II

f
o ,

δ1(c̃I
4A
e ) = c̃II

1A,4A + c̃II
1B,4A + c̃II

2A,4A + c̃II
2B,4A + c̃II

9C
e + c̃II

10A

+c̃II
10C + c̃II

f
e ,

δ1(c̃I
4B
o ) = c̃II

1A,4B + c̃II
1B,4B + c̃II

2A,4B + c̃II
2B,4B + c̃II

9C
o + c̃II

10B

+c̃II
10D + c̃II

f
o ,

δ1(c̃I
4B
e ) = c̃II

1A,4B + c̃II
1B,4B + c̃II

2A,4B + c̃II
2B,4B + c̃II

9C
e + c̃II

10B

+c̃II
10D + c̃II

f
e ,

where F̃ denotes F̃o + F̃e.
Then, by a straightforward calculation, we obtain the following.

Proposition 4.4 The cohomology groups of

C(PcSpr(3, 2; 2), ρc3,2;2(2))

of dimensions 0 and 1 are described as follows:

(1) H 0(PcSpr(3, 2; 2), ρc3,2;2(2)) ∼= Z2, generated by [c̃00o + c̃0
0
e],

(2) H 1(PcSpr(3, 2; 2), ρc3,2;2(2)) ∼= Z2 ⊕ Z2 ⊕ Z2, generated by

α = [c̃I4A + c̃I
4B], β = [c̃I3A + c̃I

3B],
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γ = [c̃I1Ao + c̃I
1B
o + c̃I

2A
e + c̃I

2B
e ] = [c̃I1Ae + c̃I

1B
e + c̃I

2A
o + c̃I

2B
o ].

Note that the ranks of Cκ(PcSpr(3, 2; 2), ρc3,2;2(2)), κ = 0, 1, 2, are equal to 2,
16 and 142, respectively.

4.4 Admissible Stable Maps of 2-Colored Manifold Pairs

For a positive integer n, let

PcASpr(n, n − 1; n − 1)

be the set of fibers for proper admissibleC0 stable Thommaps of 2-colored manifold
pairs (M, N ) into Q with (dim M, dim N ; dim Q) = (n, n − 1; n − 1).

We set

PcASpr =
∞
⋃

n=1

PcASpr(n, n − 1; n − 1).

Note that the above set togetherwith the equivalence relation induced by ρc(2), which
we still denote by ρc(2) by abuse of notation, satisfy conditions (a)–(e) described in
[9, Sect. 4]. Then we can construct the corresponding universal complex

C(PcASpr(3, 2; 2), ρc3,2;2(2)).

Then, a straightforward calculation shows the following.

Proposition 4.5 The cohomology groups of

C(PcASpr(3, 2; 2), ρc3,2;2(2))

of dimensions 0 and 1 are described as follows:

(1) H 0(PcASpr(3, 2; 2), ρc3,2;2(2)) ∼= Z2, generated by [c̃00o + c̃0
0
e],

(2) H 1(PcASpr(3, 2; 2), ρc3,2;2(2)) ∼= Z2 ⊕ Z2 ⊕ Z2 ⊕ Z2, generated by

α1 = [c̃I4A + c̃I
1A + c̃I

2A] = [c̃I4A + c̃I
1B + c̃I

2B],
α2 = [c̃I4B + c̃I

1A + c̃I
2A] = [c̃I4B + c̃I

1B + c̃I
2B],

β = [c̃I3A + c̃I
3B],

γ = [c̃I1Ao + c̃I
1B
o + c̃I

2A
e + c̃I

2B
e ] = [c̃I1Ae + c̃I

1B
e + c̃I

2A
o + c̃I

2B
o ].

Note that the ranks of Cκ(PcASpr(3, 2; 2), ρc3,2;2(2)), κ = 0, 1, 2, are equal to 2,
16 and 138, respectively.
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5 Cobordisms of Singular Maps

In this section, we first review the concept of cobordism of singular maps, and then
we see how cobordism invariants are induced from the cohomology classes of the
universal complexes of singular fibers that have been obtained in the previous section.

Definition 5.1 (1) Let (Mi , Ni ), i = 0, 1, be manifold pairs of the same dimension
(n, n − 1), where M0 and M1 are closed, and let Q be a manifold of dimension
n − 1. Two C∞ stable maps fi : (Mi , Ni ) → Q, i = 0, 1, are cobordant if there
exist a compact (n + 1)-dimensional manifold X with boundary, a proper3 closed
submanifold Y of dimension n of X , and a C∞ map F : (X,Y ) → Q × [0, 1] that
satisfy the following conditions:

(i) ∂X is the disjoint union M0 � M1,
(ii) ∂Y is the disjoint union N0 � N1,
(iii) F |M0×[0,ε) = f0 × id[0,ε) : (M0, N0) × [0, ε) → Q × [0, ε) and F |M1×(1−ε,1] =

f1 × id(1−ε,1] : (M1, N1) × (1 − ε, 1] → Q × (1 − ε, 1], where (M0, N0)

× [0, ε) and (M1, N1) × (1 − ε, 1] denote collar neighborhoods of (M0, N0)

and (M1, N1) in (X,Y ), respectively,
(iv) F−1(Q × {i}) = (Mi , Ni ), i = 0, 1, and the restriction

F |X\(M0∪M1) : (X \ (M0 ∪ M1),Y \ (N0 ∪ N1)) → Q × (0, 1)

is a proper C∞ stable map.

In this case, we call the map F a cobordism between f0 and f1.
(2) Suppose that the maps f0 and f1 as in (1) are admissible. Then, we say that f0

and f1 are admissibly cobordant if f0 and f1 are cobordant in the sense of (1) and
the cobordism F can be chosen so that it is admissible, i.e. it is a submersion on a
neighborhood of the proper closed submanifold Y .

(3) Suppose that the manifold pairs (Mi , Ni ) are 2-colored with coloring pair
(Ri , Bi ), i = 0, 1. Then the two maps f0 and f1 as in (1) are color cobordant if f0
and f1 are cobordant in the sense of (1) and the manifold pair (X,Y ) can be chosen
to be 2-colored: i.e. for disjoint open submanifolds R and B of X \ Y , we have

R ∪ B = X \ Y, R ∩ B = R \ R = B \ B = Y,

where R and B denote the closures of R and B in X , respectively. Furthermore, we
impose the condition that

R ∩ Mi = Ri , B ∩ Mi = Bi , i = 0, 1.

(4) Suppose that the manifold pairs (Mi , Ni ) are 2-colored with coloring pair
(Ri , Bi ), i = 0, 1, and that the maps f0 and f1 as in (3) are admissible. Then f0 and

3A submanifold Y of a manifold X with boundary is proper if Y ∩ ∂X = ∂Y and Y intersects ∂X
transversely.
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f1 are admissibly color cobordant if they are color cobordant in the sense of (3) and
the cobordism F can be chosen so that it is admissible, i.e. it is a submersion on a
neighborhood of the proper closed submanifold Y .

Remark 5.2 It is not difficult to show that when Q = R
n−1 is fixed, the set of all

(admissible) cobordism classes of (admissible)C∞ stable maps of closed (n, n − 1)-
dimensional (2-colored) manifold pairs into Q forms an abelian group under the
disjoint union as the addition operation. We call this group the (n, n − 1; n − 1)-
dimensional PSpr-cobordism group of C∞ stable maps of manifold pairs for Defi-
nition 5.1 (1), the (n, n − 1; n − 1)-dimensional PASpr-cobordism group of admis-
sible C∞ stable maps of manifold pairs for Definition 5.1 (2), the (n, n − 1; n −
1)-dimensional PcSpr-cobordism group of C∞ stable maps of 2-colored mani-
fold pairs for Definition 5.1 (3), and the (n, n − 1; n − 1)-dimensional PcASpr-
cobordism group of admissible C∞ stable maps of 2-colored manifold pairs for
Definition 5.1 (4).

As is explained in [9, Sect. 4], cohomology classes of the universal complex of
singular fibers of a certain class of smooth maps induce cobordism invariants for the
same class of maps. Let us first begin by the case of stable maps of manifold pairs.

Let

sκ∗ : Hκ(PSpr(3, 2; 2), ρ3,2;2(2)) → Hκ(PSpr(2, 1; 1), ρ2,1;1(2))

be the homomorphism induced by suspension sκ. Note that sκ(F∗) = F∗ for κ = 0, 1
and for each ρ3,2;2(2)-class F∗ of codimension κ (see Remark 2.10). Note also that
sκ = 0 for κ = 2.

Let us consider the cohomology classesα, β and γ in H 1(PSpr(3, 2; 2), ρ3,2;2(2))
obtained in Proposition 4.2. As has been explained in [9, Sect. 4], each element of
the image of sκ∗ induces a cobordism invariant for stable Morse functions of (2, 1)-
dimensional manifold pairs into 1-dimensional manifolds. By using the samemethod
as in [4, Lemma 14.1], we can show that s1∗γ induces a trivial PSpr-cobordism invari-
ant. Furthermore, s1∗β also induces a trivial invariant, since on a circle submanifold,
the number of critical points is always even.

Remark 5.3 There exists a stable Morse function f : (RP2,W ) → R, for an arbi-
trary (possibly empty) closed 1-dimensional submanifold W of RP2, which has
exactly one singular fiber of type p̃I

4
. Thus, s1∗α induces a non-trivial PSpr-

cobordism invariant among stable Morse functions on manifold pairs (M, N ) with
(dim M, dim N ) = (2, 1). Note that the singular fiber of type p̃I

4
does not reflect

the position of the 1-dimensional submanifold W in RP2. Recall that Saeki [4]
showed that, for stable Morse functions on closed surfaces, the modulo two number
of singular fibers of type p̃I

4
is a cobordism invariant.4

As we will see in Appendix A “Cobordism Group of Manifold Pairs of Dimen-
sion (2, 1)”, the PSpr-cobordism group of C∞ stable Morse functions on (2, 1)-
dimensional manifold pairs toR is isomorphic toZ2 ⊕ Z2. The singular fiber of type

4The singular fiber of type p̃I
4
is denoted by Ĩ2 in [4].
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p̃I
4
detects the first Z2-factor. The second Z2-factor involves the number of com-

ponents of the 1-dimensional submanifold whose normal bundles are non-trivial. It
seems that such information cannot be detected by singular fibers.

For admissible cobordisms for admissible stablemaps, as a consequence of Propo-
sition 4.3, we obtain just one non-trivial PASpr-cobordism invariant for stableMorse
functions on (2, 1)-dimensional manifold pairs, as we have seen in Remark 5.3. This
should be compared with a result given in [9, 10], where it is shown that a coho-
mology class gives a complete invariant for the admissible cobordism group of C∞
stable Morse functions on surfaces with boundary.

Let us now consider the case of stable maps of 2-colored manifold pairs. Let

sκ∗ : Hκ(PcSpr(3, 2; 2), ρc3,2;2(2)) → Hκ(PcSpr(2, 1; 1), ρc2,1;1(2))

be the homomorphism induced by suspension sκ. Note that sκ(F∗) = F∗ for κ = 0, 1
and for each ρc3,2;2(2)-class F∗ of codimension κ (see Remark 2.18). Note also that
sκ = 0 for κ = 2.

Let us consider the cohomology classesα,β andγ in H 1(PcSpr(3, 2; 2), ρc3,2;2(2))
obtained in Proposition 4.4. As before, each element of the image of sκ∗ induces
a cobordism invariant for stable Morse functions of (2, 1)-dimensional 2-colored
manifold pairs into 1-dimensional manifolds. By using the same method as before,
we can show that s1∗β and s1∗γ again induce trivial PcSpr-cobordism invariants.

Remark 5.4 The PcSpr-cobordism invariant induced by s1∗α is non-trivial. This can
be seen as in Remark 5.3, where we choose W as a circle bounding a disk in RP2 in
such a way that (RP2,W ) is a 2-colored manifold pair.

As we will see in Appendix B “Cobordism Group of 2-Colored Manifold Pairs of
Dimension (2, 1)”, the PcSpr-cobordism group of stable Morse functions on (2, 1)-
dimensional 2-colored manifold pairs toR is isomorphic to Z2. This implies that the
cobordism invariant induced by s1∗α is complete in this case.

Let us now consider admissible cobordisms for admissible stable maps of 2-
colored manifold pairs. Let

sκ∗ : Hκ(PcASpr(3, 2; 2), ρc3,2;2(2)) → Hκ(PcASpr(2, 1; 1), ρc2,1;1(2))

be the homomorphism induced by suspension sκ. Let us consider the cohomology
classesα1,α2,β andγ in H 1(PcASpr(3, 2; 2), ρc3,2;2(2)) obtained in Proposition 4.5.
Then, we obtain the following cobordism invariants.

Proposition 5.5 Let Q be the real line R or the circle S1.

(1) The cohomology classes s1∗α1 and s1∗α2 induce Z2-linearly independent
PcASpr-cobordism invariants for stable Morse functions f : (M, N ) → Q of
(2, 1)-dimensional 2-colored manifold pairs (M, N ).

(2) The cohomology classes s1∗β and s1∗γ induce trivial PcASpr-cobordism
invariants.
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(S2, S1)

f

Fig. 11 Stable Morse function on a (2, 1)-dimensional 2-colored manifold pair

Proof (1) For the stable map f : (S2, S1) → R given by the height function as
depicted inFig. 11,wehave s1∗α1( f ) = 1 and s1∗α2( f ) = 1.Therefore, the PcASpr-
cobordism invariants s1∗α1 and s1∗α2 are both non-trivial.

Furthermore, we can construct stableMorse functions f1, f2 : (RP2, S1) → R on
a 2-colored manifold pair (RP2, S1) such that (s1∗α1( f1), s1∗α2( f1)) = (1, 0) and
(s1∗α1( f2), s1∗α2( f2)) = (0, 1). Just consider the standard Morse function RP2 →
R with three critical points and take the submanifold S1 as a small circle encircling
the minimum point, which is a bit tilted. The other one is obtained by interchanging
the colors. Therefore, the PcASpr-cobordism invariants s1∗α1 and s1∗α2 are linearly
independent over Z2.

(2) This can be proved by the same argument as before. �

Remark 5.6 For a stable Morse function f : (M, N ) → Q of a (2, 1)-dimensional
2-colored manifold pair (M, N ) with coloring pair (R, B), we have two stable
maps fR = f |R : R → Q and fB = f |B : B → Q on surfaces with boundary. It is
easy to show that these induce homomorphisms of the (2, 1)-dimensional PcASpr-
cobordism group to the cobordism group of admissible stable maps of surfaces with
boundary. (Recall that the latter group is known to be isomorphic toZ2. See [10].)We
can observe that the above linearly independent invariants are obtained by composing
these homomorphisms with the admissible cobordism invariant obtained in [9].
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We do not know if the above invariants induce an isomorphism between the admis-
sible cobordism group of stable Morse functions on (2, 1)-dimensional 2-colored
manifold pairs and Z2 ⊕ Z2.
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A Appendix. Cobordism Group of Manifold Pairs of
Dimension (2, 1)

LetNn,n−1 be the (usual) cobordism group of (n, n − 1)-dimensional manifold pairs
(for example, see [13]). Let us first prove the following.

Proposition A.1 The (2, 1)-dimensional cobordism group N2,1 of manifold pairs
is naturally isomorphic to the (2, 1; 1)-dimensional PSpr-cobordism group of C∞
stable maps of manifold pairs.

In fact, the above proposition holds for every n such that (n, n − 1) is in the nice
range.
Proof of Proposition A.1 For a stable Morse function f : (M, N ) → R on a (2, 1)-
dimensional manifold pair, we associate the manifold pair (M, N ). This defines a
well-defined homomorphism between the relevant cobordism groups. It is surjective,
since every (2, 1)-dimensionalmanifold pair admits a stableMorse function. It is also
injective, since every (3, 2)-dimensional manifold pair giving a cobordism between
the source manifold pairs of stable Morse functions f0 and f1 admits a C∞ stable
map into R × [0, 1] extending f0 and f1. This completes the proof. �

Now, the main purpose of this section is to show the following elementary fact.

Proposition A.2 The (2, 1)-dimensional cobordism groupN2,1 of manifold pairs is
isomorphic to Z2 ⊕ Z2.

Thus, the (2, 1; 1)-dimensional PSpr-cobordism group of C∞ stable maps of
manifold pairs is isomorphic to Z2 ⊕ Z2.

In fact, Proposition A.2 is a direct consequence of a result of Wall [13]. Here, we
give an elementary proof.
Proof of Proposition A.2 For a (2, 1)-dimensional manifold pair (M, N ), we denote
by ϕ(M, N ) the usual cobordism class of M in the 2-dimensional cobordism group
N2 = Z2. Furthermore, let ψ(M, N ) be the number modulo two of the components
of N whose normal bundles in M are non-trivial.

Suppose that (M, N ) and (M ′, N ′) are cobordant. Then, clearly M and M ′ are
cobordant. Thus,ϕ induces a well-defined homomorphismN2,1 → N2 = Z2, which
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we still denote by ϕ. On the other hand, let (X,Y ) be a cobordism between (M, N )

and (M ′, N ′). Since the disjoint union N ∪ N ′ bounds a surface Y in X , it represents
zero in H1(X;Z2). On the other hand, for each component c of N ∪ N ′, its inter-
section number with [Y, ∂Y ] ∈ H2(X, ∂X;Z2) in X is non-trivial if and only if its
normal bundle in M ∪ M ′ is non-trivial. Since the intersection number of N ∪ N ′
with [Y, ∂Y ] must vanish, we see that ψ(M, N ) + ψ(M ′, N ′) must be zero modulo
two. This means that ψ induces a well-defined homomorphism N2,1 → Z2, which
we still denote by ψ.

Suppose that (M, N ) and (M ′, N ′) satisfy both ϕ(M, N ) = ϕ(M ′, N ′) and
ψ(M, N ) = ψ(M ′, N ′). Let c and c′ be a pair of components of N ∪ N ′ whose
normal bundles are non-trivial. Let B be the Möbius band and b the center circle. We
attach B × [−1, 1] to the disjoint union (M × [0, 1]) ∪ (M ′ × [0, 1]) in such a way
that B × {−1, 1} is attached to the tubular neighborhood of (c × {1}) ∪ (c′ × {1})
in (M × {1}) ∪ (M ′ × {1}) and that b × {−1, 1} is attached to (c × {1}) ∪ (c′ × {1})
in (M × {1}) ∪ (M ′ × {1}). Since ψ(M, N ) = ψ(M ′, N ′), we can repeat this pro-
cedure until there remains no component of N ∪ N ′ with non-trivial normal bun-
dle. For each of the other components, we attach D2 × [−1, 1] in a similar way.
Note that the union of all b × [−1, 1] and D2 × {0} together with appropriate
collars in (M × [0, 1]) ∪ (M ′ × [0, 1]) gives a null-cobordism of N ∪ N ′ = (N ×
{0}) ∪ (N ′ × {0}). Finally, by using our assumption that ϕ(M, N ) = ϕ(M ′, N ′), we
can further attach a compact 3-manifold so that we obtain a null-cobordism for
(M, N ) ∪ (M ′, N ′) = ((M, N ) × {0}) ∪ ((M ′, N ′) × {0}).

Thus, the homomorphism ϕ ⊕ ψ : N2,1 → Z2 ⊕ Z2 is a monomorphism.
On the other hand, this is an epimorphism. For example, (RP2,∅) is sent to (1, 0)

and (RP2, �) is sent to (1, 1), where � is a circle in RP2 with non-trivial normal
bundle.

This completes the proof. �
Determining the group structure of the (2, 1)-dimensional PASpr-cobordism

group remains an open problem.

B Appendix. Cobordism Group of 2-Colored Manifold
Pairs of Dimension (2, 1)

Let Nc
n,n−1 be the cobordism group of (n, n − 1)-dimensional 2-colored manifold

pairs. More precisely, let (Mi , Ni ) be (n, n − 1)-dimensional 2-colored manifold
pairs with coloring pairs (Ri , Bi ), whereMi are closed, i = 0, 1. Then, they are color
cobordant if there exists an (n + 1, n)-dimensional 2-colored manifold pair (X,Y )

with coloring pair (R, B), where X is a compact manifold with boundary ∂X =
M0 � M1, Y is a proper closed submanifold of Y with ∂Y = N0 � N1, R ∩ Mi = Ri

and B ∩ M1 = Ri , i = 0, 1. It is easy to show that the set of all such color cobordism
classes forms an abelian group under the disjoint union as the addition operation.
This is the cobordism group of (n, n − 1)-dimensional 2-colored manifold pairs.
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As in Proposition A.1, we have the following.

Proposition B.1 The (2, 1)-dimensional cobordism group Nc
2,1 of 2-colored mani-

fold pairs is naturally isomorphic to the (2, 1)-dimensional PcSpr-cobordism group
of stable Morse functions on 2-colored manifold pairs.

In fact, the above proposition holds for every n such that (n, n − 1) is in the nice
range.

The purpose of this section is to show the following elementary fact.

Proposition B.2 The (2, 1)-dimensional cobordism group Nc
2,1 of 2-colored mani-

fold pairs is isomorphic to Z2.

Thus, the (2, 1)-dimensional PcSpr-cobordism group is isomorphic to Z2.
Proof of Proposition B.2 For a (2, 1)-dimensional 2-colored manifold pair (M, N )

with coloring pair (R, B), defineϕc(M, N ) = M . This induces awell-defined homo-
morphismNc

2,1 → N2, which we still denote by ϕc.
This homomorphism is clearly surjective.
Let (M, N ) be a (2, 1)-dimensional 2-colored manifold pair with coloring pair

(R, B) such thatM is closed and bounds a compact 3-dimensionalmanifold. LetY be
a copy of the compact 3-dimensional manifold R. Then, we can attach Y × [−1, 1]
to (M, N ) × [0, 1] along (N × [−1, 1]) × {1}, where N × [−1, 1] is a small tubular
neighborhood of N in M and Y × {0} is attached to N × {1}. Then, the resulting
compact 3-manifold has boundary diffeomorphic to the disjoint union of the double of
R andM . By assumption, both of these closed surfaces bound compact 3-dimensional
manifolds. Then, we obtain a (3, 2)-dimensional 2-colored manifold pair whose
boundary corresponds to (M, N ) × {0}. Thus, the homomorphism ϕc is injective.

This completes the proof. �
Determining the group structure of the (2, 1)-dimensional PcASpr-cobordism

group remains an open problem.
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A Global View on Generic Geometry

María del Carmen Romero Fuster

Abstract We describe how the study of the singularities of height and distance
squared functions on submanifolds of Euclidean space, combined with adequate
topological and geometrical tools, shows to be useful to obtain global geometri-
cal properties. We illustrate this with several results concerning closed curves and
surfaces immersed in R

n for n = 3, 4, 5.

Keywords Stratifications · Height functions · Distance squared functions
Curvature locus · Vertices · Semiumbilics · Inflection points · Convexity
2-regular immersions.

MS classification 58K05 · 58C27 · 53C42 · 57R30

1 Introduction

Our aim in this paper is to show the usefulness of Singularity Theory techniques in
the global study of the Geometry of submanifolds. Some basic principles underneath
this fact are the following:

(i) The local geometry of a submanifold is usually specified in terms of the geo-
metrical properties of adequate models that are invariant under the action of the
transformation group associated to the considered geometry. Such models must
be chosen as those that better approach the submanifold at each point. In order
to determine them we can analyze the singularities of appropriate families of
functions and mappings on the considered submanifold. An important property
to be considered is that the parameter spaces of such families may be stratified
according to the singularity types of the different functions attached to them.
Such stratifications are obtained as the pull-back of convenient stratifications of
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jet spaces of smooth functions (or mappings) on the submanifold. Then conve-
nient multi-transversality conditions imposed by the genericity requirements in
each case, allows us to use the known information on the incidence relations
among the strata in order to obtain a complete picture of the local behavior of rel-
evant geometrical subsets which are characterized through appropriate singular
phenomena.

(ii) The contact directions associated to the families of contact functions determine
foliationswhose critical points have a relevant interpretation from the geometrical
viewpoint. This allows us to apply well known topological techniques, such as
the Poincaré–Hopf formula, in order to ensure the existence of critical points, or
even to obtain lower bounds for their number.

Our descriptions in this paper will be essentially based in the analysis of the singu-
larities of distance squared and height functions on the submanifolds in combination
with appropriate geometrical and topological techniques.We shall see here how these
tools have proven to be efficient for obtaining global geometrical results on closed
submanifolds in Euclidean space. Clearly, the same principles can be transported
to other ambient spaces, provided we have convenient families of contact functions
attached to the geometrical properties that we want to analyze. We also remark the
possibility of investigating general (non necessarily generic) properties as a limit of
those of a sequence of generic objects.

Finally, we warn the reader that this work, rather than an exhaustive description
of the known results in the area, intends to be an illustration of how the typical
methods of the Singularity Theory become an important tool in the study of the
Global Geometry of Submanifolds.

2 Contacts and Singularities

Let Mi , Ni (i = 1, 2) be submanifolds of Rn with dim M1 = dim M2 and dim N1 =
dim N2.We say that the contact of M1 and N1 at y1 is of the same type as the contact
of M2 and N2 at y2 if there is a diffeomorphism germ � : (Rn, y1) → (Rn, y2)
such that �(X1) = X2 and �(Y1) = Y2. In this case we write K (M1, N1; y1) =
K (M2, N2; y2). This is clearly a local concept and we can replace in this definition
R

n by any manifold. Montaldi [61] gave the following characterization of the notion
of contact by using the terminology of singularity theory:

Theorem 2.1 Let Mi , Ni (i = 1, 2) be submanifolds of Rn with dim M1 = dim M2

and dim N1 = dim N2. Let fi : (Mi , xi ) → (Rn, yi ) be immersion germs and gi :
(Rn, yi ) → (Rr , 0) be submersion germs with (Ni , yi ) = (g−1

i (0), yi ). Then
K (M1, N1; y1) = K (M2, N2; y2) if and only if g1 ◦ f1 and g2 ◦ f2 areK-equivalent.

Therefore, given two submanifolds M and N of Rn with a common point p,
an immersion germ f : (M, x) → (Rn, p) and a submersion germ g : (Rn, p) →
(Rr , 0), such that N = g−1(0), the contact of M ≡ f (M) and N at p is completely
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determined by the K-singularity type of the germ (g ◦ f, x) (see [29] for details on
K-equivalence). When N is a hypersurface, we have r = 1, and the function germ
(g ◦ f, x) has a degenerate singularity if and only if its Hessian, H(g ◦ f )(x), is a
degenerate quadratic form. In such case, the tangent directions lying in the kernel of
this quadratic form are called contact directions for M and N at p.

In order to study the local behavior, we can consider that the submanifold M is
given by the image on an embedding f : Rm → R

n, n > m. The methods that we
shall describe in this work are mainly based in the analysis of two relevant families
of functions on M whose behavior describes the geometrical properties attached to
its contacts with hyperplanes and hyperspheres.
(1) The family of Height functions on a manifold M , (locally) given as the image of
an embedding f : U → R

n is (locally) given by

H( f ) : U × Sn−1 −→ R

(u, v) �−→ 〈 f (u), v〉 = fv(u).

The singularities of the height functions describe the contacts of M with the hyper-
planes of Rn . A height function fv has a singularity at x = f (u) ∈ M if and only
if the direction v is normal to M at x . The singularity type of fv at u determines
the contact of M with the (tangent) hyperplane which is orthogonal to v and passes
through x = f (u). The analysis of these singularities provides information on the
“flat geometry”of M .

Suppose that M is a hypersurface in R
n , so we can view it locally as the image

of an embedding f : U → R
n , where U is an open subset of Rn−1. Then the Gauss

map on M is given by

N (u) =
∂ f
∂u1

× · · · × ∂ f
∂un−1

|| ∂ f
∂u1

× · · · × ∂ f
∂un−1

|| (u).

In appropriate local coordinates, we can identify the second fundamental form I Ix of
M at a point x = f (u) ∈ M with the Hessian quadratic form of the height function
fv : U → R at u ∈ U , with v = N (x). Now, the shape operator, Sx = −DN (x), at
x satisfies

I Ix (X) = −〈Sx (X), X〉.

So the matrix of DN (x) is given by

− Hess ( fv) = −
[

∂2 fv
∂ui , ∂u j

]
(x),

where v = N (x). We thus have that a point x = f (u) is a singular point of N if
and only if u is a degenerate singularity of fv , where v = N (x). That is, the contact
direction associated to fv at x = f (u) is an asymptotic direction of M at x .
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For submanifolds immersed in arbitrary codimension, we shall say that a normal
direction v is a binormal at x = f (u) provided u is a degenerate singularity of the
height function fv and the tangent directions lying in the kernel of the Hessian of
fv will be called asymptotic directions. This clearly generalizes the case of curves
α : R → R

3, for which the binormal is the unique direction leading to a degenerate
height function on the curve at each point. The generic behavior of height functions
in connectionwith the geometry of a surface immersed inRn, n > 3 has been investi-
gated in [53, 54, 56]. The properties associated to these contacts correspond to what
we call the Flat Geometry of the surface. The existence of binormal and asymptotic
directions has been studied in [53] for the case of generic surfaces in 4-space, and in
[54] for the generic submanifolds of codimension 2 in Euclidean space. We observe
that in the last case the binormal and the degenerate directions coincide.

The asymptotic directions can be characterized in terms of normal sections of
M as follows: Let v be a degenerate direction at a point x = f (u) of M such that
corank(Hess( fv)(u)) = 1, and let θ be a tangent vector in the kernel of the quadratic
formHess( fv)(u).We denote by γθ the normal section of the surfaceM in the tangent
direction θ. That is, γθ is a curve in the (k + 1)-space Vθ = 〈θ〉 ⊕ NxM , obtained as
the intersection of this (k + 1)-space with M . Then we have,

Proposition 2.2 ([53]) Let x = f (u) ∈ M and v ∈ NxM a degenerate direction
for M at x. Let θ be a tangent direction lying in Ker(Hess( fv)(u)). Then θ is an
asymptotic direction corresponding to the binormal v if and only if v is the binormal
direction at x for the curve γθ in the (k + 1)-space Vθ.

The binormal and asymptotic directions on generic surfaces inR5 were first intro-
duced in [56], where it was shown that there exist at least one and at most five at each
point of such surfaces. The number of these directions is determined by the number
of real roots of certain polynomials and jumps by twowhen crossing the discriminant
set, which consists of closed regular curves made of points at which the considered
polynomials admit multiple roots. The generic behavior of the asymptotic lines near
the critical points and the discriminant is described in [87].

(b) The Distance squared functions family over an m-submanifold M , given as
the image f (U ) of an embedding f : U → R

n , with U an open subset of Rm , is
(locally) defined by

d( f ) : U × R
n −→ R

(u, a) �−→ da(u) = ‖ f (u) − a‖2.

The singularities of this family describe the contacts of M with the hyperspheres of
R

n centered at the point a ∈ R
n . We have that x = f (u) ∈ M is a singular point of

a function da if and only if the vector a − x lies in the normal subspace NxM of M
at x , that is a = f (u) + λN (u), where N (u) is the normal vector to M at x = f (u).
In the case of a hypersurface, we have that the singularity of da at u is degenerate
if and only if λ = 1

κi (x)
, where κi (x) is one of the principal curvatures of M at the

point x = f (u), in other words, a is a curvature center of M at x . The singularity
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type of da at u determines the contact of M with the hypersphere with center a
passing through the point x = f (u). In this sense, we can say that the singularities
of distance squared functions on a submanifold M describe the properties belonging
to the “round geometry” of M . So the bifurcation set of d coincides with the focal
set of M,

F = {a ∈ R
n : ∃u ∈ U such that da has a degenerate singularity at u}.

This is classically known to be the image of the singular set of the exponential map
expM : NM → R

4. The points of F are the focal centers of M . A pioneer work in
this direction is [75].

Observe that a point x = f (u) ∈ M is a degenerate singularity for a distance-
squared function da if and only if the rank of the Hessian matrix Hess(da)(u) is
not maximum and those directions lying in the kernel of Hess(da)(u) are said to
be a spherical contact direction of M at x = f (u). In fact, these are the direction
along which M has a closer contact with the focal hypersphere at x with center at
a ∈ NxM and radius r = ‖x − a‖ x . It is classically known that given a focal center
a at a point x of M , the contact direction X ∈ TxM of M with the focal hypersphere
S(a, r), is an eigenvector of the shape operator associated to the normal direction
x − p at x and thus a principal direction of M at x .

The centers of the focal hyperspheres of M which have contact of type Ak, k ≥ 3
with the surface are called (k-order) ribs and the corresponding contact directions
on M with this hyperspheres are the strong principal directions. The integral lines
of these direction fields are called strong principal lines. A point x ∈ M which is a
singular point of type Ak, with k ≥ 4 for some distance-squared function da is said
to be a k-order ridge point. On a generically immersed surface, the k-order ridge
points, k ≥ 4 form regular curves known as ridges at which the 5-order ridge points
are isolated. Moreover, the corresponding 4-order ribs form curves in the focal set
having the 5-order ribs as isolated singularities.

In the case of a generically immersed surface M in R4, the focal set is a stratified
subset of dimension 3, whose ribs are the union of the strata of dimension≤ 2. It was
shown in [59] and [62] that there are at most 5 and at least 1 rib points on the normal
space at any point of the surface. Centered at each one of these points, we have a
3-sphere whose contact with the surface is given by a singularity of type Ak, k ≥ 3.
The corresponding contact direction are called strong principal direction at m ∈ M .
By integration of these direction fields on the surface, we get the strong principal
lines. We thus have up to 5 strong principal curves passing through each point. These
foliations may have singularities along a discriminant set that separates regions with
different number of strong principal directions. Then it can be shown that a ridge
point of M is a higher order ridge if and only if it is a vertex of one of the strong
principal lines considered as curves in 4-dimensional Euclidean space [91].
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The corank 2 singularities of distance squared functions on surfaces in 3-space
correspond to the umbilic points [76] and are generically isolated points on such sur-
faces. For higher codimensions we have a more sophisticated picture. For instance,
the corank 2 singularities on generically immersed surfaces in R4 form regular sim-
ple closed curves made of semiumbilic points, such points are characterized by the
fact that the curvature ellipse degenerates to a segment (see [59] or [46]). Moreover,
they coincide with the set of critical points of the different principal configurations
associated to normal fields on the surface [92]. For surfaces generically immersed
in R

4, the semiumbilic points are singularities of type D±
k , k = 4, 5 of the distance

squared functions and form closed regular curves at which the D5 points are isolated.
We observe that since the conformal maps preserve the spheres, they must preserve
the contacts of the surfaces with the hyperspheres of R4. This implies that the semi-
umbilics curves, the strong principal curves and the ridges are conformally invariant.
This fact allows to characterize the ridge points and the semiumbilic points of type
D5 of surfaces in R

4, as the zeroes of conveniently defined conformally invariant
forms respectively along the strong principal curves and the semiumbilic curves on
such surfaces [91]. We must point out that the proof of the assertion that any closed
orientable surface generically immersed inR4 has at least two semiumbilic points of
type D5, stablished in [91], has a mistake and therefore remains still as a conjecture.

It follows from the work of Montaldi [61] that there is a residual subset E of
embeddings of Rm into R

n with the Whitney C∞-topology such that for any f
belonging to it the corresponding families H( f ) and d( f ) are generic families of
functions onRm . For a detailed description of the term “generic family of functions”
see [108]. This means, in particular, that these families are topologically stable, and
for n ≤ 5, smoothly stable too. The singularities of the different functions in such a
generic family may have codimension at most n − 1 in the case of height functions
and n in that of distance squared functions. These are well known for small enough
values of n. For instance, for n ≤ 6, they are all simple singularities and correspond
to the extended list of catastrophe germs determined by V. I. Arnol’d [1]. A more
complete classification, including all the possible singularities up to codimension 14
can be found in [2].

It is know that the inverseϕ : Rn → Sn of the stereographic projection determines
a K equivalence between the family of the distance squared functions on an m-
manifold M immersed inRn and the family of height functions over them-manifold
ϕ(M) ⊂ Sn ⊂ R

n+1 (see [85] or [99]). Therefore ϕ takes the singularities of a given
type of distance squared functions on a k-codimension submanifold M of Rn into
the singularities of the same type for height functions on the (k + 1) codimension
submanifold ϕ(M) of Rn+1.

For a detailed study of the local geometry of surfaces in Rn for n = 3, 4 and 5 in
terms of the singularities of these two families we refer to Chaps. 6, 7 and 8 in [46].
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3 Maxwell Stratifications, Support Hyperplanes and
Singularities of Gauss Maps

3.1 The Maxwell Stratification and the Convex
Hull of a Hypersurface

A stratification of a subset S of a manifold M is a locally finite partition S of S into
submanifolds of M , called strata. The pair (S,S) is said to be a stratified subset of
M . We observe that each stratum is locally closed, that is, given x ∈ S ⊆ M , there
is a local neighbourhood U of x in M , such that U ∩ S is closed in U . This concept
of stratification can be extended to a more general kind of spaces, such as the space
of smooth maps C∞(M, N ) between two smooth manifolds M and N . E. Looijenga
introduced in [50] a natural stratification for the space C∞(M) of smooth functions
on a manifold M (see [28]). This stratification takes into account all the singular
points of each smooth function on M . We can construct an alternative stratification
of the spaceC∞(M) by just looking to the absolute minima of the function. This was
first considered by R. Thom [104] who introduced the concept of Maxwell subset
of C∞(M). This is given by the complement of the set of functions that attain their
absolute minimum at a unique non degenerate critical point. The complement of the
Maxwell subset is open and dense in C∞(M) and can be viewed as a union of open
strata, which are determined by its connected path components. We say that two
functions in the Maxwell subset belong to the same stratum provided their multijets
at their absolute minima are equivalent in some sufficient multijet space. We can
distinguish among the following types of strata in this stratification:

(1) Morse strata: Functions f , whose absolute minimum is attained at a unique
point of type A1.

(2) Conflict strata: Functions having exactly k > 1 absolute minima of hv , each
one of type A1. They form codimension k − 1 strata in the Maxwell subset in
C∞(M).

(3) Bifurcation strata: Functions having a unique absolute minimum of type Ak ,
where k > 1 is an odd number. They give rise to a codimension k − 1 stratum
of the Maxwell subset in C∞(M).

(4) Mixed strata: Functions having r > 1 absolute minima of respective types
Ak1 , . . . , Akr , where the ki are odd numbers, at least one of them higher than
1. They form codimension k1 + · · · + kr − 1 strata in the Maxwell subset of
C∞(M).

The stratification of C∞(M) defined by Looijenga is a refinement of this one, at
which the singularity types of not only the absolute minima but also all the critical
points of the functions are considered.

Given a stratification S of a subset S of a manifold M and a smooth map
f : N → M transversal to S (i.e., f is transversal to all the strata of S), we can
consider the pull-back of S by f , that is the stratification f −1(S), whose strata
are the subsets f −1(Si ),∀Si ∈ S. In particular, given a family, F : M × C → R, of
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functions on M with parameters in a manifold C , the pull back of the Maxwell strat-
ification of C∞(M) through the map � : C → C∞(M) that sends each parameter c
to the function Fc(x) = F(x, c) induces a stratification on C that we call Maxwell
stratification of C associated to F . We can ensure, under appropriate (transversality)
conditions on the family F , that the map � respects the incidence relations between
the different strata in both stratifications. In such case, we say that F is a generic
family of functions. We can apply this setting to the family of height functions on a
submanifold M in Rn ,

H : M × Sn−1 −→ R
n

(x, v) �−→ hv(x).

in order to obtain some global geometrical properties.
Let us recall first some classical geometrical concepts and results.
The convex hull H(S) of a subset S in R

n is the intersection of all the convex
subsets of Rn containing S, that is the minimal convex subset of Rn that contains S.
In the case of a surface M inR3, it is classically known thatH(M) is homeomorphic
to a closed 3-disc and its boundary H(M) is a C1-surface of R3 C1-diffeomorphic
to the standard 2-sphere S2. A closed surface M of R3 is said to be convex if and
only M coincides with the boundary H(M) of its convex hull H(M). It is also a
well established geometrical property that a surface M is convex if and only if if
its Gaussian curvature is non-negative. We can extend the criterium of convexity to
curves in R3 as follows:

A closed curve γ inR3 is said to be convex if and only if the image of γ is contained
in the boundary H(γ) of its convex hull H(γ). We call H(γ) the convex envelope
of γ. In general, the points of a surface M that lie on H(M) are called external or
exposed points, the other being internal points.

It is not difficult to check that a point x ∈ M is external if and only if x is an
absolute minimum of some height function on M . In the case of a surface in R3, this
height function is precisely defined, up to sign, by the unique normal direction to M
at x .

Given a surface M in R
3 whose associated height functions family is generic

in the above sense, we can consider the Maxwell stratification on S2 associated to
this family. Then we have the following possibilities for the singularity type at the
absolute minima of the different height functions on M :

(1) Morse strata: The absolute minimum of hv is attained at a unique point of type
A1. The function hv lies in the complement of the Maxwell subset in C∞(M).
We have that v ∈ S2 is of type A1. All the points of type A1 form open regions
in Sn−1 whose complement is the Maxwell subset associated to H .

(2) Conflict strata: There are exactly k = 2, 3 absolute minima of hv , each one of
type A1. Then hv lies in a codimension k − 1 stratum of the Maxwell subset in
C∞(M) and so does v in S2.

(3) Bifurcation strata: The absolute minimum of hv is attained at a unique point of
type A3. The function hv lies in a codimension 2 stratum of the Maxwell subset
in C∞(M) and so does v in S2.
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We can view the Maxwell stratification on S2 associated to an embedding f of
M into R3 as the pull-back of the Maxwell stratification of C∞(M) through the map
� : S2 → C∞(M) given by �(v) = hv,∀v ∈ S2, where hv(x) = 〈 f (x), v〉.

These arguments can be easily extended to hypersurfaces of Rn, n ≥ 3 and sub-
manifolds of higher codimension (see [81, 83]). Let’s denote

Ak1,...,kr = {v ∈ S2| the absolute min of hv has type Ak1,...,kr }.

Then for a generic immersion of a hypersurface M into R
n , the subset Ak1,...,kr is

a submanifold of codimension r − 1 + ∑r
i=1 2ki , made of a union of strata of the

Maxwell stratification determined by the height functions family associated to this
immersion. It is not difficult to see that the union of all the strata of codimension one
or more coincides with the closure of the image of the Gauss map on the C1-surface
H(M) \ M . The behaviour of theMaxwell stratification in connectionwith theGauss
map and the convex hull structure of a hypersurface was studied with detail in [81,
83], where it was called Core stratification. In fact, it is shown that the strata of the
Maxwell stratification of a generic hypersurface satisfies the following relation:

χ(Sn−1 − M) +
n∑
j=0

(−1) j (χ(Bj ) + χ(Mj ) + χ(C j )) =
{
0 if n even
2 if n odd,

whereM is the union of strata of codimension at least one and Bj , Mj andC j respec-
tively represent the union of bifurcation, mixed and conflict strata of codimension
j .

For a surface M generically embedded in R3, the Maxwell strata of the family of
height functions on M determine a graph M on S2 that we call the Maxwell graph.
The extremal points of the Maxwell graph (bifurcation strata of type A2) correspond
to external cusps of theGaussmap (i.e., cusps of theGaussmap lying on the boundary
of the convex hull of the surface). The other vertices of the graph (conflict strata of
type A1 + A1 + A1) are trivalent and correspond to the (isolated) tritangent support
planes of the surface. On the other hand, the edges of the graph (conflict strata of
type A1 + A1) are determined by the normal directions to the (1-parameter) family
of support bitangent planes of the surface. By applying the equality above to this
particular case, we obtain:

Corollary 3.1 ([83])Given a generic surface M in 3-space, the numbers C of exter-
nal cusps of the Gauss map and T of tritangent support planes on M satisfy

C − T = 4 − 2χ(M ∩ H(M)).

An interesting consequence is that the existence of support tritangent planes
implies the existence of (external) cusps of the Gauss map. Moreover, if the Gauss
map on a generic surface M has no external cusps, it follows that the internal
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part (= complement of the external part) of M must be non simply connected. Some
other results in this direction for 3-manifolds immersed in R

4 can be found in [81].

3.2 Canal Surfaces of Curves in R
3

The canal hypersurface C(γ) of a closed curve γ embedded in a R3 is given by

C(γ, ε) = {γ(t) + εν : t ∈ S1, ν ∈ (Nγ(t)M)1},

where (Nγ(t)M)1 denotes the unit sphere in the normal subspace Nγ(t)M of M at
the point γ(t). Clearly, for ε small enough, C(γ, ε) is a torus embedded in R

3. We
can fix such a value of ε and just denote C(γ). It is easy to see that we have the
following relation between the singularities of the height functions on γ and onC(γ)

(respectively denoted hv and h̄v):

(i) A point x = γ(t) is a singular point of the height function hv if and only if
(x, v) ∈ C(γ) is a singular point of h̄v . Furthermore, the R-singularity type of
hv at x is the same as that of h̄v at (x, v).

(ii) A point (x, v) is a degenerate singularity of the height function h̄v on the surface
C(γ) if and only if (x, v) is a singular point of the Gauss map G on C(γ).

It follows that the Maxwell graph of the (family of height functions on the) curve
γ coincides with the Maxwell graph of its canal surface and a simple calculation
shows the following:

(a) The cusps of the Gauss map on the canal surface correspond to the torsion zero
points of the curve. More precisely, if γ(t) is a torsion zero point of the curve γ,
then the points (γ(t), b(t)), where b(t) is the binormal vector at γ(t), are cusps
of the Gauss map of the canal surface of γ.

(b) Tritangent planes of γ(t) correspond to pairs of tritangent planes on its canal
surface. Therefore, the extremal vertices of theMaxwell graph defined by a curve
in 3-space correspond to torsion zero points whose osculating plane is a support
plane of the curve.

(c) The trivalent vertices correspond to support tritangent planes.
(d) The edges are given by the normal directions to the support bitangent planes

family.

The local structure of the convex hull of a curve γ inR3 was described in [96]. The
convex envelope of a closed curve substantially embedded in R

3 is homeomorphic
to a 2-sphere. For a conveniently defined (open and dense) subset of generic curves
in R3, V. D. Sedykh proved that the open subset H(γ) − γ is a C1-surface, whereas
the points in γ ∩ H(γ) are the C0-singularities of H(γ).

From a global viewpoint, the topological analysis of the Maxwell graphs in the
case of generic curves leads to the following properties that were shown in [84]:
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(i) A generic closed curve is convex (i.e. lies on the boundary of its convex hull) if
and only if its Maxwell graph has exactly two connected components. Otherwise,
it has just one.

(ii) If a closed curve is convex, then each connected component of its Maxwell graph
is contractible.

All these considerations lead to the following:

Theorem 3.2 ([84]) Given a closed curve γ generically immersed in R
3, denote

respectively by C, T and ρ the numbers of external torsion zero points, support
tritangent planes and connected components of γ − γ ∩ H(γ). Then the following
relation holds:

C − T = 4 − 2ρ.

As an immediate consequence of this formula we get the following

4-vertex theorem for closed curves in 3-space: A convex closed curve generically
immersed in R

3 has at least 4 torsion zero points.

If we take into account that stereographic projection takes torsion zero points
of curves in the 2-sphere to vertices of plane curves, we can view this result as a
generalization of the well known 4-vertex theorem for closed curves in the plane.
In fact, a similar argument, based in the fact that the vertices of a plane curve are
the end points of its cut-locus, can be used in order to give a proof of the 4-vertex
theorem for closed curves generically immersed in the plane (this proof is due to A.
Weinstein, according to [104]). On the other hand, an extension to (non necessarily
generic) convex closed curves in 3-space with no zero curvature points was obtained
by V.D. Sedkh in [98]. A more general approach to the study of four vertex theorems
(including vertices of curves in Minkowski planes) can be found [105, 107]. Some
generalizations Theorem 3.2 to curves with possible isolated zero curvature points
and/or singular points, respectively obtained in [12, 93] are the following:

(a) Let α : S1 → R
3 be a C3 simple closed convex curve, with possible isolated

singular points and vanishing curvature at isolated points. Let S, K and V
respectively denote the number of singular points, zero curvature points and
vertices (zero torsion points) of α. Then the following relation holds,

3S + 2K + V ≥ 4.

(b) Any regular simple closed C4-curve α : S1 → R
3 with nowhere vanishing cur-

vature, no bitangent lines, having finite total order contact with any plane and
finitely many vanishing torsion points, satisfies

C + 2ρ ≥ 4 + P,

where C is the total number of points of the curve at which the osculating plane is
of support, P is the total number of support planes whose contact points with the
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curve are not all in the same line and ρ is the number of connected components
of the set of points of the curve lying inside its convex hull.

As a consequence of this we can assert:
Provided the torsion of such a curve never vanishes, the curve enters at least twice

in the interior of its convex hull.

Given a closed spacial curveγ, we call themaximal arcs ofγ lying on the boundary
of its convex hull the external segments of γ. Then we say that a vertex of a closed
spacial curve γ is external provided it entirely lies on the boundary of its convex
hull. The following inequality was proven in [94]

Any C3-embedded closed space curve γ with a finite number of vertices, having
V external vertices, K zero-curvature points and d external segments satisfies the
following relation

V + 2K + 2d ≥ 4 + T .

Other relevant results of global type for space curves, which are obtained by
similar methods, are the following:

1. The number of tritangent planes of a curve in general position with no torsion
zero points is even [21].

2. The number of bitangent osculating planes of a generic curve is even [69, 97].
3. The number of torsion zero points of generic closed curves without cross tangents

and bitangent osculating planes is a multiple of 4 [70].

Further results concerning the relation between the (indexed) number of torsion
zero points and the number of tritangent planes were also obtained by Banchoff,
Gaffney and McCrory [3] and Ozawa [74]. More recent results in this direction, due
to M. Ghomi [26], provide inequalities involving the numbers of pairs of points with
parallel tangent lines, inflections and vertices of closed space curves in 3-space. Also,
an extension of the classical four vertex theorem to closed curves that bound simply
connected compact surfaces of constant curvature can be found in [25].

4 The Geometry of Surfaces in R
n from a Viewpoint of

Their Contacts with Models

Let M be a surface locally determined by a smooth immersion f : R2 → R
n, n ≥ 3.

The curvature ellipse of M at a point x ∈ f (M) is constructed as follows [49]:
Consider the unit circle in TxM parametrized by the angle θ ∈ [0, 2π] and let γθ

be the normal section of M in the direction θ and ηθ the curvature vector of γθ.
The vector ηθ clearly lies in the normal space NxM . As θ varies from 0 to 2π, the
extremum of ηθ describes an ellipse in NxM which is known as the curvature ellipse
of M at x . A point x ∈ M is said to be hyperbolic, elliptic or parabolic according to
x lies outside, inside, or on the curvature ellipse of M at x . The curvature ellipse may
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degenerate to a segment a some points, called semiumbilics. An inflection point is a
point x that is both, parabolic and semiumbilic, this means that the curvature ellipse
degenerates to a segment at the point x , which lies on the affine span of this segment
in NxM . Inflection points may be imaginary, real or flat according to they lie off,
inside or at one of the end points of the curvature segment. A direction θ ∈ TxM is
called asymptotic provided the vectors ηθ and

∂ηθ

∂θ
are parallel. It is easy to see that

there are exactly 2, 0 or 1 asymptotic directions respectively at hyperbolic, elliptic
and parabolic points of M . In the case of inflection points, all the tangent directions
are asymptotic. The vector joining the point x with the center of the curvature ellipse
of M at x is themean curvature vector of M at x . A point is said to beminimal if the
mean curvature vector vanishes at it and a surface is calledminimal if it is completely
made of minimal points. It can be seen ([49], p. 28) that for most immersions the
minimal points are isolated. Clearly, minimal surfaces are non generic in the sense
that most small enough perturbations of them are non minimal. As an immediate
consequence of the above definitions we can assert:

(1) Minimal surfaces in Rn do not have hyperbolic, nor parabolic points.
(2) Inflection points of minimal surfaces are all of real type.

An interesting question yet to be studied is the behavior of the set of inflection points
at minimal surfaces (e.g., existence or local and global structure).

We shall see now how to interpret and analyze the behavior of the above geomet-
rical concepts in terms of the singularities of height and distance squared functions
on a surface M .

Consider the family of height functions on M in R4, where we suppose that M is
(locally) given as the image of an embedding f : R2 → R

n, n > 3,

H : M × Sn−1 −→ R
n

(p, v) �−→ hv(p) = 〈 f (x), v〉.

It can be seen [53] that

(1) A point is elliptic if and only if it is a nondegenerate singularity of any height
function associated to a normal direction to M at x .

(2) A point is hyperbolic if and only if it is a degenerate critical point (generically
of type A3 along curves and A4 at isolated points of M) of exactly two height
functions on M . The corresponding normal vectors are said to be binormals of
M at x .

(3) A point x is parabolic if and only if there is a unique height function having a
degenerate critical point at x (generically of type A2 and possibly of type A3 or
D4 at isolated points).

(4) A parabolic point is an inflection point if and only if it is a singularity of type
corank2 (generically D±

4 ) for the height function in the uniquebinormal direction
of M at x . Flat inflections do not occur on surfaces generically immersed in R4.

(5) The set� of parabolic points ofM is a (non necessarily connected) smooth curve
with normal crossings at inflection points of real type, together with possible
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isolated points corresponding to inflection points of imaginary type. If the surface
is closed, then this curve is closed too.

(6) The curves of parabolic points separate M into hyperbolic and elliptic regions
(respectively denoted Mh and Me). The imaginary inflection points are isolated
points lying in the interior of the hyperbolic region.

(7) The hyperbolic region of any closed surface in R
4 is nonempty.

An interesting result, due to Dreibelbis [15] is the following: Consider the surface
BM ⊂ S3, determined by all the binormal directions of a surface M immersed inR4,
then provided the normal curvature of the M vanishes, the asymptotic curves on M
lift to geodesics on BM

We can also consider the family of distance squared functions on M ,

d : M × Sn−1 −→ R
n

(x, a) �−→ || f (x) − a||2.

Those points of a ∈ R
n for which the function da is non stable (i.e., non Morse) are

known as the focal centers of M and form the focal set of M in Rn. They are the
centers of hyperspheres of Rn with higher order of contact with M , i.e., the focal
hyperspheres. The focal centers for which the function da has corank 2 are called
umbilical foci. The generic contacts of surfaces with hyperspheres in R

4 were first
analyzed by Montaldi [59], who proved:

(i) The semiumbilic points of a surface M immersed in R
4 are the singularities of

corank 2 of the distance squared functions on M , i.e., the umbilical foci.
(ii) On a generically immersed surface, the semiumbilic points form immersed

curves with no self intersections.

The semiumbilic points of surfaces immersed in higher codimension were studied
in [63, 64], where it was shown that the corank 2 singularities of distance squared
functions on a surface immersed inRn, n ≥ 3 coincide with the ν-umbilic points, for
the different normal fields ν on the surface.

The bitangencies between pairs of surfaces immersed in 4-space have been ana-
lyzed by Dreibelbis in [14], who proves that for a generic immersion f : M → R

4,
the pair given by f and any small enough translation fv of f along a generic direction
v ∈ S3, satisfies the following relations:

(i) B + D = ν( f )ν(g),

(ii) B + D + Ev + 1
2 Pv = 1

2ν( f )2,

where D and B are respectively the numbers of double points and bitangencies
counted with sign; ν( f ), ν(g) denote the normal Euler numbers of f and g, respec-
tively; Ev is the number of elliptic points of f where v is a tangent vector and Pv is the
number of parabolic points with a flecnodal normal perpendicular to v counted with
sign. We can view the last result as a generalization of Fabricius-Bjerre’s formula
for a closed generic plane curve. Further extensions can be found in [16, 17].
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In the case of a 3-manifold M immersed in R
n, n ≥ 5 the curvature ellipse,

becomes a more sophisticated object, which is called curvature Veronese. This is
obtained as a convenient projection (that depends on the coefficients of the second
fundamental form) of the classical Veronese surface of order 2 in the normal space of
M at each point. A complete description of its possible shapes for surfaces immersed
into R

5 and R
6 is given in [6]. Some connections between the behaviour of the sin-

gularities of height functions and the shape of the curvature Veronese at each point
can also be found in [6]. On the other hand, [18] provides a natural extension of the
notions of asymptotic directions, parabolic curves and inflection points n-manifolds
immersed in R

2n , investigating some of their properties. The case of 3-manifolds
immersed in R

6 is analyzed with detail, describing the possible generic algebraic
structures of the asymptotic vectors at parabolic and inflection points, as well as the
generic topological structures of the parabolic surface.

4.1 Convexity and Existence of Inflection Points
on Surfaces in R

4

The asymptotic directions on the hyperbolic region of a surface immersed in R
4

determine a pair of foliations, which are determined by convenient binary differential
equations (see Sect. 7.3 in [46] for their definition and analysis)). The critical points
of these foliations are the inflection points of the surface and their local behaviour
at such points has been studied in [22] in the case of inflection points of imaginary
type and in [9] at the inflection points of real type. We point out that the inflection
points of imaginary type are the singular points (Darbouxian umbilics) of the fields
of asymptotic directions and they have indexes 1

2 (cases D1 and D2) or − 1
2 (case

D3).
Since the inverse stereographic projection from R

3 to S3 maps curvature lines
of surfaces in 3-space into asymptotic lines of their spherical images, considered as
surfaces in 4-space, we can conclude easily that a closed surface immersed inR4 that
lies a 3-sphere and is generic from the viewpoint of its contacts with hyperplanes of
R

4 has exactly two orthogonal asymptotic directions at each point, except at most
at a finite number of inflection points of imaginary type. We shall see now that this
property can be extended to a more general class of surfaces in R4. In fact, a surface
M is said to be locally convex if it has a locally support hyperplane at each point.
Notice that the orthogonal direction to a support hyperplane at some point x ∈ M
determines a height function that has either a (local) minimum or a (local) maximum
at x . Then we have,

Proposition 4.1 ([53]) A generic surface M in 4-space is locally convex if and only
if M is made of hyperbolic and (isolated) inflection points.

An immediate consequence is that generic locally convex surfaces have two glob-
ally defined asymptotic directions fields whose critical points are isolated imaginary
inflections.
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Remark 4.2 From a local viewpoint, we must point out the relation between the
convexity and the existence of binormal/asymptotic directions at a given point. On
the other hand, it was shown in [71] that a necessary and sufficient condition for the
vanishing of the normal curvature at a point x of an m-submanifold of codimension
2 in Euclidean space is the existence of exactly m mutually orthogonal asymptotic
directions at x .

Let M be a smooth compact surface (possibly with boundary) and suppose that
V is a smooth line field on S with finitely many critical points, all contained in
the interior of S, and finitely many (s) inner and (n) outer contact points with the
boundary of S. Then the sum of the indices at the critical points of V is given by the
following relation, known as the generalized Poincaré–Hopf formula [79],

I nd(V ) = χ(S) + s − n

2
.

Observe that if∂S = ∅ then s = n = 0, and this becomes the classical Poincaré–Hopf
formula. Now, as a result of applying the Poincaré–Hopf formula to the asymptotic
direction fields on generic locally convex surfaces, we obtain:

Theorem 4.3 ([22]) A generic locally convex immersion of a closed surface M in
R

4 satisfies the following relation

2|χ(M)| ≤ �{inflection points}.

An immediate consequence is the following:

Corollary 4.4 Any generic locally convex immersion of a compact surface with
nonvanishing Euler number in R4 has at least 4 inflection points.

A particular case of convex surface in R
4 is given by the image of a surface in

3-space trough the inverse of the stereographic projection ψ. The singular points
(umbilics) of the principal curvature direction fields of a surface M in 3-space are
taken by ψ to the singular points (inflections) of the asymptotic direction fields on
ψ(M) considered as a surface in 4-space. Consequently, the Corollary 4.4 generalizes
the following result obtained by Feldman [20] for generic closed surfaces in 3-space:

Corollary 4.5 Any 2-sphere generically immersed into R
3 has at least 4 umbilic

points.

This result represents a generic version of the following more general statement,

Carathéodory conjecture: Any closed convex and sufficiently smooth surface
immersed in R

3 has at least two umbilic points.

A way to approach this question, which is based in the application of Poincaré–
Hopf’s formula and has been followed by several authors, consists in investigating
the possible values for the indices of the umbilic points of surfaces immersed intoR3.
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It is known how to construct examples of local immersions of surfaces with umbilics
of any index ≤ 1. Therefore, the following assertion can be considered as a local
(stronger) form of the above conjecture.

Loewner conjecture: The index of the principal directions field at an umbilic
point of a surface immersed in R

3 is at most 1.

Theproof of this last conjecture has a longhistory.According toD.J. Struik thefirst
references go back to 1922, appearing in the works of Cohn-Vossen, Blaschke and
Hamburger, who attributed the first conjecture to C. Carathéodory. The first attempt
to prove it, which was due to Hamburger [41–43] considered the analytic case. Since
then, several authors have searched a shorter and clearer proof [7, 47, 95, 106]. The
proof, which is certainly very hard, seems to have some gaps in all these works.
A good review on the state of the problem during the 20th century is provided in
[40]. A more recent attempt that uses complex analysis techniques (analytic implicit
functions,Weierstrass preparation theorem, Puiseux series, and circular root systems)
is due to V.V. Ivanov [45]. Although there is so far some controversy on correctednes
of the different proofs, the analytic version of the conjecture seems to be accepted
as true by most authors. Some aspects of the smooth case were considered in [36,
101]. More recent attempts to prove the conjecture in the smooth case can be found
in [31, 67] Also, an interesting related result reformulating the global conjecture for
C2-surfaces in terms of the existence of at least one umbilic point in the graphs of
asymptotically constant functions on the plane has been obtained by M. Ghomi and
R. Howard [27].

Now, in view of Corollary 4.4, it seems natural to propose the following:

Generalized Carathéodory conjecture: Every closed convex immersion of the
2-sphere in R

4 has at least two inflection points.

Some facts giving support to this conjecture are the following:

(1) C. Gutiérrez and M. Ruas [37] proved that under very mild conditions, stated in
terms of Newton polyhedra of the coordinate functions of the embedding, the index
of an isolated inflection point of a locally strictly convex surface embedded in R4 is
the same as the index of an umbilic point of a surface immersed in R

3.
(2) J. Nuño Ballesteros [68] considered a particular case of locally convex surfaces
immersed in R

4 given by those that admit a local non-degenerate parallel normal
field at each point. He proved that this condition is equivalent to asking that all
the points are semiumbilic and that the Gaussian curvature of the surface does not
vanish. In such case, it is possible to define a Gauss mapGν : M → S3, whose image
defines an immersed submanifold Mν in S3. This submanifold has the following
property: If M has a contact of a given type with a hyperplane, then Mν has the
same contact type with the translated hyperplane. But this means that Mν has this
same contact with the 2-sphere determined by the intersection of S3 with the last
hyperplane. By taking stereographic projection, this is transformed into the contact
of a surfacewith somehypersphere inR3. In otherwords, this construction transforms
diffeomorphically the asymptotic configuration on a surface M immersed inR4, into



312 M. C. Romero Fuster

the principal configuration of its image Mν through the stereographic projection in
R

3. As consequence of this setting we can assert the following:

Loewner’s and Carathéodory’s conjectures on umbilic points of principal direc-
tion fields on surfaces in R

3 hold if and only if they hold for inflection points of
asymptotic configurations on surfaces with non vanishing Gaussian curvature in R4

totally made of semiumbilic points.

Here we observe that the asymptotic lines this surfaces coincide with their unique
principal configuration. Moreover, in the particular case of surfaces contained in S3,
the inflection points become umbilics.

Remark 4.6 We point out that, as shown in [38], given any n ∈ Z, there is an ana-
lytic immersion f : R2 → R

4 having a normal field ν and a ν-umbilic point x with
index n

2 . This implies that the Loewner conjecture does not hold for principal con-
figurations associated to arbitrary normal fields on submanifolds in 4-space. So the
above conjecture just concerns the asymptotic configurations, i.e., those associated
to binormal fields on surfaces in 4-space.

We turn back now to the generic situation and describe how to extend the above
results to non convex surfaces inR4. Observe that ifwe denote byH(M) the boundary
of the convex hull of a surface M immersed in R

4, we have that M ∩ H(M) �= ∅.
Then M is locally convex at any point x ∈ M ∩ H(M) and hence x is a hyperbolic
point of M , so we can assert:

The hyperbolic region of any closed surface M immersed in R
4 is non empty.

Now, since the elliptic region of a non locally convex surface M is non empty,
provided M has no real inflection points, the parabolic points form a smooth (non
necessarily connected) closed curve separating the hyperbolic region Mh from the
elliptic region Me. The two asymptotic fields defined on the hyperbolic regions may
become tangent to the parabolic curve at (generically) isolated points which coincide
with those at which the curve of flat ridges meets the parabolic curve, so we call them
parabolic flat ridges. On the other hand, the singularities of the asymptotic direction
fields occur at isolated inflection points of imaginary type contained in the interior of
the hyperbolic region. Therefore, as a consequence of the generalized Poincaré–Hopf
formula [79], we obtain the following:

Theorem 4.7 ([22] If M is a generically immersed closed surface (non necessarily
orientable) in R4 with no inflection points of real type, then

2|χ(cl(Mh))| ≤ �{in f lectionpoints} + �{parabolic f latridges}.

Corollary 4.8 If χ(cl(Mh)) �= 0, then M has either inflection points or parabolic
flat ridges.

We can also consider immersions in higher codimension. It can be shown that
a surface M generically immersed in R

n, n > 5 does not have semiumbilic, nor
inflexion, nor umbilic, nor minimal points [30]. In such case, the curvature ellipse
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does not degenerate and defines a plane on the normal space at each point. Some
specially relevant points are the pseudo-umbilics, i.e., the points at which the mean
curvature vector H(x), determined by the center of the curvature ellipse at x , is
orthogonal to the plane determined by the curvature ellipse. It was also shown in [30]
that such points coincide with the critical points of the relative mean curvature lines
and are generically isolated. We consider now a natural generalization of the concept
of mean curvature lines to the general case of surfaces immersed with codimension
higher that two in Euclidean space: For a surface immersed into R4, the normal line
in the direction H(x) cuts the curvature ellipse in two opposite points (except at
the special situations in which the ellipse degenerates into a radial segment, or if
H(x) = 0). These two points determine a couple of orthogonal tangent directions
known as themean curvature directions at x . Such directions are characterized by the
fact that the curvature vector of the normal section of the surface along them is parallel
to the mean curvature vector H(x). The generalization of this procedure to surfaces
immersed in Rn with n > 4 embodies some problems due to the fact that the plane
determined by the curvature ellipse does not pass through the origin of the normal
space at a generic point x . This means that there are no tangent directions whose
normal section’s curvature vector is parallel to H(x). To overcome this difficulty
we observe that, from a qualitative viewpoint, all the principal configurations on the
surface arise from normal vector fields parallel to the subspace determined by the
curvature ellipse at every point (see [65]). In fact, any normal vector v ∈ NxM can be
decomposed into a sum v1 + v2, where v1 and v2 are vectors respectively parallel and
orthogonal to the plane determined by the curvature ellipse. Now, the shape operator
associated to v2 is a multiple of the identity and thus the eigenvectors of the shape
operator associated to v coincide with those of the shape operator associated to v1.
This suggests the convenience of defining the relative mean curvature directions at a
point x of a surface immersed inRn, n ≥ 4 as those inducing normal sections whose
curvature vector is parallel to the component of H lying on the ellipse plane at x .
This procedure leads to two orthogonal foliations globally defined on the surface
whose critical points are the semiumbilic and the pseudo-umbilic (with inflection
points and minimal points considered as non-generic particular cases). The analysis
of the behavior of these foliations together with Poincaré–Hopf’s formula leads to
the following,

Theorem 4.9 (1) A generic immersion of a 2-sphere into R
5 has either (isolated)

semiumbilic points, or at least four points at which the mean curvature vector
H is orthogonal to the normal subspace determined by the curvature ellipse.

(2) A generic immersion of the 2-sphere into R
n, n ≥ 5, has at least four points

at which the mean curvature vector H is orthogonal to the normal subspace
determined by the curvature ellipse.
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4.2 Existence of Semiumbilics, Semiumbilicity and Sphericity

Given a unit normal field ν on M , the ν-principal curvatures at a point x ∈ M are
the extremal values of the projection of the normal curvature vector k(θ) in the
direction ν, for θ ∈ [0, 2π] and the principal directions are the corresponding angles
θi , i = 1, 2. So θ is a ν-principal direction if and only if

0 = d〈η(θ), ν〉
dθ

= 〈dη(θ)

dθ
, ν〉.

These values of θ correspond to the points η(θ) at which ν is normal to the ellipse. In
other words, the ν-principal curvatures at x are the maximum and minimum values
of the height function

hν : NxM −→ R

w �−→ 〈v, ν〉.

over the curvature ellipse in NxM .
When x is a semiumbilic point, the extremal values of hν are reached at the

end points of the curvature segment, for any normal direction ν. So the principal
directions of any normal field ν on M coincide with the asymptotic directions at x
and we thus have that the asymptotic directions are orthogonal at the semiumbilic
points of a surface immersed in R

4.

The semiumbilic points can also be characterized in terms of the behaviour of
the normal fields on the surface. An umbilic point of a normal field ν on M is a
point x ∈ M at which the two ν-principal curvatures coincide. In such case, the
shape operator Sν(x) is a scalar multiple of the identity, the scalar being the (unique)
principal curvature at x . We say that x is a ν-umbilic point. Suppose that x is a
semiumbilic point of M , so the curvature ellipse is a segment and its span Ex is a
1-dimensional subspace of NxM . Then it is not difficult to see that any normal field ν
such that ν(x) lies in the orthogonal complement E⊥

x of Ex has x as an umbilic point,
And conversely, if 〈η(θ), ν〉 is a constant for all θ at x , it follows that the curvature
ellipse lies in ν⊥ and hence it is a segment, so x is a semiumbilic point and thus we
have that

A point x of a surface M immersed in R
4 is semiumbilic if and only if x is an

ν-umbilic point of some normal field locally defined at x on M .
We quote from [49] some properties of the curvature ellipse of a surface immersed

in 4-space that are be relevant in order to get some global results on the geometry of
surfaces in 4-space:

The area of the curvature ellipse, which is a scalar invariant, at x coincides with
1
2 |N |, where N is the curvature of the normal bundle of M at x (see [49]) Then,
provided the ellipse is not a circle, we can choose the tangent frame {e1, e2} on the
normal plane, so that the vector η(θ) − H coincides with the semimajor axis vector
B for θ = 0 and with the semiminor axis C for θ = π

4 . In the case of a circle we can
work with any frame and we get the equality
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〈H, H〉 − K = 〈B, B〉 + 〈C,C〉,

where K is the Gaussian curvature and H is the mean curvature of M . Now, since
the area of an ellipse with semiaxis B and C is given by π|B||C |, we get

|N | = 2|B||C |,

〈H, H〉 − K = 〈B, B〉 + 〈C,C〉.

So the shape of the curvature ellipse is completely determined by the scalar invariants
|N | and 〈H, H〉 − K . An immediate consequence is that a point x ∈ M is semium-
bilic if and only if N (x) = 0.

On the other hand, if θ1 and θ2 are the two asymptotic directions at a hyperbolic
point x , we have the following formulae [109],

tan2(θ1 − θ2) = �

N 2
, (1)

tan2 � = �

K 2
, (2)

where � represents the angle at the origin subtended by the ellipse, that is, the angle
determined by the normal vectors η(θ1) and η(θ2) in NxM , which coincides in turn
with the angle determined by the two binormals at x and � is a scalar invariant of
the surface, defined in terms of the coefficients of the second fundamental form at
each point, as follows:

� = 1

4

∣∣∣∣∣∣∣∣

a1 b1 c1 0
a2 b2 c2 0
0 a1 b1 c1
0 a2 b2 c2

∣∣∣∣∣∣∣∣
(3)

= 1

4

(
4(a1b2 − a2b1)(b1c2 − b2c1) − (a1c2 − a2c1)

2
)
.

An immediate consequence of the first formula is:

Apoint x is semiumbilic if and only if the two asymptotic directions are orthogonal
at x .

We can summarize the above considerations on semiumbilic points in the
following:

Theorem 4.10 Given a surface M immersed inR4 and a point x ∈ M, the following
assertions are equivalent:

(1) x is semiumbilic.
(2) N (x) = 0.
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(3) x is ν-umbilic, for some normal field ν on M.
(4) There are two orthogonal asymptotic directions at x.

It follows, in particular, that the critical points of the binormal fields are the
inflection points of M and the umbilic points are critical points for all the principal
configurations on M . Now, we can use the following:

Theorem 4.11 ([4]) A surface embedded in R4 is orientable if and only if it admits
some globally defined normal field.

And as a consequence of the Poincaré–Hopf formula relating the Euler number
and the index of a tangent direction field on a closed surface, we obtain the following
result on the existence of semiumbilics:

Corollary 4.12 Any embedding of an orientable closed surface with nonvanishing
Euler number in R4 has semiumbilic points.

Finally, since J. Little proved in [49] (page 291) that any embedding of the torus
in R4 has semiumbilic points, we can state:

Corollary 4.13 Any embedding of an orientable closed surface in R
4 has semium-

bilic points.

Taking into account that the semiumbilicity condition is equivalent to the vanish-
ing of the curvature of the normal bundle at the considered point, the above corollary
amounts to say:

There are no closed orientable surfaces with never vanishing normal curvature
immersed in R

4.
A surface all whose points are semiumbilic is said to be a totally semiumbilical

surface. A particular case of totally semiumbilic surfaces inR4 is made of those lying
in a 3-sphere. It is thus quite natural to search for sufficient conditions on a totally
semiumbilical surface to be hyperspherical.

Totally semiumbilic surface M have two binormal globally defined fields, b1 and
b2, whose critical points are the inflection points (including the umbilic points as a
particular case of inflection points) of M . The binormal fields are characterized by
the fact that one of their two principal curvatures vanishes identically on M . We call
the other principal curvatures thebinormal curvatures on M . We denote by κ1 and
κ2 the two binormal curvatures (respectively associated to b1 and b2) on a totally
semiumbilical surface M . The following result provides necessary and sufficient
conditions on a totally semiumbilical surface to lie on a 3-sphere.

Corollary 4.14 ([92]) Suppose that M is a surface with isolated inflection points in
R

4. Then M is hyperspherical if and only if its asymptotic lines are globally defined
and orthogonal and its binormal curvatures {κi }i=1,2 satisfy the following relation

(
κ1

κ2
+ κ2

κ1
+ 2cos�

)
E = constant,

where � is the angle between the two binormals at each point.
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Some of the above results can be generalized to submanifolds of codimension
2 in Euclidean space. In fact, the concept of asymptotic and binormal direction on
submanifols of codimension 2 in R

n where introduced in [54] in a natural way in
terms of singularities of height functions. It was there shown that:

(a) An n − 2-manifold immersed inRn admits at most n − 2 binormal directions at
each point.

(b) A sufficient condition for the existence of at least one asymptotic direction at a
point is the local convexity. Here, we say that a submanifold is locally convex if
it admits a locally support hyperplane at a point.

In [71] it was shown that strict local convexity is a sufficient condition for the
existence of the maximal number of binormal directions at a point, where we say the
M is strictly locally convex at a point x if the support hyperplane has non-degenerate
contact with M (i.e., the orthogonal direction determines a non-degenerate elliptic
function on M at x).

The concept of curvature locus at a point x of a submanifoldM of dimension n − 2
in Rn was considered in [71] as a natural generalization of the curvature ellipse of a
surface in R

4. This is a projection of the Veronese submanifold of dimension n − 3
into the normal space of the submanifold at x and it has been shown that it becomes
a convex polygon at the points at which the curvature of the normal bundle (normal
curvature) of M vanishes. It is also proven that submanifolds with everywhere
vanishing normal curvature admit an orthogonal basis made of asymptotic directions
at each point.

For surfaces in R4, we have seen:

(1) M is totally semiumbilic if and only if M has everywhere vanishing normal
curvature.

(2) M is strictly locally convex if and only if there exist 2 binormal fields over M .

On the other hand, in the case of higher dimensional submanifolds immersed with
codimension 2 in Rn , it can be seen [71]:

(1) If M is totally semiumbilic, then M has everywhere vanishing normal curvature.
The last condition implies that there exist n − 2 binormal fields over M .

(2) If M is totally semiumbilic, then M is strictly locally convex. The last condition
implies that there exist n − 2 binormal fields over M .

An example illustrating that the vanishing normal curvature does not imply strict
local convexity is given by the 3-manifold embedded in R

5 parameterized by f :
R

3 → R
5, where f (u1,2 , u3) = (u1, u2, u3, u21 − u23, u

2
2 − u23).

Clearly, for codimension 2 submanifold M in Euclidean space, hypersphericity
implies semiumbilicity (and thus vanishing normal curvature), for the position vector
provides an umbilic field globally defined on M . On the other hand, submanifolds
of codimension 2 with vanishing normal curvature, or even semiumbilical (n − 2)-
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manifolds immersed inRn , do not need to lie in an (n − 1)-sphere. Nevertheless, the
following classical result due to Chen and Yano can help us to find a sufficient and
necessary condition for hypersphericity in terms of the behaviour of the curvature
ellipse.

Theorem 4.15 ([10]) An (n − 2)-submanifold lies in a hypersphere of Rn if and
only if it is ν-umbilic for some parallel normal field ν.

We observe now that the curvature locus is a segment at a point x ∈ M if and only
if x is ν-umbilic for some field ν, which is orthogonal to the direction defined by the
segment in the normal plane of M at each point. Then, provided the umbilic points
are isolated, we can apply this result to the open and dense submanifold determined
by the complement of the umbilic points and extended it by continuity to the whole
of M . So we can state,

Corollary 4.16 ([71]) Let M be an (n − 2)-manifold immersed in Rn with isolated
umbilic points. Then M lies in a hypersphere if and only if the curvature locus at
every point of M is a segment that defines a parallel field off the umbilic points of
M.

The concept of curvature locus can be naturally generalized to higher dimensional
submanifolds. In the case of a submanifold immersed in codimension 2, it is a pla-
nar convex region (possibly degenerated into a segment or a point) some of whose
properties have been analyzed in [71]. For 3-manifolds immersed in codimension
3 or more, the curvature locus is obtained as a linear projection of a Veronese sub-
manifold of order 2 in the normal space of the manifold at each point and may have
several shapes, whose singularities can be interpreted in terms of the behaviour of
the principal directions of the normal fields on the submanifold [6]. Analogously to
the case of surfaces immersed inRn , it is possible to connect several properties of the
curvature locus with the behaviour of the height functions family on the considered
submanifold. For instance, it can be seen that a 3-manifold M immersed in R

3+k is
strictly locally convex at a point x if and only if the origin of the normal plane is
not contained in the convex hull of the curvature locus of M at x . Some relations
between the properties of the curvature locus, semiumbilicity, local convexity and
existence of degenerate directions for height functions on submanifolds immersed
with codimension higher than 2 have been described in [72].

4.3 Existence of 2-Regular Immersions

The concept of kth-regular immersion of a submanifold in Euclidean space was
introduced in [19, 78] in terms of maps between osculating bundles. In the case
of curves, the k-regularity condition means that the first k derivatives are linearly
independent. Therefore, a 2-regular plane curve is a strictly convex (in the sense that
it has never vanishing curvature) curve. The 2-regular space curves are the space
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curves with never vanishing curvature and the 3-regular space curves are the space
curves with never vanishing curvature and torsion. An interesting question that arises
in this context is the following:

Under what conditions can we ensure the existence of 2-regular immersions from
a given closed submanifold into Rn?

In the case of closed plane curves, ellipses and ovals provide a trivial positive
answer for the existence 2-regular immersions. Yet in the case of space curves it can
be shown by standard transversality techniques that the subspace of 2-regular closed
simple curves is open and dense inC∞(S1,R3) (see for instance [84]). The existence
of 3-regular embedded closed space curves was investigated by S.I.R. Costa [11],
who determined necessary and sufficient conditions for a (p, q) toric curve to be
3-regular. On the other hand, as a consequence of Theorem 3.2, we can deduce that
the convexity is an obstruction for the 3-regularity on embedded closed space curves.

For a surface M immersed inRn, n ≥ 4 we have, in local coordinates, that a point
x ∈ M is 2-regular if and only if the subset of vectors determined by the first and
second derivatives of the immersion at x hasmaximal rank. E.A. Feldman [19] proved
that the set of 2-regular immersions of any closed surface M inRn is open and dense
for n = 3 and n ≥ 7. In the case of surfaces inR4, the 2-singular points coincide with
the inflection points and it follows from Corollary 4.4 that the local convexity is an
obstruction for the 2-regularity of closed surfaces with nonvanishing Euler number.
An example of 2-regular convex surface with vanishing Euler characteristic is given
by the Clifford torus obtained as the natural embedding of S1 × S1 into in S3.

The study of the existence of 2-regular immersions of surfaces inR5 appears to be
more complicated and interesting. In this case, a 2-regular point x is characterized by
the fact that the curvature ellipse is either a segment, or determines a plane passing
through x . A classically known example of 2-regular immersion of S2 into R

5 is
given by the Veronese surface. This surface is obtained as the restriction to S2 of the
Veronese map of order 2, ξ : R3 → R

6, which is given by

ξ(u, v, w) =
(
u2, v2, w2,

√
2uv,

√
2uw,

√
2vw

)
.

The subset ξ(S2) lies in a hyperplane, or more precisely, in a 4-sphere given by the
intersection of a hyperplane with a hypersphere of R6. It is not difficult to check that
V |S2 is a double covering of the Veronese surface. Examples of 2-regular immersions
of closed orientable surfaces with non zero genus are not known so far.

We shall start by considering the particular case of a surface M contained in S4.
Given a surface immersed into R

5, we say that a point x ∈ M is of type Mk, k =
1, 2, 3, provided the second fundamental form has rank k at x . It is not difficult
to see that the M2 points of M coincide with the corank 2 singularities of height
functions on M . Then, given a surface contained in S4 ⊂ R

5, since the stereographic
projection φ : S4 → R

4 takes the corank 2 singularities of height functions on M to
the corank 2 singularities of the distance squared functions on its image in R

4, i.e.
the semiumbilic points, of φ(M), as a consequence of Corollary 4.13 we can state
the following.
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Corollary 4.17 There are no 2-regular embeddings of orientable closed surfaces
in S4.

By a 4-dimensional ovaloid we understand the image of a 4-sphere through an
affine map. Taking into account that affine maps preserve contacts with hyperplanes
and thus they preserve M2 points, we obtain the following more general result.

Corollary 4.18 There are no 2-regular embeddings of orientable closed surfaces
into 4-dimensional ovaloids.

Wesay that a surfaceM embedded inR5 is convex if it is contained in the boundary
of its convex hull. It follows that any surface embedded in an ovaloid is convex inR5.
Clearly, convex surfaces admit some (non necessarily unique) support hyperplane at
every point. It seems now quite natural to propose the following,

Conjecture: Orientable closed surfaces do not admit convex 2-regular embed-
dings in R

5.

A surface M immersed in R
5 is said to be strictly locally convex at a point x

provided it admits a locally support hyperplane with non-degenerate contact at x ,
or in other words, x is a non degenerate (Morse) local minimum of some height
function on M . It is not difficult to see that a surface immersed in R

5 is strictly
locally convex at all the points at which the second fundamental form has maximum
rank. The following more restrictive concept of local convexity for surfaces in R

5

was first proposed in [64]: A surface M immersed in R
5 is said to be essentially

convex at x if there is some normal vector v lying in the normal plane determined by
the curvature locus at x , such that the height hv is a nondegenerate elliptic function.
A surface that is essentially convex at each one of its points is said to be essentially
convex. This definition of convexity is based in the following concept of essential
binormal and asymptotic directions introduced in [64]: A binormal direction b at
a non semiumbilic point x of a surface in R

5 is said to be essential provided it
lies in the subspace Ex ⊂ NxM spanned by the curvature ellipse at x . The tangent
directions lying in the kernel of the Hessian of the height function hb are said to
be essential asymptotic directions at x . It can be shown that there are at most two
essential binormals at those points x ∈ M at which the second fundamental form has
maximum rank 3. Such normal directions were said to be essential because all the
possible principal configuration grids on the surface M are determined by them. In
fact, any normal field ν on M can be decomposed at each point x as a sum of an
umbilic component ν1 (which is orthogonal to the linear span Ex of the curvature
ellipse) plus an essential part ν2 lying in Ex . It follows that the field ν1 is umbilic
and hence the ν2-principal lines coincide with those of ν. The ν-principal curvatures
are a linear combination of the umbilic curvature and the principal curvatures of the
essential part at each point. So we may say that the essential normal fields, together
with the umbilic field,which is generically unique, contain all the information relative
to the principal configurations on the surface. Some interesting global consequences
are the following,

(1) An essentially convex surface M ⊂ R
5 without semiumbilic points admits two

globally defined fields of essential binormal directions.
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(2) Closed orientable essentially convex surfaces with non vanishing Euler number
in R5 have semiumbilic points.

As a consequence, we can state the following,

Theorem 4.19 An essentially convex immersion inR5 of a closed orientable surface
with non vanishing Euler number cannot be 2-regular.

Remark 4.20 Notice that (global) convexity does not imply essential convexity. In
fact, any surface M immersed in S4 is (globally) convex, but we have that M is
essentially convex inR5 if and only if its image through the stereographic projection
is (locally) convex in R4. So the inverse image of any non locally convex surface of
R

4 by stereographic projection provides an example of a convex surface in R
5 that

is non essentially convex.

Another obstruction to the 2-regularity of surfaces in R5 can be given in terms of
the umbilical curvature of M . This is defined (up to sign) as the curvature associated
to a unit vector which is orthogonal to the plane Ex determined by the curvature
ellipse at each point x ∈ M . Clearly, the umbilic curvature of M does not vanish at
the points at which the second fundamental form has maximal rank 3. Therefore, we
get that the 2-regular surfaces have never vanishing umbilic curvature. We observe
that the embedding of the projective plane in R

5, provided by the Veronese surface
exhibited above as an example of 2-regular immersion of the 2-sphere, has constant
non zero umbilic curvature. An interesting property of this immersion, that makes it
very degenerate from a contact viewpoint, is the fact that all its points are flat ridges.
Nevertheless, small enough perturbations of this immersion must provide generic
examples of 2-regular (non necessarily injective) immersions of the 2-sphere in R

5

that do not lie in a 4-sphere and do not have constant umbilic curvature.
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Equisingularity

Lê Dũng Tráng

Abstract We give a quick survey of problems concerning Equisingularity.

Classifications 14B05 · 14B12 · 32S15

Introduction

A singularity is the germ of a complex analytic space (X, x). Equisingularity means
the same singularity.

A naive view would be that two singularities are equisingular if they are analyt-
ically the same. It is known that two singularities (X, x) and (Y, y) are analytically
the same if and only if the local rings OX,x and OY,y are isomorphic (see e.g. [8]).

In the case of complex singularities of hypersurfaces, it seems that one may use
analytic isomorphism to define equisingularity, since for the most “simple” singular-
ities analytic isomorphisms and ambient homeomorphisms between the singularities
are equivalent.

For instance two complex cusps of plane curves are equally locally homeomorphic
in the local ambient space or analytically isomorphic. One expresses this property
by saying that the moduli of a complex cusp singularity is reduced to a point. More
generally themoduli of a space or a singularity is the parameter space of a deformation
of complex analytic spaces or singularities having the same “topological features”,
but being analytically different.

However, one knows that the moduli of a singularity is in general not reduced to
a point. In the case of plane curves the moduli of the germs of plane curves with one
Puiseux pair (3, 7) (see e.g. [25] Sect. 1 p. 284) is not reduced to a point. There is the
famous example of Riemann of a family of cubic curves having different analytic
structures. The cones on these cubic curves define a family of complex singularities
having different analytic structures.
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Therefore, the analytic isomorphism of germs does not seem to be the adequate
answer for equisingularity, since the analytic type can change continuously on a
complex analytic space.

Several mathematicians like H. Whitney, R. Thom, O. Zariski have tried to give
a good definition of equisingularity.

H. Whitney (see [30]) introduced a partition of a general complex analytic space,
called a Whitney stratification (see below). The article [30] is the fruit of several
discussions that H. Whitney had with R. Thom. Later R. Thom and J. Mather (in
[13, 22]) proved that locally along the strata of a Whitney stratification the analytic
space is a topological product.

In a paper published in 1937, O. Zariski used an argument very similar to equi-
singularity to prove that the fundamental group of the complement of a complex
projective hypersurface of dimension n ≥ 2 is isomorphic to the fundamental group
of the complement of the complex curve intersection of the hypersurface with a
general complex plane in the general plane section (see “A theorem on the Poincaré
group of an algebraic hypersurface”, Ann. of Math. 38 (1937), 131–141).

Unfortunately, at that timeO. Zariski did not have a clear definition of what should
be a general plane section and a fortiori of what should be equisingular sections. O.
Zariski used to call jokingly that paper his last italian paper.

The term of equisingularity appears in the papers of O. Zariski (see [32, 34]). The
viewpoint changed somehow. One considers a partition of the analytic space X such
that, for two points x1, x2 of a stratum of the partition, the germs (X ,x1) and (X, x2)
are equisingular. For Zariski, he considers algebraic varieties and he wants that the
partition is defined by algebraic data. In the case of a complex hypersurface the big
stratum is the stratum of non-singular points and the stratum of codimension one is
the one such that transversal sections by a plane of dimension 2 give a germ of plane
curve with the same Puiseux pairs, if the germ is a branch, or a germ of plane curve
with a given topology in the case of several analytic branches.

He could characterize the codimension one stratum with a new concept called the
saturation (see [36]).

In the period from 1965 to 1968, O. Zariski introduced the notion of saturation
of a ring. Then, he published an algebraic understanding of what he called equisin-
gularity in several papers [31–36]. Surprisingly these papers attract little attention
of the community of algebraic geometers. One of the reasons of this attitude might
be because the notion of equisingularity was not clearly defined but in the case
of plane curves for which equisingular germs of plane curves are germs of plane
curves with isomorphic saturation rings. Unfortunately this definition does not work
in dimension ≥2.

When the hypersurface singularity is isolated, in [14] (1968) J. Milnor has intro-
duced a multiplicity that we call the Milnor number of the isolated singularity which
is a topological invariant of the embedded topology of the hypersurface (see e.g. [26]
Proposition p. 261). However, two isolated hypersurface singularities having the
same Milnor number may not be topologically equisingular: two plane curves with
one Puiseux pair (p1, q1) and (p2, q2) such that (p1 −1)(q1 −1) = (p2 −1)(q2 −1)
have the same Milnor number:
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μ = (p1 − 1)(q1 − 1) = (p2 − 1)(q2 − 1)

but, if p1 �= p2, are not topologically equisingular.
In 1968 in a seminar at IHES, H. Hironaka made a conjecture that in a family of

plane curves withMilnor number constant, the local topology of the plane curve does
not change. In 1970 I found a proof of this conjecture (see [24] published in 1971). In
1971 together with C.P. Ramanujam I extended this result to complex hypersurfaces
of dimension≥3 (see [27] published in 1976). The restriction on the dimension came
from the use of the h-cobordism Theorem.

This topological result showed that equisingularity can be understood either topo-
logically, or algebraically, as Zariski tried to do for plane curves. The different ways
to define equisingularity should at least imply topological equisingularity. Further-
more one should be able to “stratify” an algebraic variety with equisingular germs
along each strata. The case of plane curves which should correspond to strata of
codimension one in a hypersurface would be the typical first example.

Finally, the concept of equisingularity, although vague, can be formulated in the
following way:

Let X be a complex analytic space. There is an analytic partition X = ∐
i∈I Xi ,

such that:

• The definition of the analytic partition should be given by algebraic conditions on
the local ring OX,x ;

• All the germs (X, x) with x ∈ Xi should be equisingular, e.g. topologically equi-
singular in the case of hypersurfaces;

• Following Zariski (see [31]) themultiplicity of (X, x) should be constant along Xi .

In these notes, in a quick way we shall present most of the aspects of Equisingularity
theory that is known nowadays, hoping that it will motivate younger mathematicians
to make research in this direction.

1 Basic Notions

1.1 Germs

Let X be complex analytic spaces and let x be a point of X . One calls germ of X
at the point x the pair (X, x). Let (X, x) and (Y, y) be complex analytic germs. The
germ at x of morphism from (X, x) into (Y, y) is the equivalence class of complex
analytic morphisms defined on a neighborhood of x in X into Y such that the image
of x is y and two such morphisms coincide on a neighborhood of x in X .

Germs of complex analytic spaces with germs of complex analytic morphisms
form a category that we shall call German. The objects of this category are germs
of complex analytic spaces and the arrows from (X, x) into (Y, y) are the germs of
morphisms of (X, x) into (Y, y).
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Similarly complex analytic algebras isomorphic to the local ringOX,x of germs of
complex analytic functions of some complex analytic space X at x form a category
Algan in which the objects are complex analytic algebras and the arrows are C-
homomorphisms of these algebras.

We have a natural functor:

� : German◦→ Algan

where German◦ is the opposite category of German and such that�((X, x)) = OX,x ,
where OX,x is the local ring of germs at x of complex analytic functions on X .

It is known that (see [8] p. 13–02):

Theorem 1.1 The functor � : German◦→Algan is an equivalence of categories
from the opposite of the category of complex analytic germs with the category of
complex analytic local algebras.

1.2 Analytic Equivalence

Of course one can classify singularities using analytic equivalence. Using Theorem
1.1 two singularities (X, x) and (Y, y) are analytically equivalent if the local analytic
rings OX,x and OY,y are isomorphic. However such a classification is too fine and if
x ∈ X the analytic structure of OX,x can vary continuously.

For instance, the complex surface ofC3 given by X (X−Y )(X+Y )(X+TY ) = 0
has a continuous analytic structure at the points (0, 0, t).

1.3 Topological Equivalence

In the case of hypersurfaces, one has an notion of topological equivalence.
The germs of hypersurfaces (X, x) and (Y, y) ofCn are topologically equivalent if

there exists a germ of homeomorphisms ϕ of (Cn, x) into (Cn, y) such that the image
of (X, x) is (Y, y). In what follows, we shall say that two topologically equivalent
hypersurface singularities are topologically equisingular.

This notion of topological equivalence does not extend to codimension ≥2 ana-
lytic spaces. For instance, two analytically irreducible germs of curves of Cn are
topologically equivalent if n ≥ 3.

1.4 Plane Curves

The case of germs of complex plane curves is the test case where all the criteria for
a good equivalence are working.
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As Zariski did, we shall call analytic plane branch an analytically irreducible
germ of reduced complex plane curve. Let us suppose that an analytic branch (C, 0)
is defined by the equation f = 0 where f is an irreducible germ of complex analytic
function of (C2, 0) at the origin 0. Let us suppose that the coordinates X,Y of (C2, 0)
satisfy the Weierstrass type condition:

f (0,Y ) �= 0.

One can define the Puiseux exponents relatively to the coordinates X,Y (see [25]).
Those Puiseux exponents define the knot type of the intersection { f = 0}∩Sε(0) ofC
and a sufficiently small sphere Sε(0) centered at 0 with radius ε (e.g. see [25] Sect. 1).

Puiseux Theorem shows that one can parametrize the branch (C, 0), i.e. there exist
a convergent series �(X1/n) in X1/n such that f (X,�(X1/n)) ≡ 0 and n equals the
valuation of f (0,Y ):

φ
(
X

1
x

)
= �ak X

k
n

Let us now define the Puiseux exponents relatively to the coordinates (X,Y ).
If n = 1, the Puiseux expansion is a formal series with coefficients in C. In this

case, there are no Puiseux exponent.
If n > 1, the set E1 = {k/n /∈ N, ak �= 0} is not empty, since n is the smallest

integer �, such that �(X1/n) ∈ C[[X1/�]].
Define the first Puiseux exponent relatively to the coordinates (X,Y ):

k1
n

= inf{k/n /∈ N, ak �= 0}.

Then, either (k1, n) are relatively prime and there is only one Puiseux exponent, or

k1
n

= m1

n1

and n1 < n. The set E1 = {k/n /∈ (1/n1)N, ak �= 0, k > k1} is not empty, otherwise
�(X1/n) belongs to C[[X1/n1 ]].

Define the second Puiseux exponent by:

k2
n

:= inf{ k
n

/∈ 1

n1
N, ak �= 0, k > k1}.

There is a unique way to write:
k2
n

= m2

n1n2

in such a way that (m2, n2) are relatively prime.
Then, either n1n2 = n and there are only two Puiseux exponents, or n1n2 < n

and the set:
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E2 = { k
n

/∈ 1

n1n2
N, ak �= 0, k > k2}

is not empty.
By induction, one defines mh/n1 . . . nh , where (mh, nh) are relatively prime.

Either, n1 . . . nh = n and there are h Puiseux exponents, or n1 . . . nh < n and
the set:

Eh = { k
n

/∈ 1

n1 . . . nh
N, ak �= 0, k > kh}

is not empty, in which case inf Eh = kh+1/n = mh+1/n1 . . . nh+1, where (mh+1,

nh+1) are relatively prime and unique.
The process has to end, since n has a finite number of divisors.
The pairs (m1, n1), . . . , (mh, nh) are called the Puiseux pairs of (C, 0) relatively

to the coordinates (X,Y ) and the exponents:

m1

n1
, . . . ,

mh

n1 . . . nh

are called the Puiseux exponents of (C, 0) relatively to the coordinates (X,Y ).
One can prove:

Theorem 1.2 Two plane branches (C1, 0) and (C2, 0) are topologically equivalent
if and only if, there are coordinates for which their Puiseux exponents are equal.

In [36]O. Zariski introduced the notion of saturation ÕX,x of the local ringOX.x when
(X, x) is a complex analytic plane branch (see below inSect. 3.2). The saturation ÕX,x

is a local ringwhich contains the local ringOX.x and is contained in the normalization
ŌX,x :

OX.x ⊂ ÕX.x ⊂ ŌX,x .

It is known that the normalization ŌX,x is the ring of germs ofmeromorphic functions
whose restriction to (X, x) are bounded (e.g. see [18] Chapter VI).

Similarly F. Pham and B. Teissier have proved that the saturation ÕX,x is the ring
of germs of meromorphic functions on (X, x) which are Lipschitz functions (see
[19] or [7]).

1.5 Hypersurfaces

In the case of reduced hypersurfaces (X, x) we proved in [26] (Proposition of the
Introduction) that the local monodromy of the local Milnor fibration of (X, x) (see
[14] Sect. 4 for the definition and existence) is a topological invariant of (X, x). In
particular the Milnor numbers of two topological equisingular hypersurfaces (X1, 0)
and (X2, 0) are the same.

It is remarkable that, in a smooth family of complex hypersurfaces containing the
origin 0 and having at 0 the sameMilnor number, the hypersurfaces are topologically
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equisingular (see [27]). However the dimension n of the hypersurfaces is �= 2 because
the proof uses the h-cobordism Theorem.

Conjecture: It is natural to conjecture that this result holds also in
dimension 2.

1.6 Whitney Stratifications

As we have mentioned in the introduction, in 1965 H.Whitney introduced the notion
of Whitney condition (see [30]).

Let X be a reduced complex analytic space. Let �X the subset of singular points
of X . It is known that�X is an complex analytic subspace of X . We have the partition
of X :

X = (X − �X )
∐

�X .

Defining by induction X1 = �X and, for i ≥ 1, Xi+1 = �Xi , we have:

X = (X − �X )
∐

(X1 − X2)
∐

(X2 − X3)
∐

. . .

which has to be afinite partition since Xi−Xi+1 is amanifold and dim Xi > dim Xi+1

if Xi �= ∅. It is called the partition by dimension of X .
The partition by the connected components of Xi −Xi+1 is called the full partition

by dimension of X . If X is a complex analytic space, its full partition by dimension
might not be finite but it is locally finite.

A complex analytic manifold Y contained in a complex analytic space X is strict
if the closure Ȳ of Y in X and the difference Ȳ − Y are complex analytic subspace
of X .

If Y is strict of dimension m, then Lemma 3.13 of [30] shows that the dimension
of Ȳ is m and the dimension of Ȳ − Y is < m.

A strict partition of a complex analytic space X is a partition, which is locally
finite, into strict manifolds. The elements of a strict partition are called the strata of
the strict partition.

Lemma 18.2 of [30] states that the partition by dimension and the full partition
by dimension of a complex analytic space X are strict partitions of X .

A strict partition (Xi )i∈I of a complex analytic space X satisfies the frontier
condition if:

∀i, j ∈ I, Xi ∩ X̄ j �= ∅ ⇒ Xi ⊂ X̄ j and dim Xi < dim X j .

Definition 1.1 Let X be a complex analytic space. A stratification of X is a locally
finite strict partition by connected strata which satisfies the frontier condition.

Now we can define the conditions of Whitney.

Definition 1.2 LetM and N be two complex analyticmanifolds strict in the complex
analytic space X . Assume that N ⊂ M̄ . Let x ∈ N . We may assume that locally at
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x the are neighborhoods V of x in N and U of x in M such that V ⊂ Ū ⊂ C
N . One

says that M satisfies the Whitney condition (a) at x along N if, for any sequence
(xn) of points of M converging x for which the sequence of tangent spaces Txn (M)

converge to T , we have Tx (N ) ⊂ T .

Definition 1.3 LetM and N be two complex analyticmanifolds strict in the complex
analytic space X . Assume that N ⊂ M̄ . Let x ∈ N . We may assume that locally at
x the are neighborhoods V of x in N and U of x in M such that V ⊂ Ū ⊂ C

N . One
says that M satisfies theWhitney condition (b) at x along N if, for any sequence (xn)
of points of M and any sequence (yn) of N converging x , for which the sequence
of tangent spaces Txn (M) converges to T and for which the sequence of lines ynxn
converges to �, we have � ⊂ T .

In [13] (Proposition 2.4) it is proven that If M satisfies the Whitney condition (b) at
x along N , then it satisfies the condition of Whitney (a) at x along N .

We say that M satisfies Whitney condition (b) along N if it satisfies Whitney
condition (b) at any point x of N along N .

Definition 1.4 A stratification (Si )i∈I of the complex analytic space X is a Whitney
stratification if, for any pair (Si , Sj ) of strata such that Si is contained in the closure
S̄ j , the stratum Sj satisfies the condition of Whitney (b) at any point x of Si along Si .

In [30] (Theorem 19.2 p. 540, H. Whitney proved that any reduced complex analytic
space has a Whitney stratification.

The remarkable result of Mather and Thom is that for any Whitney stratifica-
tion of a complex analytic space X the topology of X along any strata is a local
product. Namely let (Si ) be a Whitney stratification of X , for any point x ∈ Si ,
there is a neighborhood Ux of x in X , such that Ux is homeomorphic to the product
(Ux ∩ Si )× (Nx ∩U ) where Nx is a slice of X transverse at x to Si in a local smooth
ambient space.

Since the strata of a Whitney stratification are pathwise connected, the topology
of the germ of Nx at x does not depend on the point x in a stratum.

In fact, the notion of stratification as well as Whitney conditions can be extended
to subanalytic spaces or even to definable spaces.We shall not consider this extension
in these notes.

1.7 The Concept of Equisingularity

Equisingularity is up to nowa rather vague concept.We shall try to fix someproperties
which should be satisfied by a proper definition of equisingularity.

As we said in the introduction, roughly speaking two germs of complex analytic
spaces should be equisingular if their singularity are somehow the “same”.Wealready
mentioned that considering complex analytic equivalence is too strong, because in a
family the analytic structure might change continuously.

We can give some basic features which should characterize Equisingularity:
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1. It is an equivalence relation in the class of complex analytic germs;
2. Two equisingular hypersurfaces should be topologically equisingular;
3. If X is a complex analytic space, the disjoint subspaces:

Sx = {y ∈ X | (X, y) is equisingular to (X, x)}

define a strict partition of X .
4. Two equisingular spaces (X, x) and (Y, y) should have the same multiplicity.
5. Equisingularity should be characterized algebraically.

In the paper of Zariski, “A theorem on the Poincaré group of an algebraic hypersur-
face”, quoted in the introduction above, one of themain arguments of the proof is that
two general hyperplane sections of a projective hypersurface and their embedding
in their hypersurface are homeomorphic or equivalently the germs of their cones at
the origin are topologically equisingular.

2 Whitney Equisingularity

A possible definition of Equisingularity is Whitney Equisingularity. Let X be a
reduced complex analytic space. Let x and y be points of X .

Definition 2.1 The singularities (X, x) and (X, y) areWhitney equisingular if there
is aWhitney stratification (Si )i∈I of X such that x and y belong to the same stratum Si .

We shall see that Whitney equisingularity satisfies the features mentioned above.

2.1 Topological Properties

Let X be a reduced complex analytic space. Let S = (Si )i∈I be a Whitney strat-
ification of X . There is a local topological triviality of X along the strata of the
stratification S in the following sense:

As we have said above, for any x ∈ X , let Si(x) be the stratum of the stratification
S of X which contains x , then there exist an open neighborhood V of x in Si(x) and
a slice Nx , i.e. in a local embedding (X, x) ⊂ (CN , x) the intersection of X with a
linear subspace of CN transverse to Si(x) at x in a neighborhood of x in X, such that
a neighborhood of x in X is homeomorphic to the product V × (Nx ∩ V ).

This result was announced by R. Thom in [22] and one can find a sketch of proof
by J. Mather in [13].

As a consequence, using the tubular neighbourhoods of J. Mather (see p. 480 of
[13]), we can prove that, for any point x ∈ Si , the slices Nx are diffeomorphic.

In particular, if X is a hypersurface, if x, y ∈ X are points of X , since they belong
to the same Whitney stratum of some Whitney stratifications the germs (X, x) and
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(X, y) are homeomorphic germs of hypersurface, so they are topologically equisin-
gular.

2.2 Equimultiplicity

Let X be a reduced complex analytic space. Let S = (Si )i∈I be a Whitney stratifi-
cation of X . In his paper [9] Corollary 6.2, H. Hironaka proves that for any points
x ∈ Si , the multiplicity of X is the same. Then, along its Whitney strata, a reduced
analytic space is equimultiple.

2.3 Polar Varieties

Let X be an equidimensional reduced complex analytic space of dimension d and
let x be a point of X . Consider the integers k, 2 ≤ k ≤ d + 1.

We may embed (X, x) ⊂ (CN , x). In [28] (2.2.2) we show that the set of germs
of projection:

p : (X, x) → (Ck, 0)

induced by surjective affine maps (CN , x) → (Ck, 0) contains an Zariski dense
subset �k such that, for any p ∈ �k , the critical locus C(p) of the restriction of p to
the non-singular part X \�X is a reduced complex analytic space and the multiplicity
mk(X, x) of germ of the closure C(p) at the point x does not depend on p ∈ �k .

For p ∈ �k the germ (C(p), x) is called a polar variety Pk−1(X, x) of (X, x) of
dimension k−1. Beware that Pk−1(X, x) can be empty in which case its multiplicity
at x is 0.

Therefore, one can associate a d-uple M(X, x) = (m2(X, x), . . . ,md+1(X, x))
to the germ (X, x). Notice that some mk(X, x) can be 0 and md+1(X, x) is the
multiplicity of X at x , because Pd(X, x) = (X, x).

We have the following algebraic characterisation of Whitney stratification due to
B. Teissier (see [21] Chapitre 5 Théorème 1.2) which gives somehow an algebraic
characterisation of Whitney equisingularity:

Theorem 2.1 Let X be a reduced equidimensional complex analytic space. Let
S = (Si )i∈I be a stratification of X (see Definition1.1). Suppose that, for any pair
(Si , Sj ), such that Si ⊂ S j , the dim(Sj )-uple M(S j , x) is constant for x ∈ Si . Then,
the stratification S is a Whitney stratification of X.
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2.4 Vanishing Euler Characteristics

Let X be a d-equidimensional reduced complex analytic space and x be a point of
X . We may assume that (X, x) ⊂ (CN , x). We have seen that, for any p ∈ �k ,
where �k is a Zariski dense open subset of the space of projections of (X, x) onto
(Ck, 0) induced by affine maps (CN , x) → (Ck, 0), we can define �k , such that the
general local fiber p−1(u) ∩Bε, where Bε is the ball centered at x of radius ε in CN ,
0 < ‖u‖ � ε and u ∈ C

k is a general point, of p at x has a homotopy type which
does not depend on p (see 3.1.2 in [23]).

We call the general local fiber p−1(u) ∩ Bε of p at x a local vanishing fiber of
(X, x) of dimension d − k. When k = d + 1 the local vanishing finer is empty, so
we put χd+1(X, x) = 0 for the Euler characteristic of the empty fiber.

Definition 2.2 We call the Euler characteristic of the local vanishing fiber of p :
(X, x) → (Ck, 0) the vanishing Euler characteristic χk(X, x). The vanishing Euler
characteristics of (X, x) is the dim X -uple:

K(X, x) = (χ2(X, x), . . . , χdim X+1(X, x))

In [23] (Théorème (5.3.1)) we have the following characterization of Whitney strat-
ification:

Theorem 2.2 Let X be an equidimensional reduced complex analytic space and let
S = (SI )i∈I be a stratification of X. Suppose that for any pair (Si , Sj ) of strata of
S, such that Si ⊂ S j we have that the vanishing Euler characteristics K(S j , x) is
constant for x ∈ Si , then the stratification S is a Whitney stratification.

As it is noticed in [23] (5.3) this theorem can be understood as a converse of Thom-
Mather first isotopy theorem.

In fact, Theorem 2.2 is a consequence of Teissier’s Theorem 2.1 stated above by
using Théorème 4.1.1 of [23].

2.5 Summary

All this results show that Whitney equisingularity satisfies the requirements of 1.7.
TheTheorem2.2 is given to show that aWhitney stratification can be characterized

by topological data and leads naturally to the question:
Can a Whitney stratification on a real analytic space (or a subanalytic space)

be characterized by a real version of Theorem2.2?
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3 Saturation

In this section we essentially follow O. Zariski in [36].

3.1 Definition

Let O be a ring with identity. Let K be its total ring of fractions and Let L ⊂ K be
s a subfield of K . We assume:

1. The ring has no divisor of zero �= 0;
2. In view of the preceding hypothesis, the total ring of fractions K being noetherian,

the ring K is the direct sum of finite number of fields:

K = K1 ⊕ · · · ⊕ Kr ;

3. The field L contains the unit of K , or equivalently no element �= 0 is a zero divisor
of K ;

4. Let εi be the unit of Ki . Then Ki is a finite separable extension of Lεi ;
5. If R = O ∩ L then, the ring O is integral over R.

Let us fix an algebraic closure� of L . Consider L-homomorphisms of K into�. Let
ψ such a homomorphism. Then, for some i , ψ(εi ) = 1 and, for j �= i , ψ(ε j ) = 0.
Then, for j �= i , ψ(K j ) = 0 while ψ induces an isomorphism of Ki onto its image
and ψ(αεi ) = α for any α ∈ L . According to the hypothesis 4 above the number of
L-homomorphisms of K into � is finite.

For any given i ,1 ≤ i ≤ r , the compositum K ∗
i of the fields ψ(Ki ) as ψ varies,

i.e. the smallest field of � which contains the ψ(Ki )’s, is a finite Galois extension
of L . Similarly, the compositum K ∗ of the fields ψ(K ) is a finite Galois extension
of L .

Following O. Zariski, we shall say for two elements ξ and η of K , ξ dominates η

if for any pair of homomorphismsψ1 andψ2, eitherψ1(η) �= ψ2(η) and the quotient:

ψ1(ξ) − ψ2(ξ)

ψ1(η) − ψ2(η)

is integral over R, while ψ1(η) = ψ2(η) implies ψ1(ξ) = ψ2(ξ).
Note that if. for some i , ψ1 and ψ ′

1 are L-homomorphisms of K into � such that
ψ1(εi ) = ψ ′

1(εi ) = 1, then there is a L-monomorphism φ0 of ψi (K ) into � such
that ψ ′

1 = φ0ψ1. The monomorphism φ0 can be extended to a L-automorphism of
the compositum K ∗ of the fields ψ(K ). Thus, for any element η of K , the set of
elements ψ ′

1(η) − ψ2(η) is the set of φ-images of the elements ψ1(η) − ψ2(η) (ψ ′
1

and ψ1 being fixed as above).
It yields that, if one fixes for each i = 1, . . . , r (where r is the number of fields in

the hypothesis 2 above) a L-homomorphismψ
(i)
1 of K into� such thatψ(i)

1 (εi ) = 1,
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then, in order to verify that ξ dominates η, it is sufficient to verify the conditions of
domination only for the pairs (ψ1, ψ2)whereψ1 ranges over the set {ψ(1)

1 , . . . , ψ
(r)
1 }

and ψ2 is any L-homomorphism of K into �.
In particular if O is a domain of integrity K is a field and r = 1. So, we may

assume that K ⊂ �. Then, the compositum K ∗ in � is the smallest Galois extension
of L containing K . One can take ψ

(1)
1 to be the injection map of K into �. Then, the

definition of domination is the following:
The element ξ dominates η if, for any element σ of the Galois group of the

compositum K ∗ over L , the following holds: if σ.η �= η, then the quotient (σ.ξ −
ξ)/(σ.η − η) is integral over R = O ∩ L , while σ.η − η = 0 implies σ.ξ − ξ = 0.

Now, we can define:

Definition 3.1 Let O be the integral closure of O in K . The ring O is said to be
saturatedwith respect to the field L if it contains every element ofOwhich dominates
an element of O.

Since the integral closureO is saturatedwith respect to the field L , the set of saturated
rings with respect to L which contain O and are contained in O is not empty.

The intersection of two rings saturated with respect to the field L which contain
O and are contained in O is also saturated with respect to L . It implies:

Proposition 3.1 The set of saturated rings with respect to the filed L which contain
O and are contained inO has a smallest element for the order induced by inclusion.

Definition 3.2 The smallest element of the set of saturated rings with respect to the
field L which contain O and are contained in O is called the saturation of O with
respect to L and is denoted by ÕL .

3.2 Dimension 1

We shall be interested in complex analytic local rings, i.e. local rings isomorphic
to quotients of a ring of convergent series by an ideal. It is known that a complex
analytic local ring is noetherian (see e.g. [10]).

A complex analytic local ring O is isomorphic to the ring OX,x of germs of
complex analytic functions on complex analytic space X at a point x .

IfO is reduced the normal closure ofO ofO in its total ring of fractions is isomor-
phic to the germ of meromorphic functions which are bounded in a neighborhood of
x in X .

In the case of a complex analytic local ring of dimension 1 a result of F. Pham and
B. Teissier proves that the saturation ÕX,x of OX,x with respect to the quotient field
of the ring of convergent series in a parameter u ofOX,x is the ring of meromorphic
functions which are Lipschitz in a neighborhood of x in X (see [19]).

Then, they prove that two germs of plane branches are topologically equisingular
if the saturations of their local rings with respect to the quotient field of the ring of
convergent series in a general parameter are isomorphic.
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In fact in [7] A. Fernandes proved a geometrical result:

Theorem 3.1 Let (X, 0) and (X ′, 0) be germs of complex analytic curves inC2 with
branches Xi , i ∈ I and X ′

j , j ∈ J :

X = ∪i∈I Xi and X ′ = ∪ j∈J X
′
j .

Then the following conditions are equivalent:

1. There exists a germ of the subanalytic bi-Lipschitz map F : (X, 0) → (X ′, 0);
2. There exists a bijectionσ : I → J such thatβ(Xi ) = β(X ′

σ(i)) for all i ∈ I , where
β(�) is the Puiseux exponents of the branch � at 0, and such that (Xi , X j )0 =
(X ′

σ(i), X
′
σ( j))0, for all i, j ∈ I , where (•, •)0 denotes the intersection multiplicity

at the point 0;
3. (X, 0) is topologically equivalent to (X ′, 0);
4. There exist an integer d, a germ of the curve (C, 0) ⊂ (Cd , 0), and two linear

projections p, p′ : Cd → C
2, both general for C at 0 and such that p(C) = X

and p′(C) = X ′.

In summary two germs of plane curves at 0 have isomorphic saturations with respect
to the quotient field of the ring of series in a transversal parameter, i.e. a parameter
whose valuation in the normalization of the local rings is equal to the multiplicity
of the local rings, if and only if there is a bijection between the branches such that
corresponding branches have the same topology and pairwise intersection numbers
at 0 of branches and their corresponding branches are equal, i.e. if and only if the
two germs of curves at 0 are topologically equisingular.

3.3 Zariski Equisingularity

In [35] O. Zariski introduced the notion of equisingularity in codimension one for
an algebraic variety. It is easy to adapt his definition to define equisingularity in
codimension one for a germ of complex analytic set.

Definition 3.3 Let (X, x) be a germ of a reduced equidimensional complex analytic
space. Let Y be a codimension one complex analytic subspace of X which is smooth
at x . We suppose that (X, x) is embedded in C

N . We say that X is equisingular in
codimension one if the intersections of X with smooth spaces Sv transverse to Y in
C

N define germs of curves (Sv ∩ X, Sv ∩ Y ) which are equisingular for any point
Sv ∩ Y is a neighborhood of x .

Here equisingularity is concerning curves and is taken in the sense of [34]. According
to what is said above, equisingularity means that the saturations of the local rings
OSv∩X,Sv∩Y with respect to the quotient field of the ring of convergent series of a
general parameter of the local rings.
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In the case the singular locus has not codimension one, e.g. in the case of a
normal germ of complex analytic space, one cannot use equisaturation to define
equisingularity since the saturation of a ring is contained in its normalization and,
when the singular locus has codimension 2, the local ring might be normal.

This is why O. Zariski imagines to define equisingularity by induction (see [37]
Definition 3 p. 589):

Let (X, x) be a germ of d-equidimensional reduced complex analytic space. Let
(Y, x) the germ of a smooth subspace of (X, x) which is contained in the singular
locus. Let p : (X, x) → (Cd , 0) a general projection of (X, x) onto (Cd , 0). Then,
p is finite and one can define the discriminant of p. Let �(p) be the discriminant
of p. The reduced germ (|�(p)|, 0) contains (p(Y ), 0) which is smooth, since p
is a general projection. Then, (X, x) is equisingular along (Y, x) at the point x if
(|�(p)|, 0) is equisingular along (p(Y ), 0) at the point 0.

Then, Zariski equisingularity can be defined by induction on the dimension of the
ambient space.

In the case of a hypersurface, if the germ (Y, 0) has codimension one in (X, x),
then (p(Y ), x) ⊂ (|�(p)|, 0), and we know that (X, x) is topologically equisingular
at x along (Y, x) if and only if it is equisaturated along Y at x , which means that
the Milnor number of the plane curve, intersection of a plane transversal P to Y at
P ∩ Y , plus its multiplicty minus 1 is constant along Y in a neighborhood of x in Y
which implies (p(Y ), x) = (|�(p)|, 0).

In the case of a subspace (Y, x) of higher codimension little is known. Recently
W. Neumann and A. Pichon have studied hypersurfaces of dimension 3 and have
related Zariski equisingularity with Lipschitz equisingularity which we shall define
in the following section.

4 Lipschitz Viewpoint

Although F. Pham and B. Teissier were the first to relate Lipschitz meromorphic
function and Saturation of local rings (see [19]), T. Mostowski introduced Lipschitz
equisingularity where instead of homeomorphisms, he considers Lipschitz homeo-
morphisms (see [15–17]).

In particular, T. Mostowski proved that any complex analytic space have a Lips-
chitz stratification (see [15]).

Little has been done about Lipschitz equisingularity. L. Birbrair and T.Mostowski
have introduced the notion of normal embedding in [3]. For instance, suppose that
the reduced complex analytic space X ⊂ U ⊂ C

N , where U is an open set of CN ,
then X is endowed by two metrics: the outer and the inner metrics. The outer metric
is the metric induced by the embedding X ⊂ U . The inner metric is the the metric
defined by d(x, y) = inf l(γ ) where γ is a piecewise C1 continuous path and l(γ )

is the length of γ . It may happen that these two metrics are different. When, they are
the same one says that the embedding X ⊂ U is normal.
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In fact, in [7] A. Fernandes proved that topological equisingularity and Lipschitz
equisingularity are the same for germs of plane curves.

For the case of surfaces, there are several papers on the Lipschitz structure of a
germ of surface which begins with [1] until [4].

In higher dimensions little is known about the Lipschitz structure.
A lot is to be done with Lipschitz viewpoint.
Let us cite the recent result of [2] where it is proved that a germ of d-

equidimensional reduced complex analytic space (X, x)which is bi-Lipschitz home-
omorphic by a subanalyticmap to (Cd , 0) is non-singular. The results on theLipschitz
structure of germs of complex surfaces should encourage new results on germs of
reduced complex analytic spaces of higher dimension.

5 Open Problems

In this section we shall list some open problems on equisingularity.

5.1 Zariski Multiplicity Conjecture

Among basic problems about equisingularity, there is a basic problem by O. Zariski
(see [31] and [37] p. 483):
Conjecture 1 Let (X, x) and (X ′, x ′) be topologically equisingular hypersurfaces.
Their multiplicity e(X, x) and e(X ′, x ′) are equal.

In fact, we can weaken this conjecture:
Conjecture 2Let (Xt , xt ) be a complex analytic family of topologically equisingular
hypersurfaces. The multiplicty e(Xt , xt ) is constant.

Both of these conjectures are true for complex analytic plane curves.
In a natural way, one may ask the same conjecture in the case of Lipschitz singu-

larities.

5.2 Do the Diverse Definitions of Equisingularity Satisfy
the Conditions of 1.7?

Above in 1.7 we give some hints which should be satisfy by an notion of equisingu-
larity on a given complex analytic space.

For instance:
Question 3 Does Lipschitz equisingularity have an algebraic definition?

We saw above that this conjecture has a positive answer for a hypersurface along
a codimension one stratum of the singular locus where one has topological equisin-
gularity.
Question 4 Does Lipschitz equisingularity imply equimultiplicity?
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This is nearly proved by G. Comte in the case the constants of the bi-Lipschitz
homeomorphism satisfy some inequality in relation with the multiplicities of the
singularities (see [6]). His proof might imply Question 4 for an analytic family of
reduced complex analytic spaces.

5.3 What Are the Relations Between the Diverse
Equisingularites

It was asked by Zariski (see [37] p. 487):
“Does topological equisingularity implies differential equisingularity (i.e. Whit-

ney equisingularity)?”
It was proved by J. Briançon and J.P. Speder that the answer is negative in [5].
However, one should investigate other relations between the diverse notions of

equisingularity.
For instance, a result of R. Thom and J. Mather (see [22] and [13]) shows that

Whitney equisingularity implies topological equisingularity on a reduced complex
analytic space. By definition Lipschitz equisingularity implies topological equisin-
gularity.

Recent results of W. Neumann and A. Pichon assert that Lipschitz equisingularity
is equivalent to Zariski equisingularity in dimension ≤3. Of course, it remains to
understand the general case.

5.4 Is There Any Other Type of Equisingularity?

Then, it remains to find if there are other types of equisingularity.
Since it could be required that equisingularity is defined by algebraic data, we

should study algebraic invariants for some equisingularity. For instance, Teissier
proved that Whitney equisingularity is defined by the constancy of the multiplicities
of some Polar varieties (see [21]). One should investigate the meaning of the con-
stancy of Lê numbers or Lê cycles introduced by D. Massey in [12] (see also [11]).

5.5 Real Case

As we have mentioned above, is there a result similar to Theorem 2.2 in the real
case?

Is there a characterization of Whitney stratification in the real case?
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On the Factorization of the Polar of a Plane
Branch

A. Hefez, M. E. Hernandes and M. F. H. Iglesias

Abstract Irreducible complex plane curve germs with the same characteristic expo-
nents form an equisingularity class. In this paper we determine the Zariski invariants
that characterize the general polar of a general member of such an equisingular-
ity class. More precisely, we will describe explicitly the characteristic exponents
of the irreducible components of the polar and their mutual intersection multiplici-
ties, allowing us in particular to describe completely the content of each of Merle’s
packages of the polar.

Keywords Polar curves · Polar decomposition · Equisingularity
1 Introduction

The polar of a complex plane curve is a classical object that was used in classical alge-
braic geometry for enumeration purposes, such as Plücker’s formulas. The subject
was resuscitated during the 70s in the work of B. Teissier [9] for the study of families
of singular hypersurfaces. On the other hand, the description of the topological type
or, equivalently, the equisingularity class of the general polar of a complex plane

A. Hefez and M. E. Hernandes were partially supported by the CNPq grants 307873/2016-1
and 303594/2014-4, respectively, while the third author was supported by a fellowship from
CAPES/Fundação Araucária.

A. Hefez (B)
Universidade Federal Fluminense, Av. Quintino Bocaiúva 187, Ap. 402,
São Francisco, Niterói, RJ 24.360-022, Brazil
e-mail: hefez@mat.uff.br

M. E. Hernandes
Universidade Estadual de Maringá, Av. Colombo 5790, Maringá, Paraná
87020-900, Brazil
e-mail: mehernandes@uem.br

M. F. H. Iglesias
Universidade Federal Fluminense, Rua Prof Marcos Waldemar de Freitas
S/N Bloco H 4o Andar Campus do Gragoatá, Niteroi, RJ 24.210-201, Brazil
e-mail: mhernandezi@pucp.pe

© Springer International Publishing AG, part of Springer Nature 2018
R. N. Araújo dos Santos et al. (eds.), Singularities and Foliations.
Geometry, Topology and Applications, Springer Proceedings in Mathematics
& Statistics 222, https://doi.org/10.1007/978-3-319-73639-6_11

347



348 A. Hefez et al.

branch in a given equisingularity class is an old and still open problem. F. Enriques
and O. Chisini, in [4] described explicitly a cluster of infinitely near points obtained
bymeans of the characteristic exponents of a Newton-Puiseux parametrization of the
branch that should determine the equisingularity class of its general polar by requir-
ing that it passes through it in a certain way. This is false as shown with a simple
example in [8]. The equisingularity class of the general polar of the germ of a plane
curve is actually an analytic invariant of the germ and not a topological invariant.
In the papers [2, 3], E. Casas-Alvero showed that the answer by Enriques-Chisini
was generically true, in the sense that it is true for a general branch in the given
equisingularity class. The characterization of the equisingularity class of a curve
given by a cluster, as realized by Enriques-Chisini and adopted by Casas-Alvero,
was replaced later by the more explicit equivalent characterization given by Zariski
in terms of the equisingularity characters: the number of branches of the curve, their
characteristic exponents and their mutual intersection multiplicities. The aim of this
paper is to show how to pass from the Enriques-Chisini-Casas description of the clus-
ter of the general polar of the general member of an equisingularity class of plane
branches, to its Zariski characters. This allows us to get by simple and elementary
arithmetical operations all Zariski equisingularity characters of the general polar of a
general member of an equisingularity class of branches in terms of the characteristic
exponents of the branch.

It should be pointed out that there were two previous partial results in the direc-
tion of ours. On one hand, a rough decomposition of the polar into packages, not
necessarily irreducible, as described in a theorem of Merle in [7], which we will
make explicit later. This decomposition is, in some sense, the best result satisfied by
all branches, not only by the general ones, in a given equisingularity class, but is not
sufficient to describe the equisingularity class of the polar of the general branch. On
the other hand, in the very particular case of branches with only one characteristic
exponent, our result coincides with that of [2], the first attempt made by that author
toward his solution of the general case of an arbitrary number of characteristic expo-
nents reached by changing strategy with the use of the Enriques-Chisini approach.
So, our result may be viewed as a generalization of [2].

Actually, in this paper, more precisely in Theorem 3.1, we describe all irreducible
factors of the general polar of the general member of a given equisingularity class
of plane branches, their characteristic exponents and their mutual intersection mul-
tiplicities, that is, Zariski characters of the equisingularity class of such polars. So,
our result may also be viewed as a refinement of Merle’s decomposition.

The content of the paper is as follows: in Sect. 2 we state some known results we
will need, give a brief introduction to the theory of infinitely near points, recall the
definition of a cluster, state Enriques’ Theorem and describe the related diagrams.
Section3 contains our main result that consists of the description of the irreducible
components of each of Merle’s packages in a constructive and inductive way, the
characteristic exponents of each component and their mutual intersection multiplici-
ties. Our proof is by descent: we start determining the last Merle’s package by using
an appropriate infinitely near point. To obtain the next package, we consider a new
cluster constructed by means of the original cluster, the package already obtained,
the proximity relations and Noether’s formula.

http://dx.doi.org/10.1007/978-3-319-73639-6_3
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Finally, as an application, we use our analysis to classify all special equisingularity
classes of irreducible plane germs such that their general members have general polar
that admit only irreducible components with at most one less characteristic exponent
than the branch, generalizing a result obtained in [6] in the case of curves with two
characteristic exponents.

2 Classical Results

A germ of an analytic plane curve at the origin of C
2 is a germ of set C = C f =

{(x, y) ∈ (C2, 0); f (x, y) = 0},where f ∈ C{x, y} is a convergent complex power
series in two variables at the origin. Two such germs will be considered analytically
equivalent if there is a germ of analytic diffeomorphism ϕ of (C2, 0), also called an
analytic change of coordinates, such that ϕ(C f ) = Cg. When the above ϕ is just a
homeomorphism,we say thatC f andCg are topologically equivalent, or equisingular,
writing, in this case, C f ≡ Cg.

From now on, we will assume that f is an irreducible power series and call
its associated curve C = C f a branch. After an analytic change of coordinates, if
necessary, we may assume that I( f, x) = n < m = I( f, y) and n � m, where I( f, g)
stands for the intersection multiplicity at the origin of the plane curve germs C f and
Cg. In this situation, n coincides with the multiplicity of C.

With such coordinates suitably chosen, it is well known that a branch C admits a
Newton-Puiseux parametrization of the form (t2, tm), if n = 2, or (tn,

∑
m≤i<c ai t

i ),
if n > 2, where c is some positive integer, called the conductor of C . Conversely,
given such a parametrization, attached to it there is a well defined branch. It is also
classically known that the topological, or equisingularity class of C is completely
determined by n and the characteristic exponents m1, . . . ,mr , defined by

mi = min{ j; a j �= 0 and ei−1 � j},

where e0 = n and, for k > 0, ek = gcd(n,m1, . . . ,mk) and er = 1. The integer r
is what is called the genus of C . This classical terminology, although confusing,
has nothing to do with the genus of a curve in Riemann’s sense. We also define the
integers d0 = 1 and di = ei−1

ei
, for i = 1, . . . , r .

When a germ of curve is not irreducible, but reduced, Zariski has shown that its
equisingularity type is determined by the equisingularity type of its branches and by
their mutual intersection multiplicities.

In what follows, we will consider the set K (n,m1, . . . ,mr ) that parametrizes all
Newton-Puiseux finite expansions as above with multiplicity n and characteristic
exponents m1, . . . ,mr .

Let f be a reduced power series. The germ of curve defined by P(a:b)( f ) =
a fx + b fy = 0 is the polar curve of f in the direction (a : b) ∈ P

1. When (a : b) is
a general point of P

1, we say that the associated polar P(a:b)( f ) = 0 is general and
we denote it simply by P( f ).
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In this paper we only consider the general polar of f and refer to it simply as the
polar curve of f .

In general, the polar curve depends upon the equation f of C f , however its
topological type depends only upon the analytic type ofC f (see [1, Theorem7.2.10]).

The next result due to M. Merle provides a rough decomposition of P( f ) in
packages of curves, not necessarily irreducible, that gives partial information about
the topology of P( f ).

Theorem 2.1 (Merle [7]) Let C f be a germ of an irreducible curve with multiplicity
n and characteristic exponents m1, . . . ,mr . Then the general polar P( f ) has a
decomposition of the form

P( f ) = ξ1ξ2 · · · ξr ,

where each ξi , not necessarily. irreducible, satisfies the following conditions:

(i) The multiplicity of ξi is given by m(ξi ) = d0d1d2 · · · di−1(di − 1);
(ii) Each irreducible factor ξij,k of ξi satisfies

I(ξij,k, f )

m(ξij,k)
= 1

n

i−1∑

w=1

(ew−1 − ew)mw + mi .

When i = 1 we will denote ξij,k by ξ j,k .
Let usmake some few remarks.Merle’s Theoremdoes not describe completely the

topology of P( f ), because it does not describe the branches inside each package ξi .
Such branches depend upon the analytic type of f and not only upon its topological
type. It also does not describe the intersection multiplicities among the branches of
the polar. The terms in the second conclusion are the so-called polar quotients and
the equality says that the branches ξij,k have contact order withC f equal tomi , which
implies that they have genus at least i − 1, but they may have greater genus.

On the other hand, Casas-Alvero in [3], determines the equisingularity class of
P( f ), for an f corresponding to a general member of the set K (n,m1, . . . ,mr ) in
terms of a certain weighted cluster obtained from the Enriques diagram attached to
the resolution of C f .

If r = 1, Casas-Alvero in [2] describes explicitly the factorization of P( f ) as
follows:

Let n and m be two coprime natural numbers. Consider the euclidean GCD algo-
rithm applied to the pair n,m:

m = h0n + n1
n = h1n1 + n2
n1 = h2n2 + n3
...

ns−2 = hs−1ns−1 + 1
ns−1 = hs1.



On the Factorization of the Polar of a Plane Branch 351

We denote by m
n = [h0, . . . , hs] the partial fraction decomposition of m

n , adjusted
in such a way that s becomes even, say s = 2t (for example, [a0, a1] = [a0,
a1 − 1, 1]). Put qi

pi
= [h0, . . . , hi ] in such a way that qi and pi are coprime. So,

one has the following theorem:

Theorem 2.2 (Casas-Alvero [2]) If f is a general member of K (n,m) where
gcd(n,m) = 1, then P( f ) has branches ξi, j , i = 1, . . . , t , j = 1, . . . , h2i , having
multiplicity I(ξi, j , X) = p2i−1 and I(ξi, j ,Y ) = q2i−1 and such that

I(ξi, j , ξi ′, j ′) = min(p2i−1q2i ′−1, p2i ′−1q2i−1).

Remark 2.3 Notice that the branches of P( f ) for a general f ∈ K (n,m) are all
smooth if and only if p2i−1 = 1, for all i . But, since the pi form an increasing
sequence, this only may happen when 2t − 1 = 1, that is, t = 1.

If m
n = [h0, h1, h2], then we have m = h0n + n1; n = h1n1 + 1; n1 = h2 · 1.

The condition that q1
p1

= [h0, h1] is an integer is equivalent to h1 = 1 and h2 = n − 1.
Hence the fact that P( f ) has only smooth branches is equivalent to m = (h0 + 1)
n − 1.

In the case where m
n = [h0, h1 − 1, 1], so q1

p1
= [h0, h1 − 1]. Now, the condition

that q1
p1

is an integer is equivalent to h1 = 2 and this in turn is equivalent to n = 2.
Hence, the fact P( f ) has only smooth branches is equivalent to m = h0 · 2 + 1 =
(h0 + 1)2 − 1.

In conclusion, one has that P( f ), where f corresponds to a general member of
K (n,m), has only smooth branches, if and only if m = λn − 1, where λ is some
natural number greater than 1.

2.1 The Infinitely Near Points

Let S0 ⊂ C
2 be an open set containing the origin 0 = (0, 0). Let π : S1 → S0 be the

blow-up of S0 centered at 0 and denote by E0 = π−1(0) the exceptional divisor of
π. We denote byN0 the set of infinitely near points to 0, which can be viewed as the
disjoint union of 0 and all exceptional divisors obtained by successive blowing-ups
above 0. The set of points on the exceptional divisor of the i th blow-up centered
at a point P ∈ Si−1 are called the first infinitesimal neighborhood of P and the i th
infinitesimal neighborhood of 0. The set N0 is naturally endowed with an order
relation defined by P < Q if and only if Q ∈ NP .

Given f ∈ C{x, y} that defines a curve C and given P in the first infinitesimal
neighborhood of 0, we denote by CP the germ of curve at P defined via the strict
transform f̃ P of f , which might be viewed as the germ at P of the closure of
π−1(C \ {0}). By inductionwemayobtain the strict transformofC at any point ofN0.

The multiplicity of CP at P ∈ N0 is mP( f ) = mP( f̃ P). We say that P lies on C ,
or belongs to it, if and only if mP( f ) > 0, and denote by N0( f ) the set of all such
points. A point P ∈ N0( f ) is simple (resp.multiple) if and only ifmP( f ) = 1 (resp.
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mP( f ) > 1). Given two germs of curves C f and Cg , their intersection multiplicity
at 0 can be computed by means of Noether’s formula as follows:

I( f, g) =
∑

P∈N0( f )∩N0(g)

mP( f )mP(g). (1)

Given P, Q ∈ N0 such that P < Q, we say that Q is proximate to P , written
Q → P . if and only if Q lies on the exceptional divisor EP or in the strict transform
of EP . A point P is said to be free (resp. satellite) if it is proximate to exactly one
point (resp. two points), and these are the only possibilities. Notice that Q → P
implies Q > P , but not conversely.

An important formula due to Noether is the following:

mP( f ) =
∑

Q→P

mQ( f ).

A point P ∈ N0( f ) is singular if it is either multiple, or satellite, or precedes a
satellite point on C f , and it is non-singular, or regular, otherwise. Equivalently, P
is non-singular if and only if it is free and there is no satellite point Q > P .

Let C f = ⋃s
i=1 C fi be a reducible plane curve. The point Pi ∈ N0( f ) is the first

regular point on C fi . We denote by

S( f ) = {Q ∈ N0( f ); Q = Pi or Q is singular}.

It is well known (see for instance [1, Theorem 3.8.6]) that two curves C f and
Cg are equisingular, if and only if there exists a bijection φ: S( f ) → S(g) such that
both φ, φ−1 preserve the natural ordering and the proximity relations among their
infinitely near points

Definition 2.4 A cluster K is a finite subset K ⊂ N0 such that if P ∈ K , then any
other point Q < P also belongs to K , together with a valuation vK : K −→ Z. The
set K is called the support of K and the number vK(P) is the virtual multiplicity of
P in K.

We follow Casas-Alvero, representing a cluster by means of an Enriques diagram,
which is a treewhose vertices are identifiedwith the points in K (the root corresponds
to the origin 0) and there is an edge between P and Q if and only if P lies on the
first neighborhood of Q or vice-versa. Moreover, the edges are drawn according to
the following rules:

(i) If Q is free and proximate to P , the edge joining P and Q is curved and if P �= 0,
it is tangent to the edge ending at P .

(ii) If P and Q (Q in the first neighborhood or P) have been represented, the other
points proximate to P in successive neighborhoods of Q are represented on a
straight half-line starting at Q and orthogonal to the edge ending at Q.
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Definition 2.5 We will say that a curve C f goes sharply through the cluster K if
C f goes through K with effective multiplicities equal to the virtual ones and has no
singular points outside of K .

2.2 Enriques’ Theorem

In what follows we will describe the cluster of singularities of a plane branch C f ,
that is, the cluster K( f ) = (S( f ), vK( f )), where vK( f )(P) = mP( f ).

If C f has multiplicity n and characteristic exponents m1, . . . ,mr , then C f is
analytically equivalent to a curve that admits a Newton-Puiseux parametrization of
the form x = tn , y = ∑

i≥m1
ai t i such that amk �= 0 for k = 1, . . . , r and am1 = 1.

Denoting m0 = 0, nk0 = ek−1 = gcd(n,m1, . . . ,mk−1), nk+1
0 = nks(k) = ek , we

consider the euclidean expansions

mk − mk−1 = hk0n
k
0 + nk1

nk0 = hk1n
k
1 + nk2

nk1 = hk2n
k
2 + nk3

...

nks(k)−2 = hks(k)−1n
k
s(k)−1 + nks(k)

nks(k)−1 = hks(k)n
k
s(k).

When k = 1, we omit the index k in nkj , h
k
j and s(k). With the previous notation

we have following theorem (see [1, Theorem 5.5.1] or [4, IV.I]).

Theorem 2.6 (Enriques) The cluster of C is composed by r blocks, which we
describe below.

The first block is composed as follows:

It starts with the point P0,1 = O, followed by points P0,i ∈ N0( f ), i = 2, . . . , h0,
each one in the first neighborhood of the preceeding one, all free with value n.

It continues with the point P1,1, free in the fist neighborhood of P0,h0 , followed
by points P1,i , i = 2, . . . , h1, not free and each in the first neighborhood of the
preceeding one, with value n1.

For 2 ≤ j ≤ s, the point Pj,1 is proximate to Pj−2,h j−2 and for i = 2, . . . , h j we
have Pj,i proximate to Pj−1,h j−1 in the first neighborhood of Pj,i−1 with value n j .
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For 1 < k ≤ r , we put Pk−1
s(k−1),hk−1

s(k−1)
= Pk

0,0. The points of the cluster in the kth

block after Pk
0,0 are given by:

hk0 free points P
k
0,1, . . . , P

k
0,hk0

with value nk0;

hk1 points P
k
1,1, . . . , P

k
1,hk1

with value nk1 proximate to Pk
0,hk0

.

For 2 ≤ j ≤ s(k), we have hkj points Pk
j,1, . . . , P

k
j,hkj

, where the first one is prox-

imate to Pk
j−2,hkj−2

and for i = 2, . . . , hkj , the point P
k
j,i is proximate to Pk

j−1,hkj−1

and all of them have value nkj .

This yields the following Enriques diagrams:

�P0,1

�P0,2

�P0,h0

�P1,1

�
�

�

�

�

P1,h1 �

P2,1

�

�

P2,h2

�P3,1

. . .

�P i−1
s(i−1),1

�

�P i−1

s(i−1),hi−1
s(i−1)

�P i
0,1

�

P i
0,hi

0
�

P i
1,1

�
�

�

�P i
1,2

�
P i
1,h2

1
�

P i
2,1

�

�

P i
3,1
. . .. . .

�

Pr
s(r),1

�

�

Pr
s(r),hr

s(r)

if mi − mi−1 > ei−1.

�P0,1

�P0,2

�P0,h0

�P1,1

�
�

�

�

�

P1,h1 �

P2,1

�

�

P2,h2
�

�
�

�P3,1

�P3,h3
�

P4,1

�

. . .

�P i−1
s(i−1),1

�

�P i−1

s(i−1),hi−1
s(i−1)

�
P i
1,1����

P i
2,1

�
�

��
P i
2,hi

2

�
P i
3,1. . .

�
Pr
s(r),1

�

Pr
s(r),hr

s(r)

if mi − mi−1 < ei−1.

3 Description of the Packages in Merle’s Theorem

By [3, Proposition 11.1], the cluster Kr of the polar of a branch corresponding to a
general member of K (n,m1, . . . ,mr ) has the same support Kr as the cluster K( f )
of the singularities of C f , that is
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Kr = {Pk
i, j ; 1 ≤ k ≤ r, 0 ≤ i ≤ s(k), 1 ≤ j ≤ his(i)},

with valuation:

vKr (Pk
i, j ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

mPk
s(k),hks(k)

( f ) − 1, if (i, j) = (s(k), hks(k)); otherwise,

mPk
i, j
( f ) − 1, if i is even,

mPk
i, j
( f ), if i is odd.

(2)

To describe explicitly Merle’s packages of such a polar, we firstly consider the
cluster K′

given as follows:
1. If mr − mr−1 > er−1, then its support is K

′ = {Pr
i, j ; 0 ≤ i ≤ s(r), 1 ≤ j ≤

hrs(r)}, with valuation:

vK′ (Pr
i, j ) =

⎧
⎨

⎩

0, if (i, j) = (s(r), hrs(r)); otherwise,
nri − 1, if i is even,
nri , if i is odd.

Notice that K′
represents the cluster of the polar of a general curve fr in

K (er−1,mr − mr−1) based at Pr
1,0.

2. If mr − mr−1 < er−1, then its support is

K
′ = {Pr

i, j ; 1 ≤ i ≤ s(r), 1 ≤ j ≤ hrs(r)} ∪ {Pr−1
s(r−1),hr−1

s(r−1)
},

with same values as above on the first set and

vK′ (Pr−1
s(r−1),hr−1

s(r−1)
) = er−1 − 1.

Notice that this represents the cluster of the polar of a general curve fr in
K (er−1,mr − mr−1 + er−1) based at Pr−1

s(r−1),hr−1
s(r−1)

.

Now, by Theorem 2.2, we have that:

P( fr ) =
[ s(r)+1

2 ]∏

i=1

hr2i∏

j=1

γr
i, j

where γr
i, j is determined by mr − mr−1 and er−1 according to the following cases:

1′. If mr − mr−1 > er−1, writing mr−mr−1

er−1
= [hr0, . . . , hrs(r)], one has that γr

i, j ∈
K (pr2i−1, q

r
2i−1), where

qr2i−1

pr2i−1
= [hr0, . . . , hr2i−1] and gcd(pr2i−1, q

r
2i−1) = 1.

2′. Ifmr − mr−1 < er−1, writing
mr−mr−1+er−1

er−1
= [1, hr1, . . . , hrs(r)], one has that γr

i, j ∈
K (pr2i−1, p

r
2i−1 + qr2i−1), where

qr2i−1

pr2i−1
= [0, hr1, . . . , hr2i−1].
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Now, by blowing down the branches γr
i, j to the point P0,1, with respect to the

cluster of singularities of any element in K (̃n, m̃1, . . . , m̃r−1), where ñ = n/er−1 and
m̃i = mi/er−1, i = 1, . . . , r − 1, we get branches ξri, j that pass through the points

Kr−1 ∪ K
′
i , where Kr−1 = {Pk

i, j ; 1 ≤ k ≤ r − 1, 0 ≤ i ≤ s(k), 1 ≤ j ≤ his(i)}, and
K

′
i = {Pr

0,1, . . . , P
r
2i−1,hr2i−1

}, with multiplicities at the points of Kr−1 given by

mPk
i, j
(ξri, j ) =

mPk
i, j
( f )

er−1
pr2i−1, k = 1, . . . , r − 1;

and the multiplicities at the points of K
′
given according to the following cases:

1′′. For mr − mr−1 > er−1 we have that the multiplicities of the ξri, j at the points

Pr
0,1, · · · , Pr

2i−1,hr2i−1
are determined by

qr2i−1

pr2i−1
, then by definition of ξri, j we have that

the strict transform of the curve ξr in the point Pr
0,1 goes sharply through the cluster

K′
, since the strict transform of ξri, j at the point P

r
0,1 coincides with γr

i, j .

2′′. For mr − mr−1 < er−1 we have that the multiplicities of the ξri, j at the points

Pr−1
s(r−1),hr−1

s(r−1)
, Pr

0,1, . . . , P
r
2i−1,hr2i−1

are determined by 1 + qr2i−1

pr2i−1
and, from the defini-

tion of ξri, j , the strict transform of curve ξr at the point Pr−1
s(r−1),hr−1

s(r−1)
goes sharply

through the cluster K′
, for the same reason as above.

From the above analysis, one sees that

ξr =
[ s(r)+1

2 ]∏

i=1

hr2i∏

j=1

ξri, j ,

with
ξri, j ∈ K (pr2i−1ñ, p

r
2i−1m̃1, . . . , p

r
2i−1m̃r−1, p

r
2i−1m̃r−1 + qr2i−1).

In order to describe the decomposition of the polar of f we consider the cluster
K whose support is the same as that of K( f ) (or of Kr ), with valuation vK(P

k
i, j ) =

vKr (Pk
i, j ) − mPk

i, j
(ξr ).

In particular, we have that vK(P
r
i, j ) = 0 and if mr − mr−1 < er−1, then

vK(P
r−1
r−1,s(r−1)) = (er−1 − 1) − (er−1 − 1) = 0.

By a computation, using the proximity relations, one obtains

vK(P
r−1
i, j ) =

⎧
⎨

⎩

(̃nr−1
i er−1 − 1) − (er−1 − 1)̃nr−1

i = ñr−1
i − 1, if i is even,

ñr−1
i er−1 − (er−1 − 1)̃nr−1

i = ñr−1
i , if i is odd.

where ñr−1
i = nr−1

i
er−1

.
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Using Noether’s formulas and by a similar argument, it is possible to show that
vK(P

k
i, j ) = ñki − 1, if i is even, and vK(P

k
i, j ) = ñki , if i is odd.

Finally, in any situation we have vK(P
k
s(k),hks(k)

) = ñks(k) − 1. In this way, the cluster

K represents the cluster of singularities of the polar curve of a generic branch g in
K (̃n, m̃1, · · · , m̃r−1). Therefore,

P( f ) = P(g)ξr .

Now, repeating the same procedure to P(g), and so on, we obtain

P( f ) = ξ1 · · · ξr−1ξr ,

where ξ1 = P( f1) and f1 is a general member of K ( n
e1
, m1

e1
), which is explicitly

described in Theorem 2.2. On the other hand,

ξk+1 =
[ s(k+1)+1

2 ]∏

i=1

h2i∏

j=1

ξk+1
i, j , k = 1, . . . , r − 1, (3)

where, if we write mk+1−mk

ek
= [hk+1

0 , . . . , hk+1
s(k+1)] and define

qk+1
2i−1

pk+1
2i−1

= [hk+1
0 , hk+1

1 , . . . , hk+1
2i−1], with gcd(pk+1

2i−1, q
k+1
2i−1) = 1,

we have

ξk+1
i, j ∈ K

(

pk+1
2i−1

n

ek
, pk+1

2i−1

m1

ek
, . . . , pk+1

2i−1

mk

ek
, pk+1

2i−1

mk

ek
+ qk+1

2i−1

)

.

Summarizing, we have proved part of the following result.

Theorem 3.1 If f is a general branch in K (n,m1, . . . ,mr ), then the Merle decom-
position of P( f ) is given by

P( f ) = ξ1ξ2 · · · ξr ,

where ξ1 = P( f1) with f1 a general member of K ( n
e1
, m1

e1
) and ξk+1 is as in (3).

The intersection multiplicities of these branches are given by:

I(ξk+1
i, j , ξk+1

u,v ) = pk+1
2i−1 p

k+1
2u−1

(
n
e2k

+ ∑k−1
w=1

ew
e2k
(mw+1 − mw)

)
+ qk+1

2u−1 p
k+1
2i−1, for

i ≤ u.

I(ξl+1
i, j , ξ

k+1
u,v ) = pl+1

2i−1 p
k+1
2u−1

el ek

( ∑l
w=1 mw(ew−1 − ew) + ml+1el

)
, for k > l ≥ 0, with the

convention that
∑t

w=s Aw = 0, if t < s.

Proof It remains only to compute the intersection multiplicities.
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By Noether’s formula, we know that the intersection multiplicity of two branches
is the sum of the products of the multiplicities in common points.
Case 1. The branches belong to the same package.

Suppose that 1 ≤ i ≤ u ≤
[
s(k+1)+1

2

]
, 1 ≤ j ≤ h2i and 1 ≤ v ≤ h2u and let

ξk+1
i, j ∈ K

(

pk+1
2i−1

n
ek
, pk+1

2i−1
m1
ek
, . . . , pk+1

2i−1
mi
ek
, pk+1

2i−1
mi
ek

+ qk+1
2i−1

)

, and

ξk+1
u,v ∈ K

(

pk+1
2u−1

n
ek
, pk+1

2u−1
m1
ek
, . . . , pk+1

2u−1
mi
ek
, pk+1

2u−1
mi
ek

+ qk+1
2u−1

)

.

As i ≤ u, we have that the last common point of the two above branches is
Pk+1
2i−1,hk+1

2i−1
. Using the clusters of both branches, we obtain that the sum of products

of the multiplicities until the point Pk
s(k),hks(k)

is

⎛

⎝e1
e2k
m1 +

k−1∑

j=1

e j
e2k
(m j+1 − m j )

⎞

⎠ pk+1
2i−1 p

k+1
2u−1.

On the other hand, since the branches at the point Pk+1
0,1 are the branches of the

polar of a genus one curve, using Theorem 2.2, one gets

IPk+1
0,1

(ξk+1
i, j , ξk+1

u,v ) = qk+1
2u−1 p

k+1
2i−1.

Summing up and using Noether’s formula, one gets that

I(ξk+1
i, j , ξk+1

u,v ) =
(
e j
e2k

+
k−1∑

w=1

e j
e2k
(mw+1 − mw)

)

pk+1
2i−1 p

k+1
2u−1 + qk+1

2u−1 p
k+1
2i−1.

Case 2. The branches are in distinct packages.
Consider ξl+1

i, j and ξk+1
u,v where 0 ≤ l < k, 1 ≤ i ≤ [ s(l+1)+1

2 ], 1 ≤ u ≤ [ s(k+1)+1
2 ],

1 ≤ j ≤ hl+1
2i and 1 ≤ v ≤ hk+1

2u .

We have that the sum of products of the multiplicities until the point Pl
s(l),hls(l)

is

pl+1
2i−1 p

k+1
2u−1

elek

(

nm1 +
l−1∑

w=1

ew(mw+1 − mw)

)

,

while the sum of products of the multiplicities at the remaining points is

pl+1
2i−1 p

k+1
2u−1

elek
(ml+1 − ml)el .
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Therefore, if e0 = n and m0 = 0, then

I(ξl+1
i, j , ξ

k+1
u,v ) = pl+1

2i−1 p
k+1
2u−1

el ek

(
nm1 + ∑l

w=1 ew(mw+1 − mw)
)

= pl+1
2i−1 p

k+1
2u−1

el ek

(∑l
w=1 mw(ew−1 − ew) + ml+1el

)
.

By construction and by an analogous computation, we may show that

I(ξl+1
i, j , f )

m(ξl+1
i, j )

= 1

n

( l∑

w=1

mw(ew−1 − ew) + ml+1el

)

.

In this way, we see that ξu is precisely the uth package in Merle’s Theorem. �
From the above theorem we get immediately the following result:

Corollary 3.2 The number of branches of the j th package ξ j in Merle’s decompo-
sition of the polar of a general member of K (n,m1, . . . ,mr ) is equal to

[ s( j)+1
2 ]∑

k=1

h j
2k,

where the numbers that appear in the formula are obtained from the euclidean
divisions described in (2.2).

Example 3.3 Let f be general member of K (8, 12, 14, 15). The Euclidean divisions
in this case are:

m1 = 12 and n = 8 m2 − m1 = 2 and e1 = 4 m3 − m2 = 1 and e2 = 2
12 = 1(8) + 4 2 = 0(4) + 2 1 = 0(2) + 1
8 = 2(4) 4 = 2(2) 2 = 2(1)

In this way, we have

�8

�4
�

�
��

4
�
2

�
2

�
�

�

�1

�1

Enriques diagram of f

Since h30 = 0, h31 = 1 and h32 = 1, according to Theorem 3.1, the third package ξ3 of
P( f ) has just one branch ξ31,1 ∈ K (4, 6, 7) whose Enriques diagram is

http://dx.doi.org/10.1007/978-3-319-73639-6_2
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�4

�2
�

�
��

2
�
1

�
1

�1

Now, since h20 = 0, h21 = 1 and h22 = 1, the second package ξ2 of P( f ) has just
one branch ξ21,1 ∈ K (2, 3), whose Enriques diagram is

�2

�1
�

�
��

1
�
1

Finally, the first package is ξ1, corresponding to the polar of a general member of
K (2, 3), hence it has one smooth branch ξ1,1, whose Enriques diagram is

�1

�1

It follows that Enriques diagram of P( f ) = ξ1ξ2ξ3 is

�7

�4
�

�
��

3
�
2

�
1

�
�

�

�
1

�
0

Enriques diagram of P (f)

For the intersection multiplicities of these branches, the theorem gives us

I(ξ1,1, ξ
2
1,1) = 3, I(ξ1,1, ξ

3
1,1) = 6, I(ξ21,1, ξ

3
1,1) = 13.

From Merle’s Theorem it follows that each branch of the j th Merle’s package ξ j

of the polar of an irreducible curve has genus at least j − 1. On the other hand, from
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the proof of Theorem 3.1 one may see that the genus of each component of ξ j is less
or equal than j , when the curve is general in its equisingularity class. This generality
condition is a sufficient condition to guarantee the bound j from above for the genus
of the components of ξ j , as one may see in [5, Remark 2.1].

The problem we address now is to characterize the equisingularity classes
K (n,m1, . . . ,mr ) for which the general member has its polar curve composed by
branches with genus up to r − 1.

Corollary 3.4 Let f be a power series corresponding to a general member of
K (n,m1, . . . ,mr ). The polar of f has branches of genus at most r − 1, if and only
if mr = mr−1 + λer−1 − 1, for some integer λ ≥ 1.

Proof From Theorem 3.1, this happens if and only if the ξri, j have genus r − 1.
Since ξri, j ∈ K (pr2i−1

n
er−1

, pr2i−1
m1
er−1

, . . . , pr2i−1
mr−1

er−1
, pr2i−1

mr−1

er−1
+ qr2i−1), this, in turn,

happens if and only if pr2i−1 = 1 for all i = 1, . . . , t (r), where s(r) = 2t (r). Now,
since the prj form an increasing sequence, one must have t (r) = 1. We have two
possibilities:
(1) mr − mr−1 = hr0er−1 + nr1, er−1 = hr1n

r
1 + 1 and nr1 = hr2 · 1. Now, since qr1

pr1
=

[hr0, hr1] is an integer, we must have hr1 = 1. Therefore, the condition that P( f ) has
branches of genus at most r − 1 is equivalent to

mr − mr−1 = (hr0 + 1)er−1 − 1.

(2) mr − mr−1 = hr0er−1 + 1 and er−1 = (hr1 − 1) · 1 + 1. Since qr1
pr1

= [hr0, hr1 − 1]
is an integer, then hr1 = 2. Which gives er−1 = 2. Therefore, the condition that P( f )
has branches of genus at most r − 1 is equivalent to

mr − mr−1 = (hr0 + 1)er−1 − 1.

This concludes our proof. �
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Local Zeta Functions for Rational Functions
and Newton Polyhedra

Miriam Bocardo–Gaspar and W. A. Zúñiga–Galindo

Abstract In this article, we introduce a notion of non-degeneracy, with respect
to certain Newton polyhedra, for rational functions over non-Archimedean local
fields of arbitrary characteristic. We study the local zeta functions attached to non-
degenerate rational functions, we show the existence of meromorphic continuations
for these zeta functions, as rational functions of q−s , and give explicit formulas. In
contrast with the classical local zeta functions, the meromorphic continuations of
zeta functions for rational functions have poles with positive and negative real parts.

Keywords Igusa local zeta functions · Newton polyhedra · Non-degeneracy
conditions

2000 Mathematics Subject Classification. Primary 14G10 · 11S40; Secondary
14M25

1 Introduction

The local zeta functions in the Archimedean setting, i.e. in R or C, were introduced
in the 50s by I. M. Gel’fand and G. E. Shilov [1]. An important motivation was
that the meromorphic continuation for the local zeta functions implies the existence
of fundamental solutions for differential operators with constant coefficients. The
meromorphic continuation was established, independently, by M. Atiyah [2] and
J. Bernstein [3]. On the other hand, by the middle of the 60s, A. Weil studied local
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zeta functions, in the Archimedean and non-Archimedean settings, in connection
with the Poisson–Siegel formula [4]. In the 70s, using Hironaka’s resolution of sin-
gularities theorem, J.-I. Igusa developed a uniform theory for local zeta functions
and oscillatory integrals attached to polynomials with coefficients in a field of char-
acteristic zero [5, 6]. In the p-adic setting, local zeta functions are connected with
the number of solutions of polynomial congruences mod pm and with exponential
sums mod pm . In addition, there are many intriguing conjectures relating the poles
of the local zeta functions with topology of complex singularities, see e.g. [6, 7].
More recently, J. Denef and F. Loeser introduced in [8] the motivic zeta functions
which constitute a vast generalization of the p-adic local zeta functions.

In [9] W. Veys and W. A. Zúñiga–Galindo extended Igusa’s theory to the case
of rational functions, or, more generally, meromorphic functions f/g, with coeffi-
cients in a local field of characteristic zero. This generalization is far from being
straightforward due to the fact that several new geometric phenomena appear. Also,
the oscillatory integrals have two different asymptotic expansions: the ‘usual’ one
when the norm of the parameter tends to infinity, and another one when the norm
of the parameter tends to zero. The first asymptotic expansion is controlled by the
poles (with negative real parts) of all the twisted local zeta functions associated to the
meromorphic functions f/g − c, for certain special values c. The second expansion
is controlled by the poles (with positive real parts) of all the twisted local zeta func-
tions associated to f/g. There are several mathematical and physical motivations for
studying these new local zeta functions. For instance, S. Gusein–Zade, I. Luengo
and A. Melle–Hernández have studied the complex monodromy (and A’Campo zeta
functions attached to it) ofmeromorphic functions, see e.g. [10–12]. This work drives
naturally to ask about the existence of local zeta functions with poles related with
the monodromies studied by the mentioned authors. From a physical perspective, the
local zeta functions attached to meromorphic functions are very alike to parametric
Feynman integrals and to p-adic string amplitudes, see e.g. [13–16]. For instance in
[16, Sect. 3.15], M. Marcolli pointed out explicitly that the motivic Igusa zeta func-
tion constructed by J. Denef and F. Loeser may provide the right tool for a motivic
formulation of the dimensionally regularized parametric Feynman integrals.

This article aims to study the local zeta functions attached to a rational function
f/g with coefficients in a local field of arbitrary characteristic, when f/g is non-
degenerate with respect to a certain Newton polyhedron. In [17] E. León–Cardenal
and W. A. Zúñiga–Galindo studied similar matters. In this article, we present a
more suitable and general notion of non-degeneracy which allows us to study the
local zeta functions attached to much larger class of rational functions. Our article
is organized as follows. In Sect. 2 we summarize some basic aspects about non-
Archimedean local fields and compute some π-adic integrals that are needed in the
article. In Sect. 3 we review some basic aspects about polyhedral subdivisions and
Newton polyhedra, we also introduce a notion of non-degeneracy for polynomials
mappings. It seems that our notion of non-degeneracy is a new one. In Sect. 4 we
study the meromorphic continuation for multivariate local zeta functions attached to
non-degeneratemappings. These local zeta functions were introduced by F. Loeser in
[18]. We give a very general geometric description of the poles of the meromorphic
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continuation of these functions, see Theorem 1. Our results extend some of the
well-known results due to Hoornaert and Denef [19], and Bories [20]. In Sect. 5 we
study the local zeta functions attached to rational functions satisfying a suitable non-
degeneracy condition. In Theorem 2, we give a geometric description of the poles
of the meromorphic continuation of these functions. The real parts of the poles of
the meromorphic continuation of these functions are positive and negative rational
numbers. Finally, in Sect. 6, we describe the ‘smallest positive and largest negative
poles’ appearing in the meromorphic continuation of these new local zeta functions,
see Theorems 3 and 4.

2 Preliminaries

In this article we work with a non-Archimedean locally compact field K of arbitrary
characteristic. We will say that a such field is a non-Archimedean local field of
arbitrary characteristic. By a well-known classification theorem, a non-Archimedean
local field is a finite extension ofQp , the field of p-adic numbers, or of the field formal
Laurent seriesFq ((T )) over a finite fieldFq . In the first casewe say that K is a p-adic
field. For further details the reader may consult [21, Chap. 1].

Let K be a non-Archimedean local field of arbitrary characteristic and letOK be
the ring of integers of K and let the residue field of K be Fq , the finite field with q =
pm elements, where p is a prime number. For z ∈ K � {0}, let ord(z) ∈ Z ∪ {+∞}
denote the valuation of z, let |z|K = q−ord(z) denote the normalized absolute value
(or norm), and let ac(z) = zπ−ord(z) denote the angular component, where π is
a fixed uniformizing parameter of K . We extend the norm | · |K to Kn by taking
||(x1, . . . , xn)||K := max {|x1|K , . . . , |xn|K }. Then (Kn, || · ||K ) is a completemetric
space and the metric topology is equal to the product topology.

Along this paper, vectors will be written in boldface, so for instance we will
write b := (b1, . . . , bl) where l is a positive integer. For polynomials we will use
x = (x1, . . . , xn), thus h (x) = h(x1, . . . , xn). For each n-tuple of natural numbers
k = (k1, . . . , kn) ∈ N

n , we will denote by σ(k) the sum of all its components i.e.
σ(k) = k1 + k2 + . . . + kn . Furthermore, wewill use the notation |dx|K for the Haar
measure on (Kn,+) normalized so that the measure ofOn

K is equal to one. In dimen-
sion one, we will use the notation |dx |K .

2.1 Multivariate Local Zeta Functions

We denote by S(Kn) the C-vector space consisting of all C-valued locally constant
functions over Kn with compact support. An element of S(Kn) is called a Bruhat-
Schwartz function or a test function. Along this article we work with a polynomial
mapping h = (h1, . . . , hr ) : Kn → Kr such that each hi (x) is a non-constant poly-
nomial in OK [x1, . . . , xn]\πOK [x1, . . . , xn] and r ≤ n. Let � a Bruhat–Schwartz
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function and let s = (s1, . . . , sr ) ∈ C
r . The local zeta function associated to � and

h is defined as

Z�(s, h) =
∫

Kn\DK

�(x)

r∏
i=1

|hi (x)|siK |dx|K

for Re(si ) > 0 for all i , where DK := ∪i∈{1,...,r} {x ∈ Kn; hi (x) = 0}. Notice that
Z�(s, h) converges for Re(si ) > 0 for all i = 1, . . . , r . If � is the characteristic
function of On

K we use the notation Z(s, h) instead of Z�(s, h). In the case of
polynomial mappings with coefficients in a local field of characteristic zero (not
necessarily non-Archimedean and without the condition r ≤ n), the theory of local
zeta functions of type Z�(s, h) was established by F. Loeser in [18].

Denote by x the image of an element ofOn
K under the canonical homomorphism

On
K → On

K /(πOK )n ∼= F
n
q , we call x the reduction modulo π of x. Given h(x) ∈

OK [x1, . . . , xn], we denote by h(x) the polynomial obtained by reducing modulo π
the coefficients of h(x). Furthermore if h = (h1, . . . , hr ) is a polynomial mapping
with hi ∈ OK [x1, . . . , xn] for all i , then h := (h1, . . . , hr ) denotes the polynomial
mapping obtained by reducing modulo π all the components of h.

2.2 Some π-Adic Integrals

Let h = (h1, h2, . . . , hr ) be a polynomial mapping as above. For a ∈ (O×
K )n , we set

Ja(s, h) :=
∫

a+(πOK )n�DK

r∏
i=1

|hi (x)|siK |dx|K , (2.1)

s = (s1, . . . sr ) ∈ C
r with Re(si ) > 0, i = 1, . . . , r .

The Jacobian matrix of h at a is Jac (h, a) =
[

∂hi
∂x j

(a)
]
1≤i≤r
1≤ j≤n

with r ≤ n. In a

similar way we define the Jacobian matrix of h at a. For every non-empty subset I

of {1, . . . , r} we set Jac
(
hI , a

)
:=
[

∂h̄i
∂x j

(a)
]

i∈I
1≤ j≤n

.

Lemma 1 Let I be the subset of {1, . . . , r} such that hi (a) = 0 ⇔ i ∈ I . Assume

that a /∈ DK and that Jac
(
hI , a

)
has rank m = Card(I ) for I 	= ∅. Then Ja(s, h)

equals ⎧⎪⎨
⎪⎩
q−n if I = ∅

q−n
∏
i∈I

(q−1)q−1−si

1−q−1−si
if I 	= ∅.
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Proof By change of variables we get

Ja(s, h) = q−n
∫

On
K �∪i∈{1,...,r}{x∈Kn;hi (πx+a)=0}

r∏
i=1

|hi (πx + a)|siK |dx|K .

We first consider the case I = ∅. Then hi (a) 	≡ 0mod π, thus |hi (πx + a)|K = 1,
and Ja(s, h) = q−n . In the case I 	= ∅, by reordering I (if necessary)we can suppose
that I = {1, . . . ,m}withm ≤ r . Integral Ja(s, h) is computed by changing variables
as y = φ(x) with

yi = φi (x) :=
⎧⎨
⎩

hi (a+πx)−hi (a)
π

if i = 1, . . . ,m

xi if i ≥ m + 1.

By using that rank of Jac(hI , a) is m we get that det
[

∂φi

∂x j
(0)
]
1≤i≤n
1≤ j≤n

	≡ 0mod π,

which implies that y = φ(x) gives a measure-preserving map fromOn
K to itself (see

e.g. [6, Lemma 7.4.3]), hence

Ja(s, h) = q−n
m∏
i=1

∫

OK \{πyi+hi (a)=0}
|πyi + hi (a)|siK |dyi |K =: q−n

m∏
i=1

J ′
a(yi ).

To prove the announced formula we compute integrals J ′
a(yi ). Now, since hi (a) ≡

0mod π, by taking zi = πyi + hi (a) in J ′
a(yi ), we obtain

J ′
a(yi ) = q−si

∫

OK \{0}
|zi |siK |dzi |K = (q − 1)q−1−si

1 − q−1−si
.

Therefore

Ja(s, h) =
{
q−n I = ∅

q−n
∏

i∈I
(q−1)q−1−si

1−q−1−si
I 	= ∅.

(2.2)

�
Remark 1 If in integral (2.1), we replace hi (x) by hi (x) + πgi (x), where each gi (x)

is a polynomial with coefficients in OK , then the formulas given in Lemma 1 are
valid.

For every subset I ⊆ {1, . . . , r} we set

V I := {
z ∈ (F×

q )n; hi (z) = 0 ⇔ i ∈ I
}
. (2.3)

To simplify the notation we will denote V {1,...,r} as V .
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Lemma 2 Let h = (h1, . . . , hr )with r ≤ n, be as before. Assume that for all I 	= ∅

if V I 	= ∅, then

rankFq

[
∂hi
∂x j

(a)

]

i∈I, j∈{1,...,n}
= Card(I ), for any a ∈ V I .

Set

L(s, h) :=
∫

(O×
K )n\DK

r∏
i=1

|hi (x)|siK |dx|K , s = (s1, . . . sr ) ∈ C
r ,

for Re (si ) > 0 for all i . Then, with the convention that
∏

i∈I
(q−1)q−1−si

1−q−1−si
= 1 when

I = ∅, we have

L(s, h) = q−n
∑

I⊆{1,...,r}
Card(V I )

∏
i∈I

(q − 1)q−1−si

1 − q−1−si
.

Proof Note that L(s, h) can be expressed as a finite sum of integrals

Ja(s, h) =
∫

a+(πOK )n\DK

r∏
i=1

|hi (x)|siK |dx|K ,

where a runs through a fixed set of representatives R in
(O×

K

)n
of (F×

q )n . Then
L(s, h) is equals

∑
a∈V∅

∫

a+(πOK )n\DK

r∏
i=1

|hi (x)|siK |dx|K

+
∑

I�{1,...,r}
I 	=∅

∑
a∈V I

∫

a+(πOK )n\DK

r∏
i=1

|hi (x)|siK |dx|K

+
∑
a∈V

∫

a+(πOK )n\DK

r∏
i=1

|hi (x)|siK |dx|K

=: J (s, V∅) +
∑

I�{1,...,r}
I 	=∅

J (s, V I ) + J (s, V ),

with the convention that if V I = ∅, then
∑

a∈V I

∫
a+(πOK )n\DK

· = 0. Notice that

J (s, V∅) = q−nCard(V∅). (2.4)
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Thus wemay assume that I 	= ∅. In the calculation of J (s, V I )we use the following
result:

Claim.

∑
a∈V I

∫

a+(πOK )n\DK

r∏
i=1

|hi (x)|siK |dx|K =
∑
a∈V I

∫

a+(πOK )n\DK
a/∈DK

r∏
i=1

|hi (x)|siK |dx|K .

The Claim follows from the following reasoning. The analytic mapping h1 · · · hr :
a + (πOK )n → K is not identically zero, otherwise by [6, Lemma2.1.3], the polyno-
mial (h1 · · · hr )(x) would be the constant polynomial zero contradicting the hypoth-
esis that all the hi ’s are non-constant polynomials. Hence there exists an element
b ∈ a + (πOK )n such that (h1 · · · hr )(b) 	= 0. Finally, we use the fact that every
point of a ball is its center, which implies that a + (πOK )n = b + (πOK )n .

By using Lemma 1,

J (s, V I ) = q−nCard(V I )
∏
i∈I

(q − 1)q−1−si

1 − q−1−si
. (2.5)

The formula for J (s, V ) is a special case of formula (2.5):

J (s, V ) = q−nCard(V )
∏

i∈{1,...,r}

(q − 1)q−1−si

1 − q−1−si
. (2.6)

�

Remark 2 In integral L(s, h) we can replace h by h + πg, where g is a polynomial
mapping over OK , and the formulas given in Lemma 2 remain valid.

3 Polyhedral Subdivisions of R
n+ and Non-degeneracy

Conditions

In this section we review, without proofs, some well-known results about Newton
polyhedra and non-degeneracy conditions that we will use along the article. Our
presentation follows closely [22, 23].

3.1 Newton Polyhedra

We set R+ := {x ∈ R; x � 0}. Let G be a non-empty subset of N
n . The New-

ton polyhedron � = � (G) associated to G is the convex hull in R
n+ of the

set ∪m∈G
(
m + R

n+
)
. For instance classically one associates a Newton polyhedron
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� (h) (at the origin) to a polynomial function h(x) = ∑
m cmxm (x = (x1, . . . , xn),

h(0) = 0), where G = supp(h) := {m ∈ N
n; cm 	= 0}. Further we will associate

more generally a Newton polyhedron to a polynomial mapping.
We fix a Newton polyhedron � as above. We first collect some notions and results

about Newton polyhedra that will be used in the next sections. Let 〈·, ·〉 denote the
usual inner product of R

n , and identify the dual space of R
n with R

n itself by means
of it.

Let H be the hyperplane H = {x ∈ R
n; 〈x, b〉 = c}, H determines two closed

half-spaces

H+ = {
x ∈ R

n; 〈x, b〉 ≥ c
}
and H− = {

x ∈ R
n; 〈x, b〉 ≤ c

}
.

We say that H is a supporting hyperplane of �(h) if �(h) ∩ H 	= ∅ and �(h) is
contained in one of the two closed half-spaces determined by H . By a proper face τ
of �(h), we mean a non-empty convex set τ obtained by intersecting �(h) with one
of its supporting hyperplanes. By the faces of �(h) we will mean the proper faces of
�(h) and the whole the polyhedron �(h). By dimension of a face τ of �(h)wemean
the dimension of the affine hull of τ , and its codimension is cod(τ ) = n − dim(τ ),
where dim(τ ) denotes the dimension of τ . A face of codimension one is called a
facet.

For a ∈ R
n+, we define

d(a, �) = min
x∈�

〈a, x〉 ,

and the first meet locus F(a, �) of a as

F(a, �) := {x ∈ �; 〈a, x〉 = d(a, �)}.

The first meet locus is a face of �. Moreover, if a 	= 0, F(a, �) is a proper face of
�.

If � = � (h), we define the face function ha (x) of h(x) with respect to a as

ha (x) = hF(a,�) (x) =
∑

m∈F(a,�)

cmxm.

In the case of functions having subindices, say hi (x), we will use the nota-
tion hi,a(x) for the face function of hi (x) with respect to a. Notice that h0 (x) =
hF(0,�) (x) = ∑

m cmxm.

3.2 Polyhedral Subdivisions Subordinate to a Polyhedron

We define an equivalence relation in R
n+ by taking a ∼ a′ ⇔ F(a, �) = F(a′, �).

The equivalence classes of ∼ are sets of the form



Local Zeta Functions for Rational Functions and Newton Polyhedra 371

�τ = {a ∈ R
n
+; F(a, �) = τ },

where τ is a face of �.
We recall that the cone strictly spanned by the vectors a1, . . . , al ∈ R

n+ \ {0} is the
set� = {λ1a1 + ... + λlal;λi ∈ R+, λi > 0}. If a1, . . . , al are linearly independent
over R, � is called a simplicial cone. If a1, . . . , al ∈ Z

n , we say � is a rational
cone. If {a1, . . . , al} is a subset of a basis of the Z-module Z

n , we call � a simple
cone.

A precise description of the geometry of the equivalence classes modulo ∼ is as
follows. Each facet γ of � has a unique vector a(γ) = (aγ,1, . . . , aγ,n) ∈ N

n\ {0},
whose nonzero coordinates are relatively prime, which is perpendicular to γ. We
denote by D(�) the set of such vectors. The equivalence classes are rational cones
of the form

�τ = {
r∑

i=1

λi a(γi );λi ∈ R+, λi > 0},

where τ runs through the set of faces of �, and γi , i = 1, . . . , r are the facets con-
taining τ . We note that �τ = {0} if and only if τ = �. The family {�τ }τ , with τ
running over the proper faces of �, is a partition of R

n+\{0}; we call this partition a
polyhedral subdivision of R

n+ subordinate to �. We call
{
�τ

}
τ
, the family formed

by the topological closures of the �τ , a fan subordinate to �.
Each cone �τ can be partitioned into a finite number of simplicial cones �τ ,i .

In addition, the subdivision can be chosen such that each �τ ,i is spanned by part
of D(�). Thus from the above considerations we have the following partition of
R

n+\{0}:
R

n
+\{0} =

⋃
τ

(
lτ⋃
i=1

�τ ,i

)
,

where τ runs over the proper faces of �, and each �τ ,i is a simplicial cone con-
tained in �τ . We will say that

{
�τ ,i

}
is a simplicial polyhedral subdivision of R

n+
subordinate to �, and that

{
�τ ,i

}
is a simplicial fan subordinate to �.

By adding new rays, each simplicial cone can be partitioned further into a finite
number of simple cones. In this way we obtain a simple polyhedral subdivision of
R

n+ subordinate to �, and a simple fan subordinate to � (or a complete regular fan)
(see e.g. [24]).

3.3 The Newton Polyhedron Associated to a Polynomial
Mapping

Let h = (h1, . . . , hr ), h (0) = 0, be a non-constant polynomial mapping. In this
article we associate to h a Newton polyhedron � (h) := �

(∏r
i=1hi (x)

)
. From a
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geometrical point of view,� (h) is theMinkowski sumof the� (hi ), for i = 1, · · · , r ,
(see e.g. [22, 25]). By using the results previously presented, we can associate to
� (h) a simplicial polyhedral subdivision F (h) of R

n+ subordinate to � (h).

Remark 3 A basic fact about the Minkowski sum operation is the additivity of the
faces. From this fact follows:
(1) F (a, � (h)) = ∑r

j=1F
(
a, �

(
h j
))
, for a ∈ R

n+ ;
(2) d (a, � (h)) = ∑r

j=1d
(
a, �

(
h j
))
, for a ∈ R

n+ ;
(3) let τ be a proper face of� (h), and let τ j be proper face of�

(
h j
)
, for i = 1, · · · , r .

If τ = ∑r
j=1τ j , then �τ ⊆ �τ j , for i = 1, · · · , r .

Remark 4 Note that the equivalence relation,

a ∼ a′ ⇔ F(a, � (h)) = F(a′, � (h)),

used in the construction of a polyhedral subdivision of R
n+ subordinate to � (h) can

be equivalently defined in the following form:

a ∼ a′ ⇔ F(a, �
(
h j
)
) = F(a′, �

(
h j
)
), for each j = 1, . . . , r.

This last definition is used in Oka’s book [22].

3.4 Non-degeneracy Conditions

For K = Qp, Denef and Hoornaert in [19, Theorem 4.2] gave an explicit formula
for Z(s, h), in the case r = 1 with h a non-degenerate polynomial with respect to its
Newton polyhedron �(h). This explicit formula can be generalized to the case r ≥ 1
by using the condition of non-degeneracy for polynomial mappings introduced here.

Definition 1 Let h = (h1, . . . , hr ), h (0) = 0, be a polynomial mapping with r ≤ n
as in Sect. 2.1 and let� (h) be theNewton polyhedron of h at the origin. Themapping
h is called non-degenerate over Fq with respect to � (h), if for every vector k ∈ R

n+
and for any non-empty subset I ⊆ {1, . . . , r}, it verifies that

rankFq

[
∂hi,k
∂x j

(z)

]

i∈I, j∈{1,...,n}
= Card(I ) (3.1)

for any
z ∈ {z ∈ (F×

q

)n ; hi,k(z) = 0 ⇔ i ∈ I
}
. (3.2)

We notice that above notion is different to the those introduced in [23, 26].
The notion introduced here is similar to the usual notion given by Khovansky, see
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[22, 27]. For a discussion about the relation between Khovansky’s non-degeneracy
notion and other similar notions we refer the reader to [26].

Let � be a rational simplicial cone spanned by wi , i = 1, . . . , e�. We define the
barycenter of � as b(�) = ∑e�

i=1 wi . Set b({0}) := 0.

Remark 5 (i)Let F(h) be a simplicial polyhedral subdivision of R
n+ subordinate to

� (h). Then, it is sufficient to verify the condition given in Definition 1 for k = b(�)

with � ∈ F(h) ∪ {0}.
(ii) Notice that our notion of non-degeneracy agrees, in the case K = Qp, r = 1,

with the corresponding notion in [19].

Example 1 Set h = (h1, h2) with h1(x, y) = x2 − y, h2(x, y) = x2y polynomials
in OK [x, y]. Then a simplicial polyhedral subdivision subordinate to �(h) is given
by where R>0 := R+ � {0}. Notice that for every k ∈ R

n+ � ({0} ∪ �3) and every

Cone h1,b(�) h2,b(�)

�1 := (1, 0)R>0 y x2y

�2 := (1, 0)R>0 + (1, 2)R>0 y x2y

�3 := (1, 2)R>0 x2 − y x2y

�4 := (1, 2)R>0 + (0, 1)R>0 x2 x2y

�5 := (0, 1)R>0 x2 x2y,

non-empty subset I ⊆ {1, 2}, the subset defined in (3.2) is empty, thus (3.1) is always
satisfied. In the case k = 0 and k ∈ �3, h1,k = x2 − y, h2,k = x2y, the conditions
(3.2)–(3.1) are also verified. Hence h is non-degenerate overFq with respect to� (h).

Example 2 Let h = (h1(x), . . . , hr (x)) be a monomial mapping. In this case,
� (h) = m0 + R

n+ for some nonzero vector m0 in N
n . Then for every vector k ∈ R

n+
hi,k(x) = hi (x) for i = 1, . . . , r , and thus the subset in (3.2) is always empty, which
implies that condition (3.1) is always satisfied. Therefore any monomial mapping
(with r ≤ n) is non-degenerate over Fq with respect to its Newton polyhedron.

Example 3 f (x), g(x) ∈ OK [x1, ..., xn]\πOK [x1, ..., xn] such that g(x) = xm0 ,
withm0 	= 0, is a monomial. Suppose that f is non-degenerate with respect to � ( f )
over Fq . In this case, � (( f, g)) = m0 + � ( f ). Then the subset in (3.2) can take
three different forms:

(i)
{
z ∈ (F×

q

)n ; f k(z) = g (z) = 0
} = ∅, (ii)

{
z ∈ (F×

q

)n ; f k(z) = 0
}
,

(iii)
{
z ∈ (F×

q

)n ; g (z) = 0, f k(z) 	= 0
} = ∅.

In the second case, conditions (3.2)–(3.1) are verified due to the hypothesis that
f is non-degenerate with respect � ( f ) over Fq . Hence, ( f, g) is a non-degenerate
mapping over Fq with respect to � (( f, g)) over Fq .
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4 Meromorphic Continuation of Multivariate Local
Zeta Functions

Along this section, we work with a fix simplicial polyhedral subdivision F(h) sub-
ordinate to �(h). Let � ∈ F(h) ∪ {0} and I ⊆ {1, . . . , r}, we put

V�,I := {
z ∈ (F×

q )n; hi,b(�)(z) = 0 ⇔ i ∈ I
}
.

We use the convention V�,{1,...,r} = V�. If � = 0, then

V 0,I = {
z ∈ (F×

q )n; hi (z) = 0 ⇔ i ∈ I
} = V I ,

where V I is the set defined in (2.3). In particular, V 0,{1,...,r} = V and

V 0,∅ = {
z ∈ (F×

q )n; hi (z) 	= 0, i = 1, . . . , r
} = V∅.

If h = (h1, . . . , hr ) is non-degenerated polynomial mapping over Fq with respect to
�(h), then Lemma 2 is true for hb(�) = (h1,b(�), . . . , hr,b(�)).

Theorem 1 Assume that h = (h1, . . . , hr ) is non-degenerated polynomial mapping
over Fq with respect to �(h), with r ≤ n as before. Fix a simplicial polyhedral
subdivisionF(h) subordinate to�(h). Then Z(s, h)has ameromorphic continuation
to C

r as a rational function in the variables q−si , i = 1, . . . , r . In addition, the
following explicit formula holds:

Z(s, h) = L {0}(s, h) +
∑

�∈F(h)

L�(s, h)S�,

where

L {0} = q−n
∑

I⊆{1,...,r}
Card(V I )

∏
i∈I

(q − 1)q−1−si

1 − q−1−si
,

L� = q−n
∑

I⊆{1,...,r}
Card(V�,I )

∏
i∈I

(q − 1)q−1−si

1 − q−1−si
,

with the convention that for I = ∅,
∏

i∈I
(q−1)q−1−si

1−q−1−si
:= 1, and

S� =
∑

k∈N
n∩�

q−σ(k)−∑r
i=1 d(k,�(hi ))si .

Let � be the cone strictly positively generated by linearly independent vectors
w1, . . . ,wl ∈ N

n\ {0}, then
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S� =
∑

t q
−σ(t)−∑r

i=1 d(t,�(hi ))si

(1 − q−σ(w1)−∑r
i=1 d(w1,�(hi ))si ) · · · (1 − q−σ(wl )−∑r

i=1 d(wl ,�(hi ))si )
,

where t runs through the elements of the set

Z
n ∩

{
l∑

i=1

λiwi ; 0 < λi ≤ 1 for i = 1, . . . , l

}
. (4.1)

Proof By using the simplicial polyhedral subdivision F(h), we have

R
n
+ = {0}⊔⊔�∈F(h)�.

We set for k = (k1, . . . , kn) ∈ N
n ,

Ek := {
(x1, . . . , xn) ∈ On

K ; ord(xi ) = ki , i = 1, . . . , n
}
.

Hence

Z(s, h) =
∫

(O×
K )n\DK

r∏
i=1

|hi (x)|siK |dx|K +
∑

�∈F(h)

∑
k∈N

n∩�

∫

Ek\DK

r∏
i=1

|hi (x)|siK |dx|K .

For � ∈ F(h), k ∈ N
n ∩ �, and x = (x1, . . . , xn) ∈ Ek, we put x j = πk j u j with

u j ∈ O×
K . Then

|dx|K = q−σ(k)|du|K and xm = xm1
1 · · · xmn

n = π〈k,m〉um1
1 · · · umn

n .

Fix i ∈ {1, . . . , r} and k. Form ∈ supp(hi ), the scalar product 〈k,m〉 attains its min-
imum d(k, �(hi )) exactly whenm ∈ F(k, �(hi )), and thus 〈k,m〉 ≥ d(k, �(hi )) +
1 for m ∈ supp(hi )\supp(hi ) ∩ F(k, �(hi )). This fact implies that

hi (x) = πd(k,�(hi ))(hi,k(u) + πh̃i,k(u))

= πd(k,�(hi ))(hi,b(�)(u) + πh̃i,k(u)),

where h̃i,k(u) is a polynomial overOK in the variables u1, . . . , un . Note that hi,k(u)

does not depend on k ∈ �, for this reason we take hi,k(u) = hi,b(�)(u). Therefore

Z(s, h) = L {0}(s, h) +
∑

�∈F(h)

L�(s, h)
∑

k∈N
n∩�

q−σ(k)−∑r
i=1 d(k,�(hi ))si

where

L {0}(s, h) :=
∫

(O×
K )n\DK

r∏
i=1

|hi (x)|siK |dx|K ,
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L�(s, h) :=
∫

(O×
K )n\D�

r∏
i=1

|hi,b(�)(u) + πh̃i,k(u)|siK |du|K

with D� = ⋃r
i=1

{
x ∈ (O×

K )n; hi,b(�)(u) + πh̃i,k(u) = 0
}
. By using the non-dege-

neracy condition, integrals L {0}(s, h), L�(s, h) can be computed using Lemma 2
and Remarks 1 and 2.

Let � be the cone strictly positively generated by linearly independent vectors
w1, . . . ,wl ∈ N

n\ {0}. If � is a simple cone then N
n ∩ � = (N\ {0})w1 + · · · +

(N\ {0})wl . By using that the functions d(·, �(hi )) are linear over each cone�, and
that

σ(wm) +
r∑

i=1

d(wm, �(hi ))Re(si ) > 0,m = 1, . . . , l,

since Re(s1), . . . ,Re(sr ) > 0, we obtain

S� =
∑

λ1,...,λl∈N\{0}
q−σ(λ1w1+...+λlwl )−∑r

i=1 d(λ1w1+...+λlwl ,�(hi ))si

=
∞∑

λ1=1

(q−σ(w1)−∑r
i=1 d(w1,�(hi ))si )λ1 · · ·

∞∑
λl=1

(q−σ(wl )−∑r
i=1 d(wl ,�(hi ))si )λl

S� = q−σ(w1)−∑r
i=1 d(w1,�(hi ))si

1 − q−σ(w1)−∑r
i=1 d(w1,�(hi ))si

· · · q−σ(wl )−∑r
i=1 d(wl ,�(hi ))si

1 − q−σ(wl )−∑r
i=1 d(wl ,�(hi ))si

=
∑

t q
−σ(t)−∑r

i=1 d(t,�(hi ))si

(1 − q−σ(w1)−∑r
i=1 d(w1,�(hi ))si ) · · · (1 − q−σ(wl )−∑r

i=1 d(wl ,�(hi ))si )
,

where t runs through the elements of the set (4.1), which consists exactly of one
element: t = ∑l

i=1 wi . We now consider the case in which � is a simplicial cone.
Note that N

n ∩ � is the disjoint union of the sets

t + Nw1 + · · · + Nwl ,

where t runs through the elements of the set

Z
n ∩

{
l∑

i=1

λiwi ; 0 < λi ≤ 1 for i = 1, . . . , l

}
.

Hence S� equals

∑
t

q−σ(t)−∑r
i=1 d(t,�(hi ))si

∑
λ1,...,λl∈N

q−σ(
∑l

j=1 λ jw j )−∑r
i=1 d(λ1w1+...+λlwl ,�(hi ))si ,

and since Re(s1), . . . ,Re(sr ) > 0,
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S� =
∑

t q
−σ(t)−∑r

i=1 d(t,�(hi ))si

(1 − q−σ(w1)−∑r
i=1 d(w1,�(hi ))si ) · · · (1 − q−σ(wl )−∑r

i=1 d(wl ,�(hi ))si )
.

�

Remark 6 In the p-adic case, K = Qp, Theorem 1 is a generalization of Theorem
4.2 in [19] and Theorem 4.3 in [20].

5 Local Zeta Function for Rational Functions

From now on, we fix two non-constant polynomials f (x), g(x) in n variables, n ≥ 2,
with coefficients in OK [x1, . . . , xn]\πOK [x1, . . . , xn]. Fromnowon,wewill assume
that f and g are co-prime over K [x1, . . . , xn]. Set DK := {x ∈ Kn; f (x) = 0} ∪
{x ∈ Kn; g(x) = 0}, and

f

g
: Kn

� DK → K .

Furthermore, we define theNewton polyhedron�
(

f
g

)
of f

g
to be�( f g), and assume

that the mapping ( f, g) : Kn → K 2 is non-degenerate over Fq with respect to�
(

f
g

)

as before. In this case we will say that f
g
is non-degenerate over Fq with respect to

�
(

f
g

)
. We fix a simplicial polyhedral subdivision F

(
f
g

)
of R

n+ subordinate to

�
(

f
g

)
. For � ∈ F

(
f
g

)
∪ {0}, we put

N�,{ f } := Card
{
a ∈ (F×

q )n; f b(�)(a) = 0 and gb(�)(a) 	= 0
}
,

N�,{g} := Card
{
a ∈ (F×

q )n; f b(�)(a) 	= 0 and gb(�)(a) = 0
}
,

N�,{ f,g} := Card
{
a ∈ (F×

q )n; f b(�)(a) = 0 and gb(�)(a) = 0
}
,

with the convention that if b(�) = b (0) = 0, then f b(�) = f and gb(�) = g.We also

defineD
(

f
g

)
= D( f, g), which is the set of primitive vectors in N

n\ {0} perpendic-
ular to the facets of �

(
f
g

)
. We set

T+ :=
{
w ∈ D

(
f

g

)
; d(w, �(g)) − d(w, �( f )) > 0

}
,

T− :=
{
w ∈ D

(
f

g

)
; d(w, �(g)) − d(w, �( f )) < 0

}
,
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α := α

(
f

g

)
=

⎧⎪⎨
⎪⎩
minw∈T+

{
σ(w)

d(w,�(g))−d(w,�( f ))

}
if T+ 	= ∅

+∞ if T+ = ∅,

β := β

(
f

g

)
=

⎧⎪⎨
⎪⎩
maxw∈T−

{
σ(w)

d(w,�(g))−d(w,�( f ))

}
if T− 	= ∅

−∞ if T− = ∅,

and

α̃ := α̃

(
f

g

)
= min {1,α} , β̃ := β̃

(
f

g

)
= max {−1,β} .

Notice that α > 0 and β < 0.
We define the local zeta function attached to f

g
as

Z

(
s,

f

g

)
= Z(s,−s, f, g), s ∈ C,

where Z(s1, s2, f, g) denotes themeromorphic continuation of the local zeta function
attached to the polynomial mapping ( f, g), see Theorem 1.

Theorem 2 Assume that f
g
is non-degenerate over Fq with respect to �

(
f
g

)
, with

n ≥ 2 as before.Wefix a simplicial polyhedral subdivisionF
(

f
g

)
of R

n+ subordinate

to �
(

f
g

)
. Then the following assertions hold:

(i) Z
(
s, f

g

)
has ameromorphic continuation to thewhole complex plane as a rational

function of q−s and the following explicit formula holds:

Z

(
s,

f

g

)
=

∑
�∈F(

f
g )∪{0}

L�

(
s,

f

g

)
S�(s),

where for � ∈ F
(

f
g

)
∪{0},

L�(s,
f

g
) = q−n

[
(q − 1)n − N�,{ f }

1 − q−s

1 − q−1−s
− N�,{g}

1 − qs

1 − q−1+s

−N�,{ f,g}
(1 − q−s)(1 − qs)

q(1 − q−1−s)(1 − q−1+s)

]

and

S�(s) =
∑

t q
−σ(t)−(d(t,�( f ))−d(t,�(g)))s

∏l
i=1(1 − q−σ(wi )−(d(wi ,�( f ))−d(wi ,�(g)))s)

,
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for � ∈ F
(

f
g

)
a cone strictly positively generated by linearly independent vectors

w1, . . . ,wl ∈ D
(

f
g

)
, and where t runs through the elements of the set

Z
n ∩

{
l∑

i=1

λiwi ; 0 < λi ≤ 1 for i = 1, . . . , l

}
.

By convention S0(s) := 1.

(ii) Z
(
s, f

g

)
is a holomorphic function on β̃ < Re(s) < α̃, and on this band it verifies

that

Z

(
s,

f

g

)
=

∫

On
K \DK

∣∣∣∣ f (x)g(x)

∣∣∣∣
s

|dx |; (5.1)

(iii) the poles of the meromorphic continuation of Z
(
s, f

g

)
belong to the set

⋃
k∈Z

{
1 + 2π

√−1k

ln q

}
∪
⋃
k∈Z

{
−1 + 2π

√−1k

ln q

}
∪

⋃
w∈D

(
f
g

)
⋃
k∈Z

{
σ(w)

d(w, �(g)) − d(w, �( f ))
+ 2π

√−1k

{d(w, �(g)) − d(w, �( f ))} ln q

}
.

Proof (i) The explicit formula for Z(s, f
g
) follows from Theorem 1 as follows: we

take r = 2, s1 = s, s2 = −s, h1 = fb(�) and h2 = gb(�) for � ∈ F
(

f
g

)
∪{0}, with

the convention that if b (�) = b (0) = 0, then h1 = f and h2 = g. Now

V� = {
z ∈ (F×

q

)n ; f b(�) (z) = gb(�) (z) = 0
}
for � ∈ F

(
f

g

)
∪ {0} ,

and thus Card(V�) = N�,{ f,g}. Now, with I = {1, 2}, by using (2.6), we have

J
(
s,−s, V�

) = q−n
(
1 − q−1

)2
N�,{ f,g}(

1 − q−1−s
) (
1 − q−1+s

) . (5.2)

We now consider the case I 	= ∅, I � {1, 2}, thus there are two cases: I = {1} or
I = {2}. Note that

V�,{1} = {
z ∈ (F×

q

)n ; f b(�) (z) = 0 and gb(�) (z) 	= 0
}
for � ∈ F

(
f

g

)
∪ {0} ,

and that Card
(
V�,{1}

) = N�,{ f }, with the convention that
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V 0,{1} = {
z ∈ (F×

q

)n ; f (z) = 0 and g (z) 	= 0
}
.

In this case, by using (2.5),

J
(
s,−s, V�,{1}

) = q−n−s
(
1 − q−1

)
N�,{ f }

1 − q−1−s
. (5.3)

Analogously,

J
(
s,−s, V�,{2}

) = q−n+s
(
1 − q−1

)
N�,{g}

1 − q−1+s
. (5.4)

We now consider the case I = ∅, then

V�,∅ = {
z ∈ (F×

q

)n ; f b(�) (z) 	= 0 and gb(�) (z) 	= 0
}
for � ∈ F

(
f

g

)
∪ {0} ,

with the convention that

V 0,∅ = {
z ∈ (F×

q

)n ; f (z) 	= 0 and g (z) 	= 0
}
.

Notice that Card(V�,∅) = (q − 1)n − N�,{ f } − N�,{g} − N�,{ f,g}. Then, by using
(2.4),

J
(
s,−s, V�,∅

) = q−nCard(V�,∅). (5.5)

Then from Theorem 1 and (5.2)–(5.5), we get

L�(s,
f

g
) = q−n

(
1 − q−1

)2
N�,{ f,g}(

1 − q−1−s
) (
1 − q−1+s

) + q−n−s
(
1 − q−1

)
N�,{ f }

1 − q−1−s
+

q−n+s
(
1 − q−1

)
N�,{g}

1 − q−1+s
+ q−n

{
(q − 1)n − N�,{ f } − N�,{g} − N�,{ f,g}

}
.

The announced formula for L�(s, f
g
) is obtained from the above formula after some

simple algebraic manipulations.

(ii) Notice that forw ∈ D
(

f
g

)
, 1
1−q−σ(w)−(d(w,�( f ))−d(w,�(g)))s is holomorphic on σ(w) +

(d(w, �( f )) − d(w, �(g)))Re(s) > 0, and that 1
1−q−1−s is holomorphic on Re(s) >

−1, and 1
1−q−1+s is holomorphic on Re(s) < 1, then, from the explicit formula for

Z(s, f
g
) given in (i) follows that it is holomorphic on the band β̃ < Re(s) < α̃.

Now, since Z(s, f
g
) = Z(s,−s, f, g), Z(s, f

g
) is given by integral (5.1) because

Z(s1, s2, f, g) agrees with an integral on its natural domain.
(iii) It is a direct consequence of the explicit formula. �
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6 The Largest and Smallest Real Part of the Poles
Of Z(s, f

g ) (Different From −1 and 1, Respectively)

In this section we use all the notation introduced in Sect. 5. We work with a fix
simplicial polyhedral subdivision F

(
f
g

)
of R

n+ subordinate to �
(

f
g

)
. We recall

that in the case T− 	= ∅,

β = max
w∈T−

{
σ(w)

d(w, �(g)) − d(w, �( f ))

}

is the largest possible ‘non-trivial’ negative real part of the poles of Z(s, f
g
). We set

P(β) :=
{
w ∈ T−; σ(w)

d(w, �(g)) − d(w, �( f ))
= β

}
,

and for m ∈ N with 1 ≤ m ≤ n,

Mm(β) :=
{
� ∈ F

(
f

g

)
;� has exactlym generators belonging to P(β)

}
,

and ρ := max {m;Mm(β) 	= ∅}.
Theorem 3 Suppose that f

g
is non-degenerated over Fq with respect to �(

f
g
) and

that T− 	= ∅. If β > −1, then β is a pole of Z(s, f
g
) of multiplicity ρ.

Proof In order to prove that β is a pole of Z(s, f
g
) of order ρ, it is sufficient to show

that

lim
s→β

(1 − qβ−s)ρZ

(
s,

f

g

)
> 0.

This assertion follows from the explicit formula for Z(s, f
g
) given in Theorem 2, by

the following claim:

Claim.Res (�,β) := lims→β(1 − qs−β)ρL�(s, f
g
)S�(s) ≥ 0 for every cone � ∈

F(
f
g
). Furthermore, there exists a cone �0 ∈ Mρ(β) such that Res (�0,β) > 0.

We show that for at least one cone �0 in Mρ(β), Res (�0,β) > 0, because for
any cone � /∈ Mρ(β), Res (�,β) = 0. This last assertion can be verified by using
the argument that we give for the cones in Mρ(β). We first note that there exists
at least one cone �0 in Mρ(β). Let w1, . . . ,wρ,wρ+1, . . . ,wl its generators with
wi ∈ P(β) ⇔ 1 ≤ i ≤ ρ.

On the other hand,

lim
s→β

L�

(
s,

f

g

)
> 0 (6.1)

for all cones � ∈ F(
f
g
) ∪ {0}. Inequality (6.1) follows from
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L�

(
β,

f

g

)
> q−n((q − 1)n − N�,{ f } − N�,{g} − N�,{ f,g}) ≥ 0

for all cones � ∈ F(
f
g
) ∪ {0}. We prove this last inequality in the case N�,{ f } > 0,

N�,{g} > 0, N�,{ f,g} > 0 since the other cases are treated in similar form. In this case,
the inequality follows from the formula for L�(β,

f
g
) given in Theorem 2 , by using

that

N�,{ f }
1 − q−β

1 − q−1−β
< N�,{ f }, N�,{g}

1 − qβ

1 − q−1+β
< N�,{g},

N�,{ f,g}
(1 − q−β)(1 − qβ)

q(1 − q−1−β)(1 − q−1+β)
< N�,{ f,g} when β > −1.

We also notice that

lim
s→β

∑
t

q−σ(t)−(d(t,�( f ))−d(t,�(g)))s > 0.

Hence in order to show that Res (�0,β) > 0, it is sufficient to show that

lim
s→β

(1 − qs−β)ρ∏l
i=1(1 − q−σ(wi )−(d(wi ,�( f ))−d(wi ,�(g)))s)

> 0.

Now, notice that there are positive integer constants ci such that

ρ∏
i=1

(1 − q−σ(wi )−(d(wi ,�( f ))−d(wi ,�(g)))s) =
ρ∏

i=1

(1 − q(s−β)ci )

= (1 − qs−β)ρ
ρ∏

i=1

∏
ςci =1,ς 	=1

(
1 − ςqs−β

)
.

In addition, for i = ρ + 1, . . . , l,

1 − q−σ(wi )−(d(wi ,�( f ))−d(wi ,�(g)))β > 0

because −σ(wi ) − (d(wi , �( f )) − d(wi , �(g)))β ≤ 0 for any wi ∈ T+ ∪ T− with
i = ρ + 1, . . . , l. From these observations, we have

lim
s→β

(1 − qs−β)ρ∏l
i=1(1 − q−σ(wi )−(d(wi ,�( f ))−d(wi ,�(g)))s)

=

lim
s→β

(1 − qs−β)ρ

(1 − qs−β)ρ
∏ρ

i=1

∏
ςci =1,ς 	=1

(
1 − ςqs−β

)×
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lim
s→β

1∏l
i=ρ+1(1 − q−σ(wi )−(d(wi ,�( f ))−d(wi ,�(g)))s)

> 0.

�
In the case T+ 	= ∅,

α = min
w∈T+

{
σ(w)

d(w, �(g)) − d(w, �( f ))

}
.

is the smallest possible ‘non-trivial’ positive real part of the poles of Z(s, f
g
). We set

P(α) :=
{
w ∈ T+; σ(w)

d(w, �(g)) − d(w, �( f ))
= α

}
,

and for m ∈ N with 1 ≤ m ≤ n,

Mm(α) :=
{
� ∈ F

(
f

g

)
;� has exactlym generators belonging to P(α)

}
,

and κ := max {m;Mm(α) 	= ∅}
The proof of the following result is similar to the proof of Theorem 3.

Theorem 4 Suppose that f
g
is non-degenerated over Fq with respect to �(

f
g
) and

that T+ 	= ∅. If α < 1, then α is a pole of Z(s, f
g
) of multiplicity κ.

Example 4 We compute the local zeta function for the rational function given in
Example 1. With the notation of Theorem 2, one verifies that

Cone L� S�

{0} q−2((q − 1)2 − (q − 1) 1−q−s

1−q−1−s ) 1

�1 q−2(q − 1)2 q−1+2s

1−q−1+2s

�2 q−2(q − 1)2 q−2+2s+q−4+4s

(1−q−1+2s )(1−q−3+2s )

�3 q−2((q − 1)2 − (q − 1) 1−q−s

1−q−1−s )
q−3+2s

1−q−3+2s

�4 q−2(q − 1)2 q−4+3s

(1−q−3+2s )(1−q−1+s )

�5 q−2(q − 1)2 q−1+s

(1−q−1+s )
.

Therefore

Z(s,
f

g
) =

(q−1)
q2 L(q−s)

(1 − qs−1)(1 − q−1−s)(1 − q2s−1)(1 − q2s−3)
,
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where

L(q−s) = q − q−1 − 2 − q2s−4 + qs−3 − qs−2 + q2s−2 + q3s−3

+ 2q2s−1 − q3s−2 − q3s−1 + q−s−1.

Furthermore, Z(s, f
g
) has poles with real parts belonging to {−1, 1/2, 1, 3/2}.
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1 Introduction

In this survey, we discuss different algebraic, geometric, and combinatorial aspects
of the symbolic powers. Specifically, we focus on the properties and problems of
symbolic powers over regular rings, on the comparison of symbolic and regular
powers, and on the combinatorics of the symbolic powers of monomial ideals.

Given an ideal I in a Noetherian domain R, its nth symbolic power is defined by

I (n) =
⋂

p∈AssR(R/I )

(I n Rp ∩ R).

For many purposes, one can focus on symbolic powers of prime ideals. If p is a prime
ideal, then p(n) is the p-primary component of pn .

Symbolic powers do not, in general, coincide with the ordinary powers. From
the definition it follows that pn ⊆ p(n) for all n, but the converse may fail. The
simplest such example can be constructed “generically” by letting p = (x, y) in the
hypersurface defined by xn − yz = 0. It is easy to see that in this example y is in
p(n) but is not even in p2. It is a bit more subtle in a polynomial ring; however, for
the prime ideal p = (x4 − yz, y2 − xz, x3y − z2) ⊆ K [x, y, z], p(2) �= p2.

The study and use of symbolic powers has a long history in commutative algebra.
Krull’s famous proof of his principal ideal theorem uses them in an essential way.
Of course they first arose after primary decompositions were proved for Noetherian
rings. Zariski used symbolic powers in his study of the analytic normality of algebraic
varieties. Chevalley’s famous lemma comparing topologies states that in a complete
local domain the symbolic powers topology of any prime is finer than the m-adic
topology. A crucial step in the vanishing theorem on local cohomology of Hartshorne
and Lichtenbaum uses that for a prime p defining a curve in a complete local domain,
the powers of p are cofinal with the symbolic powers of p. This important property
of being cofinal was further developed by Schenzel in the 1970s, and is a critical
point for much of this survey. Irena Swanson proved an important refinement which
showed that when the symbolic power topology of a prime p is cofinal with the usual
powers, there is a linear relationship between the two: there exists a constant h such
that for all n, p(hn) ⊆ pn .

In case the base ring is a polynomial ring over a field, one may interpret the nth
symbolic power as the sheaf of all function germs over X = Spec(R) vanishing to
order greater than or equal to n at Z = V(p). Furthermore, if X is a smooth variety
over a perfect field, then

p(n) = { f ∈ R | f ∈ mn for every closed point m ∈ Z} (1.0.1)

by the Zariski–Nagata Theorem [69, 91]. The closed points in Eq.1.0.1 can be taken
only in the smooth locus of Z [22] (see Sect. 2.1 for details). In this survey, we present
a characteristic-free proof of theZariski–NagataTheorem,which is basedon thework
of Zariski. Our approach uses the general definition of differential operators given by
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Grothendieck [31]. As a consequence of this approach, we present a specific constant
for a uniform version of the uniform Chevalley Theorem [52] for direct summands
of polynomial rings (see Theorem3.27 and Corollary3.28). We point out that this
result can be seen as a weaker version of the Zariski–Nagata Theorem which holds
for complete local domains.

Equation1.0.1 is used together with Euler’s Formula to deduce p(2) ⊆ mp for
a homogeneous prime ideal p in a polynomial ring over a characteristic zero field,
wherem is themaximal homogeneous ideal. This says that theminimal homogeneous
generators of p cannot have order at least 2 at all the closed points of the variety
defined by p. Eisenbud and Mazur [23] conjectured that the same would hold for
complete or affine local rings of equal characteristic zero. We devote Sect. 2.3 to this
conjecture. As shown in [23], the fact that the symbolic square of a prime does not
contain any minimal generators has close connections with the notion of evolutions.
In Sect. 2.3, we define what an evolution is, and state what it means for it to be trivial.
The existence of non-trivial evolutions for certain kinds of rings played a crucial role
in Wiles’s proof of Fermat’s Last Theorem [89].

An important property of symbolic powers over regular rings containing fields,
which was surprising at the time, is p(dn) ⊆ pn for d-dimensional regular rings con-
taining a field. This theorem was established by Ein, Lazarfeld, and Smith [20] in the
geometric case in characteristic zero, Hochster and Huneke [41] in general for ring
of equal characteristic, and Ma and Shwede [59] in the mixed characteristic case.

The fact that the constant d is uniform, so independent of p, is remarkable. This
theorem motivated the following question:

Question 1.1 Let (R,m, K ) be a complete local domain. Does there exist a constant
c, depending only on R, such that p(cn) ⊆ pn for every prime ideal p?

A positive answer to this question would establish that p-adic and p-symbolic
typologies are uniformly equivalent (see [48] for a survey on uniformity). In Sect. 3,
we discuss the case where this question has a positive answer. In particular, we
review the work of Huneke, Katz and Validashti on isolated singularities [51] and
finite extensions [52]. We take advantage of this work to answer a question of Tak-
agi about direct summands given by finite group actions (see Theorems3.29 and
Corollary3.30).

In the final section of this survey we discuss the combinatorics that are encoded
in the symbolic powers of monomial ideals. First, we discuss the work of Minh and
Trung [66], and Varbaro [84] which characterizes the Cohen-Macaulayness prop-
erty of the symbolic powers in terms of the corresponding simplicial complex (see
Theorem4.5).

We also discuss the equality I (n) = I n for squarefree monomial ideals. This prob-
lem was related to a conjecture of Conforti and Cornuélos [13] on the max-flow and
min-cut properties by Gitler, Valencia and Villarreal [28] and Gitler, Reyes, and
Villarreal [27]. The Conforti–Cornuélos Conjecture is known in the context of sym-
bolic powers as the Packing Problem (see Sect. 4.2), and it is a central problem in
this theory. In Sect. 4.2, we give a relative version of the Packing Problem, and study
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I (n) = I n separately for each n. We discuss the theorem that establishes that if IG
is a monomial edge ideal associated to a graph G, then I (n) = I n for every n if and
only if G is bipartite.

We point out that the research and literature on this topic is vast, rich, and active.
For this reason, we cannot cover all the aspects about symbolic powers in this survey.
In particular, we do not cover the very large amount of material concerning symbolic
powers and fat points. See [6] or [33] for material and references.

Although this article is largely expository, we present several results that are
new, to the best of our knowledge. These include an example where radical ideals
of extensions do not have uniform behavior (Example3.24) and uniform bounds
for direct summands of polynomial rings (Theorem3.27, Corollary3.28 and Theo-
rem3.29). Also in Theorem4.18, we give an alternative proof for a characterization
of k-packed edge ideals. In order to distinguish the new results from those which are
already known, we make a citation explicitly after the numbering.

2 Symbolic Powers on Regular Rings

2.1 Zariski–Nagata Theorem

In this section, we discuss the Zariski-Nagata Theorem for regular rings [69, 91].
This fundamental theorem establishes that the nth symbolic power of an irreducible
variety, or a prime ideal, consists precisely of the set of elements whose order is at
least n in every closed point in the variety. Specifically,

p(n) =
⋂

m∈Max(R)
p⊆m

mn

whenever p is a prime ideal in a polynomial ring over a field. The first step in
proving this fact is showing that p(n) ⊆ mn holds in a regular local ring, even inmixed
characteristic. The previous fact is also known as the Zariski–Nagata Theorem. We
present a proof of this fact based on rings of differential operators over polynomial
rings over any ground field.We point out that this method also works for power series
rings.

Definition 2.1 Let R be a finitely generated K -algebra. The K -linear differential
operators of R of order n, Dn

R ⊆ HomK (R, R), are defined inductively as follows.
The differential operators of order zero are D0

R = R ∼= HomR(R, R). We say that
δ ∈ HomK (R, R) is an operator of order less than or equal to n if [δ, r ] = δr − rδ is
an operator of order less than or equal to n − 1 for all r ∈ D0

R . The ring of K -linear

differential operators is defined by DR =
⋃

n∈N
Dn

R . If R is clear from the context, we

drop the subscript referring to the ring.
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Definition 2.2 Let R be a finitely generated K -algebra. Let I be an ideal of R, and
let n be a positive integer. We define the nth K -linear differential power of I by

I 〈n〉 = { f ∈ R | δ( f ) ∈ I for all δ ∈ Dn−1
R }.

Remark 2.3 Since Dn−1
R ⊆ Dn

R, it follows that I 〈n+1〉 ⊆ I 〈n〉. If I ⊆ J, then I 〈n〉 ⊆
J 〈n〉 for every n ∈ N.

In order to prove the Zariski–Nagata Theorem, we need some properties of the
differential powers.

Proposition 2.4 Let R be a finitely generated K -algebra. Let I be an ideal of R,
and n be a positive integer. Then, I 〈n〉 is an ideal.

Proof It is straightforward to verify that f, g ∈ I 〈n〉 implies that f + g ∈ I 〈n〉. It
then suffices to show that r f ∈ I 〈n〉 for r ∈ R and f ∈ I 〈n〉. Let δ ∈ Dn−1. Then,
δ(r f ) = [δ, r ]( f ) + rδ( f ). Since f ∈ I 〈n〉 ⊆ I 〈n−1〉, and [δ, r ] ∈ Dn−2, we have
that [δ, r ]( f ) ∈ I . Since f ∈ I 〈n〉, δ( f ) ∈ I. We conclude that δ(r f ) ∈ I. Hence,
r f ∈ I 〈n〉. �

Proposition 2.5 Let R be a finitely generated K -algebra. Let I be an ideal of R,
and n be a positive integer. Then, I n ⊆ I 〈n〉.

Proof We proceed by induction on n.

n = 1 : In this case, I = I 〈n〉 because D0 = R.

n =⇒ n + 1 : Let f ∈ I , g ∈ I n and δ ∈ Dn. Then, δ( f g) = [δ, f ](g) + f δ(g).

Since [δ, r ] ∈ Dn−1 and g ∈ I n ⊆ I 〈n〉 by the induction hypothesis, we have that
[δ, f ](g) ∈ I. Then, δ( f g) ∈ I, and so, f g ∈ I 〈n+1〉. Hence, I n+1 ⊆ I 〈n+1〉. �

Proposition 2.6 Let R be a finitely generated K -algebra. Let p be a prime ideal of
R, and n be a positive integer. Then, p〈n〉 is p-primary.

Proof Once more, we use induction on n.

n = 1 : In this case, p〈n〉 = p is a prime ideal.

n =⇒ n + 1 :Let r /∈ p and f ∈ p such that r f ∈ p〈n+1〉.Let δ ∈ Dn.Then, δ(r f ) =
[δ, r ]( f ) + rδ( f ) ∈ p. Since r f ∈ p〈n+1〉 ⊆ p〈n〉,we have that f ∈ p〈n〉 by the induc-
tion hypothesis. Then, [δ, r ]( f ) ∈ p, because [δ, r ] ∈ Dn−1. We conclude that
rδ( f ) = δ(r f ) − [δ, r ]( f ) ∈ p. Then, rδ( f ) ∈ p, and so, δ( f ) ∈ p, because p is
a prime ideal and r /∈ p. Hence, f ∈ p〈n+1〉. �

Remark 2.7 Let K be a field, R be either K [x1, . . . , xd ] or K [[x1, . . . , xd ]], and
m = (x1, . . . , xd). In this case,
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Dn
R = R

〈
1

α1!
∂α1

∂xα1
1

· · · 1

αd !
∂αd

∂xαd
d

∣∣∣∣ α1 + · · · + αd � n

〉

If f /∈ mn, then f has a monomial of the form xα1
1 · · · xαd

d , with nonzero coefficient
λ ∈ K , which is minimal among all monomials appearing in f under the graded
lexicographical order. Applying the differential operator 1

α1!
∂α1

∂x
α1
1

· · · 1
αd !

∂αd

∂x
αd
d

maps

λxα1
1 · · · xαd

d to the nonzero element λ ∈ K , and any other monomial appearing in
f either to a non constant monomial or to zero. Consequently, f /∈ m〈n〉. Hence,
m〈n〉 ⊆ mn. Since mn ⊆ m〈n〉 by Proposition2.5, we conclude that m〈n〉 = mn .

Exercise 2.8 Let K be a field of characteristic zero, R be either K [x1, . . . , xd ] or
K [[x1, . . . , xd ]], and m = (x1, . . . , xd). Then, (mt )〈n〉 = mn+t−1.

Theorem 2.9 (Zariski–Nagata Theorem for polynomial and power series rings [91])
Let K beafield, R be either K [x1, . . . , xd ]or K [[x1, . . . , xd ]], andm = (x1, . . . , xd).
Let p ⊆ m be a prime ideal. Then, for any positive integer n, we have p(n) ⊆ mn.

Furthermore, if char(K ) = 0 and p is a prime ideal such that p ⊆ mt , then p(n) ⊆
mn+t−1.

Proof We have that m〈n〉 = mn by Remark2.7. Then, p(n) ⊆ p〈n〉 ⊆ mn by Proposi-
tion2.6. The second claim follows from the fact that p(n) ⊆ p〈n〉 ⊆ (mt )〈n〉 = mn+t−1

by Exercise2.8. �

In order to show a more general version of Zariski–Nagata, we use the Hilbert–
Samuel multiplicity:

Definition 2.10 Let (R,m, K ) be a d-dimensional local ring. The Hilbert–Samuel
multiplicity of R is defined by

e(R) = lim
n→∞

d! λ(R/mn)

nd
.

The Hilbert–Samuel multiplicity is an important invariant which detects and mea-
sures singularities. For instance, under suitable hypotheses, e(R) = 1 if and only if
R is a regular ring. If R is a regular local ring and f ∈ m, then e(R/ f R) = ord( f ),
where ord( f ) = max{t ∈ N | f ∈ mt }. Furthermore, under mild assumptions, we
have that e(Rp) � e(R) for every p ∈ Spec(R).

Theorem 2.11 (General version of Zariski–Nagata [69, 91]) Let (R,m, K ) be a
regular local ring, and p ⊆ m be a prime ideal. Then, p(n) ⊆ mn.

Proof For any element f ∈ m, we have that

max{t ∈ N | f ∈ p(t)} = max{t ∈ N | f ∈ pt Rp}
= e((R/ f R)p) � e(R/ f R) = max{t ∈ N | f ∈ mt }.

As a consequence, we obtain that f ∈ p(n) implies that f ∈ mn. �
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We now present Eisenbud’s and Hochster’s [22] proof for Zariski’s Main Lemma
on Holomorphic Functions [91]. We point out that this result works in greater gen-
erality (cf. [22]).

Theorem 2.12 (Zariski [91], Eisenbud–Hochster [22]) Let K be a field and R be a
finitely generated regular K -algebra. Then,

p(n) =
⋂

m∈Max(R)
p⊆m

mn

for every prime ideal p ⊆ R.

Proof The containment
p(n) ⊆

⋂

m∈Max(R)
p⊆m

mn

follows from the Zariski–Nagata Theorem. In order to prove the other containment,
it suffices to show that ⋂

m∈Max(R)
p⊆m

(
mn · R/p(n)

) = 0.

Let M = R/p(n) and Mi = pi · R/p(n). As an R/p-module, the locus where
Mi/Mi+1 is a free module is open. In addition, the regular locus of R/p is open.
Therefore, there exists f /∈ p such that (Mi/Mi+1) f is a free (R/p) f -module and
(R/p) f is regular. We note that

⋂

m∈Max(R)
p⊆m

(
mn · R/p(n)

) ⊆
⋂

m∈Max(R)
p⊆m

(
mn · R/p(n)

)
f
,

because mn · R/p(n) ⊆ (mn · R/p(n)) f , as f /∈ p and AssR/p(n) = {p}. Then we can
replace R by R f and assume that R/p is regular and Mi/Mi+1 is a free R/p-module.

We claim that
mnM ∩ Mi ⊆ mMi (2.1.1)

for everymaximal idealm in R. If suffices to show this equality locally. If q �= m, then
(mnM ∩ Mi )q = (Mi )q = (mMi )q. Thus, it suffices to show our claim for q = m.

Since (R/p)m and Rm are regular, there exists a regular sequence x1, . . . , xd ∈
Rm such that (x1, . . . , xc)Rm = pRm and (x1, . . . , xd)Rm = mRm . Furthermore,
p(n)Rm = pn Rm. Then,

(mnM ∩ Mi )m =
(

(x1, . . . , xd )n

(x1, . . . , xc)n
Rm

)
∩
(

(x1, . . . , xc)i

(x1, . . . , xc)n
Rm

)
⊆
(

(x1, . . . , xd )(x1, . . . , xc)i

(x1, . . . , xc)n
Rm

)
,

which proves our claim.
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We note that ⋂

m∈Max(R)
p⊆m

(m(Mi/Mi+1)) = 0, (2.1.2)

because Mi/Mi+1 is R/p-free and

p =
⋂

m∈Max(R)
p⊆m

m,

as R is a Jacobson ring.
We consider an element

v ∈
⋂

m∈Max(R)
p⊆m

(
mn · R/p(n)

)
.

We want to show that v = 0. If v �= 0, then we pick the largest integer i such that
v ∈ Mi . From previous considerations, we deduce that

Mi

⋂
⎛

⎜⎜⎝
⋂

m∈Max(R)
p⊆m

(
mn · R/p(n)

)

⎞

⎟⎟⎠ =
⋂

m∈Max(R)
p⊆m

(
Mi ∩ (mn · R/p(n))

)

⊆
⋂

m∈Max(R)
p⊆m

mMi by Eq. 2.1.1;

⊆ Mi+1 by Eq. 2.1.2.

Then, v ∈ Mi+1, which contradicts our choice for i . Hence, v = 0. �

We now give an exercise that is helpful for the next theorem.

Exercise 2.13 Let {Iα}α∈A be an indexed family of ideals. Then,

⋂

α∈A

I 〈n〉
α =

(
⋂

α∈A

Iα

)〈n〉

for every positive integer n.

As a consequence of Theorem2.12, we can show that differential powers and sym-
bolic powers are the same for polynomial rings over any perfect field. This is usually
presented only for fields of characteristic zero (see for instance [21, Theorem3.14]).

Proposition 2.14 (Zariski–Nagata) Let R = K [x1, . . . , xd ] be a polynomial ring
over K . If K is a perfect field and p ⊆ R a prime ideal, then
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p(n) = p〈n〉.

Proof Letm ⊆ R be amaximal ideal.Using the fact that K is perfect andRemark2.7,
one can show thatm〈n〉 = mn for every positive integer n by going to R ⊗K K . Then,

p(n) =
⋂

m∈Max(R)
p⊆m

mn by Theorem 2.12;

=
⋂

m∈Max(R)
p⊆m

m〈n〉 =

⎛

⎜⎜⎝
⋂

m∈Max(R)
p⊆m

m

⎞

⎟⎟⎠

〈n〉

by Exercise 2.13;

= p〈n〉 because R/p is a Jacobson ring. �

Exercise 2.15 Let R = K [x1, . . . , xd ] be a polynomial ring over K , and K be a
perfect field and I ⊆ R be a radical ideal. Prove that I (n) = I 〈n〉. Show that this
theorem does hold not if I is not radical (hint: find an example where char(K ) is
prime).

We can also characterize the symbolic powers in terms of join of ideals. This
characterization is used to compute symbolic powers of prime ideals in polynomial
rings. We start by recalling the definition of the join of two ideals.

Definition 2.16 Let R = K [x1, . . . , xd ] be a polynomial ring over K . For ideals
I, J ⊆ R, we consider the ideals I [y] ⊆ K [y1, . . . , yd ] and J [z] ⊆ K [z1, . . . , zd ],
the ideals obtained from changing the variables in I and J . We define the join ideal
of I and J by

I ∗ J = (I [y], J [z], x1 − y1 − z1, . . . , xd − yd − zd)
⋂

K [x1, . . . , xd ].

Suppose that K = C. Let V and W denote the vanishing set of I and J in C
n

respectively. Then, the vanishing set of I ∗ J is the Zariski closure of

⋃

v∈V,w∈W
< v,w >,

where < v,w > denotes the complex line that joins v and w.

Theorem 2.17 (Sullivant [77, Proposition2.8]) Let K be a perfect field. Let R =
K [x1, . . . , xd ] be a polynomial ring, and η = (x1, . . . , xn). Then,
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p(n) = p ∗ ηn

for every prime ideal p ⊆ R.

Proof Sketch: Let K = K denote the algebraic closure of K . We have that m ∗
ηn = mn for every maximal ideal m ⊆ R ⊗K K . Since K is perfect, m ⊗K K is the
intersection of maximal ideals in R ⊗K K . Using this fact together with the faithful
flatness of field extensions, we deduce that m ∗ ηn = mn for every maximal ideal
m ⊆ R. Then, we have

p ∗ ηn =

⎛

⎜⎜⎝
⋂

m∈Max(R)
p⊆m

m

⎞

⎟⎟⎠ ∗ ηn =
⋂

m∈Max(R)
p⊆m

m ∗ ηn =
⋂

m∈Max(R)
p⊆m

mn = p(n),

where the last equality follows from Theorem2.12. �

Remark 2.18 The previous theorem gives an algorithm to compute the symbolic
powers of radical ideals in a polynomial ring over a perfect field.

2.2 Uniform Bounds

The following striking result by Ein, Lazarsfeld and Smith shows that it is possible to
find a uniform constant, c, that guarantees that p(cn) ⊆ pn for smooth varieties over
C, as the following theorem makes explicit. We will revisit this theme of uniformity
in Sect. 3.

Theorem 2.19 (Ein–Lazarsfeld–Smith [20]) If p is a prime ideal of codimension h
in the coordinate ring of a smooth algebraic variety over C, then p(hn) ⊆ pn for all
n � 1.

Hochster and Huneke extended Ein–Lazarsfeld–Smithf Theorem to regular local
rings containing a field, by reduction to characteristic p > 0methods, and using tight
closure arguments.

Theorem 2.20 (Hochster–Huneke [41]) Let (R,m) be a regular local ring contain-
ing a field, let p be a prime ideal, and let h be the height of p. Then p(hn) ⊆ pn for
all n � 1.

Proof If p is a maximal ideal, then symbolic powers coincide with regular powers,
and the statement is clear. If dim(R) � 1, then either p = 0 or p is a maximal ideal,
and the statement follows. Therefore, we assume that p is neither maximal nor zero.
We first assume that char(R) = p > 0. Fix n � 1 and let f ∈ p(hn). For all q = pe

write q = an + r for some a ∈ N and 0 � r < n. Then f a ∈ (p(hn))a ⊆ p(han). Thus,
phn f a ⊆ phr f a ⊆ p(han+hr)) = p(hq).We nowwant to show that p(hq) ⊆ p[q] for all q.
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SinceAssR(R/p[q]) = {p} by the flatness of Frobenius,we can check the containment
just after localizing at p. Since pRp is the maximal ideal of the regular local ring
Rp, it is generated by h elements. Furthermore, p(hq)Rp = phq Rp. By the pigeonhole
principle, phq Rp ⊆ p[q]Rp, and this shows the containment in R as well. Taking
nth powers yields pn

2h f an ⊆ (pn)[q] for all q, and multiplying by f r finally yields
pn

2h f q ⊆ (pn)[q]. Choose any non-zero c ∈ pn
2h , then c f q ∈ (pn)[q]. Therefore

c ∈
⋂

q

(
(pn)[q] : f q

) =
⋂

q

(pn : f )[q],

where the last equality follows from the flatness of Frobenius. Thus, either f ∈
pn , and we are done, or pn : f ⊆ m, so that c ∈⋂q m

[q] ⊆⋂q m
q = (0), which

is a contradiction. The result in characteristic zero follows by reduction to prime
characteristic (see [39]). �

The previous two theorems can be restated for polynomial rings as follows. If p
is a prime ideal in R = K [x1, . . . , xd ], then

⋂

m∈Max(R)
p⊆m

mdn ⊆

⎛

⎜⎜⎝
⋂

m∈Max(R)
p⊆m

m

⎞

⎟⎟⎠

n

.

This is a surprising fact, because the intersection is infinite.
The remarkable containment given by Theorems2.20 and 2.19 might not, how-

ever, be the best possible. Given a prime ideal p in a regular local ring and an integer
a, one may ask what is the smallest b � a such that p(b) ⊆ pa .

Question 2.21 (Huneke) Given a codimension 2 prime ideal p in a regular local
ring, does the containment

p(3) ⊆ p2

always hold?

Over the past decade, there has been a lot of work towards answering different
versions of this question. If we consider the previous question for a radical ideal, I ,
the containment of the third symbolic power in the square has been shown to not
hold in general [17], with an example later extended [34].1 However, the containment
does hold when I is a monomial ideal in a polynomial ring [35, 8.4.5], or an ideal
defining a set of general points in P

2 [33] and in P
3 [16].

Harbourne has extended the question to higher powers [33, 35]2:

1Akesseh [1] and Walker [87, 88] has also made recent progress regarding Question2.21.
2The third and fourth authors [30] recently answered Question2.21 affirmatively and proved Con-
jecture 2.22 for ideals defining F-pure rings.
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Conjecture 2.22 (Harbourne) Given a radical homogeneous ideal I in k[PN ], let h
be the maximal height of an associated prime of I . Then for all n � 1,

I (hn−h+1) ⊆ I n.

For a survey on the containment problem see [80].
Harbourne and Bocci introduced the resurgence of an ideal as an asymptotic

measure of the best possible containment as the following definition makes explicit.

Definition 2.23 (Harbourne–Bocci [6, 7]) Let I ⊆ K [x1, . . . , xn] be an homoge-
neous ideal. The resurgence of I is defined by

ρ(I ) = sup
{ n
m

| I (n)
� I m

}
.

By Theorems2.19 and 2.20, ρ(I ) � dim(R). However, computing the resurgence
of an ideal might be a very difficult task – instead, one may find bounds in terms of
other invariants. One of these invariants is theWaldschmidt constant, whichmeasures
the asymptotic growth of the minimal degrees of the symbolic powers of the given
ideal.

Definition 2.24 (Waldschmidt [85]) Let I ⊆ K [x1, . . . , xn] be an homogeneous
ideal, and α(I ) = min{t | It �= 0}. The Waldschmidt constant of I is then defined to
be

α̂(I ) = lim
m→∞

α(I (n))

n
.

We point out that Waldschmidt showed that the previous limit exits. Bocci and
Harbourne have showed that α(I )/α̂(I ) � ρ(I ) [6, Theorem1.2]. It is worth men-
tioning that the Zariski–Nagata Theorem (Theorem2.11) guarantees that 1 � α̂(I ).

There are several cases where the Waldschmidt constant has been computed [4,
8, 19, 24, 32] or bounded [16, 18]. We point out that the function reg(R/I (n)) has
also been studied [15, 36–38, 65].

2.3 Eisenbud–Mazur Conjecture

In this section we survey a famous conjecture of Eisenbud and Mazur, that can be
stated in terms of containments involving symbolic powers. Given any ideal I inside
a ring R, we always have an inclusion I (2) ⊆ I . However, it is natural to ask whether
something more precise can be said about the containment. Note that, if K is a field
of characteristic zero, and I ⊆ K [x1, . . . , xn] is a homogeneous ideal, then for any
homogeneous f ∈ I (2), say of degree D, we have
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f = 1

D

n∑

i=1

xi
∂ f

∂xi
∈ (x1, . . . , xn)I,

since ∂( f )/∂xi ∈ I for all i by Exercise2.13 and Proposition2.14. In other words,
f is never a minimal generator of the ideal I , whenever f ∈ I (2). One can wonder
whether this is true more generally.

Conjecture 2.25 (Eisenbud–Mazur [23]) Let (R,m) be a localization of a poly-
nomial ring S = K [x1, . . . , xn] over a field K of characteristic zero. If I ⊆ R is a
radical ideal, then I (2) ⊆ mI .

Conjecture2.25 easily fails if the ambient ring is not regular. For example, if
R = C[x, y, z]/(xy − z2) and I = (x, z), then x ∈ I (2)

� mI . The assumption on
the characteristic is also needed. In fact, E. Kunz provided a counterexample to
Conjecture2.25 for any prime integer p:

Example 2.26 ([23]) Let p be a prime integer, and consider the polynomial f =
x p+1
1 x2 − x p+1

2 − x1x
p
3 + x p

4 ∈ Fp[x1, x2, x3, x4]. Note that f is a quasi-
homogeneous polynomial, and f /∈ (x1, x2, x3, x4)

√
Jac( f ). Let I be the kernel of

the map
Fp[x1, x2, x3, x4] �� Fp[t]

x1
� �� t p

2

x2
� �� t p(p+1)

x3
� �� t p

2+p+1

x4
� �� t (p+1)2 .

Then, f ∈ I (2)
� (x1, x2, x3, x4)I.

Conjecture2.25 is open in most cases when the base field K has characteristic 0.
The most recent results in this direction, to the best of our knowledge, are due to A.
A. More, who proves Conjecture2.25 for certain primes in power series rings [67].

Conjecture2.25 is related to and motivated by the existence of non-trivial evo-
lutions. In order to explain this connection, we first recall some basic facts about
derivations and modules of Kähler differentials. For a more exhaustive and detailed
treatment we refer the reader to [56].

Let K be a Noetherian ring, and let R be a K -algebra, essentially of finite type
over K , and let M be a finitely generated R-module. A K -derivation ∂ : R → M is
a K -linear map that satisfies the Leibniz rule:

∂(rs) = ∂(r)s + r∂(s)

for all r, s ∈ R. The set of all derivations DerK (R, M) is an R-module. When M =
R, we denote DerK (R) := DerK (R, R). As in the previous section, recall that Dn

R
denotes the set of K -linear differential operators of R of order at most n.
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Lemma 2.27 Every element δ ∈ D1
R can be written as the sum of a derivation ∂ ∈

DerK (R) and an operator μr ∈ D0
R, that is, multiplication by some element r ∈ R.

Proof Note that multiplication by elements of R and derivations are differential
operators of order zero and one, respectively. Now let δ ∈ D1

R . Let ∂ := δ − μδ(1),
where μδ(1)(r) = δ(1)r for all r ∈ R. Then ∂ is still a differential operator of order
at most one, and it is clear that ∂(λ) = 0 for all λ ∈ K , by K -linearity of δ. Since ∂
has order one, for all r, s ∈ R we have

μt (s) = [∂, r ](s) = ∂(rs) − r∂(s)

where μt is multiplication by some element t ∈ R. Applying this identity to s = 1,
using that ∂(1) = 0, we obtain that t = ∂(r). Therefore

∂(rs) = ∂(r)s + r∂(s)

for all r, s ∈ R, proving that ∂ ∈ DerK (S). �

Consider now the multiplication map R ⊗K R → R, and let I be its kernel. I is
generated, both as a left and right R-module, by elements of the form x ⊗ 1 − 1 ⊗ x .
In addition, one can show that r(x ⊗ 1 − 1 ⊗ x) + I2 = (x ⊗ 1 − 1 ⊗ x)r + I2, for
all r, x ∈ R. We define

�R/K := I/I2

which is an R-module (the actions on the left and on the right are the same, given the
previous comment). The module of differentials comes equipped with a universal
derivation dR/K : R → �R/K , which is the map that sends r ∈ R to r ⊗ 1 − 1 ⊗ r .
For any R-module M , we have an isomorphism

DerK (R, M) ∼= HomR(�R/K , M).

In fact, every derivation ∂ ∈ DerK (R, M) can be written as ∂ = ϕ ◦ dR/K , for
some R-linear homomorphism ϕ ∈ HomR(�R/K , M). Conversely, ψ ◦ dR/K : R →
M is a K -derivation for any ψ ∈ HomR(�R/K , M). We now recall how to explicitly
describe �R/K when we have a presentation of R over K .

• If R = K [x1, . . . , xn] is a polynomial ring over K , then one can show that

�R/K
∼= Rdx1 ⊕ · · · ⊕ Rdxn

is a free R-module of rank n, with basis labeled by symbols dxi . In this case the
universal derivation dR/K : R → �R/K turns out to be the standard differential.
More explicitly, for f ∈ K [x1, . . . , xn], we have

dR/K ( f ) =
n∑

i=1

∂( f )

∂xi
dxi .
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• If R = S/I , where S = K [x1, . . . , xn] is a polynomial ring and I ⊆ S is an ideal,
then

�R/K
∼= �S/K

I�S/K + S · dS/K (I )
,

where dS/K (I ) = {dS/K ( f ) | f ∈ I }. The universal derivation is the map dR/K :
R → �R/K induced by dS/K : S → �S/K on R.

• If R = TW , where T = K [x1, . . . , xn]/I and W is a multiplicatively closed set,
we have

�R/K
∼= (�T/K

)
W

and dR/K obeys the classical quotient rule.

These rules are helpful to compute the module of differentials �R/K when R is
essentially of finite type over K . Given ring homomorphisms K → T → R := T/I ,
we obtain an exact sequence

I/I 2
α �� �T/K ⊗T R

β �� �R/K
�� 0 (2.3.1)

where α(i + I 2) = dT/K (i) + I�T/K and β(dT/K (t) ⊗ r) = dR/K (t) · r . Here we
are using the same notation for elements in a module and classes in quotients of the
same module.

We are now finally in a position to define evolutions.

Definition 2.28 Let R be a local K -algebra, where K is a field. An evolution of R is
a surjective homomorphism T → R of K -algebras such that R ⊗T �T/K → �R/K

is an isomorphism. The evolution is said to be trivial if T → R is an isomorphism,
and R is said to be evolutionary stable if every evolution of R is trivial.

Evolutions appear in the study of Hecke algebras and in the work of Wiles on
Galois deformations, in relation with his proof of Fermat’s Last Theorem. They have
also been studied by Scheja–Storch [73] and Böger [9], under slightly different per-
spectives. Evolutions were formally introduced by Mazur [61] in relation with the
work of Wiles on semistable curves [89]. This comes from a desire to compare some
universal deformation ring with a particular quotient of it, which arises as a com-
pletion of a Hecke algebra. In many cases the induced quotient map is an evolution,
and it was crucial to establish that it is trivial. When introducing evolutions, Mazur
asked whether any ring arising in such a way is actually evolutionary stable. In this
direction, further work of Wiles and Taylor-Wiles [81] showed that any such evo-
lution is trivial. However, Mazur’s more general question whether reduced algebras
essentially of finite over fields of characteristic zero are evolutionary stable is still
open. Some partial results have been established [23, 42–44, 49].

We start off by justifying the relation between evolutions and the Eisenbud–Mazur
Conjecture2.25. We closely follow the original arguments by Eisenbud and Mazur
[23].
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We first present a very useful criterion for existence of non-trivial evolutions, in
terms of minimality, which is due to H. Lenstra.

Definition 2.29 Let T be a ring, and let φ : M → N be an epimorphism of T -
modules. We say that φ is minimal if there is no proper submodule M ′ ⊆ M such
that φ(M ′) = N .

The following proposition actually works for local algebras essentially of finite
type over any Noetherian ring. However, we just focus on algebras essentially of
finite type over a field.

Proposition 2.30 (Lenstra [23, Proposition1]) Let R be a local K -algebra, essen-
tially of finite type over K . Then R is evolutionary stable if and only if for some
(equivalently all) presentations R = S/I , where S is a localization of a polynomial
ring over K , the map

α̃ : I/I 2 → ker
(
R ⊗S �S/K → �R/K

)→ 0

induced from the exact sequence (2.3.1) is minimal.

Proof We leave it to the reader to show that α̃ being minimal or not is independent
of the chosen presentation. Let S/I be any presentation of R, with S a localization
of a polynomial ring in finitely many variables over K . Let J ⊆ I be an ideal,
so that we have a surjection A := S/J → S/I = R → 0. A diagram chase on the
sequences (2.3.1) induced by the surjections S → A → R → 0 shows that A → R
is an evolution if and only if the surjective map α̃ : I/I 2 → ker

(
�S/K ⊗S R

)
carries

(J + I 2)/I 2 onto the same image as I/I 2. In addition, by Nakayama’s Lemma we
have that J = I if and only if (J + I 2)/I 2 = I/I 2. Therefore R has no non-trivial
evolutions of the form S/J if and only if no proper submodule (J + I 2)/I 2 � I/I 2

has the same image as I/I 2 via α̃, if and only if α̃ is minimal. �

Under certain assumptions, we can explicitly identify the kernel of the map α
considered above.

Theorem 2.31 (Eisenbud–Mazur [23, Theorem3]) Let (S,m) be a localization
of a polynomial ring in finitely many variables over K , and let I be an ideal of
S. If R := S/I is reduced and generically separable over K , then the kernel of
α : I/I 2 → R ⊗K �S/K is I (2)/I 2.

As a consequence of Theorem2.31, we can now fully justify the connection
between Conjecture2.25 and the existence of non-trivial evolutions.

Corollary 2.32 Let (S,m) be a localization of a Noetherian polynomial ring over
a field K , and let I be a radical ideal of S. If R = S/I is generically separable over
K , then R is evolutionary stable if and only if I (2) ⊆ mI .

Proof It is enough to observe that minimality of a surjective map f : A → B is
equivalent to the fact that ker( f ) does not contain any minimal generator of A. �
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Over the complex numbers, Conjecture2.25 can be equivalently restated even
more explicitly.

Proposition 2.33 (Eisenbud–Mazur [23, Corollary2]) There exists a reduced local
C-algebra R of finite type whose localization at the origin is not evolutionary stable
if and only if there exists a power series f ∈ C[[x1, . . . , xn]] without a constant term
such that

f /∈ (x1, . . . , xn)
√

( f, ∂1( f ), . . . , ∂n( f )).

We now present some results due to Hübl [42], that lead to new versions of the
Eisenbud–Mazur conjecture. We closely follow his treatment of these topics.

Theorem 2.34 (Hübl [42, Theorem1.1]) Let K be a Noetherian ring, and let R
be a local algebra essentially of finite type over K . The following conditions are
equivalent:

(1) R is evolutionary stable.
(2) Assume (S,m) is a local algebra, essentially of finite type and smooth over K ,

and I ⊆ S is such R = S/I . If f ∈ I and ∂( f ) ∈ I for all ∂ ∈ DerK (S), then
f ∈ mI .

Proof Assume (1), and write R = S/I for some radical ideal I . Let f ∈ I be such
that ∂( f ) ∈ I for all ∂ ∈ DerK (S). Assume, by way of contradiction, that f /∈ mI .
It follows that we can find J ⊆ I such that I = J + ( f ), so that I/J ∼= S/m. Let
T := S/J , and consider the surjection T → R; we claim that this is an evolution,
and this gives a contradiction. In fact, if we let I := I/J ⊆ T , we have an exact
sequence

I/I2 ∼= ( f + J )/J
α �� �S/K /I�S/K

∼= �T/K ⊗T R �� �S/K
�� 0.

If f̃ is the image of f inside I/I2, we have that α( f̃ ) = d f + I�S/K . Note that
�S/K is free over S, because S is essentially of finite type and smooth over K .
Since ∂( f ) ∈ I for all ∂ ∈ DerK (S), and DerK (S) ∼= HomS(�S/K , S), we have that
d( f ) ∈ I�S/K . We then have that α( f̃ ) = 0 in �S/K /I�S/K , which shows that
T → R is an evolution.

For the converse, assume (2), and consider any evolution T = S/J → S/I = R
of R. By way of contradiction, assume that the evolution is non-trivial, so that J � I .
Without loss of generality,we can assume that I = J + ( f ), for some f /∈ I such that
fm ⊆ J . Clearly, f /∈ mI , otherwise I = J + ( f ) ⊆ J + mI ⊆ J , contradicting
the non-triviality of the evolution. We want to show that there exists h ∈ I � mI
such that ∂(h) ∈ I for all ∂ ∈ DerK (S). To find such h, note that

�R/K
∼= �S/K

I�S/K + S · d(I )
= �S/K

J�S/K + f �S/K + S · d(I )
.
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On the other hand, since T → R is an evolution, we have

�R/K
∼= �T/K

f �T/K

∼= �S/K

J�S/K + S · d(J ) + f �S/K
.

This shows that

d( f ) ∈ d(I ) ⊆ J�S/K + S · d(J ) + f �S/K = I�S/K + S · d(J ).

Let g1, . . . , gr ∈ J be such that d( f ) −∑i si d(gi ) = η ∈ I�S/K , where si ∈ S. Set
h := f −∑i sigi , and note that

• d(h) = d( f ) −∑i si d(gi ) −∑i d(si )gi = η −∑i d(si )gi ∈ I�S/K

• I = J + ( f ) = J + (h); therefore, h ∈ I . In addition, h /∈ mI ; otherwise, f ∈
mI .

Since d(h) ∈ I�S/K , and DerK (S) ∼= HomS(�S/K , S), we have that ∂(h) ∈ I for
all ∂ ∈ DerK (S). This concludes the proof. �

In light of Exercise2.13 and Proposition2.14, we see that, under the assumptions
that S = K [x1, . . . , xn], I ⊆ S is radical and K is perfect, we have that I (2) = I 〈2〉.
Therefore Theorem2.34 becomes just a restatement of Corollary2.32.

Theorem 2.35 (Hübl [42, Theorem1.2]) Let K be a field of characteristic zero, and
let S be a smooth algebra, essentially of finite type over K . For a radical ideal I ⊆ S
and f ∈ I , the following conditions are equivalent:

(1) ∂( f ) ∈ I for all ∂ ∈ DerK (S);
(2) f ∈ I (2);
(3) f n ∈ I n+1 for some n ∈ N.

Proof For simplicity, we prove only the case when K is algebraically closed, and
S = K [x1, . . . , xn].

Assume (1). Let δ ∈ D1
K (S) be a differential operator of order at most one. By

Lemma2.27 we have that

δ( f ) = ∂( f ) + μδ(1)( f ) = ∂( f ) + δ(1) · f ∈ I

for all δ ∈ D1
K (S). Therefore, we obtain that f ∈ I 〈2〉. Given that K is a field of

characteristic zero, and that S is a localization of a finite algebra over K , we obtain
that f ∈ I (2) by Exercise2.13 and Proposition2.14, as desired.

Conversely, if f ∈ I (2) = I 〈2〉 we have that δ( f ) ∈ I for all δ ∈ D2
K (S). Let ∂ ∈

DerK (S) be a derivation; then ∂ is, in particular, an element ofD2
K (S). In particular,

∂( f ) ∈ I . Thus (1) and (2) are equivalent.
Now assume (1). Let Q be the field of fractions of S, and let v1, . . . , vt be the

Rees valuations of I , with associated valuation rings S ⊆ Vi ⊆ Q. Note that Vi is
essentially of finite type over S. Since ∂( f ) ∈ I for all ∂ ∈ DerK (S), and �S/K is
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free over S by smoothness, we have that dS/K ( f ) ∈ I�S/K . As the canonical map
�S/K → �Vi /K is S-linear, we have that dVi /K ( f ) ∈ I�Vi /K . Similarly, we have that
dV̂i /K ( f ) ∈ I �̃V̂i /K , after passing to completions (see [56] for a definition of the
module of differentials in the complete case). Since V̂i is a DVR containing a field,
there exists a parameter ti ∈ V̂i and a field �i such that V̂i

∼= �i [[ti ]]. Then

dV̂i /K ( f ) ∈ I �̃V̂i /K = I V̂i dti ,

and thus ∂( f )/∂(ti ) ∈ I · V̂i . This means that

vi ( f ) = vi (∂( f )/∂(ti )) + 1 � vi (I ) + 1, (2.3.2)

for all Rees valuations vi of I . Now write I = ( f, g1, . . . , gt ), for some elements

gi ∈ I , and let R = S[I t]( f t) = S
[

g1
f , . . .

gt
f

]
be the homogeneous localization of

the Rees algebra at ( f t). We claim that f is a unit inR. If not, then f ∈ p for some p
of height one. Let S be the integral closure ofR. Then S is finite overR, sinceR is
excellent. Then, there exists Q ∈ Spec(S) such that Q ∩ R = p. Then SQ is a DVR,
with valuation v. In particular, v is a Rees valuation of I , and v( f ) = v(I ). This
contradicts (2.3.2). Therefore 1/ f ∈ R, which means that there exists a polynomial
F(T1, . . . , Tm), say of degree n + 1, such that 1/ f = F(g1/ f, . . . , gm/ f ). It follows
that

f n = f n+1 · 1

f
= f n+1 · F

(
g1

f
, . . . ,

gm

f

)
∈ I n+1,

since the numerator of F
(

g1
f , . . . ,

gm
f

)
is a polynomial of degree n + 1 in the gi ’s.

Finally, assume (3), so that f + I 2 is nilpotent in G = grI(S). This means that f +
I 2 ⊆ Q for allQ ∈ Spec(G). Let p be aminimal prime over I , thenGp = grpSp(Sp),
because I Sp = pSp. Since Sp is a regular local ring, with maximal ideal pSp, we
have that Gp is a domain. As a consequence, ker(G → Gp) is a prime ideal of G,
so that f + I 2 ∈ ker(G → Gp). Since this happens for all p ∈ min(I ), we have that
f + I 2 ∈ ∩p∈min(I ) ker(I/I 2 → (I/I 2)p) = I (2)/I 2. �

Corollary 2.36 Let K be a field of characteristic zero, and let S be a smooth algebra,
essentially of finite type over K . Given a radical ideal I ⊆ S, there exists N > 0 such
that
(
I (2)
)n ⊆ I n+1 for all n � N.

Theorem2.35 leads to the following new conjecture, which is equivalent to the
Eisenbud–Mazur Conjecture2.25 under the assumptions of Theorem2.35.

Conjecture 2.37 (Hübl [42, Conjecture1.3]) Let (R,m) be a regular local ring,
and let I ⊆ R be a radical ideal. Let f ∈ I be such that f n ∈ I n+1, for some n ∈ N.
Then f ∈ mI .

While Conjecture2.25 is known to be false for rings of positive characteristic, we
are not aware of any counterexamples to Conjecture2.37.
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2.4 Intersection of Symbolic Powers and Serre’s Intersection
Multiplicity

In this section, we discuss an intriguing connection between symbolic powers and
local intersection theory. Let (R,m) be a regular local ring and p, q ∈ Spec R such
that

√
p + q = m. Most of the following materials follow from the work of Sather-

Wagstaff [72]. Motivated by intersection multiplicities of two subvarieties inside an
ambient affine or projective space, Serre proposed the following definition.

Definition 2.38 (Serre [76]) The intersectionmultiplicity of R/p and R/q is defined
by

χR(R/p, R/q) :=
dim R∑

0

λ(TorRi (R/p, R/q)).

The definitionmakes sense since all the Tormodules have finite length. For unram-
ified regular local rings (for instance, if R contains a field), Serre proved the following
properties.

Theorem 2.39 (Serre [76]) Let R be an unramified regular local ring and p, q ∈
Spec R such that

√
p + q = m. Then we have:

(1) (Dimension inequality) dim R/p + dim R/q � dim R;
(2) (Non-negativity) χR(R/p, R/q) � 0;
(3) (Vanishing) χR(R/p, R/q) = 0 if dim R/p + dim R/q < dim R;
(4) (Positivity) χR(R/p, R/q) > 0 if dim R/p + dim R/q = dim R.

These results and their potential extensions have been considered by many
researchers over the last fifty years. For a comprehensive account we refer to P.
Roberts’ book on this topic [71].

The non-negativity property part of Serre’s Theorem was extended to all regular
local rings by Gabber [5]. In an attempt to extend Gabber’s argument to prove the
positivity property, which still remains a conjecture, Kurano and Roberts proved the
following theorem.

Theorem 2.40 (Kurano–Roberts [57])Let (R,m) be ramified regular local ring and
p, q ∈ Spec R such that

√
p + q = m. Assume that the positivity property holds for

R and dim R/p + dim R/q = dim R. Then for each n � 1, p(n) ∩ q ⊆ mn+1.

Thus, the simple containment p(n) ∩ q ⊆ mn+1 when dim R/p + dim R/q =
dim R is a consequence of the positivity property. They conjectured that this holds
for all regular local rings. Although this also stays open, a stronger statement was
proved for regular local rings containing a field by Sather-Wagstaff.

Theorem 2.41 (Sather-Wagstaff [72, Theorem1.6]) Let (R,m) be a regular local
ring containing a field. Let p, q ∈ Spec R be such that

√
p + q = m and dim R/p +

dim R/q = dim R. Then for m, n > 0, p(m) ∩ q(n) ⊆ mm+n.
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Note that without the condition dim R/p + dim R/q = dim R, the conclusion
fails easily. As an example, take R = C[[x, y, z]], p = (x, y), q = (y, z), then yn ∈
p(n) ∩ q(n) for each n but yn /∈ m2n . Also, taking p = (x, y), q = (z) we see that the
exponent m + n is sharp.

The proof of Theorem2.41 relies on the following interesting result, which itself
can be viewed as a generalization of Serre’s dimension inequality above. For a local
ring A, let e(A) denote the Hilbert–Samuel multiplicity with respect to the maximal
ideal.

Theorem 2.42 (Sather-Wagstaff [72, Theorem1.7]) Let (A, n) be a quasi-unmixed
local ring containing a field and P, Q ∈ Spec A such that A/P, A/Q are analyt-
ically unramified. Suppose that

√
P + Q = n and e(A) < e(AP) + e(AQ). Then

dim A/P + dim A/Q � dim A.

Given the above Theorem, 2.41 follows readily. First we can pass to the com-
pletion of R using some minimal primes lying over p, q. Thus we may assume R
is complete. Let f ∈ p(n) ∩ q(n). Suppose that f /∈ mm+n . Then set A = R/ f R and
P = pA, Q = qA. It is clear that e(AP) � m, e(AQ) � n and e(A) < m + n. Thus
by Theorem2.42, we have

dim R/p + dim R/q = dim A/P + dim A/Q � dim A < dim R,

which gives a contradiction.

3 Uniform Symbolic Topologies Property

3.1 Background on Uniformity

In this subsection we present a few results on uniformity in commutative algebra.
We refer to [48] for a survey on this topic.

In Sect. 2.2 we discussed an important uniformity result regarding symbolic pow-
ers of prime ideals in regular local rings (Theorems2.19 and 2.20). The uniformity
results we discuss in this section will be necessary to discuss results of the same
flavor as Theorems2.19 and 2.20 for more general classes of rings.

We start by recalling some assumptions underwhich theUniformBriançon-Skoda
Theorem and Uniform Artin–Rees Lemma hold.

Hypothesis 3.1 We consider a Noetherian reduced ring R satisfying one of the
following conditions

(1) R is essentially of finite type over an excellent ring containing in a field;
(2) R is F-finite;
(3) R is essentially of finite type over Z;
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(4) R is an excellent Noetherian ring which is the homomorphic image of a regular
ring R of finite Krull dimension such that for all P , R/P has a resolution of
singularities obtained by blowing up an ideal.

The following results play an important role in the proof of many uniformity results
about symbolic powers.

Theorem 3.2 (Uniform Briançon-Skoda Theorem, Huneke [46]) Let R be a ring
satisfying Hypothesis3.1. Then, there exists c = c(R) such that, for all ideals I ⊆ R
and all n � 1, I n+c ⊆ I n.

Theorem 3.3 (Uniform Artin–Rees Lemma, Huneke [46, 47]) Let R be a ring
satisfying Hypothesis3.1, and let N and M be R-modules. Then, there exists c such
that

I nM ∩ N ⊆ I n−cN

for every ideal I ⊆ R, and n ≥ c.

The UniformArtin–Rees Lemma is not effective, since we cannot explicitly com-
pute the integer c in the previous theorem.

We now focus on a couple of results about associated primes, which are helpful
while dealing with powers of ideals.

Exercise 3.4 (Matsumura [60, Proposition9A]) Let R ⊆ S beNoetherian rings, and
M be an S-module. Then, AssR M = {q ∩ R | q ∈ AssS M}. (Yassemi [90, Corol-
lary1.7])

Theorem 3.5 (Brodmann [10]) Let R be a Noetherian ring, and I be an ideal. Then,

A(I ) :=
⋃

n∈N
AssR

(
R/I n
)

is a finite set.

Proof LetR = ⊕n∈N I n denote the Rees algebra associated to I .We know thatR is a
Noetherian algebra. Then,R/IR = ⊕n∈N I n/I n+1 is a finitely generatedR-module,
and so, AssR (R/IR) is finite. As a consequence, we have that AssR (R/IR) =⋃

AssR
(
I n/I n+1

)
is finite by Exercise3.4. From the short exact sequences 0 →

I n/I n+1 → R/I n+1 → R/I n → 0, we obtain that

AssR
(
R/I n+1

) ⊆ AssR
(
R/I n
) ∪ AssR

(
I n/I n+1

)

for every n ∈ N. Then,
⋃

n∈N AssR(R/I n) ⊆⋃n∈N AssR
(
I n/I n+1

)
, and the claim

follows. �
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3.2 Linear Equivalence of Topologies

It is helpful to introduce slightly more general topologies. This generality is useful
because under some standard operations such as completion, prime ideals do not
necessarily stay prime. Completion cannot ultimately be avoided as Theorem3.6
demonstrates.

Let A be a Noetherian ring and I, J ⊆ A ideals. Write I n : 〈J 〉 :=⋃m�1(I
n :

Jm). This ideal is the saturation of I with respect to J . In terms of the primary
decomposition of I , this saturation removes all components which contain J . Since
the number of associated primes of powers of I are finite in number by Theorem3.5,
it follows that symbolic powers are always saturations with respect to a fixed suitable
ideal.

Work byf Schenzel [74, 75], and Huckaba [45] investigates conditions under
which the I -adic and {I n : 〈J 〉} topologies are equivalent. Then, one requires for each
n � 1 an integer m � 1 so that I m : 〈J 〉 ⊆ I n . In particular, a theorem of Schenzel
[75, Theorem3.2] says when certain ideal topologies are equivalent. In this section,
we write A(I ) for the union over n of the associated primes of I n , a finite set of
prime ideals. We also write T̂ for the completion of the local ring T with respect to
its maximal ideal. Here is Schenzel’s Theorem:

Theorem 3.6 (Schenzel [75, Theorem3.2]) Let A be a Noetherian ring and I, J ⊆
A two ideals. Then the following are equivalent.

(1) The {I n : 〈J 〉} topology is equivalent to the I -adic topology.
(2) dim(R̂p/(I R̂p + z)) > 0, for all prime ideals p ∈ A(I ) ∩ V (J ), and prime

ideals z ∈ Ass(R̂p).

We say that the topology determined by {I n : 〈J 〉} is linearly equivalent to the
topology determined by I n if there is a constant h such that for all n � 1,

I hn : 〈J 〉 ⊆ I n.

This concept is a priori stronger than having equivalent topologies. However, Swan-
son [79] proved the following beautiful result relating the notions of equivalent and
linearly equivalent topologies.

Theorem 3.7 (Swanson [79, Main Theorem3.3.]) Let A be a Noetherian ring and
I, J ideals. Then the {I n : 〈J 〉} and I -adic topologies are equivalent if and only if
there exists h � 1 such that, for all n � 1, I hn : 〈J 〉 ⊆ I n.

Two comments are in order regarding Theorem3.7. The first is that h depends a
priori on I . The second is that the theorem implies that if p ⊆ A is a prime ideal,
and the p-symbolic and p-adic topologies are equivalent, then there exists h � 1 so
that p(hn) ⊆ pn , for all n. Swanson’s Theorem sets the stage for uniform bounds for
regular rings [20, 41] discussed in Sect. 2.2. In particular, if d is the dimension of
the regular local ring R, then p(dn) ⊆ pn for all n � 1 and all primes p. The point is
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that while h in Theorem3.7 may depend on the ideal I , h = d in Theorems2.19 and
2.20 is independent of the ideal.

One could reasonably ask to do even better: could there be an integer t such that
for every prime p(n+t) ⊆ pn? Even very simple examples show that this is hopeless.
For example, in the hypersurface x2 − yz = 0, the prime ideal p = (x, y) has 2nth

symbolic power generated by yn , which is not in p2n−t for any fixed constant t , as
n gets large. Even the results of Theorems2.19 and 2.20 cannot be improved in an
asymptotic sense, as shown by Bocci and Harbourne [6]. All of these results lead to
the following question:

Question 3.8 Let (R,m, K ) be a complete local domain. Does there exist a positive
integer b = b(R) such that p(bn) ⊆ pn , for all prime ideals p ⊆ R and all n � 1?

We say that a ring satisfies the Uniform Symbolic Topologies Property, abbrevi-
ated as USTP, if the answer to the previous question is affirmative.

We now show that complete local domains have the property that the adic and
symbolic topologies are linearly equivalent for all prime ideals.However, the constant
c which gives the relation p(cn) ⊆ pn depends a priori on the ideal p. We first make
an observation needed for this result.

Remark 3.9 Let R be complete local domain. For ideals I, J ⊆ R, suppose there
exist integers d, t � 1 such that I dn : 〈J 〉 ⊆ I n−t , for all n ≥ t . An induction argu-
ment shows that for c := d(t + 1), I cn : 〈J 〉 ⊆ I n for all n � 1.

We now show that Question3.8 is well-posed.

Proposition 3.10 (Huneke–Katz–Validashti [51, Proposition2.4]) Let (R,m, K )

be a complete local domain and let p ⊆ R be a prime ideal. Then the {p(n)} topology
is linearly equivalent to the {pn} topology. In particular, there exists c > 0 (depending
on p) such that p(cn) ⊆ pn, for all n � 1.

Proof It suffices to prove the second statement. Let S denote the integral closure of
R and set I := √

pS. Since S is an excellent normal domain, it is locally analytically
normal, so the completion of Sq is a domain for all primes q. In particular, by
Theorem3.6, the {I (n)} topology is equivalent to the {I n} topology. Here we are
writing I (n) for I nU ∩ S, where U := S\q1 ∪ · · · ∪ qr , for q1, . . . , qr the primes in
S lying over p, so that I = q1 ∩ · · · ∩ qr . Thus, by 3.7, p(kn) ⊆ I (kn) ⊆ I n for some
fixed k and all n � 1. On the other hand, there is an e such that I e ⊆ pS, so that

p(ken) ⊆ pn S ∩ R ⊆ pn−l ,

for some l by Artin–Rees. By Remark3.9, taking c := ke(l + 1) gives p(cn) ⊆ pn ,
for all n. �

It is worth noting that the previous result is motivated by the work of Swanson.

Theorem 3.11 (Swanson [78, Theorem3.4]) Let R be a Noetherian ring and I ⊆ R
be an ideal. Then, there exists a positive integer c and for each n an irredundant
primary decomposition qn,1 ∩ · · · ∩ qn,sn of I

n so that for p j := √(qn, j ), pcnj ⊆ qn, j ,
for all n � 1 and 1 � j � sn.
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3.3 A Uniform Chevalley Theorem

In order to study the Uniform Symbolic Property, it is useful to have a general
version of the Zariski–Nagata Theorem (Theorem2.11). If (R,m, K ) is not regular,
one cannot guarantee that p(n) ⊆ mn . Our goal is to show that for complete local
domains there exists a constant h, not depending of p, such that p(hn) ⊆ mn, which
can be seen as a uniform version of Chevalley’s theorem.

Theorem 3.12 (Chevalley) Let (R,m, K ) be a complete local ring, M be a finitely
generated module, and let {Mi } be a nonincreasing sequence of submodules. Under
these conditions,

⋂

i∈N
Mi = 0 if and only if for every integer t there exists i such that

Mi ⊆ mt M.

As a consequence, if {Jn}n�1 is a descending collection of ideals with
⋂

n�1 Jn =
0, then the {Jn} topology is finer than the m-adic topology. In other words, for all
n � 1, there exists t � 1, such that Jt ⊆ mn . Once again, wewould like to understand
when the symbolic topology is finer than the m-adic topology in not necessarily
complete rings. To do so, it is convenient to introduce another type of saturation.

Notation 3.13 Let S ⊆ R be a multiplicatively closed set and L ⊆ R an ideal. We
write L : 〈S〉 for LRS ∩ R.

Let I, J be ideals of R and take s ∈ J with the following property: for allp ∈ A(I ),
s ∈ p if and only if J ⊆ p. Then I n : 〈S〉 = I n : 〈J 〉, for all n � 1. Consequently,
any result about the {I n : 〈S〉} topology recovers the corresponding result about the
{I n : 〈J 〉} topology. Moreover, if we let S denote the complement of the union of the
associated primes of I , then by definition, I (n) = I n : 〈S〉, for all n.

The following proposition is implicit in the work of McAdam [62] and Schenzel
[75]. We present the proof given by Huneke, Katz and Validashti [51].

Proposition 3.14 (Huneke–Katz–Validashti [51, Proposition2.2]) Let (R,m, K ) be
a local ring with completion R̂. Let I ⊆ R be an ideal and S ⊆ R a multiplicatively
closed set. Write q1, . . . , qs for the associated primes of R̂. Then the {I n : 〈S〉}
topology is finer than the m-adic topology if and only if (I R̂ + qi ) ∩ S = ∅ for all
1 � i � s.

Proof Since R̂ is faithfully flat over R, the {I n :R 〈S〉} topology is finer than the
m-adic topology if and only if the {I n R̂ :R̂ 〈S〉} topology is finer than the mR̂-adic
topology. Thus, we may assume that R is a complete local ring with associated
primes q1, . . . , qs . By Chevalley’s Theorem, the {I n : 〈S〉} topology is not finer than
the m-adic topology if and only if

⋂

n�1

(I n : 〈S〉) �= 0.
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Suppose 0 �= f ∈⋂n�1(I
n : 〈S〉). Then for each n � 1, there exists s ∈ S such that

s ∈ (I n : f ). By applying the Artin–Rees Lemma to I n ∩ ( f ), we see that for n
large, s ∈ (0 : f ) + I n−k , for some k. Taking q j so that (0 : f ) ⊆ q j , we have that
(I + q j ) ∩ S �= ∅.

On the other hand, suppose that (I + q j ) ∩ S �= ∅, for some j . Then for all n � 1,
(I n + q j ) ∩ S �= ∅. Let q j = (0 : f ). Then for each n, there exists s ∈ S such that
s ∈ I n + (0 : f ), i.e., s f ∈ I n . Thus, 0 �= f ∈⋂n�1(I

n : 〈S〉). �

Since R is analytically irreducible, I = p is prime. By taking S = R − p in the
previous proposition, we obtain that the {p(n)} topology is finer that them-adic topol-
ogy.

We can now state and show the Uniform Chevalley Theorem.

Theorem 3.15 (Huneke–Katz–Validashti [51, Theorem2.3]) Let R be an analyti-
cally unramified local ring. Then there exists h � 1 with the following property: for
all ideals I ⊆ R and all multiplicatively closed sets S ⊆ R such that the {I n : 〈S〉}
topology is finer than the m-adic topology, I hn : 〈S〉 ⊆ mn, for all n � 1.

Proof Ideas: The statement reduces to the complete local domain case. In this case,
we applied Rees’ theory of Rees valuations and degree functions [70, Theorem2.3]
together with a theorem of Izumi [54] to obtain the result. �

As a corollary, we globalize the statement in Theorem3.15.

Corollary 3.16 (Huneke–Katz–Validashti [51]) Let R be a Noetherian ring and
J ⊆ R an ideal. Suppose that Rp is analytically unramified for all p ∈ A(J ). Then
there exists a positive integer h with the following property: for all ideals I ⊆ R
and multiplicatively closed sets S for which the {I n : 〈S〉} topology is finer than the
J -adic topology, I hn : 〈S〉 ⊆ J n, for all n.

Proof The point of the proof is that we can combine Theorem3.15 with Theo-
rem3.11. It follows from this that p(cn)

j ⊆ qn, j , for all n and all j .
On the other hand, if I , S are such that the {I n : 〈S〉} topology is finer than the J -

adic topology, then the {I n : 〈S〉} topology is finer than the symbolic topology {p(n)}
for any p ∈ A(J ). By our hypothesis on A(J ) and Theorem3.15, there is a positive
integer l such that (I ln : 〈S〉)p ⊆ pnp, for all n and all p ∈ A(J ). Therefore, I ln :
〈S〉 ⊆ p(n), for all p ∈ A(J ) and n � 1. Combining this with the previous paragraph
and setting h := cl, it follows that I hn : 〈S〉 ⊆ J n , for all I, S and n � 1. �

3.4 Isolated Singularities

The purpose of this subsection is to discuss a theorem of Huneke, Katz and Valis-
dashti [51] which proves that for a large class of isolated singularities, the symbolic
topology defined by a prime ideal p is uniformly linearly equivalent to the p-adic
topology. We sketch their proof that for such isolated singularities R, there exists
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h � 1, independent of p, such that for all primes p ⊆ R, p(hn) ⊆ pn , for all n. The
following theorem is our focus:

Theorem 3.17 (Huneke–Katz–Validashti [51]) Let R be an equicharacteristic local
domain such that R is an isolated singularity. Assume that R is either essentially of
finite type over a field of characteristic zero or R has positive characteristic and is
F-finite. Then there exists h � 1 with the following property. For all ideals I ⊆ R
such that the symbolic topology of I is equivalent to the I -adic topology, I (hn) ⊆ I n,
for all n � 1.

There are three crucial ingredients in the proof of this theorem: the relation
between the Jacobian ideal and symbolic powers established in [41], the uniform
Artin–Rees Theorem (Theorem3.3), and a uniform Chevalley Theorem (Theo-
rem3.15).

Wenow focus on a result needed to proveuniformbounds for isolated singularities.
This result comes from the work of Hochster and Huneke [41], where the following
property of the Jacobian ideal plays a crucial role in the main results concerning
uniform linearity of symbolic powers over regular local rings:

Theorem 3.18 (Hochster–Huneke [41, Theorem4.4]) Let R be a an equidimen-
sional local ring essentially of finite type over a field K of characteristic zero. Let J
denote the square of the Jacobian ideal of R over K . Then there exists k � 1 such
that

J n I (kn+ln) ⊆ (I (l+1))n,

for all ideals I with positive grade and all l, n � 1.

Moreover, a parallel result is proved for F-finite local rings in characteristic p
with isolated singularity [51]. In this case, J can be chosen to be a fixed m-primary
ideal, though not necessarily the square of the Jacobian ideal.

The main point of the proof of the main result on isolated singularities is the
following theorem.

Theorem 3.19 (Hunke–Katz–Validashti [51]) Let R be a Noetherian ring in which
the uniformArtin–Rees lemma holds and J ⊆ R an ideal with positive grade. Assume
that Rp is analytically unramified for all p ∈ A(J ). Let J denote the collection of
ideals I ⊆ R for which the {I (n)}n�1 topology is finer than the J -adic topology.
Suppose there exists k � 1 with the following property: for all ideals I ∈ J ,

J n I (kn+ln) ⊆ (I (l+1))n,

for all l, n � 1. Then there exists a positive integer h such that for all ideals I ∈ J ,
I (hn) ⊆ I n, for all n.

Sketch of proof: By Corollary3.16, we can choose h0 > k so that I (h0n) ⊆ J n , for
all ideals I ∈ J . Taking l = 0 in Theorem3.18 gives J n I (kn) ⊆ I n , for all n and all
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ideals I ∈ J . Thus, I (h0n) I (kn) ⊆ I n for all n and all ideals I ∈ J . On the other hand,
if n = 2 and l = h0r in Theorem3.18, we get

J 2 I (2k+2h0r) ⊆ (I (h0r+1))2 ⊆ I (h0r) I (kr) ⊆ I r ,

which holds for all r . Thus there exists a positive integer B such that J 2 I (Br) ⊆ I r

for all r . Choose a non-zerodivisor c ∈ J 2. Then cI (Bn) ⊆ I n , for all n. Thus, I (Bn) ⊆
(I n : c) for all n and all I . By the uniform Artin–Rees Theorem (see Theorem3.3),
we find q � 1 with the property that

I (Bn+Bq) ⊆ (I n+q : c) ⊆ I n,

for all n and all ideals I ∈ J . Taking h := B + Bq gives I (hn) ⊆ I n , for all I ∈ J
and all n � 1, as required. �

We now can show the main result in this subsection.

Theorem 3.20 (Huneke–Katz–Validashti [51, Theorem1.2]) Let R be an equichar-
acteristic reduced local ring such that R is an isolated singularity. Assume either that
R is equidimensional and essentially of finite type over a field of characteristic zero,
or that R has positive characteristic and is F-finite. Then there exists h � 1 with the
following property: for all ideals I with positive grade for which the I -symbolic and
I -adic topologies are equivalent, I (hn) ⊆ I n, for all n � 1.

Proof The ring R is excellent in both cases, and so R is analytically unramified (see
[55] for the F-finite case). Let d = dim(R).

Suppose first that R is essentially of finite type over a field of characteristic
zero. Let J denote the square of the Jacobian ideal. By Theorem3.18, J n I (dn+ln) ⊆
(I (l+1))n for all ideals I with positive grade and all n � 1 and all l � 0. Thus, since
J is m-primary and R is analytically unramified, we may use Theorem3.19 with
k = d to obtain the desired result.

The positive characteristic case follows similarly once an ideal J is constructed
to play a similar role to the Jacobian ideal. �

As a consequence of the previous theorem, we obtain the Uniform Symbolic
Topologies Property for isolated singularities.

Theorem 3.21 (Hunke–Katz–Validashti [51]) Let R be an equicharacteristic local
domain such that R is an isolated singularity. Assume that R is either essentially
of finite type over a field of characteristic zero or R has positive characteristic,
is F-finite and analytically irreducible. Then there exists h � 1 with the following
property: for all prime ideals p �= m, p(hn) ⊆ pn, for all n.
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3.5 Finite Extensions

We now present a uniform relation between the extension of an ideal and its radical
in the case of a finite extension. This is a key ingredient in the proof that the USTP
descends for finite extensions.

Lemma 3.22 (Hunke–Katz–Validashti [52]) Let R ⊆ S be a finite extension of
domains, with R integrally closed. Let e = [S : R], i.e. the degree of the quotient
field of S over the quotient field of R. If q ∈ Spec(R), then

(√
qS
)e ⊆ qS. Further-

more, if e! is invertible, then (√qS
)e ⊆ qS.

Proof Let x ∈ √
qS. There is a polynomial f (T ) = T e + r1T e−1 + · · · + re such

that f (x) = 0, and with ri ∈ q for all i [3, Lemma5.14 and Proposition5.15]. As a
consequence, xe ∈ qS. If e! is invertible, we have that (√qS

)e = (xe | x ∈ √
qS) ⊆

qS.
We now consider the case where e! is not invertible. We have that elements of

the form x1 · · · xe, for xi ∈ √
qS, generate the ideal

(√
qS
)e
. Then, (x1 · · · xe)e =

xe1 · · · xee ∈ (qS)e. This implies that x1 · · · xe ∈ qS, and thus,
(√

qS
)e ⊆ qS. �

Remark 3.23 If R satisfies Hypothesis 3.1 and q(bn) ⊆ qn , then there exists t such
that qb(t+1)n ⊆ qn for all n � 1. This is a consequence of Theorem3.2.

The following example shows that if the assumption that the extension is finite is
dropped from Lemma3.22, there does not necessarily exist a uniform c such that for
all primes q in R,

(√
qS
)c ⊆ qS. Computations using Macaulay2 [29] were crucial

to find this example.

Example 3.24 Let R = K [a, b, c, d]/(ad − bc), which includes in S =
K [x, y, u, v] via the map h : R −→ S given by h(a) = xy, h(b) = xu, h(c) =
yv, h(d) = uv.

For each integer A, let qA be the prime ideal in R given by the kernel of the map
f A : R −→ k[t], where f A is given by

f A(a) = t4A, f A(b) = t4A+1, f A(c) = t8A+1, f A(d) = t8A+2.

Let QA = h (qA) S, and gA = xu4A+1 − vy4A+1. Then (gA)
4A ∈ QA, but (gA)

4A−1 /∈
QA. As a consequence,

(√
QA
)4A−1

� QAS.
To check this, fix A and write q := qA, Q := QA and g := gA. We note that

(1) q = (c − ab, d − b2, b4A − a4A+1
)
, so

(2) Q = (y(v − x2u), u(v − x2u), x4A
(
xy4A+1 − u4A

))
.

The fact that g4A ∈ Q, but g4A−1 /∈ Q follows because {y(v − x2u), u(v −
x2u), x4A

(
u4A − y4A+1

)} is a Gröbner basis for Q with respect to the lexicographi-
cal order induced by the following order on the variables: v > u > x > y. This can
be checked applying the Buchberger’s algorithm on the generating set
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{ f1 = yv − yux2, f2 = u(v − x2u) = vu − u2x2, f3 = u4Ax4A − y4A+1x4A+1}.

In this order, we now have that in(Q) = (yv, uv, x4Au4A
)
. Moreover,

gn = (xu4A − x2y4A+1
)n =

n∑

i=0

ci x
i u4Ai x2(n−i)y(4A+1)(n−i), where ci ∈ Z,

so that gn has leading term xnu4An . If gn ∈ Q, then

in
(
gn
) = xnu(4A+1)n ∈ (yv, uv, x4Au4A

)
.

This happens if and only if n � 4A, meaning that gn /∈ Q for all n < 4A. On the
other hand,

g4A = (x (u4A − xy4A+1))4A = x4A
(
u4A − xy4A+1) (u4A − xy4A+1)4A−1 ∈ Q.

We now present the main result in this subsection.

Theorem 3.25 (Hunke–Katz–Validashti [52, Corollary3.4.]) Let R ⊆ S be a finite
extension of domains, with R integrally closed, such that both rings satisfy Hypoth-
esis3.1. If S has USTP, then R has USTP.

Proof We first show that there exists r such that for all p ∈ Spec(S) the following is
true: if p(bn) ⊆ pn for all n and q = p ∩ R, then q(rbn) ⊆ qn for all n. Note that q(n) ⊆
p(n). It suffices to show that there exists r , independent of p, such that prn ∩ R ⊆ qn .
Indeed, this gives

q(rbn) ⊆ p(rbn) ∩ R ⊆ prn ∩ R ⊆ qn.

By replacing S by S, it is enough to show our claim for S integrally closed. It also
suffices to show this separately for R ⊆ T and T ⊆ S separately, where T is the
integral closure of R in some intermediate field E with K ⊆ E ⊆ L , where K is the
fraction field of R and L is the fraction field of S.

We have two cases to consider:

(a) L is purely inseparable over K .
(b) L is separable over K .

Write e = [S : R].
(a) L is purely inseparable over K .

For every element u ∈ S, uk ∈ R for some k, and thus Q = √
qS.

If u ∈ Qen ∩ R = (Qe)n ∩ R, then u ∈ (qS)n ∩ R ⊆ qn .We have that qn ⊆ qn−t

for t by Theorem3.2. The claim now follows from Remark3.23.
(b) By perhaps extending L , we can assume L is Galois over K . Write

√
qS =

p1 ∩ · · · ∩ pk , and notice that k � e, since the Pi are permuted by the Galois
group.
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Let u ∈ Qe2n ∩ R. Then

ue ∈ (uk) ⊆ pen1 . . . penk = (p1 . . . pk)
en ⊆
(√

qS
)en

,

and by Lemma3.22,
(√

qS
)en ⊆ (qS)n ∩ R. Then,

ue ∈ (qS)n ∩ R ⊆ qn ⊆ qn−t . �

3.6 Direct Summands of Polynomial Rings

In this subsection we discuss uniform bounds for direct summands of polynomial
rings. This includes affine toric normal rings [40], and rings on invariants. Rings
corresponding to the cones of Grassmannian, Veronese and Segre varieties are also
direct summands of a polynomial ring. If one assumes that the field has characteristic
zero, then the ring associated to the t × t minors of an n × n generic matrix is also
one of these rings. We continue with the strategy used to prove the Zariski–Nagata
Theorem in Sect. 2.1. We start by recalling a property of direct summands that was
used by Àlvarez-Montaner, the fourth, and fifth author in their study of D-modules.

Lemma 3.26 ([2]) Let R ⊆ S let be two finitely generated K -algebras. Let β : S →
R be any R-linearmorphism. Then, for every δ ∈ Dn

K (S), we have that δ̃ := β ◦ δ|R ∈
Dn

K (R).

We now give a specific bound for the Chevalley Theorem for homogeneous ideals
in a graded direct summand of a polynomial ring.

Theorem 3.27 Let K be a field, S = K [x1, . . . , xn], η = (x1, . . . , xn)S, f1, . . . ,
f� ∈ S be homogeneous polynomials, R = K [ f1, . . . , f�], m = ( f1, . . . , f�)R, and
B = max{deg( f1), . . . , deg( f�)}. Suppose that the inclusion, R ⊆ S, splits. Then,

q(Bn) ⊆ mn

for every homogeneous prime ideal q ⊆ R.

Proof We first show that q(Bn) ⊆ ηBn ∩ R. Since q and ηBn ∩ R are homogeneous
ideals, it suffices to show that if a homogeneous element f /∈ ηBn ∩ R, then f /∈
q(Bn).

Since ηBn = η〈Bn〉 and f is homogeneous, there exists an operator δ ∈ Dn−1
K (S)

such that δ( f ) = 1. Then, β ◦ δ( f ) = 1 by Lemma3.26. Since β ◦ δ|R ∈ Dn−1
K (R),

we have that f /∈ q〈Bn〉. In particular, f /∈ q(Bn), since q(Bn) ⊆ q〈Bn〉.
We now show that ηBn ∩ R ⊆ mn. Let g ∈ ηBn ∩ R. Then, g is a linear combina-

tion of products f α1
1 · · · f α�

� such that

Bn � deg( f ) = α1 deg( f1) + · · · + α� deg( f�) � D(α1 + · · · + α�).
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Then, α1 + · · · + α� � n. Hence, g ∈ mn. We conclude that

q(Bn) ⊆ ηBn ∩ R ⊆ mn. �

As a corollary of the previous result, we find that 2 is a sufficient bound for
determinantal rings.

Corollary 3.28 Let X be a n × m generic matrix of variables, K a field, R =
K [X ]/It (X), and m = (xi, j )R. If either t = 2 or char(K ) = 0, then

p(2n) ⊆ mn

for every homogeneous prime ideal p ⊆ m.

Proof If either t = 2 or char(K ) = 0, then R is a direct summand of a polynomial
ring, and it is generated by homogeneous polynomials of degree 2. The rest is a
consequence of Theorem3.27. �

We now focus on Question3.8 for direct summands of polynomial rings. In case
of direct summands whose extension is finite, we have specific values for the uniform
bounds given in Theorem3.25.

Theorem 3.29 Let S = K [x1, . . . , xn] and R ⊆ S a direct summand. Suppose that
S is a finitely generated R-module. Let p ⊆ R a prime ideal and h = ht(p). If k =
[S : R], then

p(khn) ⊆ pn−d

for every positive integer n. Furthermore, if k! is invertible in R, then

p(khn) ⊆ pn.

Proof Let q1, . . . , q� be the minimal primes of pS. Since R ⊆ S is an integral exten-
sion, and R is integrally closed, the going-up and going-down theorems apply. Then,
qi ∩ R = p. Let V = S \ (q1 ∪ · · · ∪ q�). Then,

r ∈ R \ p =⇒ r /∈ qi ∩ R

=⇒ r /∈ qi for all i

=⇒ r ∈ S \ (q1 ∪ · · · ∪ q�).

Thus, R \ p ⊆ V .

We have that
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p(khn) = pknh Rp ∩ R ⊆ pkhn Sp ∩ S;
⊆ pkhnV−1S ∩ S because R \ p ⊆ V ;
⊆ √pSkhnV−1S ∩ S = √pS(knh);
⊆ √pSknby Theorems 2.19 and 2.20;
= (
√
pS

k
)n ⊆ pS

n
by applying Lemma 3.22;

⊆ pn−d S by Uniform Briançon-Skoda (Theorem 3.2).

Then, p(khn) ⊆ pn−d S ∩ R = pn−d .

If k! is invertible, the claim follows the same lines as before, but we use the second
part of Lemma3.22. �

As a corollary of the previous result, we answer a question asked by Takagi to the
fourth author.

Corollary 3.30 Let S = K [x1, . . . , xd ], and G a finite group that acts on S. Let
R = SG denote the ring of invariants. Let p ⊆ R a prime ideal and h = ht(p). If
k = |G| is invertible in K , then

p(khn) ⊆ pn−d

for every positive integer n. Furthermore, if k! is invertible in K , then

p(khn) ⊆ pn.

To the best of our knowledge, Question3.8 is still open for direct summands R of
polynomial rings such that the extension R → S is infinite. For recent progress on
toric rings see the work of Walker [86].

4 Symbolic Powers of Monomial Ideals

4.1 Symbolic Powers, Monomial Ideals and Matroids

Let S = K [x1, . . . , xn] denote the polynomial ring in n variables over a field K , and
m = (x1, . . . , xn). There is a bijection between the squarefree monomial ideals in
S and simplicial complexes in n vertices, via the Stanley–Reisner correspondence.
Some algebraic properties of such an ideal can be described via the combinatorial
and topological properties of the corresponding simplicial complex, and vice-versa.
Varbaro [84] and Minh and Trung [66] have independently shown that the property
that all the symbolic powers of a Stanley–Reisner ideal are Cohen-Macaulay is
equivalent to a combinatorial condition on the corresponding simplicial complex,
namely that the simplicial complex is a matroid.
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Definition 4.1 A simplicial complex on the set [n] := {1, . . . , n} is a collection �

of subsets of [n], called faces of �, that satisfies the following property: given a face
σ ∈ �, if θ ⊆ σ, then θ ∈ �. A facet is a face that is maximal under inclusion.

Given a simplicial complex on [n], we can define a squarefree monomial ideal in
S corresponding to �:

Definition 4.2 Given a simplicial complex �, the Stanley–Reisner ideal of � is the
following squarefree monomial ideal:

I� = (xi1 · · · xis : {i1, . . . , is} /∈ �
)
.

The quotient K [�] := S/I� is called the Stanley–Reisner ring of �.

On the other hand, given a squarefree monomial ideal, we can recover the sim-
plicial complex associated to it, giving us a bijective correspondence:

Definition 4.3 Given a square free monomial ideal I in S, the Stanley–Reisner
complex of I is given by

� = {{i1, . . . , is} ⊆ [n] | xi1 . . . xis /∈ I
}
.

For a more details about Stanley–Reisner theory, we refer to [26, 63].

Definition 4.4 A simplicial complex � on [n] is said to be amatroid if for all facets
F,G ∈ � and all i ∈ F , there exists j ∈ G such that (F\ {i}) ∪ { j} ∈ � is still a
facet.

This turns out to be precisely the combinatorial condition that corresponds to the
following property of the symbolic powers of the Stanley–Reisner ideal:

Theorem 4.5 (Varbaro [84], Minh–Trung [66]3) Given a simplicial complex � on
[n], S/I (m)

� is Cohen-Macaulay for all m � 1 if and only if � is a matroid.

We point out that Terai and Trung [82] showed a more general result: If S/I (m)
� is

Cohen-Macaulay for some m � 3, then � is a matroid.

Example 4.6 The figure below represents the well-known Fano matroid, in 7 vari-
ables, where colinear points correspond to facets, considering the circle as a line.
The Stanley–Reisner ideal of the Fano matroid in F2 [x1, . . . , x7] is given by

I =

⎛

⎜⎜⎜⎝

x4x2x1, x4x3x1, x4x3x2, x5x2x1, x5x3x1, x5x3x2, x5x4x1,

x5x4x2, x6x2x1, x6x3x1, x6x3x2, x6x4x1, x6x4x3, x6x5x2,

x6x5x3, x6x5x4, x7x2x1, x7x3x1, x7x3x2, x7x4x2, x7x4x3,

x7x5x1, x7x5x3, x7x5x4, x7x6x1, x7x6x2, x7x6x4, x7x6x5

⎞

⎟⎟⎟⎠ .

3See also [64].
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By Theorem4.5, we know that the symbolic powers of I are all Cohen-Macaulay.
Using Macaulay2 [29] we can check that, for example, I (2) �= I 2 and I (3) �= I 3.

x1 x5

x3

x2 x4

x6

x7

4.2 The Packing Problem

Although there are well-known instances in which the symbolic powers of an ideal
are equal to its usual powers, for example complete intersections, there are essentially
no theorems which give necessary and sufficient criteria for this equality to be true,
except in a few cases. One of the most notable cases are the prime ideals defining
curves which are licci [50]. In this latter case, being a complete intersection is both
necessary and sufficient for the symbolic powers and regular powers to be the same.
There is not even a good guess about what properties of an ideal are necessary
and sufficient to guarantee the equality of the symbolic powers and usual powers.
However, in the case of squarefree monomial ideals, there is a beautiful conjecture,
first discovered by Conforti and Cornuéjols [13] in the context of max-flow min-cut
properties, which was reworked by Gitler, Villarreal and others [27, 28] to place
the conjecture within commutative algebra. We present this conjecture, and also
introduce a new relative version of it. In addition, we give a proof of this relative
version for graph ideals, and for the symbolic square. We first need to recall some
definitions.

Definition 4.7 Let S be a polynomial ring over a field. A squarefree monomial ideal
I of height c is König if there exists a regular sequence of monomials in I of length
c. The ideal I is said to have the packing property if every ideal obtained from I by
setting any number of variables equal to 0 or 1 is König.

The conjecture of Conforti and Cornuéjols can be restated in this language to say
that the symbolic powers and usual powers of a squarefree monomial ideal coincide
if and only if the ideal has the packing property. This conjecture has been the subject
of much scrutiny [11, 12, 14, 25, 53, 68, 83]. If I is the edge ideal of a finite simple
graph G, this conjecture is known [28]; in fact in this case I (k) = I k for all k if and
only if G is bipartite if and only if I has the packing property. In the graph case, the
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conjecture can also be reintrepreted in terms ofwell-knowngraph invariants. Namely,
let G be a graph. Set c(G) equal to the size of minimal vertex cover and m(G) equal
to the size of maximal set of disjoint edges. Then the height of I is c(G), and the
length of a maximal sequence in I of monomials ism(G). Obviously, c(G) � m(G).
In this language, G has the König property if and only if c(G) = m(G), while G is
packed if and only if every minor of G has the König property.

One direction is not difficult. Assume that I (n) = I n for all n. One can prove
this property is preserved after setting variables equal to 0 or 1, so to prove that I
is packed, one only needs to prove that I is König. Moreover, by setting variables
which do not appear in the minimal generators of I to 0, one can further assume that
every variable appears in some minimal prime of I . But if the ring is K [x1, . . . , xn],
the monomial m = x1 · · · xn is in pc for every minimal prime p of I , since I has
height c. It follows that m ∈ I (c). By assumption, m ∈ I c, and this implies that
there are monomials m1, . . .mc ∈ I such that m1 · · ·mc = m. Since m is squarefree
these monomials necessarily have disjoint support; then m1, . . . ,mc form a regular
sequence in I of maximal length c. The difficult direction is to prove that if I is
packed then the symbolic and usual powers agree.

In this section we introduce a relative version of this conjecture. We make the
following definition:

Definition 4.8 Let I be a squarefree monomial ideal. We say that I is k-König if
there is a regular sequence of monomials in I of length at least min{k, height (I )}.
We say I is k-packed if every squarefree monomial ideal J obtained from I by
setting variables equal to 0 or 1 is k-König.

With this language, a natural extension of the question of Conforti and Cornuéjols
is:

Question 4.9 Is I k-packed if and only if I (n) = I n for all n � k?

We prove that if I is the edge ideal of a graph, then Question4.9 has a positive
answer. To achieve this, we prove in our main theorem (see Theorem4.13) that
I (k) = I k for 1 � k � n if and only if G contains no odd cycles of length at most
2n − 1. In particular, if t is chosen to be the least integer such that I (t) �= I t (if such a
t exists), then 2t − 1 is the size of the smallest induced cycle ofG. Another corollary
of our main theorem is that if G is a finite graph with edge ideal I of height c, then
I (k) = I k for 1 � k � c implies thatG is bipartite. We also observe that Question4.9
has a positive answer if k = 2. We do not know whether the question has a positive
answer if either I is generated by cubics, or for k = 3.

We begin our study of the graph ideal case by noting:

Proposition 4.10 Let G be a finite simple graph.

(1) Suppose G has an odd cycle v1, . . . , v2n−1. Then f =∏ vi ∈ I (n)
G \ I nG.

(2) Assume that c(G) > m(G) = n − 1. Then G contains an odd cycle of length at
most 2n − 1.
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Proof (1) We note that f /∈ I nG by degree reasons. But any minimal prime of IG
must contain n vertices of the cycle, so f ∈ I (n)

G .
(2) Suppose G does not contain such cycle. Since any cycle of length at least 2n + 1

has a set of n disjoint edges, G must not contain any cycle of odd length. Thus
G is bipartite, and König’s theorem asserts that c(G) = m(G), which gives a
contradiction. �

Although our main concern in this section is with the edge ideals of graphs, our
first reduction of the problem of the equality of powers and symbolic powers works
equally well for any squarefree monomial ideal. We describe this reduction in the
discussion and remark below.

Discussion 4.11 Let J be a squarefree monomial ideal, and fix a variable x . We let
Ix denote J : (x) and I be the ideal generated by the monomials in J not involving
x . We have J = I + x Ix and I ⊆ Ix . Suppose we know that I (n)

x = I nx and I (n) = I n

(for example, if J = IG , this would be the case if we know by induction that the
symbolic powers and usual powers of IG are the same whenever we set variables
equal to 0 or 1, provided we do so for at least one variable).

Clearly J = Ix ∩ (I, x). It follows that

J (n) = I (n)
x ∩ (I, x)(n)

= I nx ∩ (I, x)n

= I n + x(I n−1 ∩ I nx ) + x2(I n−2 ∩ I nx ) + · · · + xn I nx .

On the other hand, as J = I + x Ix :

J n = I n + x I n−1 Ix + x2 I n−2 I 2x + · · · + xn I nx

As each term in this expression of J n is inside the corresponding term of J (n), the
equality J (n) = J n is equivalent to

I k ∩ I nx = I k I n−k
x for 1 � k � n − 1 (4.2.1)

We can write Ix = L + I where L is generated by monomials of J : (x) which
are not in I (in the case J = IG , L is the ideal generated by the variables which
correspond to neighbors of x).

The lefthand side of Eq.4.2.1 can be written as:
⎛

⎝I k ∩
∑

0�i�k−1

I i Ln−i

⎞

⎠+
n∑

j=k

I j Ln− j .

We summarize this discussion in the following remark:
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Remark 4.12 Let J be a squarefree monomial ideal, and let x be a variable. We
let Ix denote J : (x) and I be the ideal generated by monomials in J not involving
x . Suppose we know that I (n)

x = I nx and I (n) = I n . Write Ix = L + I where L is
generated by monomials of J : (x) which are not in I . Then J (n) = J n if and only
if for all k with 0 � i < k � n

I k ∩ I i Ln−i ⊆
n∑

j=k

I j Ln− j .

Note that the right hand side of this expression is precisely I k I n−k
x .

Before we begin the proof of main result in this subsection, we point out that this
result also follows from the recent work of Lam and Trung [58, Corollary4.5].

Theorem 4.13 Let G be a finite simple graph, and let I := IG, the edge ideal of G.
Then I (k) = I k for 1 � k � n if and only if G contains no odd cycles of length at
most 2n − 1. In particular, if t is chosen to be the least integer such that I (t) �= I t (if
such a t exists), then 2t − 1 is the size of the smallest induced cycle of G.

Proof We first prove the last asserted statement, assuming the first. Let 2s − 1 be the
size of the smallest induced odd cycle. Hence, G has no odd cycles of length at most
2s − 3, since any odd cycle contains an induced odd cycle of at most the same length.
The first statement of the theorem then proves that I (k) = I k for 1 � k � s − 1. On
the other hand, sinceG does contain an odd cycle of length 2s − 1, the other direction
of the first statement shows that I (s) �= I s . Hence t = s, proving the second statement.
We now prove the first statement.

Proposition4.10 gives the “only if” direction of this theorem, so only the “if”
direction needs to be proved.We shall prove this direction by induction on the number
of vertices. It follows that we may assume that the symbolic and usual powers agree
up to n for any ideal obtained from I by setting variables equal to 0 or 1, provided
at least one variable is set equal to 0 or 1. By Remark4.12, the proof is finished
by proving the following lemma (we adopt the notation from the discussion and
remark): �

Lemma 4.14 Suppose that G has no odd cycles of length up to 2i + 3. Then

I k ∩ I i Ln−i ⊆
n∑

j=k

I j Ln− j = I n + I n−1L + · · · + I k Ln−k

for any i < k � n.

Proof We use induction on n, then a backwards induction on k. For the second
induction, note that if k = n, then the conclusion is satisfied trivially. By way of
contradiction, consider anyminimal degreemonomial element f ∈ I k ∩ I i Ln−i such
that f /∈∑n

k I
j Ln− j . We may write f as the product of k edges: xi yi (1 � i � a,
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xi ∈ L), uivi (1 � i � b, ui , vi /∈ L), and collect the rest of the variables dividing f
into two sets, a set zi (1 � i � c, zi ∈ L), and possibly some extra variables, none of
them in L . We denote this extra set of variables by F . Note that there might well be
repetition among the variables. Also observe that no y j can be in L , since this would
give a 3-cycle in G. With this notation,

f =
∏

1� j�a

(x j y j ) ·
∏

1� j�b

(u jv j ) ·
∏

1� j�c

z j ·
∏

t∈F
t,

where a + b � k. We can assume that a + b = k, since if the sum is strictly greater,
f would be in I k+1, and we are done by the decreasing induction on k. We call this
expression for f the first expression of f (it is not necessarily unique).

Since by assumption f ∈ I i Ln−i , we may also write

f =
∏

1� j�i

m j ·
∏

1� j�l

z′
j ·
∏

w∈W
w,

where each m j is a degree two monomial corresponding to an element in I , all
z′
j ∈ L , and none of the extra variables w are in L . Finally, l is an integer such that

l � n − i . We call this expression for f the second expression of f (again, it is not
necessarily unique).

Wemake a general observation: since eachm j divides f , if for some j ,m j = xr yr
or urvr in the first representation of f , we can cancelm j in the first representation so
that f/m j ∈ I k−1 ∩ I i−1Ln−i = I n−1 + I n−2L + · · · + I k−1Ln−k by the induction
on n, and then f ∈∑n

k I
j Ln− j , which gives a contradiction. Thus, without loss of

generality we assume that m j is not equal to any xr yr or urvr .
We claim that c = 0, and there are no extra variables F . If not, consider first the

variable z1. It must appear among the variables in the second expression for f as an
element of I i Ln−i . If z1 is among the z′

j , we can cancel, and use the induction on
n to reach a contradiction. If not, then z1 divides one of the m j , say m1 = z1s. As
s appears among the variables in the first expression, we simply combine it with z1
and cancel m1 from both sides. Notice that f/m1 ∈ I k−1, since the rearrangement
affects at most one edge monomial in the first expression. The induction then gives
a contradiction, as we observed above. Thus, no zi can appear in the first expression
for f . Now consider a variable t ∈ F . Using the same reasoning, t must appear in
the second expression for f . It cannot be one of the z′

j , by assumption. If t appears
inW , we can cancel it, and obtain that f/t is a smaller counterexample, which gives
a contradiction. Thus t must divide some m j . We can again recombine t in the first
expression for f to replace possibly one edge monomial in I by m j . After canceling
m j from each side and using induction, we reach a contradiction. We have reached
the situation in which

∏
1� j�i m j ·∏1� j�l z

′
j divides

f =
∏

1� j�a

(x j y j ) ·
∏

1� j�b

(u jv j ).
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Since none of the u j , v j , y j are in L , without loss of generality, x1 = z′
1, . . . , xl = z′

l .
After canceling these elements we obtain that

∏
1� j�i m j divides

(y1y2 · · · yl)
∏

l+1� j�a

(x j y j ) ·
∏

1� j�b

(u jv j ).

Note that a − l + b = k − l � k − (n − i) = i + (k − n) < i (recall that we may
assume k < n now as the base case k = n was handled at the beginning of the
proof).

We next need to do the case i = 0 separately. In this case, our assumption is that
G has no 3-cycles. In this case l = n, and since x1 = z′

1, . . . , xl = z′
l , we must have

n edge-monomials x1y1, . . . , xn yn in the first expression for f . This forces f ∈ I n

(after our reductions), which gives the necessary conclusion. Thus in the remainder
of the proof, we may assume that i � 1. An important consequence of this reduction
is that there cannot be an edge between any of the y j , as this would give a 5-cycle.

We let D be the set of vertices {y1, . . . , yl}. By Lemma4.15 below applied with
e = a + b − l = k − l < i (see above) and s1t1, . . . , sete being the edges x j y j for
l + 1 � j � a together with all the u jv j , we can find an odd path w1, . . . , wl with
l � 2e + 1 and w1, wl ∈ F (so they are neighbors of some xs). Renumbering if
necessary, we have an odd cycle x, x1, w1, . . . , wl , x2 of length l + 3. Now there can
be repetition, but any time we identify two non-adjacent vertices in that cycle, a new
odd cycle appears. The proof is finished. �

We finish the proof of the main theorem by proving Lemma4.15 below.

Lemma 4.15 Let e � 1 be an integer. Suppose there are e edges s1t1, · · · sete and a
set of vertices D, together with an auxilliary set {m1, . . .me+1} of edges (repetitions
are allowed in all of these) such that

∏
1� j�e+1 m j divides

∏
1� j�e(s j t j ) ·∏w∈D w.

Assume also that there are no edges between any of the elements in D. Then there is a
pathw1, . . . , wl with l � 2e + 1 even (so that the path length is odd) andw1, wl ∈ D.

Proof We use induction on e. We claim that two of the edges mi s must contain
exactly one from D. The reason is simply because there are no edges in D, so any
mi that contains some vertices in D contains exactly one, and there has to be at least
two such edges, as the product of the mi s has degree 2e + 2, while the degree of the
product of x j y j is 2e.

We may write these edges as m1 = w1u and m2 = w2v where w1, w2 ∈ D. Con-
sider u and v. If uv is an edge, then we have a length three path w1, u, v, w2 and we
are done. Note that this settles the case e = 1, as in that situation uv has to be the
edge s1t1.

Hence without loss of generality we may assume that e > 1, u = s1 and v = s2.
Now consider the set D′ obtained from D by removing w1, w2 and including t1, t2,
the e − 2 edges s3t3, . . . , sete, and the set of e − 1 auxilliary edges m3, . . . ,me+1.
We claim these sets satisfy the hypothesis of the lemma. We need to show that there
are no edges between the elements of D′. If t1t2 is an edge, then there is a path of
length 5 from w1 to w2: w1, s1, t1, t2, s2, w2. If, on the other hand there is a w3 ∈ D,
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apart from w1, w2 such that w3t1 is an edge, then we may construct a path of length
three from w1 to w3, namely w1, s1, t1, w3, and again we are done. Hence there are
no edges between the vertices in D′. By induction there is an odd length path of
length at most 2(e − 2) + 1 which begins and ends in vertices in D′. Now if either
end of this path is t1 or t2, we may augment the path by two edges, e.g. by t1s1, s1w1,
so that the beginning and end of the path are in D. This adds at most 4 edges to the
path, so that the length, which is still odd, is at most 2(e − 2) + 1 + 4 = 2e + 1, as
required. �

Proof This completes the proof of Theorem4.13. �

Remark 4.16 We thank Susan Morey for pointing out that this result follows by
putting togetherwork in [11, 53, 68], although it is not explicitly stated.By combining
the work in these papers one obtains the statement that a non-bipartite graphG whose
smallest odd cycle has length 2t − 1 has the property that the associated primes of
the powers of the edge ideal I of G is equal to the minimal primes of I for powers
up to t − 1, and the t th power of I has an embedded prime.

Corollary 4.17 Let G be a finite graph and I be its edge ideal. Let c = height(I ).
If I (k) = I k for 1 � k � c then G is bipartite.

Proof If G is not bipartite, there is a minimal odd cycle, say x1, x2, . . . , x2i+1. The
height of the edge ideal of this cycle is i + 1 since the vertices are distinct by min-
imality. Hence c � i + 1. By Theorem4.13, G has no odd cycles of length at most
2c − 1. But c � i + 1 implies that 2i + 1 � 2(c − 1) + 1 = 2c − 1, a we reach a
contradiction. �

We apply the work from above to give a positive answer to the relative version of
the conjecture of Conforti and Cornuéjols which was given at the beginning of this
subsection. Recall that Question4.9 asks if I is k-packed if and only if I (n) = I n for
all n � k. In the case of quadrics, i.e., for edge ideals of simple graphs, we can give
a positive answer:

Theorem 4.18 Let I be the edge ideal of a graph, i.e., a squarefree ideal generated
by quadrics. Then I is k-packed for some k � 2 if and only if I (n) = I n for all n � k.

Proof We first prove that if I (n) = I n for all n � k then I is k-packed. Since both
of these properties are preserved by setting variables equal to 0 or 1, it suffices to
prove that G is k-König. Suppose that the height of I is c, but that I does not contain
a regular sequence of monomials of length at least the minimum of k and c. Let
m denote the product of all the variables. Then m ∈ I (c), since at every minimal
prime p of I , m ∈ pc. If k � c, then by assumption m ∈ I c. But then m is a product
of c elements of I which are necessarily a regular sequence as m is squarefree.
This is a contradiction. If c > k, then m ∈ I (c) ⊂ I (k) = I k , and again we reach a
contradiction. Hence I is k-packed.

Conversely, assume that I is k-packed but that I (n) �= I n for some n � k. By
decreasing k if necessary, we can assume that n = k. By Theorem4.13, G must
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contain an odd cycle of length at most 2k + 1. Choose a minimal odd cycle in G,
say x1, x2, . . . , x2 j+1 of length 2 j + 1, where j � k. We set all other variables equal
to 0, and apply the assumption that the resulting ideal J is k-packed. Moreover, the
height of J is at least the height of the edge ideal of this cycle, which has height
j + 1. Therefore there is a regular sequence of length at least j in J . This is clearly
impossible since there are only 2 j + 1 variables, and such a regular sequence would
require at least 2 j variables. �

There are a few easy cases one can also do, which we record as a remark;

Remark 4.19 Weobserve the following: if I is k-packed, and J (n) = J n for all n � k
and for all ideals J which are obtained from I by setting at least one variable equal
to 0 or 1, and I has height k, then I (n) = I n for all n � k. To see this suppose not and
let f be a minimal monomial which is in some I (n) \ I n for some n � k. We may
assume that f contains every variable, since if not, we can set a variable equal to
0 without changing the fact that f is in I (n) \ I n , contradicting our assumption. We
may also assume that f is squarefree. This is because the product of all the variables
is clearly in pk for all primes p containing I , since k is the height of I . It follows that
f must be the product of all the variables. But since I is k-packed there is a regular
sequence of monomials in I of length k, and the product of themmust divide f since
they are disjoint. Thus f ∈ I k , contradiction.

A consequence of the above Remark is that Question4.9 has a positive answer
for k = 2.

Corollary 4.20 I is 2-packed if and only if I (2) = I 2.

Proof The case in which I has height one is trivial. If I has height two, the previous
remark applies. �
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Some Open Problems in Complex
Singularities

José Seade

Abstract We discuss some open problems and questions related with five different
topics in complex singularities. These are: (i) Topological and holomorphic ranks of
an isolated singularity germ and the Zariski-Lipman conjecture; (ii) Graphmanifolds
and links of surface singularities. (iii) Milnor’s fibration for complex singularities
and the topology of analytic foliations near an isolated singularity. (iv) Rochlin’s
signature theorem and Gorenstein surface singularities. (v) The index of a vector
field on a singular variety. These are all topics on which I have been interested for a
long time.

Keywords Zariski-Lipman conjecture · Graph manifolds · Gorenstein
singularities · Milnor fibrations · Foliations · Rochlin signature theorem · Indices
of vector fields

In this article I discuss some open problems and questions related with complex
singularities. Some of these have arisen from work either by myself or with co-
authors, and others are somehow folklore problems on which I have been interested
for years. The purpose of this note is inspiring others to think on these problems, or
possibly on others that may spring along the way.

I have grouped this discussion in five topics:

(i) Topological and holomorphic ranks of an isolated singularity germ. The
Zariski-Lipman conjecture.

(ii) Graph manifolds and links of surface singularities.

(iii) Milnor’s fibration for complex singularities and the topology of analytic
foliations near an isolated singularity.

(iv) Rochlin’s signature theorem and Gorenstein surface singularities.

(v) The index of a vector field on a singular variety.
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Hence this paper has five sections, one for each of these topics. Each section is
self-contained and provides an introduction to the subject, together with some bib-
liography and references. In each of these topics I have stated explicitly some open
questions, but I know these are subjects on which there is a lot more to be said, and
I am sure that anyone that spends some time thinking on the matter, will come out
with her/his own questions, and hopefully also with some good ideas and interesting
results.

In Sect. 1we consider the problem of finding themaximal number of either contin-
uous or holomorphic vector fields on an isolated singularity germ, or on a smoothing
of it, which are linearly independent at all points. This naturally springs from the
-still open- celebrated Zariski-Lipman conjecture, as well as from an old conjecture
stated by A. Durfee [9, 1.6], that I proved long ago, in [36, 37]. This states that
the tangent bundle of every smoothing of a normal Gorenstein surface singularity is
topologically trivial.

In Sect. 2 we look at the 3-manifolds which are links of isolated complex surface
singularities, and discuss properties of the dual graphs of their resolutions. The deep
(folklore) question here is studying which conditions are imposed on a plumbing
graph by the fact that this corresponds to the resolution of a hypersurface singularity,
or to an ICIS germ, or to a Gorenstein germ.

Section3 springs from the study of the topology of linear actions of Cn in C
m ,

m � n, when we look at them “a la Milnor”, namely by considering a small sphere
centered at a singular point, then look at the intersection of the sphere with the leaves
of the corresponding foliation, and see what happens as we make the sphere smaller
(see [6, 24]). This all is much indebted to a remarkable work by René Thom [43],
full of ideas about usingMorse Theory to studying foliated manifolds. Some of those
ideas were adapted in [24] to study the topology of holomorphic foliations near an
isolated singularity, and this brings us to an elementary open question, that we discuss
below, regarding the topology of a holomorphic map-germ C

n → C.
Section4 springs from an old paper by H. Esnault, E. Viehweg and myself [10].

We re-visit a classical theorem in 4-dimensional manifolds theory, namely Rochlin’s
signature theorem. In the case of compact complex surfaces this theorem is equivalent
to stating that the parity of the Todd genus is measured by an invariant in Z2 which
equals the mod (2) index of the Dirac operator associated to a smoothing of the
canonical divisor. We discuss an integral lifting of this congruence to an equality
over the integers. We briefly discuss too how this is related with Laufer’s formula
for the Milnor number and the geometric genus of surface singularities.

Section5 concerns the GSV-index of vector fields on hypersurface germs, a con-
cept that extends the notion of the local Poincaré-Hopf index. The question we rise
here is about describing what is, or should be, the correct notion of a generic holo-
morphic vector field on an isolated hypersurface germ.
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1 Topological and Holomorphic Ranks of an Isolated
Singularity Germ. The Zariski-Lipman Conjecture

Let M be a complex manifold of dimension n and X1, ..., Xk vector fields on M.
We say that they are linearly independent (briefly L.I.) if for all x ∈ M the vectors
X1(x), ..., Xk(x) are linearly independent overC. The topological rankofM , denoted
by Ranktop(M), is the largest number of continuous L.I. vector fields on M. The
holomorphic rank Rankhol(M) is defined similarly. So, for instance, Rankhol(M) = 1
if there exists a holomorphic vector field on M with no singularities, but there are
not two such vector fields which are L. I. everywhere.

Nowconsider a normal complex isolated singularity germ (V, 0) of dimension n in
some complex spaceCN . Set V ∗ = V \ {0}. Define the topological (or holomorphic)
rank of V to be the maximal number of continuous (or holomorphic) vector fields
on V which are linearly independent at every point in V ∗, for some representative
of the germ.

We emphazise that when we speak of the topological and holomorphic ranks, we
are speaking of linearly independent sections overC. For instance, given an arbitrary
isolated normal singularity germ (V, 0) of complex dimension two, the complex
manifold V ∗ is always an orientable manifold of real dimension 4, diffeomorphic
to the product LV × R, where LV is the link. Since every oriented 3-manifold has
trivial tangent bundle, it follows that as a real vector bundle T V ∗ is always trivial,
isomorphic to V ∗ × R

4. However, if the singularity is not numerically Gorenstein
(see next section), T V ∗ is not topologically trivial as a complex bundle. For instance,
the singularities one gets by considering a holomorphic line bundle with Chern class
< −2 over the Riemann sphere, by blowing down the zero section to a point, are
never numerically Gorenstein.

1.1 The Hypersurface and ICIS Cases

Assume V is defined by a holomorphic map-germ (Cn+1, 0)
f→ (C, 0)with a unique

critical point at 0, with V = f −1(0) and V ∗ = V \ {0}. In this case it is an exercise to
show that the complex bundle T V ∗ is topologically trivial, so Ranktop(V ) = n. This
follows because the normal bundle is trivialized by the gradient vector field ∇ f , and
this implies that T V ∗ is trivial by standard obstruction theory arguments (basically
because H 2n(V ∗,Z) = 0). Similarly, and by the same reason, if F = f −1(t) ∩ Bε

is the local Milnor fibre, one has Ranktop(F) = n.
The same statements regarding the topological rank hold for ICIS germs.
Now consider the holomorphic rank. One has that the space of germs of holomor-

phic vector fields inCn+1 with an isolated singularity at 0 and tangent to V is infinite
dimensional. Surprisingly one has:
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Theorem 1.1 (A. Lins Neto [25]) Let V be a germ at 0 ∈ C
n+1 of a hypersurface

with an isolated singularity at 0. Then 1 ≤ Rankhol(V ) ≤ 2. Moreover, if V is quasi-
homogeneous or if n ≤ 3, then Rankhol(V ) = 1.

That the holomorphic rank is always ≥ 1 actually holds in a more general setting
(see [4] or Theorem 5.1 below). The new part here is that this is at most 2.

Notice that this theorem gives a proof of the Zariski-Lipman conjecture for hyper-
surface and quasi-homogeneous singularities. This conjecture, which springs from
[26], is one of the main open problems in singularity theory. It asserts that a complex
variety with locally free tangent sheaf is necessarily non-singular. This was proved
by G. Scheja and U. Storch in [35] for hypersurfaces. In [17] it was proved for quasi-
homogeneous singularities. This conjecture has also been settled in various other
cases, see for instance [3, 17, 19].

Question 1.2 What about the holomorphic rank for the Milnor fibre F?

It follows easily from [12] (see also [5, Chapter III]) that Rankhol(F) ≥ 1. As far
as I know, nothing else is known about this question.

As noticed in [25], it is natural to ask:

Question 1.3 How does Theorem (1.1) generalize to ICIS germs?

1.2 On Gorenstein Singularities

A normal singularity germ (V, 0) is Gorenstein if its local ring is Cohen-Macauley
and its dualizing sheaf is free at 0.

When V has complex dimension 2, this all amounts to saying that the canonical
bundle KV ∗ of V ∗ = V \ {0} is holomorphically trivial, i.e., there exists a nowhere
vanishing holomorphic 2-form on V ∗. The singularity is numerically Gorenstein if
the complex bundle KV ∗ is topological trivial.

An n-dimensional isolated singularity germ (V, 0) is smoothable if there exists a
complex analytic germ (Z , p) of dimension n + 1 and a flatmorphismF : (Z , p) →
(C, 0) such thatF−1(0) is (V, 0) andF−1(t) is non-singular for all t 
= 0 sufficiently
close to 0. In this case, given a small ball Bε in the ambient space whose boundary Sε

is a Milnor sphere for both Z and V , one has Milnor type fibration, with fibers Ft :=
F−1(t) ∩ Bε with ε � |t | > 0. The manifold Ft is called a smoothing of (V, 0).

The following theorem was conjectured by A. Durfee in [9] and proved in [36,
37].

Theorem 1.4 Let (V, 0) be a smoothable normal Gorenstein surface singularity
and let F be a smoothing. Then the complex bundle T F is topologically trivial and
therefore Ranktop(F) = 2.

This rises several questions. Some of them are:

Question 1.5 If (V, 0) is a smoothable normal numerically Gorenstein surface sin-
gularity and F is a smoothing, is the complex bundle TF topologically trivial?
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Question 1.6 What about the topological and holomorphic ranks for smoothings of
normal isolated Gorenstein singularities in higher dimensions?

2 Graph Manifolds and Links of Surface Singularities

Let (V, 0) be a normal surface singularity germ, and consider a good resolution
π : ˜V → V . That is,

(i) ˜V is a non-singular surface and π is a proper analytic map.
(ii) E := π−1(0) is a divisor and π : ˜V \ E −→ V \ {0} is a biholomorphism.
(iii) The irreducible components E1, ..., Er of E are compact Riemann surfaces

that meet transversally and every three of them have empty intersection.
The complex manifold ˜V has E as a deformation retract.
For a good resolution ˜V we associate a dual graph � = �(˜V ) in the classical way

(see for instance [39, Chapter IV]:We assign a vertex to each irreducible componente
Ei ; two vertices vi , v j are joined by as many edges as points in which they meet. And
each vertex is decorated with two integers (wi , gi ). The first is the self-intersection
number E2

i , which equals the Chern class of the normal bundle of Ei , and gi is the
genus.

It is well-known that the resolution can be constructed by plumbing according
to the graph: a construction introduced by Milnor in the 1950s for producing exotic
spheres. It is an exercise to see that the topology of the resolution is fully described
by the graph (Fig. 1).

It follows that the link M := V ∩ Sε is by definition a graph manifold, since it can
be regarded as the boundary of the resolution, which can be constructed by plumbing.

One side of the following important theorem is due to Mumford [30], and also
Du Val. The other side follows easily from the work of Grauert [15]:

Theorem 2.1 The link of every normal surface singularity is a graph manifold with
negative definite intersection matrix. And conversely, every graph 3-manifold with
negative definite intersection matrix is orientation preserving homeomorphic to the
link of a normal surface singularity.

Fig. 1 Dual graph of a resolution
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There are several natural questions, all of which have been studied by various
authors. We now say a few words about some of these.

As said before, a normal surface singularity germ (V, 0) isGorenstein if away from
0 its canonical bundleK := ∧2T ∗(V \ 0) is holomorphically trivial. The singularity
germ is numerically Gorenstein (briefly n-Gorenstein) if the complex bundle K is
topologically trivial.

One has natural inclusions:

{hypersurface germs} ⊂ {ICIS} ⊂ {Gorenstein germs} ⊂ {n-Gorenstein germs .}

That is, every hypersuface singularity is a complete intersection (an ICIS for short),
every ICIS is Gorenstein and these are obviously n-Gorenstein.

Being Gorenstein is analytic, while being n-Gorenstein is a topological condition,
fully determined by the graph. To explain this we recall that a good resolution has a
canonical class K ; by definition K is the unique homology class in H2(˜V ;Q) such
that

A · K = (2g1 − 2, · · · , 2gr − 2) ∈ Q
r ,

where A is the isomorphism in H2(˜V ;Q) determined by the intersection matrix
A := ((Ei · E j )). That is,

K = A−1(2g1 − 2, · · · , 2gr − 2) ∈ Q
r .

Then n-Gorenstein is equivalent to asking K to be integral (see [9, 20]). This latter
condition depends only on the matrix A and the genera gi attached to the vertices.
Hence we can speak of n-Gorenstein graphs.

Yet, a remarkable theorem from [33] says that every n-Gorenstein graph is the
dual graph of a resolution of some Gorenstein singularity. So the question is:

Question 2.2 Which weighted graphs correspond to n-Gorenstein singularities?

As far as I know, a full characterization of such graphs is not known. Yet, below
are a couple of results in that direction.

Theorem 2.3 (Larrión, Seade [20]) Given a finite graph � with weights wi , there
are infinitely many choices of genera gi for the vertices, such that the corresponding
singularity is n-Gorenstein.

Theorem 2.4 (Popescu-Pampu, Seade [32]) Given a finite graph � with genera gi ,
if � is not a loop, then there are finitely many weights that make it n-Gorenstein.

If the graph � is a loop with genera for the vertices, the equivalent statement is
more complicated, but it can be decided under which conditions there are finitely
many weights that make it n-Gorenstein (see [32]).

Example 2.5 Assume � has only one vertex with weight w < 0 and genus g ≥ 0;
so E consists of a single irreducible component. Then:



Some Open Problems in Complex Singularities 439

K =
(

2g − 2

w
− 1

)

· E .

Hence the singularity is numerically Gorenstein if and only if (2g − 2) is a multiple
of the weight w. Thus:

(a) If we fix the weight w < 0, for all genera g ≥ 0 of the form g = tw + 1 with
t ∈ Z, the graph is n-Gorenstein.

(b) On the other hand, if we fix genus g 
= 1, then only finitely many possibilities
of weights w for which graph is n-Gorenstein.

For instance, if g = 0 only w = −1,−2 make it n-Gorenstein. But if g = 1 then
K = −E independently of w, so these are all n-Gorenstein.

The following theorem partially summarizes the previous discussion.

Theorem 2.6 Let� be a finite graphwith no loops and n vertices. Then for almost all
sets of negative weights w = (w1, ..., wn) for the vertices, the corresponding inter-
section matrix A is negative definite, and for each such vector of weights, there are
infinitely many vectors of genera g = (g1, ..., gn), gi ≥ 0, such that the correspond-
ing plumbing graph (�,w, g) is the dual graph of a resolution of some Gorenstein
singularity.

Here is an elementary question taken from [32]:

Question 2.7 Given an arbitrary finite graph � with a genus gi ≥ 0 attached to each
vertex, is the set of weights that make the graph minimal and n-Gorenstein always
non-empty?

Minimal here means that there is no vertex with genus 0 and weight −1.
To conclude this section, here is a rather subtle question:

Question 2.8 Whichweighted graphs appear as graphs of a hypersurface singularity
in C3?

This is very interesting open problem.
Similarly, one may ask:

Question 2.9 What conditions on the graph are imposed by the fact that there is an
ICIS with such a graph?

This is (also an open problem) studied in [7], where the authors classify the
weighted graphs such that all singularities that have this as dual graph of some
resolution are ICIS.

3 Milnor’s Fibration for Complex Singularities and the
Topology of Holomorphic Foliations

It is well known that if f : (Cn+1, 0) → (C, 0) is a holomorphic map-germ with an
isolated singularity at the origin, then the non-critical levels Vt := f −1(t), t 
= 0,
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Fig. 2 The Milnor fibration

determine a locally trivial fibration in a tubular neighborhood of the special fibre
V := f −1(0). This is the celebrated Milnor fibration (Fig. 2).

More precisely, we know that there exists ε > 0 small enough so that for every
ε′ > 0 which is ≤ ε we have that the sphere Sε′ of radius ε′ and center 0 meets
V transversally. Any such a sphere is called a Milnor sphere for the germ and the
intersection LV := V ∩ Sε is the link (see [29]). Now fix such an ε. Then there exists
δ > 0 sufficiently small such that every non-critical level Vt with |t | ≤ δ meets the
sphere Sε transversally. [In the case we envisage here, where f has an isolated critical
point, this follows from the implicit function theorem. The statement still is true for
general f , but the proof ismuch harder and follows from a deep theorem ofHironaka,
proving that every C-valued holomorphic map-germ on a complex analytic space,
has the Thom a f -property.]

By definition, a Milnor tube for f is a set of the form

N (ε, δ) := f −1(Dδ \ {0}) ∩ Bε ,

for ε and δ as above, whereDδ is the disc inC of all points with |t | ≤ δ. ThenMilnor’s
fibration theorem is essentially equivalent to saying that:

f : N (ε, δ) −→ Dδ \ {0} ,

is a fibre bundle.
Notice that on f −1(Dδ) ∩ Sε we have a codimension 2, real analytic foliation;

indeed a locally trivial fibration with fibre the link LV (this follows easily either
from Ehresmann’s fibration lemma or from the Thom-Mather isotopy theorem).
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If we fix the sphere Sε but allow continuously larger values of |t |, a time comes
when the non-critical level f −1(t) has points of non-transversality with the sphere
Sε, points where the tangent space to f −1(t) actually is contained in the space tangent
to Sε. We thus get, by taking all fibers f −1(t) and their intersections with the sphere
Sε, a codimension 2 real analytic foliation Fε on the sphere, with singular set �ε

being the points where the fibers of f are tangent to the sphere, and the leaves close
to LV being all ambient isotopic to the link.

Question 3.1 Does the topology of this foliation depend on the choice of ε for
sufficiently small spheres. Or more precisely, can we choose an appropriate metric
inCn+1 such that for all sufficiently small spheres (for the metric), the corresponding
foliations are topologically equivalent? (i.e., there exists a homeomorphism taking
one sphere into the other, that preserves the singular sets and carries leaves into
leaves).

I believe that the answer is positive, though I have not succeeded in proving it. This
is a particular case of a problem studied in [24] in larger generality, with a positive
answer in some particular cases that do not occur in the setting describe above. Let
us say a few words about the general setting.

In 1964 René Thom wrote a beautiful article [43] explaining how the classical
ideas of Morse theory can be adapted to studying the topology of non-singular foli-
ations on smooth manifolds. In [24] the authors adapted some of those ideas to
studying the topology of holomorphic foliations near an isolated singular point. The
main ideas are as follows.

Consider a holomorphic foliation F of dimension d ≥ 1 defined on an open
neighbourhood U of the origin 0 ∈ C

n , with a unique singular point at 0. To study its
topology, we consider a function g on U with aMorse critical point at 0 of index 0, so
that its non-critical levels are diffeomorphic to spheres; call these simply “spheres”.
Look at the restriction of g to the leaves ofF . The critical points of g|L are the points
of contact of F with the fibres of g, where the leaves of F are tangent to the fibres
of g. The set of all such points is the polar variety of F relative to g, in analogy with
this classical notion in algebraic geometry, where the role of g is usually played by
linear forms.

Inspired by theway how J.Milnor studied the topology of complex singularities in
[29], the authors study the topology of F near 0 by looking at the intersection of the
leaves of F with a sufficiently small sphere Sε, and the way how these intersections
change as we make the radius of the sphere tend to 0. In fact this point of view for
studying holomorphic foliations already appears in [1, 6, 14].

Of course the contacts of the leaves of F with the fibres of g can be degenerate.
If the contacts are all non-degenerate, then we say that F carries a Morse structure
compatible with g, or simply that M carries the Morse structure of g, for short.

Theorem 1 in [24] is the analogous in our setting of a classical result for polar
varieties (see for instance [22]) saying that the restriction of g to the leaves of F is
a Morse function on each leaf if and only if away from 0, the polar variety M∗ =
M \ {0} is a smooth, reduced, submanifold of Cn of codimension 2d and M∗ is
everywhere transversal to F .
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The topology of holomorphic foliations near a singular point can be rather com-
plicated. In order to have a certain understanding of the behaviour ofF near 0 we ask
for the condition that the polar set M = M(F , g) be real analytic at 0. This happens
in many interesting families, including all foliations of dimension or codimension
one. In this case we say that the foliation is contact-analyticwith respect to theMorse
function g. The Theorem 2 in [24] says that if F is contact-analytic and carries the
Morse structure of g, then the corresponding polar variety has finitely many irre-
ducible components, say M1, ..., Mr , all of them pairwise disjoint away from 0; each
of these is smooth away from 0, of real codimension 2d, transversal to the foliation
and consists of points where the contacts have all the same Morse index.

Using this we can give the following topological picture of F near 0: we equip F
with the gradient flow on the leaves, i.e., the flow GF of the vector field onU obtained
by projecting at each point the gradient of g to the tangent space of F . Let Bε be
a sufficiently small g-ball centred at 0. This ball splits in two disjoint GF -invariant
sets: the saturated ̂M of M ∩ Bε by F and its complement K := Bε \ ̂M . On K the
topology is somehow simple and the dynamics can be rich, while on ̂M the topology
is rich and the dynamics is often simpler.

Each leaf L in K is homeomorphic to a product (L ∩ Sε) × R, immersed in C
n

so that it is transversal to each g-sphere around 0 and the α-limit of each orbit in
K of the gradient flow GF is the origin 0. Thus, for each positive number ε′ < ε,
the leaves of F in K meet the g-sphere Sε′ transversally and define a real analytic
foliation on it, which can have very rich dynamics. For instance [6], if F is defined
by a linear vector field in the Poincaré domain with generic eigenvalues, then the
foliation on Sε′ actually is defined by a flow which is Morse-Smale.

The picture on ̂M is rather different: the α-limit of GF of each leaf in ̂M is the set
of points where the corresponding leaf meets the polar variety M . The intersection of
the leaves of F with M is always transverse, and the topology of every leaf L ⊂ ̂M
is determined by its intersection with the boundary sphere, L ∩ Sε, and the points
where Lmeets M : each such intersection point comes with a Morse index, that tells
us what type of handle we must attach to the leaf when passing through that point.
In particular, if L is compact, then its Euler-Poincaré characteristic χ(L) equals the
number of intersection points inL ∩ M , countedwith sign. The sign is negative when
the corresponding Morse index is odd, and positive otherwise.

For instance, for generic linear actions of Cm in C
n in the Siegel domain (see

[6, 24, 28]), m << n, each Siegel leaf L is a copy of Cm embedded in C
n with

a unique point of minimal distance to 0. The gradient flow of the quadratic form
(z1, · · · , zn) �→ |z1|2 + · · · + |zn|2 describes each Siegel leaf as a cylinder over its
intersection with a sphere,L ∩ S

2n−1 ∼= S
2m−1, to which we attach a handle ofMorse

index 0, i.e., a 2m-disc.
We remark that the topology of the polar varieties that arise in this way can be

rather interesting. In fact these are all manifolds with a canonical complex structure
determined by a foliated atlas forF , and with a rich geometry. For instance, whenF
is the foliation of a linear flow in the Siegel domain with generic eigenvalues and g is
the usual metric, the manifold Mε = M ∩ Sε is the space of Siegel leaves of the flow
and it has very interesting topology [6, 27]. This type of manifolds has been studied
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by several authors giving rise to the theory of LVM manifolds, see for instance [39,
Chapter VI] or [18].

Remark 3.2 (Polar weighted and mixed singularities) As noted in [39, VI.3] the
above discussion can be extended to germs of holomorphic vector fields in general.
The study of the corresponding polar varieties gives rise to interesting real analytic
singularities. Let us say a few words about this (see [39, Chapter VII]). Consider for
instance the non-linear vector fields inCn of the form F(z) = (λ1z

a1
σ(1), · · · ,λnz

an
σ(n)),

where the λi are non-zero complex numbers, ai ≥ 2, and σ is a permutation of the
set {1, · · · , n}. One has a real analytic map, ψF : Cn → C , defined by ψF (z) =
〈F(z), z〉 := ∑n

i=1 λi z
ai
σ(i) · zi . The zero-set of ψF is the variety of contacts of the

solutions of F with the spheres around the origin. It is proved in [34, 39] that all
these singularities admit a “good action”of the group S

1 × C
∗, and that having this

action implies that these singularities admit a local Milnor fibration. These were
called in [39] Twisted Pham-Brieskorn singularities because when the permutation
σ is the identity, these singularities are equivalent to the classical Pham–Brieskorn
singularities. From these considerations spring the concepts of polar actions and
polar weighted singularities introduced by Cisneros-Molina in [8], as well as the
concept of mixed singularities developed by Oka in various articles, see for instance
[31].

As an example, consider the vector field in C2 defined by

F(z1, z2) = (qzq−1
2 , pz p−1

1 ) ,

for some integers p, q > 2. Its integral lines are the level curves of themap (z1, z2)
f�→

z p1 − zq2 . It is easy to see that in these examples the square of the distance function to
0 is aMorse function restricted to each leaf. There is one separatrix, V := {z p1 = zq2},
which is transversal to all the spheres around 0, and all other fibres meet the z1-axis
at p points and they have q points on the z2-axis. A straightforward computation
shows that these are all points with Morse index 0. There is a third component of the
polar variety M , which is a real analytic surface with an isolated singularity at 0:

M− := {(z1, z2) ∈ C
2
∣

∣ qzq−1
2 z1 = −pz p−1

1 z2 ; z1, z2 
= 0} .

Each leaf has pq saddles in this surface. As a matter of fact, one can easily check that
M− is ambient homeomorphic to the separatrix V . That is, there is a homeomorphism
of C2 carrying M− into V .

Question 3.3 Is this a coincidence or a special case of a general theorem?

I do not know the answer.
Coming back to the general setting, notice that ifSε is a small g-sphere inU around

0, then the intersection of the leaves of F with Sε defines a real analytic foliation
Fε on the sphere, which is singular at Mε := Sε ∩ M , where M is the polar variety.
Away from Mε the leaves of Fε have real dimension 2d − 1. We may then address
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the problem of studying how the topology of the foliation Fε varies as ε → 0. For
instance if M = {0}, as it happens for linear vector fields in the Poincaré domain,
then the topology of Fε is independent of ε. This happens also for generic flows in
the Siegel domain, and more generally for generic linear Cm-actions on C

n in the
Siegel domain. In [14] it was proved that if F has dimension 1 and all the points in
M have Morse index 0, i.e., they correspond to local minimal points in their leaves,
then the topology of Fε is independent of ε. In [24, Theorem 3] it is proved that the
same statement is true for foliations of arbitrary dimension.

Alas the previous results do not ever apply to the setting on which we started
this section, where the foliation is given by the fibers of a holomorphic map-germ
f : (Cn+1, 0) → (C, 0) with an isolated singularity at the origin, because the fibers
always have points of contact with the spheres which are either degenerate or local
saddles.

We may close this section with another question which I am yet unable to answer:

Question 3.4 Given a map-germ f : (Cn+1, 0) → (C, 0) as above, is it always pos-
sible to find a Hermitian metric in a neighborhood of 0 such that the contacts of the
fibers with the spheres are all non-degenerate?

4 Rochlin’s Signature Theorem and Gorenstein Surface
Singularities

Recall that if X is a closed oriented 4-manifold, the cup product determines a non-
degenerate bilinear form:

H 2(X;R) ∪ H 2(X;R) −→ H 4(X;R) ∼= R .

By definition the signature of X , denoted σ(X) ∈ Z, is the signature of this quadratic
form, i.e., the number of positive eigenvalues minus the number of negative ones.

For the sequel we need to speak of Spin and Spinc structures.
The spin group Spin(n) is the non-trivial double cover of the special orthogonal

group SO(n) = SO(n, R), such that there exists a short exact sequence of Lie groups

1 → Z2 → Spin(n) → SO(n) → 1 .

For n > 2, Spin(n) is simply connected and so coincides with the universal cover
of SO(n). Hence Spin(3) is SU (2) ∼= S

3 ∼= Sp(1) while Spin(4) is SU(2) × SU(2).
The 4-manifold X admits a Spin structure if the classifying map of its tangent

bundle, X → B(SO(4)), has a lifting to B(Spin(4)). It is an exercise to see that such
a lifting exists if and only if the 2nd Stiefel-Whitney class ω2(X) vanishes, and if
this happens, then a spin structure on X means the homotopy of one such lifting. The
spin structures on X are classified by H 1(X;Z2).
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If X is a complex surface, then its anti-canonical class−KX is dual to Chern class
c1(M). Since for complex bundles the reduction modulo 2 of the 1st Chern class is
the 2nd Stiefel-Whitney class, it follows that a complex manifold is spin if and only
if its canonical class is even.

There is also a “complex spin group” Spinc(n). This is defined by the exact
sequence:

1 → Z2 → Spinc(n) → SO(n) ×U (1) → 1 ,

which has important applications to low dimensional manifolds, particularly for the
Seiberg-Witten invariants.

As before, an oriented manifold X admits a Spinc structure if the classifying map
of its tangent bundle, X → B(SO(4)), has a lifting to B(Spinc(4)). Such a lifting
exists if and only if there exists an integral homology class in H2(X;Z) whose
reduction modulo 2 is ω2(X), the 2nd Stiefel-Whitney class. The homotopy classes
of such liftings are the different Spinc structures on X . These are classified by the
homology classes in H2(X;Z) whose reduction modulo 2 is dual to ω2(X).

It follows that every Spin manifold is canonically Spinc, and so is every complex
manifold with a canonical Spinc structure determined by its canonical bundle.

Definition 4.1 (Rochlin, 1970s) Let W be an oriented 2-submanifold of a closed
oriented manifold X4. Then W is a characteristic submanifold if [W ] ∈ H2(X;Z)

reduced modulo 2 is the dual of ω2(X).

If X is Spin then the empty manifold ∅ is characteristic. Notice that if X is a
complex surface, then KM , being the divisor of a holomorphic bundle, can always be
smoothed C∞ by considering an approximation defined by a differentiable section
of the canonical bundle, which is transversal to the zero-section. Then the smoothing
is a characteristic submanifold.

The classical Rochlin’s signature theorem states that the signature of a closed
oriented 4-manifold X is always divisible by 16. That theoremwas later improved by
Kervaire andMilnor, proving that if there is a 2-sphere S in X which is characteristic,
then one has:

σ(X) − S2 ≡ 0 mod (16) ,

where S2 is the self-intersection number, which essentially equals the Euler class
of its normal bundle. This theorem was later strengthen by Rohlin himself in the
following way:

Theorem 4.2 Let W be a characteristic submanifold of X, then

σ(M) − W 2 ≡ 8Arf W mod (16)

where Arf W ∈ {0, 1} is an Arf invariant associated to a quadratic form on
H1(W ;Z2).

Recall that the non-degenerate quadratic forms onfinite dimensional vector spaces
over Z2 are classified by their Arf invariant and the dimension of the vector space.
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The Arf invariant of such a form is defined to be 0 if and only if the form carries
more elements to 0 than to 1.

There is an elegant self-contained proof of Theorem 4.2 in Freedman and Kirby’s
paper [11]. On the other hand, the Arf invariant in Theorem 4.2 can be interpreted
in the following way. One knows (see for instance in [23]) that if W is characteristic
in X , then W is naturally equipped with a spin structure. A Spin-manifold has an
associated Spin bundle and a corresponding Dirac Operator. It was noticed in [2]
that in the case of Riemann surfaces equipped with a Spin structure, one has a mod
(2) index of the Dirac operator, with several interesting properties. In particular it
is a Spin-cobordism invariant. That is, two Riemann surfaces equipped with Spin
structures represent the same element in the Spin cobordism group�

Spin
2 if and only

if the mod two index of the corresponding Dirac operators coincides. Furthermore,
by [23] this invariant coincides with the Arf invariant in Theorem4.2. Hence:

Arf W = 0 ⇔ W is a spin boundary

In the case when the manifold X in Theorem 4.2 is a complex surface, Rochlin’s
signature theorem has a nice re-interpretation. To explain this, recall first that Hirze-
bruch signature theorem implies:

σ(M) = 1

3
p1(M)[M] ,

where p1 is the Pontryagin class. For compact (almost) complex surfaces one has

p1 = c21 − 2c2 , c1(M) = −KM and c2(M)[M] = χ(M).

Recalling that the 2nd Todd polynomial is 1
12 (c

2
1 + c2). We may re-state Rochlin’s

theorem for (almost) complex manifolds as:

σ(M) − K 2
M = −8Td(M)[M] .

Thus, if ˜K is a C∞ smoothing of the canonical divisor K , then Rohlin’s theorem can
be re-stated as:

Td(M)[M] ≡ Arf ˜K (24) .

Furthermore, by Hirzebruch-Riemann-Roch’s theorem, the Todd genus equals the
analytic Euler characteristic:

Td(M)[M] = χ(M,OM) .

So we get the following reformulation of Rohlin’s theorem:

Theorem 4.3 For a compact complex surface M, the parity of its analytic Euler
characteristic is that of the Arf invariant Arf ˜KM.
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Wewant a similar expression in algebraic geometry, notwith a topological smooth-
ing of KM but with the actual canonical divisor.

Everything I say from now on is contained in [10].

Definition 4.4 A characteristic divisorW of M is an effective divisor of a bundle L
of the form L = KM ⊗ D−2.

Notice that such W = KM − 2D represents a homology class whose reduction
modulo 2 coincides with that of K

Definition 4.5 Let W be a characteristic divisor of M . Define its mod (2)-index by:

h(W ) = dim H 0(W,D|W ) mod 2 .

IfW is non-singular, this is the mod (2) index of the Dirac operator considered in
[2, 23]. Hence in that case this index coincides with the Arf invariant in Rochlin’s
theorem.

Notice that for the anti-canonical class −K = −KM one has D = KM :

h(−K ) = dim H 0(−K ,KM |K ) mod 2 .

We have:

Theorem 4.6 (Esnault-Seade-Viehweg) The parity of the analytic Euler character-
istic coincides with the mod (2) index h(−K ):

h(−K ) = χ(M,OM) mod (2) .

More generally, let W = KM − 2D be a characteristic divisor, where D is a divisor
of some holomorphic bundle D. Then:

dim H 0(W,D|W ) ≡ χ(M,D) mod 2 ,

where χ(M,D) = ∑2
i=0(−1)i hi (M,D) is the analytic Euler characteristic of M

with coefficients in D.

It is natural to ask:

Question 4.7 Is this congruence modulo (2) the reduction of some equality over the
integers?

This would provide an integral lifting of Rochlin’s theorem in the case of complex
manifolds. An answer is provided by the next theorem from [40], but it is not yet
satisfactory:

Theorem 4.8 Let M and W = KM − 2D be as above. If W 
= 0, then:
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χ(M,D) = h0(W ;D|W ) − R ,

with R an even integer associated to the divisor W:

R = h1(M;D) − 2h2(M;D) + dim Ker(β̂) ,

where β̂ is a skew symmetric bilinear form on H 1(M; D).

The problem now is understanding R, perhaps relating it with more recent invari-
ants of low dimensionalmanifolds. Of course this can be regarded from the viewpoint
of the Atiyah-Singer index theorem.

This all springs from [10] where the authors use it to study the case of Gorenstein
singularities, defined above in Sect. 2. We refer to [40] for details on what follows.

Consider again a hypersurface germ (V, 0) defined by a map-germ f : (C3, 0) →
(C, 0) with an isolated critical point at 0.

Laufer in [21] proved an intriguing formula that expresses the Milnor number
μ(V ) in terms of invariants associated to a resolution of (V, 0):

Theorem 4.9 Assume the germ (V, 0) is a hypersurface germ. Then

μ(V ) + 1 = χ(˜V ) + K 2 + 12ρg(V ) ,

where χ(˜V ) is the Euler characteristic of a resolution, K 2 is the self-intersection
number of the canonical class (defined in Sect.2), and ρg(V ) is the geometric genus.

In fact the same statement, with essentially the same proof, holds for all ICIS
germs.

It is natural to ask how this formula extends tomore general singularities. Observe
that the left hand side in Laufer’s formula has no a priori meaning when the sin-
gularity is not an ICIS. Yet, the right hand side is an integer defined always for all
normal numerically Gorenstein surface singularities, and it is an invariant of (V, 0),
independent of the choice of resolution.

Definition 4.10 Let (V, 0) be a numerically Gorenstein normal surface singularity
germ. We call:

La(V, 0) := χ(˜V ) + K 2 + 12ρg(V )

the Laufer invariant of (V, 0).

In [16] Greuel and Steenbrink proved that if (V, 0) is a normal Gorenstein surface
singularity which is further smoothable, then the first Betti number of every smooth-
ing vanishes, while the second Betti number b2(F) is independent of the choice
of smoothing F . Hence one has in this setting a well-defined notion of the Milnor
number μGS(V ). Laufer’s formula was generalized to this setting by Steenbrink [42]:

Theorem 4.11 Let (V, 0) be a smoothable Gorenstein normal surface singularity
germ. Then

μGS(V ) + 1 = χ(˜V ) + K 2 + 12ρg(V ) .
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So a natural question is:

Question 4.12 How does this formula generalize to numerically Gorenstein singu-
larities?

The difference between Gorenstein and numerically Gorenstein singularities is
that in the first case the canonical bundle is holomorphically trivial, while in the
second case this bundle is only topologically trivial. As noted in [36] Gorenstein
implies that the topological rank (as defined above) of every smoothing F is 2. This
implies that the first Chern class of the tangent bundle T F vanishes. What happens
when the singularity is only numerically Gorenstein?

Awayhowonemay try to generalizeTheorem4.11, or to have newunderstandings
about it, is to define an invariant associated to the link LV of the singularity, which
can be computed in terms of compact non-singular manifolds with some appropriate
structure and boundary the link LV . This is done in [36] to some extent, by using
a cobordism invariant associated to Gorenstein singularities, that can be computed
in terms of either a resolution of the singularity or a smoothing of it. Alas this only
yields an invariant in the cyclic group of order 24, and one gets:

μGS(V ) + 1 ≡ χ(˜V ) + K 2 + 12Ar f (˜K ) mod (24) ,

where the latter term is the Arf invariant appearing in Laufer’s theorem, which is
defined only in Z2. It is proved in [10] that in this setting the invariant Ar f (˜K )

actually lifts to an invariant in Z and coincides with the geometric genus. So it is
natural to ask whether this point of view can yield to an alternative proof of Theorem
4.11 that may throw some new light on this topic. This is explored in [41].

5 Indices of Vector Fields on Singular Varieties

Given a germ of a (say continuous) vector field v on a smooth manifold M , we know
that itsmost basic invariant at an isolated singularity p ofM is its local Poincaré-Hopf
index IndPH(v; p). This has several remarkable properties. Some of these are:

1. It is stable under perturbations. More precisely, if we make a small perturbation
of v near p, the singularity of v at p may split into several singularities, each
having its own local index IndPH(v; p), the sum of all of these indices equals
that of v at p. Moreover: take an arbitrarily small closed disc Bε centered at p,
and let ζ be another vector field on M defined in a neighborhood of p, which
has isolated singularities in Bε and coincides with v on the boundary sphere ∂Bε.
Then IndPH(v; p) equals the sum of the indices IndPH(ζ; pi ) at the singularities
of ζ in Bε.

2. If M is compact, say connected and orientable, and v is defined and non-singular
on its boundary, then v can be extended to the interior ofM with finitelymany sin-
gularities, and the total index Ind(v; M) of v in M is independent of the choice of
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the extension. In particular, if v is everywhere transversal to the boundary, point-
ing outwards, then Ind(v; M) equals the Euler characteristic of M independently
of the choice of the extension. This is Poincaré-Hopf’s theorem for manifolds
with boundary. Of course this applies also in the special case when the boundary
is empty.

3. If M is a compact complex manifold, then Ind(v; M) is the Poincaré dual of the
top Chern class of M .

4. If M is a complex n-manifold, and v is holomorphic, then choosing a coordinate
chart for M so that v = (v1, ..., vn)where the vi are the components of v, we may
express IndPH(v; (M, p)) as the intersection number

IndPH(v; p) = dimC

OM,p

(v1, ..., vn)
,

where (v1, ..., vn) denotes here the ideal generated by these functions. In particular
IndPH(v; p) ≥ 0 and this is 0 if and only if v actually is non-singular at p.

What about all of this when we consider vector fields on singular varieties? The
point is that there is not a unique way of extending the notion of the local Poincaré-
Hopf index IndPH(v; p) to the case of singular varieties. There are rather, several
possible such extensions, each having its own properties and characteristics. The
extension we want somehow depends on the kind of property of the local index that
we want to preserve. This is also much related with asking who plays the role of
the tangent bundle at the singular points of the ambient space. We refer to [5] for a
thorough account of the subject.

Herewe focus on an specific question regarding theGSV-index, originally defined
in [13, 38], which is an extension of the local Poincaré-Hopf index to the case of
vector fields on hypersurface singularities. This arises when we search for an index
that preserves the stability property (5.1) above with respect to perturbations of both,
the vector field and the defining function. Let us make this precise.

Consider a holomorphic map-germ (Cn+1, 0)
f→ (C, 0) with an isolated critical

point at 0, and the Milnor fibration, where the fibers are given by the non-critical
levels Vt = f −1(t). We thus have a family of complex manifolds Vt that degenerate
to the special fiber V = f −1(0).

Now consider a continuous vector field v on V , singular only at 0. This means
a continuous section of the bundle TCn+1|V which is tangent to V at each point
x 
= 0. As noticed in Sect. 3, on f −1(Dδ) ∩ Sε we have a codimension 2 locally
trivial fibration with fibre the link LV , whereDδ is a small enough disc inC centered
at 0. We may thus move, by an isotopy, a neighborhood of the link in V ∩ Sε to
the boundary ∂F of a Milnor fibre F := f −1(t) ∩ Sε. Hence we can think of v as
being a vector field on a neighborhood of ∂F in F . By the Property (2) of the index
stated above, we can extend it to a vector field on F with finitely many singularities
p1, ..., pr . Then define the GSV index of v on V at 0 to be:
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Fig. 3 The GSV index

IndGSV(v; (V, 0)) =
r

∑

i=1

IndPH(v; (F, pi )) .

Alternatively, just as we think of V as being a “limit” of the non-singular levels
Vt , we may think that we have a continuous vector field vt on each Vt with finite
singularities, and depending continuously on the parameter t . As t tends to 0 the
manifolds Vt degenerate to V and the vector fields vt degenerate to v. Then the GSV-
index of v is the sum of the Poincaré-Hopf indices of each vt , before its singularities
merge into 0 (Fig. 3).

We notice that for each x ∈ V ∗ = V \ {0}, the tangent space TxV ∗ consists of all
vectors in TxCn+1 which are mapped to 0 by the derivative of f :

TxV
∗ = {ζ ∈ TxC

n+1
∣

∣ d fx (ζ) = 0 } .

For example, if f is the polynomial map in C
2 defined by f (z1, z2) = z21 + z32,

then the line tangent to V = f −1(0) at a point (z1, z2), other than the origin, is
spanned by the vector ˜ζ(z1, z2) = (−3z22, 2z1). To see this notice one has

d fz = 2 z1dz1 + 3 z32dz2 .

Hence:
d fz(˜ζ) = d fz(−3z22, 2z1) = 0 .

Now, a vector field v on V can be thought of as being a continuous map (V, 0)
v→

(Cn+1, 0) which is non-zero on V ∗ and whose image is contained in the linear space
tangent to V at each given point. Since V is a closed subset of Bε, this map extends
to a neighborhood of V in C

n+1. Geometrically this means that the vector field
v on V can always be extended to the ambient space, or equivalently that v can
always be considered as the restriction to V of a vector field in the ambient space.
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However the extension of v to V is by no means unique. Furthermore, all these
statements also hold in the holomorphic category:

Theorem 5.1 ([4]) Let V be a complex analytic variety in C
m with an isolated

singularity at 0. Then:

(1) There exist holomorphic vector fields on V with an isolated singularity at 0. In
fact the space of such vector fields is infinite-dimensional.
(2) If v is a holomorphic vector field on V with an isolated singularity, then there are
infinitely many holomorphic extensions of v to a neighborhood of 0 in the ambient
space with an isolated singularity.

As an example, if V is defined in C
2 by a map f : (C2, 0) → (C, 0), then the

Hamiltonian vector field ˜ζ(z1, z2) = (− ∂ f
∂z2

,
∂ f
∂z1

) is tangent to V and it is zero only
at the origin. Notice that this vector field is actually tangent to all the fibers f −1(t).
Let ζ be the restriction of˜ζ to V . Notice that ζ can be extended to C2 in many other
ways; for example, if g is a holomorphic function on C

2 that vanishes exactly on V
and represents a non-zero element in the local ring O(C2,0), then

ξ =
(

g − ∂ f

∂z2
, g + ∂ f

∂z1

)

,

coincides with ζ on V and is no longer tangent to the fibers of f ; choosing g appropri-
ately we can also assure that ξ has an isolated singularity at 0. Hence the GSV-index
of this vector field is 0.

InC3 one has the following example from [12]. Let f : (C3, 0) → (C, 0) have an
isolated critical point at 0, set V = f −1(0) and choose the coordinates (z1, z2, z3) so
that V meets only at 0 the analytic set where the partial derivatives of f with respect
to z2 and z3 vanish, i.e.,

V ∩
{

∂ f

∂z2
= ∂ f

∂z3
= 0

}

= {0} .

Define a holomorphic vector field in C3 by

˜ζ =
(

f ,
∂ f

∂z3
, − ∂ f

∂z2

)

,

Notice ˜ζ has an isolated singularity at 0 and

d f (˜ζ) = f
∂ f

∂z1
,

hence d f (˜ζ) vanishes at the points where f vanishes, so ˜ζ is tangent to V . If we set
ζ = ˜ζ|V , then we have a holomorphic vector field on V with an isolated singularity
at the origin, and an extension ˜ζ of it to C

3 which also has an isolated singularity.
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Notice however that, unlike the previous example,˜ζ is no longer tangent to the fibers
of f . Yet, we may forget we are given ˜ζ and just consider the vector field ζ on V .
Since f vanishes exactly on V , ζ takes the form ζ = (0, ∂ f

∂z3
, − ∂ f

∂z2
) and we can

extend it to a holomorphic vector field ˜ξ on C
3 defined by:

˜ξ =
(

0 ,
∂ f

∂z3
, − ∂ f

∂z2

)

.

This is tangent to all the non-singular hypersurfaces f −1(t), t 
= 0. The singular set
of ˜ξ is the complete intersection curve defined by the ideal ( ∂ f

∂z2
,

∂ f
∂z3

), which meets
each non-singular fiber f −1(t) at finitely many points, whose total sum (counting
multiplicities) is constant. This constant is an index that depends only on ζ and the
way V is embedded in C3. This is the GSV-index.

By Property (4) above, the index of a holomorphic vector field inCn at an isolated
singularity is positive. Moreover, we know that every holomorphic vector field can
be approximated, in a neighborhood of a singular point, by vector fields having only
Morse singularities. In the holomorphic case, Morse singularities have all index 1.
Thus we have:

In the space of germs of holomorphic vector fields in C
n with an isolated singu-

larity at 0, there is a dense open subset of vector fields with a Morse singularity, and
these have Poincaré-Hopf index 1.

What about holomorphic vector fields on singular varieties?

Example 5.2 Let f be a homogeneous polynomial f (z1, ..., zn) = zk1 + · · · + zkn ,
n, k ≥ 2. It is an exercise to show that the radial vector field vrad(z1, ..., zn) =
∑n

i=1
∂

∂zi
is tangent to V = f −1(0) at each point in V . It is clear that when we

move vrad to the boundary of a Milnor fibre by an isotopy, it becomes transversal to
the boundary, pointing outwards everywhere. Hence, by Property (2) of the index,
its total Poincaré-Hopf index on F is equal to the Euler characteristic χ(F). And by
[29] we have:

χ(F) = 1 + (−1)n−1 μ = 1 + (−1)n−1(k − 1)n ,

where μ is the Milnor number. Hence if n is even and k > 2, then

IndGSV(vrad; (V, 0)) < 0 ,

and vrad obviously is holomorphic.
By the way, we leave it as an exercise to see what happens when k = 2.

So in the singular case, the GSV-index can be negative. Yet the following theorem
says that it cannot be arbitrarily negative: it is bounded by below. This theorem
follows immediately from [4, Theorem 2.2].
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Theorem 5.3 Let (V, 0) be a hypersurface singularity germ. Then there is a (possi-
bly negative) largest K > −∞, such that every germ of a holomorphic vector field
v on V satisfies:

IndGSV(vrad; (V, 0)) ≥ K .

Furthermore, the holomorphic vector fields on V with the smallest index form a
dense open subset in the space of germs of vector fields on (V, 0).

The integer K obviously is an analytic invariant of V . This rises some natural
questions:

Question 5.4 What is a “generic” vector field on (V, 0)? And what is K ?

I believe that K = 1 + (−1)n μwhere μ is the Milnor number and n is the dimen-
sion of V .
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Abstract We study the relationship between singular holomorphic foliations at
(C2, 0) and their separatrices. Under mild conditions we describe a complete set
of analytic invariants characterizing foliations with quasi-homogeneous separatrices.
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1 Introduction

In this paper we deal with the classification of germs of curves and germs of holomor-
phic foliations at (C2, 0) (cf. Theorems A and B). The problem of the classification
of germs of analytic plane curves has been addressed by several authors since the
XVII th century with different methods (see for instance [2, 3, 21, 34]). In the first
part of the present work, we study the problem of the analytic classification of germs
of singular curves with many branches from an algebro-geometric viewpoint. We
establish pre-normal forms for quasi-homogeneous polynomials, then we use the
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the moduli space of each stratum. As a consequence, our method provides an effec-
tive way to identify if two quasi-homogeneous curves are equivalent. Notice that the
analytic type of a quasi-homogeneous curve is one of the invariants determining the
analytic type of a foliation having such a curve as separatrix set (cf. Theorem B).
Therefore, the present classification completes the classification of such germs of
complex analytic foliations.

On the other hand, the problem of local classification of differential equations of
the form Adx + Bdy = 0 in two variables has been studied by various mathemati-
cians — since the end of the nineteenth century — as C. A. Briot, J. C. Bouquet, H.
Dulac, H. Poincaré, I. Bendixson, G. D. Birkhoff, C. L. Siegel, A. D. Brjuno et al.
In the middle 1970s R. Thom restored the interest in this question with a series of
talks at IHES. In fact, he conjectured that a germ of foliation F at (C2, 0) with a
finite number of separatrices, i.e. a finite number of analytic invariant curves through
the origin, has its analytic type characterized by its holonomy with respect to the
separatrix set (cf. [13], pp. 162, 163). In [26–28] it is proved that the conjecture has
an affirmative answer if the linear part of the vector field defining the foliation is
non-nilpotent. In [29] it is proved that the conjecture is not true in general with the
introduction of an analytic invariant called vanishing holonomy. Further, in [5] it is
proved that any germ of singular holomorphic foliation at (C2, 0) has a nonempty
separatrix set, which is denoted by Sep(F). Since this time, the problem of finding
a complete set of analytic invariants determining the analytic type of a germ of foli-
ation at (C2, 0) having a finite number of separatrices is known as Thom’s problem
(cf. [16], pp. 60, 98). In [13] the results of [29] are generalized, classifying a Zariski
open subset of the nilpotent singularities in terms of the vanishing holonomy (now
called projective holonomy). Other contributions have been given by many authors
such as [4, 16, 32], etc.

In [25] the problem of moduli space is studied from the deformation viewpoint.
There it is proved that the moduli space of local unfoldings of quasi-homogeneous
foliations is determined by the conjugacy class of the projective holonomy and
the analytic type of its separatrix set for a generic class of foliations called quasi-
hyperbolic (cf. [25], Definition 1.1, p. 255; Theorem B, p. 256; and Definition 6.8,
p. 273). Namely, a germ of foliation F is called quasi-hyperbolic generic provided
that the following conditions are satisfied: (i) its resolution ˜F has at least one non-
solvable projective holonomy; (ii) ˜F has no saddle-nodes and the ratio between the
eigenvalues of each of its singular points is not a positive real number. Using this
result, in [17] it is proved that any two quasi-hyperbolic generic quasi-homogeneous
foliations can be linked by such kind of unfoldings, classifying the quasi-hyperbolic
generic quasi-homogeneous foliations. Unfortunately, the author of [17] forgot to
mention the above hypotheses in his work.

From a quite different viewpoint, we show in the second part of our work an
analogous result with less restrictive hypotheses on the foliation F (cf. Theorem B),
using a geometric and much simpler proof. In fact, this geometrical approach leads
also to the classification of curves.

We would like to remark that one of the main sources of inspiration for this work
was the relationship between singular holonomies (cf. e.g. [7–10]) and the analytic
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type of a foliation near their Hopf components (see definition below). Furthermore,
our approach can be used to understand the moduli space of more general germs of
singular foliations, for instance, in the presence of saddle nodes.

The plan of the article is as follows. First we determine normal forms for quasi-
homogeneous algebraic curves obtaining some geometric properties for the reso-
lution of the separatrix set. With this geometric features at hand, we determine
the moduli space in terms of the moduli space of punctured Riemann spheres. In
the sequel, we study the semilocal invariants of resolved foliation determining the
analytic type of each Hopf component of the foliation. Then we introduce natural
cocycles that measure the obstruction for two analytically componentwise equivalent
foliations to be really analytically equivalent. Finally we use the geometric descrip-
tion of the separatrix set in order to trivialize these cocycles and construct an explicit
conjugation between two foliations with the same quasi-homogeneous curve and
analytically conjugate projective holonomies.

We would like to thank Maria Aparecida Ruas for calling our attention to the fact
that the analytic classification of germs of quasi-homogeneous curves was given by
Kang in [22]. His classification is obtained in terms of equivalence classes between
the coefficients of the homogeneous polynomials. The strategy used here allows to
study the moduli space of bi-Lipschitz and analytically equivalent function-germs.
This is the subject of a forthcoming paper of the first author in collaboration with
M. A. Ruas.

Finally, wewould like to thank the referee for the careful reading of themanuscript
and for many helpful comments, corrections, and suggestions.

Part 1. Classification of Curves

2 Preliminaries

In this section we introduce the main notions for the first part of the paper. Let
C be a singular curve and π : (M, D) −→ (C2, 0) its standard resolution, i.e. the
minimal resolution ofC whose strict transform ˜C := π−1(C)\D is transversal to the
exceptional divisor D = π−1(0).Agermof holomorphic function f ∈ C{x, y} is said
to be quasi-homogeneous if there is a local system of coordinates in which f can be
represented by a quasi-homogeneous polynomial, i.e. f (x, y) = ∑

ai+bj=d ai j x i y j ,
where a, b, d ∈ N. Let M be a manifold and M�(n) := {(x1, · · · , xn) ∈ Mn : xi �=
x j for all i �= j}. Let Sn denote the group of permutations of n elements and consider
its action in M�(n)given by (σ,λ) �→ σ · λ = (λσ(1), · · · ,λσ(n)). The quotient space
induced by this action is denoted by Symm(M�(n)). Now suppose a Lie group G
acts in M and let G act in M�(n) in the natural way (g,λ) = (g · λ1, · · · , g · λn) for
everyλ ∈ M�(n). Then the actions ofG and Sn in M�(n) commute. Thus one obtains
a natural action of G in Symm(M�(n)). Given λ ∈ M�(n), denote its equivalence
class in Symm(M�(n))/G by [λ].
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Let C be a quasi-homogeneous curve determined by f = 0, where f is a reduced
polynomial. Then Lemma3.3 says that f can be (uniquely) written in the form

f (x, y) = xm yk
n

∏

j=1

(y p − λ j x
q)

where m, k ∈ Z2, p, q ∈ Z+, p ≤ q, gcd(p, q) = 1, and λ j ∈ C
∗ are pairwise dis-

tinct. In particularC has n + m + k distinct branches. Since the exceptional divisor of
the standard resolution and the number of irreducible components are analytic invari-
ants of a germ of curve, then Lemmas3.4 and 3.5 ensure that the triple (p, q, n) is an
analytic invariant of the curve. Thus we have to consider the following three distinct
cases:

(i) f (x, y) = xm
n

∏

j=1

(y − λ j x), where m ∈ Z2, and λ j ∈ C.

(ii) f (x, y) = xm
n

∏

j=1

(y − λ j xq), where m ∈ Z2, q ∈ Z+, q ≥ 2 and λ j ∈ C.

(iii) f (x, y) = xm yk
n

∏

j=1

(y p − λ j xq), where m, k ∈ Z2, p, q ∈ Z+, 2 ≤ p < q,

gcd(p, q) = 1, and λ j ∈ C
∗.

A quasi-homogeneous curve is said to be of type (1, 1, n), (1, q, n), and (p, q, n)

respectively in cases (i), (ii), and (iii).

Theorem A The analytic moduli space of germs of quasi-homogeneous curves of
type (p, q, n) are given respectively by

(i) Symm(P1
�(n))

PSL(2,C)
if (p, q) = (1, 1);

(ii) Z2 × Symm(C�(n))

Aff(C)
if p = 1 and q > 1;

(iii) Z2 × Z2 × Symm(C∗
�(n))

GL(1,C)
if 1 < p < q.

3 Quasi-homogeneous Polynomials

In this section we describe the main algebro-geometric features of quasi-
homogeneous polynomials.

3.1 Normal Forms

A quasi-homogeneous polynomial f ∈ C[x, y] is called commode if its Newton
polygon intersects both coordinate axes. Further, notice that a polynomial in two
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variables P ∈ C[x, y] may be considered as a polynomial in the variable y with
coefficients inC[x], i.e. P ∈ (C[x])[y]. Let ordy P be the order of P as a polynomial
in (C[x])[y]. Similarly let ordx P be the order of P as an element of (C[y])[x].
Therefore, a quasi-homogeneous polynomial P ∈ C[x, y] is commode if and only if
ordx P = ordy P = 0. Next, we recall the general behavior of a quasi-homogeneous
polynomial.

Lemma 3.1 Let P ∈ C[x, y] be a quasi-homogeneous polynomial, then it has a
unique decomposition in the form

P(x, y) = xm yn P0(x, y)

where m, n ∈ N, λ ∈ C, and P0 is a commode quasi-homogeneous polynomial.

Proof Let m := ordx P and n := ordy P . Clearly, both xm and yn divide P . Hence P
can be written in the form P(x, y) = ∑

ai+bj=d ai j x i y j , where i ≥ m and j ≥ n.

Thus P(x, y) = xm yn P0(x, y), where P0(x, y) = ∑

ai ′+bj ′=d ′ ai ′+m, j ′+n xi ′
y j ′

and
d ′ := d − am − bn. Since m = ordx P and n = ordy P , then ordx P0 = 0 = ordy P0.
The result then follows directly from the above remark. �

Definition 3.1 A commode polynomial P ∈ C[x, y] is called monic in y if it is a
monic polynomial in (C[x])[y].
Lemma 3.2 Let P ∈ C[x, y] be a commode quasi-homogeneous polynomial, which
is monic in y. Then P can be written uniquely as

P(x, y) =
k

∏

�=1

(y p − λ�xq),

where gcd(p, q) = 1 and λ� ∈ C
∗.

Proof First remark that any quasi-homogeneous polynomial can be written in the
form P(x, y) = ∑

pi+q j=m ai j x i y j , where p, q, m ∈ N and gcd(p, q) = 1. Since
P is commode, there are i0, j0 ∈ N such that q j0 = m and pi0 = m; in particular
k := m/pq ∈ N. Therefore pi + q j = pqk. Since gcd(p, q) = 1, then q divides i
and p divides j . If we let i = qi ′ and j = pj ′, then pqi ′ + qpj ′ = pqk. Thus P can
be written in the form P(x, y) = ∑

i+ j=k aqi,pj xqi y pj . Let y = t x
q
p , then the above

equation assumes the form P(x, t xq/p) = xqk
∑

i+ j=k aqi,pj t pj . Now let {λ j }k
j=1 be

the roots of the polynomial g(z) = ∑

i+ j=k aqi,pj z j , then

P(x, y) = xqk
k

∏

�=1

(t p − λl) = xqk
k

∏

�=1

(
y p

xq
− λl)

=
k

∏

�=1

(y p − λl x
q).

�
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Fig. 1 The dual graph

Lemma 3.3 Let P ∈ C[x, y] be a quasi-homogeneous polynomial. Then P can be
written, uniquely, in the form

P(x, y) = μxm yn
k

∏

�=1

(y p − λ�xq)

where m, n, p, q ∈ N, μ,λ� ∈ C
∗, and gcd(p, q) = 1.

Proof In view of Lemmas3.1 and 3.2, it is enough to remark that any commode
quasi-homogeneous polynomial P ∈ C[x, y] can be written uniquely as P = μP0,
where P0 is monic in y. �

3.2 Resolution

We recall the geometry of the exceptional divisor of the minimal resolution of a germ
of quasi-homogeneous curve.

A tree of projective lines is an embedding of a connected and simply connected
chain of projective lines intersecting transversely in a complex surface (two dimen-
sional complex analytic manifold) with two projective lines in each intersection. In
fact, it consists of a pasting of Hopf bundles whose zero sections are the projective
lines themselves. A tree of points is any tree of projective lines in which a finite
number of points is discriminated. The above nomenclature has a natural motivation.
In fact, as well know, we can assign to each projective line a point together with
its respective self-intersection number and to each intersection an edge in order to
form the weighted dual graph. Two trees of projective lines are called isomorphic
if their weighted dual graph are isomorphic (as graphs). It is well known that any
germ of analytic curve C at (C2, 0) has a standard resolution, which we denote by
˜C . If the exceptional divisor of ˜C has just one projective line intersecting three or
more branches of ˜C , then it is called the principal projective line of ˜C and denoted
by Dpr(˜C). A tree of projective lines is called a linear chain if each of its projective
lines intersects at most other two projective lines of the tree (Fig. 1). A projective
line of a linear chain is called an end if it intersects only one of the projective lines
of the chain.



A Comprehensive Approach to the Moduli Space … 465

Lemma 3.4 Let C be a commode quasi-homogeneous curve. Then its standard reso-
lution tree is a linear chain and its standard resolution ˜C intersects only one projective
line of D, i.e. C has one of the following diagrams of resolution:

Proof From Lemma3.2, there is a local system of coordinates (x, y) such that
C = f −1(0), where f (x, y) = ∏k

l=1(y p − λ j xq) with p < q and gcd(p, q) = 1.
The result then follows immediately from the standard resolution of each irreducible
curve y p − λl xq = 0. �

Let #irred(˜C) denote the number of irreducible components of ˜C .

Lemma 3.5 Let C be a non-commode quasi-homogeneous curve. Then its mini-
mal resolution tree is a linear chain having a principal projective line such that

#irred(˜C) − 2 ≤ #(˜C ∩ Dpr(˜C)) ≤ #irred(˜C). Furthermore ˜C ∩ D j = ∅ whenever D j

is neither the principal projective line nor an end; i.e. C has one of the following
diagrams of resolution:

Proof From Lemma3.3, there is a local system of coordinates (x, y) such that
C = f −1(0), where f (x, y) = μxm yn

∏k
l=1(y p − λ j xq), p < q, and gcd(p, q) = 1.

Since μxm yn is resolved after one blowup, then f (x, y) is resolved together with the
fibration y p

xq ≡ const, as before. Then the result follows from Lemma3.4. �

4 Quasi-homogeneous Curves

In this section we consider types (i), (ii), and (iii) separately and prove Theorem A
in a series of lemmas.
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4.1 Curves of Type (1, 1, n)

In this case the curve is given as the zero set of a polynomial of the form f (x, y) =
xm

∏n
j=1(y − λ j x), where m ∈ Z2, and λ j ∈ C; in particular it is resolved after one

blowup. Thus, given λ = (λ1, · · · ,λn) ∈ P
1
�(n) we define fλ(x, y) = x

∏

j �=i (y −
λ j x) if λi = ∞ or fλ(x, y) = ∏n

j=1(y − λ j x) if λ j �= ∞ for all j = 1, . . . , k. We
denote the curve fλ = 0 by Cλ. Recall that the natural action of PSL(2,C) in P

1 as
the group of homographies induces a natural action of PSL(2,C) in Symm(P1

�(n)).
Moreover, recall that the equivalence class ofλ ∈P

1
�(n) inSymm(P1

�(n))/PSL(2,C)

is denoted by [λ].
Lemma 4.1 Two homogeneous curves Cλ and Cμ are analytically equivalent if and
only if [λ] = [μ] ∈ Symm(P1

�(n))/PSL(2,C).

Proof Suppose Cλ and Cμ are analytically equivalent and let � ∈ Diff(C2, 0) tak-
ing Cλ into Cμ. Let ˜� be the blowup of �, then it takes the strict transform
of Cλ into the strict transform of Cμ. Blowing up fλ and fμ we obtain at once
that the first tangent cones of Cλ and Cμ are respectively given by {λ1, · · · ,λn}
and {μ1, · · · ,μn}. Therefore, there is σ ∈ Sn such that the Möbius transformation
ϕ = ˜�|P1 satisfies μσ( j) = ϕ(λ j ) for all j = 1, . . . , n. In other words, [λ] = [μ].
Conversely, suppose [λ] = [μ]. Reordering the indexes of {μ1, · · · ,μn}wemay sup-
pose, without loss of generality, that there is a Möbius transformation ϕ(z) = az+b

cz+d ,
with ad − bc = 1, such that μ j = ϕ(λ j ) for all j = 1, . . . , n. Now consider the lin-
ear transformation T (x, y) = (dx + cy, bx + ay) with inverse T −1(x, y) = (ax −
cy,−bx + dy). Then a straightforward calculation shows that fλ = α · T ∗ fμ, where
α ∈ C

∗. Thus Cλ is analytically equivalent to Cμ, as desired. �
Remark 4.1 Recall that for any three distinct points {λ1,λ2,λ3} ⊂ P

1 there is a
Möbius transformation ϕ such that ϕ(0) = λ1, ϕ(1) = λ2 and ϕ(∞) = λ3.

As a straightforward consequence of Lemma4.1 and Remark 4.1 one has:

Corollary 4.2 Let λ,μ ∈ P
1
�(n) with n ≤ 3. Then Cλ and Cμ are analytically

equivalent.

4.2 Curves of Type (1, q, n), q ≥ 2

In this case, the curve is given as the zero set of a polynomial of the form fm,λ(x, y) =
xm

∏n
j=1(y − λ j xq), where m ∈ Z2, q ∈ Z+, q ≥ 2, and λ j ∈ C. Given m ∈ Z2 and

λ = (λ1, · · · ,λn) ∈ C�(n), we denote a curve of type (1, q, n) by Cm,λ if it is given
as the zero set of fm,λ. Recall that the group of affine transformations of C, denoted
by Aff(C), acts in a natural way in Symm(C�(n)). As before, denote by [λ] the
equivalence class of λ ∈ C�(n) in Symm(C�(n))/Aff(C).

Lemma 4.3 Two homogeneous curves Cm,λ and Cm,μ are analytically equivalent if
and only if [λ] = [μ] ∈ Symm(C�(n))/Aff(C).
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Proof Suppose� ∈ Diff(C2, 0) is an equivalence between Cm,λ and Cm,μ. From the
proof of Lemma3.4, both curves are resolved after q blowups. Furthermore, after
q − 1 blowups � will be lifted to a local conjugacy �(q−1) between the germs of
curves given in local coordinates (x, y) respectively by pλ(x, y) = x

∏n
j=1(y − λ j x)

and pμ(x, y) = x
∏n

j=1(y − μ j x), where (x = 0) is the local equation of the excep-
tional divisor D(q−1). Let π denote an additional blowup given in local coordinates by
π(t, x) = (x, t x) and π(u, y) = (u, uy), and �(q) be the map obtained by the lifting
of�(q−1) byπ.Moreover, letϕ = �(q)|Dq , where Dq = π−1(0). Since�(q) preserves
the irreducible components of π∗(D(q−1)), then ϕ(t) = �(q)(t, 0) is a homography
fixing ∞ and conjugating the first tangent cones of pλ = 0 and pμ = 0 respectively.
Thus [λ] = [μ] ∈ Symm(C�(n))/Aff(C). Conversely, reordering the indexes of μ,
if necessary, suppose there is ϕ(z) = az + b ∈ Aff(C) such that μ j = ϕ(λ j ) for all
j = 1, . . . , n, and let T (x, y) = (x, ay + bxq). Then a straightforward calculation
shows that fm,λ = α · T ∗ fm,μ, where α ∈ C

∗. Thus Cm,λ and Cm,μ are analytically
equivalent, as desired. �

As a straightforward consequence of Lemma4.3 and Remark 4.1 one has:

Corollary 4.4 Let λ,μ ∈ C�(n) with n ≤ 2. Then Cm,λ and Cm,μ are analytically
equivalent.

4.3 Curves of Type ( p, q, n), 2 ≤ P < q

In this case, the curve is given as the zero set of a polynomial of the form
fm,k,λ(x, y) = xm yk

∏n
j=1(y p − λ j xq), where m, k = 0, 1, p, q ∈ Z+, 2 ≤ p < q,

and λ j ∈ C
∗. Given λ = (λ1, · · · ,λn) ∈ C

∗
�(n) we denote a curve of type (p, q, n)

by Cm,k,λ if it is given as the zero set of fm,k,λ(x, y). Recall that the group of linear
transformations of C, denoted by GL(1,C), acts in a natural way in Symm(C∗

�(n)).
Recall that the equivalence class of λ ∈ C

∗
�(n) in Symm(C∗

�(n))/GL(1,C) is
denoted by [λ].
Lemma 4.5 Two homogeneous curves Cm,k,λ and Cm,k,μ are analytically equivalent
if and only if [λ] = [μ] ∈ Symm(C∗

�(n))/GL(1,C).

Proof First recall from the proof of Lemma3.4 that Cm,k,λ is resolved after N
blowups, where N depends on the Euclid’s division algorithm between q and p.
Further, at the (N-1)th step we have to blowup a singularity given in local coor-
dinates (x, y) as the zero set of the polynomial gλ(x, y) = xy

∏n
j=1(y − λ j x).

Therefore, if � ∈ Diff(C2, 0) is an equivalence between Cm,k,λ and Cm,k,μ and
�(N−1) is its lifting to the (N − 1)th step of the resolution, then it conjugates
the germs of curves given in local coordinates (x, y) respectively by pλ(x, y) =
xy

∏n
j=1(y − λ j x) and pμ(x, y) = xy

∏n
j=1(y − μ j x), where (x = 0) and (y = 0)

are local equations for the exceptional divisor D(N−1). Let π denote the final blowup
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of the resolution given in local coordinates by π(t, x) = (x, t x) and π(u, y) =
(u, uy), and �(N ) be the map obtained by the lifting of �(N−1) by π. Further
let ϕ = �(N )

∣

∣

DN
, where DN = π−1(0). Since �(N ) preserves the irreducible com-

ponents of π∗(D(q−1)), then ϕ(t) = �(q)(t, 0) is a homography fixing 0 and ∞,
and conjugating the first tangent cones of pλ = 0 and pμ = 0 respectively. Thus
[λ] = [μ] ∈ Symm(C∗

�(n))/GL(1,C). Conversely, reordering the indexes of μ, if
necessary, suppose there is ϕ(z) = az ∈ GL(1,C) such that μ j = ϕ(λ j ) for all
j = 1, . . . , n, and let T (x, y) = (x, p

√
ay). Then a straightforward calculation shows

that fm,λ = α · T ∗ fm,μ, where α ∈ C
∗. Thus Cm,λ and Cm,μ are analytically equiva-

lent, as desired. �
As a straightforward consequence of Lemma4.5 and Remark 4.1 one has:

Corollary 4.6 Let λ,μ ∈ C
∗
�(1), then Cm,k,λ and Cm,k,μ are analytically equivalent.

5 Resolution and Factorization

In this section we study the relationship between the resolution tree and the factor-
ization of a quasi-homogeneous polynomial. We use the resolution in order to study
the equivalence between two quasi-homogeneous polynomials.

First recall that a quasi-homogeneous polynomial splits uniquely in the form
P = xm yn P0, where P0 is a commode quasi-homogeneous polynomial. In particular
P and P0 share the same resolution process.

Corollary 5.1 Let P ∈ C[x, y] be a commode quasi-homogeneous polynomial with
weights (p, q), where gcd(p, q) = 1. Let q j = s j p j + r j , j = 1, . . . , �, be given by
Euclid’s algorithm of (p, q), where q1 := q, p1 := p, q j+1 := p j , and p j+1 := r j for
all j = 1, . . . , � − 1. Then the exceptional divisor of its minimal resolution is given
by a linear chain of projective lines, namely D = ∪ν

j=1D j , whose self-intersection
numbers are given as follows:

1. If � = 2α − 1, then

D j · D j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−(s2k + 2) if j = s1 + · · · + s2k−1, k = 1, . . . ,α − 1;
−1 if j = s1 + · · · + s2α−1;

−(s2k+1 + 2) if j = � − (s2 + · · · + s2k−2) + 1, k = 1, . . . ,α − 1;
−(s2α−1 + 1) if j = � − (s1 + · · · + s2α−2) + 1;

−2 otherwise.

2. If � = 2α, then

D j · D j =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

−(s2k + 2) if j = s1 + · · · + s2k−1, k = 1, . . . ,α − 1;
−(s2α + 1) if j = s1 + · · · + s2α−1;

−(s2k+1 + 2) if j = � − (s2 + · · · + s2k−2) + 1, k = 1, . . . ,α − 1;
−1 if j = � − (s1 + · · · + s2α−2) + 1;
−2 otherwise.
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Finally, if C is given by f = 0, where f (x, y) = xm yn
∏k

j=1(y p − λ j xq), then
a representative of [λ] is determined by the intersection of the strict transform of
C with the exceptional divisor D.

Proof The proof shall be performed by induction on �, the length of the Euclidean
algorithm. In order to better understand the arguments, the reader have to keep in
mind the proof of Lemma3.4. From Lemma3.2, we may suppose, without loss of
generality, that P can be written in the form P(x, y) = ∏k

j=1(y p − λ j xq). First
remark that if � = 1 then p = 1. Thus we prove the statement for � = 1 by induc-
tion on q. For q = 1 the result is easily verified after one blowup. Now sup-
pose the result is true for all q ≤ q0 − 1. Then after one blowup π(t, x) = (x, t x),
π(u, y) = (uy, y), P is transformed into π∗ P(t, x) = x

∏k
j=1(t − λ j xq−1). Thus

the result follows for � = 1 by induction on q. Suppose the result is true for all
polynomials whose pair of weights has Euclid’s algorithm length less than �, and let
(p, q) with length �. Since p j = s j q j + r j , j = 1, . . . , �, is the Euclid’s algorithm
of (p, q), then p j = s j q j + r j , j = 2, . . . , �, is the Euclid’s algorithm of (p2, q2). In
particular the Euclid’s algorithm of (p2, q2) has length � − 1. Reasoning in a similar
way as in the case � = 1, we have after s1 blowups a linear chain of projective lines
∪s1

j=1D(1)
j such that D(1)

j · D(1)
j = −2 for all j = 1, . . . , s1 − 1 and D(1)

s1 · D(1)
s1 = −1.

Besides, the strict transform of P = 0 is given by the zero set of the polynomial
˜P(t, x) = ∏k

j=1(t
p1 − λ j xr1) = λ1 · · ·λk

∏k
j=1(x p2 − λ j tq2), where the local equa-

tion for D(1)
s1 is (x = 0). The first statement thus follows from the induction hypothe-

sis. The last statement comes immediately from the above reasoning. For the above
induction arguments ensure that the strict transform of P assume the form ˜P = 0,
with ˜P(x, y) = ∏k

j=1(y − λ j x), just before the last blowup. �

The above Corollary gives an easy way to compute the relatively prime weights
of a quasi-homogeneous polynomials from the dual weighted tree of its minimal
resolution. Also it shows that the minimal resolution can be used both to split a
quasi-homogeneous polynomial into irreducible components and also to determine
its analytic type.

Part 2. Classification of Foliations

6 Preliminaries

In this section we introduce the main notions for the second part of the paper. A germ
of singular foliation (F : ω = 0) at (C2, 0) of codimension 1 is, roughly speaking,
the set of integral curves of a given germ of 1-form ω ∈ �1(C2, 0), which may
be assumed to have just an isolated singularity at the origin. Let Diff(Ck, 0) be
the group of germs of analytic diffeomorphisms of (Ck, 0) fixing the origin. Two
germs of foliations (F j : ω j = 0) at (C2, 0), j = 1, 2, are analytically equivalent
if there is � ∈ Diff(C2, 0) sending leaves of F1 into leaves of F2. One says that
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h1, h2 ∈ Diff(C, 0) are analytically conjugate if there is φ ∈ Diff(C, 0) such that
Adφ(h1) := φ ◦ h1 ◦ φ−1 = h2.We denote theHopf bundle of order k (seeDefinition
7.1) by p(k) : H(−k) → D, where D � CP(1), or just by its total space H(−k).

The study of germs of singular holomorphic foliation at (C2, 0) is given by the
resolution process (cf. [31]). Essentially, giving a germ of singular foliation F at
(C2, 0), it says that after the composition of a finite number of blowing-ups one
obtains a map π : (˜X , D) −→ (C2, 0) such that the singularities appearing along the
exceptional divisor D = π−1(0) of the strict transform ˜F are isolated and assume,
in local coordinates (x, y), one of the following forms:

(1). ω̃(x, y) = λxdy + μydx + · · · with λ · μ �= 0 and λ/μ /∈ Q−;
(2). ω̃(x, y) = λydx + · · · , λ �= 0;
where the dots mean higher order terms. By definition ˜F is the unique extension of
π∗(F) whose singular set has codimension greater or equal to 2 (cf. [6]). Notice that
these are minimal models in the sense that they are stable under new blowing-ups.
These singularities are called reduced or simple singularities. A reduced singular-
ity is called non-degenerate if it’s of type (1), otherwise it’s called a saddle node
(cf. [6]). Furthermore, if D = ∪ D j is the decomposition of the exceptional divi-
sor into irreducible components, where D j has self-intersection number equal to
−k j , j = 1, . . . , n, then recall from the theory of algebraic curves that a suitable
neighborhood of D in ˜X results from pasting together suitable neighborhoods of the
zero sections of H(−k j ). For each Hopf bundle p j : H j → D j of a given resolu-
tion, we denote by ˜F j the germ of foliation in (H j , D j ) induced by the restriction
of ˜F and call it the j th Hopf component of the resolution. The singular points of
the exceptional divisor, namely ci j := Di ∩ D j , are called corners and the singular-
ities on such points are called corner singularities (or just corners) and denoted by
˜Fi j . The “strict transform” of Sep(F) at D j ⊂ H j , i.e. the set of local separatrices
of ˜F j , namely Sep(˜F j ) = (π∗Sep(F)) |H j \D j , is called the j th Hopf component
of π∗(Sep(F)). Two foliations having analytically equivalent Hopf components are
called analytically componentwise equivalent.

Let p : H → D be a Hopf bundle and F a germ of foliation defined in (H, D).
ThenF is called non-dicritical if D is an invariant set ofF , and dicritical otherwise.
In the former case the holonomy of F with respect to D evaluated at a transversal
section � is called projective holonomy ofF and denoted by Hol�(F , D). One says
that F is resolved if it has just reduced singularities (cf. [6]). Let ˜F1 and ˜F2 be
two germs of non-dicritical singular foliations about D ⊂ H without saddle-nodes
and having the same singular set, say {t j }n

j=1. Let t0 ∈ D be a regular point of ˜F1

and denote by hi
γ the holonomy of a path γ ∈ π1(D\{t j }n

j=1, t0) with respect to D
evaluated at a transversal section �0 := p−1(t0). Then one says that the projective
holonomies of these foliations are analytically conjugate if there is φ ∈ Diff(C, 0)
such that Adφ(h1

γ) = h2
γ for every γ ∈ π1(D\{t j }n

j=1, t0).
A generalized curve foliation is a germ of singular foliation at (C2, 0) that has

no saddle-nodes along its minimal resolution (cf. [6]). Naturally, a non dicritical
germ of generalized curve foliation has a finite number of irreducible separatrices.
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A germ of holomorphic function f ∈ C{x, y} is said to be quasi-homogeneous if
there is a local system of coordinates in which f can be represented by a quasi-
homogeneous polynomial, i.e. f (x, y) = ∑

ai+bj=d ai j x i y j , where a, b, d ∈ N. The
separatrix set of a germ of foliation F at (C2, 0) is said to be quasi-homogeneous if
Sep(F) = f −1(0), where f is a quasi-homogeneous function. The set of generalized
curve foliations at (C2, 0) with quasi-homogeneous separatrix set is denoted by
QHS; in particular, if Sep(F) is commode, then F is called a commode QHS
foliation.

Recall, from [31], that any germ of holomorphic foliationF at (C2, 0) has a min-
imal resolution. We denote it by ˜F and its ambient surface by M

˜F . If the exceptional
divisor of ˜F has just one projective line containing three ormore singular points of ˜F ,
then it is called the principal projective line of ˜F and denoted by Dpr( ˜F) (see defini-
tion in Sect. 9.1.1). If ˜F has a principal projective line, then the projective holonomy
of its principal projective line is called the projective holonomy of the foliation F .
Later on, we will see that any QHS foliation has a principal projective line. Then
one says thatF ∈ QHS is generic if the corner singularities of ˜F in Dpr( ˜F) are in the
Poincaré domain or in the Siegel domain with the quotient of eingenvalues satisfying
the Yoccoz-Bryuno condition (cf. [1]).

Now in are in a position to state the main result of this work.

Theorem B LetF andF ′ be twoQHS germs of foliations with the same separatrix
set. Suppose that F and F ′ are both commode or generic. Then F and F ′ are
analytically equivalent if and only if their projective holonomies are analytically
conjugate.

7 Hopf Bundles and Projective Holonomy

In this section we consider germs of reduced foliations with only non degenerate
singularities leaving invariant the zero section of a Hopf bundle. Under some natural
geometric conditions, we describe the invariants that determine their analytic type.

First recall the definition of a Hopf bundle.

Definition 7.1 Let k ∈ Z+ and consider two copies of C2 with coordinates given
respectively by (t, x) and (u, y). Then the line bundle over CP(1) given by the
transition maps

{

y = t k x
u = 1/t

for all t �= 0 is called the Hopf bundle of order k and denoted by p(k) : H(−k) →
CP(1) or just by its total space H(−k).

Clearly, two analytically equivalent singularities have isomorphic weighted dual
trees of singular points along their minimal resolution. Thus, if we consider analyt-
ically equivalent Hopf components, it is clear that isomorphic points have the same
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linear part and that their local holonomy generators are conjugated by a global map.
To clarify the ideas, we need the following

Definition 7.2 Let M be a complex surface and S ⊂ M a smooth curve invariant
by the germ of holomorphic foliation F in (M, S) such that Sing(F) ⊂ S has only
non-degenerate reduced singularities. Then we say that a germ of holomorphic map
f : (M, S) → S is a fibration transversal to F if it satisfies:

(1) f is a retraction, i.e. f is a submersion and f |S = id|S;
(2) the fiber f −1(t j ) is a separatrix of F for each t j ∈ Sing(F);
(3) f −1(t) is transversal to F for every (regular) point t ∈ S\Sing(F).

Let F be a germ of reduced holomorphic foliation having only non degener-
ate singularities defined in a neighborhood of the zero section of the Hopf bundle
p : H → D, f : (H, D) → D be a fibration transversal to F , and t0 ∈ D\Sing(F)

be a regular point of F . Hence the path lifting construction ensures that the pro-
jective holonomy Hol f −1(t)(F , D) is completely determined by Hol f −1(to)(F , D) for
any t, t0 ∈ D\Sing(F). Such a holonomy is called projective holonomy of F with
respect to f . If there is no doubt about the fibration, we only talk about the projective
holonomy of the foliation and denote it by Hol(F , D).

Definition 7.3 LetF andFo begermsof reduced foliationswith only nondegenerate
singularities leaving invariant the zero section of the Hopf bundle p : H → D with
the same singular set S. Then we set

DiffF ,Fo(H, D) := {� ∈ Diff(H, D) : �∗(F) = Fo and �|S = id}

and call
Aut(Fo) := {� ∈ DiffFo,Fo(H, D) : �|S = id}

the group of automorphisms of Fo. Furthermore, if f : (H, D) → D is a fibration
transversal to Fo, then the set of elements of Aut(Fo) preserving f is denoted by
Aut(Fo, f ).

Proposition 7.1 Let F i , i = 1, 2, be two germs of reduced foliations with only
non degenerate singularities leaving invariant the zero section of the Hopf bun-
dle p : H → D. Suppose that Sep(F1) = Sep(F2) and that there is a fibration
fi : (H, D) −→ D transversal to F i . Then F1 and F2 are analytically equivalent
if and only if their projective holonomies are analytically conjugate.

Proof As already remarked, the necessary part is straightforward. Let us treat the
sufficient part. Since the separatrices of F1 and F2 coincide, then their singular sets
also coincide. Let Sing(F i ) = {t j }n

j=1 and t0 ∈ D be a regular point. Suppose there
is φ ∈ Diff(C, 0) such that φ ◦ (h1

j ) ◦ φ−1 = h2
j for all j = 1, . . . , n. Then define the

map � : F\⋃n
j=1 f −1

1 (t j ) −→ F ′\⋃n
j=1 f −1

2 (t j ) by

�(t, x) := �t (x) := h2
t ◦ φ ◦ (h1

t )
−1(x),
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where x ∈ f −1
1 (t) and hi

t : f −1
i (t0) −→ f −1

i (t) are the holonomy maps obtained by
path lifting a curve connecting t0 to t along the leaves of F i . Note that this map
does not depend on the chosen base curves, since φ conjugates the elements of the
respective projective holonomies of F1 and F2. Since � is holomorphic in each
variable separately, then (complex) ODE theory and Hartogs’ theorem ensure that
� is holomorphic. Finally, since F1 has just reduced singularities, then [26, 28]
ensure that the union of the saturated of �0 := f −1

1 (t0) along the leaves of F1 and
the local separatrices Sep(F1) = ⋃n

j=1 f −1
1 (t j ) gives rise to a neighborhood of D.

Thus we can use Riemann’s extension theorem in order to extend � to Sep(F1) in a
neighborhood of D. �

8 Analytic Invariants

In this section we consider germs of foliations at (C2, 0) and use the weighted dual
trees of their minimal resolutions, the first jet of each singularity of these resolu-
tions, and the projective holonomies of their Hopf components in order to determine
analytic componentwise equivalence. Next, we identify some analytical cocycles
that appear as obstructions to extend the analytically componentwise isomorphisms
introduced in Proposition 7.1. Finally, we relate these obstructions with the analytic
classification of the foliations.

8.1 Componentwise Equivalence and Realization

In this section we find conditions to determine whether twoQHS foliations with the
same quasi-homogeneous separatrix set are componentwise equivalent. In order to
do that, we split QHS into subclasses with increasing degree of information about
the analytic type of foliations therein.

LetQHS f denote the set ofQHS foliations with the same separatrix set f = 0.
This means that the separatrix of any F ∈ QHS f is given by the same curve
Sep(F) = ( f = 0).

Remark 8.1 The resolution of a non dicritical generalized curve foliation coincides
with the resolution of its separatrix [6]. In particular, any foliations inQHS f has its
weighted dual graph automatically determined by the separatrix f = 0.

Now notice that to each branch of f = 0 there corresponds one singular point
of ˜F . Since the first jet of this singularity is an analytic invariant of the foliation,
up to multiplication by a nonvanishing complex number, then we define a subclass of
QHS f by attaching to each singular point ofF ∈ QHS f this new analytic invariant
as follows: LetF ,F ′ ∈ QHS f and ˜F, ˜F ′ be respectively their minimal resolutions.
Let Sing(˜F) = ⋃k

i=1 Sing(˜Fi ), where Sing(˜Fi ) = {pi, ji : ji = 1, . . . , ni }, k is the
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number of Hopf components of ˜F , and ni := #Sing(˜Fi ). Let ωi, ji = 0 and ω′
i, ji

= 0

determine the germs of ˜F and ˜F ′ at pi, ji . Then one says that ˜F ′ is analytically
componentwise equivalent to ˜F up to first order if J 1(ωi, ji ) = J 1(ω′

i, ji
) (i.e. if they

have the same linear part) for all i = 1, . . . , k and ji = 1, . . . , ni . The set ofQHS f

foliations analytically componentwise equivalent up to first order to (F : ω = 0) is
denoted by QHSc,1

ω, f .
Finally, denote the set of QHS (respect. QHS f ) foliations analytically compo-

nentwise equivalent to (F : ω = 0) by QHSc
ω (respect. QHSc

ω, f ).
We determine now the moduli space QHSc,1

ω /QHSc
ω . The following result is a

straightforward consequence of Proposition 7.1.

Proposition 8.1 Let F and F ′ belonging to the same equivalence class in QHSc,1
ω .

Then they belong to the same equivalence class inQHSc
ω if and only if their projective

holonomies are analytically conjugate.

Given two germs of foliations in QHSc
ω , we want to verify under what condi-

tions they are in fact globally holomorphically conjugate. For this sake, we need the
following realization data.

Definition 8.1 A complex surface is called resolution-like if it is obtained by a
holomorphic pasting of Hopf bundles with negative Chern classes, in such a way
that the union of their zero sections become a tree of projective lines isomorphic to
the exceptional divisor of a composition of a finite numbers of blowups applied to
(C2, 0).

Clearly, this definition is given in such a way that every resolution surface of
some singularity is automatically resolution-like. In fact, any resolution-like surface
is biholomorphic to the resolution surface of some singularity as shown in

Proposition 8.2 ([12]) Let M be a resolution-like surface with tree of projective
lines D. Then (M, D) can be realized as a neighborhood of the exceptional divisor
of a composition of a finite number of blowups applied to (C2, 0).

In order to prove this proposition, we need the following results about complex
line bundles.

Theorem 8.3 (Grauert [18]) Let S be a complex surface and C ⊂ S be a ratio-
nal curve with negative self-intersection number. Then there are neighborhoods U
and V of C, respectively in S and N (C; S) (the normal bundle of C in S), and a
biholomorphism � : U → V sending C in the zero section of N (C; S).

Theorem 8.4 (Grothendieck [19]) Two complex line bundles over the Riemann
sphere have the same Chern class if and only if they are biholomorphic.

Proof of Proposition 8.2 The proof is performed by induction on the number of pro-
jective lines in the chain. If the chain is composed by just one projective line, the
result follows immediately from the theorems of Grauert and Grothendieck. Sup-
pose the result is true for all chains composed by n ≥ 1 projective lines and let
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D have n + 1 projective lines. From the hypothesis, D has a projective line with
self intersection −1, namely C1. Now consider a projective line C2 intersecting C1

with self-intersection number −k, k ≥ 2. Applying Grauert’s and Grothendieck’s
theorems, we obtain that a neighborhood of each curve is biholomorphic to a neigh-
borhood of the zero section of the Hopf bundle with Chern classes given by their
self-intersection numbers. Thus we can blow down a neighborhood of the curve C1

obtaining yet an analytic surface defined in a neighborhood of a Riemann sphere,
say π(C2) — where π stands for the blow down. Since π(C2) is smooth, it is well
known that its self-intersection number is −k − 1 (cf. e.g. [23, 24, 30]). The result
now follows from the induction hypothesis. �

Remark 8.2 Although the resolutions of two foliations inQHSc
ω are not necessarily

defined in the same ambient surface, they all can be modeled by (F : ω = 0) in
the sense that they are analytically componentwise equivalent to ˜F . Anyway, the
ambient surfaces of their resolutions will be automatically equivalent whenever they
have equivalent cocycles (definition found below).

8.2 Analytic Cocycles

We construct some cocycles associated with analytically componentwise equivalent
foliations. In some sense, these cocycles measure how far two analytically compo-
nentwise equivalent foliations are from being analytically equivalent.

Let Fo ∈ QHS, ˜Fo its minimal resolution, and Mo = M
˜Fo the ambient surface,

where ˜Fo is defined. Let Pseudo(Mo) denote the pseudogroup of transformations
of Mo and Aut(˜Fo) denote its subset given by those φ ∈ Pseudo(Mo) satisfying the
following properties:

(a) φ : U −→ φ(U ) preserves the Hopf components of the exceptional divisor, i.e.
φ(U ∩ D j ) = φ(U )∩ D j ;

(b) φ fixes the singularities of ˜Fo, i.e. φ|Sing( ˜Fo) = id|Sing( ˜Fo);

(c) φ preserves the leaves of ˜Fo
j , i.e. φ

∗(˜Fo
j |φ(U )) = ˜Fo

j |U .
At this point some comments about the above definition are worthwhile. First,

notice that all conditions can be verified explicitly. The first two are quite obvious
and the third can be achieved with the aid of the path lifting procedure. In fact,
choose a section � transversal to D j and pick an element ψ : φ(�) −→ � of the
classical holonomy pseudogroup of ˜Fo

j |U with respect to D j . Since the holonomy

characterizes ˜Fo
j |U (cf. Proposition7.1, [26, 28]), it is enough to verify that ψ ◦ φ ∈

Diff(�) commutes with the generators of Hol�(˜Fo
j |U , D j ). Moreover, note that we

decided to deal with just local and semilocal leaves (i.e. those determined by the
holonomies of ˜Fo

j |U ) avoiding, for the time being, questions related to Dulac maps
(cf. [10, 11]) that are very difficult to handle concretely in the global sense. This task
will be performed by the pasting cocycles we define next.



476 L. M. Câmara and B. Scárdua

Definition 8.2 Let (F : ω = 0) be a germ of foliation at (C2, 0). Then the set

Aut(F) = {φ ∈ Diff(C2, 0) : φ∗ω ∧ ω = 0}

is called group of automorphisms of F . Besides, if f : (M, S) → S is a fibration
transversal to F , then Aut(F , f ) denote the subgroup determined by elements of
Aut(F) preserving f .

Let (F : ω = 0) be a non dicritical generalized curve foliation and pick Fo ana-
lytically componentwise equivalent to F . Consider a resolution ˜Fo of Fo such that
Sep(˜Fo

j ) consists of fibers of a fibration f j : (H j , D j ) −→ D j transversal to ˜Fo
j

(the existence of such a resolution, called rectifier, is proved in [12], Proposition 1,
p. 4). Then Fo is called a fixed model for F and a map � j ∈ Diff(˜F j , ˜Fo

j ) is called

a projective chart for ˜F with respect to ˜Fo. From what we have done before, it is
straightforward that:

Lemma 8.5 For each ˜F j = ˜F |(H j ,D j ) and each fixed model component ˜Fo
j , there

exists only one projective chart up to left composition with an element of Aut(˜Fo
j ).

Let D = ∪D j be the exceptional divisor of ˜Fo. One says that U := ∪U j is a good
covering for D if each U j is a simply-connected neighborhood of D j ⊂ H j and
each intersection Ui ∩ U j is simply-connected. For each good covering U and each
foliation F one can associate a cocycle �(F) := (�i, j ) given by �i, j := �i ◦ �−1

j ,

where each �i is a projective chart for ˜F with respect to ˜Fo. Note that (�i, j ) does
not depend neither on the fixed models nor on the chosen (good) covering up to
analytical componentwise equivalence.

Proposition 8.6 Two analytically componentwise equivalent non dicritical general-
ized curve foliationsF andG are analytically equivalent if and only if �(F) = �(G).

Proof Let �(F)= (�1 ◦ �−1
2 , · · · ,�k−1 ◦ �−1

k ) and �(G)= (�1 ◦ �−1
2 , · · · ,

�k−1 ◦ �−1
k ). First, let us verify the necessary part. Suppose H is a global conjuga-

tion between F and G, i.e. H∗(G) = F . From Lemma8.5, there is � j ∈ Aut(˜Fo
j )

such that � j = � j ◦ � j ◦ H . Therefore

� j−1 ◦ �−1
j = � j−1 ◦ � j−1 ◦ H ◦ H−1 ◦ �−1

j ◦ �−1
j

= � j−1 ◦ � j−1 ◦ �−1
j ◦ �−1

j .

Now let us verify the sufficient part. Notice that F and G have the same fixed model.
Hence, if (�1 ◦ �−1

2 , · · · ,�k−1 ◦ �−1
k )= �(F)= �(G)= (�1 ◦ �−1

2 , · · · , �k−1 ◦
�−1

k ), there is a collection (� j ) ⊂ Aut(˜Fo
j ) such that � j−1 ◦ �−1

j = � j−1 ◦ � j−1 ◦
�−1

j ◦ �−1
j . Therefore

(

� j−1 ◦ � j−1
)−1 ◦ � j−1 = (

� j ◦ � j
)−1 ◦ � j . Thus we can

define a global conjugation between them just by letting H := (

� j ◦ � j
)−1 ◦ � j for

all j = 1, . . . , k. �
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Remark 8.3 It is not difficult to verify that Aut(˜Fo) is itself a pseudogroup of trans-
formations of Mo. Therefore the sheaf of germs of elements of Aut(˜Fo), gener-
ated by inductive limit, is a sheaf of groupoids over the exceptional divisor Do of
˜Fo (cf. [20]). We denote this sheaf by Aut

˜Fo . Consider the first cohomology set
H 1(U ,Aut

˜Fo), and let H 1(D,Aut
˜Fo) be the inductive limit of H 1(U ,Aut

˜Fo) for all
good coverings of D. Then Proposition 8.2 ensures that the map

QHSc
ω

�−→ Z1(D,Aut
˜Fo)

F �→ (�i, j ) := �i ◦ �−1
j

is well defined and onto H 1(D,Aut
˜Fo). Since �(F) does not depend on the fixed

models up to componentwise equivalence class, it determines a characteristic class
for non dicritical generalized curve foliations appearing as obstruction for the global
pasting of analytically componentwise isomorphisms. For the reader not acquainted
with groupoids and the cohomology of their sheaves, we refer to [14, 15, 20].

9 Trivializing Cocycles

In this section we use the algebraic and geometric features of the separatrix set in
order to construct an auxiliary fibration that helps us trivialize the cocycles. For
this sake, we have first to introduce the concept of leaf preserving automorphism.
Besides, we use the geometry of the divisors of both the foliation and the fibration
in order to provide a method for trivializing �(F).

9.1 Quasi-homogeneous Polynomials and Companion
Fibrations

In order to prove Theorem B, we need to perform an accurate geometric analysis of
the interplay between the foliation F and its companion fibration G.

9.1.1 Multivalued First Integrals and the Branches of F

Let F ∈ QHSc
ω, f , where

f (x, y) = μym xn
d

∏

j=1

(y p − λ j x
q), (9.1)
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Fig. 2 The principal
projective line for p �= 1

1 ≤ p < q, m, n ∈ N
∗, gcd(p, q) = 1, and λ j ,μ ∈ C

∗. Then we order the first pro-
jective line to arise in the course of the resolution process with 1, the next one
intersecting it with 2, and so on (see Lemma3.4 and Fig. 2), until we reach the last
projective line in the minimal resolution. The principal projective line is denoted by
Dpr( ˜F), where pr(˜F) denotes the index of the principal projective line in the above
definition. For the sake of simplicity, we set � := pr(˜F) and call the subset of ˜F
given by B+F := ∪ j>�

˜F j (respect. B−F := ∪ j<�
˜F j ) the positive (respect. nega-

tive) branch of ˜F .
Recall from the geometry of the exceptional divisor of ˜F that each ˜F j has only

two singularities given in affine charts (t j , x j ) by a 1-form ω̃ j (t j , x j ) = ν j x j dt j +
μ j t j dx j + · · · , where ν j ,μ j ∈ C

∗, for all j �= pr(˜F).

Remark 9.1 In case F is commode each end of its resolution ˜F has only one sin-
gular point, thus the respective holonomy is trivial. As a consequence, each Hopf
component ˜F j with j �= pr(˜F) admits a holomorphic first integral. Therefore, in this
case the corner singularities of the principal divisor are automatically linearizable.

Now we are in a position to state the following geometric characterization of the
branches of ˜F for a commode or generic foliation F ∈ QHSc

ω, f .

Lemma 9.1 ˜F j is linearizable for each j �= pr(˜F). In particular, it has a mul-
tivalued first integral. More precisely, there is � j ∈ Diff

˜F j , ˜F lin
j

(H j , D j ), where

(˜F lin
j : d ˜f lin

j = 0) is given by the (global) multivalued first integral

{

˜f lin
j (t j , x j ) = t

ν j

j x
μ j

j ,

˜f lin
j (u j , y j ) = u

k j μ j −ν j

j y
μ j

j ,

where ν j ,μ j ∈ C
∗ are non-resonant and −k j is the first Chern class of H j for all

j �= �.

Proof Since F is commode or generic, then the corner singularities of ˜Fpr( ˜F) are
linearizable (cf. [33]). But Lemmas3.4 and 3.5 ensure that ˜F j has at most two
singularities for all j �= pr(˜F), thus both singularities share the same holonomy
with respect to D j . Recall from [26] that a reduced and non-degenerate (i.e. a non
saddle-node) singularity is linearizable if and only if its holonomy is linearizable.
Thus Proposition 7.1 ensures that ˜F j is linearizable whenever one of its singularities
is linearizable. �
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If (x, y) is a system of coordinates about the origin in which Sep(F) assumes
the form (9.1), then it induces canonical affine coordinates for M := ∪n

j=1H j (−k j ),
denoted by

A := {(t j , x j ), (u j , y j ) : u j = 1/t j , y j = t
k j

j x j , y j = t j+1, u j = x j+1}. (9.2)

Now we prove that B+F (respect. B−F) has a multivalued first integral and describe
its feature in this system of coordinates. LetDr denote the disk centered at the origin
with radius r .

Lemma 9.2 B+F (respect. B−F) has a multivalued first integral denoted by ˜f+
(respect. ˜f−). More precisely, ˜f+ (respect. ˜f−) is given in the system of coordinates
A by ˜f+ = ˜f j , where

{

˜f j (t j , x j ) = t
ν j

j x
μ j

j U j (t j , x j ),

˜f j (u j , y j ) = u
k j μ j −ν j

j y
μ j

j Vj (u j , y j ),

with U j , Vj ∈ O∗(D1+ε × Dε) for some ε > 0 and all j = 1, . . . , � − 1 (respect.
j = � + 1, . . . , n − 1).

Proof We prove the statement for the positive branch case, the other one being com-
pletely analogous. Pick��+1 ∈ Diff

˜F�+1, ˜F lin
�+1

(H�+1, D�+1) and let ˜f�+1 := �∗
�+1

˜f lin
�+1.

Let p be a regular point of D�+2 near the corner c�+1,�+2 := D�+1 ∩ D�+2 and �p

be the fiber of H�+2 over p. Recall that ��+1 induces a bijective map between the
spaces of leaves of ˜F�+1 and ˜F lin

�+1 which can be realized as φ�+2 ∈ Diff(�p, p). In
particular, φ�+2 takes Hol�p (

˜F�+2, D�+2) in Hol�p (
˜F lin

�+2, D�+2). Since ˜F�+2 has just
two singularities, then Proposition 7.1 ensures that one can extend φ�+2 to ��+2 ∈
Diff

˜F�+2, ˜F lin
�+2

(H�+2, D�+2) by classical path lifting arguments along the fibers ofH�+2

(just use the same arguments in the proof of Lemma9.1). Now recall that ˜F�+1,�+2 is
the germ of the foliation at the corner c�+1,�+2 induced by ˜F . Since ��+1 and ��+2

induce the same bijectivemap between the spaces of leaves of ˜F�+1,�+2 and ˜F lin
�+1,�+2,

then��+2 ◦ �−1
�+1 fixes the leaves of ˜F lin

�+1,�+2. Therefore, if we set ˜f�+2 := �∗
�+2

˜f lin
�+2,

then ˜f�+2 = ˜f�+1 about c�+1,�+2. Proceeding by induction on j > � we obtain a
multivalued first integral for B+ ˜F . Finally, let us verify that ˜f+ has the desired
form. Since ˜f lin

j (t j , x j ) = t
ν j

j x
μ j

j and � j is of the form � j (t j , x j ) = (t j ,α j x j +
x j a j (t j , x j )), with α j ∈ C

∗ and a j ∈ m2 (where m2 denotes the maximal ideal of
O2), then a straightforward calculation shows that ˜f j (t j , x j ) = t

ν j

j x
μ j

j U j (t j , x j ),
where U j (t j , x j ) = [α j + a j (t j , x j )]μ j ∈ O∗(D1+ε × Dε) for some ε > 0. Simi-

larly ˜f lin
j (u j , y j ) = u

k j μ j −ν j

j y
μ j

j and � j (u j , y j ) = (u j ,β j y j + y j b j (u j , y j )), with

β j ∈ C
∗ andb j ∈ m2. Thus ˜f j (u j , y j ) = u

k j μ j −ν j

j y
μ j

j Vj (u j , y j ),whereVj (u j , y j ) =
[β j + b j (u j , y j )]μ j ∈ O∗(D1+ε × Dε) for some ε > 0. �
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9.1.2 Holomorphic First Integrals and the Geometry of Sing(G)

The arguments used in the proof of Lemma3.4 ensure that F is resolved together
with any “generic” fiber of the companion fibration y p

xq ≡ const, i.e. (G : η = 0)
given by η(x, y) = pxdy − qydx . In other words, F and G are resolved by the
same sequence of blowups. In particular, the minimal resolution of G has the same
tree of projective lines of the minimal resolution of any element of QHSc,1

ω, f and

contains its separatrices as fibers. Furthermore, for each j �= pr(˜F) the foliation ˜G j

has a (global) holomorphic first integral of the form

{

η̃(t j , x j ) = d(t
r j

j x
s j

j ),

η̃(u j , y j ) = d(u
k j s j −r j

j y
s j

j ),

where r j , s j ∈ N are relatively prime. Since ˜Gpr( ˜F) is a radial fibration, then ˜Gpr( ˜F)−1
has just one singularity (cf. Fig. 3).More precisely, the corners of the principal divisor
are regular points of ˜G.

9.1.3 Comparing the Indexes of F and G

First, recall the smooth version of the celebrated Camacho–Sad’s index theorem. Let
S be a complex surface,C ⊂ S a smooth analytic curve, andF a germof singular foli-
ation defined in a neighborhood ofC with just isolated singularities. For each singular
point p ofF in S, theCamacho–Sad’s index is defined as follows: choose local coordi-
nates for S around p such thatC is given by (y = 0). LetF be given byω = 0, where
ω(x, y) = a(x, y)dx + b(x, y)dy. Then C Sp(F , S) = Resx=0

∂
∂y ( a

b (x, y)|y=0)dx .
In particular, if ω(x, y) = μy(1 + · · · )dx + νx(1 + · · · )dy, where μ, ν �= 0, then
C S0(F , S) = μ

ν
. A straightforward calculation shows that this index does not depend

on the coordinates.

Theorem 9.3 (Camacho–Sad [5]) Let S be a complex surface, C ⊂ M a smooth
analytic curve, and F a germ of singular foliation defined in a neighborhood of S
with just isolated singularities. Then

∑

p∈Sing(F)

C Sp(F , S) = C · C

Fig. 3 The resolution tree of G : ( x p

yq = const.)
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where C · C is the self-intersection number of C in S.

As mentioned above, the resolution of the companion fibration G is regular at the
corners of the principal divisor Dpr( ˜F). Therefore, comparing the Camacho–Sad’s
indices of ˜F j and ˜G j (going from pr(˜F) − 1 to 1 and from pr(˜F) + 1 to n), we
conclude form the Camacho–Sad’s index theorem that

ν j s j − μ j r j �= 0 for all j �= pr(˜F). (9.3)

Remark 9.2 If Sep(F) is commode, then F is automatically generic. In fact,
Lemma3.4 ensures that any Hopf components of ˜F about an end of D has just
one singularity. Therefore, with arguments similar to that used for G, one can verify
that each Hopf component ˜F j has linear and periodic holonomy for all j �= pr(˜F).
Thus it is linearizable and has a holomorphic first integral (cf. [26]).

9.2 Cocycles Fixing the Leaves of F and G

In this section we show how to trivialize �(F) and prove Theorem B.

9.2.1 Fixing Leaves Locally

We first introduce some notation in order to clarify the ideas. Let F be a germ of
reduced singular foliation at (C2, 0). Since it is characterized by its (local) holonomy
group (cf. [26, 28]), then given a smooth fibration f it is classical to identify the
space of leaves of F with the the quotient of (C2, 0) by the action of the unique
fibre preserving suspension of this holonomy in Aut(F , f ). Therefore, we say that
φ ∈ Aut(F) fixes the leaves of F if its action in the space of leaves of F is trivial.
We denote the set of such automorphisms by Fix(F). As before, this condition
can be verified explicitly by path lifting arguments. In particular, if U is an open
neighborhood of some point in the exceptional divisor of B+F (respect. B−F) and
φ ∈ Diff(U ), then we say that φ fixes the leaves of B+F (respect. B−F), denoting
it just by φ ∈ Fix(B+F) (respect. B−F), if φ preserves the level sets of the first
integrals introduced in Lemma9.2.

Let QHSω denote the set of QHS foliations that are analytically equivalent to
(Fω : ω = 0), and f = 0 be the separatrix set ofFω . From the discussion in Sect. 8.2,
in order to determine the moduli space QHSc

ω, f /QHSω , we have to pick a fixed
modelFo ∈QHSc

ω, f and a collection of projective charts (� j ) for anyF ∈QHSc
ω, f

(with respect to Fo) preserving f = 0. In order to simplify the expression of (� j ),
it is natural to ask it to preserve not just f = 0 but the whole companion fibration G.
On the other hand, it is not difficult to see that the geometry of the exceptional divisor
of F allows us to simplify inductively the transversal structure of �(F) in such a
way that each �i, j fixes (locally) the leaves of F . This, of course, will also simplify
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the expression of�(F). In the next sections we shall see that it is possible to do both
at the same time, simplifying a lot the expression of �(F).

9.2.2 Projective Charts and First Integrals Adapted to a Fixed Model

In each componentwise equivalence class pick a model (Fo : ωo = 0) and fix first
integrals f o+ and f o− for B+Fo and B−Fo as in Lemma9.2.

Now, for any F ∈ QHSc
ωo, f , we shall construct first integrals for B+F and B−F

and a collection of projective charts taking the level sets of the first integral of B+F
(respect. B−F) in the level set of f o+ (respect. f o−). In order to be more precise, let us
first introduce some notions: one says that a collection of projective charts (� j ) for
F ∈ QHSc

ωo, f with respect to Fo and first integrals f+ for B+F and f− for B−F
are adapted to (Fo, f o+, f o−) if each �i takes ( f− = c) in ( f o− = c) and � j takes
( f+ = c) in ( f o+ = c) for all i = 1, . . . , �, j = �, . . . , n, and all c ∈ C sufficiently
close to zero.

Lemma 9.4 For each F ∈ QHSc
ωo, f there is a collection of projective charts (� j )

for F with respect to Fo and first integrals f+ for B+F and f− for B−F adapted
to (Fo, f o+, f o−).

Proof We prove the statement for the positive branch case, the other one being
completely analogous. Pick �� ∈ Diff

˜F�, ˜Fo
�
(H�, D�) and let ˜f�,�+1 := �∗

�
˜f o
�,�+1,

where ˜f o
�,�+1 is the germ of ˜f o

�+1 at the corner c�,�+1 := D� ∩ D�+1. Let p be a
regular point of D�+1 near the corner c�,�+1 and �p be the fiber of H�+1 over p.
Recall that �� induces a bijective map between the spaces of leaves of ˜F�,�+1

and ˜Fo
�,�+1 which can be realized as φ�+1 ∈ Diff(�p, p). In particular, φ�+1 takes

Hol�p (
˜F�,�+1, D�+1) onto Hol�p (

˜Fo
�,�+1, D�+1). Since ˜F�+1 has just two singulari-

ties, then the spaces of leaves of ˜F�,�+1 and ˜F�+1 coincide as the spaces of leaves
of ˜Fo

�,�+1 and ˜Fo
�+1. Therefore Proposition 7.1 ensures that one can extend φ�+1 to

��+1 ∈ Diff
˜F�+1, ˜Fo

�+1
(H�+1, D�+1) along the fibers of H�+1 by classical path lifting

arguments (just use the same arguments in the proof of Lemma9.1). Since �� and
��+1 induce the samebijectivemapbetween the spaces of leaves of ˜F�,�+1 and ˜Fo

�,�+1,
then�� ◦ �−1

�+1 fixes the leaves of ˜Fo
�,�+1. Therefore, if we let ˜f�+1 := �∗

�+1
˜f o
�+1, then

˜f�+1 = ˜f�,�+1 about c�,�+1. Proceeding by induction on j > � + 1 we obtain a mul-
tivalued first integral for B+ ˜F and the collection of projective charts with the desired
properties. �

In order to give a better understanding of the proof of the next lemma, let us
make a brief digression about the simultaneous linearization of two transversal
non-singular foliations. As it is well known, two germs of non-singular holomor-
phic foliations F and G can be simultaneously linearized. In fact the problem
can be easily reduced to the following: given the germs of holomorphic func-
tions f (x, y) = yU (x, y), f o(x, y) = y and g(x, y) = x about the origin, where
U ∈ O∗

2 , find out � ∈ Diff(C2, 0) such that �∗ f o = f and �∗g = g. If we let
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�(x, y) = (a(x, y), b(x, y)), then the problem reduces to the following system of
equations

{

b(x, y) = yU (x, y);
a(x, y) = x .

whose solution is evident. The core of the proof of the following result is analogous
(cf. (9.4)).

Lemma 9.5 For each F ∈ QHSc
ωo, f and each j = 1, . . . , � − 1 (respect. j = � +

1, . . . , n) there is � j ∈ Fix(˜G j ) such that f lin− = � j∗ f− (respect. f lin+ = � j∗ f+).

Proof We prove the result for the positive branch, the negative one being completely
analogous. In view of the second part of Lemma9.2, one just has to find a solution
� j := �−1

j := (a j (t j , x j ), b j (t j , x j )) to the system of equations

{

�∗
j
˜f lin(t j , x j ) = ˜f o(t j , x j )

�∗
j g̃(t j , x j ) = g̃(t j , x j )

⇔
{

a j (t j , x j )
ν j b j (t j , x j ) j

μ j = t
ν j

j x
μ j

j U (t j , x j )

a j (t j , x j )
r j b j (t j , x j )

s j = t
r j

j x
s j

j
(9.4)

But this can be given in the affine charts (t j , x j ) by

⎧

⎨

⎩

a j (t j , x j ) = t j [U (t j , x j )]
s j

ν j s j −μ j r j ,

b j (t j , x j ) = x j [U (t j , x j )]
r j

μ j r j −ν j s j ,

which is well defined by (9.3). A straightforward calculation shows that the expres-
sion of � j in the affine chart (u j , y j ) is given by

� j (u j , y j ) = (u j [V (u j , y j )]
s j

μ j r j −ν j s j , y j [V (u j , y j )]
r j −k j s j

μ j r j −ν j s j )

where V (u j , y j ) := U (1/u j , u
k j

j y j ) ∈ O∗(D1+ε,Dε). �

Remark 9.3 As a straightforward consequence of the above lemma, there is a system
of coordinates ˜A j := {(˜t j , x̃ j ), (̃u j , ỹ j ) ∈ C

2 : ũ j = 1/˜t j , ỹ j =˜t
k j

j x̃ j } for H j (−k j )

such that the first integrals of ˜F j and ˜G j are given respectively by˜t
ν j

j x
μ j

j , ũ
k j μ j −ν j

j ỹ
μ j

1

and˜t
r j

j x̃
s j

j , ũ
k j s j −r j

j ỹ
s j

j for all j �= �.

Now we enrich a little bit the structure preserved by the cocyles.

Lemma 9.6 Let F ∈ QHSc
ωo, f , then there is a collection of projective charts

(� j ) with respect to Fo such that � j ∈ Fix(˜G j ) for all j = 1, . . . , n, � j ◦ �−1
j+1 ∈

Fix(B+Fo) for all j = �, . . . , n − 1 and � j ◦ �−1
j+1 ∈ Fix(B−Fo) for all

j = 1, . . . , � − 1.

Proof From Lemma9.4 one knows that there is a collection of projective charts (ϒ j )

for F with respect to Fo and first integrals f+ for B+F and f− for B−F adapted
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to (Fo, f o+, f o−), where ϒ� ∈ Fix(G�); thus we let �� := ϒ�. Now we construct
� j for j �= �. From Lemma9.5 there are � j , � j ∈ Diff

˜F j , ˜F lin
j

(H j , D j ) such that

� j∗( f+) = f lin+ (respect. � j∗( f−) = f lin− ), � j∗( f o+) = f lin+ (respect. � j∗( f o−) =
f lin− ) and � j , � j ∈ Fix(G j ). Then define � j := �−1

j ◦ � j in order to obtain the
following commutative diagram

˜F j
� j ↙ � ↘� j

˜Fo
j

� j−→ ˜F lin
j

(9.5)

�

9.2.3 Trivializing Cocycles

Here we follow the program outlined in Sect. 9.2.1 in order to trivialize the cocycles
associated with a given fixed model. Recall that f o+ (respect. f o−) is the multivalued
first integral for B+Fo (respect. B−Fo).

Lemma 9.7 Let � j, j+1 ∈ Fix(˜F lin
j, j+1) ∩ Fix(˜G j, j+1) for j = 1, . . . , n − 1. Then

� j, j+1 has a unique extension to � j+1 ∈ Fix(˜F lin
j+1) ∩ Fix(˜G j+1) for all j ≥ �. Anal-

ogously, � j, j+1 has a unique extension to � j ∈ Fix(˜F lin
j ) ∩ Fix(˜G j ) for all j < �.

Proof We prove the first part of the Lemma, the second one being completely anal-
ogous. We adopt the coordinate systemA introduced in (9.2). Notice that the corner
c j, j+1 = D j ∩ D j+1 is represented by the origin in the affine chart (t j+1, x j+1) for
H j+1, thus � j, j+1(t j+1, x j+1) = (a j+1(t j+1, x j+1), b j+1(t j+1, x j+1)), where a j+1,

b j+1 ∈ O(Dε1 × Dε2). Since� j, j+1 ∈ Fix(˜F lin
j, j+1) ∩ Fix(˜G j, j+1), then (denoting i :=

j + 1 for simplicity) ai and bi satisfy the following system of equations

{

ai (ti , xi )
νi bi (ti , xi )

μi = tνi
i xμi

i

ai (ti , xi )
ri bi (ti , xi )

si = tri
i xsi

i

whose solutions are of the form ai (ti , xi ) = αti and bi (ti , xi ) = βxi , where α, 1
β
are

(νi si − μi ri )-roots of unity. The uniqueness is straightforward since both� j, j+1 and
its extension � j+1 are holomorphic. �

Now we are in a position to show that the cocycles generated by generic elements
of QHSc

ωo, f are in fact trivial.

Lemma 9.8 Let � j, j+1 ∈ Fix(˜Fo
j, j+1) ∩ Fix(˜G j, j+1) for j = 1, . . . , n − 1. Then

� j, j+1 has a unique extension to � j+1 ∈ Fix(˜Fo
j+1) ∩ Fix(˜G j+1) for all j ≥ �. Anal-

ogously, � j, j+1 has a unique extension to � j ∈ Fix(˜Fo
j ) ∩ Fix(˜G j ) for all j < �.
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Proof We prove the first part of the Lemma, since the second one is completely
analogous. Let (� j ) ∈ Fix(˜G j ), j = 1, . . . , n, be the collection of maps intro-
duced in Lemma9.5 and� j, j+1 := � j+1 ◦ � j, j+1 ◦ (� j+1)

−1. Since� j∗ f o+ = f lin+ ,
then � j, j+1 ∈ Fix(˜F lin

j, j+1) ∩ Fix(˜G j, j+1) for all j = �, . . . , n − 1 (cf. (9.5)). Hence

Lemma9.7 assures that� j, j+1 can be extended to� j+1 ∈ Fix(˜F lin
j+1) ∩ Fix(˜G j+1) for

all j = �, . . . , n − 1. Therefore, � j+1 := (� j+1)
−1 ◦ � j+1 ◦ � j+1 ∈ Fix(˜Fo

j+1) ∩
Fix(˜G j+1) extends � j, j+1. A similar reasoning works for all j < �. �

9.2.4 Extending Semi-local Conjugations

Here we use all the machinery developed above in order to prove Theorem B. In fact,
we show that the vanishing of the cocycles in the positive (respect. negative) branch
means that we can extend to the positive (respect. negative) branch any conjugation
from ˜F� to ˜Fo

� .

Proof of Theorem B Let Fo ∈ QHSc
ωo, f , where (Fo : ωo = 0) is a fixed model. Let

(� j ) be a collection of projective charts given by Lemma9.6 and �i, j := �i ◦ �−1
j .

Then Lemma9.8 ensures that there is ��+1 ∈ Fix(˜Fo
�+1) ∩ Fix(˜G�+1) such that

��+1 = ��,�+1. Let (�
(1)
j ) be given by �

(1)
j := � j for all j �= � + 1 and �

(1)
�+1 :=

��+1 ◦ ��+1. Then (�
(1)
j ) is a collection of projective charts such that �

(1)
j, j+1 ∈

Fix(˜Fo
j, j+1) ∩ Fix(˜G j, j+1) and �

(1)
�,�+1 = id. Repeating inductively the same argu-

ments for j > � + 1 we obtain a collection of projective charts (�
(n−�)
j ) such that

�
(n−�)
j, j+1 ∈ Fix(˜Fo

j, j+1) ∩ Fix(˜G j, j+1) for all j = 1, . . . , n − 1 and �
(n−�)
j, j+1 = id for all

j ≥ �. An analogous reasoningworks for all j < �, generating a collection of projec-
tive charts (�

(n−1)
j ) such that�(n−1)

j, j+1 = id for all j = 1, . . . , n − 1. In particular, this

family paste together in order to define a map� ∈ Diff(M, D) such that�∗ ˜F = ˜Fo,
as desired. �
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On the Roots of an Extended Lens Equation
and an Application

Mutsuo Oka

Abstract We consider zero points of a generalized Lens equation L(z, z̄) = z̄m −
p(z)/q(z) and also harmonically splitting Lens type equation Lhs(z, z̄) = r(z̄) −
p(z)/q(z) with deg q(z) = n, deg p(z) ≤ n whose numerator is a mixed polyno-
mials, say f (z, z̄), of degree (n + m; n,m). To such a polynomial, we associate a
strongly mixed weighted homogeneous polynomial F(z, z̄) of two variables and we
show the topology of Milnor fibration of F is described by the number of roots of
f (z, z̄) = 0.
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1 Introduction

Consider a mixed polynomial of one variable f (z, z̄) = ∑
ν,μ aν,μzν z̄μ. We denote

the set of roots of f by V ( f ). Assume that z = α is an isolated zero of f = 0.
Put f (z, z̄) = g(x, y) + ih(x, y) with z = x + iy. A root α is called simple if the
Jacobian J (g, h) is not vanishing at z = α. We call α an orientation preserving or
positive root (respectively orientation reversing, or negative), if the Jacobian J (g, h)

is positive (resp. negative) at z = α. There are two basic questions.

(1) Determine the number of roots with sign.
(2) Determine the number of roots without sign.
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1.1 Number of Roots with Sign

Let C be a mixed projective curve of polar degree d defined by a strongly mixed
homogeneous polynomial F(z, z̄), z = (z1, z2, z3) of radial degree dr = d + 2s and
let L = {z3 = 0} be a line in P

2. Recall that F(z, z̄) is strongly mixed weighted
homogeneous if it is polar and radial weighted homogeneous with respect to the
same weight vector [9]. We assume that L intersects C transversely.

Proposition 1 (Theorem4.1, [9])With the hypothesis above, the fundamental class
[C] is mapped to d[P1] and thus the intersection number [C] · [L] is given by d. This
is also given by the number of the roots of F(z1, z2, 0) = 0 in P1 counted with sign.

We assume that the point at infinity z2 = 0 is not in the intersectionC ∩ L and use
the affine coordinate z = z1/z2. Then C ∩ L is described by the roots of the mixed
polynomial f (z) := F(z, 1, 0) which is written as

f (z) = zd+s z̄s + (lower terms) = 0

with respect to the mixed degree. The second term is a linear combination of mono-
mials za z̄b with a + b < d + 2s, a ≤ d + s, b ≤ s.

Generic mixed polynomials do not come from mixed projective curves through a
holomorphic line section as above. The following is useful to compute the number
of zeros with sign of such polynomials. Let f (z, z̄) be a given mixed polynomial of
one variable, we consider the filtration by the degree:

f (z, z̄) = fd(z, z̄) + fd−1(z, z̄) + · · · + f0(z, z̄).

Here f�(z, z̄) := ∑
ν+μ=� cν,μzν z̄μ. Note that we have a unique factorization of fd

as follows.

fd(z, z̄) = cz p z̄q
∏s

j=1(z + γ j z̄)ν j ,

p + q + ∑s
j=1 ν j = d, c ∈ C

∗.

where γ1, . . . , γs are mutually distinct non-zero complex numbers. We say that
f (z, z̄) is admissible at infinity if |γ j | �= 1 for j = 1, . . . , s. For non-zero complex
number ξ, we put

ε(ξ) =
{
1 |ξ| < 1

−1 |ξ| > 1

and we consider the following integer:

β( f ) := p − q +
s∑

j=1

ε(γ j )ν j ,

The following equality holds.
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Theorem 2 ([10])Assume that f (z, z̄) is an admissible mixed polynomial at infinity.
Then the total number of roots with sign is equal to β( f ).

Remark 3 Here if α is a non-simple root, we count the number with multiplicity.
The multiplicity is defined by the local rotation number at α of the normalized Gauss
mapping Sε(α) → S1, z �→ f (z)/| f (z)|.

1.2 Number of Roots Ignoring the Sign

In this paper, we are interested in the total number of V ( f )which we denote by ρ( f ),
the cardinality of �V ( f ) for particular classes of mixed polynomials ignoring the
sign. The notion of the multiplicity is not well defined for a root without sign. Thus
we assume that roots are all simple. The problem is that ρ( f ) is not described by the
highest degree part fd , which was the case for the number of roots with sign β( f ).
We will give an example of mixed polynomial below ρ( f ) = n2. Another example
is known by Wilmshurst [13].

Example 4 Let us consider the Chebycheff polynomial Tn(x). It has two critical
values 1 and −1 and the roots of Tn(x) = 0 are in the interval (−1, 1). Consider a
polynomial

F(x, y) = (y − Tn(x) + i(x − aTn(by)), a, b 	 1.

By the assumption a, b 	 1, F = 0 has n2 roots in (−1, 1) × (−1, 1). Consider
F as a mixed polynomial by substituting x, y by x = (z + z̄)/2, y = −i(z − z̄)/2.
This example gives an extreme case for which the possible complex roots (by Bezout
theorem) of 
F = �F = 0 are all real roots (Fig. 1).

Fig. 1 Roots of F(x, y) =
0, n = 5, a = 3/2, b = 2
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The above example shows implicitly that the behavior of the number of roots
without sign behaves very violently if we do not assume any assumption on f .

Consider a mixed polynomial of one variable f (z, z̄) = ∑
ν,μ aν,μzν z̄μ. Put

degz f := max{ν | aν,μ �= 0}
degz̄ f := max{μ | aν,μ �= 0}
deg f := max{μ + ν | aν,μ �= 0}

Wecall degz f, degz̄ f, deg f the holomorphic degree, the anti-holomorphic degree
and the mixed degree of f respectively. We consider the following subclasses of
mixed polynomials:

L(n + m; n,m) := {z̄mq(z) − p(z) | degz q(z) = n, degz p(z) ≤ n},
Lhs(n + m; n,m) := {r(z̄)q(z) − p(z) | degz̄ r(z̄) = m,

degz q(z) = n, degz p(z) ≤ n},
M(n + m; n,m) := { f (z, z̄) | deg f = n + m, degz f = n, degz̄ f = m}.

where p(z), q(z) ∈ C[z], r(z̄) ∈ C[z̄]. We have canonical inclusions:

L(n + m; n,m) ⊂ Lhs(n + m; n,m) ⊂ M(n + m; n,m).

The class L(n + m; n,m), Lhs(n + m; n,m) come from harmonic functions

z̄m − p(z)

q(z)
, r(z̄) − p(z)

q(z)

as their numerators. Especially L(n + 1; n, 1) corresponds to the lens equation. We
call z̄m − p(z)

q(z) = 0 a generalized lens equation and r(z̄) − p(z)
q(z) = 0 a harmonically

splitting lens type equation respectively. The corresponding numerators are called
a generalized lens polynomial and a harmonically splitting lens type polynomial
respectively. The polynomials which attracted us in this paper are these classes. We
thank to A. Galligo for sending us their paper where we learned this problem [3].

1.3 Lens Equation

The following equation is known as the lens equation.

L(z, z̄) = z̄ −
n∑

i=1

σi

z − αi
= 0, σi ,αi ∈ C

∗. (1)
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We identify the left side rational function with the mixed polynomial given by its
numerator

L(z, z̄)
n∏

i=1

(z − αi ) ∈ M(n + 1; n, 1).

throughout this paper. The real and imaginary part of this polynomial are polynomi-
als of x, y of degree n + 1. Unlike the previous example, ρ( f ) is much more smaller
than (n + 1)2. This type of equation is studied by astrophysicists. For more expla-
nation from astrophysical viewpoint, see for example Petters–Werner [11]. The lens
equation can be written as

L(z, z̄) := z̄ − ϕ(z), ϕ(z) = p(z)

q(z)
�= 0, (2)

deg p(z) ≤ n, deg q(z) = n.

A slightly simpler equation is

L ′(z, z̄) := z̄ − p(z), degz p = n. (3)

Both equations are studied using complex dynamics. Consider the function

r : P1 → P
1 defined r(z) = ϕ(ϕ(z)). It is easy to see that r is a rational mapping of

degree n2. Observe that if z is a root of L(z) = 0, then z is a fixed point of r(z), that
is z = r(z). It is known that

Proposition 5 The number of zeros ρ(L ′) of L ′, is bounded by 3n − 2 Khavinson–
Światȩk [5] and the number of zeros ρ(L) of L is bounded by 5n − 5 by Khavinson–
Neumann [4].

Bleher–Homma–Ji–Roeder have determined the exact range of ρ(L):

Theorem 6 (Theorem1.2, [2]) Suppose that the lens equation has only simple so-
lutions. Then the set of possible numbers of solutions is equal to

{n − 1 + 2k | 0 ≤ k ≤ 2n − 2} = {n − 1, n + 1, . . . , 5n − 7, 5n − 5}.

The estimation in Proposition5 are optimal. Rhie gave an explicit example of
f which satisfies ρ( f ) = 5n − 5 (See Rhie [12], Bleher–Homma–Ji–Roeder [2],
and also Theorem21 below). Thus the inequality ρ( f ) ≤ 5(n − 1) is optimal. The
minimum of ρ is n − 1 and it can be obtained for example by z̄zn − 1.

In the proof of Proposition5, the following principle in complex dynamics plays
a key role.

Lemma 7 Let r be an rational function on P
1. If z0 is an attracting or rationally

neutral fixed point, then z0 attracts some critical point of r .
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Elkadi and Galligo studied this problem from computational point of view to
construct such a mixed polynomial explicitly and proposed the similar problem for
generalized lens polynomials L(n + m; n,m) [3].

2 Relation of Strongly Polar Weighted Homogeneous
Polynomials and Number of Zeros Without Sign

Consider a strongly mixed weighted homogeneous polynomial F(z, z̄) of two vari-
ables z = (z1, z2) with polar weight P = t (p, q), gcd(p, q) = 1 and let dp, dr be
the polar and radial degrees respectively. See [7, 9] for definition. This is equivalent
to the equality (5) holds. Let

C
∗ × C

2 → C
2, (ρ, (z1, z2)) �→ ρ ◦

P
(z1, z2) := (z1ρ

p, z2ρ
q) (4)

be the associated C
∗-action. Recall that F satisfies the Euler equality:

F(r exp(θi) ◦
P

(z, z̄)) = rdr exp(dpθi)F(z, z̄). (5)

A stronglymixed homogeneous polynomial is the casewhere theweight is the canon-
icalweight1 := t (1, 1). Consider the globalMilnorfibration F : C

2 \ F−1(0) → C
∗

and let M = {z ∈ C
2|F(z, z̄) = 1} be the Milnor fiber.

We assume further that F is convenient. Namely F |z1=0, F |z2=0 are not identically
zero. By the convenience assumption and the strong mixed weighted homogenuity,
we can find some integers n, r such that

dp = npq, dr = (n + 2r)pq

and we can write F(z1, z̄1, z2, z̄2) as a linear combination of monomials zν1
1 zν2

2 z̄μ1
1 z̄μ2

2
where the summation satisfies the equality

(ν1 + μ1)p + (ν2 + μ2)q = dr (ν1 − μ1)p + (ν2 − μ2)q = dp.

In particular, we see that the coefficients of z(n+r)q
1 z̄rq1 and z(n+r)p

2 z̄rp2 are non-zero
and any other monomials satisfies

ν1,μ1 ≡ 0 mod q, ν2,μ2 ≡ 0 mod p.

The monodromy mapping h : M → M is defined by

h : M → M, z �→ exp(2πi/npq) ◦
P
z = (exp(2πi/nq)z1, exp(2πi/np)z2).
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Thus there exists a stronglymixedhomogeneouspolynomialG(w, w̄), w = (w1, w2)

of polar degree n and radial degree (n + 2r) such that

F(z, z̄) = G(zq1 , z̄
q
1 , z

p
2 , z̄ p2 ).

The curve F = 0 is invariant under the C
∗-action given by (4). Let P1(P) be the

weighted projective line which is the quotient space of C2 \ {0} by the action (4). It
has two singular points A = [0, 1] and B = [0, 1] (if p, q ≥ 2) and the complement
U := P

1(P) \ {A, B} is isomorphic toC∗ with coordinate z := zq1/z
p
2 . Note that z is

well defined on z2 �= 0. The zero locus V (F) of F in P
1(P) does not contain A, B

and it is defined on U by the mixed polynomial f (z, z̄) = 0 where f is defined by
the equality:

f (z, z̄) := F(z, z̄)/(z(n+r)p
2 z̄rp2 )

= c zn+r z̄r +
∑

i, j

ai, j z
i z̄ j

where the summation is taken for i ≤ n + r, j ≤ r and i + j < n + 2r and c �= 0
is the coefficient of z(n+r)q

1 z̄rq1 in F . Note also that g(z) = f (z) where

g(w) := G(w1, w̄1, w2, w̄2)/(w
n+r
2 w̄r

2), w = w1/w2.

Thus in these affine coordinates z, w, we have

zqn11 z̄qn21 z pm1
2 z̄ pm2

2 /(z(n+r)p
2 z̄rp2 ) = zn1 z̄n2 ,

w
n1
1 w̄

n2
1 w

m1
2 w̄

m2
2 /(wn+r

2 w̄r
2) = wn1w̄n2

This implies that f (z) = g(z), the number of points of V ( f (z)) and V (g(w)) are
equal in their respective projective spaces and

f = g ∈ M(n + 2r; n + r, r).

The associated C
∗-action to G(w, w̄) is the canonical linear action and we simply

denote it as ρ ◦ w instead of ρ ◦
1
w. Let M(G) be the Milnor fiber of G and let P1

be the usual projective line. The monodromy mapping hG : M(G) → M(G) of G
is given by hG(w) = exp(2πi/n) ◦ w. Then we have a canonical diagram

C
2 ϕq,p−→ C

2

↑ ↑
M

ϕq,p−→ M(G)⏐
⏐
�π

⏐
⏐
�π′

P
1(P) \ V ( f )

ϕ̄q,p−→ P
1 \ V (g)
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π is a Z/dpZ-cyclic covering branched over {A, B},(dp = npq) while π′ is a Z/nZ-
cyclic covering without any branch locus. ϕq,p is defined ϕq,p(z1, z2) = (zq1 , z

p
2 )

which satisfies ϕq,p(ρ ◦
P
z) = ρpq ◦ (zq1 , z

p
2 ), ρ ∈ S1 and thus ϕq,p ◦ h = hG ◦ ϕq,p

as we have

ϕq,p(h(z)) = ϕ((exp(2πi/nq)z1, exp(2πi/np)z2)

= (exp(2πi/n)zq1 , exp(2πi/n)z p2 ) = hG(ϕq,p(z)).

The mapping ϕ̄q,p is canonically induced by ϕq,p and we observe that ϕ̄q,p gives a
bijection of

ϕ̄q,p : P1(P) \ {A, B} → P
1 \ { Ā, B̄}

and it induces an bijection between V ( f ) and V (g). Here Ā = [1 : 0] and
B̄ = [0 : 1]. Recall that by [1, 8], we have

Proposition 8 (1) χ(M(G)) = n(2 − ρ(g)).
(2) χ(M) = −npqρ( f ) + n(p + q).

(3) The links KF := F−1(0) ∩ S3 and KG := G−1(0) ∩ S3 have the same number
of components and it is given by ρ( f ).

Proof The assertion follows from a simple calculation of Euler characteristics. (1)
is an immediate result that M(G)

π′−→P
1 \ V (G) is an n-fold cyclic covering. (2)

follows from the following.

π : M ∩ C
∗2 → P

1(P) \ ({A, B} ∪ V (F))

is an npq-cyclic covering while M ∩ {z1 = 0} and M ∩ {z2 = 0} are np and nq
points respectively. Thus

χ(M) = χ(M ∩ C
∗2) + χ(M ∩ {z1 = 0}) + χ(M ∩ {z2 = 0})

= npq(−ρ( f )) + np + nq

The link components of KF and KG are S1 invariant and the assertion (3) follows
from this observation. �

The correspondence F(z, z̄) �→ f (z) is reversible. Namely we have

Proposition 9 For a given f (z, z̄) ∈ M(n + m; n,m) and any weight vector
P = t (p, q), we can define a strongly mixed weighted homogeneous polynomial
of two variables z = (z1, z2) with weight P by

F(z, z̄) := f (zq1/z
p
2 , z̄q1/z̄

p
2 )z pn2 z̄ pm2 .

The polar degree and the radial degree of F are (n − m)pq and (n + m)pq respec-
tively. The coefficient of znq1 z̄qm1 in F is the same as that of zn z̄m.
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If f has non-zero constant term, F is convenient polynomial. The correspondence

F(z, z̄) �→ f (z, z̄), f (z, z̄) �→ F(z, z̄)

are inverse of the other.

Proof In fact, the monomial zi z̄ j , i + j ≤ n + m, i ≤ n, j ≤ m changes into
zqi1 z̄ jq1 z p(n−i)

2 z̄ p(m− j)
2 . In particular,

zn z̄m �→ zqn1 z̄qm1 , 1 �→ z pn2 z̄ pm2 .

�

It is well-known that theMilnor fibration of a weighted homogeneous polynomial
h(z) ∈ C[z1, . . . , zn] with an isolated singularity at the origin is described by the
weight and the degree by Orlik–Milnor [6]. This assertion is not true for a mixed
weighted homogeneous polynomials.

Let

M̃(n + m; n,m; P), L̃hs(n + m; n,m; P), L̃(n + m; n,m; P)

be the space of strongly mixed weighted homogeneous convenient polynomials of
two variables with weight P = (p, q), gcd(p, q) = 1 and with isolated singular-
ity at the origin which corresponds to M(n + m; n,m), Lhs(n + m; n,m), L(n +
m; n,m) respectively through Propositions8 and 9. For P = (1, 1), we simply write
as

M̃(n + m; n,m), L̃hs(n + m; n,m), L̃(n + m; n,m)

Proposition 10 The moduli spaces M̃(n + m; n,m; P),
L̃hs(n + m; n,m; P), L̃(n + m; n,m; P) are isomorphic to the moduli spaces
M(n + m; n,m), Lhs(n + m; n,m), L(n + m; n,m) respectively.

As the above moduli spaces do not depend on the weight P (up to isomorphism),
we only consider hereafter strongly mixed homogeneous polynomials. Assume that
two polynomials F1, F2 are in a same connected component. Then their Milnor
fibrations, are equivalent. Thus

Corollary 11 Assume that F1, F2 ∈ M̃(n + m; n,m) have different number of link
components ρ( f1), ρ( f2). Then they belongs to different connected components of
M̃(n + m; n,m). In particular, the number of the connected components of M̃(n +
m; n,m) is not smaller than the number of {ρ( f ) | f ∈ M(n + m; n,m)}.
Remark 12 For a fixed number ρ of link components, we do not know if the subspace
of the moduli space with link number ρ is connected or not.
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Example 13 Consider a strongly mixed homogeneous polynomial F of polar degree
1 and radial degree 3. Namely f ∈ M(3; 2, 1). Its possible link components are
1, 3, 5. 1 and 3 are given in Example59, [8]. An example of 5 components are given
by Bleher–Homma–Ji–Roeder [2]. For example, we can take

f (z) = z̄(z2 − 1/2) − z + 1/30

F(z, z̄) = z̄1(z
2
1 − z22/2) − (z1z2 − z22/30)z̄2

3 Extended Lens Equation

3.1 Extended Lens Equation

One of themain purposes of this paper is to study the number of zeros of the following
extended lens equation for a given m ≥ 1 and its perturbation.

L(z, z̄) = z̄m − p(z)

q(z)
, deg q = n, deg p ≤ n.

The corresponding mixed polynomial is in L(n + m; n,m) ⊂ M(n + m; n,m). We
will construct a mixed polynomial for which the example of Rhie is extended. How-
ever a simple generalization of Proposition5 seems not possible. The reason is the
following. Consider the function

ϕ := m

√
p(z)

q(z)

and the composition ψ := ϕ ◦ ϕ. ψ is a locally holomorphic function but the point
is that ϕ and ψ are multi-valued functions, not single valued if m ≥ 2. Thus we do
not know any meaningful upper bound of ρ(L).

3.2 A Symmetric Case

Here is one special case where we can say more. Suppose that m divide n and put
n0 = n/m. Assume that p(z)/q(z) is m-symmetric, in the sense that there exists
polynomials p0(z), q0(z) so that p(z) = p0(zm) and q(z) = q0(zm). We assume that
p0(0) �= 0. In this case, we can consider the lens equation
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L0(z, z̄) := z̄ − ϕ0(z), ϕ0(z) = p0(z)

q0(z)
, (6)

L(z, z̄) := z̄m − ϕ(z), ϕ(z) = p(z)

q(z)
. (7)

As L(z, z̄) = L0(zm, z̄m), there is m : 1 correspondence between the non-zero roots
of L and L0. Thus by Proposition5, we have

ρ(L) = mρ(L0) ≤ m(5n0 − 5) = 5n − 5m.

Corollary 14 Suppose that n = 2m and let f (z, z̄) = z̄ − z−1/30
z2−1/2 as in Example13.

Put f2m(z) = f (zm, z̄m). Then ρ( f2m) = 5m and the corresponding strongly mixed
homogeneous polynomial F2m is contained in L̃(3m; 2m,m).

3.3 Generalization of the Rhie’s Example

Sowewill try to generalize the example of Rhie for the casem ≥ 2without assuming
n ≡ 0 mod m. First we consider the following extended Lens equation:

�n,m(z, z̄) = z̄m − zn−m

zn − an
= 0, n > m > 0, a ∈ R+ (8)

Hereafter by abuse of notation, we also denote the corresponding mixed polynomial
(i.e., the numerator) by the same �n,m(z, z̄). For the study of V (�n,m) \ {0}, we may
consider equivalently the following:

|z|2m − zn

zn − an
= 0. (9)

This can be rewritten as
zn(|z|2m − 1) = |z|2man.

Thus we have

Proposition 15 Take a non-zero root z of �n,m = 0. If a > 0 and z �= 0, then |z| �= 1
and zn is a real number. Thus z2n is a positive real number.

Let us consider the half lines

R+(θ) :={reiθ | r ≥ 0}

and lines Lθ which are the union of two half lines:

Lθ = R+(θ) ∪ R+(θ + π).
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Put

L(n) :=
n−1⋃

j=0

L2π j/n, L(n)′ :=
n−1⋃

j=0

L(2 j+1)π/n

L(2n) :=
2n−1⋃

j=0

R+( jπ/n) = {z ∈ C | z2n ≥ 0}.

Observation 16 (1) If n is odd, L2π j/n = L(2 j+n)π/n and thus L(n) = L(n)′ and
they consists of n lines and L(n) = L(2n).

(2) If n is even, L(n) ∩ L(n)′ = {0}, L(2n) = L(n) ∪ L ′(n) and lines of L(n) and
L(n)′ are doubled. That is, each half line R+(2π j/n) and R+(π(2 j + 1)/n)

appear twice in L(n) and in L(n)′ respectively.

We identify Z/nZ with complex numbers which are nth root of unity and we
consider the canonical action of Z/nZ ⊂ C

∗ on C by multiplication. Thus it is easy
to observe that

Lemma 17 V (�n,m) is a subset of L(2n) and V (�n,m) ∩ L(n) and V (�n,m) ∩ L(n)′
are stable by the action of Z/nZ.

For non-zero real number solutions of (8) are given by the roots of the following
equation:

�n,m(z, z̄) = z2m − zn

zn − an
= 0, z ∈ R

∗. (10)

Equivalently {
zn − an − zn−2m = 0, n > 2m

z2m−n(zn − an) − 1 = 0, n ≤ 2m.

Note that for n odd, V (�n,m) ⊂ L(n) and the generator e2πi/n of Z/nZ acts cyclicly
as

L2π j/n ∩ V (�n,m) �→ L2π( j+1)/n ∩ V (�n,m)

Lπ(2 j+1)/n ∩ V (�n,m) �→ Lπ(2 j+3)/n ∩ V (�n,m)

For n even, V (�n,m) ⊂ L(n) ∪ L(n)′. To consider the roots on L(n)′, we put z =
exp(π(2 j + 1)i/n) ◦ u with u ∈ R

∗. Then by (9) u satisfies

u2m − −un

−un − an
= 0, if u ∈ R. (11)

This is equivalent to

{
un + an − un−2m = 0, n > 2m

u2m−n(un + an) − 1 = 0, n ≤ 2m.
(12)
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3.4 Preliminary Result Before a Bifurcation

The first preliminary result is the following (Lemmas18, 19).

Lemma 18 If n > 2m, for a sufficiently small a > 0, ρ∗(�n,m) = 3n. Here ρ∗( f ) is
the number of roots in C

∗.

Proof The proof is parallel to that of Rhie ([2, 12]. We know that roots are on L(n)

or L(n)′ by Proposition15. Consider non-zero real roots of �n,m(z, z̄) = 0. It satisfies
the equality:

zm − zn−m

zn − an
= 0 ⇐⇒ zn − zn−2m − an = 0, z ∈ R \ {0}. (13)

(1) Assume that n is odd. Then the function w = zn − zn−2m has three real points
on the real axis, (−1, 0), (0, 0), (1, 0) and the graph looks like Fig. 2. As we see in
the Figure, they have one relative maximum α > 0 and one relative minimum −α.
Thus the horizontal line w = an intersects with this graph at three points if an < α.

Thus (13) has three real roots for a sufficiently small a. Now we consider the
action of Z/nZ on V (�n,m), we have 3n solutions on V (�n,m) ∩ L(n).
(2) Assume that n is even. In this case, we have to notice that the action of Z/nZ on
V ( f ) ∩ L(n) is 2 : 1 off the origin.

In this case, the graph of y = tn − tn−2m looks like Fig. 3. Thus for a sufficiently
small a > 0, tn − tn−2m − an = 0 has two real roots. Thus by the above remark,
it gives 2n/2 = n roots on V (�n,m) ∩ L(n). Now we consider the roots on the line
L(2 j+1)π/n , j = 0, . . . , n − 1. Putting z = uζ, ζn = −1 with u being real, from (12),
we get the equality:

− un + un−2m − an = 0. (14)

The graph of y = −tn + tn−2m is the mirror image of Fig. 3 with respect to t-axis.
Thus −tn + tn−2m − an = 0 has 4 real roots. Counting all the roots on the lines in
L(n)′, it gives 4n/2 = 2n roots. Thus altogether, we get 3n roots. �

Now we consider the case 2m ≥ n.

Lemma 19 If 2m ≥ n > m, ρ∗(�n,m) = 2n for a sufficiently small a > 0.

Proof (1a) Assume that 2m > n and n is odd. The equation of the real solutions of
(8) reduces to

z2m−n(zn − an) = 1. (15)

It is easy to see that there are two real solutions (one positive and one negative). See
Fig. 4. Considering other solutions of the argument 2π j/n, j = 0, . . . , n − 1, we get
2n solutions.
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Fig. 2 Graph of
y = tn − tn−2m ,
n = 5,m = 1

Fig. 3 Graph of y =
tn − tn−2m ,n = 4,m = 1

(1b) Assume that 2m > n and n is even. The equation for the real solutions is

z2m−n(zn − an) = 1
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Fig. 4 Graph of
y = z2m−n(zn − an),
n = 5,m = 4, a = 1

Fig. 5 Graph of
y = z2m−n(zn − an),
n = 6,m = 4, a = 1

and it has two real solutions. Thus on the lines L2 jπ/n , 2n/2 = n solutions. See Fig. 5.
On the real lines L(2 j+1)π/n , the equation reduces to

u2m−n(un + an) = 1.

Thus it has 2n/2 = n solutions on these lines and altogether, we gave 2n solutions.
(2) Assume that n = 2m. Then (15) reduces to

z2m − a2m = 1.

This has two real roots on L0 and thus we get 2n/2 = n roots on the lines L(n).
On the lines arg z = (2 j + 1)π/n, putting z = u exp(π/n), the equation is given by
un + an = 1. This has two roots provided a < 1 and thus n roots on L(n)′. Thus
altogether, we get 2n roots. �
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Fig. 6 Graph of
y = z2m−n(zn + an),
n = 6,m = 4, a = 1

4 Bifurcation of the Root and the Main Result

We considered the extended lens equation for a fixed a > 0 as in Lemma18. Note
that z = 0 is a root with multiplicity. We want to change these roots into 2n regular
roots using a small bifurcation.

�ε
n,m := z̄m − zn−m

zn − an
− ε

zm
, ε > 0. (16)

Note that the mixed polynomial, given by the numerator of �ε
n,m (by abuse of the

notation, we denote this numerator also by the same notation) satisfies (Fig. 6)

�ε
n,m ∈ L(n1 + m; n1,m) ⊂ M(n1 + m; n1,m)

where n1 := n + m.

First we observe (16) implies

zn(|z|2m − 1 − ε) = −εan + |z|2man

which implies that z2n is a positive real number as the situation before the bifurcation.
We observe that

Proposition 20 V (�ε
n,m) is also a subset of L(2n) and it is Z/nZ-invariant.

4.1 The Case m Is Not So Big

Assume that n > 2m or n1 > 3m. The following is our main result which generalize
the result of Rhie for the case m = 1.
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Theorem 21 (1) Assume that n > 2m i.e., n1 > 3m.For a sufficiently small positive
ε, ρ(�ε

n,m) = 5(n1 − m).
(2) For the case n = 2m, let f2m be as in Corollary14. Then f2m ∈ L(3m; 2m,m)

and ρ( f2m) = 5m.

Remark 22 For the modified polynomial �ε
2m,m , we have ρ(�ε

2m,m) = 3m.

Proof We prove the assertion for the case n > 2m, the assertion for n = 2m is in
Corollary14. First observe that 3n roots of �n,m are all simple. Put them ξ1, . . . , ξ3n .
Take a small radius r so that the disks Dr (ξ j ), j = 1, . . . , 3n of radius r centered at
ξ j are disjoint each other and they do not contain 0 and the Jacobian of
�n,m,� �n,m

has rank two everywhere on Dr (ξ j ). Then for any sufficiently small ε > 0, there
exists a single simple root in Dr (ξ j ) for �ε

n,m = 0.
First consider the case n being odd. The real root of �ε

n,m = 0 satisfies the equation

z̄m = zn−m

zn − an
+ ε

zm
or (17)

fε := |z|2m(zn − an) − zn − ε(zn − an) = 0. (18)

We consider the possible roots which bifurcate from z = 0. The second equation
(18) is written as

zn|z|2m − zn(1 + ε) − an(|z|2m − ε) = 0 (19)

(z2m − ε) = 0 has two real rootsα0+ > 0 > α0−. Take a sufficiently small s > 0 and
consider the disk B0± centered at α0± of radius sε1/2m so that they do not contain
zero.

Note that |z2m − α0±| ≥ s2mε on ∂B0±. As the other terms of fε (that is, zn|z|2m −
zn(1 + ε)) are of order greater thanor equal to εn/2m � ε. Thus taking ε small enough,
we may assume that fε = 0 has a simple root inside the disk B0+ and B0−.

Here is another slightly better argument.We consider the scale change z = wε1/2m

and put

f̃ε(w) :=1

ε
f (wε1/2m)

= − an(|w|2m − 1) + εn/2mwn|w|2m − ε(n−2m)/2mwn(1 + ε).

In this coordinate, 3n roots ξ j are far from the origin and we see clearly there are
two roots near w = ±1 as long as ε is sufficiently small.

We consider now roots on L(n). By the Z/nZ-invariance, we have also two roots
on each L2π j/n and thus we get 2n simple roots which are bifurcating from z = 0.
Thus altogether, we get 5n = 5(n1 − m) roots.

We consider now the case n being even. Then every root of (19) on arg z = 2 jπ/n
are counted twice. Thus we have n roots on these real line. In this case, there are
also roots on the real lines arg z = (2 j + 1)π/n. In fact, put z = u expπi/n in (19).
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Then the equation in u takes the form:

− un|u|2m + un(1 + ε) − an(|u|2m − ε) = 0 (20)

This has two real roots. Thus we found another 2n/2 = n roots. Therefore there are
2n simple roots which bifurcate from z = 0. Thus we have 5n roots for �ε

n,m in any
case. �

4.2 Rhie’s Equations

Applying Theorem21, we get lens equation with maximal number of zeros 5(n − 1)
in the form:

z̄ = fn(z), fn(z) = zn−2

zn−1 − an−1
+ ε

z
, 0 < ε � a � 1

for n ≥ 4. For example, for n = 4, we can take for example

f4(z) = z2

z3 − 1/5
+ 1/800

z
.

For n = 2, 3, the previous construction does not work and we need a special care. In
fact, we can take fn for n = 2, 3 as follows (Compare with [2]):

f2(z) = z − 1/30

z2 − 1/2
, f3(z) = z2 − 1/1000

z3 − 1/8
.

In Fig. 7, the red curve is �(numerator(z̄ − f3(z)) = 0 and the green curve is
the zero set of 
(numerator(z̄ − f3(z)) = 0. The 10 intersections of green and red
curves are zeros of z̄ − f3(z) = 0. Graph is lifted −1 vertically.

4.3 The Case m Is Big

Assume that 2m ≥ n > m. In this case, we have the following result.

Theorem 23 Assume that 2m ≥ n > m. Then for a sufficiently small ε > 0,
ρ(�ε

n,m) ≥ 3n = 3(n1 − m).

Proof We have shown in Lemma19 that �n,m has 2n simple roots. Thus we need to
show under the bifurcation equation �ε

n,m , we get n further roots.
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Fig. 7 Graph of f3

z̄m − zn−m

zn − an
− ε

zm
= 0

is equivalent to

|z|2m(zn − an) − zn − ε(zn − an) = 0 or (21)

|z|2m(zn − an) − zn(1 + ε) + anε = 0 (22)

(I-1) We first consider the case 2m > n and n is odd. −zn(1 + ε) + anε = 0 has
one positive root z = β = a n

√
ε/(1 + ε). By a similar argument as in the previous

section, (22) has a simple root near β. Thus by the Z/nZ-action stability, we have n
simple bifurcating roots and altogether, we have 2n + n = 3n simple roots.
(I-2) Assume that 2m > n and n is even.−zn(1 + ε) + anε = 0 has one positive and
one negative roots. Then by the stability (22) has 2n/2 = n simple roots. To see the
roots on L(n)′, put z = u exp(iπ/n). Then (22) is reduced to

|u|2m(−un − an) + un(1 + ε) + anε = 0

We see this has no real root. Thus altogether, we have 3(n1 − m) roots.
(II) Assume that n = 2m. Then (22) can be written as

|z|2mz2m − z2m(a2m + 1 + ε) + a2mε = 0 (23)
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if z real. This has two real roots and adding all roots in the lines of L(n), we get
2n/2 = n roots.

Consider other roots on L(n)′. Thenwe canwrite z = uζ with ζn = −1 and u ∈ R

and
−|u|2mu2m + u2m(1 − a2m + ε) + a2mε = 0.

This has no zeros near the origin, as we have assumed 0 < a < 1 to have 2n zeros in
�n,m = 0. Thus the above bifurcation equation has no real root. Thus altogether we
conclude ρ(�ε

n,m) = 3n = 3(n1 − m). �

4.4 Application

4.4.1 Lhs(n+ m; n,m)

The space of harmonically splittingLens type polynomials apparently can take bigger
number of zeros than generalized lens polynomials. To show this, we start from
arbitrary lens equation

�n(z) :=z̄ − p(z)

q(z)
, degz q = n, degz p ≤ n,

Put k = ρ(�n). We assume that 0 is not a root of �n for simplicity and q(z) has
coefficient 1 for zn . We consider its small perturbation in Lhs(n + m; n,m):

φt (z) := −t z̄m + �n(z) = −t z̄m + z̄ − p(z)

q(z)
, 1 	 t > 0.

We assert

Theorem 24 For sufficiently small t > 0, ρ(φt ) = k + m − 1.

Proof As before, we identify φt , �n with their numerators. For sufficiently small t
and for each zero root α of �n , there exists a zero α′ of φt in a neighborhood of α
which has the same orientation as α. For t �= 0, we know that β(φt ) = n − m and
β(�n) = n − 1. Here β( f ) is the number of zeros of f with sign. See Theorem2. By
the assumption, �n has k zeros, say α1, . . . ,αk and β(�n) = n − 1. First we choose
a positive number R so that 1/R < |α j | < R for j = 1, . . . , 5n − 5. Thus it is clear
that φt has k zeros near each α j (ε) with the same sign as α j in the original equation
�n = 0. On the other hand, β(φt ) = n − m, t �= 0. Thus φε has at least m − 1 new
negative zeros.

We assert that φt obtains exactly m − 1 new negative zeros near infinity. To see
this near infinity, we change the coordinate u = 1/z and consider the numerator:
((−t/ūm − 1/ū)q(1/u) − p(1/u)) ūmun . This takes the form
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�t = (−t + ūm−1) q̃(u) − ūm p̃(u)

where q̃, p̃ are polynomials defined as q̃(u) = unq(1/u), p̃(u) = un p(1/u). By as-
sumption we can write

q̃(u) = 1 +
n∑

i=1

biu
i

p̃(u) =
n∑

i=0

ciu
i .

Wewill prove that for a sufficiently small t > 0, there exist exactlym − 1 zeros u(t)
which converges to 0 as t → 0. The zero set

{(u, t) ∈ C × R | �t (u) = 0}

in C × R is a real algebraic set. Thus we need only check the components which
intersect with t = 0. We use the Curve selection lemma. Suppose that

�t (s)(u(s)) ≡ 0, t (s) = sa, (24)

u(s) =
∞∑

j=p

d j s
j , dp �= 0. (25)

Note that the possible lowest order of (−t (s) + ū(s)m−1)q̃(u(s)) is min(a, p(m −
1)), while the lowest order of the second term ū(s)m p̃(u(s)) is pm. Thus (24) says

a = p(m − 1), −1 + d p
m−1 = 0.

Thus we can write

dp = exp(2π j i/(m − 1)), ∃ j, 0 ≤ j ≤ m − 2. (26)

We assert that

Assertion 25 For a fixed j , there exist a unique u(s) which satisfies (24) and (26).

We prove the coefficients d j of u(s) are uniquely determined by induction. Put

(−t (s) + ūm−1(s)q̃(u(s)) =
∞∑

ν=p(m−1)

γνs
ν

ū(s)m p̃(u(s)) =
∞∑

ν=pm

δνs
ν .
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We have shown γp(m−1) = 0 as dp = exp(2π j i/(m − 1)). Suppose that d j , p ≤ j ≤
μ − 1 are uniquely determined. We consider the coefficient of s p(m−2)+μ in (24). We
need to have

γp(m−2)+μ = δp(m−2)+μ.

Observe that
γp(m−2)+μ = (m − 1)d

m−1
p dμ + r ′

where r ′ is a polynomial of coefficients {d j , j ≤ μ − 1} ∪ {b j , j = 1, . . . , n}.
On the other hand, δp(m−2)+μ is a polynomial of coefficients {d j , j ≤ μ − 1} ∪
{c j , j = 0, . . . , n}. Thus dμ is uniquely determined by the equality γp(m−2)+μ =
δp(m−2)+μ. �

As �t ∈ Lhs(n + m; n,m), combining with Theorem6, we obtain the following.

Corollary 26 The set of the number of zeros ρ( f ) of harmonically splitting lens type
polynomials f ∈ Lhs(n + m; n,m) includes {n + m − 2, n + m, · · · , 5n + m − 6}.

4.4.2 The Moduli Space M(n+ m; n,m)

Now we consider the bigger class of polynomials M(n + m; n,m) ⊃ Lhs(n +
m; n,m). As β(F) = n − m for F ∈ M(n + m; n,m), the lowest possible number
of zeros of a polynomial in M(n + m; n,m) is n − m. In fact we assert

Corollary 27 The set {ρ( f ) | f ∈ M(n + m; n,m)} includes {n − m, n − m
+ 2, . . . , n + m − 2, . . . , 5n + m − 6}.
Proof ByCorollary26, it is enough to show that any of {n − m, n − m + 2, . . . , n +
m − 4} can be ρ of some f ∈ M(n + m; n,m). Let j = n − m + 2a, 0 ≤ a ≤ m −
2. Consider the polynomial

fa(z) = (zn−a z̄m−a − 1)(za − 2)(z̄a − 3)

Then we see that ρ( fa) = n − m + 2a and fa ∈ M(n + m; n,m). �
Example 28 Consider M(5; 3, 2). The possible ρ are {1, 3, . . . , 11}. For ρ = 1, 3, 5,
we can take for example mixed polynomials associated with thefollowing polyno-
mials

f (z) = z3 z̄2 − 1, (z2 z̄ − 1)(z − 2)(z̄ − 3), (z − 1)(z2 − 2)(z̄2 − 3).

The higher values {7, 9, 11} are given by

εz̄2 + z̄ − p(z)

q(z)
, deg p(z) ≤ 3, deg q(z) = 3, ε � 1

where z̄ − p(z)
q(z) = 0 is a lens type equation with ρ = 6, 8, 10.
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4.5 Further Remark

4.5.1 L(n+ 2m; n+ m,m) with 2m < n

We observe that in Theorem21, ρ(�ε
n,m) = 5(n1 − m) with n1 = n + m which is

exactly the optimal upper bound for m = 1. Thus we may expect that the number
5(n1 − m) might be optimal upper bound for the polynomials in L(n1 + m; n1,m).
However in the proof for m = 1, a result about an attracting or rationally neutral
fixed points in complex dynamics played an important role and the the argument
there does not apply directly in our case.

4.5.2 L(2m + m; 2m,m)

Our polynomial �ε
2m,m is not good enough. We have seen in Corollary14 that the

mixed polynomial f2m has 5m zeros, while our polynomial �ε
m,m has only 3m zeros.

Problem 29 • Determine the upper bound of ρ for L(n + m; n,m) for n > 3m.
• Determine the possible number of ρ for L(n + m; n,m). Is it {n − m + 2k | 0 ≤
k ≤ 2n − 2m}?

• Determine the upper bound of ρ for Lhs(n + m; n,m) or M(n + m; n,m).
• Are the subspaces of the moduli L(n + m; n,m), Lhs(n + m; n,m), M(n + m;
n,m) with a fixed ρ connected? If not, give an example.
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1 Introduction

The present paper is the result of discussions between the authors, during the Brasil-
Mexico 2nd Meeting on Singularities and the 3rd Singularity Theory Meeting of
the Northeast region conferences yield in Salvador de Bahia in July 2015. The
aim of discussions was to understand the Goresky–MacPherson paper on Lefschetz
fixed point formula in the case of singular spaces, to write explicitly the case of
coincidences and to compute some examples. This article provides a survey con-
cerning Lefschetz fixed point formula and Lefschetz coincidence formula in the
smooth and singular cases, moreover we show in the Theorem 3.23 a Lefschetz type
formula for theCoincidence number of maps ( f, g) determined by the intersection of
the canonical homology classes of the graphs [G( f )] and [G(g)]. As a consequence
we obtain a relation with correspondences, as well as providing some examples.

2 The Smooth Case

2.1 The Lefschetz Number - Smooth Case

The story starts with the notion of index of a vector field at a singular point, in the
Poincaré viewpoint: wewill denote byM a compact, oriented, n-dimensional smooth
manifold. Let us consider a vector field tangent to M , with finitely many isolated sin-
gularities. In such a singular point a, the vector field v vanishes and the index I (v, a)

is well defined. The Poincaré–Hopf Theorem, first proved by Poincaré for surfaces
and by Hopf in general dimensions, says that the Euler–Poincaré characteristic of M
is equal to

χ(M) =
∑

ai∈Sing(v)

I (v, ai ).

Later on, Brouwer considers maps f : M → M with isolated fixed points a j , i.e.
points such that f (a j ) = a j . In such a point a j , let us consider a neighborhood
U ∼= D

n of a j in M , such that f (U ) ⊂ U . One defines the degree I ( f, a j ) of f at
a j as the degree of the induced map in homology:

f∗ : Hn−1(D
n \ {a j };Z) ∼= Z −→ Hn−1(D

n \ {a j };Z) ∼= Z.

The first definition of the Lefschetz index is:

L( f ) =
∑

a j

I ( f, a j ) (2.1)

where a j describes the fixed points of f .
Let us consider now, for any 0 ≤ k ≤ n, the induced map in homology
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fk : Hk(M;Q) → Hk(M;Q).

Lefschetz gave a second definition of the Lefschetz number (known as Lefschetz
fixed point formula [9]):

L( f ) =
n∑

k=0

(−1)kTrace( fk). (2.2)

Let us denote by G( f ) ⊂ M × M the graph of f . In general, G( f ) is not trans-
verse to the diagonal �M . However, one can find a map f ′ : M → M homotopic to
f and the graph of which G( f ′) is transverse to �M . The (oriented) cycles G( f ′)
and �M are transverse and complementary dimensional in M × M . Moreover, there
are finitely many intersection points b j ∈ G( f ′) ∩ �M . In such a point, the intersec-
tion number I (G( f ′),�M ; b j ) is well defined. One has the third definition of the
Lefschetz number:

L( f ) =
∑

b j

I (G( f ′),�M ; b j ). (2.3)

The number does not depend on the map f ′ homotopic with f and such that G( f ′)
is transverse to �M .

To provide the fourth definition of the Lefschetz number, let us consider the
following diagram with rational coefficients:

Hn(M × M, M × M \ �M)
j∗

AM×M ∼=

Hn(M × M)
( f,idM )∗

PM×M ∼=

Hn(M)

PM ∼=

Hn(�M)
i∗

Hn(M × M)
f̃

H0(M)

where j∗ is the map defined in the long exact sequence of a pair in cohomology, i
is the inclusion i : �M ↪→ M × M , PM×M and PM are Poincaré isomorphisms, f̃
is defined by commutativity of the right square and AM×M is the Alexander isomor-
phism that makes commutative the following diagram (see [4]):

Hn(M × M, M × M \ �M)

Thom
∼=

AM×M ∼= H 0(�M)

P�M

∼=

Hn(�M)

and so that the left square is commutative.
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By Alexander isomorphism, the Thom classU�M ∈ Hn(M × M, M × M \ �M)

corresponds to the fundamental class [�M ] ∈ Hn(�M). One has:

j∗(U�M ) = P−1
M×M(i∗[�M ]).

Then the Lefschetz number is defined by:

L( f ) = PM ◦ ( f, idM)∗ ◦ j∗(U�M ). (2.4)

Theorem 2.5 The four definitions of Lefschetz fixed point number coincide.

Main properties of the Lefschetz number are the following: If L( f ) �= 0, then f
admits fixed points. If f = idM then L( f ) = χ(M). If f and g are two homotopic
maps from M to M , then L( f ) = L(g).

2.2 The Coincidence Number - Smooth Case

Let us consider twomaps f : M → N and g : M → N where M and N are compact
oriented smooth manifolds without boundaries.

Definition 2.6 The coincidence set C( f, g) is defined as

C( f, g) = {x ∈ M | f (x) = g(x)}.

Let us suppose that dim M = dim N = n and consider the graphs G( f ) and
G(g) both n-dimensional (oriented) cycles in M × N . As in (2.3), one can assume
that, up to homotopy, the graphs G( f ) and G(g) are transverse. Then the intersec-
tion G( f ) ∩ G(g) is a finite number of points ck at which the intersection number
I (G( f ),G(g), ck) is well defined.

The first definition of the Lefschetz coincidence index is given by

L( f, g) =
∑

ck∈G( f )∩G(g)

I (G( f ),G(g), ck).

The second definition generalises (2.2). More precisely, for any 0 ≤ k ≤ n, let us
consider the commutative diagram:

Hk(M;Q)
fk

Hk(N ;Q)

Hn−k(M;Q)

PM ∼=

Hn−k(N ;Q)
gn−k

PN ∼=

One defines the maps �k : Hk(M;Q) → Hk(M;Q) by
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�k = PM ◦ gn−k ◦ P−1
N ◦ fk

and one defines

L( f, g) =
n∑

k=0

(−1)kTrace(�k).

One can also consider the maps

�n−k = P−1
N ◦ fk ◦ PM ◦ gn−k : Hn−k(N ;Q) → Hn−k(N ;Q).

One has Trace(�k) = Trace(�n−k) and then:

L( f, g) =
n∑

k=0

(−1)kTrace(�n−k).

If one defines

L̂( f, g) =
n∑

k=0

(−1)kTrace(�k)

then L̂( f, g) = (−1)n L( f, g).
The third definition of the Lefschetz coincidence number is a generalisation of

(2.4). Let us consider the commutative diagram, with rational coefficients:

Hn(N × N , N × N \ �N )
j∗

AN×N ∼=

Hn(N × N )
( f,g)∗

PN×N ∼=

Hn(M)

PM ∼=

Hn(�N )
i∗

Hn(N × N ) H0(M).

One defines the Lefschetz coincidence number of the two maps f and g from M
to N as:

L( f, g) = PM ◦ ( f, g)∗ ◦ j∗(U�N ) = PM ◦ ( f, g)∗ ◦ P−1
N×N ([�N ]). (2.7)

Theorem 2.8 The three definitions of the Lefschetz coincidence number coincide.

3 The Singular Case

Goresky and MacPherson proved in [7] the Lefschetz fixed point theorem in the
context of “placid” self maps of singular spaces, by using intersection homology.
Let us remind the main definitions.
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Fig. 1 The neighborhood
Ux of a point x is
B
n−α × c(Lα) ∼= c(Lx ),

where Lα consists of two
points and Lx is the
boundary of Ux

3.1 Intersection Homology

Reference for the entire section are the Goresky–MacPherson original papers [5, 7]
that we use (and abuse).

The singular varieties we consider are pseudomanifolds:

Definition 3.1 ([5]) An n-dimensional pseudomanifold X (without boundary) is a
purely n-dimensional piecewise linear (P.L. for short) polyhedron which admits a
triangulation such that each (n − 1) simplex is a face of exactly two n-simplices.

A pseudomanifold admits a piecewise linear stratification [2, I.1.4], which is
a filtration by closed subspaces ∅ ⊂ X0 ⊂ X1 ⊂ . . . ⊂ Xn−2 ⊂ Xn = X , with the
singular part �(X) of X being (included in) the element Xn−2 of the filtration and
such that for each point x ∈ Xn−α − Xn−α−1 there is a neighborhood Ux and a P.L.
stratum preserving homeomorphism between Ux and B

n−α × c(Lα), where B
n−α

is an open ball of dimension n − α and c(Lα) denotes the (open) cone on the link
Lα of the stratum Xn−α − Xn−α−1. The link Lα is itself a stratified pseudomanifold
of dimension (α − 1) (see [2, I.1.1]). If Xn−α − Xn−α−1 is non empty, it is a (non
necessarily connected) manifold of dimension n − α, and is called the (n − α)-
dimensional stratum of the stratification.

The neighborhood Ux of the point x is homeomorphic to a cone c(Lx ) over the
link of the point x . Notice that the link of the point x is different from the link Lα of
the stratum containing x . One has (see Fig. 1):

Lx =
(
B
n−α × Lα

⋃
∂Bn−α × c(Lα)

)
.

The notion of perversity is fundamental for the definition of intersection homol-
ogy and cohomology. A perversity p is a multi-index sequence of integers (p(2),
p(3), . . .) such that p(2) = 0 and p(α) ≤ p(α + 1) ≤ p(α) + 1, for α ≥ 2. Any
perversity p lies between the zero perversity 0 = (0, 0, 0, . . .) and the total perver-
sity t = (0, 1, 2, 3, . . .). In particular, one has the lower middle perversity, denoted
m and the upper middle perversity, denoted n, such that
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m(α) =
[
α − 2

2

]
and n(α) =

[
α − 1

2

]
, for α ≥ 2.

Let X be an n-dimensional pseudomanifold and p a perversity. The intersec-
tion homology groups (with compact support), denoted I H p

i (X), are the homology
groups of the chain complex

IC p
i (X) =

{
ξ ∈ Ci (X) | dim(|ξ| ∩ Xn−α) ≤ i − α + p(α) and

dim(|∂ξ| ∩ Xn−α) ≤ i − 1 − α + p(α), ∀α ≥ 2.

}
,

(3.2)
where Ci (X) denotes the group of compact i-dimensional P.L. chains ξ of X and |ξ|
denotes the support of ξ.

Intersection homology groups are the good ones to generalize main duality the-
orems for singular varieties, in particular Poincaré duality (see [5]). They appear to
be the good ones also to define Lefschetz fixed points indices and numbers.

3.2 The Lefschetz Number - Singular Case

Goresky and MacPherson showed in [7] that one can prove a Lefschetz formula in
intersection homology, for placid self maps of singular spaces.

A subanalytic map f : X → Y between two subanalytic pseudo-manifolds is
called placid if there exists a subanalytic stratification of Y such that for each stratum
S in Y we have

codimX f −1(S) ≥ codimY (S).

Goresky and MacPherson proved that:

Proposition 3.3 ([7, Proposition 4.1]) Let us assume that f : X → Y is a placid
map. Then pushforward of chains and pullback of generic chains induce homomor-
phisms on intersection homology,

fi : I Hm̄
i (X) → I Hm̄

i (Y ) f i : I Hm̄
i (Y ) → I Hm̄

i+dim(X)−dim(Y )(X), (3.4)

where m̄ is the (lower) middle perversity.

Definition 3.5 ([7, Sect. 4Definition])The intersection homologyLefschetz number
of a placid self-map f : X → X is given by the formula:

I L( f ) =
dim X∑

i=0

(−1)i T race( fi : I Hm̄
i (X;Z) → I Hm̄

i (X;Z)). (3.6)

Goresky and MacPherson provide the intersection version of the Lefschetz fixed
point Theorem in the context of Witt spaces:



520 J.-P. Brasselet et al.

Definition 3.7 ([6, 11]) A stratified pseudomanifold X is aQ-Witt space if, for each
stratum of odd codimension α = 2k + 1, then I Hm̄

k (Lα;Q) = 0, where Lα is the
link of the stratum.

If X is aQ-Witt space, then intersection homology of the two middle perversities
coincide:

I Hm̄
∗ (X;Q) ∼= I H n̄

∗ (X;Q).

Proposition 3.8 ([7], Proposition 4.2) If f : X → Y is a placid map between two
compact oriented Q-Witt spaces, with n = dim X, then the graph of f determines a
canonical homology class [G( f )] ∈ I Hm̄

n (X × Y ;Q).

For a placid self map of a Witt space, both the graph of f and the diagonal carry
fundamental classes in the intersection homology of X × X , more precisely one has:

Theorem 3.9 ([7], Theorem I) Let f : X → X be a placid self map of an n-
dimensional Witt space. Let [G( f )] and [�] be the homology classes of the graph
of f and of the diagonal in I Hm̄

n (X × X;Q). Then the Lefschetz number I L( f ) is
given by

I L( f ) = [G( f )] • [�]

where • denotes the intersection product of cycles in intersection homology.

3.3 Local Lefschetz Numbers

In [7, Sects. 7–12], Goresky and MacPherson developed two notions of local Lef-
schetz numbers at isolated fixed points of a placid map f : X → X . The first one is
the “local contribution at x of the Lefschetz number”, denoted by μ�([GL( f )]) in
[7, Sects. 8 and 9], the second one is the “local trace of f at x” [7, Sect. 10].

On the one hand, the intersection homology Lefschetz number I L( f ) is the sum
of the local Lefschetz numbers at fixed points. On the other hand, in the case of
so-called “contracting” isolated fixed points, the two notions coincide ([7, Theorem
III]).

In concrete examples, it appears that the secondnotion is easier to compute than the
first one. That is what we will do in examples. Another way to define local Lefschetz
numbers is developped in [1] using Čech-de Rham theory. The coincidence of this
later notion with Goresky and MacPherson ones is shown in [3].

In order to illustrate the notion of local contribution, we will recall the two defi-
nitions by Goresky and MacPherson.

3.3.1 Local Contribution of the Lefschetz Number

In the same way that each point of a n-pseudomanifold admits a neighborhood Ux

homeomorphic to c(Lx ) where Lx is the link of the point x , the main tool for the
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definition of local contribution of the Lefschetz number is the notion of the link L
of a point (x, x) in X × X . The corresponding conical neighborhood of (x, x) in
X × X will be cone(L).

In a more general way, one defines the link of a point (x0, y0) in a product X × Y
of pseudomanifolds. Let us denote by L1 the link of x0 in X and by h1 : c(L1) → U1

a stratum preserving homeomorphism between the cone on L1 and a neighborhood
U1 of x0 such that x0 is image of the vertex of the cone and h1|L1 is identity. One
defines a “radial distance” function | | : U1 → [0, 1] by |h1(l, t)| = t for l ∈ L1

and t ∈ [0, 1].
One makes a similar choice of homeomorphism h2 : c(L2) → U2 between the

cone on L2 and a neighborhood U2 of y0.
Let us denote byL = L1 ∗ L2 the join of the links L1 and L2, that is the set of triples

(a, s, b)wherea ∈ L1, s ∈ [0, 1],b ∈ L2 andwherewe identify (a, 0, b) ∼ (a′, 0, b)
or (a, 1, b) ∼ (a, 1, b′).

The previous construction provides an embedding H : cone(L) → X × Y which
is a homeomorphism onto the conical neighborhood

V = {(x, y) ∈ U1 ×U2| |x | + |y| ≤ 1}

of (x0, y0) in X × Y , by writing H((l1, s, l2), t) = (h1(l1, t (1 − s)), h2(l2, st)).
The join L = L1 ∗ L2 is the boundary of the conical neighborhood V of (x, y) in

X × Y :
L = ∂V = {(x, y) ∈ X × Y | |x | + |y| = 1},

so that L is the link of the point {(x, y)} in X × Y .
Let f : X → X be a placid map with isolated fixed points. For each fixed point x

choose a sufficiently small neighborhoodUx which contains noother fixedpoints than
x and consider the link L of the point (x, x) in X × X by the previous construction.
The graph G( f ) of f and the diagonal � intersect the link L in disjoint (n − 1)-
cycles GL( f ) = G( f ) ∩ L and �L = � ∩ L. Notice that the full construction may
be performed with respect of orientations.

Remark 3.10 In the following construction, given by by Goresky and Mac-Pherson,
the diagonal� appears to have a prefered role, however the proof in [7] shows that the
roles of� andG( f ) could be interchanged. That is N could be a small neighborhood
of G( f ), or on other words� could be written as GL(I dX )where I dX is the identity
map I d : X → X .

This fact is important because it shows that the following construction holds for
coincidence, replacing the pair (�,G( f )) = (G(I dX ),G( f )) by the pair (G( f ),
G(g)).

Let N be a small regular neighborhood in L of �L . By Alexander duality, one
defines a nondegenerate linking pairing

μ : I Hm̄
n−1(N ) ⊗ I Hm̄

n−1(L − N ) → Q
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such that μ(a × b) = ∂−1∗ (a) • b where ∂∗ is the connecting homomorphism in the
long exact sequence of a pair (see [7, Sect. 8])

0 = I Hm̄
n (L) −→ I Hm̄

n (L, N )
∂∗−→ I Hm̄

n−1(N ) −→ I Hm̄
n−1(L) = 0.

On the one hand, again according to [7], �L determines an unique class [�L ] ∈
I Hm̄

n−1(N ) and, if X is normal that group is one-dimensional.On theother hand, by the
choice of the conical neighborhood Ux of x in X , one has the corresponding conical
neighborhood c(L) of (x, x) in X × X . The neighborhood Ux being sufficiently
small and containing no other fixed point of f , the graph G( f ) of f is transverse
to L. The intersection GL( f ) = G( f ) ∩ L, oriented with the product orientation,
determines a homology class [7, Sect. 9]

[GL( f )] ∈ I Hm̄
n−1(L − N ).

One can define:

Definition 3.11 ([7, Sect. 8]) The local contribution of the Lefschetz number at x is
the linking number

μ([�L ] ⊗ [GL( f )]) ∈ Q.

Theorem 3.12 ([7,TheoremII])The intersectionLefschetz number I L( f ) = [G( f )] •
[�] is the sum of the local contributions taken over all the fixed points.

3.3.2 Local Trace

We repeat here mainly Sect. 10 in [7].

Definition 3.13 ([8, 2.3]) An n-pseudomanifold X with boundary ∂X is an
n-dimensional compact P-L space such that X − ∂X is a pseudomanifold and ∂X is
a compact (n − 1)-dimensional P.L. subspace of X which has a collared neighbor-
hood W in X , i.e. there is a P.L. homeomorphism ϕ : W ∼= ∂W × [0, 1) such that
the restriction ϕ|∂X is the identity map.

Let us recall the Poincaré duality “with boundary”, particular case of the relative
Poincaré duality theorem:

Theorem 3.14 Let X be a compact n-dimensional pseudomanifold with boundary
∂X, the intersection pairing

I H p̄
i (X − ∂X) ⊗ I H q̄

n−i (X, ∂X) → Q

where q̄ is the complementary perversity of p̄, is nondegenerate.
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Let X be a compact n-dimensional pseudomanifold and letU be a conical neigh-
borhood of x with boundary ∂U . Let Lx denote the link of the point x , then one
has

I Hi (U ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for i ≥
[
n + 1

2

]

I Hi (Lx ) for i ≤
[
n − 1

2

] I Hn−i (U, ∂U ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for i ≥
[
n + 1

2

]

I Hn−i−1(Lx ) for i ≤
[
n − 1

2

]

Let f : X → X be a placid map with isolated fixed points. Let U1 and U2 be
conical neighborhood of x with boundaries ∂U1 and ∂U2 such that U1 ⊂ f −1(U2 \
∂U2). If ξ is a compactly supported cycle in ICi (U1) then f∗(ξ) is a compactly
supported cycle in ICi (U2). One determines a local homomorphism

( f x∗ )i : I Hm̄
i (U1) → I Hm̄

i (U2). (3.15)

The adjoint to f∗ is a homomorphism

( f ∗
x )n−i : I Hn−i (U2, ∂U2) → I Hn−i (U1, ∂U1) (3.16)

which may be interpreted geometrically as assigning to almost every relative
cycle ξ ∈ ICn−i (U2, ∂U2) the (appropriately oriented) relative cycle f −1(ξ) ∩U1 ∈
ICn−i (U1, ∂U1).

Definition 3.17 ([7, Sect. 10]) The local trace of f at x is the sum

Trx ( f ) =
n∑

i=0

(−1)i Trace( f x∗ )i = (−1)n
n∑

i=0

(−1)i Trace( f ∗
x )i .

3.3.3 Contracting Fixed Points [7], Sect. 12

Definition 3.18 A fixed point x ∈ X of a placid map f : X → X is contracting if
there exists a (canonical) distinguished neighborhoodU of x which contains no other
fixed points and such that U ⊂ f −1(interior (U )).

Theorem 3.19 ([7, Theorem III]) Suppose x ∈ X is an isolated contracting fixed
point of f . Then the local contribution at x to the Lefschetz number of f and the
local trace of f at x coincide.

Corollary 3.20 In the previous situation, the intersection Lefschetz number I L( f )
is the sum of the local traces at fixed points.

This result leads us naturally to the question of coincidence, already pointed
out in [7] through the study of correspondences, although not explicitly. Our main
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goal is to explicit the formula of the Lefschetz coincidence number for placid maps
f, g : X → Y between oriented compactQ-Witt spaces of dimension n and to prove
the Lefschetz coincidence theorem in this setting.

3.4 The Coincidence Number - Singular Case

Definition 3.21 Given f, g : X → Y placid maps between n-dimensional oriented
compact Q-Witt spaces, the Lefschetz coincidence number is defined by

I L( f, g) =
∑

i

(−1)iTrace(gi fi ), (3.22)

where fi : I Hm̄
i (X) → I Hm̄

i (Y ) and gi : I Hm̄
i (Y ) → I Hm̄

i (X) are defined for the
lower middle perversity m̄ (Proposition 3.3).

Theorem 3.23 (Main Theorem). The Lefschetz coincidence number of ( f, g) is
determined by the intersection of the canonical homology classes of the graphs,
[G( f )] and [G(g)]:

I L( f, g) = (−1)n[G( f )] • [G(g)].

Corollary 3.24 If I L( f, g) �= 0 then there is x ∈ X such that f (x) = g(x).

As a particular case of the Main Theorem, we recover the Lefschetz fixed point
theorem of Goresky–MacPherson, [7, Theorem I]. In fact, considering the iden-
tity map I dX : X → X and a placid self map f : X → X , the coincidence number
I L( f, I dX ) is the Lefschetz number of f , denoted I L( f ) as defined by Goresky–
MacPherson. Thus,

Corollary 3.25 If I L( f ) �= 0 then there is x ∈ X such that f (x) = x.

4 Proof of the Main Theorem

From now on, X and Y denote n-dimensional oriented compact Q-Witt spaces,
f : X → Y a placid map and we denote by I Hm̄∗ (X;Q) the intersection homology
of X for middle perversity m̄, with coefficients in Q.

Let u1, . . . , uα be a basis of I Hm̄∗ (X;Q) with dual basis u∗
1, . . . , u

∗
α. We also

consider v1, . . . , vβ be a basis of I Hm̄∗ (Y ;Q) with dual basis v∗
1 , . . . , v

∗
β . Recall

that these dual bases are obtained by Poincaré duality satisfying u∗
i ⊗ ui = 1 and

v∗
j ⊗ v j = 1 for all i = 1, . . . α and j = 1, . . . ,β.

Proposition 4.1 ([7], Proposition 6.2). The homology class of the graph, [G( f )], is
given by
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[G( f )] =
∑

i

∑

j

(−1)|ui |(n−|ui |)Fi ju∗
i ⊗ v j ,

where
f∗(ui ) =

∑

j

Fi jv j , i = 1, . . . ,α.

Lemma 4.2 If g∗(u∗
i ) =

∑

j

Gi jv
∗
j then g∗(v j ) =

∑

i

Gi j ui .

Proof Let us write g∗(v j ) =
∑

i

G ′
j i ui . Let ui and v j be such that |ui | = |v j |. From

the formula 3 [7], one has

g∗(g∗(v j ) ⊗ u∗
i ) = v j ⊗ g∗(u∗

i )

and then it follows that

(−1)|ui |(n−|ui |)G ′
j i = (−1)|v j |(n−|v j |)Gi j .

Since |ui | = |v j | we conclude that G ′
j i = Gi j . �

Proof of Theorem 3.23. Let us write

f∗(ui ) =
∑

j

Fi jv j and g∗(u∗
i ) =

∑

j

Gi jv
∗
j .

Following ([7], Proposition 6.2), the fundamental classes of the graph of f and g can
be written, respectively, as

[G( f )] =
∑

i

∑

j

(−1)|ui |(n−|ui |)Fi ju∗
i ⊗ v j and [G(g)] =

∑

k

∑

l

Gkluk ⊗ v∗
l .

Therefore,

[G( f )] • [G(g)] =
∑

i

∑

j

(−1)|ui |(n−|ui |)(−1)(n−|v j |)(n−|ui |)Fi jGi j ((u
∗
i ⊗ ui ) • (v j ⊗ v∗

j ))

=
∑

i

∑

j

(−1)n−|ui |Fi jGi j

= (−1)n
∑

i

∑

j

(−1)|ui |Fi jGi j

�= (−1)n
∑

i

(−1)iTrace(g∗ f∗)

= (−1)n I L( f, g),
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where the equality � follows from the fact that the matrix of g∗ with respect to the
basis {v1, . . . , vβ} and {u1, . . . , uα} is the matrix of g∗ with respect to the basis
{u∗

1, . . . , u
∗
α} and {v∗

1 , . . . , v
∗
β}, see Lemma 4.2. Furthermore,

g∗ f∗(ui ) = g∗(
∑

j

Fi jv j ) =
∑

j

Fi jg
∗(v j ) =

∑

i

∑

j

Fi jGi j ui �

5 Relation with Correspondences

In [7], a placid correspondence C between n-dimensional Witt spaces X and Y is
defined as being an n-dimensional compact oriented pseudomanifold C ⊂ X × Y
such that the projections πX : C → X and πY : C → Y are placid maps. A corre-
spondence C determines a canonical homology class [C] ∈ I Hm

n (X × Y ;Q).

Theorem 5.1 ([7, Theorem I’])The Lefschetz number I L(C1,C2) of two correspon-
dences is equal to the intersection product [C1] • [C2] of the intersection homology
classes represented by C1 and C2.

Given a pair of placid maps f, g : X → Y let us consider the respective graphs
C1 := G( f ) and C2 := G(g) and the projections maps

π1
X : G( f ) → X, π1

Y : G( f ) → Y,

π2
X : G(g) → X, π2

Y : G(g) → Y.

Corollary 5.2 ([7, Sects. 14 and 16]) If f, g : X → Y are placid maps then
I L( f, g) = I L(G( f ),G(g)).

Proof Observe that the projection maps induce homomorphisms in intersection
homology and intersection cohomology groups:

(
π1X

)∗ : I Hm
i (X;Q) → I Hm

i (G( f );Q) and
(
π2X

)

∗ : I Hm
i (G(g);Q) → I Hm

i (X;Q).

(
π1Y

)

∗ : I Hm
i (G( f );Q) → I Hm

i (Y ;Q) and
(
π2Y

)∗ : I Hm
i (Y ;Q) → I Hm

i (G(g);Q).

Let us consider α a basis of I Hm
i (X;Q) and α1 the corresponding basis of

I Hm
i (G( f );Q) and recalling that π1

X : G( f ) → X is a homeomorphism one has
the identity matrix as the matrix of (π1

X )∗ in the basis α and α1. The same holds for
(π2

X )∗. Also we consider
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X
φ1−→ G( f )

π1
Y−→ Y

and

X
φ2−→ G(g)

π2
Y−→ Y,

where φ1(x) = (x, f (x)) and φ2(x) = (x, g(x)). We point out that the inducedmaps
by these compositions are the same as the ones induced by f and g.

Since f and g are placid maps, G( f ) and G(g) are placid correspondences.
Therefore by [7, Theorem I’] one has I L(G( f ),G(g)) = [G( f )] • [G(g)].

By the following composition:

I Hm
i (X;Q)

(π1
X )∗−→ I Hm

i (G( f );Q)
(π1

Y )∗−→ I Hm
i (Y ;Q)

(π2
Y )∗−→ I Hm

i (G(g);Q)
(π2

X )∗−→ I Hm
i (X;Q)

we conclude that the alternating sum of traces of the
(
π2
X

)
∗
(
π2
Y

)∗ (
π1
Y

)
∗
(
π1
X

)∗
is

equal (up to sign) to the alternating sum of traces of g∗ f∗ [7, S16, formulas 7 and 9]:

I L(G( f ),G(g)) =
∑

i

(−1)iTrace(
(
π2
X

)
∗
(
π2
Y

)∗ (
π1
Y

)
∗
(
π1
X

)∗
) =

∑

i

(−1)iTrace(g∗ f∗) = I L( f, g).

�

5.1 Local Contribution

Goresky and MacPherson show that the Lefschetz number I L(C1,C2) of two cor-
respondences (Theorem5.1) is sum of local contributions:

Theorem 5.3 ([7, Theorem II’]) Suppose the correspondences C1 and C2 intersect
in finitely point s (x1, y1), . . . (xk, yk). Let Li the full link (in X × Y ) of (xi , yi ) and
let Ci

j = C j ∩ Li be the intersection of Ci with this link. Then, by Alexander duality,
there is a well defined linking number μ(Ci

1,C
i
2) which is the local contribution of

(xi , yi ) (see [7, Sect.8], here Definition 3.11) and one has:

I L(C1,C2) =
k∑

i=1

μ(Ci
1,C

i
2).
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6 Local Coincidence Numbers

6.1 Local Contribution

Let f, g : X → Y be placid maps between n-dimensional oriented compact Q-Witt
spaces, with a finite number of coincidence points {xi } ∈ C( f, g). Let Li be the
link (in X × Y ) of (xi , f (xi )) = (xi , g(xi )). Let us denote Ci

f = G( f ) ∩ Li and
Ci

g = G(g) ∩ Li .
As a corollary of Theorem 5.3 (see also Remark 3.10), one has:

Corollary 6.1 Let f, g : X → Y be placid maps between n-dimensional oriented
compact Q-Witt spaces, the Lefschetz coincidence number is equal to:

I L( f, g) =
∑

xi∈C( f,g)

μ(Ci
f ,C

i
g).

6.2 Local Trace

Let f, g : X → Y be a pair of placid maps between n-dimensional oriented compact
Q-Witt spaces, with isolated coincidence points. Let x be such a coincidence point.
Let U1 and U2 be conical neighborhoods of x and f (x) = g(x) respectively with
boundaries ∂U1 and ∂U2 such that U1 ⊂ f −1(U2 \ ∂U2) ∩ g−1(U2 \ ∂U2). If ξ is a
compactly supported cycle in ICi (U1) then f∗(ξ) is a compactly supported cycle in
ICi (U2). In the same way than (3.15), (3.16), one determines local homomorphisms

( f x∗ )i : I Hm̄
i (U1) → I Hm̄

i (U2).

and
(g∗

x )n−i : I Hn−i (U2, ∂U2) → I Hn−i (U1, ∂U1).

One has a commutative diagram (middle perversity and rational coefficients):

I Hi (U1)
( f x∗ )i

I Hi (U2)

I Hn−i (U1, ∂U1)

P1 ∼=

I Hn−i (U2, ∂U2)
(g∗

x )n−i

P2 ∼=

where vertical arrows are Poincaré–Lefschetz isomorphisms and where all elements
are zero if i >

[
n−1
2

]
. It induces a diagram:
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I Hm̄
i (L1) I Hm̄

i (L2)

I Hn−i−1(L1)

∼=

I Hn−i−1(L2)

∼=

where L1 and L2 are the links of x and f (x) = g(x) in X and Y respectively.

Definition 6.2 ([7, Sect. 10]) The local trace of ( f, g) at the isolated coincidence
point x is the sum

Trx ( f, g) =
n∑

i=0

(−1)i Trace(P1 ◦ (g∗
x )n−i ◦ P−1

2 ◦ ( f x∗ )i ).

One obtains, in the case of coincidence, a similar result than the one for the
Lefschetz intersection number. The proof is a copy of the proof provided in [7],
Sect. 12.

Theorem 6.3 The Lefschetz coincidence number I L( f, g) is the sum of the local
traces at coincidence points.

I L( f, g) =
∑

x∈C( f,g)

Trx ( f, g). (6.4)

7 Examples

7.1 The Pinched Torus

Let us consider the “pinched torus”, which has one singular point N (see Fig. 2). That
is a pseudomanifold naturally stratified in: X \ {N }, {N }. There is only one possible
perversity, the 0-perversity. An i-dimensional chain ξ containing the singular point
N is allowable if and only if (see Eq.3.2):

0 = dim(|ξ| ∩ {N } ≤ i − α + p(α) = i − 2 + 0.

That is i ≥ 2.The computation of intersection homologygroups is then the following:
• I H 0

0 (X) = Zx In fact all points in X \ {N } are homologous in intersection homol-
ogy.
• I H 0

1 (X) = 0.The possible cycles candidates as generators of I H 0
1 (X) are the cycle

G containing the points A and B and a “great” cycle passing through N . The first one
is an allowable boundary (the boundary of a cone with vertex N and basis G), i.e.
half of X , then gives 0 in intersection homology. The second one is not allowable,
because 1-dimensional and containing N .
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Fig. 2 The “pinched torus”

• I H 0
2 (X) = Z[X ] The generator is the fundamental class of X , denoted by [X ].

Let us consider now the following applications X → X (see Fig. 2 for notations):
rE the vertical rotation of angle π around the line E ,
sP the symmetry relatively to the plane P ,
sQ the symmetry relatively to the plane Q.

The matrices M0 and M2 of the maps in intersection homology, induced by these
maps and relatively to the basis {x} of I H 0

0 (X) and [X ] of I H 0
2 (X) are the following:

rE M0 = (
1
)

M2 = (
1
)

sP M0 = (
1
)

M2 = (−1
)

sQ M0 = (
1
)

M2 = (−1
)

The intersection Lefschetz numbers of these maps can be computed either glob-
ally, or locally.

In order to compute the local Lefschetz numbers, one can use one of the interpre-
tations given by Goresky and MacPherson: either the local linking numbers denoted
by μ�([GL( f )]) (see [7, Sects. 8 and 9]) or the local trace (see [7, §10]). Both are
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equal at an isolated contracting fixed point ([7, Theorem III]) that is the case of all
isolated fixed points considered.
The rotation rE - Global calculus.

The fixed points of the rotation rE are the pinched point N and the points A and B
(see Fig. 2). Using the formula (3.6), one obtains the Lefschetz number I L(rE ) = 2.
The rotation rE - Local calculus.

Let us compute the local trace at each fixed point: One consider firstly the fixed
point N . According toGoresky–MacPherson, one has to consider a conical neighbor-
hoodUN of N , that is union of two open cones with vertex N . Intersection homology
with compact supports of UN is equal to:

I H 0
0 (UN ) = Zx1 ⊕ Zx2

where x1 and x2 are points in each of the two cones. One remarks that these two
points are not homologous in intersection homology.

I H 0
1 (UN ) = I H 0

2 (X) = 0

One remarks also that there is no fundamental class for the open neighborhoodUN in
intersection homology with compact support (there is one in homology with closed
support).

The matrix M0 of the map rE in intersection homology, relatively to the basis
{x1}, {x2} of I H 0

0 (UN ) is the following:

rE M0 =
(
0 1
1 0

)

The matrices M1 and M2 are obviously zero. One concludes that the local trace of
rE at N is zero, that is the local index of rE at N .

Let us consider now the point A (the calculus for B will be the same). At the
point A, which is a regular point of X , the local Lefschetz index can be computed by
classical ways. One can also consider a neighborhoodUA of A, and local intersection
homology (in that case equal to ordinary homology). One has:

I H 0
0 (UA) = Zx

where x is any point in UA, and

I H 0
1 (UA) = I H 0

2 (X) = 0,

for the same reasons than above.
The matrix M0 of the map rE in intersection homology, relatively to the basis {x}

of I H 0
0 (UA) is the following:

rE M0 = (
1
)
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The matrices M1 and M2 are obviously zero. One concludes that the local trace of
rE at A is 1, that is the local index of rE at A.

We have the same calculus at B and one obtains that I L(rE ) = 2, either globally
or as the sum of local contributions.
The symmetry relatively to the plane P .

The fixed points of the symmetry relatively to the plane P are the pinched point
N and the circle G (see Fig. 2). Using the formula (3.6), one obtains the intersection
Lefschetz number I L(sP) = 0.

In fact, the local Lefschetz number of the symmetry sP at N is 0, with the same
calculus than above. It is possible to deform the symmetry in a homotopic map
without other fixed point, that is another way to get the result.
The symmetry relatively to the plane Q.

The fixed points of the symmetry relatively to the plane Q are the great circles
passing through N and A and passing through N and B. (see Fig. 2). Using the
formula (3.6), one obtains the intersection Lefschetz number I L(sQ) = 0.

7.2 The “Bipinched Torus”

Let us consider the “bipinched torus”, that is the suspension of two circles (cf. [10,
Sect. 1.2, Example 1]) which has two singular points (see Fig. 3). The bipinched torus
is not a pseudomanifold, in the sense that the regular part is not connected. However,
one can compute some intersection Lefschetz fixed points numbers and intersection
Lefschetz coincidence numbers, deciding orientations of the smooth components.

The bipinched torus has two singular points, the “north pole” N and the “south
pole” S. The stratification is given by X \ {N , S}, {N , S},. Let us denote by X1 and
X2 the two connected components of X \ {N , S}.

There is only one possible pervesity, the 0-perversity. The computation of inter-
section homology groups is the following:
• I H 0

0 (X) = Zx1 ⊕ Zx2 ,

where each point xi belongs to one of the two connected components of X \ {N , S}.
The two points x1 and x2 are not homologous. In fact, if γ is an arc joining the two
points, γ must pass through one of the poles N or S. This arc is not an allowable
chain because the following inequality is not verified:

dim(|γ| ∩ {N }) ≤ 1 − 2 + 0.

• I H 0
1 (X) = 0

The three candidate cycles to be the generators of I H 0
1 (X) are: the two circles

C1, C2 and a cycle � going through the points A, N , D, S (see Fig. 3). The two first
are allowable cycles and allowable boundaries: They are boundaries of the allowable
cones c(Ci ) with vertex N and base C1 or C2:
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Fig. 3 The “bipinched torus”

dim(|c(Ci )| ∩ {N }) ≤ 2 − 2 + 0.

The last cycle � is not allowable for the same reason than the chain γ.
• I H 0

2 (X) = Z[X1] ⊕ Z[X2],
where [X1] and [X2] are the fundamental classes of X1 and X2 for the chosen

orientations.
Let us consider now the following maps X → X :

rE1 the vertical rotation of angle π around the line E1,
rE2 the horizontal rotation of angle π around the line E2,
rE3 the horizontal rotation of angle π around the line E3,
sP the symmetry relatively to the plane P containing E2 and E3,
sQ the symmetry relatively to the plane Q containing E1 and E2.

The matrices M0 and M2 of the maps in intersection homology, induced by these
maps and relatively to the basis {x1, x2} of I H 0

0 (X) and [X1], [X2] of I H 0
2 (X) are

the following:

rE1 M0 =
(
0 1
1 0

)
M2 =

(
0 1
1 0

)
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rE2 M0 =
(
1 0
0 1

)
M2 =

(
1 0
0 1

)

rE3 M0 =
(
0 1
1 0

)
M2 =

(
0 1
1 0

)

sP M0 =
(
1 0
0 1

)
M2 =

(−1 0
0 −1

)

sQ M0 =
(
1 0
0 1

)
M2 =

(−1 0
0 −1

)

Let us compute the intersection Lefschetz fixed points numbers of these maps.
The fixed points of the rotation rE1 are the “poles” N and S. Using the for-

mula (3.6), one obtains the intersection Lefschetz number I L(rE1) = 0. The local
Lefschetz indices at the fixed points N and S are zero (see previous example).

The fixed points of the rotation rE2 are the 4 points: A, B,C and D. Formula (3.6)
shows that the Lefschetz number is I L(rE2) = +4. The Lefschetz index in each of
the points A, B,C and D is +1.

The rotation rE3 has no fixed point. One has I L(rE3) = 0.
The fixed points of the symmetry relatively to the plane P are the two circles

C1 and C2. Formula (3.6) shows that I L(sP) = 0. The graph of the symmetry sP is
not transverse to the diagonal �X in X × X . One may consider a map ϕ : X → X
homotopic to sP and whose graph is transverse to �X . Then intersection points are
4 points (corresponding to intersection of a deformation of each of the two Ci with
Ci ). The sum of intersection indices is then 0.

The fixed points of the symmetry relatively to the plane Q are points of the
intersection X ∩ Q. Formula (3.6) shows that I L(sQ) = 0.

Let us now compute some Lefschetz coincidence numbers for these maps, using
Definition 3.21:

I L(rE1 , rE2) = 0. There is no coincidence point.
I L(rE2 , sP) = 0. There are six coincidence points: N , S, A, B,C, D. Coinci-

dence numbers are two by two opposite signs. That is confirmed by application of
formula (6.4).

I L(rE1 , rE3) = 0. The coincidence points are the two circles C1 and C2. Formula
(3.22). provides the result. One computes the coincidence number in the same way
than the Lefschetz fixed points number of sP .

I L(sP , sQ) = +4. There are four coincidence points: A, B,C, D. The coinci-
dence number in each of them is equal to +1. That is confirmed by application of
formula (6.4).
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Preservation of Immersed or Injective
Properties by Composing Generic
Generalized Distance-Squared Mappings

Shunsuke Ichiki and Takashi Nishimura

Abstract Any generalized distance-squared mapping of equidimensional case has
singularities, and their singularity types are wrapped into mystery in higher dimen-
sional cases. Any generalized distance-squared mapping of equidimensional case is
not injective. Nevertheless, in this paper, it is shown that the immersed property or
the injective property of a mapping is preserved by composing a generic generalized
distance-squared mapping of equidimensional case.
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1 Introduction

Throughout this paper, i , j , �, m and n stand for positive integers. In this paper,
unless otherwise stated, all manifolds and mappings belong to class C∞ and all
manifolds are without boundary. Let pi = (pi1, pi2, . . . , pim) (1 ≤ i ≤ �) (resp.,
A = (ai j )1≤i≤�,1≤ j≤m) be a point ofRm (resp., an � × mmatrixwith non-zero entries).
Set p = (p1, p2, . . . , p�) ∈ (Rm)�. Let G(p,A) : Rm → R

� be the mapping defined
by
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G(p,A)(x) =
⎛
⎝

m∑
j=1

a1 j (x j − p1 j )
2,

m∑
j=1

a2 j (x j − p2 j )
2, . . . ,

m∑
j=1

a�j (x j − p�j )
2

⎞
⎠ ,

where x = (x1, x2, . . . , xm) ∈ R
m . The mapping G(p,A) is called a generalized

distance-squared mapping, and the �-tuple of points p = (p1, . . . , p�) ∈ (Rm)� is
called the central point of the generalized distance-squared mapping G(p,A). A
distance-squared mapping Dp (resp., Lorentzian distance-squared mapping L p) is
the mapping G(p,A) satisfying that each entry of A is 1 (resp., ai1 = −1 and ai j = 1
( j �= 1)).

In [4] (resp., [5]), a classification result on distance-squared mappings Dp (resp.,
Lorentzian distance-squared mappings L p) is given.

In [7], a classification result on generalized distance-squared mappings of the
plane into the plane is given. If the rank of A is two, a generalized distance-squared
mapping having a generic central point is a mapping of which any singular point is
a fold point except one cusp point. The singular set is a rectangular hyperbola. If the
rank of A is one, a generalized distance-squared mapping having a generic central
point is A-equivalent to the normal form of fold singularity (x1, x2) �→ (x1, x22 ).

In [6], a classification result on generalized distance-squared mappings of Rm+1

intoR2m+1 is given. If the rank of A ism + 1, a generalized distance-squaredmapping
having a generic central point isA-equivalent to the normal formofWhitney umbrella
(x1, . . . , xm+1) �→ (x21 , x1x2, . . . , x1xm+1, x2, . . . , xm+1). If the rank of A is less than
m + 1, a generalized distance-squared mapping having a generic central point isA-
equivalent to the inclusion (x1, . . . , xm+1) �→ (x1, . . . , xm+1, 0, . . . , 0).

As described above, in [6, 7], the properties of generalized distance-squared map-
pings having a generic central point are investigated. On the other hand, in this paper,
the property of the compositions of a given immersion (resp., a given injection) and
generalized distance-squared mappings having a generic central point is investigated
(see Theorem 1 (resp., Theorem 2)).

We have the following original motivation. Height functions and distance-squared
functions have been investigated in detail so far, and they are a useful tool in the
applications of singularity theory to differential geometry (for instance, see [2]). The
mapping in which each component is a height function is nothing but a projection.
In [8], compositions of generic projections and embeddings are investigated.

On the other hand, the mapping in which each component is a distance-squared
function is a distance-squared mapping. And, the notion of generalized distance-
squared mapping is an extension of the distance-squared mappings. Therefore, it is
natural to investigate generalized distance-squared mappings as well as projections.

Any generalized distance-squared mapping of equidimensional case G(p,A) :
R

m → R
m has singularities (see Lemma 5.1 in Appendix). Nevertheless, in Theo-

rem1, it is shown that the immersed property of amapping is preserved by composing
a generic generalized distance-squared mapping of equidimensional case.

Theorem 1 Let N be an n-dimensionalmanifold, and let f : N → R
m be an immer-

sion (m ≥ 2n). Then, there exists a subset � of (Rm)m with Lebesgue measure
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zero such that for any p ∈ (Rm)m − �, the composition G(p,A) ◦ f : N → R
m is an

immersion.

Any generalized distance-squared mapping of equidimensional case G(p,A) :
R

m → R
m is not injective (see Lemma 5.2 in Appendix). Nevertheless, in

Theorem 2, it is shown that the injective property of a mapping is preserved by com-
posing a generic generalized distance-squared mapping of equidimensional case.

Theorem 2 Let N be an n-dimensional manifold, and let f : N → R
m be injec-

tive (m ≥ 2n + 1). Then, there exists a subset � of (Rm)m with Lebesgue measure
zero such that for any p ∈ (Rm)m − �, the composition G(p,A) ◦ f : N → R

m is
injective.

By combining Theorems 1 and 2, we have the following proposition.

Proposition 1 Let N be an n-dimensional manifold, and let f : N → R
m be an

injective immersion (m ≥ 2n + 1). Then, there exists a subset � of (Rm)m with
Lebesgue measure zero such that for any p ∈ (Rm)m − �, the composition G(p,A) ◦
f : N → R

m is an injective immersion.

1.1 Remark

Suppose that the mapping G(p,A) ◦ f : N → R
m is proper in Proposition 1. Then,

the injective immersion of G(p,A) ◦ f implies the embedding of it (see [3], p.11).
Hence, we have the following as a corollary of Proposition 1.

Corollary 1 Let N be an n-dimensional compact manifold, and let f : N → R
m be

an embedding (m ≥ 2n + 1). Then, there exists a subset � of (Rm)m with Lebesgue
measure zero such that for any p ∈ (Rm)m − �, the composition G(p,A) ◦ f : N →
R

m is an embedding.

In Sect. 2, it is reviewed some of standard definitions, and an important lemma for
the proofs of Theorems 1 and 2 is given. Section3 (resp., Sect. 4) devotes the proof of
Theorem 1 (resp., Theorem 2). Finally, in Sect. 5.1 (resp., Sect. 5.2), for the readers’
convenience, it is given the proof that any generalized distance-squared mapping of
equidimensional case has singularities (resp., the proof that any generalized distance-
squared mapping of equidimensional case is not injective).

2 Preliminaries

Let Jr (n, p) be the set of all r -jets of map-germs (Rn, 0) → (Rp, 0). Let N and P be
manifolds and let Jr (N , P) be the space of r -jets ofmappings of N into P . For a given
mapping g : N → P , the mapping j rg : N → Jr (N , P) is defined by q �→ j rg(q)
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(for details on the space Jr (N , P) or the mapping j rg : N → Jr (N , P), see for
example [3]).

Next, we recall the definition of transversality.

Definition 1 Let W be a submanifold of P . For a given mapping g : N → P , we
say that g : N → P is transverse to W if for any q ∈ N , g(q) /∈ W or in the case of
g(q) ∈ W , the following holds:

dgq(Tq N ) + Tg(q)W = Tg(q)P.

For the proofs of Theorems 1 and 2, the following lemma is important.

Lemma 2.1 ([1, 8]) Let N, P, Z be manifolds, and let W be a submanifold of P.
Let � : N × Z → P be a mapping. If � is transverse to W, then there exists a subset
� of Z with Lebesgue measure zero such that for any p ∈ Z − �, �p : N → P is
transverse to W, where �p(q) = �(q, p).

3 Proof of Theorem 1

Let {(Uλ,ϕλ)}λ∈� be a coordinate neighborhood system of N . Let π : J 1(N ,Rm)→
N × R

m be the natural projection defined by π( j1g(q)) = (q, g(q)). Let �λ :
π−1(Uλ × R

m) → ϕλ(Uλ) × R
m × J 1(n,m) be the homeomorphism defined by

�λ

(
j1g(q)

) = (
ϕλ(q), g(q), j1(ψ

λ
◦ g ◦ ϕ−1

λ ◦ ϕ̃λ)(0)
)
,

where ϕ̃λ : Rn → R
n (resp., ψλ : Rm → R

m) is the translation defined by ϕ̃λ(0) =
ϕλ(q) (resp.,ψλ(g(q)) = 0). Then, {(π−1(Uλ × R

m),�λ)}λ∈� is a coordinate neigh-
borhood system of J 1(N ,Rm). For any k (k = 1, . . . , n), set

�k = {
j1g(0) ∈ J 1(n,m) | dim KerJg(0) = k

}
.

For any k (k = 1, . . . , n), set

�k(N ,Rm) =
⋃
λ∈�

�−1
λ

(
ϕλ(Uλ) × R

m × �k
)
.

Then, the set �k(N ,Rm) is a subfiber-bundle of J 1(N ,Rm) such that

codim �k(N ,Rm) = dim J 1(N ,Rm) − dim �k(N ,Rm)

= k(m − n + k).

(for details on �k(N ,Rm), see for example [3], pp.60–61).
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Now, let � : N × (Rm)m → J 1(N ,Rm) be the mapping defined by

�(q, p) = j1(G(p,A) ◦ f )(q).

We will show first that the mapping � is transverse to the submanifold �k(N ,Rm)

for any k (k = 1, . . . , n). It is sufficient to show that if �(̃q, p̃) ∈ �k(N ,Rm), then
the following (∗) holds.

d�(q̃, p̃)(T(q̃, p̃)(N × (Rm)m)) + T�(q̃, p̃)�
k(N ,Rm) = T�(q̃, p̃) J

1(N ,Rm). (∗)

There exists a coordinate neighborhood
(
Uλ̃ × (Rm)m,ϕλ̃ × id

)
containing the point

(q̃, p̃) of N × (Rm)m , where id is the identity mapping of (Rm)m into (Rm)m , and the
mapping ϕλ̃ × id : Uλ̃ × (Rm)m → R

n × (Rm)m is defined by
(
ϕλ̃ × id

)
(q, p) =(

ϕλ̃(q), id(p)
)
. There exists a coordinate neighborhood

(
π−1(Uλ̃ × R

m),�λ̃

)
con-

taining the point �(̃q, p̃) of J 1(N ,Rm). Let t = (t1, . . . , tn) ∈ R
n be a local coordi-

nate containing ϕλ̃(q̃). Then, the mapping � is locally given by the following:

(�λ̃ ◦ � ◦ (ϕλ̃ × id)−1)(t, p)

= (�λ̃ ◦ � ◦ (ϕ−1
λ̃

× id−1))(t, p)

= (�λ̃ ◦ �)(ϕ−1
λ̃

(t), p)

= �λ̃(�(ϕ−1
λ̃

(t), p))

= �λ̃( j
1(G(p,A) ◦ f )(ϕ−1

λ̃
(t)))

= (�λ̃ ◦ j1(G(p,A) ◦ f ) ◦ ϕ−1
λ̃

)(t)

=
(
t, (G(p,A) ◦ f ◦ ϕ−1

λ̃
)(t),

∂(G1 ◦ f ◦ ϕ−1
λ̃

)

∂t1
(t), . . . ,

∂(G1 ◦ f ◦ ϕ−1
λ̃

)

∂tn
(t),

· · · · · · · · · ,

∂(Gm ◦ f ◦ ϕ−1
λ̃

)

∂t1
(t), . . . ,

∂(Gm ◦ f ◦ ϕ−1
λ̃

)

∂tn
(t)

)

=
(
t, (G(p,A) ◦ f ◦ ϕ−1

λ̃
)(t),

2
m∑
j=1

a1 j ( f̃ j (t) − p1 j )
∂ f̃ j
∂t1

(t), . . . , 2
m∑
j=1

a1 j ( f̃ j (t) − p1 j )
∂ f̃ j
∂tn

(t),

· · · · · · · · · ,

2
m∑
j=1

amj ( f̃ j (t) − pmj )
∂ f̃ j
∂t1

(t), . . . , 2
m∑
j=1

amj ( f̃ j (t) − pmj )
∂ f̃ j
∂tn

(t)

⎞
⎠ ,
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where p = (p11, . . . , p1m, . . . , pm1, . . . , pmm), f = ( f1, . . . , fm), G(p,A) =
(G1, . . . ,Gm), and f̃ j = f j ◦ ϕ−1

λ̃
(1 ≤ j ≤ m). The Jacobian matrix of the map-

ping � at (q̃, p̃) is the following:

J�(q̃, p̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

En 0 · · · · · · 0
∗ · · · · · · ∗
B1 0∗∗ B2

0
. . .

Bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(ϕλ̃(q̃), p̃)

,

where En is the n × n unit matrix and Bi (1 ≤ i ≤ m) is the following n × m matrix.

Bi =

⎛
⎜⎜⎝

−2ai1
∂ f̃1
∂t1

(t) · · · −2aim
∂ f̃m
∂t1

(t)
...

. . .
...

−2ai1
∂ f̃1
∂tn

(t) · · · −2aim
∂ f̃m
∂tn

(t)

⎞
⎟⎟⎠

t=ϕλ̃(q̃)

.

In the matrix J�(q̃, p̃), remark that the matrix ∗∗ is an (m + nm) × n matrix and each
of the matrices ∗ is an m × m matrix.

Since �k(N ,Rm) is a subfiber-bundle of J 1(N ,Rm) with fiber �k , in order to
show (∗), it is clearly seen that the rank of the following matrix C is n + m + nm.

C =

⎛
⎜⎜⎜⎜⎜⎝

En+m ∗ · · · · · · ∗
B1 0

0 B2

0
. . .

Bm

⎞
⎟⎟⎟⎟⎟⎠

(ϕλ̃(q̃), p̃)

,

where En+m is the (n + m) × (n + m) unit matrix. Notice that for any i (1 ≤ i ≤
m2), the (n + m + i)th column vector ofC is the (n + i)th column vector of J�(q̃, p̃).
Let J fq̃ be the Jacobian matrix of the mapping f at q̃ . Since ai j �= 0 for any i , j
(1 ≤ i, j ≤ m), there exists anm × m regular matrix Ri such that Bi Ri = t (J fq̃) for
any i (1 ≤ i ≤ m), where t X means the transposed matrix of X . Hence, there exists
an (n + m + m2) × (n + m + m2) regular matrix R̃ such that

C R̃ =

⎛
⎜⎜⎜⎜⎜⎝

En+m ∗ · · · · · · ∗
t (J fq̃) 0

0
t (J fq̃)

0
. . .

t (J fq̃)

⎞
⎟⎟⎟⎟⎟⎠

(ϕλ̃(q̃), p̃)

.
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Since the mapping f is an immersion (n ≤ m), we have that the rank of the matrix
C R̃ is n + m + nm. Therefore, the rank of thematrixC must be n + m + nm. Hence,
we have (∗). Thus, the mapping � is transverse to the submanifold �k(N ,Rm).

By Lemma 2.1, for any k (k = 1, . . . , n), there exists a subset �̃k of (Rm)m

with Lebesgue measure zero such that for any p ∈ (Rm)m − �̃k , the mapping �p :
N → J 1(N ,Rm) is transverse to the submanifold �k(N ,Rm). Set � = ⋃n

k=1 �̃k .
Notice that � is a subset of (Rm)m with Lebesgue measure zero. Then, for any
p ∈ (Rm)m − �, themapping�p : N → J 1(N ,Rm) is transverse to the submanifold
�k(N ,Rm) for any k (k = 1, . . . , n).

In order to show that for any p ∈ (Rm)m − �, the mappingG(p,A) ◦ f : N → R
m

is an immersion, it is sufficient to show that for any p ∈ (Rm)m − �, it follows that
�p(N )

⋂ ⋃n
k=1 �k(N ,Rm) = ∅.

Suppose that there exists an element p0 ∈ (Rm)m − � such that there exists an
element q0 ∈ N such that �p0(q0) ∈ ⋃n

k=1 �k(N ,Rm). Then, there exists a natural
number k ′ (1 ≤ k ′ ≤ n) such that �p0(q0) ∈ �k ′

(N ,Rm). Since �p0 is transverse to
�k ′

(N ,Rm), we have the following:

d(�p0)q0(Tq0N ) + T�p0 (q0)
�k ′

(N ,Rm) = T�p0 (q0)
J 1(N ,Rm).

Hence, we have

dim d(�p0)q0(Tq0N ) ≥ dim T�p0 (q0)
J 1(N ,Rm) − dim T�p0 (q0)

�k ′
(N ,Rm)

= codim T�p0 (q0)
�k ′

(N ,Rm).

Thus, we have n ≥ k ′(m − n + k ′). This contradicts the assumptions m ≥ 2n and
k ′ ≥ 1. �

4 Proof of Theorem 2

Let � be the subset of R2m defined by � = {(y, y) | y ∈ R
m}. It is clearly seen that

� is a submanifold of R2m such that

codim � = dim R
2m − dim � = m.

Set N (2) = {(q, q ′) ∈ N 2 | q �= q ′}. Notice that N (2) is an open submanifold of N 2.
Now, let � : N (2) × (Rm)m → R

2m be the mapping defined by

�(q, q ′, p) = (
(G(p,A) ◦ f )(q), (G(p,A) ◦ f )(q ′)

)
.

We will show first that the mapping � is transverse to the submanifold �. It is
sufficient to show that if �(̃q, q̃ ′, p̃) ∈ �, then the following (∗∗) holds.
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d�(q̃ ,̃q ′, p̃)(T(q̃ ,̃q ′, p̃)(N
(2) × (Rm)m)) + T�(q̃ ,̃q ′, p̃)� = T�(q̃ ,̃q ′, p̃)R

2m . (∗∗)

Let {(Uλ,ϕλ)}λ∈� be a coordinate neighborhood system of N . There exists a
coordinate neighborhood

(
Uλ̃ ×Uλ̃′ × (Rm)m,ϕλ̃ × ϕλ̃′ × id

)
containing the point

(q̃, q̃ ′, p̃) of N (2) × (Rm)m , where id is the identity mapping of (Rm)m into
(Rm)m , and the mapping ϕλ̃ × ϕλ̃′ × id : Uλ̃ ×Uλ̃′ × (Rm)m → R

n × R
n × (Rm)m

is defined by
(
ϕλ̃ × ϕλ̃′ × id

)
(q, q ′, p) = (

ϕλ̃(q),ϕλ̃′(q ′), id(p)
)
. Let t = (t1, . . . ,

tn) be a local coordinate containing ϕλ̃(q̃), and let t ′ = (t ′1 . . . , t ′n) be a local coordi-
nate containing ϕλ̃′(q̃ ′). Then, the mapping � is locally given by the following:

� ◦ (
ϕλ̃ × ϕλ̃′ × id

)−1
(t, t ′, p)

= � ◦
(
ϕ−1

λ̃
× ϕ−1

λ̃′ × id−1
)

(t, t ′, p)

= �
(
ϕ−1

λ̃
(t),ϕ−1

λ̃′ (t ′), p
)

=
(
(G(p,A) ◦ f ◦ ϕ−1

λ̃
)(t), (G(p,A) ◦ f ◦ ϕ−1

λ̃′ )(t ′)
)

=
⎛
⎝

m∑
j=1

a1 j ( f̃ j (t) − p1 j )
2, . . . ,

m∑
j=1

amj ( f̃ j (t) − pmj )
2,

m∑
j=1

a1 j ( f̃
′
j (t

′) − p1 j )
2, . . . ,

m∑
j=1

amj ( f̃
′
j (t

′) − pmj )
2

⎞
⎠ ,

where p = (p11, . . . , p1m, . . . , pm1, . . . , pmm), f = ( f1, . . . , fm), f̃ j = f j ◦ ϕ−1
λ̃
,

and f̃ ′
j = f j ◦ ϕ−1

λ̃′ (1 ≤ j ≤ m). The Jacobian matrix of the mapping� at (q̃, q̃ ′, p̃)
is the following:

J�(q̃ ,̃q ′, p̃) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0
b2

0
. . .

∗ bm
b′

1 0
b′

2

0
. . .

b′
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(ϕλ̃(q̃),ϕλ̃′ (q̃ ′), p̃)

,

where

bi = −2
(
ai1( f̃1(t) − pi1), . . . , aim( f̃m(t) − pim)

)
,

b′
i = −2

(
ai1( f̃

′
1(t

′) − pi1), . . . , aim( f̃ ′
m(t ′) − pim)

)
.
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By seeing the construction of T�(q̃ ,̃q ′, p̃)�, in order to show (∗∗), it is sufficient to
show that the rank of the following matrix D is 2m.

D =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b1 0
Em b2

0
. . .

bm
b′

1 0
Em b′

2

0
. . .

b′
m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(ϕλ̃(q̃),ϕλ̃′ (q̃ ′), p̃)

,

where Em is them × m unit matrix. Notice that for any i (1 ≤ i ≤ m2), the (m + i)th
column vector of D is the (2n + i)th column vector of J�(q̃ ,̃q ′, p̃).

By ai j �= 0, there exist an (m + m2) × (m + m2) regular matrix Q1 such that the
following holds:

DQ1 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f̃1(t) − p11 · · · f̃m(t) − p1m

Em 0
. . . 0

f̃1(t) − pm1 · · · f̃m(t) − pmm

f̃ ′
1(t

′) − p11 · · · f̃ ′
m(t ′) − p1m

Em 0
. . . 0

f̃ ′
1(t

′) − pm1 · · · f̃ ′
m(t ′) − pmm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(t,t ′,p)

,

where (t, t ′, p) = (ϕλ̃(q̃),ϕλ̃′(q̃ ′), p̃). It is clearly seen that there exist a 2m × 2m
regular matrix Q2 and an (m + m2) × (m + m2) regular matrix Q3 such that the
following holds:

Q2DQ1Q3 =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

Em 0

f̃ ′
1(t

′) − f̃1(t) · · · f̃ ′
m(t ′) − f̃m(t)

0 0
. . . 0

f̃ ′
1(t

′) − f̃1(t) · · · f̃ ′
m(t ′) − f̃m(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

(t,t ′,p)

,

where (t, t ′, p) = (ϕλ̃(q̃),ϕλ̃′(q̃ ′), p̃). Since f is injective, there exists a natural
number j (1 ≤ j ≤ m) such that f̃ ′

j (t
′) − f̃ j (t) �= 0. Hence, we have that the rank

of Q2DQ1Q3 is 2m. Therefore, the rank of the matrix D must be 2m. Hence, we
have (∗∗). Thus, the mapping � is transverse to the submanifold �.
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By Lemma 2.1, there exists a subset � of (Rm)m with Lebesgue measure zero
such that for any p ∈ (Rm)m − �, the mapping �p : N (2) → R

2m is transverse to
the submanifold �.

In order to prove that for any p ∈ (Rm)m − �, themappingG(p,A) ◦ f is injective,
it is sufficient to show that for any p ∈ (Rm)m − �, it follows that �p(N (2)) ∩ � =
∅. Suppose that there exists an element p0 ∈ (Rm)m − � such that there exists an
element (q0, q ′

0) ∈ N (2) such that �p0(q0, q
′
0) ∈ �. Since �p0 is transverse to �, we

have the following:

d(�p0)(q0,q ′
0)
(T(q0,q ′

0)
N (2)) + T�p0 (q0,q

′
0)
� = T�p0 (q0,q

′
0)
R

2m .

Hence, we have

dim d(�p0)(q0,q ′
0)
(T(q0,q ′

0)
N (2)) ≥ dim T�p0 (q0,q

′
0)
R

2m − dim T�p0 (q0,q
′
0)
�

= codim T�p0 (q0,q
′
0)
�.

Thus, we have 2n ≥ m. This contradicts the assumption m ≥ 2n + 1. �

5 Appendix

The proofs of the following Lemmas 5.1 and 5.2 are given in Sects. 5.1 and 5.2,
respectively.

Lemma 5.1 Any generalized distance-squared mapping of equidimensional case
G(p,A) : Rm → R

m has singularities.

Lemma 5.2 Any generalized distance-squared mapping of equidimensional case
G(p,A) : Rm → R

m is not injective.

5.1 Proof of Lemma 5.1

Let J (G(p,A))x be the Jacobian matrix of the mapping G(p,A) at x .

J (G(p,A))x = 2

⎛
⎜⎝

a11(x1 − p11) · · · a1m(xm − p1m)
...

. . .
...

am1(x1 − pm1) · · · amm(xm − pmm)

⎞
⎟⎠

x

.

If x = pi (1 ≤ i ≤ m), then we have that rankJ (G(p,A))pi ≤ m − 1. �
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5.2 Proof of Lemma 5.2

Set G(p,A) = (G1, . . . ,Gm). It is clear that G−1
(p,A)({0} × R

m−1) = G−1
1 (0). Since

G1 has the form G1(x) = ∑m
j=1 a1 j (x j − p1 j )2 (a1 j �= 0), it is easy to see that

G−1
1 (0) = {p1} or G−1

1 (0) − {p1} is homotopy equivalent to Sk × Sm−2−k where
k is an integer such that 0 ≤ k ≤ m − 2. Hence, it follows that the set-germ
({0} × R

m−1,G(p,A)(p1)) is not homeomorphic to the set-germ (G−1
1 (0), p1).

On the other hand, suppose that G(p,A) is injective. Then, by the invariance of
domain theorem ([9]), G−1

(p,A) : G(p,A)(R
m) → R

m must be a homeomorphism. It
follows that the set-germ ({0} × R

m−1,G(p,A)(p1)) is homeomorphic to the set-germ
(G−1

1 (0), p1), which is a contradiction. Therefore, G(p,A) is not injective. �
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Arc Criterion of Normal Embedding

Lev Birbrair and Rodrigo Mendes

Abstract We present a criterion of local normal embedding of a semialgebraic (or
definable in a polynomially bounded o-minimal structure) germ contained in R

n in
terms of orders of contact of arcs. Namely, we prove that a semialgebraic germ is
normally embedded if and only if for any pair of arcs, coming to this point the inner
order of contact is equal to the outer order of contact.
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1 Introduction

Aconnected subset of Euclidean space is called normally embedded if the two natural
metrics, outer and the inner metric, are bi-Lipschitz equivalent and the bi-Lipschitz
homeomorphism is given by the identity map. The notion of Normal Embedding
(or in other words Lipschitz Normal Embedding) became rather popular in recent
development of Singularity Theory. Is used in Metric Homology Theory of Birbrair
and Brasselet [1], in Vanishing Homology of Valette [11], in Lipschitz Regularity
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theorem [2]. Several authors are investigating some special algebraic and semialge-
braic sets in the spirit of their normal embedding. See, for example, the recent works
[3, 7, 9, 10]. In this note we present an arc criterion of Normal Embedding that, we
hope, it can be useful in these studies. The criterion is based on the arc selection
lemma, an extremely important tool of Real Algebraic Geometry.

2 Normally Embedded Sets

Let X ⊂ R
n be a connected semialgebraic set. We define an inner metric on X as

follows: Let x, y ∈ X . The inner distance dX (x, y) is defined as the infimum of
lengths of rectifiable arcs γ : [0, 1] → X such that γ(0) = x and γ(1) = y. Notice
that for connected semialgebraic sets the inner metric is well-defined.

Definition 2.1 A semialgebraic subset X ⊂ R
n is called normally embedded if there

exists λ > 0 such that
dX (x1, x2) ≤ λ‖x1 − x2‖,

for all x1, x2 ∈ X .

X is called normally embedded at x0 if for sufficiently small ε > 0, X ∩ Bx0,ε is
normally embedded.Wemay also say that the germ of X at x0 is normally embedded.

Considering real or complex cusps x2 = y3, one can see that the inner metric is
not bi-Lipschitz equivalent to the Euclidean metric. On the other hand, the smooth
compact semialgebraic sets are normally embedded.

By the results of Kurdyka and Orro [8] (see also Birbrair and Mostowski [4]),
there exists a semialgebraic metric

dP : X × X → R,

such that (X, dX ) and (X, dP) are bi-Lipschitz equivalent and the identity map is
bi-Lipschitz for dX and dP .

An arc γ with initial point at x0 is a continuous semialgebraicmap γ : [0, ε) → R
n

such that γ(0) = x0. When it does not lead to a confusion, we use the same notation
for an arc and its image in R

n .
For a semialgebraic function of one variable f (t), where f (0) = 0, we have

f (t) = a1tα + o(tα), for some a1 ∈ R and α ∈ Q+. The number α is called the
order of f at 0. We use the notation ordt f .

We can define the outer order of tangency in the following way:

tord(γ1, γ2) = ordt‖γ1(t) − γ2(t)‖,

where the arcs γ1 and γ2 are parametrized by the outer distance to the singular point,
i.e., ‖γi (t) − x0‖ = t , i = 1, 2. Given two arcs γ1, γ2 contained in X , we may define



Arc Criterion of Normal Embedding 551

the inner order of tangency by

tordinn(γ1, γ2) = ordt (dP(γ1(t), γ2(t))),

where the arcs γ1 and γ2 are again parametrized by the outer distance to the singular
point.

Theorem 2.2 (Criterion of Normal embedding) Let X ⊂ R
n be a closed semialge-

braic germ at x0. Then the following assertions are equivalent:

• The germ of X at x0 is normally embedded;
• There exists a constant k > 0 such that for any pair of arcs γ1, γ2 ⊂ X and
parametrized by the distance at x0, (γi (0) = x0) we have

dX (γ1(t), γ2(t)) ≤ k‖γ1(t) − γ2(t))‖;

• For any pair of arcs γ1, γ2 parametrized by the distance to x0 one has:

tord(γ1, γ2) = tordinn(γ1, γ2).

Remark 2.3 The theorem is formulated in the semialgebraic category, but the result
is true for polynomially bounded o-minimal structures. Actually, all the ingredients
of the proof work in that case.

Proof If X is normally embedded at x0, the inequality above follows from the def-
inition. Assume now that X is not normally embedded at x0. Consider a map ψ :
X × X → R

2, defined as follows: ψ(x1, x2) = (‖x1 − x2‖, dP(x1, x2)). This map is
semialgebraic. Since the distance functions ‖x1 − x2‖ and dP(x1, x2) are continu-
ous, then the imageψ(X × X) is closed and locally connected atψ(x0, x0) = 0 ∈ R

2,
x0 ∈ X .Moreover, this set is semialgebraic, according to Tarski-Seidenberg theorem.
Since X is not normally embedded at x0, the set ψ(X × X)must be locally bounded
near 0 ∈ R

2 by an arc β ⊂ ψ(X × X) such that β is tangent to the y-axis. Taking a
arc (γ̃1, γ̃2) belonging to the inverse image of β, we obtain that

ordtdP(γ̃1(t), γ̃2(t)) < ordt (‖γ̃1(t) − γ̃2(t)‖). (1)

We may suppose that the arc γ̃1 is parametrized by the distance to the singular point
x0. But, we cannot suppose that the other arc is also parametrized the same way. That
is why we need the order of comparison lemma.

Remark 2.4 (Non-archimedean property) (see for example [6]). Let γ1, γ2 and γ3
be three different semialgebraic arcs of X , γi (0) = x0 (i = 1, 2, 3). Let α12,α23 and
α13 be outer orders of tangency between the pairs (γ1, γ2), (γ2, γ3) and (γ1, γ3).
Suppose that α12 ≤ α23 ≤ α13. Then α12 = α23.

Proof ‖γ1(t) − γ2(t)‖ ≤ ‖γ1(t) − γ3(t)‖ + ‖γ3(t) − γ2(t)‖ ⇒ α12 ≥ α23. �
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Observe that the function dP(γ1(t), γ2) given by

dP(γ1(t), γ2) = in f {dP(γ1(t), y); y ∈ γ2} (2)

is a semialgebraic function and dP(γ1(0), γ2) = 0. Then, ordtdP(γ1(t), γ2) is well
defined.

Lemma 2.5 (Inner order comparison lemma) tordinn(γ1, γ2) = ordt (dP(γ1(t), γ2)).

Proof Consider a pancake decomposition {Xi } of X , where the metric dP cor-
responds to this decomposition (see [4]). By definition of metric dP , we choose
semialgebraic arcs β̃1, . . . β̃N , β̃i (0) = x0, i = 1, . . . , N , such that all the pairs
(γ1, β̃1), (β̃1, β̃2), . . . , (β̃N , γ2) belong to the same “pancake”, i.e., a normally
embedded subset of X (see [4]). For t ∈ [0, δ), δ sufficient small, we have

dP(γ1(t), γ2) = ‖γ1(t) − β̃1(t)‖ + ‖β̃1(t) − β̃2(t)‖ + . . . + ‖β̃N (t) − γ̃2(t)‖.

Notice that arcs β̃i are not necessarily parametrized by the distance to x0. Moreover,
we have

‖γ1(t) − β̃S(t)‖ ≥ douter (γ1(t), β̃S),∀S, (3)

where douter (γ1(t), β̃S) is defined as in (2), considering the euclidean distance. Oth-
erwise,

dP(γ1(t), γ2(t)) ≤ ‖γ1(t) − β1(t)‖ + ‖β1(t) − β2(t)‖ + . . . + ‖βN (t) − γ2(t)‖,

where now βi (t) and γ2(t) is a parametrization of β̃i and γ2 by distance to the origin.
By the non-archimedean property, we have

‖γ1(t) − β1(t)‖ + ‖β1(t) − β2(t)‖ + . . . + ‖βN (t) − γ2(t)‖ � ‖βS(t) − βS−1(t)‖,

for some S ∈ {1, . . . , N + 1}, where β0(t) is γ1(t) and βN+1(t) is γ2(t) and

‖βS(t) − βS−1(t)‖ � ‖γ1(t) − βS(t)‖,

where f (t) � g(t) means that the functions have the same order. Now, the outer
order comparison lemma of [6] says:

‖γ1(t) − βS(t)‖ � douter (γ1(t), β̃S).

So, there exists constant C2 > 0 such that

dP(γ1(t), γ2(t)) ≤ C2douter (γ1(t), β̃S). (4)

Hence, by (3) and (4) the lemma is proved. �
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End of the proof of Theorem 2.2:
Since dX is bi-Lipschitz equivalent to the dP , using the previous lemma and the

inequality (1), we obtain that

lim
t→0+

dX (γ1(t), γ2(t))

‖γ1(t) − γ2(t)‖ = +∞,

or, in other words, tord(γ1, γ2) > tordinn(γ1, γ2), where γ1, γ2 can be considered
parametrized by the distance to the point x0. �
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