
Logics for Actor Networks:
A Case Study in Constrained Hybridization

José Fiadeiro1, Ionuţ Ţuţu1(B), Antónia Lopes2, and Dusko Pavlovic3

1 Department of Computer Science,
Royal Holloway University of London, Egham, UK
jose.fiadeiro@rhul.ac.uk, ittutu@gmail.com

2 Department of Informatics, Faculty of Sciences,
University of Lisbon, Lisbon, Portugal

malopes@ciencias.ulisboa.pt
3 Department of Information and Computer Sciences,

University of Hawaii, Honolulu, USA
dusko@hawaii.edu

Abstract. Actor Networks are a modeling framework for cyber-physical
system protocols based on Latour’s actor-network theory that addresses
the way we now create and exploit the power of computational net-
works. We advance a logic for modeling and reasoning about such actor
networks, which is obtained through a two-stage constrained hybridiza-
tion process. The first stage results in a logic that captures the structure
of actor networks and the way knowledge flows across them; the second
addresses the dynamic aspects of actor networks, that is the way they
can evolve as a result of the interactions that occur within them. For
each of these stages, we develop a sound and complete proof system.

1 Introduction

Over the past few years, there has been a renewed interest in modal logics for
computer science through the family of the so-called hybrid logics (see [1] for a
comprehensive overview). The development of hybrid logics originated in Arthur
Prior’s work in the 1960s [2]. In their most basic form, these are logics obtained
by enriching ordinary modal logics with nominals—symbols that name individual
states (possible worlds) in Kripke models—and dedicated satisfaction operators
@a that enable a change of perspective from the current state to the one that
corresponds to the nominal a. A significant body of research exists around this
class of logics, among which [3–6] are recent publications.

In this paper, we are specifically interested in the present-day applications of
hybrid logics to the specification and verification of reconfigurable systems [7]. In
a nutshell, the idea is that system configurations (and the functionalities associ-
ated with them) can be regarded as local models of a Kripke structure, and that
they can change simply by switching from one mode of operation to another via
an accessibility relation. The key advancement here lies in the fact that the char-
acteristic features of hybrid logic can be developed, through a process known as
c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 98–114, 2018.
https://doi.org/10.1007/978-3-319-73579-5_7

Logics for Actor Networks 99

hybridization [8], on top of an arbitrary logic used for expressing configuration-
specific requirements. This means that, depending on the base logic, configura-
tions can be captured, for example, as algebras, relational structures or, when
the hybridization process is iterated, even as Kripke models.

Actor Networks. Our interest in this area results from a new modeling frame-
work for cyber-physical system protocols proposed in [9] around the concept of
Actor Network (or ant), which addresses networks whose components are no
longer limited to programs but can also include humans or physical artifacts
as actors. ants should therefore be understood in the wider sense of Latour’s
actor-network theory [10]: actors are cyber-physical entities that have shared
agency—from people, to objects, and to locations; they interact through so-
called channels that account, for example, for observations that an actor may
make of another, of control that an actor may exert on another, or of movement
of an actor inside another (say, a person to a location). Interaction, rather than
computation, has become the critical source of complexity, thus giving rise to
new challenges in ensuring the reliability of the systems that are now operating
in cyberspace.

Contributions. The ordinary hybridization process yields logical systems that
are suitable for dealing with either the static/structural aspects or with the
dynamic aspects of actor networks. From a static perspective, hybrid logics can
be naturally used, for example, to give faithful descriptions of the shapes of net-
works, of the (states of the) actors involved, or of the channels through which
interactions can take place. However, accommodating at the same time both the
structure and the behaviour of ants raises some difficulties because these two
aspects require distinct, and possibly conflicting, interpretations of the hybrid
features. For example, from a structural point of view, modalities denote chan-
nels, whereas from a behavioural point of view they stand for graphs of inter-
actions between actors. That is, the challenge raised by ants lies precisely in
capturing the way in which the structure of such networks evolves. This leads us
to propose a two-layered hybridization process, where the first level corresponds
to the structure, and the second to the dynamics of actor networks.

The paper consists of two main technical sections. In Sect. 2 we introduce the
underlying model theory of actor networks. We start by formalizing the main
static concepts: actors, interaction channels, the knowledge that actors may have
and the way it may be acquired across certain channels, and the placement
of some actors relative to other actors. Then, we formalize the key notion of
interaction and the way an interaction can change the state of a network.

Section 3 is devoted to the logics through which we can specify and reason
about the states of an actor network and about the state transitions associated
with interactions. These logics are obtained through a sequence of two processes
of constrained hybridization, meaning that (a) the models of the hybrid logics
implicitly satisfy additional semantic constraints, and (b) we actually operate

100 J. Fiadeiro et al.

across three logical levels—each level captures a different aspect of actor net-
works (knowledge, structure, or dynamics), and each is defined as an exogenous
enrichment (with new hybrid features) of the previous level.

Notational Conventions. Most of the structures we deal with in this paper
are presented as tuples—whose components, in turn, may also be tuple-based
structures—that satisfy certain cohesion properties. To keep the notations as
simple as possible, and avoid spelling out all the components of a given struc-
ture, we make use of subscripts. For example, we may denote the set N of nodes
of a graph G by NG , the underlying graph G of an ant schema A by GA, and the
domain D of an actor network ν by Dν . When there is no risk of confusion, we
overload this notation in order to refer to the hereditary components of a struc-
ture. That is, we may denote, for example, the set N of nodes of the underlying
graph of an ant schema A by NA—even if N is not a direct component of A.

2 Actor Networks

2.1 Schemas

Definition 1 (Schema). An ant schema A consists of:

– a finite directed graph G = 〈N , C, δ, ρ〉, where N is a non-empty set (of nodes,
called actors), C is a set (of edges, called channels), and δ and ρ are maps
C → N that give the domain (origin) and codomain (target) of every channel;

– a partially ordered set T (of channel types, with a subtype relationship);
– a function τ : C → 2T that assigns a non-empty upper set1 of channel types to

every channel, such that for every n, n′ ∈ N and κ ∈ T there is at most one
channel c ∈ C such that δ(c) = n, ρ(c) = n′, and κ ∈ τ(c); and

– a set P (of propositional symbols).

The nodes of an ant schema represent actors executing a given protocol and
edges represent channels that link together those actors. Channels are typed in
order to account for different modes of relationship between actors. The propo-
sitional symbols are used to represent knowledge that is held by the different
actors, including data. Pieces of data (or knowledge) have by themselves no
agency in the context of the protocol, otherwise they would be actors; for exam-
ple, in a given protocol, money could be data but, in another protocol, bank
notes could be actors, in the sense that they can change hands, be lost, and so
on. Knowledge/data can be transmitted across channels as appropriate.

Example 2. Consider the ant schema Elevator whose graph and typing function
are depicted in Fig. 1. The nodes F0 and F1 correspond to the ground and first
floor of a building, and E to the elevator proper, which we often refer to as

1 We recall that an upper set of T is an upward closed subset U of T . That is, U
contains all channel types κ′ ∈ T for which there exists κ ∈ U such that κ ≤ κ′.

Logics for Actor Networks 101

A
C

F0

F1

E

P0

P1

btn

btn

btn

ctr

door

door

obs
ctr

door

ctr
obs door

obs

obs

mov mov

Fig. 1. The graph and typing function of the ant schema Elevator

Elevator unless it is ambiguous. The node C corresponds to the elevator cabin,
which we often refer to as Cabin, and P0 and P1 correspond to the two platforms
where the cabin can be—P0 for the ground floor and P1 for the first floor. The
node A represents a user of the elevator, which we refer to as Alice.

Elevator has a number of channels of different types:

– The channel type mov captures the movement of one actor inside another.
The two channels of type mov that connect P0 and P1 allow the cabin to
move between the two platforms (up or down).

– The type door is a subtype of mov . The two channels of type door connect
F0 and F1 to C in order to allow users to enter or exit the cabin from or to
the floor. Although these two channels are also of type mov , for readability
we tend to depict only the minimal types when representing ant schemas.

– The channel type obs captures observations that an actor may make of
another. The channels of type obs that connect E to F0 and F1 account for
observations of the state of Elevator at either floor, while those that connect
F0 and F1 to A account for observations that Alice makes of either floor.

– The channel type ctr captures forms of control that one actor may exert on
another. The two channels of type ctr that connect F0 to E and F1 to E are for
transmitting requests from floors to Elevator, and the channel that connects
C to E is for transmitting requests from Cabin to Elevator.

– The channel subtype btn of ctr captures the special case of control achieved
through a button. The three channels of type btn that connect A to F0, F1,
and C account for the buttons that Alice can press at either floor or at Cabin.

Last but not least, the ant schema Elevator has two propositional symbols,
C at P0 and C at P1. These are used to capture knowledge of where Cabin is.

2.2 States

A structure for an ant schema A consists of a subgraph of GA together with a
forest (or placement graph, as in [11]) over its nodes that captures ‘location’.

102 J. Fiadeiro et al.

Definition 3 (Structure). A structure for a schema A is a pair 〈H,F〉 where:

– H is a subgraph of GA, and
– F is a forest over NH, meaning that every node n has either none or a unique

parent, denoted F(n). Nodes without a parent are called roots.

We say that 〈H1,F1〉 is a substructure of (or is included in) 〈H2,F2〉 if:

– H1 is a subgraph of H2, and
– for every n ∈ NH1 such that F1(n) is defined, F2(n) is also defined and equal

to F1(n)—that is, the hierarchy is strictly preserved.

The notion of substructure defines a partial order, which we denote by �.

Example 4. An ant structure for Elevator is depicted in Fig. 2. The forest, on
the right, places the two platforms inside Elevator, the Cabin inside the platform
of the first floor, and Alice at the ground floor; both floors are outside Elevator.

A
C

F0

F1

E

P0

P1

btn

ctr

obs
ctr

ctr

obs

obs

F0

A

E

P0
P1

C

F1

Fig. 2. An ant structure for Elevator: the graph on the left and the forest on the right

The graph, on the left, indicates the channels that are available: for example,
the channel that corresponds to the button that Alice can press to call the
elevator, and the one that connects F0 to E and allows the floor to transmit
requests to Elevator. Notice that, for readability, we always include the channel
types in figures, even though they are not formally part of ant structures.

To better visualize ant structures, we combine the graph and the forest com-
ponents through the nesting of nodes in the graph. This can be seen in Fig. 3,
where three ant structures are presented.

A state is an ant structure together with a valuation of the propositional
symbols, which assigns to each node and propositional symbol the truth value of
the propositional symbol at that node. We work with a three-valued Łukasiewicz
logic, i.e., propositions may have values + (true), − (false), or ± (undefined).

Definition 5 (State). A state of an ant schema A consists of a structure S
for A such that NS = NA (i.e., the structure has all the nodes of the schema)
together with, for each node n, a valuation Vn : PA → {+ , − , ±}.

We denote the set of states of an ant schema A by SA and, following our
notational convention, the structure underlying a state σ by Sσ.

Logics for Actor Networks 103

F0

E

A

btn
ctr

(a)

P0

P1

E

C

mov

(b)

F0
P0

E

A

C

obs

obs door

(c)

Fig. 3. Interactions of Elevator: (a) callElevator0, (b) moveCabin0, and (c) enterCabin0

Example 6. As an example, we define the state elevator0 whose underlying
structure is shown in the top-left part of Fig. 4 and whose valuation is given by:

VE(C at P0) = VF0(C at P0) = VF1(C at P0) = VA(C at P0) = − ,

VE(C at P1) = VF0(C at P1) = VF1(C at P1) = VA(C at P1) = + , and
Vn(C at P0) = Vn(C at P1) = ± for all other nodes.

That is, the actors/nodes E, F0, F1 and A all know that Cabin is at the platform
P1 (and that it is not at P0); no other node knows where Cabin is.

2.3 Interactions

Channels provide the means for actors to interact with each other. The interac-
tions through which actors change protocol states can be more complex (in the
sense that they can involve many actors and channels) and are therefore defined
as ant structures: given an interaction, its nodes are the actors of the ant schema
that are involved in the interaction, and its channels are those through which
those actors interact with each other.

Definition 7 (Interaction). An interaction in the context of an ant schema
A is a structure for A. We denote by IA the set of all interactions of A.

Example 8. Figure 3 depicts three interactions for the ant schema Elevator:

(a) callElevator0: Alice is at the ground floor and presses the button to call the
elevator; the request is transmitted to Elevator through a ctr channel.

(b) moveCabin0: Cabin is at the first floor and the channel through which it can
move to the ground floor is available.

(c) enterCabin0: Alice is at the ground floor and observes the position of the
cabin through the two channels of type obs; the channel of type door that
connects F0 to C is available for Alice to enter the cabin.

104 J. Fiadeiro et al.

F0

F1

P0

P1

E

A

C

btn
ctr

obs

ctr

obs

obs

ctr

elevator0

F0

F1

P0

P1

E

A

C

ctr

obs

ctr

obs

obs

ctr

mov

elevator1

F0

F1

P0

P1

E

A

C

btn
ctr

obs

ctr

obs

obs
ctr

elevator′0

F0

F1

P0

P1

E

A

C

ctr

obs

ctr

obs

obs
ctrdoor

door

elevator2

callElevator0

callElevator0

moveCabin0

Fig. 4. Transitions performed by the interactions callElevator0 and moveCabin0

2.4 Networks

Protocols are formalized as actor networks. An actor network consists of (a) an
ant schema, which contains all the actors and the channels that connect them;
(b) a set of possible worlds—each being associated with a so-called admissible
state—including a subset of designated initial worlds; (c) a set of all possible
interactions through which the actor network can evolve; and (d) for every such
interaction, a transition relation on the set of worlds. Formally,

Definition 9 (Actor network). An actor network ν consists of:

– an ant schema A,
– a domain (set of worlds) D together with a labeling function ς : D → SA,
– a non-empty subset D0 ⊆ D of initial worlds (whose labels are initial states),
– a set I ⊆ IA of interactions for A,
– a transition relation (−−→) ⊆ D × I × D such that, for each interaction ι ∈ I,

w
ι−−→ w′ implies ι � Sς(w) (interactions are substructures of the source states).

Logics for Actor Networks 105

We say that a state of A is admissible for ν if it corresponds to one of its worlds;
we denote by Sν the image of D under ς (i.e., the set of admissible states of ν).

Therefore, an actor network can be regarded as a labeled transition system over
a set of states of the schema, transitions being labeled with interactions.

Example 10. An actor network νElevator with Elevator as its schema could have,
for example, elevator0 (labeled with the state defined in Example 4) as one
of its initial worlds, and the worlds and transitions presented in Fig. 4, among
others. Note that the valuations are not included in these diagrams; an axiomatic
presentation of the valuations is discussed in Sect. 3.

The ‘horizontal’ transitions in Fig. 4 are performed by the interaction callEl-
evator0 (cf. Fig. 3(a)). The one at the top starts at elevator0. Although several
actors and channels are present in elevator0, the interaction callElevator0 indi-
cates that the actors that are active in the transition are Alice, Elevator and F0
(the ground floor), and that the active channels are those that connect A to F0
and F0 to E. That is to say, Alice presses the button at F0 and the request is
transmitted to Elevator. The transition to elevator1 activates the channel of type
mov that connects P1 to P0 through which Elevator can respond to the request
(i.e., move the cabin), and closes the channel of type btn from A to F0, i.e., Alice
is no longer able to call the elevator.

The other transition (at the bottom) performed by callElevator0 starts in a
different world, elevator′0, where Cabin is in P0. It opens the two channels of type
door between F0 and C that allow users to enter or exit the cabin.

The ‘vertical’ transition from elevator1 to elevator2 is performed by the inter-
action moveCabin0 (cf. Fig. 3(b)). As indicated by the interaction, this computa-
tion is local to P0, P1, F0, F1, E, and C. The transition moves the cabin from P1
to P0, closes the channel of type mov that connects the two platforms and—just
like the transition between elevator′0 and elevator2—opens the two channels of
type door that allow users to enter or exit the cabin.

3 Logics for ANts

3.1 The Base Logic

The logics through which we can specify and reason about actor networks are
obtained through an iterated process of constrained hybridization. At the base
of this construction is the three-valued propositional Łukasiewicz logic, which we
recall below. A signature for the Łukasiewicz logic is given by a set P of atomic
propositions (the propositional symbols defined by an ant schema).

Definition 11 (Syntax). The set Ł(P) of sentences of the base logic is the least
set that includes P and is closed under negation (p) and implication (p ⊃ q).

Definition 12 (Semantics). Base-logic sentences are interpreted over func-
tions �_� : P → {+ , − , ±} as follows: The negation maps + to − and vice
versa, and leaves ± unchanged. The implication p ⊃ q evaluates to − if p = +

and q = − , to ± if p = + and q = ± or p = ± and q = − , and to + in all other
cases. We say that a proposition p is valid if �p� = + for all valuations �_�.

106 J. Fiadeiro et al.

The following modalities, which return Boolean values, are useful:

M p � (p ⊃ p) p is possibly true—i.e., it has value + or ±

L p � M p p is necessarily true—i.e., it has value +

N p � M p = L p p is necessarily false—i.e., it has value −

I p � M p ⊃ L p p is unknown—i.e., it has value ±

3.2 The State Logic

The logic through which we can specify and reason about the states of an ant is
a constrained hybridization of Ł(P). Therefore, there are two main ingredients
to consider here. Firstly, an ant-schema signature, denoted Σ in what follows,
which consists of a set P of propositional symbols (i.e., a signature of the base
Łukasiewicz logic), a countably infinite set Nom of nominals that includes a
set N of actor names, and a set T of channel types (regarded as modalities).
Secondly, a partial order on T and an edge-labeled directed finite graph G with
components N , C, δ, ρ, and τ as in Definition 1. These provide the constraints
that we impose on the models of the hybrid logic.

Definition 13 (Syntax). The syntax of the state logic is given by the grammar

φ ::= p | a | ¬φ | φ → φ | 〈κ〉φ | 〈π〉φ | @a φ | ∃b φ

where p ∈ Ł(P), a ∈ Nom, b ∈ Nom \ N , κ ∈ T , and π is a distinguished and
new parent modality. We denote this set of sentences by State(Σ).

In the most general setting, hybrid sentences are evaluated over unconstrained
Kripke models, that is over triples 〈W,R, V 〉, where W is a set of nodes or
possible worlds, R is a family of accessibility relations Rλ ⊆ W × W , indexed
by modalities λ, and V is a family of interpretations of the symbols from P
indexed by possible worlds. The semantics of hybrid logics often includes addi-
tional constraints; for example, in the S4 variant of hybrid propositional logic,
the accessibility relations are reflexive and transitive, and in the S5 variant they
are reflexive and Euclidean. The constraints that we consider for the state logic
follow from the underlying graph structure of the ant schema used:

– There is a one-to-one correspondence between actors and possible worlds. For
notational convenience, we do not distinguish possible worlds from actors.

– The accessibility relations conform to the channels and the channel types of
the schema: for each channel type κ, Rκ consists of those pairs of nodes (n, n′)
that are connected through a channel of type κ.

– The interpretation of the parent modality π is functional and acyclic.

In other words, the constrained models of the hybridization of Ł(P) that we
consider here are states of the actor-network schema A = 〈G, T , τ,P〉.

Logics for Actor Networks 107

Definition 14 (Semantics). Given a state σ = 〈S,V〉 of A, an assignment
is a map α : Nom → NS whose restriction to the set N of actor names is the
identity.2 The satisfaction relation between ant states and state-logic sentences
is parameterized by assignments α and by actors n (i.e., by nodes of S):

– σ, α, n � a iff α(a) = n;
– σ, α, n � p iff �p�n = + where �_�n is the valuation defined by Vn over P;
– σ, α, n � ¬φ iff σ, α, n
� φ;
– σ, α, n � φ1 → φ2 iff σ, α, n � φ1 implies σ, α, n � φ2;
– σ, α, n � 〈κ〉φ iff there is c ∈ C such that δ(c) = n, κ ∈ τ(c), and σ, α, ρ(c) � φ;
– σ, α, n � 〈π〉φ iff F(n) is defined and σ, α,F(n) � φ;
– σ, α, n � @a φ iff σ, α, α(a) � φ;
– σ, α, n � ∃b φ iff σ, α′, n � φ for some α′ that agrees with α on Nom \ {b}.

We also define validity of a sentence at a state to mean that it is satisfied
for every assignment at every node, validity of a sentence at an ant structure to
mean that it is satisfied at every state for it, and absolute validity of a sentence
(at a schema) to mean that it is valid at every state of the schema:

– σ � φ iff σ, α, n � φ for all assignments α : Nom → N and all n ∈ N ;
– S � φ iff σ � φ for all states σ such that S � Sσ;
– A � φ, or simply � φ, iff σ � φ for all σ ∈ SA.

The validity relations extend to sets of sentences to mean that every sentence
in the set is valid. Given a set Φ of sentences, we denote by SΦ the set of states
over which all the sentences in Φ are valid.

We use the usual propositional connectives for conjunction (∧) and disjunc-
tion (∨), as well as the dual modal operators ([_]) and quantifier (∀) given by:

– [κ]φ � ¬ 〈κ〉 ¬φ
That is, σ, α, n � [κ]φ iff σ, α, ρ(c) � φ for all c ∈ C with δ(c) = n & κ ∈ τ(c).

– [π]φ � ¬ 〈π〉 ¬φ
That is, σ, α, n � [π]φ iff σ, α,F(n) � φ if F(n) is defined.

– ∀b φ � ¬∃b ¬φ
That is, σ, α, n � ∀b φ iff σ, α′, n � φ for all α′ that agree with α on Nom \{b}.

Notice that the symbols used for the negation () and implication (⊃) in the
base logic are different from those of the state logic (¬ and →, respectively) to
mark the difference between the two levels.

Example 15. The sentences presented below are properties of (valid at) the
state elevator0 from Example 6, of its underlying structure Selevator0 , or of the ant
schema itself. Naturally, any property of Selevator0 is also a property of elevator0,
and any property of Elevator is also a property of Selevator0 . Notice, however, that
the converse does not hold for the following sentences:

2 Recall that, by Definition 5, NS = N .

108 J. Fiadeiro et al.

S1 elevator0 � (E ∨ F0 ∨ F1 ∨ A) → L (C at P1)
The actors E, F0, F1, and A know that the cabin is at the first platform.

S2 Selevator0 � @A [btn] 〈ctr〉E
Whenever Alice calls the elevator, the request is transmitted to the Elevator.

S3 Elevator �
(
(F0 ∨ F1) → [obs]A

)
∧

(
〈obs〉A → (F0 ∨ F1)

)

The floors can only be observed by Alice, and that is all Alice can observe.

Definition 16 (State specification). A state specification for an ant schema
A consists of a signature Σ for A (i.e., with the same actor names, channel types,
and propositional symbols as the schema) and a set of sentences in State(Σ).

The sentences of a state specification of an ant schema are used to restrict the
set of admissible states of the actor networks defined over that schema.

Example 17. A state specification of Elevator could consist of the instances of
the following sentence schemas, which we denote by ΦElevator:

E1 @C 〈π〉Pi ↔ @E L (C at Pi) for i ∈ {0, 1}
The cabin is at platform i if and only if the elevator knows it.

E2 p → [obs] p for every p ∈ Ł(P)
Knowledge is propagated through observation channels.

That is, this specification of Elevator determines what knowledge nodes have
about the whereabouts of Cabin: the elevator proper always knows where Cabin is
and the other nodes can acquire that information through observation channels.

The state logic is useful for deriving properties of states, ant structures, and of
ant schemas and their specifications.

Definition 18 (Entailment). Given a finite set Φ of sentences and a sentence
φ (defined over the same signature as Φ), we say that φ is a semantic consequence
of Φ, or that Φ entails φ, and write Φ � φ, if σ � φ for all σ ∈ SΦ.

The following two propositions allow us to redefine the three kinds validity of a
state sentence in terms of entailment. They provide a syntactic characterization
(as a set of sentences) Φσ/ΦS for every state σ or structure S. A sentence φ is
valid at a state σ if and only if Φσ � φ, and is valid at an ant structure S if and
only if ΦS � φ; obviously, φ is absolutely valid if and only if ∅ � φ.

Proposition 19. Let ΦS be the (finite) set of all sentences of the form @a 〈λ〉 b
that are valid at a structure S, where a and b are actor names and λ is a modality
(i.e., a channel type or the parent modality π). Then SΦS = {σ ∈ SA | S � Sσ}.

Proposition 20. For every state σ, let Φσ be the (finite) set that extends ΦSσ

with all state sentences of the form ¬@a 〈κ〉 b, @a [π] false, @a Lp, @a Np, or
@a Ip that are valid at σ, where a and b are actor names, κ is a type that labels
one of the channels between a and b in the ant schema, and p is a propositional
symbol. Then σ is the only state that satisfies Φσ.

Logics for Actor Networks 109

Entailment can be derived syntactically through the use of a proof system. The
Hilbert-style axiomatization of the basic, unconstrained hybrid logic in Fig. 5 is
both a simplification (because we do not consider the binder ↓) and an extension
(due to the multi-modality setting and the different base logic) of the axiom
system given in [3, Chap. 2].

Fig. 5. Hilbert-style axiom schemata and rules for basic hybrid logic (Here, λ stands
both for the regular modalities defined by channel types and for π.)

Proposition 21 ([3, Chap. 2]). The axiom schemata and inference rules pre-
sented in Fig. 5 are sound and complete with respect to the unconstrained Kripke-
frame semantics of basic hybrid logic.

Unlike the models of the basic hybrid logic, the models of the state logic are
subject to the constraints defined by the ant schema. Because of this, the axiom
schemata and inference rules from Fig. 5 are no longer complete—though, obvi-
ously, they remain sound—with respect to the constrained Kripke semantics of
the state logic. There are two main categories of new tautologies: those that
arise from the ant schema used, and those that are innate to the state logic.
The former category contains, for instance, when considering the ant schema
Elevator from Example 2, sentences like ¬@A 〈ctr〉E (Alice cannot control the
elevator directly.), while the latter contains sentences like ¬@a b, where a and b
are distinct actor names, or 〈π〉φ → [π]φ.

110 J. Fiadeiro et al.

In order to regain completeness, we introduce new axioms that reflect the
semantic constraints of the state logic. The axiom schemata n1 and n2 from
Fig. 6 ensure that all possible worlds correspond to actor names, and that no
two distinct names are interpreted in the same way. The axiom schema c1 rules
out those channels that are not defined in the ant schema, while c2 captures the
channel subtyping relation. Lastly, π1 and π2 specify that the interpretations
of the distinguished parent modality are functional and acyclic, respectively.

Fig. 6. Additional axiom schemata for the state logic

Definition 22. Under the notations and assumptions of Definition 18, we say
that φ is provable from Φ, and write Φ � φ, if and only if φ can be derived from
Φ using the axiom schemata and inference rules from Figs. 5 and 6.

The soundness and completeness of the proof system for the state logic follow
from Proposition 21 and the lemma below.

Lemma 23. For any ant schema A, the states in SA are given precisely by
those Kripke structures that satisfy the axioms in Fig. 6.

Proposition 24. The extension of the proof system for hybrid logic with the
axiom schemata in Fig. 6 yields a sound and complete axiomatization of the
state logic.

Φ � φ iff Φ � φ

Example 25. The properties @F0 L (C at P1) and @A L (C at P1) can be derived
for Selevator0 under the specification ΦElevator from Example 17. In symbols,

ΦS
elevator0

∪ ΦElevator � @F0 L (C at P1),@A L (C at P1)

This example shows that valuations can sometimes be fully determined by the
ant structure and the axioms associated with the ant schema. In this particular
case, the valuation of the atomic proposition C at P1 at the nodes F0 and A
can be derived from the structural properties of the ant structure and from the
axiomatization of the way in which knowledge is propagated (see Example 17).

There are other general properties of Elevator that we might want to prove.
For example, @C 〈π〉 (P0∨P1)—the cabin is either at P0 or at P1. Because such

Logics for Actor Networks 111

properties are not structural, in the sense that they do not hold at every state
of Elevator, they should be proved instead at the level of actor networks, which
define the way states can evolve through repeated interactions. The correspond-
ing logic for this kind of proofs is defined in the next sub-section.

3.3 The ant Logic

The logic through which we can reason about the actor networks of an ant
schema A requires a further level of hybridization. In this case, a higher-level
actor-network signature Ω consists of a signature Σ of the state logic (now
playing the role of the base logic), a countably infinite set Nom of nominals
together with a non-empty subset Init ⊆ Nom of names of initial states, and a
set I of interactions for A (regarded as modalities).

Definition 26 (Syntax). The syntax of the ant logic is given by the grammar

ψ ::= φ | i |¬¬ψ | ψ ⇒ ψ | 〈|ι|〉ψ | i : ψ |∃∃j ψ

where φ ∈ State(Σ), i ∈ Nom, j ∈ Nom \ Init , and ι ∈ I. We denote by ANt(Ω)
the set of ant-logic sentences defined over the signature Ω.

Notice that we use double symbols for the connectives of the ant logic, and
that the satisfaction operators are denoted using a colon. We extend the use
of the double-symbol notation to the dual modal operators (�_�) and to the
universal quantifier (∀∀), which are defined as in Sect. 3.2.

Example 27. We can now write sentences about the dynamics of Elevator like
∧

Φelevator0 ⇒ 〈|callElevator0|〉
∧

Φelevator1

meaning that at the state elevator0 (which, by Proposition 20, is characterized by
the sentences in Φelevator0) there is a transition to the state elevator1 performed by
the interaction callElevator0. Note that, by Proposition 20, the sets of sentences
Φelevator0 and Φelevator1 are finite, hence the conjunctions in the antecedent and
consequent of the implication above are well formed.

The semantics of the ant logic is defined once more by means of constrained
Kripke models. This time, we restrict only the interpretations of the modalities:
all interactions ι ∈ I are substructures of the underlying structures of the states
on which (the relational interpretations of) ι are defined (see Definition 9). That
is, the models of the ant logic are actor networks.

Definition 28 (Semantics). The satisfaction relation for the ant logic is
defined for an actor network ν with interactions according to Ω, an assignment
α : Nom → Dν (which, in this case, is just a function), and a world w ∈ Dν :

– ν, α,w �� i iff α(i) = w;
– ν, α,w �� φ iff ςν(w) � φ;
– ν, α,w ��¬¬ψ iff ν, α,w
�� ψ;

112 J. Fiadeiro et al.

– ν, α,w �� ψ1 ⇒ ψ2 iff ν, α,w �� ψ1 implies ν, α,w �� ψ2;
– ν, α,w �� 〈|ι|〉ψ iff there is a transition w

ι−−→ w′ in ν such that ν, α,w′ �� ψ;
– ν, α,w �� i : ψ iff ν, α, α(i) �� ψ;
– ν, α,w ��∃∃j ψ iff ν, α′, w �� ψ for some α′ that agrees with α on Nom \ {j}.

Similarly to the first level of hybridization, we say that an ant-logic sentence ψ
defined over Ω is valid in an actor network if it is satisfied, for every assignment,
at every world of the network, and that a sentence ψ is absolutely valid if it is
valid in every actor network:

– ν �� ψ iff ν, α,w �� ψ for all assignments α : Nom → Dν and all w ∈ Dν ;
– �� ψ iff ν �� ψ for all actor networks ν over Ω.

Given a set Ψ of ant sentences, we denote by NΨ the set of actor networks over
which all the sentences in Ψ are valid; and, given another sentence ψ, we say
that Ψ entails ψ, which we denote Ψ �� ψ, if ν �� ψ for all ν ∈ NΨ .

The proof theory for the ant logic builds once again on the proof theory for
the basic hybrid logic. To that end, we use the same axiom schemata and infer-
ence rules from Fig. 5, only that in this case the tautologies of the Łukasiewicz
logic are replaced by those of the state logic, and the Boolean and hybrid con-
nectives of the state logic are replaced by those of the ant logic. In addition,
through the axiom schema Inter from Fig. 7, we introduce new axioms that
reflect the semantic constraints of the models of the ant logic: state properties
of interactions hold in the states where the transitions occur.

Fig. 7. Additional axiom schema for the ant logic

Definition 29. An ant sentence ψ is provable from a set Ψ of sentences (of
the same signature as ψ), denoted Ψ � ψ, if ψ can be derived from Ψ using the
axiom system for hybrid logic and the additional axiom schema defined in Fig. 7.

Example 30. Consider the following axiomatization of the transitions of an
actor network for the ant schema Elevator. Most of the sentences below are
of the form φ1 ⇒ �ι�φ2. They generalize Hoare triples and express properties
of the transitions performed by interactions: intuitively, the sentence φ1 is a
precondition under which the interaction ι ensures the postcondition φ2.

T1 @C 〈π〉P1 ⇒ �callElevator0�@P1 〈mov〉P0
When the elevator is called (at the ground floor) and the cabin is at the first
platform, a request to move the cabin to the ground platform is issued.

T2 @C 〈π〉P0 ⇒ �callElevator0�@F0 〈door〉 (C ∧ 〈door〉F0)
If the cabin is already at the ground platform, then the doors are opened.

Logics for Actor Networks 113

T3 �moveCabin0�@F0 〈door〉 (C ∧ 〈door〉F0)
The doors are opened whenever the cabin moves to the (ground) platform.

T4 @A 〈π〉 (F0 ∧ 〈door〉C) ⇒ 〈|enterCabin0|〉 true
If Alice is at F0 and the doors are open, then she can enter the cabin.

T5 @a 〈π〉 s ⇒ �ι�@a 〈π〉 t for interactions ι such that ι � @s 〈mov〉 t
Any interaction that involves a channel of type mov between actors s and t
(regarded as locations) determines the movement to t of any actor in s.

T6 @a 〈π〉 s ⇒ �ι�@a 〈π〉 s for interactions ι such that ι
� @s 〈mov〉 true
But if the interaction does not involve a mov channel starting as s, then the
actors in s maintain their location.

Then we can derive complex actor-network sentences such as:

@C 〈π〉 (P0∨P1)⇒ �callElevator0�
(
@A L (C at P0)∨�moveCabin0�@A L (C at P0)

)

That is, provided that we start at a world where Cabin is at one of the platforms,
if the elevator is called, then Alice either knows immediately that the cabin is at
the ground platform, or she discovers this as soon as the cabin is moved.

Proposition 31. The extension of the hybrid-logic proof system with the axiom
schema in Fig. 7 yields a sound and complete axiomatization of the ant logic.

Ψ �� ψ iff Ψ � ψ

4 Concluding Remarks

In this paper, we have shown how a suite of logics can be developed through a
two-stage constrained-hybridization process, providing in this way support for
the specification and verification of cyber-physical system protocols modeled as
actor networks (ants) in the sense of [9]. The first stage of the hybridization
process results in a logic that captures the structure of actor networks and the
way knowledge flows across such networks; the second addresses the dynamic
aspects of actor networks, that is the way their structure can evolve as a result
of the interactions that occur within them.

One of the main novelties of our approach is that we rely on unconventional
semantic constraints, derived from the structural characteristics of actor-network
states, or from the general properties of the state transitions. This results in faith-
ful representations, at a logical level, of the way computation is performed in
actor networks. That is, constrained models capture the relationship between the
higher-level reconfigurations of networks and the lower-level interactions between
actors that trigger them. Besides expressivity, a key property of these constraints
is that they can be axiomatized within hybrid logic. This enables the use of con-
ventional (sound and complete) proof systems for hybrid logic as a tool through
which we can formally verify properties of actor networks.

Two main research directions are ongoing. The first aims to use the expressive
power of our formalism to reason about security protocols in cyber-physical

114 J. Fiadeiro et al.

systems, in particular the existence of covert channels. The second aims to extend
the logic to support the modeling of the transition system defined by interactions
through graph transformations.

Acknowledgment. The work of D. Pavlovic was partially supported by NSF. J.
Fiadeiro and A. Lopes received support from AFOSR for research visits to the Univer-
sity of Hawaii.

References

1. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–365 (2000)

2. Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)
3. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series, vol. 37.

Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0002-4
4. Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Proof theory for hybrid(ised)

logics. Sci. Comput. Program. 126, 73–93 (2016)
5. Diaconescu, R.: Quasi-varieties and initial semantics for hybridized institutions. J.

Logic Comput. 26(3), 855–891 (2016)
6. Găină, D.: Birkhoff style calculi for hybrid logics. Formal Aspects Comput. 29(5),

805–832 (2017)
7. Madeira, A., Neves, R., Barbosa, L.S., Martins, M.A.: A method for rigorous design

of reconfigurable systems. Sci. Comput. Program. 132, 50–76 (2016)
8. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of insti-

tutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol.
6859, pp. 283–297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22944-2_20

9. Pavlovic, D., Meadows, C.: Actor-network procedures (extended abstract). In:
Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 7–
26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28073-3_2

10. Latour, B.: Reassembling the Social: An Introduction to Actor-Network Theory.
Oxford University Press, Oxford (2005)

11. Milner, R.: The space and motion of communicating agents. CUP (2009)
12. Malinowski, G.: Many-Valued Logics. Oxford Logic Guides. Clarendon Press,

Oxford (1993)

https://doi.org/10.1007/978-94-007-0002-4
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-642-28073-3_2

	Logics for Actor Networks: A Case Study in Constrained Hybridization
	1 Introduction
	2 Actor Networks
	2.1 Schemas
	2.2 States
	2.3 Interactions
	2.4 Networks

	3 Logics for ANts
	3.1 The Base Logic
	3.2 The State Logic
	3.3 The ant Logic

	4 Concluding Remarks
	References

