
Alexandre Madeira
Mário Benevides (Eds.)

 123

LN
CS

 1
06

69

First International Workshop, DALI 2017
Brasilia, Brazil, September 23–24, 2017
Proceedings

Dynamic Logic
New Trends and Applications

Lecture Notes in Computer Science 10669

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, Lancaster, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Zurich, Switzerland

John C. Mitchell
Stanford University, Stanford, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbrücken, Germany

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Alexandre Madeira • Mário Benevides (Eds.)

Dynamic Logic

New Trends and Applications

First International Workshop, DALI 2017
Brasilia, Brazil, September 23–24, 2017
Proceedings

123

Editors
Alexandre Madeira
INESC TEC
University of Minho
Braga
Portugal

and

CIDMA
University Aveiro
Aveiro
Portugal

Mário Benevides
UFRJ
Rio de Janeiro
Brazil

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-319-73578-8 ISBN 978-3-319-73579-5 (eBook)
https://doi.org/10.1007/978-3-319-73579-5

Library of Congress Control Number: 2017962907

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer International Publishing AG 2018
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

http://orcid.org/0000-0002-0646-2017

Preface

Building on the pioneer intuitions of Floyd–Hoare logic, dynamic logic was introduced
in the 1970s by Vaughan Pratt as a suitable logic to reason about, and verify, classic
imperative programs. Since then, the original intuitions grew to an entire family of
logics, which became increasingly popular for assertional reasoning about a wide range
of computational systems. Simultaneously, their object (i.e., the very notion of a
program) evolved in unexpected ways. This leads to dynamic logics tailored to specific
programming paradigms and extended to new computing domains, including proba-
bilistic, continuous, and quantum computation. Both its theoretical relevance and
practical potential make dynamic logic a topic of interest in a number of scientific
venues, from wide-scope software engineering conferences to modal logic-specific
events. However, as far as we know, to date, no specific event was exclusively dedi-
cated to it. This workshop emerged from this discussion, during the kick-off meeting
of the project DaLí - Dynamic Logics for Cyber-Physical Systems, whose editors are
participating as consultant and IR, respectively.

This volume contains the proceedings of the event that was held in the beautiful city
of Brasilia during September 23–24, 2017, co-located with Tableaux, ITP, and FroCoS
2017.

We received 24 submissions, of which, after a careful revision process, with at least
three revisions per work, 12 papers were accepted as regular papers and are published
in this volume. Beyond these contributions, the workshop also included the following
short papers:

– Fabricio Chalub, Alexandre Rademaker, Edward Hermann Haeusler and Christiano
Braga: “Fixing the Proof of completeness of ALC Sequent Calculus”

– Diana Costa and Édi Duarte: “Checkers Game in Deontic Logic”
– Daniel Figueiredo and Manuel A. Martins: “Bisimulations for Reactive Frames”
– Konstantinos Gkikas and Alexandru Baltag: “Stable Beliefs and Conditional

Probability Spaces”
– Leandro Gomes: “Contract-Based Design for Software Verification”
– Luiz Carlos Pereira: “Constructive Fragments of Classical Modal Logic and the

Ecumenical Perspective”
– Carlos Tavares: “Toward a Quantum-Probabilistic Dynamic Logic”

From this list, four papers were originally submitted as short contribution and the
other three were regular submissions invited to be converted into a short format. An
informal volume with the extended abstracts (3–5 pages) of these contributions was
provided in the conference.

We also had the invited talks of Alexandru Baltag, “Logic Goes Viral: Dynamic
Modalities for Social Networks,” and of Edward Hermann Haeusler, “Propositional
Dynamic Logic with Petri Net Programs: A Discussion and a Logical System”; the
latter is a joint work with Bruno Lopes and Mario Benevides. Finally, we had the

pleasure of hosting a special talk entitled “Dynamic Logic, a Personal Perspective,” by
the Dynamic Logics pioneer Vaughan Pratt.

The organization sincerely acknowledges the authors that submitted their works to
our workshop, to the Program Committee for their careful and attentive revisions, to the
Invited Speakers for their very interesting talks and to the local organizers for their
valuable and very prompt support.

September 2017 Mario Benevides
Alexandre Madeira

VI Preface

Organization

Conference Chairs

Mario Benevides UFRJ, Brazil
Alexandre Madeira University of Minho, Portugal

Program Committee

Carlos Areces University of Cordoba, Argentina
Phillippe Balbiani University of Toulouse, France
Alexandru Baltag Uva, The Netherlands
Luís S. Barbosa University of Minho, Portugal
Johan van Benthem University of Stanford, USA and University of Tsinghua,

China
Patrick Blackburn University of Roskilde, Denmark
Fredrik Dahlqvist UCL, UK
Stéphane Demri CNRS, France
Hans van Ditmarsch LORIA, Nancy, France
Francicleber M. Ferreira UFC, Brazil
Valentin Goranko University of Stockholm, Sweden
Edward H. Hauesler PUC-Rio, Brazil
Rolf Hennicker LMU, Munich, Germany
Andreas Herzig Toulouse, France
Dexter Kozen Cornell, USA
Clemens Kupke University of Strathclyde, UK
Bruno Lopes Vieira UFF, Brazil
Paulo Mateus IST, Portugal
Manuel A. Martins University of Aveiro, Portugal
Carlos Olarte UF RN, Brazil
José N. Oliveira University of Minho, Portugal
André Platzer CMU, USA
Eugénio Rocha University of Aveiro, Portugal
Valéria de Paiva NC, USA
Regivan Santiago UFRN, Brazil
Luis Menasche

Schechter
UFRJ, Brazil

Tinko Tinchev Sofia University, Bulgaria
Petrucio Viana UFF, Brazil
Sheila Veloso UFRJ, Brazil
Yde Venema ILLC, The Netherlands
Renata Wassermann USP, Brazil

Additional Reviewers

Brandon Bohrer
Diana Costa
Daniel Figueiredo
Isaque Lima
Vitor Machado
Johannes Marti
António Pereira
Elaine Pimentel

Sponsoring

This workshop was promoted by DaLí, a research project financed by the ERDF
European Regional Development Fund through the Operational Programme for
Competitiveness and Internationalization, COMPETE 2020 Program, and by National
Funds through the Portuguese funding agency, FCT, Fundação para a Ciência e a
Tecnologia, within reference POCI-01-0145-FEDER-016692.

FCT, Fundação para a Ciência e Tecnologia
CIDMA, Center for Research and Development in Mathematics and Applications
High Assurance Laboratory INESC TEC

VIII Organization

Contents

Undecidability of Relation-Changing Modal Logics 1
Carlos Areces, Raul Fervari, Guillaume Hoffmann,
and Mauricio Martel

Axiomatization and Computability of a Variant of Iteration-Free
PDL with Fork . 17

Philippe Balbiani and Joseph Boudou

A Dynamic Logic for Learning Theory . 35
Alexandru Baltag, Nina Gierasimczuk, Aybüke Özgün,
Ana Lucia Vargas Sandoval, and Sonja Smets

Layered Logics, Coalgebraically . 55
Luís Soares Barbosa

A Dynamic Informational-Epistemic Logic . 64
Yuri David Santos

Dynamic Epistemic Logics of Introspection . 82
Raul Fervari and Fernando R. Velázquez-Quesada

Logics for Actor Networks: A Case Study in Constrained Hybridization 98
José Fiadeiro, Ionuţ Ţuţu, Antónia Lopes, and Dusko Pavlovic

Parity Games and Automata for Game Logic . 115
Helle Hvid Hansen, Clemens Kupke, Johannes Marti, and Yde Venema

Model Checking Against Arbitrary Public Announcement Logic:
A First-Order-Logic Prover Approach for the Existential Fragment 133

Tristan Charrier, Sophie Pinchinat, and François Schwarzentruber

Dynamic Logic: A Personal Perspective . 153
Vaughan Pratt

The Creation and Change of Social Networks: A Logical Study
Based on Group Size. 171

Sonja Smets and Fernando R. Velázquez-Quesada

Dynamic Preference Logic as a Logic of Belief Change. 185
Marlo Souza, Álvaro Moreira, and Renata Vieira

Author Index . 201

http://dx.doi.org/10.1007/978-3-319-73579-5_1
http://dx.doi.org/10.1007/978-3-319-73579-5_2
http://dx.doi.org/10.1007/978-3-319-73579-5_2
http://dx.doi.org/10.1007/978-3-319-73579-5_3
http://dx.doi.org/10.1007/978-3-319-73579-5_4
http://dx.doi.org/10.1007/978-3-319-73579-5_5
http://dx.doi.org/10.1007/978-3-319-73579-5_6
http://dx.doi.org/10.1007/978-3-319-73579-5_7
http://dx.doi.org/10.1007/978-3-319-73579-5_8
http://dx.doi.org/10.1007/978-3-319-73579-5_9
http://dx.doi.org/10.1007/978-3-319-73579-5_9
http://dx.doi.org/10.1007/978-3-319-73579-5_10
http://dx.doi.org/10.1007/978-3-319-73579-5_11
http://dx.doi.org/10.1007/978-3-319-73579-5_11
http://dx.doi.org/10.1007/978-3-319-73579-5_12

Undecidability of Relation-Changing
Modal Logics

Carlos Areces1,2, Raul Fervari1,2(B), Guillaume Hoffmann1,2,
and Mauricio Martel3

1 FaMAF, Universidad Nacional de Córdoba, Córdoba, Argentina
{areces,fervari,hoffmann}@famaf.unc.edu.ar

2 Consejo Nacional de Investigaciones Cient́ıficas y Técnicas (CONICET),
Buenos Aires, Argentina

3 Fachbereich Mathematik und Informatik,
Universität Bremen, Bremen, Germany
martel@informatik.uni-bremen.de

Abstract. Relation-changing modal logics are extensions of the basic
modal logic that allow to change the accessibility relation of a model
during the evaluation of a formula. In particular, they are equipped with
dynamic modalities that are able to delete, add and swap edges in the
model, both locally and globally. We investigate the satisfiability problem
of these logics. We define satisfiability-preserving translations from an
undecidable memory logic to relation-changing modal logics. This way
we show that their satisfiability problems are undecidable.

Keywords: Modal logics · Dynamic logics · Satisfiability
Undecidability

1 Introduction

Modal logics [12,14] were originally conceived as logics of necessary and possible
truths. They are now viewed, more broadly, as logics that explore a wide range
of modalities, or modes of truth: epistemic (“it is known that”), doxastic (“it is
believed that”), deontic (“it ought to be the case that”), or temporal (“it has
been the case that”), among others. From a model theoretic perspective, the
field evolved into a discipline that deals with languages interpreted on various
kinds of relational structures or graphs. Nowadays, modal logics are actively used
in areas as diverse as software verification, artificial intelligence, semantics and
pragmatics of natural language, law, philosophy, etc.

From an abstract point of view, modal logics can be seen as formal languages
to navigate and explore properties of a given relational structure. But if we
want to describe and reason about dynamic aspects of a given situation, e.g.,
how the relations between a set of elements evolve through time or through
the application of certain operations, the use of modal logics (or actually, any
kind of logic with classical semantics) becomes less clear. We can always resort
c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 1–16, 2018.
https://doi.org/10.1007/978-3-319-73579-5_1

2 C. Areces et al.

to modeling the whole space of possible evolutions as a graph, but this soon
becomes unwieldy. It would be more elegant to use truly dynamic modal logics
with operators that can mimic the changes the structure will undergo.

There exist several dynamic modal operators that fit in this approach. A
clear example are the dynamic operators introduced in dynamic epistemic logics
(see, e.g. [22]). Less obvious examples are given by hybrid logics [8,13] equipped
with the down arrow operator ↓ which is used to ‘rebind’ names for states to the
current point of evaluation, and memory logics [19], a kind of restricted form
of hybrid logics that come equipped with a memory and operators to store and
retrieve states from it. Finally, a classical example which can arguably be taken
as the origin of the studies of logics in this approach is Sabotage Logic introduced
by van Benthem in [21], which provides an operator that deletes individual edges
in the model.

Generalizing this last logic, we study operators that do various kinds of
change to the accessibility relation of a model: deleting, adding, and swapping
edges, both locally (near the state of evaluation) and globally (anywhere). We
call these operators relation-changing. In [2], the operators are introduced, and
it is shown that the model checking problem is PSPACE-complete for the basic
modal logic enriched with any of these operators. In this article, we consider
the satisfiability problem of these logics. Previous results on this topic are the
undecidability of (multimodal) global sabotage logic, via encoding of the Post
Correspondence Problem [16] the undecidability of local swap logic with a sin-
gle relation, by reduction from memory logic [4]; and non-terminating tableau
methods for all six logics [3]. Here we present undecidability proofs for all six
logics using reductions from memory logic.

The undecidability results can be surprising, considering for instance that
dynamic epistemic logics are decidable [11,17,22]. However, other very expres-
sive dynamic operators are undecidable, such as the hybrid logic with the ↓
operator [8]. As we mentioned before, ↓ binds states of the model to some par-
ticular names. We will show in this article that relation-changing operators can
take advantage of adding, deleting or swapping around edges, to perform some
sort of binding in the model, turning them undecidable.

Contributions

– We sketch the undecidability proof for the memory logic ML(r , k), by adapt-
ing the undecidability argument introduced in [18] for the description logic
ALCself.

– We introduce undecidability proofs for the satisfiability problem of six relation-
changing modal logics via satisfiability of memory logic. In this way, we com-
plete the picture of the computational aspects of the family of languages
defined in this framework.

– Our proofs improve previous ones for local swap [4] and global sabotage [16],
by exploiting undecidability of memory logics. This allows for shorter proofs
and avoid redundant encodings of the tiling problem.

The article is organized as follows. In Sect. 2 we introduce the syntax and
semantics of relation-changing modal logics. In Sect. 3 we introduce the memory

Undecidability of Relation-Changing Modal Logics 3

logic ML(r , k) and a sketch of the proof of its undecidability. We dedicate
Sect. 4 to the translations from memory to global and local relation-changing
modal logics. Finally we draw our conclusions in Sect. 5.

2 Relation-Changing Modal Logics

In this section, we formally introduce relation-changing modal logics. For more
details and motivations, we direct the reader to [15].

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM ::= p | ¬ϕ | ϕ ∧ ψ | ♦ϕ | �ϕ,

where p ∈ PROP, � ∈ {〈sb〉, 〈br〉, 〈sw〉, 〈gsb〉, 〈gbr〉, 〈gsw〉} and ϕ,ψ ∈ FORM.
Other operators are defined as usual. In particular, �ϕ is defined as ¬�¬ϕ.

Let ML (the basic modal logic) be the logic without the {〈sb〉, 〈br〉, 〈sw〉, 〈gsb〉,
〈gbr〉, 〈gsw〉} operators, and ML(�) the extension of ML allowing also �, for
� ∈ {〈sb〉, 〈br〉, 〈sw〉, 〈gsb〉, 〈gbr〉, 〈gsw〉}.

Semantically, formulas are evaluated in standard relational models, and the
meaning of the operators of the basic modal logic remains unchanged (see [12]
for details). When we evaluate formulas containing relation-changing operators,
we will need to keep track of the edges that have been modified. To that end, let
us define precisely the models that we will use.

Definition 2 (Models and model updates). A model M is a triple M =
〈W,R, V 〉, where W is a non-empty set whose elements are called points or states,
R ⊆ W×W is the accessibility relation, and V : PROP → P(W) is a valuation.
We define the following notation:

(sabotaging) M−
S = 〈W,R−

S , V 〉, with R−
S = R\S, S ⊆ R.

(bridging) M+
S = 〈W,R+

S , V 〉, with R+
S = R ∪ S, S ⊆ (W×W)\R.

(swapping) M∗
S = 〈W,R∗

S , V 〉, with R∗
S = (R\S−1)∪S, S ⊆ R−1.

Intuitively, M−
S is obtained from M by deleting the edges in S, and similarly

M+
S adds the edges in S to the accessibility relation, and M∗

S adds the edges in
S as inverses of edges previously in the accessibility relation.

Let w be a state in M, the pair (M, w) is called a pointed model (we will
usually drop parentheses). In the rest of this article, we will use wv as a shorthand
for {(w, v)} or (w, v); context will always disambiguate the intended use.

4 C. Areces et al.

Definition 3 (Semantics). Given a pointed model M, w and a formula ϕ, we
say that M, w satisfies ϕ, and write M, w |= ϕ, when

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff M, w
|=ϕ
M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ
M, w |= ♦ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M, v |= ϕ
M, w |= 〈sb〉ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M−

wv, v |= ϕ
M, w |= 〈br〉ϕ iff for some v ∈ W s.t. (w, v)
∈ R,M+

wv, v |= ϕ
M, w |= 〈sw〉ϕ iff for some v ∈ W s.t. (w, v) ∈ R,M∗

vw, v |= ϕ
M, w |= 〈gsb〉ϕ iff for some v, u ∈ W, s.t. (v, u) ∈ R,M−

vu, w |= ϕ
M, w |= 〈gbr〉ϕ iff for some v, u ∈ W, s.t. (v, u)
∈ R,M+

vu, w |= ϕ
M, w |= 〈gsw〉ϕ iff for some v, u ∈ W, s.t. (v, u) ∈ R,M∗

uv, w |= ϕ.

We say ϕ is satisfiable if for some pointed model M, w, we have M, w |= ϕ.

Notice that 〈br〉 and 〈gbr〉 always add new edges in the model, and fail in case
no new edge can be created. Other versions in which such edge is not necessarily
new could be considered, but in that case the operators would behave sometimes
as a ♦ or as a “do nothing”, respectively. However, we conjecture that similar
results could be proved for those and other versions of the operations.

Relation-changing operators can modify the accessibility relation and check
for such changes in the model, and therefore can be used to mark and check
for marked states, simulating some sort of binding. Adequately, marking and
checking states are the basic dynamic operations remember and known that can
be performed by memory logics, a formalism that we present in the next section.

3 Undecidability of Monomodal Memory Logic

Memory logics [1,19] are modal logics that can store the current state of evalua-
tion into a memory and check whether the current state belongs to this memory.
The memory is a subset of the domain of the model. We call ML(r , k) the
memory logic that extends ML with the operators r and k , which stand for
“remember” and “known”, respectively.

Definition 4 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM ::= p | k | ¬ϕ | ϕ ∧ ψ | ♦ϕ | r ϕ,

where p ∈ PROP and ϕ,ψ ∈ FORM. Other operators are defined as usual.

Definition 5 (Semantics). A model M = 〈W,R, V, S〉 is a relational model
equipped with a set S ⊆ W called the memory. Let w be a state in W . The
inductive definition of satisfiability for the cases specific to memory logic is:

〈W,R, V, S〉, w |= r ϕ iff 〈W,R, V, S ∪ {w}〉, w |= ϕ
〈W,R, V, S〉, w |= k iff w ∈ S.

Undecidability of Relation-Changing Modal Logics 5

The remaining cases coincide with the semantics of ML, and do not involve the
memory.

An ML(r , k)-formula ϕ is satisfiable if there are a model M = 〈W,R, V, ∅〉
and w ∈ W such that M, w |= ϕ. The empty initial memory ensures that no state
of the model satisfies the unary predicate k unless a formula r ψ has previously
been evaluated there.

Multimodal memory logic is shown to be undecidable in [7]. We strengthen
this result, showing that undecidability holds also in the monomodal case.

Theorem 1. The satisfiability problem of ML(r , k) is undecidable.

Proof. The problem of concept consistency in the description logic ALCself is
undecidable [18]. Let us name Tiling(t) the concept defined in [18] that encodes
an instance t of the (undecidable) problem of tiling the plane. A reduction of
Tiling to the satisfiability problem of ML(r , k) can be done by replacing the
ALCself operator ∀R by �, ∃R by ♦, I by r and me by k .

We previously suggested that relation-changing operators could, each one in
its own way, simulate remember and known operators. However, there is one
important difference between the r operator and relation-changing operators
like 〈sb〉. While 〈sb〉ϕ always results in a change in the model, r ϕ can leave the
memory unchanged if the current state of evaluation is already memorized. We
ignore this difference by observing that any ML(r , k)-formula can be rewritten
into an equivalent formula where every occurrence of r is “proper”, in the sense
that it actually modifies the memory.

Definition 6 (PNF). An ML(r , k)-formula is in proper normal form (PNF)
if every occurrence of a sub-formula r ψ occurs within the following sub-formula:

(¬ k ∧ r ψ) ∨ (k ∧ ψ)

Finally, we define the notion of modal depth of an ML(r , k)-formula.

Definition 7. Given ϕ in ML(r , k), we define the modal depth of ϕ (notation
mdϕ) as

md(k) = 0
md(p) = 0 for p ∈ PROP

md(r ϕ) = md(ϕ)
md(¬ϕ) = md(ϕ)

md(ϕ ∧ ψ) = max{md(ϕ),md(ψ)}
md(♦ϕ) = 1 + md(ϕ).

In the next section we prove that the satisfiability problem of relation-
changing modal logics is undecidable via reductions from monomodal memory
logic. We assume that memory logic formulas are always in PNF. This is impor-
tant for structural inductive proofs.

6 C. Areces et al.

4 Undecidability of Relation-Changing Logics

In this section, we present satisfiability-preserving translations from ML(r , k)
to relation-changing modal logics. Combining these translations with the unde-
cidability result of Theorem 1, we can claim:

Theorem 2. The satisfiability problem of ML(�) is undecidable, for � ∈ {〈sb〉,
〈br〉, 〈sw〉, 〈gsb〉, 〈gbr〉, 〈gsw〉}.

The main idea of these translations is to simulate the behavior of ML(r , k)
without having an external memory in the model. We simulate the ability to
store states in a memory by changing the accessibility relation of a model. Check-
ing for membership in the memory is simulated by checking for changes in the
accessibility relation.

Every translation τ� from ML(r , k)-formulas to ML(�)-formulas proceeds
in two steps. For a given target logic, the translation includes a fixed part called
Struct�, that enforces constraints on the structure of the model. The second part,
called Tr�, is defined inductively on ML(r , k)-formulas, and uses the structure
provided by Struct� to simulate the r and k operators.

Sabotage Logic

Local Sabotage. In the translation to local sabotage logic, the Struct〈sb〉 sub-
formula should ensure that every state of the model can be memorized using the
expressivity of 〈sb〉. This operator changes the point of evaluation after deleting
an edge. To compensate for this, the Struct〈sb〉 formula guarantees that every
state has an edge that is deleted when the state is memorized, and a second edge
back to the original state to ensure that evaluation can continue at the correct
state. We use a spy point s to ensure this structure. The idea is illustrated in
the following image.

ϕ
. . .

s

We need to ensure that every satisfiable formula of ML(r , k) is translated
into a satisfiable formula (and vice-versa, if the translated formula is satisfiable,
then the original formula is satisfiable, too). The image above shows an intended
model for the translated formula τ〈sb〉(ϕ). Intuitively, bold edges and arrows
correspond to the model of ϕ. The complete translation is given in Definition 8.
Here we discuss in detail how it works.

Struct〈sb〉 adds a spy state with symmetric edges between itself and all other
states. In particular, (1) in Definition 8 ensures that the evaluation state satisfies
s and that it is irreflexive, and (2) guarantees that its immediate successors
reach a state where s holds. Formulas (3) and (4) ensure that this state is the

Undecidability of Relation-Changing Modal Logics 7

original s state. They work together as follows: (3) makes �♦s true in any s-
state reachable in two steps, and by deleting the traversed edges we avoid a cycle
of size two between this s-state and an immediate successor of the evaluation
state, distinguishing the original s-state from any other s-state reachable in two
steps. (4) then traverses one edge, deletes the next one, and reaches a state where
s implies ♦�¬s. This contradicts (3), unless we have arrived in the original s
state. Formulas (5), (6) and (7) mimic (2), (3) and (4), but for edges which are
removed twice. Observe that (6) now avoids a cycle of size three between any
other s-state reachable in two steps and an immediate successor of the evaluation
state. Finally, (8) and (9) ensure that the evaluation state is indeed a spy state,
i.e., that it is linked to every other state of the input model.

Tr〈sb〉 starts by placing the translation ()′ of ϕ in a successor of the evaluation
state. Boolean cases are obvious. For the diamond case, ♦ψ is satisfied if there
is a successor v where ψ holds, but we must ensure that v is not the spy state.
For (r ψ)′, we do a round-trip of sabotaging from the current state to the spy
state. Note that after reaching the spy state an edge does come back to the same
state where it came from, since the only accessible state where ¬♦s holds is the
one we are memorizing. For (k)′, we check whether there is an edge pointing to
some s-state.

Definition 8. Define τ〈sb〉(ϕ) = Struct〈sb〉 ∧ Tr〈sb〉(ϕ), where:

Struct〈sb〉= s ∧ �¬s (1)

∧ �♦s (2)

∧ [sb][sb](s → �♦s) (3)

∧ �[sb](s → ♦�¬s) (4)

∧ ��(¬s → ♦s) (5)

∧ �[sb](s→[sb](�¬s→��(s→�♦s))) (6)

∧ �[sb](s→�(�¬s→��(s→♦�¬s))) (7)

∧ ���(s → �♦s) (8)

∧ ��[sb](s → ♦�¬s) (9)

Tr〈sb〉(ϕ) = ♦(ϕ)′, with:

(p)′ = p for p ∈ PROP appearing in ϕ
(k)′ = ¬♦s
(¬ψ)′ = ¬(ψ)′

(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r ψ)′ = 〈sb〉(s ∧ 〈sb〉(¬♦s ∧ (ψ)′))

Proposition 1. If 〈W,R, V 〉, w |= Struct〈sb〉, then for every state v ∈ W \ {w}
there exists exactly one state v′ such that (v, v′), (v′, v) ∈ R and v′ ∈ V (s).

Lemma 1. Let ϕ be an ML(r , k)-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈sb〉(ϕ) is satisfiable.

8 C. Areces et al.

Proof. (⇐) Suppose 〈W,R, V 〉, s |= τ〈sb〉(ϕ). Let W ′ = W\V (s), R′ = R∩ (W ′ ×
W ′) and V ′(p) = V (p) ∩ W ′ for all p ∈ PROP. By definition of Tr〈sb〉 there is
w′ ∈ W ′ such that (s, w′) ∈ R and 〈W,R, V 〉, w′ |= (ϕ)′.

Now, let ψ be a sub-formula of ϕ, v ∈ W ′, S ⊆ W ′ and RS = R\{(v, s), (s, v) |
v ∈ S}. We prove by structural induction on ψ that 〈W ′, R′, V ′, S〉, v |=
ψ if, and only if, 〈W,RS , V 〉, v |= (ψ)′. In particular, this will prove that
〈W ′, R′, V ′, ∅〉, w′ |= ϕ if, and only if, 〈W,R, V 〉, w′ |= (ϕ)′.

The propositional, Boolean and modal cases are trivial. For ψ = k , we
should prove that 〈W ′, R′, V ′, S〉, v |= k if, and only if, 〈W,RS , V 〉, v |= ¬♦s.
However this is immediate by definition of S and RS and Proposition 1.

For the last case, consider ψ = ¬ k ∧ r χ (remember that formulas are
in PNP), so we should prove that 〈W ′, R′, V ′, S〉, v |= ¬ k ∧ r χ if, and only if,
〈W,RS , V 〉, v |= ♦s∧〈sb〉(s∧〈sb〉(¬♦s∧(χ)′. Again, the equivalence is immediate
by Proposition 1.

(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. We build a model for τ〈sb〉(ϕ) by adding
the necessary parts to this model, that are, the spy state and the round-trip
paths. Define 〈W ′, R′, V ′〉 as follows. Let s /∈ W some state, W ′ = W ∪{s}, R′ =
R∪{(x, s), (s, x) | x ∈ W}, V ′(s) = {s} and V ′(p) = V (p) for p ∈ PROP\{s}. By
construction, 〈W ′, R′, V ′〉, s |= Struct〈sb〉, so Proposition 1 holds. We prove that
for all ψ sub-formula of ϕ, v ∈ W , S ⊆ W and R′

S = R′\{(x, s), (s, x) | x ∈ S},
〈W,R, V, S〉, v |= ψ iff 〈W ′, R′

S , V ′〉, v |= (ψ)′. This can be done by structural
induction on ψ using Proposition 1. This proves that 〈W,R, V, ∅〉, w |= ϕ iff
〈W ′, R′, V ′〉, s |= τ〈sb〉(ϕ), so τ〈sb〉(ϕ) is satisfiable.

Global Sabotage. In [16] it is shown that multimodal sabotage logic is undecidable
via a reduction of the Post Correspondence Problem. The present proof extends
this result to the monomodal case via a reduction of the satisfiability problem
of the memory logic ML(r , k). The notation �iϕ is defined as �0ϕ = ϕ and
�n+1ϕ = ��nϕ.

One piece of data needed to build τ〈gsb〉(ϕ) is the modal depth of the input
formula (md(ϕ)). Up to the depth indicated by this value, Struct〈gsb〉(ϕ) adds
to every state a transition to some state where s holds (In fact, this latter state
can be shared among several states of the input model.) It is as if each state
of the input model had a flag that could be turned on to identify the state.
Thus, remembering some state is simulated with Tr〈gsb〉(r) by deleting the edge
between the state and its s-successor. For Tr〈gsb〉(k), we check whether the
current state has an s-successor. The idea is illustrated in the following image.

ϕ
. . .

s s

s

Definition 9. Define τ〈gsb〉(ϕ) = Struct〈gsb〉(ϕ) ∧ Tr〈gsb〉(ϕ), where:

Struct〈gsb〉(ϕ) = ¬s ∧ ∧

0≤i≤md(ϕ)

�i(¬s → ♦s)

Undecidability of Relation-Changing Modal Logics 9

Tr〈gsb〉(p) = p for p ∈ PROP appearing in ϕ
Tr〈gsb〉(k) = ¬♦s
Tr〈gsb〉(¬ψ) = ¬Tr〈gsb〉(ψ)
Tr〈gsb〉(ψ ∧ χ) = Tr〈gsb〉(ψ) ∧ Tr〈gsb〉(χ)
Tr〈gsb〉(♦ψ) = ♦(¬s ∧ Tr〈gsb〉(ψ))
Tr〈gsb〉(r ψ) = 〈gsb〉(¬♦s ∧ Tr〈gsb〉(ψ))

Proposition 2. Let dist(a, b) the minimal number of R-steps to reach some
state b from some state a. Let ϕ some memory logic formula. If 〈W,R, V 〉, w |=
Struct〈gsb〉(ϕ), then for all x ∈ W such that dist(w, x) ≤ md(ϕ), x has a succes-
sor where s holds.

Proposition 3. If 〈W,R, V 〉, w |= ♦s ∧ 〈gsb〉¬♦s, then w has one and only one
successor where s holds.

Lemma 2. Let ϕ be an ML(r , k)-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈gsb〉(ϕ) is satisfiable.

Proof. (⇐) Suppose 〈W,R, V 〉, w |= τ〈gsb〉(ϕ). Let W ′ = W\V (s), R′ = R∩(W ′×
W ′), and V ′(p) = V (p) ∩ W ′ for p ∈ PROP \ {s}. We should prove that for all ψ
sub-formula of ϕ of modal depth md(ψ) ≤ md(ϕ)−dist(w, v), v ∈ W ′ accessible
from w within md(ϕ) steps, S ⊆ W ′, and RS = R \ {(x, y) | |x ∈ S, y ∈ V (s)},
then 〈W ′, R′, V ′, S〉, v |= ψ iff 〈W,RS , V 〉, v |= Tr〈gsb〉(ψ).

The proof is by structural induction on ψ. The non-memory cases are easy.
For the k case, we should show that 〈W ′, R′, V ′, S〉, v |= k iff 〈W,RS , V 〉, v |=
¬♦s, this is immediate by Proposition 2 and the definitions of S and RS .

Then for the remaining case, we have to show that 〈W ′, R′, V ′, S〉, v |= ¬ k ∧
r χ iff 〈W,RS , V 〉, v |= ♦s ∧ 〈gsb〉(¬♦s ∧ Tr〈gsb〉(χ)), which can be proved using

the definition of |=, IH and Proposition 3.
(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. Let s /∈ W . Define 〈W ′, R′, V ′〉, where

W ′ = W ∪{s}, R′ = R∪{(v, s) | v ∈ W}, V ′(s) = {s}, and V ′(p) = V (p), for p ∈
PROP appearing in ϕ. It is easy to check that 〈W ′, R′, V ′〉, w |= Struct〈gsb〉(ϕ),
hence Proposition 2 holds. Then, let us prove that for all ψ sub-formula of ϕ
of modal depth md(ψ) ≤ md(ϕ) − dist(w, v), v ∈ W accessible from w within
md(ϕ) steps, S ⊆ W and R′

S = R′ \ {(x, s) | x ∈ S}, we have the equivalence
〈W,R, V, S〉, v |= ψ iff 〈W ′, R′

S , V ′〉, v |= Tr〈gsb〉(ψ). This is done by structural
induction on ψ. For the case k the equivalence is immediate, and for the case
¬ k ∧ r χ, Proposition 3 provides the equivalence needed.

Bridge Logic

Local Bridge. For local bridge logic, we use a spy state that is initially discon-
nected from the input model. When some state should be memorized, the spy
state gets connected (in both directions) to it. This construction is quite special
since we do not have pre-built gadgets in the input model, as they get built on
demand.

10 C. Areces et al.

Let us first show the following result, that enables us to force the evaluation
state to be the only one in the model to satisfy s:

Lemma 3. Let ϕ = s ∧ �⊥ ∧ [br](s→[br]¬s). If M, w |= ϕ, then w is the only
state in the model M where s holds.

Proof. First, w obviously satisfies s and does not have any successor. Now, we
have M, w |= [br](s→[br]¬s). In particular this means that M+

ww, w |= s→[br]¬s,
hence M+

ww, w |= [br]¬s. Since in M+
ww, the state w is only connected to itself,

this means that for all v
= w, we have M+
ww,wv, v |= ¬s, this also means that

M, v
|= s for all v
= w.

For Bridge Logics, Struct〈br〉 adds to the input model a spy state in which s
holds. By Lemma 3, (1) in Definition 10 ensures that the evaluation state has
no successor and is the only state in the model where s holds. And (2) ensures
that there are no edges from ¬s-states (anywhere in the model) to the spy state.
The idea is illustrated in the following image, where t is a propositional symbol
used in Tr〈br〉(ϕ) and dotted lines represent edges created with the 〈br〉 operator.

ϕ
. . .t

s

Definition 10. Define τ〈br〉(ϕ) = Struct〈br〉 ∧ Tr〈br〉(ϕ), where:

Struct〈br〉= s ∧ �⊥ ∧ [br](s→[br]¬s) (1)

∧ [br](¬s → �¬s) (2)

Tr〈br〉(ϕ) = 〈br〉(¬s ∧ t ∧ 〈br〉(¬s ∧ ¬t ∧ (ϕ)′)), with:

(p)′ = p for p ∈ PROP appearing in ϕ
(k)′ = ♦s
(¬ψ)′ = ¬(ψ)′

(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ ¬t ∧ (ψ)′)
(r ψ)′ = 〈br〉(s ∧ 〈br〉(¬s ∧ ♦s ∧ (ψ)′))

Tr〈br〉(ϕ) first creates two edges until a ¬s-state, where the translation of ϕ
holds. For Tr〈br〉(r) we do a round-trip of bridging from the current state to
the spy state. Note that the second part of this round-trip has to be from the
spy state to the remembered state, since it is the only way to satisfy 〈br〉(♦s).
Also note that this would not work if the s state was directly connected to the
input model; this is why we use the intermediate t-state. For Tr〈br〉(k) we check
whether there is an edge to a state where s holds.

Proposition 4. Let 〈W,R, V 〉 a model such that there is a unique state s where
s holds, there is no state x ∈ W such that (x, s) ∈ R, and there is a component

Undecidability of Relation-Changing Modal Logics 11

C ⊆ W such that s /∈ C and for all y ∈ C, (s, y) /∈ R. Let S ⊆ C and RS =
R ∪ {(x, s), (s, x) | x ∈ S}.

Then in the model 〈W,RS , V 〉, evaluating the formula 〈br〉(s∧〈br〉♦s) at some
state y ∈ C \ S changes the evaluation state to s, then again to the same state
y adding the edges (y, s) and (s, y) to the relation.

Lemma 4. Let ϕ be an ML(r , k)-formula in PNF that does not contain the
propositional symbols s and t. Then, ϕ is satisfiable iff τ〈br〉(ϕ) is satisfiable.

Proof. (⇐) Suppose 〈W,R, V 〉, s |= τ〈br〉(ϕ). Define M′ = 〈W ′, R′, V ′, ∅〉 with
W ′ = (W \ V (s)) \ V (t), R′ = R ∩ (W ′ × W ′), and V ′(p) = V (p) ∩ W ′ for
all p ∈ PROP. By definition of Tr〈br〉 there is w′ ∈ W ′ such that s
= w′ and
〈W,R, V 〉, w′ |= (ϕ)′.

Let ψ a sub-formula of ϕ, v ∈ W ′, S ⊆ W ′, and RS = R ∪{(x, s), (x, v) | x ∈
S}, then we will prove that 〈W ′, R′, V ′, S〉, v |= ψ iff 〈W,RS , V 〉, v |= (ψ)′.

We prove it by structural induction on ψ. For the ¬ k ∧ r χ case, suppose
〈W ′, R′, V ′, S〉, v |= ¬ k ∧ r χ. By definition, this is equivalent to 〈W ′, R′, V ′, S∪
{v}〉, v |= χ with v /∈ S, Then, by definition of RS and inductive hypothesis
we get 〈W, (RS)+{(v,s),(s,v)}, V 〉, s |= (χ)′, with (v, s) /∈ RS and (s, v) /∈ RS . By
Proposition 4, this is equivalent to 〈W,RS , V 〉, v |= ¬♦s∧〈br〉(s∧〈br〉(♦s∧(χ)′)).
thus we have 〈W,RS , V 〉, v |= (¬ k ∧ r χ)′.

(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. Let s, t /∈ W . Define M′ = 〈W ′, R, V ′〉
such that W ′ = W ∪ {s, t}, V ′(s) = {s}, V ′(t) = {t} and V ′(p) = V (p) for
p ∈ PROP appearing in ϕ. We can easily check that 〈W ′, R, V ′〉, s |= Struct〈br〉,
and we can also check by structural induction on ϕ that 〈W,R, V, S〉, w |= ϕ iff
〈W ′, RS , V ′〉, s |= Tr〈br〉(ϕ), where RS = R ∪ {(v, s), (s, v) | v ∈ S}.

Global Bridge. The global bridge operator is able to add edges in the model.
This is why, to mark some state, we use this operator to add an edge to some
s-state. Then, we enforce that the initial model does not have any reachable
s-state.

Here Struct〈gbr〉(ϕ) ensures that no state of the input model has s-successors.
Storing a state in the memory is simulated by creating an edge to an s-state, and
checking whether the current state of evaluation is in the memory is simulated
by checking the presence of an s-successor. Observe that we could have either
one state where s holds or (possibly) different s-states for each state of the input
model.

ϕ
. . .

s

12 C. Areces et al.

Definition 11. Define τ〈gbr〉(ϕ) = Struct〈gbr〉(ϕ) ∧ Tr〈gbr〉(ϕ), where:

Struct〈gbr〉(ϕ) =
∧

0≤i≤md(ϕ)+1

�i¬s

Tr〈gbr〉(p) = p for p ∈ PROP appearing in ϕ
Tr〈gbr〉(k) = ♦s
Tr〈gbr〉(¬ψ) = ¬Tr〈gbr〉(ψ)
Tr〈gbr〉(ψ ∧ χ) = Tr〈gbr〉(ψ) ∧ Tr〈gbr〉(χ)
Tr〈gbr〉(♦ψ) = ♦(¬s ∧ Tr〈gbr〉(ψ))
Tr〈gbr〉(r ψ) = 〈gbr〉(♦s ∧ Tr〈gbr〉(ψ))

Lemma 5. Let ϕ be an ML(r , k)-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈gbr〉(ϕ) is satisfiable.

Swap Logic

Local Swap. We introduce a new version of the translation given in [4] that uses
only one propositional symbol. The idea is that we have each state pointing
to some states called switch states, and memorizing a state is represented by
swapping such edges. Then, no edge pointing to a switch means that the state
has been memorized. We use the notation �(n)ϕ for

∧

1≤i≤n

�iϕ.

In this case Struct〈sw〉 adds “switch states”, which are in one-to-one corre-
spondence with the states of the input model, together with a spy state. By (2)
in Definition 12, each ¬s-state at one, two and three steps from the evaluation
state, has a unique dead-end successor where s holds (switch state). By (3) and
(4), switch states (corresponding to states at distance 1, 2 and 3) can be reached
from the evaluation state by a unique path. (5) makes the evaluation state a spy
state. All these conjuncts together ensure that switch states are independent one
from another. The idea is illustrated in the following image.

ϕ
. . .

s

s s

s

Definition 12. Define τ〈sw〉 = Struct〈sw〉 ∧ Tr〈sw〉(ϕ), where:

Struct〈sw〉=
s ∧ �¬s (1)

∧ �(3)(¬s → Uniq) (2)

∧ �[sw](s → ���(s → �⊥) (3)

∧ ��[sw](s → ���(s → �⊥) (4)

∧ [sw][sw](¬s→〈sw〉(s ∧ ♦((�¬s)→♦♦(s ∧ ♦¬♦s)))) (5)

Uniq = ♦(s ∧ �⊥) ∧ [sw](s → �¬♦s)

Undecidability of Relation-Changing Modal Logics 13

Tr〈sw〉(ϕ) = ♦(ϕ)′, with:

(p)′ = p for p ∈ PROP appearing in ϕ
(k)′ = ¬♦s
(¬ψ)′ = ¬(ψ)′

(ψ ∧ χ)′ = (ψ)′ ∧ (χ)′

(♦ψ)′ = ♦(¬s ∧ (ψ)′)
(r ψ)′ = 〈sw〉(s ∧ ♦(ψ)′)

For Tr〈sw〉(r ϕ) we traverse and swap the edge between the current state
and its switch state, and come back to the same state. For Tr〈sw〉(k), we check
whether the current state has not an edge to its switch state.

Proposition 5. Let 〈W,R, V 〉, s |= Struct〈sw〉, W ′ = W \ V (s) and S ⊆ W ′.
Then T = {(v′, v) | v ∈ S ∧ (v, v′) ∈ R ∧ v′ ∈ V (s)} is a bijection.

Lemma 6. Let ϕ be an ML(r , k)-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈sw〉(ϕ) is satisfiable.

Proof. (⇐) From a pointed model 〈W,R, V 〉, w of τ〈sw〉(ϕ) we can extract a
pointed model 〈W ′, R′, V ′, ∅〉, w′ satisfying ϕ following the same definition as in
the proof of Lemma 1.

For all ψ sub-formula of ϕ, v ∈ W ′, S ⊆ W ′, T = {(v′, v) | v ∈ S ∧ (v, v′) ∈
R∧v′ ∈ V (s)} and RS = (R\T−1)∪T , we will prove that 〈W ′, R′, V ′, S〉, v |= ψ
if, and only if, 〈W,RS , V 〉, v |= (ψ)′.

We do it by structural induction on ψ. We prove the ¬ k ∧ r χ case. Suppose
〈W ′, R′, V ′, S〉, v |= ¬ k ∧ r χ. Then by definition, v /∈ S and 〈W ′, R′, V ′, S ∪
{v}〉, v |= χ, and by Proposition 5, we have (v, v′) ∈ RS for a unique v′ ∈ V (s).
Then, by definition of RS and inductive hypothesis we get 〈W, (RS)∗

v′v, V 〉, v |=
(χ)′. By definition of |= and by Proposition 5, 〈W, (RS)∗

v′v, V 〉, v′ |= s ∧ ♦(χ)′,
and again, 〈W,RS , V 〉, v |= ♦s ∧ 〈sw〉(s ∧ ♦(χ)′), thus we have, equivalently,
〈W,RS , V 〉, v |= (¬ k ∧ r χ)′.

(⇒) Suppose 〈W,R, V, ∅〉, w |= ϕ. Let sw be a bijective function between W
and a set U such that U ∩ W = ∅, and s /∈ U ∪ W . Define M′ = 〈W ′, R′, V ′〉
such that W ′ = W ∪ {s} ∪ U , R′ = R ∪ {(s, w) | w ∈ W} ∪ {(w, sw(w)) | w ∈
W}, V ′(s) = {s} ∪ U , and V ′(p) = V (p) for p ∈ PROP appearing in ϕ. It
is easy to check that 〈W ′, R′, V ′〉, s |= Struct〈sw〉, in particular, Proposition 5
is relevant. Then, we can easily prove that for all ψ sub-formula of ϕ, v ∈
W , S ⊆ W , T = {(sw(v), v) | v ∈ S} and R′

S = (R′\T−1) ∪ T , we have
the equivalence 〈W,R, V, S〉, v |= ψ iff 〈W ′, R′

S , V ′〉, v |= (ψ)′. This is done by
structural induction on ψ.

Global Swap. The global swap operator is able to change the direction of some
edge in the model. In particular, we are interested in the ability to swap, for
some state, an incoming edge (undetectable for the basic modal logic) into an
outgoing edge. This is why this translation is similar to the one of global bridge
logic. Initially, the model does not have any reachable state where s holds. As

14 C. Areces et al.

for global sabotage and global bridge, there may be many states where s holds
in the model with edges to states of the input model. The idea is illustrated in
the following image, where only one s state is shown.

ϕ
. . .

s

Definition 13. Define τ〈gsw〉(ϕ) = Struct〈gsw〉(ϕ) ∧ Tr〈gsw〉(ϕ), where:

Struct〈gsw〉(ϕ) =
∧

0≤i≤md(ϕ)+1

�i¬s

Tr〈gsw〉(p) = p for p ∈ PROP appearing in ϕ
Tr〈gsw〉(k) = ♦s
Tr〈gsw〉(¬ψ) = ¬Tr〈gsw〉(ψ)
Tr〈gsw〉(ψ ∧ χ) = Tr〈gsw〉(ψ) ∧ Tr〈gsw〉(χ)
Tr〈gsw〉(♦ψ) = ♦(¬s ∧ Tr〈gsw〉(ψ))
Tr〈gsw〉(r ψ) = 〈gsw〉(♦s ∧ Tr〈gsw〉(ψ))

Proposition 6. Let 〈W,R, V 〉, w |= ¬♦s ∧ 〈gsw〉♦s. Then, by the semantics of
the global swap operator, there exists a state v ∈ W \ {w} such that (v, w) ∈ R
and v ∈ V (s).

Lemma 7. Let ϕ be an ML(r , k)-formula in PNF that does not contain the
propositional symbol s. Then, ϕ is satisfiable iff τ〈gsw〉(ϕ) is satisfiable.

5 Conclusions

We exploited the similarities between memory logic and relation-changing logics
to obtain simple and non-redundant undecidability proofs. We first presented an
undecidability result for memory logics in the monomodal case, by adapting the
proof introduced in [18] for ALCself. Then, we presented translations from the
satisfiability problem of monomodal memory logics to all six relation-changing
modal logics. Both results combined show undecidability of the satisfiability
problem for relation-changing modal logics in a very simple way. These results
complete the picture of the computational behaviour of relation-changing logics,
given that we already know that model checking for them is PSPACE-complete
[2,4,5,15].

This high complexity of the logics is a consequence of the degree of liberty
we give to the operators. By replacing arbitrary modifications with conditional
modifications (i.e., according to a pre- and a post-condition) it is possible to
decrease the complexity and get decidable logics (e.g., as in [9,10]).

Undecidability of Relation-Changing Modal Logics 15

A related problem is the one of finite satisfiability. Indeed, for many applica-
tions of dynamic epistemic logic, we are only interested in looking for finite mod-
els. Finite satisfiability is known to be undecidable for multimodal global
sabotage logic [20], and decidable for monomodal local sabotage and local swap
logics [6]. It remains to see the status of this problem for all remaining cases.

Acknowledgements. This work was partially supported by grant ANPCyT-PICT-
2013-2011, STIC-AmSud “Foundations of Graph Structured Data (FoG)”, SeCyT-
UNC, the Laboratoire International Associé “INFINIS”, and the EU Horizon 2020
research and innovation programme under the Marie Skodowska-Curie grant No.
690974, project MIREL: MIning and REasoning with Legal texts.

References

1. Areces, C.: Hybrid logics: the old and the new. In: Proceedings of LogKCA 2007,
pp. 15–29 (2007)

2. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking
results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp. 142–
153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-9 11

3. Areces, C., Fervari, R., Hoffmann, G.: Tableaux for relation-changing modal logics.
In: Fontaine, P., Ringeissen, C., Schmidt, R.A. (eds.) FroCoS 2013. LNCS (LNAI),
vol. 8152, pp. 263–278. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40885-4 19

4. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic J. IGPL 22(2), 309–332
(2014)

5. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
J. IGPL 23(4), 601–627 (2015)

6. Areces, C., Fervari, R., Hoffmann, G., Martel, M.: Relation-changing logics as
fragments of hybrid logics. In: Cantone, D., Delzanno, G. (eds.) Proceedings of
the Seventh International Symposium on Games, Automata, Logics and Formal
Verification, GandALF 2016, Italy. EPTCS, vol. 226, pp. 16–29 (2016)

7. Areces, C., Figueira, D., Figueira, S., Mera, S.: The expressive power of memory
logics. Rev. Symb. Logic 4(2), 290–318 (2011)

8. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem,
J. (eds.) Handbook of Modal Logic, pp. 821–868. Elsevier (2007)

9. Areces, C., van Ditmarsch, H., Fervari, R., Schwarzentruber, F.: Logics with copy
and remove. In: Kohlenbach, U., Barceló, P., de Queiroz, R. (eds.) WoLLIC 2014.
LNCS, vol. 8652, pp. 51–65. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-44145-9 4

10. Areces, C., van Ditmarsch, H., Fervari, R., Schwarzentruber, F.: The modal logic
of copy and remove. To Appear in Information and Computation (2015). Special
Issue of WoLLIC 2014

11. Aucher, G., Schwarzentruber, F.: On the complexity of dynamic epistemic logic.
In: Proceedings of TARK 2013, Chennai, India, January 2013

12. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, New York (2001)

13. Blackburn, P., Seligman, J.: Hybrid languages. J. Logic Lang. Inf. 4(3), 251–272
(1995)

https://doi.org/10.1007/978-3-642-32621-9_11
https://doi.org/10.1007/978-3-642-40885-4_19
https://doi.org/10.1007/978-3-642-40885-4_19
https://doi.org/10.1007/978-3-662-44145-9_4
https://doi.org/10.1007/978-3-662-44145-9_4

16 C. Areces et al.

14. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Handbook
of Modal Logic, pp. 1–84. Elsevier (2007)

15. Fervari, R.: Relation-Changing Modal Logics. Ph.D. thesis, Universidad Nacional
de Córdoba, Argentina (2014)

16. Löding, C., Rohde, P.: Model checking and satisfiability for sabotage modal logic.
In: Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp.
302–313. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-24597-
1 26

17. Lutz, C.: Complexity and succinctness of public announcement logic. In: Proceed-
ings of the 5th International Joint Conference on Autonomous Agents and Multi-
agent Systems, AAMAS 2006, New York, NY, USA, pp. 137–143 (2006)

18. Marx, M.: Narcissists, stepmothers and spies. In: Proceedings of DL 2002, vol. 53.
CEUR (2002)

19. Mera, S.: Modal memory logics. Ph.D. thesis, Université Henri Poincaré, Nancy,
France and Universidad de Buenos Aires, Argentina (2009)

20. Rohde, P.: On games and logics over dynamically changing structures. Ph.D. thesis,
RWTH Aachen (2006)

21. Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W.
(eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–276.
Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32254-2 16

22. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Synthese
Library. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/978-3-540-24597-1_26
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-1-4020-5839-4

Axiomatization and Computability of a Variant
of Iteration-Free PDL with Fork

Philippe Balbiani(B) and Joseph Boudou

Institut de recherche en informatique de Toulouse,
CNRS — Université de Toulouse, 118 route de Narbonne,

31062 Toulouse Cedex 9, France
Philippe.Balbiani@irit.fr

Abstract. We devote this paper to the axiomatization and the com-
putability of PDLΔ

0 —a variant of iteration-free PDL with fork.

Keywords: Iteration-free PDL · Fork · Axiomatization
Computability

1 Introduction

Propositional dynamic logic (PDL) is an applied non-classical logic designed
for reasoning about the behaviour of programs [10]. The definition of its syntax
is based on the idea of associating with each program α of some programming
language the modal operator [α], formulas of the form [α]φ being read “every
execution of the program α from the present state leads to a state bearing
the formula φ”. Completeness and decidability results for the standard version
of PDL in which programs are built up from program variables and tests by
means of the operations of composition, union and iteration are given in [15,16].
A number of interesting variants have been obtained by extending or restricting
the syntax or the semantics of PDL in different ways [7,9,14,18].

Some of these variants extend the ordinary semantics of PDL by considering
sets W of states structured by means of a function � from the set of all pairs of
states into the set of all states [5,11–13]: the state x is the result of applying the
function � to the states y, z iff the information concerning x can be separated in
a first part concerning y and a second part concerning z. The binary function �
considered in [5,11] has its origin in the addition of an extra binary operation of
fork denoted ∇ in relation algebras: in [5, Sect. 2], whenever x and y are related
via R and z and t are related via S, states in x � z and states in y � t are related
via R∇S whereas in [11, Chap. 1], whenever x and y are related via R and x
and z are related via S, x and states in y � z are related via R∇S.

This addition of fork in relation algebras gives rise to a variant of PDL
which includes the program operation of fork denoted Δ. In this variant, for all
programs α and β, one can use the modal operator [αΔβ], formulas of the form
[αΔβ]φ being read “every execution in parallel of the programs α and β from the

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 17–34, 2018.
https://doi.org/10.1007/978-3-319-73579-5_2

18 P. Balbiani and J. Boudou

present state leads to a state bearing the formula φ”. The binary operation of
fork ∇ considered in Benevides et al. [5, Sect. 2] gives rise to PRSPDL, a variant
of PDL with fork whose axiomatization is still open. We devote this paper to
the axiomatization and the computability of PDLΔ

0 , a variant of iteration-free
PDL with fork whose semantics is based on the interpretation of the binary
operation of fork ∇ considered in Frias [11, Chap. 1].

The difficulty in axiomatizing or deciding PRSPDL or PDLΔ
0 originates in

the fact that the program operations of fork considered above are not modally
definable in the ordinary language of PDL. We overcome this difficulty by means
of tools and techniques developed in [1,3,4]. Our results are based on the fol-
lowing: although fork is not modally definable, it becomes definable in a modal
language strengthened by the introduction of propositional quantifiers. Instead
of using axioms to define the program operation of fork in the language of PDL
enlarged with propositional quantifiers, we add an unorthodox rule of proof that
makes the canonical model standard for the program operation of fork and we
use large programs for the proof of the Truth Lemma.

We will first present the syntax (Sect. 2) and the semantics (Sect. 3) of PDLΔ
0

and continue with results concerning the expressivity of PDLΔ
0 (Sect. 4), the

axiomatization/completeness of PDLΔ
0 (Sects. 5 and 6) and the decidability of

PDLΔ
0 (Sect. 7). We assume the reader is at home with tools and techniques in

modal logic and dynamic logic. For more on this, see [6,15]. The proofs of our
results can be found in [2].

2 Syntax

This section presents the syntax of PDLΔ
0 . As usual, we will follow the standard

rules for omission of the parentheses.

Definition 1 (Programs and formulas). The set PRG of all programs and
the set FRM of all formulas are inductively defined as follows:

– α, β ::= a | (α;β) | (αΔβ) | φ?;
– φ, ψ ::= p | ⊥ | ¬φ | (φ ∨ ψ) | [α]φ | (φ ◦ ψ) | (φ � ψ) | (φ 	 ψ);

where a ranges over a countably infinite set of program variables and p ranges
over a countably infinite set of propositional variables.

We will use α, β, . . . for programs and φ, ψ, . . . for formulas. The Boolean
constructs for formulas are defined as usual. A number of other constructs for
formulas can be defined in terms of the primitive ones as follows.

Definition 2 (Abbreviations). The modal constructs for formulas 〈·〉·, (·◦̄·),
(·�̄·) and (·	̄·) are defined as follows: 〈α〉φ ::= ¬[α]¬φ; (φ◦̄ψ) ::= ¬(¬φ ◦ ¬ψ);
(φ�̄ψ) ::= ¬(¬φ � ¬ψ); (φ	̄ψ) ::= ¬(¬φ 	 ¬ψ). Moreover, for all formulas φ, let
φ0 ::= ¬φ and φ1 ::= φ.

Axiomatization and Computability of a Variant of Iteration-Free PDL 19

It is well worth noting that programs and formulas are finite strings of sym-
bols coming from a countable alphabet. It follows that there are countably many
programs and countably many formulas. The construct ·; · comes from the class
of algebras of binary relations [19]: the program α;β firstly executes α and sec-
ondly executes β. As for the construct ·Δ·, it comes from the class of proper fork
algebras [11, Chap. 1]: the program αΔβ performs a kind of parallel execution
of α and β. The construct [·]· comes from the language of PDL [10,15]: the for-
mula [α]φ says that “every execution of α from the present state leads to a state
bearing the information φ”. As for the constructs · ◦ ·, · � · and · 	 ·, they come
from the language of conjugated arrow logic [8,17]: the formula φ ◦ ψ says that
“the present state is a combination of states bearing the information φ and ψ”,
the formula φ � ψ says that “the present state can be combined to its left with a
state bearing the information φ giving us a state bearing the information ψ” and
the formula φ 	 ψ says that “the present state can be combined to its right with
a state bearing the information ψ giving us a state bearing the information φ”.

Example 1. The formula [aΔb](p ◦ q) says that “the parallel execution of a and
b from the present state always leads to a state resulting from the combination
of states bearing the information p and q”.

Obviously, programs are built up from program variables and tests by
means of the constructs ·; · and ·Δ·. Let α(φ1?, . . . , φn?) be a program with
(φ1?, . . . , φn?) a sequence of some of its tests. The result of the replacement of
φ1?, . . . , φn? in their places with other tests ψ1?, . . . , ψn? is another program
which will be denoted α(ψ1?, . . . , ψn?). Now, we introduce the function f from
the set of all programs into itself defined as follows.

Definition 3 (Test insertion). Let f be the function from the set of all pro-
grams into itself inductively defined as follows:

– f(a) = a;
– f(α;β) = f(α);�?; f(β);
– f(αΔβ) = (f(α);�?)Δ(f(β);�?);
– f(φ?) = φ?.

Example 2. If α = aΔb, f(α) = (a;�?)Δ(b;�?).

Now, we introduce parametrized actions and admissible forms.

Definition 4 (Parametrized actions and admissible forms). The set
PAR of all parametrized actions and the set ADM of all admissible forms are
inductively defined as follows:

– ᾰ, β̆ ::= (ᾰ;β) | (α; β̆) | (ᾰΔβ) | (αΔβ̆) | ¬φ̆?;
– φ̆, ψ̆ ::=
 | [ᾰ]⊥ | (φ̆◦̄ψ) | (φ◦̄ψ̆) | (φ̆�̄ψ) | (φ�̄ψ̆) | (φ̆	̄ψ) | (φ	̄ψ̆);

where
 is a new propositional variable, α, β range over PRG and φ, ψ range
over FRM .

20 P. Balbiani and J. Boudou

We will use ᾰ, β̆, . . . for parametrized actions and φ̆, ψ̆, . . . for admissible
forms. It is well worth noting that parametrized actions and admissible forms are
finite strings of symbols coming from a countable alphabet. It follows that there
are countably many parametrized actions and countably many admissible forms.
Remark that in each expression ˘exp (a parametrized action, or an admissible
form),
 has a unique occurrence. The result of the replacement of
 in its place
in ˘exp with a formula φ is an expression which will be denoted ˘exp(φ).

Example 3. For all programs α, α;¬[¬
?]⊥? is a parametrized action whereas
for all formulas φ, φ◦̄[¬
?]⊥ is an admissible form.

3 Semantics

Our task is now to present the semantics of PDLΔ
0 .

Definition 5 (Frames). A frame is a 3-tuple F = (W,R, �) where W is a
nonempty set of states, R is a function from the set of all program variables into
the set of all binary relations between states and � is a function from the set of
all pairs of states into the set of all sets of states.

We will use x, y, . . . for states. The set W of states in a frame F = (W,R, �)
is to be regarded as the set of all possible states in a computation process,
the function R from the set of all program variables into the set of all binary
relations between states associates with each program variable a the binary
relation R(a) on W with xR(a)y meaning that “y can be reached from x by
performing program variable a” and the function � from the set of all pairs of
states into the set of all sets of states associates with each pair (x, y) of states
the subset x � y of W with z ∈ x � y meaning that “z is a combination of x
and y”.

Definition 6 (Valuations and models). A model on the frame F = (W,R, �)
is a 4-tuple M = (W,R, �, V) where V is a valuation on F , i.e. a function from
the set of all propositional variables into the set of all sets of states.

In the model M = (W,R, �, V), the valuation V associates with each propo-
sitional variable p the subset V (p) of W with x ∈ V (p) meaning that “propo-
sitional variable p is true at state x in M”. We now define the property “state
y can be reached from state x by performing program α in M”—in symbols
xRM(α)y—and the property “formula φ is true at state x in M”—in symbols
x ∈ VM(φ).

Definition 7 (Accessibility via programs and truth of formulas). In mo-
del M = (W,R, �, V), RM : α
→ RM(α) ⊆ W ×W and VM : φ
→ VM(φ) ⊆ W
are inductively defined as follows:

– xRM(a)y iff xR(a)y;
– xRM(α;β)y iff there exists z ∈ W such that xRM(α)z and zRM(β)y;

Axiomatization and Computability of a Variant of Iteration-Free PDL 21

– xRM(αΔβ)y iff there exists z, t ∈ W such that xRM(α)z, xRM(β)t and
y ∈ z � t;

– xRM(φ?)y iff x = y and y ∈ VM(φ);
– x ∈ VM(p) iff x ∈ V (p);
– x
∈ VM(⊥);
– x ∈ VM(¬φ) iff x
∈ VM(φ);
– x ∈ VM(φ ∨ ψ) iff x ∈ VM(φ), or x ∈ VM(ψ);
– x ∈ VM([α]φ) iff for all y ∈ W , if xRM(α)y, y ∈ VM(φ);
– x ∈ VM(φ ◦ ψ) iff there exists y, z ∈ W such that x ∈ y � z, y ∈ VM(φ) and

z ∈ VM(ψ);
– x ∈ VM(φ � ψ) iff there exists y, z ∈ W such that z ∈ y � x, y ∈ VM(φ) and

z ∈ VM(ψ);
– x ∈ VM(φ 	 ψ) iff there exists y, z ∈ W such that y ∈ x � z, y ∈ VM(φ) and

z ∈ VM(ψ).

It follows that

Proposition 1. Let M = (W,R, �, V) be a model. For all x ∈ W , we have:
x ∈ VM(〈α〉φ) iff there exists y ∈ W such that xRM(α)y and y ∈ VM(φ);
x ∈ VM(φ◦̄ψ) iff for all y, z ∈ W , if x ∈ y � z, y ∈ VM(φ), or z ∈ VM(ψ);
x ∈ VM(φ�̄ψ) iff for all y, z ∈ W , if z ∈ y � x, y ∈ VM(φ), or z ∈ VM(ψ);
x ∈ VM(φ	̄ψ) iff for all y, z ∈ W , if y ∈ x � z, y ∈ VM(φ), or z ∈ VM(ψ).

Example 4. Let M = (W,R, �, V) be the model defined by:

– W = {x, y, z, t};
– R(a) = {(x, y)}, R(b) = {(x, z)}, otherwise R is the empty function;
– y � z = {t}, otherwise � is the empty function;
– V (p) = {y}, V (q) = {z}, otherwise V is the empty function.

Obviously, xRM(aΔb)t and t ∈ VM(p ◦ q). Hence, x ∈ VM(〈aΔb〉(p ◦ q)).

We now define the property “state z can be reached from state x by perform-
ing parametrized action ᾰ via state y in M”—in symbols xRM(ᾰ, y)z—and the
property “admissible form φ̆ is true at state x via state y in M”—in symbols
x ∈ VM(φ̆, y).

Definition 8 (Accessibility via parametrized actions and truth of
admissible forms). In model M = (W,R, �, V), RM : (ᾰ, y)
→ RM(ᾰ, y) ⊆
W × W and VM : (φ̆, y)
→ VM(φ̆, y) ⊆ W are inductively defined as follows:

– xRM(ᾰ;β, y)z iff there exists t ∈ W such that xRM(ᾰ, y)t and tRM(β)z;
– xRM(α; β̆, y)z iff there exists t ∈ W such that xRM(α)t and tRM(β̆, y)z;
– xRM(ᾰΔβ, y)z iff there exists t, u ∈ W such that xRM(ᾰ, y)t, xRM(β)u and

z ∈ t � u;
– xRM(αΔβ̆, y)z iff there exists t, u ∈ W such that xRM(α)t, xRM(β̆, y)u and

z ∈ t � u;
– xRM(¬φ̆?, y)z iff x = z and z ∈ VM(φ̆, y);

22 P. Balbiani and J. Boudou

– x ∈ VM(
, y) iff x = y;
– x ∈ VM([ᾰ]⊥, y) iff there exists z ∈ W such that xRM(ᾰ, y)z;
– x ∈ VM(φ̆◦̄ψ, y) iff there exists z, t ∈ W such that x ∈ z � t, z ∈ VM(φ̆, y) and

t
∈ VM(ψ);
– x ∈ VM(φ◦̄ψ̆, y) iff there exists z, t ∈ W such that x ∈ z � t, z
∈ VM(φ) and

t ∈ VM(ψ̆, y);
– x ∈ VM(φ̆�̄ψ, y) iff there exists z, t ∈ W such that t ∈ z � x, z ∈ VM(φ̆, y) and

t
∈ VM(ψ);
– x ∈ VM(φ�̄ψ̆, y) iff there exists z, t ∈ W such that t ∈ z � x, z
∈ VM(φ) and

t ∈ VM(ψ̆, y);
– x ∈ VM(φ̆	̄ψ, y) iff there exists z, t ∈ W such that z ∈ x � t, z ∈ VM(φ̆, y) and

t
∈ VM(ψ);
– x ∈ VM(φ	̄ψ̆, y) iff there exists z, t ∈ W such that z ∈ x � t, z
∈ VM(φ) and

t ∈ VM(ψ̆, y);

It follows that

Proposition 2. Let M = (W,R, �, V) be a model. Let ᾰ be a parametrized
action. For all x, z ∈ W , the following conditions are equivalent: xRM(ᾰ(φ))z;
there exists y ∈ W such that xRM(ᾰ, y)z and y
∈ VM(φ). Let φ̆ be an admissible
form. For all x ∈ W , the following conditions are equivalent: x ∈ VM(φ̆(ψ)); for
all y ∈ W , if x ∈ VM(φ̆, y), y ∈ VM(ψ).

The concept of validity is defined in the usual way as follows.

Definition 9 (Validity). We shall say that a formula φ is valid in a model M,
in symbols M |= φ, iff VM(φ) = W . A formula φ is said to be valid in a frame
F , in symbols F |= φ, iff for all models M on F , M |= φ. We shall say that a
formula φ is valid in a class C of frames, in symbols C |= φ, iff for all frames F
in C, F |= φ.

For technical reasons, we now consider three particular classes of frames.

Definition 10 (Separated, deterministic or serial frames). A frame F =
(W,R, �) is said to be separated iff for all x, y, z, t, u ∈ W , if u ∈ x�y and u ∈ z�t,
x = z and y = t. We shall say that a frame F = (W,R, �) is deterministic iff
for all x, y, z, t ∈ W , if z ∈ x � y and t ∈ x � y, z = t. A frame F = (W,R, �) is
said to be serial iff for all x, y ∈ W , there exists z ∈ W such that z ∈ x � y.

In separated frames, there is at most one way to decompose a given state; in
deterministic frames, there is at most one way to combine two given states; in
serial frames, it is always possible to combine two given states. Frias [11, Chap. 1]
only considers separated, deterministic and serial frames. Here are some valid
formulas and admissible rules of proof.

Axiomatization and Computability of a Variant of Iteration-Free PDL 23

Proposition 3 (Validity). The following formulas are valid in the class of all
frames:

(A1) [α](φ → ψ) → ([α]φ → [α]ψ);
(A2) 〈α;β〉φ ↔ 〈α〉〈β〉φ;
(A3) 〈αΔβ〉φ → 〈α〉((φ ∧ ψ) 	 �) ∨ 〈β〉(� � (φ ∧ ¬ψ));
(A4) 〈φ?〉ψ ↔ φ ∧ ψ;
(A5) (φ → ψ)◦̄χ → (φ◦̄χ → ψ◦̄χ);
(A6) φ◦̄(ψ → χ) → (φ◦̄ψ → φ◦̄χ);
(A7) (φ → ψ)�̄χ → (φ�̄χ → ψ�̄χ);
(A8) φ�̄(ψ → χ) → (φ�̄ψ → φ�̄χ);
(A9) (φ → ψ)	̄χ → (φ	̄χ → ψ	̄χ);
(A10) φ	̄(ψ → χ) → (φ	̄ψ → φ	̄χ);
(A11) φ ◦ ¬(φ � ¬ψ) → ψ;
(A12) φ � ¬(φ ◦ ¬ψ) → ψ;
(A13) ¬(¬φ 	 ψ) ◦ ψ → φ;
(A14) ¬(¬φ ◦ ψ) 	 ψ → φ;
(A15) [(α;φ?)Δ(β;ψ?)](φ ◦ ψ);
(A16) 〈α(φ?)〉ψ → 〈α((φ ∧ χ)?)〉ψ ∨ 〈α((φ ∧ ¬χ)?)〉ψ;
(A17) 〈f(α)〉φ ↔ 〈α〉φ.

Proposition 4 (Validity). The following formula is valid in the class of all
separated frames:

(A18) p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q).

Proposition 5 (Admissibility). The following rules of proof preserve validity
in the class of all frames:

(MP) from φ and φ → ψ, infer ψ;
(N) from φ, infer [α]φ; from φ, infer φ◦̄ψ; from φ, infer ψ◦̄φ.

(A1) is the distribution axiom of PDL, (A2) is the composition axiom, (A4)
is the test axiom, (A5)–(A10) are the distribution axioms of conjugated arrow
logic and (A11)–(A14) are the tense axioms of conjugated arrow logic whereas
(A3) and (A15)–(A18) are axioms concerning specific properties of the program
operation of fork or the constructs ·◦·, ·�· and ·	·. (MP) is the modus ponens rule
of proof and (N) is the necessitation rule of proof. They are probably familiar
to the reader. As for the following rule of proof, it concerns specific properties
of the program operation of fork and the constructs · � · and · 	 ·.
Proposition 6 (Admissibility). The following rule of proof preserves validity
in the class of all separated frames:

(FOR) from {φ̆(〈α〉((ψ ∧ p) 	 �) ∨ 〈β〉(� � (ψ ∧ ¬p))) : p is a propositional
variable}, infer φ̆(〈αΔβ〉ψ).

There is an important point we should make: (FOR) is an infinitary rule of
proof, i.e. it has an infinite set of formulas as preconditions. In some ways, it is
similar to the rule for intersection from [3,4].

24 P. Balbiani and J. Boudou

4 Expressivity

This section studies the expressivity of PDLΔ
0 .

Definition 11 (Modal definability). Let C be a class of frames. We shall say
that C is modally definable by the formula φ iff for all frames F , F is in C iff
F |= φ.

The following propositions show elementary classes of frames that are
modally definable.

Proposition 7. The elementary classes of frames defined by the first-order sen-
tences in the hereunder table are modally definable by the associated formulas.

1. ∀x ∃y y ∈ x � x 〈�?Δ�?〉�
2. ∀x ∀y ∀z (y ∈ x � x ∧ z ∈ x � x → y = z) 〈�?Δ�?〉p → [�?Δ�?]p

3. ∀x ∀y (y ∈ x � x → x ∈ x � y) p → [�?Δ�?](p � p)

4. ∀x ∀y (y ∈ x � x → x ∈ y � x) p → [�?Δ�?](p � p)

5. ∀x ∀y ∀z (z ∈ x � y ↔ z ∈ y � x) p ◦ q ↔ q ◦ p

6. ∀x ∃y ∃z x ∈ y � z � ◦ �
7. ∀x ∃y ∃z y ∈ z � x � � �
8. ∀x ∃y ∃z z ∈ x � y � � �
9. ∀x ∀y ∀z ∀t (t ∈ (x � y) � z ↔ t ∈ x � (y � z)) (p ◦ q) ◦ r ↔ p ◦ (q ◦ r)

10. ∀x ∀y ∀z x �∈ y � z ⊥◦̄⊥

Proposition 8. The class of all separated frames is modally definable by the
formula p ◦ q → (p◦̄⊥) ∧ (⊥◦̄q).

The following proposition shows an elementary class of frames that is not
modally definable.

Proposition 9. The class of all deterministic frames is not modally definable.

As for the class of all serial frames, its modal definability is still open. In other
respect, the formula 〈φ?〉ψ ↔ φ ∧ ψ, being valid in the class of all frames, seems
to indicate that for all formulas, there exists an equivalent test-free formula. It
is interesting to observe that this assertion is false.

Proposition 10. For all test-free formulas φ, 〈�?Δ�?〉� ↔ φ is not valid in
the class of all separated deterministic frames.

The following proposition illustrates the fact that the program operation of
fork cannot be defined from the fork-free fragment of the language.

Axiomatization and Computability of a Variant of Iteration-Free PDL 25

Proposition 11. Let a be a program variable. For all fork-free formulas φ,
〈aΔa〉� ↔ φ is not valid in the class of all separated deterministic frames.

The following proposition illustrates the fact that, in the presence of propo-
sitional quantifiers, the program operation of fork becomes definable from the
fork-free fragment of the language in the class of all separated frames.

Proposition 12. Let M = (W,R, �, V) be a separated model and x ∈ W . For
all admissible forms φ̆, for all programs α, β, for all formulas ψ and for all
propositional variables p, if p does not occur in φ̆, α, β, ψ, the following conditions
are equivalent: (1) x ∈ VM(φ̆(〈αΔβ〉ψ)); (2) for all V ′ : q
→ V ′(q) ⊆ W , if
V ′ ∼p V , x ∈ V(W,R,�,V ′)(φ̆(〈α〉((ψ ∧ p) 	 �) ∨ 〈β〉(� � (ψ ∧ ¬p)))).

More precisely, in the presence of propositional quantifiers, the formulas
〈αΔβ〉φ and ∀p(〈α〉((φ∧p)	�)∨〈β〉(��(φ∧¬p))) are logically equivalent in the
class of all separated frames. The implication 〈αΔβ〉φ → ∀p(〈α〉((φ ∧ p) 	 �) ∨
〈β〉(��(φ∧¬p))) can be expressed without propositional quantifiers by formulas:
〈αΔβ〉φ → 〈α〉((φ∧ψ)	�)∨〈β〉(��(φ∧¬ψ))). See axiom (A3) in Proposition 3.
As for the implication ∀p(〈α〉((φ ∧ p) 	 �) ∨ 〈β〉(� � (φ ∧ ¬p))) → 〈αΔβ〉φ, it
can be expressed by a rule of proof. The simplest form of such a rule of proof is:
from {〈α〉((φ ∧ p) 	 �) ∨ 〈β〉(� � (φ ∧ ¬p)) : p is a propositional variable}, infer
〈αΔβ〉φ. See Proposition 6.

5 Axiom System

We now define PDLΔ
0 .

Definition 12 (PDLΔ
0). Let PDLΔ

0 be the least set of formulas that contains
all instances of propositional tautologies, that contains the formulas (A1)–(A18)
considered in Propositions 3 and 4 and that is closed under the rules of proof
(MP), (N) and (FOR) considered in Propositions 5 and 6.

It is easy to establish the soundness for PDLΔ
0 :

Proposition 13 (Soundness for PDLΔ
0). Let φ be a formula. If φ ∈ PDLΔ

0 ,
φ is valid in the class of all separated frames.

The completeness for PDLΔ
0 is more difficult to establish and we defer prov-

ing it till next section. In the meantime, it is well worth noting that for all
separated models M = (W,R, �, V) and for all x ∈ W , {φ : x ∈ VM(φ)} is a
set of formulas that contains PDLΔ

0 and that is closed under the rule of proof
(MP). Now, we introduce theories.

Definition 13 (Theories). A set S of formulas is said to be a theory iff PDLΔ
0

⊆ S and S is closed under the rules of proof (MP) and (FOR).

We will use S, T, . . . for theories. Obviously, the least theory is PDLΔ
0 and

the greatest theory is the set of all formulas. Not surprisingly, we have

26 P. Balbiani and J. Boudou

Lemma 1. Let S be a theory. The following conditions are equivalent: S is equal
to the set of all formulas; there exists a formula φ such that φ ∈ S and ¬φ ∈ S;
⊥ ∈ S.

Referring to Lemma 1, we define what it means for a theory to be consistent.

Definition 14 (Consistency of theories). We shall say that a theory S is
consistent iff for all formulas φ, φ
∈ S, or ¬φ
∈ S.

By Lemma 1, there is only one inconsistent theory: the set of all formulas.
Now, we define what it means for a theory to be maximal.

Definition 15 (Maximality of theories). A theory S is said to be maximal
iff for all formulas φ, φ ∈ S, or ¬φ ∈ S.

We will use the following lemma without explicit reference:

Lemma 2. Let S be a maximal consistent theory. We have: ⊥
∈ S; for all
formulas φ, ¬φ ∈ S iff φ
∈ S; for all formulas φ, ψ, φ ∨ ψ ∈ S iff φ ∈ S, or
ψ ∈ S.

To know more about theories, we need yet another definition.

Definition 16 (Operations on theories). If α is a program, φ is a formula
and S is a theory, let [α]S = {φ : [α]φ ∈ S} and S + φ = {ψ : φ → ψ ∈ S}.

In the next lemmas, we summarize some properties of theories.

Lemma 3. Let S be a theory. For all programs α and for all formulas φ, we
have: (1) [φ?]S = S + φ; (2) [α]S is a theory; (3) S + φ is a theory; (4) φ, S + φ
is the least theory containing S and φ; (5) S + φ is consistent iff ¬φ
∈ S.

Lemma 4. Let S be a theory. If S is consistent, for all formulas φ, S + φ is
consistent, or there exists a formula ψ such that the following conditions are
satisfied: S + ψ is consistent; ψ → ¬φ ∈ PDLΔ

0 ; if φ is in the form χ̆(〈αΔβ〉θ)
of a conclusion of the rule of proof (FOR), there exists a propositional variable
p such that ψ → ¬χ̆(〈α〉((θ ∧ p) 	 �) ∨ 〈β〉(� � (θ ∧ ¬p))) ∈ PDLΔ

0 .

Now, we are ready for the Lindenbaum Lemma.

Lemma 5 (Lindenbaum Lemma). Let S be a theory. If S is consistent, there
exists a maximal consistent theory containing S.

To define the canonical frame of PDLΔ
0 in next section, we need yet another

definition.

Definition 17 (Composition of theories). If S and T are theory, let S ◦T =
{φ ◦ ψ : φ ∈ S and ψ ∈ T}.

To end this section, we present useful results.

Axiomatization and Computability of a Variant of Iteration-Free PDL 27

Lemma 6. Let φ, ψ be formulas and ⊗ ∈ {◦, �, �}. For all maximal consistent
theories S, if φ ⊗ ψ ∈ S, for all formulas χ, we have: (1) (φ ∧ χ) ⊗ ψ ∈ S,
or there exists a formula θ such that the following conditions are satisfied: (φ ∧
θ) ⊗ ψ ∈ S; θ → ¬χ ∈ PDLΔ

0 ; if χ is in the form τ̆(〈αΔβ〉μ) of a conclusion
of the rule of proof (FOR), there exists a propositional variable p such that
θ → ¬τ̆(〈α〉((μ ∧ p) 	 �) ∨ 〈β〉(� � (μ ∧ ¬p))) ∈ PDLΔ

0 ; (2) φ ⊗ (ψ ∧ χ) ∈
S, or there exists a formula θ such that the following conditions are satisfied:
φ⊗(ψ∧θ) ∈ S; θ → ¬χ ∈ PDLΔ

0 ; if χ is in the form τ̆(〈αΔβ〉μ) of a conclusion
of the rule of proof (FOR), there exists a propositional variable p such that
θ → ¬τ̆(〈α〉((μ ∧ p) 	 �) ∨ 〈β〉(� � (μ ∧ ¬p))) ∈ PDLΔ

0 .

Lemma 7. Let φ, ψ be formulas. For all maximal consistent theories S, we have:
(1) if φ◦ψ ∈ S, there exists maximal consistent theories T,U such that T ◦U ⊆ S,
φ ∈ T and ψ ∈ U ; (2) if φ�ψ ∈ S, there exists maximal consistent theories T,U
such that T ◦ S ⊆ U , φ ∈ T and ψ ∈ U ; (3) if φ 	 ψ ∈ S, there exists maximal
consistent theories T,U such that S ◦ U ⊆ T , φ ∈ T and ψ ∈ U .

6 Completeness

Now, for the canonical frame of PDLΔ
0 .

Definition 18 (Canonical frame). The canonical frame of PDLΔ
0 is the 3-

tuple Fc = (Wc, Rc, �c) where Wc is the set of all maximal consistent theories,
Rc is the function from the set of all program variables into the set of all binary
relations between maximal consistent theories defined by SRc(a)T iff [a]S ⊆ T
and �c is the function from the set of all pairs of maximal consistent theories
into the set of all sets of maximal consistent theories defined by U ∈ S �c T iff
S ◦ T ⊆ U .

We show first that

Lemma 8. Fc is separated.

Now, for the canonical valuation of PDLΔ
0 and the canonical model of PDLΔ

0 .

Definition 19 (Canonical valuation and canonical model). The canonical
model of PDLΔ

0 is the 4-tuple Mc = (Wc, Rc, �c, Vc) where Vc is the canonical
valuation of PDLΔ

0 , i.e. the function from the set of all propositional variables
into the set of all sets of maximal consistent theories defined by S ∈ Vc(p) iff
p ∈ S.

For the proof of the Truth Lemma, we have to consider large programs.

Definition 20 (Large programs). The set of all large programs is inductively
defined as follows:

– A ::= a | (A;B) | (AΔB) | S̄?;

where for all consistent theories S, S̄ is a new symbol.

28 P. Balbiani and J. Boudou

We will use A,B, . . . for large programs. Let us be clear that each large
program is a finite string of symbols coming from an uncountable alphabet. It
follows that there are uncountably many large programs. For convenience, we
omit the parentheses in accordance with the standard rules. It is essential that
large programs are built up from program variables and symbols for consistent
theories by means of the operations ; and Δ. Let A(S̄1?, . . . , S̄n?) be a large pro-
gram with (S̄1, . . . , S̄n) a sequence of some of its symbols for consistent theories.
The result of the replacement of S̄1, . . . , S̄n in their places with other symbols
T̄1, . . . , T̄n for consistent theories is another large program which will be denoted
A(T̄1?, . . . , T̄n?).

Definition 21 (Maximality of large programs). A large program A(S̄1?,
. . . , S̄n?) with (S̄1, . . . , S̄n) the sequence of all its symbols for consistent theories
will be defined to be maximal if the theories S1, . . . , Sn are maximal.

It appears that large programs, maximal, or not, can be associated with a
set of programs.

Definition 22 (Kernel function). The kernel function ker : A
→ ker(A) ⊆
PRG is inductively defined as follows:
– ker(a) = {a};
– ker(A;B) = {α;β : α ∈ ker(A) and β ∈ ker(B)};
– ker(AΔB) = {αΔβ : α ∈ ker(A) and β ∈ ker(B)};
– ker(S̄) = {φ? : φ ∈ S}.

The following lemmas play an important role in the proof of the completeness
for PDLΔ

0 .

Lemma 9. Let α(φ?) be a program. For all maximal consistent theories S, if
〈α(φ?)〉� ∈ S, for all formulas ψ, we have: 〈α((φ ∧ ψ)?)〉� ∈ S, or there exists
a formula χ such that the following conditions are satisfied: 〈α((φ∧χ)?)〉� ∈ S;
χ → ¬ψ ∈ PDLΔ

0 ; if ψ is in the form θ̆(〈βΔγ〉τ) of a conclusion of the rule of
proof (FOR), there exists a propositional variable p such that χ → ¬θ̆(〈β〉((τ ∧
p) 	 �) ∨ 〈γ〉(� � (τ ∧ ¬p))) ∈ PDLΔ

0 .

Lemma 10 (Diamond Lemma). Let α be a program and φ be a formula. For
all maximal consistent theories S, if [α]φ
∈ S, there exists a maximal program
A and there exists a maximal consistent theory T such that f(α) ∈ ker(A), for
all programs β, if β ∈ ker(A), [β]S ⊆ T and φ
∈ T .

With this established, we are ready for the Truth Lemma.

Lemma 11 (Truth Lemma). Let α be a program. For all maximal consistent
theories S, T , the following conditions are equivalent: SRMc

(α)T ; there exists
a maximal program A such that f(α) ∈ ker(A) and for all programs β, if β ∈
ker(A), [β]S ⊆ T . Let φ be a formula. For all maximal consistent theories S, the
following conditions are equivalent: S ∈ VMc

(φ); φ ∈ S.

Now, we are ready for the completeness for PDLΔ
0 .

Proposition 14 (Completeness for PDLΔ
0). Let φ be a formula. If φ is valid

in the class of all separated frames, φ ∈ PDLΔ
0 .

Axiomatization and Computability of a Variant of Iteration-Free PDL 29

7 Decidability

In this section, we prove that the logic completely axiomatized in the previous
sections is decidable. We use the notation ∼φ which is defined by: ∼φ = if there
exists a formula ψ such that φ = ¬ψ then ψ else ¬φ. We use ν to denote an
expression which may be either a program or a formula and |ν| to denote the
number of occurrences of symbols in ν. The following size function provides a
more semantical measure on programs.

Definition 23 (Size of programs). Let size be the function from the set of all
programs to N inductively defined as follows:

– size(φ?) = 0;
– size(a) = 1;
– size(α;β) = size(α) + size(β);
– size(αΔβ) = min (size(α), size(β)) + 1.

Obviously, if x RM(α) y and size(α) = 0 then x = y. Now we decompose
expressions into subexpressions, associating a depth to each subformula.

Definition 24 (Localized expression and decomposition). A localized
expression is a tuple d : ν where ν is an expression and d ∈ N is called the
depth. Given any localized expression d : ν, the decomposition Cl(d : ν) of d : ν is
the least set of localized expressions containing d : ν and closed by the application
of the rules from Fig. 1. We write Cl(φ) for Cl(0: φ).

d : φ

d : ∼φ

d : φ ∨ ψ

d : φ d : ψ

d : 〈α〉φ
d : α d + size(α) : φ

d : φ?
d : φ

d : α;β
d : α d + size(α) : β

d : αΔβ

d : α d : β

d : φ ◦ ψ

d + 1: φ d + 1: ψ

d : φ � ψ

d + 1: φ d + 1: ψ

d : φ � ψ

d + 1: φ d + 1: ψ

Fig. 1. Rules for the decomposition of localized programs and formulas

Lemma 12. The cardinality of Cl(φ) is linear in |φ|.
Lemma 13. max {d | ∃ν, d : φ ∈ Cl(φ)} is linear in |φ|.

We now prove a strong finite model property for PDLΔ
0 interpreted over the

class of all separated frames. The procedure Selection on the following page
creates a model Ms from a model Mo satisfying a formula φ0 at w0. It uses the
recursive procedure Link described in Procedure 2.

30 P. Balbiani and J. Boudou

Input: A formula φ0, a model Mo = (Wo, Ro, �o, Vo) and an initial state
w0 ∈ Wo such that w0 ∈ VMo(φ0).

Result: A finite model Ms = (Ws, Rs, �s, Vs).
Data: A subset K ⊆ Ws of marked nodes and an integer n ∈ N.

1 initialisation
2 n = 0 ;
3 Ws = {(0, 0, w0)} ;
4 Rs(a) = ∅ for all a ∈ Π0 ;
5 (O, 0, w0) �s (O, 0, w0) = ∅ ;
6 K = ∅ ;

7 end

8 while K �= Ws do
9 choose an unmarked state (k, d, w) ∈ Ws \ K ;

10 while (k, d, w) /∈ K do

11 let Vs(p) = {(kx, dx, x) ∈ Ws | x ∈ Vo(p)} for all p ∈ Φ0 ;

12 if there exists d′ : 〈α〉φ ∈ Cl(φ0) such that size(α) > 0, d′ ≥ d,
w ∈ VMo(〈α〉φ) and (k, d, w) /∈ VMs(〈α〉φ) then

13 choose y s.t. w RMo(α) y and y ∈ VMo(φ);
14 let dy = d + size(α) ;
15 let n = n + 1 ;
16 add (n, dy, y) to Ws ;
17 call Link (Mo, Ms, n, (k, d, w), (n, dy, y), α) ;

18 else if there exists d′ : φ ◦ ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo(φ ◦ ψ)
and there is no (kx, dx, x), (ky, dy, y) ∈ Ws such that
(k, d, w) ∈ (kx, dx, x) �s (ky, dy, y) then

19 choose x and y s.t. w ∈ x �s y, x ∈ VMo(φ) and y ∈ VMo(ψ);
20 add (n + 1, d + 1, x) and (n + 2, d + 1, y) to Ws ;
21 add (k, d, w) to (n + 1, d + 1, x) �s (n + 2, d + 1, y) ;
22 let n = n + 2 ;

23 else if there exists d′ : φ � ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo(φ � ψ)
and (k, d, w) /∈ VMs(φ � ψ) then

24 choose x and y s.t. y ∈ x �s w, x ∈ VMo(φ) and y ∈ VMo(ψ);
25 add (n + 1, d + 1, x) and (n + 2, d + 1, y) to Ws ;
26 add (n + 2, d + 1, y) to (n + 1, d + 1, x) �s (k, d, w) ;
27 let n = n + 2 ;

28 else if there exists d′ : φ � ψ ∈ Cl(φ0) such that d′ ≥ d, w ∈ VMo(φ � ψ)
and Ms, (d, w)� /∈ Vφ(ψ) then

29 choose x and y s.t. x ∈ w �s y, x ∈ VMo(φ) and y ∈ VMo(ψ);
30 add (n + 1, d + 1, x) and (n + 2, d + 1, y) to Ws ;
31 add (n + 1, d + 1, x) to (k, d, w) �s (n + 2, d + 1, y) ;
32 let n = n + 2 ;

33 else
34 add (k, d, w) to K ;
35 end

36 end

37 end
Procedure 1. Selection

Axiomatization and Computability of a Variant of Iteration-Free PDL 31

Input: Two models Mo = (Wo, Ro, �o, Vo) and Ms = (Ws, Rs, �s, Vs), an
integer n, two states (kx, dx, x), (ky, dy, y) ∈ Ws and a program α such
that x RMo(α) y.

Result: Ms and n modified.

1 if α is of the form a ∈ Π0 then
2 add ((kx, dx, x), (ky, dy, y)) to Rs(a) ;

3 else if α is of the form (β; γ) then
4 if size(β) = 0 then
5 call Link (Mo, Ms, n, (kx, dx, x), (ky, dy, y), γ) ;
6 else if size(γ) = 0 then
7 call Link (Mo, Ms, n, (kx, dx, x), (ky, dy, y), β) ;
8 else
9 choose z s.t. x RMo(β) z and z RMo(γ) y;

10 let n = n + 1 ;
11 let dz = dx + size(α) ;
12 add (n, dz, z) to Ws ;
13 call Link (Mo, Ms, n, (kx, dx, x), (n, dz, z), β) ;
14 call Link (Mo, Ms, n, (n, dz, z), (ky, dy, y), γ) ;

15 end

16 else if α is of the form (βΔγ) then
17 if size(β) = 0 and size(γ) = 0 then
18 add (ky, dy, y) to (kx, dx, x) �s (kx, dx, x) ;
19 else if size(β) = 0 then
20 choose z s.t. x RMo(γ) z and y ∈ x �o z;
21 let n = n + 1 ;
22 let dz = min (dy + 1, dx + size(γ)) ;
23 add (n, dz, z) to Ws ;
24 add (ky, dy, y) to (kx, dx, x) �s (n, dz, z) ;
25 call Link (Mo, Ms, n, (kx, dx, x), (n, dz, z), γ) ;

26 else if size(γ) = 0 then
27 choose w s.t. x RMo(β) w and y ∈ w �o x;
28 let n = n + 1 ;
29 let dw = min (dy + 1, dx + size(β)) ;
30 add (n, dw, w) to Ws ;
31 add (ky, dy, y) to (n, dw, w) �s (kx, dx, x) ;
32 ;
33 call Link (Mo, Ms, n, (kx, dx, x), (n, dw, w), β) ;

34 else
35 choose w and z s.t. x RMo(β) w, x RMo(γ) z and y ∈ w �o z;
36 let n = n + 2 ;
37 let dw = min (dy + 1, dx + size(β), dx + size(γ) + 1) ;
38 let dz = min (dy + 1, dx + size(γ), dx + size(β) + 1) ;
39 add (n − 1, dw, w) and (n, dz, z) to Ws ;
40 add (ky, dy, y) to (n − 1, dw, w) �s (n, dz, z) ;
41 call Link (Mo, Ms, n, (kx, dx, x), (n − 1, dw, w), β) ;
42 call Link (Mo, Ms, n, (kx, dx, x), (n, dz, z), γ) ;

43 end

44 end
Procedure 2. Link

32 P. Balbiani and J. Boudou

Lemma 14. The procedure Selection terminates and the cardinality of Ws is
exponential in |φ0|.
Lemma 15. Whenever Link is called, dy ≤ dx + size(α).

Lemma 16. For all (ky, dy, y), (kw, dw, w), (kz, dz, z) ∈ Ws, such that
(ky, dy, y) ∈ (kw, dw, w) �s (kz, dz, z) then y ∈ w �o z, |dy − dw| ≤ 1, |dy − dz| ≤ 1
and |dw − dz| ≤ 1.

Lemma 17. For all (kx, dx, x), (ky, dy, y) ∈ Ws and all α, if (kx, dx, x) RMs
(α)

(ky, dy, y), then dy ≤ dx + size(α).

Lemma 18. If Mo is separated, then Ms is separated too.

Lemma 19 (Truth lemma). If Mo is separated, then (0, 0, w0) ∈ VMs
(φ0).

Proposition 15. Any PDLΔ
0 formula φ satisfiable in a separated model is sat-

isfiable in a separated finite model with a number of states bounded by an expo-
nential in |φ|.

Since the model-checking problem for PDLΔ
0 is obviously polynomial in the

size of the model, therefore we have the following corollary:

Corollary 1. The satisfiability problem for PDLΔ
0 in the class of separated

frames is decidable in non-deterministic exponential time.

8 Conclusion

In modal logic, standard proofs of completeness for a given logic are usually
based on the canonical frame construction consisting of the set of all maximal
consistent sets of the logic equipped with standard definitions for the canonical
accessibility relations. Since the program operation of fork considered in [11,
Chap. 1] is not modally definable in the ordinary language of PDL, this method
cannot work in our case. As a result, we have given an axiomatization of PDLΔ

0 ,
our variant of iteration-free PDL with fork, using an unorthodox rule of proof
and we have proved its completeness using large programs. So, we have extended
the canonical frame construction introducing new tools and techniques connected
with an unorthodox rule of proof and large programs.

We anticipate a number of further investigations. First, there is the following
general question: is it possible to eliminate the rule of proof (FOR) and to
replace it with a finite set of additional axiom schemes? Second, more details on
decidability/complexity issues would be relevant. Third, there is the question of
the complete axiomatization of validity with respect to other classes of frames
like the class of frames considered in [11, Chap. 1], i.e. the class of all separated,
deterministic and serial frames. Fourth, is the validity problem with respect to
the class of all separated, deterministic and serial frames decidable? If it is, what
is its complexity? Fifth, it remains to see whether our approach can be extended
to the full language of PDL with fork, this time with iteration.

Axiomatization and Computability of a Variant of Iteration-Free PDL 33

A novelty in the paper is the proof that fork is modally definable in a language
with propositional quantifiers and that the rule (FOR) in a sense simulates the
quantifier rule for universal quantification in the context of the definition of fork.
This is a new look on the nature of some context dependent rules of proof like
(FOR). In some ways, (FOR) is similar to the rule for intersection from [3,4].
See also [1] for ideas about its elimination from the axiomatization of PDLΔ

0 we
have given. We expect that our variant of the canonical frame construction can
be applied to other logics, for instance PRSPDL, the variant of PDL with fork
given rise by the binary operation of fork ∇ considered in Benevides et al. [5,
Sect. 2] and whose axiomatization is still open.

Acknowledgement. Our research has been supported by the ANR project no. ANR-
11-BS02-011.

References

1. Balbiani, P.: Eliminating unorthodox derivation rules in an axiom system for
iteration-free PDL with intersection. Fundam. Inf. 56, 211–242 (2003)

2. Balbiani, P., Boudou, J.: About the axiomatization and the computability of a
variant of iteration-free PDL with fork. Institut de recherche en information de
Toulouse (2017)

3. Balbiani, P., Vakarelov, D.: Iteration-free PDL with intersection: a complete
axiomatization. Fundam. Inf. 45, 173–194 (2001)

4. Balbiani, P., Vakarelov, D.: PDL with intersection of programs: a complete axiom-
atization. J. Appl. Non-Classical Logics 13, 231–276 (2003)

5. Benevides, M., de Freitas, R., Viana, P.: Propositional dynamic logic with storing,
recovering and parallel composition. Electron. Notes Theor. Comput. Sci. 269,
95–107 (2011)

6. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
Cambridge (2001)

7. Danecki, R.: Nondeterministic propositional dynamic logic with intersection is
decidable. In: Skowron, A. (ed.) SCT 1984. LNCS, vol. 208, pp. 34–53. Springer,
Heidelberg (1985). https://doi.org/10.1007/3-540-16066-3 5

8. Dos̆en, K.: A brief survey of frames for the Lambek calculus. Zeitschrift für math-
ematische Logik und Grundlagen der Mathematik 38, 179–187 (1992)

9. del Cerro, L.F., Or�lowska, E.: DAL—a logic for data analysis. Theoret. Comput.
Sci. 36, 251–264 (1985)

10. Fisher, M., Ladner, R.: Propositional dynamic logic of regular programs. J. Com-
put. Syst. Sci. 18, 194–211 (1979)

11. Frias, M.: Fork Algebras in Algebra, Logic and Computer Science. World Scientific,
River Edge (2002)

12. Frias, M., Baum, G., Haeberer, A.: Fork algebras in algebra, logic and computer
science. Fund. Inf. 32, 1–25 (1997)

13. Frias, M., Veloso, P., Baum, G.: Fork algebras: past, present and future. J. Relat.
Methods Comput. Sci. 1, 181–216 (2004)

14. Gargov, G., Passy, S.: A note on Boolean modal logic. In: Petkov, P. (ed.) Mathe-
matical Logic, pp. 299–309. Plenum Press, New York (1990)

15. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)

https://doi.org/10.1007/3-540-16066-3_5

34 P. Balbiani and J. Boudou

16. Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theoret.
Comput. Sci. 14, 113–118 (1981)

17. Mikulás, S.: Complete calculus for conjugated arrow logic. In: Marx, M., Pólos,
L., Masuch, M. (eds.) Arrow Logic and Multi-Modal Logic, pp. 125–139. CSLI,
Stanford (1996)

18. Mirkowska, G.: PAL—propositional algorithmic logic. Fund. Inf. 4, 675–760 (1981)
19. Tarski, A.: On the calculus of relations. J. Symb. Logic 6, 73–89 (1941)

A Dynamic Logic for Learning Theory

Alexandru Baltag1, Nina Gierasimczuk2, Aybüke Özgün1,3,
Ana Lucia Vargas Sandoval1(B), and Sonja Smets1

1 ILLC, University of Amsterdam, Amsterdam, The Netherlands
ana.varsa@gmail.com

2 DTU Compute, Technical University of Denmark, Copenhagen, Denmark
3 LORIA, CNRS-Université de Lorraine, Nancy, France

Abstract. Building on previous work [4,5] that bridged Formal Learn-
ing Theory and Dynamic Epistemic Logic in a topological setting, we
introduce a Dynamic Logic for Learning Theory (DLLT), extending Sub-
set Space Logics [9,17] with dynamic observation modalities [o]ϕ, as well
as with a learning operator L(#»o), which encodes the learner’s conjecture
after observing a finite sequence of data #»o . We completely axiomatise
DLLT, study its expressivity and use it to characterise various notions
of knowledge, belief, and learning.

Keywords: Learning theory · Dynamic epistemic logic
Modal Logic · Subset Space Semantics · Inductive knowledge
Epistemology

1 Introduction

The process of learning consists of incorporating new information into one’s prior
information state. Dynamic epistemic logic (DEL) studies such one-step infor-
mation changes from a logical perspective [6,19,23]. But the general concept
of learning encompasses not only one-step revisions, but also their long-term
horizon. In the long run, learning should lead to knowledge — an epistemic
state of a particular value. Examples include language learning (inferring the
underlying grammar from examples of correct sentences), and scientific inquiry
(inferring a theory of a phenomenon on the basis of observations). Our goal in
this paper is to provide a simple logic for reasoning about this process of induc-
tive learning from successful observations. Understanding inductive inference is
of course an infamously difficult open problem, and there are many different
approaches in the literature.1 However, in this paper we do not try to solve the
problem of induction, but only to reason about a (rational) inductive learner. For
this, we adopt the more flexible and open-ended approach of Formal Learning

1 From probabilistic and statistical formalisms based on Bayesian reasoning, Popper-
style measures of corroboration, through default and non-monotonic logics, Carnap-
style ‘inductive logic’, to AGM-style rational belief revision and theory change.

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 35–54, 2018.
https://doi.org/10.1007/978-3-319-73579-5_3

36 A. Baltag et al.

Theory (FLT). While most other approaches adopt a normative stance, aimed
at prescribing ‘the’ correct algorithm for forming and changing rational beliefs
from observations (e.g., Bayesian conditioning), or at least at prescribing some
general rational constraints that any such algorithm should obey (e.g., the AGM
postulates for belief revision), FLT gives the learner a high degree of freedom,
allowing the choice of any learner that produces conjectures based on the data
(no matter how ‘crazy’ or unjustified are these conjectures, or how erratic is
the process of belief change). In FLT the only criterion of success is... success:
tracking the truth in the limit. In other words, the only thing that matters is
whether or not the iterated belief revision process will eventually stabilise on a
conjecture which matches the truth (about some given issue). Of course, we are
not interested in cases of convergence to the truth ‘by accident’, but in determin-
ing whether or not a given learner is guaranteed to eventually track the truth;
hence, the focus on ‘The Logic of Reliable Inquiry’.2

We propose a formalism that combines ideas from: Subset Space Logics, as
introduced by Moss and Parikh [17], investigated further by Dabrowski et al.
[9] and already merged with the DEL tradition in prior work [3,7,8,20,22,25];
the topological approach to FLT in [5,16]; and the general agenda of bridg-
ing DEL and FLT in [13]. Semantically, we take intersection spaces (a type of
subset spaces that are closed under finite non-empty intersections), with points
interpreted as possible worlds and neighbourhoods interpreted as observations
(or information states) (see, e.g., [18] for a survey on subset space logics). We
enhance these structures with a learner L, mapping every information state
to a conjecture, representing the learner’s strongest belief in this state. As in
Subset Space logics, our language features an S5-type ‘knowledge-with-certainty’
modality, capturing the learner’s hard information, as well as the so-called ‘effort’
modality, which we interpret as ‘stable truth’ (i.e., truth immune to further obser-
vations). We add to this observation modalities [o]ϕ, analogous to the dynamic
modalities in Public Announcement Logic (PAL), as well as a learning operator
L(#»o), which encodes the learner’s conjecture after observing a finite sequence
of pieces of evidence #»o . This can be used to give a natural definition of belief :
a learner believes P iff she knows that P is entailed by her current conjecture.

We present a sound and complete axiomatisation of DLLT with respect to our
learning models. The completeness uses a neighbourhood version of the standard
canonical model construction. We use this logic to characterise various learnabil-
ity notions. In particular, we are able to model inductive learning as coming to
stably believe a true fact after observing an incoming sequence of true data. The
possibility of such learning corresponds to a key concept in FLT, namely iden-
tifiability in the limit first introduced and studied by Gold in [15]. Finally, we
discuss the expressivity of DLLT, showing that the dynamic observation modal-
ities are in principle eliminable via reduction laws.

2 ‘The Logic of Reliable Inquiry’ is the title of a classic text in FLT-based epistemology
[16].

A Dynamic Logic for Learning Theory 37

Due to page-limit constraints, we include only the shortest proofs in the main
text of this paper. The other relevant proofs can be found in the Appendix of
the long version of this paper, available online at https://sites.google.com/site/
ozgunaybuke/publications.

1.1 Effort Modality and Knowledge

In [24], Vickers reconstructed general topology as a logic of observation, in
which the points of the space represent possible states of the world, while
basic open neighborhoods of a point are interpreted as information states pro-
duced by accumulating finitely many observations. Moss and Parikh [17] gave an
account of learning in terms of observational effort. Making the epistemic effort
to obtain more information about a possible world has a natural topological
interpretation—it can be seen as shrinking the open neighborhood (representing
the current information state), thus providing a more accurate approximation
of the actual state of the world [9,11,12,17,18]. A similar line was proposed
in Formal Epistemology [5,16], where it was combined with more sophisticated
notions of learning borrowed from FLT. The following example relates the effort
modality with knowledge.

Example 1 ([18]). Let us consider some measurement, say of a vehicle’s velocity.
Suppose a policeman uses radar to determine whether a car is speeding in a 50-
mile speed-limit zone. The property speeding can be identified with the interval
(50,∞). Suppose the radar shows 51 mph, but the radar’s accuracy is ±2 mph.
The intuitive meaning of a speed measurement of 51 ± 2 is that the car’s true
speed v is in the open interval (49, 53). According to [18], “anything which we
know about v must hold not only of v itself, but also of any v′ in the same
interval” [18, p. 300]. Since the interval (49, 53) is not fully included in the
‘speeding’ interval (50,∞), the policeman does not know that the car is speeding.
But suppose that he does another measurement, using a more accurate radar
with an accuracy of ±1 mph, which shows 51.5 mph. Then he will come to know
that the car is speeding: the open interval (50.5, 52.5) is included in (50,∞)
(Fig. 1).

Fig. 1. Example 1; P := “the car is speeding”, Q := “the reading of the radar is
51 km/h”

https://sites.google.com/site/ozgunaybuke/publications
https://sites.google.com/site/ozgunaybuke/publications

38 A. Baltag et al.

Infallible Knowledge Versus Inductive Knowledge. Let us now extend
this picture with learning as understood in FLT. We start by setting the stage—
briefly introducing learning frame, the underlying structure of learning.3 Using
them we will be able to explain and model various epistemic notions.

First, consider a pair (X,O), where X is a non-empty set of possible worlds;
O ⊆ P(X) is a non-empty set of information states (or ‘observables’, or ‘evi-
dence’). We take O to be closed on intersections, i.e., for any O1, O2 ∈ O, we
have O1 ∩ O2 ∈ O, the resulting (X,O) is called an intersection space. A learn-
ing frame is a triplet (X,O, L), where L : O → P(X) is a learner, i.e., a map
associating to every finite sequence of observations O ∈ O some ‘conjecture’
L(O) ⊆ X.

Let us now reconstruct Example 1 as a learning frame. We take X = (0,∞)
as the set of possible worlds (representing possible velocities of the car, where we
assume the car is known to be moving); O = {(a, b) ∈ Q × Q : 0 < a < b < ∞}
is the set of all open intervals with positive rational endpoints (representing
possible measurement results by arbitrarily accurate radars). The pair (X,O) is
an intersection frame, and the topology generated by O is the standard topology
on real numbers (restricted to X).

Certain (Infallible) Knowledge. In an information state U ∈ O, the learner
is said to infallibly know a proposition P ⊆ X conditional on observation O if her
conditional information state entails P , i.e., if U ∩ O ⊆ P . The learner (uncon-
ditionally) knows P if U ⊆ P . The possibility of achieving certain knowledge
about a proposition P ⊆ X in a possible world x ∈ X by a learner L if given
enough evidence (true at x) is called learnability with certainty. In other worlds
P is learnable with certainty if there exists some observable property O ∈ O
(with x ∈ O) such that the learner infallibly knows P in information state O.
Learnability can be used to define verifiability and falsifiability: a proposition
P ⊆ X is verifiable (resp. falsifiable) with certainty (by L) if it is learnable with
certainty by L whenever it is true (resp. false); i.e. if P is learnable with certainty
at all worlds x ∈ P (resp. x /∈ P). Finally, a proposition P ⊆ X is decidable with
certainty (by L) if it is both verifiable and falsifiable with certainty (by L).

In the context of Example 1, let us consider the certain knowledge of the
policeman. In the information state U = (49, 53), the learner/policeman does
not know the proposition P = (50,∞), so he cannot be certain that the car is
speeding. However, the speeding property P is verifiable with certainty: whenever
P is actually true, he could perform a more accurate speed measurement, by
which he can get to an information state in which P is infallibly known. In
our example, the policeman refined his measurement getting to the information
state O = (50.5, 52.5), thus coming to know P . In contrast, the property X −
P = (0, 50] (‘not speeding’) is not verifiable with certainty: if by some kind of
miraculous coincidence, the speed of the car is exactly 50 mph, then the car is
not speeding, but the policeman will never know that for certain (since every
speed measurement, of any degree of accuracy, will be consistent both with P

3 We will return to it, with complete definitions, later in the paper. Our DLLT is
interpreted over such frames.

A Dynamic Logic for Learning Theory 39

and with X −P). Nevertheless, X −P is always falsifiable with certainty: if false
(i.e. if the speed is in P , so that car is speeding), then as we saw the policeman
will come to infallibly know that (by some more accurate measurement).

Inductive (Defeasible) Knowledge
Before we proceed to Inductive Knowledge let us consider epistemic states

weaker than certainty, belief. In an information state U ∈ O, the learner L is
said to:

– un-conditionally believe P ⊆ X if L(U) ⊆ P .4

– believe a proposition P ⊆ X conditional on observation O if L(U ∩ O) ⊆ P ;
– have undefeated belief in a proposition P ⊆ X at world x if she believes P in

every information state O ∈ O that is true at x (i.e., x ∈ O) and is at least
as strong as U (i.e., O ⊆ U). This means that, once she reaches information
state U , no further evidence can defeat the learner’s belief in P .

One of the central problems in epistemology is to define a realistic notion
of knowledge that fits the needs of empirical sciences. It should allow fallibility,
while requiring a higher standards of evidence and robustness than simple belief.
One of the main contenders is the so-called Defeasibility Theory of Knowledge,
which defines defeasible (fallible) knowledge as true undefeated belief. In the
learning-theoretic context, this gives us an evidence-based notion of ‘inductive
knowledge’: in an information state U , P is inductively known at world x if it is
true at x (i.e., x ∈ P) and it is undefeated belief (in the sense defined above).
This is the kind of knowledge that can be gained by empirical (incomplete)
induction, based on experimental evidence.

As in the case of learnability with certainty, achieving inductive knowledge is
defined as learnability. A proposition P ⊆ X is inductively learnable (or ‘learn-
able in the limit’) by the learner L at world x if L will come to inductively
know P if given enough evidence (true at x); i.e. if there exists some observable
property O ∈ O of world x (i.e., with x ∈ O) such that L inductively knows P in
information state O. Inductive verifiability and falsifiability are defined in terms
of learnability. A proposition P ⊆ X is inductively verifiable (resp. falsifiable)
by the learner L, if it is inductively learnable whenever it is true (resp. false);
i.e., if P is inductively learnable at all worlds x ∈ P (resp. x �∈ P). A proposi-
tion P ⊆ X is inductively decidable by L if it is both inductively verifiable and
inductively falsifiable by L.

In the context of Example 1, let us now turn to inductive knowledge of
the policeman. Both speeding (P) and non-speeding (X − P) are inductively
decidable (and thus both inductively verifiable and inductively falsifiable): for
instance, they are inductively decidable by the learner L, defined by putting
L(O) := O ∩ P for every open interval O = (a, b) ∈ O s.t. O ∩ P �= ∅, and
putting L(O) := O(⊆ X − P) otherwise.

4 In the tautological information state X, the learner believes P iff L(X) ⊆ P .

40 A. Baltag et al.

Intuitively, this learner is the ‘suspicious cop’, who believes the car to be
speeding whenever the available evidence cannot settle the issue, and keeps this
conjecture until it is disproven by some more accurate measurement. Regardless
of the car’s speed, this policeman will be right ‘in the limit’: after doing enough
accurate measurements, he will eventually settle on the correct belief (about
speeding or not); though of course (in case the car’s speed is exactly 50 mph) he
may still never be certain. Obviously, the dual learner (the ‘judge’, who assumes
innocence until proven guilty) will also inductively decide the speeding issue.
An example of property which is inductively decidable but neither verifiable with
certainty nor falsifiable with certainty is the proposition S = [50, 51). It is not
verifiable with certainty, since if the car’s speed is exactly 50 mph, then Q is
true but the learner will never be certain of this; and it is not falsifiable with
certainty, since if the car’s speed is exactly 51 mph, then S is false but the
learner will never be certain of that. Nevertheless, S is inductively decidable, e.g.
by the learner defined by: L(a, b) := (a, b)∩S for open intervals with a < 50 < b;
L(a, b) := (a, b) for open intervals (a, b) s.t. either (a, b) ⊆ S or (a, b) ∩ S = ∅;
and L(a, b) := [51, b) whenever 50 < a < 51 < b.

Dependence on the Learner. It is easy to see that learnability (verifiability,
falsifiability, decidability) with certainty are learner-independent notions (since
they are directed towards achieving infallible knowledge), so they do not depend
on L but only on the underlying intersection model. In contrast, the corre-
sponding inductive notions above are learner-dependent. As a consequence, the
interesting concepts in Learning Theory are obtained from them by quantifying
existentially over learners: a proposition P is inductively learnable (verifiable,
falsifiable, decidable) if there exists some learner L s.t. P is respectively induc-
tively learnable verifiable falsifiable decidable by L. This property of a learning
frame is called generic inductive learnability.

Topological Characterizations. As it is well-known in learning theory and
formal epistemology [16,24], the above notions are topological in nature: P is
learnable with certainty at world x iff x is in the interior of P with respect to
the topology generated by O; P is verifiable with certainty iff it is open in the
same topology; P is falsifiable with certainty iff it is closed in this topology;
finally, P is decidable with certainty iff it is clopen. The corresponding inductive
notions can be easily characterized [16] in the case that the topology generated by
O satisfies the separation condition5 T1: in this case, P is inductively verifiable
iff it is Σ2 in the Borel hierarchy for this topology (i.e. a countable union of
closed sets); in the same conditions, P is inductively falsifiable iff it is Π2 (a
countable intersection of open sets), and it is inductively decidable iff it is Δ2

(i.e. Σ2 and Π2). More recently, in work by three of this paper’s coauthors [5],
these characterisations were generalised to arbitrary topologies satisfying the

5 This topology is T1 iff for every two distinct points x �= y there exist an observation
O ∈ O with x ∈ O and y �∈ O.

A Dynamic Logic for Learning Theory 41

weaker separation condition6 T0; in particular, P is inductively verifiable iff it
is a countable union of locally closed sets.7

2 Dynamic Logic for Learning Theory

In this section we introduce our ‘dynamic logic for learning theory’ DLLT. As
already mentioned, this is obtained by adding two ingredients to the language of
Subset Space Logics: dynamic observation modalities [o]ϕ and a learning operator
L(#»o).

2.1 Syntax and Semantics of DLLT

Let Prop = {p, q, . . .} be a countable set of propositional variables, denoting
arbitrary ‘ontic’ (i.e., non-epistemic) facts that might hold in a world (even if
they might never be observed), and let PropO = {o, u, v, . . .} be a countable
set of observational variables, denoting ‘observable facts’ (which, if true, will
eventually be observed).

Definition 1. The syntax of our language L is defined by the grammar:

ϕ ::= p | o | L(#»o) | ¬ϕ | ϕ ∧ ϕ | Kϕ | �ϕ | [o]ϕ

where p ∈ Prop and o ∈ PropO , while #»o = (o1, . . . , on) ∈ Prop∗
O is a finite

sequence of observational variables. (In particular, empty sequence is denoted
by λ.) We employ the usual abbreviations for propositional connectives
,⊥,∨,
→,↔ and for the dual modalities 〈K〉,♦, 〈o〉.

The informal meaning of our formulas is as follows. Propositional variables
denote ontic facts (i.e. factual, non-epistemic features of a world), while observa-
tional variables o denote observable facts (i.e. facts that, if true, will eventually
be observed). We read Kϕ as ‘the learner knows ϕ (with absolute certainty)’.
�ϕ is the so-called ‘effort modality’ from Subset Space Logic; we read �ϕ as ‘ϕ
is stably true’. Indeed, �ϕ holds iff ϕ is true and will stay true no matter what
new (true) evidence is observed. The operator [o]ϕ is similar to the operator
[ψ]ϕ in Public Announcement Logic, but it is restricted to the cases when ψ is a
particular kind of atomic formula, namely an observational variable o ∈ PropO .
So we read [o]ϕ as ‘after o is observed, ϕ will hold’. Finally, L(#»o) denotes the
learner’s conjecture given observations #»o ; i.e. her strongest belief (i.e., the set
of worlds considered to be most plausible) after observing #»o .

6 The observational topology is T0 iff points can be distinguished by observations; i.e.
if x and y satisfy the same observable properties in O, then x = y. Obviously, T0 is
a minimally necessary condition for any kind of learnability of the real world from
observations.

7 A set is locally closed if it is the intersection of a closed and an open set.

42 A. Baltag et al.

Definition 2 (Intersection Frame/Model and Learning Frame/Model).
An intersection frame [9,17] is a pair (X,O), where: X is a non-empty set of
possible worlds (or ‘ontic states’); O ⊆ P(X) is a non-empty set of subsets, called
information states (or ‘observables’, or ‘evidence’), which is assumed to be closed
under finite intersections: if F ⊆ O is finite then (

⋂ F) ∈ O. An intersection
model (X,O, ‖ ·‖) is an intersection frame (X,O) together with a valuation map
‖ · ‖ : Prop ∪ PropO → P(X), that maps propositional variables p into arbitrary
sets ‖p‖ ⊆ X and observational variables o into observable properties ‖o‖ ∈ O.

A learning frame is a triplet (X,O, L), where (X,O) is an intersection frame
and L : O → P(X) is a learner, i.e. a map associating to every informa-
tion state O ∈ O some ‘conjecture’ L(O) ⊆ X, and satisfying two properties:
(1) L(O) ⊆ O (conjectures fit the evidence), and (2) if O �= ∅ then L(O) �= ∅
(consistency of conjectures based on consistent evidence). We can extend L to
range over strings of information states

#»

O = (O1, . . . , On) ∈ O∗ in a natural
way, by putting L(

#»

O) := L(
⋂ #»

O), where
⋂ #»

O := O1 ∩ . . .∩On. A learning model
M = (X,O, L, ‖ · ‖) is a learning frame (X,O, L) together with a valuation map
‖ · ‖ : Prop∪PropO → P(X) as above; equivalently, it consists of an intersection
model (X,O, ‖ · ‖) together with a learner, as defined above.

Intuitively, the states in X represent possible worlds. The tautological evi-
dence X =

⋂ ∅ represents the state of ‘no information’ (before anything is
observed), while the contradictory evidence ∅ represents inconsistent informa-
tion. Finally, L(O) represents the learner’s conjecture after observing O, while
L(O1, . . . , On) = L(O1 ∩ . . . ∩ On) represents the conjecture after observing a
finite sequence of observations O1, . . . , On. (The fact that O is closed under finite
intersections is important here for identifying any finite sequence O1, . . . , On with
a single observation O = O1 ∩ . . . On ∈ O.)
Epistemic Scenarios. As in Subset Space Semantics, the formulas of our logic
are not interpreted at possible worlds, but at so-called epistemic scenarios,
i.e. pairs (x,U) of an ontic state x ∈ X and an information state U ∈ O such that
x ∈ U . Therefore, only the truthful observations about the actual state play a
role in the evaluation of formulas. We denote by ES(M) := {(x,U) : x ∈ U ∈ O}
the set of all epistemic scenarios.

Definition 3 (Semantics). Given a learning model M = (X,O, L, ‖ · ‖) and
an epistemic scenario (x,U), the semantics of the language L is given by a
binary relation (x,U) |=M ϕ between epistemic scenario and formulas, called
the satisfaction relation, as well as a truth set (interpretation) [[ϕ]]UM =: {x ∈
U | (x,U) |=M ϕ}, for all formulas ϕ. We typically omit the subscript, sim-
ply writing (x,U) |= ϕ and [[ϕ]]U , whenever the model M is understood. The
satisfaction relation is defined by the following recursive clauses:

(x,U) |= p iff x ∈ ‖p‖
(x,U) |= o iff x ∈ ‖o‖
(x,U) |= L(o1, . . . , on) iff x ∈ L(U, ‖o1‖, . . . , ‖on‖)

A Dynamic Logic for Learning Theory 43

(x,U) |= ¬ϕ iff (x,U) �|= ϕ
(x,U) |= ϕ ∧ ψ iff (x,U) |= ϕ and (x,U) |= ψ
(x,U) |= Kϕ iff (∀y ∈ U) ((y, U) |= ϕ)
(x,U) |= �ϕ iff (∀O ∈ O) (x ∈ O ⊆ U implies (x,O) |= ϕ)

iff (∀O ∈ O) (x ∈ O implies (x,U ∩ O) |= ϕ)
(x,U) |= [o]ϕ iff (x ∈ ‖o‖ implies (x,U ∩ ‖o‖) |= ϕ)

where p ∈ Prop, o, o1, . . . , on ∈ PropO , #»o ∈ Prop∗
O , and where we used the

notation L(O1, . . . , On) := L(O1 ∩ . . . ∩ On) introduced above. We say that a
formula ϕ is valid in a learning model M, and write M |= ϕ, if (x,U) |=M ϕ for
all epistemic scenarios (x,U) ∈ ES(M). We say ϕ is validable in an intersection
model (X,O, ‖ · ‖), and write (X,O, ‖ · ‖) |= ϕ, if there exists some learner
L : O → P(X) such that ϕ is valid in the learning model (X,O, L, ‖ · ‖). We say
ϕ is valid, and write |= ϕ, if it is valid in all learning models.

Abbreviations: For any string #»o = (o1, . . . , on) ∈ Prop∗
O of observational vari-

ables, and any formula ϕ we set:
∧

#»o := o1 ∧ . . . ∧ on (with the convention that
∧

λ :=
)

#»o ⇔ #»u := K
(
(
∧

#»o) ↔ (
∧

#»u)
)

(extensional equivalence of observations)

[#»o]ϕ := [o1] . . . [on]ϕ (with the convention that [λ]ϕ := ϕ); similarly for 〈 #»o 〉)
B

#»o ϕ := K(L(#»o) → ϕ)

Bϕ := Bλϕ

(where λ is the empty string). We read Bϕ as the ‘observer believes ϕ’ (given no
observations), and B

#»o ϕ as ‘the observer believes ϕ conditional on evidence #»o ’.

2.2 Axiomatization and Proof System

We will now provide the formal definition of our proposed system L of the
Dynamic Logic for Learning Theory (DLLT) by listing the axioms and derivation
rules, see Table 1 below. Given a formula ϕ ∈ L, we denote by Pϕ and Oϕ the set
of all propositional variables and observational variables respectively occurring
in ϕ (we will use the same notation for the necessity and possibility forms defined
below).

The intuitive reading of the S5 axioms for epistemic modality K expresses the
fact that K is factive and (positively and negatively) introspective. The intuitive
nature of the reduction axioms should be as in Public Announcement Logic [2],
when we take into account the natural atomic behaviour of observables. The
learning axioms (CC), (EC) and (SP) express pre-conditions in formal learning
theory on observations, namely that: they are truthful observations about the
world (CC); that the history of observations is irrelevant for the learner, except
for the extensional evidence provided by observations (EC) and that conjectures
fit what is observed (SP). Since the effort modality � quantifies over possible

44 A. Baltag et al.

Table 1. The axiom schemas for the Dynamic Logic of Learning Theory, L

Basic axioms:

(P) All instantiations of propositional tautologies

(KK) K(ϕ → ψ) → (Kϕ → Kψ)

(TK) Kϕ → ϕ

(4K) Kϕ → KKϕ

(5K) ¬Kϕ → K¬Kϕ

(K[o]) [o](ψ → χ) → ([o]ψ → [o]χ)

Basic rules:

(MP) From � ϕ and � ϕ → ψ, infer � ψ

(NecK) From � ϕ, infer � Kϕ

(Nec[o]) From � ϕ, infer � [o]ϕ

Learning axioms:

(CC) (
∧

#»o) → 〈K〉L(#»o) Consistency of conjectures

(EC) (#»o ⇔ #»u) → (L(#»o) ↔ L(#»u)) Extensionality of conjectures

(SP) L(#»o) → ∧
#»o Success postulate

Reduction axioms:

(Rp) [o]p ↔ (o → p)

(Ru) [o]u ↔ (o → u)

(RL) [o]L(#»u) ↔ (o → L(o, #»u))

(R¬) [o]¬ψ ↔ (o → ¬[o]ψ)

(RK) [o]Kψ ↔ (o → K[o]ψ)

(R�) [o]�ψ ↔ �[o]ψ

Effort axiom and rule:

(�-Ax) �ϕ → [#»o]ϕ for all #»o ∈ Prop∗
O arbitrary

(�-Rule) From � ψ → [o]ϕ, infer � ψ → �ϕ,

where o 	∈ Oψ ∪ Oϕ

observations, we could think of the Effort axiom and the Effort rule as elimination
and introduction rules for �. The former one expresses the fact that: if a property
is stably true then it holds after any observations. Finally, the latter says that,
if a property holds after any arbitrary observation, it is stably true.

So each of our axioms is simple and readable and has a transparent intuitive
interpretation, in contrast to other axiomatizations of (the less expressive) Subset
Space Logic over intersection spaces (i.e., the L-free analogues of our models).
Having such a simple axiomatization is one of the advantages brought by the
addition of dynamic observation modalities. See more discussion of this issue in
the Conclusions section.

We now give reduction laws for strings of observational variables in Prop∗
O .

A Dynamic Logic for Learning Theory 45

Proposition 1 (Reduction laws for strings of observational variables).
The following reduction laws are provable in L for all ϕ ∈ L:

1. [#»u]p ↔ (
∧

#»u → p)
2. [#»u]o ↔ (

∧
#»u → o)

3. [#»u]L(#»o) ↔ (
∧

#»u → L(#»u , #»o))
4. [#»u]¬ϕ ↔ (

∧
#»u → ¬[#»u]ϕ)

5. [#»u]Kϕ ↔ (
∧

#»u → K[#»u]ϕ)
6. [#»u]�ϕ ↔ �[#»u]ϕ

Proposition 2. The following reduction laws are provable in L for all formulas
ϕ ∈ L:

(R∧) [u](ϕ ∧ ψ) ↔ ([u]ϕ ∧ [u]ψ)
(R #»∧) [#»u](ϕ ∧ ψ) ↔ ([#»u]ϕ ∧ [#»u]ψ)
(〈o〉) 〈o〉ψ ↔ (o ∧ [o]ψ)
(〈 #»o 〉) 〈 #»o 〉ψ ↔ (

∧
#»o ∧ [#»o]ψ)

In our framework, belief (B) and conditional beliefs (B
#»o ϕ) are defined in

terms of the operators K and L. The axiomatic system L given in Table 1 over
the language L can therefore derive the properties describing the type of belief
and conditional belief modalities we intend to formalize in this paper. More
precisely, as stated in Proposition 3, the system L yields the standard belief
system KD45 for B. More generally, if we replace the D axiom for a ‘weaker’
version D′ := (〈K〉 #»o → ¬B

#»o ⊥) then we have a weak version of KD45 system
for conditional belief B

#»o , namely wKD45.

Proposition 3 (wKD45 axioms and rules for Conditional Belief). The
standard axioms and rules of the doxastic logic KD45 are derivable for our belief
operator B in the system L. More generally, the axioms of rules of the weaker sys-
tem wKD45 are derivable for our conditional-belief operator Bo in the system L.

Proposition 4. The S4 axioms for the effort modality � are derivable in L.

3 Soundness and Completeness

In this section we prove soundness and completeness. Note that, although our
logic is more expressive than Subset Space Logic (interpreted on intersection
spaces), our completeness proof is much simpler, via a canonical construction:
this is one of the advantages of having the (expressively redundant) dynamic
observation modalities!

Soundness. We first prove soundness, for which we need the following lemma.
Note that by the definition of the valuation || · || in a learning model M, we have
that for all U ∈ O, U ∩ ||p|| = [[p]]UM and U ∩ ||o|| = [[o]]UM for all p ∈ Prop and
o ∈ PropO in L.

Lemma 1. Let M = (X,O, L, ‖ · ‖) and M = (X,O, L, ‖ · ‖′) be two learning
models and ϕ ∈ L such that M and M′ differ only in the valuation of some
o �∈ Oϕ. Then, for all U ∈ O, we have [[ϕ]]UM = [[ϕ]]UM′ .

46 A. Baltag et al.

Theorem 1. The system L in Table 1 is sound wrt the class of learning models.

Completeness. We now move to the completeness proof for our logic L, which
will be shown via a ‘simple’ canonical model construction. But its simplicity
is deceiving, due to two main technical differences between our construction
and the standard canonical model from Modal Logic. First, this is not a rela-
tional (Kripke) model, but a neighborhood model ; so the closest analogue is the
type of canonical construction used in Topological Modal Logic or Neighborhood
Semantics [1]. Second, the standard notion of maximally consistent theory is not
very useful for our logic, since such theories do not ‘internalize’ the �-Rule. To
do this, we need instead to consider ‘witnessed’ (maximally consistent) theories,
in which every occurrence of a ♦ϕ in any “existential context” is ‘witnessed’ by
some 〈o〉ϕ (with o observational variable). The appropriate notion of “existential
contexts” is represented by possibility forms, in the following sense:

Definition 4 (‘Pseudo-modalities’: necessity and possibility forms).
The set of necessity-form expressions of our language is given by NFL := ({ϕ →
| ϕ ∈ L} ∪ {K} ∪ PropO)∗. For any finite string s ∈ NFL, we define ‘pseudo-
modalities’ [s] (called necessity form) and 〈s〉 (called possibility form), that gen-
eralize our dynamic modalities [o] and 〈o〉. These pseudo-modalities are just
functions mapping any formula ϕ ∈ L to another formula [s]ϕ ∈ L, and respec-
tively 〈s〉ϕ ∈ L. Necessity forms are defined recursively, by putting: [λ]ϕ := ϕ,
[ϕ →, s]ϕ := ϕ → [s]ϕ, [K, s]ϕ := K[s]ϕ, [o, s]ϕ := [o][s]ϕ. As for possibility
forms, we put 〈s〉ϕ := ¬[s]¬ϕ.

Lemma 2. For every necessity form [s], there exist an observational variable
o ∈ L and a formula ψ ∈ L such that for all ϕ ∈ L, we have: � [s]ϕ iff � ψ →
[o]ϕ.

Proof. The proof follows similarly as in [2, Lemma 4.8], but is even simpler since
our dynamic modalities only involve observational variables which are atomic
formulas.

Lemma 3. The following rule is admissible in L:

if � [s][o]ϕ then � [s]�ϕ, where o �∈ Os ∪ Oϕ.

Proof. Suppose � [s][o]ϕ where o �∈ Os ∪ Oϕ. Then, by Lemma 2, there exist
u ∈ PropO and ψ ∈ L such that � ψ → [u][o]ϕ. Thus we get � ψ → [u, o]ϕ. It is
not hard to see that � [u, o]ϕ ↔ [o, u]ϕ (which follows by subformula induction
on ϕ, using the corresponding reduction axiom given in Proposition 1, and the
fact that � u ∧ o ↔ o ∧ u). Therefore, � ψ → [u, o]ϕ iff � ψ → [o, u]ϕ. Hence we
obtain � ψ → [o, u]ϕ, i.e., � ψ → [o][u]ϕ. By the construction of the formulas
ψ and u, we know that Oψ ∪ Ou ⊆ Os, and so o �∈ Oψ ∪ {u} ∪ Oϕ. Therefore,
by the Effort rule (�-Rule) we have � ψ → �[u]ϕ, implying, by the reduction
axiom (R�), that � ψ → [u]�ϕ. Applying again Lemma 2, we obtain � [s]�ϕ.

A Dynamic Logic for Learning Theory 47

Definition 5. For every countable set O, let LO be the language of the logic LO

based only on the observational variables in O (i.e. having as set of observational
variables PropO := O). Let NFO

L denote the set of necessity-form expressions
of LO (i.e. necessity forms involving only observational variables in O). An O-
theory is a consistent set of formulas in LO. Here, ‘consistent’ means consistent
with respect to the axiomatization L formulated for LO. A maximal O-theory is
an O-theory Γ that is maximal with respect to ⊆ among all O-theories; in other
words, Γ cannot be extended to another O-theory. An O-witnessed theory is an
O-theory Γ such that, for every s ∈ NFO

L and ϕ ∈ LO, if 〈s〉♦ϕ is consistent
with Γ then there is o ∈ O such that 〈s〉〈o〉ϕ is consistent with Γ . A maximal
O-witnessed theory Γ is an O-witnessed theory that is not a proper subset of
any O-witnessed theory.

Lemma 4. For every Γ ⊆ LO, if Γ is an O-theory and Γ �� ¬ϕ for some
ϕ ∈ LO, then Γ ∪ {ϕ} is an O-theory. Moreover, if Γ is O-witnessed, then
Γ ∪ {ϕ} is also O-witnessed.

Lemma 5 (Lindenbaum’s Lemma). Every O-witnessed theory Γ can be
extended to a maximal O-witnessed theory TΓ .

Lemma 6 (Extension Lemma). Let O be a set of observational variables
and O′ be a countable set of fresh observational variables, i.e., O ∩ O′ = ∅. Let
∼
O = O ∪ O′. Then, every O-theory Γ can be extended to a

∼
O-witnessed theory

∼
Γ ⊇ Γ , and hence to a maximal

∼
O-witnessed theory TΓ ⊇ Γ .

We are now ready to build the canonical model.
Canonical Model for T0. For any consistent set of formulas Φ, consider a max-
imally consistent O-witnessed extension T0 ⊇ Φ. As our canonical set of worlds,
we take the set X c := {T : T maximally consistent O -witnessed theory
with T ∼K T0}, where we put T ∼K T ′ iff ∀ϕ ∈ LO ((Kϕ) ∈ T → ϕ ∈ T ′) .
As usual, it is easy to see (given the S5 axioms for K) that ∼K is an equivalence
relation. For any formula ϕ, we use the notation ϕ̂ := {T ∈ X c : ϕ ∈ T}. In
particular, for any observational variable o ∈ O, we have ô = {T ∈ X c : o ∈ T}.
We can generalize this notation to finite sequences #»o = (o1, . . . , on) ∈ O∗ of
observational variables, by putting: #̂»o := {T ∈ X c : o1, . . . , on ∈ T}.

As canonical set of information states, we take Oc := { #̂»o : #»o ∈ O∗}. Finally,
our canonical learner is given by L

c(#̂»o) := L̂(#»o), and the canonical valuation ‖·‖c

is given as ||p||c = p̂ and ||o||c = ô. The learning model Mc = (X c,Oc, Lc, ‖ · ‖c) is
called the canonical model. Note that we use c as a subindex instead of a superindex
for the canonical valuation ‖ · ‖c, this is in order to avoid confusion with our ‘open-
restriction’ notation for the truth set of a formula [[ϕ]]U .

Before proving that the canonical model is well-defined, we need the following.

Lemma 7. For every maximal O-witnessed theory T , the set {θ : Kθ ∈ T} is
an O-witnessed theory.

Lemma 8. Let T ∈ X c. Then, Kϕ ∈ T iff ϕ ∈ S for all S ∈ X c.

48 A. Baltag et al.

Corollary 1. Let T ∈ X c. Then, 〈K〉ϕ ∈ T iff there is S ∈ X c, such that
ϕ ∈ S.

Proposition 5. The canonical model is well-defined.

Proof. We need to show that the following properties hold:

1. If F = { #̂»o1, . . . ,
#̂ »om} ⊆ Oc is finite then

⋂
F ∈ Oc: Let F = { #̂»o1, . . . ,

#̂ »om} ⊆
Oc. It is easy to see that

⋂{ #̂»o1, . . . ,
#̂ »om} = #̂»o , where #»o is the concatenation

of all the #»oi’s with 1 ≤ i ≤ m. Since each #»oi is finite, #»o is finite. Therefore,
by the definition of Oc, we obtain

⋂{ #̂»o1, . . . ,
#̂ »om} = #̂»o ∈ Oc.

2. L
c is a well-defined function and a learner : For this, note that L

c(#̂»o) :=
L̂(#»o) ⊆ Xc. We will first prove that:
(2a) if #̂»o = #̂»u then L

c(#̂»o) = L
c(#̂»u): Suppose #̂»o = #̂»u . This means that

(∀T ∈ Xc)(
∧

#»o ∈ T iff
∧

#»u ∈ T). Therefore, we obtain � ∧
#»o ↔ ∧

#»u . Then,
by (NecK), we have � K (

∧
#»o ↔ ∧

#»u), i.e., � #»o ⇔ #»u . Since L
c(#̂»o) := L̂(#»o),

showing L
c(#̂»o) = L

c(#̂»u) boils down to showing that L̂(#»o) = L̂(#»u), i.e., that
� L(#»o) ↔ L(#»u), which follows from axiom (EC) and the assumption that
� #»o ⇔ #»u .
Next, we must prove that
(2b) L

c is a learner, i.e., L
c satisfies the properties of a learner given in

Definition 2. To show this, we first check that L
c(#̂»o) ⊆ #̂»o holds. Let T ∈

L
c(#̂»o). This means, by the definition of L

c(#̂»o), that L(#»o) ∈ T . Since (L(#»o) →∧
#»o) ∈ T (by the axiom (SP)), we have that

∧
#»o ∈ T . Therefore, as T

is maximally consistent, we obtain o1, . . . , om ∈ T for #»o = (o1, . . . , om),
meaning that #»o ∈ T . Thus, T ∈ #̂»o . Finally we show that if #̂»o �= ∅ then
L

c(#̂»o) �= ∅. Suppose #̂»o �= ∅, i.e., there is T ∈ Xc with T ∈ #̂»o . This means, by
the definition of #̂»o , that #»o ∈ T . Then, since T is a maximal consistent theory,
we have

∧
#»o ∈ T , and ((

∧
#»o) → 〈K〉L(#»o)) ∈ T (by the axiom (CC)). Thus

we obtain 〈K〉L(#»o) ∈ T . Then, by Corollary 1, there is S ∈ Xc such that
L(#»o) ∈ S. Thus, by the definition of L̂(#»o), we have S ∈ L̂(#»o), and therefore,
L̂(#»o) = L

c(#̂»o) �= ∅.

Our aim is to prove a Truth Lemma for the canonical model, that will imme-
diately imply completeness, as usual. But for this we first need the following
result.

Lemma 9. Let T ∈ X c. Then, �ϕ ∈ T iff [#»u]ϕ ∈ T for all #»u ∈ Prop∗
O.

We now proceed to our key result:

Lemma 10 (Truth Lemma). For all formulas ϕ, all T ∈ Xc and all #̂»o ∈ Oc,
we have:

〈 #»o 〉ϕ ∈ T iff (T, #̂»o) |=Mc ϕ.

A Dynamic Logic for Learning Theory 49

Proof. The proof is by induction over subformulas. The cases for propositional
and observational variables, as well as for Boolean connectives are as usual. So
we only check the remaining cases. At each step of the proof,

∧
#»o ∈ T guarantees

that the pair (T, #̂»o) is a well-defined epistemic scenario of the canonical model
since

∧̂
#»o = #̂»o .

– Case ϕ := L(#»u).

〈 #»o 〉L(#»u) ∈ T iff (
∧

#»o ∧ [#»o]L(#»u)) ∈ T (Proposition 2-(〈 #»o 〉))
iff (

∧
#»o ∧ L(#»o , #»u)) ∈ T (Proposition 1.3.)

iff
∧

#»o ∈ T and L(#»o , #»u) ∈ T

iff T ∈ #̂»o and T ∈ L(#»o , #»u)
∧

= L
c(#̂»o , #̂»u) (since

∧̂
#»o = #̂»o)

iff (T, #̂»o) |=Mc L(#»u) (by the semantics of L)

– Case ϕ := Kψ.

〈 #»o 〉Kψ ∈ T iff (
∧

#»o ∧ K[#»o]ψ) ∈ T (Propositions 2-(〈 #»o 〉) and 1.5)

iff
∧

#»o ∈ T and K[#»o]ψ ∈ T

iff
∧

#»o ∈ T and (∀S ∼K T)([#»o]ψ ∈ S) (by Lemma 8)

iff
∧

#»o ∈ T and (∀S ∈ #̂»o)(〈 #»o 〉ψ ∈ S) (Propositions 2-(〈 #»o 〉))
iff #̂»o ∈ T and (∀S ∈ #̂»o)((S, #̂»o) |= ψ) (by

∧̂
#»o = #̂»o and I.H)

iff (T, #̂»o) |=Mc Kψ (by the semantics of K)

– Case ϕ := 〈 #»u 〉ψ.

〈 #»o 〉〈 #»u 〉ψ ∈ T iff 〈 #»o , #»u 〉ψ ∈ T (by the abbreviation for 〈 #»o 〉ψ)

iff (
∧

#»o ∧
∧

#»u) ∧ 〈 #»o , #»u 〉ψ ∈ T (Propositions 2-(〈 #»o 〉))
iff (

∧
#»o ∧

∧
#»u) ∈ T and 〈 #»o , #»u 〉ψ ∈ T

iff T ∈ #̂»o ∩ #̂»u and 〈 #»o , #»u 〉ψ ∈ T (since
∧

#»o ∧ ∧
#»u

∧

= #̂»o ∩ #̂»u)

iff T ∈ (#»o , #»u)
∧

and (T, (#»o , #»u)
∧

) |= ψ (since (#»o , #»u))
∧

= #̂»o ∩ #̂»u)
iff T ∈ || #»o , #»u ||c and (T, || #»o , #»u ||c) |= ψ

(by the definition of || · ||c)
iff (T, || #»o , #»u ||c) |= 〈 #»o , #»u 〉ψ (by the semantics)
iff (T, || #»o , #»u ||c) |= 〈 #»o 〉〈 #»u 〉ψ (by the abbreviation for 〈 #»o 〉ψ)

50 A. Baltag et al.

– Case ϕ := �ψ.
(⇐) Suppose 〈 #»o 〉�ψ ∈ T . Then, by Propositions 2-(〈 #»o 〉) and 1.6, we obtain
that (1)

∧
#»o ∈ T , i.e., T ∈ #̂»o , and (2) �[#»o]ψ ∈ T . Thus, by Lemma 9 and

(2), we have [#»u][#»o]ψ ∈ T , i.e., [#»u , #»o]ψ ∈ T , for all #»u ∈ Prop∗
O. Now let

O ∈ Oc such that T ∈ O. By the construction of Oc, we know that O = #̂»v
for some #»v ∈ Prop∗

O. We want to show that (T, #̂»o ∩ #̂»v) |= ψ. Since T ∈ #̂»o ∩ #̂»v

and Mc is an intersection space, we know that (T, #̂»o ∩ #̂»v) is a well-defined
epistemic scenario. T ∈ #̂»o ∩ #̂»v also implies that (

∧
#»o ∧ ∧

#»v) ∈ T as in the
above case. Hence, by Proposition 2-(〈 #»o 〉) and the fact that [#»v , #»o]ψ ∈ T ,
we obtain 〈 #»v , #»o 〉ψ ∈ T . Then, by I.H, we obtain (T, #̂»v ∩ #̂»o) |= ψ as in the
previous case. Therefore, by the semantics of �, we obtain (T, #̂»o) |= �ψ.
(⇒) Suppose (T, #̂»o) |= �ψ. This means, by the definition of Oc, that for
all #»u ∈ Prop∗

O, if T ∈ #̂»u then (T, #̂»o ∩ #̂»u) |= ψ. Now let #»v ∈ Prop∗
O such

that T ∈ #̂»v . Therefore, T ∈ #̂»v ∩ #̂»o . Since (#»v , #»o) ∈ Prop∗
O and #̂»v ∩ #̂»o =

(#»v , #»o)
∧

, we obtain by the assumption that (T, #̂»v ∩ #̂»o) |= ψ. Thus, by I.H., we
have 〈 #»v , #»o 〉ψ ∈ T . As � 〈 #»v , #»o 〉ψ → [#»v , #»o]ψ and T is maximal, we obtain
[#»v , #»o]ψ ∈ T , i.e., [#»v][#»o]ψ ∈ T . Hence, by Lemma 9, we have �[#»o]ψ ∈ T .
Then, by Proposition 1.6, the fact that

∧
#»o ∈ T and Propositions 2-(〈 #»o 〉)

and, we obtain 〈 #»o 〉�ψ ∈ T .

Theorem 2. L is complete with respect to the class of all learning models.

Proof. Let ϕ be an L-consistent formula, i.e., it is an Oϕ-theory. Then, by
Lemma 6, it can be extended to a maximal Oϕ-witnessed theory T . Then,
we have 〈λ〉ϕ ∈ T where λ is the empty string, i.e., T ∈ 〈̂λ〉ϕ. Note that
∧̂

λ =
⋂ ∅ = Xc. Then, by Truth Lemma (Lemma 10), we obtain that

(T,Xc) |=Mc ϕ, where Mc = (Xc,Oc, Lc, ‖ · ‖c) is the canonical model for T .
This proves completeness.

4 Expressivity

We first investigate how various notions of learnability can be expressed in our
language. In fact, the following result was already noticed in [17]:

Proposition 6. ♦Kp is true at (x,U) in a model M iff ‖p‖ is learnable with
certainty at state x. Similarly, p → ♦Kp is valid (i.e. true at all epistemic
scenarios) in a model M iff ‖p‖ is verifiable with certainty (i.e. ‘finitely identi-
fiable’ in the sense of FLT [10,14]). A similar statement holds for falsifiability
with certainty.

Proof. As we know from Sect. 1.1, ‖p‖ is learnable with certainty x iff x ∈ Int‖p‖,
and ‖p‖ is verifiable with certainty iff it is open in the topology generated by O.
It is well-known [17] that these properties are expressible in SSL via the above
validities.

A Dynamic Logic for Learning Theory 51

In particular, the following validity of our logic expresses the fact that all
observable properties are verifiable with certainty :

o → ♦Ko.

By adding the learning operator to subset space logic, DLLT can capture, not
only belief, but also the various inductive notions of knowledge and learnability:

Proposition 7. [Inductive notions of knowledge and learnability]

– �Bp holds at (x,U) in a model M iff the learner L has undefeated belief in
‖p‖ (at world x in information state U). Hence, p ∧ �Bp captures inductive
knowledge of p, and so p ∧ ♦�Bp captures inductive learnability of p by
learner L.

– Similarly, p → ♦�Bp is valid in a model M iff ‖p‖ is inductively verifiable
by L. For the corresponding generic notion: ‖p‖ is inductively verifiable (by
some learner) iff p → ♦�Bp is validable in the intersection space (X,O).
Similar statements hold for inductive falsifiability.

– Finally, ♦L(λ) is true if (given enough observations) the observer will eventu-
ally reach a true conjecture (though he might later fall again into false ones);
and similarly, ♦�L(λ) is true if (given enough observations) the observer will
eventually produce only true conjectures thereafter.

Proof. This is an easy verification, given the relevant definitions and our semantics.

As usual in Dynamic Epistemic Logic, the dynamic ‘observation’ modalities
[u]ϕ are only a convenient way to express complex properties in a succinct man-
ner, but they can in principle be eliminated. To show this, we first need the
following lemma.

Lemma 11. There is a well-founded strict partial order < on formulas (called
‘complexity order’), satisfying the following conditions:

– if ϕ is a (proper) subformula of ψ then ϕ < ψ
– (u → p) < [u]p
– (u → o) < [u]o
– L(u, #»o) < [u]L(#»o)
– ([u]ϕ ∧ [u]ψ) < [u](ϕ ∧ ψ)
– (u → K[u]ϕ) < [u]Kϕ
– �[u]ϕ < [u]�ϕ

Proposition 8 (Expressivity). The above language is co-expressive with the one
obtained by removing all dynamic modalities [u]ϕ. Moreover, this can be proved
in the above proof system: for every formula ϕ there exists some formula ϕ′ free
of any dynamic modalities, such that ϕ ↔ ϕ′ is a theorem in the above proof
system. Furthermore, if ϕ contains dynamic modalities then ϕ′ can be chosen
such that ϕ′ < ϕ.

52 A. Baltag et al.

5 Conclusion and Comparison with Other Work

In this paper we proposed a dynamic logic which allows reasoning about induc-
tive inference. Our Dynamic Logic of Learning Theory (DLLT) is an extension of
previously studied Subset Space Logics, and a natural continuation of the work
bridging Dynamic Epistemic Logic and Formal Learning Theory. Together with
a syntax, featuring dynamic observation operators, and a topological semantics,
we give a sound and complete axiomatization of this logic. We show how natural
learnability properties, as learnability in the limit and learnability with certainty,
can be expressed in DLLT.

Our technical results (the complete axiomatization and expressivity results),
as well as the methods used to prove them (the canonical neighborhood model
and the reduction laws), may look deceivingly simple. But in fact, achieving
this simplicity is one of the major contributions of our paper! The most well-
known relative to our logic is Subset Space Logic (SSL) over intersection spaces,
completely axiomatized by Weiss and Parikh [26] (- and indeed our opera-
tor � originates in the ‘effort modality’ of the SSL formalism introduced in
[9,17]). Although less expressive than our logic (since it has no notion of belief
B or conjecture L), the Weiss-Parikh axiomatization of SSL over intersection
spaces is in a sense more complex and less transparent (as is their completeness
proof, which is non-canonical). That axiomatization consists of the following list:
S5K The S5 axioms and rules for K
S4� The S4 axioms and rules for �
Cross Axiom K�ϕ → �Kϕ
Weak Directedness ♦�ϕ → �♦ϕ
Mn (for all n) (�〈K〉ϕ∧♦Kψ1∧ . . .∧♦Kψn) → 〈K〉(♦ϕ∧♦Kψ1∧ . . .∧♦Kψn)

Though this list looks shorter than our list in Table 1, each of our axioms is
simple and readable and has a transparent intuitive interpretation. In contrast,
note the complexity and opaqueness of the last axiom schemata Mn above (hav-
ing one schema for each natural number n)! Our completeness result implies that
all these complex validities are provable in our simple system (and in fact in the
even simpler system obtained by deleting from ours all the axioms that refer to
the learner L). This shows the usefulness of adding the (expressively redundant)
dynamic observation modalities: they help to describe the behavior of the effort
modality � in a much simpler and natural manner, via the combination of the
Effort axiom and the Effort rule (which together capture the meaning of � as
universally quantifying over observation modalities).

Moreover, our completeness proof is also much simpler (though with some
technical twists). Traditionally, the use of canonical models has been considered
impossible for Subset Space Logics, and so authors had to use other, more ad-
hoc methods (e.g. step-by-step constructions). The fact that in this paper we
can get away with a canonical construction is again due to the addition of the
dynamic modalities.

More recent papers, closely related to our logic, are Bjorndahl [8],
van Ditmarsch et al. [20,21], and Baltag et al. [7]. Bjorndahl [8] introduces
dynamic modalities [ϕ] for arbitrary formulas (rather than restricting to obser-

A Dynamic Logic for Learning Theory 53

vational variables [o], as we do), though with a different semantics (according to
which [ϕ] restricts the space to the interior of ϕ, in contrast to our simpler seman-
tics, that follows the standard definition of update or “public announcement”).
His syntax does not contain the effort modality, or any other form of quantifying
over observations. The work of van Ditmarsch et al. [20,21] uses Bjorndahl-style
dynamic modalities in combination with a topological version of the so-called
“arbitrary public announcement” operator, which is a more syntactic-driven rel-
ative of the effort modality. This syntactic nature comes with a price: the logic
of arbitrary public announcements is much less well-behaved than SSL (or our
logic), in particular it has non-compositional features (-the meaning of a formula
may depend on the meaning of all atomic variables, including the ones that do
not occur in that formula!). As a consequence, the soundness of (the arbitrary-
public announcement analogue of) our Effort Rule is not at all obvious for their
logic, which instead relies on an infinitary inference rule. Since that rule makes
use of infinitely many premisses, their complete axiomatization is truly infini-
tary, and impossible to automatize: indeed, it does not even necessarily imply
that the set of their validities is recursively enumerable (in contrast with our
finitary axiomatization, which immediately implies such a result). The recent,
unpublished work by Baltag et al. [7] (due to a subset of the current authors,
using techniques similar to the ones we used in this paper) fixes these problems
by replacing the arbitrary announcement modality with the effort modality (or
equivalently, extending SSL with Bjorndahl-style dynamic modalities). But note
that, in contrast to the work presented here, all the above papers are concerned
only with axiomatizations over topological spaces (rather than the wider class
of intersection spaces), and that none of them has any belief B or conjecture
operators L. Hence, none of them can be used to capture any learning-theoretic
notions going beyond finite identifiability.

Acknowledgements. The research of Nina Gierasimczuk is supported by an Innova-
tional Research Incentives Scheme Veni grant 275-20-043, Netherlands Organisation for
Scientific Research (NWO) and by the OPUS grant 2015/19/B/HS1/03292, National
Science Centre Poland (NCN). Aybüke Özgün acknowledges financial support from
European Research Council grant EPS 313360.

References

1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logics,
vol. 4. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4

2. Balbiani, P., Baltag, A., van Ditmarsch, H., Herzig, A., Hoshi, T., Lima, T.D.:
‘Knowable’ as ‘known after an announcement’. Rev. Symb. Logic 1, 305–334 (2008)

3. Balbiani, P., van Ditmarsch, H., Kudinov, A.: Subset space logic with arbitrary
announcements. In: Lodaya, K. (ed.) ICLA 2013. LNCS, vol. 7750, pp. 233–244.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36039-8 21

4. Baltag, A., Gierasimczuk, N., Smets, S.: Belief revision as a truth-tracking process.
In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality and
Knowledge, pp. 187–190. ACM (2011)

https://doi.org/10.1007/978-1-4020-5587-4
https://doi.org/10.1007/978-3-642-36039-8_21

54 A. Baltag et al.

5. Baltag, A., Gierasimczuk, N., Smets, S.: On the solvability of inductive problems:
a study in epistemic topology. In: Ramanujam, R. (ed.) Proceedings of the 15th
Conference TARK, Also Available as a Technical Report in ILLC Prepublication
Series PP-2015-13 (2015)

6. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of the 7th Conference TARK,
pp. 43–56. Morgan Kaufmann Publishers Inc. (1998)

7. Baltag, A., Özgün, A., Vargas Sandoval, A.L.: Topo-logic as a dynamic-epistemic
logic. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol.
10455, pp. 330–346. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-
662-55665-8 23

8. Bjorndahl, A.: Topological subset space models for public announcements. In:
Trends in Logic, Outstanding Contributions: Jaakko Hintikka (2016, to appear)

9. Dabrowski, A., Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowl-
edge. Ann. Pure Appl. Logic 78, 73–110 (1996)

10. Dégremont, C., Gierasimczuk, N.: Finite identification from the viewpoint of epis-
temic update. Inf. Comput. 209, 383–396 (2011)

11. Georgatos, K.: Knowledge theoretic properties of topological spaces. In:
Masuch, M., Pólos, L. (eds.) Logic at Work 1992. LNCS, vol. 808, pp. 147–159.
Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58095-6 11

12. Georgatos, K.: Knowledge on treelike spaces. Stud. Logica. 59, 271–301 (1997)
13. Gierasimczuk, N.: Knowing one’s limits. Logical analysis of inductive inference.

Ph.D. thesis, Universiteit van Amsterdam, The Netherlands (2010)
14. Gierasimczuk, N., de Jongh, D.: On the complexity of conclusive update. Comput.

J. 56, 365–377 (2013)
15. Gold, E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)
16. Kelly, K.T.: The Logic of Reliable Inquiry. Oxford University Press, Oxford (1996)
17. Moss, L.S., Parikh, R.: Topological reasoning and the logic of knowledge. In: Pro-

ceedings of the 4th Conference TARK, pp. 95–105. Morgan Kaufmann (1992)
18. Parikh, R., Moss, L.S., Steinsvold, C.: Topology and epistemic logic. In: Aiello, M.,

Pratt-Hartmann, I., Van Benthem, J. (eds.) Handbook of Spatial Logics, pp. 299–
341. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5587-4 6

19. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, New York (2011)

20. van Ditmarsch, H., Knight, S., Özgün, A.: Arbitrary announcements on topological
subset spaces. In: Bulling, N. (ed.) EUMAS 2014. LNCS (LNAI), vol. 8953, pp.
252–266. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-17130-2 17

21. van Ditmarsch, H., Knight, S., Özgün, A.: Announcement as effort on topological
spaces. In: Proceedings of the 15th TARK, pp. 95–102 (2015)

22. van Ditmarsch, H., Knight, S., Özgün, A.: Announcement as effort on topologi-
cal spaces. Extended version, Submitted (2015). http://www.lix.polytechnique.fr/
sophia/papers/effort.pdf

23. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, 1st edn.
Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5839-4

24. Vickers, S.: Topology via Logic. Cambridge Tracts in Theoretical Computer Sci-
ence. Cambridge University Press, Cambridge (1989)

25. Wang, Y.N., Ågotnes, T.: Multi-agent subset space logic. In: Proceedings of the
23rd IJCAI, pp. 1155–1161. IJCAI/AAAI (2013)

26. Weiss, M.A., Parikh, R.: Completeness of certain bimodal logics for subset spaces.
Stud. Logica. 71, 1–30 (2002)

https://doi.org/10.1007/978-3-662-55665-8_23
https://doi.org/10.1007/978-3-662-55665-8_23
https://doi.org/10.1007/3-540-58095-6_11
https://doi.org/10.1007/978-1-4020-5587-4_6
https://doi.org/10.1007/978-3-319-17130-2_17
http://www.lix.polytechnique.fr/sophia/papers/effort.pdf
http://www.lix.polytechnique.fr/sophia/papers/effort.pdf
https://doi.org/10.1007/978-1-4020-5839-4

Layered Logics, Coalgebraically

Lúıs Soares Barbosa(B)

UNU-EGOV, United Nations University,
Campus de Couros, Guimarães, Portugal

barbosa@unu.edu

Abstract. This note revisits layered logics from a coalgebraic point of
view, and proposes a naturality condition to express the typical hierarchi-
cal requirement under which all abstract transitions should be traceable
in more specialised layers.

Keywords: Layered logics · Hierarchical models · Coalgebra

1 Introduction

A plethora of logics is used in Software Engineering to support the specification
of systems’ requirements and properties, as well as to verify whether, or to
what extent, they are enforced in specific implementations. Broadly speaking,
the logics of dynamical systems are modal, i.e. they provide operators which
qualify formulas as holding in a certain mode. In mediaeval Scholastics such
modes represented the strength of assertion (e.g. ‘necessity’ or ‘possibility’). In
temporal reasoning they can refer to a future or past instant, or a collection
thereof. Similarly, one may express epistemic states (e.g. ‘as everyone knows’),
deontic obligations (e.g. ‘when legally entitled’), or spatial states (e.g. ‘in every
point of a surface’).

Regarding dynamical systems as transformations of state spaces according
to specific transition shapes, i.e. as coalgebras for particular functors [11] such
modes refer to particular configurations of successor states as defined, or induced,
by the coalgebra dynamics. Coalgebra provides a uniform characterisation induc-
ing ‘canonical’ notions of modality and the corresponding logic with respect to
the underlying functor [5,6]. General questions in modal logic, such as the trade-
off between expressiveness and computational tractability, or the relationship
between logical equivalence and bisimilarity, can be addressed at this (appropri-
ate) level of abstraction.

In this sense, modal logic is essentially coalgebraic [3]. Its classical exten-
sions, for example hybrid logic, which is able to pinpoint specific states and
index to them the satisfaction relation, can also be easily accommodated in the
framework [9,12].

This short note revisits a logic suitable to express properties of, and reason
about, n-layered, hierarchical transition systems, from a coalgebraic perspective,

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 55–63, 2018.
https://doi.org/10.1007/978-3-319-73579-5_4

56 L. S. Barbosa

building on previous results reported in references [7,8]. In particular it is shown
how the hierachical condition, informaly stated under the motto ‘upper transi-
tions should be traceable in the layer below’ can be expressed as a naturality
condition in the models.

A very brief introduction do Coalgebra is made in the next session to highlight
the paper’s background. Hierarchical systems and a language to express them
are discussed in Sect. 3. Finally, Sect. 4 introduces the paper’s original idea on
how layered logics can be framed coalgebraically.

2 Coalgebra

Often referred to as the mathematics of dynamical, state-based systems, Coalge-
bra claims to provide a compositional and uniform framework to specify, analyse
and reason about state and behaviour in computing. A flavour of the basic def-
inition is given in the sequel.

To define an (inductive) data structure, as typically taught in an undergrad-
uate course on programming, one essentially specifies its ‘assembly process’. For
example, one builds a sequence in a data domain D, either by taking an empty
list or by adjoining a fresh element to an existing sequence. Thus, declaring a
sequence data type yields a function ζ : 1 + D × U −→ U , where U stands for
the data type being defined. The structured domain of function ζ captures a
signature of constructors (nil : 1 −→ U , cons : D × U −→ U), composed addi-
tively (i.e. ζ = [nil, cons]). The whole procedure resembles the way in which an
algebraic structure is defined.

Reversing an ‘assembly process’ swaps structure from the domain to the
codomain of the arrow, which now captures the result of a ‘decomposition’ or
‘observation’ process. In the example at hand this is performed by the familiar
head and tail selectors joined together into

α : U −→ 1 + D × U (1)

where α either returns a token ∗ (representing the unique element of single-
ton set 1), when observing an empty sequence, or its decomposition in the top
element and the remaining tail.

This reversal of perspective also leads to a different understanding of what U
may stand for. The product D ×U captures the fact that both the head and the
tail of a sequence are selected (or observed) simultaneously. In fact, once one is no
longer focused on how to construct U , but simply on what can be observed of it,
finiteness is no longer required: both finite or infinite sequences can be observed
through the process above. Therefore, U can be more accurately thought of
as a state space of a machine generating a finite or infinite sequence of values
of type D. Elements of U , in this example, can no longer be distinguished by
construction, but should rather be identified when generating the same sequence.
That is to say, when it becomes impossible to distinguish them through the
observations allowed by the ‘shape’ structuring the codomain of α.

Layered Logics, Coalgebraically 57

Function (1) is an example of a coalgebra living in the category Set of sets
and functions.

A category, the reader is recalled, is simply a universe of typed arrows bearing
the structure of a partial monoid: arrows are associatively composed whenever
domain and codomain types match, and every type exhibits an arrow which
is the identity for composition. Categories themselves can be thought as types
in broader categories whose arrows, called functors, are morphisms preserving
identities and composition. Again functors can be taken as types in yet broader
categories whose arrows, traditionally called natural transformations, convey a
notion which nicely captures parametricity in datatype theory, and is central to
the construction proposed in this paper.

Look again at coalgebra α defined in (1). Its ingredients are: a carrier U
(intuitively, the state space of a machine), the shape of allowed observations,
technically a functor F(X) = 1 + D × X, and the observation dynamics given
by function α, i.e. the machine itself. Formally, a F-coalgebra is a pair 〈U,α〉
consisting of an object U and a map α : U −→ F U . The latter maps states to
structured collections of successor states. What shapes the underlying transition
system, therefore structuring the set of successor states, is encoded in functor
F . In (1), F(X) = 1 + D × X entails a deterministic, partial transition system,
whereas, for example, the power set construction, as in F(X) = P(D × X)
introduces non determinism. Actually, by varying F , one may capture a large
class of semantic structures used to model computational phenomena as (more
or less complex) transition systems. Going even further, F is not restricted to
be an endofunctor in the category of sets. For example, as recently discussed in
[10], the category of topological spaces emerges as the natural host for coalgebras
modelling continuous systems. The study of the common properties of all these
systems is the subject of Universal Coalgebra, as developed systematically by a
number of authors from the pioneering work of Rutten [11].

For each functor F over a category C, F-coalgebras are types in a correspond-
ing category CF where both composition and identities are inherited from C. An
arrow there, between two F-coalgebras, 〈U,α〉 and 〈V, β〉, is a map h between
carriers U and V which preserves the dynamics, i.e. such that β · h = F h · α.

This sets Coalgebra as a suitable mathematical framework for the study
of dynamical systems in both a compositional and uniform way. The qualifier
uniform requires some extra explanation: coalgebraic concepts (i.e. models, con-
structions, logics, and proof principles) are parametric on, or typed by, the func-
tor that characterises the underlying transition structure. Actually, the essence
of the coalgebraic method boils down to a very basic observation: that from a
suitable characterisation of the type of a system’s dynamics, encoded in a functor
F , canonical notions of behaviour and observational reasoning (equational and
inequational) can be derived in a uniform (i.e. parametric) way. In Mathematics,
as in Software Engineering, going parametric allows us to focus on the abstract
structure of a problem such that, on solving it, what we actually solve is a whole
class of problems.

58 L. S. Barbosa

In software design one is often interested in properties that are preserved
along the system’s evolution, the so-called ‘business rules’, as well as in ‘future
warranties’, stating that e.g. some desirable outcome will be eventually pro-
duced. As mentioned in the introductory section, both classes are examples of
modal assertions, i.e. properties that are to be interpreted across a transition
system capturing the software dynamics. Again in Coalgebra also modalities
acquire a shape. That is, their definitions become parametric on whatever type
of behaviour seems appropriate for addressing the problem at hand. The follow-
ing sections explore such a potential in designing a family of logics to reason
about hierarchical design.

3 Reasoning About Hierarchical Designs

Hierarchical transition systems are a popular mathematical structure to repre-
sent state-based software applications in which different layers of abstraction are
captured by interrelated state machines. The decomposition of high-level states
into inner sub-states, and of their transitions into inner sub-transitions, is a
common refinement procedure adopted in a number of specification formalisms.

In a recent paper [7] the author and his collaborators proposed an hybrid lay-
ered logic to reason about (non deterministic) transition systems. The diagram
in Fig. 1, representing a partial view of a strongbox controller, is taken from that
paper as an illustration of the sort of examples we have in mind.

Fig. 1. An hierarchical transition system.

The strongbox controller is specified at three different levels of abstraction,
expressing the progressive decomposition not only of its internal states, but also
of its transitions. Thus, each ‘high-level’ state gives rise to a new, local transi-
tion system, and each ‘upper-level’ transition is decomposed into a number of
‘intrusive’ transitions from sub-states of the ‘lower-level’ transition system corre-
sponding to the refinement of the original source state, to sub-states of the cor-
responding refinements of original target states. For instance, the (upper) close
state can be refined into a (inner) transition system with two (sub) states: one,
idle, representing the system waiting for the order to proceed for the get access

Layered Logics, Coalgebraically 59

state, and another one, blocked, capturing a system which is unable to pro-
ceed with the opening process (e.g. when authorised access for a given user was
definitively denied). In this scenario, the upper level transition from closed to
get access can be realised by, at least, one intrusive transition between the closed
sub-state idle and the getaccess sub-state identification, in which the user iden-
tification is to be checked before proceeding. This refinement is illustrated in the
left part of Fig. 1.

The logic proposed in [7] to reason about this sort of systems is modal (so
that state transitions can be expressed), combined with hybrid features to refer
to specific, individual states. The qualifier hybrid [1,2] refers to an extension of
modal languages with symbols, called nominals, which explicitly refer to indi-
vidual states in the underlying Kripke structure. A satisfaction operator @iϕ
stands for ϕ holding in the state named by nominal i.

Signatures are n-families of disjoint, possible empty, sets of symbols

Δn =
(
Propk,Nomk

)
k∈{0,··· ,n} .

For example, to specify the strongbox above, one considers a signature Δ2 for
the three layers presented, numbered from 0 (the most abstract) to 2.

The set of formulas Fm(Δn) is the n-family recursively defined,
for each k, by

ϕ0 � i0 | p0 | ¬ϕ0 | ϕ0 ∧ ϕ0 | @i0ϕ0 | �0ϕ0

ϕb
0 � i0 | p0 | @i0ϕ0 | �0ϕ0

and
ϕk � ϕb

k−1 | ik | pk | ¬ϕk | ϕk ∧ ϕk | @ikϕk | �kϕk

where for any k ∈ {1, . . . , n}, the basic formulas are defined by

ϕb
k−1 � ik−1 | pk−1 | ϕb

k−2 | @ik−1ϕk−1 | �k−1ϕk−1

for k ∈ {2, · · · , n}, pk ∈ Propk and ik ∈ Nomk.
This language is able to express properties of very different natures. For

instance, one may express inner-outer relations between named states (e.g.
@idle1closed0 or @att12open0) as well as a variety of transitions. Those include,
for example, the layered transition @get access0 	0 open0, a 0-internal one
@identification1 	1 authorisation1, and intrusive transitions such as @idle1 	1
authorisation1 and get access0 → 	1open0.

4 ... Coalgebraically

The whole programme can actually be carried out in a coalgebraic setting. The
basic observation is that when defining a model for this logic the family of acces-
sibility relations considered in [7] is replaced by a family of coalgebras for the
same endofunctor, each of which captures the dynamics of the appropriate layer.

60 L. S. Barbosa

Thus, a n-layered model M ∈ Modn(Δn) is a tuple

M = 〈Wn,Dn, αn, V n〉
where Wn = (Wk)k∈{0,··· ,n} is a family of disjoint sets of states, and Dn ⊆
W0 × · · · × Wn is a definition predicate that singles out the chains of states
across the n levels which are considered meaningful ‘global’ states. Denoting by
Dk the k-restriction Dn|k to the first k + 1 columns, for each k ∈ {0, · · · , n}, it
is the case that

Wk = {vk|Dk〈w0, · · · , wk−1, vk〉 ,

for some w0, · · · , wk−1, such that Dk−1〈w0, · · · , wk−1〉} . The ‘dynamics’:

αn =
(
αk : Dk −→ F(Dk))k∈{0,··· ,n}

is a family of F-coalgebras specifying the system’s evolution at each level in the
hierarchy. Finally, V n = (V Prop

k , V Nom
k)k∈{0,··· ,n} is a family of pairs of valuations

defined as one would expect: V Prop
k : Propk → P(Dk), and V Nom

k : Nomk → Wk.
The advantage of expressing the transition structure coalgebraically is the

genericity of the approach. Actually, making F = P, the powerset monad, we are
brought back the usual Kripke structure, modal formulas being interpreted over
a non deterministic transition system. Different alternatives can be considered by
varying F . For example, modalities can be interpreted in a probabilistic setting
by instantiating F with the sub-distribution monad D≤(X) = {μ : X →
R≥0|

∑
x∈X μx ≤ 1} which captures probabilistic transitions — note that what

is missing to 1 above can be seen as the probability of some sort of ‘systemic’
failure, such as deadlock, to occur. As expected, the satisfaction relation is a
family |=n= (|=k)k∈{0,··· ,n} defined, for each wr ∈ W r, r ∈ {0, · · · , k}, k ≤ n,
such that Dk〈w0, · · · wk〉. The case of interest in the context of this note is the
one for modalities, i.e. Mk, w0, · · · , wk |=k �kϕk iff

∀v0∈W0,··· ,vk∈Wk
. 〈v0, · · · , vk〉 ∈ αk〈w0, · · · , wk〉 implies M,v0, · · · , vk |=k ϕk .

The hybrid part is given by

– Mk, w0, · · · , wk |=k ik iff wk = V Nom
k (ik) and Dk〈w0, · · · , wk−1, V

Nom
k (ik)〉 ,

– Mk, w0, · · · , wk |=k @ikϕk iff Mk, w0, · · · wk−1, V
Nom
k (ik) |=k ϕk and

Dk〈w0, · · · wk−1, V
Nom
k (ik)〉 .

The Boolean part, finally, is defined as usual, just taking care of the definability
interdependence captured by Dn. The only aspect one needs to take into account
is the interplay between the satisfaction operators and the modalities induced
(or built over) the coalgebra. For example, one has to specify that a formula like
@i ϕ must be valid either in the whole model or nowhere. In an Hilbert calculus
this can be achieved through an extra axiom, for each modal operator �:

@iϕ ⇒ (�(ϕ1, · · · , ϕk) ⇔ �(ϕ1 ∧ @iϕ, · · · , ϕk ∧ @iϕ)

capturing the intended validity of @iϕ irrespective to the interpretation of
each ϕj .

Layered Logics, Coalgebraically 61

As mentioned in the Introduction, there is a specific, particularly well-
behaved class of layered models, called hierarchical, in which all upper transitions
are traceable in the layer below. Technically, this amounts to the requirement
that the restriction of a coalgebra αk to the state space of αk−1 coincides with the
latter. In this case, the family of coalgebras αn is called hierarchically compatible.

The example sketched in Fig. 1, is clearly an hierarchical model. Examples of
non-hierarchical layered models can be achieved by removing some 0-transitions
depicted in the diagram above (e.g. the one linking the named states closed0 and
get access0). The hierarchical condition is quite natural and somehow inherent to
well-known design formalisms such as Harel’s statecharts [4] and the subsequent
UML hierarchical state machines, among others.

What is worth to notice is that the hierarchical requirement can be expressed
as a naturality condition as follows. The first step is to regard the family of
coalgebras αn as a coalgebra in a functor category, for a suitable finite chain:

• �� Set

•
��

•
��

Arrows (thus, component coalgebras) are families of natural transformations,
making the following diagram to commute for all k,

Dk
αk ��

πk

��

F(Dk)

F(πk)

��
Dk−1

αk−1 �� F(Dk−1)

where πk : Dk −→ Dk−1 be given by πk 〈w0, · · · , wk−1, wk〉 =̂ 〈w0, · · · , wk−1〉.
Let us illustrate this construction. For F = P , transitions

〈w1
0, w

1
1〉

〈w0
0, w

0
1〉

��

�� 〈w1
0, w

2
1〉

exist at level 1 iff a transition w0
0

�� w1
0 exists at level 0.

62 L. S. Barbosa

For another example, consider F = D≤. In an hierarchical (probabilistic)
system naturality entails that the existence of transitions

〈w1
0, w

1
1〉

〈w0
0, w

0
1〉

0.5 ��

0.3 ��

0.2 ��

〈w1
0, w

2
1〉

〈w2
0, w

3
1〉

requires
w1

0

w0
0

0.8
��

0.2 �� w2
0

at level 0.

5 Concluding

As it happens in other domains of Computer Science, also at this level of ‘logics
engineering’ Coalgebra is a source of genericity. Clearly, whenever functor F is
a monad, the monadic structure can be taken as the basis for a model algebra
in which the composition of hierarchical systems can be addressed. Canonical
formats for bisimulation come for free, and often Hennessy-Milner like theorems
can be proved in a generic setting.

On the other hand, the motto for hierarchical models – ‘upper transitions
should be traceable in the layer below’ – can be re-phrased, in a more precise
way, as layer compatibility is natural. This, again, is a source of genericity: the

Fig. 2. Some shapes for layered structures.

Layered Logics, Coalgebraically 63

very notion of hierarchical is made relative to whatever poset P is used to define
the layer structure intended to be respected. We leave the reader of this short
note with the (easy) quiz of re-phrasing this notion for the four different posets
depicted in Fig. 2.

Acknowledgments. This work is financed by the ERDF - European Regional Devel-
opment Fund through the Operational Programme for Competitiveness and Interna-
tionalisation through (a) COMPETE 2020 Programme and by National Funds through
the Portuguese funding agency, FCT - Fundação para a Ciência e a Tecnologia,
project POCI-01-0145-FEDER-016826, and (b) Norte Portugal Regional Operational
Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement,
within project NORTE-01-0145-FEDER-000037.

References

1. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–365 (2000)

2. Brauner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series. Springer,
Dordrecht (2010). https://doi.org/10.1007/978-94-007-0002-4

3. Ĉırstea, C., Kurz, A., Pattinson, D., Schröder, L., Venema, Y.: Modal logics are
coalgebraic. Comput. J. 54(1), 31–41 (2011)

4. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987)

5. Kupke, C., Pattinson, D.: Coalgebraic semantics of modal logics: an overview.
Theor. Comput. Sci. 412(38), 5070–5094 (2011)

6. Kurz, A., Leal, R.L.: Modalities in the stone age: a comparison of coalgebraic logics.
Theor. Comput. Sci. 430, 88–116 (2012)

7. Madeira, A., Martins, M.A., Barbosa, L.S.: A logic for n-dimensional hierarchical
refinement. In: Derrick, J., Boiten, E.A., Reeves, S. (eds.) Proceedings 17th Inter-
national Workshop on Refinement, Refine@FM 2015, Oslo, Norway, 22nd June
2015, EPTCS, vol. 209, pp. 40–56 (2016)

8. Madeira, A., Martins, M.A., Barbosa, L.S., Hennicker, R.: Refinement in hybridised
institutions. Formal Aspects Comput. 27(2), 1–21 (2014)

9. Myers, R., Pattinson, D., Schröder, L.: Coalgebraic hybrid logic. In: de Alfaro, L.
(ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 137–151. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00596-1 11

10. Neves, R., Barbosa, L.S., Hofmann, D., Martins, M.A.: Continuity as a computa-
tional effect. J. Log. Algebr. Meth. Program. 85(5), 1057–1085 (2016)

11. Rutten, J.J.M.M.: Universal coalgebra: a theory of systems. Theor. Comput. Sci
249(1), 3–80 (2000). Revised version of CWI Technical report CS-R9652 (1996)

12. Schröder, L., Pattinson, D.: Named models in coalgebraic hybrid logic. In: Marion,
J.-Y., Schwentick, T. (eds.) 27th International Symposium on Theoretical Aspects
of Computer Science, STACS 2010, Leibniz International Proceedings in Informat-
ics, vol. 5, pp. 645–656. Schloss Dagstuhl - Leibniz-Center of Informatics, Dagstuhl
(2010)

https://doi.org/10.1007/978-94-007-0002-4
https://doi.org/10.1007/978-3-642-00596-1_11

A Dynamic Informational-Epistemic Logic

Yuri David Santos(B)

University of Groningen, Groningen, The Netherlands
y.david.santos@rug.nl

Abstract. Epistemic logic is usually employed to model two aspects of
a situation: the ontic and the epistemic aspects. Truth, however, is not
always attainable, and in many cases we are forced to reason only with
whatever information is available to us. In this paper, we will explore
a four-valued epistemic logic designed to deal with situations of this
sort. The technical results include a set of reduction axioms for public
announcements, correspondence proofs, and a complete tableau system.

Keywords: Many-valued logics · Epistemic logic
Paraconsistent logics · Public announcements
Multi-agent systems

1 Introduction

Is drinking a glass of red wine per day good for your heart? The answer may
be yes or no depending on where you look. We do not dare to try to answer
this question here, but we want to offer a logical formalism that can help us
understand situations like this, where the available information about a cer-
tain topic can be conflicting or incomplete. In most practical settings, obtaining
the ultimate truth about anything is out of the question, and one has to deal
with whatever information is available to them, which might be incomplete and
sometimes even contradictory.

We will carry out our analysis on a four-valued epistemic logic, a variant of
the so-called BK logic [13], a Belnapian version of modal logic K. As an important
component of modern dynamic epistemic logics, public announcements will also
be examined. In this way, we also intend to contribute to the motivation for the
use of many-valued modal logics. As remarked by Fitting in the conclusion of [6],
very little has been said about intuitions underlying many-valued modal logics,
a situation which seems to persist in the current literature.

In four-valued logics, a proposition p can be, besides true or false, both (true
and false) or neither (true nor false), denoted in this paper by the valuations
V (p) = {0, 1} and V (p) = ∅, respectively. One can, as was done by Belnap in
his influential paper [2], interpret these truth-values as the status of information
possibly coming from several sources. For example, if both is the value assigned
to p, then this means that some source points to the truth and another to the
falsity of p. The value none could mean that no information is available about p.
c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 64–81, 2018.
https://doi.org/10.1007/978-3-319-73579-5_5

A Dynamic Informational-Epistemic Logic 65

In this way, the valuation already represents the epistemic level, instead of the
ontic level. This was not a problem since Belnap was not dealing with a modal
logic. Now, the addition of a modal operator of belief to this logic will create
two separate epistemic “layers”.

Look at the classical epistemic model of Fig. 1(left). It represents a situation
wherein an agent cannot distinguish between the truth and falsity of proposition
p, or, equivalently, wherein the agent does not know whether p.

p ¬p
V (p) = {1} V (p) = {0}

V (p) = {0, 1} V (p) = ∅

Fig. 1. An epistemic model (left) and a four-valued epistemic model (right).

Now, compare this situation with the four-valued model of Fig. 1(right).
What is a plausible interpretation for this model? Here, the agent not only can-
not distinguish between worlds where p is true or false, but also between worlds
where it is neither true nor false, or both. If we adopt an epistemic interpretation
of the valuations, what kind of interpretation is left for the operator �?

As mentioned before, we should think of two layers: the first concerning
information, and the second concerning knowledge. The (four-valued) valua-
tion function embodies the informational layer, while the accessibility relations
account for the (multi-agent) epistemic layer. For example, we can regard the
valuation as representing the information about some propositions stored in a
database. The database only registers the information it receives, so it is well
possible that at first it receives the information that p is true, but subsequently
it receives (possibly from another source) the information that p is false. In this
case the database contains contradictory information about p. The second level
(the epistemic/doxastic level), represented by the accessibility relations, may be
illustrated, for instance, by the knowledge of a user of this database. The user
may be in a state like the one in Fig. 1(right), where she considers it possible
that the database is in any of the four possible states regarding p.

Notice that our agents do not possess real knowledge (knowledge about facts),
but only a superficial knowledge about information itself – whence we say that
one layer concerns information, as opposed to reality, and the other concerns
knowledge about the “informational layer”.

This interpretation also makes clear the difference between none and both,
which could otherwise be equally understood as no information or useless infor-
mation. If the database has both as the value of p, deleting information that
supports the truth of p would result in p being just false, whereas if p was none
this would have no effect. Similarly, receiving information when p is none can
lead to a consistent state, but, if p is both, receiving new information has no qual-
itative effect. Such changes in information could be modelled through dynamic

66 Y. David Santos

operators, but in this paper we only use public announcements (Sect. 5), and
with a different purpose.

Another example not involving databases can be given. Let us consider a
typical epistemic logic scenario. Anne lives in Groningen, so she knows whether
It is raining in Groningen (�ag ∨ �a¬g). Likewise, Bart lives in Rotterdam
and knows whether It is raining in Rotterdam (�br ∨ �b¬r). The traditional
epistemic model for this situation is depicted in Fig. 2.

g,r g,¬r

¬g,r ¬g,¬r

b b

a

a

Fig. 2. A classic epistemic model.

Now suppose both of them usually inform themselves of the weather by
watching the local television’s newscast, and g and r mean that It will rain
in Groningen tonight and It will rain in Rotterdam tonight, respectively. This
changes nothing in the model of Fig. 2. However, imagine the situation in which
Anne heard that g in the newscast of Channel 1, but ¬g in the newscast of
Channel 2. The status of g for Anne is now contradictory, which is denoted by
the truth value both. Moreover, assuming that Anne is always up to date with the
weather news from Channels 1 and 2, she will always be aware of the four-valued
status of g. In this example, the sources of information, namely the television
channels, play the role of the database. We are not endorsing the position that
proposition g can actually be true and false at the same time, but only that
there may be different pieces of information available, one supporting the truth
and the other the falsity of g.

In this way, the logic preserves the standard meaning of the accessibility rela-
tions, namely that of epistemic alternatives (or uncertainty). So, in a state where g
was announced to be both true and false, Anne is aware of that. She does not con-
sider a world to be possible where only ¬g was announced, for she already knows
this is not the case. Bart, on the other hand, does not have access to Groningen
weather in his local newscast, so he considers all of the four values to be possible
for g. Now we can have a formula like �a(g ∧ ¬g), meaning that Anne knows that
there is information supporting both the truth and the falsity of g .

The rest of this paper will explore in detail this logic with two epistemic
layers, which we will simply call four-valued epistemic logic (FVEL, in short).
The remaining content is organized as follows. In Sect. 2 we define the syntax
and semantics of the logic, and present some of its basic properties. In Sect. 3
we present a sound and complete tableau system. In Sect. 4 we show some corre-
spondence results concerning classical epistemic logic axioms. In Sect. 5 we add
public announcements to FVEL and show that they do not increase expressiv-
ity. We also extend the tableau system with rules for public announcements, and

A Dynamic Informational-Epistemic Logic 67

prove completeness. In Sect. 6 we give an illustrative example of FVEL in action.
To wrap up, we comment on related work in Sect. 7 and conclude with Sect. 8.
Some of the proofs can be found in the appendix1.

2 Four-Valued Epistemic Logic

In this section, we will define the syntax and the semantics of the logical language
being examined.

2.1 Syntax

Let P be a countable set of atomic propositions and A a finite set of agents.
A well-formed formula ϕ in our language L is inductively defined as follows:

ϕ ::= p | ˜ϕ | ¬ϕ | (ϕ ∧ ϕ) | �iϕ

with p ∈ P and i ∈ A. The following abbreviations will be employed throughout
the text: (ϕ ∨ ψ) def= ¬(¬ϕ ∧ ¬ψ); (ϕ → ψ) def=(¬ϕ ∨ ψ); (ϕ ↔ ψ) def=((ϕ → ψ) ∧
(ψ → ϕ)); ♦iϕ

def= ¬�i¬ϕ. Parentheses will be left out when there is no room for
ambiguity.

2.2 Semantics

Given the non-empty finite set A = {1, 2, ..., n} of agents, an interpretation is a
tuple M = 〈S,R, V 〉, where S is a non-empty set of states, R = 〈R1, R2, ..., Rn〉
is an n-tuple of binary relations on S and V : P × S → 2{0,1} is a valuation
function that assigns to each proposition one of four truth values ({0} is false,
{1} is true, {} is none and {0, 1} is both). Although the results in this paper
do not depend on the accessibility relations being equivalence relations, Sect. 4
presents some results that illustrate the effects of restricting R. With p ∈ P ,
s ∈ S, i ∈ A and ϕ,ψ ∈ L, the satisfaction relation |= is inductively defined as
follows:

M, s |= p iff 1 ∈ V (p, s)
M, s |= ¬p iff 0 ∈ V (p, s)
M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ

M, s |= ¬(ϕ ∧ ψ) iff M, s |= ¬ϕ or M, s |= ¬ψ

M, s |= �iϕ iff ∀t ∈ S s.t. sRit, it holds that M, t |= ϕ

M, s |= ¬�iϕ iff ∃t ∈ S such that sRit and M, t |= ¬ϕ

M, s |= ˜ϕ iff M, s �|= ϕ

M, s |= ¬˜ϕ iff M, s |= ϕ

M, s |= ¬¬ϕ iff M, s |= ϕ

1 Some proofs have been omitted due to space limitations, but are available at https://
www.ime.usp.br/∼yurids/appendix-dali17.pdf.

https://www.ime.usp.br/~yurids/appendix-dali17.pdf
https://www.ime.usp.br/~yurids/appendix-dali17.pdf

68 Y. David Santos

Now, we can talk not only about 4-valued atoms but also about 4-valued
formulas in general. We define the extended valuation function V : L×S → 2{0,1}

as follows:

1 ∈ V (ϕ, s) iff M, s |= ϕ

0 ∈ V (ϕ, s) iff M, s |= ¬ϕ

Using the above definition, we say that a formula ϕ has value both at s, for
example, if and only if V (ϕ, s) = {0, 1}, which is the case when both M, s |= ϕ
and M, s |= ¬ϕ. Truth and falsity of formulas are evaluated independently, and
for that reason we define semantic conditions for each negated formula separately.
Even though the semantics of ¬ as defined above is non-compositional2, the
connective is still truth-functional, as we will see in the next section.

2.3 Basic Properties

Now we build the truth tables for the truth-functional connectives according to
the truth definitions given above (compare truth Tables 1, 2, 3, 4 and 5 below
to the ones in [16, p. 146]). True, false, none and both are abbreviated to t, f , n
and b, respectively.

Table 1. ¬ϕ.

ϕ n f t b

n t f b

Table 2. ˜ϕ.

ϕ n f t b

t t f f

Table 3. ϕ ∧ ψ.

ϕ\ψ n f t b

n n f n f

f f f f f

t n f t b

b f f b b

Table 4. ϕ ∨ ψ.

ϕ\ψ n f t b

n n n t t

f n f t b

t t t t t

b t b t b

Example for Table 1 (¬b = b): V (ϕ, s) = {0, 1} iff 0 ∈ V (ϕ, s) and 1 ∈ V (ϕ, s)
iff M, s |= ¬ϕ and M, s |= ϕ iff M, s |= ¬ϕ and M, s |= ¬¬ϕ iff 1 ∈ V (¬ϕ, s) and
0 ∈ V (¬ϕ, s) iff V (¬ϕ, s) = {0, 1}.

Example for Table 4 (n ∨ b = t): Recall that disjunction is defined in terms of
conjunction and negation. M, s |= ¬(¬ϕ ∧ ¬ψ) iff M, s |= ¬¬ϕ or M, s |= ¬¬ψ
iff M, s |= ϕ or M, s |= ψ iff 1 ∈ V (ϕ, s) or 1 ∈ V (ψ, s), which is true, for
V (ψ, s) = {0, 1}. M, s |= ¬¬(¬ϕ ∧ ¬ψ) iff M, s |= ¬ϕ ∧ ¬ψ iff M, s |= ¬ϕ and
M, s |= ¬ψ iff 0 ∈ V (ϕ, s) and 0 ∈ V (ψ, s), which is false, for V (ϕ, s) = ∅.
Therefore M, s |= ϕ∨ψ holds, but M, s |= ¬(ϕ∨ψ) does not, thus 1 ∈ V (ϕ∨ψ)
and 0 /∈ V (ϕ ∨ ψ), hence V (ϕ ∨ ψ) = {1}.
2 The semantics would be compositional if we used two support relations |=+ and |=−,

as was done in [13]. While these two formalisms have the same expressivity, ours has
a larger number of formulas (see more on this comparison in Sect. 7).

A Dynamic Informational-Epistemic Logic 69

Table 5. ϕ → ψ.

ϕ\ψ n f t b

n n n t t

f t t t t

t n f t b

b t b t b
f

n b

t

Fig. 3. Lattice L4.

If we leave ¬ out, we have classical modal logic, with {1} and {0, 1} (to which
[16] refers as designated values) behaving as true, and ∅ and {0} (accordingly,
non-designated values) behaving as false.

Moreover, observing these truth tables, we notice that the fragment resulting
from leaving ˜ and � out behaves exactly as first degree entailment (FDE) [5,16].
Conjunction and disjunction are given by the meet and join, respectively, of the
values in the lattice depicted in Fig. 3, called L4 in [2]. Now, adding the modal
operator to FDE we obtain KFDE, a logic which Priest has studied [16]. He
provides a complete tableau system for this logic. Moreover, he shows that this
logic contains no validities, as is the case for FDE itself.

We can also build the truth tables for the connectives ∨ and → defined
over ˜ instead of ¬ (which we will denote by ∨̃ and →̃, respectively). Despite
these connectives being binary functions accepting two four-valued parameters,
they behave analogously to their classical (Boolean) counterparts. They can be
viewed as a composition of a function that compresses designated values into true
and non-designated values into false (just like the ˜ operator itself) with the
corresponding Boolean function. In other words, if or is classical disjunction and
imp is classical implication, x∨̃y = or(˜˜x,˜˜y) and x→̃y = imp(˜˜x,˜˜y).
It is also relevant to remark that when the operands take on only classical values,
both pairs of operators (∨,→ and ∨̃,→̃) behave exactly alike.

Validity. We say that M |= ϕ if and only if M, s |= ϕ for all s ∈ S, where
M = 〈S,R, V 〉. A formula ϕ is valid (|= ϕ) if and only if M |= ϕ for all models
M . A frame is a pair F = 〈S,R〉. We say a formula ϕ is valid in a frame
F = 〈S,R〉, that is, F |= ϕ, if and only if, for all valuations V , it holds that
M |= ϕ, where M = 〈S,R, V 〉 (and we say M is based on frame F). If for all
models M and all states s it is the case that M, s |= Σ implies M, s |= ϕ, we say
that Σ |= ϕ (ϕ is a logical consequence of Σ).

We can define
, a validity, as
 def=(p ∨ ˜p). While FDE has no validities,
FVEL has an infinity of them, including
. Moreover, all propositional tautolo-
gies (built with ˜) are still validities in FVEL, as expected, but there are other
valid formulas with both ˜ and ¬, such as ˜p ∨ ¬˜p.

70 Y. David Santos

Equivalence. Logical equivalence (sameness in truth value) cannot be
expressed by ϕ ↔ ψ in FVEL. Look at Table 6. The diagonal should be des-
ignated, and the rest non-designated. In fact, in this case even the logical equiv-
alence connective (↔̃) derived using ˜ instead of ¬ does not give a truth table
which is designated in the diagonal and non-designated everywhere else, for it
treats b and t as equals (and the same goes for f and n), resulting in a weaker
type of equivalence.

Table 6. ϕ ↔ ψ.

ϕ\ψ n f t b

n n n n t

f n t f b

t n f t b

b t b b b

Table 7. ϕn, ϕf , ϕt and ϕb.

ϕ ϕn ϕf ϕt ϕb

n t f f f

f f t f f

t f f t f

b f f f t

The reason for adding the classical negation (˜) to a language which already
has a negation operator (¬) is that this increases the expressivity of the lan-
guage3. For instance, we can now define formulas discriminating which of the
four truth values a formula ϕ has: ϕn def=(˜ϕ ∧ ˜¬ϕ); ϕf def= ˜˜(˜ϕ ∧ ¬ϕ);

ϕt def= ˜˜(ϕ ∧ ˜¬ϕ); ϕb def= ˜˜(ϕ ∧ ¬ϕ). As can be seen in Table 7, ϕi is true
if and only if ϕ has truth value i, for i ∈ {n, f, t, b}, and false otherwise. Using
these connectives, it is easy to see that a stronger notion of logical equivalence
can be expressed in FVEL:

ϕ ⇔ ψ
def=(ϕn ∧ ψn) ∨ (ϕf ∧ ψf) ∨ (ϕt ∧ ψt) ∨ (ϕb ∧ ψb)

Since this formula is complex and difficult to evaluate, we will often favor
the use of the metalanguage operator ≡, defined by:

ϕ ≡ ψ
def=(M, s |= ϕ iff M, s |= ψ) and (M, s |= ¬ϕ iff M, s |= ¬ψ),

for all models M and all states s.

The formula ϕ ⇔ ψ is designated if and only if ϕ and ψ have the same truth
value. We can use ⇔ and ≡ interchangeably for it holds that:

3 Interestingly, Girard and Tanaka [8] show that the standard definition of p → q as
¬p ∨ q does not suffice to prove reduction axioms for public announcements when
working with an epistemic extension of Priest’s three-valued Logic of Paradox. To
circumvent that, they introduced an alternative implication. Our classical negation
has a similar role w.r.t. our reduction axioms of Sect. 5.

A Dynamic Informational-Epistemic Logic 71

Proposition 1. ϕ ≡ ψ iff |= ϕ ⇔ ψ.

The operator ≡ will be widely used for the demonstrations of Sect. 5.

3 Tableaux

In this section we will describe a tableaux system for FVEL4. A tableau is a
tree-like structure used for checking derivability and theoremhood. Each branch
of the tableau is a set of restrictions that may ultimately determine a model,
which is said to be the model induced by that branch. In the system used in this
paper, each node of the tree is of the form (ϕ,±i) or (irmj). The first type of
node tells if the formula ϕ is designated (+) or non-designated (−) in state f(i),
where f is a function from N to states (of the induced model). The second type
of node says that f(i)Rmf(j) for i, j ∈ N, where Rm is the accessibility relation
of agent m (in the induced model).

The root of the tableau is of the form (ϕ,−0), where ϕ is the desired conclu-
sion. This root node asserts that the conclusion is non-designated in an arbitrary
state f(0). Below the root comes a series of nodes P1, P2, ..., Pn such that P1 is
child of the root, P2 is child of P1, P3 is child of P2, and so on. Each node in
this sequence is in the form (ψ,+0), where ψ is a premise. A branch is a path
from the root to a leaf of the tableau. A branch is called closed if it contains
a contradiction, that is, a pair of nodes (χ,+k) and (χ,−k) for some formula
χ and k ∈ N. If the branch does not contain a contradiction and its leaf node
does not fulfill the conditions for the application of any rule (that was not yet
applied), then we say the branch is open. If the branch contains no contradictions
and not all applicable rules were applied, the branch is neither closed nor open,
it is incomplete. If no branch is incomplete we say the tableau is complete.

A successful proof is one where all the branches of the tableau are closed,
showing that it is impossible that ϕ is non-designated in a state where all the
premises are designated, and therefore ϕ is provable from the premises. In that
case we say Σ � ϕ, where Σ is the finite set of premises and ϕ is the conclusion.
If ϕ is proven from an empty set of premises we write � ϕ, and call ϕ a theorem.

To apply a rule to the tableau, a leaf node must be chosen. If the branch
to which the leaf node belongs satisfies the conditions of the rule (which are
represented in the left-hand side of the rule), certain nodes can be appended as
child nodes to that leaf (according to the specification in the right-hand side).
Conditions require simply the existence of a set of nodes with a particular format.
Some rules allow the creation of one child node, other rules allow the creation
of two child nodes, in some cases in series (denoted by a comma in the rules
below), in other cases in parallel (denoted by a vertical bar: |).

To obtain a tableau calculus for FVEL, we started with the rules from the
tableau system given in [16, p. 248], which, for the paper to be self-contained,
are reproduced here (rules R1–R14). We then added four more rules for classical
negation (rules R15–R18). This tableau system will be further augmented in

4 Compare [13], which provides a tableaux for BK (discussed in Sect. 7).

72 Y. David Santos

Sect. 4 to prove some correspondence results between the tableau system and
classes of frames and in Sect. 5 to cope with public announcements.

(ϕ ∧ ψ,+i) =⇒ (ϕ,+i), (ψ,+i) (R1)
(ϕ ∧ ψ,−i) =⇒ (ϕ,−i) | (ψ,−i) (R2)
(ϕ ∨ ψ,+i) =⇒ (ϕ,+i) | (ψ,+i) (R3)
(ϕ ∨ ψ,−i) =⇒ (ϕ,−i), (ψ,−i) (R4)

(¬(ϕ ∨ ψ),±i) =⇒ (¬ϕ ∧ ¬ψ,±i) (R5)
(¬(ϕ ∧ ψ),±i) =⇒ (¬ϕ ∨ ¬ψ,±i) (R6)

(¬¬ϕ,+i) =⇒ (ϕ,+i) (R7)
(¬¬ϕ,−i) =⇒ (ϕ,−i) (R8)

(�mϕ,+i), (irmj) =⇒ (ϕ,+j) (R9)
(�mϕ,−i) =⇒ (irmj), (ϕ,−j) (R10)
(♦mϕ,+i) =⇒ (irmj), (ϕ,+j) (R11)

(♦mϕ,−i), (irmj) =⇒ (ϕ,−j) (R12)
(¬�mϕ,±i) =⇒ (♦m¬ϕ,±i) (R13)
(¬♦mϕ,±i) =⇒ (�m¬ϕ,±i) (R14)

(¬˜ϕ,+i) =⇒ (ϕ,+i) (R15)

(¬˜ϕ,−i) =⇒ (ϕ,−i) (R16)

(˜ϕ,+i) =⇒ (ϕ,−i) (R17)

(˜ϕ,−i) =⇒ (ϕ,+i) (R18)

Notice that rules R17 and R18 invert the sign before i. In rules R10 and R11,
the number j must be fresh in the branch. Figures 4 and 5 show two examples
of proofs using the tableau system. In the first proof, no rule can be applied
to the leaf node (its branch does not fulfill the conditions of any rule that was
not already applied), and therefore the formula ˜�mp∨ p is not a theorem. The
second example proves the validity (p ∨ ˜p) ∧ (¬p ∨ ˜¬p).

Now we can prove soundness and completeness of this enhanced tableau with
respect to FVEL.

˜�mp ∨ p,−0
R4

˜�mp,−0

p,−0
R18�mp,+0

Fig. 4. An open tableau

(p ∨ ˜p) ∧ (¬p ∨ ˜¬p),−0
R2

p ∨ ˜p,−0
R4

p,−0

˜p,−0
R18

p,+0
×

¬p ∨ ˜¬p,−0
R4¬p,−0

˜¬p,−0
R18¬p,+0

×

Fig. 5. A closed tableau: p, +0 contradicts
p, −0, and ¬p, +0 contradicts ¬p, −0.

Theorem 1. For any finite set of formulas Σ ∪ {ϕ}, Σ � ϕ iff Σ |= ϕ.

A Dynamic Informational-Epistemic Logic 73

4 Correspondence Results

Now we will take a look at standard axioms and inference rules from modal
logics. Modus Ponens (abbreviated as MP , {ϕ,ϕ → ψ} � ψ) is not a sound
inference rule, as is the case for FDE (see Proposition 2). Necessitation (NEC,
� ϕ =⇒� �mϕ), on the other hand, is sound. The axiom K is not a theorem
of our logic. However, if K is built using classical negation instead of FDE
negation (�m(ϕ→̃ψ)→̃(�mϕ→̃�mψ)), then it is a theorem of FVEL. Axioms T
(�mϕ → ϕ), 4 (�mϕ → �m�mϕ) and 5 (¬�mϕ → �m¬�mϕ) are not theorems
(neither in their regular version, nor in their version with classical negation).
Whether these or any other formulas are theorems can be easily checked using
the tableau method.

Proposition 2. MP is not a sound inference rule for FVEL.

Proposition 3. NEC is a sound inference rule for FVEL.

The version of K derived from ˜ (let us call it K̃) is valid in all frames. Not
surprisingly, the correspondence between some properties of frames and validity
of formulas still hold, as shown by the propositions below (where the versions of
T , B, 4, D and 5 derived using the classical negation are named T̃ , B̃, 4̃, D̃ and
5̃, respectively).

Proposition 4. F |= T̃ iff F is reflexive.

Proposition 5. F |= 4̃ iff F is transitive.

Proposition 6. F |= B̃ iff F is symmetric.

Proposition 7. F |= D̃ iff F is serial.

Proposition 8. F |= 5̃ iff F is Euclidian.

Now, it can be shown that the tableau system is complete with respect to the
class of models satisfying the above properties if we augment the system with
the following rules:

• =⇒ (irmi) (Rρ)
(irmj), (jrmk) =⇒ (irmk) (Rτ)

(irmj) =⇒ (jrmi) (Rσ)
• =⇒ (irmj) (Rη)

(irmj), (irmk) =⇒ (jrmk) (Rε)

Rules (Rρ) and (Rη) can only be applied if there is a previous appearance of
the label i in the branch, and (Rη) additionally requires that j be fresh in the
branch. We use the symbol �ρ for the provability relation of the tableau system
augmented with the rule (Rρ), and similarly for the other rules. Likewise, we use
|=ρ to represent satisfiability restricted only to reflexive models, |=τ for transitive
models, |=σ for symmetric models, |=η for serial models and |=ε for Euclidian
models.

74 Y. David Santos

Theorem 2. For all finite sets of formulas Σ∪ϕ, the following statements hold:

– Σ �ρ ϕ iff Σ |=ρ ϕ
– Σ �τ ϕ iff Σ |=τ ϕ
– Σ �σ ϕ iff Σ |=σ ϕ
– Σ �η ϕ iff Σ |=η ϕ
– Σ �ε ϕ iff Σ |=ε ϕ

5 Public Announcements

In this section, we extend the language with public announcements. The seman-
tics for the new operator is defined as follows (cf. [4,15]):

M, s |= [ϕ]ψ iff M, s |= ϕ implies M |ϕ, s |= ψ

M, s |= ¬[ϕ]ψ iff M, s |= ϕ and M |ϕ, s |= ¬ψ

where M = 〈S,R, V 〉 and M |ϕ = 〈S′, R′, V ′〉, with S′ = {s ∈ S | M, s |= ϕ},
R′ = R ∩ (S′ × S′) and V ′ = V |P×S′ .

The model of Fig. 1(right), upon the public announcement of ¬p, would be
transformed according to Fig. 6.

V (p) = ∅ V (p) = {0}

V (p) = {1} V (p) = {0, 1}

V (p) = {0}

V (p) = {0, 1}

=⇒[¬p]

Fig. 6. The announcement of ¬p.

Notice that, for propositional atoms, the announcement of p does not delete
worlds where ¬p holds, but only worlds where p does not hold, that is, worlds
where ˜p holds. To delete worlds where ¬p holds we would have to announce

˜¬p, so that only worlds s with M, s |= ˜¬p (which is equivalent to M, s �|=
¬p) would survive. Resorting again to our database analogy, it is possible to
understand a public announcement of p (or ¬p) as showing to all agents the
result of the query “p?” (or “¬p?”) to the database. More generally, the effect
of the public announcement of p (or ¬p) is to make everybody aware that p was
said true (or false) by the information source, which differs from the intuition
about public announcements in standard logics.

As is the case for Public Announcement Logic [7,15], public announcements
in FVEL do not increase expressivity. Any formula with public announcements

A Dynamic Informational-Epistemic Logic 75

can be rewritten as a standard FVEL formula, through the use of the following
reduction axioms.

[ϕ]p ⇔ ˜ϕ ∨ p (AnAt)

[ϕ]¬p ⇔ ˜ϕ ∨ ¬p (An¬)

[ϕ](ψ ∧ χ) ⇔ [ϕ]ψ ∧ [ϕ]χ (An∧)
[ϕ]¬(ψ ∧ χ) ⇔ [ϕ]¬ψ ∨ [ϕ]¬χ (An¬∧)

[ϕ]�mψ ⇔ ˜ϕ ∨ �m[ϕ]ψ (An�)

[ϕ]¬�mψ ⇔ ˜ϕ ∨ ¬�m[ϕ]ψ (An¬�)

[ϕ]˜ψ ⇔ ˜ϕ ∨ ˜[ϕ]ψ (An˜)

[ϕ]¬˜ψ ⇔ ˜ϕ ∨ ˜˜[ϕ]ψ (An¬˜)

Proposition 9. All above formulas for public announcements in FVEL are
valid.

Before proving that any formula with public announcements can be rewritten
as an equivalent formula of FVEL where the public announcement operator does
not occur, we need to prove the following lemma:

Lemma 1. For all formulas ϕ,ψ, χ of FVEL with public announcements, ϕ ≡ ψ
implies χ ≡ χ[ψ/ϕ]. (χ[ψ/ϕ] is the formula that results from χ after uniform
substitution of ϕ by ψ.)

Now we can prove the following:

Proposition 10. For any formula ϕ of FVEL with public announcements, a
formula ϕ′ of FVEL without public announcements can be found such that ϕ ≡
ϕ′.

To account for public announcements, the tableau system can be extended
with the following rule schema (which actually represents nine rules):

(ϕ,±i) =⇒ (ϕ[χ/ψ],±i) (RPA)

where ψ ⇔ χ or χ ⇔ ψ is one of the public announcement axioms above5.
Finally we can prove completeness of the extended tableau system with respect
to FVEL with public announcements.

Theorem 3. For any finite set of formulas Σ ∪ {ϕ} of FVEL with public
announcements, Σ � ϕ iff Σ |= ϕ.

5 See [1] for a different approach to tableaux for logics with public announcements,
and [9] for tableaux for logics with public announcements that use translations as
rules in a similar fashion.

76 Y. David Santos

6 A Simple Example

Now we describe the situation depicted in Fig. 7. John (j) knows that there are
studies regarding health benefits of coffee consumption, for he often sees head-
lines about the subject. However, he never cared enough to read those articles,
so he is sure that there is evidence for or against (or even both for and against)
coffee being beneficial for health (p), but he does not know exactly what is the
status of the evidence about p, he only knows that there is some information.
Looking at Fig. 7 it is easy to see that �j((p ∧ ˜¬p) ∨ (¬p ∧ ˜p) ∨ (p ∧ ¬p)),
which is equivalent to �j(p ∨ ¬p), holds in the actual world (s3).

p: t

p: f

p: bs3s2

s1

j

j
j

Fig. 7. Some evidence for p

p: t s2

Fig. 8. No false evidence.

Kate (k), on the other hand, is a researcher on the effects of coffee on health,
and for this reason she knows exactly what evidence is available (her relation Rk

has only reflexive arrows, which are not represented). We can see that M, s3 |=
�k(p ∧ ¬p), that is, Kate actually knows that there is evidence both for and
against the benefits of coffee. Moreover, John knows Kate and her job, so he also
knows that she knows about p, whatever its status is (using abbreviations defined
in Sect. 2.3: �j(�kpf ∨ �kpt ∨ �kpb)). Likewise, Kate knows that John simply
knows that there is some information about p (�k(�j(p ∨ ¬p) ∧ ˜�j(p ∧ ¬p))).

Now suppose the actual world is s2, and so p is true, i.e., there is only positive
evidence for p (and Kate knows that). Suppose also that Kate announces that a
paper was published in a very respectable journal reassessing all the main studies
that concluded that coffee was not beneficial for health, and concluded that those
studies were not reliable due to sloppy methodology. Now this is equivalent to
an announcement of �k˜¬p (Kate knows that there is no evidence for the falsity
of p). This announcement results in the removal of the worlds where evidence
for the falsity of p is present, namely s1 and s3. The resulting model is the one
in Fig. 8, where John knows the status of p too. The formula ˜�j(p ∧ ˜¬p) ∧
[�k˜¬p]�j(p ∧ ˜¬p), which is satisfied in s2 before the announcement, reflects
the fact that John does not know the status of p, but after Kate’s announcement
he learns that p is true.

This example shows the dynamics of the agents’ knowledge about available
information/evidence. It might be puzzling, however, to notice that these models
actually do not say much about factual knowledge. Nevertheless, it is based
on information and evidence that one can form knowledge and beliefs. This
observation calls for an extension of FVEL in which knowledge about evidence
could be converted into factual knowledge or belief.

A Dynamic Informational-Epistemic Logic 77

7 Related Work

Many authors have studied the subject of many-valued modal logics [6,11–14,17–
19,21]. Of these, the most closely related to ours are Odintsov and Wansing’s
and Rivieccio’s papers. Both papers explore some kind of four-valued epistemic
logics. We will now discuss the similarities and differences between these and
our approach.

In their paper [13], Odintsov and Wansing describe a logic called BK (a
Belnapian variant of K), which is closely related to FVEL. They also provide a
tableaux system similar to ours, but their paper does not cover public announce-
ments, nor the correspondence results presented here. There are other small dif-
ferences between the two formalisms. The logic BK uses two entailment symbols
– support for truth (|=+) and support for falsity (|=−) – whereas we opted for
an additional negation. While this small change still results in equi-expressive
logics, we can express statements like M, s |= ¬p ∧ ¬q directly, when BK always
place the “negation” in front of the formula: M, s |=− p ∨ q. The latter has a
more natural equivalent in our logic: ¬(p∨ q). Moreover, this choice allows us to
announce a formula like ¬p, which in BK is only expressible w.r.t. a state of a
model (M, s |=− p).

Rivieccio [17], with a very different formalism (focused on algebraic seman-
tics), describes a logic that seems to be an extension of the one presented
here, with a more expressive language and a four-valued accessibility relation.
Rivieccio’s logic has a symbol ⊥ which is always evaluated to none, while in our
language this is not expressible (no formula is evaluated to none if V (p, s) �= ∅
for all p and s). His work features a Hilbert-style calculus instead of a tableau. He
provides an axiomatisation which includes reduction axioms for public announce-
ments, but it is not obvious how both axiomatisations for public announcements
compare, since the languages used are slightly different.

Another work closely related to ours is being done by Majer and Sedlár [10].
They also study the logic BK. Their work, however, does not include public
announcements nor a tableau system (as far as we know).

Finally, a unique contribution of our paper is the intuitive interpretation
given to FVEL. These insights show a way in which many-valued modal logics
could be used in practical applications, and open some new possibilities for
research that will be discussed in the next section.

8 Conclusions and Future Work

In this paper, we presented a multi-agent four-valued logic with two distinct lay-
ers: one informational and the other epistemic. The idea of having two separate
layers may be useful in the modelling of realistic scenarios where agents have
access to an inconsistent or incomplete base of information. Some examples are
the database scenario described in the introduction, or a robot who collects data
through several sensors, which may result in inconsistent data due to sensors’
inaccuracy.

78 Y. David Santos

First degree entailment was used as the propositional basis for the logic, with
its four-valued atoms playing the role of the “informational layer”, in which
a proposition could be both true and false or have no value at all. A modal
layer was built on top of that, introducing an epistemic aspect to the logic.
The accessibility relation, then, defines the knowledge of the agents about the
possibly contradictory or incomplete informational layer.

Moreover, classical negation was added to the language, increasing its expres-
sivity. That addition allowed us to define an equivalence operator and reduction
axioms for public announcements. A tableau calculus and some correspondence
results were provided. While on the technical side there are similarities among
our approach and others, new results have been presented and, not least, some
intuition for these logics have been given.

For further work, a number of possibilities were opened. There are other possi-
ble intuitive readings for FVEL, besides the two-layered interpretation presented
here (Majer and Sedlár’s work offers one alternative). Furthermore, besides the
public announcements studied here, a range of dynamic operators can be con-
sidered in combination with this logic. Some of these operators will act on the
informational layer, and some on the epistemic layer – and perhaps some of
them could act on both layers. A useful example of dynamic operation would be
a method for “filtering” those inconsistent sets of beliefs in order to produce a
consistent epistemic state (along the lines of belief revision, in particular [20]).
It might be valuable as well to understand which actions the agents are justified
to carry out on the basis of such inconsistent belief states. Other update actions
(along the lines of [3]) could also be studied, for example, the actions mentioned
in the introduction, which change the informational layer instead of only chang-
ing the knowledge about it. These actions, instead of removing states, could just
add or remove truth (or falsity) from the value of a proposition in all worlds.

Acknowledgements. I am very grateful to Barteld Kooi, Rineke Verbrugge and
Allard Tamminga for comments that greatly improved this work. I would also like
to thank my colleagues from the Philosophy Department who participated in a discus-
sion of a preliminary version of this paper, and the anonymous referees for the useful
suggestions.

Appendix

Proof (Lemma 1). First, let us label each atom of χ with a unique integer. In
such a way, we can distinguish occurrences ϕ1, ϕ2, ..., ϕn of any subformula ϕ that
appears in χ n times, according to the labels in their atoms. The notation χ#

will denote a labelled version of χ (that is, an occurrence of χ) in whose number
we are not particularly interested. We will first prove that for any occurrence ϕk

of any subformula ϕ of χ, if ϕ ≡ ψ then χ ≡ χ[ψ/ϕk], where χ[ψ/ϕk] denotes
the formula χ after replacing the occurrence ϕk by ψ. Before starting the proof,

A Dynamic Informational-Epistemic Logic 79

we need to define a function subl from labelled formulas to a set of labelled
formulas. Intuitively, subl(χ#) denotes the labelled subformulas of χ at level l,
level 0 being the root, that is, χ# itself.

sub0(χ#) = {χ#}

sub1(χ#) =

⎧
⎪⎨

⎪⎩

∅, if χ# = p# for some atom p.
{ϕ#}, if χ# ∈ {˜ϕ#,¬ϕ#,�ϕ#}
{ϕ#, ψ#}, if χ# ∈ {ϕ# ∧ ψ#, [ϕ#]ψ#}

subi(χ#) =
⋃

ζ#∈subi−1(χ#)

sub1(ζ#), for i > 1

The proof will be by induction on the level l of ϕk. The base case is when
l = 0, that is, ϕk ∈ sub0(χ#), or simply ϕk = χ#. Trivially, if ϕ ≡ ψ then
χ ≡ χ[ψ/ϕk], since χ[ψ/ϕk] = ψ and χ ≡ ψ follows from χ = ϕ. Induction
Hypothesis (I.H.): for all l < n, if ϕk ∈ subl(χ#) and ϕ ≡ ψ, then χ ≡ χ[ψ/ϕk].
Given that for all occurrences δ# of subformulas of χ at level n − 1 it holds
that δ ≡ ψ implies χ ≡ χ[ψ/δ#], in the induction step we need to show that
for all occurrences ϕk of subformulas of χ at level n it holds that ϕ ≡ ψ implies
χ ≡ χ[ψ/ϕk]. We will divide the step in cases according to the formula δ# ∈
subn−1(χ#) such that ϕk ∈ sub1(δ#), and to the position of ϕk in δ#.

δ# = ϕk ∧ ξ: suppose ϕ ≡ ψ. Then (for all models M and states s) M, s |=
ϕk ∧ ξ iff (M, s |= ψ and M, s |= ξ) iff M, s |= ψ ∧ ξ. Also, M, s |= ¬(ϕk ∧ ξ) iff
(M, s |= ¬ϕk or M, s |= ¬ξ) iff (M, s |= ¬ψ or M, s |= ¬ξ) iff M, s |= ¬(ψ ∧ ξ).
Therefore, ϕ ∧ ξ ≡ ψ ∧ ξ, and by the I.H. χ ≡ χ[ψ ∧ χ/ϕk ∧ ξ] = χ[ψ/ϕk]. The
case for δ# = ξ ∧ ϕk is completely analogous.

δ# = ¬ϕk: Suppose ϕ ≡ ψ. Then (M, s |= ¬ϕk iff M, s |= ¬ψ) and (M, s |=
¬¬ϕk iff M, s |= ¬¬ψ), from which it follows that ¬ϕ ≡ ¬ψ. By the I.H. we have
that χ ≡ χ[¬ψ/¬ϕk] = χ[ψ/ϕk].

δ# = ˜ϕk: Suppose ϕ ≡ ψ. Then (M, s |= ˜ϕk iff M, s |= ˜ψ) and (M, s |=
¬˜ϕk iff M, s |= ¬˜ψ), from which it follows that ˜ϕ ≡ ˜ψ. By the I.H. we
have that χ ≡ χ[˜ψ/˜ϕk] = χ[ψ/ϕk].

δ# = �iϕk. Suppose ϕ ≡ ψ. Then (M, s |= �iϕk iff ∀t such that sRit
M, t |= ϕk iff ∀t such that sRitM, t |= ψ iff M, s |= �iψ) and (M, s |= ¬�iϕk

iff ∃t such that sRit and M, t |= ¬ϕk iff ∃t such that sRit and M, t |= ¬ψ iff
M, s |= ¬�iψ). From that it follows that �iϕk ≡ �iψ, and by the I.H. we get
χ ≡ χ[�iψ/�iϕk] = χ[ψ/ϕk].

δ# = [ϕk]ξ. Suppose ϕ ≡ ψ. Then M, s |= [ϕk]ξ iff (M, s �|= ϕk or M |ϕk
, s |=

ξ). But since ϕ ≡ ψ, M |ϕk
= M |ψ. Then M, s |= [ϕk]ξ iff (M, s �|= ψ or M |ψ, s |=

ξ) iff M, s |= [ψ]ξ. M, s |= ¬[ϕk]ξ iff (M, s |= ϕk and M |ϕk
, s |= ¬ξ) iff (M, s |= ψ

and M |ψ |= ¬ξ) iff M, s |= ¬[ψ]ξ. So [ϕk]ξ ≡ [ψ]ξ, then by the I.H. χ ≡
χ[[ψ]ξ/[ϕk]ξ] = χ[ψ/ϕk]. The case for δ# = [ξ]ϕk is similar, but even easier.

Now the induction is finished and we have proven that for any occurrence
ϕk of a subformula ϕ of χ, if ϕ ≡ ψ then χ ≡ χ[ψ/ϕk]. From this it is easy to
see that for all ϕ,ψ, χ, if ϕ ≡ ψ then χ ≡ χ[ψ/ϕ]. Suppose a subformula ϕ of χ
has occurrences ϕ1, ϕ2, ..., ϕn (any formula of FVEL must be finite) and ϕ ≡ ψ.

80 Y. David Santos

From the previous proof, it follows that χ ≡ χ[ψ/ϕ1] ≡ χ[ψ/ϕ1][ψ/ϕ2] ≡ ... ≡
χ[ψ/ϕ1]...[ψ/ϕn] ≡ χ[ψ/ϕ].

Proof (Proposition 10). First we will assume the following claims:
(Claim 1). If [ϕ]ψ ≡ χ, then ζ([ϕ]ψ) ≡ ζ[χ/[ϕ]ψ].
(Claim 2). Given a formula [ϕ]ψ, where ψ contains no announcements, we

can always find a formula χ without announcements such that [ϕ]ψ ≡ χ.
Given any formula ϕ of FVEL with public announcements, we can choose a

subformula [ψ]χ of it such that χ contains no announcements and, if (Claim 2) is
true, find an equivalent ζ without announcements (ζ ≡ [ψ]χ). If (Claim 1) is true,
we can replace [ψ]χ by ζ in ϕ preserving the truth value, that is, ϕ ≡ ϕ[ζ/[ψ]χ].
Since any FVEL formula with public announcements is finite, we can repeat this
procedure until we reach an equivalent formula without public announcements.

Now, (Claim 1) is a corollary of Lemma 1. We now prove (Claim 2) by struc-
tural induction on ψ. Induction Hypothesis (I.H.): for all proper subformulas ψ′

of ψ, [ϕ]ψ′ has an equivalent formula without announcements. Base: if ψ has
form p, ¬p or ¬�ψ′, by axioms (AnAt), (An¬) and (An¬�), respectively, we
can find an equivalent formula without announcements, since ψ itself does not
contain announcements. Step: for each possible connective we have a reduction
axiom which reduces the original formula into another such that the formulas
under the announcement ϕ are simpler. By the I.H., these formulas have an
equivalent formula without announcements.

Proof (Theorem 3). The proof system being considered here is the tableau cal-
culus for FVEL augmented with the public announcements’ axioms and a sub-
stitution rule (if ϕ ≡ ψ and Σ � χ then Σ � χ[ψ/ϕ]). Soundness is already
proven (soundness for the tableau for FVEL is proven in Theorem 1, soundness
of public announcements’ axioms is proven in Proposition 9 and soundness of
the substitution rule follows from Lemma 1). For completeness, if ϕ is a formula
without announcements, then Σ |= ϕ implies Σ � ϕ due to completeness of the
FVEL proof system. If ϕ contains announcements, then, by Proposition 10, we
can apply a finite sequence of reduction axioms Ax1, Ax2, ..., Axn on ϕ to obtain
an equivalent formula t(ϕ) without announcements. Since the proof system for
FVEL is complete, t(ϕ) can be proven in it. Now, if we apply the substitution
rule n times with the reduction axioms Axn, Axn−1, ..., Ax1, we will obtain the
original formula ϕ.

References

1. Balbiani, P., van Ditmarsch, H., Herzig, A., de Lima, T.: Tableaux for public
announcement logic. J. Logic Comput. 20(1), 55 (2010)

2. Belnap, N.: A useful four-valued logic. In: Dunn, J.M., Epstein, G. (eds.) Modern
Uses of Multiple-Valued Logic. Episteme, vol. 2, pp. 5–37. Springer, Dordrecht
(1977). https://doi.org/10.1007/978-94-010-1161-7 2

3. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Inf.
Comput. 204(11), 1620–1662 (2006)

https://doi.org/10.1007/978-94-010-1161-7_2

A Dynamic Informational-Epistemic Logic 81

4. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic, vol.
337. Springer, Dordrecht (2007). https://doi.org/10.1007/978-1-4020-5839-4

5. Dunn, J.: Intuitive semantics for first-degree entailments and ‘coupled trees’. Phi-
los. Stud. 29(3), 149–168 (1976)

6. Fitting, M.: Many-valued modal logics. Fundamenta Informaticae 15(3–4), 235–
254 (1991)

7. Gerbrandy, J., Groeneveld, W.: Reasoning about information change. J. Logic
Lang. Inform. 6(2), 147–169 (1997)

8. Girard, P., Tanaka, K.: Paraconsistent dynamics. Synthese 193(1), 1–14 (2016)
9. Hansen, J.: Terminating tableaux for dynamic epistemic logics. Electron. Not. The-

oret. Comput. Sci. 262, 141–156 (2010)
10. Majer, O., Sedlár, I.: Paraconsistent epistemic logic. Talk given in the LogiCIC

Workshop 2016 in the University of Amsterdam (2016)
11. Morgan, C.: Local and global operators and many-valued modal logics. Notre Dame

J. Formal Logic 20(2), 401–411 (1979)
12. Morikawa, O.: Some modal logics based on a three-valued logic. Notre Dame J.

Formal Logic 30(1), 130–137 (1988)
13. Odintsov, S., Wansing, H.: Modal logics with Belnapian truth values. J. Appl.

Non-Class. Logics 20(3), 279–301 (2010)
14. Ostermann, P.: Many-valued modal propositional calculi. Math. Logic Q. 34(4),

343–354 (1988)
15. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
16. Priest, G.: An Introduction to Non-Classical Logic: From If to Is. Cambridge Uni-

versity Press, Cambridge (2008)
17. Rivieccio, U.: Algebraic semantics for bilattice public announcement logic. In:

Indrzejczak, A., Kaczmarek, J., Zawidzki, M. (eds.) Proceedings of the Trends
in Logic XIII, Lodz, Poland, 2–5 July 2014, pp. 199–215. Lodz University Press
(2014)

18. Schotch, P., Jensen, J., Larsen, P., MacLellan, E.: A note on three-valued modal
logic. Notre Dame J. Formal Logic 19(1), 63–68 (1978)

19. Segerberg, K.: Some modal logics based on a three-valued logic. Theoria 33(1),
53–71 (1967)

20. Tamminga, A.: Belief dynamics: (Epistemo) logical investigations. Ph.D. thesis,
ILLC (2001)

21. Thomason, S.: Possible worlds and many truth values. Stud. Logica 37(2), 195–204
(1978)

https://doi.org/10.1007/978-1-4020-5839-4

Dynamic Epistemic Logics of Introspection

Raul Fervari1 and Fernando R. Velázquez-Quesada2(B)

1 FaMAF, Universidad Nacional de Córdoba, and CONICET, Córdoba, Argentina
rfervari@conicet.gov.ar

2 ILLC, Universiteit van Amsterdam, Amsterdam, The Netherlands
FRVelazquezQuesada@uva.nl

Abstract. This work studies positive and negative introspection not
as properties, but rather as actions that change the agent’s knowledge.
The actions are introduced as model update operations, with matching
modalities expressing their effects. Sound and complete axiom systems
are provided, and some properties are explored.

Keywords: Positive introspection · Negative introspection
Epistemic logic · Dynamic epistemic logic

1 Introduction

One of the reasons of the widespread use of epistemic logic (EL; [1]) is that
it deals not only with an agent’s knowledge about propositional facts, but also
with her knowledge about her own (and eventually other agents’) knowledge
(high-order knowledge). This has been the starting point for the study of more
complex multi-agent epistemic notions (e.g., common knowledge) that are crucial
in multi-agent interaction, thus allowing EL to extend its range of applications,
including not only philosophy (epistemology [2]), but also computer science (arti-
ficial intelligence [3]) and economics (game theory [4]).

In the study of agents with high-order knowledge, two of the most impor-
tant concepts have been positive introspection (if the agent knows something,
she knows that she knows it) and negative introspection (if the agent does not
know something, she knows that she does not know it). One of the main advan-
tages of the standard EL semantic structure, relational models, is that these
two properties correspond, at the level of frames, to simple relational properties:
to work with full positively introspection, it is enough to consider a transitive
indistinguishability relation, and to deal with full negative introspection, it is
enough to ask for such relation to be Euclidean. When these properties are not
enforced, the agent might lack introspection, thus making her more ‘real’. But,
as in real life, not being introspective should not imply one will never be.

Recent works have studied properties of an EL agent’s knowledge from a
dynamic point of view, thinking about them in terms of the actions the agent
can perform to achieve them. For example, closure under logical consequence

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 82–97, 2018.
https://doi.org/10.1007/978-3-319-73579-5_6

Dynamic Epistemic Logics of Introspection 83

can be seen not as a ‘static’ property, but rather as the eventual result of aware-
ness raising and ‘syntactic’ inference steps within awareness relational models
[5,6], and also as the result of dynamics of evidence or deductive inference within
neighbourhood models [7–9]. Following this idea, the present work studies intro-
spection properties by defining epistemic actions that allow a non-introspective
agent to reach them. These actions are represented in a dynamic epistemic logic
(DEL; [10,11]) style: as accessibility-changing model operations. There are sev-
eral examples of such operations in the literature, as the actions for belief revision
and/or preference change studied in [12–15] and the logics for reasoning about
dynamic policies investigated in [16,17]. There are also the more ‘abstract’ edge-
deleting sabotage operation of [18], the edge-adding and swapping proposals in
[19–22] and the general arrow update approach of [23].

The article is organised as follows. Section 2 introduces basic definitions about
epistemic logic and propositional dynamic logic. Section 3 defines model oper-
ations to achieve positive introspection for general knowledge and also with
respect to a formula. Section 4 focuses on similar operations for negative intro-
spection. In all cases we study some properties of the operations, providing
also sound and complete axiomatizations for their respective modalities. Finally,
Sect. 5 draws conclusions.

2 Basic Definitions

This section recalls not only the basic definitions of basic epistemic logic, but
also extensions that will be useful when providing axiom systems for modalities
representing the introspection operations. Throughout this paper, let P be a
countable set of atomic propositions.

Definition 2.1 (Relational Frame, Relational Model, Relational
State). A relational frame is a tuple F = 〈W,R〉 with W a non-empty set
of possible worlds and R ⊆ (W × W) a binary relation, the agent’s indistin-
guishability relation (which is not required to satisfy any property). A relational
model is a tuple M = 〈F, V 〉 with F a relational frame and V : P → ℘(W) an
atomic valuation. A tuple (M,w) with M a relational model and w a world in it
(the evaluation point) is called a relational state.

Next we introduce the basic epistemic language L�.

Definition 2.2 (Language L�). Formulas ϕ,ψ of L� are given by

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | �ϕ,

with p ∈ P. Other Boolean connectives and constants as well as the modality �

are defined as usual (�ϕ := ¬�¬ϕ for the latter), and formulas of the form
�ϕ are read as “the agent knows ϕ”. For the semantic interpretation, given a
relational state (M,w) with M = 〈W,R, V 〉, formulas in L� are interpreted as
usual, with the cases of atomic propositions and the ‘diamond’ modality being

84 R. Fervari and F. R. Velázquez-Quesada

(M,w) � p iff w ∈ V (p)
(M,w) � �ϕ iff there is u ∈ W such that Rwu and (M,u) � ϕ.

A formula ϕ is true at w in M when (M,w) � ϕ. A formula ϕ is valid (notation:
� ϕ) when it is true in every world w of every model M .

Theorem 2.1 (Axiom System for L�). As it is well-known (e.g., [24,25]),
axiom schemes and rules on the first block of Table 1 form a sound and strongly
complete axiom system (L�) for formulas of L� w.r.t. relational models.

Table 1. Axiom systems for L� and some of its extensions.

The following sections study languages with modalities for actions of intro-
spection. To introduce their corresponding axiom systems, some extensions of
the basic epistemic language will be useful. First, a transitive closure modality.

Definition 2.3 (Language L�,�). The language L�,� adds � to L�. Given a
relational state (M,w) with M = 〈W,R, V 〉 and R+ the transitive closure of R,

(M,w) � �ϕ iff there is u ∈ W such that R+wu and (M,u) � ϕ.

The dual modality � is defined in the usual way (�ϕ := ¬�¬ϕ).

Theorem 2.2 (Axiom System for L�,�). The axioms and rules on the first
and second block of Table 1 form sound and weakly complete axiom system (L�,�)
for formulas of L�,� w.r.t. relational models [3].

Second, the propositional dynamic logic (PDL; [26]) framework with a con-
verse modality, with operations for building more complex relations (cf. [27]).

Dynamic Epistemic Logics of Introspection 85

Definition 2.4 (Language LPDL�,?). Formulas ϕ,ψ and program expressions
α, β in LPDL�,? are given, respectively, by

ϕ,ψ ::= p | ¬ϕ | ϕ ∨ ψ | 〈α〉 ϕ α, β ::= � | � | α ∪ β | α ; β | α∗ | ?ϕ,

with p ∈ P. The fragment of LPDL�,? without ? is called LPDL� . Given (M,w)
with M = 〈W,R, V 〉, the semantics of the new modality is defined as

(M,w) � 〈α〉 ϕ iff there is u ∈ W such that Rαwu and (M,u) � ϕ,

with the relation Rα defined inductively as

R�:=R, R�:= R, Rα∪β:=Rα ∪ Rβ, Rα;β:=Rα ◦ Rβ, Rα∗ :=(Rα)∗, R?ϕ:=IdM
ϕ ,

where R:= {(v, u) | Ruv}, IdM
ϕ := {(u, u) | (M,u) � ϕ)} and R∗ := R+ ∪ IdM

� .

Theorem 2.3 (Axiom System for LPDL�,?). The axioms and rules on the
third block of Table 1 form sound and weakly complete axiom system (LPDL�,?)
for formulas of LPDL�,? w.r.t. relational models [26,28,29]. LPDL� denotes the
axiom system for the fragment LPDL� , given by LPDL�,? minus axiom ?.

3 Positive Introspection

3.1 General Positive Introspection

When looking for a model operation for representing an action of positive intro-
spection, the first idea is simple: if transitivity makes the positive introspection
axiom � ϕ → �� ϕ valid, then make the accessibility relation transitive.

Definition 3.1 (General Positive Introspection Operation). Take a rela-
tional model M = 〈W,R, V 〉. The general positive introspection operation yields
the model M+ = 〈W,R+, V 〉.
Definition 3.2 (Language L�,+). The language L�,+ extends L� with 〈+〉 .
For its semantic interpretation, let (M,w) be a relational state. Then,

(M,w) � 〈+〉 ϕ iff (M+, w) � ϕ.

As the model operation is deterministic and its associated modality lacks a
precondition, the dual modality [+] ϕ := ¬ 〈+〉 ¬ϕ is equivalent to 〈+〉 (self-
duality).

Some Properties. The operation makes the accessibility relation transitive;
then, after applying it, the agent has full positive introspection about any ϕ.

Proposition 3.1. Let ϕ an L�,+-formula. Then � [+] (� ϕ → � � ϕ).

However, the operation does not take the agent from a state in which she
knows a given ϕ without knowing she knows it, �ϕ∧¬� � ϕ, to a state in which
she knows ϕ and is positively introspective about it, � ϕ ∧ �� ϕ.

86 R. Fervari and F. R. Velázquez-Quesada

Fact 3.1. The formula � ϕ → [+] (� ϕ ∧ � �ϕ) is not valid, not even for ϕ
propositional.

Proof. Take ϕ as p. In the relational state below on the left (reflexivity assumed),
(M,w1) � � p ∧ ¬� � p. Nevertheless, after the operation (relational state on
the right), she does not know p anymore: (M+, w1) � ¬� p, i.e., (M,w1) �
〈+〉 ¬� p. Thus, (M,w1) � � p ∧ 〈+〉 ¬� p.

M : p p

w1 w2 w3

p
M+ : p p

w1 w2 w3

Making the accessibility relation transitive might increase the worlds reach-
able in one step. Thus, although the operation makes the agent’s knowledge
positively introspective, it does not do it by increasing her knowledge; rather, it
discards the knowledge that was non-introspective.

Axiom System. When providing an axiom system for a modality representing
a model operation, a useful DEL strategy is to provide reduction axioms: valid
formulas and validity-preserving rules indicating how to translate a formula with
occurrences of this model-changing modality (a formula in the ‘dynamic’ lan-
guage) into a provably equivalent one without them (a formula in the ‘basic’ lan-
guage). Then, while soundness follows from the validity and validity-preserving
properties of the new axioms and rules, completeness follows from the complete-
ness of the axiom system for the basic language.

Note how this strategy requires a basic language expressive enough to
describe the changes the model operation induces. In this case, L� is not enough
to deal with the changes the general positive introspection operation brings
about: it cannot describe what holds in worlds that can be reached by an arbi-
trary (finite non-zero) number of R-steps (i.e., a single R+-step). Thus, in order
to provide reduction axioms for 〈+〉 , the basic language will be L�,�.

Table 2. Axioms and rule for the modality 〈+〉.

Theorem 3.2 (Axiom System for L�,�,+). The axioms and rules of Table 2,
together with L�,� (first and second blocks in Table 1), form a sound and weakly
complete axiom system for formulas of L�,�,+ w.r.t. relational models.

Dynamic Epistemic Logics of Introspection 87

3.2 Particular Positive Introspection

The operation of Definition 3.1 allows the agent to have positive introspection
at the cost of losing knowledge. As such, it does not follow the intuition of what
an actual positive introspection reasoning step should do. An operation closer to
this intuition would take the agent from knowing χ without knowing she knows
it, to knowing χ and knowing she knows it. But then the operation should be
radically different. If at (M,w) the agent knows a given χ without having full
positive introspection about it, then although every world R-reachable from w
in one step satisfies χ, there is at least one world R-reachable from w (in two or
more steps) where χ fails. In order for the agent to have full positive introspection
about χ, such ¬χ-worlds should not be R-reachable anymore. In other words,
the operation should not add edges, but rather remove them.

Definition 3.3 (U-disconnecting Operation). Let M = 〈W,R, V 〉 be a rela-
tional model; take U ⊆ W . The U -disconnecting operation yields the model
M+U = 〈W,R′, V 〉, with R′ := R \ (U × U) (for U := W \ U). Thus, this
operation removes edges from worlds on U to worlds not in U .

When the parameter U of this model operation is given by the truth-set of
a formula χ, then the operation can be understood as a particular positive χ-
introspection operation: it removes edges from worlds satisfying χ to worlds not
satisfying χ. The modality for this operation will be introduced in two stages,
the first one being the definition of an auxiliary modality.

Definition 3.4 (Language L�,+′χ). The language L�,+′χ extends L� with a
modality 〈+′χ〉 for each formula χ. For the semantic interpretation, let (M,w)
be a relational state; use �χ�M to denote the set of worlds in M in which χ
holds.

(M,w) � 〈+′χ〉 ϕ iff (M+�χ�M , w) � ϕ.

The operation is deterministic and its modality does not have a precondition, so
the modality [+′] , defined as [+′χ] ϕ := ¬ 〈+′χ〉 ¬ϕ, is equivalent to 〈+′〉 .

This auxiliary modality allows the language to describe the effects of the
positive χ-introspection operation. Still, it differs from what one might expect in
one crucial way: its semantic interpretation has no precondition, thus indicating
that the epistemic action it represents, an introspective reasoning step, can take
place in any situation (even in those in which the agent does not know χ). This
issue can be solved in a second stage by introducing another modality:

〈+χ〉ϕ := � χ ∧ 〈+′χ〉 ϕ.

The reader familiar with DEL might notice here a departure from the stan-
dard approach: why the auxiliary ‘preconditionless’ modality 〈+′χ〉 instead of
defining 〈+χ〉 directly with the appropriate precondition? The reason is that
the former simplifies the formulation of reduction axioms.

Some Properties. First, here it is a validity characterizing the knowledge of
the agent after the operation.

88 R. Fervari and F. R. Velázquez-Quesada

Proposition 3.2. Let χ and ϕ be formulas in L�,+′χ. The agent can perform
a particular positive introspection step for χ after which she will know ϕ iff she
knows both χ and that, after the ‘preconditionless’ operation, ϕ will be the case.
More precisely, � 〈+χ〉�ϕ ↔ � (χ ∧ [+′χ] ϕ).

Proof. Take any (M,w) with M = 〈W,R, V 〉. From left to right, (M,w) �
〈+χ〉� ϕ yields, by definition, (M,w) � � χ and (M,w) � 〈+′χ〉 �ϕ. From
the first, Rwu implies (M,u) � χ; from the latter, (M+χ, w) � � ϕ, i.e. R′wu
implies (M+χ, u) � ϕ. Take now any u ∈ W with Rwu: then (M,u) � χ
and hence, from the definition of R′ in M+χ, R′wu, so (M+χ, u) � ϕ and
then (M,u) � [+′χ] ϕ. Thus, Rwu implies (M,u) � χ ∧ [+′χ] ϕ; hence,
(M,w) � � (χ ∧ [+′χ] ϕ). From right to left, (M,w) � � (χ ∧ [+′χ] ϕ) implies,
first, (M,w) � �χ, and second, (M,w) � � [+′χ] ϕ, with the latter stating
that Rwu implies (M,u) � [+′χ] ϕ. Take now any u ∈ W with R′wu: since
R′ ⊆ R, then Rwu and hence (M,u) � [+′χ] ϕ, i.e., (M+χ, u) � ϕ. Thus,
(M+χ, w) � �ϕ and so (M,w) � 〈+′χ〉 �ϕ. But recall the first: (M,w) � � χ.
Hence, (M,w) � � χ ∧ 〈+′χ〉 � ϕ and thus, by definition, (M,w) � 〈+χ〉�ϕ.

In order to show how this operation behaves as expected, consider the
instance of the previous validity with ϕ replaced by � χ:

� 〈+χ〉� � χ ↔ � (χ ∧ [+′χ] �χ).

The formula states what is needed for the agent to have a one-level positive
introspection about χ (� � χ) after the operation. One might expect for the
second conjunct inside the scope of � in the right-side, [+′χ] � χ, to collapse
to �, so the necessary and sufficient condition for the agent to reach one-level
positive χ-introspection is for her to know χ. This is not the case.

Fact 3.3 The formula �χ → [+′χ] �χ is not valid, and so neither is [+′χ] � χ.

Proof. Take χ := p∧��¬p and the relational state below on the left (reflexivity
assumed); χ holds at w1 and w2 (so (M,w1) � � χ), but fails at w3. Thus,
the operation yields the relational state on the right, with χ false at w2; then,
(M+χ, w1) � ¬� χ and hence (M,w1) � � χ ∧ 〈+′χ〉 ¬� χ: the agent knows χ,
but she will not know it anymore after a positive χ-introspection action.

M : p p

w1 w2 w3

M+χ : p p

w1 w2 w3

Note how (M,w1) � ¬� � χ, so the introspection action is not redun-
dant. Even more, (M,w1) � � χ, so the state satisfies 〈+χ〉 ¬� χ and hence
¬ [+χ] �χ.

Fact 3.3 is just one more instance of Moorean phenomena, commonly known
as formulas which, after being truthfully announced, become false [30].1 Here it
appears as formulas that are known but, after a particular positive introspection
action, are not known anymore. This is because, though the operation does not

1 The paradigmatic example is p ∧ ¬ � p.

Dynamic Epistemic Logics of Introspection 89

change the atomic valuation, it changes the accessibility relation, thus affecting
the agent’s knowledge. Nevertheless, the operation behaves as expected when
the truth-value of the involved formula χ is preserved by the operation.

Proposition 3.3. If � χ → [+′χ] χ, then after the operation the agent will have
positive introspection about χ, � 〈+χ〉� � χ ↔ � χ.

Proof. The ‘→’ direction follows by replacing ϕ with �χ in the validity of
Proposition 3.2. For ‘←’, take any (M,w) with M = 〈W,R, V 〉, and suppose
(M,w) � �χ; then Rwu implies (M,u) � χ. Now take any u ∈ W with R′wu
and any v ∈ W with R′uv. Since R′ ⊆ R, then Rwu and hence (M,u) � χ.
But R′uv so the definition of R′ yields (M,v) � χ. Then, by the assump-
tion, (M,v) � [+′χ] χ, that is, (M+χ, v) � χ. Since v is an arbitrary R′-
successor of u, (M+χ, u) � � χ; since u is an arbitrary R′-successor of w,
(M+χ, w) � � � χ. Hence, (M,w) � 〈+′χ〉 � � χ and, as the precondition holds,
(M,w) � 〈+χ〉�� χ.

The right-to-left direction of this validity, �χ → 〈+χ〉� � χ, is a dynamic
version of the positive introspection axiom � χ → � � χ: the agent might lack
positive introspection for χ, but she can achieve it. Even more: under the
same requirement for χ, after the action the agent will have full positive χ-
introspection.

Proposition 3.4. If � χ → [+′χ] χ, then after the operation the agent will have
full positive introspection about χ, that is, � � χ → 〈+χ〉 �n � χ for any n ≥ 0,
with �0 ϕ := ϕ and �k+1 ϕ := �k � ϕ.

Proof. Take a relational state (M,w) with M = 〈W,R, V 〉, and suppose (M,w) �
�χ; then Rwu implies (M,u) � χ. The first step is to show, by induction on
n ≥ 0, how (R′)n+1wu implies (M,u) � χ. The base case is immediate: (R′)1wu
is R′wu, and since R′ ⊆ R, then Rwu and thus (M,u) � χ. For the inductive
case, suppose (R′)n+2wu. Then there is v ∈ W such that (R′)n+1wv and R′vu,
and hence (M,v) � χ (from the first and inductive hypothesis) and Rvu (from
the second and R′ ⊆ R). But R′vu so, from the definition of R′, it follows that
(M,u) � χ.

For (M,w) � 〈+χ〉�n �χ, take n ≥ 0 and any u ∈ W with (R′)n+1wu. Then
(M,u) � χ and hence, by the assumption, (M,u) � [+′χ] χ, i.e., (M+χ, u) � χ.
Thus, (R′)n+1wu implies (M+χ, u) � χ, that is, (M+χ, w) � �n � χ so (M,w) �
〈+′χ〉 �n �χ. But 〈+χ〉 ’s precondition holds; thus, (M,w) � 〈+χ〉 �n � χ.

Thus, if the operation does not affect χ’s truth-value, the action’s precon-
dition (to know χ) guarantees that the agent will have (knowledge and) full
positive introspection about χ. This operation is closer to what comes to mind
when one thinks about ‘real life’: the agent knows χ without noticing it, and
thus she only needs to make a further ‘introspective’ effort to realise it. The
operation does not yield positive introspection for all formulas, but it does the
work for the particular χ (modulo the extra assumption).

90 R. Fervari and F. R. Velázquez-Quesada

Particular Introspection vs Public Announcement. The reader famil-
iar with public announcement logic (PAL; [31]) will have noted the similarities
between the operation of Definition 3.3 and the public announcement operation:
in the new model, former χ-worlds can only reach former χ-worlds. Thus, when
the evaluation point is a χ-world, the resulting models are bisimilar. There is,
however, an important difference in the precondition of their associated modali-
ties: the one for a χ-announcement requires χ, but the one for a χ-introspection
requires � χ. This is why, while the public announcement modality has ‘straight-
forward’ reduction axioms (there is a match between the precondition and the
requirement for a world to be reachable after the operation), the introspection
modality requires an auxiliary ‘preconditionless’ version.

Despite the technical similarities, the two operations represent actions of a
very different nature: a public announcement is about external communication,
but introspection is about self-reflection. It is then remarkable how, in this set-
ting, their representations are so similar. It could be argued that the presented
introspection action is too drastic: it removes any ‘eventual’ (i.e., possibility of
having a possibility) uncertainty the agent might have about the given formula.
This is indeed the case, but it is the interpretation of edges in relational models
what gives no other choice in order to represent this specific epistemic action.
Axiom System. For an axiom system for the modality 〈+χ〉, the first step is
to provide reduction axioms for its ‘preconditionless’ counterpart.

Theorem 3.4 (Axiom System for L�,+′χ). The axioms and rules of Table 3,
together with the axiom system L� (see Table 1), form a sound and strongly
complete axiom system for formulas of L�,+′χ w.r.t. relational models.

Table 3. Axioms and rule for the modality +′χ.

The previous theorem provides a sound and strongly complete axiom system
for 〈+′χ〉 . As 〈+χ〉 is just an abbreviation, it requires no axioms; still, its
definition makes 〈+χ〉 ϕ ↔ (� χ ∧ 〈+′χ〉 ϕ) valid.

4 Negative Introspection

4.1 General Negative Introspection

Analogous to its positive introspection counterpart, the operation for achieving
full negative introspection is simply an Euclidean closure operation.

Dynamic Epistemic Logics of Introspection 91

Definition 4.1 (General Negative Introspection Operation). Take a
relational model M = 〈W,R, V 〉. The general negative introspection operation
yields the model M− = 〈W,RE , V 〉 in which RE is the Euclidean closure of R,
that is,

RE := R ∪ (R◦ (R ∪ R)∗ ◦ R).

Definition 4.2 (Language L�,−). The language L�,− extends L� with 〈−〉
([−] defined as usual). For its semantic interpretation, let (M,w) be a relational
state.

(M,w) � 〈−〉 ϕ iff (M−, w) � ϕ.

Clearly, RE can be equivalently defined in PDL plus the converse operator.
This suggests that LPDL� from Definition 2.4 will be useful to provide reduction
axioms for this operation. But first, here are some of its properties.

Some Properties. Since RE is indeed R’s Euclidean closure, after the opera-
tion the agent has negative introspection.

Lemma 4.1. For any R ⊆ (W ×W), the relation RE := R ∪ (R◦ (R ∪ R)∗ ◦R)
is R’s Euclidean closure, i.e., the smallest Euclidean relation containing R.2

Proposition 4.1. Let ϕ an L�,−-formula. Then, � [−] (¬� ϕ → �¬� ϕ).

Even more. Different from the positive introspection case, in the propositional
case the operation makes the agent’s knowledge negatively introspective in the
sense of taking her from ¬� ϕ ∧ ¬� ¬� ϕ to ¬� ϕ ∧ �¬� ϕ.

Proposition 4.2. If ϕ is propositional, then � ¬� ϕ → [−] (¬� ϕ ∧ � ¬� ϕ).

Proof. Take a relational state (M,w) with M = 〈W,R, V 〉, and suppose (M,w) �
¬� ϕ; then there is u ∈ W such that Rwu and (M,u) � ¬ϕ, so REwu (defini-
tion) and (M−, u) � ¬ϕ (ϕ is propositional). Thus, first, (M−, w) � �¬ϕ,
i.e., (M−, w) � ¬� ϕ. Second, for every u′ ∈ W , REwu′ implies REu′u
(RE is Euclidean), and hence (M−, u′) � �¬ϕ so (M−, w) � �� ¬ϕ, i.e.,
(M−, w) � � ¬� ϕ. Thus, (M,w) � [−] (¬� ϕ ∧ �¬� ϕ).

This validity, a dynamic version of the negative introspection axiom ¬� ϕ →
�¬� ϕ, shows how the operation behaves properly in the propositional case.
Still, as expected, it also has Moorean behaviour for arbitrary formulas.

Fact 4.1 The formula ¬� ϕ → [−] �¬� ϕ is not valid.

Proof. Consider ϕ := ¬� p and the relational state (M,w1) below on the left
(reflexivity assumed). Note how (M,w1) � � � p, i.e., (M,w1) � ¬� (¬� p).
The operation produces the relational state on the right, where (M−, w1) �
���¬p, i.e., (M−, w1) � ¬� ¬� (¬� p) so (M,w1) � 〈−〉 ¬� ¬� (¬� p).

2 Proof: http://homepages.cwi.nl/∼jve/courses/lai0506/Solutions2.pdf.

http://homepages.cwi.nl/~jve/courses/lai0506/Solutions2.pdf

92 R. Fervari and F. R. Velázquez-Quesada

M : p

w1w2 w3

M− : p

w1w2 w3

Axiom System. L� is not expressive enough to describe the effects of this
operation, but the clearly more expressive LPDL� is. The Boolean cases are as
those in Tables 2 and 3; the modal case is different: in 〈α〉 ϕ, the expression α
is an arbitrary program expression, and thus an appropriate translation in each
case must be presented. The program transformer defined below, a simplification
of that of [32] for providing reduction axioms for PDL-expressions after action-
model operations, captures this: it takes a program α describing a path in the
new model M−, returning its ‘matching’ path T(α) in M (Proposition 4.3).

Definition 4.3 (Program Transformer). A program transformer T is a
function from program expressions to program expressions defined inductively
as

T(�) := � ∪ (� ; (� ∪ �)∗ ; �), T(α ∪ β) := T(α) ∪ T(β), T(α∗) := (T (α))∗.

T(�) := � ∪ (� ; (� ∪ �)∗ ; �), T(α ; β) := T(α) ; T(β),

Proposition 4.3. Let M = 〈W,R, V 〉 be any relational model, and recall that
M− = 〈W,RE , V 〉. Then, for every program expression α, RE

α = RT(α).

Proof. The proof is by structural induction on α. For RE
� (RE

� is similar),

• RE
� = RE = R ∪ (R◦ (R ∪ R)∗ ◦ R) = R� ∪ (R� ◦ (R� ∪ R�)∗ ◦ R�)

= R� ∪ (R� ◦ (R�∪�)∗ ◦ R�) = R� ∪ (R� ◦ R(�∪�)∗ ◦ R�)

= R� ∪ R�;(�∪�)∗;� = R�∪(�;(�∪�)∗;�) = RT(�)

For the inductive cases (inductive hypothesis: RE
α = RT(α), RE

β = RT(β)),

• RE
α∪β = RE

α ∪ RE
β = RT(α) ∪ RT(β) = RT(α)∪T(β) = RT(α∪β).

• RE
α;β = RE

α ◦ RE
β = RT(α) ◦ RT(β) = RT(α);T(β) = RT(α;β).

• RE
α∗ = (RE

α)∗ = (RT(α))
∗ = R(T(α))∗ = RT(α∗).

Theorem 4.2 (Axiom System for LPDL�,−). The axioms and rules of
Table 4, together with the axiom system LPDL� (see Table 1), form a sound and
weakly complete axiom system for formulas of LPDL�,− w.r.t. relational models.

Table 4. Axioms and rule for the modality 〈−〉.

−p � 〈−〉 p ↔ p −〈α〉 � 〈−〉 〈α〉 ϕ ↔ 〈T(α)〉 〈−〉 ϕ

−¬ � 〈−〉 ¬ϕ ↔ ¬ 〈−〉 ϕ Nec− If � ϕ, then � [−] ϕ

−∨ � 〈−〉 (ϕ ∨ ψ) ↔ (〈−〉 ϕ ∨ 〈−〉 ψ) SE As in Table 2

Dynamic Epistemic Logics of Introspection 93

4.2 Particular Negative Introspection

Different from the positive introspection counterpart, the operation of
Definition 4.1 already behaves as expected: it preserves the agent’s (propositional)
lack of knowledge while giving her negative introspection (Proposition 4.2). Still,
for uniformity, this section explores a negative introspection action over a given χ.

A model operation for achieving full negative introspection about χ should
then make sure that all worlds R-reachable from the evaluation point (in zero or
more steps, so the original lack of knowledge is preserved and full introspection
is reached) can see a ¬χ-world. Assuming that initially the agent does not know
χ, this property can be achieved by using a particular instance of the Euclidean
closure operation of Definition 4.1 in which the new edges point only to ¬χ-
worlds.

Definition 4.4 (U-connecting Operation). Let M = 〈W,R, V 〉 be a rela-
tional model; let U ⊆ W . The U -connecting operation gives the model
M−U = 〈W,R′, V 〉, with its indistinguishability relation R′ given (with IdM

U :=
{(u, u) | u ∈ U}) by

R′ := R ∪ (R◦ (R ∪ R)∗ ◦ R ◦ IdM
U).

A modality for a particular full negative introspection can be defined by
instantiating U with the set of worlds satisfying ¬χ in the original model. Here
is a ‘preconditionless’ version.

Definition 4.5 (Language L�,−′χ). The language L�,−′χ extends L� with a
modality 〈−′χ〉 for each formula χ. For the semantic interpretation,

(M,w) � 〈−′χ〉 ϕ iff (M−�¬χ�M , w) � ϕ.

A modality with an appropriate precondition is defined in the obvious way:

〈−χ〉ϕ := ¬� χ ∧ 〈−′χ〉 ϕ.

Thus, the agent can perform an act of particular negative χ-introspection after
which ϕ is the case, 〈−χ〉ϕ, iff she does not know χ, ¬� χ, and after the par-
ticular negative χ-introspection operation, ϕ is the case, 〈−′χ〉 ϕ.

Some Properties. As expected, the analogous of Proposition 3.4 holds.

Proposition 4.4. If � χ → [−′χ] χ, then after the operation the agent will have
full negative introspection about χ, � ¬� χ → 〈−χ〉�n ¬� χ for any n ≥ 0.

Proof. Take a relational state (M,w) with M = 〈W,R, V 〉, and suppose (M,w) �
¬� χ; then there is v ∈ W such that Rwv and (M,v) � ¬χ, with the latter imply-
ing IdM

¬χ vv (by definition) and (M−χ, v) � ¬χ (by the assumption). The first
step is to show (by induction on n ≥ 0) how, in M−χ, any world that can be
reached from w in zero or more steps can also reach v, that is, how (R′)nwu
implies R′uv. The base case (n = 0, i.e., u = w) is immediate, as the suppo-
sition states Rwv, and thus R′wv. For the inductive case, suppose (R′)n+2wu.

94 R. Fervari and F. R. Velázquez-Quesada

Then there is u′ ∈ W such that (R′)n+1wu′ and R′u′u, and hence (inductive
hypothesis) R′u′v and R′u′u. It is not hard to see that, in each of the four cases
the definition of R′ yields, R′uv.

Now, in order to prove (M,w) � 〈−χ〉 �n ¬� χ, take any n ≥ 0 and any
u ∈ W such that (R′)nwu. Then R′uv and, from (M−χ, v) � ¬χ, it follows that
(M−χ, u) � �¬χ, that is, (M−χ, w) � �n ¬� χ so (M,w) � 〈−′χ〉 �n ¬� χ.
But 〈−χ〉 ’s precondition holds; thus, (M,w) � 〈−χ〉�n ¬� χ, as required.

Note how both negative introspection operations add edges. This differs from
the positive introspection case: the general operation adds edges, but the par-
ticular one needs to remove them.

Axiom System. The basic language will be now LPDL�,? (Definition 2.4), as
the ‘test’ operator ? is required. Thus, LPDL�,?,−′χ extends LPDL�,? with the
‘dynamic’ negative χ-introspection modality; for reduction axioms, the program
transformer of Definition 4.3 is redefined in the following way.

Definition 4.6 (Program Transformer). A χ-program transformer Tχ is a
function from program expressions to program expressions defined as follows

Tχ(�) := � ∪ (� ; (� ∪ �)∗ ; � ; ?¬χ), Tχ(?ϕ) := ? 〈−′χ〉 ϕ.
Tχ(�) := � ∪ (?¬χ ; � ; (� ∪ �)∗ ; �) ,

The remaining cases (for ∪, ; and ∗) are as in Definition 4.3.

Proposition 4.5. Let M = 〈W,R, V 〉 be any relational model, and recall that
M−χ = 〈W,R′, V 〉. Then, for every program expression α, R′

α = RTχ(α).

Proof. As in Proposition 4.3, the proof is by structural induction on α. The com-
mon cases are similar; for the ‘test’,

• R′
?ϕ = {(w, w) | (M−χ, w) � ϕ}= {(w, w) | (M, w) � 〈−′χ〉 ϕ}=R? 〈−′χ〉 ϕ =RTχ(?ϕ).

Theorem 4.3 (Axiom System for LPDL�,−). The axioms and rules of
Table 5, together with the axiom system LPDL�,? (see Table 1) form a sound
and weakly complete axiom system for formulas of LPDL�,?,−′χ w.r.t. relational
models.

Table 5. Axioms and rule for the modality 〈−′χ〉.

−′χp � 〈−′χ〉 p ↔ p −′χ〈α〉 � 〈−′χ〉 〈α〉 ϕ ↔ 〈Tχ(α)〉 〈−′χ〉 ϕ

−′χ¬ � 〈−′χ〉 ¬ϕ ↔ ¬ 〈−′χ〉 ϕ Nec−′χ If � ϕ, then � [−′χ]ϕ

−′χ∨ � 〈−′χ〉 (ϕ ∨ ψ) ↔ (〈−′χ〉 ϕ ∨ 〈−′χ〉 ψ) SE” Analogous to SE’ in Table 3

With the language extended and the axiom system introduced, it is possible
to provide further validities describing the behaviour of the operation. First, here
is how the operation affects the agent’s knowledge (now described by [�]).

Dynamic Epistemic Logics of Introspection 95

Proposition 4.6. Suppose χ and ϕ are both formulas in LPDL�,?,−′χ ; then, �
〈−χ〉 [�] ϕ ↔ (¬ [�] χ ∧ [Tχ(�)] [−′χ]ϕ).

From this and the axiom system, one can obtain a validity characterising the
requirements for the agent to have negative introspection about a given χ after
the operation: � 〈−χ〉 [�] ¬ [�] χ ↔ (¬ [�] χ ∧ [Tχ(�)] [−′χ] ¬ [�] χ).

5 Conclusion and Further Work

This paper studies positive and negative introspection as epistemic actions that
modify the agent’s knowledge. In both cases two possibilities are considered: a
general operation, and a particular one working relative to a given formula. In
all cases, the basic epistemic language is extended with modalities representing
the effects of the model operations, presenting their sound and complete axiom
systems, and exploring some properties of the new languages.

In the case of positive introspection, the general operation follows a straight-
forward idea: make the accessibility relation transitive. Yet, this approach boils
down to assume that introspection fails not because of what the agent knows
about her knowledge, but rather because of what she knows; thus, as a result,
non-introspective knowledge is lost, and only the introspective one is preserved.
The particular operation has the opposite perspective: to get positive introspec-
tion about a given χ, it eliminates edges from χ-worlds to ¬χ-worlds, thus forcing
positive introspection on χ while keeping the rest of her knowledge ‘as before’.
For the negative introspection case, the general operation makes the accessibility
relation Euclidean, and thus reaches negative introspection by ensuring the agent
knows what she does not know. The particular operation follows the same idea
while adding only edges pointing to ¬χ-worlds. Both cases about edge-addition;
thus, they have a similar behaviour.

For future work, one direction is to explore operations that raise the agent’s
introspection in just one level (e.g., from � p∧¬�� p to � p∧�� p∧¬� � � p).
A more interesting project is to investigate similar operations in a multi-agent
setting (e.g., public, private versions of these operations), focusing also on oper-
ations for reaching common knowledge.

Acknowledgements. This work was partially supported by grant ANPCyT-PICT-
2013-2011, STIC-AmSud “Foundations of Graph Structured Data (FoG)”, SeCyT-
UNC, the Laboratoire International Associé “INFINIS”, and the European Union’s
Horizon 2020 research and innovation programme under the Marie Skodowska-Curie
grant agreement No. 690974 for the project MIREL: MIning and REasoning with Legal
texts.

References

1. Hintikka, J.: Knowledge and Belief. Cornell University Press, Ithaca (1962)
2. Hendricks, V.F.: 8 bridges between formal and mainstream epistemology. Philos.

Stud. 128(1), 1–5 (2006)

96 R. Fervari and F. R. Velázquez-Quesada

3. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

4. de Bruin, B.: Explaining Games: The Epistemic Programme in Game Theory.
Synthese Library, vol. 346. Springer, Dordrecht (2010). https://doi.org/10.1007/
978-1-4020-9906-9

5. van Ditmarsch, H., French, T.: Semantics for knowledge and change of awareness.
J. Logic Lang. Inf. 23(2), 169–195 (2014)

6. Grossi, D., Velázquez-Quesada, F.R.: Syntactic awareness in logical dynamics. Syn-
these 192(12), 4071–4105 (2015)

7. van Benthem, J., Pacuit, E.: Dynamic logics of evidence-based beliefs. Stud. Logica
99(1), 61–92 (2011)

8. Velázquez-Quesada, F.R.: Explicit and implicit knowledge in neighbourhood mod-
els. In: Grossi, D., Roy, O., Huang, H. (eds.) LORI 2013. LNCS, vol. 8196, pp.
239–252. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40948-
6 19

9. Balbiani, P., Fernández-Duque, D., Lorini, E.: A logical theory of belief dynamics
for resource-bounded agents. In: Jonker, C.M., Marsella, S., Thangarajah, J., Tuyls,
K. (eds.) Proceedings AAMAS 2016, pp. 644–652. ACM (2016)

10. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Dordrecht (2008). https://doi.org/10.1007/978-1-4020-5839-4

11. van Benthem, J.: Logical Dynamics of Information and Interaction. CUP,
New York (2011)

12. van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Class. Logics
17(2), 129–155 (2007)

13. van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-Class.
Logics 17(2), 157–182 (2007)

14. Ghosh, S., Velázquez-Quesada, F.R.: Agreeing to agree: reaching unanimity via
preference dynamics based on reliable agents. In: Weiss, G., Yolum, P., Bordini,
R.H., Elkind, E. (eds.) Proceedings AAMAS 2015, pp. 1491–1499. ACM (2015)

15. Ghosh, S., Velázquez-Quesada, F.R.: A note on reliability-based preference dynam-
ics. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS,
vol. 9394, pp. 129–142. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48561-3 11

16. Pucella, R., Weissman, V.: Reasoning about dynamic policies. In: Walukiewicz, I.
(ed.) FoSSaCS 2004. LNCS, vol. 2987, pp. 453–467. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24727-2 32

17. Göller, S.: On the complexity of reasoning about dynamic policies. In: Duparc,
J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 358–373. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8 28

18. Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W.
(eds.) Mechanizing Mathematical Reasoning. LNCS (LNAI), vol. 2605, pp. 268–
276. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-32254-2 16

19. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking
results. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS, vol. 7456, pp.
142–153. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32621-
9 11

20. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic J. IGPL 22(2), 309–332
(2014)

21. Fervari, R.: Relation-Changing Modal Logics. Ph.D. thesis, Facultad de
Matemática, Astronomı́a y F́ısica, Universidad Nacional de Córdoba, Argentina
(2014)

https://doi.org/10.1007/978-1-4020-9906-9
https://doi.org/10.1007/978-1-4020-9906-9
https://doi.org/10.1007/978-3-642-40948-6_19
https://doi.org/10.1007/978-3-642-40948-6_19
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-3-662-48561-3_11
https://doi.org/10.1007/978-3-662-48561-3_11
https://doi.org/10.1007/978-3-540-24727-2_32
https://doi.org/10.1007/978-3-540-74915-8_28
https://doi.org/10.1007/978-3-540-32254-2_16
https://doi.org/10.1007/978-3-642-32621-9_11
https://doi.org/10.1007/978-3-642-32621-9_11

Dynamic Epistemic Logics of Introspection 97

22. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic
J. IGPL 23(4), 601–627 (2015)

23. Kooi, B., Renne, B.: Arrow update logic. Rev. Symb. Logic 4, 536–559 (2011)
24. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press,

Cambridge (1980)
25. Blackburn, P., de Rijke, M., Venema, Y.: Modal logic. CUP, New York (2001)
26. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press, Cambridge (2000)
27. van Eijck, J., Wang, Y.: Propositional dynamic logic as a logic of belief revision.

In: Hodges, W., de Queiroz, R. (eds.) WoLLIC 2008. LNCS (LNAI), vol. 5110, pp.
136–148. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69937-
8 13

28. Prior, A.N.: Time and Modality. Clarendon Press, Oxford (1957)
29. Parikh, R.: The completeness of propositional dynamic logic. In: Winkowski,

J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978).
https://doi.org/10.1007/3-540-08921-7 88

30. Holliday, W., Icard, T.: Moorean phenomena in epistemic logic. In: Beklemishev,
L., Goranko, V., Shehtman, V. (eds.) Advances in Modal Logic, College Publica-
tions, pp. 178–199 (2010)

31. Plaza, J.A.: Logics of public communications. In: Emrich, M.L., Pfeifer, M.S.,
Hadzikadic, M., Ras, Z.W. (eds.) Proceedings 4th International Symposium on
Methodologies for Intelligent Systems, Oak Ridge National Laboratory, pp. 201–
216 (1989)

32. van Benthem, J., van Eijck, J., Kooi, B.: Logics of communication and change. Inf.
Comput. 204(11), 1620–1662 (2006)

https://doi.org/10.1007/978-3-540-69937-8_13
https://doi.org/10.1007/978-3-540-69937-8_13
https://doi.org/10.1007/3-540-08921-7_88

Logics for Actor Networks:
A Case Study in Constrained Hybridization

José Fiadeiro1, Ionuţ Ţuţu1(B), Antónia Lopes2, and Dusko Pavlovic3

1 Department of Computer Science,
Royal Holloway University of London, Egham, UK
jose.fiadeiro@rhul.ac.uk, ittutu@gmail.com

2 Department of Informatics, Faculty of Sciences,
University of Lisbon, Lisbon, Portugal

malopes@ciencias.ulisboa.pt
3 Department of Information and Computer Sciences,

University of Hawaii, Honolulu, USA
dusko@hawaii.edu

Abstract. Actor Networks are a modeling framework for cyber-physical
system protocols based on Latour’s actor-network theory that addresses
the way we now create and exploit the power of computational net-
works. We advance a logic for modeling and reasoning about such actor
networks, which is obtained through a two-stage constrained hybridiza-
tion process. The first stage results in a logic that captures the structure
of actor networks and the way knowledge flows across them; the second
addresses the dynamic aspects of actor networks, that is the way they
can evolve as a result of the interactions that occur within them. For
each of these stages, we develop a sound and complete proof system.

1 Introduction

Over the past few years, there has been a renewed interest in modal logics for
computer science through the family of the so-called hybrid logics (see [1] for a
comprehensive overview). The development of hybrid logics originated in Arthur
Prior’s work in the 1960s [2]. In their most basic form, these are logics obtained
by enriching ordinary modal logics with nominals—symbols that name individual
states (possible worlds) in Kripke models—and dedicated satisfaction operators
@a that enable a change of perspective from the current state to the one that
corresponds to the nominal a. A significant body of research exists around this
class of logics, among which [3–6] are recent publications.

In this paper, we are specifically interested in the present-day applications of
hybrid logics to the specification and verification of reconfigurable systems [7]. In
a nutshell, the idea is that system configurations (and the functionalities associ-
ated with them) can be regarded as local models of a Kripke structure, and that
they can change simply by switching from one mode of operation to another via
an accessibility relation. The key advancement here lies in the fact that the char-
acteristic features of hybrid logic can be developed, through a process known as
c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 98–114, 2018.
https://doi.org/10.1007/978-3-319-73579-5_7

Logics for Actor Networks 99

hybridization [8], on top of an arbitrary logic used for expressing configuration-
specific requirements. This means that, depending on the base logic, configura-
tions can be captured, for example, as algebras, relational structures or, when
the hybridization process is iterated, even as Kripke models.

Actor Networks. Our interest in this area results from a new modeling frame-
work for cyber-physical system protocols proposed in [9] around the concept of
Actor Network (or ant), which addresses networks whose components are no
longer limited to programs but can also include humans or physical artifacts
as actors. ants should therefore be understood in the wider sense of Latour’s
actor-network theory [10]: actors are cyber-physical entities that have shared
agency—from people, to objects, and to locations; they interact through so-
called channels that account, for example, for observations that an actor may
make of another, of control that an actor may exert on another, or of movement
of an actor inside another (say, a person to a location). Interaction, rather than
computation, has become the critical source of complexity, thus giving rise to
new challenges in ensuring the reliability of the systems that are now operating
in cyberspace.

Contributions. The ordinary hybridization process yields logical systems that
are suitable for dealing with either the static/structural aspects or with the
dynamic aspects of actor networks. From a static perspective, hybrid logics can
be naturally used, for example, to give faithful descriptions of the shapes of net-
works, of the (states of the) actors involved, or of the channels through which
interactions can take place. However, accommodating at the same time both the
structure and the behaviour of ants raises some difficulties because these two
aspects require distinct, and possibly conflicting, interpretations of the hybrid
features. For example, from a structural point of view, modalities denote chan-
nels, whereas from a behavioural point of view they stand for graphs of inter-
actions between actors. That is, the challenge raised by ants lies precisely in
capturing the way in which the structure of such networks evolves. This leads us
to propose a two-layered hybridization process, where the first level corresponds
to the structure, and the second to the dynamics of actor networks.

The paper consists of two main technical sections. In Sect. 2 we introduce the
underlying model theory of actor networks. We start by formalizing the main
static concepts: actors, interaction channels, the knowledge that actors may have
and the way it may be acquired across certain channels, and the placement
of some actors relative to other actors. Then, we formalize the key notion of
interaction and the way an interaction can change the state of a network.

Section 3 is devoted to the logics through which we can specify and reason
about the states of an actor network and about the state transitions associated
with interactions. These logics are obtained through a sequence of two processes
of constrained hybridization, meaning that (a) the models of the hybrid logics
implicitly satisfy additional semantic constraints, and (b) we actually operate

100 J. Fiadeiro et al.

across three logical levels—each level captures a different aspect of actor net-
works (knowledge, structure, or dynamics), and each is defined as an exogenous
enrichment (with new hybrid features) of the previous level.

Notational Conventions. Most of the structures we deal with in this paper
are presented as tuples—whose components, in turn, may also be tuple-based
structures—that satisfy certain cohesion properties. To keep the notations as
simple as possible, and avoid spelling out all the components of a given struc-
ture, we make use of subscripts. For example, we may denote the set N of nodes
of a graph G by NG , the underlying graph G of an ant schema A by GA, and the
domain D of an actor network ν by Dν . When there is no risk of confusion, we
overload this notation in order to refer to the hereditary components of a struc-
ture. That is, we may denote, for example, the set N of nodes of the underlying
graph of an ant schema A by NA—even if N is not a direct component of A.

2 Actor Networks

2.1 Schemas

Definition 1 (Schema). An ant schema A consists of:

– a finite directed graph G = 〈N , C, δ, ρ〉, where N is a non-empty set (of nodes,
called actors), C is a set (of edges, called channels), and δ and ρ are maps
C → N that give the domain (origin) and codomain (target) of every channel;

– a partially ordered set T (of channel types, with a subtype relationship);
– a function τ : C → 2T that assigns a non-empty upper set1 of channel types to

every channel, such that for every n, n′ ∈ N and κ ∈ T there is at most one
channel c ∈ C such that δ(c) = n, ρ(c) = n′, and κ ∈ τ(c); and

– a set P (of propositional symbols).

The nodes of an ant schema represent actors executing a given protocol and
edges represent channels that link together those actors. Channels are typed in
order to account for different modes of relationship between actors. The propo-
sitional symbols are used to represent knowledge that is held by the different
actors, including data. Pieces of data (or knowledge) have by themselves no
agency in the context of the protocol, otherwise they would be actors; for exam-
ple, in a given protocol, money could be data but, in another protocol, bank
notes could be actors, in the sense that they can change hands, be lost, and so
on. Knowledge/data can be transmitted across channels as appropriate.

Example 2. Consider the ant schema Elevator whose graph and typing function
are depicted in Fig. 1. The nodes F0 and F1 correspond to the ground and first
floor of a building, and E to the elevator proper, which we often refer to as

1 We recall that an upper set of T is an upward closed subset U of T . That is, U
contains all channel types κ′ ∈ T for which there exists κ ∈ U such that κ ≤ κ′.

Logics for Actor Networks 101

A

C

F0

F1

E

P0

P1

btn

btn

btn

ctr

door

door

obs
ctr

door

ctr
obs door

obs

obs

mov mov

Fig. 1. The graph and typing function of the ant schema Elevator

Elevator unless it is ambiguous. The node C corresponds to the elevator cabin,
which we often refer to as Cabin, and P0 and P1 correspond to the two platforms
where the cabin can be—P0 for the ground floor and P1 for the first floor. The
node A represents a user of the elevator, which we refer to as Alice.

Elevator has a number of channels of different types:

– The channel type mov captures the movement of one actor inside another.
The two channels of type mov that connect P0 and P1 allow the cabin to
move between the two platforms (up or down).

– The type door is a subtype of mov . The two channels of type door connect
F0 and F1 to C in order to allow users to enter or exit the cabin from or to
the floor. Although these two channels are also of type mov , for readability
we tend to depict only the minimal types when representing ant schemas.

– The channel type obs captures observations that an actor may make of
another. The channels of type obs that connect E to F0 and F1 account for
observations of the state of Elevator at either floor, while those that connect
F0 and F1 to A account for observations that Alice makes of either floor.

– The channel type ctr captures forms of control that one actor may exert on
another. The two channels of type ctr that connect F0 to E and F1 to E are for
transmitting requests from floors to Elevator, and the channel that connects
C to E is for transmitting requests from Cabin to Elevator.

– The channel subtype btn of ctr captures the special case of control achieved
through a button. The three channels of type btn that connect A to F0, F1,
and C account for the buttons that Alice can press at either floor or at Cabin.

Last but not least, the ant schema Elevator has two propositional symbols,
C at P0 and C at P1. These are used to capture knowledge of where Cabin is.

2.2 States

A structure for an ant schema A consists of a subgraph of GA together with a
forest (or placement graph, as in [11]) over its nodes that captures ‘location’.

102 J. Fiadeiro et al.

Definition 3 (Structure). A structure for a schema A is a pair 〈H,F〉 where:

– H is a subgraph of GA, and
– F is a forest over NH, meaning that every node n has either none or a unique

parent, denoted F(n). Nodes without a parent are called roots.

We say that 〈H1,F1〉 is a substructure of (or is included in) 〈H2,F2〉 if:

– H1 is a subgraph of H2, and
– for every n ∈ NH1 such that F1(n) is defined, F2(n) is also defined and equal

to F1(n)—that is, the hierarchy is strictly preserved.

The notion of substructure defines a partial order, which we denote by �.

Example 4. An ant structure for Elevator is depicted in Fig. 2. The forest, on
the right, places the two platforms inside Elevator, the Cabin inside the platform
of the first floor, and Alice at the ground floor; both floors are outside Elevator.

A

C

F0

F1

E

P0

P1

btn

ctr

obs
ctr

ctr

obs

obs

F0

A

E

P0

P1

C

F1

Fig. 2. An ant structure for Elevator: the graph on the left and the forest on the right

The graph, on the left, indicates the channels that are available: for example,
the channel that corresponds to the button that Alice can press to call the
elevator, and the one that connects F0 to E and allows the floor to transmit
requests to Elevator. Notice that, for readability, we always include the channel
types in figures, even though they are not formally part of ant structures.

To better visualize ant structures, we combine the graph and the forest com-
ponents through the nesting of nodes in the graph. This can be seen in Fig. 3,
where three ant structures are presented.

A state is an ant structure together with a valuation of the propositional
symbols, which assigns to each node and propositional symbol the truth value of
the propositional symbol at that node. We work with a three-valued Łukasiewicz
logic, i.e., propositions may have values + (true), − (false), or ± (undefined).

Definition 5 (State). A state of an ant schema A consists of a structure S
for A such that NS = NA (i.e., the structure has all the nodes of the schema)
together with, for each node n, a valuation Vn : PA → {+ , − , ±}.

We denote the set of states of an ant schema A by SA and, following our
notational convention, the structure underlying a state σ by Sσ.

Logics for Actor Networks 103

F0

E

A

btn
ctr

(a)

P0

P1

E

C

mov

(b)

F0
P0

E

A

C

obs

obs
door

(c)

Fig. 3. Interactions of Elevator: (a) callElevator0, (b) moveCabin0, and (c) enterCabin0

Example 6. As an example, we define the state elevator0 whose underlying
structure is shown in the top-left part of Fig. 4 and whose valuation is given by:

VE(C at P0) = VF0(C at P0) = VF1(C at P0) = VA(C at P0) = − ,

VE(C at P1) = VF0(C at P1) = VF1(C at P1) = VA(C at P1) = + , and
Vn(C at P0) = Vn(C at P1) = ± for all other nodes.

That is, the actors/nodes E, F0, F1 and A all know that Cabin is at the platform
P1 (and that it is not at P0); no other node knows where Cabin is.

2.3 Interactions

Channels provide the means for actors to interact with each other. The interac-
tions through which actors change protocol states can be more complex (in the
sense that they can involve many actors and channels) and are therefore defined
as ant structures: given an interaction, its nodes are the actors of the ant schema
that are involved in the interaction, and its channels are those through which
those actors interact with each other.

Definition 7 (Interaction). An interaction in the context of an ant schema
A is a structure for A. We denote by IA the set of all interactions of A.

Example 8. Figure 3 depicts three interactions for the ant schema Elevator:

(a) callElevator0: Alice is at the ground floor and presses the button to call the
elevator; the request is transmitted to Elevator through a ctr channel.

(b) moveCabin0: Cabin is at the first floor and the channel through which it can
move to the ground floor is available.

(c) enterCabin0: Alice is at the ground floor and observes the position of the
cabin through the two channels of type obs; the channel of type door that
connects F0 to C is available for Alice to enter the cabin.

104 J. Fiadeiro et al.

F0

F1

P0

P1

E

A

C

btn
ctr

obs

ctr

obs

obs

ctr

elevator0

F0

F1

P0

P1

E

A

C

ctr

obs

ctr

obs

obs

ctr

mov

elevator1

F0

F1

P0

P1

E

A

C

btn
ctr

obs

ctr

obs

obs
ctr

elevator′0

F0

F1

P0

P1

E

A

C

ctr

obs

ctr

obs

obs
ctrdoor

door

elevator2

callElevator0

callElevator0

moveCabin0

Fig. 4. Transitions performed by the interactions callElevator0 and moveCabin0

2.4 Networks

Protocols are formalized as actor networks. An actor network consists of (a) an
ant schema, which contains all the actors and the channels that connect them;
(b) a set of possible worlds—each being associated with a so-called admissible
state—including a subset of designated initial worlds; (c) a set of all possible
interactions through which the actor network can evolve; and (d) for every such
interaction, a transition relation on the set of worlds. Formally,

Definition 9 (Actor network). An actor network ν consists of:

– an ant schema A,
– a domain (set of worlds) D together with a labeling function ς : D → SA,
– a non-empty subset D0 ⊆ D of initial worlds (whose labels are initial states),
– a set I ⊆ IA of interactions for A,
– a transition relation (−−→) ⊆ D × I × D such that, for each interaction ι ∈ I,

w
ι−−→ w′ implies ι � Sς(w) (interactions are substructures of the source states).

Logics for Actor Networks 105

We say that a state of A is admissible for ν if it corresponds to one of its worlds;
we denote by Sν the image of D under ς (i.e., the set of admissible states of ν).

Therefore, an actor network can be regarded as a labeled transition system over
a set of states of the schema, transitions being labeled with interactions.

Example 10. An actor network νElevator with Elevator as its schema could have,
for example, elevator0 (labeled with the state defined in Example 4) as one
of its initial worlds, and the worlds and transitions presented in Fig. 4, among
others. Note that the valuations are not included in these diagrams; an axiomatic
presentation of the valuations is discussed in Sect. 3.

The ‘horizontal’ transitions in Fig. 4 are performed by the interaction callEl-
evator0 (cf. Fig. 3(a)). The one at the top starts at elevator0. Although several
actors and channels are present in elevator0, the interaction callElevator0 indi-
cates that the actors that are active in the transition are Alice, Elevator and F0
(the ground floor), and that the active channels are those that connect A to F0
and F0 to E. That is to say, Alice presses the button at F0 and the request is
transmitted to Elevator. The transition to elevator1 activates the channel of type
mov that connects P1 to P0 through which Elevator can respond to the request
(i.e., move the cabin), and closes the channel of type btn from A to F0, i.e., Alice
is no longer able to call the elevator.

The other transition (at the bottom) performed by callElevator0 starts in a
different world, elevator′0, where Cabin is in P0. It opens the two channels of type
door between F0 and C that allow users to enter or exit the cabin.

The ‘vertical’ transition from elevator1 to elevator2 is performed by the inter-
action moveCabin0 (cf. Fig. 3(b)). As indicated by the interaction, this computa-
tion is local to P0, P1, F0, F1, E, and C. The transition moves the cabin from P1
to P0, closes the channel of type mov that connects the two platforms and—just
like the transition between elevator′0 and elevator2—opens the two channels of
type door that allow users to enter or exit the cabin.

3 Logics for ANts

3.1 The Base Logic

The logics through which we can specify and reason about actor networks are
obtained through an iterated process of constrained hybridization. At the base
of this construction is the three-valued propositional Łukasiewicz logic, which we
recall below. A signature for the Łukasiewicz logic is given by a set P of atomic
propositions (the propositional symbols defined by an ant schema).

Definition 11 (Syntax). The set Ł(P) of sentences of the base logic is the least
set that includes P and is closed under negation (p) and implication (p ⊃ q).

Definition 12 (Semantics). Base-logic sentences are interpreted over func-
tions �_� : P → {+ , − , ±} as follows: The negation maps + to − and vice
versa, and leaves ± unchanged. The implication p ⊃ q evaluates to − if p = +

and q = − , to ± if p = + and q = ± or p = ± and q = − , and to + in all other
cases. We say that a proposition p is valid if �p� = + for all valuations �_�.

106 J. Fiadeiro et al.

The following modalities, which return Boolean values, are useful:

M p � (p ⊃ p) p is possibly true—i.e., it has value + or ±

L p � M p p is necessarily true—i.e., it has value +

N p � M p = L p p is necessarily false—i.e., it has value −

I p � M p ⊃ L p p is unknown—i.e., it has value ±

3.2 The State Logic

The logic through which we can specify and reason about the states of an ant is
a constrained hybridization of Ł(P). Therefore, there are two main ingredients
to consider here. Firstly, an ant-schema signature, denoted Σ in what follows,
which consists of a set P of propositional symbols (i.e., a signature of the base
Łukasiewicz logic), a countably infinite set Nom of nominals that includes a
set N of actor names, and a set T of channel types (regarded as modalities).
Secondly, a partial order on T and an edge-labeled directed finite graph G with
components N , C, δ, ρ, and τ as in Definition 1. These provide the constraints
that we impose on the models of the hybrid logic.

Definition 13 (Syntax). The syntax of the state logic is given by the grammar

φ ::= p | a | ¬φ | φ → φ | 〈κ〉φ | 〈π〉φ | @a φ | ∃b φ

where p ∈ Ł(P), a ∈ Nom, b ∈ Nom \ N , κ ∈ T , and π is a distinguished and
new parent modality. We denote this set of sentences by State(Σ).

In the most general setting, hybrid sentences are evaluated over unconstrained
Kripke models, that is over triples 〈W,R, V 〉, where W is a set of nodes or
possible worlds, R is a family of accessibility relations Rλ ⊆ W × W , indexed
by modalities λ, and V is a family of interpretations of the symbols from P
indexed by possible worlds. The semantics of hybrid logics often includes addi-
tional constraints; for example, in the S4 variant of hybrid propositional logic,
the accessibility relations are reflexive and transitive, and in the S5 variant they
are reflexive and Euclidean. The constraints that we consider for the state logic
follow from the underlying graph structure of the ant schema used:

– There is a one-to-one correspondence between actors and possible worlds. For
notational convenience, we do not distinguish possible worlds from actors.

– The accessibility relations conform to the channels and the channel types of
the schema: for each channel type κ, Rκ consists of those pairs of nodes (n, n′)
that are connected through a channel of type κ.

– The interpretation of the parent modality π is functional and acyclic.

In other words, the constrained models of the hybridization of Ł(P) that we
consider here are states of the actor-network schema A = 〈G, T , τ,P〉.

Logics for Actor Networks 107

Definition 14 (Semantics). Given a state σ = 〈S,V〉 of A, an assignment
is a map α : Nom → NS whose restriction to the set N of actor names is the
identity.2 The satisfaction relation between ant states and state-logic sentences
is parameterized by assignments α and by actors n (i.e., by nodes of S):

– σ, α, n � a iff α(a) = n;
– σ, α, n � p iff �p�n = + where �_�n is the valuation defined by Vn over P;
– σ, α, n � ¬φ iff σ, α, n
� φ;
– σ, α, n � φ1 → φ2 iff σ, α, n � φ1 implies σ, α, n � φ2;
– σ, α, n � 〈κ〉φ iff there is c ∈ C such that δ(c) = n, κ ∈ τ(c), and σ, α, ρ(c) � φ;
– σ, α, n � 〈π〉φ iff F(n) is defined and σ, α,F(n) � φ;
– σ, α, n � @a φ iff σ, α, α(a) � φ;
– σ, α, n � ∃b φ iff σ, α′, n � φ for some α′ that agrees with α on Nom \ {b}.

We also define validity of a sentence at a state to mean that it is satisfied
for every assignment at every node, validity of a sentence at an ant structure to
mean that it is satisfied at every state for it, and absolute validity of a sentence
(at a schema) to mean that it is valid at every state of the schema:

– σ � φ iff σ, α, n � φ for all assignments α : Nom → N and all n ∈ N ;
– S � φ iff σ � φ for all states σ such that S � Sσ;
– A � φ, or simply � φ, iff σ � φ for all σ ∈ SA.

The validity relations extend to sets of sentences to mean that every sentence
in the set is valid. Given a set Φ of sentences, we denote by SΦ the set of states
over which all the sentences in Φ are valid.

We use the usual propositional connectives for conjunction (∧) and disjunc-
tion (∨), as well as the dual modal operators ([_]) and quantifier (∀) given by:

– [κ]φ � ¬ 〈κ〉 ¬φ
That is, σ, α, n � [κ]φ iff σ, α, ρ(c) � φ for all c ∈ C with δ(c) = n & κ ∈ τ(c).

– [π]φ � ¬ 〈π〉 ¬φ
That is, σ, α, n � [π]φ iff σ, α,F(n) � φ if F(n) is defined.

– ∀b φ � ¬∃b ¬φ
That is, σ, α, n � ∀b φ iff σ, α′, n � φ for all α′ that agree with α on Nom \{b}.

Notice that the symbols used for the negation () and implication (⊃) in the
base logic are different from those of the state logic (¬ and →, respectively) to
mark the difference between the two levels.

Example 15. The sentences presented below are properties of (valid at) the
state elevator0 from Example 6, of its underlying structure Selevator0 , or of the ant
schema itself. Naturally, any property of Selevator0 is also a property of elevator0,
and any property of Elevator is also a property of Selevator0 . Notice, however, that
the converse does not hold for the following sentences:

2 Recall that, by Definition 5, NS = N .

108 J. Fiadeiro et al.

S1 elevator0 � (E ∨ F0 ∨ F1 ∨ A) → L (C at P1)
The actors E, F0, F1, and A know that the cabin is at the first platform.

S2 Selevator0 � @A [btn] 〈ctr〉E
Whenever Alice calls the elevator, the request is transmitted to the Elevator.

S3 Elevator �
(
(F0 ∨ F1) → [obs]A

)
∧

(
〈obs〉A → (F0 ∨ F1)

)

The floors can only be observed by Alice, and that is all Alice can observe.

Definition 16 (State specification). A state specification for an ant schema
A consists of a signature Σ for A (i.e., with the same actor names, channel types,
and propositional symbols as the schema) and a set of sentences in State(Σ).

The sentences of a state specification of an ant schema are used to restrict the
set of admissible states of the actor networks defined over that schema.

Example 17. A state specification of Elevator could consist of the instances of
the following sentence schemas, which we denote by ΦElevator:

E1 @C 〈π〉Pi ↔ @E L (C at Pi) for i ∈ {0, 1}
The cabin is at platform i if and only if the elevator knows it.

E2 p → [obs] p for every p ∈ Ł(P)
Knowledge is propagated through observation channels.

That is, this specification of Elevator determines what knowledge nodes have
about the whereabouts of Cabin: the elevator proper always knows where Cabin is
and the other nodes can acquire that information through observation channels.

The state logic is useful for deriving properties of states, ant structures, and of
ant schemas and their specifications.

Definition 18 (Entailment). Given a finite set Φ of sentences and a sentence
φ (defined over the same signature as Φ), we say that φ is a semantic consequence
of Φ, or that Φ entails φ, and write Φ � φ, if σ � φ for all σ ∈ SΦ.

The following two propositions allow us to redefine the three kinds validity of a
state sentence in terms of entailment. They provide a syntactic characterization
(as a set of sentences) Φσ/ΦS for every state σ or structure S. A sentence φ is
valid at a state σ if and only if Φσ � φ, and is valid at an ant structure S if and
only if ΦS � φ; obviously, φ is absolutely valid if and only if ∅ � φ.

Proposition 19. Let ΦS be the (finite) set of all sentences of the form @a 〈λ〉 b
that are valid at a structure S, where a and b are actor names and λ is a modality
(i.e., a channel type or the parent modality π). Then SΦS = {σ ∈ SA | S � Sσ}.

Proposition 20. For every state σ, let Φσ be the (finite) set that extends ΦSσ

with all state sentences of the form ¬@a 〈κ〉 b, @a [π] false, @a Lp, @a Np, or
@a Ip that are valid at σ, where a and b are actor names, κ is a type that labels
one of the channels between a and b in the ant schema, and p is a propositional
symbol. Then σ is the only state that satisfies Φσ.

Logics for Actor Networks 109

Entailment can be derived syntactically through the use of a proof system. The
Hilbert-style axiomatization of the basic, unconstrained hybrid logic in Fig. 5 is
both a simplification (because we do not consider the binder ↓) and an extension
(due to the multi-modality setting and the different base logic) of the axiom
system given in [3, Chap. 2].

Fig. 5. Hilbert-style axiom schemata and rules for basic hybrid logic (Here, λ stands
both for the regular modalities defined by channel types and for π.)

Proposition 21 ([3, Chap. 2]). The axiom schemata and inference rules pre-
sented in Fig. 5 are sound and complete with respect to the unconstrained Kripke-
frame semantics of basic hybrid logic.

Unlike the models of the basic hybrid logic, the models of the state logic are
subject to the constraints defined by the ant schema. Because of this, the axiom
schemata and inference rules from Fig. 5 are no longer complete—though, obvi-
ously, they remain sound—with respect to the constrained Kripke semantics of
the state logic. There are two main categories of new tautologies: those that
arise from the ant schema used, and those that are innate to the state logic.
The former category contains, for instance, when considering the ant schema
Elevator from Example 2, sentences like ¬@A 〈ctr〉E (Alice cannot control the
elevator directly.), while the latter contains sentences like ¬@a b, where a and b
are distinct actor names, or 〈π〉φ → [π]φ.

110 J. Fiadeiro et al.

In order to regain completeness, we introduce new axioms that reflect the
semantic constraints of the state logic. The axiom schemata n1 and n2 from
Fig. 6 ensure that all possible worlds correspond to actor names, and that no
two distinct names are interpreted in the same way. The axiom schema c1 rules
out those channels that are not defined in the ant schema, while c2 captures the
channel subtyping relation. Lastly, π1 and π2 specify that the interpretations
of the distinguished parent modality are functional and acyclic, respectively.

Fig. 6. Additional axiom schemata for the state logic

Definition 22. Under the notations and assumptions of Definition 18, we say
that φ is provable from Φ, and write Φ � φ, if and only if φ can be derived from
Φ using the axiom schemata and inference rules from Figs. 5 and 6.

The soundness and completeness of the proof system for the state logic follow
from Proposition 21 and the lemma below.

Lemma 23. For any ant schema A, the states in SA are given precisely by
those Kripke structures that satisfy the axioms in Fig. 6.

Proposition 24. The extension of the proof system for hybrid logic with the
axiom schemata in Fig. 6 yields a sound and complete axiomatization of the
state logic.

Φ � φ iff Φ � φ

Example 25. The properties @F0 L (C at P1) and @A L (C at P1) can be derived
for Selevator0 under the specification ΦElevator from Example 17. In symbols,

ΦS
elevator0

∪ ΦElevator � @F0 L (C at P1),@A L (C at P1)

This example shows that valuations can sometimes be fully determined by the
ant structure and the axioms associated with the ant schema. In this particular
case, the valuation of the atomic proposition C at P1 at the nodes F0 and A
can be derived from the structural properties of the ant structure and from the
axiomatization of the way in which knowledge is propagated (see Example 17).

There are other general properties of Elevator that we might want to prove.
For example, @C 〈π〉 (P0∨P1)—the cabin is either at P0 or at P1. Because such

Logics for Actor Networks 111

properties are not structural, in the sense that they do not hold at every state
of Elevator, they should be proved instead at the level of actor networks, which
define the way states can evolve through repeated interactions. The correspond-
ing logic for this kind of proofs is defined in the next sub-section.

3.3 The ant Logic

The logic through which we can reason about the actor networks of an ant
schema A requires a further level of hybridization. In this case, a higher-level
actor-network signature Ω consists of a signature Σ of the state logic (now
playing the role of the base logic), a countably infinite set Nom of nominals
together with a non-empty subset Init ⊆ Nom of names of initial states, and a
set I of interactions for A (regarded as modalities).

Definition 26 (Syntax). The syntax of the ant logic is given by the grammar

ψ ::= φ | i |¬¬ψ | ψ ⇒ ψ | 〈|ι|〉ψ | i : ψ |∃∃j ψ

where φ ∈ State(Σ), i ∈ Nom, j ∈ Nom \ Init , and ι ∈ I. We denote by ANt(Ω)
the set of ant-logic sentences defined over the signature Ω.

Notice that we use double symbols for the connectives of the ant logic, and
that the satisfaction operators are denoted using a colon. We extend the use
of the double-symbol notation to the dual modal operators (�_�) and to the
universal quantifier (∀∀), which are defined as in Sect. 3.2.

Example 27. We can now write sentences about the dynamics of Elevator like
∧

Φelevator0 ⇒ 〈|callElevator0|〉
∧

Φelevator1

meaning that at the state elevator0 (which, by Proposition 20, is characterized by
the sentences in Φelevator0) there is a transition to the state elevator1 performed by
the interaction callElevator0. Note that, by Proposition 20, the sets of sentences
Φelevator0 and Φelevator1 are finite, hence the conjunctions in the antecedent and
consequent of the implication above are well formed.

The semantics of the ant logic is defined once more by means of constrained
Kripke models. This time, we restrict only the interpretations of the modalities:
all interactions ι ∈ I are substructures of the underlying structures of the states
on which (the relational interpretations of) ι are defined (see Definition 9). That
is, the models of the ant logic are actor networks.

Definition 28 (Semantics). The satisfaction relation for the ant logic is
defined for an actor network ν with interactions according to Ω, an assignment
α : Nom → Dν (which, in this case, is just a function), and a world w ∈ Dν :

– ν, α,w �� i iff α(i) = w;
– ν, α,w �� φ iff ςν(w) � φ;
– ν, α,w ��¬¬ψ iff ν, α,w
�� ψ;

112 J. Fiadeiro et al.

– ν, α,w �� ψ1 ⇒ ψ2 iff ν, α,w �� ψ1 implies ν, α,w �� ψ2;
– ν, α,w �� 〈|ι|〉ψ iff there is a transition w

ι−−→ w′ in ν such that ν, α,w′ �� ψ;
– ν, α,w �� i : ψ iff ν, α, α(i) �� ψ;
– ν, α,w ��∃∃j ψ iff ν, α′, w �� ψ for some α′ that agrees with α on Nom \ {j}.

Similarly to the first level of hybridization, we say that an ant-logic sentence ψ
defined over Ω is valid in an actor network if it is satisfied, for every assignment,
at every world of the network, and that a sentence ψ is absolutely valid if it is
valid in every actor network:

– ν �� ψ iff ν, α,w �� ψ for all assignments α : Nom → Dν and all w ∈ Dν ;
– �� ψ iff ν �� ψ for all actor networks ν over Ω.

Given a set Ψ of ant sentences, we denote by NΨ the set of actor networks over
which all the sentences in Ψ are valid; and, given another sentence ψ, we say
that Ψ entails ψ, which we denote Ψ �� ψ, if ν �� ψ for all ν ∈ NΨ .

The proof theory for the ant logic builds once again on the proof theory for
the basic hybrid logic. To that end, we use the same axiom schemata and infer-
ence rules from Fig. 5, only that in this case the tautologies of the Łukasiewicz
logic are replaced by those of the state logic, and the Boolean and hybrid con-
nectives of the state logic are replaced by those of the ant logic. In addition,
through the axiom schema Inter from Fig. 7, we introduce new axioms that
reflect the semantic constraints of the models of the ant logic: state properties
of interactions hold in the states where the transitions occur.

Fig. 7. Additional axiom schema for the ant logic

Definition 29. An ant sentence ψ is provable from a set Ψ of sentences (of
the same signature as ψ), denoted Ψ � ψ, if ψ can be derived from Ψ using the
axiom system for hybrid logic and the additional axiom schema defined in Fig. 7.

Example 30. Consider the following axiomatization of the transitions of an
actor network for the ant schema Elevator. Most of the sentences below are
of the form φ1 ⇒ �ι�φ2. They generalize Hoare triples and express properties
of the transitions performed by interactions: intuitively, the sentence φ1 is a
precondition under which the interaction ι ensures the postcondition φ2.

T1 @C 〈π〉P1 ⇒ �callElevator0�@P1 〈mov〉P0
When the elevator is called (at the ground floor) and the cabin is at the first
platform, a request to move the cabin to the ground platform is issued.

T2 @C 〈π〉P0 ⇒ �callElevator0�@F0 〈door〉 (C ∧ 〈door〉F0)
If the cabin is already at the ground platform, then the doors are opened.

Logics for Actor Networks 113

T3 �moveCabin0�@F0 〈door〉 (C ∧ 〈door〉F0)
The doors are opened whenever the cabin moves to the (ground) platform.

T4 @A 〈π〉 (F0 ∧ 〈door〉C) ⇒ 〈|enterCabin0|〉 true
If Alice is at F0 and the doors are open, then she can enter the cabin.

T5 @a 〈π〉 s ⇒ �ι�@a 〈π〉 t for interactions ι such that ι � @s 〈mov〉 t
Any interaction that involves a channel of type mov between actors s and t
(regarded as locations) determines the movement to t of any actor in s.

T6 @a 〈π〉 s ⇒ �ι�@a 〈π〉 s for interactions ι such that ι
� @s 〈mov〉 true
But if the interaction does not involve a mov channel starting as s, then the
actors in s maintain their location.

Then we can derive complex actor-network sentences such as:

@C 〈π〉 (P0∨P1)⇒ �callElevator0�
(
@A L (C at P0)∨�moveCabin0�@A L (C at P0)

)

That is, provided that we start at a world where Cabin is at one of the platforms,
if the elevator is called, then Alice either knows immediately that the cabin is at
the ground platform, or she discovers this as soon as the cabin is moved.

Proposition 31. The extension of the hybrid-logic proof system with the axiom
schema in Fig. 7 yields a sound and complete axiomatization of the ant logic.

Ψ �� ψ iff Ψ � ψ

4 Concluding Remarks

In this paper, we have shown how a suite of logics can be developed through a
two-stage constrained-hybridization process, providing in this way support for
the specification and verification of cyber-physical system protocols modeled as
actor networks (ants) in the sense of [9]. The first stage of the hybridization
process results in a logic that captures the structure of actor networks and the
way knowledge flows across such networks; the second addresses the dynamic
aspects of actor networks, that is the way their structure can evolve as a result
of the interactions that occur within them.

One of the main novelties of our approach is that we rely on unconventional
semantic constraints, derived from the structural characteristics of actor-network
states, or from the general properties of the state transitions. This results in faith-
ful representations, at a logical level, of the way computation is performed in
actor networks. That is, constrained models capture the relationship between the
higher-level reconfigurations of networks and the lower-level interactions between
actors that trigger them. Besides expressivity, a key property of these constraints
is that they can be axiomatized within hybrid logic. This enables the use of con-
ventional (sound and complete) proof systems for hybrid logic as a tool through
which we can formally verify properties of actor networks.

Two main research directions are ongoing. The first aims to use the expressive
power of our formalism to reason about security protocols in cyber-physical

114 J. Fiadeiro et al.

systems, in particular the existence of covert channels. The second aims to extend
the logic to support the modeling of the transition system defined by interactions
through graph transformations.

Acknowledgment. The work of D. Pavlovic was partially supported by NSF. J.
Fiadeiro and A. Lopes received support from AFOSR for research visits to the Univer-
sity of Hawaii.

References

1. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic J. IGPL 8(3), 339–365 (2000)

2. Prior, A.: Past, Present and Future. Oxford University Press, Oxford (1967)
3. Braüner, T.: Hybrid Logic and its Proof-Theory. Applied Logic Series, vol. 37.

Springer, Dordrecht (2011). https://doi.org/10.1007/978-94-007-0002-4
4. Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Proof theory for hybrid(ised)

logics. Sci. Comput. Program. 126, 73–93 (2016)
5. Diaconescu, R.: Quasi-varieties and initial semantics for hybridized institutions. J.

Logic Comput. 26(3), 855–891 (2016)
6. Găină, D.: Birkhoff style calculi for hybrid logics. Formal Aspects Comput. 29(5),

805–832 (2017)
7. Madeira, A., Neves, R., Barbosa, L.S., Martins, M.A.: A method for rigorous design

of reconfigurable systems. Sci. Comput. Program. 132, 50–76 (2016)
8. Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of insti-

tutions. In: Corradini, A., Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol.
6859, pp. 283–297. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22944-2_20

9. Pavlovic, D., Meadows, C.: Actor-network procedures (extended abstract). In:
Ramanujam, R., Ramaswamy, S. (eds.) ICDCIT 2012. LNCS, vol. 7154, pp. 7–
26. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28073-3_2

10. Latour, B.: Reassembling the Social: An Introduction to Actor-Network Theory.
Oxford University Press, Oxford (2005)

11. Milner, R.: The space and motion of communicating agents. CUP (2009)
12. Malinowski, G.: Many-Valued Logics. Oxford Logic Guides. Clarendon Press,

Oxford (1993)

https://doi.org/10.1007/978-94-007-0002-4
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-642-22944-2_20
https://doi.org/10.1007/978-3-642-28073-3_2

Parity Games and Automata for Game Logic

Helle Hvid Hansen1, Clemens Kupke2(B), Johannes Marti2, and Yde Venema3

1 Delft University of Technology, Delft, The Netherlands
2 University of Strathclyde, Glasgow, UK

clemens.kupke@strath.ac.uk
3 University of Amsterdam, Amsterdam, The Netherlands

Abstract. Parikh’s game logic is a PDL-like fixpoint logic interpreted
on monotone neighbourhood frames that represent the strategic power
of players in determined two-player games. Game logic translates into
a fragment of the monotone μ-calculus, which in turn is expressively
equivalent to monotone modal automata. Parity games and automata are
important tools for dealing with the combinatorial complexity of nested
fixpoints in modal fixpoint logics, such as the modal μ-calculus. In this
paper, we (1) discuss the semantics a of game logic over neighbourhood
structures in terms of parity games, and (2) use these games to obtain
an automata-theoretic characterisation of the fragment of the monotone
μ-calculus that corresponds to game logic. Our proof makes extensive use
of structures that we call syntax graphs that combine the ease-of-use of
syntax trees of formulas with the flexibility and succinctness of automata.
They are essentially a graph-based view of the alternating tree automata
that were introduced by Wilke in the study of modal μ-calculus.

1 Introduction

Game logic was introduced by Parikh [23] as a modal logic for reasoning about
strategic power in determined 2-player games, and it can be seen as a gener-
alisation of PDL [16] both in terms of syntax and semantics. On the syntax
side, game logic is a multi-modal language in which modalities are labelled by
games, which in turn are built from atomic games, the PDL program constructs
together with the operation dual which switches the role of the players. A modal
formula 〈α〉ϕ should be read as “player 1 has a strategy in the game α to achieve
an outcome that satisfies the formula ϕ”. On the semantic side, one goes from
PDL to game logic by moving from Kripke frames to monotone neighbourhood
frames. A game perspective on this generalisation is that nondeterministic pro-
grams (i.e., relations) are 1-player games in which the player chooses his move
from a set of successors, and monotone neighbourhood frames are 2-player games
where player 1 first chooses a neighbourhood U , and then player 2 chooses an
element in U . The shift from Kripke frames to monotone neighbourhood frames
also means that we go from normal modal logic to monotone modal logic. Just

C. Kupke and J. Marti—Supported by EPSRC grant EP/N015843/1.

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 115–132, 2018.
https://doi.org/10.1007/978-3-319-73579-5_8

116 H. H. Hansen et al.

as PDL (and other fixpoint logics such as LTL and CTL∗) can be viewed as a
fragment of the modal μ-calculus [2,20], game logic can be naturally viewed as
a fragment of the monotone μ-calculus [24], which is monotone (multi-) modal
logic with explicit fixpoint operators. A notable difference is that PDL, LTL and
CTL∗ are all contained in level 1 or 2 of the alternation hierarchy whereas game
logic, due to the combination of dual and iteration, spans all levels of the alter-
nation hierarchy [1]. This high level of expressiveness could be an explanation
for why a completeness proof for game logic is still missing.

In this paper we contribute to the theory of game logic. We discuss the seman-
tics of game logic over neighbourhood structures using parity games and then
use these games to characterise a class of automata that is exactly as expressive
as formulas in game logic. Parity games are an intuitive way of dealing with
the nesting of least and greatest fixpoint operators, and together with automata
they play a fundamental role in the theory of fixpoint logics [12]. For instance,
parity games and automata have been used in proving complexity results for the
modal μ-calculus [7,8] and also Walukiewicz’ completeness result [27] is proved
by automata-theoretic means. Some of these results have been extended to the
setting of coalgebraic fixpoint logic [10]. In particular, they are applicable to the
monotone μ-calculus. Since monotone modal μ-calculus is expressively equiva-
lent to a naturally defined class of (unguarded) monotone modal automata [11],
it is of interest to find out which subclass of these automata corresponds to game
logic. The main result in our paper is a characterisation of a class of unguarded
monotone modal automata that effectively corresponds to game logic, in the
sense that there are effective translations in both directions. This result can be
seen as the game logic analogue of the characterisation of PDL in automata-
theoretic terms [3]. The case of game logic, however, is more involved because
composition of games does not distribute from the left over choice as is the
case for the programs in PDL. This is related to the fact that in the relational
semantics of PDL, diamonds distribute over disjunctions; this property, which
is heavily exploited in the mentioned results on PDL, does not apply to the
diamonds of game logic. Finally, note that our characterisation can also be seen
as an automata-theoretic counterpart to the results in [4, Sect. 3.3] that charac-
terise a fragment of the μ-calculus that is expressively equivalent to game logic
interpreted over Kripke frames.

Our characterisation goes via a class of structures that we call syntax graphs.
Syntax graphs combine the ease-of-use of syntax trees of formulas with the flex-
ibility and succinctness of automata. They are essentially the same as Wilke’s
alternating tree automata (ATAs) [29] except they are described in terms of their
transition graphs, and they run on monotone neighbourhood models rather than
Kripke models. Unguarded monotone modal automata can, in turn, be viewed
as Wilke’s ATAs with complex transition condition [29] (again with a seman-
tics over monotone neighbourhood models). As noted in [19,29] an ATA with
complex transition conditions can be effectively translated into an equivalent
ATA, and this construction is easily seen to work also for monotone semantics.
Concretely, our characterisation consists of a number of conditions that define a

Parity Games and Automata for Game Logic 117

subclass GG of syntax graphs that correspond to game logic formulas. We call
these game logic graphs. A game automaton is then a monotone modal automa-
ton whose corresponding syntax graph (i.e. ATA) is in GG. The translation
from formulas to game logic graphs is an inductive construction similar to the
construction of a nondeterministic automaton from a regular expression. Con-
versely, the defining conditions on game logic graphs allow us to decompose a
game logic graph into components that correspond to formulas.

The rest of the paper is structured as follows. In Sect. 2 we recall the syntax
and neighbourhood semantics of game logic and describe a normal form that
is needed for our results. In Sect. 3 we introduce the game semantics for game
logic and prove it to be equivalent to the neighbourhood semantics. In Sect. 4
we discuss syntax graphs and their game semantics. In Sect. 5 we define game
logic graphs and prove them to be expressively equivalent to formulas in game
logic. Due to space constraints, proofs are provided in an extended version of
this paper [15].

2 Game Logic

Most definitions and results in this section are from [23,25]. The syntax of game
logic is based on the syntax of propositional modal logic with the additional
feature that modal operators are labelled with terms that denote games. Since we
have “test games” of the form ϕ?, the definition of the syntax is a simultaneous
recursion on the structure of formulas and games.

Definition 1. Throughout the paper we fix a countable set Prop of atomic propo-
sitions (proposition letters) and a set Gam of atomic games. The sets F of for-
mulas and G of game terms of game logic are defined recursively as follows:

F � ϕ :: = p ∈ Prop | ¬ϕ | ϕ ∧ ϕ | ϕ ∨ ϕ | 〈α〉ϕ, where α ∈ G
G � α :: = g ∈ Gam | αd | α ∪ α | α ∩ α | α;α | α∗ | α× | ϕ? | ϕ!, where ϕ ∈ F

We use the standard definitions of → and ↔, and note that � can be defined as
p ∨ ¬p for any p ∈ Prop. In the following we denote formulas by ϕ,ψ, . . . and
game terms with α, β, ρ, We use the letter χ to denote arbitrary terms that
could either be a formula or a game term.

The formulas of game logic express strategic power in 2-player determined,
zero-sum games. A formula 〈α〉ϕ says that player 1 has a strategy in the game
α to ensure that the outcome of the game satisfies ϕ. The assumption that the
games are determined and zero-sum means that in a given game α, player 2 has
a strategy to achieve ϕ iff player 1 does not have a strategy to achieve ¬ϕ. Hence
the formula ¬〈α〉¬ϕ, usually written as [α]ϕ, says that player 2 has a strategy in
α to ensure an outcome that satisfies ϕ. For technical reasons we do not include
boxes as primitive operators.

It will be convenient to refer to player 1 as Angel and player 2 as Demon.
The game operations can then be explained as follows. The composition α ; β is

118 H. H. Hansen et al.

the game consisting of playing α followed by β. The angelic choice α ∪ β (resp.
demonic choice α∩β) is the game in which Angel (resp. Demon) chooses whether
to play α or β. The angelic iteration α∗ is the game in which α is played 0 or
more times, and after each time, Angel chooses whether to stop or play again,
but she must stop after some finite number of iterations. The demonic iteration
α× is the iterated game in which Demon chooses when to stop, and he may
choose to play forever. The formula 〈α∗〉ϕ thus says that Angel has a strategy to
reach a ϕ-state by playing α some finite number of rounds (where her strategy
may depend on what Demon did in previous rounds, so that in particular, the
number of rounds needed to reach ϕ is not determined at the start of the game).
The formula 〈α×〉ϕ says that Angel has a strategy for maintaining ϕ indefinitely
when playing α repeatedly. Finally, the dual game αd is the same as α but with
the roles of the two players reversed, i.e., Angel has a strategy to achieve ϕ in
αd iff Demon has a strategy to achieve ϕ in α, and vice versa.

In [23,25], the language of game logic only contained the game
operations ; ∪,∗ ,d, and the demonic operations were defined as α∩β = (αd ∪βd)d

and α× = ((αd)∗)d. We take the demonic operations as primitives, since later we
want to reduce formulas to dual and negation normal form.

The formal semantics of game logic is given by representing games as mono-
tone neighbourhood frames. These are well known semantic structures in modal
logic [5,13].

Definition 2. Let S be a set. We denote by M(S) the set of up-closed subsets
of P(S), i.e., M(S) = {N ⊆ P(S) | ∀U,U ′ : U ∈ N,U ⊆ U ′ ⇒ U ′ ∈ N}. A
monotone neighbourhood frame on S is a function f : S → M(S). We denote
by MF(S) the set of all monotone neighbourhood frames on S.

For f ∈ MF(S) and s ∈ S, the subsets U in f(s) are called the neighbour-
hoods of s. We point out that such neighbourhoods are not necessarily neigh-
bourhoods in the topological sense. In particular, we do not require that a state
s is an element of all its neighbourhoods. In our setting, the neighbourhoods will
be the subsets that Angel can force in the game represented by f .

We note that (M(S),⊆) is a complete partial order with associated join and
meet given by union and intersection of neighbourhood collections. This CPO
structure lifts pointwise to a CPO (MF(S),�) in which we also denote join and
meet by ∪ and ∩.

In analogue with how the PDL program operations are interpreted in relation
algebra, we interpret game operations via algebraic structure on MF(S).1

Definition 3 (Game operations). Let f, f1, f2 ∈ MF(S) be monotone neigh-
bourhood frames. We define

– the unit frame ηS by: U ∈ ηS(s) iff s ∈ U for s ∈ S and U ⊆ S.

1 It is well-known that M is a monad, [14]. Readers who are familiar with monads will
recognise that unit and composition correspond to the unit and Kleisli composition.

Parity Games and Automata for Game Logic 119

– the composition f1 ; f2 by:

U ∈ (f1 ; f2)(s) iff {s′ ∈ S | U ∈ f2(s′)} ∈ f1(s) for s ∈ S and U ⊆ S.

– the Angelic choice and Demonic choice between f1 and f2 by:

(f ∪ g)(s) = f(s) ∪ g(s) (f ∩ g)(s) = f(s) ∩ g(s), for s ∈ S.

– the dual fd by: U ∈ fd(s) iff S \ U /∈ f(s) for s ∈ S and U ⊆ S.
– the angelic iteration f∗ := LFP(Af),
– the demonic iteration f× := GFP(Df),

where LFP(Af) and GFP(Df) are the least and greatest fixed points of the maps

Af : MF(S) → MF(S) Df : MF(S) → MF(S)
g �→ ηS ∪ (f ; g) g �→ ηS ∩ (f ; g)

Note that for any f ∈ MF(S), the map g �→ f ; g is a monotone operation on
(MF(S),�) and hence so are Af and Df . By the Knaster-Tarski theorem, Af

and Df have unique least and greatest fixed points.

It is straightforward to verify that MF(S) is closed under the above oper-
ations. The following lemma lists a number of identities that will be useful in
reasoning about game logic semantics.

Lemma 1. For all f, g ∈ MF(S), we have:

1. (fd)d = f 4. (f ∪ g)d = fd ∩ gd 7. (f∗)d = (fd)×

2. (f ; g)d = fd ; gd 5. (f ∩ g)d = fd ∪ gd 8. (f×)d = (fd)∗

3. (ηS)d = ηS 6. f ⊆ g ⇒ gd ⊆ fd

We now have all the definitions in place to define game models and the
semantics of formulas and games. We first give some intuitions. A game model
consists of a state space together with interpretations of atomic propositions
(as subsets of the state space) and atomic games (as monotone neighbourhood
frames). The semantics of complex formulas and complex games is then defined
by mutual induction. For a formula ϕ, the semantics [[ϕ]] is defined via the usual
definitions from monotone modal logic. For a game α, the semantics 〈|α|〉 is a
monotone neighbourhood frame defined via the game constructions given above.
The subsets U in 〈|α|〉(s) are the sets of outcomes that Angel can “force” when
playing the game α in state s.

Definition 4. A game model is a triple S = (S, γ, Υ) where S is a set of states,
γ : Gam → MF(S) is a Gam-indexed collection of monotone neighbourhood
frames, which provides an interpretation of atomic games, and Υ : Prop → P(S)
is a valuation of atomic propositions. For ϕ ∈ F and α ∈ G we define the

120 H. H. Hansen et al.

semantics [[ϕ]]S ⊆ S and 〈|α|〉S ∈ MF(S) by induction on the term structure:

[[p]]S := Υ (p) for p ∈ Prop [[¬ϕ]]S := S \ [[ϕ]]S
[[ϕ1 ∨ ϕ2]]S := [[ϕ1]]S ∪ [[ϕ2]]S [[ϕ1 ∧ ϕ2]]S := [[ϕ1]]S ∩ [[ϕ2]]S

[[〈α〉ϕ]]S := {s ∈ S | [[ϕ]]S ∈ 〈|α|〉S(s)} 〈|α;β|〉S := 〈|α|〉S ; 〈|β|〉S
〈|g|〉S := γ(g) for g ∈ Gam 〈|αd|〉S := (〈|α|〉S)d

〈|α ∪ β|〉S := 〈|α|〉S ∪ 〈|β|〉S 〈|α ∩ β|〉S := 〈|α|〉S ∩ 〈|β|〉S
〈|α∗|〉S := (〈|α|〉S)∗ 〈|α×|〉S := (〈|α|〉S)×

〈|ψ?|〉S := λx.

{
ηS(x) if x ∈ [[ψ]]S
∅ otherwise. 〈|ψ!|〉S := λx.

{
ηS(x) if x �∈ [[ψ]]S
PS otherwise.

We write ϕ ≡ ψ if for all S, [[ϕ]]S = [[ψ]]S. Similarly, we write α ≡ β if for all S,
〈|α|〉S = 〈|β|〉S. We will often omit the subscript S, if S is clear from the context,
or irrelevant.

The following lemma states some basic identities involving the dual operator,
and a congruence property.

Lemma 2. Let ϕ,ψ ∈ F and α, β ∈ G. We have:

1. (αd)d ≡ α 2. (α;β)d ≡ αd;βd

3. (α ∪ β)d ≡ αd ∩ βd 4. (α ∩ β)d ≡ αd ∪ βd

5. (α∗)d ≡ (αd)× 6. (α×)d ≡ (αd)∗

7. (ψ?)d ≡ (¬ψ)! 8. (ψ!)d ≡ (¬ψ)?
9. 〈αd〉ϕ ≡ ¬〈α〉¬ϕ 10. If α ≡ β and ϕ ≡ ψ then 〈α〉ϕ ≡ 〈β〉ψ

We will make frequent use of the fact that all formulas and game terms can
be reduced to a dual and negation normal form.

Definition 5. A formula ϕ ∈ F , resp. game term α ∈ G, is in dual and negation
normal form (DNNF) if dual is only applied to atomic games and negations occur
only in front of proposition letters. We denote by FDNNF the set of formulas in
DNNF, and by GDNNF the set of game terms in DNNF.

Lemma 3. For all ϕ ∈ F , there is a DNNF formula nf(ϕ) such that ϕ ≡ nf(ϕ).
For all α ∈ G, there is a DNNF game term nf(α) such that α ≡ nf(α).

From now on we will generally assume that formulas are in DNNF. The
following lemma lists some crucial validities that form the basis for the definition
of the game semantics in the next section. It is straightforward to verify that
these formulas are valid.

Lemma 4. The following formulas are valid in all game models:

〈α;β〉ϕ ↔ 〈α〉〈β〉ϕ 〈αd〉ϕ ↔ ¬〈α〉¬ϕ
〈α ∪ β〉ϕ ↔ 〈α〉ϕ ∨ 〈β〉ϕ 〈α ∩ β〉ϕ ↔ 〈α〉ϕ ∧ 〈β〉ϕ

〈α∗〉ϕ ↔ ϕ ∨ 〈α〉〈α∗〉ϕ 〈α×〉ϕ ↔ ϕ ∧ 〈α〉〈α×〉ϕ
〈ψ?〉ϕ ↔ ψ ∧ ϕ 〈ψ!〉ϕ ↔ ψ ∨ ϕ

Parity Games and Automata for Game Logic 121

3 Game Semantics for Game Logic

In this section we will see how games provide an operational semantics for
game logic. In particular, we will develop a two-player evaluation game for
game logic, very much in the spirit of Berwanger [1]. Note however, that
the ambient model-theoretic structures in our setting are monotone neighbour-
hood structures, whereas Berwanger restricts to (relational) Kripke structures.
Our approach allows for a neat formulation of some useful additional obser-
vations involving the unfolding games related to monotone operations on full
powersets [26].

3.1 Game Preliminaries

Two-player graph games are an important tool for fixpoint logics. We will briefly
recall their definition and the related terminology. For a more comprehensive
account of these games, the reader is referred to [12]. A graph game is played
on a board B, that is, a set of positions. Each position b ∈ B belongs to one
of the two players, Eloise (abbr. ∃) and Abelard (abbr. ∀). Formally we write
B = B∃ ∪ B∀, and for each position b we use P (b) to denote the player i such
that b ∈ Bi. Furthermore, the board is endowed with a binary relation E, so
that each position b ∈ B comes with a set E[b] ⊆ B of successors. Note that we
do not require the games to be strictly alternating, i.e., successors of positions
in B∃ or B∀ can lie again in B∃ or B∀, respectively. Formally, we say that the
arena of the game consists of a directed two-sorted graph B = (B∃, B∀, E).

A match or play of the game consists of the two players moving a pebble
around the board, starting from some initial position b0. When the pebble arrives
at a position b ∈ B, it is player P (b)’s turn to move; (s)he can move the pebble
to a new position of their liking, but the choice is restricted to a successor of b.
Should E[b] be empty then we say that player P (b) got stuck at the position.
A match or play of the game thus constitutes a (finite or infinite) sequence
of positions b0b1b2 . . . such that biEbi+1 (for each i such that bi and bi+1 are
defined). A full play is either (i) an infinite play or (ii) a finite play in which the
last player got stuck. A non-full play is called a partial play. Each full play of
the game has a winner and a loser. A finite full play is lost by the player who
got stuck; the winning condition for infinite games is usually specified using a
so-called parity function, i.e., a function Ω : B → N that maps each position
to a natural number (its priority) and that has finite range. An infinite play
Π = b0b1 . . . bn · · · ∈ Bω is won by Eloise if max{Ω(b) | b ∈ Inf(Π)} is even,
where Inf(Π) denotes the positions from B that occur infinitely often in Π.
Otherwise Abelard wins this play. A graph game with parity function Ω is a
parity game. All graph games used in this paper are parity games, but we will
not specify the parity function explicitly in simple cases (e.g. when one of the
players is supposed to win all infinite plays).

A strategy for player i tells player i how to play at all positions where it is i’s
turn to move. A strategy can be represented as a partial function which maps
partial plays β = b0 · · · bn with P (bn) = i to legal next positions (that is, to

122 H. H. Hansen et al.

elements of E[bn]), and which is undefined for partial plays β = b0 · · · bn with
E[bn] = ∅. We say that a play Π = b1 . . . bn · · · ∈ B∗ ∪Bω follows a strategy f if
for all positions bj in Π on which f is defined we have f(bj) = bj+1. A strategy is
positional if it only depends on the current position of the match. A strategy is
winning for player i from position b ∈ B if it guarantees i to win any match with
initial position b, no matter how the adversary plays—note that this definition
also applies to positions b for which P (b) �= i. A position b ∈ B is called a
winning position for player i, if i has a winning strategy from position b; the set
of winning positions for i in a game F is denoted as Wini(F). Parity games are
positionally determined, i.e., at each position of the game board exactly one of
the players has a positional winning strategy (cf. [9,22]).

3.2 Definition of the Evaluation Game

In order to be able to trace the unfoldings of fixpoint operators within games
we need some terminology concerning the nesting of fixpoints. Firstly, we need
notation for the subterm relation and the definition of a parity map for a formula.

Definition 6. We let � ⊆ (F ∪ G)2 be the subterm relation on formulas and
game terms, i.e., ξ1 � ξ2 if either ξ1 = ξ2 or ξ1 is a proper subterm of ξ2.

Definition 7. For a term ξ ∈ F ∪G we let Fix(ξ) := {α∗ | α ∈ G, α∗ �ξ}∪{α× |
α ∈ G, α× � ξ}. A parity function for a formula ϕ in DNNF is a partial map
Ω : Fix(ϕ) → ω such that

1. α1 � α2 implies Ω(α1) < Ω(α2) for all α1, α2 ∈ Fix(ϕ) with α1 �= α2, and
2. for all α ∈ Fix(ϕ), Ω(α) is even iff α = ρ× is a demonic iteration.

We define the canonical parity function Ωcan : Fix(ϕ) → ω associated with ϕ
as the partial function given by Ωcan(α∗) = 2n + 1 and Ωcan(α×) = 2n where
n = #Fix(α∗) and n = #Fix(α×), respectively. The canonical parity function
formalises the fact that any fixpoint operator dominates any other fixpoint oper-
ator in its scope.

Definition 8. Let S = (S, γ, Υ) be a game model, let ϕ ∈ F be a formula
in DNNF and let Ω : Fix(ϕ) → ω be a parity function for ϕ. We define the
evaluation game E(S, ϕ) as the parity graph game with the game board specified
in Fig. 1 and the parity function ΩE given by

ΩE(b) :=
{

Ω(α) if b = (x, 〈α〉ψ) for some α ∈ Fix(ϕ)
0 otherwise.

3.3 Adequacy of Game Semantics

In this section we show that the game semantics of Definition 8 is equivalent to
the standard semantics of game logic from Definition 4 where we assume w.l.o.g.
that formulas are in DNNF.

Parity Games and Automata for Game Logic 123

traPemaGtraPalumroF

Position b P(b) Moves E[b]

(s, p), s ∈ Υ (p) ∀ ∅
(s, p), s /∈ Υ (p) ∃ ∅
(s, ¬p), s ∈ Υ (p) ∃ ∅
(s, ¬p), s �∈ Υ (p) ∀ ∅
(s, ϕ ∧ ψ) ∀ {(s, ϕ), (s, ψ)}
(s, ϕ ∨ ψ) ∃ {(s, ϕ), (s, ψ)}
(s, 〈g〉ϕ) ∃ {(U, 〈g〉ϕ) | U ∈ 〈|g|〉(s)}
(U, 〈g〉ϕ) ∀ {(s, ϕ) | s ∈ U}
(s, 〈gd〉ϕ) ∀ {(U, 〈gd〉ϕ) | U ∈ 〈|g|〉(s)}
(U, 〈gd〉ϕ) ∃ {(s, ϕ) | s ∈ U}

Position b P(b) Moves E[b]

(s, 〈α ;β〉ϕ) � {(s, 〈α〉〈β〉ϕ)}
(s, 〈α ∪ β〉ϕ) � {(s, 〈α〉ϕ ∨ 〈β〉ϕ)}
(s, 〈α ∩ β〉ϕ) � {(s, 〈α〉ϕ ∧ 〈β〉ϕ)}
(s, 〈α∗〉ϕ) � {(s, ϕ ∨ 〈α〉〈α∗〉ϕ)}
(s, 〈α×〉ϕ) � {(s, ϕ ∧ 〈α〉〈α×〉ϕ)}
(s, 〈ψ?〉ϕ) � {(s, ψ ∧ ϕ)}
(s, 〈ψ!〉ϕ) � {(s, ψ ∨ ϕ)}

Fig. 1. Game board of the evaluation game. We use P (b) = � to express that it is
irrelevant which player moves, since there is exactly one possible move.

To compare the two different semantics we need a game characterisation of
the ()∗ and ()×-operations. As both operations are defined as fixpoints they can
be characterised via fixpoint games (these games are straightforward adaptation
of the unfolding game described in [26]). We provide some intuition below the
definition.

Definition 9. Let α ∈ G be a game term, let S = (S, γ, Υ) be a game model
and let U ⊆ S. The games F(S, α∗, U) and F(S, α×, U) have the following game
boards:

Board of F(S, α∗, U): Board of F(S, α×, U):
Pos. b P (b) Moves E[b]

s ∈ S ∃
{{∅} if s ∈ U

〈|α|〉(s) otherwise.
U ′ ∈ P(S) ∀ U ′

Pos. b P (b) Moves E[b]

s ∈ S ∃
{ 〈|α|〉(s) if s ∈ U

∅ otherwise.
U ′ ∈ P(S) ∀ U ′

The winning conditions in these games are as usual: finite complete plays are
lost by the player that gets stuck. Infinite plays of F(S, α∗, U) and F(S, α×, U)
are won by Abelard and Eloise, respectively.

The fixpoint game F(S, α∗, U) works as follows. The objective of Eloise is to
reach U in finitely many rounds of α. At a position s ∈ U , Eloise can win by
choosing the move ∅ which causes Abelard to get stuck in the next step, since he
must choose from the empty set of moves. At a position s �∈ U , Eloise chooses
an α-neighbourhood U ′ of s, and in the next step Abelard then chooses a state
s′ ∈ U ′, and the game continues. In the game F(S, α×, U), the objective of Eloise
is to stay in U indefinitely. At a position s /∈ U , she therefore loses immediately
(indeed, she is stuck at such positions, since her set of moves is empty). But at
a position s ∈ U , the players play another round of α, and the game continues.

124 H. H. Hansen et al.

Lemma 5. For all S = (S, γ, Υ), α ∈ G, s ∈ S and U ⊆ S, we have:

s ∈ Win∃(F(S, α∗, U)) iff U ∈ 〈|α∗|〉(s), and
s ∈ Win∃(F(S, α×, U)) iff U ∈ 〈|α×|〉(s).

The lemma easily follows because the games F(S, α∗, U) and F(S, α×, U) are
instances of Tarski’s fixpoint games that characterise least and greatest fixpoints
of a monotone operator.

The following technical lemma demonstrates that winning strategies for
Eloise in the evaluation game entail the existence of certain neighbourhood
sets in the game model that witness the truth of a modal formula. There is
no requirement on the witness to be non-empty, e.g., s |= 〈α〉⊥ if ∅ ∈ 〈|α|〉(s).
Lemma 6. Let ϕ ∈ F , let S = (S, γ, Υ) be a game model and consider the game
E = E(S, ϕ). Assume that f∃ is a winning strategy for Eloise in E, and that
(s, 〈α〉ψ) ∈ Win∃(E). Let Winψ(E) := {s′ ∈ S | (s′, ψ) ∈ Win∃(E)} and suppose
Winψ(E) ⊆ [[ψ]]. Then Winψ(E) ∈ 〈|α|〉(s).

The lemma is the key to prove one direction of the adequacy of our game
semantics.

Proposition 1. Let ϕ ∈ F , let S = (S, γ, Υ) be a game model and consider
E = E(S, ϕ). For all ψ occurring in E we have Winψ(E) ⊆ [[ψ]]S.

The claim is proven by induction on ψ and follows easily from Lemma 6. For the
second half of the adequacy theorem we again need a technical lemma.

Lemma 7. Let S = (S, γ, Υ) be a game model and let ϕ ∈ F . For any position
(s, 〈α〉ψ) of the game E = E(S, ϕ) and for all U ⊆ [[ψ]]S with U ∈ 〈|α|〉(s) Eloise
has a strategy f∃ such that for each finite E-play Π starting at (s, 〈α〉ψ) and
following f∃ either Abelard gets stuck or Π reaches a state (s′, ξ′) ∈ S × F that
satisfies one of the following conditions: (i) ξ′ � α and s′ ∈ [[ξ′]], or (ii) ξ′ = ψ
and s′ ∈ U .

Proposition 2. Let S = (S, γ, Υ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . There is a strategy f∃ for Eloise that is winning for
Eloise for all game positions (s, ψ) such that s ∈ [[ψ]]S.

In summary, Propositions 1 and 2 imply that our game semantics for game
logic is adequate:

Theorem 1. Let S = (S, γ, Υ) be a game model and consider the game E =
E(S, ϕ) for some ϕ ∈ F . Then for all positions (s, ψ) in E we have (s, ψ) ∈
Win∃(E) iff S, s |= ψ.

Parity Games and Automata for Game Logic 125

4 Syntax Graphs

In this section we introduce syntax graphs which we then use later to provide
an automata-theoretic characterisation of game logic. Syntax graphs are a gen-
eralisation of syntax trees that allow cycles and sharing of subterms. Another
perspective is that they are a graph-based description of the alternating tree
automata from [19,29]. We discuss the precise connection after the definition of
syntax graphs and their game semantics.

4.1 Graph Basics

We first recall some basic notions and fix notation. A graph is a pair G = (V,E)
where V is a set of vertices V and E ⊆ V × V is a set of edges. We will use the
following notation: vEw iff (v, w) ∈ E iff w ∈ E(v), and call w a successor of v.

Let G = (V,E) be a graph. A path p in G is a sequence of vertices p = v1 . . . vn

such that viEvi+1 for all i < n. We say that vn is reachable from v1 if a path
p = v1 . . . vn exists. Note that every vertex is always reachable from itself. A
cycle c = v1 . . . vn is any path such that v1 = vn and n ≥ 2.

A path p = v1 . . . vn is simple if all the vi for i ≤ n are distinct. A cycle
c = v1 . . . vn is simple if all the vi for i < n are distinct Every path can be
contracted to a simple path with the same start and end points, To see how this
works consider a path p that contains a repetition of some vertex u ∈ V . This
means that p is of the form p = qumur, for paths q, m and r. We contract p to
the path qur with the same starting and end points, in which there is one less
occurrence of u. We can repeat this procedure until we obtain a simple path.

A pointed graph G = (V,E, vI) is a graph (V,E) together with a vI ∈ V
that we call the initial vertex of G. If G is a graph (V,E) or a pointed graph
(V,E, v) and vI is a vertex in G, we define G@vI = (V ′, E′, vI) to be the subgraph
generated by vI in G, i.e., V ′ is the set of vertices that are reachable from vI

and E′ = E ∩ (V ′ × V ′).
A pointed graph G = (V,E, vI) is reachable if every v ∈ V is reachable from

vI . Note that G@vI is always reachable.

4.2 Syntax Graphs

We define the following sets of label symbols: Lit = Lb0 := {p,¬p | p ∈ Prop},
Latt = Lb2 := {∧,∨} and Mod = Lb1 := {〈g〉 | g ∈ Gam} ∪ {〈gd〉 | g ∈ Gam}.
The labels Lb0, Lb1, Lb2 can be given an arity in the expected manner, namely,
for l ∈ Lbi, arity(l) = i. We let Lb := Lb0 ∪ Lb1 ∪ Lb2.

Definition 10. A syntax graph G = (V,E,L,Ω) is a finite graph (V,E)
together with a labelling function L : V → Lb and a partial priority function
Ω : V ⇀ ω satisfying the following two conditions:

(arity condition). For all v ∈ V , |E(v)| = arity(L(v)).
(priority condition). On every simple cycle of (V,E) there is at least one

vertex on which Ω is defined.

126 H. H. Hansen et al.

Later we will show that formulas correspond to syntax graphs, and game
terms correspond to syntax graphs with a special atomic proposition that marks
an “exit” from the graph. The idea is that a game term α is viewed as the
modality 〈α〉 which still needs a formula ϕ in order to become a formula 〈α〉ϕ,
and an exit marks a place in the graph where ϕ can be inserted.

Definition 11. A proposition letter e is an exit of a syntax graph G =
(V,E,L,Ω) if there is a vertex v ∈ V with L(v) = e and there is no v ∈ V
with L(v) = ¬e.

We say that a proposition letter p is reachable from a vertex v in G if there
is some vertex u that is reachable from v in G with L(u) = p or L(u) = ¬p. The
priority of a path (or cycle) p = v1 . . . vn is defined by

Ω(p) = max ({−1} ∪ {Ω(vi) | 1 ≤ i ≤ n}) ,

i.e., Ω(p) = −1 if Ω is undefined on all the vi.

Due to the close connection between formulas and syntax graphs, we can
define an acceptance game for syntax graphs in essentially the same way as
in Definition 8, using that successors in the syntax graph can be viewed as
subformulas.

Definition 12. Let G = (V,E,L,Ω, vI) be a pointed syntax graph and S =
(S, γ, Υ, sI) be a pointed game model. We define the acceptance game A =
A(G,S) as a parity game with the game board as specified in Fig. 2, initial posi-
tion (vI , sI) and priority function ΩA such that ΩA(v, s) = Ω(v) if Ω(v) is
defined and ΩA(v, s) = 0 otherwise. If Eloise has a winning strategy in the game
A(G,S) then we say that G accepts S. We also write S, s |= G to mean that
Eloise has a winning strategy in the game A(G,S) starting from position (vI , s).

Given a pointed syntax graph G and a formula ϕ, we write G ≡ ϕ if for all
S, Eloise has a winning strategy in E(S, ϕ) iff she has one in A(G,S).

Position b P (b) Moves E[b]

(v, s), L(v) = p, s ∈ Υ (p) ∀ ∅
(v, s), L(v) = p, s /∈ Υ (p) ∃ ∅
(v, s), L(v) = ¬p, s ∈ Υ (p) ∃ ∅
(v, s), L(v) = ¬p, s /∈ Υ (p) ∀ ∅
(v, s), L(v) = ∧ ∀ {(w0, s), (w1, s)}, where E(v) = {w0, w1}
(v, s), L(v) = ∨ ∃ {(w0, s), (w1, s)}, where E(v) = {w0, w1}
(v, s), L(v) = 〈g〉 ∃ {(v, U) | U ∈ 〈|g|〉(s)}
(v, U), L(v) = 〈g〉 ∀ {(w, s) | s ∈ U, L(v) = {w}}
(v, s), L(v) = 〈gd〉 ∀ {(v, U) | U ∈ 〈|g|〉(s)}
(v, U), L(v) = 〈gd〉 ∃ {(w, s) | s ∈ U, L(v) = {w}}

Fig. 2. Game board of the acceptance game A(G, S)

Parity Games and Automata for Game Logic 127

A syntax graph is essentially a multi-modal version of an alternating tree
automaton (ATA) with partial priority function as described in [29, Sect. 2.2.5].
Namely, taking the transition graph of an ATA as defined in [29, Sect. 2.2.4] and
equipping this graph with the evident labelling function, yields a syntax graph.
Conversely, given a syntax graph one constructs for each vertex a transition
condition from its label and successors in the obvious manner. If desired, a partial
priority function Ω can be made into a total map Ω′ by defining Ω′(v) = Ω(v)+2
if v ∈ VP and Ω′(v) = 0 otherwise. One easily adapts the notion of a run on a
pointed Kripke structure from [29] to a run on a pointed game model (by dealing
with modal transition conditions as in the modal positions of Definition 12) such
that there exists an accepting run for the ATA on S iff Eloise has a winning
strategy in the acceptance game for the corresponding syntax graph on S.

As described in [29, Sect. 2.2.5] and in more detail in [19, Sect. 9.3.4] ATAs
can be generalised to allow complex transition conditions (i.e. arbitrary formulas)
without increasing their expressive power. The basic idea in transforming an ATA
with complex transition condition into an equivalent ATA is to introduce new
states for each node in the syntax tree of the transition conditions.

Monotone modal automata are obtained by instantiating the definition of
Λ-automaton from [11] with the function MGam and taking Λ to be a suitable set
of predicate liftings. Monotone modal automata and their unguarded variants are
expressively complete for the monotone (multi-modal) μ-calculus. On the other
hand, unguarded monotone modal automata are essentially the same as ATAs
with complex transition condition (running on monotone neighbourhood models
for a multi-modal signature), hence by the above transformation, unguarded
monotone modal automata can be viewed as syntax graphs, and vice versa.

We have chosen to work with syntax graphs rather than ATAs or monotone
modal automata, since we characterise the game logic fragment mainly in terms
of the graph structure. In the following section, we identify a class GG of syn-
tax graphs that correspond to game logic formulas. By the correspondence just
outlined, we can define game automata as those unguarded monotone modal
automata for which the corresponding syntax graph (ATA) is in GG.

5 The Game Logic Fragment

In this section we define game logic graphs, which are a class of syntax graphs
that has the same expressivity over neighbourhood frames as formulas in game
logic. After giving the definition of game logic graphs, we show that for each
game logic formula there is a game logic graph that accepts a pointed game
model iff the formula is true at the model and, vice versa, for every game logic
graph there is a game logic formula that is true at a pointed game model iff the
game logic graphs accepts the model.

5.1 Game Logic Graphs

The idea behind the definition of game logic graphs is that cycles in the graph
correspond to formulas of the form 〈α∗〉ϕ and 〈α×〉ϕ. Consider e.g. the axiom for

128 H. H. Hansen et al.

〈α∗〉ϕ (in Lemma 4). We see that the vertex v corresponding to the disjunction in
ϕ ∨ 〈α〉〈α∗〉ϕ has a special role as a vertex on the corresponding cycle. Namely,
let vl and vr be the two successors of v where going to vl means leaving the
cycle (going to subformula ϕ) and going to vr means remaining on the cycle
(going to subformula 〈α〉〈α∗〉ϕ). We will refer to this v as the head of the cycle
corresponding to 〈α∗〉ϕ. If the cycles in the syntax graph arise from a nesting of
fixpoint formulas, and Ω is the parity function of some formula (cf. Definition 7),
then certain conditions will need to hold for the cycles and Ω. This is made
precise in the following definition.

Definition 13. Given a syntax graph G = (V,E,L,Ω) in which Ω is injective,
we let h := Ω−1 : ran(Ω) → V denote the inverse of Ω on its range. We use the
abbreviation hn := h(n) and call hn the head of priority n. Whenever we write
hn, we presuppose that n ∈ ran(Ω).

A game logic graph is a syntax graph G = (V,E,L,Ω) in which Ω is injective
and the following conditions hold for all n ∈ ran(Ω):

(parity). L(hn) = ∨ if n is odd and L(hn) = ∧ if n is even.
(head). There are maps r, l : ran(Ω) → V , for which we also use the abbrevia-

tions rn := r(n) and ln := l(n), such that E(hn) = {ln, rn} and
(leave). For all simple paths p = ln . . . hn we have that Ω(p) > n.
(remain). There is no simple path hnrn . . . hm for any m > n.

A game logic graph with exit is a syntax graph with exit G = (V,E,L,Ω, e)
for which (V,E,L,Ω) is a game logic graph that additionally satisfies:

(exit). For all n ∈ ran(Ω) and all v ∈ V with L(v) = e, there is no simple path
hnrn . . . v.

5.2 From Formulas to Game Logic Graphs

Our first result in characterising the game logic fragment of syntax graphs shows
that we can translate game logic formulas into equivalent game logic graphs.

Theorem 2. For every game α ∈ GDNNF in which the proposition letter e does
not occur, there is a pointed syntax graph G with exit e such that G ≡ 〈α〉e. For
every game logic formula ϕ ∈ FDNNF there is a pointed syntax graph G such that
G ≡ ϕ.

The proof of Theorem 2 is by a mutual induction on the structure of games
and formulas, and is similar to the construction of a nondeterministic finite
automaton from a regular expression [17], that is, we define constructions on
syntax graphs that correspond to game operations and logical connectives. The
recursive procedure itself is similar to the translation of game logic into the μ-
calculus [24], with the difference that we directly translate into syntax graphs
instead of formulas of the μ-calculus.

For example, we construct G1 ;G2 where G1 and G2 are given by the induc-
tion hypothesis by rerouting the edges that went to an exit vertex in G1 to go to

Parity Games and Automata for Game Logic 129

the initial state of G2. The priority function Ω for G1 ;G2 is unchanged on the
G2 part, but in order to make sure Ω is injective we shift all priority values in
G1 by adding to them a number k that preserves the parity and ensures that all
priorities in the G1 part are higher than those in the G2 part. The correctness of
the construction is proved by constructing winning strategies in the evaluation
game from winning strategies in the acceptance game, and vice versa. A detailed
proof is provided in [15].

Example 1. Below we show the syntax graphs of some formulas. The initial ver-
tex is the topmost vertex, and priorities are indicated as subscripts on the vertex
labels.

∧2

∧ e

∨1 p

〈g〉

∨

∨ ∧

p 〈g〉 q e

e

∧2

∨ e

∨1 〈h〉

∧

¬p 〈g〉

ϕ = 〈(p?; g∗)×〉e ϕ = 〈(p!; g) ∪ q?〉e ϕ = 〈(((¬p)?; g)∗ ∪ h)×〉e

5.3 From Game Logic Graphs to Formulas

We now show how to transform game logic graphs into equivalent game logic
formulas.

Theorem 3. For every pointed game logic graph with exit G = (V,E,L,Ω, e, vI)
there is a game term δ ∈ G, not containing e and only containing propositional
letters that are reachable from vI , such that G ≡ 〈δ〉e.

The proof of Theorem 3 is by induction on the number of heads in the game
logic graph. In the base case there are no heads which implies that there are no
cycles in the graph, which makes it easy to recursively decompose the graph into
a game term. In the inductive step we use a construction that removes some of
the edges at the head with the highest priority and thus cutting all cycles that
pass through the highest priority head. This allows us to remove the priority
from this head and obtain a simpler game logic graph to which we can apply the
induction hypothesis. A detailed proof is provided in [15].

Because any propositional letter e that does not occur in G can be added as an
exit to a game logic graph G we obtain the following corollary from Theorem 3:

Corollary 1. For every pointed game logic syntax graph G there is a formula
ϕ ∈ F such that G ≡ ϕ.

130 H. H. Hansen et al.

Example 2. We apply the construction from Theorem 3 to the graph on the left
in Example 1. The heads h1 and h2 are the disjunction with priority 1 and the
conjunction with priority 2, respectively. We start the decomposition at h2. We
then first obtain a game δ2 = λ×

2 , where λ×
2 is a dummy game term that is a

place holder for the game through the left child of h2, that describes how to
reach the exit from the initial state without iterating at h2. We also apply the
induction hypothesis to obtain a new game λ2 that describes one iteration from
the left node to h2, which we replace by a fresh exit e′. In this inductive step
we then need to cut h1. At h1 we have δ1 = λ∗

1 ∩ p? ; p! and λ1 = 〈g〉. We then
obtain λ2 by substituting λ∗

1 in δ1 with λ∗
1 and thus obtain λ1 = g∗ ∩ (p? ; p!).

Substituting λ×
1 for λ×

1 in δ2 yields the overall game (g∗ ∩ (p? ; p!))×. Hence the
game graph is equivalent to the formula 〈(g∗ ∩ (p? ; p!))×〉e.

6 Conclusion

We have provided a semantics for game logic in terms of parity games. This was
the key to obtain our main technical result, the characterisation of game logic
graphs, i.e., a class of parity automata that correspond to game logic formulas.

These automata open several avenues for future research: Firstly, we would
like to study normal forms in game logic. In the μ-calculus, automata are the
key to obtain the (semi-)disjunctive normal forms of formulas which can be used
to prove further results, e.g., completeness, interpolation and the characterisa-
tion of the expressivity of the logic [6,18,28]. Our experience suggests that a
similar normal form for game logic is out of reach, but a careful analysis of the
cycle structure of game logic graphs might yield useful insights concerning the
structure of game logic formulas. As a first step in this direction we are cur-
rently investigating how to obtain guarded game logic graphs and, consequently,
a definition of guarded game logic formulas.

Furthermore, game logic constitutes a very general dynamic logic that makes
very few assumptions on the algebraic properties of the modal operators. There-
fore we believe that our game logic automata have the potential to help us
understand a wider class of automata for families of dynamic logics such as coal-
gebraic dynamic logics [14] or many-valued dynamic logics as described in [21]
or for a combination of these frameworks.

References

1. Berwanger, D.: Game logic is strong enough for parity games. Stud. Logica 75(2),
205–219 (2003)

2. Bradfield, J., Stirling, C.: Modal μ-calculi. In: Handbook of Modal Logic, pp. 721–
756. Elsevier (2006)

3. Carreiro, F., Venema, Y.: PDL inside the μ-calculus: a syntactic and an automata-
theoretic characterization. In: Goré, R., Kooi, B., Kurucz, A. (eds.) Advances in
Modal Logic, vol. 10, pp. 74–93. College Publications (2014)

Parity Games and Automata for Game Logic 131

4. Carreiro, F.: Fragments of fixpoint logics. Ph.D. thesis, University of Amsterdam
(2015)

5. Chellas, B.F.: Modal Logic: An Introduction. Cambridge University Press, Cam-
bridge (1980)

6. d’Agostino, G., Hollenberg, M.: Logical questions concerning the μ-calculus. J.
Symbol. Logic 65, 310–332 (2000)

7. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs
(extended abstract). In: Proceedings of the 29th Symposium on the Foundations
of Computer Science, pp. 328–337. IEEE Computer Society Press (1988)

8. Emerson, E.A., Jutla, C.S., Sistla, P.: On model checking for the μ-calculus and
its fragments. Theor. Comput. Sci. 258, 491–522 (2001)

9. Emerson, E., Jutla, C.: Tree automata, mu-calculus and determinacy. In: Proceed-
ings of the 32nd IEEE Symposium on Foundations of Computer Science (FoCS
1991), pp. 368–377. IEEE (1991)

10. Enqvist, S., Seifan, F., Venema, Y.: Completeness for μ-calculi: a coalgebraic app-
roach. Technical rep. PP-2017-04, ILLC, Universiteit van Amsterdam (2017)

11. Fontaine, G., Leal, R., Venema, Y.: Automata for coalgebras: an approach using
predicate liftings. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 381–392. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-14162-1 32

12. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata, Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

13. Hansen, H.H.: Monotonic modal logic. Master’s thesis, University of Amsterdam
(2003). iLLC Preprint PP-2003-24

14. Hansen, H.H., Kupke, C.: Weak completeness of coalgebraic dynamic logics. In:
Fixed Points in Computer Science (FICS). EPTCS, vol. 191, pp. 90–104 (2015)

15. Hansen, H., Kupke, C., Marti, J., Venema, Y.: Parity games and automata for
game logic (extended version) (2017). http://www.arxiv.org

16. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. The MIT Press, Cambridge
(2000)

17. Hopcroft, J., Ullman, J.: Introduction to Automata Theory, Languages, and Com-
putation. Addison-Wesley, Reading (1979)

18. Janin, D., Walukiewicz, I.: Automata for the modal μ-calculus and related results.
In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 552–562.
Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60246-1 160

19. Kirsten, D.: Alternating tree automata and parity games. In: Grädel, E., Thomas,
W., Wilke, T. (eds.) Automata Logics, and Infinite Games. LNCS, vol. 2500, pp.
153–167. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36387-4 9

20. Kozen, D.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27,
333–354 (1983)

21. Madeira, A., Neves, R., Martins, M.: An exercise on the generation of many-valued
dynamic logics. J. Logic Algebraic Method Program. 85(5), 1011–1037 (2016)

22. Mostowski, A.: Games with forbidden positions. Technical rep. 78, Instytut Matem-
atyki, Uniwersytet Gdański, Poland (1991)

23. Parikh, R.: The logic of games and its applications. In: Topics in the Theory of
Computation. Annals of Discrete Mathematics, vol. 14. Elsevier (1985)

24. Pauly, M.: Logic for social software. Ph.D. thesis, University of Amsterdam (2001)
25. Pauly, M., Parikh, R.: Game logic: an overview. Stud. Logica 75(2), 165–182 (2003)
26. Venema, Y.: Lectures on the modal μ-calculus (2012). https://staff.science.uva.nl/

y.venema/

https://doi.org/10.1007/978-3-642-14162-1_32
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
http://www.arxiv.org
https://doi.org/10.1007/3-540-60246-1_160
https://doi.org/10.1007/3-540-36387-4_9
https://staff.science.uva.nl/y.venema/
https://staff.science.uva.nl/y.venema/

132 H. H. Hansen et al.

27. Walukiewicz, I.: On completeness of the mu-calculus. In: Proceedings of the Eighth
Annual Symposium on Logic in Computer Science (LICS 1993), pp. 136–146. IEEE
Computer Society (1993)

28. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional μ-
calculus. Inf. Comput. 157(1–2), 142–182 (2000). LICS 1995. San Diego, CA

29. Wilke, T.: Alternating tree automata, parity games, and modal μ-calculus. Bull.
Belg. Math. Soc. 8, 359–391 (2001)

Model Checking Against Arbitrary Public
Announcement Logic: A First-Order-Logic

Prover Approach for the Existential Fragment

Tristan Charrier(B), Sophie Pinchinat, and François Schwarzentruber

Université de Rennes 1, 35000 Rennes, France
{tristan.charrier,sophie.pinchinat}@irisa.fr,

francois.schwarzentruber@ens-rennes.fr

Abstract. In this paper, we investigate the model checking problem of
symbolic models against epistemic logic with arbitrary public announce-
ments and group announcements. We reduce this problem to the satisfi-
ability of Monadic Monadic Second Order Logic (MMSO), the fragment
of monadic-second order logic restricted to monadic predicates. In partic-
ular, for the case of epistemic formulas in which all arbitrary and group
announcements are existential, the proposed reduction lands in monadic
first-order logic. We take advantage of this situation to report on few
experiments we made with first-order provers.

1 Introduction

In a multi-robot system, agents collect knowledge from what they perceive with
their sensors and from the information acquired from some communication chan-
nel [31,32]. In order to formalize the notion of knowledge, epistemic modal log-
ics have been developed. For instance, Dynamic epistemic logic [9,43] aims at
expressing properties about the knowledge of agents and at modeling informa-
tion change in multi-agent settings. Public announcement logic PAL [38] is a
noticeable fragment of Dynamic epistemic logic, where possible events are pub-
lic announcements. Since then, variants/extensions of PAL have been developed:
typically, arbitrary public announcement logic APAL [6] and group announce-
ment logic GAL [2]. The family of announcement logics has been the subject of
much work as they open the way to formal reasoning in many practical appli-
cations. We here mention a few, at the intuitive level only. For example, such
logics enable one to reason about human/robot interaction via a public channel
of communication: message exchanges between robots can be modeled by public
announcements when there is common knowledge of the reliability of the net-
work and when it is assumed that messages are received instantaneously [32].
Announcement logics, as well as dynamic epistemic logic, are also relevant in
games [34]: in the Battleships, players publicly announce that there is a ship

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 133–152, 2018.
https://doi.org/10.1007/978-3-319-73579-5_9

134 T. Charrier et al.

1 3 4 2 6 7 5

a b c

Fig. 1. Example of hands for the Russian cards puzzle

in a given cell. In card games, players often publicly show some cards to other
players or announce something. Some issues in security may also be approached
with announcement logic: for example, one may wish to verify that no announce-
ment leads the system to a critical/bad state, say, where Intruder knows some
secret [17]. Finally, gossip-based algorithms in distributed systems, where agents
privately share their secrets in order to achieve shared knowledge of all secrets1,
may be analyzed with announcement logic [28,41].

In order to get started with announcement logic, we develop the classic Rus-
sian card example.

Example 1 (Russian card [42,44]). We consider three agents, a, b and c. Agent
a has 3 cards in her hand, b has 3 cards in his hand and c has 1 card in his
hand. The cards range from 1 to 7. Given a hand, say as in Fig. 1, the question
is whether a and b can publicly announce truthful facts so that they commonly
know all players’ hands but c not learning any card from a’s or b’s hands from
the course of announcements.

In the case where a and b have 3 cards and c1 card, it is shown in [44] that
it is possible for a and b to share information about their hands in any possible
configuration in one single public announcement for a and one single public
announcement for b.

Of course, a cannot just announce what her hand is, because it would cause
c to learn the content of her hand. The trick for a consists in announcing a set
of possible hands such that b can deduce what a’s hand is, and c cannot. In
the example of Fig. 1, if a announces the sentence (Δ) “My hand is either 134,
126, 367, 465 or 275”, she ensures that for any possible configuration of hands
for b and c, b will always be able to deduce a’s hand and c will never deduce
any card of a’s hand. After a has announced (Δ), b actually knows all hands of
the players. Therefore, b announces “c has card 5 is his hand” so that a knows
all hands.

Regarding logics APAL and GAL, it has been proved that their satisfiability
problem are undecidable [3,25]. It has been shown that the satisfiability prob-
lem with iterations over public announcements is undecidable too [36], so the
satisfiability problem with any protocol is also undecidable. Nevertheless, these
logics are very relevant for model checking, that is verifying that a given model
satisfies a given property. The model checking problem is at the heart of this
contribution. Additionally, the setting we consider is the one of symbolic mod-
els. These models are not specified in extension but described by means of all

1 In a minimal number of communications.

Model Checking Against Arbitrary Public Announcement Logic 135

the possible valuations of a finite set of propositions (each valuation denotes a
possible world) and the indistinguishability relations (one for each agent) are
specified by accessibility programs.

We introduce a second example, the standard muddy children puzzle [43],
and we pull its definition to a symbolic model. Both Russian cards and muddy
children examples will be useful in the paper.

Example 2 (muddy children). We consider n children playing in their garden.
Some of them have mud on their forehead, some have not. Each child can see
the others’ forehead2, but she cannot see her own. We suppose that all children
are honest and clever. Their father comes to them and says: “At least one of you
has mud on her head”. Then he repeatedly asks “Does any one of you know for
sure whether he/she is muddy?”. He stops asking when at least one child tells
that she knows.

The solution to this very classic puzzle is that if k children are muddy with
k ≤ n, no child knows its status before round k, and the muddy children know
their status in round k3.

Formally, the initial situation is modeled by a Kripke model containing all
combinations of possible children’s forehead’s status, that is 2n possible worlds.
In a given situation/world, each child considers one other possible world that
differs from the current one regarding her own forehead’s status. Figure 2 shows
the Kripke model for two agents. Proposition pa stands for “a is muddy” while
proposition pb symmetrically stands for “b is muddy”.

Because Kripke models may be large – in the muddy children example the
model is exponential in the number of children – many symbolic representations
have been considered in the model checking literature (see for example [5]) and
more recently in epistemic logic [19,20,40]. We use here the notion of symbolic
accessibility relations that we call accessibility programs, or simply programs,
that can modify propositional variables. These programs are akin to a dialect
used in PDL [24], called DL-PA, for “dynamic logic of propositional assignments”
[8]. These programs turn out to be the natural way of defining Kripke models.
For instance, for the muddy children puzzle, the program of agent a (resp. b) is:
Non-deterministically choose between setting the value of pa (resp. pb) to false
or to true. As observed in [20], the size of a symbolic Kripke model (that is the
size needed to describe the collection of agent programs) may be exponentially
smaller than the size any equivalent non-symbolic Kripke model4. Thus it is
polynomial in the number of children in the muddy children’s example.

The symbolic model checking of APAL was already studied in [19]. Its
complexity was proved to be ApolExptime-complete, and NExptime-complete
when restricted to existential arbitrary announcements. Recall that the class
ApolExptime[14,15,29] stands for the class of problems decided by alternating
Turing machines [16] that run in exponential time but with only a polynomial

2 Henceforth if there is mud.
3 Clean children know their status during round k + 1.
4 For non-symbolic Kripke models, the size is the one of its graph.

136 T. Charrier et al.

number of alternations along the computation, hence it is in between Exptime
and Aexptime (=Expspace).

In this paper, instead of building specific algorithms for model checking sym-
bolic models against arbitrary public announcement and group announcement
logic (AGPAL, the natural combination of APAL and GAL), we bring closer this
logic and first-order logic. More precisely:

1. We show a polynomial reduction from the symbolic model checking5 against
AGPAL to the satisfiability problem of the monadic monadic second order
logic, written MMSO here, that is the fragment of monadic second order logic
where all predicates in the formula are monadic.

2. We prove that this reduction leads to a reduction from the symbolic model
checking of existential AGPAL6 (∃AGPAL) to the satisfiability problem of
monadic first-order logic, that we write MFO. This reduction is supported by
the fact that the symbolic model checking against ∃AGPAL and the satisfia-
bility problem of monadic first-order logic are both NExptime-complete (see
respectively [19] and [4,33,35]).

3. We build a set of benchmarks for FO provers and report on our experiments.

We claim that the relationship we establish between announcement logics and
first-order logic cross-fertilizes two communities: the one in dynamic epistemic
logic would benefit from the expertise of researchers in first-order provers in term
of efficiency of algorithms and theorem proving techniques; the other community
from first-order logic will collect new benchmarks that correspond to instances
of the symbolic model checking problem of ∃AGPAL.

The article is organized as follows. In Sect. 2, we recall the setting of MMSO
and MFO. Next, in Sect. 3, we describe the language AGPAL and its existential
fragment ∃AGPAL. Sections 4 (resp. Sect. 5) is dedicated to the reduction of
the symbolic model checking problem against AGPAL (resp. ∃AGPAL) to the
satisfiability problem for MMSO (resp. MFO). In Sect. 6, we benefit from the use
of FO provers to solve the symbolic model checking problem against ∃AGPAL,
and report on our experiments. Finally, we open perspectives for future work in
Sect. 7.

In the rest of this paper, we fix a countable set of atomic propositions AP =
{p, q, p1, p2, . . .}.

2 Brief Recall on First and Second-Order Logics

Monadic monadic second-order logic MMSO and its fragment monadic first-order
logic MFO are central in the proposed approach. These monadic fragments of
MSO and FO respectively disallow the use of non-unary predicates and of func-
tion symbols: MMSO-formulas are thus monadic second-order formulas with
first-order and second-order variables but with no occurrence of non-unary pred-
icates; MFO-formulas have only first-order variables. The signature of MMSO
5 A short way for model checking of symbolic models.
6 The fragment of AGPAL with only existential arbitrary and group announcements.

Model Checking Against Arbitrary Public Announcement Logic 137

mimics the set of atomic propositions AP: to each atomic proposition p ∈ AP, we
introduce a corresponding unary predicate symbol P (.)7.

A model M of MMSO is a structure (D, (PM)p∈AP) where D is a non-empty
domain and each PM ⊆ D. We will use the classical notation of the form M [...]
for the model M extended with (first-order and second-order) variable assign-
ments: for instance, M [x ← e, y ← e′,X ← D′,Y ← D′′] is the model M in which
first-order variables x and y are interpreted by element e ∈ D and e′ ∈ D respec-
tively, and second-order variables X and Y are interpreted by element D′ ⊆ D
and D′′ ⊆ D respectively.

Regarding the properties of MMSO and MFO, it is known that the satisfia-
bility problem of a MFO-formula is NExptime-complete [4,33]. Also, there are
plenty of FO provers: Isabelle, iprover, Z3 [21], CVC4 [10]. In particular, the
prover iprover won CASC 2016 in EPR division [39].

3 Background on Arbitrary/Group Public Announcement

In this section, we define the logic AGPAL that extends both arbitrary pub-
lic announcement logic and group announcement logic, as well at its fragment
∃AGPAL. Moreover, we consider symbolic models to interpret these logics, and
state the symbolic model checking problem.

3.1 Syntax of AGPAL

Let AP be a countable set of atomic propositions. Let Agt be a finite set of agents.
We define the logic AGPAL that extends both arbitrary public announcement
logic and group announcement logic, but we simply call it announcement logic.

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | Kaϕ | 〈ϕ!〉ϕ | 〈•!〉ϕ | 〈•!G〉ϕ
where p ranges over AP and a over Agt. Formula Kaϕ reads as “agent a knows
that ϕ holds”. Construction 〈ψ!〉ϕ reads as “ψ is true and after having announced
ψ, formula ϕ holds”. 〈•!〉ϕ reads as “there exists a true formula ψ such that makes
ϕ true after announcing it”. Formula 〈•!G〉ϕ reads as “agents of group G can
make ϕ hold by announcing at the same time each a formula she knows”. In
other words, it means that “there exists a true formula of the form

∧
a∈G Kaψa

such that make ϕ hold after announcing it”. As usual, we write (ϕ ∨ ψ) for
¬(¬ϕ ∧ ¬ψ), K̂aϕ for ¬Ka¬ϕ, [ψ!]ϕ for ¬〈ψ!〉¬ϕ. We concisely write 〈ψ!〉nϕ for
〈ψ!〉 . . . 〈ψ!〉ϕ where the announcement of ψ takes place n times.

Example 3 (Muddy children with n children). Suppose that all children are
muddy. Formula 〈∨a∈Agt pa!〉〈(∧a∈Agt ¬Kapa)!〉n

∧
a∈Agt Kapa states that all chil-

dren know that they are muddy after the father announces that one of them is
muddy and then announces n times that no child knows that she is muddy. It
is known that this formula holds in the initial situation of the muddy children
puzzle.
7 We take the convention that atomic propositions are written in lowercase while the

corresponding predicates are written in uppercase.

138 T. Charrier et al.

Example 4 (Russian cards). We introduce propositions pi,a for “agent a has
card i”. Let APh be the set of all propositions pi,a, pi,b, pi,c for i ∈ {1, . . . , 7}.

Let S7 be the set of all permutations of {1, . . . , 7}. Given h = (h1, ..., h7) an
element of S7, we define

ϕRh(h) = ph1,a ∧ph2,a ∧ph3,a ∧ph4,b ∧ph5,b ∧ph6,b ∧ph7,c ∧
∧

p∈APh\{ph1,a,...,ph7,c}
¬p.

ϕRh(h) describes a particular configuration h of the hands for the players.
The rules of the game are defined by the formula ϕR =

∨
h∈S7

ϕRh(h).
The following formula ϕG states that both a and b know the card configura-

tions while c does not:

ϕG =
∨

h∈S7

(KaϕRh(h)∧KbϕRh(h)))∧
∧

p∈{p1,a,...,p7,a,p1,b,...,p7,b}
¬(Kcp)∧¬(Kc¬p)

In the Russian card situation, the goal is to check that 〈•!a〉〈•!b〉ϕG holds.

3.2 Syntax of ∃AGPAL

We now define the fragment ∃AGPAL of AGPAL, where arbitrary and group
announcement operators are only existential. Formally, ∃AGPAL is defined by
the following grammar.

∃AGPAL � ϕ ::= ψ | ϕ ∨ ϕ | ϕ ∧ ϕ | K̂aϕ | 〈ϕ!〉ϕ | 〈•!〉ϕ | 〈•!G〉ϕ
ψ ::= p | ¬ψ | ψ ∨ ψ | Kaψ

where p ∈ AP and a is an agent.

Example 5. The formula 〈•!a〉〈•!b〉ϕG given in the Russian card Example is in
∃AGPAL.

Example 6. Formula Kb〈•!a〉Kcp is not in ∃AGPAL since 〈•!a〉 occurs after Kb.
Formula K̂b〈•!a〉Kcp is in ∃AGPAL.

3.3 Semantics of AGPAL

Formulas of AGPAL are interpreted on classic Kripke models with the possible
world semantics, widely used in logics of knowledge [23].

Definition 1. A Kripke model is a tuple M = (W, { a−→}a∈Agt, V), where:

– W is the non-empty set of worlds,
– for each a ∈ Agt, a−→⊆ W × W is the accessibility relation for agent a,
– V : W → 2AP is the valuation on worlds, that reveals the set of propositions

that hold.

Model Checking Against Arbitrary Public Announcement Logic 139

w : {pa, pb} u : {pb}

v : {pa} s : ∅

a

a

b b

a, b

a, b

a, b

a, b

Fig. 2. Kripke model for the muddy children puzzle for two agents

For the sake of generality, we do not require the accessibility relations to be
equivalence relations.

Example 7 (muddy children). Figure 2 shows a Kripke model for muddy children
with n = 2 agents. It has four worlds w, u, v, s. The arrows represent the agents’
accessibility relations. For an arbitrary number n of agents, the Kripke model is
M = (W, { i−→}i∈Agt, V) where:

– W = 2{pa|a∈Agt};
– a−→= {(w, u) | w \ {pa} = u \ {pa}};
– V (w) = w.

This Kripke model is a graph containing 2n nodes and 2n+1 × |Agt| edges.

Example 8 (Russian cards). A Kripke model corresponding to the Russian card
puzzle is M = (W, { a−→}a∈Agt, V) where:

– W is the set of valuations over APh that satisfy formula ϕR; where ϕR is
defined in Example 4;

– w
a−→ u if w ∩ {pi,a | i ∈ {1, . . . , 7}} = u ∩ {pi,a | i ∈ {1, . . . , 7}};

– V (w) = w.

Informally, W is the set of all distributions of cards, w
a−→ u if a holds the same

cards in both worlds w and u, and the valuation V (w) is given by w.

Back to the semantics of AGPAL, we now define the truth conditions for
M, w |= ϕ (read as “formula ϕ is true in world w of model M”) and the restric-
tion Mψ of a model M to a formula ψ.

Definition 2. We define M, w |= ϕ (read as “formula ϕ is true in world w of
model M”) and Mψ (the ψ-restriction of M) by mutual induction:

– M, w |= p if p ∈ V (w);
– M, w |= (ϕ1 ∧ ϕ2) if M, w |= ϕ1 and M, w |= ϕ2;
– M, w |= ¬ϕ if M, w �|= ϕ;
– M, w |= Kaϕ if for all u such that w

a−→ u, M, u |= ϕ;

140 T. Charrier et al.

– M, w |= 〈ψ!〉ϕ if M, w |= ψ and Mψ, w |= ϕ;
– M, w |= 〈•!〉ϕ if there exists a formula ψ without any occurrence of 〈•!〉 or

〈•!G〉 such that M, w |= 〈ψ!〉ϕ;
– M, w |= 〈•!G〉ϕ if there exist formulas (ψa)a∈G without any occurrence of 〈•!〉

or 〈•!G〉, such that M, w |= 〈∧a∈G Kaψa!〉ϕ.

and Mψ is the model (Wψ, { a−→ψ}i∈Agt, V
ψ) where

– Wψ = {u ∈ W | M, u |= ψ} (namely, only worlds satisfying ψ are preserved);

– a−→ψ
= a−→ ∩(Wψ × Wψ);

– V ψ is the restriction of V to Wψ.

Example 9 (muddy children continued). Let M be the model of Fig. 2. We have:

M, w |= 〈Kbpa!〉Kapa ∧ 〈•!〉Kapa ∧ 〈•!{b}〉Kapa.

3.4 Symbolic Presentations of Models

As in [19,20], a symbolic accessibility relation, simply called an accessibility pro-
gram, or even a program, describes a relation between valuations by executing an
explicit sequence of propositional variable assignments. We write u

π−→ v for “v
is a π-successor of u by π”. The syntax for symbolic programs is the following.

π ::= p←β | β? | (π;π) | (π ∪ π) | (π ∩ π) | π−1

where p ∈ AP, β is a Boolean formula over AP.
The intuitive meaning of the constructions for programs is given in Table 1.

Table 1. Informal meaning of programs

p←β Set p to the value of Boolean formula β

β? Test that β holds

π; π′ Execute π then execute π′

π ∪ π′ Non-deterministically execute π or π′

π ∩ π′ Execute the intersection of π and π′

π−1 Converse of π

In what follows, we let set(p1, . . . , pn) denote the program (p1←⊥ ∪
p1←�); . . . ; (pn←⊥ ∪ pn←�) that sets arbitrary values to p1, . . . , pn.

Example 10 (Programs for the muddy children example). Since child a sees the
forehead of child b but not her own, the program of a amounts to varying the
truth value of pa. That is, πa = set(pa), and symmetrically for b, πb = set(pb).

Model Checking Against Arbitrary Public Announcement Logic 141

The semantics of programs is defined by induction.

– w
p←β−−−→ u iff (w �|= β and u = w\{p}) or (w |= β and u = w ∪ {p});

– w
β?−→ u iff w |= β and w = u;

– w
π1;π2−−−→ u iff there exists v s.t. w π1−→ v and v

π2−→ u;
– w

π1∪π2−−−−→ u iff w
π1−→ u or w

π2−→ u;
– w

π1∩π2−−−−→ u iff w
π1−→ u and w

π2−→ u;

– w
π−1

−−→ u iff u
π−→ w.

The size of a program is the number of nodes its syntax tree, or equivalently
the number of symbols needed to write it, parenthesis omitted. For instance, the
program (p ← �) ∪ (q?; p ← ⊥) has size 10.

As we have seen, the models are symbolically described by means of pro-
grams. They yield symbolic Kripke models that denote classic Kripke models8.
However, the former may be exponentially more succinct than the latter.

Definition 3 (Symbolic Kripke models). A symbolic Kripke model is a
tuple M = 〈APM , (πa)a∈Agt〉 where APM ⊆ AP is a finite set of atomic propositions
and πa is a program over APM for each agent a.

Intuitively, each program πa symbolically describes the accessibility relation
for an agent a.

Example 11. The symbolic Kripke model corresponding to the initial situation
of the muddy children puzzle is M = 〈APM , (πa)a∈Agt〉 where:

– APM = {pa | a ∈ Agt};
– πa = set(pa) for all agents a.

A pointed symbolic Kripke model is a pair (M, w) where M =
〈APM , (πa)a∈Agt〉 is a symbolic Kripke model and w is a valuation over APM .

We define the explicit Kripke model M̂(M) associated to the symbolic Kripke
model M: the set of worlds is the set of valuations over APM and the accessibility
relation a−→ is the relation πa−→.

Definition 4. Given a symbolic Kripke model M = 〈APM , (πa)a∈Agt〉, the
Kripke model represented by M, noted M̂(M) is the model (W, (a−→)a∈Agt, V)
where:

– W = V(APM) where V(APM) is the set of valuations over APM ;
– a−→= {(w, u) ∈ W 2 | w πa−→ u};
– V (w) = w.

We write M, w |= ϕ instead of M̂(M), w |= ϕ.

8 Actually, and vice versa [20].

142 T. Charrier et al.

Example 12 (muddy children continued). The Kripke model corresponding to
M is M̂(M) = (W, { a−→}a∈Agt, V) where W = V(APM); for every a ∈ Agt, a−→=
{(w, u) ∈ W 2 | w \ pa = u \ pa}; V (w) = w. Compared to the Kripke model given
in Example 7 whose size is exponential in |Agt|, the symbolic Kripke model is of
size 3|Agt|.
Example 13 (Russian cards). First we consider the following symbolic Kripke
model M = 〈APM , (πa)a∈Agt〉 where: APM = {pi,a, pi,b, pi,c | i ∈ {1, . . . , 7}};
πx = set{pi,y | i ∈ {1, . . . , 7} and y ∈ {a, b, c} \ {x}} for agent x ∈ {a, b, c}.
The Kripke model corresponding to the initial situation of the Russian card
is M̂(M)ϕR , which corresponds to model M̂(M) after the fake announcement
ϕR that enforces common knowledge that agents a and b have 3 cards each and
c has 1.

We finally define the symbolic model checking problem against AGPAL which
is central in our contribution, and that we write AGPAL-mc.

– Input: a symbolic model M, a valuation w, and a formula ϕ;
– Output: yes if M, w |= ϕ, no otherwise.

4 Announcement Logic into Monadic Monadic
Second-Order Logic

We reduce the model checking against AGPAL to the satisfiability problem
of MMSO. Intuitively, second-order variables denote current sets of valuations,
called contexts, and first-order variables denote possible worlds/valuations. We
present the reduction in four steps:

1. we define an MMSO-theory that enforce the MMSO-model to contain all
valuations (Theorem 1);

2. we translate arbitrary accessibility programs into first-order logic (Theo-
rem 2);

3. we translate AGPAL formulas into MMSO (Theorem3);
4. we give the reduction of the AGPAL-model checking into the MMSO-

satisfiability problem (Theorem 4).

4.1 The Theory of Models of Valuations

In this section, we fix a set of atomic propositions A. Since we evaluate AGPAL-
formulas on a symbolic model M meant to denote the Kripke model with all
valuations, we therefore need to enforce that all such valuations are captured.

Definition 5. The model of valuations MA on A is the structure MA =
(D, (PMA)p∈A) with D is the domain of all valuations on A and the interpreta-
tion of P is defined by as PMA(w) iff p ∈ w.

Model Checking Against Arbitrary Public Announcement Logic 143

In what follows, we write PA for the set of atomic predicates associated to some
p ∈ A.

Definition 6. Let β be a Boolean formula over A. We define the first-order
formula tr(β)(x) to be formula β in which each occurrence of p ∈ AP is replaced by
P (x). Similarly, for a valuation w, we define tr(w)(x) for the formula describing
w where all p are replaced by P (x).

Example 14. Let β = (p∨q)∧(¬p∨q). Then tr(β)(x) = (P (x)∨Q(x))∧(¬P (x)∨
Q(x)).

Example 15. Let w = {p, q} a valuation over A = {p, q, r}. tr(w)(x) = P (x) ∧
Q(x) ∧ ¬R(x).

We define a theory TA such that MA satisfies TA and every model satisfying
TA is isomorphic to MA.

Currently, in an arbitrary structure (D, (PM
i)pi∈AP), two distinct elements

e, e′ in D may be such that e ∈ PM
i iff e′ ∈ PM

i for all pi ∈ AP. To prevent
it, we define ϕunique = ∀x∀y(x = y) ↔ ∧

p∈A(P (x) ↔ P (y)). It says that two
elements satisfy the same predicates (i.e. are the same valuation) iff they are
equal. We define too ϕexists says that for each valuation, for each atomic propo-
sition p, there exists another valuation that differs only on p. In other words,
ϕexists = ∀x∧

p∈A

(
∃y

(
(P (x) ↔ ¬P (y)) ∧ ∧

q∈A,q �=p(Q(x) ↔ Q(y))
))

, imposing
all valuations to appear in the model.

By letting TA = {ϕunique, ϕexists}, we get the following.

Theorem 1. For all MMSO-models M , we have M |= TA iff M is isomorphic
to MA.

Proof. ⇐: It is sufficient to prove that MA |= TA:
• MA |= ϕunique because each valuation is represented exactly one time in

D and by Definition 5, P mimics the role of the atomic propositions in
the valuations.

• MA |= ϕexists because all valuations are represented in D.
Therefore MA |= TA and thus M |= TA.

⇒: Let M be such that M |= TA. Let D′ be the domain of M and P ′ be the
monadic predicates of M . We define the mapping f : D′ → D such that for
all e ∈ D, f(e) is the valuation {p | e ∈ P ′} ∈ D. We conclude by showing
that f is an isomorphism.

• f is injective: if f(e) = f(e′), it means that for all P , e ∈ PM iff e′ ∈ PM .
With M |= ϕunique, we conclude that e = e′.

• f is surjective: let w be an element of D. As D′ is non-empty, let e be
in D′. As M |= ϕexists, we can, from e, guarantee the existence of an
element e′ of D′ such that f(e′) = w.

From Theorem 1, we obtain the following.

Corollary 1. Let ϕ be an MMSO-formula. Then MA |= ϕ if, and only if, TA∧ϕ
is MMSO-satisfiable.

144 T. Charrier et al.

4.2 From Programs to FO-Formulas

Definition 7. Let π be a program and x, y be two first-order variables. We define
the first-order formula π(x, y) by induction π as follows:

(p ← β)(x, y) = (P (y) ↔ tr(β)(x)) ∧ ∧
q∈A,q �=p (Q(x) ↔ Q(y));

β?(x, y) = tr(β)(x) ∧ (x = y);
(π1;π2)(x, y) = ∃z π1(x, z) ∧ π2(z, y).
(π1 ∪ π2)(x, y) = π1(x, y) ∨ π2(x, y);
(π1 ∩ π2)(x, y) = π1(x, y) ∧ π2(x, y);
π−1(x, y) = π(y, x).

The formula π(x, y) expresses that y is a π-successor of x. It should be noticed
that formulas π(x, y) are in MFO, although the notation might be misleading.
Formally:

Theorem 2. For all worlds w, u and π, w π−→ u if, and only if, MA[x ← w, y ←
u] |= π(x, y).

Proof. By induction on π.

– π = p ← β:
w

p←β−−−−→ u iff (p ∈ u iff w |= β) and for all q �= p, (q ∈ w iff q ∈ u).

iff M A[x ← w, y ← u] |= P (y) ↔ tr(β)(x) and for all q �= p, M A[x ← w, y ← u] |= Q(x) ↔ Q(y).

iff M A[x ← w, y ← u] |= (p ← β)(x, y).

– π = β?:
w

β?−→ u iff w = u and w |= β
iff MA[x ← w, y ← u] |= (x = y) and MA[x ← w, y ← u] |= tr(β)(x).
iff MA[x ← w, y ← u] |= β?(x, y).

– π = π1;π2:
w

π1;π2−−−→ u iff there exists v such that w
π1−→ v and v

π2−→ u

iff there exists v such that MA[x ← w, y ← u, z ← v] |= π1(x, z) ∧ π2(z, y).
iff MA[x ← w, y ← u] |= (π1; π2)(x, y).

– π = π1 ∪ π2:
w

π1∪π2−−−−→ u iff w
π1−→ u or w

π2−→ u
iff MA[x ← w, y ← u] |= π1(x, y) or MA[x ← w, y ← u] |= π2(x, y)
iff MA[x ← w, y ← u] |= (π1 ∪ π2)(x, y).

– π = π1 ∩ π2:
w

π1∩π2−−−−→ u iff w
π1−→ u and w

π2−→ u
iff MA[x ← w, y ← u] |= π1(x, y) and MA[x ← w, y ← u] |= π2(x, y)
iff MA[x ← w, y ← u] |= (π1 ∩ π2)(x, y).

– π = π′−1:
w

π′−1

−−−→ u iff u
π′
−→ w

iff MA[x ← w, y ← u] |= π(y, x)
iff MA[x ← w, y ← u] |= π′−1(x, y).

Model Checking Against Arbitrary Public Announcement Logic 145

4.3 From AGPAL-Formulas to MMSO-Formulas

In the following definition, we define trX(ϕ)(x) to be the translation of the
AGPAL-formula ϕ, where x is a first-order variable representing the valuation in
which the formula ϕ is evaluated and X is a second-order variable representing
the context (namely, the set of valuations that survived the previous announce-
ments). Both variables x and X are the sole free variables of trX(ϕ)(x).

Definition 8. Let M = 〈APM , (πa)a∈Agt〉 be a symbolic model, ϕ be a AGPAL-
formula, X be a second-order variable, and x be a first-order variable. We define
the MMSO-formula trX(ϕ)(x) by induction over ϕ, with the notation Y ⊆ X for
∀x(Y(x) → X(x)).

trX(p)(x) = P (x);
trX(¬ϕ)(x) = ¬trX(ϕ)(x);
trX(ϕ1 ∨ ϕ2)(x) = trX(ϕ1)(x) ∨ trX(ϕ2)(x);
trX(Kaϕ)(x) = ∀y [(X(y) ∧ πa(x, y)) → trX(ϕ)(y)];
trX(〈ϕ!〉ψ)(x) = ∃Y (∀y Y(y) ↔ (X(y) ∧ trX(ψ)(y))) ∧ Y(x) ∧ trY(ϕ)(x);
trX(〈•!〉ϕ)(x) = ∃Y Y ⊆ X ∧ Y(x) ∧ trY(ϕ)(x);
trX((〈•!G〉ϕ))(x) = ∃Y Y ⊆ X ∧ isGroupAnnouncementG(Y) ∧ Y(x) ∧ trY(ϕ)(x).

where isGroupAnnouncementG(Y) =
∧

a∈G ∀x (∀y πa(x, y) → (∃z πa(z, y) ∧
Y(z))) → Y(x).

Formula trX(Kaϕ)(x) mimics the standard translation of modal logic into
first-order logic ([11], p. 84), except that we use the MFO-formula πa(x, y)
instead of Ra(x, y). In formula trX(〈ϕ!〉ψ)(x), we ask for the existence of
a context Y that corresponds to the set of valuations in which ψ holds
(∀y Y(y) ↔ (X(y) ∧ trX(ψ)(y))), that contains x (Y(x)) and where ϕ holds.
Formula trX(〈•!〉ϕ)(x) is similar to formula trX(〈ϕ!〉ψ)(x), except that, as the
announcement is arbitrary, we only impose that the context Y is included in
X. Formula trX((〈•!G〉ϕ))(x) is similar to trX(〈•!〉ϕ)(x) but we impose that the
announcement is a group announcement. This constraint is guaranteed by for-
mula isGroupAnnouncementG(Y) that is a characterization of submodels gener-
ated by a group announcement.

We now state and prove the correctness of the translation.

Theorem 3. Let M be a symbolic model on A, ϕ be an AGPAL-formula on
A and w ∈ M. Let DM be the set of valuations of M. Then M, w |= ϕ iff
MA[x ← w,X ← DM] |= trX(ϕ)(x).

Proof. By induction on ϕ.

– ϕ = p:
M, w |= ϕ iff p ∈ w

iff MA[x ← w,X ← DM] |= P (x)
– ϕ = ¬ψ:

M, w |= ¬ψ iff M, w �|= ψ
iff MA[x ← w,X ← DM] �|= trX(ϕ)(x)
iff MA[x ← w,X ← DM] |= ¬trX(ϕ)(x)

146 T. Charrier et al.

– ϕ = ϕ1 ∨ ϕ2:
M, w |= ϕ1 ∨ ϕ2 iff M, w |= ϕ1 or M, w |= ϕ2

iff MA[x ← w,X ← DM] |= trX(ϕ1)(x) or MA[x ← w,X ← DM] |= trX(ϕ2)(x)

iff MA[x ← w,X ← DM] |= trX(ϕ1)(x) ∨ trX(ϕ2)(x)

– ϕ = (Kaϕ):
M, w |= (Kaψ) iff for all u ∈ DM such that w

πa−−→ u, M, u |= ψ

iff for all u ∈ DM such that w
πa−−→ u, MA[y ← u,X ← DM] |= trX(ψ)(y)

iff for all u ∈ DM such that MA[x ← w, y ← u,X ← DM] |= πa(x, y),
MA[y ← u,X ← DM] |= trX(ψ)(y)

iff MA[x ← w,X ← DM] |= ∀y (X(y) ∧ πa(x, y) → trX(ϕ)(y))

– ϕ = (〈χ!〉ψ):
M, w |= (〈χ!〉ψ) iff M, w |= χ and Mχ, w |= ψ

iff M, w |= χ; for all u, (u ∈ DMχ iff u ∈ DM and M, u |= χ); and Mχ, w |= ψ

iff w ∈ DMχ ; and for all u, (M A[y ← u, Y ← DMχ] |= Y(y) iff

M A[y ← u, X ← DM] |= X(y) and M A[y ← u, X ← DM] |= trX(χ)(y));

and M A[x ← w, Y ← DMχ] |= trX(ψ)(y))

iff M A[x ← w, X ← DM, Y ← DMχ] |= Y(x) ∧ (∀y Y(y) ↔ (X(y) ∧ trX(ψ)(y))) ∧ trY(χ)(x)

iff M A[x ← w, X ← DM] |= ∃Y Y(x) ∧ (∀y Y(y) ↔ (X(y) ∧ trX(ψ)(y))) ∧ trY(χ)(x)

– ϕ = (〈•!〉ψ):9
M, w |= (〈•!〉ψ) iff there exists a formula χ such that M, w |= 〈χ!〉ψ.

iff there exists D′ ⊆ DM such that w ∈ D′ and M′, w |= ψ

(where M′ is M restricted to D′.) (see footnote 9)

iff there exists D′ such that MA[X ← DM,Y ← D′] |= ∀y Y(y) → X(y) and

MA[x ← w,Y ← D′] |= Y(x) and MA[x ← w,Y ← D′] |= trY(ψ)(x))

iff MA[x ← w,X ← DM] |= ∃Y (∀y Y(y) → X(y)) ∧ Y(x) ∧ trY(ϕ)(x)

– ϕ = (〈•!G〉ψ): to prove this case, we first prove the following lemma.

Lemma 1. Let M be a Kripke model on AP, ψ be a formula on APM , a an agent.
Then for all contexts D′ ⊆ DM, there exists χ such that D′ = DMKπa χ iff

MA[X ← DM,Y ← D′] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y πa(x, y) → (∃z πa(z, y) ∧ Y(z))) → Y(x))

Proof. ⇒ If there exists χ such that D′ = DMKπa χ then MA[X ← DM,Y ←
D′] |= (∀y Y(y) → X(y)). For the other formula, let w be a world such
that for all u with w

πa−→ u, there exists a world v with v
πa−→ u. Then by

definition, M, u |= χ and so M, w |= Kπa
χ. We conclude that w ∈ D′, so

MA[X ← DM,Y ← D′] |= (∀y Y(y) → X(y))∧∀x (∀y πa(x, y) → (∃z πa(z, y)∧
Y(z))) → Y(x)).

⇐ If MA[X ← DM,Y ← D′] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y πa(x, y) →
(∃z πa(z, y) ∧ Y(z))) → Y(x)) then D′ ⊆ DM. Let χ be the formula char-
acterizing postπa

(D′) = {u ∈ DM, there exists v ∈ D′ such that v
πa−→ u}

(the successors of D′ via πa). Then we obtain D′ ⊆ DMKπa χ . For the other
implication, we observe that any element of D′ ⊆ DMKπa χ has all its πa-
successors in postπa

(D′), so is in D′.

Now back to the proof of the ϕ = (〈•!G〉ψ) case. Thanks to Lemma 1, we obtain:

9 The right-to-left implication is proven by considering χ =
∨

w∈D′
∧

p∈A,p∈w p ∧∧
q∈A,q �∈w ¬q.

Model Checking Against Arbitrary Public Announcement Logic 147

M, w |= (〈•!〉ψ) iff there exists formulas {χg , g ∈ G} such that M, w |= 〈∧g∈G Kπg χg !〉ψ.

iff there exists {Dg , g ∈ G} such that for all g ∈ G

MA[X ← DM,Y ← Dg] |= (∀y Y(y) → X(y)) ∧ ∀x (∀y πa(x, y)
→ (∃z πa(z, y) ∧ Y(z))) → Y(x))

and MA[x ← w,Y ← ⋂
g∈G Dg] |= Y(x) ∧ trY(ψ)(x).

iff MA[x ← w,X ← DM] |= trX((〈•!G〉ψ))(x).

4.4 Reduction from AGPAL-mc to MMSO-sat

We wrap up our results obtained so far to define the reduction from the symbolic
model checking problem against AGPAL to the MMSO-satisfiability problem.

Definition 9 (reduction). Given a pointed symbolic Kripke model (M, w) and
an AGPAL-formula ϕ, we let τ(M, w, ϕ) be the MMSO formula TA ∧ tr(w)(x)∧
∀yX(y) ∧ trX(ϕ)(x) that is computable in polynomial time in the size of M.

By Corollary 1 and Theorem 3 we get the following.

Theorem 4. M, w, |= ϕ iff τ(M, w, ϕ) is MMSO-satisfiable.

Because the symbolic model checking of AGPAL is ApolExptime-hard [19],
we obtain:

Corollary 2. MMSO-satisfiability problem is ApolExptime-hard.

However, as discussed in the next section, restricting to logic ∃AGPAL yields
a reduction to the satisfiability problem of monadic first-order logic MFO.

5 Existential Announcement Logic into Monadic
First-Order Logic

If we restrict inputs M, w, ϕ of the AGPAL-model checking by letting ϕ ∈
∃AGPAL, then τ(M, w, ϕ) is an MMSO-formula where all second-order quan-
tifiers are existential and are not under the scope of universal quantifiers. Such
second-order quantifiers can be removed from the formula τ(M, w, ϕ) resulting
in a MFO-formula.

Since the symbolic model checking against ∃AGPAL is NExptime-hard [19],
the icing on the cake is the following already well-known lower-bound.

Corollary 3. MFO-satisfiability problem is NExptime-hard.

In the next section, we make use of this reduction to solve the symbolic model
checking problem against ∃AGPAL.

6 Implementation

We implemented the reduction from ∃AGPAL to MFO in OCaml. We also built
benchmarks. The code and a readme file can be found at the following link
https://github.com/tcharrie/agpal-mmso

https://github.com/tcharrie/agpal-mmso

148 T. Charrier et al.

6.1 Description of the Implementation

The input is an ∃AGPAL formula of the type agpal formula in the source code.
The type acc program represents accessibility programs, the type bool formula
boolean formulas, and the type fo formula MFO-formulas (the output of
the code). The function agpal formula to mfo defines the translation from
∃AGPAL formulas to MFO formulas (as in Definition 9).

In addition to the algorithm for the reduction, we implemented a function
from existential formulas to the TPTP format [1] used by the FO-SAT-solvers,
called agpal formula to tptp. It first calls the function agpal formula to mfo,
then calls the function mfo formula to tptp that transforms a MFO-formula
into its TPTP representation.

6.2 Benchmarks

We provide benchmarks for FO-provers built from the muddy children and the
Russian card puzzles in order to tests the combinatorial ability of FO-provers.

Muddy children. We consider the following true properties:

– ϕmuddy
standard = 〈∨a∈Agt pa!〉〈∧a∈Agt ¬(Kapa ∧ ¬Ka¬pa)!〉 . . . 〈∧a∈Agt ¬(Kapa ∧

¬Ka¬pa)!〉∨
a∈Agt(Kapa ∨Ka¬pa): standard formalization of the muddy chil-

dren.
– ϕmuddy

arbitrary = 〈∨a∈Agt pa!〉〈•!〉∧
a∈Agt(Kapa ∨Ka¬pa): variant with an arbitrary

announcement.
– ϕmuddy

group = 〈∨a∈Agt pa!〉〈•!Agt〉
∧

a∈Agt(Kapa ∨ Ka¬pa): variant with a group
announcement.

where Agt = {1, . . . , n}.

Russian cards. For this example, agents a and b holds the same number of cards
n. For instance, the classical Russian cards problem corresponds to n = 3. Let
ϕRussian

goal =
∧2n+1

i=1 (Kapi,b ∨Ka¬pi,b)∧ (Kbpi,a ∨Kb¬pi,a)∧¬Kcpi,a ∧¬Kc¬pi,a ∧
¬Kcpi,b ∧ ¬Kc¬pi,b. We consider three types of properties:

– ϕRussian
arbitrary = 〈ϕR!〉〈•!〉ϕRussian

goal : formalization of the Russian cards with a
unique arbitrary announcement.

– ϕRussian
group1

= 〈ϕR!〉〈•!a〉ϕRussian
goal : formalization with only one announcement

from a. This formula is not satisfiable.
– ϕRussian

group2
= 〈ϕR!〉〈•!a〉〈•!b〉ϕRussian

goal : normal formalization of the Russian cards
problem.

6.3 Experiments

To perform the tests, we used the FO-solver Iprover [30] on a HP EliteBook 840
G2. The prover Iprover enabled us to test whether a FO-formula is satisfiable or
not. The results are summarized in Fig. 3.

We now briefly comment on the experiments.

Model Checking Against Arbitrary Public Announcement Logic 149

n = ϕmuddy
arbitrary n = ϕmuddy

standard ϕmuddy
group n = ϕRussian

arbitrary ϕRussian
group1 ϕRussian

group2

3 0.03s 3 0.07s 0.04s 2 0.18s 0.32s 0.45s
10 0.20s 4 0.09s 0.08s 3 0.44s 0.85s 0.92s
25 1.32s 5 0.19s 0.22s 4 3.80s 3.51s 3.32s
40 3.23s 6 0.24s 0.25s 5 23.48s 26.80s 24.20s
55 9.405s 7 > 10min > 10min 6 > 10min > 10min > 10min

Fig. 3. Results for the implementation of the reduction from ∃AGPAL to MFO, using
the FO-SAT-solver Iprover.

Muddy children. For ϕmuddy
arbitrary, the FO-SAT solver seems to perform well in all

cases, as arbitrary announcements only require the new context to be included
in the previous one. Hence, in this example, it is sufficient to restrict the model
to the current world in order to satisfy the goal of ϕmuddy

arbitrary. However, for the
other tests, namely ϕmuddy

standard and ϕmuddy
group , the FO-SAT-solver is able to test up to

n = 6 agents. This can be explained by the fact public announcements and group
announcements add significant combinatorial constraints to the specification.

Russian cards. For the three properties, the tests cannot exceed n = 6 cards,
the main reason being that the rules of the game are very combinatorial, as for
the muddy children.

Notice that the problems we have considered are puzzles, thus highly com-
binatorial. For the muddy children puzzle, the existential second-order quantifi-
cation ranges over 22n

subsets. For n = 7, we have 227
= 2128 ∼ 1038, that is,

about the number of positions 1.15868.. × 1042 of a chess board.
Still, our implementation is promising and provides some interesting bench-

marks for FO-provers.

7 Conclusion

We have reduced the problem of model checking symbolic Kripke models against
AGPAL formulas to the satisfiability problem of MMSO, and shown that for
the fragment ∃AGPAL, the reduction yields a satisfiability problem of some
MFO formulas, which is known to be decidable [4,33]. We then have conducted
experiments with FO provers. Our experiments show that the symbolic model
checking problem against ∃AGPAL is difficult. As this problem is equivalent10 to
the MFO-satisfiability problem (they are both NEXPTIME-complete), we claim
that efforts to obtain efficient algorithms are alike.

An interesting future work would be to effectively synthesize announcements.
To this aim, we would like to generate the most simple formula to be announced
so that a given property holds. This is close to the problem of generating a
first-order model for a given MFO-formula.

10 A reversed reduction can be proved.

150 T. Charrier et al.

We believe that our work is important since it would give efficient algorithms
for several symbolic models in epistemic logic [7,18,26,27]. We also believe that
the work done can improve epistemic planning specifications: in epistemic plan-
ning instances [13], the set of available actions is finite and described explicitly.
Arbitrary announcement is a way to describe them implicitly. One can think of
them as an action type while a specific announcement is an action token. Having
efficient algorithms in this context would be very relevant.

Besides, we strongly believe that efficient data structures as in [37] for rep-
resenting sets of sets of valuations are useful. Indeed, as Boolean formulas cor-
respond to a set of valuations (and thus to binary decision diagrams [22]), an
AGPAL-formula corresponds to a set of pair context/world, that, in a nutshell,
could be represented by a set of sets of valuations.

On a more theoretical side, we would like to investigate on the relationship
between announcement logics and MSO. Indeed, in MSO, second-order quan-
tifications range over arbitrary sets (or over finite sets in weak-MSO) while
announcements restrict the model to sets that are bisimulation-closed. We are
not aware of any results regarding such second-order quantifiers.

Acknowledgments. We thank Konstantin Korovin who helped us to use iprover. We
thank Ocan Sankur for pin-pointing us the article [12] where the authors reduce the
model checking of safety properties into FO.

References

1. The tptp (thousands of problems for theorem provers) library. http://www.cs.
miami.edu/∼tptp/

2. Ågotnes, T., Balbiani, P., van Ditmarsch, H., Seban, P.: Group announcement
logic. J. Appl. Logic 8(1), 62–81 (2010)

3. Ågotnes, T., van Ditmarsch, H., French, T.: The undecidability of group announce-
ments. In: International Conference on Autonomous Agents and Multi-agent Sys-
tems, AAMAS 2014, Paris, France, 5–9 May 2014, pp. 893–900 (2014)

4. Bachmair, L., Ganzinger, H., Waldmann, U.: Set constraints are the monadic class.
In: Proceedings of the Eighth Annual Symposium on Logic in Computer Science
(LICS 1993), Montreal, Canada, 19–23 June 1993, pp. 75–83 (1993)

5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press, Cambridge
(2008)

6. Balbiani, P., Baltag, A., van Ditmarsch, H.P., Herzig, A., Hoshi, T., De Lima,
T.: What can we achieve by arbitrary announcements?: a dynamic take on fitch’s
knowability. In: TARK, pp. 42–51 (2007)

7. Balbiani, P., Gasquet, O., Schwarzentruber, F.: Agents that look at one another.
Logic J. IGPL 21(3), 438–467 (2013)

8. Balbiani, P., Herzig, A., Troquard, N.: Dynamic logic of propositional assignments:
a well-behaved variant of PDL. In: LICS, pp. 143–152 (2013)

9. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Proceedings of the 7th Conference on Theo-
retical Aspects of Rationality and Knowledge, pp. 43–56. Morgan Kaufmann Pub-
lishers Inc. (1998)

http://www.cs.miami.edu/~tptp/
http://www.cs.miami.edu/~tptp/

Model Checking Against Arbitrary Public Announcement Logic 151

10. Barrett, C., Conway, C.L., Deters, M., Hadarean, L., Jovanović, D., King, T.,
Reynolds, A., Tinelli, C.: CVC4. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV
2011. LNCS, vol. 6806, pp. 171–177. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-22110-1 14

11. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press,
New York (2001)

12. Bloem, R., Könighofer, R., Seidl, M.: SAT-based synthesis methods for safety specs.
In: McMillan, K.L., Rival, X. (eds.) VMCAI 2014. LNCS, vol. 8318, pp. 1–20.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54013-4 1

13. Bolander, T., Andersen, M.B.: Epistemic planning for single and multi-agent sys-
tems. J. Appl. Non-Class. Logics 21(1), 9–34 (2011)

14. Bozzelli, L., van Ditmarsch, H., Pinchinat, S.: The complexity of one-agent refine-
ment modal logic. In: del Cerro, L.F., Herzig, A., Mengin, J. (eds.) JELIA 2012.
LNCS (LNAI), vol. 7519, pp. 120–133. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33353-8 10

15. Bozzelli, L., van Ditmarsch, H.P., Pinchinat, S.: The complexity of one-agent refine-
ment modal logic. In: IJCAI (2013)

16. Chandra, A.K., Stockmeyer, L.J.: Alternation. In: Proceedings of FOCS 1976, pp.
98–108 (1976)

17. Chareton, C., van Ditmarsch, H.: Strategic knowledge of the past in quantum
cryptography. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS,
vol. 10455, pp. 347–361. Springer, Heidelberg (2017). https://doi.org/10.1007/978-
3-662-55665-8 24

18. Charrier, T., Herzig, A., Lorini, E., Maffre, F., Schwarzentruber, F.: Building epis-
temic logic from observations and public announcements. In: Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fifteenth International
Conference, KR 2016, Cape Town, South Africa, 25–29 April 2016, pp. 268–277
(2016)

19. Charrier, T., Schwarzentruber, F.: Arbitrary public announcement logic with men-
tal programs. In: Proceedings of the 2015 International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey, 4–8 May 2015,
pp. 1471–1479 (2015)

20. Charrier, T., Schwarzentruber, F.: A succinct language for dynamic epistemic logic.
In: Proceedings of the 16th Conference on Autonomous Agents and Multi-agent
Systems, AAMAS 2017, São Paulo, Brazil, 8–12 May 2017, pp. 123–131 (2017)

21. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

22. Drechsler, R., Becker, B.: Binary Decision Diagrams - Theory and Implementation.
Springer, Berlin (1998). https://doi.org/10.1007/978-1-4757-2892-7

23. Fagin, R., Moses, Y., Halpern, J.Y., Vardi, M.Y.: Reasoning About Knowledge.
MIT Press, Cambridge (2003)

24. Fischer, M.J., Ladner, R.E.: Propositional dynamic logic of regular programs. J.
Comput. Syst. Sci. 18(2), 194–211 (1979)

25. French, T., van Ditmarsch, H.P.: Undecidability for arbitrary public announcement
logic. In: Advances in Modal Logic, pp. 23–42 (2008)

26. Gasquet, O., Goranko, V., Schwarzentruber, F.: Big brother logic: visual-epistemic
reasoning in stationary multi-agent systems. Auton. Agent. Multi-Agent Syst.
30(5), 793–825 (2016)

https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-22110-1_14
https://doi.org/10.1007/978-3-642-54013-4_1
https://doi.org/10.1007/978-3-642-33353-8_10
https://doi.org/10.1007/978-3-642-33353-8_10
https://doi.org/10.1007/978-3-662-55665-8_24
https://doi.org/10.1007/978-3-662-55665-8_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-1-4757-2892-7

152 T. Charrier et al.

27. Herzig, A., Lorini, E., Maffre, F.: A poor man’s epistemic logic based on
propositional assignment and higher-order observation. In: van der Hoek, W.,
Holliday, W.H., Wang, W. (eds.) LORI 2015. LNCS, vol. 9394, pp. 156–168.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48561-3 13

28. Herzig, A., Maffre, F.: How to share knowledge by gossiping. In: Rovatsos, M.,
Vouros, G., Julian, V. (eds.) EUMAS/AT -2015. LNCS (LNAI), vol. 9571, pp.
249–263. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33509-4 20

29. Johnson, D.S.: A catalog of complexity classes. In: Handbook of Theoretical Com-
puter Science, Volume A: Algorithms and Complexity (A), pp. 67–161. Elsevier
(1990)

30. Korovin, K.: iProver – an instantiation-based theorem prover for first-order logic
(system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR
2008. LNCS (LNAI), vol. 5195, pp. 292–298. Springer, Heidelberg (2008). https://
doi.org/10.1007/978-3-540-71070-7 24

31. Lemaignan, S., Ros, R., Mosenlechner, L., Alami, R., Beetz, M.: ORO, a knowledge
management platform for cognitive architectures in robotics. In: 2010 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 3548–
3553. IEEE (2010)

32. Lemaignan, S., Warnier, M., Sisbot, A.E., Alami, R.: Human-robot interaction:
tackling the AI challenges. Artif. Intell. (2014)

33. Lewis, H.R.: Complexity results for classes of quantificational formulas. J. Comput.
Syst. Sci. 21(3), 317–353 (1980)

34. Löwe, B., et al.: Logic and the simulation of interaction and reasoning: introductory
remarks (2008)

35. Löwenheim, L.: Über möglichkeiten im relativkalkül. Math. Ann. 76, 447–470
(1915)

36. Miller, J.S., Moss, L.S.: The undecidability of iterated modal relativization. Stud.
Logica. 79(3), 373–407 (2005)

37. Niveau, A., Zanuttini, B.: Efficient representations for the modal logic S5. In:
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intel-
ligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 1223–1229 (2016)

38. Plaza, J.: Logics of public communications. Synthese 158(2), 165–179 (2007)
39. Sutcliffe, G.: The CADE ATP system competition - CASC. AI Mag. 37(2), 99–101

(2016)
40. van Benthem, J., van Eijck, J., Gattinger, M., Su, K.: Symbolic model checking for

dynamic epistemic logic. In: van der Hoek, W., Holliday, W.H., Wang, W. (eds.)
LORI 2015. LNCS, vol. 9394, pp. 366–378. Springer, Heidelberg (2015). https://
doi.org/10.1007/978-3-662-48561-3 30

41. van Ditmarsch, H., Grossi, D., Herzig, A., van der Hoek, W., Kuijer, L.B.: Param-
eters for epistemic gossip problems. In: Proceedings of LOFT 2016 (2016)

42. van Ditmarsch, H., Kooi, B.: One Hundred Prisoners and a Light Bulb. Springer,
Switzerland (2015). https://doi.org/10.1007/978-3-319-16694-0

43. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic.
Springer, Dordecht (2008). https://doi.org/10.1007/978-1-4020-5839-4

44. van Ditmarsch, H.P.: The Russian cards problem. Stud. Logica. 75(1), 31–62 (2003)

https://doi.org/10.1007/978-3-662-48561-3_13
https://doi.org/10.1007/978-3-319-33509-4_20
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-540-71070-7_24
https://doi.org/10.1007/978-3-662-48561-3_30
https://doi.org/10.1007/978-3-662-48561-3_30
https://doi.org/10.1007/978-3-319-16694-0
https://doi.org/10.1007/978-1-4020-5839-4

Dynamic Logic: A Personal Perspective

Vaughan Pratt(B)

Stanford University, Stanford, USA
pratt@cs.stanford.edu

Abstract. We review a few of the developments of dynamic logic from
the author’s perspective. As implied by the title the review is not
intended as a survey of the field as a whole but rather as how the author’s
outlook on imperative programs and their logics evolved during the four
decades up to the start of this millennium.

1 Pre-DL

If DaĹı 2017 is any indication, dynamic logic has arguably stood the test of time.
Since I was neither trained as a logician per se nor had envisaged a career in any
area remotely like logic, the circumstances under which dynamic logic came to
pass may therefore be of interest.

I was not a complete stranger to logic. Our high school swim team’s coach
Barry Blackwell thought I might enjoy the small logic booklet he’d studied in
college, which focused on Aristotle’s syllogistic. This was an entirely new concept
for me, and I read it through several times. At Sydney University the following
year I enrolled in science with the eventual goal of becoming a theoretical physi-
cist. Having one elective I chose philosophy in order to learn more about logic.
After that year however I went on to obtain a double honours degree in pure
mathematics and physics, a five-year program, 1962–1966, without taking any
further interest in logic.

At the time USyd’s School of Physics had seven departments thanks to the
not inconsiderable entrepreneurship of Canadian-born Harry Messel. In 1967 I
started a physics masters degree in one of them, the Basser Computing Depart-
ment. My attention soon turned to natural language. For my master’s thesis it
was suggested that I program a computer to solve Lewis Carroll’s syllogisms,
which eventually led to my thesis “Translation of Lewis Carroll’s syllogisms into
logic” [33]. I supported myself during that time with work on an implementation
of Tarski’s decision method for real closed fields for Charles Hamblin, chair of
UNSW’s philosophy department, then the next year for John Cannon at USyd
implementing a precursor to Cayley [4,5] along with the Todd-Coxeter algorithm
for enumerating cosets of a group.

For my Ph.D. I had been planning to extend the program to find the con-
clusion of each syllogism. However Margot and I had just married and as a US
citizen she wanted to pursue a Ph.D. in the US. We applied to six universities,

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 153–170, 2018.
https://doi.org/10.1007/978-3-319-73579-5_10

154 V. Pratt

of which three accepted us both. We chose Berkeley, which offered us both RA
support, in my case from automata theorist Mike Harrison.

During our year at Berkeley I took courses from Dick Karp on resolution
theorem proving, Steve Cook on complexity of algorithms, and Manuel Blum on
recursion theory and Blum-style complexity theory, as well as various core com-
puter science courses. I also audited a few lectures of Julia Robinson’s graduate
model theory course but found the prerequisites beyond me. Sadly there was no
AI at all at Berkeley, nor could I find any linguist interested in looking at my
masters thesis.

Within weeks of starting at Berkeley I began a correspondence with
Stanford’s Don Knuth, all of it dealing with his interest in analysis of algo-
rithms. At mid-year Knuth suggested Margot and I transfer to Stanford, which
we did.

During the first quarter of 1970/71 at Stanford I took a graduate model
theory course from Paul Eklof which I found much better paced for me than
Julia Robinson’s course had been. I proposed to continue working in AI on an
approach to natural language acquisition addressing Mark Gold’s pessimism [12]
but was persuaded by Knuth and John Hopcroft (on sabbatical from Cornell)
that I could graduate considerably faster with an algorithms thesis, an argument
I couldn’t refute since by then I had more than enough material for that. My
subsequent postdoc under Knuth during 1971/72 and my early years as an MIT
faculty member largely continued my algorithms work with natural language
processing as a side interest.

2 An MIT Course in Logics of Programs

MIT offered me a position as an assistant professor starting in 1972. At that
time Oxford’s Joe Stoy was visiting and teaching Dana Scott’s lattice-based
treatment of functional programming, which I learned from Joe’s notes, lattice
theory being a branch of algebra that I had no previous exposure to at all.

When Joe returned to Oxford I decided to start a course on semantics of
programming languages, starting in 1973 with functional programming. But it
soon struck me that most programs were written in the imperative style catered
for by Floyd’s [10] and Hoare’s [17] axiomatic semantics based on respectively
flowcharts and block-structured programs, so I added those two logics for that
programming style to the material of the course.

I was next struck by how differently Floyd and Hoare viewed logic compared
with Julia Robinson, Eklof, Scott, Stoy and other logicians I’d met. There was no
semantics, only axioms! Both Floyd and Hoare took the position that their respec-
tive axiomatizations defined the meaning of the programs, though Floyd turned
around near the end of his paper, “Assigning meanings to programs”, and proved
a completeness result for assignment that obviously depended on an unstated
model-theoretic semantics that he must have had in the back of his mind.

Feeling uncomfortable about this lack of semantics, in 1974 I adopted the rela-
tional semantics then being advocated in CWI Amsterdam by Jaco de Bakker and
Willem de Roever [6], a single-sorted system of relations based on regular expres-
sions, and used it to give Hoare’s P{a}Q language a semantics for a two-sorted

Dynamic Logic: A Personal Perspective 155

system of programs and sentences of first order logic (or three-sorted when count-
ing terms). Relations were between states defined as interpretations of symbols.
I forget where I first encountered the test concept but I found that it permitted
extending Hoare’s logic in a natural way to handle nondeterministic programs by
breaking up conditionals and loops. Thinking of first order logic as a static logic,
I regarded P{a}Q furnished with these semantics as a dynamic logic.

Some of the students in the class, in particular Bob Moore, Martin Brooks,
and Jerry Ginsparg, were familiar with modal logic and pointed out that my
notion of state seemed to correspond with Kripke’s notion of possible world
from his paper “Semantical Considerations on Modal Logic” [24]. So over the
weekend I took home a copy of Hughes and Cresswell to learn modal logic,
worked out how to formulate Hoare’s partial correctness assertions and beyond
in modal form, and wrote it up as class notes for the next lecture.

3 The Resulting Paper

After teaching both imperative and functional semantics for two years, in 1976 I
decided it was time to run my semantics for logics of imperative programs past
the STOC-FOCS community I was then part of, which I began by writing it up
as an MIT Technical Report before submitting it to FOCS’76 [34].

Section 1.1 gives the usual Tarskian or homomorphic notion of an interpreta-
tion of an expression, including the (referentially opaque) interpretation I(〈a〉P)
defined as the disjunction over all J(P) for which the relation IaJ holds, with
dual modality [a]P definable as ¬〈a〉¬P . A state is then defined as an interpre-
tation, a transition as a pair of states, and a program as a set of transitions,
making a program the same thing as the interpretation a of a modality 〈a〉.

Section 1.2 concerns Hoare’s notion of partial correctness assertion or pca
P{a}Q. Satisfaction of an antecedent-consequent pair (P,Q) by a transition
(I, J) is defined as I(P) implies J(Q), and truth of P{a}Q as satisfaction of
(P,Q) by all transitions in a. I pointed out a duality principle, namely equiva-
lence of P{a}Q and ¬Q{a−}¬P where a− is the converse of a.

I also pointed out that [a]Q is the weakest antecedent P for the consequent
Q such that P{a}Q is true, and made a connection with a corresponding notion
in Dijktra’s book that had just come out [7]. However I neglected to state the
correct connection, which was not with “weakest precondition” (which entails
termination) but rather with “weakest liberal precondition”. I also was com-
pletely unaware at the time of the considerably earlier and extensive work by
Andrzej Salwicki and his wife Grazyna Mirkowska on Algorithmic Logic [53],
which had the same content as [a]P , albeit only for deterministic programs, and
therefore was a major oversight.1

1 By way of partial excuse, the Berlin Wall still existed and duplication of effort
between East and West was not uncommon, for example Marshall Stone’s discov-
ery [56] that Boolean algebras were rings without being aware that Zhegalkin had
pointed it out nine years earlier [58].

156 V. Pratt

Section 2 introduces and proves properties of particular first-order programs
including array assignments, quantifiers (as random assignments), tests, and
their combinations with the three regular operations. Section 3.1 generalizes
binary relations to several other semantics of programs. This included what I
called ∗-ary relations: whereas a binary relation is a set of pairs of states a ∗-ary
relation is a set of sequences of states. Section 3.2 expanded Hoare’s language
P{a}Q to the modal logic formulas [a]P and 〈a〉P that had been introduced in
the third last paragraph of Sect. 1.1. P{a}Q is subsumed with P → [a]Q, while
termination of a is expressible with 〈a〉T .

I presented the paper at FOCS’76 and the response was positive, which I
took to mean that those attendees steeped in logic recognized that the previous
axiomatic treatments of imperative program verification had no semantic basis
at all, let alone the clean one provided by de Bakker’s relations between states,
also found in contemporary work by Hoare and Lauer [18].

In hindsight it might seem that I had defined multimodal logic in Sect. 1.1 and
hence first order dynamic logic in Sect. 1.2. However introduction of a new lan-
guage was not the main goal of the paper, whence the deferral to Sect. 3.2 of what
was later identified with my (then) broader concept of a dynamic logic. Rather
I wanted to furnish Hoare’s logic with a semantics based on interpretations-as-
states, much as Kripke furnished modal logic with a semantics based on possible
worlds. I therefore chose the title “Semantical considerations on Floyd-Hoare
logic” to convey this parallel with Kripke’s “Semantical considerations on modal
logic” [24]. Other authors such as Burstall, Schwarz, and Kroeger had proposed
modal logic for program verification but without semantics of any kind let alone
Kripke’s possible worlds semantics, and without having gained any evident inter-
est or traction, so the need for a modal language seemed less urgent than the
need for a semantics for Hoare’s logic. I mentioned the modalities early on in
Sect. 1.1 only because they seemed to help in clarifying the concepts on which
my semantics for P{a}Q rested.

When I submitted the paper for journal publication the sole referee’s report
seemed to bear out my concerns. It was by far the most negative report I’d
received in my career to date. It complained that there didn’t seem to be any
point to the paper since Hoare’s partial correctness assertions and their associ-
ated axioms were exactly what was needed for program verification. Moreover
the hope I’d expressed in the paper that it could be used as class notes was
a lost cause because the paper was too unreadable to serve as such. The ref-
eree did not even mention the possible worlds semantics, presumably because
Hoare’s axioms and Floyd’s verification conditions sufficed for the purposes of
both program verification and “assigning meanings to programs” (the title of
Floyd’s paper).

Having no prior experience of negative referee’s reports I took the criticisms
to heart and abandoned that paper in favor of coming up with a much better
one when I understood the issues better. In hindsight that was very naive of me,
but I was just coming up for tenure then and the report opened my mind to
the possibility that my case could be judged equally harshly. That concern was

Dynamic Logic: A Personal Perspective 157

heightened when I was told, I forget by whom, that switching subjects, in this
case from algorithms to logics of programs, just before tenure could be taken as
a bad sign.

As it turned out the modal language in Sect. 3.2 was accepted enthusiastically
by the more theoretically inclined computer scientists, rendering moot what the
more practical consumers of program verification technology thought of it. This
acceptance started earlier on than one might have guessed. When I was starting
to develop the modal version in 1974 I was carpooling to work with Mike Fischer,
then a tenured associate professor at MIT, on an almost daily basis, giving us
nearly an hour each carpool day to discuss our common interests, including the
ideas that ended up two years later in my FOCS’76 paper.

Not long after, Mike accepted the University of Washington’s offer of a full
professorship, taking with him our common understanding of many theoretical
ideas in both logic and algorithms. Richard Ladner at UW had proved some
complexity results about classical modal logic [25], so it was very natural for
the two of them to start a collaboration on a propositional version of dynamic
logic, asking the same types of complexity questions about it that Richard had
previously addressed. From time to time we heard from Mike and Richard about
their progress in getting the definitions sorted out and the upper and lower
bounds on the computational complexity of PDL tightened up.

4 Early Collaborations

Shortly after my FOCS’76 paper several people at and near MIT joined me
in working on first order dynamic logic, most notably my incoming research
assistant David Harel who had just finished his masters under Amir Pnueli on
program verification and had started his Ph.D. at MIT as my research assistant
funded by a new NSF grant I’d been awarded. He read my FOCS paper in
the course of his first week at MIT, and participated in my class teaching the
material, I forget whether in the role of the class’s TA or my RA. Not long after,
he began writing “First Order Dynamic Logic”, which eventually turned into his
thesis, with which he graduated in 1978, two years after entering MIT.

Albert Meyer also joined us, resulting in a three-author paper “Computabil-
ity and Completeness in logics of programs” presented at STOC’77 [14]. Rohit
Parikh from nearby Boston University soon became a regular visitor to our
group, while Mike Paterson from Warwick, who had been a frequent visitor to
our theoretical computer science group well before DL existed, also became inter-
ested in DL; both Rohit and Mike found the propositional version of particular
interest.

5 Program Verification

Floyd-Hoare logic being applicable to program verification, and dynamic logic
being (hopefully) an elegant formulation of Floyd-Hoare logic, I wanted to
see how well DL fared in practice. To this end I assigned my student Steve

158 V. Pratt

Litvintchouk the task of implementing a dynamic logic proof checker. We applied
it to the verification of the Knuth-Morris-Pratt pattern matcher [20] and pre-
sented it at IJCAI’77 [26].

On the one hand this was surely the first application of dynamic logic to
any kind of software engineering problem. On the other it attracted negligible
attention: according to Google Scholar it accounted for only 0.1% of citations
of papers coauthored by me. Furthermore neither Steve nor I had it anywhere
near the top of our respective priorities and I paid no further attention to the
construction of program verifiers until my planned 1980 sabbatical at Stanford.

6 Propositional Dynamic Logic: Complexity
and Axiomatization

At STOC’77 Fischer and Ladner presented “Propositional Modal logic of pro-
grams” [9] which introduced propositional dynamic logic, PDL, to the commu-
nity. They obtained upper and lower bounds on the complexity of their logic of
respectively nondeterministic and deterministic exponential time. Unlike space,
for which the gap between determinism and nondeterminism is quadratic [54],
the corresponding gap for time is not known to be less than exponential, raising
the question of whether this gap in the case of PDL could be narrowed. Liking
computational complexity questions like that, I began to think about it seriously.

A little later, in the summer of 1977, Krister Segerberg visited UW, proposed
an axiomatization of PDL, and claimed it was complete. I invited him to visit us
at MIT to speak on his proof and to stay at my house. When he arrived he told me
he no longer believed his completeness proof was sound. This was an unexpected
development since his axioms had the intuitive feel of a complete axiomatization
of a modal logic. It was immediately clear that any incompleteness would have to
involve PDL’s star operator, since without it completeness of his axiomatization
could easily be proved by standard methods of modal logic of the kind first
developed by Kripke. Krister’s talk at MIT on PDL and the prospects for its
complete axiomatization were nonetheless well received.

This started a search in 1977 for a completeness proof of Krister’s axiom-
atization, which was joined by Dov Gabbay at King’s College, London, Rohit
Parikh at Boston University, myself, and possibly others, all working indepen-
dently. Dov wrote me a brief note (which I still have) sketching a proof of about
a dozen lines seemingly on the basis of nothing more than that standard modal
logic techniques applied here, which seemed inconsistent with Segerberg’s expe-
rience in discovering a bug in what he originally took to be a sound proof of
completeness of his system. At the same time Rohit developed a proof based
on a nonstandard semantics of PDL, which he presented as part of an invited
talk on dynamic logic at the Mathematical Foundations of CS (MFCS) confer-
ence in September 1978 at Zakopane, Poland [30]. Simultaneously I attempted
to convince myself of the completeness of Krister’s system but my arguments
by induction on the height of the terms became so long that I was unable to

Dynamic Logic: A Personal Perspective 159

satisfy myself that I hadn’t overlooked some important detail, though I pub-
lished my best effort in that regard as [41] as a sort of “hail-mary” that it might
be bug-free (I certainly couldn’t find any bugs). However I was doing no better
trying to convince myself of the soundness of Rohit’s proof either and therefore
regarded the problem as still open. Neither Fischer nor Ladner had accepted any
of these proofs, and Richard would ask me from time to time about progress on
the problem.

7 Decision Methods for PDL

In 1978 I took the decidability of PDL as a good reason to focus on the propo-
sitional fragment of the Litvintchouk-Pratt proof checker [26]. At that time the
fastest deterministic decision method for PDL appeared to require time two
exponentials in the input length. I was therefore willing to settle for what I
considered a heuristically efficient method [35], namely the method of semantic
or analytic tableaux, for which I referenced Gentzen [11], Hintikka [16], Beth
[2], and Smullyan [55]. I found the method well suited to dynamic logic; what
I did not realize at the time (pointed out to me recently by Rajeev Goré) was
that nearly two decades earlier Kripke had found essentially the same method
suitable for showing the completeness of first order S5 modal logic with equality
[23]. As far as I know however my decision method was the first application of
tableaux to logics of programs.

At MFCS’79 in Olomouc, Czechoslovakia, Valiev [57] kindly pointed out
two errors in my Gentzen type axiomatization of PDL [35, p. 335]. The first
antecedent of the rule ¬[∗ for induction should have been Γ � p,Δ; my omission
of Δ was obviously in this case just a typo, whether mine or the typist’s I’ll never
know. However my first rule, the axiom ¬P asserting P � P , should have been
¬p asserting p � p because in PDL not all compound p’s can be decomposed to
atoms P the way they can in propositional logic: stars get in the way. At the con-
ference where Valiev was pointing this out I was sitting next to Juris Hartmanis,
who turned to me in wonder that anyone would consider my using the wrong
case a significant error. I had to explain sotto voce that Valiev had identified
a genuine and serious error in my axiomatization. Were there more sharp-eyed
people like Valiev checking code for bugs, 143,000 customers of Equifax might
be breathing easier today!

In the same paper I also followed up on Sect. 3.1 of [34] by applying the
method to ∗-ary relations as sets of sequences of states together with addi-
tional modalities throughout, during, and preserves. Here throughout(a, p) means
that p holds at all states, during(a, p) means that p holds at some state, and
preserves(a, p) means that if p becomes true at some state then it remains true
at all subsequent states; in each case these are required to hold for all trajectories
of a. They all have evident duals in which p respectively holds at some state,
holds at every state, and becomes true (has a 0–1 transition) at some state, with
all three required to hold for some trajectory of a. I extended the tableau and
decision method to cater for throughout, leaving open how to handle during and
preserves, mainly to avoid an absurdly large set of rules.

160 V. Pratt

In 1978 I was discussing something unrelated to PDL with Albert Meyer
when a closure property of PDL occurred to me that immediately convinced
me it that PDL must be in EXPTIME, thereby closing the aforementioned gap.
I interrupted our conversation to tell this to Albert, who was understandably
dubious. While solutions to problems do occasionally pop suddently into my
head, this was the first and perhaps only time in my life when it happened
in the course of an unrelated conversation! I incorporated the method into the
journal version of the heuristic STOC’78 paper [35] and replaced “Practical” by
“Near-optimal” (in the sense of “to within a polynomial”) in the title [41].

8 Going Algebraic

I felt that a simpler completeness proof might be possible if there were some way
of making the syntax of PDL more abstract, in particular by somehow identify-
ing those terms that were obviously equivalent semantically so as to significantly
reduce the number of paths in the proof. At STOC’79 in Atlanta, Georgia I asked
Jonas Makowsky for advice on ways to make proofs more abstract and he referred
me to a recent (1977) tutorial paper by Leon Henkin in the American Math
Monthly, “The logic of equality” [15], showing how to use a theorem of Birkhoff
to prove completeness of equationally axiomatized theories by purely algebraic
methods. As this looked exactly like what I wanted, as soon as I returned to
MIT I borrowed Rasiowa and Sikorsky’s book “The Mathematics of Metamath-
ematics” [51] and read the first few chapters over the weekend in order to ground
myself in the basis for Henkin’s approach.

Somewhere about that time, either at POPL’79 or STOC’79, perhaps the
latter, Dexter Kozen told me something about *-free PDL that had something
to do with Stone duality. Not knowing what Stone duality was and being focused
on star as the main problem with PDL, I was unable to follow it. But then in
May 1979 Dexter sent me a short manuscript titled “A representation theorem
for *-free PDL” [21] based on an equational axiomatization of PDL without star,
which clarified what he’d been telling me.

Except for not catering for star, which simplified PDL to something we
already knew how to axiomatize without consulting Segerberg’s axioms, Dex-
ter’s equational axiomatization fitted perfectly with Henkin’s approach, and it
was immediately clear how one could use that approach to prove a completeness
result for an axiomatization of *-free PDL.

In this equational algebraic framework it was natural to use juxtaposition to
denote a; b as ab and 〈a〉p as ap, and to form Boolean combinations of them in
the usual manner of Boolean algebra. As Dexter had pointed out, PDL equations
like (a ∪ b)p = ap ∨ bp and (ab)p = a(bp) then resembled the axioms for vector
spaces and more generally noncommutative R-modules, with programs playing
the role of elements from a ring R and propositions as vectors (points) in the
R-module.2

2 An R-module is a vector space just when the ring R is a field.

Dynamic Logic: A Personal Perspective 161

The question now became, was there a corresponding finite axiomatization
of PDL with star that would allow Henkin’s method to be applied to Segerberg’s
axiomatization of PDL, thereby giving the desired completeness proof?

I axiomatized PDL with star by translating Segerberg’s induction axiom into
algebraic notation as follows, noting that p ≤ q can be expressed equationally
as p ∨ q = q.

a∗p ≤ p ∨ a∗(p′ ∧ ap)

The meaning of this is that if iterating a can eventually make p true, then
either p is already true or it is possible by iterating a to reach a state where p is
not yet true but one more iteration of a can make p true.

Along with the other Segerberg axioms translated into equations I was then
able to show that in any model of these equations a∗p was the least Boolean
value for q satisfying p ∨ aq ≤ q. This made a∗ essentially reflexive transitive
closure, not in the sense of an infinite union but in the sense that a is defined
axiomatically as reflexive when p ≤ ap, and transitive when aap ≤ ap, for
all p. With the further nonequational condition of separability for a dynamic
algebra, namely that if ap = bp for all p then a = b, one can then say that in
any separable dynamic algebra a is reflexive when 1 ≤ a and transitive when
aa ≤ a. In the following I’ll assume separability is always an ambient condition
on dynamic algebras.

Whether this finitary notion of dynamic algebra in order to meet the require-
ments of an axiomatization of PDL with star was better or worse than Kozen’s
infinitary one seemed to me like an irrelevant value judgement. The point was
that both of us contributed to the development of the notion that eventually led
to my Henkin-like proof of completeness of Segerberg’s axiomatization of PDL.

It would have been nice to show that all dynamic algebras in my sense were
isomorphic to Kripke structures. However Dexter had previously shown the exis-
tence of dynamic algebras in his sense in which star as infinite union yielded a
dynamic algebra that was “nonstandard”, i.e. not isomorphic to any Kripke
structure. While I was not sure whether this would also be the case for my
notion, in any event it was not necessary to decide this as it was only necessary
to show representability of free dynamic algebras.

My main theorem was that every free dynamic algebra (still with this ambient
assumption of separability) was residually finite , meaning that it was isomor-
phic to a subdirect product of finite dynamic algebras. This by itself established
completeness of Segerberg’s axioms. Feeling that the problem was solved at last,
I wrote all this up in a 33-page MIT technical memo, TM#138, “Dynamic Alge-
bras: Examples, Constructions, Applications” [37] which appeared in July, 1979.
Its abstract reads as follows. (Note the distinction between “basic” and “main”
results, both of which I considered important).

Dynamic algebras combine the classes of Boolean (B ∨ ′ 0) and regular
(R ∪ ; �) algebras into a single finitely axiomatized variety (B R �) resem-
bling an R-module with “scalar” multiplication �. The basic result is that � is
reflexive transitive closure, contrary to the intuition that this concept should

162 V. Pratt

require quantifiers for its definition. Using this result we give several examples of
dynamic algebras arising naturally in connection with additive functions, binary
relations, state trajectories, languages, and flowcharts. The main result is that
free dynamic algebras are residually finite (i.e. factor as a subdirect product of
finite dynamic algebras), important because finite separable dynamic algebras are
isomorphic to Kripke structures. Applications include a new completeness proof
for the Segerberg axiomatization of propositional dynamic logic, and yet another
notion of regular algebra.

My 33-page technical report was clearly too long for a STOC submission
(STOC and FOCS being my preferred publication vehicles rather than journals)
so I submitted a much shorter version to STOC’80 as “Dynamic algebras and
the nature of induction” [40], focusing on the “basic” and “main” results.

Following the above reasoning as to who contributed what I simply wrote
“The class of dynamic algebras consists of all models of the Segerberg axioms
for PDL. It was first studied as a class by D. Kozen and the author.” Had I been
more sensitive back then to proper attribution it might have been more precise to
say that the equationally defined class of all models of *-free PDL was introduced
by D. Kozen and subsequently conservatively extended by me to the class of all
models of PDL with star. But even that isn’t quite right because Dexter defined a
different conservative extension in which star was defined externally as an infinite
union making PDL with star a noncompact theory that could not be used to
prove the desired completeness result. The possibility of consulting Dexter as to
the best possible attribution did not occur to me.

9 A Conflict

That year I was invited to speak at two immediately back-to-back conferences
in Europe. The first was the 6th International Conference on Logic, Philoso-
phy and Methodology of Science held in Hanover, Germany in August 22–29,
1979. The second, three days later, was the 8th MFCS conference in Olomouc,
Czechoslovakia (now Slovakia), September 3–7, 1979, entailing a long train trip
from Prague to Olomouc behind the Iron Curtain, the one I mentioned earlier
in connection with M.K. Valiev.

For the first I provided a paper titled “Dynamic Logic” [38]. For the latter I
provided a paper titled “Axioms or Algorithms” [36] proposing an approach to
replacing traditional axioms and inference rules of proof systems by axioms for
decidable fragments of logic intended to allow many fewer steps in a computer-
checkable proof. Although this latter paper made no significant reference to
dynamic logic beyond noting that PDL was decidable in exponential time, I had
in mind using the idea as the basis for a proofchecker that I was planning to build
in collaboration with Derek Oppen on my sabbatical at Stanford in 1980/81.

At Hanover I met many algebraic logicians including Istan Nemeti, Hajnal
Andreka, Larissa Maximova, Mike Dunn from Indiana U., and Richard Routley
from ANU, Australia. I explained Dexter’s model of *-free PDL to Mike Dunn,
who reprimanded me sharply for attributing to Dexter what had been developed

Dynamic Logic: A Personal Perspective 163

by Jonsson and Tarski in 1951 [19]. This unnerved me as the attribution to
Dexter appeared in my invited paper for the conference. However this was before
the internet and I had no way of researching this until I returned to MIT. So I
decided, unwisely as it turned out, to not bring up attribution unless asked, on
the assumption that if Mike was right then I would simply be using 30-year-old
mathematics familiar to modal logicians. This turned out to be unwise because
I had underestimated the importance of being the first to apply one area of
mathematics to another.

This issue did not come up at Hanover but it did at the MFCS meeting in
Olomouc the next week. I gave my invited paper, “Axioms or Algorithms” [36],
as scheduled but then was asked to give an evening talk about my completeness
proof for the Segerberg axioms. On short notice I hastily prepared slides sketch-
ing the proof, which of course involved Henkin’s algebraic techniques based on
the first few chapters of Rasiowa and Sikorski, and presented the material, which
was well received. What I didn’t allow for however was many people there were
very familiar with the techniques in that book but had never seen it applied to
a completeness proof for a logic of programs.

It turned out that Dexter had been invited to talk to a group that intersected
with the MFCS attendees, in the week immediately following MFCS. They very
excitedly informed him of the techniques I’d used in proving the result, so nat-
urally he asked whether I’d mentioned him. When he learned that I hadn’t, it
wasn’t long before I heard from him about that. I gathered that he felt I was try-
ing to take sole credit for the development of dynamic algebra. Even though all
my writings on the subject have always been careful to credit him, this incident
led to a long period of unhappiness between us.

When the STOC’80 deadline came up I tightened my long memo of July 79
to just the “basic result” (* is reflexive transitive closure in the algebraic sense)
and the algebraic completeness proof and submitted it to STOC’80 under the
title “Dynamic algebras and the nature of induction”.

I assumed that people would satisfy themselves as to the soundness of my
completeness proof, which by now I understood thoroughly. Istvan Nemeti did
so. But he also spotted an improvement I’d overlooked. Every finite dynamic
algebra is representable as a (finite) Kripke structure, and every Kripke struc-
ture of any size is representable as a subdirect product of finite Kripke structures,
by a straightforward argument. It is therefore an easy consequence of my exotic-
sounding result, that free dynamic algebras are residually finite, that every free
dynamic algebra is isomorphic to a Kripke structure. He also pointed out that
freee dynamic algebras were automatically separable so that nonequational con-
dition could be dropped, making the result even cleaner, leaving freeness itself
as the only nonequational condition. I was the referee for his paper making that
point [29], and since the result was obvious and yet an improvement on my
clumsier formulation it took only a minute to check it and judge it acceptable
for publication. This was easily my easiest refereeing job ever! I was however
very sad that I’d overlooked it, which I put down to my inexperience in the
brave new world of algebraic logic.

164 V. Pratt

Much later I realized that no one else was acknowledging that I’d found a
clearly correct completeness proof. The problem was that almost no one inter-
ested in the problem understood or cared about algebraic techniques: I might as
well have written the paper in Latin!

A decade later Istvan Nemeti contacted me about my much longer July 1979
memo that included the results in my STOC’80 paper to say that he was sorry I
had never published it, since he felt the examples would be of interest to many.
So I added a few historical remarks and reflections at the end, updated one or
two of the citations to their latest versions, and it appeared in Studia Logica in
1991 [49].

10 Onwards to Applications!

Having satisfied myself after STOC’80 as to the completeness of the Segerberg
axioms, I turned my attention to a quite different project: basing a program ver-
ification system on my deterministic decision method for PDL combined with
the several decision methods for certain equational theories of datatypes com-
monly encountered in programs, developed by Nelson and Oppen during the
preceding several years [28], using the decision method approach described in
my invited paper “Axioms or Algorithms” that I’d presented at MFCS. This
was a natural extension of the aforementioned work in 1977 with my student
Steve Litvintchouk on a dynamic logic proof checker [26].

To this end I proposed to Derek Oppen, newly appointed to the Stanford
CS faculty, that I spend a sabbatical year at Stanford collaborating with him on
the implementation of such a system. I applied for and was granted a sabbatical
from MIT for 1980/81, while Derek found a house I could rent in Los Altos Hills
for the year, a 25-min bike ride from the CS department. Renting our Weston,
Massachusetts house to a family for the year, my family of four settled into the
Los Altos house.

Once settled I showed up at Stanford’s CS department to get a desk and
get to work with Derek. I got the desk, but was informed that Derek had left
Stanford the previous week to do an MBA in order to become a businessman.

Well, so much for my sabbatical. I went home and spent two days learning
how to solve Instant Insanity and then Rubik’s cube quickly while mulling over
what should be done about this revolting development. I could work on my own,
but that would have been a waste of a sabbatical since I’d been doing that very
successfully for eight years at MIT and felt it was time to get involved in more
collaborative work.

So I bicycled back to the department and looked around to see what inter-
esting projects other people were up to. One that I found particularly appealing
was Forest Baskett’s project to develop what he was describing at the time as
a smart terminal but which he cheerfully agreed had enough power to be easily
turned into a self-contained personal computer, what later came to be called
an engineering workstation to distinguish it from the smaller personal comput-
ers that were then springing up like Daisies. I found myself quickly sucked into
Forest’s project.

Dynamic Logic: A Personal Perspective 165

Within a month however Forest informed me that he was leaving Stanford,
just like Derek, I thought. I wondered if I was jinxing the place—shades of my
thesis adviser Mike Harrison at Berkeley in 1969, who had spent that year on
sabbatical in Israel and whom I first met in person in 1973! This left me as the
only faculty member with any interest in the Sun project, though Jim Clark was
very keen to build his graphics engine chip, and the two us shared a wide desk
in Margaret Jacks 433 for a few weeks as we typed away on our terminals (Jim’s
official office was over in ERL).

During that period Stanford offered me a full professorship, which was an
improvement on my associate professorship at MIT. MIT refused to be bullied
into matching their offer, which I therefore accepted. Meanwhile I stepped into
Forest’s shoes as director of the project, which sucked me into it even deeper,
with Forest’s student Andy Bechtolsheim now mine.

The rest is more or less history that is irrelevant to dynamic logic. The work
with Sun, first as a Stanford project known as the Stanford University Network
(SUN) terminal and 18 months later as a Stanford spinoff named Sun Microsys-
tems, which I worked with initially as a consultant and then for two years, first
as an employee on leave from Stanford working on computer graphics, digital
typography, etc. and then as Sun’s first director of research. This adventure
lasted sufficiently long to cure me of my itch to implement a proof checker based
on decision methods.

11 Multimodal Logic, Flowgraphs, Minimization,
and Modal Mu-Calculi

Late in 1980, as a sideline to my focus at the time on the Sun workstation, I
found myself wondering whether the flowcharts on which Floyd’s program logic
[10] was based were fully subsumed by the regular expressions of PDL. Floyd
interpreted each edge e of a flowchart as a proposition I(e) that he called the
tag of e. As usual a flowchart is made more like a finite state automaton when
the edges are represented as vertices and the command boxes as edges, call this
the flowgraph form of the flowchart. Each tag I(e) on a flowchart edge e then
becomes a tag qx on the corresponding flowgraph vertex x.

In practice there exist flowgraphs whose least equivalent regular expression
is exponentially larger, suitably measured [8]. Hence if one tested satisfiability of
a proposition about a flowgraph by first translating the flowgraph into a regular
expression, the exponential blowup possible with the translation, when composed
with my deterministic exponential time decision method for PDL, would appear
to require doubly exponential time. This raised the question of whether there
was a faster decision method for the propositional version of Floyd’s logic as
understood in the framework of PDL.

166 V. Pratt

At a conference at IBM in May 1981 organized by Dexter Kozen I defined
Propositional Flowgraph Logic, PFL, as multimodal3 logic together with all
finitary flowgraph operations [43]. The three regular operations of PDL arise
as special cases defined by the obvious small flowgraphs, for example star a∗ is
expressed as a one-vertex flowgraph with a self-loop a.

I showed that PFL was in EXPTIME using a decision method for a proposi-
tion r based on my method for PDL. The approach conceptually was to start with
the free Boolean algebra B generated by the propositional variables along with
an additional variable QAp for each action A labeling an edge of a flowgraph and
each subformula p of r. Each subformula p is interpreted as an element h(p) of
B, while each action A is interpreted as the maximal strict finitely additive func-
tion h(A) on B satisfying h(A)(h(p)) ≤ h(QAp), which provably exists. B is then
shrunk keeping the h(A)’s maximal until every inequality h(A)(h(p)) ≤ h(QAp)
becomes an equality. Then r is satisfied just when h(r) is nonzero. The shrinking
of B is accomplished by a tag minimization procedure analogous to transitive
closure applied to matrices over B.

The maximization and minimization operations in this algorithm soon led me
to the idea that the flowgraphs in PFL could be replaced by their corresponding
inequalities along with a minimization operation, constituting the language of
what in retrospect was the first modal mu-calculus. I wrote this up for FOCS’81
and presented it in October 1981, six months after the IBM conference [42].
Unfortunately most of my time by then had been absorbed by the Sun worksta-
tion project and I did a very poor job of defining and explaining my version of
the modal mu-calculus. Two years later Dexter did a much better job of defining
the modal mu-calculus [22], which is the version that has stuck.

12 CS353: Algebraic Logic

Although the Sun project had cured me of my itch to build a verifier based on
dynamic logic and the Nelson-Oppen methodology, what I was not cured of was
a new appreciation for algebra acquired after its success (in my mind) with the
proof of completeness of Segerberg’s axiomation of PDL. I started teaching an
annual course on algebraic logic in the CS department, initially limited to lattice
theory and universal algebra. But after a couple of years teaching it I began to
wonder how it related to category theory, which I had originally learned at
Sydney University from Max Kelly, Australia’s top category theorist, but had
since forgotten all about. Eventually I made the connection to my satisfaction
and incorporated it into the course so as to segue smoothly between universal
algebra and category theory. I taught the course, CS353, Algebraic Logic, each
year until about 2002, averaging about ten students each year. The course’s
popularity remained on a steady keel throughout until I decided, two years after
my retirement in 2000, to call it quits.
3 I had not used the term “multimodal” explicitly in any of my earlier papers. Rennie’s
n-multiply modal calculus based on constants M1,M2, . . . ,Mn [52] is a much earlier
related concept.

Dynamic Logic: A Personal Perspective 167

13 Concurrency

Early on in the development of dynamic logic I had wondered what sort of a
program connective could cater for concurrency. My initially foray there was
via various notions of process logic starting in 1979 [39]. However the so-called
Brock-Ackerman anomaly for dataflow machines [3] soon came to my attention
and started to bother me. This led in due course to my abandonment of the
states on which I founded the semantics of dynamic logic and the adoption
instead of an event based semantics [44–46], which seemed intuitively to lend
itself better to a form of concurrency not vulnerable to the Brock-Ackerman
anomaly. This pursuit led to my formulation of pomsets, a name that has stuck
even though Grabowski had invented the concept a year earlier under the less
catchy rubric of “partial languages” [13]. The more serious competitors at that
time were Petri nets, developed in the 1960s [31], Mazurkiewicz traces [27], and
Pnueli’s temporal logic [32], both developed in the 1970s.

At a conference organized by Jack Dennis in New Brunswick in 1977 Pnueli
characterized temporal logic as an endogenous logic to distinguish it from exoge-
nous logics like Hoare logic and dynamic logic. Whereas dynamic logic treated
programs compositionally temporal logic regarded the universe as under the con-
trol of one huge program stepping forward in time. A single proposition could
refer to multiple parts of a state separated in space though not time. In this logic
the natural concurrency connective was simply conjunction: the conjunction of
two propositions about different parts of the state were simply true simultane-
ously. An element of time was introduced by modal operators such as Next and
Eventually.

Because dynamic logic could express everything temporal logic could, and
moreover initially the latter had no semantics, just axioms like Hoare logic,
some of us in the dynamic logic camp didn’t take temporal logic seriously. I
felt however that two reasons why it caught on in due course were that it was a
simpler logic than dynamic logic making it somewhat easier to treat theoretically,
and that it catered for concurrency with no hassle at all, whereas all proposals
for concurrency of programs built compositionally seemed to suffer from one
defect or another.

But my involvement with Sun dragged me away from that issue for several
years. Nevertheless I always had it in the back of my mind as something to look
into at some point.

Eventually I found myself asking why events seemed better than states.
It didn’t take long to see why: states existed in automata having only one-
dimensional transitions. In order for two events to behave independently their
corresponding transitions in the state view would need to do so as well. This
called for a two-dimension transition, and soon I had a paper “Modelling con-
currency with geometry” [47] that I presented at POPL’90. This gave rise to
a whole cottage industry of such semantics for concurrency, with a series of
conferences organized by Eric Goubault, one of its earliest fans.

In a “parallel” development my student Vineet Gupta and I studied the
Chu spaces of Mike Barr and his masters student Po-Hsiang (Peter) Chu [1].

168 V. Pratt

Chu spaces created a natural framework in which to embed the duality between
state-based and event-based semantics of concurrency, which I had previously
identified as the Duality of Time and Information [48]. This led to a considerable
body of work that is more than will fit here. My current favorite paper in that
quite long series is “Transition and Cancellation in Concurrency and Branching
Time” [50] which ties together a number of threads including the connection
between geometric models and Chu spaces.

While I would love to continue in this vein, for the purposes of DaĹı this is
going to have to suffice.

References

1. Barr, M.: ∗-Autonomous Categories. Lecture Notes in Mathematics, vol. 752.
Springer, Berlin (1979)

2. Beth, E.W.: The Foundations of Mathematics. North Holland, Amsterdam (1959)
3. Brock, J.D., Ackerman, W.B.: An anomaly in the specifications of nondeterministic

packet systems. Technical report Computation Structures Group Note CSG-33,
MIT Lab. for Computer Science, November 1977

4. Cannon, J.J.: A general purpose group theory program. In: Proceedings of the
Second International Conference Theory of Groups, Canberra, pp. 204–217 (1973)

5. Cannon, J.J.: A draft description of the group theory language cayley. In: Pro-
ceedings of the Third ACM Symposium on Symbolic and Algebraic Computation,
SYMSAC 1976, pp. 66–84. ACM, New York (1976)

6. de Bakker, J.W., de Roever, W.P.: A calculus for recursive program schemes.
In: Nivat, M. (ed.) Automata, Languages and Programming, pp. 167–196.
North Holland (1972)

7. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall, Englewood Cliffs
(1976)

8. Ehrenfeucht, A., Zeiger, P.: Complexity measures for regular expressions. J. Com-
put. Syst. Sci. 12(2), 134–146 (1976)

9. Fischer, M.J., Ladner, R.E.: Propositional modal logic of programs. In: Proceedings
of the 9th ACM Symposium on Theory of Computing, pp. 194–211, Boulder, May
1977. Journal version: Propositional dynamic logic of regular programs, JCSS 18:2
(1979)

10. Floyd, R.W.: Assigning meanings to programs. In: Schwartz, J.T. (ed.) Mathemat-
ical Aspects of Computer Science, pp. 19–32 (1967)

11. Gentzen, G.: Investigations into logical deductions. In: Szabo, M.E. (ed.) The Col-
lected Papers of Gerhard Gentzen, pp. 68–131. North-Holland, Amsterdam (1934)

12. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
13. Grabowski, J.: On partial languages. Fundam. Inform. IV(2), 427–498 (1981)
14. Harel, D., Meyer, A.R., Pratt, V.R.: Computability and completeness in logics

of programs. In: Proceedings of the 9th Annual ACM Symposium on Theory of
Computation, pp. 261–268 (1977)

15. Henkin, L.: The logic of equality. Amer. Math. Mon. 84(8), 597–612 (1977)
16. Hintikka, K.J.J.: Form and content ni quantification theory. Acta Philos. Fenni. 8,

7–55 (1955)
17. Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM

12, 576–580 (1969)

Dynamic Logic: A Personal Perspective 169

18. Hoare, C.A.R., Lauer, P.E.: Consistent and complementary formal theories of the
semantics of programming languages. Acta Inform. 3, 135–153 (1974)

19. Jónsson, B., Tarski, A.: Boolean algebras with operators. Part I. Amer. J. Math.
73, 891–939 (1951)

20. Knuth, D.E., Morris, J., Pratt, V.R.: Fast pattern matching in strings. SIAM J.
Comput. 6(2), 323–350 (1977)

21. Kozen, D.: A representation theorem for models of ∗-free PDL. Technical report
RC7864, IBM, September 1979

22. Kozen, D.: Results on the propositional mu-calculus. Theor. Comput. Sci. 23
(1983)

23. Kripke, S.: A completeness theorem in modal logic. J. Symb. Logic 24(1), 1–14
(1959)

24. Kripke, S.: Semantical considerations on modal logic. Acta Philos. Fenn. 16, 83–94
(1963)

25. Ladner, R.E.: The computational complexity of provability in systems of modal
propositional logic. SIAM J. Comput. 6(3), 467–480 (1977)

26. Litvintchouk, S.D., Pratt, V.R.: A proof checker for dynamic logic. In: 5th Inter-
national Joint Conference on A.I., pp. 552–558, August 1977

27. Mazurkiewicz, A.: Concurrent program schemes and their interpretations. Techni-
cal report DAIMI Report PB-78, Aarhus University, Aarhus (1977)

28. Nelson, G., Oppen, D.C.: Fast decision algorithms based on union and find. In:
18th IEEE Symposium on Foundations of Computer Science, October 1977

29. Németi, I.: Every free algebra in the variety generated by the representable dynamic
algebras is separable and representable. Theoret. Comput. Sci. 17, 343–347 (1982)

30. Parikh, R.: A completeness result for a propositional dynamic logic. In: Winkowski,
J. (ed.) MFCS 1978. LNCS, vol. 64, pp. 403–415. Springer, Heidelberg (1978)

31. Petri, C.A.: Fundamentals of a theory of asynchronous information flow. In: Pro-
ceedings of the IFIP Congress 62, Munich, pp. 386–390 (1962). North-Holland,
Amsterdam

32. Pnueli, A.: The temporal logic of programs. In: 18th IEEE Symposium on Foun-
dations of Computer Science, pp. 46–57, October 1977

33. Pratt, V.R.: Translation of lewis carroll’s syllogisms into logic. Masters Thesis,
August 1969

34. Pratt, V.R.: Semantical considerations on Floyd-Hoare logic. In: Proceedings of the
17th Annual IEEE Symposium on Foundations of Computer Science, pp. 109–121,
October 1976

35. Pratt, V.R.: A practical decision method for propositional dynamic logic. In: Pro-
ceedings of the 10th Annual ACM Symposium on Theory of Computing, San Diego,
pp. 326–337, May 1978

36. Pratt, V.R.: Axioms or algorithms. In: Proceedings of the 6th Symposium on Math-
ematical Foundations of Computer Science, Olomouc, Czech. (1979)

37. Pratt, V.R.: Dynamic algebras: Examples, constructions, applications. Technical
report MIT/LCS/TM-138, M.I.T. Laboratory for Computer Science, July 1979

38. Pratt, V.R.: Dynamic logic. In: Proceedings of the 6th Conference on Logic,
Methodology, and Philosophy of Science, Hanover, West Germany, pp. 251–261
(1979)

39. Pratt, V.R.: Process logic. In: Proceedings of the 6th Annual ACM Symposium on
Principles of Programming Languages, San Antonio, pp. 93–100, January 1979

40. Pratt, V.R.: Dynamic algebras and the nature of induction. In: 12th ACM Sym-
posium on Theory of Computation, Los Angeles, April 1980

170 V. Pratt

41. Pratt, V.R.: A near optimal method for reasoning about action. J. Comput. Syst.
Sci. 2, 231–254 (1980). Also MIT/LCS/TM-113, M.I.T., Sept. 1978

42. Pratt, V.R.: A decidable mu-calculus. In: Proceedings of the 22nd IEEE Conference
on Foundations of Computer Science, pp. 421–427, October 1981

43. Pratt, V.R.: Using graphs to understand PDL. In: Kozen, D. (ed.) Logic of Pro-
grams 1981. LNCS, vol. 131, pp. 387–396. Springer, Heidelberg (1982). https://
doi.org/10.1007/BFb0025792

44. Pratt, V.R.: Position statement. Circulated at the Panel on Mathematics of Parallel
Processes, chair A.R.G. Milner, IFIP-83, September 1983

45. Pratt, V.: The pomset model of parallel processes: unifying the temporal and the
spatial. In: Brookes, S.D., Roscoe, A.W., Winskel, G. (eds.) CONCURRENCY
1984. LNCS, vol. 197, pp. 180–196. Springer, Heidelberg (1985). https://doi.org/
10.1007/3-540-15670-4 9

46. Pratt, V.: Two-way channel with disconnect. In: Denvir, B.T., Harwood, W.T.,
Jackson, M.I., Wray, M.J. (eds.) The Analysis of Concurrent Systems. LNCS,
vol. 207, pp. 110–114. Springer, Heidelberg (1985). https://doi.org/10.1007/3-540-
16047-7 39

47. Pratt, V.R.: Modeling concurrency with geometry. In: Proceedings of the 18th
Annual ACM Symposium on Principles of Programming Languages, pp. 311–322,
January 1991

48. Pratt, V.R.: The duality of time and information. In: Cleaveland, W.R. (ed.) CON-
CUR 1992. LNCS, vol. 630, pp. 237–253. Springer, Heidelberg (1992). https://doi.
org/10.1007/BFb0084795

49. Pratt, V.R.: Dynamic algebras: examples, constructions, applications. Stud. Logica
50(3/4), 571–605 (1992)

50. Pratt, V.R.: Transition and cancellation in concurrency and branching time. Math.
Struct. Comp. Sci. 13(4), 485–529 (2003). Special issue on the difference between
sequentiality and concurrency

51. Rasiowa, H., Sikorski, R.: The Mathematics of Metamathematics. Polska Akademia
Nauk. Monografie matematyczne, vol. 41. Drukarnia Uniwersytetu, Warsaw (1963)

52. Rennie, M.K.: Models for multiply modal systems. Zeitschr. j. math. Logik und
Grundlagen d. Math. 16, 175–186 (1970)

53. Salwicki, A.: Formalized algorithmic languages. Bull. Acad. Pol. Sci., Ser. Sci.
Math. Astr. Phys. 18(5), 227–232 (1970)

54. Savitch, W.J.: Relationships between nondeterministic and deterministic tape com-
plexities. J. Comput. Syst. Sci. 4, 177–192 (1970)

55. Smullyan, R.: First Order Logic. Springer, Berlin (1968)
56. Stone, M.: The theory of representations for Boolean algebras. Trans. Amer. Math.

Soc. 40, 37–111 (1936)
57. Valiev, M.K.: On axiomatization of deterministic propositional dynamic logic. In:

Proceedings of the 6th Symposium on Mathematical Foundations of Computer
Science, Olomouc, Czech. (1979)

58. Zhegalkin, I.I.: On the technique of calculating propositions in symbolic logic.
Matematicheskii Sbornik 43, 9–28 (1927)

https://doi.org/10.1007/BFb0025792
https://doi.org/10.1007/BFb0025792
https://doi.org/10.1007/3-540-15670-4_9
https://doi.org/10.1007/3-540-15670-4_9
https://doi.org/10.1007/3-540-16047-7_39
https://doi.org/10.1007/3-540-16047-7_39
https://doi.org/10.1007/BFb0084795
https://doi.org/10.1007/BFb0084795

The Creation and Change of Social Networks:
A Logical Study Based on Group Size

Sonja Smets and Fernando R. Velázquez-Quesada(B)

Institute for Logic, Language and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands

{S.J.L.Smets,F.R.VelazquezQuesada}@uva.nl

Abstract. This paper is part of an on-going programme in which we
provide a logical study of social network formations. In the proposed
setting, agent a will consider agent b as part of her network if the number
of features (properties) on which they differ is small enough, given the
constraints on the size of agent a’s ‘social space’. We import this idea
about a limit on one’s social space from the cognitive science literature.
In this context we study the creation of new networks and use the tools
of Dynamic Epistemic Logic to model the updates of the networks. By
providing a set of reduction axioms we are able to provide sound and
complete axiomatizations for the logics studied in this paper.

1 Introduction

While the study of social interactions has received a lot of attention in logic and
AI, the existence of a specific social group or network on which these studies are
based is typically taken for granted. So what is left mostly unexplored is the way
a social group is formed or the way in which a social network is created. This is
exactly the topic we address in this paper. As such, this proposal complements
our previous work in [1] which provides a threshold based approach to social
network formation. In the threshold setting, an agent a considers agent b as part
of her social network if and only if the number of features in which they differ is
smaller or equal than a given threshold θ. This paper follows a different approach
by using an idea that arises from the cognitive science literature: focus not on a
similarity threshold, but rather on the size of the agent’s ‘social space’. In real
life, agents may be willing to keep expanding their social network with people
who are decreasingly less similar from them, as long as there is still ‘enough
space’ in their social environment.1 This is famously known as the Dunbar’s
number : a suggested cognitive limit to the number of people with whom one can
maintain stable social relationships (see, e.g., [2]).

In the next section we first introduce the social network models as a context
in which we can specify a distance between agents in a network. This distance

1 Think, for example, how we establish conversations with relatively ‘distant’ acquain-
tances mostly only when our close friends are not around.

c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 171–184, 2018.
https://doi.org/10.1007/978-3-319-73579-5_11

172 S. Smets and F. R. Velázquez-Quesada

is then used to create a layered structure of an agent’s possible social contacts,
which is an essential ingredient in the mechanism that allows agents to form a
new social network or to extend a given one when they are asked to take into
account the bound on their ‘social space’. We study a logical system that can
express such network creations, giving a sound and complete axiomatisation for
it. Finally we focus on the representation of more refined scenarios in which
not all features play the same important role in the network creation/formation
process. We conclude with a series of ideas for possible generalizations and/or
alternative settings that can be explored in future work.

2 Modelling Social Networks

Similar to [1], our starting point is the basic setting of [3] in which we work with a
relational ‘Kripke’ model in which the domain is interpreted as the set of agents,
the accessibility relation represents a social connection from one agent to another,
and the atomic valuation describes the features (behavior/opinions) that each
agent has. Let A denote a countable set of agents, and P (with A ∩ P = ∅) a
countable set of features that agents might or might not have:

Definition 2.1 (Social Network Model). A social network model (SNM) is
a tuple M = 〈A, S, V 〉 where S ⊆ A×A is the social relation (Sab indicates that
agent a is socially connected to agent b) and V : A → ℘(P) is a feature function
(p ∈ V (a) indicates that agent a has feature p).

Note how the social relation S does not need to satisfy any specific property
(in particular, it is not required to be irreflexive, and neither symmetric), and
thus it differs from the friendship relation of other approaches (e.g., [3–6]). Given
a social network model, we define a notion of ‘distance’ between agents based
on the number of features in which they differ.

Definition 2.2 (Distance). Let M = 〈A, S, V 〉 be a SNM. Let msmtchM (a, b)
be the set of features distinguishing agents a, b ∈ A in M :

msmtchM (a, b) := P \ {p ∈ P : p ∈ V (a) iff p ∈ V (b)}

Then, the distance between a and b in M is given by

distM (a, b) := |msmtchM (a, b)|

As discussed in [1], dist is a mathematical distance: for any agents a, b ∈ A
and any SNM, (i) the distance from a to b is non-negative (non-negativity:
distM (a, b) ≥ 0), (ii) the distance from a to b is equal to that from b to a
(symmetry: distM (a, b) = distM (b, a)), and (iii) the distance from an agent to
herself is 0 (reflexivity: distM (a, a) = 0). Moreover, dist is a semi-metric, as
it also satisfies subadditivity: ‘going directly’ from a to c is ‘faster’ than ‘going’
via another agent (distM (a, c) ≤ distM (a, b) +distM (b, c)). Still, dist is not a

The Creation and Change of Social Networks 173

metric, as it does not satisfy identity of indiscernibles: distM (a, b) = 0 does not
imply a = b, as two different agents may have exactly the same features.2

Static Language L. Following [3], social network models are described by a
propositional language L, with special atoms describing the agents’ features and
their social relationship:

Definition 2.3 (Language L). Formulas ϕ,ψ of the language L are given by

ϕ,ψ :: = pa | Sab | ¬ϕ | ϕ ∧ ψ

with p ∈ P and a, b ∈ A. We read pa as “agent a has feature p” and Sab as “agent a
is socially connected to b”. Boolean constants (�,⊥) and other Boolean operators
(∨,→,↔,�, the latter representing the exclusive disjunction) are defined as usual.
Given a SNM M = 〈A, S, V 〉, the semantic interpretation of L-formulas in M is
given by:

M � pa iffdef p ∈ V (a),

M � Sab iffdef Sab,

M � ¬ϕ iffdef M �� ϕ,

M � ϕ ∧ ψ iffdef M � ϕ and M � ψ.

A formula ϕ ∈ L is valid (notation: � ϕ) when M � ϕ holds for all models M .

Since there are no restrictions on the social relation nor on the feature func-
tion, any axiom system of classical propositional logic is fit to characterize syn-
tactically the validities of L over the class of social network models.

3 Group-Size-Based Social Network Creation

As mentioned before, [1] approaches social network creation by considering a
similarity threshold θ, then defining each agent’s new social space as all those
agents that differ from her in at most θ ∈ N features. This proposal follows a
different strategy. Borrowing an idea from cognitive science [2], it considers a
maximum group-size λ ∈ N, then defining each agent’s new social space as the
λ agents that are closer to her, according to the above defined distance.

This section implements this idea of agents having a size-bounded social
space; the following tools are used to make this idea precise.

Definition 3.1. Given a social network model M = 〈A, S, V 〉 and an agent
a ∈ A, the quantitative notion of distance dist induces a qualitative (total,
reflexive, transitive and well-founded) relation �M

a ⊆ A× A of distance from a.
Such relation is given by

�M
a := {(b1, b2) ∈ A × A : distM (a, b1) ≤ distM (a, b2)},

and thus b1 �M
a b2 indicates that, in model M , agent b1 is at least as close

to agent a as agent b2. By defining the notion of �M
a -minimum in the stan-

dard way (for B ⊆ A, take mina(B) := {b ∈ B : b �M
a b′ for all b′ ∈ B}),

2 See [7, Chap. 1] for more details on mathematical distances.

174 S. Smets and F. R. Velázquez-Quesada

this relation induces a sequence of layers (i.e., an ordered list of subsets) on
A (Aa(−1),Aa(0), . . . ,Aa(n), . . ., for n ≥ 0), with each set containing agents
equally distant from a:

Aa(−1) := ∅, Aa(0) := mina(A), Aa(n + 1) := mina(A \
n⋃

k=−1

Aa(k)).

Different agents might be ‘equally distant’ from a, and thus �M
a is not anti-

symmetric: layers might have more than one element.3 Moreover: while an initial
empty layer Aa(−1) has been defined (its usefulness will be clear below), the layer
Aa(0) always contains those agents that are feature-wise identical to a (includ-
ing a herself). Note also how the layers are collectively exhaustive and pairwise
disjoint: every agent appears in exactly one of them. Finally, when A is finite,
at some point a ‘first’ empty layer Aa(k) will appear (for some k > 0), and from
that moment on all layers will be empty too.

The layered structure of an agent’s social contacts will be a helpful tool to
model how agents can form a new social network or even extend a given one by
performing updates on their social relations. Such agents are asked to establish
new connections to agents that are close enough to them given the bound on
their ‘social space’. To model this we introduce the idea of a bounded similarity
update operation on models, using the tools of Dynamic Epistemic Logic on how
one can model such transformations on models [8–10].

Definition 3.2 (Bounded similarity update). Let M = 〈A, R, V 〉 be a SNM;
take λ ∈ N. Denote by �a(λ) the ‘last’ layer of contacts an agent a ∈ A can add
to her network without going above the maximum group size λ, i.e.,

�a(λ) := max{n ∈ N ∪ {−1} : |
n⋃

k=−1

Aa(k)| ≤ λ}

The bounded similarity update on M produces the SNM M��λ
= 〈A, S��λ

, V 〉,
with its social relation given by

S��λ
:= {(a, b) ∈ A × A : b ∈

�a(λ)⋃

k=−1

Aa(k)}

Since layers might have more than one element, each agent could reach a point
where she should decide whether to add the next layer of friends and go above
the limit λ, or stop and stay strictly below it. The definition provided above
chooses the second possibility: agents will always stay below the limit, even if
that means leaving some ‘memory slots’ empty. The extra empty layer Aa(−1)
makes this definition work in cases in which the first layer Aa(0) contains already

3 In such case, and if no additional criteria is used to distinguish agents in the same
layer, all of them should ‘stand together’: the decision of whether they will become
part of a’s social network should be of a ‘either all or else none’ nature.

The Creation and Change of Social Networks 175

too many agents. In such situations, �(λ) = −1 and hence
⋃�(λ)

k=−1 Aa(k) =
Aa(−1) = ∅; thus, after the bounded similarity update operation, the agent will
be friendless.

Properties and Variations. The social network created by the threshold app-
roach of [1] is reflexive (hence serial) and symmetric, though it might not be
neither transitive nor Euclidean. In contrast, a social network created by the
group-size bounded similarity update does not guarantee any of such properties.
First, for reflexivity,

Proposition 3.1. Let M = 〈A, S, V 〉 be a SNM and a ∈ A be an agent; take
M��λ

= 〈A, S��λ
, V 〉 (Definition 3.2). Then, a considers herself as part of her new

social network (S��λ
aa) if and only if the amount of people that are feature-wise

identical to her is at most the limit λ (|Aa(0)| ≤ λ).

Note how |Aa(0)| > λ implies not only that S��λ
aa will fail, but also that

S��λ
[a] = ∅ (so a will be friendless after the operation).
For symmetry, transitivity and Euclideanity,

Fact 3.1. Let M = 〈A, S, V 〉 be a SNM; take M��λ
= 〈A, S��λ

, V 〉. Then, S��λ

might not be neither symmetric, nor transitive nor Euclidean.

Proof. Here are counterexamples to each one of these properties.

• Symmetry fails for a and b if, despite a having ‘enough space’ for b, there is
some c that is both closer to b than a (distM (b, c) ≤ distM (b, a), so b would
pick c over a), and farther away from a than b (distM (a, b) ≤ distM (a, c), so
a would chose b over c). By taking λ = 2, the SNM below on the left shows
such situation, with the SNM on the right being the result of the update.4

p, q, r

a

p

b

c

0
2

3

0

1

0

p, q, r

a

p

b

c

��2⇒
p, q, r

a

p

b

c

0
2

3

0

1

0

More generally, symmetry fails if a high occurrence of similar agents produces
a fully connected cluster, leaving dissimilar ones with asymmetric edges.

• The failure of transitivity also relies on b being close enough to a (so S��λ
ab

holds) and c being both close enough to b (so S��λ
bc holds) and further away

from a ‘in b’s direction’ (so S��λ
ac fails). The models above showing the failure

of symmetry also show how transitivity might fail.

4 Numbers over edges indicate distance. Edges in black are actual pairs in the social
network relation, and dotted grey edges are shown only for distance information.

176 S. Smets and F. R. Velázquez-Quesada

• Finally, the relation is not Euclidean if, even though b1 and b2 are both close
enough to a for the latter to call them her friends, they are different enough
from each other to allow somebody else to take their supposed place by being
more similar to each one of them (while also being very different from a).
Such slightly convoluted situations are described better graphically, and the
SNM below on the left is an example (take λ = 3).

p, q, r, s a

p, q

b1

r, s

b2

p

c1

r

c2

0

2

2

3

3

0

4

1

0
1

0

3

2

0

3

p, q, r, s a

p, q

b1

r, s

b2

p

c1

r

c2

��3⇒ p, q, r, s a

p, q

b1

r, s

b2

p

c1

r

c2

0

2

2

3

3

0

4

1

0
1

0

3

2

0

3

p, q

b1

r, s

b2

Characterising those situations in which the group-size approach produces
symmetric, transitive or Euclidean social networks is not straightforward. Obvi-
ously, a λ larger or equal than |A| will produce fully connected (hence symmet-
ric, transitive and Euclidean) relations; still, these properties might be achieved
under other circumstances. For example, symmetry can be achieved also when
the agents are ‘similarly dissimilar’ (i.e., their differences are ‘uniformly dis-
tributed’), as the update might yield ring-like structures with symmetric edges
(see the above ‘Euclideanity’ counterexample).

These results might suggest that the networks created by Definition 3.2 are
relatively ‘arbitrary’: compared with the threshold approach of [1], which guar-
antees reflexivity and symmetry, the group-size approach might seem to produce
random social networks. This is actually not the case. In the threshold approach,
what matters for deciding whether b will become part of a’s social network
(besides the threshold itself) is only the distance between a and b. However, in
the group-size approach, what matters for deciding whether b will become part
of a’s social network (besides the group-size itself) is the distance between a and
all agents. Indeed, the distance between a and b is, by itself, not enough: it is
possible for a and b to be extremely similar (say, distM (a, b) = 1), and still b
will not be in a’s social network if the number of agents feature-wise identical to
a is high. Even more: a and b might be feature-wise identical, and yet they will
not be socially connected if the number of agents feature-wise identical to them
is larger than the group-size.

The group-size approach is context-sensitive: the new social networks are
built not in terms of how fit is each candidate individually, but rather on how
fit is each candidate compared with the rest. In other words, it is not about
similarity, but rather about relative similarity. A detailed study of the group-
conditions that guarantee the social network will have specific properties is left
for future work.

The Creation and Change of Social Networks 177

Still, the operation might be defined in slightly alternative ways. As men-
tioned before, in some cases the agent will have empty ‘memory slots’ because
the next layer would have put her social network above the size limit. One could
make it possible for an agent to take on exactly λ contacts by asking for addi-
tional criteria to distinguish agents in the same layer (e.g., in an appropriate set-
ting, considering not only the agents’ features but also their preferences/beliefs).
Still, one can also assume that λ is a loose limit, allowing the agent to go above
it when she cannot tell the members of a group apart. For this, a small change
in the definition of the upper limit �a (Definition 3.2) is enough:

�a(λ) := max{n + 1 ∈ N : |
n⋃

k=−1

Aa(k)| ≤ λ}.

Readers interested in irreflexive friendship relations (as those in [3–6]) can
achieve this property by defining agent a’s sequence of layers not in terms of the
full set of agents A, but rather in terms of A−a := A \ {a}.

Finally, a further variation is to allow for each agent to have a personal group-
size [11,12]. This can be represented by a function Λ : A → N indicating how
many friends each agent can handle, which can be then used to define the new
updated relation as S��λ

:= {(a, b) ∈ A × A : b ∈ ⋃�a(Λ(a))
k=−1 Aa(k)}, the only

difference being the use of Λ(a) instead of λ when defining the agents who will
join a’s social group.

Dynamic Language L��λ . To express how the bounded update changes a social
network, we define the language L��λ

.

Definition 3.3 (Language L��λ). The language L��λ
extends L with a modality

[��λ] to build formulas of the form [��λ]ϕ (“after a bounded similarity update, ϕ
is the case”). The semantic interpretation of this modality refers to the bounded
similarity updated model of Definition 3.2 as follows. Let M be a SNM; then,

M � [��λ] ϕ iffdef M��λ
� ϕ.

Note that no precondition is required for a bounded similarity update.
Because of this and the functionality of the model operation, the dual modality
〈��λ〉 ϕ := ¬ [��λ] ¬ϕ is such that � [��λ] ϕ ↔ 〈��λ〉 ϕ.

The axiom system characterising validities of L��λ
in SNM is built via the

DEL technique of recursion axioms. As such, it makes crucial use of the fact
that the basic ‘static’ language L is already expressive enough to characterise
the changes that the bounded similarity update operation brings about. The
crucial axiom, the one characterising the way in which the social network relation
changes, will be built up step by step.

178 S. Smets and F. R. Velázquez-Quesada

First, note that, when P is finite, the following L-formula is true in a model
M if and only if agents a and b differ in exactly t ∈ N features:5

Distt
a·b :=

∨

{P′⊆P:|P′|=t}

(∧

p∈P′
(pa � pb) ∧

∧

p∈P\P′
(pa ↔ pb)

)

The second step consists in defining the L-formula Closera·b1·b2 , which is true
in a model M if and only if agent b2 is at most as close to agent a as agent b1

(i.e., distM (a, b1) ≤ distM (a, b2)):6

Closera·b1·b2 :=
|P|∨

j1=0

|P|∨

j2=j1

(
Distj1

a·b1 ∧Distj2
a·b2

)

By using the Closera·b1·b2 formula, and in those cases in which A is finite, it
is possible to provide further L-formulas characterising the agents in each one of
the layers induced by the qualitative ‘distance from a’ relation �M

a : for n ≥ 0,

InLaya,−1(b) := ⊥, InLaya,0(b) :=
∧

p∈P

(pa ↔ pb),

InLaya,n+1(b) :=
n∧

k=0

¬ InLaya,k(b) ∧
∧

c∈A

(
n∧

k=0

¬ InLaya,k(c) → Closera·b·c

)
.

It is not hard to see that each formula InLaya,k(b) indeed characterises each
layer Aa(k), i.e., for every SNM M , a ∈ A and k ∈ N ∪ {−1},

Aa(k) = {b ∈ A : M � InLaya,k(b)}

The cases for k = −1 and k = 0 are straightforward: Aa(−1) is always empty, and
Aa(0) always contains those agents that are feature-wise identical to agent a. The
remaining (inductive) case is also straightforward, as a given agent b is in Aa(n+
1) (formula: InLaya,n+1(b)) if and only if it is not in any ‘lower’ layer (formula:∧n

k=0 ¬ InLaya,k(b)) and every agent that is not in a ‘lower’ layer is at most as
close to a than b herself (formula:

∧
c∈A

(∧n
k=0 ¬ InLaya,k(c) → Closera·b·c

)
).

Finally, given Definition 3.2, it follows that the following L��λ
-validity char-

acterizes the way the social relation changes:

� [��λ] Sab ↔
�a(λ)∨

k=0

InLaya,k(b)

5 More precisely, the formula states that there is at least one set of features P′, of size
t, such that a and b differ in all features in P′ and coincide in all features in P \ P′.
There can be a most one such set; therefore the formula is true exactly when a and
b differ in exactly t features.

6 More precisely, the formula states that there are j1, j2 ∈ {0, . . . , |P|}, with j1 ≤ j2,
such that j1 is the distance from a to b1, and j2 is the distance from a to b2.

The Creation and Change of Social Networks 179

In words, after a bounded similarity update agent a will have agent b in her
social network, [��λ] Sab, if and only if, before the update, agent b was in some
of the layers whose agents will be part of a’s social network,

∨�a(λ)
k=0 InLaya,k(b).

As only the social relation changes in the new model, we have the following.

Theorem 3.1 The reduction axioms and the rule on Table 1 provide, together
with a propositional axiom system schema, a sound and strongly complete axiom
system characterising the validities of the dynamic language L��λ

(for a finite
set of features and a finite set of agents).

Table 1. Axiom system for L��λ over social network models.

If the relation S��λ
is forced to be irreflexive following the suggestion above,

it is enough to restrict the current axiom characterizing the new social relation
to cases in which a and b are different agents, and then add an additional axiom
expressing that Saa is never the case after the update operation.

� [��λ] Sab ↔ ∨�a(λ)
k=0 InLaya,k(b) for a �= b, � [��λ] Saa ↔ ⊥

For the variation in which the new social relation relies on personal group-size
restrictions, the only needed change is the upper limit of the social network
axiom: instead of the ‘general’ �a(λ), the ‘personal’ �a(Λ(a)) should be used.

4 A Restriction to relevant Features

Any social-network-creation operation, such as the threshold update of [1] or the
bounded update of Definition 3.2, can be seen as a ‘public conversation’ where
all agents ‘discuss’ their features. Then, as the ‘conversation’ continues, agents
will form subgroups of people sharing prior common interests.

When looking at social network creation from this perspective, it becomes
clear that not all features can be ‘discussed’ at once: just some of them will be
relevant at each stage of the discussion. This is not a novel idea; in [13], the
authors use a game theoretic setting to define the agreement and disagreement
of agents on a specific feature (or issue), which yields a way for them to update
the social relation of agents with respect to one specific feature at a time.

This section explores this idea within the bounded update operation of the
previous section: only a subset of all features will be relevant for each update.
The resulting setting will allow us to describe more realistic scenarios, such as
the step-by-step interaction in real dialogues (when personal features are slowly

180 S. Smets and F. R. Velázquez-Quesada

revealed as the conversation goes on), or cases in which agents control when
one of their features becomes visible to other agents (e.g. when agents choose to
expose some ‘private’ information only in specific circumstances).

The crucial step in this generalisation is the definition of a notion of distance
that is relative only to a subset of features Q ⊆ P.

Definition 4.1 (Q-Distance). Let M = 〈A, S, V 〉 be a SNM, and let Q ⊆ P
be a set of features. The Q-distance between a and b in M (that is, the distance
between a and b in M relative to features in Q) is given by

distQ
M (a, b) := |msmtchM (a, b) ∩ Q|

Thus, distQ
M (a, b) returns the number of atoms in Q on which a and b differ.

Then, while some agent b1 might be strictly closer to agent a than another agent
b2 with respect to all features, agent b2 might be strictly closer to a than b1 with
respect to some strict subset of them.7

With this notion of Q-distance (still a semi-metric, as it satisfies non-
negativity, symmetry, reflexivity and subadditivity, but not a metric, as it fails
to satisfy the identity of indiscernibles), one can define ‘relative to Q’ variants of
the qualitative ‘distance from a’ relation and the sequence of layers it induces.

Definition 4.2 Given a social network model M = 〈A, S, V 〉, an agent a ∈
A and a subset of features Q ⊆ P, the quantitative notion of Q-distance
distQ induces a qualitative (total, reflexive, transitive and well-founded) rela-
tion �Q,M

a ⊆ A × A of Q-distance from a. Such a relation is given by

�Q,M
a := {(b1, b2) ∈ A × A : distQ

M (a, b1) ≤ distQ
M (a, b2)}

and thus b1 �Q,M
a b2 indicates that, with respect to the features in Q, agent b1

is at least as close to agent a as agent b2 in model M . By defining the notion
of �Q,M

a -minimum in the standard way (for B ⊆ A, take minQ
a (B) := {b ∈ B :

b �Q,M
a b′ for all b′ ∈ B}), this relation induces the following sequence of layers

on A, each one containing agents equally distant from a:

AQ
−1(a) := ∅, AQ

0 (a) := minQ
a (A), AQ

n+1(a) := minQ
a (A \

n⋃

k=−1

AQ
k (a)).

Similarly we now restrict the definition of the bounded similarity update to
a version that is set to be relative to a given subset of features Q.

Definition 4.3 (Bounded Q-similarity update). Let M = 〈A, R, V 〉 be a
SNM and Q ⊆ P a subset of features; take λ ∈ N. Denote by �Qa (λ) the ‘last’

7 For an example, take a model with V (a) = {p, q, r}, V (b1) = {q, r} and V (b2) =

{p}. Then, dist
{p,q,r}
M (a, b1) = 1 < 2 = dist

{p,q,r}
M (a, b2), but nevertheless

dist
{p}
M (a, b2) = 0 < 1 = dist

{p}
M (a, b1).

The Creation and Change of Social Networks 181

layer of contacts an agent a ∈ A can add to her network without going above the
maximum group size λ, i.e.,

�Qa (λ) := max{n ∈ N ∪ {−1} : |
n⋃

k=−1

AQ
k (a)| ≤ λ}

The bounded Q-similarity update on M produces the SNM M
��

Q
λ

= 〈A, S
��

Q
λ
, V 〉,

with its social relation given by

S
��

Q
λ

:= {(a, b) ∈ A × A : b ∈
�Qa(λ)⋃

k=−1

AQ
k (a)}

Example 4.1 Consider the SNM models of the counterexample for Euclideanity
(Fact 3.1 on page 5), drawn again below.

p, q, r, sa

p, q

b1

r, s

b2

p

c1

r

c2

0

2

2

3

3

0

4

1

0
1

0

3

2

0

3

p, q, r, sa

p, q

b1

r, s

b2

p

c1

r

c2

��3⇒ p, q, r, sa

p, q

b1

r, s

b2

p

c1

r

c2

0

2

2

3

3

0

4

1

0
1

0

3

2

0

3

p, q

b1

r, s

b2

The SNM above on the left shows the resulting social network when all fea-
tures {p, q, r, s} are ‘put on the table’. But suppose that this is not the case; then,
the operation produces different social networks. For example, if the agents only
‘talk’ about features in {p, q}, then the distances are as shown in the model
below on the left (underlined numbers emphasising distances that differ from
the original ‘fully open’ situation):

p, q, r, sa

p, q

b1

r, s

b2

p

c1

r

c2

0

0

2

1

2

0

2

1

0
0

0

1

1

0

2

p, q, r, sa

p, q

b1

r, s

b2

p

c1

r

c2

��3⇒ p, q, r, sa

p, q

b1

r, s

b2

p

c1

r

c2

0

0

2

1

2

0

2

1

0
0

0

1

1

0

2

p, q

b1

r, s

b2

The resulting SNM is shown above on the right. As expected, the social network
relation is different. Note, in particular, how while the relation is still reflexive,
it is not symmetric anymore; however, it is now transitive. Also interesting is
the fact that, although c1 is considered ‘a friend’ by everybody, she is the only
member of her own social network: all other agents are at a distance of 1, and

182 S. Smets and F. R. Velázquez-Quesada

thus adding all of them would have taken her above the limit λ = 3. In fact,
by restricting the conversation to the issues in {p, q}, the resulting network can
be seen as three fully connected clusters, {a, b1}, {b2, c2} and {c1}, with the
members of the firsts pointing asymmetrically to the lone member of the last.

Dynamic Language L
��

Q
λ
. The language L

��
Q
λ

is similar to L��λ
; the only dif-

ference lies in the semantic interpretation of its ‘dynamic’ operator, ��
Q
λ .

Definition 4.4 (Language L��λ
). The language L

��
Q
λ

extends L with a modal-

ity [��Q
λ] to build formulas of the form [��Q

λ] ϕ (“after a bounded Q-similarity
update, ϕ is the case”). The semantic interpretation of this modality refers to
the relativised bounded updated model of Definition 4.3 as follows. Let M be a
SNM; then,

M � [��Q
λ] ϕ iffdef M

��
Q
λ

� ϕ.

With respect to an axiom system, the system presented in Table 1 can be
used almost verbatim. The only change refers to the axiom characterising the
new social network relation, which should now be relativised to the subset of
features Q; for this, it is enough to replace P with Q in the definitions for formulas
Distt

a·b and Closera·b1·b2 (page 7), thus obtaining formulas DistQ,t
a·b , CloserQa·b1·b2

and InLayQ
a,k(b).

5 Conclusions and Future Work

Following the cognitive science literature (in particular, [2]), we have examined
social networks (Sect. 2) by studying a group-size approach to social network
creation based on the initial idea (see Sect. 3) in which “agent a will consider
agent b to be part of her social network if and only if b is within the λ closest
agents to a”. This proposal can be seen as an alternative to the approach of
[1], which uses a threshold to establish how similar an agent should be to be
incorporated to someone’s social environment (i.e. “agent a will consider agent
b to be part of her social network if and only if b’s distance from a is at most θ”).
Moreover, the relativised version studied in Sect. 4 allows for the representation
of more refined scenarios where not all features play a role during the agents’
interaction.

The work presented here and in [1] form the initial steps in the study of
the logical structure behind social network creation, and they already suggest
interesting alternatives. While both the threshold and the group-size approaches
relate agents when they are similar enough in their features, behavior, etc., one
can think of an alternative scenario in which one considers the dual situation so
that agents connect when they complement each other. In order to deal formally
with this complementary idea, a more fine-grained setting is needed that takes
into account not only the agents’ features/behaviors, as in this paper, but also
their doxastic state and their preferences (e.g., [14,15]).

The Creation and Change of Social Networks 183

Another straightforward generalization would be to consider not a single
social network, but rather a collection of them. A slightly more realistic approach
in this direction is to understand each feature not as a simple choice between
“yes“ and “no”, but rather as a choice among a finite range of values. Then the
model can support a social network for each feature p ∈ P, and agents can be
grouped according to the value they assign to each such p. After all, someone who
chooses football as her favourite sport and Lady Gaga as her favourite musician
is bound to have different social environments in each one of these contexts.

A further route will lead us into a combined social network and epistemic
study. This is another natural next step, as what matters most when establishing
friendship is maybe not the agents’ features and differences, but rather what
one knows about them. Our work in [1] provides an initial exploration in this
direction, using the threshold update approach.

In a related track, one can explore cases in which certain features are taken
to be more important than others in such a way that this ‘priority ordering’
among features differs from agent to agent. This allows for the representation of
interesting situations: the number of differences between agents a and b1 might be
very large, and yet they may agree on the feature a cares about the most. Then,
a might consider that b1 is ‘closer to her’ than some b2 with whom she shares all
but this most important feature. The combination of this (the explored setting
in which the update is relative to only a subset of features) and an epistemic
setting would allow us to describe situations where strategic behaviour plays an
important role. For example, if agent a knows that she and agent b differ in some
feature p ∈ P, and she also knows that p is the most important feature for b, then
she (a) might want to keep this topic out of the conversation, at least until it
has been commonly established (i.e., it is common knowledge between a and b)
that they are similar with respect to several other features. The setting becomes
even more interesting when the new social network is defined not only in terms
of the agents’ similarities, but also in terms of existing social connections (cf. the
middleman cases in [1]). In such cases, the features discussed at the beginning
will define the social connections that will be available in further stages.

Finally, we observe the importance of the interplay between the social net-
work changing operations of this proposal, and the operations that change the
features (or behaviour/beliefs) in [3]. Both ideas deserve to be studied in tan-
dem, as indeed the dynamics studied in one can affect the dynamics studied in
the other.

References

1. Smets, S., Velázquez-Quesada, F.R.: How to make friends: a logical approach to
social group creation. In: Baltag, A., Seligman, J., Yamada, T. (eds.) LORI 2017.
LNCS, vol. 10455, pp. 377–390. Springer, Heidelberg (2017). https://doi.org/10.
1007/978-3-662-55665-8 26

2. Dunbar, R.I.M.: Neocortex size as a constraint on group size in primates. J. Hum.
Evol. 22(6), 469–493 (1992)

https://doi.org/10.1007/978-3-662-55665-8_26
https://doi.org/10.1007/978-3-662-55665-8_26

184 S. Smets and F. R. Velázquez-Quesada

3. Baltag, A., Christoff, Z., Rendsvig, R.K., Smets, S.: Dynamic epistemic logics of
diffusion and prediction in social networks (extended abstract). In: Bonanno, G.,
van der Hoek, W., Perea, A. (eds.) Proceedings of LOFT 2016 (2016)

4. Seligman, J., Liu, F., Girard, P.: Logic in the community. In: Banerjee, M., Seth,
A. (eds.) ICLA 2011. LNCS (LNAI), vol. 6521, pp. 178–188. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18026-2 15

5. Liu, F., Seligman, J., Girard, P.: Logical dynamics of belief change in the commu-
nity. Synthese 191(11), 2403–2431 (2014)

6. Christoff, Z., Hansen, J.U., Proietti, C.: Reflecting on social influence in networks.
J. Logic Lang. Inf. 25(3–4), 299–333 (2016)

7. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-00234-2

8. Baltag, A., Moss, L.S., Solecki, S.: The logic of public announcements, common
knowledge, and private suspicions. In: Gilboa, I. (ed.) Proceedings of TARK 1998,
pp. 43–56. Kaufmann, San Franscisco (1998)

9. van Ditmarsch, H., van der Hoek, W., Kooi, B.: Dynamic Epistemic Logic. Syn-
these Library Series, vol. 337. Springer, The Netherlands (2008). https://doi.org/
10.1007/978-1-4020-5839-4

10. van Benthem, J.: Logical Dynamics of Information and Interaction. Cambridge
University Press, Cambridge (2011)

11. Roberts, S.G.B., Wilson, R., Fedurek, P., Dunbar, R.I.M.: Individual differences
and personal social network size and structure. Pers. Individ. Differ. 44(4), 954–964
(2008)

12. Roberts, S.G.B., Dunbar, R.I.M., Pollet, T.V., Kuppens, T.: Exploring variation
in active network size: constraints and ego characteristics. Social Netw. 31(2),
138–146 (2009)

13. Solaki, A., Terzopoulou, Z., Zhao, B.: Logic of closeness revision: challenging rela-
tions in social networks. In: Köllner, M., Ziai, R. (eds.) Proceedings of the ESSLLI
2016 Student Session, pp. 123–134 (2016)

14. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision. In:
Bonanno, G., van der Hoek, W., Wooldridge, M. (eds.) Logic and the Foundations
of Game and Decision Theory (LOFT7). Texts in Logic and Games, vol. 3, pp.
13–60. Amsterdam University Press, Amsterdam (2008)

15. Ghosh, S., Velázquez-Quesada, F.R.: Agreeing to agree: reaching unanimity
via preference dynamics based on reliable agents. In: Weiss, G., Yolum, P.,
Bordini, R.H., Elkind, E. (eds.) Proceedings of the 2015 International Conference
on Autonomous Agents and Multiagent Systems, AAMAS 2015, Istanbul, Turkey,
4–8 May 2015, pp. 1491–1499. ACM (2015)

https://doi.org/10.1007/978-3-642-18026-2_15
https://doi.org/10.1007/978-3-642-00234-2
https://doi.org/10.1007/978-1-4020-5839-4
https://doi.org/10.1007/978-1-4020-5839-4

Dynamic Preference Logic as a Logic
of Belief Change

Marlo Souza1(B), Álvaro Moreira2, and Renata Vieira3

1 Institute of Mathematics and Statistics, Federal University of Bahia - UFBA,
Av. Adhemar de Barros, S/N, Ondina, Salvador, BA, Brazil

marlo@dcc.ufba.br
2 Institute of Informatics, Federal University of Rio Grande do Sul - UFRGS,

Av. Bento Gonçalves, 9500, Porto Alegre, RS, Brazil
alvaro.moreira@inf.ufrgs.br

3 Faculty of Informatics, Pontifical Catholic University of Rio Grande do
Sul - PUCRS, Av. Ipiranga, 6681, Porto Alegre, RS, Brazil

renata.vieira@pucrs.br

Abstract. AGM’s belief revision is one of the main paradigms in the
study of belief change operations. Recently, several logics for belief and
information change have been proposed in the literature, which were
used to encode belief change operations in a rich and expressive frame-
work. While the connection of AGM-like operations and their encoding
in dynamic doxastic logics have been studied before, by the exceptional
work of Segerberg, most work on the area of Dynamic Epistemic Logics
(DEL) have not attempted to characterize belief change operators by
means of their logical properties. This work investigates how Dynamic
Preference Logic, a logic in the DEL family, can be used to characterise
properties of dynamic belief change operators, focusing on well-known
postulates of iterated belief change.

Keywords: Dynamic Epistemic Logic · Dynamic Preference Logic
Belief revision

1 Introduction

Belief Change is the multidisciplinary area that studies how a doxastic agent comes
to change hermind after acquiring new information.Currently, themost influential
model for belief change is the so-called AGM paradigm, named after the authors
of its seminal work [1]: C. Alchourrón, P. Gädenfors and D. Makinson. Although
AGM’s approach and hypothesis have been questioned in the literature [7,19], it
has brought profound developments for the problem of belief dynamics, influencing
areas such as Computer Science, Artificial Intelligence, and Philosophy.

While changes in mental attitudes have been a well studied topic in the liter-
ature, the integration of such operations within the logics of beliefs, obligations,
desires and others is a somewhat recent development. This shift from extra-
logical characterisation of changes in the agents attitudes to their integration
c© Springer International Publishing AG 2018
A. Madeira and M. Benevides (Eds.): DALI 2017, LNCS 10669, pp. 185–200, 2018.
https://doi.org/10.1007/978-3-319-73579-5_12

186 M. Souza et al.

within the representation language has important expressibility consequences.
It allows, for example, the study the dynamics of introspective beliefs, which is
not representable in axiomatic approach of the AGM framework.

Recently, inspired by the Dutch School, several dynamic logics for informa-
tion change have been proposed [4,10,14,24]. Particularly, Girard [9,10] proposes
Dynamic Preference Logic (DPL) which has been applied to study generalization
of belief revision a la AGM [9,10]. Following this trend, many different works
have encoded well-known belief change operators within this logic1 [9,14,23,24]
and used them to study dynamic behaviour of attitudes such as Preferences,
Beliefs, Intentions, etc.

It is not clear in these works, however, how can one use the dynamic logic
to investigate the properties of classes of change operators, or even whether a
given operator satisfies some well-established desirable properties. As such, given
a dynamic logic with a program π, it is not clear how one can use the logic to
establish which postulates (from the area of belief change) are satisfied by the
operation described by the program π or whether this operation is part of a
given class of well-known operators - e.g. Darwiche and Pearl’s [7] iterated belief
revision operators.

In this work, we study the relationship between the postulates satisfied by
belief change operators and the axioms valid in Dynamic Preference Logic using
these operators. This study differs from previews research on the connection of
the results of Belief Change following AGM tradition and Dynamic Epistemic
Logics by employing the validities of the logic to characterize its dynamic oper-
ators, instead of encoding in the logic those operators which are known before-
hand to satisfy certain desirable properties. As such, we will use the proof theory
of Dynamic Preference Logic to investigate which postulates a given dynamic
operator satisfies. We wish to point out that, while the focus of our work will
be single-agent belief change, our results can be trivially extended to private
changes in the multi-agent case.

As a result, we also establish a method for deriving axiomatisations of
dynamic operators in Dynamic Preference Logic. Our method differs from that
proposed by Van Benthem and Liu [28], or to that of Aucher [2], which is based
on Propositional Dynamic Logic without iteration, by using the extensively stud-
ied postulates from belief change to derive an axiomatisation of the logic with a
given operation. As such, our method is applicable to a wider class of dynamic
belief change operators, including those which cannot be encoded using Propo-
sitional Dynamic Logic programs, e.g. lexicographic contraction [22].

The structure of this work is as follows: in Sect. 2, we present the main
approaches in the area of iterated belief change and its postulates; in Sect. 3,
we introduce Dynamic Preference Logic, a logic in the tradition of Dynamic Epis-
temic Logic recently applied to study belief change; in Sect. 4 we show how the

1 Similarly, works such as that of Baltag and Smets’ [4] concern themselves with how
to encode some types of belief change using the framework of Dynamic Epistemic
Logic, not clearly delineating, however, how the properties of a given operator are
reflected in the resulting logic.

Dynamic Preference Logic as a Logic of Belief Change 187

postulates satisfied by a dynamic operator imply certain axioms in the Dynamic
Preference Logic, and how we can use these postulates to derive an axiomatisa-
tion for this logic. In Sect. 5, we discuss some of the related work, and, finally,
in Sect. 6, we present our final considerations.

2 Dynamic and Iterated Belief Change

AGM’s initial work [1] focused on defining the requirements for rational changes
of the agent’s beliefs. It is based on three different belief changing operations:
expansion, contraction and revision. Belief expansion is the operation of blindly
integrating a new piece of information into the agents beliefs. Belief contrac-
tion is the operation of removing a currently believed sentence from the agent’s
set of beliefs, with minimal alterations. Finally, belief revision is the opera-
tion of consistently integrating new information into an agent’s beliefs. These
three operations are interconnected by the properties known as Levi and Harper
identities [1].

The AGM approach has primarily studied the structural properties regarding
belief change. These structural properties encode the rational or desired condi-
tions to guarantee the minimization of changes in the belief system - modelled in
this paradigm as a closed set of formulas, called the belief set. Among the three
basic operations studied by AGM, only expansion can be univocally defined. The
other two operations are defined by a set a rational constraints, or postulates,
usually referred to as the AGM postulates or the Gärdenfors postulates.

While AGM theory is independent of the syntax of the supporting logic, it
lacks a clear semantic interpretation for its operations. One such interpretation
was provided by Grove [11] using a possible-world semantics, based on Lewis’
semantics for counterfactuals. Grove’s model for the operation of belief revision
has not only clarified the meaning of belief change operations but, also, has
become a necessary tool for the development of new methods and operations in
the area, such as the iterated belief operations we will discuss in Subsect. 2.1.

A Grove system of spheres for a belief set B is a pair SB = 〈W,≤〉 where
W is the set of all models for the logic L and ≤ ⊆ W × W , s.t. the relation
≤ is connected and transitive and for any S ⊆ W , if S �= ∅, then exists x ∈ S
minimal (in respect to ≤) in S, and, x is minimal in W iff x � B.

Grove shows that for any belief revision operator ∗ satisfying the AGM
postulates (R-1)- (R-8), there is a system of spheres SB = 〈W,≤〉 such that
�B ∗ ϕ�SB

= Min≤�ϕ�SB
, where �ϕ�SB

= {w ∈ W | w � ϕ} is the set of all
worlds satisfying a formula (set of formulas) ϕ and

Min≤S = {w ∈ S | � ∃w′ ∈ S s.t. w′ ≤ w ∧ w �≤ w′}

is the set of minimal elements of S, according to the pre-order ≤.
There are numerous other proposals of belief change operators in the litera-

ture. In this work, however, we limit our analysis to those operators possessing
a semantic characterization based on systems of spheres. As such, our aim is to

188 M. Souza et al.

encode the postulates discussed further in this section within the Dynamic Pref-
erence Logic, a dynamic epistemic logic which has been applied in the literature
to the study of belief change [9,10,14,22,23].

2.1 Iterated Belief Revision

AGM belief revision says very little about how to change one agent’s beliefs
repeatedly. In fact, it has been observed that the AGM approach allows some
counter-intuitive behaviour in the iterated case2.

To remedy this deficiency of AGM’s postulates, Darwiche and Pearl [7] (DP)
propose a set of additional postulates that further constrain the behaviour of
revision operators.

(DP1) If � β → α then (B ∗ α) ∗ β = B ∗ β
(DP2) If � β → ¬α then (B ∗ α) ∗ β = B ∗ β
(DP3) If α ∈ B ∗ β then α ∈ (B ∗ α) ∗ β
(DP4) If ¬α �∈ B ∗ β then ¬α �∈ (B ∗ α) ∗ β

Nayak et al. [17] show that DP postulates are incompatible with AGM’s.
To solve this problem, they propose the notion of dynamic revision operator,
in which a belief revision changes not only the belief set of the agent but the
operation itself, i.e. the agent belief state. This distinction between static and
dynamic operators has been observed to be relevant in works such as that of Van
Benthem [24] and Baltag and Smets [4], or that of Lindström and Rabinowicz
[13], in which AGM-like static revision can be seen as a counterfactual reasoning
while dynamic revision is modelled as a doxastic action changing the agent’s
doxastic state.

From a conceptual perspective, the change from static to dynamic belief
change has the implication that the result of some change operation is not simply
changing the agent’s beliefs, but changing the agent’s belief state itself. As such,
semantically, we ought to describe belief changing operations by the changes
they perform in the agent’s belief state, such as in a system of spheres.

In the context of dynamic revision operators, Nayak et al. [17] show that
the DP postulates are equivalent to requiring that a belief revision of a Grove
system of spheres with plausibility relation ≤ corresponds to change ≤ into ≤∗ϕ

satisfying the following postulates:

(DP-1) If w,w′ ∈ �ϕ�, then w ≤∗ϕ w′ iff w ≤ w′

(DP-2) If w,w′ �∈ �ϕ�, then w ≤∗ϕ w′ iff w ≤ w′

(DP-3) If w′ �∈ �ϕ� and w′ ∈ �ϕ�, then w <∗ϕ w′ only if w < w′

(DP-4) If w′ �∈ �ϕ� and w′ ∈ �ϕ�, then w ≤∗ϕ w′ only if w ≤ w′

The authors show, further, that DP postulates are overpermissible, in the
sense that they allow revision operators which they claim to possess undesirable
properties. Based on this properties, Nayak et al. [17] propose the operation

2 Some classical examples were proposed by Darwich and Pearl [7].

Dynamic Preference Logic as a Logic of Belief Change 189

of simple lexicography which can be characterized by the properties (DP-1),
(DP-2) and (Rec) below. The axiom of recalcitrance states that if two pieces
of information ϕ and ψ are consistent with each other, then if we obtain the
information ϕ and, later, the information ψ, there is no ground to discard ϕ.

(Rec) If w ∈ �ϕ� and w′ �∈ �ϕ�, then w <∗ϕ w′.

Jin and Thielscher [12], on the other hand, provide a different analysis of
the shortcomings of DP postulates based on an analysis of conditional beliefs
in systems of spheres. The authors propose a notion of conditional beliefs and
show that an DP-compliant operator may create arbitrary conditional beliefs
in the revised belief set. The authors argue that both the DP postulates and
Recalcitrance allow operations that discard too much information from the belief
set. Aiming to provide a condition that guarantees the minimization of the loss of
information from a belief set, the authors propose the postulate of Independence
(Ind), which state that if two pieces of information ϕ and ψ are independent from
each other, there is no base to discard ϕ upon discovering ψ. This postulate can
be stated as:

(Ind) If w ∈ �ϕ� and w′ �∈ �ϕ�, then w ≤ w′ implies w <∗ϕ w′.

2.2 Iterated Belief Contraction

Based on a generalization of the Levi and Harper identities [1], Nayak et al.
[16] propose three iterated contraction operators, namely Natural Contraction,
Moderate Contraction and Lexicographic Contraction3, and analyse their prop-
erties. Later, Ramachandran et al. [18] provided the following set of postulates
to characterise these operators, where contracting ϕ from a system of spheres
with relation ≤, corresponds to change ≤ into ≤−ϕ. Here (GR) is the mini-
mal property a contraction should satisfy to be AGM-compatible, as showed by
Grove [11].

(GR) If w ∈ Min≤W or w ∈ Min≤�¬ϕ�, then w ≤−ϕ w′ for any w′ ∈ W .
(NC) If w �∈ Min≤W and w �∈ Min≤�¬ϕ�, then for any w′ ∈ W , w ≤−ϕ w′ iff

w ≤ w′.
(MC) If w �∈ �ϕ�, w′ ∈ �ϕ� and w′ �∈ Min≤W , then w ≤−ϕ w′.

In this work we will explore how the properties (or postulates) discussed
in this section can be encoded inside Dynamic Preference Logic, i.e. how we
can guarantee that a given dynamic operator of the logic satisfies one of these
postulates. For that, in the following section, we introduce Dynamic Preference
Logic based on the work of Girard [9] and of Souza [22].

3 In this work we will not investigate lexicographic contraction due to space con-
straints.

190 M. Souza et al.

3 Dynamic Preference Logic

Preference Logic (or Order Logic as named by Girard [9]) is a modal logic com-
plete for the class of transitive and reflexive frames. It has been applied to model
a plethora of phenomena in Deontic Logic [27], Logics of Preference [26], Logics
of Belief [4], etc. Dynamic Preference Logic (DPL) [9] is the result of “dynam-
ifying” Preference Logic, i.e. extending it with dynamic modalities. This logic
is one example among several proposed Dynamic Epistemic Logics in the field
used to study the dynamics of mental attitudes and it is particularly interesting
for its expressibility, allowing the study of dynamic phenomena of attitudes such
as Beliefs, Obligations, Preferences etc.

3.1 Preference Logic

We begin our presentation with the language and semantics of (static) Preference
Logic, which we will later “dynamify” it.

Definition 1. Let P be a set of propositional letters. We define the language
L≤(P) by the following grammar (where p ∈ P):

ϕ :: = p | ¬ϕ | ϕ ∧ ϕ | Aϕ | [≤]ϕ | [<]ϕ

We will often refer to the language L≤(P) simply as L≤, by supposing the
set P is fixed. Also, we will denote the language of propositional formulas, i.e.
the language removing all modal formulas from L≤(P), by L0(P) or simply L0.

Definition 2. A preference model4 is a tuple M = 〈W,≤, v〉 where W is a set of
possible worlds, ≤ is a reflexive, transitive relation over W , with a well-founded
strict part <, and v : P → 2W a valuation function.

In such a model, the accessibility relation ≤ represents an ordering of the
possible worlds according to the preferences of a certain agent. As such, given
two possible worlds w,w′ ∈ W , we say that w is at least as preferred as w′ if,
and only if, w ≤ w′. While we will commonly use the term ‘preference relation’,
the interpretation for that relation depends on the application of the logic. As
such, when using preference logic to encode beliefs, the accessibility relation ≤
is commonly referred as a ‘plausibility relation’ among worlds, denoting which
state of affairs the agent beliefs to be more plausible. In this context, DPL can
be viewed as an epistemic doxastic logic, related to that of Baltag and Smets [4],
which has been applied to the study of AGM-like belief change in the literature
[9,10,14,22].

The interpretation of the formulas over these models is defined as usual. We
will only present the interpretations for the modalities, since the semantics of

4 Also called order model in [9] and modal betterness model in [14].

Dynamic Preference Logic as a Logic of Belief Change 191

the propositional connectives is clear. The A modality is an universal modal-
ity5, while [≤] modality is a box modality on the accessibility order ≤. The [<]
modality is the strict variant of [≤]. They are interpreted as:

M,w � Aϕ iff ∀w′ ∈ W : M,w′ � ϕ
M,w � [≤]ϕ iff ∀w′ ∈ W : w′ ≤ w ⇒ M,w′ � ϕ
M,w � [<]ϕ iff ∀w′ ∈ W : w′ < w ⇒ M,w′ � ϕ

We will refer as 〈≤〉ϕ to the formula ¬[≤]¬ϕ, as commonly done in modal
logic (and similar to the formula 〈<〉ϕ).

Notice that the inclusion of the universal modality is necessary to represent
important notions and belief changing operations, such as conditional modalities,
or greatly simplify their representation in the logic.

As usual, given a model M and a formula ϕ, we use the notation �ϕ�M to
denote the set of all the worlds in M satisfying ϕ. When it is clear to which
model we are referring to, we will denote the same set by �ϕ�. Also, we will
denote the minimal elements of �ϕ�, according to the relation ≤, by the notation
Min≤�ϕ�. This corresponds to the notion of ‘most preferred worlds satisfying
ϕ’ in the model.

Notice that preference models, as defined in [9], need not to possess well-
founded preference relations. It has been observed, however, e.g. by [10], that
some important belief change operators are only well-defined if the plausibility
relation ≤ satisfies the Lewis Limit Condition [11]. Since Lewis Limit condition
is intrinsically dependent on the object language, some authors [4,10] propose
the adoption of well-foundedness as a purely semantic codification of this prop-
erty. Recently, Souza et al. [22,23] have provided complete axiomatizations for
preference models satisfying the Lewis Limit Condition and with well-founded
preference relations. Since we are interested in such belief change operators, e.g.
iterated contractions, we limit our Preference Logic to consider only well-founded
preference models in Definition 2.

3.2 Dynamifying Preference Logic

In this section, we study the dynamification of Preference logic by the intro-
duction of dynamic modals, i.e. modalities representing operations on a model.
In Sect. 4, we will study the relationship between the properties satisfied by a
given dynamic operation and the axioms satisfied by dynamic logic defined by
this operation.

We define a dynamic operation on a preference model as any operation that
takes a preference model and a formula and changes the relation of the model.
Let Mod(L≤) denote the class of preference models.

5 Notice that we are interpreting possible worlds in our model as epistemically possible
worlds. As such, the universal modality, in our encoding, encodes epistemic necessity.
Notice that we could introduce the modality ∼ as epistemic indistinguishably instead
of epistemic necessity, as done by Baltag and Smets [4], obtaining the same results
presented here.

192 M. Souza et al.

Definition 3. Let � : Mod(L≤) × L≤ → Mod(L≤), we say � is a dynamic
operator on preference models if for any M = 〈W,≤, v〉 and formula ϕ ∈ L≤,
�(M,ϕ) = 〈W,≤�, v〉. In other words, an operation on preference models is called
a dynamic operator iff it only changes the relation of the preference model. We
will use M�ϕ to denote the model �(M,ϕ).

In the definition above we limited our dynamic operators to not change the set
of possible worlds. This limitation is justified by the fact that we are considering
belief changing operators, which change the plausibility the agent attributes
to each epistemically possible world, not creating nor revoking any epistemic
certainties (i.e. knowledge).

Given a dynamic operator �, we extend the language L≤ with formulas [�ϕ]ψ,
obtaining the language L≤(�). Here, we point out some abuse of notation, since
the we use � as both a dynamic operator defined as a function and as a symbol
in the object language to define the modality [�ϕ] - which will correspond to the
application of this operator � to the model.

Definition 4. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator. We
define the language L≤(�) as the smallest set containing L≤ and all formulas
[�ϕ]ψ, with ϕ,ψ ∈ L≤(�). Given a preference model M = 〈W,≤, v〉 and a world
w ∈ W , then M,w � [�ϕ]ψ iff M�ϕ, w � ψ.

4 Iterated Belief Change and Dynamic Preference Logic

In this section, we will investigate the relationship between the postulates sat-
isfied by iterated belief change operators discussed in Sect. 4 and the axioms
satisfied in Dynamic Preference Logic using these operators.

[�ϕ]p p
[�ϕ](ξ ∧ ψ) [�ϕ]ξ ∧ [�ϕ]ψ
[�ϕ]¬ξ ¬[�ϕ]ξ
[�ϕ]Aξ A[�ϕ]ξ

Fig. 1. Basic axiom schemata for dynamic operators.

Proposition 5. Let � : Mod(L≤) × L0 → Mod(L≤) be a dynamic operator.
The operator � satisfies (DP-1) only if the axiom schemata in Fig. 1 and below
are valid in L≤(�).

[�ϕ][≤]ξ → (ϕ → [≤](ϕ → [�ϕ]ξ))
[�ϕ][<]ξ → (ϕ → [<](ϕ → [�ϕ]ξ))
[≤]ξ → (ϕ → [�ϕ][≤](ϕ → ξ)) for ξ ∈ L0

[<]ξ → (ϕ → [�ϕ][<](ϕ → ξ)) for ξ ∈ L0

Dynamic Preference Logic as a Logic of Belief Change 193

Proof. We will only show the case for the axiom [�ϕ][≤]ξ → (ϕ → [≤](ϕ →
[�ϕ]ξ)), since the others are either trivial or analogous to this case.

Let M = 〈W,≤, v〉 be a preference model and � an operation on preference
models that satisfy DP-1. Take w ∈ �ϕ� s.t. M,w � [�ϕ][≤]ξ for some ξ, then
M�ϕ, w � [≤]ξ, i.e. for any w′ ∈ W s.t. w′ ≤�ϕ w, it holds that M�ϕ, w′ � ξ.
By definition, it holds that M,w′ � [�ϕ]ξ. As such, take w′ ∈ W s.t. w′ ≤�ϕ w.
Suppose M,w′ � ϕ, then M,w′ � [�ϕ]ξ and, by DP-1, w′ ≤ w. As such, M,w �
ϕ → [≤](ϕ → [�ϕ]ξ). ��

The inverse implication requires an extra condition that for any set S of
possible worlds, there is a propositional formula ξS that uniquely characterises
it, i.e. for any world w ∈ W , M,w � ξS iff w ∈ S.

Proposition 6. Let � : Mod(L≤)×L0 → Mod(L≤) be a dynamic operator. Let
M ⊆ Mod(L≤) be a class of preference models s.t. for all M = 〈W,≤, v〉 ∈ M
and for any set S ⊆ W there is a propositional formula ξS characterising S. The
operator � satisfies (DP1) if, and only if, the axiom schemata in Proposition 5
is M-valid.

Proof. Let M = 〈W,≤, v〉 ∈ M be a preference model and � a dynamic operator
on preference models. Take w ∈ W s.t. w ∈ �ϕ�. (If) Let S = {w′ ∈ W | w′ ≤�ϕ

w}, by hypothesis there is ξS s.t. all M�ϕ, w′ � ξS iff w′ ∈ S. Clearly, M,w �
[�ϕ][≤]ξS . By hypothesis the model satisfies the axiom schemata above, as such
M,w � (ϕ → [≤](ϕ → [�ϕ]ξS)). Since w ∈ �ϕ�, then M,w � [≤](ϕ → [�ϕ]ξS).
As such, for any w′ ∈ �ϕ�, if w′ ≤ w then M,w′ � [�ϕ]ξS , i.e. M�ϕ, w′ � ξS . Since
ξS characterises the set S, we conclude that w′ ∈ S, which means that w′ ≤�ϕ w
by construction of S. (Only If) Let S = {w′ ∈ W | w′ ≤ w}, by hypothesis
there is propositional ξS s.t. M,w′ � ξS iff w′ ∈ S. Clearly, M,w � [≤]ξS . Since
the model satisfies the axiom schemata above, M,w � (ϕ → [�ϕ][≤](ϕ → ξS)).
Then, for w′ ∈ W s.t. w′ ≤�ϕ w, it holds that M�ϕ, w′ � ϕ → ξS . Take w′ ∈ �ϕ�
s.t. w′ ≤�ϕ w, then M�ϕ, w′ � ξS , i.e. M,w′ � [�ϕ]ξS . Since ξS is propositional
formula, it holds (by simple induction on the structure of ξS) that M,w′ � ξS ,
i.e. w′ ≤ w. ��

Notice that while the existence of propositional characterising formulas
required in Proposition 6 is a rather strong requirement, it appears naturally in
some models, as Grove’s systems of spheres [11] and Souza’s broad models [22].
While characteristic formulas, in general, can be crafted for finite models [15],
we cannot guarantee that, after the application of a dynamic operator to the
model, this formula can still characterize the desired set of worlds. It is not clear
yet if the result can be generalized to discard the requirement of propositional
characteristic formulas in DPL.

More yet, the condition of being able to identify worlds in a model seems to
be necessary for such a characterisation. The reason for this is that, without the
ability to characterise a world, the logic cannot distinguish between two modally
equivalent worlds [5] and, as such, cannot guarantee (DP-1).

194 M. Souza et al.

Fact 7. If there are two modally equivalent worlds in a model M , which are not
equally preferred to each other, there is a dynamic operator � s.t. L≤(�) satisfies
the axiom schemata in Proposition 5 but � does not satisfies (DP-1).

Proof. Let M = 〈W,≤, v〉 be a preference model and w1, w2 ∈ W modally
equivalent. Take the dynamic operator �w s.t. �(M ′, ϕ) = M ′ if M ′ �= M or
ϕ �= � and �(M,�) = 〈W,�, v〉, in which w � w′ iff either (i) w,w′ �∈ {w1, w2}
and w ≤ w′, (ii) w = w′ = w1, (iii) w = w′ = w2, (iv) w = w1 and w2 ≤ w′,
(v) w = w2 and w1 ≤ w′, (vi) w′ = w1 and w ≤ w2, or (vii) w′ = w2 and
w ≤ w1. Essentially, this operation switch the places of w1 and w2 in the order
and, as such, does not satisfies (DP-1). Since w1 and w2 are modally equivalent,
however, the axiom schemata of Proposition 5 holds for this operation. ��

While Fact 7 concerns the necessity of characterising formulas for (DP-1),
it is not difficult to see that it can be adapted for the other postulates as well.
We point out that for all postulates presented in this work, results similar to
Proposition 6 and Fact 7 can be proved and, as such, we will not present them.
These results show that the ability to distinguish worlds in the model is a nec-
essary condition for the characterization of iterated belief change postulates in
DPL. As for (DP-1), we can provide characterisations of the other postulates by
means of Dynamic Preference Logic axioms.

Proposition 8. Let � : Mod(L≤) × L0 → Mod(L≤) be a dynamic operator on
preference models. The operator � satisfies (DP2) only if the axiom schemata in
Fig. 1 and below are valid in L≤(�).

[�ϕ][≤]ξ → (¬ϕ → [≤](¬ϕ → [�ϕ]ξ))
[�ϕ][<]ξ → (¬ϕ → [<](¬ϕ → [�ϕ]ξ))
[≤]ξ → (¬ϕ → [�ϕ][≤](¬ϕ → ξ)) for ξ ∈ L0

[<]ξ → (¬ϕ → [�ϕ][<](¬ϕ → ξ)) for ξ ∈ L0

The proof of Proposition 8 is analogous to the proof of Propositions 5 and 6
for (DP-1).

Proposition 9. Let � : Mod(L≤) × L0 → Mod(L≤) be a dynamic operator on
preference models. The operator � satisfies (DP-3) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ]〈<〉(¬ϕ ∧ ξ) → (ϕ → 〈<〉(¬ϕ ∧ [�ϕ]ξ))

Proof. As before, let’s only show it holds for the interesting case, since the others
are trivial.

Let M = 〈W,≤, v〉 be a preference model and � an operation on preference
models that satisfy (DP-3). Take w ∈ �ϕ� s.t. M,w � [�ϕ]〈<〉(¬ϕ ∧ ξ) for some
ξ, then M�ϕ, w � 〈<〉(¬ϕ∧ξ). From this, we conclude that there is a w′ ∈ W s.t.
w′ <�ϕ w and Mϕ, w′ � ¬ϕ ∧ ξ. As such, M,w′ � [�ϕ](¬ϕ) and M,w′ � [�ϕ]ξ.
Since ϕ ∈ L0, then M,w′ � ¬ϕ and, by (DP-3), w′ < w. As such M,w � ϕ →
〈<〉(¬ϕ ∧ [�ϕ](¬ϕ)). ��

Dynamic Preference Logic as a Logic of Belief Change 195

Similarly, for (DP-4), we have the following characterisation.

Proposition 10. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator
on preference models. The operator � satisfies (DP4) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ]〈≤〉(¬ϕ ∧ ξ) → (ϕ → 〈≤〉(¬ϕ ∧ [�ϕ]ξ))

The proof is analogous to the case for (DP-3). Not only DP postulates can
be characterised in Dynamic Preference Logic, but also Recalcitrance (Rec) and
Independence (Ind).

Proposition 11. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator
on preference models. The operator � satisfies (Rec) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ][≤]ξ → (¬ϕ → A(ϕ → [�ϕ]ξ))
[�ϕ][<]ξ → (¬ϕ → A(ϕ → [�ϕ]ξ))

Proof. Let’s show it holds for the interesting case.
Let M = 〈W,≤, v〉. Take w′ �∈ �ϕ� with M,w � [�ϕ][≤]ξ for some ξ. Then

for any w′′ ∈ W , if w′′ ≤�ϕ w′ then M�ϕ, w′′ � ξ. Take w �∈ �ϕ�, then by
(Rec), w <�ϕ w′. As such M�ϕ, w � ξ, i.e. M,w � [�ϕ]ξ. Since it holds for any
world w �∈ �ϕ�, then M,w′ � A(ϕ → [�ϕ]ξ). Since w′ �∈ �ϕ�, we conclude that
M,w′ � ¬ϕ → A(ϕ → [�ϕ]ξ). ��

For Independence, we have the following.

Proposition 12. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator
on preference models. The operator � satisfies (Ind) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ][<](ϕ → ξ) → (¬ϕ → [≤](ϕ ∧ [�ϕ]ξ))

Proof. Let M = 〈W,≤, v〉 be a preference model. Take w �∈ �ϕ� s.t. it holds that
M,w � [�ϕ][≤](ϕ → ξ) for some ϕ and ξ. For any w′ ∈ �ϕ�, if w′ <�ϕ w, then
M�ϕ, w′ � ξ and M,w′ � [�ϕ]ξ. Take w′ ∈ �ϕ�, s.t. w′ ≤ w. By (Ind), w′ <�ϕ w,
thus M,w′ � ϕ → [�ϕ]ξ. As such, M,w � ¬ϕ → [≤](ϕ → [�ϕ]ξ). ��

Regarding the postulates for iterated belief contraction, similar characterisa-
tions in DPL can be obtained. For space constraints, we will omit the proof of
the following results, but we point out that the proofs are straight forward.

As the concept of ‘most preferred worlds satisfying ϕ’ will be necessary to pro-
vide the axiomatizations for contraction, we define the formula μϕ ≡ ϕ ∧ ¬〈<〉ϕ
encompassing this exact concept. With that we provide the following result.

196 M. Souza et al.

Proposition 13. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator
on preference models. The operator � satisfies (GR) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ][≤]ξ → A(μ� → [�ϕ]ξ)
[�ϕ][≤]ξ → A(μ¬ϕ → [�ϕ]ξ)
[�ϕ][<]ξ → (¬μ¬ϕ ∧ ¬μ�) → [<]([�ϕ]ξ)
[�ϕ][<]ξ → (¬μ¬ϕ ∧ ¬μ�) → A(μ¬ϕ → [<][�ϕ]ξ)
(μ¬ϕ ∨ μ�) → [�][<]ξ, for any ξ

For natural contraction, we have the following characterisation.

Proposition 14. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator
on preference models. The operator � satisfies (NC) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ][≤]ξ → (¬μ¬ϕ) → [≤]([�ϕ]ψ)
[�ϕ][<]ξ → (¬μ¬ϕ) → [<]([�ϕ]ψ)

Finally, we can characterise moderate contraction by the following axioms.

Proposition 15. Let � : Mod(L≤) × L≤ → Mod(L≤) be a dynamic operator
on preference models. The operator � satisfies (MC) only if the axiom schemata
in Fig. 1 and below are valid in L≤(�).

[�ϕ][≤]ξ → ((ϕ ∧ ¬μ�) → A(¬ϕ → [�ϕ]ξ))
[�ϕ][<]ξ → ((ϕ ∧ ¬μ�) → A(¬ϕ → [�ϕ]ξ))

In a sense, the results above generalize the study of iterated belief change
by exposing some fundamental properties of the models adopted in the area.
Namely, the postulates of iterated belief revision are intrinsically linked to the
structure of the model in which they are based - i.e. Grove’s system of spheres
- in which each world can be distinguished from the others.

4.1 Deriving Axiomatisations for DPL by Iterated Belief Change
Postulates

In this section, we investigate how we can derive correct axiomatisations for the
extended logic L≤(�), given the postulates satisfied by �. In the results below,
we use the axiomatisation L≤ for Preference Logic with well-founded models,
provided by Souza [22].

Theorem 16. Let C be a class of dynamic operators and let Γ be a set of axioms
s.t. if for � ∈ C, then Γ is valid in the logic of L≤(�). If L≤ ∪ Γ � [�ϕ]ξ then for
any model M = 〈W,≤, v〉 ∈ Mod(L≤), w ∈ W and all � ∈ C then M�ϕ, w � ξ.

Proof. Since we have that the formulas of Γ are valid in the logic of L≤(�), for
any � ∈ C. By monotony of the logic, for any propositional formula ϕ ∈ L0, if
L≤ ∪ ⋃

Γ � [�ϕ]ξ, then for any model M ∈ Mod(L≤), w ∈ W it holds that
M�ϕ, w � ξ. ��

Dynamic Preference Logic as a Logic of Belief Change 197

Theorem 16 says that we can take the union of the axiom schematas provided
in Sect. 4 for each postulate and the resulting axiomatization is sound in regard
to the class of all dynamic operators satisfying all these postulates. It is not clear
whether we can obtain a completeness result for the general case.

Let’s apply this result to obtain axiomatizations for the well-known operation
of Radical Upgrade [9,24], which corresponds to Nayak et al. simple lexicographic
revision [17].

Definition 17. Let M = 〈W,≤, v〉 be a preference model and ϕ ∈ L0 a proposi-
tional formula. The radical upgrade of ϕ in M is the model M⇑ϕ = 〈W,≤⇑ϕ, v〉
where ≤⇑ϕ= (≤ \�¬ϕ� × �ϕ�) ∪ �ϕ� × �¬ϕ�.

As proved by Nayak et al. [17], this operation is completely characterized by
the postulates (DP-1), (DP-2) and (Rec). From this, we obtain an axiomatization
for the logic extended with Radical Upgrade. In the following result, notice
that the proposed axiomatisation is a simplification of the union of the axioms
proposed in Propositions 5 and 8, and they are in fact equivalent.

Proposition 18. Preference Logic extended with Radical Upgrade L≤(⇑) [9] is
correctly axiomatised by L≤ extended with the following axioms and the modus
ponens and necessitation rules for all modalities.

[⇑ ϕ]p ↔ p
[⇑ ϕ]¬ψ ↔ ¬[⇑ ϕ]ψ
[⇑ ϕ](ψ ∧ ξ) ↔ [⇑ ϕ]ψ ∧ [⇑ ϕ]ξ
[⇑ ϕ]Aψ ↔ A([⇑ ϕ]ψ)
[⇑ ϕ][≤]ψ ↔ ϕ → [≤](ϕ → [⇑ ϕ]ψ) ∧ ¬ϕ → A(ϕ → [⇑ ϕ]ψ)∧

¬ϕ → [≤](¬ϕ → [⇑ ϕ]ψ))
[⇑ ϕ][<]ψ ↔ ϕ → [<](ϕ → [⇑ ϕ]ψ) ∧ ¬ϕ → A(ϕ → [⇑ ϕ]ψ)∧

¬ϕ → [<](¬ϕ → [⇑ ϕ]ψ))

This axiomatisation is, in fact, complete as proved by Girard [9].

5 Related Work

To our knowledge, the work of Segerberg [21] is the first to propose the integra-
tion of belief revision operations within an epistemic logic, with his proposal of
Dynamic Doxastic Logic (DDL). That integration is important because it allows
one to analyse the effects of introspection, and other related phenomena, in the
logic of belief change. A famous example of such interaction is the analysis of
Moore sentences in the logic of belief change, which shows that AGM’s postu-
lates are incompatible in the face of introspection [13]. In this work, Segerberg
provides a set axioms which corresponds to encodings within his logic of AGM’s
postualtes for belief change. In a sense, our work is linked to that approach by
investigating these correspondences for dynamic belief change, based on iterated
belief change postulates.

198 M. Souza et al.

In the conext of DDL, Cantwell [6] define some iterated belief revision oper-
ators as change operations in hypertheories [13] and show hows these operations
can be axiomatically characterized in DDL. Our work differs from his by the
fact that we analyse how some well known-postulates can be characterized in
our logic and not how to encode specific constructions. Our logic has also the
advantage to being more expressive, since it can encode some notion of degrees
of belief [22], which cannot be expressed in DDL.

Inspired by Rott’s [20], Van Benthem [24] proposed the codification of some
iterated belief revision operators within a Dynamic Epistemic Logic (DEL). This
work was further extended by Girard [9] and Liu [14] and Souza et al. [23] that
studied the use of DPL to encode several (relational) belief revision policies.

Baltag and Smets [4], on the other hand, used a logic similar to DPL to encode
different notions for knowledge and belief. These authors show how different
iterated belief revision operators can be simulated using DEL action models and
product update. Later, in [3], they propose a variation of Segerberg’s Full DDL
and prove that it is possible to model DEL-style epistemic actions within DDL.

Studying DPL, Van Benthem and Liu [28] showed how one can use Propo-
sitional Dynamic Logic to not only encode belief change operators, but how to
derive complete axiomatisations for the logic extended with them using Propo-
sitional Dynamic Logic. Based on this approach, Girard and Rott [10] propose a
Dynamic Preference Logic for studying belief revision. The authors encode sev-
eral iterated belief revision policies using General Dynamic Dynamic Logic [8]
and show that reduction axioms can be obtained for them, in the same fashion
of [28].

In the related literature, all the works following the DEL tradition define
operations semantically in their logic and either provide axiomatizations by
means of crafting an axiomatization for the extended logic or by encoding these
operations using a variation of dynamic logic to obtain reduction axioms. In a
sense these works employ the well-known results in the area of belief change to
choose appropriate operations and then encode these operations in their logics.

From the work following this tradition, perhaps, the one that come most
close to ours, in questioning how to characterize classes of operations by means
of logic is that of van Benthem [25]. Van Benthem shows that any belief changing
operator that satisfies the axiomatization provided must coincide with radical
upgrade. As such, the author investigates how to use a dynamic logic to study
dynamic operators, instead of just applying the results in belief change in this
logic.

Our work, on the other hand, investigates how Dynamic Preference Logic can
be used to characterise properties of dynamic belief change operators. To our
knowledge, our work is the first to do so for dynamic belief change operators.

6 Final Considerations

In this work we investigated the connection between the well-known character-
isation of dynamic operators as studied in the area of Iterated Belief Change

Dynamic Preference Logic as a Logic of Belief Change 199

and the axiomatisation of Dynamic Preference Logic with these operators. We
provide a method for computing correct axiomatisations of the logic L(�) given
a (complete) characterisation of the operation � by means of postulates in the
area of Iterated Belief Change.

Notice that our method to derive axiomatizations is more general than the
use of Propositional Dynamic Logic programs to define dynamic operators,
proposed by van Benthem and Liu [28] or, equivalently, Aucher’s reductions
[2], since there is no expressibility restriction in the dynamic operators which
can be investigated by our approach. This is the case, for example, of Nayak
et al. [16] lexicographic contraction which can only be expressed as a Proposi-
tional Dynamic Logic program if we restrict the analysis to models with limited
longest chains of worlds [22]. We can apply our approach to show an infinite set
of axioms that define the operation in DPL - taking the axioms of Souza [22] for
models of each size.

On the other hand, different than the reduction axioms obtained using Propo-
sitional Dynamic Logic, the axiomatizations derived using iterated belief change
postulates are not complete, in general. We do point out that, for the special case
in which we consider only those classes of models with characterizing formulas,
we can obtain completeness proofs trivially for the dynamic operators satisfy-
ing a subset of the postulates investigated in this work6. This is the case for
some important examples, such as Grove’s models for belief change in classical
propositional logic or Souza’s broad models for dynamic preference logic.

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symb. Logic 50(2), 510–530
(1985)

2. Aucher, G.: Characterizing updates in dynamic epistemic logic. In: Twelfth Inter-
national Conference on the Principles of Knowledge Representation and Reasoning
(2010)

3. Baltag, A., Fiutek, V., Smets, S.: DDL as an “internalization” of dynamic belief
revision. In: Trypuz, R. (ed.) Krister Segerberg on Logic of Actions. Outstanding
Contributions to Logic, vol. 1, pp. 253–280. Springer, Dordrecht (2014). https://
doi.org/10.1007/978-94-007-7046-1 12

4. Baltag, A., Smets, S.: A qualitative theory of dynamic interactive belief revision.
In: Texts in Logic and Games, vol. 3, pp. 9–58 (2008)

5. Blackburn, P., van Benthem, J.F., Wolter, F.: Handbook of Modal Logic, vol. 3.
Elsevier, Amsterdam (2006)

6. Cantwell, J.: Some logics of iterated belief change. Stud. Logica. 63(1), 49–84
(1999)

7. Darwiche, A., Pearl, J.: On the logic of iterated belief revision. Artif. Intell. 89(1),
1–29 (1997)

6 Notice that, as commented before, Proposition 6 can be replicated for any postulate
investigated in this work. As such, given a class of models M satisfying the charac-
terizing formula restriction, the class C in Theorem 16 can be characterized as the
intersection of all classes Ci, where Ci is the class of all dynamic operators satisfying
each axiom Pi.

https://doi.org/10.1007/978-94-007-7046-1_12
https://doi.org/10.1007/978-94-007-7046-1_12

200 M. Souza et al.

8. Girard, P., Seligman, J., Liu, F.: General dynamic dynamic logic. In: Bolander,
T., Brauner, T., Ghilardi, S., Moss, L. (eds.) Advances in Modal Logic, vol. 9, pp.
239–260. College Publications, London (2012)

9. Girard, P.: Modal logic for belief and preference change. Ph.D. thesis, Stanford
University (2008)

10. Girard, P., Rott, H.: Belief revision and dynamic logic. In: Baltag, A., Smets, S.
(eds.) Johan van Benthem on Logic and Information Dynamics. OCL, vol. 5, pp.
203–233. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-06025-5 8

11. Grove, A.: Two modelings for theory change. J. Philos. Logic 17(2), 157–170 (1988)
12. Jin, Y., Thielscher, M.: Iterated belief revision, revised. Artif. Intell. 171(1), 1–18

(2007)
13. Lindström, S., Rabinowicz, W.: DDL unlimited: dynamic doxastic logic for intro-

spective agents. Erkenntnis 50(2), 353–385 (1999)
14. Liu, F.: Reasoning About Preference Dynamics, vol. 354. Springer, Dordrecht

(2011). https://doi.org/10.1007/978-94-007-1344-4
15. Moss, L.S.: Finite models constructed from canonical formulas. J. Philos. Logic

36(6), 605–640 (2007)
16. Nayak, A., Goebel, R., Orgun, M., Pham, T.: Taking Levi Identity seriously: a

plea for iterated belief contraction. In: Lang, J., Lin, F., Wang, J. (eds.) KSEM
2006. LNCS (LNAI), vol. 4092, pp. 305–317. Springer, Heidelberg (2006). https://
doi.org/10.1007/11811220 26

17. Nayak, A.C., Pagnucco, M., Peppas, P.: Dynamic belief revision operators. Artif.
Intell. 146(2), 193–228 (2003)

18. Ramachandran, R., Nayak, A.C., Orgun, M.A.: Three approaches to iterated belief
contraction. J. Philos. Logic 41(1), 115–142 (2012)

19. Rott, H.: Two dogmas of belief revision. J. Philos. 97(9), 503–522 (2000)
20. Rott, H.: Shifting priorities: simple representations for twenty-seven iterated the-

ory change operators. In: Makinson, D., Malinowski, J., Wansing, H. (eds.)
Towards Mathematical Philosophy. Trends in Logic, vol. 28, pp. 269–296. Springer,
Dordrecht (2009). https://doi.org/10.1007/978-1-4020-9084-4 14

21. Segerberg, K.: Two traditions in the logic of belief: bringing them together. In:
Ohlbach, H.J., Reyle, U. (eds.) Logic, Language and Reasoning. Trends in Logic
(Studia Logica Library), vol. 5, pp. 135–147. Springer, Dordrecht (1999). https://
doi.org/10.1007/978-94-011-4574-9 8

22. Souza, M.: Choices that make you change your mind: a dynamic epistemic logic
approach to the semantics of BDI agent programming languages. Ph.D. thesis,
Universidade Federal do Rio Grande do Sul (2016)

23. Souza, M., Moreira, A., Vieira, R., Meyer, J.J.C.: Preference and priorities: a study
based on contraction. In: KR 2016, pp. 155–164. AAAI Press (2016)

24. Van Benthem, J.: Dynamic logic for belief revision. J. Appl. Non-Classical Logics
17(2), 129–155 (2007)

25. Van Benthem, J.: Two logical faces of belief revision. In: Trypuz, R. (ed.) Krister
Segerberg on Logic of Actions. Outstanding Contributions to Logic, vol. 1, pp. 281–
300. Springer, Dordrecht (2014). https://doi.org/10.1007/978-94-007-7046-1 13

26. Van Benthem, J., Girard, P., Roy, O.: Everything else being equal: a modal logic
for ceteris paribus preferences. J. Philos. Logic 38(1), 83–125 (2009)

27. Van Benthem, J., Grossi, D., Liu, F.: Priority structures in deontic logic. Theoria
80(2), 116–152 (2014)

28. Van Benthem, J., Liu, F.: Dynamic logic of preference upgrade. J. Appl. Non-
Classical Logics 17(2), 157–182 (2007)

https://doi.org/10.1007/978-3-319-06025-5_8
https://doi.org/10.1007/978-94-007-1344-4
https://doi.org/10.1007/11811220_26
https://doi.org/10.1007/11811220_26
https://doi.org/10.1007/978-1-4020-9084-4_14
https://doi.org/10.1007/978-94-011-4574-9_8
https://doi.org/10.1007/978-94-011-4574-9_8
https://doi.org/10.1007/978-94-007-7046-1_13

Author Index

Areces, Carlos 1

Balbiani, Philippe 17
Baltag, Alexandru 35
Barbosa, Luís Soares 55
Boudou, Joseph 17

Charrier, Tristan 133

David Santos, Yuri 64

Fervari, Raul 1, 82
Fiadeiro, José 98

Gierasimczuk, Nina 35

Hansen, Helle Hvid 115
Hoffmann, Guillaume 1

Kupke, Clemens 115

Lopes, Antónia 98

Martel, Mauricio 1
Marti, Johannes 115
Moreira, Álvaro 185

Özgün, Aybüke 35

Pavlovic, Dusko 98
Pinchinat, Sophie 133
Pratt, Vaughan 153

Schwarzentruber, François 133
Smets, Sonja 35, 171
Souza, Marlo 185

Ţuţu, Ionuţ 98

Vargas Sandoval, Ana Lucia 35
Velázquez-Quesada, Fernando R. 82, 171
Venema, Yde 115
Vieira, Renata 185

	Preface
	Organization
	Contents
	Undecidability of Relation-Changing Modal Logics
	1 Introduction
	2 Relation-Changing Modal Logics
	3 Undecidability of Monomodal Memory Logic
	4 Undecidability of Relation-Changing Logics
	5 Conclusions
	References

	Axiomatization and Computability of a Variant of Iteration-Free PDL with Fork
	1 Introduction
	2 Syntax
	3 Semantics
	4 Expressivity
	5 Axiom System
	6 Completeness
	7 Decidability
	8 Conclusion
	References

	A Dynamic Logic for Learning Theory
	1 Introduction
	1.1 Effort Modality and Knowledge

	2 Dynamic Logic for Learning Theory
	2.1 Syntax and Semantics of DLLT
	2.2 Axiomatization and Proof System

	3 Soundness and Completeness
	4 Expressivity
	5 Conclusion and Comparison with Other Work
	References

	Layered Logics, Coalgebraically
	1 Introduction
	2 Coalgebra
	3 Reasoning About Hierarchical Designs
	4 ... Coalgebraically
	5 Concluding
	References

	A Dynamic Informational-Epistemic Logic
	1 Introduction
	2 Four-Valued Epistemic Logic
	2.1 Syntax
	2.2 Semantics
	2.3 Basic Properties

	3 Tableaux
	4 Correspondence Results
	5 Public Announcements
	6 A Simple Example
	7 Related Work
	8 Conclusions and Future Work
	References

	Dynamic Epistemic Logics of Introspection
	1 Introduction
	2 Basic Definitions
	3 Positive Introspection
	3.1 General Positive Introspection
	3.2 Particular Positive Introspection

	4 Negative Introspection
	4.1 General Negative Introspection
	4.2 Particular Negative Introspection

	5 Conclusion and Further Work
	References

	Logics for Actor Networks: A Case Study in Constrained Hybridization
	1 Introduction
	2 Actor Networks
	2.1 Schemas
	2.2 States
	2.3 Interactions
	2.4 Networks

	3 Logics for ANts
	3.1 The Base Logic
	3.2 The State Logic
	3.3 The ant Logic

	4 Concluding Remarks
	References

	Parity Games and Automata for Game Logic
	1 Introduction
	2 Game Logic
	3 Game Semantics for Game Logic
	3.1 Game Preliminaries
	3.2 Definition of the Evaluation Game
	3.3 Adequacy of Game Semantics

	4 Syntax Graphs
	4.1 Graph Basics
	4.2 Syntax Graphs

	5 The Game Logic Fragment
	5.1 Game Logic Graphs
	5.2 From Formulas to Game Logic Graphs
	5.3 From Game Logic Graphs to Formulas

	6 Conclusion
	References

	Model Checking Against Arbitrary Public Announcement Logic: A First-Order-Logic Prover Approach for the Existential Fragment
	1 Introduction
	2 Brief Recall on First and Second-Order Logics
	3 Background on Arbitrary/Group Public Announcement
	3.1 Syntax of AGPAL
	3.2 Syntax of AGPAL
	3.3 Semantics of AGPAL
	3.4 Symbolic Presentations of Models

	4 Announcement Logic into Monadic Monadic Second-Order Logic
	4.1 The Theory of Models of Valuations
	4.2 From Programs to FO-Formulas
	4.3 From AGPAL-Formulas to MMSO-Formulas
	4.4 Reduction from AGPAL-mc to MMSO-sat

	5 Existential Announcement Logic into Monadic First-Order Logic
	6 Implementation
	6.1 Description of the Implementation
	6.2 Benchmarks
	6.3 Experiments

	7 Conclusion
	References

	Dynamic Logic: A Personal Perspective
	1 Pre-DL
	2 An MIT Course in Logics of Programs
	3 The Resulting Paper
	4 Early Collaborations
	5 Program Verification
	6 Propositional Dynamic Logic: Complexity and Axiomatization
	7 Decision Methods for PDL
	8 Going Algebraic
	9 A Conflict
	10 Onwards to Applications!
	11 Multimodal Logic, Flowgraphs, Minimization, and Modal Mu-Calculi
	12 CS353: Algebraic Logic
	13 Concurrency
	References

	The Creation and Change of Social Networks: A Logical Study Based on Group Size
	1 Introduction
	2 Modelling Social Networks
	3 Group-Size-Based Social Network Creation
	4 A Restriction to relevant Features
	5 Conclusions and Future Work
	References

	Dynamic Preference Logic as a Logic of Belief Change
	1 Introduction
	2 Dynamic and Iterated Belief Change
	2.1 Iterated Belief Revision
	2.2 Iterated Belief Contraction

	3 Dynamic Preference Logic
	3.1 Preference Logic
	3.2 Dynamifying Preference Logic

	4 Iterated Belief Change and Dynamic Preference Logic
	4.1 Deriving Axiomatisations for DPL by Iterated Belief Change Postulates

	5 Related Work
	6 Final Considerations
	References

	Author Index

