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Abstract Semantic technologies are a key enabler for Knowledge 4.0. Specifically,
knowledge graphs have caused significant practical implications for managing
knowledge in the digital economy. While most semantic technologies originate
from the vision of representing the existing Web in a machine-processable format,
it’s most notable success so far are large cross-domain knowledge graphs. They are
created by collaborative human modelling and linking of structured and
semi-structured data. So far, they exhibit only little but still very powerful
semantics, which have shown benefits for numerous applications. This chapter
introduces the latest innovations in modelling knowledge using knowledge graphs
and explains how those knowledge graphs enable value creation by making
unstructured content, like text documents accessible by machines and humans.
Finally, we show how semantic technologies help to make hard- and software
components in cyber physical systems interoperable.

1 Introduction

Semantic technologies intend to bridge the gap between human knowledge and
computational knowledge. They try to capture knowledge in an explicit computa-
tional knowledge representation that is both, accessible by humans and processable
by computers in a meaningful manner. This is a feature that other approaches lack,
such as representations created by the nowadays popular deep learning approaches.

Knowledge graphs (KGs) are currently seen as one of the most advanced
components to realize the vision of explicit and computational knowledge repre-
sentations. The term “knowledge graph” was reintroduced by Google in 2012
(Singhal 2012) and is now being used for any graph-based knowledge repository. In
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semantic technologies, the recommended data model to publish graph-based data
on the Web is defined in the Resource Description Framework (RDF). Therefore, in
the remainder we use the term knowledge graph for any RDF graph. An RDF graph
consists of a finite set of triples where each triple (s, p, o) is an ordered set of the
following terms: a subject s, a predicate p that associates the subject and the object,
and an object o. An RDF term is either a URI, a blank node, or a literal. A triple
allows to express a statement about a real-world fact. With these basic building
blocks, knowledge graphs allow the representation of objects, their abstract rela-
tions and classes (groups) of objects, as well as their instantiations as real-world
objects, called entities, and their concrete relations and class memberships (Färber
et al. 2016).

Based on those basic technological building blocks, in recent years, several
noteworthy large, cross-domain, and openly available KGs have been created.
These include DBpedia, Freebase, OpenCyc, Wikidata, and YAGO. They have
grown to an impressive number of triples, like Freebase which is the largest KG
with over 3.1B triples.

In the following sections, we will first outline how human knowledge is being
captured in KGs, then explain how they can help to access the content expressed in
unstructured sources like text documents and finally demonstrate that semantic
technologies can be used to facilitate the interoperability gap between different
cyber physical systems’ components.

2 Semantic Technologies for Knowledge Engineering

The application of semantic technologies in knowledge engineering allows for the
creation and management of knowledge-based systems. Systems that exploit
knowledge and data semantics enable advanced capabilities in all the tasks of
knowledge engineering processes.

Nowadays, the largest amounts of knowledge collected with the help of semantic
technologies are the result of combining data harnessed from a wide range of
sources—including humans and the Web—and representing it as semantic inter-
connected entities in knowledge graphs (KGs). KGs allow a wide range of ana-
lytical tasks including query processing through declarative languages, question
answering, visualizations, and further data analysis including statistical analysis,
data mining, etc. (see Fig. 1). Semantic technologies support the construction of
KGs through semantic enrichment of non-semantic sources, data integration of
several sources, and data curation. As depicted in Fig. 1, knowledge captured from
humans can be stored in Knowledge Bases (KBs) and used across all the processes
of knowledge engineering. Semantic technologies exploit human knowledge from
KBs and computation knowledge encoded in data semantics to construct KGs.
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2.1 Knowledge Capture

Knowledge capture is the process of extracting and representing knowledge from
reference sources directly or indirectly provided by humans. In this context,
knowledge is modelled as artefacts including rules, ontological terms, and con-
ceptual objects that symbolize physical objects or phenomena of a domain.

Typically, in Enterprise Systems, knowledge is harnessed through knowledge
acquisition tasks that involve systematic interviews with domain experts: knowl-
edge is collected through observation of experts including the usage of question-
naires. Nowadays, the rise of the Web and semantic technologies have allowed for
capturing knowledge from experts as well as lay contributors to create semantic
KBs in a distributed and collaborative way. Exemplary for successful knowledge
capture frameworks that exploit Semantic Web technologies are Semantic
MediaWiki (Krötzsch et al. 2006), DBpedia (Auer et al. 2007; Lehmann et al.
2015), and Wikidata (Vrandečić and Krötzsch 2014).

Semantic MediaWiki (SMW, https://www.semantic-mediawiki.org) is an
extension to a wiki implementation that integrates semantic capabilities into the
process of collaborative knowledge management through wikis. SMW enables
human contributors to capture knowledge by semantically enriching and reusing
content in the wiki. KBs created with SMW combine unstructured content and
semantic (semi-) structures. KBs acquired with SMW are modelled using RDF,

Fig. 1 Overview of the application of semantic technologies for knowledge engineering processes
based on knowledge graphs

Semantic Technologies: Enabler for Knowledge 4.0 35

https://www.semantic-mediawiki.org


represented with terms from the Web Ontology Language (OWL) (Bao 2012), and
can be queried using declarative languages, for example, the SPARQL query
language.1

DBpedia (http://dbpedia.org) is a project that implements an extraction frame-
work to gather data from different language versions of Wikipedia. The result of
this framework is the DBpedia KB which is created by extracting data via
declarative mappings or wrappers. In this context, wrappers are components that
parse the data embedded in Wikipedia articles and translate it into concepts defined
in the DBpedia ontology. The DBpedia wrappers are the result of a collaborative
effort to the DBpedia project, where human contributors manually specified the
wrappers to semantically enrich Wikipedia data. The resulting wrappers are stored
in a knowledge base and currently available at the DBpedia Mappings Wiki (http://
mappings.dbpedia.org). DBpedia data is published following the RDF data model
and can be accessed and queried through web services.

Wikidata (http://www.wikidata.org) is a Wikimedia project that manages facts
mainly from Wikipedia but also from its sister projects like Wikivoyage and
Wikisource. Wikidata constitutes a collaborative multi-lingual KB that serves as a
centralized source to provide unified and consistent facts across the multiple lan-
guage versions of Wikipedia. Facts in the Wikidata KB are annotated with a list of
reference sources that support the veracity of the facts. Wikidata contributors
include humans and machines (bots) that create and maintain data in the KB. The
content of the Wikidata KB is exported in different data models including RDF and
can be also accessed through web services.

2.2 Semantic Enrichment

In semantic enrichment, the data of non-semantic sources is annotated with
semantic descriptions from vocabularies or ontologies. The challenges and current
solutions for performing semantic enrichment of sources highly depend on the
characteristics of the underlying data.

Data accessed in knowledge-based systems may have different data models and
structures. In the case of structured (e.g., relational databases) or semi-structured
(e.g., XML files, CSV files, etc.) data sources, data can be semantically annotated
using rules specified by experts in a knowledge capture process and stored in KBs.
These rules translate elements from the sources into ontological concepts, proper-
ties, and instances. Particularly, in the case of relational databases, these rules or
mappings can be specified using the W3C recommended languages Direct
Mappings (DM) (Arenas et al. 2012) or R2RML (Souripriya et al. 2012). DM or
R2RML mappings are executed by processors able to generate semantic
graph-based data from relational databases following the RDF data model.

1SPARQL 1.1 Query Language. Technical report, W3C (2013)
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Unstructured sources that provide natural language documents or visual information
can also be semantically annotated. Depending on the nature of the unstructured
data, different semantic enrichment approaches are applied (see Section “Semantic
Technologies for Understanding Unstructured Context”).

Depending on the data available at the sources, the process of semantically
enriching data might be expensive in terms of time and computational resources. In
particular, when dealing with large volumes of data, it is not practical to enrich and
materialize the entire content of a source. To tackle this problem, current Big Data
architectures (Auer et al. 2017) have focused on solutions that semantically enrich
data on-demand, following the paradigm of schema or data on-read.

2.3 Data Integration

Data integration is the process of consolidating data from heterogeneous sources.
Heterogeneity may occur at different levels: physical infrastructure (hardware and
location), network protocols, data models, and data representation. As explained in
the section “Semantic Enrichment”, the integration of data sources can also be
performed offline, where all the content of the sources is integrated in a
pre-processing step, or on-demand based on users’ queries as performed by tradi-
tional data integration systems (Lenzerini 2002).

The integration of semantic data allows for the construction of knowledge
graphs from different sources. Data that has been created following the Linked Data
principles assumes a common network protocol to access the data (HTTP or
SPARQL) and a common graph-based data model (RDF). In cases where a com-
mon data representation cannot be assumed, Linked Data integration approaches
may exploit rules and other knowledge artefacts (e.g., ontological definitions)
specified by users and maintained in KBs and apply reasoning over this knowledge
in order to consolidate semantically heterogeneous sources. Nonetheless, when
entities, classes, and properties in a Linked Data source are linked or aligned to
other sources, it is possible to assume that the sources are providing a common data
representation. In line with this assumption, current federated SPARQL engines—
e.g., ANAPSID (Acosta et al. 2011), FedX (Schwarte et al. 2011), SPLENDID
(Görlitz and Staab 2011), and SemaGrow (Charalambidis et al. 2015)—are able to
on-the-fly integrate RDF data from distributed and autonomous sources that are
semantically homogeneous during query processing.

2.4 Data Curation

Data curation includes processes to create, maintain, and validate data to ensure the
value of the data, in this case, of the KG that represents semantically annotated and
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integrated data. To perform data curation, knowledge-based systems may exploit
the semantics encoded in the data as well as knowledge captured in KBs.

In the context of knowledge engineering, one of the key tasks in data curation is
the creation or completion of data. State-of-the-art solutions have investigated
different reference sources or oracles to complete web data and knowledge graphs
by, for example, automatically extracting data from web tables (Dong et al. 2014)
and NLP graphs (Welty et al. 2012), respectively. Besides automatic approaches, a
branch of state-of-the-art solutions resort to crowdsourcing, where humans act as
oracles to complete databases or knowledge graphs (Franklin et al. 2011; Marcus
et al. 2011; Park and Widom 2013; Acosta et al. 2015, 2017).

One instance of a system that applies crowdsourcing for knowledge graph
completion is HARE (Acosta et al. 2015, 2017). HARE is a query engine able to
enhance the completeness of knowledge graphs on-demand based on queries posed
by users. HARE relies on the topology of the knowledge graph to identify potential
missing values. To resolve missing values, HARE exploits the semantics of the data
encoded in the knowledge graph to generate human-readable questions to be
answered by a crowd composed of experts or lay users (contacted via crowd-
sourcing platforms). HARE stores the answers collected from the crowd in KBs. In
this way, the knowledge captured from the crowd can be reused in subsequent
queries. Empirical results evidence that HARE can reliably augment the com-
pleteness of knowledge graphs from different domains including Life Sciences.
Furthermore, the results show that non-expert crowds can produce high quality
answers achieving accuracy values from 0.84 to 0.96. Furthermore, the
human-readable questions produced by HARE by exploiting the semantic
description of entities in knowledge graphs are able to provide assistance to the
crowd to produce high quality answers and to speed up the process of KG
completion.

3 Semantic Technologies for Understanding
Unstructured Content

The amount of entities in large knowledge graphs (KGs) has been increasing
rapidly, enabling new ways of semantic information access, like keyword and
semantic queries over entities and concepts mentioned in unstructured content, like
text documents and videos. While entity search has become a standard feature (most
prominent is the Google Knowledge panels shown next to the search results when
searching for named entities), major Web search engines are still limited in their
semantic processing capabilities: it is not possible to disambiguate search terms
manually, search terms in one query can’t be in different languages, the retrieved
content items have to be in the same language as the search terms and search results
are not gathered across heterogeneous content representations; like natural language
and visual information. Most importantly, they don’t allow to ask complex queries
that spans information across multiple content sources. Recently developed systems
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have shown that it is possible to overcome those issues by using semantic
technologies.

3.1 Annotation

Semantic technologies enable computers to access the knowledge that is captured in
unstructured documents like text or images. The key to semantic processing of
unstructured content is annotating it with unique identifiers as provided by KGs.
Since KGs have grown considerably over the last years they reached a size that
makes high-quality annotations possible for general domains as covered by
Wikipedia. The task of identifying mentions of entities in text documents and
disambiguating them with their corresponding unique identifier in the KG has be
termed entity linking.

One instance of an entity-linking system is X-LiSA (Zhang and Rettinger 2014)
which is an infrastructure for cross-lingual semantic annotation. It allows to bridge the
ambiguity of unstructured data and its formal semantics as well as to transform such
data in different languages into a unified representation. The architecture of X-LiSA is
shown in Fig. 2, where cross-lingual groundings extraction is performed offline to
generate the indexes used by the online cross-lingual semantic annotation component.

Fig. 2 Technical Components of the X-LiSA cross-lingual semantic annotation system. In an
offline pre-processing step, large knowledge sources like Linked Open Data and Wikipedia are
exploited and indexed in large repositories. This way, a cross-lingual lexicon of linguistic phrases
that refer to entities in the knowledge graph is created. In the online step, text documents obtained
for annotation are then split into potential phrases to be annotated, the phrases are scored and
linked by the Mention Selectivity, Local Mention-Entity Compatibility and Global Entity-Entity
Coherence modules. The output is a text document where all entities mentioned are annotated and
linked to the corresponding KG entity
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When such a system is used to annotate natural language text that comes from
text documents in potentially different languages, text that was extracted from
speech in videos and text from social media (again in different languages), a
common data model is needed to make the content semantically accessible (see
Fig. 3). To allow for semantic interoperability an RDF vocabulary is defined and
tailored specifically to the different modalities: text, audio and video. It extends
other vocabularies, such as the Dublin Core7, SIOC8 and KDO9. For each entity
annotation, the predicates that define the start and end positions of the entity
mention are used in a flexible manner and may define character positions, in the
case of text, or milliseconds/frame numbers in case of audio/video. Each category
annotation captures one topic of the media content. In any case, each entity men-
tioned in or each topic covered by any content item should relate to a resource in the
knowledge base, namely an entity or a category in DBpedia.

Once the content is annotated in this way and if combined with semantic
(keyword) query interpretation this allows for a semantic access to cross-modal
cross-lingual content.

Fig. 3 To capture the meta information about annotations of different media items, a common
data model is needed. The figure shows a model used in the xLiMe project to annotated text, audio
and video content, denoted as “item”. Meta information includes: entity mentions and the position
of the mention (phrase in the text, bounding box in the image, time in the video), category of the
item is being annotated, as well as the creator, publisher, the modality (text, audio or video) and the
language (in case of text)
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• Document retrieval: The search process starts with a keyword query in any
language, which can even contain keywords in multiple languages. Instead of
retrieving media items directly by keywords, a semantic search approach first
finds the query entity vector (QEV), which represents a subgraph of the
semantic graph of the knowledge base with nodes representing entities and
edges describing their relations such that for each query keyword there is at least
one entity in the subgraphs matching it. For each content item, we construct the
data entity vector (DEV), where the entries contain the confidence scores of the
annotations (i.e., the linked entities), which are generated by the cross- lingual
semantic annotation. The semantic similarity between the QEV and each DEV
can be calculated based on standard similarity measures, such as cosine simi-
larity, which is then used for ranking of retrieved media items.

• Document classification, clustering, recommendation: The goal of a
cross-lingual and cross-media semantic recommendation system is to find the
similar content items posted across languages, modalities and channels. Here,
we focus on a knowledge-centric approach to semantic recommendation using
explicit semantics. This allows the semantic annotations to be further used for
finding similar items. Once the entities inside documents are extracted, they can
be used to calculate document similarity. Firstly, a subgraph is constructed from
the entities identified for each document. As shown (Paul et al. 2016), the
subgraphs of both documents are used to find the bipartite graph and
graph-based similarity is then applied by computing the pairwise entity simi-
larities based on the hierarchical and traversal scores.

• Content analytics and complex queries: Advanced data analytics across
unstructured content has become a major necessity, which currently cannot be
supported by non-semantic search engines. Using the knowledge extracted by
semantic technologies from different media and languages in combination with
additional background knowledge in DBpedia, a semantic approach allows to
ask complex questions, such as “Which politicians from the Conservative Party
of UK were most present in social media in the last two weeks before the Brexit
referendum in different languages?”. Such questions are formulated as a
SPARQL query and are answered by aggregating, counting and averaging
knowledge across several media items. The semantic integration provides the
ability to study differences and commonalities among media channels and
languages.

The just outlined technologies have shown benefits in several business cases
from media monitoring to product recommendation and have been used by social,
media and political scientists to analyse content. See e.g. (Zhang et al. 2017) for
further details.
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4 Semantic Technologies for Cyber-Physical Systems

In the last part of this chapter, we outline some of the benefits semantic tech-
nologies in general, and ontology-based description frameworks in particular can
provide to cyber-physical systems (CPS) and smart factories. We discuss that along
the two aspects: utilization and interoperability of hard- and software components
that constitute such systems. An integral aspect is the usage of ontology languages
(Motik et al. 2009) and description logics (Baader 2003; Krötzsch et al. 2006;
Rudolph 2011) as knowledge representation frameworks that allow for the axio-
matic description of component metadata models (see Zander and Hua 2016).
Detailed information together with extensive formal specifications of description
logic based formalisms can be found in the previous references. Those axiomatic
descriptions can be processed by reasoners, i.e., software programs that are able to
understand the formal model-theoretic semantics injected by an ontology-based
description framework into the component metadata models. This process is called
reasoning and allows machines to infer new, implicitly contained knowledge or to
check the consistency of a model or knowledge base, particularly when new data
are added to it. More details are given in the paragraph about machine
processability.

We discuss utilization and interoperability of CPS components simultaneously,
as interoperability requires the utilization of a component’s metadata model.
Throughout this chapter, we understand the term ‘metadata model’ as a technical
description of a component’s characteristic features using a specific representation
framework and format. In many technical specifications, a component’s metadata
model is also called information model.

The unobtrusive collaboration of a multitude of different and hard- and software
components is a central aspect in smart factories that employ intelligent,
self-regulatory production lines. Together with the Internet of Things (IoT), cog-
nitive and cloud computing, they are the main pillars of the recently emerging
Industry 4.0 paradigm. The multitude of different hardware and software compo-
nents like services, tools, software agents etc., raises new challenges in addressing
the structural, schema and semantic heterogeneity introduced by new technologies,
protocols, description frameworks, interfaces, data structures and formats. The
importance of addressing these challenges is amplified by the increasing complexity
of tools, systems, and other software components embedded in business processes
and demand the continuous integration of technical data and expert knowledge
throughout the entire value-creation network. The interplay of autonomously
operating hardware- and software components is one piece of the puzzle towards
the broad realization of smart factories.

In order to reconcile different efforts and emerging formats, leading industrial
players such as ABB, Daimler, Huawei, Kuka, Siemens etc. (to name just a few)
recently started standardization initiatives for Industry 4.0 specific description
frameworks. One such initiative is AutomationML, a well-adopted and fast growing
XML-based description standard that already caught the attention of Industry 4.0
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communities.2 It covers engineering aspects including topology, geometry, kine-
matics, logic and communication (Drath et al. 2008) that can be used for describing
properties and functionalities of a CPS component. Data contained in the AML
description of one component can be exposed to the communication network of a
CPS system and consumed by other components (Schleipen et al. 2014).

Unfortunately, the expressive power and flexibility of most CPS-related
description frameworks are limited (Zander and Hua 2016). From AutomationML
alone, for instance, it is not able to determine whether two components are com-
patible and able to work together based on the interface descriptions they exhibit. As
a consequence, many of such description frameworks are not able to provide that
form of understanding, in particular not in a machine-processable fashion.

This is the starting point where semantic technologies and ontology-based
description frameworks in particular will help complementing such standardized
industrial-driven description frameworks in meaningful ways. Thus making a
contribution towards the realization of a technical interoperability infrastructure
where hard- and software components are able to autonomously collaborate and
exchange information together with their intended semantics. Semantic technolo-
gies help in doing that through the following aspects:

(a) Logical Model: The description framework of Web ontologies is RDF, the
logical model of which is built upon a graph-based data structure rather than a
tree-based structure, which is the case for XML and XML-based formats such
as AutomationML. Graph-based data structures not only provide a greater
flexibility in representing information, they also circumvent the one-to-many
mapping problem between graph- and tree-based representation formats and
thus mitigating the problem of structural heterogeneity and modelling
ambiguity.

(b) Expressivity: The graph-based representation model of Web ontologies allows
to treat relationships (so-called properties in terms of the Web Ontology
Language (OWL) or roles in description logic terms) as first-class citizens and
explicitly specify their characteristics and semantics. This is one of the main
distinguishing features of Web ontologies compared to the object-oriented
paradigm in which the creation of a relation is bound to the existence of a class
or object. In Web ontologies, relations can be used independently of classes or
resources (member of classes) and exist in a self-contained manner. Moreover,
their semantics can be defined upon the formal, model-theoretic semantics of
the ontology language used to describe and represent an ontology.

(c) Machine processability: The logical theory upon which an ontology language
and subsequently the ontology it describes is defined determines the expressive
power and accuracy through which elements of a domain of interest (the
so-called universe of discourse in ontology terms) can be described. Since the
formal semantics of an ontology and its language elements (terms and concepts)
are defined upon a logical theory, they can be processed automatically by

2Reference architecture model Industrie 4.0. Technical report, ZVEI. (2015).
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machines in the form of reasoning engines. Reasoning describes the process of
deducing logical entailments from the axioms constituting an ontology, the
so-called knowledge base. Reasoning allows the determination of the consis-
tency of a knowledge base, i.e., it checks whether an axiom (statement in
ontology terms) is satisfiable for the given knowledge base or whether the
introduction of a new fact to a knowledge base violates its consistency.
Reasoning also allows for the deduction of new facts based on implicitly
contained knowledge (as we will demonstrate in the following example).

These are some of the main features that distinguish ontologies and ontology
languages from well-established representation frameworks introduced to computer
science such as the Unified Modelling Language (UML) (Krötzsch et al. 2014).

In the following paragraph, we demonstrate how ontologies can serve as a
semantic shell for enhancing the information models of cyber physical systems’
components and allow for the deduction of new knowledge that fosters interoper-
ability and data exchange between collaborating components.

In a first step, an AutomationML description needs to be analysed and trans-
formed, i.e., uplifted into a compliant semantic graph represented as RDF
description using transformation rules and domain heuristics (Björkelund et al.
2011; Kovalenko et al. 2015; Zander and Hua 2016). Such an uplifted semantic
graph can then be processed by a reasoner in order to automatically classify a
component with respect to specific classification systems and complemented its
information model with domain knowledge derived from domain ontology axioms
(some of them have been developed by several initiatives and projects such as
KNOWROB, NIST Robot Ontology, OMRKF, ORA WG, and ReApp) (Schlenoff
et al. 2012; Tenorth and Beetz 2013). Figure 4 illustrates an RDF representation of
an excerpt of an uplifted AML description describing some technical aspects of a
Sick S30B Laser Scanner. For reasons of readability and comprehensibility,
ontology namespaces have been omitted throughout this chapter.

The concrete instance of the laser scanner is identified and represented via its
UUID (line 1). Several technical parameters are then added in the form of RDF
triples such as manufacturer and model information (line 2), starting and end angles
(line 3), the maximal measurement range of the laser scanner in meter (line 4) and
so on.

1 <urn:uuid:f81d4fae-7dec-11d0-765-00a0c91e6bf6>
2 :hasManufaturer "Sick" ; :hasModelName "S30B-2011GA" ;
3 :startAngle "135"^^xsd:integer ; :endAngle "135"^^xsd:Integer ;
4 :maxMeasurementRangeInMeter "40"^^xsd:integer ;
5 :maxProtectiveFieldRangeInMM "2000"^^xsd:integer ;
6 :maxWarningFieldRange "8000"^^xsd:integer ;
7 :maxSimultaneousFieldEvaluations "0"^^xsd:integer .

Fig. 4 Excerpt of an uplifted AutomationML description of a Sick S30B Laser Scanner. The code
represents an excerpt of the corresponding RDF graph and is serialized in the RDF N3 notation
(also known as Notation3)
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Those technical assertions are then processed against the domain knowledge
encoded in several hardware, software and capability ontologies that contain
axioms as illustrated in Fig. 4. These axioms allow for the classification of a
component, i.e., based on the uplifted information, the component represented by
its UUID can be classified as SafetyLaserScanner. This process is automatically
conducted by a reasoner in order to infer additional information and use it to
complement the component’s information model.

Axiom 1 states that components classified as safety laser scanners have the
default capability of safe monitoring of 2D fields (see Fig. 5). The concept repre-
senting ‘SafeMonitoringOf2DFields’ is defined in an external capability ontology
and linked to the ‘SafetyLaserScanner’ concept through the property
‘hasCapability’. Such information is encoded as TBox knowledge, i.e., as schema
knowledge. Such schema knowledge together with classification information, i.e.,
asserting that the Sick S30B is a safety laser scanner (usually this can be inferred
through the technical information provided by the AutomationML description),
allows a reasoner to infer that a Sick S30B laser scanner has the default capability
of safe monitoring of 2D fields. When such information is inferred from the con-
stituting knowledge base axioms and additional domain knowledge such as a
capability ontology, it can be materialized and added to the uplifted AutomationML
information model in the form of RDF assertions, i.e., ABox axioms. Hence, the
initial component’s information model is complemented with additional knowledge
derived from well-established domain ontologies. The materialization is important
as it allows all the inferred knowledge about a component to be indexed by
semantic data bases, so-called triple stores and retrieved through RDF query lan-
guages such as SPARQL.3 Figure 6 illustrates how the uplifted AutomationML
description of the Sick S30B component can be complemented with the inferred
information.

This complemented description now contains classification information, i.e., it
asserts that the concrete instance of a Sick S30B (represented via its UUID; see line
1) is a safety laser scanner (line 2) and so on. The metadata model also contains
information about a component’s capabilities (‘{SafeMonitoringOf2DFields}’,
‘{MonitoringOf2DFields}’ and ‘{Monitoring}’ (line 3), the purposes for which it

SafetyLaserScanner hasCapability.SafeMonitoringOf2DFields (1)
SafetyLaserScanner LaserScanner (2)

LaserScanner hasCapability.MonitoringOf2DFields (3)
MonitoringOf2DFields SafeMonitoringOf2DFields (4)

Fig. 5 Excerpt of a set of description logic axioms that represent a classification hierarchy for
components (Axiom 2 and 3) and capabilities (Axiom 4) and link concepts of a domain ontology
to complex concept expression (right part of Axiom 1) in order to represent capability information
that a reasoner can infer

3SPARQL 1.1 Query Language. Technical report, W3C (2013).
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can be used by default together with information about its operation environments
(the derivation of this entailments is not depicted in the example). With that
complemented information models, software agents are then able to infer whether
two components are compatible and able to collaborate in more sophisticated ways.
More information together with detailed examples can be found in (Zander and
Awad 2015), (Zander and Hua 2016) as well as in (Zander et al. 2016).

5 Summary

In this chapter we introduced the latest innovations in modelling knowledge using
knowledge graphs and explained how those knowledge graphs enable value cre-
ation by making unstructured content, like text documents accessible by machines
and humans. We covered different steps of the knowledge creation lifecycle
including (manual) knowledge engineering and (automatic) understanding of
unstructured content. Last, but not least, we have shown how semantic technologies
help to make hard- and software components in cyber-physical systems
interoperable.
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