
Chapter 7
Typical Mistakes in MDS

Abstract Various mistakes that users tend to make when using MDS are discussed,
from using MDS for the wrong type of data, using MDS programs with suboptimal
specifications, to misinterpreting MDS solutions.

Keywords Global optimum · Local optimum · Termination criterion
Initial configuration · Degenerate solution · Dimensional interpretation
Regional interpretation · Procrustean transformation

7.1 Assigning the Wrong Polarity to Proximities

A frequent beginner’s mistake is scaling proximities with the wrong polarity. If the
data are similarities, but MDS treats them as dissimilarities (or vice versa), it will
generate a misleading solution with very high Stress. The MDS program cannot
know how to interpret the data and, therefore, works with its default interpretation
of the data. This usually means that the data are taken as dissimilarities. Yet, correla-
tions, for example, are similarities, because greater correlation coefficients indicate
higher similarity and, therefore, they should be represented by relatively small dis-
tances. If the user incorrectly specifies the data’s polarity, thenMDS cannot generate
meaningful solutions.

7.2 Using Too Few Iterations

Many MDS programs have suboptimal default specifications. In particular, they
typically terminate the iterations of their optimization algorithms before the process
has actually converged at a local minimum. This premature termination is caused
by setting the termination criteria too defensively. Many programs set the maximum
number of iterations to 100 or less, a specification that dates back to the times when
computing was slow and expensive. For example, the GUI box of Systat in Fig. 1.5
shows that, per default, thisMDS program allows at most 50 iterations. The iterations
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78 7 Typical Mistakes in MDS

are also stopped if the Stress does not go down by more than 0.005 per iteration.
However, one can show that very small Stress reductions do not always mean that
all points remain essentially fixed in further iterations. We therefore recommend to
always clearly change these default values to allow the program to work longer.
Instead of a maximum of 50 one can easily require 1,000 or more iterations. The
convergence criterion, in turn, could be set to 0.000001 or smaller, i.e., to a very
small value indeed.

7.3 Using the Wrong Initial Configuration

All MDS programs automatically generate their own initial configuration if the
user does not provide an external starting configuration. It is a common fallacy
to assume that internally generated starting configurations will always lead to opti-
mal MDS solutions. For example, we have found in many tests that the default
starting configuration used in Proxscal (called “Simplex”) is often not optimal.
We recommend using the option Initial=Torgerson instead. Yet, no starting
configuration—rational or user-provided—always guarantees the best-possible final
solution, and so the user should test some sensible alternatives before accepting a
particular MDS solution all too early as the final solution.

Random starting configurations can also be useful in MDS. Indeed,many random
configurations can easily be used without much effort. For example, for the solution
in Fig. 1.4 we used Proxscal with the option Random=1000; i.e., we asked the
program to repeat the scaling with 1,000 different random starting configurations
and then report the solution with the lowest Stress value. That only took seconds
with this small data set.

The same method can also be used with mds() in smacof. However, mds()
generates only 1 random configuration when setting the argument init="random"
in mds(). Thus, we have to program a loop to find the best solution or use the function
random.multistart() below (which here calls an ordinal MDS and 500 random
starts):

1 diss <- sim2diss(wish, method=7)
2 set.seed(123)
3 random.multistart <- function(diss, type="ordinal", nrep=100) { s1 <- 1
4 for (i in 1:nrep) { out <- mds(diss, type=type, init="random")
5 if (out$stress < s1) { object <- out; s1 <- out$stress }}
6 return(object) }
7 result <- random.multistart(diss, type="ordinal", nrep=500)
8 result

Running the above commands leads to a result$stress of .185 for the country
similarity data from Sect. 2.2. Repeating this analysis with different seeds leads to
the same minimum Stress value in each case. So, .185 seems to be the best-possible
Stress for ordinal MDS of these data.
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Sometimes there exist several different solutions that all have almost the same
small Stress value. In that case, the user can pick the solution that is most convincing
in termsof interpretation. Theproblem is that allMDScomputer programsonly report
the best solution they found, where “best” obviously only says that it has the smallest
Stress. No program can consider a configuration’s meaning as an additional criterion.
To help finding possible solutions that have both an acceptable Stress but differ in
their substantive meaningfulness, Borg and Mair (2017) suggest a strategy where all
MDS solutions that result from many different initial configurations are stored and
then comparedwith respect to their structural similarity. This strategy is implemented
in the icExplore() function. It generates a large set ofMDS solutions using random
initial configurations, matches them all by Procrustean fittings, computes the inter-
correlations of their point coordinates, and finally runs an (interval) MDS of these
inter-correlations.

1 diss <- sim2diss(wish, method=7)
2 set.seed(3)
3 solutions <- icExplore(diss, type="ordinal", nrep=75)
4 solutions
5 plot(solutions)

The result of this analysis for the country similarity data using 75 random ini-
tial configurations is shown in Fig. 7.1. The numbers in the plot represent the MDS
configurations, and the size of the numbers corresponds to the Stress of the solu-
tion (solution #64, thus, has a poor fit to the data). The distances among the points
represent the similarities of the configurations. The plot thus shows that there are
many different local minima solutions when random initial configurations are used.
Many of these solutions have a poor fit, but there are two clusters of highly similar
configurations on the right-hand side that all have relatively low Stress. The user
can take a look at, say, #9 (in the upper cluster on the right-hand side of Fig. 7.1)
and #25 (in the cluster underneath ) to see how they differ and which one is better
interpretable (see discussion in Sect. 7.8). One can plot #9, say, by simply calling
plot(solutions[[9]]). The Stress is printed by solutions[[9]].

The user can also follow another strategy. Compute a Stress-optimal MDS solu-
tion first, study its interpretability, and then possibly move some points “by hand”
to theoretically more pleasing positions. These hand movements can be translated
into changes of the coordinates of these points. The modified coordinate matrix can
subsequently be used as the initial configuration in Stress0(). This function com-
putes the Stress of the modified solution (without any iterations). Alternatively, one
may set niter=1000, for example, and hope that the program will find an optimal
solution with an acceptably small Stress that lies in the vicinity of the modified
configuration.
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Fig. 7.1 Similarity structure ofMDSsolutions basedon75 random initial configurations for country
similarity data; number represents solution; size of number represents Stress of solution

Finally, a theory-generated initial configuration (if it can be derived) is always a
choice that should at least be tested. Consider, for example, the data on the similarity
of rectangles and the data on personal values discussed in Chap. 2. In both cases,
there were clear hypotheses about the expected MDS structure of the data. These
predictions can easily be translated into coordinate matrices that then serve to define
initial configurations. For example, for the rectangle data, one can simply read off
the coordinates from Fig. 2.4 or call data(rect_constr); S <- rect_constr

and then tell the MDS program to use S as an initial configuration.
There is usually no need to formulate the initial configuration as precisely as in

case of matrix S above, nor does the theory always allow such precise predictions.
This is certainly true for the personal values data, where the theory predicts a circle
with points ordered as PO - AC - HE - ST - SD - UN - BE - TR - CO - SE - PO.
No prediction can be derived for the distances among the points on the circle and so
one could spread them out evenly, for example. It suffices to plot this configuration
on a piece of paper, co-ordinatize its points by a simple grid, and then coarsely read
off these coordinates to generate a matrix like S above. Of course, one could also
do this on the computer screen, then plot the coordinate matrix to visually check it,
and possibly adjust the point coordinates repeatedly until the configuration seems
right.
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7.4 Doing Nothing to Avoid Suboptimal Local Minima

MDS always tries to find the local minimum solution with the smallest possible
Stress, i.e., the global minimum. MDS users can do their share to help find this
global minimum by keeping an eye on the following issues:

• A good initial configuration is the best way to avoid suboptimal local minima. If
you have a theory, then a user-defined configuration is what you should always
use. If you do not have a theory, you must leave it to the MDS program to define
its own starting configuration. In that case, we recommend using the solution of
classical MDS (also known as the Torgerson solution) as a start which is indeed
the default initial configuration of mds() in the smacof package.

• Another precaution against suboptimal local minima is using multiple random
starts. As modern MDS programs are extremely fast, one can easily require the
program to repeat the scaling with a very large number of different random starts
(e.g., with 1,000 or more).

• City-block distances increase the risk to end up in suboptimal local minima. Gen-
eral MDS programs are particularly sensitive in this regard. There exist MDS
programs that are optimized for city-block distances, but they are hard to obtain
and typically require expert support for using them.

• The greater the dimensionality of the MDS space, the smaller the risk for subopti-
mal local minima. The main problem in low-dimensional spaces (1d, in particular)
is that swapping points in space by iteratively repeating small movements is dif-
ficult, because such movements may first increase the Stress before it goes down.
Hence, even if you want, say, a two-dimensional MDS solution, using the first two
principal components of a three-dimensional MDS solution may serve as a good
initial configuration.

• Suboptimal local minima are particularly likely in case of one-dimensional MDS.
Standard programs almost never find the global minimum. If you must do one-
dimensionalMDS, you should provide an external starting configuration computed
with 2d MDS (see above), or use an MDS program for the 1d case. Special 1d
MDS programs are based on permutation algorithms which are computationally
demanding. An example is uniscale() in the smacof package: It finds the per-
mutation of the points with the smallest Stress, but always assumes that the data
are on a ratio scale. Yet, one may use its solution as an initial configuration in
ordinal and interval MDS.

7.5 Not Recognizing Degenerate Solutions

Of all MDS models, ordinal MDS is the model that has been used most often. It
allows any rescaling of the data that preserves their order, but it nevertheless produces
stable metric solutions. However, ordinal MDS can run into a special problem that
the user should keep an eye on; i.e., it can lead to degenerate solutions. Consider
the following example. Table7.1 exhibits the inter-correlations of eight test items of
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Table 7.1 Correlations (lower half) of some test items of the KIPT and their ranks (upper half).

np lvp svp ccp nr slp ccr ilr

Nonsense word production (np) – 9 4 1 6 19 10 12

Long vowel production (lvp) .78 – 1 7 5 21 20 22

Short vowel production (svp) .87 .94 – 3 2 17 16 23

Consonant cluster production (ccp) .94 .83 .90 – 7 14 11 16

Nonsense word recognition (nr) .84 .85 .91 .83 – 17 15 18

Single letter production (slp) .53 .47 .56 .60 .56 – 13 16

Consonant cluster recognition(ccr) .72 .48 .57 .69 .59 .62 – 8

Initial letter recognition (ilr) .66 .45 .44 .57 .55 .57 .82 –
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Fig. 7.2 Ordinal and interval MDS representations for data of Table7.1

the Kennedy Institute Phonics Test (KIPT), a test for reading skills (Guthrie 1973).
If we scale these data by ordinal MDS using mds() (see commands below1), we
obtain the configuration in Fig. 7.2 (left panel). Its Stress value is zero, so this MDS
solution is formally perfect. Yet, the Shepard diagram of this solution (see left panel
of Fig. 7.3) reveals a peculiar relation of data and distances: Although the data scatter
evenly over the interval from .44 to .94, they are not represented by distances with a
similar distribution, but rather by two clearly distinct classes of distances so that the
regression line makes just one big step.

1 diss <- sim2diss(KIPT)
2 fit1 <- mds(diss, type="ordinal", eps=1e-11)
3 fit2 <- mds(diss, type="interval")
4 fit3 <- mds(diss, type="ratio")

1Note that we set the argument eps to an extra-small value here to make the program iterate on and
on until it reaches such an exotically small raw Stress value if it can be reached in itmax=3333
iterations. Without this argument, mds() will use the default value eps=1e-06 which causes it
to stop earlier.
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Fig. 7.3 Shepard diagrams for ordinal MDS, interval MDS, and ratio MDS of the correlations of
Table7.1 (converted into dissimilarities)

The MDS configuration shows three clusters that form an equilateral triangle.
This configuration represents all large correlations (r ≥ .78) by distances close to
zero and all smaller correlations (r < .72) by the same large distance. This solution
correctly displays a few data relations, but loses whatever else there is in the data.
The perfect Stress value is, therefore, deceptive. The large and the small distances,
respectively, can be reordered arbitrarily as long as all similarities within the blocks
marked in Table7.1 remain greater than all between-block similarities. Any such
reordering will have no effect on the Stress value.

The reason for such a degenerate solution is that the data have a peculiar structure.
They form three subgroups, with high within- and low between-correlations. With
ordinalMDS, such data can always be scaledwith zero Stress.Of course, the data here
are particularly selected to demonstrate degeneracy. In practice, one should rarely
find such cases, but the problem becomes more likely if the number of variables is
small (n ≤ 8).

If the Shepard diagram suggests that the MDS solution is degenerate, then the
natural next step for the user is testing a stronger MDS model and comparing the
solutions. Using interval MDS with the above data yields the solution in the right
panel of Fig. 7.2. It too shows the three clusters of test items, but it does not collapse
them. Its Shepard diagram (see the middle panel of Fig. 7.3) makes clear that the
interval solution preserves a linear relationship of the data inTable7.1 to the distances
in Fig. 7.2.2

2Note that if you plot the correlations of Table7.1 rather than the dissimilarities
on the Y -axis of the Shepard diagram of the interval MDS—using plot(aus1,
plot.type="Shepard", shepard.x=kipt)—the regression line is slightly curved. This
is so because transforming the correlations into dissimilarities via δi j = √

1 − ri j—which is what
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An even stronger model is ratio MDS. For these data, however, it is too strong.
The Shepard diagram (right panel of Fig. 7.3) shows that it not only drives up the
Stress, but it does so causing a systematic error: Small distances are almost all too
small, and very large distances are too large (see the scatter of the points about the
regression line in the Shepard diagram). These errors are the consequence of insisting
that the regression line must run through the origin (0.00, 0.00).

7.6 Meaningless Comparisons of Different MDS Solutions

A frequent issue in MDS applications is comparing two or more MDS solutions.
Consider a study by Borg and Braun (1996). They were interested in the difference
between East Germans andWest Germans in their work values shortly after Germany
reunited in 1990. The items asked the respondents to rate 13 aspects of their work life
(such as “high income” or “good chances for advancement”) on a scale from “not
important” to “very important” to them personally. Scaling the inter-correlations
of the two samples leads to two-dimensional MDS solutions, but even though they
have just 13 points each, they are difficult to compare, because one must ignore
meaningless differences that are due to different orientations of the plots. It is like
comparing two maps of different size, and one is upside down, for example. When
comparing MDS plots, one can eliminate such meaningless differences optimally
by Procrustean transformations. If configuration X is taken as the target, the other
configuration Y is rotated, reflected, translated, and adjusted in its size to optimally
match X. All these transformations are similarity transformations that do not change
the structure of the MDS configurations. Differences between two configurations3

that can be eliminated by similarity transformations cannot possibly be meaningful,
because they are not caused by the data. We do apply this method for the East and
West German MDS configurations using these commands:

1 labels.short <- c("interesting","independent","responsibility","meaningful",
2 "advancement","recognition","help others","useful","social","secure job",
3 "income", "spare time", "healthy")
4 attr(EW_eng$west, "Labels") <- attr(EW_eng$east, "Labels") <- labels.short
5 res.west <- mds(sim2diss(EW_eng$west, method="corr"), type="ordinal")
6 res.east <- mds(sim2diss(EW_eng$east, method="corr"), type="ordinal",
7 init=res.west$conf) ## note the initial configuration here
8 fit2 <- Procrustes(res.west$conf, res.east$conf)
9 plot(fit2)

10 ## compute overall similarity measures: r and c
11 r <- cor(as.vector(res.west$conf), as.vector(fit2$Yhat))
12 c <- fit2$congcoef ## congruence coefficient on distances

diss <- sim2diss(kipt, method="corr") is doing—is a slightly nonlinear function.
This is irrelevant for ordinal MDS, but it shows up in interval MDS.
3Procrustean fittings can also be used for configurations that differ in the number of points and in
their dimensionalities. For example, the configuration in Fig. 2.13 was fitted to the configuration in
Fig. 2.12 to make comparisons easier. The target X was derived from Fig. 2.12 by roughly reading
off the X - and Y -coordinates of the centroids of the various value groups. In case of different
dimensionalities, one can simply add column vectors with only zeroes to X or to Y.
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Fig. 7.4 Overlay plot ofWest German (squares) and East German (dots) work value configurations,
optimally matched, with partition based on the ERG theory

The plot in Fig. 7.4 shows the East and the West German results, optimally fitted
to each other in one overlay plot. To measure the similarity of the configurations, one
can compute the congruence coefficient of corresponding distances (c = .964) or
the correlation of the coordinates of corresponding points (after Procrustean fitting:
r = .914).These coefficients canbe evaluated against thefit of randomconfigurations
(see R script below which yields benchmark values of .88 and .62 for the c- and the
r-coefficients, respectively). Hence, the similarity of the observed configurations is
much higher than can reasonably be expected by chance.

1 Procrustes.test <- function(n,m,nrep=500) { set.seed(333); c <- vector()
2 r <- vector(); X <- matrix(runif(n*m, -1, 1), nrow=n,ncol=m)
3 X <- scale(X, scale=FALSE)
4 for (i in 1:nrep) { Y <- matrix(runif(n*m, -1, 1), nrow=n, ncol=m)
5 fit <- Procrustes(X, Y); c[i] <- fit$congcoef
6 r[i] <- cor(c(X), c(fit$Yhat))}
7 cr <- list("c"=c, "r"=r) }; z <- Procrustes.test(13,2) ## 13 points in 2d
8 z99 <- quantile(z$c, .99); r99 <- quantile(z$r, .99) ## 99% quantiles
9 cat("c(99%)=", round(z99,2), " r(99%)=", round(r99,2), sep = ’’)

Apart from their significant point-to-point similarity, one here notes that both con-
figurations can be partitioned in the same way by Alderfer’s E(xistence), R(elations),
and G(rowth) theory (Alderfer 1972a). This is a higher-order form of similarity, and
it may hold even if the point-wise correspondence is not that high.

7.7 Evaluating Stress Blindly

A frequent mistake ofMDS users is that they are often too quick in rejecting anMDS
solution because its Stress seems too high. The Stress value is, however, merely a
technical index, a target criterion for an optimization algorithm. An MDS solution
can be robust and replicable, even if its Stress value is high. Stress, moreover, is
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substantively blind; i.e., it says nothing about the compatibility of a content theory
with the MDS configuration, or about its interpretability.

Stress is a summative index for all proximities. It does not inform the user how
well a particular proximity value is represented in the given MDS space. This was
discussed in detail in Chap. 3. The least one can do is to take a look at the Stress-per-
point values. Unfortunately, not all MDS programs compute SPP values (or similar
point-fit measures). However, most programs allow saving the configuration’s dis-
tances so that one can compute appropriate point-fit measures with standard data
analysis programs (e.g., the correlation between the proximities and the correspond-
ing MDS distances).

A simple way to deal with ill-fitting points is to eliminate them from the analysis.
This popular approach is based on the rationale that such points have a special relation
to the other points that needs additional considerations.Another solution is to increase
the dimensionality of the space so that these points can move into the extra space
and form new distances. The rationale in this case is that the proximity of the objects
represented by these points to the other points is based on additional dimensions that
are not relevant in other comparisons. Experience shows, though, that SPP values
are often quite unstable. For example, SPP plots change a lot under different MDS
models so that “special” points cannot always be identified with confidence.

In any case, accepting or rejecting an MDS representation on the basis of overall
Stress can be too simple. This is easy to see from an example. Consider the West
German MDS configuration in Fig. 7.4. If we increase the dimensionality of this
solution to m = 3, the Stress goes down from 0.17 to 0.09. If we proceed in the
same way in case of Fig. 2.2, we get the same reduction in Stress. However, in the
former case, the reduction in Stress is caused by essentially two points only. That is,
“healthy working conditions” and, in particular, “(much) spare time” clearly move
out of the plane in Fig. 7.4 into the third dimension. In case of the country similarity
data, all points jitter (some more, some less) about the plane, which looks as if the
third dimension is capturing essentially only noise.

For data with large noise components, therefore, low-dimensional MDS solutions
can have high Stress values, but they may still be better in terms of theory and
replicability than higher-dimensional solutions with lower Stress values. In that case,
a low-dimensional solution may be an effective data smoother that brings out the
true structure of the data more clearly than an over-fitted high-dimensional MDS
representation.

7.8 Always Interpreting Principal Axes Dimensions

Interpreting an MDS solution can be understood as projecting given or conjectured
content knowledge onto the MDS configuration. The country similarity example of
Sect. 2.2 demonstrates how this is typically done:What one interprets are dimensions.
MDS users often automatically ask for the meaning of “the” dimensions, by which
they often mean the axes of the plot that the MDS program delivers. These axes are
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almost always the principal axes of the solution space. Yet, this dimension system
can be arbitrarily rotated and reflected, and oblique dimensions would also span the
plane. Hence, users do not have to interpret the dimensions offered by the MDS
program, but they could look for m dimensions (in m-dimensional space) that are
more meaningful.

There is, however, no natural law that guarantees that dimensions are meaningful
at all. Thus, one should be open for other ways of interpreting MDS solutions. One
possibility is to look formeaningful directions rather than for dimensions. A direction
corresponds to a simple line that runs through the MDS plot. When projecting the
points of the configuration onto such a line, it becomes an internal scale. One can plot
such internal scales through a common point such as the centroid of the configuration.
Points to the left of this anchor point are given negative scale values; those to the
right of it receive positive values. To interpret the internal scale, one studies the point
distribution with a focus on content questions such as these: What points lie at the
extremes of the scale? How do they differ in terms of content? What is the attribute
where they differ most? Why are the points i, j, . . . so close together? What do they
have in common? Answering such questions gives meaning to the scale.

Additional data can be helpful in such interpretations. We show this for the coun-
try similarity example. Table 2.1 exhibits the coordinates of the MDS solution in
Fig. 2.2 and the countries’ values on two external scales, economic development,
and number of inhabitants. These scales can be fitted into theMDS space by using the
mdsbiplot() function as follows, yielding Fig. 7.5. The fit of the external scales in
thisMDS configuration is given by the correlation of these scales with the projections
of the points onto straight lines through the arrows that represent them. We here get
r = .94 for economic development and r = .46 for the number of inhabitants. (The
length of the two arrows represents, approximately, the relative fit of the external
scales.) This suggests to interpret this solution in terms of a rotated set of dimensions
that correspond to the two arrows representing economic development and number
of inhabitants.

1 diss <- sim2diss(wish, method=7)
2 res <- mds(diss, type="ordinal")
3 ecdev <- c(3,1,3,3,8,3,7,9,4,7,10,6)
4 inhabs <- c(87,17,8,30,51,500,3,100,750,235,201,20)
5 labs <- attr(wish, "Labels")
6 fitbi <- biplotmds(res, cbind(ecdev, inhabs))
7 plot(fitbi, main="", xlab="", ylab="", cex=1.3,
8 label.conf=list(cex=1.2, pos=ifelse(labs!="RUSSIA", 3, 1)),
9 vecscale=0.5, vec.conf=list(cex=1.2, col="red", cex=1.2, length=0.1))

External scales can also help in choosing among different MDS solutions with
almost the same Stress. For the country similarity data, ordinal MDS starting with
different random configurations leads to a set of different solutions (see Fig. 7.1).
Many of them have unacceptably high Stress, but there are different solutions (e.g.,
#1 and #13) with the same minimal Stress of .185. Figure7.6 shows these solutions
next to each other. In each solution, the two external scales were fitted into the
configurations by multiple regression (as in Fig. 2.16, for example).



88 7 Typical Mistakes in MDS

−0.5 0.0 0.5−
1.

0
−

0.
5

0.
0

0.
5

BRAZILCONGO

CUBA

EGYPT
FRANCE

INDIA

ISRAEL

JAPAN

CHINA

USA

YUGOSLAV
ecdev

inhabs
RUSSIA

Fig. 7.5 MDS solution for country similarity data; fitted external scales shown as arrows

Dimension 1

D
im

en
si

on
 2

Brazil
Congo

Cuba

EgyptFrance India

Israel

Japan

China

USSR

USA

Yugoslavia

Dimension 1

D
im

en
si

on
 2

Brazil Congo

Cuba

Egypt

France

India

Israel

Japan
China

USSR

USA

Yugoslavia

eco
n. d

ev.

inhabitants
inhabitants

Fig. 7.6 Two same-Stress MDS solutions for country similarity data, with fitted external scales

The two solutions are rather similar (after Procrustean fitting) but differ in two
important details: In the left configuration, the positions of Japan and Israel are
swapped in comparison with where they are in the right configuration; moreover,
in the left configuration, India is positioned more in the center of the configuration.
This means that in the configuration on the left, the very large countries are closer
together on the line “inhabitants.” So, this internal scale correlates with the external
scale “number of inhabitants” (see Table 2.1) with r = .46 in the left configuration,
but only with r = .30 in the right configuration. At the same time, the fitted external
scales correlate with r = .93 in both plots. Hence, the configuration on the left is
the somewhat more meaningful MDS solution if one wants to followWish (1971) in
interpreting the configuration in terms of these dimensions. However, this solution
may not be the one that is reported by the MDS program as the final solution, but
you can find it if you use a proper initial configuration identified by icExplore().
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7.9 Always Interpreting Dimensions or Directions

Dimensions and, more generally, directions are but special cases of regions. Regions
are subsets of points of an MDS space that are connected (i.e., each pair of points
in a region can be joined by a curve whose points lie completely within this region),
non-overlapping, and exhaustive (i.e., each point lies in exactly one region). When
interpretingMDSsolutions,we ask towhat extent certain classifications of the objects
on the basis of content facets correspond to regions of theMDS space. Expressed dif-
ferently, we askwhether theMDS configuration can be partitioned into substantively
meaningful regions and, if so, how these regions can be described.

An example for such a partitioning is shown in Fig. 7.4. Here, the different objects
(“work values”) were first classified into three categories on the basis of a theory by
Alderfer (1972b): Work values related to outcomes that satisfy existential-material
needs (E), social-relational needs (R), or cognitive-growth needs (G). This ERG
typology surfaces in MDS space in certain neighborhoods that can be separated
from each other by cutting the plane in a wedge-like fashion. The same type of
partitioning is possible both in the West German and also in the East German MDS
plane. Hence, the two solutions are equivalent in the ERG sense (Borg and Braun
1996).

Partitioning anMDS space is done facet by facet. For each facet Fi , one generates
a facet diagram. This is simply a copy of the MDS configuration where each point
is replaced by the code that indicates to which category of Fi the respective point
belongs. One then checks to what extent and in which way this facet diagram can be
partitioned into regions that contain only codes of one particular type. The emerging
regions should be as simple as possible, e.g. with straight partitioning lines. This
is desirable because simple partitions can also be characterized by simple laws of
formation that promise to be more robust and more replicable than complicated
patterns that are fitted too closely to the particular data and its noise.

Although there exist computer programs that yield partitions for facet diagrams
that are optimal in some sense (Borg and Shye 1995), it is typically more fruitful for
the user to work with pencil and eraser on a printout of the facet diagram. This way,
partitioning lines can be drawn, redrawn, and simplified in an open-eyed fashion,
paying attention to content and substantive theory. One may decide, for example, to
admit some placements of points in “wrong” regions, because simple overall patterns
with some errors are better than perfect partitions with overly complicated partitions.

Three prototypical regionalities that often arise in practice are shown in Fig. 7.7:
axial, modular, and polar partitions. Axial and modular partitions are either based
on ordered facets, or they suggest ordered facets. Polar partitions, in contrast, are
typically related to unordered (nominal) facets. Of course, if the sectors in a polar
partition are arranged similarly in many replications, then one should think about
reasons for this order.

Regionalizations—simple ones, in particular—become unlikely to result by
chance if the number of points goes up. That is easy to see from a thought experiment.
Assume you take a set of n ping-pong balls and label some of them with “a”, others
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Fig. 7.7 Prototypical partitioning of MDS configurations by three facets, each one with three
categories (a, b, c)

with “b”, and still others with “c”. Then, throw them all into a bucket, mix them
thoroughly, and pour the bucket onto the floor. After the balls come to their parking
positions, try to partition the resulting configuration into a-, b-, and c-regions. This
will be difficult or even impossible if you want simple regions as in Fig. 7.7. It is even
less likely that the regionality that you find in one case can be replicated when the
experiment is repeated. A simple regional pattern, therefore, suggests a lawful rela-
tionship in the sense that the facet structures the observations. This notion becomes
even more powerful if an MDS configuration can be partitioned by more than one
facet so that the different organizational patterns can be stacked on top of each other
as, for example, in the radex in Fig. 2.8.

An MDS solution can be partitioned, in principle, by as many facets as the user
can think of. There is no fixed relation between the number of facets and the dimen-
sionality of the space. This is different for dimensions: In an m-dimensional space,
one always seeks to interpret exactly m dimensions. A dimensional interpretation
corresponds to a combination of m axial facets (see Fig. 7.7, left panel), each gener-
ating an ordered set of (infinitely) narrow bands with linear boundary lines so that a
grid-like mesh (as, e.g., in Fig. 6.3) is generated.

Regions are sometimes confused with clusters. Clusters, however, are but special
cases of regions. They are often defined as lumps (or chains) of points surrounded
by empty space so that each point in a cluster is always closer to at least one point in
the cluster than to any point not in the cluster. Clustering in that sense is not required
for perfect regions. Regions are like countries that cut a continent like Europe into
pieces.Malmö/Sweden, for example, ismuch closer to Copenhagen/Denmark—both
are connected by a bridge—than to any other Swedish city, so the Swedish cities do
not form a cluster on the European map, but they are all in the same region.

Clusters, moreover, are formal constructs, while regions are based on substan-
tive thinking that is often expressed via facets. Nevertheless, one can always cluster
proximities and then check how the resulting clusters organize the points of an MDS
solution. Cluster analysis is, however, not particularly robust: Different amalgama-
tion criteria can lead to vastly different clusters. Cluster analysis, therefore, is not a
method for “validating” an MDS solution or interpretation, as some writers argue.
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Rather, cluster analysis typically just leads to groupings of points that tend to surface
similarly in MDS solutions.

7.10 Poorly Dealing with Disturbing Points

A frequent problem in MDS applications is what to do with points that do not fit
into an interpretation. A typical case is a configuration that cannot be partitioned in a
theoretically pleasing way because of one or a few “misplaced” points. In such cases,
onemay decide to construct (slightly) overlapping regions, or stick to the partitioning
notion and generate curvy partitioning lines (as, e.g., in Fig. 6.2). A third solution is
to draw a best-possible partitioning system where some points remain in regions to
which they do not belong. A fourth, and often rather dubious solution, is to eliminate
such points from the MDS configuration by “explaining them away” in substantive
terms.

A completely different way to deal with disturbing points is asking how much the
Stress goes up if one shifts these points in space such that simple partitioning becomes
possible. The easiest way to answer this question is the following. Assume you use
res <- mds(diss, type="interval"). Now, replace the coordinates of disturb-
ing points in res$conf with “should” coordinates (i.e., coordinates that put these
points into positions where they are not disturbing anymore). Let us call this modified
coordinate matrix X.mod. Then, compute the Stress of X.mod using the stress0()

function: stress0(diss, init=X.mod, type="interval"). Finally, compare
the Stress value of the optimal solution res$conf with the Stress of X.mod. If the
Stress increment is small, then one would probably prefer the solution that allows a
simple interpretation over the optimal-Stress solution. The rationale is that it promises
to be better replicable, being based on a substantive law of formation, than the solu-
tion that represents the one given set of data with minimal Stress.

A formally better solution is using confirmatory MDS. However, confirmatory
MDSwith regional restrictions can be difficult to formulate and to implement. Hence,
before trying this, a simple shift-and-see approach yields a quick answer that is often
sufficient. Note, though, that replications are absolutely essential in any case. If
certain disturbing points come out similarly in replications, one must take a closer
look at what exactly is being measured by them and how this is related to the rest
of the variables. A small increment in global Stress when shifting a few points can
also be deceptive, in particular if only one or two points are moved and the rest of a
large configuration is not changed. A vivid example is the case of the Morse signals
in Fig. 6.3, where only one point (the signal for “1”) is substantially shifted out of a
total of 36 points. This one-point movement cannot affect the Stress very much and
so this one signal remains suspicious.
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7.11 Scaling Almost-Equal Proximities

Proximity data cannot always be represented in a low-dimensional space. This is true,
for example, if the data have a large error component or if they are simply random
data. A second instance is data that are essentially constant. Buja et al. (1994) have
shown that if all data are exactly equal, 2d ratio MDS leads to points that all lie on
concentric circles; moreover, the points can all be interchanged without affecting the
Stress. Users should therefore keep an eye on the case of almost-equal proximities
or disparities. In particular, they must look closely at the units of the Y -axis of the
Shepard diagram: If most of these values are almost equal, then caution is needed.
Most computer programs choose an origin for the Y axis that magnifies the range
of the observed values. If the origin of Y in a Shepard plot is zero, then the almost-
equal problem becomes obvious immediately. Also, investigate the distribution of
the proximities or disparities, preferably in a histogram. If the histogram shows that
the disparities are all close together and are much different from zero, then one can
expect the 2d solution of concentric circles.

Another way to diagnose peculiarities in the data is scaling them with different
MDS models. In case of almost-equal proximities, ordinal MDS preserving ties
(secondary approach) and interval MDS yield almost the same results. However, if
ordinal MDS is used with the primary approach to ties—which allows to untie ties
in the distances—a radically different solution is obtained, where most of the points
cluster in one point, and a few points scatter about this cluster. The Stress, moreover,
is much smaller than for the other MDS representations. If different MDS models
yield such vastly different results, then something is almost always wrong. With
well-structured data, different MDS models yield solutions that do not differ much.

7.12 Summary

Some mistakes are frequently made in MDS. One example is not specifying the
proper polarity of proximities so that the MDS program uses similarity data as dis-
similarity data, or vice versa. Another simple mistake is making MDS programs
terminate their iterations too early, or not studying the effects of using different
starting configurations. Once aware of these mistakes, they can be easily avoided.
Another mistake is overlooking degenerate solutions in ordinal MDS. They can be
avoided by using stronger MDS models. A rather frequent mistake is automatically
asking for the meaning of “the” dimensions: Dimensions are but a special case of
regions, and other meaningful patterns may also exist in an MDS configuration.
Simply discarding disturbing points from an MDS solution is also too mechanical:
Sometimes, such points can be shifted without affecting the Stress very much. Then,
when comparing different MDS solutions, one should first get rid of meaningless
differences via Procrustean transformations. Finally, data that are almost all equal
can lead to meaningless MDS solutions.
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