
Chapter 6
Confirmatory MDS

Abstract Different forms of confirmatory MDS are introduced, from weak forms
with external starting configurations to enforcing theoretical constraints onto the
MDS point coordinates or onto certain regions of the MDS space.

Keywords Confirmatory MDS · External scales · Dimensional constraints
Shearing · Axial partition · Penalty function

In the MDS models discussed so far, the computer was free to move the points
to any positions in space that would minimize the configuration’s Stress. This is
exploratory MDS. If one has clear hypotheses about the MDS configuration, one
may be less interested in blindly minimizing Stress, but rather in finding an optimal
theory-consistent MDS solution. This leads to confirmatory MDS.

6.1 Weak Confirmatory MDS

The least one can do when testing structural theories usingMDS is running theMDS
with an external initial configuration derived from theory rather than leaving it to
the program to choose its own start. This can help finding good solutions in the
vicinity of what is expected. One can also fit the MDS solutions thus obtained to
theory-based target configurations. For example, in case of the rectangle study from
Sect. 2.3, the design configuration of Fig. 2.4, appropriately stretched or compressed
along its dimensions, can serve both as an initial configuration and also as a target
in subsequent Procrustean transformations of the MDS configuration (see Sect. 7.6).

An external initial configuration can also help to make a set of different MDS
solutions more similar. Consider a study by Dichtl et al. (1980). These authors ana-
lyzed consumer perceptions of various automobiles collected year after year over
a period of five years. They first computed the MDS solution of the averaged data
and then used this configuration as the initial configuration when scaling each of the
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68 6 Confirmatory MDS

five yearly data sets. This makes it more likely that the various solutions are more
similar, because the MDS algorithm always begins its optimization process with the
same configuration.

6.2 External Side Constraints on the Dimensions

A strict confirmatory MDS approach enforces a solution that satisfies the external
constraints while minimizing Stress. The simplest such model is to impose certain
restrictions onto dimensions that span the MDS space.

As an application example, we use the rectangle study from Sect. 2.3. Exploratory
MDS of these data leads to a solution that closely approximates a psychologically
reasonable transformation of the design grid (Fig. 2.5).We now employ confirmatory
MDS to enforce such a grid perfectly onto the solution and then check whether
this leads to Stress values that are still acceptably low. This can be realized by the
smacofConstraint() function. It allows the user to request that an n × m MDS
solutionX is generated by optimally scaling the column vectors of an external n×m
matrix Y. For Y, we here take the coordinates of the points in the design grid,
i.e., their width and height measurements (see Fig. 2.4 or simply activate these data
by data(rect_constr)). The columns of Y are called external scales, and after
optimal re-scaling, they become the internal scales, the columns of X.

Re-scaling can mean different things:

• In the simplest case, it means dimensional weighting. That is, the data are approx-
imated, as much as possible, by the distances computed on a configuration
whose dimensions are the optimally weighted columns of Y. Expressed formally
X = YC, with C a diagonal matrix that minimizes the Stress of X.

• If we drop the constraint that C is diagonal, then C becomes a composite trans-
formation. It can be understood as a rotation/reflection followed by dimensional
weighting and then rotated/reflected once more. Thus, expressed geometrically,
the dimensional weighting can be done along a rotated set of dimensions.

• A third case is allowing for optimal monotone transformations of Y’s columns or
of the columns of a rotated Y.

For the rectangle data, the third model is theoretically most convincing. We test
it by first running exploratory MDS and then plotting this solution with its points
connected as a grid. Then, we use this solution as the initial configuration in con-
firmatory MDS,1 enforcing an ordinal rescaling of the unrotated design dimensions.
Finally, we also allow for a rotation of the design configuration.

1If no external initial configuration is provided, the program will use a random start. In most
applications, this will not lead to low Stress nor to a meaningful solution.
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1 ## MDS with theory-based initial configuration
2 fit.expl <- mds(rectangles, type = "ordinal", init = rect_constr)
3 ## MDS enforcing an ordinally re-scaled design grid
4 fit.cfdiag <- smacofConstraint(rectangles, constraint = "diagonal",
5 type = "ordinal", ties = "secondary",
6 init = fit.expl$conf, external = rect_constr,
7 constraint.type = "ordinal")
8 ## Confirmatory MDS, also permitting a rotation of the design grid
9 fit.cflin <- smacofConstraint(rectangles, constraint = "linear",

10 type = "ordinal", ties = "secondary",
11 init = fit.expl$conf, external = rect_constr,
12 constraint.type = "ordinal")

Figure6.1 shows the resulting configurations. The exploratoryMDS solution (left
panel) is already nearly theory-compatible except for some small dents of the grid. Its
Stress is 0.089. The first confirmatory solution (middle panel) is theory-wise perfect,
with a Stress of 0.115. Hence, the dents of the grid in the exploratory MDS solution
do not explain the data “much” better. Rather, it seems that they essentially represent
some of the data noise. So, one may decide not to reject the hypothesis that the
observed judgments for the rectangles’ similarity are generated by a composition
rule that behaves just like the distance formula operating on the rectangles’ design
dimensions.

Ifwedrop the diagonality constraint onC,we get the sheared grid in the right panel
of Fig. 6.1. Its Stress is 0.103, slightly better than without the rotation. It suggests
that not the original dimensions were rescaled but a slightly rotated (but theoretically
obscure) dimension system. This causes the shearing of the grid. (In practice, such
shearings can become extreme in this model which make the solutions difficult to
interpret.)

If we set constraint.type="interval", the transformations on the design grid
are limited to stretchings of the external scales, i.e., to simple dimensional weightings
(plus possible shearings). Under this condition, the successively smaller compres-
sions of the grid along its dimensions generated by constraint.type="ordinal"
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Fig. 6.1 Exploratory (left) MDS of rectangle data of Sect. 2.3; and confirmatory MDS of the
same data with stretchings of the given dimensions (center panel) and with stretchings of rotated
dimensions (right panel)
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cannot occur anymore in theMDS solution. This would be undesirable here, because
the Weber–Fechner law of perception is predicting such logarithmic shrinkage
effects.

Returning to the model equation X = YC, we note that the matrix C represents
a linear transformation of the configuration Y. Any linear transformation can be
decomposed into rotations and dimensional weightings of Y. Algebraically, that
means that C can be split by singular value decomposition into the product PMQ,
where P andQ represent rotations andM is a diagonal matrix of dimension weights.
Thus, C first rotates the configuration Y in some way and then stretches and/or
compresses this rotated configuration along its dimensions and finally rotates the
result oncemore. IfC is a diagonal matrix, then the column vectors ofY are weighted
directly. IfC is not diagonal, thenY is first rotated and then dimensionally weighted,
and this is what causes the shearing.

A different approach to impose external constraints onto the MDS solution is
to focus on the distances of the MDS configuration, not on its coordinates. If, for
example, one requests for the rectangle data that d(1, 6) = d(2, 5), d(6, 11) =
d(7, 10), and d(11, 16) = d(12, 15) must hold in the MDS solution, shearings of
the point grid are avoided. To guarantee that a grid is generated in the first place, one
can additionally enforce that some of the horizontal grid distances be equally long,
e.g., that d(1, 5) = d(2, 6) = d(3, 7) = d(4, 8), d(5, 9) = d(6, 10) = d(7, 11) =
d(8, 12), and d(9, 13) = d(10, 14) = d(11, 15) = d(12, 16). Restrictions like these
can be imposed on the MDS configuration by the program Cmda (Borg and Lingoes
1980). Cmda is, unfortunately, an old Fortran program that is not easily accessible
and difficult to use because it is not always easy to derive what a given theory implies
for the distances among the points in MDS space.

6.3 Regional Axial Restrictions

One can use the methods discussed above to solve confirmatory MDS problems that
arise quite frequently in applied research, that is, impose particular axial partitions
onto the MDS solution. Here is an example. Rothkopf (1957) studied to what extent
test persons confused different acoustic Morse signals. He used 36 different signals,
the 26 letters of the alphabet, and the natural numbers from 0 to 9. The signal for A,
for example, is “di” (a beep with a duration of 0.05 s), followed by a pause (0.05 s)
and then by “da” (0.15 s). We code this as 1–2 or 12 for di-da.

The symmetrized confusion probabilities collected for these signals from
hundreds of test persons can be represented quite well in a two-dimensional MDS
configuration (Fig. 6.2). The partitioning lines were inserted by hand. They cut the
plane in two ways, related to two facets: The nine solid lines discriminate the sig-
nals into classes of signals with the same total duration (from 0.05 to 0.95 s); the
five dashed lines separate the signals on the basis of their composition (e.g., sig-
nals containing only long beeps are all on the right-hand side). The pattern of these
partitioning lines is not very simple, though, but partially rather curvy and hard to
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Fig. 6.2 Exploratory MDS representation
for 36Morse signals; lines correspond to two
typologies for the signals
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Fig. 6.3 Confirmatory MDS solution with
two perfect axial partitioning lines

describe. Particularly, the dashed lines are so twisted that the pattern of the emerging
regions does not exhibit a simple law of formation. Rather, the partitioning seems
over-fitted. The substantive researcher, therefore, would probably not bet that it can
be completely replicated with new data.

We now want to straighten the two sets of partitioning lines. For that purpose, we
again use the X = YC restriction. To generate the internal scales in X, we make use
of two of the signal codes’ properties, duration and type, as shown in Fig. 6.2 by the
vertical black boxes (duration) and the boxes on top labeled as “1”, “1>2”, “1=2”,
“2<1”, and “2” (type). Each Morse code is thus coded in terms of its duration into
one of ten categories and in terms of type into one of five categories. This defines
the external variables, Y. They can be viewed by typing data(morsescales);

morsescales in smacof.
With these constraints in an ordinal MDS, with ordinal external scales, and with

the primary approach to ties, we find the solution in Fig. 6.3. This simple-to-interpret
MDS solution has almost the same overall Stress as the exploratory MDS solution
in Fig. 6.2 (0.21 vs. 0.18). Upon closer investigation one notes, however, that the
confirmatory solution moved only very few points by more than a small amount.
Particularly, point 1 (at the bottom, to the right)wasmoved a lot so that the substantive
researcher may want to study this signal (and its relationship to other stimuli such
as signal 2) more closely. Overall, though, the simpler and, probably, also more
replicable solution in Fig. 6.3 appears to be the better springboard for further research.
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6.4 Circular and Spherical MDS

Spherical MDS is an MDS model where all points lie on the surface of an m-
dimensional sphere. There are data sets where it can be argued that spherical MDS
is more relevant than the usual flat-geometry MDS, but the really interesting case is
m = 2, i.e., the case where spherical MDS becomes circular MDS. Circular scales
abound in psychology. Two prominent examples are color perception (see Sect. 5.4
on p. 60ff.) and the psychology of personal values (see p. 21ff., and Chap. 8).

For personal values, we used exploratory MDS to study the structure of the inter-
correlations of value items. Figures2.10 and 2.13 indicate that the value items and
the value indexes form approximately circular configurations of points. We may ask
how much the Stress goes up if the points of the configurations were forced onto
perfect circles. An answer is found by using the smacofSphere() function: The
Stress of the exploratory solution is 0.051; it goes up to 0.085 in the perfect-circle
solution.

Enforcing a perfect circle for these data does, however, not really lead to new
insights, since the exploratory configuration is already roughly circular. Moreover,
a perfect circle is not needed for indexes that are based on real and therefore error-
affected data. To see more dramatic or unexpected effects, let us therefore request a
circularMDSconfiguration for the similarity of countries data represented in Fig. 2.2.
Since there is no substantive reason to enforce a circle, we should expect that this
constraint entails a substantial increment in Stress.

When running this type of analysis with smacofSphere(), we have a choice of
two algorithms: The primal algorithm enforces a strict circle from the beginning,
and the dual algorithm uses a penalty function that pushes the MDS solution in the
direction of a perfect circle. The default penalty weight is 100, and when setting it
to 22, say, the force that pulls the solution toward a perfect circle is mitigated. Let
us try both specifications as follows:

1 diss <- sim2diss(wish, method=max(wish))
2 res1 <- smacofSphere(diss, type="ordinal")
3 res2 <- smacofSphere(diss, type="ordinal", algorithm="dual", penalty=22)
4 res3 <- mds(diss)
5 res1$stress; res2$stress; res3$stress ## gives Stress values of each solution
6 op <- par(mfrow = c(1,3))
7 plot(res1, main="Circular MDS (primal)")
8 plot(res2, main="Circular MDS 2 (dual)")
9 plot(res3, main="Exploratory MDS")

10 par(op)

The three results are shown in Fig. 6.4. As expected, the solution generated by
the default algorithm (algorithm="primal") has all country points on a perfect
circle, while the solution computed by the dual algorithm and using penality=22

only comes close to a perfect circle. When setting the penalty weight to 100 (i.e., the
default value), then the circle is perfect too. So, we see that choosing smaller penalty
weights is a way to avoid that the algorithm is pushing too hard toward a perfect
circle.
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Fig. 6.4 Circular MDS using the primal and the dual algorithm, resp., and exploratory MDS (right
panel) of Wish country similarity data

The Stress values for the solutions in Fig. 6.4 are 0.271, 0.266, and 0.225, respec-
tively. The increment in Stress is not much higher than it is in case of the personal
values example discussed above, even though now there are 12 points and not just
10 points. However, one should take into account that the Stress for the Wish data
is quite high even without circular side constraints. Nevertheless, when studying the
three plots more closely, one can indeed see that the exploratory MDS solution is not
that far from being circular: Only France needs to be pulled somewhat to the outside
and Congo more toward the center of the plot. Whether a circular configuration for
the countries is substantively meaningful is, of course, another question.

When testing theories about real data, forcing the points onto a perfect circle in
MDS space may seem exaggerated formalism. An approximate circle would be
sufficient, but it is much harder to formulate this idea as a clear scaling target.
Moreover, a perfect circle is, by itself, rarely ever a meaningful structural theory.
It only becomes interesting if it is supplemented with additional notions such as a
particular order of the points on the circle. In case of the data on personal values
(see p. 25), the Theory on Universals in Values (Schwartz 1992) predicts such an
order. The theory also claims that the point order is structured into four subsets
of opposite higher-order personal values. This would split the circle into four arcs
that lie in four different quadrants. If you have inter-correlations as data, circular
scaling solutions with various additional constraints can be generated using the R
package CircE (Grassi et al. 2010). This program implements the Guttman–Browne
circumplex model for inter-correlations (Browne 1992). It assumes that an observed
correlation ri j corresponds to an angle between the vectors pointing to the points i
and j on a unit circle. The method does not accept order constraints, but they can be
approximated to some extent by restricting the points to lie in certain sectors of the
circle. For example, with the personal values grouped into four higher-order values,
and the PVQ40 data aggregated into ten indices as in the first 11 lines of the R script
on p. 23, the R commands are:
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1 require(CircE); R <- cor(PVQ40agg)
2 ## CircE commands (with lots of default agruments):
3 lower1 <- c(0,0,0,270,270,180,180,180,90,90) ## lower bounds for point angles
4 upper1 <- c(90,90,90,360,360,270,270,270,180,180) ## upper bounds
5 res <- CircE.BFGS(R, v.names=colnames(R), m=1, N=10, upper=upper1, lower=

lower1, equal.com=FALSE, equal.ang=FALSE)
6 CircE.Plot(res, ef=0.1)

CircE computes a circular configuration together with extensive output, includ-
ing many fit indexes such as GIF, AGIF, RMSEA that are used in structural equation
modeling. They test the hypothesis that the observed correlations match the corre-
lations derived from the model. See (Grassi et al. 2010) for detailed examples. For
the above PVQ40 data, the fit is highly significant, and the results are quite similar
to what is shown in Fig. 2.13.

6.5 Challenges of Confirmatory MDS

The challenges of confirmatory MDS for the user are, most of all, how to formulate
theoretical expectations so that they can be expressed in, say, a penalty function,
a pseudo-data matrix, or a system of equations that can be solved by an existing
confirmatoryMDSprogram.ConfirmatoryMDS, therefore, is oftenmuchharder than
exploratoryMDS, because it requires the user to not only develop explicit theories but
also translating them into a proper computational language. So far, theMDSprograms
accessible to the general user canhandle only relatively simple confirmatory analyses.
Dimensional restrictions are easy to test, while confirmatory MDS analyses with
regional restrictions are typically difficult to set up and solve. Computer programs
that allow all forms of restrictions (combined, in addition, with particular MDS
models, certain missing data patterns, or distances other than Euclidean distances)
do not exist yet. Rather, in such cases, a suitableMDSalgorithmmust be programmed
ad hoc.

If the users succeed generating a confirmatory MDS solution, a number of addi-
tional challenges await them. They have to evaluate not only the absolute Stress
values, but also the Stress increment resulting from adding the particular external
constraints to the MDS analysis. Typically, such evaluations amount to deciding
whether the Stress increment is substantial or not, given the number of points, the
dimensionality of the MDS space, the MDS model, the distance function, and the
quality of the data (error level). These and further criteria are summarized by Lingoes
and Borg (1983) in a quasi-statistical decision procedure.

An important additional criterion is the strength of the external constraints. These
constraints may be easy to satisfy for a given number of points in a given dimen-
sionality, but they may also be quite demanding. An approach for evaluating this
issue is described in Borg et al. (2011). They use data from a survey where a sample
of employees assessed 54 organizational culture themes (e.g., “being competitive,”
“working long hours,” and “being careful”) in terms of how important they are for
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them personally. The correlations of these importance ratings are represented in a
theory-compatible MDS solution, where the 54 points are forced into the quadrants
of a 2d coordinate system on the basis of a priori codings of the items in terms of
the TUV theory. The strength of the external constraints is assessed by studying the
Stress values that result from running 1,000 different confirmatory MDS analyses,
each one using a random permutation of these TUV codings. It is found that the
theory-based assignment of codes to the 54 items does indeed lead to a Stress value
that is smaller than any of the Stress values that are found if random permutations of
the codings are enforced onto theMDS solution. Hence, the codings are not trivial in
the sense that random assignments of the codings would lead to equally good MDS
solutions when enforced onto the configuration.

6.6 Summary

MDS is mostly used in an exploratory way, where the MDS configuration is cho-
sen so that the Stress is minimal. Confirmatory MDS enforces additional structure
onto the MDS space, or it at least tries to push the solution toward a theoretically
expected structure. Confirmatory MDS configurations may be very different from
exploratoryMDSsolutions.Often, their Stress is higher, but sometimes it is not.With-
out running confirmatory MDS, one would not know. A weak way to push an MDS
solution toward a theoretical structure is using a theory-derived initial configuration.
Harder confirmatory requirements need special MDS programs such as Proxscal
or smacofConstraint. With such programs, one can enforce certain dimensional
requirements and strict axial partitionings. Circular configurations require spherical
MDS programs such as smacofSphere() or CircE.
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