
Chapter 5
Variants of MDS Models

Abstract Various forms of MDS are discussed: ordinal MDS, metric MDS, MDS
with different distance functions, MDS for asymmetric proximities, individual dif-
ference MDS models, MDS for more than one proximity value per distance, and
weighting proximities in MDS.

Keywords Ordinal MDS · Interval MDS · Ratio MDS · Drift vector model
Indscal · Idioscal · Unfolding

5.1 The Type of Regression in MDS

Amain difference of various MDSmodels is the type of regression that these models
use. The most popular MDS model in research publications has been ordinal MDS,
sometimes also—less precisely—called nonmetric MDS. Ordinal MDS computes
an m-dimensional configuration X so that the order of the distances over X deviates
as little as possible from the order of the proximities. Hence, in ordinal MDS and
assuming that we have dissimilarities δi j as data (or that the proximities have been
converted into dissimilarities), the representation function

f : δi j → di j (X) (5.1)

is monotone so that
f : δi j < δkl → di j (X) ≤ dkl(X) (5.2)

for all pairs i and j, and k and l, respectively, for which data (dissimilarities) are
given. Proximities that are not defined (“missing data”) are skipped. That is, if pi j is
missing, it imposes no restriction onto the MDS solution so that the distance di j (X)

can be chosen arbitrarily.
An important distinction between two forms of ordinal MDS is how ties (i.e.,

equal data values) are treated. The default in most programs is that ties can be broken
in the MDS solution. That means that equal proximities need not be mapped into
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54 5 Variants of MDS Models

equal distances. This is called the primary approach to ties. The secondary approach
to ties (“keep ties tied”) leads to an additional requirement for ordinal MDS, namely

f : δi j = δkl → di j (X) = dkl(X). (5.3)

The primary approach to ties is usually more meaningful. Consider, for example,
the data discussed in Sect. 2.2 where subjects had to judge the similarity of different
countries on 9-point rating scales. Here, ties are unavoidable, because the rating scale
had only nine different levels: With 66 different pairs of countries, this will auto-
matically lead to the same proximity values for some pairs, even if the respondent
feels that the respective countries are not really equally similar. Using a 66-point
rating scale would not help either, because no respondent can make reliable distinc-
tions on such a scale. Moreover, each single judgment is somewhat fuzzy and not
absolutely reliable. Hence, equal ratings often mean something like “about equal”
or “practically equal” but not simply “equal.”

A second class of MDS models, called metricMDS, goes back to the beginnings
of MDS in the 1950’s (Torgerson 1952). Such models specify an analytic (usually
monotone) function for f rather than requiring that f must be only “some” mono-
tone function. Specifying analytic mapping functions for f has the advantage that
it becomes easier to trace the mathematical properties of such models. Moreover,
metric MDS avoids some technical problems of ordinal MDS such as, in particular,
degenerate solutions (see Sect. 7.5). On the other hand, they typically lead to solu-
tions with poorer fit to the data, because it is generally more difficult to represent data
in more restrictive models. Yet, this may not be a drawback, because an excellent
fit can also mean that more error is represented in the MDS solution. Ordinal MDS
tends to over-fit the data, while metric MDS may iron out error in the data so that
the solution becomes more robust and replicable.

The standard model of metric MDS is interval MDS, where

f : δi j → a + b · δi j = di j (X), (5.4)

with a and b ( �= 0) as free parameters. Interval MDS attempts to preserve the data
in the distances such that the relations of differences (“intervals”) among the data
are preserved.1 This makes sense, for example, if the data are interval-scaled. In that
case, no meaningful information is lost if the data are scaled by multiplying them by
some nonzero constant b and by adding an arbitrary constant a to each data value.
All statements about the data that remain invariant under such linear transformations
are considered meaningful; all other statements (e.g., statements about the ratio of
data values) are not meaningful.

1Consider Table 1.1. Auto Theft and Murder are correlated with .11; Rape and Larceny with .60;
the difference between these correlations is .49. This is about the same as the correlation between
Assault and Burglary (.52). So, in the interval MDS solution in Fig. 1.4, the difference of the
distances between the points for Auto Theft and for Murder should be about equal to the distance
between Assault and Burglary.
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More MDS models follow easily by choosing other mapping functions f (e.g.,
an exponential or a power function). However, if f is not at least weakly monotone,
then such functions do not lead to easily interpretable results.

AnMDSmodel that is stronger than interval MDS is ratio MDS, often considered
the most restrictive model in MDS. It drops the additive constant a of interval MDS
as an admissible transformation and searches for a solution that preserves the prox-
imities up to an overall scaling factor b (b �= 0). In case of the rectangle data analyzed
in Chap. 2, this model could be seriously considered, because here the response scale
started at “0=equal, identical” and hence scores of zero aremeaningful if the subjects
used the scale correctly.

The user chooses a particular MDS model f for a variety of reasons:

• Scale level. If theoretical or empirical reasons speak for a certain scale level of
the data, then it usually makes sense to pick a corresponding MDS model. The
choice of an appropriate scale level also depends on the zeitgeist to some extent. In
the 1970s, for example, ordinal MDS was heavily pushed, whereas today metric
(even: ratio) MDS has become the default (at least for statisticians) since it forces
the user to justify any substantively blind optimizing transformations of the data.

• Minimize assumptions. The researcher wants to assume as little as possible about
the relation of the data to MDS distances. Rather, he/she wants to let the data
speak for themselves. Or he/she wants to get something for as little as possible. A
typical case is a small inter-correlation matrix that is scaled with ordinal MDS and
then interpreted in terms of dimensions or in terms of regions with wildly curving
boundaries and many misplaced points. This can be useful as a first step in a field
of research where little is known, but, of course, it should be replaced with more
restrictive models in the long run.

• Robustness versus over-fitting. One often scales given proximities with both ordi-
nal MDS and interval MDS. Ordinal MDS leads to smaller Stress values than
interval MDS, but it may simply over-fit the data and, occasionally, it can also lead
to meaningless degenerate solutions (see Sect. 7.5). Hence, when running both
ordinal MDS and interval MDS, one can cross-validate the solutions and test for
artifacts.

• Nonlinear mappings. The proximities are sometimes predicted to have a nonlinear
relation to the distances in an MDS space. One example is Thurstone scaling,
discussed on p. 47. In that case, one may not know how to specify the regression
function analytically, or no program exists that would fit such a model, or one may
want to test a certain prediction about the regression trend but not enforce it. So,
ordinal MDS is used and then the Shepard diagram is studied closely for the shape
of the regression trend. One may also first replace the data with their ranks and
then use interval MDS: Weeks and Bentler (1979) have shown in simulations that
this rank-linear MDS successfully recovers configurations whose distances have
highly nonlinear (but still monotone) relations to the data.

• Dimensionality. Using weak MDS models leads to relatively small Stress values.
This is often taken as evidence that one does not need higher-dimensional repre-
sentation spaces. After all, if the Stress is small, then there is little left to explain.
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This reasoning is somewhat too formal, though, because what one is really inter-
ested in are meaningful and replicable solutions. The Stress of the solution is but
a technical index.

• Marketing. The user wants to get a small Stress value, because he/she fears that
otherwise his/her results will not be publishable. This is, of course, a poor reason,
because the Stress must always be evaluated relative to the particular MDSmodel,
the dimensionality of the solution space, the number of points, and many other
criteria such a robustness, stability, and replicability (Mair et al. 2016).

MDS models with other regression functions than those based on Steven’s four
classical scale levels exist too. One example is MDS with spline transformations on
the data. Splines are piecewise (connected in k knots) polynomial functions of the
n-th degree that lead to smooth (but not necessarily linear or monotone) regression
lines in Shepard diagrams. The knots and the degree of the polynomials control the
spline.

To illustrate what happenswhen running different types ofMDSwith real data, we
use the inter-correlations in Table 2.2. Figure5.1 exhibits the Shepard diagrams of 2d
MDS solutions for these correlations. They show that ratioMDS fails completely, not
because the regression trend is not nearly linear, but because the regression line must
run through the origin: Only then are the data mapped into distances that preserve
their ratios. The spline regression here is forced to run through the origin too. It is
almost completely linear and has almost the same Stress as interval MDS.

Figure5.1 shows, moreover, that ordinal MDS and interval MDS arrive at similar
conclusions. The regression trend in ordinal MDS is almost linear, except for local
steps and dents that are not interpretable andmost likely not replicable. Yet, the Stress
for ordinal MDS is clearly smaller than the Stress for interval MDS, simply because
the regression line is closer to the points in the Shepard diagram in case of ordinal
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Fig. 5.1 Shepard diagrams for four types of regression; data from Table2.4
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MDS. Experience with empirical data shows that ordinal MDS and interval MDS
often lead to highly similar results. Simulation studies come to the same conclusion
(see Fig. 3.2). Ratio MDS is typically found to be much more demanding than either
ordinal or interval MDS.

5.2 Euclidean and Other Distances

A second criterion for classifying MDS models is choosing a particular distance
function. In psychology, the family of Minkowski metrics (specified in formula 2.3)
used to be popular for modeling subjective similarity judgments of different types
of stimuli (analyzable vs. integral stimuli) under different conditions (such as time,
pressure). However, applications of MDS in the current literature almost always use
Euclidean distances, because only they guarantee that the geometry is notmisleading.
Few MDS programs are even able to compute solutions with distances other than
Euclidean distances. If they offer other distance functions too, then typically only
the city-block metric.

Euclidean distances, as all other Minkowski distances, imply a flat geometry. In
special cases, it can be useful to construct MDS representations in curved spaces.
As an example, one can think of distances on a sphere. Here, the distance between
two points is the shortest path (“geodesic path”) in the two-dimensional curved
space (i.e., on the sphere), which is the length of a cord spanned between two points
over the surface of the sphere or, expressed more sloppily, airline distances. Curved
geometries can sometimes be useful (e.g., in psychophysics), but they are never used
in general data analysis situations. Circular scales do, however, play an important role
in psychology, but they do not require true curved-space analysis. Rather, they use
circles or balls embedded in Euclidean spaces. See, for example, “spherical MDS”
on p. 72 and “circular unfolding” on p. 103.

5.3 MDS of Asymmetric Proximities

Distances are always symmetric, i.e., di j = d ji , for all i, j . Proximities that are not
symmetric can, therefore, not be represented by distances in MDS models. Yet, as
long as the asymmetries are just error-based, no real problem arises. MDS simply
irons out these errors. Or the user eliminates or reduces them by averaging corre-
sponding data values.

Asymmetries may, however, be reliable and meaningful. Examples are the asym-
metries in an import–export matrix, where country i imports more from county j
than vice versa. Then, social networks can be studied in terms of how much each
person i likes the other person j : Liking is rarely fully symmetric, and asymmetries
can be very meaningful. A third example is simply the order of presentation when
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making pairwise comparisons of i and j : How similar is the Morse code di-di-da to
the subsequent da-di, and how similar is da-di to the following di-di-da (see p. 70)?

A simple approach of dealing with asymmetric proximities in the MDS context is
the drift vector model. The model requires decomposing the proximity matrix P into
a symmetric part S and an asymmetric part A. The symmetric part is computed by
averaging corresponding cells, S = (P + P′)/2, with elements si j = (pi j + p ji )/2.
Thismatrix is then scaled as usualwithMDS.The rest of the proximities isA = P−S,
with elements ai j = pi j − si j . This matrix is skew-symmetric. It can be represented
on top of theMDS solution for S by attaching an arrow on each point i that is directed
toward point j , or away from point j , depending on the sign of the asymmetry. The
length of this arrow is chosen as k · |ai j |, with k some convenient overall scaling
factor (e.g., k = 1/mean(pi j )).

We demonstrate this model with a small example. Let P be a matrix of similarity
values (e.g., the number of references in row journal i to column journal j):

P =
⎡
⎢⎣

0 4 6 13
5 0 37 21
4 38 0 16
8 31 18 0

⎤
⎥⎦ = S + A =

⎡
⎢⎣

0 4.5 5.0 10.5
4.5 0 37.5 26.0
5.0 37.5 0 17.0
10.5 26.0 17.0 0

⎤
⎥⎦ +

⎡
⎢⎣

0.0 −0.5 1.0 2.5
0.5 0.0 −0.5 −5.0

−1.0 0.5 0.0 −1.0
−2.5 5.0 1.0 0.0

⎤
⎥⎦ .

For S, interval MDS yields the point configuration in Fig. 5.2. The values of A are
represented as arrows in this plot. They are inserted one by one into theMDS solution.
For example, on point #2, an arrowwith a length of 5 units is attached pointing toward
point #4. The resultant of all arrows attached to a point is the drift vector of that point,
represented by the thick arrows with larger arrow heads in Fig. 5.2.

One notices in this vector field that, for example, journals #2 and #3 refer to
each other relatively often and also quite symmetrically (because these points are
close, and because the drift vectors are short). For journals #2 and #4, the mutual
referencing is clearly smaller and, moreover, it is also rather asymmetric: Journal #2
looks more toward #4 than vice versa.

One can experiment somewhat with how one wants to represent the symmetries
and the asymmetries (e.g., show all arrows or only resultant vectors; only vectorswith
the same meaning; use different scale factors for lengths of arrows). This can easily
be done by using andmodifying theR script for plotting Fig. 5.2 in the supplementary
code file.

Let us look at a real data example. Rothkopf (1957) studied to what extent 598 test
persons confused different acoustic Morse signals. He used 36 different signals, the
26 letters of the alphabet, and the natural numbers from 0 to 9. In the experiment, each
person had to judge whether two signals, i and j , presented acoustically one after the
other, were the same or not the same. Both (i, j) and ( j, i) had to be judged in the
experiment. The percentage of “Same!” judgments (i.e., the confusion probability)
for each pair is taken as a measure of the psychological similarity of each pair.
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Fig. 5.2 Asymmetry vectors over an MDS
solution; thick arrows with large heads are
resultants (drift vectors)

Fig. 5.3 MDS with drift vectors for Morse
code confusion data

The confusion probabilities are not symmetric. For example, the signal for i (di-di)
ismore frequently confusedwith a subsequent signal for s (di-di-di) than s is confused
with a subsequent i (35% vs. 16%). But do these asymmetries exhibit a systematic
pattern or are they just random?We answer this question using the driftVectors()
function of the smacof package2:

1 data(morse2) ## morse2 = 1 - confusion probabilities
2 fit.drift <- driftVectors(morse2, type="ordinal")
3 fit.drift
4 plot(fit.drift)

The solution is shown in Fig. 5.3. The configuration of points represents the sym-
metric part of the data quite well (Stress= 0.192). The resultant drift vectors form
a vector field that indeed exhibits a systematic trend: All arrows point more or less
into the same direction. Substantively, this means that long signals are more often
confused with short ones than vice versa (see p. 70f. for more information on these
data).

2Note that for converting a complete n× n matrix of similarities, P, into dissimilarities, you cannot
use sim2diss(), because it does not work on the whole matrix. Use your own conversion. For
example, run diss <- max(P) - P, and then use diss in driftVectors.
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5.4 Modeling Individual Differences in MDS

A popular variant of MDS is the dimensional weighting model, often called the Ind-
scalmodel by the name of its original computer program (Carroll and Chang 1970).
We explain the basic idea of this model using an experiment on color perception.
Helm (1964) asked a sample of test persons to assess the similarity of ten chips with
different colors (same brightness and same saturation). For each individual, similar-
ity scores were obtained for each pair of colors. Some test persons were deuteranopic
to some extent; i.e., they were not able to clearly distinguish green and purplish-red
(“red-green blind”).

Rather than first averaging the 16 data sets and then scaling the averaged data
with standard MDS, we can use them directly in the dimensional weighting model.
In this approach, we have to assume that there exists a group space,X, that represents
what all persons have in common. Moreover, each individual i has his/her individ-
ual space, Xi . The model claims that the various individuals in the sample are not
really that different. Rather, each individual space is a simple transform of the group
space. That is, Xi = XWi , where Wi is a diagonal matrix with positive elements.
Geometrically, this means that person i’s individual space is generated by stretching
or compressing the group space along its dimensions. Indscal fits this model by
searching for both an X and for a set of weight matrices Wi such that the distances
among the rows of the Xi ’s optimally correspond to the (admissibly transformed)
dissimilarities of the persons (the dhat’s). Expressed more formally, the distances are

di jk(X) =
(

m∑
a=1

wak(xia − x ja)
2

)1/2

, wak ≥ 0, (5.5)

where the parameter k = 1, ..., N stands for different individuals or cases.
For the Helm data, the group space (using smacof; see commands below) is

computed as presented in the left panel of Fig. 5.4: It is the expected color circle,
slightly squeezed in the vertical direction as the fitted circle (dashed line) shows.
The middle panel contains the model’s solution for the most deuteranopic person
CD4: Here, the color circle is stretched along Dimension 1 or, which has the same
effect, it is compressed along Dimension 2. This reflects that this person cannot
discriminate well between green and the purplish-red colors. The right panel exhibits
the solution for person N6a. This person, a color-normal person, stretches the group
space somewhat along Dimension 2.

1 res.helm <- indscal(helm, type="interval")
2 res.helm ## gives Stress-1 etc.
3 plot(res.helm) ## plots the group space
4 names(res.helm) ## shows elements of object res.helm
5 res.helm$cweights[[16]] ## prints weight matrix for person 16

The weights for the 16 data sets are visualized in Fig. 5.5, often called the subject
space of an Indscal solution. We here see that person CD4 stretches the group
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Fig. 5.5 Dimension weights of 16 individuals for group space shown in Fig. 5.4, left panel

space along Dimension 1 relative to Dimension 2 by a factor of roughly 3 (1.25 :
0.44). The weight ratio of person N6a is about 2:3. One must be careful, though,
in interpreting these weights: They are only meaningful relative to the group space,
and the group space is, unfortunately, not unique. If the group space is stretched or
compressed along its dimensions, different weights are found for each person, while
the overall fit of the MDS solution remains the same. What one can interpret as
data-driven, therefore, is merely that person CD4 weights the vertical dimension less
than person N6a, since this relation remains invariant under horizontal or vertical
stretchings of the group space. That N6a weights Dimension 2 three times as much
as CD4, or that he/she weights the dimensions in a certain weight ratio, is only true
relative to the group space in Fig. 5.4. This also explains why the color-normal person
N6a seems to put more weight on Dimension 2: The reason is that the group space
also contains the data of the color-deficient persons which makes the configuration
somewhat elliptical rather than circular as it would be true for color-normal persons
only.

The overall Stress of the Indscal solutionwith its 2d group space for the ten colors
and its sixteen 2 × 2 diagonal weight matrices is .123. The output object res.helm
contains additional fit indexes such as Stress-per-Point measures. Most important is
the fit of each person in this model. Here we find for person CD4 a Stress value of
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Fig. 5.6 Three separate standard interval MDS solutions for average color data, person’s CD3 data,
and person’s N6a data, respectively; configurations of CD3 and N6a Procrustean-fitted to average
data solution

.106 and for person N6a a value of .108. These values can be compared, for example,
with the Stress values of standard MDS that scales each person’s data separately. For
the averaged data, interval MDS finds a solution (Fig. 5.6, left panel) with a Stress
of .069. For person CD4, MDS finds a solution (Fig. 5.6, center panel; configuration
Procrustean-fitted to average data solution) with a Stress of .074, and for N6a with
.069. Thus, the Indscalmodel seems to be doing quite well and one could hope that
the dimensional weighting model with its simple individual differences theory irons
out error that is over-fitted in the standard MDS solutions. On the other hand, the
results of scaling the average data and each person’s data separately with standard
MDS lead to essentially the same substantive insights.

If one drops the idea of common dimensions for all individuals,3 a new model
arises, the Idioscalmodel (also called subjective metric model, elliptical distances
model, or subjective transformations model). It admits more general person-specific
transformations of the group space. Formally, in XWi = Xi , the matrix Wi is not
restricted to be diagonal, but can be any real-valued m × m matrix. Such a matrix
can be interpreted in various ways. One interpretation is that person i first rotates the
dimensions of the common space in his/her own way and then stretches/compresses
the space along these dimensions.4 Yet, such a transformation demolishes the major
selling point of the Indscal model, namely its unique dimensions. Not only has an
Indscal solution the same dimensions for all individuals, but any rotation of these
dimensions generally leads to higher Stress. Users of Indscal—market researchers
in particular—had always hoped that these dimensions were the “true” psychological
dimensions underlying the observations.

3Computationally, this is done by requesting constraint="idioscal" in the
smacofIndDiff() function or by simply using the idioscal() function.
4Wi can always be (uniquely) split by singular value decomposition into the product UDV′, where
U andV′ are rotations/reflections, andD is a diagonal matrix of dimension weights. Hence,XWi =
XUDV′ means the group space is first rotated/reflected by U, then weighted by D, and then rotated
once more.
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In the example above, meaningful dimensions were indeed identified, but one
should not expect that this will always be the case, simply because such dimensions
may not exist. The user should also know that the fit of the Indscal model is not
necessarily much worse if all dimension weights are set to the same value. Borg and
Lingoes (1978) report an example where the dimension weights scatter substantially
even though they explain very little additional variance over unit weights. In such a
case, the unique orientation of the dimensions is not very strong either.

The idea of the dimension weighting model can also be realized in a more step-
wise and bottom-up approach. This avoids some of the interpretation problems. To
do this, one first scales each of the given N data matrices, one by one, by stan-
dard MDS. One then uses Procrustean transformations (see Sect. 7.6 on p. 84f. for
details) to fit the N resulting configurations to each other by admissible transforma-
tions (rotations, reflections, size adjustments, and translations). The average of all
the fitted configurations is then taken as the “common” configuration (centroid con-
figuration), or, alternatively, one uses the MDS configuration based on the averaged
data as the group space. Subsequently, one identifies the dimensions of the group
space that, if weighted, optimally explain the individual MDS solutions. This hierar-
chical approach is used by the Procrustean-Individual-Differences-Scaling (Pindis)
model (Lingoes and Borg 1978). It also continues the bottom-up fitting process with
Idioscal and other more general models, all of them not very useful in practice.
However, the hierarchical approach suggests checking how much better the fit of
a more general model is compared to one with more restrictions. The user can ask
such a question using the smacofIndDiff() function by first running the above
script with constraint="identity" (see next section for more on that option),
then with constraint="indscal", and finally with constraint="idioscal".
The three resulting solutions have Stress values of .146, .123, and .121, respectively.
So, for the Helm color data, individual dimension weighting leads to a noticeable
Stress reduction, but admitting more general idiosyncratic transformations is hardly
worth it.

5.5 Scaling Replicated Proximities

In most MDS applications, we are dealing with exactly one data value per distance.
Modern MDS programs allow using not just one proximity (pi j ) for each distance
di j but two or more (p(k)

i j , k = 1, 2, ...). Consider Fig. 5.7, a stack of n × n complete
proximity matrices. Often, the values in such a data cube are first averaged over all
persons and then averaged once more over the two halves of the resulting complete
matrix. The data in the rectangle experiment described on p. 19 were generated in
this fashion. Alternatively, we could inform the MDS program that what we have is
one complete data matrix for each of N persons and that we want the program to
find a solution where each di j represents, as precisely as possible, up to N · (n2 − n)

proximities, where the “up to” means that missing data are possible. Only the main
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Person 1

Person 2

Person 3

Person N

Fig. 5.7 Data cube consisting of complete proximity matrices for N persons

diagonals in each proximity matrix can never impact the MDS solution because
dii = 0, for any i , is true in any distance geometry.

As an example, consider two sets of inter-correlations among work values col-
lected in West and East Germany, respectively (see p. 84 for more on these data).
These data can be loaded by calling data(EW_eng) in smacof: This activates a list
of two correlation matrices, one for West Germany and the other for East Germany.
If we interpret the entries in these correlation matrices as replications or as indicators
of common German work value constructs, we could first average these matrices and
then scale the averaged correlations. However, this reduces the number of data that
determine the MDS solution in half, and more data for each distance should lead to
a more data-driven, more robust solution. To use both matrices to generate one MDS
solution, we can run this:

1 EW.diss <- list(east = sim2diss(EW_eng$east), west = sim2diss(EW_eng$west))
2 res <- smacofIndDiff(EW.diss, type="ordinal", constraint="identity")
3 res; summary(res) ## gives Stress, coordinates, SPP values
4 plot(res, main="East+West combined")

5.6 Weighting Proximities in MDS

We saw in formula 3.3 that introducing weights into the MDS loss function is easily
possible. It is always used if there are missing data, because then these weights are
set to zero in case of an NA value. This makes the MDS algorithm ignore the dis-
tances that correspond to (missing) proximities. The distances can take on any value
without affecting the Stress of the solution. However, for real data, one sometimes
has additional information about the data such as their reliability. In that case, one
may want to weight the more reliable data more in the Stress function. Another case
is the size of the data themselves. Judgments on the similarity of pairs of objects are
sometimes said to be the more difficult the more similar the objects are. The error
that this uncertainty introduces can be expressed by weighting observed dissimilar-
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ities the heavier the greater they are. In other words, larger dissimilarities should
determine the MDS solution more than smaller dissimilarities.

Computationally,weighting anMDSor anunfolding solution canbe easily accom-
plished by adding a weight matrix of the size of the data matrix to the call of theMDS
function or program. For example, assume we want to scale the inter-correlations in
Table 2.2, R, and assume further that we have a table of reliabilities of these cor-
relations, W. To run weighted MDS, we first have to convert the correlations into
dissimilarities by diss <- sim2diss(R) and then call result <- mds(diss,

weightmat=W).
If you experiment with different weight matrices, you will find, though, that

weights need considerable variance to affect the MDS configurations. One possibil-
ity is setting W <- Rˆq for some large or small q. For example, for q=10 the large
similarities (i.e., small dissimilarities) will be fitted much better than small similari-
ties (i.e., large dissimilarities) so that only the small distances in the plot should be
interpreted and the large distances be better ignored. For a very small q, e.g., q=-10
the reverse is true. Hence, weighting can be useful in practice but it may require some
experimentation. The Shepard diagramwill showwhich dissimilarities are well fitted
and which are not.

5.7 Summary

MDS is a family of different models. They differ in the way they map the proximi-
ties into distances, and in the distance functions they employ. The various regression
functions preserve certain properties of the data such as the ranks of the data in
ordinal MDS, the relative differences of any two data values in interval MDS, and
the ratios of the data in ratio MDS. Typically, Euclidean distances are chosen as the
targets in MDS. City-block distances or dominance metrics are also used in psycho-
logical modeling. Some MDS models allow using multiple proximities per distance.
Asymmetric proximities can be handled by the drift vector model: It represents their
symmetric part by the distances of an MDS configuration, and their skew-symmetric
part by drift vectors attached to the points. A popular MDS model is Indscalwhich
represents a set of N proximity matrices, one for each of N individuals, by one
common MDS space and by N sets of individual weights for its dimensions.
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