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Abstract. This work presents an adaptation and validation of a method for
automatic crop row detection from images captured in potato fields (Solanum
tuberosum) for initial growth stages based on the micro-ROI concept. The crop
row detection is a crucial aspect for autonomous guidance of agricultural
vehicles and site-specific treatments application. The images were obtained
using a color camera installed in the front of a tractor under perspective pro-
jection. There are some issues that can affect the quality of the images and the
detection procedure, among them: uncontrolled illumination in outdoor agri-
cultural environments, different plant densities, presence of weeds and gaps in
the crop rows. The adapted approach was designed to address these adverse
situations and it consists of three linked phases. The main contribution is the
ability to detect straight and curved crop rows in potato crops. The performance
was quantitatively compared against two existing methods, achieving acceptable
results in terms of accuracy and processing time.

Keywords: Crop row detection � Autonomous guidance � Image segmentation
Computer vision

1 Introduction

Artificial vision systems installed on autonomous tractors are useful tools for per-
forming crop rows detection [1] as well as site-specific treatments application [2],
including the removal of weeds that are located outside the crop rows. In such type of
vehicles, the navigation is mainly based on Global Positioning Systems (GPS) [3].
However, when small deviations occur in navigation, the detection of crop rows
becomes crucial to accomplish a correction process [4] in site. Agricultural environ-
ments are affected by several adverse situations that influence the crop rows detection
process, such as: uncontrolled lighting in outdoor agricultural environments; discon-
tinuities in crop rows due to defects in sowing or germination; weeds with green colors
similar to crops; variety of heights and volumes of plants due to the growth stages;
curved crop rows that may be created in certain irregular and/or rugged fields.

Several approaches based on image analyses (e.g. Hough transform, linear
regression, horizontal stripes, region analysis, filtering, stereo vision, green pixel
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accumulation) have been mainly conducted for detection of straight crop rows [1, 5, 6]
and to a lesser extent for curved crop rows [7, 8]. Indeed, some researches have opted
by combining many approaches with a prior knowledge included through different
constraints in order to decrease the algorithmic complexity, enabling them for real time
applications. Based on the trends and studies reported in recent literature, this work
aims to adapt and validate a computer vision method based on micro-ROI [9] for
automatic detection of crop rows in potato fields, superchola variety (Solanum
tuberosum), at initial stages of growth (� 40 days). The adaptation of the original
method (validated in maize fields) to another type of crop (potato fields) with other
phenological and physiological characteristics constitutes the main contribution of this
research.

2 Materials and Methods

2.1 Image Set

Images were acquired in a potato field from Ibarra-Ecuador during January and
February 2017. The field is non-regular, exhibiting slopes up to 8°. Images were
acquired under different lighting conditions and growth stages (� 40 days), as shown
in Fig. 1. Some instances of images are: (a) plants of different sizes in a sunny day,
(b) low weed presence in a dark day, and (c) discontinuities into crop rows in a clear
day. The crop rows were spaced, an average, 0.90 m and curved furrows were oriented
to the left. A total of 320 images were randomly selected for experimentation.

The images were obtained under perspective projection with a goPro Hero 3+
Black Edition color camera with a focal length of 3 mm. The camera was installed on
the front of a New Holland TD90 tractor and located at a height between 1.80 m and
2 m from the ground with an inclination between 40° and 50°, as shown in Fig. 2.

The images were stored in a JPG format with a resolution of 3000 � 2250 pixels
(7 Mpx). The size and location of the region of interest (ROI) were established to
detect 4 crop rows [1], containing sufficient resolution for detecting objects of interest
[10]. The length of the ROI was set to 5 m (in the potato field) and the ROI have a
resolution of 2000 � 650 pixels (width � length) in the projected 2D image (Fig. 2b).

Fig. 1. Instances of the image set processed by the adapted approach in potato fields, namely:
(a) plants of different sizes in a sunny day, (b) low weed presence in a dark day, and
(c) discontinuities into crop rows in a clear day.
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The images were processed using Matlab R2015a software [11] executing on an Intel
Core i7 2.0 GHz processor (4th generation), 8 GB RAM and Windows 8.1 Pro
(64-bit).

2.2 Outline of the Method

Adapted approach is based on [9], which was validated in maize fields, and consists of
three stages: (i) image segmentation, (ii) starting point’s identification, and (iii) crop
rows detection.

2.2.1 Image Segmentation: It stage consists of 4 steps as explained below:

(a) ROI identification: As previously mentioned (regarding Fig. 2b), the ROI was
selected containing 4 crop rows with a suitable resolution.

(b) Identification of greens: Given the evidence of its good results reported in lit-
erature, the index ExG (Excess Green) described in [12] was used. Its standard
formulation is given in Eq. (1). Figure 3(a) shows the ROI within a grayscale
image where ExG index was applied.

ExG ¼ 2g� r � b ð1Þ

(c) Double thresholding: A first thresholding process, based on [13], was applied to
separate vegetation (crop and weed) and soil. Then, a second thresholding was

Fig. 2. Acquisition process: (a) Vision system installed on tractor; (b) Location of the region of
interest (ROI) into an image

Fig. 3. Examples of ROI images: (a) ExG; (b) double thresholding; and (c) morphological
operations.
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applied to the vegetation pixels to separate the crop and weeds. Figure 3(b) shows
the ROI as a binary image containing the potato crop in white pixels, while soil in
black pixels.

(d) Morphological operations: morphological opening [14] and 5 � 5 majority filter
were applied to remove isolated pixels, and obtaining cleaner binary images for
further processing (Fig. 3c).

2.2.2 Starting Point’s Identification: This stage aims to locate the starting
points on the ROI, which are the basis for searching the crop rows.
It works as follows:

(a) The ROI is divided into two same-sized horizontal strips: lower and higher (see
Fig. 4).

(b) The Hough transform (HT) [15] is applied in the lower ROI strip to identify linear
segments of white pixels. To do so, some constraints are assumed by a priori
knowledge in order to decrease the computational complexity, such as the ori-
entation of lines between −45° and 45°, four peaks in the Hough polar space (rho,
theta) with a resolution of 1 pixel and 1°, respectively.

(c) Four peaks (lines) are identified in the Hough polar space, which in turn determine
4 parameters m (slope) and b (intercept) associated with the 4 linear segments.
The points of intersection between the lines detected with TH and the lower edge
of ROI determine the initial 4 points, as can be observed in Fig. 4 (red points).
Likewise, the slope of each linear segment indicates the direction to start the
search of the plants and then the crop rows within the ROI.

2.2.3 Crop Rows Detection: This stage encompasses three processes:
(a) extraction of candidate points, (b) regression analysis
and (c) crop rows selection

(a) Extraction of candidate points: The ROI (depicted in Fig. 3c) is divided into 10
same-sized horizontal substrips (see Fig. 5), unlike the 12 substrips of the original
method [9]. This number was established after trial and error tests with the cur-
vature of the crop rows in the images considered for experiments. Thus, the lower

Fig. 4. Location of 4 stating points in the lower ROI strip.
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and upper ROI strips contain four and six substrips, respectively. The curved lines
appear more pronounced at the top of the ROI because of the perspective pro-
jection, so the number of substrips (six) enables to capture such variability
(curvature) more precisely.

Crop rows are extracted sequentially from left to right, exploring the ten substrips
vertically from bottom to top of the ROI, based on the concept of micro-ROIs, starting
from the associated starting point (Fig. 4) and with the slope of the straight line
estimated with TH, used as a guidance (direction). Consequently, a micro-ROI deter-
mines a small rectangular region (window). The height of each micro-ROI is the same
as that of the corresponding substrip, while the width varies in each substrip due to
perspective projection, being initially fixed at 160 pixels (0.30 m in the ROI base),
gradually decreasing at the rate of 6% as measured that ascends by the substrips. The
objective of each micro-ROI is to include the maximum number of potato plants,
leaving mostly weeds that are located in the inter-row spaces. Each micro-ROI is
defined by four parameters [x, y, width, height], where the point (x, y) represents the
upper left corner. The parameters y, width, and height are beforehand known once the
horizontal substrips are established (Fig. 5), while x is unknown and is obtained
dynamically for each substrip as follows:

1. The first micro-ROI is located with the base centered at the first initial point
(Fig. 4). The geometric center of the micro-ROI is calculated [16], obtaining P1
x1; y1ð Þ, Fig. 6 (yellow cross). This expression is less sensitive to noise and mini-
mizes the effects of isolated pixels belonging to the weeds located in the space
between cultivation lines.

2. Following the estimated line of reference with TH (Fig. 4), three additional
micro-ROIs are placed with the bases centered at the points of intersection between
the reference line (HT) and the lower edges of the substrips, Fig. 7.

In the upper strip of the ROI, which contains six substrips (Fig. 5), each micro-ROI
is placed centered on the point of intersection between the lower edge of the corre-
sponding substrip and the estimated straight line with the four previously calculated
centroids, i.e. with the points based on record that define the trend of the crop rows. The
straight line is adjusted using least squares linear regression as follows:

Fig. 5. The ROI is divided into ten substrips of equal size. Four in the lower ROI and six in the
upper strip.
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3. The fifth micro-ROI, Fig. 8, is located considering the last four centroids (P1, P2,
P3, P4), from which a straight line is fitted, obtaining the corresponding slope
m1,2,3,4. The intersection point (red cross) in the next substrip (fifth) is obtained
using the last centroid P4 and the slope m1,2,3,4.

Fig. 6. Location of the first micro-ROI in the first substrip, where the red cross is the center of
the micro-ROI at the base and the yellow cross is the centroid P1.

Fig. 7. Location of the fourth micro-ROI, where the yellow cross is the centroid P4.

Fig. 8. Location of the fifth micro-ROI, where the yellow cross is the centroid P5.
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4. The centroid P5 (yellow cross) is calculated within the micro-ROI as before.
5. Steps 3 and 4 apply to other micro-ROIs within the upper strip of the ROI, Fig. 9.

For example, if centroid P10, is considered, the line is adjusted considering the four
previous centroids (P6, P7, P8, P9) with the slope m6,7,8,9. Thus, the intersection
point in the next substrip is obtained using centroid P9 with slope m6,7,8,9.

6. Once the ten substrips are processed, a set of 10 points distributed along the first
crop row is obtained, object of detection.

The complete procedure (steps 1–6) is repeated for other available starting points
(Fig. 4). Figure 10 shows the result of this process on the four crop rows. The can-
didate points obtained constitute the entry for the subsequent regression analysis
process.

Fig. 9. Location of the tenth micro-ROI, where the yellow cross is the centroid P10.

Fig. 10. Location of micro-ROIs (blue rectangles) along crop rows that cross the top and bottom
edges of the ROI.

Computer Vision-Based Method for Automatic Detection of Crop Rows 361



(b) Regression Analysis: With the candidate points obtained in the previous process,
polynomials of degree one (straight line) and two (quadratic curve) are adjusted
for each crop row using the least squares technique. The coefficients to be esti-
mated for the straight line are the slope (m) and the intercept (b); while for
quadratic polynomial are coefficients a, b and c, Eq. (2).

y ¼ mxþ b; y ¼ ax2 þ bxþ c: ð2Þ

Figure 11(a) shows the two polynomials (straight and quadratic) obtained for each
crop row within the ROI. The least squares technique also provides the norm of
residues (R), which is a measure of the quality of the fitting. The smaller the R, the
better the adjustment performed. This measurement is used in the following process for
the selection of the best lines.

(c) Crop row selection: The selected polynomial (straight or quadratic) is the one
that best fits each crop row based on the norm of residues (R), i.e. the line with the
lowest R value, Fig. 11b. As a final result, the method detects 4 crop rows (curves
and/or straight) and mathematically modeled (Eq. 2).

The robustness of the adapted method is complemented by three verification pro-
cedures: (i) the number of lines detected must be equal to four; (ii) the separation of
crop rows at the base of the ROI does not exceed 600 pixels, which was set by
experimentation; (iii) there is no intersection between the crop rows detected within the
ROI. In case of any anomaly, the image is rejected and next one is processed.

Regarding the crop row curvature, the method was designed for curvatures toward
left. However, when the curvature is oriented to the right (Fig. 12a), the method works
by applying to the ROI a vertical specular reflection operation (Fig. 12b) and horizontal
translational operations on the points identified along the crop rows (Fig. 10) [7]. In
this way, the algorithm can work with crop rows with curvatures oriented left or right,
but not both simultaneously.

Fig. 11. Polynomials obtained for each crop row within the ROI. (a) Straight and quadratic
lines; (b) selection of lines that fitted better.
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3 Results and Discussion

The performance of the adapted approach, here-named DBMR (Detection Based on
Micro-ROI) -maintaining the original nomenclature from [9]- was quantitatively
compared against 2 existing methods, which are capable of detecting both straight and
curved crop rows: (i) Template matching with Global Energy Minimization (TMGEM)
in order to detect regular patterns and determine an optimal crop model using dynamic
programming [8]; (ii) Detection for accumulation of green pixels (DAGP) for exploring
candidate alignments of green pixels that define straight and quadratic crop rows [7].
The two existing methods were selected for comparison purposes because, as far as is
known, there are no other methods available with such capabilities for detecting
straight and curved crop rows.

The CRDA measure (Crop Row Detection Accuracy), proposed in [8], was used to
evaluate the performance of the methods, whose value is between [0, 1], where the best
score is the unit. CRDA measures the coincidence between the horizontal coordinates
of each crop row, obtained by each method under evaluation (DBMR, TMGEM, and
DAGP) and the corresponding values of the ground truth. The ground truth was
manually created by an expert based on visual observation, where at least five points
were selected on each crop row and squared curves were fitted using the curve fitting
toolbox incorporated into Matlab [11]. In total, 320 images were randomly selected,
containing straight and curved crop rows, spaced both regularly and irregularly.
Irregular spacing of crop rows usually occurs when the tractor crosses the crop several
times, displacing soil in each pass (as can be noticed from Fig. 13d).

Figure 13 shows some examples of the processed images by the DBMR adapted
method with the respective CDRA metrics. In Fig. 13(a) and (b) with straight crop
rows; Fig. 13(c) to (f) with curved crop rows; (g) and (h) a mixture of curved (red) and
straight (blue) crop rows.

As can be noted in Fig. 13(a) and (f), some crop rows may contain discontinuities
caused by defects in planting or germination. In this study, the gaps do not exceed
1.20 m of discontinuity in the same furrow according to the vision system configu-
ration. A longer length may result in a fault in the crop row detection. In addition,
weeds are often distributed irregularly into the inter-row spaces, as can be appreciated
in Fig. 13(a) and (b). For experimental purposes, the method was tested with a low
weed level, i.e. up to 5% of weed cover according to the classification scale proposed in
[17]. A higher level of weed may lead to incorrect crop row detection. Both factors,

Fig. 12. (a) ROI with crop rows oriented to the right in potato crops. (b) ROI after applying a
vertical specular reflection operation.
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crop row discontinuity and weed level affect the performance of the DBMR adapted
method (see Fig. 13a).

Table 1 shows the average percentage detection rate for the 320 analyzed images
with curvatures oriented toward left or right. From the results, it can be seen that
DBMR exceeds to the two existing methods TMGEM and DAGP in potato crops,
which is in agreement with the results reported in [9] in maize crops. The adapted
method DBMR fits well to the curvature of potato crop rows using 10 substrips
(Fig. 5), unlike the 12 substrips used in [9]. This is due to the fact that the minimum
radius of curvature in potato crops was greater than those of the maize crop, which was
19 m.

Fig. 13. Examples of the set of images in potato fields containing straight and curved crop rows
detected by the DBMR adapted method.
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The DAGP and DBMR methods were implemented in Matlab, while TMGEM in
C++. Table 2 shows the average processing time for the complete process of the
adapted method DBMR, which was 694 ms, measured in Matlab under an interpreted
programming language that is slower than a compiled (e.g. C++). So, the method
shows potential for real-time applications, which is an aspect to be studied in further
researches. The increase of execution time when running DBMR with respect to that
reported in [9] can be attributed to the fact that the potato crop is leafier than maize
crop, so it requires the processing of a greater number of pixels during the involved
stages (segmentation, identification of starting points, crop row detection).

According to the working conditions of the DBMR adapted method, its application
requires that three main input parameters are beforehand known, namely: (i) number of
crop rows to be detected, (ii) crop row concavity, and (iii) the intrinsic and extrinsic
parameters of the visual system.

Finally, as a future work, following issues are to be considered: (i) the imple-
mentation of DBMR using a compiled programming language running on a real-time
operating system and platform, following the ideas of the RHEA (2014) project.
(ii) The implementation of the DBMR method using parallel programming techniques
would be advisable in order to reduce the processing time for real-time application.
(iii) Test DBMR method over other crops that are important in the northern region of
Ecuador, such as: bean, pea and onion.

4 Conclusions

This work presents an adaptation of a computer vision method, based on micro-ROIs
[9], here-called DBMR, for detection of straight and curved crop rows (oriented toward
left or right, but not simultaneously) in potato fields, superchola variety (Solanum
tuberosum), in initial stages of growth (� 40 days). Adapted approach consists of 3
stages, namely: segmentation, identification of starting points, and crop rows detection.

Table 1. Comparison of the adapted method DBMR against TMGEM and DAGP regarding
CRDA measure, whose value is between [0, 1], being the unit the best score.

Detection rate (%) TMGEM DAGP DBMR

Mean value 0.627 0.860 0.871
Position 3 2 1

Table 2. Average execution time in milliseconds (ms) for the three methods: TMGEM, DAGP,
and DBMR adapted method.

Method Execution time ROI size Programming language

TMGEM 4836 640 � 480 C++
DAGP 785 2000 � 650 Matlab
DBMR 694 2000 � 650 Matlab
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To evaluate the performance of the algorithm, the CRDA measure is used, which
reaches 1 as highest score. The DBMR adapted method works well in the presence of
low weed levels (CRDA > 0.87) involving processing times less than 694 ms,
exhibiting a potential for real-time applications.
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