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Abstract. This work is devoted to development of threshold algorithms
for one static probabilistic competitive facility location and design prob-
lem in the following formulation. New Company plans to enter the market
and to locate new facilities with different design scenarios. Clients of each
point choose to use the facilities of Company or its competitors depending
on their attractiveness anddistance.The aimof thenewCompany is to cap-
ture the greatest number of customers thus serving the largest share of the
demand.This share for theCompany is elastic and depends on clients’ deci-
sions. We offer three types of threshold algorithms: Simulated annealing,
Threshold improvement and Iterative improvement. Experimental tuning
of parameters of algorithms was carried out. A comparative analysis of the
algorithms, depending on the nature and value of the threshold on special
test examples up to 300 locations is carried out. The results of numerical
experiments are discussed.
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1 Introduction

Nowadays a lot of economic situations are described by the mathematical model
of discrete optimal location discrete problems. The situations, where the decision
is made by the monopolist only, have been mostly studied. Such situations are
common for the normal economic behaviour. Thus there appear the problems
aimed to minimise the expenses such as: simple plant location problem
[7], p-median problem [13], capacitated plant location problem [16], which have
already become classical. In the modern economic situation, it is often demanded
to take into consideration the current rivalry at the market. From this point of
view there is a great interest to the competitive facility location models, as they
describe most complicated situations and require the special methods of solution.
The models differ particularly in the competitors’ behaviour [10].
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The static competitive facility location problems imply that the competitor’s
decision is known and will not be changed. Let us take into consideration the
situation when a Company plans to enter the market of existing products and
services, so that its p shops served as big share of the market as it is possible. The
facilities produce goods of the same kind; the prices are similar; the customers’
choice of the shops depends only on the distance from the located ones [14]. If
the customers take into account the size of the shop, its assortment, the quality
of the service, then such circumstances are described by the static probabilistic
models. The different kinds of which are described e.g. in [3,6,8].

Even more complicated is the situation when the competitor’s decision is
not known beforehand. The deterministic multilevel sequential problems can be
considered among such formulations. The bi-level models distinguish the Leader
(the company) and the Follower (the competitor). At first the Leader enters
the market and establishes a set of facilities S1 which consists of p facilities.
Then the Follower, being aware of that decision, establishes the set of facilities
S2 which consists of r facilities. Each customer chooses the place to be served
among the facilities from the sets S1 or S2 according to his/her own preferences.
Each served customer brings definite profit, therefore all the market is divided
between the Leader and the Follower. Those problems are called (r|p)-centroid
problems. The interesting results for that kind of problem have been gained e.g.
in [4,9,15].

Besides the probabilistic bi-level sequential problems, competitive facility
location with competition of customers and others should be taken into consid-
eration. Some solutions for them can be found in [5,10].

This paper deals with the static competitive facility location problems with
the elastic demand. The three types of threshold algorithms [1] have been devel-
oped for that task. The computational experiments have been carried out in
order to compare them.

The comparative analysis of the algorithms, according to the nature and the
value of the threshold, has been carried out for the special test examples with up to
300 locations. The results of the computational experiments are given below.

2 Problem Formulation

Berman and Krass [6] and Aboolian et al. [3] develop a spatial interaction model
with variable expenditure by introducing non-constant expenditure functions
into spatial interaction location models. Aboolian et al. [2] proposed a new
model where optimal location and design decisions for a set of new facilities are
seeking. Here we develop approximate algorithms for the location and design
problem described in [2]. In this problem, Company plans to locate its facilities
which differ from one another in design: size, range, etc. Let R be the set of
facility designs, r ∈ R. There are wi customers at the point i of discrete set
N = {1, 2, . . . , n}. All customers have the same demand, so each item can be
considered as one client with weight wi. Clients of each point choose to use the
facilities of Company or its competitors depending on their attractiveness and
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distance. The distance dij between the points i and j is measured, for exam-
ple, in Euclidean metric or equals to the shortest distance in the corresponding
graph. It is assumed that C ⊂ P is the set of pre-existing competitor facilities
and it will not change. The Company may open its markets in S = P \C taking
into account the budget B and the cost of opening cjr facility j ∈ S with design
r ∈ R. The Company’s goal is to attract a maximum number of customers, i.e.
to serve the largest share of total demand.

Let us write out the mathematical model according to [2]. Variables xjr = 1,
if facility j is opened with design variant r and xjr = 0 otherwise, j ∈ S, r ∈ R.

Utility uij =
∑R

r=1 kijrxjr, where the supplementary coefficients

kijr = ajr(dij + 1)−β .

They depend on the sensitivity β of customers to distance to facility and attrac-
tiveness ajr. The total utility for the customers in point i ∈ N from the facilities
controlled by the competitors is Ui(C) =

∑
j∈C uij .

The demand function has an exponential form:

g(Ui) = 1 − exp
(

− λiUi

)

,

where λi is the characteristic of elastic demand in point i, λi > 0; Ui is the total
utility for a customer at i ∈ N from all open facilities:

Ui =
∑

j∈S

R∑

r=1

kijrxjr + Ui(C) = Ui(S) + Ui(C).

It is assumed that the demand of the customers at g(Ui) is a concave increasing
function.

The company’s total share of facility i ∈ N is measured by:

MSi =
Ui(S)

Ui(S) + Ui(C)
=

∑
j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

.

Then the mathematical model looks like:

max
∑

i∈N

wi · g(Ui) · MSi, (1)

∑

j∈S

∑

r∈R

cjrxjr ≤ B, (2)

∑

r∈R

xjr ≤ 1, j ∈ S, (3)

xjr ∈ {0, 1}, r ∈ R, j ∈ S. (4)
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Based on above notation, the objective function (1) looks as follows:

max
∑

i∈N

wi ·
(

1 − exp
(

− λi

(∑

j∈S

R∑

r=1

kijrxjr + Ui(C)
)))

·
( ∑

j∈S

∑R
r=1 kijrxjr

∑
j∈S

∑R
r=1 kijrxjr +

∑
j∈C uij

)

. (5)

The objective function (5) reflects the Company’s goal to maximize the share
of customers demand. Inequality (2) takes into account the available budget.
Condition (3) shows that only one variant of the design can be selected.

3 Threshold Algorithms

The number of algorithms known for solution of the competitive facility and
design problem is little. In [2], an adapted weighted greedy heuristic algorithm
is proposed. Earlier we developed Variable Neighborhood Search algorithms [12].
In this paper, we offer Threshold Algorithms [1] for this problem.

Let s be a feasible solution of a combinatorial minimization problem. The
general scheme of threshold algorithms is the following:

1. Select an initial solution s0, compute the initial value of the objective function
f(s0), define the record value as f∗ := f(s0). Set the iteration counter k = 0,
set the threshold value tk and the type of neighborhood N(sk).

2. Until the stopping criterion is not satisfied, do the following:
2.1 Select the new solution randomly in the neighborhood of the current one:

sj ∈ N(sk).
2.2 If the difference does not exceed the threshold f(sj) − f(sk) < tk, then

s(k+1) := sj .
2.3 If f∗ > f(sk), then update the best found solution value f∗ := f(sk).
2.4 Set k := k + 1.

There are three variants of this algorithm depending on the setting of the
sequence of the threshold value {tk}:
(1) Iterative improvement: the sequence tk = 0, k = 0, 1, 2, ..., is a variant of

local descent with a monotonous improvement of the objective function;
(2) Threshold accepting: tk = ck, k = 0, 1, 2, ..., ck ≥ 0, ck ≥ck+1 and lim

k→∞
ck →0

are the local search variants when the objective function deterioration is
assumed until some fixed threshold, and the threshold continually goes down
to zero;

(3) Simulated annealing: the sequence tk ≥ 0, k = 0, 1, 2, ..., is a random variable
with the expectation E(tk) = ck ≥ 0 which is the local search variant, when
the objective function arbitrary deterioration is assumed but the transition
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probability is inversely related to the deterioration value. For any two feasible
solutions si and sj the probability of accepting sj from si at the iteration k is:

Psisj
=

{
1 if f(sj) ≤ f(si),
exp f(si)−f(sj)

ck
if f(sj) > f(si),

sj ∈ N(si).

At the present time the simulated annealing algorithm shows good results for a
wide range of optimization problems. The randomized nature of this algorithm
allows asymptotic convergence to optimal solutions under special conditions [1].

We adapted threshold algorithms for the maximization problem. These
algorithms belong to the class of local search methods. The neighborhood selec-
tion plays an important role in their development for individual tasks. The Lin-
Kernighan neighborhood have been used in the proposed variants of algorithms.
In addition, a special neighborhood is constructed as follows. Let the vector
z = (zi) be such that zi corresponds to facility i: zi = r iff xir = 1. Then feasible
solution z′ is called neighboring for z if it can be obtained with the following
moves: (a) choose one of the open facilities p with design variant zp and reduce
the number of design variant up to 0 (close the facility); (b) select the facility q
which is closed; then open the facility q with the design variant zp.

4 Computatinal Experiments

To study the algorithms a series of testing instances similar to the real data
of the applied problem [2] has been constructed in [12]. The testing instances
consist of two sets with uniform distribution of distances in the interval [0;30]
(Series 1) and with Euclidean distances (Series 2). They contain 96 instances for
location of 60, 80, 100, 150, 200 and 300 facilities; 3 types of design variants are
used, the budget limited is 3, 5, 7 and 9; the demand parameter is λi = 1, i ∈ N ;
the customer sensitivity to the distance is high (β = 2).

It must be mentioned that there is a problem of the choice of the parameter
values so that the algorithm could produce good results for a wide range of
instances. After the series of preliminary experiments the following parameter
values for the simulated annealing algorithm have been found: the temperature
interval length l = 10, the initial temperature t0 = 150, the cooling (minimal)
temperature value tcool = 5, the cooling coefficient r = 0.99, the number of points
in the Lin-Kernighan neighborhood K = 3. The threshold value equal to 5 was
chosen for the threshold accepting algorithm.

Table 1 shows the values of deviations from the upper bounds (UB) [12]
for test instances with uniform distribution of distances in a single run of the
algorithms. For example, the average deviations for the uniform distribution of
distances instances of 300 locations are: 6.627% for the iterative improvement;
8.308% for the threshold accepting; 1.523% for the simulated annealing algo-
rithm. The test instances with Euclidean distances proved to be difficult for all
considered algorithms. The deviations in this case are: 15.325% for the iterative
improvement; 18.296% for the threshold accepting; 14.231% for the simulated
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Table 1. Deviations from upper bounds in case of uniform distribution of distances

N Iterative improvement Threshold accepting Simulated annealing

min max av min max av min max av

60 0.010 5.196 1.562 0.066 11.043 3.511 0.008 4.727 0.818

80 0.019 5.698 1.017 0.027 9.030 3.452 0.014 1.810 0.342

100 0.000 6.596 1.043 0.050 22.014 3.737 0.000 3.463 0.648

150 0.000 12.279 3.434 0.013 13.492 6.638 0.000 4.804 0.668

200 0.000 10.176 3.402 0.000 24.627 6.796 0.000 9.589 1.796

300 0.000 19.050 6.627 0.000 21.510 8.308 0.000 11.340 1.523

annealing algorithm. In 8 test instances the best found goal function values of
simulated annealing was within 0.001% from UB (in 6 and in 2 test instances for
iterative improvement and threshold accepting respectively). It was noted that
in some instances, vector solutions of the algorithms coincide with the vectors
of UB: in 42 cases for iterative improvement, in 23 test instances for threshold
accepting and in 75 cases for simulated annealing algorithm. For instances with
Euclidean distances this values are 23, 11 and 27 respectively.

Since algorithms are of a probabilistic nature, they are tested repeatedly. We
ran 1000 each of the algorithms for each of the test instances. For this compu-
tational experiment, the following results are obtained. The average deviations
for the instances with uniform distribution of distances of 300 locations are:
6.771% for the iterative improvement; 8.36% for the threshold accepting algo-
rithm; 1.044% for the simulated annealing algorithm. The deviations in case of
the Euclidean distances are: 16.017% for the iterative improvement; 18.71% for
the threshold accepting algorithm; 14.734% for the simulated annealing algo-
rithm. This indicates that Series 2 is more complicated for the proposed algo-
rithms. On the other hand, such deviations may display that the upper bounds
for the second series are inaccurate. For Series 1, the 95% confidence interval for
the probability of obtaining the deviations less than 0.001% for simulated anneal-
ing is between [0.111;0.115], for iterative improvement is [0.044;0.047] and for
threshold accepting is [0.030;0.032]. For Series 2, the 95% confidence interval for
the probability of obtaining the deviations less than 12% for simulated anneal-
ing is [0.112;0.116], for iterative improvement is [0.075;0.078] and for threshold
accepting is [0.030;0.032]. The Wilcoxon test [11] showed statistically significant
differences between the values of the objective functions of the investigated algo-
rithms with significance level 0.05. The simulated annealing algorithm in both
series of test instances gives the best value of the objective function. At the same
time, an iterative improvement algorithm has an advantage over the threshold
accepting algorithm, which is confirmed by statistically significant differences in
both series.

Table 2 contains the information about minimal (min), average (av) and max-
imal (max) CPU time (in seconds) for the proposed algorithms until the stop-
ping criterion was met. The experiments have been carried out using a PC Intel
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Table 2. CPU time (sec)

N Iterative improvement Threshold accepting Simulated annealing

min av max min av max min av max

60 0.085 0.109 0.142 0.078 0.104 0.123 0.905 1.190 1.462

80 0.132 0.161 0.203 0.130 0.162 0.226 1.544 1.866 2.281

100 0.177 0.210 0.235 0.176 0.217 0.260 2.228 2.228 2.853

150 0.332 0.411 0.504 0.342 0.416 0.523 4.120 4.876 5.783

200 0.525 0.603 0.660 0.554 0.618 0.668 6.367 7.213 7.824

300 1.242 1.330 1.581 1.227 1.325 1.529 15.197 16.176 18.004

i5-2450M, 2.50 GHz, memory 4 GB. The time for the instances with Euclidean
distances and with the uniform distribution of distances is approximately the
same. Note that well-known commercial software is rather time-consuming. For
instance, for one of the instances of 60 locations the CPU time of CoinBonmin
(GAMS) was 63 h and the objective function deviation from the upper bounds
was 12.919%. All proposed algorithms yielded equal objective function values
with deviation 11.796%, running time was less than 1.638 s for it.

5 Conclusion

This paper is devoted to the development of approximate algorithms for one
variant of the static probabilistic competitive facility location and design prob-
lem. Its mathematical model is based on a nonlinear objective function, and the
share of the served demand is elastic. That complicates the task of finding an
optimal solution.

The threshold algorithms for the search of approximate solutions have been
built, their parameter setting has been carried out. It should be noticed that the
iterative improvement and the simulated annealing algorithms are comparable
in the objective function for the instances up to 100 locations. The maximum
counting duration of the built algorithms does not exceed 20 s. and the mini-
mal deviations from upper bounds was less then 0.001%. The analysis of the
algorithms for the instances with a large number of locations has proved the
advantage of the simulated annealing algorithm over the threshold algorithms
and its applicability to complex problems.
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