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Abstract. We consider an optimal control problem for an autonomous
differential inclusion with free terminal time in the situation when there
is a set M (“risk zone”) in the state space R

n which is unfavorable due
to reasons of safety or instability of the system. Necessary optimality
conditions in the form of Clarke’s Hamiltonian inclusion are developed
when the risk zone M is an open set. The result involves a nonstandard
stationarity condition for the Hamiltonian. As in the case of problems
with state constraints, this allows one to get conditions guaranteeing
nondegeneracy of the developed necessary optimality conditions.
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1 Statement of the Problem and Preliminaries

Consider the following problem (P ):

J(T, x(·)) = ϕ(T, x(0), x(T )) + λ

∫ T

0

δM (x(t)) dt → min , (1)

ẋ(t) ∈ F (x(t)), (2)

x(0) ∈ M0, x(T ) ∈ M1. (3)

Here x ∈ R
n is a state vector, M0, M1 are nonempty closed sets in R

n, λ
is a positive real, F : Rn ⇒ R

n is a locally Lipschitz multivalued mapping with
nonempty convex compact values, ϕ : [0,∞)×R

n×R
n �→ R

1 is a locally Lipschitz
function; δM (·) is the characteristic function of a set M (“risk zone”) in R

n, i.e.

δM (x) =

{
1, x ∈ M,

0, x /∈ M.
(4)

We assume that M is a nonempty open set, G = R
n \M �= ∅, and for any x ∈ G

the Clarke tangent cone TG(x) (see [9]) has nonempty interior, i.e. int TG(x) �= ∅.
The terminal time T > 0 in problem (P ) is assumed to be free; accordingly,
the class of admissible trajectories in (P ) consists of all absolutely continuous
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solutions x(·) of differential inclusion (2) defined on corresponding time intervals
[0, T ], T > 0, and satisfying boundary conditions (3). An admissible trajectory
x∗(·) defined on a time interval [0, T∗], T∗ > 0, is optimal in problem (P ) if the
functional J(·, ·) (see (1)) reaches the minimal possible value at (T∗, x∗(·)).

Notice, that the peculiarity of problem (P ) consists of the presence of dis-
continuous integrand δM (·) in the integral term in the functional J(·, ·). Sub-
stantially, the integral term penalizes the states in the risk zone M . Such risk
zones could appear in statements of different applied problems when there is an
admissible but unfavorable set M in the state space R

n. In economics the set M
can correspond to the states with high probability of bankruptcy; in ecology the
set M can correspond to the states with high probability of the system degra-
dation; in engineering such sets can correspond to the states of overloading or
instability of the system.

In classical optimal control theory the presence of such unfavorable set
M is modeled usually via introducing an additional state constraint (see [15,
Chapt. 6])

x(t) ∈ G = R
n \ M, t ∈ [0, T ].

Substantially, this means that presence of the state variable x(·) in the set M is
prohibited. The set G (“safety zone”) is assumed to be closed in this case (i.e.
the set M is open).

An optimal control problem with a closed convex risk zone M was initially
considered in [16] in the case of linear control system, and under some a priori
regularity assumptions on behavior of an optimal trajectory x∗(·). In particular,
it was assumed in [16] that the optimal trajectory x∗(·) had a finite number
of intersection points with the boundary of the set M . In [17] under the same
linearity and regularity assumptions the case of time dependent closed convex set
M = M(t), t ∈ [0, T ], was considered. In [7,8] the problem of optimal crossing
a given closed risk zone M was studied and necessary optimality conditions for
affine in control system were developed without any a priori assumptions on the
behavior of the optimal trajectory. In [18] this result (in the case of closed set
M) was generalized to the case of more general integral utility functional. The
main novelty of the present work is that the risk zone M is assumed to be open.
In this case introducing of the risk zone M in the statement of problem (P ) can
be considered as a weakening of the classical concept of the state constraint in
optimal control. Notice also, that the approach developed in [7,8,18] for the case
of the closed set M does not work if the set M is open.

In that follows NA(a) = T ∗
A(a) and N̂A(a) are the Clarke normal cone [9] and

the cone of generalized normals [13] to the closed set A ⊂ R
n at a point a ∈ A,

respectively; ∂A is the boundary of the set A; H(F (x), ψ) = max f∈F (x)〈f, ψ〉
is the value of the Hamiltonian H(F (·), ·) of differential inclusion (2) at a point
(x, ψ) ∈ R

n × R
n; ∂H(F (x), ψ) is the Clarke subdifferential of the locally

Lipschitz function H(F (·), ·) at a point (x, ψ) ∈ R
n × R

n [9], and ∂ϕ̂(T, x1, x2)
is the generalized gradient of locally Lipschitz function ϕ(·, ·, ·) at a point
(T, x1, x2) ∈ [0,∞) × R

n × R
n [13].
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For i ∈ N and an arbitrary x ∈ R
n set δ̃i(x) = min {iρ(x,G), δM (x)} where

ρ(x,G) = min {‖x − ξ‖ : ξ ∈ G} is the distance from a point x to the nonempty
closed set G = R

n \ M and the function δM (·) is defined by equality (4).
Further, for i ∈ N let us define the function δi : Rn �→ R

1 by equality

δi(x) =
∫
Rn

δ̃i(x + y)ωi(y) dy. (5)

Here ωi(·) is a smooth (C∞(Rn)) probabilistic density such that suppωi(·) ⊂
1/2iB where B is the closed unit ball in R

n with the center in 0. Then for any
i ∈ N the function δi(·) is smooth as a convolution with ωi(·).

The following auxiliary statements hold.

Lemma 1. For any x ∈ R
n we have

δi(x) ≤ δM (x) +
i

2i
, i ∈ N. (6)

Proof. Indeed, if x ∈ M then δM (x) = 1. Since δi(x) ≤ 1, i ∈ N, inequality (6)
is obviously satisfied. Now assume x /∈ M . Then δM (x) = 0, and for any y ∈
suppωi(·), i ∈ N, we have δ̃i(x + y) ≤ iρ(x + y,G) ≤ iy ≤ i/2i. Due to the
definition of the function δi(·) (see (5)) we get

δi(x) =
∫
Rn

δ̃i(x + y)ωi(y) dy ≤ i

2i
, i ∈ N.

Since δM (x) = 0 inequality (6) also holds in this case. �

Lemma 2. Let a sequence {xi(·)}∞
i=1 of continuous functions xi : [0, T ] �→ R

n

defined on some time interval [0, T ], T > 0, converges uniformly to a continuous
function x̃ : [0, T ] �→ R

n. Then

lim inf
i→∞

∫ T

0

δi(xi(t)) dt ≥
∫ T

0

δM (x̃(t)) dt. (7)

Proof. Assume that for some t ∈ [0, T ] we have x̃(t) ∈ M . Then δM (x̃(t)) = 1,
and since the set M is open and the sequence {xi(·)}∞

k=1 converges uniformly to
x̃(·) there are ε0 > 0 and i0 ≥ 1/ε0 such that for all i ≥ i0 we have xi(t)+ε0B ⊂
M . Then for all i ≥ i0 due to definition of function δi(·) (see (5)) we get equality
δi(xi(t)) = 1. Hence, limi→∞ δi(xi(t)) = δM (x̃(t)) = 1 in this case. Now, assume
that t ∈ [0, T ] is such that x̃(t) �∈ M . Then δM (x̃(t)) = 0. As far as δi(xi(t)) ≥ 0
for any t ∈ [0, T ] and all i ∈ N (see (5)) we have lim infi→∞ δi(xi(t)) ≥ δM (x̃(t))
in this case.

Thus, for any t ∈ [0, T ] the following inequality holds:

lim inf
i→∞

δi(xi(t)) ≥ δM (x̃(t)).

From this inequality due to Fatou’s lemma (see [10, Lemma 8.7.i.]) we get (7).
�
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As an immediate corollary of the lemmas above we get the following result.

Theorem 1. The integral functional JM : C([0, T ],Rn) �→ R
1, T > 0, defined

by the equality

JM (x(·)) =
∫ T

0

δM (x(t)) dt

is lower semicontinuous.

Proof. Indeed, let T > 0 and a sequence {xi(·)}∞
i=1 of continuous functions

xi : [0, T ] �→ R
n converges to a continuous function x̃(·) in C([0, T ],Rn). Then

due to Lemma 1 we have

JM (xi(·)) =
∫ T

0

δM (xi(t)) dt ≥
∫ T

0

δi(xi(t)) dt − iT

2i
, i ∈ N.

Hence, due to Lemma 2 passing to a limit as i → ∞ we get

lim inf
i→∞

JM (xi(·)) ≥ lim inf
i→∞

∫ T

0

δi(xi(t)) dt ≥
∫ T

0

δM (x̃(t)) dt = JM (x̃(·)).

�

2 Main Result

Let x∗(·) be an optimal admissible trajectory in (P ), and let T∗ > 0 be the
corresponding optimal terminal time. In that follows we always assume that
x∗(·) is defined on the time interval [T∗,∞) as a constant: x∗(t) ≡ x∗(T∗), t ≥ 0.
Define also the sets M̃0 and M̃1 by the equalities

M̃0 =

{
M0, x∗(0) ∈ M,

M0

⋂
G, x∗(0) ∈ G

and M̃1 =

{
M1, x∗(T∗) ∈ M,

M1

⋂
G, x∗(T∗) ∈ G.

(8)

Next theorem is the main result of the present paper.

Theorem 2. Let x∗(·) be an optimal admissible trajectory in problem (P ), and
let T∗ > 0 be the corresponding optimal terminal time. Then there are a constant
ψ0 ≥ 0, an absolutely continuous function ψ : [0, T∗] �→ R

n and a bounded regular
Borel vector measure η on [0, T∗] such that the following conditions hold:

(1) the measure η is concentrated on the set M = {t ∈ [0, T∗] : x∗(t) ∈ ∂G}, and
it is nonpositive on the set of continuous functions y : M �→ R

n with values
y(t) ∈ TG(x∗(t)), t ∈ M, i.e.

∫
M

y(t) dη ≤ 0;
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(2) for a.e. t ∈ [0, T∗] the Hamiltonian inclusion holds:

(−ψ̇(t), ẋ∗(t)) ∈ ∂H(x∗(t), ψ(t) + λ

∫ t

0

dη);

(3) for t = T∗ and for any t ∈ [0, T∗) which is a point of right approximate
continuity1 of the function δM (x∗(·)) the following stationarity condition
holds:

H(x∗(t), ψ(t) + λ

∫ t

0

dη) − ψ0λδM (x∗(t)) = H(x∗(0), ψ(0)) − ψ0λδM (x∗(0));

(4) the transversality condition holds:

(H(x∗(T∗), ψ(T∗)+ λ

∫ T∗

0

dη), ψ(0),−ψ(T∗) − λ

∫ T∗

0

dη)

∈ ψ0∂̂φ(T∗, x∗(0), x∗(T∗)) + {0} × N̂M̃0
× N̂M̃1

;

(5) the nontriviality condition holds:

ψ0 + ‖ψ(0)‖ + ‖η‖ �= 0.

The proof of Theorem 2 is based on approximation of problem (P ) by a
sequence of approximating problems with Lipschitz data for which the corre-
sponding necessary optimality conditions are known (see [9, Theorem 5.2.1]).

Let x∗(·) be an optimal admissible trajectory in problem (P ), and let T∗ > 0
be the corresponding optimal terminal time. For i ∈ N consider the following
optimal control problem (Pi):

Ji(T, x(·)) = ϕ(T, x(0), x(T )) + (T − T∗)2

+
∫ T

0

[
λδi(x(t)) + ‖x(t) − x∗(t)‖2

]
dt → min , (9)

ẋ(t) ∈ F (x(t)), (10)

|T − T∗| ≤ 1, ‖x(t) − x∗(t)‖ ≤ 1, t ∈ [0, T ], (11)

x(0) ∈ M̃0, x(T ) ∈ M̃1. (12)

Here the function ϕ(·, ·, ·), the multivalued mapping F (·) and the number λ > 0
are the same as in (P ). The sets M̃0 and M̃1 are defined in (8). As in the problem
(P ), the set of admissible trajectories in (Pi), i ∈ N, consists of all absolutely
continuous solutions x(·) of differential inclusion (10) defined on their own time

1 Recall, that t ∈ [0, T ), T > 0, is a point of right approximate continuity of a real
function ξ(·) defined on [0, T ] if there is a Lebesgue measurable set E ⊂ [t, T ] such
that t is its density point, and the function ξ(·) is continuous from the right at t
along E (see [14, Chapt. 9, Sect. 5]).
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intervals [0, T ], T > 0, and satisfying constraints in (11) and boundary conditions
in (12).

For any i ∈ N the problem (Pi) is a standard optimal control problem for the
differential inclusion with Lipschitz data, state and terminal constraints (see [9,
Sect. 3.6]). Since x∗(·) is an admissible trajectory in (Pi), i ∈ N, due to Filippov’s
existence theorem (see, [10, Theorem 9.3.i]) for any i ∈ N there is an optimal
admissible trajectory xi(·) in (Pi) which is defined on the corresponding time
interval [0, Ti], Ti > 0. We will assume bellow that for any i ∈ N the trajectory
xi(·) is extended to the infinite time interval [Ti,∞) as a constant: xi(t) ≡
xi(Ti)), t ≥ Ti.

We will call {(Pi)}∞
k=1 a sequence of approximating problems corresponding

to the optimal trajectory x∗(·).
Theorem 3. Let x∗(·) be an optimal admissible trajectory in problem (P ), and
let T∗ be the corresponding optimal terminal time. Let {(Pi)}∞

i=1 be the sequence
of approximating problems corresponding to x∗(·), and let xi(·), Ti > 0, be an
optimal admissible trajectory and the corresponding optimal time, respectively in
(Pi), i ∈ N. Then

lim
i→∞

Ti = T∗, (13)

lim
i→∞

xi(·) = x∗(·) in C([0, T∗],Rn), (14)

lim
i→∞

ẋi(·) = ẋ∗(·) weakly in L1([0, T∗],Rn), (15)

lim
i→∞

∫ Ti

0

δi(xi(t)) dt =
∫ T∗

0

δM (x∗(t)) dt. (16)

Proof. Since xi(·) is an optimal admissible trajectory in (Pi), i ∈ N, and x∗(·) is
an admissible trajectory in (Pi), due to Lemma 1 we have (see (9) and (6)):

ϕ(Ti, xi(0),xi(Ti)) + (Ti − T∗)2 +
∫ Ti

0

[
λδi(xi(t)) + ‖xi(t) − x∗(t)‖2

]
dt

≤ ϕ(T∗, x∗(0), x∗(T∗)) + λ

∫ T∗

0

δi(x∗(t)) dt

≤ ϕ(T∗, x∗(0), x∗(T∗)) + λ

∫ T∗

0

δM (x∗(t)) dt +
iλT∗
2i

. (17)

Since |Ti − T∗| ≤ 1, i ∈ N, without loss of generality we can assume that
limi→∞ Ti = T̃ ≤ T∗ + 1. Further, the set of all admissible trajectories of (10)
satisfying the state constraint (11) is a compactum in C([0, T̃ ],Rn). Let x̃(·) be
a limit point of {xi(·)}∞

i=1 in C([0, T̃ ],Rn). Then x̃(·) is an admissible trajectory
in (P ), and passing to a subsequence we can assume that limi→∞ xi(·) = x̃(·)
in C([0, T̃ ],Rn). Further, x∗(·) is an optimal trajectory in (P ), while x̃(·) is an
admissible one in this problem. Hence,

ϕ(T∗, x∗(0), x∗(T∗)) + λ

∫ T∗

0

δM (x∗(t)) dt ≤ ϕ(x̃(0), x̃(T̃ )) + λ

∫ T̃

0

δM (x̃(t)) dt.
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Hence, for i ∈ N due to (17) we get

ϕ(Ti, xi(0), xi(Ti)) − ϕ(T̃ , x̃(0), x̃(T̃ )) + λ

∫ Ti

0

δi(xi(t)) dt − λ

∫ T̃

0

δM (x̃(t)) dt

+ (Ti − T∗)2 +
∫ Ti

0

‖xi(t) − x∗(t)‖2 dt ≤ iλT∗
2i

. (18)

Since limi→∞ Ti = T̃ and limi→∞ xi(·) = x̃(·) in C([0, T̃ ],Rn) due to Lemma 2
for any ε > 0 there is a natural i0 such that for all i ≥ i0 we have

ϕ(Ti, xi(0), xi(Ti)) − ϕ(T̃ , x̃(0), x̃(T̃ )) ≥ −ε,∫ Ti

0

δi(xi(t)) dt −
∫ T̃

0

δM (x̃(t)) dt ≥ −ε.

From these inequalities due to (18) for any i ≥ i0 we get

(Ti − T∗)2 +
∫ Ti

0

‖xi(t) − x∗(t)‖2 dt ≤ ε(1 + λ) +
iλT∗
2i

.

Passing to a limit as i → ∞ in the inequality above we get

lim sup
i→∞

[
(Ti − T∗)2 +

∫ Ti

0

‖xi(t) − x∗(t)‖2 dt

]
≤ ε(1 + λ).

Since ε > 0 is an arbitrary positive number this implies

lim
i→∞

Ti = T∗, lim
i→∞

∫ T∗

0

‖xi(t) − x∗(t)‖2 dt = 0.

Thus, equality (13) is proved. Since limi→∞ Ti = T̃ = T∗ and x̃(·) is an arbi-
trary limit point of the sequence {x(·)}∞

i=1 in C([0, T̃ ],Rn) we get (14). Equal-
ity (15) is followed by (14) and the fact that the sequence {ẋi(·)}∞

i=1 is bounded
in L∞([0, T∗],Rn). Finally, due to Lemma 2 equality (16) follows from (13), (14)
and (18). �

Due to condition (14) of Theorem 3 for all sufficiently large numbers i the
terminal time and state constraints in (11) hold as strict ones. Hence, the Clarke
necessary conditions (see [9, Theorem 5.2.1])) hold for optimal trajectories xi(·)
in problems (Pi) for all sufficiently large numbers i. The subsequent proof of
Theorem 2 is based on the limiting procedure in these necessary optimality
conditions applied to problems (Pi), i ∈ N, as i → ∞. It is similar to the proof
of analogous results for problems with state constraints (see [3,5, Theorem 1]).
The detailed proof of a similar result for problem (P ) in the case of a fixed time
interval [0, T ], T > 0, is presented in [6].

Notice, that Theorem 2 is similar to the necessary conditions for optimality
for an optimal control problem for the differential inclusion with state constraints
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proved in [3]. As in [3], the stationarity condition (3) allows one to get sufficient
conditions for nondegeneracy of the developed necessary optimality conditions
(Theorem 2). Other results on nondegeneracy of different versions of the maxi-
mum principle for problems with state constraints and further references can be
found in [1–5,11,12].
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