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Abstract. We present a spectral mimetic least-squares method on
curvilinear grids, which conserves important invariants. The method is
developed using differential forms where the topological part and the
constitutive part have been separated. It is shown that the topological
part is solved exactly, independent of the order of the spectral expansion.
The method is applied to a model convection-diffusion problem, where
we show that conservation of a potential is satisfied up to machine pre-
cision. The convective term is represented using the Lie derivative, by
means of Cartans homotopy formula. The spectral mimetic least-squares
method is compared to a standard spectral least-squares method. It is
shown that both schemes lead to spectral convergence.
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1 Introduction

We first consider general convection-diffusion of a scalar in 2D:

∇ · (uφ) + ∇ · D∇φ = f in Ω, (1)

where φ is the unknown potential, f the source term, D is the diffusion coefficient
tensor of the system, and u a known divergence free vector field. Equation 1 is
subjected to a homogeneous Dirichlet boundary condition:

φ = 0 on ∂Ω. (2)

The method presented is based on a combination of mimetic methods, pre-
sented in [2,4,12] and least-squares spectral element methods, [1,14]. Recent
work combining the two methods include [6]. The method is derived using basic
components from differential geometry, which leads to conservation of invariants
of the system. Using the least-squares principles lead to a symmetric positive
definite matrix for the discretized problem.
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2 Differential Geometry

In differential geometry the unknowns are presented by forms instead of vector
and scalar fields, as in vector calculus. Variables associated with points, such
as the temperature, are represented by a 0-form while variables associated with
a volume are represented by 3-forms, e.g. the density. 1-forms and 2-forms can
likewise represent variables associated with lines and surfaces. Furthermore forms
have inner and outer orientation. Outer oriented 2-forms represent variables
working through surfaces, such as a flux, while inner oriented 2-forms represent
variables working on a surface e.g. describing vorticity in a plane.

Generalising the definitions of 0-forms, 1-forms, 2-forms and 3-forms, the
general k-form is denoted ω(k) ∈ Λk(Ωn) on the n-dimensional domain Ωn,
for 0 ≤ k ≤ n. Λk(Ωn) is the space of k-forms on Ωn, i.e. the collection of
all k-linear, antisymmetric mappings of vectors belonging to the n-dimensional
tangent vector space V :

ω(k) : V × ... × V
︸ ︷︷ ︸

k

→ R. (3)

Differential geometry also introduces the wedge product between k-forms and
m-forms, which produces a (k + m)-form: ∧ : Λk(Ωn) × Λm(Ωn) → Λk+m(Ωn).
The wedge product, also called a skew-symmetric product, has the property:
α(k) ∧ β(m) = (−1)kmβ(m) ∧ α(k).

Instead of using three different operators to represent curl, divergence and
gradient, differential forms are equipped with an operator representing all three
operators; the exterior derivative, d. The exterior derivative operates on k-forms
and maps them into (k+1)-forms: d : Λk(Ωn) → Λk+1(Ωn). The exterior deriva-
tive can be defined by means of the Stokes theorem [3]:

∫

Ωk+1

dω(k) =
∫

∂Ωk+1

ω(k). (4)

Since the exterior derivative is constructed using only the boundary of the
domain of interest, the discrete version of the exterior derivative can be per-
formed exactly.

The interior product is the inverse operation of the exterior derivative and
is the mapping: ιY : Λk(Ωn) → Λk−1(Ωn) for some vector field Y ∈ Ωn and
1 ≤ k ≤ n, defined as:

ιY α(k)(X2, · · · ,Xk) = α(k)(Y,X2, · · · ,Xk) ∀Xi, Y ∈ V (5)

The Lie-derivative represents how forms change when they are altered by the flow
of some vector field Y ∈ Ωn and is the mapping: LY : Λk(Ωn) → Λk(Ωn), see
[13,15]. The Lie-derivative can be seen as the convection operator for differential
geometry and is defined by applying Cartan’s formula:

LY α(k) = ιY dα(k) + dιY α(k). (6)
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Fig. 1. The six different forms in the two dimensional space. The upper row is the
inner oriented forms while the bottom shows the outer oriented forms.

The inner and outer oriented forms are connected using the Hodge-star oper-
ator denoted with a 
, see [3,10]. The Hodge-star operator, 
, is a map between
k-forms and (n − k)-forms of opposite orientation in a n-dimensional domain:

 : Λk(Ωn) → Λn−k(Ωn) see for example Fig. 1. In this report the ∼ denotes
inner oriented forms. The Hodge-star operator is defined using the following
relation:

α(k) ∧ 
β(k) = (α(k), β(k))ω(n), (7)

where ω(n) is a unit n-form and the brackets (·, ·) denote an inner product, which
computes a scalar field from the vector proxy of the forms. This inner product
results in a 0-form defined such that on the n-dimensional Euclidean domain:
(α(1), β(1)) =

∑n
i=1

∑n
j=1 AiBjg

ij , where (A1, ..., An) and (B1, ..., Bn) define the
vector proxies of α(1) and β(1), respectively, and gij is the inverse of the metric
tensor.

The spaces of forms are also equipped with an integral inner product or also
referred to as an L2 inner product defined as:

(α(k), β(k))Ω =
∫

Ω

(α(k), β(k))ω(n). (8)

When working with multiple domains, differential forms are equipped with
an operator, which transforms forms defined on the codomain to the domain;
the pullback operator. Consider the mapping of coordinates Φ : ̂Ω → Ω, then
the pullback operator is the mapping: Φ∗ : Λ(Ω) → Λ( ̂Ω). For the k-form a(k)

defined on Ω, the following relation can then be constructed:
∫

Ω

a(k) =
∫

Φ( ̂Ω)

a(k) =
∫

̂Ω

Φ∗a(k). (9)

3 Mimetic Least-Squares Formulation

The variable φ in (1), is represented by the inner oriented 0-form φ̃(0). The
Laplace operator working on a 0-form is constructed using the exterior deriva-
tive and Hodge star operator Δ → 
d 
 d, which results in a 0-form. The source
function in (1) can be represented by an inner oriented 0-form, f̃ (0). The term
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∇ · (uφ) represents the conservation of convective flux, which is naturally con-
structed using the Lie-derivative. One way of implementing this is to consider
the 2-form �φ̃(0) for the convective term, such that the following equation is
obtained:

Lu � φ̃(0) + d � dφ̃(0) = 
f̃ (0), (10)

where the right hand side is replaced by the 2-form f (2) = 
f̃ (0). Using Cartans
homotopy formula, (6), the convective term reduces to only one term, since
d ◦ d ≡ 0. This leads to the following equation:

dιu � φ̃(0) + d � dφ̃(0) = f (2). (11)

This allows defining the outer oriented 1-form q(1) = ιu� φ̃(0)+�dφ̃(0), which
can be interpreted as the total flux of the potential, i.e. the sum of convective
and diffusive fluxes. A solution to the problem in (1), can then be obtained by
solving a conservation equation and a constitutive relation:

∇ · (uφ) + Δφ = f ⇔
{

dq(1) = f (2)

q(1) = ιu � φ̃(0) + �dφ̃(0).
(12)

The conservation equation can be solved exactly, while the approximation is
introduced in the constitutive equation. A least-squares functional is established
by integrating the squared residual over the domain,

J (φ̃(0), q(1); f (2)) =
1
2

(
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∣
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0
= (α(k), α(k))Ω . The least-squares method is a minimisation prob-

lem where the functional J is minimised by setting the gradient of J to zero,
[8]. If we define Λ̃0

0(Ω) as the space of all inner oriented 0-forms, satisfying
the boundary conditions in (2), and Λ1(Ω) as the space of all outer oriented
1-forms, then the variational formulation is obtained as: Find φ̃(0) ∈ Λ̃0

0(Ω) and
q(1) ∈ Λ1(Ω) such that:

(dp(1), dq(1) − f (2)) = 0 ∀ς̃(0) ∈ Λ̃0
0(Ω)

(p(1) − ιu � ς̃(0) − �dς̃(0), q(1) − ιu � φ̃(0) − �dφ̃(0)) = 0 ∀p(1) ∈ Λ1(Ω). (13)

4 Mimetic Spectral Discretization

The unknowns in the system are expanded using Lagrange polynomials [9] and
edge polynomials [5]. Consider the one dimensional domain Ω1 = [−1, 1] on
which N+1 Gauss-Lobatto-Legendre (GLL) nodes are defined: −1 = x0 < · · · <
xN = 1. Using these nodes we define N+1 Lagrange polynomials hi(x), such that
hi(xj) = δij . The expansion coefficients are then equal to the 0-form evaluated in
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the nodes: ai = a(0)(xi). The 0-form φ(0) = φ(x, y) is expanded using Lagrange
polynomials in both coordinate directions:

φ
(0)
h =

N
∑

i=0

N
∑

j=0

φijhi(x)hj(y). (14)

For 1-forms and 2-forms edge polynomials, presented in [5], are used to con-
struct the approximation of the form. Consider the 1-form q(1) = qx(x, y)dx +
qy(x, y)dy. Then the approximated form is represented as:

q(1) ≈ q
(1)
h =

N
∑

i=0

N
∑

j=1

qx
ijhi(x)ej(y)dx +

N
∑

i=1

N
∑

j=0

qy
ijei(x)hj(y)dy (15)

where ei(x) and ej(y) are edge polynomials defined from derivative of the
Lagrange polynomials. From the N+1 Lagrange polynomials it is possible to
define N edge polynomials:

ei(x) = −
i−1
∑

j=0

dhj(x)
dx

, for i = 1 : N (16)

which are connected to line segments between the nodes by the following relation:
∫ xj

xj−1
ei(x)dx = δij for i, j = 1 : N . For the 2-form ρ(2) = P (x, y)dx ∧ dy the

approximate form is constructed as:

ρ(2) ≈ ρ
(2)
h =

N
∑

i=1

N
∑

j=1

ρijei(x)ej(y). (17)

5 Numerical Results

Choosing a solution for the convection-diffusion problem as:

φsol(x, y) = (x2 − 1)(y2 − 1) sin
(

1
2
πx

)

, (18)

and a known divergence free velocity field as u = ux ∂
∂x + uy ∂

∂y where ux =
sin(πx) cos(πy) and uy = − sin(πy) cos(πx) we can calculate the source term.

The grid is constructed using the mappings; x(ξ, η) = ξ+c sin(πξ) sin(πη) and
y(ξ, η) = η + c sin(πξ) sin(πη), where c is a skewness parameter, see Fig. 2. The
results are shown in Fig. 3. It is observed that we obtain exponential convergence
for the unknown potential (Fig. 3b) as well as for the accuracy of the constitutive
equation (Fig. 3c). Both convergence plots show lower accuracy for large skewness
of the mesh (the c parameter). In Fig. 3d we plot the invariant, q(1), as function
of the polynomial order and it is solved to machine accuracy.
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Fig. 2. Grid shown for N = 15 using mapping. (a) c = 0. (b) c = 0.1. (c) c = 0.2.

Fig. 3. (a) The divergence free vector field defined for the convection-diffusion problem
in (18). (b) Convergence plot showing the error calculated using the analytical solu-
tion for the convection-diffusion problem. (c) Accuracy of the constitutive equation.
(d) Conservation of q(1) shown for increasing polynomial order.

In order to study the method on convection-dominated problems we consider
the slightly different problem:

∇φ + ε∇2φ = f, (19)
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Fig. 4. (a) Convergence plot showing the error calculated for the convection-dominated
problem in (19). (b) Condition number of the coefficient matrix.

with the solution:

φsol(x, y) = (x2 − 1)(y2 − 1) cos (x) ,

In Fig. 4 we present the results for the second problem. We observe that for
small values of ε it is not possible to obtain an accurate solution for the problem.
The condition number has increased to a critical level which causes problems. In
[11] a stabilization term is introduced in the form as ’upwinding’ flux for a Least-
Squares finite element method. This introduces stabilization, however a slightly
modified convection-diffusion equation system is solved. In [7] it is argued that all
least-squares methods do not give reasonable results for convection-dominated
problems possessing both interior and boundary layer structures in the solution.
Solving convection-dominated problems with the least-squares method require
further investigation. This introduces stabilization, however a slightly modified
convection-diffusion equation system is solved for.

6 Conclusion

In this paper we present a spectral mimetic least-squares method for convection-
diffusion problems. We show that by encapsulating the underlying geometric
properties in the problem, we are able to discretize the convection-diffusion prob-
lem such that the invariant is conserved. The topological part of the problem
can be satisfied to machine precision for moderate low values of the diffusion
coefficient. However, for highly convection-dominated problems, i.e. for low val-
ues of the diffusion coefficient, the condition number of the associated matrix is
huge and it is not possible to obtain the correct solution of the matrix system.
We have in the present problem used a direct solver, however one of the main
features of the Least-Squares method is that we obtain symmetric coefficient
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matrices and we can therefore use fast iterative solvers such as the precondi-
tioned conjugate gradient method. Stabilization techniques could be one way of
solving the problems with high condition numbers.
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