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Chapter 1
Research in Early Childhood Mathematics
Education Today

Iliada Elia, Joanne Mulligan, Ann Anderson, Anna Baccaglini-Frank
and Christiane Benz

Abstract This edited book brings together a collection of research-based work
from different contexts across the globe to contribute to improving knowledge and
understanding of major issues that early childhood mathematics education
encounters today and to advancing research, development and practice in this field.
The chapters of the book are based on the invited contributions in TSG 1: Early
Childhood Mathematics Education at ICME-13. The chapters provide a wide scope
for discussion of current themes, theoretical perspectives and methodological
approaches to promoting teaching and learning of mathematics in the early years.
This chapter includes an overview of the core focus of the chapters.
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1.1 Introduction

Early childhood mathematics education (ECME) involves creating learning envi-
ronments and providing activities by professionals (practitioners and educators) to
give young children (approximately ages birth 0 through 7 years) opportunities and
experiences for their mathematical development in child-care centers,
pre-kindergarten, kindergarten and primary schools. Children’s development in
mathematics can also be motivated outside educational settings, that is, in the
children’s home environment during their interactions with family members.
Family-based activities are highly valued as the foundation on which ECME can
build.

ECME is not new; it has a long history. It began in 1631 when Comenius in
Poland, published his book ‘School of Infancy’ which initiated the creation of
mathematics programs for young children relying on the use of concrete materials.
Since then, many historical ideas of pioneers, including those of Pestalozzi, Fröbel,
Owen, and Piaget, have contributed to the existing awareness of the importance of
mathematics education for young children (Van den Heuvel-Panhuizen and Elia
2014; Saracho and Spodek 2009a, b).

Today and in the past few years ECME has gained a prominent position in the
research community of mathematics education. The interest in, and recognition of
the importance of, the teaching and learning of mathematics in early childhood,
have grown through the research outcomes that provide evidence for the positive
relation between children’s early mathematical knowledge and their later mathe-
matics learning and academic achievement (e.g., Duncan et al. 2007; National
Research Council 2009). Further research highlights the significance of early
childhood in brain development (Shonkoff and Philips 2000) and the strong
emphasis many countries are putting on pre-school education.

This edited book aims to contribute to improving knowledge and understanding
of key issues that ECME encounters today in different contexts and to propose ways
of advancing research, development and practice in the teaching and learning of
early childhood mathematics. This book brings together a collection of chapters on
current research in ECME which are written by a broad range of scholars across the
globe providing a wide scope in themes and approaches to promoting teaching and
learning of early childhood mathematics. The chapters are mainly based on the
invited contributions in TSG 1: Early Childhood Mathematics Education at ICME
13, which took place in July 2016. In addition, it is to be noted that many other
presentations by researchers from different countries with different educational
systems, cultures and research traditions took place in the sessions of TSG 1.
Throughout the chapters (including the present one), this book incorporates refer-
ences to the content of these contributions, which substantially enrich and advance
the discussion about the present and the future of ECME from an international
perspective.

To capture the diversity of topics and perspectives of the book, the chapters have
been grouped into five key themes (although themes are diffused throughout the
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chapters): (1) Pattern and Structure, (2) Number sense, (3) Embodied action and
context, (4) Technology and (5) Teacher professional issues and education. The
core focus of the chapters within each theme is described below.

1.2 Theme 1 Pattern and Structure

The first theme of this volume focuses on current research on the development of
mathematical structure. Three chapters present findings from recent studies of
patterning and structural development in preschoolers and children in the first years
of formal schooling. Mulligan and Mitchelmore (2018) provide an overview of the
outcomes of the Australian Pattern and Structure Project comprising a suite of
studies with four to eight-year olds. This introductory also paper provides segue to
the two related and complementary papers that follow by Lüken (2018), and Lüken
and Kampmann (2018) with German preschoolers and first graders respectively.

Mulligan and Mitchelmore focus attention on the current application of their
studies over the past decade to the assessment of early mathematics and an aligned
pedagogy based on pattern and structure. Building on their studies of patterning,
counting, the numeration system and multiplicative thinking, the project focused on
identifying, describing and measuring common structural characteristics in math-
ematical development, Awareness of Mathematical Pattern and Structure (AMPS).
AMPS comprised two interdependent components: one cognitive—knowledge of
structure, and one meta-cognitive—a tendency to seek and analyze patterns
(Mulligan and Mitchelmore 2009).

A revised interview-based assessment, the Pattern and Structure Assessment
(PASA) is described in three forms, validated in a recent study with 618 children in
the first two years of formal schooling (Mulligan et al. 2015). The PASA assesses
common core concepts including repeating and growing patterns, partitioning
two-dimensional and three-dimensional shape and space, multiple counting and
base ten structure, arrays and grids, distance and scale, and units of length, area,
volume/capacity, and time and graphs. Qualitative analyses reliably classified
responses into five ordered structural categories: pre-structural, emergent, partial,
structural and advanced structural. Using Rasch modeling, an overall Awareness of
Mathematical Pattern and Structure (AMPS) score was calculated and reported as a
location on an AMPS scale. The AMPS scale makes it possible to compare chil-
dren’s level of AMPS across year (grade) levels, regardless of which PASA
assessment form they are given.

The Pattern and Structure Mathematics Awareness Program (PASMAP) is
described in two phases comprising 17 Pathways aligned with five structural
groupings: sequences, structured counting, shape and alignment, equal spacing and
partitioning. The interrelationships within and between these groupings demon-
strate the highly integrated nature of AMPS learning and the importance of spatial
structuring in developing pattern and structure. Implications for new research on
spatial reasoning for young children are discussed.
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The chapter by Lüken focuses explicitly on the relationship between the
development of early repeating patterning competencies and later arithmetical
achievement. Lüken’s longitudinal explorative study tracks six children’s pattern-
ing development from their first to third year of German kindergarten. Three
task-based interviews are conducted over the two-year period. Results suggest that
significant development takes place in children’s repeating pattern competencies
between the age of three and four years. Also, over the kindergarten years the
children’s strategies improved while they were describing, copying, repairing,
extending, and translating repeating patterns. Steps in development were identified
as the ability to identify the pattern, the ability to discern elements as identical and
match them and the ability to alternate two elements. Children’s strategies for
completing different patterning activities were integrated into five increasingly
sophisticated categories: no reference to pattern, use of pattern elements, compar-
ison, focus on sequence, and a view of unit of repeat. In their first year of German
kindergarten, no child was able to correctly copy a simple exposed pattern, let alone
extend it or identify missing elements. What all children correctly did was repro-
duce the linear arrangement: aligning the cubes in one row. Lüken proposes that
this gestalt view might be children’s first distinction of the differences between
patterns: two patterns are the same when they are both linear arrangements and they
are different when one is linear and the other not. In the final assessment point when
the children were aged 5 years they used strategies of comparison and focusing on
the sequence. However, it was found that the view of unit of repeat still was not
developed. This was considered critical to the children’s mathematical thinking as
Lüken highlights that mathematics is about analyzing the pattern’s structure, in
discerning the unit of repeat. The findings do not however preclude development of
the concept of unit of repeat in the year prior-to-school or from ages four to five.

The chapter by Lüken and Kampmann presents a related study that found that
patterning and structural abilities in the kindergarten can positively influence
arithmetic skills in Grade 1. They describe an intervention study promoting pat-
terning skills with 51 first graders that showed significant differences between pre-
and post-test arithmetic achievement scores for the intervention group. This
improvement was achieved after five months of explicit teaching of pattern and
structure during regular mathematics lessons. The intervention lessons included
recognizing, describing, explaining and creating patterns with an emphasis on
structuring the base 10 system. The improvement was particularly beneficial for the
lowest-achieving children. The differentiated analysis of achievement levels
showed that half of the children with achievements below average succeeded in
gaining age-adequate results by the end of the intervention. Consequently, they
assert that fostering pattern and structure abilities might be the key to supporting
lower-achieving children to develop their overall mathematical abilities. In contrast
the high achievers’ results were not affected either way. Lüken and Kampmann’s
interpretation was that “higher-achieving children, of their own accord, discover,
seek out, and use pattern and structure in mathematics” (p. 64, this book).
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1.3 Theme 2 Number Sense

The research presented in TSG 1 on the theme ‘Number sense’ examines different
aspects of number development in different parts of the world. This theme involved
three invited papers, oral presentations and posters. Before introducing each chapter
of the theme, the oral presentations and posters will be referred to.

The oral presentation by Dorier and Coutat (2016) highlights the importance for
pre-numerical learning called “enumeration” (see Briand 1999) from the back-
ground of French researchers’ work within Brousseau’s theory of didactical situ-
ations. Counting activities of children aged four and five years were investigated
when reading and making lists for designating and representing some collections of
objects with specific characteristics. Rinvold (2016) in his oral presentation presents
a study where he investigated the use of numerical finger gestures and other
bodily-based communication in order to facilitate the learning process of the first
three number words.

Another study is reported on the early development of number sense by
Adenegan (2016) in which he observed the link between writing skills and number
development for children aged three to six years in Nigeria. In Schlicht’s (2016)
poster, a study of the number development of young children in Germany is pre-
sented. He reconstructs the children’s mathematical knowledge to gain insight in
the development of the concepts of sets and numbers and draws attention to the use
of zero.

Later in number development children need to gain a conceptual understanding
of numbers and their cardinality, including the understanding of place value. This
aspect is highlighted in the poster by Young-Loveridge and Bicknell (2016). They
present the impact of using multiplication and division contexts with five to
seven-year olds on their number knowledge and operations and show that even
five-year olds are able to solve multiplication and division problems when pre-
sented in familiar contexts.

The three chapters concerning number sense report studies that took place in
contrasting cultures and contexts. The chapter by Bojorque et al. (2018) reports a
study in Ecuador, Rathé et al.’s (2018) chapter examines the effect of picture book
reading in a study conducted in Belgium, and Cheeseman et al.’s (2018) chapter
focuses on the effect of a measurement curriculum for numerical development
conducted in Australia.

The former two chapters of this theme address the Spontaneous Focusing On
Numerosity (SFON). SFON indicates if someone spontaneously focuses and pays
attention to the exact number of a set of items or incidents in daily life. Rathé et al.
(2018) first present a review of the current research literature on the association
between SFON in experimental tasks and everyday activities and then provides a
short summary of two studies conducted in Belgium. They examined the associa-
tion between children’s SFON in experimental tasks and during everyday picture
book reading. Bojorque et al. (2018) show that the SFON tendency and its relation
to early numerical abilities can be observed in different cultures. They investigate if
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and how early numerical abilities contribute to Ecuadorian kindergartners’ SFON
tendency at the end of the kindergarten year and also whether the quality of early
mathematics education in Ecuadorian kindergarten contributes to children’s SFON
development.

The chapter by Cheeseman et al. (2018) focuses on another aspect of number
development. They report on a study with children of five and six years of age in
Australia with a focus on the relation between measurement and number devel-
opment. The children did not start with a typical number-focused curriculum but
with a measurement-focused curriculum where numbers were included. Both
quantitative and qualitative analyses show if and how a measurement-focused
curriculum can contribute to number development.

1.4 Theme 3 Embodied Action and Context

The third theme of the book focuses on research on embodied action and context for
early mathematics learning. Prior to introducing the three chapters in which this
theme is present, we give a brief description of five additional presentations (oral
communications and posters) in TSG 1 which are related to the theme.

Specifically, Karsli’s (2016) study addresses the embodied nature of knowing
and knowledge in a pre-kindergarten classroom using video-ethnographic research.
The particular study shows that young children’s bodies hold rich potential for
different types of mathematics, including number, space, shape and measurement.
Furthermore, the study suggests that early childhood teachers’ attention to the
embodied ways in which children engage with mathematics in different contexts in
pre-school would substantially improve a teachable-moments approach focusing on
children’s spontaneous mathematics-related actions.

The study by Watanabe (2016) focuses on young children’s spatial abilities.
Particularly, five and six year-old children are examined when participating in
activities when physically making a cube. It was found that children’s ability to
mentally visualise a three-dimensional shape from a two-dimensional net repre-
sentation of a cube improved after using a polydron geometric toy to assemble and
convert a two-dimensional plane figure into the three-dimensional shape of cube for
a particular period of time.

Yagi (2016) reported a study of first grade children’s mathematical processes in
the context of whole group mathematics discourse in the classroom. The findings of
the study suggest that children can communicate their mathematical thinking
explicitly and their engagement in emergent forms of mathematical processes, such
as reasoning and identifying mathematical structure, are manifested within whole
group discourse.

The work by Henschen (2016) addressed children’s engagement with mathe-
matics in a different context, that is, in free play. In particular, the study focused on
the mathematical ideas children encounter in blockplay activities and raised the
methodological issue about how to identify and analyze the mathematical content in

6 I. Elia et al.



the observations of children’s play through video-recorded data. Young children’s
experiences with mathematics in the context of play was also the focus of the study
by Nakken et al. (2016). In this study children’s play took place in a mathematics
room which was designed for the needs of the particular research work. Preliminary
findings indicate that guided and structured play in the room yielded deeper
mathematical thinking and engagement with more specific mathematical concepts
by children than free play.

The three chapters included in the third theme of the book are by Thom (2018),
Elia (2018), and Anderson and Anderson (2018). The two former chapters refer to
current research on spatial thinking in early childhood and give further insight into
the crucial role of the body and other semiotic resources in young children’s
spatial-geometric reasoning.

In particular, the study reported in Thom’s (2018) chapter investigates children’s
spatial reasonings and meaning-making in geometry from an embodied perspective,
integrating gestures and diagrams. In particular, three children are engaged in an
exploratory activity involving the interpretation of a photo of the circular basis of a
cylinder. A narrative account of children’s conversations, gestures, and drawings
focuses on how children think and gain geometric awareness of challenging con-
cepts at specific moments of the activity and also how these reasonings and con-
ceptualizations change/evolve from one moment to another. For example, at first
the children name the image as “circle”, moving their fingers in the air to represent a
closed circular path of a point. They then move on to extend their circle into a third
dimension to become a cylinder, which is further explored in different orientations,
in deconstructing it and in transforming it into a net. This evolution of children’s
thinking and awareness is found to be entirely (em)bodied as gestures, movements,
drawings and words, indicating the integral role of the body in developing mean-
ings for geometrical concepts and objects of different complexity.

Elia’s (2018) chapter adopts a multimodal and semiotic theoretical perspective to
address young children’s thinking and learning in geometry with a focus on the role
of gestures, through three case studies. These studies examine children’s interac-
tions with teachers and peers in whole classroom or individual activities involving
the use of various semiotic resources and artefacts. The studies deal with different
aspects of geometry and spatial thinking. The first study investigates how gestures
contribute to the apprehension of geometrical figures while a kindergartner gives
instructions for the construction of a composite two-dimensional geometrical rep-
resentation with simple shapes using different artefacts. Irrespectively of the artefact
used, the child uses gestures of iconic character as a tool to simulate (or represent)
geometrical transformations, i.e., translation and rotation of two-dimensional
shapes. The second study focuses on the interrelations of gestures with other
semiotic resources in a whole group discussion in a kindergarten classroom about
the different attributes of two-dimensional shapes. The gestures produced by the
child under study materialize a part of his concept images of two-dimensional
geometrical objects, without necessarily producing any words himself but by
attending to a peer’s corresponding words. The third study of the chapter analyzes
the discourse of a 4-year old child with his teacher and peers about spatial concepts.
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In the process of objectifying spatial concepts, such as “in” and “out”, the child’s
gesture evolves by becoming more simplified and shortened. Overall the chapter
gives insight into how gestures in association with other semiotic resources influ-
ence geometrical activities and contribute to different aspects of early geometry
thinking and learning in various contexts.

Besides formal or informal learning in school contexts between children,
teachers and peers, learning that occurs in the home between parents and children
considerably affects children’s knowledge, understanding, skills and dispositions in
mathematics. This effect possibly appears to a greater extent in early childhood than
at any other school grade. The focus of the chapter by Anderson and Anderson
(2018) is on mathematics learning in various contexts of home environments.
Particularly, the authors study in a systematic and detailed manner the types of
mathematics which young children engage in during their (verbal and non-verbal)
interactions with family members at home in different contexts. The findings of the
study provide evidence for the variety of the types of mathematics that emerge in
children’s activities with parents at home, with the prevalence of geometric, spatial
and measurement concepts compared to number-related concepts. Furthermore, the
study shows the important role that materials and kinds of interactions play in
specifying the types of mathematics shared within the activities. Also, according to
the authors, the embodied ways in which pre-school children and parents might
engage with geometry at home are also relevant and require further in-depth
analysis.

1.5 Theme 4 Technology

Theme 4 of this book focuses on the use of technology in early childhood math-
ematics education. This theme was present in seven of the presentations given
during TSG 1 sessions. Before introducing the content of the three chapters, based
on invited papers, we briefly describe the other papers and posters presented during
the TSG 1 sessions that touched on this theme.

In particular, Fletcher and Ginsburg (2016) presented a study involving software
to facilitate discourse and promote understanding of symmetric transformations.
This is an important and delicate topic that plays a vital role across branches and
levels of mathematics, but that unfortunately is given minor attention in early
childhood mathematics curricula in many nations. In their study, Fletcher and
Ginsburg were interested in evaluating the effects of using such software on chil-
dren’s discourse on symmetric transformations: their results suggest that the soft-
ware can be indeed be utilized to strengthen symmetry-focused mathematics
discourse in early childhood classrooms, thereby contributing substantially to stu-
dents’ understanding of symmetry.

Also the work by Nivens and Geiken (2016) addresses learning mathematics
through particular software. They describe a study on using a computer science-
based board game, Robot Turtles, with the aims of identifying mathematical
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concepts children develop when playing the game, and explore how playing it also
influences children’s interest in computer-programming type games.

Two final contributions to TSG 1 address, respectively: the topic of augmented
reality, in particular how it can be used to arouse children’s curiosity and interest in
learning numbers (Ong 2016); and a category system for analyzing pre-school
teachers’ use of ICT in their classroom practices, through the “instructive actions”
of identifying, explaining, planning, supervising and analyzing (Sànchez García
et al. 2016).

The three chapters in Theme 4 of this book are by Sinclair (2018),
Baccaglini-Frank (2018) and Ginsburg et al. (2018); they refer to current research in
the area of technology in early childhood mathematics education, and introduce
interesting issues, both theoretical and practical, opening new research venues.

Sinclair’s (2018) chapter is about multimodal, embodied and semiotic aspects of
learning, and it discusses three innovative issues on the use of digital technology in
early mathematics education that may transform the learning and teaching of
mathematics. The first issue is that of temporalizing early childhood mathematics
(time), which suggests that the use of dynamic geometry software and how a new
multi-touch app for counting (TouchCounts) can promote the learning of sophis-
ticated mathematical ideas through embodied actions highlighting dynamic aspects
(which can only exist thanks to time) of mathematical objects. The second issue
concerns the importance of children’s contact with advanced mathematics (im-
mersion) often beyond the curriculum, which is now possible thanks to less con-
strained digital environments. The third issue is the affordance of digital technology
to support the articulation of signs in children’s mathematical work, and especially
the relations developed between digital technologies and paper-and-pencil envi-
ronments. In doing this, Sinclair also considers the challenges that teachers face in
integrating new technologies that differ significantly from existing paper-and-pencil
modalities and physical manipulatives.

The second chapter of the section addresses the possibility of strengthening
children’s number sense through interaction with two iPad apps. The study pre-
sented by Baccaglini-Frank (2018) was part of an educational project that took
place in Italian pre-schools, where an educator followed a previously tested pro-
tocol proposing the two apps to children between the ages of five and six, who
interacted with the software through multiple-touch gestures on the screen. The
chapter introduces the schemes developed by the children in response to the apps,
and it includes a focus on the role the educator’s interventions seemed to play in
such development. In particular, analyses of the data collected suggest that the
educator’s interventions privileged and encouraged schemes involving counting,
which limited the variety of schemes enacted and the aspects of number sense that
could have been strengthened through the interactions with the apps.

The use of digital tools to support and possibly enhance adult-child joint activity
is a topic addressed by Ginsburg et al. (2018) in their chapter, the third of this
theme, which introduces key features of the digital resource he and his team
designed and produced. As Ginsburg et al. indicate, interactive mathematics books,
fiction and non-fiction, enveloped in a digital surround of supporting materials—
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their “Friends”—can delight and educate young children as well as those (e.g.,
parents, teachers, siblings) who read with them, yet few such books now exist, and
little is known about them. In the chapter the authors describe and illustrate the
potential of interactive mathematics storybooks (IMS), which entail a special set of
affordances that can promote young children’s mathematics learning, and the sur-
rounding “Friends”, which can help the adult better understand both the mathe-
matics and the child.

1.6 Theme 5 Early Childhood Educators’ Professional
Issues and Education

Two chapters in this book, that is, by Cooke and Bruns (2018) and by Tsamir et al.
(2018), focus on current research on the theme about early childhood teacher
professional issues and education.

The chapter by Cooke and Bruns provides a comprehensive overview of the
various contributions presented in the TSG 1 which address issues related to early
childhood educators. From the perspective of the educators, the authors propose a
categorization of the conditions for developing mathematical understandings into
three levels: macro-, meso- and micro-level. At the macro-level, curricula provide a
framework (aims, content to learn and activities) for mathematics teaching and
learning in early childhood with varying views, expectations and enactments by
educators which may impact early mathematics learning opportunities (Fosse and
Lossius 2016; Lao 2016; Lembrér and Johansson 2016).

The central topic of the presentations linked to the meso-level is about early
childhood educators’ competences, including mathematical knowledge, pedagogi-
cal knowledge, understandings, beliefs, and perceptions. These aspects constitute
factors that influence teachers’ classroom decisions and actions (Bruns et al. 2016;
Cooke 2016; Dunekacke et al. 2016; Eilerts et al. 2016; Goto 2016; Jenßen et al.
2016; Tsamir et al. 2018). Early childhood educators’ competencies can be sup-
ported and developed by professional learning (Feza and Bambiso 2016; Hassidov
and Ilany 2016).

The micro-level refers to the mathematics educational programs and materials
that may impact children’s engagement with mathematical activities, as well as to
the required training for the educators’ to develop their capability to effectively
select and implement such programs that address children’s mathematical needs
(Fritz-Stratmann et al. 2016).

Previous research suggests that teachers’ practices and actions for the teaching of
mathematics are related to their mathematical knowledge (e.g., Shulman 1986) and
self-efficacy (e.g., Allinder 1994). However, knowledge and self-efficacy might
vary in different mathematical domains and tasks. The chapter by Tsamir et al.
(2018) reports on a study which focuses on early childhood teachers’ self-efficacy
beliefs in a specific mathematical domain, that is, patterning, and the relationship
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between their knowledge for teaching in this domain and self-efficacy. Using the
Cognitive Affective Mathematics Teachers Education (CAMTE) framework (e.g.,
Tirosh et al. 2014) as a research tool, Tsamir et al. (2018) investigate early child-
hood teachers’ knowledge of evaluating solutions (including identifying repeating
patterns, errors in repeating patterns and possible ways for continuing repeating
patterns). Teachers are found to hold high self-efficacy beliefs about solving the
patterning tasks. Their actual performance in identifying repeating patterns and
mistakes in repeating patterns is high as well. However, teachers encounter diffi-
culty in identifying appropriate continuations of repeating patterns that do not end
with a complete unit of repeat. Also they are inclined to select continuations which
end the pattern with a complete unit of repeat although continuations ending with a
partial unit of repeat would be also correct. These findings indicate the need to
provide teachers further experiences of the variation in patterning tasks, which
could be met by appropriate professional development.

To conclude, we would like to thank the chapter authors for their insightful and
creative perspectives on contemporary developments in early mathematics learning
and teaching. We thank also the presenting authors of the contributions in TSG 1 at
ICME-13 for their substantial and inspiring presentations and their enduring work
in advancing the field. We hope that a broad audience of researchers, early child-
hood educators, pre-service teachers and doctoral students find the book chal-
lenging and useful for their current and future research work in early childhood
mathematics education.
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Part I
Pattern and Structure



Chapter 2
Promoting Early Mathematical Structural
Development Through an Integrated
Assessment and Pedagogical Program

Joanne Mulligan and Michael Mitchelmore

Abstract Early development of mathematical patterns and structures has been the
focus of a suite of studies with four- to eight-year olds comprising the Australian
Pattern and Structure Project over the past decade. Awareness of Mathematical
Pattern and Structure (AMPS) has been identified and measured, and found to be
indicative of general mathematical achievement. A revised interview-based
assessment, the Pattern and Structure Assessment (PASA) is represented in three
forms, validated in a recent study with children in the first two years of formal
schooling. The Pattern and Structure Mathematics Awareness Program (PASMAP)
is described as two phases of Learning Pathways according to five structural
groupings: sequences, structured counting, shape and alignment, equal spacing and
partitioning. These groupings were found to be critical to developing coherent
mathematical concepts and relationships. Implications for research in early math-
ematical development are outlined.

Keywords Early childhood � Mathematics education � Patterns
Structural development � Intervention

2.1 Introduction

Research in early childhood mathematics education has witnessed increasing
impetus over the past decade reflecting calls for a more integrated approach to
investigating children’s mathematical development (Mulligan and Vergnaud 2006).
The influence of cross-disciplinary and interdisciplinary approaches, including
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various cognitive and neuro-cognitive theories has been recognized across many
new studies (e.g., Butterworth 2015). The development of number concepts has
been studied in investigations of processes such as subitizing (the rapid and
accurate perception of small numerosities), comparison of numerical magnitudes,
location on a number line, axis differentiation and symmetry (e.g., Dehaene 2011).
Other approaches have identified children’s Spontaneous Focusing On Number
(SFON) (Hannula and Lehtinen 2005). New cross-disciplinary studies are providing
strong evidence that spatial reasoning skills are malleable and are of critical
importance in the early years, and that these skills impact on later mathematical
development (Davis 2015; Verdine et al. 2013). Spatial ability has also been linked
to development of patterning and early algebraic skills (Carraher et al. 2006;
Clements and Sarama 2007; Papic et al. 2011; Warren and Cooper 2008). Related
studies highlight the critical role of perceptual subitizing and the spatial structuring
of groups in arrays (Starkey and McCandliss 2014). Such studies are informing
pedagogical and curriculum initiatives centred on spatial approaches.

However, the aim to develop core numeracy knowledge and skills has remained
central to studies focused on improving outcomes in later mathematical achieve-
ment (Aunio and Niemivirta 2010). Counting and arithmetic strategy development
has dominated many early numeracy programs and assessment initiatives because it
was expected that development of these strategies would improve later mathe-
matical achievement. In some countries curriculum frameworks for pre-school
mathematics education have emerged, emphasizing the importance of a range of
mathematical domains including patterning and spatial skills, measurement, data
exploration and mathematical reasoning (Clements and Sarama 2007; English
2012).

An emerging line of research, focused on mathematical patterns and structures,
aims to provide a more coherent picture of the common underlying bases of
mathematical development (Mulligan and Mitchelmore 2009). This research has
identified how children can develop connected mathematical knowledge leading to
emergent generalization—through the development of patterns and structural
relationships. There are important synergies with current studies of children’s
spatial reasoning and geometry (Casey et al. 2008; Sinclair and Bruce 2015), and
the role of communication (Thom and McGarvey 2015; van Oers 2013). Other
cognitively-oriented studies have focused on quantitative relationships (Torbeyns
et al. 2015) akin to aspects of the work on structural relationships. Another key
influence has been the impact of embodiment theory (Elia 2018, this book; Radford
2009) on understanding children’s development of semiotic systems. These
approaches provide the context for a broader range of studies, several of which were
presented at ICME-13, which may drive change in the field beyond traditional
emphases on number and arithmetic (Lüken 2018; Lüken and Kampmann 2018,
this book). While domain-specific studies are necessary, there seems to be greater
consensus about the need for integrated studies focused on the big ideas, or
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underlying common processes. A common aim of the research of the ICME-13
TSG 1 on early childhood mathematics education (Elia et al. 2018, Chap. 16, this
book) is to describe and explain the wide variation in early mathematical compe-
tence in order to develop more effective pedagogical approaches.

2.2 The Pattern and Structure Mathematics Project

A suite of related studies with four- to eight-year olds has focused on the assess-
ment of a broad range of mathematical concepts and common structural features
(Mulligan et al. 2013). These studies have taken into account the complexity of
various components of mathematical competency by adopting a more integrated
view to answering some complex research questions: What are common salient
features of early mathematical development? Does the ability to recognize patterns
and structures reflect innate mathematical ability or can it be developed?

Based on early studies on patterning, counting, the numeration system and
multiplicative thinking the project focused on identifying and describing common
structural characteristics, later coined as the term, Awareness of Mathematical
Pattern and Structure (AMPS). AMPS comprised two interdependent components:
one cognitive—knowledge of structure, and one meta-cognitive—a tendency to
seek and analyze patterns (Mulligan and Mitchelmore 2009).

Through these studies students’ responses to a wide variety of tasks, developed
and administered as the Pattern and Structure Assessment (PASA) confirmed that
first graders’ responses could be reliably classified into five ordered structural
categories defined in Table 2.1. Qualitative analyses of student profiles indicated
that individual student’s responses to different tasks may have varied from task to
task, but students who responded at the highest structural levels on one task tended
to respond highly on other tasks. This similar pattern was found for students who
responded at the lowest pre-structural level (Mitchelmore and Mulligan 2017;
Mulligan et al. 2013).

Table 2.1 The five response categories used in scoring PASA items

Response
category

Characteristics of response

Advanced
structural

An accurate, efficient and generalized use of the underlying structure

Structural A correct but limited use of the underlying structure

Partial structural Shows most of the relevant features of the pattern and structure but
inaccurately organised

Emergent Shows some relevant features of the pattern and structure but incorrectly
organised

Pre-structural Shows at most, limited and disconnected features of the pattern and
structure
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2.3 The Pattern and Structure Assessment—Early
Mathematics (PASA)

A recent development is the validation of a new form of the Pattern and Structure
Assessment—Early Mathematics (PASA) (Mulligan et al. 2015). PASA consists of
three interview-based assessments designed for students in the first three years of
formal schooling (students from five to eight years). Each PASA focuses on similar
core concepts that underlie mathematical development ranging from 14 to 16 items
from foundation to year (grade) 2. The concepts assessed included repeating and
growing patterns, partitioning two-dimensional and three-dimensional shape and
space, multiple counting and base ten structure, arrays and grids, distance and scale,
and units of length, area, volume/capacity, and time and graphs.

2.4 Method

Two Sydney metropolitan schools were selected because they represented schools
gaining scores within one standard deviation of the mean on state-based numeracy
assessments in the third grade. Students were drawn from a diverse range of cultural
and socio-economic contexts. Three forms of the PASA were administered by the
research team to students in the foundation (F) year (kindergarten) and grade 1:
PASA-F (n = 213), PASA-1 (n = 189) and PASA-2 (n = 216).

The PASA tasks included:

1. Partitioning lengths into thirds
2. Border patterns
3. Triangular arrays
4. Partitioning
5. Ten frames
6. Counting by threes: number track
7. Spatial pattern continuation
8. Square arrays
9. Structuring/using the hundred chart

10. Constructing analogue clock
11. Grid completion
12. Comparing triangles
13. Growing pattern continuation
14. Making a ruler
15. Constructing bar charts
16. Comparing capacities

The PASA interviews were conducted consistently following protocols from
previous studies (see Mulligan et al. 2013). Each student also completed a
PATMaths achievement test, comprising multiple-choice items across basic
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numeracy (Stephanou and Lindsey 2013). Six trained interviewers piloted protocols
for conducting the interviews and coding of responses, with an inter-rater reliability
of 0.82.

Consistent with the earlier forms of PASA, responses to each interview item
were categorized by the interviewer as one of five broad levels of structural
development: pre-structural, emergent, partial, structural and advanced structural
using defined criteria (see Mulligan et al. 2013). Using Rasch modeling, an overall
AMPS score was calculated and reported as a location on an AMPS scale,
expressed as a scale score in a unit called amps (Mitchelmore and Mulligan 2017).

2.4.1 AMPS Levels on a Rasch Scale

Levels of AMPS are described along the Rasch measurement scale; response cat-
egories of each task are distributed differently along the scale depending on the
level of AMPS required for a response to be assigned to a category. The location of
a category of a task along the scale reflects the AMPS level required to respond in
that category relative not only to categories of the same tasks but for categories of
all PASA tasks. Four AMPS levels were identified and described on the scale,
showing the expected development of AMPS from the lowest level 1 to the highest
level 4, as follows:

1. Children struggle to recognize very simple patterns, e.g., they may copy block
patterns only by matching the blocks one by one; draw individual squares in a
grid pattern incorrectly, and count by ones up to three groups of two blocks.

2. Children recognize simple patterns, e.g., can identify unit of repeat and are
aware of some relations to other patterns; recognize shapes embedded in a grid
pattern.

3. Children are aware of fundamental structures such as underlying structure of
unit of repeat, alignment in grids and arrays, use of equal spaces and scale and
counting in multiples.

4. Children are aware of the generality of fundamental structures and can extend
these; e.g., extend a growing pattern, systematically replicate or partition a
pattern or area; explain the structure of numerals, draw and interpret graphs, and
use multiplication and division.

Another form of validation was a comparison of AMPS measures with measures
on another scale of mathematical achievement, the PATMaths scale, as all students
in the same sample completed the PATMaths assessment (Stephanou and Lindsey
2013). Although the two assessments provide different information about the
student’s mathematical competence they were found to be highly correlated;
Foundation (0.72), Year 1 (0.76) and Year 2 (0.84). The AMPS scale makes it
possible to compare student’s level of AMPS across year (grade) levels, regardless
of which PASA assessment form they are given.
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2.5 Structural Groupings

AMPS’ levels can be described overall, or according to each of the following five
individual structural groupings that represent the concepts embedded across the
range of items.

Sequences: recognizing a (linear) series of objects or symbols arranged in a
definite order or using repetitions, i.e., repeating and growing patterns and number
sequences.

Structured counting and grouping: subitizing, counting in groups, such as
counting by 2s or 5s or on a numeral track with the equal grouping structure
recognized as multiplicative.

Shape and Alignment: recognising structural features of two- and
three-dimensional shapes and graphical representations, constructing units of
measure, such as co-linearity (horizontal and vertical co-ordination), similarity and
congruence, and such properties as equal sides, opposite and adjacent sides, right
angles, horizontal and vertical, parallel and perpendicular lines.

Equal Spacing: partitioning of lengths or other two- or three-dimensional spaces
and objects into equal parts, and constructing units of measure. Equal spacing is
fundamental to representing fractions, scales and intervals.

Partitioning: equal division of lengths and other two- or three-dimensional
spaces, objects and quantities, into unequal or equal parts, including fractions and
units of measure.

A separate scale is provided for each of these structural groupings so it is
possible to view students’ AMPS according to different conceptual structural
groupings. This process provides valuable assessment data that can inform peda-
gogical planning and practice, and guide teachers to utilize the aligned program,
PASMAP, or other curriculum support programs.

2.6 The Pattern and Structure Mathematical Awareness
Program

Linked with the PASA, an innovative mathematics learning program comprising
the first stage of the Pattern and Structure Mathematical Awareness Program
(PASMAP) was developed and evaluated longitudinally with 316 students aged 4
to 6 years (Mulligan et al. 2013). Students were engaged in the experimental
intervention PASMAP for the entire first year of formal schooling. The study found
highly significant differences on the PASA between the program (intervention)
students and the ‘regular’ group at the retention point (p < 0.002) and increased
levels of structural development for intervention students. These levels were
retained one year later although the program was not sustained during this subse-
quent year. The study validated the instrument (PASA) and constructed a Rasch
scale indicating item fit. Students engaged in the PASMAP also showed consistent
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development of spatial reasoning, and structural relationships such as commuta-
tivity and equivalence, as well as the ability to form emergent generalizations.
These competencies were assessed through individual students’ responses to
structured tasks, comprising the representing, visualizing and generalizing pro-
cesses of the PASMAP pedagogical model, discussed later in the chapter.

Thus, further development and trials of the PASMAP learning experiences
directed attention to role of spatial reasoning in developing AMPS. Several
descriptions are provided of processes such as spatial structuring with a key finding
that, coupled with visual memory, this was critical to forming and representing
concepts. PASMAP learning experiences focused on such aspects as identifying
objects or shapes in a foreground or background, alignment (co-linear or axis),
unitizing the number line, space and shape, symmetry and transformations, and
graphical representation of data.

Further development of the program (Mulligan and Mitchelmore 2016a, b) has
resulted in two phases of PASMAP integrating most key concepts and processes
across mathematics curricula, promoting a connected set of mathematical interre-
lationships. Each of the Learning Pathways focus on particular concepts or struc-
tures aligned with one or more of the five structural groupings described earlier.
Table 2.2 lists the Learning Pathways developed in two phases of PASMAP.
Table 2.2 PASMAP pathways, phases 1 and 2, aligned with structural groupings

Pathway Structural groupings

Phase 1

RP: Repeating Patterns Sequences, structured counting

SC: Structured Counting Structured counting, equal spacing

GS: Grid Structure Shape and alignment, structured counting

SS: Structuring Shapes Shape and alignment, partitioning

PS: Partitioning and Sharing Partitioning, equal spacing

BT: Base Ten Structure Equal spacing, structured counting, shape and alignment

GP: Growing Patterns Sequences, shape and alignment

SM: Structuring
Measurement

Equal spacing, partitioning, shape and alignment

SD: Structuring Data Equal spacing, shape and alignment

ST: Symmetry and
Transformations

Shape and alignment, partitioning, equal spacing

Phase 2

MP: Multiplication Patterns Sequences, structured counting, equal spacing, shape and
alignment, partitioning

FS: Fitting Shapes Together Shape and alignment, equal spacing

PF: Partitioning and
Fractions

Partitioning, equal spacing

PV: Place Value Equal spacing, structured counting

MM: Metric Measurement Shape and alignment, structured counting, equal spacing,
partitioning

PD: Patterns in Data Shape and alignment, equal spacing

AD: Angles and Direction Shape and alignment
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The design of the PASMAP intervention takes account of the assessment
(PASA) that measures the student’s level of AMPS. However the program can be
utilized in conjunction with other assessments and intervention strategies.
PASMAP was designed and trialed with young students aged four- to eight-years,
of wide-ranging abilities including those with mathematics learning difficulties
(MLD) and those assessed as gifted in mathematics. PASMAP is flexible in its
implementation because the teacher can target specific mathematical structures with
which the individual has most difficulty, or they can tailor the learning for students
with advanced AMPS. The program is not intended to be lock–step in imple-
mentation, although there are some learning experiences that precede others in
conceptual difficulty.

2.7 Making Connections Between and Within Pathways
and Structural Groupings

2.7.1 Pathways: Phase 1

PASMAP Pathways form an interconnected web of concepts and relationships that
may develop in very different ways and routes for individual children. Table 2.2
provides an overview of the pathways aligned with one or more of the five struc-
tural groupings described earlier. The first pathway, Repeating Patterns exemplifies
a sequence structure, for example, where a group of learning experiences is
organised in a specific order, where each experience has a specific position in the
sequence. Similar learning experiences can be grouped which are related to the
concept of unit of repeat and the notion of multiple counting. Thus structured
counting is interrelated with repeating patterns. This structure is linked in the
PASMAP to multiplicative reasoning including measurement and data representa-
tion, as well as early algebraic relations and functional thinking.

Structured Counting also provides opportunity to develop patterns with an equal
spacing structure (e.g., an empty number line) or when items are visualized and
counted in the form of an array. Here we would expect to see the simultaneous
development of the shape and alignment structure. The structure of arrays can be
utilized to form grids (e.g., squares and rectangles), and this is where the devel-
opment of co-linearity can occur. The alignment of the squares in horizontal rows
and vertical columns is critical to using square units of measure.

Grid Structure is central to many mathematical concepts such as area mea-
surement and because it is related to the development of spatial structuring it is
fundamental to the PASMAP approach. Constructing and interpreting grids also
relies on equal spacing. Grids are also connected with many spatial concepts such
as congruence, co-linearity and juxtaposition.

The properties of, and relationships between two- and three-dimensional shapes
enable exploration of the shape and alignment structure, developed in the Structuring
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Shapes pathway. Investigating how shapes can be partitioned into smaller parts and
then put together to form new shapes is explored further in Partitioning and Sharing.
Situations that require that objects, shapes or spaces be partitioned into parts often
require application of structured counting, equal grouping or equal spacing of
unstructured collections or whole objects. The early development of multiplication
and division as an inverse process is experienced through the reconstruction of shared
equal parts as multiplication. Some students’ experience of visualizing and con-
structing common fractions is unavoidably encountered.

The learning experiences of the pathway Base Ten Structure focuses on the
numeration system, which relies on the early development of structured counting
and equal grouping with explicit attention to grouping into tens. The notion of
quinary-based structure i.e., grouping by fives supports the grouping by tens
structure. There is a strong connection to the structure of the number line, an
important example of equal spacing. Particular emphasis is placed on the notion of
equal spacing of benchmarks 5, 10, 15 and 20. In connection, the experiences of
partitioning and structured counting contribute to the student’s estimation of equal
parts or spaces. This pathway uses ten frames (2 by 5 grids), which can be extended
to 20 and 50 frames to model the base ten system, provides a strong link to the
shape and alignment structure. Construction of ten frames and the connection with
counting and benchmarking on an empty number line extends structured counting
to focus on counting by 5s and 10s. These structures are exploited to develop
children’s ability to visualize order and magnitude and to develop computational
strategies for the four operations.

The Growing Patterns pathway focuses on the sequences structure developed in
the initial pathway of Repeating Patterns. Early development of the notion of unit
of repeat is considered pre-requisite to the development of growing patterns that are
more complex than repeating patterns. The learner must move beyond the notion
that extra units or ‘chunks’ can be added in repeating patterns or in sequences of
equally-spaced numbers (e.g., counting by twos) to the idea of the whole pattern as
multiplicative. Growing Patterns may lead to sequences of numbers, symbols,
objects or shapes that are not equally spaced. The basic concept is that there must be
a general rule for determining the next item in the sequence, whatever the items
may be. Engagement in growing patterns that involve spatial concepts also con-
tributes to children’s awareness of the shape and alignment structure.

The pathway Structuring Measurement provides fundamental experiences of
units of measurement: length, area, volume, capacity and mass. It is emphasized that
to measure any quantity, a single, fixed unit must be used. Understanding how these
units fit together in various contexts involves the equal spacing and shape and
alignment structures. Although they are represented in the later parts of the learning
pathways the experiences can be aligned with earlier pathways. The connection with
equal-sized units or equal spaces, grid structure, and partitioning leads to an
important generalization about relative size and structure of units, e.g., the smaller
the unit the more (units) will be needed to measure the quantity, object or space. The
measurement system that is developed through multiplicative and base ten concepts
is interrelated across the learning pathways. Although the learning experiences are
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limited, the measurement of time is explored through the ideas of a timeline and a
“time circle” as well as the structure of the analogue clock. These experiences also
involve the partitioning structure, since it is often necessary to divide a unit of
measurement (e.g., days) into more convenient sub-units (e.g., hours).

The pathway Structuring Data focuses on collecting simple categorical data,
organising it in the form of a table and representing it pictorially as picture graphs.
The basic concept is that each item in the data is best represented by a single
symbol or icon (analogous to a unit of repeat and a unit of measurement). Data
representation therefore involves the equal spacing structure. Grid structure is
fundamental to constructing a picture graph, since the icons stand on a single base
line and line up vertically and horizontally. This pathway thus involves the shape
and alignment structure.

There is no direct connection intended between the Structuring Measurement and
Symmetry and Transformations pathways. However Symmetry and Transformations
are placed at this stage of the sequence of pathways because they involve many of
the components of earlier pathways and the development of spatial structures.
Simple transformations are initially represented as a way of moving a shape, and a
shape that remains unchanged under a transformation is represented as having
symmetry. The learning experiences in this pathway explore three two-dimensional
transformations—reflection (flipping), translation (sliding) and rotation (turning)—
and the corresponding symmetries. Exploring symmetry and transformations further
develops children’s awareness of the shape and alignment and the equal spacing
structures. When children break a shape into parts to see if it is symmetrical, they are
also developing their awareness of the partitioning structure.

2.7.2 Pathways: Phase 2

The second phase of the PASMAP develops seven pathways that develop further
the learning experiences and five structural groupings of Phase 1. Multiplicative
concepts including place value and fractions, units of measurement, graphical
representation, angles and direction broaden the scope and depth of concepts
developed in Phase 1. The two phases do not explore every mathematical concept in
depth; other conceptual domains will be developed through the next group of
learning Pathways (in preparation) such as concepts of chance and probability.

The Multiplication Patterns pathway develops all five structural groupings in an
interrelated way. The emphasis is on sequences and structured counting in threes
and fours, while construction and representation of the number line involves equal
spacing and partitioning. Learning experiences also connect with spatial patterns
related to multiplication. Children explore multiples of 2, 3, 4, 5 and 10 in the
contexts of repeating patterns and grids (see Fig. 2.1). The number line is extended
to at least 50 to encourage structuring and representing of counting sequences that
repeat in the higher decades. Symmetry is embedded in some patterns and this
connects with the structural grouping of shape and alignment.
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Figure 2.1 shows a sequence of grids, where children are encouraged to look for
patterns in the number of squares, followed by construction of a table to represent
the patterns (Table 2.3).

The table can be extended to larger grids with four rows which can encourage
children to realize that the total number of squares is always four times the number
of columns (Mulligan and Mitchelmore 2016b, p. 37).

In Fitting Shapes Together children investigate how simple two- and
three-dimensional shapes fit together to make patterns and thereby deepen their
awareness of the shape and alignment structure. For example, patterns are con-
structed by fitting two or more equilateral triangles together or forming tessella-
tions, creating three-dimensional repeating patterns and making cuboids by folding
nets. Some of the investigations also draw on the equal spacing structure implicit in
grids.

The Partitioning and Fractions pathway highlights the importance of con-
structing unit fractions as a result of a partitioning process that creates a pattern.
Mixed numbers are also introduced. Partitioning may be seen as the opposite of
repeating patterns. This learning experience therefore also involves the equal
spacing structure. A series of learning experiences investigate the patterns arising
when a length or two-dimensional shape are partitioned into a number of equal
parts, and how fractions are represented on a number line, including the idea of a
mixed number.

The Place Value pathway explores patterns related to place value, where chil-
dren develop their awareness of the multiplicative structure of the base-ten system
and then extend their understanding to larger numbers and decimal currency.
Estimation and computational strategies are developed through patterns and
emergent generalizations. The equal spacing structure is connected with

Fig. 2.1 Columns of four squares increasing in size

Table 2.3 Pattern generated
from the sequence of squares
in Fig. 2.1

No. Columns No. Squares Total no. squares

0 4 0

1 4 4

2 4 8

3 4 12

4 4 16

5 4 20
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exploration of the empty number line while an understanding of the place value of
numerals is based on structured counting and multiplicative structure. For example
experiences include strategies for addition and subtraction using an empty number
line, constructing a hundreds chart and the structure of numerals beyond two digits.

The Metric Measurement pathway explores common physical quantities using a
variety of units based on the metre, area using square metric units, cubic units, litres
and millilitres, and time measurement. Understanding the relationship between
length, area, volume and mass is encouraged. Learning experiences connect with
shape and alignment and structured counting structures. For example, use of
measuring scales involves the equal spacing structure, and the division of units into
sub-units (e.g., metres into centimetres) involves the partitioning structure.

The learning experiences in the Patterns in Data pathway focus on the drawing
and interpretation of column and line graphs, where categorical and continuous data
are explored. The experiences focus on the relation between two quantities, one
represented on a horizontal axis and one on a vertical axis. Drawing a graph
freehand therefore involves the shape and alignment structure, and as quantities are
often represented by a scale on an axis, the equal spacing structure is utilized.

The Angles and Direction pathway focuses on the relationships between
directions, paths as movements in various directions, and perspective taking. For
example, children investigate how to find and record the size of various corners
which links turning to the concept of angle; and angles are linked with slides
(translations) to create paths. Technological toys, such as Beebots are integrated
into learning experiences. Perspective taking is developed through the idea that
objects can look quite different from different viewpoints. The learning experiences
draw heavily on the shape and alignment structure.

2.8 The Pattern and Structure Pedagogical Approach

Essentially, the PASMAP pedagogy is designed to move students towards gener-
alization, albeit simple or emergent, with a view to representing and abstracting
core structural elements and interconnecting them. The role of visual memory to
visualize, construct and represent mathematical patterns and structures is empha-
sized. The pedagogical process is summarized as follows.

Modelling

Children copy, model or describe a pattern linked to a specified mathematical task,
usually under teacher direction. The teacher ensures that children understand the
essential features of the pattern or structural features that are the focus of the
learning experience.
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Representing

Children record usually by drawing, the pattern or a model of the pattern while
visible without teacher direction. This experience helps children to isolate the
essential features of the pattern or structure from the particular example in which it
occurs. Digital technologies may also be utilized.

Visualizing

Children draw or symbolize the pattern or structure when it is not visible.
Comparing their productions with the original pattern or structure highlights its
essential features. The process of visualizing and comparing can be scaffolded
and repeated until children have internalized the pattern or structure.

Generalizing

The teacher supports children (either individually or as a group) to make the pattern
or structure explicit, find similar examples in other contexts, and express what is
‘general’ about the pattern.

Sustaining

Some learning experiences are provided that reinforce or extend children’s devel-
opment and application of the patterns or structures.

The following example describes a fundamental learning experience about grid
structure that requires the child to grasp the structural features of a grid, by working
through the phases of the PASMAP pedagogical process: initially the child models
the simple grid structure with squares; copies the grid accurately, then represents it
by drawing from memory. Structural features are highlighted: grids contain squares
of same size (congruent); they are equally spaced, and their sides are always aligned
(co-linear). Some children will discover that grids can be formed easily by forming
a pattern of coordinating horizontal and vertical lines sequentially, and equally
spaced. In connection with this basic structure, kindergarten children attempted to
utilize the spatial features of the square to generate and represent the pattern of
square numbers. In the following examples we see how two different children
produce drawings of the pattern of squared numbers from memory using grid
structure. In Fig. 2.2 the formation of a grid is limited to a 3 � 3 square drawn with
nine individual squares and an attempt to draw a 4 � 4 and 5 � 5 square is limited
by lack of spatial and multiplicative structure; and in contrast, in Fig. 2.3 we
observe another child’s representation of grid structure to represent the sequence of
1, 4, 9, 16, 25, 36 but the spatial structure of a square grid is limited to 5 � 5. The
child’s attempt to produce a 6 � 6 grid is represented as five additional vertical
squares. Thus the child has not continued the growing pattern in two dimensions.
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Fig. 2.2 Emergent grid
structure

Fig. 2.3 Grid structure
applied to a 5 � 5 square

2.9 Implications for Research and Practice

The Pattern and Structure project has provided an integrated assessment instrument
and pedagogical program for early learners that support an alternative approach to
developing mathematical concepts. However, it is still limited somewhat by the focus
on domain-specific aspects of AMPS such as partitioning and two- and three-
dimensional space. The evaluation studies of PASMAP have not yet fully articulated
how the learner forms interrelationships between pattern, geometry andmeasurement,
data and number through the development of the five structural grouping; further
research is in progress on establishing how these connections are formed.

The role of AMPS has also been studied in a related project on data modelling
and representation, that has described the development of structuring data—cate-
gorisation, scale and interval, and coordination of axes—as integral to
meta-representational competence with young gifted children (Mulligan 2015).

The role of spatial reasoning in the development and use of AMPS is not yet
fully understood; the relationship between pattern formation and spatial structuring
needs more in-depth investigation. Further recent analyses, utilizing network
analysis (Woolcott et al. 2015) has provided some visual links between the five
structural groupings as network maps of connectivity. This form of analysis
complements Rasch analysis because it highlights the connections, or lack thereof,
that children make between structural groupings and specific concepts. This is one
research domain that begs further development given the importance of spatial
reasoning in related Science Technology Engineering and Mathematics
(STEM) fields of learning.
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Further investigation is ongoing through a new study (Mulligan et al. 2017),
Connecting Mathematics Learning through Spatial Reasoning that investigates the
interrelationships between structural groupings and spatial reasoning tasks. The
project will develop an advanced form of the PASA, and a Spatial Reasoning
Mathematics Program (SRMP) for Grades 3 through 5 (students aged approxi-
mately 7–11 years). The PASMAP will be expanded in both scope and depth to
include a larger component on spatial reasoning, including transformations, spatial
structuring of two- and three-dimensional shapes, axis differentiation, co-linearity,
perspective taking and digitally-supported spatial representations.

In further studies it is imperative that the impact of PASMAP on mathematical
achievement is assessed longitudinally with larger and diverse samples and com-
pared with robust measures of mathematical development. Educators may need to
adopt a broader, or more focused view of what is fundamental to assess and teach.
This may require a reconsideration of what constitutes critical components of early
mathematical development based on emerging transdisciplinary research evidence.
The important question remains as to how educators can develop an understanding
of, and consequently promote, connected mathematical structural development
from an early age.
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Chapter 3
Repeating Pattern Competencies
in Three- to Five-Year Old
Kindergartners: A Closer Look
at Strategies

Miriam M. Lüken

Abstract Activities with repeating patterns are common and important in early
childhood education. Recent studies even show a (positive) relationship between
early patterning competencies and arithmetical achievement at school.
Nevertheless, there is insufficient research about the strategies children employ
when completing patterning activities and about the development of these com-
petencies in young children. This paper reports data from an explorative study that
tracks six children’s patterning development from their first to third year of German
kindergarten. Three task- and material-based interviews are conducted over the
course of two years. Results suggest that significant development takes place in
children’s repeating pattern competencies between the age of three and four years.
Furthermore, strategy categories for describing children’s construction of repeating
patterns are developed.

Keywords Early childhood � Mathematics education � Repeating patterns
Strategies � German kindergarten

3.1 Repeating Patterns in Early Mathematical Learning

Pattern and structure are central components of mathematics knowledge, illustrated
by two other chapters in this theme (Lüken and Kampmann 2018; Mulligan and
Mitchelmore 2018). Both authors relate to a broad concept of pattern and structure:
knowledge of structural relationships regarding many mathematical concepts and
patterns in different facets as spatial, repeating and growing patterns.
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In this study, one type of pattern—repeating patterns is foregrounded.
A repeating pattern is a sequence of elements (the unit of repeat) that is repeated
indefinitely and therefore has a periodic structure. Repeating patterns can be rep-
resented with different shapes or areas: for example, they may cover a particular
space or take the form of an object. In the study reported here repeating patterns are
shown as linear arrangements (see Figs. 3.1 and 3.2) as this seems to be the most
accessible kind of repeating pattern for very young children. Creating, copying and
extending repeating patterns are very common activities found in early childhood
learning settings (Economopoulos 1998; Miller et al. 2016; Papic et al. 2011). On
the one hand, young children engage in these activities spontaneously (e.g., Fox
2005; Ginsburg et al. 1999). On the other hand early childhood educators use
repeating pattern activities to initiate mathematical learning (see e.g., Fox 2006;
Hoenisch and Niggemeyer 2004), as reflected in early childhood curricula inter-
nationally (e.g., National Council of Teachers of Mathematics [NCTM] 2013;
Ministerium für Kultus, Jugend und Sport Baden-Württemberg [MKJS] 2014).

Lüken and Kampmann describe in Chap. 4 (this book) recent studies on pat-
terning that provide strong evidence that patterning knowledge is central to
mathematics achievement. These studies present empirical evidence that early
patterning abilities have a positive influence on later mathematics learning. In an
earlier study Mulligan and Mitchelmore (2009) found a nearly perfect correlation
between Australian grade 1 students’ (from 5 years 5 months to 6 years 7 months
of age) general mathematical understanding and their pattern and structure com-
petencies. Similarly, in an early study, Lüken (2012) showed a significant corre-
lation on a medium level between patterning competencies of school starters (from
5 years 8 months to 7 years 2 months of age) and their early mathematical com-
petencies, and a slightly lower correlation with their mathematical achievement at
the end of grade 2. Lüken et al. (2014) also found a significant effect of 5-year old
children’s repeating pattern abilities on their mathematical competencies in
kindergarten and the transition from kindergarten to school. This study showed that
children who are able to reproduce, extend and explain a repeating pattern in the

Fig. 3.2 ABC pattern (green, purple, orange) and AAB pattern (blue, blue, red) (2nd and 3rd MP)
(Color figure online)

Fig. 3.1 AB pattern (green, yellow) (1st, 2nd and 3rd MP) (Color figure online)
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form ABCC one year prior to school are those who demonstrate elaborate number
concept development in kindergarten and achieve at the highest level on a stan-
dardized mathematics classroom test at the end of Grade 1.

In a similar six-month intervention study, Kidd et al. (2013, 2014) assigned
struggling first-grade students randomly (mean age of 6.63 years, SD = 1.89) to
learning either patterns, numeracy, reading, or social studies. Children who received
pattern instruction performed as well or better on several standardized mathematics
assessments relative to children who received numeracy instruction, and system-
atically better than children who received reading or social studies instruction.
Thus, multiple studies indicate that understanding patterns is important for math-
ematics achievement.

Experiences with repeating patterns provide early opportunities to identify and
describe predictable sequences and as a conceptual stepping-stone in the devel-
opment of pre-algebra (Threlfall 1999). The foundations can also be considered a
precursor for functional thinking and algebra (e.g., NCTM 2000). Repeating pat-
terns are also highlighted as important for measurement and as critical to the
development of counting and multiplicative thinking (Mulligan and Mitchelmore
2009). Threlfall (1999) suggests that activities with repeating patterns develop
general mathematical concepts in children such as ordering, comparing, sequenc-
ing, classification, abstracting and generalizing rules, and making predictions.
However, Economopoulos (1998) points out that “To generalize and predict,
children must move from looking at a pattern as a sequence of ‘what comes next’ to
analyzing the structure of the pattern, that is, seeing that it is made of repeating
units” (p. 230). Thus, children must learn to identify the pattern unit: the part of the
pattern that repeats (Clements and Sarama 2009; Papic et al. 2011).

From my own observations as a teacher and as a researcher I have found that
children do not have to be aware of the unit of repeat in order to correctly create,
copy (duplicate), extend, or translate (abstract) a pattern. These activities can be
correctly completed by object-matching strategies or by the help of a good memory
and may not stand up to mathematical considerations (see also, Threlfall 1999).
Therefore, a closer examination of children’s views of repeating patterns is needed.
This might be achieved by analyzing closely their strategies while they engage in
patterning activities. Furthermore, despite the fact that the importance of patterning
ability is widely acknowledged, the development of these abilities, especially with
regard to children’s strategies in the early years of childhood is seldom explored.
However, early childhood educators need to be aware of young children’s steps in
the developmental journey towards mature pattern-making abilities as well as to
provide appropriate contexts to support mathematical learning.

To address our limited knowledge of early development of patterning compe-
tencies, the aims of this study were to explore growth in repeating pattern com-
petencies over the first three years of German kindergarten (ages three to five years)
and to describe strategies children employ when doing repeating patterning activ-
ities. Before describing the current study, I summarize past research on the early
development of patterning abilities with a particular focus on strategies and strategy
development.
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3.2 Research on the Early Development of Patterning
Strategies Abilities

Several researchers observed patterning as part of children’s everyday play (e.g.,
Ginsburg et al. 1999; Fox 2005, 2006; Gura 1992). In the context of such an
observational approach, Garrick et al. (1999) reported a study on the development
of early pattern-making skills. The research included a longitudinal study of 24
children, followed through from 3 years 6 months to 4 years 6 months of age. Data
was collected in play contexts. The children were engaged in creating and copying
patterns. The materials used were pegs, beads, and mosaic tiles, with which children
were able to structure their patterns both spatially and in terms of color organiza-
tion. As this paper’s focus is repeating patterns in the form of linear arrangements,
the findings of Garrick et al.’s (1999) research are described with regard to pat-
terning by color.

Garrick et al. (1999) found the awareness of color and the purposive creation of
similarities and differences by color as the very basic elements of pattern making.
These elements were observed to appear relatively early in development and then
led to the strategies of chained, alternated, repeated, multiplied, and symmetrically
placed. Chaining, the simplest strategy and the first to be seen in children’s work,
refers to the successive placement of groups or series. The simple chaining shows
no regularity concerning color or number. In patterns of advanced chaining, groups
of equivalent size are chained, but without regularity concerning color placement.
At this stage the child is following self-imposed rules for the selection of materials
and thus “showing an early awareness of some key features of pattern” (Garrick
et al. 1999, p. 11). Following closely in development is the alternation of (groups
in) two colors (e.g. AB, AAB, AABB). The difficulty for the children here is to
sustain an exact repetition of the size of the groups. Still, children’s work is con-
sidered alternated when two colors are used successively regardless of exact
quantity. At a more advanced level, children are able to create a repeating pattern
with the unit of repeat consisting of three or more single elements (e.g. ABC,
ABCDE). Another relatively late-appearing strategy in pattern making is creating
repeating patterns where the elements within the unit of repeat are repeated (i.e.,
multiplied; e.g. AABBCCDDEE). After the basic elements of spatial and color
organization are established, they also occur in combination. Children do not only
create unidirectional, repeating patterns where the unit of repeat is geometrically
translated, but they also place elements symmetrically around a center in a bidi-
rectional way so that the unit of repeat is geometrically mirrored.

Papic et al. (2011) also described strategies young children employed when
copying, creating, explaining, and extending a repeating pattern in a one-on-one
interview situation. In the context of an intervention study, 53 participants (from
3 years 9 months to 5 years of age) were interviewed three times over the course of
18 months with a task- and material-based patterning assessment. The materials
used were blocks, colored-pencils, and mosaic tiles, with which children were able
to structure their patterns mainly in terms of color organization. The solution
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strategies fell in five main categories and are described here in increasing order of
sophistication. The first strategy is random arrangement, where children choose
and place elements randomly when copying or extending a repeating pattern.
Matching one item at a time by direct comparison is a frequently observed strategy
when copying a pattern. The most common strategy was alternation, where chil-
dren focused on the sequence of individual colors (e.g. red, then blue, then green,
then red, …) rather than on the unit of repeat (e.g. red-blue-green). The latter falls
into the category basic unit of repeat. In this strategy, children were able to identify
and use the unit of repeat to complete more complex tasks. After the intervention,
where children’s patterning skills were fostered, some children demonstrated and
expressed simple generalizations about the unit of repeat (advanced unit of repeat).

In comparison, Garrick et al. (1999) describe a progression of repeating pattern’s
complexity levels in terms of what kind of repeating patterns children are able to
create at different developmental stages. Papic et al. (2011) focus on the strategies
children use in the activities with repeating patterns independent of the repeating
patterns’ complexity. These differences can be explained by the studies’ different
settings as observational versus interview investigating partially different patterning
activities (self-initiated creating and copying versus task-based explaining, copying
and extending). The studies demonstrate that different patterning activities and
different pattern complexities may evoke different strategies in the children at
different age levels. Detailed descriptions of children’s competencies and strategies
at different age levels are needed. In particular different patterning activities (i.e.,
copying, explaining, repairing, extending, translating, and creating a repeating
pattern) and in-depth single case analyses are necessary to trace common devel-
opmental steps over a period of time.

3.3 Aims and Research Questions

This present study aims to further explore the development of repeating patterning
competencies in three- to five-year old children. A purpose is to develop a system of
strategy categories that integrates the existing research and develops it further. In
particular this paper addresses the following questions:

• What competencies do three-, four- and five-year old German kindergartners
display in explaining, copying, repairing, extending, and translating repeating
patterns of different difficulty levels?

• What strategies do three-, four- and five-year old German kindergartners use in
explaining, copying, repairing, extending, and translating repeating patterns of
different difficulty levels? Can these strategies be integrated into broader strat-
egy categories?

• Do common developmental steps emerge at this age (between the first to second
and the second to third year of German kindergarten)?
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3.4 Method

3.4.1 Participants

An explorative, longitudinal study was conducted in a kindergarten located in the
suburb of a large German town. The six children (four girls, two boys) were
purposively selected and attended the same kindergarten class. Four children spoke
German as their first language and two children spoke German as second language.
At the first interview the mean age of the children was 3 years 6 months (the
youngest was 3 years 1 month, the oldest 3 years 11 months). The kindergarten did
not use a specialized curriculum focused on patterning, and the children’s educators
reported that they had not taught anything patterning related during the first and
second year of kindergarten. This was representative practice for German
kindergartens.

3.4.2 Design

All children were interviewed individually three times over the course of two years,
the first measuring point (MP) being the start of the children’s first year of
kindergarten (September, 2013). The second interview took place the following
year in September 2014, the third in October 2015, the start of the children’s third
and final year of kindergarten. All interviews were video recorded.

3.4.3 Tasks and Materials

The one-on-one interviews were task- and material-based and were developed by
the author for assessing young children’s developing understanding in four areas:
number, spatial pattern, repeating pattern, and growing pattern. This paper focuses
on data about repeating patterns only.

At the first measuring point the children were shown an AB pattern out of green
and yellow wooden cubes (see Fig. 3.1) and asked to explain the pattern (“Please,
tell me about the pattern. What’s the same? What’s different?”), copy (“Build the
same pattern as mine. Use the same colors.”), repair (“A cube is missing. What
color is the missing cube?”), and extend it (“What comes next?”). At the second
measuring point these four activities were supplemented by translating the pattern
(“Use these counters [different material and colors] to build the same pattern.”) and
conducted with AB, ABC and AAB patterns (see Figs. 3.1 and 3.2). Cubes in six
different colors were available for the children to choose from.

In-depth single case analyses were conducted for each child and strategies were
described. During several rounds of interpretation, strategy categories were
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developed. Answers and actions were coded by strategy and correctness; task
solutions were then compared between the children and between the measuring
points for each child. On this basis, hypotheses for the development of repeating
patterning competencies are generated.

3.5 Results

For an easier understanding the strategy categories are described first, although they
resulted as a last step from the comparison of the single-case analyses. In the second
part of the results, children’s strategies are presented with a focus on how these
strategies change over the three measuring points, and how they are distributed
across the five categories.

3.5.1 Description of Strategy Categories

During the analyses, children’s strategies for different patterning activities and
different patterns were summarized and integrated into five strategy categories. For
the purpose of this paper the strategy categories are ordered hierarchically from a
basic to an advanced understanding of repeating patterns.

3.5.2 Strategy Categories

In the first, most basic strategy category, no reference to pattern, children neither
referred to the specific characteristics of the elements nor to the regularity of the
pattern. They employed strategies that were based on guessing, personal preference,
or random selection. For example, while copying or extending a pattern, children
used different colors or shapes than those in the pattern. Still, most children rec-
ognized that the elements were arranged in a line. In the second strategy category,
the use of pattern elements, children’s strategies showed an understanding of sin-
gular aspects of the pattern. For example, they either used the same colors or the
same shapes in the pattern, or they recreated the same length. Little regularity could
be found in the children’s patterns. The idea of regularity initially became visible in
the third strategy category, comparison. Children compared the pattern’s elements,
and highlighted sameness within and between patterns on a basic, very concrete
level (e.g., “The yellows are the same.”; “Three purples and three blacks here.
Three yellows and six oranges here”). A commonly observed strategy was
extending a pattern step by step by looking at the beginning of the pattern, and
comparing and matching the extension with the beginning. This procedure showed
an emerging sense for some kind of regularity within a pattern.
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The awareness of regularity grew in the fourth strategy category, focus on
sequence, where children focused on the relations between successive elements of
the pattern. A typical strategy for this category was cycling through the elements of
the pattern over and over again, even chanting them rhythmically. The children
were aware that the elements were ordered in some kind of regular way, without
explicitly grasping the rule. They may have even formulated their first approaches
as a general description for a singular relationship (e.g., for an ABC pattern: “It’s
always blue next to green”). Still, the elements of the pattern were seen as strung
together. Children were not yet able to break the pattern down into the units of
repeat. In the last, most advanced strategy category, view of unit of repeat, children
finally grasped the structure of the repeating pattern. They knew that there was a
smallest part that produced the sequence—they were able to identify this unit of
repeat and use it during the activities.

Table 3.1 gives a condensed overview and description for each strategy category.

Table 3.1 Strategy categories with descriptions and examples of strategies

Strategy
category

Description Examples of strategies

No
reference to
pattern

Using different elements than given in
the pattern AND no regularity at all in
patterns

Randomly selecting new elements
Selecting new elements for other
reasons
Guessing

Use of
pattern’s
elements

Using singular aspects of the pattern
(e.g. color, number, structure)

Using the same elements but in an
arbitrary or different order
Using the same structure with different
elements
Creating a ‘difference series’
Repeating the last element

Comparison Comparing patterns or comparing
singular elements of the pattern (e.g.
color) or within the pattern

Finding sameness while comparing the
pattern’s elements (explain)
Matching elements in a one-to-one
correspondence (copy)
Comparing and matching elements
(repair)
Looking at and comparing with the
pattern‘s beginning (extend)

Focus on
sequence

Focusing on the succession of
elements; seeing a sequence of “what
comes next”

Alternating or cycling through the
elements without discerning the
pattern’s structure
Focusing on the relation of successive
items
“Next to orange is purple, next to
purple is green, next to green is orange,
next to orange is purple, …”
Rhythmical approach

View of
unit of
repeat

Identifying and using the unit of repeat “It‘s always red-blue.”
Taking all elements of the unit of
repeat at once out of the box
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3.6 Children’s Strategies and Distribution Across
the Categories for the Three Measuring Points

This presentation of results focuses on comparing the children’s task solutions and
strategies. It is easy to mark a solution as right or wrong within our adult horizon of
expectation. A strategy, however, is an interpretation that is based on children’s
explanations, actions and their observations; an unambiguous assignment of a
strategy category is not always possible.

At the first measuring point (i.e., aged three years) four children compared the
patterns’ colors and sorted them together when explaining sameness in the AB
pattern (e.g., “The yellows are the same. The greens are the same.”). One child
named the colors in order of appearance and one child did not refer to the pattern at
all. No child was able to copy the AB pattern when it was hidden from view. Even
if the pattern lay visibly in front of the children and the interviewer specifically
asked them to use the same colors as in the example, five of six children did not
refer to the pattern but either chose colors randomly (by grabbing a handful cubes
without really looking) or by color preference (e.g., “I also took red, cause I like
red, too”; Child puts green cube back in the box: “I don’t like green”) and aligned
them in an arbitrary order (see Fig. 3.3 left-hand side). Afterwards, most children
contrasted the length when their pattern was longer than six elements. One child
succeeded to only use yellow and green cubes, using the same amount as in the
given pattern, but put all the cubes of one color next to each other (AAABBB) as
opposed to alternate the colors (ABABAB) (see Fig. 3.4 left-hand side). When
asked to identify the missing cube (repair), all children guessed. Two children even
named a color that was not part of the pattern. No child was able to extend the
pattern. Five children randomly grabbed cubes in other colors than given in the
pattern and elongated the AB pattern at one or even both ends without any dis-
tinguishable regularity (see Fig. 3.3 right-hand side). The same child mentioned
above extended the pattern by repeating the same color as the last cube (yellow)
over and over (see Fig. 3.4 right-hand side).

In randomly arranging and choosing new elements while copying, repairing and
extending, the children did not refer to the repeating pattern. They showed no
reference to the given pattern and to the pattern in general in terms of regularity. No
reference to pattern, therefore, constitutes the first, most basic strategy category and
is the most frequent category at the first measuring point (see Table 3.2). It cor-
responds to Garrick et al.’s (1999) “basic chaining” and partly to Papic et al.’s
(2011) “random arrangement”.

Still, for random arrangements an additional category is needed. Children’s
strategies at this age differed according to their reference or non-reference to the
pattern. A simple reference to the pattern might be expressed by using the pattern’s
colors, even if they are arranged randomly or in another order. Using the pattern’s
elements seems to be an important first step and needs our recognition. Another
strategy that falls into this category is the repetition of the last element in extending
the pattern.
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The third strategy category that was relevant at the first measuring point was
comparison for the explaining activity. In comparing the pattern’s colors the
children recognized sameness and difference and matched identical colors.

At the second measuring point (i.e., aged four years) the most frequently used
strategy in explaining the AB pattern was still comparing and sorting the colors,
e.g., “yellow, yellow, yellow, green, green, green”.

Child “They are wrong, because this green and this green they don’t match
the yellows.”

Interviewer “Why don’t they match?”
Child “Because yellow has to match yellow and green has to match green.”

Fig. 3.3 Examples of the strategy category no reference to pattern. Left: Copying the AB pattern
(green, yellow) with red, blue, purple, yellow, and green cubes. Right: Extending the AB pattern
(green, yellow) with red, purple, and green cubes (Color figure online)

Fig. 3.4 Examples of the strategy category use of pattern’s elements. Left: Copying the AB
pattern (green, yellow) by grouping the yellow and green cubes. Right: Repeating the last element
(Color figure online)
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In contrast to the first point of measurement, all children were able to copy the
AB pattern. Strategies differed according to the visibility of the pattern. If the
pattern lay exposed in front of the children they mostly solved the task by matching
the cubes in one-to-one correspondence. When hidden from view they all referred
to the alternation of color in the pattern. One girl may even have referred to the unit
of repeat. After putting down in turn, six yellow and green cubes, she stopped and
exclaimed: “Still one step higher” She then put down one cube and a yellow and a
green cube.

All children were able to correctly identify the missing colors in the AB pattern
(repair). Two children still seemed to guess, but named colors that were in the
pattern. Two other children compared and matched colors e.g., “Yellow…because
there are only two yellows”. One child referred to the sequence of the given pattern;
“Because between green and green again a yellow is missing”. Five children were
able to correctly extend the AB-pattern; most of them alternated the two colors. One
child pointed to the pattern’s beginning: “I know it because here is green and there
yellow”. One child that did not extend the pattern created a difference series by
using the four colors that were not part of the pattern (four purple cubes, four blues,
two oranges and three reds). This task solution was interesting because at first sight
the child did not refer to the pattern at all. She was neither focusing on amounts nor
regularity; she did not use the pattern’s elements. But with the child’s explanation it
became obvious that she was indeed referring to the pattern and was following a
self-imposed rule in using all the colors. The following excerpt of transcript
highlights this point.

Child “I take purple. Because there are already yellow and green.”
Interviewer “Please, explain again.”
Child “All the colors that we didn’t have already belong there now, don’t

you think?”

Table 3.2 Strategy categories at first measuring point (MP) with AB pattern (frequently used
strategies are highlighted in grey)

MP 1
No reference 

to pattern

Use of 

pattern’s 

elements

Comparison 
Focus on 

sequence

View of      

unit of repeat 

Explain AB AB AB

Copy

(Hidden) 
AB AB

Repair AB AB

Extend AB AB
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The difficult task of translating the patterns into different materials and colors
was achieved by four children for the AB pattern. They all focused on the alter-
nation of color, e.g., “First red, then blue, now red is again, then blue is again, then
red is again”. It was not apparent, though, if the children really grasped the pattern’s
structure and translated it, or if they created an AB pattern without reference to the
first pattern by alternating the two available colors. Another strategy seen in this
task was matching a red counter with every cube so that both patterns had equal
amounts of elements.

For the ABC and AAB patterns the children were unwilling to offer explanations
at the second measuring point. The children that talked about the patterns named the
pattern’s colors and again compared and sorted these. All children were more or
less able to copy the ABC and AAB pattern. Again strategies and correct solutions
differed according to the visibility of the pattern. If the pattern lay exposed, they
matched the cubes in a one-to-one correspondence with five of six children
matching correctly. When hidden from view, half of the children remembered the
sequence of the ABC pattern and alternated the colors correctly. The other half
remembered only the ABC pattern’s colors and used them in an arbitrary order.
With the hidden AAB pattern, the singular strategy was the alternation of the
pattern’s elements. All children were able to identify the missing color in the ABC
and AAB patterns (repair). Most children thereby referred to the sequence of the
given pattern, e.g., “Because I did the sequence, first green, then blue, then red, then
green, then blue, …”. Another strategy for the ABC pattern was looking for the
color next to the missing color, then locating that same color within the pattern and
comparing it with the missing part.

Five children were able to correctly extend the ABC pattern; three were able to
extend the AAB pattern. The most common strategy for the ABC pattern was that
the children looked at the start or within the pattern and reproduced it from there
step-by-step. Some emphasized the successive order of the colors (e.g. “After green
is purple, after purple is orange, after orange is green, after green is purple, after
purple, …”). For the AAB pattern, alternating two colors (i.e., alternating one red
and two blues) was the singular strategy and the part where the same mistake
happened for half of the children: they extended the AAB as an AB pattern by
alternating not two but only one blue and one red counter. One child was able to
translate the ABC pattern; another child correctly translated the AAB pattern. The
strategies seemed to be the focus on the alternation of color (e.g., “Two purple, one
orange, two purple, one orange, two purple, one orange”). The other children either
did not refer to the pattern or refused this task completely.

The strategy category, no reference to pattern, was observed at the second
measuring point only as a singular strategy in translating. A new strategy that falls
into the category use of pattern’s elements was creating a difference series (ex-
planation see above). The most frequently observed categories were comparison
and focus on sequence (see Table 3.3). The three strategies that made up the cat-
egory comparison were: finding sameness while comparing the pattern’s elements
(explain), matching elements in a one-to-one correspondence (copy), and com-
paring elements within or at the beginning of the pattern (extend). The category
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focus on sequence corresponds with Papic et al.’s (2011) “alternation” category and
includes all strategies that focus on successive items. In the most advanced strategy
category, view of unit of repeat, children are able to identify and use the unit of
repeat. The children that were surveyed in this study did not show this competence
at the age of four years.

From the second to the third measuring point there was very little progression in
strategy development as well as in the frequency of correct solutions (see
Table 3.4). The children are now five years old and are in their last year of
kindergarten; the year before they start primary school in Germany. The activity
with the highest increase in strategy development was explaining the patterns.
Children’s explanations now focused on comparing, sorting and in parts enumer-
ating the colors for all patterns (category comparison; e.g., “Yellow is three times
and green is three times”; “Three red counters and six blue counters”). Some
children explained the specific order of the colors or chanted the colors rhythmi-
cally (category focus on sequence; e.g. “Yellow, green, yellow, green, yellow,
green”). For the activity copying a hidden pattern the only increase in strategy
development was for the difficult ABC pattern. Children either used strategies from

Table 3.3 Strategy categories at second measuring point with AB, ABC and AAB-patterns
(frequently used strategies are highlighted in grey)

MP 2
No reference 

to pattern

Use of 

pattern’s 

elements

Comparison 
Focus on 

sequence

View of

unit of repeat 

Explain AB AB

ABC ABC

AAB

Copy

(Hidden) 

AB AB

ABC ABC

AAB

Repair AB AB AB

ABC ABC

AAB

Extend AB AB

ABC ABC

AAB AAB

Translate AB AB

ABC ABC

AAB AAB
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the categories comparison (e.g., child takes out two orange, two green and two
purple cubes and then arranges them in order) or focus on sequence (e.g., “I
remember orange, purple, green, orange, purple, green”) while rebuilding an ABC
pattern from memory.

One child used a strategy for extending the AB pattern that indicated an emerging
view on the unit of repeat: She simultaneously took out one green and one yellow
cube (this pattern’s unit of repeat) out of the box and aligned them. The child
repeatedly made a unit of repeat three times and then continued by taking singular
cubes and successively aligning them. For repairing and extending the patterns, the
strategies as well as the frequency of correct solutions, stayed mostly the same for all
three patterns. Remarkably, the most frequently assigned strategy category for the
AB and AAB patterns was a focus on sequence whereas the category for the more
difficult ABC pattern was a lower level strategy category (comparison).

The most development took place when children translated the patterns. At the
second measuring point most children did not refer to the pattern while translating.
This strategy category was completely replaced by the use of pattern elements for
the ABC and AAB patterns. In these cases children created other repeating patterns

Table 3.4 Strategy categories at third measuring point with AB, ABC and AAB patterns
(frequently used strategies are highlighted in grey)

MP 3
No reference 

to pattern

Use of 

pattern’s 

elements

Comparison 
Focus on 

sequence

View of

unit of repeat 

Explain AB AB

ABC ABC ABC

AAB AAB

Copy

(Hidden) 

AB AB

ABC ABC

AAB

Repair AB AB

ABC ABC

AAB

Extend AB AB

ABC ABC ABC

AAB AAB

Translate AB AB AB

ABC ABC

AAB AAB AAB
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as a translation. For the AAB patterns the strategy category comparison was also
frequently observed. Children counted the colors and created a pattern with the
same numbers of the different colors, (e.g., “Three purples and three blacks here.
Three yellows and six oranges here”). Alternatively they matched the colors
one-by-one, (e.g., “Yellow to purple, orange to black”). The frequency of correct
solutions regarding translating stayed nearly the same for the AB and ABC patterns
(almost all children were able to translate the AB pattern; almost no child was able
to translate the ABC pattern correctly) but this increased for the AAB pattern.

At the second measuring point only one out of six children was able to translate
the AAB pattern, but at the third measuring point half of the children were able to
do this. The common error was creating an AB pattern when translating the ABC
and AAB pattern.

The strategy category, no reference to pattern, was not observed at all at the
third measuring point; the category, use of pattern’s elements, only as a
seldomly-used strategy. One exception was the activity, translate, where most
children used more lower level strategies than during the other activities. The most
frequently observed categories were still comparison (especially for the ABC
patterns), and focus on sequence (for the AB and AAB patterns). It became apparent
that children at this age handled the AAB pattern similarly to the AB pattern. It
seems that the big difference in pattern difficulty was not foremost the length of the
unit of repeat but the number of different elements that made up the unit of repeat
(two patterns of the study consisted of two different elements: A and B; the third
pattern is made up from three different elements: A, B and C). The most advanced
strategy category, view of unit of repeat, was still not observable in the work with
five-year old children. However, an emerging view on the unit of repeat surfaced
with individual children. For example when children chanted the pattern rhythmi-
cally or they took all the colors that make up the unit of repeat at once out of the
box.

3.7 Discussion of Findings

In the present study, I examined the developing patterning competencies of German
three to five-year old kindergartners with a special focus on the children’s strategies
when solving different patterning tasks. The findings are consistent with previous
research on repeating pattern knowledge (Papic et al. 2011; Rittle-Johnson et al.
2013), indicating that kindergartners have a range of repeating patterning compe-
tencies that extend across activities with varying difficulty and that they develop
over time. Further, children’s strategies in solving different patterning tasks have
been elaborated and strategy categories that combine similar strategies for different
activities have been abstracted. The findings are discussed in turn. As the reported
research is an explorative study with a very small sample, the conclusions are
formulated as hypotheses that need to be tested in the future.
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3.7.1 Developing Pattern Competencies of Kindergartners

The results suggest that children in their first year of German kindergarten, i.e.,
three-year olds may have very limited repeating pattern competencies. No child was
able to correctly copy a simple exposed pattern, let alone extend it or identify
missing elements. Most children did not refer to the pattern at all. When they took
the pattern into account, they compared length, or they focused on sameness and
difference related to color. A possible explanation might be that children this young
are able to focus on only one aspect of the task. What all children correctly did is
reproduce the linear arrangement: aligning the cubes in one row. This focus on the
gestalt of the arrangement might be children’s first view on repeating patterns; that
is, two patterns are the same when they are both linear arrangements and they are
different when one is linear and the other not.

After one year in kindergarten the children showed considerably increased
abilities although there were no patterning activities explicitly taught by the
kindergarten educators. The four-year olds were able to correctly solve more tasks,
handle more complex patterns and, furthermore, use more elaborate strategies. The
single case analyses show that this holds true for every child though not to the same
extend for every child. The four-year olds’ focus seemed to be finding sameness in
the pattern’s elements. In addition, they reliably learned to only use elements of the
given pattern and to alternate them, though alternating three elements were still
difficult for half of the children. This and the following findings are consistent with
the research by Garrick et al. (1999).

Another challenge becomes apparent where patterns contain a double element
(e.g., AAB). During the interview almost all children started to alternate only two
elements (AB) at some point (mostly during extending or translating). A possible
explanation might be the children’s focus on comparing and grouping by color.
This would consequently mean that patterns are the same for the children when they
have the same number of different elements that alternate (i.e., two “kinds” of
elements: blues and reds). At this early stage of their mathematical development
they simply haven’t learned that the exact number of each element, different or not,
matters (i.e., two blues and one red). The most commonly used strategies, therefore,
were comparison and focusing on the sequence. The view of unit of repeat was not
developed yet.

In the third and last year of kindergarten the only increase in patterning com-
petencies was observed with the activities of explain and translate and these were
most pronounced with the ABC pattern. The development in describing the pattern
might be explained by the natural development of language acquisition in early
childhood. Still, the most common strategy was comparing the elements and
grouping them instead of speaking about the relationships within the pattern.

As the children had no experience with repeating patterns other than what might
have happened at home, during free-play, or what the children observed on tele-
vision or digital media, another factor that might influence the developing pat-
terning competencies (especially for the more difficult ABC pattern) could be the
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working memory. “For patterning, it seems likely that greater working-memory
capacity facilitates children’s ability both to process and learn about pattern com-
ponents, which may in turn increase awareness and understanding of relational
similarities in repeating patterns” (Miller et al. 2016, p. 100). Although the biggest
development in patterning competencies at this age became apparent for the task of
translating a pattern, this activity explicitly showed that patterns were a sequence of
colors for the children and that they did not grasp the pattern’s structure to its full
extent. In contrast to Rittle-Johnson et al. (2015, p. 109) I argue that pattern
abstraction (i.e., translating a pattern) can be completed successfully using a per-
ceptual object-matching strategy or alternation strategy. It neither requires attending
to the structure of the pattern as opposed to its surface features, nor does it require
abstraction of the unit of repeat so that it can be translated to new materials or
modalities. This becomes apparent if we explicitly look at the children’s strategies
instead of their solutions.

The overall most commonly used strategies with the five-year olds were com-
parison and focusing on the sequence. One year before school entry the view of unit
of repeat still was not developed. This was remarkable as the “mathematics” in
patterning only unfolds in analyzing the pattern’s structure, in discerning the unit of
repeat. In a large-scale study that is currently being conducted, it will be interesting
to observe if German five-year olds in general have acquired the idea of unit of
repeat. Nevertheless, the study by Papic et al. (2011) shows that the concept of unit
of repeat can be developed before children start formal schooling.

3.7.2 Strategy Categories for Repeating Pattern Work

It was possible to observe and describe children’s patterning strategies for different
activities and repeating patterns of different difficulty levels and integrate them into
five strategy categories (see Table 3.1). These categories indicate that a strategy is
not activity specific. The assignment of strategies to the categories furthermore
indicates that diverse strategies are used for the same activities with patterns of
different difficulty levels. For example, a child might be able to extend an AB
pattern using an alternating strategy but has to rely on a comparison strategy (e.g.
referring to the beginning of the pattern) while extending an ABC pattern.
Furthermore, children used more simple strategies for more difficult activities like
translating and explaining.

3.8 Conclusions and Implications

Over the kindergarten years, abilities as well as strategies while describing, copy-
ing, repairing, extending, and translating repeating patterns improved. In particular,
it seemed that significant development took place in children’s repeating patterning
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competencies between the ages of three and four. The two big steps appeared to be
first the ability to refer to the pattern and second the ability to discern elements as
identical and match them and to alternate two elements reliably. With these find-
ings, the beginning of a developmental journey starts to evolve.

To test the findings of this exploratory study and to evaluate the strategy cate-
gories a large-scale study is currently being conducted. The hope is to further
measure the range of very young children’s patterning competencies and to trace
the development of the different strategies more detailed. To explore young chil-
dren’s view on the unit of repeat even further an additional task to identify the unit
of repeat has been included in the interviews.

Acknowledgements The author thanks Alicia Neumann for providing her much valued view on
the children’s strategies.
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Chapter 4
The Influence of Fostering Children’s
Patterning Abilities on Their Arithmetic
Skills in Grade 1

Miriam M. Lüken and Ralf Kampmann

Abstract Recognizing and using patterns and structures play a pivotal role in
learning mathematics. Recent research shows that children’s pattern and structure
competencies are strongly linked to their general mathematical development.
Furthermore, it is possible to foster pattern and structure competencies in young
children. The study presented in this paper ties together these two main findings and
asks if fostering pattern and structure competencies may even lead to advanced
arithmetic achievement. Preliminary findings from an intervention study with 51
first grade students show an increase in the children’s arithmetic skills after five
months of explicitly teaching pattern and structure during regular mathematics
lessons.

Keywords Early childhood � Mathematics education � Patterns
Intervention study

4.1 Patterns and Their Importance for Early
Mathematics Learning

A mathematical pattern can be defined as any predictable regularity (Mulligan and
Mitchelmore 2009). In the work with primary school children, three main types of
mathematical patterns are used: spatial structure patterns, repeating patterns, and
growing patterns. Spatial patterns are often used as (standard) number presentations
to visualize numerical structures in a specific geometrical way. Examples of spatial
structure patterns are spatial dot patterns and grids like the twenty frame. Particular
characteristics of numbers can be illustrated in these ways and are used to develop
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mental representations of numbers. The perception of spatial patterns and the ability
to structure are the basis for subitizing too (Papic et al. 2011). Repeating patterns
consist of a sequence of elements (the unit of repeat) that is repeated indefinitely
(e.g., ABCABC…). In growing patterns a sequence of elements changes system-
atically (e.g., 1, 3, 5, 7…).

The value of patterning in the early years has been endorsed by many
researchers. Threlfall (1999) suggests that patterning activities with repeating pat-
terns develops general mathematical concepts in children such as ordering, com-
paring, sequencing, classification, abstracting and generalizing rules, and making
predictions. Repeating pattern work is seen as a conceptual stepping stone which
appears mostly in the area of algebra (or pre-algebra) and is highlighted as
important for measurement as well as critical to the development of counting and
multiplicative thinking (Mulligan and Mitchelmore 2009, 2013). The conceptual
domain of patterns and structures is taken into account in national syllabi, often
associated with algebra and hence connected with corresponding expectations of
competence (e.g., National Council of Teachers of Mathematics 2013). National
curricula often consider repeating and growing patterns as a precursor for functional
thinking and algebra (NCTM 2013).

In Germany, the conceptual domain of patterns and structures was included in
the national educational standards in 2004, requiring the German federal states to
incorporate these into their state-specific syllabi (Sekretariat der Ständigen
Konferenz der Kultusminister der Länder in der Bundesrepublik Deutschland
2005). Three German states have designated pattern and structures as an inde-
pendent area. The other states refer to the cross-cutting aspects of patterns and
structures.

4.2 Empirical Research on Pattern and Structure
Competencies

Although the expectations of patterning abilities have mainly been derived from
either observation, experience, or from theoretical considerations, recent studies
provide evidence of the overall importance of pattern and structure competencies
for early mathematical learning. Initially, we report two studies that measure the
relation between children’s pattern competencies and their mathematical under-
standing. Afterwards, we summarize selected studies on improving children’s
awareness of pattern and structure. In the preceding chapter by Lüken (2018) a
study of three- to five-year olds’ repeating patterning competencies is described.

Mulligan and Mitchelmore (2009) developed and refined a Pattern and Structure
Assessment (PASA) (Mulligan et al. 2015) with tasks that required students to
identify, visualize, represent, and replicate elements of pattern and structure with
regard to number, measurement and space. In an initial study using PASA
Australian first graders (n = 103), ranging from 5 years 5 months to 6 years
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7 months of age were interviewed individually using the PASA. Responses were
classified into four broad stages of development and students assigned to a stage of
structural development accordingly. Analyses show a near perfect correlation
between students’ conceptual understanding of mathematics (measured by the same
instrument) and their stage of structural development.

In another study Lüken (2012) conducted a longitudinal project with 74 chil-
dren, ranging from 5 years 8 months to 7 years 2 months of age at the study’s
beginning. In the first and third assessment (i.e., the beginning of the first and the
end of the second grade) the children’s mathematical competencies were measured
with standardized tests. During the second part of the assessment, task- and
material-based interviews were administered to assess the children’s ability to
conceive, reproduce, copy from memory, use, extend, and create repeating and
spatial structure patterns. Analyses show a significant correlation on a medium level
between the pattern and structure abilities of the school starters and their early
mathematical competencies, and a slightly lower correlation with their mathemat-
ical achievement at the end of grade 2. In summary, the two studies confirmed that
young children who are competent in structuring as well as identifying, copying,
creating and extending patterns are those who also demonstrated elaborate number
concept development and who achieved best in a standardized mathematics
classroom test at the end of grade 2.

Mulligan et al. (2006) conducted several studies on supporting children’s
understanding of pattern and structure in different settings, and measured the effect
it had on children’s patterning competencies as well as on their general mathematics
understanding. Mulligan et al. (2006) reported a school-based intervention with
683 students from kindergarten to grade 6. A research team worked for a year with
the associated 27 primary teachers to scaffold learning with small groups of students
within regular classroom time. A numeracy initiative with an explicit pattern and
structure approach (the Pattern and Structure Mathematics Awareness Program,
PASMAP) was implemented across the school (Mulligan 2011). The number
system, counting patterns, multiplication and division, partitioning, and fractions
were the main focus. Improvements were found in the children’s patterning skills
and structure in their mathematical thinking and representations measured by
PASA. Substantial improvements were also found in school-based and system-wide
measures of numeracy achievement on the NSW Basic Skills Testing and the
Schedule for Early Number Assessment (NSW Department of Education and
Training 2002), although improvements were less pronounced in the upper primary
years. As the instruments for the numeracy achievement were not standardized and
there was no comparison group included in the study, the effect of the gains in
mathematics learning could not be measured.

In another study an intervention program was implemented with ten kindergarten
students, where a specially trained and experienced classroom teacher engaged the
students in PASMAP tasks over 15 weekly teaching episodes (Mulligan et al. 2013,
p. 51). Pre- and post-intervention testing was conducted with the PASA and two
sub-tests of the Woodcock-Johnson mathematics test. Improvements were found on
PASA scores but no significant gains were found on the Woodcock-Johnson test
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(Woodcock et al. 2001). The sample size may have been too small to measure gains
using the Woodcock-Johnson or the scale not sensitive enough to measure any
effects. An alternative explanation is that the limited 15-week period did not allow
sufficient time to show overall numeracy growth on a standardized test. However,
the qualitative analyses of the levels of structure exhibited for each child showed
improvements in the ability to recognize, represent, and continue simple repetitions,
and develop basic spatial attributes of two-dimensional shapes.

Another study that informed the project reported in this paper is the intervention
study by Papic et al. (2011) conducted with 53 pre-schoolers from 3 years 9 month
to 5 years of age. The children’s patterning knowledge was assessed with an Early
Mathematical Patterning Assessment (EMPA) interview at the beginning of the
pre-school year, six months later, and again at the end of their first year of formal
schooling, complemented by a numeracy assessment (Schedule for Early Number
Assessment [SENA], NSW Department of Education and Training 2002) at the
third measuring point. Each child was placed on an instructional framework based
on his/her responses in the first interview. The intervention was conducted by the
pre-school teachers in the form of an enrichment program where individualized,
problem-based patterning tasks were added to the existing pre-school program.
Children worked in small groups or individually on spatial structure and repeating
pattern tasks. One 30-min session was scheduled each fortnight for each child for a
period of 18 weeks. The intervention did lead to gains in these children’s under-
standing of simple repeating and spatial patterns well beyond those made by the
comparison group. The improvement was maintained twelve months later. The
intervention group also outperformed the comparison group on the SENA numer-
acy assessment. Numeracy development was not measured at the beginning of the
intervention so it was not possible to ascertain any causal influence of the patterning
program on the intervention children’s advanced mathematical development.

In the Reconceptualizing Early Mathematics Learning Project, Mulligan et al.
(2013) evaluated longitudinally the impact of the PASMAP with 316 kindergartners
(first year of formal schooling in Australia) in an intervention study. As described in
Chap. 2 (Mulligan and Mitchelmore 2018) two different mathematics programs
were implemented: the PASMAP and the regular mathematics program. Students
participating in the PASMAP program showed higher levels of Awareness of
Mathematical Pattern and Structure (AMPS) than for the regular group. However,
there were no significant differences found between groups on the standardized test
of mathematics achievement, I Can Do Math (ICDM) (Doig and de Lemos 2000). It
is questionable whether the multiple-choice ICDM paper and pencil format and
limited scope and depth of the ICDM content were sensitive enough to measure any
differences.

In another study focused on patterning a US-based intervention study adopting a
psychological perspective, (Kidd et al. 2013, 2014) assigned 120 struggling
first-grade students randomly to learn about patterns, numeracy, reading, or social
studies. Teaching sessions were scheduled for 15 min three days per week over a
period of six months. Patterning instruction included symmetrical patterns, growing
patterns, and patterns involving a rotation. Children who received pattern
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instruction performed as well or better on several standardized mathematics
assessments relative to children who received numeracy instruction, and system-
atically better than children who received reading or social studies instruction.

Summing up, two main results provide the basis of our research. Children’s
pattern and structure competencies are strongly linked to their general mathematical
development, and it is possible to foster pattern and structure competencies.
Furthermore, there are several indications from other studies that the development
of patterning competencies may lead to advanced mathematics achievements,
although it seems not always possible to measure reliably. In our research we aimed
to follow the route of supporting children’s general mathematics understanding
through fostering their pattern and structure competencies.

In particular, we aimed to answer the following question:

• Does a focus on pattern and structure during regular mathematics lessons effect
(positively) the arithmetic competencies of children in grade 1?

As a first approach to answer this question a small intervention study with 51
German first grade students was conducted by the second author. This pilot study
was used to test the instruments, to develop, implement and evaluate the inter-
vention lessons as well as to obtain some initial indications regarding possible
intervention effects. Before the intervention the children were administered both a
test on numerical-arithmetical skills, TEDI-MATH, (Kaufmann et al. 2009) and
intelligence, the SON-R 2½-7 (Tellegen et al. 2007). Both are standardized, nor-
malized individual tests. The TEDI-MATH consists of ten items. Four items assess
numerical skills such as writing and reading numbers or comparing written and
spoken numbers. Another six items test arithmetical skills, e.g., addition, subtrac-
tion, word problems and multiplication.

The intervention took place from January to May 2014. As a post-test the
TEDI-MATH was used again in June 2014 (see Table 4.1 for an overview of the
study’s schedule). The children were aged from 6 years 1 month to 7 years
6 month of age (mean age: 6 years 8 month) at the study’s beginning. One class of
25 children was used as an intervention group and another class of 26 children as
comparison group. Each of the groups was taught by the same mathematics teacher
using the same textbook Das Zahlenbuch 1 (Wittmann and Müller 2012). The

Table 4.1 Overview of the study’s schedule

Measuring points Instruments Participants

November–
December 2013

Pre-test TEDI-MATH class 1a (n = 25) and class
1b (n = 26)

October 2013–June
2014

SON-R 2½-7 class 1a (n = 12) and class
1b (n = 20)

January–May 2014 Intervention 13 pattern and
structure lessons

class 1a (n = 25)

June 2014 Post-test TEDI-MATH class 1a (n = 25) and class
1b (n = 26)
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thirteen 45-min intervention lessons were implemented within the regular mathe-
matics lessons (mostly one intervention per week), so that the class had no extra
mathematics lessons. The intervention group were taught by the second author
(‘teacher as researcher’) and the regular teacher was present as an observer.

4.3 The Intervention Lessons

During the intervention spatial structure patterns and repeating patterns were reg-
ularly included as well as growing patterns being discussed at the end of the
intervention. Tasks were used in which children could recognize, use, describe, and
explain patterns and structures and also create their own. Discoveries could be made
from unstructured quantities to represent the decadic system. Different represen-
tations and a variety of activities were deployed.

In the first lesson, beads in two colors were chained (see Fig. 4.1). Without any
explicit request the children started creating repeating patterns and talked about
regularity and order. With the help of the modeling with the children’s
bead-patterns the terms ‘pattern’, ‘structure’ and ‘unit of repeat’ were developed.

During the lessons the concept of repeating patterns was deepened. Repeating
patterns were created by the children with different materials (different colored
blocks, color-pencils, shapes, letters, numbers), on the basis of the unit of repeat.
The children learned that pattern is not limited to color but can exist through a
variety of material and that the unit of repeat is the crucial aspect to know about a
repeating pattern. A strategy the children developed to check a block-pattern for
correctness was to detach the first unit of repeat, and then move it alongside the
pattern in order to compare unit by unit. It was discussed that repeating patterns
could be extended to both sides or in both directions.

Another focus was to repair patterns. The children worked in pairs (see Fig. 4.2).
One partner created a pattern and built in an error, or took away some elements
while the other partner was not looking. The partner then had to repair the pattern
by finding the missing elements or errors. Difficulty levels were differentiated by
the length of the unit of repeat and the number of different elements (e.g., two, three

Fig. 4.1 Creating
two-colored repeating
patterns in lesson 1
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or four colors). The activity of translating a repeating pattern within and between
different modes of representation was emphasized too. For example, the children
drew their bead-patterns from the first lesson onto paper. They then translated the
drawn bead-patterns into different colored block-patterns. It was discussed that
patterns that look different at first (because of different material or color) can have
the same structure. It was also discovered that different unit of repeats can create the
same pattern (e.g., ABA versus AAB).

During the work with spatial patterns (a total of five lessons) the children
structured counters in order to quickly and easily grasp the number of counters (see
Fig. 4.3). While working in pairs, one partner structured a given amount of counters
and showed the pattern very quickly to his partner. The partner’s task was to grasp
the pattern’s amount by subitizing. Afterwards the partners discussed if the pattern
was correct and easy to subitize and to compare different views of the same pattern.
Standard number representations like the twenty-field were looked at through a
focus on patterns, and the inherent structures were made explicit. The children
discovered patterns in the decadic system and learned to use them.

The content of the last two lessons were growing patterns. Children looked for
patterns in geometrically-represented growing patterns and number patterns (see
Fig. 4.4).

Fig. 4.2 Repairing a repeating pattern

Fig. 4.3 Creating spatial
patterns
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Every lesson was framed through a collective meeting and following work in
pairs. Lessons were completed by collecting and discussing the children’s dis-
coveries and by conducting a collective singing game that was also based on
pattern.

4.4 Evaluation Methods and Analyses

For the data analyses descriptive statistics for each group were calculated and
analyzed. A comparison of means in form of a t-test for independent samples was
conducted with the t-values of TEDI-MATH and SON-R 2½-7. This enabled
analysis of potential differences between the intervention and the comparison group
with regard to arithmetical skills and intelligence. Calculation of effect size based
on differences between means (Cohen’s d) was used to evaluate the dimension of
difference. Further, we investigated changes related to different competence levels
within and between the classes and the two measuring points. In order to group
children with similar arithmetic competencies together, we classified the
TEDI-MATH results (t-values; min = 24, max = 76) into “arithmetic achievement
levels”. Kaufmann et al. (2009, p. 88) rated t-values from 46 to 55 as age adequate,
smaller values as below average, and larger values as above-average achievements.
We divided the range of t-values into units of tens (lowest from 20 to 25; see ibid,
p. 100) and therefore we discriminated six levels: three levels with below-average,
one with age-adequate, and two with above-average achievements (see Fig. 4.6).

Fig. 4.4 Children’s
discoveries in growing
patterns
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4.5 Discussion of Results

The boxplots in Fig. 4.5 summarize the descriptive statistics of the TEDI-MATH
results for both measuring points. It can be seen that the dispersion of t-values is
wider for the intervention group. Both group’s variances reduce slightly at the
second measuring point. At the first measuring point the two groups’ means are
close (intervention group: mean = 44.8; comparison group: mean = 42.4), as are
the medians (intervention group: median = 43; comparison group: median = 44).
At the second measuring point the intervention group’s mean and median increase
(mean = 47.8; median = 48) whereas the comparison group’s values decrease
(mean = 41; median = 41).

Normality was tested via the Kolmogorv-Smirnov test. Both groups were found
to have a normal distribution at both measuring points. The Levene-test revealed
equality of variances only for the post-test results. For this reason the classic t-test
was used for the post-test values. A t-test for independent groups with unequal
variance was used for the pre-test data.

The t-test analyses of the SON-R 2½-7 results (pre-test) showed no statistically
significant differences (t[30] = 0.106, p = 0.916). This means that the comparison
group and the intervention group were comparable at the beginning of the inter-
vention regarding the children’s intelligence. The t-test analyses of the pre-test
TEDI-MATH results also showed no statistically significant differences (t[40,
665] = 0.751, p = 0.457). This meant that the comparison group and the inter-
vention group were also comparable at the beginning of the intervention on this
measure. However, the groups showed statistically significant differences in the

Fig. 4.5 Arithmetic achievements (TEDI-MATH) in pre- and post-test
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post-test following the intervention (t[49] = 2.469, p = 0.017). The children from
the intervention group achieved significantly better results in the TEDI-MATH. The
calculation of effect size revealed (d = 0.71) a medium-to-high effect (we refer to
Cohen 1988) for the interpretation of d = 0.5 as a medium effect and d = 0.8 as a
high effect (see Rasch et al. 2014, p. 49).

The analysis of arithmetic achievement levels (see Fig. 4.6) indicated that 56%
of the children in the intervention group showed below-average achievements in the
pre-test. After the intervention only 28% were below average. The number of
children with age-adequate achievement in the post-test more than doubled. In the
comparison group, the number of children with below-average achievements
decreased only slightly from 61 to 57%. The low-achieving children in particular,
seemed to benefit from the intervention, which was considered remarkable.

4.6 Conclusions and Implications

In response to our research question this pilot study strongly suggests that a focus
on pattern and structure during regular mathematics lessons does significantly effect
the arithmetic competencies of first graders. This finding is consistent with previous
research on supporting children’s patterning competencies (Kidd et al. 2013, 2014;
Mulligan et al. 2006; Papic et al. 2011). Analysis of the data from the two groups
showed that the students who learned explicitly about pattern and structure
achieved significantly better results in a numerical-arithmetical skills test than those
students receiving traditional mathematics instruction. Focusing on patterns and
structures in mathematics lessons and making patterning an explicit subject of
discussion, not only helped children to gain an understanding of repeating and
spatial patterns, but was found to have a strong positive impact on children’s overall
mathematical development.

This held true especially for lower-achieving children. The differentiated anal-
ysis of achievement levels showed that half of the children with achievements
below average succeeded in gaining age-adequate results by the end of the inter-
vention. The higher-achievers were not affected either way. Our interpretation is
that higher-achieving children, of their own accord, discover, seek out, and use
pattern and structure in mathematics. This may be the reason why they are

Fig. 4.6 TEDI-MATH results classified into arithmetic achievement levels (number of children
shown in absolute frequencies)
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high-achieving. Lower-achieving children on the other hand need support in
noticing and using pattern and structure in doing mathematics (see Lüken 2012;
Schipper 2002, p. 50; Wittmann and Müller 2007, p. 49). Consequently, fostering
pattern and structure abilities might be the key to supporting lower-achieving
children to develop their overall mathematical abilities.

It is important to note that the significant positive effect described in this study
was achieved after only five months of intervention that took place during regular
mathematics lessons; no additional class hours were acquired, and the lessons were
implemented with only one teacher. Nevertheless, we need to interpret these results
carefully. The sample was not randomly assigned to the two groups and the size of
the sample was not large enough to permit generalization. Although the t-test was
robust when preconditions were violated (e.g. no homogeneity of variances), it
would have been advantageous to have a sample with n > 30 for each group (Rasch
et al. 2014, p. 43). The medium-to-high effect size indicated, however, that even
with the given sample the difference in the class’s arithmetic achievements was
unlikely to be an incidental finding. It is most likely to have been an outcome of the
intervention. A second threat to reliability could have been that the intervention was
conducted by the researcher, although the regular teacher acted an independent
observer during the study.

To confirm the findings of this pilot study and to increase the reliability of the
data, a new study with an increased sample size is planned. Lesson examples, based
on the pilot work that can be used by the intervention groups’ mathematics teachers
are currently being developed. Furthermore, a measure of intelligence could be
controlled for the whole sample.

Because we are convinced of the importance of pattern and structure awareness
for early mathematics learning, we hope that in the long term teachers will prioritize
the topic of patterns and structures in their mathematics lessons.
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Chapter 5
Ecuadorian Kindergartners’ Spontaneous
Focusing on Numerosity Development:
Contribution of Numerical Abilities
and Quality of Mathematics Education

Gina Bojorque, Joke Torbeyns, Minna Hannula-Sormunen,
Daniël Van Nijlen and Lieven Verschaffel

Abstract Young children’s spontaneous focusing on numerosity (SFON) predicts
their later mathematical competencies. In this study we investigated the develop-
ment of SFON in Ecuadorian kindergartners as well as the contribution of early
numerical abilities and the quality of mathematics education to this development.
The participants were 100 kindergartners drawn from 10 classrooms. Children
received two SFON tasks, one at the beginning and one at the end of the school
year, and an early numerical abilities achievement test at the beginning of the
school year. The quality of mathematics education was assessed twice via the
COEMET instrument. Results demonstrated limited SFON development during the
kindergarten year, with large individual differences in and highly consistent SFON
performances. Additionally, children’s SFON development during the kindergarten
year was predicted by their SFON tendency and early numerical abilities at the start
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of the year. The quality of mathematics education did not contribute to children’s
SFON development. The scientific and practical implications of these results are
discussed.

Keywords SFON � Early numerical abilities � Quality of math education
Kindergarten

5.1 Introduction

Worldwide, scholars agree that early numerical competence is an important pre-
dictor of later mathematics achievement and of children’s future professional career
and life success. However, while most authors focus on children’s early numerical
abilities (i.e., their early numerical knowledge and skills; e.g., the ability to count,
the ability to compare numerical magnitudes, the ability to decompose numbers, or
the ability to approximate or estimate numerosities) (Andrews and Sayers 2015; De
Smedt et al. 2009; Duncan et al. 2007; Geary 2011; Jordan et al. 2009), an
increasing number of others is focusing on children’s early numerical dispositions
(e.g., the inclination to make sense of numerical situations, or the inclination to
spontaneously focus on the numerical characteristics of daily-life situations)
(Bojorque et al. 2016; Hannula and Lehtinen 2005; Mulligan et al. in press). This
increasing interest into the dispositional side of numerical competence is in line
with Perkins et al.’s (2000) definition of general thinking competence as consisting
of abilities (e.g., the ability to consider hidden options, to search for evidence, to
relate new information to old one) and dispositions (e.g., the inclination to be
curious, to be open-minded, to pay attention to evidence). So, throughout this
chapter, the following three different terms are used along the same lines: (a) early
numerical abilities, to refer to children’s early numerical knowledge and skills only;
(b) spontaneous focusing on numerosity (SFON), to refer to children’s early dis-
position to attend to numerosities only; and (c) early numerical competencies, to
refer to both children’s early numerical abilities and their SFON.

Given the growing number of studies providing empirical evidence on the
importance of children’s early numerical competencies for their further mathe-
matical development (Aunio and Niemivirta 2010; De Smedt et al. 2009; Duncan
et al. 2007; Geary 2011; Hannula-Sormunen et al. 2015; Jordan et al. 2009), it is
surprising that empirical information on the development of early numerical
competencies in Ecuadorian preschoolers and kindergartners is extremely scarce.
However, studies with older Ecuadorian elementary and secondary school students
indicate that they poorly perform in both national (Ministerio de Educación 2012)
and international (UNESCO 2015) assessments in the domain of mathematics.
Against this background, we aimed at investigating the development of Ecuadorian
kindergartners’ SFON during the kindergarten year, with special attention for the
contribution of early numerical abilities and the quality of early mathematics
education to this development. In the following, we first discuss prior research on
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SFON and the relation between SFON and early numerical abilities. We next focus
on the associations between the quality of mathematics education and children’s
mathematical development, and more specifically SFON. We end with our major
research goals and questions.

5.1.1 Spontaneous Focusing on Numerosity

SFON refers to a process of spontaneously (i.e., in a voluntary way not prompted
by others) focusing attention to the exact number of a set of items or incidents in
daily life (e.g., noticing that there are two cats on the roof or that there are three
cookies on the plate) when exact numerosity is utilized in action (Hannula and
Lehtinen 2005; Hannula et al. 2007). According to Hannula and Lehtinen (2005),
this attentional process is needed for eliciting exact number recognition and for
using the recognized exact number in action because exact number recognition is
not a totally automatic process that would occur every time a child is confronted
with something to enumerate. SFON tendency is considered an indicator of the
amount of a child’s unguided or spontaneous practice in using exact enumeration in
natural situations that are not explicitly numerical (Hannula and Lehtinen 2005) and
differs from more general attention processes, enumeration skills or perceptual
skills. Previous SFON studies revealed large inter-individual differences in young
children’s SFON tendency (Hannula and Lehtinen 2005; Hannula et al. 2005, 2007,
2010). According to Hannula and Lehtinen (2005), these individual differences are
not due to children’s lack of enumeration skills since SFON tasks involve only
numbers within the children’s enumeration capacity. These authors found that,
although young children already possess some enumeration skills that enable them
to count collections of up to three items, some children do not spontaneously focus
on the aspect of number when confronted with novel, not explicitly numerical, tasks
that involve such small collections. Furthermore, these authors showed that there is
within-subject stability in children’s SFON tendency across different task contexts
and years of time. For instance, Hannula-Sormunen et al. (2015) reported stability
in SFON tendency from the age of six to the age of 12 years.

Children’s SFON has been measured with different tasks. The most commonly
used SFON tasks for children aged five (e.g., Hannula and Lehtinen 2005) are the
Parrot Imitation task and the Mailbox Imitation task. Both tasks involve small
quantities (i.e., up to three) and are introduced to the child as new pretend-play
situations. The materials involved in the Parrot Imitation task are glass berries and a
toy parrot. On each offour trials the experimenter introduces a given number of berries
into the parrot’s beak and then asks the child “to do exactly the same”. In the Mailbox
Imitation task, the experimenter posts some letters into a toymailbox and then asks the
child to do the same. The aim of these tasks is to obtain a reliable indicator of a child
self-initiated focus on exact numerosity. Therefore, when presenting the task, the
experimenter should not use any phrase that can suggest that the task is numerical or
quantitative in nature (Hannula and Lehtinen 2005; Hannula et al. 2007).
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Using different versions of these SFON tasks, Hannula and colleagues demon-
strated that preschoolers’ individual differences in SFON predicted both their
concurrent early numerical abilities (Hannula et al. 2007) and their later school
mathematics achievement (Hannula et al. 2010). Accordingly, findings of previous
SFON studies reported a unique contribution of children’s SFON to the develop-
ment of their early numerical abilities, including subitizing-based enumeration,
object counting, cardinality recognition, number sequence, and arithmetic compe-
tencies (Edens and Potter 2013; Hannula and Lehtinen 2005; Hannula et al. 2010,
2007; see Hannula-Sormunen 2015; Rathé et al. 2016). Furthermore, SFON ten-
dency in kindergarten was demonstrated to be a significant, domain-specific pre-
dictor of arithmetical skills assessed at the end of grade 2 (Hannula et al. 2010).
Kindergartners’ SFON tendency also predicted their mathematical performance in
grade 5 (Hannula-Sormunen et al. 2015), and it was even positively related to the
development of numerical competencies up to the end of primary school
(Hannula-Sormunen 2015). Regarding the mechanisms underlying the reported
predictive relation between SFON and later mathematical performance, as sum-
marized in Rathé et al. (2016), some authors have argued that children’s cognitive
factors such as their working memory, inhibition, language, and symbolic fluency
play an important role in early mathematical development and thus also may be
influencing the relationship between SFON and mathematical performance. Other
authors explain this relation based on environmental factors such as children’s
spontaneous self-initiated practice in exact number recognition in daily situations.
Finally, as reported in the next section, young children’s SFON tendency can be
enhanced through guided focusing activities (e.g., Hannula et al. 2005).

5.1.2 Quality of Early Mathematics Education

Studies that evaluate the quality of mathematics education are becoming increas-
ingly important, as early numerical competencies predict later academic achieve-
ment (Kilday and Kinzie 2009). To the best of our knowledge, only one study
previously addressed the influence of early mathematics education on the devel-
opment of SFON. In a quasi-experimental study of Hannula et al. (2005), the
personnel of a day care center was guided to create rich learning experiences with a
view to intentionally direct three-year old children’s attention towards variations in
small numbers of objects or incidents in everyday situations and in structured
games. An example of activities embedded in everyday situations is guiding the
children to pay attention to (a small number of) slides of bread during lunchtime; an
example of structured games is a board with removable animals that were changed
in numerosity during the morning in the context of a singing game and then again
secretly along the day. The authors found that children in the experimental group
increased not only their SFON but also their counting skills compared to children in
the control group. These findings suggest that it is important to give a central place
to this feature of children’s early numerical development in mathematics education
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at school, as SFON enhancement is possible and might help to prevent and over-
come learning difficulties in mathematics (Hannula-Sormunen 2015).

More generally, the quality of mathematics education is shown to significantly
influence students’ school achievements (Hiebert and Grouws 2007), already at the
kindergarten level (Fuson 2004). Children who attend high-quality pre-school
programs make more substantial gains in their mathematical competencies than
their peers who do not attend these programs (Sarama and Clements 2009a; Fuson
2004; Griffin 2004). Clements et al. (2013) found that low-SES children who
participated in a high-quality, research-based mathematics intervention program
from pre-school to grade 1, developed stronger early numerical competencies than
their peers who did not participate in that program. It is important that these
findings on the association between the quality of mathematics education and
children’s mathematical development are extended to other settings, and more
specifically to children’s acquisition of SFON.

5.1.3 The Ecuadorian Context

In Ecuador, the Ministry of Education is responsible for the organization of primary
and secondary education. The Ecuadorian educational system comprises three
levels, i.e., (1) Beginning level, involving pre-school, and intended for children up to
four years; (2) Basic education, from grade 1 up to grade 10; with grade 1 referring to
kindergarten; basic education is intended for students aged five to 14 years; and
(3) High school, or the last three years of schooling, for students aged 15–17 years.
Education is compulsory for all students in primary and secondary education (i.e.,
basic education and high school) but not for pre-school children (i.e., beginning
level). Around 73% of Ecuadorian children attend public schools (39% attend public
urban schools; 34% attend public rural schools), 21% attend private schools; the
remaining 6% of the children attend municipal schools or schools financially assisted
by both government and private sources (Ministerio de Educación 2013).

Kindergarten education is aimed for children aged five years. After one year of
kindergarten, children are promoted to the first year of basic elementary school (for
children aged six years). Kindergarten education is regulated by a mandatory
national curriculum that prescribes the minimum requirements that students should
master by the end of the school year. At this level, children attend school five days
per week from 7:30 till 12:30.

5.2 The Present Study

All previous studies on the development of SFON have been conducted in devel-
oped countries, mainly in Finland, and thus it is not possible to generalize previous
findings on children’s SFON development to other, less developed countries such
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as Ecuador (United Nations 2016) that differs in its cultural and educational
characteristics from Finland. Given the influence of SFON to young children’s
concurrent and later mathematical achievement, and the problematic poor perfor-
mance of Ecuadorian children in the area of mathematics compared to their inter-
national peers (UNESCO 2015), our first goal was to examine Ecuadorian five to
six-year olds’ SFON development throughout the kindergarten year, focusing on
both individual differences and stability in children’s SFON development. Our
second goal was analyzing the relationship between kindergartners’ SFON devel-
opment and their early numerical abilities. Finally, to complement current findings
on the contribution of the quality of mathematics education to young children’s
SFON development, our third goal was to explore whether the quality of mathe-
matics education Ecuadorian kindergartners receive at school is associated to the
development of their SFON tendency.

Consistent with our three goals, we addressed three research questions:

(1) Does Ecuadorian kindergartners’ SFON develop between the start and the end
of the kindergarten year?

(2) Do Ecuadorian kindergartners’ early numerical abilities at the start of the school
year contribute to their SFON tendency at the end of the kindergarten year?

(3) Does the quality of early mathematics education in the Ecuadorian kindergarten
contribute to Ecuadorian kindergartners’ SFON tendency at the end of the
kindergarten year?

5.3 Method

5.3.1 Participants

Participants were 100 kindergartners, with an average age of 5 years 3 months
(SD = 3.7 months) at the start of the study. About 10 children were randomly
selected from a convenient sample of 10 different schools of the three major school
types in Ecuador (public urban, public rural, private). These schools were selected
in view of their willingness to participate in the project. The inclusion of different
school types was considered important in order to guarantee the representativeness
of the sample. Table 5.1 shows the composition of the sample.

Table 5.1 Number of children and schools per school type

School type Number of schools Children Mean age (SD)

Boys Girls Total

Public urban 3 14 15 29 5y 1 m (4.1)

Public rural 3 15 17 32 5y 3 m (3.2)

Private 4 23 16 39 5y 4 m (3.3)

Total 10 52 48 100 5y 3 m (3.7)
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5.3.2 Measures and Procedure

Child measures SFON Imitation tasks (Hannula and Lehtinen 2005). Children’s
SFON tendency was measured using the Spanish version of two SFON Imitation
tasks, namely, the Parrot Imitation task (Test 1) at the start of the school year and
the Mailbox Imitation task (Test 2) at the end of the school year. We used these two
SFON Imitation tasks given that they both were designed to capture young chil-
dren’ spontaneous attention for exact numerosity in non-mathematically focused
situations and that they both are characterized by exactly the same task require-
ments and procedures, except from the concrete materials used and the overall
context. These two SFON tasks were used in prior SFON studies with children aged
four to six years (e.g., Hannula and Lehtinen 2005).

(1) The Parrot Imitation task consists of a toy parrot capable of swallowing
different-colored small glass berries. The examiner starts the task by placing a
case of eight red glass berries on the left, and a case of eight blue glass berries
on the right, in front of the parrot, and by introducing the materials saying:
“This is Elsi bird, she likes berries. Here are red berries and here are blue
berries (pointing to the cases). Now, look carefully, what I do, and then you do
exactly like I did”. In the first trial the examiner puts two red berries and one
blue berry into the parrot’s beak, one at a time, and they drop into the parrot’s
stomach, making a bumping sound. Then the child is told: “Now you do
exactly like I did”. The number of berries in the second item is three green and
two yellow; in the third item, two white and three brown; and in the fourth item,
one transparent and two light-blue.

(2) The Mailbox Imitation task, consists of a mailbox to post different-colored
envelopes. For the first trial, a pile of eight red envelopes is placed on the left,
and a pile of eight blue envelopes is placed on the right, in front of the mailbox.
The examiner starts with the task by saying: “This is a mailbox, and here are
red envelopes and here are blue envelopes (pointing to the piles of envelopes).
Now, please look carefully what I do, and then you do exactly like I did”. The
examiner puts two red envelopes and one blue envelop into the mailbox. Then
s/he says to the child: “Now you do exactly like I did”. For the second item, the
examiner puts three green and two yellow envelopes, for the third item, two
white and three brown envelopes, and for the last item, one orange and two
light blue envelopes.

Each of the SFON tasks was administered in accordance with the procedure of
Hannula and Lehtinen (2005). The examiner made sure that the child’s attention
was fully on the task while the trial was performed. She avoided the use of any
phrases or other contextual hints that could have suggested that the task was
somehow quantitative. The tasks included only very small numbers of items (i.e.,
1–3). The child received a score of 1 if s/he responded by putting in the correct
exact number of berries/envelopes and/or if s/he was observed doing any quanti-
fying acts. By contrast, in each trial, the child received a score of 0 if s/he did not
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respond by putting in the correct exact number of berries/envelopes and did not
present any quantifying act. Each child received a total score out of four. Both tests
were administered individually and were checked for the quality of the task
administration on the basis of the video recordings. Cohen’s Kappa inter-rater
reliability (on 10% of the data) of SFON scores was K = 0.96, p < 0.001 at Test 1;
at Test 2, we obtained a perfect match.

Test of Early Number and Arithmetic (TENA) (Bojorque et al. 2015). Children’s
early numerical abilities at the start of the school year were measured using the
TENA. The TENA is the only reliable and valid test available in Ecuador for
assessing Ecuadorian kindergarten’s early numerical abilities. This test was
developed based on the Ecuadorian National Standards for kindergarten number
and arithmetic. It consists of 54 items distributed among nine subscales (with six
items per subscale), namely (a) quantifiers, (b) one-to-one correspondence, (c) order
relations more than/less than, (d) counting, (e) quantity identification and associa-
tion with numerals, (f) ordering, (g) reading and writing numerals, (h) addition, and
(i) subtraction. The test is organized in two parts: an individual part with 29 items
and a collective part with 25 items. Items are scored dichotomously: for each item, a
score of 1 is assigned for a correct answer and a score of 0 for an incorrect answer
(maximum score = 54). Cohen’s Kappa (on 10% of the data) for the TENA scores
revealed strong inter-rater reliability, K = 0.92, p < 0.001.

Classroom measures

Classroom Observation of Early Mathematics Environment and Teaching
(COEMET; Sarama and Clements 2009b). The quality of mathematics education in
children’s classrooms was evaluated twice via the COEMET. We used this
instrument for two reasons. First, the absence of valid observation instruments to
assess the quality of early mathematics education in Ecuador. Second, the
COEMET is the only evaluation instrument that focuses on the quality of early
mathematics education without being linked to any specific curriculum (Kilday and
Kinzie 2009). The COEMET was developed on the basis of research about the
characteristics and teaching strategies of effective teachers in early childhood
mathematics. The COEMET is a half-day administration instrument, specifically
designed to assess the quality of mathematics education in early education settings
by means of determining teaching strategies, mathematics content, clarity and
correctness of mathematics teaching, and quality of student/teacher interactions. It
has 28 items addressing the quality of the Classroom Culture (CC) (nine items) and
the Specific Mathematical Activities (SMA) (19 items) on a five-point Likert scale
(ranging from “strongly disagree” to “strongly agree”). Dimensions of the CC
section are (a) environment and interactions and (b) teacher’s personal attributes.
An example of a CC item is: “The environment showed signs of mathematics:
Materials for mathematics, including specific math manipulatives, were available
and mathematics was enacted and/or discussed around them”. With respect to the
SMA, the COEMET distinguishes among seven dimensions, namely (a) mathe-
matical focus, (b) organization, teaching approaches, interactions, (c) expectations,
(d) eliciting children’s solution methods, (e) supporting children’s conceptual
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understanding, (f) extending children’s mathematical thinking, and (g) assessment
and instructional adjustment. An example of a SMA item is: “The teacher began by
engaging and focusing children’s mathematical thinking (i.e., directed children’s
attention to, or invited them to consider, a mathematical question, problem, or
idea)”. At each observation moment, two observers spent a half-day in each
classroom from the beginning of the activities until lunch time, including the
observation of a mathematics lesson. The observers took field notes and completed
the COEMET scoring form after the observation on the basis of both their field
notes and the videos of the lessons. The inter-rater reliability (on 10% of the data) of
COEMET scores was K = 0.88, p < 0.001.

5.3.3 Data Analyses

The descriptive and inferential statistical analyses were conducted via IBM SPSS
Statistics version 20.0. Due to the small number of schools included in this study,
we used a non-parametric test, i.e., Spearman rank-order, to correlate the quality of
early mathematics education between the two observations. Given that our SFON
data do not follow a normal distribution, we calculated Wilcoxon signed-rank test
between SFON scores at the start and the end of the school year to examine
children’s SFON development. Finally, to take into account the nested structure of
our data (i.e., children nested within classrooms), we conducted multilevel analyses
using the Mixed Models technique (Hayes 2006) as to analyze the contribution of
children’s early numerical abilities and the quality of early mathematics education
to SFON development.

5.4 Results

We first present the descriptive statistics and analyses of the SFON, TENA, and
COEMET scores. Then, we report the results concerning our three research
questions.

5.4.1 Descriptive Statistics and Initial Analyses

The descriptive analysis of the data displayed in Table 5.2, first revealed that there
were clear individual differences in children’s SFON tendency both at the begin-
ning and at the end of the school year. They also indicate a rather low SFON
tendency of Ecuadorian children at both measurements. Moreover, only 37% of the
kindergartners made progress in their SFON tendency throughout the kindergarten
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year; 44% of the children did not make any progress, whereas 19% of them
decreased in SFON scores from Test 1 to Test 2. Furthermore, the correlation
between children’s SFON scores at the two measurement points was statistically
significant (Spearman’s rho = 0.40, p = 0.01), providing evidence for the consis-
tency of the SFON construct. Second, regarding children’s early numerical abilities,
children’s TENA scores were also low, again with large differences between
individual children. Third, with respect to the quality of early mathematics edu-
cation, it can be deduced from Table 5.2 that the quality of the mathematics edu-
cation offered to the children tended to be low in the observed classrooms (i.e., only
half of the maximum score per subscale as well as for the COEMET as a whole),
with rather small differences between the participating classes. Typically, teachers’
approach involved mainly whole-class and teacher-centered instruction supported
by paper-and-pencil work sheets, with scarce individual teacher-child or child-child
interactions, thought-provoking discussions or child-initiated activities. As men-
tioned above, teachers’ classroom activities were observed twice throughout the
kindergarten year. We found a highly significant positive correlation (Spearman’s
rho = 0.80, p = 0.01) between the COEMET scores on the two observation
moments, supporting the stability of the COEMET construct.

5.4.2 Analyses Concerning Our Three Research Questions

To analyze whether Ecuadorian kindergartners’ SFON develops between the start
and the end of the kindergarten year (research question 1), we conducted a
Wilcoxon signed-rank test on children’s SFON scores at the start (Test 1) and the
end (Test 2) of kindergarten. The results of this analysis indicated that SFON scores
were significantly higher at the end of the school year (Mdn = 1.50) than at the
beginning (Mdn = 1.00), z = −2.415, p = 0.02, meaning that there was develop-
ment in Ecuadorian kindergartners’ SFON tendency throughout the kindergarten
year.

Table 5.2 Means, standard deviations, and range of SFON, TENA, and COEMET scores

Measure M SD Range

SFON (max. score = 4)

Test 1 1.24 1.37 0–4

Test 2 1.66 1.61 0–4

TENA (max. score = 54) 25.42 9.30 8–49

COEMET

Classroom culture (max. score = 45) 17.5 4.55 12–24

Specific math activities (max. score = 95) 41.85 5.56 34–51

Total COEMET (max. score = 140) 59.35 9.75 47.63–74.5
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To examine whether children’s early numerical abilities and the quality of early
mathematics education contributed to children’s SFON development throughout
kindergarten (research questions 2 and 3), we conducted multilevel analyses. We
evaluated the adequacy of three models for predicting SFON at Test 2, namely,
(a) SFON Test 1 (Model 1); (b) SFON Test 1 and TENA (Model 2); (c) SFON
Test 1, TENA, and COEMET (Model 3) (all children from the same class received
the same COEMET score).

The outcome of the multilevel analyses presented in Table 5.3 indicates that
children’s SFON scores at Test 1 significantly and positively predicted their SFON
scores at Test 2. Children’s initial SFON scores accounted for 17% of the variance
in their SFON score at the end of the school year. In addition, children’s early
numerical abilities accounted for a significant 20% of variance in SFON scores at
Test 2 (Model 2), indicating that children’s early numerical abilities at the begin-
ning of the school year predict their SFON tendency at the end of the school year
even when children’s SFON score at the start of the school year is statistically
controlled for. When adding the quality of mathematics education as the third
predictor to the analyses (Model 3), the increase in the amount of explained vari-
ance in SFON scores at Test 2 was rather small (i.e., R2 = 2%). The contribution of
this predictor variable was not significant indicating that the quality of mathematics
education children received did not predict their SFON tendency at the end of the
kindergarten year. However, the increase in explained variance in the model cannot
be used as the sole indicator of the importance of a variable. To compare the relative
contribution of the different independent variables standardized betas (Everitt and
Dunn 2001) were used. These indicated that children’s early numerical abilities at
the start of the school year are most predictive for their SFON tendency at the end
of the school year, compared to children’s SFON tendency at the start of the school
year and the quality of mathematics education during the school year.

Table 5.3 Multilevel model of predictors of SFON scores at the end of the school year

Model Predictor Coeff SE Sig. Stand. Beta -2LL

1 Intercept 1.667 0.275 349.651

SFON test 1 0.429 0.098* *** 0.366

2 Intercept −0.822 0.434 326.203

SFON test 1 0.224 0.097** * 0.191

TENA 0.087 0.017* *** 0.503

3 Intercept −2.161 1.157 324.783

SFON test 1 0.223 0.097** * 0.190

TENA 0.081 0.017* *** 0.468

COEMET 0.025 0.020 0.142

Note R2 = 0.17 (Model 1); R2 = 0.37 (Model 2); R2 = 0.39 (Model 3); *p < 0.05, **p < 0.01,
***p < 0.001

5 Ecuadorian Kindergartners’ Spontaneous Focusing on Numerosity … 79



In sum, these results indicate that kindergartners with higher early numerical
abilities and with higher SFON at the start of the school year develop higher SFON
throughout the school year. The quality of the mathematics education received
throughout kindergarten did not add to the prediction of children’s SFON score at
the end of the year. The latter result might be due to the generally low quality of
early mathematics education as well as the small variance in observed quality in the
participating classes (see above). However, given the small number of classrooms
included in our study, we cannot make strong statements about the impact of the
quality of the early mathematics education on the development of children’s SFON
tendency.

5.5 Discussion

5.5.1 Implications for Understanding Young Children’s
Early Numerical Competencies and Development

A first goal of our study was to examine Ecuadorian kindergartners’ SFON
development throughout the school year, focusing on both individual differences
and stability in children’s SFON development. First, our results demonstrate large
inter-individual differences in SFON tendency among Ecuadorian kindergarteners,
as well as consistency in their SFON tendency throughout the school year. These
results are in line with previous findings in Finnish children (Hannula and Lehtinen
2005; Hannula et al. 2007, 2010). The similarities between our and Hannula and
colleagues’ findings suggest that the same structures and mechanisms underlie
children’s SFON development across different cultural and educational contexts.
Second, we found that children’s SFON scores were noticeably low at both the start
and the end of the school year. Remember from prior findings that SFON con-
tributes to children’s mathematical performance in elementary school
(Hannula-Sormunen et al. 2015; Rathé et al. 2016), thus it might be hypothesized
that the low SFON tendency of Ecuadorian children may have a negative impact on
their mathematics achievement during the elementary school years. As this is the
first study on Ecuadorian kindergartners’ SFON development, future studies are
required to validate and refine our findings. Moreover, as we did not follow chil-
dren’s early numerical and later mathematical development during and after the
kindergarten year, future studies need to longitudinally follow up kindergartners’
SFON acquisition and its relation with their concurrent and later numerical and
mathematical achievement at elementary school.

Our second goal was analyzing the relationship between kindergartners’ SFON
development and their early numerical abilities. Our results revealed a positive
relation between children’s early numerical abilities at the start of kindergarten and
their SFON tendency at the end of kindergarten. Thus, the higher children’s score
on the early numerical abilities test at the start of kindergarten, the more children
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spontaneously focused on numerosity at the end of kindergarten. Importantly, this
relationship was significant, even after controlling for SFON at the start of the
school year. Moreover, the contribution of children’s early numerical abilities to
SFON development was stronger than the contribution of their initial SFON ten-
dency. These results provide additional evidence for the relations between early
numerical abilities and SFON (e.g., Hannula et al. 2010; Hannula-Sormunen 2015;
Hannula-Sormunen et al. 2015; Rathé et al. 2016). As such, and as already stated
for the first major research question, the highly similar results in Finnish and
Ecuadorian kindergartners seem to indicate that SFON development relies on
analogous developmental structures and processes in children coming from coun-
tries largely differing in cultural and educational characteristics. This study con-
stitutes a first attempt to examine young children’s SFON tendency in a developing
country, i.e., Ecuador, however, further investigations are needed, to address the
processes underlying Ecuadorian children’s rather low SFON scores, and, to
replicate and refine this study in other European and South-American samples,
differing in general cultural and educational context, to allow more general
conclusions.

5.5.2 Implications for Optimizing Early Mathematics
Education

Our study did not only add to the theoretical understanding of SFON competencies
and development in Ecuadorian children, but also offers new insights into the
relation between SFON and the quality of mathematics education in current
Ecuadorian kindergarten. Indeed, as outlined in our third research goal, we also
aimed at examining the relationship between the quality of early mathematics
education received in the kindergarten year and Ecuadorian children’s SFON
development throughout that school year. Surprisingly, our results revealed that the
quality of early mathematics education that the Ecuadorian kindergartners received
did not contribute to their SFON tendency at the end of the kindergarten year.

To the best of our knowledge, this is the first study that directly addresses the
relation between children’s SFON development for a one-year-time period and the
quality of early mathematics education. As discussed above, Hannula et al. (2005)
tried to stimulate (Finnish) children’s SFON development via a focused interven-
tion study and concluded that young children’s SFON tendency can be enhanced
through purposeful activities that guide their attention to the aspect of number. Our
results are not in line with Hannula and colleagues’ conclusions, taking into account
the lack of contribution of the quality of mathematics education to SFON devel-
opment throughout the kindergarten year. However, it should be noted that the
teachers participating in our study were not trained to focus on enhancing children’s
SFON development, as was the case in the study of Hannula and colleagues.
Moreover, as indicated by the rather low COEMET scores, children’s early
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mathematics education did not only miss a focus on SFON enhancement but was
also generally characterized as being of rather low quality, with teachers’ approa-
ches characterized as providing mainly whole-group teaching followed by indi-
vidual work, with limited interactions and discussions between peers or between
children and the teachers. These differences between this study and the previous
studies of Hannula and colleagues might explain the observed differences.
Additionally, the low number of schools included in this study, may also account
for the lack of a relation between SFON and quality of mathematics education, thus
urging the need for replication and extension in large-scale studies, not only in
Ecuador but also other South-American and, more generally, other countries
worldwide.

Although our results on the relation between children’s SFON development and
quality of mathematics education need to be confirmed and refined in future studies,
they offer important building blocks for optimizing educational policy and practice
in the domain of kindergarten mathematics in Ecuador. A first topic that requires
considerable attention concerns the generally rather low quality of kindergarten
mathematics education in Ecuador, as reflected in the low COEMET scores
obtained by the participating classrooms when compared to previous studies con-
ducted in the US, in which the authors reported COEMET scores of (about) 108 in
experimental classrooms and scores of (about) 99 in control classrooms (Clements
et al. 2011; Sarama et al. 2012). The low quality of early mathematics education in
the participating classrooms might be due to the characteristics of current teacher
training in Ecuador, with only marginal attention for both the core structures and
processes involved in young children’s mathematical development and the defining
elements of powerful learning environments to effectively stimulate this develop-
ment. Although the consistency in our classroom observations and the high
inter-rater reliability in the COEMET instrument indicate a valid description of the
educational practices in the participating classrooms, these observations need to be
complemented with further observation studies. These may include more frequent
classroom observations, teacher interviews, and fine-grained qualitative analyses of
interactions during schooling and testing to provide a more detailed description and
understanding of current educational practices in early mathematics education in
Ecuador. The results of the presented study and of these future studies may allow us
to make informed decisions in future educational reforms in Ecuador. Furthermore,
the observations via the COEMET allow us to pinpoint both strengths and weak-
nesses in current educational practices; an overview of these strengths and weak-
nesses will enable focused reforms to address current weaknesses in both
kindergarten classes and pre-service and in-service teacher training and, conse-
quently, increase the quality of kindergarten mathematics education in Ecuador.

A second challenge for future studies on the role of early mathematics education
on Ecuadorian children’s SFON development refers to the contribution of the
quality of mathematics education in the three major school types (i.e., public urban,
public rural, private). There are some indications that the quality of mathematics
education differs among these school types with children attending private schools
having better educational opportunities than children attending public rural schools
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(PREAL 2006). However, given the small number of schools per school type
included in our study, it was not possible to reliably address the effect of school
type on the quality of mathematics education in the different classrooms and
children’s SFON development during the kindergarten year. Therefore, further
efforts that include a larger number of schools per school type and a larger sample
of children are necessary to describe in more detail children’s SFON tendency
within schools as well as between school types in relation to the quality of early
mathematics education. In these future studies, the complex interplay between the
type of school children attend, the quality of the early mathematics education
received and children’s acquisition of SFON and early numerical abilities, requires
careful consideration.

A third topic that needs further consideration relates to nonexistent contribution
of the quality of Ecuadorian early mathematics education to Ecuadorian kinder-
gartners’ SFON development. A first hypothetical explanation for the absence of
the assumed relation between children’s SFON development and the quality of
early mathematics education refers to the general low quality of mathematics
instructional practices in the participating classrooms (see above). A second
hypothetical explanation concerns the fact that the teachers in our study did not
focus on enhancing their children’s SFON development (cf. study of Hannula et al.
2005). Therefore, future intervention studies aiming at enhancing both general
numerical abilities and SFON tendency in Ecuadorian kindergartners are needed.
The implementation of the TRIAD/Building Blocks early childhood mathematics
program (Clements and Sarama 2013) that has proven to be effective in North
American countries provides a fruitful avenue for these future intervention studies.
Moreover, it seems worthwhile to complement the TRIAD/Building Blocks pro-
gram with guided activities that focus on directing children’s attention to the aspect
of number via structured games organized by the kindergarten teachers and also in
everyday situations (Hannula et al. 2005). Our results and the results of these future
intervention studies will offer important information for educational policy
regarding the content of effective mathematics education in Ecuadorian kinder-
garten and for current educational practice in Ecuador with respect to the effective
stimulation of young children’s early numerical competencies.

Finally, in this study we used two instruments developed in Finland, namely the
two SFON Imitation tasks, and one instrument developed in the US, namely the
COEMET to assess the quality of early mathematics education in Ecuador. In this
respect, one may question the fairness of analyzing Ecuadorian children’s SFON
tendency as well as Ecuadorian classroom practices with, respectively, a Finnish
and US lens. Regarding the two SFON tasks being used in this study, namely the
Parrot Imitation task and the Mailbox Imitation task, we argue that the contexts
wherein these tasks are presented to the children, i.e., feeding a parrot and posting
letters into a mailbox, respectively, are also closely familiar to Ecuadorian children
and, thus, children easily became acquainted to them.

Moreover, meanwhile, these instruments have been successfully used in several
different cultural settings (see Rathé et al. 2016). Regarding the use of the
COEMET, we argue that this instrument was developed and based on vast
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international research literature about good early childhood mathematics teaching
practices (Sarama and Clements 2009b) and can be used to measure the quality of
early mathematics instruction in any classroom given that it “is not connected to
any curriculum” (Clements and Sarama 2008, p. 461). We therefore reasoned that it
might also be suitable for the Ecuadorian context. Moreover, the first authors’
personal experience with early mathematics education in Ecuador allows to con-
clude that there is a good fit between the COEMET items and what is considered as
good teaching practices in early mathematics education in Ecuador. Still, we are
well aware of possible subtle influences of the cultural and educational context of
the US on the development of the COEMET instrument. Consequently, it is
important to conduct a more systematic evaluation of the suitability of the
COEMET for the evaluation of the Ecuadorian early mathematics education
teaching practice.
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Chapter 6
Kindergartners’ Spontaneous Focus
on Number During Picture Book Reading

Sanne Rathé, Joke Torbeyns, Bert De Smedt,
Minna M. Hannula-Sormunen and Lieven Verschaffel

Abstract Children’s Spontaneous Focusing On Numerosity (SFON) predicts later
mathematics performance. This association is assumed to rely on children’s
self-initiated practice in number recognition during everyday activities, which
would enhance their further mathematical development. Consequently, SFON in
experimental tasks should be associated with SFON during everyday activities. The
present contribution aims to enhance our understanding of this association by
critically discussing the major results of two recently conducted studies on the
association between SFON in experimental tasks and SFON during picture book
reading. Study 1 revealed no association between children’s SFON in an Imitation
task and their number-related utterances during numerical picture book reading.
Study 2, in which we contrasted two different SFON tasks and their association to
picture book reading, revealed a positive association between children’s SFON in
the Picture task (but not in the Imitation task) and their number-related utterances
during picture book reading. Theoretical, methodological, and educational impli-
cations are discussed.
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6.1 Theoretical and Empirical Background

Many children develop and use a rich diversity of early mathematical abilities from
a young age (Torbeyns et al. 2015). During the past decade, a large number of
studies have shown that these early mathematical abilities (e.g., counting or com-
paring numerical magnitudes) are highly predictive of later mathematics achieve-
ment in primary school (Aunio and Niemivirta 2010; Claessens et al. 2009; De
Smedt et al. 2009; Nguyen et al. 2016; Vanbinst et al. 2015). Although a large body
of research providing empirical evidence for the importance of these early math-
ematical abilities exists, recent research has revealed that children’s mathematical
dispositions, and in particular their tendency to spontaneously attend to and focus
on numerosity (i.e., Spontaneous Focusing On Numerosity or SFON), is also
important for explaining individual differences in early mathematical development
(see Rathé et al. 2016a, for a review).

SFON is a recent construct developed by Hannula-Sormunen and colleagues,
which refers to children’s spontaneous (i.e., self-initiated, thus not prompted by
others) focusing of attention on the aspect of exact number of a set of items or
incidents and using this recognized numerosity in one’s action (2010). SFON
tendency indicates the amount of spontaneous practice in using exact number
recognition across different task contexts and time (Hannula and Lehtinen 2005;
Hannula et al. 2010). For example, some children spontaneously start to count the
number of cars while playing with toy cars, while others do not explicitly focus on
number, but instead pay attention to other, non-numerical aspects in the situation
(e.g., colors or models of the cars).

So far, SFON has been measured primarily by using action-based Imitation
tasks, in which children are required to imitate the experimenters’ play behavior
with toys (e.g., feeding berries into a toy parrot’s beak; Hannula and Lehtinen
2005). More recently, SFON has also been measured with verbal description tasks,
in which children are required to describe photos (Hannula et al. 2009) or the
content of different cartoon pictures (Batchelor et al. 2015). Children are given a
SFON score in a trial when they spontaneously focus on the numerical aspect of the
task: For instance, feeding the correct number of berries in the Imitation task, or
mentioning at least once an exact numerosity (e.g., I see three houses) while
describing the pictures in the Picture task. In all SFON tasks, it is important that
(1) only novel and not explicit mathematical tasks are used, (2) the experimenter
does not provide any mathematical hints and has the full attention of the child on
the task, (3) the task only includes a few trials as it aims to capture children’s
spontaneous attention on numerosity, and (4) the task includes numbers of items
that are so small that all participating children should be able to recognize them
(Hannula 2005).
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Previous cross-sectional and longitudinal studies revealed that young children
largely differ in their SFON tendency. Moreover, these individual differences in
SFON were found to be associated with early mathematical abilities, such as
counting and subitizing-based enumeration (Hannula and Lehtinen 2005; Hannula
et al. 2007), and they were uniquely predictive of later mathematics achievement in
the beginning (Hannula et al. 2010) and at the end of primary school
(Hannula-Sormunen et al. 2015). The latter findings suggest that SFON might play
a foundational role in children’s early mathematical development.

In particular, SFON tendency is assumed to promote children’s amount of
self-initiated practice in exact number recognition during everyday activities, which
in turn would enhance their further mathematical development (Hannula et al.
2010). In other words, the predictive association between children’s SFON as
measured via experimental tasks and their later mathematics achievement can be
explained hypothetically by the amount of children’s SFON during everyday
activities and play. Although some research on this topic has been carried out,
previous studies that investigated the assumed association between SFON in
experimental tasks and SFON during everyday activities have provided inconsistent
results (Batchelor 2014, Study 3; Edens and Potter 2013; Hannula et al. 2005).

Edens and Potter (2013), for instance, found no association between children’s
SFON as measured via various action-based Imitation tasks and their spontaneous
activity choice (i.e., mathematics-related versus non mathematics-related activities)
during free play in kindergarten. Their results suggest that higher SFON children do
not per se choose more mathematics-related activities (e.g., block construction,
jigzaw puzzles, and computer games) during free play in kindergarten in compar-
ison to their peers with lower SFON scores. Children’s SFON, however, is not
limited to selecting mathematics-related activities, but can also occur during
non-mathematics-related activities, such as picture book reading or making crafts.
When testing the association between SFON in experimental tasks and SFON
during everyday activities, it is important to consider children’s concrete actions
and/or numerical utterances when determining their SFON during everyday activ-
ities and play (Hannula 2005; Rathé et al. 2016b).

In this respect, the study of Batchelor (2014, Study 3) is highly relevant. In
contrast to Edens and Potter (2013), Batchelor focused on children’s and their
parents’ verbal expressions of SFON during everyday activities and play.
Interestingly, results revealed a positive association between children’s SFON as
measured by the verbal Picture task and their verbal expressions of SFON as
observed during a play session in which parents played different games (i.e.,
Hungry Hippos, Lego Duplo, and Picture Printing) with their children. Other
researchers, who determined children’s SFON on the basis of concrete actions (e.g.,
Imitation tasks), found evidence for an association between SFON in the posttest
experimental tasks and SFON as observed by day-care professionals during
everyday activities, but the same association was not found for SFON in the pretest
experimental tasks (Hannula et al. 2005; Mattinen 2006).

Taken together, previous research findings on the association between SFON in
experimental tasks and SFON during everyday situations have been inconsistent
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and contradictory. Moreover, recent findings of Batchelor (2014) show that it is
important to consider children’s verbal expressions of SFON as observed during
everyday activities when investigating the underlying mechanism of SFON.
Therefore, future research is needed to further explore these inconsistencies by
correlating children’s SFON as measured by different experimental SFON tasks
with their SFON during other meaningful everyday activities, such as picture book
reading, of which the potential benefits for children’s early mathematical devel-
opment have been shown (Elia et al. 2010; van den Heuvel-Panhuizen and van den
Boogaard 2008).

Against this background, we set up two studies in which we aimed to investigate
the association between children’s SFON as measured by experimental tasks and
their number-related utterances during everyday picture book reading. In Study 1
(Rathé et al. 2016b), we explored the association between children’s SFON as
measured by an action-based Imitation task and the frequency of their
number-related utterances during numerical picture book reading. Based on the
unexpected result obtained in this study, we conducted Study 2 (Rathé et al. 2017),
in which we aimed to test whether the results of Study 1 might be explained by the
way in which SFON was measured. More specifically, we contrasted two different
experimental SFON tasks—an action-based Imitation task and a verbal Picture task
—in their relation to everyday picture book reading. In the next sections, we
summarize the method and the main findings of both studies and end with a
discussion of some theoretical, methodological, and educational implications. For
more details on the design and the results of the two studies, we refer the interested
reader to the original research reports.

6.2 Study 1

The aim of Study 1 (Rathé et al. 2016b) was to address the assumed association
between SFON in experimental tasks and SFON during everyday activities by
investigating the association between children’s SFON as measured by an
action-based SFON Imitation task and their number-related utterances during
numerical picture book reading. Based on Hannula and colleagues’ hypothetical
explanation (2010), we hypothesized that children with higher SFON scores in the
experimental Imitation task would formulate more number-related utterances during
numerical picture book reading.

Forty-eight kindergartners (28 boys, 20 girls, M = 4 years 6 months,
SD = 4 months), drawn from five different schools in Flanders (Belgium), partic-
ipated in the study. All children individually completed an Elsi bird SFON
Imitation task including four trials (Hannula and Lehtinen 2005) and at least
10 days later, a numerical picture book reading activity, in which they individually
were read aloud the numerical picture book Farmer Boris [Boer Boris] (van
Lieshout and Hopman 2013). The picture book describes the story of Farmer Boris
and his farm with the accompanying animals, fields, and machines, and is especially
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written for the purpose of learning the counting sequence from 1 up to 11. For an
example page of the original numerical picture book, see Rathé et al. (2016b).

In the SFON Imitation task (see Fig. 6.1), the experimenter put small numbers
(ranging from 1 to 3) of colored berries into a toy parrot’s beak and then instructed
the child to “do exactly the same”. Children were scored as focusing on numerosity
in a trial when they gave the correct number of berries and/or if they were observed
doing verbal and non-verbal quantifying acts, such as counting or showing numbers
with fingers. As there were only four trials, the maximum score on the Imitation
task was 4.

During the numerical picture book reading activity, children were invited to
spontaneously comment on the pictures in the book. The experimenter did not
provide any numerical hints. We registered the frequency and the type of children’s
number-related utterances expressed before, during, and after reading the text on the
front cover, page 1–12, and the back cover of the book. Children’s number-related
utterances were classified into seven types of utterances that were largely based on
the framework of Elia et al. (2010): (N1) counting (e.g., 1, 2, 3), (N2) determining
the numerosity of a set of items (e.g., There are six pigs), (N3) recognizing a
numerical symbol (e.g., I see number 3), (N4) comparing quantities (e.g., There was
1 dog on the previous page, and now there is still 1 dog), (N5) analyzing part-whole
relationships (e.g., There are 6 pigs, 5 pigs are walking around and 1 pig is playing
in the mud), (N6) using quantity concepts (e.g., There are a lot of mice), and (N7)
using ordinal numbers (e.g., The sixth pig plays in the mud).

The results of Study 1 revealed large individual differences in kindergartners’
SFON, and in the frequency and the type of their number-related utterances during
numerical picture book reading. In the SFON Imitation task, about half of the
children did not spontaneously focus on numerosity during the solution of the task
(52%), while the others (48%) spontaneously focused on numerosity in at least one
of the trials, and received SFON scores ranging from 1 to 4 (see Fig. 6.2).

During the numerical picture book reading activity, most children formulated at
least one number-related utterance (87.5%). For the group of children who for-
mulated at least one number-related utterance, we observed large individual dif-
ferences in both the frequency and the type of their number-related utterances. The
frequency of number-related utterances varied from 1 to 32 utterances (M = 8.96,
SD = 8.21) and the type of number-related utterances varied from stating only one

Fig. 6.1 Materials in the Elsi bird Imitation task (Rathé et al. 2016b)
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type of utterance (e.g., N6; 9.5%) to formulating different types of number-related
utterances (e.g., N2_N6; 26%). Regarding the observed frequencies of the different
types of number-related utterances, the kindergartners most frequently mentioned
numerosities (N2; 45.6%) and quantity concepts (N6; 32%).

A Spearman correlation analysis did not reveal the expected association between
children’s SFON in the action-based Imitation task and the frequency of their
number-related utterances during numerical picture book reading (rs = −0.14), also
not after accounting for word count (i.e., the total number of words the children
expressed during the picture book reading activity).

As discussed in Rathé et al. (2016b), there were different hypothetical expla-
nations for this unexpected result. First, there was an important difference in
response mode between the experimental SFON Imitation task and the numerical
picture book reading activity. In the numerical picture book reading activity,
children were required to verbally describe their mathematical thoughts and utter-
ances (with attention for action-based numerical acts), while in the Imitation task
children needed to use the information about numerosity in their action.

Second, the characteristics of the numerical picture book used in Study 1 might
explain the absence of empirical support for an association between children’s
SFON and the frequency of their number-related utterances during numerical pic-
ture book reading. More specifically, the numerical picture book activity might not
have captured children’s spontaneous, but rather their guided focusing on
numerosity (GFON), because the number words and number symbols on each page
focused their attention toward numerosity. Finally, the absence of the expected
association between children’s SFON in the Imitation task and the frequency of
their number-related utterances during numerical picture book reading might also
be explained by the rather young age of the participating children (i.e., four to
five-year olds) and their associated limited verbal skills.
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Fig. 6.2 Number of children per total SFON score in the Imitation task (N = 48)
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6.3 Study 2

The aim of Study 2 (Rathé et al. 2017) was to investigate whether available
inconsistent results on the association between SFON in experimental tasks and
SFON in everyday activities (e.g., Batchelor 2014; Edens and Potter 2013; Hannula
et al. 2005; Rathé et al. 2016b) could be explained by the way in which SFON is
measured. Here we explicitly aimed to address and test the first hypothetical
explanation as discussed in Study 1. We also took into account the second and third
hypothetical explanation given in Study 1, but did not explicitly validate them.

With this aim in mind, we systematically contrasted children’s SFON as mea-
sured by two different experimental tasks—an action-based Elsi bird Imitation task
and a verbal Picture task—in relation to their number-related utterances during
picture book reading, using a modified version of the picture book Farmer Boris
without any number words and number symbols. Based on the reviewed literature
above and the results of Study 1, we hypothesized that (1) children’s SFON as
measured by the verbal Picture task should be associated with the frequency of
number-related utterances during everyday picture book reading, and (2) that
children’s SFON as measured by the action-based Imitation task should not be
associated with the frequency of number-related utterances during everyday picture
book reading.

In total, 65 kindergartners (31 boys, 34 girls, M = 5 years 5 months,
SD = 7 months, range = 4 years 4 months to 6 years 4 months), coming from two
different schools in Flanders (Belgium), participated in the study. All kindergartners
were individually interviewed during two separate sessions, in which they first
completed two experimental SFON tasks and a visuo-motor buffer task, and next
were read aloud a modified version of the picture book Farmer Boris.

In the first session, all children individually completed an action-based Elsi bird
SFON Imitation task including four trials (Hannula and Lehtinen 2005) and a verbal
SFON Picture task including three trials (Batchelor et al. 2015). In the Imitation
task, we used the same materials and procedure as in Study 1. In the Picture task,
children had to verbally describe as precisely as possible the content of a set of three
pictures that included, among other things, items that can be counted (see Fig. 6.3).
To distract the children’s attention from the numerical nature of the SFON tasks,
they all completed a visuo-motor buffer task between both tasks.

Fig. 6.3 First and second trial used in the SFON Picture task (Batchelor et al. 2015)
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In the second session, children were individually read aloud a modified version
of the picture book Farmer Boris [Boer Boris] (van Lieshout and Hopman 2013).
To identify children’s spontaneous number-related utterances (and not their
guided number-related utterances), we removed all the number symbols in the
picture book pages. As an example, Fig. 6.4 shows page 9 of the modified picture
book, which displays nine mice who are slinking secretly in the house of Farmer
Boris. The picture book was read aloud according the same reading scenario as in
Study 1.

In line with Study 2, we scored children’s action-based responses and their
verbal and non-verbal quantifying acts during the solution of the SFON Imitation
task. The maximum score in the Imitation task was 4. In the SFON Picture task,
children were scored as focusing on numerosity in a trial when they explicitly
mentioned at least once an exact number (e.g., I see three chickens) and/or showed
non-verbal quantifying acts (e.g., counting acts). The maximum score in the
Picture task was 3. Children’s number-related utterances expressed during the
picture book reading activity (e.g., There are six pigs walking around in the mud)
were scored using the same classification scheme as in Study 1.

In line with the results of Study 1, we observed large individual differences in
children’s SFON scores in the action-based Imitation task and in the verbal
Picture task (see Fig. 6.5). Two thirds of the children (66%) spontaneously focused
on numerosity in the Imitation task, whereas the other children (34%) did not show
any evidence of SFON behavior during the solution of this task. During the
administration of the Picture task, about half of the children (57%) spontaneously
mentioned at least once an exact numerosity and/or showed quantifying acts while
describing the pictures, receiving SFON scores ranging from 1 to 3; the other

Fig. 6.4 Page 9 from the modified picture book Farmer Boris. Accompanying text: “Farmer
Boris has a farm. It also involves mice. Oh no, they do not belong there. They slink secretly in the
house.”
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children (43%) did not spontaneously focus on exact numerosity and/or did not
show any quantifying acts while describing the pictures and received a SFON score
of 0.

As in Study 1, we observed large variety in the frequency and the type of
children’s number-related utterances during picture book reading. Whereas 28% of
the participating children did not formulate a number-related utterance during the
picture book reading activity, the other children (72%) formulated at least one
number-related utterance. Interestingly, the mean frequency of number-related
utterances in Study 2 (M = 5.08, SD = 6.56) was lower than in Study 1 and varied
from 0 to 34. The combinations of types of number-related utterances differed from
stating only one type of utterance (e.g., N6; 17%) to expressing different types of
number-related utterances (e.g., N2_N6; 32%). With respect to the observed fre-
quencies of the different types of number-related utterances, the children formulated
altogether 329 number-related utterances during the picture book reading activity.
As in Study 1, they most frequently focused on numerosities (N2; 62%) and
quantity concepts (N6; 28.6%).

As we expected, Spearman correlation analyses revealed a non-significant
association between children’s SFON as measured via the action-based Imitation
task and the frequency of their number-related utterances during picture book
reading (rs = 0.02), and a positive significant association between children’s SFON
as assessed via the verbal Picture task and the frequency of their number-related
utterances during picture book reading, rs = 0.47, also after accounting for word
count. In line with recent results of Batchelor et al. (2015), we found no significant
association between children’s total SFON score in the Imitation and in the
Picture task (rs = 0.06).
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6.4 Conclusion and Discussion

In recent years, young children’s SFON tendency has been identified as a unique
predictor of concurrent mathematical abilities and later mathematics achievement in
primary school (Hannula-Sormunen et al. 2015; Hannula and Lehtinen 2005;
Hannula et al. 2010). The main idea is that this SFON tendency promotes children’s
amount of self-initiated practice in number recognition during everyday activities
and play, which consequently enhances their further mathematical development
(Hannula et al. 2010). Thus far, results of studies that investigated the association
between SFON in experimental tasks and SFON during everyday activities were
inconclusive (Batchelor 2014, Study 3; Edens and Potter 2013; Hannula et al.
2005). These inconsistent results might be explained by the way in which SFON
was measured during everyday activities and by the different types of experimental
SFON tasks that were used.

To address these possible explanations, we conducted two closely related studies
in which we examined the association between children’s SFON in experimental
tasks and their number-related utterances during picture book reading. More
specifically, in Study 1 (Rathé et al. 2016b) we associated children’s SFON as
measured by an action-based Imitation task with their number-related utterances
during numerical picture book reading. In Study 2 (Rathé et al. 2017), we explored
the same association by contrasting two different experimental SFON tasks (i.e., an
action-based Imitation task and a verbal Picture task) in relation to children’s
number-related utterances formulated during picture book reading, using a modified
version of the picture book used in Study 1.

In line with previous research, both studies revealed large individual differences
in kindergartners’ SFON (e.g., Hannula et al. 2010; Hannula-Sormunen et al.
2015), and in the frequency and the type of their number-related utterances during
picture book reading (Elia et al. 2010; van den Heuvel-Panhuizen and van den
Boogaard 2008). In Study 1, we found no empirical evidence for the assumed
association between children’s SFON in the action-based Imitation task and their
number-related utterances during numerical picture book reading. Yet in Study 2,
we observed a significant positive association between children’s SFON in the
verbal Picture task (but not in the Imitation task) and the frequency of their
number-related utterances during picture book reading, providing evidence for the
first hypothetical explanation given in Study 1.

Although our studies yielded new insights in the association between SFON in
experimental tasks and SFON during everyday activities, it should be noted that
Study 2 revealed only partial empirical evidence for this assumed association. In
particular, we did not investigate the association between children’s SFON in the
Imitation task and children’s SFON during an action-based everyday activity, such
as motor play with blocks, and we did not take into account (the development of)
children’s mathematical skills. Therefore, future research is required to investigate
children’s SFON as measured by different experimental tasks in relation to their
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SFON as expressed during both verbal and action-based everyday activities, taking
into account their (acquisition of) mathematical skills.

Related to our findings in Study 2 providing evidence for the first hypothetical
explanation given in Study 1, SFON might be a multidimensional construct (in-
cluding a verbal and an action-based aspect), which requires different experimental
task contexts to measure these different aspects of SFON. However, as both verbal
and action-based aspects of SFON have been shown to contribute to early math-
ematical development (Batchelor et al. 2015; Hannula-Sormunen et al. 2015),
children’s SFON as measured by the Imitation task and their SFON as measured by
the Picture task, as well as their mutual relation, warrant further research.

In addition to these considerations, it could be argued that the positive associ-
ation between children’s SFON in the Picture task and their number-related utter-
ances during picture book reading is not that surprising, given that the Picture task
and the picture book reading activity are very similar. After all, both tasks assess
children’s number-related utterances when they are presented with pictures and are
explicitly requested to comment on them. However, despite these similarities, there
are some important differences between both tasks (see Table 6.1) that clearly
indicate why the Picture task should not be considered an experimental task instead
of an everyday activity, and vice versa (Rathé et al. 2017).

Finally, our studies may lead to some provisional implications for educational
practice. More specifically, our findings suggest that, besides the acquisition of
early mathematical abilities, children’s mathematical dispositions, and in particular
their SFON tendency, are also important for explaining individual differences in
early mathematical development. Early childhood educators and parents could be
informed about and helped in how to uncover and stimulate young children’s
tendency to attend to numerosities during primarily non-mathematically-focused
everyday activities and play, including picture book reading. Interestingly, when

Table 6.1 Differences between the experimental Picture task and the everyday picture book
reading activity (Rathé et al. 2017)

Experimental Picture task Everyday picture book reading activity

• Unfamiliar experimental setting, in which
the experimenter sits in front of the child,
without seeing the pictures. The child is
instructed to help the experimenter by
describing the pictures, because the
experimenter cannot see the pictures

• Familiar picture book reading setting, in
which the experimenter sits next to the child
on a chair or a pillow. The experimenter can
see the pictures during the entire picture
book reading activity. The child is invited to
describe the pictures in the book, as they
often do at home or in the classroom

• Neutral behavior of the experimenter, who
merely asks the child to describe the
pictures, but does not further interact with
the child

• Less neutral behavior of the experimenter,
who intervenes on each page by reading
aloud the text, as a parent or teacher would
do

• 3 random picture trials, coming from the
same series, but including unrelated
contents

• 11 picture trials, which all are part of a story
line
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comparing the results of both studies, we observed a lower frequency of children’s
number-related utterances during picture book reading in Study 2 than in Study 1,
which suggests that the numerical characteristics (i.e., the number symbols in the
text) of the picture book used in Study 1 might indeed have guided children’s
attention to number, instead of capturing their spontaneous attention to number.
Moreover, this suggests that reading picture books with explicit numerical infor-
mation included in the pictures and/or text, might be a promising tool to enhance
children’s SFON. Future observational and intervention studies, however, are
needed to enhance our understanding on how to stimulate children’s SFON during
everyday activities and play. This might be an important first step in preventing
later mathematical difficulties and stimulating positive attitudes toward mathematics
in general.
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Chapter 7
Number Sense: The Impact
of a Measurement-Focused Program
on Young Children’s Number Learning

Jill Cheeseman, Christiane Benz and Yianna Pullen

Abstract Children begin to form mathematical concepts at an early age and many
of these concepts are linked to measurement experiences. Often mathematics
education in pre-school and at the beginning of school is focused on numbers. In
order to acknowledge children’s mathematical concepts and to build on them, a
mathematics intervention program that focused on measurement replaced the usual
mathematics curriculum for 40 children entering their first year of school in
Australia. This chapter presents the results of the children’s performance on a
one-to-one task-based interview that tested their number knowledge at the begin-
ning and end of the school year. In addition, two case studies and some classroom
stories from the intervention are described. Findings indicate that a
measurement-based curriculum can stimulate the development of children’s number
knowledge and their number sense.

Keywords Number sense � Measurement � Early mathematics education
Intervention � Design research

7.1 Introduction

Children acquire considerable mathematical knowledge before they enter school
(Clarke et al. 2006). This knowledge is built through everyday playful experience
and exploration in meaningful life contexts. Many examples could be offered to
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illustrate ways in which young children’s lives are rich in problem solving where
children make decisions about number, position and size. Often, children’s early
mathematical experiences are in authentic measurement contexts (MacDonald and
Rafferty 2015; Van den Heuvel-Panhuizen and Buys 2008). Mathematics education
in pre-school and in school can be in stark contrast because many children expe-
rience a mathematics education which is heavily number focused (Benz 2012;
Gasteiger 2010).

We contend that young learners in pre-school and in school deserve rich and
meaningful mathematical experiences that acknowledge their mathematical
strengths and connect their informal ideas to formal mathematics. Research shows
that young children have intuitive and informal capabilities in both spatial and
geometric concepts, and numeric and quantitative concepts (Bransford et al. 1999).
In order to use these capabilities “children must learn to mathematize their informal
experiences by abstracting, representing, and elaborating them mathematically”
(Clements and Sarama 2011, p. 968). This applies especially for learning mea-
surement because “measurement and geometry enable children to make connections
with their daily environment” (Van den Heuvel-Panhuizen and Buys 2008, p. 10).
We claim that children could learn number meaningfully through a
measurement-centered curriculum where authentic experiences require children to
solve problems. Therefore, we examined the possibilities of incorporating mean-
ingful measurement problems into the mathematics program of children on entry to
school. Knowing that many educators would be concerned about the effects of the
program on children’s number knowledge and skills, this chapter reports the
assessment of children’s number knowledge when they were engaged in a
measurement-based program.

7.2 Theoretical and Empirical Background

The idea of using a measurement-focused curriculum is not new. Towards the end
of the last century in Russia a curriculum was developed by Davydov et al. (1999)
based on Davydov’s earlier work (1975). These authors developed a mathematics
program without numbers. The foundation of this program constituted describing
and comparing physical attributes of objects (e.g., length, area etc.). It was intended
that children should develop, through different activities, an understanding of
equality and be able to describe comparisons with relational statements like A < B.
After direct comparisons it was thought children should acquire knowledge of
part-whole relationships when they transformed two unequal quantities into equal
amounts. A comprehensive theoretical progression of children’s thinking about
measurement concepts was described by Davydov.

Dougherty and her colleagues adopted this theoretical approach and tested it in
schools in Hawaii in their programMeasure Up (Dougherty and Zilliox 2003). Both
the Russian curriculum and the Measure Up (MU) project started with a theory of
instruction from Vygotsky (1978) who:
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identified two ways of thinking about instruction leading to generalizations. One way is to
teach particular cases and then build the generalizations from the cases. The other way is to
start with a generalized approach and then apply the knowledge gained to specific cases.
(Dougherty and Zilliox 2003, p. 22)

The MU project focused on the second of these two ways. The program used a
general approach of instruction where an attribute of one concrete object, such as
length, normally was not named with a concrete quantified result e.g., “5 sticks” but
always in a relation to another length. The approach was seen as a basis for
relational thinking, problem solving and early algebra. This was also due to the fact
that letters were used instead of writing or representing the real objects. The pro-
ject’s mathematics sequence was primarily determined by Davydov’s (1975)
research and instructional approach. The MU project team worked on ways to
deliver the theoretical approach in classrooms. The project identified at least six
types of instruction: (1) giving information, (2) simultaneous recording, (3) simul-
taneous demonstration, (4) discussion and debriefing, (5) exploration guided, and
(6) exploration unstructured. The order of instruction types from 1 to 6 represented
a continuum from most teacher-active to most student-active. The program reported
success: Dougherty and Zilliox (2003) and Sophian (2007) maintained that the
relationship between measurement concepts and proportionality supported chil-
dren’s development of deep understandings of mathematical structures and prop-
erties of number.

However, the Russian approach and its embedding in the curriculum was not
supported universally by researchers. Particularly due to its neglect of numbers, its
use of letters, and its focus on early abstraction and generalization, the approach
was criticized by authors such as Otte (1976), Freudenthal (1974) and Steinweg
(2013).

7.2.1 Connections Between Number and Measurement

A contrasting view of the relationship between number and measurement was
conceived by mathematics education researchers. For example, Steffe (2010)
viewed discrete quantities and continuous quantities as connected: “We should not
argue the operations that generate an awareness of numerosity [discrete quantity]
are necessarily of a different genre than the operations that generate an awareness of
length, distance, weight, area, volume” (p. 1). He named his four counting schemes
as discrete quantitative measuring schemes and described four stages: the percep-
tual counting scheme, the figurative counting scheme, the nested number sequence
and the explicitly nested number sequence. For Steffe, the development of aware-
ness of continuous quantities was analogous to his four stages of awareness for
discrete quantities.

Krajewski (2013) expanded her developmental model for the concept of number
into a developmental model connecting the concept of number and magnitude. She
highlighted the way in which discrete and continuous quantities have connections
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between magnitude and numbers. In her model of number children also need an
understanding of size because number also represents the size of a quantity (see also
Lorenz 2012). This thinking is reminiscent of Clements and Sarama (2009) who
defined measurement as “the process of assigning a number to a magnitude of some
attribute of an object, such as its length, relative to a unit. These attributes are
continuous quantities” (p. 163). This definition emphasizes the links between
number and measurement and was used in the present study.

7.2.2 Beginning Mathematics

The importance of measurement and geometry was highlighted by van den
Heuvel-Panhuizen and Buys who said that measurement and geometry “lead to
wonderment, and thus to the development of a mathematical disposition which is
characterized by an exploring attitude, a certain perseverance in solving problems,
and a sensitivity to the beauty of mathematical structures and solutions” (2008, p. 10).

Sophian (2007) questioned the common perspective that “children’s thinking
begins with the premise of counting, or some form of determining the numerical
values of discrete quantities, [and] is the foundation for much of children’s
developing knowledge about mathematics” (p. 3). She described a contrasting
position “that what is most fundamental for mathematical development is not
counting or other mechanisms for apprehending numerosity, but rather basic ideas
about relations between quantities” (p. 3). It is this comparison-of-quantity per-
spective that informed the present study.

In support of this approach another study of African American kindergarten
children by Wang (2010) found that children from low-income families had higher
mathematics achievement “if they had teachers who emphasized standardized
measurement and comparison skills” (p. 301).

In the light of these findings and given the underachievement of Australian
students from low-socioeconomic backgrounds in mathematics (Sullivan 2011) a
teaching experiment was designed to change the emphasis from number to mea-
surement in the first year of formal school.

7.3 Method

A year-long design research project was conducted with 40 children aged five to six
years entering formal school in Victoria, Australia. A high proportion of these
students came from Language Backgrounds Other Than English (LBOTE), had not
been enrolled in pre-school, came from low socio-economic backgrounds and were
members of newly arrived migrant families. In part, these factors were a stimulus
for employing a different approach to mathematics learning as similar students in
previous years had achieved limited success. The study aimed to answer the
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research question: What is the impact of a mathematics program based on mea-
surement activities on young children’s learning of number?

The intended curriculum (Van den Akker 2003) is documented in the Australian
Curriculum: Mathematics (ACARA 2012) where the content strands Number and
Algebra, Measurement and Geometry, and Probability and Statistics are described.
The strands are intended to be integrated in practice, together with the proficiencies:
understanding, fluency, problem-solving and reasoning. Curriculum outcomes for
number and place value in the first year of school (Foundation) focus on counting
numbers to 20, counting and subitizing small collections, and comparing collec-
tions. Measurement outcomes specify: “Use direct and indirect comparisons to
decide which is longer, heavier or holds more, and explain reasoning” (ACARA
2012). This present study refers to this outcome of the Australian Curriculum:
Mathematics but investigates a change of emphasis in the implemented curriculum
from a number to measurement focus.

7.3.1 Implementing the Measurement Program

Detailed planningwas undertaken by the teaching team, comprising two teachers who
worked directly with the 40 children, led by the third author. The program was
designed for a school that had a strong commitment to a Reggio Emilia philosophy of
education (Rinaldi 2006) where children were offered provocations to learn.
Mathematical activities were available to children every day in their classrooms and
children could exercise choice over which tasks to complete. Every child was
expected to find some mathematical task for exploration every day and learning
challenges were offered children as mathematical open-ended problem-solving
opportunities.

There was no intent to avoid the use of number. Rather, measurement was
considered an authentic context in which children could be encouraged to use
number. However, de-contextualised number was not taught at all—number was
used to quantify attributes. A mathematics program was planned to include daily
mathematics that focused on measurement tasks and problems. In addition to the
mathematics planning, the teachers elaborated the mathematical potential of their
integrated learning and teaching program. Children were expected to engage with
mathematical thinking every day and teachers were expected to interact with
children to challenge and extend their thinking.

The measurement-based program was characterized as being “student-active”
(Dougherty and Zilliox 2003), where the planned experiences involved unstruc-
tured or guided exploration by the children. Daily mathematics focused on mea-
surement tasks and problems. The classroom observations later in this chapter
illustrate such problems. Teachers created detailed planning documents and
observational records were kept of the children’s actions and ideas. Teachers reg-
ularly met to discuss the mathematical learning of individuals and the group as a
whole.
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The study was conceived as design research because it was an interventionist,
iterative, process and utility-oriented, practical in a real context and theory driven
(Van den Akker et al. 2006). The mathematics intervention program was imple-
mented with children throughout their first year of school. After it was implemented
the merit of the program was evaluated by analysing the learning outcomes of the
children. Three sources of data were collected to document the learning of the
children: one-to-one task-based clinical interviews on number were conducted at
the beginning and the end of the school year, case studies of seven selected indi-
vidual children, and classroom observations where mathematics lessons were reg-
ularly observed, the general classroom context was described, and anecdotal notes
were recorded. This chapter reports results of the analysis of the interview data on
number for the cohort, two illustrative contrasting case studies, and two classroom
stories.

7.3.2 Task-Based Interview for Number

A one-to-one task-based interview was used to assess the children’s thinking about
Number on entry to school and at the end of the first school year. The intention was
to investigate the extent to which children learned number in a measurement
context. The interview protocol was first developed in the Early Numeracy
Research Project (ENRP) (Clarke et al. 2002) and subsequently used by educational
sectors (Department of Education and Early Childhood Development (DEECD)
2006) and in other countries, for example Germany (Peter-Koop and Kollhoff
2015). The interview was constructed to match an ENRP Framework of Growth
Points that was defined using the available research (Clarke et al. 2002). The
interview schedule included 37 multi-part questions in the Number domain.
Counting, place value, strategies for addition and subtraction, and strategies for
multiplication and division were assessed. The interview was constructed using
established criteria (Clarke et al. 2002). Based on the success of each child on the
matched interview questions a Growth Point (GP) code was assigned to their
responses. The tasks and the coding scheme is provided in detail in Clarke et al.
(2002). In the present study the same interview was used on both occasions but due
to the developing skills of the children additional tasks were given sometimes.

The third author interviewed the children in this study at the start of the school
year using the established interview protocol. The second interview was conducted
by an independently-trained interviewer. All student responses were independently
coded numerically, representing the GPs (see theoretical framework according to
the established coding protocols in Fig. 7.1, Clarke et al. 2002). The results of the
counting and place value sections of the interview will be presented here and the
original large-scale research project data are used here for purposes of comparison.
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7.4 Findings

7.4.1 Interview Data

The mean GP codes of the children entering formal school for the first time (five to
six-year olds) at the beginning and the end of their first year at school were cal-
culated for each of the Number domains. These means were then compared to the
three cohorts of reference school (control) data from the Early Numeracy Research
Project (ENRP) (Clarke et al. 2002) because for three consecutive years data were
collected from a representative range of schools matched to the research schools.
Reference schools received no experimental treatment (intervention) and therefore
could be considered suitable for comparison for children entering school and at the
end of the first year of school in the state of Victoria, Australia. From this original
large data set a sample was selected from the school where the third author taught.
Her school had been a reference school for the original research project. The
assessment instrument was identical to that used in the project.

0. Not apparent. 

Not yet able to state the sequence of number names to 20.

1. Rote counting 

Rote counts the number sequence to at least 20, but is not yet able to reliably 

count a collection of that size. 

2. Counting collections 

Confidently counts a collection of around 20 objects. 

3. Counting by 1s (forward/backward, including variable starting points; 

before/after)

Counts forwards and backwards from various starting points between 1 and 100; 

knows numbers before and after a given number. 

4. Counting from 0 by 2s, 5s, and 10s 

Counts from 0 by 2s, 5s, and 10s to a given target. 

5. Counting from x (where x > 0) by 2s, 5s, and 10s 

Given a non-zero starting point, can count by 2s, 5s, and 10s to a given target. 

6. Extending and applying counting skills 

Counts from a non-zero starting point by any single digit number, and can apply 

counting skills in practical tasks. 

Fig. 7.1 ENRP growth points framework for counting (Clarke et al. 2002)
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ENRP Growth Points were defined to describe children’s developing under-
standing of each mathematical domain. In the quantitative analysis only two
Number domains will be used: counting and place value. The counting growth
points (Fig. 7.1) described the development of children’s counting by ones, as well
as by twos, fives and tens. The growth points in counting identified children’s
production of number name sequences. However, the growth points were also
concerned with children making the count-to-cardinal transition in word meaning
described by Fuson (1982) where children are able to think about the number
sequence to solve problems. The growth points in counting in Fig. 7.1 were devised
to articulate the key steps taken by children in developing their understanding of the
number sequence.

7.4.1.1 Analysis of the Interview Data

The mean GP results in counting and place value are presented in Table 7.1 where
the cohorts of children from the original larger study for three years are labelled C1,
C2, and C3, and the children in the intervention program are labelled ES. An
original school data set is reported as OS. These data were collected in the same
school over the three years of the ENRP study via a random sampling of the
students. The purpose of constructing this sample is to create a comparative group
of students from the same school with similar socio-economic backgrounds and
Language Backgrounds Other Than English to those in the experimental group
(ES). The children in the original school (OS) sample were taught the intended
curriculum at the time of assessment that was largely number focused. First, these
data concerning counting will be analysed, and later the GPs of place value will be
presented and analysed.

Counting
An examination of the comparative results (Table 7.1) reveals that intervention
program children (ES) came to school with counting knowledge that was not as
sophisticated as most children in the original larger sample. On average they began
school unable to recite the number names to 20 (mean GP = 0.33) and by the end of
the year they had improved their rote counting skills (mean GP 0.93) but this was
less than for the control groups. The mean for the state of Victoria was almost at
Growth Point 2 where the child can reliably count a collection of around 20 objects.

Table 7.1 Comparison of
mean growth point codes for
counting and place value

Counting Place value

Mar Nov Mar Nov

C1 (n = 438) 0.78 1.80 0.36 0.93

C2 (n = 504) 0.86 1.74 0.36 0.98

C3 (n = 523) 0.88 1.83 0.34 0.99

ES (n = 40) 0.33 0.93 0.34 0.95

OS (n = 51) 0.42 1.49 0.29 0.88
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By the end of the first year of school on average the children in this study could
recite the number names to 20 but not reliably count collections of 20 objects.

Comparisons Between the Original Group and the Intervention Group in
Counting
The results of the experimental group (ES) compared to the original school data
(OS) in counting (Table 7.2) shows that the two groups began the year with wide
variations of achievement Growth Points. Almost three quarters of the ES children
(73%) were unable to say the number name sequence to 20. Only 10% of this group
could count a collection of over 20 objects. In comparison, Clarke et al. (2006)
reported that 39% of Victorian children achieved this skill. The original control
group had 36% at GP2 or above indicating that they were more aligned with the
broader population on entry to school. Teachers’ reasons for the poor counting
knowledge on entry to school of the ES group were attributed to a combination of
factors: a high proportion of students from Language Backgrounds Other Than
English, few children had been to pre-school and many came from a low
socio-economic background.

Table 7.2 shows the greatest differences between the two groups in the
end-of-year (Nov) results. The ES children had learned to count in a
measurement-focused curriculum but 14 (36%) remained on GP0 not yet able to
state the number names to 20. A further 15 (38%) could verbally count but were
unable to count a collection of objects and only 10 children could count reliably
(26%). The two children who were able to count forwards and backwards from
various starting points between 1 and 100, and knowing numbers before and after a
given number (GP3) were exhibiting knowledge described in the intended cur-
riculum as Year 1 outcomes. One student had achieved GP5 showing the ability to
count from a non-zero starting point and to count by 2s, 5s, and 10s to a given target
(a curriculum outcome for Year 2). In contrast in the control group (OS) the
majority of children could reliably count collections at GP2 (68%) at the end of the
year (see Fig. 7.2).

These data showed wide differences in counting growth points between the
experimental and control group; although there was an improvement in both
groups, at the end of the year only one quarter of the experimental group

Table 7.2 The numbers of children at each growth point in counting

Growth
point

ES counting OS counting

March n = 40
(%)

Nov n = 40
(%)

March n = 65
(%)

Nov n = 48
(%)

0 29 (73) 14 (36) 36 (55) 7 (15)

1 7 (17) 15 (38) 6 (9) 6 (13)

2 4 (10) 7 (18) 9 (14) 33 (68)

3 0 2 (5) 14 (22) 1 (2)

4 0 0 0 1 (2)

5 0 1 (3) 0 0
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(ES) compared to over two thirds of the control group (OS) were considered
rational counters (Gelman and Gallistel 1978).

Place Value
An examination of the beginning and end of year data of each of the groups for
place value revealed a very similar pattern of results (Table 7.1). By the end of their
first year of school the children demonstrated that they had a sound understanding
of single digit numbers. This relates to GP1 in the domain of place value in Fig. 7.3.

Comparisons Between the Original Group and Intervention Group in Place
Value
Looking at matched group comparisons in place value (Table 7.3 and Fig. 7.4)
shows patterns of results in the experimental (ES) and control (OS) groups of place
value that are very similar.

In comparison with the counting data, 16% of the children in the
measurement-based curriculum group (ES) has extended their knowledge of
numbers and the number system beyond single digit numbers, reading writing and
interpreting 2-digit (GP2) and 3-digit numbers (GP3) successfully. Place value
knowledge indicates a developing awareness of the number system as a whole. The
“top” (8%) of the experimental group had children who had mastered reading,
writing and interpreting 3-digit numbers. This could possibly be attributed to the
need to use larger numbers in the measurement context or the removal of a “ceiling
effect” of the intended curriculum. Because the curriculum outcomes for number
and place value in the first year of school focus on: counting numbers to 20,
counting and subitizing small collections, and comparing collections, most math-
ematics programs limit the number range children meet to numbers less than 20. In
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Fig. 7.2 Graph of the interview data in counting for experimental (ES) and control (OS) groups
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the measurement-based program children chose to use units of measure that made
sense to them and, in some instances, needed to use larger numbers in context to
solve a measurement problem.

7.4.1.2 Discussion of Interview Data

While it seems at first sight that counting skills and place value skills would be
closely linked, the results of this interview suggest otherwise. Patterns of results at
the beginning and end of the year are quite similar for the experimental group
(ES) and the control group (OS) for place value. However, patterns of results were
very different for the counting section of the interview. The greatest difference in
learning outcomes for number by the experimental group was in their poorer

0. Not apparent 

 Not yet able to read, write, interpret and order single digit numbers. 

1. Reading, writing, interpreting, and ordering single digit numbers 

 Can read, write, interpret and order single digit numbers. 

2. Reading, writing, interpreting, and ordering two-digit numbers 

 Can read, write, interpret and order two-digit numbers. 

3. Reading, writing, interpreting, and ordering three-digit numbers 

 Can read, write, interpret and order three-digit numbers. 

4. Reading, writing, interpreting, and ordering numbers beyond 1000 

 Can read, write, interpret and order numbers beyond 1000. 

5. Extending and applying place value knowledge 

 Can extend and apply knowledge of place value in solving problems. 

Fig. 7.3 ENRP place value growth points framework (Clarke et al. 2002)

Table 7.3 The numbers of children at each growth point in place value

ES place value OS place value

Growth
point

March n = 40
(%)

Nov n = 40
(%)

March n = 51
(%)

Nov n = 48
(%)

0 29 (73) 13 (32) 38 (75) 14 (29)

1 10 (25) 21 (52) 13 (25) 29 (60)

2 1 (3) 3 (8) 0 5 (11)

3 0 3 (8) 0 0

4 0 0 0 0

5 0 0 0 0
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knowledge of counting compared to the control group. This finding can perhaps be
explained by the fact that the mathematics program experienced by children on
entry to school is often based on counting. The Australian Curriculum:
Mathematics (ACARA, p. 1) has a Number and Place Value section at Foundation
level that lists the following outcomes:

• Establish understanding of the language and processes of counting by naming
numbers in sequences, initially to and from 20, moving from any starting point
(ACMNA001)

• Connect number names, numerals and quantities, including zero, initially up to
10 and then beyond (ACMNA002)

• Subitize small collections of objects (ACMNA003)
• Compare, order and make correspondences between collections, initially to 20,

and explain reasoning (ACMNA289)
• Represent practical situations to model addition and sharing (ACMNA004)

As a consequence of these curriculum statements many teachers of children in
their first year of formal schooling in Australia focus on the Number strand of the
curriculum and in particular emphasize counting.

Even though there was an improvement in the outcomes of the children in the
measurement-based program in specific aspects of counting, what is of concern is
that children in this group have not demonstrated the same patterns of achievement
in number name sequence as the control group (see Table 7.2). About half of the ES
group children who were at GP0 in the beginning of their first year of schooling
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could still not state the sequence of number names to 20 at the end of the year. One
reason could be that one of the fundamental principles of counting—the stable order
principle (Gelman and Gallistel 1978), may have not been established for these
children. We contend that knowing the number name sequence is a fluency skill that
can be developed with practice. Therefore, based on the results presented here, we
recommend that in addition to a program that contextualizes number children have
regular opportunities to practice the number name sequence in meaningful ways.
Furthermore, we recommend that teachers of young children continue to pay
attention to each of the other principles of counting: one to one correspondence, the
order irrelevance principle, and the cardinality principle (Gelman and Gallistel
1978). For children with a different language background comparing quantities, for
example, is especially important as a way of generating number sense because this
is a way of dealing with quantities without speaking and not necessarily needing the
number sequence in the language spoken in school.

There is no doubt that counting is a key to young children’s mathematical
futures. It contributes to the development of “number sense” which is paramount for
mathematical development. However, researchers have found that more than
counting is fundamental for developing number sense (Benz 2014; Dornheim 2008;
Mulligan and Mitchelmore 2009). Especially for the later development of calcu-
lation strategies, other competencies are essential such as grouping. Establishing
learning contexts in the measurement-focused curriculum was an attempt to offer
young children rich opportunities to learn mathematics. It did not abandon the use
of numbers; in fact, it offered the children many opportunities to use numbers in
different meaningful ways. The outcome may be seen in the development of the
other domains of number like place value. The interview questions assessing place
value focused on reading digits as numbers, modelling numbers with bundled and
loose sticks, ordering numbers, writing numbers on a calculator, and mentally
saying ten more or one hundred more than a number. In this domain children
showed a similar performance to the original group who were taught the regular
curriculum. When the children were provided with genuine contexts in which to use
number, they built number skills and developed number sense.

It is also argued as essential that children’s experiences should build on their
intuitive mathematical knowledge (Howell and Kemp 2005; McIntosh et al. 1992).
Therefore, teachers and parents are advised to “encourage young children to see
themselves as mathematicians by stimulating their interest and ability in problem
solving and investigation through relevant, challenging, sustained and supported
activities” (AAMT and ECA 2006, p. 1).

7.4.2 Case Study Data

Having examined findings from the interview data, we present in the next section
two case studies to illustrate the range of mathematical thinking elicited by the
children at interview and to paint a picture of individual children’s learning. Then
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two classroom observations are reported to give a sense of the richness of the
measurement provocations teachers offered children as a context to learn
mathematics.

7.4.2.1 Case Study Data: David

David (pseudonyms are used throughout) was 5 years old when he was interviewed
in his first few weeks of formal school (March). His interview responses indicate
that he entered school with numerical skills (Clarke et al. 2006). Tables 7.4 and 7.5
show a summary of the mathematical thinking revealed by the initial interview in
the left hand column. The second column of each table shows the learning gains
made by David by November. The content in the table is aligned to match the
responses to the same interview questions where possible.

David had learned to count beyond 100 by the end of the year. He was showing
signs of understanding the number system when he “reinvented” (Kamii 2003) the
number after 110 to work out 111. David needed to recognise that the counting
sequence beyond 100 follows the pattern of numbers less than 100 (Fuson 1988).

Table 7.4 Summary of counting and place value responses by David at beginning and end of the
school year

Counting skills in March Counting skills in November

Counting

– Counted a collection of 23 objects
– Counted aloud forwards by ones from
different starting points—1 to 32 and 3 to
62 with

– 84 to 113 he stumbled at 99 unable to
continue

– Counted backwards by ones from 10 to 1
– Knew the number before and after 56
– Correctly counted to 100 by 10’s

– Counted a collection of 24 objects
accurately

– Counted forwards and backwards
proficiently with numbers to 100; counted
beyond 100, and to 110

– Skip counted from 0 by 10s, 5s and 2s
– Counted by 10s from 23 and 5s from 24;
but not by 3s from 11

Place value

– Read the numerals 3, 8, 36
– Read 18 as 81
– On the calculator read the tens numbers
accurately

– Unable to read or make a 3-digit number on
the calculator

– Successfully ordered all 1 digit, 2 digit, 3
digit and 4 digit cards. He used the
hundreds digit to order the 4 digit cards
however was unable to read any of the 4
digit numbers

– Read the number 36 correctly but could not
use the bundles of 10 sticks to model 36—
he looked for 36 loose sticks

– Read, ordered and worked with numbers
into the hundreds

– Was able to work with some 4 digit
numbers but not 6023 as he had difficulty
with the 0 as a place holder

– Understood two-digit numbers as tens and
ones showing 3 bundles of 10 to make 30
and count on 6 to make 36

– Recognized number patterns the hundreds
chart to find the blank square (58)
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He had also generalized how to add 10 to any number and he knew how to count by
5s from variable starting points. He recognized counting patterns and could use
them to find a missing number. It was clear that David had structured concepts of
counting and that he developed an understanding of place value. He could bundle
10 ones into ten and using the ten as new unit. By the end of the year David was no
longer having difficulties reading and writing teen numbers. He could interpret the
value of a digit in the tens column, the hundreds column, and he was working
towards reading, writing and interpreting 4-digit numbers.

The responses David made to the interview tasks were coded according to the
prescribed protocols (Clarke et al. 2002) by a trained coder. The growth points for
these two number domains are presented in Fig. 7.5.

David’s strategies for early operations were limited to count on and doubling
methods at the beginning of the year. However, by November he could manipulate
numbers mentally using known facts, doubles and commutativity. He was using early
multiplicative thinking as “groups of”, and generated multiples by repeated addition.

The story of David is one of a child who entered formal schooling with
knowledge of numbers and able to solve operations with numbers using counting.
In Australia, 57% of children on entry to school could verbally count to 20 (Clarke
et al. 2006). The same research showed that 39% of children could count a col-
lection of at least 20 objects. Only 3% of children on entry to school could count
forwards and backwards by 1s and say the number before and after a given number.
Further only 0.3% could count from 0 by 2s, 5s and 10s. Based on these findings

Table 7.5 Summary of addition and subtraction and multiplication and division responses by
David at beginning and end of the school year

Mathematical thinking in March Demonstrated learning gains in November

Strategies for addition and subtraction

He added 4 teddies to the 9 teddies hiding
under the ice-cream container lid by counting
on. His first response was 14 which he
corrected once he could see the 9, he started at
9 and counted on the 4 teddies again

He used his knowledge of known facts, and
doubles, commutativity, and counting on
He was able to count back to solve subtraction

He could use derived strategies such as near
doubles, bridge to ten, and add 10 take one to
add 9 and knowledge of “fact families”

Strategies for multiplication and division

He quickly put two teddies in each of 4 teddy
cars and counted by ones to get the total as 8.
When asked if he could count the teddies in a
different way, he answered “There’s 2 groups
of 4, that’s 8”

The teddy cars question he saw as double 4

The interview ended because David was
unable to share the 12 teddies between the 4
mats

Sharing of 12 teddies on mats David said,
“Three teddies sat on each mat because 4
groups of 3 make 12 and there are 12 teddies”
The task shows one tin of three tennis balls
and asks how many tennis balls in 4 tins.
David began knowing that double 3 equals 6
then he added 3 and another 3
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we can say that David’s knowledge of number would classify him as capable on
entry to school.

It is interesting to note that David’s number knowledge continued to develop
markedly in a classroom where measurement was the focus of the mathematics
curriculum and that while no number strategies were explicitly taught to him, he
learned powerful strategic thinking. For example, he learned doubling using near
doubles and bridging to ten, in measurement contexts. As we can see later in the
classroom stories, numbers played a substantial role in the classroom activities and
it was meaningful for him to deal with numbers in the learning activities. While we
cannot be sure which activities in the end supported the extension of David’s
knowledge, we can say that when challenging and open measurement tasks were
the focus of the program David could develop his number knowledge. This finding
is reminiscent of the research of Young-Loveridge (1989) who monitored the
mathematical thinking of five-year olds at entry to school in New Zealand. She

Strategies for Addition and Subtraction

0. Not apparent 

Not yet able to combine and count two collections of objects 

1. Count all (two collections)

Counts all to find the total of two collections 

2. Count on 

Counts on from one number to find the total of two collections 

3. Count back/count down to/count up from 

Given a subtraction situation, counts back, counts down to or counts up from, 

without the need for physical modelling, such as using fingers. 

4. Basic strategies (doubles, commutativity, adding 10, build to 10) 

Given an addition or subtraction situation, all of the listed strategies (doubles, 

commutativity, adding 10, build to 10) are evident. 

Strategies for Multiplication and Division 

0. Not apparent 

Not yet able to create and count the total of several small groups 

1. Counting groups of items as ones 

To find the total in a multiple group situation, refers to individual items only 

2. Modelling multiplication and division (all objects perceived)  

Models all objects to solve multiplicative and sharing situations. 

Fig. 7.5 Growth point framework for strategies for addition and subtraction and for multiplication
and division
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followed the progress of the children as they were taught the standard mathematics
curriculum. Young-Loveridge identified three categories of children’s mathematical
knowledge related to number and counting on entry to school: expert, typical, and
novice. The children who were classified as expert on entry to school made
mathematical learning gains that out-stripped the others. In fact, they developed
number knowledge that was beyond the specified curriculum at that time. It seems
that David would be categorized as mathematically expert when starting school and
his number sense continued to grow and develop in a measurement-focused envi-
ronment where he was not restricted to a limited number range (see Fig. 7.6).

7.4.2.2 Case Study Data: Maya

In order to get insight in Maya’s mathematical competences data both of the
interview and of the classroom will be analyzed and interpreted.

Interview Data: Maya

Maya’s responses to the clinical interview make an interesting comparative story.
English was Maya’s second language and she spoke her first language at home and
at pre-school. In addition she had refugee status. These two attributes meant that she
was representative of over 70% of the children in the experimental group studied.
Maya had been to pre-school with other children who spoke her first language.
Starting school was a substantial cultural challenge for her and she had the math-
ematical “disadvantage” associated with students from a low socio-economic
background (Sullivan 2011).

While Maya was just beginning to learn English, she had comprehension skills
that indicated that she would be able to follow the task-based interview. She

Fig. 7.6 Graph of interview data for David
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displayed a keen interest in classroom tasks and was happy to work with her
teachers and her peers and to share her ideas.

Before analysing the mathematical knowledge that Maya displayed during the
interview, we will look at the GP codes indicated by her responses (Fig. 7.7). At first
glance it seems that Maya knew nothing about number on entry to school because her
responses were coded at zero in all four number domains. Further, the graph shows
place value still at GP0 in November. So it appears that there was little development
in her number knowledge as she could not reliably count a collection of 20 or read,
write, and interpret single digit numbers at the end of one full year at school.

It was difficult early in the year for the interviewer to know whether Maya was
struggling with mathematical thinking (was in fact a novice mathematically), was
having difficulty finding the correct English words to express her mathematical
thinking, or whether perhaps the language used in the interview was the challenge.
Rather, it may have been a combination of all of these factors. Maya lacked
experience with numbers especially number symbols because the numerals, other
than 1 and 2, were unfamiliar to her. In fact, the only other symbols Maya knew
were the letters needed to write her name. A closer examination of Maya’s
responses, as summarised in Table 7.6, revealed in more detail her mathematical
thinking during the interview.

By comparing her end-of-year GP codes with the Early Numeracy Research
Project students (Clarke et al. 2002) we can see how Maya stands alongside a
representative sample of approximately 1500 students at the end of their first year of
school.

• 5% were at Maya’s counting growth point or below (p. 124);
• 7% were at Maya’s place value growth point (p. 130);
• 52% of children could solve addition by counting all (as was Maya) or were

unable to find a solution (p. 135);

Fig. 7.7 Graph of interview data for Maya
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• 38% were solving multiplication and division by counting or unable to find a
solution (p. 139).

What these figures show is that while Maya had poor counting and place value
skills, in the bottom 10% of her age group, her strategies for early operations are
comparable with her contemporaries who were also using counting to solve
problems. Maya was able to improve her knowledge except in the domain of place
value from GP0 to GP1. She still had problems reading numbers with the English
number words but, in spite of that, she was able to make the quantity shown on the
number cards. This could also reveal her struggle with the English language which
may have led to some of the problems in mathematics revealed by the interview.

Maya in the Classroom

Classroom observation data of Maya adds to our picture of her mathematical
thinking. Maya was seen measuring the length of a leaf with “fingers” (see
Fig. 7.8). She explained:

Table 7.6 Summary of responses by Maya at beginning and end of the school year

Mathematical thinking in March Demonstrated learning gains in November

Counting

She estimated 6 teddies in her cup—actually
there were 21

Maya’s estimation of teddies in the cup was
12, the actual was 25

She could make and count a collection of 4
teddies
She demonstrated one to one correspondence:
she placed one teddy at a time, from the cup
to form a line on the table, adding a number
tag for each teddy. However, she did not have
the number words after 5

She counted correctly to 15 looked at the
teddies and said, “There are more.” She had a
sense of magnitude but could not count to
find the quantity

She was able to verbally count to 5 She could count verbally by ones forward to
20 and backwards from 5 to 1

Place value

She knew the symbols for 1 and 2 only She could read the digits 1–5 only
She could get 7 teddies when shown the
numeral on a card

She was able to order the cards 2, 5 and 9

Strategies for addition and subtraction

She was not able to solve the tasks She could solve 4 + 9 by counting all

Strategies for multiplication and division

She followed instructions placing 2 teddies in
each of the teddy cars however could not
count them successfully, stumbling after 4

She counted by 2s four times to 8

She shared the 12 teddies equally on 4 mats
by putting 3 on each mat saying she
“remembered it”
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Maya “I keep my fingers like this (shows her fingers) and I measure the leaf”.
Teacher “How big is your leaf Maya?”
Maya “It is four finger things—see?”

Interestingly, not long before the end of year interview, while working with one
of the teachers in the classroom, Maya correctly ordered a set of single digit number
cards, 1–9. When she was offered the 0, she placed it in line after the 9 saying, “It
needs a number one next to it.” Where she was clearly thinking of ten rather than
zero. The teacher responded, “You have been doing a lot of measuring Maya,
would thinking of your measuring tools help you find a place for this number
without the one?” Maya immediately, with a smile on her face, put it before the 1
saying, “It’s always in front, in front of the one on my measure”. It is clear that the
measurement context made the numerals meaningful for Maya. While we cannot
say that she understands concepts of zero, she had a clear mental image of the
sequence of single-digit numerals in a measurement context. However, in the
interview without the context and with the expectation of the number names in
English Maya struggled to display her knowledge. Maya had learned number
concepts in her first year at school using measurement to make numbers sensible to
her. She began with very little knowledge and experience and had gained much
more of each.

An examination of the whole cohort interview results and case studies based on
individual interview data, while interesting and revealing, tell only part of the
complex story of the intervention project. The daily classroom anecdotes give a
sense of the vigour and richness of the program.

Fig. 7.8 Maya
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7.4.3 Classroom Data

Two classroom anecdotes about length will illustrate some children’s thinking in
the program.

7.4.3.1 John’s Height

In their first week at school children were invited to consider: How tall are you?
How big are your feet? How much do you weigh? These provocations to explore
were posted in the mathematics corner of the classroom. Materials were provided
for the children: a height chart (in centimetres), scales, Unifix cubes, wooden sticks,
assorted blocks, a measuring tape, and a 1 m ruler.

John (5 years) was observed sitting, pencil and paper in hand, looking very
busy. School had not officially begun for the day but John had decided he wanted to
draw himself against a height chart because he said that he already knew how tall he
was. “Look I’m seventeen tall, see, not eighteen, because the line to my head is at
17.” As John’s drawing (Fig. 7.9) shows, on entry to school John understood that
measuring height uses numbers and he knew the number sequence till 17 only with
one number missing.

For him the 17 line matched his height. Despite the absence of a 15 in his
number sequence, he drew and labelled spaced intervals to illustrate his

Fig. 7.9 John’s drawing of
measuring his height
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understanding that he was 17 tall. His counting began at one and the origin of his
measure is not drawn. The labels show that he understood that the count referred to
the length of each interval. He carefully matched the line for 17 to the top of his
head in the drawing, showing accuracy and an awareness of the end point of the
measure. While it is not clear where the notion of 17 came from, John had in his
mind that he was 17 tall and he could clearly show what this meant to him using an
approximation of a number path.

7.4.3.2 Measuring the Autumn Leaves

The following conversation between Eli and his teacher shows how children’s
attention was naturally drawn to salient features of length measurement.

Eli “I don’t know how much this leaf is. …It’s 300”

Looked at the millimetres on the ruler he had placed along the length of the leaf

T “Where did you start your measuring?”
Eli “2.”
T “Why 2?”
Eli “I don’t know, I think I should start at zero.”
T “Where is zero on your ruler?”

Eli pointed to the zero

T “So, can you start measuring from zero? Does that help?”
Eli “Yes.”
T “Can you measure from the start of your leaf?’
Eli “Yes. I will draw a line so I know where the end is.”

Eli traced the outline of the leaf

T “What are you doing with your leaf?”
Eli “I’m putting numbers on something.”
T “What are the numbers for?”
Eli “Measuring something. Anything—like shelves, chairs and leaves.”
T “So why are you putting the numbers along the leaf?
Eli “To know how much the leaf is.”

This child knows that the purpose of numbers is to quantify a length although as
yet he has no apparent concept of unit. His awareness of the origin of the measure
was raised in conversation, and the number zero became meaningful for him in this
context (Fig. 7.10).

Fig. 7.10 Eli’s leaf
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7.5 Final Remarks

In an attempt to find a way to make mathematics meaningful for children, a
measurement-focused program replaced a counting-based program. Findings from
the overall program will be reported elsewhere to show what measurement insights
young children are able to achieve in an investigative play-based setting. Here
quantitative results of pre- and post-intervention data have been analysed using a
published assessment protocol to compare aspects of the knowledge of experi-
mental to control groups of children.

Despite the improvement in their skills after beginning school, the results show
inadequate learning by the children in the experimental group (ES) in counting.
More than a third of the children could not rote count the number sequence to at
least 20. More than half of the children in the experimental group were also not
counting collections reliably by the end of their first year of school. These findings
suggest that children entering school—at least those with poor English language
skills and a low socio-economic background—seem to need explicit counting
practice with the sequence of number names to 20 and with the one to one cor-
respondence between number words and objects in addition to experiences with
number in measurement contexts, where they were encouraged to count units aloud
and compare continuous quantities.

The Australian Curriculum: Mathematics has a Number and Place Value section
at Foundation level which lists five outcomes where counting as quantifying is
emphasized. Mulligan and Mitchelmore (2009) emphasized that children need more
than simply counting routines. The learning contexts of the measurement-focused
program offered children many opportunities to use numbers in relevant and
meaningful ways. The observation data showed that the children displayed a sense
of ‘the unit’ with which they were measuring and counting. This experience may
have contributed to place value understanding apparent in the interview data.
Because the children needed to use larger numbers in context to solve a mea-
surement problem, 16% of the children improved their skills in reading, writing,
interpreting and ordering of two- and three-digit numbers.

The children displayed other skills for measurement like understanding of iter-
ation of the unit to form a composite “whole”, awareness that counting more units
related to a sense of magnitude, and their ability to quantify to compare measures.
We expected that in this domain the children would make great progress because
many measurement activities took place. However, the genuine measurement
context for number stimulated some children to go beyond the intended curriculum
in measurement outcomes. The curriculum specifies only the use of direct and
indirect comparisons. This study supports the findings of recent studies
(Cheeseman et al. 2012; MacDonald 2012) which show that young children are
capable of more sophisticated concepts of measurement than the curriculum
specifies.
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An implication of this study is that measurement contexts can be productively
used with young children to stimulate number knowledge and reasoning. Like
Sophian (2007), we question the perspective that the mathematical basis of chil-
dren’s thinking is counting or determining the numerosity of discrete quantities.
This study supports a comparison-of-quantity perspective as an effective approach
for young learners of mathematics. We are not advocating eliminating counting, we
are advocating practising counting skills that can be used to determine numerosity
in measurement contexts where they can be used to solve problems. This study, in
particular the case studies and the classroom data, have shown that in principle
when young children measure, they use numbers in meaningful ways and can
acquire number competencies.

This project is similar to other effective intervention studies with young children
reported by Clements and Sarama (2011, p. 970) that “challenge students to solve
demanding mathematical problems … helping them to learn to think mathemati-
cally”. The learning environment in this intervention study was not based on a strict
step-by step curriculum. Proposing a learning challenge every day offered children
mathematical open-ended problem solving opportunities. The number range was
not restricted and children could choose to engage at their own level of thinking
through the natural learning situations where novice mathematicians as well as
expert mathematicians could grow in their thinking.

Regarding the special cultural and socio-economic background of the children
the linguistic differences have to be considered. It is known that children from
different cultural and socio-economic backgrounds proceed through the same
developmental pathway in their early intuitive understanding of mathematics
(Gelman 2000; Ginsburg 1982, 1997; Klein and Starkey 1988). By providing
language rich, challenging, measurement provocations to young children who come
to school with a socio-economic disadvantage and a linguistic disadvantage, we are
confident that their counting skill will develop hand-in-hand with their number
sense. The opportunities to learn through measurement problem solving also offered
a different time frame for the children’s development. The measurement provoca-
tions always offered an unrestricted number range for the children and therefore
enabled children to set their own challenges and to learn in different number ranges.

We advocate that teachers consider enriching the early mathematical experiences
that are offered to young children by maximising their use of measurement contexts
while maintaining fluent counting skills. In this way authentic problem solving will
lead to children posing problems of their own and developing ways of designing
and testing mathematical experiments. Much work remains to be done in
researching specific learning and teaching approaches and designing exemplary
learning environments. However, this project has shown that in principle when
young children measure, they use numbers and develop number sense.
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Chapter 8
(Re)(con)figuring Space: Three Children’s
Geometric Reasonings

Jennifer S. Thom

Abstract Despite decades of research revealing the importance of and need for
developing students’ spatial reasoning skills, geometry receives the least attention
in North American K-12 mathematics classrooms. This chapter focuses on three
grade one children as they worked on a spatial-geometric task. The study as part of
a larger research project inquired into the actual forms, activities and processes that
constituted the children’s reasonings and geometry during the three episodes. The
findings contribute to current early years research by further explicating the body’s
role in the children’s spatial-geometric reasonings, the impact of these on their
conceptions, and how geometry emerged as an ongoing creative process of (re)
(con)figuring space. Key implications are considered regarding young children’s
spatial-geometric reasoning in the mathematics classroom.

Keywords Primary children � Embodied � Diagrams � Gestures
Spatial reasoning � Geometric reasoning � Abstraction � Sensation
Figuring space

8.1 Rationale: Spatial Reasoning and School Geometry
in the Early Years

Today in education and outside of the field, the focus on spatial reasoning continues
to gain momentum. Outside of education, there is strong incentive, and pressure, for
students to succeed in mathematics due to the increased demand for Science,
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Technology, Engineering, and Mathematics (STEM) skills in the workplace. For
more than two decades, research has shown the important role that spatial reasoning
plays in the four subject areas (e.g., Newcombe 2010; Uttal et al. 2013). Spatial
reasoning is not only a strong predictor in determining the likelihood of individuals’
participation in STEM disciplines; it also serves as an indicator for their success in
these areas (Kell et al. 2013; Shea et al. 2001; Wai et al. 2009). Even the most
routine aspects of daily life require spatial reasoning skills. For example, travelling
from one place to another, using a personal mobile device, drawing, reading, or
even carrying out multi-step tasks involves thinking spatially.

With respect to education, The National Research Council (NRC) (2006, 2009)
identified the need for “teaching spatial thinking to all students in all grades” (NRC
2006, p. 6). The NRC (2006) contended that while:

spatial thinking itself is not a content-based discipline in the way that physics, biology, and
economics are disciplines: it is not a stand-alone subject in its own right. Spatial thinking is
a way of thinking that permeates those disciplines and… virtually all other subject matter
disciplines…. Spatial thinking is the lever to enable students to achieve a deeper and more
insightful understanding of subjects across the curriculum. (p. 7)

In the field of mathematics education, the National Council for Teachers of
Mathematics (NCTM) (2006) clearly set out geometry, measurement, and spatial
reasoning as key areas for mathematics teaching and learning in K-12 classrooms.
The NCTM also advocated for an even greater emphasis of these areas in the early
years. Moreover, as geometry naturally employs spatial reasoning, it seems obvious
that students’ spatial-geometric development be a focus in school mathematics.
Clements and Sarama (2011) argued further, asserting that as geometry grounds all
mathematics, geometry is what makes spatial reasoning possible in the first place.
The authors contended that spatial reasoning and geometry should be the central
focus in mathematics classrooms:

Some mathematicians have claimed that, except for simple calculation, geometric concepts
underlie all of the mathematical thought (e.g., Bronowski 1947). Smith (1964) argued that
mathematics is a special kind of language through which we communicate ideas that are
essentially spatial. (Clements and Sarama 2011, p. 134)

The argument connects well with Tahta’s (1980) response to René Thom’s claim
that all (mathematics) magic, to the extent that it is successful, is geometry. The
statement, Tahta pointed out, shifts attention away from the “what” of geometry and
focuses on the activities that give rise to the creation and exchange of images. In
relation to this, Tahta (1989) identified three overarching “powers” involved in
working spatially. These were: (i) imagining (seeing what is said); (ii) construing
(seeing what is drawn and saying what is seen), and (iii) figuring (drawing what is
seen).

Still, despite these and other convergent perspectives that justify the importance
of and need for developing students’ spatial reasoning in school mathematics,
geometry receives the least attention in North American K-12 classrooms compared
to all other areas in mathematics such as number and operations, algebra, proba-
bility and statistics, and measurement (Clements and Sarama 2011; Lappan 1999;
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Mammana and Villani 1998). Moreover, teaching and learning of geometry in the
early years continues to center on children’s development of vocabulary through
identifying and sorting figures by properties. Little if any time is devoted to
engaging children in manipulating, comparing, classifying, composing, decom-
posing or recomposing two- and three-dimensional figures (Sinclair et al. 2016).

8.2 Aims and Research Focus

This chapter features three grade one children. The intent of the research was to
inquire into the actual forms, activities, and processes that constituted the children’s
spatial-geometric reasonings. In so doing, I aimed to further explicate the body’s
role in the children’s spatial-geometric reasonings, the impact of these on their
conceptions as well as how the children brought geometry into being. With new
insight gained from the study, I discuss pedagogical and theoretical considerations
for enabling and valuing young children’s spatial-geometric reasoning. The specific
research questions are presented and contextualized in the theoretical framework.

8.3 Literature

Within mathematics education, the focus on spatial reasoning, its relationship to
school mathematics and in particular, geometry, continues to grow. For example, in
the past four years, several publications devoted to spatial reasoning feature studies
by researchers from around the world (e.g., see feature issues in ZDM 46, 2014 and
47, 2015; Davis and The Spatial Reasoning Group 2015; Sinclair et al. 2016). Much
of the research addresses geometry and also investigates the usefulness of embodied
theories to inform teaching and learning. How spatial reasoning and geometry relate
to notions of embodiment can be attributed to the fact that just as geometry natu-
rally employs spatial reasoning, the very phrase, “spatial reasoning,” implicates the
body as essential for such reasoning. In brief: “Spatial knowing, doing, and being as
radically embodied is about how bodies engage with the world, regularly sensing
and making sense of the situations in which we find ourselves (Thom et al. 2015).”

In the next three sections, I review recent literature that highlights the (em)bodied
nature of students’ spatial-geometric reasonings as well as the roles that diagrams,
gestures, and the relationships between the two play in school mathematics.

8.3.1 Diagrams

Changes in theoretical perspectives, namely those that focus on notions of
embodiment, challenge the assumption that diagrams (or drawings) as artifacts
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serve only as evidence of cognitive development (Bussi 2007). Drawing is a
common activity in pre-school and primary classrooms. Often used to support
geometric learning and spatial awareness, children’s drawings as artifacts are also
used to assess what they have learned. In this manner, children’s drawings as
representations reveal their internal cognitive schema—what they ‘know’ about
geometry, such as their cognitive capabilities, spatial awareness, and conceptual
understanding (Carlsen 2009; Davis and Hyun 2005; Goldin 2002; Kaput 1998;
MacDonald 2013). Thom and McGarvey (2015) questioned these assumptions by
raising the following issues:

What if the act of drawing serves as a means by which children become aware of geometric
concepts and relationships, rather than being viewed as a product of that awareness…. what
might we learn about children’s geometric thinking if we interpret drawings as a vehicle for
thinking and not just an object of reasoning? Also, how do children’s mark-making give
rise to different ways of thinking geometrically? (p. 466).

In their study, the authors conceived children’s mathematical drawings, thinking
and meaning as both acts and artifacts that are always and inherently grounded in
physiological, social, and cultural contexts. Drawing, then, is both a way of
knowing as well as an embodied means of learning. As such, a child’s drawing is
“not merely a copy nor a perversion, or an expression of a reality; it is a
multi-faceted reality itself” (Woodward 2012, p. 14). Children’s drawings as
spatial-geometric reasoning arise in the flow and creation of diagrams. Thus,
drawing is “a matter of learning as much as it [is] a matter of thinking” (Cain 2010,
p. 32).

Moreover, research conducted by Kaur (2015), Leung (2008a, b, 2012), and Ng
and Sinclair (2015a, b) demonstrated other ways that children’s drawings might be
assessed that do not focus on identifying conceptual deficits. The findings of these
studies enable an alternative view of children’s spatial-geometric awareness and
how their reasoning develops; namely, that the meanings students attribute to a
given geometric concept are not necessarily indicative of sufficient or a lack of
understanding, but a result of their shifts in attention while drawing.

8.3.2 Gestures

Recent studies on gestures emphasize the role of the body as it relates to spatial and
geometric thinking. In particular, studies on spatial-geometric reasoning of young
learners reveal the spontaneous and deliberate ways that students and teachers use
their bodies as semiotic resources to communicate in the classroom.

Bussi and Baccaglini-Frank (2015) conducted a teaching experiment aimed at
developing first grade students’ conceptual understanding of oblongs and squares as
rectangles. Here, the children programmed paths for a robot (i.e., “bee-bot”),
enacted the bee-bot’s paths, and represented the sequence of commands. The
researchers observed that while the children’s gestures occurred with and without
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other signs, their gestures independently communicated concepts and conceptual
meanings about angles, sides, turns and directions. Also observed was how the
teacher mirrored and utilized the children’s “turning” gesture to develop the class’
overall conception of rectangles.

In other studies, Elia and colleagues (Elia et al. 2014, 2016) applied McNeill’s
(1992) gesture classification—iconic, deictic, and metaphoric. The authors used the
categories to identify the types of gestures generated by the kindergarten children
and the geometric understandings demonstrated during story, sorting, and com-
posite shape tasks. The findings of the research revealed the children’s awareness
and recognition of two-dimensional shapes, their articulation and comparison of
shape attributes, as well as their activity in dimensional deconstruction, translations
and rotations.

Ng and Sinclair’s (2015a) research regarding the ways that second and third
grade students worked in a dynamic geometry environment (DGE) also focused on
the students’ gestures but how they reasoned about the vertical, horizontal, rota-
tional and oblique (as)symmetries of two-dimensional shapes composed of squares.
Similar to the above studies, the researchers found that the students’ gestures did
not require other signs to communicate the movement of the squares. Additionally,
the authors concluded that the children’s signs and personal meanings demonstrated
their internalization of the teacher’s verbal signs and the visual signs from the DGE.

Research conducted by Thom, Roth, and colleagues exposes still other aspects of
how the body supports, copes with, co-emerges with, and constitutes the devel-
opment of geometric knowledge. For example, studies by the researchers evidenced
how young children and their teacher produced and used communicative rhythms
and patterns of sounds to attend to and articulate specific meanings of properties of
three-dimensional objects (Bautista and Roth 2012; Thom et al. 2010). Differently,
other studies revealed the role that kinetic movement played in the emergence and
development of abstract geometrical understanding in primary classrooms (Bautista
et al. 2012; Thom et al. 2015). Further still, Thom and Roth (e.g., 2009, 2011)
explicated the different manners in which second grade children used touch and
movement to quantify and spatialize attributes of three-dimensional objects; such as
faces (e.g., flat hand), edges (e.g., straight finger) and vertices (e.g., fingertip) of
different rectangular prisms.

8.3.3 Diagrams, Gestures, and the Body

While there is extensive research on gestures and diagrams separately, there is also
increasing interest among educators to explore the interrelation between the two and
the implications concerning the role of the body in school mathematics. Generally,
current studies highlight the impact of diagrams and gestures on students’ mathe-
matical thinking and learning. Research specific to the early years includes how
diagrams and gestures contribute to children’s spatial and geometric reasoning. In
this section, I examine additional literature in light of some of the discussed studies
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to address critical connections between diagrams, gestures, and geometry, ulti-
mately revealing the primacy of the body.

De Freitas and Sinclair (2012) applied mathematician and philosopher,
Châtelet’s (1993/2000) notion that inventive reasoning requires and supports the
co-emergence of diagrams and gestures by exploring how this occurs with adult
learners. The researchers conceived the students’ production of diagrams as creative
and embodied acts that enabled new relationships for engaging in the mathematics
and the environment. Consequently, similar claims can be made about the primary
students in Ng and Sinclair’s (2015a) study that examined the children’s gestures,
their diagrams, and the discussions that accompanied them. The students’ expla-
nations involved their invented use of arrows that illustrated the symmetric
movement of the squares and hand gestures that communicated the same actions.

Also evident in the Bussi and Baccaglini-Frank (2015) investigation is the
student teacher and student interaction where both the child’s gesture and drawing
(as well as oral words) illustrated the bee-bot’s turn as a right angle. These instances
not only demonstrate Châtelet’s (1993/2000) contention that gestures and diagrams
occasion each other, but the two together, engender new reasoning. In his elabo-
ration on this latter point, Châtelet argued that gestures and diagrams should not be
taken as simply representational but also as potential sources for further inquiry and
discovery in mathematics.

Drawing on previous research by Duval (1995), Herbst (2004), O’Connor
(1998), and Sfard (2001), Chen and Herbst (2013) compared the work of high
school students who were given either a fully labeled or unlabeled geometric
diagram. The researchers found that the students with the labeled diagram
employed only pointing gestures whereas those given the unlabeled diagram
extended their thinking by using gestures to lengthen the lines, create intersections,
and angles. The students also generated new conjectures about objects and prop-
erties that then enabled new spatial-geometric knowledge.

Sinclair et al. (2012) observed similar findings in their study of grade one
students. The researchers presented the class with a digital diagram of two lines that
could be dragged on the screen. The students produced hand and arm gestures to
conjecture where the point of intersection would occur by extending the lines off the
screen. The students also used a finger and thumb gesture to mark the distance
between the lines. Although the two studies above differ in the kinds of diagrams
offered to the learners; that is, static and labeled, static and unlabeled, and dynamic
diagrams, both investigations emphasize the same point: Critical to the develop-
ment of students’ geometrical reasoning, it is necessary that learners comprehend
diagrams as generative and open rather than definitive and closed. Doing so affords
students opportunities to engage with the diagrams, make reasoned conjectures
(Herbst 2004), and create new knowledge.

Lastly, given the four different cases examined by Thom and McGarvey (2015),
the authors questioned the pedagogical usefulness of separating diagrams from
gestures or the two from the body writ large. The pre-school and primary students
who explore concepts including number, vectors, and zero-dimensional (0D) to
three-dimensional (3D) objects showed how their mathematical experiments in
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reasoning as well as their new conceptions continuously emerged and evolved as
the very acts and artifacts of drawing. Thus, it was the children’s simultaneous
embodiment of mathematical knowledge and their bodying forth of
spatial-geometric ideas and reasoning that were the marks on the paper as well as
the gestures, sounds, movements and verbalizations. Drawing(s), gestures, and the
body transcend one another, and in turn, co-generate new visual, aural, tactile, and
kinetic activity with which geometric experience and conceptual insight can be
explored, invented, and expanded.

8.4 Theoretical Framework: Embodied Cognition,
Mathematics and Drawing

In this chapter, I explore how bodies of knowers (i.e., students April, Emma and
Sophia and research assistant Mr. James) and bodies of knowledge (i.e., spatial and
geometric) co-evolved immanently as emergent phenomena. This research draws
on embodiment theories in cognitive science (e.g., Maturana and Varela 1991) and
philosophy (e.g., Châtelet 1993/2000; Merleau Ponty 1945; Merleau-Ponty and
Lefort 1968; Henry 2009) where cognition is assumed to depend “upon the
experiences that come from having a body with various sensorimotor capacities”
(Varela et al. 1991, p. 173). As geometry necessitates spatial reasoning and spatial
reasoning engages perceptual-motor capacities, it is impossible to ignore the body
and the role it plays in school mathematics, teaching and learning.

This point is not trivial; rather, it may appear insignificant only because our
biological, social and cultural ways of knowing are so entangled in the historicity of
everyday living that we take for granted the fact that, “the only mathematics we can
know is the mathematics that our bodies and brains allow us to know” (Lakoff and
Núñez 2000, p. 346). For example, consider the mathematical terms rotate, translate,
and reflect. These seemingly abstract yet commonly used words are anything but
disembodied symbols when viewed from a neuroscience perspective (Pulvermüller
2012). Inherently bodily, these terms like other language are, “‘woven into action’ at
the level of the brain” (p. 423). In other words, the relationship between words and
the objects to which they refer occurs as coordinated neuronal activity. The con-
ceptualization of language emerges within concrete contexts and as such, later use of
words even in the absence of their original contexts are shown to activate the motor
and premotor areas in the cortex that first gave rise to the actions. In light of this, it is
difficult if not impossible to ignore the significance of whole body sensations like
turning, sliding, and flipping in making sense of and engendering dynamic meaning
for the terms rotate, translate, and reflect.

Importantly, making sense through exploiting the senses is more than simply
experiential; it is experience informed by perception and action that is sensually and
neurologically linked. The inseparability of perception and the body locates
the body as the very site and means from which all knowing arises. Therefore,
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if perception is integral to cognition then perception is also vital for
action-in-the-world (Merleau-Ponty and Lefort 1968). What exactly we come to
realize and that to which we choose to attend is contingent on how our biological
bodies move through the world as well as the historically and culturally manners in
which our experiences are specified (Maturana and Varela 1991; Thompson 2010;
Vygotsky and Luria 1993). Action is neither a reflection nor a representation of
knowing; rather, action is constitutive of knowing—full stop. Knowing, doing and
being cannot be parsed out as separate phenomena but must be conceived radically
as cognition itself. Further still, there can be no internal or external feature of
knowing because knowing always and continuously reveals itself as
action-in-the-world or, life (Henry 2009).

Related to these perspectives is Châtelet’s (1993/2000) argument that gestures
and diagrams are dynamic interrelated embodiments of mathematical understanding
and inventiveness. In contrast to diagrams as static objects, gestures as distinct, and
the two as representations of knowledge, diagrams are viewed as capturing “ges-
tures in mid-flight… the moments when being is glimpsed smiling… the accom-
plices of poetic metaphor… [that] leap out in order to create spaces” (italics added,
p. ix). Châtelet also contended that diagrams unlike metaphors, are never exhaustive
or wear out; instead, they persist openly and generatively.

In this chapter, I examined how the ‘drawing’ bodies of young children
continuously “(re)(con)figure space” (Châtelet 1993/2000). My inquiry focused on
detailing the ways that children’s bodies think and “explore [a] world in its own
right instead of … simply… representing an outer world” (Cain 2010; Schneckloth
2008; Woodward 2012). More specifically, I asked, what are the manners in which
young children bring geometry into being? And, how is it that the children’s bodies
as knowers and their bodies of knowledge occasion the exploration and expansion
of their reasoning in spatial-geometric ways?

8.5 Method

8.5.1 Data

The three episodes in this chapter are part of a larger project that documented 19
mathematics sessions over 3 months. Here, a mainstream kindergarten and grade
one class (N = 19; 11 boys, 8 girls) learned about geometry and spatial reasoning
through partner, small-group and whole-class explorations. The activities were
co-designed and co-taught by the classroom teacher, the Teacher of the Deaf/Hard
of Hearing (TODHH), the two research assistants, and myself. A variety of contexts
(e.g., stories, construction, outdoor spaces, and imaginary) and modes in which the
children chose to work (i.e., drawing/recording, verbalizing, physical, or manipu-
lative) were integrated into the lessons. All events during the study were recorded
using two digital video cameras. Electronic pens and paper captured the children’s
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drawing(s) and conversations. As well, class artifacts, drawings, field notes
including physical, verbal, and gestural actions, transcripts of the video data, and
photographs were collected.

8.5.2 Process

My discussion of the findings addresses key events as three grade one children
worked with research assistant, Mr. James. Specifically, I examined the actual
forms, activities and processes which comprised the children’s geometry and rea-
soning during the session. Assuming that mathematical thinking is observable as
socially and culturally structured bodily activity (Nemirovsky and Ferrara 2009), all
forms of the data were in a similar way available for analysis. The analysis involved
constantly (re)viewing and comparing the multi-layered data of moment-to-moment
events as well as verifying conjectures against related theories on embodied cog-
nition (Edwards 2009).

In the next section, I provide a narrative account of the conversations, move-
ments, gestures, and drawing(s) by the children in the first part of one of the
sessions. Included with this, is an analysis of critical events as they happened in
each of the episodes. Specific attention was paid to the spatial-geometric concep-
tualizations of Emma (6 years), Sophia (7 years) and April (6 years) as they
examined a photograph and worked to articulate what they saw and what the object
might have been by imagining it in different dimensions and from multiple per-
spectives. What is clear from the analysis is the fully (em)bodied nature of the
children’s spatial-geometric awareness and reasonings as well the inventive ways
that they brought geometry into being.

8.6 Results: Findings and Discussion
of the Children’s Work

Mr. James asks the children to look at the photograph (see Fig. 8.1).
In unison, Emma, Sophia and April say, “circle!” April traces around the outline

with her finger while Emma and Sophia move their fingers in circles in the air. They
then each draw a circle on separate pieces of paper (see Fig. 8.2)1:

It is important to notice that none of the children simply verbally identify the
image as a circle. Rather, the tracing and drawing motions first with their fingers in

1Throughout the larger research project from which these episodes are taken, there was no par-
ticular mode that the children were expected to demonstrate their thinking. However, making
mathematical ideas and thinking available to others and for the class’ further exploration was
certainly modeled, discussed, and encouraged in all lessons. As such, a variety of materials were
on hand for students to use if they wished.
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the air and then with pen on paper that follow their verbalizations, bring forth the
idea of a circle and its further meaning. Here, the children’s articulation of the circle
as a continuous curved line that is joined end to end emerges from and as whole
body events (Châtelet 1993/2000).

Sophia: [Drawing a circle] This is a circle. It’s round, no corners.
Mr. James: It’s round, no corners. How many faces?
Sophia: [Looks at Mr. James and holds up one finger] One. [Pauses. Looks

away and then back again at Mr. James] Two [holds up two fingers].
Mr. James: Where’s the other face?
Sophia: On the… [pauses] if you have the block (see Fig. 8.3) then there are

two [holds hands flat, apart, and parallel to each other and then
shakes her hands twice up and down].

Mr. James: Oh…! So on the opposite side [gestures with his hand].
Olivia: Yes [smiles at Mr. James].

Fig. 8.1 Digital photograph presented to Emma, Sophia and April

Fig. 8.2 Circle drawings by Emma (a), Sophia (b), and April (c)
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In this episode, Sophia further identifies “it”—a circle as “round, no corners”.
And in the next moments when she pauses, looks away, and then back again at
Mr. James, what she initially expressed as “it” with one circular face, transforms
into two circular faces. With fingers together and flat upright hands, Sophia holds
them parallel to and facing each other, shaking them in an up and down motion
twice. While the gestures and motion locate two circular faces, they also express a
new orientation and dimensional space in which the circles exist; earlier, the circle
was in front of her or viewed from above. Now “it” is two circular faces, one at
each end of a 3D object.

Mr. James then asks the group:

Mr. James: If this is the front [pointing to the photographed image], what would
the back look like?

Emma: Same.
Mr. James: Same?
Emma: Because this is what the side would look like…

While Emma says this, she holds up her left hand and points in the air with her
index finger. She looks at her hand and pauses. She then closes her eyes, makes a
fist, and holds it at a slight angle in a vertical position (see Fig. 8.4). With eyes still
closed, Emma pauses again, unclenches her fist and makes a curved shape with her
thumb and index finger. She holds her fingers in this new position and moves her
hand diagonally downward through the air (see Fig. 8.5a). Emma opens her eyes
and looks at the group as she completes the motion and comes to a stop (see
Fig. 8.5b–c). Taking the pen in her hand, she draws the side view of the block on
the piece of paper (see Fig. 8.6).

Emma’s three different hand shapes and the diagonal downward movement
demonstrate the work she accomplishes to make new meaning of the prediction.
The first gesture of pointing a finger in the air compared with the second gesture
of a clenched fist clearly shows a shift from simply indicating or referencing an
object to physically creating an object that closely resembles a cylinder. Further,

Fig. 8.3 Sophia locates two
circular faces at opposite ends
of the block
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when Emma transforms the closed fist into what appears to be a circle/ellipse
moving along a straight path, not only does she explicate why the front and back
faces of the object will be the same shape, but also, how a curved surface is formed

Fig. 8.4 Emma’s second hand gesture

(a)

(b)

(c)

Fig. 8.5 a–c Emma’s third hand gesture and accompanying motion
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between the beginning and end of the path of the circle/ellipse. In these ways, the
resulting cylinder gives rise to new and important temporal, spatial, and geometric
properties that extend beyond generating and justifying the conjecture.

Similarly, just as the children’s verbalizations, gestures, and movements emerge
moment to moment as spatial-geometric concept(ion)s and reasonings, so too do
their drawings (Thom and McGarvey 2015). For example, of her own accord,
Emma changes focus from the front and back faces of the object to the side of the
object. Then, as she draws the side of the block, new meanings of the cylinder
arise.2 Here, orienting the object horizontally and viewing it from the side enables
the surface of the object between the two circles to become a flat oblong (Duval
2014).

While Emma prints “saiDe” (sic) next to the image, Sophia shows Mr. James her
drawing (see Fig. 8.7). Differently from her previous 3D object, she attends to the
space between the two circular faces. Sophia maintains the horizontal position, but
this time, draws an oblong to be the side of the object.

April also focuses on the side of the block and announces that she is drawing a
semi-circle.

Mr. James: Why?
April: Because it has a semi-circle on the side…. This is where this one starts

and this is where it ends [traces “this” as a semi-circle with the pen].
And this is where this one starts and this is where this one ends [traces
“this” as a second semi-circle with the pen] (see Fig. 8.8)

April’s reenactment of her drawing evidences how her spatial-geometric rea-
soning changed from conceptualizing the 2D “top” of the cylinder as a circle—seen
from above—to drawing the two semicircles that wrap around the top and form the
side of the block.

Mr. James then asks what the entire block might be if he picked it up and gave it
to them. Without any talk, the three children draw objects that look very similar (see
Fig. 8.9a–c).

Fig. 8.6 Emma’s ‘side’
drawing

2This shift in attention carried through to the next drawing(s) and conversations with Sophia and
April where the students, also on their own, chose to focus on the side of the object.
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Although alike in appearance, key differences are observed by examining how
each child attends to and accomplishes the task. Additional distinctions can be
made regarding Emma’s mark making of her ‘side’ drawing (see Fig. 8.6) and the
current one which appears to be one and the same. With the first cylinder, she
quickly draws the circles/ellipses only then to slow down and carefully make two
parallel lines from one circle/ellipse to the other. The change in speed with which
Emma draws suggests her particular attention to this part of the three-dimensional
object (see Fig. 8.11a). Both the focus and care that Emma demonstrates could well
be an extension of the parallel lines she previously made visible and tangible as she
moved her curved thumb and finger in the diagonal downward motion (see
Fig. 8.10).

Emma later draws the circles/ellipses and parallel lines of the second cylinder
with the same speed and fluidity. And in the moments of drawing the circles, she
also speaks in a singsong voice, lilting, “two…” as she forms the first circle and in
the same tone says, “circles…” as she makes the second circle. This is followed by
a sound that Emma spontaneously invents while she draws the two parallel lines.
Here, she voices, “doo—oo—oo—ip” each time she draws one of the lines in a left

Fig. 8.7 Sophia’s ‘side’ drawing

Fig. 8.8 April’s “semi-circle” sides drawing, reenactment and explanation
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to right direction. Emma’s intentional and creative work not only elucidates the
composition and paired attributes of the two-dimensional cylinder as visual, verbal,
tactile, and dynamic forms, but also sonorously as rhythm and sound (see
Fig. 8.11b).

Sophia’s third drawing contrasts with her previous one in which she created an
oblong (see Fig. 8.7). This time, she draws an oblong with two circles. Working in
a left to right manner, she makes one circle first, then the oblong, and the other
circle (see Fig. 8.12).

It is also interesting to compare how April drew the previous object (see
Fig. 8.8) and how she draws it now. No longer drawing from the perspective of
looking down at a cylinder standing on its circular base, April draws from a side
view of the object as it appears horizontally (see Fig. 8.13a). She draws a curved
line on the right side of the paper (see Fig. 8.13b) and slowly lengthens the two

Fig. 8.9 Emma (a), Sophia (b), and April’s (c) drawn objects

Fig. 8.10 The parallel lines Emma makes visible and tangible
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ends leftward, keeping the lines parallel to each other (see Fig. 8.13c). She then
joins the ends of the line by quickly making two short vertical strokes that serve to
mark the two edges that separate the three surfaces of the cylinder. Here, April’s
drawing shows how the two-dimensional cylinder originates from its circular base
and eventually becomes what she describes next as “one of those stretchy l-o-n-g
circles.” Mr. James points to April’s drawing (see Fig. 8.9c) and asks what its name
might be.

April: [Shrugs her shoulders] I forget. [with hands and arms aligned with center
of the body, she moves them in an outward motion] (see Fig. 8.14) … but
it’s one of those stretchy l-o-n-g circles

April proceeds to wave her arms outwards and inwards several times in the air
(see Fig. 8.15). She then sits still. Following this, she curls her fingers into the
palms of her hands, positioning them out in front, beside each other, and thumbs
facing inward. She then moves her hands three times in a continuous, horizontal,
center-out motion (see Fig. 8.16).

The way in which April works in response to Mr. James’ question reveals new
spatial, geometric, and temporal meanings as well as the evolution of these as she
creates each of the cylinders. In the first part of the excerpt (see Fig. 8.14), the
concept of “stretchy” reappears. However, in contrast to the cylinder she draws that
forms lengthwise and two-dimensionally on paper from its circular base, the new
object that comes into being is not a flat cylinder but a three-dimensional one

(a) (b)

Fig. 8.11 a–b Emma’s second and third conjectures of what the side of the object and the whole
object might look like

Fig. 8.12 Sophia’s third
conjecture of what the whole
object looks like
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positioned between two hands that face each other. As the hands move apart and
April slowly and deliberately says, “long” as “l—o—n—g”, a cylinder emerges and
continues to grow in length as it extends outward from the center.

And, when April waves her hands and arms in this 3D space and then sits still,
her actions appear to ‘erase’ or ‘clear’ the 3D space in which she works, signaling a
shift in thinking (see Fig. 8.15). What is observed next is the new meanings she

(a) (b) (c)

Fig. 8.13 a–c April’s conjecture of the whole object, the first part of her drawing, and the second
part of her drawing

Fig. 8.14 April’s first gesture and movement that creates, “one of those stretchy l-o-n-g circles”

Fig. 8.15 April’s second gesture and movement that “erases” the first 3D object
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makes as she creates the next cylinder. This cylinder, like the previous one, is
positioned horizontally and extends in length like “one of those stretchy l-o-n-g
circles”. What differs from this and previous cylinders, however, is the way April’s
curled fingers create a circle from which she can then physically articulate the shape
as a closed curve/disc. The new shape with the subsequent motion of her hands
effectively adds another dimension to the circle by repeatedly stretching it from the
center-out in both directions to form a cylinder (see Fig. 8.16).

During this part of the episode, Sophia spends the entire time looking at her
drawing(s) (see Figs. 8.2b, 8.7 and 8.9b). Slowly and deliberately, she addresses the
group:

Sophia: It has [looking at her drawing(s)] a rectangle [draws in the air with her
finger] (see Fig. 8.17a–d) and then two circles—at the bottom (see
Fig. 8.18a) and top (see Fig. 8.18b) [moves flat hand in circular motion,
each circle diagonally opposite from each other]

What Sophia draws is unlike any of the group’s previous work. During the
moments when she re-views the drawings, engages in talking, and invents three
new gestures-in-motion, she transforms “it” yet again into a completely different
object. The time that Sophia spends on studying the drawings along with the

Fig. 8.16 April’s third gesture and movement that creates a second yet different “one of those
stretchy l-o-n-g circles”

Fig. 8.17 a–d Sophia draws a rectangle in the air with her finger
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unhurried manner in which she moves her gaze from the paper to the space in front
of her, not only suggests her intention to conceptualize the cylinder in a new way
but also the effort required to achieve this task. Sophia works slowly and
methodically on what appears to be a virtual vertical plane. Eventually, she invents
a net that if folded and rolled together, forms a three-dimensional cylinder. Her
conception of the cylinder’s net begins as an oblong that later integrates two circles.
She creates the oblong by using her finger to draw it in the air. Facing Sophia, the
first circle appears along the side of the oblong’s bottom left corner while the
second circle is placed diagonally opposite—along the outer side of the top right
corner. In each of the two locations, she holds her left hand out, open, and flat,
moving it in the same circular motion. The action not only produces two equivalent
circles, it also allows for spatializing at least two important geometric properties:
first, the space covered by Sophia’s flat hand becomes the interior of each figure and
second, the boundary that results from the points that her hand’s outer edge bumps
against as she rotates it around, effectively becomes the circumference of the
circles.

8.7 Conclusion

This study contributes to current research on spatiality by further elucidating the
critical role that the body plays in young children’s spatial-geometric reasoning.
The activities, processes, and products that constituted Emma, Sophia and April’s
classroom geometry revealed up close, how their awareness and thinking arose fully
(em)bodied “in the flesh” as gestures, movements, rhythms, patterns, drawing(s),
sounds, imagery, and verbalizations (Henry 2000). While the children certainly
developed verbal and visual meanings for the concepts that emerged and the objects

Fig. 8.18 a–b Sophia creates “[t]wo circles—at the bottom and the top”
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they created, it is impossible not to notice the tactile, temporal, and audible features
that expressed a characteristic feel, a distinct motion, or a particular sound that was
integral to their geometries. It is here at a phenomenological level that the children’s
bodies as knowers and of knowledge were observed as constantly co-emerging and
co-evolving—not only within the contexts of a photograph, drawing(s), and con-
versations, but importantly and seemingly, out of thin air!

The fluid manner in which the children’s spatial-geometric concept(ion)s and
reasonings developed continuously occasioned: perspective-taking, orienting,
visualizing, locating, comparing, decomposing, recomposing, symmetrizing,
rotating, multiple dimensions, static and dynamic objects as well as curved and flat
surfaces. As with Châtelet (1993/2000) and Thom and McGarvey (2015), it is clear
that Emma’s, Sophia’s, and April’s work in (re)(con)figuring space cannot be
conceived as simply the outcome of their reasoning, but more precisely, as their
geometric awareness and the extending of their conceptual thinking, ideas, and
meanings.

The children’s work, clearly effortful, while at the same time, unpredictable yet
recursive, must also be viewed as inherently creative in both the forms of reasoning
and the geometries they (em)bodied forth (Châtelet 1993/2000; Merleau-Ponty and
Lefort 1968). Recognizing these critical aspects as well as those observed and
discussed in the study offer untapped areas to explore how spatial-geometric rea-
soning might live out in rich ways in mathematics classrooms.

8.8 Implications

While spatial reasoning is integral to all areas of mathematics, it is consequential to
school geometry. In the final section of the chapter, I revisit particular issues
identified in the reviewed literature, reflect on these in relation to the findings of the
study, and suggest further pedagogical and theoretical considerations for enabling
classroom contexts that provoke young children’s spatial-geometric reasoning.

8.8.1 Theoretical Perspectives

In the 13th International Congress of Mathematics Education (ICME) survey team
report, Recent Research on Geometry Education, the authors postulated that future
research “may well require the use of theoretical frameworks that are capable of
integrating discursive and embodied components” (Sinclair et al. 2016, p. 734).
While the position taken by the team addressed the research community, another
conversation arises about the need for recognition and enaction of such theoretical
perspectives in the very places where early years geometry teaching and learning
happen. As described in the first section of the chapter, despite decades of research
including studies that expose the (em)bodiment of geometry, geometry continues to
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receive little time in the classroom and is taught and learned in manners that not
only reduce the potential for developing children’s spatial-geometric thinking, but
also limit opportunity for their deep and connected conceptual development across
all areas of mathematics. Moreover, as classroom mathematics remain confined in
cognitive perspectives that emphasize abstract mental operations, the enaction of
embodied theories would arguably make it impossible to ignore the (em)bodied
nature of knowing as well as the ways in which children come to know what they
know spatially and geometrically in the classroom.

Examining Emma, Sophia and April’s work from an (em)bodied perspective, the
children’s spatial-geometric reasonings are anything but disembodied or abstract
representations. Rather, what these children demonstrate is not only the emergence
and growth of significant spatial and geometric concepts but also the observable
aspects that constitute their thinking, moment to moment. Emma, Sophia, and
April’s ongoing (em)bodiment of mathematics; that is, very physical, rhythmic,
patterned, audible, verbal, gestural, and kinetic spatial-geometric thinking happens
within and as language woven into action (Pulvermüller 2012). In this way, the
children’s thinking persists irreducibly as action-in-the-world (Merleau-Ponty and
Lefort 1968) where complex and sophisticated transformations of the circle arise as
they are recursively realized. Such reasonings are not only available to the student
who expresses these, but importantly, to all of those for whom they are made
available. Attention to these aspects of thinking presents opportunity for them to be
used, by teacher and students, in ways that expand and occasion new geometric
experiences in the classroom.

8.8.2 Interacting and Transacting with Diagrams

Chen and Herbst’s (2013) study highlights the value in extending high school
students’ reasoning beyond making distinctions and generalizations about diagrams
to interacting with diagrams through “reasoned conjectures”. This approach to
spatial-geometric reasoning complements other approaches such as “restorative”
activities where students complete a partial image of an assumed figure through
various transformations (e.g., Perrin-Glorian et al. 2013). However, tasks that
require students to make reasoned conjectures, promote opportunities for the
invention of objects as well as new ways of thinking about them.

Similar benefits were also gained by grade one students Emma, April, and
Sophia as they generated conjectures and inquiries about the photograph, their
drawing(s), and the objects they created. The children’s transactions3 played a
critical role in moving their thinking beyond the identification of the image in the
photograph as circle and occasioning their further spatial-geometric reasonings and

3In contrast to the concept of interaction, transaction implies the irreducibility of the children’s
agency as well as the material and spatial-geometrical structures that emerge.
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conceptualizations. It is also important to note that Mr. James did not begin the
session by asking the children to look at the photograph and answer, “what is this?”
Rather, the conversation that developed from the prompt, “what do you see?”
deliberately opened a conceptual space for a variety of spatial-geometric responses,
depending on the manners and contexts in which these occurred. The questions, for
instance, that followed the first prompt in the study can be viewed as provoking the
children to recursively generate conjectures and reasonings about other surfaces that
might exist if the image in the photograph was a 3D object. It is curious that none of
the children commented on the presence of the rectangular shadow in the pho-
tograph (see Fig. 8.1). As a result, it is unclear whether the shadow contributed to
the transformations of the circle into only cylinders. However, later on in the
session, Emma, April and Sophia posed conjectures that eventuated more than one
3D object from two other photographed images which did not include shadows that
the children distinguished as triangle and square.

8.8.3 The Potential of Mathematical Diagrams and Objects

It is natural to assume that digital technologies, especially those that involve
dynamic geometry environments (DGE), maximize opportunities for students to
develop their spatial and geometric thinking (e.g., Baccaglini-Frank 2016; Fletcher
and Ginsburg 2016; Sinclair 2018). However, as discussed in the previous section,
spatial-geometric reasoning that involves diagrams also depends on how students
and teachers transact with diagrams, regardless of whether these are digital,
physical, or virtual. Therefore, it is not so much the particular form of a diagram
that is critical as it is its potential to occasion ideas, meanings, and ways of rea-
soning that are dynamic or “elastic” (Châtelet 1993/2000). Châtelet asserted that
attention should not be on diagrams (or, objects) themselves, “but the register they
provide for asking how we discover geometric space and how such space in turn
becomes used as space for thinking.” (K.J. Knoespel, as quoted in Châtelet 1993/
2000, p. xxi).

The work of Emma, April, and Sophia exemplifies this point well. Here, the
photograph as a visual representation appeared at the start of the lesson to be a
singular static image. However, as soon as the children explored the possibilities of
the object as being more than a circle, all sorts of concept(ion)s and
spatial-geometric ways of making meaning of the figure emerged. The geometric
contexts in which the children and Mr. James found themselves can be seen as
specifically shaped or (re)(con)figured by the ideas and meanings they brought
forth; in other words, a direct result of the children’s work to recursively articulate
what it was that they saw moment to moment and why they thought this might be
so. For example, as soon as the children identified the image as “circle”, they
moved on to transform it into a single point in space where each of their fingers
moved around in a circular path, returning the point to its original position. This
geometric space gave rise to connected yet diverse contexts in which semi-circles
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and circles extended into a third dimension, growing out in different directions to
become cylinders. The children and Mr. James then used the cylinders to further
inquire into the effects of different orientations, imagine the cylinder in two- and
three-dimensions differently, deconstruct the cylinder, and flatten it into a net.

In these ways, the photograph as well as the children’s drawing(s) and the
objects they created, continuously opened spaces for them to develop their
spatial-geometric reasonings about the circle(s), constantly shift their attention and
necessitate different concept(ion)s to make new meaning. Remarkably, the pho-
tograph, drawing(s), and objects ceased to be still, fixed, or spent. Rather than
focusing on a particular image or object, the children and Mr. James explored the
potential of each where:

Potential is what, in motion, allows the knotting together of an ‘already’ and a ‘not yet”; it
gives some reserve to the act, it is what ensures that act does not exhaust motion and, in
giving some scope to the grasping of the motion… as an indefinitely suspended actual-
ization”. (Châtelet 1993/2000, p. 19).

8.8.4 Sensation and Abstraction: Spatial-Geometric Sense
and Reasoning

In the first chapter of the book, Spatial Reasoning in the Early Years, Whitely et al.
(2015) elaborated on Tahta’s (1980) three powers (i.e., imagining, construing, and
figuring). The authors presented a list of dynamic processes that characterize spatial
reasoning but do not require concurrent work with language. Examples of these
processes included: navigating, locating, orienting, and balancing. In the final
chapter, Davis et al. (2015) reimagined the list as circular in structure to express
spatial reasoning as inherently emergent, non-sequential and complex. Reflecting
on the authors’ revised representation and characteristic processes of spatial rea-
soning, not only am I reminded of Tahta’s (1980) assertion: “To think mathemat-
ically is to work in some such way with images” (p. 6), but also the point he related
to it; that is, imagery is not only visual constructs but includes images that may well
only be felt.

In connection to this, Artist Kandinsky (1926/1979) identified the complemen-
tary nature between events which can be seen and those which can only be felt in
his colour theory. The former he described as abstraction that involves phenomena
that can be externalized, made visible, and logical. Take for instance, the green
colour of the trees as an abstraction. The colour can be represented and recognized
in an external way such as a swatch of fabric, a paint stroke on a canvas, or even as
it appears here in written text as “green”. In contrast, the latter—those events that
can only be felt, involve sensation or affect. Originating from the Latin word
impressionem, meaning, “pressing into,” sensation entails those invisible aspects of
phenomena that give rise to how the colour green makes me feel. Sensation, unlike
abstraction, is conceived as a dynamic force that only occurs in life (Zordan 2013).
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Further, just as language is woven in action and originates from contexts that are
sensually experienced and neurologically connected (Pulvermüller 2012), abstrac-
tion too then can be understood as live(d) experience that first emerged from
sensation (Thompson 1995). Complementary and interrelated rather than disparate,
abstraction and sensation are inherently coincidental (Henry 2009).

Moreover, philosopher Michel Henry (2009) extended Kandinsky’s conception
of sensation as affect, locating it within what he referred to as the Internal. Henry
explained why affect as felt phenomena cannot be seen, represented, or
externalized:

To prove itself is to show itself, but in its own way and no longer that of the world…. There
is no inner world. The Internal is not the fold turned inward of a first Outside. In the
Internal, there is no putting at a distance and no putting into a world—there is nothing
external, because there is no exteriority in it. (p. 7)

It is in this way that the affect happens in life and why it is impossible for us to
abstract it or hold it at a distance because we too “are always and already in life”
(Henry 1999, p. 364). And despite the fact that the affect cannot be abstracted, its
presence, integrity, and complexity are neither compromised nor negated. Rather,
Henry argued, it is only the linguistic manners with which we attempt to convey
affectivity that prove inadequate.

Consequently, as I watched Emma’s hand gestures and movements project a
circle through the air, I could not help but wonder what spatial-geometric instances,
were felt but not seen or heard (Merleau-Ponty and Lefort 1968). What kinds of
sensations and sense had the children and Mr. James experienced while Emma
closed her eyes, formed a fist and then a “c” shape as she moved it in a diagonal and
downward motion? Or when April drew the side of block as semi-circles on the
piece paper? What other spatial-geometric sense informed the cylinder that Sophia
created as she drew a rectangle in the air and moved her hand in a clockwise motion
to make two circles? To be certain, the fact that such images cannot be pulled from
their contexts or captured with words or even a gesture does not mean that they
could not exist or might not have contributed to the children’s spatial-geometric
reasoning in vital ways (Luria 1968; Sfard 1994); rather, it only means that the
presence of sensation or affect did not exist as something. Here begins a new
conversation—one that provokes inquiry into young children’s (re)(con)figuring of
space as both abstraction and sensation as well as the ways in which these give rise
to their geometric reasoning and sense.
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Chapter 9
Observing the Use of Gestures in Young
Children’s Geometric Thinking

Iliada Elia

Abstract This chapter addresses children’s geometry thinking and learning in
early childhood with a focus on the use of gestures. The chapter begins with the
theoretical frameworks which underlie this work and some background information
about geometry learning and gestures. The next parts of the chapter aim to give
insight into the role of gestures in young children’s geometric thinking in different
contexts. Specifically, three case studies are discussed which investigated different
aspects of geometry understanding: two-dimensional shapes, composition and
transformations of two-dimensional shapes and spatial concepts. Finally, a number
of concluding remarks are discussed about the multiple uses and contributions of
gestures in association with other semiotic resources in the evolution and com-
munication of early understanding of shapes and space.

Keywords Early geometry learning � Gestures � Semiotic resources
Shape composition � Spatial concepts � Geometrical figures

9.1 Introduction

Geometry is a core component of contemporary early childhood curricula and
educational programs (e.g., Sarama and Clements 2009). In an attempt to endorse
the importance of geometry in the early years of education and to propose new
directions, research in geometry learning and teaching at this age span has currently
received increasing attention (Sinclair and Bruce 2015). Nevertheless, there is still
much to be done to gain insight into young children’s development in this domain
(Dindyal 2015), particularly in relation to the body and gestures. Recent research
has shown that young children’s bodies hold rich potentials in different mathe-
matics strands, including number, geometry and measurement, and also that a
teachable moments’ approach would benefit if early childhood teachers attend to
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children’s mathematics-related embodied actions (Karsli 2016). Furthermore, it is
known that gestures are used extensively by children between the ages three and
five (McNeill 2005), while written symbols do not yet have a primary role in
mathematical cognition. This chapter addresses young children’s geometrical
thinking with a focus on gestures, which is an important source of developing
abstract thinking (Radford 2009) and an additional window to the mind of the
developing child (Goldin-Meadow 2000).

9.2 Multimodal Approach, Gestures and Objectification

“A sign, or representamen, is something which stands to somebody for something
in some respect or capacity” (Peirce 1931/1958, 2. 228). Peirce’s definition for sign
is a broad definition which refers to a variety of phenomena involved in semiotic
processes, including gestures, glances, drawings, and extra-linguistic modes of
expression. Furthermore, multimodality is a core characteristic of human cognition
(Gallese and Lakoff 2005). This means that in reasoning and communicating,
people use multiple modes of thinking and expression, including sight, hearing,
touch, movement and so on. Taking such a broad semiotic and multimodal per-
spective in studying mathematical activity, Arzarello (2006) introduced an enlarged
notion of a semiotic system, the semiotic bundle. The semiotic bundle includes all
the signs that are produced simultaneously, by a student or a group of students who
interact in order to solve a problem and/or discuss a mathematical question. In turn,
the mechanism that teachers use to harmonize with the semiotic resources produced
by the students and then to guide the development of knowledge according to these
resources is called a semiotic game (Arzarello 2006).

Within the wide conception of sign and the broad notion of semiotic bundle,
gestures are viewed as important semiotic resources in relation with the signs that
are traditionally discussed in mathematics education (such as spoken or written
language and mathematical symbols). According to Sabena (2008) gestures refer to
“all those movements of hands and arms that subjects (students and teachers)
perform during their mathematical activities and which are not a significative part of
any other action” (p. 21). In his work, McNeill (2005) classified gestures using a
number of dimensions. Of these, iconic, deictic and metaphoric gestures are the
ones of most interest in mathematics. Deictic gestures refer to pointing movements
towards existing or virtual objects and actions in space. Iconic gestures are related
to the semantic content of speech, that is, iconic gestures visually represent the
content of concrete entities and actions. Metaphoric gestures refer to the repre-
sentation of an image of an abstract object or idea.

In the course of mathematical activity gestures appear to provide specific ways
of carrying out the semiotic process. Firstly, gestures, as a semiotic resource
inherently connected to bodily movements have a dynamic nature, which can
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endorse the dynamic features of mathematical meanings. The condensed or blended
character of gestures (and of the semiotic bundle) is regarded as another important
contribution of gestures to the mathematical activity (Sabena 2008). It describes the
potential of gestures to convey simultaneously different aspects of the mathematical
objects in the activity through a hand movement, e.g., the orientation and the shape
of a geometrical figure. Often, learning is dependent on the context of the semiotic
resources that are used in a mathematical activity, e.g., confined to a specific
drawing on the classroom board. Gestures contribute to the shifting from grounding
the reference to a contextual dimension of the mathematical activity which is taking
place to the embodiment of a certain character of generality (i.e., a third contri-
bution of gestures) (Sabena 2007). A part of this transition is the phenomenon of
semiotic convergence, which includes students’ progressive coordination of the
linguistic, gestural and inscribed (e.g., written symbols, graphs) resources that occur
in a mathematical activity. This multimodal semiotic convergence is considered an
important step in the process of knowledge evolution (Sabena 2007).

Furthermore, gestures usually focus on certain aspects that play key roles in an
unfolding process of knowledge objectification, through which students gradually
encounter and develop mathematical meanings and reasoning (Radford 2002).
Etymologically objectification refers to actions which aim to make something a
conscious object (Radford 2003). It is related to the processes by which learners
encounter and give meaning to historical and cultural forms of mathematical
thinking and acting. According to the theoretical perspective of objectification,
signs (and artefacts) are a central component of these processes as they convey
human cognition and historical forms of human production, which determine the
ways one learns and understands the world. The semiotic resources that learners use
in the context of objectification, including gestures, body position of students and
teacher, formulae, written language, speech, objects and so on, are named as
semiotic means of objectification.

In the process of objectification and evolution of meanings in semiotic activities
and multimodal discourses, the notions of catchment (McNeill 2005; Radford and
Sabena 2015) and semiotic contraction (Radford 2008; Radford and Sabena 2015)
are of great importance when students use gestures. Catchment refers to the
recurrence of a gesture form in at least two (not essentially successive) gestures and
this phenomenon is interpreted as an indication of consistency of visuospatial
imagery in learners’ thinking (Radford and Sabena 2015). Semiotic contraction is
related to the process of simplification that learners’ gestures and words undergo in
their semiotic activity, indicating increasing consciousness of mathematical
meanings and more abstract thinking. In particular, this simplification in gesture
could involve the loss of movement and shortening of duration. In speech, sim-
plification refers to disappearance of terms and details.
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9.3 Geometry Learning and Gestures

Geometrical knowledge involves dealing with theoretical objects, properties and
relationships, which are accessible mainly through two semiotic systems, the
graphical and the linguistic (Lavergne and Maschietto 2015). In geometrical
activities, both geometrical figures and verbal statements have an essential role.
According to Duval (2014) language production and visualization need to be
coordinated with each other in doing geometry.

Therefore, both visual abilities and verbal skills need to be addressed and
developed in the teaching and learning of geometry (Hoffer 1981), starting already
from the early years of education (Dindyal 2015). In play activities, either free
(Henschen 2016) or guided, involving two- or three-dimensional shapes (like block
play), young children often talk together. In general, children use language to share
their experiences and reflections with others and thus develop their abilities to
describe visual images (e.g., geometrical figures or configurations), spatial con-
cepts, relations and reasoning (Van den Heuvel-Panhuizen and Buys 2008).
Developing children’s geometry language entails developing their knowledge and
understanding of geometrical terms for shapes and also of naming and describing
actions and transformations that are performed with shapes and other objects, such
as rotating, moving, and identifying their position (i.e., descriptions of configuration
productions) (Duval 2014).

By using language related to geometrical activities children learn better how to
use geometry language and this can support spatial visualization and reasoning.
Language, as a fundamental source of knowledge, includes verbal as well as
non-verbal means of communication (Sabena 2017). Gesture is thus an indis-
pensable component of children’s communication and thinking in geometry (Elia
et al. 2014). It serves as a dynamic representational tool of abstract mathematical
ideas through which children may develop a deeper level of consciousness of their
meaning. Furthermore, gestures along with speech may have a significant role in the
complex transition from perceptual experiences with materials in space to semiotic
representations and inscriptions (e.g., on worksheets, the blackboard, a computer
screen) often used when geometry is taught in school (Sabena 2017).

However, only a few studies have discussed the role of gestures in the devel-
opment of space and shape concepts in young children. Ehrlich et al. (2006)
explored the strategies 5-year-old children used to solve tasks on spatial transfor-
mation. The findings of the study showed that children produced gestures whose
meaning was not necessarily involved in the accompanying speech. Children whose
gestures represented spatial information, which was not found in their speech, were
more likely to succeed. These findings indicate that gestures have the potential to
improve early spatial abilities. In particular, hand movements may support children
to mentally simulate transformations in space (Newcombe and Frick 2010).

In a teaching experiment Sabena (2017) investigated how spatial competencies
are developed using robot-based activities in the kindergarten. Observing and
analysing gestures revealed that different conceptualizations of space, including for
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example a static and a dynamic perspective, may co-exist in a child’s thinking and
also that relevant gestures often were accompanying speech when new spatial terms
were used for the first time by children.

Thom (2018) investigated the forms, (em)bodied acts and processes that con-
stitute children’s reasoning while working on a spatial-geometric task.
A photograph of a cylinder evoked different mathematical ideas and ways of rea-
soning in three grade one children, which were materialized as gestures, move-
ments, drawings, imagery and verbalizations. The findings of the particular study
provided evidence for the critical role of the body in how children’s geometry
reasoning and conceptions developed, including transitions between multiple
dimensions, visualisation, decomposition, re-composition, perspective taking,
dynamic objects, rotation, symmetry, curved and flat surfaces.

The next sections of this chapter aim to give further insight into how gestures
contribute to young children’s thinking, learning and communication in geometry
in different contexts. The findings reported are mainly derived from three qualitative
case studies in which children (and teachers) use gestures in different types of shape
and spatial activities and settings with different tools and semiotic resources.
According to Radford (2009) “[t]o better weigh the role of gestures and bodily
actions in mathematics cognition, more detailed investigations are required.”
(p. 124). In these case studies, the activities were video-recorded and the data from
the obtained videos were analysed using the microgenetic method (Siegler 1995).
This analysis focused on the children’s and/or teachers utterances and gestures
during the activities. It is my contention that the microgenetic approach can shed
some light on the processes the children go through while thinking of, and com-
municating mathematical meanings related to geometrical figures and spatial con-
cepts during their interaction with others (i.e., peers or adults).

9.4 Solving a Shape Configuration Problem in Different
Spaces of Constructed Representation: The Role
of Gestures

The semiotic registers of geometrical figures and linguistic statements as well as the
cognitive processes of visualization and reasoning are essential components in
geometrical cognition (Duval 1998). Visualization includes the recognition of fig-
ural parts in a configuration of shapes as well as figural treatment. The first process
is based on the perceptual apprehension of figures, while the second is a major
component of the operative apprehension of geometrical figures. Perceptual
apprehension refers to the recognition of a shape in a plane or in depth, the
recognition of shapes in a perceived figure and the naming of shapes. Operative
apprehension refers to the various ways of modifying a given figure: the mereo-
logic, the optic and the place way. The mereologic way entails the partitioning of
the whole figure into various shapes and the combination of them in another figure
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(reconfiguration), the optic way is when one makes the figure larger or narrower, or
slant, while the place way refers to its position or orientation variation. Each of
these different modifications can be performed mentally or physically, through
various operations (Duval 1995). Operative apprehension of shapes is a complex
process as it involves spatial visualization abilities and the creation of mental
images. However, a recent study by Watanabe (2016) on young children’s spatial
abilities indicated that children as young as five and six years of age could use
operative apprehension on the three-dimensional shape of cube when participating
in activities of physically making a cube. Particularly, children’s ability to mentally
modify a two-dimensional net representation of a cube into the three-dimensional
shape improved after using a polydron geometric toy to assemble and convert a
plane figure into the three-dimensional shape for a particular period of time.

To investigate the interrelations between geometrical figure apprehension pro-
cesses in two-dimensional shapes and gesturing we set up a study in which we
examined a kindergartner, that is, a 5-year-old girl, while interacting with her
kindergarten teacher in a geometrical activity with the use of two different artefacts
respectively (Elia et al. 2014). A shape configuration problem was used which
involves perceptual and operative apprehension of geometric shapes. The activity
that was used also involved the solver’s discursive processes pertaining to the shape
configuration problem, that is, explanations about which shapes to use and about
their proper position and orientation in the composite figure. Thus, the geometrical
activity used in this study incorporates two registers of representation, shape con-
figuration and linguistic statements, as well as conversion processes from one
register to the other. Furthermore, the activity takes place within a ‘microspace’
(Brousseau 1983). Microspace refers to a space of interactions tied to the manip-
ulation of small objects (Brousseau 1983). The geometrical representation that was
included in this study was constructed in two different types of micro-space: objects
made of paper (representing two-dimensional shapes) and a computer screen,
illustrating a digital mathematical applet, the Patch Tool (http://illuminations.nctm.
org/ActivityDetail.aspx?ID=27). We named these different types of micro-space as
Spaces of Constructed Representations (SCR). SCRs are likely to differ in the
processes they evoke as “materialized” through gestures and words, while children
construct a composite two-dimensional geometrical representation with shapes.

The goal of the activity in each SCR was the child to give appropriate
instructions to the researcher so that the researcher could make a composite figure
with a given outline, by selecting appropriate shapes and by putting them in the
proper position and orientation. During the activity, the researcher encouraged the
child to express her thinking by probing and asking questions to the child without
providing any guidance for the solution of the puzzle.

At the first SCR, the computer, the user (in this case the researcher following the
instructions of the child) was able to move a shape using the mouse, rotate a shape
using the spin tool and remove a shape using an eraser. These operations could be
implemented, also, in the second SCR (paper) by the researcher, using his hands.
As it is illustrated in Fig. 9.1, the same outline of composite figure and the same
shapes (triangle, rhombus, square, trapezoid and hexagon) were used in both SCRs.
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Figure 9.2 includes the child’s constructed representations using the two SCRs
respectively. The figure is followed by extracts of the child’s (C) and researcher’s
(R) talk and gestures in the first activity and the second activity (Elia et al. 2014,
pp. 210, 212–213).

1 R: I would like you to show me the first shape that you want to use

2 C: I want to start with this shape (shows with her pointing finger the rhombus)

3 R: And where do you want to place it?

4 C: I want to place it here (shows with her pointing finger down, on the left side of the
figure)

5 R: Ok, I am starting the game. This one is a rhombus (puts the shape in the indicated
place). Is it right how I put it?

(continued)

Fig. 9.1 a First space of constructed representation (computer screen), b second space of
constructed representation (paper), from Elia et al. (2014)

Fig. 9.2 The shape composition made by child to fill the larger figure with the use of a computer
(lines 1–30) and b paper (lines 31–54), from Elia et al. (2014)
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(continued)

6 C: No

7 R: What do you want to do?

8 C: You have to turn it (makes a rotation with her pointing fingers, using both of them
as moving points)

9 R: Helen, you are amazing. I will turn it (makes a rotation using her pointing
fingers). I am taking this tool and I am starting to turn it. Is it right here?

10 C: No, you have to turn the shape once more (makes a rotation with her pointing
fingers, using both of them as moving points)

11 R: Once more. Is it right?

12 C: You have to turn it again (makes a rotation with her pointing fingers, using both of
them as moving points)

13 R: Ok, I will turn it again. Is it right?

14 C: Yes

15 R: Wonderful. Is the place absolutely right?

16 C: No

17 R: What do I have to do?

18 C: You have to turn it on the left (puts her palms opposite to one another in a vertical
direction and she moves them on the left)

19 R: On the left (shows with her pointing finger on the left). Nice. Is it right?

20 C: Yes

21 R: Nice. We have placed the shape on the right location. Let’s place the second
shape. Tell me, show me

22 C: (She shows the trapezoid with her pointing finger)

23 R: Do you know its name?

24 C: Yes I know it…

25 R: It’s tr…

26 C: A rectangle

27 R: No, it’s a trapezoid

28 C: The trapezoid

29 R: Excellent. So, I am choosing a trapezoid. And, where do you want to place it?

30 C: Here (shows with her pointing finger the location on the bottom of the figure)

In the second activity:

31 R: Show me the next shape that you want to continue with

32 C: With this (shows with her pointing finger the rhombus)

33 R: With the rhombus, and where do you want to put it?

34 C: Here (shows with her pointing finger close to the correct place, down on the left
side of the outline)

35 R: Nice, I will put it here. Is it right here?

36 C: No. You must turn it little bit here (moves her hands from right to left)

37 R: Here? Is this right?
(continued)
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(continued)

38 C: Yes

39 R: Wonderful. Let’s continue. Choose a shape

40 C: (She shows with her pointing finger the trapezoid)

41 R: Do you remember its name? (…) Trapezoid

42 C: Trapezoid

43 R: Where do you want to place it?

44 C: Here (shows with her pointing finger the correct place, on the bottom of the figure)

45 R: I have put it. Is it right?

46 C: No

47 R: What do I have to do?

48 C: You have to turn it (she makes a rotation with her pointing fingers using both of
them as moving points)

At the end of the second activity:

49 R: Choose a shape

50 C: (She shows the trapezoid with her pointing finger)

51 R: You chose the trapezoid again. I think you like this shape more than the other
shapes. Where do you want to place it?

52 C: Here (shows with her pointing finger a correct place on the right side of the
outline)

53 R: Is it right here?

54 C: Yes but move it little bit here (she moves her right hand from the left to the right)

The SCR with which the child interacted in the geometrical activity was found to
differentiate her gestural production. Although in both SCRs the child produced the
same two types of gestures, iconic and deictic, on the second SCR, the child
produced fewer iconic gestures (n = 10) than on the first SCR (n = 26). This dif-
ference could be explained by the fact that the visual features of the first SCR, e.g.,
the image of the spin tool, and its clear dynamic character, e.g., the slow and
step-by-step rotational function of the tool on shapes, stimulated the use of iconic
gestures depicting spatial transformations. It is likely that the mathematical applet
helped the child to generate relevant spatial images through her body and express
them by gesturing. This inference is further supported by the child’s perseverance in
using the same types of iconic gestures also in the second SCR, the paper material.
The recurrence of these gestures in two distinct moments and occasions (with an
interval of two weeks) provides evidence for the phenomenon of “catchment”
(McNeill 2005; Radford and Sabena 2015), indicating a strong consistency of the
child’s visuospatial imagery about the meaning of a shape’s rotation and translation.

The child used different types of gestures when activating the perceptual or the
operative apprehension of geometrical figures in the shape configuration problem.
In both SCRs the child produced deictic gestures when she activated operations
related to recognizing a shape (Figs. 9.3a and 9.5a) or specifying the placement of a
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shape (Figs. 9.3b and 9.5b). In the first case, through deictic gestures (e.g., lines 40,
50) the child recognized all the shapes composing the figure although she was
unable to name most of the shapes (e.g., lines 41–42). Identifying shapes in a
perceived composite figure is an important component of perceptual apprehension.
This indicates that the deictic gestures made “visible” the child’s perceptual
apprehension competences, and also were an indispensable component of her visual
thinking (Fig. 9.5).

In the second case, the child used deictic gestures to point to the placement of a
recognized shape in the configuration without giving a precise verbal description
about its location or spatial relations with other shapes in the outline. She either did
not use any verbal utterances or used the word “here” (e.g., lines 43–44, 51–52)
along with the deictic gestures. This indicates that the deictic gestures were a major
component of the child’s spatial communication and thinking and conveyed
information that was not found in the child’s speech (as in the first case, in the
recognition of shapes).

Fig. 9.3 a Deictic gesture for the shape of trapezoid on computer (line 22), b deictic gesture for
the place of rhombus on composite figure on computer (line 4), from Elia et al. (2014)

Fig. 9.4 a Iconic gesture for the rotation of shape on computer (line 8), b iconic gesture for the
shape translation on computer (line 18), from Elia et al. (2014)
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Additionally, in both SCRs, the child applied the place way of modifying a
figure, which is an important component of the operative apprehension of geo-
metrical figures. Specifically, when she selected a shape and a location for putting it
in the configuration, she produced the rotation by using her pointing fingers as
moving points in the air (line 8, Fig. 9.4a and line 48, Fig. 9.6a) and sometimes the
translation of the particular shape by putting her hands opposite to each other in a
vertical orientation and moving them on the left or on the right (line 18, Fig. 9.4b
and line 36, Fig. 9.6b) so that the teacher moved the shape accordingly to fit on a
specific place. Thus, these shape modifications were generated and conveyed by the
child through words and also, by iconic gestures which were used as a represen-
tational tool of these geometrical transformations. It is noteworthy that when the
child used an incorrect verbal expression (e.g., line 18) for horizontal translation,
gestures had a significant role to generate and convey her thinking. In particular, at
the beginning of the activity in each SCR the child referred to two shape trans-
formations (rotation and horizontal translation) using the same verbal expression,
that is, “turn”, but two distinct iconic gestures (e.g., lines 8 and 18). A possible
explanation could be that the spatial concepts which are involved in these two
transformations, left and right, are used both as directions of moving horizontally a
shape (horizontal translation) but also as directions of turning a shape (rotation).

Furthermore, at the beginning of the activities the wrong term “turn” for a
shape’s horizontal translation was accompanied with a gesture using both her hands
to represent this transformation (Figs. 9.4b and 9.6b). By the end of the first and the
second activity the child discriminated the two different geometrical transforma-
tions, rotation and horizontal translation, both by gesturing and by using two
distinct words, “turn” (e.g., line 48) and “move” (line 54). This progress
was accompanied by another change: the use of only one hand to generate the
transformation of horizontal translation at the last minutes of the activity with
paper (Fig. 9.7) indicating the shortening and simplification of the gesture.

Fig. 9.5 a Deictic gesture for the recognition of trapezoid on paper (line 40), b deictic gesture for
the recognition of the place of shape on paper (line 52), from Elia et al. (2014)
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This simplification of the child’s activity could be regarded as a semiotic con-
traction (Radford 2008), signifying a progressively higher stage in the child’s
objectification of the transformation of horizontal translation.

In sum, deictic gestures’ production was linked to the recognition of geometrical
shapes and their position in the composite two-dimensional representation and had
a major role in the perceptual apprehension of shapes. Iconic gestures, which were
used to represent shape transformations of different complexity, had an important
role in the operative apprehension of shapes. Both types of gestures together with
oral speech and the SCRs were an integral part of the child’s reasoning for the
solution of the problem. This included the combination of geometrical shapes to
compose the figure, the recognition of geometrical shapes in different and not
necessarily prototypical positions (e.g., horizontal base) and the implicit inference
that a shape remains the same in different positions and orientations.

Fig. 9.6 a Iconic gesture for the rotation on paper (line 48), b iconic gesture for the translation of
the shape on paper (line 36), from Elia et al. (2014)

Fig. 9.7 Shortened and
simplified gesture for the
translation on paper (line 54),
from Elia et al. (2014)
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9.5 Gestures and Their Interrelations with Other Semiotic
Resources in Gaining Awareness of Two-Dimensional
Shapes

Plane geometry, and particularly, identifying, describing and classifying two
dimensional shapes have been the focus of a major corpus of research on geometry
learning in mathematics education literature in the past few years. The Van Hiele
(1985) model has strongly influenced mathematics education research in this
domain at all age levels (Sinclair and Bruce 2015). According to this model,
children move from conceiving a shape as a whole based on its appearance using
visual reasoning, to identifying attributes and many common shapes, to recognizing
relationships between attributes and figures in the same class (the concept of
rectangle includes the concept of squares) (Levenson et al. 2011).

Research on the role of gestures in the understanding of plane geometrical
shapes or its development is rare. A few studies discussed the use of gestures when
describing shapes. For example, a study by Graham and Argyle (1975) investigated
the accuracy of the information conveyed when gestural communication was
allowed in the communication of irregular two-dimensional shapes. It was found
that adding gestures to speech enhanced the accuracy with which shapes were
communicated.

To explore how children’s gestures are related to oral language, and other
semiotic systems in geometry reasoning and in generating, visualizing and con-
veying geometrical meanings about two-dimensional shapes, we conducted longi-
tudinal observations in a kindergarten classroom in a natural setting mainly during
whole group discussions. Through whole group discussion in the classroom chil-
dren can communicate their mathematical thinking explicitly and thus their
engagement in emergent forms of mathematical processes, such as reasoning and
identifying mathematical structure, are manifested (Yagi 2016). The focus of the
observations in the particular classroom was on the use of semiotic resources by a
group of children and teacher in their interactions in geometrical activities guided
by the teacher. A child that belongs to this group and is studied here is Louis. An
episode is provided and analyzed below, which is a part of a geometry lesson aimed
at the recognition and sorting of shapes with different criteria. By the time this
lesson took place the children had been taught various types of shapes and lines
such as triangle, rectangle, square, straight line and curved line. The lesson started
with a theatre game, in which the teacher (T) as an alien presented to the children
the planets of the shapes that she met in space. At first she met the circular planet,
then the triangular, the rectangular and finally the planet of the squares. Then she
asked children to sort a collection of shapes made of paper using their own criteria.
After making groups according to the type of shape, Louis (L) made an observation
that initiated the following conversation:
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55 L: All of them have angles… all of them except the circles

56 T: Why circle doesn’t have any angle?

57 L: Because it’s only circular (he makes circles with his hands on the air)

58 T Hmm… Does it matter? What does it need to make an angle?

59 L: You have to turn

60 T: So what kind of lines I need?

61 Andis: Two. One straight line and one like this

62 L: (he makes a right angle using his pointing fingers)

Specifically, at this episode Louis, without any prompt by the teacher, moved
into a higher level of shape categorization than the other children who identified and
classified shapes based on their type, as he discriminated circles from all the other
categories of shapes. Louis observed that all shapes had angles except the circle,
and this motivated the teacher to begin a semiotic game in which she asked children
to explain why the circle does not have any angle. Louis’s verbal and gestural
answer (line 57, Fig. 9.8a) revealed his focus on the round form of the circle. His
gesture corresponded to his verbal representation and had a metaphoric character
about the shape of circle, as it represented a general case of circle and not a specific
model of circle in the class that the child was seeing. In the context of the semiotic
game, the focus of the discussion turned onto the concept of angle, which brought
to light the child’s ideas about it through his words and gestures. Louis’ initial idea
about angle was based on the dynamic notion of turning (line 59). Then, another
child, Andis, entered the semiotic game by saying that it is necessary to have two
lines, “one straight line and one like this” to respond to the teacher’s question about
the kind of lines that are needed. Influenced by his peer’s answer, Louis produced a

Fig. 9.8 Louis’ metaphoric gestures about a “circular” (line 57), b angle (line 62)
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gesture representing a different notion of angle than before, a “static” right angle
made of two line segments, one of which was horizontal (“straight”) (line 62,
Fig. 9.8b). It is to be noted that Louis’ gesture did not have a communicative
intention. It seemed to be a part of an internal reflection as it was observed by the
absence of words and his body orientation. However, this incident provided evi-
dence for the phenomenon of coordination between different semiotic systems
enacted by different children, i.e., Louis and Andis. This is an “inter-personal
synchronization” (Sabena et al. 2005, p. 136), which may have a role in objecti-
fying geometrical notions.

Throughout this episode, Louis used an analytic way of thinking by focusing on
some critical attributes of shapes, i.e., the roundness of a circle and the complex
concept of angle, in his attempt to identify the differences between the circle and the
other shapes and to explain what an angle is through his gestures and words. His
thinking was decontextualized from the theatre game, detached from the material
used and more generalized, as his words and gestures did not make any reference to
the particular context but exemplified imaginary and general geometrical objects
(e.g., angle). This explains the prevalence of metaphoricity in the child’s gestures.

Looking into the interrelations between gestures and oral speech indicated that
gestures enabled the child to materialize implicit aspects of his images of geometric
shapes and relevant attributes and reinforce or complement the child’s words. In
most cases, such as when referring to the roundness of circle, the child’s gestures
were synchronized with his use of oral language and there was a semiotic con-
vergence between these two semiotic resources. Nevertheless, this was not the exact
case when the child made a reference to the concept of angle. While in his words he
used the dynamic notion of turn to explain how to make an angle, he did not use
any gesture. Then, within the semiotic bundle between Louis, the teacher and
another child, in an internal reflection moment, Louis used a gesture by making a
right angle on the air using his pointing fingers to represent the static notion of
angle, which was simultaneously described verbally by the other child and not by
himself. This inconsistency in the child’s verbal and gestural productions could be a
result of the complexity of the concept of angle for which the child was probably at
an early stage of developing.

Analyzing this episode indicates that without considering the child’s gestural
production and its interrelations with other semiotic resources, it would be
impossible to access the images for two-dimensional shapes he used in making
sense and communicating meanings during the classroom geometry activity. For
example, in the case of the static view of angle, the production of gesture revealed
much more information than his single verbal description for the idea of turn. It
provided insight into the child’s prototypical image of a right angle with one
horizontal ray pointing to the left for the concept of angle.

Overall, the analysis of this episode showed that body and gestures are integral
components of early learning and thinking in plane geometry. Together with
artefacts (which initiated the child’s thinking) and oral language, gestures played a
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key role in the kindergartner’s process of gaining geometric awareness for
two-dimensional shapes, their attributes and attribute-based differences between
shapes.

9.6 Gestures in the Learning of Spatial Concepts
in a Natural Classroom Setting

Spatial reasoning is regarded as a critical cognitive ability. We need it to discover
and better understand the world around us. Also Clements (2004) suggests that “[g]
eometry and spatial reasoning form the foundation of much learning of mathematics
and other subjects.” (p. 267). For example, spatial reasoning could be advantageous
in solving mathematical problems, through the use of diagrams and drawings
(Casey et al. 2008). Moreover, a great number of studies have shown that at all
levels of schooling spatial abilities are of great importance for learning processes in
STEM disciplines (e.g., Wai et al. 2009) and that children should be given
opportunities to further develop their spatial skills from a young age (Newcombe
2010; Verdine et al. 2014). In the NCTM (2000) Standards for Geometry in K-2
grades, a spatial skill that receives considerable attention is specifying locations,
which includes interpreting relative positions in space. This was the focus of the
mathematics lesson we observed in a kindergarten classroom to gain further insight
into the body and gesture’s role in young children’s spatial reasoning.

There is growing evidence about the link between spatial skills and gestures
(e.g., Kita and Davies 2009). The visuospatial type of gesture makes it suitable for
capturing visuospatial information. A considerable body of research stresses that
gesture is well suited to conveying spatial information (McNeill 1992; Kita and
Özyürek 2003), cognitive processing of spatial content and maintaining spatial
images in working memory (Alibali 2005). Gesture along with speech is a good
vehicle for representing spatial relationships (Wagner et al. 2004). Krauss (1998)
found that gestures are used more often in defining spatial words than non-spatial
words. Gestures are frequently produced when describing how to navigate through
space in a town (e.g., Emmorey et al. 2000), giving directions (e.g., Allen 2003), or
describing motion in space (e.g., Kita and Özyürek 2003).

To better understand the role of gestures in the learning of spatial concepts at a
young age, we carried out a study in which we analyzed a kindergartner’s gestures
as a semiotic resource and their dynamics with speech and other semiotic resources
while interacting with others (teacher and peers). This case study was conducted in
a natural mathematics classroom setting addressing spatial concepts (Elia and
Evangelou 2014).

A kindergarten class of children from four years and a half to five years of age
was observed during a mathematics lesson. The data analysis concentrated on a
5-year-old boy, who was identified to interact continuously with the teacher and
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produce many gestures during the lesson (George, pseudonym). The focus of the
lesson was on the spatial concepts ‘in’ and ‘out’, ‘up’ and ‘down’, ‘on’ and ‘under’.
Emphasis was given on recognizing the meaning of these concepts and using them
when talking about a location or a movement. The teaching approach that was used
was the theatre game, in which the teacher and the children explored the concepts
by using a box and two cartoon puppets, the Halloween Pumpkin and Golson.

In a lesson’s episode which is provided below (from Elia and Evangelou 2014,
pp. 52–53, Copyright © EECERA, reprinted by permission of Taylor & Francis
Ltd, http://www.tandfonline.com on behalf of EECERA) the teacher (T) gave some
everyday examples verbally about the use of the words ‘in’ and ‘out’ with reference
to virtual objects, the car and the house. He used the particular inverse ‘in’–‘out’
gesture (line 63, Fig. 9.9), thus implicitly stressing the opposite relation between
those terms. Then he asked children to give their own examples and George
(G) answered by giving another example referring to a virtual object (cupboard). In
doing this, he used words and a similar gesture as the one his teacher produced,
moving his finger on the right when referring to the word ‘in’ and moving his hand
to the opposite direction when referring to the word ‘out’ (line 64, Fig. 9.10). Then,
George used the same gesture for a different example, referring this time to a real
object which existed in the room (fridge) (line 66). The recurrence of a gesture for
two different examples for “in” and “out” can be interpreted as a “catchment” in the
child’s evolution of the meaning of these spatial concepts.

Fig. 9.9 Teacher moves his left hand a on the left saying “in the car” and b on the right, close to
his body saying “out of the car” (line 63), from Elia and Evangelou (2014). Copyright ©
EECERA, reprinted by permission of Taylor & Francis Ltd, http://www.tandfonline.com on behalf
of EECERA
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63 T: What else can we say with ‘in’ and ‘out’? Maybe in the car (Teacher moves his left
hand to the left), out of the car (Teacher moves his left hand to the right, close to
his body); in the house (Teacher moves his left hand to the left), out of the house
(Teacher moves his left hand to the right, close to his body)

64 G: In the cupboard (Moves his right hand on the left while showing with his pointing
finger to the left) and out of the cupboard (Moves his hand to the opposite
direction)

65 T: In the cupboard, out of the cupboard (Teacher imitates George’s gesture)

66 G: In the fridge (Shows with his pointing finger the fridge in the room), out of the
fridge (Points with his pointing finger to the opposite direction)

67 T: Bravo. In the fridge, out of the fridge (Teacher shows with his pointing finger the
fridge). Bravo George. Very good

In this episode, the child’s gestures were deictic (as most of the gestures pro-
duced by the child in the lesson) and were used flexibly in coordination with words
based either on an existential mode of signification (fridge) or on an imaginative
mode of signification (cupboard) (Sabena et al. 2005).

Considering the child-teacher interaction, in this episode the child did not only
use gestures that were similar to the teacher’s gestures in comparable situations, but
he somehow ‘extended’ the teacher’s gesturing by producing similar gestures in
different situations for the spatial concepts ‘in’ and ‘out’ expressed through his
verbal utterances. This indicates that the child gave meaning to the opposite relation
between the inverse ‘in’–‘out’ gesture that his teacher produced, by observing and
mimicking the teacher’s gesture flexibly in different situations from the ones the
teacher gave for the spatial concepts ‘in’ and ‘out’. Thus, besides pointing to an
existing or a virtual object, at the same time the child’s gesture referred to the
opposite meaning of the two spatial terms with respect to the corresponding object

Fig. 9.10 Child’s deictic gestures for the verbal expression a “in the cupboard” and b “out of the
cupboard” respectively (line 64), from Elia and Evangelou (2014). Copyright © EECERA,
reprinted by permission of Taylor & Francis Ltd, http://www.tandfonline.com on behalf of
EECERA
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as a reference point. This is indicative of the blended character of gestures with
respect to the meanings they exemplify.

The coordination between speech and gestures had a significant role in the
process of objectification of the concepts ‘in’ and ‘out’. However, the opposite
spatial relation between the concepts ‘in’ and ‘out’ was never expressed verbally by
the teacher or the child during the lesson, but began to be objectified thanks to the
pair of inverse deictic gestures he produced. This provides evidence to the
importance of speech-gesture dynamics (in which gestures supplement and enrich
speech) in the child’s thinking processes. Furthermore, it is noteworthy that towards
the end of the lesson, when the children were singing a theme about spatial relations
including the terms ‘in’ and ‘out’, George, without moving his hand, pointed his
finger in front of him, when using the verbal expression ‘in’ and then he pointed to
the opposite direction using the opposite spatial term ‘out’ (Fig. 9.11). In this song,
for the terms ‘in’ and ‘out’ he produced a simplified and shortened pair of inverse
deictic gestures without making any reference to an object, existing or virtual, in his
speech. This is an indication of a semiotic contraction in the child’s activity, by
which he could imagine and generalize the meaning of the spatial concepts.

Overall, it can be claimed that the objectifying deictic gestures (Radford 2002),
which were initiated by the child-teacher’s interaction, played a role in the evo-
lution of the objectification about the spatial relation between ‘in’ and ‘out’, and
specifically in the child’s process towards the generalization and abstraction of this
spatial aspect.

In another part of the lesson the teacher asked questions with respect to the
position of specific objects in the classroom. When such questions were answered

Fig. 9.11 Child’s deictic gestures for the words a “in” and b “out” while singing, from Elia and
Evangelou (2014). Copyright © EECERA, reprinted by permission of Taylor & Francis Ltd,
http://www.tandfonline.com on behalf of EECERA
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loudly by all the children to describe verbally the required location of objects,
sometimes the child under study was showing with a deictic gesture the particular
location without producing any utterance. For example, in one episode when all the
other children said “on the table” to explain the position of Halloween Pumpkin,
George pointed to the table without any verbalization. In the previous episode, a
coordination was identified between two different semiotic systems, speech and
gestures, activated by the same child in the process of objectification of spatial
relations. In line with the study described previously, the latter episode provided
evidence for the phenomenon of “inter-personal synchronization” (Sabena et al.
2005, p.136) between different semiotic systems enacted by the child studied here
and the other children, which may contribute to the objectification of spatial
relations.

9.7 Concluding Remarks

The work described above investigated geometry learning in the early years with a
focus on children’s gestures in three different aspects of the development of
understanding of shapes and space: two-dimensional shapes, composition and
transformations of two-dimensional shapes and spatial concepts. Despite the dif-
ferent geometrical content, including plane or spatial geometry, the different
activities, settings, didactical tools and artefacts that were involved in this work, all
three studies provided evidence for the essential role of gestures in geometrical
thinking and communication. This work also revealed how young children used
gestures in these varying conditions, indicating the multiple uses of gestures and
their interconnections with other semiotic resources in early geometry learning.

It is noteworthy that in spite of the aforementioned variations in the research
approaches and in the uses of gestures in children’s semiotic activity, some common
patterns are identified in all three studies or in at least two of the studies, indicating a
certain degree of generality and reliability of our findings. For example, multimodal
semiotic convergence was a commonly found characteristic in children’s geometric
thinking and communication in all the studies. In a few occasions though, this
semiotic convergence appeared to be interpersonal rather than personal. For
example, a child generated a static conceptualization in oral speech about the notion
of angle while another child, without producing any utterances, produced a con-
current embodied form of conceptualization for the same notion, again static, (in-
terpersonal semiotic synchronization). This was, however, different from the latter
child’s previously generated verbal form of dynamic conceptualization for angle. In
a different occasion, for the transformation of horizontal translation, a child’s speech
(use of the word “turn”) was not in line with her produced gesture or spatial
transformation on the SCR which embodied the appropriate meaning. These occa-
sions of lack of (personal) semiotic convergence are likely due to the complexity of
shape and space aspects involved (e.g., operative apprehension of geometrical
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figures, deconstruction of geometrical objects) and this indicates that the children’s
understandings were at an initial stage of development for these concepts.

Considering the coordination of semiotic means from the perspective of objec-
tification, our findings from all three studies, suggest that there was a complex but
fruitful interplay between the semiotic resources provided by the tools or artefacts
used, by the teacher and peers and the semiotic resources produced by the children
under study. For example, in the study which investigated how a girl solved a shape
configuration problem in different SCRs we concluded that there was something to
gain from the complex interplay between the geometrical figures, configurations
and spatial transformations provided by the computer or on paper, and the verbal
utterances and gestures produced by the girl herself while using them. This semiotic
coordination of culturally developed and personally developed resources (Radford
et al. 2005) may have helped the child to enter into a process of differentiating
between critical and non-critical (position or orientation) attributes of shapes and
thus into a process of objectification of geometrical figures.

Another commonality between the studies described in this chapter, is the
semiotic contractions that were found for certain concepts, including the transfor-
mation of horizontal translation of shapes and the spatial concepts “in” and “out”, in
children’s embodied and verbal forms of thinking, indicating their increased
awareness of these mathematical meanings and a certain level of generality. Also,
children’s gestural production involved catchments which appeared either within a
small period of time in the same activity or over a longer period of time in two
distinct activities (e.g., for the rotation of a geometrical figure). This phenomenon
can be considered as an indication of persistent consistency in the visuospatial
imagery of the child’s thinking for the specific geometry aspect. In the case of the
rotation of geometrical figures, catchments could be explained by the use of the
relevant features of the SCR on the computer.

Even though the studies’ focus was on the children’s acts, there were indications
of the impact of the adults’ (teacher or researcher) verbal and non-verbal behavior
on the children’s use of semiotic resources, their thinking and its evolution in
making sense of spatial concepts. Also the interaction with peers and specifically
the impact of peers’ verbal behavior on children’s gesture and meaning making for
two-dimensional figures and spatial concepts cannot be overlooked. Additionally,
the use of different artefacts was found to influence children’s semiotic activity in
the transformation of two-dimensional figures. All these are issues of great theo-
retical and practical importance which could be investigated more systematically in
future research with more children, longer observations and a variety of geometrical
problem solving tasks.

Finally, overall this work suggests that gestures along with speech and other
semiotic resources serve as a window for identifying the children’s progress and
difficulties in spatial and plane geometry content of varying levels of complexity.
Considering children’s gestures and their interrelations with other semiotic
resources while developing geometric awareness, in whole classroom interactions,
in peer interactions and in teacher-child interactions is important for teaching.
It enables the teachers to gain valuable insights into children’s (implicit) learning
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processes, reasoning and understandings in geometry, e.g., children’s constructed
mental images for geometrical concepts, and thus shape their teaching approaches
(purposeful instruction or focusing on spontaneous learning opportunities) in a way
that matches the children’s needs. What is necessary for teachers to fulfill this role
is an issue for further research. Similarly for researchers in geometry education, it is
suggested that investigating geometry learning in the early years would benefit by
observing and analyzing children’s embodied forms of knowing and knowledge,
even though this is not an easy task considering the micro-analysis that is required.
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Chapter 10
Math-in-Context: The Types of Math
Preschoolers ‘Do’ at Home

Ann Anderson and Jim Anderson

Abstract While research shows diversity across families in terms of the frequency
and types of mathematics prior to school, parent-child interactions during “naturally
occurring” activities in the home remain understudied. This observational study
investigated the types of mathematics that preschoolers engaged in with family
members during activities which six middle class mothers identified as contexts for
mathematics learning in their home. Across and within dyads, a range of mathe-
matics concepts was found, with four of the families sharing more geometry-related
activities. Furthermore, although contexts and mathematics appeared common
across the families, the specific mathematics shared within particular activities often
differed according to the semiotic nature of the specific materials, and/or the specific
adult-child interactions.

Keywords Parent-child interactions � Mathematics in context � Preschoolers
Adult-child shared activity � Mathematics at home

10.1 Introduction

Despite the recognition that many young children learn mathematical concepts and
processes prior to school entry (e.g., Gifford 2004), there appears to be limited
research into young children’s experiences with mathematics during ‘naturally
occurring’ activities at home. Although researchers (e.g., Baroody et al. 2009;
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Ginsburg and Pappas 2004) have demonstrated young children’s considerable
understanding of number sense, presumably developed “naturally”, it remains
unclear what other types of mathematics occur during shared everyday experiences.

10.2 Theoretical Perspective and Background Literature

According to socio-historical theory (Vygotsky 1978; Wertsch 1998), adults and
significant others provide support relative to children’s current knowledge, and
structure activities in ways that engage children in more complex behaviors than
those they can do independently. In doing so, they extend children’s learning within
their zone of proximal development. As Rogoff reminds us, the ways in which
learning is supported “cannot be understood out of the context of the immediate
practical goals being sought and the enveloping socio-cultural goals into which they
fit” (Rogoff 1990, p. 139). Similarly, Cobb (1986) theorized that what constitutes
children’s mathematical learning is constructed in context. It follows, then, that
children’s mathematics understanding in the early years of school (e.g.,
preK-Grade 1) builds from the types of mathematics-in-context, that occurs during
parent-child shared activities at home.

Much of the research into young children’s mathematics learning within the
family context has relied on interviews and questionnaires, typically involving
mothers (e.g., Lefevre et al. 2009, 2010; Starkey and Klein 2008). These
researchers report and describe an array of number-related activities in which the
children engage. Other researchers have observed parent-child interactions during
tasks that approximate what occur in the home (Benigno and Ellis 2008; Solmaz
2015; Stiles 2010; Tiedemann and Brandt 2010; Vandermaas-Peeler et al. 2009;
Vandermaas-Peeler 2008). These are similar to our studies (Anderson 1997;
Anderson et al. 2004, 2005) of parent-child dyads engaging with
researcher-provided materials (e.g., storybooks, board games) within the home
context. To date, few studies (Anderson and Anderson 2014; Aubrey et al. 2003;
Meaney 2010; Tudge and Doucet 2004) have documented parent-child interactions
during “naturally occurring” events at home. Furthermore, many who have
researched parent-child interactions have not disclosed the mathematics focus of
their studies to participants while others have used secondary analysis of data
collected for other purposes. For instance, in Walkerdine’s (1988) foundational
study of mathematical discourse at home, she analyzed audiotaped conversations of
30 mother-daughters (average age 3.9 years) collected for the Language at Home
and at School Project and focused specifically on relational terms used (e.g., more),
signifiers for size (e.g., big), and measurement of distance and time (e.g., long).

As noted, this body of research demonstrates considerable diversity in terms of
the frequency and types of mathematics, in which young children and parents
engage. Yet, the literature appears to point to an emphasis on counting and number
in home environments, although measurement (size), space and shape are indeed
evident. Is it possible that our reliance on parental self-reports and task-based
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observations has led inadvertently to our identifying the prevalence of
number-related activities and events in the home? Are we missing day-to-day
activities and events in the lives of young children and their families that provide
contexts for learning other mathematical concepts due to narrow perceptions of
what early mathematics might entail? Is it possible that by naming generic research
goals (e.g., parent-child interactions) rather than disclose our focus on mathematics,
we inadvertently lead participants away from mathematical talk? What remain
underrepresented, it seems, is observational studies of parent-child interactions
during more diverse everyday activity in the home, in which parents are aware that
mathematics is a focus. In this chapter, we report on our investigation of the types
of mathematics a family member and pre-school child share within at-home
activities, which the mothers viewed as contexts for mathematics learning.

10.3 Method

Six mothers and their two and a half-year old preschoolers (5 girls and 1 boy)
participated in the study for 2.5 years. The families lived in middle/upper-middle
class neighborhoods, the parents were well educated, three families included sib-
lings, and three were single child families. When recruiting, we explicitly asked the
mothers to assist us in documenting adult-child activity in their homes in which the
pre-school child engaged with mathematics. In four families, a research assistant
video-recorded the joint activities, which the mothers chose to carry out during
home visits every six to eight weeks. In the other two families, the mothers elected
to videotape activities on their own schedule without researcher assistance. One of
these two mothers captured her child interacting with various family members (e.g.,
mother, grandmother, older sibling) while the other consistently videotaped the
father and preschooler interacting.

Thus, the data sources for the study reported here were the verbatim transcripts
of video-recorded at-home activities of 6 families, identified by the pseudonyms
Adam (mother-daughter dyad), Beet (mother-daughter dyad), Liu (father-daughter
dyad), Pimm (family member-daughter dyad), Penn (mother-son dyad), and Star
(mother-daughter dyad). A total of 33 video-recorded sessions, each lasting at least
15 minutes, were collected. Our analysis identified 44 different activities (See
Anderson and Anderson (2014) for details and Appendix 1 for a summary table).
To determine the types of mathematics evident during these activities, we examined
each transcript for any mathematics-related references verbalized by child or adult
and assigned descriptors such as “number recognition”. We then grouped the
mathematics we coded, according to curriculum organizers (BC Ministry of
Education 2007), noting the dyads that engaged with each. Next, we re-examined
the transcripts in concert with the videos to further delineate the types of mathe-
matics within each activity. In addition, we re-viewed selected videos (i.e., eight
activities) to analyze the mathematics in relation to the contexts.
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10.4 Results

10.4.1 The Mathematics Involved in the Events Mothers
Chose to Videotape

Across the dyads, various mathematics concepts were enacted involving number
and geometry1 (i.e., shape and space, measurement). While all six dyads engaged in
counting and shape recognition, six other concepts—number names, number
recognition, sorting, spatial terms, size, and capacity—arose in activities across four
dyads (see Table 10.1). On the other hand, each of three number concepts—esti-
mate, one less, and number word recognition—appeared in one dyad only.

Looking across the activities within each dyad, we found that the Adam family
focused primarily on number, the Liu family focused equally on number and
geometry, while the remaining four families shared slightly more geometry con-
cepts than number concepts (see Table 10.2).

10.4.2 Trends: Types of Mathematics Within Contexts

As might be expected, when we examined the mathematics concepts within the
contexts in which they arose (see Tables 10.3 and 10.4), the types of mathematics
were differentiated further (e.g., object counting vs. rote counting). Accordingly,
several trends emerged that were not readily apparent when we identified the
concepts in a more decontextualized manner, as previously shown (Table 10.1).

10.4.3 A Closer Look at Number Concepts and Contexts

Although counting was found across all six families, rote counting arose on three
occasions only, once in the context of a song (i.e., Adam dyad: One, two, buckle
my shoe) and twice during child-initiated “count of 3” routines (i.e., Star daughter:
One, two, three, four—swings necklace; Penn son: one, two, three—drops puzzle
piece) (Table 10.3). In contrast, object counting was more prevalent, with children
counting spaces on game boards, objects pictured on a puzzle, toy cars, fingers,
pizza slices and puzzle pieces. Except for one dyad counting 32 puzzle pieces and
another dyad “counting on” (i.e., 45, 46, 47, 48) in Snakes and Ladders, the number
of objects the children counted ranged from two to twelve. Similarly, when parents

1Subsuming shape, space, and measurement under Geometry serves as a dichotomous category to
Number, and aligns with the definition of Geometry as a “branch of mathematics that deals with
the measurement, properties and relationships of… [shapes]” (Merriam-Webster 1828 [inserted by
authors]).
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Table 10.1 Summary of mathematics shared by dyads

Description Family Description Family

Number Shape

Counting Adam, Liu, Penn, Star,
Beet, Pimm

Shape
recognition

Adam, Liu, Penn, Star,
Beet, Pimm

Number names Penn, Star, Beet, Pimm Sorting/
attributes

Penn, Star, Beet, Pimm

Number
recognition

Adam, Penn, Beet,
Pimm

Properties Adam, Penn, Pimm

Numeral
recognition

Adam, Liu, Penn Space

Number
comparison

Liu, Star Spatial terms Liu, Penn, Beet, Pimm

Symbol
recognition

Adam, Liu Spatial
awareness

Liu, Penn

Representation Adam, Star Measurement

Fractions Adam, Beet Size Liu, Star, Beet, Pimm

Operations Adam, Liu Capacity Liu; Star; Beet; Pimm

Double digits Adam, Pimm Volume Liu; Beet

Number word
recognition

Adam Time Penn; Pimm

One less Liu

Estimate Pimm

Table 10.2 Summary of types of mathematics shared by each family

Family Number Geometrya

Adam Counting, number, numeral, symbol,
number-word recognition, representation,
fractions, operations, double digits

Shape recognition, properties

Liu Counting, numeral and symbol
recognition, number comparison,
operations, one less

Shape recognition, spatial terms,
spatial awareness, size, capacity,
volume

Penn Counting, number names, numeral and
number recognition

Shape recognition, sorting,
properties, spatial terms, spatial
awareness, time

Star Counting, number names Shape recognition, sorting, size,
capacity

Beet Counting, number names, number
recognition

Shape recognition, sorting, spatial
terms, size, capacity, volume

Pimm Counting, number names, number
recognition

Shape recognition, sorting,
properties, spatial terms, size,
capacity

aNB Types of math pertaining to shape, space or measurement are included under geometry
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Table 10.3 Nature of and contexts for number concepts

Concept (dyadsa) Nature Context

Counting
(A, L, Pe, S, B, Pi)

Rote, object counting Song, lunch, puzzles, toy cars, boardgames,
playdoh-pizza, word problems

Number names
(Pe, S, B, Pi)

Says age, birthdate Toy cars, lunch, storybook, viewing photos,
yearbook

Number recognition
(A, Pe, B, Pi)

Names number of
objects

Toy cars, cards, dots, tea party, yearbook, pizza

Numeral
recognition
(A, L, Pe)

Names or points to
numeral

Cards; calculator, book, computer, puzzles,
videos, BINGO, Snakes and Ladders

Double digits
(A, Pi)

Names two-digit
numbers, numerals

Snakes and Ladders, puzzle

Fractions (A, B) ½, ¼ named and
shown

Playdoh-pizza, meatballs, baking cookies

Symbol recognition
(A, L)

+, −, =, decimal
point

Calculator, computer, word problems

Number comparison
(L, S)

Too many; not
enough

Rods; Hungry Hippos game

Representation
(A, S)

Show me “five”,
draw me a two

Word problems, lunch

Operations (A, L) Addition, subtraction Word problems, computer game

Number word
recognition (A)

Reads number words Card game

One less (L) One item removed Pop-up and stuffed toys

Estimate (Pi) About 50, lots Jigsaw puzzle
aFirst letter(s) of dyad’s pseudonym is used here to identify each family

Table 10.4 Nature of and contexts for geometry concepts

Concept Nature (example) Context

Shape recognition
(A, L, Pe, S, B, Pi)

Square, rectangle, oval triangle,
circle, heart, hexagon, diamond

Books, train tracks, puzzles,
stickers, checkers, playdoh,
pegboard

Sorting/attributes
(Pe, S, B, Pi)

Color; broken or not; magical or
everyday

Puzzles, toy cars, book

Properties
(A, Pe, Pi)

Long sides, equal sides, square
corners, same area

Books, puzzles, playdoh-pizza

Spatial terms
(L, Pe, B, Pi)

In, over, through, under, to the
side

Train tracks, plastic food, follow
the leader, puzzles

Spatial awareness
(L, Pe)

Irregular figures Train tracks, toy cars

Size (L, S, B, Pi) Little, big, short, high, low, same Puzzles, stickers, photos, tracks,
sprinkler, pizza

Capacity
(L, S, B, Pi)

Filling and emptying containers Playdoh, baking, Macaroni game,
tea party

Volume (L, B) 3 cups, ½ cup, ½ tsp Macaroni game, baking

Time (Pe, Pi) Hours or o’clock, years Toy cars, viewing photos
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of three families called attention to numerals in their environment, all of the chil-
dren readily recognized the numerals 0–9 found on cards, in books, on calculator
and computer keypads, on board games and on video boxes, while two of the
children readily recognized double-digit numerals [e.g., 10–99 (Snakes and
Ladders); 50 (puzzle box)].

Interestingly, fractions arose in two families in food related contexts, both
pretend (i.e., playdoh pizza and meatballs) and real (baking cookies) as the Adam
daughter cut circles (pizza) or spheres (meatballs) into halves and quarters and the
Beet daughter filled measuring cups to the ½ or ¼ mark as she helped her mother
mix cookie dough. Not surprisingly, children’s recognition of symbols (e.g. =, +, −)
arose in dyads where children used technology, such as the Adam daughter using a
calculator when playing store, or the Liu daughter playing a computer game. An
exception was the Adam mother’s scribed equations (e.g., 2 + 4 = 6) expanding on
her child’s enacted solutions to oral problems (e.g., “If four friends came for Pizza,
how many slices do we need?”). Finally, within some contexts (e.g., Adam dyad:
number puzzles, books, card game; Liu dyad: number puzzles) concepts were
explicitly interconnected, such as when counting, number, and numeral recognition
(e.g., Liu Dyad: D: “one, two, three, four, five”; F: “Is that a five?”; D: “The five is
right here”) were simultaneously evident, as children matched numerals and pic-
tures of objects or numerals and dot patterns.

10.4.4 A Closer Look at Geometry Concepts and Contexts

For all six families, shape recognition included plane figures with both straight and
curved sides (Table 10.4). In addition to book illustrations, curved shapes, like
hearts, ovals, and irregular figures, were attended to when dyads engaged with
materials such as stickers, train tracks, and jigsaw puzzles. Interestingly, naming
many-sided figures was supported through a storybook illustration (i.e., Adam dyad:
octagon) and a hand-made light fixture (i.e., Beet dyad: hexagon).While all six dyads
were recognizing and labeling conventional shapes (e.g., square, rectangle, triangle,
circle), three of the mothers also described the shapes’ properties (e.g., Beet mother:
“yes, it (the square) is the one with the equal sides”). However, when four of the
dyads sorted objects, mainly color was used, and when two of the children sponta-
neously sorted through objects to find what they wanted, dichotomous classifications
(e.g., Penn son: broken or not broken toy cars; Pimm daughter: magical or everyday
puzzle images) were verbally identified, using non-geometric properties as attributes.

With respect to spatial awareness, parents and children, in four of the dyads,mainly
used directional language (i.e., spatial terms) during their play with objects (e.g., Penn
mother: “this one (puzzle piece) is under this one”). In addition, children in two of
those dyads also illustrated spatial awareness through the structures they created (i.e.,
Penn son constructs parking-lot-spaces; Liu daughter builds train track configura-
tions). A third child did so through a movement activity (i.e., Pimm daughter and
sibling go over, around and under obstacles as they play Follow the Leader).
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Not surprising, the measurement seen across four families did not incorporate
standardized tools or units (e.g., no rulers; no cm or ml). Rather children or parents
used size to describe objects (e.g., stickers, train tracks, puzzle pieces), often relying
on visual comparisons. For example, the Star daughter, who picked (and named) a
big square sticker from among the many different-sized stickers available, visually
compared her chosen sticker indirectly with the others. The Beet daughter, who
lifted her foot to assess the height of the water flowing from a lawn sprinkler,
directly compared the two heights, again visually. In addition, non-linear mea-
surement arose when children explored capacity or volume by filling and emptying
different containers (e.g., canisters, jug, teacups, measuring cups and spoons) with
different materials (e.g., playdoh, macaroni, tea, flour and sugar respectively). On
occasion, dyads quantified the amounts a container could hold, such as when the
Liu child counted to 3 as she repeatedly poured a cup of macaroni into a jug or
when the Beet mother confirmed “that’s half a cup” as her child filled her graduated
measuring cup with flour to the ½ mark. Finally, although time measurement arose
minimally across dyads, the Pimm daughter’s engagement with time while looking
through family photos with her grandmother (e.g., Pimm grandma: “in 1934”; “I
was 8 years old”; “your mother when she was little”) warrants mention.

10.4.5 A Closer Look at “Common” Contexts:
Examining Within a Category

Since the types of mathematics that arose in conversations in these homes occurred
in such a range of activities across and within families, we now take a closer look at
some of these contexts in order to elaborate further on the types of mathematics we
found. As shown in Table 10.5 in Appendix 1, five dyads chose to have
video-recorded (or to video-record themselves) their engagement with mathematics
while playing with puzzles, a “common” adult-child joint activity in the early years.
In these families, puzzles were a context in which object counting, numeral
recognition including double-digits, estimation, shape recognition and properties,
sorting, and spatial terms arose (see Tables 10.2 and 10.3). However, a closer look
within this category indicates that two of the parent-child dyads engaged with
number based puzzles. For the Adam and Liu families, the puzzles were such that,
when each numeral 1–9 (either carved or written on a carved shape) was lifted from
its position, a matching number of objects were shown in the space created. With
these puzzles, the numerals were in sequence from left to right, across 2–3 rows and
each carved piece typically fit only the matching space. For two other mother-child
dyads, the Beet and Penn families, the puzzles were ‘typical’ jigsaw puzzles with
differing numbers of interlocking pieces required to complete an image pictured on
the cover of the puzzle box. For the fifth dyad, the Pimm family, the puzzle
consisted of two scenes, one with images from a fairy tale, and the other with
comparable images of “everyday” people and objects (e.g., a princess and a woman;
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a unicorn and a horse). While these duplicated puzzle pieces, consisting of the
carved “outline” of the person or object, lifted out, like the numerals in the number
puzzles, the spaces created were blank.

Closer examination of the mathematics related to the number puzzle context
indicates, not surprisingly, that each child counted or subitized the objects pictured
prior to placing the puzzle piece with the corresponding numeral in the space.
Although each puzzle piece was a unique shape, number and numeral recognition
were typically used as a means to determine its placement. However, on occasion,
shape and space were addressed, often when a chosen piece did not fit. To illustrate,
we share an excerpt from the Adam dyad, showing the daughter subitizing [7–8], and
counting [11–15] as well as the mother scaffolding shape and orientation [9; 18].

Adam dyad (Mother-Daughter) are sitting on the couch playing with a wooden
number puzzle.

7 M: … What have we got here? [D puts the puzzle piece into the puzzle.] Oh a
seven right off. Let’s do some counting too. How many snakes? [D holds up a
puzzle piece for her mother to see.] Good. You are doing pretty good eh? How
many bunnies?

8 D: Two
9 M: Good. [D selects a puzzle piece] Can you find another two? You try it.

That’s not it sweetie, is it? Can you find number two? There! …
11 M: How many ducks?
12 D: One, two, three
13 M: Do you want mommy to help you count? Let’s touch every one, one, two,

three, four.
14 D: Four duckies—this many. [D holds up four fingers]
15 M: You are right, good for you. Can you find a four? …
18 M: … How many turtles? One, two, three, four, five, six. Can you find a six?

That’s a good try. You know why? Look at they are both nines aren’t they?
Because one of them is upside down … Try that one. Is that number six that
fits in there? Yeah good—it’s an upside down nine. …

In the jigsaw puzzle contexts, the opposite occured, whereby mothers suggested
that children examine straight versus curved edges, concave or convex parts, or
color and image attributes to find matching puzzle pieces to connect or fill an
opening. On occasion, spatial awareness of where a puzzle piece was located (on
the cover, or in a pile) was also used to determine where it might belong or be
found. While number arose, it did so minimally. To illustrate we share an excerpt
from the Penn family, where the properties [19, 21, 48] and the location [31–33] of
the pieces, and the overall shape [68] of the puzzle as well as color [34], and image
[21] are scaffolded, more frequently than number [64].
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Penn Dyad (Mother-Son) are seated on the floor with a jigsaw puzzle; older sister
sits nearby playing

19 M: Last night you did it pretty well and I just helped you. … Which pieces do
you want to do first, the corner pieces or the flat pieces? … I bet you know
where that piece goes?

21 M: … Good that looks like the corner piece even though the box doesn’t show
it that is the corner piece. What do you have to look for next, more flat pieces
with flowers on?

22 S: Yeah …
26 M: Let’s see if [you] can find it. I think that is pretty good. …
29 M: … what does that one look like on the picture?
30 S: Um, this one.
31 M: Very good, so probably it goes down here. So then what goes in the

middle?
32 S: This one.
33 M: … What is in the middle on the picture? What’s between here and here?

(M points)
34 S: Blue, blue flowers.
45 M: Are you looking at the picture? … Where do you think this one goes?
47 S: Right here.
48 M: Do you think so? Remember about the flat at the end.… All the ones at the

edge are flat—see. So this is flat here isn’t it? Do you want to give it a try and
see where that one goes? … All down here are going to be the flat ones.

64 M: There is one, two, three flowers …
68 M: Let’s see. Flowers—look at this do you want to see where this piece goes.

… OK, is that a flat piece? Remember the front it is going to be like a square—
all flat. If that isn’t a flat it is going to be in the middle not at the top—a
square. …

Interestingly, in the lift-out puzzle context, while searching for particular images
dominated the conversation, at times size and number arose, as illustrated here
when the Pimm dyad included estimation [123–124], counting [132–138] and size
[16] as well as geometric attributes (shape [38–40] and space [3; 55]) to complete
their puzzle.

Pimm D and M are lying on the floor, playing with puzzles. Grandmother is
videotaping.

3 M:… let’s look on the box. [shows D the puzzle box cover] See on one picture
there is the princess holding a basket and over there, there is a woman holding
a basket. So now we need to find the princess holding a basket in here
[the box] right?

16 M: …D, did you find the princess with the little crown on her head?
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38 M: You can look over here and see what shape fits and put it to the one that
fits …

40 M: Does it fit there? That looks good you are right, and here is the princess. …
41 D: This goes here.
55 M: … that looks great. Remember you look on the board and you see where it

is in general and also you can see the shape. I think you know that already.
123 M: That’s it, … You have a guess D, do you have any idea how many pieces

this puzzle has?
124 D: 16
132 M: Should we count them?
133 D: Yeah. 1, 2, 3, … 8, 9, 10, 11, 12, 13, 14, 15, 18, 19, 21, 22, 23, 28, 29, 30,

31, 32, 32, 28.
136 M: … That is a lot of pieces. It has even more than 28 pieces. … Let’s see if it

says.

To summarize, then, while completing puzzles together appears to be a common
context for most of these families to engage with mathematics, when the type of
puzzle (e.g., number vs. jigsaw vs. lift-out) is taken into account, the activities
appear less common (i.e., fewer families engage with a particular type of puzzle)
and less similar (i.e., how one completes a jigsaw and lift-out puzzle differs) than
the category, puzzle, might suggest. In addition, while some types of mathematics
appear related to the type of puzzle (e.g., jigsaw puzzles afford shape-based
mathematics), the features of the particular materials alone appear to be insufficient
to determine what mathematics will arise. And while most of the types of mathe-
matics (with “estimate” being the exception) were found across contexts, nuances
particular to the activity each dyad constructed were found. Therefore, it seems that
the (specific) types of mathematics in which these dyads engage differ according to
the “semiotic” (Golden and Gerber 1990) nature of the contexts (i.e. the specific
material, the specific child, the specific adult) in which the play takes place. That is,
each child and mother (interpretants) bring their own background knowledge,
experiences, personalities and proclivities to a particular mathematical sign (e.g.,
puzzle) and how they interact around and with the sign will inevitably vary from
dyad to dyad. While further examination of the remaining 10 categories is pending,
for the purpose of this chapter, these findings prompted us to explore our data from
a slightly different perspective.

10.4.6 A Closer Look at “Unique” Contexts:
Examining Across Categories

To complement our analysis of the types of mathematics arising during what
appeared to be similar adult-child joint activities (i.e., common context: within a
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category), we turned our attention to the unique contexts, which these mothers
chose to video-record. Looking across the categories (Table 10.5), we selected
three activities (i.e., Playdoh (Pizza): ADAM M-D; Physical (Water Sprinkler):
BEET M-D; Family (Photos): PIMM G-D), each of which involved a different
dyad. As shown in Tables 10.3 and 10.4, the types of mathematics which arose in
these contexts included counting, number recognition, fractions, shape recognition,
properties (Pizza), time, number names (Photos), and size (Water Sprinkler, Photos,
Pizza). As can be seen, then, each type of mathematics appears particular to a
unique context, except for the concept of size. When we look closer, we find that in
the Pizza context, the ADAM mother uses terms like “big” to describe the whole
(Pizza) and “same or equal size” to describe portions (Pizza slices), implying and/or
inviting a comparison of size based on area.

On the other hand, in the Photos context and in the Water Sprinkler context, size
comparisons based on height are implied when the PIMM grandmother and child
use terms like “little” and “short” to describe the people pictured, and the BEET
mother and child describe the water level as “low” or “high” (see Appendix 2).
Thus, although the usage of size-related terms appears common to all three unique
contexts, the specific terms (and attributes) differ. In addition, when we look closer
within the Pizza context, we find that number concepts arise on occasions, when the
child or mother count the number of pizza slices, describe a number of people or
slices (e.g. 4 or 6) or the mother speaks to “cutting it in half”. While the mother’s
repeated emphasis on recognizing and creating equal portions indirectly points to
properties of a circle (see Appendix 2), shape recognition, as shown in the fol-
lowing excerpt, arose early in the conversation and included naming familiar
shapes, which were not present.

ADAM M-D dyad seated at child’s table, playing with Playdoh.

5 M: Good girl, squish it. What shape is it going to be?
6 D: A heart.
7 M: A heart shaped pizza? That could be a little tough. What shapes are pizza

usually?
8 D: Triangle.
9 M: Yes, when you cut the pieces they are. Let’s see if we can make a regular

shape. A big circle right? A big pizza.

In the Photos context, time and number names are threaded throughout the activity,
with the PIMM grandmother’s references to age (8 or 14 years old) or dates (1934)
interconnecting both. Time also arose through references like “when she was a
young woman” or “mommy came many years later”. On one occasion the child
named a number (e.g. two) when asking her grandmother to identify a pair of
individuals in a photo (see Appendix 2).
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To summarize, then, when dyads engage with mathematics within ‘unique’
contexts, both unique and common types of mathematics may arise. Considering
the asymmetrical distribution of the types of mathematics across these particular
contexts, however, further analysis is needed. In addition, types of mathematics,
which appear common across contexts, hold context-specific characteristics. Hence,
looking across categories via these three unique contexts, we again find the specific
mathematics generated points to the nuanced nature (and hence the diversity) of the
mathematics-in-context in which these pre-school children and their significant
others engaged.

10.5 Conclusions

We believe these findings point to important considerations for researchers and
educators interested in young children’s mathematics learning prior to school and
the roles families play in that learning. As this study suggests, there are common, as
well as unique activities, in which families engage to support their child’s mathe-
matical development and learning. Indeed many of the activities these middle-class
mothers chose to share have been reported in previous studies (e.g., Lefevre et al.
2009; Saxe et al. 1987). However, the study reported here clearly indicates that
activities, which are typically deemed common because parents and/or others use
the same generic descriptor (e.g., puzzles), differ in terms of the materials used, the
type of mathematics supported and/or the ways in which each child and adult
interact. Therefore, these results remind us that if we are to understand and build on
children’s prior experiences, as teachers and researchers, we must inquire into the
differences that reside in more detailed accounts regarding the mathematics-in-
context. To do so, further analysis of this data, as well as future research into
everyday practices, which attend to the nuances of parent-child mathematical
engagement is needed to augment surveys and parental reports.

The breadth of mathematics concepts (e.g., number, shape, spatial awareness and
measurement) across families found in this study is consistent with findings from
previous studies (Anderson 1997; Anderson et al. 2004, 2008) where parents and
children engaged with materials (i.e., blocks, story books) that the researchers
provided. This convergence of findings suggests that when parents and children
engage with the ‘same’ materials, whether an activity is of their own choosing or
not, we can expect the types of mathematics to vary. In addition, because these
families engaged in activities of their choosing, a larger variety of tasks were
observed in the current study than in previous studies (e.g., Anderson 1997;
Vandermaas-Peeler et al. 2009), resulting in a breadth of mathematics found within
each dyad. When we extrapolate these findings to the myriad of daily activity in

10 Math-in-Context: The Types of Math Preschoolers ‘Do’ at Home 195



which parents and children routinely engage, the prevalence of number previously
associated with mathematics at home, or the prevalence of geometry for some
families suggested in the current study, needs further consideration and further
research.

That said, the presence of geometry (shape, space, and measurement) found in
the current study adds to the growing evidence of types of mathematics, other than
number, with which parents engage their preschoolers and points to, and beyond,
everyday practices of naming shapes, comparing sizes and navigating space. In
addition, when identifying certain shape, space and measurement concepts with
which these dyads engaged, our analysis of nonverbal interactions (e.g., gestures,
movement) seemed particularly relevant. Indeed, when we considered our results in
light of research on the embodied nature of young children’s geometric and spatial
reasoning (Elia 2018; Karsli 2016; Thom 2018) reported in this volume, we found
several commonalities. More specifically, as was the case for the Kindergarten
children in Elia’s study and the grade 1 children in Thom’s study, parents and
children in the current study used gestures (finger, hand) to communicate, or
augment their communication, of shape, location and size. While the Grade 1
children in Thom’s study used body movement (arms, heads) to imagine a
three-dimensional object, these preschoolers seemed to use body movement (i.e.,
arms, legs, torso) to explore space and measurement more directly. Indeed, the Beet
daughter’s engagement with height and distance when playing with a water
sprinkler in the current study seems comparable to the pre-Kindergartener’s
engagement with speed and distance when playing with a hula hoop, in Karsli’s
study. Although our focus on types of mathematics provides only glimpses of such
engagement with geometry, further in-depth analysis and description of the
embodied ways in which preschoolers and their family members might ‘naturally’
engage with geometry seems warranted.

Finally, we reflect briefly on our design, as Tudge et al. (2008) suggested, “the
methods used to assess children’s involvement in everyday math heavily influence
the apparent extent of their involvement” (p. 188). What distinguishes this study,
we believe, is that we observed math-in-context that our mothers (and children)
chose to share with us. We trusted that telling our parents about the math focus of
the study would influence the amount, and type, of mathematics they demonstrated
and we argue that placing mothers in an agentive role in terms of deciding what
they considered mathematical offsets any perceived limitation. Of importance here
is that our results stem from a combination of the mothers’ identification of the
activity, the adult-child performance of the mathematics while being
video-recorded, and the researchers’ identification of the types of mathematics we
saw and heard. We do not claim that the types of mathematics identified herein
necessarily match the mathematics that our parents themselves would identify and
we remind our readers that these results are not meant to be generalizable. Instead,
we argue, the results of the current study indicate the potential, and the importance,
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of designing future research in ways that include preschoolers and their families,
from culturally and socially diverse backgrounds, engaging in mathematics as they
go about their everyday affairs.

Appendix 1

Appendix 2

Playdoh (Pizza): Excerpts from transcript of Adam M-D dyad
M and D are playing with playdoh at a small table.

:
M: … OK you know what? Let’s pretend we are going to have four people over for
supper, four people are coming. We want to cut this pizza so everybody gets the
same. So the first thing we need to do is cut it in half.
D: Like this? (gestures several horizontal cuts)
M: Yeah right down the middle so there is two pieces the same size.
:

Table 10.5 Activities mothers chose to videotape (Anderson and Anderson 2014)

Category Each family’s activity
Adam Star Penn Pimm Liu Beet

Puzzles Number Jigsaw
(2)

Lift-out Number Jigsaw

Play Store Stickers Pegboard Traintracks Tea party
Board game Snakes and

Ladders
Hungry
Hippos

BINGO Checkers

Story time Number and
shapes

Felt story
board

Sounds of
world

Matching
objects

Family time Lunch Photos Videos Baking
Toys Traintracks Cars Food/dolls Pop up
Playdoh Sharing pizza Happy face Making

food
Physical
games

Hopscotch Follow the
leader

Water
sprinkler

Matching
games

Cards: word
numeral, dots

Cards:
images

Rods:
“Ten”
family

School like Word problems Yearbook
entry

Computer
game

Songs 1, 2, buckle my
shoe

Row, row
your boat

ABCs

Other games Dreydel Macaroni
Miscellaneous Coin trace
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M: Four people are coming for supper so can you cut it in half this way? Or this
way? Yeah.
D: I am going to go this way (inaudible) [gestures a horizontal cut towards the
bottom of circle]
M: OK but let’s do this first—so you already cut it in half this way, so let’s cut it in
half this way. [gestures perpendicular to the previous horizontal cut near the
center] Yeah. Let’s see what happens. That’s a girl. So we cut it in half that way.
Now how many pieces do we have? One, two—
D: One, two, three, four. [mother moves each piece to separate them slightly; pieces
are unequal]
M: Four.
D: Let’s pretend it’s six people.
:
M: OK. So how do you want to do it? [D pretends to cut along two perpendicular
lines similar to before and then repeats the cuts but slightly to the right and below
previous gestures] Ok, you show me. [D cuts a horizontal line near the middle and
then a parallel cut just slightly below it]
D: (inaudible) [offers her mother a tiny crumb of “pizza”]
M: … Look at it, if one person gets this piece [lifts a very thin strip of playdoh,
leaving two semi-circle portions] is that the same size as this piece?
D: No.
M: This guy will be so hungry. We need to make them so that they are the same
size. So let’s put it back together. How can we do that?
D: This is how you do it. I will show you the (inaudible). [D pretends to make 2
horizontal parallel cuts (one in the lower half and another nearer the middle of the
pizza)]
M: Let’s try it.
D: OK. [she makes the parallel cuts with her knife] Tic, Tack, Toe.
M: Tic, Tack, Toe. [repeats jokingly] First show mommy how you do it in half.
D: You know how (inaudible couple of words).
M: … Go right down the middle, right? [uses index finger to trace the cut on
playdoh; then child uses plastic knife to make the cut) Good. OK. So now it is in
half. [lifts half circle nearest her to space the semi-circles of pizza] So, let’s try
cutting this [lifts the semi-circle near her] into three pieces.
D: [above the semi-circle on her left, the child moves her knife as if to cut at a 120°
angle from center towards the curved edge and then another ‘almost parallel’ cut,
slightly off center]
M: [nods towards child’s actions] yeah
D: no, we need six.
M: If we cut this one into three pieces [using index finger she traces cuts on far
semicircle] and we cut this one into three pieces [traces lines on other] let’s see how
many we will have. So you are going to cut—mommy will do the cuts in this one.
[cuts the semicircle nearest her]
D: (inaudible).
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M: Do the cuts along the lines. Do you want mommy to be the cutter and you the
counter? OK. [cuts along the lines on other semicircle] Let’s count how many
pieces do we have.
D: One, two, three, four, five, six.
:

Family (Photos): Excerpts from transcript of Pimm G-D dyad
Grandmother and pre-school daughter of Pimm family look at large sheets of
photos

29D: Who are these two?
G: That is my mother after the war with me and that is my father.
D: You are so short.
G: Short? I was short, I was eight years old.
D: The dress is so nice.
G: Yes, that was my first new dress after the war.
D: Oh
:
G: … And here when she [her mother] was a young woman. And there she was—
D: Where you are?
G: Here she was an old lady. You see look at the (inaudible).
D: Where is you?
G: I’m not there any more.
D: Oh.
G: I am here [points to specific photo] … That is me when I was 14.
D: And this one is her.
:
D: Oh, oh.
G: … but this was the girls in my class.
D: Where is you?
70G: Here [points to herself in the photo]
:
73D: Where is Eema?
G: Oh, Eema wasn’t even an idea yet?
D: Where is she?
G: Mommy came many years later.
D: Where is [child’s name]?
G: [child’s name], no where, no where my love.
D: Where is [child’s older sister’s name]?
80G: [sister’s name], no, no, no. Let me see if there are more here. …
:
85D: Who is that?
G: Who is that?
D: I don’t know.
G: Maybe could that be your mother when she was little? No.
D: No.
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G: No, could that be [sister’s name]?
D: No, [sister’s name] isn’t there.
G: That is me.
D: No
G: No, I think that might be [child’s name].
D: No that is not me.
M: That is you.

Physical (Water sprinkler): Excerpt of transcript from Beet M-D dyad
Beet child plays with lawn sprinkler, while her Mother adjusts the water at
daughter’s request

:
87D wearing swimsuit approaches the ‘back’ of the oscillating sprinkler, water
trajectory is low)
M: I need to fix the back [of child’s swimsuit].
D: Yikes, [skips backwards towards mother away from the sprinkler] the water is
coming [the height of water is increasing]
M: Unwind this part [swimsuit strap], there you go, you’re perfect now. [D returns
to sprinkler] Are you going to run through the bridge, through the tunnel?
Child watches the trajectory of the water as she skirts the periphery of the lawn and
then
D: [cautiously steps towards sprinkler from side, stands near sprinkler as water
reaches peak just prior to tipping towards her] I can’t watch [covers her eyes,
moves closer and raises her knee so that it touches the water mid-stream] Yeek!
[steps back slightly; squats down] Can you turn the sprinkler [squeals briefly as she
runs away; high stream of water tips towards her] a little bit—high?
M: Higher?
D: lower
M: lower, sure, do you want it more manageable? [D watches from a path at the far
left]
D: [as water is just above the ground] oh, I don’t want [she runs towards the
sprinkler] now [without the mother adjusting], it’s way too low for me; watch,
watch this.
M: Okay, I see.
D: (steps directly over the sprinkler and runs through the full length of the water
stream…screams and laughs) that was good, [she walks on path, looking at
sprinkler] turn it lower.
M: okay
D: [still on path] no, no yikes [runs further from sprinkler]
M: how low, this low [turns tap but height of water increases slightly]
D: [shouts] No low
M: low, low, low [water is “straight” above sprinkler and begins to lower]
D: yeah that’s how low [water is about waist high, but quickly goes higher] no,
don’t do it like that [D has been raising arms up and down along with the changing
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water height] that low ok [D approaches sprinkler; water is shoulder high; as she
gets closer she stomps her foot in displeasure as water level increases] that low
M: lower?
D: (screams as mom changes water pressure) no, low!!! Like that [knee high] that’s
perfect. [D screams as water changes] You’re not staying low there.
102M: (laughs) okay, okay
D: I want you to stay there. [knee high; she raises her foot and “rests” it at top of
water stream]
:
110M: Oh I’m sorry love; mommy was just adjusting and readjusting it
D: (continues to place her foot in the stream; her hands in the stream; she jumps
over it with two feet; she sits on it …)
M: That’s a nice manageable height.
:
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Part IV
Technology



Chapter 11
Time, Immersion and Articulation: Digital
Technology for Early Childhood
Mathematics

Nathalie Sinclair

Abstract Over the past five years, I have been involved in two major
technology-based early childhood research projects, one focused on geometry
(Geometry4yl) and the other on number sense (TouchCounts), both deeply rooted
in a Papertian approach to technology design that seeks to transform mathematics
and, potentially, the teaching and learning of mathematics. Three novel and sig-
nificant themes have emerged in this work: the temporalizing of early childhood
mathematics (time); the exposure of young children to advanced mathematics
(immersion); and, the relations between digital technologies and paper-and-pencil
technology (articulation). I also consider the challenges that teachers face in inte-
grating new technologies that differ significantly from existing paper-and-pencil
modalities and physical manipulatives.

Keywords Technology � Multi-touch � Time � Number � Geometry

11.1 Introduction

The past decade has yielded a proliferation of new digital technology for primary
school mathematics education, which, especially at the grades K-2 level, had pre-
viously resisted the incursion of computers into the classroom. The dramatic shift
coincides, it would seem, with the emergence of touchscreen tablets, which make
interaction much easier for young children than did the keyboard, and which
promote more mobility and flexible use in the classroom than did desktop com-
puters or even laptops.

Research on the use of touchscreen devices at the primary school level is only
now starting to become available. Given the growing number of apps (especially for
the iPad), most researchers have focused on the challenge of evaluating their
pedagogical potential in view to support teachers in choosing the most appropriate
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apps for their practice. For example, Larkin (2016) evaluated 142 different apps
designed for use at the primary school level and found that only three scored highly
on all the measures he used, which included the Haugland Software Developmental
Scale (Haugland 1999), Gee’s (2003) Learning Principles and Atweh and Bland’s
(2005) Productive Pedagogies. Interestingly, these measures make very little ref-
erence to the long-standing research in mathematics education that relates to the
middle and secondary school levels, perhaps because the nature of mathematics
involved in each grade span is seen as being very different.

These measures can provide helpful guides for mathematics teachers, but they
are less useful in helping researchers understand the specific ways in which
mathematical concepts are being offered, and the new opportunities they provide
learners and teachers for interacting with and thinking about these concepts. As a
complement to macroscopic analyses conducted by Larkin and others, this paper
examines very specific mathematical features of digital technology designed for
primary school education and the impact that such features might have on the
concepts at stake. By definition, then, criteria such as developmental appropriate-
ness (Haugland 1999) or curricular fidelity (Dick 2008) may be disrupted, inasmuch
as novel technology changes the pace, order and nature of what students can learn.
This may make the integration of these technologies very challenging for teachers, a
point I will return to later in the paper.

Over the past five years, I have been involved in two projects featuring the use of
digital technology in the early years: Dynamic geometry for young learners (five to
ten-years old) and TouchCounts (3–7 year old). These two projects focus on
geometry and number, respectively. In this section, I will briefly outline each
project and its relation to existing literature. Indeed, prior research, even at the
middle and secondary school levels, can provide very useful insights for researchers
working at the primary school level, even though the mathematical concepts at
stake are different. In the next section, which is the heart of this paper, I will
describe the three mathematical themes that have emerged as novel and significant
throughout this work, and that I think are relevant both to the present context of
technology use in early childhood education but also to future research and cur-
riculum design.

11.1.1 Dynamic Geometry for Young Learners

The geometry project builds on decades-old research in the use of dynamic
geometry environments (DGEs) (see, for example, Arzarello et al. 2002;
Baccaglini-Frank and Mariotti 2010; Hollebrands et al. 2008; Laborde 2000), which
were initially designed for high school mathematics, but have since percolated
down—as well as up—the grades and also spread across to other topics such as
algebra. In 2006, after finishing a project aimed at developing Sketchpad-based
activities for the grades 3–8 level and realising how little geometry was actually
done in most elementary classrooms in North America (see Clements and Sarama
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2011), I decided to explore activities that might be feasible for even younger
children, starting at the kindergarten level. Drawing on research conducted by
Battista (2008), who showed how upper elementary children could develop more
robust understanding of quadrilaterals, my first study involved investigating the use
of dragging to learn about triangles.1

Dragging is a significant action in a DGE and so is worth explaining. Given a
triangle with three vertices (see Fig. 11.1a), dragging the top vertex changes the
shape of the triangle (making it “skinnier”, as in Fig. 11.1b, or “upside down”, as in
Fig. 11.1c) but maintains its status as a three-sided polygon. The dragging is
continuous (which is difficult to represent on static paper), which may help children
see the three-sidedness of the shape as the invariance. Given extensive research
showing that young children tend to reply on prototypical images (such as an
equilateral triangle with its base parallel to the page, as in Fig. 11.1a) (see Battista
2007), the possibility of dragging is relevant because it quickly produces a family of
non-prototypical triangles.

In the research at the secondary level, studies have focused primarily on how
dragging can help students engage in geometric constructing, conjecturing and
proving, activities that are less commonly associated with the primary school level.
However, some researchers, such as Battista, have studied how students learn to
identify quadrilaterals and, more specifically, develop a sense of the inclusive
relations between various quadrilaterals. This research is closer to the primary
school activities of identifying and comparing shapes and so is more directly rel-
evant. In particular, it highlights two mathematical issues related to how learners
perceive geometric objects. One is captured by Marrades and Gutiérrez (2000): “the
main advantage of DGS learning environments” is that “students have access to a
variety of examples that can hardly be matched by non-computational or static
computational environments” (p. 95). The other issue, articulated in Laborde (1992)
and Battista (2008), focuses on the continuous transformation of the draggable
object rather than on the set of characteristics that can be abstracted from a given set

(a) (b) (c)

Fig. 11.1 a A triangle; b dragging a vertex down; c dragging the vertex further

1It is worth noting that around the same time, the designers of Cabri-géomètre began development
of their primary school software Cabri Elem, which also used dynamic geometry modalities for
primary school geometrical concepts (Laborde and Laborde 2011).
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of examples. This second issue underscores the way in which the object is an entity
whose behaviour can be investigated and described—indeed, the object must be
moved in order for it to be investigated. And, if we take Battista’s hypothesis that
people notice invariance—that what doesn’t change under variation becomes
salient, and can therefore be identified as a property—then dragging can be a
powerful way of drawing learners’ attention to geometric properties. Thus, DGEs
are relevant to the primary school curriculum, which involves extensive work
around the identification and comparison of geometric properties for both two- and
three- dimensional shapes.

This has been borne out by several studies with which I’ve been involved in the
past five years. In the earliest, which involved the use of desktop Sketchpad pro-
jected onto a screen, Sinclair and Moss (2012) describe how kindergarten children
went from asserting that the triangle in Fig. 11.1c was not a triangle to explaining
that it was, because it “always has three sides”—thus moving from reasoning based
on a prototypical image, to reasoning based on noticing invariance over a certain
kind of transformation, namely dragging. Developmental research, based on theo-
ries such as the van Hiele levels, maintain that young children do not engage in
property-based reasoning, but such research is based on the use of physical
manipulatives, which are rarely seen in non-prototypical forms and certainly not
continuously transformable. Sinclair and Moss show, however, that children can
begin describing and even defining triangles in kindergarten, when they have the
opportunity to see and discuss a wide range of continuously varying three-sided
shapes.

Later research within this project, but using desktop Sketchpad projected onto an
interactive whiteboard, which enabled children to drag objects on the screen, has
focused on comparing and identifying different types of triangles, such as isosceles,
equilateral, right and scalene (Kaur 2013). These children from grades 1–2 were
able to think of these triangles in terms of their inclusive relations (that an equi-
lateral triangle is a special kind of isosceles triangle) and thus operate at the
developmental van Hiele level of 3. Again, the digital technology, as well as the
accompanying tasks, enabled the children to describe and think about these shapes
in terms of their behaviour, so that instead of describing a scalene triangle as having
three sides, the scalene triangle was seen as the most flexible of the different
triangles since it could be dragged into any kind of triangle, including one with two
or three equal sides.

Another concept that is rarely directly addressed in the primary school grades,
even though it is informally relevant when children learn about squares and rect-
angles, is parallel and perpendicular lines, which grade 1 children were able to
identify and describe (Sinclair et al. 2013). Likewise, the concept of angle was
introduced to kindergarten children using the dynamic notion of angle-as-turn,
which enabled children to compare and describe angles in qualitative terms, instead
of using angle measure (Kaur 2013). Finally, the concept of reflectional symmetry
was the target concept in a study with grade 2–3 children, where the dynamic
movement of shapes and their images enabled children to develop a functional
approach to symmetry and to describe symmetry in terms of the equidistance of the
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shape and its image to the line of symmetry (Ng and Sinclair 2015). Most recently,
a project extension involving the use of the multi-touch Web Sketchpad (used with
a classroom set of iPads), showed how various aspects of the concept of symmetry
emerged in a classroom of grade 1 students (Chorney and Sinclair in press). Unlike
the approach offered by Fletcher and Ginsburg (2016), which uses static reflections,
our research has built on the dynamic approaches that have been shown to be
effective at the secondary school level (see Hollebrands 2003).

These are all concepts that are rarely undertaken before grade 3 (with Fletcher
and Ginsburg’s work (2016) being a notable exception), but that have proven to be
accessible and rich for younger learners, when supported. Without going into
details for each study, the main feature of each is dragging: children drag or move
objects to explore their behaviour. So, for example, instead of defining symmetry,
children drag an object and see how its reflected image moves as a result. While the
project began with the desktop version of Sketchpad (projected on to a whiteboard
or an IWB), it has since moved to Sketchpad Explorer (on the iPad) and to
Web-based Sketchpad (sketches can be found here: http://www.sfu.ca/geometry4yl.
html). These two latter instantiations of Sketchpad are multi-touch, which means
that users can drag multiple objects at the same time. In the example given above,
with the triangle, for example, a young learner could drag all three vertices of the
triangle; alternatively, three different children could each drag one vertex of the
triangle, perhaps working together to fit it into a certain position (as can be seen in
this activity: www.sfu.ca/content/dam/sfu/geometry4yl/sketchpadfiles/Triangle%
20Designs/). Comparing Fig. 11.2a and b nicely highlights the difference
between single-touch and multi-touch interactions; in the latter, many children can
interact simultaneously, each potentially using more than one finger. The act of
using three fingers to drag the triangle—which must be practiced, for many young
learners—involves a gesture that reifies an essential property of the triangle (that is
has three vertices). Multi-touch dynamic geometry thus offers both mathematical
and pedagogical opportunities that have only recently been pursued (Jackiw 2013).

Fig. 11.2 a Single-touch desktop computer interaction; b multi-touch tablet interaction
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Evaluating the multitouch digital technology—and the accompanying tasks—in
terms of curriculum fidelity or developmental appropriateness would be problem-
atic. However, for mathematics education researchers, there is much to learn about
the nature of the concepts at play, how they are transformed by technology and
potentially made more learnable and teachable. It is important to point out that this
requires an ontological shift that rarely occurs in digital technologies that attempt to
replicate existing technologies (such as virtual manipulatives) or existing school
mathematics instantiations of geometric concepts, as with all the apps evaluated in
Larkin (2016).

11.1.2 Early Number Sense with TouchCounts

In 2011, when the touchscreen tablets had recently come out, I led a team that
developed a multi-touch app called TouchCounts, primarily for counting, but also
for adding and subtracting (Jackiw and Sinclair 2014). Many apps for primary
school number sense had already been created, but the large majority of them were
single-touch (often because their design was based on existing single-touch—
through the mouse of the keyboard—desktop software) and were level-driven and/
or drill-based, often providing the users with only evaluative feedback (as in the
interactive mathematics book described by Ginsburg et al. 2018). Sinclair and
Baccaglini-Frank (2016) provide an overview of the basic component abilities that
multi-touch technology can mediate, including: (1) subitizing; (2) one-to-one cor-
respondence between numerosities in analogical form; (3) fine motor abilities; and,
(4) part-whole relations. In her chapter, Baccaglini-Frank (2018) extends this list to
include finger tapping (which is related to finger gnosia), estimation and four
principles (other than one-to-one correspondence) considered necessary for children
to master: the stable-order principle, the last-word rule that assigns the last said
numeral not to the last counted object, but to the quantity as a whole, the principle
of abstraction (objects of any nature can be counted) and order indifference.

In TouchCounts, counting happens in the Enumerating world, in which a user
taps her fingers on the screen to summon numbered objects (yellow discs). The first
tap produces a disc containing the numeral ‘1.’ Subsequent taps produce succes-
sively numbered discs. As each tap summons a new numbered disc, TouchCounts
audibly speaks the number word for its number (“one,” “two,” …, if the language is
set to English). Fingers can be placed on the screen one at a time or simultaneously.
With five successive taps, for instance, five discs (numbered ‘1’ to ‘5’) appear
sequentially on the screen, which are counted aloud one by one. However, if the
user places two fingers on the screen simultaneously, two consecutively numbered
discs appear at the same time, but only the higher-numbered one is named aloud
(“two,” if these are the first two taps). The discs always arrive in order, with their
symbolic names imprinted upon them.

If the ‘gravity’ option is turned on, then as long as the learner’s finger remains
pressed to the screen, the numbered object holds its position beneath her
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fingertip. But as soon as she ‘lets go’ (by lifting that finger), the numbered object
falls and then disappears “off” the bottom of the screen. With ‘gravity’ comes the
option of a ‘shelf,’ a horizontal line across the screen. If a user releases her num-
bered object above the shelf, it falls only to the shelf and comes to rest there, rather
than vanishing out of sight ‘below.’ (Fig. 11.3 depicts a situation in which there
have been four taps below the shelf—these numbered objects were falling—and
then a disc labelled ‘5’ was placed above the shelf by tapping above it. See also
https://www.youtube.com/watch?v=5PHzSlxSaWo)

Whilst tapping on the screen in the Enumerating World creates sequentially
numbered objects, tapping on the screen in the Operating World creates autono-
mous numbered sets, which we refer to as herds. The user places one or several
fingers simultaneously on the screen, which immediately creates a large disc that
encompasses all the fingers. When the fingers are lifted off the screen, the numeral
is spoken aloud and the smaller discs are then lassoed into a herd and arranged
regularly around the inner circumference of the big disc (Fig. 11.4a shows herds of
3 and 4). After two or more such arrangements have been produced (as in
Fig. 11.4b) they can either be pinched together (addition) or ‘unpinched’ (sub-
traction or partition). The pinching gesture draws on one of the four grounding

Fig. 11.3 The screen after
four sequential taps below the
shelf and a fifth tap above the
shelf

Fig. 11.4 a The herds; b pinching two herds together; c the sum of two herds
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metaphors for addition, that of object collection (see Lakoff and Núñez 2000). It
expresses the very idea of adding, and does so in a symmetric way so that, unlike
symbolic expressions of adding (3 + 4 or three plus four), it does not imply a
particular order. The new herd is labelled with the associated numeral of the sum
(Fig. 11.4c), which TouchCounts announces aloud. Moreover, the new herd keeps a
trace of the previous herds, which can be seen by means of the differentiated
colours.

In our studies with three to five-year olds (pre-school), as well as five to
seven-year olds (kindergarten and grade 1), we have been particularly interested in
how the “shelf” provides children with an opportunity to move beyond the mem-
orized number song and begin to attend to the relation between numbers (what
comes before 10, what comes after 4, etc.), which is necessary part of developing
number sense (see Sinclair and Heyd-Metzuyanim 2014). In our classroom
experiments, we have also asked children to engage in skip counting using the
shelf. This might involve, for example, placing four fingers below the shelf and then
the fifth one above, and then repeating that sequence of actions several times in
order to obtain 5, 10, 15, 20, etc. on the shelf (Sinclair et al. 2016). The four finger
all-at-once tap provides a reification of the “jump” between consecutive numbers,
one that is more gestural and even temporal in nature than the skip counting on a
100 s chart, for example.

We have also examined the following aspects of children’s activity with
TouchCounts: finger gnosis (Sinclair and Pimm 2015b), gestural subitizing (Sinclair
and Pimm 2015a), attention to symbols and place value (Sinclair and Coles 2015).
Indeed, by virtue of being able to so easily create very large numbers (children
delight in making numbers such as 100, as well as numbers they have never even
seen before, such as 479), the exclusive focus on the 1–20 range that is common in
kindergarten and even grade 1 gives way to an immersion—both symbolic
(123) and spoken (one hundred and twenty-three)—in the much more regularly
spoken numbers (at least in English and French) of the 100s and beyond. We have
noticed young children quickly gaining fluency in predicting what number comes
after numbers such as 78 or 124, not because they necessarily have a sense of the
actual size of those numbers (their cardinal value), but because they can work
directly on the symbols. As Coles and Sinclair (2017) argue, working with these
larger numbers can evoke the temporal and linguistic aspect of place value, which
contrasts with the cardinal aspects that are emphasized in most school curricula and
with most manipulatives (such as Dienes blocks).

However, the most surprising—and historically/philosophically interesting—
feature of children’s use of TouchCounts relates to ordinality. By ordinality, I
follow Coles (2014) (who cites Tahta and Gattegno) in stressing not only number as
sequence and order (in the sense of Peano or Dedekind), but also as the relation
between symbols—which might involve knowing whether, for example, the
numbers [4, 5, 6] are in order. A given ordinal number gets its meaning from the
one that precedes or follows it. One does not need to know how big 1,000,001
really is to know that it is one more than 1,000,000 because 1,000,001 immediately
succeeds in the whole number count list. One characteristic feature of ordinality is
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that it is not just spatial, but also temporal, which will be the first theme discussed in
the next section. What TouchCounts changes to the usual technologies around
ordinality is the multimodal connecting of touch, sight, sound and symbol, the
gestural interaction, as well as the effortless production of numbers.

11.2 Themes

Whilst quite different in terms of content area and technology design, the two
projects described above share some interesting similarities, which I describe
below. These similarities are not so much about pedagogical approaches that the
technologies support, but more about how the technology interacts with the relevant
mathematical objects and relations.

11.2.1 Time

Despite the fact that humans live in time, much of modern mathematics can be
characterized as being static and de-temporalized. This may be in part due to the
way that it is written and drawn in textbooks and other paper media (Pimm 2006),
but may also be a result of a long-standing suspicious attitude towards motion in
mathematics, which began with the Ancient Greeks (Châtelet 2000). New digital
technologies have challenged this static view of mathematics (Rotman 2008) and
new theories of embodied cognition have argued that mathematical ideas emerge
from our actions in the world (Lakoff and Núñez 2000). Indeed, researchers have
shown that despite the de-temporalized nature of formal mathematics (i.e., written
mathematics), mathematicians often think of mathematical concepts in temporal
ways, as can be seen through their gestures (Núñez 2006; Sinclair and Gol Tabaghi
2010). An even greater number of studies have shown that this holds for mathe-
matics learners as well. Many of these studies, however, whilst convinced that
children’s movements (gestures, body motions) can be significant in enabling them
to develop mathematical understandings, remain agnostic about the ontological
question of whether the mathematics itself—the objects and relations—are of a
pure, immutable Platonic nature, or of this world. Most digital technologies for
young learners follow suit, opting to put the non-mathematical components of the
program in motion (hopping rabbits, twinkling starts, etc.), but to leave the math-
ematical ones static.

The possibility of a dynamic triangle, which can become any triangle—any
shape, size, location—a triangle that becomes over time, rather than existing as a
proposition accompanied by an illustrative diagram, invites learners and teachers to
think of the triangle as a temporal concept. Thus far, our research has shown that
working within this temporal discourse has pedagogical benefits in that it provides
learners with a large example space (and thus decreases the negative impact of
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prototypical images), helps them attend to invariance (e.g., that an object and its
reflected image are equidistant from the line of symmetry) and enables them to
engage with sophisticated mathematical ideas at quite a young age. But it has also
been interesting to see a shift in the mathematical discourse that has emerged as a
result of their experiences. After dragging a triangle on the screen into various
positions, and having to decide whether an upside down three-sided shape and a
long-and-skinny one deserve to be called triangles, students have explained that
these shapes are indeed triangles because “no matter how you move it, it just has
three sides”. Or when asked whether two angles are the same size, when one of
them has longer arms than the other, children say “you have to turn them by the
same amount”. And when asked if a shape is symmetric, children have said “if one
side moves away from the line when the other side does”. These statements, I
would argue, do not merely reflect the fact that children have moved their bodies or
gestured in order to learn about geometry, but that they are learning about a moving
geometry.

With TouchCounts, the ordinal aspect of number serves to revive a more tem-
poral conceptualization of number than the cardinal aspect of number. It may well
be that the cardinal aspect has become so dominant because of the general
de-temporalization of mathematics, though several mathematicians have shown that
one can get by without cardinality (see Rips 2015). It may well be, if we subscribe
to the hypothesis of Seidenberg (1962), that the origins of counting are also tem-
poral in nature, emerging out of rhythmic, ritual practices. In our work with young
children, we have seen particularly temporal discourses emerging as well, such as
“204 comes later than 200” (i.e., is said after when counting in the ‘right’ order). In
contrast to the more cardinal expression “204 is bigger than 200”, the temporal/
ordinal statement is inscribed within the action of tapping on the screen, in which,
indeed, 204 appears after 200 does. Statements such as “come after” and “come
before” are also within the ordinal discourse.

As with the case of dynamic geometry, such statements reflect deeper onto-
logical orientations about mathematics in that concepts such as numbers are things
that occur in time, rather than objectified, cardinal quantities. While some mathe-
matics education researchers have argued for a more ordinal approach to early
number (such as Gattegno 1974), recent research in the neurosciences shows that
what is significant in the learning of mathematics is not being able to link symbols
to objects (which is the typical practice in early number) in a manner that is often
considered accessible, but being able to link symbols to other symbols (Lyons and
Beilock 2011). It also shows that skilled symbolic ordinal processing is correlated
with success in higher levels of mathematics more generally (Lyons et al. 2014).
Linking symbols to symbols can surely be done in a de-temporalized manner, but
within the practices of TouchCounts counting, the symbols become linked through
time. A question arises as to what related number concepts could also be
re-temporalized. Addition? Place value?
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11.2.2 Immersion

This second theme emerges from the way in which digital technology provides
particular constraints that usually differ from those of other technologies. For
example, with pattern block manipulatives there is a triangle shape that is green and
small, isolated and singular, and equilateral, which constrains the set of triangles. It
is also three-dimensional, which actually makes it a triangular prism. This pattern
block tangram is usually sufficient for early geometry learning, in which the focus is
often on naming and classifying shapes. On printed worksheets, the triangles will be
more two-dimensional and will take on a slightly larger variety of colour, size and
orientation. The mathematical coherence of a DGE such as Sketchpad enables users
to make any triangle, or any colour, size, shape and orientation; the triangle can
even be put into motion through the animation functionality. I view this as full
immersion into the mathematical triangle in that children can make and encounter
triangles they might not meet formally until later in their schooling, such as
isosceles or obtuse-angled triangles, or even a triangle in which a vertex has been
dragged onto the opposite side.

In a sense, such technologies are blurring distinctions between concrete and
abstract, between physical and symbolic, between real and imaginary. Such blurring
will likely have an effect on long-standing developmental stances, which assume a
transition from the concrete to the abstract, for example. It may be, however, that in
interacting with an object that is both concrete and abstract (concrete because you
can touch, it, drag it; abstract because it is virtual, precise, and infinitely malleable)
these developmental trajectories are disrupted.

In the case of TouchCounts, the immersion is into the world of all whole
numbers, not just brackets of numbers identified in the curriculum. This means that
young children will not infrequently create numbers that are very big, and will
delight in repeating what they hear, “three hundred and seventy-four?” This is very
different than a ten-frame, for example, in which the constraint is set to 10, or even
with counters, where counting rarely exceeds 100. We have been asked several
times whether we could produce a version of TouchCounts that does not go past
100, with the argument being that children will get confused by the bigger numbers.

In both cases, children are working within an environment that has not been
constrained for psychological or historical reasons (or by the curriculum), but for
mathematical ones (you cannot turn a triangle into a square and you can always
keep adding one). It is certainly possible to argue that there are pedagogical benefits
to working within such environments (for example, it is hard to appreciate the
structure of numbers if you stop at 20), but the possibility offered within these new
environments can also push us to reflect on our assumptions of how concepts
should be sequenced. That said, the pedagogical benefits to opening up the cur-
riculum into less constrained environments will have important consequences on
the expectations and preparedness of teachers. Baccaglini-Frank (2018) highlights
this challenge in pointing out that the educator who used the apps with young
children often overruled the children’s strategies and promoted a more narrow
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understanding of number (counting and/or using known finger configurations).
Indeed, the importance of appropriate and extensive teacher professional devel-
opment has been documented in many other situations involving the introduction of
novel digital technologies.

11.2.3 Articulation

In a discussion about the challenges involved in teaching and learning arithmetic,
Tahta (1998) distinguishes between metaphoric and metonymic ways of accessing
number. The metaphoric ways might involve an abacus, a ten-frame, rods, or any
other re-presentations of numbers (as well as pictures of apples and balls, as pre-
sented by Ong (2016). Metonomy involves a change in name, so the numeral
(symbol) or the number-word is another name for number. Tahta argued that there
is too much metaphoric work in early number, and not enough metonymic work. In
this sense, I see TouchCounts as providing a metonymic way of accessing number
since children are working directly on and with number names and symbols,
through their finger tapping and gestures. What this means is that the distance to
number (which some might call the transfer required) is lessened. A similar situ-
ation occurs with the example of triangles in that children are working directly with
two-dimensional shapes, directly moving points or edges rather than manipulating
something that represents a vertex of or segment. As Jackiw and Sinclair (2006)
write, the “heart of such a ‘dynamic geometry’ experience lies in its idealized and
friction-free mathematical physics” (p. 146). The dragging triangle is an actual-
ization of the mathematical triangle in that it communicates precision and
generality.

As environments of metonomy one can thus argue that they provide an expe-
rience of mathematics that is closer to mathematics, requiring less of a transfer or
articulation. That is interesting in and of itself but it is also the case that in our
research projects, inspired by the work of Bartolini Bussi and others, we have
designed activities in which digital tool-based interactions are almost always fol-
lowed up by paper-and-pencil diagramming. According to the theory of semiotic
mediation (Bartolini Bussi and Mariotti 2008), the act of drawing offers a mech-
anism through which actions on the screen can become mathematical signs. For
example, the drawing in Fig. 11.5a was produced by a Canadian 6 year-old after
having dragged triangles on an iPad and Fig. 11.5b was drawn by an Italian
6 year-old who had created 5 in different ways using TouchCounts.

While the appearance of fingers/hands in these drawings does not happen all the
time, their inclusion in these ones evokes nicely the way in which the hand can be
seen as being part of the tool. In geometry, the connection with the hand is
long-standing, as Catton and Montelle (2012) write: “in order truly to learn from
Euclid, one needs one’s hands, not only one’s eyes and ones brain” (p. 27). And in
number, fingers are thus simultaneously subject and object ‘counting with my
fingers’ and ‘counting on my fingers’, with increasing neuro-scientific evidence
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showing the strong link between fingers and arithmetic. In both cases, the moving
technology is perhaps bringing fingers back into play, drawing them back into
mathematics.

11.3 Concluding Remarks

Digital technology for primary school education has quickly been populated by
touchscreen, tablet-based applications, which are now available in many schools
and relatively easy to use (in comparison with desktop software). The majority of
the applications developed thus far fall into the category of “edutainment” (Larkin
2016), with the more pedagogically serious ones replicating existing physical
manipulatives (Cuisinaire rods, geoboards, tens-charts, etc.). These latter applica-
tions tend to be rated highly by mathematics education researchers, especially for
the developmental and curricular fidelity. Applications that depart significantly
from physical technologies (paper-and-pencil, manipulatives) may present signifi-
cant challenges for teachers.

Even at the secondary school level, for example, teachers can find the integration
of DGEs very difficult since they require significant changes in practice. Indeed,
Ruthven’s (2014) framework for analysing the expertise that underpins successful
integration of digital technology highlights five significant changes in practice that
are required, from the amount of time to spend on various concepts to the design of
assessment tasks. Sinclair and Yurita (2008) underscore the significant change in
discourse required for teachers shifting from a static geometry environment to a
dynamic one. With respect to TouchCounts, the prevalence of symbol use, the lack
of constraint on the size of numbers, as well as the emphasis on ordinality can also
present challenges for teachers. As Coles and Sinclair (2017) report, teachers have
expressed concern over the perceived lack of “meaning” in TouchCounts, where
meaning is associated with cardinal quantities represented by physical manipula-
tives such as tens-charts and Dienes blocks.

Fig. 11.5 a Drawing of a moving triangle, b drawing of making 5 in TouchCounts
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There is thus a challenging choice to be made, both by teachers and researchers,
about the extent to which new digital technologies—those that significantly change
mathematics—can and should be integrated. Now, thirty years after their initial
introduction, DGEs have gained such widespread approval in the mathematics
education community that dynamic geometry objects are now being used in on-line
textbooks and even in assessments. Indeed, dynamism has spread beyond geometry
and is now also a feature of many software programs focused on the teaching and
learning of algebra (such as Desmos). Most of the research at the secondary level
focuses less on student learning and more on teacher integration, task design and
assessment (see Sinclair and Yerushalmy 2016). Hopefully, the results of this
research can be used to guide the professional development of primary school
teachers who wish to use DGEs in their classrooms.

Based on research I have been doing for the past five years, involving the use of
digital technology in early mathematics learning, I have identified three charac-
teristic features that are common to two disparate digital technologies, each of
which represents a major shift in relation to the nature of the mathematical concepts
at play. The first two themes, in particular, arise from specific design decisions
made within the digital technologies (DGE and TouchCounts), and may thus be
much less relevant for other digital technologies that have been designed and
researched. The first theme highlights the temporal aspect of mathematics, and its
uneasy relationship to modern and/or formal mathematics, and emerges out of
design decisions to enable mathematical objects and relations to be put in motion.
The second theme also relates to design in the sense that it concerns the mathe-
matical coherence of technology design and its consequences on the sequencing of
topics in the curriculum. The third theme concerns the articulation process that is
involved in working with models of or manipulatives (virtual or not) for mathe-
matics. This process of articulation may be much more transparent in
technology-based environments in which children are working with metonyms
rather than metaphors, directly on numbers, vertices and edges, but the question of
how such environments can be productively connected to existing resources still
remains.
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Chapter 12
What Schemes Do Preschoolers Develop
When Using Multi-touch Applications
to Foster Number Sense (and Why)?

Anna Baccaglini-Frank

Abstract As part of an educational project proposed in Italian pre-schools, an
educator followed a protocol that had been used in a previous study
(Baccaglini-Frank and Maracci in Digit Exp Math Educ 1:7–27, 2015) proposing
two chosen iPad apps to children of ages five to six. This study investigates the
schemes developed by the children in response to the apps, and the role the edu-
cator’s interventions seemed to play in such development. Analyses of the data
collected suggest that her interventions privileged and encouraged schemes
involving counting, which limited the variety of schemes enacted and the aspects of
number sense strengthened through the protocol.

Keywords Counting � iPad applications � Multi-touch technology
Numerical abilities � Representations � Pre-school

12.1 Using Multi-touch Technology in the Classroom

Modern multi-touch technology offers learners new affordances that include
recognition of a range of touch and multi-touch gestures as well as voice as inputs.
Some studies, though not yet many, have started to analyze these affordances in
relation to students’ mathematical development, in particular to their development
of numerical abilities, or “number sense” (e.g., Baccaglini-Frank and Maracci 2015;
Sinclair and Baccaglini-Frank 2016; Sinclair and Pimm 2015). Though it is still an
elusive notion, different research communities agree that number sense is a nec-
essary condition for learning formal arithmetic at the early elementary level and it is
critical to early algebraic reasoning (English and Mulligan 2013). In particular,
literature from different fields of research converges in suggesting that using fingers
for counting and representing numbers (Brissiaud 1992), but also in more basic
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ways (e.g., Gracia-Bafalluy and Noël 2008), can have a positive effect on the
development of numerical abilities and of number sense. Indeed, neuroscience
research has shown that there is a neurofunctional link between fingers and number
processing. For example, Butterworth (1999) has hypothesized that numerical
representations and processes are supported by several component abilities: the
innate ability to recognize small numerosities without counting (subitizing), fine
motor ability (e.g., finger tapping), and the ability to mentally represent one’s
fingers (finger gnosia). He argues that through our fingers we construct concrete
and abstract representations of number, number words, and number symbols.
Fingers are used in all cultures to represent numerosities, and this is why the author
believes that finger gnosia is intrinsically linked to numerical representations.
Moreover, fingers are always available and they can also be used as an aide in
calculations, and therefore they can work as a bridge between concrete and abstract
representations of the notions of “quantity” and “operations”. In a study by
Penner-Wilger et al. (2007), each component ability was in fact found to be a
significant unique predictor of number system knowledge, which in turn was related
to calculation skill. Noël has obtained consistent results (2005), and she has also
demonstrated how consistent use of fingers positively affects the formation of
number sense and thus also the development of calculation skills (Gracia-Bafalluy
and Noël 2008). Other researchers have suggested that finger-based counting may
facilitate the establishment of number practices (e.g., Sato et al. 2007; Thompson
et al. 2004).

12.1.1 How Does Multi-touch Technology Have
the Potential to Foster the Development of Certain
Aspects of Students’ Numerical Abilities?

Literature from the fields of cognitive psychology, neuroscience, and mathematics
education has pointed out some fundamental aspects of numerical abilities; we have
considered a set of these that can potentially be fostered by multi-touch technology
(Baccaglini-Frank and Maracci 2015). Below we list this set and then provide a
table with hypotheses on software affordances that might support the development
of such aspects (Table 12.1).
Finger tapping (either simultaneously or sequentially) is considered to be a fine
motor ability closely related to finger gnosia and to numerical abilities
(Gracia-Baffaluy and Noël 2008).
Subitizing is the rapid, accurate and confident judgment of the number of items in
small collections ‘at a glance’, without counting. In developmental psychology it is
considered a pre-verbal ability, that is thought to emerge from the ability to allocate
attention over multiple individual items in parallel; and it is considered one of the
neurocognitive “start-up tools” on which numerical abilities are thought to be later
founded (Piazza 2010).
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Table 12.1 Aspects of number abilities associated to multi-touch software affordances that might
support their development

Aspect of number abilities Affordances of multi-touch technology with the potential of
fostering development of the aspect

Finger tapping • Detecting and differentiating rapid sequences of inputs from
different areas of the screen

• Accepting input in the form of sequences of rapid taps to
identify a target numerosity

• Detecting as different inputs the simultaneous presence at a
given time (or small interval of time) of two or more fingers

• Recording different gestures as separate inputs (swipe with 1
finger, swipe with 2 fingers, lasso, pinch, un-pinch/enlarge…)

•Manipulating virtual hands by user (to answer questions) or by
computer (in proposing questions)

• Simulating pianos or string instruments

Subitizing • Showing numerosities on the screen for very brief amounts of
time (possibly even fractions of a second)

• Returning immediate feedback in response to the input given
by the user

• The objects to be considered may appear still and placed
randomly on the screen or in given arrangements (for example
like dots on dice), or they can move all together or one with
respect to the other

• Input may be given not only as typed numbers (in Arabic code
or letters) but also in terms of a number of fingers placed
simultaneously on the screen, as a number of sequential taps
(possibly on items in the stimulus), or as a “capture” gesture

Recognizing parts of a
whole

• Detecting as different inputs the simultaneous presence at a
given time (or small interval of time) of two or more fingers

• Manipulating virtual objects

One-to-one correspondence
(with fingers)

• Detecting as different inputs the simultaneous presence at a
given time (or small interval of time) of two or more fingers

• Accurate timing of the user’s performance

Estimation • Providing stimuli with different (large) numerosities which
may remain on the screen or disappear after a given time

• Providing immediate feedback on the input received as a
product of the estimation process

Counting principles • Adding verbal feedback in the form of verbal symbolic
number representations to sets of fingers placed on the screen,
or to numbers represented in analogical form

• Detecting gestures such as simultaneous taps and sequential
taps, or their combination, and providing different feedback in
response to each of them

• Arranging objects on the screen through dragging
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Recognizing parts of a whole allows to recognize the complementarity of two
numbers with respect to a given one, and therefore to compose and decompose
numbers, for example, “7 plus 8” can be seen in many different ways:
(5 + 2) + (5 + 3) = (5 + 5) + (2 + 3) = 10 + 5 = 15; (5 + 2) + 8 = 5 + (2 + 8) =
5 + 10 = 15; (8 − 1) + 8 = 8 � 2 − 1 = 16 − 1 = 15; etc. (Resnick et al. 1991).
Indeed, a key milestone in children’s numerical development is their understanding
of how numbers can be decomposed: e.g., that the number ‘seven’ is not just a word
in a sequence but a cardinal amount that can be decomposed into smaller numbers
such as 2 and 5 (Fuson 1992).
One-to-one correspondence (with fingers) consists in establishing a one-to-one
correspondence between numerosities in analogical form (e.g., dots on a screen)
and fingers (not necessarily raised and placed simultaneously); though subitizing
may be involved, it is not necessary and the ability lies in establishing correctly the
one-to-one correspondence. Indeed, Margolinas and Wosniak (2012) stress the
importance for developing numerical abilities of considering quantities indepen-
dently of numbers. These processes are intertwined with development of the
so-called “finger symbol sets” (Brissiaud 1992) that is the representation of num-
bers and numbers operations and relations through finger gestures. This ability
seems to be an important stepping-stone for quickly representing numbers with
fingers. Later, building on such ability, adding to analogical representations of
numbers verbal or written symbolic representations of the same numbers may foster
automatization of the linking between sets of fingers and numbers in symbolical
form (Clements 2002; Ladel and Kortenkamp 2013).
Estimation is an ability that has been closely related to numerical abilities (e.g.,
Sowder 1992).
Counting principles consist of five principles considered to be necessary for chil-
dren to master for developing number sense (Gelman and Gallistel 1978). These are
(a) the one-one-principle that relates every single object to exactly one numeral;
(b) the stable-order principle prescribing the correct order of numbers; (c) the
last-word rule that assigns the last said numeral not to the last counted object, but to
the quantity as a whole; (d) the principle of abstraction, according to which objects
of any nature, also abstract, can be counted, and (e) and the order in which the
objects are counted does not matter.

The identification of the aspects of numerical abilities described above, together
with the hypotheses on software affordances that might support their development
led us to a working hypothesis on what we called multi-touch potential:

Multi-touch technology has the potential to foster important aspects of children’s devel-
opment of number-sense, including the ability to use fingers to represent numbers in an
analogical format. We will call this the multi-touch potential. (Baccaglini-Frank and
Maracci 2015, p. 6)
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12.1.2 From an Initial Study to Investigate the Multi-touch
Potential of Two IPad Apps to the Current Study

This hypothesis was explored in an initial study, with the goal of analyzing the
multi-touch potential of two iPad apps for fostering preschoolers’ development of
number-sense, by (1) investigating the schemes that four-year old children develop
in their interactions with the software, and how they use their fingers; (2) and
relating the schemes enacted with the considered aspects of numerical abilities. The
apps are Ladybug Count (LBC) and Fingu (F) (that we will introduce more in detail
in a later section of this chapter) these are environments providing a stimulus (either
dots on the back of a ladybug or fruit in groups floating on the screen) to which the
user responds placing on the screen a number of fingers that corresponds to the
numerosity of the stimulus. We considered the following aspects of numerical
abilities: multiple fingers tapping (simultaneously or sequentially), subitizing
(simple or double), recognizing parts of a whole, one-to-one correspondence,
approximate estimation (of small or large quantities), and the counting principles
(Baccaglini-Frank and Maracci 2015). Students’ interactions with the apps were
analyzed identifying subsets of these aspects that were present in the different
strategies used. A total of 15 different strategies were recognized, and all aspects of
numerical ability appeared in at least two strategies. Interestingly, counting
strategies, or, more in general, verbal symbolic utterances, were used by very few
children. An important finding was confirmation of how the multi-touch potential
could be exploited to foster development of the ability to use fingers to represent
numbers in an analogical format.

One year later, a research-to-practice group from a university in a different city
in northern Italy decided to adopt the same protocol used in the initial study within
an educational project aimed at strengthening preschoolers’ numerical abilities, and
asked for my supervision. In exchange, I was able to obtain consent forms from the
parents of the children in one class to collect videos of the sessions. The 24 children
of this class were in the last year of pre-school (five to six years old), from
socioeconomic backgrounds comparable to those of the children in the initial study.
The two major differences with respect to the initial study were: (1) the age of the
children involved, and (2) the background of the educator. The educator in this
study, who would be introducing the apps and working with the children, was an
in-service pre-school teacher (not in the same school) with a degree in psychology,
was presented as an “expert”, and had planned to intervene during the preschoolers’
activities with the iPad to “help them learn”. On the contrary, in the initial study the
pre-service teacher carrying out the protocol was trained by the research group and
intervened minimally during each play session.

My main objective in analyzing these new data was to compare these children’s
schemes to those of the younger children in the first study, and gain insight into
how they evolved, expecting that such evolution might depend on the interventions
of the educator.
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The research questions I sought to address were:

1. Are there (and if so which) recurrent behaviors in the enactment of the schemes
developed by the two groups of children?

2. Are there differences (if so, which) between the enactments of the schemes
developed by the two groups of children?

2a. If so, what do these differences suggest in terms of aspects of number
abilities developed by the two groups of children?

2b. If so, how might these differences be explained in terms of the interventions
of the educator?

This chapter addresses, in particular, question 2.

12.2 Conceptual Framework and Methodology

I make use of the notion of scheme as developed by Vergnaud (1990) to link
children’s actions to their goals and intentions in a given situation, and to certain
characteristics of the situation itself. This will allow me to relate enactments of
schemes to the aspects of number abilities introduced above, and to identify and
compare the children’s enactments of the schemes developed, and gain insight into
different aspects of numerical abilities developed by the two groups of children. In
this section the introduction of the notion of scheme is followed by a presentation of
the apps used in the protocol accompanied by summaries of the enactments of
schemes developed by four-year olds in the initial study.

12.2.1 The Notion of Scheme

The notion of scheme as developed by Vergnaud (1990, 2009) elaborates on the
Piagetian notion of “scheme”, and characterizes it as an invariant organization of
the activity for a given class of situations. The main components of a scheme are:
the goal and the anticipated outcomes; the rules of action, of gathering information,
of control taking; and the operative invariants (implicit knowledge), including
concepts-in-action, that is concepts that are implicitly considered as pertinent, and
theorems-in-action that is, propositions believed to be true. We will refer to a
(visible) recurring sequence of actions as the “enactment” of a scheme.

Even though all the components of a scheme are important, operational
invariants have a prominent role. They consist of the implicit knowledge which
structures the whole scheme: they drive the identification of the situation and of its
relevant aspects, and allow selecting suitable goals and inferring the rules for
generating appropriate sequences of actions for achieving those goals.
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12.2.2 The Apps Used and the 4-Year-Old Children’s
Enactments of Schemes

The choice of the apps used in the protocol was constrained by limitations during
the design of the protocol in the initial study (Baccaglini-Frank and Maracci 2015).
In particular, we could use only already published, free or very cheap apps, easy for
children to become familiar with, and presenting a strongly structured environment
allowing primarily closed conversing-type interactions (Sedig and Sumner 2006;
Sinclair and Baccaglini-Frank 2016). Within the constraints two multi-touch apps,
which seemed to have some potential for fostering the development of children’s
number sense, were identified. They are: Ladybug Count and Fingu.
Ladybug Count (Finger Mode1): The layout of this app is the top view of a
ladybug sitting on a leaf, and the aim of each playing turn is to make the ladybug
walk off the leaf. This happens when the player places on the screen (in any
position) as many fingers as the dots that are on the ladybug’s back. Given a certain
number, the dots appear on the ladybug’s back always in the same pattern. As each
finger is placed on the screen one of the dots on the ladybug’s back is highlighted
(Fig. 12.1), and the iPad makes a “pop” sound.

When all the dots are highlighted a sound is emitted preceding the announce-
ment of the number of dots that are on the ladybug’s back. At this time the ladybug
walks off the screen and a new one appears. This process repeats as long as the
player wants to play. If the player places more fingers on the screen than the dots on
the ladybug’s back, all the dots become highlighted, but the ladybug does not walk
off the leaf and the sound: “Oops!” is emitted. If the player places on the screen
fewer fingers than the dots on the ladybug’s back, only a number of dots corre-
sponding to the fingers on the screen are highlighted and nothing else happens. This
app will be referred to as LBC.

In the initial study we identified 11 enactments used by the children in LBC.
These were classified into “general” (6) that is enactments of schemes not appar-
ently linked to a “small” or “large” number of dots on the ladybug’s back, and
“specific” (5) ones that were sensitive to the number of dots to “count”. This was
necessary because the children seemed to hold different schemes for a very small
number of dots (1–3) or large numbers of dots (7–10). Moreover, in several cases
the children reacted to the appearance of the ladybug with a large number of dots
through verbal expressions such as: “How many!” “That’s a lot!”. This allowed us
to infer that the two situations identified above were different for them, and thus we
identified different schemes, possibly related to the different aspects of number
sense. For example, the most common enactment of a scheme in the presence of a
small number of dots involved the rapid recognition of the small number of dots,

1There is also another mode, called ‘tap mode’, in which success is reached when the user taps the
screen (sequentially) as many times as the numerosity of the dots on the ladybug’s back. This
mode seems to mostly encourage students to use counting strategies, and to support only to a
limited extent children’s development of number abilities. This is why we chose not to use it.
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apparently through subitizing followed by the placement of the same number of
fingers (in a variety of configurations) on the screen simultaneously. This enactment
did not contain verbal utterances. The most common enactment in the presence of a
large number of dots involved placing all fingers on the screen and then, possibly,
removing fingers one at a time until positive feedback was received from the app.

In terms of the aspects of numerical abilities that are in relation with the schemes
identified for LBC, we identified the following: multiple finger tapping—simulta-
neous (six schemes); multiple finger tapping—sequential (six schemes, but not all
coincident with the six for simultaneous tapping); subitizing (for four schemes);
recognizing parts of a whole (two schemes); the ability to match numbers of fingers
(not necessarily instantaneously) to a number of objects, without counting (seven
schemes); the ability to match numbers of fingers (not necessarily instantaneously)
to a number of objects counting (two schemes); estimation (five schemes); counting
principles (three schemes).
Fingu: The layout of this environment (Barendregt et al. 2012) looks like a room in
which different kinds of floating fruits appear. The objects appear in one group or in
two groups that float independently, but within each group the arrangement of the
objects remains unvaried. The player has to place on the screen, simultaneously, as
many fingers as the objects that are floating within a given amount of time
(Fig. 12.2). If s/he succeeds the iPad emits a sound and shows a few dancing happy
animations. Otherwise, if the number of fingers is incorrect or time runs out, a
different sound is emitted and sad animations appear on the screen. Then the player
can go to the next round, until s/he looses or passes the level. The game provides
statistics on the performance of the player for each level attempted. For an analysis of
cognitive abilities potentially stimulated by this app the reader can refer to pp. 670–
671 of Sinclair and Baccaglini-Frank (2016). This app will be referred to as F.

Fig. 12.1 View of the LBC
screen with a player that set
three fingers on the screen
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In the initial study we identified four enactments used by the children in F. In
this environment, selecting the exact number of fingers and placing them simulta-
neously on the screen within a limited amount of time was a source of difficulties
for most children: indeed, it requires, among other skills, the development of
advanced fine motor abilities. Typically the children’s tendency was to continue to
use the first enactment that seemed to be effective in a few cases, despite possible
successive failures. Four enactments were identified, two of which involved rec-
ognizing the number of objects (be they in a single group or in two groups) without
verbally counting, and trying to place on the screen the corresponding number of
fingers either of a same hand or of two hands, simultaneously. Many children tried
to place their fingers as close as possible to the floating objects, so as to “catch”
them, or to reproduce with their fingers the same spatial arrangement of the floating
objects (enactment 3). Only a few children quickly counted the floating objects
(pointing to them and counting aloud) and then placed a same quantity of fingers on
the screen (enactment 4).

Fig. 12.2 a View of the
screen of F with two groups
of floating fruits in fixed
arrangements; b view of the
screen of F after the player
has set five fingers on the
screen, simultaneously

12 What Schemes Do Preschoolers Develop When Using … 231



In terms of the aspects of numerical abilities that are in relation with the schemes
identified for F, we identified the following: multiple finger tapping—simultaneous
(3 schemes); multiple finger tapping—sequential (1 scheme); subitizing (1 scheme);
recognizing parts of a whole (1 scheme); the ability to match numbers of fingers to a
number of objects, without counting (1 scheme); the ability to match numbers of
fingers to a number of objects counting (1 scheme); counting principles (1 scheme).

The protocol was administered as follows: the 24 children (ages 5 and 6) worked
in groups of five and played 5 minutes a day for 2 weeks with the two iPad apps
under the supervision of the educator, taking turns while the other children in the
group watched. If prompted by the educator, a child from the group could give
advice to the child playing, through verbal or gestural utterances. All activities with
the apps were video-recorded and transcribed. Identification of students’ recurrent
behaviors identified as enactments schemes were flagged, as well as all interven-
tions of the educator. Finally, at the end of her work with the children, I interviewed
the educator in order to have an additional key of interpretation when analyzing the
possible effects of her interventions.

Below we report on two cases that are representative of 20 of the children; then
we report on the non-prototypical case of one of the four other children.

12.3 Results: The Analysis of Two Prototypical Cases
and of One Non-prototypical Case

The schemes enacted by Giovanna and Sara were quite similar to those of most of
the other children in the class. We analyze their development and highlight typical
interventions of the educator. In this section the focus is on the students’ schemes,
while the interventions of the educator will be analyzed in the next section of the
chapter.

12.3.1 Giovanna (Prototypical)

Giovanna (5 years, 3 months) starts her first interaction with LBC very hesitantly,
barely showing the fingers she intends to put on the screen and placing them very
close together. Every time she hesitates (even for only a few seconds) the educator
asks her classmates to “show Giovanna how to do this with her fingers”. After three
iterations of this process, Giovanna immediately looks for hints from her class-
mates, from one in particular praised by the educator, checking the configuration of
fingers he is raising and imitating it. Together with finger configurations, her
classmates also shout out the numbers of dots. Giovanna pretends to count them,
pointing to a few and then repeats the number pronounced by her classmates. The
educator says nothing to stop the classmates from talking, glances at the screen to
check it, and makes comments like:
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Educator: Six! How do you do six with your fingers? Come on!
Educator: Come on, you know how to do nine [with your fingers]!

The educator also highly praises children who “know”, as in the following
example.

[A ladybug with 7 dots on her back appears]

Giovanna: [Counts up the dots pointing with her finger.] Seven [in a whisper].
Educator: Seven! How do you do seven with your fingers, Giovanna? Come on!
Giovanna: [She timidly raises the fingers on a hand and the index and middle

finger of her other hand, imitating the fingers shown by a classmate.]
Educator: Right, very good! See, you know!

These interventions by the educator both in LBC and in F seem to lead Giovanna
to develop two schemes such as the one described in Table 12.2, with the goal of
doing what she thinks the educator (seen as a teacher) wants, and seemingly
identifying two situations in LBC, based on whether she immediately recognizes
the number of dots on the ladybug’s back (1a) or not (1b).

She seems to also develop what we could see as a concept-in-action: every
number pronounced verbally corresponds to a fixed configuration of fingers.

Giovanna seems to inhibit enactments that involve configurations of fingers
other than what she believes to be the right one. In fact, in one episode during her
first playing session, Giovanna sees the dots on the ladybug’s back [there are two
on each wing], and she timidly raises two fingers on each hand fingers (here she
might have used one-to-one correspondence), waiting for feedback. She sees other
children showing four fingers, raised on one hand, and copies their finger config-
uration. The educator says nothing to the other children and simply says “Good!” to
Giovanna when she touches the screen and receives positive feedback. A short time
after, a ladybug with 9 dots appears. Giovanna does not count, but she seems to
over-estimate (here she seems to be using estimation), placing all fingers of both
hands on the screen, a scheme that was frequently enacted also by children in the
initial study. Instead of trying to adjust her fingers (as in schemes identified in the
initial study), for example, by lifting one, she takes her hands off and looks for a
configuration to copy. After these two episodes Giovanna’s behavior can be well
described in light of the schemes we hypothesized above.

In general, when Giovanna cannot remember what she believes to be the
approved finger configuration, she depends on her classmates’ hints, and copies,
seemingly with no control over the answer that she then gives; or, if she cannot

Table 12.2 Two initial
schemes enacted by Giovanna
while interacting with LBC
and F

Two of Giovanna’s schemes: 1a–2–3; 1b–2–3

1. Figure out the number of dots/fruits, to do this either

1a. Recognize the number immediately

1b. Count them up from one

2. Say the number

3. Use the fixed configuration approved by the educator for that
number
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catch a hint quickly, she listens to the number pronounced by the class and counts
up from “one”, raising her fingers one at a time and always in the same order.
Clearly, remembering fixed configurations of fingers associated to a word requires a
lot of (otherwise unnecessary) memory and it could even inhibit the development of
fundamental aspects of numerical abilities: the child can be successful without ever
putting in relation the dots and the fingers raised, other than through a verbal
utterance (when a finger configuration is not shown directly), and without devel-
oping, for example, awareness of part-whole relations.

In F, Giovanna relies entirely on reaching (either by herself or hearing it from
her classmates) a verbal pronunciation of the number of floating fruits from which
she produces the configuration of fingers if she remembers it. She does not count up
her fingers because the game does not give her the time. Her configurations of
fingers do not seem to be directly related to the partitions of the fruits into smaller
sets when there is more than one. For example, when two floating sets of two fruits
appear, she hears a classmate say “four” and puts down the fingers of her right hand
excluding her thumb. The same happens when sets of three and one appear on the
screen. Giovanna seems to rely heavily on her schemes; so much that when possibly
perturbing events occur, the scheme remains unchanged. For example, when four
and one fruits appear at a certain point she hears a classmate say (erroneously)
“four” and she puts down her usual “four” configuration. When three and two fruits
appear a classmate shows three fingers on one hand and two on the other; Giovanna
sees, but she hesitates and then says: “There are five” and places down all her
fingers of a single hand.

Her schemes turn out to be successful in F and Giovanna passes to level II of the
game. Now more than five fruits can appear. The other children no longer have time
to figure out how many fruits are floating around on the screen before they dis-
appear, so Giovanna counts them up each time, starting from “one” and saying the
numbers aloud as she points to each fruit. She appears to not know (at least not
quickly enough) the configurations for any of the quantities above 5, so she either
puts down no fingers or she tries to put down some, frequently less than 5 and loses.

In F her enactments do not seem to change, however in LBC they do. During the
later playing sessions, Giovanna proceeds more and more independently with
respect to what her classmates say, and the form of her gestures change, as well. For
example, she places her fingers on the screen spreading them out on the leaf rather
than bunching them up, like during the initial episodes. During the last session with
LBC Giovanna has learned to generate fixed configurations quickly for quantities
below 5, and for larger quantities she modifies her behavior for figuring out how
many fingers to raise. Interestingly, she never counts up her fingers when she
recognizes the number of dots. These changes can be seen in terms of new schemes
(1a–2a; 1b–2a; 1b–2b), as shown in Table 12.3.

For example, when a ladybug with 8 dots appears, Giovanna counts up the dots
and counts her fingers, starting with “one” as the thumb of her right hand. The
educator gives very positive feedback. The same happens when a ladybug with 10
dots appears, and then when a ladybug with 8 dots appears again. When the next
ladybug appears and it presents, again, 8 dots, Giovanna seems to recognize the
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configuration and remember the configuration for “eight” (as a hand and 3 fingers).
This suggests that she still holds valid the concept-in-action hypothesized earlier.

This can also be seen in how Giovanna seems to privilege schemes 1a–2a and
1b–2a over ones using 2b. For example, when a ladybug with 4 dots appears she
says “four” and in a seemingly automatic way counts up four fingers starting from
her thumb on the right hand, but as soon as she sees the four fingers she changes the
fingers to her fixed configuration for “four”.

The aspects of number abilities that can be related to Giovanna’s most frequently
used schemes, which were found to be similar to those of most children in the class,
are: multiple fingers tapping (simultaneous), subitizing, and use of the three
counting principles (one-to-one correspondence, stable order and cardinality, but
not order irrelevance or abstraction). We note that one-to-one correspondence does
not seem to be directly involved (especially in the early enactments where it would
have been important), because the figure configuration is always mediated by
pronunciation of a verbal-symbolic numeral that Giovanna directly associates (ei-
ther because she remembers it, or because she imitates a classmate, or because she
carries out a new counting process) to it.

12.3.2 Sara (Prototypical)

Although Sara (5 years, 5 months) is not in Giovanna’s group, with her the edu-
cator keeps on intervening in the same way as with Giovanna, proposing to count
the dots or fingers immediately at the smallest hesitation, and praising her
emphatically whenever she does count. During her initial interactions both with
LBC and F, Sara is less insecure than Giovanna: for quantities of 1, 2, 3 or 4 she
simply says aloud the number corresponding to the quantity and raises a known
configuration of fingers. Sara uses constant configurations for “one”, “two” and
“three”, while for “four” she seems to flexibly change the fingers raised and placed
on the screen. The educator, in these cases, simply praises Sara for getting positive
feedback from the software.

Table 12.3 Schemes enacted
by Giovanna while interacting
with LBC at the end of the
administration of the protocol

Giovanna’s final LBC schemes: 1a–2a; 1b–2a; 1b–2b

1. Figure out the number of dots, to do this either

1a. Recognize the number immediately (if below five) and
say it out loud

1b. (if 1a fails) count them up from one

2. Raise fingers by

2a. Using the fixed configuration of fingers, when known,
corresponding to the number pronounced

2b. Otherwise counting up fingers (in a constant order)
starting from one
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Both for LBC and F the schemes developed by Sara seem to be very similar to
Giovanna’s (see Table 12.4).

Interestingly, if Sara has reached 2a in the enactment of her scheme, she still
proceeds to step 3, that is, she counts up her raised fingers, seemingly to please the
educator. Indeed, although she shows a bit more flexibility than Giovanna in
making appropriate finger configurations for quantities up to 4, she, too, seems to be
conditioned by the educator’s insistence on counting. This results in episodes such
as the following. In LBC a ladybug with 4 dots appears:

Sara: Four [and raises two fingers (index and middle) on both hands
immediately]. One, two, three, four [she counts the fingers on one hand
starting from the thumb].

Educator: Very good!
Sara: [She switches back to her initial configuration of 2 and 2 fingers and

places them on the screen, receiving positive feedback from LBC].
Educator: Oh, that’s OK, too. Good job!

In this case Sara seems to have recognized the number of dots (1a) and associate
correctly a known finger configuration, without counting (2a); so it is surprising that
she then counts to four on the fingers of her other hand, to then go back to the
configuration with two hands to interact with the app.My conjecture is that she enacts
the counting just to please the educator, having picked up on her “counting cues”.

All the counting in the enactment of Sara’s schemes is too time consuming to be
effective in F, so Sara receives negative feedback almost every time. She soon asks
to stop playing and to give another classmate a turn. The educator satisfies her
request and calls a classmate to play.

The aspects of number abilities that can be related to Sara’s most frequently used
schemes, are very similar to Giovanna’s and to the ones of most children (20 out of
24) in the class; they are: multiple fingers tapping (simultaneous), subitizing, and
use of the three counting principles (one-to-one correspondence, stable order and
cardinality, but not order irrelevance or abstraction). We note that one-to-one
correspondence, as before, does not seem to be directly involved, however Sara

Table 12.4 Schemes enacted
by Sara

Sara’s final LBC schemes: 1a–2a; 1b–2a; 1b–2b

1. Figure out the number of dots/fruits, to do this either

1a. Recognize the number immediately (if below five) and
say it out loud

1b. (If 1a fails) count them up from one, aloud, pointing to
each

2. Raise fingers by

2a. Raising any known configuration of fingers corresponding
to the number pronounced

2b. Otherwise counting up fingers (in a constant order)
starting from one

3. In any case, count up fingers before placing any on the screen
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seems to be aware of more than one finger configuration for different numbers
pronounced verbally. This may be an effect of use of one-to-one correspondence
between fingers and objects in experiences prior to her interaction with the apps.

Four (of the 24) children enact schemes that seem quite different from the ones
used by the majority of students. Indeed these simply refuse to count, possibly
because they have not sufficiently mastered the counting principles. Instead, they
either imitate the configurations of fingers shown by their classmates, when they
were able to, and failed otherwise, or they try to use enactments similar to those of
children in the initial study.

12.3.3 Amanda (Non-prototypical)

One of these four students is Amanda (5 years, 2 months), who never says numbers
aloud, but puts down precise numbers of fingers, in a variety of configurations, for
quantities up to 4, both in LBC and in F, while for larger numbers she seems to
estimate, quickly putting down a hand of fingers and some additional ones, a
strategy used by various students in the initial study, as well; or placing all her
fingers on the screen and lifting one at a time until she receives positive feedback
from the app. This happens repeatedly in LBC for ladybugs with 7 or more dots on
their backs. Each time Amanda receives negative feedback from the app and starts
adjusting her fingers, the educator intervenes with comments like:

Educator: Remember how [another student who counted the dots and then his
fingers] did it? Can you do that, too?

Educator: Sweety, you need to count…look at the dots. How many are there?

This sort of comment contains reference to a counting strategy, either implicitly
as part of another child’s enactment, or explicitly. These interventions would
interrupt the enactment the Amanda’s schemes, making her attempts look like a
failure, which would trigger another “counting cue” from the educator, and the
vicious cycle would continue, breaking only when the child would give into
counting, or somehow be able to place the correct number of fingers on the screen.

While playing F, Amanda seems to be enacting different schemes: when two sets
of fruits appear and are small (one, two, or three fruits) she tries to place on the
screen the number of fingers, on each hand, corresponding to each floating set; or
when up to four fruits appear, not necessarily in a same set, she puts down the
corresponding number of fingers of her right hand. Amanda responds rather
quickly, but frequently receives negative feedback, because she does not seem to
double check her raised fingers before placing them on the screen. Sometimes the
negative feedback is given by the app also because she does not wait to place down
all fingers on the screen simultaneously. In these cases the educator makes state-
ments like the following.
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Educator: Slow down, you need to check your fingers!
Educator: Careful! Your fingers need to go down together!

By the end of the playing sessions Amanda has developed use of fixed con-
figurations, like Giovanna, for small numbers (below 5); and recognizes fixed
configurations of dots in LBC for larger numerosities (7, 8 and 10), stating the
number aloud, verbally, but without reproducing the numerosity on her hands.

12.4 Results: What Is Behind the Interventions
of the Educator?

From the representative excerpts above, and thorough analysis of the whole data
set, it is possible to make more general inferences about characteristics of the
educator’s behavior. Her interventions turn out to be quite explicit about what the
children should (or should not) be doing, and most of her interventions are triggered
by the student’s receiving negative feedback from the app. She tends to not take the
time to discuss the children’s schemes or enactments, neither collectively, nor
individually. Moreover, although she accepts different finger configurations for a
same quantity, she does not explicitly comment on how a same quantity can be
represented through different finger configurations, for example, putting in
one-to-one correspondence two different quantities of fingers for a given quantity of
dots or fruits. The only sharing that the educator fosters is in cases in which the
child playing appears to be hesitant: she calls on other children to “show your
classmate how to do it”. These characteristics are not at all aligned with those I had
expected.

The educator did not seem to be trying to “access students’ thinking”, focusing
on processes that might have led the children to the development of a certain
strategy; instead she would “assess their thinking”, in Crespo’s words (2000), and
act on the end product, the feedback received from the apps. I had expected that her
guidance would have taken into consideration both successful and non-successful
(in terms of receiving positive feedback from the apps) enactments, and that she
would use these to foster students’ sharing of their strategies, and therefore their
talking about numbers in verbal and analogical form, perception of numerosity, or
representation of numerosity through fingers.

As for the enactments the educator chose to foster, I was curious why she had
valued so much, on the one hand, counting, and on the other hand immediate
association of finger configurations to verbal-symbolic numerals. More specifically,
I was curious why she seemed to be pushing children in two directions (she may
have been seeing 2 as an “evolution” of 1). The two directions were: (1) counting
the dots or fruits, counting the fingers, and placing the counted fingers on the screen
simultaneously, and (2) counting the dots or fruits and immediately making a finger
configuration that corresponded to the verbal-symbolic numeral pronounced. From
the follow-up interview it became clear that indeed she did have a particular
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procedure in mind that she thought was best (and should be accomplished quickly),
because applicable to all the situations generated by the apps. Below are various
claims about this that she made in the interview.

Educator: You need to count up the dots or fruits and then count up your fingers,
quickly, and put them down together. […] Once a kid knows how to do
a certain number with his fingers, he doesn’t have to count up his
fingers any more, and he can use whatever way he wants. […] which
fingers they raise is not important, but they should do it quickly and
there are easier ways of doing it. […] This is how they can always
experience success.

12.5 Answers to the Research Questions and Concluding
Remarks

Once the schemes of the 24 students in the second study were identified, I com-
pared their enactments to those of the children in the initial study. This comparison
showed that the 24 children had behaviors similar to those of the younger children
mostly in the first encounters with the apps. By the second activity session with the
educator, most of the 24 children’s schemes had started to transform into ones like
Giovanna and Sara’s.

There were significant differences between the enactments of the schemes
developed by the two groups of children. The most prominent are: (1) the heavy
reliance on (or presence of) counting in the schemes of the 24 students, while such
presence was quite limited in the schemes of the students in the initial study (only 4
of the 15 schemes included counting), and (2) most students in the second study
seemed to rely on memorized finger configurations corresponding to each
verbal-symbolic numeral (with no apparent reference to one-to-one correspondence
between the fingers and other analogical representations of the number). This
behavior was not found in students of the initial study.

To me it was particularly surprising to see how almost all the students in the
second study had incorporated counting processes into their schemes, especially
because the counting processes always started from “one”. Indeed knowing how to
count from “one” is important, and possibly through these activities the children
might have learned to count faster. However, it is not clear how much this enhances
other numerical abilities (including those involving other counting strategies) in
general: achieving mastery in counting does not simply mean learning to do it
faster! For example, it is also important to learn to count on from a number greater
than “one”, to count backwards, and to learn to replace counting with more
effective strategies (e.g., Gray and Tall 1994); but these strategies were not within
the multi-touch potential of the apps considered.
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These differences can further be analyzed in terms of aspects of number abilities
they involve, and thus potentially strengthened in the two groups of children; these
are summarized in Table 12.5.

Analyses leading to the construction of this table suggest that the schemes
developed by the children in the initial study exploited the multi-touch potential of
the apps, used to a greater extent than did the schemes that the children in the
second study were led to develop. In particular, the abilities to recognize parts of a
whole, estimate, or create one-to-one correspondences between fingers and sets of
objects, did not seem to be promoted in the group of the 24 children.

Although other factors may have contributed (e.g., the age of the students, or
previous classroom experiences), a factor that seemed to be quite influential in
determining these differences is how the educator intervened. Indeed, the 24 chil-
dren initially enacted schemes quite similar to those of the children in the first study,
however the educator seemed to vigorously promote counting and/or use of known
finger configurations, influencing the children’s strategies. Her interventions were
mostly consistent with the claims she made during the follow-up interview. Her
main goal was to help children experience success in the apps and, with respect to

Table 12.5 Relationship between students’ enactments of schemes and aspects of number
abilities

Aspect of number sense involved
(and no. of schemes)—initial
study

Aspect of number sense involved
in most common schemes—
second study

Finger tapping

Simultaneous Yes (9) Yes

Sequential Yes (7) No

Subitizing Yes (5) Yes

Recognizing parts
of a whole

Yes (3) No

One-to-one correspondence (with fingers)

Not mediated by
verbal-symbolic
numerals

Yes (8) No

Mediated by
verbal-symbolic
numerals

Yes (3) Yes (cases like Sara)

Estimation Yes (5) No

Counting principles

One-one Yes (4) Yes

Stable order Yes (4) Yes

Cardinality Yes (4) Yes

Abstraction No No

Order irrelevance Yes (4) No
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strengthening numerical abilities she intended to help children learn to count and to
represent numbers on their fingers. She did not mention, for example, recognition of
part-whole relationships, subitizing, estimating, or even counting on strategies
(indeed children’s counting always started from “one”).

In my opinion, the educator’s short-term goal of helping the children experience
success, and her narrow-sighted view of how to obtain this while fostering the
development of numerical abilities, actually limited such development (at least
during this experience) for many children. In most cases the children seemed to
develop schemes like those of Sara and Giovanna, whose enactments included
trying to memorize fixed configurations of fingers corresponding to verbal numbers
(this seemed to be a common interpretation of the children of the educator’s
comments), or simply copying. The other abilities the educator explicitly intended
to promote were to represent a same number in different ways (with fingers), and to
count. She failed to promote the former for many children, possibly because she did
not take the time to discuss any of the situations in which children used different
representations of a same number.

This brings me to a consideration that goes beyond the scope of this study, but that
is closely related to the findings. What might have happened if this educator (and the
children she worked with) used a more open digital environment where many dif-
ferent tasks can be proposed and a greater variety of solutions can be given?

For example, let us consider TouchCounts, described in Sinclair (2018) (this
book), by Sinclair and Jackiw (2011), a very interesting app which exploits the
potential of multi-touch screens in innovative ways, offering a wide range of
possible interactions (Sinclair and Baccaglini-Frank 2016), especially manipulative
interactions (Sedig and Sumner 2006). By encouraging the user to associate specific
gestures to numerical manipulation, children’s meaning making is promoted
(Goldin-Meadow 2004). TouchCounts seems to have a very high multi-touch
potential. In particular, it recognizes a “pinch” gesture to add together sets of
floating herds (represented in analogical and symbolical form), generating new
larger herds. Such gesture can be seen to embody the fundamental metaphor of
addition “collecting together” (Lakoff and Núñez 2000, in Sinclair and Sedaghat
Jou 2013), and its symmetry incorporates the commutate property of addition.
Another interesting gesture that one of the sub-environments of the software rec-
ognizes is a 5-finger-placement together with sequences of one-finger-taps that
generate sets of 5 + 1 + 1 + 1 + 1… elements. This gesture is associated to the idea
of constructing numbers (above 5) as successors of one another; to perform it the
child can strengthen the 5-fingers to 5-objects correspondence and finger tapping.

Though with a seemingly very high potential with respect to fostering many
aspects of children’s numerical abilities, the app has no “built in” assignments, so
when it is opened the user finds him/herself in a completely “open” situation. Of
course very insightful and rich tasks can be designed and assigned (e.g., Sinclair and
Zaskis 2017). However an educator such as the one in this study might find it difficult
to come up with any. Further, even if s/he were given the tasks to assign the students
in advance, an expectation to foster rigid interactions making use of a single “good”
strategy would inhibit exploitation of the software’s multi-touch potential.

12 What Schemes Do Preschoolers Develop When Using … 241



Finally, I believe that recognizing and analyzing the role played by the educator
in contexts where learning is fostered through software also has important impli-
cations for teacher education, as discussed also in Ginsburg et al. (2018). Indeed,
such a finding can be used to help teachers (both pre-service and in-service) become
more aware of how difficult it is to “hear what children are saying”, an ability that
“transcends disposition, aural acuity, and knowledge, although it also depends on
all of these” (Ball 1993, p. 388). Teacher education, possibly through collective
analysis of case studies (e.g., Levin 2002), should foster such ability to hear and
respectfully interpret students’ contributions, a kind of knowledge for teaching, that
Ribeiro et al. (2016) call interpretative knowledge.
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Chapter 13
Interactive Mathematics Storybooks
and Their Friends

Herbert P. Ginsburg, Colleen Uscianowski and Ma. Victoria Almeda

Abstract Little is yet known about Interactive Mathematics Storybooks
(IMS) enveloped in a digital surround of supporting materials—their “Friends”—
designed to delight and educate young children as well as those who read with
them. Clearly different from paper books and physical manipulatives, interactive
books entail a special set of affordances that can promote young children’s math-
ematics learning, and the surrounding Friends can help the adult understand the
mathematics and the child. This chapter relies to the extent possible on existing
research and theory, but goes beyond current knowledge to speculate, imagine, and
dream about the potential of IMS for helping young children to learn mathematics
at home. The chapter uses what is known to imagine what could be.

Keywords Interactive mathematics storybooks � Learning mathematics
Reading � Supporting parents � Technology

13.1 The Context

13.1.1 Early Storybook Reading

Before describing these potentially powerful Interactive Mathematics Storybooks
(IMS) and Friends, we want to situate them in the context of parents’ early book
reading. Everyday experience suggests that reading can be a magical opportunity
for parent and child to bond as they engage in a warm and protected exploration of
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the everyday world and the world of fantasy. Books can immerse children’s minds
in nature, trucks and buses, imaginary characters, and exciting, scary, or funny
narratives. Books allow children—and adults—to experience the constructed world
of literature, language, and art. We read to children partly to teach them to love
reading itself. This goal is an expression of our values.

In developing mathematics storybooks and related materials, we in the mathe-
matics education community should always keep in mind the social-emotional and
broader literacy context (Aram and Aviram 2009). We should not destroy literacy
and love of reading by creating fiction or non-fiction mathematics books that are
didactic, boring, dull and pedestrian.

13.1.2 Benefits of Reading with Children

One seldom-mentioned benefit of reading is an opportunity for parents to learn
about their children’s worlds. Young children (ages two to six) are often described
as egocentric: they see the world from a limited perspective (Piaget 1955). But
adults can be equally egocentric. They often do not understand what the world
looks like from a child’s point of view. During the course of reading, a parent may
learn that his daughter interprets events differently than he; that she sees things in
the story that he did not; that she does not see things that he does; and that she
learns from the story in ways he did not expect. Another benefit of reading lies in
the opportunity for a parent to converse and bond with the child, creating a warm
environment that can support early social-emotional development (Aram and
Aviram 2009). For instance, elaborating on the emotions of a character in the story
has been shown to encourage children’s ability to reflect on their own emotional
experiences (Laible 2004). Thus, reading can provide both a window into the young
child’s mind and emotions, as well as ideas about how to nurture them.

Children, like adults, can learn a great deal from books. Children learn content: a
truck is different from a car and Peter Pan can fly. The more children read, the more
they understand the world around them, and conversely, as their knowledge of the
world grows, they become better readers. A child who has never encountered a
giraffe will learn about its long neck and funny ears from the story’s illustrations.
The next time the child visits the zoo and meets a giraffe up close, she will gain
information about its height, gait, and eating habits. This knowledge will help the
child better understand the next story she reads about giraffes.

As the adult turns the pages and points to the words being read aloud, children
learn about the world of print—a book has pages that are read in order and letters
that indicate words. These words are read from left to right and from top to bottom,
in most languages. They learn that the sounds of words can rhyme and be silly. Not
only are words made of sounds, but they’re also made of letters that have special
names and shapes. They learn that words have the essential function of describing,
telling a story, and explaining.
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As children listen to the story unfold, they learn new words that they have not
heard before. In fact, children hear richer and more varied language from story-
books than from everyday conversations (Montag et al. 2015) or from talk during
toy play, dressing, and meal times (Hoff-Ginsberg 1991). Storybooks written for
young children often have repeated text: I’ll huff and I’ll puff and I’ll blow your
house in. Children hear the same text over and over again, soon predicting what the
big bad wolf is about to say, until huff and puff become part of the child’s own
vocabulary. Parents also help children to learn new words. They point out and name
parts of the illustrations and use the language from the text when asking questions
about the story. Reading helps children become literate in the narrow and broad
senses.

The words that adults use when talking with children influence how children
learn and think. Building early mathematics vocabulary not only sharpens under-
standing of numbers, but also provides the opportunity and means to communicate
mathematical thinking. Children whose parents use spatial language, such as
describing the size and shape of objects, use more spatial words themselves (Pruden
et al. 2011). In turn, these children solve spatial puzzles better than children whose
parents provide little spatial input. Storybooks, full of rich text and interesting
illustrations, are a convenient way for adults to expose children to words and ideas
that may not otherwise be present in their environment. Most storybooks can also
introduce mathematics ideas using a narrative appropriate for young children,
providing a tool for facilitating early mathematics communication. Parents can
attend to the mathematics language on each page of the book (e.g., words about
number, size, and shape), and encourage young children to use these words when
explaining their thinking.

13.1.3 Methods of Reading with Children

Given the benefits linked to reading, research also suggests productive methods for
adult reading with children. All too often, the adult simply reads while the child
passively listens. Dialogic reading involves a shift in these roles in that the adult
encourages the child to contribute to the reading of the story. The goal is to
stimulate the child’s thinking, engagement, and language. For example, the adult
can engage the child in conversation with open-ended prompts (e.g., “Tell me
what’s happening in this picture.”), which prod the child to describe interesting and
important ideas in the book (Lonigan and Whitehurst 1998). Dialogic reading has
been extremely effective in achieving its goals (LaCour et al. 2013; Sim et al.
2014).

The level of complexity in parents’ language has also been studied in the context
of storybook reading. Research indicates that parent’s use of higher, more abstract
levels of language is positively associated with children’s later abstract language
abilities, corroborating the connection between abstract language and early literacy
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skills (van Kleeck et al. 1997). For example, a question such as “How did you know
that?” produces more thought and language than the question, “What is that?”
However, little research has studied how adults use levels of abstraction in story-
book reading to support children’s mathematical thinking in particular.

13.1.4 Storybooks for Mathematics Learning

We propose that books of several different kinds may help young children learn
about mathematics. The first two types are well known. Some storybooks, with
illustrations, are explicitly designed to teach mathematics. Mathematics storybooks
are fictions that involve mathematical ideas. For example, the Elevator Magic
(Murphy 1997) story revolves around figuring out how to subtract in order to make
an elevator stop at different floors for different purposes.

A second kind of explicit mathematics picture book has minimal stories, and is
mostly didactic non-fiction, as in the case of counting books. Books of this type
tend not to offer an overall narrative, and instead to focus attention on specific
mathematical task like counting collections of objects or naming and describing
simple shapes.

A third type of storybook does not aim to teach mathematics explicitly but
contains important mathematical ideas naturally embedded within the narrative
(Van den Heuvel-Panhuizen et al. 2009). Goldilocks sees that Baby Bear’s bed is
the smallest, and that Mama’s bed is bigger than Baby’s but smaller than Papa’s.
The series of beds and bears are in one-to-one correspondence. As bears vary in size
so do beds (and amounts of porridge too).

The first and third types of storybook incorporate the mathematics in the nar-
rative, providing a context for children to connect the story to their everyday lives.
The plot reveals mathematics problems that children can solve alongside the
characters. In this way, mathematics problem solving becomes not only meaningful
to advance the story, but fun and exciting. For example, in Rooster is Off to See the
World (Carle 2013), children first learn Rooster’s motivation for taking a trip and
how he feels lonely before inviting two cats to join him. More animals join the
group as his journey continues. The story-based context invites children to explore
the increase in number of animals, predict how many and which type of animal they
will encounter next, and decide if Rooster’s loneliness is abated by sharing his
journey with his new friends.

13.1.5 Analyzing Mathematics Storybooks

Although some books may promote mathematics learning (Van den
Heuvel-Panhuizen et al. 2016), others may not. Indeed, books may convey mis-
leading, confusing, or incorrect mathematics. One page from Five Little Monkeys
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Bake a Birthday Cake (Christelow 2005) shows two monkeys holding eggs for the
recipe while saying, “I have 2 eggs!” although each is holding three eggs. The
disparity between the number shown in the illustration and the number written in
the text can disrupt young children’s developing understanding of quantity.
Creating and reading high quality books should be the goal. To realize this goal, we
created a system to evaluate and select picture books that have both literary and
mathematical merit, based on both our observations of parents reading storybooks
and on similar evaluation systems (Austin 1998; Hellwig et al. 2000; Hunsader
2004). We start with three broad questions: (1) What kind of story is this and how
well is the story told? (2) How much and what kind of mathematics is presented in
the text? and (3) How accurately is the mathematics represented in the text and
illustrations?

The first question deals with the literary aspects of the picture book. Although
our focus is mathematical picture books, a high quality story should stand on its
own as a piece of literature. To choose stories with literary merit, we look for an
interesting plot, relatable characters, and attractive illustrations. Children should
find wonder in the story and want to turn the page to find out what happens next.
The adult, too, should choose intriguing stories since they will be called upon to
read favorite books time and time again.

The second question begins to tackle the mathematics aspects of the story and
helps the evaluator to quantify the types of mathematics present in the picture book.
Does the book primarily deal with number, shape, measurement, or another
mathematics domain? If this is a number book, does the story contain ideas about
cardinality, computation, or comparing sets? How many examples of mathematical
symbols are shown in the text and illustrations? Answering these questions allows
us to determine roughly how much of the story is mathematical in nature.

We consider the third question to be the most pertinent in determining whether
the picture book presents a high quality mathematics story that should be read with
children versus a poorly presented mathematics story that should be avoided
altogether. Here we examine whether the mathematics is accurate, whether the
mathematics content in the text closely aligns with how it is portrayed in the
corresponding illustrations, and whether the story is likely to advance children’s
understanding of mathematics.

In our analysis of picture books, we have discovered that many books, even
those not explicitly written with the intention to teach mathematics, implicitly
contain many mathematics concepts. Yet our observations suggest that many par-
ents fail to realize that the story contains fundamental mathematical ideas.
Therefore, we have created guides to help parents first notice the mathematics in the
story, and then ask open-ended questions that support their children’s under-
standing of the mathematical content. Our reading guides come in two forms: First,
specific guides that explain the mathematics in individual picture books and offer
suggested questions to ask while reading. The other, a broader guide, lists general
tips and questions that can be modified for a variety of mathematics picture books.
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13.1.6 The Benefits and Limitations of Interactive
Storybooks

Stories presented electronically on tablet devices are increasingly common in
homes and schools, with 72.5% of middle-income families reporting the reading of
electronic books with their two to six-year old children (Vaala and Takenchi 2012).
IMS range in their complexity, with little uniformity in format (Guernsey et al.
2012). While some IMS contain few interactive elements, others have many digital
affordances that make them quite unlike print books. Unfortunately, research on
IMS is limited, probably because they are so novel. However, findings are begin-
ning to emerge that describe the benefits and limitations of electronic storybooks
that were not designed to teach mathematics. Much of this literature complements
work on interactive games and software presented at ICME-13 in TSG 1, such as
Sinclair’s work on dynamic geometry (Sinclair 2018) and multi-touch apps fos-
tering numeracy, Fletcher and Ginsburg’s (2016) work on symmetry software,
Baccaglini-Frank’s (2018) work on students and teachers using multi-touch apps in
pre-school, and Nivens and Geiken’s (2016) work on computer science-based
games.

We already know that print books can bolster children’s literacy skills (Bus et al.
1995), such as their knowledge of word sounds and meanings, so the question is
whether electronic storybooks can provide similar or even greater advantages.
Electronic storybooks include an assortment of features, such as animation, sound
effects, embedded games, and oral narration. These affordances may be better at
attracting and maintaining children’s attention than print books, leading to
improved reading abilities over time. Animation, in particular, may help improve
children’s reading comprehension and vocabulary. Moving images have the
potential to draw the reader’s attention to particular aspects of the scene and
highlight relevant parts of the illustration, while static images sit motionless on the
page (Bus et al. 2015). Verhallen et al. (2006) presented five-year-old Dutch
children at risk for language delay with either an animated or static electronic
storybook. Over the course of four reading sessions, children who read the
enhanced book understood more of the story and recalled a greater number of
vocabulary words than children who read the static book. According to the cog-
nitive theory of multimedia learning (Mayer 2005), the animation in electronic
storybooks may be better suited than picture books to support children’s ability to
make a direct connection between verbal and visual information presented in the
story.

Like animation, sound effects can support story comprehension by clarifying the
meaning of unknown words. Hearing a crowd cheer as the word is narrated helps
the child connect the word with its meaning. However, not all children benefit from
added sounds and music. For example, children with severe language impairments
learned more vocabulary words when reading a book without accompanying
sounds and music (Smeets et al. 2014). These sounds may create noise that can
hinder learning in children who struggle to perceive speech. While sounds and

250 H. P. Ginsburg et al.



music can inhibit processing oral text and impede learning in certain populations,
those without language delays may still benefit from the simultaneous presentation
of text and sound. Bus et al. (2015) suggest that the animation and sound effects
should connect closely to the story to prevent cognitive overload. When children
simultaneously attend to both the plot of the story and various disparate electronic
features, it can hinder their understanding of the story.

Studies testing the effects of games and other “hotspots” on learning have
yielded both positive and negative results. Moody et al. (2010) observed
adult-guided reading sessions with both print and electronic storybooks. Their
results suggest that children exhibit greater levels of persistence when reading the
electronic storybook rather than print storybooks. However, other studies have
found that game-like features embedded in the story can distract from compre-
hension and lead to incorrect recall of the plot (Courage et al. 2015; Trushell et al.
2003).

In addition to the specific features of electronic storybooks, researchers have
studied the role that adults play in shared reading with digital devices (Chiong et al.
2012; Lauricella et al. 2014; Robb 2010). Unlike print books, many electronic
books have a feature that narrates the text aloud. The device assumes the respon-
sibility for reading the text and controlling the pace of the story. The parent then
assumes a new role in mediating the relationship between the story and the child,
although it is not clear how the parent can best support the child’s learning amid
multimedia features such as sound and animation. Some research suggests that
interactive books can increase parent involvement in reading, but are otherwise
similar to paper books (Lauricella et al. 2014). Robb (2010) found that parents play
an important role in guiding children’s understanding of the story, but only when
reading electronic books with fewer digital features. Chiong et al. (2012) recom-
mend that designers create electronic storybooks that allow parents to customize the
settings to give them greater control over the shared reading experience with their
children.

We still have a great deal to learn, particularly about designing IMS to promote
learning; about effective methods for reading IMS to children; about parents’
understanding of IMS and attitudes towards them; about what children can learn
from IMS; about the surrounding Friends that can support and extend parents’
reading of IMS and children’s learning from them; and about evaluating IMS
quality.

13.2 Monster Music Factory

To illustrate the potential and limitations of IMS, we next present a description and
analysis of a carefully designed interactive storybook, The Monster Music Factory,
along with its surround, digital and non-digital (the Friends). The goal of the story
and supporting material is to promote children’s meaningful mathematics learning
as well as parents’ understanding of it. The target audience is children in the three to
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five-year old range, especially low-income, minority children, who often receive
inferior education, at least in the U.S. (Ginsburg et al. 2008).

Monster Music Factory (Ginsburg et al. 2016), operating on a touch screen
device, tells the story of several monsters engaged in determining the number of
instruments—drums, trumpets, kazoos, and ukuleles—needed for a concert to be
performed by a famous band, the Whirling Wailers. Each “page” of the storybook is
like a scene in a play. The page presents various actions of the characters, not just
static illustrations with text, and also gives the child the opportunity to interact with
the characters and objects in the story.

In the first scene (see Fig. 13.1), the monsters (Oona with one eye, Marluk with
two and Tigga with three) learn from the adult-like Zoller (with eye-glasses) that
their task is to fill boxes with specified numbers of drums. If there are 4 drums on
the screen, the monsters must put them in the numeral 4-box. The monsters can also
check their response by touching the box, whereupon the drums pop up long
enough to be counted.

At the beginning of each subsequent scene, one of the monsters uses a sensible
strategy to solve a problem that the story presents. For example, in the second
scene, after four tambourines emerge onto a conveyor belt, Oona rashly proclaims
that there are three (see Fig. 13.2), but Tigga admonishes her: “Not so fast, Oona.
Let’s count them.” Tigga then uses the strategy of touching each tambourine very
carefully, saying, “1, 2, 3…4! There are four tambourines altogether.” Next Oona
says, “Whoops, my bad. I should have counted.”

The child is then asked to push the correct number on the machine so that the
4-box can arrive to receive the corresponding number of tambourines. If the child
gets the answer wrong, Tigga says that because there are four tambourines, the
4-button needs to be touched. When the child does so, the 4-box appears and the

Fig. 13.1 The factory
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tambourines go into it. What if the child cannot read the numeral 4? The parent can
help, in this case by reading the numeral for the child.

Then Tigga says, “Let’s try it again,” whereupon 3 tambourines appear on the
conveyor belt. If the child touches the tambourines, each shakes, makes a tam-
bourine sound, lights up, and stays lit as other tambourines are touched. If the child
presses the wrong button, Marluk says, “Let’s count together. One, two…oh…
three. It should be three.” After the child presses the correct number, a 3-box pops
up and the tambourines fly into it. After this exchange, the child has a chance to
solve several more problems of the same type.

The third scene involves trumpets, appearing as a visual mess in which some
trumpets obscure other trumpets behind them. The suggested method of solution is
to carefully push each trumpet aside into a line. The fourth scene involves
“subitizing” kazoos—that is learning to see the number when objects appear
quickly and then disappear into a box. Here strategy is not an issue: children need to
develop the perceptual skill of subitizing through practice with the problems pre-
sented in this scene (Clements 1999). This experience will eventually help the child
to see small numbers up to about 5. The fifth scene introduces numbers between
5 and 10. Here the method of solution is to group by five and then count on to get
the correct number. The next scene involves lining up the numerals in order, from 1
to 10, after which, you will be happy to learn, the monsters get to attend the concert
and hear original music about numbers.

Several principles and goals guided our design of Monster Music Factory. First,
we wanted to create an enjoyable, funny and well-written story. Monsters are a big
hit with young children; the artwork of the book is attractive; and the book ends
with perky music during the concluding concert. Literacy and artistic quality were
our first criteria.

Fig. 13.2 Tambourines
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Second, we wanted to present children with challenging problems appropriate
for their age level. Using the research literature as a guide, we decided that the skills
and concepts of enumeration are fundamental and challenging for young children
(Gelman and Gallistel 1986). Many adults seem to be unaware of these concepts or
of the need to teach them. The same seems to be true of at least some developers
who create children’s apps and storybooks, both paper and interactive. Moreover,
the research literature identifies components of enumeration that appear in a
developmental progression (Gelman and Gallistel 1986). We therefore arranged the
scenes—that is, the action and interaction involving each component—to mirror
this progression. For example, the first challenge involves counting carefully by
ones, the second counting by moving aside, the third subitizing and fourth grouping
by 5 and counting on to get the number. Having used the research literature to
determine the content of each scene, we then wrote a narrative that we hoped would
present these ideas in as engaging a manner as possible. Our informal observations
suggest that this IMS attracts the attention and interest of young children, roughly
from 3 to 5 years of age. The younger children can understand and engage with the
relatively easy scenes, and the older children with the more difficult material.

Third, we wanted each scene to offer guidance in use of appropriate methods of
solution and understanding the mathematical ideas. Consequently, each scene first
shows characters demonstrating the relevant strategies and talking about them, and
second, encourages the child’s use of strategies to solve the relevant problems.

Fourth, we wanted the visual and sound design to reflect and reinforce the
various mathematical ideas. For example, in the scene involving four tambourines,
Tigga touches each very carefully in sequence. When he touches the first, saying
“one,” it glows, then makes a rattling sound, and continues to glow. The same
occurs for the third and fourth tambourines, until at the end all four glow. When
Tigga then says, “There are four tambourines altogether,” they shake in unison and
make the rattling sound.

This sequence of events was carefully designed to show that when the first and
second objects are touched, they are a set, which expands when the third object and
then the fourth are touched. We wanted to avoid the common misunderstanding that
the second object itself is 2 (Fuson et al. 1985). It is not: it is a member of the set of
two. Also, at the end, Tigga’s statement, “There are four tambourines altogether,”
emphasizes that the tambourines form a set with the cardinal value four. This
approach is necessary because many children at this age count to four but do not
know that the last count word indicates the number of the set as a whole. Asked
how many are there, these children simply count the set again. The answer to “How
many?” is simply to repeat the counting words.

Fifth, we wanted to make the symbolism meaningful. Our general approach was
to link symbols with illustrations and actions. In the first scene, the child sees boxes
with numerals on each. When the 4-box is touched, four drums jump up from
within the box and remain suspended in the air. As Tigga counts them, each drum
lights in sequence, shakes, and makes drum sounds. At the end, as Tigga says,
“Four drums altogether,” the numeral 4 grows larger and then returns to its regular
size, after which the four drums shake and sound.
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IMS are able not only to tell a story, but can also write a “story” about the child,
a report about the child’s performance. The IMS software can track the child’s
accuracy, the strategies employed under certain conditions, and the trajectory of
performance within the reading session. Thus the report might indicate that the
child began by producing incorrect answers in scene 2, but concluded it with
consistent accuracy. The report might indicate that the child responded so quickly
in a particular scene that she was unlikely to have used any strategy. The report
might indicate that the child did indeed use the pushing aside strategy at the
appropriate point to achieve a correct answer. We explore how to use the touches
and movements recorded in the software’s data log to create indices of accuracy and
strategy. Our long-term goal is using this information to create reports that can
guide parents’ reading and other efforts designed to promote children’s mathematics
learning.

In brief, we designed an interactive storybook intended to serve as a model for
other efforts in this area. The IMS offers a story that children enjoy; presents
challenging mathematical problems; offers guidance on strategy and concepts; uses
visual and sound designs that reflect and reinforce the mathematics; links mathe-
matical symbols to actions and visualizations; and is capable of providing reports
on accuracy and strategy.

13.3 The Friends

When we exhibited Monster Music Factory at the U.S. National Mathematics
Festival, several parents came to our table and left the children to work with the
IMS by themselves. The parents seemed to feel that Monster Music Factory is a
game, an app like Angry Birds, which children can use independently, without
much or any supervision. In our view, this approach is inadequate. IMS are not
apps! They are books that should be read with a knowledgeable and strategic
reader, usually an adult—most likely a parent, caretaker, or teacher. But most adults
are not as familiar as they should be with IMS, mathematics, methods of reading,
and children’s learning of mathematics.

How can we help adults to read IMS in an informed and effective manner?
Consider how several supports, which we call “Friends,” might provide the nec-
essary guidance. Everything we describe below is technologically possible, even
though much has not yet been implemented. Imagine a situation in which both the
adult reader and the child have tablets. The child’s tablet is used for reading and
interacting with the IMS. The adult’s tablet has not only the IMS, but also several
Friends, including PDF documents, learning software, and videos, as follows.
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13.3.1 The Guide

One support residing on the adult’s tablet is the Guide, including text, embedded
illustrations, and videos. The Guide offers several different types of assistance. For
example, in the tambourine scene, shown earlier in Fig. 13.2, Oona looks at the
instruments and says, impulsively, “I know! I know! Three tambourines.” The
Guide offers a short video of this event and then advises how to deal with it.

In this scene, you may want to pause the action and ask your child about whether Oona was
right. Then let your child watch Tigga teach Oona how to check her counting. Asking a
question at this point may distract your child from understanding the story.

The scene continues to the point where Tigga shows Oona how to count the
tambourines. The Guide advises:

Here, Tigga is showing your child one-to-one correspondence. He counts as he touches
each tambourine once and only once. Notice that the tambourines shake and light up all
together to show that Tigga is counting a collection of tambourines to get its number.

Later, when the child has a chance to count different numbers of tambourines,
the Guide advises:

If your child blurts out the number of tambourines without obvious counting, you can say,
“How did you know? Let’s check! Why don’t you touch and count each one just like
Tigga!” If your child is having a hard time remembering what Tigga did, you can model
one-to-one correspondence. Point to each tambourine and count, “One, two, three!”

In addition to providing advice about responding to each scene, the Guide
provides access to other resources. Touching an icon on the screen opens a video of
parents who demonstrate important strategies for reading the Monster Music
Factory to their children. For example, one clip shows how a parent encourages his
child to check his answer. As shown in Fig. 13.3, the Guide briefly describes the
parent’s strategies to help his child attend to the mathematical idea in this scene.
Another shows a parent modeling a useful solution strategy. A third shows a parent
directing the child’s attention to a key element of the story. We believe that video
demonstrations are particularly useful for parents who are anxious about helping
their children learn mathematics. We plan to conduct research both on the effec-
tiveness of the examples and parents’ use of them.

13.3.2 Professor Ginsboo

A second Friend on the tablet is entitled Professor Ginsboo Explains Everything
You Always Wanted to Know About Math. This distinguished Professor presents
amusing illustrated accounts of the meaning of counting and other concepts covered
in the IMS. The stories of Professor Ginsboo can help parents comprehend the
basic mathematics ideas that young children should be learning. For example,
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Professor Ginsboo’s Story of How Many explains the idea of enumeration through a
conversation between Professor Ginsboo and a curious young student, Menette.

In the first part of the story, Menette is introduced to Trumpet and Elephant. She
notes that there is one Trumpet and one Elephant. But Trumpet and Elephant argue
and both exclaim, “I am one!” Each feels that the other does deserve the exalted
position of number one.

Professor Ginsboo offers some help and explains the following to Menette and
the others. “First of all, you are all one. Each and every one of you is one. All for
one and one for all. Here’s a one, there’s a one, everywhere a one, one.

“But. Watch this. Elephant, say, ‘I am one.’” He said it. “Trumpet, say, ‘I am one.’” He did.
“Now, Elephant, hold hands with Trumpet.”

This was not so easy because Elephant had such big hands and Trumpet didn’t
want to hold hands with anyone. But finally they succeeded, and when each hand
was holding the other, Elephant and Trumpet sang out, “We are two!” They did not
intend to do it, but when holding hands could not help themselves. They sang it a
second time, “We are two!” They sang, “We are two!” two times. They thus learn
that although each is one, the combination of them is a different larger number.

The story is intended to help adults realize that the basic idea of one is not simple
and that all numbers are constructed from units and thus achieve new “identities.”
When we count, “One, two,” we are not referring to the second object counted as
“two.” The second object is “one,” and the combination of the units is “two,” an
entirely different number from the units that are subsets of it.

Will adults learn the mathematics presented in Professor Ginsboo and find it
useful? We are conducting research to find out.

Fig. 13.3 An example of a parent encouraging careful counting
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13.3.3 Mathematics Thinking Stories

A third Friend offers Mathematics Thinking Stories, which illustrate children’s
understanding of the mathematical ideas entailed in Monster Music Factory. These
“stories,” somewhat like case studies of individuals, bring to life children’s
engagement with mathematical ideas. Embedded in the text are videos of actual
children doing various mathematical tasks.

Ben Learns How Many is one example of a Mathematics Thinking Story that
describes a child’s path from reciting the number words to enumerating the number
of objects before him. The story begins with a video clip of the cheerful
three-year-old Ben, who rattles off the numbers one through ten with ease but
cannot enumerate a set of four bears. After establishing that counting (One, two,
three, four) is different from enumerating (There are four bears), the story continues
to deconstruct the concept of how many. We as adults can easily count how many
pennies are in our wallet or candies are left in the jar, forgetting what a complex
notion this is for children. Number words are quite special and different from other
words that name or describe objects. The confusing complexities of counting, such
as understanding the cardinal value of a set, are described from the perspective of
the developing child.

Ben Learns How Many ends with concrete suggestions about how to teach how
many. Key concepts, such as enumeration and cardinal value, are not only defined
but also illustrated in words, images, and videos throughout this Mathematics
Thinking story. The story of Ben explains these key concepts in narrative form,
which helps parents relate Ben’s understanding of numbers to their own children.
The goal of the mathematics thinking stories is not only to interpret the child’s
thinking, but also to develop a deeper understanding of the mathematics content.

13.3.4 Assessment

A fourth friend, Assessment, offers various forms for evaluating children’s mathe-
matical thinking. One way to assess a child’s thinking is to collect and analyze log
data from the IMS software. We have not yet implemented this but it can easily be
done. Research in the field of learning analytics suggests that we can collect data on
children’s online interactions with the digital environment, and conduct micro-level
analyses on how they learn using the software (Baker and Yacef 2009). In our case,
children’s online behaviors when using the software can provide information about
their mathematics knowledge. For example, the number of attempts at getting to the
right answer could be indicative of the mathematics concepts children find difficult
to understand. These results could potentially be integrated on the second tablet used
by adults, so that they can be notified if a child is struggling and provide support in
real time. We have not yet created this kind of online assessment of a child’s
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performance on our IMS, but it technically possible to do so. There is great promise
in utilizing log data to create useful measures of children’s mathematical thinking.

Another way to assess how a child thinks is through clinical interviewing, in
which an adult attempts to gain a deeper understanding about the child. The Do’s
and Don’ts of Clinical Interviewing consists of guidelines for conducting an
interview with an individual child. It specifies the process of planning a concrete
task for the child to do, observing and listening to the child’s responses, and
probing the child with open-ended questions. The interviewer is likely to gain more
insight into the child’s reasoning by encouraging the child to explain his or her
answers. The adult can do this by asking the following questions, “How did you do
that? How could you explain it to a friend? Can you show me how you did it?”
These questions allow the child to elaborate and demonstrate his or her thinking,
potentially revealing surprising competence as well as some misconceptions or
ineffective strategies. Use of informal questioning can provide parents with very
surprising insights into their children’s thinking. In our experience, parents (and
other adults, including teachers) are often quite surprised to learn what their chil-
dren do and do not know.

In addition to these guidelines, adults can watch and learn from a voice over
video of an exemplary clinical interview of a four-year old child. The video con-
tains a comprehensive analysis of the interview, with detailed commentary and
interpretations about the child’s mathematical knowledge.

Clinical interviewing has traditionally been the preserve of research psycholo-
gists. But we believe that parents can learn a version appropriate for their everyday
interactions with children. Again, research on this issue needs to be conducted.

13.3.5 Mathematics Activities

A fifth Friend is Mathematics Activities to Do at Home, a brief list of home
activities (with real objects!) that reinforce and extend the different mathematical
challenges in the IMS. Four of the major mathematics themes in Monster Music
Factory are cardinality, one-to-one correspondence, subitizing, and grouping by 5s.
Each activity corresponds to one of these four themes, giving the child the
opportunity to further explore number beyond the storybook.

We do not expect the child to master counting and become an expert at choosing
appropriate counting strategies after reading Monster Music Factory. Rather, this
IMS, and others, should serve as one tool in a larger toolbox of instructional ideas.
A parent should engage a child in mathematical conversations during both planned
activities (e.g., reading storybooks, intentionally playing with blocks) and during
unplanned activities (e.g., on the playground, while cooking dinner). Our
Mathematics Activities packet suggests some planned activities that extend learning
beyond the IMS. The activities are taken from a number of research-based
mathematics programs and curriculums, such as Big Math for Little Kids (Ginsburg
et al. 2003).
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13.3.6 MathemAntics

A sixth friend is new mathematics software, MathemAntics (that is, antic mathe-
matics), specially designed to extend children’s work with the mathematics con-
cepts embedded in the story (Ginsburg et al. 2015). There are seven activities
children can explore on the tablet device. Each activity closely connects to the IMS
by reinforcing the same basic number concepts from the story and using the same
instruments, characters, and background illustrations.

Explore provides a free play environment for children to become accustomed to the
software. They learn how to use the various tools in the program, such as scatter around,
line-up, and box.

In subitizing, instruments fall quickly from a chute before going into a box below. Children
need to select a number on the number line that corresponds to the amount of instruments
they saw on-screen.

Counting provides practice with enumeration. Children need to count the number of
instruments that drop from the chute and land on the screen. They can use the highlight,
line-up, pair-up, and scatter around tools to help them solve the problem.

Pond encourages counting forwards and backwards, along with basic adding and sub-
tracting by one. Children drag frogs into and out of the pond as the program narrates the
number of frogs.

In visible addition and subtraction, children drag a specified number of frogs into the
pond. Then a few more frogs jump into the pond and children must determine how many
there are altogether. Similarly, frogs can jump out of the pond, providing subtraction
practice.

In addition/subtraction, children practice adding and subtracting when the objects are not
visible. Instruments are dragged into boxes, and then more instruments appear on screen.
Children add these instruments to the box, where they are hidden from sight. Then children
must predict how many instruments reside within the box.

> = < is an equivalence activity. Children compare the number of animals on either side of
the screen and determine which side has more animals or whether both sides have the same
number. They can use the line-up and pair-up tools to help them organize the animals as
they are counted.

Overall, MathemAntics can be used to help children practice finding the cardinal
value of a set, explore addition and subtraction, read numerals, use strategies such
as lining up objects to help them count, and learn to check if their answer is correct.

13.3.7 Video Dictionary

A seventh Friend is a video dictionary of mathematical words used in the IMS.
Professor Ginsboo’s Excellent Mathematics Explainer uses story characters from
the IMS to provide amusing short definitions of the concepts underlying the words
and thus reinforce children’s understanding and usage of mathematics terms. For
example, to explain the strategy of Counting On from 5, a scene with Tigga from
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Monster Music Factory is presented to the child. Tigga demonstrates the technique
of counting on. As Tigga explains, “This trick makes counting easier, if you know
there are 5,” five guitars on the first row play a tune all at once. Tigga continues,
“You can start counting with 6”, and the 6th guitar on the 2nd row plays a tune.

In general, research has shown that reading storybooks increases children’s
acquisition of new vocabulary words (Sénéchal 1997). The animated Explainer
leverages children’s experience with an IMS to enable them to learn the meaning of
mathematics terms and phrases.

13.4 Conclusion

We have created IMS and Friends to help children learn basic mathematical ideas
and to help adults understand their children and how to read the stories. The
enjoyable narrative encourages exploration of the ideas in a sequence guided by
cognitive research. The story offers challenging interactions that deepen mathe-
matical understanding and promote useful strategies. Further, surrounding Friends
include video and other materials, linked to and deriving from the story, that
promote adults’ understanding of storybook reading and children’s learning. In
providing a diverse set of supporting materials for the IMS, different readers can
potentially benefit from different Friends.

Our work is in its infancy and we are only beginning to conduct research on the
effectiveness of our IMS and Friends. We do not know yet whether our materials all
“work” in the ways intended. But we hope that this paper demonstrates the potential
of our design principles and approach, and encourages others to engage in devel-
opment and research in this promising area of mathematics education. Advances in
computer technology provide the possibility of creating complex systems designed
to help children learn mathematics from narratives and to help adults to understand
and promote children’s mathematical thinking and learning.
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Chapter 14
Early Childhood Educators’ Issues
and Perspectives in Mathematics
Education

Audrey Cooke and Julia Bruns

Abstract This chapter presents an overview of the contributions in TSG 1: Early
Childhood Mathematics Education at ICME-13 which focused on issues from the
perspective of early childhood educators. A basic assumption of this chapter is that the
opportunities for young children to developmathematical understandings and skills are
influenced by several conditions at a macro, meso and micro level. First, curricula
provide a framework for early mathematics teaching and learning with varying
expectations (by teachers) about what can occur in the pre-school environment—
informal learning (such as through play), content to learn and activities to experience.
Second, early childhood educators’mathematical knowledge, pedagogical knowledge,
understandings, beliefs, and perceptions influence how they enact these expectations.
These competencies can be developed and supported by professional learning. Third,
educational programs, resources and activities used in the pre-school environment
impact on the mathematical opportunities children engage in at the micro level.

Keywords Early childhood � Mathematics education � Competency
Curricula � Professional learning

14.1 Introduction

This chapter presents an overview and discussion of a range of issues raised by a
wide variety of papers about (i) children’s mathematics learning and thinking, and
pedagogical and assessment approaches to improve learning, and (ii) the perspective
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of the educators in early childhood mathematics education at a macro-, micro- and
meso-level that influence early mathematical learning opportunities. Table 14.1
provides an overview of all the presentations and the recurring themes. Many pre-
sentations reflected papers focused on the influences of curricula, intervention
programs, and professional learning initiatives on early mathematics education.
Other papers focused on the knowledge and beliefs of in-service and pre-service
early childhood teachers (see Table 14.1). How these themes are integrated within
the presentations vary, but each considers the educators’ role in developing chil-
dren’s mathematical understandings.

Table 14.1 Themes addressed in the presentations

Presentations Authors Themes

Macro-level Norwegian Kindergarten
teacher’s work with mathematics

Fosse, Lossius Curriculum cultural
considerations

Swedish pre-school teachers’
views of children’s socialisation

Lembrér, Johansson Curriculum views of
the child as
mathematician

Comparison of three early
childhood curricula from the
perspective of mathematics
education

Lao Curriculum
cultural
considerations

Meso-level Development and validation of a
test battery assessing pre-school
teachers’ professional
competence in the field of
mathematics

Jenßen, Eilerts,
Koinzer, Schmude,
Blömeke

Mathematics-related
knowledge
General pedagogical
knowledge

Pre-school teachers’
mathematics-related
competencies

Bruns, Eichen,
Blömeke

Mathematics-related
knowledge
Mathematical beliefs

Pre-school teachers’ responses to
repeating pattern tasks

Tsamir, Tirosh,
Levenson, Barkai,
Tabach

Mathematics-related
knowledge
Mathematical
self-efficacy

Pre-service teacher relationships
with mathematics-creative?
anxious? competent?

Cooke Mathematics-related
knowledge
Mathematical beliefs

Reform of the Kindergarten
teachers and child care workers in
day-care center training
curriculum in Japan

Goto Professional learning
Cultural
considerations

“SENSO-MATH” pre-school
program facilitators contribute to
mathematics education in the
pre-school

Hassidov, Ilany Professional learning

South African educator’s
mathematics teaching journey: a
case of 5–6 year old educator
practices

Feza, Bambiso Professional learning
Cultural
considerations

(continued)
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The chapter begins with a wider institutional view provided by curricula and
educational guidelines (macro-level). It then focuses on educator issues
(meso-level) and issues concerning children (micro-level). The discussion centres
on how these presentations, together with recent research, can provide a better
understanding of how to create conditions for high-quality mathematics learning
environments. Implications for practice, further considerations and final remarks are
provided at the conclusion of the chapter.

14.2 The Macro-level: The Influence of Curricula
and Guidelines

Early childhood curricula and guidelines are intended to impact on the pre-school
and kindergarten learning environments in order to enrich learning opportunities for
children (Department of Employment, Education and Workplace Relations
[DEEWR] 2009). This impact can be positive for the child, both directly, in terms
of their learning, and indirectly via the educator (Brodin and Renblad 2015).
However, it will depend on how the content of the curricula and guidelines are
addressed, how they are interpreted by educators, and how the educator views them
when framing their work with children (Brodin and Renblad 2015).

14.2.1 Positioning Children’s Mathematical Learning
Within Norwegian Kindergarten
(Fosse and Lossius 2016)

In their research, Fosse and Lossius (2016) examine how the Norwegian
Framework plan is incorporated in Norwegian kindergartens. The Norwegian

Table 14.1 (continued)

Presentations Authors Themes

Relations of affective, cognitive
and situation-specific facets of
pre-school teachers’ professional
competence

Dunekacke, Eilerts,
Jenßen

Mathematics-related
knowledge
Mathematics anxiety
and perceptions

Pro-KomMa: effectiveness of
pre-school teacher education in
the field of mathematics

Rasche, Eilerts,
Jenßen, Eid,
Schmude, Koinzer,
Blömeke

Mathematics-related
knowledge
Mathematical beliefs
and perceptions

Micro-level From thought to reality—
implementation of an in-school
mathematics training in South
Africa

Fritz-Stratmann,
Ehlert, Herzog

Intervention
programs
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Ministry of Education and Research (NMER) introduced the Framework Plan for
the Content and Tasks of Kindergartens in 2006 and revised the Framework Plan in
2011 (NMER 2011).

Fosse and Lossius (2016) investigated 160 Norwegian kindergarten teachers
using self-reports on what mathematical activities they were doing in their
kindergartens and the reasons behind why they were doing them. Specifically, they
were interested in determining how the learning area outlined by NMER (2011)—
Number, space and shape—was being implemented. They were also interested in
whether the schoolification of kindergarten, as outlined by Lembrér and Meaney
(2014) was occurring, particularly the ideas of ‘being and becoming’ and how these
align with schoolification.

When situating their work, Fosse and Lossius (2016) referred to the work of
Benz (2012a), who conducted a study of German in-service and pre-service
kindergarten teachers. The research investigated the teachers’ expectations
regarding mathematical learning goals for kindergarten, their emotions regarding
mathematics, attitudes towards mathematics itself and the learning and teaching of
mathematics, and actual practices of the kindergarten environment. Her findings
indicated that kindergarten teachers engaged more in counting and sets activities.
Although a broad range of mathematical areas were provided (with some more
appropriate for older children in formal schooling), the domains that were most
frequently referred to as learning goals were the topics of counting and sets.

Fosse and Lossius’ (2016) research fits only partially to the German results. They
found that a high proportion (94%) of respondents considered counting to be the
most important area, followed by shapes (88%), locating (63%), measuring (65%),
and patterns (60%). These results were considered to conflict with the emphasis on
everyday activities within the Norwegian Framework Plan, as this would imply more
locating and measuring activities. The findings about teachers’ reasons for com-
pleting mathematical activities in the kindergarten reflected their views that children
should be given opportunities to be active agents in their mathematical learning.
They also believed that preparing the child for the mathematics they will encounter
once they begin their formal schooling was important. Fosse and Lossius (2016)
linked these ideas to those of being and becoming, respectively, as proposed earlier
by Lembrér and Meaney (2014). Fosse and Lossius (2016) also found that although
the Norwegian Framework Plan emphasizes play, this emphasis was not evident in
the teachers’ responses. Based on this result they inferred that kindergarten teachers
interpret and implement the Framework Plan differently and they need more support
to strengthen their professional reflective capacities.

14.2.2 Mathematics Learning as Being and Becoming
(Lembrér and Johansson 2016)

Lembrér and Johansson’s (2016) paper presented a case study investigating
pre-school teachers’ views of the contrast between children’s present interests and
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the knowledge and understandings needed for their future. These competing needs
were viewed as being, which focused on the child’s interests, and becoming, which
focused on what the child needs to experience to fulfil his or her potential. As
Lembrér and Johansson noted, policies are being enacted that impact on mathe-
matics education in learning environments prior to formal schooling.

In 2010, the pre-school curriculum in Sweden was revised (Skolverket 2011). In
light of the ideas of being and becoming, the curriculum refers to the creation of
opportunities for children to develop the learning disposition, skills, and knowledge
children need now and as a foundation for their future learning. These opportunities
were described as needing to arise from interactions with the environment, edu-
cators, other children and their families.

Lembrér and Johansson (2016) discuss the tension in the pre-school environment
that exists between the child being and becoming a mathematician. The tension is
highlighted by Lembrér and Meaney (2014), who stated that the different sections
within the Swedish pre-school curriculum conflict within guidelines and goals,
potentially with “the increase in the ‘schoolification’ of the formal pre-school
curriculum” (p. 83). This might encourage the educator to focus on creating
opportunities for children to develop understanding or skills that they do not cur-
rently possess, described by Lembrér and Meaney (2014) as becoming, and less
opportunities for children to demonstrate their existing understandings and skills,
described as being. However, Lembrér and Meaney found the Swedish pre-school
curriculum does present opportunities where both being and becoming can co-exist,
although they argue that it would be necessary to see how educators enacted the
curriculum to see if these opportunities eventuated.

Lembrér and Johansson (2016) interviewed two pre-school teachers to determine
their views on children being mathematicians, where the children were seen as
having mathematical skills and understandings, or becoming mathematicians, and
where the children were seen as needing to develop the skills and understandings.
Themes identified from the interviews reflected both being and becoming, although
the schoolification of pre-primary curriculum seemed to favour the process of be-
coming. Educators’ freedom to create opportunities based on what the children
knew would enable children to use their existing mathematical understandings and
these could provide opportunities for being mathematicians. But these experiences
were under pressure in a shift to becoming mathematicians. The impact of regu-
latory processes provided some explanation of the constraints of the pre-school
environment such as documentation and evaluation, and time limitations that
reduced opportunities for the educator to engage in observation and reflection.
Teachers considered the potential of the institutional environment to provide
instances where both being and becoming mathematicians are reflected in oppor-
tunities for children to demonstrate their existing knowledge but also to develop
new knowledge. The notion of becoming mathematicians was more likely to be
emphasized.

14 Early Childhood Educators’ Issues and Perspectives … 271



14.2.3 The Context Surrounding Early Childhood Curricula
and Mathematics Education (Lao 2016)

Lao (2016) emphasized the importance of the curricula by connecting mathematical
learning opportunities in early childhood to later achievement. She supported this
by referring to the findings of Watts et al. (2014), specifically that children’s
mathematics achievement at 4.5 years of age can be a predictor of their mathe-
matical achievement at 15 years of age. Further, they indicate that children making
substantial gains in mathematics during their first year in formal school would
continue to make gains in mathematics as they progressed through their school
years. Considering the long-term impact of early childhood mathematical
achievement found in this study provided impetus for Lao to investigate early
childhood mathematics curricula, especially in locations that perform well in
international tests.

Lao (2016) planned a comparison of the early childhood curricula for mathe-
matics from three locations, Shanghai, Hong Kong, and Chinese Taipei. Each of
these locations were considered as part of East Asia, which Leung et al. (2006)
described as “Chinese/Confucian” (p. 4). This was considered a cultural and social
factor that may potentially impact on educational traditions that, in turn, contribute
towards achievement in the Trends in International Mathematics and Science Study
[TIMSS] (TIMSS and PIRLS International Study Centre, n.d.) and the Programme
for International Student Achievement [PISA] (Organisation for Economic
Cooperation and Development [OECD], n.d.).

Lao (2016) proposed three aspects of the curricula be compared—how the
curriculum is organised, considering how aims, objectives and mathematical con-
tent are connected; the intentions of the curriculum in relation to early mathematics;
and the areas of focus for early mathematics. Lao (2016) stated that the last aspect
should consider both content domains (subject matter such as number, geometric
shape, measurement, and data) and cognitive domains (thinking processes,
including knowing, applying, and reasoning).

14.3 The Meso-level: Early Childhood Educators’
Mathematics-Related Competencies

Early childhood educators’ mathematical content and pedagogical knowledge, and
their beliefs about mathematics learning impact on the environment/contexts for
learning and the experiences they promote for young children (e.g. Klibanoff et al.
2006; Lehrl et al. 2016). As Björklund (2015) proposed, the pre-school teacher is
one of the most important factors that will impact on the opportunities for children
to engage with mathematics in the pre-school environment.

272 A. Cooke and J. Bruns



14.3.1 Measuring Mathematics-Related Competence
of Pre-service Pre-school Teachers—KomMa Project
(Dunekacke et al. 2016; Jenßen et al. 2016;
Rasche et al. 2016)

14.3.1.1 Background

The KomMa project, conducted in Germany, investigated the mathematical pro-
fessional competencies of kindergarten teachers (http://www.kompetenzen-im-
hochschulsektor.de/168_ENG_HTML.php). The project was based on Shulman’s
(1986) seminal work and his three types of knowledge—mathematical content
knowledge (MCK), mathematical pedagogical content knowledge (MCPK), and
generalised pedagogical knowledge (GPK) (Dunekacke et al. 2015). Based on
Shulman’s (1986) notion of teacher knowledge, the project’s focus was on gen-
erating a model that can describe mathematics-related competencies, particularly in
terms of the less formal kindergarten environment required for both teaching and
learning mathematics.

14.3.1.2 Validating the KomMa Test Instrument

The paper by Jenßen et al. (2016) outlined how the KomMa test instrument was
designed to measure the MCK, MPCK, and GPK competence of pre-service
pre-school teachers. The KomMa test battery used in their study of 1851 pre-service
pre-school teachers contained three test instruments. The MCK test consists of 24
items and addresses the mathematical domains and mathematical processes. The
domains included four areas—number and operations; quantity and relations;
geometry; and data, combinatorics, and chance. The mathematical processes
comprised problem solving, modelling, communicating, representing, reasoning,
and patterns and structure. The MPCK test with 28 items addresses knowledge on
the development of children’s mathematical understandings in the informal and
formal setting in pre-school as well as knowledge about the development of
mathematical literacy and the diagnosis of early mathematical skills. The GPK test
with 18 items addresses the underlying understandings of the psychology of
learning and pedagogical approaches.

Two research questions were investigated:

(i) How appropriate is a three-dimensional model of knowledge (MCK, MPCK
and GPK) than a one-dimensional model (professional knowledge) to describe
pre-school teacher knowledge of mathematics? and,

(ii) Do the three dimensions of knowledge yield correlations of varying strengths?

Two samples were used, one for the main study testing these hypotheses and the
other for the validation study of the KomMa tests. The first sample of 1851
pre-service students included 881 students beginning their studies and a cohort of
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970 students at the end of their studies in either vocational (secondary level) or
university (tertiary level) pathways for pre-school teacher education. The second
sample contained 354 students from Berlin and Lower Saxony who were com-
pleting pre-school pre-service teacher education courses at vocational schools.

The factorial structure indicated that the hypothesis—that the proposed
three-dimensional model was better than a one-dimensional model—fit, with latent
correlations strongest between MPCK and GPK, followed by MPCK and MCK,
and then by MCK and GPK. Convergent and discriminant validity was explored by
correlating the MPCK and MCK test scores with relevant constructs regarding
beliefs, affect and motivation for the validation study. Significant correlations were
found between the test score for MPCK and mathematical beliefs and between the
test score for MCK and affective-motivational constructs.

14.3.1.3 Relationships Between Knowledge, Mathematics Anxiety
and Perceptions of Mathematics Situations

Dunekacke et al. (2016) investigated the relationships between MPCK, perceptions
of mathematics situations in kindergarten, and pre-service kindergarten teacher
mathematics anxiety using confirmatory factor analysis. They found that there were
strong and significant correlations between MPCK and perceptions of mathematics
situations (r = 0.65, p < 0.01), but no significant correlations between mathematics
anxiety and either MPCK or perceptions of mathematics situations. The authors
interpreted their results to indicate a lack of awareness or recognition of mathe-
matics in learning situations (which may have involved mathematics), which may
explain their lack of mathematics anxiety (as mathematics was not ‘present’). They
refer to the findings of Bates et al. (2013) that indicated early childhood pre-service
teachers were anxious about teaching mathematics or fearful of mathematics, par-
ticularly in terms of their mathematical content knowledge, to support their
interpretation.

14.3.1.4 Relationship Between Dispositional Competence Facets,
Situation-Specific Skills, Performance and Children’s
Mathematical Development

The poster by Rasche et al. (2016) proposed the continuation of the use of the
KomMa test instruments in a subsequent Pro-KomMa project (Jenßen et al. 2016).
Specifically, after the validation of the test instrument, opportunities exist to
compare results from the KomMa test instruments to the in-service pre-school
teacher responses to situations set up to examine their situation specific skills
(perceptions and interpretation) and the activities they created to address their
children’s needs in a learning environment (activities). This could serve as an
evaluation of the effectiveness of the education provided to in-service pre-school
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teachers and a potential indicator of the impact of the pre-school educators on the
children’s achievements.

14.3.2 The Structure of Mathematics-Related
Competencies: Focusing on In-Service
Pre-school Teachers (Bruns et al. 2016)

Bruns et al. (2016) focused on the competence structure of in-service pre-school
teachers. The paper builds on earlier research about the competence structure found
by the KomMa project and another project reported by Anders and Rossbach
(2015). Both projects come to different results concerning the relationship of MCK,
MPCK and beliefs, using different samples (KomMa: pre-service versus Anders
and Rossbach: in-service teachers) and different instruments. In order to clarify if
the different results regarding this relationship are related to the samples or the
instruments, Bruns et al. used the instruments of the KomMa project with a sample
of in-service teachers.

To assess the beliefs of the pre-school teachers concerning mathematics in
general Bruns et al. used a questionnaire developed in the KomMa project. The
questionnaire was based on the earlier research about beliefs about mathematics
generated from both Grigutsch et al. (1998) and Benz (2012b). Grigutsch et al.
(1998) referred to four aspects—schema, formalisation, process, and application—
with formalisation and schema connected to the static view of mathematics, and
process connected to the dynamic view of mathematics. Grigutsch et al. (1998) also
linked these two views of mathematics with algorithms and computations (the static
view) and understanding and problem solving (the dynamic view). Benz (2012b)
firstly used the questionnaire developed by Grigutsch et al. (1998) for pre-school
teachers; she revised it reducing the number of items, and combining the formal-
isation and schema aspects.

The KomMa questionnaire contained 17 items grouped within three descriptions
of mathematics beliefs—static (combining formalisation and schema aspects like
Benz (2012b), 7 items), process (4 items), and application (6 items) (Dunekacke
et al. 2016). Like Benz (2012b), the KomMa questionnaire used Likert-style
questions, but had a 6-point rating scale instead of a 4-point rating scale as used by
Benz (2012b).

To study the competence structure of in-service pre-school teachers the KomMa
test instrument (see above) and questionnaire were administered to 95 pre-school
teachers. The data was analysed using confirmatory factor analysis. Significant
positive correlations were identified between MPCK and MCK and between each of
the pairings between the three mathematical beliefs (static, process, and applica-
tion). The only positive correlations found between mathematical knowledge and
beliefs were for the application-orientation beliefs, which were positively correlated
to both MPCK and MCK. Overall, these findings were more in line with the
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findings of the KomMa project than the findings of Anders and colleagues (2015).
This finding, however, differed marginally from that of Dunekacke et al. (2016),
who found significant correlations between MPCK and MCK and between
application-orientation beliefs and both MPCK and MCK, but also between
process-orientation beliefs and both MPCK and MCK. This difference may have
been a reflection of the difference in participants (in-service compared to
pre-service). Pre-service pre-school teachers relied more on their own experiences
as students due to limited, or no experience as teachers.

14.3.3 Application of Teacher Knowledge: Pre-school
Teachers’ Responses to Repeating Pattern Tasks
(Tsamir et al. 2016)

Tsamir et al. (2016) presented a paper investigating pre-school teachers’ knowledge
of patterns, specifically, the capacity to identify repeating patterns, and mistakes
and continuations of repeating patterns. Chapter 15 following (Tsamir et al. 2018),
provides a comprehensive overview of the project. The research used the Cognitive
Affective Mathematics Teachers Education (CAMTE) framework (Tsamir
et al. 2012). As with the papers in the section above on the KomMa project, the
framework draws on the work of Shulman (1986) as well as refinements of
Shulman by Ball et al. (as cited by Tsamir et al. 2012, p. 2). Self-efficacy is also part
of the CAMTE framework, drawing from social cognitive theory from Bandura (as
cited by Tsamir et al. 2012, p. 2) and the more focused mathematics self-efficacy of
Hackett and Betz (as cited by Tsamir et al. 2012, p. 2).

To demonstrate the importance of pre-school teachers’ knowledge of patterns,
the authors refer to Papic et al. (2011) and Rittle-Johnson et al. (2013), who had
conducted research on children’s capacity to replicate patterns. Both research
projects worked with children aged 4 and 5 years old and attending pre-school.
Papic et al. (2011) also investigated the impact of an intervention designed to
improve pattern understandings, suggesting that professional learning provided to
educators contributed to gains in children’s mathematical understandings.

Tsamir et al. (2016) found that the 51 pre-school teachers participating in the
research could identify repeating patterns shown in drawings and indicated errors
that stopped the drawings from representing repeating patterns, which matched their
high levels of self-efficacy with these aspects. Pre-school teacher difficulties were
evident when identifying appropriate continuations of repeating patterns, primarily
in patterns and continuations that ended mid-cycle (incomplete unit of repeat),
contrasting with the high levels of self-efficacy. The authors cautioned that teachers
with a high self-efficacy might lead these teachers to believe they do not need
professional learning.
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14.3.4 Pre-service Teachers’ Views of Mathematics:
Mathematics as Creative, Mathematical Competency,
and Mathematics Anxiety (Cooke 2016)

Cooke (2016) presented a study that investigated pre-service teachers’ perceptions
of mathematics and whether their perceptions of mathematics were related to their
mathematical competency or self-reported mathematics anxiety. Cooke (2016) uses
Ernest’s (1989) three views of mathematics:

(i) The instrumentalist view of mathematics as rules and facts that were unre-
lated and all-encompassing for the mathematics completed;

(ii) The Platonist view of mathematics as static rules and knowledge that could
be discovered and connected but not created, and

(iii) The problem-solving view of mathematics as dynamic, revisable and
impacted by culture and thinking.

Ernest (1989) proposed that the philosophical view held by the educator would
impact on how they viewed and addressed teaching and learning mathematics. He
linked the instrumentalist view of mathematics with the educator adopting an
instructor role for teaching. The Platonist view of mathematics was linked to the
teacher taking on a role of explaining. The problem-solving view of mathematics
was linked to the teacher taking on the role of facilitator.

The aim of the study presented by Cooke (2016) was to ascertain how
pre-service teachers conceptualized mathematics, specifically, their agreement with
the idea that mathematics is creative. The instrument developed by Cooke et al.
(2011) included three sections that addressed thinking about using mathematics in
three different situations—working on mathematics in a group situation, working on
mathematics in a test situation, and teaching mathematics. Each of the three sections
used the same 22 items, with responses on 4-point Likert-style scales. Participants
were asked to indicate the level of agreement with each statement when thinking of
using mathematics in the specified situation. Conceptualisation of mathematics was
measured using an instrument with 20 statements (Cooke 2015), although responses
to only one statement, “Mathematics is creative”, were used in this paper. The
instrument used the same 4-point Likert-style scale. Mathematics competency was
measured using a Mathematics Competency Test (MCT) that was available from a
commercial online platform and contained a total of 50 multiple choice and short
answer questions that were to be completed in 60 min (Cooke and Sparrow 2012).

The survey was conducted with 698 Australian pre-service teachers in their first
year of study, enrolled in either an early childhood bachelor degree (who would
qualify to work with children from birth to 8 years of age), or a primary bachelor
degree (who would qualify to work with work with children from grade 1 to grade 3
in primary school as well as later primary years).

Overall, 71.4% of pre-service teachers (n = 671) responded affirmatively to the
statement “Mathematics is creative”. The results indicated that pre-service teachers
who reported low anxiety when thinking about mathematics in all three situations
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(working on mathematics in a group situation, working on mathematics in a test
situation, and teaching mathematics) were more likely to agree that mathematics is
creative. It was inferred from these data that being comfortable with mathematics
(that is, not anxious) may be linked to a willingness to use mathematics in the three
specified situations (Brady and Bowd 2005; Isiksal et al. 2009).

14.4 The Meso-level: Professional Learning of Early
Childhood Teachers

Professional learning programs are critical to developing early childhood teachers’
mathematical understandings, their awareness of the importance of mathematics in
early childhood settings, and their confidence to teach mathematics. MacDonald
et al. (2016) highlight the importance of research into professional learning for early
childhood educators who are engaged in creating mathematical understanding with
young children.

14.4.1 Educators’ Mathematical Understandings
in South Africa (Feza and Bambiso 2016)

Feza and Bambiso (2016) presented a case study from South Africa outlining an
intervention to help educators develop mathematical understandings of children
aged 5–6 years. She referred to the analysis of the Southern and East African
Consortium for Monitoring Educational Quality (SACMEQ) by Venkat and Spaull
(2015) to support the need for intervening in educators’ mathematical content
knowledge. Feza and Bambiso found that four types of lessons were evident in the
videos provided by the participants:

• Pre-readiness, where educators could not engage the children with the activity or
the mathematical ideas;

• Knowledge of number (mathematical content) and development, which enabled
educators to provide structure in the experience, use goal-oriented practice, and
interactions with the learners that progressed through mathematical
understandings;

• Knowledge of how young learners learn, including selection of appropriate tools
to use in the experience, and

• Purposeful practice not developed, in which children’s meaningful mathemati-
cal interactions with each other and educator assessment of learning were not
evident.
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The professional learning was deemed to have succeeded in providing devel-
opmental opportunities for the educators’ mathematical content knowledge,
specifically number sense. It was promising to note that identified gaps in content
knowledge could be addressed by professional learning, provided it was strongly
connected to the classroom. However, Feza and Bambiso (2016) proposed that
greater consideration of reflecting and planning was needed to assist the educators
in developing their children’s understanding of number knowledge and counting.

14.4.2 Empowering Pre-school Teachers to Teach
Mathematics (Hassidov and Ilany 2016)

Hassidov and Ilany (2016) argued, in reference to Philippou and Christou (1998),
that the teacher’s attitude is a central factor influencing the mathematical devel-
opment of children. As a result, Hassidov and Ilany proposed that teachers should
be supported through teaching and learning programs and professional learning.
They developed a coaching program to foster pre-school teacher attitudes to
mathematics and learning and teaching (“Senso-Math Pre-school”). Following from
Lloyd and Modlin’s (2012) recommendations, pre-school teachers received training
on integrating facilitators into pre-school environments, support with mathematical
content required for early childhood education, and working in one-to-one men-
toring relationships. They were also trained in implementing the Senso-Math
Pre-school program, and an accompanying resources kit. Hassidov and Ilany (2016)
trained 500 facilitators in the pilot program to teach the Senso-Math Pre-school
program in schools. The focus of the research was on whether the program would
increase the facilitator’s realisation of the need for teaching mathematics in
pre-school, their self-confidence for teaching mathematics, and their awareness of
developing their careers, as well as whether the program provided appropriate tools
and support.

Both quantitative and qualitative research methods via a 22-item questionnaire
and interviews were used by Hassidov and Ilany (2016) to investigate the impact of
a professional learning program for becoming mathematics specialist teachers so
that they could assume the role of facilitators within pre-school classrooms. Results
from the 49 participants randomly selected from the 500 facilitators in the pilot
program indicated that the course was positively viewed by all participants,
although the lowest score related to changing careers to mathematics teaching. The
Senso-Math program and resources kit were perceived favourably and the program
was regarded as effective in developing mathematical understandings, teaching
strategies for mathematics in pre-school, and self-confidence in teaching mathe-
matics. The presence of the facilitators in the pre-primary classrooms was reported
to have made the mathematical experiences interesting and challenging. These

14 Early Childhood Educators’ Issues and Perspectives … 279



findings highlighted the importance of professional learning for teaching mathe-
matics in pre-school.

14.4.3 Addressing Mathematical Knowledge for Early
Childhood Educators in Japan (Goto 2016)

Goto (2016) analyzed the differences in the mathematical education of early
childhood educators in Japan. Japan has two historical forms of early childhood
services, hoikuen and yochien. There are distinct differences in how these forms are
viewed by the community, with hoikuen seen more as long daycare and yochien
seen as more educative (Hayashi and Tobin 2013). In 2006, the Ministry of
Education, Culture, Sports, Science and Technology and the Ministry of Health,
Labour and Welfare (as cited in Hayashi and Tobin 2013, p. 36) created a service
that combined aspects of both hoikuen and yochien, nintei kodomo-en, with the
educational focus of yochien and the early age range of hoikuen (Chesky 2011;
Hayashi and Tobin 2013). This is reflected in the standards for content and method,
where the nintei kodomo-en had to address those for both hoikuen, the Guidelines
for Nursery Care at Day Nurseries, and yochien, the National Curriculum Standard
for Kindergartens (Abumiya n.d.). There are, however, differences in the training
and licencing of the educators at these two services (Hedge et al. 2014). Educators
at hoikuen can either complete courses at college or university that address early
childhood care and education or can work at a hoikuen for two years then pass a
nationally-set exam; educators at yochien must complete university or college
courses that provide a specialisation (which are set by the Ministry of Education,
Culture, Sports, Science, and Technology 2008) and complete practicum hours to
obtain a licence.

Goto’s (2016) poster focused also on the issues of qualifications; that the edu-
cators working with children in early childhood should be qualified, regardless of
whether this is at hoikuen, yochien or ninte kodomo-en. It was considered central for
educators to have an understanding of the mathematics children encounter in formal
schooling (that is, from grade 1) and to have the mathematical understandings
themselves. Goto reasoned that these are both needed to ensure children experience
activities that will provide a foundation for the mathematics they will encounter in
formal schooling. However, the curriculum content in the National Curriculum
Standard for Kindergarten was described by Goto as lacking mathematics, with the
example provided from the curriculum area of environment including aspects of
mathematical knowledge involved with numbers and shapes. As a consequence, it
is proposed that early childhood educators need to be educated to preview the
curriculum for formal schooling; to identify mathematical understandings and skills
and then use these to determine what mathematical experiences should be provided
in early childhood.
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14.5 The Micro-level: Interventions Programs
in Mathematics for Pre-school Children

In their review of the effectiveness of programs designed as interventions for
mathematics in early childhood, Wang et al. (2016) found that the intervention
programs did impact on children’s learning. Interventions programs in mathematics
in early childhood have been found to support young children who have not had
opportunities to develop their mathematical understandings and skills in the early
years (Clements et al. 2013, p. 2).

14.5.1 From Thought to Reality: Implementation
of an In-school Mathematics Training in South
Africa (Fritz-Stratmann et al. 2016)

The presentation focused on an intervention designed to be used with young
children. Fritz-Stratmann et al. (2016) describe the enactment of the intervention to
assist children in early childhood centres to develop early arithmetic concepts. The
rationale for this program was supported by reference to Aunola et al. (2004), who
found that the growth of mathematical performance was cumulative in grades 1 and
2. Krajewski and Schneider (2009) found that nonverbal intelligence influenced
mathematical performance in pre-primary, and pre-primary mathematical perfor-
mance related to early quantity-number competencies could predict grade 4
mathematical performance. The findings of both studies lead to further research to
support numeracy and general metacognitive skills with young children.

Fritz-Stratmann et al. (2016) examined the use of the mathematical program,
Calculia, in South Africa. The program used a test assessing early number devel-
opment and calculation that was developed in Germany and translated into four
South African languages (see Fritz et al. 2014). The program was based on the
arithmetic competence level model described by Fritz et al. (2013). The model
contained six levels of understandings that children aged 4–8 years progressed
through in their development of arithmetic. The aspects of the Calculia grade-R
program comprised three modules. The first module contained pre-numeric con-
cepts and was provided to ensure all children had the opportunity to develop
appropriate arithmetic concepts. The second and third modules addressed number
word chain, ordinal number line and cardinality and decomposability (Fritz et al.
2013). Findings indicated that special consideration was needed to provide cultural
contexts appropriate for the children and sufficient training for the teachers was
essential for the effective use of the program. The implementation of the program
needed to be iterative to feed back into the research to improve the program and
subsequent implementations.
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14.6 Discussion

14.6.1 The Macro-level: Curriculum

Three presentations of the TSG1 focused on different aspects at the macro-level
which influenced the opportunities for mathematical learning in pre-school.
Cultural context can impact on early childhood curricula, as outlined by Lao
(2016) in the comparison of curricula within different locations in East Asia. Lao
proposed that this, in turn, could then impact on the potential mathematical
achievement of the children through the organisation, aims, objectives and
mathematical content contained in the curricula. The presentation by Fosse and
Lossius (2016), however, showed that this might not be a direct effect but, rather,
influenced by the educators’ interpretation of the curricula. They considered
opportunities for children to be active agents in their mathematical learning as well
as preparating them for the mathematics they will encounter once they attend
formal schooling. These aspects were linked to Lembrér and Meaney’s (2014)
ideas of being and becoming.

Viewing children entering early childhood learning environments as not capable
of mathematics risks damaging their later educational opportunities (Baroody et al.
2006). If opportunities are not created for children to experience mathematics, their
development of mathematical skills and understandings may be limited and can
impact on their later development (Watts et al. 2014). Opportunities for play need
careful consideration in the pre-school environment, particularly as the educator
controls the space created, access to resources, the structure of the environment
(Martinsen 2015) and establishes a relationship between the resources used and the
pedagogical purpose (Björklund 2014). The mathematical focus of activities could
be limited (Fosse and Lossius 2016), and this can be considered detrimental to
learning (Lewis et al. 2015). This issue was raised in the presentation from Lembrér
and Johansson (2016), particularly as regulatory processes might constrain the
pre-school environment. These constraints could also lead to a greater focus on the
child developing formal mathematical understandings (becoming), rather than on
who they are (being). However, they noted that it would be the educator who
determines the balance between the children being and becoming.

14.6.2 The Meso-level: Educators’ Mathematical
Competence

Early childhood educators’ competence was the central topic of the presentations
relating to the meso-level. All authors argued that a fundamental understanding of
mathematics is the basis for high-quality early mathematics education. However,
different authors used different conceptualizations to measure competence.
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Several papers used the Shulman framework (Bruns et al. 2016; Dunekacke et al.
2016; Jenßen et al. 2016; Tsamir et al. 2016) and found that pre-school educators’
competence incorporated aspects of mathematical content knowledge, mathematical
pedagogical content knowledge, general pedagogical content knowledge and
affective-motivational aspects as well as the perception of mathematics situations.
Although a different theoretical framework was utilized, Cooke (2015) identified
and measured the same facets of educator’s math-related competence, indicating
that these facets are quite stable from different research approaches.

Bruns et al. (2016) point out that different projects produced different findings
about the relationship between these competency facets. This was seen in the TSG1
presentations: For example Dunekacke et al. (2016) found no significant correla-
tions between mathematics anxiety and either MPCK or perceptions of mathematics
situations, whereas Tsamir et al. (2016) found that self-efficacy for identifying
repeating patterns and errors in repeating patterns was well-matched to the
pre-school teacher understandings. However, this was not the case for continuations
of repeating patterns, with high levels of self-efficacy not supported by demon-
strated knowledge. Furthermore, earlier work by Jenßen et al. (2015) found a
negative relationship between mathematics anxiety and mathematical content
knowledge as measured in the mathematical domains of number and operations,
quantity and relations, geometry, and data, combinatorics, and chance. Cooke
(2016) did not find significant relationships between math-anxiety and mathemat-
ical content knowledge. These differences indicate that further research should
address the dispositional facets more closely by using different measures and more
representative samples; and examine their relationship to early childhood educators’
performance, and the quality of the experiences they create to engage children in
mathematics. Rasche et al. (2016) already outlined one future study in this direction
and describe how the Pro-KomMa project will compare results from the KomMa
test instruments to the in-service teacher responses to situations set up to examine
their situation specific skills (perception and interpretation) and the activities they
created to address their children’s needs in a learning environment (activities).

Another line of research on the meso-level focused on the development of
educators’ competence in professional learning courses. Feza and Bambiso (2016)
and Hassidov and Ilany (2016) both reported successful approaches that provided
opportunities for educators to address these competencies. The changes Hassidov
and Ilany identified in the attitudes of the facilitators in regard to the importance of
mathematics and confidence in teaching mathematics both have the capacity to
impact on the children, the educators’ work and the mathematical experiences the
educators create (MacDonald 2015). The attitudinal changes resulting from pro-
fessional learning for educators can also impact positively on children’s mathe-
matical learning and, potentially, the parents within that early childhood setting
(Perry and MacDonald 2015).
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14.6.3 The Micro-level: Mathematical Interventions
for Children’s Learning

Fritz-Stratmann et al. (2016) demonstrated that developmental-model based pro-
grams could be used in early childhood settings but noted the high requirement for
the training to be effective. Focusing on one content area (in this case, arithmetic)
was one of the factors that Wang et al. (2016) found increased the likely effec-
tiveness of an intervention program. Clements et al. (2013) reiterated the impor-
tance of the use of research-based programs, stating that developmentally
sequenced activities can enable teachers to “become aware of, assess, and reme-
diate” (p. 10). Targeting children early may improve both their first years of formal
schooling and their later mathematical achievement (Watts et al. 2014), and
development-oriented interventions can help children develop mathematical
understandings (Fritz et al. 2013). However, there needs to be careful monitoring to
ensure the impact of the intervention does not fade away (Sarama and Clements
2015).

14.6.4 The Educator—The Common Focus

Although opportunities for children to develop mathematical understandings and
skills are influenced by several conditions discussed in this chapter, the early
childhood educator is the common feature across the three levels. At the
macro-level, direction is provided by curricula and its context (Lao 2016), together
with the educator’s enactment (Fosse and Lossius 2016) and interpretation
(Lembrér and Johansson 2016) of the curricula. At the meso-level, it is the edu-
cator’s mathematical knowledge (Bruns et al. 2016), pedagogical knowledge
(Jenßen et al. 2016), beliefs (Cooke 2016), and perceptions, and combinations of
these (Dunekacke et al. 2016). In addition, the opportunities provided through
professional learning to improve educator content knowledge and self-efficacy
(Feza and Bambiso 2016), their attitudes towards mathematics (Hassidov and Ilany
2016), and their understanding of the mathematics, will enable children to learn in
formal schooling (Goto 2016). At the micro-level, it is the capacity of educators to
effectively select and implement intervention programs that address children’s
mathematical needs (Fritz-Stratmann et al. 2016).

14.7 Conclusion

In the early childhood setting, the primary influence is the early childhood educator
who largely determines what occurs in their classroom. However, there are several
different factors that contribute to the decisions of the educator at a macro-, meso-,
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and micro-level. At a macro-level, curricula inform educators about their role of
enabling children to develop mathematical understandings. These influences can be
considered in terms of comparisons between different curricula internationally, or as
tensions between concurrent curricula and regulation. Thereby regulation at the
macro-level where the curriculum is implemented through the education system,
plays a central role in early mathematics education. At the meso-level, many studies
have investigated the impact of the educators’ skills, understandings and beliefs
about older children’s development of mathematics (e.g., Bates et al. 2013; Hill and
Ball 2009). Nonetheless there is insufficient research addressing what the educator
brings to the early childhood learning environment (Dunekacke et al. 2015) and
how the different competence facets are related. Professional learning programs that
support educators’ teaching of mathematics in pre-schools can bring research into
the classroom, and can influence the scope and quality of early mathematics
learning (Clements et al. 2013). At the micro level, intervention programs can
provide an innovative and systematic approach to developing children’s mathe-
matical understandings.

The existence of the role of the early childhood educator within these three levels
makes the role a complex and challenging one that is constantly evolving and
stimulating. It seems convincing that efforts to support early mathematical educa-
tion cannot be successful by just changing curricula or implementing intervention
programs; but most importantly we must have to consider the pivotal role of early
childhood educators in all three levels. The research presentations and discussions
of the TSG1 have provided a broad range of studies that are providing new insights
into different approaches, but further longitudinal and comparative research is
necessary to support this idea.
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Chapter 15
Early Childhood Teachers’ Knowledge
and Self-efficacy for Evaluating Solutions
to Repeating Pattern Tasks

Pessia Tsamir, Dina Tirosh, Esther S. Levenson and Ruthi Barkai

Abstract This study examines three aspects of early childhood teachers’ patterning
knowledge: identifying features, errors and appropriate continuations of repeating
patterns. Fifty-one practicing early childhood teachers’ self-efficacy is investigated
in relation to performance on patterning tasks. Results indicated that teachers held
high self-efficacy beliefs about solving patterning tasks correctly. Regarding per-
formance, teachers were able to identify repeating patterns and errors in those
patterns. However, when evaluating ways in which a repeating pattern may be
continued, teachers found it more difficult to choose correct continuations for
patterns that did not end with a complete unit of repeat than for those patterns that
did. They tended to only choose continuations which would end the pattern with a
complete unit of repeat. These results are discussed in light of findings from related
previous studies.
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15.1 Introduction

15.1.1 Knowledge and Teaching of Early Childhood
Mathematics

It is well known that teachers’ mathematical knowledge has an impact on their
teaching of mathematics (e.g., Shulman 1986). For early childhood teachers, this
knowledge is no less important. A joint position paper published in the United
States by the National Association for the Education of Young Children (NAEYC)
and the National Council for Teachers of Mathematics (NCTM) advocates that high
quality, challenging, and accessible mathematics education for children from three
to six years is a vital foundation for future mathematics learning (NAEYC and
NCTM 2010; NCTM 2013). As such, they recommend that teachers of young
children should learn the mathematics content that is directly relevant to their
professional role. Similarly, the Australian Association of Mathematics Teachers
(AAMT) and Early Childhood Australia (ECA) published a joint position paper
calling for the adoption of “pedagogical practices that encourage young children to
see themselves as mathematicians” (AAMT/ECA 2006, p. 2). They too recom-
mended that early childhood staff be provided with “ongoing professional learning
that develops their knowledge, skills and confidence in early childhood mathe-
matics” (p. 4). One study found that mathematical content knowledge is a signif-
icant predictor of an early childhood teacher’s ability to perceive learning situations
and to plan educational actions that foster learning (Dunekacke et al. 2015).
Likewise, Bruns et al. (2016) found that early childhood teachers’ mathematical
content knowledge is correlated with their mathematical pedagogical content
knowledge. Based on an analysis of early childhood teacher education curricula in
Germany, mathematical content knowledge for early childhood teachers includes
mathematical domains (e.g., number and operations, quantity and relations,
geometry, data, combinatorics and chance), as well as mathematical processes (e.g.,
problem solving, modeling, communicating, representing, reasoning, and patterns
and structuring) (Jenßen et al. 2016). This present study focuses on early childhood
teachers’ knowledge for teaching patterning.

15.1.2 Self-efficacy and Teaching Mathematics

Another factor related to teachers’ classroom actions is teachers’ self-efficacy.
Bandura defined self-efficacy as “people’s judgments of their capabilities to orga-
nize and execute a course of action required to attain designated types of perfor-
mances” (1986, p. 391). Bates et al. (2011) found that teachers who reported higher
mathematics self-efficacy were more confident in their ability to teach mathematics
than teachers with a lower mathematics self-efficacy. Hackett and Betz (1989)
defined mathematics self-efficacy as, “a situational or problem-specific assessment
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of an individual’s confidence in her or his ability to successfully perform or
accomplish a particular [mathematics] task or problem” (p. 262). Teacher
self-efficacy may be conceptualized as “a teacher’s individual beliefs in their
capabilities to perform specific teaching tasks at a specified level of quality in a
specified situation” (Dellinger et al. 2008, p. 752). Teacher self-efficacy has been
related to teachers’ effort in teaching, persistence and resilience in the face of
difficulties with students, enthusiasm, and commitment (e.g., Allinder 1994).

For early childhood teachers, it has been shown that their instructional
self-efficacy and efficacy towards creating a positive climate was related to the
quality of instructional support for concept development and emotional support for
children. In turn, this was found to be related to language development (Guo et al.
2010). Regarding early childhood teachers’ self-efficacy and the teaching of
mathematics, most studies investigated teachers’ beliefs regarding their general
ability to teach and not their specific ability to teach mathematics (McMullen 1997).
In one study (Bates et al. 2011), early childhood prospective teachers’ mathematics
teaching self-efficacy was studied. It was shown that prospective teachers who felt
good about their mathematical abilities were more likely to also feel good about
their ability to teach mathematics than pre-service teachers who did not feel good
about their mathematical abilities. However, the questionnaire in that study inclu-
ded very general statements such as “I will continually find better ways to teach
mathematics”. The study did not focus on specific mathematical domains or on
specific mathematical tasks. Yet, levels of self-efficacy are not necessarily equal in
all domains and tasks (Bandura 1997). Hence, there is a need to devise instruments
and interventions that will explicitly address teachers’ self-efficacy. This present
study investigates early childhood teachers’ self-efficacy related to patterning
activities and the relationship between their knowledge and self-efficacy beliefs.

15.2 Mathematical Patterning in Early Childhood

The importance of engaging young children in patterning activities is supported by
mathematicians, mathematics education researchers and curriculum developers
(Sarama and Clements 2009). There are several reasons for this support. First,
pattern exploration and recognition may support children as they learn a variety of
mathematical skills developed at this age. For example, recognizing repeating
patterns may help children develop skip counting, such as 5, 10, 15, 20, 25, 30…
where the ones digit forms the pattern 5, 0, 5, 0, … Mulligan and Mitchelmore
(2018) found that recognizing a series of objects or symbols arranged in a definite
order (e.g., repeating patterns), and being able to count in groups (e.g., counting by
2 s), may be part of a broader construct called Awareness of Mathematical Pattern
and Structure (AMPS). In other words, recognition and analysis of patterns can
provide a foundation for the development of algebraic thinking and provide chil-
dren with the opportunity to observe and verbalize generalizations as well as to
record them symbolically (Threlfall 1999). In fact, in the introduction to the
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ICME-13 topical survey of the Topic Study Group on Teaching and Learning of
Early Algebra it states that, “Mathematical relations, patterns, and arithmetical
structures lie at the heart of early algebraic activity” (Kieran et al. 2016, p. 1).
Mason (2016), in his presentation for this Topic Study Group, suggested that it is
never too early to begin thinking algebraically. He suggested several patterning
activities for young children that provide opportunities for generalization and
abstraction.

A third reason for promoting young children’s pattern awareness is the possible
relationship between structural awareness and other mathematical competencies.
Makar (2016) suggested a connection between patterning and inferential practices
in statistics. Just as patterning requires the ability to see beyond individual elements
in a pattern and to focus on the ‘unit’ which repeats, making predictions based on
data requires thinking of data as an aggregate, rather than as individual points.
Lüken and Kampmann (2018) found that first-grade students who had participated
in a program for promoting pattern and structure abilities improved their arithmetic
skills to a greater degree than students who did not participate in the program.
Schmerold et al. (2017) also found that patterning was related to working memory
and cognitive flexibility (i.e., recognizing that different rules are appropriate for
different tasks and being able to change the basis for one’s responses accordingly).
In other words, patterning was found to be related to executive function.

15.2.1 Repeating Patterns

While there are several types of patterns, this study focuses on repeating patterns.
Repeating patterns are patterns with a cyclical repetition of an identifiable ‘unit of
repeat’. For example, a pattern of the form ABBABBABB… has a (minimal) unit
of repeat of length three. Several studies have investigated ways in which young
children engage with repeating patterns. For example, Seo and Ginsburg (2004)
found that young children build block towers with an ABAB pattern. In another
study, Rittle-Johnson et al. (2013) found that when young children were asked to
duplicate or extend an ABB pattern, some could not produce more than one unit of
repeat correctly while others reverted to producing an ABAB pattern. Papic et al.
(2011) found that some children may be able to draw an ABABAB pattern from
memory by recalling the pattern as single alternating colors of red, blue, red, blue,
but this was basically recalling that after red came blue and after blue came red.
However, when shown a more complicated pattern such as ABBC, they could not
replicate the pattern.

Some researchers have described a possible progression of patterning compe-
tencies. Lüken (2018) investigated young children’s engagement with patterns. She
found that three-year olds could not copy a simple pattern, even when it was visible
and placed in front of them. When asked to compare patterns, they noticed only
length and color. After one year of kindergarten, at age four, children were able to
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correctly solve more tasks and more complex patterns, although patterns with a
double element (ABB) were still difficult.

Mulligan and Mitchelmore (2018) described four levels of structural awareness
connected to patterns: those who struggle (e.g., they copy block patterns by
matching one by one), those who easily recognize simple patterns, those who are
aware of fundamental structures, and those who are aware of the generality of
fundamental structures. Recognizing and identifying the unit of repeat in a
repeating pattern is a step in both the second and third levels of structural aware-
ness. The third level also includes being able to see relations to other patterns. In
addition, Mulligan and Mitchelmore described five structural groupings, among
which the first is sequences. Sequences include recognizing a series of objects or
symbols arranged in a definite order or using repetitions, such as repeating patterns.

The transition between patterning and algebra is not necessarily simple.
According to McGarvey (2012), the tendency to focus on successive elements and
recursive reasoning when extending a pattern detracts from algebraic thinking and
from finding a general rule. She found that when identifying, describing and jus-
tifying patterns, the most common approach for both students and teachers was to
point and say aloud sequential elements or attributes in an image such as
“white-black-white-black.” At times, this led to incorrect identifications, such as
when a child labeled a picture as representing a pattern saying, “small-big-small-
small-medium.” McGarvey (2012) advocated helping children focus on the unit of
repeat.

In our own studies of young children (Tsamir et al. 2015), we found that when
children were requested to choose possible ways to continue repeating patterns,
more children were able to continue a pattern which ended with a complete unit of
repeat than a pattern which ended with a partial unit. When deciding whether or not
to choose some continuation, some children merely seemed to guess, while others
exhibited some strategy. One strategy was to align possible continuation with the
beginning of the pattern to see if it matched. Another was to physically move each
continuation to the end, trying it out before deciding whether or not it was
appropriate. One child chose continuations based on the last element of the pattern,
claiming that the next element cannot be the same as the last element of the given
patterns. It was suggested that in addition to promoting children’s recognition of the
unit of repeat, we should encourage children to recognize the sequencing aspect of
the pattern and how to continue a pattern from any point.

In the above studies, children were observed without adult intervention.
However, adult guidance could help children benefit further from engaging with
pattern activities. Previous studies found that some teachers lack both knowledge
and self-confidence to teach patterning (Papic 2007; Papic and Mulligan 2007).
Waters (2004) found that teachers provided limited worthwhile patterning oppor-
tunities for children, and that even when children engaged spontaneously in pat-
terning, teachers may have failed to capitalize on the child’s interest, missing out on
opportunities to extend their knowledge in patterning (Fox 2005). There is clearly a
need for systematically studying early childhood teachers’ knowledge for teaching
patterns, as well as a need for providing professional development for early
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childhood teachers related to patterning. This study investigates early childhood
teachers’ knowledge for teaching repeating patterns.

15.3 The Cognitive Affective Mathematics Teachers
Education (CAMTE) Framework and Related
Studies

For the past several years we have been investigating early childhood teachers’
knowledge and self-efficacy for teaching number concepts and geometry using the
Cognitive Affective Mathematics Teachers Education (CAMTE) framework (e.g.,
Tirosh et al. 2014). Table 15.1 provides the components grouped by knowledge and
self-efficacy. Cell 1 attends to teachers’ knowledge for producing solutions. For
example, within the context of number concepts, Cell 1 includes being able to
compare the number of elements in two sets using a variety of strategies. Cell 2
attends to teachers’ knowledge for evaluating solutions, such as evaluating justi-
fications for why one set has more elements than another set. Cell 3 attends to
knowledge of students’ conceptions such as which number symbols are more dif-
ficult for children to learn, and what are children’s common mistakes related to the
counting sequence. Cell 4 attends to knowledge for designing and evaluating tasks,
such as knowing which tasks have the potential to foster children’s acceptance of
the one-to-one principle. Cells 5–8 address teachers’ self-efficacy related to each of
the knowledge Cells 1–4 respectively.

The CAMTE framework draws on Shulman (1986), who identified
subject-matter knowledge (SMK) and pedagogical content knowledge (PCK) as
two major components of teachers’ knowledge necessary for teaching. As can be
seen, we differentiated between two components of teachers’ SMK: being able to
produce solutions, strategies, and explanations, and being able to evaluate given
solutions, strategies, and explanations. Regarding PCK, and in line with Ball et al.
(2008) we differentiated between knowledge about students and knowledge of
designing and evaluating tasks. The CAMTE framework also drew upon the work
of Bandura (1986) and took into consideration that self-efficacy beliefs may impact
on teaching. Thus, for each knowledge cell in the framework, there is a related
self-efficacy cell.

15.3.1 First Studies Involving the CAMTE Framework

Our first studies involving the CAMTE framework investigated early childhood
teachers’ knowledge and self-efficacy for teaching number concepts (e.g., verbally
counting forwards and backwards, and enumerating objects) (Tirosh et al. 2012)
and for teaching geometrical figures (e.g., triangles, pentagons, and circles)

296 P. Tsamir et al.



T
ab

le
15

.1
T
he

co
gn

iti
ve

af
fe
ct
iv
e
m
at
he
m
at
ic
s
te
ac
he
r
ed
uc
at
io
n
fr
am

ew
or
k

Su
bj
ec
t-
m
at
te
r

Pe
da
go

gi
ca
l-
co
nt
en
t

So
lv
in
g

E
va
lu
at
in
g

St
ud

en
ts

T
as
ks

K
no

w
le
dg

e
C
el
l1

:p
ro
du

ci
ng

so
lu
tio

ns
C
el
l
2:

ev
al
ua
tin

g
so
lu
tio

ns
C
el
l
3:

kn
ow

le
dg

e
of

st
ud

en
ts
’

co
nc
ep
tio

ns
C
el
l
4:

de
si
gn

in
g
an
d
ev
al
ua
tin

g
ta
sk
s

Se
lf
-e
ffi
ca
cy

C
el
l
5:

m
at
he
m
at
ic
s

se
lf
-e
ffi
ca
cy

re
la
te
d
to

pr
od

uc
in
g
so
lu
tio

ns

C
el
l
6:

m
at
he
m
at
ic
s

se
lf
-e
ffi
ca
cy

re
la
te
d
to

ev
al
ua
tin

g
so
lu
tio

ns

C
el
l
7:

pe
da
go

gi
ca
l-
m
at
he
m
at
ic
s

se
lf
-e
ffi
ca
cy

re
la
te
d
to

ch
ild

re
n’
s

co
nc
ep
tio

ns

C
el
l
8:

pe
da
go

gi
ca
l-
m
at
he
m
at
ic
s

se
lf
-e
ffi
ca
cy

re
la
te
d
to

de
si
gn

in
g
an
d

ev
al
ua
tin

g
ta
sk
s

15 Early Childhood Teachers’ Knowledge and Self-efficacy … 297



(Tirosh et al. 2011). For example, we found that when investigating teachers’
knowledge and self-efficacy for identifying two-dimensional figures, teachers had a
higher regard for their ability to identify triangles and circles, than their ability to
identify pentagons. This limitation in self-efficacy was matched on their perfor-
mance in identification tasks. When asked to identify several examples and
non-examples of these figures, teachers’ score for identifying pentagons was lower
than their scores for identifying triangles and circles. This was mostly due to their
incorrect identification of a curved-sided ‘pentagon’ as a pentagon.

In a related study, Tirosh et al. (2014) investigated early childhood teachers’
knowledge and self-efficacy for defining triangles and circles. Teachers were
requested to write a definition for a triangle and for a circle and to then identify
various figures as examples or non-examples. Definitions were analyzed in terms of
critical attributes, whether those attributes were sufficient to define the targeted
concept, whether the definition was sufficiently detailed, or whether extra
non-critical attributes constricted the targeted concept. In addition, the use of pre-
cise mathematical language versus everyday terminology was assessed. For the
triangle, teachers’ high self-efficacy for defining triangles corresponded with their
acceptable triangle definitions. However, teachers’ relatively high self-efficacy for
defining circles, did not correspond with their knowledge of circle definitions; many
of the teachers’ circle definitions were missing references to critical attributes. Two
possible reasons were given for this dissonance. First, it could be that teachers had a
clear concept image of circles and felt that this would enable them to define circles
as well. Another reason could be that teachers equated definitions of geometrical
figures with descriptions of geometrical figures, and thought that if they described a
circle it could be considered as a definition. To summarize, the above studies
showed that even within the same mathematical domain (two-dimensional geo-
metric figures), for some tasks there was a strong correspondence between
self-efficacy and knowledge levels, but this was not consistent for other tasks.

15.3.2 The Study of Teacher Knowledge and Self-efficacy
Related to Patterning

According to the Israel National Mathematics Early Childhood Curriculum
(INMECC 2008) before entering first grade, children should be able to identify,
draw, and continue repeating patterns as well as use mathematical language to
describe these patterns. In order to achieve this aim, the teacher has several tasks,
among them making patterning activities available to children and demonstrating to
children how, for example, a pattern may be continued. Thus, it is critical that
teachers know how to draw, identify, and continue a repeating pattern.

Recently, we have begun to use the CAMTE framework to investigate early
childhood teachers’ knowledge and self-efficacy for teaching repeating patterns.
Specifically, related to Cells 1 and 5 of the CAMTE framework (see Table 15.1),
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we investigated early childhood teachers’ knowledge and self-efficacy regarding
three different patterning tasks—defining repeating patterns, drawing repeating
patterns, and continuing repeating patterns (Tirosh et al. 2015). In that study,
teachers were asked to write a definition for repeating patterns (i.e., to answer the
question: what is a repeating pattern?), draw a repeating pattern, and to continue six
different repeating patterns with different structures. In general, we found that
teachers had a high level of self-efficacy for drawing and continuing repeating
patterns which matched their performance on drawing and continuing tasks.
Another finding was their strong tendency to end patterns with a complete unit of
repeat. As for the task of defining repeating patterns, the picture was more complex.
On the one hand, teachers indicated lower self-efficacy for defining than they had
for drawing and continuing, which coincided with the difficulties they had in
actually writing definitions for repeating patterns. On the other hand, their
self-efficacy was still relatively high. Once again, self-efficacy and knowledge
levels did not always match. To summarize, teachers’ knowledge for drawing and
continuing repeating patterns matched their self-efficacy but less of a match was
found when defining repeating patterns. While that study focused on how teachers
actually solved pattern tasks and their related self-efficacy, this present study
focuses on teachers’ knowledge for evaluating the solutions of various repeating
pattern asks, and their reported self-efficacy (Cells 2 and 6 of the CAMTE
framework).

This study complements the previous study by examining early childhood
teachers’ evaluations of possible ways for continuing repeating patterns. This is an
important skill for teachers. As children begin to explore patterns and engage with
patterning activities, it is the teacher’s job to observe and evaluate the children’s
solutions. Although teachers may have a certain tendency to end patterns with a
complete unit of repeat, it does not mean that they are unaware of other acceptable
ways. Taken together, the two studies exemplify the use of the CAMTE framework
as a research tool and the importance of investigating teachers’ knowledge of
producing solutions (such as actually drawing continuations of patterns) along with
their knowledge of evaluating solutions (such as evaluating the appropriateness of
different continuations).

15.4 Research Aim and Questions

The aim of this study was to investigate early childhood teachers’ knowledge and
self-efficacy for teaching repeating patterns, focusing on early childhood teachers’
SMK and self-efficacy related to evaluating solutions (Cells 2 and 6 of the CAMTE
framework). Specifically, the research questions were: (1) Are early childhood
teachers able to identify examples and non-examples of repeating patterns, identify
mistakes in given repeating patterns, and identify appropriate continuations of
repeating patterns? (2) What are early childhood teachers’ self-efficacy beliefs
regarding their ability to identify examples and non-examples of repeating patterns,
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mistakes in given repeating patterns, and appropriate continuations of repeating
patterns? (3) What are the relationships between teachers’ knowledge and
self-efficacy for three tasks: (i) identifying examples and non-examples of repeating
patterns, (ii) identifying mistakes in given repeating patterns, and (iii) identifying
appropriate continuations of repeating patterns?

15.5 Method

15.5.1 Context and Participants

Participants in this study were 51 early childhood teachers of children aged four to
six years who were enrolled in municipal programs, and who attended one of the
CAMTE professional development programs. All teachers had a first degree in
education. Many prospective early childhood teachers in Israel attend only two
mathematics education courses during their four-year education degree. These
courses sometimes include one semester for learning about the development of
number concepts and one semester for the development of geometrical concepts.
Thus, providing ongoing professional development focused on early childhood
mathematics education is imperative. Yet, while professional development is
strongly recommended, and teachers are given credit for courses taken, the choice
between programs is varied and teachers are not necessarily mandated to specifi-
cally enroll in mathematics education programs.

15.5.2 Instruments and Procedure

At the beginning of the program, teachers were asked to fill out a two-part ques-
tionnaire which began with self-efficacy statements and continued with knowledge
questions. The self-efficacy statements were as follows:

• I am able to identify a drawing of a repeating pattern.
• If I am shown a repeating pattern with a mistake, I am able to identify the

mistake.
• If I am shown a repeating pattern with a few possible ways of continuing that

pattern, I am able to identify which continuations are acceptable.

A four-point Likert scale was used to rate participants’ agreements with
self-efficacy statements:

1. I do not agree that I am capable.
2. I somewhat agree that I am capable.
3. I agree that I am capable.
4. I strongly agree that I am capable.
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After completing the first part of the questionnaire, participants returned it to the
researcher who then gave them the second part of the questionnaire. The second
part had three tasks. For the first task, participants were presented with four
drawings and were told that each drawing was supposed to represent a repeating
pattern, but that a mistake in the drawing needed to be corrected in order for the
drawing to be a repeating pattern. Teachers were asked to circle the mistake (see
Fig. 15.1 for an example). The second task on the questionnaire consisted of four
drawings and participants were asked to write down for each drawing if it did or did
not represent a repeating pattern (see Fig. 15.2 for an example).

The third task was a series of four mini-tasks (see Figs. 15.3, 15.4, 15.5 and
15.6). Each mini-task included one repeating pattern and four suggested ways of
continuing the pattern. Patterns and continuations were chosen in order to vary
between patterns and continuations that ended in a complete unit of repeat and those
that ended mid-cycle. In addition, inappropriate continuations were chosen based
on children’s common responses found in previous studies, such as choosing a
complete unit of repeat as a continuation, even when it is inappropriate (Tsamir
et al. 2015). As can be seen below, all of the presented patterns included a minimum
of three repetitions of the minimal unit of repeat.

Fig. 15.1 Find the mistake in this repeating pattern

Fig. 15.2 Does this drawing represent a repeating pattern?

C1   C2 C3 C4 

Fig. 15.3 Pattern 1 (P1) and four continuations

C1 C2 C3 C4 

Fig. 15.4 Pattern 2 (P2) and four continuations
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For each pattern and four suggested continuations, the following instructions
were given: Circle all acceptable continuations for the given pattern. Table 15.2
offers an analysis of the given patterns and their corresponding appropriate con-
tinuations. Notice that the first and second patterns (P1 and P2) have only one
acceptable way for continuing the pattern, while the third and fourth patterns (P3
and P4) have two acceptable ways for continuing that pattern.

C1 C2 C3 C4

Fig. 15.5 Pattern 3 (P3) and four continuations

C1 C2 C3 C4 

Fig. 15.6 Pattern 4 (P4) and four continuations

Table 15.2 Task 3—analysis of patterns

Pattern Structure Ends with Correct continuations

P1 ABCD A
complete
cycle

One correct continuation (C3) with a complete cycle

P2 ABC A
complete
cycle

One correct continuation (C4) with a complete cycle

P3 ABB Mid-cycle One correct continuation ending mid-cycle (C1) and one
correct continuation ending with a complete cycle (C4)

P4 ABB A
complete
cycle

One correct continuation ending mid-cycle (C1) and one
correct continuation ending with a complete cycle (C2)
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15.6 Results

15.6.1 Self-efficacy Beliefs

Table 15.3 presents the relative frequencies (as a percentage) of the teachers’ levels
of self-efficacy for the three evaluation tasks. Recall that a scale of 1–4 (4 being the
strongest agreement) was used to score teachers’ self-efficacy beliefs. As shown in
Table 15.3, at least half of the teachers tended to strongly believe in their ability to
identify examples of repeating patterns, to identify mistakes in repeating patterns,
and to identify possible acceptable ways of continuing patterns.

The means and standard deviations for each of the three self-efficacy questions
were configured. Table 15.4 summarizes these scores by task. The means were
compared using an analysis of variance with repeated measures. No significant
differences at the 0.05 significance level were found between the overall
self-efficacy scores for each task.

15.6.2 Teacher Knowledge

In general, teachers were able to find the error in a given ‘repeating pattern’ and
were able to evaluate whether or not a given figure represented a valid repeating
pattern (see Table 15.5).

Table 15.3 Frequency in % of teachers’ self-efficacy scores by task

Task-identifying … I do not agree
that I am
capable

I somewhat
agree that I am
capable

I agree
that I am
capable

I strongly
agree that I am
capable

A drawing of a
repeating pattern

– 3 41 56

A mistake in a
repeating pattern

– 5 44 51

An acceptable
continuation for a
repeating pattern

– 5 34 61

Table 15.4 Mean self-efficacy scores per task

Task Mean SD

Identifying a drawing of a repeating pattern 3.54 0.55

Identifying a mistake in a repeating pattern 3.46 0.60

Identifying an acceptable continuation for a repeating pattern 3.56 0.59
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Results were more varied for the tasks that required the teacher to assess a given
repeating pattern and then choose which of the presented continuations were
appropriate (see Table 15.6).

Regarding the first two patterns that ended with a complete cycle (P1 and P2),
the vast majority of teachers successfully chose the appropriate continuations.
However, note that in each case the appropriate continuation was a complete unit of
repeat. For P4, which also ended in a complete unit of repeat, nearly all teachers
recognized the appropriate continuation when it was a complete unit, but a little
over half of the teachers recognized the appropriate continuation when it did not
end with a complete unit of repeat. The basic unit of repeat for P4 was and
the first suggested continuation was .

For P3, (see Fig. 15.5) results in general indicated that this mini-task was more
difficult than the other three. Taking a closer look, only C2 was easily recognized as
inappropriate, possibly because placing it at the end of the presented drawing would
have caused three trees to be together, a blatant visual violation of the pattern.
Interestingly, C3, also an inappropriate continuation, was recognized as inappro-
priate by approximately three-quarters of the participants. It could be that because
this continuation was also the basic unit of repeat, teachers chose it as a continuation.
Between the two appropriate continuations (C1 and C4), more teachers recognized
C4 as appropriate, ending the pattern with a complete cycle, than C1, ending the
pattern mid-cycle. Finally, for all four patterns, we note that six teachers (12%) chose
only the continuations where the patterns ended in a complete unit of repeat.

15.6.3 Comparing Teacher Knowledge and Self-efficacy

As the results above indicate, teachers’ high self-efficacy beliefs for identifying
mistakes in given repeating patterns and for identifying drawings that were
examples of repeating patterns, matched their actual performance on those tasks.

Table 15.5 Frequencies of teachers’ correct responses to Tasks 1 and 2

Find the mistake Is this a repeating pattern?

Drawing 1 2 3 4 1 2 3 4

% Correct 97 100 94 94 100 100 95 95

Table 15.6 Frequency in % of correct responses by continuation by pattern

Continuation 1 2 3 4 Mean

Pattern 1 (see Fig. 15.3) 95 100 98* 89 95.5

Pattern 2 (see Fig. 15.4) 97 97 97 100* 97.75

Pattern 3 (see Fig. 15.5) 30** 92 73 78* 68.25

Pattern 4 (see Fig. 15.6) 62** 95* 100 97 88.5

*Appropriate continuation with a complete cycle; **Appropriate continuation ending mid-cycle
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However, teachers’ high self-efficacy beliefs for identifying possible correct con-
tinuations of given patterns did not always match their actual performance on those
tasks. For example, taking a closer look at Pattern 3, 30% of the teachers identified
the first continuation as acceptable. Yet, 95% of the teachers agreed that they were
capable or even very capable of identifying acceptable continuations. In the fol-
lowing section we discuss possible reasons for this result and, in general, how this
study fits in with our previous studies of teachers’ knowledge and self-efficacy for
teaching mathematics in early childhood.

15.7 Discussion

This study contributes to the theme of early childhood educators’ beliefs and
understandings of mathematical learning. While some studies focused on teachers’
mathematics related competencies (e.g., Jenßen et al. 2016) and others focused on
teachers’ views of mathematics (e.g., Cooke 2016), this study combines knowledge
and beliefs by studying the relationship between teachers’ knowledge and their
self-efficacy. In addition, the CAMTE framework provides a way for examining
specific aspects of knowledge and teachers’ self-efficacy related to those specific
aspects. Like our previous study concerning early childhood teachers and repeating
patterns, this study found that teachers had relatively high self-efficacy beliefs
regarding their ability to perform various patterning tasks. This is an important
finding. In a prior study, we also found that early childhood teachers held high
self-efficacy beliefs for identifying two-dimensional geometric figures (Tirosh et al.
2011). However, our research question addressed the issue that mathematics
self-efficacy is content-specific (Bandura 1986; Hackett and Betz 1989). Thus, we
could not assume that we would obtain similar findings regarding self-efficacy
beliefs for these patterning tasks.

Consistent with our earlier studies (e.g. Tirosh et al. 2014), we found in this
study that knowledge and self-efficacy beliefs did not always correspond. Some
discrepancy was found between teachers’ beliefs in their ability to identify
acceptable pattern continuations and their ability to recognize acceptable continu-
ations. It could be that some teachers interpreted the instruction—“Circle all
acceptable continuations for the given pattern”, to mean “circle all continuations
that would complete the pattern.” In this case, teachers might hesitate to accept a
continuation which did not “complete” the pattern. Another reason could be that the
self-efficacy questions were not sufficiently explicit (e.g., the questions did not
mention the situations in which teachers might be required to identify acceptable
pattern continuations). Also, the self-efficacy scale was not validated. Perhaps it
was not sensitive enough. A wider scale might have captured more fluctuations in
self-efficacy.

Another possible reason for the discrepancy between knowledge and
self-efficacy could stem from the teachers’ concept image of what it means to
continue a pattern. In the literature, we found that most activities that called for
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extending a pattern, presented a pattern that ended with a complete unit of repeat
(e.g., Rittle-Johnson et al. 2013). In addition, most pattern extension activities
request the participant to extend the pattern one element at a time. It could be that
this is what teachers envisioned when they were requested to complete the tasks.
According to Bandura (1986) performance attainments are an important source of
self-efficacy; successes raise self-efficacy while repeated failures lower them. If
teachers’ experiences with success came mostly from extending repeating patterns
presented with a complete unit of repeat, then their self-efficacy beliefs in this
regard are understandable. However, it does point out a need to offer teachers
additional experience with variations in patterning tasks, a need that could be met
by professional development.

15.8 Implications for Professional Development

In this section, we synthesize the results from our previous study (Tirosh et al.
2015) along with this study, and discuss implications for professional development.
Using the CAMTE framework as a reference, we investigated two aspects of early
childhood teachers’ knowledge for teaching patterning: solving patterning tasks
(Cell 1) and evaluating solutions to patterning tasks (Cell 2). This knowledge, of
course, is intertwined. When defining repeating patterns, several teachers noted that
a repetition must appear, but did not specify what is repeated. Some wrote that a
number of shapes must be repeated, without indicating that those shapes must
appear in a consistent sequence (i.e., structure). In the present study teachers were
able to draw repeating patterns. Likewise, they correctly recognized drawings as
examples or non-examples of repeating patterns. They also recognized mistakes in
patterns. All of the continuations teachers drew were acceptable continuations, yet
they did not always recognize acceptable continuations of given patterns.

Professional development could build on what teachers do know, and then fill in
the gaps. For example, although children may not need to learn a formal definition
for repeating patterns, it is still important for teachers to know the attributes of
repeating patterns as well as to accurately use words to describe mathematical
concepts related to patterning. For example, the link between patterning and mul-
tiplicative thinking and early algebra could be highlighted in relation to the unit of
repeat (Mulligan and Mitchelmore 2018).

Another study, for example, found that the amount of early childhood teachers’
mathematics-related talk was significantly associated with the growth of children’s
conventional mathematical knowledge over the school year (Klibanoff et al. 2006).
In designing professional development for early childhood teachers, we use pat-
terning tasks, such as those presented in this study, to talk about patterns and
promote the use of precise mathematical terminology, such as minimal unit of
repeat (Tirosh et al. in press). As we discuss acceptable and unacceptable contin-
uations, we also promote teachers’ knowledge of students’ ways of solving pat-
terning tasks (Cell 3 of the CAMTE framework). Teacher educators can also build
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on teachers’ knowledge to plan professional learning designed to strengthen
teachers’ knowledge of tasks (Cell 4).

The CAMTE framework, along with results of this study, remind us that as we
promote teachers’ knowledge, we should take care to promote their self-efficacy as
well (Cells 5 and 6 of the framework). Both studies showed that in general, teachers
have high self-efficacy with regard to patterning tasks. However, developing high
self-efficacy with corresponding content knowledge is our aim. The downside of an
inflated high self-efficacy could be that teachers may not feel the need for profes-
sional development. The downside of low self-efficacy, especially when teachers
are actually quite knowledgeable, might be a lack of motivation and confidence in
implementing mathematical activities in their classrooms. Further research is nee-
ded to understand the implications for teaching and learning when there is a dis-
crepancy between self-efficacy and knowledge.

Professional development offers teachers a chance to look inside themselves.
“Reflection is the ultimate key to one’s professional growth as a teacher”
(Schoenfeld and Kilpatrick 2008, p. 348). In our program we invite teachers to
reflect on their self-efficacy beliefs as well as reflect on mathematical knowledge
and ideas. Although engaging them with challenging mathematical activities may
risk lowering self-efficacy beliefs, other studies have shown that a feeling of dis-
equilibrium may actually foster teacher learning (Wheatley 2002). Bruns et al.
(2016) have also suggested that professional development might provide early
childhood teachers with an opportunity to gain positive mathematical experience,
by doing mathematics. Thus, another implication of this study might be for teacher
educators to allow teachers the time to reflect on their self-efficacy beliefs, not only
in the beginning of a professional learning program, but at various stages, while at
the same time supporting the teachers as they face new challenges. At the beginning
of our program, informal interviews with the teachers found that most patterning
activities in their early childhood classrooms consisted of drawing borders around
pictures. For early childhood teachers who might consider patterning more of an art
activity than a mathematical activity, promoting mathematical knowledge of
repeating patterns, along with high self-efficacy beliefs for teaching repeating
patterns, is especially important.
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Chapter 16
Early Childhood Mathematics Education:
Reflections and Moving Forward

Iliada Elia, Joanne Mulligan, Ann Anderson, Anna Baccaglini-Frank
and Christiane Benz

Abstract This book brings together creative and insightful current research studies
on teaching and learning mathematics in early childhood by scholars from different
parts of the world. In this chapter we reflect on this work and discuss the major
insights, conclusions, implications and future research directions for early child-
hood mathematics education. We focus on each of the five key themes of the book:
pattern and structure, number sense, embodied action and context, technology and
early childhood educators’ professional issues and education.
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The early childhood period (up to 7 years of age) is probably the most crucial time
for developing children’s capacities and dispositions for learning. Consequently,
high-quality early childhood education is essential in any educational system and
research in this field can have a strong educational and social impact. It is well
documented that children are capable of, and should engage in mathematics
learning in the earliest years of their life (Sarama and Clements 2009), thus
mathematics education should be a key component of high-quality early childhood
education. These considerations have induced a growing impetus of research in
early childhood mathematics internationally over the last years.

The work reported in this book records the advancement in international research
and perspectives in early childhood mathematics education based on the work of
TSG 1 at ICME-13, aiming to provide further and new insights on how to enhance
children’s mathematics learning and development and help support and improve
pedagogy in early childhood mathematics.

From our perspective the book addresses significant and timely issues in the field
of early childhood mathematics education which correspond to five key themes. In
particular, the book starts with three chapters focusing on the meaning and
importance of developing mathematical pattern and structure and how it can be
promoted in early childhood (Theme 1). The next three chapters address the
development of young learners’ number sense competences in relation to various
contributing factors, including picture book reading, the quality of early mathe-
matics classroom practice and a measurement-oriented curriculum (Theme 2). The
study of the vital roles of embodied action and mathematics-in-context within early
childhood mathematics education, and particularly in geometry learning, is the
central theme of the three chapters that follow (Theme 3). In the next three chapters
the impact of, and opportunities provided by technology in early mathematics
learning and teaching are examined and discussed (Theme 4). The following two
chapters consider the critical role of early childhood educators, their roles and
aspirations and the importance of professional development, as well as the chal-
lenges they encounter in engaging children in mathematics, and in light of new
curricula, building effective environments for mathematics learning (Theme 5).

In what follows, a summary of the major insights as well as our conclusions,
reflections, implications and questions for further research are discussed, based on
the research and related studies reported in the preceding chapters.

16.1 Theme 1 Pattern and Structure

The studies on pattern and structure and patterning abilities were focused on both
pre-school (the German kindergarten) and the early years of formal schooling. In the
tradition of much research on early assessment of mathematical development these
studies included both the assessment of individual’s abilities and strategies and the
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impact of intervention programs situated in authentic classroom settings. An
important outcome of the studies highlighting patterning and structural relationships
is that the assessment tasks and forms of analysis, and the intervention tasks can be
accessed, interpreted and adapted in the regular classroom. In most cases this could
be achieved without a research team or specialist researcher conditions.

The detailed sequential account of the development of patterning strategies with
pre-schoolers by Lüken (2018, this book) extends the research field by providing a
new analysis of the very early stages of patterning concepts (Papic et al. 2011).
Although Lüken’s study is limited to six cases it does provide insight into the
importance of tracking children’s learning in explicit ways and providing
fine-grained analysis of such learning. The results of the classroom intervention
with first graders in the study by Lüken and Kampmann (2018, this book) may
describe some limitations but again this is promising evidence that can be traced to
the intervention strategies. The assessment and teaching strategies are at least
provided with clarity and sufficient detail to be embedded in more effectively
controlled studies with larger and more diverse samples of children. The impact on
mathematics learning could then be ascertained through further evaluation studies.

Mulligan and Mitchelmore (2018, this book) describe the important interrela-
tionships between structural groupings common to The Pattern and Structure
Mathematics Awareness Program (PASMAP) approach: sequences, structured
counting, shape and alignment, equal spacing and partitioning. An explicit
sequence of pedagogical strategies scaffold these interrelationships with a view to
promoting visualization, abstraction and emergent generalization. Further recom-
mendations from this study and also from Lüken’s and Lüken and Kampmann’s
studies might also provide guidance about how teachers can scaffold children’s
learning to make connections within and between concepts. At international level
mathematics education curricula often silo concepts and processes which encour-
ages teachers to disregard interrelationships.

Although there has been increased attention on the influence of teacher mathe-
matical content knowledge and pedagogical knowledge, the research reported in
this theme was limited to a focus on the child. What might have provided a broader
view of the research context would be complementary analyses of the teachers’
knowledge about patterns and structural relationships in mathematics. A structural
approach to teaching mathematics may require teachers to first develop an
Awareness of Mathematical Pattern and Structure (AMPS) in their own mathe-
matical thinking. In the pre-school setting the inclusion of patterning in children’s
play and structured activities should not be assumed. The effective implementation
of patterning tasks such as those developed by the Lüken studies points the need for
teachers to gain insight into their own knowledge of patterning as well as their
practice being informed by current research.
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16.2 Theme 2 Number Sense

Number and arithmetic operations are arguably of primary importance for chil-
dren’s mathematics learning and development (Torbeyns et al. 2015; Verschaffel
et al. 2007). Furthermore, mathematical development in this domain may be one of
the most extensively researched fields in mathematics education, especially in the
early primary grades and also in the pre-school years (4–6 years of age).

The two chapters related to number development turn attention to a new con-
struct, the Spontaneous Focusing On Numerosity (SFON) showing that although
numerical abilities are still in the focus of research concerning number sense, there
is also an increasing interest into the dispositions for numerical competence. In the
chapter by Rathé et al. (2018) a research review about SFON traces the develop-
ment of this construct to the Finnish researcher Hannula-Sormunen (see
Hannula-Sormunen et al. 2015). SFON refers to children’s spontaneous (i.e.,
self-initiated) focusing of attention on the number of a set of items or incidents and
using this numerosity in their actions. An important finding of research on SFON,
which was mostly conducted in European and Western countries, is that young
children’s SFON tendency could be identified as a predictor of later mathematics
achievement in primary school.

Rathé et al. report in their chapter that the research findings on the relation
between SFON in experimental tasks and everyday situations for kindergarten
children are inconsistent and contradictory. Although the chapter by Rathé et al.
gives new insights into the relation between SFON in experimental tasks and
everyday activities, it should be taken into consideration that some data revealed
only partial empirical evidence for a possible association.

The study of Bojorque et al. (2018, this book) also provides new insights into the
relation of SFON and children-related or classroom-related factors. In particular,
children’s early numerical abilities measured by a standardized numerical test in
Ecuador is a predictive factor of children’s SFON development, whereas the quality
of early mathematics education, as measured by a standardized instrument, did not
contribute to children’s SFON development. Both chapters highlight the difficulty
of measuring and analyzing children’s mathematics competences in early childhood
education in daily-life situations as they are often more spontaneous than in school.
This will be an ongoing challenge for research in mathematics education.

The chapter by Cheeseman et al. (2018) shows that measurement could be the
focus of research concerning number sense, rather than explicit numerical abilities.
Here an approach of the Russian tradition of Davydov (1975), adopted earlier in the
Measure Up project in Hawaii (Dougherty and Zilliox 2003), was enacted for a
design research project in Victoria, Australia. In this project children started formal
schooling at a school with a Reggio Emilia and socio-cultural approach to learning.
The children did not start with a typical number-focused curriculum but with a
measurement-focused curriculum which includes numbers. The case studies in this
chapter revealed that when young children measure, they use numbers and can
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acquire number competencies. The qualitative analyses also revealed the richness of
other learning possibilities in the project.

Here again a methodological challenge is raised about the use of reliable and
valid instruments in early childhood education for analyzing educational and psy-
chological aspects of mathematics learning. By using standardized assessment
instruments often the children’s competencies are only partly surveyed. Therefore
especially in early childhood education, where a great amount of learning takes
place in informal situations, even the well-explored domain of number sense
remains an area for in-depth and explicit empirical research.

In this book only a few new aspects of research concerning number sense are
addressed in the three chapters. But it is obvious that the development of number
sense is influenced by various factors and connected to many other mathematical
domains. Therefore there are chapters in other parts of the book, i.e., the themes of
pattern and structure, the role of technology and embodied actions and context,
which are connected to the research on number sense. A more holistic view of the
contributions of these studies can contribute to enhancing a more coherent body of
knowledge in this domain.

16.3 Theme 3 Embodied Action and Context

Each of the three chapters in Theme 3 (Anderson and Anderson 2018; Elia 2018;
Thom 2018) offers important insights into the roles that embodied action and
context play within early childhood mathematics education, and more specifically
in geometry. As Elia’s study readily indicates, hand and finger gestures do more
than complement the kindergarten children’s verbal descriptions, serving as a
means by which children develop and communicate geometrical thinking under
varied conditions. In turn, Thom’s grade 1 children similarly build their under-
standings, in particular their spatial-geometric reasoning with two-dimensional and
three-dimensional, from the hand and body movements they invoke when
explaining and conjecturing about “what they see” in a photograph. Likewise, for
Anderson and Anderson’s families, the parent-child dyadic interactions (non-verbal
and verbal) point to children enacting mathematics-in-context, including geometry,
space and measurement, prior to formal school. In all three studies, it is evident that
these young children’s experiences of geometry are multimodal, are embedded
within a vast array of activities and settings, are connected with other semiotic
resources, and are inherently creative sense making. Likewise, while there is evi-
dence in all three studies that acting-thinking-talking are tightly interconnected for
many of these 4–7 year olds, we are also reminded that this is not always the case.
For example, a child’s embodied measurement was visible in the Water Sprinkler
activity and was accompanied by minimal talk (Anderson and Anderson 2018). In
Elia’s (2018) study the children’s ‘silent’ gestures appear to be interpersonally
synchronized with their peers’ talk. Both these examples remind us that children
engaging with mathematics-in-context or embodied mathematics (acting-thinking)
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without speaking deserve our closer attention. And yet, as Thom indicated, not only
is geometry underrepresented in most early years curriculum, the limited ways in
which we invite children to engage with geometrical, spatial and measurement
concepts in many classrooms undervalues the embodied, gestural, in-context nature
of young children’s engagement with mathematics.

What insights, then, might these case studies, both through their design and their
findings, provide early childhood educators? First and foremost, in all three studies,
young children’s geometric and spatial reasoning comes into focus as they share
their thinking with others. Indeed, while the contexts and concepts varied across the
three studies, each activity provided space, time, and we would argue, motivation
for children to overtly share their ideas. In turn, each child in these studies, rather
than withdrawing from what some might seem challenging mathematics, is engaged
in moment-to-moment in-context action. In this process the individual is thereby
making sense of geometry (mathematics) through body and mind. Furthermore,
each child enacted the mathematics using gestures and body movement voluntarily,
e.g., pointing to shapes and where to place them, or moving them within a com-
posite figure. Other pertinent examples were the children’s constructing of an
imagined cylindrical shape through hand and arm movements associated with a
circle in a photo or positioning one’s body—raised knee or bended torso—to
measure changing water levels from a sprinkler, without being explicitly asked to
do so. On one level, then, since all three studies report on data gathered in natural
settings, the ecological validity of the actual activity descriptions suggest that literal
translation of these ‘research’ tasks into early years’ settings may prove unprob-
lematic. That said, keeping in mind the nuanced nature of such activities (Anderson
and Anderson 2018), what such case study work provides is not necessarily con-
texts or activities to be emulated but compelling evidence of children’s funds of
knowledge and ways of knowing (James et al. 1998) that we, as educators, need to
leverage as we plan and carry out mathematics-related activities in our pre-school
and primary classrooms.

While these authors (Anderson and Anderson 2018; Elia 2018; Thom 2018)
outline important directions for further research based on their individual study,
when we consider the three chapters together, several research directions are
strengthened while other avenues for future research also become apparent. For
instance, we see evidence that the adults (e.g., teacher, interviewer, parent) and
peers (e.g., same age classmates, older siblings) are implicated in the ways in which
individual children’s gestures and bodies bring forth the mathematics (geometry).
Such convergence adds strength to Elia’s call for further research into the “others”
role(s) in provoking, sustaining or diminishing children’s embodied mathematical
experiences. For example, as Thom suggests, how might the nature of the adult’s
initial prompt (e.g. “what is this?” versus “what do you see?”) or the questions that
follow support young children’s generative responses and/or provide young chil-
dren opportunities to explore possibilities in ways similar to those illustrated in
these studies? Whether due to coincidence or implicated in classrooms where
children are often seated when engaging in mathematics, most of the gestures and
movement in the three studies were limited to finger, hand and arm movements
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(upper body). Further research seems warranted to explore what role the learning
space and positioning of children plays with respect to their embodied ways of
knowing. What occasions promote whole body action, lower body gestures, or
gross motor movement when young children are trying to understand geometrical
ideas? What might young children’s facial and head gestures, as well as gaze, tell us
about their mathematical thinking? Although not specified in the three studies,
European and Euro-Canadian cultures seem prominent in this field of research.
Thus as we continue to explore the affordances of embodied action and context in
relation to mathematical teaching and learning in the early years, it is vital that we
do so within contexts with children and teachers/parents from diverse cultural,
linguistic, socio-economic backgrounds, inclusive and respectful of both indige-
nous and immigrant populations. Finally, while these three studies and those in the
remainder of this book situate their research in early childhood mathematics, most
do so with children aged 4–7 years. However, the study of embodied action and
mathematics-in-context seems to offer ways of engaging with and learning about
children’s mathematics that more language-dependent analysis (e.g., Sfard 2008)
does not, and thus seems particularly suited to future research with toddlers and
younger (nonverbal) children (ages 1–3 years).

16.4 Theme 4 Technology

Theme 4 discusses the important issue of using technology in early childhood
mathematics education, and, specifically addresses issues regarding its integration
into mathematics teaching and learning that may take place both within schools and
at home. First of all, in tackling this complex issue, we remind the reader of the
many different types of digital technology for early mathematics education that
have developed quickly thanks to touchscreen tablet-based applications, now
available in many pre-schools and schools and relatively easy to use (in comparison
with desktop software). Indeed the contributions to Theme 4 mostly focused on
touch-screen tablet-based applications.

Integrating this kind of technology into the teaching and learning of mathematics
can be rather straightforward if the applications replicate physical manipulatives
(e.g., Cuisenaire rods, geoboards or tens-charts) and are designed with high
developmental and curricular fidelity. However, as suggested by Sinclair (2018, this
book), there are also applications that depart significantly from physical tech-
nologies (e.g., paper-and-pencil or manipulatives), and which may present signif-
icant challenges for teachers. In this respect, we can look at what has happened over
the last thirty years to Dynamic Geometry Software (DGS). DGS has gained such
widespread approval in the mathematics education community, however its inte-
gration into mathematics curricula around the world has taken many years and is
not yet completely achieved. Moreover, most research has been carried out at the
secondary level, focusing especially on teacher integration, task design and
assessment (Sinclair and Yerushalmy 2016), while more research, some of which is
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provided in this book (Sinclair 2018; Fletcher and Ginsburg 2016; Sinclair and
Baccaglini-Frank 2016), is needed at the primary and pre-school levels. Our
intention is that the results of the research presented in this book can be used to
guide the professional development of early childhood and primary school teachers
who wish to use DGS in their classrooms. If it has taken this long for DGS to
become integrated into mathematics curricula, we imagine that integrating new
applications that share with DGS the characteristic of departing significantly from
physical technologies, such as TouchCounts (see Sinclair 2018; Baccaglini-Frank
2018, this book) will be a long and non-linear process. Possibly, new forms of
professional development could aid the process, helping educators identify and
implement effective uses of such new applications, especially when there are no
pre-designed tasks introduced by the software and the interactions afforded are not
highly constrained.

The chapters discussed in Theme 4 also highlight the fact that even if the
software in focus is not extremely distant from physical manipulatives or the
paper-and-pencil environment (at least not to the extent of DGS or TouchCounts)
there are still important issues that need to be further investigated. A first issue is the
role of the educator (a teacher or parent) during (or in between) the child’s inter-
actions with the software. Indeed, analyses of the student-software-teacher inter-
actions in Baccaglini-Frank’s chapter (2018) shed light onto how the educator’s
short-term goal of helping the children experience success, and her narrow-sighted
view of how to obtain this in the domain of numbers, actually limited the devel-
opment of numerical abilities for many children in the study.

Also Ginsburg et al. (2018, this book) highlight the importance of parents being
involved, as educators, in understanding and promoting children’s mathematical
thinking and learning in the context of Interactive Mathematics Storybooks (IMS),
stressing the need for further research to explore the interactions between the
children, the educators involved, and the IMS used. Indeed, for all these types of
technology designed for early childhood mathematics education it makes sense to
ask: What might effective forms of professional development be if the goal is to
promote proper integration of such technology into early childhood mathematics
education?

A second issue is the possibility offered today by more and more software that
exposes young children to advanced mathematics early on. This issue is addressed
both by Fletcher and Ginsburg (2016) and by Sinclair (2018). Indeed, Fletcher and
Ginsburg find that through appropriate technology young children can learn more
about symmetry than what they acquire naturally and what is currently taught in US
schools. They conclude that teaching symmetry earlier than designated by the US’s
Common Core State Standards for Mathematics (NGACBP and CCSSO 2010) can
provide a unique opportunity to utilize and build upon the skills and interests that
young children bring to the classroom. Analogously, Sinclair reflects upon the ease
of children’s earlier exposure to advanced mathematical concepts through new
multi-touch tablet-based applications. For example, interacting with TouchCounts
allows children to encounter large numbers, also in symbolic form; moreover this
application puts an emphasis on ordinality. This kind of interaction with numbers is
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not typical in classrooms where the meaning of number is usually associated with
cardinal quantities represented by physical manipulatives such as tens’ charts and
Dienes’ blocks, and the numbers encountered are typically below 20. Therefore, as
Sinclair states, there is a challenging choice to be made, both by teachers and
researchers, about the extent to which new digital technologies—those that sig-
nificantly change mathematics—can and should be integrated.

We hope that the issues and perspectives introduced in this theme will help to
develop positive and constructive, though critical approaches to the issue of using
technology to promote mathematical learning in early childhood education.

16.5 Theme 5 Early Childhood Educators’ Professional
Issues and Education

Theme 5 focuses on three distinct but interrelated areas of research impacting on
change in practice for early childhood educators influenced by several conditions at
a macro, meso and micro level. First, new curricula and frameworks for early
mathematics teaching and learning provide varying expectations about the scope
and depth of the pre-school environment—informal learning (such as through play),
content to learn and activities to experience. Second, early childhood educators’
mathematical knowledge, pedagogical knowledge, understandings, beliefs, and
perceptions influence how they enact these expectations. The importance of pro-
fessional learning and the assessment of pre-service teacher mathematical compe-
tencies are discussed. Third, educational programs, resources and activities
implemented in the pre-school environment impact on the mathematical opportu-
nities children engage in at the micro level. The discussion at these three levels
consider both the child’s engagement with mathematics and the impact of the
professional on this learning based on relevant contributions in TSG 1.

At a macro-level, the introduction of pre-school mathematics curricula or
frameworks in several countries raises fundamental questions about the views of the
early childhood educator. Cooke and Bruns (2018, this book) highlight the tensions
raised by several papers about new curricula and frameworks that may impose
mathematical content rather than allowing the child to develop mathematical con-
cepts through play. Some research supports new directions on curriculum develop-
ment for early childhood mathematics internationally. What could follow from these
studies is further articulation of how the elements of each curriculum or framework
are interpreted, implemented and evaluated within pre-school mathematics learning
environments. Longitudinal research could consider how these elements may direct
broader change over time such as how the curriculum is enacted, the need for
increased mathematical content and pedagogical knowledge of the educator, and the
need for tailored and increased professional development. The impact these policy
documents and changes have on professional practice and the views of early child-
hood mathematical learning is another important issue for further research.
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At the meso-level the focus is the early childhood educators’ competence. All of
the relevant studies in TSG 1 show consensus about the importance of fundamental
understanding of mathematics by the educator as the basis for high-quality early
mathematics education. However, different studies used different conceptualizations
and instruments to measure the mathematical competence of educators, including
pre-service teachers. Several papers used the Shulman framework (Bruns et al.
2016; Dunekacke et al. 2016; Jenßen et al. 2016; Tsamir et al. 2018). These studies
found that pre-school educators’ competence is related to a range of complex
factors that incorporate mathematical content and pedagogical content knowledge,
general pedagogical content knowledge and affective-motivational aspects as well
as their perception of mathematical situations. Cooke (2016) identifies and mea-
sures similar facets of educators’ math-related competence, indicating that these
facets are subject to sustained investigation by different groups of researchers
focused on improving teacher competence and confidence.

However, Cooke and Bruns (2018) point to a lack of consensus among the
findings of many studies about these competency facets. This was seen in TSG 1
presentations: For example, a number of studies found no significant correlations
between mathematics anxiety and mathematical content knowledge (Cooke 2016),
mathematics pedagogical content knowledge or perceptions of mathematics situa-
tions (Dunekacke et al. 2016), whereas Tsamir et al. (2018, this book) found that
self-efficacy for identifying repeating patterns and errors in repeating patterns was
well-matched to the pre-school teacher understandings.

In particular, the chapter by Tsamir and colleagues draws attention to the
importance of the educators’ ability to identify and continue repeating patterns.
Their study found that pre-school teachers were able to identify drawings which
represent repeating patterns and identify the errors which preclude a drawing from
actually being a repeating pattern. However, identifying appropriate continuations
proved more difficult. The chapter provides an analysis of early-childhood educa-
tors’ responses to conceptually-oriented tasks. This study could serve as an example
of the need to develop rigorous assessment tasks that can identify and remedy
misconceptions of early childhood educators from the outset.

While the contributions in TSG 1 on teacher-related issues incorporated a wide
range of studies, and many reported on large scale projects such as KomMa, in light
of the above, much more longitudinal and systematic research is needed as well as
studies that provide internationally comparative insights. In line with this, Cooke
and Bruns (2018) conclude that there is a need for further studies that use different
measures and more representative samples, and studies that examine the relation-
ship between early childhood educators’ competences and the quality of the
experiences they create to engage children in mathematics.

At the micro-level the focus is on the child as the centre of mathematics learning,
although the research reported in the chapter by Cooke and Bruns (2018) address to
some extent the effectiveness of program intervention and teacher knowledge.
Several intervention programs are outlined, yet questions are raised about the
practicality of their implementation processes. Fritz-Stratmann et al. (2016)
demonstrate the need for high level professional training for a program to be
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effective. Another approach is to focus intervention programs on one aspect of
mathematics such as number learning (in this case, arithmetic) that Wang et al.
(2016) found to increase the likely effectiveness of their program. There are few
other examples to draw upon within Theme 5, but there are other relevant examples
presented through other chapters in this book. What could be gleaned from the
discussion on intervention programs is the importance of designing and imple-
menting carefully designed activities that are appropriate to the wide and devel-
oping needs of the children. However, it is very difficult to match these
requirements to every learning context such that the creative mathematics learning
of the students is not stifled.

Clements et al. (2013) reiterated the importance of the use of research-based
programs, stating that developmentally-sequenced activities can enable teachers to
“become aware of, assess, and remediate” (p. 10). Targeting children early may
improve learning in both their first years of formal schooling and their later
mathematical achievement (Watts et al. 2014), and development-oriented inter-
ventions can help children develop mathematical understandings (Fritz et al. 2013).
However, there needs to be careful monitoring to ensure that the impact of the
interventions does not fade away (Sarama and Clements 2015).

16.6 Further Perspectives and Concluding Comments

The international scope of the contributions in this book highlights the need to
consider the above discussion by taking into account the diversity of early child-
hood mathematics education across different countries. All over the world
pre-school educational systems and traditions in different countries vary and chil-
dren begin primary school at different ages. Also the varying philosophies of how
learning in early childhood education is supported should be acknowledged.
Moreover, analogous variations apply for the education of prospective early
childhood educators primarily regarding mathematics pedagogy. The very different
conditions for early childhood mathematics education, from the perspective of the
children or the educators all over the world, and the lack of international studies at
this level highlight the need to design, implement and evaluate cross-cultural and
comparative studies in this field.

The themes addressed in the chapters of this book reflect an impetus to develop
broader and more integrated views of early mathematics learning rather than a
traditional focus on counting and number concepts. Thus the role of early childhood
mathematics education, as it is approached in this book, can be regarded from a new
broader perspective, for example, as an opportunity to reflect on the contribution of
this field to a recent educational direction, that is, early STEM (Science,
Technology, Engineering and Mathematics) learning (McClure et al. 2017).
Although this latter new approach to early learning is closely related to how young
children explore and make sense of the world, very little research has been carried
out on how concepts in STEM learning in early childhood are associated with
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young children’s mathematical learning and development. In this book, research
reported in many chapters concentrates on types and processes of mathematics
which involve reasoning, structure, interconnections between topics, integration of
technology, multimodal and embodied aspects of communication, thinking and
learning, maths-in-context and in everyday activities. These features of early
mathematics learning and teaching have a significant place in STEM topics and
may contribute to a deeper understanding of relevant concepts, foster problem
solving, and enhance the understanding of the application of concepts in real life.
Thus, we hope that, even in subtle ways, this book may inspire reflective insights
and new ideas for further investigation about how early childhood mathematics
education may contribute to interdisciplinary research important for early and later
STEM learning and development. Furthermore, investigating early childhood
educators’ roles and their knowledge for teaching mathematics, as well as the
impact of the curriculum, from such an integrated approach could fuel new and
critically important research directions.

Overall, we hope that the diverse international collection of studies in this book
will provide powerful foundations for future research, professional learning and
curriculum development in early childhood mathematics education.
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