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Abstract. NooJ is a linguistic development environment that allows linguists to
construct large linguistic resources of the four types in the Chomsky hierarchy.
NooJ uses a bottom-up, “cascade” approach to sequentially apply these lin-
guistic resources: each parsing operation accesses a Text Annotation Structure,
and enriches it by adding or removing linguistic annotations to it. We discuss the
drawbacks of this approach, and we present a new approach that requires that all
NooJ linguistic resources be represented by a single type of finite-state machine.
In order to do that, we must solve theoretical problems such as “how to handle
Context-Sensitive Grammars with finite-state machines”, as well as some
engineering problems such as “how to compose sets of large dictionaries and
grammars into a single finite-state machine”. Our first experiments show that
although that composing large finite-state machines is extremely costly theo-
retically, the fact that linguistic resources in a typical NooJ cascade depend on
each other heavily keeps the size of all intermediary machines manageable.
Once the final resulting finite-state machine has been compiled and loaded in
memory (e.g. on a webserver) it can be used to parse large texts in linear time.
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1 Introduction

Formal Grammars have been introduced to linguists by (Chomsky 1956) as mathe-
matical tools to describe languages. A Formal Grammar is a set of production rules
such as a ! b where both a and b are sequences of empty strings (noted e), terminal
and non-terminal symbols. Depending on constraints on the nature of a and b,
(Chomsky 1956) classifies Formal Grammars in four increasingly powerful types:
Regular, Context-Free, Context-Sensitive and Unrestricted Grammars. As the power of
grammars is augmented, the efficiency of the corresponding parsers is degraded:
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parsers for RGs can run in linear time,1 parsers for CFGs (e.g. CYK) can run in cubic
time,2 parsers for CSGs run in exponential time,3 and the halting problem of parsers for
UGs is undecidable.4

Linguists have designed formal notations — i.e. formalisms — to help construct
these four types of grammars. For instance, XFST and its variants HFST and SFST5 are
well adapted to the design of RGs; it is straightforward to write CFGs with GPSG;6

LFG7 allows linguists to construct CSGs, and HPSG can handle UGs.
Ideally, a linguist would pick each type of formalism according to each type of

linguistic phenomenon: for instance, one could use RGs to describe spelling variants,
CFGs to compute the structure of sentences and CSGs to describe agreement and
distributional constraints. Unfortunately, the aforementioned formalisms are not com-
patible, making it impossible to include an XFST grammar and a GPSG grammar
inside a LFG grammar, or even merge a TAG grammar with a CCG grammar.

NooJ8 was developed for this reason: it provides linguists with a unified formalism
to handle the four types of grammars, thus ensuring that all linguistic resources are
compatible. With NooJ, a CFG is a RG that contains recursive calls; a CSG is a CFG
that contains variables and contextual constraints; an UG is a CSG that uses its outputs
to perform transformation operations on its input.

Typically, a NooJ analysis consists in sequentially applying a set of linguistic
resources to a text in a bottom-up approach: dictionaries (represented by acyclic
Finite-State Automata in which terminal states point to the recognized word’s analysis),
morphological and local syntactic grammars (Recursive Finite-State Transducers),
structural syntactic and/or semantic grammars (Enhanced Recursive Transducers to
handle CSGs and UGs). The most ambitious NooJ applications combine grammars
from of all four types to perform transformational analyses (e.g. to compute “It is not
Lea who is loved by Joe” from “Joe loves Lea [Passive] [Cleft1] [Negation]”),9 or to
perform automatic text translation from one language to another.10

Although NooJ’s approach has been proven to be useful for a number of appli-
cations (mostly, corpus linguistics where the size of a ‘large’ corpus is a hundred

1 The time it takes to parse a text is proportional to its length n, i.e. O(n).
2 See for instance (Kasami 1965).
3 See for instance XLFG which is a parser for the LFG formalism.
4 i.e. one cannot even predict if a Turing machine will parse any text in finite time. Most linguists
doubt that we would need the power of a Turing machine to describe real world natural languages.
(Silberztein 2016a) argued that the typical examples of phenomena that would require unrestricted
grammars are “extra-linguistic” in nature (e.g. anaphora resolution).

5 See (Linden et al. 2010), (Schmid 2005) and (Karttunen et al. 1997).
6 See (Gazdar 1988).
7 See (Kaplan Bresnan 1982) and (Dalrymple 1995).
8 See (Silberztein 2016a). NooJ is a free, open-source linguistic development environment available at
www.nooj-association.org and supported and distributed by the European Metashare platform.

9 (Silberztein 2016b) shows how NooJ produces several millions of transformational variants for the
simple sentence “Joe loves Lea”.

10 Translations are performed just like transformations; the only difference being that the translated
lexemes are obtained via a lookup of a multilingual dictionary.
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megabytes at most), it does not scale up well, and NooJ cannot process large amount of
texts to search the WEB for instance, or filter out all tweets in real time (100,000 per
minute).

From a computational point of view, the different types of machines (.nod files for
dictionaries, .nof for inflection, .nom for morphology, .nog for syntax) have imposed
different parsers and a complex architecture, thus making it impossible to combine
machines and thus to perform some global optimization.

2 The RA Approach

The basic principle behind the new RA linguistic engine is to unify all machines, so
that only one parser will be used to perform all analyses. Thereafter, it will be possible
to merge and compose them instead of applying them in sequence. For that to happen,
we need to solve a series of problems, among them the following:

– how to represent morphological rules so that they can be used both to generate
forms and to lemmatize them;

– how to represent CFGs and CSGs with finite-state machines.

2.1 Reversible Morphological Grammars

In NooJ, all linguistic resources are supposed to be application-neutral; in particular,
they should be useable both by parsers and by generators. Although this is indeed the
case at the functional level, internally NooJ’s morphological parser and generator work
quite differently: NooJ inflects and derives words by applying morphological recursive
transducers to lemmas, but lemmatizes forms by looking up automata of a dictionary.
Morphological paradigms are described by enhanced CFGs such as the following:

TABLE = <E>/singular | s/plural;

Paradigm TABLE states that if one adds the empty string (<E>) to a lemma (e.g.
pen), the resulting word form (e.g. pen) is in the singular; if one adds an ‘s’ to the
lemma, the resulting word form (e.g. pens) is in the plural, i.e.:

pen + <E> ! pen/singular
pen + s ! pens/plural

From the following dictionary entry:

pen, NOUN + FLX = TABLE

An exploration of the transducer compiled from rule TABLE produces the fol-
lowing output:11

pen, pen, NOUN + FLX = TABLE + singular
pens, pen, NOUN + FLX = TABLE + plural

11 The input/output result produced by the corresponding RA Finite-State Machine is underlined.
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All the forms generated by morphological transducers are then stored in an acyclic
finite-state automaton built using a variant of (Daciuk et al. 2000)’s linear minimization
algorithm. However, the fact that the resulting automaton needs to store the original
lemma (e.g. pen) for each of its entries degrades the efficiency of the minimization
algorithm considerably.

Rather than using a transducer (the morphological grammar) to produce inflected
forms, and an automaton (the dictionary) to lemmatize forms, RA uses only one
machine in both directions. To lemmatize an inflected form, RA applies the machine
compiled from grammar TABLE “in reverse”:

Pen – <E> ! pen
Pens – s ! pen

Since we can now compute the lemma from each of its inflected forms, it is no
longer necessary to store the lemma in the dictionary: therefore all the forms that share
the same analysis (e.g. beds, cars, engines, etc.) will be associated with one unique
terminal state. However, it is not always possible to simply “reverse” a morphological
grammar. For instance, consider the following paradigm:

MAN = <E>/singular | <B><B>en/plural;

The <B> operator (for “Backspace”) deletes the letter located on top of the word
stack (i.e. at its end). This paradigm produces the two forms man and men from the
lexical entry man:

man + <E> ! man/singular
man + <B><B>en ! men/plural

If we simply reverse it, we get:

man – <E> ! man
men – ne<B><B> ! m??

The generation process used the <B> operator to delete a letter, but the lemmati-
zation process doesn’t know which letter was deleted in the first place. More generally,
NooJ morphological grammars are not reversible.

The new RA framework thus proposes to replace the former NooJ grammar with
the following one:

MAN = <E>/s | <Bn><Ba>en;

i.e. one adds to the former destructive NooJ operators the information required to
reverse them. The new grammar can then be used both to generate inflected forms and
to lemmatize them:

man – <E> ! man
men – ne<Ba><Bn> ! man

Just like all other linguistic resources, RA’s morphological grammars can be used
both to generate all the inflected forms from a given lemma, and to lemmatize every
inflected form.
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Finally, we note that during the process of inflecting a lemma using initial NooJ’s
operator <B>, one knows exactly what letter is being deleted (it is on top of the stack):
an automatic compiler can then use this information to compute the RA grammar
equivalent to the initial NooJ grammar, just by simulating the inflection process.

2.2 Context-Free Grammars

In Context-Free Grammars, a ! b rules are such that a contains one and only one
non-terminal symbol, whereas b can contain any sequence of terminal and non-terminal
symbols. In NooJ, CFGs are written either in a text form:12

a ¼ b;

or graphically, by a set of recursive graphs. For instance, Fig. 1 presents a grammar that
contains 3 graphs: the top graph (called Main) contains references to graph NP and
graph VG.

The RA linguistic engine ‘flattens’ recursive graphs by removing left and right
recursions. Middle recursions typically correspond to embedded structures such as in
the following sentences:

Fig. 1. A graphical CFG

12 In NooJ CFG grammars, b is a regular expression, built on terminal and non-terminal symbols and
<E> (empty string), e.g.: NP = (<DET> | <E>) <ADJ> * <NOUN>.
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The cat saw the mouse
The cat (Joe likes) saw the mouse
?*The cat (the cousin (Eva talked to) likes) saw the mouse
*The cat (the cousin (the neighbor (you know) talked to) likes) saw the mouse

Although there are over 30 languages that are currently being formalized with NooJ
by their native speakers, we are yet to find good examples of unlimited middle
recursions that feel natural beyond two levels of embedded phrases.

The new engine RA ‘cheats’ by replacing all middle recursion references in a graph
with a fixed number (typically two) of copies of the corresponding embedded graph. As
a consequence, the last sentence of the previous example would not be recognized by
RA’s parser. However, the benefit is that RA can compile any NooJ CFG grammar into
a finite-state machine. If the size of the initial NooJ grammar is n, the size of the
corresponding RA grammar could be n3 in the worst case; in practice though, all the
NooJ grammars we encountered produced RA grammars that were lower than eight
times the size of the initial NooJ grammars.

2.3 Context-Sensitive Grammars

In Context-Sensitive Grammars, production rules are of the type cA ! cd, where A is
a non-terminal symbol, and d and c are sequences of non-terminal and terminal
symbols (c describes the context in which A can be rewritten into d).13 These rules can
be rewritten in NooJ by adding the following rules:

Ri ! Ri ($context c) A
A ! d/<$context>

Where rules Ri are added for each rule in the original grammar; these rules are used
to define a $context variable that will be set every time context c appears before A. The
second rule uses constraint <$context> to check that variable $context has indeed been
defined (if not, the rule is rejected and A is not rewritten as d).

Although this translation shows that variables and constraints give NooJ the power
to process any CSG, using variables and constraints is much more natural in practice.
(Seljan et al. 2002) gives several examples of typical formal CSGs, e.g. {anbncndn,
n > 0}, {anbmcndm, n > 0}, etc. (Silberztein 2016a) shows how to translate them into
NooJ graphs that are much easier to understand. For instance, the following grammar
recognizes languages such as {anbncndnen, n > 0}:

Without taking into account the constraints shown in bold in the graph, this
grammar recognizes the regular language a*b*c*d*e*, storing the sequence of a’s in
variable $A, the sequence of b’s in variable $B, the sequence of c’s in $C, the sequence

13 This is the definition of left context-sensitive grammars. In right context-sensitive grammars, the
non-terminal symbol of the left hand side is followed by the context, i.e. production rules look like:
Ac ! dc. The equivalence of left and right context-sensitive grammars was established by
(Penttonen 1974). Another, more general definition is that context-sensitive grammars contain rules
such as cAc’ ! cdc’. (Kuroda 1964) proves that all these grammars have the same power of
description.
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of d’s in $D and the sequence of e’s in $E. Thereafter, the parser checks that properties
$LENGTH for the four variables are identical. Note that “mildly context-sensitive
formalisms” such as CCG or TAG formalisms can represent languages such as {anbncn,
n > 0} but not the one in Fig. 2.

Figure 3 is an example close to linguists’ needs:

Fig. 2. {an bn cn dn en, n > 0}

Fig. 3. Reduplication
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<L> matches any letter. This morphological grammar recognizes word forms that
contain the same affix twice (<$X=$Y>), and also that the affix is a valid lexical entry
(<$X=:DIC>). For instance, in Quetchua, the word “ago” [sand] can be derived in
“agoago” [sand-sand = desert]. Many languages use reduplications, such as Indonesian,
Tagalog, Japanese, Mandarine, Quechua, etc.

As for CFGs, RA can compile a NooJ CSG into a corresponding deterministic
finite-state machine. RA parses a text of length t by applying the finite-state machine in
two steps:

– During the first step, RA ignores all constraints; this parsing can be performed
in O(t).

– The parsing process may produce multiple intermediary solutions;14 the number of
solutions is O(t).

– The RA engine needs to validate each solution by checking the corresponding
constraints.

NooJ constraints are of three types:

– existence (e.g. <$context>) to check if a variable has been set or is undefined;
– string equality (e.g. <$X=$Y>) to check if two lexemes are equal;
– symbol matches (e.g. <$X=:VERB>) to check if a lexeme matches an annotation

and its properties.

All constraints are implemented by simple unification operations like the ones in
systems such as LFG or HPSG, but they are not recursive (because Nooj’s annotations
are ‘flat’ sequences of atomic property/value pairs, rather than trees). Therefore,
checking each constraint can be performed in constant time; the maximum number of
constraints to check for a solution is proportional to the size of the grammar g;
therefore, RA can apply CSGs to texts in O(g t).

2.4 Compiling Syntactic Grammars

In NooJ, there is a fundamental difference between grammars that operate inside word
forms at the character level, and grammars that operate at the phrase/sentence level at
the lexeme level. In consequence, NooJ uses two different parsers and two different
machines (.nom and .nog).

RA can process NooJ morphological and orthographical grammars with a simple
format conversion; however, transforming a NooJ syntactic grammar into a RA
grammar necessitates human intervention. Consider the graph of Fig. 4 below.

– All the connections to or from an empty node should be translated into e-transitions;
– All the connections from an English word to another one (e.g. from “April” to

“the”) must be translated into transitions labeled with a space character “ ”;

14 This is the case for the grammar of Fig. 3, for which the parsing process produces w-1 intermediary
solutions because there are w-1 ways to split a word form into two non-empty affixes.
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– Connections from an English word to some punctuation mark (e.g. “Monday” to
“,”) must be translated into e-transitions; connections to other punctuation marks
(e.g. “—”) require spaces.

Choosing between spaces and e-transitions is not straightforward around symbols
because a given NooJ symbol (e.g. <VERB>) can refer both to a single lexeme (e.g.
“eating”) or to a sequence of word forms (e.g. “is willing to stop eating”). Lastly, NooJ
recursive grammars might include embedded graphs that recognize the empty string: to
translate a NooJ syntactic grammar into a pure RA grammar (at the character level)
involves computing all the Follow Sets of a grammar, i.e. the sets of prefixes that are
recognized after each embedded graph.

Note finally that these translation rules depend on the text language; for instance,
the colon character must follow a space in French, but not in English; contracted words
such as cannot for <can> <not>) are exceptions that must be taken into account;
agglutinative languages such as Arabic might contain sequences of words without
spaces, etc.

2.5 Compositions and Optimizations

Because all NooJ linguistic resources are now compiled into a single type of finite-state
machines, it is possible to merge and compose them. There are several remaining issues
though:

– Priorities: each NooJ dictionary is associated with a level of priority that allows
users to impose or filter out lexical solutions. Because this priority system is known
in advance (i.e. before parsing takes place), RA’s compiler can produce a single
dictionary that merges all dictionaries, storing only higher-priority entries into
account;

Fig. 4. A syntactic grammar
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– Symbols: a typical NooJ grammar will contain lexical symbols such as <eat> (to
represent all the morphological variants of to eat) and syntactic symbols such as
<ADV> (to represent all Adverbs). These symbols must be matched by applying the
corresponding RA machines. Therefore, before applying a given grammar to a text,
RA must first compile the machines for each symbol that occurs in the grammar.
This operation is equivalent to composing the finite-state transducer of a given
grammar with the finite-state transducers that correspond to each of its symbols.

3 Conclusion

In this paper, we have shown that it is possible to build a system that allows linguists to
construct regular, context-free and context-sensitive grammars in a simple and unified
way, and yet process these grammars using finite-state machines. The idea is to
“flatten” Context-Free Grammars, and to use variables and constraints after the
matching process to implement Context-Sensitive Grammars.

Having one unified machine for these three types of grammars allows us to com-
pose and/or merge regular grammars (useful to describe morphology) with context-free
grammars (useful to describe the structure of sentences) and context-sensitive gram-
mars (useful to describe agreements and contextual constraints).

Moreover, this framework allows us to translate a complex series of cascading
transducers into one single transducer. Although computing the final transducer is
costly (exponential when flattening a recursive grammar), the resulting machine can
then be applied to texts in O(g t), which is ideal for industrial applications.
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