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Abstract The history of Mesopotamian mathematics begins around 3300 BCE
with the development of written systems for recording the control and flow of
goods and other economic resources such as land. Numeration was bound up with
measurement and was a collection of concrete systems. One of the key develop-
ments over the subsequent thousand years or so was the gradual rationalization of
these complex concrete systems and the consequent emergence of an abstract
conception of number and techniques of computation that applied regardless of
metrological category. Throughout their history Mesopotamian scribes organized
knowledge in the form of lists. In mathematics there were also lists, but along with
lists came metrological and mathematical tables, two-dimensional arrays of data
that organized information both vertically and horizontally. A key example is tables
giving lists of lengths of sides of square or rectangular fields, along with their areas;
the problem of computation of areas remained a constant concern throughout the
period covered here. In this chapter, we cover the development of Mesopotamian
computation from the archaic period up to the edge of the emergence of the fully
abstract sexagesimal computational system for which they are renowned, tracing, as
far as can be seen with currently available sources, the long developmental process.

Keywords Mesopotamian mathematics � Sargonic mathematics
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Introduction

Origins are murky. The closer we approach beginnings the more fragmentary and
partial the sources. Our own prejudices and preconceptions can lead us to misin-
terpret what evidence there is. We have to be particularly careful to guard against
this tendency when studying the very early history of mathematics. It is easy to
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assume that mathematics, and especially elementary mathematics, is universal and
therefore ancient categories of thought and concepts match ours. They do not.

The quest for a deeper understanding of how Mesopotamians conceived of and
implemented their mathematics has been difficult, involved many scholars over
decades of work, and is far from complete, particularly with respect to the third
millennium, the subject of this chapter. The history of the development of the field
from the pioneers of the 1930s to the 1990s is wonderfully told in Jens Høyrup’s
excellent “Changing Trends” paper (Høyrup 1996); for an updating of the story see
(Melville 2016).

The best-known period of Mesopotamian mathematics is the Old Babylonian
(ca. 2000–1600 BCE). From this period we have an abundance of mathematical
texts using the sexagesimal place-value system and relatively clear hints of com-
putational techniques and physical aids. However, the introduction of the abstract
sexagesimal place value system late in the 3rd millennium (typically located in the
Ur III period of 2100–2000 BCE) led to a radical disjunction in computational
practice and we cannot suppose that instruments and aids in use in the Old
Babylonian period and later were also used before then. A discussion of Old
Babylonian practice appears elsewhere in this volume. The one tool we are certain
third millennium scribes used to aid their computation is the mathematical list or
table, a characteristic Mesopotamian technique of organizing data. A short table
summarizing the standard modern periodization of early Mesopotamian history is
included at the end of this chapter.

Much of the literature on early (that is, before 2100 BCE) Mesopotamian
mathematics is technical and intended (only) for specialists. As an introduction to
those seeking general orientation to the overall field, I recommend Eleanor
Robson’s chapter on Mesopotamian mathematics in the source book edited by
Victor Katz (Robson 2007), and her book (Robson 2008). Robson’s bibliographies
will provide excellent pathways into the literature. For a deeper look at the third
millennium in particular, the best starting point remains (Nissen et al. 1993).

One of the most important developments of third millennium Mesopotamian
mathematics is the gradual emergence of an abstract conception of number from
quantity notation tied to specific metrological units. Exactly how this occurred is
still not clear, and historians argue greatly over how to interpret evidence at dif-
ferent stages of this development.

Another cause for debate is the interpretation of arithmetic, algorithmic proce-
dures, and the possible role of geometric analysis. These topics are touched on
below although a detailed description of the nuances of the various positions
scholars have taken is beyond the scope of this paper.
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Some Background

The period considered in this chapter takes place before the development of the
abstract sexagesimal place-value system, the base-60 cuneiform system that
allowed context-free computations, especially multiplication. In the third millen-
nium BCE before the Ur III period, computation was context-dependent, and the
development of an abstract concept of number, and of an abstract numerical script is
a process that spans the thousand years of our concern.

Mathematical exercises in Mesopotamia were computational. Typical problems
were structured so that the solution required computing some specific quantity. The
happy accident of writing on clay means that the archaeological record of the extent
and development of mathematics in early Mesopotamia is more complete than that
for any other culture. However, it also means that what we have is only what they
chose to write down. Anything not in the written record, such as oral instruction or
possible auxiliary counting aids, is largely lost to us. Archaeology has not been
particularly helpful in understanding third-millennium computational practices. We
have tablets, some with archaeological context, many not; we know what students
learned, but have much less idea of how they learned it.

Writing in Mesopotamia arose in response to bureaucratic demands: the need to
record and control the flow of goods. Thus, from the beginning, writing and
mathematics were deeply intertwined. The archaic period (ca. 3350–3000 BCE)
presented scribes with a complex series of metrological systems, each with its own
notation, and trainees had to learn to manipulate the different quantities and sym-
bols, and explore the linkages between systems, for instance between the length and
area systems when computing quantities to do with fields or houses.

The main tool for education of beginners was the auxiliary table. Metrological
data were gathered into systematically organized tables that allowed students to
learn and explore connections between systems. An example of such a table is
given in Fig. 1. Its contents are discussed later in the chapter.

Another well-known characteristic of Mesopotamian mathematics was its
algorithmic nature. Learning how to solve problems involved learning step-by-step
procedures. Precisely how these computational algorithms were developed can not
usually be determined, but various classes of procedures for dealing with different
types of problems can be observed.

As the writing system, metrological notation, and society changed over the
course of the third millennium, mathematical problems and procedures naturally
changed as well. However, the centrality of writing (after all, the records we have
are from scribes), the use of tables, and the algorithmic habit provide a constant
theme.

In this chapter, we present a series of snapshots of mathematics and computa-
tional practices, analyzing tablets from several different locations and times. The
Sargonic period (ca. 2340–2200 BCE) produced a number of interesting metro-
logical geometric problems; the recent publication of table texts from the Early
Dynastic IIIa and b periods (ca. 2600–2340 BCE) has provided some new insights
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into length-area computations; there is an important collection of mathematical
tablets from Šuruppak from around 2500 BCE, and the archaic period (ca.
3000 BCE) is represented by a large collection of tablets mostly from Uruk. This
trajectory into the ever more distant past will help uncover constant themes as well
as emphasize the differences in different periods.

Third-millennium Mesopotamia was an agrarian society with large urban set-
tlements (Adams 1981) (see Fig. 2). For the administrators of a redistributive
economy, two constant key computations were determining quantities of goods or
rations for multiples of people, given the basic amount for a single person (in
various categories), and finding the areas of fields, given the lengths of the sides.
The latter computation was important for estimating harvest, seed, animal and labor
requirements, taxation, and allotting land to individuals. These two kinds of

Fig. 1 VAT 12593. Table of lengths and areas. Source Cuneiform Digital Library Initiative,
P106078, http://cdli.ucla.edu/dl/photo/P010678.jpg. http://cdli.ucla.edu/search/archival_view.php?
ObjectID=P010678
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problems gave rise to the two major types of (what we would term) multiplication
—repeated addition, and length-area conversions. Repeated addition operated in a
single metrological domain such as repeatedly adding quantities of grain, while
length and area computations required understanding the linkages between two
different systems, in this case the length and area systems. The abstraction of the
sexagesimal place-value system allowed the unification of calculation procedure for
these two kinds of ‘multiplication’. For a detailed treatment of the terminology and
conceptualization of Mesopotamian arithmetic, see Høyrup (2002a, b).

Sargonic Mathematics (2340–2200 BCE)

The extant corpus of Sargonic mathematical tablets is very small, fewer than twenty
texts are known (a list of tablets with their publication histories is given in Foster-
Robson 2004). Almost all examples concern length-area computations of rectan-
gular or square fields. Additionally, there is one example of a problem of division of
trapezoidal area that we will not discuss further here. [For more on that tablet (IM
58045), see Friberg (1990), Robson (2007), and Friberg (2014).]

The length-area problems come in two guises. In one, the task is to compute an
area given the lengths of the sides. In the other type the goal is to find the length of

Fig. 2 Map of Near East. Source CDLI wiki: http://cdli.ox.ac.uk/wiki/lib/exe/fetch.php?media=
carte-ediii.jpg. http://cdli.ox.ac.uk/wiki/doku.php?id=cartes_atlas
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one side of a rectangular field given the area and the length of the other side. The
second problem is, of course, extremely artificial and unlikely to arise in actual
surveying practice, but even the direct problem of computing the area tends to have
a quite artificial construction. The sizes and shapes of the areas (fields) are also not
necessarily realistic (Liverani 1990; see also Foster-Robson 2004) and it is clear
that the problems are exercises in conversions between length and area units, a
problem for which Sargonic metrology was almost uniquely unsuited.

In this period, the key length-unit was the nindan (ca. 6 m) and the key area unit
was the sar of 1 nindan square (ca. 36 m2). The sar provided a very clear linkage
between the two systems. However, it was the only convenient unit linkage. The
nindan was the largest length unit in use, sitting atop a complex system of smaller
units. Multiples of the nindan were recorded with cuneiform discrete notation. On
the other hand, the area sar was the smallest area unit, sitting at the bottom of a
complex system of larger units. Since there were no subunits available, fractions of
a sar were recorded with made-up sixtieths (gin) borrowed from weight metrology.

The relationships between the length units (slightly simplified) are given in
(Table 1), and the area units in (Table 2). For more details on metrology see Powell
(1990).

Here we give two representative examples of Sargonic length-area problems, one
direct and one inverse (originally published as texts 27 and 29 in Limet 1973)
(Figs. 3 and 4).

A translation of each problem is:

1. 11 nindan, 1 kuš-numun, 1 giš-bad, 1 šu-bad. Its area 1 iku ¼ iku 2 ½ sar 6 gin
15 gin-tur. It was found.

2. The average long sides are 2 40 nindan. What is the short side? The area is 1 iku.
Its short side is 3 kuš-numun, 1 giš-bad, 1 šu-bad.

Note that the ‘problems’ contain a bare minimum of information, especially the
first, which mostly consists of a length and an area. No task is stated, no procedure

Table 1 Sargonic length
units

1 nindan = 6 kuš-numun
1 kuš-numun = 2 giš-bad
1 giš-bad = 2 šu-bad
1 giš-bad = 3 šu-du-a
1 šu-bad = 15 šu-si
1 šu-du-a = 10 šu-si
1 šu-si (ca. 17 mm)

Table 2 Sargonic area units 1 sar = 1 nindan � 1 nindan

1 iku = 100 sar

1 eše = 6 iku

1 bur = 3 eše (ca. 6.5 ha)
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is given, no shape is mentioned, and it doesn’t even say that it is about a field. The
second problem at least states a question, but again does not mention a field or state
explicitly the shape. The term ‘average’ in the second example refers to a standard
procedure for estimating the area of a not-quite rectangular shape by multiplying the
average of the lengths with average of the widths.

Fig. 3 Sargonic text 1. Source Cuneiform Digital Library Initiative, P213161, http://cdli.ucla.edu/
search/archival_view.php?ObjectID=P213161

Fig. 4 Sargonic text 2. Source Cuneiform Digital Library Initiative, P213163, http://cdli.ucla.edu/
search/archival_view.php?ObjectID=P213163
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The laconic and partial written evidence makes the task of the historian
attempting to reconstruct ancient mathematical practices all the harder, although in
the cases such as this, much of the context can be deduced from other examples.

The artificiality of the problems is clear. In the first problem, the length is given
in what Friberg terms ‘wide-span’ numbers, that is, a quantity spanning a range of
units from large to small. The area then comes out as a complicated awkward
quantity. Additionally, the length, 11 nindan, 1 kuš-numun, 1 giš-bad, 1 šu-bad,
with a series of 1s, is hardly chosen at random. For the second problem, the area is a
simple quantity and the lengths again span the available units. It is also worth
noting that the second field is around 960 m long and about 3 m wide.

In 2004 Foster and Robson published a new tablet from a private collection and
took the opportunity to revisit the entire Sargonic corpus, summarizing the state of
knowledge (Foster-Robson 2004); the next year, Friberg published another
Sargonic tablet and also surveyed the overall corpus (Friberg 2005). Their inter-
pretations are starkly different and there is no consensus among historians as to the
correct view of Sargonic conceptions of mathematics.

Correct calculations offer little hint of how the answers were found; analysis of
errors in mathematical computations can be helpful for historians. Sometimes the
failure mode can reveal the underlying procedure. There is an error in the com-
putation of the Foster-Robson tablet, and the authors use the mistake as the basis of
their interpretation, arguing that the given answer “makes sense only if we assume
that the scribe has treated the area measurement in iku as if it were in sar…and this
type of error could only come about if scribes were expected to convert standard
mixed metrological notation into sexagesimal multiples and fractions of a base unit”
(2004, 6). Thus, Foster and Robson see “convincing evidence for sexagesimalisa-
tion” (2004, 1) in the Sargonic period. Hence, Foster and Robson provide a
“summary of calculation” for the second problem listed above as:
1 40� 2 40 ¼ 0; 37 30 ¼ 0; 30þ 0; 05þ 0; 02 30, that is, as a sexagesimal calcu-
lation with conversions back into metrological units as the last step, just as the
procedure would have been done in the Old Babylonian period.

Friberg rejected the Foster-Robson interpretation of Sargonic mathematics, and
in particular the computational errors as providing evidence for an early sexages-
imalization, stating his goal at the beginning of his paper, “It has been claimed
repeatedly by several authors… most recently Foster and Robson that sexagesimal
numbers in place value notation must have been used in the complicated compu-
tations needed to solve the problems stated in the [Sargonic] metric division
exercises and square-side-and-area exercises, always without explicit solution
procedures. The aim of the present paper is to show that it is easy to explain those
computations in less anachronistic ways” (2005, 1).

The less anachronistic way Friberg had in mind was to view of the problems as
“metric geometry”. Where Foster and Robson saw computation with numbers,
Friberg saw manipulation of figures with given lengths and areas, hence his term
“metric geometry”. In this case, the Sargonic length-area problems are part of his
sweeping re-assessment of Mesopotamian mathematics extending Høyrup’s
“cut-and-paste” geometrical interpretation of Old Babylonian quadratic
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mathematics (Høyrup 2002a, b) back to the early third millennium. Indeed, Friberg
considers the metric-geometric area manipulations as the source of the later interest
in quadratic problems.

Friberg referred to problems of the inverse type, as in the second example above,
as “metric division problems”, and stated, “the object of the exercise is not to divide
a number by another number, but to divide a given area by a given length” (2005,
2). That is, a geometrical rather than arithmetic procedure.

For the second problem above, Friberg observed that 1 iku is a square of 10� 10
nindan and then applied the following “factorization algorithm”:

“1 iku = 10 nindan � 10 nindan (a square with the side 10 nindan has the area 1 iku)
= 40 nindan � 2 nindan 3 kuš-numun (one side multiplied by 4, the other by ¼)
= 2 40 nindan � 3 1/2 1/4 kuš-numun (the length multiplied by 4, the side by ¼)

Hence, the answer is that the short side is 3 1/2 1/4 kuš-numun = 3 kuš-numun 1
giš-bad 1 šu-bad” (2005, 6).

This presentation is still numerical. A clearer view of Friberg’s geometric
interpretation is given in Fig. 5 (where we have abbreviated the units nindan (n),
kuš-numun (kn), giš-bad (gb), šu-bad (šb); the transliteration of the units here is
slightly different from that of Friberg).

Friberg’s metric geometry interpretation is detailed, complicated, and subtle and
here we have given only a simple example without his detailed justifications. While
his proposal is not without difficulties, it does act as a corrective to an excessive
focus on metric quantities as numbers.

Sargonic scribes left no record of precisely how they conceived of their math-
ematical exercises nor did they explain how they achieved their results. If they
visualized models of their fields to manipulate, they did not say so; if they had some
kind of counting board for computation, they also did not say. A proper under-
standing of Sargonic mathematical processes awaits further research.

Fig. 5 Friberg’s metric geometry
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Mathematical Tables from the Early Dynastic III Period
(2600–2340 BCE)

While the meagre Sargonic corpus of mathematics texts does not include any of the
table texts that were such an important part of mathematical practice, the preceding
Early Dynastic III period (ED III) includes five known examples, of which three
have only recently been published and subjected to detailed analysis. All concern
length-area metrology, relating lengths of sides and resulting areas of square or
rectangular surfaces.

The most well-known is VAT 12593 (Deimel 1923, 82; Nissen et al. 1993; see
Fig. 1 for a photograph). This is a large tablet from EDIIIa Šuruppak (ca.
2500 BCE) with a table of lengths and area of square fields of descending size from
1 gešu (that is, 600) nindan to 5 nindan, with corresponding areas decreasing from
3 šar 2 buru to ¼ iku. The reverse of the tablet is badly broken and presumably the
table originally continued down to smaller sizes. The table is organized in three
columns, first the lengths of the front of the field (sag), secondly the width, marked
sa2 indicating it is equal to the front, and thirdly the areas, labelled gan2 in the first
row to indicate that the areas represent fields (Tables 3 and 4).

For the lengths, the aš sign represents 1 nindan, the u sign 10 nindan, the geš 60
nindan, and gešu 600 nindan. For the areas, we have 1 eše = 6 iku and 1 bur = 3
eše as in the Sargonic texts discussed above. For the larger units, we have 1
buru = 10 bur and 1 sar = 6 buru.

Table 3 Transliteration of
VAT 12593 (obverse)

Length Width Area

1 gešu nindan sag 1 gešu sa2 3 šar 2 buru gan2
9 geš 9 geš sa2 2 šar 4 buru 2 bur

8 geš 8 geš sa2 2 šar 8 bur

7 geš 7 geš sa2 1 šar 3 buru 8 bur

6 geš 6 geš sa2 1 šar 1 buru 2 bur

5 geš 5 geš sa2 5 buru

4 geš 4 geš sa2 3 buru 2 bur

3 geš 3 geš sa2 1 buru 8 bur

2 geš 2 geš sa2 8 bur

1 geš 1 geš sa2 2 bur

Table 4 Transliteration of
VAT 12593 (reverse)

Length Width Area

5 u 5 u sa2 1 bur 1 eše 1 iku

4 u 4 u sa2 2 eše 4 iku

3 u 3 u sa2 1 eše 3 iku

2 u 2 u sa2 4 iku

1 u 1 u sa2 1 iku

5 aš 5 aš sa2 ¼ iku
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The precise purpose of such a text is not exactly clear, and we do not have
sufficient evidence to be certain of how these tables were used. Nor is it clear how
the underlying computations of areas were made. It is unlikely that the original
computations were performed in the order in which the information is presented in
the table, from large quantities to small. That argues that the table is some kind of
summary. It could have been written to show that certain simple length-area rela-
tionships had been memorized, or it could have functioned as a reference table as an
aid to calculating more complicated situations, presumably by subdividing a surface
into smaller, regular pieces. Computation of field areas presents us with a nice
balance of arithmetic and geometry.

In their discussion of this tablet, Nissen, Damerow and Englund suggested the
table was an exercise, rather than a practical aid, writing, “The exact purpose of this
table of areas of square fields is not known. We may exclude the possibility that it
served as some sort of table of calculations used to consult particular values. The
list was more likely to have been written as an exercise containing easily deter-
minable field surfaces every land-surveyor was required to know which could be
added together in calculating complicated surfaces” (1993, 139). Certainly the
well-known Old Babylonian multiplication tables were largely exercises in showing
mastery of a topic, rather than aids for those with poor memories and perhaps this
example falls into that genre.

The only other known EDIIIa table text, MS 3047, was published by Friberg in
2007. Similar in shape and format to VAT 12593, the obverse of the tablet contains
a table of lengths and areas for rectangular shapes where the length of the rectangle
is always 60 times its width. In contrast to VAT 12593, the values increase in size
in each line and, rather surprisingly, the table concludes with a total area.
Accounting texts from Šuruppak frequently include long lists of individual entries
summarized by a total, but it is unusual to see this appearing in a mathematical text.
The reverse of MS 3047 contains a mysterious table that Friberg suggested rep-
resented a geometric progression of areas, but it cannot yet be completely
understood.

These two EDIIIa (2600–2500 BCE) tables are complemented by three ED IIIb
(2500–2340 BCE) texts. The first published, A 681 (Luckenbill 1930), has a rather
different layout from the two Šuruppak texts. Instead of a table divided into col-
umns to be read across the tablet from left to right, this one gives lengths of squares
and corresponding areas to be read down each column individually.

The next ED IIIb text to appear, CUNES 50-08-001, was also published in
Friberg (2007). This is a large, multi-column tablet with five different tables of
square areas, ranging from the very large 1 šaru (that is, 36000 nindan) to very
small 1 šu-bad (1/24 nindan).

Most recently, we have the tablet published by Feliu (2012). This tablet contains
two tables. The first is an almost exact duplicate of VAT 12593, the other computes
areas of rectangular shape where one side is held fixed throughout the table while
the other varies in each line.

These few tables, all ostensibly on the same topic, that of computation of
rectangular and square areas, present us with a great diversity of practice. While
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some of them may have been informed or derived from actual surveying practice,
that is, fields of realistic sizes, others, and especially CUNES 50-08-001 seem
concerned with a theoretical extension of practical surveying beyond the bounds of
the metrological system. Given that the extension to small area units comes from
invoking sexagesimal fractions from weight metrology, we are again confronted
with the question of how much a proto-sexagesimal metrological idea was in the air
centuries before the development of the abstract sexagesimal place-value system.
We are also left to question the extent to which tables of areas should be viewed as
arithmetical calculations and how much as metrological geometric constructs.
Friberg said of CUNES 50-08-001 that it was “a clear forerunner of the invention of
sexagesimal numbers in place value notation” (2007, 426). On the other hand,
Proust (forthcoming) has a detailed review of the corpus of five tablets, in which it
is argued that a metric geometric approach is possible behind the older (EDIIIa)
tablets while the systematic exploration found in CUNES 50-08-001 represented a
shift in conceptualizing multiplication, and in particular the construction of areas
from given linear measures, from a geometric orientation to an arithmetic one. That
is, Proust sees these area tables as providing a marker of an increasing arithmeti-
zation of mathematical thinking.

Friberg’s notion of metric geometry as detailed in (2005, 2007, 2014) requires
sophisticated manipulation of shapes and a careful knowledge of metrological
relationships. One begins with a simple shape and deforms it into the desired final
result. Such procedures can yield complicated word problems, but are not needed
for the simple tables from Šuruppak discussed above. Proust’s proposed geometric
approach to the area tables starts from the observation that the key linkage between
lengths and areas at this time is not the sar of 1 square nindan, but the iku, the area
of a square 10 nindan on a side. From this it is a simple matter to construct
reference shapes for all larger area units and combine them to produce the desired
squares for the tables. Not much more than counting is required, and certainly no
abstract multiplication Proust (forthcoming). Thus a geometric approach obviates
complicated calculations.

Mathematical Problem Texts from Šuruppak
(ca. 2500 BCE)

The texts from Šuruppak date from around 2500 BCE and come from a narrow
period, a few months to a few years. A large number of administrative texts have
allowed a reconstruction of parts of the organization of the city (Pomponio and
Visicato 1994; Visicato 1995, 2000). There is a term for ‘scribe’, and a hundred are
known from the economic documents. Šuruppak was part of a group of half a dozen
cities that were preparing for war at the time the documents were written. We can
assume they lost as the city was then largely abandoned.
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Among the administrative texts are a small number of mathematical ones,
including a group that can be considered as the world’s oldest known mathematical
word problems. One of these problems is to compute the area of a very large square,
5 gešu nindan (ca. 18 km) on a side (TSS 188, Jestin 1937). As is the case with the
later Sargonic problem texts discussed above, the actual tablet contains not much
more than quantities. No task is specified, and no procedure explained (Fig. 6).

The text was analyzed by Friberg (2007, 148–149). The given answer is
incorrect. Recall that the largest entry on the table VAT 12593 gave the area of a
square of side 1 gešu nindan as 3 šar 2 buru. The problem on this tablet is to
determine an area 25 times as great.

The relevant portion of the area metrology is given in the factor diagram below.

Friberg observed that the given answer is precisely what would have been
obtained if the area of a 1 gešu nindan square had been incorrectly looked up in a
table or recalled as 3 šar 3 buru instead of 3 šar 2 buru. Friberg briefly summarized
the subsequent calculation in an equation without indicating the details of how the
intermediate steps were conceived or carried out. His description implies an
essentially arithmetical procedure.

Fig. 6 TSS 188, computation of a large area. Source Cuneiform Digital Library Initiative,
P010773. http://cdli.ucla.edu/dl/lineart/P010773_l.jpg. http://cdli.ucla.edu/search/archival_view.
php?ObjectID=P010773
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Starting from an incorrect base area also upsets all the nice linkages that occur
for the larger units and it really should have been apparent that something had gone
wrong if following Proust’s subdivision of a diagram approach. However, the initial
error could propagate effortlessly through the resulting computations if some kind
of repeated addition or ‘correspondence’ procedure had been used. The issue arises
because of the limitations of the specific notation in use during this period.

If the large surface was conceived as a 5 by 5 grid of smaller areas then com-
puting the larger area becomes a simple problem in addition. If one square had area
3 šar 3 buru then two squares would have area 7 šar, 3 squares 1 šaru 3 buru, four
squares 1 šaru 4 šar and five squares 1 šaru 7 šar 3 buru. Since five squares form a
row or column, the calculation could then operate on rows to get the final result. In
this model only simple addition and an understanding of the unit conversions
inherent in the factor diagram is needed. All intermediate values are maintained in
the standard metrological notation. Also, note that multiples of a given unit are
recorded with repetitions of a unit, so tallying and bundling are the only require-
ments. These computations could have easily been carried out either in writing on
some kind of temporary scratch pad surface, or using a simple additive counting
board with symbolic markers for the different units.

We have emphasized the importance of core linkages between metrological
systems. The use of correspondences based on simple linkages was first suggested
by Friberg in his analysis of an Ebla mathematical text as a division problem.
Friberg formulated the problem as: “Given that you have to count with 1 gubar [an
Ebla capacity unit] for 33 persons, how much do you count with for 260,000
persons?” (Friberg 1986, 19). Friberg made the crucial observation that division of
260,000 by 33 was not possible using Eblaite notation and thus a different proce-
dure must have been used.

A similar proposal for dealing with division problems from Šuruppak was given
in Melville (2002) and Friberg (2007, 410–415) summarizes an improved version
of the original suggestions for both the Ebla and Šuruppak problems. Below we
give two examples, one simple, one more complicated, to illustrate the technique.

The tablet TSS 81 (Jestin 1937) reads (in the translation from the Digital Corpus
of Cuneiform Mathematical Texts, see http://oracc.museum.upenn.edu/dccmt/): “40
sons of builders (each) received 2 ban as a flour gift. (Total) 3 lidga, 1 barig, 2 ban
of flour” (Fig. 7).

The modern approach would be to take an abstract multiple ð40� 2 ¼ 80Þ of the
base unit ban and then convert the 80 ban into the correct units. However, the
capacity notation in Šuruppak precluded writing more than 5 ban (see Melville
2002 for details). Quantity notation was tied to the measurement system and not
abstracted out as a number. Instead, the scribe must have worked up from the base
correspondence of 1 person to 2 ban up to the correspondence of 40 people to the
total quantity of 3 lidga, 1 barig, 2 ban using some kind of tabular arrangement and
aggregating and bundling the quantity units.

A similar approach must also have been used for the ration ‘division’ problem
from Šuruppak (TSS 50, Jestin 1937): “A granary of barley. Each man received 7 sila
of grain. Its men: 4 šaru 5 šar 4 gešu 2 geš 5 u 1; 3 sila of barley remains” (Fig 8).
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The scribe must have worked up from the correspondence of 1 man to 7 sila up
through the various capacity units to the granary at the top. In fact, there is another
copy of this problem, TSS 671 (Jestin 1937), or at least an attempted answer. In this
case, the answer given is incorrect, but if some system of correspondences was
used, the given solution required only one simple error in the middle of the com-
putation. The challenge for the scribe was managing correspondences between two
different metrological domains, each with different notation and different relation-
ships between larger and smaller units.

While it is dangerous to generalize from such a modest sample, the fact that
these division problems dominate the small corpus of mathematical problems
suggests that the construction and solution of complex metro-mathematical division

Fig. 7 TSS 81, ration computations. Source Cuneiform Digital Library Initiative, P010737. http://
cdli.ucla.edu/dl/lineart/P010737_l.jpg. http://cdli.ucla.edu/search/archival_view.php?ObjectID=
P010737
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problems was popular 4500 years ago. As Friberg observed, “the fact that three of the
four oldest known mathematical problem texts were concerned with exactly the same
kind of ‘non-trivial’ division problems must be significant: the obvious implication is
that the ‘current fashion’ among mathematicians about four and a half millennia ago
was to study non-trivial division problems involving large…numbers and ‘non-regular’
divisors such as 7 and 33” (Friberg 1986, 22). The theory of correspondences suggests
that these problems may have been solved using simple repetition and bundling with a
collection of intermediate steps organized in a list or tabular fashion.

Archaic Mathematics (ca. 3000 BCE)

Although more is now known about the mathematics of the Archaic period around
3000 BC than was the case a few decades ago, much is still mysterious. The best
introduction remains (Nissen et al. 1993).

Writing and mathematics were introduced in mesopotamia for administrative
purposes, in order to monitor and record the flow of goods in a bureaucratic context.
As Foster observed, “Accountability means the obligation to keep records for
property that does not belong to the record-keeper. Although some have suggested
that Sumerian accountability grew out of the difficulty of managing large quantities

Fig. 8 TSS 50, ration computations. Source Cuneiform Digital Library Initiative, P010721. http://
cdli.ucla.edu/dl/lineart/P010721_l.jpg. http://cdli.ucla.edu/search/archival_view.php?ObjectID=
P010721
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or transactions too complicated to remember, this misses the fundamental purpose
of institutional record-keeping of all periods” (Foster 2005, 78). Thus, most of the
sources we have derive from an institutional context and reflect institutional needs
and priorities; what other kinds of mathematics there may have been in society have
not left similar traces.

Another complication with the archaic texts is that it is often difficult to tell if a
tablet represents an actual administrative document, a practice model document, or
an exercise. In this context, Friberg used the term ‘metro-mathematical text’,
commenting that “the term is appropriate because it is often difficult or impossible
to distinguish a complicated and mathematically interesting
administrative-economic text from a carefully designed mathematical exercise
constructed in order to demonstrate the use of, and manipulation with, various kinds
of measures and their numerical notations” (Friberg 1997, 2).

One indicator of artificiality that Friberg used was the presence of round or
“almost-round” quantities, especially in areas of fields. One might expect fields in
administrative archives to come in all shapes and sizes. The presence of lengths or
areas that are conspicuously round (especially large and conspicuously round) or
that differ from a round number either by a simple fraction or a small quantity
suggests an artificial exercise. The frequency of occurrence of such measures
convinced Friberg that many of these texts were educational and led to his geo-
metric division interpretation extending back into the earliest script phases (Friberg
1997, 2014).

Friberg’s argument is delicate and one must take care in its interpretation. One
example that he uses in both papers (1997 and 2014) is an archaic text where the
areas of five rectangular fields are computed and then the total is recorded (MSVO
1, 2, Englund and Grégoire 1991). The total area is written as 3 šar 5 buru 2 bur 2
eše 5 iku, not an obviously round quantity. However, converting this into a multiple
of iku, Friberg noted that the total is 4193 iku or, as he wrote,
“7 � 10 � 60 iku� 7 iku”, commenting that, “This nearly round area number is hardly
accidental” (2014, 4). Friberg is not suggesting that the quantity 4200 iku was
written out, as that would not be possible in the contemporary notation, but that an
underlying geometrical sense was used to construct problems where the solution
comes very close to a regular figure. The point being that in problems involving
fields, especially areas of fields, some kind of geometric representation may have
been used, presumably marked on some temporary surface such as a dust board, the
ground, or clay, but that this aid is not recorded on the final tablet that has come
down to us. The only trace of the geometry is in the quantities chosen.

Early writing was largely curviform, drawn by a reed stylus onto wet clay.
Quantity notation was somewhat different. The other end of the stylus was pressed
into the clay either at an angle, producing a horizontal or vertical wedge shape, or
straight down producing a circle. Two different sizes of stylus were used and the
notation could combine them so, for example, producing a small circle inside a
large wedge. These basic signs were decorated in various ways to extend to a
repertoire of about 50 different quantity signs. How far this practical disjunction in
way of writing quantities reflected a conceptual distinction is unclear.
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Each sign represented a certain sized unit when referring to a particular
metrological domain such as lengths, areas, capacities, time, or discrete goods. As
there were more units than signs, many of the signs, especially the simple basic
ones, appeared in several different contexts, where the same pair of signs could
stand for different multiples depending on what was being measured. For example,
the circular sign obtained by pressing the end of the stylus vertically into the clay
represented 6 wedges in the capacity system, 10 wedges in the system used for
discrete goods and 18 wedges in the area system. Unravelling this complex col-
lection of metrological units and their relationships was a correspondingly difficult
task. The main description of the results is in Nissen et al. (1993). Multiples of each
basic unit were recorded with repetitions of the unit sign—three times a circle was
shown as three circles. It is not known for certain how computations were carried
out. All that was written down was the result of a computation, and there are no
texts explaining arithmetic procedures. However, as we have seen above, there are
some hints, but they are slight and open to contradictory interpretations.

Calculation

The question of precisely what kinds of computational aids and tools the
Mesopotamian scribe could call upon, and exactly how certain kinds of calculations
were carried out is problematic. The evidence is thin, indirect, and contradictory. We
are considering a period of over a thousand years with evidence of slow but steady
conceptual development. There is not necessarily a single answer. More than 20 years
ago, with reference to the archaic period, Peter Damerow and Robert Englund wrote,

How such calculations were performed is not understood in detail. Instruments that could
have served as calculation aids are as yet not attested in archaeological finds, or have not
been identified as such. Lexical lists from later periods, however, suggest that the
Sumerians used tallying boards made of wood, which being perishable would not have
been unearthed in excavation. There is also some evidence that the sign SANGA, desig-
nating the chancellor of an economic unit, derives from a pictogram depicting such a
tallying board. This, in fact, is supported by the cuneiform sign ŠID which, also having
developed from this sign, was employed as an ideogram with the meaning “account”.
(Nissen et al. 1993, 134)

Sadly, at least with respect to archaeology, not much has changed in the inter-
vening years. There is still no incontrovertible evidence for any kind of counting
board. However, we can say a little more.

First, the lexical evidence. There is a Sumerian term (giš-šudum-ma) translated
as “tally-stick”. However, the word only appears (twice) in much later Old
Babylonian literary sources. The term is not attested in the third-millennium sources
at all and, while it is indeed possible that Sumerians made use of tally-sticks, such
would be more a record device than a calculation aid. The second term (giš-nig-šid)
appears in lexical lists (long lists of related words) but does not appear outside of
them. The Sumerian giš is a determinative signifying an object made out of wood,
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so if the term referred to a real object it would be some kind of wooden device aiding
in accounting. One of the problems with interpreting the lexical texts is that in them
Sumerian scribes strove for an idealized completeness that did not always reflect
reality. The fact that such objects are not ever mentioned in administrative documents
is problematic, perhaps more so than their absence from the archeological record.

The hint provided by the shape of the archaic sign sanga is more intriguing.
Before the term “scribe” appeared in the middle of the third millennium, there was a
category of officials associated with receipt and disbursement of goods called sanga
who often needed to determine totals of numerous entries or ratios of ingredients to
go towards making goods (beer, for example). The sign is very well attested and
came in a number of variants, of which the most common type was:

(CDLI signlist, http://cdli.ucla.edu/tools/SignLists/protocuneiform/archsigns.html)

The suggestive shape has led some to argue that the sign represents some kind of
counting board with a receptacle for counters on the side. The farthest anyone has
committed themselves in print is Jøran Friberg, who in a parenthetical aside
remarked, “the sign sanga itself may be the picture of a box for number tokens”.
(Friberg 2007, 151)

What makes the weakness of the evidence more frustrating is that the third
millennium seems bracketed by the use of counters. Before writing developed, there
was a widespread system of ‘tokens’ in use in Mesopotamia, and it appears that at
least some of these tokens acted as ‘counters’ recording quantities of types of
goods. The exact details of the relationships of early counters to the goods is
unclear and whether they merely acted as a record of quantities or were used for
calculations is completely unknown (Lieberman 1980; Schmandt-Besserat 1992;
Englund 1993; Friberg 1994). At the other end of the period, both Proust and
Høyrup have argued for the presence of a counting board in Old Babylonian
mathematics (Proust 2000; Høyrup 2002a, b). But this is after the development of
the abstract sexagesimal system, and their arguments depend in part on analysis of
errors in many-place computations which would not have occurred the same way in
earlier periods. Perhaps the new kinds of computation called forth new technology.
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Another approach is to consider the kinds of calculations scribes were called
upon to perform. We have seen that the archaic system had a wide range of quantity
notation with often narrowly specified subject matter. Over the course of the fol-
lowing thousand years, number was gradually abstracted out of quantity. However,
within this range of systems, there were distinct similarities. Each metrological
system contained multiple different units. In all cases, multiples of a unit were given
by repetition of the unit, either repeating the whole sign or by modifying a base sign
with a series of strokes. There were thus three kinds of operations of increasing
difficulty that were needed: simple accumulation, replacement or bundling of units
within a sequence, and relations between units in different systems.

In the first case, simple accumulation, ‘addition’ is merely copying. That is, what
we might think of as ‘2þ 2 ¼ 4’ becomes in an accumulation or tallying system
‘II þ II ¼ IIII’, with the particular sign for the unit varying with context. The next
level is bundling the appropriate collection of a small unit into one of the next larger
unit. This operation could be learned either solely through writing or with some sort
of physical aids. What complicated the issue for Mesopotamian scribes as opposed
to modern children confronting, say, number rods, is that each individual system
contained multiple different sized bundles to scale from one unit to the other.
Context was vital, and this the written system was able to express clearly.

The third, and by far the most difficult, problem was establishing linkages
between metrological domains that used different kinds of multiples in the span of
their units. We have seen examples of this in the problem of giving rations to
people, where the capacity units do not nicely correspond to the discrete system
used to count people, and, above all, in the core problem of computing the area of a
field from measurements of the sides. Length and area units did not align well. The
evidence we have is that scribes responded to this challenge by developing tables
reflecting simple square and rectangular cases, and possibly diagrams, but not the
use of counting boards.

The main basis of Sumerian scribal education lay in copying and memorization.
Scribes developed their writing and linguistic skills through copying exemplars and
gradually memorizing signs and forms. It is probable that mathematics was learned
the same way. Proust’s reconstruction of elementary mathematics education at
Nippur during the Old Babylonian period shows that students learned lists of
metrological signs, then mathematical tables (in this later period multiplication
tables), and only entered on doing even simple calculations once they were thor-
oughly grounded in the intricacies of the metrological systems (Proust 2007). This
pedagogical approach had deep roots.

If mathematical calculation, and in the third millennium this meant accumulation
and correspondences, only came late in scribal education, it may well be that such
calculations were carried out in written form. The professional identity of a scribe
depended on the exclusive ability to write and, certainly in the archaic period, the
complexity of quantity notation argues for a written form of computation, although
this must remain speculative in the absence of better evidence.
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Appendix: Periodization

The absolute chronology of Mesopotamia is an area of current vigorous scholarly
debate, especially before the first millennium. The further back in time one goes, the
larger the uncertainties. For convenience here we follow the middle chronology
periodization adopted by the Cuneiform Digital Library Initiative (CDLI), as
follows:

Period Date

Uruk IV *3350 to 3200

Uruk III *3200 to 3000

Early Dynastic I–II *2900 to 2700

Early Dynastic IIIa *2600 to 2500

Early Dynastic IIIb *2500 to 2340

Sargonic *2340 to 2200

Ur III *2100 to 2000

Old Babylonian *2000 to 1600
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