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gmpinna@unica.it

Abstract. The issue of reversibility in computational paradigms has
gained interest in recent years. In this paper we investigate how to reverse
steps in membrane systems computations. The problem is that computa-
tion steps in membrane systems do not preserve all the information that
has to be used when reversing them. We try to formalize the relevant
information needed, and we show that the proposed approach enjoy the
so called loop lemma, which basically assures that the undoing obtained
by reversely applying rules is correct.

1 Introduction

Membrane systems, introduced by Păun (see [22,23] for a first account on mem-
brane systems), are nowadays a popular and extensively studied computational
paradigm inspired by how computations in the living cells take place.

The ingredients of this computational paradigm are a membrane structure
(which is a tree-like structure), a multiset of objects associated to each membrane
(spatial distribution of resources) and a set of evolution rules for each membrane
(acting at local states). A computation step is performed by the application of a
bunch of rules which consume objects from a membrane and produce objects in
this membrane and possibly in the neighbouring membranes as well. All the pos-
sible instances of applicable rules are used, as it happens usually in nature, but
this is not actually always needed to make the computational paradigm Turing
equivalent (for instance, in [21] membrane systems where the rules have a spe-
cial format are considered, and maximality is not required; similarly in [5] or [9]
where, respectively, minimal parallelism or the presence of special objects called
catalysts is considered). The computational paradigm has also been compared
with many other paradigms (see [23] and the chapters therein for a fairly detailed
account), and the relative expressivity has been studied (see, for instance, [6,7]
or [4]).

Reversibility in computation paradigms is an issue that recently has received
great attention1. Reversibility in nature has a quite precise meaning: once
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reached a certain state (say F) from a starting one (say I) with a sequence of
steps, there is the capability of reaching again the state I, possibly applying the
various steps in reverse order. Furthermore in nature also energy is considered,
and the final balance after reversing steps should be zero. When focussing on
computational devices, reversibility in general accounts on understanding how
certain rules are applicable in reverse order and in particular the amount of
information to be preserved. We do not discuss here further why reversibility is
worth to be considered, and we refer to [16] for more motivations.

As already pointed out in [16], when reversibility is backtracking (the feature
that certain non deterministic computations enjoy, which allows to explore all
the possible alternatives), then reversibility is well understood. Just a suitable
coding of the choices and of the applied rules is enough. It is much less clear in
the case of distributed or concurrent systems, where the applications of the rules
is done in a local fashion. Membrane systems have to be considered computing
devices of this kind.

The aim of this paper is to investigate on how to reverse computation steps in
membrane systems in such a way that if a configuration is reached from another
one, there is a way to reverse this step.

Reversing computations can be achieved in various manners. One is to add
suitable rules having the reverse effect of other rules, another approach is orthog-
onal to this one and it is based on devising on how to apply the same rule
reversely. In the first way the fact that a computation is reversed is just a mat-
ter of observation on the results achieved by the computation itself, making the
approach a sort of simulation of reversibility. Still some information about the
computations may have to be considered (for instance, in the approach presented
in [1] some information should be kept, as rules having as effect the dissolution
of membranes are considered). In the case it is necessary to keep track of the
previous existence of some membranes.

Another way focusses on how a rule is reversely applied to a given stage
of the computation, and to apply a rule reversely it is often necessary to keep
some information about the previous stages of the computation. The conditions
to be established are such that a loop lemma can be proven. The loop lemma
simply states that if one goes from a stage of the computation to another one
by applying a bunch of rules together, then from the reached stage it is possible
to go back by reversely applying the same bunch of rules. Though this seems to
be an easy and minimal requirement, it is not obvious that it generally holds for
concurrent and distributed systems. In fact, as discussed in [8] (see also [16]),
further information have to be given in order to be able to reverse computations
steps consistently. The added information have to guarantee that the previous
stage of the computation can be reconstructed properly.

We achieve this result by enriching the notion of configuration of a membrane
system with a memory which records the (minimal) information to be considered
in reversing steps. The notion of memory we adopt is similar to the one of event
structure associated to a membrane system developed in [2,20]. We are able to
prove the loop lemma, though we get a weaker version which we will discuss.
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The choice of adding a memory is not the unique solution to the problems posed
when reversing steps, as objects may be enriched with the full history. However
the amount of information the memory may have is able to cover this other
approach, hence we believe that what we propose is general enough.

Though reversibility often means to fully undo some steps, it is important
to observe that this is not actually needed. In fact it seems more reasonable to
allow to undo part of the steps rather than the whole one and this is feasible in
our approach.

The paper in organized as follows. In the remaining part of this introduction
we briefly recall how the issue of reversibility in membrane systems has been
considered in literature.

In the next section we give some background and in Sect. 3 we review the
notion of membrane systems and formalize the notion of membrane systems
computation. In Sect. 4 we first state in general what reversing computations in
membrane systems may be, discussing briefly its limitation, and then develop
our approach: in Subsect. 4.1 we discuss how the information is added to config-
urations. Few ideas for future developments conclude the paper.

Reversibility in membrane systems: other approaches. Reversibility
has been previously considered in membrane systems. In [1] Agrigoroaiei and
Ciobanu present a first attempt to study reversibility in membrane systems.
They develop a way to consider new reversed rules, called dual rules. Dual rules
replace the original rules of the membrane system and reversed computations are
studied with the aim at easing the search of appropriate solutions to problems
backward rather than forward (and indeed the membrane systems introduced
and studied in [1] are also called dual membrane systems). Thus computations
are reversed as the whole system is actually reversed, which is different from
undoing something.

Other papers consider when computations can be reversed, and they usually
require that the membrane systems looked at are deterministic. For instance, [3]
considers membrane systems where reversibility (or strong reversibility) means
that every reachable configuration of the system can be obtained by a single
configuration (and in the stronger version the reachability request is dropped),
and the determinism issue is considered as well, meaning that every reachable
configuration has just one successor configuration (again the strong version is the
one requiring that the reachability request is dropped). In this paper conditions
to achieve reversibility, strong reversibility, determinism and strong determinism
are studied, and the expressivity of the associated systems is made precise. In
[11] the problem of strong reversibility is further studied, and it is shown that
it is decidable if a membrane system is strongly reversible. It is also worth to
stress that the membrane systems considered have just one membrane.

In [18] the author considers membrane systems with symport/antiport rules,
and it is shown that every reversible register machine can be simulated by a deter-
ministic membrane system with symport/antiport rules. In [24] spiking neural
systems are taken into account, and the investigations focus on the expressiv-
ity issue. Indeed it is shown that these systems are reversible because they are
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equivalent to reversible computing machines, and in all the above mentioned
approaches the focus is on deterministic systems, whereas we consider reversibil-
ity without constraining it to special cases.

In [17] reversibility is considered as it is shown how to simulate Fredkin
circuits with membrane systems, focussing on energy. Being Fredkin gates the
base for achieving reversibility at circuit level, hence allowing to restore not
only the state but also the energy, the fact that suitable membrane systems can
simulate these circuits is quite relevant.

2 Background

We first fix some notation. With N we denote the set of natural numbers including
zero, and with N

+ the set of positive natural numbers. Given a set X, with 2 X

we indicate the set of subsets of X and with 2 X
fin the set of finite subsets of X.

Given a set X, a partial order � on X is a reflexive, transitive and anti-
symmetric relation. Let (X,�) be a partially ordered set and Y ⊆ X, we say
that Y has a minimum iff there exists x ∈ X such that ∀y ∈ Y it holds that
x � y. Dually it has a maximum iff there exists x ∈ X such that ∀y ∈ Y it
holds that y � x. The elements of Y ⊆ X are referred to as incomparable iff
∀y, y′ ∈ Y. y �= y′ implies that y �� y′ and y′ �� y. Given a partial order (X,�),
with max (X,�) we denote the set of elements Y ⊆ X such that (a) for each
y ∈ Y and for each x ∈ X if y � x then y = x (the element y is not dominated
by any other element of X), and (b) for each x ∈ X such that there is no x′ ∈ X
with x′ �= x and x � x′, then x ∈ Y (the set is the greatest subset of incompa-
rable and maximal elements of X), and similarly with min(X,�) we denote the
greatest subset of elements Y ⊆ X that are minimal with respect to the partial
order relation. Given two elements x, y ∈ X such that x � y, we say that x is an
immediate predecessor of y iff x �= y and ∀z ∈ X. x � z � y either implies x = z
or z = y. If x is the immediate predecessor of y, we indicate this with x �̂ y.

A partial order (X,�) is a tree if � is such that each subset Y ⊆ X of
incomparable elements has no maximum, and each subset Y ⊆ X has a min-
imum. The minimum of X is called the root of the tree. We define some aux-
iliary partial functions over trees. Given a tree (X,�), we define the partial
function father : X → X by father(x) = y whenever y �̂ x. Clearly, the
root of a tree has no father. The function children : X → 2 X is defined by
children(x) = {y ∈ X | x �̂ y}. If x is a leaf, then children(x) = ∅. We assume
that the trees have a finite degree, namely for each node x we assume that
children(x) ∈ 2 X

fin .

Multisets. Given a set S, a multiset over S is a function m : S → N; we denote
by ∂S the set of multisets of S. The multiplicity of an element s in m is given by
m(s). A multiset m over S is finite iff the set dom(m) = {s ∈ S | m(s) �= 0} is
finite and we always consider finite multisets. A multiset m such that dom(m) =
∅ is called empty, and it is denoted by 0. The cardinality of a multiset is defined
as #(m) =

∑
s∈S m(s). Given a multiset in ∂S and a subset S′ ⊆ S, by m|S′
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we denote the multiset over S′ such that m|S′(s) = m(s). We write m ⊆ m′ if
m(s) ≤ m′(s) for all s ∈ S, and m ⊂ m′ if m ⊆ m′ and m �= m′. The operator
⊕ denotes multiset union: (m ⊕ m′)(s) = m(s) + m′(s). The operator � denotes
multiset difference: (m � m′)(s) = if m(s) > m′(s) then m(s) − m′(s) else 0.
The scalar product of a number j with a multiset m is (j · m)(s) = j · (m(s)).
We sometimes write a multiset m ∈ ∂S as the sum ⊕s∈Sm(s) · s, where we
omit the summands whenever m(s) is equal to 0. Finally we assume that all
the operations defined so far extend (with overloading of notation) to vectors of
multisets, applying the operations component-wise.

Membranes structure. The language of membrane structure, which we will denote
with MS, is a language over the alphabet {[, ]}, and it is defined inductively as
follows:

– [ ] ∈ MS, and
– if μ1, . . . , μn ∈ MS then also [μ1 . . . μn] ∈ MS.

Two words in MS are equivalent whenever they represent the same tree up to
isomorphisms, and a membrane μ is the equivalence class of all the words with
respect to this equivalence. Observe that, given a membrane μ, a matching pair
of parentheses is any substring of μ which is again a membrane. The number of
membranes appearing in a membrane μ is calculated as follows:

#MS(μ) =
{

1 if μ = [ ]
1 +

∑k
i=1 #MS(μi) if μ = [μ1 . . . μk]

and to each membrane μ′ appearing in a membrane μ, including μ itself, it is
possible to associate an unique index i ranging from 1 to #MS(μ), and we denote
this index with index(μ′). If μi = [μi1 . . . μik ] then father(ij) = i for 1 ≤ j ≤ k,
and children(i) = {i1, . . . , ik}. We assume that the index 1 is given to the root.
Obviously the set ({1, . . . ,#MS(μ)},�∗) is a tree, where index(μ′) � index(μi)
whenever μ′ = [μ1 . . . μk], with 1 ≤ i ≤ k, and �∗ is the reflexive and transitive
closure of �.

3 Membrane Systems

We are now ready to recall the notion of membrane system. The main ingredients
of a membrane system are three: a membrane structure, a multiset of objects
associated to each membrane and a set of evolution rules associated to each
membrane. The membrane structure represents the various compartments where
the computations take place (in general simultaneously), and the conditions
under which certain evolution rules can be applied is checked locally, i.e. in the
same membrane to which the rules are associated. The result of the application
of a rule has a more global effect, as it will be clear in the following.

We fix a finite alphabet of (names of) objects (sometimes called molecules),
that we denote with O and we fix an alphabet of rule names, that will be denoted
with Name, and it will be ranged over by n.
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Definition 1. A membrane system over a set of objects O is a construct Π =
(O, μ, w0

1, . . . , w
0
n, R1, . . . , Rn) where:

– μ is a membrane structure with n membranes indexed from 1 to n, where
n = #MS(μ),

– each w0
i is a multiset over O associated with membrane i, and

– each Ri is a finite set of reaction (or evolution) rules r associated with the
membrane i, each rule having the format r : u → v, where u is a non empty
finite multiset in ∂O, v is a finite multiset over O × ({here, out} ∪ {inj |
father(j) = i}), and name(r) ∈ Name is the name of the rule r.

The definition is almost standard, the difference is that we omitted the output
membrane which is usually considered when one wishes to focus on what is
calculated by a membrane system, and we focus on a rule format where a multiset
of objects of a membrane are possibly transformed in multisets of objects in the
same membrane and in the neighbouring ones (i.e. the father and the children).
Two rules r, r′ belonging to different sets of reaction rules (thus associated to
different membranes) may be equal, where equal means that if r : u → v and
r′ : u′ → v′ then u = u′ and v = v′. We however assume that all the rules in a
membrane system have distinct names, i.e. for each r, r′ ∈ ⋃

1≤i≤n Ri, if r �= r′

then name(r) �= name(r′) and if r = r′ then there exists k, j ∈ {1, . . . , n} such
that r ∈ Rk, r′ ∈ Rj , k �= j and name(r) �= name(r′). Given a rule r ∈ ⋃

1≤i≤n Ri,
with index(r) we denote the index of the membrane this rule is associated to,
thus if r ∈ Ri then index(r) = i.

The application of a rule r : u → v in a membrane i will consume the
multiset u that must be in the membrane i and may cause the production
of multisets not only in the same membrane i but also in the neighbouring
membranes, if there are, namely those that are children of i and the father(i)
membrane, if this exists. With I(r) we denote the set with the indices of the
membranes where a rule r actually produces an object. Given a rule r, u is
the left hand side of r and v is the right hand side of r, and they are denoted
with lhs(r) and rhs(r), respectively. To simplify the notation, given a multiset z
over O × ({here, out} ∪ {inj | father(j) = i}), with z|α we denote the multiset on
O obtained from z by considering all the elements with the second component
equal to α, where α ∈ {here, out, in1, . . . , inn}. Given a rule r, its rhs(r) = v
may be represented as (v|here, here)⊕ (v|out, out)⊕ (v|inj1 , inj1)⊕· · ·⊕ (v|injk , injk)
where {j1, . . . , jk} = children(index(r)). Observe that it may be that some of
the v|α are equal to 0. Given a rule r, the indices involved in the effect of
this rule are {index(r) | rhs(r)|here �= 0} ∪ {father(index(r)) | rhs(r)|out �= 0} ∪ {i |
i ∈ children(index(r)) ∧ rhs(r)|ini �= 0}. We assume that, for each rule r, it holds
that I(r) �= ∅, hence each rule has an effect different from the annihilation of all
the objects involved2.

2 This requirement is reasonable when one imagine that reversing means undoing the
effects of a rule, thus if a rule just serves to annihilate all the objects to be rewritten
then one can imagine that such a rule can be always reversed, in any multiplicity.
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Membrane Systems Evolution. A membrane system Π evolves from a configura-
tion to another configuration as a consequence of the application of (multisets of)
rules in each region. The rules are applied simultaneously. We start formalizing
the notion of configuration of a membrane system.

Definition 2. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

then a configuration is a tuple C = (w1, . . . , wn) where each wi is a multiset
over O. C0 = (w0

1, . . . , w
0
n) is the initial configuration of Π.

A computation step of a membrane system is triggered by the application of
multisets of rules in each membrane. These multisets of rules are collected in a
vector.

Definition 3. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

then a multi-rule vector
−→
R is the tuple (R̂1, . . . , R̂n), where R̂i is a multiset over

Ri.

The multi-rule vector
−→
R contains all the rules that have to be applied simultane-

ously to a configuration of a membrane system, with their proper multiplicities.
A multi-rule vector

−→
R is enabled at a configuration C whenever each multiset

of objects in each region is greater than or equal to what all the rules to be applied
in that region consume. Given a multi-rule vector

−→
R , for each i between 1 and

n we denote with Lhs(
−→
R )i the multiset over O defined as follows:

⊕
r∈Ri

R̂i(r) ·
lhs(r). The tuple of these multisets is denoted with Lhs(

−→
R ).

Definition 4. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem,
−→
R a multi-rule vector and C a configuration. Then

−→
R is enabled at

C = (w1, . . . , wn) if ∀i ∈ {1, . . . , n}. Lhs(
−→
R )i ⊆ wi. We denote the enabling

of a multi-rule vector
−→
R at a configuration C with C [

−→
R 〉.

The effects of the application of a multi-rule vector
−→
R (which acts in all

membranes concurrently) in the membrane i are the following: the multiset of
objects

⊕
r∈Ri

R̂i(r) · rhs(r)|here is the effect of the rules in the same membrane,
(
⊕

r∈Rfather(i)
R̂father(i)(r)·rhs(r)|ini) those of the rules in the father membrane, and

finally (
⊕

j∈children(i) (
⊕

r∈Rj
R̂i(r) · rhs(r)|out)) those from the children mem-

branes. Like previously, these three parts are combined by using ⊕. For each
membrane, we denote the effects by Rhs(

−→
R )i. The tuple of these effects is writ-

ten as Rhs(
−→
R ).

The following definition captures the notion of evolution of a membrane sys-
tem with the application of a multi-rule vector

−→
R .

Definition 5. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

C = (w1, . . . , wn) be a configuration and
−→
R = (R̂1, . . . , R̂n) be a multi-rule

vector such that C [
−→
R 〉. Then

−→
R can be executed and its execution leads to

a configuration C ′ = (w′
1, . . . , w

′
n) where w′

i = wi � Lhs(
−→
R )i ⊕ Rhs(

−→
R )i. The

execution of a multi-rule vector
−→
R at a configuration C is denoted with C [

−→
R 〉C ′.
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For the enabling and the execution of a multi-rule vector we adopt a notation
resembling the one usually adopted for Petri nets, also because of the tight
connections among these two formalisms (see [6,7,12,13,20] among others, or
the chapter in [23]). Sometimes we will call an evolution step of a membrane
system as a reaction step.

We now formalize the chain of “reactions” for a given membrane system: C0

is a reaction sequence, and if C0 [
−→
R 1〉 C1 . . . Cn−1 [

−→
Rn〉 Cn is a reaction sequence,

and Cn [
−→
R 〉 C, then C0 [

−→
R 1〉 C1 . . . Cn [

−→
R 〉 C is also a reaction sequence. A con-

figuration C is said to be reachable if there is a reaction sequence starting from
the initial configuration and leading to C, i.e. C0 [

−→
R 1〉 C1 . . . Cn−1 [

−→
Rn〉 Cn with

C = Cn.
The evolution of membrane systems may have several strategies, and usually

it is assumed that in each membrane all the applicable rules are actually applied
in a maximally parallel way. Thus if

−→
R is enabled at the configuration C (C [

−→
R 〉)

it is implicitly assumed that there is no rule r in any of the rules sets Ri such that
C [

−→
R ′〉 where

−→
R′ is obtained from

−→
R adding an instance of the rule r to the proper

multiset. However, other strategies may be used, for instance maximality with
respect to a specific membrane index (no rule associated to that membrane can
be added to the multi-rule vector), or the rules to be applied are those involving
the presence of a specific object called catalyst, or to each rule a readiness index
can be associated and the criteria is to maximize the sum of these indices, or
simply a priority can be attached to each rule and those enabled with highest
priorities have to be applied. The various strategies that can be adopted have
an influence on the expressiveness of the paradigm, that is not our concern, as
we already mentioned in the introduction.

4 Reversing Membrane System Computations

Reversibility in membrane systems is strongly connected to the idea that com-
putations are deterministic. Here we consider an approach which is more similar
to the one taken when reversibility is considered in the realm of distributed and
concurrent computations.

Rather than introducing new rules (reversed, like in dual membrane systems
where the effect of undoing is obtained applying reversed rules) we formalize
what the reverse application of a multi-rule vector is.

Definition 6. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vector. Then

−→
R is

reversely enabled at C whenever, for all i ∈ {1, . . . , n}, it holds that Rhs(
−→
R )i ⊆

wi, and it is denoted with C 〈−→R ].

The intuition is almost trivial: the enabling is done by checking on the effects
of the application of rules. Observe that this fits easily when rule formats like
symport/antiport are considered, or like in [7] where a more general format for
rules is considered.
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Definition 7. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system,

C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vector such that C 〈−→R ].

Then
−→
R can be reversed and the effects of reversing this multi-rule vector are,

for all i ∈ {1, . . . , n}, w′
i = wi �Rhs(

−→
R )i ⊕ Lhs(

−→
R )i. We write C 〈−→R ]C ′ to state

that the configuration C ′ is the effect of reversing the multi-rule vector
−→
R . In

this case we say that
−→
R is reversely executed.

Once we have established what reversely enabling and reverse execution might
be, we start to connect these notion with the usual forward executions.

Proposition 1. Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem, C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vector such that

C [
−→
R 〉, and let C ′ be the configuration reached executing

−→
R , i.e. C [

−→
R 〉C ′. Then

C ′ 〈−→R ].

The loop lemma can be easily proven also in this setting:

Lemma 1 (Loop lemma). Let Π = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a mem-

brane system, C = (w1, . . . , wn) a configuration and
−→
R be a multi-rule vec-

tor such that C [
−→
R 〉, and let C ′ be the configuration reached executing

−→
R , i.e.

C [
−→
R 〉C ′. Then C ′ 〈−→R ]C.

The proof of the following theorem is obvious.

Theorem 1. Let Π be a membrane system, C a configuration and
−→
R be a multi-

rule vector such that C [
−→
R 〉C ′. Then there exists a multi-rule vector

−→
R′ such that

C ′ 〈−→R′]C.

Observe that not necessarily
−→
R′ should be equal to

−→
R . In fact they may differ.

Example 1. Consider the membrane system with just one membrane, the unique
rule associated to the membrane are r1 = a → (b, here) and r2 = a ⊕ b →
(2b, here), and the initial configuration is a ⊕ b. The rule r1 is enabled at the

initial configuration and its application leads to the configuration 2b. Now also
r2 can be reversely applied at this configuration and the initial configuration can
be obtained again.

The main problem is that membrane systems do not keep any information about
the past, thus at a certain configuration it could be that a multi-rule vector

−→
R can

be reversely executed even when no
−→
R ′ such that

−→
R ⊆ −→

R ′ has been “forwardly”
executed. This contrasts the idea that reversibility is like undoing something
that has been done previously.

Example 2. Consider the membrane system with 2 membranes [ [ ]2 ]1, where
the indices are the ones associated to the membranes, and with the following sets
of rules: {r11 : 2a → (a⊕ b, here)⊕ (b, in2), r12 : b → (a, here)⊕ (c, in2), r13 : a⊕ b →
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(2a, here)⊕(b, in2), r14 : a → (b, here)⊕(c, in2), r15 : 2a → (b⊕c, in2)} are the rules
associated to the first membrane, and {r21 : b → (2a, out), r22 : c → (b, out), r23 :
b → (a, out), r24 : c → (c, out)} are those associated to the second membrane. The
initial configuration is (w0

1, w
0
2) where w0

1 = 2a⊕b and w0
2 = 0. The configuration

(2a ⊕ b, b ⊕ c) can be reached either executing the multi-rule vector (r11 ⊕ r12,0)
or the one (r13 ⊕ r14,0). At this configuration these two multi-rule vectors are
reversely enabled, but also the multi-rule vector (r15,0), and reversely executing
it we would obtain the configuration (2a,0) which is not reachable using the
rules in the membrane system.

A similar problem is present in all the algebraic process calculi for which
reversibility has been studied (see [8,10,14,15] among others). The solution is
usually to add a memory which helps to keep track of the evolution of the pro-
cesses. Here we pursue a similar idea by adding information to configurations
(membranes). We assume that Name contains ⊥ as a name which is not associ-
ated to any rule.

4.1 Membranes with Memory

Objects of a membrane system may be enriched by adding the name of the
rule producing them. Thus objects would be O × Name, and reversing a step
would be to find out whether there are enough objects with specific rules names.
The forward enabling would ignore the information on which rule produced the
object, and the execution of the step would simply add the proper name of each
object produced. This solution allow to undo just one step, as the information
on the name of the rule of the consumed object are lost.

To be able to undo more steps we have to figure out a different structure,
which we call memory and we will add it to configurations.

We briefly discuss what the memory in this case could be. The idea is rather
simple: the memory is a labeled partial order, where the labeling gives a triple
composed by an object, the index of a membrane and a rules name, thus 〈o, i, n〉
conveys the idea that the object o has been produced in the membrane i using
the rule n.

Definition 8. Let Name be a set of rules names such that ⊥ ∈ Name, let O be
a set of objects and let I be a set of indices. Then a memory m is the labeled
partial order (X,�, l) where (X,�) is a partial order and l : X → O ×I ×Name
is a labeling mapping With Mem we denote the set of memories.

Given an element of (o, i, n) ∈ O×I ×Name, we define some obvious projections
operators, that carry over on multistes of O×I×Name. objm : O×I×Name → O
is defined as objm(o, i, n) = o, im : O × I × Name → I as im(o, i, n) = i, and
finally rulem : O × I ×Name → Name as rulem(o, i, n) = n. Given m = (X,�, l),
with max(m) we denote the (multi)set ⊕x∈max(X,�)l(x).

On memories we define two operations: one to add a vertex and another one
to remove a vertex. These operations are obviously extended to sets of vertices.
Given an element a ∈ O × I × Name and a set of vertices Y ⊆ X, with add we
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denote the operation that takes a memory m = (X,�, l), the set of vertices Y
and the element a and add a new vertex, labeled with a, which is greater than all
the vertex in Y . Formally add(m, Y, a) is the memory m′ = (X∪{y},�′, l′) where
y �∈ X, l′(y) = a and l′(x) = l(x) if x ∈ X, and �′ is obtained closing transitively
and reflexively the relation � ∪{(y′, y) | y′ ∈ Y } (though not explicitly stated
here, we imagine that the set Y is not empty and is a subset of max (X,�)).
With remove we denote the operation of removing a vertex x from a memory,
thus given a memory m = (X,�, l), and x ∈ X, with remove(m, x) we denote
the memory m′ = (X\{x},�′, l′) where �′ and l′ are the restriction of � and l
respectively to X\{x} (though not explicitly stated here, we imagine that only
maximal elements are removed). We do need some further notation. Consider
a multiset z over O × {1, . . . , n} × Name, and an index i ∈ {1, . . . , n}, with
�z�i we denote the multiset defined as follows: �z�i(a) = z(a) if im(a) = i and
�z�i(a) = 0 otherwise.

The notion of membrane system does not change, it changes however the one
of configuration (than now has a memory).

Definition 9. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system.

Then a configuration with memory is the pair C = (C,m) where C = (w1, . . . , wn)
is the tuple of multisets over O and m = (X,�, l) is a memory such that for
each i ∈ {1, . . . , n} it holds that wi = objm(�max(m)�i).

The initial configuration C0 is the pair (C0,m0), where C0 = (w0
1, . . . , w

0
n) and

m0 = (X,�, l) is a memory such that ∀x ∈ X, rulem(l(x)) = ⊥ and ∀x, y ∈ X.
x � y implies x = y.

Given a configuration with memory C = (C,m), then η(C) is C and γ(C) is m.
A configuration has now a memory and the requirement is that for each

maximal element of the memory corresponds an object in the membrane con-
figuration. The initial memory is such that the maximal elements carry the
information on the rule stating that they have not been produced by any rule,
and the partial ordering is the discrete one.

Example 3. Consider the membrane system with just one membrane with the set
of rules: {r11 : a → (a, here), r12 : a → (2a, here), r13 : b → (a⊕b, here), r14 : a⊕b →
(a, here)} and the following initial configuration: (a⊕b, ({v1, v2}, id , l)), where

id is the identity relation on {v1, v2}, l(v1) = (a, 1,⊥) and l(v2) = (b, 1,⊥).

The definition of enabling of a multi-rule vector is the same as for membrane
systems: it should be checked on the object part of a configuration (which is
closely related to the memory).

Definition 10. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C = (C,m) a configuration with memory, and
−→
R a multi-rule

vector. Then
−→
R is enabled at C whenever η(C) [

−→
R 〉, We denote the enabling of−→

R at C with C {[−→R 〉.
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Consider a memory m = (X,�, l) and a subset of vertex Y ⊆ max (X,�)
with m̃ax(Y ) we denote the multiset ⊕y∈Y l(y).

Given a configuration with memory C = ((w1, . . . , wn),m) and a multi-rule
vector

−→
R , for each rule r such that R̂index(r)(r) > 0, with LHSm(r) we denote the

pair (uindex(r), Y ) where uindex(r) ⊆ windex(r) is such that lhs(r) = uindex(r), with
windex(r) in η(C), and Y is a subset of the maximal elements in γ(C) = (X,�, l)
such that � m̃ax(Y )�index(r) = uindex(r).

Once a multi-rule vector
−→
R is enabled at a configuration with memory we

have to state the effects of the application of a rule r. The idea is now the
following: for each object of the multiset produced by a rule we add to the
memory a new vertex labeled with the object, the membrane index it belongs
to, and the name of rule r.

Consider a rule r enabled at a configuration C, and consider LHSm(r) =
(uindex(r), {Y }). Consider now rhs(r), and take rhs(r)|α with α ∈ {here, out}∪{ini |
father(i) = index(r)}. Then RHSm(r)i is the multiset in O defined as usual as
Rhs(r)i, and the new memory is obtained from γ(C) = (X,�, l) by adding for
each object o in RHSm(r)i a new vertex y greater than any vertex in Y and
labeled with (o, i, name(r)). We denote this operation as Add(γ(C),RHSm(r)i, Y )
and it is the extension of the operation add defined previously. Given a multi-
rule vector

−→
R , for each i between 1 and n, with overloading of notation, we

denote with LHSm(
−→
R )i the multiset of pairs over O and set of subsets of indices,

defined as
⊕

r∈Ri
R̂i(r) · LHSm(r) (where the sum for pairs acts as the sum

on the multiset part and union on the other), and the tuple of these pairs is
denoted with LHSm(

−→
R ), L̂HSm(

−→
R ) is the tuple obtained considering only the

first components of LHSm(
−→
R ) (thus Lhs(

−→
R )), and

︷ ︸︸ ︷
LHSm(

−→
R ) is the set of subsets

of vertices and it is such that ∀Y, Y ′ ∈
︷ ︸︸ ︷
LHSm(

−→
R ), Y �= Y ′ implies that Y Y ′ = ∅

(all the involved vertices are distinct). Similarly, for each membrane, we denote
the effects by RHSm(

−→
R )i and RHSm(

−→
R ) denotes the tuple of these effects and on

memory is Add(γ(C),RHSm(
−→
R ),

︷ ︸︸ ︷
LHSm(

−→
R )) where

︷ ︸︸ ︷
LHSm(

−→
R ) is a set of subset

of the maximal elements in γ(C) that have to be followed by the new objects
(thus there is a set of maximal elements for each applied rule).

Definition 11. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane

system with memory, C a configuration with memory, and
−→
R a multi-rule vector

such that C {[−→R 〉, and assume that
︷ ︸︸ ︷
LHSm(

−→
R ) is the list of maximal elements of

γ(C) as described above. Then C {[−→R 〉C′ where C′ is obtained by C as follows:
for each membrane index i, w′

i = wi � Lhs(
−→
R )i⊕Rhs(

−→
R )i and the memory is

Add(γ(C),RHSm(
−→
R ),

︷ ︸︸ ︷
LHSm(

−→
R )).

The definition is rather obvious: for each object o produced in a membrane i
by the rule n a new vertex is added in the memory which is greater than the
elements consumed by the rule.
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Observe that the elements added to the configuration are precisely among
the maximal elements in the memory.

Proposition 2. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C a configuration with memory, and
−→
R a multi-rule vec-

tor such that C {[−→R 〉C′. Take Y = max(γ(C′)) and consider l(Y ) which can be
seen as a multiset over O × {1, . . . , n} × Name. Then for each i ∈ {1, . . . , n}.
objm(�l(Y )�i) = w′

i where η(C′) = (w′
1, . . . , w

′
n).

Example 4. Consider the membrane system of Example 3. At the initial configu-
ration the following sets of rules are enabled: {r11⊕r13}, {r12⊕r13}, {r14}. Consider
the last one. The execution of it gives the configuration ((a, r14), ({v1, v2, v3}, id ∪
{(v1, v3), (v2, v3)}, l′)) where l′(v1) = l(v1), l′(v2) = l(v2) and l′(v3) = (b, 1, r14).

Performing another one, for instance {r11⊕r13}, would give a different memory.

We show that this is a conservative extension of membrane systems, as to each
step in a membrane system with memory, a step corresponds in the membrane
system where all the added information is forgotten.

Proposition 3. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem, C a configuration with memory,
−→
R a multi-rule vector such that C {−→R 〉, and

let C {[−→R 〉C′. Then η(C) [
−→
R 〉 and η(C) [

−→
R 〉 η(C′).

We discuss now when a rule r can be reversely applied in this setting. Again
the intuition is rather simple, just check if there are enough objects bearing the
name of the rule r among the maximal elements of the memory. Let m be a
memory, n be a rule name, and i a membrane index, then with �i

name(r) (m) we
denote the multiset on O defined as

�i
name(r) (m) =

⊕

x∈max(m)

{objm(l(x)) | rulem(l(x)) = name(r) ∧ im(l(x)) = i}

Let r be a rule and C be a configuration of a membrane system with memory
Πm. Then r is reversely enabled at C = ((w1, . . . , wn),m) whenever, for all
k ∈ I(r), rhs(r)k ⊆�k

name(r) (m). The reverse enabling is summarized in the
following definition.

Definition 12. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C a configuration, and
−→
R a multi-rule vector. Then

−→
R is

reversely enabled at C if for rule r in
−→
R R̂index(r) · rhs(r)k ⊆�wk

name(r) (γ(C)). The

reverse enabling of a multi-rule vector is denoted with C 〈−→R ]}.
In this case we have to find, for each each instance of a given rule, enough objects
produced by an instance of the same rule at the same (local) configuration.

Once a multi-rule vector is reversely enabled, it may be applied. We start
showing what it means to undo a single rule r. Given a configuration C, with
the memory γ(C) = (X,�, l), for each index k ∈ I(r) we have that rhs(r)k
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is contained in �k
name(r) (γ(C)). Consider a subset Y ⊆ max (X,�) such that

objm(�⊕y∈Y l(y)�k) = rhs(r)k, then what we have to do on the memory is just to
remove the set Y from the memory. The set of these vertices are denoted with
︷ ︸︸ ︷
RHSm(r) and it extends obviously to

−→
R . Clearly we require that these sets of

vertices are disjoint.

Definition 13. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C = ((w1, . . . , wn),m) be a configuration, and
−→
R a multi-

rule vector such that C 〈−→R ]}. Then C′ = ((w′
1, . . . , w

′
n),m′), where w′

i = wi �
Rhs(

−→
R )i⊕Lhs(

−→
R )i and m′ is obtained from m by removing all the vertex in m

corresponding to the object in RHSm(
−→
R ), thus m′ = remove(m,

︷ ︸︸ ︷
RHSm(

−→
R )), is

the configuration reached by reversely executing
−→
R at C. As before it is denoted

with C 〈−→R ]}C ′.

Example 5. Consider the membrane system of Example 3 and the computation
step done in Example 4. The set {r14} is reversely enabled and

(b, ({v1, v2, v3}, id ∪ {(v1, v3), (v2, v3)}, l′)) 〈{r14}]} (a⊕b, ({v1, v2}, id , l))

where the labeling are those in Examples 3 and 4.
Consider another membrane system with just one membrane with the set of

rules: {r11 : b → (a⊕b, here)} and the initial configuration (b,m0). Applying to
this configuration {r11} we have

(b,m0) {[{r11}〉 (a⊕b,m1)

where m1 = ({v1, v2, v3},�, l) where v1 � v2, v1 � v3 and l is the following:
l(v1) = (b, 1,⊥), l(v2) = (a, 1, r11) and l(v3) = (b, 1, r11). To this configuration we
can apply again the same rule:

(a⊕b,m1) {[{r11}〉 (a⊕a⊕b,m2)

where now m2 is ({v1, v2, v3, v4, v5},�′, l′) with v3 �′ v4, v3 �′ v5 and the new
vertices are labelled as l(v4) = (a, 1, r11) and l(v5) = (b, 1, r11). Reversely applying
the unique rule we could have now a choice: either consider the vertices {v4, v5}
or {v2, v5}. In the latter case we have

((a⊕a⊕b,m2) 〈{r11}} (a⊕b,m3)

where m3 is obtained from m2 by removing the vertices v2 and v5. This choice
(which is investigated in a different setting in [19]) has as consequence that we
cannot further undo going back to the initial configuration.

If the vertices {v4, v5} are taken into accont, then the configuration (a⊕b,m1)
is obtained again.

Again the loop lemma can be proved also in this setting but, as the previous
example points out, it is a weaker version with respect to the one we introduced
previously.
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Lemma 2 (Loop lemma for membrane system with memory). Let Πm

= (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane system with memory, C a con-

figuration, and
−→
R be a multi-rule vector such that C {[−→R 〉, and let C′ be the

configuration reached by executing
−→
R , i.e. C {[−→R 〉 C′. Then there exists a set of

vertices in γ(C′) associated to the object to be removed by the reverse application
of

−→
R , such that C′ 〈−→R ]}C′′ and C = C′′.

Observe that not necessarily the objects consumed by the application of a
multi-rule vector are those used in the reverse application of it. Hence we not
necessarily obtain again the same memory. However, if the memory is the same,
then the vector multi-rule reversely applied is the same we started with.

Theorem 2. Let Πm be a membrane system with memory, C a configuration,
and

−→
R be a multi-rule vector such that C {[−→R 〉 C′. Then for all multi-rule vector−→

R′ such that C′ 〈−→R′]} C it holds that
−→
R′ =

−→
R .

Obviously, the reversing in a membrane system with memory and the revers-
ing in the membrane system where the additional information are forgotten, are
related in a precise way.

Proposition 4. Let Πm = (O, μ, w0
1, . . . , w

0
n, R1, . . . , Rn) be a membrane sys-

tem with memory, C a configuration, and
−→
R be a multi-rule vector such that

C {[−→R 〉, and let C′ 〈−→R ]} C. Then η(C′) 〈−→R ] η(C).

5 Future Works

Reversibility in membrane systems has several facets. One is connected with
determinism and the fact that each configuration has just a single predecessor,
another is related to the amount of information needed to reconstruct past con-
figurations. Concerning this view of reversibility, we have proposed a way to
add all the relevant informations to undo steps properly. It must be said that
many other solutions are conceivable, depending on the amount of information
needed, for instance objects may be enriched to carry the history. The approach
we presented here has the characteristic that the memory not only allow to
reverse steps properly but also keep tracks of the dependencies among steps and
objects.

Beside continuing to investigate on how reversibility can be achieved in mem-
brane systems, we put two possible research issues. Here we have considered that
all the rules are reversible, but this assumption is a maybe too strong when com-
putations that are inspired by nature are considered. We may imagine that some
rules produce irreversible effects, that cannot be undone. This may be modelled
simply forgetting the rules names in both approaches. However this opens many
questions on how to actually reverse computations and also on the notions of
causality as investigated in [20] or [2]. Various situations may be devised in this
setting, similarly to what is done in [19]. Here some events are undone but still
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some of their effects may remain. This idea can be possibly implemented also in
membrane systems, opening new interesting feature.

Another issue is the possibility of combining the two ways: a part of the
multi-rule vector is used to compute forward, another part is used to undo some
effects. Again this has to be fully investigated.

Acknowledgement. The author acknowledge the useful remarks and suggestions by
the anonymous reviewers.
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Pérez-Jiménez, M.J., Riscos-Núñez, A. (eds.) WMC 2010, pp. 452–460 (2010)

19. Phillips, I., Ulidowski, I.: Reversibility and asymmetric conflict in event structures.
J. Logic Algebraic Methods Program. 84(6), 781–805 (2015)

20. Pinna, G.M., Saba, A.: Modeling dependencies and simultaneity in membrane sys-
tem computations. Theoret. Comput. Sci. 431, 13–39 (2012)
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