
Evaluating the NVIDIA Tegra Processor
as a Low-Power Alternative for Sparse GPU

Computations

José I. Aliaga1, Ernesto Dufrechou2(B),
Pablo Ezzatti2, and Enrique S. Quintana-Ort́ı1

1 Dep. de Ingenieŕıa y Ciencia de la Computación,
Universidad Jaime I, 12701 Castellón, Spain

{aliaga,quintana}@icc.uji.es
2 Instituto de Computación, Universidad de la República,

11300 Montevideo, Uruguay
{edufrechou,pezzatti}@fing.edu.uy

Abstract. In the last years, the presence of heterogeneous hardware
platforms in the HPC field increased enormously. One of the major rea-
son for this evolution is the necessity to contemplate energy consump-
tion restrictions. As an alternative for reducing the power consumption
of large clusters, new systems that include unconventional devices have
been proposed. In particular, it is now common to encounter energy-
efficient hardware such as GPUs and low-power ARM processors as part
of hardware platforms intended for scientific computing.

A current line of our work aims to enhance the linear system solvers
of ILUPACK by leveraging the combined computational power of GPUs
and distributed memory platforms. One drawback of our solution is the
limited level of parallelism offered by each sub-problem in the distributed
version of ILUPACK, which is insufficient to exploit the conventional
GPU architecture.

This work is a first step towards exploiting the use of energy efficient
hardware to compute the ILUPACK solvers. Specifically, we developed
a tuned implementation of the SPD linear system solver of ILUPACK
for the NVIDIA Jetson TX1 platform, and evaluated its performance in
problems that are unable to fully leverage the capabilities of high end
GPUs. The positive results obtained motivate us to move our solution
to a cluster composed by this kind of devices in the near future.

Keywords: ILUPACK · Jetson TX1 · Sparse linear systems
High performance

1 Introduction

In a large number of scientific applications one of the most important stages,
from a computational point of view, is the solution of large sparse systems of
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 111–122, 2018.
https://doi.org/10.1007/978-3-319-73353-1_8

112 J. I. Aliaga et al.

equations. Examples are in problems related with circuit and device simulation,
quantum physics, large-scale eigenvalue computations, nonlinear sparse equa-
tions, and all sorts of applications that involve the discretization of partial dif-
ferential equations (PDEs) [4].

ILUPACK1 (incomplete LU decomposition PACKage) is a well known numer-
ical toolbox that offers highly efficient sparse linear systems solvers, and can han-
dle large-scale application problems. The solvers are iterative procedures based
on Krylov subspace methods [13], preconditioned with an inverse-based mul-
tilevel incomplete LU (ILU) factorization, which keeps a unique control of the
growth of the inverse triangular factors that determines its superior performance
over other preconditioners in many cases [8,14,15].

Despite the remarkable mathematical properties of ILUPACK’s precondi-
tioner, it implies a larger number of computations when it is compared with
other more simple ILU preconditioners, e.g. ILU with zero fill-in. In [1] we pro-
posed the exploitation of the task-level parallelism in ILUPACK, for distributed
memory platforms, focusing on symmetric positive definite (SPD) systems, by
using the preconditioned Conjugate Gradient (PCG) method. Recently, we have
aimed to enhance the task-parallel approach by leveraging the data-level paral-
lelism present in some operations by the use of graphics accelerators.

One drawback of our solution is the limited level of parallelism offered by
each sub-problem in the distributed version of ILUPACK, which is insufficient
to exploit the conventional GPU architecture.

On the other hand, in the last years the presence of heterogeneous hardware
platforms in the HPC field increased enormously. One of the major reasons for this
evolution is the necessity to contemplate energy consumption restrictions. As an
alternative for reducing the power consumption of large clusters, new systems that
include unconventional devices have been proposed. In particular, it is now com-
mon to encounter energy efficient hardware such as GPUs and low-power ARM
processors as part of hardware platforms intended for scientific computing.

This work is a first step towards exploiting the use of energy efficient hardware
to compute the ILUPACK solvers. Specifically, we developed a tuned implemen-
tation of the SPD linear system solver of ILUPACK for the NVIDIA Jetson TX1
platform, based on an NVIDIA Tegra X1 processor, and evaluated its perfor-
mance in problems that are unable to fully leverage the capabilities of high end
GPUs. The obtained results show that the use of this kind of lightweight devices
achieves interesting runtimes, specially if it is considered that we are address-
ing a memory-bound problem and the gap between the memory bandwidth of a
general GPU and the Jetson GPU is in the order of 8–10×.

The rest of the paper is structured as follows. In Sect. 2 we revisit the SPD
solver integrated in ILUPACK and we offer a brief study about the application
of the parallel preconditioner. This is followed by a description of our implemen-
tations of ILUPACK to run over the Jetson TX1 in Sect. 3, and the experimental
evaluation in Sect. 4. Finally, Sect. 5 summarizes the work and makes some con-
cluding remarks, stating the most important lines of future work derived from
this effort.

1 http://ilupack.tu-bs.de.

http://ilupack.tu-bs.de

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 113

2 Accelerated Solution of Sparse Linear Systems with
ILUPACK

ILUPACK is a software package that deals with solving the linear system Ax = b,
where the n×n coefficient matrix A is large and sparse, and both the right-hand
side vector b and the sought-after solution x contain n elements. It does so by
applying Krylov subspace-based iterative solvers preconditioned with an inverse-
based multilevel ILU preconditioner M , of dimension n×n. The package includes
numerical methods for different matrix types, precisions, and arithmetic, cover-
ing Hermitian positive definite/indefinite and general real and complex matrices.
Although the preconditioner has proven to effectively boost the convergence rate
in many problems, its application is usually the most computationally demand-
ing task of each iteration of the solver.

Following, we briefly describe the main aspects related to the construction
of the preconditioner in order to ease the understanding of its application in the
context of iterative solvers, which is the focus of our work.

2.1 Computation of the Preconditioner

For simplicity, we base the following description on the SPD real case, where
A,M ∈ R

n×n are SPD, and x, b ∈ R
n. The computation of ILUPACK’s precon-

ditioner is organized as follows:

1. First, a preprocessing stage scales A and reorders the result in order to reduce
the fill-in in the factorization.

2. Later, Â ≈ LDLT is computed by an incomplete Cholesky factorization pro-
cess, where L ∈ R

n×n is unit lower triangular and D ∈ R
n×n is a diagonal

matrix. The partial ILU factorization obtained in this stage is of the form:

Â ≡
(

B GT

G C

)
= LDLT + E =

(
LB 0
LG I

)(
DB 0
0 Sc

)(
LT
B LT

G

0 I

)
+ E. (1)

where E contains the elements “dropped” during the ILU factorization. The
factorization procedure postpones the processing of a row/column of A when-
ever it estimates that it would produce ‖L−1‖ � κ, being κ a user-defined
threshold. The postponed rows and columns are moved to the bottom right
corner of the matrix and processed in a subsequent stage, yielding a multi-
level structure. In the previous equation SC represents the approximate Schur
complement assembled from the “rejected” rows and columns.

3. The process is then restarted with A = Sc, (until Sc is void or “dense enough”
to be handled by a dense solver,) yielding a multilevel approach.

At level l, the multilevel preconditioner can be expressed as

Ml ≈
(

LB 0
LG I

) (
DB 0
0 Ml+1

) (
LT
B LT

G

0 I

)
(2)

114 J. I. Aliaga et al.

where LB and DB are blocks of the factors of the multilevel LDLT preconditioner
(with LB unit lower triangular and DB diagonal); and Ml+1 stands for the
preconditioner computed at level l + 1.

A detailed explanation of each stage of the process can be found in [6].

2.2 Application of the Preconditioner During the Iterative Solve

The application of the preconditioner at a given level l requires solving a system
of linear equation involving the preconditioner Ml and the permuted and scaled
residual r̂:

(
LB 0
LG I

)(
DB 0
0 Ml+1

)(
LT
B LT

G

0 I

)
w = r̂. (3)

This is then solved for w in three steps,
(

LB 0
LG I

)
y = r̂,

(
DB 0
0 Ml+1

)
x = y,

(
LT
B LT

G

0 I

)
w = x, (4)

where the recursion is defined in the second one.
Considering a partition of y and r̂ conformable with the factors, the expres-

sions in (4) can also be solved by
(

LB 0
LG I

)(
yB
yC

)
=

(
r̂B
r̂C

)
⇒ LByB = r̂B , yC := r̂C − LGyB . (5)

Splitting the vectors in a similar way, the expression in the middle of (4) involves
a diagonal-matrix multiplication and the effective recursion:

(
DB 0
0 Ml+1

) (
xB

xC

)
=

(
yB
yC

)
⇒ xB := D−1

B yB , xC := M−1
l+1yC . (6)

In the base step of the recursion, Ml+1 is void and only xB has to be computed.
Finally, the expression on the right of (4) can be reformulated as

(
LT
B LT

G

0 I

) (
wB

wC

)
=

(
xB

xC

)
⇒ wC := xC , LT

BwB = xB − LT
GwC , (7)

where z is simply obtained from z := D̃(P̃ (P̂w)).
To save memory, ILUPACK discards the off-diagonal blocks LG once it is

done calculating the level of the preconditioner, keeping only the much sparser
rectangular matrix G. Thus, (5) is changed into:

LG = GTL−T
B D−1

B ⇒ yC := r̂C − GTL−T
B D−1

B yB = r̂C − GTL−TD−1
B L−1

B r̂B ,
(8)

while the expressions related to (7) are modified to

LG = GL−T
B D−1

B ⇒ LT
BwB = D−1

B yB − D−1
B L−1

B GTwC . (9)

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 115

Operating with care, the final expressions are thus obtained,

LBDBLT
BsB = r̂B

LBDBLT
B ŝB = GTwC

⇒ yC := r̂C − GsB
wB := sB − ŝB

(10)

In summary, the application of the preconditioner requires, at each level of the
factorization, two SpMV, solving two linear systems with coefficient matrix of
the form LDU , and a few vector kernels.

3 Proposal

In this section we describe the design and implementation details of the solution
that will be analyzed numerically in the following sections. First, we provide a
general description of our data-parallel variant of ILUPACK and then, we specify
the particular strategies that were adopted for the Jetson TX1.

3.1 Exploiting the Data Parallelism in ILUPACK

Although ILUPACK is a sophisticated preconditioner that manages to sig-
nificantly improve the convergence of Krylov subspace methods in many
cases [5,6,16], its application is computationally expensive. We then aim to
reduce the cost of the iteration by exploiting the data-level parallelism present in
the operations that compose the application of the preconditioner using GPUs.

In most cases, the portion of the runtime related with the application of
the preconditioner is concentrated by two main types of operation, i.e. sparse
triangular system solves (SpTrSV) and the SpMV that appears in Eq. (10).
NVIDIA’s CUSPARSE library provides efficient implementations for these oper-
ations, so we rely on the library to offload this kernels to the GPU. The vector
scalings and reorderings that are performed in the GPU via ad-hoc CUDA ker-
nels, and their execution time is completely negligible when compared to that
of the triangular systems or the SpMV.

The use of CUSPARSE makes necessary to make an adaptation of the struc-
tures employed by ILUPACK to store the submatrices of the multilevel pre-
conditioner to the format accepted by CUSPARSE routines. Specifically, the
modified CSR format [4] in which ILUPACK stores the LB needs to be rear-
ranged into plain CSR. This transformation was done only once, during the
construction of each level of the preconditioner, and occurred entirely in the
CPU. In devices equipped with physical Unified Memory2, like the Jetson TX1,
no transference is needed once this translation has been done, and the triangular
systems involved in the preconditioner application can be solved via two consec-
utive calls to cusparseDcsrsv solve. It is also necessary to perform the analysis
phase of the CUSPARSE solver, in order to gather information about the data
dependencies, generating a level structure in which variables of the same level

2 See: JETSON TX1 DATASHEET DS-07224-010 v1.1.

116 J. I. Aliaga et al.

can be eliminated in parallel. This is executed only once for each level of the
preconditioner, and it runs asynchronously with respect to the host CPU.

Regarding the computation of the SpMV in the GPU, it is important to
remember from Eq. (10) that each level of the preconditioner involves a matrix-
vector multiplication with F and FT . Although CUSPARSE provides a modifier
of its SpMV routine that allows to work with the transposed matrix without
storing it explicitly, this makes the routine dramatically slow. We then store
both F and FT in memory, accepting some storage overhead in order to avoid
using the transposed routine.

3.2 Threshold Based Version

Our data parallel variant of ILUPACK is capable of offloading the entire applica-
tion of the preconditioner to the accelerator. This strategy has the primary goal
of accelerating the computations involved while minimizing the communications
between the CPU and the GPU memory.

However, the multilevel structure of the preconditioner usually produces some
levels of small dimension, which undermines the performance of some CUS-
PARSE library kernels. Specifically, the amount of data-parallelism available
in the sparse triangular linear systems is severely reduced, leading to a poor
performance of the whole solver.

To address this situation, in recent work [2] we have proposed the inclusion
of a threshold that controls whether there is sufficient parallelism to take profit
of computing a given level of the preconditioner in the GPU or if it is better to
move the computations to the CPU. This has proven to boost the performance in
some applications although it implies an additional CPU-GPU communication
cost.

We further enhanced the procedure by moving only the triangular solves
corresponding to low levels, given that it is this operation the one which dra-
matically degrades the performance, while in most cases we are able to take some
advantage of the data parallelism present in the sparse matrix-vector products
and the vector operations that remain. For the rest of the work we will consider
three different implementations:

– GPU 1 level: computes the triangular systems of all levels but the first in the
CPU while using the GPU for the rest of the operations.

– GPU all levels: computes the entire preconditioner application (all levels) on
the GPU.

– ARM-based: makes all the computations in the ARM processor. This variant
does not leverage any data parallelism.

We believe that the GPU 1 level strategy can be specially beneficial for
devices like the Jetson, where each device can perform the operations for which
it is better suited without adding the communication overhead necessary in other
platforms.

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 117

4 Experimental Evaluation

In this section we present the results obtained in the experimental evaluation
of our proposal. First we describe the hardware platform and the test cases
employed in this stage, and later, we analyze the numerical and runtime results.
Specifically, our primary goal is to evaluate if this kind of devices are able to
solve sparse linear systems of moderate dimensions efficiently using ILUPACK.
In order to do so, we start evaluating our developed variants to identify the
best one. All experiments reported were obtained using IEEE single-precision
arithmetic.

4.1 Experimental Setup

The evaluation was carried out in an NVIDIA Jetson TX1 that includes a 256-
core Maxwell GPU and a 64-bit quad-core ARM A57 processor configured in
maximum performance. The platform is also equipped with 4 GB of LPDDR4
RAM that has a theoretical bandwidth of 25.6 GB/s (see [12]).

The code was cross-compiled using the compiler gcc 4.8.5 for aarch64 with
the -O3 flag enabled, and the corresponding variant of CUDA Toolkit 8.0 for the
Jetson, employing the appropriate libraries.

The benchmark utilized for the test is a SPD case of scalable size derived
from a finite difference discretization of the 3D Laplace problem. We generated
3 instances of different dimension; see Table 1. In the linear systems, the right-
hand side vector b was initialized to A(1, 1, . . . , 1)T , and the preconditioned CG
iteration was started with the initial guess x0 ≡ 0. For the tests, the parameter
that controls the convergence of the iterative process in ILUPACK, restol, was
set to 108. The drop tolerance, and the bound to the condition number of the
inverse factors, that influence ILUPACK’s multilevel incomplete factorization
process, where set to 0.1 and 5 respectively.

Table 1. Matrices employed in the experimental evaluation.

Matrix Dimension n nnz nnz/n

A126 2,000,376 7,953,876 3.98

A159 4,019,679 16,002,873 3.98

A171 5,000,211 19,913,121 3.98

It should be noted that these test cases present dimensions that are often
too small to take profit of regular GPUs. These dimensions are comparable
with those of each sub-problem derived from the application of the distributed
ILUPACK variant on large matrices.

118 J. I. Aliaga et al.

4.2 Results

The first experiment evaluates the performance of our 3 variants of ILUPACK
developed for the Jetson TX1 platform to solve the sparse linear systems from
the Laplace problem. In this line, Table 2 summarizes the runtimes implied by
ARM-based, GPU 1 level and GPU all levels versions to solve the test cases
described in Table 1. Specifically, we include the number of iterations taken by
each variant to converge (iters), the runtimes for the application of the pre-
conditioner (Prec. time), the total runtime (Total time), the numerical preci-
sion (i.e. the numerical error computed as R(x∗) := ||b − Ax∗||2/||x∗||2) and
finally, the speedup associated with both the accelerated stage with the GPU
(Prec. speedup) and the whole method (Total speedup).

Table 2. Runtime (in seconds) of the three data-parallel variants of ILUPACK in
Jetson TX1. Prec. time corresponds to the time spent applying the preconditioner
during the entire solver.

Variant Case Iters Prec. time Total time Error Prec. Total

speedup speedup

ARM-based A126 156 60.33 84.57 2.31E−07 - -

GPU 1 level 156 59.00 84.85 2.37E−07 1.02 1.00

GPU all levels 156 44.36 70.30 2.45E−07 1.36 1.20

ARM-based A159 206 161.90 228.26 3.07E−07 - -

GPU 1 level 206 177.33 243.09 3.15E−07 0.91 0.94

GPU all levels 206 123.93 187.93 3.15E−07 1.31 1.21

ARM-based A171 222 218.53 306.78 3.02E−07 -

GPU 1 level 222 170.76 253.84 3.03E−07 1.28 1.21

GPU all levels 222 146.09 229.45 3.10E−07 1.50 1.34

First of all we focus on the numerical aspects of our variants. In this sense, it
can be noted that all variants needed the same number of iterations to reach the
convergence criteria for each of the test cases addressed. In the other hand, the
residual errors attained are not exactly the same. However, the differences are
not at all significant and can be explained by the use of single precision floating
point arithmetic in conjunction with the parallel execution.

Considering the performance results, it should be highlighted that the GPU
all levels version outperforms the GPU 1 level counterpart for all test cases. This
result is not aligned with our previous experiences (see [2]) and can be explained
by the elimination of the overhead caused by transferring data between both
processors (ARM and GPU), allowed by the Unified Memory capabilities of the
Jetson platform.

In the same line, the GPU all levels version implies lower runtimes than the
ARM-based variant, but these improvements are decreasing with the dimension

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 119

of the addressed problem. This result is consistent with other experiments, and
relates to the fact that GPUs requires large volumes of data to really exploit
their computational power.

If we take the performance of GPU all levels in other kind of hardware plat-
form into consideration, it is easy to see the benefits offered by the Jetson device.
To illustrate this aspect we compared our previous results for the GPU-based
ILUPACK from [3], run on an NVIDIA K20 GPU, to compare the runtimes.
Table 3 summarizes these results, focusing only in the preconditioner application
runtime, and contrasting it with the one obtained in the Jetson TX1 platform.

It should be recalled that ILUPACK, as a typical iterative linear system
solver, is a memory-bounded algorithm. Hence, when comparing the performance
allowed by the Jetson with other GPU-based general hardware platforms, it is
necessary to analyze the differences between their memory bandwidth. As an
example, the NVIDIA K20 GPU offers a peak memory bandwidth of 208 GB/s
[11], while the NVIDIA Jetson only allows to reach 25.6 GB/s, i.e. a difference
above 8×.

Table 3. Runtime (in seconds) of GPU-based ILUPACK in a K20 (from [3], using
double-precision arithmetic) and the GPU-all variant of ILUPACK in Jetson TX1 (in
single-precision).

Case K20 Jetson

Iters Prec. time T ime by iter Iters Prec. time T ime by iter

A126 44 11.38 .26 156 44.36 .28

A159 52 19.75 .38 206 123.93 .60

A171 - - - 222 146.09 .66

A200 76 28.28 .37 - - -

Before analyzing the results, it is important to remark that the computations
in both works are not exactly the same. Note that preconditioners generated by
executing ILUPACK have a different drop tolerance input parameter, and hence
are distinct since this parameters affects the amount of fill-in allowed in the
triangular factors. However, the runtime by iteration is an acceptable estimator
for the performance of each version.

The results summarized in Table 3 show that the time per iteration for the
smallest case is similar in the two platforms. Considering that the experiments in
the K20 GPU were performed using double precision, it is reasonable to expect
this runtimes to be reduced in half3 if single precision is used. This means that
the difference in performance is of about 2× in favour of the K20. Nevertheless,
this gap is considerably smaller than the difference in the bandwidth of both
devices, which is of approximately 8×. However, it can also be observed that the
benefits offered by the Jetson hardware start to diminish when the dimension of
3 Assuming a memory-bound procedure.

120 J. I. Aliaga et al.

the test cases grow (note that in the case A159 is near to 3× if we estimate the
single precision performance of the K20 as before).

This result shows that when the dimension of the addressed test case is
enough to leverage the computational power of high end GPUs this kind of
lightweight devices are not competitive. On the other hand, in contexts where
the problem characteristics do not allow exploiting commodity GPUs efficiently,
this kind of devices (e.g. the Jetson TX1) are a really good option. Additionally,
the important difference in power consumption between the two devices (the K20
has a peak power consumption of 225W4, while the Jetson only 15W5) should
also be taken into account.

With the obtained results, our next step is to develop a distributed variant
of ILUPACK specially design to run over a cluster of low power devices, as a
NVIDIA Jetson TX1, and evaluate the energy consumption aspects. It should be
noted that this kind of clusters are not yet widespread, but some examples are the
one built in the context of the Mont-Blanc project, leaded by the Barcelona Super
Computing (BSC) Spain [7], and the one constructed by the ICARUS project of
the Institute for Applied Mathematics, TU Dortmund, Germany [9,10].

5 Final Remarks and Future Work

In this work we have extended the data-parallel version of ILUPACK with the
aim to contemplate low power processors, as the NVIDIA Jetson TX1 hardware
platform. In particular, we implemented three different versions of the solution
that take into account the particular characteristics of this kind of devices, two
GPU-based variants (GPU 1 level and GPU all levels) and the other centered
on the use of the ARM processor (ARM-based).

The numerical evaluation exhibits that the GPU all levels variant out-
performs the other options for the test cases addressed. However, when the
dimension of the problems decreases the ARM-based version starts to be more
competitive. Additionally, as the dimension of the problem grows the benefits
related to the use of restrictive platforms such as the Jetson start to disappear,
and the utilization of conventional GPU platforms becomes more convenient.

Given the importance of the results obtained we plan to advance in several
directions, which include:

– Assessing the use of other kinds of small devices, such as the recently released
Jetson TX2 (with 8 GB of memory and 59.7 GB/s of memory bandwidth).

– Developing a distributed variant of ILUPACK specially designed to run over
a cluster of lightweight devices, as a NVIDIA Jetson TX1.

– Evaluate the distributed variant in a large Jetson-based cluster, such as the
ones developed in the context of Mont-Blanc or ICARUS projects.

– Studying the energy consumption aspects of this distributed version of ILU-
PACK for small devices.

4 TESLA K20 GPU ACCELERATOR - Board Specifications - BD-06455-001 v05.
5 JETSON TX1 DATASHEET DS-07224-010 v1.1.

Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative 121

Acknowledgments. The researchers from the Universidad Jaime I were supported by
the CICYT project TIN2014-53495R of The researchers from UdelaR were supported
by PEDECIBA and CAP-UdelaR Grant.

References

1. Aliaga, J.I., Bollhöfer, M., Mart́ın, A.F., Quintana-Ort́ı, E.S.: Parallelization
of multilevel ILU preconditioners on distributed-memory multiprocessors. In:
Jónasson, K. (ed.) PARA 2010. LNCS, vol. 7133, pp. 162–172. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-28151-8 16

2. Aliaga, J.I., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Design of a task-
parallel version of ILUPACK for graphics processors. In: Barrios Hernández, C.J.,
Gitler, I., Klapp, J. (eds.) CARLA 2016. CCIS, vol. 697, pp. 91–103. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57972-6 7

3. Aliaga, J.I., Bollhöfer, M., Dufrechou, E., Ezzatti, P., Quintana-Ort́ı, E.S.: Lever-
aging data-parallelism in ILUPACK using graphics processors. In: Muntean, T.,
Rolland, R., Mugwaneza, L. (eds.) IEEE 13th International Symposium on Parallel
and Distributed Computing, ISPDC 2014, Marseille, France, 24–27 June 2014, pp.
119–126. IEEE (2014)

4. Barrett, R., Berry, M.W., Chan, T.F., Demmel, J., Donato, J., Dongarra, J.,
Eijkhout, V., Pozo, R., Romine, C., Van der Vorst, H.: Templates for the Solu-
tion of Linear Systems: Building Blocks for Iterative Methods, vol. 43. SIAM,
Philadelphia (1994)

5. Bollhöfer, M., Grote, M.J., Schenk, O.: Algebraic multilevel preconditioner for the
Helmholtz equation in heterogeneous media. SIAM J. Sci. Comput. 31(5), 3781–
3805 (2009)

6. Bollhöfer, M., Saad, Y.: Multilevel preconditioners constructed from inverse-based
ILUs. SIAM J. Sci. Comput. 27(5), 1627–1650 (2006)

7. Anonymous Contributors: start—mont-blanc prototype (2016). Accessed 10 July
2017

8. George, T., Gupta, A., Sarin, V.: An empirical analysis of the performance of
preconditioners for SPD systems. ACM Trans. Math. Softw. 38(4), 24:1–24:30
(2012)

9. Geveler, M., Ribbrock, D., Donner, D., Ruelmann, H., Höppke, C., Schneider, D.,
Tomaschewski, D., Turek, S.: The ICARUS white paper: a scalable, energy-efficient,
solar-powered HPC center based on low power GPUs. In: Desprez, F., et al. (eds.)
Euro-Par 2016. LNCS, vol. 10104, pp. 737–749. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-58943-5 59. ISBN 978-3-319-58943-5

10. Geveler, M., Turek, S.: How applied sciences can accelerate the energy revolution-a
pleading for energy awareness in scientific computing. In: Newsletter of the Euro-
pean Community on Computational Methods in Applied Sciences, January 2017,
accepted

11. NVIDIA: TESLA K20 GPU Accelerator (2013). https://www.nvidia.com/content/
PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf. Accessed 10 July 2017

12. NVIDIA: NVIDIA Tegra X1 NVIDIAs New Mobile Superchip (2015). http://
international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf.
Accessed 10 July 2017

13. Saad, Y.: Iterative Methods for Sparse Linear Systems, 2nd edn. SIAM Publica-
tions, Philadelphia (2003)

https://doi.org/10.1007/978-3-642-28151-8_16
https://doi.org/10.1007/978-3-319-57972-6_7
https://doi.org/10.1007/978-3-319-58943-5_59
https://doi.org/10.1007/978-3-319-58943-5_59
https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
https://www.nvidia.com/content/PDF/kepler/Tesla-K20-Passive-BD-06455-001-v05.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf
http://international.download.nvidia.com/pdf/tegra/Tegra-X1-whitepaper-v1.0.pdf

122 J. I. Aliaga et al.

14. Schenk, O., Wächter, A., Weiser, M.: Inertia-revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2009)

15. Schenk, O., Bollhöfer, M., Römer, R.A.: On large scale diagonalization techniques
for the Anderson model of localization. SIAM Rev. 50, 91–112 (2008)

16. Schenk, O., Wächter, A., Weiser, M.: Inertia revealing preconditioning for large-
scale nonconvex constrained optimization. SIAM J. Sci. Comput. 31(2), 939–960
(2008)

	Evaluating the NVIDIA Tegra Processor as a Low-Power Alternative for Sparse GPU Computations
	1 Introduction
	2 Accelerated Solution of Sparse Linear Systems with ILUPACK
	2.1 Computation of the Preconditioner
	2.2 Application of the Preconditioner During the Iterative Solve

	3 Proposal
	3.1 Exploiting the Data Parallelism in ILUPACK
	3.2 Threshold Based Version

	4 Experimental Evaluation
	4.1 Experimental Setup
	4.2 Results

	5 Final Remarks and Future Work
	References

