Parallel Batch Self-Organizing Map
on Graphics Processing Unit Using CUDA

Habib Daneshpajouhl’z(@), Pierre Delisle', Jean-Charles Boisson],
Michael Krajeckil, and Nordin Zakaria®

! Centre de Recherche en STIC (CReSTIC),

Université de Reims Champagne-Ardenne, Reims, France
daneshpajouh. habib@gmail. com, {pierre.delisle,
jean-charles. boisson,michael. krajecki}@univ-reims. fr
2 High Performance Cloud Computing Center (HPC3),

Universiti Teknologi PETRONAS, Seri Iskandar, Malaysia
nordinzakaria@utp. edu. my

Abstract. Batch Self-Organizing Map (Batch-SOM) is being successfully used
for clustering and visualization of high-dimensional datasets in a wide variety of
domains. Although the structure of its training algorithm has a high potential for
parallelization, focus of the previous efforts has been on the original Step-wise
SOM. This gap is due to the facts that Batch-SOM requires some extra precautions
(specially in its initialization phase), and it took quite a while since its introduction
that researchers affirmed the desirability of using it in practice over the Step-wise
SOM. Hence, the purpose of this paper is to propose a GPU parallelization model
and implementation for the Batch-SOM using CUDA. The most computationally
expensive parts of its training algorithm (such as steps to compute distance
between each data vector and neuron, and determining the Best Matching Unit
based on minimum distance) are identified and mapped on GPU to be processed in
parallel. The proposed implementation shown significant speedups of 11x and
5x compared to the sequential and parallel CPU implementations respectively.

Keywords: Self-Organizing Map - CUDA - Clustering + Parallel SOM
GPGPU

1 Introduction

Self-Organizing Map (SOM) proposed by Kohonen [1] is an unsupervised neural
network that provides a low-dimensional (i.e. one or two dimensional) representation
of multidimensional data vectors. SOM uses a data compression technique called
Vector Quantization (VQ) to perform dimensionality reduction. VQ compression
works by finding local averages of the dataset (represented by centroids in K-Means
algorithm and neuron weights in SOM). In contrast to classical neural networks which
require an input vector together with an associated target vector to be provided
beforehand, the key feature of SOM is the ability to find internal structure of data
without any supervision. In a nutshell, SOM works by associating each of the input
vectors to one of its neurons in an iterative process in such a way that the overall

© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 87-100, 2018.
https://doi.org/10.1007/978-3-319-73353-1_6

88 H. Daneshpajouh et al.

distance between the neurons and their associated input vectors is minimized. The main
goal of this process is to maintain the most important topological and/or metric rela-
tionships within the dataset in resulted low-dimensional network.

Since its introduction, SOM is being frequently used for clustering, visualization
and data exploration problems in different domains such as industry, finance, natural
sciences, biomedical analysis and linguistics [2]. SOM has a large application potential
in engineering domain as well such as visualization of machine states, fault identifi-
cation, process analysis and monitoring, and adaptive detection of quantized signals.
By applying SOM to clustering problems, it will not only approximate the density
function of the input samples (as most of classical clustering algorithms like K-Means
do using VQ), but also provides a low-dimensional nonlinear projection of the
high-dimensional datasets by topological arrangement of its neurons.

However, with the size of today’s real-world datasets increasing sharply and
complexity of data mining algorithms like SOM, quality of the result is not the only
factor to measure the success of an algorithm, but its computational performance
matters a lot too. Fortunately, just like other members of neural networks family, by
having multiple computing nodes called neurons, SOM has a high potential of being
parallelized. Moreover, a variation of SOM with modified training algorithm called
Batch-SOM (in contrast to the original SOM with sequential step-wise training algo-
rithm) makes it even more suitable for parallelization. According to Kohonen [3], by
taking care of certain preliminaries, the result quality of the Batch-SOM is equal to (or
even better than) the original SOM for majority of datatypes.

Several works have been done in the past for parallelization of SOM using different
platforms on both Central Processing Unit (CPU) and Graphics Processing Unit (GPU).
However, majority of the previous works emphasized on the original step-wise SOM
and there is a lack of effort for parallelizing the Batch-SOM on GPU. Hence, the aim of
this paper is to provide a parallelization model for the Batch-SOM using NVIDIA
Compute Unified Device Architecture (CUDA) platform. The proposed GPU imple-
mentation shown significant speedups compared with the famous SOMToolbox [4]
(a reference CPU implementation for the Batch-SOM provided by the Kohonen’s
team), and also the authors’ own sequential and parallel CPU implementations.

The remaining of this paper is structured as follows. Section 2 presents the original
SOM algorithm and Batch-SOM. Section 3 surveys the previous works on parallelization
of SOM on GPU. The proposed GPU parallelization model of Batch-SOM is explained in
Sect. 4. The performance and comparison results of the proposed model are presented in
Sect. 5. Finally, Sect. 6 concludes the paper and proposes some future works.

2 SOM Algorithm

We follow Kohonen [3] to explain the two variations of SOM algorithm, and will be
using the following notations for this section and also the rest of this paper:

e x(1): a real n-dimensional Euclidean input vector, where integer ¢ signifies a step in
the sequence.

e X: sequence of all input vectors {x()}.

e m;: a model (neuron), where i is its spatial index in SOM lattice.

Parallel Batch SOM on Graphics Processing Unit Using CUDA 89

e M, a variable sequence of all models (neurons) {m;(t)}.
e m. a model (neuron) with closest distance to the input data vector passed to SOM

lattice, and is located in the center of its neighbourhood. It is also called
Best-Matching Unit (BMU) in SOM terminology.
D;: avariable set of all distances between each data vector x(t) and model (neuron) m;.

Fig. 1. Illustration of a Step-wise SOM.

Some parameters of SOM like number of neurons in each dimension of the lattice,

maximum number of epochs (iterations) and learning rate (in case of Step-wise SOM)
should be found using some statistical methods and heuristics that work on the basis of
input data.

Learning algorithm of the original Step-wise SOM (shown in Fig. 1) known as

“competitive learning” is described in the following:

1.

2.
3.

Weights of the neurons are initialized. Initialization can be done either randomly or
linearly using Principal Component Analysis (PCA) technique.

An input vector x(z) is chosen at random from X and broadcasted to lattice.

The x(t) is compared to each and every mt) to find the winner (BMU) in such a
way that the neuron with index c is in the smallest distance from x(#) compared to all
other neurons as in the following formula:

¢ = argmin{[[x(t) — m;(t)[|} (1)

The neighbourhood radius of the BMU A1) is now calculated. The neighbourhood
function has a vital role in SOM and its smooth convergence by producing large
values at initial stages (typically covers the whole lattice) and decreasing overtime.
This function can be defined as follows:

hei (1) = o(t) e[~ [x(t) — me]* /207 (1))

90

H. Daneshpajouh et al.

where o(f) < I (also called “learning rate”) and o(¢) are monotonically (e.g.
exponentially) decreasing scalar functions of 7, and [x(r) — m.J° is the square
distance between the neuron m,. and vector x(z).

The weights of the BMU and each of its neighbouring neurons (found in step 4) are
adjusted to be closer to the input vector. The closer a neuron is to BMU, the more its
weights get altered. The formula in below calculates the new weights for each
affected neuron:

m;i(t+1) = mi(t) + hei(t) [x(t) — mi(0)] 3)

where my(t) and myt + 1) are the current and new weights of the neuron m;
respectively.

Steps 2 to 5 are repeated until the maximum number of epochs (i.e. iterations) is
reached.

x(1), x(2), x(3),

x€7)+x(11)

Fig. 2. Tllustration of a Batch-SOM.

- mean

On the other hand, as Fig. 2 shows, the Batch-SOM works as in the following

steps:

1.

2.

4.

Weights of the neurons are initialized. Initialization can be done either randomly or
linearly using PCA technique.

All the data vectors are passed to the lattice at once, with each neuron having its
own sub-list. Each data vector is compared with each and every neuron to find its
BMU. The index of each data vector goes to the sub-list of its BMU.

Finally, the new weights of each neuron are calculated as the weighted mean (the
term “generalized median” is used by Kohonen to cover any type of data including
the non-numeric types) of all the sub-lists in its neighbourhood. The mean’s weight
is determined by the distance of each neuron to the neuron that is getting the update.
Steps 2 to 3 are repeated until the maximum number of epochs is reached.

Parallel Batch SOM on Graphics Processing Unit Using CUDA 91

3 Related Work

Although there is a wide range of parallelization efforts for SOM, the focus of this
report is only on those implemented on GPUs. The works on GPU implementations of
SOM can be divided into two groups: first group includes those works that used
graphics programming techniques and (vertex and fragment) shaders, while the second
group belongs to those works that used CUDA and Open Computing Language
(OpenCL) platforms to perform general computing on GPU. These two platforms
completely revolutionized the way in which the programs are implemented on GPUs.

One of the early works on GPU parallelization of SOM is done by Zhongwen et al.
[5] in which a GPU implementation of SOM is provided by converting the compu-
tational data into texture format and using the OpenGL texture buffers to perform the
computation and data storage directly on GPU. The test environment for the proposed
implementation contained Intel Pentium-4 2.4 GHz for CPU computation, and ATI
9550 and NVIDIA 5700 for GPU computation. By using 80 data vectors for training,
the authors claimed speedups of up to 2x and 4x on the NVIDIA and ATI cards
respectively.

Another work proposed at the same year as the above work is by Campbell et al. [6]
in which the authors proposed a variation of SOM called Parameter-less SOM
(PLSOM) which does not require to manually choose the “learning rate” parameter.
They used shader functions to port SOM training computations on GPU. By trying
different number of nodes for SOM lattice and a dataset including 1000 randomly
generated and uniformly distributed 2-dimensional vectors, the authors claimed a
speedup of up to 9x using their GPU implementation run on a GeForce 6800 card
compared to a sequential CPU implementation run on a machine with 6 Intel Itanium-2
processors.

Xiao et al. [7] proposed a parallel GPU implementation for Batch-SOM using
shader functions with the lattice of neurons being organized in 2D texture format.
A vertex shader is responsible for finding the nearest neuron as well as the corre-
sponding texel position for each training vector. Then, two fragment shaders are used
to update the training vector and its neighbours. The authors evaluated the performance
of their algorithm on an Intel Core2 Q8200 CPU and GeForce GTX 280 GPU. They
claimed to achieve 15x to 40x speedup compared to a sequential CPU implementation
by using different sizes of input data.

Despite the speedups that the aforementioned works achieved compared to CPU
implementations, the high level of required knowledge (of graphics programming) and
extra works that they were facing for converting the data structure and processing style
of SOM to somewhat compatible with graphics APIs (like OpenGL) makes their
approaches inconvenient in practice.

On the other hand, the major works after the introduction of CUDA are reviewed in
the following. A GPU implementation of SOM is presented by Hasan et al. [8] using an
open-source GPU Machine Learning Library called GPUMLib which is based on
CUDA. In this work, weights initialization of neurons and subsequent update of the
weights are done on host (CPU) while middle steps for finding the distance between
neurons and input vectors followed by finding the BMU are done on device (GPU).

92 H. Daneshpajouh et al.

They performed an experiment on biomedical gene expression data using a NVIDIA
Tesla C2075 graphics hardware and an Intel Xeon high-performance computer. The
authors claimed that their GPU implementation achieved more than 3x speed up
compared to the CPU implementation.

Davidson [9] proposed a parallel implementation of SOM using OpenCL on
NVIDIA GPUs. In this work, Euclidean distance as the most common distance mea-
sure for SOM is replaced by Manhattan distance. Two kernels are used to find the
BMU for each input vector in parallel. The performance of the OpenCL implemen-
tation is compared with a well-known SOM (CPU implementation) library called
SOM_PAK [10] and shown a speedup factor of 10x.

Wang et al. [11] proposed a GPU implementation of SOM applying to travelling
salesman problem using a concept called “parallel cellular matrix™ that partitions the
Euclidean plane of input data into a suitable number of uniform cell units. They used
Nvidia GeForce GTX 570 Fermi graphics card containing 480 CUDA cores for
their experiment which resulted average acceleration factors of 5.49, 12.68 and 39.74
(with respect to small, medium and large size of input data) compared to the CPU
implementation.

Although the works reviewed above resulted significant speedups by their GPU
implementations, one must note that the focus of these works has been mostly on the
original SOM algorithm and there is a lack of effort on GPU parallelization of the
Batch-SOM. While the original SOM algorithm was proposed in 1980s and the batch
training algorithm a couple of years later, it took quite a while (by using it for different
application areas in several research works) to confidently use the Batch-SOM as an
alternative of the original SOM that might justify the lack of effort for GPU paral-
lelization of this algorithm. As mentioned by Kohonen in [3], despite the need for
taking care of some extra preliminaries (specially in the initialization phase) when
working with the Batch-SOM, it is usually preferred over the original SOM in practice
for several reasons:

e It does not have the time-variable learning rate parameter.
e It converges faster than the step-wise method.
e [t can be generalized for the non-vectorial data too.

In addition, the Batch-SOM is more scalable to data size because of its high
potential for parallelization. Therefore, the parallel-GPU model proposed in this paper
focuses on the Batch-SOM by first, identifying the most computationally expensive
stages of its learning algorithm, and then, using high-parallelizm potential of GPUs and
also efficient processing techniques provided by CUDA platform to perform the
computation of these stages.

4 Parallel Batch-SOM on CUDA

As explained by Kohonen [1], the most computationally expensive part of the
Batch-SOM is the step to find the BMU for each data vector which consists of many
distance comparisons. Our profiling analysis affirmed this too by showing that finding

Parallel Batch SOM on Graphics Processing Unit Using CUDA 93

Fig. 3. Parallel Batch-SOM flowchart.

BMUs takes about 81 to 95.6% of the training’s total processing time when it is run
sequentially on CPU for 1000 and 7000 sizes of input data respectively. One may note
that the step to update the weights takes a much smaller portion of the total processing
time due to the fact that the radius of neighbourhood reduces overtime, requiring less
and less computation to update the neurons. Hence, in our proposed parallelization
model, computation of the step to find BMUs is ported to GPU.

Figure 3 depicts flowchart of our proposed parallel Batch-SOM. It starts with
reading input data on the host side. Then, some SOM parameters such as data size, a
single vector size, lattice radius etc. are computed and set. The next step (which plays a
vital role in the result’s quality of the Batch-SOM) is to initialize the lattice by setting
the weights of its neurons to some initial values. The choice of initialization method
(either randomly or linearly) depends on the data and problem types. Describing the
subtleties of this choice is beyond the scope of this paper, but some useful suggestions
are provided by Principe and Miikkulainen [12].

Following the initialization phase, the training loop begins by going through the
procedure to find BMUs for all the input data vectors. This procedure consists of two
major parts, both ported to GPU using two kernels to be processed. In its first part,
distance between each data vector and neuron is computed. Then, in its second part, the
BMU of each data vector is determined by finding the neuron in closest distance. The
next step of the training algorithm is to update the weights of neurons based on the
calculations of the previous step. The update step aims to transform the SOM lattice in
such a way that it would be closer to distribution of the input dataset. At the end of the

94 H. Daneshpajouh et al.

training loop, all the sub-lists associated with neurons are cleaned and termination
condition (which is usually a fixed value for maximum number of iterations) is
checked. If the condition is met, Quantization Error of the resulted clustering is
computed and the output is displayed/stored; otherwise, the loop continues to iterate by
going back to the step of finding BMUs.

As mentioned above, computational burden of the procedure to find BMUs for each
data vector is carried out by GPU. Algorithm 1 provides the pseudocode of this
procedure. It begins by defining an array of CUDA streams [13] in order to be able to
perform the data transfer from host to device and kernel execution in an asynchronous
manner. The idea of CUDA streams comes from the fact that kernel execution in
CUDA is an asynchronous action and once the host launches the kernel, it can proceed
with next instruction in the program. We follow a 2-Way concurrency model (Fig. 4)
for using streams in which the weights data is split into chunks to be transferred to
GPU. Following the transfer of each chunk of data, our first kernel computeDistances
(Algorithm 2) is called to operate on the respective chunk. This kernel is responsible
for taking a single n-dimensional data vector and neuron, computing the Euclidean
distance between them and storing the result in a global distance array. The global
distance array is one-dimensional and stores distance values in a linear hierarchical
structure consisting of streams, blocks and threads. After processing all the streams, the
second kernel minReduction is launched to find the minimum distance for each data
vector using the famous “parallel minimum reduction” algorithm. The minReduction
kernel is lunched with the number of blocks equal to number of input vectors (so each
block is responsible for finding the BMU for one input vector), and number of threads
per block equal to half of total number of neurons. This kernel works on the global
distance array that was initially stored in the device memory. Following the execution
of the second kernel, the distance data is transferred from device to host. Eventually,
the findBMUs procedure ends with calling the function filllnSubLists which puts the
index of each data vector in its BMU’s sub-list.

1: procedure findBMUs()

2 Define an array of streams

3 for i < 1 to NUM_STREAMS do

4: Create CUDA streams

5: end for

6: for i < 1 to NUM_STREAMS do

7 Calculate and set memory offset

8 Asynchronously copy a chunk of weights from host to device memory

9: Lunch the kernel computeDistances <<< numBlocks, numThreadsPerBlock, 0, stream[i] >>>(...)
10: end for

11: Lunch the kernel minReduction <<< numBlocksRed, numThreadsPerBlockRed >>>(...)

12: Copy the distance data from device to host

13: Call the function fillInSubLists(distances[]) to put the index of each data vector into its BMU’s sub-list
14: end procedure

Algorithm 1. Pseudocode of the findBMUs procedure

Parallel Batch SOM on Graphics Processing Unit Using CUDA 95

Fig. 4. 2-Way concurrency pipeline of CUDA streams used in our parallel implementation

1: kernel computeDistances(...)

2 Calculate and set vectorStartIndex

3 Calculate and set vectorEndIndex

4: Calculate and set weightStartIndex

5: Calculate and set weightEndIndex

6: Load the weights data into shared memory
7 Synchronize the threads

8

: dist < 0
9: for vIdx < vectorStartIndex to vectorEndIndex , wldx ¢ weightStartIndex to weightEndIndex do
10: dist < dist + euclidean distance between the vector’s and weight’s element
11: end for

12: Calculate and set distanceIndex in the global distance array
13: distArray[distanceIndex] < dist
14: end kernel

Algorithm 2. Pseudocode of the computeDistances kernel

To further describe the details of computations on GPU, Fig. 5 illustrates data
transfers and execution of the proposed parallel implementation. There are three major
sets of data in this program, each stored in a one-dimensional array. First (before the
start of training loop), the set of all input data vectors X is transferred to device
memory. Then, the set of weights of all neurons M, is divided into chunks (three chunks
in the case of Fig. 5) and transferred to the device memory using streams. Determining
the number of streams depends on the factors such as the GPU architecture (number of
connections between host and device, available registers etc.) and also data size.
Although the recent GPU architectures provide the ability to have a high number of
streams, the balance between data size and overhead of creating too many streams must
be taken into account in order to achieve an efficient concurrency.

After transferring each chunk of the weights data, the host (CPU) launches an
instance of the computeDistances kernel on multiple blocks of threads. Since in our
implementation each thread is responsible for computing the distance between a single
data vector and neuron, the total number of threads required is the total number of data
vectors times the total number of neurons in the lattice. It is noteworthy that all the
streams launch an almost equal number of threads and blocks. The maximum number
of threads allowed in each block and the amount of available per-block resources such
as shared memory determine the number of blocks and number of threads per block in
each stream. The part of the weights data assigned to each block is loaded into shared
memory. This is because the number of neurons is usually much smaller than the
number of data vectors. So, each neuron weights are accessed many more times than

96

Kernel computeDistances <<<...>>>()

the data vectors. Finally, each thread writes the result of its distance computation into
the distance array that will be transferred to host memory after the reduction kernel

Device (GPU)

Fig. 5. Data transfers and execution of the proposed parallel implementation on GPU

H. Daneshpajouh et al.

Host (CPU)

finishes its computation.

5 Comparison and Results

In order to test the performance of the proposed parallelization model, we compared

L Ama(0).)

M

Streams of weights data

M;:

our implementation with three different implementations:

e SOMToolbox: A CPU-based single-thread reference implementation of the
Batch-SOM, developed in MATLAB by the Kohonen’s team. This package pro-
vides the ability to train a SOM network with different parameters and compute
various errors, quality and measures for the SOM. It also provides visualization of
the result, and correlation and cluster analysis.

Our own sequential CPU implementation: This is developed in C by following the
SOMToolbox and acts as the groundwork of our parallel implementations.

X:
{x(t)}

Parallel Batch SOM on Graphics Processing Unit Using CUDA 97

e Our own OpenMP implementation: This is developed in C in order to have an
alternative parallel implementation to be compared with our CUDA implementa-
tion. Exactly like the proposed Batch-SOM on CUDA, in the OpenMP imple-
mentation, computation of the procedure findBMUs is done in parallel using
different number of processing cores ranging from 2 to 16.

Table 1. The specifications of the machine used in our experiments

CPU (Bi-processors) | Memory | GPU (N}

Intel Xeon E5-2650V2 |64 GB | NVIDIA Tesla K20x | Bullx Linux Server
16 Cores (in total) Release 6.1

2.60 GHz

All the implementations work on double precision and the necessary optimization
flags are used in compilation of CPU implementations. The specifications of the
machine used in our experiments are presented in Table 1. We used the dataset which
was the result of Non-dominated Sorting Genetic Algorithm II (NSGA-II) runs applied
to an instance of Vehicle Routing Problem with Time Windows (VRPTW) having 100
customer points with 200-dimensional integer data vectors. Each data vector occupies
800 bytes of memory. These data vectors are essentially GA chromosomes, each of
which is a solution to this instance of VRPTW.

With respect to fine tuning of GA parameters for this instance of VRPTW, the
population size was set to 100 with 70 as number of generations. Hence, the GA
produced 7000 solutions (vectors) which we used as input data for SOM clustering.
However, to see the behaviour of our parallel SOM against different sizes of input data,
we extracted random subsets of 1000, 2000 and 4000 vectors from this data. The
dataset being used can be retrieved from [14]. By using a heuristic provided in
SOMToolbox, the maximum number of SOM iterations was set to 12 with a 15 x 7
lattice of neurons. Each implementation was run 50 times on different sizes of datasets.

Table 2 presents runtime comparison of the training part (as indicated in Fig. 3) of
the CUDA, the OpenMP (on 2, 4, 8 and 16 cores), the sequential CPU and the
SOMToolbox implementations on different sizes of input data which clearly shows that
the proposed CUDA implementation is by far performing better compared to the other
implementations. The speedup is more evident when the data size is increased. At its
best performance when the number of input vectors is 7000, the proposed CUDA
implementation provides a speedup of 5x, 11x and 11 x compared to the OpenMP, the
CPU and the SOMToolbox implementations respectively. Profiling information for the
case of 7000 input vectors is presented by Table 3.

It is noteworthy that the slight advantage of our CPU implementation over the SOM
Toolbox is because of two reasons. First, SOM Toolbox is implemented in Matlab
which is typically slower than C programs. Second, unlike our implementation, SOM
Toolbox includes some extra error checking and exception handling commands that is
usual in all the public packages. Otherwise, our CPU implementation is the same as the
one in SOM Toolbox.

98 H. Daneshpajouh et al.

Table 2. Runtime (of the training part) comparison between CUDA, OpenMP, sequential CPU
and SOMToolbox implementations (time in milliseconds)

No. of Input Runtime | CUDA | OpenMP Seq. SOM
vectors 2Cores | 4Cores | 8Cores | 16Cores | CPU Toolbox
1000 Best 136 538 487 428 322 569 597

Worst 151 549 504 433 365 584 607
Std. dev. | 142 541 495 430 341 577 601
2000 Best 215 1043 940 802 632 1137 1163
Worst 232 1055 947 809 669 1152 1192
Std. dev. | 226 1049 942 806 651 1142 1181
4000 Best 287 1813 | 1571 |1283 934 2012 2025
Worst 297 1825 | 1593 |1291 973 2029 2051
Std. dev. | 292 1817 | 1579 | 1287 959 2022 2036
7000 Best 371 3796 | 3288 2664 |1952 4211 4262
Worst 388 3803 3308 2685 |1991 4256 4296
Std. dev. | 382 3797 13295 2672 |1975 4230 4271

Table 3. Profiling information of the training part (as indicated in Fig. 3) for the case of 7000
input vectors

Section | Initialize | memcpy | Compute Min memcpy | Update | Others
weights () | HtoD distances reduction DtoH weights
<<< >>> () << >>> () 0O
Time |37 9 132 24 21 141 7
(ms)
Time |9.97 243 35.58 6.47 5.66 38.01 1.88
(%)

Moreover, from the perspective of clustering quality, Table 4 provides the results
of comparing our CUDA implementation with the SOMToolbox in terms of two
well-known measures. The first measure is Average Quantization Error (AQE) which
indicates the average of total distances of all data vectors to their respective cluster’s
centroids (i.e. their BMUs weights in case of SOM algorithm). The second measure is
Average Silhouette Coefficient (ASC) which is one of the intrinsic methods for eval-
uating clustering quality by reflecting the average ratio of intra-cluster closeness to
inter-cluster compactness. ASC has a range of [—1, 1]. The goal of SOM clustering is to
minimize the AQE and maximize the ASC. In majority of cases, our CUDA imple-
mentation provided an equal quality to SOMToolbox while in some cases there is a
slight difference (both higher and lower) between the two, which is normal because of
random nature of the SOM algorithm.

Parallel Batch SOM on Graphics Processing Unit Using CUDA 99

Table 4. Clustering quality comparison between CUDA and SOMToolbox implementations
(Average Quantization Error: lower is better — Average Silhouette Coefficient: higher is better)

No. of Quality CUDA SOMToolbox
Input Avg. Avg. Avg. Avg.
vectors quantization silhouette quantization silhouette
error coefficient error coefficient
1000 Best 60.8 0.9896 60.8 0.9896
Worst 69.4 0.9854 68.6 0.9851
Std. dev. 61.9 0.9875 62.1 0.9877
2000 Best 110.2 0.9892 110.2 0.9892
Worst 113.7 0.9838 114.1 0.9838
Std. dev. | 110.3 0.9866 111.1 0.9869
4000 Best 195.1 0.9873 194.6 0.9873
Worst 192.3 0.9783 1914 0.9781
Std. dev. |193.8 0.9823 193.5 0.9818
7000 Best 209.2 0.9625 209.2 0.9625
Worst 211.6 0.9523 212.3 0.9566
Std. dev. |210.7 0.9581 209.4 0.9598

6 Conclusion and Future Work

The Self-Organizing Map is a data mining algorithm being extensively used nowadays
for clustering and visualization problems in different domains. SOM has a unique
feature of not only providing an approximation of density function of the dataset, but
also a nonlinear projection of the high-dimensional data vectors to a low-dimensional
space. However, the complexity of its training algorithm and the size of today’s
real-world datasets makes it necessary to use some kinds of parallelization for its
computation. GPUs proved to be one of the most powerful computing hardware
nowadays. Hence, this paper proposed a parallelization model for the Batch-SOM, as it
proved to have equal quality of the result compared to the original SOM, and it is more
suitable for parallel computing. We compared our GPU implementation with other
sequential and parallel CPU implementations and got significant speedups.

However, some developments can be done in future to enhance the model and
implementation. From an algorithmic perspective, some useful suggestions are pro-
vided by Kohonen [3] such as multiplying the number of neurons to save computing
time in constructing large SOMs, estimating the BMU location based on the previous
searches, tabulating the indices of non-zero elements of sparse vectors to speed up the
BMU search process and using a coarse numerical accuracy of the vectors to reduce the
memory requirements of high-dimensional input data. On the other hand, the GPU
architecture can benefit from future developments as well. Although the experimental
case used in Sect. 5 conveniently fits a single GPU, this is not always the case.
Considering the fact that the size of today’s datasets (e.g. those from operations
research, biology, medical image analysis etc.) might go beyond the capabilities of a

100 H. Daneshpajouh et al.

single GPU, extending the model and implementation to use multi-GPUs and also a
super-computer-based implementation with multiple computing nodes, each with
multiple GPUs might be useful.

Acknowledgments. This work is partially supported by Malaysia Fundamental Research Grant
Scheme (FRGS) 1/2017/ICTO1/UTP/02/2. The experiments reported in this work were per-
formed on the ROMEO computational centre of Champagne-Ardenne, France (http://romeo.
univreims.fr). The authors would like to thank J. Loiseau for his useful advices on the GPU
implementation.

References

1. Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (2001). https://doi.org/10.1007/
978-3-642-56927-2

2. Kohonen, T.: Essentials of the self-organizing map. Neural Netw. 37, 52-65 (2013)

3. Kohonen, T.: MATLAB Implementations and Applications of the Self-Organizing Map, 201
p- Unigrafia Oy, Helsinki (2014)

4. Alhoniemi, E., Himberg, J., Parhankangas, J., Vesanto, J.: SOM Toolbox, http://www.cis.
hut.fi/projects/somtoolbox. Accessed 15 Jan 2017

5. Zhongwen, L., Zhengping, Y., Xincai, W.: Self-organizing maps computing on graphic
process unit. In: ESANN’ 2005 - European Symposium on Artifitial Neural Networks,
Bruges, Belgium, pp. 27-29 (2005)

6. Campbell, A., Berglund, E., Streit, A.: Graphics hardware implementation of the
parameter-less self-organising map. In: Gallagher, M., Hogan, J.P., Maire, F. (eds.) IDEAL
2005. LNCS, vol. 3578, pp. 343-350. Springer, Heidelberg (2005). https://doi.org/10.1007/
11508069_45

7. Xiao, Y., Leung, C.S., Ho, T.-Y., Lam, P.-M.: A GPU implementation for LBG and SOM
training. Neural Comput. Appl. 20, 1035-1042 (2011)

8. Hasan, S., Shamsuddin, S.M., Lopes, N.: Soft computing methods for big data problems. In:
Cai, Y., See, S. (eds.) GPU Computing and Applications, pp. 235-247. Springer, Singapore
(2015). https://doi.org/10.1007/978-981-287-134-3_15

9. Davidson, G.: A parallel implementation of the self organising map using OpenCL, (2015)

10. Kohonen, T.K., Hynninen, J., Kangas, J., Laaksonen, J.: SOM_PAK: The Self-Organizing
Map Program Package, 27 p. (1996)

11. Wang, H., Mansouri, A., Creput, J.-C.: Massively parallel cellular matrix model for
self-organizing map applications. In: 2015 IEEE International Conference on Electronics,
Circuits, and Systems (ICECS), pp. 584-587. IEEE (2015)

12. Principe, J.C., José, C., Miikkulainen, R.: WSOM 2009. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-642-35230-0

13. NVIDIA: CUDA C Programming Guide (2017)

14. Daneshpajouh, H.: NSGA_II-VRP_C101 Dataset, https://drive.google.com/open?id=
0ByIXxLNivsQhyMVgtNOVFdTRsRms. Accessed 23 Apr 2017

http://romeo.univreims.fr
http://romeo.univreims.fr
http://dx.doi.org/10.1007/978-3-642-56927-2
http://dx.doi.org/10.1007/978-3-642-56927-2
http://www.cis.hut.fi/projects/somtoolbox
http://www.cis.hut.fi/projects/somtoolbox
http://dx.doi.org/10.1007/11508069_45
http://dx.doi.org/10.1007/11508069_45
http://dx.doi.org/10.1007/978-981-287-134-3_15
http://dx.doi.org/10.1007/978-3-642-35230-0
https://drive.google.com/open?id=0ByIxLNivsQhyMVgtN0VFdTRsRms
https://drive.google.com/open?id=0ByIxLNivsQhyMVgtN0VFdTRsRms

	Parallel Batch Self-Organizing Map on Graphics Processing Unit Using CUDA
	Abstract
	1 Introduction
	2 SOM Algorithm
	3 Related Work
	4 Parallel Batch-SOM on CUDA
	5 Comparison and Results
	6 Conclusion and Future Work
	Acknowledgments
	References

