
Analysis and Characterization of GPU
Benchmarks for Kernel Concurrency Efficiency

Pablo Carvalho1, Lúcia M. A. Drummond1, Cristiana Bentes2(B),
Esteban Clua1, Edson Cataldo3, and Leandro A. J. Marzulo4

1 Instituto de Computação, Universidade Federal Fluminense, Niterói, Brazil
pablocarvalho@id.uff.br, {lucia,esteban}@ic.uff.br

2 Eng. de Sistemas e Computação, Universidade do Estado do Rio de Janeiro,
Rio de Janeiro, Brazil
cris@eng.uerj.br

3 Programa de Pós-graduação em Engenharia Elétrica e de Telecomunicações,
Universidade Federal Fluminense, Niterói, Brazil

ecataldo@im.uff.br
4 Ciência da Computação, Universidade do Estado do Rio de Janeiro,

Rio de Janeiro, Brazil
leandro@ime.uerj.br

Abstract. Graphical Processing Units (GPUs) became an important
platform to general purpose computing, thanks to their high performance
and low cost when compared to CPUs. However, programming GPUs
requires a different mindset and optimization techniques that take advan-
tage of the peculiarities of the GPU architecture. Moreover, GPUs are
rapidly changing, in the sense of including capabilities that can improve
performance of general purpose applications, such as support for con-
current execution. Thus, benchmark suites developed to evaluate GPU
performance and scalability should take those aspects into account and
could be quite different from traditional CPU benchmarks. Nowadays,
Rodinia, Parboil and SHOC are the main benchmark suites for eval-
uating GPUs. This work analyzes these benchmark suites in detail and
categorizes their behavior in terms of computation type (integer or float),
usage of memory hierarchy, efficiency and hardware occupancy. We also
intend to evaluate similarities between the kernels of those suites. This
characterization will be useful to disclosure the resource requirements
of the kernels of these benchmarks that may affect further concurrent
execution.

1 Introduction

Graphics Processing Units (GPUs) have been gaining prominence in general-
purpose computing. Their cost/performance ratio combined with their high com-
putational power, have attracted a broad range of users, going from the world
fastest supercomputers to the shared virtual infrastructures such as cloud envi-
ronments.

c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 71–86, 2018.
https://doi.org/10.1007/978-3-319-73353-1_5



72 P. Carvalho et al.

Some benchmark packages have been created over the years to evaluate per-
formance of GPUs in a number of real-world applications. The most important
benchmark suites for GPUs are: Rodinia [1], Parboil [2], and SHOC [3]. Unlike
benchmarks proposed for CPUs, these benchmarks are composed of a series of
kernels, where each kernel represents a task submitted for fine-grain parallelism
on the GPU and may have different needs for resources during execution.

The benchmark suites have been used over the years to evaluate aspects of
the GPU architecture and its fine-grain parallelism, helping in determining the
benefits of new hardware features. In this paper, we are particularly interested
in analyzing the individual behavior of the kernels of these benchmarks in terms
of resource usage. Our main motivation is the impact that the kernel resource
requirements has in further concurrent kernel execution.

Concurrent kernel execution is a relatively recent feature in NVIDIA GPUs.
The scheduling policy follows a left-over strategy, where the hardware assigns as
many resources as possible to one kernel and then assigns the remaining resources
to other kernels. In other words, the blocks of one kernel are distributed to the
SMs for execution, and if there is space left for more blocks to execute, the
blocks of other kernels can execute concurrently. The number of blocks which
can execute concurrently on an SM is limited by: (i) the maximum number
of active warps per SM imposed by the hardware, (ii) the maximum number
of active thread blocks per SM imposed by the hardware, (iii) the number of
thread blocks that the shared memory can accommodate given the consumption
of each thread block, (iv) the number of thread blocks that the registers can
accommodate given the consumption of each thread block. Therefore, a resource-
hungry kernel could prevent the concurrent execution of other small kernels.
According to Pai et al. [4], around 50% of the kernels from the Parboil and
Rodinia benchmark suites consume too many resources and prevent concurrent
execution of other kernels.

In this scenario, little is known about the behavior of the kernels of these
benchmarks in terms of the resources requirements that affect concurrent exe-
cution. This work aims at presenting a detailed analysis of the execution of ker-
nels from the three main benchmarks suites, considering the following resource
utilization: integer, single and double precision floating point operations, SM
efficiency, GPU occupancy and memory operations. Through this analysis, we
intend to extend the comprehension of the kernels execution in order to guide
further decisions on convenient and more efficient concurrent execution. We also
propose to group the kernels with similar characteristics in terms of resource
usage. For so, we use the Principal Component Analysis (PCA) statistical
method for reducing information dimensionality and K-means clustering for cre-
ating the proposed groups.

Our results show that Rodinia and Parboil, although less updated than
SHOC, have applications with the highest resource usage. We observed four
distinct groups of kernels in the three benchmark suites. The first group concen-
trates kernels with low resource usage. The second group contains kernels that
stress resource usage. The third and fourth groups have kernels with medium



Analysis and Characterization of GPU Benchmarks 73

resource utilization and relatively low occupancy. We conclude that the kernels
from the third and fourth groups are good candidates for concurrent execution,
since they are more likely to leave unused resources.

The rest of the paper is organized as follows. Section 2 presents previous work
on GPU benchmark characterization. Section 3 discusses the benchmark suites
studied. Section 4 describes the methodology used in our experiments. Section 5
discusses and analyzes our experimental results. Finally, Sect. 6 presents our
conclusions and directions for future work.

2 Related Work

There are few previous effort in benchmark suite characterization for GPUs. The
work by Che et al. [5] characterizes Rodinia applications in terms of instructions
per cycle (IPC), memory instruction mix, and warp divergence. Their focus, how-
ever, is to compare with the CPU benchmark Parsec. Kerr et al. [6] analyze GPU
applications from NVIDIA SDK and Parboil in terms of control flow, data flow,
parallelism and memory behavior. This work, however, performs the study on a
GPU emulator that execute the PTX code of the kernels. The work of Goswami
et al. [7] presents a set of microarchitecture independent GPU workload char-
acteristics that are capable of capturing five important behaviors: kernel stress,
kernel characteristics, divergence characteristics, instruction mix, and coalescing
characteristics. They studied Rodinia, Parboil and CUDA SDK, but their study
is based on a simulation of a generic GPU, that they have heavily instrumented
to extract the studied characteristics.

Burtscher et al. [8] study a suite of 13 irregular benchmarks in terms of
control-flow irregularity and memory-access irregularity, and compare with reg-
ular kernels from CUDA SDK. In a later work, O’Neil and Burtscher [9] presents
a microarchitectural workload characterization of five irregular GPU applications
from the LonestarGPU benchmark suite1. Their study is based on simulations
and they also focus on the impact of control flow and memory access irregularity.
Bakhoda et al. [10] characterizes 12 non-graphics kernels on a GPU simulator.
They study the performance impact of some microarchitecture design choices:
interconnect topology, use of caches, design of memory controller, parallel work-
load distribution mechanisms, and memory request coalescing hardware.

Our study, on the other hand, is the first to perform the characterization on
the kernels of the three main GPU benchmark suites, rather on the applications
as a whole. Our analysis is based on actual executions of the benchmarks on
recent GPU Maxwell architecture and rises important characteristics for further
understanding concurrent kernel executions.

3 Benchmark Suites

Benchmarks are programs designed to evaluate computational systems. By ana-
lyzing the execution of these programs through well-defined metrics, it is possi-
ble to learn about the operation of a specific architecture, identify bottlenecks
1 http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu.

http://iss.ices.utexas.edu/?p=projects/galois/lonestargpu


74 P. Carvalho et al.

in a program execution and compare different architectures [11]. Nevertheless,
it is essential to choose benchmark suites that are able to stress the resource
usage of the hardware being evaluated. In [12], authors recommend the use of
algorithmic methods that capture a pattern of computation and communica-
tion (called “Dwarfs”) to design and evaluate parallel programming models and
architectures. Moreover, they recommend the use of thirteen Dwarfs instead of
traditional benchmarks.

The focus of this paper is to evaluate the benchmarks developed for general
purpose computing. The analyzed benchmarks, Rodinia [1,5], Parboil [2] and
SHOC [3,13], provide implementations for other processors. However, our goal
here is to study their behavior in the context of GPUs.

The Rodinia benchmark package, released in 2009 (now in version 3.1),
focuses on the analysis of heterogeneous systems. Rodinia offers 23 applications
with CUDA, OpenCL and OpenMP implementations, covering nine of the thir-
teen Dwarfs.

The Parboil package was developed in 2008 to test and demonstrate the
capability of the first generation of GPUs with CUDA technology. According
to the concept of its development, the package’s composition was designed nei-
ther to deliver fully optimized and low-level versions for a particular device,
nor to deliver full versions of applications that would discourage modifications.
Currently, Parboil is composed of 11 applications, covering a subset of the thir-
teen Dwarfs. Most of these applications are only implemented in CUDA, while
some have a basic CPU implementation. Therefore, this benchmark suite does
not seem appropriate for comparing CPUs with GPUs nor evaluating hybrid
(GPU+CPU) systems.

Scalable Heterogeneous Computing (SHOC) benchmark suite was designed
for GPUs and multi-core processors. Moreover, it provides MPI+CUDA versions
that allow the execution using multiple GPUs in a cluster. SHOC applications
are organized in three levels: (i) level 0 has 6 applications that measure low-level
hardware characteristics, such as memory bandwidth and peak FLOPS; (ii) level
1 provides 10 applications that correspond to a subset of the thirteen Dwarfs;
and (iii) level 2 consists of 2 real applications.

4 Methodology

Our kernel characterization targets on their behavior on integer and floating-
point operations, SM efficiency, GPU occupancy and memory operations. We
extracted these metrics from the NVIDIA nvprof tool [14] as seen in Table 1.

Although nvprof returns the maximum, average and minimum values, for
each metric, we used only the average values, since the variance is not high. From
the extracted data, the sum of shared load transactions and shared store tran-
sactions provides the total transactions on shared memory. The sum of
local load transations and local store transactions provides the total local tran-
sations. The sum of gld transactions and gsd transactions provides total trans-
actions on global memory.



Analysis and Characterization of GPU Benchmarks 75

Table 1. Selected metrics and characteristics

Metric Description

sm efficiency Time percentage that at least one warp is active in a
SM in relation to all the GPU SMs

achieved occupancy Active warps rate in a single SM in relation to the
maximum number of active warps supported by the SM

shared load transactions Number of loading operations at the shared memory

shared store transactions Number of writing operations at the shared memory

local load transactions Number of loading operations at the local memory

local store transactions Number of writing operations at the local memory

gld transactions Number of reading operations at the global memory

gst transactions Number of storage operations at the global memory

inst fp 32 Number of single precision floating point operations

inst fp 64 Number of double precision floating point operations

inst integer Number of integer operations

The analysis of the measured data follows past work in benchmark charac-
terization [5,7,15–17] in using Principal Component Analysis (PCA) and clus-
tering. The data is first mean-centered and normalized to make it comparable.
After that, we used the PCA to reduce the data dimensionality and show the
characteristics that contribute most to its variance. PCA returns a number of
principal components, that are linear combinations of the original features. The
first principal component (PC1) exhibits the largest variance, followed by the
second principal component (PC2).

With the results of PC1 vs PC2, we group similar kernels using the
K-means grouping technique. The values of K used in the K-means clustering
were obtained experimentally for each analysis.

5 Experimental Results

5.1 Experimental Environment

Our experiments were conducted on a GPU GTX 980 (Maxwell architecture)
with 2048 CUDA cores running at 1126 MHz in 16 SMs, with 4 GB of global
memory and 2 MB of L2 cache. Each SM has 96 KB of shared memory and
256 KB of registers. To compile and run the benchmarks we used CUDA version
7.5. The statistical analysis was performed using the R language. All applications
were executed with the standard input data sets.

5.2 Individual Analysis

We first analyze kernels belonging to each benchmark suite separately. In order
to distinguish the kernels in the presented charts, without compromising visi-
bility, we used a coding scheme where each kernel is identified by a letter that



76 P. Carvalho et al.

corresponds to the application it belongs, and a number that distinguishes it
from the other kernels of the same application.

Parboil. For the Parboil analysis, we did not use double precision floating-point
operations in the metrics. This is the oldest benchmark suite from the three
studied, launched before GPUs had double precision support. Parboil has 11
applications with 26 kernels. We first detect what we call low-expressive kernels.
These kernels use a small amount of resources and run in a very short time.
Thus, they were removed from our analysis. Consider that PK is the percentage
of total execution time required to run kernel K in some application and that
M is the mean of the execution times for all kernels of that same application.
We will remove K from the analysis if PK is one standard deviation bellow M .
Only 3 kernels were removed.

Parboil applications do not make use of concurrent execution. All kernels are
executed on the same stream.

Figure 1 shows the biplot chart for the results of PC1 vs PC2 followed by
the K-means clustering (K = 5). Each point in the chart represents a kernel
(named according to our coding scheme). Arrows denote vectors that correspond
to the metrics analyzed. Vector lengths are proportional to the magnitude of each
metric, and the angle between two vectors represent the correlation between
the corresponding metrics. Vectors with a small angle indicate that metrics are
highly correlated. Vectors forming a 90◦ angle are uncorrelated, and vectors in
opposite directions have negative correlation. The proximity of points to the
vectors shows kernels with the greater values obtained in that metric.

The direction of vectors in the chart indicates a correlation between the
number of shared memory transactions with the number of floating-point oper-
ations. This means that Parboil kernels normally use shared memory to store
floating point data. We have also noticed a correlation between global memory
transactions and SM efficiency. This means that the applications usually have a
good number of warps to hide global memory latency, when global memory is
intensively used.

The five groups identified by K-means are represented in different colors in
Fig. 1 and specified in Table 2. Group 1 is composed of 10 kernels. This group
contains Parboil’s most representative kernels. These are compute-intensive ker-
nels with high efficiency, a large number of operations with integers and single-
precision floating-point, and a relatively high occupancy.

Group 2 contains 2 kernels with high efficiency, but low occupancy. In these
kernels, the large number of integer and floating-point operations are enough to
maintain the SM busy, and there is no need for more warps to hide latency.

Group 3 has 6 kernels. These kernels are characterized by the average resource
usage. The position of its kernels in the chart suggests that the metrics present
average values when compared to the more resource-consuming groups (groups
1 and 2) and the less resource-consuming groups (groups 4 and 5).

Group 4 has 3 small kernels from the mri-gridding application. These kernels
are the less representative in terms of execution time.



Analysis and Characterization of GPU Benchmarks 77

Fig. 1. Parboil results

Table 2. Parboil kernels for each group.

Group Application # kernels Kernels

1 cutcp 1 cuda cutoff potential lattice6overlap(B1)

lbm 1 performStreamCollide kernel(D1)

mri-gridding 3 splitRearrange(E2), splitSort(E8),
gridding GPU(E7)

mri-q 1 ComputeQ GPU(F1)

sad 2 mb sad calc(G2), larger sad calc 8(G3)

spmv 1 spmv jds(I1)

sgemm 1 mysgemmNT(H1)

2 bfs 1 BFS kernel multi blk inGPU(A1)

stencil 1 block2D hybrid coarsen x(J1)

3 histo 4 histo prescan kernel(C1),
histo main kernel(C2), histo final kernel(C3),
histo intermediates kernel(C4)

mri-gridding 1 scan L1 kernel(E9)

sad 1 larger sad calc 16(G1)

4 mri-gridding 3 reorder kernel(E1), uniformAdd(E4),
binning kernel(E6)

5 bfs 1 BFS in GPU kernel(A2)

tpacf 1 gen hists(K1)



78 P. Carvalho et al.

Group 5 contains only 2 kernels. These are the kernels with the smallest
occupancy, which make them good candidates for concurrent execution with
other applications kernels. During their execution there is a higher probability
of having unused resources that could be allocated to a concurrent application.

Rodinia. In Rodinia, 58 kernels from 22 applications were analyzed2. In the
detection of low-expressive kernels, 14 kernels were removed.

Rodinia applications do not make use of concurrent execution. Except for
the Huffman application included in version 3.0 (2015), all other Rodinia appli-
cations execute their kernels on the same stream.

Fig. 2. Rodinia results

Figure 2 shows the biplot chart for the results of PC1 vs PC2 followed by the
K-means clustering (K = 4). We can observe in this chart that most of the ana-
lyzed kernels that make transactions in global memory, also make transactions
in shared memory, indicating that Rodinia applications are mostly optimized
to take advantage of shared memory. We can also observe a high correlation
between single and double precision floating-point operations, although double

2 We did not analyze the CFD application, since nvprof was not able to correctly
extract the corresponding metrics.



Analysis and Characterization of GPU Benchmarks 79

precision operations are less pronounced in this benchmark suite. In addition, the
correlation between integer operations, SM efficiency, and occupancy indicates
that integer-based applications are compute-intensive and have a great number
of warps. This maintains the SM busy most of the time.

Four groups were identified and are shown in Table 3. Group 1 has memory-
intensive kernels and consists of 14 kernels from 8 applications. Although the
most remarkable characteristic of kernels in this group is the amount of memory
operations, there are other interesting characteristics: (i) the group does not
perform double-precision floating-point operations, (ii) it has variable occupancy
while its efficiency is high for the majority of the members, and (iii) most of the
kernels perform integer operations.

Group 2 contains 5 kernels. These kernels presented low resource usage and
short execution time. All five kernels have little relevance in terms of resource
usage, compared to the other groups, and are probably not recommended for
assessing the GPU architecture and its parallelism. It is important to notice
that all the kernels of the Myocite application are in this group.

Group 3 has 6 kernels. This group is characterized by intensive double-
precision floating point operations, although it also performs a large number of
single precision floating-point operations. These kernels are floating-point based
compute intensive.

Group 4 is the one with more kernels (19). The group is characterized by high
GPU occupancy and by the large number of integer operations. We can observe
in the chart that kernels of this group are plotted in the opposite direction of
the vectors corresponding to the memory operations metrics. This means that
these kernels are not memory intensive.

SHOC. Compared to the other benchmark suites, SHOC is the suite that
received updates more recently. For this reason, the applications S3D and Triad
make massive use of concurrent execution, using multiple streams. SHOC con-
tains not only real applications, but also some microbenchmarks. The SHOC
level zero applications contains only microbenchmark kernels to test low-level
details of the hardware. We did not include these applications in our study. Our
analysis focused on 47 kernels of level one and 59 kernels of level two applications.
In SHOC, we did not remove low-expressive kernels, since level one applications
are much smaller than level two applications.

Figure 3 shows the biplot chart for the results of PC1 vs PC2 followed by the
K-means clustering (K = 3). The chart presents a strong correlation between
the percentage of the execution time and the number of operations in shared
memory, which means that kernels that take more time to execute are optimized
to take advantage of shared memory. Operations in global memory are highly
correlated with SM efficiency, which means that kernels that need to access
the global memory are able to efficiently hide memory access latency. There
is also a certain proximity between operations with integers and with single
precision floating point, integers are probably used for controlling loops that
contain floating point operations.



80 P. Carvalho et al.

Table 3. Rodinia kernels for each group.

Group Application # kernels Kernels

1 backprop 1 bpnn layerforward CUDA(B1)

dwt2d 4 dwt cuda::fdwt97Kernel<int=128,
int=6>(D1),
dwt cuda::fdwt97Kernel<int=192,
int=8>(D2),
dwt cuda::fdwt97Kernel<int=64,
int=6>(D3),
c CopySrcToComponents<float>(D4)

huffman 1 vlc encode kernel sm64huff(I1)

hybridsort 2 bucketsort(J4) bucketcount(J7)

lud 2 lud perimeter(N2), lud internal(N3)

nw 2 needle cuda shared 1(R1),
needle cuda shared 2(R2)

pathfinder 1 dynproc kernel(U1)

srad-v1 1 reduce(W2)

2 gaussian 1 Fan1(E2)

lud 1 lud diagonal(N1)

myocyte 10 1 kernel(P1)

particlefilter-float 2 likelihood kernel(S2),
normalize weights kernel(S3)

3 heartwall 1 kernel(F1)

hotspot 1 calculate temp(H1)

lavaMD 1 kernel gpu cuda(L1)

leukocyte 1 IMGVF kernel(M2)

srad-v2 2 srad cuda 1(X1), srad cuda 2(X2)

4 b+tree 2 findRangeK(A1), findK(A2)

backprop 1 bpnn adjust weights cuda(B2)

bfs 2 Kernel(C1), Kernel2(C2)

gaussian 1 Fan2(E1)

hotspot3d 1 hotspotOpt1(G1)

hybridsort 1 mergeSortPass(J5)

kmeans 2 invert mapping(K1), kmeansPoint(K2)

mummergpu 2 mummergpuKernel(O1), printKernel(O2)

nn 1 euclid(Q1)

particlefilter-float 1 find index kernel(S4)

particlefilter-naive 1 kernel(T1)

sc gpu 1 kernel compute cost(V1)

srad-v1 3 srad2(W3), prepare(W5), srad(W6)



Analysis and Characterization of GPU Benchmarks 81

Fig. 3. SHOC results

Three groups of kernels were identified as show in Table 4. Group 1 is com-
posed of 28 memory-intensive kernels that present the higher execution time.
This group is mostly composed of level one parallel algorithms, and is the most
diverse group. Kernels in this group use more operations with integers than the
others.

Group 2 contains 20 kernels that have low significance. The chart shows that
kernels of this group are positioned in the opposite direction of the vectors of
the metrics, indicating that kernels in this group do not consume much of the
analyzed resources.

Group 3 contains 58 kernels mostly from the S3D application. For these
kernels, we observed short execution times and low occupancy. These character-
istics confirm the capability of S3D to massively exploit concurrent execution.
Kernels warps do not occupy the whole SM, and the underutilized resources
can be allocated to other kernels. Most of the kernels do not take advantage of
shared memory, but provide high efficiency. We can also observe two subgroups
among the S3D kernels, one that performs a high number of double-precision
floating-point operations, while the other subgroup does not.

5.3 Global Analysis

In this analysis, we assembled all kernels of the benchmark suites, with a total
number of 173 kernels. The motivation for this analysis is to show the similarities
and differences between applications of the benchmark suites.

Figure 4 shows the biplot chart for the results of PC1 vs PC2 followed by the
K-means clustering (K = 4). The name of the kernels in this chart is formed



82 P. Carvalho et al.

Fig. 4. Results for the kernels of all benchmarks suites.

with a similar coding scheme used in the previous analysis, but each kernel
name starts with a letter indicating which benchmark suite it belongs (R, P or
S). Comparing the direction of the vectors in this chart with the SHOC chart, we
can observe that the large number of kernels in SHOC influenced the position of
some vectors such as the percentage of execution time and the number of double-
precision floating-point instructions. The position and angle between these two
vectors are very similar.

Four groups of kernels were identified and are analyzed separately as follows.

Group 1 - Little Resource Usage. This group contains 27 kernels, and is
a result of the combination of the kernels from benchmark suites that present
low use of all the resources analyzed (integer and floating-point operations, SM
efficiency, GPU occupancy and memory operations). Table 5 shows the number
of kernels of each benchmark suite that comprises this group. We can observe in
this table that most of the kernels in this group belongs to SHOC. Most of them
are level one SHOC parallel algorithms.

Group 2 - High Resource Utilization. Group 2 consists of 26 kernels
that have high efficiency, due to a great number of integer and single-precision
floating-point operations. These kernels also have an average occupancy of about
70%. This is the group that present the highest resource utilization. Table 5
shows the number of kernels per benchmark suite. We can observe that Rodinia
and Parboil have more kernels that intensively exploit the GPU resources than
SHOC.



Analysis and Characterization of GPU Benchmarks 83

Table 4. SHOC kernels from each group.

Group Application # kernels Kernels

1 FFT 4 FFT512 device(D3), IFFT512 device(D4),
IFFT512 device(D5), FFT512 device(D6)

GEMM 4 maxwell sgemm 128x64 nn(E1),
gemm kernel2x2 tile multiple core(E2),
maxwell sgemm 128x64 nt(E3),
gemm kernel2x2 tile multiple core(E4)

MD5Hash 1 FindKeyWithDigest Kernel(F1)

MD 1 compute lj force(G1)

NeuralNet 3 axpy kernel val(H3), kernelBackprop1(H7),
gemm kernel1x1 core(H8)

Reduction 2 reduce(I1), reduce(I2)

Scan 4 reduce(J1), reduce(J2), bottom scan(J3),
bottom scan(J6)

Sort 3 findRadixOffsets(K2), radixSortBlocks(K3),
reorderData(K5)

Spmv 2 spmv csr vector kernel(L1),
spmv csr vector kernel(L7)

Stencil2D 2 StencilKernel(M1), StencilKernel(M2)

Triad 1 Triad(N1)

QtClustering 1 QTC device(O1)

2 BFS 1 BFS kernel warp(C1)

NeuralNet 6 kernelFeedForward3(H1),
kernelBackprop3b(H2),
kernelBackprop3a(H4),
kernelInitNablaB(H5), kernelBackprop2(H6),
kernelInitNablaW(H9)

Scan 2 scan single block(J4), scan single block(J5)

Sort 2 scan(K1), vectorAddUniform4(K4)

Spmv 6 zero(L2), zero(L3), spmv ellpackr kernel(L4),
spmv csr scalar kernel(L5),
spmv ellpackr kernel(L6),
spmv csr scalar kernel(L8)

QtClustering 3 reduce card device(O2),
trim ungrouped pnts indr array(O4),
update clustered pnts mask(O5)

3 FFT 2 void chk512 device(D1), chk512 device(D2)

MD 1 compute lj force(G2)

QtClustering 1 compute degrees(O3)

s3d 54 all kernels (P1 to P54)



84 P. Carvalho et al.

Group 3 - Medium Resource Utilization. This group is composed of 51
kernels, and has some similar characteristics to group 2, high number of integer
operations and average occupancy around 60%. Kernels in this group are smaller
than the ones in group 2, presenting a less significant percentage of execution
time. Table 5 shows the number of kernels from each suite in this group. We
observe that this group contains a similar number of kernels from the three
suites.

Group 4 - Low Occupancy and High Efficiency. This group is composed
of 69 kernels, characterized by low occupancy, high efficiency and low percent-
age of execution time. This group contains mostly S3D kernels from the SHOC
suite. From the 69 kernels, 44 are from S3D. This application is a computa-
tional chemistry application that solves Navier-Stokes equations for a regular
3D domain [18]. The computation is floating-point intensive, and it was paral-
lelized by assigning each 3D grid point to one thread. The low occupancy of
each of its kernels impels their concurrent implementation. Another feature of
this group is the smaller number of operations with integers and the highest
average use of registers than the other groups. Table 5 shows the distribution of
kernels of this group in the suites. Notice that rhere are no Parboil kernels in
this group, and there are only three kernels from Rodinia.

Table 5. Number of kernels for each group and benchmark suite.

Group Patboil Rodinia SHOC

1 1 6 20

2 11 12 3

3 11 23 17

4 0 3 66

5.4 Discussion

Our results show that Rodinia and Parboil presented more diversity in their
kernels. SHOC, on the other hand, provides less diversity but it is the only suite
that exploits kernel concurrency massively. When the three suites are analyzed
together, we observed four distinct groups of kernels: (1) Low significance, (2)
High resource utilization, (3) Medium resource utilization and (4) Low occu-
pancy and high efficiency. Kernels from group 1 are the ones with short execu-
tion time and low resource usage, which means that they are not appropriate for
assessing the GPU hardware. Kernels from group 2 present high resource uti-
lization, which indicates that they are not good candidates for concurrent kernel
execution. Kernels from groups 3 and 4 have medium resource utilization and
relatively low occupancy. These kernels are more likely to leave unused resources
and provide space for concurrent execution.



Analysis and Characterization of GPU Benchmarks 85

6 Concluding Remarks

This work presented a detailed characterization of the three most important
benchmark suites for GPUs, Rodinia, Parboil and SHOC. Our study focused
on revealing the behavior of the kernels in terms of integer, single and double
precision operations, SM efficiency, GPU occupancy and memory operations. We
also proposed to group similar kernels in order to identify the ones with similar
behavior.

The analysis and characterization of representative GPU kernels is an essen-
tial step to understand the effect of resource requirements in further concurrent
execution in modern GPUs. Cross-kernel interference can drastically affect per-
formance of applications executed in GPUs concurrently. The problem is caused
by concurrent access of co-located kernels to shared resources. We believe that
identifying kernels with complementary access profiles to execute concurrently
can reduce interference among them. Thereby, the characterization is a first and
fundamental step to be used in future strategies of kernels scheduling in GPUs.

Our results showed that the benchmarks have kernels with good diversity in
terms of resource usage. We identified groups of kernels with similar behavior
and distinguished the kernels that are more likely to leave unused resources.
These kernels are better candidates for efficient concurrent execution.

Concurrent kernel execution is a relatively new feature in GPUs. It would
be interesting that future benchmark suites for GPU exploit this feature to the
full. As future work, we intend to analyze the kernels behavior in different GPU
architectures. We also intend to perform a study on the performance interference
of the concurrent execution of different types of kernels, and propose a intelligent
strategy to benefit from all the information gathered.

References

1. Che, S., Boyer, M., Meng, J., Tarjan, D., Sheaffer, J.W., Lee, S.-H., Skadron, K.:
Rodinia: a benchmark suite for heterogeneous computing. In: Proceedings of the
IEEE International Symposium on Workload Characterization (IISWC), pp. 44–54
(2009)

2. Stratton, J.A., Rodrigues, C., Sung, I.-J., Obeid, N., Chang, L.-W., Anssari, N.,
Liu, G.D., Hwu, W.M.W.: Parboil: a revised benchmark suite for scientific and
commercial throughput computing (2012)

3. Danalis, A., Marin, G., McCurdy, C., Meredith, J.S., Roth, P.C., Spafford, K.,
Tipparaju, V., Vetter, J.S.: The scalable heterogeneous computing (SHOC) bench-
mark suite. In: Proceedings of the 3rd Workshop on General-Purpose Computation
on Graphics Processing Units, pp. 63–74 (2010)

4. Pai, S., Thazhuthaveetil, M.J., Govindarajan, R.: Improving GPGPU concurrency
with elastic kernels. In: ACM SIGPLAN Notices, vol. 48, pp. 407–418. ACM (2013)

5. Che, S., Sheaffer, J.W., Boyer, M., Szafaryn, L.G., Wang, L., Skadron, K.: A char-
acterization of the Rodinia benchmark suite with comparison to contemporary
CMP workloads. In: Proceedings of the IEEE International Symposium on Work-
load Characterization (2010)



86 P. Carvalho et al.

6. Kerr, A., Diamos, G., Yalamanchili, S.: A characterization and analysis of PTX
kernels. In: IEEE International Symposium on Workload Characterization, IISWC
2009, pp. 3–12. IEEE (2009)

7. Goswami, N., Shankar, R., Joshi, M., Li, T.: Exploring GPGPU workloads: char-
acterization methodology, analysis and microarchitecture evaluation implications.
In: 2010 IEEE International Symposium on Workload Characterization (IISWC),
pp. 1–10. IEEE (2010)

8. Burtscher, M., Nasre, R., Pingali, K.: A quantitative study of irregular programs
on GPUs. In: 2012 IEEE International Symposium on Workload Characterization
(IISWC), pp. 141–151. IEEE (2012)

9. O’Neil, M.A., Burtscher, M.: Microarchitectural performance characterization of
irregular GPU kernels. In: 2014 IEEE International Symposium on Workload Char-
acterization (IISWC), pp. 130–139. IEEE (2014)

10. Bakhoda, A., Yuan, G.L., Fung, W.W., Wong, H., Aamodt, T.M.: Analyzing
CUDA workloads using a detailed GPU simulator. In: IEEE International Sympo-
sium on Performance Analysis of Systems and Software, ISPASS 2009, pp. 163–174.
IEEE (2009)

11. Bienia, C.: Benchmarking Modern Multiprocessors. Princeton University,
Princeton (2011)

12. Asanovic, K.: The landscape of parallel computing research: a view from Berkeley,
Technical report UCB/EECS-2006-183, EECS Department, University of Califor-
nia, Berkley, CA, USA (2006)

13. SHOC (2012). https://github.com/vetter/shoc/wiki
14. NVIDIA Corporation: Profiler user’s guide (2017). http://docs.nvidia.com/cuda/

profiler-users-guide/index.html#nvprof-overview, an optional note
15. Bienia, C.: Benchmarking modern multiprocessors, Ph.D. thesis, Princeton Uni-

versity (2011)
16. Joshi, A., Phansalkar, A., Eeckhout, L., John, L.K.: Measuring benchmark similar-

ity using inherent program characteristics. IEEE Trans. Comput. 55(6), 769–782
(2006)

17. Che, S., Skadron, K.: Benchfriend: correlating the performance of GPU bench-
marks. Int. J. High Perform. Comput. Appl. 28(2), 238–250 (2014)

18. Spafford, K., Meredith, J., Vetter, J., Chen, J., Grout, R., Sankaran, R.: Accelerat-
ing S3D: a GPGPU case study. In: Lin, H.-X., Alexander, M., Forsell, M., Knüpfer,
A., Prodan, R., Sousa, L., Streit, A. (eds.) Euro-Par 2009. LNCS, vol. 6043, pp.
122–131. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14122-
5 16

https://github.com/vetter/shoc/wiki
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
http://docs.nvidia.com/cuda/profiler-users-guide/index.html#nvprof-overview
https://doi.org/10.1007/978-3-642-14122-5_16
https://doi.org/10.1007/978-3-642-14122-5_16

	Analysis and Characterization of GPU Benchmarks for Kernel Concurrency Efficiency
	1 Introduction
	2 Related Work
	3 Benchmark Suites
	4 Methodology
	5 Experimental Results
	5.1 Experimental Environment
	5.2 Individual Analysis
	5.3 Global Analysis
	5.4 Discussion

	6 Concluding Remarks
	References




