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Abstract. This article presents an empirical evaluation of power con-
sumption of synthetic benchmarks in multicore computing systems. The
study aims at providing an insight of the main power consumption char-
acteristics of different applications when executing over current high
performance computing servers. Three types of applications are studied
executing individually and simultaneously on the same server. Intel and
AMD architectures are studied in an experimental setting for evaluating
the overall power consumption of each application. The main results indi-
cate the power consumption behavior has a strong dependency with the
type of application. An additional performance analysis shows that the
best load of the server regarding energy efficiency depends on the type
of the applications, with efficiency decreasing in heavily loaded situa-
tions. These results allow characterizing applications according to power
consumption, efficiency, and resource sharing, and provide useful infor-
mation for resource management and scheduling policies.
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1 Introduction

Nowadays, data centers are key infrastructures for executing industrial and sci-
entific applications. Data centers have become highly popular for providing stor-
age, computing power, middleware software, and others information technology
(IT) utilities, available to researchers with ubiquitous access [3]. However, their
energy efficiency has become a major concern in recent years, having a signif-
icant impact on monetary cost, environment, and guarantees for service-level
agreements (SLA) [4].

The main sources of power consumption in data centers are the computa-
tional resources and the cooling system [13]. When focusing on power consump-
tion due to resource utilization, several techniques for hardware and software
optimization can be applied to improve energy efficiency. Software characteri-
zation techniques [1] are used to determine features that are useful to analyze
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the software behavior, including power consumption [2]. Estimation of power
consumption is an important issue that can determine the quality and even the
feasibility of both software products and big data center infrastructures.

In this line of work, this article focuses on the characterization of power con-
sumption for scientific computing applications over nowadays multicore hard-
ware used in scientific computing platforms. Such characterization is useful for
designing energy efficient scheduling strategies for scientific computing platforms.
Three synthetic benchmarks are studied over two physical setups from a real
High Performance Computing (HPC) platform, registering their power consump-
tion with a power meter device. Furthermore, the experimental analysis studies
the power consumption of different applications sharing a computing resource
via simultaneous execution. The proposed study is very relevant for nowadays
data centers and HPC infrastructures, where many applications are executed at
the simultaneously. This impacts on both the energy efficiency and the quality
of service (QoS) offered to the users of the platform.

The article is organized as follows. Section 2 reviews related works on energy
characterization in multicores. Section 3 describes the proposed methodology for
energy characterization, the benchmarks, and the physical setup for experiments.
The experimental results are reported and discussed in Sect. 4. The conclusions
and the main lines for future work are presented in Sect. 5.

2 Related Work

The analysis of related works allows identifying two types of studies. A first
group proposes the empirical evaluation of scientific applications to develop spe-
cific models or to adjust existing models for studying power and performance
behavior. Other works introduces optimization techniques over existing models
and presents optimized results. This section focuses on reviewing those articles
about empirical measurements and evaluation of power consumption models.

Iturriaga et al. [7] studied the problem of finding schedules with appropriate
trade-off between power consumption and execution time in heterogeneous com-
puters systems, considering uncertainty. Specific versions of well-known heuristic
were proposed for scheduling on realistic scenarios, applying the power consump-
tion model in [12] and considering only CPU-bound workloads. A model for
uncertainty on power consumption was determined through empirical evalua-
tions using three CPU-bound benchmarks. Regarding scheduling results, online
heuristics computed better schedules than offline approaches. Results also con-
firmed that uncertainly has a significant impact in the accuracy of the scheduling
algorithms. The power consumption behavior of CPU-bound benchmarks shown
in [7] is consistent with the one in our research. Moreover, we propose a fully
empirical power consumption characterization, considering also two additional
types of benchmarks: memory bound and disk bound.

Srikantaiah et al. [14] studied workload consolidation strategies for energy
optimization in cloud computing systems. An empirical study of the relation-
ship between power consumption, performance, and resource utilization was pre-
sented. The experiments were executed in four physical server connected to a
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power meter to track the power consumption. The resource utilization was moni-
torized using the Xperf toolkit. Only two resources were considered in the study:
processor and disk. The performance degraded for high levels of disk utilization,
and variations in CPU usage did not result in significant performance variations.
Energy results were presented in terms of power consumption per transaction
(including power consumption in idle state), resources utilization, and perfor-
mance degradation. On the other hand, results showed that power consumption
per transaction, is more sensitive to CPU utilization than disk utilization. The
authors also proposed an heuristic method to solve a modified bin packing prob-
lem where the servers are bins and the computing resources are bin dimensions.
Results were reported for small scenarios where the power consumption of the
solutions computed by the heuristic is about 5% more than the optimal solution.
The tolerance for performance degradation was 20%.

Du Bois et al. [5] presented a framework for generating workloads with spe-
cific features, applied to compare energy efficiency in commercial systems. CPU-
bound, memory-bound, and disk-bound benchmarks were executed on a power
monitoring setup composed of an oscilloscope connected to the host and a logging
machine to persist the data. Two commercial systems were studied: a high-end
with AMD processors and a low-end with Intel processors. Benchmarks were exe-
cuted independently, isolating the power consumption of each resource. Results
confirmed that energy efficiency depends on the workload type. Comparatively,
the high-end system had better results for the CPU-bound workload, the low-
end system was better for disk-bound, and both had similar efficiency for the
memory-bound workload. Our work complements this approach by including a
study of the power consumption behavior when executing different types of tasks
simultaneously on specific architectures for high performance computing.

Feng et al. [6] evaluated the energy efficiency of a high-end distributed system,
with focus on scientific workloads. The authors proposed a power monitoring
setup that allows isolating the power consumption of CPU, memory, and disk.
The experimental analysis studied single node executions and distributed exe-
cutions. In the single node experiments, results of executing a memory-bound
benchmark showed that the total power consumption is distributed as follow:
35% corresponds to the CPU, 16% corresponds to the physical memory and 7%
corresponds to the disk. The rest is consumed by power supply, fans, network,
and other components. Idle state represented 66% of the total power consump-
tion. In distributed experiments, benchmarks that are intensive in more than one
computing resource were studied. Results showed that energy efficiency increased
with the number of nodes used for execution.

Kurowski et al. [9] presented a data center simulator that allows specify-
ing various energy models and management policies. Three types of theoretical
energy models are proposed: (i) static approach, which consider a unique power
value by processing unit; (ii) dynamic approach, which consider power levels,
representing the usage of the processing unit; and (iii) application specific app-
roach, which consider usage of application resources to determine the power
consumption. Simulation results were compared with empirical measurements
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over real hardware to validate the theoretical energy models in arbitrary scenar-
ios. All models obtained accurate results (error was less than 10% with respect
to empirical measurements), and the dynamic approach was the most precise.

Langer et al. [10] studied energy efficiency of low voltage operations in
manycore chips. Two scientific applications were considered for benchmarking
over a multicore simulator. The performance model considered for a chip was
S = ak(

∑
fi) + bk, where S are the instructions per cycle, f is the frequency of

the core i and ak,bk are constants that depend on k, the number of cores in the
chip. A similar model is used for power consumption. Across 25 different chips,
an optimization method based on integer linear programming achieved 26% in
energy savings regarding to the power consumption of the faster configuration.

Several works in literature have focused on modeling and characterizing
power consumption of scientific applications. However, to the best of our knowl-
edge there is no empirical research focused on the inter-relationship between
power consumption and CPU, memory, and disk utilization. Also, there is no
experimental analysis of critical levels of resource utilization (close to 100%) and
its impact on power consumption and performance. This article contributes in
this line of research, proposing empirical analysis for both aforementioned issues.

3 Methodology for Power Consumption Evaluation

This section describes the proposed methodology for power consumption eval-
uation, the benchmarks and architectures studied, the power evaluation setup,
and the experiments designed.

3.1 Overview of the Proposed Methodology

Experiments characterize the power consumption of the most relevant comput-
ing resources: CPU, memory, and disk [5–7]. We aim at studying holistic behav-
iors and analyzing the power consumption of hosts close to 100% of comput-
ing resource utilization. The analysis is complemented with performance experi-
ments to study the trade-off between power consumption and performance degra-
dation.

3.2 Benchmarks

The benchmarks used in the analysis are part of the Sysbench toolkit [8]. Sys-
bench is a cross-platform software written in C that provides CPU, memory, and
disk intensive benchmarks for performance evaluation. The components used in
the experiments are:

1. CPU-bound : an algorithm that calculates π(n) (the prime counting function)
using a backtracking method. The algorithm contains loops, square root and
module operations, as described in Algorithm 1.
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Algorithm 1. CPU-bound benchmark code
1: C ← 3
2: while C < MAX PRIME do
3: T ← sqrt(C)
4: L ← 2
5: while L < T do
6: if C (mod T ) = 0 then
7: break
8: end if
9: if L > T = 0 then

10: N ← N + 1
11: end if
12: L ← L + 1
13: end while
14: C ← C + 1
15: end while
16: return N

2. Memory-bound : a program that executes write operations in memory, as
described in Algorithm 2, where the BUF variable is an array of integers.
The cells of the array are overwritten with value of TMP until the last posi-
tion of the array, i.e., the value of the END variable.

Algorithm 2. Memory-bound benchmark code
1: while BUF < END do
2: ∗BUF ← TMP
3: BUF ← BUF + 1
4: end while

3. Disk-bound : a program that reads/writes content in files. Read or write
requests are generated randomly and executed until a given number of
requests (MAX REQUEST ) is reached, as described in Algorithm 3.

Algorithm 3. Disk-bound benchmark code
1: while REQS COUNT < MAX REQS do
2: REQ ← generate rnd request()
3: if is read(REQ) then
4: read(REQ.FILE)
5: end if
6: if is write(REQ) then
7: write(REQ.FILE)
8: end if
9: REQS COUNT + +

10: end while
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3.3 Multicore Hosts and Power Monitoring Setup

Experiments were performed on Cluster FING, the HPC platform from Univer-
sidad de la República, Uruguay [11]. Two hosts were chosen according to their
characteristics and availability: HP Proliant DL385 G7 server (2 AMD Opteron
6172 CPUs, 12 cores each, and 72 GB RAM), and HP Proliant DL380 G9 server
(2 Intel Xeon CPU E5-2680v3 CPUs, 12 cores each, and 128 GB RAM).

Figure 1 presents the power monitoring setup. Benchmarks were executed
in a host connected to the power source via a Power Distribution Unit (PDU)
to register the instant power consumption. In an secondary machine, a polling
demon logged data for post-processing. This configuration is similar to the one
used in related works [5,7].

Fig. 1. Power monitoring setup

3.4 Design of Experiments

The power consumption (PC ) of each host is computed as the average of 20
independent executions for each benchmark and combination of benchmarks.
Idle consumption (IC ), i.e., average consumption of the host without load, is
registered to compute the effective consumption (EC ) as EC = PC − IC.

In a first stage, benchmarks are evaluated independently from each other,
analyzing only one resource. Utilization level (UL) is defined as the percentage of
processors being used regarding the total number of processors in the host. Eight
ULs were considered for single benchmark execution: 12%, 25%, 37.5%, 50%,
62.5%, 75%, 87.5% and 100%. Figure 2 shows an example of 37.5% utilization
level: the host has 24 processors of which 9 execute instances of the CPU-bound
benchmark. The remaining processors are in idle state.

In a second stage, the simultaneous execution of benchmarks is evaluated,
analyzing several combinations of resource utilization at the same time. Two and
three benchmarks are executed together in different ULs. In this case, UL is a
vector where each entry represents the percentage of processors being used by
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Fig. 2. CPU-bound benchmark, UL of 37.5%

each type of benchmark considered in the study (CPU-bound, memory-bound,
and disk-bound, in that order). The utilization levels chosen were (25%, 25%),
(25%, 50%), (25%, 75%), (50%, 25%), (50%, 50%), (75%, 25%) in pair execu-
tions and (25%, 25%, 25%), (25%, 25%, 50%), (25%, 50%, 25%), (50%, 25%, 25%)
in triple executions. Figure 3 shows CPU-bound and memory-bound executing
together with UL of (25%, 50%) and Fig. 4 shows CPU-bound, memory-bound
and disk-bound executing combined with UL of (25%, 25%, 50%).

Fig. 3. CPU-bound and memory-bound benchmarks, UL of (25%, 50%).

Fig. 4. CPU-, memory-, and disk-bound benchmarks in UL of (25%, 25%, 50%).

Each instance of the memory-bound benchmark is configured to use (100/N)
percent of the available memory, where N is the number of processors of the
host (100% of the memory is used in full utilization mode). Each instance of the
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disk benchmark is configured to use 4 GB of disk size in AMD experiments and
2 GB in Intel experiments. These sizes were chosen taking into account the disk
size available in each host. Instances were executed and monitored for 60 s.

Finally, the impact on performance is analyzed. The makespan when execut-
ing multiple applications at the same time is compared with the makespan of
single executions. The reported makespan values are the average computed over
20 independent executions.

4 Experimental Results

This section reports the experimental results of the power consumption and the
performance evaluation. The average idle consumption was 183.4 W for the AMD
host and 57.0 W for the Intel host.

4.1 Single Benchmark Executions

Figure 5 reports PC and EC values for the CPU-bound benchmark and a graphic
comparison of EC values in both hosts. Results show an average difference of
56 W between the EC of the Intel host and the AMD host for all ULs. The almost
linear behavior indicates that power consumption is proportional to the UL.

Fig. 5. CPU-bound PC and EC results

Figure 6 reports the PC and EC values for the memory-bound benchmark and
a graphic comparison of the EC values in both hosts. Results show a significant
increment in EC with regard to CPU-bound executions for all ULs (104% for
the AMD host and 36% for the Intel host, on average).



Power Consumption Characterization of Synthetic Benchmarks in Multicores 29

Fig. 6. Memory-bound PC and EC results

Fig. 7. Disk-bound PC and EC results
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A logarithmic behavior is observed for both PC and EC, which does not
occur in CPU-bound case, mainly due to the bottleneck in the access to the
main memory that reduces the CPU usage. No significant increase is detected
on high/critical ULs, possibly by effective resource contention by the operating
system for solving conflicts over access to shared resources.

Figure 7 reports PC and EC values for the disk-bound benchmark and a
comparison of EC values in both hosts. The maximum EC variation through
ULs is 4 W in Intel and 2 W in AMD. These low power variation indicate that
disk usage has low impact in power consumption in comparison with CPU and
memory, mainly due to waits generated by bottlenecks in disk access.

4.2 Combined Benchmark Executions

CPU and memory. Figure 8 reports PC and EC when executing CPU- and
memory-bound benchmarks together and a comparison of EC values on AMD.
Figure 9 reports the same analysis on Intel. Symbol ↑ indicates the EC of the com-
bined benchmarks is higher than the sum of the ECs of each benchmark executed
independently, i.e., the combined execution is less efficient than the independent
execution. Symbol ↓ indicates the opposite, that is, the combined execution is
more efficient. Symbol = indicates that the values are equal (less than 1 W of
difference). Results show that for AMD, combined executions reduces EC com-
pared to independent executions. On the contrary, EC of combined executions
is higher than independent executions for most cases on Intel.

Fig. 8. Combined CPU- and memory-bound PC and EC on AMD

CPU and disk. Figure 10 (AMD) and Fig. 11 (Intel) report PC and EC when
executing CPU- and disk-bound benchmarks combined, and the EC graphics on
each host. Results show that the combined execution of CPU and disk bench-
marks improves energy efficiency for most ULs in both hosts, with regard to EC.
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Fig. 9. Combined CPU- and memory-bound PC and EC on Intel

Fig. 10. Combined CPU- and disk-bound PC and EC on AMD

Fig. 11. Combined CPU- and disk-bound PC and EC on Intel

Memory and disk. Figure 12 (AMD) and Fig. 13 (Intel) report PC and EC for
memory- and disk-bound benchmarks combined, and the EC graphics on each
host. Results show that the combined execution presents higher values of EC
than their independent execution, except for low ULs of the AMD host.
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Fig. 12. Combined memory- and disk-bound PC and EC on AMD

Fig. 13. Combined memory- and disk-bound PC and EC on Intel

CPU, memory, and disk. Table 1 reports PC and EC of CPU-, memory- and
disk-bound benchmarks executed together. Results show that the combined exe-
cution on AMD has higher EC compared to their independent execution, mainly
at high ULs. However, on Intel, combined executions reduce EC compared to
independent executions for all ULs.

Table 1. Combined CPU-, memory- and disk-bound PC and EC

UL AMD Intel

PC EC PC EC

(25%, 25%, 25%) 265.9±4.3 82.5 = 176.9±3.8 119.9 ↓
(25%, 25%, 50%) 266.6±4.8 83.2 ↓ 178.2±3.3 121.6 ↓
(25%, 50%, 25%) 303.0±3.1 119.6 ↑ 221.3±5.4 164.3 ↓
(50%, 25%, 25%) 287.9±1.8 104.5 ↑ 194.5±1.8 137.5 ↓
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4.3 Performance Evaluation

This subsection analyzes the performance evaluation experiments.
Figure 14 reports the makespan of the CPU-bound benchmark and a graphic

comparison for both hosts. Results show that increasing the UL does not impact
significantly the completion time, due to the absence of resource competition.
However, both hosts present a slight degradation for UL 100%, possibly due to
conflicts with operating system processes.

Fig. 14. CPU-bound makespan results

Figure 15 reports the makespan of the memory-bound benchmark and a
graphic comparison for both hosts. Performance degrades in AMD; there is a
gap of 400 s between the lowest and the highest UL. For Intel the difference is
only 48 s. The difference in gaps is possibly due to specific disk features of each
host, such as transfer speed.

Figure 16 reports the makespan of the disk-bound benchmark and a graphic
comparison for both hosts. The disk-bound case presents a notorious degradation
in performance when increasing UL when compared with other benchmarks.

4.4 Energy Efficiency Analysis

This subsection analyzes the energy efficiency from the collected measurements.
The energy efficiency metric PC×makespan

number of instances×3600 is defined for comparing
results. The lower the metric value, the higher energy efficiency of the host.
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Fig. 15. Memory-bound makespan results

Fig. 16. Disk-bound makespan results
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Table 2 shows the average energy efficiency of all tests for all ULs and all
hosts. Best values for each host are presented in bold. The study shows that for
both hosts the CPU-bound benchmark is more efficient at high ULs, memory-
bound benchmark is more efficient at medium ULs and disk-bound benchmark
is more efficient at low ULs. Intel host is more efficient than AMD for all ULs
and all types of benchmarks. Finally, the high-critic UL (100%) is less efficient
than the high-medium UL (87.5%), except for disk-bound executions.

Table 2. Efficiency (PC×makespan/3600/number of instances)

UL AMD Intel

CPU mem. Disk CPU mem. Disk

12.5% 0.801 1.804 4.106 0.404 0.407 0.226

25.0% 0.422 1.511 4.817 0.191 0.193 0.233

37.5% 0.295 1.429 4.926 0.159 0.226 0.240

50.0% 0.231 1.391 6.147 0.109 0.185 0.246

62.5% 0.193 1.335 5.801 0.089 0.266 0.255

75.0% 0.168 1.410 5.907 0.081 0.216 0.260

87.5% 0.150 1.570 6.367 0.083 0.235 0.265

100.0% 0.154 1.656 5.686 0.107 0.238 0.262

5 Conclusions and Future Work

This article presented an empirical analysis of the power consumption of syn-
thetic benchmarks in high-end multicore systems. The main contribution is an
exhaustive study of the inter-relationship among the power consumption of the
main computing resources at different ULs, over AMD and Intel architectures.

The experimental methodology consisted on executing synthetic benchmarks
over high-end hosts connected to a PDU, considering different ULs and combina-
tions, aimed at characterizing the power consumption of each computing resource
(CPU, memory, and disk). The operations performed by the benchmarks include
mathematical functions and read/write of main memory and disk.

The study was complemented with performance experiments. A total number
of 144 experiments were performed, 96 evaluating the power consumption and
48 evaluating the performance. For each experiment, 20 independent executions
were performed. Results showed that in single executions, CPU utilization has
a linear relation with power consumption. Memory utilization has significant
impact on power consumption when compared to CPU usage, up to 157% more
EC for AMD and 46% more EC for Intel. On the other hand, disk usage presented
low EC variation for all ULs.

Combined executions are able to reduce EC with regard to independent exe-
cutions manly for CPU and disk combined execution. Efficiency analysis showed
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that different benchmarks performed more efficiently at different ULs: CPU at
high ULs, memory at medium ULs and disk at low ULs. Critic UL (100%)
showed worse efficiency than high-medium UL (87.5%), except for disk.

The main lines for future work are related to extend the power and perfor-
mance characterization of different benchmarks (including GPU-bound, network-
bound, and no-synthetic benchmarks) and other high-end hosts. We are also
working on using the characterization to build energy models for evaluating
energy-aware scheduling strategies on HPC infrastructures and datacenters.
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