
SherlockFog: Finding Opportunities for MPI
Applications in Fog and Edge Computing

Maximiliano Geier1 and Esteban Mocskos1,2(B)

1 Departamento de Computación, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires, C1428EGA Buenos Aires, Argentina

{mgeier,emocskos}@dc.uba.ar
2 Centro de Simulación Computacional p/Aplic. Tecnológicas, CSC-CONICET,

Godoy Cruz 2390, C1425FQD Buenos Aires, Argentina

Abstract. The Fog and Edge Computing paradigms have emerged as
a solution to limitations of the Cloud Computing model to serve a huge
amount of connected devices efficiently. These devices have unused com-
puting power that could be exploited to execute parallel applications.

In this work we present SherlockFog, a tool to experiment with par-
allel applications in Fog and Edge network setups, specially focused on
the MPI based applications. We propose a methodology to study feasi-
bility of running parallel applications in Fog or Edge environments. We
validate this tool contrasting experimental results with theoretical pre-
dictions reaching remarkable agreement between both.

We analyze the effect of worsening network conditions for several
benchmarks of the MPI version of NAS Parallel Benchmarks on fog-
like network topologies. Our results show that this impact is sublinear
in some cases, opening up opportunities to use distributed, increasingly
ubiquitous computational resources.

Keywords: Distributed systems · Fog and Edge Computing
Parallel applications · Benchmarks

1 Introduction

In the last years, the Cloud Computing model has emerged as an alternative to
owning and managing computing infrastructure, thus reducing operation costs.
These operations provide an efficient solution to serve several types of applica-
tions, such as web servers, databases, storage and batch processing. However,
it is not without limitations. As the Cloud is usually farther away from the
clients, latency-sensitive applications could suffer from performance degradation
in this setup. The Fog Computing model is defined by Bonomi et al. [6] as a
highly virtualized platform that provides compute, storage and networking ser-
vices between end devices and the Cloud. This model allows certain services
to be offloaded to end nodes, thus enabling services with lower latency require-
ments. Going further, the proliferation of IoT devices with increasing computing
c© Springer International Publishing AG 2018
E. Mocskos and S. Nesmachnow (Eds.): CARLA 2017, CCIS 796, pp. 185–199, 2018.
https://doi.org/10.1007/978-3-319-73353-1_13



186 M. Geier and E. Mocskos

power has given an identity to nodes at the edge of the network, defining the
Edge Computing model [17]. In this model, nodes at the edge of the network
cooperate among themselves to provide solutions at lower response time or band-
width requirements, while improving data safety and privacy with respect to
handling processing at the Cloud. As the number of nodes at the edge increase,
it is also becoming increasingly difficult to serve all clients at the cloud with
this infrastructure in terms of server load and required bandwidth. End nodes
are usually slower and have worse connectivity than the main infrastructure, but
both aspects have been steadily improving, enabling execution of more and more
applications.

Scientific computing has gone down another path. The standard infrastruc-
ture to support this type of applications is cluster computing. It is commonplace
that a cluster is homogeneous in computing power and topology (i.e. every node
is connected to each other directly and runs at the same speed). This homogene-
ity allows developers not to worry about process placement. A variation that has
appeared during the last decade is multi-core clusters. In this case, processes run-
ning on the same computer can communicate with each other faster than with
processes on different nodes. Multi-cores are Symmetric Multiprocessing (SMP)
machines: each node acts as an homogeneous cluster of CPU cores, which is con-
nected to the outer world homogeneously as well. This paradigm is ubiquitous
in scientific computing, driving research and improvements in simulation models
and techniques.

The standard API used in scientific applications is MPI [11,12]. It has been
designed to provide an abstraction to handle data exchange and synchroniza-
tion among processes in the same node or in different ones. Developers of MPI
implementations target their code to be used on clusters, often requiring full
node connectivity and implementing optimizations for collective operations that
work more efficiently in homogeneous environments. MPI is also very sensitive to
network changes, bringing the computation to a halt if just one node disconnects
or changes its network location.

This begets the question of whether it is possible to do scientific comput-
ing in the Edge Computing paradigm, taking advantage of unused computing
power of nodes at the edge of network. The Edge/Fog paradigm poses new chal-
lenges in this regard, such as the variability on the processing power of nodes
and the volatility of nodes due to the dynamic nature of the network in terms
of churn, latency and bandwidth. Even though Edge Computing could provide
better latency than having to offload data to do computing on the Cloud, spe-
cialized clusters are connected using a faster dedicated network. This difference
could impair application performance greatly, making it unfeasible to use such an
infrastructure. We approach this question by introducing a methodology to ana-
lyze distributed scientific applications in an heterogeneous environment, using
different emulated network settings. It is important to note that assessing per-
formance degradation is not easy from a theoretical standpoint. Factors such
as link bandwidth and latency, communication patterns, message sizes, traffic
congestion issues and implementation details of the underlying communication
framework make it complex to model accurately.



SherlockFog: MPI in Fog and Edge Computing 187

Most work on leveraging MPI in heterogeneous environments has been
focused on multi-core cluster architectures. This has been a natural step from
traditional homogeneous clusters since the introduction of this type of processors
into the market.

In this work, we present SherlockFog, a tool that aims to bridge the gap
between existing scientific computing applications and Edge/Fog Computing.
Our approach explores feasibility of running MPI applications in Edge Comput-
ing environments. This kind of architecture is inherently dynamic and has differ-
ent topologies, performance characteristics and exploitable computing power per
node than typical multi-core clusters. MPI on Edge Computing is still mostly
unexplored, since computing power and communication capabilities of fog and
edge nodes have only been made possible to compute High Performance Com-
puting (HPC) applications very recently. Since implementations of existing MPI
libraries have not been designed for this type of environments, providing a frame-
work to test the library itself is also a key feature we have considered in our
approach.

This work is focused on MPI as it is widely used by the scientific applications
community, aiming to reuse existing code. However, our proposal provides a
framework that allows the full software stack to be used unmodifed and it is
therefore not limited to MPI applications.

2 Related Work

We discuss some representative examples of tools and metholodogies that can
support the use of MPI applications in heterogeneous environments.

Brandfass et al. [7] propose a rank-reordering scheme to increase performance
of unstructured Computer Fluid Dynamics (CFD) code on parallel multi-cores.
This optimization produces a mapping of MPI processes to CPU cores such
that main communication happens within compute nodes, exploiting the fact
that intra-node communication is much faster than inter-node in this kind of
architectures, using characteristics of the target application. Since load per pro-
cess is not uniform in unstructured code, it makes sense to reorder processes to
reduce frontier communication. Dichev et al. [10] show two novel algorithms for
the scatter and gather MPI primitives that improve performance in multi-core
heterogeneous platforms. This work focuses on optimizing broadcast trees used
by most MPI implementations using a weight function that depends on topol-
ogy information. However, the user can not experiment using virtual topologies,
thus difficulting the study of MPI applications in edge-like environments. Mercier
and Clet-Ortega [15] study a more sophisticated process placement policy that
takes into account the architecture’s memory structure to improve multi-core
performance. This proposal is also not suitable for our purposes since the tar-
get platform is potentially dynamic and virtual topologies cannot be analyzed.
Navaridas et al. [16] study process placement in torus and fat-tree topologies
through scheduling simulation using synthetic workloads. This work relies on an
execution model which would have to be adapted to study our target platform.



188 M. Geier and E. Mocskos

Simulation tools are also widely used to analyze distributed systems. This
approach allows the user to explore environments that are difficult to set up
in real life. In this case, the application is executed completely in a simulated
environment, be it online or offline. This approach usually requires the user
to modify application code in order to use the simulator. In the offline case,
execution traces must be generated for a defined set of input parameters that
are then fed to the simulator. A few representative examples thereof follow:

NS-3 [3] is a widely-used full-stack detailed discrete event simulator designed
for network applications. However, since the simulator is not a parallel appli-
cation itself, it is not possible to scale simulation of MPI applications beyond
tens of nodes. It does not provide mechanisms to transform MPI applications
directly into NS-3 simulations. An extension called DCE (Direct Code Execu-
tion) [2] wraps C library calls to be simulated by NS-3. However, this virtual C
library is limited and does not implement all system calls required to run MPI
applications.

SimGrid [8] is another widely used discrete event simulator. It is aimed at
simulating large-scale distributed systems efficiently. Moreover, it provides an
online mechanism to execute MPI applications by wrapping MPI calls to the
simulator engine, called SMPI [9]. This API allows MPI applications to be ported
to SimGrid simulations easily if the source code is available. In order to scale
simulations on a single node, allowing up to thousands of simulated nodes, Sim-
Grid implements a simplified communication model. While this simulator allows
to experiment using heterogeneous network topologies, its communication mod-
els have only been validated for performance prediction accuracy on fine-tuned
homogeneous environments. Moreover, this approach doesn’t allow the user to
experiment with different MPI libraries. The behavior of the HPC application
itself, at the MPI primitives level, relies on implementation details of the simu-
lation engine.

Dimemas [1] is a performance analysis tool for MPI applications, which is
able to simulate execution offline on a given target architecture, ranging from
single- or multi-core networked clusters to heterogeneous systems. Performance
is calculated by means of replaying the execution trace of an application on
a built-in simulator. Similarly to SimGrid, this approach relies on a particular
implementation of MPI primitives and the communication model itself. We aim
towards building a complete framework for analyzing distributed applications on
Edge Computing, whereas simulation forces a particular model which depends
deeply on the tool.

In all aforementioned simulation tools, traffic is simulated using a model that
depends on the particular simulator implementation and on user-provided input
parameters. Our work focuses not just on the applications themselves, but also
on building a framework for analyzing and developing distributed applications
and support libraries on the edge of the network.

Another approach is network emulation, which consists of building the exe-
cution environment using real nodes on a virtual network topology. Emulation
allows using the same software environment as it would be used in a real system,



SherlockFog: MPI in Fog and Edge Computing 189

while providing different network conditions. This solves modelling the applica-
tion and the communication framework. Several tools make use of traffic shap-
ing facilities in modern operating systems to emulate the network and run dis-
tributed applications on it, but none of them focus on MPI applications in het-
erogeneous architectures. We cite a few examples:

Lantz et al. [14] present Mininet, a tool to emulate Software-Defined Net-
works (SDNs) in a single host. It leverages network namespaces and traffic shap-
ing technologies of the Linux operating system to instantiate arbitrary network
topologies. This tool requires virtual nodes to execute on a single host, impair-
ing scalability. Moreover, as isolation occurs only at the network level, intelligent
MPI implementations can determine that virtual hosts reside on the same real
host and thus communicate more efficiently than expected.

Wette et al. [18] extend Mininet in order to span an emulated network over
several real hosts. However, it does not address design limitations in the original
tool that prevent it from running MPI code, such as hostname isolation on
namespaces that share a filesystem.

White et al. [19] propose Emulab, a shared testbed that allows running MPI
code on it, but it has dedicated hardware requirements that make it expen-
sive to self-deploy. While it is possible for researchers to use the shared testbed
at University of Utah, there is very little control of job allocation and band-
width usage, and is therefore not suitable for performance analysis of CPU and
network-intensive applications.

3 Methodology

We propose a novel methodology to support the analysis and porting of dis-
tributed computing applications to be executed following the paradigm of Edge
Computing. Our proposal focus on the impact of different traffic patterns in
applications. We have focused our work on MPI applications, as it is the most
widely used API for message-passing distributed computing, but our approach
is valid for other distributed programming models.

Figure 1 shows the process schematically.

1. The user selects an application and a topology and creates an experiment
script for SherlockFog to deploy it on a set of physical nodes.

2. SherlockFog connects to every node and initializes network namespaces for
each virtual node.

3. Virtual links are generated to match input topology.
4. Static routing is used to allow applications on each namespace to communi-

cate to each other.

The tool allows the user to change network parameters during the run. This
process can be repeated, comparing different topologies or input parameters.
Application output is then analyzed, comparing behavior on different scenarios.

In the next paragraphs, we present the tool further and show the topolo-
gies we have used in our experiments. Moreover, we describe the experimental
methology in detail.



190 M. Geier and E. Mocskos

Fig. 1. SherlockFog allows the user to analyze application behavior while varying net-
work topologies and their properties in a reproducible procedure.

3.1 SherlockFog: A Distributed Experimental Framework to Enable
Fog and Edge Computing

SherlockFog is a tool that takes care of automating the deployment of a given
topology and running the experiments. It makes extensive use of the ip tool–
found on most GNU/Linux installations–to set up virtual Ethernet interfaces on
Linux Network Namespaces. These interfaces are cloned using the macvlan fea-
ture1. A pair is connected by assigning IP addresses in the same point-to-point
subnet2 to both endpoints. Traffic flows through the carrier of the host network
interface. This new interface has different MAC address and configuration (eg.
name resolution dictionary, firewall, ARP and routing tables). Routing is also
configured statically on every namespace in order to match the input topology.
All virtual nodes act as routers, forwarding packets to its neighbors. Moreover,
ARP is disabled on all virtual interfaces to prevent virtual nodes which are not
neighbors in the input topology to find each other by sending ARP requests,
thus bypassing our configuration. An SSH server is brought up on every con-
tainer automatically to be able to run MPI applications. It runs on a different
UTS namespace3, whose hostname matches that of the virtual host. This fea-
ture is required for MPI applications to work on the virtual infrastructure, as
some implementations check the hostname to define whether shared memory
or a network transport should be used for communication. To the best of our
knowledge, no other network experimentation tool takes this into account. It
also allows MPI hostfiles or rankfiles to be set up more easily using consistent
names, the choice of real nodes notwithstanding. Name resolution is handled
by generating appropriate /etc/hosts files for each namespace automatically.

1 https://hicu.be/bridge-vs-macvlan.
2 A/30 network prefix.
3 http://windsock.io/uts-namespace/.

https://hicu.be/bridge-vs-macvlan
http://windsock.io/uts-namespace/


SherlockFog: MPI in Fog and Edge Computing 191

These files are bound by the ip netns exec command. Finally, using the NetEm
traffic control extension [13] via the tc tool, link parameters can be modified on
a given virtual network interface’s outbound port.

3.2 Features of SherlockFog

SherlockFog runs on commodity hardware, such as interconnected desktop com-
puters in an university campus. No special interconnection technology or pro-
grammable switch is required, lowering the cost of ownership significantly with
respect to similar solutions.

The scripting language allows to set up experiment parameters and runs,
enabling for reproducible experimentation.

The tool can connect namespaces in the same physical computer or in dif-
ferent hosts, provided that the traffic that every host generates is reachable
from the rest. This allows to grow experiment scale by using hosts on different
interconnected switches.

Application code can be executed unmodified. The user can execute open-
or closed-source programs in the same software environment as they would in a
real environment.

It is also possible to experiment with changes to the MPI library, such as
broadcast implementations for edge environments or features that make it more
resilient to churn or changes in latency or bandwidth. As we are exploring MPI
on non-standard network settings, our tool could be used as a testing framework
for these use cases.

Modeling mobility is also an important aspect in Fog or Edge Computing
environments. Our tool provides a mechanism to do so by changing bandwidth
and packet loss for a link.

We show a sample experiment script in Fig. 2. In this example, 4 nodes
named n0 to n3 (line 2) are initialized and connected sequentially, generating a

1 ### node de f
2 for n in 0 . . 4 do def n{n} {nextRealHost}
3 ### connect nodes
4 connect n0 n1
5 connect n1 n2 5ms
6 connect n2 n3
7 ### bu i l d
8 build−network
9 ### run exp

10 for m in 1 0 . . 1 0 1 . . 1 0 do
11 runas n0 netns n0 myuser mpirun −f h . txt . / p {m} > {m} . l og
12 set−delay n1 n2 {m}ms
13 end for

Fig. 2. Example SherlockFog experiment script to launch a virtual topology of 4 nodes
and execute an MPI application in different network conditions.



192 M. Geier and E. Mocskos

“linked-list”, while setting up a 5 ms delay between nodes n1 and n2 (lines 4–
6). Line 8 configures IP addresses for all nodes and sets up static routing tables
accordingly. Finally, lines 10–13 run the actual experiment: an MPI application
is repeatedly executed with argument m ranging from 10 to 100 in steps of 10,
increasing latency between n1 and n2 on each step while saving its output for
offline analysis.

3.3 Considerations When Using SherlockFog

We discuss a few usage considerations for SherlockFog:
Due to the usage of static routing, two different paths from one node to

another are not allowed. Minimum Spanning Tree (MST) can be calculated on
any topology to define unique paths for every pair of nodes. Real (dynamic)
routing protocols on the network could give us one such path configuration.

As traffic is routed from the host carrier to the right namespace by looking up
its destination MAC address, it is not possible to experiment with applications
that make use of multicast messages. However, as our main focus is MPI appli-
cations and most implementations handle global communication using multiple
unicast messages on some sort of virtual tree, this is not a limitation for our
experiments.

Total bandwidth is shared among nodes. The user must be careful not to
overflow the actual carrier. It is possible avoid this by limiting maximum band-
width in each virtual network interface.

Finally, real link latency must be taken into account when designing the
experiment. Since SherlockFog can scale on nodes on different switches, it is
likely that pairwise latencies differ. They must be taken into account, as latency
is increased on top of the actual link’s. As it is the case for all network emulation
tools, this could lead to inaccurate results if latency increments are closer to the
underlying link’s values.

3.4 Underlying Topology

All experiments in this work were run on an 8-node cluster of AMD Opteron
6276 processors with 128 GB of RAM. Each node has 64 cores and runs Debian
GNU/Linux 8.7 amd64 with kernel version 4.9.18. MPI applications were com-
piled and executed using MPICH version 3.2.

Initial tests using this hardware show that no more than 48 cores can be used
at the same time without incurring in performance hiccups. This is consistent
with behavior of other applications used in this hardware and is related to a
bottleneck of the memory bus.

4 Validation

In this section, we propose experiments to study the accuracy of our methodology
in representing different network scenarios, which are defined in Table 1.



SherlockFog: MPI in Fog and Edge Computing 193

Table 1. Network topologies.

Topology name Sizes Description Reference in text

Barabási-Albert 100 nodes Random graph generated
using the Barabási-Albert
model for scale-free networks
with preferential attachment

barabasi

Isles 16, 64 and
256 nodes

Two clusters of nodes (star
topology) connected through
a single path

isles

The isles topologies represent two interconnected clusters of computational
resources. These clusters are connected to each other through a single distin-
guished link. The latency of this link indicates the distance in terms of commu-
nication. This scenario represents, for example, two sets of nodes in the edge
of the network which are connected to a common infrastructure such as the
Internet.

Let n be the size of the network, the process placement rules are:

1. The distinguished link connects the first node (node 0) to the last one (node
n − 1).

2. The nodes are partitioned evenly on each cluster.
– Nodes 0 to �n−1

2 � go to the first cluster.
– Nodes �n−1

2 � to n − 1 go to the second cluster.
3. The nodes connected by the distinguished link become the exit nodes for each

cluster.
4. Every other node is connected to its respective exit node.

The barabasi topology is a random graph generated using the the Barábasi-
Albert model for scale-free networks with preferential attachment. It represents
a connectivity model which is found on the Internet [5]. This topology was
generated using model parameter m0 = 2. In this case, processes are assigned
randomly.

We will show that SherlockFog can emulate different network conditions by
analyzing prediction output compared to the expected theoretical results.

4.1 Latency Emulation

In order to show how latency emulation works, we need to use an application with
a traffic pattern for which we can obtain an analytical expression for the total
communication time. By doing so, we can then compare the expected theoretical
time to the output of our tool.

In particular, we have used an implementation of a passing token through a
ring logical topology. Each node knows its neighbors and its order in the ring.
Token size is configured to be a single integer (4 bytes) throughout this work.



194 M. Geier and E. Mocskos

The number of times the token is received by the initiator (rounds) is also a
parameter of the application.

We have analyzed total number of messages on the network and execution
time for this application, using two different implementations:

– Token Ring: implements communication using TCP sockets. This version
allows us to have fine grain control of message generation and protocol.

– MPI Token Ring: same application, but using MPI for communications. In
this case, we can test if the use of the MPI library could also be managed by
our tool.

Since we know the traffic pattern, if we were to keep the topology unchanged,
but increased latency of one or more links, it would be easy to estimate how
much longer the application would take to complete with respect to the original
network settings. This increment is calculated as follows: let N be the number
of nodes in the topology, t0 the original execution time, ci,j the total send count
from node i to node j and wi,j the shortest path weight4 from node i to node j,
the expected execution time te is defined by:

te = t0 +
N−1∑

i=0

N−1∑

j=0

ci,j · wi,j (1)

It is important to emphasize that Eq. 1 represents the expected execution
time accurately only since Token Ring’s traffic pattern is sequential. Otherwise,
we would have to take into account communication overlapping.

We calculated the original execution time, with a fixed latency value on all
links, the estimated times for different latency settings and the actual execution
times when using SherlockFog with those settings. The full description of the
runs is shown in Table 2.

Table 2. Parameter configuration for validation experiments

Application Topologies Argument range Latency Comments

Token Ring barabasi and
isles

100–1000 rounds 10, 90, 170ms Latency increased
on all edges

MPI Token Ring 100–1000 rounds 5–25ms Latency increased
on a single edge

4.2 Token Ring

In Table 3, a partial view of the results is shown. We can observe that the pre-
dicted time differs from the measured time by less than 1% in all cases. This
is also consistent with the rest of the results for all round counts, latencies and
topologies in our experiment set.
4 Each link’s weight is set to how much its delay is increased with respect to the

underlying platform.



SherlockFog: MPI in Fog and Edge Computing 195

Table 3. Excerpt of validation results for Token Ring, 300–500 rounds, on barabasi
(100 nodes). Latency added uniformly to all edges.

Rounds Latency (ms) Predicted (s) Measured (s) Error

300 5.00 615.84 619.39 0.0057

300 15.00 1801.78 1810.63 0.0049

300 25.00 2987.72 2983.03 0.0015

300 35.00 4173.66 4177.55 0.0009

300 45.00 5359.60 5347.30 0.0022

400 5.00 820.27 826.30 0.0073

400 15.00 2400.21 2402.16 0.0008

400 25.00 3980.15 3978.04 0.0005

400 35.00 5560.09 5554.26 0.0010

400 45.00 7140.03 7130.86 0.0012

500 5.00 1024.79 1033.60 0.0085

500 15.00 2998.73 3007.53 0.0029

500 25.00 4972.67 4973.75 0.0002

500 35.00 6946.61 6943.70 0.0004

500 45.00 8920.55 8955.64 0.0039

4.3 MPI Token Ring

The MPI version produces similar results. In this case, error ranges are slightly
higher, but also remain below 1% in all cases, even on a topology on which
the logical order of the nodes produces a complex communication path in this
application, such as barabasi. We consider that this is due to the fact that MPICH
handles messaging differently than in our plain TCP implementation, though we
find this difference not to be significant.

We can conclude that latency is accurately represented in our tool when
executing applications that use MPI for communication on different emulated
topologies.

5 Results

In this section, we show the effects of latency on different scenarios in the MPI
version of NAS Parallel Benchmarks [4]. These benchmarks are derived from
Computational Fluid Dynamics applications and have been throughly tested
and analyzed by the community.

We have chosen three kernels (IS, CG and MG) and two pseudo applications
(BT and LU) and evaluated performance loss on the isles topologies.

All benchmarks were executed using SherlockFog to increase the latency of
the distinguished link up to 100 times for three different problem sizes (A, B



196 M. Geier and E. Mocskos

and C). These problem sizes are standard for this kind of applications and are
defined such that going from one class to the next represents a four-fold increase.
All experiments were repeated 5 times.

Our interest lies in finding out how the performance of these benchmarks–
which were designed to be executed on a single cluster of nodes with low com-
munication overhead–fares in this use case, comparing total execution time for
each latency value to its no-extra-latency counterpart5.

Each of the plots presented in this section describes the increment in total
execution time as a function of the increment in latency for all network sizes.
The semi-transparent patches over the curves show the standard deviation for
each data series.

The results for all benchmarks are shown in Fig. 3. We can observe similar
patterns for each network size.

On 16 nodes, total execution time for all network sizes grows linearly as
latency is increased. In the worst case, a 100-fold latency increase results in 14
times slower total execution time. The slope of the curve is usually lower as the
problem size grows: problem size C has less of an impact than the smaller sizes
on most cases. We believe this to be related to the fact that each process has
more work to do, reducing the impact of the overhead in communication.

On 64 nodes, the difference between problem sizes A and C is more significant.
Moreover, we can also observe that the maximum increment is much lower than
in the smaller network, up to 3.5 times for a 100-fold latency increase. For BT,
CG and MG (problem size A), the incidence is also much more significant for
smaller latency values. For example, increasing latency 10 times in CG, size A,
results in the application taking 2.5 times more to complete. However, increasing
latency 100 times results in it only taking 3.4 times more. LU, on the other hand,
doesn’t show a significant performance loss for all latency values.

On 256 nodes, we can observe similar results to 64 nodes. However, in this
case, the scale is much smaller: the worst case is shown in MG, size A, which takes
twice as much time to complete when subject to a 100-fold latency increment.
The case of CG is also interesting, as going from no latency to 1 ms results in the
benchmark taking 1.6 times more to complete. However, increasing the latency
further doesn’t produce a noticeable effect. This is similar to the results for 64
nodes, but the effect is more pronounced. We believe this to be related to the
communication that goes through the distinguished link representing a much
smaller ratio with respect to smaller networks.

Finally, in the case of IS, the increments in total execution time are much less
noticeable than in the previous cases. On 16 nodes, the curves for each problem
size tend to drift away from each other as the latency goes up. However, as the
node count goes up, the effects of changes in latency on this topology are much
less noticeable. We can conclude that this application is not greatly impaired,
being the most fog-ready of all these benchmarks in this particular scenario.

5 In the no extra latency case, the topology remains unchanged, but the latency of
every link is exactly the same.



SherlockFog: MPI in Fog and Edge Computing 197

Fig. 3. Slowdown on the isles topologies as a function of the increment in latency of
the distinguished link in different NAS parallel benchmarks.



198 M. Geier and E. Mocskos

6 Conclusions

In this work we introduced SherlockFog, a tool that enables experimentation
with MPI applications in Fog and Edge Computing scenarios. We proposed a
methodology to analyze if an MPI application can be deployed on a Fog or Edge
scenario without incurring in a big performance loss, given its communication
pattern and that particular network setting. Our tool also provides a testing
framework to explore MPI applications and library implementations in hetero-
geneous scenarios.

Latency emulation in SherlockFog was validated by estimating the commu-
nication overhead in a custom application that implements a token ring. This
application describes a sequential communication pattern and is therefore suit-
able for estimating the overhead theoretically.

We have analyzed five well-known benchmarks that use MPI to reproduce
patterns in computation similar to those of CFD applications. We proposed a
network topology in which two clusters are connected to each other through
a single distinguished link. Using this topology, we have evaluated the impact
of increasing the latency of the distinguished link on the performance of each
application.

All results show a linear or sublinear impact on this particular topology, open-
ing up opportunities to use distributed, increasingly ubiquitous computational
resources.

As future work, other aspects of the Edge/Fog paradigm such as the dynamic
nature of the network have to be studied. This requires adapting the MPI pro-
gramming model to handle node churn and changes in logical topology. Sherlock-
Fog also models changes in bandwidth. This feature should also effect application
performance but have not yet been evaluated.

Acknowledgements. The authors would like to thank D. González Márquez for
his assistance with schematic drawings and the Centro de Simulación Computacional
para Aplicaciones Cient́ıficas/CSC-CONICET and the Centro de Cómputos de Alto
Rendimiento (CeCAR, FCEN-UBA) for providing the equipment we haved used in the
experimental setup.

References

1. Dimemas. http://tools.bsc.es/dimemas. Accessed 2 Dec 2017
2. ns-3 Direct Code Execution. https://www.nsnam.org/overview/projects/direct-

code-execution/. Accessed 2 Dec 2017
3. ns-3 Overview. https://www.nsnam.org/docs/ns-3-overview.pdf. Accessed 2 Dec

2017
4. Bailey, D., Barszcz, E., Barton, J., Browning, D., Carter, R., Dagum, L., Fatoohi,

R., Fineberg, S., Frederickson, P., Lasinski, T., Schreiber, R., Simon, H., Venkatakr-
ishnan, V., Weeratunga, S.: The NAS parallel benchmarks. Report RNR-94-007,
Department of Mathematics and Computer Science, Emory University, March 1994

5. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286,
509–512 (1999)

http://tools.bsc.es/dimemas
https://www.nsnam.org/overview/projects/direct-code-execution/
https://www.nsnam.org/overview/projects/direct-code-execution/
https://www.nsnam.org/docs/ns-3-overview.pdf


SherlockFog: MPI in Fog and Edge Computing 199

6. Bonomi, F., Milito, R., Zhu, J., Addepalli, S.: Fog computing and its role in the
internet of things. In: Proceedings of the First Edition of the MCC Workshop on
Mobile Cloud Computing, MCC 2012, pp. 13–16. ACM, New York (2012). http://
doi.acm.org/10.1145/2342509.2342513

7. Brandfass, B., Alrutz, T., Gerhold, T.: Rank reordering for MPI communica-
tion optimization. Comput. Fluids 80, 372–380 (2013). Selected Contributions
of the 23rd International Conference on Parallel Fluid Dynamics ParCFD2011.
http://www.sciencedirect.com/science/article/pii/S004579301200028X

8. Casanova, H., Giersch, A., Legrand, A., Quinson, M., Suter, F.: Versatile, scal-
able, and accurate simulation of distributed applications and platforms. J. Parallel
Distrib. Comput. 74(10), 2899–2917 (2014). http://hal.inria.fr/hal-01017319

9. Degomme, A., Legrand, A., Markomanolis, G., Quinson, M., Stillwell, M., Suter,
F.: Simulating MPI applications: the SMPI approach. IEEE Trans. Parallel Distrib.
Syst. PP(99), 1 (2017)

10. Dichev, K., Rychkov, V., Lastovetsky, A.: Two algorithms of irregular Scatter/-
Gather operations for heterogeneous platforms. In: Keller, R., Gabriel, E., Resch,
M., Dongarra, J. (eds.) EuroMPI 2010. LNCS, vol. 6305, pp. 289–293. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-15646-5 31

11. Gropp, W., Lusk, E., Skjellum, A.: Using MPI: Portable Parallel Programming
with the Message-Passing Interface, 2nd edn. MIT Press, Cambridge (1999)

12. Gropp, W., Lusk, E., Thakur, R.: Using MPI-2: Advanced Features of the Message-
Passing Interface, 2nd edn. MIT Press, Cambridge (1999)

13. Hemminger, S.: Network emulation with NetEm. In: Pool, M. (ed.) LCA 2005,
Australia’s 6th National Linux Conference (linux.conf.au). Linux Australia, Sydney
(2005). http://developer.osdl.org/shemminger/netem/LCA2005 paper.pdf

14. Lantz, B., Heller, B., McKeown, N.: A network in a laptop: rapid prototyping for
software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Workshop
on Hot Topics in Networks, Hotnets-IX, pp. 19:1–19:6. ACM, New York (2010).
http://doi.acm.org/10.1145/1868447.1868466

15. Mercier, G., Clet-Ortega, J.: Towards an efficient process placement policy for MPI
applications in multicore environments. In: Ropo, M., Westerholm, J., Dongarra,
J. (eds.) EuroPVM/MPI 2009. LNCS, vol. 5759, pp. 104–115. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-03770-2 17

16. Navaridas, J., Pascual, J.A., Miguel-Alonso, J.: Effects of job and task placement on
parallel scientific applications performance. In: 2009 17th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing, pp. 55–61,
February 2009

17. Shi, W., Cao, J., Zhang, Q., Li, Y., Xu, L.: Edge computing: vision and challenges.
IEEE Int. Things J. 3(5), 637–646 (2016)

18. Wette, P., Dräxler, M., Schwabe, A.: Maxinet: distributed emulation of software-
defined networks. In: 2014 Networking Conference, IFIP, pp. 1–9, June 2014

19. White, B., Lepreau, J., Stoller, L., Ricci, R., Guruprasad, S., Newbold, M., Hibler,
M., Barb, C., Joglekar, A.: An integrated experimental environment for distributed
systems and networks. In: Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation, pp. 255–270. USENIX Association, Boston,
December 2002

http://doi.acm.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://www.sciencedirect.com/science/article/pii/S004579301200028X
http://hal.inria.fr/hal-01017319
https://doi.org/10.1007/978-3-642-15646-5_31
http://developer.osdl.org/shemminger/netem/LCA2005_paper.pdf
http://doi.acm.org/10.1145/1868447.1868466
https://doi.org/10.1007/978-3-642-03770-2_17

	SherlockFog: Finding Opportunities for MPI Applications in Fog and Edge Computing
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 SherlockFog: A Distributed Experimental Framework to Enable Fog and Edge Computing
	3.2 Features of SherlockFog
	3.3 Considerations When Using SherlockFog
	3.4 Underlying Topology

	4 Validation
	4.1 Latency Emulation
	4.2 Token Ring
	4.3 MPI Token Ring

	5 Results
	6 Conclusions
	References




